—196

مدل به نوعی ساده کردن واقعیت است و می‌تواند چیزهای واقعی یا ذهنی از یک حوزه خاص را ارائه می‌کند. یک مدل خوب شامل عناصر مؤثر و حذف عناصر غیر مؤثر که ربط مستقیم در فرآیند نداشته و یا اینکه پیچیدگی مدل را افزایش می‌دهد، است. هر سیستم ممکن است از جنبه‌های مختلف توسط مدل‌های مختلف مورد بررسی قرار بگیرد.
بطور کلی مدلسازی باعث می‌شود که درک بهتری از رفتار سامانه حاصل شود، مدل امکان مشخص کردن ساختار و رفتار سیستم را حتی قبل از ساخت را خواهد داد. در نتیجه امکان برطرف کردن معایب سیستم حتی قبل از تولید را به ما خواهد داد؛ که بالطبع خود موجب صرفه‌جویی زیاد در هزینه و زمان خواهد شد. با درک رفتار سیستم امکان کنترل سیستم و روند آن را داشته و با درک بهتر سیستم، مدیریت ریسک سیستم و استناد به روش‌ها و تغییرات اعمال شده بر سیستم مستند خواهد شد. در واقع می‌توان گفت مدل خلاصه‌ای از واقعیت را نشان می‌دهد. به بیان دیگر نمایش کلیات و یا فیزیک یک شیء یا سیستم و سامانه را از یک نقطه نظر و نگاه خاص را مدل می‌نامند.
مدلسازی؛ فرایند ایجاد و انتخاب مدل‌ ها را مدل‌سازی نامیده اند. مدل‌ها ، انواع گوناگون داشته (مثل فیزیکی، ریاضی، عددی، نرم‌افزاری، و ...) و کاربردهای حیاتی متنوّع و فراوانی در همه زمینه‌های علوم و فن‌آوری دارند. تبدیل یک مفهوم فیزیکی، به زبان ریاضی، نوعی از مدل‌سازی است.که هرچه مفاهیم زبان ریاضی استفاده شده در آن ساده‌تر باشند، مدل‌سازی ارزش بیشتری دارد.
در مدل‌سازی ابتدا اجزای محیط واقعی انتخاب شده و متناسب با هدف مورد نظر از مدل‌سازی خصوصیاتی از هریک از اجزای واقعی انتزاع می‌شود، یعنی به ازای هزیک از اجزای محیط واقعی یک موجودیت مصنوعی ساخته می‌شود و با برقراری ارتباطی مشابه با ارتباط اجزای واقعی، در میان موجودیت‌های مصنوعی، محیط واقعی مدل می‌شود. پس می‌توان گفت که هدف از مدل‌سازی دو چیز می‌باشد:
شناخت
تنها یک جنبه از مدل‌سازی را بیان می‌کند و آن جنبه شناخت می‌باشد. یعنی در مدلسازی‌های مشابه مدل‌سازی فوق‌الذکر، هدف از مدل‌سازی تنها شناخت محیط مورد مدل می‌باشد.
تبیین
یک جنبه دیگر از مدل‌سازی، تبیین می‌باشد. یعنی گاه برای معرفی و ارائه خصوصیات یک موجودیت واقعی یک مدل از آن ارائه می‌شود. نقشه جغرافیایی مثال خوبی است که این جنبه از مدل‌سازی را مورد نظر دارد.
بر اساس تعریف مسئله، مدل‌سازی یکی یا هردو هدف را در نظر می‌گیرد.
حال به این سوال بر می‌خوریم که تفاوت مدلسازی با شبیه‌سازی چیست؟
پاسخ این است که مدل سازی گام اول شبیه سازی است. در شبیه سازی رفتار یک سیستم را بر اساس یک سناریو میخواهیم به دست بیاوریم که این رفتار را بر اساس روابط ریاضی یا نمیتوان بدست آورد یا بسیار پیچیده است.
بر اساس سناریوی تعریف شده رفتار مدل سازی شده و بعد مدل اعتبارسنجی شده و سپس رفتار سیستم بر اساس سناریو پیش‌بینی و شبیه‌سازی می گردد.
آنچه در این اثر به آن پرداخته شده؛ بترتیب فصول؛ عبارتند از: کامپوزیت‌های تأخیردهنده اشتعال، خواص اشتعال نانوکاپوزیت‌های پلیمری، پلی‌یورتان، مدلسازی پاسخ حرارتی کامپوزیت در شعله، و نهایتاً بخش اصلی که در آن ابتدا به تهیه و بررسی نانوکامپوزیت پلی‌یورتان/نانورس/اوره کندانس پرداخته و سپس به بحث مدلسازی پاسخ حرارتی نمونه و برررسی رفتار انتقال حرارت تک-بعدی و ارتباط تغییرات دما و جرم در کامپوزیت پلیمری ساخته شده از پلی‌یورتان/نانورس/اوره کندانس خواهیم پرداخت.
فصل دوم
مروری بر تحقیق‌های انجام شدهکامپوزیت های تأخیردهنده اشتعالمقدمهدر این بخش یک نگاه کلی به روش‌های افزودن و بهینه کردن خواص تأخیر اشتعال در کامپوزیت های تقویت شده با الیاف خواهیم داشت. روش های مورد استفاده فوق العاده متنوع و متفاوت می باشند. افزودنی های ساده آلیاژ شونده با ماتریس پلیمری یا پوشش های مقاوم در حرارت، روش‌های شیمیایی اصلاح ماتریس کامپوزیت‌هایی که سطح آنها با گرما به instumescence تبدیل می‌شود. همچنین روش هایی برای بهبود پایداری حرارتی و مقاومت در برابر آتش الیاف آلی مورد استفاده در کامپوزیت نیز مشخص شده است. روش معمول برای کاهش اشتعال پذیری کامپوزیت، افزودن پرکننده داخلی (مثل تالک، سیلیکا) یا پرکننده فعال حرارتی (مثل اکسیدهای هیدراته) به ماتریس پلیمری است. انواع پرکننده ها مکانیسم تأخیر اشتعال آنها و راندمان آنها زمانی که در مواد کامپوزیتی استفاده می شود شرح داده می شود بعد از آن به اصلاح ساختار شیمیایی پلیمیرهای آلی جهت بهبود مقاومت اشتعال پذیری با تکیه بر مکانیسم های تأخیر اشتعال و خواص برهمکنش شعله در پلیمرهای فسفره، کلره و برمه توضیح داده خواهد شد. برخی روش های گفته شده جهت تأخیر اشتعال صدها سال جهت کاهش اشتعال در پارچه لباس و چوب و اخیراً در پلیمرها و کامپوزیت‌های پلیمری کاربرد دارد. دیگر روش‌ها در 10 الی 50 سال گذشته ارائه شده است. چندین روش جدید نیز برای کاهش اشتعال‌پذیری در حال تکمیل و بهبود است و چشم انداز بزرگی جهت تأخیر اشتعال کامپوزیت ها را پیشنهاد می کنند. دیگر روش های موجود عبارتند از پلیمریزاسیون پیوندی اجزای تأخیردهنده اشتعال به پلیمر آلی و پلیمرهای با ساختار غیر معدنی غیر قابل اشتعال نیز از این روش‌ها است. چرخه اساسی اشتعال کامپوزیت‌های پلیمری به صورت شماتیک در REF _Ref384714541 h * MERGEFORMAT شکل ‏21 نشان داده شده است.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 1: چرخه اشتعال کامپوزیت‌های پلیمری در آتش.علامت ضربدر مشخص کننده مراحلی از چرخه است که تاخیر دهنده اشتعال چرخه را بر هم میزند ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
دمای حاصل از تجزیه وابسته به طبیعت شیمیایی پلیمر و اتمسفر آتش است اما به صورت عمده این دما در محدوده 500-300 درجه سانتی گراد برای بیشتر پلیمرها و الیاف آلی مورد استفاده در کامپوزیت ها می باشد. همانطور که گفته شده گازهای حاصل از تجزیه از درون کامپوزیت به شعله جریان می یابد. در اینجا مواد ناپایدار قابل اشتعال با اکسیژن واکنش می دهد و به مقدار زیاد رادیکال فعال OH و H را تولید می کند. این رادیکال ها نقش مهمی در واکنش های زنجیره ای منجر به تجزیه و سوختن زنجیره ای پلیمرها و دیگر سوخت های آلی بازی می کند. واکنش های پیرولیز در شعله به صورت ساده به وسیله نهاد O2-H2 توصیف می شود:
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 1)
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 2)
واکنش گرمازای اصلی که بیشترین انرژی گرمایی در شعله را تولید می کند عبارتست از:
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 3)
رادیکال های H تولید شده در واکنش REF _Ref384714697 h * MERGEFORMAT (‏22) و REF _Ref384714699 h * MERGEFORMAT (‏23) به واکنش REF _Ref384714752 h * MERGEFORMAT (‏21) برگردانده می شود بنابراین واکنش اشتعال باعث یک فرآیند خود انتشار متوالی یا واکنش زنجیره ای شده که تا زمانی که اکسیژن مورد نیاز لازم موجود باشد ادامه خواهد یافت. گرمای تولید شده دمای ناحیه اشتعال را بالا می برد و این عامل باعث افزایش شتاب نرخ تجزیه کامپوزیت خواهد شد. بسیاری از پلیمرها مثل پلی استرها، ونیل استرها و اپوکس ها با مقدار زیادی گازهای قابل اشتعال را آن می کنند که خود عاملی افزایش مقدار سوخت شعله خواهد شد. در این مواد تا زمان تخریب کامل ماتریس پلیمر اشتعال ادامه می یابد. اشتعال پذیری مواد کامپوزیتی به وسیله توقف یا کاهش واکنش های شاخه ای شدن زنجیردر مراحل REF _Ref384714752 h * MERGEFORMAT (‏21) و REF _Ref384714697 h * MERGEFORMAT (‏22) در چرخه احتراق کاهش می یابد. تأخیر دهنده های اشتعال پلیمرها به سه روش چرخه احتراق را قطع می کنند:
1- اصلاح فرآیند تخریب حرارتی برای کاهش میزان و یا انواع گازهای قابل اشتعال
2- تولید گازهای تجزیه که شعله و آتش را سریعاً سرد می کند . این عمل به وسیله حذف رادیکال های H و OH انجام می گیرد.
3- کاهش دمای مواد به وسیله اصلاح خصوصیات هدایت حرارتی و یا گرمای ویژه (این روش می تواند به تنهایی یا با دیگر روش ها به کار برده شود.)
به صورت کلی اغلب پلیمرهای تأخیر دهنده اشتعال به دو دسته فاز متراکم شونده و فاز گازی فعال تقسیم می شوند. این تقسیم بندی بستگی به این دارد که آیا در آنها مکانیسم تجزیه پلیمر مختل می شود یا احتراق در شعله. زمانی پلیمر در دسته فاز متراکم قرار می گیرد که در حالت جامد یا مذاب باشند. دسته فاز متراکم خود شامل چندین مکانیسم برای تأخیر اشتعال است که عبارتند از:
1- رقیق کردن مقدار ماده آلی قابل اشتعال به وسیله افزودن ذرات پرکننده داخلی.
2- کاهش دمای کامپوزیت به وسیله افزودن پر کننده هایی که به عنوان جاذب حرارتی عمل می کنند.
3- کاهش دما به وسیله افزودن پر کننده هایی که به صورت گرماگیر تجزیه شده و محصولاتی مانند آب یا دیگر محصولات غیر قابل اشتعال با ظرفیت حرارتی ویژه بالا تولید می کنند.
4- کاهش میزان نرخ رهایش حرارت به وسیله بکارگیری پلیمرهایی که توسط واکنش‌های گرماگیر تجزیه می‌شوند.
5- افزایش آروماتیسیته ماتریس پلیمری به منظور اینکه به یک سطح و لایه عایق فضای کربنی تجزیه شود که هدایت حرارتی درون کامپوزیت را کاهش می دهد و انتشار گازهای قابل اشتعال را کاهش دهد.
کامپوزیت های پلیمری که جزء تأخیر دهنده های اشتعال از نوع فاز گاز می باشند، به وسیله ممانعت از واکنش اشتعال عمل می‌کنند. در نتیجه هم کاهش انتشار شعله و هم بازگشت مقدار حرارت از سوی شعله به ماده را در این نوع مشاهده می‌شود. مکانیسم‌های موجود در نوع فاز گاز که به صورت گسترده جهت تأخیر اشتعال به کار گرفته شده است معمولاً رهایش رادیکال های بر پایه برومین، کلرین و فسفره را خواهند داشت که باعث اختتام واکنش های اشتعال گرمازا از طریق حذف رادیکال های H و OH از شعله خواهند شد. یکی دیگر از مکانیزم های معمول این دسته رهایش بخارات غیر قابل اشتعال برای رقیق کردن غلظت گازهای H و OH در شعله است. همچنین باعث کاهش دما نیز خواهد شد. در حالی که بسیاری از تأخیر دهنده های اشتعال تنها با یکی از مکانیسم های فاز متراکم و یا فاز گاز عمل می کنند، تأخیر دهنده هایی بیشترین تأثیر را دارند که از هر دو مکانیسم فازها در یک زمان واحد استفاده می کنند.
تأخیر دهنده‌های اشتعال برای کامپوزیت‌هامواد تأخیر دهنده اشتعال متنوعی برای پلیمرها و کامپوزیت های پلیمری ارائه شده است. در حدود 200-150 آمیزه و ماده مختلف برای استفاده وجود دارد. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMi03XTwvRGlzcGxheVRleHQ+PHJlY29yZD48
cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi
LWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3MDwva2V5PjwvZm9y
ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48
Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1dGhvcj48YXV0aG9yPk1h
cmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9yPjxhdXRob3I+T3ZlcmJl
cmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9yPjxhdXRob3I+S3Jvc2No
d2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+
RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5lZXJpbmc8L3RpdGxlPjxz
ZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVyYmVyZ2VyLCBDRywgTWVu
Z2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxw
ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBOTSwgT3ZlcmJlcmdlciwg
Q0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4NzwveWVhcj48L2RhdGVz
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0
aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9s
eW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3
NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8
L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q3Vs
bGlzPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjI3MTwvUmVjTnVtPjxyZWNvcmQ+
PHJlYy1udW1iZXI+MjcxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk
Yi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yNzE8L2tleT48L2Zv
cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkN1bGxpcywgQ2hhcmxlcyBGb3dsZXI8L2F1dGhvcj48YXV0aG9y
PkhpcnNjaGxlciwgTU08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+VGhlIGNvbWJ1c3Rpb24gb2Ygb3JnYW5pYyBwb2x5bWVyczwvdGl0bGU+PC90aXRsZXM+
PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkNsYXJlbmRvbiBQcmVz
cyBPeGZvcmQ8L3B1Ymxpc2hlcj48aXNibj4wMTk4NTEzNTE4PC9pc2JuPjx1cmxzPjwvdXJscz48
L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5FYmRvbjwvQXV0aG9yPjxZZWFyPjE5OTY8L1ll
YXI+PFJlY051bT4yODE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlw
emE5d3p6MmUyMDUwcHR3ciI+MjgxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9
IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5FYmRvbiwgSlI8L2F1dGhvcj48YXV0aG9yPkpvbmVzLCBNUzwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhbnRzIChvdmVydmll
dyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFl
ZGlhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UG9s
eW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFlZGlhPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48
cGFnZXM+MjM5Ny0yNDExPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1
cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9y
PjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4xMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjEyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MTI2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+
PGF1dGhvcj5Ib3Jyb2NrcywgQSBSaWNoYXJkPC9hdXRob3I+PGF1dGhvcj5QcmljZSwgRGVubmlz
PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZpcmUgcmV0
YXJkYW50IG1hdGVyaWFsczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPndvb2RoZWFkIFB1Ymxpc2hpbmc8L3B1Ymxpc2hlcj48aXNibj4x
ODU1NzM0MTkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5OZWxzb248L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjczPC9SZWNOdW0+PHJl
Y29yZD48cmVjLW51bWJlcj4yNzM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3Mzwva2V5
PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt
dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TmVsc29uLCBHTjwvYXV0aG9yPjxh
dXRob3I+V2lsa2UsIENBPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPkZpcmUgYW5kIFBvbHltZXJzIElJSS4gTWF0ZXJpYWxzIGFuZCBTb2x1dGlvbnMgZm9y
IEhhemFyZCBQcmV2ZW50aW9uPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwMTwveWVh
cj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMi03XTwvRGlzcGxheVRleHQ+PHJlY29yZD48
cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi
LWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3MDwva2V5PjwvZm9y
ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48
Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1dGhvcj48YXV0aG9yPk1h
cmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9yPjxhdXRob3I+T3ZlcmJl
cmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9yPjxhdXRob3I+S3Jvc2No
d2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+
RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5lZXJpbmc8L3RpdGxlPjxz
ZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVyYmVyZ2VyLCBDRywgTWVu
Z2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxw
ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBOTSwgT3ZlcmJlcmdlciwg
Q0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4NzwveWVhcj48L2RhdGVz
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0
aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9s
eW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3
NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8
L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q3Vs
bGlzPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjI3MTwvUmVjTnVtPjxyZWNvcmQ+
PHJlYy1udW1iZXI+MjcxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk
Yi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yNzE8L2tleT48L2Zv
cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkN1bGxpcywgQ2hhcmxlcyBGb3dsZXI8L2F1dGhvcj48YXV0aG9y
PkhpcnNjaGxlciwgTU08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+VGhlIGNvbWJ1c3Rpb24gb2Ygb3JnYW5pYyBwb2x5bWVyczwvdGl0bGU+PC90aXRsZXM+
PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkNsYXJlbmRvbiBQcmVz
cyBPeGZvcmQ8L3B1Ymxpc2hlcj48aXNibj4wMTk4NTEzNTE4PC9pc2JuPjx1cmxzPjwvdXJscz48
L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5FYmRvbjwvQXV0aG9yPjxZZWFyPjE5OTY8L1ll
YXI+PFJlY051bT4yODE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlw
emE5d3p6MmUyMDUwcHR3ciI+MjgxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9
IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5FYmRvbiwgSlI8L2F1dGhvcj48YXV0aG9yPkpvbmVzLCBNUzwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhbnRzIChvdmVydmll
dyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFl
ZGlhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UG9s
eW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFlZGlhPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48
cGFnZXM+MjM5Ny0yNDExPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1
cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9y
PjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4xMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjEyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MTI2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+
PGF1dGhvcj5Ib3Jyb2NrcywgQSBSaWNoYXJkPC9hdXRob3I+PGF1dGhvcj5QcmljZSwgRGVubmlz
PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZpcmUgcmV0
YXJkYW50IG1hdGVyaWFsczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPndvb2RoZWFkIFB1Ymxpc2hpbmc8L3B1Ymxpc2hlcj48aXNibj4x
ODU1NzM0MTkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5OZWxzb248L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjczPC9SZWNOdW0+PHJl
Y29yZD48cmVjLW51bWJlcj4yNzM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3Mzwva2V5
PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt
dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TmVsc29uLCBHTjwvYXV0aG9yPjxh
dXRob3I+V2lsa2UsIENBPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPkZpcmUgYW5kIFBvbHltZXJzIElJSS4gTWF0ZXJpYWxzIGFuZCBTb2x1dGlvbnMgZm9y
IEhhemFyZCBQcmV2ZW50aW9uPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwMTwveWVh
cj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA [2-7]
تأخیر دهنده‌های اشتعال یکی از بزرگترین گروه از افزودنی‌هاست که در پلیمرها استفاده می شود. این مواد در حدود 27% از بازار افزودنی پلاستیک را به خود اختصاص داده است. رتبه بعدی متعلق به پایدار کننده حرارتی (6/15%) آنتی اکسیان ها (6/7%) روان کننده ها (6%) و پایدار کننده اشعه ماوراء بنفش (5%) می باشد. مواد تأخیر دهنده اشتعال با پلیمر طی فرآیند آلیاژ می شوند اما به صورت شیمیایی با پلیمر واکنش نمی دهند. ترکیب شیمیایی بسیاری از آنها بر اساس عناصر آنتیموان، آلومینیوم، بروم، فسفر، برومین، کلرین است که این مواد تأخیر اشتعال درصد زیادی را تأمین می کنند. به صورت تخمینی در حدود 90% از مواد افزودنی بر اساس این عناصر هستند و به شکل اکسیدهای آنیتموان، آلومینیوم سه آبه و اکسیدهای برون کاربرد دارند. به مقدار کمتری نیز افزودنی هایی شامل باریوم، روی، تین، آهن، مولیبدنیوم یا گوگرد وجود دارند. بسیاری از افزودنی ها شامل نمک های فلزی هیدراته هستند که به صورت گرماگیر در شعله تجزیه می شوند و در نتیجه میزان و نرخ رهایش حرارت کلی پلیمر را کاهش می دهند. برخی دیگر از عناصر افزودنی نیز در هنگام تجزیه بخار آب آزاد می کنند طی فرآیند تجزیه و این بخار آب باعث رقیق شدن و کاهش غلظت گازهای قابل اشتعال رهایش شده خواهند شد. کامپوندهای واکنشی نیز با زرین در هنگام فرآیند پلیمریزه می شوند و دارای ساختار شبکه ای مولکولی یکپارچه شوند. تأخیر دهنده های واکنشی اشتعال به صورت اساسی بر پایه هالوژن بروم و کلر، فسفره و عناصر معدنی و ملامین هستند. در حال حاضر بروم و کلر، تأخیر دهنده های معمولی هستند زیرا قدرت زیادی در یکباره سرد کردن شعله دارند. کامپوندهای هالوژن به وسیله رهاسازی اتم های برومین و کلرین فعال به درون شعله در برابر اشتعال پذیری مقاومت می کنند. این اتم ها واکنش اکسیداسیون احتراق گازهای اشتعال پذیر را متوقف می کنند. اگرچه در حال حاضر از سوی مقامات دولتی و طرفداران طبیعت تصمیماتی جهت استفاده از تأخیر دهنده های اشتعال غیر هالوژن گرفته شده است (این ترکیبات به طبیعت لطمه وارد می کنند). ترکیبات فسفره یکی دیگر از ترکیبات مؤثر در ارتباط با اشتعال است این ترکیبات میزان گازهای قابل احتراق حاصل از تجزیه را به وسیله افزایش تشکیل ذغال کاهش می دهند. انتخاب تأخیر دهنده اشتعال برای کامپوزیت پلیمری چندین عامل و فاکتور بستگی دارد که شامل هزینه، سازگاری شیمیایی میان تأخیر دهنده اشتعال و پلیمر میزبان دمای تجزیه ماده و وزن. بسیاری از پرکننده های تأخیر دهنده اشتعال خواص مکانیکی پلیمرها را کاهش می دهند. البته می توان به وسیله اصلاح سطح پرکننده این تأثیرات منفی را کاهش داد و بر همکنش میان ذرات و ماتریس پلیمری را بهبود بخشید. برخی مواد پر کننده با وجودی که اشتعال پذیری را کاهش می دهند مقدار دود و دودهای سمی را با تجزیه ماده افزایش می دهند. به خاطر همین دلایل سعی بر این است که ترکیبی از تأخیر دهنده های اشتعال در کامپوزیت های پلیمری استفاده شود تا میزان مقاومت در برابر اشتعال پذیری افزایش یابد و در عین حال تأثیرات مضرب و منفی و مضر روی ویژگی ها و خواص مکانیکی، دود و سمیت به کمترین مقدار ممکن برسد. پرکننده ها عناصر غیر فعال معدنی هستند که به پلیمر طی مراحل پایانی فرآیند افزوده می شود تا اشتعال پذیری محصول نهایی کاهش یابد. قطر ذرات پرکننده زیر 10 میکرومتر است و اغلب در محدوده میکرون است. ذرات به زرین مایع آلیاژ می شود و به صورت یکنواخت در آن پراکنده می شود. بیشتر پلیمرها نیاز به مقدار زیادی پرکننده جهت نشان دادن بهبود محسوس در مقاومت اشتعال پذیری شان دارند. مقدار حجمی کمینه معمولاً در حدود 20% و مقدار متوسط در حدود 50% تا 60% است. پرکننده باید با پلیمر سازگار باشد. در غیر این صورت خواص مکانیکی و دوام و بقای محیطی ماده از بین رفته و کاهش یابد. پرکننده ها می توانند اثرات مخرب بر روی خواص بگذارند این اثرات شامل افزایش و سیکوزیتید، کاهش زمان ژل شدگی مذاب پلیمری که باعث مشکل شدن فرآیند گردد، می شود. بیشتر پرکننده ها به صورت تدریجی با تحت مجاورت قرار گرفتن رطوبت دچار هیدرولیز شده و از بین می روند و این عامل جهت کاهش خاصیت تأخیر اشتعال آنها خواهد شد. با وجود این مشکلات پرکننده ها اغلب به دلیل هزینه پایین آنها افزودن آسان آنها به پلیمر و قابلیت مقاومت اشتعال پلیمر استفاده می شوند. این نکته قابل اهمیت است که پرکننده ها به ندرت به تنهایی استفاده می شود اما در مقابل به صورت ترکیبی با تأخیر دهنده های اشتعال دیگر (مثل ارگانوهالوژن ها یا ارگانوفسفره ها) برای رسیدن به مقدار زیاد مقاومت در برابر اشتعال استفاده می شود. ما دو نوع پرکننده تأخیر دهنده اشتعال داریم: خنثی و فعال که بر اساس نوع فعالیت مشخص می شود:
الف) پر کننده های تأخیر دهنده اشتعال خنثی
این نوع پر کننده توسط چندین مکانیسم، اشتعال پذیری و تولید دود کامپوزیت پلیمری را کاهش می دهند. مکانیسم برتر و مهم بر این اساس است که میزان سوخت به وسیله رقیق کردن درصد جرمی ماده آلی در کاپوزیت به وسیله افزودن پر کننده غیر قابل اشتعال، کاهش می دهد. در این حالت مقدار پلیمر به شدن باید کاهش یابد و به همین دلیل مقدار پر کننده در حدود 50 تا 60 درصد خواهد بود (مورد نیاز است). مکانیسم دیگر جذب گرما به وسیله پلیمر است و میزان و نرخ سوخت ماتریس پلیمری کاهش خواهد یافت. برای اینکه پرکننده جاذب حرارت باشد باید ظرفیت حرارتی آن از پلیمر میزبان بیشتر باشد. برخی دیگر از پلیمرها اشتعال پذیری پلیمر را به وسیله تشکیل لایه سطحی عایق زمانی که پلیمر تجزیه می شود و تبخیر می شود کاهش می دهند. این لایه عایق میزان و نرخ تجزیه ماتریس پلیمری را کاهش می‌دهد. این لایه سطحی مانع جریان مواد ناپایدار قابل اشتعالی به درون شعله خواهد شد و باعث کاهش بیشتر میزان تجزیه خواهد شد. همه پرکننده ها به وسیله کاهش میزان جرم پلیمر و بیشتر پر کننده ها به عنوان جاذب حرارت عمل می کنند. فقط تعداد کمی از پرکننده ها هستند که باعث به وجود آمدن لایه سطحی عایق می‌شوند. پرکننده‌هایی خنثی که به طور معمول به پلیمرها و کامپوزیت های پلیمری افزوده می شوند شامل سیلیکا، کربنات کلسیم، دوده هستند. این پرکننده ها اشتعال پذیری و تولید دود را از طریق مکانیسم رقیق کردن و یا جذب گرما کاهش می‌دهند. در موارد جزئی نیز از سیلیکات های رس هیدراته ساده مانند پومیس، تالک، gypsum و سولفات کلسیم دوآبه استفاده می‌شود.
ب) پرکننده‌های تأخیردهنده اشتعال فعال
این پرکننده تأثیرات بیشتری بر روی پلیمر از لحاظ تأخیر اشتعال و تولید دود نسبت به پرکننده خنثی خواهد گذاشت. پرکننده فعال نیز مانند پرکننده خنثی به عنوان جاذب حرارت و دقیق کننده ماتریس در کامپوزیت عمل می کند. همچنین این نوع پرکننده در فاز متراکم فعالیت می کند. در زمان تجزیه در دماهای بالا و واکنش های گرماگیر مقدار زیادی گرما را جذب می کند و این تأخیر خنک کنندگی باعث کاهش میزان و نرخ تجزیه ماتریس پلیمری خواهد شد. واکنش تجزیه پرکننده باعث رهایش گازهای بی اثر به مقدار زیاد خواهد شد گازهایی مثل بخار آب و دی اکسید کربن که این گازها نیز می توانند به درون شعله نفوذ کرده و غلظت مواد ناپایدار اشتعال پذیر، رادیکال های H و OH را کاهش و رقیق می کند. این رقیق کردن باعث کاهش دمای شعله شده که خود باعث نرخ تجزیه ماده کامپوزیتی می شود. دمای تجزیه پرکننده یک عامل بحرانی و مؤثر در تأخیر دهندگی اشتعال آنهاست. دمای تجزیه بایست بیشتر از دمای فرآیند آنهاست تا دیگر پرکننده در طول ساخت ماده کامپوزیتی تجزیه نشود. کامپوزیت های شامل رزین‌های ترموپلاستیک دما بالا، مانند پلی فنیلن سولفید یا پلی اتر اتر کتون بایت در دمای حدود 400-300 درجه سانتی گراد فرآیند شوند. بنابراین پرکننده های مورد استفاده برای این مواد باید در دماهای این محدوده تجزیه نشود. همچنین دمای تجزیه پرکننده بایست پایین تر از دمای پیرولیز ماتریس پلیمری باشد که بسیاری زرین ها مورد استفاده در کامپوزیت این دما بین 450-300 درجه سانتی گراد است. بسیاری از اکسیدهای فلزی و هیدروکسیدهای فلزی به عنوان تأخیر دهنده های اشتعال فعال مورد استفاده قرار می گیرد. در این بین معمول ترین و پر مصرف ترین آلومینیوم تری هیدراته Al(OH)3 است. همچنین انواع دیگر از اکسیدهای آلومینیوم نیز مورد استفاده است. همچنین ترکیبات اکسیده دیگر مثل ترکیبات آنتیموان (sb2o3,sh2o5)، آهن (مثل فروسن ferocene، FeOOH، FeOCl)، ترکیبات مولیبدنیوم (MoO3)، منزیم (Mg(OH)2) روی و تین tin قابل کاربرد است. به وسیله فعالیت این عناصر و پرکننده اشتعال و همچنین تشکیل دوده به مقدار قابل توجهی متوقف خواهد شد. اگرچه میزان تأثیر آنها به صورت کلی با افزایش غلظت آنها در ماتریس پلیمری افزایش خواهد یافت. مانند پرکننده های خنثی میزان بارگزاری بالایی از پرکننده (60-20%) جهت یک کاهش اساسی در اشتعال‌پذیری مورد نیاز است.عنصرهای پایه نیتروژن یکی از مؤثرترین تأخیر دهنده های اشتعال است این عنصر به همواره ترکیبات گوانیدین و ملاحین سال ها برای بهبود مقاومت اشتعال در پوشاک های پشمی، لباس های کتونی و کاغذ مورد استفاده بوده است. اما افزودنی های پایه نیتروژن به ندرت به عنوان تأخیردهنده اشتعال در کامپوزیت های پلیمری مورد استفاده قرار می‌گیرد.
پرکننده تأخیر دهنده اشتعال متورم شوندهاین نوع پر کننده جزء پرکننده های فعال هستند. این روش یکی از نوین ترین روش های بهبود مقاومت اشتعال مواد کامپوزیتی است. نمونه ای از این پرکننده ها پلی فسفات/ ؟؟؟ ترتیول است که در دماهای بالا متورم می شود. مکانیسم عملکرد این نوع پرکننده در کامپوزیت به صورت شماتیک در شکل 10-8 نشان داده شده است. زمانی که کامپوزیت تحت مجاورت شعله قرار می گیرد ذرات متورم شونده واکنش داده و مقدار زیادی گازهای غیر قابل اشتعال و غیر سمی که در ماتریس پلیمری گیر می افتد ایجاد می شود. تجمع این گازها باعث می شود که پلیمر نرم شده به فوم و پلیمر متورم شده تبدیل شود. در صورتی که ماتریس پلیمری قابلیت تبدیل به ذغال (char) را داشته باشد با افزایش دما ماتریس تجزیه شده و باعث تولید لایه ذغالی متخلخل عایق خواهد شد. این لایه ماده کامپوزیتی اصلی را حفظ و حمایت می کند. Kovar و همکاران ADDIN EN.CITE <EndNote><Cite><Author>Kovar</Author><Year>1993</Year><RecNum>274</RecNum><DisplayText>[8]</DisplayText><record><rec-number>274</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">274</key></foreign-keys><ref-type name="Conference Proceedings">10</ref-type><contributors><authors><author>Kovar, RF</author><author>Bullock, DE</author></authors></contributors><titles><title>Multifunctional intumescent composite firebarriers</title><secondary-title>Proceedings of the 4th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials</secondary-title></titles><pages>87-98</pages><dates><year>1993</year></dates><urls></urls></record></Cite></EndNote>[8]به این نتیجه رسیدند که فرآیند تولید فوم زمانی اتفاق خواهد افتاد که پلیمر در حالت ویسکوز نرم باشد. اگر ذرات پرکننده در دماهایی پایین‌تر از دمای انتقال شیشه پلیمر تجزیه شوند در این حالت ماتریس سخت خواهد بود و قابلیت تولید فوم و تورم را نخواهد داشت. در مقابل در صورتی که میزان فشار حاصل از تولید سریع گازها می تواند منجر به تولید شیار و لایه لایه شدن در کامپوزیت‌های سخت خواهد شد. در صورتی که تجزیه در دماهای بالا اتفاق افتد گازها می تواند از درون کامپوزیت خارج خواهد شد و لایه متورم شده ای تشکیل نخواهد شد. در صورتی که درجه بالایی از حمایت در برابر آتش را بخواهیم دمای واکنش تجزیه ذرات متورم شونده ها باید بالاتر از دمای انتقال شیشه و کمتر از دمای تجزیه ماتریس پلیمری باشد.
پلیمرهای تاخیر دهنده اشتعال قابل استفاده در کامپوزیت‌هاتعداد زیادی از پلیمرهای تأخیر دهنده اشتعال در حدود 26 سالی است که ارائه شده است و بسیاری از این موارد مناسب برای استفاده در کامپوزیت های لیفی است. اتصال مولکول های بروم، کلر یا فسفر به ساختار مولکولی پلیمر معمول ترین و رایج ترین روش بهبود مقاومت اشتعال رزین‌های ترموست و ترموپلاست است. یکی دیگر از روش‌های استفاده از پرکننده‌های در مقیاس نانو است که خیلی سریع تبدیل به یک گروه مهم از مواد تأخیر دهنده اشتعال شده است. یکی دیگر از روش ها نیز اصلاح شیمیایی ساختار شبکه‌ای مولکولی به وسیله کوپلیمریزاسیون پیوندی است.
افزایش مقاومت اشتعال به وسیله پلیمریزاسیوناصلاح ساختاری زنجیره های پلیمری یک تکنیک مؤثر برای بهبود مقاومت اشتعال‌پذیری است. ADDIN EN.CITE <EndNote><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><DisplayText>[6]</DisplayText><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite></EndNote>[6]همانطور که قبلاً گفته شد پایداری حرارتی پلیمر به وسیله انرژی پیوندی میان اتم های روی زنجیره اصلی تعیین می شود. پلیمرهای شامل مقادیر زیاد هیدروژن، نیتروژن یا اکسیژن؛ اشتعال پذیری زیادی از خود نشان می دهند زیرا آنتالپی پیوندی پایینی با کربن دارند. پایداری حرارتی پلیمر می تواند به وسیله افزایش استحکام پیوندهای زنجیره افزایش داد. پایداری حرارتی می تواند به وسیله اتصال ساختارهای حلقه ای هتروسیکل و آروماتیک با انرژی های پایدارسازی رزنانسی بالا به درون زنجیره اصلی و کاهش حضور هیدروژن (H)، نیتروژن (N) و اکسیژن (O) افزایش داد. نه تنها دمای تجزیه پلیمر به وسیله این اصلاح ساختار افزایش می یابد بلکه درصد جرمی مواد ناپایدار قابل اشتعال کاهش می یابد که نرخ رهایش حرارت نیز پایین تر می آید.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 2: رابطه میان مقادیر اروماتیک و میزان بقایای ذغال و گازهای ناپایدار. توسط Parker & Kourtide ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
REF _Ref384714911 h * MERGEFORMAT شکل ‏22 رابطه میان دانسیته گروه آروماتیک در زنجیره اصلی پلیمر در برابر میزان درصد گاز ناپایدار و ذغال ADDIN EN.CITE <EndNote><Cite><Author>Parker</Author><Year>1983</Year><RecNum>115</RecNum><DisplayText>[9]</DisplayText><record><rec-number>115</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">115</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Parker, JA</author><author>Kourtides, DA</author></authors></contributors><titles><title>New fireworthy composites for use in transportation vehicles</title><secondary-title>Journal of fire sciences</secondary-title></titles><periodical><full-title>Journal of fire sciences</full-title></periodical><pages>432-458</pages><volume>1</volume><number>6</number><dates><year>1983</year></dates><isbn>0734-9041</isbn><urls></urls></record></Cite></EndNote>[9] نشان می‌دهد. یک رابطه خطی میان دانسیته گروه های آروماتیک و میزان و کاهش خطی مواد ناپایدار وجود دارد.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 3: رابطه میان بقایای ذغال و شاخص اکسیژن پلیمر و بقایای ذغال بعنوان جرم باقیمانده حاصل از آزمون TGA در دمای 800 درجه سانتیگراد در اتمسفر خنثی است. توسط Krevelan ADDIN EN.CITE <EndNote><Cite><Author>Van Krevelen</Author><Year>1975</Year><RecNum>194</RecNum><DisplayText>[10]</DisplayText><record><rec-number>194</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">194</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van Krevelen, DW</author></authors></contributors><titles><title>Some basic aspects of flame resistance of polymeric materials</title><secondary-title>Polymer</secondary-title></titles><periodical><full-title>Polymer</full-title></periodical><pages>615-620</pages><volume>16</volume><number>8</number><dates><year>1975</year></dates><isbn>0032-3861</isbn><urls></urls></record></Cite></EndNote>[10]
REF _Ref384714953 h * MERGEFORMAT شکل ‏23 یک رابطه خطی میان میزان ذغال پلیمرها و پارامتر محدودیت اکسیژن که باعث کاهش میزان مواد ناپایدار اشتعال پذیر که عاملی برای استمرار احتراق است وجود دارد. ADDIN EN.CITE <EndNote><Cite><Author>Van Krevelen</Author><Year>1975</Year><RecNum>275</RecNum><DisplayText>[11]</DisplayText><record><rec-number>275</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">275</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van Krevelen, DW</author></authors></contributors><titles><title>Entzündlichkeit und Flammhemmung bei organischen Hochpolymeren und ihre Beziehungen zur chemischen Struktur</title><secondary-title>Chemie Ingenieur Technik</secondary-title></titles><periodical><full-title>Chemie Ingenieur Technik</full-title></periodical><pages>793-803</pages><volume>47</volume><number>19</number><dates><year>1975</year></dates><isbn>1522-2640</isbn><urls></urls></record></Cite></EndNote>[11]استحکام میان زنجیره ها نیز عامل مهم دیگری برای کنترل پایداری حرارتی پلیمرهای ترموست است. پلیمرهایی که می توانند یک ساختار شبکه ای 3 بعدی اتصال عرضی زیاد تشکیل دهند معمولاً پایداری حرارتی زیادی نشان می دهند زیرا شکست و تشکیل دوباره اتصالات عرضی باعث تشکیل ذغال خواهد شد. پلی فنیلن‌ها، پلی فنیلن اکسایدها نمونه و مثال هایی از پلیمرهای تأخیر دهنده اشتعال با قابلیت آروماتیک بالا و اتصال عرضی بالا می باشند. مشکل این پلیمرها دمای فرآیندپذیری بالا (نرم شدگی) می باشد.
کامپوزیت‌های پلیمری هالوژنه
اصلاح شیمیایی پلیمرها به وسیله عناصر ارگانوهالوژن یکی از معمولترین و مؤثرترین روش های کاهش اشتعال پذیری مواد کامپوزیتی است. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMiwgMywgNSwgNiwgMTIsIDEzXTwvRGlzcGxh
eVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI3MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1
dGhvcj48YXV0aG9yPk1hcmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9y
PjxhdXRob3I+T3ZlcmJlcmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9y
PjxhdXRob3I+S3Jvc2Nod2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5l
ZXJpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVy
YmVyZ2VyLCBDRywgTWVuZ2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBO
TSwgT3ZlcmJlcmdlciwgQ0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwt
dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4
NzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48
cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw
PSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9r
ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250
cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9u
IG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48
ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJs
aXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxD
aXRlPjxBdXRob3I+RWJkb248L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxSZWNOdW0+MjgxPC9S
ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yODE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI4MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RWJkb24sIEpSPC9h
dXRob3I+PGF1dGhvcj5Kb25lcywgTVM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RmxhbWUgcmV0YXJkYW50cyAob3ZlcnZpZXcpPC90aXRsZT48c2Vjb25k
YXJ5LXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMgRW5jeWNsb3BhZWRpYTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMg
RW5jeWNsb3BhZWRpYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzOTctMjQxMTwv
cGFnZXM+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFy
PjxSZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+
PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHph
OXd6ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJC
b29rIj42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3Ms
IEEgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8
L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hl
cj53b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48
dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R3JhbnpvdzwvQXV0aG9y
PjxZZWFyPjE5Nzg8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5HcmFuem93LCBBbGJyZWNodDwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhdGlvbiBieSBwaG9zcGhv
cnVzIGNvbXBvdW5kczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNh
bCBSZXNlYXJjaDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp
dGxlPkFjY291bnRzIG9mIENoZW1pY2FsIFJlc2VhcmNoPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh
bD48cGFnZXM+MTc3LTE4MzwvcGFnZXM+PHZvbHVtZT4xMTwvdm9sdW1lPjxudW1iZXI+NTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTc4PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMS00ODQyPC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MZSBCcmFzPC9BdXRo
b3I+PFllYXI+MTk5ODwvWWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i
ZXI+MjgyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVy
d3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yODI8L2tleT48L2ZvcmVpZ24ta2V5
cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y
cz48YXV0aG9yPkxlIEJyYXMsIE1pY2hlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFuY3kgb2YgcG9seW1lcnM6IHRoZSB1c2Ugb2Yg
aW50dW1lc2NlbmNlPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MTk5ODwveWVhcj48L2Rh
dGVzPjxwdWJsaXNoZXI+Um95YWwgc29jaWV0eSBvZiBjaGVtaXN0cnk8L3B1Ymxpc2hlcj48aXNi
bj4wODU0MDQ3Mzg3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl
Pn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMiwgMywgNSwgNiwgMTIsIDEzXTwvRGlzcGxh
eVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI3MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1
dGhvcj48YXV0aG9yPk1hcmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9y
PjxhdXRob3I+T3ZlcmJlcmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9y
PjxhdXRob3I+S3Jvc2Nod2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5l
ZXJpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVy
YmVyZ2VyLCBDRywgTWVuZ2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBO
TSwgT3ZlcmJlcmdlciwgQ0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwt
dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4
NzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48
cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw
PSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9r
ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250
cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9u
IG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48
ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJs
aXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxD
aXRlPjxBdXRob3I+RWJkb248L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxSZWNOdW0+MjgxPC9S
ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yODE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI4MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RWJkb24sIEpSPC9h
dXRob3I+PGF1dGhvcj5Kb25lcywgTVM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RmxhbWUgcmV0YXJkYW50cyAob3ZlcnZpZXcpPC90aXRsZT48c2Vjb25k
YXJ5LXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMgRW5jeWNsb3BhZWRpYTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMg
RW5jeWNsb3BhZWRpYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzOTctMjQxMTwv
cGFnZXM+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFy
PjxSZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+
PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHph
OXd6ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJC
b29rIj42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3Ms
IEEgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8
L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hl
cj53b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48
dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R3JhbnpvdzwvQXV0aG9y
PjxZZWFyPjE5Nzg8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5HcmFuem93LCBBbGJyZWNodDwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhdGlvbiBieSBwaG9zcGhv
cnVzIGNvbXBvdW5kczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNh
bCBSZXNlYXJjaDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp
dGxlPkFjY291bnRzIG9mIENoZW1pY2FsIFJlc2VhcmNoPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh
bD48cGFnZXM+MTc3LTE4MzwvcGFnZXM+PHZvbHVtZT4xMTwvdm9sdW1lPjxudW1iZXI+NTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTc4PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMS00ODQyPC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MZSBCcmFzPC9BdXRo
b3I+PFllYXI+MTk5ODwvWWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i
ZXI+MjgyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVy
d3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yODI8L2tleT48L2ZvcmVpZ24ta2V5
cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y
cz48YXV0aG9yPkxlIEJyYXMsIE1pY2hlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFuY3kgb2YgcG9seW1lcnM6IHRoZSB1c2Ugb2Yg
aW50dW1lc2NlbmNlPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MTk5ODwveWVhcj48L2Rh
dGVzPjxwdWJsaXNoZXI+Um95YWwgc29jaWV0eSBvZiBjaGVtaXN0cnk8L3B1Ymxpc2hlcj48aXNi
bj4wODU0MDQ3Mzg3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl
Pn==
ADDIN EN.CITE.DATA [2, 3, 5, 6, 12, 13]
عناصر پایه هالوژن شامل بروم و کلر تأخیردهنده‌های اشتعال فوق العاده‌ای هستند که به صورت فرآیند فاز گاز از اشتعال جلوگیری می کنند. (اختتام واکنش های اشتعال به وسیله حذف رادیکال H و OH واکنش با هالوژن) پلیمرهای هالوژنه به وسیله اتصال مولکول هالوژن به ساختار شبکه ای زرین از طریق کوپلیمریزاسیون تشکیل می شوند. مقدار برومیت بایست بیشتر از 20% وزنی باشد تا بتواند تأثیر مشخصی بر روی مقاومت اشتعال بگذارد. میزان کلرین برای بیشتر پلیمرها بایست بیشتر از مقدار 25 درصد وزنی باشد اگرچه افزایش کلرین بیشتر از این مقدار بر روی نتایج و بهبود آن تأثیر چندانی نخواهد گذاشت. پلیمرهای کلرین و برومینه را نیز می توان به همراه پرکننده های تأخیر دهنده اشتعال استفاده کرد که ترکیب پرکننده با هالوژن ها می تواند خاصیت های جمع پذیری، غیر هم افزایی و هم افزایی بر روی خواص تأخیر دهنده اشتعال سیستم پلیمری بگذارد. اثر جمع پذیری زمانی اتفاق می افتد که بازده تأخیر دهنده اشتعال کل سیستم پلیمری برابر با ترکیبی از بازده های پرکننده و هالوژن است و برهمکش خاصی میان این دو جهت افزایش و کاهش اثرات تأخیر اشتعال وجود ندارد. نمونه این نوع اثر شامل پلیمرهای هالوژنه به همراه پر کننده های خنثی است. هالوژن مقاومت اشتعال پذیری را در فاز گاز افزایش می دهد در صورتی که پرکننده در فاز متراکم به عنوان کاهنده میزان سوخت پلیمری و جاذب حرارت عمل می کند. هر دو به صورت مستقل بر روی افزایش قابلیت اشتعال سیستم پلیمری عمل می کند. تأثیر غیر هم افزایی زمانی است که بازده سیستم پلیمری کمتر از بازده سیستم های افزودنی به طور مستقل است. هالوژن و پرکننده مزاحم واکنش های تأخیر اشتعال یکدیگر شده در نتیجه مقاومت اشتعال پذیری کلی پلیمر کاهش خواهد یافت. بهترین حالت زمانی اتفاق می افتد که پرکننده و تأخیر دهنده اشتعال و واکنش تأخیر اشتعال اثر هم افزایی می گذارند. زمانی این اتفاق می افتد که بازده کل سیستم پلیمری بیشتر از اثرات افزودنی هالوژن و یا پرکننده به تنهایی باشد. میزان گسترده ای از عناصر فعال می توانند به عنوان پرکننده‌های افزایی پلیمرهای هالوژنه استفاده شوند. این عناصر شامل اکسید بیسموت ، اکسید مولیبدنیوم ، اکسید تین هستند. اگرچه معمولاً از اکسید آنتیموان (sb2o3) استفاده می‌شود. این عنصر خاصیت ضد اشتعال پذیری کمی در زمان هایی که به تنهایی مصرف می شود (پلیمرهای غیرهالوژنه) دارد اما زمانی که از زرین های برومینه استفاده شود بازده تأخیر اشتعال به شدت افزایش می یابد. این افزایش به دلیل بر همکنش های هم افزایی میان مکانیزم های تأخیر دهنده اشتعال هالوژن و اکسید آنتیموان است. (واکنش مواد ناپایدار هالوژنه با مواد ناپایدار آنتیموان در فاز گاز و تولید هالوژن یا آمیزه اکسی هالید) پرکننده ها شاخص گسترش شعله را را کاهش می دهند و به استثنای آلومینیوم سه آبه (ATH) باعث افزایش پارامتر محدودیت اکسیژن می شوند. REF _Ref384715043 h شکل ‏24 تأثیر پرکننده های تأخیر دهنده اشتعال را بر روی پارامتر انتشار شعله، پارامتر محدودیت اکسیژن و دانسیته نوری ویژه وینیل استر برومینه شده شده را نشان می‌دهد.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 4: تأثیر تأخیردهنده اشتعال بر روی (الف) شاخص گسترش اشتعال (ب)شاخص محدودیت اکسیژن (ج) دانسیته نوری ویژه یک است وینیل استری برومینه شده.توسط Mochat & Hiltz( ADDIN EN.CITE <EndNote><Cite><Author>Morchat</Author><Year>1992</Year><RecNum>278</RecNum><DisplayText>[14]</DisplayText><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">278</key></foreign-keys><ref-type name="Generic">13</ref-type><contributors><authors><author>Morchat, RM</author><author>Hiltz, JA</author></authors></contributors><titles><title>Fire-Safe Composites for Marine Applications</title></titles><dates><year>1992</year></dates><publisher>DEFENCE RESEARCH ESTABLISHMENT ATLANTIC DARTMOUTH (NOVA SCOTIA)</publisher><urls></urls></record></Cite></EndNote>[14]
بیشترین دغدغه استفاده از پلیمرهای هالوژنه و کامپوزیت های پلیمری رهایش دودهای خورنده اسیدی و گازهای سمی است که به طور جدی بر روی سلامت و خطرات زیست محیطی تأثیرگذار است. ADDIN EN.CITE <EndNote><Cite><Author>Ebdon</Author><Year>1996</Year><RecNum>281</RecNum><DisplayText>[5, 6, 14]</DisplayText><record><rec-number>281</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">281</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ebdon, JR</author><author>Jones, MS</author></authors></contributors><titles><title>Flame retardants (overview)</title><secondary-title>Polymeric Materials Encyclopaedia</secondary-title></titles><periodical><full-title>Polymeric Materials Encyclopaedia</full-title></periodical><pages>2397-2411</pages><dates><year>1996</year></dates><urls></urls></record></Cite><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite><Cite><Author>Morchat</Author><Year>1992</Year><RecNum>278</RecNum><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">278</key></foreign-keys><ref-type name="Generic">13</ref-type><contributors><authors><author>Morchat, RM</author><author>Hiltz, JA</author></authors></contributors><titles><title>Fire-Safe Composites for Marine Applications</title></titles><dates><year>1992</year></dates><publisher>DEFENCE RESEARCH ESTABLISHMENT ATLANTIC DARTMOUTH (NOVA SCOTIA)</publisher><urls></urls></record></Cite></EndNote>[5, 6, 14] پلیمرهای کلرینه مقدار زیادی گاز HCL رهایش می کنند که می توانند بر روی سیستم تنفسی و چشم تأثیر گذاشته و توانایی گریز از آتش را از انسان بگیرد. همچنین پلیمرهای کلرینه می توانند ؟؟؟ و عناصر وابسته دی اکسین که به شدت سمی هستند را تولید کند. تماس با دی اکسین ها با غلظت زیاد می تواند منجر به مشکلات زیادی از لحاظ سلامتی شود، مشکلاتی از قبیل سرطان، تغییر رنگ پوست، خارش پوست و تاول ایجاد کند. همچنین دی اکسین ها با ورود به اکوسیستم می توانند برای سال ها درون بدن جانداران و گیاهان باقی بمانند. به همین دلایل استفاده از این پلیمرها در بسیاری از کشورها منسوخ شده است و به جای آن از پلیمرهای تأخیر دهنده اشتعال دوستدار محیط زیست شامل brominaded index، tris(tribromophenyl)cyanurate,tris(tribromoneophentyl)cyanurate استفاده می کنند.
کامپوزیت های پلیمری فسفره تأخیر دهنده اشتعال
مقاومت اشتعال پذیری پلیمرها و کامپوزیت های پلیمری می تواند به وسیله افزودن فسفر افزایش یابد.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+
PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+WzMsIDYsIDEzLCAxNSwgMTZdPC9EaXNw
bGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3
ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwv
YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRl
Z3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8
L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3Jp
ZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS
ZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZv
cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6
ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29r
Ij42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEg
UmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3Rp
dGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53
b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGUgQnJhczwvQXV0aG9yPjxZ
ZWFyPjE5OTg8L1llYXI+PFJlY051bT4yODI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4
MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFk
ZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl
Zi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5MZSBCcmFzLCBNaWNoZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RmlyZSByZXRhcmRhbmN5IG9mIHBvbHltZXJzOiB0aGUgdXNlIG9mIGludHVt
ZXNjZW5jZTwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48
cHVibGlzaGVyPlJveWFsIHNvY2lldHkgb2YgY2hlbWlzdHJ5PC9wdWJsaXNoZXI+PGlzYm4+MDg1
NDA0NzM4NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+
QnJhdW1hbjwvQXV0aG9yPjxZZWFyPjE5Nzc8L1llYXI+PFJlY051bT4yNzk8L1JlY051bT48cmVj
b3JkPjxyZWMtbnVtYmVyPjI3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF
TiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc5PC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CcmF1bWFuLCBTSzwvYXV0aG9yPjxh
dXRob3I+RmlzbWFuLCBOPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPlBob3NwaG9ydXMgZmxhbWUgcmV0YXJkYW5jZSBpbiBwb2x5bWVycy4gSUlJLiBTb21l
IGFzcGVjdHMgb2YgY29tYnVzdGlvbiBpbiBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRs
ZT5Kb3VybmFsIG9mIEZpcmUgUmV0YXJkYXRpb24gYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgRmlyZSBSZXRh
cmRhdGlvbiBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTMt
MTExPC9wYWdlcz48dm9sdW1lPjQ8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NzwveWVhcj48L2Rh
dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdTwvQXV0aG9y
PjxZZWFyPjIwMDI8L1llYXI+PFJlY051bT4yODM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI4MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgzPC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5MdSwgU2h1aS1ZdTwvYXV0aG9yPjxhdXRob3I+SGFtZXJ0b24s
IElhbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNl


bnQgZGV2ZWxvcG1lbnRzIGluIHRoZSBjaGVtaXN0cnkgb2YgaGFsb2dlbi1mcmVlIGZsYW1lIHJl
dGFyZGFudCBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9ncmVzcyBpbiBQb2x5
bWVyIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10
aXRsZT5Qcm9ncmVzcyBpbiBQb2x5bWVyIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs
PjxwYWdlcz4xNjYxLTE3MTI8L3BhZ2VzPjx2b2x1bWU+Mjc8L3ZvbHVtZT48bnVtYmVyPjg8L251
bWJlcj48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxpc2JuPjAwNzktNjcwMDwvaXNi
bj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+
PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+WzMsIDYsIDEzLCAxNSwgMTZdPC9EaXNw
bGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3
ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwv
YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRl
Z3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8
L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3Jp
ZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS
ZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZv
cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6
ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29r
Ij42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEg
UmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3Rp
dGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53
b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGUgQnJhczwvQXV0aG9yPjxZ
ZWFyPjE5OTg8L1llYXI+PFJlY051bT4yODI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4
MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFk
ZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl
Zi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5MZSBCcmFzLCBNaWNoZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RmlyZSByZXRhcmRhbmN5IG9mIHBvbHltZXJzOiB0aGUgdXNlIG9mIGludHVt
ZXNjZW5jZTwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48
cHVibGlzaGVyPlJveWFsIHNvY2lldHkgb2YgY2hlbWlzdHJ5PC9wdWJsaXNoZXI+PGlzYm4+MDg1
NDA0NzM4NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+
QnJhdW1hbjwvQXV0aG9yPjxZZWFyPjE5Nzc8L1llYXI+PFJlY051bT4yNzk8L1JlY051bT48cmVj
b3JkPjxyZWMtbnVtYmVyPjI3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF
TiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc5PC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CcmF1bWFuLCBTSzwvYXV0aG9yPjxh
dXRob3I+RmlzbWFuLCBOPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPlBob3NwaG9ydXMgZmxhbWUgcmV0YXJkYW5jZSBpbiBwb2x5bWVycy4gSUlJLiBTb21l
IGFzcGVjdHMgb2YgY29tYnVzdGlvbiBpbiBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRs
ZT5Kb3VybmFsIG9mIEZpcmUgUmV0YXJkYXRpb24gYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgRmlyZSBSZXRh
cmRhdGlvbiBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTMt
MTExPC9wYWdlcz48dm9sdW1lPjQ8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NzwveWVhcj48L2Rh
dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdTwvQXV0aG9y
PjxZZWFyPjIwMDI8L1llYXI+PFJlY051bT4yODM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI4MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgzPC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5MdSwgU2h1aS1ZdTwvYXV0aG9yPjxhdXRob3I+SGFtZXJ0b24s
IElhbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNl
bnQgZGV2ZWxvcG1lbnRzIGluIHRoZSBjaGVtaXN0cnkgb2YgaGFsb2dlbi1mcmVlIGZsYW1lIHJl
dGFyZGFudCBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9ncmVzcyBpbiBQb2x5
bWVyIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10
aXRsZT5Qcm9ncmVzcyBpbiBQb2x5bWVyIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs
PjxwYWdlcz4xNjYxLTE3MTI8L3BhZ2VzPjx2b2x1bWU+Mjc8L3ZvbHVtZT48bnVtYmVyPjg8L251
bWJlcj48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxpc2JuPjAwNzktNjcwMDwvaXNi
bj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA [3, 6, 13, 15, 16]
یکی از روش‌های بسیار معمول و رایج برای افزودن فسفر، آلیاژسازی یک آمیزه پرکننده فسفره پایه معدنی یا پایه آلی به پلیمر طی فرآیند است. اکثر آمیزه های فسفری دارای قابلیت مقاومت اشتعال است اما انواع معمول و رایج و پر کاربرد آنها فسفر خالص، فسفات آمونیوم و trialylphosphates هستند. فسفره ها همچنین می توانند به وسیله کوپلیمریزاسیون زرین با منومرهای آلی فسفره فعال (استرهای فسفاته، پلی ال‌ها و فسفات ها) یا فسفات های هالوژنه(phosphate (tris(1-cloro-2-propyl)phosphate , tris(2,3-dibromo propyl) به ساختار مولکولی زرین متصل شوند. روش پلیمیریزاسیون برای تولید تعداد بسیار زیادی از پلیمرهای مناسب تأخیر دهنده اشتعال برای کاربرد در کامپوزیت ها استفاده می شود. فسفره به عنوان تأخیر دهنده اشتعال هم در فاز گاز و هم در فاز متراکم عمل می کنند (بسته به ساختار و طبیعت شیمیایی و پایداری حرارتی پلیمر میزبان). مکانیزم فاز گاز در بیشتر ترموپلاستیک ها و پلیمرهای ترموست غیر اکسیژنه حاکم است. در این نوع مکانیسم رادیکال های فسفره رهایش شده از طرف پلیمر در دماهای بالا اگرچه زمانی مؤثرتر است که تولید مواد ناپایدار در دماهای پایین تر از 400-300 درجه سانتی گراد اتفاق بیفتد و یا ماتریس پلیمری تجزیه شود می باشد. رادیکال های فسفره زیادی می توانند به درون شعله رهایش شده البته این رهایش بستگی به دما و ترکیب درصد تأخیر دهنده اشتعال فسفره دارد. این رادیکال ها با رادیکال های H و OH واکنش داده و موجب کاهش اشتعال و یا توقف آن شوند. مکانیسم دوم تأخیر دهنده اشتعال فاز گاز است مین مکانیسم یک تأثیر پوششی بر روی سطح داغ پلیمر می گذارد. بسیاری از مواد حاوی فسفر رهایش شده از پلیمر تجزیه شده به صورت متناسب سنگین هستند و این عامل باعث می شود که یک فاز غنی از بخار در سطح پلیمر ایجاد شود که از دسترسی اکسیژن جلوگیری کند. زمانی که آمیزه و عنصر فسفره در پلیمرهای آلی هیدروکسیل و اکسیژنه استفاده می شود به صورت یک تأخیر دهنده اشتعال در فاز متراکم عمل می کند. فسفر در این سیستم های پلیمری باعث تشکیل ذغال می شود که خود باعث کاهش مقدار مواد ناپایدار قابل اشتعال رهایش شده به سمت آتش خواهد شد. فسفر می تواند افت حرارت را در برخی ترموپلاستیک ها به وسیله ذوب شدن و چکه کردن شتاب دهد. اطلاعات بیشتر در مورد انواع واکنش های تأخیر دهنده اشتعال فسفره را می توان در پروژه - ریسرچجامع ارائه شده توسط Granzow ADDIN EN.CITE <EndNote><Cite><Author>Granzow</Author><Year>1978</Year><RecNum>276</RecNum><DisplayText>[12]</DisplayText><record><rec-number>276</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">276</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Granzow, Albrecht</author></authors></contributors><titles><title>Flame retardation by phosphorus compounds</title><secondary-title>Accounts of Chemical Research</secondary-title></titles><periodical><full-title>Accounts of Chemical Research</full-title></periodical><pages>177-183</pages><volume>11</volume><number>5</number><dates><year>1978</year></dates><isbn>0001-4842</isbn><urls></urls></record></Cite></EndNote>[12]یافت.
کوپلیمریزاسیون پیوندی برای مقاومت اشتعال
یکی دیگر از تکنیک های تولید پلیمرهای تأخیر دهنده اشتعال، کوپلیمریزاسیون پیوندی است ADDIN EN.CITE <EndNote><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><DisplayText>[6]</DisplayText><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite></EndNote>[6]. این تکنیک بر مبنای افزودن یک منومر که به شدن خاصیت تشکیل ذغال دارد به زنجیره پلیمری استوار است. فرآیند کوپلیمریزاسیون می تواند از طریق دو روش که شامل پیوند زدن از طریق و یا پیوند زدن به ایجاد شود. فرآیند سازنده و تشکیل دهنده شامل واکنش پلیمر با اغازگر و ایجاد مراکز فعال در طول زنجیره پلیمر است. سپس منومرها از طریق رادیکال با زنجیره پیوند می زنند.
فرآیند پیوند زدن به (Grafting onto) زمانی اتفاق می افتد که منومر با آغازگر واکنش می دهد و رادیکال تولید می شود و این رادیکال به زنجیره پیوند می خورد. صرف نظر از فرآیند، ضروری است که منومر به صورت حرارتی در دماهای پایین تر از پلیمر تجزیه شود و مقدار زیادی ذغال که باعث حفاظت از پلیمر می شود را به جا بگذارد. کوپلیمریزاسیون پیوندی یک تکنیک مطلوب برای تولید پلیمرهای تأخیر دهنده اشتعال است. هرچند ترموپلاستیک های تأخیر دهنده اشتعال زیادی به وسیله این تکنیک تولید می شوند. کوپولیمریزاسیون پلیمرهای ترموست مهندسی که به صورت معمول در سازه های کامپوزیت کاربرد دارد نیاز به پژوهش های بیشتر و تحقیقات بیشتر است.
الیاف تأخیر دهنده اشتعال برای کامپوزیت‌هاالیاف شیشه یک تقویت کننده فوق العاده معمول و رایج است. این الیاف قابل اشتعال نیستند اما آمارهای آلی و افزودنی های چسبنده مورد استفاده در این الیاف موجب تولید دود و مواد ناپایدار رهایش شده به وسیله کامپوزیت در حال تجزیه خواهد شد.
پوشش های سطحی محافظ اشتعالییکی دیگر از روش های حفاظت از کامپوزیت استفاده از پوشش های عایق است. یک پوشش ایده آل باید خصوصیات زیر را دارا باشد:
غیر اشتعال پذیری، هدایت حرارتی پایین، چسبندگی قوی (مثل ضریب انبساط) به لایه های زیرین کامپوزیت تداوم و بقا در محیط، مقاومت در برابر سایش، وزن پایین، نازک و ارزان بودن. صدها مواد پوشش وجود دارند که به صورت تجاری برای کاربرد در کامپوزیت ها مورد استفاده قرار می گیرند. اگرچه ممکن است یکی از خواص مورد نیاز برای پوشش های ایده آل را نداشته باشند. سه گروه بزرگ از پوشش های عایق وجود دارد:
1) پلیمرهای تأخیر دهنده اشتعال
2) محافظ و پوشش حرارتی
3) پوشش های متورم شونده
4) مواد فرسایشی
مثال برای پلیمرهای تأخیر دهنده اشتعال عبارت است از زرین آلی مثل پلیمرهای برومینه و مواد معدنی مثل geopolymers که به عنوان فیلمی نازک (معمولاً کمتر از 5 میلی متر) بر روی سطح کامپوزیت قرار می گیرد. این پلیمرها به دلیل پایداری حرارتی بالا زمان رسیدن به احتراق و اشتعال لایه های زیرین با تأخیر مواجه می شود. در مورد پوشش های پلیمری معدنی هدایت حرارتی پایین باعث تأخیر خواهد شد. پوشش های غشایی حرارتی معمولاً موادی پایه سرامیک هستند که غیر قابل اشتعال بوده و خواص هدایت حرارتی پایینی دارند. نمونه این پوشش ها شامل سرامیک (مثل ceramic و rockwool)های با الیاف بافته شده و سرامیک زیرکونیوی هایی با لایه اسپری شده توسط پلاسما. مواد متورم شونده از طریق واکنش شیمیایی در دماهای بالا که منجر به تورم و تولید فوم لایه پوشش مورد استفاده قرار می گیرد. این واکنش باعث تولید یک لایه به شدت متخلخل و یک لایه ذغال ضخیم با هدایت حرارتی پایین خواهد شد. یکی دیگر از گروه از پوشش ها مواد فرسایشی هستند که باعث حفاظت حرارتی از طریق حذف حرارت از سطح داغ به وسیله پوسته شدن و ذوب شدن خواهند شد. مواد فرسایشی به ندرت به عنوان پوشش محافظ شعله در کامپوزیت مورد استفاده قرار می گیرند و بیشتر به عنوان محافظ پلیمر در کاربردهای دما بالا مثل نازل های موشک و سپرهای حرارتی فضاپیماهایی که به زمین بر می گردند، مورد استفاده قرار می گیرند
.
خواص اشتعال نانو کامپوزیت های پلیمریمقدمهاصطلاح نانو کامپوزیت پلیمری، کامپوزیت هایی را توصیف می کند که یکی از مواد تشکیل دهنده کامپوزیت از ماده با مقیاس نانو باشد. سایز نانو حداقل بایست در یکی از ابعاد رعایت شده باشد و کاملاً در فاز پلیمری پراکنده شده باشد. یک نمونه بارز از مواد نانو، خاک رس است. اما گرافیت، نانولوله های تک جداره و چند جداره ، نانو ذرات کروی مانند polyhedral oligomeric silsequioxane،POSS ، Silica، Tatania همچنین مورد استفاده قرار می گیرد. تحلیل تشکیل نانو کامپوزیت، بررسی تأخیر اشتعال: انواع مختلف اصلاح خاک رس و اثرات آنها مکانیسم و نحوه تأثیر ماده نانو بر روی تأخیر اشتعال جزء موارد مورد بحث در این بخش است. پر کننده های تأخیر دهنده اشتعال سال هاست که مورد استفاده قرار می گیرد. در سیستم های پر شده و پر کننده سنتی میکروکامپوزیت‌ها مقدار زیادی پر کننده برای ایجاد تأثیری خاص مثل کاهش خواص مکانیکی لازم است. وقتی که ذرات حاوی فاز نانو مورد استفاده قرار گرفت شرایط کاملاً تغییر کرد. کاهش اندازه از سایز میکرو به سایز نانو میزان سطح تماس ذرات را بالا می برد. افزایش سطح تماس منجر به کاهش مقدار ماده مورد نیاز می شود. حضور مواد با سطح تماس زیاد می تواند باعث تعبیر در مسیر تخریب شده و در نتیجه بر روی میزان رهایش حرارت پلیمر اثر بگذارد. در پایان، استفاده از مواد با سایز نانو می تواند باعث تشکیل یک لایه شود که باعث جلوگیری از جابجایی مواد ناپایدار در هنگام تخریب شده و موجب افزایش ذغال تولیدی شود. در مورد نانو کامپوزیت های پلیمر / خاک رس حضور مواد سیلیکاته لایه ای مانند مونت موریلونیت، هکتوریت، بنتونیت حتی با بارگزاری مقدار پایین (مخصوصاً 3 و 5%) خواص مکانیکی به صورت فوق العاده افزایش می یابد. همچنین خواص لایه محافظ و تأخیر اشتعال پلیمر افزایش خواهد یافت PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+
PFJlY051bT4xMjY8L1JlY051bT48RGlzcGxheVRleHQ+WzYsIDE3LTIxXTwvRGlzcGxheVRleHQ+
PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjEyNjwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEgUmljaGFyZDwvYXV0aG9yPjxh
dXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3RpdGxlPjwvdGl0bGVzPjxkYXRl
cz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53b29kaGVhZCBQdWJsaXNoaW5n
PC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+R2lhbm5lbGlzPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48
UmVjTnVtPjI5OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjk5PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3
enoyZTIwNTBwdHdyIj4yOTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v
ayBTZWN0aW9uIj41PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2lh
bm5lbGlzLCBFUDwvYXV0aG9yPjxhdXRob3I+S3Jpc2huYW1vb3J0aSwgUjwvYXV0aG9yPjxhdXRo
b3I+TWFuaWFzLCBFPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp
dGxlPlBvbHltZXItc2lsaWNhdGUgbmFub2NvbXBvc2l0ZXM6IG1vZGVsIHN5c3RlbXMgZm9yIGNv
bmZpbmVkIHBvbHltZXJzIGFuZCBwb2x5bWVyIGJydXNoZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UG9seW1lcnMgaW4gY29uZmluZWQgZW52aXJvbm1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PC90
aXRsZXM+PHBhZ2VzPjEwNy0xNDc8L3BhZ2VzPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0
ZXM+PHB1Ymxpc2hlcj5TcHJpbmdlcjwvcHVibGlzaGVyPjxpc2JuPjM1NDA2NDI2Njg8L2lzYm4+
PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYW5uZWxpczwvQXV0
aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4zMDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjMwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MzAwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli
dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVsIFA8L2F1dGhvcj48L2F1
dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9seW1lciBsYXllcmVkIHNpbGlj
YXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFkdmFuY2VkIG1hdGVy
aWFsczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFk
dmFuY2VkIG1hdGVyaWFsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI5LTM1PC9w
YWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5
NjwveWVhcj48L2RhdGVzPjxpc2JuPjE1MjEtNDA5NTwvaXNibj48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+VmFpYTwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJl
Y051bT4zMDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6
MmUyMDUwcHR3ciI+MzAxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5W
YWlhLCBSaWNoYXJkIEE8L2F1dGhvcj48YXV0aG9yPkphbmR0LCBLbGF1cyBEPC9hdXRob3I+PGF1
dGhvcj5LcmFtZXIsIEVkd2FyZCBKPC9hdXRob3I+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVs
IFA8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWljcm9z
dHJ1Y3R1cmFsIGV2b2x1dGlvbiBvZiBtZWx0IGludGVyY2FsYXRlZCBwb2x5bWVyLW9yZ2FuaWNh
bGx5IG1vZGlmaWVkIGxheWVyZWQgc2lsaWNhdGVzIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkNoZW1pc3RyeSBvZiBNYXRlcmlhbHM8L3NlY29uZGFyeS10aXRsZT48L3Rp
dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaXN0cnkgb2YgTWF0ZXJpYWxzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYyOC0yNjM1PC9wYWdlcz48dm9sdW1lPjg8L3Zv
bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48
aXNibj4wODk3LTQ3NTY8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48
QXV0aG9yPkJydW5lPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjMwMjwvUmVjTnVt
PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzAyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh
cHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4zMDI8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJydW5lLCBEb3VnbGFzIEE8
L2F1dGhvcj48YXV0aG9yPkJpY2VyYW5vLCBKb3plZjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NaWNyb21lY2hhbmljcyBvZiBuYW5vY29tcG9zaXRlczog
Y29tcGFyaXNvbiBvZiB0ZW5zaWxlIGFuZCBjb21wcmVzc2l2ZSBlbGFzdGljIG1vZHVsaSwgYW5k
IHByZWRpY3Rpb24gb2YgZWZmZWN0cyBvZiBpbmNvbXBsZXRlIGV4Zm9saWF0aW9uIGFuZCBpbXBl
cmZlY3QgYWxpZ25tZW50IG9uIG1vZHVsdXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1l
cjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHlt
ZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNjktMzg3PC9wYWdlcz48dm9sdW1l
PjQzPC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PC9k
YXRlcz48aXNibj4wMDMyLTM4NjE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48
Q2l0ZT48QXV0aG9yPkJoYXJhZHdhajwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4z
MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1r
ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUw
cHR3ciI+MzAzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0
aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CaGFyYWR3
YWosIFJpc2hpa2VzaCBLPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPk1vZGVsaW5nIHRoZSBiYXJyaWVyIHByb3BlcnRpZXMgb2YgcG9seW1lci1sYXllcmVk
IHNpbGljYXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1hY3JvbW9s
ZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz45MTg5LTkxOTI8
L3BhZ2VzPjx2b2x1bWU+MzQ8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFy
PjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4wMDI0LTkyOTc8L2lzYm4+PHVybHM+PC91cmxzPjwv
cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+
PFJlY051bT4xMjY8L1JlY051bT48RGlzcGxheVRleHQ+WzYsIDE3LTIxXTwvRGlzcGxheVRleHQ+
PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjEyNjwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEgUmljaGFyZDwvYXV0aG9yPjxh
dXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3RpdGxlPjwvdGl0bGVzPjxkYXRl
cz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53b29kaGVhZCBQdWJsaXNoaW5n
PC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+R2lhbm5lbGlzPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48
UmVjTnVtPjI5OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjk5PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3
enoyZTIwNTBwdHdyIj4yOTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v
ayBTZWN0aW9uIj41PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2lh
bm5lbGlzLCBFUDwvYXV0aG9yPjxhdXRob3I+S3Jpc2huYW1vb3J0aSwgUjwvYXV0aG9yPjxhdXRo
b3I+TWFuaWFzLCBFPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp
dGxlPlBvbHltZXItc2lsaWNhdGUgbmFub2NvbXBvc2l0ZXM6IG1vZGVsIHN5c3RlbXMgZm9yIGNv
bmZpbmVkIHBvbHltZXJzIGFuZCBwb2x5bWVyIGJydXNoZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UG9seW1lcnMgaW4gY29uZmluZWQgZW52aXJvbm1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PC90
aXRsZXM+PHBhZ2VzPjEwNy0xNDc8L3BhZ2VzPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0
ZXM+PHB1Ymxpc2hlcj5TcHJpbmdlcjwvcHVibGlzaGVyPjxpc2JuPjM1NDA2NDI2Njg8L2lzYm4+
PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYW5uZWxpczwvQXV0
aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4zMDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjMwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MzAwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli
dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVsIFA8L2F1dGhvcj48L2F1
dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9seW1lciBsYXllcmVkIHNpbGlj
YXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFkdmFuY2VkIG1hdGVy
aWFsczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFk
dmFuY2VkIG1hdGVyaWFsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI5LTM1PC9w
YWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5
NjwveWVhcj48L2RhdGVzPjxpc2JuPjE1MjEtNDA5NTwvaXNibj48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+VmFpYTwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJl
Y051bT4zMDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6
MmUyMDUwcHR3ciI+MzAxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5W
YWlhLCBSaWNoYXJkIEE8L2F1dGhvcj48YXV0aG9yPkphbmR0LCBLbGF1cyBEPC9hdXRob3I+PGF1
dGhvcj5LcmFtZXIsIEVkd2FyZCBKPC9hdXRob3I+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVs
IFA8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWljcm9z
dHJ1Y3R1cmFsIGV2b2x1dGlvbiBvZiBtZWx0IGludGVyY2FsYXRlZCBwb2x5bWVyLW9yZ2FuaWNh
bGx5IG1vZGlmaWVkIGxheWVyZWQgc2lsaWNhdGVzIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkNoZW1pc3RyeSBvZiBNYXRlcmlhbHM8L3NlY29uZGFyeS10aXRsZT48L3Rp
dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaXN0cnkgb2YgTWF0ZXJpYWxzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYyOC0yNjM1PC9wYWdlcz48dm9sdW1lPjg8L3Zv
bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48
aXNibj4wODk3LTQ3NTY8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48
QXV0aG9yPkJydW5lPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjMwMjwvUmVjTnVt
PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzAyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh
cHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4zMDI8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJydW5lLCBEb3VnbGFzIEE8
L2F1dGhvcj48YXV0aG9yPkJpY2VyYW5vLCBKb3plZjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NaWNyb21lY2hhbmljcyBvZiBuYW5vY29tcG9zaXRlczog
Y29tcGFyaXNvbiBvZiB0ZW5zaWxlIGFuZCBjb21wcmVzc2l2ZSBlbGFzdGljIG1vZHVsaSwgYW5k
IHByZWRpY3Rpb24gb2YgZWZmZWN0cyBvZiBpbmNvbXBsZXRlIGV4Zm9saWF0aW9uIGFuZCBpbXBl
cmZlY3QgYWxpZ25tZW50IG9uIG1vZHVsdXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1l
cjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHlt
ZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNjktMzg3PC9wYWdlcz48dm9sdW1l
PjQzPC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PC9k
YXRlcz48aXNibj4wMDMyLTM4NjE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48
Q2l0ZT48QXV0aG9yPkJoYXJhZHdhajwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4z
MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1r
ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUw
cHR3ciI+MzAzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0
aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CaGFyYWR3
YWosIFJpc2hpa2VzaCBLPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPk1vZGVsaW5nIHRoZSBiYXJyaWVyIHByb3BlcnRpZXMgb2YgcG9seW1lci1sYXllcmVk
IHNpbGljYXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1hY3JvbW9s
ZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz45MTg5LTkxOTI8
L3BhZ2VzPjx2b2x1bWU+MzQ8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFy
PjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4wMDI0LTkyOTc8L2lzYm4+PHVybHM+PC91cmxzPjwv
cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE.DATA [6, 17-21]. در سال 1960 مطالعاتی بر روی پایداری حرارتی پلی استایرن و پلی متیل متاکریلات ساخته شده در حضور خاک رس انجام شد ADDIN EN.CITE <EndNote><Cite><Author>Friedlander</Author><Year>1964</Year><RecNum>304</RecNum><DisplayText>[22, 23]</DisplayText><record><rec-number>304</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">304</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Friedlander, Henry Z</author><author>Frink, Charles R</author></authors></contributors><titles><title>Organized polymerization III. Monomers intercalated in montmorillonite</title><secondary-title>Journal of Polymer Science Part B: Polymer Letters</secondary-title></titles><periodical><full-title>Journal of Polymer Science Part B: Polymer Letters</full-title></periodical><pages>475-479</pages><volume>2</volume><number>4</number><dates><year>1964</year></dates><isbn>1542-6254</isbn><urls></urls></record></Cite><Cite><Author>Blumstein</Author><Year>1965</Year><RecNum>305</RecNum><record><rec-number>305</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">305</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blumstein, Alexandre</author></authors></contributors><titles><title>Polymerization of adsorbed monolayers. I. Preparation of the clay–polymer complex</title><secondary-title>Journal of Polymer Science Part A: General Papers</secondary-title></titles><periodical><full-title>Journal of Polymer Science Part A: General Papers</full-title></periodical><pages>2653-2664</pages><volume>3</volume><number>7</number><dates><year>1965</year></dates><isbn>1542-6246</isbn><urls></urls></record></Cite></EndNote>[22, 23]. آنها دریافتند که مولکول های استایرن و متیل متاکریلات بر روی سطح و سطح مشترک مونت موریلونیت جذب شده و یک کمپلکس بین لایه ای پلیمر-مونت موریلونیت تشکیل می دهند. این کمپلکس ها پایداری حرارتی بالا و مقاومت در برابر حلالیت بالایی را از خود نشان می دهند زیرا تخریب مولکول ها در محیط محدود، جابجایی زنجیره پلیمر را با تأخیر مواجه کرده و تخریب با تأخیر انجام خواهد شد. قبل از این پژوهشگران شرکت تویوتا ADDIN EN.CITE <EndNote><Cite><Author>Usuki</Author><Year>1993</Year><RecNum>306</RecNum><DisplayText>[24, 25]</DisplayText><record><rec-number>306</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">306</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Usuki, Arimitsu</author><author>Kojima, Yoshitsugu</author><author>Kawasumi, Masaya</author><author>Okada, Akane</author><author>Fukushima, Yoshiaki</author><author>Kurauchi, Toshio</author><author>Kamigaito, Osami</author></authors></contributors><titles><title>Synthesis of nylon 6-clay hybrid</title><secondary-title>Journal of Materials Research(USA)</secondary-title></titles><periodical><full-title>Journal of Materials Research(USA)</full-title></periodical><pages>1179-1184</pages><volume>8</volume><number>5</number><dates><year>1993</year></dates><isbn>0884-2914</isbn><urls></urls></record></Cite><Cite><Author>Kojima</Author><Year>1993</Year><RecNum>307</RecNum><record><rec-number>307</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">307</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kojima, Yoshitsugu</author><author>Usuki, Arimitsu</author><author>Kawasumi, Masaya</author><author>Okada, Akane</author><author>Fukushima, Yoshiaki</author><author>Kurauchi, Toshio</author><author>Kamigaito, Osami</author></authors></contributors><titles><title>Mechanical properties of nylon 6-clay hybrid</title><secondary-title>Journal of Materials Research(USA)</secondary-title></titles><periodical><full-title>Journal of Materials Research(USA)</full-title></periodical><pages>1185-1189</pages><volume>8</volume><number>5</number><dates><year>1993</year></dates><isbn>0884-2914</isbn><urls></urls></record></Cite></EndNote>[24, 25]دریافتند که افزودن خاک‌رس به پلی‌آمید-6 به میزان 7/4% عنصر به خواص مکانیکی فوق العاده خواهد شد که دمای واپیچش و تغییر شکل حرارتی به دمای 152 درجه سانتی گراد افزایش خواهد یافت که این مقدار 87 درجه سانتی گراد بیشتر از پلی آمید-6 اصلی و اولیه است. خاک رس ها خانواده ای از مواد سیلیکاته لایه ای هستند (شناخته شده از نوع 2:1 فیلوسیلیکات) این مواد شامل مونت موریلونیت، هکتوریت، ساپونیت، فلورومیکا، فلوروهکتوریت، ورمیکومیت، کائولینیت، ماگادیت و غیره می باشد. مونت موریلونت یکی از انواع خاک رس است که استفاده بیشتری از آن می شود. این ماده از زمانی که در ابتدا در شهر مونت موریلون فرانسه در سال 1874 کشف شد به این نام مشهور شد ADDIN EN.CITE <EndNote><Cite><Author>Grimshaw</Author><Year>1971</Year><RecNum>308</RecNum><DisplayText>[26]</DisplayText><record><rec-number>308</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">308</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Grimshaw, Rex W</author><author>Searle, Alfred Broadhead</author></authors></contributors><titles><title>The chemistry and physics of clays and allied ceramic materials</title></titles><dates><year>1971</year></dates><publisher>Wiley-Interscience</publisher><isbn>0471327808</isbn><urls></urls></record></Cite></EndNote>[26]. ساختار خاک رس مونت موریلونیت از دو دیدگاه مختلف می تواند بررسی شود میکروساختار و ساختار بلورین. بر اساس مطالعات انجام شده بر روی ذرات میکرو ساختار مونت موریلونیت تقسیم به سه نوع دسته بندی مختلف می شود: ساختار لایه ای ، ذرات اولیه ، حالت خوشه ای شدن. ساختار لایه ای شامل یک لایه ساده است اما با ضخامت 1 نانومتر و طول 200-100 نانومتر. ساختار بلوری و کریستال مونت موریلونیت به ساختار لایه ای بر می گردد. چندین لایه با هم متحد و پیوند زده می شوند و ذره اولیه شکل می گیرد (با محدوده چندین نانومتر تا ده ها نانومتر). صدها هزار ذرات اولیه به هم چسبیده و تشکیل خوشه می دهند و محدوده اندازه خوشه میان 1/0 تا ده ها میکرومتر است. از نقطه نظر ساختار کریستالی، این مواد معدنی یک ساختار لایه ای دو بعدی دارند. اگر کسی بخواهد یک پلیمر آلی را با خاک رس مونت موریلونیت مخلوط کند بایست به وسیله تبادل یونی، یون های هیدروفیل سدیم را حذف کرده به جای آن یون های آلی دوست جایگزین کند. نانو کامپوزیت های پلیمر خاک رس به وسیله پلیمریزاسیون هم زمان و فرآیند آلیاژسازی تولید می شوند. آلی دوست ها برای هر دو مورد از روش ها کمی متفاوت عمل می کنند. در فرآیند آلیاژسازی به زنجیره های آلکیل بیشتری نسبت به پلیمریزاسیون هم زمان نیاز داریم. هنگام ساخت نانو کامپوزیت، سه نوع مختلف ممکن است به وجود بیاید:
1) غیر قابل امتزاج
معمولاً به عنوان میکرو کامپوزیت شناخته می شود. در این حالت خاک رس به صورت نانو پراکنده نمی شود و در این حالت مانند یک پرکننده با اندازه میکرو عمل می کند.
2) نانو کامپوزیت های intercalated
نانو کامپوزیت کاملاً در اندازه نانو در ماتریس پراکنده می شود و لایه های خاک رس ثابت باقی می‌مانند.
3) نانو کامپوزیت Exfoliated
در این حالت لایه های خاک رس از هم باز می شوند و پراکنش خوبی را بوجود می‌آید و فاصله ثابت میان لایه ها از بین خواهد رفت و این خاک رس به درون لایه ها نفوذ می کند.
این تعاریف بر اساس ابزارها و تست های X-Ray diffraction (XRD) به دست آمده است. REF _Ref384715186 h * MERGEFORMAT شکل ‏25 این سه نوع مختلف مواد را نشان می دهد. پایداری حرارتی خاک های رس به وسیله آنالیزهای وزن‌سنجی حرارتی (TGA) مطالعه و بررسی می شود.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 5: انواع نانوکاپوزیت‌هاتوصیف و تحلیل تشکیل نانوکامپوزیتنانو کامپوزیت های پلیمر خاک رس علاوه بر کاهش اشتعال پذیری، بهبود خواص مکانیکی را نیز از خود نشان می دهد. این امر یک نکته مثبت است زیرا بسیاری از تأخیر دهنده های اشتعال بایست با مقدار زیاد استفاده شوند تا بتوانند به خواص ضد آتش مطلوب برسند، در این حالت ممکن است خواص مکانیکی پلیمر کاهش یابد. تحلیل و آنالیز معمولاً نشان دهنده پراکنش خوب خاک رس در پلیمر مثل پراکنش نانو ذرات و همچنین نفوذ Intercalated، Exfoliated و یا اختلاط ماده به وسیله تفرق اشعه X (XRD) و TEM قابل حصول است. ADDIN EN.CITE <EndNote><Cite><Author>Morgan</Author><Year>2003</Year><RecNum>310</RecNum><DisplayText>[27]</DisplayText><record><rec-number>310</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">310</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Morgan, Alexander B</author><author>Gilman, Jeffrey W</author></authors></contributors><titles><title>Characterization of polymer‐layered silicate (clay) nanocomposites by transmission electron microscopy and X‐ray diffraction: A comparative study</title><secondary-title>Journal of Applied Polymer Science</secondary-title></titles><periodical><full-title>Journal of Applied Polymer Science</full-title></periodical><pages>1329-1338</pages><volume>87</volume><number>8</number><dates><year>2003</year></dates><isbn>1097-4628</isbn><urls></urls></record></Cite></EndNote>[27] XRD فاصله میان فضای گالری، فاصله d ماده درون سیستم Intercalated را می‌دهد. زمانی سیستم Exfoliate بوجود می‌آید که فاصله ثابت میان لایه های خاک رس تغییر کند و در آزمون XRD هیچ گونه پیک (Peak) مشاهده نمی شود. متأسفانه در برخی موارد در فرآیند اختلاط خاک رس با پلیمر اخلال و بی نظمی به وجود می آید که این امر باعث عدم مشاهده پیک در آزمون خواهد شد. در این حالت عدم مشاهده پیک در آزمون XRD مبهم است. TEM یک تصویر واقعی از خاک رس در پلیمر را به ما می دهد. در اینجا حداقل 2 برابر بزرگنمایی لازم است. بزرگنمایی پایین می تواند نشان دهد که پراکنش خاک رس خوب انجام شده در صورتی که تصویر با بزرگنمایی بالاتر می تواند لایه های واقعی خاک رس را نشان دهد و دیگر آنکه فاصله ثابت میان لایه ها را نیز نشان دهد. مشکلی که تصاویر TEM دارند این است که سطح واقعی که از آنها عکسبرداری می شود در مقایسه با کل ماده بسیار بسیار کوچک است و در بیشتر اوقات، پژوهشگرها با استفاده از نتایج این تصاویر کوچک، نتایج را به کل نمونه بسط می دهند. به صورت واقع گرایانه و صحیح بایست یک تحلیل آماری و تصادفی از کل نمونه انجام شود و تصاویر کافی گرفته شود و بر روی موقعیت های مختلف تمرکز کرد تا بتوان به صورت اطمینان بخشی در مورد نانو کامپوزیت بحث نمود. تکنیک و روش دیگری نیز وجود دارد که به صورت کمتری استفاده می شود ولی باید بیشتر استفاده شود. AFM میکروسکوب نیروی اتمی، زمان استراحت رزونانس مغناطیسی هسته ای (NMR) و گرماسنج مخروطی است. AFC یک روش سریع تر و آسان تر ولی کمتر و کوچک تر از روش TEM است. نمونه هایی از تصاویر میکروسکوپ نیروی اتمی حالت های Intercalated، مخلوطی از Intercalated – Exfoliated و ساختار Exfoliated در REF _Ref384715260 h * MERGEFORMAT شکل ‏26 نشان داده شده است.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 6:نتایج AFM نانوکاپوزیت های پلی استایرن.شکل بالا سمت چپ ساختارexfloliated.بالا سمت راست مخلوطی از Intercalated/exfoliated و نهایتا شکل پایین ساختار Intercalated ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
در ریزساختار Intercalated سطح کاملاً صاف است در صورتی که برای ساختار Exfoliated، نواحی و قطعات کوچکی در ماتریس پلیمری پراکنده شده است. لغات Intercalated و Exfoliated به عنوان ترم هایی که نشان دهنده فاصله ثابت میان لایه هاست و تکنیک NMR یک روش متفاوت برای بررسی این پدیده پیشنهاد می کند و این امر نیاز به جمع آوری و استفاده از اصطلاحات و ترم های جدید است. در برخی کارهای زودتر انجام شده در مورد تأخیر اشتعال نانو کامپوزیت های پلیمر خاک رس توسط Gilman و همکاران ADDIN EN.CITE <EndNote><Cite><Author>Al-Malaika</Author><Year>1999</Year><RecNum>311</RecNum><DisplayText>[13, 28]</DisplayText><record><rec-number>311</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">311</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Al-Malaika, Sahar</author><author>Golovoy, A</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Chemistry and technology of polymer additives</title></titles><dates><year>1999</year></dates><publisher>Blackwell Science</publisher><isbn>0632053380</isbn><urls></urls></record></Cite><Cite><Author>Le Bras</Author><Year>1998</Year><RecNum>282</RecNum><record><rec-number>282</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">282</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Le Bras, Michel</author></authors></contributors><titles><title>Fire retardancy of polymers: the use of intumescence</title></titles><dates><year>1998</year></dates><publisher>Royal society of chemistry</publisher><isbn>0854047387</isbn><urls></urls></record></Cite></EndNote>[13, 28] نشان داده شده که گرماسنج مخروطی اطلاعاتی در زمینه تشکیل نانو کامپوزیت می دهند. در میکرو کامپوزیت ها کاهشی در پیک نرخ رهایش حرارت (PHRR) ضرورتاً نخواهد داشت در صورتی که در نانو کامپوزیت ها، صرف نظر از Intercalated یا Exfoliated بودن، کاهش نسبتاً قابل توجهی را نشان داد. در کارهای آزمایشگاهی انجام شده در این موارد، تفاوت مشخصی در کاهش پیک نرخ رهایش حرارت نانو کامپوزیت ها در برابر میکروکامپوزیت‌ها مشاهده می‌شود.
بررسی تأخیر اشتعالخواص آتش مواد به وسیله روش های مختلفی بررسی می شود: کالریمتر مخروطی(ASTM E1354)، تبخیر به وسیله اشعه ADDIN EN.CITE <EndNote><Cite><Author>Zanetti</Author><Year>2002</Year><RecNum>312</RecNum><DisplayText>[29]</DisplayText><record><rec-number>312</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">312</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zanetti, M</author><author>Kashiwagi, Takashi</author><author>Falqui, L</author><author>Camino, G</author></authors></contributors><titles><title>Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites</title><secondary-title>Chemistry of Materials</secondary-title></titles><periodical><full-title>Chemistry of Materials</full-title></periodical><pages>881-887</pages><volume>14</volume><number>2</number><dates><year>2002</year></dates><isbn>0897-4756</isbn><urls></urls></record></Cite></EndNote>[29]و پارامتر محدودیت اکسیژن (ASTM D2863,ISO 4589)روش های محبوبی هستند که برای بررسی تأخیر اشتعال مواد پلیمری به کار می روند. برای محصولات تجاری از آزمون UL-94(ISO 9772,ISO 9773,ASTM D635) می توان برای تعیین کیفیت مواد تأخیر دهنده اشتعال استفاده کرد. کالریمتر مخروطی به صورت گسترده ای به عنوان یک روش آزمایشگاهی برای بررسی ترکیب تأخیر اشتعال ADDIN EN.CITE <EndNote><Cite><Author>Grand</Author><Year>2000</Year><RecNum>144</RecNum><DisplayText>[30]</DisplayText><record><rec-number>144</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">144</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Grand, Arthur F</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Fire retardancy of polymeric materials</title></titles><volume>803</volume><dates><year>2000</year></dates><publisher>CRC Press</publisher><isbn>0824788796</isbn><urls></urls></record></Cite></EndNote>[30]مورد استفاده قرار می گیرد. اطلاعاتی که می توان از این طریق به دست آورد افزایش حرارت عبارت است از: زمان رسیدن به احتراق، میزان و نرخ رهایش حرارت به عنوان تابعی از زمان، گرمای اشتعال، نرم جرم از دست رفته و دوده تولید شده. میزان نمودار کل نرخ رهایش حرارت نیز قابل دسترسی است اما معمولاً بر روی مقادیر تمرکز می شود (مقدار پیک رهایش حرارت PHRR) تبخیر بر اثر اشعه تکنیک وابسته و متناسب با آزمون کالریمتر مخروطی است البته اگر در اتمسفر نیتروژن انجام شود.) این امر باعث می شود که دود حذف شود و زمانی که ماده گرم می شود می توان از آن عکس گرفت و شواهد تصویری از واکنش را می توان داشت. پارامتر محدودیت اکسیژن نیز مقدار کمینه اکسیژن مورد نیاز برای ادامه سوختن و اشتعال نمونه را معرفی می کند. افزایش میزان پارامتر محدودیت اکسیژن به مقدار بیشتر از 20، نزدیک به درصد اکسیژن در هوا، ترکیب تأخیر دهنده اشتعال ممکن است بتوان تعیین کرد.
مکانیسم های تأخیر اشتعال در نانو کامپوزیت هامکانیسم هایی که باعث افزایش پایداری حرارتی و پایداری اشتعال پلیمرها در هنگام تولید و تشکیل نانو کامپوزیت ها می شود در برخی مواقع جالب و مورد اقبال است. اولین پیشنهاد مکانیزم توسط Gilman و Kashiwagi معرفی شد. آنها گفتند که ساختار نانو کامپوزیت هنگام اشتعال منقبض می شود و این اتفاق باعث تشکیل ساختار سیلیکاتی کربنی در سطح می شود که به عنوان یک لایه محافظ در برابر انتقال جرم و همچنین به عنوان لایه ای عایق سطح زیرین پلیمری در برابر منبع حرارتی عمل می کند. دومین مکانیسم زمانی مؤثر است که مقدار و درصد خاک رس کاملاً پایین باشد. در این حالت رادیکال ها به وسیله آهن جایگزین شده در خاک رس به دام می افتد ADDIN EN.CITE <EndNote><Cite><Author>Zhu</Author><Year>2001</Year><RecNum>315</RecNum><DisplayText>[31]</DisplayText><record><rec-number>315</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">315</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zhu, Jin</author><author>Uhl, Fawn M</author><author>Morgan, Alexander B</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Studies on the mechanism by which the formation of nanocomposites enhances thermal stability</title><secondary-title>Chemistry of Materials</secondary-title></titles><periodical><full-title>Chemistry of Materials</full-title></periodical><pages>4649-4654</pages><volume>13</volume><number>12</number><dates><year>2001</year></dates><isbn>0897-4756</isbn><urls></urls></record></Cite></EndNote>[31]. زمانی که خاک رس حاوی آهن باشد در مقایسه با زمانی که آهن وجود نداشته باشد یک تفاوت و اختلاف مشخص در کاهش پیک رهایش حرارت در مقادیر کمتر از 3 درصد خاک رس مشاهده می شود. به طور کلی کارهای زیادی در مورد تشکیل نانو کامپوزیت ها انجام شده و در بیشتر کارها میزان پیک رهایش حرارت و همچنین افت جرم کاهش می یابد اما بر روی رهایش حرارت کلی تأثیری نمی گذارد و زمان رسیدن به احتراق در بیشتر موارد کوتاه تر خواهد شد. تمام این تأثیرات مهم در کالریمتری مخروطی وجود دارد و از طریق سوختن نانو کامپوزیت به دست می آید. پیشنهاد می شود که اثر هم افزایی میان تشکیل نانوکامپوزیت و کاربرد تأخیر دهنده اشتعال استفاده شود (در صورتی که رسیدن به تأخیر اشتعال از طریق تکنولوژی نانو انجام می گیرد.) همچنین بایست در آینده تحقیقات بر روی مواد نانو به جز خاک رس انجام شود
.
پلی‌یورتانمقدمهامروزه مبحث انرژی و صرفه‌جویی در مصرف انرژی در تمامی زمینه‌ها حتی در خانه‌ها یکی از مهمترین دغدغه‌های بشر است. مقدار زیادی انرژی از طریق مصارف خانگی در روزهای سرد زمستان هدر می‌رود. عایق‌های از جنس پلی یورتان قابلیت حفظ انرژی در طول زمستان و تابستان و در مقابل گرما و سرما را دارا می‌باشند. در اکثر یخچال‌ها و فریزرها که در سرتاسر جهان تولید می‌شوند، پلی‌یورتان بعنوان یک ماده عایق حرارتی مورد استفاده قرار می‌گیرد و باعث می‌شود که هوای خنک درون یخچال محفوظ باقی بماند. همچنین از این ماده جهت خنک‌سازی مواد غذایی حین حمل و نقل از مرحله تولید تا مصرف سالم و تازه باقی بماند. همچنین برخی دیگر از خواص موجود در پلی یورتان باعث شود این ماده یک گزینه مناسب جهت استفاده در برخی محیط‌های حساس و پرتنش مورد توجه قرار بگیرد؛ بعنوان مثال لباس‌های فضانوردی دارای لایه‌هایی از جنس پلی‌یورتان هستند که از یخ زدن فضانوردان در محیط‌های سرد خارج جلوگیری می‌کند و همچنین باعث کاربرد در لباس‌های مخصوص آب‌های سرد شده است.
همچنین این ماده در مبلمان‌های راحت و همچنین تشک‌های خواب مورد استفاده قرار می‌گیرد. دلیل کاربرد این ماده جهت استفاده در مبلمان‌ها و لوازم خواب به دلیل ویژگی و خواص مناسب است که می‌تواند به فرم بدن شکل بگیرد و موجب آسایش و راحتی بیشتر فرد شود. از دیگر مزایای این ماده این است که به راحتی و انرژی کمی قابل ازبین رفتن است و همچنین میتوان آن را با محصول جدید دیگری مخلوط و بازیابی کرد.
یکی از نکات جالب در مورد پلی‌یورتان‌ها این است که با نسبت استوکیومتری‌های مختلف از مواد اولیه آن؛ یعنی ایزوسیانات و پلی‌ال؛ می‌تواند بصورت اشکال مختلف و ویژگی‌های کاملاً متفاوت، شکل‌دهی و فرآیند شود. بعنوان مثال: تخته موج سواری با وجود اینکه سبک‌وزن است اما استحکام و سختی لازم را دارا می‌باشد و یا چرخ‌های اسکیت بسیار مقاوم است.
از پلی‌یورتان‌ها به شکل بسیار گسترده‌ای در صنایع خودروسازی استفاده می‌شود. در سپرهای اتومبیل به عنوان جاذب ضربه، در لاستیک‌ها به جهت انعطاف و آسایش بیشتر در رانندگی، سپر صوتی موتور اتومبیل در کاپوت خودرو و بعنوان فوم‌ در صندلی اتومبیل و کنسول اتومبیل کاربرد دارد اما این تمام قضیه نیست، پلی یورتان باعث سبک شدن وزن اتومبیل و کاهش مقدار مصرف سوخت خواهد شد.
پلی یورتانها را اولین بار اتوبایر در سال1937 در آلمان کشف کرد و بعد از آن این مواد با داشتن خواص ویژه پیشرفت بسیار زیادی را در انواع صنایع جهان داشتند.
پلی یورتان‌ها دسته‌ای از پلیمرهای پر مصارف با خواص عالی هستند. به همین خاطر، طراحان و متخصصان صنایع پوشش دهی بخوبی توان بهره بردای از این ترکیبات را در کاربردهای گوناگون دارند مثالهای متعددی برای کاربردهای فراوان این ترکیبات وجود دارد، از جمله پوششهای شفاف برای پوشش دهنده های تک لایه مخصوص بامها و رنگهای مشخص کردن محل گذر عابرین پیاده و غیره.
مقاومت پلی یورتانها در برابر سایش ضربه و ترک خوردگی بسیار خوب است، از جمله ویژگی های آنها پخت سریع و کامل در دمای محیط است. خواص مکانیکی فوم‌ها وابسته به ماده دیواره سلول و هندسه سلول است. ADDIN EN.CITE <EndNote><Cite><Author>Lee</Author><Year>2005</Year><RecNum>342</RecNum><DisplayText>[32]</DisplayText><record><rec-number>342</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">342</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lee, L James</author><author>Zeng, Changchun</author><author>Cao, Xia</author><author>Han, Xiangming</author><author>Shen, Jiong</author><author>Xu, Guojun</author></authors></contributors><titles><title>Polymer nanocomposite foams</title><secondary-title>Composites science and technology</secondary-title></titles><periodical><full-title>Composites science and Technology</full-title></periodical><pages>2344-2363</pages><volume>65</volume><number>15</number><dates><year>2005</year></dates><isbn>0266-3538</isbn><urls></urls></record></Cite></EndNote>[32] پلی یورتان‌ها آلیفاتیک از انواع آروماتیک گرانتر هستند. به همین خاطر انواع آروماتیک و نمونه های اپوکسی دار در استری ها، رنگهای پایه و پوششهای رابط بکار می روند. در حالی که آلیفاتیک ها ویژه پوشش نهایی هستند. همچنین ایزوسیانات‌های آلیفاتیک پایداری بیشتری نسبت به انواع آروماتیک دارند. استفاده از پوشش های محافظ برای جلوگیری از پدیده خوردگی در ساختارهای فولادی که آستر و پوشش پایه آنها از نوع سامانه های اپوکسی دار است، نمونه ای از کاربردهای مهم پلی یورتانها محسوب می شوند. مورد دیگر، سامانه های پوشش دهنده کف است که در آنها نیز انواع پوششهای پایه را می توان بکار برد، گاهی پوشش نهائی از نوع یورتان برای لایه نهایی کف نیز کفایت می کند.
پلی یورتان چیست؟ پلی یورتان‌ها (PU) نام عمومی ترکیبات و پلیمرهایی است که در ساختار آنها پیوند یورتانی می باشند. پیوند یورتانی از طریق واکنش افزایشی بین یک گروه ایزوسیانات و یک ترکیب دارای هیدروژن فعال مثل گروه هیدروکسیل تشکیل شده است. گروه های ایزوسیانات به شدت واکنش پذیر بوده و به همین علت پیشرفت واکنش آنها نیاز به افزایش دما ندارد.(واکنش در دمای محیط صورت می گیرد) مهمترین ویژگی این گروه از پلیمرها این است که پس از واکنش ساختاری پایدار بوجود می آید
ایزوسیانات‌ها اغلب از واکنش آمین و فسژن در حلال‌های بی اثر و شرایط دمایی زیر صفر تا 100 درجه سانتیگراد تولید می‌شوند. دی ایزوسیانات‌ها دارای دو گروه سیاناتی می‌باشند. گروه‌های ایزوسیانات به شدت واکنش پذیر بوده و به همین علت پیشرفت واکنش آنها نیاز به افزایش دما ندارد.(واکنش در دمای محیط صورت می گیرد) مهمترین ویژگی این گروه از پلیمرها این است که پس از واکنش ساختاری پایدار بوجود می آید.
ترکیباتی که دارای گروه ایزوسیانات هستند عبارتند از:
2و4 یا 2و6 تولوئن دی ایزوسیانات
4و4 یا 2و4 دی فنیل متان دی ایزوسیانات
1و6 هگزا متیلن دی ایزوسیانات
از جمله معروفترین دی ایزوسیانات‌های تجاری می‌توان به MDI، (6,2)TDI، (4,2)TDI، NDI، IPDI، TODI، TMDI، CHDI، PPDI، XDI، HDI اشاره کرد.
علاوه بر موارد ذکر شده، ترکیبات ایزوسیاناتی دیگری نیز وجود دارند.
ترکیباتی که دارای دو گروه هیدروکسیل(OH) یا بیشتر باشند را پلی اُل می نامند. بطور معمول در تولید پلی یورتان‌ها از دو نوع پلی ال پلی استری و پلی ال پلی اتری استفاده می‌شود. نوع پلی ال بکار رفته در پلی یورتان‌ها تعیین کننده خواص نهایی آنها می‌باشد. معمولا پلی ال‌های بکار رفته در تولید پلی یورتان‌ها دارای وزن مولکولی مابین 200 تا 2000 می‌باشند که بسته به خواص نهایی مورد انتظار ازز پلی یورتان، انتخاب می‌شوند. بطور معمول از گونه های زیر استفاده می‌شود:
پلی ال‌های پلی استری
پلی استرها زنجیرهای ملکولی با وزن مولکولی بالا هستند که در زنجیر آنها گروه استری تکرار می‌شود و از واکنش یک اسید کربوکسیلیک دو عاملی با یک الکل دو عاملی حاصل می‌شوند.
پلی استرهای مورد استفاده در صنایع پلی یورتان به روش‌های مختلفی تهیه می‌شوند که مهمترین آنها عبارتند از روش پلی استریفیکاسیونی و پلی کاپرولاکتونی.
پلی ال‌های پلی اتری(Polyether Polyols)
این نوع پلی ال‌ها معمولا از واکنش پلیمریزاسیونی گروه اپوکسیدالکین اسید در مجاورت کاتالیست‌های بازی مانند هیدروکسید سدیم و هیدروکسید پتاسیم تولید می‌شوند. پلی اتر پلی ال‌ها بسته به روش تهیه آنها دو عاملی یا سه عاملی می‌باشند.
پلی کربنات پلی ال
پلی کاپرولاکتون پلی ال
به علاوه، به جای گروههای هیدروکسیل، ترکیباتی مثل اسیدهای کربوکسیلیک و آمینها، که دارای هیدروژن فعال هستند نیز می توانند در ترکیب با ایزوسیاناتها مورد استفاده قرار گیرند. به همین دلیل، زمانیکه صحبت از پلی یورتانها می شود، می توان گفت که گونه های بیشماری از آنها وجود دارد.

—d1522

) تنظیم تعادل انرژی14
2-2-3) کنترل اشتها و هموستاز انرژی15
هیپوتالاموس17
2-2-5) سیگنال های عصبی و هورمونی کنترل اشتها 18
2-2-6) سیستم کنترل مرکزی20
2-2-7)کنترل محیطی اشتها22
تنظیم کننده های وزن و متابولیسم بدن23
) نروپپتایدها24
2-3-1-1) نوروپپتید Y (NPY)24
2-3-1-2)ارکسین25
2-3-1-3)گالانین26
2-3-1-4) نوروپتیید w-2327
2-3-2)هورمون ها27
2-3-2-1)گرلین27
2-3-2-2)ابستاتین28
2-3-2-3)لپتین29
نوروپتیید w30
گیرنده های NPW31
توزیع مرکزی NPW32
2-4-3) توزیع محیطی NPW33
توزیع NPBWR1-2 34
تنظیم تغذیه ومتابولیسم انرژی بوسیله NPW35
عملکرد اندوکرین NPW37
کورتیزول38
کورتیزول و فعالیت بدنی39
متابولیسم انرژی در فعالیت ورزشی41
فعالیت ورزشی فزاینده و شدید41
فعالیت ورزشی دراز مدت41
تاثیرات اسمولاریته بروی هورمون ها42
ارتباط کورتیزول با واسطه های متابولیکی43
ارتباط هورمون کورتیزول با اسید لاکتیک44
ارتباط هورمون کورتیزول با کراتینین44
کورتیزول و چاقی45
2-5-5-1) لینک پتانسیل بین کورتیزول و اشتها46
اثرات مضر چاقی ناشی ازکورتیزول46
تیروکسین47
تاثیر تیروکسین بر متابولیسم: 47
بی حرکت حاد و مزمن بر روی هورمون تیروئیدی48
هورمون های تیروئیدی و لپتین50
هورمون های تیروئیدی وگیاهان داروی51
2-7)جمع بندی 52
فصل سوم- روش شناسی پژوهش
3-1) روش پژوهش 54
3-2) طرح پژوهش54
3-3) جمع آوری وشیوه عصاره گیری ولیک (سرخ وسیاه) 55
3-3-1) جمع آوری میوه ولیک (سرخ وسیاه) 55
3-3-2) عصاره گیری آبی میوه ولیک (سرخ وسیاه) 55
3-3-3) مقدار دوز عصاره مصرفی موش ها55
3-4) جامعه و نمونه آماری و روش نمونه گیری56
3-5) محیط پژوهش56
3-6) تغذیه آزمودنی ها57
3-7) دوره و زمان بندی تمرینی57
3-8) وسایل و ابزار استفاده شده در پژوهش59
3-9) متغیرهای پژوهش60
3-9-1) متغیر مستقل60
3-9-2) متغیرهای وابسته60


3-10) روش اندازه گیری متغیرهای پژوهش60
3-10-1) روش اندازه گیری متغییر های وابسته61
3-10-1-1) روش اندازه گیری NPW 61
3-10-1-2) روش اندازه گیری هورمون کورتیزول 61
3-10-1-3) روش اندازه گیری هورمون T461
3-11) روش اندازه گیری ترکیبات سرخ ولیک , سیاه ولیک با استفاده از GC-MS : 62
3-12) روش ها آماری62
فصل چهارم- تجزیه وتحلیل
4-1) مقدمه65
4-2) توصیف داده ها65
4-2-1) مشخصات آزمودنی های حیوانی65
4-2-2) یافتههای مربوط به متغیرهای مورد مطالعه66
4-3) تجزیه و تحلیل استنباطی یافتههای پژوهش66
4-3-1) یافته های مربوط به نوروپپتید W پلاسمایی68
4-3-2) یافته های مربوط به نوروپپتید w کبدی72
4-3-3) یافته های مربوط به کورتیزول پلاسمایی76
4-3-4) یافته های مربوط به هورمون تیروئید T481
فصل پنجم- بحث ونتیجه گیری
5-1) مقدمه88
5-2) خلاصهی پژوهش88
5-3) بحث و بررسی(نوروپپتید w پلاسمایی و کبدی ، هورمون کورتیزول و T489
5-4) نتیجهگیری93
5-5) پیشنهادات برای پژوهشهای بیشتر94
منابع..................................................................................................................................................................................................95
چکیده انگلیسی112
فهرست شکل
عنوان صفحه
شکل 2- 1) تنظیمات جبرانی دریافت و مصرف کالری 15
شکل 2 – 2) طراحی شماتیک ساده از مناطق هیپوتالاموس 17
شکل 2 – 3) گردش هورمون های موثر بر تعادل انرژی از طریق هسته کمانی 20
شکل 2-4 ) تنظیم مصرف غذا 23
شکل 2-5) فعال سازی سلول های عصبی NPY / AGRP 25
شکل 2-6) گرلین قبل و بعد از دریافت غذا28
شکل 2- 7 ) لپتین 30
شکل 2- 8) فرق نوروپتیید 23- w و نوروپتیید 30- w ( انسان ، خوک ، رت ، موش)32
شکل 2- 9 ) تصویر شماتیک بر اساس یافته های مطالعات مورفولوژیکی و فیزیولوژیکی تنظیم اشتها در هیپوتالاموس توسط سلول های عصبی NPW و پپتید مرتبط با تغذیه در هیپوتالاموس36
شکل 3-1) مراحل اجرای طرح تحقیق در موش های صحرایی نر58
فهرست جدول ها
عنوان صفحه
جدول 2-1) مولکول های سیگنالی کاندید در هموستاز انرژی در CNS 22
جدول 3-1) حجم نمونه و مشخصات آزمودنی های هر گروه56
جدول 3- 2) پروتکل تمرین 8 هفته ای59
جدول 3- 3) مقادیر متغیر های مربوطه برای استخراج الکلی روغن سرخ ولیک63
جدول 4-1)، میانگین و انحراف استاندارد وزن موش های مورد پژوهش65
جدول 4-2) شاخص های توصیفی متغیرهای اصلی پژوهش66
جدول (4-3)، نتایج آزمون لون جهت بررسی هم واریانسی گروه های تحقیق67
جدول4-4) آزمون تحلیل واریانس یک طرفه برای مقایسه نوروپپتید W پلاسمایی68
جدول4-5) آزمون تحلیل واریانس یک طرفه برای مقایسه نوروپپتید W کبدی72
جدول4-6) آزمون تحلیل واریانس یک طرفه برای مقایسه کورتیزول پلاسمایی 76
جدول 4-7) نتایج آزمون توکی برای بررسی تفاوت بین گروه ها در کورتیزول پلاسمایی 77
جدول4-8)، آزمون تحلیل واریانس یک طرفه برای مقایسه هورمون تیروئید T4 81
جدول( 4-9) نتایج آزمون توکی برای بررسی تفاوت بین گروه ها در هورمون تیروئید T482
فهرست نمودار ها
عنوان صفحه
نمودار (4-1)، مقایسه سطوح نوروپپتید w پلاسمایی گروه های تحقیق71
نمودار (4-2)، مقایسه سطوح نوروپپتید w کبدی گروه های تحقیق75
نمودار (4-3)، مقایسه سطوح کورتیزول پلاسمایی گروه های تحقیق80
نمودار (4-4)، مقایسه سطوح هورمون تیروئید T4 گروه های تحقیق85
فصل اول:
طرح پژوهش

1-1: مقدمه
تغییر سبک زندگی و عدم توجه به برنامه های غذایی، جوامع امروزه را به سمت افزایش وزن، چاقی و عدم مدیریت اشتهای کاذب و به همراه آن به سوی بی تحرکی سوق داده است. چاقی و افزایش بیش از حد بافت چربی یکی از مشکلات سلامت در کشورهای مختلف جهان است که به دنبال تغییر شرایط زندگی و کاهش فعالیت فیزیکی و در نتیجه عدم تعادل انرژی دریافتی و مصرفی رخ می دهد. در سالهای اخیر، چاقی شیوع رو به افزایشی داشته است ]2،1[. چاقی، به عنوان بحران سلامت عمومی شناخته می شود ]3[.
شیوع چاقی و پیشرفت سریع آن موجب شده که پژوهش ها به سمت تنظیم و تعادل وزن بدن پیش رود. در اصل، چاقی و اضافه وزن نتیجه عدم تعادل انرژی است که به موجب آن انرژی دریافت شده بیشتر از انرژی مصرف شده است. یکی از عوامل تاثیرگذار بر چاقی میزان دریافت غذاست. دریافت غذا رفتار پیچیده ای است که سطوح مختلف کنترلی و تنظیمی را در بر می گیرد ]4[. افزایش وزن و یا چاقی که خود مقدمه بسیاری از بیماری های انسانی و مرگ و میر شده است. امروزه در حوزه بهداشت، سلامت و شیوع شناسی و به تازگی در حوزه فیزیولوژی ورزش با عنایت بر تاثیر فعالیت بدنی و ورزشی در اشکال مختلف در مدیریت وزن و تنظیم و تعادل انرژی، توجهات در جهت ساز و کارهای اصلی درگیر جلب شده است. اگر چه هنوز معادله انرژی، هزینه کرد و انرژی دریافتی جزء پایه ای پژوهش های حوزه سلامت تلقی می شود. اما تغییرات در نوع منبع بکارگیری جهت تامین انرژی های سلولی در بدن که بخش قابل ملاحظه ای از آن توسط هیپوتالاموس و بخش دیگری که از اهمیت نیز برخوردار است، توسط عوامل محیطی کنترل می شود. در دهه های گذشته تا قبل از کشف و معرفی تعدادی از پروتئین ها و پپتیدهای موثر در تنظیم انرژی، عقیده بر این بوده است که دستگاه عصبی مرکزی، به ویژه هیپوتالاموس تنها اندام درگیر در تنظیم تعادل انرژی و سوخت و ساز است. اکنون دیگر مطلق بودن حاکمیت هیپوتالاموس در کنترل تعادل و تنظیم انرژی جای خود را به همگرایی مرکز و محیط داده است، به همین خاطر پژوهشگران پپتیدهای مرتبط با کنترل و تنظیم انرژی و اشتها، دریچه ای نو را به سوی این دنیای عظیم موثر بر روند زندگی سالم باز کرده اند]7،6،5[.
با این وجود، به نظر می رسد که هنوز هیپوتالاموس محوریت لازم را در کنترل تعادل انرژی، سوخت ساز قند و اشتها داشته باشد. شاید به این خاطر باشد که تعداد زیادی از نورپپتیدهای مترشحه (AGRP،NPY،CART،POMC ، اورکسین، MCH ، گالانین ، پپتید شبه گلوکاکن، عامل رهایی کورتیکوتروپین) از این اندام در مقایسه با اندامهای محیطی دیگر مشارکت بیشتری را در این امر دارند ]8[. نوروپپتید w یکی از این نوروپپیدهاست که نقش مهمی در متابولیسم تغذیه و انرژی دارد ]9[.
1-2: بیان مسئله:
تمرین و فعالیت بدنی به عنوان یکی از عوامل موثر در تحلیل منابع انرژی سلولی از جمله گلوکز و گلیکوژن است، که می تواند تغییراتی در پپتیدهای و هورمون های موثر بر تنظیم و تعادل انرژی بوجود آورد. همچنین اظهار شده است که بازسازی و ریکاوری آنی ذخایر انرژی از جمله گلوکز و گلیکوژن نیز می توانند بر غلظت این پپتیدها اثرگذار باشند. در صورت عدم بازسازی مناسب و به موقع با مشکلاتی چون تغییر در غلظت پپتیدهای موثر بر تنظیم انرژی مواجه خواهیم شد. عدم تعادل بین پپتیدهای مهارگر و تحریک کننده دریافت غذا مانند لپتین، AGRP,NPY,CART,POMC, و گرلین به عنوان عوامل دخیل در روند سازوکاری می تواند به افزایش درصد چربی بدن، چاقی و غلبه روند اشتهاآوری بر ضد اشتهایی شود. اتخاذ راه کاری صحیح و آنی برای مقابله با این عدم تعادل می تواند از اختلالات سوخت و سازی تعادل و تنظیم انرژی (افزایش وزن یا کاهش غیرمنطقی، اتلاف انرژی) جلوگیری نماید. هرچند نوروپپتیدw در انسان اخیرا کشف شده است]10[ اما از زمان کشف نروپپتایدها، دانش ما از تنظیم وزن، اشتها و تعادل انرژی به نحو چشمگیری افزایش یافت. بسیاری از متخصصان حوزه سلامت، بهداشت و به خصوص تنظیم وزن، امیدوارند که با شناسایی جنبه های مهم و ناشناخته این نروپپتایدها و عوامل موثر بر آنها به روش های درمانی کارآمد و کشف داروهای جدیدی را برای امراضی چون چاقی دست یابند .امروزه تقریبا تاثیر نوروپپتیدها بروی هورمون ها ثابت شده است. از طرفی تغییر در هورمون ها نیز باعث تغییر در وزن بدن می شود.گزارش های رسیده نیز نشان می دهد که NPW نه تنها در تنظیم انرژی بلکه در هموستاز هورمونی نیز نقش دارد، ]11[
هورمون ها نقش مهمی در تنظیم اشتها، متابولیسم بدن و تنظیم سطح انرژی دارند]12[. فعالیت و تمرینات ورزشی روی سطوح خونی هورمون ها تاثیر می گذارند و به کاهش یا افزایش سطح برخی از هورمون ها نسبت به حالت استراحت منجر می شوند. در واقع این نوسانات هورمونی را می توان واکنش بدن در برابر فشارهای تمرینی قلمداد کرد، تا حالت هموستاز بدن برقرار شود ]13،14[. عدم تعادل در سطح هورمون ها در گیر در اشتها ( انسولین ، گلوکاگون ، کورتیزول و هورمون‌های غده تیروئید) می تواند به افزایش وزن منجر شود.
هورمون کوتیزول که یک گلوکوکورتیکوئید است ، و از بخش قشری غدد فوق کلیوی ترشح می شود، نقش بسزایی در برقراری این هموستاز دارد ]15[ . کورتیزول به طور مستقیم بر ذخیره چربی و افزایش وزن در افراد تاثیر دارد . یکی از اثرات مهم کورتیزول، نقش آن روی سوخت و ساز کربوهیدرات ها، پروتئین ها و چربی ها است.این هورمون فرآیند گلوکونئوژنز را از اسیدهای آمینه تسهیل، لیپوژنز کبد را کاهش و چربی های موجود در بافت چربی را به حرکت در می آورد . کورتیزول سوبسترای لازم را برای عمل گلوکرنئوژنز (اسیدهای آمینه) و سوخت های جایگزین را برای متابولیسم انرژی عضله اسکلتی (اسیدهای چرب) تامین کند]16،17،18،19[
هورمون تیرکسین یکی از هورمون های مهم متابولیسمی بدن است ]20[. که توسط غده ی تیرویید که تحت تاثیر محور هیپوتالاموس- هیپوفیز- تیرویید ( H-P-T) است ،تنظیم می شود ]21[ . در بررسی های متعدد ، اثر بسیاری از عوامل مانند دمای محیط ، استرس ، هورمون های دیگر ، ترکیبات شیمیایی ، نوسانات شبانه روزی ،... بر محور نامبرده به اثبات رسیده است. هورمون تیرویید ارتباط ویژه ای با رشد ، اشتها ، متابولیسم ، تنظیم اسمزی و تولید مثل دارد ]22[ افزایش میزان سوخت و ساز پایه، اثر اصلی هورمون های تیروئید است. عمل عمده ی این هورمون ها افزایش سوخت و ساز قندها و چربیها است]23[.
از طرفی استفاده از مواد مغذی ، به ویژه مواد قندی،اسیدهای چرب، نوشیدنی های ورزشی حاوی اسیدهای آمینه ، مواد معدنی و ویتامین ها ، آنتی اکسیدنها پس از تمرین و فعالیت بدنی، برای بازسازی سریع و افزون سازی منابع انرژی (گلیکوژن و ATP ) و کنترل وزن و اشتها توسط متخصصین و مربیان آگاه توصیه شده و می شود. در این راستا، استفاده از مکمل های غذایی طبیعی و صناعی بر عملکرد ورزشی، توازن بین اکساینده ها و ضد اکسایش کننده های بدن، توسط ورزشکاران ، مربیان ، متخصصین و پژوهشگران توصیه و بررسی شده است. علاوه بر موارد فوق، تاثیر برخی از گیاهان خوراکی و دارویی از قبیل: شنبلیله ]24[ ، برگ ریحان ]25[، توت هندی ]26[، لئوکاس سفالوتز (نوعی علف هرز خوراکی در هند) ]27[، بر روند بازسازی منابع انرژی به ویژه گلیکوژن در نمونه های حیوانی مطالعه شده است. با این وجود در هیچ یک از پژوهش های انجام شده به تاثیر این گیاهان دارویی و غذایی بر پپتیدهای درگیر در تنظیم تعادل انرژی، سوخت وساز قند، اشتها و وزن، با و یا بدون فعالیت بدنی و تمرین مورد توجه قرار نگرفته است. همچنین ، ولیک به عنوان یک گیاه دارویی منحصر به فرد از حیث ترکیبات و خواص به طور جدی در حوزه ی فیزیولوژی ورزش مورد توجه قرار نگرفته است.
ولیک یکی از قدیمی ترین گیاهان دارویی در طب اروپایی می باشد و برای اولین با توسط دیوسکورید در قرن 1 شرح داده شد]28[. عصاره ولیک از گل، برگ و میوه این گیاه مشتق می شود. مطالعه بالینی کمی به بررسی میوه ولیک به تنهایی پرداخته است ]29[. برگ، گل و میوه ولیک دارای مقادیر زیادی پروسیانیدین الیگومریک ، فلاونوئیدها می باشد، که مسئول اثر دارویی آن است]30[.
گیاه ولیک سرخ با اسامی مختلفی از قبیل هاثرن و از خانواده روزاسه به صورت سنتی به عنوان تونیک قلبی استفاده می شود. ترکیبات مختلفی در ولیک سرخ وجود دارد که شامل: ساپونین های تری ترپن، فلاونوئیدها، کاتیشن، اپی کاتشین می باشد ]31[.
گزارش شده است سرخ ولیک یک گیاه دارویی با ارزش از تیره گل سرخ است که امروزه در درمان ضایعات قلبی و گردش خون و به ویژه به عنوان ضد عفونت ها و آنتی اکسیدان، تب بر قابل استفاده می شو د؛ و اهمیت دارویی آن به دلیل وجود ترکیبات فنلی است که در این رده فلاونوئیدها نقش دارویی مهمی دارند]32[.همچنین مصرف آنتی اکسیدانهای غذایی می تواند از شیوع بیماری های متابولیک کم کند]33[.فلاونوئیدها بخاطر آنتی اکسیدان بودن در تنظیم تغذیه دخیل است و باعث تنظیم چربی خون ،تنظیم متابولیسم گلوکز و کربوهیدارت می شود ]34[ .
بنابراین ، این پژوهش قصد دارد تا تأثیر همزمانی تمرین با شدت بالا را به همراه دو نوع ولیک ( کراتاگوس ) سرخ و سیاه بر شاخص های مربوط به اشتها را در نمونه حیوانی ( مریوط به موش های نر) مورد ارزیابی قرار دهد. آیا تمرین شدید بر سطوح نوروپپتید W ، T4 ، کورتیزول پلاسمایی و بر سطوح نوروپپتید W کبدی درموش های صحرایی نر اثر دارد؟ آیا مکمل سازی آبی ولیک بر سطوح نوروپپتید W ، T4 ، کورتیزول پلاسمایی و بر سطوح نوروپپتید W کبدی درموش های صحرایی نر اثر دارد؟.
1-3: ضرورت و اهمیت تحقیق:
از آنجایی که بررسی و نمونه برداری بافت های انسانی از دشواری های زیادی برخوردار است و پژوهش های انجام شده بر روی مدل های حیوانی که شباهت های عملکردی با انسان دارند، می تواند تا حدودی بیانگر رخدادهای عملکردی در انسان باشند، از این رو در مطالعه حاضر انجام پژوهش روی پلاسما و بافت موش های صحرائی نر صورت پذیرفته است.
همان طور که گفته شد چاقی و اضافه وزن از یک سو و کمبود وزن و بی اشتهایی از سوی دیگر دو انتهای طیفی می باشند که همواره سلامتی جامعه را تهدید کرده و به عنوان یکی از معضلات جوامع امروزی باشند. شیوع گسترش چاقی و بیماری های مرتبط با آن در سطح جهان، شاهدی بر این مدعاست که پیشرفت های علمی در زمینه شناخت عوامل و مکانیسم های تنظیم وزن و به خصوص پیشگیری ، مبارزه و درمان چاقی توفیق چندانی نداشته است]4[. متاسفانه درکشور ما نیز، چاقی شیوع گسترده ای دارد. بر اساس پژوهش های صورت گرفته در ایران، بررسی ۸۹۹۸ فرد سنین 81 – 35 ساله (2005- 2002) نشان داد که 2/62٪ افراد دارای اضافه وزن و 28٪ ان ها چاق بوده اند ]35[. این در حالی است که چاقی با ابتلا به بیماری های بسیاری همراه است ]36[.دلایل ابتلا به چاقی متعدد می باشند، اما از نظر فیزیولوژی، چاقی ناشی از عدم تعادل انرژی است و درمان اولیه ی آن شامل کاهش دریافت غذا یا افزایش مصرف انرژی و یا هر دوی این موارد می باشد ]36،35[.
بنابراین از جنبه سلامت و بهداشت عمومی، شناخت عوامل و مکانیسم های موثر بر تعادل انرژی و تنظیم وزن می تواند به ارتقاء سطیح سلامت جامعه و صرفه جویی در هزینه های درمانی کمک نماید. هم چنین در شماری از بیماری ها، کاهش اشتها و تعادل منفی انرژی باعث بروز مشکلات عدیده و افزایش مرگ و میر می شود. مشخص شده که در این شرایط نیز نروپپتایدها نقش کلیدی دارند. بنابراین می توان امیدوار بود که شناخت مکانیسم این فرآیندها به درمان آنها اقدام کرد. از طرف دیگر نوروپپتید w که به تازگی (حدود یک دهه) کشف شده است و با توجه به نقش کلیدی خود در هموستاز و تنظیم وزن، تحقیقات بسیار کمی درباره این نوروپپتید صورت گرفته است، همچنین تحقیقات زیادی به تمرین به عنوان یک عامل مهم و موثر بر تعادل انرژی و تنظیم وزن و ارتباط آن نوروپپتید w انجام نشده است .همانطور که دیده می شود متخصصینی که در مورد نوروپتیید w و سایر نروپتاییدها مطالعه می کنند به ورزش ، تمرین و فعالیت بدنی عنایتی نداشته اند. برخی شرایط مانند فعالیت بدنی و تمرین می تواند تغییراتی را در پپتیدهای موثر برتنظیم و تعادل انرژی بوجود آورند. تمرین و فعالیت بدنی ، تعادل انرژی در سلول ها را به هم زده و هزینه ی انرژی سلول ها را افزایش می دهد. فعالیت های بدنی منظم ، دستگاه های مختلف انرژی را در گیر کرده و موجب سازگاری های عضلانی ، تنفسی ، قلبی – عروقی ، و سازگار ی متابولیکی می شود ]37[. از آنجایی که تاکنون پژوهشی در مورد تاثیر تمرین ورزشی و عصاره ولیک بر روی نوروپپتیدW پلاسمایی و بافتی صورت نگرفته ، پژوهش حاضر قصد دارد با بررسی اثر فعالیت ورزشی و عصاره میوه ولیک بر روی این نوروپپتید را بررسی نماید.
1-4 – اهداف پژوهش:
1-4-1-هدف کلی:
هدف کلی این پژوهش تعیین اثر8 هفته تمرین شدید بر سطوح نوروپپتید W پلاسمایی و کبدی، پاسخ های هورمون کورتیزول و T4 در موشهای صحرایی نر با و بدون عصاره آبی ولیک (سرخ و سیاه ) می باشد.
1-4-2-اهداف ویژه:
تعیین اثر 8 هفته تمرین شدید با و بدون عصاره آبی سرخ و سیاه ولیک بر سطح نوروپپتید w پلاسما
تعیین اثر 8 هفته تمرین شدید باو بدون عصاره آبی سرخ و سیاه ولیک بر سطح نوروپپتید w کبد
تعیین اثر 8 هفته تمرین شدید باو بدون عصاره آبی سرخ و سیاه ولیک بر هورمون کورتیزول
تعیین اثر 8 هفته تمرین شدید باو بدون عصاره آبی سرخ و سیاه ولیک بر هورمون تیروکسین
بررسی ارتباط سطوح نوروپپتید w پلاسما ، با دیگر متغییر ها
1-5 - فرضیه های پژوهش:
فرضیه 1 : هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک برسطح نوروپپتید W پلاسما موشهای صحرایی نر اثر دارد
فرضیه 2: هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک برسطح نوروپپتید W کبدی موشهای صحرایی نر اثر دارد
فرضیه3: هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک برسطح هورمون کورتیزول پلاسما موشهای صحرایی نر اثر دارد
فرضیه 4: هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک بر سطح هورمون تیروکسین پلاسما موشهای صحرایی نر اثر دارد
1-6- محدودیت های پژوهش :
1-6-1- محدودیت های غیر قابل کنترل
ـ عدم کنترل دقیق فعالیت شبانه آزمودنی ها
ـ عدم اندازه گیری مقدار غذای مصرفی برای هر نمونه بدلیل نبودن امکانات کافی
ـ عدم کنترل تاثیر عوامل وراثتی آزمودنی ها
1-7- تعریف واژها و اصطلاحات پژوهش
ولیک (کراتاکوس) cratacgus
ولیک یک گیاه دارویی با ارزش است که امروزه در درمان ضایعات قلبی و گردش خون و به ویژه به عنوان ضد عفونت ها و آنتی اکسیدان، تب بر استفاده می شود؛ و اهمیت دارویی آن به دلیل وجود ترکیبات فنلی است که در این رده فلاونوئیدها نقش دارویی مهمی دارند. همچنین مصرف آنتی اکسیدانهای غذایی می تواند از شیوع بیماری های متابولیک کم کند. فلاونوئیدها بخاطر آنتی اکسیدان بودن در تنظیم تغذیه دخیل است و باعث تنظیم چربی خون ،تنظیم متابولیسم گلوکز و کربوهیدارت می شود .
نوروپپتید w: نوروپپتید W تشکیل شده از 30 اسید آمینه و مشتق شده از یک پری پرو پروتئین 165 آمینو اسید است که ژن آن در انسان توسط تاناکا و هکارانش شناسای شد. NPW به ایفای نقش به عنوان عامل ضد اشتها عمل و باعث افزایش دما و متابولیسم بدن می شود.
کورتیزول: هورمون کوتیزول که یک گلوکوکورتیکوئید است ، و از بخش قشری غدد فوق کلیوی ترشح می شود، نقش بسزایی در برقراری هموستاز بدن دارد . هورمون کورتیزول در بدن به صورت دوره ای ترشح می شود، که دامنه و میزان ترشح آن را ریتم شبانه روزی تنظیم می کند. غلظت این هورمون در گردش خون، صبح زود به دلیل افزایش دامنه و میزان ترشح آن در بالاترین سطح است. میزان ترشح کورتیزول به تدریج در طول روز کاهش می یابد و غلظت آن در شب به حداقل میزان خود می رسد .پژوهش ها نشان داده اند که وزن و درصد چربی بدن بر ترشح کورتیزول تاثیر می گذارد.
هورمون تیروکسین یا 4T: تیروکسین به هورمون ترشح شده ازغده تیروئید می‌گویند. هورمون غده تیروئید تری یدوتیرونین 3 Tو تیروکسین 4Tاست .این هورمون از اضافه شدن چهار اتم ید به آمینواسید تیروزین ساخته می‌شود. هورمون های تیروئیدی در سوخت و ساز کلی بدن نقش داشته و نقص در عملکرد غده تیروئید و ترشح نامناسب این هورمون ها عواقب متعدد فیزیولوژیک را به دنبال دارد. برای مثال کاهش غلظت پلاسمایی هورمون های تیروئیدی باعث افزایش وزن و کاهش اشتها می گردد و افزایش آنها کاهش وزن و پرخوری را به دنبال دارد.
تمرین شدید : فعالیت ورزشی دویدن روی نوار گردان ( 5 روز در هفته ، با سرعت 34 متر در دقیقه ، شیب صفر درجه و به مدت 60 دقیقه ) انجام شد.
فصل دوم:
مبانی نظری و پیشینه پژوهش

:2-1مقدمه
در این فصل ابتدا مبانی نظری پژوهش مورد بحث و بررسی قرار خواهد گرفت.پیشنه و مبانی نظری پژوهش ، طیف وسیعی از اطلاعات و نظریه های علمی است که بیان کننده کمیت و کیفت اطلاعات موجود در رابطه با موضوع پژوهشی می باشد و به تشریح پژوهش های مرتبط با موضوع می پردازد . در این فصل پژوهشگر ابتدا به بررسی و مطالعه مفاهیم اساسی که در حوزه پژوهش دارای اهمیت هستند ، نظیر مکمل سازی ، پروتکل تمرینی و ... می پردازدو در پایان اطلاعات ارائه شده ، تحقیقات قبلی انجام شده و نتایج انها بیان می شود.
2-2: مبانی نظری تحقیق
2-2-1:چاقی
چاقی اختلالی است که از عدم تعادل دریافت و هزینه کرد انرژی ناشی می شود. عدم تعادل انرژی به عنوان فیدبکی برای فیزیولوژی و محیط عمل کرده و بر هزینه کرد و دریافت انرژی اثر می گذارد ]38[. ما انرژی را به صورت چربی ذخیره سازی می کنیم، چرا که هم نسبت به کربوهیدرات متراکم تر است و هم برای ذخیره شدن نیاز به مقدار زیادی آب ندارد. پدیده چاقی دو وجهه کاملا متفاوتی داردکه ژنتیک و محیط ]38[.
اطلاعات و آمار نشان می دهد که چاقی در کشورهای غربی در حال افزایش است . و عوامل مختلفی را می توان در این مورد دخیل دانست. از جمله تماشای تلویزیون، غذاهای فوری، کم تحرکی و استفاده از وسایل ماشینی در انجام امور روزمره و ... اشاره کرد. عقیده کلی بر این است که تعادل انرژی و وزن باید به گونه ای تنظیم شود تا اثرات تعادل بین هزینه کرد و دریافت انرژی بر چاقی و وزن بدن کنترل شود . لذا وزن بدن باید به طریقی تنظیم شود، که می دانیم هموستاز انرژی از طریق سیستم عصبی پیچیده ای تنظیم می شود که اثر فراز و نشیبهای کوتاه مدت در تعادل انرژی را بر روی توده بدن به حداقل می رساند. اخیرا مولکول های میانجی و مسیرهای دریافت غذا و تنظیم وزن در مغز شناسایی شده اند ]39[. گزارش کرده اند که با وجود کاهش در مقدار غذای دریافتی روزانه قادر به کاهش وزن نیستند. این ادعا به ایجاد این فرضیه منجر شد که چاقی در اثر اختلال های متابولیکی و نادرست بودن عادت های رفتاری است ، که موجب کاهش انرژی مصرفی در افراد چاق می شود ]40[.
2-2-2:تنظیم تعادل انرژی
عقیده ی کلی بر این است که تعادل انرژی و وزن بدن پدیده ای اند که باید تنظیم شوند. این عقیده از آن جا ناشی می شود که اثر بالقوه عدم تعادل بین هزینه انرژی و دریافت آن بر چاقی وزن بدن مشاهده می شود ]38[. به همین منظور هموستاز انرژی از راه سیستم عصبی پیچیده ای تنظیم می شود که اثر فراز و نشیب های کوتاه مدت در تعادل انرژی را بر روی توده ی چربی بدن به حداقل می رساند. اخیراً مولکول های میانجی و مسیرهای تنظیمی غذا خوردن و تنظیم وزن در مغز شناسایی شده اند ]39[.
محتوای انرژی سلول ها به تعادل بین تولید و مصرف انرژی در سلول ها بستگی دارد. یکی از شرایطی که می تواند تعادل انرژی را در سلول به هم زده و نیازهای هاصی را به سلول تحمیل نماید، ازدیاد هزینه کرد انرژی در اثر فشارهای مختلف روانی و جسمانی از جمله انجام فعالیت بدنی و تمیرن است. به بیان دیگر، در نتیجه تمرین و فعالیت بدنی، تعادل انرژی در سلول به هم خورده و هزینه ی انرژی سلول افزایشمی یابد. سلول در پاسخ به این وضعیت جدید پاسخ های موقتی و لازم را از خود نشان می دهد که در صورت تداوم یافتن این وضعیت، رفته رفته به سازگاری مناسب متابولیکی نایل می شود و در صورت رفع این فشار تدریجاً وضعیت انرژی سلولی به حالت اولیه ی خود برمی گردد. بنابراین گفته می شود که سلول یا اندام یا دستگاه درگیر در مقابل فشار فیزیکی وارده سازگار شده است. تمرین و فعالیت های بدنی منظم، دستگاه های مختلف انرژی را درگیر کرده و موجب سازگاری های عضلانی، تنفسی، قلبی – عروقی و سازگاری متابولیکی می شود که متعاقب فعالیت های بدنی و ورزشی رخ می دهند ]37[.

شکل 2- 1) تنظیمات جبرانی دریافت و مصرف کالری در پاسخ به تغییرات در محتوای چربی بدن است.]47[
2-2-3:کنترل اشتها و هموستاز انرژی
مرکز اصلی هموستاز یا تعادل انرژی در انسان هیپوتالاموس می باشد ، هرچند نواحی مختلفی از مغز از کورتکس گرفته تا ساقه مغز در رفتار دریافت غذا و هموستاز انرژی دخالت دارند . در بیشترین بزرگسالان ذخایر چربی و وزن بدن علیرغم تغییرات بسیار گسترده مصرف غذای روزانه و مصرف انرژی به طور چشمگیری ثابت است. برای برقراری تعادل بین انرژی دریافتی و مصرف غذای روزانه و مصرف انرژی به طور چشمگیری ثابت است. برای برقراری تعادل بین انرژی دریافتی و مصرفی یک سیستم فیزیولوژیکی پیچیده شامل سیگنال های آوران و وابران فعالیت می کند] 1[. این سیستم شامل مسیرهای چندگانه ای است که در تعامل با هم وزن را کنترل می نماید .در گردش خون هورمون هایی وجود دارند که به صورت حاد و موقت غذا خوردن را شروع یا خاتمه می دهند وهم هورمون هایی هستند که منعکس کننده چاقی و تعادل انرژی بدن می باشد. این سیگنال ها به وسیله اعصاب محیطی و مراکز مغری از جمله هیپوتالموس و ساقه مغزی یکپارچه می شوند هنگامی که سیگنال ها یکپارچه شوند ، نوروپتید های مرکزی را ، که غذا خوردن و هزینه انرژی را تغییر می دهند ، تنظیم می کنند ] 1[.
پیچیدگی رفتار دریافت غذا منعکس کننده ی تعداد نواحی در گیر در مغز است. به عنوان مثال ، قشر پیشانی چشمی در گیر در سیری ویژه حسی است در حالی که آمیگدال در ارزیابی مزه و طعم غذا دخالت دارد . بنابراین رفتار دریافت غذا را می توان به فاز های مختلفی از جمله فاز اشتها ، که شامل جستجو برای غذا است ، و فاز مصرف شامل خوردن واقعی غذا است ، تقسیم بندی کرد ]41[.
برای حفظ یک وزن ثابت در یک دوره ی زمانی نسبتا طولانی همواره باید توازنی بین دریافت غذا و هزینه انرژی برقرار باشد . هیپوتالاموس اولین مرکز ی است که حدود 50 سال قبل نقش آن در این فرایند شناخته شد . علیرغم در گیری نقاط مختلفی از مغز در رفتار غذا خوردن ، هیپوتالاموس به عنوان مرکز اصلی غذا خوردن مطرح می باشد .در اوایل دهه 1940 نشان داده شد که تزریق یا تحریک الکتریکی هسته ها ویژه ای در هیپوتالاموس ، رفتار تغذیه ای را تغییر می دهد. هیپوتالاموس شامل چندین هسته می باشد که در دریافت غذا دخالت دارند شامل هسته های کمانی (ARC) ، هسته ای مجاور بطنی (PVN) ، بخش های جانبی هیپوتالاموس (LHA) ، هسته های بطنی میانی (VMH) و هسته های خلفی میانی (DMH). در ARC دو دسته اصلی نورون که به وضعیت تغذیه ای حساس هستند و جود دارند . یکی دسته از ان ها دریافت غذا و اشتها را تحریک و دسته دیگر ان را مهار می کنند ]41[. هسته های بطنی میانی (VM) به عنوان « مرکز سیری» و هسته های جانبی هیپوتالاموس (LH) عنوان «مرکز گرسنگی» شناخته شده اند. هسته های کمانی (ARC) هیپوتالاموس نیز به عنوان محلی که این سیگنال های تنظیمی اشتها را یکپارچه می کند شناخته شده است ]42[ .

شکل 2 – 2) طراحی شماتیک ساده از مناطق هیپوتالاموس که در مصرف مواد غذایی نقش اصلی ایفا می کند.]41[
2-2-4:هیپوتالاموس
برای حفظ یک وزن در یک دوره زمانی نسبتاً طولانی همواره باید توازنی بین دریافت غذا و هزینه انرژی برقرار باشد. هیپوتالاموس اولبین مرکزی است که حدود 50 سال قبل نقش ان در این فرایند شناخته شد. در اوایل دهه 1940 نشان داده شد که تزریق یا ایجاد تحریک در هسته های ویژه ای از هیپوتالاموس باعث تغییر در رفتار تغذیه ای و دریافت غذا می شود. در هیپوتالاموس هسته های بطنی میانی (VMH) ، به عنوان «مرکز گرسنگی» شناخته شده اند. هسته های کمانی (ARC) هیپوتالاموس نیز به عنوان محلی که این سیگنال های تنظیمی اشتها را یکپارچه می کنند شناخته شده است. چرخه های عصبی متعددی در هیپوتالاموس قرار دارد. بر اساس دانسته های ما شبکه های عصبی و انشعابات آنها در داخل هیپوتالاموس قرار دارد. بر اساس دانسته های ما شبکه های عصبی و انشعابات آنها در داخل هیپوتالاموس گسترش پیدا می کنند و اجتماعات عصبی مجزا، نروترانسمیترهای ویژه ای را ترشح کرده که بردریافت غذا و یا هزینه کرد انرژی اثر گذاشته که خود توسط سیگنال های خاص وضعیت تغذیه ای تنظیم می شوند. سیگنال های محیطی درگیر در تهادل انرژی، از قبیل هورمون های روده ای مثل پپتاید YY و GLP-1 از طریق یک مکانیسم فیرقابل اشباع از سد خونی- مغزی گذشته و بنابراین به ARC می رسند. البته سیگنال های دیگری از قبیل لپتین و انسولین از طریق یک مکانیسم قابل اشباع از خون به مغز می رسند. بنابراین سد خونی – مغزی یک نقش تنظیمی پویا در عبور دادن برخی سیگنال های انرژی گردش خون دارد. در ARC دو دسته اصلی نرون که به وضعیت تغذیه ای حساس هستند ، وجود دارند . یک دسته از انها دریافت غذا و اشتها را تحریک و دسته دیگر ان را مهار می کنند عوامل اشتها آور و شد اشتها به ترتیب فعالیت سیستم عصبی سمپاتیک را کاهش و افزایش می دهند و به موجب آن ذخایر چربی بدن و هزینه انرژی را تنظیم می کنند . این عمل از طریق تغییر گرمازایی در BAT و احتمالاً در محل های دیگری از قبیل بافت سفید چربی وعضله، از طریق القاء پروتئین جفت نشده میتوکندریایی یک UCP-1 و UCP-2 و UCP-3، انجام می شود. ارتباط بین دریافت غذا و فعالیت سمپاتیک از طریق مواد انتقال دهنده عصبی متعددی صورت می گیرد. نروپتایدها عناصر مهم سیستم تنظیم کننده دریافت غذا هستند. هورمون ها ، انتقال دهنده های عصبی و نروپتایدهایی که بر دریافت غذا اثر می گذارند. مولکول های تحریک کننده اشتها شامل نوراپی نفرین، گاما آمینو بوتیریک اسید و هفت دسته از نروپتایدها هستند، در حالی که مولکول های مهار کننده غذا اشتها شامل سروتونین، دوپامین و تعداد زیادی از پپپتایدهای روده ای – مغزی هستند ]42[ .
2-2-5:سیگنال های عصبی و هورمونی کنترل اشتها
در موجودات تکامل یافته، نظیر انسان سیستم تنظیم دریافت غذا شامل دو بخش شبکه تنظیم اشتها و سیگنال های عصبی و هورمونی ارسالی از نواحی مختلف بدن به شبکه تنظیم اشتها می باشد که بخش اول از نورون های ایجاد کننده اشتها یا نورون های اورکسیژنیک و نورون های ایجاد کننده بی اشتهایی یا نورون های انورکسیژنیک تشکیل شده است که همگی در هسته های مختلف هیپوتالاموس قرار دارند و این دو دسته نورون شبکه تنظیم اشتها با یکدیگر در ارتباط هستند و بر فعالیت یکدیگر اثر می گذارند ]43[ . بنابراین عوامل تنظیمی متعددی چون هسته های مختلف هیپوتالاموس واقع در سیستم عصبی مرکزی، ذخایر انرژی و هورمون ها در تنظیم اشتها و دریافت غذا بصورت دراز مدت وکوتاه مدت دخالت دارند . در انسان انتقال دهنده های سیستم عصبی و پپتیدهای روده ای متعددی از عوامل مهم تنظیم اشتها می باشند]44[. اکثر مطالعات انجام گرفته در زمینه اشتها و دریافت غذا، روی دو هورمون لپتین و گرلین متمرکز است. این دو هورمون بعنوان تنظیم کننده های اصلی شبکه تنظیم اشتها و دریافت غذا درهسته های مختلف هیپوتالاموس مطرح هستند]45[.
هورمون لپتین محصول ژن چاقی است که در تنظیم فرایندهای متابولیک دخیل است و نمایانگر میزان ذخیره چربی بدن است . این هورمون با گیرنده های ویژه ای در هیپوتالاموس و با مهار باعث کاهش اشتها می شود و از طرف دیگر ترشح نوروپپتید Y با افزایش فعالیت سیستم عصبی سمپاتیک و لیپولیز موجب افزایش میزان متابولیسم بدن، میزان انرژی مورد نیاز و در نتیجه میزان چربی بدن را کنترل می کند]46[.
گرلین به عنوان یک لیگاند درون زاد برای گیرنده ترشح دهنده هورمون رشد مطرح است. سلول های غده اکسینتیک موکوس فوندوس معده منبع اصلی این پپتید اشتها آور است ]47[. مطالعات گذشته نشان داده است درحالی که تزریق انسولین در برخی از هسته های هیپوتالاموس سیستم اعصاب مرکزی دریک روش وابسته به دوز بعد از ورود به فضای بین سلولی درمغز به رسپتورهای خود نظیر نورون های، نوروپپتید Y متصل و آن را مهار می کند و یا از طریق تحریک انتقال دهنده عصبی α –MSH به دلیل افزایش تولید وترشح لپتین سبب کاهش دریافت غذا می شود ولی افزایش سطح سرمی انسولین (به صورت محیطی) در صورتیکه باعث کاهش غلظت گلوکزخون شود می تواند اشتها را تحریک نماید ]48[.

شکل 2 – 3 ) گردش هورمون های موثر بر تعادل انرژی از طریق هسته کمانی ]44[
2-2-6:سیستم کنترل مرکزی
سیگنال های نماینده چاقی در CNS یکپارچه می شوند. در داخل CNS دریافت غذا و تنظیم وزن به طور موثری انجام می شود. در CNS و بطور اختصاصی در هیپوتالاموس دو سیستم موثر آنابولیک و کاتابولیک وجود دارد که وزن بدن و توده چربی را تنظیم می نمایند . مسیرهای که سیگنال های چاقی از لپتین (مترشحه از آدیپوسیت ها) و انسولین (مترشحه از پانکراس ) با چرخه های خودکار مرکزی اندازه غذا را تنظیم می کنند.لپتین و انسولین مسیر کاتابولیک (نرون های POMC/CART ) را تحریک و مسیر آنابولیک (نرون های NPY/AGRP ) که از ARC منشأ می گیرندۀ را مهار می کنند. درون دادهای آوران وابسته به سیری از کبد و مجاری معده ای ـ روده ای و از پپتیدهایی مثل CCK از طریق عصب واگ و تارهای سمپاتیک به NTS ، یعنی جای که با درون دادهای پایین رونده هیپوتالاموس یکپارچه می شوند. برون داد عصبی خالص از NTS و سایر نواحی بصل النخاع و مخچه مغز منجر به خاتمه غذا خوردن می شوند. کاهش درون دادهای از سیگنال های چاقی ( در حین کاهش وزن ناشی از رژیم) بنابراین باعث افزایش اندازه غذا به وسیله کاهش پاسخ های ساقه مغز به سیگنال های سیری می شوند]4[.
مسیر های که سیگنال های جاقی از لپتین (مترشحه از آدیپوسیت ها) و انسولین (مترشحه از پانکراس) با چرخه های خودکار مرکزی اندازه غذا را تنظیم می کنند. لپتین و انسولین مسیر کاتابولیک (نرون های POMC/CART ) را تحریک و مسیر آنابولیک (نرون های NPY/AGRP ) که از ARC منشأ می گیرند ، را مهار می کنند. درون دادهای آوران وابسته به سیری از کبد و مجاری معده ای-روده ای و از پپتیدهایی مثل CCK از طریق عصب واگ و تارهای سمپاتیک به NTS ، یعنی جای که با درون دادهای پایین رونده هیپوتالاموس یکپارچه می شوند. برون داد عصبی خالص از NTS و سایر نواحی بصل النخاع و مخچه مغز منجر به خاتمه غذا خوردن می شوند. کاهش درون دادها از سیگنال های چاقی (درحین کاهش وزن ناشی از رژیم) بنابراین باعث افزایش اندازه غذا به وسیله کاهش پاسخ های ساقه مغز به سیگنال های سیری می شوند. ]4[.

جدول 2-1- مولکول های سیگنالی کاندید در هموستاز انرژی در CNS ]39[.
سیستم موثر آنابولیک باعث افزایش دریافت غذا، اکتساب وزن، کاهش هزینه انرژی و برعکس سیستم موثر کاتابولیک باعث کاهش دریافت غذا ، از دست دادن وزن و افزایش هزینه انرژی می شود .
2-2-7:کنترل محیطی اشتها
سیگنال های محیطی درگیر در تعادل انرژی، از قبیل هورمون های روده ای مثل پپتاید و GLP1 از راه یک مکانیسم غیرقابل اشباع از سدخونی- مغزی گذشته و بنابراین به ARC می رسند. البته سیگنال های دیگر از قبیل لپتین و انسولین از راه یک مکانیسم قابل اشباع از خون به مغز می رسند. بنابراین سد خونی- مغزی یک نقش تنظیمی پویا در عبور دادن برخی سیگنال های انرژی گردش خون دارد ]49[.
گرلین اولین هورمونی است که به دنبال تزریق محیطی موجب افزایش غذا خوردن می شود. در انسان ها گرلین پلاسمایی قبل زا هر وعده غذا افزایش ناگهانی و پس از صرف هر وعده غذایی به صورت کوتاهی سقوط می کند. این یافته ها دلالت بر این دارند که گرلین سممکن است به عنوان یک شاخص تعادل انرژی کوتاه مدت تلقی شود و ممکن است به عنوان یک مولکول سیگنالینگ در طول مدت زمان تخلیه انرژی در نظر گرفته شده است ]49[.

شکل 2-4 ) تنظیم مصرف غذا بوسیله ی هورمون های محیطی و مسیرهای سیگنالینگ مرکزی انها.]45[
2-3 :تنظیم کننده های وزن و متابولیسم بدن
گزارش ها نشان که وزن و متابولیسم بدن توسط نوروپپتید ها و هورمون های متعددی کنترل و تنظیم می شود.که به اختصار به توضیح برخی از مهمترین آنها می پردازیم.
2-3-1:نروپپتایدها
2-3-1-1: نوروپپتید Y (NPY)
NPY یک پپتید 36 اسید آمینه ای و یکی از فراوان ترین و گسترده ترین (از لحاظ توزیع) عوامل انتقال دهنده عصبی در مغز پستانداران می باشد. ARC محل اصلی بیان NPY در داخل نرون های هیپوتالاموس می باشد. هر چند NPY پس از تزریق مرکزی اثرات گوناگونی روی رفتار و عملکرد به جا می گذارد. ولی قابل توجه ترین اثر آن تحریک غذا خوردن است. تزریق چندباره NPY به داخل PVN یا دهلیزهای مغزی باعث چاقی می شود که نشان دهنده آن است که NPY قادر به مهار سیگنال های مهار کننده دریافت غذا می باشد. NPY باعث تعادل مثبت انرژی از طریق افزایش دریافت غذا می شود و همچنین باعث کاهش هزینه انرژی از طریق کاهش گرمازایی در BAT و همچنین تسهیل ذخیره چربی در بافت سفید چربی از طریق افزایش فعالیت انسولین می گردد ]50[. NPY در ARC سنتز شده و به داخل PVN ترشح می شود و توسط سیگنال های مثل لپتین، انسولین (که هر دو مهار کننده) و گلوکورتیکوئیدها (فعال کننده)، تنظیم می شود. سنتز و ترشح NPY در مدل های با شرایط کمبود انژژی یا افزایش نیازهای متابولیکی از قبیل گرسنگی ، دیابت وابسته به انسولین، شیردهی و فعالیت بدنی افزایش می یابد. نقش فیزیولوژیکی اصلی نرون های ARC ، NPY، احتمالا برقراری مجدد تعادل انرژی و ذخایر چربی بدن در شرایطی است که بدن با کمبود انررژی مواجه است. علیرغم شواهد کافی برای نشان دادن نقش کلیدی NPY در هموستاز انرژی، عجیب این است که در موش های که ژن NPY آنها کاملا حذف شده بود دارای فنوتیپ نرمال بودند به جز اینکه مستعد به جمله ناگهانی شده بودند. بنابراین هنوز کاملا مشخص نیست که آیا NPY فقط در شرایط حادی از قبلی موش های تراریخته ob/ob در پراشتهایی یا چاقی نقش دارد یا آیا فنوتیپ نرمال به علت مکانیسم های جبرانی توسط سایر سیگنال های اشتهاآور است که جایگزین NPY می شوند و به حفظ تغذیه طبیعی و تنظیم وزن کمک می کنند ]51[.

شکل 2-5) فعال سازی سلول های عصبی NPY / AGRP دارای یک اثر اشتهاآور، در حالی که فعال سازی سلول های عصبی POMC / CART اثر ضد اشتهای می باشد.
2-3-1-2: ارکسین ارکسین اخیرا به عنوان دسته ای از نروپپتیدها شناخته شده که همچنین تحت عنوان هیپوکرتینز نامگذاری می شود. ارکسین A و B به ترتیب دارای 23 و 28 اسید آمینه بوده و 46 درصد مشابهت دارند. هر دو پپتید توسط یک ژن کدگذاری شده و در نرون های خلفی و جانبی هیپوتالاموس قرار دارند. تزریق ارکسین A به طور معنی داری موثرتر از ارکسین B می باشد. البته اثر ارکسین بر تحریک غذا خورئن از اثر NPY خفیف تر است. ارکسین احتمالا بیشتر درگیر کنترل متابولیسم انرژی است تا دریافت غذا . ناشتایی باعث تظاهر افزایش ژن ارکسین در هیپوتالاموس می شود ]49[.
2-3-1-3: گالانین
گالانین یک پپتید 29 اسیدآمینه ای است که در دسته ی نورونی PVN , DMH , ARC توزیع شده است. گالانین دریافت غذا در موش های صحرایی پس از تزریق به داخل CV و همچنین VMH , LH , PVN و هسته های مرکزی آمیگدال را تحریک می کند. همانند MCH و ارکسین، غذا خوردن ناشی از گالانین ضعیف تر از NPY بوده و تزریق مداوم گالانین اثری بر حفظ چاقی یا پراشتهایی ندارد. از لحاظ آناتومیکی و عملکردی ارتباط نزدیکی بین نرون های تولید کننده گالانین وسایر سیگنال های اشتهاآور وجود دارد. هر چند سیستم NPY ارتباط نزدیکی با مصرف و هضم کربوهیدرات ها دارد، گالانین احتمالا در وهله اول در کنترل مصرف چربی ها و افزایش ذخیره بافت چربی از طریق کاهش در هزینه کرد انرژی دخالت دارند. گالانین در حین دوره میانی چرخه غذایی طبیعی فعال شده و یک رژیم با چربی بالا می تواند تولید گالانین را در PVN افزایش داده که ارتباط نزدیکی با چاقی بدن دارد ]49[.
2-3-1-4: نوروپتیید w-23
نوروپتیید W-23 که در ده اخیر کشف شده از 23آمینو اسید تشکیل شده است.که در تنظیمات تغذیه ای و هورمونی مشارکت دارد. مطالعات نشان می دهد ، تزریق داخل بطن مغزی NPW23 باعث افزایش جذب غذا و تحریک آزادسازی پرولاکتین]52[ و کورتیکوسترون ]53[ در موش صحرایی می شود،همچنین تحقیقات آزمایشگاهی نشان داده که افزایش غلظت NPW23 ، به طور قابل توجهی بر پرولاکتین، هورمون رشد و انتشار ACTH از سلولهای هیپوفیز قدامی را تغییر می دهد ]53[.
2-3-2:هورمون ها
2-3-2-1:گرلین
گرلین برای اولین بار در سال 1999 توسط کوجیما و همکارانش از معده موش جداسازی شد و به عنوان لیگاند درونی برای گیرنده GHS-Ra مطرح گردید. گرلین به هنگام گرسنگی به مقدار زیادی در سلولهای مخاط معده و به مقدار اندکی در سایر اندام ها از جمله مغز، هیپوفیز، سلولهای لایدیگ و سلولهای سرتولی نیز به نسبت کمتر تولید می شود ]54[. مطالعات نشان داده گرلین علاوه بر افزایش هورمون رشد ]55[ سبب افزایش تخلیه معده، افزایش اشتها، افزایش وزن بدن ]56[ تحریک ترشح ACTH ، مهار LH 6 و کاهش غلظت هورمون های تیروئیدی می شود ]57[. تزریق گرلین از طریق افزایش بیان ژن ها ی AgRP و NPY در هستۀ ARC هیپوتالاموس که نورونهای آنها مستقیماً بر روی TRH گیرنده دارند سبب کاهش هورمونهای تیروییدی می شوند ]58[.

شکل 2-6) گرلین قبل و بعد از دریافت غذا
2-3-2-2:ابستاتین
زانگ و همکاران (۲۰۰۵) پپتید ۲۳ اسید آمینه ای دیگری به نام ابستاتین را شناسایی کردند. این پپتید از ژن سازنده ی گرلین مشتق شده که بعد از ترجمه، دستخوش تغییرات متفاوتی شده است. یافته های بررسی ها نشان داد درمان جوندگان با ابستاتین منجر به تعادل انرژی منفی از راه کاهش دریافت غذا و تخلیه ی معده می شود. بنابراین برخی پژوهشگران به این نتیجه رسیدند که گرلین و ابستاتین اثرات متضادی بر تنظیم وزن دارند و ممکن است عملکرد نامطلوب ابستاتین در پاتوفیزیولوژی چاقی درگیر باشد.]59[
پژوهش قنبری نیاکی و همکاران نشان داد کسر و گلیکوژن کبدی ناشی از تزریق اتیونین در موش ها ATP منجر به افزایش سطح گرلین پلاسما می شود که می تواند به عنوان یک آغازگر مهم دریافت غذا مد نظر قرار گیرد؛ هم چنین مشاهده شد سطح ابستاتین پلاسما مورد تاثیر و گلیکوژن کبد نیست و انجام تمرین های ATP کاهش ورزشی نیز نتوانست این نتیجه را مورد تاثیر قرار دهد. پژوهشگران این گونه نتیجه گیری کردند که گرلین نسبت به ابستاتین به کسر انرژی کبد حساس تر است ]60[. گائو و همکاران(2009) انجام پژوهشی روی زنان و مردان چاق دریافتند سطح گرلین و ابستاتین آزمودنی های چاق پایین تر، اما نسبت گرلین به ابستاتین آنها از آزمودنی های با وزن طبیعی بالاتر بود ]61[.
زامرازیلوا و همکاران (۲۰۰9) نیز نسبت سطح گرلین به ابستاتین پلاسما را در زنان با وزن طبیعی، چاق و دچار بی اشتهایی عصبی اندازه گیری نمودند. یافته ها نشان داد نسبت سطح گرلین به ابستاتین در زنان با بی اشتهایی عصبی به طور معنی داری بالاتر از سایر گروه ها بود ]62[. در کل نقش واقعی ابستاتین در سازوکار چاقی هنوز مشخص نیست، اما تعادل بین گرلین و ابستاتین نقش مهمی در سازوکار چاقی و بیماری های متابولیکی ایفا می کند]63[.
2-3-2-3:لپتین
لپتین، پروتئین 167 اسید آمینهای است که در تنظیم فرآیندهای متابولیک دخالت دارد و نمایانگر ذخیره چربی بدن است]64[ برخی از پژوهشگران لپتین را عامل هشدار دهنده در تنظیم محتوای چربی بدن ذکر کرده اند ]65[ لپتین پس از تولید در بافت چربی به داخل خون ریخته می شود . در سد خونی مغز ناقل هایی وجود دارد که باعث ورود لپتین به دستگاه عصبی مرکزی شده و با شرکت در سرکوب سنتز نوروپپتیدهایی از قبیل نوروپپتیدy (عامل افزایش اشتها)، باعث کاهش اشتها می شود]66[ . بنابراین اثر خالص عملکرد لپتین در جهت کاهش وزن است اما کمبود این هورمون و یا مقاومت نسبت به آثار آن، هر دو می تواند سبب افزایش وزن شوند]67[ .
پژوهش استاد رحیمی و همکاران روی زنان چاق، نشان داد توده بافت چربی از پیشگویی کننده های اصلی غلظت لپتین بوده و همبستگی معنی داری بین توده چربی و لپتین وجود دارد ]68[ نتایج پژوهش ضرغامی و همکاران نشان داد که مقادیر سرمی لپتین در زنان چاق حدود 3 برابر زنان با وزن طبیعی بوده و همبستگی مستقیمی بین لپتین و شاخص توده بدن وجود دارد ]69[. همبستگی بین غلظت سرمی لپتین با شاخص توده بدن، درصد و توده چربی بدن، ذخایر مختلف چربی و همچنین ضخامت چربی زیر پوستی در تحقیقات دیگر نیز مشاهده شده است ]70[ این همبستگی در زنان چاق 3 برابر بیش تر از مردان چاق است ]71[.
87630-80645
شکل 2- 7 ) لپتین به عنوان بخشی از یک حلقه بازخورد به حفظ ذخائر ثابت از چربی عمل می کند. از دست دادن چربی بدن منجر به کاهش در لپتین، که مولکول های تغذیه محرک در هیپوتالاموس، مانند NPY را فعال می سازد. در مقابل، افزایش چربی بدن منجر به افزایش لپتین، که مولکول های تغذیه بازدارنده مانند MC را فعال می سازد. ]49[
2-4: نوروپتیید w
نوروپتیید w که اولین بار از هیپوتالاموس خوک جدا شده به دو شکل وجود دارد که شامل نوروپتیید 23- w (NPW23) یا نوروپتیید 30- w (NPW30) که 23 و 30 نشان از تعداد آمینو اسید تشکیل دهنده آن است.این نوروپتییدها به یکی از دو دریافت کننده NPW ، شامل GPR7 (NPBWR1) و GPR8(NPBWR2) متصل می گردد که به خانواده ی گروه پروتیین G تعلق دارند. GPR7 در مغز و قسمت های بیرونی و خارجی بدن انسان و جانوران جونده وجود دارد، در حالیکه GPR8 در جانوران جونده وجود ندارد . mRNA GPR7 در جانوران جونده به شکل گسترده ای در بسیاری از مناطق هیپوتالاموس ، شامل قسمت بطنی ، بصری ، میانی جلویی ، پشتی ، فوقانی وقسمت های قوس داربیان شده است .
مشاهدات نشان می دهد که GPR7 نقش مهم و حیاتی در تعدیل عملکرد غده های درون زا و عصبی ایفا می کند. تزریق بطنی مغزی NPW نشان داده شده که مانع جذب غذا شده و در وزن بدن اختلال ایجاد می نماید و موجب افزایش تولید گرما و حرارت و دمای بدن می شود، این نشان می دهد که NPW به عنوان یک مولکول نشانگر کاتابولیسم درونی عمل می کند ]72[.
2-4-1:گیرنده های NPW
در سال 1995 ، ادد و همکارانش از الیگونکلوتیدهای بر مبنای گیرنده ی اپیوئیدی و همینطور گیرنده ی سوماتواستاتین جهت شناسایی دو ژن GPR7 و GPR8 استفاده کردند.که پیش بینی می شود این دو دریافت کننده مسئول کد گذاری گروه پروتئینی G درون مغز انسان هستند. mRNA GPR7 در مغز انسان و جانوران جونده نشان داده شده ، در حالیکه ژن GPR8 در مغز انسان و خرگوش و نه جانوران جونده شناسایی شده است ]73[. در سال 2002، شیمومورا و همکارانش لیگاندهای درون زا را در مورد-8 GPR7 با در معرض قرار دادن سلول های تخمدان موش های چینی (CHO) با ذره های هیپوتالامیک خوک، تغییراتی در سطح CAMP مشاهده نمودند. علاوه بر این، وقتی بیان سلول GPR7 یا GPR8با عصاره ی هیپوتامیک القا شد تولید CAMP ناشی از فورسکولین متوقف می شود. این دریافت کننده ها به دریافت کننده های گروه پروتیینی Gi متصل بودند ]52[.
تجزیه و تحلیل ساختاری بیشتر در مورد لیگاندهای مسئول مهار تولید cAMP منجر به شناسایی یک پپتید جدید به نام NPW گردید. شیمومورا و همکاران توالی پپتید بالغ 23 و30 آمینو اسید باقی مانده از خوک ، موش و انسان را شناسایی کردند.NPW به دو شکل بالغش : NPW30 (شامل 30 آمینو اسید) و NPW23 (شامل 23 آمینو اسید) نام گذاری شده است که در ژن انسان بوسیله تاناکا و همکاران (2003) شناسای شد ]72[.

شکل 2- 8) فرق نوروپتیید 23- w و نوروپتیید 30- w ( انسان ، خوک ، رت ، موش)].72[
2-4-2: توزیع مرکزی NPW
بر اساس آنالیز RT-PCR ، برزلین و همکارانش (2003)گزارش داده اند که ژن NPW در سیستم عصبی مرکزی انسان مانند جسم سیاه و نخاع ، و در حد متوسط ​​در هیپوکامپ، آمیگدال، جسم پینه ای هیپوتالاموس ، مخچه و ریشه پشتی نخاع بیان شده است. شیمی سلولی هیبریداسیون در جوندگان نشان داده است که ژنNPW در چند مناطق محدود مغزی شامل PAG، هسته EW و هسته پشتی جنین توزیع شده است ]74،53،10 [. در حالی که کیتامورا و همکاران،( 2006) گزارش داده اند که این موضوع به هسته های خاصی در مغز میانی و ساقه مغز محدود می شود. با این حال، بر اساس تجزیه و تحلیل RT-PCR، گزارش داده اند که NPW mRNA در قسمت PVN، VMH ، ARC و LH موش بیان می شود]75[.مطالعه دیگری نیز حاکی از توزیع NPW در قسمت های متعددی از مغز موش صحرایی بوده است ]76[.
مطالعات ایمونوهیستوشیمی نشان داده است که NPW-LI به طور عمده در مناطق هیپوتالاموس، ARC و غده هیپوفیز خلفی ، با یک سطح پایین تر در PVN مشاهده شده است. جالب این است که سلول های NPW-LI هیپوتالاموس نر نسبت به ماده بیشتر است ]76[. در مطالعه دیگری، کیتامورا و همکاران (2006) از استقرار زیادی از NPW-LI را در سلول مغز میانی، شامل PAG و EW خبر داده اند. علاوه بر این، آنها برای اولین بار حضور NPW-LI و فرآیندهای آن را در PVN، VMH و آمیگدال در سطح میکروسکوپ الکترونی شناسایی و بررسی کرده اند]77[. همچنین، رشته های عصبی NPW-LI به وفور در مغز میانی و در دستگاه لیمبیک، از جمله CEA و BST توزیع شده بود، این امر نشان می دهد که NPW ممکن است در فرایند تعدیل ترس و اضطراب و همچنین در رفتار تغذیه نقش مهمی ایفا کند]78،77،76،75[.
2-4-3: توزیع محیطی NPW
در بافت های محیطی، NPW در نای ، در سلول سرطانی لنفوسیت نابالغ کلیه جنین و سرطان روده بزرگ بیان می شود]79[.سلول های وابسته به قشر غده فوق کلیوی نیز NPW تولید می کند]78[.هوکل وهمکاران (2006) گزارشی مبنی بر توزیع NPW در تیروئید و غدد پاراتیروئید، پانکراس، غدد آدرنال، تخمدان و بیضه در موش ارائه کردند.درحالیکه روکینیسکی و همکاران (2007) واکنش پذیری ایمنی NPW در تمام سلول های پانکراس شامل سلول های A ،B وD رانشان داده اند. درمقابل ، دزاکی و همکاران ( 2008) واکنش پذیری ایمنی NPW را در سلول های B ، و نه سلول های A یا D یافتند. بعلاوه NPW mRNA در سیستم ادراری تناسلی از جمله کلیه، بیضه ها، رحم، تخمدان، و جفت توزیع شده است ]80[.
بر اساس انالیز RT-PCR ، از حضور ژنNPW در در غده هیپوفیز، غده فوق کلیوی و معده را تایید کرد ]81[. این مشاهدات نشان می دهد که NPW ممکن است نقش مهمی در تنظیم سیستم غدد درون ریز را در پاسخ به استرس و همچنین در فعال شدن محورهیپوتالاموس هیپوفیز فوق کلیوی (HPA) ایفا کند ]81،82[.
2-4-4: توزیع GPR7-8
تجزیه و تحلیل RT-PCR در انسان نشان داد که ژن GPR7 به شدت در آمیگدال، هیپوکامپ، نئوکورتکس، و هیپوتالاموس بیان می شود ]73[. مطالعات مربوط به شیمی سلولی نشان داده است که ژن GPR7 در هیپوتالاموس موش، از جمله ARC، VMH، PVN و DMH، موجود است .ایشیی و همکاران (2003) گزارش داده اند که از بین بردن NPBW1 باعث پر خوری و توسعه چاقی می شود. سینگ و همکاران (2004) از دریافت کننده ی رادیوگرافی [125I]-NPW استفاده کرده و توزیع قابل توجهی از NPBW1 در آمیگدال موش و هیپوتالاموس، و همچنین در BST، MPA ، PAG ، ارگان سابفورنیکال و سطوح خاکستری رنگ سوپریور کولیکلوس ( قسمتی از مغز میانی) را نشان دادند. به طور کلی، GPR7 در سطح وسیعی در آمیگدال بیان می شود ]84،83،74[. اگر چه BST بالاترین سطح بیان GPR7 در پستانداران کوچک را نشان داده است، این پدیده در انسان ثابت نشده است. کیتامورا و همکاران ( 2006) گزارش کرده اند که GPR7 بیشتر در CeA و BST، موش صحرایی توزیع شده است که این امر ممکن است نشان دهد که GPR7 در تنظیم استرس، احساسات، ترس و اضطراب دخالت دارد. از طرف دیگر ژن های GPR7-8 در غده هیپوفیز و غده فوق کلیوی ( قشری و مرکزی ) بیان شده است ]72[ . این مشاهدات نشان می دهد که GPR7-8 ممکن است در پاسخ به استرس از طریق محور HPA درگیر باشد]82 [.
زیلوکوسکا و همکاران (2009 ) اخیرا آزمایشی مبنی بر توزیع و عملکرد NPW، NPB، و GPR7 در سلول های مانند یاخته ی استخوانی موش صحرایی و همچنین نتایج آن را که حاکی از تاثیر مستقیم بر روی تکثیر سلول ها بود را انجام دادند. NPB در پستانداران بزرگ، و همچنین در خرگوش شناسایی شده است، اما در موش صحرای و هیچ یک از موش ها بیان نشده است. تجزیه و تحلیل RT-PCR نشان داده است که ژن GPR8 است که به شدت در آمیگدال، هیپوکامپ، غده هیپوفیز، غده فوق کلیوی و بیضه ها و همچنین در سلول های قشری در غدد فوق کلیوی بیان شده است ]72[ .
2-4-5: تنظیم تغذیه ومتابولیسم انرژی بوسیله NPW
حذف GPR7 در موش های باعث پرخوری و کاهش مصرف انرژی می شود. این امر نشان می دهد که NPW ممکن است به عنوان یک تعدیل کننده تغذیه عمل کند. تزریق داخل بطن مغزی NPW در موشهای صحرایی نر باعث افزایش جذب غذا طی 2 ساعت اول در فاز نور می شود ]52[. همچنین لوین و همکاران (2005) گزارش کرده اند که تزریق NPW به PVN مصرف مواد غذایی را افزایش می دهد . این نتایج نشان می دهد که NPW به عنوان یک پپتید اشتها آور حاد عمل می کند. با این حال، موندال و همکاران (2003) گزارش کرده اند که هر دو شکل NPW باعث سرکوب تغذیه در فاز تاریک می شود،این نشان می دهد که اثر NPW در مورد تغذیه متفاوت است بسته به اینکه آیا حیوانات در نور و یا فاز تاریک نگهداری می شود]72[.
مطالعات عصبی انجام شده نشان داد که رابطه عصبی بین NPW و دیگر نوروپپتید های درگیر در تنظیم تغذیه باعث فعل و انفعالات عصبی بسیار نزدیک بین رشته های عصبی حاوی NPW و ارکسین یا هورمون MCH و رشته های عصبی در مغز موش های صحرایی می شود ]85[. در حالی که لوین و همکاران (2005) نشان داد که توزیع c-fos در نورون های حاوی ارکسین در منطقه ی پریفورنیکل در LH بعد از تزریق NPW در داخل بطن مغزی (icv) رخ داده است. جالب این است، که آنها همچنین سلول های NPW-LI در VMH، را نیز شناسایی کردند که به عنوان یک مرکز سیری شناخته شده است ]75[.
تاثیر لپتین بر روی عصب در VMH ، باعث کاهش میزان جذب غذا می شود و دیت و همکاران (2010) گزارش داده اند که سلول های عصبی NPW-LI و گیرنده های لپتین در این منطقه از مغز متمرکز شده اند . بیان NPW نیز به طور قابل توجهی در OB / OB و db/db موش تنظیم می شود. بنابراین، NPW ممکن است نقش مهمی در متابولیسم تغذیه و انرژی داشته باشد، و به عنوان یک جایگزین برای لپتین عمل کنید ]9[. علاوه بر این، NPW جذب مواد غذایی را از طریق گیرنده ملانوکورتین – 4 کاهش می دهد ، این بیانگر این است که NPW ممکن است نورون ها حاوی POMC را فعال و نورون های حاوی NPY را در ARC مهار کرده به کنترل و تنظیم در تغذیه بپردازد ]9[.
58420241935
شکل 2- 9 ) تصویر شماتیک بر اساس یافته های مطالعات مورفولوژیکی و فیزیولوژیکی تنظیم اشتها در هیپوتالاموس توسط سلول های عصبی NPW و پپتید مرتبط با تغذیه در هیپوتالاموس.]72[
به تازگی، اسکرزبپسکی و همکاران (2012) نشان داده اند که NPB و NPW بیان و ترشح لپتین و رزیستین را تنظیم می کند ، و باعث افزایش لیپولیز چربی در موش می شود]84[ . هنگامی که NPW به موش داده شد، محققان نمی توانستند بالا رفتن فعالیت های حرکتی را شناسایی کنند ، اما افزایش میزان مصرف O2 و افزایش تولید CO2، و همچنین افزایش دمای بدن را مشاهد نمودند ]86[ . جالب توجه است، مندال و همکاران (2006) گزارش کرده اند که سطح NPW جدا شده از سلول های آنترال معده موش در حیوانات که غذا نخورده اند پایین تر است ، و میزان آن در حیواناتی که به آنها غذا داده شد افزایش یافت. در مقابل، GPR7 ( - / - ) موش های ماده فعالیت های پر خوری از خود در مقایسه با موش هایی از نوع وحشی نشان نمی دهند ]87[. علاوه بر این، دان و همکاران (2003) وجود تفاوت بین موش های نر و ماده با توجه به میزان توزیع NPW ارائه داده اند.
2-4-6: عملکرد اندوکرین NPW
مطالعات ایمنوهیستوشیمی نشان داده که GPR7 در PVN، غده هیپوفیز وغدد فوق کلیوی در انسان و موش ]88،79،73،10[، به ویژه درسلول های PVN و هیپوفیز خلفی بیان شده است . با این وجود گزارش نشده است که NPW برای رها سازی دیگر هورمون های هیپوفیز قدامی تاثیر بگذارد. تاثیرات نورواندوکرین NPW به طور مستقیم از طریق GPR7 در سلول های غده هیپوفیز به عنوان واسطه عمل نمی کند ،اما ممکن است به طور غیر مستقیم از طریق کنترل آزاد سازی هورمون هیپوتالاموس و آزاد سازی هورمون محرک قشر غده ی فوق کلیوی عمل کند ]89،73[.
NPW نقش مهمی در پاسخ هیپوتالاموس به استرس ایفا می کند. با این حال، سطوح هورمون رشد در پلاسما بعد از تزریق داخل بطن مغزی این پپتید مهار می شود. این یافته ها نشان می دهد که NPW لیگاند درون زا برای GPR7 و / یا GPR8 است و به عنوان یک میانجی نورواندوکرین عمل می کند ]53،52[.علاوه بر این، تیلور و همکاران (2005) گزارش کرده اند که تزریق NPW محور HPA را فعال می کند، و باعث افزایش در سطح کورتیکوسترون پلاسما در موش های هوشیار می شود. اما باعث تحریک آزادی اکسی توسین و وازوپرسین نمی شود و همچنین در گردش خون محیطی، تغییرات فشار خون و ضربان قلب را نغییر نمی دهد. علاوه بر این، تزریق داخل بطن مغزی آنتاگونیست CRF باعث کاهش قابل توجهی سطح کورتیکوسترون نمی شود، اگر چه قبل از تزریق آنتاگونیست CRF به طور قابل توجهی افزایش مرکزی NPW سطح کورتیکوسترون را کاهش می دهد ]90[.
پرایس و همکاران (2008) گزارش کرده اند که با توجه به اثرات مرکزی NPW از فعال شدن سلول های عصبی سوماتوستاتین کمانی، می تواند بیان هورمون های آزاد کننده هورمون رشد را متوقف کند. این یافته ها نشان می دهد که NPW درون زا ممکن است یک نقش فیزیولوژیک مرتبط در پاسخ نورواندوکرین به استرس در مغز بازی کند]91[.
2-5: کورتیزول
کورتیزول از بخش قشری غدد فوق کلیوی ترشح می شود. یکی از اثرات مهم کورتیزول، نقش آن روی سوخت و ساز کربوهیدرات ها، پروتئین ها و چربی ها است. این هورمون فرآیند گلوکونئوژنز را از اسیدهای آمینه تسهیل، لیپوژنز کبد را کاهش و چربی های موجود در بافت چربی را به حرکت در می اورد. دو تاثیر مهم دیگر کورتیزول عبارتند از: حفظ واکنش عروقی به کاتکولامین ها و جلوگیری از واکنش های التهابی و پاسخ طبیعی بافت ها نسبت به آسیب. کورتیزول یکی از مهم ترین هورمون های استروئیدی است که در تنظیم عملکردهای قلبی- عروقی، ایمونولوژیکی، هموستازی و متابولیکی نقش دارد]92[.
2-5-1:کورتیزول و فعالیت بدنی
فعالیت بدنی نشانه تلاش فردی برای حرکت از یک محل به محل دیگر است. توانایی فرد برای اجرای فعالیت معین به نوع تغذیه و تمرین، مقاومت خارجی و متغیرهای دیگر وابسته است. علاوه بر این، فعالیت بدنی می تواند 1)سبک، متوسط و یا سنگین باشد .2) کوتاه مدت یا دراز مدت باشد. 3)گروه خاصی از عضلات و یا عموم عضلات را درگیر کند [93].
در جریان این امر الگویی که نقش هورمون ها به هنگام ورزش، در فعالیت بدنی را می توان به پنج مرحله تقسیم کرد:
1.مرحله قبل از شروع فعالیت
2.مرحله شروع فعالیت
3. مرحله فعالیت
4. مرحله خستگی مفرط (چنان چه فعالیت به اندازه کافی سنگین باشد)
5.مرحله بازیافت
در مرحله اول که در حالت انتظار یا ابتدای اجرای برنامه ورزشی ، یک تغییر شدت متابولیکی از حالت استراحت به حالت فعالیت رخ می دهد. این تغییرات شدت متابولیکی اولیه مهم ترین واکنش هورمونی بدن را به همراه خواهد داشت. هورمون های محرک قشر غدد فوق کلیوی و کورتیزول که نیاز به استرس عمومی به عنوان محرک دارند، ترشح می شوند. در مرحله شروف فعلیت، بدن نسبت به تغییر شدید حالت هومئوستاز به حالت پرتلاش، واکنش نشان می دهد. در این هنگام، ترشح کورتیزول ادامه پیدا می کند . ودر مرحله سازگاری ممکن است ترشح کورتیزول به علت عدم تغییر در روند فعالیت، متوقف شود. در مرحله خستگی مفرط تخلیه هورمون های غدد فوق کلیوی به عنوان یک احتمال و کاهش شدت ترشح کورتیزول، احتمال دیگری در بروز خستگی مفرط عنوان گردیده است. تخلیه (قطع) هورمون های غدد فوق کلیوی یا هیپوفیز به علت بازخورد منفی نسبت به عوامل مختلف، موجب کاهش حضور مواد انرژی زا می شود. در پایان که مرحله بازیافت است فرد به تدریج به حالت استراحت برمی گردد. سطح هورمون ها پس از قطع فعالیت بالا خواهد بود حتی اگر شدت ترشح انها کم شود، سطح آنها برای مدتی بالا است تا این که تمام مولکول های هورمونی فعال تجزیه شوند. مجموع واکنش های هورمونی نسبت به فعالیت بدنی به نظر می رسد که ترشح هورمون ها در هر مرحله متفاوت باشد و متناسب با شدت استرس های هر مرحله تغییر می کند[93].
2-5-2: متابولیسم انرژی در فعالیت ورزشی

user8266

فصل دوم
کلیات و برررسی منابع موجود
فصل دوم: کلیات و برررسی منابع موجود1-2- علت مطالعهشترمرغ پرندهای است بزرگ و فاقد قدرت پرواز که بومی آفریقا است. این پرنده خوراکش دانه‌ ها و گیاهان و حشرات کوچک است. شترمرغ نر پرهای سیاهی دارد که انتهای پرها و بال‌ها سفید است، ولی پرهای شترمرغ ماده قهوه‌ای رنگ است. از نظر رده فیلوژنی شترمرغ جزء سلسله جانوران، شاخه طنابداران، رده پرندگان، راسته سینهپهنان، خانواده شترمرغ سانان، سرده شترمرغ، گونه Struthio Camellus می باشد. البته پرندگانی مانند Emu، Rhea، Kiwi، Tinamou و Cassowary هم از راسته سینهپهنان می باشند (2).
هم اکنون تقاضای زیادی در زمینه پرورش شترمرغ در سطح بین المللی وجود دارد و مهمترین عاملی را که می توان در رابطه با شکل گیری این تقاضا دخیل دانست قیمت بالای محصولات شترمرغ در بازارهای جهانی و بازدهی زیاد پرورش این موجود در مقایسه با سایر حیوانات می باشد.
در حال حاضر بررسی روند تکامل در جانداران از چندین لحاظ دارای اهمیت است. ابتدا برای بدست آوردن اطلاعات در مورد تکوین هر جاندار و تفاوت آن با گونههای دیگر که احتمالا مورد نیاز شاخه‏های مختلف علوم مانند زیستشناسی، کشاورزی و دامپزشکی می باشد، دوم به خاطر بدست آوردن اطلاعاتی در زمینه روند تکوینی رویان انسان به واسطه وجود تشابهات و یا با ایجاد حالت ها و ناهنجاری‏های تجربی و سوم به خاطر کسب اطلاعات و توسعه روش‏هایی که در شاخههای جدید علم مانند سلول‏های بنیادی، تولید پروتئین‏های نوترکیب، دستکاری ژنتیک و تولید جانوران کایمر و شبیه‏سازی کاربرد دارند.
رویان پرندگان در هر دو مرحله لایه زایی و تشکیل اندام ها مستقیما در داخل تخم قابل دسترسی است در حالیکه دستکاری تجربی پستانداری مانند موش در داخل رحم فقط در نیمه دوم دوره آبستنی (دوره جنینی) امکان پذیر است. این قابلیت به حدی ارزشمند است که می توان گفت رویان جوجه در قرن اخیر نقش بسیار مهمی در مطالعه تکوین مهرهداران داشته است.
مزایای گوناگون پرندگان به ویژگی‏های ژنتیک و فیزیولوژیک این موجود برمی گردد. البته اهلی بودن و سهولت دسترسی به رویان آن ها نیز تاثیر بسزایی در انتخابشان برای تحقیقات بیولوژی داشته است.
2-2- شترمرغ (Struthio camellus)
شترمرغ پرندهای است بزرگ، فاقد قدرت پرواز که بومی آفریقا است. گردن و پاهای درازی دارد و می ‌تواند با سرعتی در حدود ۶۵ کیلومتر در ساعت بدود. شترمرغ بزرگ ‌ترین پرنده موجود و تنها نمونه زنده از این خانواده و این سرده است. طول قد آن به 7/2 متر و وزن آن به ۱۴۰ کیلوگرم (در نرها تا 155 کیلوگرم) می‌ رسد. تخم این پرنده تا ۲۰ سانتی متر طول و 5/1 کیلوگرم وزن دارد که ظرف حدود نیم ساعت پخته می‌شود. این پرنده خوراکش دانه‌ها و گیاهان و حشرات کوچک است. شترمرغ برای دفاع از خود در مقابل شکارچیان و حیوانات وحشی از پاهای پر قدرت خود بهره می‌ گیرد و قادر است با لگد خود انسان و حتی شیر را از پا در آورد. جوجه این پرنده ظرف ۴۰ روز سر از تخم در می ‌آورند و ظرف سه تا چهار سال یک پرنده بالغ می ‌شوند. شترمرغ نر پرهای سیاهی دارد که انتهای پرها و بال‌ها سفید است، ولی پرهای شترمرغ ماده قهوه‌ای رنگ است. سر و گردن پر ندارد و طاس است. این پرنده اغلب بصورت گروهی در بین گورخرها یا حیوانات دیگر چون گاومیش به سر می‌برد. از نظر رده فیلوژنی شترمرغ جزء سلسله جانوران، شاخه طناب داران، رده پرندگان، راسته سینهپهنان، خانواده شترمرغ سانان، سرده شترمرغ، گونه Struthio Camellus میباشد. البته پرندگانی مانند Emu، Rhea، Kiwi، Tinamou و Cassowary هم از راسته سینه پهنان می باشند (2 و 4).
3-2- تاریخچه پرورش شترمرغ در جهانبیش از 20 میلیون سال پیش اکثر شترمرغ‏های امروزی در کمربند وسیعی که از اسپانیا در غرب آغاز و در طول کرانه‏های شمالی دریای مدیترانه امتداد یافته و به چین در شرق ختم میشد، ساکن بوده اند. توجه انسان به شترمرغ و محصولات آن تقریبا به 2500 سال پیش بر میگردد (5).
اولین اثر حاکی از وجود شتر مرغ در صحرا، سنگی منقوش می باشد که شکار شترمرغ را توسط یک پلنگ به تصویر کشیده است (500 سال قبل از میلاد).
مصریان باستان از پرهای متقارن شترمرغ به عنوان سمبل عدالت و از تخم هایش برای مصارف دارویی استفاده می کردند. فرعون از بادبزن ساخته شده از پرهای شترمرغ در سفرهایش به سرزمین‏های دور استفاده می کرد. در تاریخ اساطیری یونان نیز شترمرغ ها از پیدایش ارابه جایگاه خاصی را به عنوان حیوانات باربر به خود اختصاص می دادند. تورات کهن از شترمرغ به عنوان موجودی خشن یاد می کند. در این کتاب مقدس ذکر گردیده است که شترمرغ ها در خانه ها و کاخ‏های بیابانی زندگی می کنند. آن ها نسبت به فرزندانشان رفتاری خشونت آمیزتر از گرگ ها دارند. یهودیان گوشت شترمرغ را حرام دانسته و از آن تغذیه نمی کنند (5 و 6).
اولین پرورش شترمرغ در باغ وحش در انتهای قرن 19 در مارسی انجام گرفت. اولین جوجه کشی مصنوعی در سال 1875 در الجزایر و در مدت کوتاهی بعد از آن در فلورانس توسط پرنس دمیروف صورت گرفت (6).
4-2- تاریخچه پرورش شترمرغ در ایرانبا اینکه هم اکنون کشورهای آفریقای جنوبی، آمریکا و آلمان طلایه دار صنعت پرورش شترمرغ در دنیا هستند و از ایران هیچ نامی به چشم نمی خورد، لیکن مطابق آثار و شواهد و منابع تاریخی، ایرانیان باستان از جمله پرورش دهندگان شترمرغ در آن زمان بوده اند و موید این مطلب مورد ذیل است. در سال 128 قبل از میلاد مسیح، سیاح معروف چینی به نام چانگ کین به مدت یک سال در نواحی شرقی رود جیحون در کشور باکتریا (بلخ) که در آن موقع تحت سلطه سکاها بود، به سر برده و سپس به دربار ایران راه پیدا کرد. وی پس از آنکه ماموریت خود را که مورد رضایت و خوشنودی پادشاه ایران (اشکانی) قرار گرفت به اتمام رساند با هیئتی که از طرف پادشاه ایران معین شده بود و هدایای نفیس از جمله تخم شتر مرغ فراوان همراه عده ای شعبده باز به چین روانه گردید. حدود 90-80 سال پیش در خرم آباد، روس ها و انگلیس ها شترمرغ را وارد ایران کردند. اما پرورش این پرنده صورت نگرفت. در دوازدهم اردیبهشت 1376 اولین تخم شترمرغ در ایران توسط آقای دکتر درویشیها و مهندس موسوی در مزرعه گلبرگ طوبی متعلق به آقای سهراب، هچ شد. اما بنیانگذار اصلی پرورش شترمرغ در ایران آقای نیامنش است که در حال حاضر رئیس اتحادیه و صنف شترمرغ داران می باشد که از سال 1374 فعالیت خود را آغاز کرده و مجوز گرفته است. در حال حاضر تعداد مزارع شترمرغ در ایران بیش از 100 عدد است که احتمالا حدود 10000 شترمرغ دارند و از هر 3 نژاد گردن قرمز، آبی و سیاه هستند. اولین شترمرغ به دنیا آمده در ایران نژاد گردن سیاه و جوجه شترمرغ نر بوده است که از آفریقا جنوبی تخمش وارد ایران شده بود (1و5).
5-2-اهمیت پرورش شترمرغ در ایران
با توجه به جمعیت رو به تزاید کشور، تامین نیاز پروتئینی برای این جمعیت امری مهم و اساسی به حساب می آید. سرانه تولید مواد پروتئینی با منشا دامی برای هر ایرانی در سال برابر 13 کیلوگرم و سرانه پروتئین در روز حدود 20 گرم بوده است. در صورتی که بخواهیم کیفیت امنیت غذایی را ارتقاء داده و به وضع مطلوب برسانیم، سرانه پروتئین دامی با حفظ ترکیب تولید فعال بایستی حدود 40% افزایش یابد (5 و 8).
عملکرد و بازدهی زیاد پرورش شترمرغ نسبت به سایر دام‏های اهلی عبارت است از:
الف- تعداد تخم‏های شترمرغ در سال برابر 30 تا 100 عدد می باشد.
ب- درصد باروری تخم‏های شتر مرغ 90-30 درصد است.
ج- میزان جوجه درآوری در تخم‏های نطفه دار 60 تا 90 درصد تخمین زده شده است.
د- بازدهی لاشه شترمرغ کشتاری در سن 14-12 ماهگی 55 درصد تخمین زده می شود.
ن- بازدهی اقتصادی پوست، چرم و پر شترمرغ زیاد است.
6-2- سود آوری زیاد پرورش شترمرغهم اکنون تقاضای زیادی در زمینه پرورش شترمرغ در سطح بین المللی وجود دارد و مهمترین عاملی را که می توان در رابطه با شکل گیری این تقاضا دخیل دانست قیمت بالای محصولات شترمرغ در بازارهای جهانی و بازدهی زیاد پرورش این موجود در مقایسه با سایر حیوانات می باشد (8).
7-2- اهمیت گوشت شترمرغ و ترکیبات آنمشتریان با تجربه، به گوشت شترمرغ به عنوان یک شاخص سلامت در خوراک شناسی توجه دارند. گوشت شترمرغ ترد بوده و به سهولت از هم جدا می شود و لیکن این خاصیت طعم غذا را تغییر نمی دهد. گوشت شترمرغ یکی از کم چرب ترین گوشت‏های قرمز موجود می باشد.
خواص آن عبارتند از:
- کم چرب بودن (فیله یا استیک ،کمتر از 1/1% چربی).
- پایین بودن میزان کلسترول (حدود 600 میلی گرم در هر کیلو گرم).
- بالا بودن میزان پروتئین (بیش از 20%).


- تردی استثنایی.
- واکنش مطلوب نسبت به ادویه جات.
هر 100 گرم گوشت شترمرغ حاوی 5/12 میلی گرم منیزیوم، 208 میلی گرم فسفات و 4/315 میلی گرم پتاسیم می باشد. در مورد اکثر گوشت ها پایین بودن میزان چربی با تردی گوشت در تضاد است، در حالی که گوشت شترمرغ از این لحاظ یک استثناء می باشد. هر دو نوع فیله و استیک آن بسیار ترد و نرم می باشد. بیشترین گوشت قابل استفاده از لحاظ تجاری از ران‏های شترمرغ بدست می آید (5).
8-2- طبقه بندی جانور شناسیشترمرغ ها به طبقه پرندگان تعلق دارند و یکی از پنج زیر راسته پنهان محسوب می شوند. مشخصه اصلی آن عدم قدرت پرواز به علت فقدان کامل ستیغ استخوان سینه می باشد. ویژگی اخیر علت نام گذاری فوق شده است زیرا در زبان لاتین به کشتی فاقد لبه زیرین، کلک و یا کله اطلاق می شود.
شترمرغ در زیر راسته استروتیونی فرم ها به صورت زیر قرار می گیرد:
خانواده: استروتیونیده
جنس: استروتیو
گونه: استروتیو کاملوس که زیر گونه‏های زیر را شامل می شود:
استرتیو کاملوس آسترالیس (شترمرغ آفریقای جنوبی یا زولو) در آفریقای جنوبی.
2- استرتیو کاملوس کاملوس (شترمرغ مالی یا بربر) در آفریقای شمالی.
3- استروتیو کاملوس ماسائیکوس (شتر مرغ ماسائی) در شرق آفریقا.
4- استروتیو کاملوس مولیبدوفانس (شترمرغ سومالی) در اتیوپی، کینای شمالی و سومالی.
5- استروتیو کاملوس سیریاکوس (شترمرغ عربی) که از حدود 1970 منقرض شده است.
برای اهداف تجاری اکثرا از اصطلاحاتی مانند گردن آبی، گردن قرمز و گردن سیاه استفاده می شود. زیر گونه‏های کاملوس و ماسائیکوس به شترمرغ‏های گردن قرمز تعلق دارند (3 و 6). اکثر زیر گونه‏های ماسائیکوس به ایالت متحده آمریکا صادر شده اند و گردن آبی ها زیر گونه مولیبدوفانس و آسترالیس را شامل می شوند. گردن آبی و قرمز ها نسبت به گردن سیاه آفریقایی جثه بزرگ تری دارند. سیاه آفریقایی نتیجه تلاقی زیر گونه استروتیو کاملوس آفریقایی شمالی و زیر گونه استروتیو کامالوس آسترا لیس می باشند. گردن سیاه آفریقایی کوچک تر و دارای بدن فشرده تر و پرهای با کیفیت استثنایی هستند و به طور کلی بخش اعظم شترمرغ‏های اهلی شده دنیا را تشکیل می دهند (2 و 5).
9-2-تشکیل تخم مرغتشکیل تخم مرغ نزدیک به 25 ساعت طول می کشد. مواد خام زرده تخم در کبد سنتز شده و در پلاسمای خون به سمت سلول‏های لایه دانه دار حرکت می کنند که پس از آن، آن ها را به اووسیت می فرستند. اووسیت آن ها را به شکل زرده کروی و مایع بازسازی می کند. هیچ سنتز بیوشیمیایی زرده تخم در خود اووسیت انجام نمی گیرد.
تخم مرغ از ناحیه قیفی شکل در مدت 15 دقیقه می گذرد. شالاز در این ناحیه ساخته می شود و زرده را در دو انتهای تخم معلق نگه می دارد. زرده به سرعت وارد مگنوم که بخشی از اویداکت است، می شود. جایی که بخش غلیظ آلبومین به آن اضافه می شود. شکل تخم تا حد زیادی به این قسمت بستگی دارد، گذر از مگنوم طی 3 ساعت انجام می شود. سفیده در این ناحیه ترشح می شود.
عبور از تنگه 75 دقیقه زمان نیاز دارد. غشاهای داخلی و خارجی در این ناحیه شکل می گیرند. قبل از تشکیل این غشاها مقدار کمی پروتئین به سفیده تخم افزوده می شود.
تخم مرغ نزدیک 20 ساعت رحم را اشغال می کند. ازدیاد حجمی در اینجا روی می دهد که افزوده شدن محلول‏های آبی به تخم است (4).
205105103192تخمک وارد اویداکت می شود
00تخمک وارد اویداکت می شود
-1447804868545تخم برای دریافت رنگدانه به رحم می رود
00تخم برای دریافت رنگدانه به رحم می رود
25507954059029تخم رنگدانه دار از رحم خارج می شود
00تخم رنگدانه دار از رحم خارج می شود
35984363377565در تنگه (Isthmus) پوسته نازک اضافه می شود
00در تنگه (Isthmus) پوسته نازک اضافه می شود
-1441452113280آلبومین دور تخمک را فرا می گیرد
00آلبومین دور تخمک را فرا می گیرد

تصویر 2- SEQ تصویر_2- * ARABIC 1: روند تشکیل تخم10-2-ساختار تخم در پرندگان:تخم دربر دارنده یک دیسک زاینده، غشاهای پیرامون زرده، سفیده و یک پوسته است.

تصویر 2- SEQ تصویر_2- * ARABIC 2: ساختار تخم درپرندگاندیسک زاینده: دیسک زاینده (در صورت باروری، بلاستودرم و در صورت سترونی، بلاستودیسک)، دیسک کوچک سیتوپلاسمی است که باقیمانده هسته را دربر می گیرد. این دیسک بر سطح زرده تخم تازه، مانند نقطه دایره شکل سفید ناشفاف قابل مشاهده است که در ماکیان اهلی 3 تا 4 میلی متر قطر دارد.
زرده تخم: زرده ماده غلیظ چسبناکی است که در حدود 50 درصد آن مواد جامد است و 99 درصد آن را پروتئین ها تشکیل می دهند. همانند خزندگان، زرده منبع اصلی غذای رویان را تشکیل می دهد. دو نوع زرده سفید و زرد وجود دارد، در زرده سفید یا لاتبرا (Latebra) نزدیک به ⅔ پروتئین و ⅓ چربی وجود دارد. این زرده از یک قسمت توده ای کوچک کروی، به نام مرکز لاتبرا به وجود آمده است که با یک ستون باریک به نام گردن لاتبرا به یک دیسک مخروطی (دیسک لاتبرا) در زیر دیسک زاینده متصل شده است. زرده زرد رنگ که در حدود ⅔ چربی و ⅓ پروتئین است، اغلب در ماکیان اهلی در درون لایه‏های متناوب سفید و زرد شکل می گیرد.
غشاهای زرده: این غشاها سدی بین زرده و سفیده با مقاومت مکانیکی زیاد را تشکیل می دهند، اما در مقابل آب و نمک ها تراوا است. میکروسکوپ الکترونی غشاهایی با چهار لایه را نشان می دهد.
سفیده تخم مرغ: سفیده غلیظ تخم به مقدار نسبتا زیاد از اووموسین و احتمالا مقداری الیاف موسینی را دربرمی گیرد. سفیده رقیق آبکی تر و دارای اووموسین کمتر است و تقریبا هیچ الیاف موسینی را دربر نمی گیرد. لایه شالازی یک لایه نازک از سفیده غلیظ است که غشاهای زرده را دربر می گیرد (4).
شالاز دو ساختار طناب شکل است که زرده را در وسط تخم نگه می دارد و در شیپور شروع به تشکیل می کند. شالاز همچنین مثل یک محور عمل می کند که زرده می تواند بچرخد و دیسک زایا را در تمام زمان ها در سمت بالا نگه می دارد (17). دو لایه شالاز از الیاف ظریف اووموسین تشکیل شده است. شالاز در انتهای باریک خود دو رشته ای است، در حالی که در انتهای ضخیم یک رشته ای است. سفیده سه لایه دارد، لایه داخلی و خارجی سفیده رقیق و لایه میانی سفیده غلیظ است (4).
پوسته: پوسته متشکل از غشاهای پوسته ای، پوسته آهکی و کوتیکول است. غشاهای بیرونی و درونی پوسته هر کدام ترکیبی از چندین لایه الیافی هستند. در سر پهن تخم، غشا پوسته بیرونی و درونی پس از تخم گذاری که تخم فورا سرد شده، از یکدیگر جدا می شوند و اتاقک هوایی را تشکیل می دهند. سر جنین نزدیک به زیر این فضا که در خزندگان وجود ندارد قرار می گیرد. غشا بیرونی پوسته به شدت به پوسته آهکی می چسبد. بخش عمده پوسته را پوسته آهکی تشکیل می دهد. ضخامت پوسته شدیدا در میان گونه‏های مختلف پرندگان تغییر می کند که این ضخامت در شترمرغ تقریبا به 2 میلی متر می رسد. پوسته آهکی یک ماتریکس آلی از الیاف نازک و یک عنصر غیرآلی جامد بسیار بزرگ (98 درصد کل) را دربر می گیرد که عمدتا کلسیت (فرم کریستالین کربنات کلسیم) است (4).
در بیشتر گونه‏های پرندگان هزاران منافذ ریز بر روی سطح پوسته باز می شوند و بین کریستال ها تا غشاهای پوسته امتداد می یابند. در ماکیان اهلی منافذ غالبا در سر پهن تخم نزدیک سلول هوایی جمع می شوند، بدین ترتیب نزدیک سر جوجه قرار دارند. منافذ به وسیله کوتیکول پوشیده می شوند.
کوتیکول لایه ممتدی است که روی پوسته آهکی و منافذ را می پوشاند. دافع آب است و هدرروی آب درون تخم را کاهش می دهد و به عنوان سدی در برابر باکتری ها عمل می کند.
11-2-مراحل رشد جنینی درپرندگان:تخم مرغ در دستگاه تناسلی مرغ بالغ که از تخمدان و اویداکت تشکیل شده، شکل می گیرد. برخی پرندگان ماده دو تخمدان فعال دارند، اما اغلب ماکیان از جمله شترمرغ یک تخمدان و یک اویداکت فعال دارند.
در مراحل اولیه رشد جنینی هر پرنده ماده دو تخمدان دارد اما فقط تخمدان سمت چپ رشد می کند و به صورت یک ارگان فعال در می آید. در برخی پرندگان مثل شاهین، تخمدان و اویداکت راست شکل می گیرد.
تخمدان بالغ شبیه خوشه انگور است که ممکن است تا 4000 تا تخمک کوچک که به سلول‏های پر زرده تبدیل می شود، داشته باشد. هر تخمک به وسیله یک کیسه فولیکولی که شبکه ظریفی از عروق خونی دارد به تخمدان متصل شده است (17).
بعداز اینکه تخمک در قسمت شیپور اینفاندیبولوم گرفته شد، لقاح تقریبا بلافاصله در صورت وجود اسپرم انجام می شود. سلول‏های اسپرم که توسط نر وارد اویداکت شده در کیسه ذخیره اسپرم در ناحیه اینفاندیبولوم نگه داری می شود. وقتی تخمک از این ناحیه عبور می کند اسپرم ها آزاد شده و باعث لقاح آن می گردند. یک اسپرماتوزوئید حتما باید غشاء نازک زرده ای را پاره کند و به سلول ماده اتصال پیدا کند تا لقاح کامل شود. وقتی سلول زیگوت شکل گرفت غشاء زرده ای ضخیم می شود (17).
تقسیم سلولی تقریبا بلافاصله پس از لقاح شروع می شود. این تقسیم در صورتی که تخم مرغ در دمای بالاتر از 19 درجه سانتی گراد نگهداری شود ادامه پیدا می کند و در غیر این صورت متوقف می شود. اولین تقسیم سلولی تخم مرغ تقریبا در زمانی که تخم وارد تنگه می شود شروع می گردد. تقسیمات سلولی بعدی تقریبا هر 20 دقیقه یکبار انجام می شود. درنتیجه در زمان تخم گذاری هزاران سلول که مجموعا رویانی به نام گاسترولا را بوجود آورده اند، شکل گرفته اند (17). در زمان تخم گذاری دمای تخم پایین است و تکامل جنین معمولا متوقف می شود تا زمانیکه شرایط محیطی مناسب برای انکوباسیون فراهم شود. در صورت فراهم شدن شرایط رشد جنینی دوباره آغاز می گردد.
254002596100
تصویر 2- SEQ تصویر_2- * ARABIC 3: مراحل تقسیم سلولی در جنین مرغبعد از شروع انکوباسیون یک لایه ضخیم شده سلولی نوک تیز سریعا در سمت پسین یا دم انتهایی جنین قابل مشاهده است. این ناحیه خط اولیه است و محور طولی جنین را بوجود می آورد.
قبل از اینکه اولین روز انکوباسیون به پایان برسد در جنین جوجه مرغ ارگان‏های زیادی شکل گرفته است. سر جنین قابل تشخیص است، پیش ساز قسمت پیشین لوله گوارش شکل گرفته و جزایر خونی ظاهر شده که بعدا قرار است دستگاه گردش خون را بوجود آورند. چین عصبی شکل گرفته که قرار است در آینده لوله عصبی را بوجود آورد و شکل گیری چشم ها آغاز شده است (17).
در روز دوم انکوباسیون تخم مرغ جزایر خونی شروع به ارتباط پیدا کردن با یکدیگر می کنند و یک شبکه خونی اولیه را بوجود می آورند. این اتفاق در حالی است که قلب در جای دیگری درحال شکل گیری است.
در ساعت 44 انکوباسیون تخم مرغ قلب و شبکه اولیه خونی به هم وصل می شوند و قلب شروع به ضربان می کند. در این زمان دو دستگاه گردش خون مستقل شکل گرفته است. یک دستگاه جنینی برای جنین و یک دستگاه زرده ای در اطراف کیسه زرده وجود دارد که داخل تخم و خارج بدن جنین تکامل پیدا کرده است.
در مراحل بعدی جنینی دو دستگاه گردش خون خارج جنینی بوجود می آید. یک دستگاه سیستم زرده ای است که موادغذایی را از زرده به جنین منتقل کرده و قبل از روز چهارم مسئول اکسیژنه کردن خون است. دستگاه دیگر از عروق آلانتوئیس درست شده که کار آن در ارتباط با تنفس و ذخیره کردن مواد دفعی در آلانتوئیس است. از روز چهارم به بعد وظیفه اکسیژنه کردن خون جنین مرغ با این سیستم است.
وقتی جنین از تخم خارج می شود هر دو این سیستم ها عمل خود را از دست می دهند (17). در روز دوم انکوباسیون تخم مرغ شیار عصبی شکل می گیرد و قسمت سری این شیار شروع به شکل دهی قسمت‏های مختلف مغز می کند. جنین در این روز آن قدر بزرگ شده است که کمانی شکل شدن آن دیده می شود. گوش ها آرام آرام شروع به شکل گرفتن کرده اند و عدسی در چشم در حال شکل گیری است.
در پایان روز سوم انکوباسیون تخم مرغ نوک شروع به شکل گیری می کند و اندام حرکتی (بال ها و دو پا) بیرون زده اند. سه کمان حلقی در هر طرف سر و گردن قابل مشاهده است. این ساختارها برای شکل گیری دستگاه سرخرگی که از قلب به جلو بیرون می زنند، لازم اند. این کمان ها شیپوراستاش، صورت، فک ها و بعضی از غدد را بوجود می آورند.
در این روز آمنیونی که پر از مایع است در اطراف جنین دیده می شود که وظیفه محافظت از آن را بعهده دارد. همچنین دم و کیسه آلانتوئیس دیده می شوند. کیسه آلانتوئیس یک ارگان تنفسی و دفعی است که وظیفه انتقال مواد غذایی از سفیده و کلسیوم از پوست به جنین را بر عهده دارد (17).
پیچ خوردگی و خمیدگی که از قبل شروع شده در طول روز چهارم در جنین مرغ بیشتر اتفاق می افتد. بدن رویان º90 می چرخد به شکلی که سمت چپ آن بر روی زرده قرار می گیرد. سر و دم در اثر این چرخش در نزدیکی هم قرار می گیرند. در نتیجه جنین به شکل یک حرف C در می آید.
دهان، زبان و سوراخ‏های بینی به عنوان قسمتی از دستگاه‏های گوارش و تنفس شکل گرفته است. قلب به رشد خود ادامه می دهد به حدی که دیگر بدن جنین مرغ قادر به جای دادن قلب درون خود نمی باشد و قلب از بدن جنین بیرون زده است. اگر تخم با دقت باز شود و جنین زنده بماند ضربان قلب در این روز در جنین مرغ دیده می شود.
سایر ارگان‏های داخلی در حال شکل گیری و تکامل هستند. در پایان روز چهارم انکوباسیون تخم مرغ تمام ارگان‏هایی که برای زنده ماندن جنین بعد از هچ نیاز دارد رشد پیدا کرده و از اغلب قسمت‏های جنین قابل تشخیص است. در این مرحله جنین پرنده از جنین پستاندار قابل تفکیک نیست زیرا شکل مشابه هم دارند (17).
جنین خیلی سریع به رشد و تکامل خود ادامه می دهد. در روز هفتم انکوباسیون تخم مرغ انگشت ها در اندام حرکتی ظاهر شده اند. بدن به اندازه ای بزرگ شده که می تواند قلب را در خود جای دهد و قلب کاملا در قفسه سینه جای گرفته است. در این مرحله جنین به شکل پرنده است.
بعد از روز دهم انکوباسیون تخم مرغ پرها و تنه‏های پرها در جنین قابل مشاهده است. نوک ضخیم شده و در روز چهارده انکوباسیون تخم مرغ پنجه ها در حال شکل گیری اند و جنین آهسته برای هچ جابه جا می شود. در روز شانزدهم انکوباسیون تخم مرغ، آلبومن تقریبا تمام شده است. درنتیجه زرده تنها منبع تغذیه جنین می باشد.
بعد از روز بیست انکوباسیون تخم مرغ، جنین در وضعیت هچ قرار گرفته و نوک شروع به سوراخ کردن کیسه اتاقک هوا می کند. در همین روز تنفس ریوی شروع می شود. در این زمان کیسه زرده کاملا در حفره بدن قرار گرفته و جنین آماده هچ است.
موقعیت طبیعی هچ جوجه مرغ بدین صورت است که سر در سمت بزرگ تخم و زیر بال راست قرار گرفته و پاها به سمت سر کشیده شده اند. اگر سر در سمت کوچک تخم قرار بگیرد شانس زنده بودن جوجه به نصف کاهش می یابد که این حالت یک موقعیت بد برای هچ است.

تصویر 2- SEQ تصویر_2- * ARABIC 4: تغییرات جنینی در جنین مرغ12-2-شکل گیری ساختارهای خارج جنینی:هم زمان با عمل تاخوردگی بدنی یک جفت تاخوردگی شامل سوماتوپلور خارج رویانی شروع به بالا رفتن می کند. این تاخوردگی‏های کوریوآمنیوتیک که بدوا در قسمت قدامی سر تشکیل شده، به طور پیشرونده ای در سطح خلفی تر طرفین رویان بالا می آید (7). سپس وقایع مشابهی در انتهای دمی رویان رخ می دهد. تاخوردگی‏های کوریوآمنیوتیک به طرف پشتی توسعه یافته و در بالای خط میانی پشتی رویان به هم رسیده و متصل می شوند ADDIN EN.CITE <EndNote><Cite><Author>Noden</Author><Year>1372</Year><RecNum>14</RecNum><DisplayText>[11]</DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="efx229s08adteqef0a9x2959zefzw029xrvs">14</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Duran Noden</author><author>Alexander Dela Honta</author></authors><subsidiary-authors><author><style face="normal" font="default" charset="178" size="100%">رضا قاضی</style></author><author><style face="normal" font="default" charset="178" size="100%">بیژن رادمهر</style></author><author><style face="normal" font="default" charset="178" size="100%">هدایت الله رشیدی</style></author></subsidiary-authors></contributors><titles><title><style face="normal" font="default" charset="178" size="100%">جنین شناسی حیوانات اهلی، مکانسم های رشد تکاملی و ناهنجاری ها</style></title></titles><edition><style face="normal" font="default" charset="178" size="100%">1</style></edition><dates><year><style face="normal" font="default" charset="178" size="100%">1372</style></year></dates><pub-location><style face="normal" font="default" charset="178" size="100%">شیراز</style></pub-location><publisher><style face="normal" font="default" charset="178" size="100%">انتشارات دانشگاه شیراز</style></publisher><urls></urls></record></Cite></EndNote> (7). لایه خارجی تر سوماتوپلور کوریون و لایه داخلی تر آمنیون می باشد.
حفره بین رویان و آمنیون، حفره آمنیوتیک نامیده می شود که به وسیله مایع آمنیوتیک پر می شود. این مایع از ترشحات اکتودرم آمنیوتیک و سپس از مایعات کلیه‏های جنین و ترشحات غدد دهانی و مجاری تنفسی ناشی می شود. مایع آمنیوتیک جهت شناور ساختن و محافظت رویان و ایجاد محیطی که در آن رویان بتواند بدن و دست و پا را حرکت دهد بکار می رود (7).

تصویر 2- SEQ تصویر_2- * ARABIC 5: تصویر شماتیک تخم مرغ جنین دارکوریون به سرعت توسعه یافته و در جنین مرغ تا روز 7 الی 8 انکوباسیون کاملا با غشاء داخلی پوسته مجاور شده و به اتفاق غشاء داخلی پوسته آلانتوئیس تشکیل می شود. کوریون واسطه تبادل گازی و آبی می باشد.
آلانتوئیس به عنوان ته کیسه پسین روده رویان ظاهر می شود. تا 10 روزگی انکوباسیون جنین مرغ آلانتوئیس حفره بین آمنیون و کوریون را پر می سازد.
حفره آلانتوئیک برای جمع آوری مواد زائد ترشحی ادرار، که بیشتر آن در پرندگان به صورت اسید اوریک ته نشین می شود، به کار می رود (7).
13-2-معرفی تکنیک‏های بررسی جنین1-13-2رنگ آمیزی جنین:هدف اصلی این روش مشخص کردن جنین ها در گروه‏های مختلف و مشاهده حرکات آنها پس از ترک Nest است. در مطالعات مدیریتی حیات وحش، که در آنها مشاهده جنین اردک ها دشوار است این روش با رنگ آمیزی جنین با رنگ روشن کار را آسان می کند (11).
2-13-2-نمایش جنین‏های زنده:با باز کردن تخم انکوبه شده می توان رشد و تکوین جنین را به صورت روزانه و منظم و با جزئیات زیاد مشاهده کرد. این روشی جالب است که در آن تکوین جنین به دقت مطالعه می شود. بعد از یاد گرفتن باز کردن تخم‏های انکوبه شده می توانید به اشخاص دیگر روند رشد جنین را نشان دهید. در این روش جنین پس از باز شدن از بین می رود و دیگر قدر به ادامه رشد نمی باشد (11).
هنگام آماده سازی جنین باید از ابزار‏هایی دقیق استفاده کنید و همچنین نام علمی تمام پرده‏های جنینی را باید بدانید.
3-13-2تکنیک‏های تصویر برداری تشخیصی:
از جمله تکنیک‏های تصویر برداری تشخیصی، رادیولوژی و سیتی اسکن است که به علت استفاده از اشعه X در این دو تکنیک و مضر بودن این اشعه بر روی جنین به جز در برخی مطالعات پایه زیاد مورد استفاده قرار نگرفته است. در مقایسه با این تکنیک ها، از سونوگرافی و MRI به علت بی خطر بودن و امکان بررسی جنین در سنین مختلف نسبت به تکنیک‏های ذکر شده استفاده بیشتری شده است. تکنیک سونوگرافی در مورد جنین پستانداران بسیار کاربردی و در اولویت اول قرار دارد. در پرندگان این حالت به علت ساختار تخم متفاوت است و تکنیک عکس برداری با کمک تشدید مغناطیس در اولویت اول روش‏های عکس برداری تشخیصی قرار دارد که با توجه به پیشرفت دستگاه‏های MRI و افزایش قدرت و توانایی‏های این دستگاه ها، استفاده از این تکنیک در بررسی جنین پرندگان بیشتر شده و در حال گسترش است (12، 16 و 17).
14- 2تکنیک MRI ( Magnetic Resonace Imaging) : روشی خوبی برای بررسی تغییرات آناتومیک جنین در مراحل مختلف رشد جنین موجود زنده است. این تکنیک به دلیل غیر تهاجمی بودن، می تواند روش مناسبی در بررسی جنین پرندگان باشد. با استفاده از MRI جنین درون تخم می توان زرده، آلبومین و ساختار جنین را بررسی کرد. یکی از معایب استفاده از این روش برای بررسی جنین زنده، حرکت کردن جنین است که ایجاد آرتیفکت در تصاویر می کند. در مقایسه انجام MRI روی بافت‏های جنین فیکس شده که در آن حرکات جنین مشاهده نمی شود بسیار ساده تر می باشد (14، 16 و 17).
برای کنترل حرکات جنین در مطالعه Duce و همکاران بر روی جنین بلدرچین از سرد کردن تخم بوسیله آب سرد استفاده شده که نتایج خوبی در تصویر برداری داشته است (9 و 16).
Diffusion Tensor Imaging (DTI) نیز پروتکلی جدید از تکنیک MRI برای مطالعه سیستم عصبی مرکزی جنین است که می تواند به عنوان جایگزینی برای پروتکل‏های قدیمی تر استفاده شود (12 و 15).
فصل سوم
مواد و روش کار
فصل سوم: مواد و روش کار1-3- مواد مصرفی:نمونه ها: تعداد 10 عدد تخم شترمرغ نژاد کانادایی 7 تخم نطفه دار و 3 تخم بدون نطفه برای این مطالعه انتخاب شد.
سیلیکات ژل: به عنوان جاذب رطوبت استفاده شد.
2-3- وسایل مورد نیاز:_ دستگاه انکوباتور: دستگاه انکوباتور یا ستر ساخت شرکت توسن در ایران می باشد و ظرفیت 135 عدد تخم شترمرغ را دارد.
_ جعبه یونولیتی: جعبه یونولیتی که به رطوبت سنج و دماسنج مجهز شده جهت حمل تخم شترمرغ از مزرعه تا مرکز ام ار ای و بلعکس استفاده شد.
_ دستگاه ام ار ای: دستگاه ام ار ای مورد استفاده در این مطالعه، دستگاه مرکز کوثر واقع در بیمارستان امام رضا (ع) مشهد بود که ساخت شرکت زیمنس می باشد. مدل این دستگاه سمفونی و با قدرت 5/1 تسلا است.
3-3- روش کار:تعداد 6 عدد تخم شترمرغ اصلاح نژاد شده کانادایی (گردن مشکی) جهت این مطالعه انتخاب شد. این تخم ها از خانواده‏های پنج تایی شامل دو نر و سه ماده با سن حدود چهار سال برداشته شد.
تخم ها یک ساعت پس از تخمگذاری از داخل پن برداشته شد و در اتاق انبار قرار گرفت. در این اتاق دما c°18 و رطوبت 40 درصد بود. تخم ها در این مرحله روزانه بین 4 الی 6 مرتبه چرخانده شد و در یک روز مشخص در هفته داخل دستگاه قرار داده شد. قبل از قراردادن تخم ها در دستگاه، دمای تخم برای مدت 12 ساعت به c°25 رسید و بعد از ضدعفونی با گاز حاصل از مخلوط شدن فرمالین و پرمنگنات در دستگاه ستر در محل مزرعه و در طبقه بالای ستر قرار داده شد.
دمای دستگاه ستر c°36.4 و رطوبت آن 18.5 درصد تنظیم شد که با دستگاه کالیبراسیون تستو امتحان گردید که از این طریق از صحت اعداد تنظیمی دستگاه مطمئن شدیم. بازه تغییرات دمای دستگاه c°0.1 و تغییرات رطوبت 0.5 درصد قرار داده شد.
تخم ها از محل مزرعه تا مرکز ام ار ای توسط جعبه یونولیت حمل می شدند که مجهز به دماسنج و رطوبت سنج شده بود تا دما و رطوبت تخم ها تا حدامکان حفظ شود. در صورت زیاد شدن رطوبت از پودر ژل سیلیکات برای پایین آوردن آن استفاده می شد.
کویل‏های مورد استفاده در این مطالعه کویل‏های سر، زانو و نخایی بوده است.
اولین مرحله ام ار ای در روز صفر و قبل از گذاشتن تخم ها در دستگاه انجام شد. سپس در روز‏های 2، 4، 6، 8، 10، 14، 16 و 18 ام ار ای بر روی این تخم ها انجام شد. سه عدد تخم بی نطفه با توجه به شکل ظاهری، سابقه تولید فنس و وزن تخم انتخاب شد تا به عنوان گروه شاهد منفی در این تحقیق استفاده شود تا با نمونه‏های نطفه دار مقایسه شود.
تصاویر با پروتکل‏های T1W و T2W گرفته شد. برش تصاویر به روش 3D انجام شده است. و با نرم افزار Syngopack مورد مطالعه قرار گرفت.
تصاویر با مقطع عرضی و سهمی گرفته شده که بسته به نوع پروتکل مورد استفاده تعداد مقاطع و نوع تصاویر متفاوت است.
در زمان عکس برداری به علت نداشتن زمان کافی، هزینه بر بودن این تصاویر و عدم وجود مرکز ام ار ای دامپزشکی مجبور به قرار دادن دو تخم در کنار هم هنگام عکس برداری بودیم.
تصاویر به صورت خام در اختیار ما قرار گرفت که با استفاده از نرم افزار Syngopack اطلاعات بررسی و پردازش شد.
پس از اتمام کار در روز هجدهم برای تایید تشخیص نطفه دار بودن تخم ها، آن ها را باز کرده و به صورت ماکروسکوپی جنین دار و یا بی نطفه بودن مورد تایید قرار گرفت.
فصل چهارم
نتایج
فصل چهارم: نتایجدر این قسمت تصاویر در دو گروه بی نطفه و نطفه دار تنظیم شده است. در هر کدام از این دو گروه، از دو نوع تصویر سهمی و عرضی استفاده شده. این تصاویر از بین کلیه عکس‏های حاصل از این پژوهش گرد آوری شده و بهترین عکس‏های مورد نظر جهت بررسی قسمت ها و ساختارهای تخم می باشد.
تصاویر نطفه دار با حرف (الف) و بی نطفه با حرف (ب) مشخص شده است.
سعی شده از کلیه تصاویر T1W و T2W مطلوبه بدست آمده در مطالعه، بنا به مورد استفاده شود.
1-4- تخم روز صفر :
در هر دو گروه مشخصات یکسانی دیده می شود و هیچ تفاوتی با یکدیگر ندارند. زرده در وسط قرار دارد که به علت تفاوت در تراکم آن به صورت لایه لایه دیده می شود. در بالای زرده اتاقک هوا قرار دارد و اطراف زرده را سفیده پر کرده است. لتبرا و پایک لتبرا به راحتی قابل رویت است که در تصاویر نامگذاری شده.

تصویر4- SEQ تصویر4- * ARABIC 1: الف، مقطع سهمی تخم شترمرغ نطفه دار صفر روزه، پروتوکل T1W ، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لایه های زرده، 5: لتبرا، 6: پایک لتبرا.
تصویر4- SEQ تصویر4- * ARABIC 2 : الف، مقطع عرضی تخم شترمرغ نطفه دار صفر روزه، پروتوکل T1W ، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا.

تصویر4- SEQ تصویر4- * ARABIC 3: ب، مقطع سهمی تخم شترمرغ بی نطفه صفر روزه، پروتوکل T1W ، 1: اتاقک هوا 2: زرده 3: سفیده 4: لتبرا 5: پایک لتبرا 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 4: ب، مقطع عرضی تخم شترمرغ بی نطفه صفر روزه، پروتوکل T1W ، 1: سفیده 2: زرده 3: لایه های زرده 4: لتبرا

2-4- تخم دو روزهدر تصویر تخم دو روزه تغییر محسوسی نسبت به تخم روز صفر دیده نمی شود. لتبرا، پایک لتبرا، زرده و... بدون تغییر نسبت به روز صفر قرار دارند و در هردو گروه نطفه دار و بی نطفه یکسان هستند.

تصویر4- SEQ تصویر4- * ARABIC 5: الف، مقطع سهمی تخم شترمرغ نطفه دار دو روزه ، پروتوکل T1W ، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: پایک لتبرا، 5: لتبرا
تصویر4- SEQ تصویر4- * ARABIC 6: ب ، مقطع سهمی تخم شترمرغ بی نطفه دو روزه، پروتوکل T1W ، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لایه های زرده، 5: لتبرا
تصویر4- SEQ تصویر4- * ARABIC 7: الف، مقطع عرضی تخم شترمرغ نطفه دار دو روزه ، پروتوکل T1W ، 1: سفیده، 2: زرده، 3: لتبرا
تصویر4- SEQ تصویر4- * ARABIC 8: ب ، مقطع عرضی تخم شترمرغ بی نطفه دو روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا3-4- تخم چهار روزهدر هر دو گروه اتاقک هوا بزرگ تر شده است. در گروه نطفه دار زرده در حال از دست دادن حالت لایه لایه خود است. در گروه بی نطفه به جز بزرگ تر شدن اتاقک هوا، تغییر محسوس دیگری مشاهده نمی شود. لتبرا و پایک لتبرا در هر دو گروه بدون تغییر است.

تصویر4- SEQ تصویر4- * ARABIC 9: الف ، مقطع سهمی تخم شترمرغ نطفه دار چهار روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: پایک لتبرا، 5: لتبرا تصویر4- SEQ تصویر4- * ARABIC 10: الف ، مقطع عرضی تخم شترمرغ نطفه دار چهار روزه، پروتوکل T1W ، 1: زرده، 2: سفیده، 3: لتبرا، 4: پایک لتبرا
تصویر4- SEQ تصویر4- * ARABIC 11: ب ، مقطع سهمی تخم شترمرغ بی نطفه چهار روزه، پروتوکل T1W، 1: کیسه هوا، 2: سفیده، 3: زرده، 4: پایک لتبرا، 5: لتبرا، 6: لایه های زرده.
تصویر4- SEQ تصویر4- * ARABIC 12: ب ، مقطع عرضی تخم شترمرغ بی نطفه چهار روزه، پروتوکل T1W، 1: زرده، 2: سفیده، 3: لایه های زرده، 4: پایک لتبرا4-4- تخم شش روزهدر گروه نطفه دار زرده از حالت دایره ای به شکل بیضی در آمده، رشد دیسک جنینی در بالای لتبرا دیده می شود، زرده کاملا حات لایه لایه خود را از دست داده است و رگه‏های خونی جنین از نمای بالا بر روی سطح زرده قابل مشاهده است. در گروه بی نطفه تغییر خاصی دیده نمی شود. لایه‏های زرده، لتبرا، پایک لتبرا و زرده بدون تغییر نسبت به تصاویر سنین پایین تر گروه بی نطفه دیده می شود.

تصویر4- SEQ تصویر4- * ARABIC 13: الف، مقطع سهمی تخم شترمرغ نطفه دار شش روزه ، پروتوکل T1W ، 1. اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: دیسک جنینی یا جنین لاروی
تصویر4- SEQ تصویر4- * ARABIC 14: الف، مقطع عرضی تخم شترمرغ نطفه دار شش روزه، پروتوکل T2W، 1: سفیده، 2: زرده، 3: لتبرا، 4: مقطع عروق خونی
تصویر4- SEQ تصویر4- * ARABIC 15: ب، مقطع سهمی تخم شترمرغ بی نطفه شش روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: پایک لتبرا، 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 16: ب، مقطع عرضی تخم شترمرغ بی نطفه شش روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا5-4- تخم هشت روزهجنین در بالای کیسه زرده در گروه نطفه دار قابل مشاهده است. لتبرا حالت منظم خود را از دست داده و به صورت منتشر درآمده. زرده حالت لایه لایه خود را از دست داده است. در گروه بی نطفه زرده حالت دایره ای خود را حفظ کرده است. لتبرا و پایک لتبرا تغییری نسبت به روزهای اولیه ندارد. حالت لایه لایه زرده به خوبی قابل مشاهده است.

تصویر4- SEQ تصویر4- * ARABIC 17: الف، مقطع سهمی تخم شترمرغ نطفه دار هشت روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: عروق خونی، 5: جنین
تصویر4- SEQ تصویر4- * ARABIC 18: الف، مقطع عرضی تخم شترمرغ نطفه دار هشت روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: عروق خونی
تصویر4- SEQ تصویر4- * ARABIC 19: ب، مقطع سهمی تخم شترمرغ بی نطفه هشت روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: لتبرا، 5: پایک لتبرا، 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 20: ب، مقطع عرضی تخم شترمرغ بی نطفه هشت روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لتبرا، 4: لایه های زرده6-4- تخم ده روزهجنین به راحتی قابل مشاهده است و حفره حدقه چشم دیده می شود. لتبرا منتشر شده و زرده کشیده تر دیده می شود. در گروه بی نطفه تغییر خاصی نسبت به تصاویر سنین قبل دیده نمی شود و لتبرا به صورت قبل دیده می شود. همچنین زرده حالت لایه لایه خود را حفظ کرده است.

تصویر4- SEQ تصویر4- * ARABIC 21: الف، مقطع سهمی تخم شترمرغ نطفه دار ده روزه، پروتوکل T1W، 1: کیسه هوا، 2: سفیده، 3: زرده، 4: عروق خونی، 5: چشم جنین
تصویر4- SEQ تصویر4- * ARABIC 22: الف، مقطع عرضی تخم شترمرغ نطفه دار ده روزه، پروتوکل T2W، 1: کیسه هوا، 2: زرده، 3: امنیون
تصویر4- SEQ تصویر4- * ARABIC 23: ب، مقطع سهمی تخم شترمرغ بی نطفه ده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: پایک لتبرا، 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 24: ب، مقطع عرضی تخم شترمرغ بی نطفه ده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا7-4- تخم چهارده روزهزرده در گروه نطفه دار به صورت کشیده درآمده، جنین کاملا قابل مشاهده است و مقطع عروق خونی جنین بر روی زرده دیده می شود. کیسه آمنیون جنین در تصویر افقی قابل تفکیک است. در تخم بی نطفه تغییری دیده نمی شود.

تصویر4- SEQ تصویر4- * ARABIC 25: الف ، مقطع سهمی تخم شترمرغ نطفه دار چهارده روزه ، پروتوکل T1W ، 1: اتاقک هوا، 2: سفیده، 3 :زرده، 4: جنین، 5: مقطع عروق جنین
تصویر4- SEQ تصویر4- * ARABIC 26: الف ، مقطع عرضی تخم شترمرغ نطفه دار چهارده روزه ، پروتوکل T1W ، 1:جنین
تصویر4- SEQ تصویر4- * ARABIC 27: ب، مقطع سهمی تخم شترمرغ بی نطفه چهارده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: لایه های زرده، 6: پایک لتبرا
تصویر4- SEQ تصویر4- * ARABIC 28: ب، مقطع عرضی تخم شترمرغ بی نطفه چهارده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا8-4- تخم شانزده روزهسر و بدن جنین در تخم نطفه دار کاملا دیده می شود. عروق روی زرده به راحتی قابل مشاهده است. زرده کاملا فضای زیر کیسه هوا را پر کرده و اتاقک هوا بزرگ تر شده است. اتاقک هوا در گروه بی نطفه بزرگ تر شده ولی لایه‏های زرده و لتبرا بدون تغییر مانده است.

تصویر4- SEQ تصویر4- * ARABIC 29: الف، مقطع سهمی تخم شترمرغ نطفه دار شانزده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: جنین، 4: زرده، 5: مقطع عروق خونی
تصویر4- SEQ تصویر4- * ARABIC 30: الف، مقطع عرضی تخم شترمرغ نطفه دار شانزده روزه، پروتوکل T1W، 1: سرجنین، 2: عروق خونی جنین
تصویر4- SEQ تصویر4- * ARABIC 31: ب، مقطع سهمی تخم شترمرغ بی نطفه شانزده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 32: ب، مقطع عرضی تخم شترمرغ بی نطفه شانزده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لتبرا، 4: لایه های زرده 9-4- تخم هجده روزهبدن جنین کاملا قابل مشاهده است که به علت حرکت جنین در هنگام عکس برداری آرتیفکت دیده می شود. آمنیون در تصویر دیده می شود. مقطع عروق، سر و تنه در تصویر مشخص است. در گروه بی نطفه لتبرا، پایک لتبرا و حالت لایه لایه زرده هنوز قابل مشاهده است و تغییر محسوسی نسبت به تصویر سنین پایین تر نکرده است.

تصویر4- SEQ تصویر4- * ARABIC 33: الف، مقطع سهمی تخم شترمرغ نطفه دار هجده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: جنین، 5: مقطع عروق
تصویر4- SEQ تصویر4- * ARABIC 34: الف، مقطع عرضی تخم شترمرغ نطفه دار هجده روزه، پروتوکل T1W، 1: سر جنین، 2: تنه جنین و آمنیون
تصویر4- SEQ تصویر4- * ARABIC 35: ب، مقطع سهمی تخم شترمرغ بی نطفه هجده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: لتبرا، 5: پایک لتبرا
تصویر4- SEQ تصویر4- * ARABIC 36: ب، مقطع عرضی تخم شترمرغ بی نطفه هجده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لتبرا، 4: لایه های زردهفصل پنجم
بحث و نتیجه گیری
فصل پنجم: بحث و نتیجه گیری
به منظور استفاده از تکنیک‏های تصویربرداری تشخیصی جهت مطالعه جنین موجود زنده، مطالعات متنوعی انجام شده است. این مطالعات در پستانداران با توجه به موقعیت و محل جنین عمدتا با استفاده از تکنیک سونوگرافی بوده و با درجه کمتر از MRI استفاده شده. این روند به علت امکان سونوگرافی در جنین پستانداران بوده که تصاویر مناسبی نیز بدست می آید. واضح است که در تمام مطالعات جنینی استفاده از سیتی اسکن و رادیولوژی به علت وجود اشعه X در این تکنیک ها، و مضررات آن برای جنین، در اولویت آخر قرار می گیرند.
اما در بررسی جنین پرندگان، برخلاف پستانداران، سونوگرافی در اولویت اول قرار ندارد. تصویربرداری با تشدید مغناطیس به علت ارائه تصاویر با کیفیت، قابلیت نفوذ به لایه‏های تخم پرندگان و بی خطر یا کم خطر بودن برای جنین، تکنیکی است که از میان انواع روش‏های تصویربرداری تشخیصی در پرندگان بیشتر مورد استفاده قرار گرفته است. در مطالعات متعددی از تکنیک MRI در بررسی جنین مرغ و بلدرچین استفاده شده است (12، 16 و 17). در این مطالعه به منظور تعیین نطفه دار بودن تخم و بررسی تغییرات ساختاری تخم نطفه دار با توجه به نوع و قدرت دستگاه‏های MRI موجود در کشور از تکنیک تصویربرداری با تشدید مغناطیس استفاده شد.
دستگاه ام ار ای مورد استفاده در این مطالعه، دستگاه مرکز کوثر واقع در بیمارستان امام رضا (ع) مشهد بود که ساخت شرکت زیمنس می باشد. مدل این دستگاه سمفونی و با قدرت 5/1 تسلا است. برخی از توانایی‏های این دستگاه، امکان تصویر برداری از تمام نسوج بدن با کیفیت بالا، مقطع تصویر کمتر از یک میلی متر، انجام تصویربرداری از تمام نسوج و اندام‏های بدن و توانایی کنترل حرکات قلبی، تنفسی همزمان با تهیه تصاویر دینامیک بود. البته استفاده از تمام این امکانات در مطالعه حاضر با توجه به هدف و نوع مطالعه ضروری نبود و یا در مواردی به دلیل از دست رفتن جنین و عدم توان پیگیری روند تغییرات آن امکان پذیر نبود.
یکی از اهداف ما در این بررسی ارزیابی دستگاه‏های موجود در کشور و قابلیت‏های آن ها برای این نوع مطالعات بود. واضح است که با دستگاه‏های پیشرفته تر و قوی تری که مانند آن در مطالعه duce و همکاران استفاده شد و از نوع Bruker Avance بود، با قدرت 1/7 تسلا و ضخامت برش 1 میلی متر بود تصاویر واضح تر و دقیق تری به دست خواهد آمد (16 و 17). از طرف دیگر در مطالعات یاد شده استفاده از دستگاه‏های مذکور با محدودیت‏های زیادی همراه بوده است. زمان طولانی این گونه تصویربرداری ها و قدرت مغناطیسی زیاد این دستگاه ها می توانسته از جمله عوامل آسیب رسان به جنین پرندگان بوده باشد. سرد کردن تخم ها قبل از شروع MRI جهت کاهش حرکات جنین برای جلوگیری از ایجاد آرتیفکت در تصاویر، از جمله عوامل آسیب رسان به جنین در این مطالعات بوده است. عدم امکان استفاده از کویل‏های موجود و معمول هم از نقص‏های بررسی‏های انجام شده است که برای کاهش این نقیصه از قفس طراحی شده ای استفاده شده است . شاید به همین دلیل در بیشتر این مطالعات از جنین مرده استفاده شده است (14، 16 و 17).
در کلیه این مطالعات از پروتکل T1W و T2W به تناسب موقعیت استفاده شده است. در این مطالعه نیز از پروتکل‏های T1W و T2W بنا به ضرورت استفاده شده است. کنتراست مایعات با غلظت‏های متفاوت، بافت ها و اندام‏های مختلف در این دو پروتکل با هم فرق می کند. برای مثال معمولا در بیمارانی که دارای بافتی متفاوت از بافت اصلی بدن هستند (بافت‏های سرطانی) از پروتوکل T2W استفاده می شود. در این مطالعه زرده در پروتوکل T1W روشن و زرد رنگ بوده و در پروتکل T2W سیاه رنگ دیده می شود. برای بررسی حضور عروق خونی بر روی زرده از پروتوکل T2W بیشتر استفاده شده است. ولی در بیشتر عکس برداری ها از پروتوکل T1W استفاده شد که تصاویر بهتری برای بررسی تغییرات زرده به ما داده است.
در شروع این مطالعه، بر روی چند نمونه در سنین مختلف کویل‏های ام ار ای امتحان شد تا بهترین کویل برای این پژوهش انتخاب شود. کویل ها باعث تمرکز امواج و بیشتر شدن کیفیت تصاویر می شوند که باتوجه به شکل هندسی اندام مختلف بدن انسان طراحی و استفاده می شود تا اندام یا قسمت مورد بررسی بدن در داخل آن قرار گیرد. اما از طرف دیگر هر چقدر که کویل بزرگتر شود خاصیت گیرندگی آن کاهش پیدا میکند. کویل‏های مختلف مورد استفاده در این مرکزعبارتند از کویل زانو، نخاعی، سر و انگشت.
کویل مورد استفاده در این مطالعه کویل زانو بود. در این بررسی از کویل سر و زانو تصاویر مطلوب و یکسانی بدست آمد اما چون در کویل زانو امکان قرار دادن دو تخم به صورت هم زمان وجود داشت و در زمان و هزینه صرفه جویی می شد، از کویل زانو در این مطالعه استفاده شد.
در این مطالعه برش‏های تخم‏های نطفه دار به شکلی انجام شد که برای تهیه تصاویر 3D استفاده می شود. تعداد بالای تصاویر حاصل از این روش و همچنین ضخامت پایین این برش ها مزایایی است که در مطالعه‏های گذشته نیز به آنها توجه شده است.
در این مطالعه از نرم افزار سینگو پک استفاده شد که مخصوص دیدن تصاویر ام ار ای می باشد و امکان دیدن تصاویر، تغییرات در کنتراست آنها، اندازه گیری ابعاد و بسیاری امکانات دیگر را به ما می دهد. باتوجه به نوع دستگاه‏های MRI از نرم افزاهای مختلفی برای بررسی تصاویر استفاده می شود. در مطالعات انجام شده نرم افزار مورد استفاده برای مشاهده و آنالیز تصاویر Amira Imaging PC-based است (12، 14 و 17).
زرده زرد در ابتدای امر در هر دو گروه به شکل هندسی بیضی و در زیر کیسه هوا در عکس‏های سهمی دیده شود که در عکس‏های عرضی به شکل کروی مشخص شوده است. زرده در پروتوکل T1W روشن و سفید رنگ است ودر پروتکل T2W تیره و سیاه رنگ دیده شده است.
در روز‏های ابتدایی رشد جنین، زرده در عکس‏های عرضی و سهمی به شکل لایه لایه وبا وضوح بالا مشخص است که به علت تفاوت در غلظت زرده در لایه‏های مختلف آن می باشد. در گروه نطفه دار حالت لایه دار بودن زرده از دو روزگی شروع به تغییر کرده و در چهار روزگی یک دست شدن رنگ و کنتراست آن به وضوح قابل مشاهده است. در حالی که حالت لایه دار بودن در گروه بی نطفه تا پایان هجده روزگی که عکس برداری انجام شد، کاملا دیده شد.
لایه لایه بودن زرده در هر دو گروه تصویر عرضی و سهمی پروتکل T1W دیده شد. اما باتوجه به سیاه بودن کنتراست زرده در پروتوکل T2W در هیچکدام از تصاویر عرضی و سهمی این حالت قابل مشاهده نبود.
زرده در گروه بی نطفه در تمام عکس ها و تا پایان مراحل عکس برداری (هجده روزگی) نظم و شکل هندسی خود را حفظ کرد. فقط کمی به کیسه هوا نزدیک تر شده بود. این در حالی است که در گروه نطفه دار زرده کشیده تر شده و به زیر کیسه هوا نزدیک شده بود. همان طور که در تصویر سیزده در شش روزگی این موضوع قابل رویت و در تصویر بیست و یک در ده روزگی کاملا فضای زیر کیسه هوا را پر کرده است.
غشاء زرده در هر دو گروه نطفه دار و بی نطفه و در هر دو مجموعه تصاویر عرضی و سهمی پروتکل T1W قابل تشخیص و تفکیک است.
لتبرا یا زرده سفید به همراه پایک لتبرا در کلیه تصاویر سهمی و عرضی و با هردو پروتوکل T1W و T2W و در هر دو گروه نطفه دار و بی نطفه در سنین ابتدایی قابل مشاهده است.
در نمای سهمی، لتبرا و پایک آن به شکل یک پیاز دیده می شود (تصویر 3) . پایک لتبرا از مرکز لتبرا تا حاشیه زرده در قسمت بالای تخم کشیده شده که قیفی شکل و محل اتصال بلاستودرم است (تصویر 9).
در گروه نطفه دار لتبرا و پایک آن در روز هشتم و از آن به بعد قابل مشاهده نیست. این در حالی است که در گروه بی نطفه تا پایان دوره تصویر برداری از تخم ها (هجده روزگی) لتبرا و پایک آن به وضوح دیده می شود. در مطالعه Duce و همکاران بر روی جنین بلدرچین نیز لتبرا تا روز شش در تصاویر MRI تشخیص داده شد، اما در آن مطالعه مقایسه ای بین تخم نطفه دار و بی نطفه انجام نگرفت (16).
در هر دو گروه بی نطفه و نطفه دار اناقک هوااز روز اول قابل رویت است و با افزایش سن شروع به بزرگ شدن می کند که در تصاویر قابل مشاهده است. تفاوت قابل ملاحظه ای در تغییر اندازه اناقک هوا در بین دو گروه نطفه دار و بی نطفه مشاهده نمی شود. اناقک هوا و اندازه آن در تصاویر سهمی قابل مشاهده و بررسی است ودر هر دو پروتکل T1W و T2W سیاه رنگ و تیره دیده می شود.
این یافته ها با یافته‏های دیگر محققین روی جنین بلدرچین متفاوت است، در مطالعه آنها اناقک هوا از روز دوم قابل مشاهده است (16). این مسئله احتمالا مربوط به نفاوت در مدت زمان و نحوه انبار این دو نوع تخم پرنده و ساختار متفاوت تخم شترمرغ و بلدرچین است.
در شش روزگی عروق خونی در اطراف زرده به صورت یک حلقه قابل مشاهده است که در حال حرکت به سمت مرکز زرده می باشد. عروق خونی در پروتوکل T2W بر روی زرده بهتر دیده می شوند البته این عروق در پروتکل T1W هم قابل مشاهده با کنتراست کمتر هستند. به نظر می رسد به دلیل تفاوت زیاد در کنتراست رنگ زرده و عروق در پروتکل T2W، عروق در این پروتکل به راحتی و با وضوح بالا دیده می شوند.
در تصویر چهارده در شش روزگی با پروتکل T2W به عروق روی کیسه زرده در گروه نطفه دار قابل مشاهده است. در روزهای بعد هم در پروتکل T1W عروق خونی بر روی زرده قابل مشاهده است. این عروق از شش روزگی به بعد در تمام تصاویر نطفه دار قابل تشخیص است و با بیشتر شدن سن جنین، عروق با وسعت و تعداد بیشتری مشاهده می شود. در روند تکوین جنین بلدرچین عروق خونی به کمک MRI در روز سه تشخیص داده شده است (16). با توجه به اختلاف طول دوره انکوباسیون بین بلدرچین و شترمرغ می توان مقداری از این اختلاف فاز تشخیصی را توجیه کرد. به هر حال از آنجایی که در مطالعه یاد شده تشخیص عروق خونی به کمک ماده حاجب و دستگاه MRI قویتری انجام شده است، طبیعتا امکان تشخیص زودتر عروق خونی وجود داشته است.
در این مطالعه در هشت روزگی جنین لاروی شکل تشخیص داده شد. جنین لاروی در بالای زرده و زیر اناقک هوا دیده شد. البته حضور جنین باتوجه به دانسیته تصویر و موقعیت لتبرا در سن شش روزگی تشخیص داده شد اما لاروی بودن جنین در تصاویر MRI مربوط به آن سن قابل تایید نبود.
در سن ده روزگی (تصویر بیست و یک) سر جنین و حفره حدقه چشم در تصویر قابل شناسایی است. در همین سن (تصویر بیست و دو) مقطع عرضی آمنیون قابل تشخیص است. البته در سن چهارده روزگی و در مقطع عرضی (تصویر بیست و پنج) تصویر بهتری از آمنیون دیده شد. در همین تصویر سر، چشم ها، گردن و تنه جنین قابل تفکیک است. عروق کوریوآلانتوئیس در سن چهارده روزگی (تصویر بیست و پنج) دیده می شود. این در حالی است که در مطالعات انجام شوده توسط Duce و همکاران در بررسی جنین بلدرچین به روش MRI نتایج نشان داده که آمنیون در روز پنجم انکوباسیون تخم، و جنین در روز سوم قابل مشاهده است (16).
منابع و مراجع
منابع و مراجعپوستی، ایرج و ادیب مرادی، مسعود. (1373) . بافت شناسی مقایسه ای هیستوتکنیک, انتشارات دانشگاه تهران.
ترکنژاد، احمد. (1379). ایران 1400 و ارزیابی چالش‏های غذایی جمعیت 110 میلیونی, نشریه بزرگمهر.
حمیدی، محمد سعید. (1380). مدیریت و اقتصاد پرورش شترمرغ در ایران, ناشر بین المللی شمس
دادرس، جبیب الله و منصوری، سید هادی. (1373). پرندگان، ساختار و فعالیت بدنی آنها. انتشارات دانشگاه شیراز.
ADDIN EN.REFLIST شریفی، علی. (1375). پرورش شترمرغ. کتابچه آموزشی اداری طیور بومی و سایر ماکیان., معاونت امور جهادسازندگی.
غفوری، علی، موسوی، مسعود. (1378). " مدیریت پرورش شترمرغ." انتشارات مرکز نشر سپر 1: 94-96.
قاضی، رضا ، رادمهر، بیژن ، رشیدی، هدایت الله. 1375.جنین شناسی حیوانات اهلی، مکانسم‏های رشد تکاملی و ناهنجاری ها. شیراز, انتشارات دانشگاه شیراز.
کیاست، محسن. (1379). "اهمیت غذایی یک ضرورت اجتناب ناپذیر." نشریه دامداران ایران 6: 38-47
مهدوی، مازیار. (1389). ام آر آی در یک نگاه (فشرده ای از تشدید مغناطیسی هسته ای و کار برد آن برای تکنولوژیست‏های رادیولوژی), آوند اندیشه شیراز.Franson, R. (1972). Anatomy and physiology of farm animal. Philadelphia, Lea & Febiger.Fraser, M. (2008). Avian embryology London, UK, Academic press.
Jon O. Cleary, M. M., Francesca C. Norris, Anthony N. Price, Sujatha A. Jayakody,, N. D. E. G. Juan Pedro Martinez-Barbera, David J. Hawkes, Roger J. Ordidge,, et al. (2011). "Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping." NeuroImage 54: 769–778.
Nagai, H., et al., (2011). "Embryonic Development of the Emu, Dromaius novaehollandiae." DEVELOPMENTAL DYNAMICS 240: 162–175.
Ruffins, S. W., M. Martin, et al. (2007). "Digital three-dimensional atlas of quail development using high-resolution MRI." ScientificWorldJournal 7: 592-604.
Sutton, D. (2003). A Textbook of Radiology and Imaging, Churchill Livingstone.

user8250

2-3-2-3)لپتین29
نوروپتیید w30
گیرنده های NPW31
توزیع مرکزی NPW32
2-4-3) توزیع محیطی NPW33
توزیع NPBWR1-2 34
تنظیم تغذیه ومتابولیسم انرژی بوسیله NPW35
عملکرد اندوکرین NPW37
کورتیزول38
کورتیزول و فعالیت بدنی39
متابولیسم انرژی در فعالیت ورزشی41
فعالیت ورزشی فزاینده و شدید41
فعالیت ورزشی دراز مدت41
تاثیرات اسمولاریته بروی هورمون ها42
ارتباط کورتیزول با واسطه های متابولیکی43
ارتباط هورمون کورتیزول با اسید لاکتیک44
ارتباط هورمون کورتیزول با کراتینین44
کورتیزول و چاقی45
2-5-5-1) لینک پتانسیل بین کورتیزول و اشتها46
اثرات مضر چاقی ناشی ازکورتیزول46
تیروکسین47
تاثیر تیروکسین بر متابولیسم: 47
بی حرکت حاد و مزمن بر روی هورمون تیروئیدی48
هورمون های تیروئیدی و لپتین50
هورمون های تیروئیدی وگیاهان داروی51
2-7)جمع بندی 52
فصل سوم- روش شناسی پژوهش
3-1) روش پژوهش 54
3-2) طرح پژوهش54
3-3) جمع آوری وشیوه عصاره گیری ولیک (سرخ وسیاه) 55
3-3-1) جمع آوری میوه ولیک (سرخ وسیاه) 55
3-3-2) عصاره گیری آبی میوه ولیک (سرخ وسیاه) 55
3-3-3) مقدار دوز عصاره مصرفی موش ها55
3-4) جامعه و نمونه آماری و روش نمونه گیری56
3-5) محیط پژوهش56
3-6) تغذیه آزمودنی ها57
3-7) دوره و زمان بندی تمرینی57
3-8) وسایل و ابزار استفاده شده در پژوهش59
3-9) متغیرهای پژوهش60
3-9-1) متغیر مستقل60
3-9-2) متغیرهای وابسته60
3-10) روش اندازه گیری متغیرهای پژوهش60
3-10-1) روش اندازه گیری متغییر های وابسته61
3-10-1-1) روش اندازه گیری NPW 61
3-10-1-2) روش اندازه گیری هورمون کورتیزول 61
3-10-1-3) روش اندازه گیری هورمون T461
3-11) روش اندازه گیری ترکیبات سرخ ولیک , سیاه ولیک با استفاده از GC-MS : 62
3-12) روش ها آماری62
فصل چهارم- تجزیه وتحلیل
4-1) مقدمه65
4-2) توصیف داده ها65
4-2-1) مشخصات آزمودنی های حیوانی65
4-2-2) یافتههای مربوط به متغیرهای مورد مطالعه66
4-3) تجزیه و تحلیل استنباطی یافتههای پژوهش66
4-3-1) یافته های مربوط به نوروپپتید W پلاسمایی68
4-3-2) یافته های مربوط به نوروپپتید w کبدی72
4-3-3) یافته های مربوط به کورتیزول پلاسمایی76
4-3-4) یافته های مربوط به هورمون تیروئید T481
فصل پنجم- بحث ونتیجه گیری
5-1) مقدمه88
5-2) خلاصهی پژوهش88
5-3) بحث و بررسی(نوروپپتید w پلاسمایی و کبدی ، هورمون کورتیزول و T489
5-4) نتیجهگیری93
5-5) پیشنهادات برای پژوهشهای بیشتر94
منابع..................................................................................................................................................................................................95
چکیده انگلیسی112
فهرست شکل
عنوان صفحه
شکل 2- 1) تنظیمات جبرانی دریافت و مصرف کالری 15


شکل 2 – 2) طراحی شماتیک ساده از مناطق هیپوتالاموس 17
شکل 2 – 3) گردش هورمون های موثر بر تعادل انرژی از طریق هسته کمانی 20
شکل 2-4 ) تنظیم مصرف غذا 23
شکل 2-5) فعال سازی سلول های عصبی NPY / AGRP 25
شکل 2-6) گرلین قبل و بعد از دریافت غذا28
شکل 2- 7 ) لپتین 30
شکل 2- 8) فرق نوروپتیید 23- w و نوروپتیید 30- w ( انسان ، خوک ، رت ، موش)32
شکل 2- 9 ) تصویر شماتیک بر اساس یافته های مطالعات مورفولوژیکی و فیزیولوژیکی تنظیم اشتها در هیپوتالاموس توسط سلول های عصبی NPW و پپتید مرتبط با تغذیه در هیپوتالاموس36
شکل 3-1) مراحل اجرای طرح تحقیق در موش های صحرایی نر58
فهرست جدول ها
عنوان صفحه
جدول 2-1) مولکول های سیگنالی کاندید در هموستاز انرژی در CNS 22
جدول 3-1) حجم نمونه و مشخصات آزمودنی های هر گروه56
جدول 3- 2) پروتکل تمرین 8 هفته ای59
جدول 3- 3) مقادیر متغیر های مربوطه برای استخراج الکلی روغن سرخ ولیک63
جدول 4-1)، میانگین و انحراف استاندارد وزن موش های مورد پژوهش65
جدول 4-2) شاخص های توصیفی متغیرهای اصلی پژوهش66
جدول (4-3)، نتایج آزمون لون جهت بررسی هم واریانسی گروه های تحقیق67
جدول4-4) آزمون تحلیل واریانس یک طرفه برای مقایسه نوروپپتید W پلاسمایی68
جدول4-5) آزمون تحلیل واریانس یک طرفه برای مقایسه نوروپپتید W کبدی72
جدول4-6) آزمون تحلیل واریانس یک طرفه برای مقایسه کورتیزول پلاسمایی 76
جدول 4-7) نتایج آزمون توکی برای بررسی تفاوت بین گروه ها در کورتیزول پلاسمایی 77
جدول4-8)، آزمون تحلیل واریانس یک طرفه برای مقایسه هورمون تیروئید T4 81
جدول( 4-9) نتایج آزمون توکی برای بررسی تفاوت بین گروه ها در هورمون تیروئید T482
فهرست نمودار ها
عنوان صفحه
نمودار (4-1)، مقایسه سطوح نوروپپتید w پلاسمایی گروه های تحقیق71
نمودار (4-2)، مقایسه سطوح نوروپپتید w کبدی گروه های تحقیق75
نمودار (4-3)، مقایسه سطوح کورتیزول پلاسمایی گروه های تحقیق80
نمودار (4-4)، مقایسه سطوح هورمون تیروئید T4 گروه های تحقیق85
فصل اول:
طرح پژوهش

1-1: مقدمه
تغییر سبک زندگی و عدم توجه به برنامه های غذایی، جوامع امروزه را به سمت افزایش وزن، چاقی و عدم مدیریت اشتهای کاذب و به همراه آن به سوی بی تحرکی سوق داده است. چاقی و افزایش بیش از حد بافت چربی یکی از مشکلات سلامت در کشورهای مختلف جهان است که به دنبال تغییر شرایط زندگی و کاهش فعالیت فیزیکی و در نتیجه عدم تعادل انرژی دریافتی و مصرفی رخ می دهد. در سالهای اخیر، چاقی شیوع رو به افزایشی داشته است ]2،1[. چاقی، به عنوان بحران سلامت عمومی شناخته می شود ]3[.
شیوع چاقی و پیشرفت سریع آن موجب شده که پژوهش ها به سمت تنظیم و تعادل وزن بدن پیش رود. در اصل، چاقی و اضافه وزن نتیجه عدم تعادل انرژی است که به موجب آن انرژی دریافت شده بیشتر از انرژی مصرف شده است. یکی از عوامل تاثیرگذار بر چاقی میزان دریافت غذاست. دریافت غذا رفتار پیچیده ای است که سطوح مختلف کنترلی و تنظیمی را در بر می گیرد ]4[. افزایش وزن و یا چاقی که خود مقدمه بسیاری از بیماری های انسانی و مرگ و میر شده است. امروزه در حوزه بهداشت، سلامت و شیوع شناسی و به تازگی در حوزه فیزیولوژی ورزش با عنایت بر تاثیر فعالیت بدنی و ورزشی در اشکال مختلف در مدیریت وزن و تنظیم و تعادل انرژی، توجهات در جهت ساز و کارهای اصلی درگیر جلب شده است. اگر چه هنوز معادله انرژی، هزینه کرد و انرژی دریافتی جزء پایه ای پژوهش های حوزه سلامت تلقی می شود. اما تغییرات در نوع منبع بکارگیری جهت تامین انرژی های سلولی در بدن که بخش قابل ملاحظه ای از آن توسط هیپوتالاموس و بخش دیگری که از اهمیت نیز برخوردار است، توسط عوامل محیطی کنترل می شود. در دهه های گذشته تا قبل از کشف و معرفی تعدادی از پروتئین ها و پپتیدهای موثر در تنظیم انرژی، عقیده بر این بوده است که دستگاه عصبی مرکزی، به ویژه هیپوتالاموس تنها اندام درگیر در تنظیم تعادل انرژی و سوخت و ساز است. اکنون دیگر مطلق بودن حاکمیت هیپوتالاموس در کنترل تعادل و تنظیم انرژی جای خود را به همگرایی مرکز و محیط داده است، به همین خاطر پژوهشگران پپتیدهای مرتبط با کنترل و تنظیم انرژی و اشتها، دریچه ای نو را به سوی این دنیای عظیم موثر بر روند زندگی سالم باز کرده اند]7،6،5[.
با این وجود، به نظر می رسد که هنوز هیپوتالاموس محوریت لازم را در کنترل تعادل انرژی، سوخت ساز قند و اشتها داشته باشد. شاید به این خاطر باشد که تعداد زیادی از نورپپتیدهای مترشحه (AGRP،NPY،CART،POMC ، اورکسین، MCH ، گالانین ، پپتید شبه گلوکاکن، عامل رهایی کورتیکوتروپین) از این اندام در مقایسه با اندامهای محیطی دیگر مشارکت بیشتری را در این امر دارند ]8[. نوروپپتید w یکی از این نوروپپیدهاست که نقش مهمی در متابولیسم تغذیه و انرژی دارد ]9[.
1-2: بیان مسئله:
تمرین و فعالیت بدنی به عنوان یکی از عوامل موثر در تحلیل منابع انرژی سلولی از جمله گلوکز و گلیکوژن است، که می تواند تغییراتی در پپتیدهای و هورمون های موثر بر تنظیم و تعادل انرژی بوجود آورد. همچنین اظهار شده است که بازسازی و ریکاوری آنی ذخایر انرژی از جمله گلوکز و گلیکوژن نیز می توانند بر غلظت این پپتیدها اثرگذار باشند. در صورت عدم بازسازی مناسب و به موقع با مشکلاتی چون تغییر در غلظت پپتیدهای موثر بر تنظیم انرژی مواجه خواهیم شد. عدم تعادل بین پپتیدهای مهارگر و تحریک کننده دریافت غذا مانند لپتین، AGRP,NPY,CART,POMC, و گرلین به عنوان عوامل دخیل در روند سازوکاری می تواند به افزایش درصد چربی بدن، چاقی و غلبه روند اشتهاآوری بر ضد اشتهایی شود. اتخاذ راه کاری صحیح و آنی برای مقابله با این عدم تعادل می تواند از اختلالات سوخت و سازی تعادل و تنظیم انرژی (افزایش وزن یا کاهش غیرمنطقی، اتلاف انرژی) جلوگیری نماید. هرچند نوروپپتیدw در انسان اخیرا کشف شده است]10[ اما از زمان کشف نروپپتایدها، دانش ما از تنظیم وزن، اشتها و تعادل انرژی به نحو چشمگیری افزایش یافت. بسیاری از متخصصان حوزه سلامت، بهداشت و به خصوص تنظیم وزن، امیدوارند که با شناسایی جنبه های مهم و ناشناخته این نروپپتایدها و عوامل موثر بر آنها به روش های درمانی کارآمد و کشف داروهای جدیدی را برای امراضی چون چاقی دست یابند .امروزه تقریبا تاثیر نوروپپتیدها بروی هورمون ها ثابت شده است. از طرفی تغییر در هورمون ها نیز باعث تغییر در وزن بدن می شود.گزارش های رسیده نیز نشان می دهد که NPW نه تنها در تنظیم انرژی بلکه در هموستاز هورمونی نیز نقش دارد، ]11[
هورمون ها نقش مهمی در تنظیم اشتها، متابولیسم بدن و تنظیم سطح انرژی دارند]12[. فعالیت و تمرینات ورزشی روی سطوح خونی هورمون ها تاثیر می گذارند و به کاهش یا افزایش سطح برخی از هورمون ها نسبت به حالت استراحت منجر می شوند. در واقع این نوسانات هورمونی را می توان واکنش بدن در برابر فشارهای تمرینی قلمداد کرد، تا حالت هموستاز بدن برقرار شود ]13،14[. عدم تعادل در سطح هورمون ها در گیر در اشتها ( انسولین ، گلوکاگون ، کورتیزول و هورمون‌های غده تیروئید) می تواند به افزایش وزن منجر شود.
هورمون کوتیزول که یک گلوکوکورتیکوئید است ، و از بخش قشری غدد فوق کلیوی ترشح می شود، نقش بسزایی در برقراری این هموستاز دارد ]15[ . کورتیزول به طور مستقیم بر ذخیره چربی و افزایش وزن در افراد تاثیر دارد . یکی از اثرات مهم کورتیزول، نقش آن روی سوخت و ساز کربوهیدرات ها، پروتئین ها و چربی ها است.این هورمون فرآیند گلوکونئوژنز را از اسیدهای آمینه تسهیل، لیپوژنز کبد را کاهش و چربی های موجود در بافت چربی را به حرکت در می آورد . کورتیزول سوبسترای لازم را برای عمل گلوکرنئوژنز (اسیدهای آمینه) و سوخت های جایگزین را برای متابولیسم انرژی عضله اسکلتی (اسیدهای چرب) تامین کند]16،17،18،19[
هورمون تیرکسین یکی از هورمون های مهم متابولیسمی بدن است ]20[. که توسط غده ی تیرویید که تحت تاثیر محور هیپوتالاموس- هیپوفیز- تیرویید ( H-P-T) است ،تنظیم می شود ]21[ . در بررسی های متعدد ، اثر بسیاری از عوامل مانند دمای محیط ، استرس ، هورمون های دیگر ، ترکیبات شیمیایی ، نوسانات شبانه روزی ،... بر محور نامبرده به اثبات رسیده است. هورمون تیرویید ارتباط ویژه ای با رشد ، اشتها ، متابولیسم ، تنظیم اسمزی و تولید مثل دارد ]22[ افزایش میزان سوخت و ساز پایه، اثر اصلی هورمون های تیروئید است. عمل عمده ی این هورمون ها افزایش سوخت و ساز قندها و چربیها است]23[.
از طرفی استفاده از مواد مغذی ، به ویژه مواد قندی،اسیدهای چرب، نوشیدنی های ورزشی حاوی اسیدهای آمینه ، مواد معدنی و ویتامین ها ، آنتی اکسیدنها پس از تمرین و فعالیت بدنی، برای بازسازی سریع و افزون سازی منابع انرژی (گلیکوژن و ATP ) و کنترل وزن و اشتها توسط متخصصین و مربیان آگاه توصیه شده و می شود. در این راستا، استفاده از مکمل های غذایی طبیعی و صناعی بر عملکرد ورزشی، توازن بین اکساینده ها و ضد اکسایش کننده های بدن، توسط ورزشکاران ، مربیان ، متخصصین و پژوهشگران توصیه و بررسی شده است. علاوه بر موارد فوق، تاثیر برخی از گیاهان خوراکی و دارویی از قبیل: شنبلیله ]24[ ، برگ ریحان ]25[، توت هندی ]26[، لئوکاس سفالوتز (نوعی علف هرز خوراکی در هند) ]27[، بر روند بازسازی منابع انرژی به ویژه گلیکوژن در نمونه های حیوانی مطالعه شده است. با این وجود در هیچ یک از پژوهش های انجام شده به تاثیر این گیاهان دارویی و غذایی بر پپتیدهای درگیر در تنظیم تعادل انرژی، سوخت وساز قند، اشتها و وزن، با و یا بدون فعالیت بدنی و تمرین مورد توجه قرار نگرفته است. همچنین ، ولیک به عنوان یک گیاه دارویی منحصر به فرد از حیث ترکیبات و خواص به طور جدی در حوزه ی فیزیولوژی ورزش مورد توجه قرار نگرفته است.
ولیک یکی از قدیمی ترین گیاهان دارویی در طب اروپایی می باشد و برای اولین با توسط دیوسکورید در قرن 1 شرح داده شد]28[. عصاره ولیک از گل، برگ و میوه این گیاه مشتق می شود. مطالعه بالینی کمی به بررسی میوه ولیک به تنهایی پرداخته است ]29[. برگ، گل و میوه ولیک دارای مقادیر زیادی پروسیانیدین الیگومریک ، فلاونوئیدها می باشد، که مسئول اثر دارویی آن است]30[.
گیاه ولیک سرخ با اسامی مختلفی از قبیل هاثرن و از خانواده روزاسه به صورت سنتی به عنوان تونیک قلبی استفاده می شود. ترکیبات مختلفی در ولیک سرخ وجود دارد که شامل: ساپونین های تری ترپن، فلاونوئیدها، کاتیشن، اپی کاتشین می باشد ]31[.
گزارش شده است سرخ ولیک یک گیاه دارویی با ارزش از تیره گل سرخ است که امروزه در درمان ضایعات قلبی و گردش خون و به ویژه به عنوان ضد عفونت ها و آنتی اکسیدان، تب بر قابل استفاده می شو د؛ و اهمیت دارویی آن به دلیل وجود ترکیبات فنلی است که در این رده فلاونوئیدها نقش دارویی مهمی دارند]32[.همچنین مصرف آنتی اکسیدانهای غذایی می تواند از شیوع بیماری های متابولیک کم کند]33[.فلاونوئیدها بخاطر آنتی اکسیدان بودن در تنظیم تغذیه دخیل است و باعث تنظیم چربی خون ،تنظیم متابولیسم گلوکز و کربوهیدارت می شود ]34[ .
بنابراین ، این پژوهش قصد دارد تا تأثیر همزمانی تمرین با شدت بالا را به همراه دو نوع ولیک ( کراتاگوس ) سرخ و سیاه بر شاخص های مربوط به اشتها را در نمونه حیوانی ( مریوط به موش های نر) مورد ارزیابی قرار دهد. آیا تمرین شدید بر سطوح نوروپپتید W ، T4 ، کورتیزول پلاسمایی و بر سطوح نوروپپتید W کبدی درموش های صحرایی نر اثر دارد؟ آیا مکمل سازی آبی ولیک بر سطوح نوروپپتید W ، T4 ، کورتیزول پلاسمایی و بر سطوح نوروپپتید W کبدی درموش های صحرایی نر اثر دارد؟.
1-3: ضرورت و اهمیت تحقیق:
از آنجایی که بررسی و نمونه برداری بافت های انسانی از دشواری های زیادی برخوردار است و پژوهش های انجام شده بر روی مدل های حیوانی که شباهت های عملکردی با انسان دارند، می تواند تا حدودی بیانگر رخدادهای عملکردی در انسان باشند، از این رو در مطالعه حاضر انجام پژوهش روی پلاسما و بافت موش های صحرائی نر صورت پذیرفته است.
همان طور که گفته شد چاقی و اضافه وزن از یک سو و کمبود وزن و بی اشتهایی از سوی دیگر دو انتهای طیفی می باشند که همواره سلامتی جامعه را تهدید کرده و به عنوان یکی از معضلات جوامع امروزی باشند. شیوع گسترش چاقی و بیماری های مرتبط با آن در سطح جهان، شاهدی بر این مدعاست که پیشرفت های علمی در زمینه شناخت عوامل و مکانیسم های تنظیم وزن و به خصوص پیشگیری ، مبارزه و درمان چاقی توفیق چندانی نداشته است]4[. متاسفانه درکشور ما نیز، چاقی شیوع گسترده ای دارد. بر اساس پژوهش های صورت گرفته در ایران، بررسی ۸۹۹۸ فرد سنین 81 – 35 ساله (2005- 2002) نشان داد که 2/62٪ افراد دارای اضافه وزن و 28٪ ان ها چاق بوده اند ]35[. این در حالی است که چاقی با ابتلا به بیماری های بسیاری همراه است ]36[.دلایل ابتلا به چاقی متعدد می باشند، اما از نظر فیزیولوژی، چاقی ناشی از عدم تعادل انرژی است و درمان اولیه ی آن شامل کاهش دریافت غذا یا افزایش مصرف انرژی و یا هر دوی این موارد می باشد ]36،35[.
بنابراین از جنبه سلامت و بهداشت عمومی، شناخت عوامل و مکانیسم های موثر بر تعادل انرژی و تنظیم وزن می تواند به ارتقاء سطیح سلامت جامعه و صرفه جویی در هزینه های درمانی کمک نماید. هم چنین در شماری از بیماری ها، کاهش اشتها و تعادل منفی انرژی باعث بروز مشکلات عدیده و افزایش مرگ و میر می شود. مشخص شده که در این شرایط نیز نروپپتایدها نقش کلیدی دارند. بنابراین می توان امیدوار بود که شناخت مکانیسم این فرآیندها به درمان آنها اقدام کرد. از طرف دیگر نوروپپتید w که به تازگی (حدود یک دهه) کشف شده است و با توجه به نقش کلیدی خود در هموستاز و تنظیم وزن، تحقیقات بسیار کمی درباره این نوروپپتید صورت گرفته است، همچنین تحقیقات زیادی به تمرین به عنوان یک عامل مهم و موثر بر تعادل انرژی و تنظیم وزن و ارتباط آن نوروپپتید w انجام نشده است .همانطور که دیده می شود متخصصینی که در مورد نوروپتیید w و سایر نروپتاییدها مطالعه می کنند به ورزش ، تمرین و فعالیت بدنی عنایتی نداشته اند. برخی شرایط مانند فعالیت بدنی و تمرین می تواند تغییراتی را در پپتیدهای موثر برتنظیم و تعادل انرژی بوجود آورند. تمرین و فعالیت بدنی ، تعادل انرژی در سلول ها را به هم زده و هزینه ی انرژی سلول ها را افزایش می دهد. فعالیت های بدنی منظم ، دستگاه های مختلف انرژی را در گیر کرده و موجب سازگاری های عضلانی ، تنفسی ، قلبی – عروقی ، و سازگار ی متابولیکی می شود ]37[. از آنجایی که تاکنون پژوهشی در مورد تاثیر تمرین ورزشی و عصاره ولیک بر روی نوروپپتیدW پلاسمایی و بافتی صورت نگرفته ، پژوهش حاضر قصد دارد با بررسی اثر فعالیت ورزشی و عصاره میوه ولیک بر روی این نوروپپتید را بررسی نماید.
1-4 – اهداف پژوهش:
1-4-1-هدف کلی:
هدف کلی این پژوهش تعیین اثر8 هفته تمرین شدید بر سطوح نوروپپتید W پلاسمایی و کبدی، پاسخ های هورمون کورتیزول و T4 در موشهای صحرایی نر با و بدون عصاره آبی ولیک (سرخ و سیاه ) می باشد.
1-4-2-اهداف ویژه:
تعیین اثر 8 هفته تمرین شدید با و بدون عصاره آبی سرخ و سیاه ولیک بر سطح نوروپپتید w پلاسما
تعیین اثر 8 هفته تمرین شدید باو بدون عصاره آبی سرخ و سیاه ولیک بر سطح نوروپپتید w کبد
تعیین اثر 8 هفته تمرین شدید باو بدون عصاره آبی سرخ و سیاه ولیک بر هورمون کورتیزول
تعیین اثر 8 هفته تمرین شدید باو بدون عصاره آبی سرخ و سیاه ولیک بر هورمون تیروکسین
بررسی ارتباط سطوح نوروپپتید w پلاسما ، با دیگر متغییر ها
1-5 - فرضیه های پژوهش:
فرضیه 1 : هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک برسطح نوروپپتید W پلاسما موشهای صحرایی نر اثر دارد
فرضیه 2: هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک برسطح نوروپپتید W کبدی موشهای صحرایی نر اثر دارد
فرضیه3: هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک برسطح هورمون کورتیزول پلاسما موشهای صحرایی نر اثر دارد
فرضیه 4: هشت تمرین شدید همراه با مصرف عصاره آبی (سرخ و سیاه) ولیک بر سطح هورمون تیروکسین پلاسما موشهای صحرایی نر اثر دارد
1-6- محدودیت های پژوهش :
1-6-1- محدودیت های غیر قابل کنترل
ـ عدم کنترل دقیق فعالیت شبانه آزمودنی ها
ـ عدم اندازه گیری مقدار غذای مصرفی برای هر نمونه بدلیل نبودن امکانات کافی
ـ عدم کنترل تاثیر عوامل وراثتی آزمودنی ها
1-7- تعریف واژها و اصطلاحات پژوهش
ولیک (کراتاکوس) cratacgus
ولیک یک گیاه دارویی با ارزش است که امروزه در درمان ضایعات قلبی و گردش خون و به ویژه به عنوان ضد عفونت ها و آنتی اکسیدان، تب بر استفاده می شود؛ و اهمیت دارویی آن به دلیل وجود ترکیبات فنلی است که در این رده فلاونوئیدها نقش دارویی مهمی دارند. همچنین مصرف آنتی اکسیدانهای غذایی می تواند از شیوع بیماری های متابولیک کم کند. فلاونوئیدها بخاطر آنتی اکسیدان بودن در تنظیم تغذیه دخیل است و باعث تنظیم چربی خون ،تنظیم متابولیسم گلوکز و کربوهیدارت می شود .
نوروپپتید w: نوروپپتید W تشکیل شده از 30 اسید آمینه و مشتق شده از یک پری پرو پروتئین 165 آمینو اسید است که ژن آن در انسان توسط تاناکا و هکارانش شناسای شد. NPW به ایفای نقش به عنوان عامل ضد اشتها عمل و باعث افزایش دما و متابولیسم بدن می شود.
کورتیزول: هورمون کوتیزول که یک گلوکوکورتیکوئید است ، و از بخش قشری غدد فوق کلیوی ترشح می شود، نقش بسزایی در برقراری هموستاز بدن دارد . هورمون کورتیزول در بدن به صورت دوره ای ترشح می شود، که دامنه و میزان ترشح آن را ریتم شبانه روزی تنظیم می کند. غلظت این هورمون در گردش خون، صبح زود به دلیل افزایش دامنه و میزان ترشح آن در بالاترین سطح است. میزان ترشح کورتیزول به تدریج در طول روز کاهش می یابد و غلظت آن در شب به حداقل میزان خود می رسد .پژوهش ها نشان داده اند که وزن و درصد چربی بدن بر ترشح کورتیزول تاثیر می گذارد.
هورمون تیروکسین یا 4T: تیروکسین به هورمون ترشح شده ازغده تیروئید می‌گویند. هورمون غده تیروئید تری یدوتیرونین 3 Tو تیروکسین 4Tاست .این هورمون از اضافه شدن چهار اتم ید به آمینواسید تیروزین ساخته می‌شود. هورمون های تیروئیدی در سوخت و ساز کلی بدن نقش داشته و نقص در عملکرد غده تیروئید و ترشح نامناسب این هورمون ها عواقب متعدد فیزیولوژیک را به دنبال دارد. برای مثال کاهش غلظت پلاسمایی هورمون های تیروئیدی باعث افزایش وزن و کاهش اشتها می گردد و افزایش آنها کاهش وزن و پرخوری را به دنبال دارد.
تمرین شدید : فعالیت ورزشی دویدن روی نوار گردان ( 5 روز در هفته ، با سرعت 34 متر در دقیقه ، شیب صفر درجه و به مدت 60 دقیقه ) انجام شد.
فصل دوم:
مبانی نظری و پیشینه پژوهش

:2-1مقدمه
در این فصل ابتدا مبانی نظری پژوهش مورد بحث و بررسی قرار خواهد گرفت.پیشنه و مبانی نظری پژوهش ، طیف وسیعی از اطلاعات و نظریه های علمی است که بیان کننده کمیت و کیفت اطلاعات موجود در رابطه با موضوع پژوهشی می باشد و به تشریح پژوهش های مرتبط با موضوع می پردازد . در این فصل پژوهشگر ابتدا به بررسی و مطالعه مفاهیم اساسی که در حوزه پژوهش دارای اهمیت هستند ، نظیر مکمل سازی ، پروتکل تمرینی و ... می پردازدو در پایان اطلاعات ارائه شده ، تحقیقات قبلی انجام شده و نتایج انها بیان می شود.
2-2: مبانی نظری تحقیق
2-2-1:چاقی
چاقی اختلالی است که از عدم تعادل دریافت و هزینه کرد انرژی ناشی می شود. عدم تعادل انرژی به عنوان فیدبکی برای فیزیولوژی و محیط عمل کرده و بر هزینه کرد و دریافت انرژی اثر می گذارد ]38[. ما انرژی را به صورت چربی ذخیره سازی می کنیم، چرا که هم نسبت به کربوهیدرات متراکم تر است و هم برای ذخیره شدن نیاز به مقدار زیادی آب ندارد. پدیده چاقی دو وجهه کاملا متفاوتی داردکه ژنتیک و محیط ]38[.
اطلاعات و آمار نشان می دهد که چاقی در کشورهای غربی در حال افزایش است . و عوامل مختلفی را می توان در این مورد دخیل دانست. از جمله تماشای تلویزیون، غذاهای فوری، کم تحرکی و استفاده از وسایل ماشینی در انجام امور روزمره و ... اشاره کرد. عقیده کلی بر این است که تعادل انرژی و وزن باید به گونه ای تنظیم شود تا اثرات تعادل بین هزینه کرد و دریافت انرژی بر چاقی و وزن بدن کنترل شود . لذا وزن بدن باید به طریقی تنظیم شود، که می دانیم هموستاز انرژی از طریق سیستم عصبی پیچیده ای تنظیم می شود که اثر فراز و نشیبهای کوتاه مدت در تعادل انرژی را بر روی توده بدن به حداقل می رساند. اخیرا مولکول های میانجی و مسیرهای دریافت غذا و تنظیم وزن در مغز شناسایی شده اند ]39[. گزارش کرده اند که با وجود کاهش در مقدار غذای دریافتی روزانه قادر به کاهش وزن نیستند. این ادعا به ایجاد این فرضیه منجر شد که چاقی در اثر اختلال های متابولیکی و نادرست بودن عادت های رفتاری است ، که موجب کاهش انرژی مصرفی در افراد چاق می شود ]40[.
2-2-2:تنظیم تعادل انرژی
عقیده ی کلی بر این است که تعادل انرژی و وزن بدن پدیده ای اند که باید تنظیم شوند. این عقیده از آن جا ناشی می شود که اثر بالقوه عدم تعادل بین هزینه انرژی و دریافت آن بر چاقی وزن بدن مشاهده می شود ]38[. به همین منظور هموستاز انرژی از راه سیستم عصبی پیچیده ای تنظیم می شود که اثر فراز و نشیب های کوتاه مدت در تعادل انرژی را بر روی توده ی چربی بدن به حداقل می رساند. اخیراً مولکول های میانجی و مسیرهای تنظیمی غذا خوردن و تنظیم وزن در مغز شناسایی شده اند ]39[.
محتوای انرژی سلول ها به تعادل بین تولید و مصرف انرژی در سلول ها بستگی دارد. یکی از شرایطی که می تواند تعادل انرژی را در سلول به هم زده و نیازهای هاصی را به سلول تحمیل نماید، ازدیاد هزینه کرد انرژی در اثر فشارهای مختلف روانی و جسمانی از جمله انجام فعالیت بدنی و تمیرن است. به بیان دیگر، در نتیجه تمرین و فعالیت بدنی، تعادل انرژی در سلول به هم خورده و هزینه ی انرژی سلول افزایشمی یابد. سلول در پاسخ به این وضعیت جدید پاسخ های موقتی و لازم را از خود نشان می دهد که در صورت تداوم یافتن این وضعیت، رفته رفته به سازگاری مناسب متابولیکی نایل می شود و در صورت رفع این فشار تدریجاً وضعیت انرژی سلولی به حالت اولیه ی خود برمی گردد. بنابراین گفته می شود که سلول یا اندام یا دستگاه درگیر در مقابل فشار فیزیکی وارده سازگار شده است. تمرین و فعالیت های بدنی منظم، دستگاه های مختلف انرژی را درگیر کرده و موجب سازگاری های عضلانی، تنفسی، قلبی – عروقی و سازگاری متابولیکی می شود که متعاقب فعالیت های بدنی و ورزشی رخ می دهند ]37[.

شکل 2- 1) تنظیمات جبرانی دریافت و مصرف کالری در پاسخ به تغییرات در محتوای چربی بدن است.]47[
2-2-3:کنترل اشتها و هموستاز انرژی
مرکز اصلی هموستاز یا تعادل انرژی در انسان هیپوتالاموس می باشد ، هرچند نواحی مختلفی از مغز از کورتکس گرفته تا ساقه مغز در رفتار دریافت غذا و هموستاز انرژی دخالت دارند . در بیشترین بزرگسالان ذخایر چربی و وزن بدن علیرغم تغییرات بسیار گسترده مصرف غذای روزانه و مصرف انرژی به طور چشمگیری ثابت است. برای برقراری تعادل بین انرژی دریافتی و مصرف غذای روزانه و مصرف انرژی به طور چشمگیری ثابت است. برای برقراری تعادل بین انرژی دریافتی و مصرفی یک سیستم فیزیولوژیکی پیچیده شامل سیگنال های آوران و وابران فعالیت می کند] 1[. این سیستم شامل مسیرهای چندگانه ای است که در تعامل با هم وزن را کنترل می نماید .در گردش خون هورمون هایی وجود دارند که به صورت حاد و موقت غذا خوردن را شروع یا خاتمه می دهند وهم هورمون هایی هستند که منعکس کننده چاقی و تعادل انرژی بدن می باشد. این سیگنال ها به وسیله اعصاب محیطی و مراکز مغری از جمله هیپوتالموس و ساقه مغزی یکپارچه می شوند هنگامی که سیگنال ها یکپارچه شوند ، نوروپتید های مرکزی را ، که غذا خوردن و هزینه انرژی را تغییر می دهند ، تنظیم می کنند ] 1[.
پیچیدگی رفتار دریافت غذا منعکس کننده ی تعداد نواحی در گیر در مغز است. به عنوان مثال ، قشر پیشانی چشمی در گیر در سیری ویژه حسی است در حالی که آمیگدال در ارزیابی مزه و طعم غذا دخالت دارد . بنابراین رفتار دریافت غذا را می توان به فاز های مختلفی از جمله فاز اشتها ، که شامل جستجو برای غذا است ، و فاز مصرف شامل خوردن واقعی غذا است ، تقسیم بندی کرد ]41[.
برای حفظ یک وزن ثابت در یک دوره ی زمانی نسبتا طولانی همواره باید توازنی بین دریافت غذا و هزینه انرژی برقرار باشد . هیپوتالاموس اولین مرکز ی است که حدود 50 سال قبل نقش آن در این فرایند شناخته شد . علیرغم در گیری نقاط مختلفی از مغز در رفتار غذا خوردن ، هیپوتالاموس به عنوان مرکز اصلی غذا خوردن مطرح می باشد .در اوایل دهه 1940 نشان داده شد که تزریق یا تحریک الکتریکی هسته ها ویژه ای در هیپوتالاموس ، رفتار تغذیه ای را تغییر می دهد. هیپوتالاموس شامل چندین هسته می باشد که در دریافت غذا دخالت دارند شامل هسته های کمانی (ARC) ، هسته ای مجاور بطنی (PVN) ، بخش های جانبی هیپوتالاموس (LHA) ، هسته های بطنی میانی (VMH) و هسته های خلفی میانی (DMH). در ARC دو دسته اصلی نورون که به وضعیت تغذیه ای حساس هستند و جود دارند . یکی دسته از ان ها دریافت غذا و اشتها را تحریک و دسته دیگر ان را مهار می کنند ]41[. هسته های بطنی میانی (VM) به عنوان « مرکز سیری» و هسته های جانبی هیپوتالاموس (LH) عنوان «مرکز گرسنگی» شناخته شده اند. هسته های کمانی (ARC) هیپوتالاموس نیز به عنوان محلی که این سیگنال های تنظیمی اشتها را یکپارچه می کند شناخته شده است ]42[ .

شکل 2 – 2) طراحی شماتیک ساده از مناطق هیپوتالاموس که در مصرف مواد غذایی نقش اصلی ایفا می کند.]41[
2-2-4:هیپوتالاموس
برای حفظ یک وزن در یک دوره زمانی نسبتاً طولانی همواره باید توازنی بین دریافت غذا و هزینه انرژی برقرار باشد. هیپوتالاموس اولبین مرکزی است که حدود 50 سال قبل نقش ان در این فرایند شناخته شد. در اوایل دهه 1940 نشان داده شد که تزریق یا ایجاد تحریک در هسته های ویژه ای از هیپوتالاموس باعث تغییر در رفتار تغذیه ای و دریافت غذا می شود. در هیپوتالاموس هسته های بطنی میانی (VMH) ، به عنوان «مرکز گرسنگی» شناخته شده اند. هسته های کمانی (ARC) هیپوتالاموس نیز به عنوان محلی که این سیگنال های تنظیمی اشتها را یکپارچه می کنند شناخته شده است. چرخه های عصبی متعددی در هیپوتالاموس قرار دارد. بر اساس دانسته های ما شبکه های عصبی و انشعابات آنها در داخل هیپوتالاموس قرار دارد. بر اساس دانسته های ما شبکه های عصبی و انشعابات آنها در داخل هیپوتالاموس گسترش پیدا می کنند و اجتماعات عصبی مجزا، نروترانسمیترهای ویژه ای را ترشح کرده که بردریافت غذا و یا هزینه کرد انرژی اثر گذاشته که خود توسط سیگنال های خاص وضعیت تغذیه ای تنظیم می شوند. سیگنال های محیطی درگیر در تهادل انرژی، از قبیل هورمون های روده ای مثل پپتاید YY و GLP-1 از طریق یک مکانیسم فیرقابل اشباع از سد خونی- مغزی گذشته و بنابراین به ARC می رسند. البته سیگنال های دیگری از قبیل لپتین و انسولین از طریق یک مکانیسم قابل اشباع از خون به مغز می رسند. بنابراین سد خونی – مغزی یک نقش تنظیمی پویا در عبور دادن برخی سیگنال های انرژی گردش خون دارد. در ARC دو دسته اصلی نرون که به وضعیت تغذیه ای حساس هستند ، وجود دارند . یک دسته از انها دریافت غذا و اشتها را تحریک و دسته دیگر ان را مهار می کنند عوامل اشتها آور و شد اشتها به ترتیب فعالیت سیستم عصبی سمپاتیک را کاهش و افزایش می دهند و به موجب آن ذخایر چربی بدن و هزینه انرژی را تنظیم می کنند . این عمل از طریق تغییر گرمازایی در BAT و احتمالاً در محل های دیگری از قبیل بافت سفید چربی وعضله، از طریق القاء پروتئین جفت نشده میتوکندریایی یک UCP-1 و UCP-2 و UCP-3، انجام می شود. ارتباط بین دریافت غذا و فعالیت سمپاتیک از طریق مواد انتقال دهنده عصبی متعددی صورت می گیرد. نروپتایدها عناصر مهم سیستم تنظیم کننده دریافت غذا هستند. هورمون ها ، انتقال دهنده های عصبی و نروپتایدهایی که بر دریافت غذا اثر می گذارند. مولکول های تحریک کننده اشتها شامل نوراپی نفرین، گاما آمینو بوتیریک اسید و هفت دسته از نروپتایدها هستند، در حالی که مولکول های مهار کننده غذا اشتها شامل سروتونین، دوپامین و تعداد زیادی از پپپتایدهای روده ای – مغزی هستند ]42[ .
2-2-5:سیگنال های عصبی و هورمونی کنترل اشتها
در موجودات تکامل یافته، نظیر انسان سیستم تنظیم دریافت غذا شامل دو بخش شبکه تنظیم اشتها و سیگنال های عصبی و هورمونی ارسالی از نواحی مختلف بدن به شبکه تنظیم اشتها می باشد که بخش اول از نورون های ایجاد کننده اشتها یا نورون های اورکسیژنیک و نورون های ایجاد کننده بی اشتهایی یا نورون های انورکسیژنیک تشکیل شده است که همگی در هسته های مختلف هیپوتالاموس قرار دارند و این دو دسته نورون شبکه تنظیم اشتها با یکدیگر در ارتباط هستند و بر فعالیت یکدیگر اثر می گذارند ]43[ . بنابراین عوامل تنظیمی متعددی چون هسته های مختلف هیپوتالاموس واقع در سیستم عصبی مرکزی، ذخایر انرژی و هورمون ها در تنظیم اشتها و دریافت غذا بصورت دراز مدت وکوتاه مدت دخالت دارند . در انسان انتقال دهنده های سیستم عصبی و پپتیدهای روده ای متعددی از عوامل مهم تنظیم اشتها می باشند]44[. اکثر مطالعات انجام گرفته در زمینه اشتها و دریافت غذا، روی دو هورمون لپتین و گرلین متمرکز است. این دو هورمون بعنوان تنظیم کننده های اصلی شبکه تنظیم اشتها و دریافت غذا درهسته های مختلف هیپوتالاموس مطرح هستند]45[.
هورمون لپتین محصول ژن چاقی است که در تنظیم فرایندهای متابولیک دخیل است و نمایانگر میزان ذخیره چربی بدن است . این هورمون با گیرنده های ویژه ای در هیپوتالاموس و با مهار باعث کاهش اشتها می شود و از طرف دیگر ترشح نوروپپتید Y با افزایش فعالیت سیستم عصبی سمپاتیک و لیپولیز موجب افزایش میزان متابولیسم بدن، میزان انرژی مورد نیاز و در نتیجه میزان چربی بدن را کنترل می کند]46[.
گرلین به عنوان یک لیگاند درون زاد برای گیرنده ترشح دهنده هورمون رشد مطرح است. سلول های غده اکسینتیک موکوس فوندوس معده منبع اصلی این پپتید اشتها آور است ]47[. مطالعات گذشته نشان داده است درحالی که تزریق انسولین در برخی از هسته های هیپوتالاموس سیستم اعصاب مرکزی دریک روش وابسته به دوز بعد از ورود به فضای بین سلولی درمغز به رسپتورهای خود نظیر نورون های، نوروپپتید Y متصل و آن را مهار می کند و یا از طریق تحریک انتقال دهنده عصبی α –MSH به دلیل افزایش تولید وترشح لپتین سبب کاهش دریافت غذا می شود ولی افزایش سطح سرمی انسولین (به صورت محیطی) در صورتیکه باعث کاهش غلظت گلوکزخون شود می تواند اشتها را تحریک نماید ]48[.

شکل 2 – 3 ) گردش هورمون های موثر بر تعادل انرژی از طریق هسته کمانی ]44[
2-2-6:سیستم کنترل مرکزی
سیگنال های نماینده چاقی در CNS یکپارچه می شوند. در داخل CNS دریافت غذا و تنظیم وزن به طور موثری انجام می شود. در CNS و بطور اختصاصی در هیپوتالاموس دو سیستم موثر آنابولیک و کاتابولیک وجود دارد که وزن بدن و توده چربی را تنظیم می نمایند . مسیرهای که سیگنال های چاقی از لپتین (مترشحه از آدیپوسیت ها) و انسولین (مترشحه از پانکراس ) با چرخه های خودکار مرکزی اندازه غذا را تنظیم می کنند.لپتین و انسولین مسیر کاتابولیک (نرون های POMC/CART ) را تحریک و مسیر آنابولیک (نرون های NPY/AGRP ) که از ARC منشأ می گیرندۀ را مهار می کنند. درون دادهای آوران وابسته به سیری از کبد و مجاری معده ای ـ روده ای و از پپتیدهایی مثل CCK از طریق عصب واگ و تارهای سمپاتیک به NTS ، یعنی جای که با درون دادهای پایین رونده هیپوتالاموس یکپارچه می شوند. برون داد عصبی خالص از NTS و سایر نواحی بصل النخاع و مخچه مغز منجر به خاتمه غذا خوردن می شوند. کاهش درون دادهای از سیگنال های چاقی ( در حین کاهش وزن ناشی از رژیم) بنابراین باعث افزایش اندازه غذا به وسیله کاهش پاسخ های ساقه مغز به سیگنال های سیری می شوند]4[.
مسیر های که سیگنال های جاقی از لپتین (مترشحه از آدیپوسیت ها) و انسولین (مترشحه از پانکراس) با چرخه های خودکار مرکزی اندازه غذا را تنظیم می کنند. لپتین و انسولین مسیر کاتابولیک (نرون های POMC/CART ) را تحریک و مسیر آنابولیک (نرون های NPY/AGRP ) که از ARC منشأ می گیرند ، را مهار می کنند. درون دادهای آوران وابسته به سیری از کبد و مجاری معده ای-روده ای و از پپتیدهایی مثل CCK از طریق عصب واگ و تارهای سمپاتیک به NTS ، یعنی جای که با درون دادهای پایین رونده هیپوتالاموس یکپارچه می شوند. برون داد عصبی خالص از NTS و سایر نواحی بصل النخاع و مخچه مغز منجر به خاتمه غذا خوردن می شوند. کاهش درون دادها از سیگنال های چاقی (درحین کاهش وزن ناشی از رژیم) بنابراین باعث افزایش اندازه غذا به وسیله کاهش پاسخ های ساقه مغز به سیگنال های سیری می شوند. ]4[.

جدول 2-1- مولکول های سیگنالی کاندید در هموستاز انرژی در CNS ]39[.
سیستم موثر آنابولیک باعث افزایش دریافت غذا، اکتساب وزن، کاهش هزینه انرژی و برعکس سیستم موثر کاتابولیک باعث کاهش دریافت غذا ، از دست دادن وزن و افزایش هزینه انرژی می شود .
2-2-7:کنترل محیطی اشتها
سیگنال های محیطی درگیر در تعادل انرژی، از قبیل هورمون های روده ای مثل پپتاید و GLP1 از راه یک مکانیسم غیرقابل اشباع از سدخونی- مغزی گذشته و بنابراین به ARC می رسند. البته سیگنال های دیگر از قبیل لپتین و انسولین از راه یک مکانیسم قابل اشباع از خون به مغز می رسند. بنابراین سد خونی- مغزی یک نقش تنظیمی پویا در عبور دادن برخی سیگنال های انرژی گردش خون دارد ]49[.
گرلین اولین هورمونی است که به دنبال تزریق محیطی موجب افزایش غذا خوردن می شود. در انسان ها گرلین پلاسمایی قبل زا هر وعده غذا افزایش ناگهانی و پس از صرف هر وعده غذایی به صورت کوتاهی سقوط می کند. این یافته ها دلالت بر این دارند که گرلین سممکن است به عنوان یک شاخص تعادل انرژی کوتاه مدت تلقی شود و ممکن است به عنوان یک مولکول سیگنالینگ در طول مدت زمان تخلیه انرژی در نظر گرفته شده است ]49[.

شکل 2-4 ) تنظیم مصرف غذا بوسیله ی هورمون های محیطی و مسیرهای سیگنالینگ مرکزی انها.]45[
2-3 :تنظیم کننده های وزن و متابولیسم بدن
گزارش ها نشان که وزن و متابولیسم بدن توسط نوروپپتید ها و هورمون های متعددی کنترل و تنظیم می شود.که به اختصار به توضیح برخی از مهمترین آنها می پردازیم.
2-3-1:نروپپتایدها
2-3-1-1: نوروپپتید Y (NPY)
NPY یک پپتید 36 اسید آمینه ای و یکی از فراوان ترین و گسترده ترین (از لحاظ توزیع) عوامل انتقال دهنده عصبی در مغز پستانداران می باشد. ARC محل اصلی بیان NPY در داخل نرون های هیپوتالاموس می باشد. هر چند NPY پس از تزریق مرکزی اثرات گوناگونی روی رفتار و عملکرد به جا می گذارد. ولی قابل توجه ترین اثر آن تحریک غذا خوردن است. تزریق چندباره NPY به داخل PVN یا دهلیزهای مغزی باعث چاقی می شود که نشان دهنده آن است که NPY قادر به مهار سیگنال های مهار کننده دریافت غذا می باشد. NPY باعث تعادل مثبت انرژی از طریق افزایش دریافت غذا می شود و همچنین باعث کاهش هزینه انرژی از طریق کاهش گرمازایی در BAT و همچنین تسهیل ذخیره چربی در بافت سفید چربی از طریق افزایش فعالیت انسولین می گردد ]50[. NPY در ARC سنتز شده و به داخل PVN ترشح می شود و توسط سیگنال های مثل لپتین، انسولین (که هر دو مهار کننده) و گلوکورتیکوئیدها (فعال کننده)، تنظیم می شود. سنتز و ترشح NPY در مدل های با شرایط کمبود انژژی یا افزایش نیازهای متابولیکی از قبیل گرسنگی ، دیابت وابسته به انسولین، شیردهی و فعالیت بدنی افزایش می یابد. نقش فیزیولوژیکی اصلی نرون های ARC ، NPY، احتمالا برقراری مجدد تعادل انرژی و ذخایر چربی بدن در شرایطی است که بدن با کمبود انررژی مواجه است. علیرغم شواهد کافی برای نشان دادن نقش کلیدی NPY در هموستاز انرژی، عجیب این است که در موش های که ژن NPY آنها کاملا حذف شده بود دارای فنوتیپ نرمال بودند به جز اینکه مستعد به جمله ناگهانی شده بودند. بنابراین هنوز کاملا مشخص نیست که آیا NPY فقط در شرایط حادی از قبلی موش های تراریخته ob/ob در پراشتهایی یا چاقی نقش دارد یا آیا فنوتیپ نرمال به علت مکانیسم های جبرانی توسط سایر سیگنال های اشتهاآور است که جایگزین NPY می شوند و به حفظ تغذیه طبیعی و تنظیم وزن کمک می کنند ]51[.

شکل 2-5) فعال سازی سلول های عصبی NPY / AGRP دارای یک اثر اشتهاآور، در حالی که فعال سازی سلول های عصبی POMC / CART اثر ضد اشتهای می باشد.
2-3-1-2: ارکسین ارکسین اخیرا به عنوان دسته ای از نروپپتیدها شناخته شده که همچنین تحت عنوان هیپوکرتینز نامگذاری می شود. ارکسین A و B به ترتیب دارای 23 و 28 اسید آمینه بوده و 46 درصد مشابهت دارند. هر دو پپتید توسط یک ژن کدگذاری شده و در نرون های خلفی و جانبی هیپوتالاموس قرار دارند. تزریق ارکسین A به طور معنی داری موثرتر از ارکسین B می باشد. البته اثر ارکسین بر تحریک غذا خورئن از اثر NPY خفیف تر است. ارکسین احتمالا بیشتر درگیر کنترل متابولیسم انرژی است تا دریافت غذا . ناشتایی باعث تظاهر افزایش ژن ارکسین در هیپوتالاموس می شود ]49[.
2-3-1-3: گالانین
گالانین یک پپتید 29 اسیدآمینه ای است که در دسته ی نورونی PVN , DMH , ARC توزیع شده است. گالانین دریافت غذا در موش های صحرایی پس از تزریق به داخل CV و همچنین VMH , LH , PVN و هسته های مرکزی آمیگدال را تحریک می کند. همانند MCH و ارکسین، غذا خوردن ناشی از گالانین ضعیف تر از NPY بوده و تزریق مداوم گالانین اثری بر حفظ چاقی یا پراشتهایی ندارد. از لحاظ آناتومیکی و عملکردی ارتباط نزدیکی بین نرون های تولید کننده گالانین وسایر سیگنال های اشتهاآور وجود دارد. هر چند سیستم NPY ارتباط نزدیکی با مصرف و هضم کربوهیدرات ها دارد، گالانین احتمالا در وهله اول در کنترل مصرف چربی ها و افزایش ذخیره بافت چربی از طریق کاهش در هزینه کرد انرژی دخالت دارند. گالانین در حین دوره میانی چرخه غذایی طبیعی فعال شده و یک رژیم با چربی بالا می تواند تولید گالانین را در PVN افزایش داده که ارتباط نزدیکی با چاقی بدن دارد ]49[.
2-3-1-4: نوروپتیید w-23
نوروپتیید W-23 که در ده اخیر کشف شده از 23آمینو اسید تشکیل شده است.که در تنظیمات تغذیه ای و هورمونی مشارکت دارد. مطالعات نشان می دهد ، تزریق داخل بطن مغزی NPW23 باعث افزایش جذب غذا و تحریک آزادسازی پرولاکتین]52[ و کورتیکوسترون ]53[ در موش صحرایی می شود،همچنین تحقیقات آزمایشگاهی نشان داده که افزایش غلظت NPW23 ، به طور قابل توجهی بر پرولاکتین، هورمون رشد و انتشار ACTH از سلولهای هیپوفیز قدامی را تغییر می دهد ]53[.
2-3-2:هورمون ها
2-3-2-1:گرلین
گرلین برای اولین بار در سال 1999 توسط کوجیما و همکارانش از معده موش جداسازی شد و به عنوان لیگاند درونی برای گیرنده GHS-Ra مطرح گردید. گرلین به هنگام گرسنگی به مقدار زیادی در سلولهای مخاط معده و به مقدار اندکی در سایر اندام ها از جمله مغز، هیپوفیز، سلولهای لایدیگ و سلولهای سرتولی نیز به نسبت کمتر تولید می شود ]54[. مطالعات نشان داده گرلین علاوه بر افزایش هورمون رشد ]55[ سبب افزایش تخلیه معده، افزایش اشتها، افزایش وزن بدن ]56[ تحریک ترشح ACTH ، مهار LH 6 و کاهش غلظت هورمون های تیروئیدی می شود ]57[. تزریق گرلین از طریق افزایش بیان ژن ها ی AgRP و NPY در هستۀ ARC هیپوتالاموس که نورونهای آنها مستقیماً بر روی TRH گیرنده دارند سبب کاهش هورمونهای تیروییدی می شوند ]58[.

شکل 2-6) گرلین قبل و بعد از دریافت غذا
2-3-2-2:ابستاتین
زانگ و همکاران (۲۰۰۵) پپتید ۲۳ اسید آمینه ای دیگری به نام ابستاتین را شناسایی کردند. این پپتید از ژن سازنده ی گرلین مشتق شده که بعد از ترجمه، دستخوش تغییرات متفاوتی شده است. یافته های بررسی ها نشان داد درمان جوندگان با ابستاتین منجر به تعادل انرژی منفی از راه کاهش دریافت غذا و تخلیه ی معده می شود. بنابراین برخی پژوهشگران به این نتیجه رسیدند که گرلین و ابستاتین اثرات متضادی بر تنظیم وزن دارند و ممکن است عملکرد نامطلوب ابستاتین در پاتوفیزیولوژی چاقی درگیر باشد.]59[
پژوهش قنبری نیاکی و همکاران نشان داد کسر و گلیکوژن کبدی ناشی از تزریق اتیونین در موش ها ATP منجر به افزایش سطح گرلین پلاسما می شود که می تواند به عنوان یک آغازگر مهم دریافت غذا مد نظر قرار گیرد؛ هم چنین مشاهده شد سطح ابستاتین پلاسما مورد تاثیر و گلیکوژن کبد نیست و انجام تمرین های ATP کاهش ورزشی نیز نتوانست این نتیجه را مورد تاثیر قرار دهد. پژوهشگران این گونه نتیجه گیری کردند که گرلین نسبت به ابستاتین به کسر انرژی کبد حساس تر است ]60[. گائو و همکاران(2009) انجام پژوهشی روی زنان و مردان چاق دریافتند سطح گرلین و ابستاتین آزمودنی های چاق پایین تر، اما نسبت گرلین به ابستاتین آنها از آزمودنی های با وزن طبیعی بالاتر بود ]61[.
زامرازیلوا و همکاران (۲۰۰9) نیز نسبت سطح گرلین به ابستاتین پلاسما را در زنان با وزن طبیعی، چاق و دچار بی اشتهایی عصبی اندازه گیری نمودند. یافته ها نشان داد نسبت سطح گرلین به ابستاتین در زنان با بی اشتهایی عصبی به طور معنی داری بالاتر از سایر گروه ها بود ]62[. در کل نقش واقعی ابستاتین در سازوکار چاقی هنوز مشخص نیست، اما تعادل بین گرلین و ابستاتین نقش مهمی در سازوکار چاقی و بیماری های متابولیکی ایفا می کند]63[.
2-3-2-3:لپتین
لپتین، پروتئین 167 اسید آمینهای است که در تنظیم فرآیندهای متابولیک دخالت دارد و نمایانگر ذخیره چربی بدن است]64[ برخی از پژوهشگران لپتین را عامل هشدار دهنده در تنظیم محتوای چربی بدن ذکر کرده اند ]65[ لپتین پس از تولید در بافت چربی به داخل خون ریخته می شود . در سد خونی مغز ناقل هایی وجود دارد که باعث ورود لپتین به دستگاه عصبی مرکزی شده و با شرکت در سرکوب سنتز نوروپپتیدهایی از قبیل نوروپپتیدy (عامل افزایش اشتها)، باعث کاهش اشتها می شود]66[ . بنابراین اثر خالص عملکرد لپتین در جهت کاهش وزن است اما کمبود این هورمون و یا مقاومت نسبت به آثار آن، هر دو می تواند سبب افزایش وزن شوند]67[ .
پژوهش استاد رحیمی و همکاران روی زنان چاق، نشان داد توده بافت چربی از پیشگویی کننده های اصلی غلظت لپتین بوده و همبستگی معنی داری بین توده چربی و لپتین وجود دارد ]68[ نتایج پژوهش ضرغامی و همکاران نشان داد که مقادیر سرمی لپتین در زنان چاق حدود 3 برابر زنان با وزن طبیعی بوده و همبستگی مستقیمی بین لپتین و شاخص توده بدن وجود دارد ]69[. همبستگی بین غلظت سرمی لپتین با شاخص توده بدن، درصد و توده چربی بدن، ذخایر مختلف چربی و همچنین ضخامت چربی زیر پوستی در تحقیقات دیگر نیز مشاهده شده است ]70[ این همبستگی در زنان چاق 3 برابر بیش تر از مردان چاق است ]71[.
87630-80645
شکل 2- 7 ) لپتین به عنوان بخشی از یک حلقه بازخورد به حفظ ذخائر ثابت از چربی عمل می کند. از دست دادن چربی بدن منجر به کاهش در لپتین، که مولکول های تغذیه محرک در هیپوتالاموس، مانند NPY را فعال می سازد. در مقابل، افزایش چربی بدن منجر به افزایش لپتین، که مولکول های تغذیه بازدارنده مانند MC را فعال می سازد. ]49[
2-4: نوروپتیید w
نوروپتیید w که اولین بار از هیپوتالاموس خوک جدا شده به دو شکل وجود دارد که شامل نوروپتیید 23- w (NPW23) یا نوروپتیید 30- w (NPW30) که 23 و 30 نشان از تعداد آمینو اسید تشکیل دهنده آن است.این نوروپتییدها به یکی از دو دریافت کننده NPW ، شامل GPR7 (NPBWR1) و GPR8(NPBWR2) متصل می گردد که به خانواده ی گروه پروتیین G تعلق دارند. GPR7 در مغز و قسمت های بیرونی و خارجی بدن انسان و جانوران جونده وجود دارد، در حالیکه GPR8 در جانوران جونده وجود ندارد . mRNA GPR7 در جانوران جونده به شکل گسترده ای در بسیاری از مناطق هیپوتالاموس ، شامل قسمت بطنی ، بصری ، میانی جلویی ، پشتی ، فوقانی وقسمت های قوس داربیان شده است .
مشاهدات نشان می دهد که GPR7 نقش مهم و حیاتی در تعدیل عملکرد غده های درون زا و عصبی ایفا می کند. تزریق بطنی مغزی NPW نشان داده شده که مانع جذب غذا شده و در وزن بدن اختلال ایجاد می نماید و موجب افزایش تولید گرما و حرارت و دمای بدن می شود، این نشان می دهد که NPW به عنوان یک مولکول نشانگر کاتابولیسم درونی عمل می کند ]72[.
2-4-1:گیرنده های NPW
در سال 1995 ، ادد و همکارانش از الیگونکلوتیدهای بر مبنای گیرنده ی اپیوئیدی و همینطور گیرنده ی سوماتواستاتین جهت شناسایی دو ژن GPR7 و GPR8 استفاده کردند.که پیش بینی می شود این دو دریافت کننده مسئول کد گذاری گروه پروتئینی G درون مغز انسان هستند. mRNA GPR7 در مغز انسان و جانوران جونده نشان داده شده ، در حالیکه ژن GPR8 در مغز انسان و خرگوش و نه جانوران جونده شناسایی شده است ]73[. در سال 2002، شیمومورا و همکارانش لیگاندهای درون زا را در مورد-8 GPR7 با در معرض قرار دادن سلول های تخمدان موش های چینی (CHO) با ذره های هیپوتالامیک خوک، تغییراتی در سطح CAMP مشاهده نمودند. علاوه بر این، وقتی بیان سلول GPR7 یا GPR8با عصاره ی هیپوتامیک القا شد تولید CAMP ناشی از فورسکولین متوقف می شود. این دریافت کننده ها به دریافت کننده های گروه پروتیینی Gi متصل بودند ]52[.
تجزیه و تحلیل ساختاری بیشتر در مورد لیگاندهای مسئول مهار تولید cAMP منجر به شناسایی یک پپتید جدید به نام NPW گردید. شیمومورا و همکاران توالی پپتید بالغ 23 و30 آمینو اسید باقی مانده از خوک ، موش و انسان را شناسایی کردند.NPW به دو شکل بالغش : NPW30 (شامل 30 آمینو اسید) و NPW23 (شامل 23 آمینو اسید) نام گذاری شده است که در ژن انسان بوسیله تاناکا و همکاران (2003) شناسای شد ]72[.

شکل 2- 8) فرق نوروپتیید 23- w و نوروپتیید 30- w ( انسان ، خوک ، رت ، موش)].72[
2-4-2: توزیع مرکزی NPW
بر اساس آنالیز RT-PCR ، برزلین و همکارانش (2003)گزارش داده اند که ژن NPW در سیستم عصبی مرکزی انسان مانند جسم سیاه و نخاع ، و در حد متوسط ​​در هیپوکامپ، آمیگدال، جسم پینه ای هیپوتالاموس ، مخچه و ریشه پشتی نخاع بیان شده است. شیمی سلولی هیبریداسیون در جوندگان نشان داده است که ژنNPW در چند مناطق محدود مغزی شامل PAG، هسته EW و هسته پشتی جنین توزیع شده است ]74،53،10 [. در حالی که کیتامورا و همکاران،( 2006) گزارش داده اند که این موضوع به هسته های خاصی در مغز میانی و ساقه مغز محدود می شود. با این حال، بر اساس تجزیه و تحلیل RT-PCR، گزارش داده اند که NPW mRNA در قسمت PVN، VMH ، ARC و LH موش بیان می شود]75[.مطالعه دیگری نیز حاکی از توزیع NPW در قسمت های متعددی از مغز موش صحرایی بوده است ]76[.
مطالعات ایمونوهیستوشیمی نشان داده است که NPW-LI به طور عمده در مناطق هیپوتالاموس، ARC و غده هیپوفیز خلفی ، با یک سطح پایین تر در PVN مشاهده شده است. جالب این است که سلول های NPW-LI هیپوتالاموس نر نسبت به ماده بیشتر است ]76[. در مطالعه دیگری، کیتامورا و همکاران (2006) از استقرار زیادی از NPW-LI را در سلول مغز میانی، شامل PAG و EW خبر داده اند. علاوه بر این، آنها برای اولین بار حضور NPW-LI و فرآیندهای آن را در PVN، VMH و آمیگدال در سطح میکروسکوپ الکترونی شناسایی و بررسی کرده اند]77[. همچنین، رشته های عصبی NPW-LI به وفور در مغز میانی و در دستگاه لیمبیک، از جمله CEA و BST توزیع شده بود، این امر نشان می دهد که NPW ممکن است در فرایند تعدیل ترس و اضطراب و همچنین در رفتار تغذیه نقش مهمی ایفا کند]78،77،76،75[.
2-4-3: توزیع محیطی NPW
در بافت های محیطی، NPW در نای ، در سلول سرطانی لنفوسیت نابالغ کلیه جنین و سرطان روده بزرگ بیان می شود]79[.سلول های وابسته به قشر غده فوق کلیوی نیز NPW تولید می کند]78[.هوکل وهمکاران (2006) گزارشی مبنی بر توزیع NPW در تیروئید و غدد پاراتیروئید، پانکراس، غدد آدرنال، تخمدان و بیضه در موش ارائه کردند.درحالیکه روکینیسکی و همکاران (2007) واکنش پذیری ایمنی NPW در تمام سلول های پانکراس شامل سلول های A ،B وD رانشان داده اند. درمقابل ، دزاکی و همکاران ( 2008) واکنش پذیری ایمنی NPW را در سلول های B ، و نه سلول های A یا D یافتند. بعلاوه NPW mRNA در سیستم ادراری تناسلی از جمله کلیه، بیضه ها، رحم، تخمدان، و جفت توزیع شده است ]80[.
بر اساس انالیز RT-PCR ، از حضور ژنNPW در در غده هیپوفیز، غده فوق کلیوی و معده را تایید کرد ]81[. این مشاهدات نشان می دهد که NPW ممکن است نقش مهمی در تنظیم سیستم غدد درون ریز را در پاسخ به استرس و همچنین در فعال شدن محورهیپوتالاموس هیپوفیز فوق کلیوی (HPA) ایفا کند ]81،82[.
2-4-4: توزیع GPR7-8
تجزیه و تحلیل RT-PCR در انسان نشان داد که ژن GPR7 به شدت در آمیگدال، هیپوکامپ، نئوکورتکس، و هیپوتالاموس بیان می شود ]73[. مطالعات مربوط به شیمی سلولی نشان داده است که ژن GPR7 در هیپوتالاموس موش، از جمله ARC، VMH، PVN و DMH، موجود است .ایشیی و همکاران (2003) گزارش داده اند که از بین بردن NPBW1 باعث پر خوری و توسعه چاقی می شود. سینگ و همکاران (2004) از دریافت کننده ی رادیوگرافی [125I]-NPW استفاده کرده و توزیع قابل توجهی از NPBW1 در آمیگدال موش و هیپوتالاموس، و همچنین در BST، MPA ، PAG ، ارگان سابفورنیکال و سطوح خاکستری رنگ سوپریور کولیکلوس ( قسمتی از مغز میانی) را نشان دادند. به طور کلی، GPR7 در سطح وسیعی در آمیگدال بیان می شود ]84،83،74[. اگر چه BST بالاترین سطح بیان GPR7 در پستانداران کوچک را نشان داده است، این پدیده در انسان ثابت نشده است. کیتامورا و همکاران ( 2006) گزارش کرده اند که GPR7 بیشتر در CeA و BST، موش صحرایی توزیع شده است که این امر ممکن است نشان دهد که GPR7 در تنظیم استرس، احساسات، ترس و اضطراب دخالت دارد. از طرف دیگر ژن های GPR7-8 در غده هیپوفیز و غده فوق کلیوی ( قشری و مرکزی ) بیان شده است ]72[ . این مشاهدات نشان می دهد که GPR7-8 ممکن است در پاسخ به استرس از طریق محور HPA درگیر باشد]82 [.
زیلوکوسکا و همکاران (2009 ) اخیرا آزمایشی مبنی بر توزیع و عملکرد NPW، NPB، و GPR7 در سلول های مانند یاخته ی استخوانی موش صحرایی و همچنین نتایج آن را که حاکی از تاثیر مستقیم بر روی تکثیر سلول ها بود را انجام دادند. NPB در پستانداران بزرگ، و همچنین در خرگوش شناسایی شده است، اما در موش صحرای و هیچ یک از موش ها بیان نشده است. تجزیه و تحلیل RT-PCR نشان داده است که ژن GPR8 است که به شدت در آمیگدال، هیپوکامپ، غده هیپوفیز، غده فوق کلیوی و بیضه ها و همچنین در سلول های قشری در غدد فوق کلیوی بیان شده است ]72[ .
2-4-5: تنظیم تغذیه ومتابولیسم انرژی بوسیله NPW
حذف GPR7 در موش های باعث پرخوری و کاهش مصرف انرژی می شود. این امر نشان می دهد که NPW ممکن است به عنوان یک تعدیل کننده تغذیه عمل کند. تزریق داخل بطن مغزی NPW در موشهای صحرایی نر باعث افزایش جذب غذا طی 2 ساعت اول در فاز نور می شود ]52[. همچنین لوین و همکاران (2005) گزارش کرده اند که تزریق NPW به PVN مصرف مواد غذایی را افزایش می دهد . این نتایج نشان می دهد که NPW به عنوان یک پپتید اشتها آور حاد عمل می کند. با این حال، موندال و همکاران (2003) گزارش کرده اند که هر دو شکل NPW باعث سرکوب تغذیه در فاز تاریک می شود،این نشان می دهد که اثر NPW در مورد تغذیه متفاوت است بسته به اینکه آیا حیوانات در نور و یا فاز تاریک نگهداری می شود]72[.
مطالعات عصبی انجام شده نشان داد که رابطه عصبی بین NPW و دیگر نوروپپتید های درگیر در تنظیم تغذیه باعث فعل و انفعالات عصبی بسیار نزدیک بین رشته های عصبی حاوی NPW و ارکسین یا هورمون MCH و رشته های عصبی در مغز موش های صحرایی می شود ]85[. در حالی که لوین و همکاران (2005) نشان داد که توزیع c-fos در نورون های حاوی ارکسین در منطقه ی پریفورنیکل در LH بعد از تزریق NPW در داخل بطن مغزی (icv) رخ داده است. جالب این است، که آنها همچنین سلول های NPW-LI در VMH، را نیز شناسایی کردند که به عنوان یک مرکز سیری شناخته شده است ]75[.
تاثیر لپتین بر روی عصب در VMH ، باعث کاهش میزان جذب غذا می شود و دیت و همکاران (2010) گزارش داده اند که سلول های عصبی NPW-LI و گیرنده های لپتین در این منطقه از مغز متمرکز شده اند . بیان NPW نیز به طور قابل توجهی در OB / OB و db/db موش تنظیم می شود. بنابراین، NPW ممکن است نقش مهمی در متابولیسم تغذیه و انرژی داشته باشد، و به عنوان یک جایگزین برای لپتین عمل کنید ]9[. علاوه بر این، NPW جذب مواد غذایی را از طریق گیرنده ملانوکورتین – 4 کاهش می دهد ، این بیانگر این است که NPW ممکن است نورون ها حاوی POMC را فعال و نورون های حاوی NPY را در ARC مهار کرده به کنترل و تنظیم در تغذیه بپردازد ]9[.
58420241935
شکل 2- 9 ) تصویر شماتیک بر اساس یافته های مطالعات مورفولوژیکی و فیزیولوژیکی تنظیم اشتها در هیپوتالاموس توسط سلول های عصبی NPW و پپتید مرتبط با تغذیه در هیپوتالاموس.]72[
به تازگی، اسکرزبپسکی و همکاران (2012) نشان داده اند که NPB و NPW بیان و ترشح لپتین و رزیستین را تنظیم می کند ، و باعث افزایش لیپولیز چربی در موش می شود]84[ . هنگامی که NPW به موش داده شد، محققان نمی توانستند بالا رفتن فعالیت های حرکتی را شناسایی کنند ، اما افزایش میزان مصرف O2 و افزایش تولید CO2، و همچنین افزایش دمای بدن را مشاهد نمودند ]86[ . جالب توجه است، مندال و همکاران (2006) گزارش کرده اند که سطح NPW جدا شده از سلول های آنترال معده موش در حیوانات که غذا نخورده اند پایین تر است ، و میزان آن در حیواناتی که به آنها غذا داده شد افزایش یافت. در مقابل، GPR7 ( - / - ) موش های ماده فعالیت های پر خوری از خود در مقایسه با موش هایی از نوع وحشی نشان نمی دهند ]87[. علاوه بر این، دان و همکاران (2003) وجود تفاوت بین موش های نر و ماده با توجه به میزان توزیع NPW ارائه داده اند.
2-4-6: عملکرد اندوکرین NPW
مطالعات ایمنوهیستوشیمی نشان داده که GPR7 در PVN، غده هیپوفیز وغدد فوق کلیوی در انسان و موش ]88،79،73،10[، به ویژه درسلول های PVN و هیپوفیز خلفی بیان شده است . با این وجود گزارش نشده است که NPW برای رها سازی دیگر هورمون های هیپوفیز قدامی تاثیر بگذارد. تاثیرات نورواندوکرین NPW به طور مستقیم از طریق GPR7 در سلول های غده هیپوفیز به عنوان واسطه عمل نمی کند ،اما ممکن است به طور غیر مستقیم از طریق کنترل آزاد سازی هورمون هیپوتالاموس و آزاد سازی هورمون محرک قشر غده ی فوق کلیوی عمل کند ]89،73[.
NPW نقش مهمی در پاسخ هیپوتالاموس به استرس ایفا می کند. با این حال، سطوح هورمون رشد در پلاسما بعد از تزریق داخل بطن مغزی این پپتید مهار می شود. این یافته ها نشان می دهد که NPW لیگاند درون زا برای GPR7 و / یا GPR8 است و به عنوان یک میانجی نورواندوکرین عمل می کند ]53،52[.علاوه بر این، تیلور و همکاران (2005) گزارش کرده اند که تزریق NPW محور HPA را فعال می کند، و باعث افزایش در سطح کورتیکوسترون پلاسما در موش های هوشیار می شود. اما باعث تحریک آزادی اکسی توسین و وازوپرسین نمی شود و همچنین در گردش خون محیطی، تغییرات فشار خون و ضربان قلب را نغییر نمی دهد. علاوه بر این، تزریق داخل بطن مغزی آنتاگونیست CRF باعث کاهش قابل توجهی سطح کورتیکوسترون نمی شود، اگر چه قبل از تزریق آنتاگونیست CRF به طور قابل توجهی افزایش مرکزی NPW سطح کورتیکوسترون را کاهش می دهد ]90[.

–335

TOC h z t "jadval,1" جدول (1-1) معیار های آروماتیک بودن PAGEREF _Toc354826481 h 2جدول (1-2) NICS برای بنزن PAGEREF _Toc354826482 h 4جدول (1-3) درجه عدم استقرار الکترون پایبرای بنزن PAGEREF _Toc354826483 h 5جدول (1-4) انحراف میانگین و RDF و DIU و D3BIA برای بنزن PAGEREF _Toc354826484 h 6جدول (1-5) مقادیر HOMO و GEO و EN برای بنزن PAGEREF _Toc354826485 h 7جدول (1-6) برخی از خواص فیزیکی بورازین PAGEREF _Toc354826486 h 9جدول (3-1) انرژی مطلق(هارتری)انرژی نسبی(E)ثابت هامت آنها (p)گشتاور دوقطبی رنگسازهای دارای بورازین با گروه های مختلف .x PAGEREF _Toc354826487 h 24جدول (3-2) قطبش همسانگرد و نا همسانگرد رنگسازهای دارای بورازین با گروه های مختلف x PAGEREF _Toc354826488 h 26جدول (3-3) انرژی اوربیتال جبهه ای (هارتری) انرژی شکاف (E) و سختی (S)و پتانسیل شیمیایی رنگسازهای دارای بورازین با گروه های مختلف x PAGEREF _Toc354826489 h 28جدول (3-4) حداکثر طول موج جذب شده(max)،قدرت نوسانگر رنگسازهای دارای بورازین با گروه های مختلف x PAGEREF _Toc354826490 h 32جدول (3-5) مقادیر اجزا و tot(10-30 esu) رنگسازهای دارای بورازین با گروه های مختلف x PAGEREF _Toc354826491 h 33جدول (3-6) اجزاء و مقادیر tot(10-30 esu) برای رنگسازهای دارای بورازین با گروهای مختلف X- PAGEREF _Toc354826492 h 34TOC h z t "jadval,1"

فهرست اشکال
عنوان صفحه
TOC h z t "shekl,1" شکل (1-1) ترکیب های X3Y3H6 را نشان می دهد. PAGEREF _Toc354826532 h 7شکل (1-2) بورازین PAGEREF _Toc354826533 h 8شکل (1-3) ساختارهای مزومری بورازین. PAGEREF _Toc354826534 h 9شکل (1-4)تشکیل بسپار بورازنیل PAGEREF _Toc354826535 h 10شکل (1-5)تشکیل سرامیک بورکربونیترید از بورازین PAGEREF _Toc354826536 h 10شکل (2-1) نمایی از نرم افزار هایپرکم. PAGEREF _Toc354826537 h 21شکل (2-2) نمایی از نرم افزار گوس ویو. PAGEREF _Toc354826538 h 21شکل (2-3) نمایی از نرم افزار گوسیین. PAGEREF _Toc354826539 h 21شکل (2-4) نمایی از نرم افزار کم دراو. PAGEREF _Toc354826540 h 22شکل (3-1) فرم رزونانسی رنگسازهای دارای بورازین با گروه های مختلف x . PAGEREF _Toc354826541 h 23شکل (3-2) رابطه انرژی نسبی با ثابت هامت آنها (p). PAGEREF _Toc354826542 h 24شکل (3-3) رابطه گشتاور دوقطبی با ثابت هامت(p). PAGEREF _Toc354826543 h 25شکل (3-4)رابطه قطبش همسانگرد و نا همسانگرد (iso)N-isomer-(iso)B-isomer and(aniso)N-isomer-(aniso)B-isomer با ثابت هامت(p). PAGEREF _Toc354826544 h 27شکل( 3-5)رابطه اوربیتال جبهه ای با انرژی نسبی. PAGEREF _Toc354826545 h 29شکل (3-6)رابطه بین مقادیر سختی و ثابت هامت (به جز OH,Me,NH2 ) PAGEREF _Toc354826546 h 30شکل (3-7)رابطه بینmax(=max, N-isomer -max, B-isomer) و ثابت هامت(p)،به جز (Cl, CN, Br). PAGEREF _Toc354826547 h 33شکل (3-8)رابطه بین اولین قطبش پذیری(tot) و max. PAGEREF _Toc354826548 h 36TOC h z t "shekl,1"

کوتاه نوشت ها
CSGT: Continuous Set of Gauge Transformations
D3BIA: density,Degeneracy and Delocalization-Bases Index of Aromaticity
DFT : Density Functional Theory
DI: Delocalization Index
GTO : Gaussian-Type Orbital
HF : Hartree Fock
HOMA: Harmonic Oscillator Model of Aromaticity
HOMO : Highest Occupied Molecular OrbitalKS: Kohn-Sham
LUMO : Lowest unoccupied Molecular Orbital
MO : Molecule Orbital
MP : Moller-PlessetNICS : Nucleus-Independent Chemical Shift
NLO : Non Linear Optical Material
NMR : Nuclear Magnetic Resonance
PDI: Para Delocalization Index

فصل اول1-1ترکیب های حلقوی آروماتیکبنزن نمونه نخستینمولکولی است که دارای خواص فیزیکی قابل ملاحظه ای ناشی از عدم استقرار الکترونهای است. از نظر تاریخی شیمیدانان پژوهشهای زیادی روی دیگر مولکولهای مشابه بنزن نموده اند. بورازین (B3N3H6) ، بوروکسین (B3O3H3) و بورتین (B3S3H3) نمونه هایی از این ترکیبها هستند. این ترکیبها ساختاری مشابه بنزن دارند و توپولوژی اوربیتالهای مولکولی پای آنها مشابه است. این پرسش که آیا الکترونهای پای آنها همانند بنزن نامستقرند (رزونانس بین ساختارهای ککوله) چندان واضح نیست.
1-2آروماتیستیاز معرفی آروماتیستی به وسیله ی August Kekule در 1865 تاکنون به طور پیوسته قلمروهاینوینی در شیمی را تسخیر شده است. در ابتدا آروماتیسیتی برای ترکیبهای آلی زیر گسترش یافت:
هیدروکربنهای تک حلقوی مزدوج مسطح و یونهای آنها که دارای 4n+2 الکترون هستند.
هیدروکربنهای مزدوج چند حلقوی- هیدروکربنهای بنزوییدی ساخته شده ازحلقه های بنزنی جوش خورده.
هیدروکربنهای کربوکسیلیک مزدوج چند حلقوی بر پایه سیستمهای غیر بنزوییدی مانند آزولن و دیگر هیدروکربنهای مزدوج دارای حلقه های چهار، پنچ، هفت و هشت عضوی.
ترکیبهای دارای اتمهای فلزی نیز آروماتیک می توانند باشند. در 1979 Thorn و Hoffmann پیش بینی نمودند که برخی متالوسیکلهای فرضی باید خصلت پیوندی نامستقر و مقداری خصلت آروماتیک را نشان دهند. در سالیان بعد از آن حدود 25 متالوبنزن جداسازی و شناسایی شد.نخستین مثال از یک متالوبنزن پایدار و قابل جداسازی اسمابنزن بود که در سال 1982 گزارش شد. خانواده بزرگی از متالوبنزنها (ایریدابنزن) نیز بعدها تهیهشدند در حالی که یک سری از دی متالوبنزنها با دو اتم فلز در حلقه بنزن نیز گزارش شدند.
واژه "متالوآروماتیسیتی" در 1979 نخستین بار برای توصیف کمپلکسهای فلزی سیکلوبوتادی ان پیشنهاد شد. نخستین ترکیب آلی فلزی دارای یک حلقه آروماتیک تشکیل شده از اتمهای فلز در 1995 تهیه شد. Na2[(Mes2C6H3)Ga]3 که شامل حلقه آروماتیک سه گوش که دارای دو الکترون است. نخستین ترکیب آلی فلزی آروماتیک تشکیل شده از چهار اتم گالیم که دارای ساختار مربعی بود K2[Ga4(C6H3-2,6-Trip2)2] .
1-3معیارهای آروماتیک بودن:جدول (1-1) معیار های آروماتیک بودنخاصیت آروماتیسیتی
ماهیت الکترونی: 4n+2‌الکترون
انرژی:
مزدوج شدن حلقوی
نامستقر بودن
شکاف اوربیتالهای جبهه ای پایداری
افزایش خصلت
افزایش خصلت
شکل هندسی:
طول پیوندهای یکسان وجود خصلت
خواص مغناطیسی:
ناهمسانگردی تاثیرپذیری دیامغناطیس
برتری5مغناطیسی
جابه جایی شیمیایی 1H NMR
NICS افزایش یافته
بالا
دیاپروتیک
منفی بزرگ
واکنشپذیری:
ساختار شیمیایی
ابقا ساختار برای مثال بنزن
جانشینی الکترون دوستی
طیف سنجی:
UV
IR/Raman
فوتوالکترون انرژی بالا
تقارن بالا
انرژیهای اتصال زدایی الکترون بالا
جریان حلقه آروماتیک اثری است که در مولکولهای آروماتیک مانند بنزن، نفتالن مشاهده می شود. اگر یک میدان مغناطیسی عمود بر صفحه سیستم آروماتیک اعمال شود جریان حلقه ای در الکترونهای حلقه آروماتیک القا می شود. این نتیجه مستقیم قانون آمپر است زیرا الکترونهای شامل شده آزاد به گردش اند به جای آن که در پیوندها مستقر باشند مانند آن چه در مولکولهای غیر آروماتیک است ، لذا به میدان مغناطیسی به شدت پاسخ می دهند.
جریانهای حلقه آروماتیک با طیف سنجی NMR مرتبط اند. پس آنها جابه جاییهای شیمیایی هسته های 13C, 1H را در حلقه های آروماتیک و نیز دیگر مولکولهای آلی و معدنی تحت تاثیر قرار می دهند. این اثر امکان تشخیص محیطهای هسته ای را ممکن ساخته و در نتیجه در تعیین ساختار مولکولی کاربرد وسیعی دارد. در بنزن پروتونهای آروماتیک دچار واپوشیدگی می شوند چون میدان مغناطیسی القایی جهت یکسانی مانند با میدان خارجی دارد.
پس یک جریان حلقه دیامغناطیس یا دیاپروتیک با آروماتیستی همراه است و جریان حلقه ای پاراتروپیک نشانه پادآروماتیسیتی است. اثر مشابهی در فولرنهای سه بعدی مشاهده می شود و به آن جریان کره گویند.
کوششهای متعددی برای بیان کمی آروماتیسیتی انجام شده است:
1-4 بیان کمی آروماتیستی1-4-1 جابه جایی شیمیایی مستقل از هسته:پارامتر جابه جایی شیمیایی مستقل از هسته برای توصیف آروماتیسیتی از نقطه نظر مغناطیسی به کار برده می شود. این شاخص به وسیله P.v.R. Schleyer و همکارانش براساس پوششهای مغناطیسی ابداع گردید و با روشهای ساده محاسبه گردید. هم اینک محاسبه ها با روشهای آغازین پیشرفته انجام می شوند(25). این شاخص با محاسبه منفی پوشش مغناطیسی مطلق اتم روحدر مرکز حلقه(26)یا نقطه های مورد نظر دیگر(27) به کاربرده می شود.مقدار NICS نشان داده شده به صورت NICS(1.0) به مفهوم محاسبه آن در فاصله Å1 بالای حلقه است و انتظار می رودجزییات ساختار الکترونی را مشخص کند. زیرا مقدار NICS(0.0) در صفحه با مشارکتهایی موضعی پیوندهای و جفتهای تنها تحت تاثیر قرار می گیرد(28). حلقه های دارای NICS منفی آروماتیک، حلقه های دارای NICS نزدیک به صفر غیر آروماتیک و حلقه های دارای NICS مثبت پاد آروماتیک اند.
شاخص دیگر مولفه "خارج صفحه" تنسور NICS است که در فاصله Å1 بالای مرکز حلقه محاسبه می شود و با NICS(1.0)zz مشخص می شود که اندازه خوبی برای مشخصه های سیستم حلقه است(29). از آن جا که یک میدان مغناطیسی عمود بر صفحه حلقه اعمال می شود، این مقدار با چگالیهای جریان القایی در سیستم حلقه ای مولکول ارتباط مستقیم تری دارد. در نتیجه NICSzz محاسبه شده در فاصله های دور از مرکز حلقه (جایی که NICSzz تحت تاثیر مشارکتهای از سیستم قرار می گیرد) به خوبی NICS را مشخص می کند(30).
ثابت شده است برای مشتقهای بورازین NICS(2.0)zz معیار مناسبی برای آروماتیسیته است(31).
مقدارهای موشکافی شدهNICS با نرم افزار deMonNMRمحاسبه می شوند(32). بر این اساس NICS(total) به سهمهایی از پیوندهای ، NICS() ، پیوندهای ، NICS() ، و سهمهای دیگر (پیوندهای با هیدروژن، جفتهای تنها در صفحه مولکول، اوربیتالهای مغزی) تقسیم می شود.
برای مثال برای بنزن:
جدول (1-2) NICS برای بنزنStructure Opt Level/Basis set NICS(0.0) NICS(1.0) NICS(r)zz
Benzene B3LYP/6-311+G** HF/6-31+G* -9.7 -11.5 r=1.0-31.9
Borazine B3LYP/6-311+G** HF/6-311+G** -1.3 -1.9 r=-6.7
1-4-2ناهمسانگردی تاثیر پذیری مغناطیسی:ناهمسانگردی تاثیر پذیری مغناطیسی (33)به صورت زیر تعریف می شود:
(1-1)
در این رابطه محور z به صورت عمود بر صفحه حلقه تعریف می شود. این رابطه تفاوت بین تاثیر پذیریهای دیامغناطیس خارج صفحه و میانگین تاثیر پذیریهای دیامغناطیس داخل صفحه (xy) است. کارایی این شاخص مستقل بودن از سیستم مرجع است. این شاخص به روشCSGT محاسبه می شود(34). منفی تر بودن این شاخص نشانه خصلت آروماتیسیتی بیشتر است.
1-4-3تاثیر پذیری مغناطیسی(35):این شاخص تفاوت تاثیر پذیری مغناطیسی سیستم و یک سیستم مرجع ناشی از افزایش اتم یا پیوند است:
=-(1-2)
این شاخص نیز به روش CSGT محاسبه می شود. منفی تر بودن این شاخص نشانه خصلت آروماتیسیتی بیشتر است.
1-4-4 شاخصهای ناشی از نطریه اتم در مولکول:نظریه اتمها در مولکولها در شکلهای زیر برای مطالعه آروماتیسیتی به کار رفته است(36).
درجه عدم استقرار الکترون پای (DI):Bader و همکارانش عدم استقرار چگالی بیشتری را در هیدروکربنهای سیر نشده حلقوی نسبت به گونه های مشابه ناحلقوی پیدا نمودند.درجه عدم استقرار الکترون پای (DI) به طور کمی بر اسای این نظریه با استفاده از شاخص عدم استقرار تعیین می شود. این شاخص با انتگرال دوگانه چگالی همبستگی- تبادل حول حوزه هایاتمهای A و B به دست می آید. حوزه یک اتم در نظریه AIM به صورت گستره ای در فضای واقعی محدود به سطوح گرادیان شار صفر در یک چگالی الکترونی (r) یا تا بی نهایت تعریف می شود(37) به طور کمی تعداد الکترونهای نامستقر بین A و B تعیین می شود(38).
برای مثال برای بنزن می توان نوشت:
جدول (1-3) درجه عدم استقرار الکترون پایبرای بنزنE(atom) DI
B3LYP/6-311++G** 3.8102745332e+001 1.3965407413e+000
شاخص عدم استقرار پارا (PDI): Sola و همکارانش شاخص عدم استقرار را با معیارهای آروماتیک دیگر مرتبط کردند(39). آنها یک معیاری آروماتیک موضعی نوینی را معرفی نمودند: شاخص عدم استقرار پارا (PDI) .
Hernandez-Trujillo و Matta نیز معیار هندسی را پیشنهاد نمودند که DI را به عنوان اندازه تناوب اشتراک الکترون در نظر می گیرد.
D3BIA :Caio L. Firme و همکارانش معیار نوینی برای آرماتیسیتی در نظر گرفتند(40). نظریه ها بر اساس:
چگالی الکترونی در حلقه
درجه یکسانی عدم استقرار
درجه همترازی اتمها در حلقه
استوار بود و آن را D3BIA نامیدند. فرمول آن عبارت است از:
D3BIA=[RDF] [DIU] (1-3)
که در این رابطه:
RDF=(1+2)RCP (1-4)
2 مقدار ویژه میانگین ماتریکس Hessian چگالی از BCP به RCP ، وRCP مقدار چگالی الکترونی در نقطه بحرانی حلقه است.(1-5)
انحراف میانگین و <DI> میانگین DI حلقه است.
(تعداد اتمهای حلقه)/(تعداد اتمهای همتراز)=(1-6)
برای مثال برای بنزن می توان نوشت:
جدول (1-4) انحراف میانگین و RDF و DIU و D3BIA برای بنزنRCP 2 RDF DIU D3BIA
B3LYP/6-311++G** 0.021479650957751 0.538176419309952 0.00992 1 1.00 0.00992
1-4-5 مدل هماهنگ کروی آروماتیسیتی:در بین تعریفهای کمی به کار رفته برای آروماتیسیتی بر اساس معیار شکل هندسی، HOMA بیشترین اطمینان را دارد(41). مطابق نظر Krygowski و همکارانشبه صورت سهم دو عبارت تعریف می شود:
HOMA=1-EN-GEO(1-7)
در این رابطه EN اندازه طویل شدن طول پیوند میانگین نسبت به یک مقدار بهینه است:
EN= (Ropt - Rav)2(1-8)
در این رابطه Ropt طول پیوند بهینه برای یک مولکول کامل آروماتیک است( برای پیوندهای CCبرابر Å 388ر1 است). Rav طول پیوند میانگین گونه های در نظر گرفته شده است.یعنی:
Rav =(1-9)
عبارت GEO نشانه افزایش یک در میان طول پیوند است و برابر است با:
GEO=(1-10)
Rav دلالت بر طول پیوند میانگین سیستم در نظر گرفته شده و n تعداد پیوندهای فاصله ای بین هسته ای Ri است. برای پیوندهای CC مقدار برابر 7ر257 است.
به صورت جمع نرمال شده انحراف مربعهای طول پیوندها از مقدار بهینه تعریف می شود. یک سیستم آروماتیک HOMA=1 و پاد آروماتیک HOMA=0 دارد.
مقدارهای Ropt و برای پیوندهای CN, CO, CP, CS, NN, NO نیز گزارش شده اند.
برای مثال برای مولکول بنزن می توان نوشت چون Ri=1.3946 پس Rav=1.3946 در نتیجه:
جدول (1-5) مقادیر HOMO و GEO و EN برای بنزنEN= (Ropt - Rav)2 GEO= HOMO
B3LYP/6-311+G** =(257.7)(1.388-1.3946)2=0.0112254 (1.3946-1.3946)*6(257.7/6)=0 0.9887746
کمیت قابل اندازه گیری دیگر جابه جایی شیمیایی یونهای لیتیم در کمپلکسهای آن است. از آن جا که لیتیم تمایل به اتصال به وجه آروماتیک حلقه ها دارد، خود سبب آروماتیک شدن می شود. در نتیجه از جا به جایی شیمیایی آن می توان برای این منظور استفاده کرد. برای مثال این مقدار در کمپلکسهای CpLi و Cp2Li- به ترتیب ppm 6ر8- و 1ر13- است.
1-5ترکیبهای X3Y3H6
s-triphosphatriborin Borazine

alumazine

شکل (1-1) ترکیب های X3Y3H6 را نشان می دهد.1-6بورازین:بورازین ترکیب معدنی است که از عنصرهای بور، نیتروژن و هیدروژن تشکیل شده است. در این ترکیب حلقوی سه واحد هیدروبوران(BH) و سه واحد آمینو (NH) به طور یک در میان قرار دارند. این ترکیب در سال 1926 به وسیله ی Alfred Stock و Pohlandاز واکنش دی بوران و آمونیاک تهیه شد(42). ساختار این ترکیب هم الکترون و یکسان با بنزن است و به همین دلیلی بنا به پیشنهاد Nils Wibergبنزن معدنی نامیده می شود. این ترکیب همچنین به نام Borazol نیز نامیده می شود که از نام آلمانی بنزن که بنزول است ناشی می شود.

شکل (1-2) بورازین1-6-1سنتزبورازین از واکنش دی بوران و آمونیاک در نسبت یک به دو در دمای 300-250 با بهره 50% تهیه می شود:
3 B2H6 + 6 NH32 B3N3H6+3 LiCl + 9 H2
مسیر موثر دیگر از واکنش لیتیم بوروهیدرید و آمونیوم کلرید با بهره ای بهتر می باشد:
3 LiBH4 + 3 NH4Cl → B3H6N3 + 3 LiCl + 9 H2
در یک فرآیند دو مرحله ای، بور تری کلرید نخست به تری کلروبورازین تبدیل شده :
3 BCl3 + 3 NH4Cl → Cl3B3H3N3 + 9 HClسپس پیوندهای B-Cl به پیوندهای B-H تبدیل می شوند:
Cl3B3H3N3 + 3 NaBH4 → B3H6N3 + 3/2 B2H6 + 3 NaCl1-6-2ویژگیهابورازین مایعی بیرنگ با بوی ویژه ترکیبهای آروماتیک است. این ترکیب در آب به بوریک اسید، آمونیاک و هیدروژن تجزیه می شود. بورازین با تغییر آنتالپی استاندارد تشکیل kJ/mol 531- از نظر گرمایی بسیار پایدار است. برخی از خواص فیزیکی این ترکیب در جدول 1 ارایه شده است.
جدول(1-6) برخی از خواص فیزیکی بورازیننقطه جوش ، C نقطه ذوب، C چگالی، gr.cm-3 ظاهر جرم مولی، gr.mol-1
55 58- 81ر0 بی رنگ 50ر80
1-6-3ساختاربورازین هم ساختار بنزن است و همانند آن دارای پیوندهایی با طول یکسان است. فاصلهی بین نیتروژن و بور در حلقه pm 6ر143 و فاصله کربن-کربن در بنزن pm7ر139 است. پیوند بور-نیتروژن بین طول پیوند بور-نیتروژن یگانه (pm151) و پیوند بور-نیتروژن دوگانه (pm131) است. این داده ها نشان دهنده ی عدم استقرار الکترونهای جفت تنهای نیتروژن هستند.
1-6-4مزومرهاالکترونگاتیوی بور (04ر2 در مقیاس پاوولینگ) از نیتروژن (04ر3) کمتر است. از سوی دیگر کمبود الکترونی اتم بور و جفت تنهای نیتروژن امکان ساختارهای مزومری متنوع را ممکن می سازد:

شکل (1-3) ساختارهای مزومری بورازین.بور اسید لوییس و نیتروژن باز لوییس است.
1-6-5واکنشهابورازین واکنشپذیرتر از بنزن است. این ترکیب با HCl واکنش می دهد.اگر آروماتیسیتی بورازین نیز مانند بنزن بود، این واکنش بدون کاتالیست ممکن نبود:
B3N3H6 + 3HCl → B3N3H9Cl3
واکنش افزایشی بدون کاتالیزور رخ نمی دهد. در بورازینها حمله هسته دوستی در بور و حمله الکترون دوستی در نیتروژن رخ می دهد. گرما دادن بورازین تا C 70 هیدروژن را آزاد کرده و سبب تشکیل بسپار بورازنیل یا پلی بورازین می شود که واحدهای تکپار با تشکیل پیوندهای بور-نیتروژن نوین به صورت پارا جفت می شوند.

شکل(1-4)تشکیل بسپار بورازنیل1-6-6کاربردها:بورازین و مشتقهای آن پیشماده های مناسبی برای سرامیکهای بورنیترید هستند. بورنیترید می تواند با گرما دادن پلی بورازیلن تا C 1000 تهیه شود(42). بورازینها همچنین ماده اولیه ای برای سرامیکهای دیگر مانند بورکربونیتریدها نیز هستند(43).

شکل (1-5)تشکیل سرامیک بورکربونیترید از بورازین1-7فوق قطبش پذیریافزون بر گشتاور دوقطبی ناشی از توزیع نامتقارن بار در یک مولکول ممکن است توزیع الکترونی با وارد شدن یک فقدان الکتریکی تغییر شکل دهد. از این راه یک گشتاور دوقطبی القایی در مولکل ایجاد می شود. مطزان تاثیر گذاری میدا الکتریکی در قطبی ساختن مولکول با قطبش پذیری مولکول تعیین می شود. قطبش پذیری بنا به تعریف گشتاور دوقطبی القا شده از سوی میدان التریکی به شکل یک واحد است.
برهم کنش نور با ماده سبب تغییر وابسته به زماندر توزیع چگالی الکترونی در مولکولها می شود (قطبش). در این صورت گشتاور دوقطبی القایی به گشتاور دوقطبی ذاتیo افزوده می شود:
= o + Eloc + Eloc Eloc + ElocElocEloc +… (1-11)
در این رابطه:
Eloc = میدان الکتریکی موضعی اعمال شده به مولکول
= قطبش پذیری خطی مرتبه نخست
= فوق قطبش پذیری مربعی (نخست)مرتبه دوم
= فوق قطبش پذیری مکعبی (دوم)مرتبه سوم
قطبش پذیری اتم همسانگرد است، یعنی راستای میدان الکتریکی هرچه باشد، واپیچش یکسان است. قطبش پذیری بیشتر مولکول ها ناهمسانگرد است، یعنی بستگی به راستای میدان دارد. یعنی در راستاهای مختلف مقدارهای مختلف دارد. لذا مانند دیگر خواص ناهمسانگرد (مانند گشتاور لختی یک مولکول و رسانایی یک بلور) یک خاصیت تنسوری است.
(1-11)
و چون xy=yx،xz=zx ،yz=zy است، پس دارای شش مولفه است.
در حالی که تنها قطبش پذیری خطی در میدان های E ضعیف موثر است، سهم های ناخطی ، و .. در میدان های قوی مانند تابش لیزر آشکار می شوند. هر اثری ناشی از جمله های دوم یا بالاتر این سری را اثرهای ناخطی نامند. زیرا از جمله هایی ناشی می شود که نسبت به E ناخطی اند. آن دسته از ماده هایی رفتار نور در اثر تابش به آنها نسبت به میدان الکتریکی ناخطی است را ماده های نوری ناخطی(NLO) می نامند.
ماده های با ویژگی نوری ناخطی (NLO) توجه زیادی را به خود جلب نموده اند و برنامه های گسترده ای را در علم مواد دربرگفته اند. آنها در گستره ی پردازش پیام نورو سوییچ ها، تبدیل فرکانس های نوری و نیز ذخیره داده های نوری مواد موثری اند.
بیشترین کاربرد در دو برابر کردن فرکانس نور لیزر است. ماده های بررسی شده گستره کامل شیمی را در برمی گیرند از جامدهای معدنی مانند LiNbO3 تا گونه های آلی فلزی مانند مشتق های فروسن تامولکول های آلی.
قطبش می توان به صورت اختلاط حالت های برانگیخته بالاتر با حالت پایه در نظر گفته شود. پس یک مولکول با قطبش پذیری ناخطی بالا شرایط زیر را می تواند داشته باشد:
حالت های برانگیخته کم انرژی، برای نمونه یک شکاف اوربیتال های جبهه ای کوچک
قدرت نوسانگر بالای جهش الکترونی
تفاوت بزرگ بین گشتاور دوقطبی حالت پایه و برانگیخته نشان داده شده با حلالپوشی رنگ.
فقدان مرکز تقارن: ماده ای که مرکز تقار دارد خواص برداری نمی تواند نشان دهد. در نتیجه تمام مولفه ای تنسور فوق قطبش پذیری در گروه نقطه ای مرکز دار دار صفرند.
از سال 1987 که ماردر و همکارانش ثابت کردند که مشتق هایی از فروسن کارایی تولید هارمونیک دوم بزرگی دارند(44)(SHG) مطالعه های نظری و تجربی زیادی به درک رابطه های ساختاری و ویژگی ها و بهینه کردم خواص نوری مرتبه دوم رنگ سازهای فلز دار اختصاص یافته است(45).
دو دسته ار کمپلکس هایی که در گستره ی زیادی بررسی شده است عبارتند از:
متالوسن ها: که لیگاند به شدت با فلز جفت می شود
کمپلکس های پیریدین دار که جفت شدن ضعیفی با فلز مرکزی وجود دارد.
با این وجود طراحی کمپلکس ها نوین با فوق قطبش پذیری بالا موضوعی جذاب و رقابت برانگیز است.
متالابنزن ها طبقه ی از کمپلکس های آلی فلزی اند که فلز بخشی از یک سیستم - آروماتیک است. دو تا از شش الکترون اوربیتال های d فلزند که حول سیستم نامستقرند و پس انتظار می رود از الکترونهای d دیگر کمپلکسهای آلی فلزی قطبش پذیرتر باشند.چندین کمپلکس متالابنزن جداسازی شده اند مانند اسمابنزن ها، ایریدابنزن ها و پلاتینابنزن ها. واکنشپذیری و پایداری این کمپلکس ها به صورت نظری مطاله شده است. آروماتیسیتی کمتر متالابنزن ها نسبت به بنزن و حلقه های ناجور اتم نفش مهمی در خواص نوری ناخطی (NLO) این کمپلکس ها دارد. جایگزینی حلقه های فنیل در رنگسازهای دهنده- -پل- پذیرنده (D--A) با حلقه های ناجور اتم دار مانند تیوفن یا تیازول به صورت تجربی و نظری نشان داده است که فوق قطبش پذیری به گونه ی موثری افزاپش می یابد. این افزایش فوق قطبش پذیری توجیه می شود با:
انرژی عدم استقرار آرواتیک کمتر ناجور آروماتیک نسبت به بنزن که شکاف انرژی بین حالت پایه و حالت برانگیخته انتقال بار (CT) را کاهش می دهد.
اثرهای القایی حلقه های پر الکترون یا کم الکترون در به ترتیب دهندگی یا پذیرندگی.
چگالی الکترونی بپشتر پل.
مواد NLO آلی کاربردها خوبی در گستره هایی مانند الکترواپتیک و فوتونیک دارند(46). این مواد با میدان های الکترومغناطیس برهمکنش کرده و میدان های الکترومغناطیس نوینی ایجاد می کنند که فرکانس و فاز آنها تغییر کرده است.
فصل دوم: شیمی محاسباتی2-1مقدمهشیمی محاسباتی، پدیده های شیمیایی را بدون انجام آزمایش های تجربی امکان پذیر می کند. این روش نه تنها مولکولهای پایدار را مورد بررسی قرار می دهد بلکه مولکول هایی با طول عمر کوتاه حد واسط های ناپایدار و حتی حالت های گذار را نیز مورد بررسی قرار می دهد.همچنین از این طریق می توان اطلاعاتی راجع به مولکول ها و واکنش هایی که بررسی آن ها از طریق تجربی غیر ممکن است، بدست آورد. برای شروع یک مطالعه محاسباتی جنبه های زیادی باید در نظر گرفته شود از جمله اینکه روشهای محاسباتی باید با توجه به اندازه سیستم مورد مطالعه و خاصیت هایی که مورد نظر است انتخاب شوند.
2-2نیروهای بین مولکولیموضوع اصلی بیان نیروی بین دو مولکول توسط یک تابع انرژی پتانسیل است. در فاصله بی نهایت بین 2 اتم، هیچگونه برهمکنشی وجود ندارد و انرژی کل سیستم دو اتمی با مجموع انرژی های دو اتم مجزا برابر است.
اگر دو اتم به اندازه جزئی از هم فاصله داشته باشند، برهمکنش بین آنها بر انرژی کل سیستم تاثیر می گذارد و آن را افزایش می دهد.با توجه به متقارن بودن اتمها، انرژی برهمکنش بین آنها فقط به فاصله r بستگی دارد و مستقل از جهت گیری نسبی آنها می باشد.تغییر انرژی کل که ناشی از برهمکنش بین دو اتم است به عنوان تابع انرژی پتانسیل بین دو مولکول شناخته شده است .
بر این اساس، پتانسیل بین مولکولی عبارت است از تفاوت انرژی کل سیستم دو اتمی در جدایی بی نهایت و هنگامی که دو اتم به فاصله r از یکدیگر قرار گرفته باشند این اختلاف انرژی از لحاظ عددی با کار لازم برای آوردن دو اتم از فاصله بی نهایت به فاصله r برابر است.
2-3انواع نیروهای بین مولکولیبر اساس دانش کنونی، نیروهای بین ذره ای را می توان به چهار دسته تقسیم بندی نمود:
1-گرانشی
2-الکترومغناطیسی
3-هسته ای قوی
4-هسته ای ضعیف
نیروهای هسته ای قوی عامل ایجاد پیوند بین نوترون های و پروتون های درون هسته بوده و محدوده عملکرد آنها در حدود nm 10 می باشد.از طرف دیگر امروزه معلوم شده نیروهای هسته ای ضعیف دارای منشا الکترومغناطیسی بوده و نظیر نیروهای هسته ای دارای برد کوتاه هستند.با توجه به اینکه ابعاد مولکولی معمولا از مرتبهnm10×5 هستند لذا این نیروهای هسته ای نمی توانند مشارکت مؤثری در نیروی بین مولکولی داشته باشند. بر عکس ، نیروهای گرانشی دارای برد بسیار بلند بوده و می توانند به عنوان منبع جاذبه بین مولکولی در نظر گرفته شوند. اما از لحاظ بزرگی در حدود 10 برابر کمتر از نیروهای بین مولکولی هستند بنابراین نیروهای بین مولکولی بایستی دارای یک منشا الکترومغناطیسی باشند.منبع برهمکنش می تواند ناشی از ذرات باردار، الکترون ها و پروتون هایی که یک اتم یا مولکول را تشکیل می دهند باشد. بر اساس ماهیت مولکول های برهمکنش دهنده سه عامل ممکن است بر نیروی جاذبه بین آنها مؤثر باشد که به صورت زیر خلاصه می شوند.
2-3-1نیروهای الکترواستاتیکیمعلوم شده که بعضی از مولکول ها نظیر HCl به علت توزیع غیر یکنواخت بار الکتریکی در مولکول، دارای ممان دو قطبی دائمی می باشند. بنابراین بخشی از انرژی برهمکنش برد بلند این نوع مولکول ها از برهمکنش الکترواستاتیکی بین ممان های دو قطبی آنها ناشی می شود.به خاطر اینکه انرژی الکترواستاتیکی بین دو دوقطبی ارتباط قوی با جهت گیری نسبی آنها دارد، لذا گاهی به آن انرژی جهت گیری می گویند.
2-3-2نیروهای القاییاگر برهمکنش بین یک مولکول با گشتاور دو قطبی دائمی و یک مولکول غیر قطبی را در نظر بگیریم میدان الکتریکی مولکول دو قطبی توزیع بار الکتریکی را در مولکول دیگر تغییر داده و یک گشتاور دو قطبی القایی را در آن به وجود آورد. دو قطبی القا شده با دو قطبی القا کننده برهمکنش انجام داده و یک نیروی جاذبه تولید می شود. به هنگام برهمکنش دو مولکول قطبی این سهم القایی همزمان با سهم الکترواستاتیکی وجود دارد.
2-3-3نیروهای پراکندگیاین نیرو با ارزیابی افت و خیز در مقدار دانسیته الکترونی قابل بررسی است. این نیرو برای مولکول ها در حالت پایه همواره مقدار منفی خواهد داشت و در واقع از نوع جاذبه است که به نیروهای واندروالس معروف است. در برهمکنش دو مولکول که هیچ کدام از آن ها گشتاور دو قطبی دائمی ندارند درک منشا انرژی جاذبه ممکن است تا حدودی مشکل به نظر برسد. با این وجود می توان تصور نمود که در یک مولکول فاقد گشتاور دو قطبی دائمی، الکترون ها دارای یک حرکت پیوسته بوده و دانسیته الکترونی در مولکول به طور پیوسته در زمان و مکان در حال نوسان است. بنابراین در هر لحظه از زمان هر مولکول دارای یک دو قطبی الکتریکی لحظه ای خواهد بود. دوقطبی لحظه ای ایجاد شده در یک مولکول، یک دوقطبی لحظه ای را در مولکول دوم القا می کند. دوقطبی القا شده در مولکول دوم و دوقطبی القا کننده در مولکول اول با هم برهمکنش انجام داده و حاصل آن انرژی جاذبه ای است که انرژی پراکندگی نامیده می شود.
تعیین اندازه انرژی برهمکنش بسیار مشکل است. بنابراین روشهای مبتنی بر اندازه گیریهای تجربی نمی توانند ماهیت نیروهای بین مولکولی به درستی بیان کنند لازم است روشهای محاسباتی به کار برده شوند.
2-4روشهای مدل سازی کامپیوتری2-4-1مکانیک مولکولیدر مکانیک مولکولی از قوانین مرتبط با فیزیک کلاسیک برای پیش گویی ساختار و خواص مولکول ها استفاده می شود.بسیاری از برنامه های کامپیوتری از قبیل گوسینو هایپرکمو در بر دارنده روش های مکانیکی مولکولی بوده و این روش ها به طرق مختلف و با توجه به میدان نیروی به کار برده شده قابل استفاده هستند.لازم به ذکر است که هر میدان نیرو دارای بخش های اساسی زیر است. دسته ای از روابط ریاضی که چگونگی تغییرات انرژی پتانسیل یک مولکول را با توجه به موقعیت اتم های تشکیل دهنده آن تعیین می کنند.
مجموعه ای از پارامترها که تعیین کننده ثابت های نیرو هستند،و از طریق آن ها ارتباط بین خواص اتمی با انرژی و اطلاعات ساختاری نظیر طول پیوند و زوایای پیوندی بیان می شود.مکانیک مولکولی در انجام محاسبات ،الکترون های سیستم را به وضوح منظور ننموده و اثرات الکترونی بطور ضمنی و از طریق پارامترهای تعریف شده بررسی می شوند.از محدودیت های این روش به موارد زیر می توان اشاره نمود.
هر میدان نیروی خاص فقط برای سری محدودی از مولکول ها نتایج خوبی را بدست می دهد.در نظر گرفتن اثرات الکترونی بطور ضمنی و پارامتری باعث می شود که تخمین های مکانیک مولکولی در مسائل شیمیایی نظیر تشکیل پیوند،پیشگویی خواص شیمیایی مولکولی و برهمکنش اوربیتال های مولکولی غیر قابل استناد و ناکارآمد باشد.
2-4-2مکانیک کوانتومیمحاسبات در بردارنده خواص الکترونی،بر پایه قوانین مکانیک کوانتومی استوار است.مکانیک کوانتومی بیان می کند که انرژی و سایر خواص وابسته به آن برای یک مولکول با حل معادله شرودینگر بدست می آید:
Hᴪ =Eᴪ(1-12)
از آنجایی که برای اکثر سیستم ها،و حتی کوچکترین سیستم ها دارای تقارن کامل نیز، حل دقیق معادله شرودینگر عملی نیست،روش های مکانیک کوانتومی تقریب های ویژه ای را برای حل معادله شرودینگر به کار می برند. محاسبات مولکول ها در شیمی کوانتومی می تواند بر اساس سه روش زیر انجام گیرد:
2-5 طبقه بندی روش هاروش نیمه تجربی
روش آغازین
تئوری تابع چگالی(DFT)
2-5-1روش های نیمه تجربیدر روش های نیمه تجربی فقط از الکترون های لایه ظرفیت استفاده شده و الکترون های داخلی به صورت یک پتانسیل مرکزی، در نظر گرفته می شود. استفاده از این روش و وارد کردن پتانسیل موثر، در مواردی که مولکول مورد بررسی، شامل اتم های سنگین(نظیر فلز در برابر پیوندهای آنزیمی) باشد، از نظر زمان و هزینه مقرون به صرفه خواهد بود. در این روش فقط از اربیتال های نوع اسلیتر (STO) و مجموعه های پایه حداقل برای توصیف اربیتال های اتمی استفاده شده و برای سادگی محاسبات از بعضی پارامترهای حاصل از اندازه گیری های تجربی نیز استفاده می شود. رایج ترین روش های محاسباتی نیمه تجربی، عبارتند از: MNDO PM3 AM1، MINDO. با توجه به استفاده از پارامترهای تجربی، روش های نیمه تجربی فقط آرایش الکترونی حالت پایه را توصیف می کنند. توضیحات مفصل تر را درباره این روش می توان در منابع مختلف یافت.
2-5-2روش های آغازینعبارت Ab initio از نظر لغوی به معنای آغازین است اما در اینجا به معنای حل دقیق و بدون تقریب معادله شرودینگر است. این تعریف نشان می دهد که نتایج محاسباتی، به طور مستقیم از اصول نظری بدست می آیند و داده های تجربی و آزمایشگاهی هیچ دخالتی در آن ندارند. در حقیقت این یک تقریب در محاسبات مکانیک کوانتومی است. تقریب ها معمولا از تقریب های ریاضی نشات می گیرند مانند استفاده از یک تابع پیچیده و یا پیدا کردن جوابهای تقریبی برای یک معادله دیفرانسیلی پیچیده در یک محاسبه ab initio، نقطه آغاز یک ساختار هندسی از ملکول است که در آن ماهیت و مختصات هر یک از اتمها تعریف شده است.همچنین با توجه به اتم های موجوددر ملکول مورد نظر یک مجموعه پایه از اوربیتالهای اتمی انتخاب می شود. بنابراین در این روش بر خلاف روش های نیمه تجربی ، پارامترهای تجربی وارد محاسبات نشده و محاسبات بر قوانین مکانیک کوانتومی و برخی ثوابع فیزیکی نظیر سرعت نور، جرم وبارالکترون، بار هسته ها و ثابت پلانک استوار است.
2-5-3 تقریب هارتری- فاکپایین ترین سطح و متداول تربن نوع از محاسبات ab initio، محاسبات هارتری- فاک نامیده می شود که در آن عملگر هامیلتونی شامل دو عبارت، انرژی پتانسیل و انرژی جنبشی است. تقریب اولیه در این نوع محاسبه، تقریب میدان مرکزی خودسازگار است. دافعه کلونی الکترون-الکترون با انجام انتگرال گیری از عبارت دافعه محاسبه می شود. این یک محاسبه متغیر است به این معنا که انرژی های تقریبی محاسبه شده همگی برابر یا بزرگتر از مقدار انرژی واقعی هستند. یکی از مزیت های این روش، تفکیک معادله شرودینگر به تعدادی معادله تک الکترونی است که نتیجه آن یک تابع موج تک الکترونی بوده که یک اوربیتال نامیده شده و مقدار ویژه حاصل از آن بیانگر انرژی یک اوربیتال است. تقریب دوم در محاسبات هارتری- فاک این است که یک تابع موج با تعدادی توابع ریاضی توصیف می شود. توابع استفاده شده اغلب اوقات ترکیبی خطی از اوربیتال های گوسینی است.به علت ترکیب خطی اوربیتال های اتمی انرژی محاسبه شده، بزرگتر از انرژی حدی هارتری فاک می باشد. به منظور بدست آوردن یک اوربیتال با تقارن p,s یا d توابع گوسینی در یک تابع زاویه ای ضرب می شوند و سپس این اوربیتال ها به صورت یک دترمینان اسلیتر و با در نظر گرفتن دو شرط اساسی آرایش داده می شوند. شرط اول عبارت است از اینکه، الکترون ها باید غیر قابل تمییز باشند، شرط دوم آن است که تابع موج باید نسبت به جابجایی دو الکترون نامتقارن باشند.
با وجود استفاده از یک بسط طولانی در اوربیتالهای ملکولی و رسیدن به حد نهایی هارتری-فاک، هنوز هم با نقص هایی در تابع موج که بر آمده از تقریب های معادله هارتری-فاک می باشند روبرو هستیم.دو منبع مهم خطا در معادلات اولیه وجود دارد، یکی اینکه کل تئوری بر مبنای معادله شرودینگر است که اثرات نسبیتی در آن لحاظ نشده است، حرکت الکترون های داخلی با سرعتی است که در مقایسه با سرعت نور قابل صرف نظر کردن نیست واین سهم اثرات نسبیتی و ثابت نبودن جرم را نشان می دهد.ولی از آنجائیکه اکثر تغییرات شیمیایی و بیولوژیکی مولکول مربوط به الکترون های ظرفیتی اند، این خطا معمولا ثابت بوده و مشکل بزرگی را ایجاد نمی کند. منبع خطای دوم که جدی تر و با اهمیت تر است خطای مربوط به انرژی همبستگی نامیده می شود.
2-5-3-1تئوری اختلال مولر- پلستاثرات همبستگی الکترونی را می توان به صورت یک عبارت اختلال به تابع موج هارتری- فاک اضافه نمود. این روش، تئوری اختلال مولر- پلست نامیده می شود. بر مبنای این تئوری، روش HF معادل با اختلال مرتبه اول می باشد. یک مقدارکوچک از اثرات همبستگی با استفاده از اختلال مرتبه دوم از روش مولر پلست (MP2)، در محاسبات منظور می شود. محاسبات مرتبه سوم(MP3) و مرتبه چهارم (MP4) نیز عموما مورد استفاده قرار می گیرند. اما اختلال مرتبه پنجم(MP5) و درجات بالاتر از آن به دلیل مقرون به صرفه نبودن از نظر زمان محاسباتی به ندرت مورد استفاده قرار می گیرند. در تئوری اختلال، همخوانی یا عدم همخوانی نتایج انرژی محاسبه ای با مقدارواقعی، بستگی به ماهیت سیستم تحت بررسی دارد. یکی از مزیت های این روش دامنه کاربردی وسیع آن می باشد که محاسباتی با دقت را ایجاد می کند اما زمان محاسبات بسیار بالایی را نیاز دارد.
2-5-3-2روش بر همکنش های پیکربندیدر روش برهمکنش های پیکربندی برای وارد کردن اثرات همبستگی ترکیبات خطی بیشتری از حالتهای پایه و برانگیخته را در بدست آوردن تابع موج استفاده می کنند. محاسبات برهمکنش پیکربندی دارای صحت خیلی بالایی هستند. محاسبات برهمکنش پیکربندی بر اساس نحوه و تعداد حالت های برانگیخته در تشکیل هر دترمینان تقسیم بندی می شوند.
2-5-3-3روش میدان خودسازگار چند پیکربندیدر روش میدان خودسازگار چند پیکربندی در مقایسه با روش برهمکنش های پیکربندی تعداد کمتری از حالتهای برانگیخته در نظر گرفته می شود.حالتهای برانگیخته ای مدنظر هستند که سهم بیشتری را در انرژی همبستگی دارند ولی به کار بردن این روش مستلزم به کارگیری دقت زیادی در انتخاب حالتهای برانگیخته است و نتایج صحیح تری را می دهد.
2-5-4تئوری تابع چگال(DFT)تئوری تابع چگال(DFT) در سالهای اخیر شهرت زیادی پیدا کرده است. بر مبنا مشاهدات علمی نشان داده شده این روش از نظر سرعت محاسباتی پایین تر از روشهای دیگر با دقت و صحت مشابه می باشد. این تئوری نسبت به روشهای دیگر ab initio در سال های اخیر توسعه بیشتری یافته است.در این روش به منظور محاسبه انرژی یک مولکول به جای استفاده از یک تابع موج از دانسیته الکترونی استفاده می شود. از مزایای بزرگ DFT، اعمال انتگرال های دافعه کولمبی روی یک تابع سه بعدی و منظور کردن اندکی از اثرات همبستگی الکترونی در حین محاسبه می باشد. این روش از نظر محاسباتی و صحت نتایج، سریع تر و دقیق تر از روش HFمی باشد. امروزه اکثر محاسبات DFT ،با مجموعه پایهGTOبهینه شده HF انجام می شوند. البته صحت و درستی نتایج در صورت استفاده از مجموعه های پایه کوچک به میزان زیادی کاهش می یابد.از این رو با توجه به دقت وصحت نتایج، کوچکترین مجموعه پایه مورد استفاده G31-6 می باشد. با به کار بردن توابع پایه بهتری در محاسبات DFT می توان نتایج با حد دقت و صحت نتایج روش های محاسباتی MP2 بدست آورد. روش DFT به روش متعدد دیگری تقسیم می شود که ساده ترین آن روش، Xa نامیده می شود. در این روش محاسباتی اثر تعویض الکترونی در نظر گرفته می شود ولی از اثرات همبستگی الکترونی چشم پوشی می شود. در یک سری روش های ترکیبی توابع به دست آمده از روش های دیگر با اجزایی از محاسبات هارتری- فاک که معمولا انتگرال های تعویضی هستند تلفیق می شوند. عموماً روش های ترکیبی و تصحیح گرادیانی از نقطه نظر صحت و درستی بهترین نتایج را می دهند. از جمله این روشها می توان B3LYP، PBE، B3PW91،PW91 ، MPW1PW91 و ....را نام برد که روشهای ،PW91،PBE،MPW1PW91 برای محاسبات انرژی بر همکنش از نظر دقت و صحت مشابه MP2 می باشند ولی زمان محاسباتی خیلی کمتری را نیازمند هستند.
2-6مجموعه های پایهبعد از انتخاب روش محاسباتی، باید مجموعه های پایه به منظور ساختن اوربیتال های مولکولی فراگیر تعیین گردند تا روند محاسبات به مسیر مناسبی هدایت شود. این نکته باید در نظر گرفته شود که ممکن است یک روش و مجموعه پایه برای یک کاربرد، کاملاً به جا و منحصر به فرد باشد در حالیکه در سایر موارد غیر قابل استفاده باشد.اوربیتال های مولکولی ترکیب از اوربیتال های اتمی هستند که امروزه ترجیحاً مجموعه های پایه نامیده می شود. به دو طریق می توان از مجموعه پایه استفاده نمود. در روش اول اوربیتال های اتمی به عنوان توابع در نظر گرفته می شوند.در این روش از مجموعه های پایه حداقل استفاده و نتایج آن معمولاً برای مولکول های حجیم یا به منظور انجام پیش بینی های کیفی مورد استفاده قرار می گیرند. در روش دوم توابع تشکیل دهنده مجموعه پایه، شامل یک سری توابع ریاضی هستند که حداکثر انعطاف پذیری را متناسب با اوربیتال های مولکولی دارند. در این روش، مجموعه های پایه مورد استفاده از توابع گوسی تشکیل و با توجه به دقت لازم برای انجام محاسبات نوع و تعداد توابع گوسی مورد استفاده تعیین می شود. افزودن توابع قطبش پذیر و نفوذی به مجموعه های پایه یکی از راهکارهای ارتقاء و بهبود نتایج این روش محسوب می شود. همچنین استفاده از توابع پایه ظرفیتی شکافته ای، که در آن اوربیتال های ظرفیتی به دو یا سه تابع شکافته می شوند، متداول وکارساز است.به عنوان مثال در مجموعه پایه G311-6 اوربیتال های ظرفیتی به سه تابع شکافته می شوند.
2-6-1مجموعه پایه حداقلکوچکترین مجموعه های پایه، مجموعه پایه حداقل نامیده می شوند. از جمله مجموعه های پایه حداقل که بطور گسترده مورد استفاده قرار می گیرد، مجموعه پایه STO-nG است. معروف ترین مجموعه پایه حداقل، STO-3G است که ترکیب خطی از سه اوربیتال گوسینی تطبیق داده شده با یک اوربیتال اسلیتری می باشد. البته همانطور که در بخش قبل اشاره شد، مجموعه های پایه حداقل معمولاً برای مولکول های خیلی بزرگ و نتایج کیفی استفاده می شوند.
2-6-2مجموعه پایه ظرفیتی شکافتهمتداولترین مجموعه های پایه شکافته که توسط گروه پاپل مطرح شدند، عبارتند از:
7-41G, 6-311G, 6-21G, 4-22G, 6-31G, 3-21G
در 6-31GT، هر لایه مرکزی متشکل از شش تابع اولیه GTO و هر اوربیتال ظرفیتی آن با دو حالت انقباضی، یکی با سه تابع اولیه و دیگری با یک تابع اولیه گوسینی توصیف می شود. این نوع مجموعه های پایه بیشتر برای مولکول های آلی استفاده می شوند. برای اتم ها، سری پایه 3-21G برای همه اتم ها تا Xe و سری پایه 6-31G قابل کاربرد است.
برای اینکه اجازه دهیم شکل اوربیتال ها تغییر کند می توانیم سهم هایی را از اوربیتال ها با اندازه حرکت زاویه ای بالاتر در نظر آورد، به عنوان نمونه می توان از یک و دو اوربیتال d مربوط به هر اتم کربن استفاده نمود. نماد گذاری لازم برای نشان دادن این موضوع عبارت است از اضافه کردن یک حرف برای نوع اوربیتال در نظر گرفته شده در انتهای نام اختصاری ، به عنوان مثال 6-31G(2d,p) که معنی آن این است که دو اوربیتال d مربوط به اتم های سنگین و یک اوربیتال p مربوط به اتم های هیدروژن را در محاسبات وارد می کند.
2-6-3توابع پایه نفوذیتوابع پایه نفوذی، توابعی با نمادهای کوچک می باشند که شکل تابع موج را در فاصله دورتر از هسته توصیف می کنند. این نوع توابع برای آنیون های دارای توزیع دانسیته الکترونی بالا و همچنین برای برهمکنش های با دامنه بلند مورد استفاده قرار می گیرند. لازم به ذکر است که توابع نفوذی می توانند همراه با توابع پلاریزه، استفاده شده و به ایجاد سری های پایه 6-31+G و 6-31++G منتهی شوند.
2-6-4 مجموعه های پایه قطبش پذیرمجموعه پایه بهبود یافته با اضافه کردن یک یا دو علامت ستاره نظیر 6-31G**, 6-31G* مشخص می شوند. یک ستاره بیانگر این است که مجموعه ای از توابع اولیه d به اتم های غیر هیدروژنی اضافه می شود. دو ستاره مجموعه ای توابع p را به اتم های هیدروژن اضافه می کند. این نوع توابع، توابع پایه قطبش پذیر نامیده می شوند، زیرا به تابع موج قابلیت انعطاف پذیری بیشتری برای تغییرشکل می دهند.
2-7نرم افزارهای به کار رفته در این مطالعهHyperchem 8.0.3:

شکل (2-1) نمایی از نرم افزار هایپرکم.ساختار تمام مولکول های مورد نظر با استفاده از نرم افزارHyperchem 8.0.3رسم شده است.
Gaussian Viewer Version 5.0.8 :

شکل(2-2) نمایی از نرم افزار گوس ویو.برای رسم ساختارهای مورد نظر جهت اماده کردن فایل های ورودی نرم افزار محاسباتی از Gaussian Viewer Version 3.07 استفاده شده است.
Gaussian 2003 Version:

شکل (2-3) نمایی از نرم افزار گوسیین.به منظور بهینه کردن ساختارهای مورد نظر، تمامی ساختارها با استفاده از نرم افزار(48) Gaussian 2003 Version B.03با مجموعه پایه ها و سطح مناسب بهینه شده اند. مجموعه پایه 6-311G(d,p)(49.50.51) برای تما اتمها به کار رفته است. بهینه کردن ساختار کمپلکسها با استفاده از روش تابعگان چگالی B3LYPانجام شدهاست(52.53.54). آنالیز ارتعاشی نیز برای اطمینان از قرار داشتن کمپلکسها بر روی کمینه انرژی منحنی انرژی پتانسیل یعنی حالت پایه انجام شده است.
تمام داده های خروجی انرژتیک، ساختاری، ویژگی های و دیگر ویژگی ها با استفاده از این نرم افزار صورت گرفت. پس از بهینه کردن ساختارهای مورد نظر داده های طول ها و زوایای پیوندی با استفاده از نرم افزار Gaussian Viewer 3.07 خوانده شده اند. سیمای اوربیتالهای مولکولی نیز با استفاده از این نرم افزار رسم شده‌اند.
Chem Draw Version 9.0.1:

شکل (2-4) نمایی از نرم افزار کم دراو.برای رسم گرافیکی شکل تمام مولکولهای بررسی شده از نرم افزار Chem Draw Version 9.0.1 استفاده شده است.
ویژگی های سخت افزاری
تمام این نرم افزارهاتحت سیستم عامل Windows 7 Ultimateنصب شده اند. محاسبه ها با استفاده از رایانه Intel(R)Core(TM) 2Duo CPU 2.53GHzبا 4GB رم انجام شده است.
فصل سوم: بحث و نتیجه گیری3-1جنبه های پر انرژی (انرژتیک )شکل 3-1 بررسی بنزن و رنگسازهای دارای بورازین را در این پروژه - ریسرچنشان می دهد.

شکل (3-1)فرم رزونانسی رنگسازهای دارای بورازین با گروه های مختلف x .جدول 3-1 محاسبه انرژی، انرژی های نسبی برای تمام مولکول ها را نمایش می دهد. انرژی نسبی نشان می‌دهد که ایزومرB پایدارتر از ایزومر N در تمام گونه ها ست.
جدول (3-1) انرژی مطلق(هارتری)انرژی نسبی(E)ثابت هامت آنها (p)گشتاور دوقطبی رنگسازهای دارای بورازین با گروه های مختلف .xE(N) E(B) E p tot(N) tot(B)
H -551.2612 -551.2867 16.0114 0.00 1.6170 1.1312
F -650.5254 -650.5510 16.0681 0.15 1.5716 0.3888
Cl -1010.883 -1010.9086 15.7131 0.24 2.0451 1.0524
Br -3124.8041 -3124.8291 15.6812 0.23 1.9662 0.9264
OH -626.5042 -626.5308 16.7007 -0.38 3.2086 2.2789
NH2 -606.6340 -606.6614 17.1915 -0.57 3.8899 3.8318
Me -590.5887 -590.6147 16.2763 -0.14 1.9659 1.7426
CN -643.5280 -643.5516 14.8121 0.70 5.2518 4.3900
CF3 -888.4017 -888.4258 15.1485 0.53 5.2419 2.4079
CHO -664.6178 -664.6416 14.9093 - 4.3992 2.9788
COOH -739.8939 -739.9179 15.1083 0.44 3.0916 1.5469
NO2 -755.8200 -755.8431 14.4770 0.81 5.6899 4.6521
یک رابطه خطی خوب بین مقادیر انرژی های نسبی همراه با ثابت هامت آنها((p) ( ADDIN EN.CITE <EndNote><Cite><Author>March</Author><Year>1985</Year><RecNum>82</RecNum><DisplayText><style face="superscript">19</style></DisplayText><record><rec-number>82</rec-number><foreign-keys><key app="EN" db-id="xafwx29p8rax5cefev2vfv0w5d5fedpzzwwv">82</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>J. March </author></authors></contributors><titles><title>Advanced Organic Chemistry</title></titles><edition>3rd ed</edition><section>244</section><dates><year>1985</year></dates><pub-location>New York </pub-location><publisher>John Wiley &amp; Sons</publisher><urls></urls></record></Cite></EndNote>19 وجود دارد (شکل 3-2)

شکل (3-2) رابطه انرژی نسبی با ثابت هامت آنها (p).3-2گشتاور دو قطبیمقادیر گشتاور دو قطبی در جدول 1-1 جمع آوری شده است. در حال حاضر مقادیر ایزومر N گشتاور دو قطبی بیشتری از ایزومرB دارند. ارتباط خوبی بین و ثابت هامت آنها (p) نشان داده شده. شکل 3-3 را ببینید.

شکل (3-3) رابطه گشتاور دوقطبی با ثابت هامت(p).3-3قطبش پذیری قطبش پذیری واکنش یک سیستم در میدان الکتریکی اعمال شده را توصیف می کند(20).آن ها نه تنها قدرت فعل و انفعالات مولکولی را تعیین می کنند(21) (همانند القا بلند مدت بین مولکولی، نیروهای پراکندگی و غیره.) بلکه به عنوان مقطع پراکندگی های مختلف و فرایندهای برخورد و همچنین خواص نوری غیر خطی سیستم را تعیین می کند.
قطبش همسانگرد<α> به عنوان مقدار متوسط در معادله زیر محاسبه می شود:
(3-1)
و قطبش پذیری ناهمسانگردی هست:
Δα=(αXX- αYY)2+(αYY- αZZ)2+(αZZ- αXX)2212(3-2)
محاسبه مقادیر قطبش همسانگرد و ناهمسانگرد نشان می دهد این مقادیر در کمپلکس های پایدار کاهش می یابد، همان طور که انتظار می رود از اصول حداقل انرژی و حداقل قطبش پذیری در اکثر موارد (به جز OH، NH2 = x ، جدول(3-2))(22).
جدول (3-2)قطبش همسانگرد و نا همسانگرد رنگسازهای دارای بورازین با گروه های مختلف xB-isomer
xx yy zz <>
H 255.71 146.88 69.02 157.21 162.42
F 257.31 146.22 69.06 157.53 163.91
Cl 298.59 150.04 72.49 173.71 199.00
Br 314.96 153.43 75.96 181.45 211.20
OH 278.63 149.43 70.21 166.09 182.22
NH2 304.09 152.91 72.38 176.47 203.75
ME 289.33 155.58 78.54 174.49 184.74
CN 317.68 150.19 75.19 181.03 215.03
CF3 278.75 153.74 79.25 170.59 174.61
CHO 310.82 158.57 74.32 181.24 207.62
COOH 312.53 160.04 75.68 182.75 207.93
NO2 307.25 160.32 74.23 180.60 204.08
N-isomer
X xx yy zz <>
H 260.78 139.70 73.94 158.14 164.16
F 260.85 139.05 74.10 158.00 164.22
Cl 304.18 144.03 76.04 174.75 202.87
Br 320.34 147.51 79.45 182.44 215.10
OH 277.67 141.71 76.15 165.18 178.03
NH2 297.11 144.44 79.75 173.77 193.31
ME 292.30 148.75 83.39 174.82 185.10
CN 335.43 147.45 74.20 185.70 233.39
CF3 292.31 150.50 78.86 173.90 188.15
CHO 331.83 155.85 73.32 187.01 228.70
COOH 330.59 156.57 75.49 187.56 225.76
NO2 334.72 158.12 72.08 188.31 231.91
از سوی دیگر یک ارتباط خوب بین مقادیر قطبش همسانگرد و ناهمسانگرد با مقادیر نسبی انرژی وجود دارد.(شکل 3-4)

شکل (3-4)رابطه قطبش همسانگرد و نا همسانگرد (iso)N-isomer-(iso)B-isomer and(aniso)N-isomer-(aniso)B-isomer با ثابت هامت(p).3-4آنالیز اوربیتال جبهه اییک ویژگی جالب برای این مولکول ها شکاف انرژی Eg بین بالاترین اوربیتال مولکولی اشغال شده(HOMO) و کمترین اوربیتال مولکولی خالی (LUMO)است. شکاف انرژی به عنوان بازتابی از فعالیت های شیمیایی مولکول در نظر گرفته شده است. مقادیر انرژی اوربیتال جبهه ای در جدول 3-3 جمع آوری شده است.
جدول (3-3)انرژی اوربیتال جبهه ای (هارتری) انرژی شکاف (E) و سختی (S)و پتانسیل شیمیایی رنگسازهای دارای بورازین با گروه های مختلف xB-isomer
HOMO LUMO E S
H -0.2307 -0.0586 4.6814 2.3407 0.2136 -3.9372 3.3113
F -0.2316 -0.0606 4.6529 2.3264 0.2149 -3.9773 3.3999
Cl -0.2345 -0.0670 4.5582 2.2791 0.2193 -4.1036 3.6944
Br -0.2333 -0.0673 4.5193 2.2596 0.2212 -4.0909 3.7032
OH -0.2158 -0.0514 4.4735 2.2367 0.2235 -3.6357 2.9548
NH2 -0.2004 -0.0451 4.2273 2.1136 0.2365 -3.3414 2.6412
ME -0.2242 -0.0553 4.5965 2.2982 0.2175 -3.8044 3.1488
CN -0.2483 -0.0873 4.3799 2.1899 0.2283 -4.5666 4.7612
CF3 -0.2460 -0.0758 4.6327 2.3163 0.2158 -4.3801 4.1412
CHO -0.2444 -0.0893 4.2194 2.1097 0.2369 -4.5416 4.8884
COOH -0.2418 -0.0813 4.3685 2.1842 0.2289 -4.3973 4.4264
NO2 -0.2545 -0.1051 4.0651 2.0325 0.2459 -4.8930 5.8895
N-isomer
HOMO LUMO E S
H -0.2092 -0.0381 4.6550 2.3275 0.2148 -3.3653 2.4330
F -0.2109 -0.0401 4.6477 2.3238 0.21515 -3.4161 2.5109
Cl -0.2140 -0.0471 4.5407 2.2703 0.2202 -3.5542 2.7820
Br -0.2135 -0.0475 4.5171 2.2585 0.2213 -3.5516 2.7925
OH -0.1976 -0.0312 4.5255 2.2627 0.2209 -3.1142 2.1430
NH2 -0.1853 -0.0256 4.3456 2.1728 0.2301 -2.8719 1.8979
ME -0.2041 -0.0351 4.5968 2.2984 0.2175 -3.2554 2.3054
CN -0.2252 -0.0695 4.2360 2.1180 0.2360 -4.0116 3.7991
CF3 -0.2223 -0.0569 4.5007 2.2503 0.2221 -3.8009 3.2098
CHO -0.2212 -0.0735 4.0202 2.0101 0.2487 -4.0109 4.0017
COOH -0.2188 -0.0645 4.1990 2.0995 0.2381 -3.8562 3.5415
NO2 -0.2301 -0.0918 3.7628 1.8814 0.2657 -4.3816 5.1021
این مقادیر نشان می دهند مقادیر انرژی HOMOو LUMO در استخلاف های مولکولی کاهش می یابد، به جز OH,NH2،Me = x. همچنین این مقادیر درایزومر پایدارتر کاهش می یابد. شکل 3-5رابطه خطی بین انرژی اوربیتال مرزی و مقادیر ثابت هامت را ارائه می دهد.

شکل (3-5)رابطه اوربیتال جبهه ای با انرژی نسبی.جدول 3-3 شکاف HOMO-LUMO تمامی ساختارها را نمایش می دهد. این مقادیر جایگزینی از علل کاهش شکاف انرژی را از سوی دیگر محاسبات شکاف مقادیری را نشان می دهد، که این مقادیر افزایش پیدا می کند در ایزومر پایدارتر، همانطور که انتظار می رود از اصول انرژی حداقل و حداکثر سختی در اکثر موارد انتظاری می رود (به جز OH، NH2 = x و جدول 3-3) ارتباط خوبی در میان مقادیر سختی نسبی با مقادیر ثابت وجود دارد. (شکل3-6)

شکل (3-6)رابطه بین مقادیر سختی و ثابت هامت (به جز OH,Me,NH2 )به منظور ارزیابی پتانسیل شیمیایی ()از این کمپلکس ها، این مقایر را می توان از انرژی های اوربیتال HOMOو LUMO با استفاده از بیان تقریبی زیر محاسبه کرد(23)و(24):
=(HOMO + LUMO)/2
این مقادیر نشان می دهد که ایزومر پایدارتر دارای پتانسیل شیمیایی کمتری است.
برای محاسبه الکترو فیلیسیتی از این کمپلکس ها، شاخص، با استفاده از عبارت زیر محاسبه می شود:
ω=μ22ηمقادیر شاخص الکترو فیلیسیتی در جدول 3-3 نشان می دهد ایزومر پایدارتر بزرگترین الکترو فیلیسیتی را دارد.
3-5تجزیه و تحلیل ساختاریشکل هندسی بهینه سازی شده رنگسازی های دارای بورازین مورد مطالعه در کار با برچسب زدن اتم در شکل3-1 نشان داده شده است. همه مولکول های مورد مطالعه اساساً غیر مسطح هستند. جدول 3-4 نشان می دهد داده های ساختاری انتخاب شده برای ساختارهای بهینه شده با گروه های مختلف x.
این مقادیر نشان می دهد که باندهای C1C2، C3C4، C5C6 بلندتر هستند در حالی که باندهای B1N2 و B3N3 کوتاه ترند. این تغییرات در طول باند نشان می دهد سهم بیشتر ساختار رزونانسی یونی ناآروماتیک را نشان می دهد.
جدول (3-4)حداکثر طول موج جذب شده(max)،قدرت نوسانگر رنگسازهای دارای بورازین با گروه های مختلف xB-isomer
X B1 N1 N1B2 B2N2 N2B3 B3N3 N3B1 B1C2’ C1’C2’ C1’C1 C1C2 C2C3 C3C4 C4C5 C5C6 C6C1
H 1.439 1.428 1.429 1.430 1.427 1.438 1.559 1.345 1.469 1.404 1.391 1.392 1.396 1.388 1.406
F 1.438 1.428 1.429 1.430 1.427 1.438 1.559 1.345 1.469 1.404 1.391 1.385 1.389 1.387 1.406
Cl 1.438 1.428 1.429 1.430 1.427 1.438 1.560 1.345 1.469 1.403 1.391 1.389 1.393 1.387 1.405
Br 1.438 1.428 1.429 1.430 1.427 1.438 1.560 1.345 1.469 1.403 1.391 1.390 1.394 1.388 1.405
OH 1.440 1.427 1.430 1.430 1.426 1.440 1.557 1.346 1.466 1.402 1.390 1.395 1.400 1.384 1.408
NH2 1441 1.426 1.430 1.431 1.425 1.441 1.555 1.348 1.463 1.405 1.387 1.403 1.407 1.383 1.407
ME 1.439 1.427 1.429 1.430 1.426 1.439 1.558 1.346 1.468 1.402 1.392 1.396 1.403 1.386 1.406
CN 1.436 1.429 1.429 1.430 1.428 1.436 1.563 1.345 1.469 1.405 1.387 1.401 1.405 1.384 1.406
CF3 1.437 1.429 1.429 1.430 1.428 1.437 1.562 1.344 1.470 1.403 1.390 1.393 1.398 1.385 1.406
CHO 1.437 1.429 1.429 1.430 1.428 1.437 1.562 1.345 1.468 1.405 1.389 1.397 1.403 1.382 1.410
COOH 1.437 1.429 1.429 1.430 1.428 1.437 1.562 1.345 1.469 1.405 1.388 1.398 1.401 1.384 1.407
NO2 1.436 1.480 1.429 1.430 1.429 1.436 1.564 1.345 1.469 1.406 1.388 1.390 1.393 1.388 1.407
N-isomer
X N1 B1 B1N2 N2B2 B2N3 N3B3 B3N1 N1C2’ C1’C2’ C1’C1 C1C2 C2C3 C3C4 C4C5 C5C6 C6C1
H 1.445 1.424 1.428 1.429 1.425 1.447 1.417 1.340 1.468 1.405 1.391 1.393 1.395 1.389 1.406
F 1.445 1.424 1.428 1.429 1.425 1.447 1.417 1.340 1.468 1.405 1.391 1.385 1.388 1.389 1.406
Cl 1.446 1.423 1.428 1.429 1.424 1.448 1.415 1.341 1.466 1.405 1.390 1.389 1.392 1.388 1.406
Br 1.446 1.423 1.428 1.429 1.424 1.448 1.415 1.341 1.466 1.405 1.391 1.390 1.392 1.389 1.406
OH 1.444 1.425 1.428 1.428 1.426 1.446 1.420 1.340 1.467 1.403 1.391 1.394 1.398 1.386 1.408
NH2 1.443 1.425 1.428 1.428 1.427 1.445 1.421 1.340 1.466 1.404 1.388 1.402 1.404 1.386 1.406
ME 1.444 1.425 1.428 1.429 1.425 1.446 1.418 1.340 1.467 1.402 1.392 1.396 1.402 1.387 1.407
CN 1.448 1.422 1.428 1.430 1.422 1.450 1.411 1.343 1.463 1.407 1.386 1.402 1.405 1.384 1.409
CF3 1.447 1.423 1.428 1.430 1.423 1.449 1.413 1.342 1.465 1.405 1.389 1.393 1.397 1.386 1.408
CHO 1.448 1.422 1.428 1.430 1.423 1.450 1.412 1.343 1.462 1.407 1.388 1.397 1.404 1.381 1.413
COOH 1.447 1.423 1.428 1.430 1.423 1.449 1.413 1.342 1.464 1.407 1.387 1.398 1.401 1.383 1.409
NO2 1.449 1.422 1.428 1.430 1.422 1.451 1.410 1.343 1.462 1.409 1.386 1.391 1.394 1.384 1.410
3-6طیف های الکترونیشدیدترین انتقال الکترونی (max) از مولکولها را یافتیم. طول موج، مقاومت نوسانگر، ترکیب انتقالات توسط محاسبات TD-DFT به دست آمده در جدول 3-5داده شده است. این محاسبات نشان دهنده کاهش max در ایزومر B هست.
جدول (3-5)مقادیر اجزا و tot(10-30 esu) رنگسازهای دارای بورازین با گروه های مختلف xN-isomer B-isomer
Character max f max F
H HOMOLUMO 286.95 0.6877 277.81 0.8117
F HOMOLUMO 288.60 0.5803 279.87 0.7579
Cl HOMOLUMO 294.37 0.7667 286.60 0.8986
Br HOMOLUMO 296.29 0.8082 290.02 0.9224
OH HOMOLUMO 296.39 0.5979 290.45 0.8057
NH2 HOMOLUMO 308.24 0.6218 306.66 0.8390
ME HOMOLUMO 290.82 0.7622 283.37 0.9175
CN HOMOLUMO 309.30 0.9708 295.71 0.9774
CF3 HOMOLUMO 294.60 0.8166 281.36 0.8660
CHO HOMOLUMO 323.59 0.9312 306.52 0.9179
COOH HOMOLUMO 313.42 0.9459 298.05 0.9504
NO2 HOMOLUMO 352.16 0.6839 326.03 0.6617
یک ارتباط خوب بین pوmax(=max, N-isomer -max, B-isomer) وجود دارد برای تمامی استخلاف ها، به جز Br و CN و Cl = x (شکل 3-7) شدیدترین انتقال الکترونی برای همه مولکول ها به انتقالات HOMO-LUMO نسبت داده می شود.

شکل (3-7)رابطه بینmax(=max, N-isomer -max, B-isomer) و ثابت هامت(p)،به جز (Cl, CN, Br).3-7فوق قطبش پذیریاولین مقادیر فوق قطبش پذیری استاتیک(tot) برای همه مولکول ها در جدول 3-6 نشان داده شده است.
جدول (3-6) اجزاء و مقادیر tot(10-30 esu) برای رنگسازهای دارای بورازین با گروهای مختلف X-B-isomer
X H F Cl Br Me NH2 CN COOH CHO NO2 CF3 OH
βXXX 27.92 26.61 21.49 20.99 29.33 57.02 15.42 4.93 68.14 3.67 10.33 48.85
βXXY -9.91 -13.85 -11.08 -10.08 -33.26 -24.01 -6.88 -1.79 -25.08 -4.08 -7.31 -21.73
βXYY 4.12 1.54 -0.66 0.10 10.95 7.76 -1.39 3.56 14.93 3.49 1.20 4.83
βYYY 4.43 7.11 10.78 9.09 16.90 10.21 7.00 0.90 -5.81 3.09 3.94 3.26
βXXZ -42.46 -46.68 -19.80 -7.01 -63.98 -78.85 -6.25 20.84 -24.35 22.80 0.61 -65.60
βXYZ 22.02 30.45 21.38 13.69 22.40 35.23 14.20 0.84 23.86 -1.27 14.17 39.39
βYYZ 17.17 21.99 33.30 37.40 -13.14 32.28 43.58 47.38 30.67 47.21 41.22 24.84
βXZZ -73.27 -125.84 -127.38 -144.89 -119.27 -341.15 49.14 127.63 158.15 247.97 -0.65 -214.01
βYZZ 44.32 74.29 86.67 94.46 76.66 298.37 -25.12 -83.97 -92.64 -156.04 -0.49 96.98
βZZZ 702.19 1222.74 1411.03 1642.97 1291.75 3344.65 -265.34 -959.81 -1360.79 -2515.21 192.77 2159.49
βtot 5.87E-30 1.04E-29 1.24E-29 1.45E-29 1.05E-29 2.87E-29 2.06E-30 7.83E-30 1.19E-29 2.13E-29 2.03E-30 1.84E-29
βtot10-30 5.87 10.4 12.36 14.52 10.53 28.7 2.06 7.83 11.93 21.28 2.03 18.37
X H F Cl Br Me NH2 CN COOH CHO NO2 CF3 OH
βXXX 247.31 -62.44 -70.46 -71.57 -72.78 -52.44 -78.01 -84.23 -28.74 -83.25 -73.97 -54.15
βXXY 56.14 1.42 8.41 10.24 -10.93 0.55 19.91 25.08 1.05 23.13 18.90 -7.18
βXYY -118.15 6.78 -0.60 -1.83 14.06 10.16 -6.89 -4.92 5.59 -2.67 -7.83 9.90
βYYY 10.69 1.80 9.41 11.30 14.80 10.00 4.63 1.12 -4.83 2.69 5.99 1.17
βXXZ -16.83 130.47 168.08 183.09 121.68 124.45 205.88 231.36 196.48 2.22 191.36 124.20
βXYZ 55.60 32.42 15.30 6.60 15.46 46.48 -19.69 -35.69 -19.04 -47.56 -14.32 48.57
βYYZ -4.49 -3.04 16.05 20.13 -32.96 -17.82 33.65 33.20 21.67 41.72 31.66 -9.35
βXZZ -24.05 -10.19 13.26 10.97 -1.53 -104.13 152.54 207.31 219.93 324.39 81.17 -56.11
βYZZ 1.08 10.43 -1.62 -0.20 1.07 172.54 -117.38 -169.26 -174.82 -266.02 -73.68 27.66
βZZZ 7.03 234.41 79.71 157.52 59.52 1848.99 -2007.88 -2856.46 -3397.78 -5040.28 -1030.40 979.37
βtot 1.09E-30 3.18E-30 2.34E-30 3.17E-30 1.38E-30 1.70E-29 1.53E-29 2.25E-29 2.76E-29 4.33E-29 6.99E-30 9.50E-30
βtot10-30 1.09 3.18 2.34 3.17 1.38 17.02 15.31 22.45 27.57 43.27 6.99 9.5
N-isomer
نتایج نشان می دهد که بزرگی اولین تنسور فوق قطبش پذیری همه مولکول ها نسبتاً متوسط است و NO2 و NH2 بیشترین مقدار ایزومر N و B را به ترتیب دارند. همچنین این مقادیر نشان می دهد اولین مقدار فوق قطبش پذیری ایزومر بیشتر از ایزومر B با خروج استخلافات هستند. از سوی دیگر این مقادیر ایزومر N کمتر از ایزومر β با استخلافات دهنده هستند.
یک ارتباط خوب بین tot و max در ایزومر N برای همه استخلافات نشان داده شده است (شکل 3-8). اما ارتباط مشابهی در ایزومر B برای استخلاف های دهنده و خارج کردن استخلاف ها وجود دارد.

شکل (3-8)رابطه بین اولین قطبش پذیری(tot) و max.
نتیجه کلی:مطالعه خواص الکتریکی، ساختاری، اسپکتروسکوپی و همچنین به عنوان اولین فوق قطبش پذیری استاتیک رنگسازها دارای بورازین نشان داد پایداری ایزومر B از گونه N بیشتر است. کاهش مقادیر قطبش همسانگرد و ناهمسانگرد و افزایش مقادیر شکاف HOMO-LUMO در کمپلکس های پایدار ناسازگار با اصول انرژی حداقل و قطبش حداقل در اکثر موارد بود (به جز OH،NH2 = x).
محاسبات نشان داد که شدیدترین جهش الکترونی با توجه به انتقال HOMOLUMO در همه مولکول هاست.
مطالعات تئوری نشان داد استخلاف های گیرنده (پذیرنده) باعث افزایش مقادیر اولین فوق قطبش پذیری در ایزومر N نسبت به ایزومر B می باشد، این مقادیر در ایزومر N کمتر از ایزومر B با استخلاف دهنده است.

کارهای آیندهبر اساس مطالعه انجام شده و نتیجه های به دست آمده می توان کارهای زیر را در ادامه این مطالعه پیشنهاد نمود:
بررسی اثر نوع مجموعه پایه،روش محاسباتی بر روی ساختارهای مورد نظر.
بررسی اثر حلال بر روی خواص و ساختار گونه های بررسی شده.
بررسی ساختارو خواص دیگر رنگسازهای دارای حلقه آروماتیک معدنی.
بررسی اثر طول زنجیر کربن-کربنی بر روی ساختار و خواص رنگساز.

مراجع ADDIN EN.REFLIST (1) C. D.Dimitrakopolous,; P.Malenfant, Adv. Mater.14(2002)pp 99-114.
(2) D. R.Kanis,; M. A.Ratner,; T. J.Marks, Journal of Organometallic Chemistry 614–615 (2000) pp 309–313(3) P. J.Mendes,; T. J. L.Silva,; A. J. P.Carvalho,; J. P. P.Ramalho, Journal of Molecular Structure: THEOCHEM (2010)pp 33–42.(4) D.Avcı,; A.Basoglu,; YAtalay, Struct Chem (2010)pp227-234.(5) M.Medved,; S.Budzák,; I. Cernušák, Journal of Molecular Structure: THEOCHEM ,961 (2010),pp194-201.
(6) W.Bartkowiak,; K.Strasburger, Journal of Molecular Structure: THEOCHEM 960 (2010) pp 93–97 .
(7) Souza, L. A. D.; Jr., A. M. D. S.; Junqueira, G. M. A.; Carvalho, A. C. M.; Santos, H. F. D. Journal of Molecular Structure: THEOCHEM (2010), 92-101.(8) A.Karton,; M. A.Iron,; M. E. v. d.Boom,; J. M. LMartin,. J. Phys. Chem. A (2005)pp109-113.
(9) P. C.Ray, Chemical Physics Letters (2004)pp, 354-359.(10) A.Hameed,; A.Rybarczyk-Pirek,; J.Zakrzewski, Journal of Organometallic Chemistry (2002)pp 315-317.
(11) M. J.Frisch,; G. W.Trucks,; H. B.Schlegel,; G. E.Scuseria,; M. A.Robb,; J. R.Cheeseman, Gaussian, Inc., Pittsburgh PA, (2003).(12) J. S.Dewar, M.; C. H.Reynolds, J. Comp. Chem.(1986),pp141-146.(13) K.Raghavachari,; J. A.Pople,; E. S.Replogle,; M.Head-Gordon, J. Phys. Chem. A (1990)pp 94-101.(14) A. D.McLean,; G. S.Chandler, J. Chem. Phys. (1980)pp 72-77.(15) R.Krishnan,; J. S.Binkley, R.Seeger, J. A.Pople, J. Chem. Phys. (1980)pp645- 650.(16) A. D.Becke, J. Chem. Phys (1993)pp 98-104.(17) D. A.Keleiman, Phy. Rev. (1962) pp 126-129.
(18) E.Runge, E. K. UGross,. Phys. Rev. Lett. (1984)pp 52-59.(19) J.March, Advanced Organic Chemistry; 3rd ed ed.; John Wiley & Sons: New York 1985.(20) C. R.Zhang,; H. S.Chen,; G. H.Wang, Chem. Res. Chinese (2004)pp 20-28.(21) Cheng, H.; Feng, J.; Ren, A.; Liu, J. Acta Chim. Sin. 2002, 60, 830.(22) Roy, D. R.; Chattaraj, P. K. r. J. Phys. Chem. A 2008, 112, 1612.(23) Pearson, R. G. Chemical Hardness; Wiley-VCH: Oxford, 1997.(24) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.(25) M. Hofmann, P.v.R. Schleyer, Inorg. Chem. 1999, 38, 652; (b) M. Unverzagt, H.J. Winkler, M.Brock, M. Hofmann, P.v.R. Schleyer, W. Massa, A. Berndt, Angew. Chem., Int. Ed. Engl. 1997, 36, 853.(26)P . von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. Van Eikema-Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
(27)K.Michatl .Cyrañski, M.Tadeusz. Krygowski, M. Wisiorowski, Nicolaas J. R. van Eikema Hommes, Paul von Ragué Schleyer, Angewandte Chemie internl. Ed., (1998) pp 37-41.
(28) P. Von, R. Schleyer, H. Jiao, N. J. R. Van Eikema-Hommes, V. G.Malkin, O. L. Malkina, J. Am. Chem. Soc. (1997)pp 119-224.
(29)C. Corminboeuf, Th. Heine, G.Seifert, P.von Ragué Schleyer and Jacques Weber,  Phys. Chem. Chem. Phys., (2004)pp 273-284.
(30) C. Corminboeuf, Th. Heine, G.Seifert, P.von Ragué Schleyer and Jacques Weber,  Phys. Chem. Chem. Phys., (2004)pp 273-284.
(31) C R. Miao, G. Yang, C. Zhao, J. Hong, L. Zhu, J. Mol. Struct.:(THEOCHEM), (2005)pp 715-722.
(32)V. G.Malkin,; O. L.Malkina, L. A.Eriksson,; D. R. Salahub, J .Am. Chem. Soc. (1994)pp 116-124.
(33) (a)W. H. Flygare, Chem. Rev. 1974, 74, 653. (b)D. H. Hutter, W. H. Flygare, Top. Curr. Chem. (1976)pp 63-69.
(34) T. A. R. FKeith,. W. Bader, Chem. Phys. Lett. (1993)pp 210-223.
(35) H. J. Dauben, Jr., J. D.Wilson, J. L. Laity, J. Am. Chem. Soc. (1968)pp 90-95.
(36) The delocalization index is a measure of the number of electrons that are shared or exchanged between two atoms or basins. Integration of the Fermi hole density leads to the localization index (LI) and delocalization index. For more information see F--era, X.; Austen, M. A.; Bader, R. F. W.; J. Phys. Chem. A 1999, 103, 304; Merino, G.; Vela, A.; Heine, T.; Chem. Rev. (2005)pp 105-114.
(37) (a)R. W. F. Bader. Atoms in molecules: A quantum Theory; Claredon: Oxford, 1990.(b) R. W. F. Bader. Acc. Chem. Res. 1985,18, 9.(c) R. W. F. Bader. Chem. Rev. (1991)pp 91-98.
(38)J.Poater,; Solà, M., Duran, M.; F--era, X.; J. Chem.Phys.A (2001)pp 105-111.
(39) J.Poater,; X.F--era,; M.Duran,; M.Solà,; Chem. Eur. J. (2003)pp 422-426.
(40)density, degeneracy and delocalization-bases index of aromaticity
Caio L. Firme, Sergio E. Galembeck, O. A. C. Antunesa and Pierre M. Esteves J. Braz. Chem. Soc., (2007)pp 18-24.
(41)(a) P.v.R. Schleyer. Chem. Rev 2001,101,1115.(b)T.M. Krygowski, B. T. Stepiern, Chem. Rev., (2005) pp105-109.
(42)Stock A., Pohland E (1926). "Boric acid solution, VIII Regarding knowledge of B2H6 and B5H11".HYPERLINK "http://en.wikipedia.org/wiki/Berichte"Berichte (59): 2210–2215.
(43)Polymeric precursors to boron based ceramics Larry G. Sneddon, Mario G. L. Mirabelli, Anne T. Lynch, Paul J. Fazen, Kai Su, and Jeffrey S. Beckdon, Pure & Appl. Chem., 63, (1991)pp 407-413.
(44)Jong-Kyu Jeon, Yuko Uchimaru, and Dong-Pyo Kim Inorg. Chem., 43 ,(2004)pp 479-488.
(45)M. L. H.Green,; S. R.Marder,; M. E.Thompson,; J. A.Bandy,;Bloor, D.; P. V.Kolinsky,; R. J. Jones, Nature (London) (1987)pp 360-362.
(46)A. Karton, A.Mark Iron, E.Milko. van der Boom,* and Jan M. L. M J. Phys. Chem. A 2005, 109, 5454-5462, and references in it
(47) R. W. Boyd, Nonlinear Optics, 2nd ed.; Academic Press: SanDiego, CA, 2003.(53) Dalton, L. R. J. Phys.: Condens. Matter 2003, 15, R897-R934.(54) van der Boom, M. E. Angew. Chem., Int. Ed. 2002, 41, 3363-3366.(55) van der Boom, M. E.; Marks, T. J. Layer-by-Layer Assembly of
Molecular Materials for Electrooptical Applications. In Polymers forMicroelectronics and Nanoelectronics; Lin, Q., Ed.; ACS Symposium Series
874; American Chemical Society: Washington, DC, 2004; pp 30-43.
(48)risch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03; Gaussian, Inc., Pittsburgh PA,: 2003.
(49)R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys 54 (1971) pp 724-733.
(50)P. C. Hariharan, J. A. Pople, Mol. Phys 27 (1974) 209-212.
(51)M. S. Gordon, Chem. Phys. Lett. 76 (1980) pp 163-175.
(52) C. C. J. Roothan, "New Developments in Molecular Orbital Theory," Rev. Mod.Phys. 23, (1951).pp69-77.(53) J. A. Pople and R. K. Nesbet, "Self-Consistent Orbitals for Radicals," J. Chem. Phys. 22, (1954) pp571-584.
(54) R. McWeeny and G. Dierksen, J. Chem. Phys., (1968)pp49-56.

نمونههایی از فایلهای ورودی فایل ورودی برای بهینه کردن ساختار و محاسبه فرکانسهای ارتعاشی و فوق قطبش پذیری
%chk=o1-OH.chk
%mem=6MW
%nproc=1
# rb3lyp/6-311g(d,p) opt freq
Title Card Required
0 1
B
N 1 B1
B 2 B2 1 A1
N 3 B3 2 A2 1 D1 0
B 4 B4 3 A3 2 D2 0
N 1 B5 2 A4 3 D3 0
H 1 B6 2 A5 3 D4 0
H 2 B7 1 A6 6 D5 0
H 3 B8 2 A7 1 D6 0
H 4 B9 3 A8 2 D7 0
H 5 B10 4 A9 3 D8 0
C 6 B11 1 A10 2 D9 0

Payannameh

.1-2موضوع27
.2-2شیوه ها28
.3-2نتایج آزما یش های بالینی30
.4-2تحقیق پرسشنامه ای34
.5-2پیاده سازی داده های جمع آوری شده با استفاده از شبکه های عصبی36
فصل سوم: روش پیاده سازی شبکه های عصبی با استفاده از FPGA
.1-3 مقدمه ای بر 43..…FPGA
.2-3روش پیاده سازی شبکه های عصبی با استفاده از 48FPGA
فصل چهارم:
نتیجه گیری و پیشنهادات69
پروژه - ریسرچارائه شده در پجمین کنفرانس بین المللی سیستم های هوشمند WSEASکشور اسپانیا (مادرید 73(2006
چکیده انگلیسی77
فهرست جدول ها
عنوانصفحه
.1-1جدول: : توابع مهم قابل استفاده در شبکه های عصبی 12..................................................
.1-2 جدول : سطح آماری گروههای تحت درمان و کنترل 31..................................................................................................
.2-2جدول: درصدلارو آلوده در 38 دسته از گروههای تحت کنترل و بررسی 33................................................
.3-2جدول: نشان دهنده درصد وجود انگلهادر دامهای موردا زمایش 382
.4-2جدول: نتایج شبیه سازی برای داده های تست 41...........
فهرست شکل ها عنوان صفحه
.1-1شکل: جریان اطلاعات در سیستم عصبی انسان 7
.2-1شکل: مدل سازی یک نورون مصنوعی 11
.3-1شکل: شبکه عصبی با طراحی پیش رو سه لایه 15
.4-1شکل: ساختار شبکه عصبی با طراحی پس انتشار سه لایه 17
.5-1شکل: منحنی تغییرات تابع انعطاف پذیر تک قطبی نسبت به پارامتر a 23
.6-1شکل: منحنی تغییرات تابع انعطاف پذیر دو قطبی نسبت به پارامتر a ٢٣
.1-2شکل: ساختار شبکه عصبی طراحی شده 39
.2-2شکل: کاهش خطا در حین شبیه سازی 40
.1-3شکل: ساختار آرایه ای یک PLA 45
.2-3شکل: ساختار آرایه ای یکSPLD 46
.3-3شکل: یک ساختار LUTچهار ورودی که عمل AND را انجام می دهد 47
.4-3شکل: شمای کلی شبکه پیاده سازی شده با FPGA 50
.5-3شکل: پیاده سازی تابع فعالیت برای نورون های ورودی 52
.6-3شکل: پیاده سازی تابع فعالیت برای نورون های خروجی 53
.7-3شکل: پیاده سازی تابع مجموع حاصل ضرب 54
.8-3شکل: جمع کننده 16 بیتی 55
.9-3شکل: جمع کننده 32 بیتی 56
.10-3شکل: مقایسه تابع سیگموئید و بسط مک لورن تا جمله X 11 58
.11-3شکل: پیاده سازی تابع سیگموئید 61
.12-3شکل: شمارنده 16 بیتی 62
.13-3شکل: T Flip Flop 63
.14-3شکل: مالتی پلکسر دو به یک 63
.15-3شکل: شیفت رجیستر 64
.16-3شکل: لچ 16 بیتی 65
.17-3شکل: شیفت دهنده به چپ و راست 66
.18-3شکل:مقایسه کننده 32 بیتی 67
چکیده :
شبکه های عصبی با توجه به توان بالا درپـردازش موازی،قابلیـت یـادگیری، تعمـیم، طبقـه بندی، قدرت تقریب، به خاطر سپردن و به خـاطر آوردن الگوهـا، خیـزش وسـیعی در زمینـه هـای مختلف هوش مصنوعی ایجاد کرده اند. از این رو به دلیل عملکرد خوب شبکه های عصبی مصنوعی برای شناسایی الگو، در این پایان نامه از شبکه های عصبی چنـد لایـه جهـت پیـاده سـازی سـخت افزاری سیستم استفاده شده است و روش جدیدی برای پیاده سازی شـبکه هـای عـصبی بـر روی
FPGA ارائه شده است . برای پیاده سـازی شـبکه عـصبی از داده هـای آمـاری اداره دامپزشـکی منطقه مغان استان اردبیل به عنوان مثال کاربردی استفاده شده است .
ضرایب وزن و بایاس شبکه عصبی MLP که از شبیه سازی توسط MATLAB بـه دسـت آمـده
است، برای پیاده سازی برروی FPGA، از سری XC 4000 استفاده شده است. برای پیاده سازی
برروی FPGA، از نرم افزار Foundation 4,1 بهره جستیم وتمام مدارات منطقی توسط این نـرم
افزار طراحی شده است . نتایج به دست آمده گویای این مطلب است که FPGA به دلیـل داشـتن
انعطاف پذیری و گیت های منطقی زیاد، برای پیاده سازی شبکه های عصبی ،IC مناسبی است .
١
مقدمه

مقدمه:
شبکه های عصبی با توجه به توان بالا درپردازش موازی،قابلیت یادگیری، تعمیم، طبقه بندی، قدرت تقریب، به خاطر سپردن و به خاطر آوردن الگوها، خیزش وسیعی در زمینه های مختلف هوش مصنوعی ایجاد کرده اند.از این رو به دلیل عملکرد خوب شبکه های عصبی مصنوعی برای شناسایی الگو، در این پایان نامه از شبکه های عصبی چند لایه جهت پیاده سازی سخت افزاری سیستم استفاده شده است. با توجه به طراحی سیستم های هوشمند و کوچکی که در لوازم روزمره امروزی کاربرد دارند، و از طرفی امکان ارتباط آنها به کا مپیوتر وجود ندارد نیاز به پیاده سازی سخت افزاری شبکه های عصبی در حجم کوچک احساس می شود و با توجه به این که آی
سی های FPGA بسیار انعطاف پذیر می باشند و به صورت نرم افزاری تمام طرح های سخت افزاری را می توان پیاده نمود لذا گزینه مناسبی جهت پیاده سازی سخت افزاری شبکه های عصبی می باشد.
در این پروژه یک روش برای پیاده سازی شبکه عصبی بر روی FPGA ارائه شده است .
برای پیاده سازی شبکه عصبی از داده های آماری اداره دامپزشکی منطقه مغان استان اردبیل استفاده شده است .
هدف از جمع آوری این داده های آماری تشخیص و شناسایی یک الگو جهت پیاده سازی در یک
شبکه عصبی از نوع چند لایهMLP است .
برای آموزش شبکه عصبی از روش پس انتشار خطا با 300 بار آموزش برای رسیدن به
حداقل خطای مورد نظر استفاده شده است.
ضرایب وزن و بایاس های به دست آمده از آموزش شبکه عصبی در مرحله بعد برای پیاده سازی آن
روی FPGA استفاده می شود.
2
مقدمه

تعداد داده های آماری در این پروژه 38 داده می باشد که هر یک دارای سه ورودی و یک خروجی است و به عنوان داده ورودی و خروجی برای آموزش شبکه مورد نظر استفاده شده است .
از این 38 داده 34 داده برای آموزش شبکه و 4 داده به عنوان داده تست انتخاب شدند. بعد از
تعیین ضرایب وزنی و بایاس جهت پیاده سازی آن بر روی FPGA سری XC4000 از نرم افزار
Foundation 4,1 برای طراحی مدارات مربوطه استفاده شده است . FPGA, IC سری
XC4000 دارای حجم گیت های منطقی زیاد و انعطاف پذیری خیلی بالا برای پیاده سازی سخت افزاری شبکه های عصبی است. به دلیل استفاده از داده های ثابت در پیاده سازی شبکه بر
روی FPGA، شبکه ، دوباره قابل آموزش نیست.
با توجه به مراحل مختلف به کار گرفته شده در این پروژه جمع بندی و شکل دهی پایان نامه در 4
فصل مورد مطالعه قرار گرفته است .
در فصل اول سیستم های عصبی , انواع شبکه های عصبی , مدل سازی و انواع روشهای آموزش شبکه عصبی مورد بررسی قرار گرفته است .
در فصل دوم روش جمع آوری داده های دامپزشکی بر اساس در صد وجود انگل در گله های
دامی و روش از بین بردن این انگلها بر اساس تزریق داروئی BZD در پیش بینی میزان موفقیت این دارو و در کاهش انگلهای دامی به عنوان داده برای شبکه عصبی انتخاب و توضیح داده شده است.
در فصل سوم روش پیاده سازی سخت افزاری شبکه عصبی بر روی FPGA سری
XC4000 با نرم افزار Foundation 4,1 همراه با مدارهای طراحی شده توضیح داده شده است .
ودر نهایت در فصل چهارم نتیجه گیری کار های انجام شده و پیشنهادات لازم برای افزایش کارائی پژوهش مورد نظر، ارائه شده است.
3
فصل اولشبکههای عصبی

فصل اول
شبکه های عصبی
۴
فصل اولشبکههای عصبی

پیشگفتار
در این فصل ابتدا به معرفی شبکه های عصبی طبیعی و سپس اهمیت اسـتفاده از شـبکه هـای عصبی مصنوعی و در ادامه به معرفی مدلهای مختلف انواع شبکه های عصبی مصنوعی می پـردازیم.
همچنین روش های آموزش شبکه های عصبی، موضوع مورد بحث این فصل قرار گرفته است.
(1-1 سیستم های عصبی طبیعی
مغزانسان از واحدهای پردازنده ای به نام نورون تشکیل شده اسـت. ایـن نورونهـا از طریـق یـک
شبکه به هم پیوسته از اکسون1 وسیناپس2 با چگالی تقریبی 104 سیناپس در نورون با هم ارتبـاط دارند.در مدل سازی سیستم عصبی طبیعی، فرض بر این است که نورونها با استفاده ازسیگنال هـای الکتریکی با هم ارتباط برقرار می کنند.
عملکرد نورونها در یک محیط شیمیایی صورت می گیرد، ازاین رو می تـوان مغـز را بـه صـورت شبکه ای از سوئیچ های الکتریکی با چگالی زیاد در نظر گرفـت کـه بـه طـور قابـل ملاحظـه ای از
فرایندهای شیمیایی تأثیرمی پذیرد. شبکه عصبی ساختار پیچیده ای از نورونهای بـه هـم پیوسـته
دارد.ورودی شبکه از طریق گیرنده های حسی تأمین می شود.
این گیرنده ها تحریکی را از داخل بدن و همچنین از اندامهای حسی (هنگامی کـه تحریکـی از دنیای خارج انجام گیرد) دریافت می کنند. تحریک ها، اطلاعات را به شکل ضربه های الکتریکی بـه شبکه نورون ها انتقال می دهند. در اثر پردازش اطلاعات، واکنش صورت می گیرد.

-Axons -Synapse

1
2
۵
فصل اولشبکههای عصبی

بنابراین برای کنترل اندام ها و اعمال آنها یک سیـستم سـه مرحلـه ای وجـود دارد کـه شـامل گیرنده ها، شبکه عصبی و انگیزنده هاست. درشـکل 1-1 یـک طـرح تقریبـی از جریـان اطلاعـات نمایش داده شده است.
( 1 - 1 - 1 نورون بیولوژیک[1]
نورون، اساسی ترین جزء تشکیل دهنده شبکه عصبی طبیعی می باشـد. طـرح تقریبـی از آن در شکل 1-1 نمایش داده شده است.
یک سلول از سه ناحیه تشکیل شده است :
بدنه سلول –که سوما1 نیز خوانده می شود – اکسون و دندریتها.2 دندریتها که در حکـم ورودی های شبکه می باشد یک درخت دندریتی تشکیل می دهند که توده های بسیار کوچک از فیبرهـای نازک در اطراف بدنه نورون است. دندریتها اطلاعات را از طریق اکسونها که در حکم خروجـی هـای شبکه می باشد دریافت می کنند. قسمت انتهایی اکسون،به یک شـبکه ریـز منتهـی مـی شـود کـه هریک از شاخه های آن به یک حباب انتهایی کوچک ختم می شـود. ایـن حبـاب را کـه تقریبـا در تماس با نورونهای همسایه است،وزن سیناپس می نامند. سیگنالهایی که به سـیناپس مـی رسـند و توسط دندریتها دریافت می شوند، به صورت ضربه های الکتریکی هستند. انتقال بین نورونی گـاهی
اوقات الکتریکی است ولی معمولا تحت تأثیر آزاد شدن حاملهای شـیمیای در سـیناپس قـرار مـی
گیرد.

-Soma -Dendrites

1
2
۶
فصل اولشبکههای عصبی

شکل 1-1 جریان اطلاعات در سیستم عصبی انسان
نورون می تواند به حاصل جمع ورودی های خود که طی یک بازه زمانی کوچک با یکدیگر جمع
می شوند،پاسخ دهد که این بازه زمانی را "زمـان انباشـتگی پنهـان"1 مـی نامنـد. پاسـخ نـورون در صورتی تولید می شود که پتانسیل غشای آن به حد معینی برسد. تنها هنگامی که شرایط لازم برای آتش کردن فراهم شود نورون یک پالس تولید می کند و آن را به اکسون می فرستد.
ضربه های ورودی به دو صورت بر نورون تأثیـر مـی گذارنـد:تحریـک2 و بازدارنـدگی– 3سـاکن
کنندگی- اگر ضربه ورودی سبب آتش شدن نورون گردد به آن "محرک" می گویند و اگـر از آتـش
شدن نورون جلوگیری کند،"بازدارنده" نامیده می شود. به عبـارت دیگـر بـرای آتـش شـدن، بایـد تحریک به اندازه مقدار آستانه،بیشتر از بازدارندگی باشد. این مقـدار آسـتانه حـدود 40 میلـی ولـت است.ازآنجا که پیوند سیناپسی سبب تحریک یا بازدارندگی در نورون گیرنده می شود، مقادیر وزنی واحد مثبت یا منفی به تحریک یا بازدارندگی نسبت داده می شود. به این ترتیب امکان بررسی بهتر

-Period of latent Summation -Excitation -In hibiation

1
2
3
٧
فصل اولشبکههای عصبی

آتش شدن نورون فراهم می شود. از این رو هنگامی که مجموع وزنهایی که ضربه دریافت می کننـد طی زمان انباشتگی پنهان، از مقدار آستانه فراتر رود،نورون آتش خواهد کرد.
ضــربه هــای ورودی بــه نــورون از نورونهــای همــسایه و همچنــین از خــود نــورون تأمــین می شود. معمولا نورون مقصد برای آتش شدن به تعداد معینی ضربه ورودی نیاز دارد. اگر ضربه ها فاصله زمانی کمی داشته باشندو همگی همزمان سر برسند، احتمال آتش شدن نورون بیشتر است.
طبق مشاهدات انجام شده شبکه هـای طبیعـی بـر روی سـیگنالهای ورودی، عمـل جمـع بنـدی و انتگرال گیری زمانی را انجام می دهند.
پردازش زمانی–مکانی1 انجام شده، توسط شبکه های عصبی طبیعی فراینـدی پیچیـده و بـسیار بیشتر از محاسبات دیجیتال سازمان یافته است. ضربه های عصبی از نظر زمانی همزمـان نیـستند و این با نظام محاسبات دیجیتال منافات دارد. مشخصه طبیعی نورون بیولوژیک این است کـه انـدازه سیگنالهای تولید شده،اختلاف قابل ملاحظه ای با هم ندارند.از این رو سـیگنالهای موجـود در فیبـر عصبی یا ناچیز است یا دربیشترین حدخود قرار دارد.به بیان دیگر اطلاعات بـه صـورت سـیگنالهای دودویی میان سلولها ی عصبی انتقال می یابد.
پس از انتقال پالس، فیبرآکسون برای مدت زمـانی کـه "زمـان ممنـوع"2 خوانـده مـی شـود در وضعیت تحریک ناپذیری قرار می گیرد. به عبارت دیگر در طی این مدت، شدت تحریک هر انـدازه باشد، عصب هیچ سیگنالی را هدایت نمی کند.بنابراین می توان مقیاس زمانی را به بازه های پـی در پی تقسیم نمود که هر کدام برابر طول زمان ممنوع می باشند.
واحد زمانی برای مدل کردن نورونهای بیولوژیک از مرتبه هزارم ثانیه فرض می شـود، هـر چنـد زمان ممنوع نورونها یکسان نیست. به علاوه انواع مختلف نورون و روشهای متفاوت پیوند میـان آنهـا وجود دارد.بنابراین ماهیت واقعی شبکه های عصبی بسیار پیچیده تر از آن چیزی اسـت کـه بتـوان

1 -Spatio-termporal 2 -Retractor Period
٨
فصل اولشبکههای عصبی

تصور نمود. در واقع شبکه ای فشرده از نورونهای به هم پیوسته وجود دارد که سیگنالهای آسنکرون تولید می کنند.این سیگنالها هم به نورونهای بعد از خود و هم به نورونهای تولید کننده خود اعمـال می شود. بحث بالا از دیدگاه عصب شناسی بسیار ساده تلقی می شود ولی با وجـود ایـن بـرای ورود به دنیای محاسبه بیولوژیک بسیار ارزشمند است.شبکه های محاسـبه گـر مـورد اسـتفاده از مـشابه بیولوژیک خود بسیار ساده می باشند.
(2-1 مقدمه ای بر شبکه های عصبی مصنوعی
بررسی نحوه تفکر بشر، سالیان سال اندیشه محققان و اندیشمندان را به خود مشغول کرده است.
پژوهــشگران بــرای تحلیــل و تبیــین عملکــرد مغــز، مــدلهای زیــادی را ارائــه کــرده انــد ولــی هیچ کدام از این مدلها را نمی توان برای شـناخت مغـز انـسان کـافی دانـست. شـاید بتـوان گفـت
پیدایش علمی به نام شبکه عصبی مصنوعی نتیجه چنین کوشش هایی است.[1]
از عملکرد های مهم وحیرت انگیز مغز انسان می توان عمل شناسایی را نام بـرد کـه بـی تردیـد یکی از مهمترین ویژگیهای این عضو بوده ودر موارد مختلف، چگونگی و جزئیات عملکرد شناسایی و مورد مطالعه قرار گرفته است.
البته تئوری های مختلف وگاهی پیشرفته ای جهت حل این مسائل ابداع شده است که هـر یـک از این تئوری ها توجیه کننده یک یا چند عملکرد از رفتارهای مهم سلول های مغز می باشند. ولـی
به دلیل پیچیدگی زیاد مغز این تئوری ها کامل نخواهند بود .[1,2,14]
در عین حال می توان بر اساس یک یا چند پیچیدگی مهم مغز انسان، مدلهایی را ارائه نمـود. در برخی موارد خاص، عملکرد این مدلها مشابهت هایی با رفتار های مختلف سلول های بیولوژیکی مغز انسان پیدا می کند.تجمع این مدلها همراه با الگوریتم هایی که بر اسـاس آنهـا آمـوزش مـی بیننـد
شبکه های عصبی مصنوعی 1 ANNsرا به وجود می آورند.

1 -Artificial Neural Network
٩
فصل اولشبکههای عصبی

امروزه شبکه های عـصبی کاربردهـای گـسترده ای در زمینـه هـای پـردازش صـوت و تـصویر، روباتیک، شناسایی،پیش بینی، سیستمهای کنترل، عیب یـابی، تـشخیص هـای پزشـکی و مـصارف نظامی دارند.
در چند دهه اخیر،شبکه های عصبی مصنوعی به دلیل توانایی هـا و قابلیـت هـای بـالا بـه طـور گسترده ای در زمینه های شناسایی، پیشگویی و کنترل به کار گرفته شده است. از این رو به دلیـل عملکرد خوب شبکه های عصبی مصنوعی جهت شناسایی الگو، در ایـن پایـان نامـه از شـبکه هـای
عصبی چند لایه جهت پیاده سازی سخت افزاری سیستم استفاده شده است .[1,2,14]
(3 - 1 اهمیت استفاده از شبکه های عصبی مصنوعی[1,2,14]
یکی از مهمترین موضوعات تحقیقاتی دهه اخیر که بسیاری از شاخه های مهندسـی، خـود را بـا آن در ارتباط می بینند،شبکه های عصبی می باشـد. شـبکه هـای عـصبی بـا توجـه بـه تـوان بـالا درپردازش موازی، قابلیت یادگیری، تعمیم، طبقه بندی، قدرت تقریب، به خاطر سپردن و به خـاطر آوردن الگوها، خیزش وسیعی در زمینه های مختلف هوش مصنوعی ایجاد کرده اسـت. یـک شـبکه عصبی سعی دارد با استفاده از عناصر محاسباتی ساده غیر خطی که معرف نورونها بوده و در ارتبـاط موازی شدید با یکدیگر هستندبه قابلیت های ذکر شده ، دسترسی پیدا کنـد.عناصـر محاسـباتی بـه وسیله ارتباطاتی که وزن نامیده می شوند به یکدیگر مرتبط هستند. عمل یادگیری و آموزش تعمیم و به خاطر آوردن الگوها با استفاده از وزنهای تطبیقی که قابل تنظیم هستند، انجام می شود.
شبکه های عصبی دارای ساختار موازی می باشند که کلیه عملیاتها را بـه صـورت مـوازی انجـام می دهند. به این ترتیب می توان گفت که عبارت شـبکه هـای عـصبی بـرای توصـیف سـاختارهای متعددی از المانهای ساده پردازشگر که روش دیگری را در جهت محاسبات معرفی می کند،بـه کـار می رود.
١٠
فصل اولشبکههای عصبی

هدف از تحقیقات شبکه های عصبی، ایجاد ماشین هایی است که در محدوده هـایی کـه انـسان بهتر و کاملتر از کامپیوترهاعمل می کند، به کار گرفته شوند.بدین ترتیب شبکه های عصبی وسـایل کمکی کامپیوترهای مرسوم امروزی هستند و نه جایگزین آنها.
(4-1 مدل سازی نورون در شبکه های عصبی مصنوعی[2,3,4]
با توجه به رفتارهای یک نورون طبیعی می توان نورون مصنوعی را با استفاده از ابزارهای ریاضی به صورت زیر و مطابق شکل (1-1) معرفی نمود.

شکل 2-1 مدل سازی یک نورون مصنوعی
سیگنال ورودی به نورون بردار X بوده که از طریق بـردار وزن W وارد یـک تـابع بـه نـام تـابع
فعالیت شده و سپس تحریک و در نتیجه سیگنال خروجی نورون – j ام را تشکیل می دهد.
(1-1) w1.x1 n f(Net) O j  f (W .X )  f ∑ i 1 که W و X به ترتیب بردارهای وزنی و ورودی اند و به صورت زیر می باشند:
(2-1) ... wn  W  w1 w2 T ... x 2 x X  x n 1 در این روابط f، تابع فعالیت یا تحریک نورون است که عامل اصلی در تعیین سیگنالهای خروجی
نورون می باشد. دامنه این تابع Net مدل نورون اسـت از ایـن رو گـاهی آن را بـه صـورت f(Net)
نمایش می دهند.متغیر Net به صورت ضرب اسکالر بردارهای ورودی و وزن تعریف می شود:
(3-1) n∑ wi xi Net W .X 
i1 ١١
فصل اولشبکههای عصبی

مسیر خروجی هر نورون به مسیرهای دیگر نورونهای شبکه از طریق وزنهای اتـصال مـرتبط مـی گردد. چون هر اتصال، وزن خاص خود را دارد بنابراین سیگنالها قبل از این که وارد یک نورون شوند مقادیرشان توسط این وزنها تصحیح می گردد.
توابع تحریک با توجه به نیاز از انواع مختلفی انتخاب شده اند که مهمتـرین آنهـا در جـدول زیـر آمده است.
جدول :1-1 توابع مهم قابل استفاده در شبکه های عصبی تابع فعالیت نوع تابع فعالیت f (net)  net خطی 1 f (net)  سیگموئید تک قطبی (l exp(−net)) (l −exp(−net)) f (net)  سیگموئید دو قطبی (l exp(−net)) 1,if net0 حد آستانه ای دو قطبی −1, otherwise f (net)  1, if net  0 f (net)  حد آستانه ای تک قطبی 0, otherwise (5-1 انواع شبکه های عصبی مصنوعی [4]
به طور کلی شبکه های عصبی را می توان از سه جهت مورد بررسی قرار داد: -1 نوع نورون و عملکرد آن
-2 ساختار و نحوه ارتباط بین نورونها
-3 نوع آموزش نورونها از نظر نوع و نحوه عملکرد به نورونهای مشتق پـذیر، پیوسـته، افزایـشی و انعطـاف پـذیر
تقسیم می شوند. در ساختار شبکه عصبی مصنوعی با آموزش گرادیان نزولی، از توابع پیوسته،مشتق
١٢
فصل اولشبکههای عصبی

پذیر و افزایشی استفاده می شود. مناسب ترین توابع برای این منظور، توابع سیگموئید می باشند که به عملکرد نورون بیولوژیک نزدیک می باشند. همچنین از خاصیت مشتق افزایـشی آن مـی تـوان از الگوریتم پس انتشار خطا استفاده نمود که در فصل های بعد توضیح داده می شود.
از نظر ساختار، چگونگی ارتباط میان نورونها و طراحی الگوریتم دو نوع فعالیت در شـبکه وجـود دارد:
شبکه با فعالیت پیش رو
شبکه با فعالیت پس خور
در شبکه های پیش رو، نورونها به صورت لایه به لایه در کنار هم قرار گرفته انـد. شـبکه شـامل یک لایه ورودی، یک لایه خروجی و به تعداد مورد نیاز لایه میانی است. در این شبکه ها، اطلاعـات به سمت جلو هدایت می شوند تا خروجی های شبکه به دست آینـد بـه طـوری کـه هـیچ برگـشت اطلاعاتی وجود ندارد و داده ها از لایه ورودی از طریق لایه میانی به لایه خروجی می رسند.
در شبکه های پس خور، بر خلاف شبکه های پیش رو هر نورون علاوه بر ارتباط با نورون هـای لایه قبل که در شبکه پیش رو نیز وجود دارد، می تواند با نورونهای لایه های دیگر شبکه نیز ارتباط داشته باشد. در این شبکه ها تا زمانی که شبکه به شرایط همگرایی معینی نرسد، اطلاعـات در بـین لایه های شبکه نوسان می کنند و پس از رسیدن به همگرایی مورد نظر شـبکه ، اطلاعـات بـه لایـه خروجی راه می یابند. به عبارت دیگر در این شبکه ها اطلاعات علاوه بر حرکت رو بـه جلـو ، جهـت تصحیح وزن ارتباطی بین نورونها از طریق شبکه، حرکت رو به عقب- پس انتشار- هم دارند.
به طور کلی در شبکه های عصبی با توجه به نحوه یادگیری، روش هـای آمـوزش بـه دو صـورت تقسیم می شود:
آموزش با مربی
آموزش بدون مربی
١٣
فصل اولشبکههای عصبی

در روش آموزش با مربی، یک الگو یا سیگنال مطلوب در اختیار شبکه قرار داده می شود و شبکه با استفاده از قوانین یادگیری، خود را با الگوی مورد نظر تطبیـق مـی دهـد. بـه بیـان دیگـر شـبکه پارامترها را طوری تنظیم می کند تا خروجی به الگوی مطلوب نزدیک تر شود.
در روش آموزش بدون مربی در واقع شبکه الگوی خاصی را در اختیار ندارد بلکـه بـا اسـتفاده از قواعدی که از ورودی ها استخراج می کند، وزن های اتصال را تنظیم می کند تا خروجـی اسـتخراج شده به دست آید. به بیان دیگر در روش آموزش با مربی پارامترهای شبکه بر اساس ورودی و الگوی مطلوب تنظیم می شوند در حالی که در آموزش بدون مربی، پارامترها بر اسـاس ورودی و خروجـی تغییر می کنند.
(6-1 یادگیری در شبکه های عصبی مصنوعی
بر خلاف سیستم های خبره مرسوم که شناسـایی را در شـکل قواعـد مـدل سـازی مـی کنند، شبکه های عصبی از طریق یادگیری که از ویژگی های مهم آنها می باشـد، توسـط مثالهـای ارائه شده، قواعد خود را تولید می نمایند. یادگیری از طریق یک قاعده یادگیری صورت مـی پـذیرد.
شبکه های عصبی دارای این توانایی هستند که از گذشته و محیط بیاموزند و رفتار خود را در حـین آموزش بهبود بخشند. قاعده یادگیری، وزنهای اتصالات شبکه را در پاسخ بـه ورودی هـای شـبکه و تولید خروجی مورد نظر برای آن ورودی ها، تغییر خواهد داد.
برای این منظور الگوریتم های یادگیری متعددی وجود دارد که شامل موارد زیر می باشد:
-1 قانون یادگیری هب: 1
این قانون بیانگر یک شبکه کاملاً پیش رو و بدون مربی است. در این روش یک وزن اتصالی روی یک مسیر ورودی به یک نورون ، زمانی افزایش می یابد که ورودی و خروجی هر دو بـالا باشـد. بـه بیان دیگر اگر حاصل ضرب ورودی و خروجی مثبت باشد، وزن افزایش می یابد.

1 - Hebbian Learning Rule
١۴
فصل اولشبکههای عصبی

-1 یادگیری با قانون رقابتی:1
در این روش بین نورونها رقابت وجود دارد و نورونی که قوی ترین پاسخ را به ورودی ارائه دهـد، خود را در جهت شبیه شدن بیشتر به ورودی تصحیح می کند.
-2 یادگیری با قانون دلتا:2
در این روش توسط تصحیح پارامترها، خطای خروجی واقعی یک نورون و خروجی مورد نظـر بـا روش گرادیان نزولی کاهش می یابد.
(7-1 شبکه های عصبی پیش رو .[3,4]
در این شبکه ها، خروجی های لایه قبلـی فقـط بـه ورودی لایـه جلـویی خـود از طریـق اتصالات وزنی مرتبط می شوند. بدین ترتیب هیچ گونـه برگـشت اطلاعـاتی وجـود نـدارد. بنـابراین استفاده از آنها در کنترل سیستم های دینامیک دار امکان ندارد. شکل (3-2) نشان دهنده این نـوع ساختار می باشد.

شکل :(3-1 شبکه عصبی با طراحی پیش رو سه لایه (با در نظر گرفتن لایه ورودی)
با اعمال بردار ورودی x به شبکه با ماتریسهای وزنـی W و V بـردار خروجـی O را مـی تـوان
محاسبه کرد. مراحل محاسبه بدین صورت می باشد که در ابتدا با اعمال بـردار ورودی X بـه لایـه ورودی به علت خطی بودن این لایه، بردار ورودی بدون تغییر در خروجی این لایه ظاهر مـی شـود.

1 - Competition Learning Rule 2 - Delta Learning Rule
١۵

. ...
. ...
. ...
... w2i
... w1i
فصل اولشبکههای عصبی

بردار خروجی لایه ورودی در ماتریس وزنی W ضرب می شود و بردار مقدار کل ورودی عصب هـای لایه میانی ساخته شده و با اعمال تابع انتقال لایه میانی بر هـر یـک از ایـن مقـادیر، خروجـی لایـه میانی به دست می آید. به همین ترتیب بردار خروجی لایه خروجی نیـز محاسـبه مـی گـردد. ایـن محاسبه به صورت ماتریسی در زیر آورده شده است.
x1x2...xnT

X
(4-1)
... wni

w12
w22


.
.
.
wn2

w11
w21
.
.
. wn1

W
و بردار ورودی های وزن دار لایه میانی عبارت است از:
Net1 W T .XNet1i×1Wi×n.Xn×1(5-1)
آنگاه مقدار خروجی از لایه میانی به صورت زیر خواهد بود که به منزله ورودی لایـه بعـدی مـی باشد:
(7-1) خروجی های لایه اول
H  F (Net1 )
(6-1)
(7-1)

h2 ... hi T
v12 ... v1k v22 ... v2k
. ... .
. ... .
. ... .
vi 2 ... vik

H  h1
v11
v21
V  .
.
. vi1
و همچنین بردار ورودی های وزن دار لایه خروجی عبارت است از:
Net 2 V T .H,Net2k×1Vk×i.Hi×1(8-1)
١۶
فصل اولشبکههای عصبی

و بردار خروجی شبکه به صورت زیر محاسبه می شود:
(9-1) O  F (net 2 ) , O  o1 o2 ... ok T
که در آن: :n تعداد عصب های ورودی : k تعداد عصب های لایه خروجی
:i تعداد عصب های لایه میانی T معرف اپراتور ترانهاده می باشد.
(8-1 شبکه های عصبی پس انتشار1
تفاوت شبکه های عصبی پس انتشار با شبکه های عصبی پیش رو در حلقه فیدبک آنهـا مـی باشد. در این شبکه ها، اطلاعات علاوه بر حرکت به جلو، جهت تصحیح پارامترهای اتصالات از طریق شبکه، حرکت به عقب (پس انتشار) نیز دارند. شکل (4-1) نشان دهنده این نوع ساختار می باشد.

شکل :(4-1 ساختار شبکه عصبی با طراحی پس انتشار سه لایه (با در نظر گرفتن لایه ورودی)

1 - Back-Propagation
١٧
فصل اولشبکههای عصبی

(1-8-1 روش آموزش پس انتشار خطا [3,4]
آنچه تاکنون گفته شد این است که شبکه های عصبی به عنوان سیستم هـای آمـوزش پذیر، دارای توانایی می باشند که از گذشته و محیط بیاموزند و رفتار خود را در حین آموزش بهبود بخشند. مهمترین مسأله در ارتباط با شبکه های عصبی، مسأله یادگیری است. همـان گونـه کـه در قسمت های قبلی این فصل اشاره شد، دو نوع روش یادگیری برای شبکه های عصبی وجود دارد که یکی از این روش ها، یادگیری با مربی و دیگری روش یادگیری بدون مربی می باشد.
در روش یادگیری با مربی، نمونه های ورودی و خروجی مطلوب هر دو در دسترس مـی باشـند، الگوریتم کار در این روش دارای مراحل زیر می باشد:
-1 تعیین ساختار برنامه (تعداد لایه ها و نورونها) و نوع روش آموزش
-2 مقداردهی متغیرهای اولیه با توجه به نوع شبکه
-3 اعمال ورودی به شبکه و تعیین خروجی با توجه به نوع شبکه و پارامترهای اولیه
-4 مقایسه ورودی ساخته شده و خروجی های مطلوب و مقایسه این اختلاف با مقـدار خطای تعریف شده
-5 تغییر متغیرهای برنامه با اسـتفاده از الگـوریتم تکـرار روش آموزشـی تـا رسـیدن اختلاف مقادیر خروجی شبکه با خروجی مطلوب به مقدار خطای تعریف شده روش های مختلفی جهت آمـوزش پارامترهـا، پیـشنهاد گردیـده اسـت کـه مهمتـرین آن روش
یادگیری پس انتشار خطا1 است. الگوریتم پس انتشار خطا در زمان، یکی از ابزارهای قدرتمنـد بـوده که برای تشخیص الگو، به دست آوردن مدل های دینامیکی و کنترل سیستم هـا مفیـد مـی باشـد.
تنها چیزی که استفاده از این روش را در کنترل محدود می کند محدودیتهای معـادلات سیـستم می باشد. برای استفاده از این الگوریتم باید معادلات سیستم تحـت کنتـرل، کـاملاً شـناخته شـده،

1 - Back -Propagation of Error
١٨
فصل اولشبکههای عصبی

پیوسته و مشتق پذیر باشد. در صورتی که معادلات سیستم ناشناخته باشد، می توان از یـک شـبکه عصبی شبیه ساز استفاده نمود و رفتار سیستم را به خوبی به آن آموخت.
الگوریتم پس انتشار خطا از روش های آموزش با مربی اسـت کـه بـرای آمـوزش شـبکه هـای عصبی چند لایه به کار می رود. در این شبکه ها که اصطلاحاً شبکه عصبی پس انتشار نامیـده مـی شود پارامتر های شبکه با استفاده از روش بهینه سازی گرادیان نزولی که بر اساس روش زنجیره ای برای هر لایه می باشد به گونه ای تغییر می یابند تا اختلاف خروجی سیستم با خروجی مطلوب بـه حد قابل قبولی برسد. در این روش هدف این است که با به دست آوردن گرادیان تابع خطا نسبت به بردار پارامتر ها، تابع خطا حداقل گردد. لازم به ذکر است که در این روش ازآموزش با مربی استفاده شده است. تابع خطا به صورت زیر تعریف می شود:
(10-1) k∑ e(n)2 1 (d (n) − o(n))2  k∑ 1 E  2 n1 2 n1 که d (n) خروجی مطلوب و o(n) خروجی واقعی سیستم است کـه در روابـط زیـر نـشان داده
شده است.
... dk  D  d1 d2 حال با استفاده از روش گرادیان نزولی به این صورت عمل می شود. o2 ...ok  Output o (n) o1 (11-1) ∂E ∆W s  −η s ∂W که در آن η  O نرخ یادگیری1 می باشد.
از آنجاکه در این پایان نامه تمام ساختارهای به کار رفته سه لایه ای مـی باشـند (دو لایـه در ورودی و خروجی و یک لایه مخفی و چنانچه لایه ورودی به عنوان یک لایه در نظر گرفته نشود بـه عبارتی فقط لایه های وزن داری که مقادیر وزنی آن آموزش داده می شوند در نظر گرفته شـوند در آن صورت شبکه از نوع دو لایه ای خواهد بود) تمامی محاسـبات بـرای چهـار لایـه در نظـر گرفتـه

1 - Training Rate
١٩
فصل اولشبکههای عصبی

می شود. بنابراین مقادیر وزنی w1 در لایه اول و w2 در لایه دوم بایستی آموزش ببیند. در ایـن جـا
از قاعده زنجیری در اینجا استفاده می شود:
(12-1) به ازای S=2 روابط به این صورت است:
(12-1) ∂Net2 . ∂O2 . ∂E  ∂E ∂W 2 ∂Net2 ∂O2 ∂W 2 با توجه به شکل (4-1) و روابط شبکه سه لایه: (13-1) o1 ∂Net2 ، o2 ∂o2 ، ( با توجه به رابطه (10-1 −(D−o2) ∂E ∂w 2 ∂Net 2 ∂o 2 که در آن o2′ معرف بردار مشتق تابع خروجی نسبت به ورودی وزن دار ایـن لایـه یـا Net2 و o′
معرف بردار خروجی لایه میانی که ورودی لایه بعدی لایه آخر است، می باشد.
با توجه به روابط (11-1) و (12-1) و :(13-1)
∂E ∆w2  −η (14-1) ∂w2 ∆w2 η(c − o2 ) . o2′ . o1 به همین ترتیب برای ماتریس وزنیw1 (لایه اول) نیز به این صورت محاسبه می شود: (15-1) ∂Net ∂o1 ∂Net2 ∂o2 ∂E ∂E . . . .  ∂w1 ∂Net ∂o1 ∂Net 2 ∂o2 ∂w1 (16-1) ∆w η(D − o 2 ).o 2′.w2 .o1′.x که در آن x مقادیر ورودی به شبکه و o1′مشتق خروجی لایه اول به Net1 می باشـد. تـا اینجـا محاسبات به صورت پیش رو انجام شده است و با رابطه زیر به صورت پس خور خواهد بود.
در نتیجه مقادیر جدید وزنها از رابطه زیر محاسبه می گردد.
wiNew  wiold  Awii 1, 2 , 3(17-1)
لازم به ذکر است که توابع تحریک مورد استفاده در این روش می تواند از دو نوع باشـد کـه ایـن دو مدل در زیر توضیح داده می شود:
٢٠
فصل اولشبکههای عصبی

تابع تک قطبی(USF) 1
(18-1) 1 F ( X )  −x 1  e که برای این تابع مشتق نسبت به ورودی به صورت (( F ′( X )  F (X )(1− F (X خواهد شد.
تابع دو قطبی(BSF) 2
−x (19-1) 1 − e F ( X )  −x 1  e و برای این تابع نیز مشتق نسبت به ورودی توسـط رابطـه F ′( X )  12 1 − F (X )2  تعیـین

میشود.
(9-1 شبکه های عصبی انعطاف پذیر[4] 3
آنچه تا کنون در رابطه با شبکه عصبی مورد مطالعه قرار گرفته است شبکه هـایی اسـت که در آنها وزن بین لایه های شبکه، آموزش می بیند. به عبارت دیگر آموزش یافتن وزنها به مفهـوم حداقل نمودن گرادیان خطا خواهد بود. اما گاهی اوقات به دلیـل بزرگـی دامنـه تغییـرات سـیگنال ورودی شبکه تابع، فعالیت برخی از نورونها به اشـباع مـی رود و در نتیجـه، خروجـی ایـن دسـته از نورونها در مقدار اشباع خود قرار می گیرد و می تواند برای نورونهای لایه بعدی وضع مشابهی ایجـاد کند. با ادامه یافتن این وضع، شبکه در یک حالت پایدار قرار می گیرد که در چنین حالتی به دلیـل ثابت ماندن خروجی نورونها ، ادامه دادن آموزش فایده ای ندارد به عبارت دیگر در این حالت شـبکه گرفتار یک مینیمم محلی می شود. در چنین حالتی می توان شیب تابع فعالیـت نورونهـا را هماننـد

1 - Unipolar Sigmoid Function 2 - Bipolar Sigmoid Function Flexible Neural Networks -٣
٢١
فصل اولشبکههای عصبی

وزن پیوندها آموزش داد این عمل منجر به خاصیت جدیدی به نام" انعطاف پذیری" می گـردد کـه
در سال 1993 معرفی و امکان مدل سازی نورون مصنوعی بر اساس این ایده ارائه شد .[2]
این عمل باعث می گردد که تعداد دفعات آموزش شبکه به میزان قابل توجهی کاهش یابـد و بـه عبارت دیگر علاوه بر وزنها با آموزش شـیب تـابع ، سـرعت یـادگیری افـزایش مـی یابـد. همچنـین
نورونهایی که از اهمیت کمتری در شبکه برخوردارند،شیب تابع تبدیل بیـشتری را دارا م ی باش ند و
خروجی آنها سریعتر و با دامنه بیشتری از تغییرات همراه است، در نتیجه خطا سریع کاهش یافته و
خروجی شبکه با سرعت بیشتری به خروجی مطلوب نزدیک می شود.
همچنین می توان با آموزش وزنها و پارامترها در شبکه عصبی، انعطاف پذیری شـبکه را افـزایش داده و تعداد نورونها کمتری نسبت به حالت کلاسیک که در آن از توابـع سـیگموئید اسـتفاده شـده است، به دست آورد و بتوان نورونهایی را که پارامتر آنها بعد از یک دوره کامل آموزش خیلی کوچک شده است، حذف کرد و به تعداد کمتری نورون در لایه پنهان رسید و در نتیجه سرعت برنامـه بـالا خواهد بود.
توابع فعالیت مورد استفاده در این نوع شبکه به دو نوع زیر می باشند:
الف) تابع انعطاف پذیر تک قطبی(1(FUSF
(مقدارa به خاطر یک سویه بودن تابع تبدیل، بایستی مثبت باشد)
(20-1) a 2 f (x, a)  ( x a (1  e−2 که در آن ) x یا همان (net ورودی تابع و a، شیب منحنی تـابع، تغییـر مـی کنـد. فـضای تغییرات این تابع همیشه مثبت بوده و درجه غیر خطی بودن تابع به ازای x ≥ 0 توسـط مقـدار a مشخص میشود.
1 - Flexibility Unipolar Sigmoid Function
٢٢
فصل اولشبکههای عصبی

شکل 5-1 منحنی تغییرات تابع انعطاف پذیر تک قطبی نسبت به پارامتر a
ب- تابع انعطاف پذیر دو قطبی(FBSF) 1
(21-1) −2ax 1 − e g(x, a)  ( −2ax a(1  e این تابع همانند تابع تک قطبی، تغییرات a، باعث تغییرات نمودار تابع می گـردد، کـه بـه ازای
مقادیر a در محدوده a1 و− a1 به صورت غیر خطی تغییر خواهد یافت و به ازای سایر مقـادیر a بـه

سمت یک تابع خطی میل خواهد نمود. شکل 5-1 گویای این مطلب است.

شکل 6-1منحنی تغییرات تابع انعطاف پذیرد و قطبی نسبت به پارامتر a
ایده اصلی در شبکه عصبی انعطاف پذیر، آموزش پارامتر a موجود در توابع فعالیت نورونها عـلاوه
بر آموزش وزنها می باشد. روش آموزش وزنهـا مـشابه روش قبلـی مـی باشـد. بـا اسـتفاده از روش
گرادیان منفی در جهت حداقل نمودن تابع هزینه، نحوه آموزش پارامتر a به صورت زیر خواهد بـود.

1 - Flexibility Bipolar Sigmoid Function
٢٣
فصل اولشبکههای عصبی

تابع خطا یا هزینه در زیر آمده است. در این روش مانند روش قبلی ابتدا محاسبات الگـوریتم پـیش رو و سپس پس خور محاسبه خواهد شد.
2 1 (22-1) k∑(d(n) − o(n)) J  2 n1 تغییر پارامتر به صورت زیر توصیف خواهد شد: (23-1) ∂.J ∆a 3  −η 3 ∂a که در آن η  0 نرخ آموزش می باشد. 3 3 ∂J ∂.J (24-1) 03 ∂O −(D−O3), ∂J , ∂O .  3 3 3 3 3 ∂a ∂O ∂a ∂O ∂a که در آن o3 بیانگر بردار مشتق تابع خروجی نسبت به a 3 می باشد با توجه به روابط((23-1و (24-1) می توان رابطه زیر را نتیجه گرفت: (25-1) ∆a 3  η(D − O3 ).O3 به این ترتیب تغییر پارامتر a در لایه های دیگر به صورت زیر توصیف می شود: (26-1) ∂J ∆a 2  −η 2 ∂a (27-1) ∂O2 ∂net3 ∂O3 ∂J  ∂J . . . ∂a 2 ∂O2 ∂net3 ∂O3 ∂a2 (28-1) −(D−O3).O3.W3.O2 ∂J 2 ∂a که در آن O2 بیانگر بردار مشتق تابع خروجی لایه دوم نسبت به پارامتر a 2وO3 بیـانگر بـردار
مشتق تابع خروجی نسبت به ورودی آن لایه یا همان net3 می باشد.
با توجه به روابط بالا ∆a 2 به این صورت محاسبه می گردد:
∆a 2  η(D − O3 ).O3 .W3 .O2(29-1)
برای لایه اول می توان رابطه زیر را بیان نمود:
٢۴
فصل اولشبکههای عصبی

(30-1) ∂J ∆a 2  −η 1 ∂a مشابه روابط بالا این بار برای لایه اول، روابط به شکل زیر خواهند بود .
(31-1) ∂O1 ∂net 2 ∂O2 ∂net3 ∂O3 ∂J  ∂J . . . . . ∂a1 ∂O1 ∂net 2 ∂O2 ∂net3 ∂O3 ∂a1 در رابطه بالا O2 برابر با مشتق خروجی لایه دوم نـسبت بـه ورودی وزن دار آن لایـه یـا همـان
net2 و O1 ، مشتق خروجی لایه اول نسبت به پارامترa1 می باشد.
در نهایت مقدار ∆a1 به صورت زیر محاسبه می شود:
∆a1  η(D − O3 ).O3 .W3 .O2 .W 2 .O10(32-1)
بنابراین با توجه به این محاسبات تنظیم پارامترهـا در لایـه خروجـی و لایـه هـای پنهـان بـه
صورت زیر است:
ainew  aiold  ∆ai i 1,2,3(33-1)
در روابط بالا دقت شود که خروجی های دو لایه آخر نسبت به دو متغیر a و net مشتق گرفتـه شده است.
شبکه های عصبی طراحی شده در این پایان نامه، شبکه عصبی سه لایه MLP می باشد که در آن از روش آموزش پس انتشار خطا استفاده شده است ، که در فصل بعد روش طراحـی و همچنـین آموزش آن ارائه خواهد شد.
دامنه شبکه های عصبی مصنوعی بسیار متنوع شده است و هر یک در زمینه های خاصی کاربرد دارند. شبکه های عصبی که در حال حاضر بیشترین تحقیق بر روی آنها صورت می گیرد.
٢۵
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

فصل دوم
تشخیص میزان موفقیت داروهای HPT در
کاهش انگلهای دامی با استفاده از شبکههای
عصبی
٢۶
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

پیشگفتار:
در این فصل با استفاده از شبکه عصبی بر روی داده های آماری اداره دامپزشکی منطقه مغان استان اردبیل میزان موفقیت داروها قبل از تزریق داروی انگل کش به دامها بر اساس درصد وجود انگلها در دامها مورد بررسی قرار می گیرد.
1-2 )موضوع
مقاومت در مقابل انگل کش ها (AR) یک موضوع بسیار مهم درکشورهای پرورش
دهنده گوسفند، درجهان تلقی می شود.مطالعات در این زمینه به وسیله آزمایشهای
بالینی(کلینیکی) انجام می شود. شناسایی انگلهای مقاوم در مقابل انگل کشها بدون انجام آزمایشهای بالینی می تواند به دامداران کمک کند تا از درمانهای غیر موثر اجتناب کنند.
کنترل آلودگی گوسفندان به کرم روده ای نماتود در استان اردبیل عمدتا برمبنای استفاده از
انگل کش ها (AH) قرار دارد.[5] وضعیت AR دردشت مغان واقع در استان اردبیل به طرز بسیار ضعیفی مورد مطالعه قرار گرفته است. فقط دو مورد اساسی وجود دارد که نشان دهنده
حضور نماتودهای مقاوم در برابر بنزیمیدازول (BZD) می باشند.[6] مطالعه نتایجی ازنمونه مدفوع سه گله از گوسفندان به دست آمده است که دو گله از گوسفندان در دشت مغان، که
توسط تکنیک های ویتر، مورد مطالعه قرار گرفتند، و میزان AR ثبت شد. استفاده مکرر از
AH مستلزم اطلاعات لازم در زمینه خاصیت گروههای مختلف دارویی می باشد، هدف این
آزمایش، تعیین میزان شیوع نماتودهای مقاوم در برابر BZD از طریق کاهش شمار تخم
مدفوع((FECRT می باشد. دشت مغان درشمال غربی استان اردبیل واقع شده است. این
استان دارای آب و هوای نیمه مرطوب همراه با میزان بارش سالانه بین 415 و 1290 میلی-
متر با توجه به نوع منطقه، می باشد. پایین ترین حد دمای سالانه 26/6 سانتیگراد بوده
ومیزان رطوبت نسبی (PH) از 65 به %100 متغیر است (پایین ترین حد رطوبت نسبی %80
٢٧
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

است ) . دشت مغان به سه ناحیه تقسیم می شود، شمال غربی، جنوب و شرق. این سه منطقه دردشت مغان انتخاب شدند. چون این مناطق به طور مشترک 80 درصد از مجموع جمعیت گوسفندان استان اردبیل را درخود جای داده اند، به علاوه درصد قابل توجهی ازگله ها دراین نواحی 40) درصد ) دارای بیش از 40 راس گوسفند می باشند. وسرانجام ،60 درصد از گله
هایی که گوسفندان تحت آزمایش با AH را دراستان اردبیل در بر می گیرند درهمان سه
منطقه واقع شدهاند .[5]
شمارگله ها که با بیش از 40 رأس گوسفند درناحیه مطالعاتی گزارش شده از سوی انجمن پرورش دهندگان گوسفند ، 38 رأس بود. به همین منظور، این تصمیم اتخاذ گردید که همه
گله های با بیش از 40 رأس گوسفند درناحیه تحقیقاتی، مورد مطالعه قرار گیرند .[ 7]
(2-2 شیوه ها
شیوه ای که برای یافتن نماتودهای مقاوم در برابر AH دراین آزمایش اعمال شده،
تست کاهش شمار تخم مدفوع (FECRT)، می باشد. به همان روش که از سوی انجمن
جهانی توسعه انگل شناسی دامی (WAAVP) ارائه شده است .[15]
هیچ یک ازحیوانات آزمایش شده به مدت حداقل 8 هفته قبل از شروع مطالعه مورد درمان
AH قرار نگرفتند. درهر گله 40 رأس گوسفند (نر یا ماده )، با بیش از 6 ماه سن، از ناحیه
پشت، نمونه برداری ازنوع مدفوع می شوند. نمونه ها، با استفاده از تکنیک تغییریافته مک-
ماستر مورد آزمایش قرار می گیرند، که درآن یک تخم شمرده شده معادل 50 تخم برای
هرگرم از مدفوع به شمار می رود .(EPG) حیواناتی که بیش از EPG 150 نماتود تریکوسترونژیل می باشند، به طور راندوم به دو گروه 14 تا 15 راس تقسیم می شوند. روز بعد، حیوانات موجود درگروه 1، آلبندازول را از ناحیه دهان، درحدود 5 میلی گرم / کیلوگرم وزن بدن دریافت می کنند. گروه 2 به عنوان کنترل درمان نشده باقی می مانند. در هر مزرعه
٢٨
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

نمونه گیری شده، حیوانات در داخل آغل به مدت 16 ساعت قبل از درمان نگه داشته می شوند، در طول دوره درمان، هیچ غذایی به حیوانات داده نمی شود، این وضعیتی می باشد که کشاورزان جهت مشارکت دراین آزمایش به آن نیاز دارند.مقداری از نمونه مدفوع به دست آمده از هر دو گروه درمان شده و کنترل، به مدت 7 روز در دمای بالا و با هدف تولید لاروای عفونی تریکو سترونژیل، نگهداری می شوند. بعداز آن، لاروا با استفاده از تکنیک کوریچلی لای از مدفوع جدا می شود و تعیین لاروا برای هر پرورش حجیم، اعمال می شود.ده روز پس
ازاجرای درمان AH، نمونه های مدفوع هرگوسفند ازهمه حیوانات به دست می آید و برای
شمارش تخم مدفوع (FEC) با بهره گیری ازتکنیک مک ماستر مورد پردازش قرار می گیرد.
پایین ترین سطح FEC برای هرگروه درمان (EPGT) تعیین می شود و باگروه کنترل
درهمان گله مقایسه می گردد. کاهش درصد (R(%)) با استفاده از فرمول زیر تعیین می شود:
R(%)=[1-(EPGT/EPGC)]*100
میزان مقاومت طبق راهنمایی های WAAVP اعلام می شود.
(a هنگامی که (%) R بود، 95 بزرگتر است.
(b هنگامی که حد پایین فاصله اطمینان ( CI %95) %95 بود،%90 بزرگتر است.
فقط وجود یکی از این معیارها کافی است تا گله، مشکوک به مقاومت دربرابر بنزیمیدازول
باشد. گسترش گله های گوسفند با درصد زیادی از نماتودهای مقاوم در برابر BID و %95 CI
دراین نوع شیوع، برمبنای فرمولی که دربالا به آن اشاره شد محاسبه می گردد.
تحقیقات پرسشنامه ای درمیان صاحبان گله یا مدیران گله،درهنگام دومین نمونه گیری مدفوع از گوسفندان اعمال شده ،سپس اطلاعات زیر از این تحقیقات به دست می آید:
AH مورد استفاده قرار گرفته، فاصله مصرف، معیارهای انتخاب داروی AH، مایع HA و
چرخه آن.
٢٩
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

(3-2نتایج آزمایشهای بالینی
در این بخش از نتایج آمارهای موجود در اداره دامپزشکی منطقه مغان استان اردبیل
استفاده شد .[7]
تعداد مزرعه های بیش از 40 راس دام که خصوصیات مورد نیاز برای آزمایش درسه منطقه مذکور را داشتند به شرح زیر است: 13 مزرعه در پارس آباد دشت مغان، 22 مزرعه در بیله سوار دشت مغان و3 مزرعه در جعفر آباد دشت مغان.
جدول 1-2 پایین ترین سطح آماری EPG مربوط به گروه های درمان شده و کنترل و
همین طور R(%) و فواصل اطمینان (%95) را درگله های مورد تحقیق نشان می دهد.[7]
شیوع مقاومت دربرابر BZD در مزرعه های مورد مطالعه، % 15/8 (مزرعه + 11/6 %) ( n =6
95 CI %)، ونسبت مزرعه های مشکوک %23/7 (مزرعه (% 95 CI = + 13/3%) ( n = بود.
همه گلههایی که دارای گوسفندان دو رگه (سوفولک + پلی بی ) بودند یا مقاوم به BZD
تشخیص داده شدند یامشکوک به مقاومت دربرابر آن، وقتی که AR به حیوانات تزریق شد،
هامونکوس (Haemonchus) تنها ژنم GIN موجود در مدفوع گروههای مورد درمان بود.
پرورش مدفوع گروه های کنترل در آن گله های مقاوم،آمیخته ای از هامونکوس، تریکوسترونژیلوس و اروسوفاگوستوموم بود (جدول.(1-2 میانگین تخم برگرم فاسد شده،
درصد کاهش EPG و %95 فاصله زمانی قابل اعتماد بعد از درمان با دوز (5mg/kg) در 38
دسته در دشت مغان، اردبیل انجام شده است.
٣٠
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

جدول: 1-2 سطح آماری EPG گروههای تحت درمان و کنترل
Status 95%CI(%) EPG TREATED EPG CONTROLN FLOCK
reduction EPG N (%) susceptible 91-100 98 13 15 667 15 1
suspect 88-89 98 33 15 1373 15 2
resistant 84-98 94 55 14 885 13 3
resistant 04-91 71 214 14 747 15 4
resistant 33-99 92 100 15 1260 15 5
susceptible 100-100 100 0 15 1380 15 6
resistant 71-96 90 100 14 979 14 7
susceptible 97-100 100 7 15 1967 15 8
susceptible 100-100 100 0 15 467 15 9
susceptible 90-100 99 7 15 540 15 10
susceptible 100-100 100 0 15 607 15 11
resistant 77-88 93 53 15 786 14 12
suspect 87-99 97 20 15 733 15 13
suspect 83-99 96 20 15 553 15 14
suspect 78-100 97 13 15 493 15 15
susceptible 100-100 100 0 15 693 14 16
resistant 73-99 94 13 15 214 14 17
susceptible 100-100 100 0 14 2536 14 18
٣١
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی ادامه جدول 1-2 susceptible 97-100 100 7 15 2120 15 19 susceptible 97-100 99 13 15 2154 14 20 susceptible 97-100 100 7 15 1900 15 21 susceptible 92-100 99 7 15 720 15 22 suspect 87-99 97 20 15 740 15 23 suspect 87-100 98 13 15 827 15 24 susceptible 94-100 99 14 14 1057 14 25 susceptible 92-100 98 20 15 1213 15 26 susceptible 93-100 99 13 15 1520 15 27 susceptible 92-100 99 7 15 713 15 28 susceptible 94-100 99 7 15 853 15 29 susceptible 94-100 99 13 15 1007 15 30 susceptible 93-100 99 7 15 787 15 31 susceptible 95-100 99 7 15 1067 15 32 suspect 82-99 96 20 15 533 15 33 susceptible 90-100 99 7 14 593 14 34 susceptible 95-100 99 7 15 1027 15 35 suspect 86-100 98 13 15 767 15 36 suspect 80-100 98 20 15 827 15 37 susceptible 94-100 99 13 15 1027 15 38 ٣٢
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

جدول 2-2درصدلارو آلوده در 38 دسته از گروههای کنترل و تحت بررسی در دشت مغان اردبیل
Status Treated(%) Control FLOCK
O T H O T H SUS - - 100 16 22 62 1
SUS - 27.28 72.72 28 - 72 2
RES - - 100 16 14 80 3
RES - - 100 14 16 70 4
RES - - 100 4 28 68 5
SUS - - 100 6 22 72 6
RES - - 100 - - 100 7
SUS - - 100 - 22 78 8
SUS - 27.28 72072 - 14 86 9
SUS - - NL - 34.79 65021 10
SUS - 50 50 12 4 84 11
RES - - 100 10 4 86 12
S - - NL 2 6 92 13
S - - 100 6.68 6.66 96.66 14
S - - NL 5.89 11.76 82.35 15
SUS - 100 - - 40.48 59.52 16
RES - - 100 - 9.53 90.47 17
SUS - - NL 19.57 17.39 63.04 18
SUS - - 100 16 - 84 19
SUS - 33.34 66.66 16 20 64 20
SUS - - NL 7.70 - 92.30 21
SUS - - NL - 24 76 22
S - - 100 10 4 86 23
S - - 100 4.47 19.04 76.19 24
٣٣
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

ادامه جدول 2-2 SUS - - NL 18 20 62 25
SUS - - NL - 22 78 26
SUS - - 100 15.22 - 84.78 27
SUS - - NL 5 2.50 72.50 28
SUS - - NL 24 - 76 29
SUS - - NL 28 16 56 30
SUS - - 100 - 27.59 72.41 31
SUS - 33.34 66.66 12 24 64 32
S - - 100 2 20 78 33
SUS - - NL 11.12 5.55 83.33 34
SUS - - 100 - 8 92 35
S - - NL 12 24 64 36
S - - 100 10 24 66 37
SUS - 40 60 26 12 62 38
4-2 )تحقیق پرسشنامه ای [8]
تحقیق پرسشنامه ای که برای اولین بار تشریح شد، شامل فعالیت های مدیریتی AH
است که صاحبان گله دشت مغان دررابطه با حیوانات خود اعمال می کنند. اکثریت گله های
گوسفند که دراین تحقیق مورد بررسی قرار گرفتند (%89/5) از سوی صاحبان خود به عنوان نوع دوم فعالیت های تولید دام تلقی می شوند. کمتر از %10 مزرعه داران ، گوسفندان را به عنوان منبع اصلی در آمد دامداران مورد نظر قرار می دهند. اندازه متوسط گله درمزارع
٣۴
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

مورد تحقیق 75/7 راس گوسفند بود. همه گله ها دارای نر و ماده های تازه متولد شده یا گوسفندان درحال رشد، در شرایط و مزارع مشابه بودند. درصد زیادی از مزرعه داران 73/7) )گوسفندان خود را تحت شرایط خاصی غذا داده و شب ها در آغل نگه می داشتند. و درصد زیاد دیگر نیز حیوانات خود را با سیستم های طولانی مدت، تولید و نگه داری می کردند.
%81/7 ازگله های مورد مطالعه متشکل از گوسفندان پلی بوی (گوسفند پشمی ) و %18/3
از گوسفندان دورگه (پلی بوی ×سوفولک )بودند.
صاحبان گله، استفاده ازچهار گروه از AH را چنین گزارش دادند: لاکتونهای چرخ
بلند (%47/4) (ML)، (%39/5) BZD، اوامیزول (%10/5) و کلو سانتل (سلی سیلانیلید) .(%2/6) از 38 گله مورد مطالعه، 20 مزرعه دار (%52/6) در فواصل متغیر، 1 مزرعه دار
(% 2/6) با بهره گیری از زمان از قبل تعیین شده و 17 مزرعه دار (%44/8) برمبنای علائم
بالینی (حیواناتی با موی پرپشت، بدنی لاغر) گوسفندان خود را تحت درمان قراردادند. و AH
عمدتا برمبنای سهولت اجرای آنها %57/9) )، سپس برمبنای قیمت (%26/3) ودر آ خر بر
مبنای توصیه دامپزشک (%15/8) انتخاب می شد. داروهای AH بیشتر از طریق سنجش بینائی محاسبه می گردید . (%97/4 ) وزن حقیقی بود. فقط %13/2 از صاحبان گله هر دو ماه یکبار و % 2/6 هرسه ماه یکبار دارو رابه حیوان تزریق می کردند. اکثریت دامداران (%71)
هر6 ماه یکبار %7/9 دامداران هر 8 ماه یکبار دارو را به حیوان می خوراندند. چرخه دارو هر
12 ماه یکبار و در 31/6 درصد ازاین گله ها اعمال می شد. اما تعداد زیادی از دامداران
( %52/6) داروی AH را بین 24 تا 36 ماه تغییر می دادند. (یعنی نوع داروی AH را عوض
کردند. ) فقط یک کشاورز گروه داروی AH رادر هردوره درمان عوض می کرد و %13/2از
دامداران نشان دادند که هرگز گروه دارویی AH را عوض نمی کنند.
٣۵
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

5-2 )پیاده سازی داده های جمع آوری شده با استفاده از شبکه عصبی
شبکه های عصبی به عنوان شبکه های تخمین گر جهانی می توانند برای مدل سازی رفتار های طبیعی به کار روند. همچنین شبکه های عصبی در دسته بندی داده ها کاربرد وسیعی دارند.
به دلایلی شبکه های عصبی را به عنوان ابزاری برای کار خود انتخاب کردیم.در این پایان نامه یک
شبکه عصبی سه لایه MLP برای آشکار سازی انگلهای مقاوم در برابر انگل کشها ارائه شده است.
ما می خواهیم با استفاده از آزمایش اول بالینی، طبق جدول 2-2 ، با استفاده از شبکه عصبی،
پیش بینی کنیم که آیا تزریق دارو روی دام مورد نظر موثر خواهد بود یا نه ؟ که در این صورت
اگر توانستیم پیش بینی کنیم، اولا به تزریق بیهوده دست نخواهیم زد ثانیا به آزمایش دوم نیاز
نخواهیم داشت.
داده های جمع آوری شده:
-1سه نوع لارو (تخم انگل ) به نامهای H,T,O
-2 نسبت کاهش EPG
جدول شماره 3-3 تمام داده هایی که از طریق آزمایش بالینی (از آزمایش اول) یک گروه دام ها در منطقه مغان به دست آمده است نشان می دهد.لازم به ذکر است در تکمیل جدول ارائه شده توسط دامپزشکان، مراحل انجام کار به این صورت بوده که باید مطمئن شویم در 8
هفته قبل به دامها AH داده نشده است. در هر گله N گوسفند انتخاب می کنیم که بیش از
6 ماه سن دارند.دام ها با بیش از EPG 150 (تخم بر گرم)به طور رندم به دو گروه تقسیم
می شود. داروی BZD به گروه یک تزریق می شود ولی گروه دو بدون تزریق باقی می ماند.
بعد از هفت روز از هر دو گروه دوباره نمونه گیری می شود و سپس شمارش تخم ها روی آنها
انجام می گیرد. داده های ثبت شده در اینجا با استفاده از آزمایش FECRT به دست
٣۶
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

آمده اند که توسط انجمن جهانی دامپزشکان (WAAVP) تایید شده است و بر مبنای
استانداردهای (WAAVP عدد بزرگتر از (R) 98که در قسمت EPG reduction می باشد و به معنی پاسخ به داروست. که ارزش تزریق به دام مورد نظر را دارد و کوچکتر از مقدار فوق به معنی پیش بینی برای عدم تزریق می باشد. در شبکه عصبی پاسخ به دارو1، و عدم پاسخ، خروجی صفر دارد.
٣٧
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

جدول : 3-2 نشان دهنده درصد وجود انگلهای H,T,O در دامهای مورد آزمایش قبل از
طزریق دارو و همچنین بعد از طزریق دارو
٣٨
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

شبکه عصبی مورد استفاده در این پایان نامه یک شبکه عـصبی سـه لایـهMLP پـیش رو می باشد که یک لایه در ورودی و یک لایه میانی و یک لایه در خروجی قرار گرفتـه اسـت به طوری که چهار نورون در لایه میانی و یک نورون در پایه خروجی قـرار دارد .شـکل 1-2
ساختاراین شبکه را نشان می دهد.

شکل :1-2 ساختارشبکه عصبی طراحی شده
در آموزش این شبکه ازداده های جدول شماره 3-2 به عنوان ورودی و خروجـی کـه بـا استفاده از آزمایش بالینی به دست آمده است استفاده کـردیم.بـرای شـبیه سـازی شـبکه عصبی از مطلب 6,5 بهره جسته ایم که روش آمـوزش از نـوع پـس انتـشار خطـا بـوده و
برای-یادگیری شبکه عصبی از دستور یادگیری newff استفاده شده است . [9]
34 ردیف از 38 ردیف این جدول را به عنوان داده های آموزش استفاده نمودیم تـا ضـرایب وزن و بایاس را پیدا کرده و از ضرایب وزن و بایاس به دست آمده برای تست چهار ردیـف از داده هایی که به عنوان داده های تـست در آمـوزش شـبکه از آنهـا اسـتفاده نکـردیم ، از شبکه جواب قابل قبول گرفته شد.این شبکه با روش آمـوزش پـس انتـشار خطـا وبـا انتخـاب
تعداد دفعات آموزش 300 بار epoch آموزش دیده شده است و خطا بـه حـداقل رسـیده است.
٣٩
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

نتایج این شبیه سازی برای این شبکه طبق شکل شماره 2-2 برای 300 بار تعداد دفعـات آموزش آمده است

شکل 2-2 کاهش خطا در حین شبیه سازی بعد از این که شبکه کا ملا آموزش داده شد، ضرایب وزن و بایـاس بـه صـورت زیـر حاصـل گردید :
W=[20/8274
17/6941 -25/3639 -4/8856 30/6564 -118/1918 -65/5309 43/8998 -60/2949
۴٠
فصل دوم تشخیص میزان موفقیت داروهای HPT در کاهش انگل های دامی با استفاده از شبکههای عصبی

145/4259
106/9770
-15/0551
-20/7781
5/2695
29/3341
-0/9800]:
U=[117/1778 142/0364 106/856982/6105 92/8707];
بعد از تعیین ضرایب وزن و بایاس برای اطمینان از کارکرد شبکه ، چهار ردیف آخر جدول 3-2 را که به عنوان داده های تست در نظر گرفته بودیم در شبکه تست نمودیم و نتایج تست طبق جدول زیر به دست آمد، و این صحت کارکرد شبکه را با حداقل خطا به ما نشان می دهد.
جدول 4-2 نتایج شبیه سازی برای داده های تست

0.0000
چگونگی پیاده سازی سخت افزاری شبکه طراحی شده، با استفاده از FPGA در فصل بعد به تفصیل ارایه می گردد.
۴١
فصل سومروش پیاده سازی شبکه عصبی با استفاده از FPGA

فصل سوم
روش پیاده سازی شبکه عصبی با
استفاده از FPGA
۴٢
فصل سومروش پیاده سازی شبکه عصبی با استفاده از FPGA

پیشگفتار:

aslinezhad project

فصل اول: کلیات19
(1-1 هدف. 20
(2-1 پیشینه تحقیق20
(3-1روش کارو تحقیق22
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن22
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(25(900/2000Mhz
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخه ای T شکل26
فصل دوم: تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده πو T شکل28
(1-2مدار خط شاخهای اندازه فشرده T شکل29
(2-2طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن33
(3-2 کوپلر خط شاخهای36
(4-2 فرموله کردن با استفاده از ماتریس خطوط انتقال37
۶
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب41
(6-2 تحقق جهت دو بانده کردن مدار43
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)43
λ
(2-6-2 استفاده از مدار اتصال کوتاه ( طول 44( 2

(7-2 آنالیز(تحلیل) مدار π شکل خط شاخهای دوبانده و مشاهده نتایج شبیهسازی46
فصل سوم: طراحی مدار میکرواستریپ فشردهT شکل دوبانده با
اندازه کاهش یافته.50
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه به روند ارائه شده در
دو بانده کردن کوپلرπ شکل ( 900MHz و 51(2400MHz
(2-3 استفاده از برنامه کامپیوتری ساده جهت بدست آوردن پارامترهای مدار دو بانده52
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محیط ( نرم افزار) مختلف و مشاهده
نتایج53
فصل چهارم: بررسی انواع مختلف DGS و اثرات آن بر روی
خطوط میکرواستریپ59
DGS (1-4 چیست60
( 2 – 4 مشخصات کلی 60 .DGS
( 3 – 4 کاربردهای 61DGS
٧
( 4 – 4 ویژگیهای 61DGS
( 5 – 4 اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ....61
( 1 – 5 – 4 الگوی .DGSدمبلی شکل و ویژگی شکاف باند63
DGS ( 2 – 5 – 4 دمبلی پریودیک قویتر64
( 3 – 5 – 4 اندازهگیریهای مربوط به DGS دمبلی شکل..66
( 6 – 4 بررسی اثرات DGSهای هلزونی در تقسیم کننده توان بر روی هارمونیکها68
-7-4مدل مداری و هندسه DGS هلزونی غیرمتقارن70
( 8 – 4 حذفهارمونیکهادر مدار مقسم توان73
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی78
( 10 – 4 مشاهده اثرات DGS برروی مدار دو بانده طراحی شده80
فصل پنجم:چگونگی استفاده از کوپلر بدست آمده در طراحی
سیرکولاتور82
(1-5طراحی سیرکولاتور83
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر83
فصل ششم:نتیجه گیری وپیشنهادات86
(1-6نتیجه گیری87
(2-6پیشنهادات88
٨
پیوست ها................................................................................................................................... 89
٩
فهرست مطالب
عنوان مطالبشماره صفحه

منابع و ماخذ. 93
سایتهای اطلاع رسانی97.
چکیده انگلیسی98
١٠
فهرست جدول ها
عنوانشماره صفحه

:(1-2)مشخصات الکتریکی وفیزیکی مدار در دو باند..47
(1-3) دو بازه فرکانسی و دو هدف مورد نظر پروژه..55
(2-3.) بازه بالا و پایین جهت optimom هدف.56
(1–4)مقایسه اثر DGSهای واحد و پریودیک با توزیع نمایی..66
١١
فهرست شکل ها
عنوانشماره صفحه

(a) ( 1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و
استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع23
(a) ( 2 – 1) سرس خطوط انتقال کوچک شده با چندین استاب
باز (b) بزرگی پاسخ.25
( 3 – 1) نمایی از نرم افزار Serenade. RTL جهت بدست آورن طول
فیزیکی و پنهای خطوط.26
( 1-2 ) ساختار T شکل خط انتقال ربع طول موج30
( 2-2 ) منحنی رسم شده حاصل از برنامه کامپیوتری θ1)بر حسب32.(θ3
( 3-2 ) مدار چاپی خط شانهای T شکل34
S11 (a) ( 4-2)،S12،S13،(b) S14 پاسخ فازی مدار Tخط شاخهای35
(5-2) ساختار کوپلر خط شاخه ای یک بانده مرسوم.38
(a) ( 6 – 2) ساختار معادل پیشنهادی (b) خط شاخهای 38. λ4

S11 ( 7-2 )،S12،S13وS14 از کوپلر بدون استاب42
( 8-2 ) پاسخ زاویهS12وS14 برای مدار بدون استاب42
( 9-2 ) ساختار کوپلر پیشنهادی با استاب مدار باز44
١٢
( 10-2 ) ساختار کوپلر پشنهادی با استاب اتصال کوتاه ........................................................ 45
11-2 ) ) نتایج شبیه سازی .................................................................................. ...(S11) 47
12-2 ) ) نتایج شبیه سازی(S12و............................................................................ .(S13 48
( ( 13-2 نتایج شبیه سازی .................................................................................... .(S14) 48
14-2 ) )نتایج شبیه سازی (پاسخ فاز مدار با استاب باز) ................................................... 49
( (a) ( 1-3 شماتیک (b) مدار چاپی ................................ (designer, hfss) ansoft 55
( S11(a) ( 2-3،S12،S13وS14 مدار شبیه سازی شده در .....................................................................ADS (c) serenade (b) ansoft (a) 57
( 3-3 ) پاسخ فازی مدار دو بانده. ....................................................................................... 58
1-4 ) ) شمای مختلف H (a) DGS شکل T ( b)شکل (c)هلزونی شکل (d) دمبلی شکل. ......................................................................................................... 60
( 2-4 ) خط میکرواستریپ با εr = 15 و ................... ................................ h = 1/575 62
( 3-4 ) پارامترهای S مدار دوپورته.. ................................................................................ 62
( 4-4 ) مدار با DGS دمبلی شکل .. ............................................................................... 63
( 5-4 ) پارامترهای S مدار با DGS دمبلی شکل ............................................................ 63
( 6-4 (a) ( نوع (b) 1 نوع (c) 24 نوع DGS 3 دمبلی شکل ...................................... 65
( 7-4 ) پارامترهای S برای DGS دمبلی با انواع مختلف سایز. ....................................... 66
( 8-4 ) مقایسه پارامترهای S مدارهای (a) DGS نوع (b) نوع (c) 2 نوع 67 ............. ..3
١٣
( 9-4 ) خط میکرواستریپ با DGS هلزونی نامتقارن برروی زمین. ............................... 70
( 10-4 ) پارامترهای انتقال خط با DGS متقارن ( A = A' = B' = 3mm و نامتقارن A = 3/4m) و ............................................................................(B = 2/6 mm 71
11-4 ) ) فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از ...................................................................................................................... .B/A 71
12-4 ) ) مدار معادل بخش DGS هلزونی نامتقارن ........................................................ 73
13-4 ) DGS (a) ( هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این ......................................................................................DGS 74
( 14-4 ) پارامترهای S مدار با DGS هلزونی بصورت EM و شبیه سازی شماتیک ........ 75
15-4 ) ) هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن....................................................................................................................... 76
( 16-4 ) نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با ....................................................................................................................... ..DGS 77
17-4 ) ) مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار...................................................................................................................... 77
( 18-4 ) نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(.......... S12 ( b) S11 (a 78
( 19-4 ) مدار T شکل با استفاده از DGS هلزونی (a) یک بعدی (b) سه بعدی.......... 79
20-4 ) (a) ( نتیجه پاسخ شبیه سازی کوپلر با استفاده از اعمال (b) DGS بدون ١۴
استفاده از 80DGS
( 21-4 ) مدار چهار پورتی T شکل دوبانده با اعمال DGS دمبلی شکل در
شاخه خطوط..81
( 22-4) پارامترهای S حاصل از بکار بستن 81DGS
(1-5)نماد ژیراتور83
( 2-5)سیرکولاتور 4 پورته متشکل از دو مدار هیبریدی و زیراتور83
(3-5) سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور84
(a)(4-5)،((b،((cو(:(dنتایج شبیه سازی سیرکولاتور85
(1-6)شبکه دو قطبی خطی. 91
١۵
چکیده:
در این پروژه سیرکولاتور دو بانده با ابعاد کوچک ارائه شـده اسـت. در طراحـی سـیرکولاتور مـورد نظـر از
کوپلر شاخه ای (BLC)1 میکرواستریپی دو بانده کوچک شده استفاده شده است . لذا در این پـروژه بیـشتر
بر روی چگونگی کوچک سازی و دو بانده کردن کوپلر شاخه ای میکرواستریپی با اسـتفاده از مـدارات T و
همچنین DGS2 متمرکز شده ایم . در کوپلر شاخه ای پیشنهادی از مدارات T در هر شاخه که دارای طـول
الکتریکی ±90 درجه در دو بانده می باشند ، استفاده شده است. از طرفی در صفحه زمـین در زیـر خطـوط
این کوپلر DGS هایی قرار دارند که با استفاده از این DGSها ، طول الکتریکی خطوط کاهش یافته و ابعاد
کوچکتر می گردند. کوپلر دو بانده کوچک شده توسط نرم افزارهایSerenadeوADS3وAnsoft تحلیـل
شده و نتایج شبیه سازی در این پروژه آورده شده اند. سپس با استفاده از کوپلرهای دو بانده کوچک شـده ،
سیرکولاتور مورد نظر طراحی گردیده است.

Branch line coupler١ Defected ground structure٢ Advance designe sys--٣
١۶
مقدمه:
امروزه تقاضا برای استفاده از عناصر دو بانده در صنعت مخابرات رو به افزایش است . سیستمهای مخابرات
با آنتن های دو بانده کاربرد زیادی دارند. سیرکولاتور یکی از عناصر اصلی در چنین سیستم هایی اسـت. بـا
استفاده از سیرکولاتور دو بانده می توان از یک تغذیه بین آنتن و سیستم مخـابراتی اسـتفاده نمـود. یکـی از
اجزای اصلی در ساخت سیرکولاتورهای چهار پورتی ، کوپلرهای هایبریدی و کوپلرهای شاخه ای((BLC
می باشند.
(BLC) از چهار خط انتقال به طول ربع طول موج مؤثر در فرکانس اصلی و هارمونیک هایی کار می کنـد.
.[1] ,[2]
معمولا این کوپلرها بزرگ هستند و سطح و فضای اشغال شده توسط آن ها زیاد است. در اکثـر کاربردهـای
امروز به خصوص در بردهای صفحه ای و میکرواستریپی ، این عیب محسوب می شود. لذا ، امـروزه روش
های مختلفی برای کوچک سازی و افزایش پهنای باند]٣[7- این کوپلرها ارائه شده است.
در مخابرات مدرن امروزی نیاز به اجزاء دو بانده بالاخص کوپلر BLC دو بانده ، می باشد تا مقدار عناصـر
مورد استفاده ،کاهش یابد.
] Hsiang٨[ از خطوط چپگرد برای دو بانده کردن کوپلر استفاده کرده است.BLC شامل خطـوط متـصل
شده به یک جفت المان موازی]١١[ گزارش شده است.
در این پروژه با استفاده از روشـهای کوچـک سـازیBLC و ترکیـب آن هـا بـا روشـهای دو بانـده سـازی
ابتداBLC با ابعاد کوچک در دو بانده 900Mhzو2400Mhz طراحی شده است سپس برای کاهش بیـشتر
سطحBLCصفحه ای ازDGS ها استفاده شده است.
١٧
گزارش ارائه شده از نمونه طراحی سیرکولاتور مورد نظر شامل قسمت های زیر می باشد:
در فصل اول کلیاتی در مورد مراحل انجام پروژه ،هدف از انجام مراحل کار ، پیشینه تحقیقهای انجـام شـده
در مورد مدارمورد نظر و روش کمی کار مورد بررسی قرار گرفته است.
در فصل دوم ابتدا نحوه افزایش پهنای باند کوپلرها ، کوچک سازی با استفاده از مدارT و استفاده از مـدارπ
بــرای دو بانــده کــردن کوپلربررســی شــده اســت. ســپس بــا اســتفاده از نــرم افزارهــای تخصــصی
مانندSerenadeوAnsoft مدارات ذکر شده تحلیل گشته و نتایج شبیه سازی آورده شده اند.
در ادامه کوپلر کوچک شده با استفاده از مدارT ، با توجه به روند ارائـه شـده در دو بانـده کـردن کـوپلر بـا
مدارπ ، در فصل سوم دو بانده شده و روابط حاصل برای دو بانده کردن آن به دست آمده است.
کوپلر به دست آمده با استفاده از نـرم افـزار ADSوSerenadeوAnsoft تحلیـل و بهینـه گـشته اسـت و
منحنی های مربوط به آن در این فصل آورده شده اند.
در فصل چهارم DGS به عنوان ابزاری برای کوچک سازی مدارات صفحه ای شرح داده شده و از آن برای
کوچکتر کردن ابعاد کوپلر دو بانده استفاده شده است . نتایج شبیه سـازی کـوپلر حاصـل ، نـشان داده شـده
است. چگونگی استفاده از کوپلر به دست آمده در طراحی سیرکولاتور در فصل پنجم شرح داده شده اسـت
و در آخر در فصل ششم نتیجه گیری و پیشنهاداتی برای ادامه کار آورده شده است.
١٨
فصل اول:
کلیات
١٩
(1-1 هدف
کوپلرهای شاخهای با بکار بستن استابها ( مدارباز – مدار کوتاه) نیزو با Cascade شدن یک سـری شـاخه
برکاستن حجم و بالا رفتن پهنای باند نقش بسازیی را دارند. همچنین المانهای فشرده به ما امکـان کـوچکتر
کردن مدار را میدهند و با عث افزایش باند میگردند منتهی برای ساخت مدار نهایی با کـاهش سـایز کلـی و
افزایش پهنای باند و بکار بردن کوپلینگ مناسب در سرهای مدار و ایزوله کردن پورتها از همدیگر مـیتـوان
از روش مناسب بکار بردن DGS و نتیجتاً افزایش اندوکتانس خطوط و در نتیجه اهداف مطلوب دسترسـی
پیدا کرد.
در این پروژه هدف کلی رسیدن به ساختار فشرده و نیز استفاده از مدار میکرواستریپی در دو بانـد فرکانـسی
دلخواه و نیز افزایش هر یک از باندهای فرکانسی می باشد. و عـلاوه بـر ایـن بـا بکـار بـستن ( defected
ground structure) DGS بر روی زمین مدار شاهد اثرات مثبت آن برروی دستیابی باند فرکانسی مورد
نظر و نتیجتاً کاهش سایز مدار و خواهیم بود.
(2-1 پیشینه تحقیق
با توجه به ساختار مدار این پروژه و هدف مورد نظـر تحقیقهـایی مـورد نظـر بـودهانـد کـه بیـشتر در بـاره
Compact و فشرده سازی المانها، افزایش پهنـای بانـد، از بـین بـردن هارمونیکهـای اضـافی و اسـتفاده از
DGS میباشد.
در[1] افزایش پهنای باند مدارهای هایبرید با استفاده از اتصال خطوط شاخهای و استفاده از اسـتابهای مـدار
λ
باز در دو انتهای خط میکرواستریپ و معادل قرار داده خط با خط انتقال 4 جهت کاهش ابعاد مورد بررسی

قرار گرفته است.
٢٠
فعالیتهای گستردهای در جهت طراحی و بکاربردن کوپلرها و سـیرکولاتورهای صـفحهای فـشرده دردو بانـد
مورد دلخواه بعنوان مثال در پروژه - ریسرچ[2]انجام گردیده است که در فصل دوم نتایج حاصل از شـبیه سـازی ایـن
گونه کوپلرها و استفاده از ماترسیهای انتقال و نوشتن برنامه کامپیوتری جهت استفاده در دو فرکانس دلخـواه
مورد بررسی خواهند گرفت.
در مورد کاهش بیشتر سایز کوپلرها در حدود 45% مقدار کوپلرهـای مرسـوم خـط شـاخه ای و بـا مـدل T
شکل فعالیتهایی در مقالات گوناگون [3] تنها در یک باند فرکانسی مطرح گردیده است که در فصل بعدی
نیز این پروژه - ریسرچو نتایج شبیه سازی آن با نرمافزارهای گوناگون مورد بررسی قرار می گیرند.
یکی از مسائل مهم در چند قطبیهای میکرواستریپ مسئله کاهش اندازه بـوده کـه بـا توجـه بـه اسـتفاده از
المانهای باند و کاهش حجم مدار نیز استفاده از (defected ground structure) DGS مـیباشـد. ایـن
کار باعث از بین بردن هارمونیکهای اضافی و نتیجتاً کاهش اندوکتانس مدار و بالا بردن پهنای باند و کاهش
سایز مدار با کم کردن المانهـای مـوازی مـیگـردد. در ایـن زمینـه نیـز فعالیـتهـای گـسترده و اسـتفاده از
DGSهای مختلف صورت گرفته است [2]و[4]و[21]و .[22]
که اثرات تک DGS و نیـز DGS دمبلـی پریـود یـک را بـر روی پارامترهـای اسـکترینگ یـک خـط
میکرواستریپ دو پورتی ،بررسی شده است.
همچنین در[21] کاربرد DGS برروی خطوط یک کوپلر و تأثیر آن برروی پاسخ شبیه سـازی بـرروی ایـن
مدار در نرمافزار Ansoft بررسی گردیده است.
علاوه[23] نیز اثرات DGS هلزونی برروی حذف هارمونیکها و پهنای باند در یک تقسیم کننده توان ویـل
کینسن را مورد بررسی قرار داده است که در این پروژه در انتهای از این نوع DGS در زیـر خطـوط کـوپلر
خط شاخه ای تک بانده استفاده گردیده و نتایج آن آورده شده است.
٢١
و اثرات شکلهای گوناگون [21]DGSو[22]و[23]و مدل کردن مداری آنها بـرروی کـوپلر، سـیرکولاتور و
تقسیم کنندههای توان و به طور کلی خطوط میکرواستریپ را بررسی میکنند که در فصلهای بعـدی در ایـن
مورد به طور مفصل توضیح داده شده و نتایج حاصل از شبیه سازی نیز آورده شده است.
( 3 – 1 روش کار و تحقیق
در این پروژه روش کار و تحقیقهای انجام شده جهت رسیدن به هدف مورد نظر یعنـی اسـتفاده از دو بانـد
فرکانسی دلخواه کاهش حجم مدار بالابردن ضریب کوپلینگ نیز بـه صـورت اسـتفاده از مراجـع و منـابع و
مشاهده نتایج حاصله از این کارها بوده و بعد از برقراری لینک مورد نظر این منبع مـورد بررسـی بـا هـدف
نهایی به آیتم بعدی پروژه - ریسرچمربوط به مرجعهای اولیه پرداخته شده است. در بخشهای بعدی این مراحل عنوان
میگردند.
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن:
در این مرحله نیز خط میکرواسـتریپ Zc4 بـا طـول الکتریکـی θ نیـز کـه در شـکل (1 – 1) (a) مـشاهده
میگردد به صورت یک خط انتقال مرسوم با المانهای توزیع شده فشرده معادل آن نیز مدل گردیده است[9]
و با بکار بردن فرمول ماتریس ABCD5 مدار معادل مشاهده شده در شکل (1 – 1) ( b) میتوانـد اسـتنباط
گردد. با معادلات ماتریس ABCD در شکل (1 – 1) به نتایج زیر دسترسی پیدا میکنیم.
(1 – 1)
JB01  J tan θ01 / Z 01

امپدانس خط معادل
ماتریس انتقال خط
٢٢
که B01 امپدانس ورودی استاب مدار باز است و٠١θ طول الکتریکی استاب مدار باز است.
و با در دست داشتن ادمیتانس ورودی استاب مدار باز شکل (b ) ( 1 – 1) به معادلات زیر میرسیم
(2 – 1) cosθs −cosθ B01  Z c sin θ (3 – 1) Zc sinθ Zs  sinθs که ≤θs≤θ≤1٠ می باشد و همانطوری که در شکل((1-1 دیـده میـشود θs طـول خـط بـین دو اسـتاب در
مدارπ است.

شکل (a ) (1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع
٢٣
ما همچنین میتوانیم فرکانس قطع برای ساختار فیلتر مانند شکل (b ) ( 1 – 1) و مـدار معـادل آن در شـکل
(c) (1-1) به صورت زیر بدست آوریم:
(4 – 1)
1 Wc  Leq Ceq
(5 – 1)
1  Wc )ZsSinθs tan(θs / 2)  Cosθs − Cosθ 2( W0 Zs Zc Sinθ
که در Wc فرکانس قطع مدار معادل نشان داده شده شکل (b ) ( 1 – 1) و Wo فرکانس کار مرکـزی مـدار
مورد نظر با المانهای فشرده معادل 7Ceq, Leq6 میباشند.
حال در اینجا برای بالا رفتن پهنای باند و عریض کردن باند فرکانسی دلخواه، با استاب مدار بـاز بـه خـوبی
طول واحد خطوط سری با یکدیگر بوده و مدل کردن خط میکرواستریپ با خطوط معـادل بـا اسـتابهـای
مدار باز سری همانطور که در شکل (2 – 1) نشان داده شده باعث کم شدن امپدانس استاب بـاز و افـزایش
فرکانس قطع (fc) میگردد.

۶ سلف ٧خازن معادل
٢۴

شکل((a) ( 2 – 1 سری خطوط انتقال کوچک شده با چندین استاب باز (b) بزرگی پاسخ
با مشاهده پارامترهای S این مدار در شکل (b ) (2 – 1) از این مدارات میتوان جهت بالا بردن باند فرکانس
و نیز استفاده مدار دو باند فرکانسی دلخواه،اسنفاده گردد.
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(:(2000/900
در اینجا نیز با ایده گرفتن از کار قبلی و استفاده از ماتریسهای ABCD که در فصل بعدی آورده شده زمینه
جهت استفاده از کوپلر خط شاخهای Tشکل با حجم کم و باند فرکانسی دو بانده کـه در فـصل سـوم آمـده
فراهم میگردد.
٢۵
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخهای T شکل
در این قسمت با ایده گرفتن از روشهای قبلـی کـه در فـصلهای بعـد توضـیح داده مـیشـود از ماتریـسهای
ABCD استفاده شده و بعد از نوشتن برنامه کامپیوتری زمینه جهت استفاده از المانهای فـشرده در دو بانـد
فرکانسی دلخواه فراهم گردیده است. از بدست آوردن مقادیر Z و θ که امپدانس مشخصه خطـوط و طـول
الکتریکی آنها هستند با استفاده از فرمولهای موجود در بازههای مختلف که در منابع مختلـف هـم آمـدهانـد
طول و پنهای خطوط چند پورتی مورد نظر بدست میآید که در این پروژه از serenade استفاده شده است
و این مقادیر با دادن فرکانس کار، مشخصه دی الکتریک مورد نظر و امپدانس و طول الکتریکی خط نیـز بـه
سادگی بدست میآیند. در شکل (3 – 1) شمای کلی این نرم افزار آمده است.

شکل :(3 – 1) شمایی از نرمافزار serenade جهت بدست آوردن طول و پنهای خطوط
٢۶
با بستن مدار فوق در نرم افزارهای مختلف نتـایج شـبیهسـازی را مـشاده و در صـورت عـدم نتیجـهگیـری
همانطور که در فصل سوم آمده آنرا optimum میکنیم. در نهایت با ایده گرفتن از کارهای انجـام شـده در
مقالات مختلف DGS های گوناگون را بکار گرفته و نتایج حاصل از آن را آوردهایم.
٢٧
فصل دوم:
تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده وTشکل
٢٨
(1-2 مدار خط شاخهای اندازه فشردهT شکل
دراینجا هدف طراحی کوپلر و در نهایت سیرکولاتور خط شاخهای بهم پیوسـته بـدون اسـتفاده از المانهـای
توده میباشد. اندازه کـوپلر پیـشنهادی تنهـا 45درصـد کوپلرهـای خـط شـاخهای مرسـوم در فرکـانس 2/4
گیگاهرتز میباشد.
اندازه المانهای این نوع کوپلر میتوانند به راحتی با استفاده از عمل قلم زنـی بـرد مـدار چـاپی بـه صـورت
واقعی کشیده شده و برای سیستمهای ارتباطی بیسیم بسیار مفید و پرکاربردند. چرا که اخیراً سیستم ارتبـاط
بیسیم در جهت اهداف کوچک کردن و پائین آوردن هزینه بـه قطعـات کـوچکتری نیـاز دارنـد. از ایـن رو
کاهش اندازه از اهداف قابل توجه در بکاربستن این طراحی میباشد. در پایینترین باند فرکانس مایکروویو،
اندازه کوپلر خط شاخهای مرسوم جهت استفاده عملی بسیار پیچیده و بزرگ است. تکنیکهای زیادی جهـت
کاهش سایز این گونه کوپلرها گزارش شده است. ترکیب خط انتقال با امپدانس بالا و خازنهای فشرده شنت
شده به آنها نیز مورد بررسی قرار گرفته اند.در این موارد خازنها با عایقهایی خاص، مورد نیاز مدارهای شنت
میباشند که در بحث بعدی جهت دو بانده کردن کوپلرهای خط شاخهای πشکل توضیح داده میشود.
مرجع[11] کوپلر خط شاخهای درخطوط میکرو استریپ تک لایه از فلز بدون هیچ گونه المان فـشرده شـده
واضافی ̦ سیمهای اتصال را پیشنهاد می کند.اندازه این گونه کوپلرها حدود 63درصـدطراحی هـای مرسـوم
میباشد. هرچند که قسمتهایی که ناپیوستگی در داخل کوپلر بوجود میآورند نیز همان ناپیوستگیهای ناشی
از اتصال مدارهای استاب شنت مدار باز یا کوتاه میباشند کـه باعـث بوجـود آمـدن مـشکل (over lap)8
میگردند. بنابراین ما در فصل بعدی روی طراحی یک کوپلر خط شـاخهای T شـکل جمـع و جـور جدیـد

٨هم پوشانی
٢٩
متمرکز خواهیم شد و در قسمت بعدی آنها را در کوپلرهای واقعی بکار برده و به تحلیـل و بهینـهسـازی آن
میپردازیم.
این نوع کوپلرها بدون استفاده از هیچ گونه المان فشرده، سـیم و قطعـه ای، مـیتواننـد بـه سـادگی بـرروی
سابستریتها ساخته شوند و در مقایسه با مدارات مرسوم طراحی شده اطلاعات را بخـوبی آشـکار مـیکننـد،
همچنین هماهنگی نزدیک و خوبی ما بین نتایج شبیهسازی و اندازه گیری شده مشاهده می گردد.
روش مرسوم ومعمولی جهت آنالیز کوپلر T شکل خط شاخهای بر روی استفاده از آنالیز مد نرمال است کـه
در اینجا ما از آن استفاده کردیم و این بدلیل ساختار هندسی آن نیز میباشد.
هر چند که خط با سایز کاهش یافته با طولی کمتر از λ / 4 اندوکتانس و ظرفیت پائینتـری را دارد، منتهـی
جبران اندوکتانس بوسیله افزایش امپدانس مشخصه خط و جبران ظرفیت نیـز بوسـیله اضـافه کـردن خـازن
شنت متصل شده [15] C میباشد. در این پـروژه خـازن C نیـز بوسـیله یـک خـط اسـتاب مـدار بـاز [9]
جایگزین گردیدهاست و معادل آنرا در مدار T شکل قرار دادهایم.

شکل(:(1-2ساختار T شکل خط انتقال ربع طول موج
ساختار T شکل معادل معمولی از یک خط کاهش یافته در شکل (1-2)نـشان داده شـده اسـت کـه در ایـن
شکل Z1،Z2،Z3وθ1،θ2وθ3 امپدانس مشخصه خطوط و همچنین طول الکتریکی آنها را نـشان مـیدهنـد.
لزومی ندارد که جایگاه خط با طول الکتریکـی((θ2 مـدارباز در وسـط خـط کـاهش انـدازه یافتـه مـا بـین
٣٠
Z1وZ2قرار داشته باشد. روابط ما بین این عناصر یعنی امپدانس مشخصه و طولهای الکتریکی را مـیتـوانیم
بوسیله ماتریس ABCD آنها تخمین بزنیم.
با استفاده از روابط قبلی برای طراحی یک کوپلر خط شاخهای πشکل مرسوم در اینجا با معـادل قـرار دادن
ماتریس آن با امپدانس مشخصه خط با طول θ = ±90° و ±ZT داریم:
3 Sinθ 3 JZ 3 Cosθ 1 0 Sinθ JZ Cosθ A B (1-2) j 1 1 1 j Cosθ3 Sinθ3 1 JB Cosθ1 Sinθ1 D  C Z3 2 Z1 (1-2) jB2  jTanθ2 / Z 2 (3-2) N Z1 Z3 (4-2) K Z1 Z 2 (5-2) M Z1 ZT از طرفی با معادل قرار دادن ماتریس فوق با ماتریس خط 90° داریم.
JZT
0(6-2)

0 JZT Sinθ j  Cosθ Z T
Cosθ B A Sinθ j  D C T Z و پس ساده سازی چهار معادله به صورت زیر خواهیم داشت:
(7-2) Cosθ1Cosθ3 − KTanθ2 Sinθ1Cosθ3 − NSinθ1 Sinθ3  0 (8-2) N Cosθ1Sinθ3 − KTanθ2Sinθ1Sinθ3  NSinθ1Cosθ3  M ٣١
(9-2) Tanθ2Cosθ1Sinθ3  Cosθ1Cosθ3  0 K Sinθ1Sinθ3 − 1 − N N (10-2) Sinθ1Cosθ3  KTanθ2Cosθ1Cosθ3  NCosθ1Sinθ3  M با ساده سازی روابط فوق دو معادله زیر را خواهیم داشت:
N 2 M 2 2 − N M 3  Tanθ Tanθ Tanθ N) ,Cotθ ) Tanθ Cotθ 2(11-2) M N N 1 3 1 3 1 (12-2) ( 2 − N 2 M 3 ( Tanθ 2  ) Tanθ 2 − N 2 M 3 ( 3  Sinθ Tanθ2Cosθ K KN MN M معادلات (11-2) و (12-2) نیز مقادیر θ1 و θ2 وθ3 را تحت شرایطی که M و N را داشـته باشـیم بـه مـا
میدهند. برای سادگی کار در اینجا Z1 را برابر Z3 در نظر میگیریم. طـول الکتریکـی θ1 بـر حـسب طـول
الکتریکی θ3 برحسب مقادیر مختلف M رسم گردیده است که در شکل (2-3) نیز آمـده اسـت. در اینجـا
نیز برنامه سادهای با نرم افزار مطلب نوشـته شـده(پیوسـت الـف-(1 و بـه ازای مقـادیر مختلـف N و M
میتوان به ازای θ1 های مختلف مقادیر θ2 و θ3 را بدست آورد.
١θ

٣θ
شکل θ1:(2-2) بر حسبθ3
٣٢
واضح است که طول الکتریکی کل خط کوچک شده( (θ= θ1 + θ3 با افزایش مقدار M نیز کاهش مییابد.
جایگاه خط استاب مدار باز شده در داخل کوپلر خط شاخهای تحـت شـرایط خـاص نیـز تحمیـل گردیـده
است. مقدار طول الکتریکی (θ2) ما بین مقادیر θ2 و θ میباشد. جهت جلـوگیری از مـشکل هـم پوشـانی

(Over lab) خط استاب باز را به انتهای خط اتصال کوتاه وصل میکنیم. θ1 و θ3 به ازای مقادیر شناخته
شده M به یکدیگر تبدیل شده در حالیکه حالت معادله (12-2) تحت N = 1 بدون نغییر باقی میماند. ایـن
نتایج به توانایی دو رابطه بدست آمده اشاره دارد. با بدست آوردن مقـادیر θ1 و θ3 و بـا داشـتن معادلـه
(12-2) مقادیر θ2 وZ2 محاسبه میگردند.
(2-2 طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن
با روشی که در بالا توضیح داده شد به سادگی میتوان انـدازه کـوپلر خـط شـاخهای مرسـوم را کـاهش داد
سابستریت مدار فوق دارای ویژگیهای زیر میباشند:
metal thickness =0 .02mm و h = 0.8mm و Tanδ  0.022 و εr  4.7
امپدانس مشخصه کوپلر خط شاخهای مرسوم 35 اهم در خط اصلی و در شاخه عمودی 50 اهم میباشند.
جهت کاهش دادن اثر افت هادی، افت تشعـشعی و جلـوگیری از مـدهای مـزاحم انتـشار نیـز پهنـای خـط
میکرواستریپ محدود شده و این امر با محدود کردن مقدار امپدانس مشخصه موثر واقع میگردد.
در ابتدا پارامترهای خط کوتاه شده اصلی ( افقی) را بـرای M=1/7 و بـا درنظـر گـرفتنθm1=17° بدسـت
میآوریم که از شکل θm3 = 48 °(2-2) حاصل میگردد. با قراردادن اطلاعات فـوق در رابطـه (12-2) و
٣٣
در نظر گرفتن k=2/6 مقدار θm2=39° (طول الکتریکی استاب باز خط اصـلی) بدسـت مـیآیـد. بـه طـور
مشابه پارامترهای خط شاخهای کاهش یافته را هم بدست میآوریم.
θb2=31 ْ θb3=58 ْ M=1/5 k=3/3 θb1=16
با در دست داشتن مقادیر فوق از نرمافزار Serenade جهت بدست آوردن ابعـاد مـدار چـاپی ) W پهنـای
خطوط) و ) L طول خطوط) اسـتفاده مـیکنـیم. بعـد از بدسـت آوردن ابعـاد فـوق، مـدار را بـا نـرمافـزار
Ansoft designer ترسیم نموده و بعد از تحلیل مدار فوق نیز نتایج اندازهگیری شده را بدست میآوریـم.
مدار چاپی آن در شکل (3-2) نشان داده شده است. و نتایج شبیهسازی در شکلهای (a) (4-2) و (b) نشان
داده شده است.

شکل :(3-2)مدار چاپی خط شانهای T شکل
٣۴

(a)

(b)
شکل S11:(a)(4-2)،S12،S13وS14 و(:(bپاسخ فازی کوپلر خط شاخه ای
مشاهده می شود S11 وS14 در فرکانس مرکزی کمتر از -20dB وS12 وS13 حدود -3dB میباشند.
حال با توجه به نتایج شبیه سازی اندازه گیری شده مستقیم و توان کوپل، افت بـالا بوسـیله سـاختار فلـزی و
افت تشعشعی دیده نمیشود . حوزه مدار کاهش یافته در مقایسه با کوپلر خط شاخهای مرسوم بـشتر از 55
درصد میباشد.
٣۵
مادر بخشهای بعدی مدار فوق را با اسـتفاده از بکـار بـستن (Defected ground structure)
DGS نیز مورد بررسی قرار خواهیم داد و اثرات DGS بر روی نتایج شبیهسازی مورد بررسی قرار خواهند
گرفت.
٢( 3 – کوپلر خط شاخهای π شکل
طراحی یک کوپلر خط شاخهای جدیدی که میتواند در دو فرکانس دلخـواه کـار کنـد از ویژگیهـای مـدار
پیشنهادی اندازه فشرده و ساختار شاخهای میباشد. فرمولهای طراحی روشن و واضـحی از ایـن مـدار بیـان
گردیده، چرا که موضوع مجهولات آن از قیبل امپدانس شاخههای خط مشخص گردیده اند.
فعالیتهایی جهت بررسی و رسیدگی نتایج شبیهسـازی شـده و انـدازه گیـری شـده از عملکـرد کـوپلر خـط
شاخهای میکرواستریپ در فرکانسهای 0/9 الی 2 گیگا هرتز انجام شده است.
کوپلرهای خط شاخهای از معروفترین مدارات پسیو استفاده شده در کاربردهای موج میلیمتری و میکرویـو
میباشند.
هایبریدهای λ / 4 طول موج [10] ,[9] مثالهای خوبی هستند که در باند فرکانسی مناسب دامنـه مـساوی و
فاز 90° در خروجی ایجادی میکنند. آنها عموماً در تقویت کنندههای بالانس شده و میکسرها برای بدسـت
آوردن یک افت برگشتی خوب استفاده شده و در جهت حذف سیگنالهای ناخواسته بوده، اگرچه بـه خـاطر
طبیعت ذاتی باند باریک ، طرح مرسوم بر روی خط انتقال λ / 4 بنا نهـاده شـده، کـاربردش در سیـستمهای
چند بانده و باند وسیع محدود گردیده است.
در سالهای اخیر، گزارشهای متفاوتی در رابطه با افزایش و بالا بردن پهنـای بانـد[11] و تکنیکهـای مـوثر در
کاهش سایز [14] ,[12] در مقالات مختلف عنوان گردیده اسـت. طراحـی کـوپلر خـط شـاخهای بـر روی
٣۶
المانهای توزیع شده فشرده بنا گردیده و همچنین برای کاربردهایی در دو باندفرکانسی نیز پیـشنهاد گردیـده
است. در [16] مولف یک ساختار صفحهای جدید را برای طراحی کوپلرهای خط شـاخهای دو بانـد عنـوان
کرده است هرچند مدار پیشنهاد شده از اشکالات زیر برخوردار می باشد:
-1 پهنای باند محدود ( کمتر از (10MHz
-2 افت داخلی و برگشتی بهینه نشده
-3 فضای اشغالی سابستریت آن خیلی بیشتر از کوپلرهای مرسوم بوده ( برخی از خطوط شاخهای، طولی به
اندازه 0/5λ را دارند)
درطرح پیشنهادی، تمام خطوط شاخهای تنها دارای طول λ / 4 بوده ( اندازه فشرده) و در فرکانس میـانی دو
تا باند فرکانسی بکار بسته شده، همچنین در مقایسه با طرح ذکر شده قبلی پهنای باند عملکرد وسیعتـری را
( > 100MHz ) ایجاد میکند، همچنین ایزولاسیون بین پورتهای بهتر و افت داخلی و برگشتی بهینـه تـری
را دارد ( بخش بعدی).
در قسمت بعد جهت آنالیزکردن، فرمولهای یک کوپلر خط شاخهای با فرمولهای واضح و روشـن نـشان داده
شده، در نهایت جهت رسیدگی و تحقیق، نتایج اندازهگیری و شبیهسازی شده ساختار کوپلر خـط شـاخهای
درباند فرکانسی (900/2000)Mhzکه با تکنولوژی میکرواستریپ ساخته شده آورده شده است.
( 4 – 2 فرموله کردن با استفاده از ماتریس خطوط انتقال
٣٧
شکل (5-2) طرح یک کوپلر خط شاخهای تک باند مرسوم توسط بخشهای خطوط انتقال بـا طـول λ / 4 را
نشان میدهد. در شکل (6-2) مدار معادل برای یـک خـط انتقـال λ / 4 پیـشنهاد شـده کـه شـامل خطـوط
شاخهای به طول الکتریکی θ و امپدانس مشخصه ZA بوده و به جفت المان موازی (jY)9 متصل گردیده.

شکل(:(5-2ساختار کوپلر خط شاخه ای یک بانده مرسوم

(a)

(b)
شکل((a):(6-2ساختار معادل پیشنهادی (b).خط شاخه ای λ / 4

٩ مقدار ادمیتانس خط
٣٨
حال جهت تحلیل ساختار پیشنهادی با در نظر گرفتن عدم افت و بکار بردن فرمـول ماتریـسها، پارامترهـای
ABCD ساختار پیشنهادی نشان داده شده در شکل((a)(6-2 بصورت زیر بیان میگردد.
(13-2) 0 jZ A Sinθ 1 0 Cosθ 1 Cosθ 1 jY 1 jYA Sinθ jY که این ماتریس در نتیجه به ذیل منتج می گردد.
jZASinθ Cosθ −ZAYSinθ (14-2) Cosθ −ZAYSinθ 2ZAYCotθ) 2 2 (1−ZA Y jYASinθ و نیز ماتریس بالا به صورت زیر خلاصه میگردد.
±jZT 0 jZASinθ 0 (15-2) 0 ±j  1 0 j Z T A Z Sinθ با معادل قرار دادن ماتریسهای بالا داریم:
Z A Sinθ ±ZT(16-2)
Cotθ
Y(17-2)
Z A
معادله (15-2) نشان میدهد که ساختار پیشنهاد شده معادل با بخشی از خط انتقـال بـا امپـدانس مشخـصه
ZT± و طول الکتریکی θ = ± 90° میباشد. مطابق با عملکرد یک مدار دو بانده (Dual – band) شـرایط
لازم ممکن است به صورت زیر داده شود.
٣٩
(18-2) Z A Sinθ1 ±ZT
(19-2) Z ASinθ2 ±ZT
کهθ1 و θ2 طولهای الکتریکی معادل شده خط شاخهای در باند فرکانسی مرکزی f1 و f2 میباشد.
روش معمولی حل معادلات (18-2) و (19-2) به صورت زیر میباشد:
3.......و2وn=1
(20-2) θ2  nπ −θ1 (21-2) f1  θ1 f2 θ2 (22-2) (1 −δ) nπ θ1  2 (23-2) (1 δ) nπ θ2  2 (24-2) f2 − f1 δ  f 2 f 1 در نتیجه طول الکتریکی خط شاخهای معادل شده در فرکانس مرکزی (θo)به صورت زیر تعیین میگردد
(θ0 ) = θ1 2θ2  n2π(25-2)

با قرار دادن معادلات (22-2) و (23-2) در معادلات (16-2) و (17-2) خواهیم داشت:
(26-2) ZT Z A  ( nδπ Cos( 2 ۴٠
nδπ ( tan( 2 f1 , f  Z A (27-2) y  nπδ ( − tan( 2 f2  , f Z A برای مقادیر 5.....و3وn=1 (28-2) ZT Z A  ( nδπ Sin( 2 nδπ ( −Cot( 2 f1  , f ZA (29-2) y  nπδ ( Cot( 2 f2 , f  ZA برای مقادیر..... 6و4وn=2 در معادلات بالا مقادیر مدار معادل داده شده بـرای دو بانـد فرکانـسی دلخـواه f1 وf2 کـه همـان y و ZA
هستند به دست میآیند.
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب
با در نظر گرفتن امپدانس خطوط عمودی zo=50Ω وخطوط افقی35 و طول الکتریکی 90درجه و نیـز قـرار
دادن آنها در serenade مقادیر طول(( L و پهنای خطوط (w) را بدست آورده و بادر نظـر گـرفتنf=1/45
و بستن مدار در قسمت شماتیک نتایج حاصل را می بینـیم.در شـکلهای((7-2 الـی (8-2) نتـایج حاصـل از
شبیه سازی کوپلر بدون استفاده از المانهای شنت در فرکانس مرکزی نشان داده شده است.
۴١

شکل(S13 ̦S12 ̦ S11:(7-2 وS 14 کوپلر بدون استاب
مشاهده می کنیم مادیرS11و S12 در فرکانس مرکزی کمتر از -20dB بوده یعنی پورت 1 از 4 ایزوله است
وS13وS12 حدوداً dB٣- می باشد .

شکل(:(8-2زاویهS 12 و S14 برای مدار بدون استاب
۴٢
(6-2 تحقق جهت دوبانده کردن مدار
دربخش قبل روش مشخصی برای طراحی یک کوپلر دو بانده (dual – band) به صورت فرمـولی تحلیـل
و تجزیه گردید. نتایج نشان میدهند روشهایی جهت انتخاب مقدار n و همچنین راههای مختلف در بدسـت
آوردن مقادیر المان شنت با ادمتیانس ورودی (Y) که در معادلات (27-2) و (29-2) توضیح داده شده بودند
وجود دارد.جهت معادل سـازی و نـشان داد ن توپولـوژی دو تـا مـدار در اینجـا مقـدار n را یـک در نظـر
میگیریم.
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)
با استفاده از معادلات (22-2) و (23-2) ادمیتانس ورودی یک استاب مدار باز بـه صـورت زیـر مـیتوانـد
باشد.
δπ ( Cot( f1 , f  2 ZΒ (30-2) yoc  ( δπ −Cot( f2 , f 2 ZΒ که در اینجا ZB نیز امپدانس مشخصه استاب مدار باز میباشد . از ایـن رو بـا ترکیـب معـادلات (27-2) و
(30-2) مقدار ZB به صورت زیر بدست میآید: (31-2) Z T ZB  δπ δπ ( )Tan( Sin( 2 2 ۴٣

شکل (9-2) ساختار کوپلر پیشنهادی با استاب مدار باز
در شکل (9-2) ساختار نهایی ( با ساده سازی بوسیله ادغام استابهای شنت موازی شده ) از یـک کـوپلر دو
بانده (dual – band) با تمام خطوط شاخهای جایگزین شده بوسیله مدار پیشنهاد شده شکل (6-2) نـشان
داده شده است و نتیجتاً مقادیر Z3, Z2, Z1 بوسیله معادلات زیر تعیین میگردند.
(32-2) 1 . Z0 Z1  ( δπ Cos( 2 2 (33-2) 1 Z2  Z0. ( δπ Cos( 2 (34-2) 1 . 0 Z Z3  δπ δπ 2 1  ( )Tan( Sin( 2 2
(2-6-2 استفاده از مدار اتصال کوتاه ( طول ( λ2

به طور مشابه ادمیتانس ورودی یک استاب اتصال کوتاه میتواند به صورت زیر بیان گردد:
۴۴
f1 , f Cotδπ Z B (35-2) ysc  Cotδπ − f2  , f Z B شکل (10-2) (مدار چاپی) Layout یک کوپلر اصلاح شده با اتصالات شنت کوتاه شده نشان میدهد کـه
امپدانس مشخصه استاب شنت به صورت زیر محاسبه میگردد.


(36-2) 1 . 0 Z Z3  δπ 2 1  )Tanδπ Sin( 2
شکل (10-2) ساختار کوپلر پیشنهادی با استاب اتصال کوتاه
در تئوری نیز کوپلر پیشنهاد شده میتواند در هر دو باند فرکانسی دلخواه عمل کرده، اما در عمل تعیین رنـج
امپدانسی ساختار کوپلر میتواند مقداری حقیقی پاشد.
۴۵
واضح است که با انتخاب مناسبی از شکل مدار برای رنجهای متفاوتی از کـسر پنهـای بانـد ( 0/2 تـا 0/3 و
همچنین 0/3 تا ( 0/5 کوپلر پیشنهاد شده ممکن است امپدانس خطوط که تنها 30 الی 90 اهم تغییر میکنـد
در آنها بکار برده شود.
( 7- 2 آنالیز(تحلیل) مدار π شکل خط شاخهای دو باند و مشاهده نتایج شبیهسازی :
جهت اثبات و تأیید عملکرد، یک کـوپلر خـط شـاخهای میکرواسـتریپ دو بانـده در فرکانـسهای 0/9 و 2
گیگاهرتز طراحی و شبیهسازی شده و روی کسری از پهنای باند محاسبه شده((δ= 0/38 بنا نهاده شدهاست.
ساختار فشرده یک استاب مدار باز با طول λ / 4 جهت بکار بستن نیز مورد استفاده قـرار گرفتـه اسـت . از
معادلات (32-2) الی (35-2) مقادیر Z3, Z2, Z1 حدود 42/7 و 60/6 و 54/4 اهم نیز بدست آمـده اسـت.
جهت بهتر کردن دقت کار، پاسخ فرکانسی ساختار کامل شـامل ناپیوسـتگی و اثـر زیـر لایـه (Substrate)
بهینه شده با استفاده از یک مدار شبیه سازی شده اشکال (11-2) الی (14-2) پاسـخ فرکانـسی شـبیهسـازی
شده مدار نهایی از یک کوپلر دو بانده را نشان میدهند. مطابق با اثر یـک اسـتاب شـنت تلفـات داخلـی در
فرکانس مرکزی (1.45GHz) صفر گردیده که به حذف هر سیگنال مداخله کننده کمک میکند. کوپلر فوق
سابستریتی با ثابت اللکتریک εr = 3/38 و ضخامت h = 0/81mm میباشد. حال با اسـتفاده از نـرم افـزار
Serenade ابتـدا مقـادیر خطـوط یعنـی پهنـای خطـوط W1 ،W2،W3و طـول آنهـا L1،L2،L 3 را در
فرکــانس مرکــز 1/45 بدســت مــیآوریــم و بــا بــستن مــدار در ایــن فــرمافــزار مقــادیر پارامترهــای
S11،S12،S13وS14را برای باند فرکانسی دوبل شبیهسازی کردهایم.
۴۶
جدول(:(1-2مشخصات الکتریکی وفیزیکی مدار در دو باند امپدانس طول الکتریکی پهنای خط طول خط Z1=42.7 θ1=90 W1=2.38mm L1=31.25mm Z2=60.4 θ2=90 W2=1.36mm L2=31.95mm Z3=54.4 θ3=90 W3=1.63mm L3=31.73mm
شکل(:(11-2نتایج شبیه سازی(افت برگشتی(S11
۴٧

شکل(:(12-2نتایج شبیه سازی(S12و(S13

شکل(:(13-2نتایج شبیه سازی((S14
پارامترهای تشعشتی در این شبکه آنالایزر روی رنج فرکانسی از 0/1 الی 4 گیگاهرتز انجام میگردد.
۴٨

شکل(:(14-2نتایج شبیه سازی(پاسخ فازمدار با استاب)
شکلهای (11-2) الی (14-2) پاسخ اندازهگیری شده کوپلر در فرکانـسهای مرکـز دو تـا بانـد عملکـرد کـه
0/9GHz و 2GHz میباشد نشان میدهند..افت برگشتی و ایزولاسیون پورت بهتر از -20dB در فرکانسی
مرکزی دو باند بدست آمده است هر چنـد تـضعیف سـیگنال بـالا تـر از 50dB جـذب شـده در فرکـانس
1/41GHz نیز میباشد.
درمقایسه با طراحی یک کوپلر تک بانده، افت داخلی اندازهگیری شده دردو پـورت خروجـی تنهـا 0/4dB
بالاتر از مقدار واقعی آن((-3db میباشدو این بـاور وجـود دارد کـه ایـن اخـتلاف اساسـاً ناشـی از وجـود
ناپیوستگیهای اتصالات و اثر انتهای باز نشان داده شده در شبیه سازی میباشد.
طراحی و بکار بستن کوپلر خط شاخهای فشرده صفحهای بالا نیز درطراحی کـوپلری بـا دو بانـد فرکانـسی
کوچک و بزرگ بکار میرود.
۴٩
فصل سوم:
طراحی مدار میکرواستریپ فشردهT شکل با اندازه کاهش
یافته در دو باند فرکانسی
۵٠
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه بـه رونـد
ارائه شده در دو بانده کردن کوپلرπ شکل ( 900MHz و (2400MHz
در این بخش ابتدا با روش دستی و استفاده از ماتریسهای ABCD کوپلرخط شاخهای و معـادل قـرار دادن
آن با ماتریس ABCD یک خط ±90°، طول الکتریکی و امپدانس مشخصه کوپلر خط شـاخهای بـا تبـدیل
θ به ' θ θ) f 2  ' (θ بوده را در حالت دو بانده معادل ساخته و در نهایت بوسیله برنامه ساده کامپیوتر که f1 بر اساس اطلاعات موجود نوشته شده، خطای موجود را در بدست آوردن θ و امپدانس مشخصههـایی کـه
برای هـر دو فرکـانس دلخـواه بـالا و پـائین 0/9GHz)و(2/4GHzصـدق کنـد بـا کمتـرین درصـد خطـا
0/4)درصد) درنظر میگیریم و با شرایط در نظر گرفته شده مقادیر θ و Z را بدست میآرویم.
همانطور که در بخش قبل نیز گفتیم با معادل سازی مدل T شکل خطوط استاب شنت متـصل شـده از نـوع
مدار باز بوده و این استاب خود باعث کاهش طول خط می گردد.
3 Sinθ' 3 jZ 3 Cosθ' 0 1 Sinθ' jZ Cosθ' A B (1-3) j − 1 1 1 j 3 Cosθ' 3 Sinθ' 1 jβ'2 Cosθ' Sinθ'  Z3 1 1 Z1 C D در بخش قبل مقادیر β2 و Z1 و Z1 ، Z1 بـا مقـادیر معـادل آن آورده شـده انـد و در اینجـا θ f2 θ' Z Z Z f 3 2 T 1 میباشد.
با معدل قرار دادن ماتریس فوق با خط -90 درجه داریم:
− jZ 0 Sinθ' jZ Cosθ' B A (2-3) T − j  T j 0 Cosθ' Sinθ'  ZT ZT C D ۵١
وبا ساده سازی روابط فوق داریم:
(3-3) Cosθ'1Cosθ'3 −kTanθ'2 Sinθ'1 Cosθ'3 −NSinθ'1 Sinθ'3  0 (4-3) N Cosθ'1 Sinθ'3 −kTanθ'2 Sinθ'1 Sinθ'3 NSinθ'1 Cosθ'3  − M (5-3) K 1 Cosθ'1 Sinθ'3 Cosθ'1 Cosθ'3  0 Tanθ'2 Sinθ'1 Sinθ'3 − − N N (6-3) Sinθ'1 Cosθ'3 KTanθ'2 Cosθ'1 Cosθ'3 NCosθ'1 Sinθ'3  −M در روابط بالا f2  θ'3 f2  θ'2 f2  θ'1 f 3 θ f 2 θ f θ 1 1 1 1 مقادیرf1 =900MHz و f2 =2400MHz می باشند. با ساده سازی روابط (3-3) و (4-3) به معادلا ت زیر میرسیم. (7-3) Cosθ'3 '1  − Sinθ M (8-3) Sinθ'3 − M Cosθ'1  N (2-3 استفاده از برنامه کامپیوتری ساده جهت بدسـت آوردن پارامترهـای مـدار دو
بانده
حال نیز برنامه ای با نرم افزار مطلب نوشتهایم و میخواهیم طولهـای الکتریکـی و امپـدانس مشخـصههـای
کوپلر و درنهایت سیرکولاتور موردنظر را در شرایطی بدست آوریم که خطاهای زیر حـاکم باشـند یعنـی در
آن واحد شرایط برای فرکانسهای بالا و همچنین پائین (استفاده از دو باند فرکانسی) موجود باشد.
۵٢
(9-3) N f 2 θ1 )Tan( f 2 Tan( 0.4 θ3 ) − M 2 f1 f1 (10-3) 0.4 θ3 ) f2 Tan( 2 − N 2 M θ2 ) − f2 Tan( f1 kN f1 (11-3) 0.4 θ3 ) f 2 Sin( M θ1 )  f 2 Cos( f1 N f1 برنامه نوشته شده در نرم افزار مطلب در پیوست الف ارئه شده است.
طول الکتریکی و امپدانس مشخصههایی که در شرایط خطای بالا بر قرار باشند جوابها میباشند کـه شـرایط
برای استفاده درحالت دو باند فرکانسی را دارند. θ1و θ2 وθ3 وZ1وZ2وZ3 در شرایط فـوق را مطـابق بـا
برنامهای که آورده شده بدست میآیند.
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محـیط ( نـرم افـزار) مختلـف و
مشاهده نتایج حاصل
با قرار دادن مقادیر بدست آمده از برنامه نوشته شده که برای استفاده در دو باند فرکانـسی دلخـواه در نظـر
گرفته شده در روابط زیر و یا با استفاده از محیط serenade طولهای Lm1و)Wm1پهنا وطول خط شاخه
اصلی)Lm3و)Wm3پهنا وطول خط متصل به Zm1 در خط اصلی)Lm2و)Wm2پهنا وطول استاب مـدار
بــاز در خــط اصــلی)Lb1 و )Wb1پهنــا وطــول خــط متــصل بــهZm2در خــط عمــودی)وLb1
،Wb1،Lb2وWb2را بدست میآوریم.
۵٣
(12-3) 4 π εr −1 1 Z 0 2(εr 1) 1 (1/ εr )Ln π )  2 (εr 1)(Ln 2  119.9  H (13-3) −1 1 1 exp H W ( − ( 4 exp H 1 8 h (14-3) −2 4 Ln 1  π )(Ln 1 εr − 1 − 1 εr  ε eff  ) ) 1 π εr 2 1 εr  2H ' 2
با در دست داشتن مقادیر فوق مدار را در نرم افزارهـای Serenade و Advance designer (ADS)
sys-- ترسیم و نتایج شبیهسازی راعلاوه در ansoft مشاهده میکنیم منتهی در نهایت مقدار پهنـای بانـد
را حدوداً در Optimom 10% کرده و نتایج حاصل در زیر آورده شده اند.
h = 0/762mmεr =3/55 Tanδ  0. 022
در شکلهای((1-3و((2-3و((3-3 شماتیک ومدارچاپی و پاسخ مـدار شـبیه سـازی شـده در نـرم افزارهـای
مختلفی نشان داده شده است.

(a)
۵۴

(b)
شکل((a ) 🙁 1-3شماتیک (b)مدارچاپی (designer,hfss)ansoft
در جدول((1-3و(2-3 )با در دست داشتن مقادیر ابتدایی از المانهای مدار که توسط روابـط((12-3 الـی(-3
(14بدست آمده اند بازهای جهت حد بالا وپایین المان ها در نظر گرفته شده است و به سمت اهدافی که در
جدول((2-3 امده optimom انجام می گردد
.جدول(:(1-3دو بازه فرکانسی ودو هدف مورد نظر پروژه 905mhz 895mhz Frange1 باند فرکانس اول
2.45ghz 2.35ghz Frange2 باند فرکانس دوم
-20db lt ms12=-3.5db w=3 ms13=-3.5db w=3 ms14 -20db lt ms11 Goals1 هدف اول
-20db lt ms12=-3.7db w=3 ms13=-3.7db w=3 ms14 -20db lt ms11 Goals2 هدف اول
۵۵
جدول(:(2-3بازه بالا وپایین جهت optimom هدف بازه بالا مقدار اپتیمم شده بازه پایین نام المان
7MM? 5.69180mm ?5mm lb1
12.5MM? 11.35000mm ?10mm lb2
41MM? 39.57900mm ?37mm lb3
11.5MM? 10.77600mm ?9.5mm lm1
16.5MM? 15.36700mm ?14.5mm lm2
40MM? 38.67200mm ?37mm lm3
0.8MM? 0.16152mm ?.08mm wb1
1.2MM? 0.95112mm ?0.6mm wb2
2.5mm? 1.45870mm ?0.8mm wb3
2.1MM? 1.65260mm ?1mm wm1
0.5MM? 0.20507mm ?0.1mm wm2
3.5MM? 2.70090mm ?2mm wm3
2.5MM? 0.20010MM ?0.1mm wp

(a)
۵۶

(b)

(c)
شکل(S 11 :(2-3، S12،S13و S14 مدار شبیه سازی شده در ADS(c) SERANADE(b) ANSOFT(a)
۵٧

شکل(:(3-3پاسخ فازی مدار 2بانده
مشاهده میگردد که مقدار پارامترهای تضعیف در 0/9 و 2/4 گیگاهرتز -3dBو -20dbمیباشند.
در بخش بعدی در مورد اثرات DGS و مشاهده تاثیرات آن بروی این کوپلر بحث میکنیم.
۵٨
فصل چهارم:
بررسی انواع مختلف DGS و اثرات آن بر روی خطوط
میکرواستریپ
۵٩
DGS (1-4 چیست؟
DGS نیز شبکهبندی قلم زده شده ای است با شکل اختیاری که بر روی صفحه زمین قـرار مـیگیـرد و در
شکلهای T ، H ،دمبلی و حلزونی و...بکار میروند.
در شکل (1-4) انواع مختلف DGS نشان داده شده است.

شکل(H(a) :(1-4 شکل T(b) شکل (c) هلزونی شکل (d) دمبلی شکل
(2-4مشخصات کلی DGS
در ساختار DGS مشخصه های زیر رامی توان عنوان کرد:
-1 تغییر اندازه شکاف باند نوری . (PBG)10
-2 دارا بودن ساختارهای پریودیک وغیر پریودیک.
-3 به سادگی نیز مدار معادل LC را میسازد.

10 Photonic band gap
۶٠
(3-4 کاربردهای DGS
-1 در تشدید کنندههای صفحهای
-2 بالا بردن امپدانس مشخصهخط انتقال
-3 استفاده در فیلتر ،کوپلر و سیرکولاتور، اسیلاتور، آنتن و تقویت کنندهها
(4-4 ویژگیهای DGS
-1 پوشش میدان روی صفحه زمین را مختل میکند.
-2 بالا بردن ضریب گذردهی موثر.
-3 بالابردن ظرفیت موثر و اندوکتانس خط انتقال
-4 از بین بردن هارمونیکهای اضافی با تک قطب کردن ویژگی ) LPF11 فرکانس قطع و تشدید)
(5-4اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ
DGS نیز بوسیله الگوی کـم کـردن قلـم زنـی، در صـفحه زمـین مـدار ایجـاد مـی گـردد.. در ابتـدا خـط
میکرواستریپی با الگوی DGS از نوع دمبلی شکل نشان داده شده است و تـأثیر شـکاف بانـد خـوبی را در
بعضی ار فرکانسهای معین نیز ایجاد می کند .[21]
DGS در طراحی مدارات امواج میلیمتری و مایکرویو خیلی زیاد بکار میرود . اخیراً DGSهای متوالی بـا
کاستن الگوهای مربعی از مدارات صفحهای کـه ویژگیهـای Slow wave و stop band بـسیار خـوبی را

11 Low pass filter
۶١
تولید میکنند مورد بررسی قرار گرفته که در تقویت کنندهها و اسیلاتورها بیشتر مورد استفاده قرار گرفتهانـد
.[23] [ ,22]
در مقایسه با DGS پریودیک قبلی [21] و [22] یک نـوع DGS پریودیـک بهتـر و قـویتـر نیـز پیـشنهاد
1
گردیده که ابعاد مربعات کاسته شده متناسب با توزیع دامنه تابع نمـایی ) e n کـه n عـدد صـحیح اسـت)

میباشد.
در شکل((2-4مدار دو پورتی بدون DGS نشان داده و پارامترهـایS حاصـل از آن بـا ansoft در شـکل
(3-4) آمده است.

شکل(:(2-4خط میکرواستریپ دو پورته باεr=10 وh=1.575

شکل(:(3-4پارامترهایSمدار شکل((2-4
۶٢
به منظور بررسی این اثرات توسط DGS پریودیک نیز یک عدد مدار DGS پریودیک متحدالـشکل و دو
تا مدار DGS پریودیک قوی شده نیز در اینجا طراحی و اندازهگیری شدهاند. اندازهها نـشان مـیدهنـد کـه
نمایشهای اخیر اجرای نقش دقیقی توسط متوقف شدن رپیل و بزرگ کردن پهنـای بانـد را ایفـا مـیکنـد.در
شکل((4-4 دو پورتی با DGS دمبلی شکل نشان داده شده و نتیجه شبیه سازی شده این خـط بـا ansoft
در شکل((5-4رسم گردیده است.

شکل(:(4-4مدا با DGS دمبلی شکل

شکل(:(5-4پارامترهایS مدار باDGS دمبلی شکل
در بالا می بینیم فرکانس قطع ومقدار تضعیف کاهش می یابند.
( 1 – 5 – 4 الگویDGSدمبلی شکل و ویژگی شکاف باند
۶٣
نمای شماتیک مدار دمبل شکی DGS در شکل (4-4) نشان داده شده است .خـط میکرواسـتریپ رو قـرار
گرفته و DGS نیز در زیر صفحه فلزی زمین قلم زده شده است. طرح DGS توسط خطوط دش مـشخص
شدهاند. پهنای خط نیز برای امپدانس مشخصه 50 اهم تعیین گردیده است. ضـخامت سابـستریت زیـر لایـه
1/575 میلیمتر و ثابت دی الکتریک εr = 10 میباشد. در [20] آمده که شـکاف قلـم زده شـده و کاسـتن
مربعی قلم زده شده با ظرفیت موثر خط و اندوکتانس خط نیز متناسب میباشد و وقتی ناحیه قلـم زده شـده
کاسته شده مربع شکل کاهش می یابد و فاصله شکاف نیز 0/6 میلیمتر نـشان داده شـده اسـت، انـدوکتانس
موثر کاهش یافته و این کاهش اندوکتانس نیز فرکانس قطع (fc) را بالا میبرد که این قضیه در شکل (7-4)
نشان داده شده است. در اینجا ما نیز این کار را با Ansoft انجام دادهایم.
( 2 – 5 – 4 ایجاد DGS دمبلی پریودیک قویتر
نمایش شماتیک DGS پریودیک با الگوهای مربعـی واحـد بـرای مـدارات صـفحهای [21] نـوع 1 نامیـده
میشود که در شکل (6-4)(a) آمده است.مدار ما در اینجا نیز خـط میکرواسـتریپ 50 اهمـی و نیـز5 عـدد
الگوهای مربع متحدالشکل با دوره یکسان d = 5mm میباشند.پهنای طرفین مربعها و فاصله شکاف هـوایی
ما بین آنها 4/5 (g) میلیمتر و 0/6 میلیمتر میباشند.
براساس نوع 1 ، متحدالشکل بودن توزیع پنج عدد الگوی مربعی توسط یک شکل غیر واحد توزیع میگردد.
حوزه المانهای مربعی نیز متناسب با توزیع دامنه تابع نمایی e1/ n میباشد.در اینجا دامنه سـوم از پـنج المـان
مربعی شکل نیز 4/5mm میباشد.پس نوع دوم بوده و دامنه المـان توزیـع شـده بـر اسـاس زیـر مـشخص
میگردند.
2/3mm2/7mm4/5mm(1-4)
۶۴

شکل (a) :(6-4) نوع1 ، (b) نوع2، (c) نوع3
استفاده از توزیع ارتفاع غیر واحد DGSهای پریودیک، نوع دوم را تشکیل می دهند که در شکل (6-4)(b)
نشان داده شده است. براساس نوع دوم، دیگر مدار DGS پریودیک قوی شـده، یـک خـط میکرواسـتریپ
جبرانی را دارد که نوع سوم نامیده میشود. در شکل (6-4)(c) آمده است.خط میکرواستریپ جبرانی شـامل
۶۵
یک خط 50 اهمی و یک خط عریض میباشد. همچنین بزرگی المانهای DGS توسط رابطه سوم مشخص
گردیده است. المانهای الگوی مربعی غیر هم شکل نیز دارای دوره مساوی d=5mm بوده و فاصـله هـوایی
ثابت d = 0/6mm دارند که در شکل (6-4) نوع دوم و سوم خطوط میکرواستریپ رو قـرار دارد و DGS
ها نیز در صفحه زمین فلزی کنده شده و توسط خطوط دش مشخص شدهاند.
(3-5-4اندازهگیریهای مربوط به DGS دمبلی شکل
سه نوع مدار DGS پریودیک که ذکر شدند مورد بررسی و اندازهگیری قرار گرفتهاند، نتایج اندازهگیری نیـز
در شکل (8-4)((a)-(c)) نشان داده شده هستند . این نتایج به طور خلاصه در جدول (1-4) آمده است.
جدول(:(1-4مقایسه DGS های واحد وپریودیک وتوزیع نمایی

شکل(:(7-4پارامترهایS برای DGS دمبلی شکل
۶۶

(a)

(b)

(c)
شکل(:(8-4 مقایسه پارامترهای S مدارهای (a) DGSنوع(b) 1نوع(c) 2 نوع3
۶٧
سابستریت این مدارات دارای h = 1/575 و εr = 10 هستند. این اندازه گیـریهـا توسـط Ansoft انجـام
شده و نشان داده شدهاند.
همان طوری که در جدول آمده، 20dB ایزولاسیون پهنای باند برای انواع 1و 2و 3 نیز در فرکانسهای 3/05
و 4/18 و 4/26 گیگاهرتز میّاشند.
مدارهای DGS پریودیک پیشنهاد شده نوع 2و 3 پهنـای بانـد ایزولاسـیون 20dB را بهتـر 37% و (39/7%
میکند.در ناحیه پائین گذر، اولین افت برگـشتی و پیـک افـت برگـشتی بـرای نـوع 3، مقـادیر -46/7dB و
-30/9dB بوده و در صورتیکه این مقادیر در نوع 1 نیز -10/8dB و -4/9dB هستند.اولین افت برگشتی و
ماکزیمم افت برگشتی نیز در 4 بار (لحظه) بهتر شده و بنابراین ر پیلها به صورت موثری از بـین رفتـهانـد و
پهنای باند موثر برای نوع سوم افزایش و فرکانس قطع 3dB به صورت مختصر و کم تغییر پیدا میکند.
(6 – 4بررسی اثرات DGS های هلزونی بر روی هارمونیکهای تقسیم کننده توان
در اینجا نشان خواهیم داد تکنیکهای موثری از حذف هارمونیک دوم و سوم برای یـک تقـسیم کننـده تـوان
ویل کینسون (WILLKINSON)با استفاده از DGS هلزونی شکل را، که ما در مدار کـوپلر از ایـن نـوع
DGS استفاده کردهایم.
شکاف باند الکترومغناطیسی و برهم زدن ساختار زمین اخیـراً نیـز کـار بردهـای متفـاوتی را در مـایکرویوو
فرکانس موج میلیمتری با شکلهای مختلف دارند [22] و [24] و DGS خط میکرواستریپ نیـز بـا بـر هـم
زدن مصنوعی صفحهای زمین در ویژگی رزونانس مشخـصه انتقـال تغیراتـی ایجـاد مـیکنـد. در یـک خـط
میکرواستریپ مطابق با اندازه DGS یا بر هم زدگی که روی صفحه زمین ایجاد میگردد، حذف باند بیـشتر
۶٨
در فرکانس رزونانس صورت میگیرد. همچنین DGS باعث بوجود آمدن اندوکتانس موثر اضـافی در خـط
انتقال میگردد. افزایش اندوکتانس موثر از ایجاد DGS باعث افزایش طول الکتریکی خط انتقال نـسبت بـه
یک خط متداول میگردد که خود نیز باعث کاهش اندازه مدارات موج میلی متر و مایکرویو میگـردد. [21]
، در طراحی فیلترها ،تقسیم کنندههای توان و تقویت کنندهها، ویژگی حذف باند و اثر موج آهـسته (Slow
wave) توسط DGS نیز بسیار مورد نظر می باشد [22]و [23]
هارمونیک های ناخواسته تولید شده با ویژگی غیر خطی مدارات اکتیو نیاز به حذف کردن دارند. در مدارات
مایکرویو و فرکانس بالا ویژگی حذف باند توسط DGS میتوانـد در متوقـف کـردن هارمونیکهـای مـورد
استفاده قرار گیرد [22] و .[23] با یـک DGS هلزونـی شـکل متقـارن، (یـک تـک ( DGS حـذف تـک
هارمونیک را خواهیم داشت، وDGS پریودیک در جهت حـذف هارمونیـک دوم و سـوم بکـار مـی رونـد.
DGS های آبشاری و پشت سرهم باعث افزایش افت داخلـی شـده و بهمـین دلیـل در مـدارات بـا انـدازه
کوچک نیز استفاده از ان محدود گردیده است. در اینجا ساختار DGS هلزونی شکل غیر متقارن نیز جهـت
حذف هارمونیکهای دوم و سوم بطور همزمان پیشنهاد گردیدهاند. به طور مـوثر یـک تـک DGS هلزونـی
غیرمتقارن باعث از بین بردن باند فرکانس دوم میگردد و نیاز به ناحیه کوچکی هم جهت نقش بـستن دارد.
تقسیم کننده توان ویل کینسن با بکار بستن یک DGS هلزونی غیـر متقـارن در خطـوط λ4 باعـث حـذف

هارمونیک دوم شده و اندازه آن نیز با اثر موج آهسته کاهش مییابد. مشاهده میگردد به دلیل ذکـر شـده در
این پروژه ما از این گونه DGS استفاده ننمودهایم. تقسیم کننده Willkinson پیشنهاد شده به خـوبی یـک
تقیسم کننده توان مرسوم، در فرکانس کار خواهد بود.
۶٩
(7-4مدل مداری و هندسه DGS هلزونی نا متقارن
در شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ که ابعـاد کنـده شـده هلزونـی
شکل در سمت راست و چپ متفاوت از یکدیگر هستند آمده است. برای هندسه این DGS نامتقارن مطابق
با کنده شدهگی سمت چپ و کندهشدگی سمت راست دوتا فرکانس عملکرد متفاوت وجود دارد. مشخـصه
انتقال خط میکرواستریپ با هندسه DGS نامتقارن ویژگی حذف باند در فرکانس تشدید را دارد.

شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ
فرکانس تشدید ممکن است با تغییر کردن ابعاد DGS عوض گردد. مقایسه مشخصه انتقال DGS هلزونـی
با ابعاد مختلف متقارن و غیرمتقارن در شکل (10-4) آمدهاست. امپدانس مشخصه خط 50 اهـم مـیباشـد.
برای هندسه هلزونی متقارون ( A=A'= 3mm و (B=B' = 3mm تنها یـک فرکـانس تـشدید (
(f=2/93GHz وجود دارد در صورتی که در یک DGS غیر متقارن فرکانس تشدید به دو فرکانس مختلـف
تبدیل میگردد. برای یک DGS نامتقارن با A = A' = 3/5mm و B = B' = 2/6mm همان طوری که در
شکل (10-4) مشاهده میگردد دو فرکانس تشدید مختلف دیده میشـودf=2/56GHz وf=4/22GHz کـه
این نتایج نشان میدهند DGS هلزونی نا متقارن با اندازههای متفاوت روی صفحه زمین در دو طرف خـط،
٧٠
فرکانسهای رزونانس مختلف را میتوانند ایجاد کنند.در هندسه نا متقارن DGS نیز میخواهیم بدانیم که بـه
چه صورتی فرکانس تشدید مطابق با بر هم زدگی چپ و راست خط با تغییـر انـدازه بـر هـم زدگـی رفتـار
میکند.

شکل(:(10-4پارامترهای انتقال خط با DGS متقارن( ( A = A' = B' = 3mm ونامتقارن A = 3/4m) و (B = 2/6 mm

شکل(:( 11-4 فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از B/A
٧١
فرکانس تشدید ناشی از بر هم زدگی سمت چپ خط و سمت راست خط در شکل (11-4) بعنوان تابعی از
اندازه بر هم زدگی سمت راست وقتی که اندازه سمت چپ ثابت باشد (A = A' = 2mm) رسم گردیـده
است. اندازه این آشفتگی هلزونی به صورت یک مربع در نظر گرفته شده (B = B' , A = A') .وقتـی کـه
اندازه برهم زدگی سمت راست از مقدار سـمت چـپ کـوچکتر اسـت (B/A<1)، فرکـانس رزونـانس در
سمت راست نیز بزرگتر از مقدار سمت چپ خواهد بود. هنگامیکه مقدار A با B برابر گردد دو تا فرکـانس
رزونانس ازهم پاشیده شده و به یک فرکانس تبدیل میگردد DGS) متقارن). باز وقتی کـه بـر هـم زدگـی
سمت راست افزایش پیدا کند B/A) زیاد شود)، فرکانس تشدید ناشی از بر هم زدگـی سـمت راسـت نیـز
کاهش مییابد. از این رو اندازه سمت چپ ثابت شده و مشاهده میگردد که فرکانس رزونانس ناشـی از بـر
هم زدگی سمت چپ تغییرات آهستهای خواهد داشت تا وقتی که B/A مقدار واحد شود.
مشخصه فرکانسی یک DGS متقارن با مدار رزوناتور RLC موازی میتواند مدل گردد. پارامترهای مـداری
معادل نیز از مشخصه انتقال شبیهسازی شده میتواند گرفته شود.
DGS نا متقارن نیز میتواند با دو تا رزوناتور RLC موازی که به صورت سدی متصل شدهاند مدل گـردد.
شکل((12-4، به همین جهـت مشخـصه انتقـال آن دو تـا فرکـانس تـشدید متفـاوت دارد. در مـدار معـادل
پارامترهای مدار اولین رزوناتور از مشخصه فرکانسی رزونانس بر هم زدگی سمت چپ گرفتـه مـیشـود در
حالیکه رزوناتور دوم بوسیله مشخصه رزونانس بر هم زدگی سمت راست مشخص می گردد. از نتـایج شـبیه
سازی پارامترهای اسکترینگ، پارامترهای مدار رزوناتور برای بر هم زدگی سمت چپ و راست بـه صـورت
زیر مشخص میگردند.
(۴-٢) C L,R W CL,R  ( 2 −W 2 (W 0 2Z C L,R 0 L,R ٧٢
(۴-٣) 1 LL,R  4π2 f02 L,R CL,R (۴-۴) 2zo RL,R  1 1 ))2 −1 − (2Z0 (W0 L,R CL,R − W0 L,R LL,R S11 (W0 L,R )2
شکل( 🙁 12-4 مدار معادل بخش DGS هلزونی نامتقارن
در اینجا اندیس R, L نیز پارامترهای برهم زدگی سمت چپ و راست را بیان می کنند. W0 فرکانس تشدید
و WC فرکانس قطع -3db را مشخص میکنند. Z0 امپدانس مشخصه خط انتقال می باشد.
(8-4حذف هارمونیکها در مدار مقسم توان
مقسم توان کاربردهای گوناگونی از قبیل توزیع توان سیگنال ورودی از آنتن و تقویت کنندههای توان بـالای
مایکرویو دارد. با قرار دادن فیلتر حذف هارمونیک در داخل مقسم توان ناحیه خروجـی فیلتـر کـاهش پیـدا
میکند .[23] جهت حذف هارمونیک نیز میتوان از استاب مدار باز در مرکز شاخههای بـا طـول λ4 مقـسم

توان استفاده نمود.
اگر DGS را بعنوان فیلتر هارمونیک اضافی استفاده کنیم میتوانیم با در نظر گرفتن کاهش سایز مقسم تـوان
که منجر به اثر (Slow – wave) میگردد نیز هارمونیک را حـذف نمـود. از ایـن رو یـک DGS متقـارن
٧٣
میتواند تنها یک سیگنال هارمونیک را حذف کند. ما نیاز به قرار دادن دو تا DGS به صـورت آبـشاری در
λ
هر شاخه ( ( 4 داریم تا هارمونیک دوم و سوم را حذف کنیم. هر چند ناحیه مقسم توان جهت گذشتن دو تا

DGS به صورت پریودیک در هر شاخه مقسم توان نیز محدود میگردد. DGS غیر متقارن هم، سـاختاری
موثر در جهت حذف هارمونیک دوم و سوم به صورت همزمان می باشد. [22]
شکل (13-4) (a) هندسه یک DGS هنرونی نامتقارن جهت حذف هارمونیـکهـای سـوم و دوم را نـشان
میدهد. در اینجا فرکانس عملکرد مقسم توان نیز 1/5 گیگاهرتز میباشد.

شکل(DGS (a): (13-4 هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این DGS
ناحیه بر هم زده شـده سـمت چـپ و راسـت رزونـانس هارمونیـک دوم و سـوم طراحـی شـدهانـد. 3) و
4.5گیگاهرتز). ابعاد طراحی شده این سـاختار D=2/4mm و A = 3 mm D' = S = G = 0/2mm و
A' = 3/2 mm، B = 2/4 mm و B' = 2/6 mm و امپدانس مشخصه خـط نیـز 70/7 Ω مـیباشـد.
٧۴
شکل (13-4) (b) مدار معادل DGS نامتقارن در شکل (13-4) (a) را نشان مـیدهـد. پارامترهـای مـدار
بوسیله پارامترهای اسکترینگ سیموله شده بوسیله روابط (2-4) تا (4-4) محاسبه میگردند.
شکل (14-4) نیز پارامترهای S محاسبه شده بوسیله شبیه سازی (EM) بـرای DGS نامتقـارن شـکل (a)
.(13-4) و محاسبه شده مدار معادل شکل (13-4)(b) را نشان میدهند. در هر دو تا شـبیه سـازی مـشاهده
میگردد که بوسیله DGS نامتقارن واحد، هارمونیکهای دوم و سـوم در فرکانـسهای 4. 5 , 3 گیگـا هرتـز
حذف میگردند.

شکل( ( 14- 4 پارامترهای S مدار با DGS هلزونی به صورت EM و شبیه سازی شماتیک
مشاهده میگردد که S12 موافق رنج فرکانسی پهن و S11 نیز در جهت حذف هارمونیک مقسم تـوان اصـلی
بکار میرود. یک مقسم توان معمولی در شکل (15-4)(a) مشاهده میگردد و نیز مقسم توان پیـشنهاد شـده
با DGS غیر متقارن در شکل (15-4)(b) آمده است. در اثر موج آهـسته (slow – wave) بـودن DGS
نیز اندازه مقسم توان پیشنهادی کاهش یافته است. اندازه L' = 17/3 mm در مقایسه L = 19mm حـدود
9/1 % کاهش یافته است.
٧۵
پارامترهای S شبیه سازی شده مقسم توان معمولی و پیشنهادی در شکل (16-4) آمده است.

شکل( ( 15- 4 هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن
در (16-4) (b)، فرو نشاندن حدود18 dB برای هارمونیک دوم و سـوم بـا وارد کـردن DGS نامتقـارن در
خط انتقال ( ( λ4 مقسم توان مشاهده میگردد. افـت برگـشتی بـرای فرکـانس 1/5 GHZ در هـر دو مـشابه

یکدیگر می باشند، حتی با وارد کردن DGS نامتقارن در مدار.
شکل (17-4) نیز قسمت رو و زیر از یک مقسم توان ویل کینسن با وارد DGS هلزونی نامتقـارن را نـشان
میدهد. در شکل (a) (18-4)، S11 اندازهگیری شـده را نـشان مـیدهـد. افـت برگـشتی در فرکـانس 1/5
گیگاهرتز – 40dB بوده. S21 نیـز در شـکل (18-4)(b) بعنـوان تـابعی از فرکـانس آمـده اسـت. توقیـف
هارمونیک دوم (3 GHZ) نیز 18dB و هارمونیک سوم در فرکانس (4/5 GH) نیز 15dB میباشد.
٧۶

شکل ( ( 16- 4 نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با DGS

شکل( ( 17-4 مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار
٧٧

شکل( ( 18- 4 نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(S12(b)S11(a
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی
ابتدا مدار شکل (3-2) را با اسـتفاده از DGS هلزونـی شـکل نیـز آنـالیز و نتـایج آن را در شـکل((19-4
مشاهده میکنیم
٧٨

شکل(:(19-4مدار بااستفاده از (a) DGSیک بعدی((bدو بعدی
در شکل (a)(20-4)و((b نتایج شبیه سازی حاصل از مدار قلم زده شده DGS و بدون استفاده از آن را
نشان میدهند.
٧٩

شکل((a):(20-4نتیجه شبیه سازی کوپلر با استفاده ار (b) DGSبدون استفاده از ((a)(3-2)) DGS
با مشاهده نتایج بالا به پایین آمدن فرکانس قطع و slow wave شدن پاسخ نیز پی می بریم.
(10-4مشاهده اثرات DGS روی مدار طراحی شده در این پروژه
در شکل (21-4) نوع DGS استفاده شده در این کوپلر آورده شده است.ونتیجـه ansoft در شـکل((22-4
مشاهده میگردد.
٨٠

شکل(:(21-4کوپلر باH DGS شکل در شاخه خطوط

شکل(:(22-4پارامتهای Sحاصل از به کار بستن DGS
٨١
فصل پنجم
چگونگی استفاده از کوپلر بدست آمده در طراحی سیرکولاتور
٨٢
(1-5 طراحی سیرکولاتور
یک سیرکولاتور 4 پورته فشرده نیز می تواند به وسیله یک کوپلر خط شاخه ای و شیفت دهنده فاز( پیوست
پ) نیز ساخته شود.این شیفت دهنده فازی همراه با ورودی و خروجی خط همواره مچینگ امپدانسی داشته
و دارای تضعیف صفر می باشد.در اینجا ما از زیراتور به عنوان شیفت دهنده فازی استفاده کرده ایمر .[26]
یکی از ترکیبات نا متقابل استاندارد ژیراتورها هستند که دارای 2 پورت بوده وشیفت فاز تفاضلی 180 درجه
ایجاد می کنند.نماد شماتیک برای یک ژیراتور در شکل (1-5)آمده است و ماتریس اسکترینگ برای یک
ژیراتور واقعی در زیر آمده است.
(1-5)

π
شکل(:(1-5نماد ژیراتور
که این ماتریس نشانه عدم افت ،مچ شده ونا متقابل بودن آن است.

s−0 11 0
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر

۴ ١
٢ π ٣
شکل(:(2-5سیرکولاتور 4پورته متشکل از دو مدار هایبریدی و ژیراتور
٨٣
استفاده ژیراتور به عنوان بنا ساخت در ترکیب با مقسم دو طرفه و کوپلرها میتواند منجر به ایجاد مدارات
مفید همچون سیرکولاتور گردد .در شکل (2-5) مدار معادل سیرکولاتور 4 پورته متشکل از دو مدار
هایبریدی و درشکل (4-5) سیرکولاتور ساخته شده با استفاده از یک ژیراتور ودو کوپلر را نشان میدهد.

شکل(-5٣):سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور
مدار پیشنهادی با ایجاد شیفت فاز 180 درجه باعث عبور از پورت 1به2،2 به3،3به4و4به1 می گردد. در