payanneme

٣‐۴ ‐ شروع فرورزونانس...................................................................................................................... ١٨
٣‐۴‐١‐ شرایط ادامه یافتن فرورزونانس ......................................................................................... ١٨
٣‐۵‐ اثرات نامطلوب فرورزونانس ........................................................................................................ ١٩
٣‐۶‐ مبانی پدیده فرورزونانس ............................................................................................................. ٢٠
٣‐٧‐فرورزونانس در ترانسفورماتورهای توزیع ..................................................................................... ٢٢
٣‐٧‐١‐ فرورزونانس پایدار .............................................................................................................. ٢٣
٣‐٧‐٢‐ فرورزونانس ناپایدار............................................................................................................ ٢٣
٣‐٨‐ تاثیر نوع سیم بندی ترانسفورماتورها............................................................................................ ٢۴
٣‐٩‐ تاثیر بار بر اضافه ولتاﮊهای فرورزونانس....................................................................................... ٢۴
٣‐١٠‐ طبقه بندی مدلهای فرورزونانس ................................................................................................ ٢۵
٣‐١١‐ شناسایی فرورزونانس................................................................................................................. ٢۵
فصل چهارم: مبانی علمی روشهای پیشنهادی...............................................................................٢٧
۴‐١‐ از تبدیل فوریه تا تبدیل موجک.................................................................................................... ٢٨
۴‐٢‐ سه نوع تبدیل موجک................................................................................................................... ٣٣
۴‐٢‐١‐تبدیل موجک پیوسته............................................................................................................ ٣٣
۴‐٢‐٢‐ تبدیل موجک نیمه گسسته.................................................................................................. ٣۵
۴‐٣‐ انتخاب نوع تبدیل موجک......................................................................................................... ۷۳
۴‐۴‐ آنالیز مالتی رزولوشن و الگریتم DWT سریع ........................................................................... ۷۳
۴‐۴‐١‐ آنالیز مالتی رزولوشن ....................................................................................................... ٣٧
۴‐۵‐ زبان پردازش سیگنالی ............................................................................................................... ۴٠
۴‐۶‐ شبکه عصبی .............................................................................................................................. ۴۵
۴‐۶‐١‐ مقدمه .................................................................................................................................. ۴۵
۴‐۶‐٢‐ یادگیری رقابتی................................................................................................................. ۴۶
۴‐۶‐٢‐١‐روش یادگیری کوهنن ................................................................................................. ۴٧
۴‐۶‐٢‐٢‐ روش یادگیری بایاس .................................................................................................. ۴٨
۴‐٧‐ نگاشت های خود سازمانده ..................................................................................................... ۵٠
۴‐٨‐ شبکه یادگیری کوانتیزه کننده برداری ...................................................................................... ۵٢
۴‐٨‐١‐ روش یادگیری ................................................................................................... LVQ1 ۵٣
۴‐٨‐٢‐ روش یادگیری تکمیلی..................................................................................................... ۵۵
۴‐٩‐ مقایسه شبکه های رقابتی ........................................................................................................ ۵۵
فصل پنجم: جمعآوری اطلاعات ................................................................................................ ۵٧
۵‐١‐ نحوه بدست آوردن سیگنالها......................................................................................................... ۵٨
۵ ‐١‐١‐ بدست آوردن سیگنالهای فرورزونانس................................................................................. ۵٨
۵‐١‐٢‐ انواع کلیدزنیها و انواع سیم بندی در ترانسفورماتورها............................................................. ۵٩
۵ ‐١‐٣‐ اثر بار بر فرورزونانس .......................................................................................................... ۶۴
۵ ‐١‐۴‐ اثر طول خط......................................................................................................................... ۶۵
۵‐١‐۵‐ بدست آوردن سیگنالهای سایر حالات گذرا............................................................................. ۶۶
فصل ششم: پیاده سازی الگوریتم و نتایج شبیه سازی .............................................................. ٧۴
۶‐١‐ مقدمه ........................................................................................................................................ ٧۵
۶‐٢‐ تعیین کلاسها و تعداد الگوهای هر کلاس ................................................................................ ٧۵
۶‐٣‐ اعمال تبدیل موجک و استخراج ویژگیها ................................................................................. ٧۵
۶‐۴‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی ................................................................LVQ ٨١
۶‐۵‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی رقابتی.............................................................. ٨٨
فصل هفتم: نتیجه گیری و پیشنهادات........................................................................................ ٩۵
٧‐١‐ نتیجه گیری................................................................................................................................ ٩۶
٧‐٢‐ پیشنهادات ................................................................................................................................. ٩٨
فهرست منابع........................................................................................................................... ١٠٠
فهرست جدولها عنوان صفحه
جدول ۵‐۲. اطلاعات بارها ................................................................................................ ........................ ۹۵
جدول۵‐۳.مشخصات ترانسفورماتورها ....................................................................................................... ۹۵
جدول۶‐۱ در صد تشخیص شبکه LVQ با موجک ............................................................................ Db ۴۸
جدول ۶‐۲ در صد تشخیص شبکه LVQ با موجک ....................................................................... dmey ۴۸
جدول ۶‐۳ در صد تشخیص شبکه LVQ با موجک ....................................................................... haar ۵۸
جدول۶‐۴ در صد تشخیص شبکه رقابتی با موجک ............................................................................ Db ۱۹
جدول ۶‐۵ در صد تشخیص شبکه رقابتی با موجک ..................................................................... dmey ۱۹
جدول ۶‐۶ در صد تشخیص شبکه رقابتی با موجک ....................................................................... haar ۲۹
فهرست شکلها عنوان صفحه
۱‐۳. مدار معادل پدیده فرورزونانس............................................................................................................ ۰۲
۲‐۳ حل ترسیمی مدار LC غیر خطی.......................................................................................................... ۱۲
۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس............................................................................. ۹۲
۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. ................................................................................................ ۱۳
۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس زمان....................... ۳۳
۴‐۴‐ تشریح CWT طبق معادله۴ ................................................................................................................ ۴۳
۴‐۵ مثالی از آنالیزموجک پیوسته. در بالا سیگنال مورد نظر نمایش داده شده است. ............................... ۵۳
۴‐۶ طرح الگوریتم کد کردن زیر باند ......................................................................................................... ۱۴
۴‐۷ نمایش تجزیه توسط موجک................................................................................................................. ۳۴
۴‐۸ مثالیاز تجزیه .DWT سیگنال اصلی، سیگنال تقریب (AP) وسیگنالهای جزئیات CD1) تا ..................................................................................................................................................... (CD6 ۴۴
۴‐۹ معماری شبکه رقابتی............................................................................................................................ ۶۴
۴‐ ۰۱نمایش همسایگی................................................................................................................................ ۱۵
۴‐۱۱ معماری شبکه ......................................................................................................................... LVQ ۲۵
۵‐۱. فیدر .......................................................................................................................................... 20kV ۸۵
۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۹۵
۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۹۵
۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۱۶
۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۱۶
۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۱۶
۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۱۶
۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۲۶
۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز ................................................................................... ۲۶
۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۳۶
۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۳۶
۵‐۸۱ ولتاﮊ ثانویه فاز a در اثر افزایش بار................................................................................................ ...۴۶
۵‐۹۱ ولتاﮊ ثانویه فاز a در اثر قطع تعدادی از بارها ................................ ...................................................۶۴
۵‐۰۲ ولتاﮊ فاز a ثانویه ترانس با کاهش طول خط................................ ......................................................۶۵
۵‐۱۲.ولتاﮊ فاز a ثانویه ترانس با افزایش طول خط................................ .....................................................۵۶
۵‐۲۲.پیکربندی فازها و اطلاعات مکانیکی................................................................ .................................۷۶
۵‐٢٣مدل فرکانسی بار CIGRE در ................................................................ EMTP ...............................۷۶
۵‐٢۴یک نمونه از منحنی مغناطیس شوندگی ترانسفورماتورها................................ ....................................٧٠
۵‐۵۲ . سه نمونه از سیگنالهای کلیدزنی خازنی................................................................ ...........................۰۷
۵‐۶۲. سه نمونه از سیگنالهای کلیدزنی بار ................................................................ ..................................۱۷
۵‐۷۲. سه نمونه از سیگنالهای کلیدزنی ترانسفورماتور ................................ ...............................................۱۷
۶ ‐۸ یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1 تا (CD6 با
استفاده از تبدیل موجک ................................................................ Daubechies ....................................۸۷
۶‐۹. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Daubechies .................................۸۷
۶‐۰۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................Daubechies .................................................۸۷
۶‐۱۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا
(CD6 با استفاده از تبدیل موجک ................................................................ Daubechies .....................۸۷
۶‐۲۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................ Haar .............................۹۷
۶‐۳۱. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ Haar .................................................۹۷
۶‐۴۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با استفاده از
تبدیل موجک ................................................................................................ Haar .................................۹۷
۶‐۵۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Haar .............................................۹۷
۶‐۶۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۷۱یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ DMeyer ...........................................۰۸
۶‐۸۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۹۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ DMeyer ........................................۰۸
۶‐۰۲ الگوریتم ارائه شده ................................................................................................ ............................۱۸
۶‐۱۲‐ انرﮊی لحظه ای یک نمونه از جریان فاز دوم سیگنالها......................................................................۶۸
۶‐۲۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها........................................................................۶۸
۶‐۳۲ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies1 بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده...........................................۷۸
۶‐۴۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده..............................................۷۸
۶‐۵۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک 1
Daubechies بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده. ............................................۲۹
۶‐۶۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2 بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده ............................................۳۹
۶‐۷۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها ......................................................................۳۹
۶‐۸۲‐ انرﮊی لحظه ای یک نمونه از جریان فازدوم سیگنالها ......................................................................۴۹
چکیده
یکــی از عوامــل ســوختن و خرابــی ترانــسفورماتورها در سیــستم هــای قــدرت، وقــوع پدیــده
فرورزونانس است. با توجه به اثرات مخرب این پدیده، تشخیص آن از سایر پدیده هـای گـذرا از
اهمیت ویژه ای برخوردار است که در این پایان نامه کارکرد دو شـبکه عـصبی یـادگیری کـوانتیزه
کننده برداری((LVQ١ و شبکه عصبی رقابتی در دسته بندی دو دسته سیگنال کـه دسـته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشد، با استفاده از ویژگیهای استخراج شده توسط تبدیل موجک٢ خانواده Daubechies تا شش
سطح مورد بررسی قرار گرفته است. نقش شبکه های عصبی مذکور بعنـوان طبقـه بنـدی کننـده،
جدا سازی پدیده فرورزونانس از سایر پدیده های گذرا است. سیگنالهای مذکور بـا شـبیه سـازی
توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی بدست آمده اند. بـرای اسـتخراج ویژگیهـا،
کلیه موجکهای موجود در جعبه ابزار Wavelet نرم افزار MATLAB بررسی شده اسـت کـه تبـدیل
موجک خانواده Daubechies بعنوان مناسبترین موجک تشخیص داده شد. به منظـور اسـتخراج هـر
چه بهتر ویژگیها سیگنالها، الگوها نرمالیزه (مقیاسبنـدی) شـدهانـد سـپس انـرﮊی شـش سـیگنال
جزئیات حاصل از اعمال تبدیل موجک به عنوان ویژگیهای استخراج شده از الگوها، برای آموزش
و امتحان دو شبکه عصبی مذکور بکار رفتهاست. به کمک این الگوریتم تفسیر برخـی از رخـدادها
که احتمال بروز پدیده فرورزونانس در آنها وجود دارد قابل انجام بوده، همچنین میتوان نسبت بـه
ساخت رله هایی برای مقابله با پدیده فرورزونانس کمک نماید. عناوین روشهای ارایه شده در این
پایان نامه به شرح زیر میباشند:

1 -Learning Vector Quantizer (LVQ)
2- Wavelet Transform
١) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی LVQ
٢) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی رقابتی
نتایج حاصل از این روشها بیانگر موفقیت بسیار هر دو روش در شناسـایی فرورزونـانس از سـایر
پدیده های گذرا می باشد.
کلید واﮊه: شبکه عصبی LVQ، شبکه عصبی رقابتی، تبدیل موجک، پدیده فرورزونانس, نـرم
افزار EMTP ، نرم افزار MATLAB

١
مقدمه
امروزه انرﮊی الکتریکی نقش عمدهای در زمینههای مختلف جوامـع بـشری ایفـا مـیکنـد و جـزﺀ
لاینفک زندگی است. بدیهی است که مانند سایر خـدمات اندیـسها و معیارهـایی جهـت ارزیـابی
کیفیت برق تولید شده مورد توجه قرار گیرد. اما ارزیابی میزان کیفیت برق از دید افراد مختلـف و
در سطوح مختلف سیستم قدرت بکلی متفاوت است. به عنوان مثال شرکتهای توزیع، کیفیت بـرق
مناسب را به قابلیت اطمینان سیستم برقرسانی نسبت میدهنـد و بـا ارائـه آمـار و ارقـام قابلیـت
اطمینان یک فیدر را مثلاﹰ ٩٩% ارزیابی میکنند سازندگان تجهیـزات الکتریکـی بـرق بـا کیفیـت را
ولتاﮊی میدانند که در آن تجهیزات الکتریکی به درسـتی و بـا رانـدمان مطلـوب کـار مـیکننـد و
بنابراین از دید سازندگان آن تجهیزات، مشخصات مطلوب ولتاﮊ شبکه بکلی متفاوت خواهد بـود.
اما آنچه که مسلم است آنست که موضوع کیفیت برق، نهایتـاﹰ بـه مـشترکین و مـصرف کننـدگان
مربوط میشود و بنابراین، تعریف مصرفکنندگان اهمیت بیشتری دارد.
بروز هر گونه اشکال یا اغتشاش در ولتاﮊ، جریان یا فرکانس سیستم قدرت کـه باعـث خرابـی یـا
عدم عملکرد صحیح تجهیزات الکتریکی مشترکین گردد به عنوان یک مشکل در کیفیت برق، تلقی
میگردد.
واضح است که این تعریف نیز از دید مشترکین مختلـف، معـانی متفـاوتی خواهـد داشـت. بـرای
مشترکی که از برق برای گرم کردن بخاری استفاده میکند، وجود هارمونیکها در ولتاﮊ یا انحراف
فرکانس از مقدار نامی هیچ اهمیتی ندارد، در حـالی کـه تغییـر انـدکی در فرکـانس شـبکه، بـرای
مشترکی که فرکانس برق شهر را به عنوان مبنای زمانبندی تجهیزات کنترلی یک سیـستم بـه کـار
گرفته است،میتواند به طور کلی مخرب باشد.
٢
یکی از مواردی که بعنوان یک مشکل در کیفیت برق تلقی می گردد، پدیده فرورزونانس است. در
اثر وقوع این پدیده و اضافه ولتاﮊ و جریان ناشی از آن، موجب داغ شدن و خرابی
ترانسفورماتورهای اندازه گیری و ترانسفورماتور های قدرت می گردد که میتوانند بر حسب
شرایط اولیه، ولتاﮊ و فرکانس تحریک و مقادیر مختلف پارامترهای مدار (کاپاسیتانس وشکل
منحنی مغناطیسی)، مقادیر متفاوتی پیدا کنند، بنابراین بایستی محدودیت هایی بر پارامترهای
سیستم اعمال کرد تا از وقوع چنین پدیده ناخواسته جلوگیری نمود.
با توجه به اهمیت شناسایی پدیده فرورزونانس از سایر حالتهای گذرا دراین پایان نامه تلاش شد
تا سیستمی هوشمند جهت تشخیص این پدیده از سایر حالتهای گذرای کلیدزنی ارائه گردد. در
طراحی این سیستم هوشمند اولاﹰ از جدیدترین روش های تجزیه و تحلیل و پردازش سیگنالهای
الکتریکی برای پردازش دادهها استفاده گردید. ثانیاﹰ از طبقهبندی کنندههای پیشرفته با توانایی بالا
در دستهبندی دادهها بهره گرفته شد. به منظور مقایسه نتایج حاصل از فرورزونانس با سایر
سیگنالهای گذرای شبکه توزیع، تعدادی از حالتهای گذرا نظیر کلیدزنی بار، کلیدزنی خازنی و
کلید زنی ترانسفورماتور توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی شبیه سازی شد.
در فصل دوم به مروری بر کارهای انجام شده در زمینه پـردازش سـیگنال در سیـستمهای قـدرت
پرداخته، در فصل سوم به معرفی پدیده فرورزونانس خـواهیم پرداخـت. در فـصل چهـارم مبـانی
علمی روشهای پیشنهادی، در فصل پنجم نحوه جمع آوری اطلاعات و سیگنالها بررسی مـی شـود
و درفصل ششم نحوه پیاده سازی روشهای پیشنهادی بررسی مـی شـود و نهایتـا نتیجـه گیـری و
پیشنهادات پایان بخش مطالب خواهند بود.
٣

۴
۲‐۱‐ مقدمه
با دستهبندی دقیق مسائل، همچنین میتوان منابع تولید هر دسته از مشکلات را نیز شناسـایی و در
دستهبندی فوق جـای داد. بـه ایـن ترتیـب پـس از شناسـایی نـوع اغتـشاش از روی پارامترهـای
اندازهگیری شده اقدام برای بهبود کیفیت برق نیز تا حدودی آسانتر خواهد شد. در ضمن میتـوان
اغتشاشهای بوجود آمده در هر دسته را با اندیسها و مشخصههای مربوط به خودش تعریف کرد و
بنابراین توصیف کاملی از انحرافات بوجود آمده در شکل مـوج ولتـاﮊ نـسبت بـه حالـت ایـدهآل
بدست آورد.
به منظور تشخیص پدیده های تصادفی در سیستم های قدرت, سـیگنالهای مختلفـی مـورد توجـه
قرار گرفته اند. از این سیگنالها می توان به سیگنالهای کیفیت توان و سـیگنالهای خطـای امپـدانس
بالا و سیگنالهای فرورزونانس اشاره کرد که در ادامه مـروری بـر روشـهای شناسـایی سـیگنالهای
کیفیت توان و سیگنالهای خطای امپدانس بالا شده است. لازم به ذکر است با توجـه بـه اینکـه در
زمینه شناسایی سیگنالهای فرورزونانس از سایر سیگنالهای گذرا، مقالـه یـا کـار تحقیقـاتی وجـود
ندارد در این پایان نامه روشهای شناسایی این پدیده بررسی شده است.
٢‐٢‐ مروری بر روشهای شناسایی اغتشاشات کیفیت توان
در این بخش قبل از بررسی کامل روشهای گوناگون شناسایی اغتشاشات کیفیت توان لازم دیـدیم
که با توجه به کاربرد وسیع روشهای پردازش سیگنال در بحث کیفیت توان نکات چندی را خـاطر
نشان سازیم. در وهله اول، با توجه به توضیحات قسمت قبل، لزوم جداسازی اغتشاشات و تعیـین
نوع آنها هرچه بیشتر اهمیت مییابد. در ضمن با مرور کارهـای گذشـته و انجـام شـده در بحـث
کیفیت توان روشهای مختلف پردازش سیگنال به صورت عمده در سه بخش زیـر مـورد اسـتفاده
۵
قرار گرفتهاند:
١‐ کاربرد پردازش سیگنال و تکنیکهای آن در فشردهسازی اطلاعات و شکل موجهـا و کـاربرد
آن در کیفیت توان
٢‐ استفاده از تکنیکهای مختلف پردازش سیگنال و سیستمهای خبره در جداسازی اغتشاشات
٣‐ استفاده از تکنیکهای مختلف پردازش سیگنال در تشخیص نوع اغتشاش بوجود آمده
١. سیستمهای هوشمند در طبقهبندی اغتشاشات
در این قسمت تشخیص دو موضوع عمده ضروری است. اول آنکه کدام یک از روشهای پردازش
سیگنال اعم از تبدیل فوریه، موجک و … جهت تجزیه و تحلیل و استخراج ویژگیهای مربوط بـه
هر یک از اغتشاشات به کار گرفته شدهاند و در مرحله دوم دستهبندی کننده موردنظر جـزﺀ کـدام
یک از سیستمهای هوشمند مانند شبکههای عصبی، فازی و … بوده است.
الف) تکنیک مورد استفاده در پردازش شکل موجهای مربوط به اغتشاشات
تکنیکهای مورد استفاده در طبقهبندی اغتشاشات کیفیت توان در چهار دسته زیر قرار می گیرند:
۱. تکنیکهای مطرح شده با استفاده از تبدیل فوریه (FFT, STFT)
٢. تکنیکهای مطرح شده با استفاده از تبدیل موجک (DWT, CWT)
۳. تکنیکهای ترکیبی
۴. تکنیکهای نوین مطرح شده در حوزه پردازش سیگنال
اگر قرار باشد به سراغ کارهای قدیمی در حوزه پردازش سیگنال بـرویم آنگـاه تبـدیل فوریـه بـه
عنوان یک ابزار قوی در این زمینه مطرح میگردد. تبدیل فوریه سریع و تبدیل فوریه زمان کوتاه از
جمله تکنیکهایی هستند که در این قسمت مورد استفاده قرار گرفتهاند] ۱.[
ابزار جدید مطرح شده در حوزه پردازش سـیگنال تبـدیل موجـک مـیباشـد. بـا توجـه بـه آنکـه
۶
تکنیکهای گسسته پردازش سیگنال امروزه فراگیر شدهاند، اکثریت قریب به اتفـاق کارهـای انجـام
شده با استفاده از تبدیل موجک به DWT یا همان تبدیل موجک گسسته برمیگـردد. نمونـه هـای
فراوانی از کاربردهای این تبدیل را در کارهای قبلی می توان مشاهده کرد]۲.[
عدهای از محققان روشهای ترکیبی را جهت استخراج ویژگیهایی اغتـشاشات بـه کـار بـردهانـد. از
جمله این روشها میتوان به ترکیب تبدیل فوریه و تبدیل والش در ]۳[ و ترکیب تبـدیل فوریـه و
موجک در ]۴[ اشاره کرد. از طرفی با پیشرفتهای بدست آمده در حوزه پردازش سـیگنال مـیتـوان
نمونههایی از به کارگیری تبدیلهای جدید مانند S Transform را در بحث طبقهبنـدی اغتـشاشات
درمراجع یافت] ۵.[
آنچه که در تمامی این تحقیقات بیش از همه به چشم می آید عدم وجود یک شـبکه واقعـی اسـت
که نتایج این روشها را همچنان در هالهای از ابهام نگه میدارد.
ب) سیستمهای خبره به کار گرفته شده
تحت عنوان طبقهبندی کننده اغتشاشات کیفیت توان قبل از بـه کـارگیری یـک سیـستم هوشـمند
جهت تشخیص اغتشاشات موردنظر در یک بازه زمانی خاص لازم است ویژگیهایی جهت هر یک
از اغتشاشات استخراج شود. این ویژگیها میتوانند مجموع ضرایب، مجمـوع قـدرمطلق ضـرایب،
ماکزیمم ضرایب، انحراف معیار ضرایب یا هرچیز دیگـر باشـند. در ادامـه ضـمن معرفـی سیـستم
هوشمند در هر تحقیق ویژگیهای استفاده شده در آن تحقیق را بررسی می کنیم.
شبکه های موجک: شبکههای موجک نوع خاصی از شبکههای عصبی مـیباشـند کـه در آنهـا توابع متداول شبکه های عصبی با توابع موجک مادر جایگزین مـیشـوند. ایـن شـبکههـا بـه خصوص در سالهای اخیر توانایی خاصی از خود در تقریب توابع نشان دادهاند. این شـبکههـا به همراه دوره اغتشاشی سیگنال جهت طبقـهبنـدی اغتـشاشات کیفیـت تـوان بـه کـار گرفتـه
٧
شدهاند]۶.[
شبکه های عصبی: شبکههای عصبی مورد اسـتفاده در طبقـهبنـدی اغتـشاشات بیـشتر از نـوع شبکههای عصبی چند لایه پرسپترون یا همان MLP بوده، البته کارهایی از شبکههـای عـصبی احتمالی (PNN) و شبکههای عصبی خودسازمانده تطبیقی را در این بحث مـیتـوان مـشاهده کرد. ویژگیهای موردنظر جهت آموزش این شبکهها مشتمل بر انحراف معیار ضـرایب، انـرﮊی سیگنال در سطوح مختلف فرکانسی، ماکزیمم ضرایب سیگنالها در سطوح مختلف فرکانسی، متوسط و واریانس آنها و مینیمم آنها بوده اند]۷.[
منطق فازی: در استفاده از منطق فازی، تحقیقات انجام شده براساس قوانین – مبتنی بر ویژگیهای استخراج شده استوار بوده است. به عنوان مثال انرﮊی سیگنال در سطوح مختلف فرکانسی یک بردار ویژگی میسازد که مولفههای این بردار بسته به نوع اغتشاش دارای شدت یا ضعف خواهند بود. این شدت یا ضعف انرﮊی سـیگنال در سـطوح مختلـف فرکانـسی بـه همراه استنتاج فازی سیستم هوشمندی را میسازد که توانایی آن در دستهبندی اغتشاشات قابل ملاحظه است]۸.[
مدل مخفی مارکوف: این مدل که براساس نظریه مارکوف و نظریه احتمالات بنا نهـاده شـده است و در سالهای اخیر با منطق فازی نیز ترکیب شده علـیرغـم داشـتن توانـایی مناسـب در بحث طبقهبندی از پیچیدگیهای خاصی برخوردار است]۹.[
درخت تصمیمگیری: درخت تصمیمگیری از مباحـث مطـرح شـده در Machine Learning میباشد. این دستهبندی کننده به همراه ویژگیهای استخراج شده از تبـدیل موجـک بـه عنـوان یک دستهبندی کننده توانمند در حوزه کیفیت توان مطرح شده است]۰۱.[
٨
فیلتر کالمن: فیلتر کالمن بویژه فیلتر کالمن غیرخطی در سالهای اخیر به عنوان یک ابزار قـوی جهت تجزیه و تحلیل سیگنالهای مختلف به کار گرفته شده است. اگر شکل موج اغتشاشی به عنوان ورودی این فیلتر به کار رود. خروجی فیلتر مـیتوانـد نـوع اغتـشاش بوجـود آمـده را شناسایی کند]۱۱.[
٢‐٣‐ مروری بر روشهای شناسایی خطای امپدانس بالا
این روشها مبتنی بر تجزیه و تحلیل ولتاﮊها و جریانهای ابتدای فیـدر مـی باشـند و در یـک طبقـه
بندی کلی به چهار گروه تقسیم می شوند.
١. روشهای ارائه شده در حوزه زمان
٢. روشهای ارائه شده در حوزه فرکانس
٣. روشهای ارائه شده در حوزه زمان‐ فرکانس
١. روشهای ارائه شده در حوزه زمان:
این روشها بر اساس اطلاعات زمانی سیگنالها اقدام به شناسایی خطاهای امپدانس بالا مـی نماینـد
تعدادی از آنها عبارتند از:
الف) الگوریتم رله تناسبی
برای سیستمهایی که در چند نقطه زمین شده اند زاویه و دامنه جریان عدم تعـادل بـار( ( IO ثابـت
نیستند و جریان خطا نیز متغیر است. در نتیجه رله های اضافه جریان را نمی توان حساس ساخت.
٩
اگر رله ای بتواند فقط جریان خطا را حس کند، حساسیت آن بالا مـی رود. در رلـه پیـشنهادی بـا
توجه به سهولت اندازه گیری جریان عـدم تعـادل بـار( IO )، جریـان سیـستم نـول( I N )، جریـان
خطا( ( It طبق رابطه ١‐٢ محاسبه و موجب عملکرد رله می گـردد]۲۱.[
(۱‐۲)
It  K1 IO  K2 I N
که در آن IO و I N به ترتیب جریان عدم تعادل بار و جریان سیم نـول و K1 و K2 ثابـت مـی
باشند.
ب) الگوریتم رله نسبت به زمین
این رله به خاطر غلبه بر اثر تغییرات بار بر روی حساسیت رله هـای اضـافه جریـان سـاخته شـده
است و گشتاور عملکرد آن بطور اتوماتیک بار تغییر می کند] ۳۱.[
ج) استفاده از رله های الکترومکانیکی
در این رابطه برای شناسایی خطاهای امپدانس بالا بر روی شبکه های چهـار سـیمه شـرکت بـرق
پنسیلوانیا با همکاری شرکت وستینگهاوس اقدام به ساخت رلـه ای نمـوده انـد کـه بـا اسـتفاده از
نسبت جریان باقیمانده( (3 IO به جریان مولفه مثبت( ( I1 عمل می کند. اگر نسبت 3 IO از مقـدار
تنظیم شده رله فراتر رفت رله عمل خواهد کرد.] ۴۱.[
د) الگوریتم تغییرات جریان
در یکی از روشهای ارائه شده با توجه به تغییرات ملایم جریان به هنگام کلیـدزنی بـار از سـرعت
١٠
تغییرات جریان برای شناسایی خطاهای امپدانس بالا استفاده شـده اسـت]۵۱.[ ایـن روش کـارایی
خود را هنگامیکه جریانهای خطا دارای تغییرات اولیـه سـریع نیـستند از دسـت میدهـد. در روش
دیگر از تغییرات لحظه ای دامنه جریان برای آشکارسازی خطا استفاده شده اسـت]۶۱.[ هـر چنـد
خطاهای امپدانس بالا رفتار تصادفی دارند ولی سطح جریان همه آنها برای چند سـیکل زیـاد مـی
شود(لحظه وقوع جرقه) و بعد به میزان جریان بار می رسد. با توجه به این تغییـرات کـه در سـایر
کلیدزنیها وجود ندارد اقدام به شناسایی آنها گردیده اسـت. در روش دیگـری از تغییـرات بوحـود
آمده در نیم سیکل مثبت و منفی شکل موج جریان برای آشکارسازی استفاده شده است]۷۱.[
برای فیدرهایی که از طریق ترانسهای ∆ − ∆ تغذیه می شوند افزایش دامنـه جریـان و پـیش فـاز
شدن آن برای شناسایی خطای امپدانس بالا استفاده شده است] ۸۱.[
٢. روشهای ارائه شده در حوزه فرکانس:
این روشها بر اساس اطلاعات حوزه فرکانس سیگنالها عمل می کننـد و در آنهـا عمـدتا از تبـدیل
فوریه برای نگاشت سیگنالهای حوزه زمان به حوزه فرکانس استفاده می شود که در ادامه تعـدادی
از روشهای حوزه فرکانس ارائه می گردند
الف) استفاده از هارمونیک دوم و سوم جریان برای شناسایی خطاهای امپدانس بالا
برخورد هادی انرﮊی دار با زمین باعث ایجاد جرقه می گردد. این جرقه ها باعث ایجاد ناهماهنگی
و عدم تقارن شکل موج جریان می شوند که این عدم تقارن تولید هارمونیک های دوم و سـوم در
جریان خطا می کند و تعدادی از روشهای آشکارسازی بر این اساس ارائـه شـده انـد. در یکـی از
روشها نسبت دامنه مولفه دوم جریان به مولفه اصلی آن برای هـر سـه فـاز بعنـوان معیـاری بـرای
١١
شناسایی معرفی شده اند] ۹۱ .[ در روش دیگری از نسبت دامنه هارمونیک سوم جریان بـه مولفـه
اصلی برای شناسایی استفاده شده است] ۰۲.[
در روش دیگر با استفاده از مولفه هـای صـفر و منفـی هارمونیکهـای دوم، سـوم و پـنجم بعنـوان
ویژگیهای مناسب و روشی درست اقدام به جداسازی خطای امپدانس بالا از سایر حالتهـای گـذرا
همچون کلیدزنی بار، کلیدزنی خازنها و جریان هجـومی ترانـسها گردیـده اسـت] ۱۲ .[ همچنـین
انرﮊی سیگنال در یک فرکانس یـا محـدوده فرکانـسی بعنـوان ویژگیهـای مناسـبی بـرای ارزیـابی
خطاهای امپدانس بالا در نظر گرفته شده اند]۲۲.[
ب) استفاده از مولفه های فرکانس بالا جهت شناسایی خطاهای امپدانس بالا
٩۵% خطاهای امپدانس بالا با جرقه توام هستند و این جرقه ها ایجـاد نوسـانات فرکـانس بـالا در
محدوده kHz١٠‐ ٢ می نمایند. حد پایین به منظور عدم تداخل با فرکانسهای پایین که در شـرایط
معمولی وجود دارند، تعیین گ
ردیده و حد بالا به علت کاهش انرﮊی سیگنال در فرکانسهای بسیار بالا انتخاب شـده انـد. نتـایج
عملی نشان می دهند که این مولفه ها برای شناسایی مناسب هستند. هر چند اگر دامنه جریان کـم
و یا بانکهای خازنی بزرگ در شبکه وجود داشته باشند موجب حذف این مولفه ها مـی گردنـد و
عمل آشکارسازی را با مشکل مواجه می سازد] ۳۲ .[
ج) شناسایی خطاهای امپدانس بالا به کمک مولفه های بین هارمونیکی
علاوه بر هارمونیک های فرکانس پایین و فرکانس بالا مولفه های بین هـارمونیکی بـرای فرکـانس
پایه ۵٠ هرتز عبارتند از:٢۵،٧۵ و ١٢۵ هرتز و بـرای فرکـانس پایـه ۶٠ هرتـز، ٣٠،٩٠، ١۵٠، ٢١٠
١٢
هرتز می باشند] ۴۲،۵۲.[ این فرکانـسها تغییـرات دامنـه و زاویـه زیـادی در هنگـام وقـوع خطـای
امپدانس بالا از خود نشان می دهند و با حذف فرکانسهای پایه و بعضی از هارمونیک ها به کمـک
فیلتر کردن جریان می توان به آنها دست یافت و برای آشکار سازی از آنها اسـتفاده کـرد. مـشکل
عمده این روشها ساخت فیلتر هایی است که مولفه های بین هارمونیک را از خود عبور دهند] ۴۲
.[استفاده از انرﮊی این مولفه ها نیز بعنوان روشی برای جداسازی خطاهای امپـدانس بـالا از سـایر
حالات مطرح شده است] ۵۲ .[
د) آشکارسازی به کمک فیلتر کالمن
تبدیل فوریه برای سیگنالهای ایستان که دامنه آنهـا بـا زمـان تغییـر نمـی کنـد مناسـب هـستند در
صورتیکه خطاهای امپدانس بالا دارای ماهیت غیر ایستان می باشند و استفاده از تبدیل فوریه برای
تجزیه و تحلیل آنها روش بهینه ای نیست. یکی از روشـهایی کـه بـرای بررسـی سـیگنالهای غیـر
ایستان بکار می رود فیلتر کالمن است، در این روش هم مولفه اصلی و هم هارمونیک هـا بررسـی
می شوند. فیلتر کالمن برآورد مناسبی برای تغییرات زمانی فرکانس اصلی و هارمونیک ها ارائه می
کند و خطاهای مربوط به فیلترهای کلاسیک و فوریه را ندارد] ۶۲ .[
٣.روشهای ارائه شده در حوزه زمان‐ فرکانس
در این روشها از تبدیل موجک برای تجزیه و تحلیل سیگنالها استفاده می شود. با توجه به مزیـت
این تبدیل نسبت به تبدیل فوریه اخیرا در پردازش سیگنالها از جمله سیگنالهای ناشی از خطاهـای
امپدانس بالا تبدیل موجک بعنوان تبدیلی کارآمد مورد توجه قرار گرفته است. مقالاتی که در ایـن
ارتباط ارائه شده اند عبارتند از:
١٣
الف) اولین کاربرد موجک برای شناسایی خطاهای امپدانس بالا مربوط به خطاهایی اسـت کـه در
آنها از یک مقاومت زیاد بعنوان مدل خطا استفاده شده است. شبکه بررسی شـده یـک شـبکه سـه
شینه، kV۴٠٠ بوده و با استفاده از برنامه EMTP شـبیه سـازی شـده و اطلاعـات مـورد نیـاز بـا
فرکانس نمونه برداری kHZ ۴ ثبت گردیده و سه سیکل از شکل موج ولتاﮊ برای پردازش اسـتفاده
شده است. کاهش دامنه ضرایب بعنوان معیاری برای شناسایی خطا استفاده گردیده است] ۷۲ .[
ب) کاربرد دیگر تبدیل موجـک اسـتفاده از موجـک Spline و قـدر مطلـق ضـرایب سـطوح ۱و۲
سیگنالهای جریان تجزیه شده برای شناسایی خطاهای امپدانس بـالا مـی باشـد. اطلاعـات لازم بـا
شبیه سازی یک فیدر kV۱۱ با استفاده از برنامه EMTP ثبت شده اند و سه سیکل از سـیگنالهای
جریان پردازش شده اند] ۸۲. [
١۴

١۵
۳‐۱‐ مقدمه
فرورزونانس اصطلاحی است که بمنظور توصیف پدیده رزونانس در مداری که حداقل دارای یک
عنصر غیر خطی اندوکتیو است، بکار برده می شود. مداری که شامل ترکیب سری یک اندوکتانس
قابل اشباع و مقاومت خطی وخازن است، مدار فرورزونانس نامیده می شود.
رزونانسی که در مدار شامل راکتور خطی رخ می دهد به رزونانس خطی سری و رزونانسی که در
مدار شامل راکتور قابل اشباع رخ می دهد به فرورزونانس یا رزونانس جهشی موسوم است.
بواسطه مشخصه غیر خطی راکتور، مقدار اندوکتانس در ناحیه اشباع تابعی از درجه اشباع هسته
مغناطیسی که خود وابسته به ولتاﮊ دو سر راکتور است، می باشد و از این رو در ناحیه اشباع
اندوکتانس می تواند مقادیر متعددی را به خود اختصاص دهد که ممکن است در هر یک از این
مقادیر تحت شرایط خاصی پدیده فرورزونانس تحقق یابد.
در حقیقت پدیده فرورزونانس مورد خاصی از رزونانس جهشی است که در آن غیر خطی بودن،
مربوط به هسته مغناطیسی راکتور است. رزونانس جهشی به این معناست که هر گاه در سیستمی
که توسط منبع سینوسی تحریک می شود، در اثر افزایش مقدار یا فرکانس ورودی و یا مقدار یکی
از پارامترهای سیستم، یک جهش ناگهانی در مقدار یکی از سیگنالهای دیگر سیستم پیش آید. این
جهش می تواند در ولتاﮊ یا جریان و یا فلوی مغناطیسی یا در تمامی آنها ایجاد گردد.
هنگامیکه در اثر اشباع هسته مغناطیسی و تحت شرایط خاصی چنین پدیده ای رخ می دهد ولتاﮊ
زیادی در دو سر راکتور ظاهر شده و جریان مغناطیس کننده در نقاطی که ولتاﮊ تغییر جهت می
دهد به شکل پالس به مقدار زیادی افزایش می یابد.
١۶
۳‐۲‐ تاریخچه فرورزونانس
تحقیقات در مورد پدیده فرورزونانس سابقه هشتاد ساله دارد. کلمه فرورزونانس در مقالات علمی
دهه ١٩٢٠ دیده شد. علایق عملی در سال ١٩٣٠ زمانی به وجود آمد که استفاده از خازنهای سـری
برای تنظیم ولتاﮊ در سیستمهای توزیع آن زمان، باعث بروز اضافه ولتاﮊ در شبکه توزیع می گـردد
]۹۲.[ از آن زمان تاکنون بیشتر تحقیقات در این زمینه بر مـدل سـازی دقیـق تـر ترانـسفورماتور و
مطالعه پدیده فرورزونانس در سطح سیستم متمرکـز بـوده اسـت. اصـولا فرورزونـانس پدیـده ای
غیرخطی است. بنابراین بسیاری از روشهای بکار برده شده جهت بررسـی ایـن پدیـده مبتنـی بـر
حوزه زمان و با بکار بردن نرم افزار EMTP می باشد
٣‐٣‐ موارد وقوع فرورزونانس در سیستم های قدرت
در سیستم های قدرت الکتریکی مواردی که در آنها احتمال وقوع فرورزونانس وجود دارد عبارتند
از :
الف‐ ترانسفورماتورهای ولتاﮊ (CVT, VT)
ب‐ خطوط انتقال موازی EHV جابجا نشده
ج‐ سیستم توزیع انرﮊی
این پدیده معمول بواسطه اثر متقابل ترانسفورماتور (بدون بار یا بار کم) با کاپاسیتانس سیستم
بوجود می آید.
مثلا اگر ولتاﮊی در نقطه صفر شکل موج آن به ترانسفورماتور بدون بار اعمال شود، یک جریان
زیادی از مقدار عبور می کند زیرا، فلوی مغناطیسی تمایل دارد که در سیکل اول مقدارش را دو
١٧
برابر نماید و در نتیجه هسته به میزان زیادی اشباع می گردد، این جریان زیاد تا چند سیکل ادامه
می یابد و در شرایط ماندگار جریان تحریک به مقدار معمولش تنزل می یابد.
اما اگر چنانچه ترانسفورماتور از طریق یک خازن سری انرﮊی دار گردد این جریان غیرعادی
درشرایط ماندگار نیز ادامه می یابد، این جریان حتی از جریان بار نیز بزرگتر است و در این حالت
شکل موج جریان و ولتاﮊ دو سر ترانسفورماتور اعوجاج یافته اند و پدیده فرورزونانس تحقق
یافته است.
٣‐۴‐ شروع فرورزونانس
پدیده فرورزونانس همواره پس از وقوع یک اغتشاش فاحش، رخ میدهد. اغتشاش وارده به
سیستم ممکن است منجر به تغییر افزایشی در مقدار فرکانس ورودی سیستم یا مقادیر پارامترهای
سیستم گردد.در سیستم های قدرت، معمولا اغتشاش ناشی از قطع خط ترانسفورماتور بدون بار و
شرایط سوئیچینگ نامطلوب، احتمال وقوع فرورزونانس را افزایش می دهد. اغلب این پدیده در
سیستم قدرتی که دارای تلفات کم است آغاز می گردد.
٣‐۴‐١ شرایط ادامه یافتن فرورزونانس
وقوع فرورزونانس در سیستم های قدرت به شرایط اولیه مخصوصا به انرﮊی اولیه ذخیره شده
سیستم در زمان پس از اغتشاش وابسته است اگر این انرﮊی کافی باشد اندوکتانس با هسته آهنی
را به اشباع می برد.
اگر برای تغذیه تلفات سیستم بقدر کافی انرﮊی از منبع تغذیه انتقال یابد پدیده فرورزونانس ادامه
می یابد، البته مکانیزم انتقال انرﮊی در موارد مختلف، متفاوت خواهد بود.
١٨
مثلا در خطوط دوبل EHV وقتی یک از مدارها قطع می شود و خط دیگر انرﮊی دار می گردد،
انتقال توان از طریق کاپاسیتانس کوپلاﮊ بین دو خط از خط انرﮊی دار صورت می گیرد.
نتایج نشان می دهد که با وارد کردن مقاومت بزرگ در مدار امکان وقوع فروزونانس کاهش
مییابد که از آن می توان برای جلوگیری فروزونانس درترانسفورماتور ولتاﮊ استفاده نمود.
داغ شدن ترانسفورماتور قدرت عایقی آن را تضعیف کرده و منجر به شکست عایق تحت تنشهای
الکتریکی می شود. در صورت عدم توقف این پدیده ترانسفورماتور شدیدا آسیب دیده و ممکن
است باعث اتصال کوتاه و با انفجار و یا حتی آتش سوزی شود.
اضافه ولتاﮊهای ناشی از پدیده فرورزونانس می تواند تا حدود ۵ پریونیت افزایش یابد. بدیهی
است چنین اضافه ولتاﮊهایی به راحتی می توانند به سیم پیچی ترانسفورماتور آسیب برسانند. با
توجه به مسائل و مشکلات فوق شبیه سازی و تفهیم پدیده فرورزونانس موضوع بسیاری از
مقالات بوده است.
۳‐۵‐ اثرات نامطلوب فرورزونانس] ۰۳[
به وجود آمدن ولتاﮊها و جریانهای بزرگ ماندگار یا موقت در سیستم
ایجاد اعوجاج در شکل موجهای ولتاﮊ جریان
تولید صداهای گوش خراش پیوسته در ترانسفورماتورها و راکتورها
تخریب تجهیزات الکتریکی به علت گرمای زیاد یا شکست الکتریکی
عملکرد ناخواسته رله ها
گرم شدن ترانسفورماتور (در حالت بی باری)
١٩
به علت اشباع هسته ترانسفورماتور و عبور جریانهای لحظه ای بزرگ در سیم پیچهای
ترانسفورماتور در زمان وقوع این پدیده، ترانسفورماتور داغ می شود.
٣‐۶‐ مبانی پدیده فرورزونانس
به منظور تفهیم هر چه بهتر پدیده فرورزونانس مدار شکل (١‐٣) را در نظر بگیرید که در آن
سلف دارای مشخصه غیر خطی است. هر گاه منبع ولتاﮊ سینوسی باشد، می توان KVL را طبق
رابطه (١‐٣) نوشت :
L

C
R
E
شکل ۱‐۳. مدار معادل پدیده فرورزونانس
R ≈ 0 (١‐٣) jI ) V  E  − j E  I ( jwL  wC wC با توجه به شکل (٢‐٣) مشخص است که به تناسب مقدار ظرفیت خازنی، یک یا سه نقطه تقاطع
بین منحنی سلف غیرخطی و راکتانس خازنی وجود دارد. نقطه تقاطع (٢) ناپایدار می باشد. و
فقط در حالتهای گذرا چنین نقطه ای به وجود می آید. همچنین واضح است که اگر نقطه
تقاطع(۳) نقطه کار باشد در آن صورت ولتاﮊ و جریانهای بسیار بزرگی به وجود می آیند.
در مقادیر کم ظرفیت خازنی، نقطه کار فقط، نقطه سوم بوده و چون در این حالت راکتانس
خازنی بزرگ است، موجب جریان پیشفاز در سیستم و ولتاﮊ بزرگتر روی سلف می شود. با
٢٠
افزایش مقدار ظرفیت خازنی نقطه تقاطع دیگری به وجود می آید که تمایل سیستم به نقطه تقاطع
که دارای حالت سلفی با جریان پسفاز است. بیشتر می باشد.
هر گاه مقدار ولتاﮊ اعمالی به اندازه کمی تغییر نماید آنگاه نقطه کار (١) حذف و نقطه کار به نقطه

(٣) پرش خواهدکرد.
voltage
2
1
current
3
شکل۲‐۳ حل ترسیمی مدار LC غیر خطی
در این حالت جریان بسیار زیادی از سلف می گذرد و طبیعی است که با عبور این جریان بزرگ،
ولتاﮊ دوباره کاهش یافته و دبواره نقطه کار (١) به وجود می آید. و بدین ترتیب نقطه کار بین (١)
و (٣) پرش خواهد کرد. در این صورت ولتاﮊ و جریانهای به وجود آمده کاملا تصادفی و غیر
قابل پیش بینی می باشند.
در سیستمهای توزیع، پدیده فرورزونانس زمانی اتفاق می افتد که بانک خازنی و یا طولی از کابل
با مشخصه مغناطیسی ترانسفورماتور و یک منبع ولتاﮊ بطور سری قرار بگیرد. برای کابلهای با
طول کم فقط یک نقطه کار در ناحیه سوم وجود دارد و بنابراین شکل موج ولتاﮊ و جریان ناشی
از فرورزونانس دارای پریودی برابر پریود شبکه میباشد. با افزایش ظرفیت خازنی قله این اضافه
٢١
ولتاﮊها روی منحنی اشباع مدام بالا می رود تا جائیکه اندازه ولتاﮊ بسیار بیشتر از حالت عادی می
شود. با افزایش بیشتر ظرفیت خازنی نقطه کار (١) نیز فعال می شود و به تناسب نوع حالت
گذاری پیش آمده، اضافه ولتاﮊهای به وجود آمده در دو سر اندوکتانس غیرخطی، ممکن است
دارای پریود پایدار و یا شکل موج آشفته باشند.
با افزایش دوباره ظرفیت خازنی زمانی فرا می رسد که نقطه تقاطع سوم حذف می شود و در
حالت عادی در ناحیه فرورزونانس نخواهیم بود. اما حالتهای گذرا نظیر کلید زنی می توانند باعث
به وجود آوردن چنین نقطه کاری در ناحیه سوم شوند.
٣‐٧‐ فرورزونانس در ترانسفورماتورهای توزیع] ۱۳[
با گسترش خطوط کابلی زیر زمینی و همچنین تمایل روزافزون استفاده از ترانسفورماتورهای با
تلفات کم، مخصوصا ترانسفورماتور های ساخته شده از ورقه های فولاد حاوی سیلیکان، احتمال
وقوع فرورزونانس در این ترانسفورماتورها بیشتر شده است. این مشکل زمانی رخ می دهد که
ترانسفورماتور بی بار تغذیه شده از طریق خط کابلی (و یا متصل شده به بانک خازنی) تحت کلید
زنی تک فاز و یا دو فاز قرار می گیرد. همچنین در خطوط انتقال توزیع طولانی نیز، این مشکل
می تواند اتفاق بیافتد.
البته در رده توزیع خوشبختانه تمامی کلیدهای قدرت دارای قطع سه فاز بوده و این مسئله زیاد
جدی نمی باشد. اما در حالتهایی که از وسایل قطع تک فاز مانند کات آوت فیوزاستفاده می شود
امکان وقوع چنین شرایطی بسیار مهیا است. در این حالت مدار فرورزونانس شامل ولتاﮊ القایی
(ولتاﮊ القا شده از فازهای دیگر ترانسفورماتور به فاز قطع شده) و مشخصه مغناطیسی هسته
ترانسفورماتور و ظرفیت خازنی بین کابل (یا خط انتقال) و زمین می باشد. در این حالت ولتاﮊ
٢٢
ظاهر شده در فاز قطع شده ترانسفورماتور به تناسب مقدار ظرفیت خازنی کابل متصل به آن و
سایر پارامترها می تواند از چند پریونیت تجاوز نماید. شکل هسته ترانسفورماتور و منحنی
مشخصه آن در رفتار ترانسفورماتور بسیار با اهمیت می باشد.
فرورزونانس زمانی اتفاق می افتد که در هنگام بی باری و یا کم باری ترانسفورماتور در نقطه ای
دور از آن قطع تک فاز و یا دو فاز انجام شود. به تناسب پارامترهای مقدار امکان دارد که
فرورزونانس دارای دو حالت مختلف به شرح زیر میباشد:
٣‐٧‐١‐ فرورزونانس پایدار
در این حالت اضافه ولتاﮊهای فرورزونانس تا زمانی که فاز قطع شده بی برق بماند، پایدار می
باشند. این اضافه ولتاﮊها ممکن است که دارای قله بسیار بزرگی نباشند ولی به دلیل پایدار بودن
می توانند باعث صدمات جدی به برقگیرها و حتی انفجار آنها در عرض چند دقیقه شوند.
٣‐٧‐٢‐ فرورزونانس ناپایدار
در این حالت نقاط کار سیستم در حالت پایدار در محدوده فرورزونانس نمی باشند، اما حالتهای
گذرا نظیر کلید زنی می توانند نقاط کار سیستم را برای مدت کوتاهی به این محدوده وارد نمایند.
در این حالت اضافه ولتاﮊهای فرورزونانس برای مدت کوتاهی بعد از کلید زنی پدیدار شده ولی
به زودی میرا می شوند.
٢٣
٣‐٨‐ تاثیر نوع سیم بندی ترانسفورماتور
یکی از مزیتهای مدلسازی دوگانی ترانسفورماتورهای قدرت که در این مطالعه استفاده شده است،
این است که بدون تغییر در مدل هسته ترانسفورماتور، می توان سیم بندی ترانسفورماتور را
تعویض نمود] ۲۳.[
در ظرفیتهای خازنی مساوی، اضافه ولتاﮊهای فرورزونانس در ترانسفورماتور مورد نظر در حالت
اتصال ستاره با نوترال زمین شده بسیار کمتر است. با قطع نوترال ترانسفورماتور مورد نظر و قطع
تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتری حاصل می شوند که حتی از حالت اتصال
مثلث‐ ستاره بزرگتر می باشند
۳‐۹‐ تاثیر بار بر اضافه ولتاﮊهای فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم باری ترانسفورماتور
به وجود می آید. شبیه سازیها نشان می دهد که در مقادیر پایین ظرفیت خازنی مقدار بار لازم
برای حذف پدیده فرورزونانس بسیار کم است ولی با اضافه شدن ظرفیت خازنی مقدار بار لازم
برای قطع تک فاز و دو فاز بیشتر می شود. اضافه ولتاﮊهای فرورزونانس در ترانسفورماتورهای با
اولیه زمین شده کمتر هستند.
فازهای مختلف ترانسفورماتور دارای رفتار مساوی درمقابل اضافه ولتاﮊهای فرورزونانس نیستند.
با افزایش ظرفیت خازنی، میزان بارلازم برای حذف اضافه ولتاﮊهای فرورزونانس افزایش می یابد.
باری در حدود ۵ % بار نامی ترانسفورماتور در بیشتر حالات، قادر به حذف اضافه ولتاﮊهای
فرورزونانس می باشد.
٢۴
٣‐١٠‐ طبقه بندی مدلهای فرورزونانس
مدل پایه
در این حالت ولتاﮊ و جریان پریودیک می باشند و پریود آنها با پریود سیستم برابر است.
مدل زیر هارمونیک
در این حالت ولتاﮊ و جریان با پریودی نوسان می کنند که ضریبی از پریود منبع می باشند. این
حالت به زیر هارمونیک n ام معروف است که حالت فرورزونانس زیر هارمونیک فرد می باشد.
مدل شبه پریودیک
در این نوع فرورزونانس نوسانات کاملا اتفاقی و غیر پریودیک می باشند
٣‐١١‐ شناسایی فرورزونانس
بروز فرورزونانس با اثرات وعلایمی به شرح زیر همراه است:
اضافه ولتاﮊهای با دامنه زیاد و دائمی بصورت فاز به فاز و فاز به زمین اضافه جریانها با دامنه زیاد و دائمی اعوجاجها با دامنه زیاد و دائمی در شکل موج ولتاﮊ و جریان جابجایی ولتاﮊ نقطه صفر افزایش دمای ترانس در حالت بی باری
افزایش بلندی نویز ترانسها و راکتورها تریپ بی موقع تجهیزات حفاظتی
البته بعضی از این علایم مختص این پدیده نیست بطور مثال جابجایی نقطه صفر در شبکه هایی
که نقطه صفر آنها زمین نشده است می تواند بدلیل وقوع اتصال فاز به زمین رخ دهد.
٢۵
٣‐١١‐١ شرایط لازم برای بروز پدیده فرورزونانس
۱‐ حضور همزمان خازن با راکتور غیر خطی در سیستم
۲‐ وجود حداقل یک نقطه از سیستم که دارای ولتاﮊ ثابت نباشد
۳‐ وجود اجزا سیستم با بار کم مانند ترانسهای قدرت یا ترانسهای ولتاﮊ بدون بار یا منابع انرﮊی
با اتصال کوتاه پایین مانند ﮊنراتورهای اضطراری
در صورتیکه هر کدام از این سه شرط برقرار نباشد احتمال وقوع فرورزونانس بسیار ضعیف است
در غیر این صورت باید تحقیقات گسترده ای به عمل آورد.
٢۶

٢٧
۴‐۱‐ از تبدیل فوریه٣ تا تبدیل موجک ]۳۳[
در قرن نوزدهم، ﮊان پاپتیست فوریه، ریاضی دان فرانسوی، نشان داد که هر تابع متناوب را میتـوان
به صورت حاصل جمعی نامحدود از توابع نمایی مختلط متناوب نمایش داد. سالها بعـد از عنـوان
شدن این خاصیت مهم، ایده او به نمایش سیگنالهای نامتناوب و سپس سیگنالهای گسسته متناوب
و نامتناوب گسترش یافت. بعد از این عمومیت بـه حـوزه گسـسته، تبـدیل فوریـه در محاسـبات
کامپیوتری بسیار موثر واقع گردید. در سال ۵۶۹۱، الگوریتم جدیدی به نـام تبـدیل فوریـه سـریع۴
عنوان شد، که نسبت به الگوریتم های قبلی تبدیل فوریه بیشتر به کار گرفته شد.
FFT چنین تعریف میشود
(۴‐ ۱) ∞∫ f (t )e − jwt dt F (w)  − ∞ (۴‐ ۲) f (t)  ∞∫F(w)e jwt dw −∞ اطلاعات حاصل از انتگرال، مربوط به تمام زمانها میباشد، چرا کـه انتگـرال گیـری از زمـان منفـی
بینهایت تا مثبت بینهایت انجام میشود. به همین علت، اگر سیگنال شامل فرکانسهای متغییر با زمان
باشد، یعنی سیگنال ثابت نباشد، تبدیل فوریه مناسب نخواهد بود. این بـدان معناسـت کـه تبـدیل
فوریه تنها مشخص میکند که آیا یک مولفه فرکانسی بخصوص در یک سیگنال وجود دارد یـا نـه،
و اطلاعاتی در مورد زمان ظاهر شدن این فرکانس به ما نمی دهد.

3-Fourier Transform 4-Fast Fourier Transform
٢٨
به همین دلیل، یک نمایش فرکانسی‐ زمانی به نام تبدیل فوریه زمان کوتاه۵ معرفی شد. در STFT،
سیگنال به قطعات زمانی به اندازه کافی کوتاه تقسیم میسود، بطوری که میتوان این قسمتهای کوتاه
را سیگنال ثابت فرض کرد. برای رسیدن به این هدف، یک تابع پنجره انتخاب میشود. پهنـای ایـن
پنجره باید با طولی از سیگنال که میتوان آنرا فرایند ثابت در نظر گرفت، برابر باشد. نمـایش STFT
به شکل زیر تمام مطالب ذکر شده در این مورد را خلاصه میکند:

(۴‐۳)
که w تابع پنجره میباشد.
نکته مهم در STFT پهنای پنجره بکار رفته میباشد. این پهنا را تکیه گاه پنجره نیز مینامند. هر چقدر
پهنای پنجره را کاهش دهیم، رزولوشن زمانی بهتر، و فرض فراینـد ثابـت محکمتـر میـشود ولـی
رزولوشن فرکانسی ضعیفتر خواهد شد، و بر عکس‐ شکل۴‐۱ راببینید.

شکل۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس

5-Short Time Fourier Transform
٢٩
مشکل STFT را میتوان به وسیله اصل عدم قطعیت هایزنبرگ۶ مطرح کرد. ایـن اصـل معمـولاﹲبرای
مقدار جنبش و موقعیت مکانی ذرات در حال حرکت به کار میرود، با این حال میتوان آنـرا بـرای
اطلاعات حوزه زمانی‐فرکانسی بکار ببریم. بطور مختصر، ایـن اصـل مـیگویـد کـه نمـیتـوانیم
تشخیص دهیم که در هر لحظه زمانی کدام فرکانس وجود دارد. آنچه که ما میتـوانیم بفمـیم ایـن
است که در هر بازه زمانی کدام باندهای فرکانسی وجود دارند.
بنابراین، مساله انتخاب یک تابع پنجره، واستفاده از آن در تمام آنالیز میباشد. جـواب ایـن مـساله
بستگی به کاربرد دارد. اگر اجزاﺀ فرکانسی در سیگنال اصلی به خوبی از هم تفکیک شـده باشـند،
میتوانیم رزولوشن فرکانسی را در یک انـدازه مناسـب در نظـر بگیـریم و آنگـاه بـه طراحـی یـک
رزولوشن زمانی خوب بپردازیم، چرا که مولفههای طیفی قبلاﹲ از هم تفکیک شدهاند. در غیـر ایـن
صورت، پیدا کردن یک تابع پنجره مناسب بسیار مشکل خواهد بود.
اگر چه مشکل رزولوشن فرکانسی و زمانی از یک پدیده فیزیکی (اصل عـدم قطعیـت هـایزنبرگ)
ناشی میشود، و همواره برای هر تبدیل بکار رفته وجود دارد، میتوان سـیگنال را بـا یـک تبـدیل
دیگر بنام تبدیل موجک (WT) آنالیز کنیم
تبدیل موجک سیگنال را در فرکانسهای مختلف با رزولوشنهای مختلف آنالیز میکنـد. و بـا
تمام اجزاﺀ فرکانسی به صورت یکسان، آنطور که در STFT عمل میشد، برخورد نمیشود.
تبدیل موجک طوری طراحی شده است که در فرکانسهای بالا رزولوشن زمانی خوب و رزولوشن
فرکانسی ضعیف، و در فرکانسهای پایین، رزولوشن فرکانسی خوب و رزولوشـن زمـانی ضـعیف
داشته باشد. این خاصیت هنگامی که سیگنال تحت بررسـی دارای فرکانـسهای بـالا در بـازههـای

6-Heisenberg 's Uncertainty Principle
٣٠
زمانی کوتاه و فرکانسهای پایین برای زمانهای طولانی میباشد. دو تفاوت عمده بین STFT و CWT
عبارتند از
۱_ تبدیل فوریه سیگنال حاصل از اعمال تابع پنجره، گرفته نمیشود.
۲_ هنگامی که تبدیل برای یک جزﺀ طیفی محاسبه میشود، طول پنجره تغییر میکند. احتمالاﹲ ایـن
مهمترین مشخصه تبدیل موجک میباشد.
تبدیل موجک پیوسته (CWT) بصورت زیر تعریف میشود(:(Daubechies92
(۴‐۴)

که

(۴‐۵)
یک تابع پنجره است که موجک مادر٧ نامیده میشود، a یک مقیاس و b یک انتقال است.

شکل۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. عدد بعد از نام موجک معرف تعداد لحظات محو شدن
است

7-Mother Wavelet
٣١
اصطلاح موجک به معنی موج کوچک میباشد. کوچکی برای شرایطی تعریف شده است که تـابع
پنجره طول محدود داشته باشد. موج هم برای شرایطی تعریف شده است کـه ایـن تـابع نوسـانی
باشد. اصطلاح مادر بر این نکته دلالت دارد که توابع بـا نـواحی مختلـف کـارایی، کـه در تبـدیل
استفاده میشوند، از یک تابع اصلی یا تابع مادر یک نمونه اصلی بـرای تولیـد سـایر توابـع پنجـره
میباشد. یک نمونه ازموجک مادر را در شکل۴‐۲ مشاهده میکنیم
اصطلاح انتقال به همان نحو که برای STFT بکار میرفت، در اینجا استفاده میشود. این اصـطلاح
به مکان پنجره، هنگامی که در امتداد سیگنال شیفت مییابد، دلالت میکند. واضح اسـت کـه ایـن
اصطلاح به اطلاعات زمانی در حوزه تبدیل مربوط میشود. با ایـن وجـود، مـا پـارامتر فرکانـسی،
آنطور که برایSTFT داشتیم، برای تبدیل موجک نداریم. در عوض در اینجا یـک مقیـاس موجـود
میباشد. مقیاس دهی همانند یک تبدیل ریاضی، به معنی گسترده یا فشرده کردن سیگنال میباشد.
مقیاسهای کوچکتر به معنی سیگنالهای گستردهتر و مقیاسهای بزرگتر به معنی سیگنالهای فشردهتـر
میباشد. از آنجا که در مبحث موجک پارامتر مقیاس دهی در مخرج بکار میرود، عکـس عبـارت
فوق در اینجا صادق خواهد بود.
رابطه بین مقیاس و فرکانس این است که مقیاسهای پایین مربوط به فرکانـسهای بـالا و مقاسـهای
بالا مربوط به فرکانسهای پایین میباشد. با توجه به بحث ذکر شده، ما تا بحال طرح زمـان‐مقیـاس
داریم. توصیف شکل۴‐۳ معمولاﹲ در توضیح اینکه چگونه رزولوشنهای زمانی و فرکانسی تفسیر
شوند، بکار میرود.
٣٢

شکل۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس‐ زمان
هر مستطیل در شکل۴‐۳ مربوط به یک مقدار تبدیل موجک در صفحه زمـان‐مقیـاس مـیباشـد.
توجه کنید که مستطیلها یک مساحت غیر صفر مشخص دارند، که این بدان معناسـت کـه مقـدار
یک نقطه بخصوص در طرح زمان‐مقیاس قابل تشخیص نیـست. اگـر ابعـاد جعبـههـا را در نظـر
نگیریم، مساحت جعبهها، در STFT و WTبـا هـم برابـر هـستند و بـا نامـساوی هـایزنبرگ تعیـین
میشوند. خلاصه، مساحت مستطیلها برای تابع پنجره (STFT) و (WT) ثابت است. همچنین، تمام
مساحتها دارای حد پایین محدود شده به ۴π/ هستند. یعنی، طبـق اصـل عـدم قطعیـت هـایزنبرگ
نمیتوانیم مساحت جعبهها را هر اندازه که بخواهیم، کاهش دهیم.
۴‐۲‐سه نوع تبدیل موجک ]۳۳[
ما سه نوع تبدیل در اختیار داریم: پیوسته، نیمه گسسته٨ و گسسته در زمان. اختلاف انـواع مختلـف
تبدیل موجک مربوط به روشی است که مقیاس وشیفت را پیاده سازی میکند. در این بخـش ایـن
سه نوع مختلف را ریزتر بررسی خواهیم کرد.

8-Semidiscrete
٣٣
۴‐۲‐۱‐ تبدیل موجک پیوسته
برای CWT پارامترها به صورت پیوسته تغییر میکنند. این موضـوع باعـث حـداکثر آزادی در
انتخاب موجک مناسب برای آنالیز خواهد شد. تنها لازم است که تبدیل موجـک شـرط (۴‐۷)، و
مخصوصاﹲ مقدار متوسط صفر را داشته باشد. این شرط برای اینکه CWT معکـوس پـذیر باشـد،
لازم است. تبدیل عکس به صورت زیر تعریف میشود:
(۴‐۶)

که Ψ شرط لازم زیر را باید ارضا کند

(۴‐۷)
که Λψ تبدیل فوریه Ψ است.
بطور شهودی واضح است که CWT بر محاسبه "ضریب همبـستگی" بـین سـیگنال وموجـک
اصرار دارد. شکل۴ را ببینید

شکل۴‐۴‐ تشریح CWT طبق معادله۴
الگوریتم CWT را میتوان به شکل زیر توصیف کرد‐شکل۴‐۴ را ببینید.
۱_ یک موجک در نظر بگیرید و آنرا با با قسمتی از ابتدای سیگنال اصلی مقایسه کنید.
٣۴
۲_ ضریب c(a,b) که نمایانگر میزان ارتباط موجک با این قـسمت از سـیگنال اسـت را محاسـبه
کنید. هر چقدر c بیشتر باشد، شباهت بیشتر است. توجه کنید که نتیجه به شکل موجک انتخـاب
شده دارد.
۳_موجک را به سمت راست شیفت دهید و مراحل ۱و ۲ را تا رسیدن بـه انتهـای سـیگنال تکـرار
کنید.
۴_موجک را به سمت راست شیفت دهید و مراحل ۱ تا ۳ را تکرار کنید.
یک مثال از ضرایب CWT مربوط به سیگنال استاندارد در شکل۴‐۵ نشان داده شده است.

شکل۴‐۵ مثالی از آنالیزموجک پیوسته. در شکل بالا سیگنال مورد نظر نمایش داده شده است.
شکل پایین ضرایب موجک مربوطه را نشان میدهد.
٣۵
۴‐۲‐۲ تبدیل موجک نیمهگسسته
در عمل، محاسبه تبدیل موجک برای بعضی مقادیر گسسته a و b بسیار متداولتر است. برای مثـال، بکارگیری مقیاسهای a 2j dyadic و شـیفتهای صـحیح b  2j k بـا (j, k) z2 راتبـدیل
موجک نیمه گسسته (SWT) مینامیم.
در صورتی که مجموعه متناظر با الگوها، یک قالب موجـک را تعریـف کنـد، تبـدیل عکـسپـذیر
خواهد بود. به عبارت دیگر، موجک باید طوری طراحی شود که

(۴‐۸)
در اینجا A و B دو ثابت مثبت، ملقب به حدود قالب هستند. که ما باید برای بدستآوردن ضرایب
موجک انتگرالگیری انجام دهیم، چرا که f(t) هنوز یک تابع پیوسته است.
۴‐۲‐۳ ‐ تابع موجک گسسته
در اینجا، تابع گسسته f(n) و تعریف موجک (DWT) داده شده بـه صـورت زیـر را در اختیـار
داریم:
(۴‐۹)

که ψj,x یک موجک گسسته تعریف شده به شکل زیر میباشد:

(۴‐۰۱)
پارامترهای a و b به شکل a2j و b  2jkتعریف میشوند. عکس تبدیل به شـکلی مـشابه،
چنین تعریف میشود:
٣۶

(۴‐۱۱)
اگر حدود قالب در معادله۴‐٨ A=B=1 باشد، آنگـاه تبـدیل عمـودی خواهـد بـود. ایـن تبـدیلهـا
میتوانند با یک آنالیز چند بعدی، که در بخش بعد بحث خواهد شد، شروع شوند.
۴‐۳‐ انتخاب نوع تبدیل موجک
چه موقع آنالیز پیوسته از آنالیز گسسته مناسبتر است؟ هنگامی که انرﮊی سیگنال محدود است، اگر
از یک تبدیل موجک مناسب استفاده کنیم، تمام مقادیر یک تجزیه برای بازسازی شکل موج اصلی
لازم نخواهد بود. در این شرایط، یک سیگنال پیوسته را میتوان بوسیله تبـدیل گسـسته آن کـاملاﹰ
مشخص کرد. بنابراین آنالیز گسسته کافی است و آنالیز پیوسته اضافی خواهـد بـود. هنگـامی کـه
سیگنال بصورت پیوسته یا یک شبکه زمانی ریز ثبت میشود، هر دو نوع آنالیز، امکانپذیر خواهـد
بود. کدامیک باید استفاده شود؟ جواب این است: هر یک مزایای مربوط به خود را دارد.
آنالیز پیوسته معمولاﹰ برای تفسیر آسانتر اسـت، چـرا کـه اضـافات آن، تمایـل بـه تقویـت ویژگیها دارد و و اطلاعات را بسیار واضحتر خواهد کرد. این موضوع بـرای بـسیاری از ویژگیهای مفید درست است. آنالیز پیوسته تفسیر را راحتر، و خوانایی را بیشتر مـی کنـد، در عوض حجم بیشتری برای زخیره لازم دارد.
آنالیز گسسته حجم ذخیره سازی را کاهش میدهد و برای بازسازی کافی است.
٣٧
۴‐۴‐ آنالیز مالتی رزولوشن٩ و الگوریتم DWT سریع
برای اینکه تبدیل موجک مفید باشد، باید آنرا با الگوریتمهای سریع به منظور استفاده در ماشینهای
محاسباتی، پیادهسازی کنیم. یعنی روشی مثل FFT که هم ضرایب تبدیل wavwlet را بدست آورد و
هم بازسازی تابعی را که نمایش میدهد، انجام دهد.
۴‐۴‐۱‐آنالیز مالتی رزولوشن (MRA)
آنالیز مالتیرزولوشن Mallat را که خیلی عمومیت دارد، توضیح میدهیم. با فضایl2 که شامل تمام
توابع جمعپذیر مربعی است، شروع میکنیم، یعنی: f در فضای l2 (s) است، اگرMRA . ∫f 2  ∞
s
یک سری افزایشی از زیر فضای بسته {vj}jzاسـت، کـه l2 (R)را تخمـین میزنـد. شـروع کـار،
انتخاب یک تابع مقیاسدهی مناسـبΦ اسـت. تـابع مقیـاسدهـی بـه منظـور ارضـاﺀ پیوسـتگی،
یکنواختی و بعضی شرایط لازم بعدی انتخاب شده است. اما نکته مهمتر این اسـت کـه، مجموعـه
{φ(x − k), k z} یک اساس درست برای فضای مرجع v0 ایجاد میکند. رابطههای زیر آنالیز را
توصیف میکنند:
(۴‐۲۱)...v-1 v0 v1
فضاهایvj به صورت تودرتو قرار گرفتهاند. فضای l2 (R) اشتراک تمامvj را شامل مـیشـود. بـه
عبارت دیگر j z vj در(l2 (R متراکم شده است. اشتراک همهvj ها تهی است.
(۴‐۳۱)

9-Multiresolution
٣٨
فضاهای vj وvj1 مشابه هستند. اگر فضایvj دارای فاصـلههـای خـالی(φ1,k (x ، k z باشـد،
آنگـــاه فـــضایij1 دارای فاصـــلههـــای(φ1,k (x ، k z اســـت. فاصـــلهvj1 بوســـیله تـــابع
، که تولید میشود.
حالا شکلگیری موجک را توضـیح مـیدهـیم. چـون v0 v1 ، هـر تـابعی در v0 را مـیتـوانیم
بصورت ترکیبی از توابع پایه 2φ(x − k) ازv1 بنویسیم. مخصوصاﹰΦ باید معادلات دو بعـدی ۴۱

و ۵۱ را برآورده کند:
(۴‐۴۱)2φ (x − k) (φ (x)  ∑h(k

k
ضرایب h(k) بصورت((2Φ(x − k h(k)  (Φ(x), تعریف شـدهانـد. حـال بـه عـضو عمـودی

wj از vj برvj1 ،vj1  vj wj را در نظر بگیرید. این بدان معناست که تمام اعضایvj بـر
اعضای wj عمود هستند. ما لازم داریم که

تعریف زیر را ارائه میدهیم:
(۴‐۵۱)2∑(−1)k h(−k  1)φ (x − k) ψ (x) 

k
ما میتوانیم نشان دهیم کـه2{ψ(x − k), k z} یـک اسـاس درسـت بـرایw1 اسـت. دوبـاره، خاصیت تشابه MRI عنوان میکند که2j{ψ( 2jx − k), k z} یک اساس بـرایwj اسـت. از

آنجــــا کــــه v  wدر l2 (R) متمرکــــز اســــت، خــــانواده داده شــــده
jj z jj z
2j{ψ( 2jx − k), k z} یک اساس بـرای l2 (R) اسـت. بـرای یـک تـابع داده شـده f l2 (R)

٣٩
میتوان N را طوری بیابیم که f N vj ، f را بالاتر از دقت تعیین شده، تقریب بزند. اگـرgi wi
و f i vi آنگاه

(۴‐١۶)
معادله (۴‐١۶) تجزیه موجک تابع f است.
۴‐۵ ‐ زبان پردازش سیگنالی]۳۳و۴۳[
ما مراحل آنالیز مالتیرزولوشنی را با زبان پردازش سیگنالی تکرار میکنیم. آنالیز مالتی رزولوشـن
waveletبا الگوریتم کد کردن زیرباند یا محوطهای در پردازش سیگنال در ارتباط اسـت. همچنـین،
فیلترهای آینهای مربعی هم در الگوریتم مالتی رزولوشـن Mallat قابـل تـشخیص اسـت. در نتیجـه
نمایش زمان‐ مقیاس یک سیگنال دیجیتال با اسـتفاده از روشـهای فیلتـر کـردن دیجیتـال حاصـل
میشود.
معادلات۴‐۴۱ و۴‐۵۱ را از بخش قبل به خاطر بیاورید. سـریهای{h(k), k z} و {g(k), k z}
در اصطلاح پردازش سیگنال، فیلترهای آیینهای مربعی هستند. ارتباط بین h و g چنین است:
(۴‐۷۱)g(k)  (−1)n h(1 − n)
h(k) فیلتر پایین گذر و g(k) فیلتر بالا گذر است. این فیلتر با خانواده فیلترهای بـا پاسـخ ضـزبه
محدود (FIR) تعلق دارند. خواص زیر را میتوان با استفاده از تبدیل فوریه و عمـود بـودن اثبـات
کرد:
(۴‐۸۱) ∑g(k)  0 ∑h(k)  2
k k

۴٠
عملیات تجزیه با عبور سیگنال (دنباله) از یک فیلتر پایین گذر نیم باند دیجیتال با پاسخ ضربه h(n)
شروع میشود. فیلتر کردن یک سیگنال معادل با عملیات ریاضی کانولوشن سیگنال با پاسخ ضـربه
فیلتر میباشد. یک فیلتر پایین گذر نـیم بانـد تمـام فرکانـسهایی را کـه بـالاتر از نـصف بیـشترین
فرکانس سیگنال قرار دارند را حذف میکند
اگر سیگنال با نرخ نایکویست (که دو برابر بیشترین فرکانس در سیگنال است) نمونهبرداری شـده
باشد، بالاترین فرکانس که در سیگنال وجود داردπرادیان است. یعنـی، فرکـانس نایکویـست در
حوزه فرکانسی گسسته مطابق با π(--/s) میباشد. بعد از عبور سیگنال از یک فیلتر پایین گذر نـیم
باند، طبق روش نایکویست میتوان نصف نمونهها را حذف کـرد، چـرا کـه حـال سـیگنال دارای
حداکثر فرکانس(π/2(--/s میباشد. به این ترتیب سیگنال حاصل دارای طـولی بـه انـدازه نـصف
طول سیگنال اولیه میباشد.

شکل۴‐۶ طرح الگوریتم کد کردن زیر باند(قسمت بالا تجزیه و قسمت پایین ترکیب را نمایش میدهد)
۴١
حال مقیاس سیگنال دو برابر شده است. توجه کنید فیلتـر پـایینگـذر، اطلاعـات فرکـانس بـالای
سیگنال را حذف کرده است، اما مقیاس را بدون تغییر گذاشته است. این تنها کاهش تعداد نمونهها
است که مقیاس را تغییر میدهد. از طرف دیگر رزولوشن که به میزان اطلاعلت موجود در سیگنال
ارتباط دارد، توسط فیلتر کردن تغییر کرده است. فیلتر پـایین گـذر نـیم بانـد نـصف، فرکانـسها را
حذف کرده است، که میتوان این عمل را به نصف شدن اطلاعات تفـسیر کـرد. توجـه کنیـد کـه
کاهش نمونهها بعد از فیلتر کردن تاثیری در میزان رزولوشن ندارد، چرا کـه بعـد از فیلتـر کـردن
نصف نمونهها اضافی خواهد بود. پس نصف کردن نمونههـا باعـث حـذف هیچگونـه اطلاعـاتی
نمیشود. خلاصه، فیلتر کردن اطلاعات را نصف میکند، ولی مقیـاس را تغییـر نمـیدهـد. سـپس
سیگنال با نرخ دو نمونه برداری میشود، چرا که حال نصف نمونهها اضـافی اسـت. ایـن عمـل ،
مقیاس را دو برابر میکند. عملیات توصیف شده در شکل۴‐۶ نشان داده شده است.
یک روش بسیار مختصر برای توصیف این عملیات و همچنین عملیات موثر برای تعیین ضـرایب
موجک نمایش عملکرد فیلترها است. برای یک دنبالـه، f  {f n} نمایـانگر سـیگنال گسـستهای
است که باید تجزیه شود و G وH بوسیله روابط هممرتبه زیر تعریف می شوند:
(۴‐۹۱)

(۴‐۰۲)
معادلات ۴‐۹۱و ۴‐۰۲ فیلتر کردن سیگنال با فیلترهای دیجیتال h(k) و g(k) که معـادل عملگـر
ریاضی کانولوشن با پاسخ ضربه فیلترها میباشد، را نمایش میدهد. فاکتور 2k کاهش نمونههـا را
نمایش میدهد.
۴٢
عملگرهای G و H مربوط به گام اول در تجزیه موجک میباشند. تنها تفاوت این است که روابط با
از ضریب 2 معادلات ۴‐١٣و۴‐١۴ چشمپوشی کرده است. بنابراین تبـدیل موجـک گسـسته را

میتوان در یک خط خلاصه کرد‐ شکل ۴‐۷ را ببینید:

(۴‐۱۲)
(0)0(j 1)(j 2)(1)
که ما میتوانیم d  ,d  ,..., d ,d را جزئیات ضرایب و cرا تقریب ضرایب بنامیم.
جزئیات و ضرایب با روش تکرار حاصل می شوند:

شکل۴‐۷ نمایش تجزیه توسط موجک
برای مقایسه این روش با SWT، بیایید دنباله x(k) حاصـل از ضـرب داخلـی سـیبگنال پیوسـته
u(t) با انتقالهای صحیح تابع مقیاس دهی را تعریف کنیم

(۴‐۲۲)
حال، ما میتوانیم SWT را با استفاده از DWT طبق رابطه زیر بدست آوریم
(۴‐۳۲)

که برای هر عدد صحیح j ≥ 0 و هر عدد صحیح k درست است.
۴٣
عملیات بازسازی مشابه عملیات تجزیه است. تعداد نمونههای سـیگنال در هـر سـطحی دو برابـر
− −− −
میشود، از فیلترهای ترکیب کننده نشان داده شده بـا H و G عبـو داده مـیشـود، و سـپس جمـع
− −− −
H و G را طبق روابط زیر تعریف میکنیم

(۴‐۴۲)
(۴‐۵۲)
AP Signal 4 10 x 10 2 5 0 15 10 5 00 0.4 0.3 0.2 0.1 0 -2 CD5 5 CD6 0.5 0 0 30 20 CD3 10 -50 15 10 CD4 5 0 -0.5 0.5 1 0 0 80 60 40 20 -0.50 40 30 20 10 0 -1 CD1 0.2 CD2 0.5 0 0 400 300 200 100 -0.20 200 150 100 50 0 -0.5
شکل۴‐۸ مثالی از تجزیه .DWT سیگنال اصلی، سیگنال تقریب((AP
و سیگنالهای جزئیات(CD1تا (CD6
با استفاده مکرر از روابط بالا داریم

(۴‐۶۲)
۴۴
که در حوزه زمانی
(۴‐۷۲)

Dj و cجزئیات و تقریب نامیده میشوند. یک مثـال از تجزیـه در شـکل۸ ، همـراه بـا تقریـب و
جزئیات و سیگنال اصلی نشان داده شده است.
۴‐۶‐ شبکه عصبی
۴‐۶‐۱ مقدمه]۵۳[
خودسازماندهی١٠ شبکهها یکی از موضوعات بـسیار جالـب در شـبکههـای عـصبی میباشـد. ایـن
شبکهها میتوانند انتظام و ارتباط موجود در ورودی خود را تشخیص و به ورودیهـای دیگـر طبـق
این انتظام پاسخ دهند. نرونهای شبکه های عـصبی رقـابتی طـرز تـشخیص گـروه هـای مـشابه از
بردارهای ورودی را یاد میگیرند. نگاشـتهای خـود سـازمانده طـرز تـشخیص گـروه هـای مـشابه
بردارهای ورودی را به این شکل یاد میگیرند که نرونهـای مجـاور هـم از لحـاظ مکـانی در لایـه
نرونی، به بردارهای ورودی مشابه پاسخ می دهند.
یادگیری کوانتیزه نمودن برداری (LVQ) روشی است که از ناظر برای یادگیری شبکه هـای رقـابتی
استفاده میکند. یک لایه رقابتی خود به خود طبقه بندی بردارهای ورودی را یـاد میگیـرد. بـا ایـن
وجود، کلاسهایی که لایه رقابتی پیدا می کند، تنها به فاصله بردارهای ورودی ارتباط دارد. اگـر دو
بردار ورودی خیلی به هم شبیه باشند، احتمالآ لایه رقابتی آن دو را در یک کلاس قرار مـی دهـد.
در شبکه های عصبی رقابتی، روشی یرای تشخیص اینکه آیا دو نمونه بردار ورودی در یک طبقـه

10-Self Organizing
۴۵
قرار می گیرند یا نه، وجود ندارد. با این وجود، شبکه های طبقـه بنـدی بردارهـای ورودی را در
طبقه هایی که توسط خود کاربر تعیین می شوند، انجام می دهد.
۴‐۶‐۲‐ یادگیری رقابتی١١
نرونها در یک لایه رقابتی طوری توزیع می شوند که بتوانند بردارهای ورودی را تـشخیص دهنـد.
معماری یک شبکه رقابتی در شکل(۴‐۹) نشان داده شده است.
جعبه ||dist|| بردار ورودی p و ماتریس وزن ورودی IW1,1 را بـه عنـوان ورودی دریافـت مـی
کند، و برداری شامل s1 عنصر تولید می کنـد. ایـن عناصـر، منفـی فاصـله بـین بـردار ورودی و
بردارهای j IW1,1 تشکیل شده از سطر های ماتریس وزن ورودی، می باشند.

شکل۴‐۹معماری شبکه رقابتی
ورودی خالص١٢ n1 یک لایه رقابتی، با جمع کردن بایاس b با فاصله هـای بردارهـای ورودی از
سطرهای ماتریس وزن، محاسبه میشوند. اگر بایاسها صفر باشند، بیشترین مقداری که یـک ورودی
خالص میتواند داشته باشد، صفر خواهد بود. این هنگامی اتفاق می افتد که بردار ورودی p برابر با
یکی از بردارهای وزن شبکه باشد.

-Competitive Learning -Net Weight

11
12
۴۶
تابع تبدیل رقابتی یک بردار وزن خالص را دریافت می کند، و خروجی صفر را برای همه نرونهـا،
به غیر از نرون برنده (نرون دارای کمترین فاصله)، که همـان نـرون مربـوط بـه بزرگتـرین عنـصر
ورودی خالصn1 میباشد، تولید می کند، و نـرون برنـده دارای خروجـی ۱ خواهـد بـود. فوائـد
استفاده از جمله بایاس در هنگام بحث از آموزش شبکه روشن خواهد شد.
۴‐۶‐۲‐۱ روش یادگیری کوهنن١٣ (learnk)
وزنهای نرون برنده (یک سطر در ماتریس وزن ورودی) با روش یادگیری کوهنن تنظیم می شـود.
فرض کنید که i امین نرون برنده شـود، آنگـاه عناصـر i امـین سـطر از مـاتریس وزن ورودی بـه
صورت زیر تنظیم میشود.
(۴‐۸۲)j IW1,1 (q) j IW1,1 (q − 1)  α ( p(q)− jIW1,1(q−1))
روش یادگیری کوهنن باعث میشود که وزنهای نرون یک بردار ورودی را یـاد بگیرنـد، و بـه ایـن
دلیل در کاربردهای تشخیص الگو مفید می باشد.
به این ترتیب نرونی که بردار وزن آن از همه نرونهای دیگـر بـه ورودی نزدیکتـر اسـت، طـوری
تغییر میکند که بیشتر به ورودی نزدیکتر شود. نتیجه این تغییـر ایـن خواهـد بـود کـه در صـورت
عرضه کردن ورودی مشابه ورودی قبلی بـه شـبکه، نـرون برنـده در رقابـت قبلـی، دارای شـانس
بیشتری برای برنده شدن مجدد خواهد داشت.
هر چقدر ورودیهای بیشتری به شبکه عرضه شود، هر نرونی که بـه ایـن ورودیهـا نزدیکتـر باشـد
بردار وزن آن طوری تنظیم میشود که به این ورودیها نزدیک ونزدیکتر شود. در نتیجه، اگـر تعـداد
نرونها به اندازه کافی باشد، هر خوشه از ورودیهای مشابه، یک نرون خواهد داشـت کـه خروجـی

13-Kohonen Learning Rule
۴٧
آن با عرضه کردن یک بردار از این خوشه یک و در غیر این صورت صـفر خواهـد بـود. بـه ایـن
ترتیب شبکه یاد گرفته است که بردارهای ورودی عرضه شده را طبقه بندی کند.
۴‐۶‐۲‐۲ روش یادگیری بایاس١۴ (learncon)
یکی از محدودیتهای شبکه های رقابتی این است که یک نرون ممکن است هرگز تنظیم نشود. بـه
عبارت دیگر، بعضی از بردارهای وزن نرونی ممکن است در آغاز از هر بردار ورودی دور باشـند،
و هر چند آموزش را ادامه دهیم هرگز در رقابت پیروز نشوند. نتیجـه ایـن اسـت وزن هـای آنهـا
تنظیم نمیشود و هرگز در رقابت پیروز نمی شوند. این نرون های نا مطلـوب، کـه بـه نـرون هـای
مرده اطلاق می شوند، هرگز عمل مفیدی انجام نمی دهند.
برای جلوگیری از روی دادن این مورد، بایاسهایی اعمال میشود تا اینکه نرونهـایی کـه بـه نـدرت
برنده میشوند، احتمال برنده شدن را دررقابتهای بعدی داشته باشند. یک با یـاس مثبـت بـه منفـی
فاصله اضافه می شود، به این ترتیب احتمال برنده شدن نرون دورتر بیشتر می شود.
به این منظور، یک متوسط از خروجی نرونها نگهداری میشود. این مقادیر نمایانگر درصـد برنـده
شدن نرونها در رقابتهای قبلی می باشد. و از آنها برای تنظیم با یاس های نرونها استفاده می شوند
به این ترتیب که با یاس نرونهای غالبا برنده کاهش و بر عکس با یاس نرونهایی که بندرت برنـده
می شود، افزایش می یابد.
برای اطمینان از درستی متوسطهای خروجی، نرخ یادگیری learncon بسیار کمتر از learnk انتخـاب
می شود. نتیجه این است که بایاس نرونهایی که اغلب بازنده اند در مقابل نرون هـای غالبـا برنـده
افزایش مییابد. هنگامی که بایاس نرونهای غالباﹰ بازنده افزایش می یابد، فضای ورودی که نرون بـه

14-Bias Learning Rule
۴٨
آن پاسخ می دهد نیز گسترش می یابد. هر چقـدر فـضای ورودی افـزایش بیابـد، نرونهـای غالبـاﹰ
بازنده، به ورودیهای بیشتری پاسخ میدهند. سرانجام این نرون نـسبت بـه سـایر نرونهـا بـه تعـداد
برابری از ورودیها پاسخ خواهد داد
این امر، دو نتیجه خوب دارد. اول اینکـه، اگـر یـک نـرون بـه علـت دوری وزنهـای آن از همـه
ورودیها هرگز برنده نشود، بایاس آن عاقبت به حدی بزرگ خواهد شد که این نرون بتواند برنـده
شود. وقتی که این اتفاق ( برنده شدن نرون ) روی داد، این نرون به سمت دسته هـایی از ورودی
حرکت خواهد کرد. هنگامی که وزن یک نرون در بازه یک دسته از ورودیها قـرار گرفـت، بایـاس
آن به سمت صفر کاهش خواهد یافت به این ترتیب مشکل نرون بازنده حل خواهد شد.
فایده دوم استفاده از بایاس این است که آنها نرونها را وادار می کننـد کـه هـر کـدام درصـدهای
یکسانی از ورودیها را طبقه بندی کنند. بنابراین، اگـر یـک ناحیـه از فـضای ورودی دارای تعـداد
بیشتری از بردارهای ورودی نسبت به سـایر مکانهـا باشـد، ناحیـه بـا چگـالی بیـشتر در ورودی،
نرونهای بیشتری جذب خواهد کرد. و در نتیجه این ناحیه بـه زیـر گروههـای کـوچکتری تقـسیم
خواهد شد.
۴‐۷‐ نگاشت های خود سازمانده١۵ (SOM)
نگاشت های خود سازمانده یاد می گیرند کـه بردارهـای ورودی را آنطـور کـه در فـضای ورودی
طبقه بندی شده اند، طبقه بندی کنند. تفاوت آنها با لایه های رقابتی این است که نرونهای مجـاور
نگاشت خود سازمانده، قسمتهای مجاور از فضای ورودی را تشخیص می دهند.

15-Self Organizing Maps
۴٩
بنابراین، نگاشتهای خود سازمانده هم توزیع( مثل لایه ها رقابتی) و هم موقعیت مکانی بردارهای
ورودی آموزشی را یاد می گیرند. در اینجا یک شبکه نگاشت خود سازمانده نرون برنـده i* را بـه
روشی مشابه لایه رقابتی تعیین می کند. اما به جای اینکه تنها نرون برنده تنظیم شود، تمام نرونهـا
در یک همسایگی مشخص N (d) از نرون برنده با استفاده از قانون کوهنن تنظیم می شوند. یعنی،
i*
ما تمام نرونهای i Ni* (d) را طبق رابطه زیر تنظیم می کنیم
(۴‐۹۲)i W (q)i W (q − 1)  α ( p(q)−i IW (q−1))
یا
(۴‐٣٠i W (q) (1−α) i W (q − 1)  αp(q)(
در اینجا همسایگی N (d) شامل آندیس تمام نرونهایی است کـه در شـعاع d بـه مرکزیـت نـرون
i*
برنده i* قرار دارند.
(۴‐۱۳)Ni* (d)  {j,dij≤d}
بنابراین، هنگامی که بردار p به شبکه عرضه میشود، وزنهای نرون برنده و همسایه های نزدیک آن
به سمت p حرکت خواهد کرد. در نتیجه، بعد از آزمونهای پی در پی فـراوان، نرونهـای همـسایه،
نمایانگر بردارهای مشابه هم خواهند بود.
برای توضیح مفهوم همسایگی، شکل ۴‐۰۱ را در نظر بگیرید. شکل سمت چـپ یـک همـسایگی
دو بعدی به شعاع d=1 را حول نرون 13 نشان میدهد. دیاگرام سمت راست یـک همـسایگی بـه
شعاع d=2 را نشان میدهد. این همسایگی ها را میتوان به صورت زیر نوشت:
N13 (1)  {8,12,13,14,18}
و
۵٠
N13 (2)  {3,7,8,9,11,12,13,14,15,17,18,19,23}

شکل۴‐۰۱نمایش همسایگی
میتوان نرونها را در یک فضای یک بعدی، دو بعدی، سه بعدی یا حتـی بـا ابعـاد بیـشتر نیـز قـرار
دهیم. برای یک شبکه SOM یک بعدی ، یک نرون تنها دو همسایه (یا اگر نرونها در انتها باشـند
یک همسایه) در شعاع یک خواهد داشت.
۴‐۸‐ شبکه یادگیری کوانتیزه کننده برداری١۶]۵۳[
معماری شبکه عصبی LVQ در شکل۴‐۱۱ نشان داده شده است. یـک شـبکه LVQ در لایـه اول از
یک شبکه رقابتی و در لایه دوم از یک شبکه خطی تـشکیل شـده اسـت. لایـه رقـابتی بردارهـای
ورودی را به همان روش لایه های رقابتی ذکر شده، طبقه بندی میکند. لایه خطـی نیـز کلاسـهای
لایه رقابتی را بصورت کلاسهای مورد نظر کاربر طبقه بندی میکند. ما کلاسهایی کـه لایـه رقـابتی
جدا کرده است را زیر کلاس و کلاسهایی را که لایـه خطـی مـشخص میکنـد، کلاسـهای هـدف
مینامیم.

16-Learning Vector Quantization Networks
۵١

شکل۴‐۱۱ معماری شبکه LVQ
هر دوی لایه های رقابتی و خطی دارای تنها یک نرون بـرای هـر زیـر کـلاس یـا کـلاس هـدف
هستند. به همین دلیل لایه رقابتی میتواند S1 کلاس را یاد بگیرد. در مرحله بعد این S1 کـلاس در
S2 کلاس توسط لایه خطی طبقه بندی خواهد شد.( S1 همیشه از S2 بزرگتر است.)
برای مثال فرض کنید که نرونهای ١،٢و٣ در لایهرقابتی، زیر کلاسهایی از ورودی را یـاد میگیرنـد
که به کلاس هدف شماره ٢ لایه خطی تعلق دارند. آنگـاه نرونهـای رقـابتی ١،٢و٣ دارای وزنهـای
Lw2,1 برابر یک در نرون n2 لایهخطی، و وزنهای صفر برای بقیه نرونهای لایه خطی خواهند بود.
بنابراین این نرون لایه خطی ( ( n2 در صورت برنده شدن هر یک از نرونهای ١،٢و٣ لایـه رقـابتی،
یک ١ در خروجی ایجاد خواهد کرد. به این ترتیب زیر کلاسهای لایه رقابتی بـصورت کلاسـهای
هدف ترکیب خواهند شد.
خلاصه، یک ١ در iامین ردیف از a1 (بقیه عناصر a1 صفر خواهد بود)، iامـین ردیـف از Lw2,1
را به عنوان خروجی شبکه انتخاب میکند. این ستون شامل یک ١ که نمایانگر یـک کـلاس هـدف
است، خواهد بود را تعیین کنیم. اما ما باید با استفاده از یک عملیات آموزشی به لایه اول بفهمانیم،
که هر ورودی را در زیر کلاس مورد نظر طبقه بندی کند.
۵٢
۴‐٨‐١ روش یاد گیری (learnlv1) LVQ1
یادگیری LVQ در لایه رقابتی بر اساس یک دسته از جفتهای ورودی/ هدف میباشد.
(۴‐۲۳){ p1 ,t1},{ p2 ,t2},...,{ pQ ,tQ}
هر بردار هدف شامل یک ١ میباشد. بقیه عناصر صفر هستند. عدد ١ نمایانگر طبقه بردار ورودی
میباشد. برای نمونه، جفت آموزشی زیر را در نظر بگیرید.
0 2 (۴‐٣٣) 0 − 1 ,  t1 p1 1 0 0 در اینجا ما بردارهای ورودی سه عنصری داریم، و هر بردار ورودی باید به یکی از چهـار کـلاس
تعلق گیرد. شبکه باید طوری آموزش یابد که این بردار ورودی را در سومین کـلاس طبقـه بنـدی
کند.
به منظور آموزش شبکه، یک بردار ورودی p ارائه میشود، و فاصله از p بـرای هـر ردیـف بـردار
وزن ورودی Iw1,1 محاسبه میشود. نرونهای مخفی لایه اول به رقابت می پردازند. فرض کنیـد کـه
iامین عنصر از n1 مثبت ترین است، و نرون i* رقابت را می برد. آنگاه تابع تبدیل رقابتی یک ۱ را
به عنوان i* عنصر از a1 تولید می کند. تمام عناصر دیگرa1 صفر هستند. هنگـامی کـهa1 در وزنهـای
لایه دوم یعنیLw2,1 ضرب میشود، یک موجود در a1 کلاس k* مربوطه راانتخاب میکنـد. بـه ایـن
ترتیب، شبکه بردار ورودی p را در کلاس k* قرار داده و a2 یک شـده اسـت. البتـه ایـن تعیـین
k*
کلاس بردار p توسط شبکه بسته به اینکه آیا ورودی در کلاس k* است یا نه، میتواند درسـت یـا
غلط باشد.
۵٣
اگر تشخیص شبکه درست باشد سطر i* ام ازIw1,1 را طوری تصحیح میکنیم کـه ایـن سـطر بـه
بردار ورودی نزدیکتر شود، وبرعکس، در صورت غلـط بـودن تـشخیص ، تـصحیح بـه گونـه ای
صورت میگیرد که این سطر ماتریس وزن Iw1,1 از ورودی دورتر میشود. بنابراین اگـر p درسـت
طبقه بندی شود، یعنی
(۴‐٣۴( a2k*  tk*  1)(
ما مقدار جدید i* امین ردیف ازIw1,1 را چنین تنظیم میکنیم:
(۴‐٣۵) IW1,1 (q)i*IW1,1α(p(q)−i*IW1,1(q−1))
از طرفی، اگر طبقه بندی اشتباه باشد،
(۴‐٣۶) a2k*  1 ≠ tk*  0
مقدار جدیدi* امین ردیف را Iw1,1 را طبق رابطه زیر تغییر میدهیم
(۴‐۷۳) IW1,1 (q)i*IW1,1−α(p(q)−i*IW1,1(q−1))
این تصحیحات موجب میشود که نرون مخفی به سوی برداری کـه در کـلاس مربوطـه قـرار دارد
حرکت کند و از طرفی از سایر بردارها فاصله بگیرد.
۴‐۸‐۲ روش یادگیری تکمیلی١٧ LVQ21
روش یادگیری که در اینجا توضیح میدهیم را میتوانیم بعد از استفاده از 1 بکار ببریم. بکـارگیری
این روش ممکن است نتایج یادگیری اولیه را بهبود بخشد.
اگر نرون برنده در لایه میانی، بردار ورودی را به درستی طبقه بندی ننمود، بردار وزن آن نـرون را
طوری تنظیم میکنیم که از بردار ورودی فاصله بگیرد و به طور همزمان بردار وزن متناظر با نرونی

17-Supplemental Learning Rule
۵۴

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

را که بیشترین نزدیکی را به بردار ورودی دارد، طوری تنظیم میکنیم کـه بـه سـمت بـردار ورودی
حرکت نماید(به بردار ورودی نزدیکتر گردد).
زمانی که شبکه بردار ورودی را به درستی طبقه بندی نمود، تنها بردار وزن یـک نـرون بـه سـمت
بردار ورودی نزدیک میشود. اما اگر بردار ورودی بطور صحیح طبقـه بنـدی نـشد، بـردار وزن دو
نرون تنظیم میشود، یکی به سمت بـردار ورودی نزدیـک میـشود و دیگـری از بـردار ورودی دور
میشود.
۴‐۹‐ مقایسه شبکههای رقابتی
یک شبکه رقابتی طرز طبقه بندی بردار ورودی را یاد میگیرد. اگر تنها هدف ایـن باشـد کـه یـک
شبکه عصبی طبقه بندی بردارهای ورودی را یاد بگیرد، آنگاه یک شـبکه رقـابتی مناسـب خواهـد
بود. شبکه های عصبی رقابتی همچنین توزیع ورودیها را نیز با اعطای نرونهای بیشتر بـرای طبقـه
بندی قسمتهایی از فضای ورودی دارای چگالی بیشتر، یاد میگیرنـد. یـک نگاشـت خودسـازمانده
طبقه بندی بردارهای ورودی را یاد میگیرد. همچنین توضیع بردارهای ورودی را نیـز یـاد میگیـرد.
این نگاشت نرونهای بیشتری را برای قسمتهایی از فضای ورودی که بردارهای بیشتری را به شبکه
اعمال میکند، در نظر میگیرد.
نگاشت خودسازمانده، همچنین توپولوﮊی بردارهای ورودی را نیز یـاد خواهـد گرفـت. نرونهـای
همسایه در شبکه به بردارهای مشابه جواب میدهنـد. لایـه نرونهـا را میتـوان بـه فـرم یـک شـبکه
لاستیکی کشیده شده در نواحی از فضای ورودی که بردارها را به شبکه اعمال کرده است، تـصور
کرد.
۵۵
در نگاشت خودسازمانده تغییرات بردارهای خروجی نسبت به شبکه های رقابتی بسیار ملایـم تـر
خواهد بود.
شبکه عصبی LVQ بردارهای ورودی را در کلاسهای هدف به وسیله یک لایـه رقـابتی بـرای پیـدا
کردن زیر کلاسهای ورودی، و سپس با ترکیب آنها در کلاسهای هدف، طبقه بندی میکنند.
بر خلاف شبکه های پرسپترون که تنها بردارهای مجزا شده خطی را طبقه بنـدی میکننـد، شـبکه
های LVQ میتواند هر دسته از بردارهای ورودی را طبقه بندی کند. تنها لازم است که لایـه رقـابتی
به اندازه کافی نرون داشته باشد، تا به هر طبقه تعداد کافی نرون تعلق بگیرد.
۵۶

۵٧
۵‐۱‐ نحوه بدست آوردن سیگنالها
در این پایان نامه ۴ نوع سیگنال داریم که عبارتند از سـیگنالهای فرورزونـانس، کلیـدزنی خـازنی،
کلیدزنی بار، کلیدزنی ترانسفورماتور. سیگنالها را به دو دسته تقسیم می کنیم که دسته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشند. سیگنالها، با شبیه سازی بر روی فیدر توزیع واقعی توسط نرم افزار EMTP بدست آمـده
است که نحوه بدست آوردن سیگنالها در زیر توضیح داده شده است.
۵‐۱‐۱‐ سیگنالهای فرورزونانس
از آنجائیکه در وقوع پدیده فرورزونانس پارامترهای مختلف از جمله انواع کلید زنیها، نوع اتـصال
ترانسفورماتور، پدیده هیسترزیس، خاصیت خازنی خـط، طـول خـط و بـار مـوثر هـستند، انـواع
سیگنالهای فرورزونانس با بررسی اثرات هر یک از خواص بر روی شبکه واقعی بدست آمده انـد.
برای بدست آوردن این سیگنالها، بخشی از یک فیدر 20kV جزیره قشم کـه در شـکل ۵‐۱ نـشان
داده شده است انتخاب شده است] ۶۳.[

U

315 500 315 250 315 100 800 250
1250

315 315 500 315 1250 630 500 315 500 800 630 800 100 630 250
شکل۵‐۱. فیدر 20kV
۵٨
۵‐١‐٢‐ انواع کلید زنیها و انواع سیم بندی درترانسفورماتورها
عملکرد غیر همزمان کلیدهای قدرت و تغذیه ترانسفورماتور بی بار یا کم بار توسط یک فاز یا دو
فاز خط انتقال، شرایط بسیار مساعدی برای تحقق فرورزونانس مهیا می کند. عملکرد غیر همزمان
کلیدهای قدرت که در اثر قطع فاز یا گیر کردن کنتاکتهای بریکر در شبکه اتفاق می افتد را میتـوان
به دو نوع کلیدزنی تکفاز و دوفاز تقسیم بندی کرد. در این قسمت تاثیر انواع سیم بندیهای ترانس
20/0.4kv ابتدای فیدر را در اثر کلیدزنی تکفاز و دوفاز بررسی می کنیم.
الف)ترانس Yزمین شده ∆ /

شکل۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۵٩
ب)ترانس Yزمین نشدهY/ زمین شده

شکل۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ﭖ)ترانس Yزمین شدهY/ زمین شده

شکل۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٠
ت)ترانس ∆/∆

شکل۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ث)ترانس Y/∆ زمین شده:

شکل۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

۶١
شکل۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ج)ترانس Yزمین نشدهY/ زمین نشده

شکل۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
چ )ترانس Yزمین نشده ∆ /

شکل۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٢
ح )ترانسفورماتور Y/∆ زمین نشده:

شکل۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
همانطور که ملاحظه می شود سوئیچینگ تکفاز که بدترین حالت کلیدزنی است باعـث بـه اشـباع
رفتن سریع هسته می شود. در این نوع کلیدزنی اضافه ولتاﮊهایی بصورت دائم و با دامنـه بـیش از
۲ برابر ولتاﮊ سیستم خواهد بود. در کلید زنی دوفاز نوسانات پایه یا زیر هارمونیک دائـم بـا دامنـه
۵,۱ تا ۷,۱ برابر خواهد بود. زمین کردن نقطه ستاره ترانس اگرچه احتمال فرورزونـانس را از بـین
نمی برد ولی احتمال آن را کمتر و دامنه اضافه ولتاﮊهای ناشی از این پدیده را کمتـر مـی کنـد. در
حالت کلید زنی دوفاز این احتمال بسیار پایین می آید و وقوع آن به شرایط دیگر سیـستم بـستگی
دارد و در صورت وقوع، سیستم دارای هـر چـه مقاومـت نـوترال یـا زمـین کمتـر باشـد احتمـال
۶٣
فرورزونــانس کمتــر اســت. در ظرفیتهــای خــازنی مــساوی، اضــافه ولتاﮊهــای فرورزونــانس
درترانسفورماتور مورد نظر در حالت اتصال ستاره با نوترال زمین شده بسیار کمتر اسـت. بـا قطـع
نوترال ترانسفورماتور مورد نظر و قطع تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتـری حاصـل
می شوند که حتی از حالت اتصال مثلث‐ ستاره بزرگتر می باشـند. همچنـین بـا توجـه بـه شـبیه
سازیهای انجام شده، فازهای مختلف ترانسفورماتور دارای رفتار مساوی در مقابل اضافه ولتاﮊهای
فرورزونانس نیسستند.
۵‐۱‐۳‐ اثر بار بر فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم بـاری ترانـسفورماتور
به وجود می آید. با افزایش بار اضافه ولتاﮊهای ناشی از فرورزونـانس بـسیار کـم اسـت ولـی بـا
تعدادی از بارها اضافه ولتاﮊهای ناشی از فرورزونانس بسیار زیاد می شود

—196

( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 1)
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 2)
واکنش گرمازای اصلی که بیشترین انرژی گرمایی در شعله را تولید می کند عبارتست از:
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 3)
رادیکال های H تولید شده در واکنش REF _Ref384714697 h * MERGEFORMAT (‏22) و REF _Ref384714699 h * MERGEFORMAT (‏23) به واکنش REF _Ref384714752 h * MERGEFORMAT (‏21) برگردانده می شود بنابراین واکنش اشتعال باعث یک فرآیند خود انتشار متوالی یا واکنش زنجیره ای شده که تا زمانی که اکسیژن مورد نیاز لازم موجود باشد ادامه خواهد یافت. گرمای تولید شده دمای ناحیه اشتعال را بالا می برد و این عامل باعث افزایش شتاب نرخ تجزیه کامپوزیت خواهد شد. بسیاری از پلیمرها مثل پلی استرها، ونیل استرها و اپوکس ها با مقدار زیادی گازهای قابل اشتعال را آن می کنند که خود عاملی افزایش مقدار سوخت شعله خواهد شد. در این مواد تا زمان تخریب کامل ماتریس پلیمر اشتعال ادامه می یابد. اشتعال پذیری مواد کامپوزیتی به وسیله توقف یا کاهش واکنش های شاخه ای شدن زنجیردر مراحل REF _Ref384714752 h * MERGEFORMAT (‏21) و REF _Ref384714697 h * MERGEFORMAT (‏22) در چرخه احتراق کاهش می یابد. تأخیر دهنده های اشتعال پلیمرها به سه روش چرخه احتراق را قطع می کنند:
1- اصلاح فرآیند تخریب حرارتی برای کاهش میزان و یا انواع گازهای قابل اشتعال
2- تولید گازهای تجزیه که شعله و آتش را سریعاً سرد می کند . این عمل به وسیله حذف رادیکال های H و OH انجام می گیرد.
3- کاهش دمای مواد به وسیله اصلاح خصوصیات هدایت حرارتی و یا گرمای ویژه (این روش می تواند به تنهایی یا با دیگر روش ها به کار برده شود.)
به صورت کلی اغلب پلیمرهای تأخیر دهنده اشتعال به دو دسته فاز متراکم شونده و فاز گازی فعال تقسیم می شوند. این تقسیم بندی بستگی به این دارد که آیا در آنها مکانیسم تجزیه پلیمر مختل می شود یا احتراق در شعله. زمانی پلیمر در دسته فاز متراکم قرار می گیرد که در حالت جامد یا مذاب باشند. دسته فاز متراکم خود شامل چندین مکانیسم برای تأخیر اشتعال است که عبارتند از:
1- رقیق کردن مقدار ماده آلی قابل اشتعال به وسیله افزودن ذرات پرکننده داخلی.
2- کاهش دمای کامپوزیت به وسیله افزودن پر کننده هایی که به عنوان جاذب حرارتی عمل می کنند.
3- کاهش دما به وسیله افزودن پر کننده هایی که به صورت گرماگیر تجزیه شده و محصولاتی مانند آب یا دیگر محصولات غیر قابل اشتعال با ظرفیت حرارتی ویژه بالا تولید می کنند.
4- کاهش میزان نرخ رهایش حرارت به وسیله بکارگیری پلیمرهایی که توسط واکنش‌های گرماگیر تجزیه می‌شوند.
5- افزایش آروماتیسیته ماتریس پلیمری به منظور اینکه به یک سطح و لایه عایق فضای کربنی تجزیه شود که هدایت حرارتی درون کامپوزیت را کاهش می دهد و انتشار گازهای قابل اشتعال را کاهش دهد.
کامپوزیت های پلیمری که جزء تأخیر دهنده های اشتعال از نوع فاز گاز می باشند، به وسیله ممانعت از واکنش اشتعال عمل می‌کنند. در نتیجه هم کاهش انتشار شعله و هم بازگشت مقدار حرارت از سوی شعله به ماده را در این نوع مشاهده می‌شود. مکانیسم‌های موجود در نوع فاز گاز که به صورت گسترده جهت تأخیر اشتعال به کار گرفته شده است معمولاً رهایش رادیکال های بر پایه برومین، کلرین و فسفره را خواهند داشت که باعث اختتام واکنش های اشتعال گرمازا از طریق حذف رادیکال های H و OH از شعله خواهند شد. یکی دیگر از مکانیزم های معمول این دسته رهایش بخارات غیر قابل اشتعال برای رقیق کردن غلظت گازهای H و OH در شعله است. همچنین باعث کاهش دما نیز خواهد شد. در حالی که بسیاری از تأخیر دهنده های اشتعال تنها با یکی از مکانیسم های فاز متراکم و یا فاز گاز عمل می کنند، تأخیر دهنده هایی بیشترین تأثیر را دارند که از هر دو مکانیسم فازها در یک زمان واحد استفاده می کنند.
تأخیر دهنده‌های اشتعال برای کامپوزیت‌هامواد تأخیر دهنده اشتعال متنوعی برای پلیمرها و کامپوزیت های پلیمری ارائه شده است. در حدود 200-150 آمیزه و ماده مختلف برای استفاده وجود دارد. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMi03XTwvRGlzcGxheVRleHQ+PHJlY29yZD48
cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi
LWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3MDwva2V5PjwvZm9y
ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48
Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1dGhvcj48YXV0aG9yPk1h
cmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9yPjxhdXRob3I+T3ZlcmJl
cmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9yPjxhdXRob3I+S3Jvc2No
d2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+
RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5lZXJpbmc8L3RpdGxlPjxz
ZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVyYmVyZ2VyLCBDRywgTWVu
Z2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxw
ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBOTSwgT3ZlcmJlcmdlciwg
Q0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4NzwveWVhcj48L2RhdGVz
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0
aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9s
eW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3
NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8
L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q3Vs
bGlzPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjI3MTwvUmVjTnVtPjxyZWNvcmQ+
PHJlYy1udW1iZXI+MjcxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk
Yi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yNzE8L2tleT48L2Zv
cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkN1bGxpcywgQ2hhcmxlcyBGb3dsZXI8L2F1dGhvcj48YXV0aG9y
PkhpcnNjaGxlciwgTU08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+VGhlIGNvbWJ1c3Rpb24gb2Ygb3JnYW5pYyBwb2x5bWVyczwvdGl0bGU+PC90aXRsZXM+
PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkNsYXJlbmRvbiBQcmVz
cyBPeGZvcmQ8L3B1Ymxpc2hlcj48aXNibj4wMTk4NTEzNTE4PC9pc2JuPjx1cmxzPjwvdXJscz48
L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5FYmRvbjwvQXV0aG9yPjxZZWFyPjE5OTY8L1ll
YXI+PFJlY051bT4yODE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlw
emE5d3p6MmUyMDUwcHR3ciI+MjgxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9
IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5FYmRvbiwgSlI8L2F1dGhvcj48YXV0aG9yPkpvbmVzLCBNUzwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhbnRzIChvdmVydmll
dyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFl
ZGlhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UG9s
eW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFlZGlhPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48
cGFnZXM+MjM5Ny0yNDExPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1
cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9y
PjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4xMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjEyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MTI2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+
PGF1dGhvcj5Ib3Jyb2NrcywgQSBSaWNoYXJkPC9hdXRob3I+PGF1dGhvcj5QcmljZSwgRGVubmlz
PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZpcmUgcmV0
YXJkYW50IG1hdGVyaWFsczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPndvb2RoZWFkIFB1Ymxpc2hpbmc8L3B1Ymxpc2hlcj48aXNibj4x
ODU1NzM0MTkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5OZWxzb248L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjczPC9SZWNOdW0+PHJl
Y29yZD48cmVjLW51bWJlcj4yNzM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3Mzwva2V5
PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt
dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TmVsc29uLCBHTjwvYXV0aG9yPjxh
dXRob3I+V2lsa2UsIENBPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPkZpcmUgYW5kIFBvbHltZXJzIElJSS4gTWF0ZXJpYWxzIGFuZCBTb2x1dGlvbnMgZm9y
IEhhemFyZCBQcmV2ZW50aW9uPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwMTwveWVh
cj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMi03XTwvRGlzcGxheVRleHQ+PHJlY29yZD48
cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi
LWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3MDwva2V5PjwvZm9y
ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48
Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1dGhvcj48YXV0aG9yPk1h
cmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9yPjxhdXRob3I+T3ZlcmJl
cmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9yPjxhdXRob3I+S3Jvc2No
d2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+
RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5lZXJpbmc8L3RpdGxlPjxz
ZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVyYmVyZ2VyLCBDRywgTWVu
Z2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxw
ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBOTSwgT3ZlcmJlcmdlciwg
Q0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4NzwveWVhcj48L2RhdGVz
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0
aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9s
eW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3
NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8
L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q3Vs
bGlzPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjI3MTwvUmVjTnVtPjxyZWNvcmQ+
PHJlYy1udW1iZXI+MjcxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk
Yi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yNzE8L2tleT48L2Zv
cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkN1bGxpcywgQ2hhcmxlcyBGb3dsZXI8L2F1dGhvcj48YXV0aG9y
PkhpcnNjaGxlciwgTU08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+VGhlIGNvbWJ1c3Rpb24gb2Ygb3JnYW5pYyBwb2x5bWVyczwvdGl0bGU+PC90aXRsZXM+
PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkNsYXJlbmRvbiBQcmVz
cyBPeGZvcmQ8L3B1Ymxpc2hlcj48aXNibj4wMTk4NTEzNTE4PC9pc2JuPjx1cmxzPjwvdXJscz48
L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5FYmRvbjwvQXV0aG9yPjxZZWFyPjE5OTY8L1ll
YXI+PFJlY051bT4yODE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlw
emE5d3p6MmUyMDUwcHR3ciI+MjgxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9
IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5FYmRvbiwgSlI8L2F1dGhvcj48YXV0aG9yPkpvbmVzLCBNUzwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhbnRzIChvdmVydmll
dyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFl
ZGlhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UG9s
eW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFlZGlhPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48
cGFnZXM+MjM5Ny0yNDExPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1
cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9y
PjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4xMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjEyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MTI2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+
PGF1dGhvcj5Ib3Jyb2NrcywgQSBSaWNoYXJkPC9hdXRob3I+PGF1dGhvcj5QcmljZSwgRGVubmlz
PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZpcmUgcmV0
YXJkYW50IG1hdGVyaWFsczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPndvb2RoZWFkIFB1Ymxpc2hpbmc8L3B1Ymxpc2hlcj48aXNibj4x
ODU1NzM0MTkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5OZWxzb248L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjczPC9SZWNOdW0+PHJl
Y29yZD48cmVjLW51bWJlcj4yNzM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3Mzwva2V5
PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt
dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TmVsc29uLCBHTjwvYXV0aG9yPjxh
dXRob3I+V2lsa2UsIENBPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPkZpcmUgYW5kIFBvbHltZXJzIElJSS4gTWF0ZXJpYWxzIGFuZCBTb2x1dGlvbnMgZm9y
IEhhemFyZCBQcmV2ZW50aW9uPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwMTwveWVh
cj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA [2-7]
تأخیر دهنده‌های اشتعال یکی از بزرگترین گروه از افزودنی‌هاست که در پلیمرها استفاده می شود. این مواد در حدود 27% از بازار افزودنی پلاستیک را به خود اختصاص داده است. رتبه بعدی متعلق به پایدار کننده حرارتی (6/15%) آنتی اکسیان ها (6/7%) روان کننده ها (6%) و پایدار کننده اشعه ماوراء بنفش (5%) می باشد. مواد تأخیر دهنده اشتعال با پلیمر طی فرآیند آلیاژ می شوند اما به صورت شیمیایی با پلیمر واکنش نمی دهند. ترکیب شیمیایی بسیاری از آنها بر اساس عناصر آنتیموان، آلومینیوم، بروم، فسفر، برومین، کلرین است که این مواد تأخیر اشتعال درصد زیادی را تأمین می کنند. به صورت تخمینی در حدود 90% از مواد افزودنی بر اساس این عناصر هستند و به شکل اکسیدهای آنیتموان، آلومینیوم سه آبه و اکسیدهای برون کاربرد دارند. به مقدار کمتری نیز افزودنی هایی شامل باریوم، روی، تین، آهن، مولیبدنیوم یا گوگرد وجود دارند. بسیاری از افزودنی ها شامل نمک های فلزی هیدراته هستند که به صورت گرماگیر در شعله تجزیه می شوند و در نتیجه میزان و نرخ رهایش حرارت کلی پلیمر را کاهش می دهند. برخی دیگر از عناصر افزودنی نیز در هنگام تجزیه بخار آب آزاد می کنند طی فرآیند تجزیه و این بخار آب باعث رقیق شدن و کاهش غلظت گازهای قابل اشتعال رهایش شده خواهند شد. کامپوندهای واکنشی نیز با زرین در هنگام فرآیند پلیمریزه می شوند و دارای ساختار شبکه ای مولکولی یکپارچه شوند. تأخیر دهنده های واکنشی اشتعال به صورت اساسی بر پایه هالوژن بروم و کلر، فسفره و عناصر معدنی و ملامین هستند. در حال حاضر بروم و کلر، تأخیر دهنده های معمولی هستند زیرا قدرت زیادی در یکباره سرد کردن شعله دارند. کامپوندهای هالوژن به وسیله رهاسازی اتم های برومین و کلرین فعال به درون شعله در برابر اشتعال پذیری مقاومت می کنند. این اتم ها واکنش اکسیداسیون احتراق گازهای اشتعال پذیر را متوقف می کنند. اگرچه در حال حاضر از سوی مقامات دولتی و طرفداران طبیعت تصمیماتی جهت استفاده از تأخیر دهنده های اشتعال غیر هالوژن گرفته شده است (این ترکیبات به طبیعت لطمه وارد می کنند). ترکیبات فسفره یکی دیگر از ترکیبات مؤثر در ارتباط با اشتعال است این ترکیبات میزان گازهای قابل احتراق حاصل از تجزیه را به وسیله افزایش تشکیل ذغال کاهش می دهند. انتخاب تأخیر دهنده اشتعال برای کامپوزیت پلیمری چندین عامل و فاکتور بستگی دارد که شامل هزینه، سازگاری شیمیایی میان تأخیر دهنده اشتعال و پلیمر میزبان دمای تجزیه ماده و وزن. بسیاری از پرکننده های تأخیر دهنده اشتعال خواص مکانیکی پلیمرها را کاهش می دهند. البته می توان به وسیله اصلاح سطح پرکننده این تأثیرات منفی را کاهش داد و بر همکنش میان ذرات و ماتریس پلیمری را بهبود بخشید. برخی مواد پر کننده با وجودی که اشتعال پذیری را کاهش می دهند مقدار دود و دودهای سمی را با تجزیه ماده افزایش می دهند. به خاطر همین دلایل سعی بر این است که ترکیبی از تأخیر دهنده های اشتعال در کامپوزیت های پلیمری استفاده شود تا میزان مقاومت در برابر اشتعال پذیری افزایش یابد و در عین حال تأثیرات مضرب و منفی و مضر روی ویژگی ها و خواص مکانیکی، دود و سمیت به کمترین مقدار ممکن برسد. پرکننده ها عناصر غیر فعال معدنی هستند که به پلیمر طی مراحل پایانی فرآیند افزوده می شود تا اشتعال پذیری محصول نهایی کاهش یابد. قطر ذرات پرکننده زیر 10 میکرومتر است و اغلب در محدوده میکرون است. ذرات به زرین مایع آلیاژ می شود و به صورت یکنواخت در آن پراکنده می شود. بیشتر پلیمرها نیاز به مقدار زیادی پرکننده جهت نشان دادن بهبود محسوس در مقاومت اشتعال پذیری شان دارند. مقدار حجمی کمینه معمولاً در حدود 20% و مقدار متوسط در حدود 50% تا 60% است. پرکننده باید با پلیمر سازگار باشد. در غیر این صورت خواص مکانیکی و دوام و بقای محیطی ماده از بین رفته و کاهش یابد. پرکننده ها می توانند اثرات مخرب بر روی خواص بگذارند این اثرات شامل افزایش و سیکوزیتید، کاهش زمان ژل شدگی مذاب پلیمری که باعث مشکل شدن فرآیند گردد، می شود. بیشتر پرکننده ها به صورت تدریجی با تحت مجاورت قرار گرفتن رطوبت دچار هیدرولیز شده و از بین می روند و این عامل جهت کاهش خاصیت تأخیر اشتعال آنها خواهد شد. با وجود این مشکلات پرکننده ها اغلب به دلیل هزینه پایین آنها افزودن آسان آنها به پلیمر و قابلیت مقاومت اشتعال پلیمر استفاده می شوند. این نکته قابل اهمیت است که پرکننده ها به ندرت به تنهایی استفاده می شود اما در مقابل به صورت ترکیبی با تأخیر دهنده های اشتعال دیگر (مثل ارگانوهالوژن ها یا ارگانوفسفره ها) برای رسیدن به مقدار زیاد مقاومت در برابر اشتعال استفاده می شود. ما دو نوع پرکننده تأخیر دهنده اشتعال داریم: خنثی و فعال که بر اساس نوع فعالیت مشخص می شود:
الف) پر کننده های تأخیر دهنده اشتعال خنثی
این نوع پر کننده توسط چندین مکانیسم، اشتعال پذیری و تولید دود کامپوزیت پلیمری را کاهش می دهند. مکانیسم برتر و مهم بر این اساس است که میزان سوخت به وسیله رقیق کردن درصد جرمی ماده آلی در کاپوزیت به وسیله افزودن پر کننده غیر قابل اشتعال، کاهش می دهد. در این حالت مقدار پلیمر به شدن باید کاهش یابد و به همین دلیل مقدار پر کننده در حدود 50 تا 60 درصد خواهد بود (مورد نیاز است). مکانیسم دیگر جذب گرما به وسیله پلیمر است و میزان و نرخ سوخت ماتریس پلیمری کاهش خواهد یافت. برای اینکه پرکننده جاذب حرارت باشد باید ظرفیت حرارتی آن از پلیمر میزبان بیشتر باشد. برخی دیگر از پلیمرها اشتعال پذیری پلیمر را به وسیله تشکیل لایه سطحی عایق زمانی که پلیمر تجزیه می شود و تبخیر می شود کاهش می دهند. این لایه عایق میزان و نرخ تجزیه ماتریس پلیمری را کاهش می‌دهد. این لایه سطحی مانع جریان مواد ناپایدار قابل اشتعالی به درون شعله خواهد شد و باعث کاهش بیشتر میزان تجزیه خواهد شد. همه پرکننده ها به وسیله کاهش میزان جرم پلیمر و بیشتر پر کننده ها به عنوان جاذب حرارت عمل می کنند. فقط تعداد کمی از پرکننده ها هستند که باعث به وجود آمدن لایه سطحی عایق می‌شوند. پرکننده‌هایی خنثی که به طور معمول به پلیمرها و کامپوزیت های پلیمری افزوده می شوند شامل سیلیکا، کربنات کلسیم، دوده هستند. این پرکننده ها اشتعال پذیری و تولید دود را از طریق مکانیسم رقیق کردن و یا جذب گرما کاهش می‌دهند. در موارد جزئی نیز از سیلیکات های رس هیدراته ساده مانند پومیس، تالک، gypsum و سولفات کلسیم دوآبه استفاده می‌شود.
ب) پرکننده‌های تأخیردهنده اشتعال فعال
این پرکننده تأثیرات بیشتری بر روی پلیمر از لحاظ تأخیر اشتعال و تولید دود نسبت به پرکننده خنثی خواهد گذاشت. پرکننده فعال نیز مانند پرکننده خنثی به عنوان جاذب حرارت و دقیق کننده ماتریس در کامپوزیت عمل می کند. همچنین این نوع پرکننده در فاز متراکم فعالیت می کند. در زمان تجزیه در دماهای بالا و واکنش های گرماگیر مقدار زیادی گرما را جذب می کند و این تأخیر خنک کنندگی باعث کاهش میزان و نرخ تجزیه ماتریس پلیمری خواهد شد. واکنش تجزیه پرکننده باعث رهایش گازهای بی اثر به مقدار زیاد خواهد شد گازهایی مثل بخار آب و دی اکسید کربن که این گازها نیز می توانند به درون شعله نفوذ کرده و غلظت مواد ناپایدار اشتعال پذیر، رادیکال های H و OH را کاهش و رقیق می کند. این رقیق کردن باعث کاهش دمای شعله شده که خود باعث نرخ تجزیه ماده کامپوزیتی می شود. دمای تجزیه پرکننده یک عامل بحرانی و مؤثر در تأخیر دهندگی اشتعال آنهاست. دمای تجزیه بایست بیشتر از دمای فرآیند آنهاست تا دیگر پرکننده در طول ساخت ماده کامپوزیتی تجزیه نشود. کامپوزیت های شامل رزین‌های ترموپلاستیک دما بالا، مانند پلی فنیلن سولفید یا پلی اتر اتر کتون بایت در دمای حدود 400-300 درجه سانتی گراد فرآیند شوند. بنابراین پرکننده های مورد استفاده برای این مواد باید در دماهای این محدوده تجزیه نشود. همچنین دمای تجزیه پرکننده بایست پایین تر از دمای پیرولیز ماتریس پلیمری باشد که بسیاری زرین ها مورد استفاده در کامپوزیت این دما بین 450-300 درجه سانتی گراد است. بسیاری از اکسیدهای فلزی و هیدروکسیدهای فلزی به عنوان تأخیر دهنده های اشتعال فعال مورد استفاده قرار می گیرد. در این بین معمول ترین و پر مصرف ترین آلومینیوم تری هیدراته Al(OH)3 است. همچنین انواع دیگر از اکسیدهای آلومینیوم نیز مورد استفاده است. همچنین ترکیبات اکسیده دیگر مثل ترکیبات آنتیموان (sb2o3,sh2o5)، آهن (مثل فروسن ferocene، FeOOH، FeOCl)، ترکیبات مولیبدنیوم (MoO3)، منزیم (Mg(OH)2) روی و تین tin قابل کاربرد است. به وسیله فعالیت این عناصر و پرکننده اشتعال و همچنین تشکیل دوده به مقدار قابل توجهی متوقف خواهد شد. اگرچه میزان تأثیر آنها به صورت کلی با افزایش غلظت آنها در ماتریس پلیمری افزایش خواهد یافت. مانند پرکننده های خنثی میزان بارگزاری بالایی از پرکننده (60-20%) جهت یک کاهش اساسی در اشتعال‌پذیری مورد نیاز است.عنصرهای پایه نیتروژن یکی از مؤثرترین تأخیر دهنده های اشتعال است این عنصر به همواره ترکیبات گوانیدین و ملاحین سال ها برای بهبود مقاومت اشتعال در پوشاک های پشمی، لباس های کتونی و کاغذ مورد استفاده بوده است. اما افزودنی های پایه نیتروژن به ندرت به عنوان تأخیردهنده اشتعال در کامپوزیت های پلیمری مورد استفاده قرار می‌گیرد.
پرکننده تأخیر دهنده اشتعال متورم شوندهاین نوع پر کننده جزء پرکننده های فعال هستند. این روش یکی از نوین ترین روش های بهبود مقاومت اشتعال مواد کامپوزیتی است. نمونه ای از این پرکننده ها پلی فسفات/ ؟؟؟ ترتیول است که در دماهای بالا متورم می شود. مکانیسم عملکرد این نوع پرکننده در کامپوزیت به صورت شماتیک در شکل 10-8 نشان داده شده است. زمانی که کامپوزیت تحت مجاورت شعله قرار می گیرد ذرات متورم شونده واکنش داده و مقدار زیادی گازهای غیر قابل اشتعال و غیر سمی که در ماتریس پلیمری گیر می افتد ایجاد می شود. تجمع این گازها باعث می شود که پلیمر نرم شده به فوم و پلیمر متورم شده تبدیل شود. در صورتی که ماتریس پلیمری قابلیت تبدیل به ذغال (char) را داشته باشد با افزایش دما ماتریس تجزیه شده و باعث تولید لایه ذغالی متخلخل عایق خواهد شد. این لایه ماده کامپوزیتی اصلی را حفظ و حمایت می کند. Kovar و همکاران ADDIN EN.CITE <EndNote><Cite><Author>Kovar</Author><Year>1993</Year><RecNum>274</RecNum><DisplayText>[8]</DisplayText><record><rec-number>274</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">274</key></foreign-keys><ref-type name="Conference Proceedings">10</ref-type><contributors><authors><author>Kovar, RF</author><author>Bullock, DE</author></authors></contributors><titles><title>Multifunctional intumescent composite firebarriers</title><secondary-title>Proceedings of the 4th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials</secondary-title></titles><pages>87-98</pages><dates><year>1993</year></dates><urls></urls></record></Cite></EndNote>[8]به این نتیجه رسیدند که فرآیند تولید فوم زمانی اتفاق خواهد افتاد که پلیمر در حالت ویسکوز نرم باشد. اگر ذرات پرکننده در دماهایی پایین‌تر از دمای انتقال شیشه پلیمر تجزیه شوند در این حالت ماتریس سخت خواهد بود و قابلیت تولید فوم و تورم را نخواهد داشت. در مقابل در صورتی که میزان فشار حاصل از تولید سریع گازها می تواند منجر به تولید شیار و لایه لایه شدن در کامپوزیت‌های سخت خواهد شد. در صورتی که تجزیه در دماهای بالا اتفاق افتد گازها می تواند از درون کامپوزیت خارج خواهد شد و لایه متورم شده ای تشکیل نخواهد شد. در صورتی که درجه بالایی از حمایت در برابر آتش را بخواهیم دمای واکنش تجزیه ذرات متورم شونده ها باید بالاتر از دمای انتقال شیشه و کمتر از دمای تجزیه ماتریس پلیمری باشد.
پلیمرهای تاخیر دهنده اشتعال قابل استفاده در کامپوزیت‌هاتعداد زیادی از پلیمرهای تأخیر دهنده اشتعال در حدود 26 سالی است که ارائه شده است و بسیاری از این موارد مناسب برای استفاده در کامپوزیت های لیفی است. اتصال مولکول های بروم، کلر یا فسفر به ساختار مولکولی پلیمر معمول ترین و رایج ترین روش بهبود مقاومت اشتعال رزین‌های ترموست و ترموپلاست است. یکی دیگر از روش‌های استفاده از پرکننده‌های در مقیاس نانو است که خیلی سریع تبدیل به یک گروه مهم از مواد تأخیر دهنده اشتعال شده است. یکی دیگر از روش ها نیز اصلاح شیمیایی ساختار شبکه‌ای مولکولی به وسیله کوپلیمریزاسیون پیوندی است.
افزایش مقاومت اشتعال به وسیله پلیمریزاسیوناصلاح ساختاری زنجیره های پلیمری یک تکنیک مؤثر برای بهبود مقاومت اشتعال‌پذیری است. ADDIN EN.CITE <EndNote><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><DisplayText>[6]</DisplayText><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite></EndNote>[6]همانطور که قبلاً گفته شد پایداری حرارتی پلیمر به وسیله انرژی پیوندی میان اتم های روی زنجیره اصلی تعیین می شود. پلیمرهای شامل مقادیر زیاد هیدروژن، نیتروژن یا اکسیژن؛ اشتعال پذیری زیادی از خود نشان می دهند زیرا آنتالپی پیوندی پایینی با کربن دارند. پایداری حرارتی پلیمر می تواند به وسیله افزایش استحکام پیوندهای زنجیره افزایش داد. پایداری حرارتی می تواند به وسیله اتصال ساختارهای حلقه ای هتروسیکل و آروماتیک با انرژی های پایدارسازی رزنانسی بالا به درون زنجیره اصلی و کاهش حضور هیدروژن (H)، نیتروژن (N) و اکسیژن (O) افزایش داد. نه تنها دمای تجزیه پلیمر به وسیله این اصلاح ساختار افزایش می یابد بلکه درصد جرمی مواد ناپایدار قابل اشتعال کاهش می یابد که نرخ رهایش حرارت نیز پایین تر می آید.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 2: رابطه میان مقادیر اروماتیک و میزان بقایای ذغال و گازهای ناپایدار. توسط Parker & Kourtide ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
REF _Ref384714911 h * MERGEFORMAT شکل ‏22 رابطه میان دانسیته گروه آروماتیک در زنجیره اصلی پلیمر در برابر میزان درصد گاز ناپایدار و ذغال ADDIN EN.CITE <EndNote><Cite><Author>Parker</Author><Year>1983</Year><RecNum>115</RecNum><DisplayText>[9]</DisplayText><record><rec-number>115</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">115</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Parker, JA</author><author>Kourtides, DA</author></authors></contributors><titles><title>New fireworthy composites for use in transportation vehicles</title><secondary-title>Journal of fire sciences</secondary-title></titles><periodical><full-title>Journal of fire sciences</full-title></periodical><pages>432-458</pages><volume>1</volume><number>6</number><dates><year>1983</year></dates><isbn>0734-9041</isbn><urls></urls></record></Cite></EndNote>[9] نشان می‌دهد. یک رابطه خطی میان دانسیته گروه های آروماتیک و میزان و کاهش خطی مواد ناپایدار وجود دارد.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 3: رابطه میان بقایای ذغال و شاخص اکسیژن پلیمر و بقایای ذغال بعنوان جرم باقیمانده حاصل از آزمون TGA در دمای 800 درجه سانتیگراد در اتمسفر خنثی است. توسط Krevelan ADDIN EN.CITE <EndNote><Cite><Author>Van Krevelen</Author><Year>1975</Year><RecNum>194</RecNum><DisplayText>[10]</DisplayText><record><rec-number>194</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">194</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van Krevelen, DW</author></authors></contributors><titles><title>Some basic aspects of flame resistance of polymeric materials</title><secondary-title>Polymer</secondary-title></titles><periodical><full-title>Polymer</full-title></periodical><pages>615-620</pages><volume>16</volume><number>8</number><dates><year>1975</year></dates><isbn>0032-3861</isbn><urls></urls></record></Cite></EndNote>[10]
REF _Ref384714953 h * MERGEFORMAT شکل ‏23 یک رابطه خطی میان میزان ذغال پلیمرها و پارامتر محدودیت اکسیژن که باعث کاهش میزان مواد ناپایدار اشتعال پذیر که عاملی برای استمرار احتراق است وجود دارد. ADDIN EN.CITE <EndNote><Cite><Author>Van Krevelen</Author><Year>1975</Year><RecNum>275</RecNum><DisplayText>[11]</DisplayText><record><rec-number>275</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">275</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van Krevelen, DW</author></authors></contributors><titles><title>Entzündlichkeit und Flammhemmung bei organischen Hochpolymeren und ihre Beziehungen zur chemischen Struktur</title><secondary-title>Chemie Ingenieur Technik</secondary-title></titles><periodical><full-title>Chemie Ingenieur Technik</full-title></periodical><pages>793-803</pages><volume>47</volume><number>19</number><dates><year>1975</year></dates><isbn>1522-2640</isbn><urls></urls></record></Cite></EndNote>[11]استحکام میان زنجیره ها نیز عامل مهم دیگری برای کنترل پایداری حرارتی پلیمرهای ترموست است. پلیمرهایی که می توانند یک ساختار شبکه ای 3 بعدی اتصال عرضی زیاد تشکیل دهند معمولاً پایداری حرارتی زیادی نشان می دهند زیرا شکست و تشکیل دوباره اتصالات عرضی باعث تشکیل ذغال خواهد شد. پلی فنیلن‌ها، پلی فنیلن اکسایدها نمونه و مثال هایی از پلیمرهای تأخیر دهنده اشتعال با قابلیت آروماتیک بالا و اتصال عرضی بالا می باشند. مشکل این پلیمرها دمای فرآیندپذیری بالا (نرم شدگی) می باشد.
کامپوزیت‌های پلیمری هالوژنه
اصلاح شیمیایی پلیمرها به وسیله عناصر ارگانوهالوژن یکی از معمولترین و مؤثرترین روش های کاهش اشتعال پذیری مواد کامپوزیتی است. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMiwgMywgNSwgNiwgMTIsIDEzXTwvRGlzcGxh
eVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI3MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1
dGhvcj48YXV0aG9yPk1hcmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9y
PjxhdXRob3I+T3ZlcmJlcmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9y
PjxhdXRob3I+S3Jvc2Nod2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5l
ZXJpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVy
YmVyZ2VyLCBDRywgTWVuZ2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBO
TSwgT3ZlcmJlcmdlciwgQ0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwt
dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4
NzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48
cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw
PSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9r
ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250
cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9u
IG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48
ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJs
aXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxD
aXRlPjxBdXRob3I+RWJkb248L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxSZWNOdW0+MjgxPC9S
ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yODE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI4MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RWJkb24sIEpSPC9h
dXRob3I+PGF1dGhvcj5Kb25lcywgTVM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RmxhbWUgcmV0YXJkYW50cyAob3ZlcnZpZXcpPC90aXRsZT48c2Vjb25k
YXJ5LXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMgRW5jeWNsb3BhZWRpYTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMg
RW5jeWNsb3BhZWRpYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzOTctMjQxMTwv
cGFnZXM+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFy
PjxSZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+
PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHph
OXd6ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJC
b29rIj42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3Ms
IEEgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8
L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hl
cj53b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48
dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R3JhbnpvdzwvQXV0aG9y
PjxZZWFyPjE5Nzg8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5HcmFuem93LCBBbGJyZWNodDwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhdGlvbiBieSBwaG9zcGhv
cnVzIGNvbXBvdW5kczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNh
bCBSZXNlYXJjaDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp
dGxlPkFjY291bnRzIG9mIENoZW1pY2FsIFJlc2VhcmNoPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh
bD48cGFnZXM+MTc3LTE4MzwvcGFnZXM+PHZvbHVtZT4xMTwvdm9sdW1lPjxudW1iZXI+NTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTc4PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMS00ODQyPC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MZSBCcmFzPC9BdXRo
b3I+PFllYXI+MTk5ODwvWWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i
ZXI+MjgyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVy
d3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yODI8L2tleT48L2ZvcmVpZ24ta2V5
cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y
cz48YXV0aG9yPkxlIEJyYXMsIE1pY2hlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFuY3kgb2YgcG9seW1lcnM6IHRoZSB1c2Ugb2Yg
aW50dW1lc2NlbmNlPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MTk5ODwveWVhcj48L2Rh
dGVzPjxwdWJsaXNoZXI+Um95YWwgc29jaWV0eSBvZiBjaGVtaXN0cnk8L3B1Ymxpc2hlcj48aXNi
bj4wODU0MDQ3Mzg3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl
Pn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMiwgMywgNSwgNiwgMTIsIDEzXTwvRGlzcGxh
eVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI3MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1
dGhvcj48YXV0aG9yPk1hcmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9y
PjxhdXRob3I+T3ZlcmJlcmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9y
PjxhdXRob3I+S3Jvc2Nod2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5l
ZXJpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVy
YmVyZ2VyLCBDRywgTWVuZ2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBO
TSwgT3ZlcmJlcmdlciwgQ0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwt
dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4
NzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48
cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw
PSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9r
ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250
cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9u
IG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48
ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJs
aXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxD
aXRlPjxBdXRob3I+RWJkb248L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxSZWNOdW0+MjgxPC9S
ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yODE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI4MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RWJkb24sIEpSPC9h
dXRob3I+PGF1dGhvcj5Kb25lcywgTVM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RmxhbWUgcmV0YXJkYW50cyAob3ZlcnZpZXcpPC90aXRsZT48c2Vjb25k
YXJ5LXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMgRW5jeWNsb3BhZWRpYTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMg
RW5jeWNsb3BhZWRpYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzOTctMjQxMTwv
cGFnZXM+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFy
PjxSZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+
PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHph
OXd6ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJC
b29rIj42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3Ms
IEEgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8
L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hl
cj53b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48
dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R3JhbnpvdzwvQXV0aG9y
PjxZZWFyPjE5Nzg8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5HcmFuem93LCBBbGJyZWNodDwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhdGlvbiBieSBwaG9zcGhv
cnVzIGNvbXBvdW5kczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNh
bCBSZXNlYXJjaDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp
dGxlPkFjY291bnRzIG9mIENoZW1pY2FsIFJlc2VhcmNoPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh
bD48cGFnZXM+MTc3LTE4MzwvcGFnZXM+PHZvbHVtZT4xMTwvdm9sdW1lPjxudW1iZXI+NTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTc4PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMS00ODQyPC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MZSBCcmFzPC9BdXRo
b3I+PFllYXI+MTk5ODwvWWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i
ZXI+MjgyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVy
d3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yODI8L2tleT48L2ZvcmVpZ24ta2V5
cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y
cz48YXV0aG9yPkxlIEJyYXMsIE1pY2hlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFuY3kgb2YgcG9seW1lcnM6IHRoZSB1c2Ugb2Yg
aW50dW1lc2NlbmNlPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MTk5ODwveWVhcj48L2Rh
dGVzPjxwdWJsaXNoZXI+Um95YWwgc29jaWV0eSBvZiBjaGVtaXN0cnk8L3B1Ymxpc2hlcj48aXNi
bj4wODU0MDQ3Mzg3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl
Pn==
ADDIN EN.CITE.DATA [2, 3, 5, 6, 12, 13]
عناصر پایه هالوژن شامل بروم و کلر تأخیردهنده‌های اشتعال فوق العاده‌ای هستند که به صورت فرآیند فاز گاز از اشتعال جلوگیری می کنند. (اختتام واکنش های اشتعال به وسیله حذف رادیکال H و OH واکنش با هالوژن) پلیمرهای هالوژنه به وسیله اتصال مولکول هالوژن به ساختار شبکه ای زرین از طریق کوپلیمریزاسیون تشکیل می شوند. مقدار برومیت بایست بیشتر از 20% وزنی باشد تا بتواند تأثیر مشخصی بر روی مقاومت اشتعال بگذارد. میزان کلرین برای بیشتر پلیمرها بایست بیشتر از مقدار 25 درصد وزنی باشد اگرچه افزایش کلرین بیشتر از این مقدار بر روی نتایج و بهبود آن تأثیر چندانی نخواهد گذاشت. پلیمرهای کلرین و برومینه را نیز می توان به همراه پرکننده های تأخیر دهنده اشتعال استفاده کرد که ترکیب پرکننده با هالوژن ها می تواند خاصیت های جمع پذیری، غیر هم افزایی و هم افزایی بر روی خواص تأخیر دهنده اشتعال سیستم پلیمری بگذارد. اثر جمع پذیری زمانی اتفاق می افتد که بازده تأخیر دهنده اشتعال کل سیستم پلیمری برابر با ترکیبی از بازده های پرکننده و هالوژن است و برهمکش خاصی میان این دو جهت افزایش و کاهش اثرات تأخیر اشتعال وجود ندارد. نمونه این نوع اثر شامل پلیمرهای هالوژنه به همراه پر کننده های خنثی است. هالوژن مقاومت اشتعال پذیری را در فاز گاز افزایش می دهد در صورتی که پرکننده در فاز متراکم به عنوان کاهنده میزان سوخت پلیمری و جاذب حرارت عمل می کند. هر دو به صورت مستقل بر روی افزایش قابلیت اشتعال سیستم پلیمری عمل می کند. تأثیر غیر هم افزایی زمانی است که بازده سیستم پلیمری کمتر از بازده سیستم های افزودنی به طور مستقل است. هالوژن و پرکننده مزاحم واکنش های تأخیر اشتعال یکدیگر شده در نتیجه مقاومت اشتعال پذیری کلی پلیمر کاهش خواهد یافت. بهترین حالت زمانی اتفاق می افتد که پرکننده و تأخیر دهنده اشتعال و واکنش تأخیر اشتعال اثر هم افزایی می گذارند. زمانی این اتفاق می افتد که بازده کل سیستم پلیمری بیشتر از اثرات افزودنی هالوژن و یا پرکننده به تنهایی باشد. میزان گسترده ای از عناصر فعال می توانند به عنوان پرکننده‌های افزایی پلیمرهای هالوژنه استفاده شوند. این عناصر شامل اکسید بیسموت ، اکسید مولیبدنیوم ، اکسید تین هستند. اگرچه معمولاً از اکسید آنتیموان (sb2o3) استفاده می‌شود. این عنصر خاصیت ضد اشتعال پذیری کمی در زمان هایی که به تنهایی مصرف می شود (پلیمرهای غیرهالوژنه) دارد اما زمانی که از زرین های برومینه استفاده شود بازده تأخیر اشتعال به شدت افزایش می یابد. این افزایش به دلیل بر همکنش های هم افزایی میان مکانیزم های تأخیر دهنده اشتعال هالوژن و اکسید آنتیموان است. (واکنش مواد ناپایدار هالوژنه با مواد ناپایدار آنتیموان در فاز گاز و تولید هالوژن یا آمیزه اکسی هالید) پرکننده ها شاخص گسترش شعله را را کاهش می دهند و به استثنای آلومینیوم سه آبه (ATH) باعث افزایش پارامتر محدودیت اکسیژن می شوند. REF _Ref384715043 h شکل ‏24 تأثیر پرکننده های تأخیر دهنده اشتعال را بر روی پارامتر انتشار شعله، پارامتر محدودیت اکسیژن و دانسیته نوری ویژه وینیل استر برومینه شده شده را نشان می‌دهد.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 4: تأثیر تأخیردهنده اشتعال بر روی (الف) شاخص گسترش اشتعال (ب)شاخص محدودیت اکسیژن (ج) دانسیته نوری ویژه یک است وینیل استری برومینه شده.توسط Mochat & Hiltz( ADDIN EN.CITE <EndNote><Cite><Author>Morchat</Author><Year>1992</Year><RecNum>278</RecNum><DisplayText>[14]</DisplayText><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">278</key></foreign-keys><ref-type name="Generic">13</ref-type><contributors><authors><author>Morchat, RM</author><author>Hiltz, JA</author></authors></contributors><titles><title>Fire-Safe Composites for Marine Applications</title></titles><dates><year>1992</year></dates><publisher>DEFENCE RESEARCH ESTABLISHMENT ATLANTIC DARTMOUTH (NOVA SCOTIA)</publisher><urls></urls></record></Cite></EndNote>[14]
بیشترین دغدغه استفاده از پلیمرهای هالوژنه و کامپوزیت های پلیمری رهایش دودهای خورنده اسیدی و گازهای سمی است که به طور جدی بر روی سلامت و خطرات زیست محیطی تأثیرگذار است. ADDIN EN.CITE <EndNote><Cite><Author>Ebdon</Author><Year>1996</Year><RecNum>281</RecNum><DisplayText>[5, 6, 14]</DisplayText><record><rec-number>281</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">281</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ebdon, JR</author><author>Jones, MS</author></authors></contributors><titles><title>Flame retardants (overview)</title><secondary-title>Polymeric Materials Encyclopaedia</secondary-title></titles><periodical><full-title>Polymeric Materials Encyclopaedia</full-title></periodical><pages>2397-2411</pages><dates><year>1996</year></dates><urls></urls></record></Cite><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite><Cite><Author>Morchat</Author><Year>1992</Year><RecNum>278</RecNum><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">278</key></foreign-keys><ref-type name="Generic">13</ref-type><contributors><authors><author>Morchat, RM</author><author>Hiltz, JA</author></authors></contributors><titles><title>Fire-Safe Composites for Marine Applications</title></titles><dates><year>1992</year></dates><publisher>DEFENCE RESEARCH ESTABLISHMENT ATLANTIC DARTMOUTH (NOVA SCOTIA)</publisher><urls></urls></record></Cite></EndNote>[5, 6, 14] پلیمرهای کلرینه مقدار زیادی گاز HCL رهایش می کنند که می توانند بر روی سیستم تنفسی و چشم تأثیر گذاشته و توانایی گریز از آتش را از انسان بگیرد. همچنین پلیمرهای کلرینه می توانند ؟؟؟ و عناصر وابسته دی اکسین که به شدت سمی هستند را تولید کند. تماس با دی اکسین ها با غلظت زیاد می تواند منجر به مشکلات زیادی از لحاظ سلامتی شود، مشکلاتی از قبیل سرطان، تغییر رنگ پوست، خارش پوست و تاول ایجاد کند. همچنین دی اکسین ها با ورود به اکوسیستم می توانند برای سال ها درون بدن جانداران و گیاهان باقی بمانند. به همین دلایل استفاده از این پلیمرها در بسیاری از کشورها منسوخ شده است و به جای آن از پلیمرهای تأخیر دهنده اشتعال دوستدار محیط زیست شامل brominaded index، tris(tribromophenyl)cyanurate,tris(tribromoneophentyl)cyanurate استفاده می کنند.
کامپوزیت های پلیمری فسفره تأخیر دهنده اشتعال
مقاومت اشتعال پذیری پلیمرها و کامپوزیت های پلیمری می تواند به وسیله افزودن فسفر افزایش یابد.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+
PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+WzMsIDYsIDEzLCAxNSwgMTZdPC9EaXNw
bGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3
ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwv
YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRl
Z3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8
L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3Jp
ZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS
ZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZv
cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6
ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29r
Ij42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEg
UmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3Rp
dGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53
b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGUgQnJhczwvQXV0aG9yPjxZ
ZWFyPjE5OTg8L1llYXI+PFJlY051bT4yODI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4
MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFk
ZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl
Zi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5MZSBCcmFzLCBNaWNoZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RmlyZSByZXRhcmRhbmN5IG9mIHBvbHltZXJzOiB0aGUgdXNlIG9mIGludHVt
ZXNjZW5jZTwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48
cHVibGlzaGVyPlJveWFsIHNvY2lldHkgb2YgY2hlbWlzdHJ5PC9wdWJsaXNoZXI+PGlzYm4+MDg1
NDA0NzM4NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+
QnJhdW1hbjwvQXV0aG9yPjxZZWFyPjE5Nzc8L1llYXI+PFJlY051bT4yNzk8L1JlY051bT48cmVj
b3JkPjxyZWMtbnVtYmVyPjI3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF
TiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc5PC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CcmF1bWFuLCBTSzwvYXV0aG9yPjxh
dXRob3I+RmlzbWFuLCBOPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPlBob3NwaG9ydXMgZmxhbWUgcmV0YXJkYW5jZSBpbiBwb2x5bWVycy4gSUlJLiBTb21l
IGFzcGVjdHMgb2YgY29tYnVzdGlvbiBpbiBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRs
ZT5Kb3VybmFsIG9mIEZpcmUgUmV0YXJkYXRpb24gYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgRmlyZSBSZXRh
cmRhdGlvbiBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTMt
MTExPC9wYWdlcz48dm9sdW1lPjQ8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NzwveWVhcj48L2Rh
dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdTwvQXV0aG9y
PjxZZWFyPjIwMDI8L1llYXI+PFJlY051bT4yODM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI4MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgzPC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5MdSwgU2h1aS1ZdTwvYXV0aG9yPjxhdXRob3I+SGFtZXJ0b24s
IElhbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNl
bnQgZGV2ZWxvcG1lbnRzIGluIHRoZSBjaGVtaXN0cnkgb2YgaGFsb2dlbi1mcmVlIGZsYW1lIHJl
dGFyZGFudCBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9ncmVzcyBpbiBQb2x5
bWVyIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10
aXRsZT5Qcm9ncmVzcyBpbiBQb2x5bWVyIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs
PjxwYWdlcz4xNjYxLTE3MTI8L3BhZ2VzPjx2b2x1bWU+Mjc8L3ZvbHVtZT48bnVtYmVyPjg8L251
bWJlcj48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxpc2JuPjAwNzktNjcwMDwvaXNi
bj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+
PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+WzMsIDYsIDEzLCAxNSwgMTZdPC9EaXNw
bGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3
ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwv
YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRl
Z3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8
L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3Jp
ZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS
ZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZv
cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6
ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29r
Ij42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEg
UmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3Rp
dGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53
b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGUgQnJhczwvQXV0aG9yPjxZ
ZWFyPjE5OTg8L1llYXI+PFJlY051bT4yODI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4
MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFk
ZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl
Zi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5MZSBCcmFzLCBNaWNoZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RmlyZSByZXRhcmRhbmN5IG9mIHBvbHltZXJzOiB0aGUgdXNlIG9mIGludHVt
ZXNjZW5jZTwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48
cHVibGlzaGVyPlJveWFsIHNvY2lldHkgb2YgY2hlbWlzdHJ5PC9wdWJsaXNoZXI+PGlzYm4+MDg1
NDA0NzM4NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+
QnJhdW1hbjwvQXV0aG9yPjxZZWFyPjE5Nzc8L1llYXI+PFJlY051bT4yNzk8L1JlY051bT48cmVj
b3JkPjxyZWMtbnVtYmVyPjI3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF
TiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc5PC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CcmF1bWFuLCBTSzwvYXV0aG9yPjxh
dXRob3I+RmlzbWFuLCBOPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPlBob3NwaG9ydXMgZmxhbWUgcmV0YXJkYW5jZSBpbiBwb2x5bWVycy4gSUlJLiBTb21l
IGFzcGVjdHMgb2YgY29tYnVzdGlvbiBpbiBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRs
ZT5Kb3VybmFsIG9mIEZpcmUgUmV0YXJkYXRpb24gYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgRmlyZSBSZXRh
cmRhdGlvbiBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTMt
MTExPC9wYWdlcz48dm9sdW1lPjQ8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NzwveWVhcj48L2Rh
dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdTwvQXV0aG9y
PjxZZWFyPjIwMDI8L1llYXI+PFJlY051bT4yODM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI4MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgzPC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5MdSwgU2h1aS1ZdTwvYXV0aG9yPjxhdXRob3I+SGFtZXJ0b24s
IElhbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNl
bnQgZGV2ZWxvcG1lbnRzIGluIHRoZSBjaGVtaXN0cnkgb2YgaGFsb2dlbi1mcmVlIGZsYW1lIHJl
dGFyZGFudCBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9ncmVzcyBpbiBQb2x5
bWVyIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10
aXRsZT5Qcm9ncmVzcyBpbiBQb2x5bWVyIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs
PjxwYWdlcz4xNjYxLTE3MTI8L3BhZ2VzPjx2b2x1bWU+Mjc8L3ZvbHVtZT48bnVtYmVyPjg8L251
bWJlcj48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxpc2JuPjAwNzktNjcwMDwvaXNi
bj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA [3, 6, 13, 15, 16]
یکی از روش‌های بسیار معمول و رایج برای افزودن فسفر، آلیاژسازی یک آمیزه پرکننده فسفره پایه معدنی یا پایه آلی به پلیمر طی فرآیند است. اکثر آمیزه های فسفری دارای قابلیت مقاومت اشتعال است اما انواع معمول و رایج و پر کاربرد آنها فسفر خالص، فسفات آمونیوم و trialylphosphates هستند. فسفره ها همچنین می توانند به وسیله کوپلیمریزاسیون زرین با منومرهای آلی فسفره فعال (استرهای فسفاته، پلی ال‌ها و فسفات ها) یا فسفات های هالوژنه(phosphate (tris(1-cloro-2-propyl)phosphate , tris(2,3-dibromo propyl) به ساختار مولکولی زرین متصل شوند. روش پلیمیریزاسیون برای تولید تعداد بسیار زیادی از پلیمرهای مناسب تأخیر دهنده اشتعال برای کاربرد در کامپوزیت ها استفاده می شود. فسفره به عنوان تأخیر دهنده اشتعال هم در فاز گاز و هم در فاز متراکم عمل می کنند (بسته به ساختار و طبیعت شیمیایی و پایداری حرارتی پلیمر میزبان). مکانیزم فاز گاز در بیشتر ترموپلاستیک ها و پلیمرهای ترموست غیر اکسیژنه حاکم است. در این نوع مکانیسم رادیکال های فسفره رهایش شده از طرف پلیمر در دماهای بالا اگرچه زمانی مؤثرتر است که تولید مواد ناپایدار در دماهای پایین تر از 400-300 درجه سانتی گراد اتفاق بیفتد و یا ماتریس پلیمری تجزیه شود می باشد. رادیکال های فسفره زیادی می توانند به درون شعله رهایش شده البته این رهایش بستگی به دما و ترکیب درصد تأخیر دهنده اشتعال فسفره دارد. این رادیکال ها با رادیکال های H و OH واکنش داده و موجب کاهش اشتعال و یا توقف آن شوند. مکانیسم دوم تأخیر دهنده اشتعال فاز گاز است مین مکانیسم یک تأثیر پوششی بر روی سطح داغ پلیمر می گذارد. بسیاری از مواد حاوی فسفر رهایش شده از پلیمر تجزیه شده به صورت متناسب سنگین هستند و این عامل باعث می شود که یک فاز غنی از بخار در سطح پلیمر ایجاد شود که از دسترسی اکسیژن جلوگیری کند. زمانی که آمیزه و عنصر فسفره در پلیمرهای آلی هیدروکسیل و اکسیژنه استفاده می شود به صورت یک تأخیر دهنده اشتعال در فاز متراکم عمل می کند. فسفر در این سیستم های پلیمری باعث تشکیل ذغال می شود که خود باعث کاهش مقدار مواد ناپایدار قابل اشتعال رهایش شده به سمت آتش خواهد شد. فسفر می تواند افت حرارت را در برخی ترموپلاستیک ها به وسیله ذوب شدن و چکه کردن شتاب دهد. اطلاعات بیشتر در مورد انواع واکنش های تأخیر دهنده اشتعال فسفره را می توان در پروژه - ریسرچجامع ارائه شده توسط Granzow ADDIN EN.CITE <EndNote><Cite><Author>Granzow</Author><Year>1978</Year><RecNum>276</RecNum><DisplayText>[12]</DisplayText><record><rec-number>276</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">276</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Granzow, Albrecht</author></authors></contributors><titles><title>Flame retardation by phosphorus compounds</title><secondary-title>Accounts of Chemical Research</secondary-title></titles><periodical><full-title>Accounts of Chemical Research</full-title></periodical><pages>177-183</pages><volume>11</volume><number>5</number><dates><year>1978</year></dates><isbn>0001-4842</isbn><urls></urls></record></Cite></EndNote>[12]یافت.
کوپلیمریزاسیون پیوندی برای مقاومت اشتعال
یکی دیگر از تکنیک های تولید پلیمرهای تأخیر دهنده اشتعال، کوپلیمریزاسیون پیوندی است ADDIN EN.CITE <EndNote><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><DisplayText>[6]</DisplayText><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite></EndNote>[6]. این تکنیک بر مبنای افزودن یک منومر که به شدن خاصیت تشکیل ذغال دارد به زنجیره پلیمری استوار است. فرآیند کوپلیمریزاسیون می تواند از طریق دو روش که شامل پیوند زدن از طریق و یا پیوند زدن به ایجاد شود. فرآیند سازنده و تشکیل دهنده شامل واکنش پلیمر با اغازگر و ایجاد مراکز فعال در طول زنجیره پلیمر است. سپس منومرها از طریق رادیکال با زنجیره پیوند می زنند.
فرآیند پیوند زدن به (Grafting onto) زمانی اتفاق می افتد که منومر با آغازگر واکنش می دهد و رادیکال تولید می شود و این رادیکال به زنجیره پیوند می خورد. صرف نظر از فرآیند، ضروری است که منومر به صورت حرارتی در دماهای پایین تر از پلیمر تجزیه شود و مقدار زیادی ذغال که باعث حفاظت از پلیمر می شود را به جا بگذارد. کوپلیمریزاسیون پیوندی یک تکنیک مطلوب برای تولید پلیمرهای تأخیر دهنده اشتعال است. هرچند ترموپلاستیک های تأخیر دهنده اشتعال زیادی به وسیله این تکنیک تولید می شوند. کوپولیمریزاسیون پلیمرهای ترموست مهندسی که به صورت معمول در سازه های کامپوزیت کاربرد دارد نیاز به پژوهش های بیشتر و تحقیقات بیشتر است.
الیاف تأخیر دهنده اشتعال برای کامپوزیت‌هاالیاف شیشه یک تقویت کننده فوق العاده معمول و رایج است. این الیاف قابل اشتعال نیستند اما آمارهای آلی و افزودنی های چسبنده مورد استفاده در این الیاف موجب تولید دود و مواد ناپایدار رهایش شده به وسیله کامپوزیت در حال تجزیه خواهد شد.
پوشش های سطحی محافظ اشتعالییکی دیگر از روش های حفاظت از کامپوزیت استفاده از پوشش های عایق است. یک پوشش ایده آل باید خصوصیات زیر را دارا باشد:
غیر اشتعال پذیری، هدایت حرارتی پایین، چسبندگی قوی (مثل ضریب انبساط) به لایه های زیرین کامپوزیت تداوم و بقا در محیط، مقاومت در برابر سایش، وزن پایین، نازک و ارزان بودن. صدها مواد پوشش وجود دارند که به صورت تجاری برای کاربرد در کامپوزیت ها مورد استفاده قرار می گیرند. اگرچه ممکن است یکی از خواص مورد نیاز برای پوشش های ایده آل را نداشته باشند. سه گروه بزرگ از پوشش های عایق وجود دارد:
1) پلیمرهای تأخیر دهنده اشتعال
2) محافظ و پوشش حرارتی
3) پوشش های متورم شونده
4) مواد فرسایشی
مثال برای پلیمرهای تأخیر دهنده اشتعال عبارت است از زرین آلی مثل پلیمرهای برومینه و مواد معدنی مثل geopolymers که به عنوان فیلمی نازک (معمولاً کمتر از 5 میلی متر) بر روی سطح کامپوزیت قرار می گیرد. این پلیمرها به دلیل پایداری حرارتی بالا زمان رسیدن به احتراق و اشتعال لایه های زیرین با تأخیر مواجه می شود. در مورد پوشش های پلیمری معدنی هدایت حرارتی پایین باعث تأخیر خواهد شد. پوشش های غشایی حرارتی معمولاً موادی پایه سرامیک هستند که غیر قابل اشتعال بوده و خواص هدایت حرارتی پایینی دارند. نمونه این پوشش ها شامل سرامیک (مثل ceramic و rockwool)های با الیاف بافته شده و سرامیک زیرکونیوی هایی با لایه اسپری شده توسط پلاسما. مواد متورم شونده از طریق واکنش شیمیایی در دماهای بالا که منجر به تورم و تولید فوم لایه پوشش مورد استفاده قرار می گیرد. این واکنش باعث تولید یک لایه به شدت متخلخل و یک لایه ذغال ضخیم با هدایت حرارتی پایین خواهد شد. یکی دیگر از گروه از پوشش ها مواد فرسایشی هستند که باعث حفاظت حرارتی از طریق حذف حرارت از سطح داغ به وسیله پوسته شدن و ذوب شدن خواهند شد. مواد فرسایشی به ندرت به عنوان پوشش محافظ شعله در کامپوزیت مورد استفاده قرار می گیرند و بیشتر به عنوان محافظ پلیمر در کاربردهای دما بالا مثل نازل های موشک و سپرهای حرارتی فضاپیماهایی که به زمین بر می گردند، مورد استفاده قرار می گیرند
.
خواص اشتعال نانو کامپوزیت های پلیمریمقدمهاصطلاح نانو کامپوزیت پلیمری، کامپوزیت هایی را توصیف می کند که یکی از مواد تشکیل دهنده کامپوزیت از ماده با مقیاس نانو باشد. سایز نانو حداقل بایست در یکی از ابعاد رعایت شده باشد و کاملاً در فاز پلیمری پراکنده شده باشد. یک نمونه بارز از مواد نانو، خاک رس است. اما گرافیت، نانولوله های تک جداره و چند جداره ، نانو ذرات کروی مانند polyhedral oligomeric silsequioxane،POSS ، Silica، Tatania همچنین مورد استفاده قرار می گیرد. تحلیل تشکیل نانو کامپوزیت، بررسی تأخیر اشتعال: انواع مختلف اصلاح خاک رس و اثرات آنها مکانیسم و نحوه تأثیر ماده نانو بر روی تأخیر اشتعال جزء موارد مورد بحث در این بخش است. پر کننده های تأخیر دهنده اشتعال سال هاست که مورد استفاده قرار می گیرد. در سیستم های پر شده و پر کننده سنتی میکروکامپوزیت‌ها مقدار زیادی پر کننده برای ایجاد تأثیری خاص مثل کاهش خواص مکانیکی لازم است. وقتی که ذرات حاوی فاز نانو مورد استفاده قرار گرفت شرایط کاملاً تغییر کرد. کاهش اندازه از سایز میکرو به سایز نانو میزان سطح تماس ذرات را بالا می برد. افزایش سطح تماس منجر به کاهش مقدار ماده مورد نیاز می شود. حضور مواد با سطح تماس زیاد می تواند باعث تعبیر در مسیر تخریب شده و در نتیجه بر روی میزان رهایش حرارت پلیمر اثر بگذارد. در پایان، استفاده از مواد با سایز نانو می تواند باعث تشکیل یک لایه شود که باعث جلوگیری از جابجایی مواد ناپایدار در هنگام تخریب شده و موجب افزایش ذغال تولیدی شود. در مورد نانو کامپوزیت های پلیمر / خاک رس حضور مواد سیلیکاته لایه ای مانند مونت موریلونیت، هکتوریت، بنتونیت حتی با بارگزاری مقدار پایین (مخصوصاً 3 و 5%) خواص مکانیکی به صورت فوق العاده افزایش می یابد. همچنین خواص لایه محافظ و تأخیر اشتعال پلیمر افزایش خواهد یافت PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+
PFJlY051bT4xMjY8L1JlY051bT48RGlzcGxheVRleHQ+WzYsIDE3LTIxXTwvRGlzcGxheVRleHQ+
PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjEyNjwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEgUmljaGFyZDwvYXV0aG9yPjxh
dXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3RpdGxlPjwvdGl0bGVzPjxkYXRl
cz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53b29kaGVhZCBQdWJsaXNoaW5n
PC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+R2lhbm5lbGlzPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48
UmVjTnVtPjI5OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjk5PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3
enoyZTIwNTBwdHdyIj4yOTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v
ayBTZWN0aW9uIj41PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2lh
bm5lbGlzLCBFUDwvYXV0aG9yPjxhdXRob3I+S3Jpc2huYW1vb3J0aSwgUjwvYXV0aG9yPjxhdXRo
b3I+TWFuaWFzLCBFPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp
dGxlPlBvbHltZXItc2lsaWNhdGUgbmFub2NvbXBvc2l0ZXM6IG1vZGVsIHN5c3RlbXMgZm9yIGNv
bmZpbmVkIHBvbHltZXJzIGFuZCBwb2x5bWVyIGJydXNoZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UG9seW1lcnMgaW4gY29uZmluZWQgZW52aXJvbm1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PC90
aXRsZXM+PHBhZ2VzPjEwNy0xNDc8L3BhZ2VzPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0
ZXM+PHB1Ymxpc2hlcj5TcHJpbmdlcjwvcHVibGlzaGVyPjxpc2JuPjM1NDA2NDI2Njg8L2lzYm4+
PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYW5uZWxpczwvQXV0
aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4zMDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjMwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MzAwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli
dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVsIFA8L2F1dGhvcj48L2F1
dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9seW1lciBsYXllcmVkIHNpbGlj
YXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFkdmFuY2VkIG1hdGVy
aWFsczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFk
dmFuY2VkIG1hdGVyaWFsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI5LTM1PC9w
YWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5
NjwveWVhcj48L2RhdGVzPjxpc2JuPjE1MjEtNDA5NTwvaXNibj48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+VmFpYTwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJl
Y051bT4zMDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6
MmUyMDUwcHR3ciI+MzAxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5W
YWlhLCBSaWNoYXJkIEE8L2F1dGhvcj48YXV0aG9yPkphbmR0LCBLbGF1cyBEPC9hdXRob3I+PGF1
dGhvcj5LcmFtZXIsIEVkd2FyZCBKPC9hdXRob3I+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVs
IFA8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWljcm9z
dHJ1Y3R1cmFsIGV2b2x1dGlvbiBvZiBtZWx0IGludGVyY2FsYXRlZCBwb2x5bWVyLW9yZ2FuaWNh
bGx5IG1vZGlmaWVkIGxheWVyZWQgc2lsaWNhdGVzIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkNoZW1pc3RyeSBvZiBNYXRlcmlhbHM8L3NlY29uZGFyeS10aXRsZT48L3Rp
dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaXN0cnkgb2YgTWF0ZXJpYWxzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYyOC0yNjM1PC9wYWdlcz48dm9sdW1lPjg8L3Zv
bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48
aXNibj4wODk3LTQ3NTY8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48
QXV0aG9yPkJydW5lPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjMwMjwvUmVjTnVt
PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzAyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh
cHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4zMDI8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJydW5lLCBEb3VnbGFzIEE8
L2F1dGhvcj48YXV0aG9yPkJpY2VyYW5vLCBKb3plZjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NaWNyb21lY2hhbmljcyBvZiBuYW5vY29tcG9zaXRlczog
Y29tcGFyaXNvbiBvZiB0ZW5zaWxlIGFuZCBjb21wcmVzc2l2ZSBlbGFzdGljIG1vZHVsaSwgYW5k
IHByZWRpY3Rpb24gb2YgZWZmZWN0cyBvZiBpbmNvbXBsZXRlIGV4Zm9saWF0aW9uIGFuZCBpbXBl
cmZlY3QgYWxpZ25tZW50IG9uIG1vZHVsdXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1l
cjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHlt
ZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNjktMzg3PC9wYWdlcz48dm9sdW1l
PjQzPC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PC9k
YXRlcz48aXNibj4wMDMyLTM4NjE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48
Q2l0ZT48QXV0aG9yPkJoYXJhZHdhajwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4z
MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1r
ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUw
cHR3ciI+MzAzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0
aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CaGFyYWR3
YWosIFJpc2hpa2VzaCBLPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPk1vZGVsaW5nIHRoZSBiYXJyaWVyIHByb3BlcnRpZXMgb2YgcG9seW1lci1sYXllcmVk
IHNpbGljYXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1hY3JvbW9s
ZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz45MTg5LTkxOTI8
L3BhZ2VzPjx2b2x1bWU+MzQ8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFy
PjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4wMDI0LTkyOTc8L2lzYm4+PHVybHM+PC91cmxzPjwv
cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+
PFJlY051bT4xMjY8L1JlY051bT48RGlzcGxheVRleHQ+WzYsIDE3LTIxXTwvRGlzcGxheVRleHQ+
PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjEyNjwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEgUmljaGFyZDwvYXV0aG9yPjxh
dXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3RpdGxlPjwvdGl0bGVzPjxkYXRl
cz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53b29kaGVhZCBQdWJsaXNoaW5n
PC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+R2lhbm5lbGlzPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48
UmVjTnVtPjI5OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjk5PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3
enoyZTIwNTBwdHdyIj4yOTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v
ayBTZWN0aW9uIj41PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2lh
bm5lbGlzLCBFUDwvYXV0aG9yPjxhdXRob3I+S3Jpc2huYW1vb3J0aSwgUjwvYXV0aG9yPjxhdXRo
b3I+TWFuaWFzLCBFPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp
dGxlPlBvbHltZXItc2lsaWNhdGUgbmFub2NvbXBvc2l0ZXM6IG1vZGVsIHN5c3RlbXMgZm9yIGNv
bmZpbmVkIHBvbHltZXJzIGFuZCBwb2x5bWVyIGJydXNoZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UG9seW1lcnMgaW4gY29uZmluZWQgZW52aXJvbm1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PC90
aXRsZXM+PHBhZ2VzPjEwNy0xNDc8L3BhZ2VzPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0
ZXM+PHB1Ymxpc2hlcj5TcHJpbmdlcjwvcHVibGlzaGVyPjxpc2JuPjM1NDA2NDI2Njg8L2lzYm4+
PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYW5uZWxpczwvQXV0
aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4zMDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjMwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MzAwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli
dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVsIFA8L2F1dGhvcj48L2F1
dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9seW1lciBsYXllcmVkIHNpbGlj
YXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFkdmFuY2VkIG1hdGVy
aWFsczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFk
dmFuY2VkIG1hdGVyaWFsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI5LTM1PC9w
YWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5
NjwveWVhcj48L2RhdGVzPjxpc2JuPjE1MjEtNDA5NTwvaXNibj48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+VmFpYTwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJl
Y051bT4zMDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6
MmUyMDUwcHR3ciI+MzAxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5W
YWlhLCBSaWNoYXJkIEE8L2F1dGhvcj48YXV0aG9yPkphbmR0LCBLbGF1cyBEPC9hdXRob3I+PGF1
dGhvcj5LcmFtZXIsIEVkd2FyZCBKPC9hdXRob3I+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVs
IFA8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWljcm9z
dHJ1Y3R1cmFsIGV2b2x1dGlvbiBvZiBtZWx0IGludGVyY2FsYXRlZCBwb2x5bWVyLW9yZ2FuaWNh
bGx5IG1vZGlmaWVkIGxheWVyZWQgc2lsaWNhdGVzIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkNoZW1pc3RyeSBvZiBNYXRlcmlhbHM8L3NlY29uZGFyeS10aXRsZT48L3Rp
dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaXN0cnkgb2YgTWF0ZXJpYWxzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYyOC0yNjM1PC9wYWdlcz48dm9sdW1lPjg8L3Zv
bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48
aXNibj4wODk3LTQ3NTY8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48
QXV0aG9yPkJydW5lPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjMwMjwvUmVjTnVt
PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzAyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh
cHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4zMDI8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJydW5lLCBEb3VnbGFzIEE8
L2F1dGhvcj48YXV0aG9yPkJpY2VyYW5vLCBKb3plZjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NaWNyb21lY2hhbmljcyBvZiBuYW5vY29tcG9zaXRlczog
Y29tcGFyaXNvbiBvZiB0ZW5zaWxlIGFuZCBjb21wcmVzc2l2ZSBlbGFzdGljIG1vZHVsaSwgYW5k
IHByZWRpY3Rpb24gb2YgZWZmZWN0cyBvZiBpbmNvbXBsZXRlIGV4Zm9saWF0aW9uIGFuZCBpbXBl
cmZlY3QgYWxpZ25tZW50IG9uIG1vZHVsdXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1l
cjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHlt
ZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNjktMzg3PC9wYWdlcz48dm9sdW1l
PjQzPC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PC9k
YXRlcz48aXNibj4wMDMyLTM4NjE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48
Q2l0ZT48QXV0aG9yPkJoYXJhZHdhajwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4z
MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1r
ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUw
cHR3ciI+MzAzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0
aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CaGFyYWR3
YWosIFJpc2hpa2VzaCBLPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPk1vZGVsaW5nIHRoZSBiYXJyaWVyIHByb3BlcnRpZXMgb2YgcG9seW1lci1sYXllcmVk
IHNpbGljYXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1hY3JvbW9s
ZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz45MTg5LTkxOTI8
L3BhZ2VzPjx2b2x1bWU+MzQ8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFy
PjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4wMDI0LTkyOTc8L2lzYm4+PHVybHM+PC91cmxzPjwv
cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE.DATA [6, 17-21]. در سال 1960 مطالعاتی بر روی پایداری حرارتی پلی استایرن و پلی متیل متاکریلات ساخته شده در حضور خاک رس انجام شد ADDIN EN.CITE <EndNote><Cite><Author>Friedlander</Author><Year>1964</Year><RecNum>304</RecNum><DisplayText>[22, 23]</DisplayText><record><rec-number>304</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">304</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Friedlander, Henry Z</author><author>Frink, Charles R</author></authors></contributors><titles><title>Organized polymerization III. Monomers intercalated in montmorillonite</title><secondary-title>Journal of Polymer Science Part B: Polymer Letters</secondary-title></titles><periodical><full-title>Journal of Polymer Science Part B: Polymer Letters</full-title></periodical><pages>475-479</pages><volume>2</volume><number>4</number><dates><year>1964</year></dates><isbn>1542-6254</isbn><urls></urls></record></Cite><Cite><Author>Blumstein</Author><Year>1965</Year><RecNum>305</RecNum><record><rec-number>305</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">305</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blumstein, Alexandre</author></authors></contributors><titles><title>Polymerization of adsorbed monolayers. I. Preparation of the clay–polymer complex</title><secondary-title>Journal of Polymer Science Part A: General Papers</secondary-title></titles><periodical><full-title>Journal of Polymer Science Part A: General Papers</full-title></periodical><pages>2653-2664</pages><volume>3</volume><number>7</number><dates><year>1965</year></dates><isbn>1542-6246</isbn><urls></urls></record></Cite></EndNote>[22, 23]. آنها دریافتند که مولکول های استایرن و متیل متاکریلات بر روی سطح و سطح مشترک مونت موریلونیت جذب شده و یک کمپلکس بین لایه ای پلیمر-مونت موریلونیت تشکیل می دهند. این کمپلکس ها پایداری حرارتی بالا و مقاومت در برابر حلالیت بالایی را از خود نشان می دهند زیرا تخریب مولکول ها در محیط محدود، جابجایی زنجیره پلیمر را با تأخیر مواجه کرده و تخریب با تأخیر انجام خواهد شد. قبل از این پژوهشگران شرکت تویوتا ADDIN EN.CITE <EndNote><Cite><Author>Usuki</Author><Year>1993</Year><RecNum>306</RecNum><DisplayText>[24, 25]</DisplayText><record><rec-number>306</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">306</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Usuki, Arimitsu</author><author>Kojima, Yoshitsugu</author><author>Kawasumi, Masaya</author><author>Okada, Akane</author><author>Fukushima, Yoshiaki</author><author>Kurauchi, Toshio</author><author>Kamigaito, Osami</author></authors></contributors><titles><title>Synthesis of nylon 6-clay hybrid</title><secondary-title>Journal of Materials Research(USA)</secondary-title></titles><periodical><full-title>Journal of Materials Research(USA)</full-title></periodical><pages>1179-1184</pages><volume>8</volume><number>5</number><dates><year>1993</year></dates><isbn>0884-2914</isbn><urls></urls></record></Cite><Cite><Author>Kojima</Author><Year>1993</Year><RecNum>307</RecNum><record><rec-number>307</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">307</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kojima, Yoshitsugu</author><author>Usuki, Arimitsu</author><author>Kawasumi, Masaya</author><author>Okada, Akane</author><author>Fukushima, Yoshiaki</author><author>Kurauchi, Toshio</author><author>Kamigaito, Osami</author></authors></contributors><titles><title>Mechanical properties of nylon 6-clay hybrid</title><secondary-title>Journal of Materials Research(USA)</secondary-title></titles><periodical><full-title>Journal of Materials Research(USA)</full-title></periodical><pages>1185-1189</pages><volume>8</volume><number>5</number><dates><year>1993</year></dates><isbn>0884-2914</isbn><urls></urls></record></Cite></EndNote>[24, 25]دریافتند که افزودن خاک‌رس به پلی‌آمید-6 به میزان 7/4% عنصر به خواص مکانیکی فوق العاده خواهد شد که دمای واپیچش و تغییر شکل حرارتی به دمای 152 درجه سانتی گراد افزایش خواهد یافت که این مقدار 87 درجه سانتی گراد بیشتر از پلی آمید-6 اصلی و اولیه است. خاک رس ها خانواده ای از مواد سیلیکاته لایه ای هستند (شناخته شده از نوع 2:1 فیلوسیلیکات) این مواد شامل مونت موریلونیت، هکتوریت، ساپونیت، فلورومیکا، فلوروهکتوریت، ورمیکومیت، کائولینیت، ماگادیت و غیره می باشد. مونت موریلونت یکی از انواع خاک رس است که استفاده بیشتری از آن می شود. این ماده از زمانی که در ابتدا در شهر مونت موریلون فرانسه در سال 1874 کشف شد به این نام مشهور شد ADDIN EN.CITE <EndNote><Cite><Author>Grimshaw</Author><Year>1971</Year><RecNum>308</RecNum><DisplayText>[26]</DisplayText><record><rec-number>308</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">308</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Grimshaw, Rex W</author><author>Searle, Alfred Broadhead</author></authors></contributors><titles><title>The chemistry and physics of clays and allied ceramic materials</title></titles><dates><year>1971</year></dates><publisher>Wiley-Interscience</publisher><isbn>0471327808</isbn><urls></urls></record></Cite></EndNote>[26]. ساختار خاک رس مونت موریلونیت از دو دیدگاه مختلف می تواند بررسی شود میکروساختار و ساختار بلورین. بر اساس مطالعات انجام شده بر روی ذرات میکرو ساختار مونت موریلونیت تقسیم به سه نوع دسته بندی مختلف می شود: ساختار لایه ای ، ذرات اولیه ، حالت خوشه ای شدن. ساختار لایه ای شامل یک لایه ساده است اما با ضخامت 1 نانومتر و طول 200-100 نانومتر. ساختار بلوری و کریستال مونت موریلونیت به ساختار لایه ای بر می گردد. چندین لایه با هم متحد و پیوند زده می شوند و ذره اولیه شکل می گیرد (با محدوده چندین نانومتر تا ده ها نانومتر). صدها هزار ذرات اولیه به هم چسبیده و تشکیل خوشه می دهند و محدوده اندازه خوشه میان 1/0 تا ده ها میکرومتر است. از نقطه نظر ساختار کریستالی، این مواد معدنی یک ساختار لایه ای دو بعدی دارند. اگر کسی بخواهد یک پلیمر آلی را با خاک رس مونت موریلونیت مخلوط کند بایست به وسیله تبادل یونی، یون های هیدروفیل سدیم را حذف کرده به جای آن یون های آلی دوست جایگزین کند. نانو کامپوزیت های پلیمر خاک رس به وسیله پلیمریزاسیون هم زمان و فرآیند آلیاژسازی تولید می شوند. آلی دوست ها برای هر دو مورد از روش ها کمی متفاوت عمل می کنند. در فرآیند آلیاژسازی به زنجیره های آلکیل بیشتری نسبت به پلیمریزاسیون هم زمان نیاز داریم. هنگام ساخت نانو کامپوزیت، سه نوع مختلف ممکن است به وجود بیاید:
1) غیر قابل امتزاج
معمولاً به عنوان میکرو کامپوزیت شناخته می شود. در این حالت خاک رس به صورت نانو پراکنده نمی شود و در این حالت مانند یک پرکننده با اندازه میکرو عمل می کند.
2) نانو کامپوزیت های intercalated
نانو کامپوزیت کاملاً در اندازه نانو در ماتریس پراکنده می شود و لایه های خاک رس ثابت باقی می‌مانند.
3) نانو کامپوزیت Exfoliated
در این حالت لایه های خاک رس از هم باز می شوند و پراکنش خوبی را بوجود می‌آید و فاصله ثابت میان لایه ها از بین خواهد رفت و این خاک رس به درون لایه ها نفوذ می کند.
این تعاریف بر اساس ابزارها و تست های X-Ray diffraction (XRD) به دست آمده است. REF _Ref384715186 h * MERGEFORMAT شکل ‏25 این سه نوع مختلف مواد را نشان می دهد. پایداری حرارتی خاک های رس به وسیله آنالیزهای وزن‌سنجی حرارتی (TGA) مطالعه و بررسی می شود.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 5: انواع نانوکاپوزیت‌هاتوصیف و تحلیل تشکیل نانوکامپوزیتنانو کامپوزیت های پلیمر خاک رس علاوه بر کاهش اشتعال پذیری، بهبود خواص مکانیکی را نیز از خود نشان می دهد. این امر یک نکته مثبت است زیرا بسیاری از تأخیر دهنده های اشتعال بایست با مقدار زیاد استفاده شوند تا بتوانند به خواص ضد آتش مطلوب برسند، در این حالت ممکن است خواص مکانیکی پلیمر کاهش یابد. تحلیل و آنالیز معمولاً نشان دهنده پراکنش خوب خاک رس در پلیمر مثل پراکنش نانو ذرات و همچنین نفوذ Intercalated، Exfoliated و یا اختلاط ماده به وسیله تفرق اشعه X (XRD) و TEM قابل حصول است. ADDIN EN.CITE <EndNote><Cite><Author>Morgan</Author><Year>2003</Year><RecNum>310</RecNum><DisplayText>[27]</DisplayText><record><rec-number>310</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">310</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Morgan, Alexander B</author><author>Gilman, Jeffrey W</author></authors></contributors><titles><title>Characterization of polymer‐layered silicate (clay) nanocomposites by transmission electron microscopy and X‐ray diffraction: A comparative study</title><secondary-title>Journal of Applied Polymer Science</secondary-title></titles><periodical><full-title>Journal of Applied Polymer Science</full-title></periodical><pages>1329-1338</pages><volume>87</volume><number>8</number><dates><year>2003</year></dates><isbn>1097-4628</isbn><urls></urls></record></Cite></EndNote>[27] XRD فاصله میان فضای گالری، فاصله d ماده درون سیستم Intercalated را می‌دهد. زمانی سیستم Exfoliate بوجود می‌آید که فاصله ثابت میان لایه های خاک رس تغییر کند و در آزمون XRD هیچ گونه پیک (Peak) مشاهده نمی شود. متأسفانه در برخی موارد در فرآیند اختلاط خاک رس با پلیمر اخلال و بی نظمی به وجود می آید که این امر باعث عدم مشاهده پیک در آزمون خواهد شد. در این حالت عدم مشاهده پیک در آزمون XRD مبهم است. TEM یک تصویر واقعی از خاک رس در پلیمر را به ما می دهد. در اینجا حداقل 2 برابر بزرگنمایی لازم است. بزرگنمایی پایین می تواند نشان دهد که پراکنش خاک رس خوب انجام شده در صورتی که تصویر با بزرگنمایی بالاتر می تواند لایه های واقعی خاک رس را نشان دهد و دیگر آنکه فاصله ثابت میان لایه ها را نیز نشان دهد. مشکلی که تصاویر TEM دارند این است که سطح واقعی که از آنها عکسبرداری می شود در مقایسه با کل ماده بسیار بسیار کوچک است و در بیشتر اوقات، پژوهشگرها با استفاده از نتایج این تصاویر کوچک، نتایج را به کل نمونه بسط می دهند. به صورت واقع گرایانه و صحیح بایست یک تحلیل آماری و تصادفی از کل نمونه انجام شود و تصاویر کافی گرفته شود و بر روی موقعیت های مختلف تمرکز کرد تا بتوان به صورت اطمینان بخشی در مورد نانو کامپوزیت بحث نمود. تکنیک و روش دیگری نیز وجود دارد که به صورت کمتری استفاده می شود ولی باید بیشتر استفاده شود. AFM میکروسکوب نیروی اتمی، زمان استراحت رزونانس مغناطیسی هسته ای (NMR) و گرماسنج مخروطی است. AFC یک روش سریع تر و آسان تر ولی کمتر و کوچک تر از روش TEM است. نمونه هایی از تصاویر میکروسکوپ نیروی اتمی حالت های Intercalated، مخلوطی از Intercalated – Exfoliated و ساختار Exfoliated در REF _Ref384715260 h * MERGEFORMAT شکل ‏26 نشان داده شده است.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 6:نتایج AFM نانوکاپوزیت های پلی استایرن.شکل بالا سمت چپ ساختارexfloliated.بالا سمت راست مخلوطی از Intercalated/exfoliated و نهایتا شکل پایین ساختار Intercalated ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
در ریزساختار Intercalated سطح کاملاً صاف است در صورتی که برای ساختار Exfoliated، نواحی و قطعات کوچکی در ماتریس پلیمری پراکنده شده است. لغات Intercalated و Exfoliated به عنوان ترم هایی که نشان دهنده فاصله ثابت میان لایه هاست و تکنیک NMR یک روش متفاوت برای بررسی این پدیده پیشنهاد می کند و این امر نیاز به جمع آوری و استفاده از اصطلاحات و ترم های جدید است. در برخی کارهای زودتر انجام شده در مورد تأخیر اشتعال نانو کامپوزیت های پلیمر خاک رس توسط Gilman و همکاران ADDIN EN.CITE <EndNote><Cite><Author>Al-Malaika</Author><Year>1999</Year><RecNum>311</RecNum><DisplayText>[13, 28]</DisplayText><record><rec-number>311</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">311</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Al-Malaika, Sahar</author><author>Golovoy, A</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Chemistry and technology of polymer additives</title></titles><dates><year>1999</year></dates><publisher>Blackwell Science</publisher><isbn>0632053380</isbn><urls></urls></record></Cite><Cite><Author>Le Bras</Author><Year>1998</Year><RecNum>282</RecNum><record><rec-number>282</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">282</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Le Bras, Michel</author></authors></contributors><titles><title>Fire retardancy of polymers: the use of intumescence</title></titles><dates><year>1998</year></dates><publisher>Royal society of chemistry</publisher><isbn>0854047387</isbn><urls></urls></record></Cite></EndNote>[13, 28] نشان داده شده که گرماسنج مخروطی اطلاعاتی در زمینه تشکیل نانو کامپوزیت می دهند. در میکرو کامپوزیت ها کاهشی در پیک نرخ رهایش حرارت (PHRR) ضرورتاً نخواهد داشت در صورتی که در نانو کامپوزیت ها، صرف نظر از Intercalated یا Exfoliated بودن، کاهش نسبتاً قابل توجهی را نشان داد. در کارهای آزمایشگاهی انجام شده در این موارد، تفاوت مشخصی در کاهش پیک نرخ رهایش حرارت نانو کامپوزیت ها در برابر میکروکامپوزیت‌ها مشاهده می‌شود.
بررسی تأخیر اشتعالخواص آتش مواد به وسیله روش های مختلفی بررسی می شود: کالریمتر مخروطی(ASTM E1354)، تبخیر به وسیله اشعه ADDIN EN.CITE <EndNote><Cite><Author>Zanetti</Author><Year>2002</Year><RecNum>312</RecNum><DisplayText>[29]</DisplayText><record><rec-number>312</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">312</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zanetti, M</author><author>Kashiwagi, Takashi</author><author>Falqui, L</author><author>Camino, G</author></authors></contributors><titles><title>Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites</title><secondary-title>Chemistry of Materials</secondary-title></titles><periodical><full-title>Chemistry of Materials</full-title></periodical><pages>881-887</pages><volume>14</volume><number>2</number><dates><year>2002</year></dates><isbn>0897-4756</isbn><urls></urls></record></Cite></EndNote>[29]و پارامتر محدودیت اکسیژن (ASTM D2863,ISO 4589)روش های محبوبی هستند که برای بررسی تأخیر اشتعال مواد پلیمری به کار می روند. برای محصولات تجاری از آزمون UL-94(ISO 9772,ISO 9773,ASTM D635) می توان برای تعیین کیفیت مواد تأخیر دهنده اشتعال استفاده کرد. کالریمتر مخروطی به صورت گسترده ای به عنوان یک روش آزمایشگاهی برای بررسی ترکیب تأخیر اشتعال ADDIN EN.CITE <EndNote><Cite><Author>Grand</Author><Year>2000</Year><RecNum>144</RecNum><DisplayText>[30]</DisplayText><record><rec-number>144</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">144</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Grand, Arthur F</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Fire retardancy of polymeric materials</title></titles><volume>803</volume><dates><year>2000</year></dates><publisher>CRC Press</publisher><isbn>0824788796</isbn><urls></urls></record></Cite></EndNote>[30]مورد استفاده قرار می گیرد. اطلاعاتی که می توان از این طریق به دست آورد افزایش حرارت عبارت است از: زمان رسیدن به احتراق، میزان و نرخ رهایش حرارت به عنوان تابعی از زمان، گرمای اشتعال، نرم جرم از دست رفته و دوده تولید شده. میزان نمودار کل نرخ رهایش حرارت نیز قابل دسترسی است اما معمولاً بر روی مقادیر تمرکز می شود (مقدار پیک رهایش حرارت PHRR) تبخیر بر اثر اشعه تکنیک وابسته و متناسب با آزمون کالریمتر مخروطی است البته اگر در اتمسفر نیتروژن انجام شود.) این امر باعث می شود که دود حذف شود و زمانی که ماده گرم می شود می توان از آن عکس گرفت و شواهد تصویری از واکنش را می توان داشت. پارامتر محدودیت اکسیژن نیز مقدار کمینه اکسیژن مورد نیاز برای ادامه سوختن و اشتعال نمونه را معرفی می کند. افزایش میزان پارامتر محدودیت اکسیژن به مقدار بیشتر از 20، نزدیک به درصد اکسیژن در هوا، ترکیب تأخیر دهنده اشتعال ممکن است بتوان تعیین کرد.
مکانیسم های تأخیر اشتعال در نانو کامپوزیت هامکانیسم هایی که باعث افزایش پایداری حرارتی و پایداری اشتعال پلیمرها در هنگام تولید و تشکیل نانو کامپوزیت ها می شود در برخی مواقع جالب و مورد اقبال است. اولین پیشنهاد مکانیزم توسط Gilman و Kashiwagi معرفی شد. آنها گفتند که ساختار نانو کامپوزیت هنگام اشتعال منقبض می شود و این اتفاق باعث تشکیل ساختار سیلیکاتی کربنی در سطح می شود که به عنوان یک لایه محافظ در برابر انتقال جرم و همچنین به عنوان لایه ای عایق سطح زیرین پلیمری در برابر منبع حرارتی عمل می کند. دومین مکانیسم زمانی مؤثر است که مقدار و درصد خاک رس کاملاً پایین باشد. در این حالت رادیکال ها به وسیله آهن جایگزین شده در خاک رس به دام می افتد ADDIN EN.CITE <EndNote><Cite><Author>Zhu</Author><Year>2001</Year><RecNum>315</RecNum><DisplayText>[31]</DisplayText><record><rec-number>315</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">315</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zhu, Jin</author><author>Uhl, Fawn M</author><author>Morgan, Alexander B</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Studies on the mechanism by which the formation of nanocomposites enhances thermal stability</title><secondary-title>Chemistry of Materials</secondary-title></titles><periodical><full-title>Chemistry of Materials</full-title></periodical><pages>4649-4654</pages><volume>13</volume><number>12</number><dates><year>2001</year></dates><isbn>0897-4756</isbn><urls></urls></record></Cite></EndNote>[31]. زمانی که خاک رس حاوی آهن باشد در مقایسه با زمانی که آهن وجود نداشته باشد یک تفاوت و اختلاف مشخص در کاهش پیک رهایش حرارت در مقادیر کمتر از 3 درصد خاک رس مشاهده می شود. به طور کلی کارهای زیادی در مورد تشکیل نانو کامپوزیت ها انجام شده و در بیشتر کارها میزان پیک رهایش حرارت و همچنین افت جرم کاهش می یابد اما بر روی رهایش حرارت کلی تأثیری نمی گذارد و زمان رسیدن به احتراق در بیشتر موارد کوتاه تر خواهد شد. تمام این تأثیرات مهم در کالریمتری مخروطی وجود دارد و از طریق سوختن نانو کامپوزیت به دست می آید. پیشنهاد می شود که اثر هم افزایی میان تشکیل نانوکامپوزیت و کاربرد تأخیر دهنده اشتعال استفاده شود (در صورتی که رسیدن به تأخیر اشتعال از طریق تکنولوژی نانو انجام می گیرد.) همچنین بایست در آینده تحقیقات بر روی مواد نانو به جز خاک رس انجام شود
.
پلی‌یورتانمقدمهامروزه مبحث انرژی و صرفه‌جویی در مصرف انرژی در تمامی زمینه‌ها حتی در خانه‌ها یکی از مهمترین دغدغه‌های بشر است. مقدار زیادی انرژی از طریق مصارف خانگی در روزهای سرد زمستان هدر می‌رود. عایق‌های از جنس پلی یورتان قابلیت حفظ انرژی در طول زمستان و تابستان و در مقابل گرما و سرما را دارا می‌باشند. در اکثر یخچال‌ها و فریزرها که در سرتاسر جهان تولید می‌شوند، پلی‌یورتان بعنوان یک ماده عایق حرارتی مورد استفاده قرار می‌گیرد و باعث می‌شود که هوای خنک درون یخچال محفوظ باقی بماند. همچنین از این ماده جهت خنک‌سازی مواد غذایی حین حمل و نقل از مرحله تولید تا مصرف سالم و تازه باقی بماند. همچنین برخی دیگر از خواص موجود در پلی یورتان باعث شود این ماده یک گزینه مناسب جهت استفاده در برخی محیط‌های حساس و پرتنش مورد توجه قرار بگیرد؛ بعنوان مثال لباس‌های فضانوردی دارای لایه‌هایی از جنس پلی‌یورتان هستند که از یخ زدن فضانوردان در محیط‌های سرد خارج جلوگیری می‌کند و همچنین باعث کاربرد در لباس‌های مخصوص آب‌های سرد شده است.
همچنین این ماده در مبلمان‌های راحت و همچنین تشک‌های خواب مورد استفاده قرار می‌گیرد. دلیل کاربرد این ماده جهت استفاده در مبلمان‌ها و لوازم خواب به دلیل ویژگی و خواص مناسب است که می‌تواند به فرم بدن شکل بگیرد و موجب آسایش و راحتی بیشتر فرد شود. از دیگر مزایای این ماده این است که به راحتی و انرژی کمی قابل ازبین رفتن است و همچنین میتوان آن را با محصول جدید دیگری مخلوط و بازیابی کرد.
یکی از نکات جالب در مورد پلی‌یورتان‌ها این است که با نسبت استوکیومتری‌های مختلف از مواد اولیه آن؛ یعنی ایزوسیانات و پلی‌ال؛ می‌تواند بصورت اشکال مختلف و ویژگی‌های کاملاً متفاوت، شکل‌دهی و فرآیند شود. بعنوان مثال: تخته موج سواری با وجود اینکه سبک‌وزن است اما استحکام و سختی لازم را دارا می‌باشد و یا چرخ‌های اسکیت بسیار مقاوم است.
از پلی‌یورتان‌ها به شکل بسیار گسترده‌ای در صنایع خودروسازی استفاده می‌شود. در سپرهای اتومبیل به عنوان جاذب ضربه، در لاستیک‌ها به جهت انعطاف و آسایش بیشتر در رانندگی، سپر صوتی موتور اتومبیل در کاپوت خودرو و بعنوان فوم‌ در صندلی اتومبیل و کنسول اتومبیل کاربرد دارد اما این تمام قضیه نیست، پلی یورتان باعث سبک شدن وزن اتومبیل و کاهش مقدار مصرف سوخت خواهد شد.
پلی یورتانها را اولین بار اتوبایر در سال1937 در آلمان کشف کرد و بعد از آن این مواد با داشتن خواص ویژه پیشرفت بسیار زیادی را در انواع صنایع جهان داشتند.
پلی یورتان‌ها دسته‌ای از پلیمرهای پر مصارف با خواص عالی هستند. به همین خاطر، طراحان و متخصصان صنایع پوشش دهی بخوبی توان بهره بردای از این ترکیبات را در کاربردهای گوناگون دارند مثالهای متعددی برای کاربردهای فراوان این ترکیبات وجود دارد، از جمله پوششهای شفاف برای پوشش دهنده های تک لایه مخصوص بامها و رنگهای مشخص کردن محل گذر عابرین پیاده و غیره.
مقاومت پلی یورتانها در برابر سایش ضربه و ترک خوردگی بسیار خوب است، از جمله ویژگی های آنها پخت سریع و کامل در دمای محیط است. خواص مکانیکی فوم‌ها وابسته به ماده دیواره سلول و هندسه سلول است. ADDIN EN.CITE <EndNote><Cite><Author>Lee</Author><Year>2005</Year><RecNum>342</RecNum><DisplayText>[32]</DisplayText><record><rec-number>342</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">342</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lee, L James</author><author>Zeng, Changchun</author><author>Cao, Xia</author><author>Han, Xiangming</author><author>Shen, Jiong</author><author>Xu, Guojun</author></authors></contributors><titles><title>Polymer nanocomposite foams</title><secondary-title>Composites science and technology</secondary-title></titles><periodical><full-title>Composites science and Technology</full-title></periodical><pages>2344-2363</pages><volume>65</volume><number>15</number><dates><year>2005</year></dates><isbn>0266-3538</isbn><urls></urls></record></Cite></EndNote>[32] پلی یورتان‌ها آلیفاتیک از انواع آروماتیک گرانتر هستند. به همین خاطر انواع آروماتیک و نمونه های اپوکسی دار در استری ها، رنگهای پایه و پوششهای رابط بکار می روند. در حالی که آلیفاتیک ها ویژه پوشش نهایی هستند. همچنین ایزوسیانات‌های آلیفاتیک پایداری بیشتری نسبت به انواع آروماتیک دارند. استفاده از پوشش های محافظ برای جلوگیری از پدیده خوردگی در ساختارهای فولادی که آستر و پوشش پایه آنها از نوع سامانه های اپوکسی دار است، نمونه ای از کاربردهای مهم پلی یورتانها محسوب می شوند. مورد دیگر، سامانه های پوشش دهنده کف است که در آنها نیز انواع پوششهای پایه را می توان بکار برد، گاهی پوشش نهائی از نوع یورتان برای لایه نهایی کف نیز کفایت می کند.
پلی یورتان چیست؟ پلی یورتان‌ها (PU) نام عمومی ترکیبات و پلیمرهایی است که در ساختار آنها پیوند یورتانی می باشند. پیوند یورتانی از طریق واکنش افزایشی بین یک گروه ایزوسیانات و یک ترکیب دارای هیدروژن فعال مثل گروه هیدروکسیل تشکیل شده است. گروه های ایزوسیانات به شدت واکنش پذیر بوده و به همین علت پیشرفت واکنش آنها نیاز به افزایش دما ندارد.(واکنش در دمای محیط صورت می گیرد) مهمترین ویژگی این گروه از پلیمرها این است که پس از واکنش ساختاری پایدار بوجود می آید
ایزوسیانات‌ها اغلب از واکنش آمین و فسژن در حلال‌های بی اثر و شرایط دمایی زیر صفر تا 100 درجه سانتیگراد تولید می‌شوند. دی ایزوسیانات‌ها دارای دو گروه سیاناتی می‌باشند. گروه‌های ایزوسیانات به شدت واکنش پذیر بوده و به همین علت پیشرفت واکنش آنها نیاز به افزایش دما ندارد.(واکنش در دمای محیط صورت می گیرد) مهمترین ویژگی این گروه از پلیمرها این است که پس از واکنش ساختاری پایدار بوجود می آید.
ترکیباتی که دارای گروه ایزوسیانات هستند عبارتند از:
2و4 یا 2و6 تولوئن دی ایزوسیانات
4و4 یا 2و4 دی فنیل متان دی ایزوسیانات
1و6 هگزا متیلن دی ایزوسیانات
از جمله معروفترین دی ایزوسیانات‌های تجاری می‌توان به MDI، (6,2)TDI، (4,2)TDI، NDI، IPDI، TODI، TMDI، CHDI، PPDI، XDI، HDI اشاره کرد.
علاوه بر موارد ذکر شده، ترکیبات ایزوسیاناتی دیگری نیز وجود دارند.
ترکیباتی که دارای دو گروه هیدروکسیل(OH) یا بیشتر باشند را پلی اُل می نامند. بطور معمول در تولید پلی یورتان‌ها از دو نوع پلی ال پلی استری و پلی ال پلی اتری استفاده می‌شود. نوع پلی ال بکار رفته در پلی یورتان‌ها تعیین کننده خواص نهایی آنها می‌باشد. معمولا پلی ال‌های بکار رفته در تولید پلی یورتان‌ها دارای وزن مولکولی مابین 200 تا 2000 می‌باشند که بسته به خواص نهایی مورد انتظار ازز پلی یورتان، انتخاب می‌شوند. بطور معمول از گونه های زیر استفاده می‌شود:
پلی ال‌های پلی استری
پلی استرها زنجیرهای ملکولی با وزن مولکولی بالا هستند که در زنجیر آنها گروه استری تکرار می‌شود و از واکنش یک اسید کربوکسیلیک دو عاملی با یک الکل دو عاملی حاصل می‌شوند.

—d1738

1-2-4- ترکیب جمعیت‌های میکروبی در بخش‌های مختلف شکمبهاز نظر اکولوژیکی چند بخش مختلف در شکمبه وجود دارد و ترکیب جمعیت‌های میکروبی موجود در این بخش‌ها نیز متناسب با محل آن‌ها متفاوت می‌باشد (منصوری و همکاران، 1381). مثلا باکتری‌های تجزیه کننده اوره به دیواره شکمبه می‌چسبند، قسمت عمده‌ی تک‌یاخته‌ها و قارچ‌ها در قسمت سطح محتویات شکمبه قرار دارند، بخش مایع عمدتا مخزن باکتری‌های هضم کننده مواد غیر سلولزی است که اجزای محلول در آب را تجزیه می‌کنند، لایه‌های پایینی شکمبه که آبکی‌تر بوده و هنوز هم دارای مقدار قابل توجهی الیاف قابل تخمیر است احتمالا غنی ترین منبع باکتری‌های سلولایتیک می‌باشد (منصوری و همکاران، 1381).
1-3- میکروارگانیسم‌های شکمبهثبات محیط شکمبه و جریان منظم خوراکهای با قابلیت تخمیر بالا به عنوان سوبسترا به داخل آن، شکمبه را به عنوان محل مناسبی برای استقرار و رشد و تکثیر میکروارگانیسم‌ها جهت فعالیت‌های تخمیری مطلوب گردانده است، به طوری که در آن گونه‌های متنوع میکروبی به طور مشترک در تجزیه کربوهیدرات‌ها و پروتئین‌ها دخالت دارند. به طور کلی میکروارگانیسم‌های شکمبه به سه دسته باکتری‌ها، تک‌یاخته‌ها و قارچ‌های بی‌هوازی تقسیم بندی می‌شوند (منصوری و همکاران، 1381).
1-3-1- باکتری‌هاهر میلی لیتر از مایع شکمبه حاوی 10 الی 50 بیلیون باکتری می‌باشد (چیبا 2009). تا کنون بیش از 200 گونه باکتری از شکمبه جداسازی و شناسایی شده است (منصوری و همکاران، 1381). گروه‌های اصلی باکتری‌های شکمبه عبارتند از:
الف) سلولایتیک‌ها: سلولز را هضم می‌کنند.
ب) همی سلولولایتیک‌ها: همی سلولز را هضم می‌کنند.
پ) آمیلولایتیک‌ها: نشاسته را هضم می‌کنند.
ت) پروتئولایتیک‌ها: پروتئین را هضم می‌کنند.
س) پکتینولایتیک: پکتین را هضم می‌کنند.
ج) لیپولایتیک: لیپید را هضم می‌کنند.
چ) مصرف‌کننده‌های قندها: مونوساکاریدها و دی ساکاریدها را مصرف می‌کنند.
ح) مصرف‌کننده‌های اسیدها: اسیدهای لاکتیک، سوکسینیک، مالیک و غیره را مصرف می‌کنند.
خ) تولیدکننده‌های آمونیاک
د) سنتزکننده‌های ویتامین‌ها
ز) تولیدکننده‌های متان (چیبا، 2009).
همه‌ی این باکتری‌ها بی‌هوازی می‌باشند و بیشتر آن‌ها تخمیرکننده‌ی کربوهیدرات‌ها هستند از جمله باکتری‌های گرم مثبت و گرم منفی و باکتری‌های ثابت و متحرک. باکتری‌ها در روند تخمیر شکمبه‌ای نقش بسیار مهمی دارند (شکل 2-1)، هیدروژن ورودی منتقل می‌شود و سپس با مصرف شدن توسط متانوژن‌ها مقدار آن به تعادل می‌رسد. اگر باکتری‌های گرم مثبت کاهش یابند مقدار هیدروژن ورودی نیز کاهش می‌یابد و تخمیر به سمت پروپیونات، لاکتات و بوتیرات تغییر می‌یابد (چیبا، 2009). جمعیت زیادی از باکتری‌های آمیلولایتیک، پروتئولایتیک و باکتری‌های مصرف‌کننده اسید لاکتیک در روز اول پس از تولد در شکمبه ظاهر می‌شوند، باکتری‌های به شدت هوازی در روز دوم پس از تولد در شکمبه تجمع می‌یابند، باکتری‌های سلولایتیک و متان زا در روز چهارم ظاهر می‌شوند. 10 روز پس از تولد تعداد باکتری‌ها به حدود 108 در هر میلی‌لیتر می‌رسد (منصوری و همکاران، 1381).

شکل 1-2- روند تخمیر توسط باکتری‌های شکمبه‌ای1-3-2- تک‌یاخته‌هاتک‌یاخته‌ها متعلق به کلاس کینتوفراگمفرا و زیر کلاس وستیبولیفرا می باشند مژکداران به دو شاخه تریکوستوماتا و انتودیتیومورفیدا دسته‌بندی می‌شوند. تک‌یاخته‌ها از باکتری‌ها بزرگتر بوده و طول آن‌ها بین 5 تا 25 میکرومتر است (منصوری و همکاران، 1381). تراکم تک‌یاخته‌ها در شکمبه بین 104 تا 106 در هر میلی لیتر از مایع شکمبه گزارش شده و عمده تک‌یاخته‌های شکمبه مژکدار هستند اگر چه تعداد کمی تک‌یاخته تاژکدار نیز در شکمبه پیدا شده است (شین و همکاران، 2004). تک‌یاخته‌های مژکدار بعد از باکتری‌ها و قارچ‌ها در شکمبه ظاهر می‌گردند و به ندرت تا سن 2 هفتگی در نوزاد نشخوارکنندگان یافت می‌شوند آن‌ها معمولا در خلال هفته دوم پس از تولد یعنی هنگامی که غذای جامد جایگزین غذای مایع می‌شود در شکمبه ظاهر می‌شوند (منصوری و همکاران، 1381).
1-3-3- قارچ‌هاقارچ‌های بی‌هوازی شکمبه حدود 20 درصد توده میکروبی شکمبه را تشکیل می‌دهند که در 5 جنس نئوکالیماستکیس، کائکومایسس، آنائرومایسس، پیرومایسس و ارپینومایسس تقسیم‌بندی گردیده‌اند (منصوری و همکاران، 1381). سیکل زندگی قارچ‌ها دارای دو مرحله است: مرحله متحرک (زئوسپوری) که در این مرحله به صورت آزاد در مایع شکمبه یافت می‌شوند و دارای یک یا چند تاژک هستند و مرحله رشد و تکثیر گیاهی (اسپورانژیوم) که در این مرحله به وسیله‌ی سیستم رایزوئیدی به ذرات گیاهی می‌چسبد (دنمن و همکاران، 2006). چرخه زندگی قارچ‌ها در محیط کشت 24 تا 32 ساعت است (منصوری و همکاران، 1381). تراکم زواسپورها در مایع شکمبه 103 تا 105 در هر میلی لیتر مایع شکمبه است (منصوری و همکاران، 1381). قارچ‌های شکمبه تمام آنزیم‌های لازم برای تجزیه سلولز و همی سلولز و هیدرولیز الیگوساکاریدهای آزاد را تولید می‌کنند (دنمن و همکاران، 2006).
پروسه‌ی هضم در نشخوارکنندگان به وسیله‌ی واکنش‌های شیمیایی و محصولات تخمیری حاصل از عملکرد میکروارگانیسم‌های شکمبه انجام می‌پذیرد. با گسترش استفاده از مواد شیمیایی و تهدید میکروب‌های نامطلوب در طول چند دهه گذشته، تعادل میکروبی شکمبه در معرض خطر قرار گرفته است. امروزه فلور میکروبی شکمبه به عنوان یک عامل اساسی برای دستکاری شکمبه به منظور به دست آوردن بهترین عملکرد رشد حیوان و جلوگیری از بر هم خوردن تعادل میکروبی شکمبه مورد توجه قرار گرفته است (فروم هواتز، 2010). دستکاری شکمبه‌ای از طریق بهینه‌سازی فرمول جیره، استفاده از افزودنی‌های خوراکی و افزایش یا مهار گروه خاصی از میکروب‌ها امکان پذیر می‌باشد (کالسامیگلیا و همکاران، 2006).
استفاده از آنتی بیوتیک‌ها در تغذیه حیوانات، به عنوان محرکهای رشد ضد میکروبی بی‌شک برای بهبود فراسنجه‌های عملکردی حیوانات و پیشگیری از بیماری‌ها سودمند است. موننسین، گازولوسید و لیدلومایسین پروپیونات، اسپیرامایسین، ویرژینیامایسین و تایلوزین فسفات رایج‌ترین آنتی بیوتیک‌هایی هستند که در نشخوارکنندگان مصرف شده و همگی به خانواده آنتی بیوتیک‌های یون دوست تعلق دارند (برودیسکو و همکاران، 2000). نحوه عمل آنها مختل کردن شیب یونها از غشای سلول باکتریهای مستعد (یعنی آنهایی که این آنتی بیوتیک‌ها به صورت تخصصی علیه آنها عمل می‌کنند) می‌باشد و نتیجه آن تغییرات مفید در الگوی تخمیر شکمبه‌ای، افزایش نسبت پروپیونات به استات تولیدی، کاهش تولید متان و کاهش تجزیه پروتئین خوراک در شکمبه است که همه این‌ها باعث افزایش بازده غذایی و همچنین کاهش بروز اسیدوز و نفخ میگردد (کالاوی و همکاران، 2003).
اما تهدید امنیت زیستی برای سلامت انسان و حیوان، ناشی از افزایش مقاومت عوامل بیماریزا به آنتی بیوتیک‌ها و تجمع بقایای آنتی بیوتیک‌ها در تولیدات دامی و محیط باعث اعتراض گسترده برای حذف آنتی بیوتیک‌های محرک رشد از جیره حیوانات شده است. تولیدات طبیعی گیاهان، جایگزین‌های بالقوه‌ای برای آنتی بیوتیک‌هایی هستند که به خوراک دام افزوده می‌شوند. در سال‌های اخیر علاقه به خواص دارویی محصولات طبیعی (گیاهان، ادویه‌ها، گیاهان دارویی) به عنوان مکمل و افزودنی خوراک دام با پتانسیل بهبود سلامت و تولیدات دام و کاستن اثرات محیطی از تغذیه دام، به طور چشمگیری افزایش یافته است(محیطی اصل و همکاران، 1389).
گیاهان دارویی یک سری از متابولیت‌های ثانویه گوناگون مانند عصاره‌ها و اسانس‌ها را تولید می‌کنند که زمانی که این ترکیبات، استخراج شده و تغلیظ گردند می‌توانند بر جمعیت گونه‌های مختلف میکروارگانیسم‌های شکمبه شامل: باکتری‌ها، قارچ‌ها، پروتوزوآ و ویروس‌ها و به دنبال آن بر قابلیت هضم خوراک توسط نشخوارکنندگان اثرگذار باشند زیرا قابلیت هضم خوراک در نشخوارکنندگان تحت تاثیر عوامل گیاهی، حیوانی و میکروبی قرار دارد (محیطی اصل و همکاران، 1389).
از جمله مناطقی که می‌توان گیاهان داروئی خودرو را به فراوانی در آن‌ها یافت مراتع می‌باشند. مراتع با ارزش‌ترین و در عین حال ارزان‌ترین منبع خوراک دام در مناطق مختلف ایران از جمله استان اردبیل می‌باشند. از کل مساحت استان اردبیل که بالغ بر 1786730 هکتار می‌باشد 1076968/6 هکتار آن عرصه منابع طبیعی بوده که 1015000 هکتار آن را مراتع غنی از انواع گیاهان دارویی تشکیل می‌دهد. گیاهان دارویی در فصول مختلف و به فراوانی در سطح مراتع استان اردبیل یافت می‌شوند که از آن جمله می‌توان به اسطوخودوس، پنیرک، جاشیر، مرزنجوش، گلپر، هویج کوهی، مریم نخودی، بابونه، بومادران، پونه، گزنه، پولک، مریم گلی، علف چای، بارهنگ، گل گاو زبان، بولاغ اوتی، پاخری، سپیده، آویشن و غیره اشاره کرد (اداره آمار و اطلاعات سازمان جهاد کشاورزی استان اردبیل،1390).
نبود اطلاعات کافی از ارزش تغذیه‌ای گیاهان دارویی ، ارزش درمانی و موارد مصرف آنها، امکان استفاده بهینه از این منابع را در تغذیه دام و افزایش راندمان تولید، محدود ساخته است (نیکخواه،1385). در مجموع با احتساب و ارائه این گونه اطلاعات کمک قابل توجهی به افزایش تمایل کشت و مدیریت گیاهان دارویی و افزایش راندمان تولید دام صورت می‌گیرد. بنابراین در راستای تولید اطلاعات قابل استفاده در مدیریت دام و گیاهان دارویی منطقه، هدف این پژوهش تعیین اثر برخی از گیاهان دارویی مراتع استان اردبیل بر جمعیت میکروبی شکمبه تحت شرایط آزمایشگاهی می‌باشد.
1-4- اهمیت گیاهان داروییهزاران سال است که انسان از گیاه و عصاره‌های استخراج شده از آن‌ها استفاده می‌نماید. اولین اطلاعات ثبت شده در این خصوص به حدود 2600 سال قبل از میلاد در بین النهرین برمی‌گردد. قدیمی‌ترین سند نوشته شده در مورد تهیه عصاره‌های گیاهی به نوشته‌های مورخ یونانی، هرودوتوس برمی‌گردد (425 الی 484 قبل از میلاد مسیح).
با توجه به خصوصیات بیولوژیکی فعال و چندگانه عصاره‌های گیاهان داروئی این ترکیبات می‌توانند یک افزودنی جایگزین مناسب بسیاری از افزودنی‌های دیگر از جمله آنتی بیوتیک‌ها گردند. از جمله این خصوصیات می‌توان به فعالیت آنتی اکسیدانی، فعالیت ضدقارچی، فعالیت تسکین‌دهندگی، فعالیت ضد باکتریایی و ضد ویروسی اشاره کرد. به علاوه عصاره گیاهان داروئی به دلیل طعم و عطر خاص خود منجر به تحریک مصرف خوراک می‌شوند، کاهش تلفات و عدم نیاز به رعایت حذف پیش از کشتار در اغلب موارد و احتمال نبود ترکیبات باقیمانده مضر در تولیدات حیوانی و در عین حال حفظ سلامت محیط زیست از دیگر خواص گیاهان داروئی می‌باشد. به طور کلی میکروفلور دستگاه گوارش، مورفولوژی روده، تخلیه معده، فعالیت بخش‌های گوارشی داخلی و در نهایت فراسنجه‌های عملکردی تحت تاثیر ترکیبات گیاهی قرار می‌گیرد. عصاره‌های گیاهان داروئی باید در کشورهای کمتر توسعه یافته‌ای چون ایران بیشتر مورد توجه قرار گیرند زیرا دراین کشورها مشکلات حمل و نقل مانع بازاریابی برای محصولات کشاورزی حجیم شده و افزایش هزینه‌ها را در پی دارد اما عصاره‌های گیاهی از جمله گیاهان داروئی به دلیل کم حجم بودن این مشکلات را مرتفع نموده و استفاده از آنها مقرون به صرفه می‌باشد (محیطی اصل و همکاران، 1389).
1-5- عوامل موثر در تولید عصاره‌های گیاهی1-5-1- اندام‌های خاص تولیدکننده عصاره‌های گیاهیمیزان و ترکیب عصاره گیاهی به نوع اندام مورد بررسی بستگی دارد. عصاره‌های گیاهی تجمع‌یافته در اندام‌های مختلف یک گیاه ممکن است به لحاظ ترکیب و مقدار متفاوت باشند. از جمله این اندام‌ها می‌توان به: پوست درخت، توت‌ها، گل‌ها، برگ‌ها، پوست میوه، رزین، ریشه، ریزوم، دانه‌ها و چوب اشاره کرد. اما در اکثر موارد اندام‌های مختلف دارای خصوصیات مشابهی هستند (محیطی اصل و همکاران، 1389).
1-5-2- ساختار ترشحیعصاره‌های گیاهی توسط ساختارهای تخصص یافته متنوعی در گیاه تولید، ذخیره و آزاد می‌شود. ساختارهای ترشحی عبارتند از:
1-5-2-1- ساختار ترشحی خارجیتریکوم‌ها، نعناع، سدابیان، گرانیاسه، سیب‌زمینی و شاهدانه خانواده شمعدانی.
اسموفورها خانواده فلفل، ارکیده و شیپوریان.
1-5-2-2- ساختار ترشحی داخلیایدوبلاستها: خانواده برگ بو، مگنولیا، فلفل، شیپوریان، زرآوند، گل یخ.
حفره: خانواده سدابیان، مورد، میوپوراسه، هیپریکاسه و بقولات.
مجاری: خانواده چتریان، شمعدانی، کاج، مورد، بقولات و آناکاردیاسه (محیطی اصل و همکاران، 1389).
1-5-3- عوامل اکولوژیکیتولید عصاره تا حد زیادی تحت زیادی تحت تاثیر عوامل اکولوژیکی و شرایط آب و هوایی از جمله تاثیرات خاک، مواد مغذی، آب، نور و دما قرار دارد. به طور کلی، افزایش نور و دما، اثر مطلوبی بر تولید عصاره‌های گیاهی دارد (فیگوییردو، 2008) تنش آبی در برخی گونه‌ها مانند اوسیوم باسیلی، ترخون (Ar--isia dracunculus) و شوید (Anethum graveolens) منجر به تولید دو برابر عصاره‌های گیاهی و تغییر در ترکیب آن‌ها می‌شود (سایمون و همکاران، 1992).
1-5-4- کشت و فرآوری گیاهمنشا گیاهان مورد استفاده برای تولید عصاره‌های گیاهی نقش مهمی در کیفیت عصاره به دست آمده دارد. امروزه گونه‌های حاوی عصاره قادر به رشد در مناطقی غیر از منطقه بومی خود می‌باشند. علاوه بر رویه مناسب کشاورزی، بهبود عملکرد محصولات باعث شده تا تولیدکنندگان کنترل لازم را بر روی تولید گیاهان دارویی و فرآیند آنها به منظور تهیه محصولی با کیفیت داشته باشد.
1-6- مشخصات گیاه‌شناسی گونه‌های مورد مطالعه1-6-1-گیاه سپیده (Crambe orientalis)این گیاه با 34 گونه یکی از بزرگ‌ترین جنس‌ها‌ی خانواده brassiceae از زیرخانواده‌های brassicaceae می‌باشد (رضوی و همکاران، 2009) خانواده brassicaceae شامل 13-19 زیرخانواده، 350 جنس و حدود 3500 گونه در جهان است.
جنس crambe در گیاه‌نامه ایران با سه گونه نمایش داده شده است C. Hispanical، C.kotschyana و C. orientalis L.
Crambe orientalis L گسترده‌ترین گونه‌ی مربوط به این جنس در ایران می‌باشد که سپیده نامیده می‌شود (شکل 3-1). این گونه به اندازه 5/1 متر رشد می‌کند و دارای ساقه و برگ‌های موج‌دار است که ممکن است به طول 5/0 متر هم برسد. گل‌ها سفید هستند و طی ماه‌های آوریل – جولای پدیدار می‌شوند. گونه‌های مختلفی از crambe ممکن است به عنوان سبزیجات، خوراک دام و یا گیاه دارویی مورد استفاده قرار گیرد (رضوی و همکاران، 2009).

شکل 1-3- گیاه دارویی Crambe orientalis LCrambe orientalis L یک گیاه پایا و دائمی به طول 30 الی 120 سانتیمتر بسته به فصل و توده جمعیت آن و گاهی 1/2 متر می‌باشد که اکثرا در مزرعه‌ها، دامنه‌ی کوه‌ها، باتلاق‌های خشک، زمین‌های سنگلاخی و خاک‌های رس رشد می‌کند. گیاه دارویی کرامپ در شرایط متفاوت از جمله در دماهای مختلف، ارتفاع، شرایط آفتابی و خشک سالی قادر به رشد و ادامه حیات می‌باشد که باعث شده این گیاه انتشار گسترده‌ای از غرب به شرق یافته است به طوری که از اروپا و شرق مدیترانه، به غرب آسیا و ایران گسترده شده است این گیاه برگ‌های بزرگی دارد که گاهی به طول 60 سانتیمتر می‌رسد برگ‌ها پر شکل و آویزان هستند و رایحه‌ای شبیه کلم پیچ دارد. برگ‌های جوان آن مزه و بوی خوشایندی نزدیک بوی فندق دارد (رضوی و همکاران، 2009) گل‌ها‌ی این گیاه سفید یا زرد و خوشه‌ای شکل هستند میوه‌های آن حتما به بلوغ می‌رسند مگر در باران‌های سنگین و بادهای تند (توتوس و همکاران، 2009).
تحقیقات فیتوشیمیایی اخیر روی بخش‌های هوایی برخی گونه‌های crambe حضور گلوکوزینولات‌ها و فلاونوئیدهای مختلف مانند لوتئولین، آپیژنین، کوئرستین و کامپفرول را آشکار ساخته است. این نشان می‌دهد که پتانسیل آنتی اکسیدانی قوی این گیاه در عصاره‌های متانولی و دی کلرو متانولی آن مربوط به فلاونوییدهای آن است. گلوکوزینولات تجزیه شده و تبدیل به ایزوتیوسیانات می‌شود لذا عصاره و اسانس گل‌ها و برگ‌های این گیاه دارای اثرات سیتوتوکسینی و فیتوتوکسینی می‌باشند. ترکیب اصلی عصاره و اسانس گل‌ها و سرگل‌های این گیاه، 2-متیل-5-هگزن انیتریل و 3-بوتنیل ایزوتیوسیانات می‌باشد عصاره هگزانی آن فعالیت ضدمیکروبی ندارد. ولی عصاره متانولی آن دارای اثرات ضد باکتریایی قوی علیه هر دو نوع باکتری‌های گرم مثبت و گرم منفی می‌باشد که می‌تواند به دلیل ایزوتیوسیانات باشد. این ترکیبات می‌توانند به راحتی به غشا نفوذ کنند بنابراین نقش دفاعی فعالی را برای گیاهان علیه امراض و گیاه خواران بازی می‌کنند. عصاره متانولی این گیاه قوی ترین اثر را نسبت به سایر انواع عصاره‌ها دارد. عصاره‌های هگزانی، دی کلرو متانولی و متانولی این گیاه بیشترین اثر Allelopathic را نشان می‌دهند که می‌تواند مرتبط با گلوکوزینولات و ایزوتیوسیانات باشد. به خاطر پتانسیل بالای خاصیت ضدمیکروبی برگ‌های C. orientalis این گیاه می‌تواند به عنوان یک گندزدای قوی و یک آنتی بیوتیک علیه میکروارگانیسم‌ها استفاده شود (رضوی و همکاران، 2009). دانه‌ها و میوه‌ی این گیاه غنی از روغن‌های فراری از جمله میرستیک، پالمیتیک، استئاریک، اولئیک، آراشیک، آراشیدونیک، اروسیک، لینولئیک، لینولنیک، پالمیتولئیک، لیگنوسرینیک و ایکوزانوئیک اسید (جدول 1-1) می‌باشند (اخونوو و همکاران، 2012). اروسیک اسید که در میان سایر اسیدهای چرب مربوط به روغن‌های فرار کرامپ بیشترین مقدار (39/39 درصد) را دارد یک هیدروکربن دارای 22 اتم کربن و یک پیوند دو گانه (22:1) می‌باشد. این ساختار نقطه‌ی ذوب و نقطه‌ی تبخیر بالایی (C229) به این ترکیب می‌دهد. توانایی بالا در برابر حرارت زیاد و داشتن حالت مایع در دماهای پایین این روغن را به چرب‌کننده‌ای قوی مبدل ساخته است.
جدول 1-1- موقعیت و مقدار اسیدهای چرب در عصاره C.orientalisاسیدهای چرب(%)تعداد کربن‌هامقدار در گیاه (%)
پالمیتولئیک اسید16:120/0
پالمیتیک اسید16:027/3
لینولئیک اسید18:242/12
لینولنیک اسید18:321/21
اولئیک اسید18:161/1
استئاریک اسید18:053/0
آراشیدونیک اسید20:042/0
اروسیک اسید22:139/39
نروونیک اسید24:199/0
لیگنوسریک اسید24:020/0
سیس-ایکوزانوئیک اسید20:195/9
ترانس- ایکوزانوئیک اسید20:139/1
SAFA87/4
MUFA 53/53
PUFA 63/33
جمع58/91
SAFA: saturated fatty acidsMUFA:monounsaturated fatty acids PUFA:polyunsaturated fatty acids

این گیاه همچنین محتوی آلکالوئید نیز می‌باشد. ترکیبات اصلی این گیاه از گروه الکالوئیدها عبارتند از:
بوتن-1-ایزوتیوسیانات و هیدروکربن‌های 2-متیوکسی هگزن و 3-متوکسی-4-هیدروکسی استیرن. کرامپ همچنین دارای انواع فیبر از جمله هولوسلولز، آلفا سلولز، سلولز، لیگنین، خاکستر و سیلیکا می‌باشد. محتوای لیگنین کرامپ 24/5 درصد و نسبت سلولز آن 40/1 درصد می‌باشد. بالاترین قابلیت انحلال‌پذیری آن با %1 NaoH برابر 34/9% می‌باشد. نسبت هولوسلولز و -سلولز آن نیز 70/50% است (اخونوو و همکاران، 2012).
گیاه دارویی کرامپ در شرایط متفاوت از جمله در دماهای مختلف، ارتفاع، شرایط آفتابی و خشک‌سالی قادر به رشد و ادامه حیات می‌باشد.
1-6-2- گیاه گلپر (Heracleum persicum)گونه‌های مختلفی از جنس Heracleum در قرن 19 میلادی از جنوب غرب آسیا به اروپا معرفی شدند و در حال حاضر به طور گسترده‌ای در بسیاری از کشورها یافت می‌شود جنس Heracleum در دنیا دارای حدود 60 الی 70 گونه می‌باشد که همه آن‌ها گونه‌های پایا و یا دو ساله هستند تا جایی که شناخته شده گونه‌های Heracleum هیبرید و با فرمول 22=n2 می‌باشند. جنس Heracleum شامل بیش از 70 گونه در سرتاسر جهان است و در ایران 10 گونه بومی دارد (حاج هاشمی و همکاران، 2009) که بیشتر بومی مناطق البرز و شمال ایران در این مناطق تا محدوده ارتفاعی 2000 الی 3000 متری نیز رشد می‌کند (مجاب و همکاران، 2003).
Heracleum persicum که معمولا به زبان فارسی گلپر نامیده میشود (شکل 4-1) از خانواده Apiaceae بوده و از جمله گیاهان گلدار محسوب میشود این گیاه یک گیاه دو یا چند ساله پرتخم است که بومی ایران، ترکیه و عراق می‌باشد (همتی و همکاران، 2010).
شکل 1-4- گیاه گلپر تاریخ شناخت گونه Heracleum persicum نامشخص است و تقریبا به اوایل سال 1829 نسبت داده می‌شود (دهقان نوده و همکاران، 2010) گونه‌های H. laciniatum auct، H.tromsoensis و H.CF.pubescens هم‌خانواده و مترادف این گونه می‌باشند. گونه H.persicum که گاهی با گونه‌های H.mantegazzianum و H.sosnowskyiاشتباه گرفته می‌شود، گیاهی بلند و ایستاده است که در مناطق معتدل نیمکره شمالی و همچنین در کوههای بلند گسترده شده است. تمرکز بیش‌ترین تنوع گونه‌های آن در کوه‌های قفقاز و چین است (دهقان نوده و همکاران، 2010). از میوه‌های این گونه به طور گسترده‌ای به عنوان ادویه‌جات و از ساقه‌های جوان آن نیز در تهیه خیار شور استفاده می‌شود (همتی و همکاران، 2010). این گونه دارای روغن‌های فرار، فلاونوییدها و فورانوکومارین‌ها می‌باشد (دهقان نوده و همکاران، 2010). در ریشه این گیاه ترکیباتی از قبیل pimpinelin، isopimpinellin، bergapten، isobergapten، sphondin و furanocoumarins وجود دارد. عصاره هیدروالکلی آن حاوی تعدادی فورانوکومارین است که از آن جمله می‌توان به sphondin اشاره کرد. گزارش شده است که این ترکیب ممانعت کننده‌ی 8-beta است که این ترکیب تحریک کننده ترشح آنزیم سیکلواکشیژناز دو می‌باشد از آنجایی که این آنزیم یک نقش کلیدی در درد و التهاب دارد می‌تواند اثر تسکین‌دهنده‌ی این گیاه را توضیح دهد. بر خلاف عصاره هیدروالکلی این گیاه کومارین‌ها در روغن ضروری آن یافت نمی‌شود و اثر تسکین‌دهندگی آن ممکن است مربوط به ترکیبات استری آن باشد (حاج هاشمی و همکاران، 2009). عصاره استونی دانه‌های این گیاه دارای برخی ترکیبات ترپنی از جمله eugenol، Cineol و Linalool می‌باشد که دارای اثر بی‌حس‌کنندگی، سست‌کنندگی عضلات و همچنین اثر بازدارندگی بر رو‌ی تحرک می‌باشند. به همین دلیل ترکیبات ترپنی موجود در دانه‌ها ممکن است مسئول اثر تسکین دهندگی آن‌ها باشند (همتی و همکاران، 2010). اسانس میوه‌های گیاه شامل 95% استرهای آلیفاتیک، 4% الکل‌های آلیفاتیک و 1% مونوترپن‌ها می‌باشد. ترکیب اصلی در اسانس برگ‌های این گیاه trans-anetholeمی‌باشد (مجاب و همکاران، 2003).
روغن‌های فرار آن حاوی ترکیباتی مانند هگزیل بوتیرات (56/5%)، اکتیل استات (16/5%)هگزیل-2متیل بوتانات (56/5%)(butanoat) و هگزیل ایزوبوتیرات (3/4%) می‌باشند. به دلیل وجود این مواد فعالیت‌های آنتی اکسیدانی، ضدمیکروبی و ضد قارچی در این گیاه دیده می‌شود. اسانس این گیاه همچنین خاصیت سیتو توکسینی دارد که به دلیل حضور فنول‌هایی از قبیل thymol، carvacrol، آلدهیدهایی از قبیل geranial، citronella و الکل‌هایی از قبیل geraniol، linalool، citronellol و lavandulol است. عصاره هیدروآلکالوئیدی این گونه حاوی ساپونین می‌باشد عصاره هیدروالکلی و اسانس این گیاه دارای اثرantinociceptive و ضد فساد هستند. عصاره ریشه و بخش‌های هوایی این گیاه به طور کلی رشد bacillus anthracis را متوقف می‌کند. این گیاه می‌تواند هر دو نوع ایمنی هومورال و سلولی را تحریک کند و در عین حال افزایشی در پاسخ ایمنی به وجود آورد که این به دلیل حضور فلاونوئیدها یا کومارین‌ها می‌باشد که می‌توانند پاسخ هومورال را به وسیله‌ی تحریک ماکروفاژها و افزایش β-lymphocytesکه در سنتز آنتی‌بادی‌ها دخالت دارند افزایش دهند. در عین حال انواع متنوعی از فلاونوئیدهای موجود در این گیاه می‌توانند فعالیت سلول‌های T، سیتوکین‌ها، اینترفرون گاما و ماکروفاژها را به طور معنی‌دار‌ی افزایش دهند و بنابراین برای درمان بیماری‌های مربوط به سیستم ایمنی مفید باشند عصاره متانولی این گیاه به خاطر دارا بودن هگزیل استات و اکتیل بوتیرات دارای خاصیت ضد توموری می‌باشد (همتی و همکاران، 2010).
1-6-3- گیاه zosima absinthifoliaاین گیاه یکی از اعضای خانواده Apiaceae می‌باشد (رضوی و همکاران،2010). جنس zosima دارای چهار گونه است که عبارتند از:
Z. absinthifolia، Z. korovinii، Z gilliana و Z. Radians (منه من و همکاران، 2001).جنس zosimaدر ایران شامل گیاهان 6 ساله یا همیشگی است. zosima absinthifolia یک گونه‌ی شناخته شده از این جنس است که در ایران، ترکیه، عراق و کشورهای مختلف قفقاز، شرق میانه و آسیای مرکزی یافت می‌شود (شکل 5-1). این گیاه در استپ‌ها، زمین‌ها و دامنه‌های آهکی رشد می‌کند و ساقه‌های شیار دارش ممکن است به ارتفاع یک متری نیز برسد. برگ‌های این گیاه سه پر است و گل هایش به رنگ سبز روشن تا زرد می‌باشد. دوره گلدهی آن از آوریل شروع می‌شود و تا جولای ادامه می‌یابد. شکل میوه‌هایش بیضوی مایل به دایره با حاشیه‌های آماس کرده است. به غیر از گونه‌یHeracleum گونه‌ی Z. absinthifolia نیز در ایران معمولا به نام گلپر شناخته می‌شود زیرا میوه‌هایش به عنوان طعم‌دهنده و ادویه غذایی به کار برده می‌شوند (رضوی و همکاران، 2010). جنس zosimaنخستین بار در سال 1814 به وسیله‌ی هافمن معرفی شد وی همچنین تشخیص داد که گونه‌های Heracleum absinthifolium و Tordylium absinthifolium هم خانواده‌های Z. orientalis می‌باشند.

شکل 1-5- گیاه دارویی zosima absinthifoliaجنس Zosima بر اساس شکل میوه‌ها با گونه‌ی Heracleum فرق دارد. در Heracleum میوه‌ها دارای پره‌های شفاف (زائده‌های حبابی شکل) در بخش‌های جانبی هستند که تشکیل یک لبه ضخیم را می‌دهد. ارتفاع این گیاه از 30 تا 100 سانتیمتر در Z. absinthifolia، 50 تا 85 سانتیمتر در Z.gilliana، 35 تا 50 سانتیمتر در Z.koroviniiو 30 تا 50 سانتیمتر در Z.--ians متفاوت است. همه‌ی گونه‌های این جنس یک یقه‌ی لیفی محکم تولید می‌کنند که از پایه برگ‌ها تا بالاتر از ریشه ادامه دارد. ساقه در همه‌ی گونه‌ها مودار است (منه من و همکاران، 2001).
اسانس دانه‌های Z.absinthifolia که به وسیله‌ی اکتیل استات (87/4%)، اکتیل اکتانات (5% octyloctanoate) و 1-اکتانول (%2/3 1-octanol) به دست آمده دارای اثر ضد باکتریایی بالایی علیه باکتری‌های گرم مثبتی مانند Bacillus subtilis، Bacillus pumilusمی‌باشد. همچنین عصاره دانه‌های این گونه فعالیت آنتی اکسیدانی و فیتوتوکسینی نشان می‌دهد. مانند سایر گونه‌های Apiaceae گونه‌ی Z.absinthifolia نیز دارای کومارین می‌باشد (رضوی و همکاران، 2010). عصاره n- هگزانی میوه‌های این گیاه دارای سه مشتق کومارین می‌باشد که عبارتند از: imperatorin، auapteneو 7-prenyloxycoumarine.همچنین دیگر مشتقات کومارینی (bergapten، deltoin، columbianadin، isobergapten، isopimpinellin، imperatorin، pimpinellin، sophodin و umbelliferone)، انواع فلاونوئیدها (quercetin، kaempferol)، و آلکالوئیدها ازz.absinthifolia استخراج شده‌اند. از این میان deltoinو columbianadin ترکیبات اصلی هر دو عصاره n-هگزانی و اتانولی می‌باشند. در هر دو قسمت ریشه و بخش‌های هوایی محتوای deltoinبیشتر از columbianadinاست و همچنین کل محتوای deltoin وcolumbianadin در ریشه بیشتر از بخش‌های هوایی می‌باشد (باهادیر و همکاران، 2010).
Imperatorin در بسیاری از جنس‌های خانواده Apiaceae مانند Angelica، Prangosو Heracleum وجود دارد (رضوی و همکاران، 2010).
1-6-4- گیاه مریم نخودی Teucrium polium l.گیاه Teucrium polium از خانواده Lamiaceae یکی از300 گونه‌ی مربوط به جنس Teucrium است. این گیاه به صورت باستانی و بر اساس عادات بومی به عنوان چای دارویی مورد استفاده قرار می‌گیرد (میرغضنفری و همکاران، 2010). جنس مریم نخودی شامل بیش از 340 گونه در سراسر جهان می‌باشد. در ایران 12 گونه یک ساله و چند ساله از این گیاه وجود دارد که 3 گونه آن انحصاری ایران می‌باشد. گل‌هایش کوچک هستند و رنگی بین صورتی تا سفید دارند. این گیاه درختچه‌ای شکل، آروماتیک و دارای برگ‌های بیضی شکل است (مقتدر، 2009). ارتفاع این گیاه 50-20 سانتیمتر است و برگ‌هایش به رنگ سبز مایل به خاکستری می‌باشند (شکل 6-1). گل‌های این گیاه در ماه‌های جون تا آگوست دیده می‌شوند. این گیاه به صورت وحشی در اروپای جنوبی، آسیای جنوب غربی و مرکزی و آفریقای شمالی رشد می‌کند.

شکل 1-6- گیاه دارویی Teucrium poliumگونه‌های دارویی مریم نخودی شامل Teucrium poliumو Teucrium chamaedrys می‌باشد از آنجا که این گیاه منجر به کاهش قند خون می‌شود برای درمان دیابت نیز به کار می‌رود. این گیاه در درمان بسیاری از بیماری‌های پاتوفیزیولوژیکی از قبیل بیماری‌های روده ای، دیابت و روماتیسم به کار می‌رود سایر اثرات درمانی این گیاه عبارتند از: اثر آنتی اکسیدانی، ضد فساد، ضد درد، ضد تب، اثر ضد میکروبی، محافظ کبد، ضد زخم معده و سیتوتوکسین. عصاره آن دارای فعالیت‌هایی از قبیل کاهش فشار خون، ضد التهاب، ضد تشنج، ضد باکتری و ضد تب می‌باشد (ساخانده و همکاران، 2000). عصاره هیدروالکلی این گیاه سطح انسولین سرم را در موش کاهش می‌دهد. ترکیبات شیمیایی عصاره متانولی این گیاه عبارتند از dimethoxyflavone-7 و 4-hydroxy-5 عصاره متانولی این گیاه ترشح انسولین را تحریک می‌کند. فقط عصاره‌های الکلی این گیاه ترشح انسولین را افزایش می‌دهند که این ممکن است به دلیل وجود ترکیبات بیواکتیو موجود در عصاره متانولی و الکلی این گیاه باشد (میرغضنفری و همکاران، 2010). آنالیز شیمیایی این گیاه وجود ترکیباتی مانند فلاونوئیدها، Cirsiliol و Iridoids را نشان می‌دهد (ساخانده و همکاران، 2000). تاکنون از گونه‌های مختلف مریم نخودی انواع نئوکلرودان، دی ترپنوئید و نیز تری ترپنوئید جداسازی شده‌اند .تعداد کمی فورانودی ترپن از عصاره‌های این گیاه به دست آمده است. حدود 28 ترکیب از اسانس این گیاه استخراج شده است که به طور کلی عبارتند از:
آلفا-پیین، لینالول، کاریوفینل، بتا پیین و غیره. به نظر می‌رسد که منطقه جغرافیایی این گیاه بر ترکیب اسانس و عصاره آن تاثیر مهم بگذارد (مقتدر، 2009). مهم‌ترین و تاکسونومیکی‌ترین گونه‌های polium عبارتند از T. polium و T.Capitatum که در نواحی مدیترانه، ایران و توران می‌باشند (دولجا و همکاران، 2010).
1-6-5- گیاه پونه (Oregano vulgare L.)پونه یک گیاه دارویی است که همچنین به عنوان یک گیاه تزئینی نیز به کار می‌رود (شکل 7-1). این گیاه متعلق به خانواده Verbenaceae می‌باشد (نیبلاس و همکاران، 2011) و از ماه آگوست به طور همزمان میوه و دانه می‌دهد (نورزی و همکاران، 2009). پونه گیاهی پرپشت و درختچه‌ای شکل می‌باشد و متعلق به مناطق نیمه خشک است (نیبلاس و همکاران، 2011).

شکل 1-7- گیاه دارویی Oregano vulgare Lاین گیاه به طور کلی از لحاظ مورفولوژیکی و شیمیایی بسیار تغییرپذیر است که مرتبط است با محل رویش آن، شکل گیاه و همچنین مسائلی از قبیل میزان آب و نیتروژن موجود در خاک، مرحله‌ی رشد و فصل رویش.به عنوان مثال: گونه‌ی vulgare L.ssp.hirtum. که در آب و هوای مدیترانه‌ای رشد می‌کندغنی از اسانس است در حالی که همین گونه در آب و هوای قاره‌ای دارای اسانس بسیار کمی می‌باشد. افزایش نیتروژن خاک به اندازه kg/ha 80 موجب افزایش ارتفاع و بازدهی گیاه می‌شود و یا کاهش آب در خاک وزن گیاه را کاهش می‌دهد ولی محتوای اسانس آن را کاهش نمی‌دهد. این گیاه دارای خواص آنتی باکتریال، آنتی اکسیدانی و آرام بخشی است (نورزی و همکاران، 2009). اسانس این گونه با گونه‌ی Oregano(Lippa palmeri S.wats) قابل مقایسه می‌باشد (نیبلاس و همکاران، 2011).
عصاره و اسانس این گیاه حاوی حدود 45 ترکیب شیمیایی می‌باشد (نیبلاس و همکاران، 2011) که برخی از آن‌ها عبارتند از: sabinene، β-pinene، β-(z)-ocimene، β-(E)-ocimene، φ-terpinene، e-caryophyllene، germacreneD، bicyclogermacrene، α-(E,E)-farnesene،
germacrene-D-4-ol، تیمول و کارواکرول (ستین و همکاران، 2009). از این میان اصلی‌ترین و مهم‌ترین ترکیبات عبارتند از: کاواکرول، تیمول، ائوژنول، لینالول، ترپن‌ها، Cimene و Pinene (کاردازو و همکاران، 2005). زمانی که گیاه در اوج زمان گلدهی باشد بیشترین میزان اسانس و عصاره را دارد. در طول دوره گلدهی با افزایش محتوای تیمول به طور همزمان غلظت کارواکرول کاهش می‌یابد تا زمانی که دیگر در گیاه نباشد. با خشک شدن گیاه میزان آن‌ها به حدود 5/0 الی 5.1 درصد در هر برگ کاهش می‌یابد (ستین و همکاران، 2009). این ترکیبات خواص ضد باکتریایی، ضد قارچی، ضدحشرات و ضد ویروسی به گیاه بخشیده‌اند. گیاهان این خانواده به دلیل محتوای بالای ترپن‌ها مصارف دارویی دارند که عبارتند از: limonene، myrcene، durene،p-cymene که همچنین به گیاه خواص ضد میکروبی می‌بخشند(کاردازو و همکاران، 2005). فعالیت ضد باکتریایی بسیار قوی این گیاه ممکن است مربوط به محتوای بالای phenolic monoterpene و یا thymol acetate، ائوژنول و یا متیل ائوژنول موجود در این گیاه باشد. مکانیسم عمل این ترکیبات مرتبط است با آب‌گریزی ترکیبات موجود در اسانس و عصاره این گیاه که آن‌ها را قادر می‌سازد لیپید غشای سلولی باکتریایی را بشکند سپس نفوذ پذیری یون‌ها را افزایش می‌دهد و به دنبال آن یون و لیپید به درون سلول نشر پیدا می‌کنند که به نوبه خود باعث لیز شدن سلول می‌شود (نیبلاس و همکاران، 2011). در عین حال حضور فنولیک هیدروکسیل به ویژه در کارواکرول دلیلی بر فعالیت ضدپاتوژنی عصاره و اسانس این گیاه می‌باشد (کادازو وهمکاران، 2005).
یکی از گسترده ترین کاربردهای گیاهان دارویی استفاده از آن‌ها به منطور کاهش گازهای شکمبه‌ای به ویژه متان است. نشخوارکنندگان رابطه‌ای هم زیستی با میکروارگانیسم‌های شکمبه دارند به طوری که حیوان مواد مغذی مورد نیاز و شرایط مطلوب زیست میکروازگانیسم هارا فراهم می‌کند و در عوض میکروارگانیسم‌ها نیز فیبر جیره را تخمیر می‌کنند و پروتئین میکروبی را به عنوان یک منبع انرژی برای حیوان تامین می‌کنند اما در هر صورت این رابطه‌ی هم زیستی منجر به از دست دادن انرژی به شکل متان و از دست دادن پروتئین به شکل آمونیاک می‌گردد. بنابراین دستکاری شکمبه‌ای و استفاده از افزودنی‌هایی از قبیل گیاهان دارویی برای کاهش اتلاف انرژی به شکل گازهای شکمبه‌ای مورد توجه قرار گرفته است (سلامت آذر و همکاران، 2011). از این رو روش‌های بسیاری به منظور ارزیابی ارزش غذایی خوراک در شرایط آزمایشگاهی و یا به طور مستقیم بر روی حیوان مورد استفاده قرار گرفته است که یکی از پرکاربردترین آن‌ها روش آزمون گاز تست می‌باشد (گوئل و همکاران، 2006). تکنیک تولید گاز در شرایط آزمایشگاهی یک روش مفید برای ارزیابی ارزش غذایی علوفه مورد استفاده دام است چرا که تخمینی از میزان تخمیر مواد مغذی در شکمبه می‌دهد (سیروهی و همکاران، 2009). به طور کلی آزمون تولید گاز یک پارامتر مناسب برای پیش بینی قابلیت هضم، تخمیر، سنتز و تولید پروتئین میکروبی از سوبسترا به وسیله‌ی میکروب‌های شکمبه در سیستم in vitro می‌باشد (سامورت و همکاران، 2000). در روش تولید گاز ضمن آن که ثبت سرعت تخمیر خیلی آسان است، با یک انکوباسیون علاوه بر قابلیت هضم ظاهری، قابلیت هضم حقیقی را نیز می‌توان برآورد نمود، زیرا حجم گاز تولیدی بهترین شاخص و معرف برای قابلیت هضم ظاهری است و ماده آلی ناپدید شده نیز بیانگر قابلیت هضم حقیقی می‌باشد (منصوری و همکاران، 1381).
1-7- روش آزمون گازتولید گاز آزمایشگاهی مطابق با روش منک و استین گاس (1988) اندازه‌گیری می‌شود. در این روش، نمونه‌های مواد خوراکی (200 میلی گرم) پس از خشک شدن در غذا با دقت وزن شده، سپس در سرنگ‌های دارای پیستون قرار داده می‌شود. مایع بافری شکمبه (30 میلی لیتر) با پیپت به سرنگ‌های حاوی مواد خوراکی اضافه می‌شود (منک و استین گاس، 1988). مقدار گاز تولیدی در زمان‌های 2، 4، 6، 8، 12، 24، 48، 72 و 96 ساعت اندازه‌گیری می‌شود (منک و استین گاس، 1988). گازهای حاصل از سوبسترای مورد آزمایش در حین تخمیر آزمایشگاهی، عبارتند از دی اکسید کربن، متان و هیدروژن (هاگ و همکاران، 1998). بر اساس مشاهدات منک و استین (1988) گاز دی اکسید کربن یا از تخمیر مستقیم خوراک و یا از تاثیر اسیدهای چرب فرار بر بافر بیکربنات ناشی می‌شود. با انکوباسیون مواد خوراکی با مایع بافری شکمبه کربوهیدرات‌ها به اسیدهای چرب کوتاه زنجیر و گازها، به ویژه دی اکسیدکربن، متان و همچنین سلول‌های میکروبی تخمیر می‌شود (بلومل و ارسکوف، 1993). اسیدهای چرب حاصل با بافر بی کربنات واکنش انجام می‌دهد و در نتیجه گاز کربنیک خارج می‌شود، در نتیجه هنگام هضم الیاف، هم زمان با تولید اسیدهای چرب گاز نیز تولید می‌شود و به این ترتیب اطلاعات خوبی در مورد هضم سلولز در اختیار می‌گذارند (اسکوفیلد و همکاران، 1994). سیستم تولید گاز می‌تواند به شناسایی بهتر کمیت مواد مغذی کمک کند و دقت آن به اثبات رسیده است (سالام، 2005). گازی که بر اثر انکوباسیون مواد غذایی و تحت شرایط آزمایشگاهی آزاد می‌شود مربوط به قابلیت هضم آن ماده غذایی است و ارزش انرژی‌زایی آن ماده غذایی را برای نشخوارکنندگان بیان می‌کند (منک و همکاران، 1979).
فصل دوممواد و روش‌ها2-1- منطقه مورد مطالعه و نحوه نمونه‌برداری2-1-1- منطقه نمونه‌برداریاستان اردبیل در شمال غربی ایران واقع شده که با مساحتی برابر 1786730 هکتار حدود 09/1 درصد از مساحت کل کشور را در بر می‌گیرد. 1015000 هکتار از کل مساحت این استان را مراتع تشکیل می‌دهد که معادل 8/56 درصد از مساحت کل استان می‌باشد (بی نام، 1388). به دلیل گستردگی مراتع استان اردبیل، جهت نمونه‌برداری بخشی از مراتع منطقه آستارا انتخاب گردید. آستارا یکی از شهرستان‌های استان گیلان با 65 هزار نفر جمعیت (3600 نفر جمعیت شهری) با وسعت 334 کیلومتر مربع در شمال غربی این استان واقع گردیده است. این منطقه با ارتفاع 27 متر بالاتر از سطح دریا در موقعیت جغرافیایی 48 درجه و51 دقیقه طول شرقی و 38 درجـــه و 26 دقیقه عرض شمالی واقع گردیده است. شهرستان آستارا از سمت غرب به کوه های پوشیده ازجنگل‌های تالش و از شرق بــه سواحل دریای خزر محدود می‌شود (بی نام، 1388).
2-1-2- زمان نمونه‌برداری و انتقال نمونه‌ها به آزمایشگاهنمونه‌برداری از گیاهان دارویی Crambe orientalis، Heracleum persicum،Zosima absinthi، Teucrium polium و Oregano vulgare در فصل تابستان و در تیر ماه 1390 آغاز شد. از هر نمونه گیاه دارویی دسته‌هایی به وزن تقریبی 2 الی 5/2 کیلوگرم جمع‌آوری شد. نمونه‌ها به گونه‌ای انتخاب شد که همه قسمت‌های گیاه از جمله گل، برگ، ساقه و ریشه را دربرگیرد. نمونه‌های به دست آمده به مدت یک هفته در دمای اتاق و به دور از تابش مستقیم نور خورشید خشک شدند. نمونه‌ها سپس دو بار آسیاب شده و با توری 1 میلی متری الک شدند. برای تهیه عصاره‌های متانولی هر یک از گیاهان دارویی مورد مطالعه مقدار 50 گرم از نمونه‌های آسیاب شده هر گیاه با نیم لیتر حلال متانول به وسیله دستگاه سوکسله موجود در دانشگاه محقق اردبیلی در دانشکده علوم پایه به مدت یک هفته عصاره گیری شد زیرا ابتدا عصاره هگزانی سپس عصاره دی کلرومتانولی و آنگاه عصاره متانولی از هر نمونه گیاه گرفته شد. به منظور جداسازی حلال متانول از عصاره حاصل از دستگاه rotary (روتاری) در دمای45 درجه سانتیگراد استفاده شد. عصاره‌های حاصل به شیشه‌های پنی سلین تزریق شده و به آزمایشگاه تغدیه و فیزیولوژی دام در موسسه تحقیقات علوم دامی کشور منتقل شدند.
2-2- آزمون گازبرای انجام آزمون گاز از دستگاه نیمه اتوماتیک تولید گاز مدل WT-Binder 87532 ساخت کشور آلمان استفاده گردید.
2-2-1- آماده‌سازی نمونه‌‌ها برای آزمون گازابتدا باید مقدار 200 میلی گرم از نمونه‌ها در دمای مناسب خشک گردند زیرا دمای زیاد با اثر بر پروتئین تولید گاز را کاهش می‌دهد (راب و همکاران، 1983). سپس نمونه‌ها آسیاب شده و از الک 1میلی متری عبور می‌کنند (سالام، 2005). همبستگی خطی بالایی بین مقدار سوبسترای انکوباسیون شده و مقدار گاز تولید شده در 24 ساعت وجود دارد (راب و همکاران، 1983).
2-2-2- مایع شکمبه و بافرمایع شکمبه از دام فیستولاگذاری شده گرفته می‌شود و سپس در ظرف‌های ایزوله شده قرار داده می‌شود. مایع شکمبه به وسیله پارچه سه لایه صاف می‌شود و سپس با استفاده از گاز کربنیک محیط بی‌هوازی می‌شود.مایع شکمبه به محلول بافری که در حمام آب 39 درجه سانتیگراد نگهداری می‌شود با نسبت حجم 2:1 (محلول بافری 2 و مایع شکمبه 1) اضافه می‌شود (سالام و همکاران، 2007). محلول بافری باید مواد معدنی مورد نیاز برای میکروارگانیسم‌ها را داشته باشد (منک و استین، 1988) خوراک‌های فیبری، خوراک‌هایی که به آرامی تجزیه می‌شوند و کاهش اندازه‌ی ذرات خوراک سرعت تولید گاز را افزایش می‌دهند که ممکن است به دلیل افزایش سطح و در نتیجه دسترسی بهتر میکروب‌ها به خوراک باشد (رایمر و همکاران، 2005).
2-2-3- زمان‌های ثبت تولید گازگاز حاصل معمولا برای علوفه بعد از 2، 4، 6، 8، 12، 24، 48، 72، و 96 ساعت از انکوباسیون گزارش می‌شود (منک و همکاران، 1979). در تمام مدت انکوباسیون محتوی دیواره سلولی (NDF) و دیواره سلولی بدون همی سلولز (ADF) با تولید گاز همبستگی منفی دارد (سالام و همکاران، 2007).
2-2-4- مزایا و معایب آزمون گازگاز تولیدی در روش آزمون گاز از تبدیل کربوهیدرات‌ها به استات، پروپیونات و بوتیرات به وجود می‌آید و میزان این گاز می‌تواند معرفی از حجم تغییرات انجام شده در بخش کربوهیدرات‌ها باشد(دویله و همکاران، 2001). از آنجا که در سیستم تولید گاز نیاز به نگهداری حیوان فیستولا شده وجود ندارد می‌توان پاسخ حیوان را با حداقل هزینه در محیط آزمایشگاهی تخمین زد (سالام، 2005). نسبت حجم پروتئین خام به حجم گاز، دقت پیش‌گویی ماده آلی قابل هضم در حیوان زنده را بهبود می‌بخشد و از سوی دیگر در این روش تعداد زیادی از نمونه‌ها را می‌توان آنالیز کرد (ماکار، 2005). از آنجایی که گاز تولیدی حاصل از تخمیر در زمان‌های متفاوتی ثبت می‌شود، امکان تعیین میزان و سرعت مواد خوراکی هم وجود دارد (منصوری و همکاران، 1381).
معایب آزمون گاز این است که تخمیر خوراک به صورت خطی با تولید گاز مرتبط نمی‌باشد و از این رو تفسیر آن مشکل است (گروت و همکاران، 1998). خوراک‌هایی که پروپیونات بیشتری تولید می‌کنند در مقایسه با خوراک‌هایی که استات و پروپیونات بیشتری تولید می‌کنند، گاز کمتری تولید می‌نمایند که این کار باعث پیچیده‌تر شدن تفسیر نتایج آزمون گاز می‌شود (جانگ و همکاران، 1995).
2-2-5- آماده‌سازی عصاره‌ها برای آزمون گازبرای تهیه سطوح 100، 200 و 300 میلی‌ گرم بر لیتر از عصاره‌ها مقدار 01/0، 02/0 و 03/0 میلی گرم از هر عصاره به وسیله‌ی ترازوی دیجیتال توزین شده و به طور جداگانه در نیم میلی لیتر حلال متانول حل گردید سپس حجم هر یک از محلول‌های حاصل با آب مقطر به 2 میلی لیتر رسانده شد.
2-2-6- آماده‌سازی نمونه خوراک و سرنگ‌هادر این روش، برای اندازه‌گیری تخمیر از سرنگ‌های شیشه‌ای مدرج مخصوص، با قطر داخلی 32 میلی متر و طول 200 میلی متر و با حجم 100 میلی لیتر، استفاده گردید. روز قبل از آزمایش حدود 200 میلی گرم از ماده خشک نمونه خوراک مورد آزمایش شامل علوفه یونجه و کاه (به نسبت 3 به ا) و کنسانتره (جو 08/15، ذرت 08/15، سویا 03/6، سبوس گندم 02/3، کربنات کلسیم 45/0 و مکمل ویتامین45/0بر حسب درصد) به نسبت 60 (علوفه) به 40 (کنسانتره) که قبلا آسیاب و با توری یک میلی متری الک گردیده بود، به داخل هر سرنگ ریخته شد. به منظور حرکت آسان‌تر پیستون و همچنین جلوگیری از خروج گاز در حین تخمیر، اطراف پیستون با وازلین آغشته گردید. پس از قرار دادن پیستون در داخل سرنگ، سرنگ‌ها در داخل انکوباتور 39 درجه سانتیگراد گرم شدند. برای هر نمونه 3 تکرار استفاده شد.
2-2-7- تهیه مایع شکمبهمایع شکمبه از سه گاو نر تالشی فیستولادار استفاده شد. این گاوها از نژاد تالشی با وزن متوسط 400 تا 450 کیلوگرم بودند که در سطح نگهداری با جیره مورد نظر تغذیه شده بودند. شیرابه حدود نیم ساعت قبل از وعده خوراک صبح از طریق فیستول جمع‌آوری و با استفاده از دو لایه پارچه مخصوص صاف گردیده و در فلاسک محتوی گاز کربنیک ریخته شد و با قرار دادن ظرف محتوی مایع شکمبه در آب گرم 39 درجه سانتیگراد، سریعا به آزمایشگاه منتقل گردید.
2-2-8- تهیه بزاق مصنوعیبرای تهیه مخلوط بزاق مصنوعی مطابق روش منک و همکاران (1979) و روش تصحیح شده منک و استینگس (1978)، روز قبل از آزمایش مقدار کافی از محلول مواد معدنی کم نیاز (محلولA) محلول مواد معدنی اصلی (محلول C)، محلول بافر مواد معدنی (محلول B) و محلول ریزازورین 1/0% و محلول احیاکننده به طور جداگانه تهیه گردید و برای مصارف بعدی در یخچال و در دمای 4 درجه سانتیگراد نگهداری شد (جداول 2-1 الی 2-6).
جدول 2-1- محلول مواد معدنی کم نیاز (A)ترکیب شیمیاییمقدار (گرم)
کلرید کلسیم (O2H2 .2CaCl)13/2
کلرید منگنز (O2H4 .2MnCl)10/0
کلرید کبالت (O2H6 .2CoCl)1/0
کلرید آهن (O2H6 .3FeCl) 0/8
حجم محلول با آب مقطر به 100 میلی لیتر رسانده شد.
جدول 2-2- محلول مواد معدنی اصلی (C)نوع موادمقدار (گرم)
فسفات هیذروژن سدیم (4HPO2Na)5/7
فسفات هیدروژن پتاسیم (4PO2KH)6/2
سولفات منیزیم (O2H7 .4MgSO)0/6
حجم محلول با آب مقطر به 1000 میلی لیتر رسانده شد.
جدول 2-3- محلول بافر مواد معدنی (B)نوع موادمقدار(گرم)
بیکربنات سدیم (3NaHCO)35/0
بیکربنات آمونیوم (3HCO (4NH))4/0
حجم محلول با آب مقطر به 1000 میلی لیتر رسانده شد.
جدول 2-4- محلول ریزازورین
100 میلی گرم در 100 میلی لیتر آب مقطر
جدول 2-5- محلول احیاء کنندهنوع موادمقدار مواد
آب مقطر 47/5 میلی لیتر
سود یک نرمال (N 1 NaOH,)2/0 میلی لیتر
سولفید سدیم (O2H7 . S2Na)285/0 میلی گرم

جدول 2-6- نسبت محلول‌ها در ترکیب بزاق مصنوعینوع محلولمقدار(میلی لیتر)
آب مقطر 474/0
محلول A0/12
محلول B237/0
محلول ریزازورین 1/22
محلول احیاء کننده 49/50
2-2-9- تهیه نمونه شاهدبا توجه به اینکه مایع شکمبه گرفته شده حاوی مقداری مواد مغذی است که بدون قرار دادن نمونه خوراک در سرنگ‌ها هم مقداری گاز تولید می‌کند، برای تصحیح گاز تولیدی با منشا مایع شکمبه، در هر مرحله در سه عدد سرنگ بدون استفاده از نمونه خوراک فقط 30 میلی لیتر از مخلوط مایع شکمبه و بزاق مصنوعی ریخته شد (نمونه شاهد) و در هر زمان اندازه‌گیری، میانگین گاز تولیدی در این سرنگ‌ها، از حجم گاز تولیدی در سرنگ‌های محتوی نمونه خوراک کسر شد تا مقدار گاز تولیدی ناشی از تخمیر خوراک مورد آزمایش به دست آید.
2-2-10- تزریق مخلوط بزاق مصنوعی و مایع شکمبه در سرنگ‌هامقدار 474 میلی لیتر آب مقطر، 12/0 میلی لیتر محلول A، 237 میلی لیتر محلول C و 237 میلی لیتر محلول B در بالن دو لیتری ریخته شد و در حالی که جریان مستمر گاز کربنیک به داخل مخلوط برقرار بود و با همزن الکتریکی هم زده می‌شد، آن را به آرامی حرارت داده تا به دمای 39 درجه سانتیگراد رسید. در مرحله بعدی محلول احیاء کننده شامل 5/47 میلی لیتر آب مقطر، 2 میلی لیتر سود یک نرمال و 285 میلی گرم O2H7 . S2Na تهیه گردید و به مخلوط بالا اضافه شد. جریان گاز کربنیک تا وقتی که شرایط بی‌هوازی گردد و رنگ معرف ریزازورین از آبی به بی‌رنگ تبدیل شود، ادامه یافت. سپس مایع شکمبه صاف شده با بزاق مصنوعی به نسبت 1 (مایه شکمبه) به 2 (بزاق مصنوعی) مخلوط گردید و در حالی که جریان گاز کربنیک به داخل مخلوط ادامه داشت، با استفاده از پیپت مخصوص مقدار 30 میلی لیتر از مخلوط مایع شکمبه و محیط کشت در داخل سرنگ‌های حاوی نمونه خوراک و دارای دمای 39 درجه سانتیگراد ریخته شد، سپس با جلو راندن پیستون حباب‌های داخل سرنگ خارج و با گیره روی لوله پلاستیکی متصل به انتهای سرنگ، بسته شد. سرنگ‌ها در انکوباتور 39 درجه سانتیگراد در دستگاه با سرعت چرخش یک دور در دقیقه قرار داده شد.
2-2-11- تزریق عصاره‌ها به سرنگ‌هابرای تهیه‌ی سطوح مختلف عصاره‌های مورد آزمایش ابتدا مقدار 01/0 میلی گرم از هر عصاره به کمک ترازوی دیجیتال توزین گردید سپس این مقدار در لوله فالوپ گذاشته شد و با 5/0 میلی لیتر حلال متانول حل شد سپس حجم محلول با آب مقطر به 100 سی سی رسیده شد و با استفاده از همزن لرزه‌ای به مدت چند دقیقه هم زده شد تا از حل شدن کامل عصاره اطمینان حاصل شود به این ترتیب سطح 100 میلی گرم بر لیتر از عصاره مورد نظر تهیه شد. برای تهیه سطوح 200 و 300 میلی گرم بر لیتر از عصاره نیز به ترتیب مقادیر 02/0 و 03/0 میلی گرم از هر عصاره توزین شد و مراحل فوق متعاقبا برای آن‌ها طی شد. بعد از آماده‌سازی سه سطح مورد آزمایش از هر عصاره، به منظور افزودن آن‌ها به سرنگ‌های از پیش آماده شده‌ی گاز تست، مقدار 6/0 میلی لیتر از سه سطح هر عصاره با استفاده از سرنگ‌های ظریف انسولین کشیده شد و با سرعت و دقت زیاد به سرنگ‌های گاز تست افزوده شدند.، سپس با جلو راندن پیستون حباب‌های داخل سرنگ خارج و با گیره روی لوله پلاستیکی متصل به انتهای سرنگ، بسته شد. سرنگ‌ها در انکوباتور 39 درجه سانتیگراد در دستگاه با سرعت چرخش یک دور در دقیقه قرار داده شد.
2-2-12- انکوباسیون و قرائت گاز تولیدیگاز تولیدی از نمونه‌ها در زمان‌های 2، 4، 6، 8، 12، 24، 48، 72 و 96 ساعت پس از انکوباسیون قرائت و ثبت گردید (منک و همکاران، 1988). هنگامی که حجم گاز و محتویات هر سرنگ به حدود 60 میلی لیتر می‌رسید گیره پلاستیکی انتهای سرنگ باز می‌شد و پیستون به جلو رانده می‌شد تا گاز خارج شده و پیستون سرنگ مجددا در موقعیت 30 میلی لیتر قرار داده شود.
2-2-13- تعیین حجم گاز تولیدی حجم گاز تولیدی بر اساس وزن نمونه در هر زمان با استفاده از نمونه‌های شاهد، با استفاده از روابط زیر تصحیح گردید:
رابطه (1-2)(ect - 1)b + a = P

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

در این رابطه:
P =تولید گاز در زمان ta =تولید گاز از بخش تجزیه‌پذیر سریع (میلی لیتر)
b = تولید گاز از بخش تجزیه‌پذیر کند (میلی لیتر)
c = مقدار ثابت تولید گاز بخش b (میلی لیتر)
a+b = پتانسیل تولید گاز (میلی لیتر)
t = زمان انکوباسیون
رابطه (2-2)V=200(Vt-Vb)W که در این رابطه:
V = حجم گاز تصحیح شده بر حسب میلی لیتر به ازای 200 میلی گرم ماده خشک نمونه خوراک
Vt = حجم گاز تولیدی در سرنگ‌های حاوی نمونه خوراک بر حسب میلی لیتر
Vb = حجم گاز تولیدی در سرنگ‌های فاقد نمونه خوراک بر حسب میلی لیتر
W = وزن ماده خشک نمونه خوراک بر حسب میلی گرم (منصوری و همکاران، 1381).
2-3- تهیه و آماده‌سازی مایع شکمبه جهت تهیه محیط کشتبا توجه به این که در مایع شکمبه مواد مغذی لازم جهت رشد کلیه میکروارگانیسم‌های شکمبه وجود دارد، در تهیه محیط کشت، جهت کشت باکتری‌های شکمبه از مایع شکمبه نیز به عنوان جزیی از ترکیب محیط کشت استفاده می‌شود. به همین منظور برای تخمین جمعیت باکتری‌ها، ابتدا از سه راس گاو فیستول‌گذاری شده، در حالت ناشتا (قبل از وعده غذایی صبح) با استفاده از تلمبه مخصوص مایع شکمبه اخذ گردیده و به نسبت مساوی با هم مخلوط گردید. با استفاده از 3 لایه پارچه کرباس، مایع شکمبه صاف شد. سپس برای تهیه مایع شکمبه استاندارد به روش گراب و دهوریتی (1976)، مایع صاف شده شکمبه به مدت ده دقیقه در 1000× g سانتریفوژ گردید. قسمت مایع را جدا نموده و تا زمان استفاده در ترکیب محیط کشت، در ظروف در بسته و در فریزر (18- درجه سانتیگراد) نگهداری گردید.
2-3-1-محیط کشتیک محیط کشت مناسب، باید شرایط محیطی لازم و مواد مغذی مورد نیاز برای رشد میکروارگانیسم‌ها را تامین کند (منصوری و همکاران، 1381). در محیط کشت‌هایی که در شرایط آزمایشگاهی تهیه می‌شوند، چون جذب صورت نمی‌گیرد، برای اجتناب از اسیدی شدن بیش از حد و بالا رفتن بیش از حد فشار اسمزی محیط باید سوبسترا و همچنین میکروارگانیسم‌ها به اندازه کافی رقیق شده باشند (منصوری و همکاران، 1381). چون میزان سوبسترای قابل دسترس تعیین‌کننده فرآورده‌های تولیدی می‌باشند، غلظت سوبسترا نباید از 1% حجم محیط کشت بیشتر باشد و حتی می‌تواند کمتر نیز باشد (ونسوست و همکاران، 1994). در تهیه محیط کشت قسمت عمده اکسیژن با وارد کردن گاز کربنیک از محیط خارج می‌شود. مقادیر جزیی اکسیژن باقیمانده با کربنات سدیم یا سیستئین خارج می‌شود (منصوری و همکاران، 1381). معرف ریزازورین برای ارزیابی قابلیت زنده ماندن و آلودگی باکتریایی و همچنین برای تست فعالیت ضد میکروبی به کار می‌رود (پالومین و همکاران، 2002). معرف بی‌هوازی ریزازورین، شاخص مفیدی برای تشخیص مقادیر جزیی اکسیژن است. این معرف در حالت احیا شده و در عدم حضور اکسیژن بی‌رنگ بوده و در حضور اکسیژن به رنگ آبی مایل به صورتی در می‌آید (منصوری و همکاران، 1381). مایع شکمبه صاف شده و گندزدایی شده، یک منبع برای تهیه محیط کشت در مطالعاتی است که برای جدا کردن و مشخص کردن میکروارگانیسم‌ها به کار برده می‌شود و همچنین برای تامین مواد مغذی مورد نیاز میکروارگانیسم‌ها به محیط کشت اضافه می‌شود (منصوری و همکاران، 1381). مقدار کافی بافر و مواد معدنی مورد نیاز میکروارگانیسم‌ها با اضافه کردن محلول‌های نمکی تامین می‌شود از سویی اسیدهای چرب با زنجیر منشعب، ویتامین‌ها و سایر عوامل دیگر را می‌توان به طور مستقیم به محیط کشت اضافه کرد و یا آن‌ها را از طریق اضافه کردن مایع شکمبه صاف شده (که حدود 20% حجم محیط کشت را تشکیل می‌دهد) تامین نمود (منصوری و همکاران، 1381).

2-3-2- تهیه محلول 0/1 درصد همینبرای تامین آهن مورد نیاز میکروارگانیسم‌ها از محلول 1/0 درصد همین در ترکیب محیط کشت استفاده شد. با توجه به این که همین در شرایط اسیدی و خنثی در آب حل نمی‌شود برای تهیه محلول 1/0%، ابتدا 100 میلی گرم همین را در 10 میلی لیتر آب مقطر ریخته و با ریختن چند قطره سود و قلیایی کردن محیط، همین در آب حل گردید و برای استفاده در ترکیب محیط کشت در یخچال (4 درجه سانتیگراد) نگهداری گردید.
2-3-3- تهیه مخلوط اسیدهای چرب فرارنسبت‌های مشخص از اسیدهای استیک، بوتیریک، ایزوبوتیریک، n- والریک، ایزووالریک وآلفا-متیل-بوتیریک اسید (شرکت مرک آلمان) با هم مخلوط گردید و در ظرف دربسته در یخچال (4 درجه سانتیگراد) نگهداری گردید.
2-3-4- تهیه محلول مواد معدنی شماره Iبرای تهیه این محلول، مقدار 3 گرم دی پتاسیم فسفات (4HPO2K) را در آب مقطر حل نموده و به حجم یک لیتر رسانده شد و تا هنگام مصرف در یخچال نگهداری گردید.
2-3-5- محلول مواد معدنی شماره IIبرای تهیه این محلول، مقادیر مشخص از مونوپتاسیم فسفات (4PO2KH)، کلرور سدیوم، سولفات منیزیوم، کلرور کلسیم و سولفات آمونیوم را در آب مقطر حل نموده و حجم محلول با آب مقطر به یک لیتر رسانده شد و تا هنگام مصرف در دمای یخچال (4 درجه سانتیگراد) نگهداری شد.
2-3-6- تهیه محیط کشتمحیط کشت مورد استفاده جهت شمارش باکتری‌ها به روش حداکثر تعداد احتمالی (MPN)، بر اساس روش مورد استفاده اّبیسپو و دهوریتی (1992) تهیه گردید. برای تهیه محیط کشت بی‌هوازی ابتدا محلول‌های مواد معدنی شماره I و شماره II به طور مجزا تهیه گردید (جدول 9-2) سپس نسبت‌های مشخص شده از این محلول‌ها (جدول 7-2) در بالن 2 لیتری ریخته و در حالی که جریان مستمر گاز کربنیک به داخل آن برقرار گردید و توسط همزن الکتریکی به طور مستمر هم زده می‌شد، محلول 1/0 درصد همین و قندهای محلول گلوکز، سلوبیوز، مالتوز و زایلوز اضافه گردید. از محلول 1/0 درصد ریزازورین به عنوان معرف برای برقراری شرایط بی‌هوازی استفاده شد. سپس عصاره مخمر، تریپتیکاز و مخلوط اسیدهای چرب فرار، مایع شکمبه، آب مقطر و سوسپانسیون 03/0 سلولز به مخلوط اضافه گردید و مخلوط حاصل به مدت 2 ساعت در معرض جریان گاز کربنیک قرار داده شد. سپس محلول 03/0 سیستئین هیدروکلراید در آب مقطر و محلول 012/0 کربنات سدیم نیز اضافه شد. با اضافه کردن محلول ریزازورین به محیط کشت، رنگ مخلوط بنفش می‌شود و با ادامه تزریق گاز کربنیک به تدریج محیط کشت به رنگ ارغوانی، صورتی کمرنگ درآمده و سرانجام بی‌رنگ می‌شود.
2-3-7- توزیع محیط کشتپس از آن که محلول بی‌رنگ شد، با استفاده از پمپ مخصوص که بر روی بالن محتوی مخلوط محیط کشت قرار داده شد، در حالی که جریان گاز کربنیک به داخل مخلوط ادامه داشت، مقداری گاز کربنیک شیشه‌های پنی سیلین (به حجم 20 میلی لیتر)، دمیده شد تا هوای داخل آن خارج گردد و در حالی که دمیدن گاز کربنیک به داخل شیشه‌ها ادامه داشت، مقدار 9 میلی لیتر از محیط کشت اشباع شده از گاز کربنیک را به داخل لوله ریخته و سریعا درب آن بسته شد تا مانع از ورود هوا به داخل آن گردد. پس از آن که تمام محیط کشت درون شیشه‌ها ریخته شد، به منظور از بین بردن کلیه میکروارگانیسم‌های موجود در آن، بلافاصله شیشه‌های حاوی محیط کشت به مدت 15 دقیقه در اتوکلاو و با دمای 120 درجه سانتیگراد و فشار 5/1 اتمسفر گندزدایی (استریل) گردیدند. قبل از تزریق محیط کشت به داخل شیشه‌های پنی سیلین pH محیط کشت اندازه‌گیری شد. با توجه به این که دمیدن گاز کربنیک موجب کاهش pHمی‌شود، با اضافه کردن مقدار کمی سود یک نرمال، pH محیط کشت به 6/6 رسانده شد و در حین تزریق به داخل شیشه‌ها نیز مرتباpH محیط کشت کنترل گردیده و در صورت لزوم برای حفظ pHدر حدود 6/6، مقدار کمی سود یک نرمال، به محیظ کشت اضافه گردید.
2-3-8- تهیه محلول رقیق کننده بی‌هوازیبرای تهیه رقیق‌کننده بی‌هوازی (جدول 9-2) محلول‌های مواد معدنی I و II با غلظت‌های مشابه در محیط کشت به کار رفته و همچنین برای نشان دادن برقراری شرایط بی‌هوازی از محلول 1/0% ریزازورین استفاده گردید. پس از مخلوط نمودن محلول‌های مواد معدنی I و II و اضافه کردن ریزازورین و آب مقطر، جریان گاز کربنیک (از طریق شیلنگ نازکی که تا انتهای بالن امتداد یافته بود)، به داخل محلول برقرار گردید و برای اشباع کردن محلول از دی اکسید کربن، حدود 2 ساعت گاز کربنیک در داخل محلول تزریق گردید. سپس سیستئین هیدروکلراید و کربنات سدیم اضافه شد و تا بی‌رنگ شدن محلول، جریان گاز کربنیک به داخل محلول و هم زدن آن با همزن مغناطیسی ادامه یافت. پس از بی‌رنگ شدن محلول، مشابه نحوه تزریق محیط کشت به داخل شیشه‌های پنی سیلین به حجم 20 میلی لیتر، مقدار 9 میلی لیتر محلول رقیق‌کننده‌ی بی‌هوازی اشباع شده از گاز کربنیک به داخل هرشیشه ریخته شد و درب آن بسته شد و بلافاصله، به مدت 15 دقیقه در دمای 120 درجه سانتیگراد و فشار 5/1 اتمسفر گندزدایی (استریل) شدند.
2-3-9- تهیه مایع شکمبه تازهبرای هر زمان نمونه‌برداری در هر دام، ابتدا مایع شکمبه تازه از طریق فیستول از هر دام جمع‌آوری و پس از صاف کردن آن توسط پارچه مخصوص، مایع صاف شده شکمبه در بطری پلاستیکی مخصوص که در آن قبلا گاز کربنیک دمیده شده بود، ریخته شد و بلافاصله با فشار دادن بطری، هوای قسمت فوقانی آن تخلیه و درب آن محکم بسته شد و بطری در فلاسک محتوی آب 39 درجه سانتیگراد قرار داده شد و برای کشت دادن بلافاصله به آزمایشگاه منتقل گردید.
2-3-10- تهیه رقت‌های مختلف از مایع شکمبهتعداد 495 شیشه پنی سیلین فراهم شد که از این تعداد 270 شیشه پنی سیلین برای محیط کشت و 225 شیشه برای محلول رقیق کننده بی‌هوازی در نظر گرفته شد.
قبل از تهیه مایع شکمبه تازه، شیشه‌های محتوی محلول رقیق کننده بی‌هوازی، در انکوباتور 39 درجه سانتیگراد قرار داده شد تا به هنگام وارد کردن مایع شکمبه به داخل محلول رقیق‌کننده تغییر ناگهانی دما، به جمعیت میکروبی شوک وارد ننماید. بعد از انتقال مایع صاف شده تازه شکمبه به آزمایشگاه، ابتدا مقدار 20 میلی لیتر از مایع صاف شده شکمبه را با 180 میلی لیتر محلول رقیق‌کننده‌ی بی‌هوازی مخلوط نموده(ابتدا مقدار 1 میلی لیتر از مایع صاف شده شکمبه به یک شیشه حاوی 9 میلی لیتر محلول رقیق‌کننده بی‌هوازی تزریق شد تا رقت 1-10 حاصل شود) و با استفاده از همزن لرزه‌ای مدت سه دقیقه، مخلوط هم زده شده، سپس به منظور پرهیز از ورود احتمالی میکروارگانیسم‌های موجود در محیط به داخل محلول رقیق کننده، با استفاده ازسرنگ انسولین گندزدائی شده و در دستگاه انکوباتور، مقدار یک میلی لیتر از مایع شکمبه رقیق شده1-10 را برداشته و به داخل شیشه محتوی 9 میلی لیتر محلول رقیق‌کننده استریل اضافه نموده و با استفاده از همزن لرزه‌ای کاملا مخلوط گردید بدین ترتیب مخلوط 100 برابر رقیق‌شده مایع شکمبه با رقت 2-10 به دست آمد. مجددا یک میلی لیتر از رقت 2-10 به داخل یک شیشه محتوی 9 میلی لیتر محلول رقیق کننده ریخته شد تا رقت 3-10 حاصل شود و به همین ترتیب کار را ادامه داده و از رقت 2-10 تا 12-10 تهیه گردید.
جدول 2-7 تا 2-11 محلول‌های مورد استفاده در ترکیب محیط کشت
جدول 2-7محلول مواد معدنی شماره Iمقدار)گرم در لیتر(
4HPO2K3
جدول 2-8محلول مواد معدنی شماره IIمقدار)گرم در لیتر(
4HPO2K3/0
4SO2(4NH)6/0
NaCl6/0
4MgSO0/6
2CaCl0/6
جدول 2-9مخلوط اسیدهای چرب فرارمقدار (میلی لیتر)
Acetic Acid17
Prorionic Acid6
Butyrie Acid4
Iso Butyrie Acid1
N-Valeric Acid1
Iso Valeric Acid1
Butyric Acid - 3CH - 1
محلول %0/1 ریزازورین
100 میلی گرم در صد میلی لیتر آب مقطر
محلول %0/1 همین
100 میلی گرم در صد میلی لیتر آب مقطر
جدول 2-10- اجزای محیط کشت جهت رشد باکتری‌های شکمبه
درصد در محیط کشت اجزای محیط کشت
15 Mineral Solution I (V/V)
15 Mineral Solution II (V/V)
0/1 (V/V) %1/0 Resazurin
40 Rumen Fluide (V/V)
23/7 Distilled Water (V/V)
0/1
0/1 Glucose (W/V)
0/1 Cellobiose(W/V)
0/1 Maltose (w/V)
0/1 Xylose (W/V)
0/75 (V/V) %3 Cellolose Suspension
0/1 (W/V) % 1/0 Hemin Solution
0/2 Trypticase (W/V)
0/05 Yeast Extract (W/V)
0/45 VFA Mixture (V/V)
1/67 (V/V) %3 Cystein-HCL-Water
3/33 (V/V) %12 Sodium Carbonate Solution
0/0100 CO2 Gas Phase

—d1215

های موازی برای پردازش یک کار رخ میدهد. کارگاه جریانی منعطف FFmهر کدام از کارها دارای مسیر پردازش متمایز بر روی m ماشین
موجود میباشند. تولید کارگاهی Jmحالت کلیتر تولید کارگاهی؛ m مرکز پردازش وجود دارد؛ در
هر ایستگاه یکی از حالات سه گانه ماشینهای موازی برای
پردازش یک کار رخ میدهد. تولید کارگاهی منعطف FJmm ماشین وجود دارد؛ هر کدام از کارها بر روی هر کدام از
ماشینها یک یا چند بار پردازش میشود؛ محدودیتی برای مسیر
پردازش کارها وجود ندارد. کارگاه باز Omجدول SEQ جدول * ARABIC 2 جدول 2-2. نمادهای متداول برای β.توضیحات مسئله نماد
کار j نمیتواند قبل از زمان آمادهسازی خود(rj) پردازش خود را آغاز کند. زمان آمادهسازی غیر صفر برای کارها rjپردازش یک کار روی یک ماشین میتواند قبل از اتمام پرداش قطع شود و کار دیگری پردازش شود. شکست کارها prmpقبل از شروع پردازش یک کار یک یا چند کار مشخص باید پردازش شده باشند. اولویت پردازش کارها precزمان نصب یک کار به روی یک ماشین به کار قبلی پردازش شده روی آن ماشین بستگی دارد. زمان نصب وابسته به توالی کارها stsk,stijkکارهای موجود گروهبندی شده و کارهای یک گروه میتوانند بدون زمان نصب پشت سر هم پردازش شوند. گروه کاری fmlsیک ماشین میتواند دستهای از کارها را همزمان پردازش کنند. زمان پردازش کارها لزوما یکسان نیستند. پردازش دستهای batch(b)یک ماشین ممکن است به طور مداوم در دسترس نباشد. خرابی ماشین brkdwnیک کار ممکن است تنها روی ماشینهای مشخصی قابلیت پردازش داشته باشد. دسترسی محدود به ماشینها Mjدر مسائل کارگاهی جریانی، ترتیب پردازش کارها روی تمام ماشینها یکسان باشد. جایگشت prmuدر مسائل کارگاهی جریانی با ظرفیت محدود بین ماشینآلات هنگامی که بافر پر باشد کار روی ماشین قفل میشود. بلوکه شدن blockدر مسائل کارگاهی جریانی، کارها باید بدون هیچگونه توقفی مسیر پردازش را طی کنند. بدون انتظار nwtدر مسائل تولید کارکاهی یک کار ممکن است در یک مرکز کاری بیش از یک بار پردازش شود. گردش مجدد rcrcجدول SEQ جدول * ARABIC 3 جدول 2-3. نمادهای متداول برای γ.توضیحات مسئله نماد
زمان تکمیل آخرین کار را نشان میدهد. زمان تکمیل بیشینه Cmaxبیشترین انحراف زمانی از موعد تحویل را محاسبه میکند زمان تاخیر بیشینه Lmaxمجموع زمانهای تکمیل کارها را اندازهگیری میکند. زمان تکمیل کل Cjمجموع انحرافات زمانی از موعد تحویل را درنظر میگیرد. زمان دیرکرد کل Tjتعداد کارهای دارای دیرکرد زمانی را محاسبه میکند. تعداد کارهای با تاخیر کل Ujمجموع زمانهای زودکرد و دیرکرد را نشان میدهد. زمانهای زودکرد و دیرکرد کل Ej+Tjمجموع زمانهای تکمیل وزنی کارها را محاسبه میکند. زمان تکمیل وزنی کل wjCjمجموع انحرافات وزنی از موعد تحویل را محاسبه میکند. زمان دیرکرد وزنی کل wjTjتعداد وزنی کارهای دارای دیرکرد وزنی را نشان میدهد. تعداد کارهای با تاخیر وزنی کل wjUjمجموع زمانهای زودکرد و دیرکرد وزنی کارها را محاسبه میکند. زمانهای زودکرد و دیرکرد وزنی کل wj'Ej+wj"Tjسیستم تولید جریانی منعطف یکی از پرکاربردترین سیسستمهای تولیدی است که در واقع حالت کلیتر سیستم تولید جریانی و حالت خاصی از سیستم ماشینهای موازی است. از آنجا که چنین چیدمانی از ماشینها انعطاف پذیری خطوط تولیدی را تا حد زیادی افزایش میدهند، امروزه این حوزه توجه زیادی را به خود جلب کرده است.
از زمانی که اولین تحقیقات در زمینه سیستم تولید جریانی منعطف تاکنون انجام شده است، محدودیتهای بسیاری نظیر زمان نصب وابسته به توالی کارها، پردازش گروهی و … در این نحوه تولید مورد مطالعه قرار گرفتهاند. اما بررسی پردازش بدون انتظار نه تنها در حوزه سیستم تولید جریانی منعطف بلکه در سیستم تولید جریانی معمول نیز کمتر مورد بررسی قرار گرفته است. در این تحقیق، مسئله زمانبندی سیستم تولید جریانی بدون انتظار منعطف با در نظر گرفتن ظرفیت محدود تولید ماشینآلات، رد یا قبول سفارشات و زمان نصب وابسته به توالی کارها و با رویکرد مدیریتی ترکیبی تولید برای ذخیره و تولید برای سفارش با هدف به حداقل رساندن هزینهها(هزینههای ناشی از زودکرد و دیرکرد وزنی و رد کردن یا تحویل ناقص سفارش) مورد بررسی قرار میگیرد. به منظور مرور ادبیات تحقیق، اهم پژوهشهای انجام شده در این حوزه به تفکیک محدودیتها و تابع هدف مورد بررسی قرار میگیرند.
2-2. پردازش بدون انتظارپردازش بدون انتظار یک کار به این معنی است که از زمان شروع پرداش کار روی اولین ماشین تا زمان اتمام پرداش روی آخرین ماشین هیچ وقفه زمانی وجود نداشته باشد. با توجه به این شرایط، شروع پرداش یک کار روی اولین ماشین باید تا زمانی که شرایط پرداش بدون انتظار آن فراهم باشد به تعویق بیفتد [40]. یکی از رایجترین مثالها برای تولید بدن انتظار، صنایع فولاد است. فهرست کاملی از کاربردهای این روش تولیدی توسط هال و اسریسکاندراجاه (1996) [26]، فرامینان و ناگارو (2008) [18] و فرامینان و همکارانش (2010) [17] گرداوری شده است.
با نگاهی اجمالی، تحقیقات انجام شده در زمینه پردازش بدون انتظار را میتوان در سه دسته کلی جای داد که در این بخش اهم تحقیقات انجام شده در هر دسته ارائه میشوند.
2-2-1. سیستم تولید جریانی با دو ماشیندر این سیستم جریانی تنها دو ماشین وجود دارد. آلدوویزان (1998) [8] این مسئله را همراه با محدودیت زمان نصب جدا از زمان پردازش و با تابع هدف مجموع زمانهای تکمیل کارها مورد بررسی قرار داد. پس از آن آلدوویزان (2001) [9] همین مسئله را به کمک روش شاخه و کران حل کرد. بعدها هر دوی این محققان کار خود را برای همین مسئله در حالت سه ماشین تعمیم دادند. شیو(2004) [48] مسئله F2|nwt,sij|Ci را به کمک نمایش مسئله به فرم مسئله فروشنده دورهگرد به کمک الگوریتم کلونی مورچگان حل کرد و نشان داد که نتایج حاصل از آن بهتر از روشهای ابتکاری است که توسط اللهوردی و آلدوویزان بدست آمده بود.
2-2-2. سیستم تولید جریانی با بیش از دو ماشیندر این دسته پژوهشهای زیادی انجام شده است که از آن جمله میتوان به پژوهش انجام شده توسط توکلی مقدم و همکارانش(2008) [50] اشاره کرد که مسئله زمانبندی تولید جریانی بدون انتظار با توابع هدف مینیممسازی متوسط زمان تکمیل وزنی و متوسط دیرکرد وزنی را به کمک الگوریتم سیستم ایمنی مصنوعی حل کرد. بابک جوادی و همکارانش(2008) [27] مسئله چند هدفه سیستم جریانی بدون انتظار فازی را به کمک برنامهریزی خطی حل کرد. که پن و همکارانش(2009) [41] همین مسئله را با توابع هدف مینیممسازی بیشینه زمان تکمیل و مینیممسازی بیشینه دیرکرد به کمک الگوریتم دیفرانسیل تکاملی حل کرد. یوتسنگ و تای لین(2010) [52] مسئله مورد بحث را توسط الگوریتم ژنتیک ترکیبی حل کردند. ونگ و همکارانش نیز(2010) [55] روشی بر پایه الگوریتم جستجوی ممنوع به نام جستجوی ممنوع شتاب داده شده برای حل مسئله زمانبندی تولید جریانی بدون انتظار با تابع هدف مینیممسازی بیشینه دیرکرد ارائه کردند که در آن از سه روش ابتکاری جهت تولید جواب کاندیدا استفاده شده بود. در ادامه پژوهشهای انجام شده چینگ یینگ و همکارانش(2012) [58] مسئله تولید جریانی بدون انتظار را در شرایط تولید سلولی و با محدودیت زمان نصب وابسته به گروهبندی کارها مورد مطالعه قرار دادند. ناگانو و همکارانش(2013) [47] این مسئله را با در نظر گرفتن زمانهای نصب جدا از زمان پردازش بررس کرده و روش حلی با رویکرد جستجوی خوشهبندی تکاملی برای این مسئله با تابع هدف زمان درجریان ساخت نهایی ارائه کردند. داوندرا و همکارانش(2013) [12] با بهرهگیری از الگوریتم تاکید خود سازمانی گسسته جوابهای نسبتا خوبی برای مسئله تولید جریانی بدون انتظار با هدف مینیممسازی ماکزیمم زمان تکمیل بدست آوردند.
2-2-3. سیستم تولید جریانی منعطف تحقیقات انجام شده در این دسته خود به دو بخش سیستمهای تولید جریانی منعطف با دو ایستگاه کاری یا بیش از دو ایستگاه کاری تقسیمبندی میشوند. اما در کل پژوهشهای انجام شده در این دسته از نظر فراوانی بسیار کمتر از دو دسته قبل است. برای مثال، ونگ و لیو(2013) [56] مسئله تولید جریانی بدون انتظار را در محیطی مشتمل بر دو ایستگاه کاری مورد بررسی قرار دادند و روش حلی بر پایه الگوریتم ژنتیک برای این مسئله ارائه کردند. جولایی و همکارانش(2013) [28] این مسئله را با دو تابع هدف مینیممسازی بیشینه زمان تکمیل و مینیممسازی بیشینه دیرکرد بررسی کرده و به کمک رویکرد دو هدفه الگوریتم تبرید شبیهسازی شده به حل آن پرداختند. همچنین همین نویسنده به کمک همکارانش (2009) [29] به بررسی این مسئله در شرایط وجود بیش از دو ایستگاه کاری و وجود احتمال رد سفارشات پرداخته و با رویکرد پنجرههای زمانی مدل ریاضی این مسئله را ارائه کرده است همچنین با استفاده از الگوریتم ژنتیک روش حلی نیز برای آن ارائه داده است.
مقالات مورد بررسی در این بخش در جدول(2-4) آورده شدهاند.
جدول SEQ جدول * ARABIC 4 جدول 2-4. مسائل تولید جریانی با محدودیت پردازش بدون انتظارنویسنده مسئله رویکرد سال شماره ارجاع
آلدوویزان F2|nwt,sij|Cj- 1998 8
آلدوویزان F2|nwt,sij|Cjشاخه و کران 2001 9
شیو و همکاران F2|nwt,sij|Ciبا رویکرد تبدیل مسئله به فروشنده دورهگرد با الکوریتم کلونی مورچگان حل شد. 48
توکلی مقدم و همکاران FmnwtWiCiWi,WiTiWiرویکرد چند هدفه الگوریتم سیستم ایمنی مصنوعی 2008 50
جوادی و همکاران FmnwtWiCiWi,WiEiWiرویکرد چند هدفه فازی به کمک برنامهریزی خطی 2008 27
که پن و همکاران FmnwtCmax,Lmaxالگوریتم دیفرانسیل تکاملی 2009 41
تسنگ و تای لین FmnwtCmaxالگوریتم ترکیبی ژنتیک 2010 52
ونگ و همکاران FmnwtLmaxالگوریتم جستجوی ممنوع شتابدهی شده 2010 56
چینگ یینگ و همکاران Fmnwt,cellCmaxسه الگوریتم بر پایههای الگوریتمهای ژنتیک، تبرید شبیهسازی شده و تکرار حریصانه 2012 58
ناگانو و همکاران FmnwtCiرویکرد جدید جستجوی خوشهبندی تکاملی 2012 47
داوندرا و همکاران FmnwtCmaxالگوریتم تاکید خود سازمانی گسسته 2013 12
2-3. زمان نصب وابسته به توالی کارهابه زمان صرف شده جهت آمادهسازی ماشین برای انتقال کار روی آن زمان نصب میگویند. زمان نصب عموما صرف نصب ابزارهای لازم روی ماشین، تمیزکاری و … میشود. با نگاهی کلی به تاریخ پژوهشهای انجام شده در حوزه زمانبندی میتوان دریافت که تا دههها زمان نصب در ادبیات زمانبندی به کلی نادیده گرفته میشده است و عموما جزیی از زمان پرداش کار در نظر گرفته میشده است. این رویه شاید در برخی صنایع قابل توجیه باشد اما لزوم در نظر گرفتن زمان نصب بطور جداگانه در بسیاری از موارد غیر قابل انکار است.
به طور کلی مسائل زمانبندی از حیث در نظر گرفتن زمان نصب به دو دسته کلی تقسیم میشوند: در دسته اول که زمان نصب مستقل از توالی نامیده میشود و در آن زمان نصب یک کار بر روی ماشین تنها به خود آن کار بستگی دارد و به کار قبل از آن و یا اصطلاحا به توالی وابسته نیست. دسته دوم که آن را زمان نصب وابسته به توالی کارها مینامند به حالتی اطلاق میشود که زمان نصب یک کار روی ماشین به کار قبلی که روی آن ماشین نصب شده است نیز بستگی دارد. در این دسته حالت خاص دیگری نیز وجود دارد که آن را زمان نصب وابسته به گروههای کاری مینامند که به معنای این است که زمان نصب کارهای درون یک گروه کاری با گروه کاری دیگر متفاوت است و اگر دو کار از دو گروه متفاوت بلافاصله روی ماشین قرار بگیرند زمان نصب بزرگتری نسبت به حالتی دارد که کارهای یک گروه پشت سر هم قرار بگیرند.
اهمیت مدنظر قرار دادن زمان نصب به عنوان عاملی تاثیرگذار در بهرهوری سیستم تولیدی در تحقیقات متعددی مورد بحث قرار گرفته است. فلین [19] تاثیر زمانهای نصب وابسته به توالی را مورد تحقیق قرار داده است و ورتمن [57] فاکتورهایی که بیشترین تاثیر را در عملکرد سیستم دارند مورد بررسی قرار داد که در آن زمان نصب یکی از موثرترین راهها برای بهبود خدمات به مشتریان و کاهش هزینههای انبارداری معرفی شده است.
اگرچه محدودیت زمان نصب وابسته به توالی در اغلب چیدمانهای مسائل زمانبندی مورد مطالعه قرار گرفته است اما از آنجا که مسئله مورد بحث در حوزه تولید جریانی است در ادامه تنها به ارائه مهمترین مطالعات انجام شده در مسائل زمانبندی با محدودیت زمان نصب وابسته به توالی کارها در محیطهای مختلف سیستم تولید جریانی و به خصوص در سیستمهای تولید جریانی بدون انتظار اکتفا میشود.
2-3-1. سیستمهای تولید جریانیسیستم تولید جریانی مشتمل بر تعدادی ماشین است که به طور متوالی قرار گرفتهاند و کارها عموما با ترتیب یکسانی روی ماشینها پردازش میگردند. در نظر گرفتن محدودیت زمان نصب وابسته به توالی کارها میتواند معیارهای بهینهسازی را در چنین سیستمهایی تحت تاثیر قرار دهد. وانچیپورا و سریدهاران [54] برای مسئله Fm|sijk|Cmax دو الگوریتم جهت تخصیص زمانهای نصب تعریف کرده و سپس مسئله را با روشی ابتکاری بر پایه ساختن توالی حل کردهاند. میرابی [36] نیز همین مسئله را به کمک رویهای ترکیبی از الگوریتم ژنتیک حل کرده است.
سیستمهای تولید جریانی منعطف نیز ساختاری مشابه سیستم تولید جریانی ساده دارند، با این تفاوت که حداقل در یکی از ایستگاههای کاری بیش از یک ماشین وجود دارند. لذا مسئله مورد بحث تعمیمی از حالت مسئله ماشینهای موازی است. میرصانعی و همکارانش [37] این مسئله را با هدف بیشینه زمان تکمیل کارها مطالعه نموده و رویه حلی با رویکرد الگوریتم تبرید شبیهسازی شده برای آن ارائه نمودند. حکیمزاده و زندیه [25] مسئله فوق را با در نظر گرفتن دو تابع هدف و نیز وجود بافرهای محدود بین ایستگاههای کاری حل کردند.
2-3-2. سیستمهای تولید جریانی بدون انتظارسیستمهای تولید جریانی بدون انتظار از نظر نحوه چیدمان ماشینآلات تفاوتی با سیستمهای تولید جریانی بدون انتظار ندارند، تنها تفاوت در نحوه پردازش بدون انتظار کارها روی ماشینآلات است. در چنین شرایطی زمان نصب وابسته به توالی کارها میزان تاخیر احتمالی در شروع کار روی ماشین اول را که برای تامین شرایط پردازش بدون انتظار لازم است تحت تاثیر قرار میدهد.
عرب عامری و سلماسی(2013) [10] نیز روش حلی با رویکرد الگوریتم ترکیبی بهینهسازی تجمعی ذرات و جستجوی ممنوع برای مسئله Fm|nwt,sijk|wj'Ej+wj"Tj پیشنهاد دادند. گاوو و همکارانش [21] مسئله تولید جریانی بدون انتظار را با محدودیت زمان نصب وابسته به توالی و تابع هدف زمان در جریان کل بررسی نموده و چهار رویه ابتکاری برای حل آن پیشنهاد دادهاند. رمضانی و همکاران [43] مسئله سیستم تولید جریانی منعطف بدون انتظار را در حالتی که ماشینهای درون هر ایستگاه عملکرد مشابه و نسبتهای سرعت مشخص دارند مدنظر قرار داده و به کمک رویکرد ترکیبی فراابتکاری به حل آن پرداخته است.
پژوهشهای مرور شده در این بخش در جدول(2-5) خلاصه شدهاند.
جدول SEQ جدول * ARABIC 5 جدول 2-5. مسائل سیستم تولید جریانی با محدودیت زمان نصب وابسته به توالی کارهانویسنده مسئله رویکرد سال شماره ارجاع
وانچیپوراو سریدهاران Fm|sijk|Cmaxروش ابتکاری بر پایه ساختن جواب 2013 54
میرابی Fm|sijk|Cmaxرویه ترکیبی براساس الگوریتم ژنتیک 2014 36
میرصانعی و همکاران Fm|sijk|Cmaxالگوریتم شبیهسازی تبرید 2011 37
حکیم زاده و زندیه Fmsijk,bCmax,Tjچند رویه فراابتکاری 2012 25
عرب عامری و سلماسی Fm|nwt,sijk|wj'Ej+wj"Tjالگوریتم ترکیبی از بهینهسازس تجمعی ذرات و جستجوی ممنوع 2013 10
گاوو و همکاران Fm|nwt,sijk|Cjچهار رویه ابتکاری 2013 21
رمضانی و همکاران FFm|nwt,sijk|Cmaxسه روش فراابتکاری بر پایه الگوریتمهای ژنتیک، تبرید شبیهسازی شده و تکرار حریصانه 2013 43
2-4. محدودیت کاری ماشینآلاتمحدودیت کاری ماشینآلات به این معنی است که هر ماشین پس از انجام حجم مشخصی از کار از دسترس خارج میشود که این مسئله میتواند دلایل متعددی همچون انجام تعمیرات اساسی و … داشته باشد. برای مثال یک ماشین پرس عموما بعد از انجام تعداد مشخصی پرس جهت تنظیم، تعویض روغن و تعمیرات برای مدتی از دسترس خارج میگردد. پیادهسازی این محدودیت در مسائل بهینهسازی معمولا به دو صورت انجام میشود: در دسته اول مسائل، ماشینها پس از گذراندن تعداد یا حجم مشخصی از کار از دسترس خارج میگردند و در دسته دوم، ماشینها پس از سپری کردن زمان مشخصی از لحظه شروع به کار از دسترس خارج میشوند. به کار بردن هر کدام از این دو رویکرد به ویژگیهای ماشینآلات و محصول تولیدی بستگی دارد. محمدی و فاطمی قمی [38] مسئله محدودیت ساعات کاری ماشینآلات را با در نظر گرفتن زمان نصب وابسته به توالی کارها در محیط تولید جریانی مورد مطالعه قرار دادند و آن را با رویکردی ابتکاری بر پایه الگوریتم ژنتیک حل نمودند. همین نویسنده به کمک همکارانش [39] دو روش الگوریتمی جدید را نیز برای مسئله تولید جریانی همراه با محدودیت حجم کاری، زمان نصب وابسته به توالی و تولید بر مبنای تقاضا ارائه کردند. جورجیادیس و پولیتو [22] نیز همین محدودیت را در حالتی که تعداد کار پردازش شده در روز محدود باشد در سیستمهای تولید جریانی بررسی کردند. بابایی و همکاران [11] نیز مسئله بهینهسازی همزمان تولید محصولات بر پایه تقاضا و زمانبندی را در محیط تولیدی جریانی مطالعه نموده و برای آن به کمک الگوریتم ژنتیک جوابهای با کیفیتی بدست آوردند.
مقالات مروری در این بخش در جدول(2-6) خلاصه شدهاند.
جدول SEQ جدول * ARABIC 6 جدول 2-6. مسائل سیستم تولید جریانی با محدودیت حجم کاری ماشینآلاتنویسنده مسئله رویکرد سال شماره ارجاع
محمدی و فاطمی قمی Fm|sijk|MINcostالگوریتم ژنتیک 2011 38
محمدی و همکاران Fm|sijk|MINcostدو الگوریتم ترکیبی جدید 2011 39
جورجیادیس و پولیتو Fm||MINcostرویه فراابتکاری جدید 2013 22
بابایی و همکاران Fm||MINcostالگوریتم ژنتیک 2013 11
2-5. استراتژیهای مدیریت تولیدمدیریت تولید به معنای تعیین میزان تولید محصولات با استفاده از پیشبینیهای انجام شده از نیاز بازار، تعیین زمان مناسب تحویل و … است. همانطور که از تعریف برمیآید مدیریت تولید به دلیل مشخص نمودن تعداد کارها و موعد تحویل ارتباط تنگاتنگی با زمانبندی تولید محصولات دارد. یکی از مهمترین مسائل در مدیریت تولید این مسئله است که محصول با رویکرد تولید برای سفارش تولید شوند یا با استراتژی تولید برای ذخیره [24]. در استراتژی تولید برای سفارش، محصولات یک سفارش تنها از زمانی که سفارش به سیستم تولیدی ابلاغ میشود توانایی تولید شدن دارند. استراتژی تولید برای ذخیره نیز تعداد محصولات را با توجه به نیاز بازار و سهم محیط تولیدی از بازار پیشبینی مینماید. از اصلیترین اشکالات استراتژی تولید برای ذخیره هزینه نگهداری محصولات است. استراتژی تولید برای سفارش هم به دلیل متغیر بودن تعداد و حجم سفارشات و لزوم تحویل به موقع جهت کسب رضایت مشتری زمانبندی را مشکلتر خواهند کرد. از این رو در سالهای اخیر توجه به استراتژیهای ترکیبی مدیریت تولید رو به افزایش بوده است. یوسف و همکاران [24] تاثیر زمانبندی بر استراتژیهای ترکیبی تولید برای ذخیره و تولید برای سفارش را در زمانبندی تک ماشین در پروژه - ریسرچمفصلی مورد بحث قرار داده است. در این پروژه - ریسرچاو محصولات را به دو گروه تقسیم کرده است: تعداد زیادی از محصولات که تقاضای کمی دارند و تعداد کمی از محصولات که تقاضا برای آنها زیاد است. در نهایت محصولات با تقاضای زیاد را با استراتژی تولید برای ذخیره و محصولات با تقاضای کم را با رویه تولید برای سفارش به خط تولید میفرستد. همین رویکرد توسط آدان و وال [7] نیز مورد مطالعه قرار گرفته است. عیوضی و همکاران [16] نیز مدل توسعه یافتهای بر مبنای زمانبندی و کنترل تولید نیمههادیها ارائه کردند که در آن دو رویکرد برای اولویت دادن به کارهای تولید برای سفارش و تولید برای ذخیره وجود دارد. زائر پور و همکاران [59] نیز ساختار تصمیمگیری برای ترکیب استراتژیهای تولید را مورد بررسی قرار داده و با رویهای ترکیبی از رویکردهای ایاچپی و تاپسیس به اتخاذ تصمیم پرداخته است.
مقالات مروری در این بخش در جدول(2-7) خلاصه شدهاند.
جدول SEQ جدول * ARABIC 7 جدول 2-7. مسائل با محدودیت استراتژیهای ترکیبی مدیریت تولیدنویسنده مسئله رویکرد سال شماره ارجاع
یوسف و همکاران 1||Cmax- 2004 24
آدان و وان -- 1998 7
عیوضی و همکاران -- 2009 16
زائرپور و همکاران -AHP,TOPSIS 2009 59
2-6. تابع هدفگسترش مفاهیم تولید به موقع اهمیت زمانهای زودکرد را برای دانشمندان علم زمانبندی بیش از پیش روشن کرده است. پس از بکارگیری موفق این مفاهیم در صنعت و تاثیر قابل توجه آن بر عملکرد تولید و کاهش موجودی انبار تعداد پژوهشهای زمانبندی که به این مسئله توجه نشان داده بودند افزایش چشمگیری یافت. در عمل محصولاتی که زودتر از موعد ساخته میشوند باید به انبار بروند و محصولاتی که دیرتر از موعد تحویل میگردند نیز نارضایتی مشتریان را در پی دارند. از آنجا که بسته به شرایط اهمیت این دو هزینه برای هر کدام از کارها میتواند متفاوت باشد، ضرایب وزنی هزینهها برای هرکار متفاوت تعریف میگردد.
در کنار رشد تحقیقات زمانبندی که درآنها مفهوم تولید به موقع مدنظر قرار گرفته است، پژوهشهایی نیز انجام شده است که با حفظ مفهوم تولید به موقع به سایر هزینههای موجود در سیستم نیز پرداختهاند. در این تحقیقات هزینههایی نظیر عدم پذیرش کارها، هزینههای انبارداری و … نیز در نظر گرفته میشوند.
در این نمونههایی از تحقیقات انجام شده در زمینه تولید جریانی بدون انتظار که در آنها رویکرد تولید به موقع به عنوان تابع هدف در نظر گرفته شده است مرور میشوند.
عرب عامری و سلماسی [10] مسئله زمانبندی تولید جریانی بدون انتظار را با محدودیت زمان نصب وابسته به توالی کارها و با محدودیت مجموع زمانهای زودکرد و دیرکرد وزنی به کمک الگوریتم ترکیبی بهینهسازی تجمعی ذرات و جستجوی ممنوع حل کردند. جولایی و همکاران [29] نیز با حفظ مفهوم تولید به موقع تابع هدفی شامل مجموع وزنی زودکردها و دیرکردها و ضرر ناشی از رد سفارشات جهت رسیدن به بیشینه سود حاصل از پردازش کارها برای مسئله تولید جریانی بدون انتظار تعریف کردند.
در جدول(2-8) پژوهشهای مرور شده در این بخش به اختصار آورده شدهاند.
جدول SEQ جدول * ARABIC 8 جدول 2-8. مسائل سیستم تولید جریانی با تابع هدفهای تولید به موقعنویسنده مسئله رویکرد سال شماره ارجاع
عرب عامری و سلماسی Fm|nwt,sijk|wj'Ej+wj"Tjالگوریتم ترکیبی از بهینهسازس تجمعی ذرات و جستجوی ممنوع 2013 10
جولایی و همکاران FFm|nwt|MAXbenefitالگوریتم ژنتیک 2009 29
2-7. جمعبندیدر این فصل، ابتدا به کمک رویکرد سه نمادی به طبقهبندی مسائل زمانبندی پرداخته شد. پس از آن ادبیات سیستم تولید جریانی منعطف بدون انتظار تشریح گردید. در ادامه فصل جهت مرور ادبیات موضوع مورد بررسی مقالات و پژوهشهای انجام شده به تفکیک محدودیتها و تابع هدف تحقیق مورد بررسی قرار گرفت. با توجه به مطالب عنوان شده در این فصل تحقیق پیش رو از جنبه تابع هدف، کاربرد رویکردهای مدیریت تولید در زمانبندی و بکارگیری مسئله محدودیت ساعات کاری در محیط سیستم تولیدی تولیدی منعطف بدون انتظار نوآوری دارد.
فصل سوممدل ریاضی پیشنهادی3-1. مقدمهرویکردهایی همچون برنامهریزی خطی و غیرخطی، برنامهریزی عدد صحیح و … به عنوان رویکردهای دقیق برای بدست آوردن جواب از توانایی محدودی برخوردارند. با پیچیده شدن مسائل دنیای واقعی این واقعیت بیش از پیش برای دانشمندان روشن گردید که برای حل مسائل جدید به ابزارهایی کارآمدتر نیازمندند. از این رو امروزه تمرکز مطالعاتی از بدست آوردن جواب دقیق توسط این روشها به بدست آوردن جوابهای نزدیک به بهینه به کمک روشهای ابتکاری و فراابتکاری معطوف گردیده است. اگر چه روشهای دقیق امروزه بسیار کمتر مورد استفاده قرار میگیرند اما همچنان به عنوان ابزاری برای اعتبارسنجی روشها و مدلها بسیار سودمندند.
در این فصل، مسئله زمانبندی تولید جریانی منعطف با محدودیت ساعات کاری ماشینآلات و زمانهای نصب وابسته به توالی کارها و نیز با درنظر گرفتن رویکرد مدیریت تولید ترکیبی تولید برای سفارش و تولید برای ذخیره مورد بررسی قرار میگیرد. در ادامه مدل ریاضی ارائه شده برای این مسئله به طور کامل تشریح شده و اعتبارسنجی میگردد.
3-2. تعریف مسئلهمسئله زمانبندی تولید جریانی منعطف با محدودیت ساعات کاری ماشینآلات و زمانهای نصب وابسته به توالی کارها و نیز با درنظر گرفتن رویکرد مدیریت تولید ترکیبی تولید برای سفارش و تولید برای ذخیره به صورت زیر ارائه میگردد:
یک محیط صنعتی با قابلیت تولید N محصول متفاوت و مستقل در نظر گرفته میشود. چیدمان ماشینآلات در این محیط تولیدی به صورت سیستم جریانی منعطف است، به این معنی که حداقل در یکی از ایستگاههای کاری بیش از یک ماشین وجود دارد. ماشینهای موجود در هر ایستگاه کاری کاملا مشابه هستند و هر کدام مقدار زمان مشخصی میتوانند در حال کار باشند و پس از آن از دسترس خارج میشوند. هر سیستم تولیدی با توجه به پیشبینیهای انجام شده براساس فروش قبلی خود سهم مشخصی از بازار را برای خود متصور است. از طرفی سیستم تولیدی ممکن است سفارشاتی را نیز دریافت کند(برای مثال سفارشات صادراتی یا تولید محصول برای یک ارگان مشخص). این سفارشات در زمان خاصی به سیستم تولیدی ارائه شده و موعد تحویل مشخصی دارند. معیار بهینهسازی این مسئله به حداقل رساندن هزینههای ناشی از رد کردن سفارشات، تحویل ناقص سفارشات(به دلیل محدودیت ظرفیت تولید) و هزینههای ناشی از زودکرد و دیرکرد تحویل سفارشات است. برای هر کدام از هزینههای ذکر شده براساس اهمیتی که برای مدیریت دارد ضرایب وزنی مشخصی در نظر گرفته میشود. برای درک بهتر مسئله نمای کلی محیط تولیدی -241304619625شکل SEQ شکل * ARABIC 1 شکل 3-1. نمای کلی مسئله مورد بررسی0شکل SEQ شکل * ARABIC 1 شکل 3-1. نمای کلی مسئله مورد بررسی-2578723158170در شکل(3-1) نشان داده شده است.
3-2-1. مفروضات مسئلهمفروضات زیر بر مسئله مورد بررسی حاکم است:
هر ماشین در هر لحظه تنها توانایی پردازش یک کار را دارد و هر کار در هر ایستگاه تنها باید بر روی یک ماشین پردازش شود.
هر سفارش شامل تعداد مشخصی از هر کدام از محصولات قابل تولید است.
کارهایی که برای ذخیره در انبار و براورده کردن سهم بازار تولید میشوند از لحظه صفر در دسترس خواهند بود و تا پایان افق برنامهریزی برای تکمیل تولید فرصت دارند.
زمانهای پردازش، ضرایب انواع هزینهها، تعداد ماشینهای هر ایستگاه و ظرفیت تولید(مقدار ساعتی که هر ایستگاه در دسترس است) مشخص است.
بیکاری ماشینها مجاز است.
3-3. مدل پیشنهادیدر این بخش، مدل ریاضی عدد صحیح غیرخطی پیشنهادی برای مسئله مورد بحث ارائه میگردد. پیش از ارائه کامل مدل، پارامترهای ورودی، متغیرهای تصمیمگیری، تابع هدف و محدودیتها به طور مجزا تشریح میگردند.
3-3-1. پارامترهای ورودی مسئله:s تعداد ایستگاههای کاری s=1, …,S:k تعداد ماشینهای موجود در هر ایستگاه کاریs. s=1, …,S ، k=1, …,ms:i تعداد سفارشات (برای سهولت در مدلسازی، i=1 مجموع کارهای با رویکرد تولید برای سفارش را نمایندگی میکند) i=1, …, N:j تعداد کارهای (محصولات) قابل تولید در محیط تولیدی j=1, …, J:t شماره هر کار در هر سفارش (sumi مجموع تعداد کارهای هر سفارش)t=1, …, sumi, i=1, …, N
:q محل قرارگیری هر کار در توالی کلی کارها (Z مجموع تعداد کارهای سفارشات پذیرفته شده به علاوه کارهای رویکرد تولید برای ذخیره)q=1, …, Z:Ri زمان در دسترس قرار گرفتن سفارش i (کارهای تولید برای ذخیره از لحظه صفر در دسترس هستند) i=2, …, N:Di موعد تحویل سفارش i به مشتری (کارهای تولید برای ذخیره تا پایان افق برنامهریزی برای تحویل فرصت دارند) i=2, …, N:Wti وزن دیرکرد در تحویل سفارش i به ازای هر واحد زمانی i=2, …, N
:Wei وزن زودکرد در تحویل سفارش i به ازای هر واحد زمانی i=2, …, N
:Wni وزن هزینه ناشی از رد سفارش (کارهای تولید برای ذخیره همیشه پذیرفته شده هستند و رد کردن برای آنها متصور نیست) i=2, …, N
:Wgi وزن هزینه ناشی از تحویل ناقص سفارش i به مشتری به ازای هر کار تحویل نشده (به دلیل محدودیت ساعات کاری ممکن است یک سفارش به طور کامل پردازش نشود، کارهای تولید برای ذخیره هم در صورت تحویل ناکامل توانایی براورده کردن نیاز بازار را ندارند) i=1, …, N
:cas محدودیت زمانی هر ماشین k در ایستگاه کاری s. s=1, …, S:pjs زمان پردازش کار نوع j در ایستگاه کاری s. j=1, …, J , s=1, …,S:hji تعداد کار نوع j در سفارش i. i=1, …, N, j=1, …, J:sjj'sk زمان نصب کار نوع j' هنگامی که این کار دقیقا پس از کار نوع j در ایستگاه کاری s روی ماشین k انجام شود. j,j'=1, …, J, s=1, …,S, k=1, …,ms3-3-2. متغیرهای تصمیمگیری مسئله:xtiq 1 اگر کار شماره t از سفارش i در محل q از توالی کارها قرار بگیرد و 0 در غیر اینصورت. t=1, …, sumi, i=1, …, N, q=1, …, Z:yqsk 1 اگر کار قرار گرفته در موقعیت q از توالی کارها روی ماشین k در ایستگاه s پردازش شود و 0 در غیر اینصورت. q=1, …, Z, , s=1, …,S, k=1, …,ms:vqj 1 اگر کار قرار گرفته در موقعیت q از توالی کارها از نوع j باشد و 0 در غیر اینصورت. q=1, …, Z, j=1, …, J:fi 1 اگر سفارش i پذیرفته شود و 0 در غیر اینصورت. i=1, …, N:stqs زمان شروع کار قرار گرفته در موقعیت q از توالی کارها در ایستگاه کاری s. q=1, …, Z, s=1, …,S:cqs زمان تکمیل کار قرار گرفته در موقعیت q از توالی کارها در ایستگاه کاری s. q=1, …, Z, s=1, …,S:deq زمان تاخیر لازم برای برقراری شرایط پردازش بدون توقف برای کار قرار گرفته در موقعیت q از توالی کارها. q=1, …, Z:avqs زمان در دسترس قرار گرفتن ایستگاه کاری s برای پردازش کار قرار گرفته در موقعیت q توالی کارها. q=1, …, Z, s=1, …,S:gq 1 اگر کار قرار گرفته در موقعیت q از توالی کارها انجام شود و 0 در غیر اینصورت (به دلیل محدودیت ساعات کاری ایستگاهها ممکن است کار انجام نشود). q=1, …, Z3-3-3. تابع هدفminZ=i=2Ntardii× fi×wti+i=2Nearlii ×fi×wei+i=1Nwni×1-fi+i=1Nsumi-nondi×fi×wgiاز آنجا که در صنایع امروزی اهمیت تحویل به موقع محصولات به مشتریان از اهمیت ویژهای برخوردار است، تابع هدف این مسئله با رویکرد تولید به موقع تعیین شده است. در اکثر پژوهشهایی که تاکنون انجام شده است هزینه دیرکرد برای کارهای پردازش شده محاسبه میشود، اما در این تحقیق از آنجا که بستههای سفارش داده شده باید تحویل مشتری شوند، هزینههای مربوطه نیز برای سفارشات محاسبه میشوند. برای یک بسته سفارشی مفروض چهار هزینه متصور است که به شرح زیر هستند.
هزینه دیرکرد: هزینه دیرکرد برای هر سفارش برابر است با بیشینه دیرکرد کارهای آن سفارش ضرب در میزان اهمیت(وزن) دیرکرد آن سفارش. لازم به ذکر است چنانچه سفارش مربوطه پذیرفته شده باشد (fi=1) هزینه دیرکرد برای آن متصور است و در غیر این صورت هزینه رد سفارش که در ادامه خواهد آمد باید محاسبه گردد. به دلیل اینکه موعد تحویل محصولات تولید برای ذخیره پایان افق برنامهریزی است، محاسبه هزینه دیرکرد برای آنها معنی پیدا نمیکند به همین دلیل این هزینه تنها برای سفارشات تولید برای سفارش محاسبه میشود(i=2). عبارت هزینه دیرکرد در تابع هدف به صورت زیر است:
(3-1) i=2Ntardii× fi×wtiهزینه زودکرد: این هزینه نیز مانند هزینه دیرکرد برای بستههای سفارشی پذیرفته شده(fi=1) محاسبه میشود. برای یک بسته سفارشی مفروض مقدار زودکرد برابر است با بیشینه زودکرد هر کدام از کارهای سفارش ضرب در اهمیت(وزن) زودکرد آن سفارش. از آنجا که موعد تحویل محصولات با استراتژی تولید برای ذخیره پایان افق برنامهریزی است برای آنها هزینه زودکرد متصور نیست(i=2). عبارتی که محاسبه هزینه زودکرد را در تابع هدف نمایندگی میکند به صورت زیر است:
(3-2) i=2Nearlii ×fi×weiهزینه رد سفارش: عدم پذیرش سفارش به دلیل از دست دادن سود ناشی از تولید آن برای سیستم تولیدی دارای هزینه است. هزینه رد سفارش برابر است با اهمیت(وزن) آن سفارش. در این بخش وزن سفارش میتواند میزان سود از دست رفته را نمایندگی کند. عبارت مربوط به این هزینه در تابع هدف مطابق رابطه(3-3) است.
(3-3) i=1Nwni×1-fiهزینه تحویل ناقص سفارش: چنانچه یک یا چند کار در سفارشات پذیرفته شده به دلیل محدودیت ساعات کاری ماشینآلات نتوانند پردازش خود را کامل کنند، بسته سفارشی ناقص پردازش میگردد. در چنین شرایطی یا سفارش باید ناقص تحویل شود و یا از موجودی انبار که کالاهای تولید برای ذخیره است برای کامل کردن سفارش استفاده شود که در هر دو حالت هزینههایی را در پی دارد. هزینه تحویل ناقص سفارش به صورت شمارش تعداد کارهای پردازش نشده در یک سفارش پذیرفته شده ضرب در میزان اهمیت(وزن) آن سفارش محاسبه میشود. تعداد کارهای پردازش نشده برای هر سفارش(sumi-nondi) با استفاده از تعداد کارهای پردازش شده هر سفارش که در محدودیتها محاسبه میشود محاسبه میگردد. بدیهی است این هزینه نیز تنها برای سفارشات پذیرفته شده متصور است. عبارت مربوط به هزینه تحویل ناقص در تابع هدف مطابق عبارت(3-4) است.
(3-4) i=1Nsumi-nondi×fi×wgi3-3-4. محدودیتهاj=1Jhji fi≤mscas , s=1,…,Sاین محدودیت تضمین میکند که مجموع زمان پردازش کارهایی که پذیرفته میشوند از مجموع زمان در دسترس در هر ایستگاه بیشتر نباشد.
f1≥1این محدودیت وجود کارهایی که تحت استراتژی تولید برای ذخیره تولید میشوند را در توالی کارهای نهایی تضمین میکند.
sumi=j=1Jhji, i=1,…, Nاین محدودیت مجموع محصولات سفارش داده شده در هر بسته سفارشی را محاسبه میکند.
Z=i=1Nsumi fi, i=1,…,N
این محدودیت تعداد کل کارهایی که در اثر پذیرفته شدن سفارشات باید پردازش شوند را محاسبه میکند.
t=1Zxtiq=1, q=1,…,Z and i=1,…,Nq=1Zxtiq=1, t=1,…,Z and i=1,…,N این مجموعه محدودیتها تخصیص هر کار به یک مکان در توالی و تخصیص هر مکان در توالی به یک کار را تضمین میکنند.
k=1msyqsk=1, q=1,…,Z and s=1, …,Sاین محدودیت تخصیص یک ماشین در هر ایستگاه کاری به هر کار موجود در توالی را تضمین میکند.
deq=maxi=1Nt=1sumiri xqit,avqs-avqs-1,…, avq2-avq1, q=1,…,Zمحاسبه میزان تاخیر در شروع پردازش هر کار در توالی در ایستگاه اول برای تامین شرایط پردازش بدون انتظار توسط این محدودیت انجام میشود. میزان تاخیر لازم برای پردازش بدون انتظار برابر با بیشینه فاصله زمانهای در دسترس برای آن کار در هر دو ایستگاه کاری متوالی است.
st11=deq+avq1stq1=deq+avq1+j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yq1k yq-11k) sjj'1k, q=2,…,Zstqs=cqs-1+ j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yqsk yq-1sk) sjj'sk, s=2,…, S and q=2,…,Zاین مجموعه از محدودیتها زمان شروع پردازش هر کار را در هر ایستگاه کاری را محاسبه میکند. اگر هر دو کار متوالی روی یک ماشین در هر ایستگاه از دو نوع متفاوت باشند زمان نصب به کار دوم تعلق میگیرد.
cqs=stqs+j=1Jvqj pjs, s=1,…,Sاین محدودیت زمان تکمیل پردازش هر کار در هر ایستگاه کاری را تعیین میکند.
avqs=min1≤k≤msmax1≤q≤q'-1cq's yq'sk, s=1,…,S and q=1,…,Zمحاسبه زمان در دسترس قرار گرفتن هر ایستگاه کاری برای هر کار توسط این محدودیت محاسبه میگردد. همانطور که از محدودیت مشخص است زمان در دسترس قرار گرفتن هر ایستگاه کاری برای هر کار برابر است با کمینه زمان در دسترس قرار گرفتن ماشینهای درون آن ایستگاه. زمان در دسترس قرار گرفتن هر ماشین نیز برابر است با بیشینه زمانهای تکمیل کل کارهایی که تاکنون روی آن ماشین پردازش شده است.
tardii=max0, max1≤q≤zt=1zxtiq cqs-di, i=2,…,N and s=Searlii=max0,di-max1≤q≤zt=1zxtiq cqs, i=2,…,N and s=Sاین دو محدودیت میزان دیرکرد و زودکرد را برای هر بسته سفارشی محاسبه میکند. دیرکرد یک سفارش برابر است با بیشینه مقدار دیرکرد هر کدام از کارهای آن سفارش و مقدار زودکرد هر سفارش برابر است با بیشینه زودکرد هر کدام از کارهای آن سفارش.
gq-k=1msyqsk=0 q=1, …, Z , s=Sاین محدودیت انجام شدن یا نشدن هر کار را تعیین میکند. اگر هیچ یک از ماشینهای ایستگاه کاری آخر به کار در موقعیت q در توالی کارها به تخصیص پیدا نکنند، به این معنی است که کار به پایان پردازش خود نرسیده است.
gq-k=1msyqsk=nondi=sumi-t=1sumiq=1Zgqxtiq, i=1, …, N این محدودیت تعداد کارهای انجام شده در هر سفارش را محاسبه میکند.
با توجه به توضیحات ارائه شده مدل ریاضی پیشنهادی به صورت زیر خواهد بود:
minZ=i=2Ntardii× fi×wti+i=2Nearlii ×fi×wei+i=1Nwni×1-fi+i=1Nsumi-nondi×fi×wgi Subject to:
j=1Jhji fi pjs≤mscas, s=1,…,S f1≥1sumi=j=1Jhji, i=1,…, NZ=i=1Nsumi fi, i=1,…,Nt=1Zxtiq=1, q=1,…,Z and i=1,…,N
q=1Zxtiq=1, t=1,…,Z and i=1,…,N k=1msyqsk=1, q=1,…,Z and s=1, …,S deq=maxi=1Nt=1sumiri xqit,avqs-avqs-1,…, avq2-avq1, q=1,…,
st11=deq+avq1stq1=deq+avq1+j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yq1k yq-11k) sjj'1k, q=2,…,Zstqs=cqs-1+ j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yqsk yq-1sk) sjj'sk, s=2,…, S and q=2,…,Z
cqs=stqs+j=1Jvqj pjs, s=1,…,Savqs=min1≤k≤msmax1≤q≤q'-1cq's yq'sk, s=1,…,S and q=1,…,Ztardii=max0, max1≤q≤zt=1zxtiq cqs-di, i=2,…,N and s=Searlii=max0,di-max1≤q≤zt=1zxtiq cqs, i=2,…,N and s=Sgq-k=1msyqsk=nondi=sumi-t=1sumiq=1Zgqxtiq, i=1, …, N 3-4. اعتبارسنجی مدلاعتبارسنجی مدل گام مهمی در اطمینان از صحت یک مدل ریاضی است. از آنجا که طبق مطالعات پژوهشگر چنین تحقیقی تاکنون انجام نشده است و مدل ارائه شده از چند نظر جدید است لزوم انجام اعتبارسنجی کاملا روشن به نظر میرسد.
اعتبارسنجی به این معنی است که نتایج بدست آمده از حل مدل باید با واقعیت مطابقت داشته باشد. بر این اساس اعتبارسنجی مدل ریاضی ارائه شده در دو مرحله انجام میگردد. مرحله اول اعتبارسنجی مدل به کمک یک مسئله حل شده و مرحله دوم حل یک مسئله تولید شده و بررسی اعتبار مدل.
3-4-1. اعتبارسنجی مدل به کمک مسئله حل شدهدر این بخش تحقیق انجام شده توسط ونگ و لیو [56] که مسئله تولید جریانی بدون انتظار منعطف با دو ایستگاه کاری و تابع هدف بیشینه زمان تکمیل کارها که حاوی حل تعدادی مسئله جهت استفاده سایر پژوهشگران است به عنوان مسئله جهت اعتبارسنجی مدل ارائه شده مدنظر قرار گرفته است.
جهت انجام فرایند اعتبارسنجی لازم است پارامترهای مدل ارائه شده در این تحقیق طوری تعریف شوند که مسئله با نمونه ارائه شده در پروژه - ریسرچونگ و لیو [56] مشابه گردد. بر این اساس، تعداد کارهای موجود در هر سفارش یک تعریف شده است. زمانهای نصب صفر در نظر گرفته شده و نوع کارهای موجود در سفارش متفاوت تعریف شده است. همچنین ظرفیت کاری ماشینآلات نامتناهی تعریف شده و امکان رد سفارش حذف گردیده است. همچنین از آنجا که تابع هدف این پروژه - ریسرچبیشینه زمان تکمیل است، تابع هدف مدل ارائه شده را نیز بیشینه زمان تکمیل سفارشات قرار داده تا نتایج قابل مقایسه باشند. قابل ذکر است که تغییر تابع هدف تاثیری در صحت عملکرد محدودیتها ندارد. تغییرات انجام شده در مدل پیشنهادی به طور خلاصه در جدول(3-1) آمدهاند.
جدول SEQ جدول * ARABIC 9 جدول 3-1. تغییرات اعمال شده در مدل پیشنهادی جهت اعتبارسنجیفاکتور وضعیت اصلی وضعیت تغییر یافته
تابع هدف کمینه هزینهها بیشینه زمان تکمیل کارها
زمان نصب بزرگتر از صفر صفر
تعداد کارهای موجود در سفارش از انواع متفاوت و معمولا بیش از یک کار از انواع متفاوت و یک کار
قابلیت رد سفارش وجود دارد وجود ندارد
ظرفیت کاری ماشینآلات محدود نامحدود
در تحقیق مورد استفاده سیستم تولید جریانی بدون انتظار شامل دو ایستگاه کاری و هر ایستگاه شامل دو ماشین یکسان است. کوچکترین ابعاد مسئله مورد بررسی در این پروژه - ریسرچمسئلهای مشتمل بر ده کار است که بنابر توضیحات ارائه شده در بالا در مدل پیشنهادی ما به صورت ده سفارش که هر کدام شامل یک کار است تعبیر میشوند. زمان پردازش کارها روی ماشین نیز دارای توزیع یکنواخت بین [50 ،1] میباشد بر همین مبنا با استفاده از تابع تولید اعداد تصادفی یکنواخت در نرمافزار متلب اعداد زیر به عنوان زمانهای پردازش تولید شدهاند.
(3-5) pqs=41 7 32 14 48 8 48 48 22 4546 46 5 28 49 49 25 8 46 48این مسئله در نرمافزار لینگو 9 حل شده است که در نتیجه آن توالی سفارشات به صورت q7, q3, q9, q8, q1, q10, q5, q2, q4, q6 و مقدار تابع هدف برابر 326 است. این در حالی است که مقدار تابع هدف در تحقیق مورد استفاده برای این مسئله برابر 292.3 است. این تفاوت حدودا 11% میتواند به دلیل متفاوت بودن مقدار زمانهای پردازش بوده باشد.
3-4-2. اعتبار سنجی مدل به کمک مسئله تولیدیدر این روش، اعتبارسنجی به کمک یک مسئله تولید شده و بررسی درستی عملکرد محدودیتها صورت میگیرد. این روش به عنوان مکملی برای روش قبلی است چرا که در روش قبل به دلیل تفاوت توابع هدف تغییر آن ناگزیر بود. برای انجام این روش دادههای ارائه شده در جدول(3-2) مورد استفاده قرار میگیرند.
جدول SEQ جدول * ARABIC 10 جدول 3-2. دادههای لازم جهت پیادهسازی مدل ریاضیفاکتور مقدار
تعداد سفارش 5
تعداد کارهای موجود در هر سفارش 1
تعداد ایستگاه 2
تعداد ماشین در هر ایستگاه 2
زمانهای پردازش unif [1, 50]زمانهای نصب 0
موعدهای تحویل 50
وزنهای زودکرد و دیرکرد 10
وزن رد سفارش 20
امکان رد سفارش وجود دارد
ظرفیت ماشینآلات نامحدود
لازم به ذکر است که دلیل اصلی کوچک در نظر گرفتن ابعاد مسئله یا حذف فاکتوری همچون محدودیت ظرفیت ماشینآلات تنها به دلیل افزایش چشمگیر زمان حل مسئله در نرمافزار لینگو و امکان نرسیدن به جواب بهینه کلی بوده است و از آنجا که این تغییرات جزیی از دامنه تغییرات ممکن این فاکتورها است تاثیری در اعتبارسنجی مدل نخواهند داشت.
-241304295775شکل SEQ شکل * ARABIC 2 شکل 3-2. گانت چارت جواب بهینه مسئله طراحی شده جهت اعتبارسنجی مدل ریاضی.0شکل SEQ شکل * ARABIC 2 شکل 3-2. گانت چارت جواب بهینه مسئله طراحی شده جهت اعتبارسنجی مدل ریاضی.right10596120مسئله مورد بررسی در این بخش در نرمافزار لینگو 9 حل شد و جواب بهینه برابر 2830 بود. توالی کارها نیز به صورت q2, q3, q5, q1, q4 بدست آمد. جهت اطمینان از درستی عملکرد مدل گانت چارت جواب بهینه در شکل(3-2) رسم شده است.
3-5. تعیین پیچیدگی مسئلهانتخاب روش حل مناسب میتواند در دقت و کیفیت و زمان مورد نیاز برای حل یک مسئله تاثیر قابل توجهی داشته باشد. شاخهای از علوم کامپیوتر با نام نظریه پیچیدگی بر مطالعه این مبحث تمرکز دارد. به طور خلاصه پیچیدگی یک مسئله با میزان محاسبات لازم جهت حل آن ارتباط مستقیم دارد. این بدان معناست که با افزایش ابعاد مسئله طبیعتا زمان حل آن نیز افزایش مییابد. چنانچه زمان حل مسئله نسبت به ابعاد آن با تابعی چندجملهای افزایش یابد، زمان این مسئله را چندجملهای میگویند. چنین مسائلی عمدتا با روشهای دقیق قابل حل هستند.
دسته بزرگتر و مهمتری از مسائل بهینهسازی که عمدتا مسائل زمانبندی نیز در این دسته قرار میگیرند دارای تابع زمانی غیر چندجملهای هستند. چنین مسائلی را در علم پیچیدگی NP-hard مینامند. این دسته از مسائل با روشهای دقیق قابل حل نبوده و لذا از روشهای تقریبی جهت یافتن نزدیکترین جواب به بهینه کلی بهره گرفته میشود. در نتیجه شناخت مسئله از نقطه نظر پیچیدگی آن میتواند بر کیفیت جواب تاثیر مستقیم داشته باشد.
8426456118225شکل SEQ شکل * ARABIC 3 شکل 3-4. سلسله مراتب پیچیدگی در توابع هدف مسائل زمانبندی [6].00شکل SEQ شکل * ARABIC 3 شکل 3-4. سلسله مراتب پیچیدگی در توابع هدف مسائل زمانبندی [6].10096503163570شکل SEQ شکل * ARABIC 4 شکل 3-3. سلسله مراتب پیچیدگی در مسائل کارگاهی زمانبندی [6].00شکل SEQ شکل * ARABIC 4 شکل 3-3. سلسله مراتب پیچیدگی در مسائل کارگاهی زمانبندی [6].center17732300center567841500پیندو [6] در کتاب مفصل خود پیرامون موضوع زمانبندی سلسله مراتب مسائل پیچیدگی در مسائل زمانبندی را در گرافهایی تشریح میکند. این گرافها در شکلهای(3-3) و (3-4) آمدهاند.
همانطور که از این شکلها مشخص است میزان پیچدگی یک مسئله زمانبندی به نحوه چیدمان ماشینآلات و تابع هدف مسئله بستگی مستقیم دارد. نکته قابل تعمل در مسئله پیچیدگی آن است که پس از تشخیص میزان پیچیدگی یک مسئله به کمک این گرافها میتوان این میزان را به حالات خاص این مسائل نیز تعمیم داد. به عنوان مثال مقدار پیچیدگی مسئله 1||Cj که حالت خاصی از مسئله 1||WjCj است را میتوان معادل مقدار پیچیدگی مسئله 1||WjCj دانست. این مسئله را در علم پیچیدگی به صورت 1||Cj∝1||WjCj نشان میدهند.
در این تحقیق مسئله زمانبندی تولید جریانی منعطف بدون انتظار با محدودیت ساعات کاری ماشینآلات، زمان نصب وابسته به توالی کارها و استراتژی ترکیبی تولیید با هدف حداقل سازی هزینهها مورد بررسی قرار میگیرد. راک [45] نشان داد که مسئله تولید جریانی بدون انتظار با تابع هدف بیشینه زمانهای تکمیل NP-hard است. با توجه به نتایج مطرح شده در مورد میزان پیچیدگی مسئله پردازش بدون انتظار به یقین میتوان گفت که مسئله مورد بحث در این تحقیق نیز از میزان پیچیدگی NP-hard برخوردار است لذا حل این مسئله در ابعاد بزرگ را نمیتوان به طور کارایی با روشهای دقیق انجام داد. در فصل آینده روشهای حل کارایی با استفاده از رویکردهای فراابتکاری ارائه میگردند. ولید جریانی منعطف بدون انتظار با محدودیت ساعات کاری ماشین
3-6. جمعبندیدر این فصل، پس از بیان تعریف مسئله مورد بررسی و تشریح ویژگیهای آن، مدل ریاضی عدد صحیح غیر خطی جدیدی برای حل آن ارائه گردید. در ادامه فصل نیز اعتبار مدل ریاضی ارائه شده با استفاده از دو رویکرد سنجیده شد. در پایان فصل نیز دلایلی مبنی بر ناکارامدی روشهای حل دقیق برای مسئله مذکور بیان شده و میزان پیچیدگی آن مورد بررسی قرار گرفت.
فصل چهارمالگوریتمهای فراابتکاری پیشنهادی و نتایج محاسباتی
4-1. مقدمههدف از حل هر مسئله بهینهسازی یافتن بهترین ترکیب ممکن از متغیرهای جواب برای آن مسئله است. مسائل بهینهسازی از منظر ماهیت جواب شدنی برای آنها به دو دسته کلی مسائل پیوسته و مسائل گسسته تقسیم میشوند. مسائل حوزه زمانبندی به عنوان دستهای مهم از مسائل بهینهسازی ترکیبی یکی از شناخته شده ترین مسائل با ساختار گسسته هستند. فاکتورهای جواب این دسته از مسائل باید به صورت گسسته کدگذاری شوند. با توجه به اهمیت مسائل این حوزه تاکنون رویکردهای جواب متنوعی برای حل این مسائل ارائه گردیدهاند. با نگاهی کلی، روشهای حل ارائه شده را میتوان در دو گروه کلی روشهای دقیق و تقریبی جای داد. ساختار رویکردهای دقیق به گونهای است که عملکرد آنها را تنها به حل مسائل با پیچیدگی مشخص و ابعاد کوچک محدود میکند. این رویکردها برای مسائل با ابعاد بزرگ زمانهای حل بسیار ناکارامدی را ارائه میدهند. برهمین اساس، لزوم استفاده از رویکردهای تقریبی در حل مسائل پیچیده بدیهی به نظر میرسد. این رویکردها بسته به نوع آنها میتوانند جوابهای با کیفیت قابل قبول را در زمان منطقی ارائه دهند.
روشهای فراابتکاری دسته مهمی از روشهای تقریبی هستند که عموما با الگوبرداری از رفتار طبیعت تدوین گردیدهاند. وجه تمایز اصلی این روشها با روشهای تقریبی دیگر استفاده از متدهایی برای اجتناب از توقف فرایند جستجو در بهینه محلی است. براساس استراتژیهای بکار رفته در فرایند الگوریتم، امروزه طیف گستردهای از روشهای فراابتکاری به جامعه محققین ارائه شده است که برای مثال میتوان به الگوریتمهایی نظیر ژنتیک، جستجوی ممنوع، مورچگان، تبرید شبیهسازی شده، سیستم ایمنی مصنوعی و … اشاره کرد.
در ادامه فصل پیش رو، الگوریتمهای فراابتکاری ارائه شده به منظور حل مسئله مورد بررسی شامل الگوریتم سیستم ایمنی مصنوعی و تبرید شبیهسازی شده با رویکرد ابری به طور کامل تشریح میگردند. پس از آن با استفاده از رویکرد تنظیم پارامترها به روش تاگوچی الگوریتمهای ارائه شده کالیبره شده و به وسیله آزمایشات طراحی شده مورد سنجش قرار میگیرند. در نهایت نتایج استخراج شده از اجرای آزمایشات تشریح میگردند.
4-2. الگوریتم سیستم ایمنی مصنوعیالگوریتم سیستم ایمنی مصنوعی یکی از جدیدترین الگوریتمهای الگوبرداری شده از رفتارهای طبیعی پدیدهها است. همانگونه که از نام آن هویدا است، این الگوریتم از سیستم ایمنی بدن موجودات زنده و بالاخص پستانداران الگوبرداری شده است. روند کلی الگوریتم بسیار شبیه به الگوریتم ژنتیک بوده اما وجود تفاوتهایی تاثیرگذار باعث برتری نسبی این الگوریتم نسبت به الگوریتم ژنتیک در برخی مسائل بهینهسازی ترکیبی گردیده است.
سیستم ایمنی بدن انسان مجموعهای پیچیده است که وظیفه حفاظت بدن در مقابل خطرات و حفظ سلامتی آن را به عهده دارد [34]. این سیستم این وظیفه را با شناسایی عوامل مضر خارجی به نام پاتوژنها و تلاش جهت نابودسازی آنها انجام میدهد. این عوامل عموما به کمک فاکتور پروتئینی موجود در ساختارشان که آنتیژن نام دارد شناسایی میشوند. پس از شناسایی آنتیژن، بدن فاکتور پروتئینی مناسب جهت نابودسازی آنتیژن مربوطه را که آنتیبادی نام دارد ساخته و به جریان خون میفرستد و از این طریق عامل خارجی مضر را نابود میکند این فرایند را پاسخ اولیه ایمنی مینامند. پس از رفع خطر، بدن بهترین آنتیبادی ساخته شده را در حافظه خود نگه میدارد تا چنانچه این آنتیژن بار دیگر وارد بدن شد بتواند عملکرد سریعتری داشته باشد. دلیل علمی واکسیناسیون نیز همین است.
در کل سیستم ایمنی بدن انسان به زیر شاخه سیستم ایمنی ذاتی و سیستم ایمنی قابل انطباق تقسیم میشود [34]. سیستم ایمنی ذاتی وظیفه دفاع عمومی بدن را برعهده داشته و تنها توانایی مبارزه با بیماریهای مشخصی را دارد، چیزی را به یاد نمیسپارد و عملکرد خود را بهبود نمیبخشد. اما سیستم ایمنی قابل انطباق توانایی مواجهه با عوامل بیماریزای جدید را داشته و در هر زمان بهترین عملکرد خود را در مقابل پاتوژنهای جدید به خاطر میسپارد. لازم به ذکر است که تمام الگوریتمهای ایجاد شده براساس سیستم ایمنی بدن براساس سیستم ایمنی قابل انطباق تدوین شدهاند.
رویه جستجوی بهترین آنتیبادی و نحوه به یاد سپاری آن برای تقریبا تمام عمر در بدن توجه بسیاری از پژوهشگران را جلب کرده است. به همین دلیل الگوریتمهای متعددی که هر کدام از بخشی از فرایند ایمنی الگوبرداری شدهاند در طی سالها ایجاد شده است. در یک تقسیمبندی کلی الگوریتمهای ایمنی ارائه شده را میتوان در سه دسته الگوریتم ایمنی تولید انتخابی، شبکه ایمنی و جستجوی منفی تقسیم کرد. الگوریتم ایمنی مصنوعی با رویکرد تولید انتخابی عموما در مسائل تعیین توالی بهینه و زمانبندی مورد استفاده قرار میگیرد حال آنکه دو رویکرد بعدی عموما برای مسائل تشخیص عوامل مخرب و مسائل خوشهبندی یا جستجوی الگو مورد استفاده قرار میگیرند. در تحقیق پیش رو نیز رویکرد تولید انتخابی الگوریتم ایمنی مصنوعی مورد استفاده قرار گرفته است لذا از این پس عبارت الگوریتم سیستم ایمنی مصنوعی به اختصار به جای عبارت رویکرد تولید انتخابی الگوریتم سیستم ایمنی مصنوعی به کار میرود.
الگوریتم سیستم ایمنی مصنوعی فرایند جستجوی خود را با جامعهای از آنتیبادیهای تصادفی که در واقع نشان دهنده جوابهای شدنی هستند آغاز میکند. در الگوریتم ایمنی مصنوعی آنتیژن تابع هدف را نمایندگی میکند. لذا هر کدام از جوابها از نظر میزان تطابق با تابع هدف مورد ارزیابی قرار میگیرند و در نهایت جوابها براساس میزان تطابقشان با تابع هدف که همان میزان برازندگی در الگوریتم ژنتیک است مرتب میشوند. پس از آن تعدادی مشخص از بهترین جوابها انتخاب شده و براساس رابطهای که بسته به نوع مسئله تعریف میشود، از هر جواب بسته به میزان تطابق آن تکثیر میشود. یعنی هرچه تطابق بیشتر باشد تعداد تکثیر نیز بیشتر میشود. در مرحله بعد هر جواب بسته به میزان تطابق خود تحت عملگر جهش قرار میگیرد، یعنی هر چه تطابق یک جواب بیشتر باشد میزان جهش کمتر خواهد بود. در نهایت میزان تطابق جوابهای جهش یافته بررسی شده و به تعدادی که در مراحل قبل بهترین جوابها برگزیده شده بودند، از بهترین جوابهای جهش یافته برداشته میشود و با همان تعداد از بدترین جوابهای جامعه مرجع جایگزین میگردد. این رویه تا فرارسیدن شروط توقف ادامه مییابد.
الگوریتم سیستم ایمنی مصنوعی به دلیل ساختار خود نقاط قوتی را در مقابل سایر الگوریتمها دارا است. از آنجا که این الگوریتم همزمان دستهای از جوابها را مورد بررسی قرار میدهد توانایی جستجوی همزمان نقاط متفاوتی از فضای حل را دارا میباشد و این مسئله توانایی الگوریتم برای رسیدن به بهینه کلی را افزایش داده و از به دام افتادن الگوریتم در بهینه موضعی جلوگیری میکند. به علاوه از آنجا که این الگوریتم فاقد عملگر تقاطع است در شرایط مساوی سرعت بالاتری نسبت به الگوریتم ژنتیک داشته و نیز از آنجا که عملگرهای بازتولید و جهش نیز در این الگوریتم تابعی از میزان تطابق جواب هستند سرعت همگرایی آن نسبت به الگوریتم ژنتیک بیشتر است.
4-2-1. شمای کلی الگوریتم سیستم ایمنی مصنوعیفرایند اجرای الگوریتم تولید انتخابی سیستم ایمنی مصنوعی مطابق شبه برنامه زیر است:
تولید جامعه اولیه آنتیبادیها(جوابها) به صورت تصادفی.
محاسبه میزان تطابق جوابهای تولید شده با آنتیبادی(تابع هدف) و مرتب کردن جامعه اولیه براساس میزان تطابق جوابها.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

انتخاب تعدادی مشخص از بهترین جوابها.
تکثیر جوابهای انتخاب شده براساس میزان تطابق آنها.
اعمال جهش روی جوابهای تکثیر شده.

user8327

......................................................................................................................................................................................................
......................................................................................................................................................................................................
با راهنمایی استاد محترم جناب آقای / سرکار خانم دکتر ............................................................................، توسط شخص اینجانب انجام شده و صحت واصالت مطالب نگارش شده در این پایان‌نامه مورد تأیید می‌باشد، و در مورد استفاده از کار دیگر محققان به مرجع مورد استفاده اشاره شده است. بعلاوه گواهی می‌نمایم که مطالب مندرج در پایان نامه تا کنون برای دریافت هیچ نوع مدرک یا امتیازی توسط اینجانب یا فرد دیگری در هیچ جا ارائه نشده است و در تدوین متن پایان‌نامه چارچوب (فرمت) مصوب دانشگاه را بطور کامل رعایت کرده‌ام.
امضاء دانشجو:
تاریخ:
بسمه تعالی

* mergeformat
تاسیس 1307
دانشگاه صنعتی خواجه نصیرالدین طوسی حق طبع و نشر و مالکیت نتایج شماره:
تاریخ:
1- حق چاپ و تکثیر این پایان‌نامه متعلق به نویسنده آن می‌باشد. هرگونه کپی برداری بصورت کل پایان‌نامه یا بخشی از آن تنها با موافقت نویسنده یا کتابخانه دانشکده ............................................ دانشگاه صنعتی خواجه نصیرالدین طوسی مجاز می‌باشد.
ضمناً متن این صفحه نیز باید در نسخه تکثیر شده وجود داشته باشد.
2- کلیه حقوق معنوی این اثر متعلق به دانشگاه صنعتی خواجه نصیرالدین طوسی می‌باشد و بدون اجازه کتبی دانشگاه به شخص ثالث قابل واگذاری نیست.
همچنین استفاده از اطلاعات و نتایج موجود در پایان نامه بدون ذکر مراجع مجاز نمی‌باشد.
* توجه:
این فرم می‌بایست پس از تکمیل، در نسخ تکثیر شده قرار داده شود.
در آغاز از استاد عزیزم جناب آقای دکتر مهران میرشمس که مرا در تدوین این پایان نامه و نیز سیر مراحل آن یاری کرده و مشاوری ارزشمند بودند ، متشکرم . ایشان که مرا در آغاز مراحل تحصیلاتم بسیار یاری فرمودند و بنده را در رسیدن به بلوغ فکری بین دانشجویان فنی مهندسی یاری کردند .

چکیده
.
.
.
.
لغات کلیدی
شبیه ساز میدان مغناطیسی، مگنتورکر ،تجهیزات تست آزمایشگاهی ،حلقه های هلمهولتز ،گشتاور دوقطبی مغناطیسی ،زیرسیستم تعیین و کنترل وضعیت ،شبیه ساز میدان مغناطیسی فضایی ، کنترل اتوماتیک شبیه ساز میدان مغناطیسی
TOC o "1-6" u 1-مقدمه PAGEREF _Toc408530999 h 17
2-مروری بر مدلهای ژئومغناطیسی PAGEREF _Toc408531000 h 19
3-معرفی مدل مغناطیسی جهانی آمریکایی/انگلیسی برای سال 2005-2010 (WMM) PAGEREF _Toc408531001 h 21
1-1تکنیک مدلسازی PAGEREF _Toc408531002 h 21
1-2اطلاعات بدست آمده از داده ها و کنترل کیفیت PAGEREF _Toc408531003 h 28
1-2-1-داده های ماهواره PAGEREF _Toc408531004 h 28
3-1-1-Orsted PAGEREF _Toc408531005 h 30
3-1-1-1-مغناطیس سنج ها PAGEREF _Toc408531006 h 31
3-1-1-2-ابزار جمع آوری داده ها[data products] PAGEREF _Toc408531007 h 31
3-1-2-CHAMP PAGEREF _Toc408531008 h 32
3-1-2-1-مغناطیس سنج ها PAGEREF _Toc408531009 h 32
3-1-2-2-وسایل جمع آوری داده ها PAGEREF _Toc408531010 h 32
3-1-3-SAC-C PAGEREF _Toc408531011 h 34
3-2داده های پایش PAGEREF _Toc408531012 h 34
3-3تامین تجهیزات PAGEREF _Toc408531013 h 35
3-4جمع آوری داده ها و کنترل کیفیت PAGEREF _Toc408531014 h 36
3-5انتخاب داده برای WMM2005 PAGEREF _Toc408531015 h 38
3-6انتخاب و پیش پردازش برای مدل ها PAGEREF _Toc408531016 h 40
3-7انتخاب برای توانایی پیشگویی پیشرو تا 2010 PAGEREF _Toc408531017 h 40
3-8روشهای مدلسازی PAGEREF _Toc408531018 h 41
3-9پیشبینی تغییرات ارضی PAGEREF _Toc408531019 h 41
3-10تکنیکهای وزندهی به دادهها PAGEREF _Toc408531020 h 41
3-11قطب مغناطیسی و محل دوقطبی خارج از مرکز PAGEREF _Toc408531021 h 42
3-12پارامتریسازی مدل PAGEREF _Toc408531022 h 43
3-13ضرایب مدل PAGEREF _Toc408531023 h 46
1-معادلات به کار گرفته شده PAGEREF _Toc408531024 h 52
1-1مؤلفه های شتاب جاذبه را بصورت زیرمی باشد: PAGEREF _Toc408531025 h 52
1-2مدل باد خورشیدی پارکر به صورت زیر محاسبه می گردد. PAGEREF _Toc408531026 h 53
1-3برای محاسبه پارامتر های میدان مغناطیسی، مؤلفههای برداری میدان X'، Y'و Z'در مختصات ژئودزی به صورت ذیل محاسبه میشوند: PAGEREF _Toc408531027 h 55
1-4پارامترهای ناشی از اتمسفر زمین PAGEREF _Toc408531028 h 57
1-میدان مغناطیسی چیست ؟ PAGEREF _Toc408531029 h 63
2-مبانی فیزیکی پیچه هلمهولتز PAGEREF _Toc408531030 h 64
2-1میدان مغناطیسی حلقه PAGEREF _Toc408531031 h 65
2-2پیچه هلمهولتز و میدان مغناطیسی آن PAGEREF _Toc408531032 h 67
2-3ویژگی و کاربردهای حلقه های هلمهولتز PAGEREF _Toc408531033 h 69
2-4تغییرات میدان تولیدی توسط حلقه های هلمهولتز در فضای بین حلقه ها PAGEREF _Toc408531034 h 70
2-4-1-جابجایی در راستای محور حلقه ها PAGEREF _Toc408531035 h 70
2-4-2-جابجایی عمود بر راستای محور حلقه ها : PAGEREF _Toc408531036 h 78
2-4-2-1-نحوه محاسبه مؤلفه های مغناطیسی در یک نقطه از فضا PAGEREF _Toc408531037 h 78
2-4-2-2-میدان تولیدی توسط دوجفت حلقه PAGEREF _Toc408531038 h 93
2-5القاء و القاء متقابل PAGEREF _Toc408531039 h 94
2-6شار میدان مغناطیسی : PAGEREF _Toc408531040 h 96
2-7اصل القاء PAGEREF _Toc408531041 h 98
2-8نیروی محرکه الکتریکی : PAGEREF _Toc408531042 h 98
2-9قانون القاء فارادی PAGEREF _Toc408531043 h 99
2-10قانون لنز PAGEREF _Toc408531044 h 100
2-11پدیده خود القایی و ضریب خود القایی PAGEREF _Toc408531045 h 100
2-12القاء متقابل PAGEREF _Toc408531046 h 101
2-13فرمول نویمن PAGEREF _Toc408531047 h 103
2-14تاریخچه حلقه های هلمهولتز PAGEREF _Toc408531048 h 105

TOC c "تصویر" تصویر 1-1- شمایی از خطوط میدان مغناطیسی زمین PAGEREF _Toc408488972 h 21
تصویر 2- شمای جریان پلاسما در اطراف زمین PAGEREF _Toc408488973 h 23
تصویر 3- نمای ماهواره اورستد PAGEREF _Toc408488974 h 28
تصویر 4-نمای روبروی ماهواره چمپ PAGEREF _Toc408488975 h 30
تصویر 5- ماهواره SAC-C در مدار PAGEREF _Toc408488976 h 32
تصویر 6-مناطق پایش گر در نقاط مختلف زمین PAGEREF _Toc408488977 h 34
تصویر 7- میدان تولیدی ت.سط سیم حامل جریان PAGEREF _Toc408488978 h 62
تصویر 8- میدان در نقطه ای روی محور تک حلقه PAGEREF _Toc408488979 h 64
تصویر 9- حلقه های هلمهولتز PAGEREF _Toc408488980 h 65

TOC h z c "جدول" جدول 1- معرفی مدل های مختلف ژئومغناطیسی و مشخصات آنها PAGEREF _Toc408489035 h 19جدول 2-دامنه تغییرات اجزاء مغناطیسی و GV در سطح زمین PAGEREF _Toc408489036 h 27جدول 3- حل مثال عددی برای مدل شتاب ناشی از میدان جاذبه زمین PAGEREF _Toc408489037 h 52جدول 4- مدل پارامتر های ناشی از میدان مغناطیسی زمین PAGEREF _Toc408489038 h 56جدول 5- مدل پارامتر های ناشی از اتمسفر زمین PAGEREF _Toc408489039 h 58

مقدمه
ماهواره ها ابزار و تجهیزاتی بودند که انسان با دستیابی به آنها توانست به امکانات و توانایی هایی دست یابد که تا آن زمان فقط آنها را در رویا و خیال می دید . در واقع انسان توانست به چشم ها و بازوهایی دست یابد که به وسیله آنها بتواند در محیطهایی حضور یابد که امکان حضور فیزیکی اش در آنها وجود نداشت . به سرعت این تکنولوژی جدید جای خود را در زندگی بشر پیدا کرد و توانست به عاملی تعیین کننده در امور زندگی بشر از فرهنگی و اقتصادی گرفته تا نظامی و سیاسی ، تبدیل شود .
با آغاز به کار اولین ماهواره مباحث جدیدی نیز مطرح شد که اهمیت و ارزشی کمتر از خود ماهواره نداشت . اکتشاف درباره محیط فضا و یافتن عوامل تأثیر گذار بر سامانه های فضایی ، نحوه تأثیر پذیری سامانه های فضایی از این عوامل مؤثر ، چگونگی مقابله و کنترل این عوامل و در صورت امکان استفاده مفید از آنها ، راهکارهای افزایش طول عمر سامانه های فضایی و بالا بردن قابلیت اطمینان آنها ؛ از مهمترین موضوعاتی بودند که ذهن دانشمندان را به خود مشغول کردند . البته علاوه بر جنبه های علمی نمی توان انکار کرد مسائل مادی و هزینه بسیار بالای ساخت یک سامانه فضایی ( و با توجه به شرایط و نیازهای فعلی کشور ما ماهواره ) از مهمترین انگیزه هایی استکه به این مسائل ارزش می بخشید . در اینجا بود که برای نخستین بار بحث آزمایش و تست پیش از پرتاب ماهواره ها ( با دیدی جامع تر سامانه های فضایی ) و شبیه سازی محیط فضا و عوامل تأثیرگذار آن بر ماهواره مطرح شد .از دید اینجانب عوامل تأثیر گذار فضایی را می توان در دو دسته تقسیم بندی کرد ؛ دسته اول عبارتند از عواملی که اساساً ماهیت مادی دارند و بدنه ماهواره در مقابل تأثیر گذاری آنها مانند سدی عمل می کند . ریز اجرام فضایی و شهابها ، ذرات سنگین و پرانرژی حاصل از تابشهای خورشیدی (بادهای خورشیدی ) ، غلظت محیط و بحث اصطکاک و تولید پسا در ارتفاعات پایین از دسته عواملی هستند که تأثیری مادی و اصطلاحاً مکانیکی بر ماهواره می گذارند .
اما دسته دوم عبارتند از عواملی که ماهیت غیر مادی داشته و بدنه ماهواره بر عمق تأثیر آنها بی تأثیر است . در واقع این عوامل کل ماهواره از بدنه گرفته تا زیرسیستمهای داخلی را یکجا تحت تأثیر قرار می دهند . از مهمترین این عوامل میدان گرانش زمین و دیگر اجرام آسمانی و نیز میدان مغناطیسی زمین ( به دلیل اینکه ماهواره در فضای مغناطیسی زمین قرار دارد ) هستند .
هرچند که میدان مغناطیسی به عنوان یکی از تاثیر گذارترین عوامل خارجی در تعیین طول عمر و قابلیت اطمینان ماهواره ها ( تا حدودی دیگر سامانه های فضایی ) در پاسخگویی به نیازهای مأموریتی بسیار مؤثر است اما اطلاعات ما درباره آن بسیار اندک است . حتی ما درباره اینکه آیا در اطراف کرات آسمانی دیگر در منظومه ما و یا در اطراف کرات منظومه های دیگر میدان مغناطیسی وجود دارد یا نه اطلاعات مستدلی نداریم . ولی از آنجاییکه دانشگاهها و مؤسسات تحقیقاتی در دنیا در حال تدوین نقشه مغناطیسی فضا هستند ، جای امید وجود دارد . این در واقع گام آغازین در راه تحقیقات الکترومغناطیس فضایی است که البته از سالها پیش بخش مطالعاتی آن آغاز شده است .
همانطور که بیان شد میدان مغناطیسی یکی از مهمترین عوامل تأثیر گذار بر ماهواره محسوب می شود که به واسطه ماهیت غیر مادی اش تمام اجزاء ماهواره از بارمحموله گرفته تا زیرسیستمهای مختلف را یکجا تحت تأثیر قرار می دهد ؛ به عنوان نمونه میدان مغناطیسی بر اجزاء مخابراتی ماهواره ( چه به عنوان بارمحموله ماهواره های مخابراتی و چه به عنوان زیرسیستم مخابرات) تأثیر گذار است ؛ همین میدان با تغییر خطوط میدان مغناطیسی در داخل موتورهای حالت گاز و اصطلاحاً الکتریکی یا یونی بر میزان تراست و ضربه ویژه قابل استحصال از آنها تأثیر می گذارد ؛ میدانهای مغناطیسی با توان بالا این پتانسیل را دارند که بر دوربینها و سنسورهایی که به عنوان بارمحموله مورد استفاده قرار می گیرند تأثیر گذارده و راندمان کاری آنها را کاهش دهند . از سوی دیگر این میدان مغناطیسی
است که بر ذرات بار دار پر انرژی اثر می کند و خط سیر آنها را مشخص کرده و به آنها انرژی مضاعف می دهد و با انرژی و تکانه بسیار آنها را بر بدنه ماهواره ، آرایه های خورشیدی و دیشها و آنتنها می کوبد و به شدت موجب افت در کارایی آنها و کاهش طول عمر آنها و به دنبال آن کاهش طول عمر ماهواره می شود . برای مثال برای آرایه های سیلیکونی در مدار LEO افت راندمان سالانه به 3.75% می رسد که 2.50% آن ناشی از برخورد ذرات باردار پر انرژی است]2 [.
از سوی دیگر یکی از با سابقه ترین ابزارهای کنترلی ماهواره ها مگنتورکرها هستند . مگنتورکرها با اندرکنش با میدان مغناطیسی زمین این توانایی را دارند تا ماهواره را در راستای دو محور کنترل کرده و یا پایدار کنند و یا از روی چرخهای مومنتومی بار برداری کنند . دوپل مغناطیسی تولیدی برای مگنتورکرها مهمترین و برای کنترل ماهواره تعیین کننده ترین فاکتور است . تاکنون هیچ راه مستقیمی برای تست بزرگی دوپل تولیدی مگنتورکرها ارائه نشده است ]5 [. در این پایان نامه بعد از تأکید بر تمامی تواناییهای شبیه ساز میدان مغناطیسی ، نگاهی ویژه به اندرکنش بین شبیه ساز و مگنتورکر شده و الگوریتم و روشی برای تعیین دوپل تولیدی مگنتورکر مفروض با استفاده از " شبیه ساز میدان مغناطیسی " ارائه شده است .
آنچه ذکر شد دلایلی است که مقوله بررسی میدان مغناطیسی را به مقوله ای ارزشمند و قابل سرمایه گذاری مالی و زمانی تبدیل می کند . در عین حال به مسئله انجام تست و آزمایش اندرکنشهای اجزاء مختلف ماهواره با میدان مغناطیسی ، ارزش و اهمیتی صد چندان می دهد .
اما بدیهی است که برای تست عملکرد اجزاء تحت تأثیر میدان مغناطیسی ، باید بتوانیم میدانی قابل کنترل و در عین حال قابل پیش بینی بسازیم . بنابر آنچه در فصل اول تحت عنوان " ماهیت و ذات میدان مغناطیسی و روابط حاکم بر آن " مورد بحث و بررسی قرار می گیرد ؛ خواهیم دید که میدان مغناطیسی کمیتی برداری و در عین حال بسیار حساس است که با تغییر مکانی جزئی ، اندازه و راستای آن به شدت تغییر می کند و همین مسئله کار با آن را دشوار و در عین حال ظریف می سازد . در علم فیزیک ( در حال حاضر و در دنیای مواد نرمال ) تنها یک وسیله وجود دارد که این توانایی را دارد که میدانی یکنواخت و قابل پیش بینی در محدوده ای کوچک از فضا را تولید کند که " پیچه های هلمهولتز " خوانده می شود . به بیان دیگر چنین می توان گفت که :
برای تست تأثیرگذاری میدان بر ماهواره در وحله اول باید میدانی قابل کنترل و پیش بینی تولید کرد که با توجه به نیاز ما قابل تغییر باشد .
در وحله دوم برای تولید میدانی که در بالا توصیفات آن ذکر شد نیاز است تا پیچه های هلمهولتز ساخته شود .
در واقع بررسی میدان مغناطیسی زمین ، شبیه سازی آن و بررسی تأثیرات آن بر ماهواره نیازهایی بودند که به عنوان مبنای اصلی بحث این پایان نامه مطرح هستند . عواملی که موجب شدند تا عنوان "طراحی و ساخت شبیه ساز میدان مغناطیسی" برای پایان نامه پیش روی شما انتخاب و تصویب شود .

شاید اگر بگویم دو ترم آغازین در مقطع کارشناسی ارشد سخت ترین دوران تحصیلم بوده است گزاف نگفته باشم اما اکنون با تمام وجود می بینم و احساس می کنم که انتخاب اشتباهی نکرده ام .

خط سیر و روال فصول گزارش پایان نامه
در مورد یک کار عملیاتی المانهای مختلفی وارد بحث می شوند که گاه نیاز به بررسی مطالعاتی و یا نیاز به کار عملیاتی و گاه نیاز به هر دو این موارد دارند . در این گزارش نیز چنین نگاهی حاکم است و سعی شده تا تک تک المانهای مؤثر در انجام پروژه تک تک تفکیک شده و بررسی های تئوریک و کارهای عملیاتی انجام شده بر آن به تفصیل شرح داده شوند و در صورت ضرورت تصاویر ، نقشه ها و جداولی نیز به جهت افزایش توانایی انتقال مطالب به کار گرفته شوند . در نهایت نیز تستها و آزمایشاتی که از دستگاه نهایی گرفته شده است ارائه شده است .
در فصل اول با عنوان " ماهیت میدان مغناطیسی و حلقه های هلمهولتز " به بررسی ذات میدان مغناطیسی ، حلقه های هلمهولتز و روابط حاکم بر آنها خواهیم پرداخت در انتهای این فصل شرحی از سیر تاریخی شبیه سازی میدان ارائه خواهد شد . در فصل دوم با عنوان " نشط میدان مغناطیسی در فضا و مگنتورکر " به بررسی روابط گسترش میدان مغناطیسی در فضا و تأثیرات آن بر محیط مادی و اندرکنش میدان با مگنتورکر به عنوان محیطی مادی خواهیم پرداخت . در نهایت نیز به توصیف الگوی حرکتی مگنتورکر تحت تأثیر میدان خارجی خواهیم پرداخت و سعی می کنیم تا رابطه ای برای توصیف حرکت آن استخراج کنیم . فصل سوم با عنوان " سنسور و مدار راه انداز دو المان دیگر شبیه ساز میدان " فصلی است کم حجم که به بررسی و توصیف دو المان اختیاری و قابل انتخاب برای شبیه ساز می پردازد . فصل چهارم با عنوان " فرایند و نقشه های ساخت شبیه ساز میدان مغناطیسی " قلب پایان نامه است که در آن به بررسی مراحل و نقشه های ساخت شبیه ساز خواهیم پرداخت . فصل پنجم تحت عنوان " نتایج تستهای شبیه ساز میدان مغناطیسی " به توصیف نتایج تستهای گسترده ای که برای کالیبراسیون شبیه ساز انجام شده است ؛ می پردازد . در فصل ششم با عنوان " الگوریتم کاری شبیه ساز میدان مغناطیسی " به توصیف روش و ساختار برنامه ای خواهیم پرداخت که بر مبنای آن و با استفاده از دستگاه شبیه ساز میدان مغناطیسی می توان برای اولین بار ، دوپل مغناطیسی مگنتورکر را به شکل مستقیم استخراج کرد. در انتهای این فصل شرح آزمایشی که مگنتورکر نانوساختار NSFe99.99-1 پشت سر گذاشته است و نتایج حاصل از تست آن با استفاده از سامانه شبیه ساز میدان مغناطیسی (سامانه کوثر100) ارائه شده است.
همانطور که گفتیم در فصل پنج نتایج تست "سامانه شبیه ساز میدان مغناطیسی" ارائه شده است. لازم بود تا صحت این نتایج مورد تأیید قرار گیرد و برای این منظور از نرم افزار شبیه ساز Vizimag استفاده شد. در ضمیمه الف، شبیه ساز مذکور و نتایج حاصل از استفاده آن ارائه شده است.

36474401184275400000328422019050فصل اول
00فصل اول

-79565523495مدلهای رایج شبیه سازی
میدان مغناطیسی زمین
00مدلهای رایج شبیه سازی
میدان مغناطیسی زمین

مقدمهیکی پدیده های بسیار مهم که در این بخش بررسی می شود، میدان مغناطیسی زمین است. منشاء به وجود آمدن میدان مغناطیسی زمین سه عامل مهم است. در حدود 99 درصد این عوامل ناشی از میدان های درونی زمین بوده که به صورت خاص شامل مواد موجود در هسته زمین و همچنین مواد مغناطیسی موجود در قسمت های سخت زمین است. تغییرات میدان مغناطیسی زمین بسیار کند و آهسته بوده و 05/0 در صد در سال است، یعنی در هر 100 سال فقط 5 در صد تغییر می یابد .
هر میدان مغناطیسی دارای دو قطب است که قطب های میدان مغناطیسی زمین در سیبری و جنوب استرالیا قرار دارند.مینیمم اندازه میدان مغناطیسی در اطراف استوا بوده که برابر با تسلا و بیشترین اندازه آن نیز در اطراف قطب ها برابر با تسلا است.
بدین ترتیب مشخص می شود که میدان مغناطیسی زمین دارای دو بیشینه در قطب ها و دو کمینه در استوا است.کمترین مقدار میدان مغناطیسی در ناحیه ای محصور بین آمریکای جنوبی، آفریقای جنوبی و قطب جنوب است. توفان های ژئومغناطیسی نیز سبب تغییری برابر در میدان مغناطیسی زمین می شوند. هنگامی که بادهای خورشیدی به سمت سیاره های منظومه شمسی میوزند، میدان مغناطیسی این سیاره ها در برابر باد های خورشیدی عکس العمل نشان می دهد. خطوط میدان مغناطیسی زمین در اثر بادهای خورشیدی در راستای وزش باد متراکم شده و ناحیه وسیع متراکمی را در مقابل آن ها ایجاد می کند که مگنتوسفیر نامیده می شود. ناحیه مگنتوسفیر به صورت ناحیه ای قطره ای شکل در اطراف زمین ایجاد می شود. آثار ناشی از پدیده مگنتوسفیر نیز 1 در صد علل وجود میدان مغناطیسی زمین را شامل می شود.در بحث میدان مغناطیسی زمین، نیاز به شناختن عامل دیگری به نام یونوسفر داریم که در فصول آتی به معرفی مدل مربوطه خواهیم پرداخت. این ناحیه از اهمیت کاربردی خاصی برخوردار بوده زیرا بر امواج رادیویی تاثیر گذار است.

مروری بر مدلهای ژئومغناطیسیدر سال 1600 گیلبرت، شدت میدان مغناطیسی زمین را کشف نمود و در سال 1634، گلیبراند دریافت که این میدان با زمان تغییر میکند. این پدیده در ابتدا در سامانه های ناوبری دریائی و هوائی به کار گرفته شد. در سال 1830 مشاهدات ژئومغناطیسی به طور پیوسته بازبینی شد که گزارش این بررسی ها هر 5-10 سال انجام گرفت. در سالهای 1590 الی 1990 یک ساختار پیوسته کاربردی از مدل میدان مغناطیسی در قالب 365694 مشاهده تهیه گردید.
در 20 سال اخیر مشاهدات ماهواره ها دقت این مطالعات را بالا برده، به صورتی که یک پوشش جهانی درست و اطلاعات کامل میدانی با دقتی معادل 5 تا 10 نانو تسلا تهیه میکنند.
در جدول1 به نمونه هایی از این مدل ها و دامنه کاربرد آنها اشاره می کنیم:
نام مدل دامنه کاربرد درجه مدل ساختار مدل محدودیت سنجش(Km)
NGDC-720 شدت میدان های مگنتوسفریک و میدان های پوسته و اصلی 16 تا720 هارمونیک های کروی 56 الی2500
IGRF اعماق درونی زمین، پوسته، یونوسفر و مگنتوسفر است 13 هارمونیک های کروی تا 700
EMAG3 نقشه مغناطیسی دیجیتالی جهانی - اطلاعات ماهواره ها و زیردریاییها و نمونه گیری های مغناطیس زمینی ارتفاع 5
EEJM1 محاسبه جریان الکتریکی قوی در طول استوائی و در منطقه E لایه یونوسفر - هارمونیک های کروی -
MF6و
MF5 تعیین مسیر مغناطیسی اقیانوس-تخمین عمر پوسته های اقیانوسی 120 هارمونیک های کروی تا 333
POMME4 شدت میدان های اصلی زمین 720 ترکیبی از مدل های MF5 و NGDC-720 1000
WMM شدت میدان های اصلی زمین 12 هارمونیک های کروی تا 700
جدول SEQ جدول * ARABIC 1- معرفی مدل های مختلف ژئومغناطیسی و مشخصات آنهادر بخش بعد به مدل مغناطیسی جهانی (WMM) می پردازیم:

معرفی مدل مغناطیسی جهانی آمریکایی/انگلیسی برای سال 2005-2010 (WMM)این مدل مشتمل بر یک بررسی کامل از داده های مورد استفاده، تکنیک های مدلسازی به کار رفته و نتایج بدست آمده در تولید مدل مغناطیسی جهانی(WMM) برای سال 2005 است. این مدل که تا سال 2010 معتبر است، برای استفاده در سیستم های جستجوی هوایی و دریایی استفاده می شود. WMM مدلی از میدان مغناطیسی اصلی زمین است یعنی همان قسمت از میدان که در هسته زمین تولید می شود.
مدل مغناطیس جهانی یک محصول از آژانس زمین و فضای ملیNGA ایالات متحده است. WMM توسط مرکز داده های زمین فیزیک ملی NGDC ایالات متحده و سرویس زمین شناسی بریتانیا BGS به کمک اطالاعات و سرمایه گذاری NGA ایالات متحده و آژانس تصویر نگاری جغرافیایی وزارت دفاع DGIA بریتانیا تولید شده است.
مدل مغناطیسی جهانی، مدل استاندارد مورد قبول در سازمان دفاع ایالات متحده، وزارت دفاع بریتانیا، سازمان پیمان آتلانتیک شمالیNATO)) و استاندارد مورد استفاده در سیستم های ناوبری و تعیین وضعیت اداره آبنگاری جهان (WHO) است. این مدل در سیستم های ناوبری عمرانی نیز به صورت گسترده استفاده می شود.
تکنیک مدلسازیمیدان مغناطیسی زمین،B ، یک مقدار برداری است که با توجه به مکانr و زمان t تغییر می کند. آن میدان مغناطیسی زمین که توسط یک سنسور مغناطیسی بر روی زمین و یا بالای سطح زمین اندازه- گیری می شود، در واقعیت یک ترکیب از میدان های مغناطیسی مختلف است که توسط چندین منبع مختلف تولید شده است. این میدان ها بر روی هم می افتند و از طریق فرایند القا با هم اندرکنش دارند. اهم این منابع ژئومغناطیسی عبارتند از:
الف) میدان اصلی(تصویر1-1)، که در لایه بیرونی هسته مذاب و هادی زمین تولید می شود.Bm
ب) میدان پوسته ای ناشی از منتلِ (قشر زیر پوسته و حول هسته زمین) یا بالای زمین.Bc
ج) میدان ترکیبی مزاحم ناشی از جریانهای الکتریکی که در ارتفاع بالای جو و مگنتوسفیر جاری بوده و باعث القای جریانهای الکتریکی در زمین و دریا می شوند.Bd
بدینسان، میدان مغناطیسی مورد بحث به صورت حاصل جمع این میدانها خواهد شد.
(1-1) Br,t=Bmr,t+Bcr,t+Bdr,tBm قسمت دائم میدان است، که 95% از کل قدرت میدان را در سطح زمین به خود اختصاص می دهد. تغییرات مستقل تغیییر آرام در زمان Bm است. میدان ناشی از صخره های کروستال مغناطیسیBc، نسبت به فضا تغییر میکند ولی با توجه به مقیاس زمانی که در اینجا در نظر گرفته می شود، نسبت به زمان ثابت فرض می شود.

تصویر SEQ تصویر * ARABIC 1-1- شمایی از خطوط میدان مغناطیسی زمینبا توجه به شکل1-1 میدان مغناطیسی اصلی ناشی از جریانهای مذاب در لایه بیرونی هسته.خطوط میدان تقریباً غیر قطبی شده، بالای سطح زمین، در جنوبی ترین قسمت همیوسفر به سمت بیرون و در شمالی ترین قسمت آن به سمت داخل هستند.
Bc از نظر مقدار غالباً خیلی کوچکتر ازBm است. میدان کروستال نسبت به مقیاس های زمانی مورد نظر در این مطالعه، ثابت است. میدان ناشی از جریانهای یونوسفر و مگنتوسفیر و جریانهای القایی منتجه آنها در منتل و کراست زمین،Bd، هم نسبت به مکان و هم نسبت به زمان تغییر می کند. WMM فقط میدان مغناطیسی اصلی زمین را نشان می دهدBm)). برای ایجادکردن یک مدل دقیق از میدان مغناطیسی اصلی، لازم است که اطلاعات کافی با یک پوشش جهانی مناسب و حداقل سطح اغتشاشات در دست داشت. مجموعه اطلاعات ماهواره دنیش اورستد و جرمن چمپاین نیازمندیها را تامین می کند. هر دو ماهواره اطلاعات برداری و اسکالر دارای کیفیت بالایی را در تمام طول ها و عرض های جغرافیایی تامین می کنند. اما این عمل در طول کل دوره های زمانی مورد نیاز برای مدلسازی انجام نمی گیرد. بر این اساس این اطلاعات ماهواره ای با اطلاعات متوسط ساعتی از پایش زمینی که تقریباً در تمام بازه زمانی مورد دلخواه به صورت پیوسته در دسترس است، دائماً افزایش می یابد. هرچند که فضای پوشش ضعیفی بدست دهد. بدینسان اطلاعات بدست آمده از پایش، قیود با ارزشی را برای زمان تغییر میدان مغناطیسی زمین فراهم می کنند. استفاده همزمان از اطلاعات بدست آمده از پایش زمینی و همچنین اطلاعات دریافتی از ماهواره، یک مجموعه اطلاعات دارای کیفیت قابل قبول برای مدلسازی رفتار میدان مغناطیسی اصلی نسبت به زمان و مکان برای ما تامین می کند.
Bc دارای تغییرات فضایی در دامنه چندین متر تا چندین هزار کیلومتر است و نمی توان آن را با مدل های هارمونیک کروی دارای درجه پایین، به طور کامل مدل کرد. بر همین اساس، WMM شامل تاثیر هم مرز کراستنیست جز برای آن قسمت با طول موج بسیار بالا.Bc عموماً در دریا کوچکتر از خشکی است و با افزایش ارتفاع، کاهش می یابد. مغناطیسی شدن صخره در اثرBc، می تواند یا به صورت القایی(بوسیله میدان مغناطیسی اصلی) یا دائمی و یا یک ترکیب از هر دو باشد.
اصل این پدیده این است که جو در نور روز در ارتفاع های 100-130 کیلومتر ، در اثر تشعشع خورشید یونیزه شده و توسط باد و جزر و مد در میدان اصلی زمین به حرکت در می آید و بدینسان شرایط لازم برای فعالیت یک دینام (حرکت یک هادی در یک میدان مغناطیسی) فراهم می شود. دیگر تغییرات روزانه و سالیانه، در اثر چرخش زمین در میدان مگنتوسفر خارجیدر یک مرجع خورشید آهنگ ایجاد می شود. تغییرات بی قاعده ناشی از توفان های مغناطیسی و ریز توفانها است. توفانهای مغناطیسی در حالت کلی دارای سه فاز هستند: فاز اولیه – اغلب همراه با یک شروع ناگهانی و افزایش میدان افقی در عرض های جغرافیایی میانی -یک فاز اصلی و یک فاز احیاء. فاز اصلی حاوی یک تشدید از جریان حلقه(شکل1-2) از صفحه پلاسما است.

تصویر SEQ تصویر * ARABIC 2- شمای جریان پلاسما در اطراف زمیندر شکل1-2 سیستم جریان مگنتوسفری(قرمز) یک میدان مغناطیسی تقریبا یکنواخت، نزدیک به زمین تولید می کند. جریانهای همخط با میدان (زرد)، جریانهای مگنتوسفری را با جریانهای یونوسفر نزدیک زمین جفت می کنند. [افتر کیولسون و راسل 1995]
در طول فاز احیاء، جریان حلقه به حالت نرمال در مدت چند روز و ریز توفانهای زیر مجاور مرتبط باز می گردد. طوفان مغناطیسی و اثرات ریز توفانها در عرض جغرافیایی بزرگ مغناطیس زمین عموماً شدیدتر هستند. چرا که در آنجا، منطقه یونیزه قسمتهای بالایی جو(یونوسفر)توسط جریانهای هم خط میدان، با مگنتوسفیر جفت شده اند و در نتیجه بشدت از میدان مغناطیسی درون سیاره ای و سیستم های جریان در دنباله مغناطیسی تاثیر می پذیرند. هم تغییرات میدان مزاحم با قاعده و هم بی قاعده، هر دو با فصل و چرخه فعالیت مغناطیسی خورشید مدوله می شوند. میدان مزاحم اولیه اغلب به عنوان میدان خارجی شناخته می شود، چراکه منابع اصلی آن-یونوسفر و مگنتوسفر-خارج از سطح زمین که اندازه گیریهای مغناطیس زمین به صورت سنتی در آن انجام می شود، هستند. با اینحال این جمله می تواند گمراه کننده باشد و در هنگام استفاده از داده های ماهواره ای از آن صرفنظر می کنیم. چرا که یونوسفر پایین تر از ارتفاعی قرار دارد که این اطلاعات می آیند و بر همین اساس به صورت کامل در بطن این سطح پایش قرار گرفته است. برای اطلاعات بیشتر در مورد کراستال و میدانهای مزاحم (و اطلاعات کلی راجع به مغناطیس زمین) مریل و همکاران 1996 و پارکینسون1983 را ببینید.
بردار میدان مغناطیسی زمین B با 7 جزء مشخص می شود. این اجزاء عبارتند از:
– مولفه های قائمX (با شدت شمالی )
Y (با شدت شرقی)
Z (شدت عمودی-مثبت به سمت پایین)
F شدت کل، Hشدت افقی
I شیب مغناطیسی (زاویه میل، زاویه بین صفحه افقی و بردار میدان-مثبت اندازه گیری به سمت پایین)
D انحراف مغناطیسی(زاویه انحراف، زاویه افقی بین شمال حقیقی و بردار میدان- راستای مثبت اندازه گیری به سمت شرق).
GV، تغییرات شبکه
را می توان از روی مولفه های قائم با استفاده از رابطه های 1-16به دست آورد. جدول 2دامنه مقادیر مورد انتظار برای مولفه های مغناطیسی و GV در سطح زمین را نشان می دهد.
WMM برای 2005 تا 2010 یک مدل از میدان اصلی کروی-هارمونیک با درجه و مرتبه 12 برای 2005 را با یک مدل متغیر پیشگوی مستقل کروی-هارمونیک با درجه و مرتبه 8 برای دوره 2005 تا 2010 مقایسه می کند.
مدل برنامه کامپیوتری در نظر گرفته شده، مولفه های X،Y ،Z ،F ،D ، I،H و GV در مختصات زمین شناختیرا محاسبه می کند.
دامنه در سطح زمین
واحد Max Min نام جانشین نام جزء
nT 42،000 17،000- شدت شمالی مولفه شمالی X
nT 18،000 18،000- شدت شرقی مولفه شرقی Y
nT 61،000 67،000- مولفه پایین Z
nT 42،000 0 کل میدان شدت افقی H
nT 67،000 22،000 شیب مغناطیسی شدت کل F
درجه 90 90- تغییرات مغناطیسی زاویه میل I
درجه 180 180- انحراف مغناطیسی D
درجه 180 180- تغییرات مغناطیسی شبکه تغییرات شبکه GV
جدول SEQ جدول * ARABIC 2-دامنه تغییرات اجزاء مغناطیسی و GV در سطح زمیناطلاعات بدست آمده از داده ها و کنترل کیفیتداده های ماهوارهاساسی ترین مشخصه داده های ماهواره پوشش جهانی آنها است که غالباً در یک بازه نسبتاً کوچک زمانی بدست می آید. زاویه اینکلینیشن مدار (زاویه بین صفحه مداری مسیر گردش ماهواره و صفحه استوای زمین) دامنه طول جغرافیایی تحت پوشش را نشان می دهد. یک زاویه 90 درجه، پوشش 100% به دست می دهد. یک زاویه کمی کمتر یا بیشتر از 90 درجه، در مناطق کوچکی حول قطبهای جغرافیایی، فواصلی را ایجاد می کند که هیچ پوشش اطلاعاتی ندارد. مشخصه مهم دیگر داده های ماهواره این است که میدان کراستال به علت فاصله ماهواره از پوسته زمین، به شدت ضعیف شده است.
یک ماهواره با زاویه میل بالا نسبت به زمان وضعی در حالی که زمین زیر آن می چرخد، ثبوت کمتر و یا بیشتری دارد. بدینسان در مدت 24 ساعت، یک تصویر خام از زمین به دست می دهد. در این مدت زمان، ماهواره حدود 15 دور حول مدارش می گردد. با یک فاصله طولی در حدود 24 درجه. یک نقص این مدار خورشید آهنگ، این است که کل پایش در شب در یک عرض جغرافیاییمورد نظر، برای یک دوره زمانی طولانی، تقریباً زمان وضعی مشابهی دارد. در نتیجه، مدلسازی میدان های خارجی که وابسته به زمان وضعی می باشد، از روی یک چنین داده هایی می تواند مشکل باشد. ماهوارۀ مگ ست، که به مدت 7 ماه در زمستان 1979/1980 یک نقشه برداری (مساحی) دقیق بردار مغناطیسی انجام داد، یک مثال از یک مدار کاملاً خورشید آهنگ با نقص و کمبود زمان وضعی مشابه آنچه گفته شد، است. به صورت مشابه، ماهوارهSAC-C بر روی یک مدار ثابت ظهر/نیمروز قرار دارد. در حالیکه اورستد و چمپ به آرامی در زمان وضعی حرکت آرام می شوند.
حرکت آرام زمان وضعی وابسته به زاویه میل مدار است. که معمولاً به صورتی انتخاب می شود که از تضریب فرکانس های سالیانه جلوگیری کند تا قادر به تفکیک اثر هر یک از میدان مغناطیسی خارجی وابسته به سال و وابسته به زمان وضعی باشد. چون ارتباط بین ستاره نگار و مغناطیس سنج برداری درSAC-Cدارای خطاست، فقط داده های اورستد و چمپ برای تولید WMM2005 استفاده شده اند.
در ذیل به معرفی این ماهواره ها و نحوه عملکرد آنها اشاره می کنیم.
Orstedماهواره دانمارکی اورستد ماهواره ای است که برای مدل سازی میدان مغناطیسی زمین اختصاص داده شده است و داده ها را با کیفیت بالا جمع آوری و ارسال می کند و نقصی در عملکرد آن مشاهده نشدهاست.

تصویر SEQ تصویر * ARABIC 3- نمای ماهواره اورستدمغناطیس سنج هادر ساکت ترین موقعیت، نوک بوم 8 متری، مغناطیس متر اورهویزر(OVM) شدت میدان مغناطیسی را اندازه می گیرد(بدون وابستگی به راستا) و تا نیم تسلا دقت دارد. کاربرد اصلی آن، کالیبراسیون دقیق(مطلق) مقادیر اندازه گیری شده توسط ابزار CSC (سیم پیچ کروی فشرده) است. برای جلوگیری از تداخل جزئی مغناطیس مترها، در فاصله معینی از OVM، بردار میدان مغناطیسی، توسط یک مغناطیس سنج حساس CSC اندازه گیری میشود و شدت و راستا و راستای آن تعیین میگردد. این وسیله تا بازه های زمانی چند روزه تا حدود 5/0 نانو تسلا پایدار است.
ابزار جمع آوری داده ها[data products]ابزار جمع آوری داده ها برای مدلسازی میدان اصلی عبارتند ازMAG-F برای اندازه گیری شدت میدان (مقادیر اسکالر) و MAG-L برای میدان برداری.

CHAMPماهواره کوچک تحقیقاتی چمپ یک ماهواره آلمانی با ماموریت بهبود مدلهای میدان مغناطیسی و جاذبه زمین می باشد. در ابتدا ماموریت برای 5 سال در نظر گرفته شده بود ولی تا سال 2008 تمدید شد. مدار چمپ دوبار برای طولانی تر کردن مدت ماموریت، افزایش داده شده است.
ابزار مغناطیسی چمپ بسیار مشابه با ابزار اورستد است. چمپ همان ابزار مغناطیس سنج برداری و اسکالر را حمل میکند.
مغناطیس سنج هادر فاصله چهار متری از سر بوم، یک مغناطیس سنج اورهیزر با دقت پروتن یکبار در هر ثانیه،کل شدت میدان مغناطیسی را اندازه می گیرد. این وسیله، دارای دقت مطلق 5/0 نانو تسلا است.

تصویر SEQ تصویر * ARABIC 4-نمای روبروی ماهواره چمپوسایل جمع آوری داده هاوسایل علمی استاندارد چمپ از سطح 0 تا سطح 4 شماره بندی شده اند. بسته به میزان پیش پردازش که توسط آنها بر روی داده های اصلی انجام می شود، تجهیزات علمی از ابزار سطح 2 شروع می شوند که با مدارهای دقیق کالیبره، نشانه گذاری و ترکیب شده اند و به عنوان فایل های روزانه درCDF (فرمت داده های روزانه)ذخیره شده اند. تجهیزات سطح 3 آخرین اطلاعات تجزیه و تحلیل شده، اصلاح شده و کالیبره شده را مقایسه می کند.

SAC-Cفضاپیمای SAC-C آرژانتین، برای مطالعه ساختار و دینامیک جو زمین، یونوسفر و میدان مغناطیسی زمین طراحی شده بود.

تصویر SEQ تصویر * ARABIC 5- ماهواره SAC-C در مدارمغناطیس سنج برداری و ستاره نگار بسیار با نمونه های به کار رفته در اورستد شبیه هستند. داده های رسیده از این ماهواره خیلی مفید هستند چونSAC-C در یک مدار زمانی موضعی ثابت قرار گرفته است. و تکمیل کننده حرکت آرام مدارهای اورستد وچمپ می باشد. بدلیل عدم وجود کالیبراسیون دقیق، از داده های SAC-C نمی توان برایWMM2005 استفاده کرد.
داده های پایشیکی از مشخصه های اصلی پایش، پوشش زمانی طولانی و پیوسته آن در زمان، در منطقه ای که قرار است WMM استفاده شود، است. این بدین معنی است که پیش بینی میدان مغناطیسی برای سالهای متمادی در آینده چنان که مورد نیاز WMM باشد، مقدور است و اینکه تغییرات با قاعده و بی قاعده در میدان خارجی می تواند دسته بندی و اثر آنها در WMM به حداقل رسانده شود. توزیع فضایی پایش به طور اعم توسط موقعیت مورد نظر و با توجه به تبحر محلی، بودجه، تامین انرژی و وقتهای پراکنده بدست آمده است و در برخی از موقعیت ها، تا حد منطقی نسبت به زمان ثابت است.
تامین تجهیزاتسه نوع تجهیزات در یک پایش وجود دارد. اولین گزینه متغیر سنج ها را مقایسه می کند که اندازه گیری های پیوسته از بردار مغناطیسی میدان زمین انجام می دهد. هم متغیر مترهای دیجیتال و هم آنالوگ، هر دو نیاز به محیط کنترل شده دمایی و سکوهای کاملاً ثابت دارند. ولی می تواند عموماً بدون دخالت دست کار کند. عادی ترین و ساده ترین نوع متغیر مترهای امروزی، مغناطیس متر سه محوره است. دومین گزینه، شامل ابزار دقیق است که می توانند از میدان مغناطیسی زمین بر مبنای واحد های پایه ای فیزیکی دقیق و یا ثابت های فیزیکی عمومی، اندازه گیری نمایند.
ساده ترین نوع ابزار دقیق، شاردروازه های اندازه گیری زاویه است. برای اندازه گیری D و I و مغناطیس مترهای با دقت پروتون برای اندازه گیریF.
در ابزار اول، واحد اندازه گیری زاویه است. برای تعیین این زوایا از سنسور شار ورودی که بر روی تلسکوپ یک زاویه سنج غیر مغناطیسی نصب شده است، استفاده می شود تا زمان عمود شدن آن بر بردار میدان مغناطیسی باشد ردیابی گردد.

تصویر SEQ تصویر * ARABIC 6-مناطق پایش گر در نقاط مختلف زمینبرای تعیین D,I شمال واقعی با مراجعه به یک علامت ثابت در یک ارتفاع مشخص تعیین می شود. این کار با پایش نجومی انجام می گیرد. اندازه گیری توسط یک شاردروازه زاویه سنج تنها به صورت دستی انجام می گیرد. در حالیکه، یک مغناطیس متر پروتونی می تواند به صورت خودکارکار کند.
سومین گزینه مقادیر اندازه گیری شده نیمه دقیق را مقایسه می کند. این ها ابزار هایی هستند که انحراف از یک میدان که به صورت با قاعده و با استفاده از یک ابزار دقیق تعیین شده اند.
جمع آوری داده ها و کنترل کیفیتBGSو NGDCاطلاعات و داده های پایش را از طریق مشارکت فعالانه خود در سیستم مرکزی دادههای دنیا جمعآوری می کند .
آنها اطلاعات و داده های مناسب برای مدلسازی میدان مغناطیسی را نگه می دارند. با سازمانهایی که داده های پایش مغناطیسی را به کار می برند در تماس اند و با سایر WDC ها همکاری دارند.
هر سال BGS درخواست خود راجع به دریافت آخرین داده ها و سایر اطلاعات وابسته را به همه سازمانهایی که در حوزه پایش دادهها کار میکنند میفرستد. WDC ها در ادینبورگ BGS و بولدرNGDC مقادیر متوسط سالیانه یکسانی را برآورد می کنند.WDC ها در کپنهاگ و بولدر نیز مقادیر متوسط ساعتی یکسانی را بر آورد می کنند. مقادیر متوسط ساعتی که برای WMM استفاده می شوند، از سایت WDC کپنهاگن دریافت می شوند.
BGS نیز فعالانه داده های پایش جهانی را از طریق مشارکت خود در اینترمگنت (بین مغناطیسی) جمع آوری می کند. کار اینتر مگنت ایجاد یک شبکه جهانی از پایش گره های مغناطیسی مرتبط به منظور هماهنگ کردن مشخصات استاندارد مدرن برای تجهیزات اندازه گیری و ثبت و ضبط داده ها است. اینکه بتواند از این طریق تبادل داده ها را تسهیل کرده و تولید ابزار مغناطیس سنج زمین را به زمان واقعی نزدیک کند.
کیفیت داده ای که یک پایشگر تولید می کند، بستگی به مسئولیت پذیری اپراتور دارد. مهمترین جنبه مدلسازی جهانی پایداری خطوط پایه است. یک خط پایه عبارت است از اختلاف بین داده های متغیر متری کالیبره شده، و پایش های دقیق. یک خط پایه با نقاط بسیار، پراکندگی پایین، حرکت آرام و جابجایی کم نشانه ای از یک کیفیت عالی است. نقشه های خطوط پایه برای پایش های اینتر مگنت بر رویCD های سالیانه ای از داده های تعیین شده آورده شده اند. اطمینان از کیفیت و کنترل اندازه ها، به غیر از آنچه که توسط کاربر پایش گری انجام می گیرد، توسط اینتر مگنت از طریق برنامه استانداردسازی پایشگری آن انجام می گیرد. مراکز داده های جهانی، و با شرکت بسیاری از کاربران پایشگر در کارگاه های پایشگری بین المللی مرتبط با مغناطیس زمین آخرین پروسه کنترل کیفیت پایش از اجرای WMM توسط BGS انجام می گیرد. برای متوسط های ساعتی، این عمل شامل رسم کلیه داده ها برای تشخیص خطا های توپوگرافیک و پرش ها و رسم اختلاف بین داده ها و مدل های جهانی اولیه برای تشخیص حرکت های آرام است.
انتخاب داده برای WMM2005WMM میدان اصلی (Bm) و تغییرات آرام آن با زمان را مدل می کند (تغییرات سکیولار برای 2005 تا 2010). با این وجود، میدان مغناطیسی زمین آنچنان که بر روی سطح زمین اندازه گیری می شود و یا در ماهواره ، عرض جغرافیایی یک ترکیب از چندین میدان مغناطیسی است. ریسک بایاس کردن مدل Bm بسیاری از میدانهای تولید شده در خارج از زمین بسیار متغیر است و نسبت به زمان و مدلسازی آنها مشکل است. پروسه انتخاب داده ها از این رو به منظور کمینه کردن سهم این میدان ها و اثرت القا شده آنها در زمین است. سه گزینه استاندارد وجود دارد:
1- اطلاعات فقط در نیمه شب زمین انتخاب شده اند
2- داده فقط در دوره های آرام مغناطیسی انتخاب شده است
3-فقط داده های اسکالر در عرض های جغرافیایی بالا انتخاب شده اند.
اولین استاندارد برای کمینه کردن توزیع سهم میدان مغناطیسی تولید شده در یونوسفر بسیار موثر است. چون هدایت یونوسفر تنها در نیمه روز زمین بالا است. دوره های آرام مغناطیسی شامل آن بازه های زمانی است که میدانهای خارجی به شدت ضعیف هستند و زمانیکه آنها نسبت به زمان تغییرات اضافی ندارند. شناخت دوره های آرام مبتنی بر اندیس های DST واست. (محاسبه از داده های پایشگری) از قدرت و راستای اندازه گیری شده میدان مغناطیسی درون سیاره ای( IMF ) و سرعت بادهای خورشیدی خواهد بود. داده های اسکالر در ارتفاع بالا انتخاب شده است تا اثرات سیستم های جریانی موجود را در این مناطق به کمترین مقدار ممکن برساند؛ این مناطق به نوبه خود باعث تولید نویز بسیار زیادی در داده های برداری می شوند.
اندیسkp صفحه ای بر مبنای اندیس K است. یک اندیس موضعی از دامنه ای سه ساعتی در فعالیت مغناطیسی دو مولفه افقی میدان x,y نسبت به یک منحنی مفروض و روز آرام برای پایش مغناطیس زمین درجه اغتشاشات موضعی با اندازه گیری در بازه های زمانی 3 ساعته برای بسیاری از مولفه های میدان مغناطیسی دچار اغتشاش شده انجام می گیرد. سپس این دامنه، با استفاده از یک محور لگاریتمی شده که متعلق به وضعیت معلوم است، به یک اندیس K موضعی تبدیل می شود. این کار تلاشی برای نرمال کردن فرکانس حدوث اغتشاشات با اندازههای مختلف است. اندیس Kp سه ساعته (میانگین مقدار K از 13 مورد انتخاب شده از میان مشاهدات ایستگاههای لرویک، اسکدالمیور و هارتلند) که در مقیاس سه تایی ارائه شدهاست (28 مقدار).
ذرات بارداری که توسط میدان مغناطیسی زمین در حرکت های آرام مگنتوسفر حول زمین در فاصلهای معادل 3 تا 8 برابر شعاع زمین به دام افتاده اند، یک حلقه جریان الکتریکی در راستای غرب ایجاد می کنند. که میدان آن با میدان مغناطیسی اصلی زمین مخالفت می کند. قدرت این میدان از مرتبه 10 هاnT در دوره های زمانی آرام و چندین صد nT در زمان بادهای مغناطیسی است. جریان وقفه مغناطیسی، دم و حلقه جزئی موجب اغتشاشات اضافی می شوند و باعث عدم تقارن در میدان می شوند که در مدت طوفانهای مغناطیسی افزایش یافته اند. قسمت متقارن این میدان مزاحم مرکب توسط DST بررسی شده است. زمان طوفان مزاحم برای 4 مورد پایش و اندازه گیری در ارتفاع پایین به دست آمده است.
از آنجایی که WMM با اهداف تحقیقاتی مورد استفاده قرار میگیرد، باید بتواند به صورت دقیق مقادیر میدان مغناطیسی را برای یک بازه زمانی 5 ساله محاسبه کند. بر این اساس، توانایی در محاسبه تغییرات ارضی، خیلی مهم است و داده های بازه های زمانی طولانی در این مرحله به کار می آید.
انتخاب و پیش پردازش برای مدل ها
مجموعه داده های ماهواره ای اورستد و چمپ نیازمندی های WMM را برطرف می کنند. چمپ پایین تر از دو ماهواره قرار دارد و از اینرو در معرض سطح آلودگی بیشتری است. این آلودگی ناشی از سیگنال میدان پوسته و همچنین سیستم های جریان الکتریکی که بین سطح زمین و مسیر ماهواره در جریان است، می باشد. از سوی دیگر، داده های چمپ که در ارتفاع پایین به دست آمده قید های بهتری را بر روی طول موج های کوچک مدل میدان مغناطیسی داخلی، تامین می کند.
هر دو ماهواره، داده های برداری و اسکالر با کیفیت بسیار بالا در تمام عرض ها و طول های جغرافیایی تأمین می کنند. گپ ها کاملاً در اتصالات بین مجموعه داده های متوسط ساعتی پایش شده تقریباً در کل دوره مورد نظر پیوسته است. هرچندکهپوشش فضایی ضعیفاستشکل1ضمیمه (الف) داده های پایشی از اینرو قید های خوبی را در مدت زمان تغییرات میدان مغناطیسی زمین به دست می دهد. سطح نویز در داده های پایش بیشتر از داده های ماهواره ای است. که علت آن نزدیکی پایشگرها به اجسام هادی در پوستهاست.میدان هایخارجیمتغیر بازمان،جریان هایالکتریکی را به اینهادی ها القا می کند و باعث تولید تزاحم مغناطیسی در پایشگرها می شود.
مقادیر اندازه گیری شده مغناطیسی ماهواره چمپ بدلیل اثر دیا مغناطیسی محیط پلاسمای اطراف، تحت تأثیر قرار می گیرد و باعث کاهش توانایی خواندن میدان مغناطیسی می شود. این اثر در مرتبه یک چندnT بوده و در نزدیکی استوای مغناطیسی در ساعت های پیش از نیمه شب قوی تر است. با استفاده از چگالی الکترون و دماهای خوانده شده توسط پراب(سنجنده) لانگمور چمپ، یک اصلاح دیا مغناطیسی ساده بر روی داده های چمپ اعمال می شود.
انتخاب برای توانایی پیشگویی پیشرو تا 2010پیشگویی تغییرات سکیولار تا 2010 تا حدودی وابسته به مجموعه طولانی از پایش های متوسط سالیانه در X،Y،Z از آنجایی که داده های ماهواره و داده های متوسط ساعتی پایش فقط حدود 5 سال را پوشش می دهند. این شامل انتخاب موضوعی بر مبنای پیوستگی و طول مجموعه های زمانی و توانایی پایش و رسم داده ها برای شناسایی، پرش های تعیین نشده و اولین قسمت های ضبط شده که نویزی بوده اند. هر عدم پیوستگی شناخته شده به عنوان مثال ناشی از تغییر موضع ستون، پایه- های پایش مطلق به کار گرفته شده است. لیست پایشگرهای استفاده شده و پوشش زمانی در جدول 6 ضمیمه (ب) آمده است.
روشهای مدلسازیابتدا یک مدل اصلی بر اساس تمامی دادههای موجود تشکیل داده میشود، تا به منظور سنتز مقادیر میدان مغناطیسی در خلال (1999-2000 الی 2004-2005) مورد استفاده قرار گیرد.
پیشبینی تغییرات ارضیپیشبینی تغییرات آتی میدان مغناطیسی، از روی دادههای میانگین سالیانه مشاهده شده بلندمدت و نیز برونیابی چند جملهای مدل اصلی و بر اساس دادههای ماهوارهای و مقادیر میانگین ساعتی مشاهده شده انجام میگیرد. دادههای میانگین با استفاده از تعیین و اعمال فیلترهای خطی پیشبینی کننده بر سری تفاضلی مرتبه اول پردازش میشوند و حاصل تقریبی از تغییرات ارضی تا سال 2010 (مک میلان و کوئین 2000) قابل استفاده می باشد.
تکنیکهای وزندهی به دادههایکی از عمدهترین مسایل در حین مدلسازی میدان ژئومغناطیسی، برآورد وزنی است که باید به هر یک از دسته دادهها اعمال گردد و در هر دسته از دادهها، وزنی که باید به هر یک از دادهها اعمال گردد. در اصل دادهها را باید با معکوس واریانس خطای اندازهگیری وزن دهی کرد، اما این واریانس نیز به نوبه خود اغلب مجهول است. علاوه بر این، مدل های میدان مغناطیسی، تمامی منابع میدان مغناطیسی اندازهگیری شده را مدل نمیکنند بنابراین وزن دادهها باید تأثیر این سیگنال های مدل نشده را نیز در خود بگنجانند. به منظور حفظ اثرات چگالی در نزدیکی قطبین و افزایش میزان نویز در عرض جغرافیایی بالا، به دادههای حاصل از ماهوارهها در این محدودهها وزن کاهیده اعمال میشود. روند مشابهی در بکارگیری دادههای مشاهداتی مورد استفاده قرار میگیرد که توزیع آنها در اروپای غربی و آمریکای شمالی زیاد است و در نیمکره جنوبی کم است.
لایه یونوسفر در عرض جغرافیایی بالا، همواره در معرض بارش ذرات بارداری است که باعث میشوند رسانایی آن حتی در شرایط تاریکی مطلق بالا باشد. تأثیر میدانهای مغناطیسی مگنتوسفیر در یونوسفر قطبی ظاهر میشود و سیستم های مختلف جریان از آن مشتق میشوند. این سیستم جریانها خیلی متغیر هستند اما حتی در دورههای سکوت مغناطیسی نیز وجود دارند. بنابراین دادههای جمعآوری شده در این نواحی باید به دلیل وجود نویز بالا با وزن کاهیده در سری دخالت داده شوند. به همین منوال، دادههای برداشت شده در طلوع و غروب خورشید از آنهایی که در نیمهشب برداشت میشوند خیلی نویزدارتر هستند؛ علیالخصوص در ارتفاعات بالا این مسئله جدیتر است و وزندهی باید به نحوی صورت گیرد که این نکته را در خود لحاظ کند. چگالی بالای داده بَرداری ماهوارهای در عرض جغرافیایی بالا، و شکافی که در دادههای مربوط به قطبین وجود دارد، از خصوصیات مدار ماهواره ناشی میشود. سایر نامنظمیهای پوشش دادههای فضایی از ارجح بودن انتخاب دادههای مربوط به دوره سکوت ناشی میشود. جهت جبران معضل ناشی از دادههای نامساوی، تعداد دادهها در نواحی مساوی شمرده میشود و دادههای هر یک از نواحی در معکوس تعداد دادههای همان ناحیه ضرب میشود.
قطب مغناطیسی و محل دوقطبی خارج از مرکزقطبهای ژئومغناطیسی، که از آنها تحت عنوان دو قطبی نیز یاد میشود را میتوان از طریق 3 ضریب نخست گاوسی مورد محاسبه قرار داد. با استفاده از ضرایب WMM2005 که در سال 2005 برای قطب مغناطیسی شمالی محاسبه شدهاست، این قطب در طول جغرافیایی 78/71 درجه غربی و عرض جغرافیایی ژئودزی 74/79 درجه شمالی قرار دارد؛ و قطب جنوب ژئومغناطیسی در طول جغرافیایی 22/108 درجه شرقی و عرض جغرافیایی 79/74 درجه جنوبی قرار دارد.
قطبهای مغناطیسی که با عنوان قطبهای فرورفته نیز شناخته میشوند، از تمامی ضرایب گاوسی و با استفاده از یک روش تکراری محاسبه میشوند. در سال 2005 قطب مغناطیسی شمالی در طول جغرافیایی 23/118درجه غربی و عرض جغرفیایی ژئودزی 21/83 درجه شمالی قرار داشت و قطب جنوب مغناطیسی در طول جغرافیایی 86/137 درجه شرقی و عرض جغرافیایی 53/64 درجه جنوبی قرار داشت. در عمل، میدان ژئومغناطیسی در این قطبین فرورفته کاملاً قائم است، اما در طول روز مسیر هایی به صورت بیضیگون را طی میکند که از روزی به روز دیگر تغییرات چشمگیری دارد و تقریباً در مرکز موقعیت فرورفتگی قرار دارد.
موقعیت مرکز دوقطبی خارج از مرکز که از آن با عنوان مرکز مغناطیسی نیز یاد میشود، با استفاده از 8 ضریب اول گاوسی محاسبه میشود که در سال 2005 تقریباً بودهاست.
پارامتریسازی مدلمیدان هندسی اندازهگیری شده در سطح زمین یا در مدار ماهواره، حاصلجمع میدانهای حاصل از منابع داخلی یا خارجی کره زمین است. برخلاف منابعش، میدان مغناطیسی داخلی B یک میدان پتانسیل است و بنابراین میتوان آن را به صورت منفی گرادیان یک کمیت اسکالر نوشت. این پتانسیل برحسب ترمهای هارمونیک کروی به صورت ذیل نوشته میشود:
(2-1)
که در آن a (2/6371 کیلومتر) شعاع مرجع میدان مغناطیسی استاندارد زمین است، عرض جغرافیایی، طول جغرافیایی و شعاع در یک دستگاه مختصات مرجع کروی ژئوسنتریک است وضرایب گاوسی وابسته به زمان از درجه n و مرتبه m است که منشاءهای داخلی میدان را توصیف میکند.توابع لژاندر شبه نرمال اشمیت هستند.[ضمیمه الف]
در این توابع تعداد n = 36جمله مورد استفاده قرار داده شده و از باقی جملات صرفنظر شدهاست. فرض آن است که ضرایب داخلی گاوسی[جدول 1 ضمیمه ب] از درجه 1 تا 8 چندجملهای درجه 2 نسبت به زمان هستند،
(3-1)

در سمت چپ معادله 3-2، وتوابع متغیر با زمان هستند ودر سمت راست معادله نماینده ثوابت هستند. زمان بر حسب سال دهدهی داده شده است و t0 تاریخ مرجع مدل است و تقریباً در نقطه میانی گستره زمانی ماهواره و مقادیر میانگین ساعتی مشاهده انتخاب شدهاند. از درجه 9 تا 12 وابستگی ضرایب گاوسی داخلی به زمان، به صورت خطی در نظر گرفته میشود، و در درجات بالاتر نسبت به زمان ثابت فرض میشود. این عدد، آخرین عددی است که در آن میتوان ضرایب را بدون اثر دمپینگ به صورت روباست تعیین کرد.
مدلی که در معادله 2-2 ارائه شده است، صرفاً در مواردی که منشاء داخل کره زمین است کاربرد دارد؛ نظیر میدان پوسته زمین و میدان داخلی اصلی زمین. برای میدانهای خارجی ناشی از جریانات یونوسفر و مگنتوسفیر، یک نمایش هارمونیک کروی نظیر معادله 2-1 مناسب است. با این حال، میدانهای خارجی معمولاً در دستگاه مختصات مرجع متصل به خورشید بیان میشوند. مدل فعلی ما، نوعی مدل پارامتری مگنتوسفیری درجه 2 ثابت است که در دستگاه مختصات مرجع خورشیدی بیان میشود. برای مشاهده کننده مدوری که به زمین متصل شدهاست، این میدان تغییرات منظم روزانه و فصلی دارد.
جابجاییهای جزر و مدی آب دریا از طریق میدان مغناطیسی زمین، میدانها و جریانهای الکتریکی القایی و میدانهای مغناطیسی ثانویپدید میآورد که تا حدود 7 نانو تسلا در سطح اقیانوسو 3 نانو- تسلا در مدار ماهوارهای میرسد. این میدانها به خوبی از دادههای ماهوارهای قابل استخراج و تجزیه و تحلیل هستند و با پیشبینیهای مربوط به جریانهای اقیانوسی جذر و مدی اشتراکاتی دارند (تایلر و دیگران، 2003).
در نهایت وقتی مجموعه دادهها شامل دادههای میانگین مشاهدات ساعتی باشد، جابجایی عددی در هر یک از جایگاههای ناظر نیز باید لحاظ گردد تا اثر میدانهای محلی که اکثراًً در پوسته زمین تولید میشوند و به وسیله مدل قابل توصیف نیستند نیز تفکیک گردد. سپس در جایگاه مشاهده، میدان مغناطیسی B به صورت:
(4-1)
خواهد بود. که بردار جابجایی عددی، که با عنوان انحراف پوستهای نیز خوانده میشود، نسبت به زمان ثابت میماند.
پارامتریسازی فوق برای برازش مجموعه دادههای منتخب از اندازهگیریهای ماهوارهای و مقادیر میانگین ساعتی مشاهده شده مورد استفاده قرار میگیرد.
نوع دیگری از دستگاه محورهای مختصات که در حوزه مدلسازی میدان مغناطیسی بکار میرود، سیستم مختصات ژئومغناطیسی است. لازم به ذکر است در نرم افزار طراحی شده ما، کاربر اطلاعات مربوط به طول و عرض جغرافیایی را وارد میکند و برنامه این اطلاعات را به مختصات ژئو مغناطیسی بر میگرداند. این سیستم مختصات در بدست آوردن WMM2005 برای شناسایی مکان دادهها در یک باند عرض جغرافیایی از استوای ژئومغناطیسی که در آن مقادیر دادههای برداری مورد نیاز هستند بکار میرود و بر مبنای میدان دوقطبی داخلی مرکزی شده قرار دارد و با سه ضریب اول میدان اصلی در یک مدل هارمونیکی کروی جهانی بیان میشود. محور مرجع آن همراستا با محور دوقطبی قرار دارد که از محور گردش زمین حدود 11 درجه انحراف داشته و سطح زمین را در قطبهای ژئومفناطیسی قطع میکند. استوای ژئومغناطیسی، دایره عظیمهای است که نسبت به قطبین ژئومغناطیسی در موقعیت 90 درجه قرار دارد و عرض جغرافیایی ژئومغناطیسی بین صفر درجه در استوای ژئومغناطیسی تا 90 درجه در قطبین ژئومغناطیسی متغیر است.[ضمیمه الف]
ضرایب مدلضرایب مدل، که از آنها با عنوان ضرایب گاوسی نیز یاد میشود، تصویر دقیق و مناسبی از میدان مغناطیسی اصلی زمین ارائه میکند. مقادیر مربوط به آنها در جدول 1 ضمیمه (الف) ارائه شدهاست. این ضرایب برای محاسبه مقادیر المانهای میدان و نرخ سالیانه آنها در نقاط مختلف نزدیک سطح زمین و در هر تاریخی در خلال سالهای 2005 الی 2010 مورد استفاده قرار میگیرند.
9-2 معادلات مربوط به محاسبه عناصر میدان مغناطیسی
روشی گام به گام برای محاسبه عناصر میدانهای مغناطیسی در یک مکان و زمان مشخص ارائه گردیدهاست. که در آن h ارتفاع جغرافیایی، و طول و عرض ژئودزی و t زمان برحسب سنوات دهدهی است.
در نخستین گام، مختصات ژئودزی بیضیگون بوسیله تبدیل زیر به مختصات کروی ژئوسنتریک منتقل میشود:
(5-2)
(6-2)
که در آن A = 6378.137 km محور شبهاصلی (شعاع استوایی) بیضیگون وB = 6356.75231 kmمحور شبه فرعی بیضیگون مرجع WGS84 است.
در قدم بعدی، ضرایب گاوسی درجه n و مرتبه m در زمان مشخصی تعیین میشوند. این کار از طریق تنظیم ضرایبمیدان در زمان 2005 برای تغییرات ارضی خطی انجام میگیرد:
(7-2)

که در آن زمان داده شده بر حسب سال دهدهی است و t0 = 2005زمان مرجع مدل است.
در گام سوم، مؤلفههای برداری میدان X'،Y' و Z' در مختصات ژئودزی به صورت ذیل محاسبه می شوند
(8-1)
(9-1)
(10-1)
در این نقطه، میتوان تغییرات ارضی مؤلفه های میدان را نیز به صورت زیر محاسبه کرد
(11-1)
(12-1)
(13-1)
در گام چهارم، مؤلفههای برداری X'، Y' و Z' به دستگاه مختصات ژئودزی برگردانده میشوند.
(14-1)

که در آن اختلاف میان عرضهای جغرافیایی ژئوسنتریک و ژئودتیک است و در گام 1 محاسبه شده است. به روش مشابه، مشتقات زمانی مؤلفههای برداری با استفاده از رابطه 15-1 محاسبه میشوند.
(15-1)

در گام بعدی، المانهای مغناطیسی H، F، D، Iو تغییرات شبکه GV به طرق زیر از روی مؤلفههای برداری محاسبه میشود
(16-1)

که در آن arctan(a, b)، tan-1(a/b) است. با در نظر داشتن ربع زاویهای، و اجتناب از تقسیم آن بر صفر که منجر به کاهش در بازه 180- درجه تا 180 درجه و افزایش در بازه 90- تا 90 خواهد شد؛ در H = 0 کاهش، تعریف نشده خواهد بود.
تغییرات ارضی این المانها با استفاده از
(17-1)
انجام میگیرد که در آن بر حسب درجه بر سال هستند. در اینجا، عاملاز رادیان به درجه تغییر میکند. این ضریب تبدیل در معادله 16-1 حضور نخواهد داشت، البته با این فرض که تابع arctan برحسب درجه خواهد بود.
بنابراین با توجه به اطلاعات به روز شده ماهواره های چمپ و اورستد و تعیین ضرایب مدل، به مدل- سازی میدان مغناطیسی زمین بپردازیم.

328422078105فصل دوم
00فصل دوم
36474401184275400000
-662305243205 تبدیل معادلات استخراج شده
به
مدل قابل استفاده
00 تبدیل معادلات استخراج شده
به
مدل قابل استفاده

معادلات به کار گرفته شده
در این بخش به معرفی معادلات به کار گرفته شده در الگوریتم ها می پردازیم. لازم به ذکر است که اثبات این معادلات در فصل قبلی آورده شده است.
مؤلفه های شتاب جاذبه را بصورت زیرمی باشد:
(1-2)
که در آنU، تابع پتانسیل جاذبه، ، فاصله از مرکز زمین،، عرض جغرافیایی زمین مرکزی و، طول جغرافیایی بوده و ،و بترتیب مولفه های بردار شتاب جاذبه در راستای ، و هستند .
حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل شتاب ناشی از میدان جاذبه زمین ارتفاعm 1500
عرض جغرافیاییDegree 20 -9.8084
طول جغرافیاییDegree 85
درجه مدل تا 360 20
جدول SEQ جدول * ARABIC 3- حل مثال عددی برای مدل شتاب ناشی از میدان جاذبه زمینمدل باد خورشیدی پارکر به صورت زیر محاسبه می گردد.(2-2)

r فاصله مرکز خورشید تا نقطه مورد نظر وشعاع بحرانی( ) و سرعت صوت() می باشد.( پارامتر گرانشی خورشید و T دمای تاج خورشیدی و )
برای محاسبه دمای الکترون و پروتون در هنگام روز و شب از [ جدول 3 ضمیمه ب] و رابطه زیر استفاده می کنیم:
(3-2)
که در آن دمای لایه i ام و ارتفاع لایه i ام و نرخ نیواری دما (تغییرات دما بر حسب ارتفاع،) در لایه i می باشد.
مطابق جدول [2 ضمیمه ب]، عدد لکه خورشیدی(R) بر اساس F10.7
(4-2)
که در آن F10.7، شار خورشیدی در طول موج 7/10 سانتی متر می باشد.
رابطه باد خورشیدی با فعالیت های ژئومغناطیسی در 1AU
(5-2)
که در آن نمایه ‍ ژئومغناطیسی دامنه روزانه سیاره ای است.
حل مثال عددی:
نام مدل ورودی ها خروجی ها
مدل باد خورشیدی ارتفاعm
(1AU for solar wind)

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

زمانyear(1996-2017)
ماه(1-12)
روز یا شب 300000 71/310 4/18
1300 4/13
2008 800 5/9
10 36/493 87/106
* 92/449 53/42
53/411 76/6
7/151 3/96 7/68 برای محاسبه پارامتر های میدان مغناطیسی، مؤلفههای برداری میدان X'، Y'و Z'در مختصات ژئودزی به صورت ذیل محاسبه میشوند:(6-2)

مؤلفههای برداری X'، Y' و Z' به دستگاه مختصات ژئودزی برگردانده میشوند
(7-2)

که در آن اختلاف میان عرضهای جغرافیایی ژئوسنتریک و ژئودتیک است.
المانهای مغناطیسی H، F، D،I و تغییرات شبکه GV به طرق زیر از روی مؤلفههای برداری محاسبه میشود:
(8-2)

حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل پارامتر های ناشی از میدان مغناطیسی زمینارتفاعm 2000 31 52/0
زمانyear(2005-2010) 20 7/87 7/47
عرض جغرافیاییDegree 30 7/33594 5/30-
طول جغرافیاییDegree 10 1/306 8/36973-
8/36973 7/33594-
1/33596 1/306
6/49957 جدول SEQ جدول * ARABIC 4- مدل پارامتر های ناشی از میدان مغناطیسی زمینپارامترهای ناشی از اتمسفر زمیندر مدل سازی اتمسفر برای ارتفاع های زیر 86 کیلومتر با استفاده از [جدول 4 ضمیمه ب] داریم:
T0 = 288.16 (k) ,P0 = 1.01325e5 (pa), = 1.225 (kg/m^3)
(9-2)

به ترتیب ارتفاع، فشار، دماوچگالیدرلایه میباشد و n عدد مربوطبه لایه میباشد و λ > 0 (λ، نرخ نیواری دما) به معنای افزایش دما با ارتفاع می باشد.
بدین ترتیب دما و فشار و چگالی بدست آمد. برای محاسبه سرعت صوت از رابطه:
(10-2)
استفاده می کنیم که:
= 1.4 نرخ گرمای ویژه
R = 287(J/kg-K)ثابت هوا
برای ارتفاع های بالاتر از 86 کیلومتر که اتمسفر تحت تاثیر فعالیت های خورشیدی و پارامتر F10.7می باشد از [جدول 5 ضمیمه ب] استفاده می کنیم.
حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل پارامتر های ناشی از اتمسفر زمینارتفاعm 90000 54/193
6/179
5/182
18/0
17/0
18/0

8/278
67/268
85/270
جدول SEQ جدول * ARABIC 5- مدل پارامتر های ناشی از اتمسفر زمین
328422078105فصل سوم
00فصل سوم
36474401184275400000
-662305243205 توصیف نرم افزار شبیه ساز
میدان مغناطیسی
00 توصیف نرم افزار شبیه ساز
میدان مغناطیسی

299466078105فصل چهارم
00فصل چهارم
36474401184275400000
-662305243205 ماهیت میدان مغناطیسی
و
شبیه ساز کوثر100
00 ماهیت میدان مغناطیسی
و
شبیه ساز کوثر100

میدان مغناطیسی چیست ؟میدان عبارتست از فضایی اطراف المانی فرضی چون A که در آن محدوده المان غالب و تعیین کننده شرایط همان المان A است . حال اگر المان A دارای خاصیت مغناطیسی باشد ، میدان اطراف آن میدان مغناطیسی خواهد بود . در این صورت اگر ذره متحرک بار داری با بار q و سرعت V وارد فضای میدان مغناطیسی به بزرگی B شود ، بر آن نیرویی به بزرگی F وارد خواهد شد . در واقع میدان عامل این انحراف از مسیر اولیه ذره است . میزان این انحراف تابع میزان و راستای نیروی F است که از رابطه زیر قابل حصول است .
( 4- 1 ) F=q V×Bدر رابطه بالا F بر حسب نیوتن و q بر حسب کلون و V نیز برحسب متر بر ثانیه است . در این صورت میدان مغناطیسی مولد این نیرو دارای واحد تسلا خواهد بود . واحد میدان مغناطیسی در دستگاه SI تسلا است ( هرتسلا معادل نیوتن-ثانیه بر کولن- متر است ) و هر تسلا عبارتست از بزرگی میدانی که به ذره ای یک کولنی که با سرعت یک متر بر ثانیه عمود بر راستای میدان درحال حرکت است ، نیرویی یک نیوتنی وارد کند .
(1- 2 ) then T=N.sC.mB=FqVاما هر تسلا مقدار بزرگی است برای رفع این مشکل در مصارف آزمایشگاهی واحد دیگری به نام گوس مورد استفاده قرار می گیرد و بین گوس و تسلا رابطه زیر برقرار است .
1 تسلا = 10000 گوس
مبانی فیزیکی پیچه هلمهولتزاساس کارکرد پیچه هلمهولتز ، قانون و رابطه بیو و ساوار است . البته در مراجع اصلی فیزیک این رابطه با دو فرم دیفرانسیلی و غیردیفرانسیلی ذکر شده که در ادامه در قالب روابط 1-4 و 1-5 ارائه شده اند . در واقع این روابط میدان مغناطیسی حاصل از المان مبدل میدان را به صورت جزئی ( دیفرانسیلی ) از میدان مغناطیس نهایی در نظر گرفته و با انتگرال گیری از آن در تمام طول جریان به میدان نهایی می رسد . فرم کلی این روابط به شکل روابط 1-4 و 1-5 است .
(4- 4 )* dBr2=μ04π×IdI×(r2-r1)r2-r13(4- 5 )* Br2=μ04πIdI×(r2-r1)r2-r13
تصویر SEQ تصویر * ARABIC 7- میدان تولیدی ت.سط سیم حامل جریان*پارامتر هایی که به صورت پر رنگ نوشته شده اند ، بردار هستند .
19761203402965تصویر 1-1 ) میدان تولیدی توسط سیم حامل جریان
00تصویر 1-1 ) میدان تولیدی توسط سیم حامل جریان
در رابطه و تصویر فوق جنس متغیر ها به قرار زیراست :
: *I جریان مبدل میدان مغناطیسی بر حسب آمپر (A)
r2 : موقعیت نقطه ای که میدان در آن خواسته شده نسبت به مرجعی مطلوب
r1 : موقعیت المان مبدل میدان نسبت به مرجعی مطلوب
0µ : ضریب گذردهی مغناطیسی خلاء برابر با 4.10-7 (N.s2/C2)
B: میدان مغناطیسی تولیدی
* : باید توجه کرد که شدت جریان کمیتی برداری نیست و در روابطی مانند رابطه های 4-4 و 4-5 که در آنها لازم است I نقش بردار را بازی کند ؛ برداری فرضی در رابطه مورد استفاده قرار می گیرد که دارای بزرگی و جهت شدت جریان و راستای سیم حامل جریان است .
در انتهای این بحث باید این مطلب را ذکر کرد که بر اساس روابط 4-4 و 4-5 شدت میدان مغناطیسی در هر نقطه از فضا اولاً به موقعیت آن نقطه و سپس به شدت جریانی که از مدار می گذرد بستگی دارد . اما باید توجه کرد که در بحت پیچه ها شدت جریان گذرا از پیچه ها بر اثر عواملی چون القاء متقابل پیچه ها و دیگری پدیده خود القایی با جریانی که توسط منبع به پیچه ها اعمال می شود ( و البته در محدوده ای بسیار کوتاه از زمان ) متفاوت است و برای ثبت نتایج در آزمایش حلقه های هلمهولتز یا باید صبر شود تا این محدوده زمانی بگذرد و ثبت نتایج صورت گیرد و یا در صورت انجام آزمایش در این محدوده زمانی باید انواع پدیده های القاء وارد روابط شده و روابط اصلاح شوند ( مطالب مذکور در بخش القاء در انتهای همین فصل به طور کامل مورد بررسی قرار خواهد گرفت ) .
میدان مغناطیسی حلقه
میدان مغناطیسی حاصل از یک حلقه هلمهولتز به شعاع a ، در نقطه ای منطبق بر محور مرکزی آن و در فاصله z از مرکز حلقه ( مانند تصویر شماره 1-2 ) با استفاده از قانون بیو و ساوار با استفاده از روش زیر محاسبه می شود :

تصویر SEQ تصویر * ARABIC 8- میدان در نقطه ای روی محور تک حلقه (4- 6 ) dI=adθ(-i Sinθ+j Cosθ) (4- 7 ) r2-r1=-ia Cosθ-j aSinθ+kz(4- 8 ) r2-r1=a2+z21/2از قرار دادن روابط فوق در رابطه 4-5 خواهیم داشت :
(4- 9 ) Bz=μ04πI02πi za Cosθ+j zaSinθ+ka2a2+z23/2 dθنتیجه انتگرال دو جمله اول صفر می شود و آنچه باقی می ماند عبارتست از :
(4- 10 )* Bz=μ0I2a2a2+z23/2k* iو j و k ، بردارهای واحد دستگاه دکارتی هستند .
پیچه هلمهولتز و میدان مغناطیسی آنپیچه هلمهولتز از دو پیچه مستدیر با شعاعهای مساوی و محور مشتورک تشکیل شده که جریانی همسو از آنها می گذرد . فاصله میان دو صفحه پیچه طوری انتخاب می شود که مشتق دوم میدان مغناطیسی در نقطه ای واقع بر محور و به فاصله مساوی از پیچه ها صفر شود . تصویر 1-3 چنین دستگاهی را نشان می دهد .

تصویر SEQ تصویر * ARABIC 9- حلقه های هلمهولتزمیدان مغناطیسی در نقطه P عبارتست از :
(4- 11 ) BKz=Nμ0Ia221a2+z23/2 +12b-z2+a23/2عدد N در رابطه بالا مربوط است به حالتی که در آن هر یک از پیچه ها N دور سیم پیچ دارند . مشتق اول Bz نسبت به z عبارتست از :
(4- 12 ) dBdz=Nμ0Ia22-322za2+z25/2 -322(z-2b)2b-z2+a25/2در نقطه z=b مقدار این مشتق صفر است و مشتق دوم تابع میدان نسبت به Z به شکل زیر است
(4-13)
d2Bdz2=-3Nμ0Ia221a2+z252-522z2a2+z272+12b-z2+a252-522z-2b22b-z2+a272 و در نقطه z=b مقدار آن برابر است با :
(4- 14 ) d2Bdz2z=b=-3Nμ0Ia22b2+a2-5b2+b2+a2-5b2b2+a27/2که به ازاء a2-4b2=0 صفر می شود . پس انتخاب مناسب برای b عبارتست از :
2b=aیعنی فاصله بین دو پیچه باید برابر با شعاع پیچه ها باشد . با این شرط و با استفاده از رابطه 4-11 بزرگی میدان در نقطه وسط حلقه ها برابر است با :
(4- 15 ) B(T)=Nμ0Ia853/2 =8.992×10-7NIaدر رابطه بالا شدت جریان بر حسب آمپر و شعاع حلقه بر حسب متر وارد معادله شده تعداد دور سیم نیز بدون بعد است . در نهایت میدان مغناطیسی تولیدی در مرکز فاصله بین دو پیچه بر حسب تسلا خواهد بود .
برای سهولت می توان رابطه 4-15 را به شکل زیر بازنویسی کرد :
(4- 16 ) B(G)=32πN532a*I10در رابطه 4-16 بزرگی میدان مغناطیسی بر حسب گاوس ، شعاع بر حسب سانتیمتر و شدت جریان نیز بر حسب آمپر هستند .
ویژگی و کاربردهای حلقه های هلمهولتزبنابر آنچه گفتیم میدان مغناطیسی به واسطه ذاتی که دارد چه از نظر بزرگی و چه راستا به شدت تابع موقعیت و فاصله نسبت به مولد میدان مغناطیسی است . ویژگی و معجزه حلقه های هلمهولتز تولید میدانی یکنواخت ( چه جهت و چه اندازه ) و درعین حال قابل پیش بینی در محدوده ای از فضاست . همین توانایی حلقه ها ، این حلقه ها را به سامانه های پرکاربرد در زمینه انجام تست و کالیبراسیون محصولات دیگر مرتبط با میدان مغناطیسی تبدیل کرده است . از آنجا که میدانهای الکترومغناطیس در امروزه بسیار پر کاربرد هستند ، حلقه های هلمهولتز اهمیتی صدچندان پیدا می کند .
حلقه های هلمهولتز در تست ابزارهای سنجش بزرگی میدان های الکترومغناطیس مانند اسیلوسکوپها ، تست رادارها و سونارها ، تعیین میزان پاسخگویی سطوح در مقابل میدانهای خارجی ، تعیین ضرایب گذردهی و پذیرفتاری مغناطیسی سطوح با جنس مختلف ( مخصوصاً مواد نانو و نوترکیب ) و ... کاربرد دارد . در عرصه هوافضا نیز هر جا میدان مغناطیسی مطرح است ( در مقدمه از اهمیت میدان مغناطیسی صحبت کرده ایم ) می توان از شبیه ساز میدان مغناطیسی نیز استفاده کرد . تست و تعیین دوپل مغناطیسی مگنتورکرها ، تست و تعیین میزان حساسیت سنسورها و آنتنها نسبت به امواج الکترومغناطیس و میدانهای مغناطیسی ، سمت و سو دادن و هدایت پرتوهای ذرات باردار و سنگین در دستگاههای شبیه ساز محیط تابشی فضا ؛ کاربردهای شبیه ساز میدان مغناطیسی یا حلقه های هلمهولتز است .
تغییرات میدان تولیدی توسط حلقه های هلمهولتز در فضای بین حلقه ها
پیچه های هلمهولتز نقش مهمی در تحقیق علمی دارند و غالباً برای تولید یک میدان مغناطیسی نسبتاً یکنواخت در ناحیه کوچکی از فضا به کار می روند . اما نکته دیگری نیز مطرح است و آن اینکه در چه محدوده ای از فضا می توان میدان را با تقریب خوبی یکنواخت انگاشت یا در دستگاه مختصات دکارتی و در راستای سه بعد از نقطه مرکزی تا چه فاصله ای می توان جابجا شد در عین اینکه میدان مغناطیسی تولیدی با تقریب خوبی ثابت بماند . برای بحث و بررسی این مطلب دو حالات زیر مورد برررسی قرار گرفته اند .
جابجایی در راستای محور حلقه ها
بحث تحلیل نحوه تغییرات مؤلفه های میدان عمود بر محورهای مختصات و نیز در راستای محورهای مختصات از این رو مطرح است که ، جسمی که به عنوان مورد آزمایش در داخل پیچه ها قرار می گیرد دارای ابعاد بوده و در واقع دارای طولی است که در راستای محور مختصاتی و سطحی است که عمود بر محور گسترده شده اند . در این قسمت بحث مربوط به تغییرات مؤلفه های میدان در راستای محورهای مختصات و در بخش آتی بحث مربوط به بررسی تغییرات مؤلفه ها در راستای عمود بر محورها به طور کامل مورد بررسی قرار خواهد گرفت .
به منظور بررسی این موضوع کافیست بسط تیلور میدان حول نقطه مرکزی دو پیچه را تا جمله مرتبه چهارم بنویسیم
(4- 17 ) Bz=Ba2+z-a2∂B∂za2+12z-a22∂2B∂z2a2+…در رابطه بالا Z همان فاصله از یکی از حلقه هاست مانند آن فاصله ای که در تصویر 1-3 نشان داده شده است . چون سه مشتق اول تابع در مرکز دو حلقه صفر است . با محاسبه مشتق چهارم تابع چنین می توان نوشت :
(4- 18 ) Bz=Ba2+124z-a24∂4B∂z4a2+…(4- 19 ) Bz≈Ba21-144125z-a2a4حال برای نقطه ای به فاصله از مرکز دو حلقه رابطه 1-18 و 19 چنین قابل نوشتن است :
(4- 20 )Ba2+ε≈Ba21-144125a2+ε-a2a4(4- 21 ) Ba2+ε-Ba2=-Ba2.144125εa4رابطه 4-20 همان رابطه 4-19 است که در آنa/2 + جایگزین Z شده است در این صورت با تغییر ، بزرگی میدان مغناطیسی در فاصله از مرکز حلقه محاسبه می شود . اما رابطه 4-21 نیز بیانگر اختلاف بزرگی میدان در نقطهa/2 + با نقطه مرکزی حلقه است که این اختلاف تابع بزرگی میدان در مرکز پیچه هاست .
حال اگر به اختلاف میدان در نقاطa/2 + و a/2مقدار دهیم ، می توانیم ماکسیمم فاصله ای را که در آن اختلاف به آن مقدار مفروض می رسد را بدست آوریم :
→110= 144125εa4Ba2+ε-Ba2=110Ba2⇒ε=0.543a→1100= 144125εa4Ba2+ε-Ba2=1100Ba2⇒ε=0.305a→11000= 144125εa4Ba2+ε-Ba2=11000Ba2⇒ε=0.172aنمودار تصویر 10 نشان دهنده تغییرات بزرگی میدان در نقطه مرکزی فاصله بین حلقه ها با فاصله گرفتن از نقطه مرکزی فاصله ، واقع بر خط واصل مرکز دو حلقه است .
برای رسم نمودار 10 فرضیات زیر در نظر گرفته شده است ( فرضیات مربوط به نمونه مورد آزمایش یا همان مدل 6402 شرکت ETS.LINDGREN است ) .
a=30.5 cm
N=36
I=20 A
then B(a/2) = 2.122*10-3 T = 21.22 G
( 1-22 ) Bz≈2.122*10-31-144125z-15.2530.54 z∈0,30.5
تصویر SEQ تصویر * ARABIC 10-نمودار تغییرات شدت میدان تولیدی منطبق بر محور حلقه های هلمهولتز
اگر اختلاف مطلوب بین B(a/2 + ) و B(a/2) را برابر 0.01 قرار دهیم ، می توان چنین نوشت :
5.947≤Z≤24.553cm-9.303≤ε≤9.303 cmBa2+ε-2.122*10-3=2.122*10-3100 ⇒εMax=0.305aتصویر شماره11 ، نموداری است که بزرگی میدان را بر حسب فاصله از مرکز حلقه ها رسم می کند . این نمودار با نمودار تصویر شماره 10 تطابق کامل دارد ؛ که البته باید هم چنین باشد .
جدول شماره نیز تغییرات شدت میدان و نهایت تغییر طول مجاز و متناسب با مقدار اختلاف وروردی را ، نشان می دهد .
میدان در نهایت ( T ) a/بیشینه درصد اختلاف میدان در مرکز حلقه
( T ) اندازه شعاع
(Cm)
3-10*1.909 0.543 0.1 3-10*2.122 30.5
3-10*2.016 0.456 0.05 3-10*2.101 0.305 0.01 3-10*2.111 0.257 0.05 3-10*2.12 0.172 0.001 جدول SEQ جدول * ARABIC 6 -جدول میزان بزرگی میدان و فاصله تا مرکز متناسب با اختلاف مفروض

user8341

جدول 3-4- پارامترهای کمیت کنترل PAGEREF _Toc411025938 h 81

***فهرست اشکال*** TOC h z t "شکل;1"
شکل 1-1- مراحل زنجیره‌ی پروتون – پروتون که در خورشید اتفاق می‌افتد PAGEREF _Toc421519544 h 6شکل 1-2- انرژی پتانسیل بر حسب فاصله‏ی دو هسته‏ی باردار که با انرژی مرکز جرم به هم نزدیک می‏شوند. PAGEREF _Toc421519545 h 10شکل 1-3- نمایی از کپسول هدف PAGEREF _Toc421519546 h 12شکل 1-4- مراحل همجوشی به روش محصورسازی لختی PAGEREF _Toc421519547 h 13شکل1-5- راکتور آینه ای PAGEREF _Toc421519548 h 16شکل 1-6- نمایی از دستگاه چنبرهای پلاسما PAGEREF _Toc421519550 h 17شکل 1-7- راکتور توکاماک ایتر PAGEREF _Toc421519551 h 19شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی PAGEREF _Toc421519552 h 19شکل1-9- شماتیک هندسی راکتور استلاتور PAGEREF _Toc421519553 h 21شکل2-1- واکنش پذیری انواع سوخت‌ها PAGEREF _Toc421519554 h 26شکل2-2- روش‌های گرم کردن پلاسما PAGEREF _Toc421519555 h 36شکل23: مدارهای لارمور در یک میدان مغناطیسی PAGEREF _Toc421519556 h 44شکل 2-4: نمایش میدان مغناطیسی توروئیدی و پولوئیدی و تبدیل چرخشی PAGEREF _Toc421519557 h 44شکل 2-5: سوق‌گیری ذره، در میدان‌های الکتریکی و مغناطیسی متعامد PAGEREF _Toc421519558 h 45شکل 2-6: حرکت مارپیچی الکترون‏ها و یون‏ها در امتداد خطوط مغناطیسی PAGEREF _Toc421519559 h 46شکل2-7- آهنگ واکنش به صورت تابعی از دما برای واکنش‌های مختلف همجوشی با توزیع سرعت ماکسولی PAGEREF _Toc421519560 h 50شکل2-8- معیار لاوسون nτE برحسب دما T(keV) برای پلاسمای D-3He و D-T با فرض محصورسازی کامل ذرات باردار محصولات عمل PAGEREF _Toc421519561 h 59شکل4-1- مقایسه تغییرات پارامتر واکنشپذیری برای واکنش همجوشی D-T و D-3He براساس روش باکی PAGEREF _Toc421519562 h 83شکل 4-2- چگالی پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519563 h 86شکل 4-3- دمای پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519564 h 88شکل 4-4- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519565 h 89شکل 4-5- پارامتر β پلاسمای دوتریوم و هلیوم 3 برحسب زمان در حالت ناپایدار برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519566 h 90شکل 4-6- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519567 h 91شکل 4-7- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایداربر حسب زمان بدون ناخالصی و با ناخالصی PAGEREF _Toc421519568 h 92شکل 4-8- توان اهمی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519570 h 93شکل 4-9- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی PAGEREF _Toc421519571 h 94شکل4-10- چگالی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519572 h 95شکل 4-11- دمای پلاسمای دوتریوم و هلیوم3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519574 h 95شکل 4-12- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519575 h 96شکل 4-13-پارامتر پلاسمای دوتریوم و هلیوم 3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519576 h 97شکل 4-14- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519577 h 97شکل 4-15- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت پایداربر حسب زمان بدون ناخالصی و با ناخالصی PAGEREF _Toc421519578 h 98شکل 4-16- توان اهمی پلاسمای دوتریوم هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519579 h 99شکل 4-17- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی PAGEREF _Toc421519580 h 99

لیست علائم اختصاری
D-T Deuterium-tritiumD-3He Deuterium-Helium3
D-D Deuterium- Deuterium
T-T Tritium- tritium
ICF Inertial confinement fusion
H1ProtiumH2DeuteriumH3TritiumRWMResistive-Wall ModeRFPReversed field pinch NTMNeoclassical Tearing-ModeMHDMagnetohydrodynamicTFToroidal Fieldمقدمه
مقدمهیکی از مهمترین اهداف بشر در جهتگیری زمینههای تحقیقاتی و پژوهشی، دستیابی به منابع جدید انرژی می‌باشد. در این راستا بشر تلاش کرده است تا با ساخت رآکتورهای هستهای، به منبعی از انرژی دست یابد که بتواند مدت زمان بیشتری از آن، نسبت به سوخت‌های فسیلی استفاده کند. بطور کلی دو شیوه بنیادی، برای آزادسازی انرژی از یک اتم وجود دارد: شکافت هستهای و همجوشی هسته‌ای.
مزیت همجوشی هسته‌ای نسبت به شکافت هسته‌ای، فراوانی بسیار زیاد منابع سوختی آن (سوخت اصلی راکتورهای همجوشی دوتریوم می‌باشد که در آب دریاها به وفور وجود دارد. تولید انرژی بالاتر نسبت به روش شکافت هسته‌ای به ازای هر نوکلئون از ماده سوخت (به عنوان مثالی از انرژی تولیدی در یک راکتور همجوشی می‌توان گفت اگر یک گالن از آب دریا را که دارای مقدار کافی دوترون است در واکنش همجوشی استفاده کنیم معادل ۳۰۰ گالن گازوئیل، انرژی بدون آلودگی تولید می‌کند) ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]، عدم وجود معضل پسماندهای هسته‌ای با طول عمر طولانی در روش همجوشی و در نهایت ایمن‌تر بودن راکتورهای همجوشی در هنگام وقوع حوادث احتمالی است که سبب برتری آن بر شکافت هستهای گردیده است. سوخت‌های متنوعی در فرایند همجوشی هستهای قابل بکارگیری می‌باشد. از آن جمله دوتریوم-تریتیوم(D-T) ، دوتریوم-هلیوم 3 (D-3He)، دوتریوم-دوتریوم (D-D) و تریتیوم-تریتیوم (T-T) می‌باشد. بیشتر تحقیقات انجام شده در فرایندهای همجوشی بر روی سوخت D-T انجام شده است و علت عمده آن نیز بالا بودن سطح مقطع واکنش پذیری این سوخت نسبت به سایر سوخت‌ها در بازه‌ی دمایی عملکردی راکتورها می‌باشد. این سوخت در کنار مزیت ذکر شده و سایر مزیت ها محدودیتهایی نیز دارد، نظیر پرتوزایی زیاد و گران بودن سوخت تریتیوم که جزو مواد اولیه این واکنش‌ها است. از طرفی دیگر واکنش همجوشی D-3He از میان سایر سوخت‌ها، به دلیل بازدهی بالاتر، تبدیل مستقیم انرژی و کاهش خطرات ناشی از تابش، هزینه تعمیر و نگهداری پایینتر و... مورد توجه قرار گرفت ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2-4]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite><Cite><Author>Kulcinski</Author><Year>1992</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060514">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kulcinski, G. L.; et al.;</author></authors></contributors><titles><secondary-title>Fusion Technology</secondary-title></titles><periodical><full-title>Fusion Technology</full-title></periodical><volume>21</volume><number>1779</number><dates><year>1992</year></dates><urls></urls></record></Cite><Cite><Author>Santarius</Author><Year>2003</Year><RecNum>4</RecNum><record><rec-number>4</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060578">4</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title> Fusion Science and technology</secondary-title></titles><volume>44</volume><number>289</number><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[2-4]. که این فرایند در راکتورهای متفاوت با شرایط مختلفی قابل انجام است.
لذا با این مقدمه از فرایند همجوشی هستهای، در فصل اول به بیان روشهای مختلف همجوشی هستهای و سوخت‌های قابل استفاده می‌پردازیم. در فصل دوم سینتیک فرایند همجوشی دوتریوم و هلیوم 3 و پارامترهای موثر بر همجوشی تشریح شده و به بررسی پارامترهای موثر بر همجوشی پلاسمای دوتریوم و هلیوم 3 به روش محصورسازی مغناطیسی پرداخته و فرایند با پارامتر مورد نظر شبیه سازی میگردد. در فصل چهار برخی از روشهای کنترل ناپایداری در راکتور بیان شده و در ادامه نتایج حاصل از شبیه سازی به کمک پارامترهای ترمودینامیکی مربوط به سوخت دوتریوم و هلیوم 3 با نتایج بدست آمده در سایر مطالعات مقایسه می‌شود.
فصل اول
همجوشی هستهای
فصل اول-همجوشی هسته‌ایواکنش‌های هسته‌ای تبدیلات خودبخودی یا مصنوعی بعضی از هسته‌ها به هسته دیگر که سبب تغییر ساختار هسته یا تغییر تعداد نوکلئونها (ذرات هسته‌ای) می‌گردد، واکنش‌های هسته‌ای نام دارند. همجوشی هسته‌ای و شکافت هسته‌ای، دو روش اصلی انجام واکنش‌های هسته‌ای می‌باشد.
شکافت هسته‌ایدر واکنش شکافت، هسته‌ی سنگین یک عنصر رادیو اکتیو مانند اورانیوم یا پلوتونیوم به دو یا چند هسته با جرم متوسط تجزیه می‌شود. به طور مثال اورانیوم 235 مورد اصابت یک نوترون قرار می‌گیرد و هسته فوق‌العاده ناپایداری تشکیل می‌شود که تقریبا بلافاصله می‌شکافد و کریپتون و باریم و مقدار زیادی انرژی تولید می‌شود. که ناشی از تبدیل جرم ناپدید شده (با مقایسه میان جرم سوخت‌های اولیه و محصولات واکنش) به انرژی است. این انرژی حدود 5 دهه است که مورد استفاده قرار گرفته است اینک این نیرو همان اندازه از برق جهان را تامین می‌کند که 40 سال پیش بوسیله تمام منابع انرژی تأمین می‌شد شکافت هسته‌ای مزایای بسیاری نسبت به سوخت‌های فسیلی دارد اما مسئله‌ی پسماندهای آن که حاوی مواد پرتوزا با طول عمر طولانی هستند از جمله مهم‌ترین مسائل خاص در مورد استفاده از شکافت هسته‌ای می‌باشد. از سوی دیگر ذخایر اورانیوم جهان برای استفاده در راکتورهای شکافت تنها در یک سده کفایت می‌کنند.
موادی که انجام یک واکنش شکافت هسته‌ای را ممکن می‌سازند عبارتند از: 239Pu ، 235U ، 238U ، و ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هسته‌ای با تاباندن نوترون به 233Th بوجود می‌آید.
در اثر برخورد نوترون حرارتی به ایزوتوپ235U ، هسته اتم به 235U تحریک شده تبدیل می‌شود. اورانیوم تحریک شده بعد از شکافت، به باریم و کریپتون و سه نوترون تبدیل می‌گردد ADDIN EN.CITE <EndNote><Cite><Author>Krane</Author><Year>1996</Year><RecNum>5</RecNum><DisplayText>[5]</DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060620">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Krane, K.S.; </author></authors></contributors><titles><secondary-title>Modern Physics. published by Wiley</secondary-title></titles><periodical><full-title>Modern Physics. published by Wiley</full-title></periodical><dates><year>1996</year></dates><urls></urls></record></Cite></EndNote>[5].
1n + 235U → 236U → 144Ba+89Kr + 3 1n
اما مسئله مهمتر اینکه هر نوترون‌ آزاد شده بر اثر شکافتن هسته 235U می‌تواند دو هسته دیگر را شکافته و چهار نوترون را بوجود آورد. شکافت هسته‌ای و آزاد شدن نوترون‌ها بصورت زنجیروار به سرعت تکثیر و توسعه می‌یابد. در هر دوره تعداد نوترون‌ها دو برابر می‌شود. در واکنش‌های کنترل شده تعداد شکافت در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگه‌داشته می‌شود. برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع، لازم است که موادی قابل دسترس باشند که بتوانند نوترون‌های اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست. زمانی که هسته اتمی 235U به دو قسمت شکافته می‌شود تولید عناصر استرتیوم 90، کریپتون 91، ایتریوم 91، زیرکونیوم 95، 126I ، 137U ، باریم 142، سریم 144 امکان پذیر هستند.
همجوشی هسته‌ایواکنش‌های همجوشی هسته‌ای از نوع واکنش‌هایی است که در خورشید و ستارگان صورت می‌گیرد. این واکنش عبارت است از ترکیب (برخورد) هستههای چهار اتم هیدروژن معمولی (شکل 1-1) که ضمن آزاد سازی مقدار زیادی انرژی ناشی از تبدیل جرم به انرژی است (E=mc2)، یک هسته‌ی هلیوم در دماهای بسیار بالای مرکز خورشید و ستارگان تولید می‌گردد ADDIN EN.CITE <EndNote><Cite><Author>Wilhelemsson</Author><Year>2004</Year><RecNum>6</RecNum><DisplayText>[6]</DisplayText><record><rec-number>6</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060659">6</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wilhelemsson, H.;</author></authors></contributors><titles><title>Fusion and the cosmos</title><secondary-title>Condensed Matter Physics</secondary-title></titles><periodical><full-title>Condensed Matter Physics</full-title></periodical><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[6].
در کره‌ی زمین، این انرژی را می‌توان به سه روش محصور سازی مغناطیسی، محصورسازی اینرسی یا لختی و محصور سازی از طریق کاتالیزور میون، تولید کرد؛ که البته همه در مرحله‌ی آزمایش قرار دارند. همجوشی هسته‌ای به دلیل پرتوزایی کمتر و ایمنی بیشتر و فراوانی بیشتر سوخت اولیه برای انجام واکنش‌ها نسبت یه شکافت مورد توجه بیشتری قرار گرفته است. برای تولید انرژی در مقیاس بزرگ، به تعداد زیادی از واکنش‌هایی که با هم رخ دهند، نیاز است. دافعه‏ی کولنی، مانع رخ دادن همجوشی هسته‏ای می‏گردد. برای غلبه بر این دافعه، به دما و چگالی بالایی مورد نیاز است. در نتیجه سوخت باید در حالت پلاسما باشد.در دمای به قدر کافی بالا، سرعت‏های حرارتی ذرات خیلی زیاد خواهند شد. در این صورت، ذرات این فرصت را خواهند داشت که به اندازه‏ی کافی به هم نزدیک شده، بر دافعه‏ی کولنی چیره شوند وتوانایی پیوند داشته باشند. در طی این فرایند انرژی بسیار زیادی آزاد میگردد.
اگر چگالی پلاسما بیشتر از ١٠20 یون در هر سانتی‌متر مکعب باشد، آن گاه زمان محصورسازی می‌تواند کوتاهتر باشد. اگر پلاسما خیلی فشرده شود، زمان محصورسازی، بی نهایت کوتاه و انرژی آزاد شده، فوقالعاده شدید است. در این صورت با یک بمب سر و کار خواهیم داشت نه یک راکتور کنترل شده. بههمین دلیل، با وجود آن که وظیفه محصورسازی مشکل میگردد، چگالی پلاسما در حداقل نگه داشته می‌شود.
بطور عملی هنوز محفظهای وجود ندارد که بتواند پلاسما با دمایی در حدود چند صد میلیون درجه را محصور سازد. حتی محفظههایی که از فلزات مقاوم در دماهای بالا ساخته شده باشند، تنها در دماهای پایینتر از چند هزار درجه قابل استفاده خواهند بود. ستارگانی نظیر خورشید کره عظیم پلاسمای خود را از طریق جاذبه حفظ میکنند. پلاسما از ذرات باردار تشکیل یافته است. این ذرات نمی توانند خطوط میدان مغناطیسی را قطع کنند، اما حول این خطوط میچرخند. این نکته، خلاصهای از مبنای فکری طرح محصورسازی پلاسما توسط خطوط میدان مغناطیسی را تشکیل داده است.
در یک تعریف کلی فرایند جلوگیری از برخورد پلاسما با دیواره‌های مخزنی که در آن جای دارد، محصورسازی نامیده می‌شود و همچنین زمان تقریبی برای اینکه یون‌ها توسط میدان احاطه کننده به دام افتاده باقی بمانند، زمان محصورسازی نامیده می‌شود.

شکل 1-1- مراحل زنجیره‌ی پروتون – پروتون که در خورشید اتفاق می‌افتد ADDIN EN.CITE <EndNote><Cite><Author>McCollam</Author><Year>2013</Year><RecNum>7</RecNum><DisplayText>[7]</DisplayText><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061554">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>McCollam, K.; </author></authors></contributors><titles><title>Magnetic confinement in plasma physics</title><secondary-title>UW–Madison Physics Dept.</secondary-title></titles><periodical><full-title>UW–Madison Physics Dept.</full-title></periodical><dates><year>2013</year></dates><urls></urls></record></Cite></EndNote>[7]
انتخاب سوخت مناسبباتوجه به فرآیندهای طبیعی و نتایج حاصل از آنها، مشخص شده است که واکنشهای همجوشی بسیاری وجود دارد. متغیرها برای واکنشهای مختلف، هستههای سوخت درگیر، محصولهای واکنش که خارج می شوند، مقدار واکنش و بستگی احتمال انجام واکنش به خواص جنبشی واکنش دهندهها، می باشند.
برهم کنش ایزوتوپهای هیدروژنی (دوتریم وهلیوم 3) یکی از واکنش‌های مورد توجه در فرآیند همجوشی میباشد. به دلیل این‌که ایزوتوپ های هیدروژن فقط یک بار الکتریکی دارند و انرژی حرارتی کمتری برای نزدیک شدن به یکدیگر نیاز دارند، به عبارت دیگر در دماهای پایین همجوشی ایزوتوپهای هیدروژن اتفاق میافتد. به علت عدد اتمی واحد ایزوتوپها، این برهم کنش هیدروژنی دارای قابلیت نفوذ بسیار بالایی در سد کولنی میباشد. برای تعیین سوخت‌های همجوشی مناسب، باید در دسترس بودن سوخت مورد نظر، شرایط نگهداری و سطح مقطع واکنش مورد نظر را در نظر گرفت. برخی از واکنش‌های گوناگون همجوشی، شامل واکنش‌های ذکر شده در جدول(1-1) می‌باشد. در بیشتر واکنش‏های همجوشی، دو هسته‏ سبک با هم ترکیب و به هسته‏‏ سنگین‏تر تبدیل می‏شوند که رابطه‏ واکنش هسته‏ای آن‏ها به صورت زیر است:

جدول1-1- برخی از واکنش‌های همجوشی ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]
سوخت واکنش همجوشی شکل اختصاری بهره انرژی بر حسب ژول
DT D+T→42He+10n T(d,n)4He 2.8×10-12
DDn D+D→32He+10n D(d,n)3He 5.24×10-13
TT T+T→42He+10n+10n T(t,2n)4He 1.81×10-12
DDp D+D→T+P D(d,P)T 6.46×10-13
D-3He D+32He→42He+P 3He(d,P)4He 2.93×10-12
P_6Li P+63Li→42He+32He 6Li(p,x)3He 6.44×10-13
P_11B P+115B→3(42He) 11B(p,2x)4He 1.39×10-12
واکنش D-T دارای بیشترین سطح مقطع میباشد، مقدار بیشینه سطح مقطع آن 5 بارن برآورد شده است ADDIN EN.CITE <EndNote><Cite><Author>al.</Author><Year>2002</Year><RecNum>111</RecNum><DisplayText>[8]</DisplayText><record><rec-number>111</rec-number><foreign-keys><key app="EN" db-id="tx9da0v069srt5eteeoxtwa7fvfdz5wd09zx" timestamp="0">111</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>HarmsA. et al.</author></authors></contributors><titles><title>Principles of Fusion Energy</title><secondary-title>World Scientific Publishing Co. pte. 1td.</secondary-title></titles><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[8].
(1-1)
واکنش همجوشی قابل دسترس دیگر، در برگیرندهی هستهی دوتریم به عنوان سوخت است:
(1-2)
این نمایش نشان میدهد که واکنش D+Dاز طریق دو کانال واکنش متمایز، همجوشی میکند که تقریبا با احتمالهای برابر صورت میگیرد. سطح مقطع برای هریک از آنها حدود 100 مرتبه کوچکتر از واکنشD-T است از این دو واکنش در مییابیم که خواص واکنش D-T مطلوبتر از خواص واکنش D-D است ADDIN EN.CITE <EndNote><Cite><Author>Biberian</Author><Year>2009</Year><RecNum>9</RecNum><DisplayText>[9]</DisplayText><record><rec-number>9</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061676">9</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Biberian, J.P.;</author></authors></contributors><titles><title>Experiments and Methods in Cold Fusion</title><secondary-title> Journal of Condensed Matter Nuclear Science</secondary-title></titles><volume>2</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[9].
همچنین ممکن است دوتریم، با محصولهای واکنش تریتیوم و هلیوم-3 همجوشی کند که افزون بر معادله‌ی (1-1)، داریم:
(1-3)
واکنش همجوشی یاد شده، در برگیرندهی دوتریم و همچنین هستههای سبک دارای جرم بیشتری هستند. از مزایای این واکنش نسبت به D-D میتوان به سوختی رادیواکتیو نبودن و یک واکنش نوترونیک بودن اشاره کرد. به عبارت دیگر در مسیر واکنش همجوشی هیچ نوترونی تابش نمیکند، در نتیجه تابش نوترون به طور چشمگیری کاهش مییابد که میتواند به معنای یک محافظ خیلی ارزان برای راکتور استفاده شود؛ زیرا تابشهای نوترونی باعث تخریب دیواره راکتور میشوند ADDIN EN.CITE <EndNote><Cite><Author>Brereton</Author><Year>1988</Year><RecNum>10</RecNum><DisplayText>[10]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061736">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Brereton, S. J.; Kazimi, M. S.;</author></authors></contributors><titles><secondary-title> Fusion Engineering and design</secondary-title></titles><volume>30</volume><number>207</number><dates><year>1988</year></dates><urls></urls></record></Cite></EndNote>[10]. قلهی آهنگ واکنش برابر با58 است. اما تولید هلیوم -3 بسیار سخت است، در حال حاضر میتوان آن را محصولی از راکتورهای شکافت دانست، زیرا تریتیوم تولید شده در راکتورهای شکافت به طور طبیعی بعد از مدتی به هلیوم 3 واپاشی میکند.
اگر این شکل ادامه یابد، برای واکنش هستهای ، تعداد زیادی کانالهای واکنش مشخص شده است:
(1-4)
واکنشهای هستهای که درگیر هستههای سبک، مانند پروتون، میباشند ممکن است مطابق فرآیندهای زیر روی دهد ADDIN EN.CITE <EndNote><Cite><Author>Atzeni</Author><Year>2004</Year><RecNum>11</RecNum><DisplayText>[11]</DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061786">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Atzeni, S.;</author></authors></contributors><titles><title>The Physics of Inertial Fusion</title><secondary-title> Rome: Clarendon PRESS</secondary-title></titles><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[11]:
(1-5 الف) (1-5 ب)
(1-5 ج)
و همچنین دیگر واکنشهای مبتنی بر و ، عبارتند از:
(1-6)
(1-7)
(1-8)
نمایش فیزیکی واکنشهای همجوشی، تنها بررسیهای لازم برای تعیین و گزینش آن، به عنوان سوخت راکتور همجوشی نیست بلکه بررسیهای دیگری در برگیرندهی قابل دسترس بودن سوختهای همجوشی، سختی در نگهداری و دانسیتهی میزان واکنش کافی، نیز لازم میباشد.
تاکید بر دیگر نکات واکنشهای همجوشی یاد شده، ضروری است. در هر حالت، کسرهای مختلف از مقدار واکنش، در شکل انرژی جنبشی ذرات باردار و نوترونهای خنثی باقی میماند، در نتیجه ایدهی یک راکتور همجوشی پایه گذاری شده با بازده بالا؛ تبدیل مستقیم انرژی ذرات باردار، به ویژه برای واکنشهایی که کسر بزرگتری از مقدار آنها در شکل انرژی جنبشی باردار باقی میماند، مناسب به نظر میرسد. این نکته به طور ویژهای مورد توجه است؛ چرا که نوترونهایی که به عنوان محصول واکنش همجوشی پدیدار میشوند، به گونهی تغییر ناپذیری به محصولات رادیو اکتیو در مواد مهارکننده قلب همجوشی کمک میکنند.
کمیتی مهم در ارتباط با واکنش‌های هسته‌ای، سطح مقطع واکنش است که به صورت احتمال برهم‌کنش هر جفت از ذرات، تعریف می‌شود. برای وقوع واکنش همجوشی، دو هسته‏ی باردار مثبت باید با غلبه بر نیروی دافعه‏ی کولنی، با هم برخورد کنند. تابع پتانسیل دافعه‏ی کولنی به صورت زیر است:

که Z1 , Z2، عدد اتمی هسته‌های برهم‌کنش کننده می‌باشد.
نیروی دافعه‏ی کولنی در فاصله‏ بیشتر از مجموع شعاع دو هسته برقرار است. شعاع دو هسته از رابطه‏ زیر بدست می‏آید:

که A1,A2 اعداد جرمیِ هسته‌های برهم‌کنش‏ کننده هستند.
شکل1-2 نشاندهنده انرژی پتانسیل برحسب فاصله‏ دو هسته‏ باردار می‌باشد که با انرژی مرکز جرم به هم نزدیک می‏شوند و نشان‏دهنده‏ چاه هسته‏ای، سد کولنی و نقطه‏ی بازگشتی کلاسیکی است.

شکل 1-2- انرژی پتانسیل بر حسب فاصله‏ی دو هسته‏ی باردار که با انرژی مرکز جرم به هم نزدیک می‏شوند ADDIN EN.CITE <EndNote><Cite><Author>Atzeni</Author><Year>2004</Year><RecNum>11</RecNum><DisplayText>[11]</DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061786">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Atzeni, S.;</author></authors></contributors><titles><title>The Physics of Inertial Fusion</title><secondary-title> Rome: Clarendon PRESS</secondary-title></titles><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[11].در فاصله‏ی r <rn، دو هسته تحت تأثیر نیروی جاذبه‏ی هسته‏ای قرار می‏گیرند که با چاه پتانسیل به عمق، مشخص می‌شود. با استفاده از معادلات می‏توان ارتفاع سد پتانسیل را پیدا کرد:

بر طبق مکانیک کلاسیک، فقط هسته‌هایی با انرژی بیشتر از این مقدار می‏توانند بر سد کولنی غلبه کرده و با هم برخورد کنند و هسته‌هایی با انرژی نسبی () کمتر از، می‏‏توانند تا نقطه‏ی بازگشت کلاسیکی به هم نزدیک شوند. ولی در مکانیک کوانتومی، واکنش همجوشی بین دو هسته با انرژی کمتر از سد کولنی، نیز ممکن است؛ چون تونل‏زنی از سد کولنی مجاز است. پارامترهای دخیل در برهم‌کنش بین پرتابه و هدف، سطح مقطع واکنش و واکنش‏پذیری هستند.
ایده‌های راکتور همجوشیانواع روشهای محصورسازی مورد استفاده در راکتورهای همجوشی هسته‌ای، همجوشی از طریق محصورسازی اینرسی، همجوشی از طریق کاتالیزور میون و محصورسازی از طریق محبوس کردن مغناطیسی می‏باشند که هدف هر سه روش، برآورده ساختن معیار لاوسون می‌باشد. محصورسازی لختی، فرایند نگهداری پلاسما را در چگالی‏های بالا و در زمان کوتاه انجام می‏دهد و محصورسازی مغناطیسی، پلاسما را در چگالی‏های پایین، در زمان نسبتاً طولانی محصور می‏سازد و روش کاتالیز میون در دماهای معمولی رخ می‌دهد ADDIN EN.CITE <EndNote><Cite><Author>Jones</Author><Year>1986</Year><RecNum>16</RecNum><DisplayText>[12]</DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062363">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jones, S.E.;</author></authors></contributors><titles><title> Muon-Catalysed Fusion Revisited</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>127-133</pages><volume>321</volume><number>6066</number><dates><year>1986</year></dates><urls></urls></record></Cite></EndNote>[12].
1-5-1- همجوشی هستهای کنترل شده توسط لختی(ICF)زمان محصورسازی در محصورسازی لختی خیلی کوتاه است. در نتیجه برای داشتن نرخ واکنش همجوشی بیشتر، نیازمند چگالی بالای پلاسما هستیم. در این روش، سوخت با استفاده از نیروهای قوی بیرونی، باید تا 1000 برابر چگال‌تر از حالت جامد فشرده شود.
کپسول با استفاده از پرتوهای محرک که از اطراف سطح خارجی آن تابیده می‌شود، متراکم می‌گردد. در محصورسازی به روش لختی، از روش‌های مختلفی برای تراکم کپسول استفاده می‌شود. در هر کدام از این روش‌ها سعی بر آن است که نسبت انرژی خروجی به انرژی ورودی را بالا ببرند. نوع پرتوهای محرک که برای تراکم کپسول استفاده می‌شود، عامل اصلی بالا و پایین بردن بهره انرژی در ICF می‌باشد. از پرتوهای لیزرهای پر توان پالسی، باریکه‌هایی از ذرات باردار نظیر یون‌های سنگین، یون‌های سبک و باریکه‌های الکترونی برای متراکم نمودن کپسول‌ها می‌توان استفاده کرد. این پرتوهای محرک که بصورت پالس‌هایی با توانW‌ 1014 تهیه می‌شود، دارای بهره انتقال انرژی متفاوتی به کپسول هستند. پرتوهای لیزری و باریکه‌های یون سنگین نسبت به سایر پرتوهای محرک به علت بهره بالاتر جذب انرژی در کپسول‌ها مورد توجه بیشتری قرار گرفتند. در طراحی کپسول‌های سوخت هر دو روش پرتوهای محرک لیزری و باریکه‌های یون سنگین مورد بررسی قرار گرفته است ADDIN EN.CITE <EndNote><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[13, 14].
انتخاب پرتوهای یون سنگین به علت قابلیت بالای انتقال انرژی به کپسول، بالای 25 درصد در مقایسه با باریکه‌های لیزری با بهره‌ی انرژی کمتر از 10 درصد روشی موثر به ‌شمار می‌رود که به خاطر ناپایداری‌هایی که در اثر نایکنواختی و ناهمزمانی باریکههای یونی اتفاق می‌افتد، اخیرا بصورت غیر مستقیم مورد استفاده قرار می‌گیرد. نور لیزر، ساده‌ترین و کم هزینه‌ترین روشی است که طراحان از آن برای تراکم کپسول استفاده می کنند ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite></EndNote>[13, 14].

شکل 1-3- نمایی از کپسول هدف ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]
کپسول هدف در این روش، قرص کوچکی با شعاع کمتر از ، حاوی یک لایه‏ی کروی است که بطور مثال با گاز دوتریوم– تریتیوم بصورت متقارن و یکنواخت بصورت شکل 1-3 پر شده است. این لایه، حاوی یک ماده با Z بالا در ناحیه‏ی خارج و DT در داخل است که توده‏ی سوخت را تشکیل می‏دهد.
برای رسیدن به شرایط دما و چگالی بالای مورد نیاز برای همجوشی، باید این کپسول تا جایی که ممکن است به طور متقارن و با انرژی انفجاری خیلی زیادی تابش ببیند. انرژی مورد نیاز، برای راه‏اندازی این فرایند بسیار زیاد است. برای گرمایش یک کپسول سوخت با قطر ، تا دمای، به اندازه‏ی انرژی مورد نیاز است که این انرژی می‌تواند با نور شدید لیزر یا توسط پرتوهای یونی تامین شود. این مقدار انرژی باید در چند پیکوثانیه به قسمت خارجی لایه‏ی هدف منتقل شود. به دلیل انفجار انرژی روی قسمت خارجی لایه‏ی هدف، این لایه‏ گرم شده بلافاصله یونیزه و تبخیر می‌شود. این فرایند کندگی نام دارد. وقتی این قسمت کنده می‌شود، قسمت داخلی و سوخت به دلیل بقای اندازه‏ حرکت، به سمت داخل رانده می‌شود (شکل1-4). در حین این رانش، چگالی سوخت تا چند صد گرم بر سانتیمتر مکعب و دمای سوخت تا حد دمای احتراق برای همجوشی افزایش می‌یابند. در نتیجه، احتراق رخ می‏دهد و فشاری به سمت خارج ایجاد می‌شود که بر موج انفجار به داخل غلبه کرده و منجر به انفجاری به خارج می‌شود. بدین ترتیب چگالی و دمای مورد نظر بدست می‏آیند ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[14].

شکل 1-4- مراحل همجوشی به روش محصورسازی لختی ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[14]
1-5-2- همجوشی هستهای توسط کاتالیزور میون(µCF)
روش دیگری برای رسیدن به انرژی همجوشی هسته‌ای در سال 1957 مطرح شد، که تحت عنوان همجوشی از طریق کاتالیزر میون معروف است و یک فرآیند همجوشی گسترده و تجدید پذیر است که در دماهای معمولی رخ می‌دهد. همانطور که گفته شد یکی از مهم‌ترین مسایل در فرآیند همجوشی، غلبه بر نیروی دافعه‌ی کلونی و ایجاد شرایطی که یون‌ها در محدوده‌ی نیروهای جاذبه‌ی نیرومند هسته‌ای قرار گیرند، می‌باشد. پیدایش میون در مدار اتم هیدروژن، اثر کاهش دافعه‌ی نیروی کلونی دارد. میون ذره‌ای بنیادی است که خواص آن مانند الکترون است، با این تفاوت که جرم میون تقریبا 207 برابر جرم الکترون است و ذره‌ای ناپایدار با زمان عمر µS2/2 می‌باشد. پس از گذشت این زمان میون به یک الکترون e- و یک نوترینوی میونی و به یک پادنوترینوی الکترونی واپاشی می‌کند. بصورت دقیق در اوایل 1980مورد مطالعه قرار گرفت ADDIN EN.CITE <EndNote><Cite><Author>Jones</Author><Year>1986</Year><RecNum>16</RecNum><DisplayText>[12]</DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062363">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jones, S.E.;</author></authors></contributors><titles><title> Muon-Catalysed Fusion Revisited</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>127-133</pages><volume>321</volume><number>6066</number><dates><year>1986</year></dates><urls></urls></record></Cite></EndNote>[12].
جرم زیاد میون نسبت به الکترون، به آن اجازه می‌دهد که وارد مدار اتم هیدروژن با شعاع بوهر، 207 مرتبه کوچکتر از شعاع الکترون شود و این باعث می‌شود که این اتم هیدروژن نسبت به دیگر اتم‌ها یا یون‌های هیدروژن، سنگین‌تر است. بنابر این، این هسته‌ی سنگین به دلیل کاهش نیروی دافعه‌ی کلونی می‌تواند با صرف انرژی کمتری به اتم‌ها و یون‌های دیگر هیدروژن، بسیار نزدیک شود و هنگامیکه هیدروژن میون‌دار و هیدروژن معمولی به اندازه‌ای به هم نزدیک شوند که تغییرات توزیع بار را احساس کنند، به حدی رسیده‌اند که نیروهای جاذبه‌ی هسته‌ای بین آن‌ها ایجاد شده است و پدیده همجوشی را بوجود می‌آورد بنابر این یکی از روش‌های ایجاد همجوشی در دمای پایین استفاده از کاتالیزور میون است.
میون اولین بار توسط اندرسون وندرمییر در سال ١٩٣٧ کشف شد. از طرف دیگر هنگامی که پاول ذره پایون را در سال ١٩۴٧ کشف کرد، فرانک پیشنهاد کرد که پایون‌های منفی می‌توانند به کمک محصور سازی شیمیایی، واکنشهای همجوشی را کاتالیز نمایند ADDIN EN.CITE <EndNote><Cite><Author>Frank</Author><Year>1947</Year><RecNum>17</RecNum><DisplayText>[15]</DisplayText><record><rec-number>17</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062414">17</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frank, F.;</author></authors></contributors><titles><secondary-title> Nature</secondary-title></titles><volume>160</volume><number>525</number><dates><year>1947</year></dates><urls></urls></record></Cite></EndNote>[15]:
pπ + d → pdπ→3He + π(1-9)
با وجود اینکه، احتمال جذب پایون توسط هسته بسیار بزرگ است، اما پایون زمان کافی برای تشکیل pdπ را نخواهد داشت. یک سال بعد، ساخارف پیشنهاد همجوشی کاتالیزور میونی را مطرح کرد ADDIN EN.CITE <EndNote><Cite><Author>Sakharov</Author><Year>1948</Year><RecNum>18</RecNum><DisplayText>[16]</DisplayText><record><rec-number>18</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062457">18</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sakharov, A.;</author></authors></contributors><titles><secondary-title>Lebedev Physics Institute Report</secondary-title></titles><periodical><full-title>Lebedev Physics Institute Report</full-title></periodical><dates><year>1948</year></dates><urls></urls></record></Cite></EndNote>[16].
به دلیل اینکه تشکیل مولکول‌های میون‌دار در اثر فرایندهای برخوردی چند مرحله‌ای صورت می‌گیرد، بازده همجوشی کاتالیزور میونی، به شرایط ماکروسکوپی از قبیل دما، چگالی محیط و کسر غلظت‌های هیدروژن مایع و ضریب چسبندگی میونی وابسته است و می‌تواند به کمک تئوری سینتیکی که اساس آن آهنگ‌های برخوردی میکروسکوپی و سطح مقطع‌ها می‌باشد بهینه گردد. در سال‌های اخیر برای افزایش چرخه میونی، مخلوط سه تایی H/D/T پیشنهاد شده، که گزارشات و مقالات متناقضی در مورد افزایش یا کاهش ضریب تکثیر میونی گزارش شده است ADDIN EN.CITE <EndNote><Cite><Author>Eskandari</Author><Year>1998</Year><RecNum>19</RecNum><DisplayText>[17-19]</DisplayText><record><rec-number>19</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062505">19</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eskandari, M. R.; and Deilami S.;</author></authors></contributors><titles><title>Stability studies of D/T/H sys-- using Hurwitz method</title><secondary-title>IPAC, Kerman</secondary-title></titles><periodical><full-title>IPAC, Kerman</full-title></periodical><dates><year>1998</year></dates><urls></urls></record></Cite><Cite><Author>Markushin</Author><Year>1991</Year><RecNum>20</RecNum><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062559">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Markushin, V. E.; et al.;</author></authors></contributors><titles><title> Kinetics of muon catalyzed fusion in the triple H2-D2-T2 mixture atlow deuterium and tritium concentrations</title><secondary-title> Technical Report PSI-PR-41-92, Preprint from Paul Scherrer Institute, Villigen</secondary-title></titles><dates><year>1991</year></dates><urls></urls></record></Cite><Cite><Author>Eskandari</Author><Year>1999</Year><RecNum>22</RecNum><record><rec-number>22</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062767">22</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eskandari, M. R.; et al.;</author></authors></contributors><titles><secondary-title> Journal of Nuclear Science</secondary-title></titles><volume>36</volume><number>1</number><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[17-19].
1-5-3- محصورسازی مغناطیسی (MCF) در محصورسازی مغناطیسی از میدان‌های مغناطیسی و الکترونیکی برای گرما دادن و فشردن پلاسمای هیدروژن در راکتور ITER استفاده میشود ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Author>Wagner</Author><RecNum>23</RecNum><DisplayText>[20]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062841">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title> ThePhysics Basis of ITER Confinement</title><secondary-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</secondary-title></titles><periodical><full-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</full-title></periodical><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20].
راکتورهای همجوشی هستهای که در آنها پلاسما به روش مغناطیسی محصورشده است براین اساس که میدان مغناطیسی تمام یا قسمتی از سطح پلاسما را بپوشاند، به دو گروه زیر تقسیم شدهاند:
چنبرهای
انتها باز
از معروفترین ماشین‌های پینچ می‌توان از تتا پینچ و Z پینچ نام برد ADDIN EN.CITE <EndNote><Cite><Author>Polsgrove</Author><Year>2011</Year><RecNum>24</RecNum><DisplayText>[21]</DisplayText><record><rec-number>24</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062899">24</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Polsgrove, T.; Robert, S.F.; Adams ,B;</author></authors></contributors><titles><title>Design of Z-pinch and Dense Plasma Focus Powered Vehicles</title><secondary-title>49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition</secondary-title></titles><periodical><full-title>49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition</full-title></periodical><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[21]. این سیستم‌ها آرایش استوانه‌ای دارند. در تتا پینچ جریانی از یک سیم‌پیچ استوانه‌ای پلاسما را دور می‌زند، و میدان حاصل از آن منجر به محصورسازی آن می‌شود. در Z پینچ توسط الکترودهایی که در قاعده‌ها قرار دارد جریانی در جهت محوری تولید می‌شود میدان ناشی از آن، پلاسما را گرم و متراکم می‌کند.
پینچ معکوس نوعی پینچ است که در آن جریانی در خلاف جهت جریان پلاسما اعمال می‌شود. در این دستگاه برهم‌کنش میدان قطبی ناشی از جریان رسانای داخلی، با جریان پلاسما منجر به حرکت پلاسما به سمت خارج می‌شود. در این دستگاه از دو استوانه هم محور به عنوان الکترود استفاده می‌شود. با تخلیه‌ی شعاعی میان دو الکترود میدان مغناطیسی قطبی القا می‌شود که پلاسما را گرم و متراکم می‌کند.
در سیستم‌های آینه‌ای پلاسما، از یک سیم‌پیچ ین-یانگ استفاده می‌شود پلاسما در این آرایش در ناحیه‌ای که از حداقل میدان مغناطیسی برخوردار است، محصور می‌شود. این نوع دستگاه‌ها عملکرد پایا دارند اما در آنها پلاسما از انتهای باز میدان خارج و تلف می‌شود، بنابراین باید از روش‌های کنترل انرژی خروجی استفاده کرد.
از جمله آزمایش‌های آینه‌ای در جهان عبارتند از: GDT و GoL-3-II در روسیه، Qt-UP و Gamma-10 در ژاپن. در حال حاضر با توجه به نتایج عملی و تجربی به دست آمده بیشتر آزمایش‌های مغناطیسی بر توکامک متمرکز شده‌اند. در شکل 1-5 یک راکتور از نوع آینه‌ای نشان داده شده است.

شکل1-5- راکتور آینهای ADDIN EN.CITE <EndNote><Cite><Author>Stacy</Author><Year>2010</Year><RecNum>25</RecNum><DisplayText>[22]</DisplayText><record><rec-number>25</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063009">25</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Stacy, M. Stacey;</author></authors></contributors><titles><title>Fusion An Introduction to tHe physics and technology of magnetic confinement fusion</title><secondary-title>Second, completely Revsed and enlarged Edition</secondary-title></titles><periodical><full-title>Second, completely Revsed and enlarged Edition</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[22]
همچنین بنابر نوع عملکرد راکتورها، آنها را میتوان به انواع زیر نیز تقسیم بندی کرد (از مهمترین آنها می‎توان به دستگاههای چنبره‎ای مانند توکامک، استلاراتور، چنبره برآمده ، اسفرومک، اسفراتور، تورساترون و دستگاههای انتها بازی چون آینه‎های مغناطیسی، پینچها و پلاسمای کانونی اشاره کرد.):
پایا: در این نوع راکتور واکنش‌های همجوشی به صورت مداوم انجام میگیرند.
تپی: این راکتور به طور مرتب قطع و وصل میگردد. زمان همجوشی تقریبا با زمان محصور بودن پلاسما برابر است.
شبه پایا: در مقایسه با انواع نامبرده، یک راکتور متوسط محسوب میگردد . زمان همجوشی آن اندکی بیشتر از زمان محصور شدن پلاسما است. اما در هر حال زمان محدودی است. (توکامک نمونهای از این نوع راکتور است.)
طبقه بندی انواع راکتور ها برحسب روش محصور کردن پلاسمادر دستگاه چنبره‎ای، پلاسما توسط میدان‌ مغناطیسی محصور می‎گردد. میدان اصلی در توکامک میدان چنبره‎ای است که بطور نمادین در شکل(1-6) نشان داده شده است. در جدول (1-2) نیز خلاصهای از انواع راکتورها برحسب روش محصور کردن پلاسما و نوع عملکرد آنها آورده شده است.
جدول1-2- انواع راکتورها برحسب روش محصور کردن پلاسماآرایش میدان مغناطیسی دستگاه نوع عملکرد
چنبره ای توکامک شبه پایا
تنگش میدان وارونه شبه پایا
استلاراتور پایا
هلیوترون پایا
تنگش چنبره ای تپی
انتها باز آیینه ای پایا
تنگش مستقیم تپی
پلاسمای کانونی تپی
شکل 1-6- نمایی از دستگاه چنبرهای پلاسما ADDIN EN.CITE <EndNote><Cite><Author>Glasstone</Author><Year>1980</Year><RecNum>27</RecNum><DisplayText>[23, 24]</DisplayText><record><rec-number>27</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063252">27</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Glasstone, S.;</author></authors></contributors><titles><title>Fusion Energy</title><secondary-title>U.S. Department of Energy, Technical Information Center</secondary-title></titles><periodical><full-title>U.S. Department of Energy, Technical Information Center</full-title></periodical><dates><year>1980</year></dates><urls></urls></record></Cite><Cite><Author>Emrich</Author><Year>2001</Year><RecNum>26</RecNum><record><rec-number>26</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063119">26</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Emrich, W. J.;</author></authors></contributors><titles><title>Field-Reversed Magnetic Mirrors for Confinement of Plasmas</title><secondary-title>NASA Tech Briefs</secondary-title></titles><periodical><full-title>NASA Tech Briefs</full-title></periodical><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>[23, 24]
1-6-1- راکتور توکامکتوکاماک یکی از انواع رآکتورهای همجوشی هستهای است که عمل محصورسازی را به خوبی انجام میدهد. طرح توکاماک در دهه پنجاه میلادی توسط روس‌ها پیشنهاد شد. کلمه توکاماک از کلمات "toroidalnaya", "kamera", and "magnitnaya" به معنی " اتاقک مغناطیسی چنبره‌ای" گرفته شده است. این سیستمها حاوی پلاسمای سوخت هستند که توسط دو سری میدان مغناطیسی نگهداری میشوند، و شکلی مانند چنبره تشکیل می‌دهند. ITER اسم مجموعهایست که اولین رآکتور همجوشی جهان از نوع توکاماک را ساخته است. این مجموعه متشکل از کشورهای روسیه، اروپا، ژاپن، کانادا، چین، ایالات متحده و جمهوری کره می‌باشد. آنها در این راه از فوق هادیها برای قسمتهای مغناطیسی رآکتور استفاده کرده و توان خروجی این توکاماک 410 مگا وات می‌باشد.
1-6-2- قسمتهای اصلی راکتور توکاماک ITERنمایی از راکتور توکامک ایتر در شکل(1-7) و (1-8) آورده شده است که شامل قسمتهای متفاوتی برای انجام فرایند محصورسازی پلاسما به روش مغناطیسی می‌باشد. این اجزا به همراه فرایندی که در آن انجام می‌گیرد بصورت خلاصه و در حد لزوم در زیر آمده است:
لوله خلأ: پلاسما را نگه داشته و از محفظه فعل و انفعال محافظت میکند
انژکتور پرتو خنثی(سیکلوترون یون): ذرات پرتو را از شتاب دهنده به پلاسما تزریق میکند تا به پلاسما برای رسیدن به دمای بحرانی کمک نماید.
میدان مغناطیسی مارپیچ: رفتار مغناطیسی بسیار قوی که شکل و محتوای پلاسمای استفاده شده در میدان مغناطیسی را محدود میکند.
ترانسفورماتور/ سولنوئید مرکزی: الکتریسیته را برای میدان مغناطیسی مارپیچ تامین میکند.
سیستم خنک کننده: آهنربا را خنک میکند.
سیستم عایق: ساخته شده از لیتیم است؛ گرما و انرژی بالای نوترون را از راکتور همجوشی هسته‌ای جذب میکند.
دایورتور: خروج محصولات هلیم از راکتور همجوشی

شکل 1-7- راکتور توکاماک ایتر ADDIN EN.CITE <EndNote><Cite><Author>Wagner</Author><Year>2012</Year><RecNum>28</RecNum><DisplayText>[25]</DisplayText><record><rec-number>28</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063339">28</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title>Fusion Energy by Magnetic Confinement</title><secondary-title> Research Laboratory for Advanced Tokamak Physics, St. Petersburg Polytechnical State</secondary-title></titles><dates><year>2012</year></dates><urls></urls></record></Cite></EndNote>[25]

شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Author>Wagner</Author><Year>2009</Year><RecNum>23</RecNum><DisplayText>[20]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062841">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title> ThePhysics Basis of ITER Confinement</title><secondary-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</secondary-title></titles><periodical><full-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</full-title></periodical><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20]
1-6-3- راکتور اسفرومکاسفرومک نوع دیگری از راکتورهای همجوشی است که بر خلاف توکامک که شکل چنبرهای دارد، بصورت کروی است. در مرکز اسفرومک هیچ مادهای وجود ندارد. اسفرومک از ترانسفورماتور (مانند آنچه که در توکامک بکار رفته) برای تولید سطوح پیچیده شار به شکل دوقطبی مورد نیاز برای محبوس سازی استفاده نمیکند بلکه پلاسمای بسیار داغ را در یک سیستم میدان مغناطیسی ساده و فشرده که فقط از یک سری ساده از کویلهای کوچک پایدار کننده استفاده می‌کند، بوجود می‌آورد. میدان‌های مغناطیسی قوی لازم درون پلاسما با چیزی که دینام مغناطیسی نامیده می‌شود تولید می‌شوند. در اسفرومک شعاع اصلی با شعاع فرعی برابر است یعنی پلاسما مطابق شکل در سیستمی کروی محصور می‎شود.
1-6-4- سایر راکتورهای محصورسازی مغناطیسیغیر از توکامک و اسفرومک دستگاه‌های دیگری برای محصورسازی مغناطیسی وجود دارد ، که تفاوت آنها در نوع آرایش میدان مغناطیسی و شکل آنهاست. برخی از این دستگاهها، تنگش میدان- وارونه، استلاراتور (شکل1-9) و هلیوترون،چنبره فشرده، دستگاه تنگش-تتا، دستگاه تنگش-Z ، پلاسمای کانونی می‌باشد.
استلاراتور وسیله‌ای برای حبس پلاسمای داغ به وسیله میدان مغناطیسی به منظور حفظ یک واکنش همجوشی کنترل شده است و یکی از ابتدایی‌ترین ابزارهای کنترل شده همجوشی بوده که اولین بار توسط لیمان اسپیتزر در سال 1950 اختراع شد. این اختراع تغییر در هندسه دستگاه‌های همجوشی قبلی بود.

شکل1-9- شماتیک هندسی راکتور استلاتور ADDIN EN.CITE <EndNote><Cite><Author>Emrich</Author><Year>2001</Year><RecNum>26</RecNum><DisplayText>[23, 24]</DisplayText><record><rec-number>26</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063119">26</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Emrich, W. J.;</author></authors></contributors><titles><title>Field-Reversed Magnetic Mirrors for Confinement of Plasmas</title><secondary-title>NASA Tech Briefs</secondary-title></titles><periodical><full-title>NASA Tech Briefs</full-title></periodical><dates><year>2001</year></dates><urls></urls></record></Cite><Cite><Author>Glasstone</Author><Year>1980</Year><RecNum>27</RecNum><record><rec-number>27</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063252">27</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Glasstone, S.;</author></authors></contributors><titles><title>Fusion Energy</title><secondary-title>U.S. Department of Energy, Technical Information Center</secondary-title></titles><periodical><full-title>U.S. Department of Energy, Technical Information Center</full-title></periodical><dates><year>1980</year></dates><urls></urls></record></Cite></EndNote>[23, 24]
از مزایای استلاراتورها می‌توان عدم احتیاج به جریان چنبره‌ای (در نتیجه افزایش احتمال فعالیت مداوم) و ثبات سیستم بیشتر را نام برد.
فصل دوم
سینیتیک همجوشی پلاسمای دوتریوم – هلیوم 3
فصل دوم: سینیتیک همجوشی پلاسمای دوتریوم–هلیوم 3سوخت‌های جدید و خواص آنهامشکلات مربوط به پسمان همجوشی را می‌توان با انتخاب یک سوخت بهتر کاهش داد. کاندیداهای مختلفی برای سوخت‌های همجوشی وجود دارند که سوخت‌های پیشرفته نامیده می‌شوند و تعداد نوترون‌های تولید شده در آن ها نسبت به همجوشی D-T بسیار کمتر است و بنا براین مشکلات مربوط به رادیواکتیویته و ایمنی و زیست محیطی ندارند. به طور کلی، همجوشی غیر نوترونی به هر شکلی از همجوشی اطلاق می‌شود که در آن کمتر از یک در صد از انرژی آزاد شده توسط نوترون‌ها حمل شود، ولی شرایط لازم برای کنترل همجوشی غیر نوترونی بسیار دشوارتر از شرایط لازم برای چرخه سوخت متداول دوتریم-تریتیم است و هنوز به طور تجربی حاصل نشده است.
دلایل اصلی اهمیت مطالعه برای یافتن چرخه‌های سوخت پیشرفته عبارتند از ADDIN EN.CITE <EndNote><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[13, 14]:
حذف تریتیوم از چرخه سوخت به منظور ساده سازی چرخه سوخت (عدم نیاز به زایش تریتیوم) و افزایش ذخیره سوخت همجوشی (ذخیره لیتیم زمین مقدار کل تریتیمی را که قابل تولید با پوشش‌های زاینده هست محدود می‌کند.)
(حذف و یا کاهش فوق العاده) تولید نوترون در رآکتورهای همجوشی به منظور اجتناب از (یا تا حد ممکن کاهش دادن) فعالسازی اجزای راکتورها و تخریب ناشی از نوترون‌ها.
دو چرخه مهم سوخت پیشرفته p-11B و D-3He می‌باشد، چرخه سوخت D-3He، تعداد خیلی کمتری نوترون نسبت به چرخه سوخت D-T تولید می‌کند و انرژی این نوترون‌ها نیز خیلی کمتر است، بنابراین، میزان تخریب مواد کاهش خواهد یافت. مطالعات نشان داده‌اند که چرخه سوخت D-3He به میزان قابل توجهی مساله طول عمر اجزای راکتور را با کاهش تخریب نوترونی حل می‌کند در حالی که مشکل فعال سازی نوترونی و تولید پسماندهای مربوط به آن کماکان باقی می‌ماند. در این چرخه، تریتیم حذف شده است ولی ایزوتوپ نایاب هلیم 3 جایگزین آن شده است. بر روی زمین در حدود 400 کیلوگرم هلیم3 قابل حصول است که در حدود GW-year 8 انرژی همجوشی بدست می‌دهد و مقادیر بیشتر از این باید یا از طریق واکنش‌هایی که شامل نوترون هستند، تهیه شود (که مزیت بالقوه همجوشی غیر نوترونی را از بین می‌برد) و یا اینکه از منابع ماورای زمین تهیه شود. بر روی سطح ماه در حدود 109 کیلوگرم هلیم3 وجود دارد که معادل هزار سال مصرف انرژی فعلی جهان است. همچنین، در اتمسفر سیارات عظیم گازی در حدود 1023 کیلوگرم هلیوم 3 وجود دارد که قادر است در حدود 1017 سال مصرف فعلی انرژی جهان را تولید کند، یعنی منابع هلیم 3 منظومه شمسی عملا پایان ناپذیرند ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>2006</Year><RecNum>29</RecNum><DisplayText>[26]</DisplayText><record><rec-number>29</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063586">29</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J.;</author></authors></contributors><titles><title>A Strategy for D–3He Development</title><secondary-title>Fusion Technology Institute</secondary-title></titles><periodical><full-title>Fusion Technology Institute</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[26].
ولی استخراج هلیم 3 از این منابع و انتقال آن به زمین بسیار دشوار و پرهزینه خواهد بود و تنها در آینده‌های دور می‌توان به آن اندیشید ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[2].
چرخه سوخت D-3He نسبت به D-T برای احتراق، نیازمند شرایط محصورسازی بالاتری nτET=2.4×1023keV.s/m3) ) است و در فشار پلاسمای یکسان، چگالی توان همجوشی کمتری نسبت به همجوشی D-T بدست خواهد داد. همچنین گرچه واکنش اصلی 3He(D,p)αرا می‌توان غیر نوترونی دانست ولی تولید نوترون از طریق واکنش جانبی D(D,n)3He و واکنش ثانویه D(T,n)α اجتناب ناپذیر است.
واکنش همجوشی 11B-p ایمن‌ترین و بهترین واکنش هسته‌ای هست که وجود دارد، 11B به فراوانی در آب دریا و منابع دیگر یافت می‌شود و 80 درصد بور موجود بر روی زمین را شامل می‌شود و هیدروژن هم که فراوان ترین عنصر در عالم هستی است. بنابراین، مشکلی از نظر محدودیت منابع سوخت وجود ندارد. حاصل واکنش آن‌ها نیز گاز بی اثر هلیم است و هیچ نوترونی تولید نخواهد شد ADDIN EN.CITE <EndNote><Cite><Author>Bussard</Author><Year>2006</Year><RecNum>30</RecNum><DisplayText>[27, 28]</DisplayText><record><rec-number>30</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063640">30</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bussard, W.; et al.;</author></authors></contributors><titles><title> The Advent of Clean Nuclear Fusion: Superperformance Space Power and Propulsion</title><secondary-title> 57th International Astronautical Congress(IAC), Valencia, Spain</secondary-title></titles><dates><year>2006</year></dates><urls></urls></record></Cite><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[27, 28].
برای بهره برداری عملی از همجوشی، انرژی حاصل از همجوشی باید بیش از انرژی لازم برای گرمایش پلاسما باشد، بدین منظورشروط متعددی باید برآورده شوند که مهمترین آنها، دستیابی به مقادیر مناسب برای حاصل ضرب nτ و حاصل ضرب nTτ است که مجموع اینها معیار لاوسون نامیده می‌شود. یعنی باید پلاسما را با چگالی مناسب تا دمای مناسبی گرم کرد و این پلاسمای داغ و چگال را به مدت کافی محصور نمود ADDIN EN.CITE <EndNote><Cite><Author>Wesson</Author><Year>2004</Year><RecNum>32</RecNum><DisplayText>[29]</DisplayText><record><rec-number>32</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063806">32</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wesson, J.;</author></authors></contributors><titles><title> Tokamaks</title><secondary-title>Clarendon Press-Oxford</secondary-title></titles><periodical><full-title>Clarendon Press-Oxford</full-title></periodical><volume>third edition</volume><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[29].
مقدار عدد به دست آمده در معیار لاوسون برای سوخت دوتریم تریتیم ازسال 1969 تا سال 2000 حدود 500 هزار برابر افزایش یافته است. سوخت‌های جدید مورد نظر هنوز نیاز به یک تا دو مرتبه افزایش در بزرگی دارند. بررسی‌های نظری نشان داده‌اند که این کار شدنی است ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>2006</Year><RecNum>33</RecNum><DisplayText>[30]</DisplayText><record><rec-number>33</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063863">33</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, F.;et al.;</author></authors></contributors><titles><title>Role of Advanced-Fuel and Innovative Concept Fusion in the Nuclear Renaissance</title><secondary-title>APS Division of Plasma Physics Meeting, Philadelphia</secondary-title></titles><periodical><full-title>APS Division of Plasma Physics Meeting, Philadelphia</full-title></periodical><volume>31</volume><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[30].
خواص دوتریومدوتریوم همان عنصر هیدروژن است که علاوه بر یک پروتون یک نوترون نیز درون هسته آن وجود دارد. اگرمولکول آب توسط دوتریوم تشکیل شود به آن آب سنگین () می‌گویند. در هر لیتر از آب دریا (۳۵) گرم دوتریوم وجود دارد. دوتریوم یکی از پایه‌های لازم برای همجوشی هسته‌ای است. در آب در کنار هر ۷۰۰۰ اتم هیدروژن ۱ اتم دوتریوم موجود است که جدا کردن آن با توجه به نزدیکی خواص آب سنگین و آب سبک بسیار سخت است. این دوتریومها باید تغلیظ و انبار شوند تا ابتدا به آب سنگین ۱۵٪ و سپس به آب ۹۹٪ تبدیل شود، جدا سازی آب سنگین از آب سبک بسیار سنگین ، پیچیده و سخت است. به دلیل آنکه گرمای تبخیر آب سنگین بشتر از آب معمولی می‌باشد، از آن در نیروگاههای اتمی جهت خنک کردن راکتورها استفاده میکنند.
دوتریوم را می توان به آسانی از آب استخراج کرد. هیدروژن موجود در زمین شامل دوتریوم به نسبت جرمی 1:5000 است. یک تریلی پر از دوتریوم انرژی معادل 2 میلیون تن زغال سنگ یا 1.3میلیون تن نفت (10میلیون بشکه)، یا 30 تن اکسید اورانیوم، آزاد خواهد کرد.
دوتریوم در واکنش‌های همجوشی زیر با آهنگ واکنش مساوی شرکت میکنند:
(2-1)
(2-2)
محیطى که به این درجه از گرما برسد، نمی‌تواند در یک جداره مادى بگنجد.
خواص هلیوم 3هلیوم 3 یکی از ایزوتوپ‌های غیر پرتوزای عنصر گازی هلیوم است که دارای ۲ پروتون و یک نوترون است. از این ماده به عنوان سوخت در تحقیقات مربوط به راکتورهای هسته‌ای، استفاده می‌شود. در زمین به ندرت یافت می‌شود و عموما در لایه‌های فوقانی سنگی کره ماه که طی بیش از میلیاردها سال توسط بادهای خورشیدی ایجاد شده است، به فراوانی موجود است. هلیون هسته اتم هلیوم 3 حاوی دو پروتون و تنها یک نوترون می‌باشد. این در حالی است که هلیوم معمولی حاوی دو نوترون می‌باشد. وجود فرضی آن اولین بار در 1934 پیشنهاد شد ADDIN EN.CITE <EndNote><Cite><Author>Oliphant</Author><Year>1934</Year><RecNum>34</RecNum><DisplayText>[31]</DisplayText><record><rec-number>34</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063934">34</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Oliphant, M. L. E.; Harteck ,P.; Rutherford, E.;</author></authors></contributors><titles><title> Transmutation Effects Observed with Heavy Hydrogen</title><secondary-title>Proceedings of the Royal Society</secondary-title></titles><periodical><full-title>Proceedings of the Royal Society</full-title></periodical><pages>692-703</pages><volume>144</volume><number>853</number><dates><year>1934</year></dates><urls></urls></record></Cite></EndNote>[31].
بخاطر جرم اتمی پایین‌ترش نسبت به هلیوم4 دارای خصوصیات فیزیکی متفاوتی نسبت به آن است. به سبب تعامل ضعیف ناشی از پیوندهای دو قطبی-دو قطبی بین اتم‌های هلیوم، خواص فیزیکی ماکروسکوپی آن عمدتا توسط نقطه صفر انرژی آن (انرژی جنبشی حداقل) تعیین می‌شود. همچنین خواص میکروسکوپی هلیوم 3 سبب می‌شود که نقطه صفر انرژی آن بالاتر از هلیوم 4 باشد. این نشان می‌دهد که هلیوم3 می‌تواند بر تعامل دو قطبی-دو قطبی با انرژی حرارتی کمتری نسبت به هلیوم-4، غلبه کند.
هلیوم 3 می‌تواند توسط یکی از دو واکنش زیر در واکنش‌های همجوشی شرکت کند:
2D + 3He →   4He +  1p + 18.3 MeV(2-3)
3He + 3He → 4He   + 2 1p+ 12.86 MeV(2-4)
که هدف در این مطالعه استفاده از دوتریوم و هلیوم 3 می‌باشد. سرعت‌های واکنش با دما متغیر است اما سرعت واکنش D-3He هرگز بالاتر از 56/3 برابر سرعت واکنش D-D نمی‌باشد. شکل 2-1 بیانگر حالت مقایسه‌ای بین انواع سوخت‌هاست.

شکل2-1- واکنش پذیری انواع سوخت‌ها ADDIN EN.CITE <EndNote><Cite><Author>Tang</Author><Year>2011</Year><RecNum>35</RecNum><DisplayText>[32]</DisplayText><record><rec-number>35</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063997">35</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Tang, R.;</author></authors></contributors><titles><title>Study of the G--ynamic Mirror (GDM) Propulsion Sys--</title><secondary-title> thesis (A dissertation submitted in partial fulfillment ofthe requirements for the degree of Doctor of Philosophy) in the University of Michigan</secondary-title></titles><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[32]
سرعت واکنش همجوشی به سرعت با دما افزایش می‌یابد تا اینکه به بیشینه مقداری رسیده و سپس به تدریج افت می‌کند. در مقایسه‌ای کلی جدول 2-1 را خواهیم داشت.
سوخت‌های پیشرفته، همجوشی سوخت‌های نسل دوم و سوم هستند که مقادیر بسیار کم یا اصلا هیچ نوترونی تابش نمی‌کنند و چرخه‌های سوخت نسل اول در آنها وجود ندارد. تعداد نوترون‌های تولید شده در واکنش‌های شامل هلیوم 3 بسیار کم است (در مورد واکنش 3He-3He عملا صفر و در مورد D-3He حدود 01/0 تا 05/0 همجوشی D-T و کمتر از 02/0 همجوشی D-D است.
محصول نسل سوم واکنش‌های همجوشی فقط ذرات باردار است و هر گونه واکنش جانبی نسبتا بی اهمیت است. در شرایط مناسب، فقط 1/0 درصد از انرژی حاصل از واکنش p-11B، توسط نوترون‌های تولید شده از واکنش‌های جانبی حمل می‌شود ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[2].
استفاده از سوخت‌های جدید نسبت به D-T با مسایل بیشتری مواجه است. به عنوان مثال در مورد D-3He باید:
دمای احتراق دست کم حدود 6 برابر افزایش یابد.
مقدار neτe حداقل حدود 8 برابر
حاصل ضرب nτT حداقل در حدود 50 برابر افزایش می‌یابد.
جدول2-1- نسل‌های مختلف سوخت‌های همجوشی PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaHZlc3l1azwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+
PFJlY051bT44PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNiwgMzMtMzddPC9EaXNwbGF5VGV4dD48
cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6cmE1d3hzZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFt
cD0iMTQyMzA2MTYyMiI+ODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy
bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+
S2h2ZXN5dWssIFYuIEkuOyBhbmQgWXUgQ2hpcmtvdiwgQS47PC9hdXRob3I+PC9hdXRob3JzPjwv
Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxvdy1yYWRpb2FjdGl2aXR5IETigJMzSGUgZnVz
aW9uIGZ1ZWwgY3ljbGVzIHdpdGggM0hlIHByb2R1Y3Rpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRST0xMRUQgRlVTSU9OPC9zZWNvbmRhcnktdGl0bGU+
PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRS
T0xMRUQgRlVTSU9OPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjUzLTI2MDwvcGFn
ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjwvZGF0ZXM+PHVy
bHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNhbnRhcml1czwvQXV0aG9y
PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT4yOTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6cmE1d3hz
ZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFtcD0iMTQyMzA2MzU4NiI+Mjk8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNhbnRhcml1cywgSi47PC9h
dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgU3RyYXRlZ3kg
Zm9yIETigJMzSGUgRGV2ZWxvcG1lbnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RnVzaW9uIFRl
Y2hub2xvZ3kgSW5zdGl0dXRlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+
PGZ1bGwtdGl0bGU+RnVzaW9uIFRlY2hub2xvZ3kgSW5zdGl0dXRlPC9mdWxsLXRpdGxlPjwvcGVy
aW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub2RkPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48
UmVjTnVtPjM2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpyYTV3eHNkOHo1djV1ZTk1c2c1NWF4ajlw
MDIyMHMwMHh4NSIgdGltZXN0YW1wPSIxNDIzMDY0OTQwIj4zNjwva2V5PjwvZm9yZWlnbi1rZXlz
PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0
b3JzPjxhdXRob3JzPjxhdXRob3I+VG9kZCwgSC5SaWRlcjs8L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBHZW5lcmFsIENyaXRpcXVlIG9mIEluZXJ0aWFs
IEVsZWN0cm9zdGF0aWMgQ29uZmluZW1lbnQgRnVzaW9uIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRh
cnktdGl0bGU+dGhlc2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9s
b2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+dGhl
c2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9sb2d5PC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MTk5NDwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Sb2Jlcmc8L0F1dGhvcj48WWVhcj4y
MDExPC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMt
bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2NXVl
OTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzU4NDYiPjc0PC9rZXk+PC9m
b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl
Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Sb2JlcmcsIEcuOzwvYXV0aG9yPjwvYXV0
aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgUG93ZXIgb2YgdGhlIEZ1dHVy
ZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OdWNsZWFyIEZ1c2lvbjwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xlYXIgRnVzaW9uPC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CZXJ0dWxhbmk8L0F1dGhvcj48WWVh
cj4yMDEwPC9ZZWFyPjxSZWNOdW0+NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjczPC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2
NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzUxNDIiPjczPC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZXJ0dWxhbmksIEMuQS47PC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXIgUmVhY3Rp
b25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNz
LCBXaWxleS1WQ0gsIEJlcmxpbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNzLCBXaWxleS1WQ0gsIEJl
cmxpbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9k
YXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WWFtYW5ha2E8
L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNOdW0+Mzc8L1JlY051bT48cmVjb3JkPjxyZWMt
bnVtYmVyPjM3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i
enJhNXd4c2Q4ejV2NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNjYx
NjciPjM3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZYW1hbmFrYSwg
Qy47PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPiBJbnRy
b2R1Y3Rpb24gdG8gTGFzZXIgRnVzaW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkhhcndhcmQg
QWNhZGVtaWMgUHVibGlzaGVyczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPkhhcndhcmQgQWNhZGVtaWMgUHVibGlzaGVyczwvZnVsbC10aXRsZT48L3Bl
cmlvZGljYWw+PGRhdGVzPjx5ZWFyPjE5OTE8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaHZlc3l1azwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+
PFJlY051bT44PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNiwgMzMtMzddPC9EaXNwbGF5VGV4dD48
cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6cmE1d3hzZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFt
cD0iMTQyMzA2MTYyMiI+ODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy
bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+
S2h2ZXN5dWssIFYuIEkuOyBhbmQgWXUgQ2hpcmtvdiwgQS47PC9hdXRob3I+PC9hdXRob3JzPjwv
Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxvdy1yYWRpb2FjdGl2aXR5IETigJMzSGUgZnVz
aW9uIGZ1ZWwgY3ljbGVzIHdpdGggM0hlIHByb2R1Y3Rpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRST0xMRUQgRlVTSU9OPC9zZWNvbmRhcnktdGl0bGU+
PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRS
T0xMRUQgRlVTSU9OPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjUzLTI2MDwvcGFn
ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjwvZGF0ZXM+PHVy
bHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNhbnRhcml1czwvQXV0aG9y
PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT4yOTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6cmE1d3hz
ZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFtcD0iMTQyMzA2MzU4NiI+Mjk8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNhbnRhcml1cywgSi47PC9h
dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgU3RyYXRlZ3kg
Zm9yIETigJMzSGUgRGV2ZWxvcG1lbnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RnVzaW9uIFRl
Y2hub2xvZ3kgSW5zdGl0dXRlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+
PGZ1bGwtdGl0bGU+RnVzaW9uIFRlY2hub2xvZ3kgSW5zdGl0dXRlPC9mdWxsLXRpdGxlPjwvcGVy
aW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub2RkPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48
UmVjTnVtPjM2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpyYTV3eHNkOHo1djV1ZTk1c2c1NWF4ajlw
MDIyMHMwMHh4NSIgdGltZXN0YW1wPSIxNDIzMDY0OTQwIj4zNjwva2V5PjwvZm9yZWlnbi1rZXlz
PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0
b3JzPjxhdXRob3JzPjxhdXRob3I+VG9kZCwgSC5SaWRlcjs8L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBHZW5lcmFsIENyaXRpcXVlIG9mIEluZXJ0aWFs
IEVsZWN0cm9zdGF0aWMgQ29uZmluZW1lbnQgRnVzaW9uIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRh
cnktdGl0bGU+dGhlc2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9s

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

b2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+dGhl
c2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9sb2d5PC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MTk5NDwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Sb2Jlcmc8L0F1dGhvcj48WWVhcj4y
MDExPC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMt
bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2NXVl
OTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzU4NDYiPjc0PC9rZXk+PC9m
b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl
Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Sb2JlcmcsIEcuOzwvYXV0aG9yPjwvYXV0
aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgUG93ZXIgb2YgdGhlIEZ1dHVy
ZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OdWNsZWFyIEZ1c2lvbjwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xlYXIgRnVzaW9uPC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CZXJ0dWxhbmk8L0F1dGhvcj48WWVh
cj4yMDEwPC9ZZWFyPjxSZWNOdW0+NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjczPC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2
NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzUxNDIiPjczPC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZXJ0dWxhbmksIEMuQS47PC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXIgUmVhY3Rp
b25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNz
LCBXaWxleS1WQ0gsIEJlcmxpbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNzLCBXaWxleS1WQ0gsIEJl
cmxpbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9k
YXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WWFtYW5ha2E8
L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNOdW0+Mzc8L1JlY051bT48cmVjb3JkPjxyZWMt
bnVtYmVyPjM3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i
enJhNXd4c2Q4ejV2NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNjYx
NjciPjM3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZYW1hbmFrYSwg
Qy47PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPiBJbnRy
b2R1Y3Rpb24gdG8gTGFzZXIgRnVzaW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkhhcndhcmQg
QWNhZGVtaWMgUHVibGlzaGVyczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPkhhcndhcmQgQWNhZGVtaWMgUHVibGlzaGVyczwvZnVsbC10aXRsZT48L3Bl
cmlvZGljYWw+PGRhdGVzPjx5ZWFyPjE5OTE8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA [26, 33-37]
n/MeV بهره انرژی محصولات واکنش‌ها
سوخت‌های همجوشی نسل اول
0.306 3.268 MeV32He + 10n 21H + 21H (D-D)
0 4.032 MeV31H + 11p 21H + 21H (D-D)
0.057 17.571 MeV42He + 10n 21H + 31H (D-T)
سوخت‌های همجوشی نسل دوم
0 18.354 MeV42He + 11p 21H + 32He (D-3He)
سوخت‌های همجوشی نسل سوم
0 12.86 MeV42He+ 211p 32He + 32He
0 8.68 MeV3 42He115B + 11p
نتیجه کل سوختن دوتریوم(مجموع 4 سطر اول)
0.046 43.225 MeV2(4He + n + p) 6D
سوخت هسته‌ای در زمان حال
0.001 ~200 MeV2 FP+ 2.5n 235U + n
در استفاده از سوخت D-3He کاهش فوق العاده شار نوترونی باعث کاهش قابل ملاحظه تخریب تابشی می‌شود ودرنتیجه طول عمر دیواره اولیه و حفاظ تابشی افزایش می‌یابد و به حفاظ تابشی کوچک‌تری نیاز خواهد بود و تعمیرات و نگهداری راحت‌تر می‌شوند. افزایش شار ذرات باردار امکان تبدیل مستقیم انرژی همجوشی را با بازده بالا فراهم می سازد.
مشکلات عمده در استفاده از انرژی هسته‌ای در سالیان گذشته از سه مساله اصلی، احتمال پخش مواد رادیواکتیو، مشکلات مربوط به نگهداری پسماندهای هسته‌ای با عمر طولانی، احتمال استفاده از مواد حاصل برای کاربردهای تسلیحاتی می‌باشد. تمام این مشکلات مربوط به رآکتورهای هسته‌ای، مربوط است به:
سوخت رادیواکتیو
محصولات رادیواکتیو واکنش
نوترونها
همجوشی هسته‌ای تا حدودی از این مشکلات می‌کاهد ADDIN EN.CITE <EndNote><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><DisplayText>[28]</DisplayText><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[28].
مزیت عمده سوخت‌های جدید همجوشی این است که سوخت و محصولات واکنش‌های نسل دوم و سوم همجوشی میزان پرتوزایی (تخریب حرارتی و وجود تریتیم) و نکات بالقوه مربوط به تکثیر تسلیحاتی و همینطور مشکلات مربوط به پسمانداری را تا حد زیادی کاهش داده یا حذف می‌کنند، ولی برای استفاده از آنها به پیشرفت فیزیکی و مهندسی زیادی نیاز است. از این سوخت‌های جدید می‌توان برای ساخت نیروگاه‌های برق ایمن، تمیز و اقتصادی، در سفینه‌های فضایی و موشک‌ها به عنوان سوخت و نیز برای کاربردهای پزشکی و غیره استفاده کرد. از مزایای دیگر آنها می‌توان از عدم نیاز به پوشش‌های زاینده تریتیم و حلقه‌های پیچیده سرمایش ثانویه و عدم نیاز به دستگاه‌های پیچیده تست نوترون و مدت زمان‌های بررسی طولانی نام برد ADDIN EN.CITE <EndNote><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><DisplayText>[28]</DisplayText><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[28].
پارامترهای متعددی در استفاده از سوخت‌های مختلف دخیلند، از جمله: .
انرژی کل محصولات همجوشی : Efus
محصولات باردار همجوشی: Ech
عدد اتمی ذرات درگیر در واکنش: Z
میزان انرژی حمل شده توسط نوترون ها
اتلاف انرژی از طریق تابش ترمزی و....
در رابطه با همجوشی D-D و D-T اتلاف انرژی از طریق تابش ترمزی مشکل جدی و مهمی است که باید حل شود، برای سوخت‌های سنگین‌تر D-3He و p-11 B و 3He-3He میزان این اتلاف به قدری است که کار یک راکتور همجوشی بر اساس طرح‌های توکامک و همجوشی لیزری را ناممکن می‌سازد.
تابش سینکروترونی نیز نکته دیگری است که باید مورد توجه قرار گیرد. بررسی‌ها نشان داده‌اند که درمورد همجوشی D-T تابش سینکروترونی نقش چندانی در بالانس انرژی ندارد، در حالی که در مورد همجوشی 3He-D این اثر قابل توجه است. و این مشکل باید در طراحی رآکتورهای احتمالی3 He -D حل شود ADDIN EN.CITE <EndNote><Cite><Author>Lerner</Author><Year>2003</Year><RecNum>38</RecNum><DisplayText>[38]</DisplayText><record><rec-number>38</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066296">38</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lerner, E.J.;</author></authors></contributors><titles><title>ProspectsFor p-11B Fusion With The Dense Plasma Focus: New Results</title><secondary-title>Conf. Current Trends in International Fusion Research, Washington, USA</secondary-title></titles><periodical><full-title>Conf. Current Trends in International Fusion Research, Washington, USA</full-title></periodical><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[38].
درصدی از انرژی کل واکنش که توسط نوترون‌ها حمل می‌شود، در مورد D-T حدود 80 درصد، در مورد D-D حدود 66 درصد و در مورد 3 He –D و p-11B بسیار ناچیز و نزدیک به صفر است که این امر مشکلات مختلف مربوط به نوترون‌ها از جمله تخریب تابشی، حفاظ‌گذاری بیولوژیکی، کنترل از دور، ایمنی و اتلاف توان همجوشی توسط آنها را کاهش می‌دهد ADDIN EN.CITE <EndNote><Cite><Author>Sadowski</Author><Year>1998</Year><RecNum>39</RecNum><DisplayText>[39]</DisplayText><record><rec-number>39</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066348">39</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sadowski, M.;</author></authors></contributors><titles><secondary-title>Special Suppl. School of Physics - Georgia Institute of Technology</secondary-title></titles><periodical><full-title>Special Suppl. School of Physics - Georgia Institute of Technology</full-title></periodical><pages>3-4</pages><volume>39</volume><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[39].
پلاسما حالت چهارم مادهپلاسما گازی یونیزه و داغ می‌باشد که حاوی تعداد تقریبا برابری از یونهای مثبت باردارشده و الکترونهای با بار منفی می‌باشد. مشخصات پلاسما کاملا با گازهای خنثی طبیعی متفاوت است (گازهای معمولی به سبب خنثی بودنشان از لحاظ بار الکتریکی توانایی عکس ‌العمل در مقابل مغناطیس و میدان وابسته به آن را ندارند.) از این روست که پلاسما به عنوان حالت چهارم ماده معرفی شده است. برای مثال، به این علت که پلاسماها ذرات باردار الکتریکی تولید میکنند، تا زمانی که گاز بطور خنثی نباشد، به شدت تحت تاثیر میدان‌های مغناطیسی و الکتریکی قرار می‌گیرد. مثالی از چنین تاثیری، به دام اندازی ذرات باردار پر انرژی در عرض خطوط میدان مغناطیسی زمین، به فرم کمربندهای تشعشی ون آلن است.
علاوه بر میدان‌های خارجی اعمال شده، مانند میدان مغناطیسی زمین و یا میدان مغناطیسی بین سیارهها، پلاسما براساس میدان‌های الکتریکی و مغناطیسی ایجاد شده توسط خود پلاسما و از طریق تغییر غلظت بار محلی و جریان الکتریکی ایجاد شده عمل میکند، که در نتیجه حرکتهای متفاوت یونها و الکترونها ایجاد می‌شود. نیروهای اعمال شده توسط این میدان روی ذرات بارداری که عمل پلاسما را در طول فواصل طولانی ایجاد میکند، تاثیر گذاشته و سبب یکنواختی رفتار انتقالی ذرات و کیفیت بالایی میگردد که در گازهای خنثی دیده نمی‌شود. به رغم وجود غلظت بارهای محلی و پتانسیل های الکتریکی، پلاسما از نظر الکتریکی "شبه خنثی" است، زیرا بطور کل، تعداد تقریبا برابری از ذرات باردار مثبت و منفی طوری پراکنده شدهاند که تاثیر بارهای یکدیگر را از بین میبرند.
روشهای تولید پلاسماالف) تخلیه الکتریکی:
اگر میدان الکتریکی نیرومندی بر گازی معمولی اعمال کنیم ممکن است تعدادی از الکترونها، اتمهای خود را ترک کنند. هر اتم که به این ترتیب تحت تاثیر قرار بگیرد به طور مثبت باردار می‌شود و در این حالت میگوییم اتم به یون تبدیل شده است. الکترونهای جدا شده که بار منفی دارند آزادانه در دستگاه حرکت می‌کنند و از میدان الکتریکی انرژی میگیرند، با افزایش سرعت، به اتمهای دیگر برخورد میکنند و سبب آزاد شدن الکترونهای بیشتری میشوند. این کار به طور پیدرپی صورت می‌گیرد و تعداد الکترونهای آزاد شده مدام افزایش می‌یابد. این فرآیند به فرآیند آبشاری معروف است. در این میان تخلیه الکتریکی گسترش می‌یابد و جریان الکتریکی برقرار می‌شود. گاز قبل از تخلیه الکتریکی، نارسانا بود. در مواقعی که تخلیه الکتریکی بسیار قدرتمندی انجام می‌گیرد، ممکن است تمام اتمهای گاز به سبب فرآیند آبشاری یونیزه شوند و گاز به پلاسما تبدیل شود.
مخلوط همجوشی با فشار کم را در محفظه چنبرهاى شکل داخل کرده، به کمک یک سیستم اولیه متشکل از چند بوبین، یک میدان مغناطیسى معروف به چنبره‌اى، پدید میآید. سپس، به کمک هایپِرفرکانسها (فوق بسامدها)، محتوى محفظه چنبرهای، یونیزه گشته و در نهایت از طریق القا با افزایش تدریجى میدان مغناطیسى پدیدآمده بوسیله‌ی یک سیم لوله (سولونوئید( که در جهت محور سامانه قرار داده شده است، یک جریان پلاسما بوجود میآید.
ب) تولید پلاسما در درجه حرارت های بالا:
با رساندن دمای گاز به درجه حرارتهای بالا نیز میتوان پلاسما بوجود آورد. دمای لازم برای تولید این نوع پلاسما به روش یونیزاسیون حرارتی بسیار زیاد و از مرتبه دهها هزار درجه است و واقعیت این است که دانشمندان در مواقع بسیار نادر و ویژه از این روش برای تولید پلاسما استفاده میکنند.
پارامترهای بنیادی پلاسماهمه مقادیر در واحد گاووسی (cgs) بیان شده است. غیر از دما که در واحد الکترون ولت آورده شده است و جرم یون که بر حسب واحد جرم پروتون و بصورت μ=mimp می‌باشد. Z مقدار بار، k ثابت بولتزمن، K عدد موج، lnʌ لگاریتم کولن است ADDIN EN.CITE <EndNote><Cite><Author>Suryanarayana</Author><Year>2010</Year><RecNum>40</RecNum><DisplayText>[40]</DisplayText><record><rec-number>40</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066400">40</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Suryanarayana, N.S.; Kaur, J.; Dubey, V.;</author></authors></contributors><titles><title>Study of propagation of Ion Acoustic waves in plasma</title><secondary-title>Departman of physics,Govt.</secondary-title></titles><periodical><full-title>Departman of physics,Govt.</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[40].
که برای الکترون: lnᴧ≈13.6
و برای یک یون: lnᴧ≈6.8
2-6-1- فرکانسها در پلاسمافرکانس زاویهای حرکت چرخشی الکترون در جهت عمود بر میدان مغناطیسی:
ωce=eB/mec=1.76×107 B--/s
فرکانس زاویهای حرکت چرخشی یون در جهت عمود بر میدان مغناطیسی:
ωci=ZeB/mic=9.58×103 Zμ-1 B--/s
فرکانس الکترونهایی که نوسان میکنند(نوسان پلاسما):
ωpe=(4πnee2/me)1/2=5.64×104 ne1/2 --/s
فرکانس پلاسمای یونی:
ωpi=(4πniZ2 e2/mi)1/2=1.32×103 Zμ-1/2 ni1/2 --/s
سرعت به دام اندازی الکترون:
????Te=(eKE/me)1/2=7.26×108 K1/2 E1/2 s-1
سرعت به دام اندازی یون:
????Ti=(ZeKE/mi)1/2=1.69×107 Z1/2 K1/2 E1/2μ-1/2 s-1
سرعت برخورد الکترون در پلاسمای کاملا یونیزه شده:
????e=2.91×10-6 ne lnᴧ Te-3/2 s-1
سرعت برخورد یون در پلاسمای کاملا یونیزه شده:
????i=4.80×10-8 Z4 μ-1/2 ni lnᴧ Ti-3/2 s-1
سرعت برخورد الکترون (یون) در پلاسمای کمی یونیزه شده: υe,i=Nσe,iυ=N0∞σ(υ)e,if(υ)υdυ
که <σν>e,i سطح مقطع برخورد الکترون (یون) در اتمهای (مولکولهای) گاز عامل، f(ν) تابع توزیع الکترون (یون) در پلاسما و N غلظت گاز عامل می‌باشد ADDIN EN.CITE <EndNote><Cite><Author>Suryanarayana</Author><Year>2010</Year><RecNum>40</RecNum><DisplayText>[40]</DisplayText><record><rec-number>40</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066400">40</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Suryanarayana, N.S.; Kaur, J.; Dubey, V.;</author></authors></contributors><titles><title>Study of propagation of Ion Acoustic waves in plasma</title><secondary-title>Departman of physics,Govt.</secondary-title></titles><periodical><full-title>Departman of physics,Govt.</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[40].
2-6-2- سرعتها در پلاسماسرعت حرارتی الکترون: سرعت معمول یک الکترون در توزیع ماکسول-بولتزمن

user8271

(Q) Lepton
Number
(L) Baryon
Number
(B) Spin
(S) Name +2/3 0 1/3 1/2 u (up) -1/2 0 1/3 1/2 d(down) +2/3 0 1/3 1/2 s(strange) -1/2 0 1/3 1/2 c(charm) Quarks
+2/3 0 1/3 1/2 t(top) -1/2 0 1/3 1/2 b(bottom) -1 1 0 1/2 e(electron) 0 1 0 1/2 νe(e-noutrino) -1 1 0 1/2 μ(muon) 0 1 0 1/2 νμ(μ-noutrinoLeptons
-1 1 0 1/2 τ(tau) 0 1 0 1/2 ντ(τ-noutrino) 0 0 0 1 γ(photon) ±1,0 0 0 1 w±,z0(weak boson Gauge
boson
0 0 0 1 gi(i=1,…,8 gluons) تعداد شش لپتون وجود دارد که بر حسب بار الکتریکی و عدد لپتونی دسته بندی می‌شوند. همچنین شش آنتی لپتون وجود دارد که علامت آن‌ها بر عکس لپتون ها است.
بنا بر این مدل شش طعم کوارک با اسپین 12 وجود دارد. که بالا (u)، پایین (d)، شگفتی (s)، افسون (c)، زیبایی (b) و حقیقت (t) نام دارند که هر کدام دارای یک آنتی کوارک می‌باشند. ضمنا هر کدام از کوارک ها و آنتی کوارک ها دارای سه رنگ (آبی- قرمز- سبز) هستند.
و در نهایت هر بر هم کنشی واسطه مخصوص خود را دارد. چهار نیروی اصلی و بنیادی در طبیعت وجود دارد قوی، الکترومغناطیس، ضعیف و جاذبه. نیروی جاذبه در مدل استاندارد بررسی نمی‌شود. فوتون ها واسطه نیروهای الکترومغناطیس هستند و به همین دلیل به آن‌ها حاملان نیرو می‌گویند و چون فوتون ها ذراتی بدون جرم هستند، نیروهای الکترومغناطیسی برد بالایی دارند. بوزون های باردار+ w و w- و بوزون خنثی z واسطه نیروهای ضعیف هستند، به این بوزون ها حاملان بار ضعیف می‌گویند و به علت جرم زیاد ذرات واسطه، بر هم کنش ضعیف کوتاه برد است. گلئون ها که بدون جرم اند و از نظر بار الکتریکی خنثی هستند، واسطه نیروهای قوی هستند و به آن‌ها حاملان رنگ گفته می‌شود. بر هم کنش قوی نیز به علت بدون جرم بودن گلئون ها، برد بالایی دارند اما نسبت به بر هم کنش الکترومغناطیس برد محدودتری دارند.
centercenterفصل دوم
00فصل دوم

2- مدل‌های هسته‌ای2-1- مقدمهبرهمکنش متقابل میان نوکلئون ها هنگامی که برای تشکیل هسته‌های سنگین و متوسط متراکم می‌شوند، برای مدت طولانی مورد تجزیه و تحلیل قرار گرفته‌اند. مفهوم نیروی بین هسته‌ای و محاسبه خصوصیات هسته‌ای بسیار پیچیده است و برای شناخت هسته و خصوصیات آن، تنها راه ساده سازی، شبیه سازی و استفاده از مدل‌های هسته‌ای خاص و نیروهای هسته‌ای ساده شده است.
در هر هسته حالتی با کم‌ترین انرژی، حالت پایه نامیده می‌شود و حالت‌هایی با انرژی بالاتر را، حالت‌های برانگیخته می‌نامند. بسیاری از خصوصیات نیروهای هسته‌ای را می‌توان از بررسی هسته در حالت پایه بدست آورد، در برسی های دقیق‌تر ویژگی‌های معینی ظاهر می‌شوند. مدل‌های هسته‌ای برای توضیح این ویژگی‌ها توسعه داده شده‌اند. در غیاب یک تئوری دقیق تعدادی از مدل‌های هسته‌ای توسعه یافته‌اند. برای این کار فرضیات بسیاری برای ساده سازی روابط به کار رفته‌اند. هر مدل تنها قادر به توضیح بخشی از دانش تجربی ما راجع به هسته است.
در حالت کلی مدل‌های هسته‌ای به دو گروه تقسیم می‌شوند: مدل‌های ذره مستقل (IPM) که در آن نوکلئون ها به طور مستقل در یک پتانسیل هسته‌ای معمولی حرکت می‌کنند. گروه دیگر، مدل‌های برهم کنش قوی (SIM) که در آن نوکلئون ها به طور قوی با یکدیگر جفت شده‌اند. ساده‌ترین مدل برهم کنش قوی، مدل قطره مایع است و ساده‌ترین مدل ذره مستقل، مدل گاز فرمی است.
2-2- مدل قطره مایعی و فرمول نیمه تجربی جرمنظریه مفصل بستگی هسته‌ای، مبتنی بر روش‌های ریاضی و مفاهیم فیزیکی پیچیده، توسط بروکنر و همکارانش (از 1954 تا 1961) ابداع شده است. مدل بسیار ساده شده‌ای نیز در سال 1935 توسط وایس زکر با پیشنهاد بور بدست آمد. در این مدل از بعضی ویژگی‌های ظریف‌تر نیروهای هسته‌ای صرف نظر شده است، ولی بر جاذبه قوی بین نوکلئونی تاکید می‌کند. در این مدل فرض می‌شود که نوکلئون ها با همسایه‌های نزدیک خود فعل و انفعال متقابل دارند، درست همان گونه که مولکول‌ها در یک قطره آب با هم برهم کنش دارند [5,4,3].
فرض‌های اساسی به قرار زیرند:
1- هسته از ماده غیر قابل تراکم تشکیل شده است، به طوری که R∝A1/3.
2- نیروی هسته‌ای برای هر نوکلئون یکسان است و به نوع آن بستگی ندارد.
3- نیروی هسته‌ای اشباع می‌شود.
آثار کولومبی و مکانیک کوانتومی را به طور جداگانه بررسی می‌کنیم. طبق فرض‌های 2 و 3، در یک هسته نامتناهی با A نوکلئون، انرژی بستگی اصلی متناسب با A است. اما چون هسته‌های واقعی متناهی هستند، معمولاً یک شکل کروی برای آن در نظر می‌گیرند. از این رو نوکلئون های سطحی، به اندازه آنچه هم اکنون تخمین زدیم، تحت جاذبه یکسان از طرف دیگر نوکلئون ها قرار نمی‌گیرند و از این رو باید جمله‌ای متناسب با تعداد نوکلئون های سطحی یا متناسب با مساحت سطح را از تخمین مبتنی بر هسته‌ی نا متناهی، کم کرد. از طرفی نیروی دافعه کولومبی که بین تمام جفت پروتون‌ها برقرار است، از انرژی بستگی کم خواهد کرد. (نیروی کولومبی دارای برد زیاد است و اشباع نمی‌شود). علاوه بر این، جمله‌ای را باید معرفی کنیم که به هسته‌های با N=Z، بیشترین بستگی را نسبت دهد. این جمله، پیامد مستقیمی از رفتار مکانیک کوانتومی نوترون‌ها و پروتون‌ها می‌باشد. بالاخره، باید جملات تصحیحی لازمی را معرفی کنیم که بیشترین بستگی را برای هسته‌های زوج- زوج و کمترین بستگی را برای هسته‌های فرد- فرد به دست بدهند و آثار پوسته‌ای را منعکس کنند.
اهمیت این مدل در این حقیقت نهفته است که جنبه‌های علمی داده‌های جرم هسته‌ای را تبیین می‌کند. این امر تایید کننده آن است که جمله انرژی بستگی اصلی، که متناسب با A می‌باشد، باید تصحیح شود. چون این جمله در بین فرض‌های دیگر به فرض "استقلال از بار" نیروهای هسته‌ای بستگی دارد، می‌توان نتیجه گرفت که بر هم کنش‌های هسته‌ای n-n، p-p، p-n یکسان هستند.
انرژی بستگی، B، یک هسته عبارت است از اختلاف انرژی بین جرم هسته و جرم کل پروتون‌ها (Z پروتون) و نوترون‌های تشکیل دهنده آن (N نوترون) که به صورت زیر نوشته می‌شود.
(2- SEQ (2- * ARABIC 1)B={Zmp+Nmn-mX-Zme}رابطه انرژی بستگی کل یک هسته را می‌توان به صورت زیر نوشت.
(2- SEQ (2- * ARABIC 2)BA,Ztot=avA-asA23-acZZ-1A-13-aa(N-Z)2A-1±δ+ηکه در آن
avA جمله حجمی
asA23 جمله سطحی متناسب با مساحت سطح کره(4πr2).
±δ جمله انرژی زوجیت، که برای هسته‌های با A ی فرد برابر صفر است، برای هسته‌های (N زوج - Aزوج) علامت (+) و برای هسته‌های (N فرد – Aفرد) علامت (-) را به کار می‌بریم و ???? جمله پوسته‌ای، که اگر N یا Z یک عدد جادویی باشد مثبت است.
aa(N-Z)2A-1/3 جمله انرژی عدم تقارن و acZZ-1A-13 جمله انرژی کولنی هستند.
2-2-1- انرژی عدم تقارنجمله عدم تقارن نتیجه مستقیم رفتار کوانتوم مکانیکی پروتون‌ها و نوترون‌ها است و بیشترین بستگی را به هسته‌هایی با N=Z، بیشترین بستگی را نسبت می‌دهد.
طبق اصل طرد پائولی در هر طراز فقط یک نوکلئون می‌تواند وجود داشته باشد و فرض می‌کنیم ترازها در فاصله یکسان ∆ از هم قرار داشته باشند، انرژی عدم تقارن عبارت است از اختلاف بین انرژی هسته-ای یک هسته با اعداد نوترونی و پروتونی N و Z با انرژی ایزوباری که در آن اعداد نوترونی و پروتونی، هردو، مساوی A2 است. اگر بخواهیم هسته اول را از هسته دوم بسازیم باید v پروتون به نوترون تبدیل شود، یعنی
N=12A+v و Z=12A-v → v=12(N-Z) و انرژی لازم برای این کار v2∆ است. و با قرار دادن 1A به جای ∆، جمله انرژی عدم تقارن بدست می‌آید.
2-2-2- انرژی کولنیما در فرض‌های اولیه، دافعه کولنی بین پروتون‌ها را در نظر نگرفتیم، این نیرو دارای برد بلند است و اشباع نمی‌شود، برای محاسبه این نیرو، هسته را به صورت یک کره با بار Ze و شعاع R در نظر بگیریم، آنگاه انرژی کولنی با توجه به روابط زیر محاسبه می‌شود:
(2- SEQ (2- * ARABIC 3)Eکولنی=0ZeQ(r)rdQاز طرفی
(2- SEQ (2- * ARABIC 4)Qr=Ze(rR)3(2- SEQ (2- * ARABIC 5)dQ=3Zer2R3drبا جایگذاری دو عبارت بالا در عبارت اول داریم:
(2- SEQ (2- * ARABIC 6) Eکولنی=0R3(Ze)2rr5R6dr=35(Ze)2Rعبارت بالا شامل یک جمله خود انرژی 3e25R برای هر پروتون است (که با قرار دادن Z=1 پیدا می‌شود)، که اضافه محاسبه شده است، و باید این جمله برای Z پروتون از جمله بالا کسر گردد.
(2- SEQ (2- * ARABIC 7): Ec=35Z(Z-1)e2A13نمودار انرژی بستگی هسته‌ها بر حسب داده‌های تجربی و فرمول نیمه تجربی جرم در شکل‌های .(2-1) و (2-2) نشان داده شده است.

شکل(2- SEQ شکل(2- * ARABIC 1): انرژی بستگی هسته‌ها که به صورت تجربی به دست آمده‌اند.
شکل(2- SEQ شکل(2- * ARABIC 2): انرژی بستگی هسته‌ها براساس فرمول نیمه تجربی جرمهر چند که مدل قطره مایعی را بیشتر بر حالت‌های پایه اعمال می‌کنند، ولی می‌توان آن را برای حالت‌های برانگیخته نیز به کار برد. این حالت‌ها می‌توانند توسط نوسان‌های سطحی قطره‌ی هسته، یا توسط چین و شکن‌هایی که بر روی سطح آن حرکت می‌کنند، ایجاد شوند. این عقیده مخصوصاً در توجیه بعضی از جنبه‌های شکافت هسته‌ای موفق بوده است. مدل قطره مایعی بر آثار جمعی بین نوکلئون های متعدد موجود در هسته نیز تایید دارد و پیشقراول مدل‌های جمعی ساختار هسته‌ای است. آنچه در این مدل صراحت دارد تقسیم سریع انرژی بین نوکلئون هاست که مبنای نظری بوهر را در مورد شکل بندی هسته مرکب در واکنش‌های هسته‌ای تشکیل می‌دهد [6].
2-3- مدل پوسته‌ای هسته2-3-1- مقدمهنظریه اتمی با استفاده از مدل پوسته‌ای توانسته است به طور کاملاً روشن جزئیات پیچیده ساختار اتم‌ها را توضیح دهد. به همین دلیل متخصصان فیزیک هسته‌ای، به امید آنکه بتوانند به توصیف روشنی از خواص هسته‌ها دست یابند، سعی کردند در بررسی ساختار هسته‌ای از نظریه مشابهی استفاده کنند. در مدل پوسته‌ای اتم‌ها، پوسته‌ها را با الکترون‌هایی که انرژی‌شان به ترتیب افزایش می‌یابد پر می‌کنیم، و این آرایش الکترونی به گونه‌ای است که اصل طرد پائولی در آن رعایت می‌شود. بدین ترتیب، هر اتم متشکل است از: یک ناحیه مرکزی خنثی که پوسته‌های پر دارد، و چند الکترون ظرفیت که در پوسته‌ای خارج از این ناحیه مرکزی قرار می‌گیرند. در این مدل، فرض بر این است که عمدتاً همین الکترون‌های ظرفیت هستند که خواص اتم‌ها را تعیین می‌کنند. هنگامی که پیش بینی‌های این مدل را با بعضی از خواص اندازه گیری شده سیستم‌های اتمی مقایسه می‌کنیم، آن‌ها را به خوبی یا هم سازگار می‌یابیم. بویژه مشاهده می‌کنیم که تغییرات خواص اتمی در محدوده هر زیر پوسته تدریجی و کم است، در حالی که وقتی از یک زیر پوسته به زیر پوسته دیگر می‌رویم تغییرات خواص ناگهانی و زیاد است.
هنگامی که سعی می‌کنیم تا این مدل را به قلمرو هسته‌ای هم گسترش دهیم، از همان آغاز کار با چند مانع روبرو می‌شویم. در مورد اتم‌ها، پتانسیل حاکم را میدان کولنی هسته تأمین می‌کند. یعنی یک عامل خارجی زیر پوسته‌ها (یا مدارها) را سازمان می‌دهد. اما در مورد هسته هیچ عامل خارجی وجود ندارد، و نوکلئون ها در پتانسیلی که خودشان به وجود می‌آورند در حرکت اند. یکی دیگر از جنبه‌های جالب توجه نظریه پوسته‌ای اتم‌ها وجود مدارهای فضایی است. خواص اتم‌ها را اغلب بر حسب مدارهای فضایی الکترون‌ها توصیف می‌کنیم. الکترون‌ها می‌توانند نسبتاً آزادانه در این مدارها حرکت کنند، بدون اینکه برخوردی با الکترون‌های دیگر داشته باشند. قطر نوکلئون ها در مقایسه با اندازه هسته نسبتاً بزرگ است. در حالی که هر نوکلئون منفرد در خلال حرکتش در هر مدار می‌تواند برخوردهای متعددی با نوکلئون های دیگر داشته باشد، چگونه می‌توان نوکلئون ها را در مدارهای کاملاً مشخص در حرکت تصور کرد. در مدل پوسته‌ای، مسئله پتانسیل هسته‌ای را با بیان این فرض بنیادی حل می‌کنیم: حرکت هر نوکلئون منفرد را تحت تأثیر پتانسیل واحدی که نوکلئون های دیگر همه در تولید آن شرکت دارند، در نظر می‌گیریم. اگر هر یک از نوکلئون ها را به این نحو مورد بررسی قرار دهیم، آنگاه برای تمامی نوکلئون های موجود در هسته می‌توانیم ترازهای انرژی متناظر به زیر پوسته‌ها را به دست آوریم. وجود مدارهای فضایی مشخص را اصل طرد پائولی تعیین می‌کند. فرض می‌کنیم که در یک هسته سنگین، تقریباً در ته چاه پتانسیل، برخوردی بین دو نوکلئون صورت می‌گیرد و نوکلئون ها هنگام برخورد با هم انرژی تولید می‌کنند، اما اگر تمامی ترازهای انرژی تا تراز نوکلئون های ظرفیت پر شده باشد، هیچ راهی برای کسب انرژی نوکلئون نمی‌ماند؛ مگر آنکه مقدار انرژی به اندازه‌ای باشد که نوکلئون را به تراز ظرفیت برساند. سایر ترازهای نزدیک‌تر به تراز اولیه نوکلئون همگی پر هستند و نمی‌توانند یک نوکلئون اضافی را بپذیرند. انرژی لازم برای این انتقال که از ترازی نزدیک به تراز پایه به نوار ظرفیت انجام می‌شود، بیشتر از مقداری است که معمولاً در برخورد بین دو نوکلئون از یکی از آن‌ها به دیگری منتقل می‌شود. از این رو، چنین برخوردی بین نوکلئون ها نمی‌تواند صورت گیرد، و گویی نوکلئون ها در حرکت مداری شان با هیچ گونه ممانعتی از طرف نوکلئون های درون هسته روبرو نمی‌شوند [7].

2-3-2- پتانسیل مدل پوسته‌اینخستین گام در ارائه مدل پوسته‌ای، انتخاب پتانسیل هسته‌ای مناسب است. در آغاز دو نوع پتانسیل چاه نا متناهی و نوسانگر هماهنگ را در نظر می‌گیریم. همچنانکه در فیزیک اتمی دیدیم، واگنی هر تراز را تعداد نوکلئون هایی که می‌توانند در آن قرار بگیرند تعیین می‌کند. به عبارت دیگر، واگنی هر تراز برابر 2(l+1) می‌شود که در آن عامل (l+1) از طریق واگنی ml و عامل 2 از طریق واگنی ms حاصل شده است. نوترون‌ها و پروتون‌ها، چون ذرات نایکسان هستند، به طور جداگانه شمرده می‌شوند. بنابراین در تراز 1s علاوه بر 2 نوترون، 2 پروتون هم می‌تواند قرار گیرد. ظهور اعداد جادویی 2، 8 و 20 در هر دو نوع پتانسیل دل گرم کننده است، ولی در ترازهای انرژی بالاتر هیچ گونه ارتباطی با اعداد جادویی تجربی به چشم نمی خورد. به عنوان اولین گام در اصلاح مدل، سعی می‌کنیم پتانسیل واقع بینانه تری را انتخاب کنیم. چاه نا متناهی، بنابر دلایلی، تقریب خوبی برای پتانسیل هسته‌ای نیست: برای جدا کردن یک نوترون یا پروتون از هسته، با صرف انرژی کافی باید بتوانیم آن را از چاه خارج کنیم.دراین صورت،عمق چاه نمی نواند بی نهایت باشد. بعلاوه،لبه پتانسیل هسته‌ای نباید تیز باشد بلکه مثل توزیع بار و جرم هسته‌ای، مقدار پتانسیل بعد از شعاع میانگین، R، باید به آهستگی به سوی صفر میل کند. از طرف دیگر، پتانسیل نوسانگر هماهنگ هم لبه اش به اندازه کافی تیز نیست و انرژی جدایی آن نیز بی نهایت می‌شود. از این رو شکل واقع بینانه تر پتانسیل را به صورت بینابینی
(2- SEQ (2- * ARABIC 8)Vr=-V01+exp⁡[(r-R)a]انتخاب می‌کنیم که منحنی نمایش آن در شکل (2- SEQ شکل(2- * ARABIC 3):رسم شده است. پارامترهای R و a به ترتیب شعاع میانگین و ضخامت پوسته هستند، که مقادیرشان تقریباً برابر است با: R=1.25A13fm و a=0.524fm. عمق چاه V0چنان تنظیم می‌شود که برای انرژی‌های جدایی که از مرتبه 50Mev است، مقادیر مناسبی به دست می‌آید. ترازهای انرژی حاصل در شکل (2-4) نشان داده شده است. نتیجه پتانسیل جدید، در مقایسه با نوسانگر هماهنگ این است که واگنی l را در پوسته‌های جدید برطرف می‌کند. هر چه به طرف انرژی‌های بالاتر پیش می‌رویم، فاصله ایجاد شده در این مورد بیشتر می‌شود، به طوری که سرانجام این فاصله بن فاصله بین ترازهای نوسانگر هماهنگ قابل مقایسه خواهد شد. وقتی پوسته‌های حاصل را به ترتیب با 2(l+1) نوکلئون پر می‌کنیم، باز هم اعداد جادویی 2، 8 و 20 را به دست می‌آوریم، ولی اعداد جادویی بالاتر را نمی‌توان با این محاسبات پیدا کرد.

شکل(2- SEQ شکل(2- * ARABIC 4): پتانسیل هسته‌ای بین نوکلئون های هسته به همراه پتانسیل کولنی.2-3-3- پتانسیل اسپین- مداراین پتانسیل را چگونه می‌توانیم اصلاح کنیم تا همه اعداد جادویی را از آن بدست آوریم؟ چون نمی- خواهیم محتوای فیزیکی این مدل را از بین ببریم، مسلماً نمی‌توانیم تغییر زیادی در پتانسیل وارد کنیم. دلایل توجیهی معادله (2- SEQ (2- * ARABIC 9) را به عنوان یک حدس خوب پتانسیل هسته‌ای قبلاً ارائه کردیم. بنابراین، برای بهبود محاسبات لازم است که جمله‌های مختلفی به معادله (2- SEQ (2- * ARABIC 10) افزوده شود. در دهه 1940 تلاش‌های نافرجام زیادی برای یافتن این جمله تصحیحی صورت گرفت و سرانجام مایر، هاکسل، سوئس و جنسن در سال 1949 موفق شدند که با افزودن یک پتانسیل اسپین- مدار فاصله‌های مناسبی بین زیر پوسته‌ها به دست آورند [9,8].
در اینجا بار دیگر به فیزیک اتمی روی می‌آوریم، یکی دیگر از مفاهیم آن را به کار می‌گیریم. برهم کنش اسپین- مدار در فیزیک اتمی که مولد ساختار ریز مشاهده شده در خطوط طیفی است، از برهم کنش الکترومغناطیسی بین گشتاور مغناطیسی الکترون و میدان مغناطیسی ناشی از حرکت الکترون به دور هسته حاصل می‌شود. اثر این برهم کنش نوعاً خیلی کوچک و شاید از مرتبه یک قسمت از 105 قسمت فاصله بین ترازهای اتمی است.
هیچ برهم کنش الکترومغناطیسی از این نوع نخواهد توانست تغییرات محسوسی را در فواصل تراز هسته‌ای ایجاد و اعداد جادویی را باز تولید کند. با وجود این، در اینجا مفهوم نیروی اسپین- مدار هسته‌ای را به همان صورت نیروی اسپین- مدار اتمی، ولی نه از نوع الکترومغناطیسی آن، در نظر می‌گیریم. در واقع، به توجه به آزمایش‌های پراکندگی شواهدی قوی در دست است که حاکی از وجود نیروی اسپین- مدار در برهم کنش نوکلئون- نوکلئون است.
برهم کنش اسپین مدار را به صورت Vsorl∙s در نظر می‌گیریم، ولی شکل Vsor خیلی مهم نیست. این عامل l∙s است که باعث تجدید سازمان ترازها می‌شود. همچنان که در فیزیک اتمی دیدیم، حالت‌ها را در حظور برهم کنش اسپین- مدار بایر با تکانه زاویه‌ای کل j=l+s نشانه گذاری می‌کنیم. عدد کوانتومی اسپین هر نوکلئون برابر s=12 است، پس مقادیر ممکن برای عدد کوانتومی تکانه زاویه‌ای کل عبارت اند از j=l+12 و j=l-12 ( البته به استثنای مورد l=0 که در آن فقط مقدار j=12 مجاز است). مقدار انتظاری l∙s را با استفاده از یک شگرد متداول می‌توان محاسبه کرد. نخست مقدار j2=(l+s)2 را به دست می‌آوریم.
(2- SEQ (2- * ARABIC 11)j2=l2+2l∙s+s2(2- SEQ (2- * ARABIC 12)l∙s=12(j2-l2-s2)با قرار دادن مقادیر انتظاری در این معادله، رابطه زیر حاصل می‌شود.
(2- SEQ (2- * ARABIC 13)l∙s=12[jj+1-ll+1-ss+1]اکنون تراز 1f (l=3) را که دارای واگنی 2(l+1)=14 است را در نظر می‌گیریم. مقادیر ممکی برای j در این تراز عبارتند از l∓12=52, 72 بنابراین، ترازهای مورد نظر به صورت 1f52 و 1f72 خواهند بود. واگنی هر تراز برابر (2j+1) است که از مقادیر mj حاصل می‌شود. ( در حضور برهم کنش اسپین- مدار، ms و ml دیگر اعداد کوانتومی «خوب» به حساب نمی آیند و نمی‌توان آن‌ها را برای نمایاندن حالت‌ها یا شمردن وگنی ها به کار برد.) در این صورت، ظرفیت نوکلئونی تراز 1f52 برابر 6 و ظرفیت 1f72 برابر 8 می‌شود که از جمع آن‌ها مجددا 14 حالت به دست می‌آید ( تعداد حالت‌های ممکن باید حفظ شود، فقط نحوه دسته بندی آن‌ها را تغییر داده ایم ). فاصله انرژی بین حالت‌های 1f52 و 1f72 که زوج اسپین مدار یا دوتایه نامیده می‌شوند، متناسب با مقدار l∙s است. در واقع می‌توان اختلاف انرژی هر زوج حالتی را که در آن l>0 باشد را محاسبه کرد.
(2- SEQ (2- * ARABIC 14)l∙sj=l+12-l∙sj=l-12=12(2l+1)شکافتگی (یا فاصله) انرژی بین حالت‌ها با افزایش j افزایش می‌یابد. حال اگر اثر Vsor را به صورت منفی در نظر بگیریم، عضوی از زوج، که مقدار j در آن بزرگتر است در سطح پایین‌تر قرار خواهد گرفت. اثر این شکافتگی در نمودار شکل (4-2) نشان داده شده است. در اینجا، تراز 1f72 در فاصله (یا گاف) بین پوسته‌های دوم و سوم قرار می‌گیرد. ظرفیت این تراز برابر 8 نوکلئون است، بدین سان عدد جادویی 28 از آرایش جدید حاصل خواهد شد. شکافتگی های d و p به اندازه‌ای نیستند که تغییرات مهمی در دسته بندی ترازها به وجود آورند.) اثر مهم بعدی ناشی از جمله تصحیحی اسپین- مدار را در تراز 1g می‌بینیم. حالت 1g9/2 آنقدر به پایین رانده می‌شود که در پوسته اصلی پایین‌تر قرار می‌گیرد، و وقتی ظرفیت 10 نوکلئونی آن به پوسته 40 نوکلئونی قبلی افزوده می‌شود، عدد جادویی 50 به دست می‌آید. این اثر روی پوسته‌های اصلی دیگر نیز تکرار می‌شود. در هر یک از این موارد، عضو کم انرژی تر زوج اسپین- مدار از پوسته بعدی به پوسته قبلی تنزل می‌کند، و بدین ترتیب باقیمانده اعداد جادویی هم طبق انتظار به دست می‌آید.
مدل پوسته‌ای با وجود سادگی‌اش، در توضیح اسپین و پاریته حالت پایه تقریباً تمام هسته‌ها موفق بوده است، و آن‌ها را به خوبی باز تولید می‌کند. برای گشتاورهای دوقطبی مغناطیسی و چهار قطبی الکتریکی آن‌ها نیز توضیحی نسبتاً موفق (و رضایت بخش) به دست می‌دهد. کاربرد خاصی از مدل پوسته‌ای را که در اینجا در نظر گرفتیم، مدل ذره‌ای خیلی مستقل می‌گویند. فرضیه اساسی مدل ذره‌ی خیلی مستقل این است که به استثنای یکی از نوکلئون ها، بقیه نوکلئون های موجود در هسته تزویج شده‌اند و خواص هسته از همین نوکلئون تزویج نشده منفرد ناشی می‌شود. روشن است که چنین برخوردی مسئله را بیش از حد ساده می‌کند، و بهتر است که در تقریب بعدی تمام ذرات موجود در زیر پوسته پر نشده را در نظر بگیریم [7].
32258005924179c0c
22771105925449b0b
14839955914126a0a

شکل(2- SEQ شکل(2- * ARABIC 5): ترازهای انرژی هسته‌ها. (a با در نظرگرفتن پتانسیل نوسانگر هماهنگ ساده . (b با در نظر گرفتن چاه پتانسیل با لبه‌های گرد شده. (c چاه پتانسیل با لبه گرد شده همراه با برهم کنش اسپین- مدار.
centercenterفصل سوم
00فصل سوم

3- فرایند تبدیل داخلی3-1- خواص دینامیک هسته‌هاهمان طوریکه اتم‌ها جدول مندلیف را با نظم خاصی پر می‌کنند و می‌توانند حالت‌های برانگیخته داشته باشند، پیش بینی می‌شد که هسته‌ها هم بتوانند دارای ترازهای انرژی و حالت‌های برانگیخته باشند. با این تفاوت که هسته‌ها در هنگام گذار از حالت‌های برانگیخته به حالت پایه پرتوهای گاما تابش می‌کنند. از طرفی هسته‌ها می‌توانند با گسیل ذرات آلفا و بتا یا از طریق بمباران و یا سایر واکنش‌های هسته‌ای به یکدیگر تبدیل شوند. خواص دینامیک هسته‌ها را می‌توان با گذار از یک حالت اولیه به حالت نهایی مشخص کرد.
با مطالعه گسیل گاما و فرایند رقیب آن یعنی تبدیل داخلی، تعیین اسپین و پاریته حالات برانگیخته امکان پذیر می‌شود. یک هسته برانگیخته همواره می‌تواند با گسیل تابش الکترومغناطیسی یا تبدیل داخلی به حالت‌های کم انرژی تر واپاشی کند. از طرفی هسته‌ها می‌توانند با گسیل ذرات α و β، یا از طریق بمباران و یا سایر واکنش‌های هسته‌ای به یک دیگر تبدیل شوند. در تمام برهم کنش‌های بالا، اصول پایستگی انرژی، اندازه حرکت خطی، اندازه حرکت زاویه‌ای، بار الکتریکی و تعداد نوکلئون ها برقرار است. اصول پایستگی فوق توانسته است در کشف مجهولات به دانشمندان کمک شایانی کند. مانند کشف نوترینو که وجود آن به کمک پایستگی انرژی و اندازه حرکت خطی پیش بینی و در آزمایشگاه تایید شد.

3-1-1- واپاشی آلفاییتا کنون بیش از 1000 هسته تولید شده و در آزمایشگاه مورد مطالعه قرار گرفته است. هر چند فقط کمتر از 300 تا از این هسته‌ها پایدارند و بقیه آن‌ها رادیواکتیو هستند. هسته‌های پایدار فقط در یک باند بسیار کوچک در نمودار N-Z اتفاق می‌افتد.
ذرات آلفا به عنوان کم نفوذترین تابش‌هایی که از مواد طبیعی گسیل می‌شود، شناسایی شده‌اند.
در سال 1909 رادرفورد نشان داد همانطور که حدس زده می‌شد، ذرات آلفا واقعاً از هسته‌های هلیم تشکیل شده‌اند. تعداد زیادی از هسته‌های سنگین، مخصوصاً هسته‌های مربوط به سری‌های رادیواکتیو طبیعی با گسیل آلفا واپاشی می‌کنند. گسیل هر نوع نوکلئون دیگر در فرایند واپاشی رادیواکتیو خود به خود به ندرت اتفاق می‌افتد. به عنوان مثال گسیل دوتریوم در فرایند واپاشی های طبیعی ملاحظه نشده است. بنابراین باید دلیل خاصی برای انتخاب گسیل آلفا نسبت به سایر مدهای واپاشی وجود داشته باشد. واپاشی آلفایی در هسته‌های سنگین به طور فزاینده‌ای اهمیت پیدا می‌کند، زیرا آهنگ افزایش نیروی دافعه کولنی که به صورت تابعی از z2 افزایش می‌یابد از نیروی بستگی هسته که تقریباً متناسب با A افزایش می‌یابد بیشتر است.
ذره آلفا به دلیل ساختار بسیار پایدار و نسبتاً مقیدش، در مقایسه با اجزای تشکیل دهنده‌اش، جرم نسبتاً کمی دارد. بنابراین در مواردی که امیدواریم محصولات فروپاشی تا جایی که امکان دارد سبک و انرژی آزاد شده حداکثر مقدار را داشته باشد، باید گسیل این ذره را انتظار داشته باشیم. اغلب هسته‌های با A>190 (و بسیاری از هسته‌ها با 150<A<190) از لحاظ انرژی در برابر گسیل آلفا ناپایدارند ولی فقط نیمی از آن‌ها بقیه شرایط را نیز دارا هستند [10].
3-1-2- واپاشی بتازاواپاشی بتا متداول‌ترین نوع واپاشی پرتوزا است. در هسته‌های سبک‌تر احتمال واپاشی α بسیار کم است. این هسته‌ها برای رسیدن به پایداری یک یا چند شکل از واپاشی بتا را متحمل می‌شوند. گسیل الکترون‌های منفی معمولی از هسته، یکی از اولین پدیده‌های واپاشی رادیواکتیوی بود که مشاهده شد. فرایند معکوس گیراندازی الکترون مداری توسط هسته، تا سال 1938 مشاهده نشده بود در این سال آلوارز پرتوهای x مشخصه گسیل شده در اثر پر شدن جای خالی الکترون‌های گیراندازی شده را آشکارسازی کرد. در سال 1934 ژولیو- کوری برای اولین بار فرایند گسیل الکترون مثبت (پوزیترون) در فرایند رادیواکتیو را، دو سال پس از کشف پوزیترون در پرتوهای کیهانی، مشاهده کردند. سه فرایند فوق ارتباط نردیک با هم دارند و تحت عنوان مشترک واپاشی بتازا رده بندی می‌شوند [11].
3-1-3- واپاشی گامابیشتر واپاشی های آلفازا و بتازا، و در حقیقت بیشتر واکنش‌های هسته‌ای، هسته نهایی را در حالت برانگیخته باقی می‌گذارند. این حالات برانگیخته با گسیل یکی دو پرتو گاما که همان فوتون های تابش الکترومغناطیس مانند پرتوهای x یا نور مرئی هستند، به سرعت به حالت پایه واپاشیده می‌شوند. انرژی پرتوهای گاما در گسترهMev 0.1 تاMev 10 هستند. محدوده طول موج آن‌ها بین 104 تا fm 100 است. واپاشی گامازا علاوه بر اینکه تایید کننده مدل لایه‌ای برای هسته‌ها است، اطلاعات خوبی از ساختار هسته و طیف‌های انرژی آن نیز در اختیار ما قرار می‌دهد. این پرتوها به دلیل قدرت نفوذ بالا و جذب و پراکندگی ناچیز در هوا به خوبی قابل آشکارسازی هستند. انرژی پرتوهای گاما با دقت زیادی قابل اندازه گیری هستند. به علاوه مطالعه گسیل گاما و فرایند رقیب آن یعنی تبدیل داخلی، تعیین اسپین و پاریته حالات برانگیخته را امکان پذیر می‌سازد [12].
3-1-4- تبدیل داخلیفرایند تبدیل داخلی یک فرایند الکترومغناطیسی است که با گسیل γ رقابت می‌کند. در این مورد، میدان‌های چند قطبی الکترومغناطیسی هسته سبب گسیل فوتون نمی‌شوند، بلکه برهم کنش میدان‌ها با الکترون‌های اتمی باعث گسیل یکی از الکترون‌های اتم می‌شود (در این حالت هسته با الکترون از طریق فوتون های مجازی بجای فوتون های واقعی برهم کنش دارد). بر خلاف واپاشی بتازا، الکترون در فرایند واپاشی خلق نمی‌شود، بلکه الکترونی است که از قبل در یکی از مدارهای اتم وجود داشته است. به این دلیل، آهنگ واپاشی تبدیل داخلی با تغییر محیط شیمیایی و در نتیجه تغییر مدارهای اتمی می‌تواند اندکی تغییر کند. اما باید توجه کرد که این فرایند دو مرحله‌ای نیست که در آن ابتدا فوتون توسط هسته گسیل شود و سپس الکترون اتمی را با فرایندی مشابه پدیده فوتوالکتریک بیرون براند، احتمال چنین فرایندی بسیار ناچیز است.
در این حالت انرژی هسته‌ای ∆E=Ei-Ef به یک الکترون اتمی منتقل می‌شود و آنرا با انرژی جنبشی:
(3- SEQ (3- * ARABIC 1)Te=Ei-Ef-Bnبیرون می‌اندازد، که در آن Bn انرژی بستگی الکترون در لایه اتمی است که الکترون از آن بیرون انداخته شده است. به علت اینکه انرژی بستگی الکترون از مداری به مدار دیگر فرق می‌کند، حتی برای یک گذار معین ∆E هم الکترون‌های تبدیل داخلی دارای انرژی‌های متفاوتی خواهند بود. بدین سان، طیف الکترون چشمه ای که یک گامای منفرد گسیل می‌کند از مولفه های مختلف تشکیل شده است؛ و این مولفه ها بر خلاف الکترون‌هایی که در واپاشی بتازا گسیل می‌شوند انرژی‌های گسسته ای دارند. بیشتر چشمه های رادیواکتیو، هم الکترون‌های واپاشی بتازا و هم الکترون‌های تبدیل داخلی گسیل می‌کنند، و جدا کردن قله های ناپیوسته الکترون‌های تبدیل داخلی که روی طیف پیوسته β قرار دارند کار نسبتاً آسانی است. شکل (3-1).

شکل(3- SEQ شکل(3- * ARABIC 1): نمونه‌ای از طیف الکترون که ممکن است از یک چشمه رادیواکتیو گسیل شود. چند قله ناپیوسته تبدیل داخلی روی زمینه ناپیوسته واپاشی بتازا قرار دارند.طبق معادله (3- SEQ (3- * ARABIC 2) ، فرایند تبدیل داخلی انرژی آستانه‌ای برابر انرژی بستگی در یک مدار خاص دارد؛ در نتیجه الکترون‌های تبدیل با توجه به پوسته الکترونی که از آن سرچشمه گرفته‌اند با K و L و M و ... مشخص می‌شوند که متناظر با اعداد کوانتومی اصلی n=1,2,3,… هستند. بعلاوه اگر توان تفکیک بسیار زیاد باشد، حتی زیر ساختارهای متناظر با تک تک الکترون‌های هر پوسته را ملاحظه خواهیم کرد. برای مثال پوسته L (n=2 ) دارای اربیتال های اتمی 2s1/2، 2p1/2 و 2p3/2 است؛ الکترون‌های ناشی از این پوسته‌ها به ترتیب الکترون‌های تبدیل LI، LII و LIII نامیده می‌شوند.
پس از فرایند تبدیل، جای الکترون گسیل شده در یکی از پوسته‌های اتم خالی می‌ماند که آن را تهیجا می‌گویند. این تهیجا به سرعت توسط الکترون‌های پوسته‌های بالاتر پر می‌شود، و در نتیجه گسیل پرتوx مشخصه را نیز همراه الکترون‌های تبدیل داخلی مشاهده می‌کنیم.
شکل (3-2)، طیف الکترون 203Hg را نشان می‌دهد. در این شکل طیف پیوسته β و خطوط الکترونی، در انرژی‌های محاسبه شده، قابل مشاهده‌اند.
یکی از نکاتی که در این شکل کاملاً مشهود است، شدت متغیر الکترون‌های تبدیل در واپاشی است. این تغییرات به خصوصیت چند قطبی میدان تابش بستگی دارد؛ در حقیقت اندازه گیری احتمالات نسبی گسیل الکترون تبدیلی یکی از راه‌های اصلی تعیین مشخصات چند قطبی است.
در بعضی موارد، تبدیل داخلی بر تابش گاما ارجحیت دارد؛ در بقیه موارد ممکن است در مقایسه با گسیل گاما کاملا˝ ناچیز باشد. به عنوان یک قانون کلی، در محاسبه احتمال واپاشی گاما باید تصحیح تبدیل داخلی انجام شود. یعنی اگر نیمه عمر (t12∝1λ) یک تراز خاص را بدانیم، احتمال واپاشی کل λt ( برابر0.693t12 ) دارای دو مولفه است، یکی (λγ) ناشی از گسیل گاما و دیگری (λe) ناشی از تبدیل داخلی
(3- SEQ (3- * ARABIC 3)λt=λe+(λγ)واپاشی تراز از طریق فرایند ترکیبی (گسیل گاما و تبدیل داخلی) خیلی سریع‌تر از گسیل گاما به تنهایی خواهد بود. ضریب تبدیل داخلی α را به صورت زیر تعریف می‌کنیم:
(3- SEQ (3- * ARABIC 4)α=λeλγضریب تبدیل داخلی α، احتمال گسیل الکترون را نسبت به گسیل گاما نشان می‌دهد، که بزرگی آن از مقادیر بسیار کوچک (تقریباً صفر) تا مقادیر بسیار بزرگ تغییر می‌کند. بدین ترتیب، احتمال کلی واپاشی به صورت زیر است
(3- SEQ (3- * ARABIC 5)λt=λγ(1+α)
شکل(3- SEQ شکل(3- * ARABIC 2): طیف الکترون حاصل از واپاشی 203Hg در تصویر بالا، طیف پیوسته بتا همراه با خطوط تبدیل K، L و M تفکیک نشده قابل مشاهده است. در تصویر میانی طیف تبدیل با تفکیک بیشتر نشان داده شده است؛ خطوط L و M به خوبی جدا شده اند و حتی L III نیز تفکیک شده است. در تفکیک خیلی بهتر شکل پایینی، خطوط LI وLII به خوبی از هم جدا شده‌اند.اگر α را ضریب تبدیل داخلی کل بدانیم، آنگاه می‌توانیم ضریب‌های جزئی مربوط به پوسته‌های اتمی مختلف را به صورت زیر در نظر می‌گیریم:
(3- SEQ (3- * ARABIC 6)λt=λγ(1+αK+αL+αM+…)و در نتیجه
(3- SEQ (3- * ARABIC 7)α=αK+αL+αM+…که با در نظر گرفتن زیر پوسته‌ها، می‌توانیم آن را به صورت زیر بنویسیم:
(3- SEQ (3- * ARABIC 8)αL=αLI+αLII+αLIIIو برای سایر پوسته‌ها هم می‌توانیم روابط مشابهی را بنویسیم.
اهمیت تبدیل داخلی در مطالعات مربوط به ساختار هسته در این واقعیت نهفته است که به ازای یک اختلاف انرژی مفروض Ei-Ef و عدد اتمی Z هسته واپاشنده، ضریب تبدیل محسوسا˝ به نوع و مرتبه قطبیت گذار الکترومغناطیسی متناظر بستگی دارد [14,13].
3-2- محاسبه ضریب تبدیل داخلیهمانطور که گفته شد فرایند تبدیل داخلی یک فرایند الکترومغناطیسی است که در آن هسته با بیرون انداختن یک الکترون اتمی به جای گسیل گاما از حالت برانگیخته خارج می‌شود. الکترون‌هایی را که به این صورت بیرون انداخته شده را الکترون‌های تبدیل می‌نامند. ضریب تبدیل داخلی به عدد اتمی هسته ، انرژی و خصوصیات چند قطبی بودن گذار بستگی دارد. بنابراین مطالعه ما کمک بزرگی در بررسی سطوح انرژی هسته است.
در اینجا یکی از ساده‌ترین موارد را بررسی می‌کنیم. فرض می‌کنیم هسته در یک حالت برانگیخته است که می‌تواند با گسیل تابش E1 به حالت پایه برود. هسته را می‌توان با یک دوقطبی الکتریکی با فرکانس ω مقایسه کرد. حضور این دوقطبی ممکن است باعث القای گذارهایی از حالت پایه اتم به حالت برانگیخته شود. به طور خاص، الکترون‌های K، که در حالت 1S هستند، می‌توانند با تابش دو قطبی به حالت p بروند. برای محاسبه احتمال این گذار از قانون طلایی فرمی استفاده می‌کنیم.
احتمال این گذار طبق قانون دوم فرمی به صورت زیر است:
(3- SEQ (3- * ARABIC 9)w=2πℏMif2ρ(Ef)می‌خواهیم المان‌های ماتریسی Mif و چگالی حالت‌های نهایی قابل دسترس ρ(Ef) را محاسبه کنیم.
تابع موج اولیه الکترون در حالت 1s.
(3- SEQ (3- * ARABIC 10)ᴪi(r,t)=ui(r)exp⁡(-iEiℏt)و ویژه تابع حالت نهایی الکترون به صورت زیر است:
(3- SEQ (3- * ARABIC 11)ᴪf(r,t)=uf(r)⁡exp(-iEfℏt)گذار از حالت اولیه به حالت نهایی توسط میدان الکتریکی هسته القا می‌شود، که به وسیله ممان دوقطبی الکتریکی P که در راستای محور z و با فرکانس ω با زمان تغییر می‌کند توصیف می‌شود. پتانسیل الکتریکی این دو قطبی به صورت زیر است:
(3- SEQ (3- * ARABIC 12)Vr,t=p0cosθr2cos ωt=p0cosθr212(eiωt+e-iωt)در اینجا θ زاویه بین r و محور z است. المان‌های ماتریسی گذارهای القا شده به این صورت است:
(3- SEQ (3- * ARABIC 13)Mif=eᴪf*(r,t)Vᴪi(r,t)dτMif دارای بزرگی قابل توجهی است، فقط اگر
(3- SEQ (3- * ARABIC 14)Ei-EF=ℏω(3- SEQ (3- * ARABIC 15)uf=Ncos θkr12j32(kr)و برای kr بزرگ
(3- SEQ (3- * ARABIC 16)uf=-N cosθ2πk2r212coskrبا در نظر گرفتن سیستم در یک کره بسیار بزرگ به شعاع R می‌توانیم ویژه تابع آن را تعیین می‌کنیم.
(3- SEQ (3- * ARABIC 17)N=k(34R)1/2برای تابع موج اولیه، تابع موجی شبیه به تابع موج هیدروژن را در نظر می‌گیریم:
(3- SEQ (3- * ARABIC 18)ui=1π1/2(za0)3/2exp-zra0 with a0=ℏ2me2سپس المان ماتریسی به صورت زیر است:
(3- SEQ (3- * ARABIC 19)Mif=p0cosωtek34R121π12za032×0∞exp-zra0 cosθr2 J32krkr12cosθdτ=p0cosωt(ωt)1/2ek(za0)3/2I
با
(3- SEQ (3- * ARABIC 20)I=0∞exp-zra0 J32krkr12drچگالی حالت‌های نهایی باید فقط به حالت‌های p محدود باشد. از شرط ufR=0، شرط کوانتیزیشن به صورت زیر است:
(3- SEQ (3- * ARABIC 21)kR=(n+12)πو n عدد انتگرال گیری است. بنابراین در فاصله k تا ∆k داریم:
(3- SEQ (3- * ARABIC 22)R∆kπ=∆Nو از این معادله داریم:
(3- SEQ (3- * ARABIC 23)ρ=dNdE=Rℏπϑبا ترکیب معادلات (3- 19) و (3- 23) برای دو تا الکترون‌های K بدست می‌آوریم:
(3- SEQ (3- * ARABIC 24)λe=14πℏp02e2k23(za0)3I2ϑℏاز طرفی دیگر λγ با این معادله داده می‌شود:
(3- SEQ (3- * ARABIC 25)λγ=13p02ω3ℏc3با توجه به معادله (3-4) ضریب تبدیل داخلی به صورت زیر است:
(3- SEQ (3- * ARABIC 26)α=4πℏk2e2ϑ(za0)3c3ω3I2از a0z≫1k، این به این معنی است که انرژی گذار در مقایسه با انرژی بستگی الکترون خیلی بزرگ است. همچنین فرض می‌کنیم الکترون خارج شده نسبیتی نیست. برای سازگاری فرض می‌کنیم که برای الکترون mv22≅(ℏk)22m≅ℏω.
انتگرال I با در نظرگرفتن این فرض که e-zra0=1 و داریم:
(3- SEQ (3- * ARABIC 27)I=0∞J32krdrkr12=(2πk2)1/2با جایگذاری در معادله (3- SEQ (3- * ARABIC 28) و با در نظر گرفتن تقریب ذکر شده در بالا داریم:
(3- SEQ (3- * ARABIC 29)αk=8ℏe2m12(2ℏω)12za03c3ω3(3- SEQ (3- * ARABIC 30) =12z3(e2ℏc)4(2mc2ℏω)7/2این فرمول تحت فرضیه‌های ذکر شده برای تابش دوقطبی است، و برای تابش El، به صورت زیر بدست می‌آید:
(3- SEQ (3- * ARABIC 31)αkl=z3(e2ℏc)4ll+1(2mc2ℏω)l+(5/2)ضریب تبدیل داخلی α به عدد اتمی، اتمی که فرایند در آن رخ می‌دهد، انرژی گذار و چند قطبی بودن آن بستگی دارد. به طور کلی نتایج زیر برای چند قطبی‌های الکتریکی (E) و مغناطیسی (M) بدست می‌آید.
(3- SEQ (3- * ARABIC 32)αEL≅Z3n3LL+1e24πℏε0c42mec2EL+52(3- SEQ (3- * ARABIC 33)αML≅Z3n3e24πℏε0c42mec2EL+32در این روابط Z عدد اتمی مربوط به اتمی است که در آن تبدیل داخلی صورت گرفته است و n عدد کوانتومی اصلی تابع موج الکترون مقید است؛ عامل (Zn)3 ناشی از جمله ᴪi.e(0)2 است که در آهنگ تبدیل ظاهر می‌شود. عامل بی بعد e24πε0ℏc همان ثابت ساختار ریز با مقداری نزدیک به 137 / 1 است.
این نحوه برخورد با ضرایب تبدیل تقریبی است، زیرا الکترون را باید نسبیتی در نظر گرفت ( انرژی‌های گذار نوعاً از مرتبه 0.5 تا Mev1 هستند). اما همین معادلات تعدادی از خصوصیات ضرایب تبدیل را مشخص می‌کند.
1- این ضرایب متناسب با z3 افزایش می‌یابند، و در نتیجه فرایند تبدیل در هسته‌های سنگین مهم‌تر از هسته‌های سبک است.
2- ضریب تبدیل با افزایش انرژی گذار به سرعت کاهش می‌یابد.( برعکس، احتمال گسیل γ که با افزایش انرژی به سرعت افزایش می‌یابد.)
3- ضرایب تبدیل با افزایش مرتبه چند قطبی به سرعت افزایش می‌یابند. در حقیقت، برای مقادیر زیادتر L، گسیل الکترون تبدیل ممکن است بسیار محتمل‌تر از گسیل γ باشد.
4- ضرایب تبدیل برای پوسته‌های اتمی بالاتر ( 1n> ) متناسب با 1/n3 کاهش می‌یابد. بنابراین، برای گذار معین به تقریب می‌توان انتظار داشت αKαL≅8 باشد.
بنابراین انتظار داریم که در هسته‌های سنگین برای گذارهای کم انرژی و چند قطبی‌های مرتبه بالا با ضرایب تبدیل نسبتاً بزرگ پوسته K، و در سایر موارد( پوسته‌های اتمی بالاتر، انرژی‌های گذار بیشتر، هسته‌های سبک‌تر و چند قطبی‌های مرتبه پایین‌تر) با مقادیر کوچک‌تر روبرو شویم.
باید متذکر شد که ضرایب مربوط به گذارهای الکتریکی و مغناطیسی به طور قابل ملاحظه‌ای با هم تفاوت دارند؛ بنابراین با اندازه گیری α می‌توانیم پاریته نسبی حالات هسته‌ای را تعیین کنیم. در یک کاربرد دیگر هم استفاده از تبدیل داخلی مهم است، و آن مشاهده گذارهای E0 است که از طریق تابش الکترومغناطیسی ممنوع اند. گذار E0 مخصوصاً در واپاشی های از حالات اولیه 0+ به حالات نهایی 0+ که با هیچ فرایند مستقیم دیگری امکان پذیر نیست، حائز اهمیت است[16,15] .
البته باید توجه داشت که برای همه گذارها از حالت اولیه به حالت نهایی یک فرایند الکترومغناطیسی دیگر نیز امکان پذیر است که در آن هسته برانگیخته به شکل یک زوج الکترون- پوزیترون ظاهر می‌شود که به آن تولید زوج می‌گویند. اما احتمال این فرایند بسیار کم و از مرتبه 10-4 گسیل گاما است.
centercenterفصل چهارم
00فصل چهارم

4- مدل کوارکی و نگرشی جدید به فرایند تبدیل داخلی4-1- مقدمهدر مدل ساختار جمعی هسته‌ها، هسته مانند یک جسم واحد در نظر گرفته شده، مانند یک قطره مایع، بعضی از خواص هسته‌ها نیز بر اساس همین فرض استخراج شده است، که در فصل دوم به آن‌ها اشاره شد. از طرفی در مدل پوسته‌ای اجزاء تشکیل دهنده هسته‌ها یعنی پروتون‌ها و نوترون‌ها نیز در نظر گرفته شده است. این مدل با در نظر گرفتن برهم کنش هسته‌ای بین نوکلئونها در توجیه بعضی خواص هسته‌ای به خوبی موفق بوده است. مدل‌های هسته‌ای دیگری در طی سالیان اخیر، به منظور توصیف جنبه‌های متفاوت هسته‌ها، توسط گروه‌های متعددی ارائه شده است. مانند مدل آلفا- ذره‌ای هسته‌ای. یکی دیگر از این مدل‌ها، مدل شبه کوارکی است.
مدل شبه کوارکی علاوه بر اینکه پروتون‌ها و نوترون‌ها را در تشکیل هسته در نظر می‌گیرد، کوارکهای سازنده نوکلئونها را نیز در نظر می‌گیرد. با توجه به نزدیکی بسیار زیاد نوکلئونها در هسته‌ها، قطعاً کوارکهای سازنده آن‌ها نیروی شدیدی به همدیگر وارد می‌سازند، که باعث می‌شود نوکلئونها، به صورت لحظه‌ای هم که باشد، فروپاشیده شوند و سپس نوکلئونهای جدید تشکیل گردند. این پروسه می‌تواند مکرراً در هسته در حال اتفاق باشد. گرچه در این شرایط محیط هسته را نمی‌توان یک محیط با کوارکهای آزاد در نظر گرفت. با این حال فرض می‌شود که هسته را بتوان با تقریب یک محیط کوارکی در نظر گرفت که شدیداً با هم برهمکنش دارند. گرچه در این مدل نظریه واحدی که بتواند برخی از خواص هسته‌ها را یکجا ارائه دهد وجود ندارد، با این حال با استفاده از این مدل می‌توان اعداد جادویی هسته را بدست آورد. همچنین در این مدل فرمولی برای انرژی بستگی هسته‌ها ارائه شده که هم زمان هم کوارکهای سازنده هسته و هم نوکلئونهای سازنده هسته را در نظر گرفته است.
4-1-1- پلاسمای کوارک- گلئونی و سرچشمه اعداد جادوییدر فیزیک هسته‌ای یک عدد جادویی تعداد نوکلئونهایی ( پروتون‌ها و نوترون‌ها ) است که درون پوسته‌های کامل مربوط به هسته‌های اتمی قرار می‌گیرند. این اعداد و وجود آن‌ها اولین بار توسط السیسر در سال 1933 [17] مورد توجه قرار گرفته است. چیزی که باعث جادویی بودن این اعداد می‌شود، خواصی است که هسته‌ها با این تعداد پروتون‌ها و نوترون‌ها دارا می‌باشند. از جمله این خواص می‌توان به پایداری هسته‌های جادویی، فراوانی بیشتر هسته‌های جادویی در عالم و اینکه جرم هسته‌های جادویی از مقدار پیش بینی شده توسط فرمول نیمه تجربی جرم به طور قابل توجهی کمتر است، اشاره نمود.
در این مدل فرض بر این است که در محیط ترمودینامیکی پلاسمای کوارک- گلئونی، کوارکهای تقریباً مجزا سعی در تشکیل نوکلئونها دارند؛ و اگر بپذیریم که بیشینه بی نظمی و بیشترین مقدار ترکیب‌ها رخ می‌دهد، آنگاه با در نظر گرفتن سیستم‌های جداگانه‌ای شامل یک کوارک مرکزی و تعداد 2، 3، 4، 5، 6، 7 و نهایتاً 8 کوارک اطراف به حالت‌های بیشینه‌ای برابر با اعداد جادویی می‌رسیم [19,18]. اگر پلاسمای کوارک- گلئونی را به عنوان یک محیط ترمودینامیکی فرض نماییم، بایستی تحقیق نمود این محیط ترمودینامیکی که همانند هر محیط دیگر از این نوع به سمت بیشینه بی نظمی پیش می‌رود، چگونه به تعادل نزدیک می‌شود. حالت ترمودینامیکی از کوارکها را در نظر می‌گیریم که این کوارکها تقریباً آزادانه در حال حرکت می‌باشند. اگر دقیق‌تر به محیط پلاسمای کوارک- گلئونی نگاه کنیم، می‌بینیم که در سوپ کوارک- گلئونی آزادی محض وجود ندارد.

شکل(4- SEQ شکل(4- * ARABIC 1): محیط یک پلاسمای کوارک- گلئونی
در شکل (4-1) یک محیط پلاسمای کوارک- گلئونی فرضی رسم شده است، که کوارکها همانند ذرات یک گاز ایده آل در فضا پراکنده‌اند. در این محیط فرضی یک کوارک را در نظر بگیرید که جهت تشکیل یک پروتون یا نوترون تلاش می‌کند. هر کوارک با گیر انداختن دو کوارک دیگر تشکیل یک نوکلئون می‌دهد. در این فضای رقابتی میان کوارک ها حالات مختلفی از تشکیل یک نوکلئون می‌تواند روی دهد. به عنوان مثال به شکل پایین توجه کنید.

شکل(4- SEQ شکل(4- * ARABIC 2): شبکه مکعبی پلاسمای کوارک- گلئونیدر شکل (4-2) کوارکها همانند یک محیط شبکه‌ای در اطراف یکدیگر قرار دارند. کوارک u مرکزی برای تشکیل یک نوترون در حال تلاش است، و برای این امر باید دو کوارک d را گیر اندازد. اگر اینطور فرض کنیم که از تمام کوارکهای اطراف این کوارک u دو کوارک d باشد، آنگاه رقابت دو کوارک رقابت ساده‌ای است. در نگاه اول یک حالت ممکن بیشتر وجود ندارد و آن هم حالت udd است. در نگاه دقیق‌تر دو حالت وجود دارد، یعنی u قرمز به همراه d1 آبی و d2 سبز یا u قرمز به همراه d1 سبز و d2 آبی. پس دو حالت به دست می‌آید. حال شرایطی را در نظر بگیرید که سه کوارک d در اطراف کوارک u جهت گیوند با آن رقابت می‌کنند. در چنین شرایطی ترکیبات ممکن عبارتند از: ud1d2، ud1d3 و ud2d3. اگر رنگ کوارک ها را هم منظور کنیم 6 حالت ممکن به وجود می‌آید که از این 6 حالت با 2 حالت قبل روی هم 8 حالت را نشان می‌دهد. ذکر این نکته ضروری است که هر کدام از این حالت‌ها می‌تواند تشکیل نوکلئون بدهد ولی حداکثر حالاتی که می‌تواند با 3 کوارک اتفاق بیفتد 8 حالت است. مشابه حالت 3 کوارکی عدد به دست آمده برای حالت 4 کوارکی برابر 20 می‌باشد. با در نظر گرفتن 5 کوارک d اطراف کوارک مرکزی با استدلالی مشابه استدلال بالا 20 حالت جدید به دست خواهد آمد که با مجموع قبلی عدد 40 برای عدد جادویی بعدی بدست خواهد آمد، در حالی که عدد جادویی بعدی 28 خواهد بود. از آنجا که شرایط محیط کوارک – گلئونی بیشتر به یک سوپ کوارک- گلئونی شبیه است، مطابق تلاش‌های صورت گرفته در نظریه کرمودینامیک کوانتومی شبکه‌ای این امر تقریباً محرز است که نیروی جاذبه بین کوارکها کاملاً از بین نمی‌رود. بنابراین اگر هر کوارک d ( اطراف کوارک u مرکزی) را نزدیک به کوارکهای دیگر فرض کنیم، آنگاه به عنوان مثال اگر کوارک d2 توسط u جذب شود. ناگزیر کوارک پنجمی که بیشترین نیروی جاذبه با d2 را دارد و نام آن را d2َ می گذاریم، وارد کار می‌شود که آن را کوارک "تحمیل شده" می نامیم. پس هر 4 کوارک d هنگام جذب توسط کوارک u مرکزی می‌توانند کوارکی را در سطحی فراتر از کوارک های اولیه به واسطه فاصله نزدیک و یا اینکه بازنشدگی کامل از هم، به سیستم تحمیل نمایند، که این حالت جدید را چنین می نویسیم:
ud1d1َ , ud2َ , ud3d3َ , ud4d4َ
که به همراه رنگ‌های مختلف آن 8 حالت جدید به وجود می‌آید. این 8 حالت و 20 حالت قبل 28 حالت در اختیار ما می‌گذارد. این موضوع که توسط 4 کوارک d دو عدد مجزای 20 حالته و 28 حالته تولید شده است. به طور مشابه برای 5، 6 و 7 کوارک d اعداد 50، 82 و 126 و نهایتاً با 8 کوارک عدد 184 به دست می‌آید. شواهدی مبنی بر وجود چنین عدد جادویی وجود دارد [20]. کار با بیش از 8 کوارک مستلزم عبور از سطح اول به سطح دوم است (چون در یک شبکه مکعبی تنها 8 کوارک در یک فاصله برابر از کوارک مرکزی قرار دارند)، که این موضوع یعنی جاذبه‌ای که سطح اول و دوم را کاملاً تحت تأثیر قرار می‌دهد و حالت‌های اجباری و تحمیلی، سطح سوم را نیز ایجاد می‌نماید و یا می‌توان از شبکه‌های هندسی دیگری با بیش از 8 کوارک استفاده کرد.

4-1-2- انرژی بستگی هسته‌ها از دیدگاه مدل شبه کوارکیدر مدل پلاسمای کوارک- گلئونی ارائه شده [22,21] دیدگاه جدیدی برای هسته ارائه شده است. در این دیدگاه، هسته شامل پلاسمای سوپ مانند از کوارکها و گلئونها می‌باشد که می‌توان خواص هسته‌ها را با توجه به کوارکهای محتوی به جای نوکلئونها بدست آورد.
به منظور به دست آوردن انرژی بستگی هسته‌ای، با توجه به نگاه شبه کوارکی به نکات زیر توجه می‌کنیم:
1- برای تشکیل هسته‌ها باید انرژی بستگی مثبت باشد.
2- انرژی بستگی مثبت از مرتبه یک درصد انرژی جرم سکون کوارک های درون هسته mqc2 می‌باشد که q نشان دهنده کوارکهای بالا و پایین است.
3- در این مدل انرژی بستگی با حجم پلاسمای کوارک- گلئونی متناسب است. با توجه به اینکه هر نوکلئون از سه کوارک تشکیل شده است، لذا به ازای عدد جرمی A برای هسته، انرژی بستگی متناسب با A3 است.
4- با توجه به عدم تقارن بین تعداد پروتون‌ها و نوترون‌ها، به خصوص در هسته‌های سنگین و در نظر گرفتن نیروی کولنی می‌توان این عدم تقارن و تصحیح کولنی را مابین کوارکهای بالا و پایین موجود در پلاسمای کوارک- گلئونی درون هسته را به صورت N2-Z2Z در نظر گرفت.
با در نظر گرفتن نکات فوق فرمول زیر برای محاسبه انرژی بستگی هسته‌ها ارائه شده است.
(4- SEQ (4- * ARABIC 1)BA,Z=A-N2-Z2+δN-Z3Z+3×mNc2α A>5(4- SEQ (4- * ARABIC 2) δN-Z=1N=Z0N≠Zدر فرمول بالا α = 90 – 100 است.
در مقایسه با مدل قطره مایعی که شامل هفت جمله در انرژی بستگی می‌باشد، این مدل شامل دو جمله است که وابسته به Z و N است که حاکی از سادگی بیشتر و دید جامع‌تری نسبت به هسته است. در این مدل، ذرات هسته‌ای محتوایی آزاد در یک محیط پلاسما مانند چگالی بررسی می‌شود [24,23].
4-2- ضریب تبدیل داخلی بر اساس مدل کوارکی هسته‌هادر مدل شبه کوارکی، هسته شامل پلاسمایی سوپ مانند از کوارکها و گلئونها است که می‌توان خواص هسته‌ها را با توجه به کوارکهای محتوایی به جای نوکلئونها بدست آورد. در فرمول زیر با در نظر گرفتن کوارکهای سازنده نوکلئونها ضریب تبدیل داخلی را بررسی کرده‌ایم. در فرمول زیر شاخص L تابش را به گونه‌ای تعریف می‌کنیم که 2L مرتبه چند قطبی باشد ( برای دو قطبی L=1، برای چار قطبی L=2 و ....). با تخصیص E برای خواص الکتریکی و M برای خواص مغناطیسی فرمول ضریب تبدیل داخلی با توجه به نگاه شبه کوارکی به صورت زیر ارائه شده است.
با در نظر گرفتن پروتون‌ها ضریب تبدیل داخلی برای گذارهای الکتریکی:
(4- SEQ (4- * ARABIC 3)αEL≅Z3n3LL+1e24πℏε0c4((23)3+(23)3+(13)3) 2mec2EL+52و ضریب تبدیل داخلی برای گذارهای مغناطیسی به صورت زیر ارائه شده است
(4- SEQ (4- * ARABIC 4)αML≅Z3n3e24πℏε0c4((23)3+(23)3+(13)3) 2mec2EL+32و اگر علاوه بر پروتون‌ها نوترون‌ها را هم در تابش گاما موثر بدانیم [25]، فرمول‌های زیر به ترتیب برای گذارهای الکتریکی و مغناطیسی ارائه می‌شود:
(4- SEQ (4- * ARABIC 5)αEL≅Z3n3LL+1e24πℏε0c4(233+233+133+233+133+133) 2mec2EL+52≅Z3n3LL+1e24πℏε0c4 2mec2EL+52(4- SEQ (4- * ARABIC 6)
αML≅Z3n3e24πℏε0c4233+233+133+233+133+1332mec2EL+32≅Z3n3e24πℏε0c42mec2EL+32به منظور بررسی فرمول‌های ارائه شده ضریب تبدیل داخلی برای دوازده عدد اتمی، ده چند قطبی E1-E5 و M1-M5 و 8 مقدار انرژی گاما محاسبه و با مقادیر تئوری و تجربی مقایسه شده است [26].
در جدول‌های (4-1) تا (4-39)، ستون اول مقادیر آزمایشگاهی، ستون دوم مقادیر تئوری محاسبه شده با استفاده از فرمول ضریب تبدیل داخلی و ستون سوم، مقادیر محاسبه شده با در نظر گرفتن کوارکهای سازنده پروتون‌ها را نشان می‌دهند. با توجه به معادلات (4-5) و (4-6)، نتایج حاصل از در نظر گرفتن کوارکهای سازنده پروتون‌ها و نوترون‌ها در تابش گاما با مقادیر عددی ستون دوم برابر است.

جدول (4- SEQ جدول_(4- * ARABIC 1): EB =5.50 E-02k shellz=3Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 6.55 E-02 10.00 E-02 6.30 E-02
15 E2 5.65 E+00 9.08 E+00 5.72 E +00
E3 4.10 E+02 6.96 E+02 4.38 E+02
E4 2.83 E+04 5.06 E+04 3.18 E+04
E5 1.92 E+06 3.59 E+06 2.26 E+06
20 E1 2.48 E-02 3.65 E-02 2.30 E-02
E2 1.63 E+00 2.49 E+00 1.56 E+00
E3 8.99 E+01 14.36 E+01 9.04 E+01
E4 4.72 E+03 7.80 E+03 6.91 E+03
E5 2.43 E+05 4.15 E+05 2.61 E+05
32 E1 5.06 E-03 7.05 E-03 4.44 E-03
E2 2.12 E-01 3.00 E-01 1.90 E-01
E3 7.50 E+00 10.79 E+00 6.80 E+00
E4 2.52 E+02 3.67 E+02 2.31 E+02
E5 8.29 E+03 12.23 E+03 7.80 E+03
50 E1 1.11 E-03 1.47 E-03 0.92 E-03
E2 3.07 E-02 4.03 E-02 2.53 E-02
E3 7.12 E-01 9.27 E-01 5.84 E-01
E4 1.57 E+01 2.02 E+01 1.27 E+01
E5 3.39 E+02 4.30 E+02 2.70 E+02
80 E1 2.26 E-04 2.85 E-04 1.79 E-04
E2 4.03 E-03 4.86 E-03 3.08 E-03
E3 6.05 E-02 6.99 E-02 4.40 E-02
E4 8.64 E-01 9.52 E-01 7.00 E-01
E5 1.21 E+01 1.26 E+01 0.80 E+01
120 E1 5.77 E-05 6.90 E-05 4.37 E-05
E2 7.12 E-04 7.84 E-04 4.94 E-04
E3 7.42 E-03 7.51 E-03 4.73 E-03
E4 7.35 E-02 6.82 E-02 4.29 E-02
E5 7.12 E-01 6.05 E-01 3.89 E-01
200 E1 4.41 E-08 3.65 E-08 2.29 E-08
E2 6.99 E-08 2.48 E-07 1.56 E-07
E3 1.08 E-07 1.43 E-05 0.90 E-05
E4 1.66 E-07 0.78 E-05 0.50 E-05
E5 2.55 E-07 0.41 E-05 0.25 E-05
جدول (4- SEQ جدول_(4- * ARABIC 2): EB =2.84 E-01k shellz=6Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 4.38 E-01 8.00 E-01 5.04 E-01
15 E2 3.51 E+01 7.27 E+01 4.58 E+01
E3 2.36 E+03 5.57 E+03 3.50 E+03
E4 1.52 E+05 4.05 E+05 2.55 E+05
E5 9.63 E+06 28.74 E+06 14.47 E+06
20 E1 1.71 E-01 2.92 E-01 1.83 E-01
E2 1.05 E+01 1.99 E+01 1.25 E+01
E3 5.45 E+03 11.45 E+03 6.21 E+03
E4 2.69 E+04 6.24 E+04 3.93 E+04
E5 1.31 E+06 3.32 E+06 2.09 E+06
32 E1 3.62 E-02 5.64 E-02 3.55 E-02
E2 1.45 E+00 2.40 E+00 1.51 E+00
E3 4.87 E+01 8.63 E+01 5.43 E+01
E4 1.56 E+03 2.94 E+03 1.85 E+03
E5 4.90 E+04 9.78 E+04 6.16 E+04
50 E1 8.21 E-03 11.83 E-03 7.45 E-03
E2 2.18 E-01 3.22 E-01 2.02 E-01
E3 4.87 E+00 7.41 E+00 4.46 E+00
E4 1.03 E+02 1.61 E+02 1.01 E+02
E5 2.15 E+03 3.44 E+03 2.16 E+03
80 E1 1.71 E-03 2.28 E-03 1.43 E-03
E2 2.97 E-02 3.89 E-02 2.45 E-02
E3 4.33 E-01 5.59 E-01 3.52 E-01
E4 5.99 E+00 7.62 E+00 4.81 E+00
E5 8.13 E+01 10.14 E+01 6.81 E+01
120 E1 4.46 E-04 5.52 E-04 3.51 E-04
E2 5.38 E-03 6.27 E-03 4.01 E-03
E3 5.48 E-02 6.01 E-02 3.93 E-02
E4 5.24 E-01 5.46 E-01 3.50 E-01
E5 5.01 E+00 4.84 E+00 2.82 E+00
200 E1 8.43 E-05 9.24 E-05 5.92 E-05
E2 6.53 E-04 6.30 E-04 4.00 E-04
E3 4.30 E-03 3.62 E-03 2.38 E-03
E4 2.70 E-02 1.97 E-02 1.24 E-02
E5 1.65 E-01 1.05 E-01 0.66 E-01

جدول (4- SEQ جدول_(4- * ARABIC 3): EB =8.67 E-01k shellz=10Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 1.05 E+00 3.70 E+00 2.33 E+00
15 E2 1.11 E+02 3.36 E+02 2.11 E+02
E3 6.67 E+03 25.80 E+03 14.25 E+03
E4 3.83 E+05 18.75 E+05 11.02 E+05
E5 2.18 E+07 13.30 E+07 8.01 E+07
20 E1 6.24 E-01 13.53 E-01 8.42 E-01
E2 3.51 E+01 9.22 E+01 5.40 E+01
E3 1.65 E+03 5.30 E+03 3.15 E+03
E4 7.40 E+04 28.90 E+04 15.05 E+04
E5 3.29 E+06 15.38 E+06 8.60 E+06
32 E1 1.38 E-01 2.61 E-01 1.64 E-01
E2 5.17 E+00 11.12 E+00 6.89 E+00
E3 1.61 E+02 3.99 E+02 2.51 E+02
E4 4.81 E+03 13.69 E+03 8.42 E+03
E5 1.41 E+05 4.53 E+05 2.85 E+05
50 E1 3.26 E-02 5.47 E-02 3.66 E-02
E2 8.21 E-01 14.93 E-01 8.82.50 E01
E3 1.73 E+01 3.43 E+01 2.09 E+01
E4 3.47 E+02 7.48 E+02 4.58 E+02
E5 6.80 E+03 15.94 E+03 9.45 E+03
80 E1 7.02 E-03 10.57 E-03 6.65 E-03
E2 1.17 E-01 1.80 E-01 1.13 E-01
E3 1.63 E+00 2.58 E+00 1.62 E+00
E4 2.16 E+01 3.52 E+01 2.21 E+01
E5 2.81 E+02 4.69 E+02 2.59 E+02
120 E1 1.87 E-03 2.55 E-03 1.60 E-03
E2 2.19 E-02 2.90 E-02 1.85 E-02
E3 2.15 E-01 2.78 E-01 1.80 E-01
E4 2.01 E+00 2.52 E+00 1.60 E+00
E5 1.48 E+01 2.24 E+01 1.41 E+01
200 E1 3.63 E-04 4.28 E-04 2.75 E-04
E2 2.74 E-03 2.91 E-03 1.89 E-03
E3 1.76 E-02 1.67 E-02 1.10 E-02
E4 1.07 E-01 0.91 E-01 0.60 E-01
E5 6.42 E-01 4.86 E-01 3.19 E-01
جدول (4- SEQ جدول_(4- * ARABIC 4): EB =1.83 E+00k shellz=14Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 3.30 E+00 10.16 E+00 6.01 E+00
15 E2 2.09 E+02 9.23 E+02 5.67 E+02
E3 1.09 E+04 7.08 E+04 4.21 E+04
E4 9.49 E+05 51.45 E+05 32.01 E+05
E5 2.75 E+07 36.51 E+07 22.08 E+07
20 E1 1.30 E+00 3.71 E+00 2.33 E+00
E2 6.92 E+01 25.30 E+01 15.33 E+01
E3 2.91 E+03 14.55 E+03 9.16 E+03
E4 1.17 E+05 7.93 E+05 4.80 E+05
E5 4.70 E+06 42.21 E+06 26.34 E+06
32 E1 3.15 E-01 7.17 E-01 4.41 E-01
E2 1.09 E+01 3.53 E+01 2.22 E+01
E3 3.13 E+02 10.97 E+02 6.35 E+02
E4 8.64 E+03 37.37 E+03 12.96 E+03
E5 2.36 E+05 12.43 E+05 7.56 E+05
50 E1 7.65 E-02 15.03 E-02 9.40 E-02
E2 1.82 E+00 4.09 E+00 2.25 E+00
E3 3.60 E+01 9.42 E+01 5.67 E+01
E4 6.81 E+02 20.54 E+02 12.06 E+02
E5 1.27 E+04 4.37 E+04 2.75 E+04
80 E1 1.70 E-02 2.90 E-02 1.82 E-02
E2 2.71 E-01 4.94 E-01 3.08 E-01
E3 3.60 E+00 7.10 E+00 4.41 E+00
E4 4.50 E+01 9.68 E+01 6.06 E+01
E5 5.68 E+02 12.88 E+02 7.95 E+02
120 E1 4.63 E-03 7.02 E-03 4.42 E-03
E2 5.23 E-02 7.97 E-02 5.02 E-02
E3 4.94 E-01 7.63 E-01 4.80 E-01
E4 4.45 E+00 6.93 E+00 4.36 E+00
E5 3.93 E+01 6.15 E+01 3.88 E+01
200 E1 9.19 E-04 11.74 E-04 7.39 E-04
E2 6.77 E-03 8.00 E-03 5.04 E-03
E3 4.22 E-02 4.60 E-02 2.92 E-02
E4 2.51 E-01 2.50 E-01 1.57 E-01
E5 1.40 E+00 1.33 E+00 0.83 E+00
جدول (4- SEQ جدول_(4- * ARABIC 5): EB =2.47 E+00k shellz=16Eγ(Kev) EL α (exp) α (TE) α (QM)

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

E1 4.37 E+00 15.17 E+00 9.13 E+00
15 E2 2.56 E+02 13.78 E+02 8.01 E+02
E3 1.24 E+04 10.56 E+02 6.30 E+02
E4 5.25 E+05 56.80 E+05 30.20 E+05
E5 2.67 E+07 34.51 E+07 21.07 E+07
20 E1 1.83 E+00 5.54 E+00 3.49 E+00
E2 8.73 E+01 37.70 E+01 21.68 E+01
E3 3.44 E+03 21.71 E+03 13.04 E+03
E4 1.31 E+05 11.83 E+05 6.93 E+05
E5 4.94 E+06 63.01 E+06 34.69 E+06
32 E1 4.29 E-01 10.70 E-01 6.34 E-01
E2 1.42 E+01 4.55 E+01 2.67 E+01
E3 3.92 E+02 16.37 E+02 10.00 E+02
E4 1.03 E+04 5.57 E+04 3.38 E+04
E5 2.70 E+05 18.55 E+05 11.34 E+05
50 E1 1.06 E-01 2.24 E-01 1.41 E-01
E2 2.44 E+00 6.11 E+00 3.84 E+00
E3 467 E+01 14.06 E+01 8.19 E+01
E4 8.55 E+02 30.66 E+02 17.64 E+02
E5 1.55 E+04 6.52 E+04 4.04 E+04
80 E1 2.38 E-02 4.33 E-02 2.72 E-02
E2 3.71 E-01 7.37 E-01 4.54 E-01
E3 4.81 E+00 10.60 E+00 6.31 E+00
E4 5.94 E+01 14.45 E+01 8.92 E+01
E5 7.24 E+02 19.23 E+02 12.11 E+02
120 E1 6.56 E-03 10.48 E-03 6.60 E-03
E2 7.27 E-02 11.90 E-02 7.49 E-02
E3 6.74 E-01 11.40 E-01 7.18 E-01
E4 5.95 E+00 10.39 E+00 6.73 E+00
E5 5.16 E+01 9.19 E+01 5.73 E+01
200 E1 1.32 E-03 1.75 E-03 1.10 E-03
E2 9.57 E-03 11.94 E-03 7.52 E-03
E3 5.89 E-02 6.86 E-02 4.32 E-02
E4 3.44 E-01 3.74 E-01 2.35 E-01
E5 1.98 E+00 1.99 E+00 1.25 E+00
جدول (4- SEQ جدول_(4- * ARABIC 6): EB =4.03 E+00k shellz=20Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 6.78 E+00 29.64 E+00 18.28 E+00
15 E2 3.35 E+02 26.92 E+02 16.38 E+02
E3 1.33 E+04 20.64 E+04 11.07 E+04
E4 5.12 E+05 15.001E+05 9.45 E+05
E5 1.98 E+07 10.60E+07 6.67 E+07
20 E1 2.90 E+00 10.83 E+00 6.82 E+00
E2 1.21 E+02 7.37 E+02 4.06 E+02
E3 4.13 E+03 42.42 E+03 26.46 E+03
E4 1.36 E+05 23.12 E+05 14.49 E+05
E5 4.46 E+06 123.07E+06 7.56 E+06
32 E1 7.05 E-01 20.90 E-01 12.60 E-01
E2 2.13 E+1 8.90 E+1 5.04 E+1
E3 5.31 E+02 31.98 E+02 19.53 E+02
E4 1.27 E+04 10.89 E+04 6.30 E+04
E5 3.02 E+05 36.24 E+05 22.68 E+05
50 E1 1.79 E-01 4.38 E-01 2.69 E-01
E2 3.85 E+00 11.94 E+00 6.93 E+00
E3 6.85 E+1 27.47 E+1 10.45 E+1
E4 1.17 E+03 5.98 E+03 3.71 E+03
E5 1.97 E+04 12.75 E+04 7.56 E+04
80 E1 4.13 E-02 8.46 E-02 5.06 E-02
E2 6.11 E-01 14.41 E-01 8.82 E-01
E3 7.51 E+00 20.71 E+00 12.40 E+00
E4 8.80 E+1 28.22 E+1 16.64 E+1
E5 1.02 E+03 3.75 E+03 2.36 E+03
120 E1 1.16 E-02 2.04 E-02 1.28 E-02
E2 1.23 E-01 2.32 E-01 1.40 E-01
E3 1.10 E+00 2.22 E+00 1.36 E+00
E4 9.29 E+00 20.23 E+00 12.06 E+00
E5 7.74 E+01 17.94 E+01 10.78E+01
200 E1 2.38 E-03 3.42 E-03 2.15 E-03
E2 1.68 E-02 2.33 E-02 1.46 E-02
E3 1.10 E-01 1.34 E-01 0.84 E-01
E4 5.67 E-01 7.31 E-01 4.60 E-01
E5 3.16 E+00 3.89 E+00 2.45 E+00
جدول (4- SEQ جدول_(4- * ARABIC 7): EB =4.96 E+00k shellz=22Eγ (Kev) EL α (exp) α (TE) α (QM)
E1 8.97 E+00 39.45 E+00 24.00 E+00
15 E2 3.59 E+02 35.84 E+02 22.05 E+02
E3 1.27 E+04 27.47 E+04 17.01 E+04
E4 4.34 E+05 199.67E+05 11.91 E+05
E5 1.49 E+07 141.71E+07 10.08 E+07
20 E1 3.50 E+00 14.41 E+00 8.82 E+00
E2 1.35 E+02 9.82 E+02 5.67 E+02
E3 4.22 E+03 56.46 E+03 35.02 E+03
E4 1.27 E+05 30.77 E+05 18.90 E+05
E5 3.86 E+06 163.81E+06 10.08 E+06
32 E1 8.63 E-01 27.82 E-01 17.01 E-01
E2 2.48 E+01 11.84 E+01 6.93 E+01
E3 5.83 E+02 42.56 E+02 26.46 E+02
E4 1.32 E+04 14.50 E+04 8.82 E+04
E5 2.38 E+05 48.24 E+05 30.24 E+05
50 E1 2.22 E-01 5.83 E-01 3.67 E-01
E2 4.60 E+00 15.90 E+00 8.86 E+00
E3 7.87 E+01 36.56 E+01 22.68 E+01
E4 1.29 E+03 7.97 E+03 4.43 E+03
E5 2.10 E+04 16.97 E+04 10.10 E+04
80 E1 5.18 E-02 11.26 E-02 6.93 E-02
E2 7.47 E-01 19.18 E-01 11.98 E-01
E3 8.91 E+00 27.56 E+00 17.01 E+00
E4 1.02 E+02 3.75 E+02 2.36 E+02
E5 1.14 E+03 4.99 E+03 3.14 E+03
120 E1 1.47 E-02 2.72 E-02 1.71 E-02
E2 1.53 E-01 3.09 E-01 1.96 E-01

user8275

در اینجا لازم است که از زحمات مادر، پدر و همسر گرامی خود تشکر و قدر دانی کنم. بی تردید، بدون حمایت های آنها، عبور از این مسیر برای من ممکن نبود.
از استادان محترم، مجید عمیدپور، حسین صیادی، علی بهبهانینیا سپاس گذاری می کنم. سهمِ زیادِ تواناییهایِ علمیِ اندکِ من، توسط این استادان به من منتقل شد.
از آقایان علی بهبهانی نیا وحسین صیادی اساتید راهنمای این تحقیق، تشکر ویژه دارم. راهنمایی های کلیدی و فنی ایشان مرا، در رسیدن زودتر به نتیجه، کمک کرد.
از دوست خوبم کامبیز انصاری بخاطر مشورت با او تشکر می کنم.
چکیده
در سالهای اخیر امکان استفاده از انرژی خورشیدی برای سرمایش و رطوبت زدایی، ذهن بشر را به خود مشغول کرده است. سیستمهای سرمایش جذبی خورشیدی(Solar Absorption Cycles) دارای مزیتهایی از قبیل عدم خطرناک بودن از لحاظ زیست محیطی و کم بودن مصرف انرژی به ویژه در ساعات پیک الکتریکی میباشند. علاوه بر آن، از آنجاییکه هزینه دریافت انرژی خورشیدی تنها شامل هزینه تجهیزات جذب انرژی از قبیل کالکتورهای خورشیدی و تانک ذخیره آب داغ هستند، میزان سوخت مصرفی در این حالت نسبت به سیکلهای متداول جذبی کمتر میباشد. به طور کلی بهینهسازی سیستمهای حرارتی بر پایه اصول ترمواکونومیک انجام میشود. تحلیل ترمواکونومیک، آنالیزهای ترمودینامیکی و اگزرژتیکی و قیود اقتصادی را جهت نائل شدن به ساختار بهینه عملی سیستم تلفیق میکند. در این رساله تحلیل ترمواکونومیک سیکلهای جذبی خورشیدی در مورد یک نمونه آرایش متداول خانگی با بار خنککنندگی 10 کیلووات و با کارکرد توسط یک نمونه چیلر جذبی تک اثره با سیال عامل لیتیم برماید-آب مورد بررسی قرار خواهد گرفت. با توجه به متغیر بودن میزان تابش خورشیدی در طول ماهها و ساعات مختلف فصول گرمایی سال، آنالیز حرارتی و ترمودینامیکی به صورت وابسته به زمان (دینامیکی)، در طی ساعات شبانه روز ماههای گرمایی سال بر روی سیکل تبرید جذبی خورشیدی مورد نظر اعمال خواهد شد. در مرحله بعد آرایش کامل سیستم های جذبی خورشیدی از نظر موضوعات اگزرژی و قانون دوم مورد بررسی قرار گرفته و منبع ناکارآمدی سیستم تعیین خواهد شد. با تلفیق خروجی نتایج حاصل از تحلیل حرارتی دینامیکی سیکل تبرید جذبی خورشیدی( تعیین میزان مصرف سوخت سالیانه در هیتر کمکی و هزینه سرمایه گذاری سالیانه تجهیزات) و آنالیز اگزرژتیک سیکل مورد نظر، با استفاده از معادلات ترمواکونومیک میزان نرخ هزینه سالیانه جریان های ورودی و خروجی به هر جزء از سیستم تعیین خواهند شد. در این رساله نشان داده می شود که بیشترین اتلافات اگزرژی را به دلیل اختلاف دمای بالا مابین جریانهای ورودی و خروجی به کندانسور و جاذب شاهد هستیم. همچنین مشاهده میشود که میزان نرخ هزینه سالیانه محصول کل سیستم تبرید جذبی خورشیدی به شدت وابسته به دمای آب ورودی به ژنراتور(این پارامتر بر روی میزان مصرف سوخت سالیانه در هیتر کمکی تأثیر گذار خواهد بود) و سطوح کالکتورهای خورشیدی بوده و برای هر دو پارامتر ذکر شده، در نقاطی به کمترین میزان خود میرسد.
لغات کلیدی: سیکل تبرید جذبی تک اثره خورشیدی،لیتیم برماید-آب،کالکتور خورشیدی،منبع ذخیره آب داغ،ترمواکونومیک،اگزرژی
فهرست مطالب
TOC o "1-3" h z u مقدمه PAGEREF _Toc241083207 h 1مرور تحقیقات انجام شده قبلی PAGEREF _Toc241083208 h 4فصل یکم-تکنولوژی چیلر های جذبی PAGEREF _Toc241083209 h 7مقدمه PAGEREF _Toc241083210 h 71-1اصول اولیه ترمودینامیکی PAGEREF _Toc241083211 h 81-2 سیکل سرمایش جذبی PAGEREF _Toc241083213 h 9فصل دوم-تکنولوژی چیلرهای جذبی خورشیدی PAGEREF _Toc241083216 h 22مقدمه PAGEREF _Toc241083217 h 222-1 چیلرهای جذبی خورشیدی تک مرحله ای PAGEREF _Toc241083218 h 252-1-1 هیترهای های کمکی PAGEREF _Toc241083219 h 262- 1-2 منبع ذخیره آب گرم PAGEREF _Toc241083220 h 262-1-3 منبع ذخیره آب سرد PAGEREF _Toc241083221 h 272-2 چیلرهای جذبی خورشیدی تک مرحله ای با تانک ذخیره مبرد و آب داغ PAGEREF _Toc241083222 h 282-3 چیلرهای جذبی خورشیدی دو اثره PAGEREF _Toc241083223 h 292-4 تکنولوژی کالکتورهای خورشیدی PAGEREF _Toc241083224 h 312-4-1 کالکتورهای تخت PAGEREF _Toc241083225 h 312-4-2 کالکتورهای لوله‌ای غیرمتمرکز PAGEREF _Toc241083226 h 34فصل سوم – تحلیل ترمودینامیکی و حرارتی سیستمهای جذبی خورشیدی PAGEREF _Toc241083227 h 36مقدمه PAGEREF _Toc241083228 h 363-1 خواص ترمودینامیکی محلول لیتیم برماید – آب PAGEREF _Toc241083229 h 363-1-1 غلظت PAGEREF _Toc241083230 h 363-1-2 فشار بخار PAGEREF _Toc241083231 h 373-2 تحلیل ترمودینامیکی سیکل جذبی خورشیدی:جزء جذبی سیستم PAGEREF _Toc241083232 h 39فصل چهارم-تحلیل اگزرژی و ترمواکونومیک سیکل های جذبی خورشیدی PAGEREF _Toc241083233 h 59مقدمه PAGEREF _Toc241083234 h 594-1 تحلیل اگزرژی PAGEREF _Toc241083235 h 604-1-1 تفاوت انرژی و اگزرژی PAGEREF _Toc241083236 h 604-1-2 تعریف محیط PAGEREF _Toc241083237 h 604-1-3 حالت مرده یا سکون PAGEREF _Toc241083238 h 604-1-4 حالت مرده محدود PAGEREF _Toc241083239 h 614-1-5 موازنه اگزرژی PAGEREF _Toc241083240 h 614-1-6 اجزاء اگزرژی PAGEREF _Toc241083241 h 614-1-7 بالانس اگزرژی PAGEREF _Toc241083242 h 624-1-8 تخریب (اضمحلال) اگزرژی PAGEREF _Toc241083243 h 634-2 تحلیل اگزرژی سیکل تبرید جذبی تک اثره خورشیدی PAGEREF _Toc241083244 h 654-3 تحلیل ترمواکونومیک PAGEREF _Toc241083245 h 704-3-1 کاربرد ترمواکونومیک PAGEREF _Toc241083246 h 704-3-2 اصول ترمواکونومیک PAGEREF _Toc241083247 h 704-3-3 هزینه گذاری اگزرژی PAGEREF _Toc241083248 h 714-3-4 معادلات کمکی هزینه ها PAGEREF _Toc241083249 h 724-3-5 مدلهای اقتصادی PAGEREF _Toc241083253 h 764-3-6 بهینه سازی PAGEREF _Toc241083256 h 774-4 تحلیل ترمواکونومیک سیکل تبرید جذبی تک اثره خورشیدی: PAGEREF _Toc241083259 h 77فصل پنجم-تحلیل ترمودینامیک,اگزرژی و بهینه سازی ترمواکونومیک وابسته به زمان در یک نمونه تبرید جذبی خورشیدی تجاری PAGEREF _Toc241083260 h 85مقدمه PAGEREF _Toc241083261 h 855-1 معرفی مدل نمونه جهت تحلیلهای فنی و اقتصادی PAGEREF _Toc241083262 h 855-2 معرفی حالات پایه جهت تحلیل ترمودینامیکی و اگزرژتیکی مساله نمونه PAGEREF _Toc241083263 h 875-3 نتایج ترمودینامیکی و اگزرژتیکی تحلیل جزء جذبی سیکل جذبی خورشیدی PAGEREF _Toc241083264 h 885-4 شبیه سازی وابسته به زمان و دینامیکی سیکل تبرید جذبی خورشیدی PAGEREF _Toc241083265 h 905-5 تحلیل و بهینه سازی ترمواکونومیک سیکل تبرید جذبی خورشیدی PAGEREF _Toc241083266 h 985-5-1 تعیین پارامترهای تصمیم و تابع هدف جهت بهینه سازی سیستم PAGEREF _Toc241083267 h 985-6 نتایج حاصل از تحلیل ترمواکونومیکی سیکل جذبی خورشیدی و آنالیز حساسیت سیستم PAGEREF _Toc241083268 h 995-6-1 بررسی تغییر نرخ هزینه محصول در اثر تغییر در مقادیر ورودی و پایه سیستم(آنالیز حساسیت) PAGEREF _Toc241083269 h 1015-7 بهینه سازی سیکل تبرید جذبی تک اثره خورشیدی انتخابی PAGEREF _Toc241083270 h 110فصل ششم- نتیجه گیری و تحقیقات آتی PAGEREF _Toc241083271 h 113فصل هفتم-پیوست PAGEREF _Toc241083272 h 1167-1 بررسی شرایط کارکردی سیکل جذبی تک اثره لیتیم برماید:آنالیز پارامتری PAGEREF _Toc241083273 h 1167-1-1 اثر تغییرات دما ها و فشار های نقاط مختلف سیکل بر عملکرد آن PAGEREF _Toc241083274 h 1187-1-2 اثر مبدل بازیاب حرارتی محلول در کارکرد سیکل PAGEREF _Toc241083275 h 1227-2 روابط و جداول مورد نیاز جهت تعیین خواص ترمودینامیکی محلول لیتیم برماید –آب PAGEREF _Toc241083276 h 1267-2-1 تعیین فشار محلول لیتیم برماید- آب بر حسب غلظت و دمای محلول.........................126
7-2-2 تعیین آنتالپی محلول لیتیم برماید- آب بر حسب غلظت و دمای محلول PAGEREF _Toc241083277 h 127مراجع PAGEREF _Toc241083278 h 131
فهرست جداول
TOC h z c "جدول2-" جدول2- 1 مقایسه فنی و اقتصادی چیلرهای جذبی خورشیدی یک اثره با دو و سه اثر31 TOC h z c "جدول3-"
جدول3- 1 خلاصه حالت ترمودینامیکی نقاط سیکل نشان داده شده در شکل3-3.............................42
جدول3- 2 خلاصه معادلات بقای جرم و انرژی جهت تحلیلی سیکل های تک اثره جذبی44 TOC h z c "جدول6-"
جدول4- 1 خلاصهای از آنالیز سوخت – محصول و اتلافات برای سیکل تبرید جذبی تک اثره لیتیم برماید-آب69 HYPERLINK l "_Toc226876930" جدول4- 2 خلاصهای از روابط ترمواکونومیکی برای سیکل تبرید جذبی تک اثره لیتیم برماید-آب
81
جدول4- 3 قیمت انواع مختلف کالکتور های خورشیدی بر واحد سطح کالکتور82جدول5- 1 مقادیر پایه جهت تحلیل ترمودینامیک و اگزرژتیک سیکل جذبی تک اثره لیتیم برماید-آب88جدول5- 2 میزان پارامتر های ترمودینامیکی و اگزرژتیکی حاصله از تحلیل سیکل در حالت پایه89جدول5- 3 میزان مشخصه های مفید اگزرژتیکی حاصله از تحلیل سیکل در حالت پایه.....................90 TOC h z c "جدول3-" جدول5- 5 میزان مقدار کل تابش خورشید روی کالکتور در ساعات گوناگون ماه های گرمایی کشور ایران...........................................................................................................................................................................91جدول5- 6 نتایج حاصل از شبیه سازی دینامیکی سیستم جهت ماه های می ،ژوئن و جولای...........94 TOC h z c "جدول6-" جدول5- 6 ادامه نتایج حاصل از شبیه سازی دینامیکی سیستم جهت مه های می ،ژوئن و جولای..95جدول5- 7 میزان پارامتر های ترمو اکونومیکی نقاط مختلف سیکل حاصله از تحلیل سیستم در حالت پایه با در نظر گرفتن سیستم تامین حرارت خورشیدی..............................................................................100جدول5- 8 میزان مشخصه های مفید ترمواکونومیکی حاصله از تحلیل سیکل در حالت پایه..........101جدول5- 9 مقادیر بهینه در قیاس با مقادیر پایه حاصل از بهینه سازی ترمواکونومیک سیکل جذبی خورشیدی تک اثره لیتیم برماید-آب...............................................................................................................111
جدول5- 10 پارامترهای بهینه ترمواکونومیکی در قیاس با وضعیت پایه..............................................112 TOC h z c "جدول2-" جدول7- 1 ضرایب عددی جهت استفاده در معادله (7-15)127 TOC h z c "جدول3-" جدول7- 2 ضرایب عددی جهت استفاده در معادله(7-16)..................................................................... 127جدول7- 3 ضرایب عددی جهت استفاده در معادله(7-17)128 TOC h z c "جدول6-" جدول7- 4 ضرایب عددی جهت استفاده در معادله(7-18)129جدول7- 5 ضرایب عددی جهت استفاده در معادله(7-19).................................................................... 129جدول7- 6 ضرایب عددی جهت استفاده در معادله(7-20)...................................................................130فهرست اشکال TOC h z c "شکل1-" شکل(1) نمای یک سیکل تهویه مطبوع خورشیدی3شکل1- 1 شرح ترمودینامیکی سیستم سرمایش9شکل1-2 تشریح شماتیکی چیلر جذبی تک مرحله ای10 TOC h z c "شکل2-"
TOC h z c "شکل3-" شکل2- 2 فلودیگرام سیکل جذبی خورشیدی همراه با منابع ذخیره مبرد و محلول28شکل2- 3 نمونهای از چیدمان و نحوه کنترل سیکلهای جذبی خورشیدی با منبع ذخیره آب داغ29 TOC h z c "شکل4-" شکل2- 4 نمونه ای از سیکل های متداول سیستم های جذبی خورشیدی دو اثره30شکل2- 5 سطح مقطع یک نوع کالکتور تخت و چیدمان آن در یک ساختمان32 TOC h z c "شکل5-" شکل2- 6 آرایش کالکتورهای لولهای و سطح مقطع آن34شکل2- 7 سطح مقطع یک لوله از کالکتورهای لوله‌ای غیرمتمرکز با جزئیات آن35 TOC h z c "شکل6-"
شکل1- 3 نمودار تعادلی محلول آبی لیتیم برماید – آب(Duhring Chart)38شکل3- 2 نمودار آنتالپی-غلظت جهت محلول آبی LiBr39شکل3- 3 شماتیکی از سیکل جذبی تک اثره آب-لیتیم برماید40شکل3- 4 شماتیکی از سیکل جذبی تک اثره آب-لیتیم برماید با در نظر گرفتن جریان سیال در حلقههای خارجی مبدل های حرارتی47
شکل3- 5 شماتیکی از کارکردسیکل جذبی تک اثره آب-لیتبم برماید بر روی دیاگرام Duhring50شکل3- 6 نمای یک سیکل تهویه مطبوع خورشید....................................................................................... 51شکل3- 7 مقدار کل تابش خورشیدی و مقدار تابش مستقیم53شکل3- 8 تغییرات ضریب تلفات حرارتی (UL) نسبت به دمای صفحه کلکتور و درجه حرارت محیط54شکل3- 9 پارامتر (tfi–tat ) بر‌حسب راندمان (η)55شکل4- 1 دسته بندی تعادل اگزرژی61شکل4- 2 شماتیک سیستم حرارتی74شکل4- 3 تعیین قیمت بر واحد حجم تانک های ذخیره آب داغ در سیکل های جذبی خورشیدی...83
شکل5- 1 پلانی از خانه به کار رفته جهت تهویه با بار خنک کنندگی 11kw86
شکل5-2 میزان درجه حرارت محیط در ساعات گوناگون ماه های گرمایی کشور ایران92شکل5-3 میزان تغییر درجه حرارت گره میانی مخزن در طول ساعات روز را برای سطوح مختلف کالکتور خورشیدی و در ماه می با فرض=1500 Kg WTANK،=85 T1196شکل5-4 میزان تغییر بار حرارتی هیتر کمکی در طول ساعات روز را برای سطوح مختلف کالکتور خورشیدی و در ماه می با فرض=1500 Kg WTANK،=85 T1196شکل5- 5 میزان تغییر درجه حرارت گره میانی مخزن در طول ساعات روز را برای سطوح مختلف کالکتور خورشیدی و در ماه می با فرض=50 m2 Ac،=85 T1197شکل5- 6 میزان تغییر بار حرارتی هیتر کمکی در طول ساعات روز را برای سطوح مختلف کالکتور خورشیدی و در ماه می با فرض=1500 Kg WTANK،=85 T1197شکل5- 7 روند تغییر در نرخ هزینه محصول در اثر تغییر در سطح کالکتور خورشیدی102شکل5-8 روند تغییر در نرخ هزینه محصول در اثر تغییر در حجم تانک ذخیره آب داغ.................. 102شکل5-9 روند تغییر دمای تانک ذخیره آب داغ در ساعت 14 از یک روز در ماه می و میزان انرژی مصرفی در هیتر کمکی نسبت به تغییرات دمای آب داغ ورودی به ژنراتور103شکل5-10 روند تغییر سطوح تبادل حرارتی در تجهیزات سیکل جذبی و میزان نرخ اتلافات اگزرژی کل سیکل نسبت به تغییر دمای آب داغ ورودی به ژنراتور104شکل5-11 روند تغییر نرخ تولید محصول در اواپراتور نسبت به تغییر دمای آب داغ ورودی به ژنراتور104 TOC h z c "شکل1-"
TOC h z c "شکل2-" شکل7- 3 تغییرات بار حرارتی با دمای تبخیرکنننده (، 40°C = TC=TA، ،ESHX=0.40 ، TG=90°C)119شکل7- 4 تغییرات بارهای حرارتی با دمای کندانسور (TC=5°C ، ،TC=TA=ESHX=0.40 ،TG =90°C )............................................................................................................................................................... 120شکل7- 5 تغییرات بارهای حرارتی با دمای جاذب (TE=5°C ، 40°C TC= ،ESHX=0.40 ، TG=90°C)120شکل7- 6 تغییرات پارامترهای کارایی با دمای ژنراتور کننده (TE=5°C ، 40°C TA=TC= ،ESHX=0.40 ، TG=90°C)............................................................................................................................121شکل7- 7 تغییرات پارامترهای کارایی با دمای تبخیرکننده(40°C = TA=TC ،ESHX=0.40 ، TG=90°C)121شکل7- 8 تغییرات پارامترهای کارایی با دمای کندانسور (TE=5°C ، 40°C TA=TC= ،ESHX=0.40 ، TG=90°C)..........................................................................................................................122شکل7- 9 تغییرات پارامترهای کارایی با دمای جاذب (TE=5°C ، 40°C = TC=TA ، ESHX=0.40 ، TG=90°C).............................................................................................................................122شکل7- 10 تغییرات دمای محلول با اثرگذاری SHX (TE=5°C ، 40°C = TA=TC ،TG=90°C)123شکل7- 11 تغییرات کاهش بار حرارتی با اثرگذاری SHX (TE=5°C ، 40°C = TA=TC ، TG=90°C)123شکل7- 12 تغییرات PIR با اثرگذاری SHX(TE=5°C ، 40°C = TA=TC ، TG=90°C)124شکل7- 13- تغییرات پارامترهای کارایی با اثرگذاری SHX (=5°C TE ، 40°C TA=TC=،ESHX=0.40 ،TG=90°C)................................................................................................................124شکل7- 14 تغییرات TCRبا غلظت LiBr125 HYPERLINK l "_Toc226876988" شکل7- 15 تغییراتCOP با دمای ژنراتور و همچنین اثر SHX بر روی خط بلورینگی(TE=5°C
40°C TA=TC=)125

فهرست علائم و اختصارات
COP ضریب عملکرد
Tدما(℃)
Qحرارت(kw)
xغلظت(%)
mجرم(kg)
LiBr لیتیم برماید
hآنتالپی ویژه(kwkg)
mدبی جرمی(kgs)
CRنسبت گردش محلول(%)
Wکار پمپ محلول،وزن تانک ذخیره آب داغ(kgوkw)
vحجم مخصوص
Pفشار (kpa)
Uضریب انتقال حرارت کلی (kwatt℃*m2)
Aسطح تبادل حرارتی(m2)
ΔTlmاختلاف دمای لگاریتمی(℃)
εکارآیی مبدل حرارتی
qUمقدار حرارت مفید کسب شده بوسیله کالکتور بر حسب(wattm2)
Itθمقدار کل تابش خورشید روی کالکتور بر حسب(wattm2)
,)θ ضریب عبور پوشش ، ضریب جذب صفحه در زاویه برخورد θ
FRضریب انتقال حرارت کالکتور
ηراندمان
Fضریب تابع کنترلی اعمالی بر سیستم حورشیدی
CPگرمای ویژه فشار ثابت آب(kjkg)
FNPکسر بار خورشیدی از بار کل
اگزرژی(kj)
نرخ اگزرژی(kw)
راندمان اگزرژتیک
راندمان اگزرژتیک
نرخ بازگشت ناپذیری(kw)
نرخ هزینه($Year)
نرخ هزینه دستگاه($Year)
هزینه واحد اگزرژی($Gj)
نرخ هزینه ثابت($Year)
هزینه تعیرات و نگهداری
هزینه خرید تجهیز($)
ضریب بازگشت سرمایه
نرخ بهره
تعداد سال عملکرد سیستم
s آنتروپی(kj)
u انرژی داخلی(kj)
e اگزرژی ویژهkjkgfkفاکتور اگزرژواکونومیک
qمیزان انتقال حرارت بر واحد جرم
PIRنسبت افزایش کارایی
Rدمای آب ورودی و خروجی برج خنک کن(℃)
Aدمای آب ورودی و دمای حباب تر(℃)
Fدبی آب ورودی به برج خنک کن
زیرنویس
Lسطح پایین دمایی، اتلاف حرارتی از کالکتور،اتلاف اگزرژی
Hسطح بالای دمایی
Aسطح میانی دمایی
e اواپراتور
g ژنراتور
c کندانسور،کالکتور خورشیدی،کارنو
a جاذب
shx مبدل حرارتی محلول
lلیتیم برماید
wآب
sh-hسمت گرم مبدل حرارتی محلول
sh-cسمت سرد مبدل حرارتی محلول
highسطح فشاری بالای سیکل
lowسطح فشاری پایین سیکل
Rتبریدی
hحرارتی
gminحداقل دمای مورد نیاز ژنراتور جهت حصول دمای اواپراتور
pسفحه جاذب کالکتور
atمحیط
fiورودی جریان به کالکتور
feخروجی جریان از کالکتور
apمساحت دهانه‌ای از کالکتور که اجازه عبور پرتوهای رسیده را داده است
θ زاویه تلاقی خورشیدی
offخاموش شدن پمپ مابین تانک و کالکتور
onروشن شدن پمپ مابین تانک و کالکتور
m,iجریان شبکه در گره iاز تانک ذخیره آب داغ
S,iوضعیت تانک در گره iاز تانک
COخروجی از کالکتور
L,rخروجی از بار(ژنراتور)
inter ورود به سطح تماس دو گره در تانک ذخیره آب داغ
refمرجع(ورود به ژنراتور)
auxهیتر کمکی
loadبار(ژنراتور)
Dتخریب اگزرژی
Pمحصول
fسوخت
Wکار
qانتقال حرارت
insادوات کنترلی و ابزار دقیق
SCکالکتور خورشیدی
Tتانک ذخیره آب داغ
Tankتانک ذخیره آب داغ
Collectorکالکتور خورشیدی
Cقیمت بر واحد سطح کالکتور خورشیدی
wbحباب تر
Cooling Towerبالانویس
Lبار وارده از طرف تانک ذخیره آب داغ به کالکتور
cکالکتور خورشیدی
CH شیمیایی
PH فیزیکی
CI هزینه های سرمایه گذاری
OMهزینه های عملیاتی و تعمیرات
CH شیمیایی
مقدمهتولید سرمایش در زمینه زندگی روزمره بشری، کابردهای بسیار فراوانی از قبیل تولید مواد غذایی، مصارف تهویه مطبوع، موارد تولید دارو، سرمایش صنعتی و....دارد. سیکلهای سرمایش قدیمی و اولیه مانند سیکلهای تراکمی بخار دارای دو مشکل عمده هستند که امروزه نیز با آن دست در گریبانند. این دو مشکل عبارتند از[1]:
-افزایش جهانی مصرف انرژیهای اولیه و فسیلی: سیکلهای سرمایش قدیمی که توسط الکتریسیته و حرارت عمل میکنند، به طور شدیدی میزان زیادی انرژی فسیلی و اکتریکی را مصرف میکنند. انستیتوی بین المللی تبرید و سرمایش در پاریس(IIFIIR) %15از میزان کل انرژی الکتریکی که در جهان تولید میشود را به اهداف سرمایشی و تهویه مطبوع در انواع گوناگون آن اختصاص داده است. مطابق با گزارش این سازمان، %45 از سهم انرژیهای مصرفی برای زمینههای تهویه مطبوع، به مصارف ساختمانهای مسکونی و تجاری اختصاص دارد. علاوه بر آن در تابستان مشکلات بسیار زیاد در افزایش چشمگیر پیک مصرف همچنان ذهن محققان را در کاهش آن به خود مشغول داشته است.
-سیستمهای سرمایش متداول سبب مشکلات زیست محیطی جدی میشدند: سیالات عامل مرسوم و غیر طبیعی در سیستمهای تجاری سابق(همانند کلرو فلو کربن ها(CFCs)، هیدروکلرو فلوروکربنها(HCFCs)و هیدروفلروکربنها(HFCs))سبب هر دو مشکل تخریب لایه اوزون و افزایش گرما در سرتاسر جهان میشدند. از زمان تصویب پروتوکل مونترال در سال 1987، توافقات بینالمللی بر کاهش استفاده از این سیالات تأکید کردهاند. به عنوان مثال اتحادیه اروپا بیان کرده که تا سال 2015 تمامی سیستمهایی که با سیال HFCFs کار میکنند میبایست از مدار خارج گردند.
بعد از بحران نفتی دهه 1970 در اروپا و به ویژه در سالهای اخیر، تحقیقات بر روی توسعه تکنولوژیهایی که سبب کاهش در مصرف انرژی، تقاضای پیک اکتریسیته و قیمت انرژی بدون کاهش در سطح شرایط مطبوع لازمه گردند، معطوف گشتهاند. به همین دلیل در سالهای اخیر امکان استفاده از انرژی خورشیدی برای سرمایش و رطوبت زدایی ذهن بشر را به خود مشغول کرده است و موجب پیشرفت در تکنولوژی بهره برداری از انرژی خورشیدی شده است. در مناطق گرم سیری جهان که ضرورت سرمایش و تهویه مطبوع به طور جدی وجود دارد، ذهن بشر متوجه استفاده از انرژی در دسترس خورشیدی است تا بتواند با استفاده از آن رفاه و آسایش زندگی را فراهم آورد. علاوه بر این، کاربرد انرژی خورشیدی در مقایسه با سایر کاربردها جذابیت بیشتری دارد زیرا زمانی که نیاز به آن وجود دارد (سرمایش و تهویه مطبوع) میزان انرژی خورشیدی زیاد است و می توان از آن بهره گیری کرد. سیستمهای سرمایش جذبی خورشیدیدارای هر دو مزیت عدم خطرناک بودن از لحاظ زیست محیطی و کم بودن مصرف انرژی به ویژه در ساعات پیک الکتریکی را دارا هستند.
در مقایسه با دیگر کاربردهای انرژی خورشیدی این کاربرد پیچیدگی بیشتری دارد چه به لحاظ مفهومی و چه به لحاظ کاربردی. به همین دلیل توسعه و کاربرد جهانی پیدا نکرده است. در این روش تنها دریافت و جذب انرژی خورشیدی کافی نیست، بلکه باید بتوانیم این روش را به سرما تبدیل کنیم و سپس به طرف فضای مورد نظر بفرستیم. باید وسیله ای وجود داشته باشد که حرارت را از دمای پایین (فضای مورد تهویه) گرفته و با دمای بالاتر (فضای بیرون) انتقال دهد یا در اصطلاح ترمودینامیکی به یک پمپ حرارتی نیاز است. در شکل 1 نمای یک سیکل تهویه مطبوع خورشیدی با تمام تجهیزات به طور کامل نشان داده شده است.
سیال منتقل کننده حرارت در کالکتورهای خورشیدی تا دمای بالاتر از دمای محیط گرم شده و به عنوان محرک و انرژی در یک سیکل قدرت (که خود یک پمپ حرارتی است) وارد میگردد.
سیال انتقال دهنده گرما ممکن است هوا، آب و یا سیال دیگری باشد. گرما میتواند برای زمانهایی که تابش خورشید وجود ندارد نیز ذخیره گردد. گرمای گرفته شده از سیکل خنککن خورشیدی به محیط اطراف منتقل میشود، این کار به وسیله هوای محیط یا آب خروجی از برج خنک کن خنک میشود.
تجهیزات سرمایش ممکن است اثر سرمایش را به طرق مختلف ایجاد کنند. یکی از روشها تولید آب سرد و فرستادن به سمت تجهیزاتی است که به وسیله ی آب سرد محیط را خنک میکنند (به کمک هواساز) و یا فنهای بادزن. همچنین میتوان هوا را به صورت مستقیم خنک کرد و به سمت فضای مورد تهویه فرستاد.
کالکتورهای خورشیدی قسمت مهمی از هر سیستم خورشیدی هستند که انرژی خورشیدی را به گرما در دمای مناسب تبدیل میکنند، که این گرما قدرت مورد نیاز برای سیکل سرمایش است. کالکتورها انواع مختلفی دارند که از صفحات تخت با دمای پایین تا صفحات پیچیده با دمای بسیار بالا را شامل میشوند. با افزایش تقاضا برای تهویه مطبوع در سالهای اخیر به خصوص در مناطق گرمسیر و مرطوب تقاضا برای مصرف انرژی زیاد شده است. از آنجایی که در فصل گرما تقاضا برای مصرف انرژی الکتریکی بسیار زیاد میشود در این فصل با قطعی جریان برق مواجه هستیم و تقاضای بیشتر برای انرژی الکتریکی با مشکل مواجه است. با استفاده از تکنولوژیهای جدید میتوان از انرژی خورشیدی در چنین مواقعی استفاده کرد.

شکل (1): نمای یک سیکل تهویه مطبوع خورشیدی
در این نوشتار سیکلهای جذبی خورشیدی مورد بررسی قرار خواهد گرفت. ابتدا مطالعه مقدماتی و حرارتی سیستمهای جذبی متداول و سیستمهای جذبی خورشیدی مورد بررسی قرار گرفته است. با توجه به متغیر بودن میزان تابش خورشیدی در طول ماهها و ساعات مختلف فصول گرمایی، آنالیز حرارتی و ترمودینامیکی به صورت وابسته به زمان ( آنالیز دینامیکی) مورد تحلیل وبررسی قرار گرفته است. در مرحله بعد آرایش کامل سیستمهای جذبی خورشیدی از نظر موضوعات اگزرژی و قانون دوم مورد بررسی قرار گرفته تا به کمک آن تحلیل جامع ترمواکونومیک سیستم و بهینه سازی آن قابل بررسی باشد.
مرور تحقیقات انجام شده قبلیکارایی کلی سیکلهای جذبی در مورد اثر تبریدی در واحد انرژی ورودی ضعیف است. هرچند حرارت اتلافی مانند آنچه از وسایل برقی دفع میشود را میتوان برای به دست آوردن بهرهوری انرژی کلی بکار گرفت. سیستمهای آمونیاک/آب (NH3/H2O) به صورت گسترده درمواردی که دمای کمتر مورد نیاز است، بکار گرفته میشوند. هرچند، سیستمهای آب/ برمید لیتیم (H2O/LiBr) به صورت وسیع در مواردی که دمای معتدل مورد نیاز است، مورد استفاده قرار میگیرند (دستگاه تهویه هوا) و سیستم دوم نسبت به سیستم اول کارآمدتر است. مطالعات گوناگونی برای انتخاب سیال عامل مناسب اجرا شده است.در تحقیق Saravanan و Maiya [2] یک سیستم مبرد جذبی بخار بر پایه آب با چهار مخلوط دو دویی مورد آزمایش قرار گرفت. اختلاف کاراییهای گوناگون پارامترها برای ترکیبات سیالات عامل بر پایه آب مورد مقایسه قرار گرفت. در تحقیق Sun [3]خصوصیات ترمودینامیکی مخلوط های دودویی بر پایه آمونیاک (NH3-H2O,NH3-LiO2,NH3-NaSCN) داده شدو کارایی سیکلها مورد مقایسه قرار گرفت. Yoon و Kown [4] خصوصیت کارکردی سیال عامل جدید (H2O/LiBr + HO(CH2)3OH) را به عنوان جانشین H2O/LiBr ارائه کرد، و یک شبیه سازی سیکل برای بررسی طراحی بهینه و شرایط کارکردی سیستم جذبی هوای خنک شده انجام شد. Kayanaki و Yamanka--eniz [5] اثر مبدلهای حرارتی که برای احیاء انرژی حرارتی در ARS ها بکار میروند، را بر روی ضریب کارایی (COP) مورد بررسی قرار دادند. یک محلول آمونیاک-آب به عنوان یک جفت مبرد- جاذب در نظر گرفته شد. آنالیزهای ترمودینامیکی برروی سیستم انجام شد و خصوصیات ترمودینامیکی آمونیاک و محلول آمونیاک- آب ارائه گردید. Mos--vi و Agnew[6و7] اثر دمای محدود را بر روی واحدهای جذبی که در آنها لیتیم برماید – آب بکار میرفت، آزمودند. آثار دماهای ورودی آب خنک کننده، آب داغ و آب خنک بر روی ناحیه سطحی جاذب و خصوصیات جاذب به وسیله Atmaca و همکاران[8] مورد بررسی قرار گرفت.
Srikhirin و همکاران[9] یک پروژه - ریسرچمروری در مورد تکنولوژی مبردهای جذبی مانند مدلهای گوناگون ARS ها، تحقیقات انجام شده در مورد سیالات عامل و اصلاح فرآیندهای جذبی ارائه کردند. Kececiler و همکاران [10] یک مطالعه تجربی درمورد آنالیز ترمودینامیکی یک ARS بازگشت پذیر با استفاده از مخلوط آب و برمید لیتیم انجام داد. Joudi و Lafta [11] یک مدل شبیه سازی کامپیوتری حالت- ثابت برای پیش بینی کارایی یک ARS که در آن از لیتیم برماید – آب استفاده می شود، ارائه داد.
علاوه بر اینها، در مطالعات پارامتری Wijeysundera [12]اختلاف بیشترین ظرفیت خنک کنندگی، ضریب کارایی و راندمان قانون دوم یک نوع سیکل جذبی با متغیرهای کارکردی مورد بررسی قرار گرفتند. یک مطالعه مشابه به وسیله Chen [13] انجام شد که در آن نرخ انتروپی تولید و پارامترهای اولیه کارکردی یک سیکل مبرد جذبی مورد محاسبه قرار گرفت. . Kreider و Kreith [14]در 1981 یک سیستم تهویه هوای خورشیدی LiBr-H2O با دو تانک ذخیره آب داغ را معرفی کردند. فواید این سیستم آن است که گرمای جمعآوری شده به وسیله یک آرایه کالکتور داده شده، ممکن است به وسیله فاکتور 3/1 تا 5/1 افزایش یافته باشد. در همین زمان، COP فصلی ممکن است 15% افزایش یابد. Butz و همکاران[15]، یک شبیه سازی کامپیوتری را بر روی سیستم تهویه هوای خورشیدی LiBr-H2O انجام دادند که وابسته بودن بودن خروجی بر سطح کالکتور و طریقهای که در آن راندمان سالیانه سیستم با افزایش سطح کالکتور، کاهش مییابد، را نشان میدهد. Tsilingiris [16]نیز تئوری مدل میکروکامپیوتری مناسب برای پیش بینی کارایی و بررسی رفتار کارکردی نمونه ساده سیستم خنک کننده LiBr-H2O برای کاربردهای خانگی را گسترش داد. نتایج بدست آمده بهینه سازی طراحی و تخمین اقتصادی اولیه سیستم برای کارکرد تحت شرایط آب و هوایی محلی (یونان) را میسر ساخت. همچنین بیان شد که با قیمت حال حاضر سوختهای فسیلی، انرژی الکتریکی و اجزاء مکانیکی، کاربرد تهویه هوای خورشیدی بدون ترکیب با گرم کننده خورشیدی، اقتصادی و کم حاشیه است. Muneer و Uppal[17] مدل شبیهسازی عددی جزئی برای چیلرهای جذبی خورشیدی در دسترس از لحاظ تجاری، ارائه کردند. نتایج نشان داد حجم ذخیره به سطح کالکتور دارای که یک نسبت بهینه است. همچنین، با سطح کالکتورهای نسبتاً کوچک، کسر بالایی انرژی خورشیدی میتوان بدست آورد حتی اگر کالکتورها از نوع ارزان قیمت باشند. نکته جالب این بود که سیستم در شرایط بار طراحی شده با دمای ژنراتور کمتر از ℃80 کار میکند با توجه به این حقیقت که در شرایط خشک Sahara دمای خیلی پایین آب خنک کننده در دسترس است. هدف از این پروژه - ریسرچارائه فواید سیستم ذخیره سازی طبقهبندی شده زمانی که برای یک سیستم جذبی تعریف میشود، میباشد. بنابراین، یک مدل شبیهسازی عددی جزئی برای چنین سیستم خنک کننده جذبی اصلاح شده ارائه میشود و نتایج نشان میدهد که با تانک ذخیره طبقهبندی شده، اثر خنک کنندگی خیلی زودتر از سیستمهای جذبی سنتی با تانک ذخیره یکتا، میتواند آزاد شود.
Misra و همکاران [18و19] روش میانگین هزینهها را برای بهینهسازی سیستم مبرد جذبی لیتیم برماید- آب به کار بردند. این روش شامل آنالیزهای اگزرژی جزئی به همراه میانگین هزینه در واحد اگزرژی همه جریانهای داخلی و محصولات ظاهر شده در سیستم ترمواکونومیک مورد نظر است. Sahin و Kodal [20] و Kodal و همکاران[21] آنالیز کارایی را با استفاده از ترمواکونومیک زمان محدود بر اساس تابع هدف ترمودینامیک برای مبردهای جذبی و پمپهای حرارتی انجام دادند. Sahoo و همکاران [22] در باره حداقل کردن کارکرد کلی و هزینه استهلاک سیستم مبرد جذبی آمونیاک-آب مطالعاتی انجام دادند. Accadia و Vanoli[23] از روش ساختاری برای بهینه سازی ترمواکونومیک کندانسور پمپ حرارتی متراکم کننده بخار استفاده کردند. Al-Otaibi و همکاران[24] بهینه سازی ترمواکونومیک سیستم مبرد متراکم کننده بخار با استفاده از قانون اول ترمودینامیک و آنالیز هزینه سیستم را مورد مطالعه قرار دادند. Accadia و Rossi [25]کاربرد تئوری ترمواکونومیک برای بهینه سازی اقتصادی دستگاه مبرد مرسوم با هدف حداقل کردن کارکرد کلی و هزینه استهلاک را بررسی کردند. Valdes و همکاران [26]راه ممکنی برای بدست آوردن بهینه سازی ترمواکونومیک سیکل ترکیبی دستگاه توربین گازی نشان دادند. بهینه سازی با استفاده از الگوریتم ژنتیک انجام شد.
فصل یکم-تکنولوژی چیلر های جذبی مقدمه:در عمل تفاوت چندانی بین تجهیزات پمپ حرارتی و ماشین گرمایی وجود ندارد. سیکلهایی که با دفع و جذب حرارت از دو منبع سرد و گرم به تولید کار میپردازند (ماشین گرمایی) دارای کار خروجی قابل مشاهده میباشند و کار آنها به طور مستقیم برای راه اندازی بخشهای دیگر مورد استفاده قرار میگیرد.
در پی بحران انرژی در دهه 1970، تحولات بزرگی در استفاده از انرژی خورشیدی روی داد بهطوری که طی چند سال شاهد افزایش تقاضا برای بهکارگیری انرژی خورشیدی برای راه اندازی سیستمهای موتورگرمایی و پمپ حرارتی بودهایم. موتور گرمایی که میتواند در سیکل استرلینگ یا رانکین به کار گرفته شود، از یک سیال عامل بهره می گیرد. پمپ حرارتی از کمپرسورهای بخار موسوم به تجهیزات سرمایشی کمک میگیرد، هرچند بسیاری از تلاشها در حد کاربرد در مصارف آزمایشگاهی بوده است.
آزمایشها نشان داده است که سیستم سیکل بسته برای سیستمهای خورشیدی بر پایه سیکل جذبی مناسب تر است، که در نهایت تقابل بین دو قسمت ماشین از بین میرود. سیستمهای جذبی دارای مزایای زیر میباشند :
در گسترهی وسیعی از دمای چشمه (منبع حرارتی گرم) و چاه (منبع حرارتی سرد) کار میکنند،
قادرند برای افزایش COP تا چند مرحله دمای چشمه را افزایش دهند،
به دلیل نداشتن تجهیزات متحرک زیاد، دارای سر و صدای کمی هستند،
سیال عامل آنها از لحاظ زیست محیطی مناسب است و به ویژه قابلیت عملکرد در فاز خورشیدی به عنوان پشتیبانی حرارتی را دارا میباشد.
علاوه بر این، سیستمهای جذبی قادرند به عنوان تجهیزات سرمایش در سیستمهای خورشیدی به کار گرفته شوند. استفاده و کابرد سیکلهای جذبی از زمان اختراعشان در قرن نوزدهم بر اساس قیمت نسبی سوخت و الکتریسیته و بهبود در تکنولوژی تراکم مکانیکی و جذب ، متغاوت بوده است.
1-1اصول اولیه ترمودینامیکیبا توجه به گزینههای مختلف که برای سیستم پمپ حرارتی به کار گرفته در سیستم خورشیدی وجود دارد، ابتدا باید به اصول ترمودینامیکی تجهیزات سرمایش پمپ حرارتی پرداخته شود. نوعاً سیستم مذکور بین دمای منبع حرارتی در سه سطح دمایی کار میکند: دمای پایین فضای سرمایش یا فضای مورد تهویه، دمای بالای فراهم شده توسط انرژی خورشیدی، که دمای میانی سرد و گرم است و در واقع دمای محیط است که به عنوان چاه حرارتی مورد استفاده قرار میگیرد (شکل 1-1‌).
همان طور که در شکل 1-1 نشان داده شده است تجهیزات سرمایش میتوانند در غالب عبارات ترمودینامیکی به صورت تلفیقی از پمپ حرارتی و موتور گرمایی تشریح شوند. موتور گرمایی حرارت را در دمای از منبع گرم (انرژی خورشیدی) دریافت و به چاه حرارتی در دمای (محیط) انتقال میدهد و کار مکانیکی w را ایجاد مینماید. با توجه به قانون دوم ترمودینامیک میدانیم اگر سیکل تحت شرایط بازگشت پذیر طبق الگوی سیکل کارنو کار کند، بهترین کارآیی را خواهد داشت. تحت چنین شرایط بهینهای، ضریب کلی عملکرد سیستم (COP) سرمایش عبارت است از :
(1-1)
همان طور که در معادلهی 1-1 مشاهده میشود ضریب عملکرد سیستم سرمایش وابستگی زیادی به دمای عملکرد سیستم دارد که به طور قطع افزایش دمای موجب افزایش کارآیی سیستم میگردد.[27] بنابراین نوع کالکتور به کار گرفته شده در سیستم خورشیدی تأثیر مستقیم روی COP دارد و در واقع عامل محدود کننده (کنترل کننده) COP است.
با استفاده از کالکتورهای صفحه تخت معمولی، گرمای بهدست آمده در دمایی نه چندان بالا حاصل خواهد شد. کالکتورهای متمرکزکننده دمای بالاتری را فراهم میآورند ولی دارای قیمت بالاتری هستند و هم پیچیدگی و مشکلات بیشتری به سبب نیاز به تعقیب مسیر خورشید دارند. نتیجه گیری دیگری که از رابطه 1-1 میتوان کرد این است که می توان کارآیی (COP) را با کاهش دمای (چاه حرارتی، محیط) افزایش داد. با توجه به این نکته میتوان نتیجه گیری کرد که سرمایش با آب نسبت به هوا دارای مزیت است[27].

شکل 1-1 شرح ترمودینامیکی سیستم سرمایش[27]1-2 سیکل سرمایش جذبیبه طور کلی عملکرد سیستمهای جذبی مشابه سیستمهای تراکمی بوده ولی وابستگی شیمیایی ماده جاذب به مبرد سبب به وجود آمدن اثر سرمایش خواهد شد. این سیکل با در نظر گرفتن عملکرد 4 جزء اصلی آن یعنی جاذب، ژنراتور، میعان کننده یا کندانسور و تبخیر کننده به خوبی درک خواهد شد. شکل 1-2 شماتیکی از یک سیستم تبرید جذبی را در ساده ترین حالت (تک اثره ) نمایش میدهد. روش کار چیلر جذبی تک اثره به طور جامع در مراجع معرفی شده آورده شده است ولی به طور مختصر در اینجا اشاره میشود. مایع مبرد در فشار و دمای بالا در شکل 1-2 وارد کندانسور شده و با ازدست دادن حرارت خود به مایع تبدیل می شود. به جز سیستمهای کاملاً کوچک، در سایر موارد از کندانسورهای خنک شونده با آب استفاده میشود. سپس مایع مبرد داغ از طریق یک اوریفیس منبسط و وارد اواپراتور میشود. این مایع که در دما و فشار بسیار کمی قرار دارد در آنجا تبخیر شده و حرارت خود را از محیطی که قرار است سرد شود دریافت میکند. سپس بخار خروجی از از اواپراتور در همان فشار پایین وارد قسمت جاذب شده و جذب محلول LiBr غلیظ میشود. فرآیند جذب، به علت قابلیت مولکولی مابین مبردو ماده جاذب امکانپذیر بوده و گرمای ناشی از این عمل به مجموعه دسته لوله جاذب که از آب یک برج خنک کن یا هر سیستم دور ریزش حرارتی قابل تأمین است، انتقال مییابد. معمولاً این سیستم با سیتم دور ریزش حرارتی در کندانسور یکی خواهد شد. سپس محلول به وسیله یک پمپ با عبور از یک مبدل حرارتی تماس مستقیم) و به منظور بالا بردن دمای مخلوط و افزایش راندمان، با صرف کمی کار وارد ژنراتور میشود.

3486159144000شکل 1-2 تشریح شماتیکی چیلر جذبی تک مرحله ای[28]شکل 1-3نمایش یک سیکل جذبی تک اثره در سطوح مختلف دمایی و فشاردر این قسمت با صرف میزان کمی انرژی حرارتی، ماده جاذب از مبرد با افزایش حرارت مخلوط و به علت تفاوت در نقطه جوش جدا و ماده مبرد به سمت کندانسور و محلول غلیظ ماده جاذب به سمت مبدل حرارتی رفته و در آنجا خنک و به جذب کننده برگشته و سیکل کامل میشود.
همانطور که آشکار است سیستم بین دو سطح فشار کار می کند و با سه منبع حرارتی مختلف تبادل حرارت دارد(شکل 1-3) : دمای پایین در اواپراتور ، دمای متوسط در کندانسور و جاذب و دمای بالا در ژنراتور . همانطور که از بحث قبل مشاهده شد یک سیستم جاذب با دو سیال (مبرد و جاذب) کار میکند، در حالی که در سیکلهای تراکمی از یک سیال استفاده میشود.
1-3 تکنولوژی چیلر های جذبی:تقسیم بندی
اولین اساس برای تقسیم بندی سیستمهای جذبی نوع سیال عامل به کار رفته در آنها است. زوج لیتیم برماید – آب و زوج آب و آمونیاک (NH3-H2O) معمولترین سیالهای رایج در سیستمهای تبرید جذبی هستند. در زوج آب- لیتیم برماید، آب به عنوان ماده مبرد و نمک لیتیم برماید به عنوان ماده جاذب و در زوج آب آمونیاک، آب ماده جاذب و آمونیاک ماده مبرد است. اکثر واحدهای سرمایش جذبی تجاری و با ظرفیتهای بالا از سیال عامل آب - لیتیم برماید استفاده میکنند. این در حالیست که سیستمهای آب- آمونیاک نیاز به دماهای بالاتری در سطوح انتقال حرارت مربوطه دارند و نیز عملکرد آنها نسبتاً پایین است در حالیکه دماهای پایین تر از نقطه انجماد را میتوان در آنان ایجاد نمود (در این حالت آب نقش جاذب را دارد). بنابراین برای کاربردهای تبریدی مورد استفاده قرار میگیرد، در صورتی که سیستم تشریح شده با سیال آب و لیتیم برماید برای مصارف تهویه به کار میروند. سیالات دیگری نیز در سیستمهای جذبی وجود دارند که اخیراً محققان از آنها برای سیستمهای جذبی خورشیدی استفاده میکنند. از این موارد میتوان به زوجهای NH3-CACL2و NH3-SRCL2 و سهگانههایی از قبیل NAOH-KOH-CSOH نام برد.[1]
سیستمهای جذبی عادی را همچنین میتوان بر اساس منبع حرارتی در ژنراتورهای آنها تقسیمبندی نمود[28]:
- واحدهای اشتعالی مستقیم که حرارت را به طور مستقیم از طریق اشتعال گاز طبیعی یا هرگونه سوخت فسیلی توسط مشعل تأمین میکنند،
- واحدهای اشتعالی غیر مستقیمکه حرارت را از طریق بخار آب تأمین می کنند،
- واحد های استفاده کننده از گاز خروجی دیگر واحدها (مانند خروجی توربین گاز) یا واحدهای بازیابی حرارت،.
-کالکتورهای خورشیدی.
در نهایت مشخصات غالب سیستمهای جذبی که هم اکنون مورد استفاده قرار میگیرند عبارتند از[28]:
5429250شکل 1-4نمای جانبی و شماتیک یک چیلر جذبی تک اثره[28]
- ساده بودن طراحی بدون وجود اجزاء متحرک و کارکرد در دماها و فشار های نسبتا پایین،
- نیاز به انرژی الکتریکی کم،
- نرخ بالای دور رریزش حرارتی به منبع بالای گرمایی که نسبت به سیستم های تراکمی نیازمند برج های خنک کن با ظرفیت بالا و انرژی زیاد فن و پمپ میباشد،
-اندازه و وزن نسبتا زیاد این تجهیزات،
-استفاده این سیستمها از سیالات عامل بی خطر و بدون تأثیرات گرمایشی زمین و بیخطر برای لایه اوزون.
1-3-1 سیکل های جذبی یک یا چند اثره با سیال عامل لیتیم برماید:
سیکل نمایش داده شده در شکلهای 1-3و1-4 سیکل یک مرحلهای یا تکاثره نامیده میشود. میزان دمای لازمه برای ژنراتور این گونه چیلرها در حدود 93 تا 132 درجه سانتیگراد میباشد و بخار آب به کار رفته در ژنراتور این تجهیزات میبایست دارای فشار 6/1 تا 2 بار باشد. [28]چنانچه دمای کاری چیلر کمتر از مقدار حداقل فوق باشد، راندمان سیکل به شدت کاهش خواهد یافت. اگرچه مطابق با استانداردهای امروزی سیستمهای یک مرحلهای از لحاظ حرارتی ناکارآمد هستند، اما زمانیکه قیمت بخار ارزان بوده و یا در حالتیکه در خروجی تجهیزات دیگر به صورت بازیابی حرارتی به کار گرفته شود، کارا و مفید هستند. ولی به طور کلی در بهترین حالت ضریب عملکرد این تجهیزات به میزان حدود 7/0 تا 8/0نمیرسد. اشکال1-4 تا 1-6 بیانگر شکل تجاری این گونه سیستمها میباشند. در فصل 2 جزییات ترمودینامیکی بیشتری از این سیکلها در آرایش خورشیدی آنان بیان خواهند شد.
سیستمهای جاذب تک اثره خورشیدی با COP محدود 7/0تا8/0کار می کنند. سیستمهای یک مرحلهای برای حصول دماهای بالاتر از 100در جه سانتیگراد مناسب نمیباشند، علاوه بر آن بر خلاف سایر سیکلهای پمپ حرارتی ، در اثر افزایش بیش از حد دمای ژنراتور میزان ضریب عملکرد سیکل، به علت افزایش در تلفات مخلوط شدن وگردش جریان ، به شدت کاهش خواهد یافت. به همین علت برای غلبه بر این مشکل و افزایش ظرفیت و راندمان سیکل و بهره گیری از منابع گرمایی با دمای بالا، سیستم جذبی (بخش جذب) را می توان با استفاده از مراحل بیشتر تبدیل نمود.

9144000شکل1-5 برشی از یک چیلر جذبی تک اثره تجاری[28]
تفاوت مابین سیکل یک اثره و چند اثره استفاده از گرمای دفع شده در کندا نسور در ژنراتور میباشد، در نتیجه بدون به کارگیری منابع جدید حرارتی خورشید سرمایش تولیدی را میتوان 2 تا 3 برابر افزایش داد. برای این سیستمها دمای کاری ژنراتور در حدود 188 درجه سانتیگراد و فشار کاری آنان 9/8 بار است. میزان ضریب عملکرد آنها نیز در حدود 22/1 تا 19/1 است. سیستمهای جذبی دو اثره از نظر نوع جریان مابین مبدلهای حرارتی آنها به سه دسته تقسیم میشوند: جریان موازی، جریان سری و جریان معکوس. در حالت جریان سری، محلول ضعیف لیتیم برماید در طول مبدلهای حرارتی دما پایین و دما بالا قبل از وارد شدن به ژنراتور اصلی به صورت سری باهم جریان مییابد. در حالت جریان موازی، محلول ضعیف بعد از خارج شدن از مبدل حرارتی اولیه، دو قسمت شده که یکی به مبدل حرارتی جریان بالا و دیگری به ژنراتور ثانویه میرود. در حالت جریان معکوس، محلول ضعیف توسط بخار ژنراتور اصلی قبل از ورود به ژنراتور دوم گرم میشود. [28]
771525330136500

شکل1-6نمایی از دو چیلر جذبی تک اثره متفاوت[28]
در شکل 1-7 نمایی از سیستم جذبی دو اثره نمایش داده شده است که در آن یک سیستم جذبی با سیال آب – لیتیم برماید و دو ژنراتور و یک کندانسور و با به کار گیری یک جاذب و اواپراتور کار میکند. در شکل 1-9 نیز نوع دیگری از این سیستم ارائه شده است.

شکل1-7نمایی از فلودیاگرام سیکل جذبی چند مرحله ای[28]

شکل1-8 برشی از یک سیکل جذبی چند مرحله ای تجاری[28]
این سیستم همانند سیستم ارائه شده در شکل (1-3) است با این تفاوت که کندانسور ، ژنراتور ، مبدل و شیر فشارشکن به آن اضافه شدهاند. در عملکرد این سیستم 3سطح فشار و 4سطح دمایی وجود دارد، محلول رقیق جاذب را ترک می کند و به داخل دو ژنراتور که به صورت سری اند جریان یافته و در دو مرحله عمل جدا سازی در ژنراتور صورت میگیرد. در ژنراتور دما پایین سطح حرارتی پایینتری مورد استفاده قرار میگیرد که این حرارت از کندانسور تأمین میشود.

شکل 1-9 نمایش یک سیکل جذبی چند اثره خورشیدی در سطوح مختلف دمایی و فشار[27]
در سیستمهای چند اثره، خروجی کندانسورها در فشارشکن منبسط شده و این در حالی است که در سیستمهای تک اثره از یک کندانسور استفاده میشود، لذا این سیستمها را سیستمهای تبرید دو اثره می نامند. همین قوانین را می توان با به کارگیری 3ژنراتور و 3 کندانسور در سیستمی موسوم به سیستم جذبی سه اثره مورد استفاده قرار داد و این در حالی است که حرارت منبع گرمایی به اندازه کافی باشد. در این سیستم ها نیز که نمونهای از فلو دیاگرام آنان در شکل (1-12) توضیح داده شده است، بازده حرارتی سیستم در حدود %50افزایش یافته و به مقادیر ضریب عملکرد در حدود 4/1نیز دست مییابند. همچنین ظرفیت برج خنک کن و میزان آب آرایشی برای این سیکلها نیز به علت نیازمندیهای کمتر انرژی ورودی سیستم، کاهش مییابند.[28]
یک نوع طراحی که همچنان در حال توسعه میباشد، شامل دوآبشار چیلر تک مرحلهای که یکی در دمای سابق و دیگری در دمای بالاتری کار میکند، میباشد. همانطور که قبلاً گفته شد سیستمهای تبرید جذبی غالباً سیستمهای تبرید جذبی تک اثره با دمای ژنراتور نسبتاً پایین میباشند. با توسعه سیستمهای تبرید جذبی گاز سوز خصوصاً در آمریکا و ژاپن، سیستمهای تبرید با COP بالا در دسترس قرار گرفته است. همچنین سیستمهای جذبی دو اثره با COP 1-2/1 و نیز سه اثره با COP 7/1 در بازار موجود است. این سیستمها را میتوان برای تبرید جذبی خورشیدی به شرط فراهم شدن حرارت لازم به کار گرفت.

شکل1-10نمایی از چیلر جذبی 2 مرحله ای تجاری[28]

شکل 1-11 ضریب عملکرد به عنوان تابعی از دمای تأمین شده در سیکل تبرید یک، دو و سه
مرحله ای[28]

شکل 1-12 نمایی از فلودیاگرام یک چیلر جذبی 3 مرحله ای [28]
شکل 1-11 COP را بر حسب دمای تأمین شده خورشیدی در ژنراتور برای سیستمهای تبرید جذبی یک، دو، سه اثره با اجزای یکسان نشان میدهد. آب سرد ورودی در 30 درجه وارد و در 7 درجه خارج می شود. همچنین در این شکل عملکرد یک سیستم که در یک سیکل کارنو کار میکند برای مقایسه ارائه شده است، آشکار است که برای سیستم چنانچه درجه حرارت ژنراتور تأمین شده کمتر از این دمای حداقل باشد، سیستم قادر به کارکردن نمیباشد.[28]
1-3-2 سیستمهای جذبی آب-آمونیاک
این گونه سیستم-ها در کابردهای سرمایشی و تهویه مطبوع برای منازل مسکونی و تجاری مورد استفاده قرار نگرفته و بیشتر برای موارد سرمایشی و تبریدی در درجه حرارتهای بسیار پایین ودر ظرفیتهای محدود مورد استفاده قرار میگیرند. یکی از موارد اصلی تحقیق و توسعه سیستمهای جذبی در حال حاضر استفاده از این گونه چیلرها در مدلهایی که دارای ظرفیت بالاتر و بازدهی حرارتی بهتری هستند ، می باشد.
همانطور که در بالا توضیح داده شد، در چیلرهای جذبی آب-آمونیاک، آب به عنوان ماده جاذب و آمونیاک به عنوان مبرد عمل می کند. در این گونه سیکل ها باز تولید محلول غلیظ ماده جاذب توسط فرآیند تقطیر جزئی در بالای ژنراتور صورت میگیرد(به علت طبیعت فیزیکی و شیمیایی آب وآمونیاک)همچنین در این آرایش یک نوع مبدل حرارتی برای ماده مبرد که پیش خنک کن نامیده می شود در بالای اواپراتور قرار داده شده تا از این طریق میزانی از گرمای جذب کننده را نیز قبل از تبخیر کسب کند و راندمان سیکل افزایش یابد.

شکل 1-13 فلودیگرام سیکل جذبی آب-آمونیاک[28]

شکل1-14دو چیلر مونتاژ شده 25 تنی مستقیم اشتعالی و هوا خنک شونده آب-آمونیاک [28]
در حال حاضر سیستمهای دو یا چند مرحلهای لیتیم برماید-آب ضرایب عملکرد بالاتری را نسبت به این گونه سیستم ها نشان میدهند. اما سیستمهای لیتیم برماید-آب نیز دارای محدودیت هایی میباشند. یکی از بزرگترین محدودیتهای سیستمهای لیتیم برماید آب که در همین فصل به آن اشاره خواهد شد، عدم توانایی عملکرد این چیلرها در کارکرد در دماهای پایین اواپراتور (دماهای زیر 4/4 درجه سانتیگراد)میباشد [28].در سیستمهای جذبی آب- آمونیاک این مشکل وجود نداشته و می توانند به طور نا محدودی در درجه حرارت های بسیار پایین اواپراتور عمل و از این لحاظ با سیستم های تراکمی چه از نظر قیمت و چه از نظر راندمان قابل رقابت هستند. این امر کاربرد این سیتم ها را در موارد سرمایشهای فرآیندی و صنعتی و به عنوان مثال ذخیره سازی یخ مناسب می سازد.
سیستمهای آب-آمونیک همچنین قادرند تا در فشار های کندانسور در حدود 1/20بار و فشار های اواپراتور در حدود 8/4 بار کار کرده و نیاز به قطر مخزن تحت فشار پایین 6 اینچ می باشند. در این چیلرها پمپ لازمه برای بالا بردن فشار محلول ضعیف، میبایست از نوع جابجایی مثبت باشد.همچنین با توجه به فشار بالای کندانسور میتوان در این سیتم ها از خنک کاری هوایی به جای خنک کاری تبخیری یا توسط برج خنک کن ،استفاده نمود که از این منظر از هزینه های کلی تجهیزات،تعمیرات و پیچیدگی سیستم های تبخیری اجتناب می شود.در شکل 1-13 نمونه ای از فلو دیاگرام اینگونه سیستم ها نمایش داده شده است.در شکل 1-14 نیز مونتاژ یک مدل چیلر جذبی آب-آمونیاکی با خنک کاری هوایی نشان داده شده است.
1- 4 بلورینگی
بلورینگی یا تشکیل ذرات جامد، در سیستم های جذبی لیتیم برماید-آب یک مسأله نگران کننده تاریخی در زمینه عملکرد این سیستمها می باشد. چنانچه دمای محلول کاهش یابد، میزان غلظت مجاز حداکثر نیز کاهش و ذرات جامد شروع و تشکیل و مسیر سیال در سیستمهای لوله کشی چیلر بسته شده و عملکرد دستگاه متوقف خواهد شد. یکی از مکانهایی در سیکل که بیشترین امکان را برای این امر دارد، خروجی مبدل حرارتی مابین ژنراتور و جذب کننده و قبل از جذب کننده است. در این حالت گرم کردن مسیر لوله به منظور ذوب ذرات جامد و روان نمودن حرکت محلول امری اجتناب ناپذیر خواهد بود. بلورینگی میتواند از عواملی مانند درجه حرارت بسیار پایین آب مایع در کندانسور یا عوامل دیگری مانند عیوب توانی و یا نشتی هوا به سیستم و یا عملکرد در بار بسیار پایین چیلر به وجودآید.
معمولا دمای آب کندانسور به حداقل درجه حرارت 13 تا 16 درجه سانتیگراد محدود و این امر توسط یک شیر کنار گذرتامین خواهد شد. همچنین در اغلب طرحها یک لوله جریان مازادکه سبب گرمایش مسیر سیال از ژنراتور به جذب کننده شده و امکان رفع بلورینگی و توقف حرکت سیال را در هر کجای سیکل با اعمال حرارت به وجود میآورد، تعبیه میشود. [28]
یکی از موارد مهم توسعه و تحقیق در تجهیزات جذبی، امکان استفاده از طرحهای متفاوت جریان سیال در سیکل است که امکان عملکرد در بارهای پایین با درجه حرارت و غلظت های پایین محلول را به وجود آورده و در عین حال امکان بلورینگی نیز از بین برود. تحقیق در این زمینه جهت استفاده از تجهیزات کنترلی پیشرفته جهت این مشکل و امکان پذیر کردن استفاده ازآنان در مدلهای تجاری توجه محققان را به خود معطوف ساخته است.
فصل دوم-تکنولوژی چیلرهای جذبی خورشیدی
مقدمهدر فصل قبل به اجزاء جذبی و حرارتی سیستم های جذبی خورشیدی اشاره شد. در این فصل به معرفی کامل این سیستم ها و تلفیق اجزاء فوق میپردازیم. همانطور که اشاره شد در سیستمهای جذبی خورشیدی حرارت لازمه در ژنراتور توسط کالکتورهای خورشیدی تأمین میشود. اما کنار هم قرار دادن اجزاء جذبی و حرارتی مستلزم تکنولوژی مجزا و متفاوت از سیستم های جذبی معمولی است. در این فصل به مهمترین تکنولوژیها و مزایا و معایب این سیستم ها اشاره می شود.
در سه دهه گذشته پروژههای بسیاری با استفاده از انرژی خورشیدی برای سیستمهای تبرید جذبی خصوصاً با سیال آب-لیتیم برماید (در سیستم جذبی تک اثره) مورد بهره برداری قرار گرفتهاند. سیستمهای اولیه مورد استفاده در اصل برای سوختهای فسیلی طراحی شده بودند. به همین دلیل، بسیاری از تجهیزات از کارآیی بالایی برخوردار نبودند (به علت کم بودن دمای ژنراتور در سیستم خورشدی نسبت به استفاده از سوخت فسیلی). پس از آن تلاشهای بسیاری جهت اصلاح سیستم فوق و بهره گیری از حرارت انرژی خورشیدی انجام گرفت.
با وجود پتانسیل بسیار بالای بازار برای چیلرهای جذبی خورشیدی، سیستمهای خورشیدی موجود به علت قیمتهای اولیه کلی بالای اجزاء آن با سایر سیستمهای راننده جذبی مانند الکتریسیته و گاز طبیعی قابل رقابت نیستند. سیستمهای برودتی خورشیدی متفاوتی همانند سیستم های جذبی بخار–مایع(سیکل بسته)،سیستم های جذبی بخار-جامد(سیکل باز) و سیستمهای تراکمی عادی و فوتو ولتیک توسط محققان مورد آزمایش قرار گرفته اند که بسیاری از آنان به مرحله تجاری و تولید عمده نرسیده اند. [29]
مهمترین مشکل سیستمهای برودتی خورشیدی، وابستگی شدید آنها به پارامترهای محیطی مانند دمای آب خنککن، دمای هوا، میزان تشعشع محلی خورشیدی، سرعت باد و ...است. به عبارتی دیگر، راندمان تبدیل انرژتیک آنان پایین و از منظر اقتصادی قابل قیاس با سیستمهای قدیمی نیستند.
همانطور که در قسمتهای قبل اشاره شد، معمولاً سیستمهای برودتی خورشیدی را بر اساس تفاوت در تکنولوژی های مورد استفاده در دو بخش حرارتی و جذبی آنان تقسیم بندی میکنند. حال در این قسمت نیز به طور خلاصه به بیان کلی تقسیم بندی هر دو جزء سیستم که توسط Best and Ortega [29]در سال 1998 ایجاد شد میپردازیم:
انواع اجزاء حرارتی در سیستمهای جذبی خورشیدی عبارتند از:
کالکتور های تخت،
کالکتور های لوله ای غیر متمرکز،
کالکتور های ایستگاهی به صورت فشرده و بدون شکل،
کالکتور های فشرده بشقابی،
کالکتور های فشرده با زوم خطی،
استخر های خورشیدی،
سیستمهای فوتوولتیک و ترمو الکتریک.
انواع اجزاء جذبی در سیستمهای جذبی خورشیدی عبارتند از:
سیستمهای جذبی مداوم از نوع سیکل بسته،
سیستمهای جذبی متناوب از نوع سیکل بسته،
سیستمهای جذبی جامد-گاز(سیکل باز)،
سیستمهای تصعیدی.
تحقیقات اخیر اغلب به علت طبیعت تناوبی تابش خورشید در طول روز بر توسعه سیستمهای جذبی خورشیدی متناوب معطوف گشتهاند. اما برای سیستمهای دائمی به علت توسعه دانش در طی سالیان دراز در بهبود راندمان و ضریب عملکرد بالای آنها در طی این تحقیقات، نتایج مفیدی حاصل شده و تقریباً به طورکامل برای مصارف تهویه مطبوعی سازگار گشتهاند.
همانطور که در قسمت قبلی اشاره شد، یک نوع بسیار مهم تقسیم بندی سیستمهای جذبی بر اساس نوع سیال عامل آنها است. در سیستمهای جذبی خورشیدی نیز فاکتور سیال عامل امری مهم در بررسی این گونه سیستمها میباشد. WilburوMitchell [30]در سال 1975ضرایب عملکرد سیستمهای جذبی را با سیالات عامل متفاوت مقایسه نمودند. بر اساس دلایل و تفاوتهای مابین سیستمهای لیتیم برماید-آب وآمونیاک-آب و معایب و مزایای آنها و به طور خلاصه بر اساس دلایل زیر که در قسمت قبل نیز به آن اشاره شد، از سیال عامل لیتیم برماید-آب در سیستمهای جذبی خورشیدی استفاده میشود. هر چند که به دلیل مشکل تشکیل کریستال در سیکلهای لیتیم برماید-آب امروزه بیشترین تلاش محققان در توسعه این گونه تجهیزات بر استفاده از سیالات عامل دیگر معطوف گشته است:
ضریب عملکرد سیستمهای جذبی لیتیم برماید-آب از سیستمهای با سیالات عامل آب-آمونیاک بالاتر است. به طور کلی این سیستمها به میزان 10 تا 15 درصد از نظر جزء خورشیدی نسبت به سیستمهای آب- لیتیم برماید عملکرد پایینتری دارند. [31]
سیستمهای آب- آمونیاک نیازمند دمای ورودی ژنراتور بالاتری هستند. این میزان برای سیستمهای لیتیم برماید- آب در حدود 70 تا 80 درجه سانتیگراد (نوع تک مرحلهای)بوده در حالیکه برای این سیستمهای آب- آمونیاک در حدود 90 تا 108 درجه سانتیگراد است. چنانچه این سیستمها با کالکتورهای نوع تخت کار کنند، دارای ضریب عملکرد بسیار پایینی میباشند.
سیستمهای آب-آمونیاک نیازمند فشار بالاتری در ژنراتور بوده و در نتیجه نیازمند توان الکتریکی بالای پمپ میباشند.
به علت وجود سیستم تفکیک تقطیری در ژنراتور، سیکلهای جذبی آب-آمونیاک نیازمند تجهیزات بیشتر و پیچیدهتری هستند(مانندبرج تفکیکگر و یکسوساز).
به علت طبیعت خطرناک آمونیاک، در کاربردهای خانگی و تجاری دارای محدودیت استفاده هستند.
در مطالب بالا به ساختار کلی و نوع سیال عامل سیستمهای جذبی خورشیدی متدوال پرداخته شد. حال در قسمت بعد به بیان انواع این سیستمها میپردازیم. به طور کلی در اغلب این سیستمها از کالکتورهای مسطح یا لولهای خلاء استفاده میشود. انواع سیستمهای جذبی خورشیدی از نوع سیکل بسته عبارتند از:
چیلرهای جذبی خورشیدی تک مرحلهای،
چیلرهای جذبی خورشیدی تک مرحله ای با تانک ذخیره مبرد،
چیلرهای جذبی خورشیدی تک مرحله ای با تانک ذخیره آب داغ،
چیلرهای جذبی خورشیدی دو اثره،

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

چیلرهای جذبی خورشیدی دو مرحلهای،
چیلرهای جذبی خورشیدی دو سیکلی.
2-1 چیلرهای جذبی خورشیدی تک مرحله ایشکل 2-1 بیانگر پایه بسیاری از تحقیقات و آزمایشات در 3 دهه اخیر در مورد سیستمهای جذبی خورشیدی است. همانطور که ملاحظه میشود، آب گرم شده توسط کالکتورهای خورشیدی توسط یک پمپ سیرکولاسیون در یک تانک ذخیره و به سوی سیستم متداول قبلی که در قسمت قبلی توضیح داده شد، میرود. از انرژی این آب داغ برای تأمین انرژی ژنراتور استفاده می شود. بقیه مراحل سیکل همانند سیکل متداول قبلی است. برای سادگی از اجزاء داخلی چیلر جذبی صرفنظر شده است. همانطور که مشاهده میشود، برای دور ریزش حرارتی از یک برج خنک کن استفاده شده است که آب آن توسط یک پمپ سیرکولاسیون ابتدا وارد جذب کننده و سپس رهسپار کندانسور میشود.علت این امر آن است که درجه حرارت جذب کننده تأثیر بسیار بیشتری را نسبت به درجه حرارت کندانسور بر روی ضریب عملکرد سیستم میگذارد
اولین ژنراتور تجاری برای مصارف تهویه مطبوع و کاربردهای خورشیدی بر مبنای مبدل مشابه سوخت گازی ساخته شد. این واحد در بین مهندسانی که در زمینه سرمایش خورشیدی کار میکنند شهرت زیادی دارد و در پروژههای تجربی بیشماری مورد استفاده قرار گرفته است. قیمت آن برای واحدهای کوچک کمی بالاست. دیری نگذشت که تولید کنندههای دیگری چیلرهای جذبی با سیال آب و لیتیم برماید را با قابلیت به کارگیری در سیستمهای خورشیدی روانه بازار کردند.

شکل2-1 نمایش شماتیک سیستم های اولیه جذبی با کمک انرژی خورشیدی[32]
2-1-1 هیترهای های کمکیدر طراحی سیستمهای تبرید جذبی خورشیدی دو مسأله مهم وجود دارد که آن را از سیستمهای تبرید با سوخت فسیلی رایج متمایز میسازد، نخست آن که تبادل حرارت ژنراتور در این واحدها با دمای پایین صورت میگیرد که این معمولاً پایینتر از 100 درجه سانتیگراد میباشد، زیرا که دماهای قابل دسترسی در کالکتورهای تخت محدود به 100 درجه سانتیگراد (حداکثر) میباشد و دوم اینکه نیاز به یک سیستم پشتیبان است که در زمان کاهش انرژی گرفته شده از خورشید جبران انرژی ورودی به سیستم برای سرمایش را انجام دهد. برای مشکل اول طراحی ژنراتور بر اساس انتقال حرارت استخری رایج میتواند بسیار کارگشا باشد، همچنین استفاده از یک پیش گرمکن پس از مبدل و قبل از ورودی ژنراتور میتواند سهم بسزایی در کاهش هزینه و اندازه سیستم و همچنین افزایش عملکرد مجموعه داشته باشد (شکل 2-1‌). مشکل مربوط به سیستم پشتیبان پیچیدهتر است. یک طرح خوب طرحی است که در آن سیستم سرمایش نه تنها قادر به تأمین تمام تقاضای سرمایش باشد بلکه بتواند از انرژی خورشیدی چه در زمان تابش مستقیم و چه در لحظاتی که تابش کم است (و یا نیست) استفاده کافی بنماید. در واقع هیتر کمکی در سیکلهای جذبی خورشیدی, همان گرمکن آب ورودی به ژنراتور در سیکلهای جذبی عادی است که با توجه به نوع کاربرد، آرایش و نحوه قرار گیری آن در سیکل تغییر یافته است.
شبیهسازیهای انجام شده نشان می دهد که در شرایط کاهش تابش خورشیدی، کالکتورهایی که به صورت سری با منبع حرارتی کمکی (فسیلی) قرار گرفته اند به عنوان چاه حرارتی عمل میکنند تا چشمه حرارتی و این موجب کاهش کارآیی سیکل می شود.لذا معمولاً سعی می شود که از چیدمان موازی استفاده شود.در این حالت تا زمانی که دمای تانک به زیر مقدار معینی نرسد، مدار کمکی به جریان نمیافتد. [31]
2- 1-2 منبع ذخیره آب گرمدر یک سیستم جذبی خورشیدی ، وجود منبع ذخیره آب گرم بسیار اهمیت دارد. چرا که همانند یک دریافت کننده و بهبود دهنده عمل کرده وحرارت خروجی از کالکتورها را در طول روز به منظور استفاده در ژنراتور یکنواخت میکند. Lof و Tybout [33]در تحقیقاتی که بر روی این مخزن انجام دادند حجم بهینه آن را در حدود 50 کیلوگرم به ازای هر متر مکعب کالکتور گزارش دادند. یک مشکل مهم در این مخازن میزان افت حرارتی قابل توجه آنها به محیط اطراف است که ممکن است حتی به میزانی در حدود 2 ساعت انرژی لازمه برای ژنراتور برسد. [31] البته با عایقکاری مناسب این مخازن می توان میزان اتلافات را به حداقل رساند.
2-1-3 منبع ذخیره آب سردهمانند منبع ذخیره آب گرم به منظور یکنواخت نمودن آب لازمه برای مطبوع نمودن محیط مسکونی از منبع ذخیره آب خنک شده در اواپراتور استفاده میشود. تفاوت این مخزن با قبلی در این است که به علت پایین بودن درجه حرارت محیط مطبوع، مشکلات تلفات حرارتی از مخزن مشاهده نمیشود.
مهمترین پارامتری که که بر روی عملکرد یک چیلر تاثیر میگذارد، دمای آب خنک کننده است. این امر بدین علت است که چنانچه این دما کاهش یابد، فشار اواپراتور و در نتیجه جذب کننده نیز کاهش و در نهایت این امر سبب افزایش غلظت محلول خروجی از مبدل حرارتی و در نهایت عمل کریستال زدایی خواهد شد و ضریب عملکرد سیستم به شدت کاهش خواهد یافت. [31] در سیستمهای خورشیدی که امکان کار در بارهای پایین چیلر، به علت نوسان در میزان حرارت ورودی به ژنراتور، به میزان زیاد وجود دارند، این امر بسیار محتمل تر است. البته تولید کریستال در این سیستمها می تواند توسط کاهش یافتن دمای آب خنک کننده در برج خنککن نیز حاصل شود که با در نظر گرفتن پیچیدگی و تعمیرات این تجهیزات محققان در سالیان اخیر توجه خویش را بر روی استفاده از سیستم های خنککن هوایی در سیکلهای لیتیم برمایدمعطوف کرده اند. در سال 1979Chartersو Chen [34]گزارش کاملی از مقایسه این دو سیستم و انتخاب آنان گزارش داده اند. برای حل مشکل کریستال زدایی اخیراً محققان راه حلهایی از قبیل اضافه نمودن نوعی نمک تحت عنوانLiSCN به محلول لیتیم برماید انجام دادهاند که سبب پایین آمدن فشار بخار محلول ودر نتیجه بهبود در مشخصههای محلول برای استفاده در نوع هوا خنک اینگونه سیکلها شده است.
آزمایشهای انجام شده بر روی پروژههای صورت گرفته سیستمهای جذبی تک اثره با سیال آب – لیتیم برماید خورشیدی نشان دادهاند که محدودیت اصلی به کارگیری این سیستمها مسائل مالی است که توسط بخش تأمین انرژی توسط خورشید ایجاد شده است.
سیستمهای تک اثره در محدودهی دمایی 80 تا100 درجه سانتیگراد بهترین بازده را دارند. در صورت افزایش دما از 100 تا 160 بهتر است که نوع سیستم به سیستم دو اثره تبدیل شود، همچنین در صورت تأمین دمای بالاتر 160 بهتر است که از سیستم سه اثره استفاده کنیم.
با استفاده و کابرد قوانین اول و دوم ترمودینامیک،Mansooriو Patel [35]در سال 1979 حدود بالا و پایینی را برای ضریب عملکرد چیلرهای جذبی خورشیدی تک مرحلهای ارائه دادند. این اشخاص نشان دادند که حدود بالایی و پایینی عملکردی این تجهیزات نه تنها به پارامترهای محیطی و اجزاء سیکل وابسته بوده، بلکه به شدت وابسته به خواص ترمودینامیکی مواد مبرد، جاذب و محلول آن دو دارند. از روی این مفهوم است که میتوان یک مقایسه کمی و کیفی برای مجموعههای متفاوت ماده جاذب و ماده مبرد ارائه داد.
هم اکنون یکی از مهمترین تکنیکهای توسعه تکنولوژی این تجهیزات، انجام مقایسه و انتخاب بهترین مجمموعه از بین زوج هایی از قبیل H2O-NH3,NH3-NaSCN,LiBr-H2O میباشد.
2-2 چیلرهای جذبی خورشیدی تک مرحله ای با تانک ذخیره مبرد و آب داغیکی از موارد بهبود در توسعه طراحی چیلرهای جذبی خورشیدی، استفاده از منبع ذخیره ماده مبرد میباشد. ایده و مفهوم کلی استفاده از این تجهیز، قرار گرفتن یک منبع ذخیره ماده مبرد مابین کندانسور و اواپراتور برای ذخیره و در دسترس داشتن ماده مبرد در تمام مدت زمان کاری سیکل در طول روز و استفاده از آن در موقع مقتضی میباشد .می توان مشابه چنینی منبعی را نیز برای ذخیره محلول رقیق جاذب-مبرد مابین جذب کننده و پمپ قبل از ژنراتور در نظر گرفت. آزمایشات و تحقیقات بر روی این منابع کاهش حجم برج خنک کن و عدم نیاز به گرم کننده کمکی در بسیاری از ساعات روز را نشان دادند [36].در شکل 2-2 فلودیگرام سیکل جذبی خورشیدی همراه با منابع ذخیره مبرد و محلول نمایش داده شده است. از معایب این سیستمها می توان به هدر رفتن بسیاری از میزان انرژی خورشیدی ذخیره شده در کالکتورها به علت موجود بودن ماده مبرد کافی در بسیاری از ساعات روز قبل از غروب آفتاب، پیچیده بودن سیستم از لحاظ کنترل و عملکرد پایین چیلر به علت کاهش در غلظت محلول و افزایش دما و فشار آن اشاره نمود.

شکل2-2 فلودیگرام سیکل جذبی خورشیذی همراه با منابع ذخیره مبرد و محلول [31]
یکی از راههای دیگر بالا بردن راندمان سیکلهای جذبی خورشیدی، استفاده از دو منبع ذخیره آب گرم به جای یک منبع ذخیره آب گرم است که یکی در دمای پایین تر و با حجم بیشتر و دیگری در دمای بالاتر و با حجم کمتر توسط تجهیزات کنترلی هوشمندی مابین کالکتورها و ژنراتور قرار میگیرند.

شکل 2-3نمونه ای از چیدمان و نحوه کنترل سیکل های جذبی خورشیدی با منابع ذخیره آب داغ [31]
منبع با دمای بالاتر حدود 70 تا 75 درصد از حرارت مورد نیاز در ژنراتور را تأمین و مابقی توسط منبع دما بالا که دارای تمهیدات عایق کاری است، تأمین خواهد شد. در شکل (2-3) نمونهای از چیدمان و نحوه کنترل این گونه منابع نشان داده شدهاست. آزمایشات بیانگر این مطلب است که استفاده از این نوع منابع سبب افزایش میزان حرارت ذخیره شده توسط کالکتورها را به میزان 3/1 تا 5/1 برابر و سبب 15 تا 20 درصد بهبود در ضریب عملکرد سیکل خواهد شد. محققان کاهش 30 تا 40 درصدی در سطح کالکتور های مورد نیاز را برای سیکل گزارش دادند. [31]
2-3 چیلرهای جذبی خورشیدی دو اثرهراجع به طرز کار و مفهوم استفاده از چیلرهای جذبی دو یا چند اثره در فصل 1 به طور خلاصه مطالبی شرح داده شد. اصول کار یک چیلر جذبی خورشیدی دو یا چند اثره دقیقا همانند نوع عادی آن است، با این تفاوت که حرارت لازمه برای ژنراتور دما پایین آن توسط کالکتورهای خورشیدی تأمین میشود. همانطور که در فصل 1 اشاره شد، علاوه بر آنکه ضریب عملکرد سیستمهای دو یا چند اثره به میزان قابل توجهی از سیستمهای تک اثره بالاتر است، میزان نیاز بار کندانسور یا به عبارتی دیگر برج خنک کن نیز بسیار کاهش مییابد. نمونهای متداول از این سیستمها در شکل 4-2 نمایش داده شده است.

شکل2-4 نمونه ای از سیکل های متداول سیستم های جذبی خورشیدی دو اثر [31]
در سیستمهای خورشیدی دو اثره چنانچه دمای تأمین شده از 100درجه سانتیگراد کمتر شود، عملکرد سیستم به شدت کاهش یافته به طوری که از سیستم یک اثره مشابه نیز عملکرد پایینتری ارائه میدهد. بنابراین وجود یک پشتیبان برای جلوگیری از افت دما در سیستم ضروری میباشد.
در صورت در دسترس بودن سیستمهای گازسوز دما بالا سوال زیر مطرح می شود :
با وجود COP بالا (در صورت وجود سیستم کمکی) به کارگیری کدام سیستم (تک اثره یا چند اثره) برای کاربرهای سرمایش خورشیدی مناسب تر است؟
برای پاسخ به سوال فوق مقایسه ای توسط بین سیستمهای یک، دو، و سه اثره انجام داده شده است. نتایج مقایسهها نشان میدهد که مسائل اقتصادی به شدت به قسمت خورشیدی وابسته است. به نظر میرسد که سیستمهای چند اثره نسبت به تک اثره دارای برتری نسبی میباشند که در آنها COP بالاتر در مساحت کمتر کالکتور به ازای کیلو وات سرمایش تأمین میشود، با وجود این سیستمهای چند اثره هزینه زیادتری نسبت به سیستم تک اثره که از دمای پایینتری استفاده میکند، دارند. توسعه انرژی خورشیدی در به کارگیری از دماهای بالاتر در منبع حرارتی، موجب فراهم گشتن COP بالاتر در سیستمهای خورشیدی میشود. در جدول 2-1 نمونه ای از اولین مقایسات اقتصادی انجام شده بر روی سیستمهای جذبی خورشیدی که توسط Grossmsn [27]ارائه شده است.(این فرد طراح برنامه ای به نامABSIM در زمینه تحلیل و طراحی کامل سیستم های جذبی بوده و صاحب بسیاری از تحقیقات و مقالات در این زمینه است) مطالعه بر روی این جدول صحت مطالب بالا را تأیید میکند.
جدول2-1مقایسه فنی و اقتصادی چیلرهای جذبی خورشیدی یک اثره با دو و سه اثر [27]

در این فصل به سیستمهای تثبیت شده جذبی خورشیدی و قسمتهای مختلف آن اشاره کردیم. تمامی این سیستم ها برای دمای ژنراتور پایین 100 درجه سانتیگراد به مرحله استفاده تجاری رسیدهاند. .همانطور که در بالا نشان داده شد، دمای ورودی به ژنراتور و قیمت و نوع کالکتور مهمترین عوامل موثر در طراحی و به صرفه بودن و بررسی نوع عملکرد این تجهیزات است. همانطور که در کنار بعضی از مطالب فصول گذشته اشاره شد، این سیکلها دارای پتانسیل بسیار بالایی برای تحقیق و توسعه بوده و آرایشهای بسیار فراوانی توسط محققان کشف و مورد آزمایش قرار گرفته که صرفاًجنبه تحقیقاتی داشته و به مرحله تجاری نرسیدهاند. از جمله مهمترین این آرایشها میتوان به سیکلهای دوتاییLiBr-H2O)وNH3-H2Oا)، سیکلهای جدید تلفیقی تراکمی جذبی، سیکلهای جذبی خورشیدی سه مرحلهای و سیکل های جذبی خورشیدی با سیال عامل NH3-H2O اشاره نمود که تحقیقات در این زمینه همچنان ادامه دارند.
2-4 تکنولوژی کالکتورهای خورشیدی
کالکتورخورشیدی دستگاهی است که برای جمع‌آوری انرژی حرارتی خورشید و انتقال و ذخیره آن در محل بهره‌برداری، مورد استفاده قرار می‌گیرد. کالکتورها انواع مختلفی دارند که معمولترین آنها عبارتند از‌: کالکتورهای تخت (که پرتوهای مستقیم و پراکنده خورشیدی را جمع‌آوری می‌کنند) و کالکتورهای متمرکزکننده (که فقط پرتوهای مستقیم خورشیدی را جمع می‌کنند)همانطور که در قسمت های قبلی اشاره شد این دستگاهها دارای تنوع بسیاری بوده که به دلیل کاربرد کالکتورهای تخت در سیستمهای سرمایش، در این قسمت به معرفی این نوع از کالکتورها پرداخته و از معرفی مابقی موارد صرفنظر میکنیم.
2-4-1 کالکتورهای تخت
اقتصادی‌ترین روش جمع‌آوری انرژی خورشید استفاده از کالکتورهای تخت می‌باشد. از این نوع کالکتورها در انواع مختلف و طرحهای متفاوت به تعداد خیلی زیاد در کشورهای مختلف جهان ساخته شده و تحت آزمایش قرار گرفته است.
یک کالکتور صفحه تخت به طور کلی شامل اجزاء نشان داده شده در شکل (2-5) می‌باشد :
1- ماده شفاف که معمولاً شیشه بوده ممکن است یک لایه و یا چند لایه باشد.
2- صفحه جذب‌کننده که معمولاً به رنگ سیاه می‌باشد و می‌تواند صفحه صاف، موجدار و یا شیاردار باشد که لوله ها و یا گذرگاهها به آن متصل می‌شوند.
3- لوله‌ها و یا گذرگاهها که می‌توانند به اشکال مختلف باشند و برای هدایت سیال ناقل حرارت بکار برده می‌شوند.
4- جمع‌کننده‌ها و تقسیم‌کننده‌ها که برای عبور و تخلیه سیال ناقل حرارت به کار می‌روند.
5- عایق حرارتی که برای کاهش اتلافات حرارتی کالکتور، از سمت پشت و اطراف به کار برده می‌شود.
6- پوشش کلی کالکتور که برای حفاظت و نگهداری اجزاء فوق، ساختمان کالکتور را تکمیل می‌کند.
کالکتورهای تخت با طرح‌های مختلف و برای گرم‌کردن سیالاتی مانند : آب، هوا، محلول آب و نمک، محلول آب و گلیکول و سایر مایعات و گازها بکار برده می‌شوند و مهمترین عامل در طرح و ساخت آنها، جمع‌‌آوری هر چه بیشتر انرژی خورشیدی با کمترین هزینه ممکن می‌باشد.
یک کالکتور خورشیدی می‌بایست از موادی ساخته شود که دارای عمر مؤثر زیادی بوده و در مقابل تأثیرات مضر امواج ماوراء بنفش، خوردگی‌های اسیدی و قلیایی، منجمد شدن آب و یا گرفتگی گذرگاههای آب یا هوا، رطوبت هوا و گرد و خاک محیط، شکستگی شیشه در اثر انبساط و انقباض، خرابیهای ناشی از طوفان و تگرگ و . . . دارای مقاومت کافی باشد.

شکل2-5 سطح مقطع یک نوع کلکتور تخت و چیدمان آن در یک ساختمان [36]

user8277

در صورتی که پراکندگی از نوسانات ایجاد شده توسط اثرات حرارتی، بوجود بیاید به آن پراکندگی خود بخودی می گویند، اما در شرایطی که پراکندگی بخاطر نوسانات ایجاد شده در حضور میدان موج اپتیکی باشد، به آن پراکندگی القایی گفته می شود. پراکندگی القایی همواره موثرتر از پراکندگی خود بخودی است. به عنوان مثال بخاطر پراکندگی خود بخودی نور در عبور از 1cm از یک مایع مثل آب، تنها یک قسمت از 105 قسمت توان پرتو پراکنده میشود، اما در صورتی که شدت نور به اندازه کافی زیاد باشد، گاهی تا 100% پرتو در عبور از 1cm از محیط بخاطر پراکندگی القایی پراکنده خواهد شد. پراکندگی القایی که در این قسمت به بررسی آن خواهیم پرداخت، نتیجه تغییرات چگالی ماده می باشد. فرآیند پراکندگی بریلوئن القائی در شکل (2-1) نشان داده شده است:

شکل (2- SEQ شکل_(2- * ARABIC 1).شماتیک پراکندگی القایی بریلوئن.در شکل(2-1)، نور لیزر، توسط تغییرات ضریب شکست ایجاد شده توسط موج صوتی با فرکانس Ω ، پراکنده شده است. از آنجایی که موج آکوستیک در جهت موج فرودی حرکت می کند، نور پراکنده شده به فرکانس پایین تری یعنی فرکانس ωS=ωL-Ω شیف مییابد.
وقتی دو موج با فرکانس های ωS و ωL با هم بر همکنش می کنند، به نحوی که اختلاف این دو فرکانس همان فرکانس موج آکوستیک Ω، باشد، منجر به پراکندگی بریلوئن خواهد شد. پاسخ سیستم مادی به این ترم تداخلی می تواند شبیه به یک منبع عمل کند که موجب افزایش دامنه موج صوتی می شود. بنابراین زنش نور لیزر و موج آکوستیک سبب ایجاد موج استوکس می گردد، در صورتی که زنش موج های استوکس و لیزر موجب تقویت موج آکوستیک می شود. دو مکانیزم متفاوت برای توجیه این اثر وجوددارد. یک مکانیزم electrostriction می باشد. در این مکانیزم بیان می شود که ماده در مکان هایی که میدان فرودی شدت بیشتری دارد، چگالتر می شود. مکانیزم دیگر جذب اپتیکی است که بیان میکند گرم شدن منطقه توسط جذب موج اپتیکی با شدت بالاتر سبب می شود که ماده در آن منطقه منبسط تر شود بنابراین با تابش نور به محیط، نوسانات چگالی را خواهیم دید. از مکانیزم دوم کمتر از مکانیزم اول استفاده می شود زیرا مکانیزم دوم تنها در مواد اپتیکی اتلافی اتفاق می افتد.
وقتی پدیده پراکندگی بریلوئن القایی مورد مطالعه قرار می گیرد، دو فرآیند متفاوت باید بررسی شود، که یکی از این دو، تولید کننده پراکنندگی بریلوئن القائی است.

شکل (2- SEQ شکل_(2- * ARABIC 2) شماتیک تولید کننده پراکنندگی القایی بریلوئن.که در این فرآیند فقط پرتو نور لیزر است که به صورت خارجی استفاده شده است. میدان های استوکس و آکوستیک بیشتر از نویز در طول منطقه بر همکنش، رشد می کنند. نویزی که پراکندگی بریلوئن القایی را آغاز می کند، ناشی از پراکندگی نور لیزر از فونون های تولید شده حرارتی است ]15[ .در این حالت فرکانس استوکس نزدیک حالتی است که در آن حالت پراکندگی بریلوئن القایی بهره ماکزیمم دارد. فرآیند دوم تقویت کننده پراکنندگی بریلوئن القایی است.

شکل (2- SEQ شکل_(2- * ARABIC 3) شماتیک تقویت کننده پراکندگی القایی بریلوئن.در این حالت پرتوهای لیزر و استوکس هر دو بصورت عامل های خارجی اعمال می گردند. اگر فرکانس استوکس پرتو خارجی اعمال شده نزدیک به فرکانس استوکس تولید کننده پراکندگی بریلوئن القایی باشد، پس یک کوپلاژ قوی بین دو پرتو خارجی اعمال شده، رخ خواهد داد. فرآیند پراکندگی بریلوئن القایی به تقویت موج استوکس در هر جهتی به غیر از جهت نور لیزر منجر می شود. معمولا پراکندگی بریلوئن القایی فقط در جهت رو به عقب دیده می شود چون همپوشانی فضای پرتوهای لیزر و استوکس تحت این شرایط ماکزیمم است]16 [.
در صورتی که شدت نور فرودی را به مقدار کافی زیاد کنیم، این نور با استفاده از پدیده electrostriction می تواند روی خصوصیات محیط تاثیر بگذارد و نور پراکنده شده قوی ای را تولید کند، به عبارت دیگر در ابتدا نور لیزر فرودی توسط اثرات حرارتی محیط یا به عبارتی موج آکوستیک موجود در محیط پراکنده می شود و موج استوکس را تولید می کند، سپس کوپلاژ بین نور استوکس و نور لیزر فرودی با استفاده از پدیده electrostriction، نوسانات چگای را در محیط ایجاد می کند، نور لیزر فرودی دوباره توسط نوسانات ضریب شکست ناشی از این نوسانات چگالی پراکنده می شود که فرکانس نور پراکنده شده دوباره در فرکانس استوکس خواهد بود، بنابراین دو موج آکوستیک و استوکس رشد هم را تقویت می کنند. برای تقویت کننده های پراکندگی بریلوئن القایی، موج استوکس بصورت خارجی به محیط اعمال می شود که فرکانس آن ω2 بود، اگر فرکانس نور لیزر فرودی ω1 در نظر گرفته شود، فرکانس موج آکوستیک حاصله به این صورت بدست می آید:
Ω=ω1-ω2 (2-1)
که در حالت کلی با فرکانس بریلوئن، ωB ، متفاوت است. در صورتی که ω2 به نحوی انتخاب گردد که Ω-ΩB خیلی کوچک باشد یا در حد پهنای باند بریلوئن، τB ، باشد، موج آکوستیک بصورت موثر بر انگیخته خواهد شد. حال به بر همکنش سه موج می پردازیم:
میدان اپتیکی داخل محیط بریلوئن بصورت Ez,t=E1z,t+E2z,t در نظ گرفته می شود که:
E1z,t=A1z,teik1z-ω1t+CC) (2-2
E2z,t=A2z,teik2z-ω2t+CC
موج آکوستیک نیز بصورت جملاتی از نوسانات چگالی نوشته می شود:
ρz,t=ρ0 +ρz,teiqz-tΩ+CC(2-3)
Ω =ω1-ω2 که و p0 چگالی متوسط محیط است، فرض می شود که چگالی ماده از معادله موج آکوستیک تبعیت می کند:
∂2∆p∂t2-Γ'∇2∂p∂t-v2∇2p=∇.f (2-4)
که در آن v سرعت صوت است و Γ'ثابت اتلاف می باشد. جمله سمت راست، واگرایی نیرو در واحد حجم می باشد که به صورت زیر داده می شود:
f=-∇Pstو Pst= γeE8 π (2-5)
که در آنPst فشار electrostriction می باشد. با توجه به میدان های ذکر شده، این جمله به صورت زیر بدست می آید:
∇.f=γeq24 πA1A2*eiqz-tΩ+C.C (2-6)
با جایگذاری pz,tو ∇.f در معادله (2-4) و این فرض که دامنه موج آکوستیک در فضا و زمان کند تغییر است، داریم:
-2iΩ∂p∂t+ΩB2-Ω2-iΩΓBp-2iq v2∂p∂z=γeq24 πA1A2* (2-7)
بصورتی که پهنای باند بریلوئن به این شکل تعریف می شود:
ΓB=q2Γ' (2-8)
که τB=ΓB-1طول عمر فونون را می دهد. برای سادگی آخرین جمله سمت چپ رابطه بالا حذف می شود که این ترم انتشار فونون ها را می دهد. از آنجایی که فاصله انتشار فونون در مقابل فاصله ای که جمله سمت راست تساوی بصورت موثر در آن تغییر می کند، خیلی کوچک است (چون فونون سریع جذب می شود) بنابراین جمله∂p∂z را حذف می کنیم، اگر جمله تغییرات فضایی حذف گردد و شرایط پایا در نظر گرفته شود پس ∂p∂tحذف می شود، بنابراین دامنه موج آکوستیک به این شکل بدست می آید:
pz,t=γeq2 4 π A1A2*ΩB2-Ω2-iΩΓB (2-9)
میدان های اپتیکی نیز توسط معادلات موج زیر شرح داده می شوند:
∂2Ei∂z2-1c/n2∂2Ei∂t2=4 π∂2Pic2∂t2, i=1,2 ) (2-10
قطبش غیر خطی که بعنوان جمله منبع در این معادلات وجود دارد، به این صورت بدست می آید:
P=∆x E= ∆ε4 π E = 14 π p0γepE (2-11)
بنابراین داریم:
P1=P1eik1z-ω1t+C.C (2-12)
P2=P2ei-k2z-ω2t+C.Cکه:
P1=γe4 π p0pA2,P2=γe4 π p0P* A1 (2-13)
با قرار دادن معادلات میدان در معادله موج بالا و استفاده از تقریب دامنه کند تغییر داریم:
∂A1∂z+1c/n∂A1∂t=iωγe2nc p0pA2 (2-14)
-∂A2∂z+1c/n∂A2∂t=iωγe2nc p0p*A1
در رابطه بالا فرض شده است که ω1=ω2≅ω با بکار بردن حالت پایا، مشتق زمانی را حذف می کنیم، بنابراین داریم:
dA1dz=iωq2γe28n π c p0 A22 A1ΩB2-Ω2-iΩΓB(2-15)
dA2dz=-iωq2γe28n π c p0 A12 A2ΩB2-Ω2+iΩΓBاین فرایند بصورت اتوماتیک دارای تطابق فازی نیز هست، بنابراین بیان معادلات برای شدت های دو موج اپتیکی ممکن است. شدت ها به این صورت تعریف می شوند [5]:
Ii=nc2πAiAi* (2-16)
بنابراین:
dI1dz=-gI1I2,dI2dz=-gI1I2 (2-17)
که در آن g فاکتور بهره است که با یک تقریب مناسب به این صورت داده می شود:
g=g0ΓB/22ΩB-Ω2+ΓB/22 (2-18)
که خط مرکزی بهره به این صورت می باشد:
g0=γe2 ω2nvc3 p0ΓB (2-19)
برای حل معادلات dI1dz وdI2dz ابتدا فرض می کنیم که شدت پمپ ثابت است، =cte I1 بنابراین:
I2z=I2LegI1L-z (2-20)
در این حالت یک موج استوکس داخل محیط در z=L تزریق می شود که یک رشد نمایی را تجربه می کند.
این تئوری برای شرح انتشار موج در فرکانس آنتی استوکس نیز بکار می رود. ωas ≅ ωL+ ΩB به این صورت تعریف می کنیم که ω1را با ωasو ω2 را با ωL جایگزین می کنیم، از طرفیI2z=cte بنابراین:
I1z=I10e-gI2z (2-21)
از آنجا که ω1در جهت مثبت محور z ها منتشر می شود، دیده می شود که این موج یک اتلاف را در مسیر خود تجربه می کند.
وقتی که موج استوکس در حد شدتی قابل مقایسه با موج پمپ رشد داده شود، یک کاهش موثر موج پمپ باید اتفاق بیافتد، در این حالت باید معادلات کوپل شده شدت بصورت همزمان برای شرح فرایند پراکندگی بریلوئن القایی حل شوند. با استفاده از معادله (2-17) دیده می شود که:
dI1dz=dI2dz (2-22)
بنابراین:
I1z=I2z+c (2-23)
که مقدار ثابت انتگرال، C، به شرایط مرزی وابسته است. با استفاده از رابطه بالا و رابطه(2-17) داریم:
dI2I2I2+c=-g dz (2-24)
با انتگرال گیری از این رابطه خواهیم داشت:
I2(0)I2(z)dI2I2I2+c=0zg dz' (2-25) که:
lnI2zI20+cI20I2z+c=-gcz (2-26)
بنابراین: z=0 را در I2 از آنجایی که
C=I1 0-I2(0) (2-27)

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

با حل معادله بالا برای (z) I2 داریم:
I2z=I20I1 0-I20I1 0expgzI1 0-I20-I20 (2-28)
بنابراین:
(2-29) I1z=I2z+I1 0-I2(0)از آنجا که مقادیر مرزی I1 0و I2 L را می دانیم، بنابراین I2 0 را می توان با استفاده از این مقادیر مشخص کرد:
(2-30) I2(L)=I1 0I2 0I1 01-I2 0I1 0exp gI1 0 L1-I2 0I1 0-I2 0I1 0با استفاده از این رابطه می توان مقدار نا معین I2 0I1 0 را بدست آورد.
برای یک تولید کننده پراکندگی بریلوئن القایی، هیچ میدان استوکسی بصورت خارجی وارد ناحیه نمی شود، بنابراین مقدار شدت استوکس در نزدیکی مرز z=L مشخص نیست. فرآیند پراکندگی بریلوئن القایی توسط فونونهای آکوستیکی که از پراکندگی بریلوئن خود به خود در نزدیکی صفحه خروجی، z=L، تولید می شوند، آغاز می شود. بنابراین انتظار داریم که شدت موج ورودی استوکس، I2(L)، با، I1(L) متناسب باشد، این ثابت تناسب را با f نشان می دهیم:
(2-31) I2L=fI1(L)
حال حالت نزدیک ولی زیر حد آستانه برای پراکندگی بریلوئن القایی را در نظر می گیریم، بصورتی که انعکاس آن یعنی R=I2 0I1 0 خیلی کوچکتر از واحد باشد، در این حالت شدت لیزر در طول محیط لزوما ثابت است و شدت استوکس خروجی با شدت استوکس ورودی توسط رابطه زیر متناسب است:
I20=I2LeG (2-32)
که G=gI1 0L .چون I1 z ثابت است پسI2L=fI1(0) بنابراین داریم:
R=I2 0I1 0=feG (2-33) نتایج تجربی نشان می دهد که برای پراکندگی بریلوئن القایی باید G به یک مقدار Gth برسد که برای اغلب موارد در حدود 30-20 می باشد. f باید از درجهe-Gth باشد یا تقریبا برابر با 10-12تا 10-11باشد. برای پراکندگی بریلوئن القایی در حالت کلی باید G>Gth باشد بنابراین از معادله (2-30) داریم:
I2 LI1 0=R1-RexpG1-R -R (2-34)با یک تقریب خوب جمله-R را از مخرج کسر در سمت راست حذف می کنیم. رابطه (2-29) را به این صورت می نویسیم:
I1 L-I2 L=I1 0-I2 0 (2-35)
با استفاده از معادله (2-31) و فرض کوچک بودن f، سمت چپ معادله بالا را با f-1 I2 L جایگذاری می کنیم، با ضرب دو طرف معادله در fI1 0داریم:
I2 LI1 0=f 1-R (2-36)
وقتی این معادله در رابطه (2-34) قرار داده شود خواهیم داشت:
(2-37) GGth=Gth-1InR+11-Rکه در آن به جای Inf ، Gth قرار داده شده است. در شکل (2-4) وابستگی انعکاس SBS به بهره سیگنال کوچک، نشان داده شده است [5]:

شکل (2- SEQ شکل_(2- * ARABIC 4) وابستگی انعکاس SBS به بهره سیگنال کوچک.همانطور که در شکل(2-4) دیده می شود، در صورتی که G کمتر از Gth باشد، هیچ موجی استوکسی دیده نمی شود. برای مقادیر بزرگتر از Gth، R ناگهان رشد می کند. در شرایطی که G>>Gth ، این R به سمت 100%می رود. کمی بالاتر از شرایط آستانه پراکندگی بریلوئن القایی مثلا G≥3Gth می توان معادله (2-37) را به این صورت تقریب زد:
GGth=11-R (2-38)
بنابراین داریم:
G≥Gth , R=1-1GGth (2-39)
از آنجایی که شدت I1 L به این صورت داده می شود، I1 L=I1 0 1-R ، در شرایطی که رابطه قبلی صادق باشد، شدت پرتو عبوری به این صورت بیان می گردد:
I1 L=GthgL (2-40)
با بدست آوردن مقدار شدت استوکس در صفحه z=0 از رابطه (2-37)، توزیع شدت ها در طول محیط بر همکنش از معادلهI2z و I1z بدست می آید. شکل زیر توزیع شدت ها در ناحیه برهمکنش یک تولید کننده پراکندگی بریلوئن القایی را نشان می دهد.

شکل (2- SEQ شکل_(2- * ARABIC 5) توزیع شدت استوکس و لیزر در ناحیه
بر همکنش تولید کننده SBS ]5[حال می توان مقدار مینیمم توان لیزر، Pth ، را برای بر انگیخته کردن پراکندگی بریلوئن القایی تحت شرایط بهینه تقریب زد. فرض می کنیم که پرتو لیزر یک پروفایل گاوسی دارد که داخل یک محیط فعال بریلوئن متمرکز شده است. مقدار شدت پرتو در کمر پرتو، I=Pπ w02 می باشد، که w0کمر پرتو می باشد. طول ناحیه بر همکنش، L، به طول مشخصه پراش، b=2π w02λمحدود می گردد. بنابراین بجای G=g IL می توان نوشت:
G=2gPλ (2-41)
با مساوی قرار دادن این عبارت با Gth، می توان مقدار مینیمم توان لیزر مورد نیاز برای برانگیختن پراکندگی بریلوئن القایی را بدست آورد:
Pth=Gth λ2g (2-42)
2-3- خلاصه فصلبرای اینکه بتوانیم اصول پراکندگی نور را در فیبرهای نوری بررسی کنیم نیاز به شناخت کامل انواع پراکندگی نور در مواد داشتیم . از آنجاییکه در این پایان نامه به بررسی SBS آبشاری در فیبر نوری می پردازیم لازم بود که پراکندگی بریلوئن برانگیخته (القایی) به طور کامل بررسی شود. زیرا قبل از اینکه SBS در فیبر نوری بررسی شود ، باید اصول آن و چگونگی رخداد آن به طور پایه در مواد شفاف بررسی شود. همانطوریکه مشاهده شد معادلات شدتهای موج ورودی و موج استوکس را در حالتهای مختلف بدست آوردیم. در فصل بعدی به بررسی ساختار فیبرهای نوری و مشخصه های آنها و همچنین منابع نوری که امروزه در عمل استفاده می شود می پردازیم وعلت استفاده از نوع فیبر نوری و منبع نوری با طول موج خاص که در شبیه سازی های این پایان نامه انجام گرفته است را توضیح می دهیم.
فصل سوم2120265-2540000
فیبر نوری و مشخصه های آن3-1- مقدمهانتقال اطلاعات در سالهای اخیر بوسیله فیبر نوری بسیار مورد توجه قرار گرفته است. انواع و اقسام فیبرهای نوری با توجه به کاربرد، مزایا و معایب آنها طراحی و ساخته شده اند. همچنین منابع نوری مختلفی با توجه به پیشرفت ساخت فیبرهای نوری ساخته شده اند. در این فصل به بررسی ساختار ، عملکرد و مشخصه های فیبرهای نوری می پردازیم و توضیح می دهیم که چه نوع فیبر نوری و منبع نوری با چه طول موجی در سالهای اخیر برای انتقال اطلاعات در سیستمهای عملی امروزه استفاده می شود. بنابراین در این پایان نامه نیز نتایج شبیه سازیها با استفاده از فیبرها و منابع نوری با طول موج سیستمهای نوین امروزی می باشد. در انتهای این فصل به بررسی سرعت انتقال اطلاعات در فیبر نوری می پردازیم زیرا همانطوریکه در فصلهای بعدی مشاهده می کنیم پدیده SBS یا SBS آبشاری می تواند سرعت پالس نوری را در فیبر نوری تغییر دهد و باعث ایجاد تاخیر زمانی گرددکه درساخت بافرهای نوری از این پدیده استفاده می شود.

3-2- بازتاب کلی داخلی
کلادون، ویلر و تیندال ]17[ در هر یک از آزمایشاتشان به پدیده ای به نام بازتاب کلی داخلی که اساس درک انتقال نوری است متکی بودند. بنابراین ما هم مجبوریم که به فیزیک اپتیک بپردازیم.
اگر تکه ای چوب را در آب فرو کنیم متوجه خمیدگی ظاهر آن شده و یا حتی آدم گرسنه ای که سعی در شکار ماهی دارد متوجه می شود که ماهی در جائی که به نظر می آید باشد نیست. این پدیده یا شکست نور به علت تفاوت ضریب شکست هوا با آب رخ می دهد. ضریب شکست، مقدار نسبتی است که بین سرعت نور در خلاء و سرعت نور در محیطی دیگر برقرار است. نور در محیط های فیزیکی کند تر از هوا حرکت می کنند و بدین ترتیب ضریب شکست (n) را می توان از رابطه زیر بدست آورد:
سرعت نور در محیط دیگر/ سرعت نور در خلاء
ضریب شکست هر محیط دیگری بزرگتر از یک است.
این موضوع چه اهمیتی دارد؟ اهمیت این موضوع در آن است که در حقیقت نور هنگامی خم می شود که از محل تلاقی دو محیطی که دارای ضریب شکست متفاوتی هستند عبور کند. برای مثال اگر یک منبع نور، پرتو نوری را به درون فیبر شیشه ای بتاباند نور خم می شود زیرا از هوا به درون شیشه عبور می کند. میزان خمش نور به دو عامل بستگی دارد: تفاوت ضریب شکست دو محیط و زاویه ای که تحت آن نور به شیشه برخورد می کند یا همان زاویه تابش. این زاویه برابر زاویه ای است که خط عمود بر سطح دو محیط با پرتو تابش می سازد. برای سیستم های انتقال فیبر نوری این موضوع حائز اهمیت است. (شکل 3-1)

شکل (3- SEQ شکل_(3- * ARABIC 1) زاویه تابش و ضریب شکست
رابطه بین زوایه تابش و زاویه شکست قانون اسنل نام دارد. این قانون در سیستم های فیبر بسیار مهم بوده زیرا سعی می شود که نور حاصل از منبع طوری به فیبر تابانده شود که زاویه تابش به حداقل برسد. در صورتی که زاویه تابش بیش از حد بزرگ باشد، نور از شیشه خارج می شود که در این حالت افت سیگنال خواهیم داشت (شکل 3-2).

شکل (3- SEQ شکل_(3- * ARABIC 2) قانون اسنل
بر طبق قانون اسنل، اگر زاویه تابش بیشتراز زاویه حد باشد، شکست اتفاق نمی افتد. اگر نور به سطح جدا کننده محیط هوا و شیشه (ماده ای با ضریب شکست بیشتر) طوری بتابد که زاویه آن به اندازه کافی کم باشد، در این صورت نور خارج نخواهد شد و دوباره به شیشه بر خواهد گشت. این فرایند (شکل 3-3) بازتاب کلی نامیده می شود که اساس انتقال از طریق فیبر نوری است.

شکل (3- SEQ شکل_(3- * ARABIC 3) بازتاب کلی
هر چه نور بیشتری درون فیبر نگه داشته شود، شدت (توان) سیگنال ارسالی نیز بهتر خواهد بود زاویه ای که تحت آن پرتو تابش به سطح فیبر برخورد می کند، زوایه پذیرش یا روزنه عددی نام دارد. اگر هدف ارسال سیگنال به مسافت نسبتا زیاد باشد این زاویه مهم جلوه می کند. پس لازم است که در هنگام کار با دستگاه های لیزر احتیاط لازم را مبذول داشت و اطمینان حاصل کرد که وجهی از لیزر که سیگنال را تولید می کند تا حد امکان با سطح فیبر به ویژه مقطع عرضی فیبر که نور از آن عبور می کند همتراز باشد. (شکل3-4).

شکل (3- SEQ شکل_(3- * ARABIC 4) زاویه پذیرش
با دقت بیشتر متوجه می شویم که فیبر تک مد دارای سطح مقطعی با قطر تقریبا 8 میکرون است پس لیزر نیز باید حدودا این قطر را داشته باشد تا بتواند از درون آن عبور کند. توجه کنید که قطر موی انسان در حدود 50 میکرون است.
حتی در بهترین سیستم ها، با حدود 4 درصد سیگنال در سطح جدا کننده هوا/ شیشه و بین لیزر و کر فیبر هدر می رود. در صنعت به این افت، افت فرنل اطلاق می شود. فیبر نوری به دلیل طراحی ویژه اش، نور را به درستی هدایت می کند. فیبر نوری شامل دو لایه است: سطح مقطع درونی که از میان آن نور سیر می کند و غلاف خارجی که نور را در درون هسته نگه می دارد. (شکل3-5)

شکل (3- SEQ شکل_(3- * ARABIC 5) فیبر نوری
این پدیده با استفاده از قانون اسنل انجام می گیرد. در یک فیبر نوری، ضریب شکست هسته، کمی بیشتر از ضریب شکست غلاف است. به این ترتیب، زاویه تابش به حداقل رسیده و نور نا چیزی از هسته، خارج می شد. اگر غلاف وجود نداشته باشد، بیشتر نور از هسته خارج شده و هدر می رود.
3-3- منابع نوری
امروزه، متداولترین منابع نوری برای سیستم های نوری از نوع دیود های نور افشان یا دیود های لیزری می باشند. اگر چه از هر دو استفاده می شود ولی دیود های لیزری به دلیل داشتن سیگنال منسجم برای کاربرد های پر سرعت مناسب تر هستند. اگر چه در طول سالیان لیزر ها انواع گوناگونی از قبیل سیلیکا و هلیوم- نئون داشته اند ولی لیزر های نیمه رسانا از اوایل دهه 1960 به بعد به دلیل هزینه پایین و دوام زیادشان مورد مصرف بیشتری قرار گرفتند.
3-3-1- دیود های نور افشان (LEDs) دیود های نور افشان به دو صورت موجودند: LED با انتشار سطحی و LED با انتشار لبه ای. LED با انتشار سطحی (شکل3-6) نور را با زاویه باز خارج می کند، بنابراین مناسب سیستم های داده های نوری که به انسجام بیشتری نیاز دارند نمی باشند زیرا متمرکز ساختن نور گسیل شده به دورن مغزی فیبر گیرنده مشکل است.

شکل (3- SEQ شکل_(3- * ARABIC 6) LED با انتشار سطحی
در عوض بیشتر به عنوان نشانگر ها و دستگاه های سیگنال دهنده کاربرد دارند. با اینحال گران نبوده و برای کاربردهای نه چندان دقیق طراحی شده اند. نوع دیگر از LED ها، LED انتشار لبه ای است (شکل 3-7).

شکل (3- SEQ شکل_(3- * ARABIC 7) LED با انتشار لبه ای
LED انتشار لبه ای نور را با زاویه باریکتری گسیل کرده و فضای گسیل آن کوچکتر می باشد که این به معنای سهولت تمرکز بر هسته فیبر است. این قطعات سریعتر از انتشار سطحی می باشند ولی یک نقص دارند: به دما حساس بوده و باید در شرایط محیطی کنترل شده نصب شوند تا از پایداری سیگنال ارسالی اطمینان یافت.
3-3-2- دیود های لیزری
یک دیود لیزری سطح گسیل کوچکتری دارد و معمولا قطرش بیشتر از چند میکرون نیست یعنی می توان مقدار زیادی نور گسیل شده را به درون یک فیبر هدایت کرد. به دلیل داشتن منبعی منسجم، زاویه گسیل دیود لیزری بی نهایت کوچک است. دیود های لیزری سریع ترین قطعه در میان سه قطعه گفته شده می باشند ]18[.
انواع گوناگونی از دیود های لیزری موجودند. متداول ترین آن ها عبارتند از : لیزر مدوله شده الکترون- جاذب (EML) که لیزر دارای موج پیوسته(CW) را با یک دستگاه دیافراگم مدوله کننده ترکیب می کند، لیزر بازخورد توزیعی که یک ساختار توری مجتمع برای حفظ فرکانس خروجی در حد معینی می باشد؛ یک لیزر از نوع گسیل سطحی کاواک عمودی (VCSEL) که از فضای ریز و مدوری نور را ساطع کرده و منجر به تولید پرتوی نوری می شود که نسبت به انتشار سطحی ها پخش کمتری دارد. VCSELها قطعات چند بسامدی و ارزان و با توان پایین محسوب می شوند.
(شکل 3-8) ویژگی های گسیل سه دستگاه را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 8) مقایسه گسیل نور بین LED و دیود لیزری
LED انتشار سطحی گسترده ترین گسیل را داشته و بعد از آن انتشار خطی قرار دارد. دیود لیزری دارای منسجم ترین نور بوده و بنابراین موثرترین نوع نور محسوب می شود. در حقیقت، توزیع فضایی شدت پرتو خروجی این LED نسبت به لیزر نسبتا مناسب تر است همان طور که در شکل(3-9) مشخص است. (محور عمودی درجه بندی نشده است)

شکل (3- SEQ شکل_(3- * ARABIC 9) توزیع فضایی شدت پرتو LED و لیزر
3-4- مزایا و معایب فیبر نوری برای انتقال سیگنال
انواع بسیار متنوعی از فیبر های نوری موجود می باشند، بعضی از آن ها متعلق به نسل قبلی تکنولوژی نوری بوده و هنوز هم کاربرد دارند. در مابقی نیز تغییرات کلی یا جزئی صورت گرفته است.
در حقیقت از دو نوع فیبر استفاده می شود: چند مدی که ابتدایی ترین فیبر نوری است و قطر مغزی آن زیاد بوده و در فواصل کوتاه عمل می کند و پهنای باند کمی دارد. فیبر تک- مد مغزی باریک بوده، پهنای باند بیشتر داشته و مناسب برای فواصل بیشتر است. به جزئیات و انواع این دو بعدا خواهیم پرداخت.
برای درک دلیل وجود اشکالات گوناگون فیبر باید نکاتی را در نظر گرفت که در ابتدا مهندسان طراح شبکه های نوری مواجه با آن بودند.
فیبر نوری مزایای زیادی نسبت به مس دارد. سبک وزن بوده و پهنای باند آن بیشتر است و در ضمن قدرت کشسانی آن بسیار قابل توجه می باشد و می تواند بطور همزمان چند کانال را پوشش داده و نسبت به تداخلات الکترو مغناطیسی نیز مقاوم تر است. با اینحال استفاده از فیبر نوری مشکلاتی دارد که نمی توان از آن ها چشم پوشی کرد. اولین مشکل اتلاف یا تضعیف سیگنال ارسالی در طی مسافت است. تضعیف نتیجه دو عامل است: اولی تفرق و جذب بوده که هر یک اثر دیگری را افزایش می دهد و دومی پاشندگی نامیده می شود و منظور از آن پخش کردن سیگنال ارسالی می باشد که مشابه با نویز است.
3-4-1- تفرق
پراکندگی به دلیل نا خالصی ها یا بی نظمی های موجود در ساختار فیزیکی خود فیبر رخ می دهد: معروف ترین تفرق، تفرق رایلی است که توسط یون های فلزی درون شبکه سیلیس ایجاد می شود و منجر به تفرق پرتوهای نور در جهات مختلف می شود. این پدیده در (شکل3-10 ) نشان داده شده است.

شکل (3- SEQ شکل_(3- * ARABIC 10) تفرق نور
تفرق شعاع نور غالبا در حدود طول موج های 1000nm رخ می دهد و مسئول 90 درصد تضعیف نور در سیستم های نوری مدرن است. این پدیده هنگامی رخ می دهد که طول موج های نور ارسالی هم اندازه ساختارهای مولکولی فیزیکی شبکه سیلیسی باشند، بدین ترتیب طول موج های کوتاه نسبت به طول موج های بلند تر بیشتر تحت تاثیر تفرق عادی تابش ها قرار می گیرند. در حقیقت به دلیل تفرق عادی تابش ها است که آسمان به نظر آبی می آید. طول موج های کوتاه تر نور (آبی) بیشتر از طول موج های بلند تر نور پراکنده می شوند.
3-4-2- جذب
جذب در نتیجه سه عامل رخ می دهد: یون های هیدورکسیل (-OH: آب) موجود در سیلیس، ناخالصی های سیلیسی و باقی مانده های حاصل از فرآیند تولید. این ناخالصی ها، انرژی سیگنال ارسالی را جذب کرده و آن را به گرما تبدیل می کنند و منجر به تضعیف سیگنال نوری می شوند. جذب هیدورکسیل در 25/1 و 39/1 میکرومتر صورت می گیرد: در 7/1 میکرومتر خود سیلیس نیز به دلیل رزونانس طبیعی دی اکسید سیلسیوم شروع به جذب انرژی می کند.
3-4-3- پاشندگی
همان طور که قبلا نیز اشاره شد، پاشندگی یک اصطلاح نوری برای پخش پالس نور ارسال شده در هنگام عبور آن از فیبر است. این پدیده محدود کننده پهنای باند بوده و به دو صورت می باشد: پاشندگی چند - مد و پاشندگی رنگی.
پاشندگی رنگی نیز به دو صورت وجود دارد: پاشندگی ماده و پاشندگی طول موج
پاشندگی چند - مد: برای درک پاشندگی چند - مد ابتدا باید مفهوم مد را متوجه شد. (شکل3-11) ، فیبری را با هسته نسبتا پهن نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 11) فیبر با هسته پهن.به دلیل پهنای هسته آن، پرتوهای نور تحت زوایای گوناگون ( در این مورد سه تا) وارد فیبر شده و تا گیرنده انتقال می یابند. به دلیل مسیر های پیموده شده هر پرتوی نور یا مد بطور همزمان به گیرنده نرسیده و سیگنال پراکنده ای را موجب می شوند.
حال به (شکل 3-12) نگاه کنید.

شکل (3- SEQ شکل_(3- * ARABIC 12) فیبر با هسته باریکمغزی بسیار باریکتر بوده و تنها اجازه عبور یک پرتوی نور یا مد را می دهد. این امر موجب اتلاف انرژی کمتر شده و از پاشندگی که در سیستم های چند - مد رخ می دهد جلوگیری می کند.
پاشندگی رنگی: سرعت سیر یک سیگنال نوری به طول موج آن بستگی دارد. اگر سیگنالی متشکل از چند طول موج باشد در این صورت هر یک با سرعت متفاوتی حرکت می کنند و باعث پخش و یا پراکنده شدن سیگنال می گردند. همان طور که پیشتر نیز بیان شد، پاشندگی رنگی به دو صورت پاشندگی ماده و پاشندگی موجبر است.
پاشندگی ماده: این حالت به این دلیل که طول موج های متفاوت نور درون فیبر نوری با سرعت های مختلفی سیر می کنند اتفاق می افتد. برای به حداقل رساندن این پدیده دو عامل را باید در نظر گرفت: اولین عامل تعداد طول موج هایی است که سیگنال ارسالی را تشکیل می دهند. برای مثال یک LED ، گستره ای از طول موج های 30nm تا 180 nm را گسیل می کند در حالی که لیزر، طیف باریکتری یعنی کمتر از 5nm را گسیل می کند. بدین ترتیب، سیگنال لیزری نسبت به سیگنال LED بسیار کمتر تحت تاثیر این پدیده قرار می گیرد.
دومین عامل که در میزان پاشندگی ماده اثر دارد، ویژگی به نام طول موج مرکزی سیگنال منبع است. در مجاورت 850nm طول موج های بلند تر یعنی قرمز سریعتر از طول موج های کوتاهتر یعنی آبی حرکت می کنند ولی در 1550 nm، این حالت بر عکس می شود و طول موج های آبی سریعتر حرکت می کنند. البته در این میان نقطه ای وجود دارد که میزان پاشندگی در آن به حداقل مقدار خود می رسد که در گسترده nm1310 بوده و طول موج پاشندگی صفر نامیده می شود. واضح است که این نقطه، محل ایده آلی برای ارسال سیگنال داده ها است زیرا اثرات پاشندگی به حداقل می رسد. همان طور که بعدا نیز خواهیم دید، عوامل دیگری نیز اثر گذار هستند، در فیبرهای تک- مد، پاشندگی ماده بسیار دردسر ساز است.
پاشندگی موجبر: به دلیل متفاوت بودن ضریب شکست های غلاف و هسته فیبر، سرعت نور در هسته کمی کمتر از سرعت نور در غلاف است. این امر منجر به پاشندگی می شود ولی با تغییر طول موج به مقدار بخصوصی می توان پاشندگی موجبر و ماده را به حداقل رساند.
فکر می کنید این مطالب چه ارتباطی با انتقال سرعت بالای صدا، تصویر و داده داشته باشد؟ اطلاع از اینکه در کجا پاشندگی و تضعیف نور صورت می گیرد به مهندسان طراح نوری کمک می کند تا با در نظر گرفتن نوع فیبر و مسافت و عوامل دیگری که بر شدت سیگنال ارسالی اثر می گذارند، بهترین طول موج ارسالی را تعیین کنند. به منحنی (شکل 3-13) نگاه کنید که قلمروی انتقال نوری و همچنین نواحی بروز مشکل را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 13) منحنی تغییرات اتلاف بر حسب طول موجتضعیف dB/km روی محور y و طول موج بر حسب نانومتر در راستای محور x نشان داده شده اند.
توجه کنید که چهار پنجره انتقال در نمودار وجود دارند. اولین پنجره در حدود 850nm، دومی 1310nm، سومی در 1550nm و چهارمی در 1625nm می باشند. دو پنجره آخر باند L و باند C نامیده می شوند. در ابتدا باند 850 nm به دلیل تطابق آن با طول موج LED مورد استفاده قرار گرفت.
دومین پنجره در 1310nm از پاشندگی پایین برخوردار است. در اینجا اثرات پاشندگی به حداقل می رسند. 1550nm یا به اصطلاح باند c موج ایده آل برای سیستم های دور برد می باشد. در این ناحیه افت و پاشندگی به حداقل می رسد. باند L نسبتا جدید بوده و پنجره موثر دیگری محسوب می شود. یک باند جدید به نام باند s نیز تحت بررسی می باشد.
توجه کنید که تفرق رایلی در 1000nm یا حدود آن رخ می دهد در حالی که جذب هیدوکسی در 1240nm و 1390 nm صورت می گیرد.
نیازی به ذکر این مطلب نیست که طراحان شبکه از نقاطی روی منحنی که تفرق رایلی رخ می دهد اجتناب کردند. تفرق رایلی، افت زیاد و جذب هیدوکسیل، بالاترین تاثیر را در آن نقاط دارند. توجه داشته باشید که در پنجره دوم نمودار، خط پایینی یا پاشندگی به حداقل مقدار می رسد در حالی که در پنجره سوم، خط بالائی یا افت سیگنال به حداقل مقدار ممکن می رسد. در حقیقت، در فیبر تک- مد در طول موج 1310nm پاشندگی به حداقل رسیده در حالی که در 1550nm افت به حداقل مقدار می رسد. دراین صورت این سوال مطرح می شود: شما خواهان به حداقل رساندن کدام کمیت هستید، افت یا پاشندگی؟
خوشبختانه امروزه مجبور به این انتخاب نیستید. اکنون (DSF) ها بسیار متداول شده اند. مهندسان با اصلاح فرایند ساخت قادر به تغییر نقطه ای هستند که در آن حداقل پاشندگی از 1310nm تا 1550nm وجود دارد و در نتیجه قادر به تطابق آن به نقطه ای می باشند که افت به حداقل می رسد یعنی افت و پاشندگی در یک طول موج رخ می دهند. به همین دلیل در فصلهای بعدی پایان نامه از فیبر (DSF) و طول موج منبع نوری در حدود nm1550 استفاده می کنیم.
3-4-4- اثرهای غیر خطی های فیبر
همان طور که تقاضای بازار برای انتقال سیگنال به مسافت بیشتر با حداقل تقویت و تعداد طول موج های بیشتر در هر فیبر و در عین حال نرخ ارسال بیت های بالاتر و توان بیشتر، افزایش یافت یکسری عیوب تحت عنوان غیر خطی های فیبر مهندسان را به چالش خواند. این مشکلات فراتر از افت و پاشندگی بود و موانع اجرایی مهمی محسوب می شدند.
دو موضوع اساسی منجر به این غیر خطی شدن گردیدند. موضوع اول ( و شاید مهمترین) این حقیقت است که ضریب شکست هسته فیبر نوری رابطه مستقیمی با توان سیگنال ارسالی درون آن دارد. هر چقدر سیگنال ارسالی قوی تر باشد، اختلال نیز بزرگتر خواهد بود. به دلیل این رابطه، برای به حداقل رساندن مشکل قوی دو کار را باید در نظر گرفت. اولین اقدام به حداقل رساندن توان ارسالی سیگنال است که ظاهرا باعث کاهش افت سیگنال می شود. عیب اینکار در این است که مسافت انتقال را محدود کرده و روش مطلوبی به حساب نمی اید زیرا توان کمتر به معنای این است که برای مسیر های دور- برد باید از تقویت کننده های بیشتری استفاده نمود. خود تقویت کننده ها نیز مشکل دیگری را ایجاد می کنند. راه حل دوم که قابل قبول تر است به حداکثر رساندن سطح موثر فیبر است که مقیاسی برای سطح مقطع عرضی هسته فیبر حامل سیگنال ارسالی می باشد. با افزایش سطح موثر فیبر، توانائی فیبر در جمع آوری سیگنال افزایش یافته و نیاز برای سیگنال بسیار قوی کم تر می شود ]19[.
رابطه ویژه بین توان انتقال و ضریب شکست محیط موجب سه نوع پدیده غیر خطی نوری می شود: مدولاسیون خود- فاز (SPM)، مدولاسیون فاز متقاطع (XPM) و مدوله سازی متقابل.
مدولاسیون خود- فاز (SPM) : اگر مدولاسیون خود- فاز رخ دهد، پاشندگی رنگی باعث ایجاد مشکل می شود. در هنگام حرکت پالس نور در طول فیبر، لبه ابتدایی فیبر، ضریب شکست مغزی را افزایش داده و باعث تغییر به سمت رنگ آبی طیف می شود. از طرف دیگر لبه انتهایی فیبر ضریب شکست مغزی را کاهش داده و باعث تغییری در جهت رنگ قرمز طیف می شود. این پدیده باعث پراکندگی یا پخش سیگنال ارسالی می شود. پدیده فوق در سیستم های فیبری رخ می دهد که یک پالس سیگنال را در فیبر انتقال دهند و به مقدار پاشندگی رنگی فیبری بستگی دارد. هر چقدر پاشندگی رنگی بیشتر صورت گیرد، SPM بیشتری نیز ایجاد می شود. با استفاده از فیبرهایی که سطح موثر بزرگتری دارند می توان با این پدیده مقابله کرد.
مدولاسیون فاز متقاطع (XPM): هنگامی که چند سیگنال نوری از درون یک هسته فیبر عبور می کنند، هر یک نسبت به میزان توان خود، ضریب شکست را تغییر می دهند. اگر حالتی پیش بیاید که سیگنال ها همدیگر را قطع کنند (بهم برخورد کنند)، باعث تغییر شکل (اعوجاع) یکدیگر می شوند. اگر چه XPM مشابه SPM است ولی یک تفاوت مهم دارد: مدولاسیون خود- فاز مستقیما تحت تاثیر پاشندگی رنگی است ولی مدولاسیون فاز متقاطع کمی تحت تاثیر پاشندگی رنگی قرار می گیرد. برای کاهش اثر XPM باید از فیبرهایی با سطوح موثر بزرگ استفاده کرد.
اثرات مدوله سازی متقابل: همان طور که مدولاسیون دو فازه از تداخل همزمان چند سیگنال ایجاد می شود، مدولاسیون متقابل باعث ایجاد فرکانس های ثانوی که محصول جانبی سیگنال اصلی محسوب می شوند می گردد. فیبر های دارای سطح موثر بزرگ می توانند اثرات ناخوشایند مدولاسیون متقابل را کاهش دهند.
3-4-5- مشکلات پراکندگی
پراکندگی در شبکه سیلیسی دومین اختلالی محسوب می شود که دو اثر غیر خطی مهم دارد پراکندگی تحریک شده بریلوئن (SBS) و پراکندگی تحریک شده رامان (SRS).
پراکندگی تحریک شده بریلوئن SBS: (SBS) پدیده ای است که با توان سیگنال ارتباط دارد. تا زمانی که توان سیگنال نوری ارسال شده کمتر از حد آستانه یعنی در حدود 3 میلی وات باشد، SBS مشکلی محسوب نمی شود. حد آستانه به سطح موثر فیبر بستگی دارد و به دلیل اینکه DSF سطح موثر کمتری دارد حد آستانه آن ها پایین تر است، به علاوه حد آستانه متناسب با پهنای پالس لیزری اولیه نیز می باشد. با پهن شدن پالس، حد آستانه افزایش می یابد. بدین ترتیب از چند تکنیک برای گسترده نمودن پالس لیزری استفاده می شود. با اینکار حد آستانه تا 40 میلی وات افزایش می یابد.
SBS از تاثیرات متقابل سیگنال نوری درون فیبر با ارتعاشات اکوستیکی شبکه سیلیسی سازنده فیبر ایجاد می شود. رزونانس شبکه سیلیسی باعث می شود که قسمتی از سیگنال دوباره به سمت منبع سیگنال منعکس شود که این امر منجر به نویز، افت سیگنال و کاهش نرخ ارسال بیت کلی سیستم می گردد. اگر توان سیگنال فراتر از حد آستانه باشد قسمت اعظم سیگنال منعکس می شود که منجر به افزایش حالت فوق می شود.
باید توجه داشت که در حقیقت دو نوع پراکندگی بریلوئن وجود دارد. اگر میدان های الکتریکی نوسان کننده درون فیبر نوری با رزونانس اکوستیکی طبیعی ماده فیبر اثر متقابل بر هم داشته باشند، توزیع معکوس نور ایجاد می شود. این پدیده پرا کنش بریلوئن نام دارد. در صورتی که میدان الکتریکی از خود سیگنال نوری حاصل شده باشد، خود سیگنال این پدیده را باعث می شود که در این حالت نیز پراکندگی تحریک شده بریلوئن نام می گیرد.
خلاصه: SBS به دلیل توزیع معکوس، مقدار نوری را که به گیرنده می رسد کاهش داده و سبب اختلالات نویز می شود. این مشکل در بالای حد آستانه سریعا افزایش یافته و اثر بدتری بر طول موج های بلندتر نور دارد. حقیقتی دیگر آمپلی فایرهای موجود در خط نوری از قبیل آمپلی فایرهای فیبری اربیوم (EDFA) (منظور از اربیوم همان عنصر Er است) که باعث افزایش این مشکل می شوند. اگر چهار آمپلی فایر نوری در طول یک فاصله نوری وجود داشته باشند، حد آستانه تا یک چهارم کاهش می یابد. راه حل جلوگیری از SBS استفاده از لیزرهای دارای پالس پهن تر و فیبرهای دارای سطح موثر بزرگتر است.
پراکندگی تحریک شده رامان SRS: (SRS) مشکلی است که از تداخل سیگنال ها ایجاد می شود. در SRS کانالهای توان- بالا و دارای طول موج کوتاه، توان را به کانال های ضعیف تر و دارای طول موج کوتاه تر وارد می کنند. این پدیده هنگامی رخ می دهد که یک پالس نوری متحرک در فیبر با شبکه کریستالی سیلیس بر هم اثر گذاشته و باعث ایجاد توزیع معکوس شده و طول موج پالس کمی تغییر کند. SBS پدیده پراکندگی وارونه محسوب می شود در حالی که SRS یک پدیده دو طرفه بوده و سبب پراکندگی وارونه و تغییر طول موج می شود که نتیجه نیز تداخل کانال های مجاور می باشد.
نکته مثبت این موضوع این است که SRS در توان های بالا نزدیک به یک وات رخ می دهد. بعلاوه با استفاده از فیبر های دارای سطح موثر بزرگتر می توان آن را کاهش داد.
3-5- انواع فیبر نوری
می دانیم که فیبر ها به مرور زمان و به روش های گوناگونی ایجاد شده اند بطوری که به انواع گوناگونی به وجود آمدند تا بتوانند نیاز بازار را برطرف کنند.
3-5-1- فیبر چند مدی

user8251

عنوانصفحه
TOC h z t "فهرست اشکال,1" شکل 1-1- متابولیسم NADH H+ و تولید متان در نشخوارکنندگان PAGEREF _Toc142952501 h 4شکل 1-2- روند تخمیر توسط باکتری‌های شکمبه‌ای PAGEREF _Toc142952502 h 8شکل 1-3- گیاه دارویی Crambe orientalis L PAGEREF _Toc142952503 h 15شکل 1-4- گیاه گلپر PAGEREF _Toc142952504 h 19شکل 1-5- گیاه دارویی zosima absinthifolia PAGEREF _Toc142952505 h 22شکل 1-6- گیاه دارویی Teucrium polium PAGEREF _Toc142952506 h 24شکل 1-7- گیاه دارویی Oregano vulgare L PAGEREF _Toc142952507 h 25

فهرست جداول
عنوانصفحه
TOC h z t "فهرست جداول;1" جدول 1-1- موقعیت و مقدار اسیدهای چرب در عصاره C.orientalis PAGEREF _Toc369168412 h 17جدول 2-1- محلول مواد معدنی کم نیاز (A) PAGEREF _Toc369168413 h 34جدول 2-2- محلول مواد معدنی اصلی (C) PAGEREF _Toc369168414 h 35جدول 2-3- محلول بافر مواد معدنی (B) PAGEREF _Toc369168415 h 35جدول 2-4- محلول ریزازورین PAGEREF _Toc369168416 h 35جدول 2-5- محلول احیاء کننده PAGEREF _Toc369168417 h 35جدول 2-6- نسبت محلول‌ها در ترکیب بزاق مصنوعی PAGEREF _Toc369168418 h 36جدول 2-7 PAGEREF _Toc369168419 h 45جدول 2-8 PAGEREF _Toc369168420 h 45جدول 2-9 PAGEREF _Toc369168421 h 45جدول 2-10- اجزای محیط کشت جهت رشد باکتری‌های شکمبه PAGEREF _Toc369168422 h 46جدول 2-11- ترکیب رقیق کننده بی‌هوازی (A.D.S) PAGEREF _Toc369168423 h 47جدول 3-1 گاز حاصل از تخمیر جیره و عصاره‌های گیاهان دارویی پس از 96 ساعت انکوباسیون PAGEREF _Toc369168424 h 51جدول 3-2- اثر سطوح مختلف پنج عصاره بر فراسنجه‌های تولید گاز PAGEREF _Toc369168425 h 52جدول 3-3- تعداد کل باکتری‌ها در هر میلی لیتر مایع شکمبه بعد از تاثیر عصاره‌ها PAGEREF _Toc369168426 h 56
فصل اولمقدمه و مروری بر تحقیقات گذشته
1-1- مقدمهدر بین حیوانات اهلی گیاهخوار، نشخوارکنندگان سهم بزرگی را در تامین خوراک و سلامت بشر دارند. از طرفی تغذیه نقش اصلی را در بازده اقتصادی و عملکردی این دام‌ها داشته به طوری که تقریبا دوسوم از کل هزینه تولیدات دامی در واحدهای مختلف پرورش دام به هزینه‌های خوراک اختصاص داشته و از طرفی با توجه به مسئله کمبود پروتئین حیوانی و افزایش تولید با منابع علوفه‌ای موجود، لازم است تا از ارزش تغذیه‌ای منابع خوراکی قابل دسترس و مکمل‌های قابل استفاده به منظور افزایش راندمان تولید اطلاع کافی وجود داشته باشد (امیرخانی، 1386). از این رو اهمیت تغذیه مناسب نشخوارکنندگان ایجاب می‌نماید که ارزش غذایی هر یک از مواد خوراکی و اجزای تشکیل دهنده آنها طبق روش‌های صحیح و استاندارد تعیین گردد (قورچی، 1374).
معده حیوانات نشخوارکننده از چهار بخش شکمبه، نگاری، هزارلا و شیردان تشکیل گردیده است (آلاوونگ و همکاران، 2010). سه بخش اول فاقد هر گونه غده بوده و پیش معده نامیده شده و دو بخش آخر جایی است که هضم میکروبی یا تخمیر در آن صورت می‌پذیرد (منصوری و همکاران، 1381). شکمبه دارای انواع باکتری، پروتوزوآ و قارچ است اما باکتری در تمام جنبه‌های تخمیر شکمبه‌ای نقش غالب را بازی می‌کند (راسل و همکاران، 2002).
حیوانات نشخوارکننده (گاو، گوسفند، بز و غیره) آنزیم‌های تجزیه‌کننده فیبر را نمی‌سازند و برای استفاده از ترکیبات دیواره سلولی گیاهان متکی به میکروارگانیسم‌های مستقر در دستگاه گوارش خود می‌باشند به این ترتیب که حیوان برای میکروارگانیسم‌ها زیستگاهی فراهم می‌کند به نام شکمبه و در عوض میکروارگانیسم‌ها نیز با تخمیر خوراک و تولید انواع اسیدها، پروتئین‌های میکروبی و ویتامین‌ها را برای نشخوارکننده قابل استفاده می‌نمایند (راسل و همکاران، 2002).
متناسب با نوع خوراک مصرفی روزانه در گاو 100 تا 190 لیتر بزاق ترشح می‌شود (منصوری و همکاران، 1381). بزاق مرکب از بی کربنات و فسفات بوده و به عنوان یک عامل بافری مهم در شکمبه عمل می‌نماید (منصوری و همکاران، 1381).
1-2- محتویات شکمبه و ویژگی‌های تخمیر در نشخوارکنندگانمحتویات شکمبه به صورت لایه‌هایی از ناحیه شکمی تا ناحیه پشتی از هم متمایز می‌باشند همچنین بین محتویات قسمت‌های قدامی و خلفی شکمبه نیز تفاوت‌هایی وجود دارد گازهای حاصل از تخمیر در قسمت فوقانی شکمبه تجمع می‌یابند، علوفه‌های بلند یک لایه بزرگ و متراکم از مواد جامد را تشکیل می‌دهند که مقدار نسبتا کمی مایع همراه آن وجود دارد و ذرات ریزتر در زیر آن قرار می‌گیرند. بخش مایع نیز پایین‌ترین قسمت را اشغال می‌کند (منصوری و همکارن، 1381).
1-2-1- گازهای حاصل از تخمیرتولید گاز در نشخوارکنندگانی نظیر گاو 2 تا 4 ساعت بعد از هر وعده غذایی به سقف 40 لیتر در ساعت می‌رسد یعنی زمانی که سرعت تخمیر در بیشترین مقدار خود می‌باشد (چیبا و همکاران، 2009). گازهای اصلی شکمبه عبارتند از:
(60%) 2CO، (30 تا 40) 4CH، مقادیر متفاوتی از 2N، مقدار کمی 2H و 2O (چیبا و همکاران، 2009). گازهای تجمع‌یافته در قسمت فوقانی شکمبه را عمدتا گازهای کربنیک و متان تشکیل می‌دهند (منصوری و همکاران، 1381). نشخوارکنندگان مسئول تولید 16 الی 20 درصد از گاز متان گلخانه‌ای اتمسفر می‌باشند که 75% آن به وسیله‌ی گاوها تولید می‌شود (بهاتا و همکاران، 2007).
متان یک گاز گلخانه‌ای قوی می‌باشد (سیروهی و همکاران، 2012) و بعد از 2CO عامل اصلی اثر گلخانه‌ای است به طوری که حدود 20 درصد از اثر گلخانه‌ای به دلیل حضور گاز متان می‌باشد. نشخوارکنندگان مسئول تولید 16 الی 20 درصد از گاز متان گلخانه‌ای اتمسفر می‌باشند (شکل 1-1) که 75% آن به وسیله‌ی گاوها تولید می‌شود و تولید متان حدود 2 الی 12 درصد از کل انرژی حاصله از غذا را از دسترس حیوان خارج کرده (بهاتا و همکاران، 2007) لذا امروزه متخصصین تغذیه دام به منظور کاهش اتلاف انرژی فوق، به ترکیبات ضد میکروبی مانند یونوفرها، آنتی بیوتیک‌ها و اخیرا گیاهان دارویی توجه بسیاری مبذول داشته‌اند زیرا این ترکیبات بر روی فعالیت میکروارگانیسم‌های تولیدکننده هیدروژن اثر ممانعت کنندگی دارند (سیروهی و همکاران، 2012). متان بعد از عامل اصلی اثر گلخانه‌ای است حدود 20 درصد از اثر گلخانه‌ای به دلیل حضور گاز متان می‌باشد (بهاتا و همکاران، 2007).

شکل 1-1- متابولیسم NADH H+ و تولید متان در نشخوارکنندگان1-2-2- اسیدهای چرب فرارمقدار اسیدهای چرب فرار کوتاه زنجیر 4 ساعت بعد از مصرف خوراک به حداکثر می‌رسد (آلاوونگ و همکاران، 2010). اسیدهای چرب فرار منبع اصلی تامین انرژی قابل متابولیسم برای حیوان نشخوارکننده می‌باشند (منصوری و همکاران، 1381). حدود 60 الی 70 درصد از انرژی اپیتلیوم روده از اسیدهای چرب کوتاه زنجیر، به ویژه از بوتیرات مشتق شده اسیدهای چرب کوتاه زنجیر حدود 80 درصد از انرژی نگهداری نشخوارکنندگان را تامین می‌کنند، اسیدهای چرب فرار اصلی شکمبه به ترتیب فراوانی عبارتند از: استیک، پروپیونیک، بوتیریک، ایزوبوتیریک، والریک، ایزو والریک، 2-متیل بوتیریک، هگزانوئیک و هپتانوئیک اسید که در بخش‌های مختلف شکمبه بر اثر تخمیر میکروبی فیبر جیره تولید می‌شوند (آلاوونگ و همکاران، 2010). تولید اسیدهای چرب فرار حاصل از تخمیر میکروبی، باعث کاهش pH شکمبه شده که توسط بزاق مجددا به حد نرمال (7/6=pH) خود باز گردانده می‌شود (سوناگاوا و همکاران، 2007). زیرا کاهش pHشکمبه تا کمتر از 2/6 سرعت هضم را کاهش داده و باعث افزایش مرحله تاخیر در هضم می‌شود. بزاق غدد بناگوشی سرشار از یون‌های نمکی (به ویژه سدیم، پتاسیم، فسفر و بی کربنات) است که ظرفیت بافری بزاق را تامین می‌کنند (منصوری و همکاران، 1381).
1-2-3- نیتروژن آمونیاکیتجزیه پروتئین‌ها و اسیدهای آمینه برای تولید آمونیاک بسیار مورد توجه بوده زیرا آمونیاک برای رشد بسیاری از میکروارگانیسم‌های شکمبه که کربوهیدرات‌ها را تخمیر می‌کنند ضروری است (منصوری و همکاران، 1381). از طرفی سنتز پروتئین میکروبی بستگی به حضور انرژی (حاصل از تخمیر مواد آلی موجود در شکمبه) و حضور نیتروژن حاصل از تجزیه‌ی منابع پروتئینی و غیر پروتئینی دارد و در عین حال آمونیاک شکمبه‌ای منبع اصلی برای سنتز پروتئین میکروبی به وسیله‌ی باکتری‌های شکمبه است (کارسلی و همکاران، 2000). آمونیاک سوبسترای مطلوب برای سنتز پروتئین توسط باکتری‌های سلولوتیک، متانزا و بعضی باکتری‌های آمیلولیتیک است (منصوری و همکاران، 1381). غلظت نرمال مورد نیاز از آمونیاک شکمبه‌ای برای حداکثر سنتز پروتئین میکروبی نامشخص است ولی در شرایط آزمایشگاهی این مقدار mg/dl 5 می‌باشد (کارسلی و همکاران، 2000).
1-2-4- ترکیب جمعیت‌های میکروبی در بخش‌های مختلف شکمبهاز نظر اکولوژیکی چند بخش مختلف در شکمبه وجود دارد و ترکیب جمعیت‌های میکروبی موجود در این بخش‌ها نیز متناسب با محل آن‌ها متفاوت می‌باشد (منصوری و همکاران، 1381). مثلا باکتری‌های تجزیه کننده اوره به دیواره شکمبه می‌چسبند، قسمت عمده‌ی تک‌یاخته‌ها و قارچ‌ها در قسمت سطح محتویات شکمبه قرار دارند، بخش مایع عمدتا مخزن باکتری‌های هضم کننده مواد غیر سلولزی است که اجزای محلول در آب را تجزیه می‌کنند، لایه‌های پایینی شکمبه که آبکی‌تر بوده و هنوز هم دارای مقدار قابل توجهی الیاف قابل تخمیر است احتمالا غنی ترین منبع باکتری‌های سلولایتیک می‌باشد (منصوری و همکاران، 1381).
1-3- میکروارگانیسم‌های شکمبهثبات محیط شکمبه و جریان منظم خوراکهای با قابلیت تخمیر بالا به عنوان سوبسترا به داخل آن، شکمبه را به عنوان محل مناسبی برای استقرار و رشد و تکثیر میکروارگانیسم‌ها جهت فعالیت‌های تخمیری مطلوب گردانده است، به طوری که در آن گونه‌های متنوع میکروبی به طور مشترک در تجزیه کربوهیدرات‌ها و پروتئین‌ها دخالت دارند. به طور کلی میکروارگانیسم‌های شکمبه به سه دسته باکتری‌ها، تک‌یاخته‌ها و قارچ‌های بی‌هوازی تقسیم بندی می‌شوند (منصوری و همکاران، 1381).
1-3-1- باکتری‌هاهر میلی لیتر از مایع شکمبه حاوی 10 الی 50 بیلیون باکتری می‌باشد (چیبا 2009). تا کنون بیش از 200 گونه باکتری از شکمبه جداسازی و شناسایی شده است (منصوری و همکاران، 1381). گروه‌های اصلی باکتری‌های شکمبه عبارتند از:
الف) سلولایتیک‌ها: سلولز را هضم می‌کنند.
ب) همی سلولولایتیک‌ها: همی سلولز را هضم می‌کنند.
پ) آمیلولایتیک‌ها: نشاسته را هضم می‌کنند.
ت) پروتئولایتیک‌ها: پروتئین را هضم می‌کنند.
س) پکتینولایتیک: پکتین را هضم می‌کنند.
ج) لیپولایتیک: لیپید را هضم می‌کنند.
چ) مصرف‌کننده‌های قندها: مونوساکاریدها و دی ساکاریدها را مصرف می‌کنند.
ح) مصرف‌کننده‌های اسیدها: اسیدهای لاکتیک، سوکسینیک، مالیک و غیره را مصرف می‌کنند.
خ) تولیدکننده‌های آمونیاک
د) سنتزکننده‌های ویتامین‌ها
ز) تولیدکننده‌های متان (چیبا، 2009).
همه‌ی این باکتری‌ها بی‌هوازی می‌باشند و بیشتر آن‌ها تخمیرکننده‌ی کربوهیدرات‌ها هستند از جمله باکتری‌های گرم مثبت و گرم منفی و باکتری‌های ثابت و متحرک. باکتری‌ها در روند تخمیر شکمبه‌ای نقش بسیار مهمی دارند (شکل 2-1)، هیدروژن ورودی منتقل می‌شود و سپس با مصرف شدن توسط متانوژن‌ها مقدار آن به تعادل می‌رسد. اگر باکتری‌های گرم مثبت کاهش یابند مقدار هیدروژن ورودی نیز کاهش می‌یابد و تخمیر به سمت پروپیونات، لاکتات و بوتیرات تغییر می‌یابد (چیبا، 2009). جمعیت زیادی از باکتری‌های آمیلولایتیک، پروتئولایتیک و باکتری‌های مصرف‌کننده اسید لاکتیک در روز اول پس از تولد در شکمبه ظاهر می‌شوند، باکتری‌های به شدت هوازی در روز دوم پس از تولد در شکمبه تجمع می‌یابند، باکتری‌های سلولایتیک و متان زا در روز چهارم ظاهر می‌شوند. 10 روز پس از تولد تعداد باکتری‌ها به حدود 108 در هر میلی‌لیتر می‌رسد (منصوری و همکاران، 1381).

شکل 1-2- روند تخمیر توسط باکتری‌های شکمبه‌ای1-3-2- تک‌یاخته‌هاتک‌یاخته‌ها متعلق به کلاس کینتوفراگمفرا و زیر کلاس وستیبولیفرا می باشند مژکداران به دو شاخه تریکوستوماتا و انتودیتیومورفیدا دسته‌بندی می‌شوند. تک‌یاخته‌ها از باکتری‌ها بزرگتر بوده و طول آن‌ها بین 5 تا 25 میکرومتر است (منصوری و همکاران، 1381). تراکم تک‌یاخته‌ها در شکمبه بین 104 تا 106 در هر میلی لیتر از مایع شکمبه گزارش شده و عمده تک‌یاخته‌های شکمبه مژکدار هستند اگر چه تعداد کمی تک‌یاخته تاژکدار نیز در شکمبه پیدا شده است (شین و همکاران، 2004). تک‌یاخته‌های مژکدار بعد از باکتری‌ها و قارچ‌ها در شکمبه ظاهر می‌گردند و به ندرت تا سن 2 هفتگی در نوزاد نشخوارکنندگان یافت می‌شوند آن‌ها معمولا در خلال هفته دوم پس از تولد یعنی هنگامی که غذای جامد جایگزین غذای مایع می‌شود در شکمبه ظاهر می‌شوند (منصوری و همکاران، 1381).
1-3-3- قارچ‌هاقارچ‌های بی‌هوازی شکمبه حدود 20 درصد توده میکروبی شکمبه را تشکیل می‌دهند که در 5 جنس نئوکالیماستکیس، کائکومایسس، آنائرومایسس، پیرومایسس و ارپینومایسس تقسیم‌بندی گردیده‌اند (منصوری و همکاران، 1381). سیکل زندگی قارچ‌ها دارای دو مرحله است: مرحله متحرک (زئوسپوری) که در این مرحله به صورت آزاد در مایع شکمبه یافت می‌شوند و دارای یک یا چند تاژک هستند و مرحله رشد و تکثیر گیاهی (اسپورانژیوم) که در این مرحله به وسیله‌ی سیستم رایزوئیدی به ذرات گیاهی می‌چسبد (دنمن و همکاران، 2006). چرخه زندگی قارچ‌ها در محیط کشت 24 تا 32 ساعت است (منصوری و همکاران، 1381). تراکم زواسپورها در مایع شکمبه 103 تا 105 در هر میلی لیتر مایع شکمبه است (منصوری و همکاران، 1381). قارچ‌های شکمبه تمام آنزیم‌های لازم برای تجزیه سلولز و همی سلولز و هیدرولیز الیگوساکاریدهای آزاد را تولید می‌کنند (دنمن و همکاران، 2006).
پروسه‌ی هضم در نشخوارکنندگان به وسیله‌ی واکنش‌های شیمیایی و محصولات تخمیری حاصل از عملکرد میکروارگانیسم‌های شکمبه انجام می‌پذیرد. با گسترش استفاده از مواد شیمیایی و تهدید میکروب‌های نامطلوب در طول چند دهه گذشته، تعادل میکروبی شکمبه در معرض خطر قرار گرفته است. امروزه فلور میکروبی شکمبه به عنوان یک عامل اساسی برای دستکاری شکمبه به منظور به دست آوردن بهترین عملکرد رشد حیوان و جلوگیری از بر هم خوردن تعادل میکروبی شکمبه مورد توجه قرار گرفته است (فروم هواتز، 2010). دستکاری شکمبه‌ای از طریق بهینه‌سازی فرمول جیره، استفاده از افزودنی‌های خوراکی و افزایش یا مهار گروه خاصی از میکروب‌ها امکان پذیر می‌باشد (کالسامیگلیا و همکاران، 2006).
استفاده از آنتی بیوتیک‌ها در تغذیه حیوانات، به عنوان محرکهای رشد ضد میکروبی بی‌شک برای بهبود فراسنجه‌های عملکردی حیوانات و پیشگیری از بیماری‌ها سودمند است. موننسین، گازولوسید و لیدلومایسین پروپیونات، اسپیرامایسین، ویرژینیامایسین و تایلوزین فسفات رایج‌ترین آنتی بیوتیک‌هایی هستند که در نشخوارکنندگان مصرف شده و همگی به خانواده آنتی بیوتیک‌های یون دوست تعلق دارند (برودیسکو و همکاران، 2000). نحوه عمل آنها مختل کردن شیب یونها از غشای سلول باکتریهای مستعد (یعنی آنهایی که این آنتی بیوتیک‌ها به صورت تخصصی علیه آنها عمل می‌کنند) می‌باشد و نتیجه آن تغییرات مفید در الگوی تخمیر شکمبه‌ای، افزایش نسبت پروپیونات به استات تولیدی، کاهش تولید متان و کاهش تجزیه پروتئین خوراک در شکمبه است که همه این‌ها باعث افزایش بازده غذایی و همچنین کاهش بروز اسیدوز و نفخ میگردد (کالاوی و همکاران، 2003).
اما تهدید امنیت زیستی برای سلامت انسان و حیوان، ناشی از افزایش مقاومت عوامل بیماریزا به آنتی بیوتیک‌ها و تجمع بقایای آنتی بیوتیک‌ها در تولیدات دامی و محیط باعث اعتراض گسترده برای حذف آنتی بیوتیک‌های محرک رشد از جیره حیوانات شده است. تولیدات طبیعی گیاهان، جایگزین‌های بالقوه‌ای برای آنتی بیوتیک‌هایی هستند که به خوراک دام افزوده می‌شوند. در سال‌های اخیر علاقه به خواص دارویی محصولات طبیعی (گیاهان، ادویه‌ها، گیاهان دارویی) به عنوان مکمل و افزودنی خوراک دام با پتانسیل بهبود سلامت و تولیدات دام و کاستن اثرات محیطی از تغذیه دام، به طور چشمگیری افزایش یافته است(محیطی اصل و همکاران، 1389).
گیاهان دارویی یک سری از متابولیت‌های ثانویه گوناگون مانند عصاره‌ها و اسانس‌ها را تولید می‌کنند که زمانی که این ترکیبات، استخراج شده و تغلیظ گردند می‌توانند بر جمعیت گونه‌های مختلف میکروارگانیسم‌های شکمبه شامل: باکتری‌ها، قارچ‌ها، پروتوزوآ و ویروس‌ها و به دنبال آن بر قابلیت هضم خوراک توسط نشخوارکنندگان اثرگذار باشند زیرا قابلیت هضم خوراک در نشخوارکنندگان تحت تاثیر عوامل گیاهی، حیوانی و میکروبی قرار دارد (محیطی اصل و همکاران، 1389).
از جمله مناطقی که می‌توان گیاهان داروئی خودرو را به فراوانی در آن‌ها یافت مراتع می‌باشند. مراتع با ارزش‌ترین و در عین حال ارزان‌ترین منبع خوراک دام در مناطق مختلف ایران از جمله استان اردبیل می‌باشند. از کل مساحت استان اردبیل که بالغ بر 1786730 هکتار می‌باشد 1076968/6 هکتار آن عرصه منابع طبیعی بوده که 1015000 هکتار آن را مراتع غنی از انواع گیاهان دارویی تشکیل می‌دهد. گیاهان دارویی در فصول مختلف و به فراوانی در سطح مراتع استان اردبیل یافت می‌شوند که از آن جمله می‌توان به اسطوخودوس، پنیرک، جاشیر، مرزنجوش، گلپر، هویج کوهی، مریم نخودی، بابونه، بومادران، پونه، گزنه، پولک، مریم گلی، علف چای، بارهنگ، گل گاو زبان، بولاغ اوتی، پاخری، سپیده، آویشن و غیره اشاره کرد (اداره آمار و اطلاعات سازمان جهاد کشاورزی استان اردبیل،1390).
نبود اطلاعات کافی از ارزش تغذیه‌ای گیاهان دارویی ، ارزش درمانی و موارد مصرف آنها، امکان استفاده بهینه از این منابع را در تغذیه دام و افزایش راندمان تولید، محدود ساخته است (نیکخواه،1385). در مجموع با احتساب و ارائه این گونه اطلاعات کمک قابل توجهی به افزایش تمایل کشت و مدیریت گیاهان دارویی و افزایش راندمان تولید دام صورت می‌گیرد. بنابراین در راستای تولید اطلاعات قابل استفاده در مدیریت دام و گیاهان دارویی منطقه، هدف این پژوهش تعیین اثر برخی از گیاهان دارویی مراتع استان اردبیل بر جمعیت میکروبی شکمبه تحت شرایط آزمایشگاهی می‌باشد.
1-4- اهمیت گیاهان داروییهزاران سال است که انسان از گیاه و عصاره‌های استخراج شده از آن‌ها استفاده می‌نماید. اولین اطلاعات ثبت شده در این خصوص به حدود 2600 سال قبل از میلاد در بین النهرین برمی‌گردد. قدیمی‌ترین سند نوشته شده در مورد تهیه عصاره‌های گیاهی به نوشته‌های مورخ یونانی، هرودوتوس برمی‌گردد (425 الی 484 قبل از میلاد مسیح).
با توجه به خصوصیات بیولوژیکی فعال و چندگانه عصاره‌های گیاهان داروئی این ترکیبات می‌توانند یک افزودنی جایگزین مناسب بسیاری از افزودنی‌های دیگر از جمله آنتی بیوتیک‌ها گردند. از جمله این خصوصیات می‌توان به فعالیت آنتی اکسیدانی، فعالیت ضدقارچی، فعالیت تسکین‌دهندگی، فعالیت ضد باکتریایی و ضد ویروسی اشاره کرد. به علاوه عصاره گیاهان داروئی به دلیل طعم و عطر خاص خود منجر به تحریک مصرف خوراک می‌شوند، کاهش تلفات و عدم نیاز به رعایت حذف پیش از کشتار در اغلب موارد و احتمال نبود ترکیبات باقیمانده مضر در تولیدات حیوانی و در عین حال حفظ سلامت محیط زیست از دیگر خواص گیاهان داروئی می‌باشد. به طور کلی میکروفلور دستگاه گوارش، مورفولوژی روده، تخلیه معده، فعالیت بخش‌های گوارشی داخلی و در نهایت فراسنجه‌های عملکردی تحت تاثیر ترکیبات گیاهی قرار می‌گیرد. عصاره‌های گیاهان داروئی باید در کشورهای کمتر توسعه یافته‌ای چون ایران بیشتر مورد توجه قرار گیرند زیرا دراین کشورها مشکلات حمل و نقل مانع بازاریابی برای محصولات کشاورزی حجیم شده و افزایش هزینه‌ها را در پی دارد اما عصاره‌های گیاهی از جمله گیاهان داروئی به دلیل کم حجم بودن این مشکلات را مرتفع نموده و استفاده از آنها مقرون به صرفه می‌باشد (محیطی اصل و همکاران، 1389).
1-5- عوامل موثر در تولید عصاره‌های گیاهی1-5-1- اندام‌های خاص تولیدکننده عصاره‌های گیاهیمیزان و ترکیب عصاره گیاهی به نوع اندام مورد بررسی بستگی دارد. عصاره‌های گیاهی تجمع‌یافته در اندام‌های مختلف یک گیاه ممکن است به لحاظ ترکیب و مقدار متفاوت باشند. از جمله این اندام‌ها می‌توان به: پوست درخت، توت‌ها، گل‌ها، برگ‌ها، پوست میوه، رزین، ریشه، ریزوم، دانه‌ها و چوب اشاره کرد. اما در اکثر موارد اندام‌های مختلف دارای خصوصیات مشابهی هستند (محیطی اصل و همکاران، 1389).
1-5-2- ساختار ترشحیعصاره‌های گیاهی توسط ساختارهای تخصص یافته متنوعی در گیاه تولید، ذخیره و آزاد می‌شود. ساختارهای ترشحی عبارتند از:
1-5-2-1- ساختار ترشحی خارجیتریکوم‌ها، نعناع، سدابیان، گرانیاسه، سیب‌زمینی و شاهدانه خانواده شمعدانی.
اسموفورها خانواده فلفل، ارکیده و شیپوریان.
1-5-2-2- ساختار ترشحی داخلیایدوبلاستها: خانواده برگ بو، مگنولیا، فلفل، شیپوریان، زرآوند، گل یخ.
حفره: خانواده سدابیان، مورد، میوپوراسه، هیپریکاسه و بقولات.
مجاری: خانواده چتریان، شمعدانی، کاج، مورد، بقولات و آناکاردیاسه (محیطی اصل و همکاران، 1389).
1-5-3- عوامل اکولوژیکیتولید عصاره تا حد زیادی تحت زیادی تحت تاثیر عوامل اکولوژیکی و شرایط آب و هوایی از جمله تاثیرات خاک، مواد مغذی، آب، نور و دما قرار دارد. به طور کلی، افزایش نور و دما، اثر مطلوبی بر تولید عصاره‌های گیاهی دارد (فیگوییردو، 2008) تنش آبی در برخی گونه‌ها مانند اوسیوم باسیلی، ترخون (Ar--isia dracunculus) و شوید (Anethum graveolens) منجر به تولید دو برابر عصاره‌های گیاهی و تغییر در ترکیب آن‌ها می‌شود (سایمون و همکاران، 1992).
1-5-4- کشت و فرآوری گیاهمنشا گیاهان مورد استفاده برای تولید عصاره‌های گیاهی نقش مهمی در کیفیت عصاره به دست آمده دارد. امروزه گونه‌های حاوی عصاره قادر به رشد در مناطقی غیر از منطقه بومی خود می‌باشند. علاوه بر رویه مناسب کشاورزی، بهبود عملکرد محصولات باعث شده تا تولیدکنندگان کنترل لازم را بر روی تولید گیاهان دارویی و فرآیند آنها به منظور تهیه محصولی با کیفیت داشته باشد.
1-6- مشخصات گیاه‌شناسی گونه‌های مورد مطالعه1-6-1-گیاه سپیده (Crambe orientalis)این گیاه با 34 گونه یکی از بزرگ‌ترین جنس‌ها‌ی خانواده brassiceae از زیرخانواده‌های brassicaceae می‌باشد (رضوی و همکاران، 2009) خانواده brassicaceae شامل 13-19 زیرخانواده، 350 جنس و حدود 3500 گونه در جهان است.
جنس crambe در گیاه‌نامه ایران با سه گونه نمایش داده شده است C. Hispanical، C.kotschyana و C. orientalis L.
Crambe orientalis L گسترده‌ترین گونه‌ی مربوط به این جنس در ایران می‌باشد که سپیده نامیده می‌شود (شکل 3-1). این گونه به اندازه 5/1 متر رشد می‌کند و دارای ساقه و برگ‌های موج‌دار است که ممکن است به طول 5/0 متر هم برسد. گل‌ها سفید هستند و طی ماه‌های آوریل – جولای پدیدار می‌شوند. گونه‌های مختلفی از crambe ممکن است به عنوان سبزیجات، خوراک دام و یا گیاه دارویی مورد استفاده قرار گیرد (رضوی و همکاران، 2009).

شکل 1-3- گیاه دارویی Crambe orientalis LCrambe orientalis L یک گیاه پایا و دائمی به طول 30 الی 120 سانتیمتر بسته به فصل و توده جمعیت آن و گاهی 1/2 متر می‌باشد که اکثرا در مزرعه‌ها، دامنه‌ی کوه‌ها، باتلاق‌های خشک، زمین‌های سنگلاخی و خاک‌های رس رشد می‌کند. گیاه دارویی کرامپ در شرایط متفاوت از جمله در دماهای مختلف، ارتفاع، شرایط آفتابی و خشک سالی قادر به رشد و ادامه حیات می‌باشد که باعث شده این گیاه انتشار گسترده‌ای از غرب به شرق یافته است به طوری که از اروپا و شرق مدیترانه، به غرب آسیا و ایران گسترده شده است این گیاه برگ‌های بزرگی دارد که گاهی به طول 60 سانتیمتر می‌رسد برگ‌ها پر شکل و آویزان هستند و رایحه‌ای شبیه کلم پیچ دارد. برگ‌های جوان آن مزه و بوی خوشایندی نزدیک بوی فندق دارد (رضوی و همکاران، 2009) گل‌ها‌ی این گیاه سفید یا زرد و خوشه‌ای شکل هستند میوه‌های آن حتما به بلوغ می‌رسند مگر در باران‌های سنگین و بادهای تند (توتوس و همکاران، 2009).
تحقیقات فیتوشیمیایی اخیر روی بخش‌های هوایی برخی گونه‌های crambe حضور گلوکوزینولات‌ها و فلاونوئیدهای مختلف مانند لوتئولین، آپیژنین، کوئرستین و کامپفرول را آشکار ساخته است. این نشان می‌دهد که پتانسیل آنتی اکسیدانی قوی این گیاه در عصاره‌های متانولی و دی کلرو متانولی آن مربوط به فلاونوییدهای آن است. گلوکوزینولات تجزیه شده و تبدیل به ایزوتیوسیانات می‌شود لذا عصاره و اسانس گل‌ها و برگ‌های این گیاه دارای اثرات سیتوتوکسینی و فیتوتوکسینی می‌باشند. ترکیب اصلی عصاره و اسانس گل‌ها و سرگل‌های این گیاه، 2-متیل-5-هگزن انیتریل و 3-بوتنیل ایزوتیوسیانات می‌باشد عصاره هگزانی آن فعالیت ضدمیکروبی ندارد. ولی عصاره متانولی آن دارای اثرات ضد باکتریایی قوی علیه هر دو نوع باکتری‌های گرم مثبت و گرم منفی می‌باشد که می‌تواند به دلیل ایزوتیوسیانات باشد. این ترکیبات می‌توانند به راحتی به غشا نفوذ کنند بنابراین نقش دفاعی فعالی را برای گیاهان علیه امراض و گیاه خواران بازی می‌کنند. عصاره متانولی این گیاه قوی ترین اثر را نسبت به سایر انواع عصاره‌ها دارد. عصاره‌های هگزانی، دی کلرو متانولی و متانولی این گیاه بیشترین اثر Allelopathic را نشان می‌دهند که می‌تواند مرتبط با گلوکوزینولات و ایزوتیوسیانات باشد. به خاطر پتانسیل بالای خاصیت ضدمیکروبی برگ‌های C. orientalis این گیاه می‌تواند به عنوان یک گندزدای قوی و یک آنتی بیوتیک علیه میکروارگانیسم‌ها استفاده شود (رضوی و همکاران، 2009). دانه‌ها و میوه‌ی این گیاه غنی از روغن‌های فراری از جمله میرستیک، پالمیتیک، استئاریک، اولئیک، آراشیک، آراشیدونیک، اروسیک، لینولئیک، لینولنیک، پالمیتولئیک، لیگنوسرینیک و ایکوزانوئیک اسید (جدول 1-1) می‌باشند (اخونوو و همکاران، 2012). اروسیک اسید که در میان سایر اسیدهای چرب مربوط به روغن‌های فرار کرامپ بیشترین مقدار (39/39 درصد) را دارد یک هیدروکربن دارای 22 اتم کربن و یک پیوند دو گانه (22:1) می‌باشد. این ساختار نقطه‌ی ذوب و نقطه‌ی تبخیر بالایی (C229) به این ترکیب می‌دهد. توانایی بالا در برابر حرارت زیاد و داشتن حالت مایع در دماهای پایین این روغن را به چرب‌کننده‌ای قوی مبدل ساخته است.
جدول 1-1- موقعیت و مقدار اسیدهای چرب در عصاره C.orientalisاسیدهای چرب(%)تعداد کربن‌هامقدار در گیاه (%)
پالمیتولئیک اسید16:120/0
پالمیتیک اسید16:027/3
لینولئیک اسید18:242/12
لینولنیک اسید18:321/21
اولئیک اسید18:161/1
استئاریک اسید18:053/0
آراشیدونیک اسید20:042/0
اروسیک اسید22:139/39
نروونیک اسید24:199/0
لیگنوسریک اسید24:020/0
سیس-ایکوزانوئیک اسید20:195/9
ترانس- ایکوزانوئیک اسید20:139/1
SAFA87/4

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

MUFA 53/53
PUFA 63/33
جمع58/91
SAFA: saturated fatty acidsMUFA:monounsaturated fatty acids PUFA:polyunsaturated fatty acids

این گیاه همچنین محتوی آلکالوئید نیز می‌باشد. ترکیبات اصلی این گیاه از گروه الکالوئیدها عبارتند از:
بوتن-1-ایزوتیوسیانات و هیدروکربن‌های 2-متیوکسی هگزن و 3-متوکسی-4-هیدروکسی استیرن. کرامپ همچنین دارای انواع فیبر از جمله هولوسلولز، آلفا سلولز، سلولز، لیگنین، خاکستر و سیلیکا می‌باشد. محتوای لیگنین کرامپ 24/5 درصد و نسبت سلولز آن 40/1 درصد می‌باشد. بالاترین قابلیت انحلال‌پذیری آن با %1 NaoH برابر 34/9% می‌باشد. نسبت هولوسلولز و -سلولز آن نیز 70/50% است (اخونوو و همکاران، 2012).
گیاه دارویی کرامپ در شرایط متفاوت از جمله در دماهای مختلف، ارتفاع، شرایط آفتابی و خشک‌سالی قادر به رشد و ادامه حیات می‌باشد.
1-6-2- گیاه گلپر (Heracleum persicum)گونه‌های مختلفی از جنس Heracleum در قرن 19 میلادی از جنوب غرب آسیا به اروپا معرفی شدند و در حال حاضر به طور گسترده‌ای در بسیاری از کشورها یافت می‌شود جنس Heracleum در دنیا دارای حدود 60 الی 70 گونه می‌باشد که همه آن‌ها گونه‌های پایا و یا دو ساله هستند تا جایی که شناخته شده گونه‌های Heracleum هیبرید و با فرمول 22=n2 می‌باشند. جنس Heracleum شامل بیش از 70 گونه در سرتاسر جهان است و در ایران 10 گونه بومی دارد (حاج هاشمی و همکاران، 2009) که بیشتر بومی مناطق البرز و شمال ایران در این مناطق تا محدوده ارتفاعی 2000 الی 3000 متری نیز رشد می‌کند (مجاب و همکاران، 2003).
Heracleum persicum که معمولا به زبان فارسی گلپر نامیده میشود (شکل 4-1) از خانواده Apiaceae بوده و از جمله گیاهان گلدار محسوب میشود این گیاه یک گیاه دو یا چند ساله پرتخم است که بومی ایران، ترکیه و عراق می‌باشد (همتی و همکاران، 2010).
شکل 1-4- گیاه گلپر تاریخ شناخت گونه Heracleum persicum نامشخص است و تقریبا به اوایل سال 1829 نسبت داده می‌شود (دهقان نوده و همکاران، 2010) گونه‌های H. laciniatum auct، H.tromsoensis و H.CF.pubescens هم‌خانواده و مترادف این گونه می‌باشند. گونه H.persicum که گاهی با گونه‌های H.mantegazzianum و H.sosnowskyiاشتباه گرفته می‌شود، گیاهی بلند و ایستاده است که در مناطق معتدل نیمکره شمالی و همچنین در کوههای بلند گسترده شده است. تمرکز بیش‌ترین تنوع گونه‌های آن در کوه‌های قفقاز و چین است (دهقان نوده و همکاران، 2010). از میوه‌های این گونه به طور گسترده‌ای به عنوان ادویه‌جات و از ساقه‌های جوان آن نیز در تهیه خیار شور استفاده می‌شود (همتی و همکاران، 2010). این گونه دارای روغن‌های فرار، فلاونوییدها و فورانوکومارین‌ها می‌باشد (دهقان نوده و همکاران، 2010). در ریشه این گیاه ترکیباتی از قبیل pimpinelin، isopimpinellin، bergapten، isobergapten، sphondin و furanocoumarins وجود دارد. عصاره هیدروالکلی آن حاوی تعدادی فورانوکومارین است که از آن جمله می‌توان به sphondin اشاره کرد. گزارش شده است که این ترکیب ممانعت کننده‌ی 8-beta است که این ترکیب تحریک کننده ترشح آنزیم سیکلواکشیژناز دو می‌باشد از آنجایی که این آنزیم یک نقش کلیدی در درد و التهاب دارد می‌تواند اثر تسکین‌دهنده‌ی این گیاه را توضیح دهد. بر خلاف عصاره هیدروالکلی این گیاه کومارین‌ها در روغن ضروری آن یافت نمی‌شود و اثر تسکین‌دهندگی آن ممکن است مربوط به ترکیبات استری آن باشد (حاج هاشمی و همکاران، 2009). عصاره استونی دانه‌های این گیاه دارای برخی ترکیبات ترپنی از جمله eugenol، Cineol و Linalool می‌باشد که دارای اثر بی‌حس‌کنندگی، سست‌کنندگی عضلات و همچنین اثر بازدارندگی بر رو‌ی تحرک می‌باشند. به همین دلیل ترکیبات ترپنی موجود در دانه‌ها ممکن است مسئول اثر تسکین دهندگی آن‌ها باشند (همتی و همکاران، 2010). اسانس میوه‌های گیاه شامل 95% استرهای آلیفاتیک، 4% الکل‌های آلیفاتیک و 1% مونوترپن‌ها می‌باشد. ترکیب اصلی در اسانس برگ‌های این گیاه trans-anetholeمی‌باشد (مجاب و همکاران، 2003).
روغن‌های فرار آن حاوی ترکیباتی مانند هگزیل بوتیرات (56/5%)، اکتیل استات (16/5%)هگزیل-2متیل بوتانات (56/5%)(butanoat) و هگزیل ایزوبوتیرات (3/4%) می‌باشند. به دلیل وجود این مواد فعالیت‌های آنتی اکسیدانی، ضدمیکروبی و ضد قارچی در این گیاه دیده می‌شود. اسانس این گیاه همچنین خاصیت سیتو توکسینی دارد که به دلیل حضور فنول‌هایی از قبیل thymol، carvacrol، آلدهیدهایی از قبیل geranial، citronella و الکل‌هایی از قبیل geraniol، linalool، citronellol و lavandulol است. عصاره هیدروآلکالوئیدی این گونه حاوی ساپونین می‌باشد عصاره هیدروالکلی و اسانس این گیاه دارای اثرantinociceptive و ضد فساد هستند. عصاره ریشه و بخش‌های هوایی این گیاه به طور کلی رشد bacillus anthracis را متوقف می‌کند. این گیاه می‌تواند هر دو نوع ایمنی هومورال و سلولی را تحریک کند و در عین حال افزایشی در پاسخ ایمنی به وجود آورد که این به دلیل حضور فلاونوئیدها یا کومارین‌ها می‌باشد که می‌توانند پاسخ هومورال را به وسیله‌ی تحریک ماکروفاژها و افزایش β-lymphocytesکه در سنتز آنتی‌بادی‌ها دخالت دارند افزایش دهند. در عین حال انواع متنوعی از فلاونوئیدهای موجود در این گیاه می‌توانند فعالیت سلول‌های T، سیتوکین‌ها، اینترفرون گاما و ماکروفاژها را به طور معنی‌دار‌ی افزایش دهند و بنابراین برای درمان بیماری‌های مربوط به سیستم ایمنی مفید باشند عصاره متانولی این گیاه به خاطر دارا بودن هگزیل استات و اکتیل بوتیرات دارای خاصیت ضد توموری می‌باشد (همتی و همکاران، 2010).
1-6-3- گیاه zosima absinthifoliaاین گیاه یکی از اعضای خانواده Apiaceae می‌باشد (رضوی و همکاران،2010). جنس zosima دارای چهار گونه است که عبارتند از:
Z. absinthifolia، Z. korovinii، Z gilliana و Z. Radians (منه من و همکاران، 2001).جنس zosimaدر ایران شامل گیاهان 6 ساله یا همیشگی است. zosima absinthifolia یک گونه‌ی شناخته شده از این جنس است که در ایران، ترکیه، عراق و کشورهای مختلف قفقاز، شرق میانه و آسیای مرکزی یافت می‌شود (شکل 5-1). این گیاه در استپ‌ها، زمین‌ها و دامنه‌های آهکی رشد می‌کند و ساقه‌های شیار دارش ممکن است به ارتفاع یک متری نیز برسد. برگ‌های این گیاه سه پر است و گل هایش به رنگ سبز روشن تا زرد می‌باشد. دوره گلدهی آن از آوریل شروع می‌شود و تا جولای ادامه می‌یابد. شکل میوه‌هایش بیضوی مایل به دایره با حاشیه‌های آماس کرده است. به غیر از گونه‌یHeracleum گونه‌ی Z. absinthifolia نیز در ایران معمولا به نام گلپر شناخته می‌شود زیرا میوه‌هایش به عنوان طعم‌دهنده و ادویه غذایی به کار برده می‌شوند (رضوی و همکاران، 2010). جنس zosimaنخستین بار در سال 1814 به وسیله‌ی هافمن معرفی شد وی همچنین تشخیص داد که گونه‌های Heracleum absinthifolium و Tordylium absinthifolium هم خانواده‌های Z. orientalis می‌باشند.

شکل 1-5- گیاه دارویی zosima absinthifoliaجنس Zosima بر اساس شکل میوه‌ها با گونه‌ی Heracleum فرق دارد. در Heracleum میوه‌ها دارای پره‌های شفاف (زائده‌های حبابی شکل) در بخش‌های جانبی هستند که تشکیل یک لبه ضخیم را می‌دهد. ارتفاع این گیاه از 30 تا 100 سانتیمتر در Z. absinthifolia، 50 تا 85 سانتیمتر در Z.gilliana، 35 تا 50 سانتیمتر در Z.koroviniiو 30 تا 50 سانتیمتر در Z.--ians متفاوت است. همه‌ی گونه‌های این جنس یک یقه‌ی لیفی محکم تولید می‌کنند که از پایه برگ‌ها تا بالاتر از ریشه ادامه دارد. ساقه در همه‌ی گونه‌ها مودار است (منه من و همکاران، 2001).
اسانس دانه‌های Z.absinthifolia که به وسیله‌ی اکتیل استات (87/4%)، اکتیل اکتانات (5% octyloctanoate) و 1-اکتانول (%2/3 1-octanol) به دست آمده دارای اثر ضد باکتریایی بالایی علیه باکتری‌های گرم مثبتی مانند Bacillus subtilis، Bacillus pumilusمی‌باشد. همچنین عصاره دانه‌های این گونه فعالیت آنتی اکسیدانی و فیتوتوکسینی نشان می‌دهد. مانند سایر گونه‌های Apiaceae گونه‌ی Z.absinthifolia نیز دارای کومارین می‌باشد (رضوی و همکاران، 2010). عصاره n- هگزانی میوه‌های این گیاه دارای سه مشتق کومارین می‌باشد که عبارتند از: imperatorin، auapteneو 7-prenyloxycoumarine.همچنین دیگر مشتقات کومارینی (bergapten، deltoin، columbianadin، isobergapten، isopimpinellin، imperatorin، pimpinellin، sophodin و umbelliferone)، انواع فلاونوئیدها (quercetin، kaempferol)، و آلکالوئیدها ازz.absinthifolia استخراج شده‌اند. از این میان deltoinو columbianadin ترکیبات اصلی هر دو عصاره n-هگزانی و اتانولی می‌باشند. در هر دو قسمت ریشه و بخش‌های هوایی محتوای deltoinبیشتر از columbianadinاست و همچنین کل محتوای deltoin وcolumbianadin در ریشه بیشتر از بخش‌های هوایی می‌باشد (باهادیر و همکاران، 2010).
Imperatorin در بسیاری از جنس‌های خانواده Apiaceae مانند Angelica، Prangosو Heracleum وجود دارد (رضوی و همکاران، 2010).
1-6-4- گیاه مریم نخودی Teucrium polium l.گیاه Teucrium polium از خانواده Lamiaceae یکی از300 گونه‌ی مربوط به جنس Teucrium است. این گیاه به صورت باستانی و بر اساس عادات بومی به عنوان چای دارویی مورد استفاده قرار می‌گیرد (میرغضنفری و همکاران، 2010). جنس مریم نخودی شامل بیش از 340 گونه در سراسر جهان می‌باشد. در ایران 12 گونه یک ساله و چند ساله از این گیاه وجود دارد که 3 گونه آن انحصاری ایران می‌باشد. گل‌هایش کوچک هستند و رنگی بین صورتی تا سفید دارند. این گیاه درختچه‌ای شکل، آروماتیک و دارای برگ‌های بیضی شکل است (مقتدر، 2009). ارتفاع این گیاه 50-20 سانتیمتر است و برگ‌هایش به رنگ سبز مایل به خاکستری می‌باشند (شکل 6-1). گل‌های این گیاه در ماه‌های جون تا آگوست دیده می‌شوند. این گیاه به صورت وحشی در اروپای جنوبی، آسیای جنوب غربی و مرکزی و آفریقای شمالی رشد می‌کند.

شکل 1-6- گیاه دارویی Teucrium poliumگونه‌های دارویی مریم نخودی شامل Teucrium poliumو Teucrium chamaedrys می‌باشد از آنجا که این گیاه منجر به کاهش قند خون می‌شود برای درمان دیابت نیز به کار می‌رود. این گیاه در درمان بسیاری از بیماری‌های پاتوفیزیولوژیکی از قبیل بیماری‌های روده ای، دیابت و روماتیسم به کار می‌رود سایر اثرات درمانی این گیاه عبارتند از: اثر آنتی اکسیدانی، ضد فساد، ضد درد، ضد تب، اثر ضد میکروبی، محافظ کبد، ضد زخم معده و سیتوتوکسین. عصاره آن دارای فعالیت‌هایی از قبیل کاهش فشار خون، ضد التهاب، ضد تشنج، ضد باکتری و ضد تب می‌باشد (ساخانده و همکاران، 2000). عصاره هیدروالکلی این گیاه سطح انسولین سرم را در موش کاهش می‌دهد. ترکیبات شیمیایی عصاره متانولی این گیاه عبارتند از dimethoxyflavone-7 و 4-hydroxy-5 عصاره متانولی این گیاه ترشح انسولین را تحریک می‌کند. فقط عصاره‌های الکلی این گیاه ترشح انسولین را افزایش می‌دهند که این ممکن است به دلیل وجود ترکیبات بیواکتیو موجود در عصاره متانولی و الکلی این گیاه باشد (میرغضنفری و همکاران، 2010). آنالیز شیمیایی این گیاه وجود ترکیباتی مانند فلاونوئیدها، Cirsiliol و Iridoids را نشان می‌دهد (ساخانده و همکاران، 2000). تاکنون از گونه‌های مختلف مریم نخودی انواع نئوکلرودان، دی ترپنوئید و نیز تری ترپنوئید جداسازی شده‌اند .تعداد کمی فورانودی ترپن از عصاره‌های این گیاه به دست آمده است. حدود 28 ترکیب از اسانس این گیاه استخراج شده است که به طور کلی عبارتند از:
آلفا-پیین، لینالول، کاریوفینل، بتا پیین و غیره. به نظر می‌رسد که منطقه جغرافیایی این گیاه بر ترکیب اسانس و عصاره آن تاثیر مهم بگذارد (مقتدر، 2009). مهم‌ترین و تاکسونومیکی‌ترین گونه‌های polium عبارتند از T. polium و T.Capitatum که در نواحی مدیترانه، ایران و توران می‌باشند (دولجا و همکاران، 2010).
1-6-5- گیاه پونه (Oregano vulgare L.)پونه یک گیاه دارویی است که همچنین به عنوان یک گیاه تزئینی نیز به کار می‌رود (شکل 7-1). این گیاه متعلق به خانواده Verbenaceae می‌باشد (نیبلاس و همکاران، 2011) و از ماه آگوست به طور همزمان میوه و دانه می‌دهد (نورزی و همکاران، 2009). پونه گیاهی پرپشت و درختچه‌ای شکل می‌باشد و متعلق به مناطق نیمه خشک است (نیبلاس و همکاران، 2011).

شکل 1-7- گیاه دارویی Oregano vulgare Lاین گیاه به طور کلی از لحاظ مورفولوژیکی و شیمیایی بسیار تغییرپذیر است که مرتبط است با محل رویش آن، شکل گیاه و همچنین مسائلی از قبیل میزان آب و نیتروژن موجود در خاک، مرحله‌ی رشد و فصل رویش.به عنوان مثال: گونه‌ی vulgare L.ssp.hirtum. که در آب و هوای مدیترانه‌ای رشد می‌کندغنی از اسانس است در حالی که همین گونه در آب و هوای قاره‌ای دارای اسانس بسیار کمی می‌باشد. افزایش نیتروژن خاک به اندازه kg/ha 80 موجب افزایش ارتفاع و بازدهی گیاه می‌شود و یا کاهش آب در خاک وزن گیاه را کاهش می‌دهد ولی محتوای اسانس آن را کاهش نمی‌دهد. این گیاه دارای خواص آنتی باکتریال، آنتی اکسیدانی و آرام بخشی است (نورزی و همکاران، 2009). اسانس این گونه با گونه‌ی Oregano(Lippa palmeri S.wats) قابل مقایسه می‌باشد (نیبلاس و همکاران، 2011).
عصاره و اسانس این گیاه حاوی حدود 45 ترکیب شیمیایی می‌باشد (نیبلاس و همکاران، 2011) که برخی از آن‌ها عبارتند از: sabinene، β-pinene، β-(z)-ocimene، β-(E)-ocimene، φ-terpinene، e-caryophyllene، germacreneD، bicyclogermacrene، α-(E,E)-farnesene،
germacrene-D-4-ol، تیمول و کارواکرول (ستین و همکاران، 2009). از این میان اصلی‌ترین و مهم‌ترین ترکیبات عبارتند از: کاواکرول، تیمول، ائوژنول، لینالول، ترپن‌ها، Cimene و Pinene (کاردازو و همکاران، 2005). زمانی که گیاه در اوج زمان گلدهی باشد بیشترین میزان اسانس و عصاره را دارد. در طول دوره گلدهی با افزایش محتوای تیمول به طور همزمان غلظت کارواکرول کاهش می‌یابد تا زمانی که دیگر در گیاه نباشد. با خشک شدن گیاه میزان آن‌ها به حدود 5/0 الی 5.1 درصد در هر برگ کاهش می‌یابد (ستین و همکاران، 2009). این ترکیبات خواص ضد باکتریایی، ضد قارچی، ضدحشرات و ضد ویروسی به گیاه بخشیده‌اند. گیاهان این خانواده به دلیل محتوای بالای ترپن‌ها مصارف دارویی دارند که عبارتند از: limonene، myrcene، durene،p-cymene که همچنین به گیاه خواص ضد میکروبی می‌بخشند(کاردازو و همکاران، 2005). فعالیت ضد باکتریایی بسیار قوی این گیاه ممکن است مربوط به محتوای بالای phenolic monoterpene و یا thymol acetate، ائوژنول و یا متیل ائوژنول موجود در این گیاه باشد. مکانیسم عمل این ترکیبات مرتبط است با آب‌گریزی ترکیبات موجود در اسانس و عصاره این گیاه که آن‌ها را قادر می‌سازد لیپید غشای سلولی باکتریایی را بشکند سپس نفوذ پذیری یون‌ها را افزایش می‌دهد و به دنبال آن یون و لیپید به درون سلول نشر پیدا می‌کنند که به نوبه خود باعث لیز شدن سلول می‌شود (نیبلاس و همکاران، 2011). در عین حال حضور فنولیک هیدروکسیل به ویژه در کارواکرول دلیلی بر فعالیت ضدپاتوژنی عصاره و اسانس این گیاه می‌باشد (کادازو وهمکاران، 2005).
یکی از گسترده ترین کاربردهای گیاهان دارویی استفاده از آن‌ها به منطور کاهش گازهای شکمبه‌ای به ویژه متان است. نشخوارکنندگان رابطه‌ای هم زیستی با میکروارگانیسم‌های شکمبه دارند به طوری که حیوان مواد مغذی مورد نیاز و شرایط مطلوب زیست میکروازگانیسم هارا فراهم می‌کند و در عوض میکروارگانیسم‌ها نیز فیبر جیره را تخمیر می‌کنند و پروتئین میکروبی را به عنوان یک منبع انرژی برای حیوان تامین می‌کنند اما در هر صورت این رابطه‌ی هم زیستی منجر به از دست دادن انرژی به شکل متان و از دست دادن پروتئین به شکل آمونیاک می‌گردد. بنابراین دستکاری شکمبه‌ای و استفاده از افزودنی‌هایی از قبیل گیاهان دارویی برای کاهش اتلاف انرژی به شکل گازهای شکمبه‌ای مورد توجه قرار گرفته است (سلامت آذر و همکاران، 2011). از این رو روش‌های بسیاری به منظور ارزیابی ارزش غذایی خوراک در شرایط آزمایشگاهی و یا به طور مستقیم بر روی حیوان مورد استفاده قرار گرفته است که یکی از پرکاربردترین آن‌ها روش آزمون گاز تست می‌باشد (گوئل و همکاران، 2006). تکنیک تولید گاز در شرایط آزمایشگاهی یک روش مفید برای ارزیابی ارزش غذایی علوفه مورد استفاده دام است چرا که تخمینی از میزان تخمیر مواد مغذی در شکمبه می‌دهد (سیروهی و همکاران، 2009). به طور کلی آزمون تولید گاز یک پارامتر مناسب برای پیش بینی قابلیت هضم، تخمیر، سنتز و تولید پروتئین میکروبی از سوبسترا به وسیله‌ی میکروب‌های شکمبه در سیستم in vitro می‌باشد (سامورت و همکاران، 2000). در روش تولید گاز ضمن آن که ثبت سرعت تخمیر خیلی آسان است، با یک انکوباسیون علاوه بر قابلیت هضم ظاهری، قابلیت هضم حقیقی را نیز می‌توان برآورد نمود، زیرا حجم گاز تولیدی بهترین شاخص و معرف برای قابلیت هضم ظاهری است و ماده آلی ناپدید شده نیز بیانگر قابلیت هضم حقیقی می‌باشد (منصوری و همکاران، 1381).
1-7- روش آزمون گازتولید گاز آزمایشگاهی مطابق با روش منک و استین گاس (1988) اندازه‌گیری می‌شود. در این روش، نمونه‌های مواد خوراکی (200 میلی گرم) پس از خشک شدن در غذا با دقت وزن شده، سپس در سرنگ‌های دارای پیستون قرار داده می‌شود. مایع بافری شکمبه (30 میلی لیتر) با پیپت به سرنگ‌های حاوی مواد خوراکی اضافه می‌شود (منک و استین گاس، 1988). مقدار گاز تولیدی در زمان‌های 2، 4، 6، 8، 12، 24، 48، 72 و 96 ساعت اندازه‌گیری می‌شود (منک و استین گاس، 1988). گازهای حاصل از سوبسترای مورد آزمایش در حین تخمیر آزمایشگاهی، عبارتند از دی اکسید کربن، متان و هیدروژن (هاگ و همکاران، 1998). بر اساس مشاهدات منک و استین (1988) گاز دی اکسید کربن یا از تخمیر مستقیم خوراک و یا از تاثیر اسیدهای چرب فرار بر بافر بیکربنات ناشی می‌شود. با انکوباسیون مواد خوراکی با مایع بافری شکمبه کربوهیدرات‌ها به اسیدهای چرب کوتاه زنجیر و گازها، به ویژه دی اکسیدکربن، متان و همچنین سلول‌های میکروبی تخمیر می‌شود (بلومل و ارسکوف، 1993). اسیدهای چرب حاصل با بافر بی کربنات واکنش انجام می‌دهد و در نتیجه گاز کربنیک خارج می‌شود، در نتیجه هنگام هضم الیاف، هم زمان با تولید اسیدهای چرب گاز نیز تولید می‌شود و به این ترتیب اطلاعات خوبی در مورد هضم سلولز در اختیار می‌گذارند (اسکوفیلد و همکاران، 1994). سیستم تولید گاز می‌تواند به شناسایی بهتر کمیت مواد مغذی کمک کند و دقت آن به اثبات رسیده است (سالام، 2005). گازی که بر اثر انکوباسیون مواد غذایی و تحت شرایط آزمایشگاهی آزاد می‌شود مربوط به قابلیت هضم آن ماده غذایی است و ارزش انرژی‌زایی آن ماده غذایی را برای نشخوارکنندگان بیان می‌کند (منک و همکاران، 1979).
فصل دوممواد و روش‌ها2-1- منطقه مورد مطالعه و نحوه نمونه‌برداری2-1-1- منطقه نمونه‌برداریاستان اردبیل در شمال غربی ایران واقع شده که با مساحتی برابر 1786730 هکتار حدود 09/1 درصد از مساحت کل کشور را در بر می‌گیرد. 1015000 هکتار از کل مساحت این استان را مراتع تشکیل می‌دهد که معادل 8/56 درصد از مساحت کل استان می‌باشد (بی نام، 1388). به دلیل گستردگی مراتع استان اردبیل، جهت نمونه‌برداری بخشی از مراتع منطقه آستارا انتخاب گردید. آستارا یکی از شهرستان‌های استان گیلان با 65 هزار نفر جمعیت (3600 نفر جمعیت شهری) با وسعت 334 کیلومتر مربع در شمال غربی این استان واقع گردیده است. این منطقه با ارتفاع 27 متر بالاتر از سطح دریا در موقعیت جغرافیایی 48 درجه و51 دقیقه طول شرقی و 38 درجـــه و 26 دقیقه عرض شمالی واقع گردیده است. شهرستان آستارا از سمت غرب به کوه های پوشیده ازجنگل‌های تالش و از شرق بــه سواحل دریای خزر محدود می‌شود (بی نام، 1388).
2-1-2- زمان نمونه‌برداری و انتقال نمونه‌ها به آزمایشگاهنمونه‌برداری از گیاهان دارویی Crambe orientalis، Heracleum persicum،Zosima absinthi، Teucrium polium و Oregano vulgare در فصل تابستان و در تیر ماه 1390 آغاز شد. از هر نمونه گیاه دارویی دسته‌هایی به وزن تقریبی 2 الی 5/2 کیلوگرم جمع‌آوری شد. نمونه‌ها به گونه‌ای انتخاب شد که همه قسمت‌های گیاه از جمله گل، برگ، ساقه و ریشه را دربرگیرد. نمونه‌های به دست آمده به مدت یک هفته در دمای اتاق و به دور از تابش مستقیم نور خورشید خشک شدند. نمونه‌ها سپس دو بار آسیاب شده و با توری 1 میلی متری الک شدند. برای تهیه عصاره‌های متانولی هر یک از گیاهان دارویی مورد مطالعه مقدار 50 گرم از نمونه‌های آسیاب شده هر