—196

فصل دوم
مروری بر تحقیق‌های انجام شدهکامپوزیت های تأخیردهنده اشتعالمقدمهدر این بخش یک نگاه کلی به روش‌های افزودن و بهینه کردن خواص تأخیر اشتعال در کامپوزیت های تقویت شده با الیاف خواهیم داشت. روش های مورد استفاده فوق العاده متنوع و متفاوت می باشند. افزودنی های ساده آلیاژ شونده با ماتریس پلیمری یا پوشش های مقاوم در حرارت، روش‌های شیمیایی اصلاح ماتریس کامپوزیت‌هایی که سطح آنها با گرما به instumescence تبدیل می‌شود. همچنین روش هایی برای بهبود پایداری حرارتی و مقاومت در برابر آتش الیاف آلی مورد استفاده در کامپوزیت نیز مشخص شده است. روش معمول برای کاهش اشتعال پذیری کامپوزیت، افزودن پرکننده داخلی (مثل تالک، سیلیکا) یا پرکننده فعال حرارتی (مثل اکسیدهای هیدراته) به ماتریس پلیمری است. انواع پرکننده ها مکانیسم تأخیر اشتعال آنها و راندمان آنها زمانی که در مواد کامپوزیتی استفاده می شود شرح داده می شود بعد از آن به اصلاح ساختار شیمیایی پلیمیرهای آلی جهت بهبود مقاومت اشتعال پذیری با تکیه بر مکانیسم های تأخیر اشتعال و خواص برهمکنش شعله در پلیمرهای فسفره، کلره و برمه توضیح داده خواهد شد. برخی روش های گفته شده جهت تأخیر اشتعال صدها سال جهت کاهش اشتعال در پارچه لباس و چوب و اخیراً در پلیمرها و کامپوزیت‌های پلیمری کاربرد دارد. دیگر روش‌ها در 10 الی 50 سال گذشته ارائه شده است. چندین روش جدید نیز برای کاهش اشتعال‌پذیری در حال تکمیل و بهبود است و چشم انداز بزرگی جهت تأخیر اشتعال کامپوزیت ها را پیشنهاد می کنند. دیگر روش های موجود عبارتند از پلیمریزاسیون پیوندی اجزای تأخیردهنده اشتعال به پلیمر آلی و پلیمرهای با ساختار غیر معدنی غیر قابل اشتعال نیز از این روش‌ها است. چرخه اساسی اشتعال کامپوزیت‌های پلیمری به صورت شماتیک در REF _Ref384714541 h * MERGEFORMAT شکل ‏21 نشان داده شده است.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 1: چرخه اشتعال کامپوزیت‌های پلیمری در آتش.علامت ضربدر مشخص کننده مراحلی از چرخه است که تاخیر دهنده اشتعال چرخه را بر هم میزند ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
دمای حاصل از تجزیه وابسته به طبیعت شیمیایی پلیمر و اتمسفر آتش است اما به صورت عمده این دما در محدوده 500-300 درجه سانتی گراد برای بیشتر پلیمرها و الیاف آلی مورد استفاده در کامپوزیت ها می باشد. همانطور که گفته شده گازهای حاصل از تجزیه از درون کامپوزیت به شعله جریان می یابد. در اینجا مواد ناپایدار قابل اشتعال با اکسیژن واکنش می دهد و به مقدار زیاد رادیکال فعال OH و H را تولید می کند. این رادیکال ها نقش مهمی در واکنش های زنجیره ای منجر به تجزیه و سوختن زنجیره ای پلیمرها و دیگر سوخت های آلی بازی می کند. واکنش های پیرولیز در شعله به صورت ساده به وسیله نهاد O2-H2 توصیف می شود:
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 1)
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 2)
واکنش گرمازای اصلی که بیشترین انرژی گرمایی در شعله را تولید می کند عبارتست از:
( STYLEREF 1 s ‏2 SEQ معادله * ARABIC s 1 3)
رادیکال های H تولید شده در واکنش REF _Ref384714697 h * MERGEFORMAT (‏22) و REF _Ref384714699 h * MERGEFORMAT (‏23) به واکنش REF _Ref384714752 h * MERGEFORMAT (‏21) برگردانده می شود بنابراین واکنش اشتعال باعث یک فرآیند خود انتشار متوالی یا واکنش زنجیره ای شده که تا زمانی که اکسیژن مورد نیاز لازم موجود باشد ادامه خواهد یافت. گرمای تولید شده دمای ناحیه اشتعال را بالا می برد و این عامل باعث افزایش شتاب نرخ تجزیه کامپوزیت خواهد شد. بسیاری از پلیمرها مثل پلی استرها، ونیل استرها و اپوکس ها با مقدار زیادی گازهای قابل اشتعال را آن می کنند که خود عاملی افزایش مقدار سوخت شعله خواهد شد. در این مواد تا زمان تخریب کامل ماتریس پلیمر اشتعال ادامه می یابد. اشتعال پذیری مواد کامپوزیتی به وسیله توقف یا کاهش واکنش های شاخه ای شدن زنجیردر مراحل REF _Ref384714752 h * MERGEFORMAT (‏21) و REF _Ref384714697 h * MERGEFORMAT (‏22) در چرخه احتراق کاهش می یابد. تأخیر دهنده های اشتعال پلیمرها به سه روش چرخه احتراق را قطع می کنند:
1- اصلاح فرآیند تخریب حرارتی برای کاهش میزان و یا انواع گازهای قابل اشتعال
2- تولید گازهای تجزیه که شعله و آتش را سریعاً سرد می کند . این عمل به وسیله حذف رادیکال های H و OH انجام می گیرد.
3- کاهش دمای مواد به وسیله اصلاح خصوصیات هدایت حرارتی و یا گرمای ویژه (این روش می تواند به تنهایی یا با دیگر روش ها به کار برده شود.)
به صورت کلی اغلب پلیمرهای تأخیر دهنده اشتعال به دو دسته فاز متراکم شونده و فاز گازی فعال تقسیم می شوند. این تقسیم بندی بستگی به این دارد که آیا در آنها مکانیسم تجزیه پلیمر مختل می شود یا احتراق در شعله. زمانی پلیمر در دسته فاز متراکم قرار می گیرد که در حالت جامد یا مذاب باشند. دسته فاز متراکم خود شامل چندین مکانیسم برای تأخیر اشتعال است که عبارتند از:
1- رقیق کردن مقدار ماده آلی قابل اشتعال به وسیله افزودن ذرات پرکننده داخلی.
2- کاهش دمای کامپوزیت به وسیله افزودن پر کننده هایی که به عنوان جاذب حرارتی عمل می کنند.
3- کاهش دما به وسیله افزودن پر کننده هایی که به صورت گرماگیر تجزیه شده و محصولاتی مانند آب یا دیگر محصولات غیر قابل اشتعال با ظرفیت حرارتی ویژه بالا تولید می کنند.
4- کاهش میزان نرخ رهایش حرارت به وسیله بکارگیری پلیمرهایی که توسط واکنش‌های گرماگیر تجزیه می‌شوند.
5- افزایش آروماتیسیته ماتریس پلیمری به منظور اینکه به یک سطح و لایه عایق فضای کربنی تجزیه شود که هدایت حرارتی درون کامپوزیت را کاهش می دهد و انتشار گازهای قابل اشتعال را کاهش دهد.
کامپوزیت های پلیمری که جزء تأخیر دهنده های اشتعال از نوع فاز گاز می باشند، به وسیله ممانعت از واکنش اشتعال عمل می‌کنند. در نتیجه هم کاهش انتشار شعله و هم بازگشت مقدار حرارت از سوی شعله به ماده را در این نوع مشاهده می‌شود. مکانیسم‌های موجود در نوع فاز گاز که به صورت گسترده جهت تأخیر اشتعال به کار گرفته شده است معمولاً رهایش رادیکال های بر پایه برومین، کلرین و فسفره را خواهند داشت که باعث اختتام واکنش های اشتعال گرمازا از طریق حذف رادیکال های H و OH از شعله خواهند شد. یکی دیگر از مکانیزم های معمول این دسته رهایش بخارات غیر قابل اشتعال برای رقیق کردن غلظت گازهای H و OH در شعله است. همچنین باعث کاهش دما نیز خواهد شد. در حالی که بسیاری از تأخیر دهنده های اشتعال تنها با یکی از مکانیسم های فاز متراکم و یا فاز گاز عمل می کنند، تأخیر دهنده هایی بیشترین تأثیر را دارند که از هر دو مکانیسم فازها در یک زمان واحد استفاده می کنند.
تأخیر دهنده‌های اشتعال برای کامپوزیت‌هامواد تأخیر دهنده اشتعال متنوعی برای پلیمرها و کامپوزیت های پلیمری ارائه شده است. در حدود 200-150 آمیزه و ماده مختلف برای استفاده وجود دارد. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMi03XTwvRGlzcGxheVRleHQ+PHJlY29yZD48
cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi
LWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3MDwva2V5PjwvZm9y
ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48
Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1dGhvcj48YXV0aG9yPk1h
cmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9yPjxhdXRob3I+T3ZlcmJl
cmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9yPjxhdXRob3I+S3Jvc2No
d2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+
RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5lZXJpbmc8L3RpdGxlPjxz
ZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVyYmVyZ2VyLCBDRywgTWVu
Z2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxw
ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBOTSwgT3ZlcmJlcmdlciwg
Q0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4NzwveWVhcj48L2RhdGVz
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0
aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9s
eW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3
NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8
L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q3Vs
bGlzPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjI3MTwvUmVjTnVtPjxyZWNvcmQ+
PHJlYy1udW1iZXI+MjcxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk
Yi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yNzE8L2tleT48L2Zv
cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkN1bGxpcywgQ2hhcmxlcyBGb3dsZXI8L2F1dGhvcj48YXV0aG9y
PkhpcnNjaGxlciwgTU08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+VGhlIGNvbWJ1c3Rpb24gb2Ygb3JnYW5pYyBwb2x5bWVyczwvdGl0bGU+PC90aXRsZXM+
PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkNsYXJlbmRvbiBQcmVz
cyBPeGZvcmQ8L3B1Ymxpc2hlcj48aXNibj4wMTk4NTEzNTE4PC9pc2JuPjx1cmxzPjwvdXJscz48
L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5FYmRvbjwvQXV0aG9yPjxZZWFyPjE5OTY8L1ll
YXI+PFJlY051bT4yODE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlw
emE5d3p6MmUyMDUwcHR3ciI+MjgxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9
IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5FYmRvbiwgSlI8L2F1dGhvcj48YXV0aG9yPkpvbmVzLCBNUzwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhbnRzIChvdmVydmll
dyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFl
ZGlhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UG9s
eW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFlZGlhPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48
cGFnZXM+MjM5Ny0yNDExPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1
cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9y
PjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4xMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjEyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MTI2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+
PGF1dGhvcj5Ib3Jyb2NrcywgQSBSaWNoYXJkPC9hdXRob3I+PGF1dGhvcj5QcmljZSwgRGVubmlz
PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZpcmUgcmV0
YXJkYW50IG1hdGVyaWFsczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPndvb2RoZWFkIFB1Ymxpc2hpbmc8L3B1Ymxpc2hlcj48aXNibj4x
ODU1NzM0MTkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5OZWxzb248L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjczPC9SZWNOdW0+PHJl
Y29yZD48cmVjLW51bWJlcj4yNzM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3Mzwva2V5
PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt
dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TmVsc29uLCBHTjwvYXV0aG9yPjxh
dXRob3I+V2lsa2UsIENBPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPkZpcmUgYW5kIFBvbHltZXJzIElJSS4gTWF0ZXJpYWxzIGFuZCBTb2x1dGlvbnMgZm9y
IEhhemFyZCBQcmV2ZW50aW9uPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwMTwveWVh
cj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMi03XTwvRGlzcGxheVRleHQ+PHJlY29yZD48
cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRi
LWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3MDwva2V5PjwvZm9y
ZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48
Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1dGhvcj48YXV0aG9yPk1h
cmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9yPjxhdXRob3I+T3ZlcmJl
cmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9yPjxhdXRob3I+S3Jvc2No
d2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+
RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5lZXJpbmc8L3RpdGxlPjxz
ZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVyYmVyZ2VyLCBDRywgTWVu
Z2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxw
ZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBOTSwgT3ZlcmJlcmdlciwg
Q0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4NzwveWVhcj48L2RhdGVz
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0
aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9s
eW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3
NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8
L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Q3Vs
bGlzPC9BdXRob3I+PFllYXI+MTk4MTwvWWVhcj48UmVjTnVtPjI3MTwvUmVjTnVtPjxyZWNvcmQ+
PHJlYy1udW1iZXI+MjcxPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBk
Yi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yNzE8L2tleT48L2Zv
cmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkN1bGxpcywgQ2hhcmxlcyBGb3dsZXI8L2F1dGhvcj48YXV0aG9y
PkhpcnNjaGxlciwgTU08L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+VGhlIGNvbWJ1c3Rpb24gb2Ygb3JnYW5pYyBwb2x5bWVyczwvdGl0bGU+PC90aXRsZXM+
PGRhdGVzPjx5ZWFyPjE5ODE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkNsYXJlbmRvbiBQcmVz
cyBPeGZvcmQ8L3B1Ymxpc2hlcj48aXNibj4wMTk4NTEzNTE4PC9pc2JuPjx1cmxzPjwvdXJscz48
L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5FYmRvbjwvQXV0aG9yPjxZZWFyPjE5OTY8L1ll
YXI+PFJlY051bT4yODE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlw
emE5d3p6MmUyMDUwcHR3ciI+MjgxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9
IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5FYmRvbiwgSlI8L2F1dGhvcj48YXV0aG9yPkpvbmVzLCBNUzwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhbnRzIChvdmVydmll
dyk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFl
ZGlhPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UG9s
eW1lcmljIE1hdGVyaWFscyBFbmN5Y2xvcGFlZGlhPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48
cGFnZXM+MjM5Ny0yNDExPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk5NjwveWVhcj48L2RhdGVzPjx1
cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9y
PjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4xMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjEyNjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MTI2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+
PGF1dGhvcj5Ib3Jyb2NrcywgQSBSaWNoYXJkPC9hdXRob3I+PGF1dGhvcj5QcmljZSwgRGVubmlz
PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkZpcmUgcmV0
YXJkYW50IG1hdGVyaWFsczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPndvb2RoZWFkIFB1Ymxpc2hpbmc8L3B1Ymxpc2hlcj48aXNibj4x
ODU1NzM0MTkyPC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5OZWxzb248L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjczPC9SZWNOdW0+PHJl
Y29yZD48cmVjLW51bWJlcj4yNzM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjI3Mzwva2V5
PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYt
dHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TmVsc29uLCBHTjwvYXV0aG9yPjxh
dXRob3I+V2lsa2UsIENBPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPkZpcmUgYW5kIFBvbHltZXJzIElJSS4gTWF0ZXJpYWxzIGFuZCBTb2x1dGlvbnMgZm9y
IEhhemFyZCBQcmV2ZW50aW9uPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAwMTwveWVh
cj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA [2-7]
تأخیر دهنده‌های اشتعال یکی از بزرگترین گروه از افزودنی‌هاست که در پلیمرها استفاده می شود. این مواد در حدود 27% از بازار افزودنی پلاستیک را به خود اختصاص داده است. رتبه بعدی متعلق به پایدار کننده حرارتی (6/15%) آنتی اکسیان ها (6/7%) روان کننده ها (6%) و پایدار کننده اشعه ماوراء بنفش (5%) می باشد. مواد تأخیر دهنده اشتعال با پلیمر طی فرآیند آلیاژ می شوند اما به صورت شیمیایی با پلیمر واکنش نمی دهند. ترکیب شیمیایی بسیاری از آنها بر اساس عناصر آنتیموان، آلومینیوم، بروم، فسفر، برومین، کلرین است که این مواد تأخیر اشتعال درصد زیادی را تأمین می کنند. به صورت تخمینی در حدود 90% از مواد افزودنی بر اساس این عناصر هستند و به شکل اکسیدهای آنیتموان، آلومینیوم سه آبه و اکسیدهای برون کاربرد دارند. به مقدار کمتری نیز افزودنی هایی شامل باریوم، روی، تین، آهن، مولیبدنیوم یا گوگرد وجود دارند. بسیاری از افزودنی ها شامل نمک های فلزی هیدراته هستند که به صورت گرماگیر در شعله تجزیه می شوند و در نتیجه میزان و نرخ رهایش حرارت کلی پلیمر را کاهش می دهند. برخی دیگر از عناصر افزودنی نیز در هنگام تجزیه بخار آب آزاد می کنند طی فرآیند تجزیه و این بخار آب باعث رقیق شدن و کاهش غلظت گازهای قابل اشتعال رهایش شده خواهند شد. کامپوندهای واکنشی نیز با زرین در هنگام فرآیند پلیمریزه می شوند و دارای ساختار شبکه ای مولکولی یکپارچه شوند. تأخیر دهنده های واکنشی اشتعال به صورت اساسی بر پایه هالوژن بروم و کلر، فسفره و عناصر معدنی و ملامین هستند. در حال حاضر بروم و کلر، تأخیر دهنده های معمولی هستند زیرا قدرت زیادی در یکباره سرد کردن شعله دارند. کامپوندهای هالوژن به وسیله رهاسازی اتم های برومین و کلرین فعال به درون شعله در برابر اشتعال پذیری مقاومت می کنند. این اتم ها واکنش اکسیداسیون احتراق گازهای اشتعال پذیر را متوقف می کنند. اگرچه در حال حاضر از سوی مقامات دولتی و طرفداران طبیعت تصمیماتی جهت استفاده از تأخیر دهنده های اشتعال غیر هالوژن گرفته شده است (این ترکیبات به طبیعت لطمه وارد می کنند). ترکیبات فسفره یکی دیگر از ترکیبات مؤثر در ارتباط با اشتعال است این ترکیبات میزان گازهای قابل احتراق حاصل از تجزیه را به وسیله افزایش تشکیل ذغال کاهش می دهند. انتخاب تأخیر دهنده اشتعال برای کامپوزیت پلیمری چندین عامل و فاکتور بستگی دارد که شامل هزینه، سازگاری شیمیایی میان تأخیر دهنده اشتعال و پلیمر میزبان دمای تجزیه ماده و وزن. بسیاری از پرکننده های تأخیر دهنده اشتعال خواص مکانیکی پلیمرها را کاهش می دهند. البته می توان به وسیله اصلاح سطح پرکننده این تأثیرات منفی را کاهش داد و بر همکنش میان ذرات و ماتریس پلیمری را بهبود بخشید. برخی مواد پر کننده با وجودی که اشتعال پذیری را کاهش می دهند مقدار دود و دودهای سمی را با تجزیه ماده افزایش می دهند. به خاطر همین دلایل سعی بر این است که ترکیبی از تأخیر دهنده های اشتعال در کامپوزیت های پلیمری استفاده شود تا میزان مقاومت در برابر اشتعال پذیری افزایش یابد و در عین حال تأثیرات مضرب و منفی و مضر روی ویژگی ها و خواص مکانیکی، دود و سمیت به کمترین مقدار ممکن برسد. پرکننده ها عناصر غیر فعال معدنی هستند که به پلیمر طی مراحل پایانی فرآیند افزوده می شود تا اشتعال پذیری محصول نهایی کاهش یابد. قطر ذرات پرکننده زیر 10 میکرومتر است و اغلب در محدوده میکرون است. ذرات به زرین مایع آلیاژ می شود و به صورت یکنواخت در آن پراکنده می شود. بیشتر پلیمرها نیاز به مقدار زیادی پرکننده جهت نشان دادن بهبود محسوس در مقاومت اشتعال پذیری شان دارند. مقدار حجمی کمینه معمولاً در حدود 20% و مقدار متوسط در حدود 50% تا 60% است. پرکننده باید با پلیمر سازگار باشد. در غیر این صورت خواص مکانیکی و دوام و بقای محیطی ماده از بین رفته و کاهش یابد. پرکننده ها می توانند اثرات مخرب بر روی خواص بگذارند این اثرات شامل افزایش و سیکوزیتید، کاهش زمان ژل شدگی مذاب پلیمری که باعث مشکل شدن فرآیند گردد، می شود. بیشتر پرکننده ها به صورت تدریجی با تحت مجاورت قرار گرفتن رطوبت دچار هیدرولیز شده و از بین می روند و این عامل جهت کاهش خاصیت تأخیر اشتعال آنها خواهد شد. با وجود این مشکلات پرکننده ها اغلب به دلیل هزینه پایین آنها افزودن آسان آنها به پلیمر و قابلیت مقاومت اشتعال پلیمر استفاده می شوند. این نکته قابل اهمیت است که پرکننده ها به ندرت به تنهایی استفاده می شود اما در مقابل به صورت ترکیبی با تأخیر دهنده های اشتعال دیگر (مثل ارگانوهالوژن ها یا ارگانوفسفره ها) برای رسیدن به مقدار زیاد مقاومت در برابر اشتعال استفاده می شود. ما دو نوع پرکننده تأخیر دهنده اشتعال داریم: خنثی و فعال که بر اساس نوع فعالیت مشخص می شود:
الف) پر کننده های تأخیر دهنده اشتعال خنثی
این نوع پر کننده توسط چندین مکانیسم، اشتعال پذیری و تولید دود کامپوزیت پلیمری را کاهش می دهند. مکانیسم برتر و مهم بر این اساس است که میزان سوخت به وسیله رقیق کردن درصد جرمی ماده آلی در کاپوزیت به وسیله افزودن پر کننده غیر قابل اشتعال، کاهش می دهد. در این حالت مقدار پلیمر به شدن باید کاهش یابد و به همین دلیل مقدار پر کننده در حدود 50 تا 60 درصد خواهد بود (مورد نیاز است). مکانیسم دیگر جذب گرما به وسیله پلیمر است و میزان و نرخ سوخت ماتریس پلیمری کاهش خواهد یافت. برای اینکه پرکننده جاذب حرارت باشد باید ظرفیت حرارتی آن از پلیمر میزبان بیشتر باشد. برخی دیگر از پلیمرها اشتعال پذیری پلیمر را به وسیله تشکیل لایه سطحی عایق زمانی که پلیمر تجزیه می شود و تبخیر می شود کاهش می دهند. این لایه عایق میزان و نرخ تجزیه ماتریس پلیمری را کاهش می‌دهد. این لایه سطحی مانع جریان مواد ناپایدار قابل اشتعالی به درون شعله خواهد شد و باعث کاهش بیشتر میزان تجزیه خواهد شد. همه پرکننده ها به وسیله کاهش میزان جرم پلیمر و بیشتر پر کننده ها به عنوان جاذب حرارت عمل می کنند. فقط تعداد کمی از پرکننده ها هستند که باعث به وجود آمدن لایه سطحی عایق می‌شوند. پرکننده‌هایی خنثی که به طور معمول به پلیمرها و کامپوزیت های پلیمری افزوده می شوند شامل سیلیکا، کربنات کلسیم، دوده هستند. این پرکننده ها اشتعال پذیری و تولید دود را از طریق مکانیسم رقیق کردن و یا جذب گرما کاهش می‌دهند. در موارد جزئی نیز از سیلیکات های رس هیدراته ساده مانند پومیس، تالک، gypsum و سولفات کلسیم دوآبه استفاده می‌شود.
ب) پرکننده‌های تأخیردهنده اشتعال فعال
این پرکننده تأثیرات بیشتری بر روی پلیمر از لحاظ تأخیر اشتعال و تولید دود نسبت به پرکننده خنثی خواهد گذاشت. پرکننده فعال نیز مانند پرکننده خنثی به عنوان جاذب حرارت و دقیق کننده ماتریس در کامپوزیت عمل می کند. همچنین این نوع پرکننده در فاز متراکم فعالیت می کند. در زمان تجزیه در دماهای بالا و واکنش های گرماگیر مقدار زیادی گرما را جذب می کند و این تأخیر خنک کنندگی باعث کاهش میزان و نرخ تجزیه ماتریس پلیمری خواهد شد. واکنش تجزیه پرکننده باعث رهایش گازهای بی اثر به مقدار زیاد خواهد شد گازهایی مثل بخار آب و دی اکسید کربن که این گازها نیز می توانند به درون شعله نفوذ کرده و غلظت مواد ناپایدار اشتعال پذیر، رادیکال های H و OH را کاهش و رقیق می کند. این رقیق کردن باعث کاهش دمای شعله شده که خود باعث نرخ تجزیه ماده کامپوزیتی می شود. دمای تجزیه پرکننده یک عامل بحرانی و مؤثر در تأخیر دهندگی اشتعال آنهاست. دمای تجزیه بایست بیشتر از دمای فرآیند آنهاست تا دیگر پرکننده در طول ساخت ماده کامپوزیتی تجزیه نشود. کامپوزیت های شامل رزین‌های ترموپلاستیک دما بالا، مانند پلی فنیلن سولفید یا پلی اتر اتر کتون بایت در دمای حدود 400-300 درجه سانتی گراد فرآیند شوند. بنابراین پرکننده های مورد استفاده برای این مواد باید در دماهای این محدوده تجزیه نشود. همچنین دمای تجزیه پرکننده بایست پایین تر از دمای پیرولیز ماتریس پلیمری باشد که بسیاری زرین ها مورد استفاده در کامپوزیت این دما بین 450-300 درجه سانتی گراد است. بسیاری از اکسیدهای فلزی و هیدروکسیدهای فلزی به عنوان تأخیر دهنده های اشتعال فعال مورد استفاده قرار می گیرد. در این بین معمول ترین و پر مصرف ترین آلومینیوم تری هیدراته Al(OH)3 است. همچنین انواع دیگر از اکسیدهای آلومینیوم نیز مورد استفاده است. همچنین ترکیبات اکسیده دیگر مثل ترکیبات آنتیموان (sb2o3,sh2o5)، آهن (مثل فروسن ferocene، FeOOH، FeOCl)، ترکیبات مولیبدنیوم (MoO3)، منزیم (Mg(OH)2) روی و تین tin قابل کاربرد است. به وسیله فعالیت این عناصر و پرکننده اشتعال و همچنین تشکیل دوده به مقدار قابل توجهی متوقف خواهد شد. اگرچه میزان تأثیر آنها به صورت کلی با افزایش غلظت آنها در ماتریس پلیمری افزایش خواهد یافت. مانند پرکننده های خنثی میزان بارگزاری بالایی از پرکننده (60-20%) جهت یک کاهش اساسی در اشتعال‌پذیری مورد نیاز است.عنصرهای پایه نیتروژن یکی از مؤثرترین تأخیر دهنده های اشتعال است این عنصر به همواره ترکیبات گوانیدین و ملاحین سال ها برای بهبود مقاومت اشتعال در پوشاک های پشمی، لباس های کتونی و کاغذ مورد استفاده بوده است. اما افزودنی های پایه نیتروژن به ندرت به عنوان تأخیردهنده اشتعال در کامپوزیت های پلیمری مورد استفاده قرار می‌گیرد.
پرکننده تأخیر دهنده اشتعال متورم شوندهاین نوع پر کننده جزء پرکننده های فعال هستند. این روش یکی از نوین ترین روش های بهبود مقاومت اشتعال مواد کامپوزیتی است. نمونه ای از این پرکننده ها پلی فسفات/ ؟؟؟ ترتیول است که در دماهای بالا متورم می شود. مکانیسم عملکرد این نوع پرکننده در کامپوزیت به صورت شماتیک در شکل 10-8 نشان داده شده است. زمانی که کامپوزیت تحت مجاورت شعله قرار می گیرد ذرات متورم شونده واکنش داده و مقدار زیادی گازهای غیر قابل اشتعال و غیر سمی که در ماتریس پلیمری گیر می افتد ایجاد می شود. تجمع این گازها باعث می شود که پلیمر نرم شده به فوم و پلیمر متورم شده تبدیل شود. در صورتی که ماتریس پلیمری قابلیت تبدیل به ذغال (char) را داشته باشد با افزایش دما ماتریس تجزیه شده و باعث تولید لایه ذغالی متخلخل عایق خواهد شد. این لایه ماده کامپوزیتی اصلی را حفظ و حمایت می کند. Kovar و همکاران ADDIN EN.CITE <EndNote><Cite><Author>Kovar</Author><Year>1993</Year><RecNum>274</RecNum><DisplayText>[8]</DisplayText><record><rec-number>274</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">274</key></foreign-keys><ref-type name="Conference Proceedings">10</ref-type><contributors><authors><author>Kovar, RF</author><author>Bullock, DE</author></authors></contributors><titles><title>Multifunctional intumescent composite firebarriers</title><secondary-title>Proceedings of the 4th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials</secondary-title></titles><pages>87-98</pages><dates><year>1993</year></dates><urls></urls></record></Cite></EndNote>[8]به این نتیجه رسیدند که فرآیند تولید فوم زمانی اتفاق خواهد افتاد که پلیمر در حالت ویسکوز نرم باشد. اگر ذرات پرکننده در دماهایی پایین‌تر از دمای انتقال شیشه پلیمر تجزیه شوند در این حالت ماتریس سخت خواهد بود و قابلیت تولید فوم و تورم را نخواهد داشت. در مقابل در صورتی که میزان فشار حاصل از تولید سریع گازها می تواند منجر به تولید شیار و لایه لایه شدن در کامپوزیت‌های سخت خواهد شد. در صورتی که تجزیه در دماهای بالا اتفاق افتد گازها می تواند از درون کامپوزیت خارج خواهد شد و لایه متورم شده ای تشکیل نخواهد شد. در صورتی که درجه بالایی از حمایت در برابر آتش را بخواهیم دمای واکنش تجزیه ذرات متورم شونده ها باید بالاتر از دمای انتقال شیشه و کمتر از دمای تجزیه ماتریس پلیمری باشد.
پلیمرهای تاخیر دهنده اشتعال قابل استفاده در کامپوزیت‌هاتعداد زیادی از پلیمرهای تأخیر دهنده اشتعال در حدود 26 سالی است که ارائه شده است و بسیاری از این موارد مناسب برای استفاده در کامپوزیت های لیفی است. اتصال مولکول های بروم، کلر یا فسفر به ساختار مولکولی پلیمر معمول ترین و رایج ترین روش بهبود مقاومت اشتعال رزین‌های ترموست و ترموپلاست است. یکی دیگر از روش‌های استفاده از پرکننده‌های در مقیاس نانو است که خیلی سریع تبدیل به یک گروه مهم از مواد تأخیر دهنده اشتعال شده است. یکی دیگر از روش ها نیز اصلاح شیمیایی ساختار شبکه‌ای مولکولی به وسیله کوپلیمریزاسیون پیوندی است.
افزایش مقاومت اشتعال به وسیله پلیمریزاسیوناصلاح ساختاری زنجیره های پلیمری یک تکنیک مؤثر برای بهبود مقاومت اشتعال‌پذیری است. ADDIN EN.CITE <EndNote><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><DisplayText>[6]</DisplayText><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite></EndNote>[6]همانطور که قبلاً گفته شد پایداری حرارتی پلیمر به وسیله انرژی پیوندی میان اتم های روی زنجیره اصلی تعیین می شود. پلیمرهای شامل مقادیر زیاد هیدروژن، نیتروژن یا اکسیژن؛ اشتعال پذیری زیادی از خود نشان می دهند زیرا آنتالپی پیوندی پایینی با کربن دارند. پایداری حرارتی پلیمر می تواند به وسیله افزایش استحکام پیوندهای زنجیره افزایش داد. پایداری حرارتی می تواند به وسیله اتصال ساختارهای حلقه ای هتروسیکل و آروماتیک با انرژی های پایدارسازی رزنانسی بالا به درون زنجیره اصلی و کاهش حضور هیدروژن (H)، نیتروژن (N) و اکسیژن (O) افزایش داد. نه تنها دمای تجزیه پلیمر به وسیله این اصلاح ساختار افزایش می یابد بلکه درصد جرمی مواد ناپایدار قابل اشتعال کاهش می یابد که نرخ رهایش حرارت نیز پایین تر می آید.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 2: رابطه میان مقادیر اروماتیک و میزان بقایای ذغال و گازهای ناپایدار. توسط Parker & Kourtide ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
REF _Ref384714911 h * MERGEFORMAT شکل ‏22 رابطه میان دانسیته گروه آروماتیک در زنجیره اصلی پلیمر در برابر میزان درصد گاز ناپایدار و ذغال ADDIN EN.CITE <EndNote><Cite><Author>Parker</Author><Year>1983</Year><RecNum>115</RecNum><DisplayText>[9]</DisplayText><record><rec-number>115</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">115</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Parker, JA</author><author>Kourtides, DA</author></authors></contributors><titles><title>New fireworthy composites for use in transportation vehicles</title><secondary-title>Journal of fire sciences</secondary-title></titles><periodical><full-title>Journal of fire sciences</full-title></periodical><pages>432-458</pages><volume>1</volume><number>6</number><dates><year>1983</year></dates><isbn>0734-9041</isbn><urls></urls></record></Cite></EndNote>[9] نشان می‌دهد. یک رابطه خطی میان دانسیته گروه های آروماتیک و میزان و کاهش خطی مواد ناپایدار وجود دارد.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 3: رابطه میان بقایای ذغال و شاخص اکسیژن پلیمر و بقایای ذغال بعنوان جرم باقیمانده حاصل از آزمون TGA در دمای 800 درجه سانتیگراد در اتمسفر خنثی است. توسط Krevelan ADDIN EN.CITE <EndNote><Cite><Author>Van Krevelen</Author><Year>1975</Year><RecNum>194</RecNum><DisplayText>[10]</DisplayText><record><rec-number>194</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">194</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van Krevelen, DW</author></authors></contributors><titles><title>Some basic aspects of flame resistance of polymeric materials</title><secondary-title>Polymer</secondary-title></titles><periodical><full-title>Polymer</full-title></periodical><pages>615-620</pages><volume>16</volume><number>8</number><dates><year>1975</year></dates><isbn>0032-3861</isbn><urls></urls></record></Cite></EndNote>[10]
REF _Ref384714953 h * MERGEFORMAT شکل ‏23 یک رابطه خطی میان میزان ذغال پلیمرها و پارامتر محدودیت اکسیژن که باعث کاهش میزان مواد ناپایدار اشتعال پذیر که عاملی برای استمرار احتراق است وجود دارد. ADDIN EN.CITE <EndNote><Cite><Author>Van Krevelen</Author><Year>1975</Year><RecNum>275</RecNum><DisplayText>[11]</DisplayText><record><rec-number>275</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">275</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Van Krevelen, DW</author></authors></contributors><titles><title>Entzündlichkeit und Flammhemmung bei organischen Hochpolymeren und ihre Beziehungen zur chemischen Struktur</title><secondary-title>Chemie Ingenieur Technik</secondary-title></titles><periodical><full-title>Chemie Ingenieur Technik</full-title></periodical><pages>793-803</pages><volume>47</volume><number>19</number><dates><year>1975</year></dates><isbn>1522-2640</isbn><urls></urls></record></Cite></EndNote>[11]استحکام میان زنجیره ها نیز عامل مهم دیگری برای کنترل پایداری حرارتی پلیمرهای ترموست است. پلیمرهایی که می توانند یک ساختار شبکه ای 3 بعدی اتصال عرضی زیاد تشکیل دهند معمولاً پایداری حرارتی زیادی نشان می دهند زیرا شکست و تشکیل دوباره اتصالات عرضی باعث تشکیل ذغال خواهد شد. پلی فنیلن‌ها، پلی فنیلن اکسایدها نمونه و مثال هایی از پلیمرهای تأخیر دهنده اشتعال با قابلیت آروماتیک بالا و اتصال عرضی بالا می باشند. مشکل این پلیمرها دمای فرآیندپذیری بالا (نرم شدگی) می باشد.
کامپوزیت‌های پلیمری هالوژنه
اصلاح شیمیایی پلیمرها به وسیله عناصر ارگانوهالوژن یکی از معمولترین و مؤثرترین روش های کاهش اشتعال پذیری مواد کامپوزیتی است. PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMiwgMywgNSwgNiwgMTIsIDEzXTwvRGlzcGxh
eVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI3MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1
dGhvcj48YXV0aG9yPk1hcmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9y
PjxhdXRob3I+T3ZlcmJlcmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9y
PjxhdXRob3I+S3Jvc2Nod2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5l
ZXJpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVy
YmVyZ2VyLCBDRywgTWVuZ2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBO
TSwgT3ZlcmJlcmdlciwgQ0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwt
dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4
NzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48
cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw
PSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9r
ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250
cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9u
IG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48
ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJs
aXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxD
aXRlPjxBdXRob3I+RWJkb248L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxSZWNOdW0+MjgxPC9S
ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yODE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI4MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RWJkb24sIEpSPC9h
dXRob3I+PGF1dGhvcj5Kb25lcywgTVM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RmxhbWUgcmV0YXJkYW50cyAob3ZlcnZpZXcpPC90aXRsZT48c2Vjb25k
YXJ5LXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMgRW5jeWNsb3BhZWRpYTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMg
RW5jeWNsb3BhZWRpYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzOTctMjQxMTwv
cGFnZXM+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFy
PjxSZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+
PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHph
OXd6ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJC
b29rIj42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3Ms
IEEgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8
L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hl
cj53b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48
dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R3JhbnpvdzwvQXV0aG9y
PjxZZWFyPjE5Nzg8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5HcmFuem93LCBBbGJyZWNodDwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhdGlvbiBieSBwaG9zcGhv
cnVzIGNvbXBvdW5kczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNh
bCBSZXNlYXJjaDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp
dGxlPkFjY291bnRzIG9mIENoZW1pY2FsIFJlc2VhcmNoPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh
bD48cGFnZXM+MTc3LTE4MzwvcGFnZXM+PHZvbHVtZT4xMTwvdm9sdW1lPjxudW1iZXI+NTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTc4PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMS00ODQyPC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MZSBCcmFzPC9BdXRo
b3I+PFllYXI+MTk5ODwvWWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i
ZXI+MjgyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVy
d3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yODI8L2tleT48L2ZvcmVpZ24ta2V5
cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y
cz48YXV0aG9yPkxlIEJyYXMsIE1pY2hlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFuY3kgb2YgcG9seW1lcnM6IHRoZSB1c2Ugb2Yg
aW50dW1lc2NlbmNlPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MTk5ODwveWVhcj48L2Rh
dGVzPjxwdWJsaXNoZXI+Um95YWwgc29jaWV0eSBvZiBjaGVtaXN0cnk8L3B1Ymxpc2hlcj48aXNi
bj4wODU0MDQ3Mzg3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl
Pn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Sb3NlPC9BdXRob3I+PFllYXI+MTk4NzwvWWVhcj48UmVj
TnVtPjI3MDwvUmVjTnVtPjxEaXNwbGF5VGV4dD5bMiwgMywgNSwgNiwgMTIsIDEzXTwvRGlzcGxh
eVRleHQ+PHJlY29yZD48cmVjLW51bWJlcj4yNzA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI3MDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Um9zZSwgUEo8L2F1
dGhvcj48YXV0aG9yPk1hcmssIEhGPC9hdXRob3I+PGF1dGhvcj5CaWthbGVzLCBOTTwvYXV0aG9y
PjxhdXRob3I+T3ZlcmJlcmdlciwgQ0c8L2F1dGhvcj48YXV0aG9yPk1lbmdlcywgRzwvYXV0aG9y
PjxhdXRob3I+S3Jvc2Nod2l0eiwgSkk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RW5jeWNsb3BlZGlhIG9mIHBvbHltZXIgc2NpZW5jZSBhbmQgZW5naW5l
ZXJpbmc8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+TWFyaywgSEYsIEJpa2FsZXMsIE5NLCBPdmVy
YmVyZ2VyLCBDRywgTWVuZ2VzLCBHLiwgS3Jvc2Nod2l0eiwgSkksIEVkczwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk1hcmssIEhGLCBCaWthbGVzLCBO
TSwgT3ZlcmJlcmdlciwgQ0csIE1lbmdlcywgRy4sIEtyb3NjaHdpdHosIEpJLCBFZHM8L2Z1bGwt
dGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz40ODgtNTEzPC9wYWdlcz48ZGF0ZXM+PHllYXI+MTk4
NzwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhv
cj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+PFJlY051bT4yODA8L1JlY051bT48
cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBw
PSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgwPC9r
ZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250
cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRlZ3JhZGF0aW9u
IG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8L3ZvbHVtZT48
ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3JpZWdlciBQdWJs
aXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxD
aXRlPjxBdXRob3I+RWJkb248L0F1dGhvcj48WWVhcj4xOTk2PC9ZZWFyPjxSZWNOdW0+MjgxPC9S
ZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yODE8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48
a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3Ii
PjI4MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUi
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+RWJkb24sIEpSPC9h
dXRob3I+PGF1dGhvcj5Kb25lcywgTVM8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+
PHRpdGxlcz48dGl0bGU+RmxhbWUgcmV0YXJkYW50cyAob3ZlcnZpZXcpPC90aXRsZT48c2Vjb25k
YXJ5LXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMgRW5jeWNsb3BhZWRpYTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHltZXJpYyBNYXRlcmlhbHMg
RW5jeWNsb3BhZWRpYTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjIzOTctMjQxMTwv
cGFnZXM+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFy
PjxSZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+
PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHph
OXd6ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJC
b29rIj42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3Ms
IEEgUmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9y
cz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8
L3RpdGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hl
cj53b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48
dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+R3JhbnpvdzwvQXV0aG9y
PjxZZWFyPjE5Nzg8L1llYXI+PFJlY051bT4yNzY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI3NjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc2PC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5HcmFuem93LCBBbGJyZWNodDwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GbGFtZSByZXRhcmRhdGlvbiBieSBwaG9zcGhv
cnVzIGNvbXBvdW5kczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5BY2NvdW50cyBvZiBDaGVtaWNh
bCBSZXNlYXJjaDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRp
dGxlPkFjY291bnRzIG9mIENoZW1pY2FsIFJlc2VhcmNoPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNh
bD48cGFnZXM+MTc3LTE4MzwvcGFnZXM+PHZvbHVtZT4xMTwvdm9sdW1lPjxudW1iZXI+NTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTc4PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDAwMS00ODQyPC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MZSBCcmFzPC9BdXRo
b3I+PFllYXI+MTk5ODwvWWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1i
ZXI+MjgyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVy
d3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4yODI8L2tleT48L2ZvcmVpZ24ta2V5
cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9y
cz48YXV0aG9yPkxlIEJyYXMsIE1pY2hlbDwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFuY3kgb2YgcG9seW1lcnM6IHRoZSB1c2Ugb2Yg
aW50dW1lc2NlbmNlPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MTk5ODwveWVhcj48L2Rh
dGVzPjxwdWJsaXNoZXI+Um95YWwgc29jaWV0eSBvZiBjaGVtaXN0cnk8L3B1Ymxpc2hlcj48aXNi
bj4wODU0MDQ3Mzg3PC9pc2JuPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3Rl
Pn==
ADDIN EN.CITE.DATA [2, 3, 5, 6, 12, 13]
عناصر پایه هالوژن شامل بروم و کلر تأخیردهنده‌های اشتعال فوق العاده‌ای هستند که به صورت فرآیند فاز گاز از اشتعال جلوگیری می کنند. (اختتام واکنش های اشتعال به وسیله حذف رادیکال H و OH واکنش با هالوژن) پلیمرهای هالوژنه به وسیله اتصال مولکول هالوژن به ساختار شبکه ای زرین از طریق کوپلیمریزاسیون تشکیل می شوند. مقدار برومیت بایست بیشتر از 20% وزنی باشد تا بتواند تأثیر مشخصی بر روی مقاومت اشتعال بگذارد. میزان کلرین برای بیشتر پلیمرها بایست بیشتر از مقدار 25 درصد وزنی باشد اگرچه افزایش کلرین بیشتر از این مقدار بر روی نتایج و بهبود آن تأثیر چندانی نخواهد گذاشت. پلیمرهای کلرین و برومینه را نیز می توان به همراه پرکننده های تأخیر دهنده اشتعال استفاده کرد که ترکیب پرکننده با هالوژن ها می تواند خاصیت های جمع پذیری، غیر هم افزایی و هم افزایی بر روی خواص تأخیر دهنده اشتعال سیستم پلیمری بگذارد. اثر جمع پذیری زمانی اتفاق می افتد که بازده تأخیر دهنده اشتعال کل سیستم پلیمری برابر با ترکیبی از بازده های پرکننده و هالوژن است و برهمکش خاصی میان این دو جهت افزایش و کاهش اثرات تأخیر اشتعال وجود ندارد. نمونه این نوع اثر شامل پلیمرهای هالوژنه به همراه پر کننده های خنثی است. هالوژن مقاومت اشتعال پذیری را در فاز گاز افزایش می دهد در صورتی که پرکننده در فاز متراکم به عنوان کاهنده میزان سوخت پلیمری و جاذب حرارت عمل می کند. هر دو به صورت مستقل بر روی افزایش قابلیت اشتعال سیستم پلیمری عمل می کند. تأثیر غیر هم افزایی زمانی است که بازده سیستم پلیمری کمتر از بازده سیستم های افزودنی به طور مستقل است. هالوژن و پرکننده مزاحم واکنش های تأخیر اشتعال یکدیگر شده در نتیجه مقاومت اشتعال پذیری کلی پلیمر کاهش خواهد یافت. بهترین حالت زمانی اتفاق می افتد که پرکننده و تأخیر دهنده اشتعال و واکنش تأخیر اشتعال اثر هم افزایی می گذارند. زمانی این اتفاق می افتد که بازده کل سیستم پلیمری بیشتر از اثرات افزودنی هالوژن و یا پرکننده به تنهایی باشد. میزان گسترده ای از عناصر فعال می توانند به عنوان پرکننده‌های افزایی پلیمرهای هالوژنه استفاده شوند. این عناصر شامل اکسید بیسموت ، اکسید مولیبدنیوم ، اکسید تین هستند. اگرچه معمولاً از اکسید آنتیموان (sb2o3) استفاده می‌شود. این عنصر خاصیت ضد اشتعال پذیری کمی در زمان هایی که به تنهایی مصرف می شود (پلیمرهای غیرهالوژنه) دارد اما زمانی که از زرین های برومینه استفاده شود بازده تأخیر اشتعال به شدت افزایش می یابد. این افزایش به دلیل بر همکنش های هم افزایی میان مکانیزم های تأخیر دهنده اشتعال هالوژن و اکسید آنتیموان است. (واکنش مواد ناپایدار هالوژنه با مواد ناپایدار آنتیموان در فاز گاز و تولید هالوژن یا آمیزه اکسی هالید) پرکننده ها شاخص گسترش شعله را را کاهش می دهند و به استثنای آلومینیوم سه آبه (ATH) باعث افزایش پارامتر محدودیت اکسیژن می شوند. REF _Ref384715043 h شکل ‏24 تأثیر پرکننده های تأخیر دهنده اشتعال را بر روی پارامتر انتشار شعله، پارامتر محدودیت اکسیژن و دانسیته نوری ویژه وینیل استر برومینه شده شده را نشان می‌دهد.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 4: تأثیر تأخیردهنده اشتعال بر روی (الف) شاخص گسترش اشتعال (ب)شاخص محدودیت اکسیژن (ج) دانسیته نوری ویژه یک است وینیل استری برومینه شده.توسط Mochat & Hiltz( ADDIN EN.CITE <EndNote><Cite><Author>Morchat</Author><Year>1992</Year><RecNum>278</RecNum><DisplayText>[14]</DisplayText><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">278</key></foreign-keys><ref-type name="Generic">13</ref-type><contributors><authors><author>Morchat, RM</author><author>Hiltz, JA</author></authors></contributors><titles><title>Fire-Safe Composites for Marine Applications</title></titles><dates><year>1992</year></dates><publisher>DEFENCE RESEARCH ESTABLISHMENT ATLANTIC DARTMOUTH (NOVA SCOTIA)</publisher><urls></urls></record></Cite></EndNote>[14]
بیشترین دغدغه استفاده از پلیمرهای هالوژنه و کامپوزیت های پلیمری رهایش دودهای خورنده اسیدی و گازهای سمی است که به طور جدی بر روی سلامت و خطرات زیست محیطی تأثیرگذار است. ADDIN EN.CITE <EndNote><Cite><Author>Ebdon</Author><Year>1996</Year><RecNum>281</RecNum><DisplayText>[5, 6, 14]</DisplayText><record><rec-number>281</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">281</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Ebdon, JR</author><author>Jones, MS</author></authors></contributors><titles><title>Flame retardants (overview)</title><secondary-title>Polymeric Materials Encyclopaedia</secondary-title></titles><periodical><full-title>Polymeric Materials Encyclopaedia</full-title></periodical><pages>2397-2411</pages><dates><year>1996</year></dates><urls></urls></record></Cite><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite><Cite><Author>Morchat</Author><Year>1992</Year><RecNum>278</RecNum><record><rec-number>278</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">278</key></foreign-keys><ref-type name="Generic">13</ref-type><contributors><authors><author>Morchat, RM</author><author>Hiltz, JA</author></authors></contributors><titles><title>Fire-Safe Composites for Marine Applications</title></titles><dates><year>1992</year></dates><publisher>DEFENCE RESEARCH ESTABLISHMENT ATLANTIC DARTMOUTH (NOVA SCOTIA)</publisher><urls></urls></record></Cite></EndNote>[5, 6, 14] پلیمرهای کلرینه مقدار زیادی گاز HCL رهایش می کنند که می توانند بر روی سیستم تنفسی و چشم تأثیر گذاشته و توانایی گریز از آتش را از انسان بگیرد. همچنین پلیمرهای کلرینه می توانند ؟؟؟ و عناصر وابسته دی اکسین که به شدت سمی هستند را تولید کند. تماس با دی اکسین ها با غلظت زیاد می تواند منجر به مشکلات زیادی از لحاظ سلامتی شود، مشکلاتی از قبیل سرطان، تغییر رنگ پوست، خارش پوست و تاول ایجاد کند. همچنین دی اکسین ها با ورود به اکوسیستم می توانند برای سال ها درون بدن جانداران و گیاهان باقی بمانند. به همین دلایل استفاده از این پلیمرها در بسیاری از کشورها منسوخ شده است و به جای آن از پلیمرهای تأخیر دهنده اشتعال دوستدار محیط زیست شامل brominaded index، tris(tribromophenyl)cyanurate,tris(tribromoneophentyl)cyanurate استفاده می کنند.
کامپوزیت های پلیمری فسفره تأخیر دهنده اشتعال
مقاومت اشتعال پذیری پلیمرها و کامپوزیت های پلیمری می تواند به وسیله افزودن فسفر افزایش یابد.PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+
PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+WzMsIDYsIDEzLCAxNSwgMTZdPC9EaXNw
bGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3
ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwv
YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRl
Z3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8
L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3Jp
ZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS
ZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZv
cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6
ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29r
Ij42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEg
UmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3Rp
dGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53
b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGUgQnJhczwvQXV0aG9yPjxZ
ZWFyPjE5OTg8L1llYXI+PFJlY051bT4yODI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4
MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFk
ZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl
Zi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5MZSBCcmFzLCBNaWNoZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RmlyZSByZXRhcmRhbmN5IG9mIHBvbHltZXJzOiB0aGUgdXNlIG9mIGludHVt
ZXNjZW5jZTwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48
cHVibGlzaGVyPlJveWFsIHNvY2lldHkgb2YgY2hlbWlzdHJ5PC9wdWJsaXNoZXI+PGlzYm4+MDg1
NDA0NzM4NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+
QnJhdW1hbjwvQXV0aG9yPjxZZWFyPjE5Nzc8L1llYXI+PFJlY051bT4yNzk8L1JlY051bT48cmVj
b3JkPjxyZWMtbnVtYmVyPjI3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF
TiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc5PC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CcmF1bWFuLCBTSzwvYXV0aG9yPjxh
dXRob3I+RmlzbWFuLCBOPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPlBob3NwaG9ydXMgZmxhbWUgcmV0YXJkYW5jZSBpbiBwb2x5bWVycy4gSUlJLiBTb21l
IGFzcGVjdHMgb2YgY29tYnVzdGlvbiBpbiBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRs
ZT5Kb3VybmFsIG9mIEZpcmUgUmV0YXJkYXRpb24gYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgRmlyZSBSZXRh
cmRhdGlvbiBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTMt
MTExPC9wYWdlcz48dm9sdW1lPjQ8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NzwveWVhcj48L2Rh
dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdTwvQXV0aG9y
PjxZZWFyPjIwMDI8L1llYXI+PFJlY051bT4yODM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI4MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgzPC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5MdSwgU2h1aS1ZdTwvYXV0aG9yPjxhdXRob3I+SGFtZXJ0b24s
IElhbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNl
bnQgZGV2ZWxvcG1lbnRzIGluIHRoZSBjaGVtaXN0cnkgb2YgaGFsb2dlbi1mcmVlIGZsYW1lIHJl
dGFyZGFudCBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9ncmVzcyBpbiBQb2x5
bWVyIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10
aXRsZT5Qcm9ncmVzcyBpbiBQb2x5bWVyIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs
PjxwYWdlcz4xNjYxLTE3MTI8L3BhZ2VzPjx2b2x1bWU+Mjc8L3ZvbHVtZT48bnVtYmVyPjg8L251
bWJlcj48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxpc2JuPjAwNzktNjcwMDwvaXNi
bj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NYWRvcnNreTwvQXV0aG9yPjxZZWFyPjE5NzU8L1llYXI+
PFJlY051bT4yODA8L1JlY051bT48RGlzcGxheVRleHQ+WzMsIDYsIDEzLCAxNSwgMTZdPC9EaXNw
bGF5VGV4dD48cmVjb3JkPjxyZWMtbnVtYmVyPjI4MDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3
ciI+MjgwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5NYWRvcnNreSwgU2FtdWVsIExlbzwv
YXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGVybWFsIGRl
Z3JhZGF0aW9uIG9mIG9yZ2FuaWMgcG9seW1lcnM8L3RpdGxlPjwvdGl0bGVzPjx2b2x1bWU+NTA8
L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NTwveWVhcj48L2RhdGVzPjxwdWJsaXNoZXI+UkUgS3Jp
ZWdlciBQdWJsaXNoaW5nIENvbXBhbnk8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+SG9ycm9ja3M8L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxS
ZWNOdW0+MTI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZv
cmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6
ejJlMjA1MHB0d3IiPjEyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29r
Ij42PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEg
UmljaGFyZDwvYXV0aG9yPjxhdXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3Rp
dGxlPjwvdGl0bGVzPjxkYXRlcz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53
b29kaGVhZCBQdWJsaXNoaW5nPC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TGUgQnJhczwvQXV0aG9yPjxZ
ZWFyPjE5OTg8L1llYXI+PFJlY051bT4yODI8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4
MjwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFk
ZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgyPC9rZXk+PC9mb3JlaWduLWtleXM+PHJl
Zi10eXBlIG5hbWU9IkJvb2siPjY8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1
dGhvcj5MZSBCcmFzLCBNaWNoZWw8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RmlyZSByZXRhcmRhbmN5IG9mIHBvbHltZXJzOiB0aGUgdXNlIG9mIGludHVt
ZXNjZW5jZTwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48
cHVibGlzaGVyPlJveWFsIHNvY2lldHkgb2YgY2hlbWlzdHJ5PC9wdWJsaXNoZXI+PGlzYm4+MDg1
NDA0NzM4NzwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+
QnJhdW1hbjwvQXV0aG9yPjxZZWFyPjE5Nzc8L1llYXI+PFJlY051bT4yNzk8L1JlY051bT48cmVj
b3JkPjxyZWMtbnVtYmVyPjI3OTwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJF
TiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+Mjc5PC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CcmF1bWFuLCBTSzwvYXV0aG9yPjxh
dXRob3I+RmlzbWFuLCBOPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPlBob3NwaG9ydXMgZmxhbWUgcmV0YXJkYW5jZSBpbiBwb2x5bWVycy4gSUlJLiBTb21l
IGFzcGVjdHMgb2YgY29tYnVzdGlvbiBpbiBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRs
ZT5Kb3VybmFsIG9mIEZpcmUgUmV0YXJkYXRpb24gYW5kIENoZW1pc3RyeTwvc2Vjb25kYXJ5LXRp
dGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkpvdXJuYWwgb2YgRmlyZSBSZXRh
cmRhdGlvbiBhbmQgQ2hlbWlzdHJ5PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+OTMt
MTExPC9wYWdlcz48dm9sdW1lPjQ8L3ZvbHVtZT48ZGF0ZXM+PHllYXI+MTk3NzwveWVhcj48L2Rh
dGVzPjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5MdTwvQXV0aG9y
PjxZZWFyPjIwMDI8L1llYXI+PFJlY051bT4yODM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVy
PjI4MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4
NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MjgzPC9rZXk+PC9mb3JlaWduLWtleXM+
PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRv
cnM+PGF1dGhvcnM+PGF1dGhvcj5MdSwgU2h1aS1ZdTwvYXV0aG9yPjxhdXRob3I+SGFtZXJ0b24s
IElhbjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5SZWNl
bnQgZGV2ZWxvcG1lbnRzIGluIHRoZSBjaGVtaXN0cnkgb2YgaGFsb2dlbi1mcmVlIGZsYW1lIHJl
dGFyZGFudCBwb2x5bWVyczwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Qcm9ncmVzcyBpbiBQb2x5
bWVyIFNjaWVuY2U8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10
aXRsZT5Qcm9ncmVzcyBpbiBQb2x5bWVyIFNjaWVuY2U8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2Fs
PjxwYWdlcz4xNjYxLTE3MTI8L3BhZ2VzPjx2b2x1bWU+Mjc8L3ZvbHVtZT48bnVtYmVyPjg8L251
bWJlcj48ZGF0ZXM+PHllYXI+MjAwMjwveWVhcj48L2RhdGVzPjxpc2JuPjAwNzktNjcwMDwvaXNi
bj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA [3, 6, 13, 15, 16]
یکی از روش‌های بسیار معمول و رایج برای افزودن فسفر، آلیاژسازی یک آمیزه پرکننده فسفره پایه معدنی یا پایه آلی به پلیمر طی فرآیند است. اکثر آمیزه های فسفری دارای قابلیت مقاومت اشتعال است اما انواع معمول و رایج و پر کاربرد آنها فسفر خالص، فسفات آمونیوم و trialylphosphates هستند. فسفره ها همچنین می توانند به وسیله کوپلیمریزاسیون زرین با منومرهای آلی فسفره فعال (استرهای فسفاته، پلی ال‌ها و فسفات ها) یا فسفات های هالوژنه(phosphate (tris(1-cloro-2-propyl)phosphate , tris(2,3-dibromo propyl) به ساختار مولکولی زرین متصل شوند. روش پلیمیریزاسیون برای تولید تعداد بسیار زیادی از پلیمرهای مناسب تأخیر دهنده اشتعال برای کاربرد در کامپوزیت ها استفاده می شود. فسفره به عنوان تأخیر دهنده اشتعال هم در فاز گاز و هم در فاز متراکم عمل می کنند (بسته به ساختار و طبیعت شیمیایی و پایداری حرارتی پلیمر میزبان). مکانیزم فاز گاز در بیشتر ترموپلاستیک ها و پلیمرهای ترموست غیر اکسیژنه حاکم است. در این نوع مکانیسم رادیکال های فسفره رهایش شده از طرف پلیمر در دماهای بالا اگرچه زمانی مؤثرتر است که تولید مواد ناپایدار در دماهای پایین تر از 400-300 درجه سانتی گراد اتفاق بیفتد و یا ماتریس پلیمری تجزیه شود می باشد. رادیکال های فسفره زیادی می توانند به درون شعله رهایش شده البته این رهایش بستگی به دما و ترکیب درصد تأخیر دهنده اشتعال فسفره دارد. این رادیکال ها با رادیکال های H و OH واکنش داده و موجب کاهش اشتعال و یا توقف آن شوند. مکانیسم دوم تأخیر دهنده اشتعال فاز گاز است مین مکانیسم یک تأثیر پوششی بر روی سطح داغ پلیمر می گذارد. بسیاری از مواد حاوی فسفر رهایش شده از پلیمر تجزیه شده به صورت متناسب سنگین هستند و این عامل باعث می شود که یک فاز غنی از بخار در سطح پلیمر ایجاد شود که از دسترسی اکسیژن جلوگیری کند. زمانی که آمیزه و عنصر فسفره در پلیمرهای آلی هیدروکسیل و اکسیژنه استفاده می شود به صورت یک تأخیر دهنده اشتعال در فاز متراکم عمل می کند. فسفر در این سیستم های پلیمری باعث تشکیل ذغال می شود که خود باعث کاهش مقدار مواد ناپایدار قابل اشتعال رهایش شده به سمت آتش خواهد شد. فسفر می تواند افت حرارت را در برخی ترموپلاستیک ها به وسیله ذوب شدن و چکه کردن شتاب دهد. اطلاعات بیشتر در مورد انواع واکنش های تأخیر دهنده اشتعال فسفره را می توان در پروژه - ریسرچجامع ارائه شده توسط Granzow ADDIN EN.CITE <EndNote><Cite><Author>Granzow</Author><Year>1978</Year><RecNum>276</RecNum><DisplayText>[12]</DisplayText><record><rec-number>276</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">276</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Granzow, Albrecht</author></authors></contributors><titles><title>Flame retardation by phosphorus compounds</title><secondary-title>Accounts of Chemical Research</secondary-title></titles><periodical><full-title>Accounts of Chemical Research</full-title></periodical><pages>177-183</pages><volume>11</volume><number>5</number><dates><year>1978</year></dates><isbn>0001-4842</isbn><urls></urls></record></Cite></EndNote>[12]یافت.
کوپلیمریزاسیون پیوندی برای مقاومت اشتعال
یکی دیگر از تکنیک های تولید پلیمرهای تأخیر دهنده اشتعال، کوپلیمریزاسیون پیوندی است ADDIN EN.CITE <EndNote><Cite><Author>Horrocks</Author><Year>2001</Year><RecNum>126</RecNum><DisplayText>[6]</DisplayText><record><rec-number>126</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">126</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Horrocks, A Richard</author><author>Price, Dennis</author></authors></contributors><titles><title>Fire retardant materials</title></titles><dates><year>2001</year></dates><publisher>woodhead Publishing</publisher><isbn>1855734192</isbn><urls></urls></record></Cite></EndNote>[6]. این تکنیک بر مبنای افزودن یک منومر که به شدن خاصیت تشکیل ذغال دارد به زنجیره پلیمری استوار است. فرآیند کوپلیمریزاسیون می تواند از طریق دو روش که شامل پیوند زدن از طریق و یا پیوند زدن به ایجاد شود. فرآیند سازنده و تشکیل دهنده شامل واکنش پلیمر با اغازگر و ایجاد مراکز فعال در طول زنجیره پلیمر است. سپس منومرها از طریق رادیکال با زنجیره پیوند می زنند.
فرآیند پیوند زدن به (Grafting onto) زمانی اتفاق می افتد که منومر با آغازگر واکنش می دهد و رادیکال تولید می شود و این رادیکال به زنجیره پیوند می خورد. صرف نظر از فرآیند، ضروری است که منومر به صورت حرارتی در دماهای پایین تر از پلیمر تجزیه شود و مقدار زیادی ذغال که باعث حفاظت از پلیمر می شود را به جا بگذارد. کوپلیمریزاسیون پیوندی یک تکنیک مطلوب برای تولید پلیمرهای تأخیر دهنده اشتعال است. هرچند ترموپلاستیک های تأخیر دهنده اشتعال زیادی به وسیله این تکنیک تولید می شوند. کوپولیمریزاسیون پلیمرهای ترموست مهندسی که به صورت معمول در سازه های کامپوزیت کاربرد دارد نیاز به پژوهش های بیشتر و تحقیقات بیشتر است.
الیاف تأخیر دهنده اشتعال برای کامپوزیت‌هاالیاف شیشه یک تقویت کننده فوق العاده معمول و رایج است. این الیاف قابل اشتعال نیستند اما آمارهای آلی و افزودنی های چسبنده مورد استفاده در این الیاف موجب تولید دود و مواد ناپایدار رهایش شده به وسیله کامپوزیت در حال تجزیه خواهد شد.
پوشش های سطحی محافظ اشتعالییکی دیگر از روش های حفاظت از کامپوزیت استفاده از پوشش های عایق است. یک پوشش ایده آل باید خصوصیات زیر را دارا باشد:
غیر اشتعال پذیری، هدایت حرارتی پایین، چسبندگی قوی (مثل ضریب انبساط) به لایه های زیرین کامپوزیت تداوم و بقا در محیط، مقاومت در برابر سایش، وزن پایین، نازک و ارزان بودن. صدها مواد پوشش وجود دارند که به صورت تجاری برای کاربرد در کامپوزیت ها مورد استفاده قرار می گیرند. اگرچه ممکن است یکی از خواص مورد نیاز برای پوشش های ایده آل را نداشته باشند. سه گروه بزرگ از پوشش های عایق وجود دارد:
1) پلیمرهای تأخیر دهنده اشتعال
2) محافظ و پوشش حرارتی
3) پوشش های متورم شونده
4) مواد فرسایشی
مثال برای پلیمرهای تأخیر دهنده اشتعال عبارت است از زرین آلی مثل پلیمرهای برومینه و مواد معدنی مثل geopolymers که به عنوان فیلمی نازک (معمولاً کمتر از 5 میلی متر) بر روی سطح کامپوزیت قرار می گیرد. این پلیمرها به دلیل پایداری حرارتی بالا زمان رسیدن به احتراق و اشتعال لایه های زیرین با تأخیر مواجه می شود. در مورد پوشش های پلیمری معدنی هدایت حرارتی پایین باعث تأخیر خواهد شد. پوشش های غشایی حرارتی معمولاً موادی پایه سرامیک هستند که غیر قابل اشتعال بوده و خواص هدایت حرارتی پایینی دارند. نمونه این پوشش ها شامل سرامیک (مثل ceramic و rockwool)های با الیاف بافته شده و سرامیک زیرکونیوی هایی با لایه اسپری شده توسط پلاسما. مواد متورم شونده از طریق واکنش شیمیایی در دماهای بالا که منجر به تورم و تولید فوم لایه پوشش مورد استفاده قرار می گیرد. این واکنش باعث تولید یک لایه به شدت متخلخل و یک لایه ذغال ضخیم با هدایت حرارتی پایین خواهد شد. یکی دیگر از گروه از پوشش ها مواد فرسایشی هستند که باعث حفاظت حرارتی از طریق حذف حرارت از سطح داغ به وسیله پوسته شدن و ذوب شدن خواهند شد. مواد فرسایشی به ندرت به عنوان پوشش محافظ شعله در کامپوزیت مورد استفاده قرار می گیرند و بیشتر به عنوان محافظ پلیمر در کاربردهای دما بالا مثل نازل های موشک و سپرهای حرارتی فضاپیماهایی که به زمین بر می گردند، مورد استفاده قرار می گیرند
.
خواص اشتعال نانو کامپوزیت های پلیمریمقدمهاصطلاح نانو کامپوزیت پلیمری، کامپوزیت هایی را توصیف می کند که یکی از مواد تشکیل دهنده کامپوزیت از ماده با مقیاس نانو باشد. سایز نانو حداقل بایست در یکی از ابعاد رعایت شده باشد و کاملاً در فاز پلیمری پراکنده شده باشد. یک نمونه بارز از مواد نانو، خاک رس است. اما گرافیت، نانولوله های تک جداره و چند جداره ، نانو ذرات کروی مانند polyhedral oligomeric silsequioxane،POSS ، Silica، Tatania همچنین مورد استفاده قرار می گیرد. تحلیل تشکیل نانو کامپوزیت، بررسی تأخیر اشتعال: انواع مختلف اصلاح خاک رس و اثرات آنها مکانیسم و نحوه تأثیر ماده نانو بر روی تأخیر اشتعال جزء موارد مورد بحث در این بخش است. پر کننده های تأخیر دهنده اشتعال سال هاست که مورد استفاده قرار می گیرد. در سیستم های پر شده و پر کننده سنتی میکروکامپوزیت‌ها مقدار زیادی پر کننده برای ایجاد تأثیری خاص مثل کاهش خواص مکانیکی لازم است. وقتی که ذرات حاوی فاز نانو مورد استفاده قرار گرفت شرایط کاملاً تغییر کرد. کاهش اندازه از سایز میکرو به سایز نانو میزان سطح تماس ذرات را بالا می برد. افزایش سطح تماس منجر به کاهش مقدار ماده مورد نیاز می شود. حضور مواد با سطح تماس زیاد می تواند باعث تعبیر در مسیر تخریب شده و در نتیجه بر روی میزان رهایش حرارت پلیمر اثر بگذارد. در پایان، استفاده از مواد با سایز نانو می تواند باعث تشکیل یک لایه شود که باعث جلوگیری از جابجایی مواد ناپایدار در هنگام تخریب شده و موجب افزایش ذغال تولیدی شود. در مورد نانو کامپوزیت های پلیمر / خاک رس حضور مواد سیلیکاته لایه ای مانند مونت موریلونیت، هکتوریت، بنتونیت حتی با بارگزاری مقدار پایین (مخصوصاً 3 و 5%) خواص مکانیکی به صورت فوق العاده افزایش می یابد. همچنین خواص لایه محافظ و تأخیر اشتعال پلیمر افزایش خواهد یافت PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+
PFJlY051bT4xMjY8L1JlY051bT48RGlzcGxheVRleHQ+WzYsIDE3LTIxXTwvRGlzcGxheVRleHQ+
PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjEyNjwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEgUmljaGFyZDwvYXV0aG9yPjxh
dXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3RpdGxlPjwvdGl0bGVzPjxkYXRl
cz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53b29kaGVhZCBQdWJsaXNoaW5n
PC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+R2lhbm5lbGlzPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48
UmVjTnVtPjI5OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjk5PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3
enoyZTIwNTBwdHdyIj4yOTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v
ayBTZWN0aW9uIj41PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2lh


bm5lbGlzLCBFUDwvYXV0aG9yPjxhdXRob3I+S3Jpc2huYW1vb3J0aSwgUjwvYXV0aG9yPjxhdXRo
b3I+TWFuaWFzLCBFPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp
dGxlPlBvbHltZXItc2lsaWNhdGUgbmFub2NvbXBvc2l0ZXM6IG1vZGVsIHN5c3RlbXMgZm9yIGNv
bmZpbmVkIHBvbHltZXJzIGFuZCBwb2x5bWVyIGJydXNoZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UG9seW1lcnMgaW4gY29uZmluZWQgZW52aXJvbm1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PC90
aXRsZXM+PHBhZ2VzPjEwNy0xNDc8L3BhZ2VzPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0
ZXM+PHB1Ymxpc2hlcj5TcHJpbmdlcjwvcHVibGlzaGVyPjxpc2JuPjM1NDA2NDI2Njg8L2lzYm4+
PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYW5uZWxpczwvQXV0
aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4zMDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjMwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MzAwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli
dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVsIFA8L2F1dGhvcj48L2F1
dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9seW1lciBsYXllcmVkIHNpbGlj
YXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFkdmFuY2VkIG1hdGVy
aWFsczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFk
dmFuY2VkIG1hdGVyaWFsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI5LTM1PC9w
YWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5
NjwveWVhcj48L2RhdGVzPjxpc2JuPjE1MjEtNDA5NTwvaXNibj48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+VmFpYTwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJl
Y051bT4zMDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6
MmUyMDUwcHR3ciI+MzAxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5W
YWlhLCBSaWNoYXJkIEE8L2F1dGhvcj48YXV0aG9yPkphbmR0LCBLbGF1cyBEPC9hdXRob3I+PGF1
dGhvcj5LcmFtZXIsIEVkd2FyZCBKPC9hdXRob3I+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVs
IFA8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWljcm9z
dHJ1Y3R1cmFsIGV2b2x1dGlvbiBvZiBtZWx0IGludGVyY2FsYXRlZCBwb2x5bWVyLW9yZ2FuaWNh
bGx5IG1vZGlmaWVkIGxheWVyZWQgc2lsaWNhdGVzIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkNoZW1pc3RyeSBvZiBNYXRlcmlhbHM8L3NlY29uZGFyeS10aXRsZT48L3Rp
dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaXN0cnkgb2YgTWF0ZXJpYWxzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYyOC0yNjM1PC9wYWdlcz48dm9sdW1lPjg8L3Zv
bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48
aXNibj4wODk3LTQ3NTY8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48
QXV0aG9yPkJydW5lPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjMwMjwvUmVjTnVt
PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzAyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh
cHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4zMDI8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJydW5lLCBEb3VnbGFzIEE8
L2F1dGhvcj48YXV0aG9yPkJpY2VyYW5vLCBKb3plZjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NaWNyb21lY2hhbmljcyBvZiBuYW5vY29tcG9zaXRlczog
Y29tcGFyaXNvbiBvZiB0ZW5zaWxlIGFuZCBjb21wcmVzc2l2ZSBlbGFzdGljIG1vZHVsaSwgYW5k
IHByZWRpY3Rpb24gb2YgZWZmZWN0cyBvZiBpbmNvbXBsZXRlIGV4Zm9saWF0aW9uIGFuZCBpbXBl
cmZlY3QgYWxpZ25tZW50IG9uIG1vZHVsdXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1l
cjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHlt
ZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNjktMzg3PC9wYWdlcz48dm9sdW1l
PjQzPC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PC9k
YXRlcz48aXNibj4wMDMyLTM4NjE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48
Q2l0ZT48QXV0aG9yPkJoYXJhZHdhajwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4z
MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1r
ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUw
cHR3ciI+MzAzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0
aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CaGFyYWR3
YWosIFJpc2hpa2VzaCBLPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPk1vZGVsaW5nIHRoZSBiYXJyaWVyIHByb3BlcnRpZXMgb2YgcG9seW1lci1sYXllcmVk
IHNpbGljYXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1hY3JvbW9s
ZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz45MTg5LTkxOTI8
L3BhZ2VzPjx2b2x1bWU+MzQ8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFy
PjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4wMDI0LTkyOTc8L2lzYm4+PHVybHM+PC91cmxzPjwv
cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib3Jyb2NrczwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+
PFJlY051bT4xMjY8L1JlY051bT48RGlzcGxheVRleHQ+WzYsIDE3LTIxXTwvRGlzcGxheVRleHQ+
PHJlY29yZD48cmVjLW51bWJlcj4xMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ6NXJ3eDVhZGRkdnJzM2VhZXg5cHphOXd6ejJlMjA1MHB0d3IiPjEyNjwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9ycm9ja3MsIEEgUmljaGFyZDwvYXV0aG9yPjxh
dXRob3I+UHJpY2UsIERlbm5pczwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5GaXJlIHJldGFyZGFudCBtYXRlcmlhbHM8L3RpdGxlPjwvdGl0bGVzPjxkYXRl
cz48eWVhcj4yMDAxPC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj53b29kaGVhZCBQdWJsaXNoaW5n
PC9wdWJsaXNoZXI+PGlzYm4+MTg1NTczNDE5MjwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+
PC9DaXRlPjxDaXRlPjxBdXRob3I+R2lhbm5lbGlzPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48
UmVjTnVtPjI5OTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjk5PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3
enoyZTIwNTBwdHdyIj4yOTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9v
ayBTZWN0aW9uIj41PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+R2lh
bm5lbGlzLCBFUDwvYXV0aG9yPjxhdXRob3I+S3Jpc2huYW1vb3J0aSwgUjwvYXV0aG9yPjxhdXRo
b3I+TWFuaWFzLCBFPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRp
dGxlPlBvbHltZXItc2lsaWNhdGUgbmFub2NvbXBvc2l0ZXM6IG1vZGVsIHN5c3RlbXMgZm9yIGNv
bmZpbmVkIHBvbHltZXJzIGFuZCBwb2x5bWVyIGJydXNoZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UG9seW1lcnMgaW4gY29uZmluZWQgZW52aXJvbm1lbnRzPC9zZWNvbmRhcnktdGl0bGU+PC90
aXRsZXM+PHBhZ2VzPjEwNy0xNDc8L3BhZ2VzPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0
ZXM+PHB1Ymxpc2hlcj5TcHJpbmdlcjwvcHVibGlzaGVyPjxpc2JuPjM1NDA2NDI2Njg8L2lzYm4+
PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkdpYW5uZWxpczwvQXV0
aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJlY051bT4zMDA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVt
YmVyPjMwMDwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1
cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUwcHR3ciI+MzAwPC9rZXk+PC9mb3JlaWduLWtl
eXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmli
dXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVsIFA8L2F1dGhvcj48L2F1
dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+UG9seW1lciBsYXllcmVkIHNpbGlj
YXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFkdmFuY2VkIG1hdGVy
aWFsczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFk
dmFuY2VkIG1hdGVyaWFsczwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjI5LTM1PC9w
YWdlcz48dm9sdW1lPjg8L3ZvbHVtZT48bnVtYmVyPjE8L251bWJlcj48ZGF0ZXM+PHllYXI+MTk5
NjwveWVhcj48L2RhdGVzPjxpc2JuPjE1MjEtNDA5NTwvaXNibj48dXJscz48L3VybHM+PC9yZWNv
cmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+VmFpYTwvQXV0aG9yPjxZZWFyPjE5OTY8L1llYXI+PFJl
Y051bT4zMDE8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6
MmUyMDUwcHR3ciI+MzAxPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5W
YWlhLCBSaWNoYXJkIEE8L2F1dGhvcj48YXV0aG9yPkphbmR0LCBLbGF1cyBEPC9hdXRob3I+PGF1
dGhvcj5LcmFtZXIsIEVkd2FyZCBKPC9hdXRob3I+PGF1dGhvcj5HaWFubmVsaXMsIEVtbWFudWVs
IFA8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+TWljcm9z
dHJ1Y3R1cmFsIGV2b2x1dGlvbiBvZiBtZWx0IGludGVyY2FsYXRlZCBwb2x5bWVyLW9yZ2FuaWNh
bGx5IG1vZGlmaWVkIGxheWVyZWQgc2lsaWNhdGVzIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkNoZW1pc3RyeSBvZiBNYXRlcmlhbHM8L3NlY29uZGFyeS10aXRsZT48L3Rp
dGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DaGVtaXN0cnkgb2YgTWF0ZXJpYWxzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjYyOC0yNjM1PC9wYWdlcz48dm9sdW1lPjg8L3Zv
bHVtZT48bnVtYmVyPjExPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjE5OTY8L3llYXI+PC9kYXRlcz48
aXNibj4wODk3LTQ3NTY8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48
QXV0aG9yPkJydW5lPC9BdXRob3I+PFllYXI+MjAwMjwvWWVhcj48UmVjTnVtPjMwMjwvUmVjTnVt
PjxyZWNvcmQ+PHJlYy1udW1iZXI+MzAyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBh
cHA9IkVOIiBkYi1pZD0iejVyd3g1YWRkZHZyczNlYWV4OXB6YTl3enoyZTIwNTBwdHdyIj4zMDI8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJydW5lLCBEb3VnbGFzIEE8
L2F1dGhvcj48YXV0aG9yPkJpY2VyYW5vLCBKb3plZjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRy
aWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5NaWNyb21lY2hhbmljcyBvZiBuYW5vY29tcG9zaXRlczog
Y29tcGFyaXNvbiBvZiB0ZW5zaWxlIGFuZCBjb21wcmVzc2l2ZSBlbGFzdGljIG1vZHVsaSwgYW5k
IHByZWRpY3Rpb24gb2YgZWZmZWN0cyBvZiBpbmNvbXBsZXRlIGV4Zm9saWF0aW9uIGFuZCBpbXBl
cmZlY3QgYWxpZ25tZW50IG9uIG1vZHVsdXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+UG9seW1l
cjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPlBvbHlt
ZXI8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4zNjktMzg3PC9wYWdlcz48dm9sdW1l
PjQzPC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDI8L3llYXI+PC9k
YXRlcz48aXNibj4wMDMyLTM4NjE8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48
Q2l0ZT48QXV0aG9yPkJoYXJhZHdhajwvQXV0aG9yPjxZZWFyPjIwMDE8L1llYXI+PFJlY051bT4z
MDM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjMwMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1r
ZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9Ino1cnd4NWFkZGR2cnMzZWFleDlwemE5d3p6MmUyMDUw
cHR3ciI+MzAzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0
aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CaGFyYWR3
YWosIFJpc2hpa2VzaCBLPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+
PHRpdGxlPk1vZGVsaW5nIHRoZSBiYXJyaWVyIHByb3BlcnRpZXMgb2YgcG9seW1lci1sYXllcmVk
IHNpbGljYXRlIG5hbm9jb21wb3NpdGVzPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPk1hY3JvbW9s
ZWN1bGVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
TWFjcm9tb2xlY3VsZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz45MTg5LTkxOTI8
L3BhZ2VzPjx2b2x1bWU+MzQ8L3ZvbHVtZT48bnVtYmVyPjI2PC9udW1iZXI+PGRhdGVzPjx5ZWFy
PjIwMDE8L3llYXI+PC9kYXRlcz48aXNibj4wMDI0LTkyOTc8L2lzYm4+PHVybHM+PC91cmxzPjwv
cmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE.DATA [6, 17-21]. در سال 1960 مطالعاتی بر روی پایداری حرارتی پلی استایرن و پلی متیل متاکریلات ساخته شده در حضور خاک رس انجام شد ADDIN EN.CITE <EndNote><Cite><Author>Friedlander</Author><Year>1964</Year><RecNum>304</RecNum><DisplayText>[22, 23]</DisplayText><record><rec-number>304</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">304</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Friedlander, Henry Z</author><author>Frink, Charles R</author></authors></contributors><titles><title>Organized polymerization III. Monomers intercalated in montmorillonite</title><secondary-title>Journal of Polymer Science Part B: Polymer Letters</secondary-title></titles><periodical><full-title>Journal of Polymer Science Part B: Polymer Letters</full-title></periodical><pages>475-479</pages><volume>2</volume><number>4</number><dates><year>1964</year></dates><isbn>1542-6254</isbn><urls></urls></record></Cite><Cite><Author>Blumstein</Author><Year>1965</Year><RecNum>305</RecNum><record><rec-number>305</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">305</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blumstein, Alexandre</author></authors></contributors><titles><title>Polymerization of adsorbed monolayers. I. Preparation of the clay–polymer complex</title><secondary-title>Journal of Polymer Science Part A: General Papers</secondary-title></titles><periodical><full-title>Journal of Polymer Science Part A: General Papers</full-title></periodical><pages>2653-2664</pages><volume>3</volume><number>7</number><dates><year>1965</year></dates><isbn>1542-6246</isbn><urls></urls></record></Cite></EndNote>[22, 23]. آنها دریافتند که مولکول های استایرن و متیل متاکریلات بر روی سطح و سطح مشترک مونت موریلونیت جذب شده و یک کمپلکس بین لایه ای پلیمر-مونت موریلونیت تشکیل می دهند. این کمپلکس ها پایداری حرارتی بالا و مقاومت در برابر حلالیت بالایی را از خود نشان می دهند زیرا تخریب مولکول ها در محیط محدود، جابجایی زنجیره پلیمر را با تأخیر مواجه کرده و تخریب با تأخیر انجام خواهد شد. قبل از این پژوهشگران شرکت تویوتا ADDIN EN.CITE <EndNote><Cite><Author>Usuki</Author><Year>1993</Year><RecNum>306</RecNum><DisplayText>[24, 25]</DisplayText><record><rec-number>306</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">306</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Usuki, Arimitsu</author><author>Kojima, Yoshitsugu</author><author>Kawasumi, Masaya</author><author>Okada, Akane</author><author>Fukushima, Yoshiaki</author><author>Kurauchi, Toshio</author><author>Kamigaito, Osami</author></authors></contributors><titles><title>Synthesis of nylon 6-clay hybrid</title><secondary-title>Journal of Materials Research(USA)</secondary-title></titles><periodical><full-title>Journal of Materials Research(USA)</full-title></periodical><pages>1179-1184</pages><volume>8</volume><number>5</number><dates><year>1993</year></dates><isbn>0884-2914</isbn><urls></urls></record></Cite><Cite><Author>Kojima</Author><Year>1993</Year><RecNum>307</RecNum><record><rec-number>307</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">307</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kojima, Yoshitsugu</author><author>Usuki, Arimitsu</author><author>Kawasumi, Masaya</author><author>Okada, Akane</author><author>Fukushima, Yoshiaki</author><author>Kurauchi, Toshio</author><author>Kamigaito, Osami</author></authors></contributors><titles><title>Mechanical properties of nylon 6-clay hybrid</title><secondary-title>Journal of Materials Research(USA)</secondary-title></titles><periodical><full-title>Journal of Materials Research(USA)</full-title></periodical><pages>1185-1189</pages><volume>8</volume><number>5</number><dates><year>1993</year></dates><isbn>0884-2914</isbn><urls></urls></record></Cite></EndNote>[24, 25]دریافتند که افزودن خاک‌رس به پلی‌آمید-6 به میزان 7/4% عنصر به خواص مکانیکی فوق العاده خواهد شد که دمای واپیچش و تغییر شکل حرارتی به دمای 152 درجه سانتی گراد افزایش خواهد یافت که این مقدار 87 درجه سانتی گراد بیشتر از پلی آمید-6 اصلی و اولیه است. خاک رس ها خانواده ای از مواد سیلیکاته لایه ای هستند (شناخته شده از نوع 2:1 فیلوسیلیکات) این مواد شامل مونت موریلونیت، هکتوریت، ساپونیت، فلورومیکا، فلوروهکتوریت، ورمیکومیت، کائولینیت، ماگادیت و غیره می باشد. مونت موریلونت یکی از انواع خاک رس است که استفاده بیشتری از آن می شود. این ماده از زمانی که در ابتدا در شهر مونت موریلون فرانسه در سال 1874 کشف شد به این نام مشهور شد ADDIN EN.CITE <EndNote><Cite><Author>Grimshaw</Author><Year>1971</Year><RecNum>308</RecNum><DisplayText>[26]</DisplayText><record><rec-number>308</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">308</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Grimshaw, Rex W</author><author>Searle, Alfred Broadhead</author></authors></contributors><titles><title>The chemistry and physics of clays and allied ceramic materials</title></titles><dates><year>1971</year></dates><publisher>Wiley-Interscience</publisher><isbn>0471327808</isbn><urls></urls></record></Cite></EndNote>[26]. ساختار خاک رس مونت موریلونیت از دو دیدگاه مختلف می تواند بررسی شود میکروساختار و ساختار بلورین. بر اساس مطالعات انجام شده بر روی ذرات میکرو ساختار مونت موریلونیت تقسیم به سه نوع دسته بندی مختلف می شود: ساختار لایه ای ، ذرات اولیه ، حالت خوشه ای شدن. ساختار لایه ای شامل یک لایه ساده است اما با ضخامت 1 نانومتر و طول 200-100 نانومتر. ساختار بلوری و کریستال مونت موریلونیت به ساختار لایه ای بر می گردد. چندین لایه با هم متحد و پیوند زده می شوند و ذره اولیه شکل می گیرد (با محدوده چندین نانومتر تا ده ها نانومتر). صدها هزار ذرات اولیه به هم چسبیده و تشکیل خوشه می دهند و محدوده اندازه خوشه میان 1/0 تا ده ها میکرومتر است. از نقطه نظر ساختار کریستالی، این مواد معدنی یک ساختار لایه ای دو بعدی دارند. اگر کسی بخواهد یک پلیمر آلی را با خاک رس مونت موریلونیت مخلوط کند بایست به وسیله تبادل یونی، یون های هیدروفیل سدیم را حذف کرده به جای آن یون های آلی دوست جایگزین کند. نانو کامپوزیت های پلیمر خاک رس به وسیله پلیمریزاسیون هم زمان و فرآیند آلیاژسازی تولید می شوند. آلی دوست ها برای هر دو مورد از روش ها کمی متفاوت عمل می کنند. در فرآیند آلیاژسازی به زنجیره های آلکیل بیشتری نسبت به پلیمریزاسیون هم زمان نیاز داریم. هنگام ساخت نانو کامپوزیت، سه نوع مختلف ممکن است به وجود بیاید:
1) غیر قابل امتزاج
معمولاً به عنوان میکرو کامپوزیت شناخته می شود. در این حالت خاک رس به صورت نانو پراکنده نمی شود و در این حالت مانند یک پرکننده با اندازه میکرو عمل می کند.
2) نانو کامپوزیت های intercalated
نانو کامپوزیت کاملاً در اندازه نانو در ماتریس پراکنده می شود و لایه های خاک رس ثابت باقی می‌مانند.
3) نانو کامپوزیت Exfoliated
در این حالت لایه های خاک رس از هم باز می شوند و پراکنش خوبی را بوجود می‌آید و فاصله ثابت میان لایه ها از بین خواهد رفت و این خاک رس به درون لایه ها نفوذ می کند.
این تعاریف بر اساس ابزارها و تست های X-Ray diffraction (XRD) به دست آمده است. REF _Ref384715186 h * MERGEFORMAT شکل ‏25 این سه نوع مختلف مواد را نشان می دهد. پایداری حرارتی خاک های رس به وسیله آنالیزهای وزن‌سنجی حرارتی (TGA) مطالعه و بررسی می شود.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 5: انواع نانوکاپوزیت‌هاتوصیف و تحلیل تشکیل نانوکامپوزیتنانو کامپوزیت های پلیمر خاک رس علاوه بر کاهش اشتعال پذیری، بهبود خواص مکانیکی را نیز از خود نشان می دهد. این امر یک نکته مثبت است زیرا بسیاری از تأخیر دهنده های اشتعال بایست با مقدار زیاد استفاده شوند تا بتوانند به خواص ضد آتش مطلوب برسند، در این حالت ممکن است خواص مکانیکی پلیمر کاهش یابد. تحلیل و آنالیز معمولاً نشان دهنده پراکنش خوب خاک رس در پلیمر مثل پراکنش نانو ذرات و همچنین نفوذ Intercalated، Exfoliated و یا اختلاط ماده به وسیله تفرق اشعه X (XRD) و TEM قابل حصول است. ADDIN EN.CITE <EndNote><Cite><Author>Morgan</Author><Year>2003</Year><RecNum>310</RecNum><DisplayText>[27]</DisplayText><record><rec-number>310</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">310</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Morgan, Alexander B</author><author>Gilman, Jeffrey W</author></authors></contributors><titles><title>Characterization of polymer‐layered silicate (clay) nanocomposites by transmission electron microscopy and X‐ray diffraction: A comparative study</title><secondary-title>Journal of Applied Polymer Science</secondary-title></titles><periodical><full-title>Journal of Applied Polymer Science</full-title></periodical><pages>1329-1338</pages><volume>87</volume><number>8</number><dates><year>2003</year></dates><isbn>1097-4628</isbn><urls></urls></record></Cite></EndNote>[27] XRD فاصله میان فضای گالری، فاصله d ماده درون سیستم Intercalated را می‌دهد. زمانی سیستم Exfoliate بوجود می‌آید که فاصله ثابت میان لایه های خاک رس تغییر کند و در آزمون XRD هیچ گونه پیک (Peak) مشاهده نمی شود. متأسفانه در برخی موارد در فرآیند اختلاط خاک رس با پلیمر اخلال و بی نظمی به وجود می آید که این امر باعث عدم مشاهده پیک در آزمون خواهد شد. در این حالت عدم مشاهده پیک در آزمون XRD مبهم است. TEM یک تصویر واقعی از خاک رس در پلیمر را به ما می دهد. در اینجا حداقل 2 برابر بزرگنمایی لازم است. بزرگنمایی پایین می تواند نشان دهد که پراکنش خاک رس خوب انجام شده در صورتی که تصویر با بزرگنمایی بالاتر می تواند لایه های واقعی خاک رس را نشان دهد و دیگر آنکه فاصله ثابت میان لایه ها را نیز نشان دهد. مشکلی که تصاویر TEM دارند این است که سطح واقعی که از آنها عکسبرداری می شود در مقایسه با کل ماده بسیار بسیار کوچک است و در بیشتر اوقات، پژوهشگرها با استفاده از نتایج این تصاویر کوچک، نتایج را به کل نمونه بسط می دهند. به صورت واقع گرایانه و صحیح بایست یک تحلیل آماری و تصادفی از کل نمونه انجام شود و تصاویر کافی گرفته شود و بر روی موقعیت های مختلف تمرکز کرد تا بتوان به صورت اطمینان بخشی در مورد نانو کامپوزیت بحث نمود. تکنیک و روش دیگری نیز وجود دارد که به صورت کمتری استفاده می شود ولی باید بیشتر استفاده شود. AFM میکروسکوب نیروی اتمی، زمان استراحت رزونانس مغناطیسی هسته ای (NMR) و گرماسنج مخروطی است. AFC یک روش سریع تر و آسان تر ولی کمتر و کوچک تر از روش TEM است. نمونه هایی از تصاویر میکروسکوپ نیروی اتمی حالت های Intercalated، مخلوطی از Intercalated – Exfoliated و ساختار Exfoliated در REF _Ref384715260 h * MERGEFORMAT شکل ‏26 نشان داده شده است.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 6:نتایج AFM نانوکاپوزیت های پلی استایرن.شکل بالا سمت چپ ساختارexfloliated.بالا سمت راست مخلوطی از Intercalated/exfoliated و نهایتا شکل پایین ساختار Intercalated ADDIN EN.CITE <EndNote><Cite><Author>Gibson</Author><Year>2007</Year><RecNum>345</RecNum><DisplayText>[1]</DisplayText><record><rec-number>345</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">345</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Gibson, AG</author></authors></contributors><titles><title>Fire properties of polymer composite materials</title></titles><volume>143</volume><dates><year>2007</year></dates><publisher>Springer</publisher><isbn>1402053568</isbn><urls></urls></record></Cite></EndNote>[1]
در ریزساختار Intercalated سطح کاملاً صاف است در صورتی که برای ساختار Exfoliated، نواحی و قطعات کوچکی در ماتریس پلیمری پراکنده شده است. لغات Intercalated و Exfoliated به عنوان ترم هایی که نشان دهنده فاصله ثابت میان لایه هاست و تکنیک NMR یک روش متفاوت برای بررسی این پدیده پیشنهاد می کند و این امر نیاز به جمع آوری و استفاده از اصطلاحات و ترم های جدید است. در برخی کارهای زودتر انجام شده در مورد تأخیر اشتعال نانو کامپوزیت های پلیمر خاک رس توسط Gilman و همکاران ADDIN EN.CITE <EndNote><Cite><Author>Al-Malaika</Author><Year>1999</Year><RecNum>311</RecNum><DisplayText>[13, 28]</DisplayText><record><rec-number>311</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">311</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Al-Malaika, Sahar</author><author>Golovoy, A</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Chemistry and technology of polymer additives</title></titles><dates><year>1999</year></dates><publisher>Blackwell Science</publisher><isbn>0632053380</isbn><urls></urls></record></Cite><Cite><Author>Le Bras</Author><Year>1998</Year><RecNum>282</RecNum><record><rec-number>282</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">282</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Le Bras, Michel</author></authors></contributors><titles><title>Fire retardancy of polymers: the use of intumescence</title></titles><dates><year>1998</year></dates><publisher>Royal society of chemistry</publisher><isbn>0854047387</isbn><urls></urls></record></Cite></EndNote>[13, 28] نشان داده شده که گرماسنج مخروطی اطلاعاتی در زمینه تشکیل نانو کامپوزیت می دهند. در میکرو کامپوزیت ها کاهشی در پیک نرخ رهایش حرارت (PHRR) ضرورتاً نخواهد داشت در صورتی که در نانو کامپوزیت ها، صرف نظر از Intercalated یا Exfoliated بودن، کاهش نسبتاً قابل توجهی را نشان داد. در کارهای آزمایشگاهی انجام شده در این موارد، تفاوت مشخصی در کاهش پیک نرخ رهایش حرارت نانو کامپوزیت ها در برابر میکروکامپوزیت‌ها مشاهده می‌شود.
بررسی تأخیر اشتعالخواص آتش مواد به وسیله روش های مختلفی بررسی می شود: کالریمتر مخروطی(ASTM E1354)، تبخیر به وسیله اشعه ADDIN EN.CITE <EndNote><Cite><Author>Zanetti</Author><Year>2002</Year><RecNum>312</RecNum><DisplayText>[29]</DisplayText><record><rec-number>312</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">312</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zanetti, M</author><author>Kashiwagi, Takashi</author><author>Falqui, L</author><author>Camino, G</author></authors></contributors><titles><title>Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites</title><secondary-title>Chemistry of Materials</secondary-title></titles><periodical><full-title>Chemistry of Materials</full-title></periodical><pages>881-887</pages><volume>14</volume><number>2</number><dates><year>2002</year></dates><isbn>0897-4756</isbn><urls></urls></record></Cite></EndNote>[29]و پارامتر محدودیت اکسیژن (ASTM D2863,ISO 4589)روش های محبوبی هستند که برای بررسی تأخیر اشتعال مواد پلیمری به کار می روند. برای محصولات تجاری از آزمون UL-94(ISO 9772,ISO 9773,ASTM D635) می توان برای تعیین کیفیت مواد تأخیر دهنده اشتعال استفاده کرد. کالریمتر مخروطی به صورت گسترده ای به عنوان یک روش آزمایشگاهی برای بررسی ترکیب تأخیر اشتعال ADDIN EN.CITE <EndNote><Cite><Author>Grand</Author><Year>2000</Year><RecNum>144</RecNum><DisplayText>[30]</DisplayText><record><rec-number>144</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">144</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Grand, Arthur F</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Fire retardancy of polymeric materials</title></titles><volume>803</volume><dates><year>2000</year></dates><publisher>CRC Press</publisher><isbn>0824788796</isbn><urls></urls></record></Cite></EndNote>[30]مورد استفاده قرار می گیرد. اطلاعاتی که می توان از این طریق به دست آورد افزایش حرارت عبارت است از: زمان رسیدن به احتراق، میزان و نرخ رهایش حرارت به عنوان تابعی از زمان، گرمای اشتعال، نرم جرم از دست رفته و دوده تولید شده. میزان نمودار کل نرخ رهایش حرارت نیز قابل دسترسی است اما معمولاً بر روی مقادیر تمرکز می شود (مقدار پیک رهایش حرارت PHRR) تبخیر بر اثر اشعه تکنیک وابسته و متناسب با آزمون کالریمتر مخروطی است البته اگر در اتمسفر نیتروژن انجام شود.) این امر باعث می شود که دود حذف شود و زمانی که ماده گرم می شود می توان از آن عکس گرفت و شواهد تصویری از واکنش را می توان داشت. پارامتر محدودیت اکسیژن نیز مقدار کمینه اکسیژن مورد نیاز برای ادامه سوختن و اشتعال نمونه را معرفی می کند. افزایش میزان پارامتر محدودیت اکسیژن به مقدار بیشتر از 20، نزدیک به درصد اکسیژن در هوا، ترکیب تأخیر دهنده اشتعال ممکن است بتوان تعیین کرد.
مکانیسم های تأخیر اشتعال در نانو کامپوزیت هامکانیسم هایی که باعث افزایش پایداری حرارتی و پایداری اشتعال پلیمرها در هنگام تولید و تشکیل نانو کامپوزیت ها می شود در برخی مواقع جالب و مورد اقبال است. اولین پیشنهاد مکانیزم توسط Gilman و Kashiwagi معرفی شد. آنها گفتند که ساختار نانو کامپوزیت هنگام اشتعال منقبض می شود و این اتفاق باعث تشکیل ساختار سیلیکاتی کربنی در سطح می شود که به عنوان یک لایه محافظ در برابر انتقال جرم و همچنین به عنوان لایه ای عایق سطح زیرین پلیمری در برابر منبع حرارتی عمل می کند. دومین مکانیسم زمانی مؤثر است که مقدار و درصد خاک رس کاملاً پایین باشد. در این حالت رادیکال ها به وسیله آهن جایگزین شده در خاک رس به دام می افتد ADDIN EN.CITE <EndNote><Cite><Author>Zhu</Author><Year>2001</Year><RecNum>315</RecNum><DisplayText>[31]</DisplayText><record><rec-number>315</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">315</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Zhu, Jin</author><author>Uhl, Fawn M</author><author>Morgan, Alexander B</author><author>Wilkie, Charles A</author></authors></contributors><titles><title>Studies on the mechanism by which the formation of nanocomposites enhances thermal stability</title><secondary-title>Chemistry of Materials</secondary-title></titles><periodical><full-title>Chemistry of Materials</full-title></periodical><pages>4649-4654</pages><volume>13</volume><number>12</number><dates><year>2001</year></dates><isbn>0897-4756</isbn><urls></urls></record></Cite></EndNote>[31]. زمانی که خاک رس حاوی آهن باشد در مقایسه با زمانی که آهن وجود نداشته باشد یک تفاوت و اختلاف مشخص در کاهش پیک رهایش حرارت در مقادیر کمتر از 3 درصد خاک رس مشاهده می شود. به طور کلی کارهای زیادی در مورد تشکیل نانو کامپوزیت ها انجام شده و در بیشتر کارها میزان پیک رهایش حرارت و همچنین افت جرم کاهش می یابد اما بر روی رهایش حرارت کلی تأثیری نمی گذارد و زمان رسیدن به احتراق در بیشتر موارد کوتاه تر خواهد شد. تمام این تأثیرات مهم در کالریمتری مخروطی وجود دارد و از طریق سوختن نانو کامپوزیت به دست می آید. پیشنهاد می شود که اثر هم افزایی میان تشکیل نانوکامپوزیت و کاربرد تأخیر دهنده اشتعال استفاده شود (در صورتی که رسیدن به تأخیر اشتعال از طریق تکنولوژی نانو انجام می گیرد.) همچنین بایست در آینده تحقیقات بر روی مواد نانو به جز خاک رس انجام شود
.
پلی‌یورتانمقدمهامروزه مبحث انرژی و صرفه‌جویی در مصرف انرژی در تمامی زمینه‌ها حتی در خانه‌ها یکی از مهمترین دغدغه‌های بشر است. مقدار زیادی انرژی از طریق مصارف خانگی در روزهای سرد زمستان هدر می‌رود. عایق‌های از جنس پلی یورتان قابلیت حفظ انرژی در طول زمستان و تابستان و در مقابل گرما و سرما را دارا می‌باشند. در اکثر یخچال‌ها و فریزرها که در سرتاسر جهان تولید می‌شوند، پلی‌یورتان بعنوان یک ماده عایق حرارتی مورد استفاده قرار می‌گیرد و باعث می‌شود که هوای خنک درون یخچال محفوظ باقی بماند. همچنین از این ماده جهت خنک‌سازی مواد غذایی حین حمل و نقل از مرحله تولید تا مصرف سالم و تازه باقی بماند. همچنین برخی دیگر از خواص موجود در پلی یورتان باعث شود این ماده یک گزینه مناسب جهت استفاده در برخی محیط‌های حساس و پرتنش مورد توجه قرار بگیرد؛ بعنوان مثال لباس‌های فضانوردی دارای لایه‌هایی از جنس پلی‌یورتان هستند که از یخ زدن فضانوردان در محیط‌های سرد خارج جلوگیری می‌کند و همچنین باعث کاربرد در لباس‌های مخصوص آب‌های سرد شده است.
همچنین این ماده در مبلمان‌های راحت و همچنین تشک‌های خواب مورد استفاده قرار می‌گیرد. دلیل کاربرد این ماده جهت استفاده در مبلمان‌ها و لوازم خواب به دلیل ویژگی و خواص مناسب است که می‌تواند به فرم بدن شکل بگیرد و موجب آسایش و راحتی بیشتر فرد شود. از دیگر مزایای این ماده این است که به راحتی و انرژی کمی قابل ازبین رفتن است و همچنین میتوان آن را با محصول جدید دیگری مخلوط و بازیابی کرد.
یکی از نکات جالب در مورد پلی‌یورتان‌ها این است که با نسبت استوکیومتری‌های مختلف از مواد اولیه آن؛ یعنی ایزوسیانات و پلی‌ال؛ می‌تواند بصورت اشکال مختلف و ویژگی‌های کاملاً متفاوت، شکل‌دهی و فرآیند شود. بعنوان مثال: تخته موج سواری با وجود اینکه سبک‌وزن است اما استحکام و سختی لازم را دارا می‌باشد و یا چرخ‌های اسکیت بسیار مقاوم است.
از پلی‌یورتان‌ها به شکل بسیار گسترده‌ای در صنایع خودروسازی استفاده می‌شود. در سپرهای اتومبیل به عنوان جاذب ضربه، در لاستیک‌ها به جهت انعطاف و آسایش بیشتر در رانندگی، سپر صوتی موتور اتومبیل در کاپوت خودرو و بعنوان فوم‌ در صندلی اتومبیل و کنسول اتومبیل کاربرد دارد اما این تمام قضیه نیست، پلی یورتان باعث سبک شدن وزن اتومبیل و کاهش مقدار مصرف سوخت خواهد شد.
پلی یورتانها را اولین بار اتوبایر در سال1937 در آلمان کشف کرد و بعد از آن این مواد با داشتن خواص ویژه پیشرفت بسیار زیادی را در انواع صنایع جهان داشتند.
پلی یورتان‌ها دسته‌ای از پلیمرهای پر مصارف با خواص عالی هستند. به همین خاطر، طراحان و متخصصان صنایع پوشش دهی بخوبی توان بهره بردای از این ترکیبات را در کاربردهای گوناگون دارند مثالهای متعددی برای کاربردهای فراوان این ترکیبات وجود دارد، از جمله پوششهای شفاف برای پوشش دهنده های تک لایه مخصوص بامها و رنگهای مشخص کردن محل گذر عابرین پیاده و غیره.
مقاومت پلی یورتانها در برابر سایش ضربه و ترک خوردگی بسیار خوب است، از جمله ویژگی های آنها پخت سریع و کامل در دمای محیط است. خواص مکانیکی فوم‌ها وابسته به ماده دیواره سلول و هندسه سلول است. ADDIN EN.CITE <EndNote><Cite><Author>Lee</Author><Year>2005</Year><RecNum>342</RecNum><DisplayText>[32]</DisplayText><record><rec-number>342</rec-number><foreign-keys><key app="EN" db-id="z5rwx5adddvrs3eaex9pza9wzz2e2050ptwr">342</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lee, L James</author><author>Zeng, Changchun</author><author>Cao, Xia</author><author>Han, Xiangming</author><author>Shen, Jiong</author><author>Xu, Guojun</author></authors></contributors><titles><title>Polymer nanocomposite foams</title><secondary-title>Composites science and technology</secondary-title></titles><periodical><full-title>Composites science and Technology</full-title></periodical><pages>2344-2363</pages><volume>65</volume><number>15</number><dates><year>2005</year></dates><isbn>0266-3538</isbn><urls></urls></record></Cite></EndNote>[32] پلی یورتان‌ها آلیفاتیک از انواع آروماتیک گرانتر هستند. به همین خاطر انواع آروماتیک و نمونه های اپوکسی دار در استری ها، رنگهای پایه و پوششهای رابط بکار می روند. در حالی که آلیفاتیک ها ویژه پوشش نهایی هستند. همچنین ایزوسیانات‌های آلیفاتیک پایداری بیشتری نسبت به انواع آروماتیک دارند. استفاده از پوشش های محافظ برای جلوگیری از پدیده خوردگی در ساختارهای فولادی که آستر و پوشش پایه آنها از نوع سامانه های اپوکسی دار است، نمونه ای از کاربردهای مهم پلی یورتانها محسوب می شوند. مورد دیگر، سامانه های پوشش دهنده کف است که در آنها نیز انواع پوششهای پایه را می توان بکار برد، گاهی پوشش نهائی از نوع یورتان برای لایه نهایی کف نیز کفایت می کند.
پلی یورتان چیست؟ پلی یورتان‌ها (PU) نام عمومی ترکیبات و پلیمرهایی است که در ساختار آنها پیوند یورتانی می باشند. پیوند یورتانی از طریق واکنش افزایشی بین یک گروه ایزوسیانات و یک ترکیب دارای هیدروژن فعال مثل گروه هیدروکسیل تشکیل شده است. گروه های ایزوسیانات به شدت واکنش پذیر بوده و به همین علت پیشرفت واکنش آنها نیاز به افزایش دما ندارد.(واکنش در دمای محیط صورت می گیرد) مهمترین ویژگی این گروه از پلیمرها این است که پس از واکنش ساختاری پایدار بوجود می آید
ایزوسیانات‌ها اغلب از واکنش آمین و فسژن در حلال‌های بی اثر و شرایط دمایی زیر صفر تا 100 درجه سانتیگراد تولید می‌شوند. دی ایزوسیانات‌ها دارای دو گروه سیاناتی می‌باشند. گروه‌های ایزوسیانات به شدت واکنش پذیر بوده و به همین علت پیشرفت واکنش آنها نیاز به افزایش دما ندارد.(واکنش در دمای محیط صورت می گیرد) مهمترین ویژگی این گروه از پلیمرها این است که پس از واکنش ساختاری پایدار بوجود می آید.
ترکیباتی که دارای گروه ایزوسیانات هستند عبارتند از:
2و4 یا 2و6 تولوئن دی ایزوسیانات
4و4 یا 2و4 دی فنیل متان دی ایزوسیانات
1و6 هگزا متیلن دی ایزوسیانات
از جمله معروفترین دی ایزوسیانات‌های تجاری می‌توان به MDI، (6,2)TDI، (4,2)TDI، NDI، IPDI، TODI، TMDI، CHDI، PPDI، XDI، HDI اشاره کرد.
علاوه بر موارد ذکر شده، ترکیبات ایزوسیاناتی دیگری نیز وجود دارند.
ترکیباتی که دارای دو گروه هیدروکسیل(OH) یا بیشتر باشند را پلی اُل می نامند. بطور معمول در تولید پلی یورتان‌ها از دو نوع پلی ال پلی استری و پلی ال پلی اتری استفاده می‌شود. نوع پلی ال بکار رفته در پلی یورتان‌ها تعیین کننده خواص نهایی آنها می‌باشد. معمولا پلی ال‌های بکار رفته در تولید پلی یورتان‌ها دارای وزن مولکولی مابین 200 تا 2000 می‌باشند که بسته به خواص نهایی مورد انتظار ازز پلی یورتان، انتخاب می‌شوند. بطور معمول از گونه های زیر استفاده می‌شود:
پلی ال‌های پلی استری
پلی استرها زنجیرهای ملکولی با وزن مولکولی بالا هستند که در زنجیر آنها گروه استری تکرار می‌شود و از واکنش یک اسید کربوکسیلیک دو عاملی با یک الکل دو عاملی حاصل می‌شوند.
پلی استرهای مورد استفاده در صنایع پلی یورتان به روش‌های مختلفی تهیه می‌شوند که مهمترین آنها عبارتند از روش پلی استریفیکاسیونی و پلی کاپرولاکتونی.
پلی ال‌های پلی اتری(Polyether Polyols)
این نوع پلی ال‌ها معمولا از واکنش پلیمریزاسیونی گروه اپوکسیدالکین اسید در مجاورت کاتالیست‌های بازی مانند هیدروکسید سدیم و هیدروکسید پتاسیم تولید می‌شوند. پلی اتر پلی ال‌ها بسته به روش تهیه آنها دو عاملی یا سه عاملی می‌باشند.
پلی کربنات پلی ال
پلی کاپرولاکتون پلی ال

—d1204

بدین منظور، پژوهش پیشرو اهداف جزیی و اختصاصی دیگری را نیز دنبال می‌کند که اهم آنها عبارتند از:
شناسایی عوامل مؤثر در تشخیص حملات دامگستری در وبگاههای بانکداری الکترونیکی
تشخیص وبگاههای جعلی طراحی شده توسط دامگستران که مانع از سرقت هویت مشتریان و وارد آمدن خسارت مالی به مشتریان و بانکها میشود.
1-5- فرضیهی تحقیقفرضیهی اصلی این پایاننامه به شرح زیر است:
به کمک نظریهی فازی میتوان سامانهای خبره طراحی کرد که حملات دامگستری به وبگاه بانکها را شناسایی کند.
علاوه بر این پرسشهای اصلی پژوهش عبارت است از:
آیا سامانهی خبرهی فازی میتواند فرایند تشخیص وبگاههای دامگستری شده را بهبود بخشد؟
آیا روشهای دادهکاوی فازی میتوانند در استخراج ویژگیها و قواعد مؤثرتر در سامانه‌ی خبره فازی مفید باشند؟
1-6- روش تحقیقاین تحقیق از حیث روش تحقیق، تحقیقی توصیفی-کمّی است که از دو روش تفکر عمیق و مطالعه‌ی پیمایشی بهره برده است. در جمع‌آوری نیز از ابزار مختلف این فن یعنی: مصاحبه، مشاهده، پرسشنامه و بررسی اسناد استفاده شده است. روشگان تحقیق در شکل 1-1 آمده است.
تعریف مسئلهبررسی نظریه فازی، نظریه ژولیده و سامانه خبره فازیروش های حمله به بانک های الکترونیکیبررسی ویژگی های بانکداری الکترونیکیشناسایی عوامل و شاخص های دام گستری در بانکداری الکترونیکیطراحی سامانه خبره فازی برای تشخیص دام گستری و سپس بهبود آن با استفاده از الگوریتم انتخاب ویژگی فازی-ژولیدهاعمال سامانه طراحی شده بر نمونه هایی از حملات دام گستری در وبگاه بانک هااعتبارسنجی نتایج حاصل از سامانه خبره فازی طراحی شده برای تشخیص دام گسترینتیجه گیری و ارائه پیشنهادهای تکمیلی برای تحقیقمطالعات اکتشافی و مقدماتی و کلیات پژوهشمطالعات کتابخانه ایتفکر عمیقمطالعات میدانیتحلیل نتایجفصل اولفصل دوم و سومفصل پنجمفصل پنجمفصل چهارم
شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 1 روشگان اجرای پژوهشعلاوه بر این ابزار و روش‌های گرد آوری داده و فنون مورد استفاده برای تحلیل داده‌ها نیز به‌تفکیک مراحل تحقیق در جدول 1-1 آمده است.
جدول STYLEREF 1 s ‏1 SEQ جدول * ARABIC s 1 1 روشها و ابزار مورد استفاده در تحقیق به تفکیک مراحلمرحله هدف خروجی روش و ابزار
مطالعات اکتشافی کلان تبیین کامل مسأله کلیات تحقیق مطالعات کتابخانه‌ای، مصاحبه با خبرگان
مطالعات عمیق و تکمیلی 1. شناخت انواع حملات اینترنتی به ویژه انواع دامگستری
2. شناخت بانکداری الکترونیکی
3. شناخت مجموعههای فازی
4. شناخت سامانهی خبره فازی
5. شناخت مجموعههای ژولیده منابع تحقیق استفاده از تسهیلات اینترنتی و منابع موجود کتابخانه‌ای
بهره گیری از نظریات خبرگان
6. شناخت عوامل و شاخص های مؤثر در تشخیص دام گستری روش شناسی تحقیق کتابخانه‌ای، طراحی پرسشنامه، تفکر عمیق و استفاده از نرم افزار R و SPSS و اکسل
جمع آوری داده‌ها جمعآوری دادههای مربوط به حدود واژگان فازی هریک از شاخصهای فازی و همینطور داده‌های مربوط به نمونههای واقعی دامگستری ایجاد پایگاه داده مطالعات پیمایشی به کمک پرسشنامه و استفاده از آرشیو حملات دامگستری در وبگاه فیشتنک
طراحی و اجرای سامانهی خبرهی اولیه طراحی سامانهی خبره فازی اولیه برای تشخیص دامگستری سامانهی خبرهی فازی اولیه برای تشخیص دام‌گستری استفاده از روش تحقیق تفکر عمیق و مطالعهی پیمایشی در طراحی سامانهی فازی شناسایی دامگستری با استفاده از نظر خبرگان
استفاده از نرم افزارمتلب
ادامه‌ی جدول 1-1
بهبود سامانهی خبرهی اولیه با استفاده از نظریهی مجموعههای ژولیدهی فازی جمع آوری نمونههای واقعی درگاه پرداخت بانکهای ایرانی و همچنین جمع آوری سایر نمونه‌های دامگستری در بانکهای سراسر جهان برای انجام عملیات کاهش ویژگی مجموعهی ژولیده جهت استخراج اطلاعدهندهترین زیرمجموعه از شاخصهای مؤثر در شناسایی دامگستری در وبگاه بانکهای ایرانی و حذف شاخص‌های زائد دارای افزونگی استخراج مجموعه فروکاست شامل 6 شاخص اصلی و مؤثر از بین 28 شاخص اولیه برای شناسایی دام‌گستری استفاده از روش تحقیق تفکر عمیق و مطالعهی پیمایشی استفاده از نرمافزار دادهکاوی Weka
طراحی و اجرای سامانهی خبرهی ثانویه و بهینه شده طراحی سامانهی خبره فازی-ژولیده برای تشخیص دام‌گستری سامانهی خبره فازی بهینه برای تشخیص دام‌گستری با استفاده از 6 شاخص استفاده از روش تحقیق تفکر عمیق و استفاده از نرم افزار متلب
اعتبارسنجی سامانهی خبرهی فازی برای تشخیص دامگستری ارزیابی نتایج بدست آمده از پیاده‌سازی سامانهی خبره فازی برای تشخیص دامگستری نتایج ارزیابی شده مقایسه با الگوهای معتبر
1-7- محدودیتهای تحقیقمحدودیت اصلی در این تحقیق دشوار بودن دسترسی به خبرگان در زمینهی دامگستری بود. از آنجا که دامگستری شاخهای کاملاً تخصصی از امنیت اطلاعات در فضای اینترنت است، دسترسی به متخصصانی که در مبحث دامگستری خبره بوده و اطلاعات دقیق داشته باشند کاری دشوار بود.
هدف از ابزار توسعهدادهشده، مدلکردن دقیق فضای عدم قطعیت مسئله به کمک مجموعه‌های فازی بود، از طرفی به علت نبودن چنین درسی در مجموعهی دروس مصوب رشتهی «مهندسی فناوری اطلاعات-تجارت الکترونیکی» در دانشکدهی آموزشهای الکترونیکی دانشگاه شیراز، عدم آشنایی پژوهشگر با «نظریهی مجموعههای فازی» در بدو امر، یکی از محدودیتهای مهم انجام پژوهش بود. لذا پژوهشگر موظف بود پیش از آغاز پژوهش، «منطق فازی» را به صورت کلاسیک فرا بگیرد.
از دیگر محدودیتهای این پژوهش، جمعآوری دادههای فازی بود. جدید بودن موضوع و محدود بودن دسترسی به منابع کتابخانهای کشور به دلیل نبودن منابع علمی مرتبط و عدم درک برخی از خبرگان از موضوع تحقیق، دریافت اطلاعات را با مشکل مواجه میکرد.
همچنین یکی از مهمترین محدودیتهای پژوهش، عدم دسترسی به مثالها و آمار دقیق و واقعی دربارهی دامگستری در بانکهای ایرانی و نیز در دسترس نبودن نمونههای واقعی حملات دامگستری به بانکهای ایرانی بود.
1-8- جنبههای جدید و نوآوری تحقیقدر این پژوهش، ویژگیهای مؤثر در تشخیص حملات دامگستری در وبگاهها و به ویژه بانکداری الکترونیکی ایران معرفی خواهد شد که با استفاده از نظریات خبرگان و روشهای ریاضی و آماری به دست آمده است. نوآوری دیگر این پژوهش طراحی سامانهی خبره برای تشخیص حمله دامگستری با استفاده از ویژگیهای مذکور به صورت کارآمد است.
1-9- نتیجهگیریدر این فصل ابتدا موضوع پیشنهادی معرفی و ضرورت انجام آن تبیین شد و سپس مفاهیم اصلی این تحقیق مانند دامگستری، بانکداری الکترونیکی، مجموعههای ژولیده و سامانهی خبرهی فازی معرفی شدند که در فصلهای آینده به تفصیل بررسی خواهند شد.

فصل دوم- امنیت بانکداری الکترونیکی و حملات دامگستری2-1- مقدمهتجارت الکترونیکی مهمترین دستاورد به‌کارگیری فنّاوری اطلاعات در زمینه‌های اقتصادی است. برای توسعه‌ی تجارت الکترونیکی در کشور و ورود به بازارهای جهانی، داشتن نظام بانکی کارآمد از الزامات اساسی به‌‌‌شمار می‌آید. اگرچه طی سال‌های اخیر برخی روش‌های ارائه‌ی خدمات بانکداری الکترونیکی نظیر دستگاه‌های خودپرداز، کارت‌های بدهی،پیش‌پرداخت و غیره در نظام بانکی کشور مورد استفاده قرار گرفته است، اما تا رسیدن به سطحی قابل قبول از بانکداری الکترونیکی راهی طولانی در پیش است. در این میان بحث امنیت نیز به عنوان رکن بقای هر سامانهی الکترونیکی مطرح است. بدون امنیت، بانک الکترونیکی نه تنها فایدهای نخواهد داشت بلکه خسارتهای فراوانی نیز وارد میکند. دنیای امروز ما تفاوتهای چشمگیری با گذشته دارد. در گذشته پیچیدگی کار رخنهگرها و ابزارهایی که در دسترس آنها قرار داشت بسیار محدود و کمتر از امروز بود. گرچه جرایم اینترنتی در گذشته نیز وجود داشت اما به هیچ وجه در سطح گسترده و خطرناک امروز نبود. رخنهگرهای دیروز، امروزه متخصصان امنیت اطلاعات هستند که سعی میکنند از تأثیرات گسترده‌ی حملات اینترنی بکاهند. امروزه مجرمان اینترنتی نه تنها نیاز به خلاقیت زیادی ندارند بلکه اغلب در زمینهی رخنه از دانش چندانی برخوردار نیستند ولی در عین حال بسیار خطرناک هستند. در فضای اینترنت کنونی حتی کودکان نیز میتوانند به آسانی به رایانهها نفوذ کرده و برای اهداف مخربی از آنها بهره بگیرند. در گذشته هدف رخنهگرها عموماً دانشگاهها، کتابخانهها و رایانههای دولتی بود و اغلب انگیزههای بیضرر و کنجکاوی شخصی منجر به حمله میشد؛ حال آنکه امروز با گسترش پهنای باند، رخنهگرها تقریباً هرآنچه آسیبپذیر است را هدف قرار میدهند (James, 2005).
در این فصل ابتدا بانکداری الکترونیکی را تعریف میکنیم و پس از مرور چالشها و زیرساختهای مورد نیاز آن به معرفی یکی از مهمترین و آسیبرسانترین انواع حملات تهدیدکنندهی بانکداری الکترونیکی یعنی دامگستری میپردازیم. در ادامه آمارهای مربوط به دام‌گستری را بررسی کرده و در نهایت با دستهبندی روشهای تشخیص دامگستری فصل را به پایان میبریم.
2-2- بانکداری الکترونیکیبانکداری الکترونیکی عبارت است از ارائهی خدمات بانکی از طریق شبکه‌های رایانه‌ای عمومی و قابل دسترسی (اینترنت یا اینترانت) که از امنیت بالایی برخوردار باشند. بانکداری الکترونیکی دربرگیرنده سامانههایی است که مؤسسات مالی و اشخاص را قادر میسازد تا به حساب خود دسترسی داشته باشند و اطلاعاتی درباره‌ی خدمات و محصولات مالی بهدست آورند. در سامانه‌های بانکداری الکترونیکی از فنّاوری‌های پیشرفته‌ی نرم‌افزاری و سخت‌افزاری مبتنی بر شبکه و مخابرات برای تبادل منابع و اطلاعات مالی بهصورت الکترونیکی استفاده میشود که در نهایت می‌تواند منجر به عدم حضور فیزیکی مشتری در شعب بانکها شود (سعیدی و همکاران، 1386).
براساس تحقیقات مؤسسۀ دیتامانیتور مهم‌ترین مزایای بانکداری الکترونیکی عبارتند از: تمرکز بر شبکههای توزیع جدید، ارائه خدمات اصلاح شده به مشتریان و استفاده از راهبردهای جدید تجارت الکترونیکی. بانکداری الکترونیکی در واقع اوج استفاده از فنّاوری جدید برای حذف دو قید زمان و مکان از خدمات بانکی است (Shah et al., 2005). جدول 2-1 خلاصه‌ای از مزایای بانکداری الکترونیکی را از دیدگاه‌های مختلف بیان میکند.
جدول 2-1 مزایای بانکداری الکترونیکی از جنبههای مختلف (ساروخانی، 1387)دیدگاه مزایا بانکها و مؤسسات مالی حفظ مشتریان علی‌رغم تغییرات مکانی بانکها
کاهش محدودیت جغرافیایی ارائه‌ی خدمات
عدم وابستگی مشتریان به شعبه
افزایش قدرت رقابت
مدیریت بهتر اطلاعات
امکان ردگیری و ثبت کلیه عملیات مشتری
امکان هدایت مشتری به سوی شبکه‌های مناسب
امکان درآمدزایی بر اساس خدمات جدید
کاهش اسناد کاغذی
امکان جستجوی مشتریان جدید در بازارهای هدف
افزایش قدرت رقابت
امکان یکپارچه سازی کانالهای توزیع جدید
افزایش بازدهی
کاهش اشتباهات انسانی
سهولت ارائه خدمات
کاهش مراجعه مستقیم مشتریان به شعب
امکان ارائه آسان خدمات سفارشی
بهینه شدن اندازه موسسه
کاهش هزینهها
کاهش هزینه ارائه خدمات
کاهش هزینه پرسنلی
کاهش هزینه پردازش تراکنشها
کاهش هزینههای نقل و انتقال پول
مشتریان محو شدن مرزهای جغرافیایی
در دسترس بودن خدمات بهصورت 24 ساعته در تمامی روزهای هفته
عدم نیاز به حضور فیزیکی (برخی انواع)
کاهش هزینه استفاده از خدمات
کاهش زمان دسترسی به خدمات
افزایش سرعت ارائه و انجام خدمات
افزایش کیفیت خدمات
عدم وابستگی به شعبه خاص
امکان مدیریت یکپارچه خدمات مورد استفاده
افزایش امنیت تبادلات
پاسخ سریع به مشکلات مشتریان
امکان تهیه گزارشهای متنوع
ادامه‌ی جدول 2-1
جامعه کم شدن هزینه نشر، توزیع و جمعآوری اسکناس
افزایش امنیت تبادلات مالی
رونق تجارت الکترونیکی
2-3- چالشهای بانکداری الکترونیکی در ایراندر این بخش به برخی چالشها و مشکلات توسعه‌ی بانکداری الکترونیکی در ایران اشاره می‌شود. از منظر مشکلات پیادهسازی بانکداری الکترونیکی در بانکهای ایرانی میتوان به سه دسته از عوامل اشاره کرد (فتحیان و همکاران، 1386؛ سعیدی و جهانگرد، 1388):
الف- چالشهای قبل از تحقّق سامانه
عدم توسعه‌ی طرحهای مطالعاتی، نیازسنجی و امکانسنجی پیادهسازی فنّاوری‌های جدید
عدم گزینش و پیادهسازی فنّاوری با بالاترین کارایی در جهت رفع نیازها
نبود فرهنگ پذیرش و دانش کم بانکها در خصوص بانکداری و پول الکترونیکی
ضعف مدیریت در به‌کارگیری متخصصان حرفهای در بخش فنّاوری اطلاعات
عدم تغییر در نگرش سنتی نسبت به باز مهندسی فرایندها
ب- چالشهای هنگام تحقّق سامانه
ضعف زیرساختهایی نظیر خطوط پرسرعت مخابراتی
کمبود حمایت مالی و اعتبارات مورد نیاز
نبود یا کافی نبودن مؤسسات خصوصی مورد نیاز و یا عدم حمایت آنان از بانکداری الکترونیکی شبیه مؤسسات بیمه، گواهی‌دهنده‌ها و غیره.
تحریم اقتصادی و دشواری تهیه‌ی تجهیزات و ملزومات سختافزاری و نرمافزاری
نبود تجربه در تهیه‌ی محتوای لازم و کاربرپسند برای وبگاه بانکها
ج- چالشهای پس از تحقّق سامانه
نبود قوانین و محیط حقوقی لازم و عدم استناد پذیری ادلّه‌ی الکترونیکی
عدم تمایل افراد به فاش کردن مسائل اقتصادی خود (خود سانسوری)
نبود انگیزه‌ی کاربری و عدم فرهنگ سازی برای مردم
عدم اعتماد کاربران
فقدان بسترهای امنیتی مانند امضای دیجیتالی و زیرساخت کلید عمومی
لذا برای توسعه و گسترش بانکداری الکترونیکی، مقدمات و زیرساختهای گوناگونی باید وجود داشته باشد که در صورت عدم توسعۀ مناسب این زیرساختها، دستیابی به تمامی مزایای بانکداری الکترونیکی ممکن نخواهد شد.
2-4- زیرساختهای بانکداری الکترونیکیدر این بخش زیرساختها و بسترهای مورد نیاز بانکداری الکترونیکی را معرفی کرده و به اختصار شرح میدهیم (فتحیان و همکاران، 1386؛ سعیدی و جهانگرد، 1388).
2-4-1- زیرساخت ارتباطی
مهمترین و اثرگذارترین ابزار در آغاز فرایند بانکداری الکترونیکی دسترسی عمومی به بسترهای زیرساختی ارتباطات الکترونیکی است. در مدیریت بانکداری الکترونیکی باید برحسب نوع خدمات و انتظاراتی که از خدمات جدید میرود از مناسبترین ابزار ارتباطی بهره برد. این ابزار شامل استفاده از شبکهی جهانی اینترنت با پهنای باند متناسب، شبکههای داخلی مثل اینترانت، LAN، WAN، سامانههای ماهوارهای، خطوط فیبر نوری، شبکهی گستردهی تلفن همراه، تلفن ثابت و سایر موارد میباشد.
2-4-2- زیرساخت مالی و بانکی
یکی از مهمترین اقدامات بانکها در مسیر تبدیل شدن به بانکی الکترونیکی ایجاد زیرساخت‌هایی مانند کارتهای اعتباری، کارتهای هوشمند، توسعهی سختافزاری شبکههای بانکی و فراگیر کردن دستگاه‌های خودپرداز است. همچنین تطبیق پروتکلهای داخلی شبکه‌های بین بانکی با یکدیگر و پایانههای فروش کالاها تا نقش کارت‌های ارائه شده از طرف بانک در مبادلات روزمره نیز گسترش پیدا کند.
2-4-3- زیرساخت حقوقی و قانونی
برای اینکه بانکداری الکترونیکی با اقبال عمومی مواجه شود در گام اول باید بسترهای قانونی مورد نیاز آن فراهم شود و با شناخت تمامی احتمالات در فرایند بانکداری الکترونیکی درصد ریسک کاهش و اعتماد عمومی و حقوقی نسبت به سامانههای بانکداری الکترونیکی افزایش پیدا کند. گام دوم برای این منظور، تدوین قانون استنادپذیری ادلّهی الکترونیکی است زیرا در فرایند بانکداری الکترونیکی، رکوردهای الکترونیکی جایگزین اسناد کاغذی میشود. بنابراین قانون ادلّهی الکترونیکی یکی از نیازمندیهای اصلی تحقق بانکداری الکترونیکی است.
2-4-4- زیرساخت فرهنگی و نیروی انسانی
برای توسعهی بانکداری الکترونیکی نیاز جدی به فرهنگسازی برای جذب و توجیه اقتصادی جهت بهرهبرداری از این سامانهها برای مشتریان است.
2-4-5- زیرساخت نرمافزاری و امنیتی
یکی از عوامل مهم در مقبولیت و گسترده شدن فرایندهای بانکداری الکترونیکی توسعه‌ی نرم‌افزاری و افزایش امنیت در سامانههای آن است. در صورتی که زمینه‌ی لازم جهت تأمین این دو نیاز فراهم شود کاربرد عمومی سامانههای الکترونیکی گسترش و تسهیل مییابد، ریسک استفاده از این سامانهها کاهش مییابد و اعتماد و رضایتمندی مشتری افزایش مییابد. برای یک ارسال امن نکات زیر باید رعایت شود(Endicott et al., 2007; Gregory, 2010):
اطلاعات برای گیرنده و فرستنده قابل دسترسی باشند. (در دسترس بودن)
اطلاعات در طول زمان ارسال تغییر نکرده باشد. (صحت)
گیرنده مطمئن شود که اطلاعات از فرستنده مورد نظر رسیده است. (اصالت)
اطلاعات فقط برای گیرنده حقیقی و مجاز افشا شود. (محرمانگی)
فرستنده نتواند منکر اطلاعاتی که میفرستد بشود. (انکار ناپذیری)
2-5- امنیت در بانکداری الکترونیکیبانکداری الکترونیکی متکی بر محیط مبتنی بر شبکه و اینترنت است. اینترنت به عنوان شبکه‌ای عمومی، با مباحث محرمانگی و امنیت اطلاعات مواجه است. به همین دلیل بانکداری اینترنتی و برخط میتواند مخاطرههای فراوانی برای مؤسسات و بنگاههای اقتصادی داشته باشد که با گزینش و انتخاب یک برنامهی جامع مدیریت ریسک، قابل کنترل و مدیریت خواهند بود. حفظ امنیت اطلاعات از مباحث مهم تجارت الکترونیکی است.
امنیت بانکداری الکترونیکی را میتوان از چند جنبه مورد بررسی قرار داد (صفوی، 1387):
امنیت فیزیکی
امنیت کارمندان و کاربران سامانه
امنیت نرمافزار سامانهی یکپارچهی بانکداری الکترونیکی
اینترنت شبکهای عمومی و باز است که هویت کاربران آن به آسانی قابل شناسایی نیست. علاوه بر این مسیرهای ارتباطی در اینترنت فیزیکی نیستند که موجب میشود انواع حملات و مزاحمتها برای کاربران ایجاد شود. به طور کلی میتوان سه مشکل اصلی امنیتی در بانکداری الکترونیکی را موارد زیر دانست (عموزاد خلیلی و همکاران، 1387):
چگونه میتوانیم به مشتری این اطمینان را بدهیم که با ورود به وبگاه و انجام معامله در آن، شماره رمز کارت اعتباری وی مورد سرقت و جعل قرار نخواهد گرفت؟
شنود: چگونه میتوانیم مطمئن شویم که اطلاعات شماره حساب مشتری هنگام معامله در وب، قابل دستیابی توسط متخلفان نیست؟
مشتری چگونه میتواند یقین حاصل کند که اطلاعات شخصی او توسط متخلفان قابل تغییر نیست؟
2-6- تهدیدات و کلاهبرداریها در اینترنتبه طور کلی اهداف متفاوتی را میتوان برای کلاهبرداران اینترنتی برشمرد که عبارتند از : کسب سودهای مالی، تغییر عرف و رسوم اخلاقی، و اهداف گوناکون دیگری که میتواند برای هر فرد متفاوت باشد. در تجارت الکترونیکی، هدف اصلی فریبکاریها، کسب سودهای مالی است. آسیبهای حاصل از خرابکاریهای اینترنتی عبارتند از : از دست دادن سرمایه، رسوایی، خدشهدار شدن حریم شخصی و خسارتهای فیزیکی که هر کدام از این موارد، به دنبال خود از دست دادن زمان و همچنین ایجاد نگرانیهای ذهنی را برای افراد زیاندیده به همراه خواهد داشت (Kim et al., 2011).
طبیعت اینترنت منجر به پررنگ شدن تهدیدات و فریبکاریهای مختلف در آن و گسترش جنبهی تاریک و مبهم شبکه میشود. دسترسی جهانی به اینترنت، سرعت انتشار بالا، گمنامی افراد و عدم ملاقات رو در رو، دسترسی رایگان به خدمات و محتواهای با ارزش و همچنین کمبود قوانین مناسب و توافقهای بین المللی از جمله عواملی هستند که موجب شده تا بسیاری از این تهدیدات فراگیر شده و پیگرد آنها دشوار گردد. در ادامه به توضیح مختصر برخی از این عوامل میپردازیم:
الف- گمنامی
بسیاری از وبگاهها، برای عضویت در وبگاه، تنها نشانی یک رایانامه معتبر را از کاربر درخواست میکنند و یک فرد میتواند به عنوان چندین کاربر و با نشانی رایانامههای متفاوت عضو وبگاه موردنظر شود. گمنامی باعث میشود که برخی افراد بدون هرگونه حس بازدارنده به اعمالی مثل حملات اینترنتی، انتشار اطلاعات نادرست و مطالب نامربوط در مورد سایر افراد و ... بپردازند (Kim et al. , 2011).
ب- دسترسی رایگان به خدمات و محتواهای با ارزش
دسترسی رایگان به محتواهایی با ارزش بالا، گاهی باعث میشود که ارزش محصولات و خدمات در محیط اینترنت، پایینتر از حد طبیعی خود جلوه کند و کاربران اینترنت همیشه انتظار دریافت محصولات و خدمات رایگان را داشته باشند که این مسئله میتواند به عنوان چالش و تهدیدی برای افراد فعال در زمینه تجارت الکترونیکی مطرح شود. به عنوان مثال از محتواهای رایگان میتوان به این موارد اشاره کرد: جویشگرها که انواع محتواهای رایگان را برای کاربران جستجو کرده و در اختیار آنها قرار میدهند، دریافت نرم افزارهای رایگان (گوگل اپلیکیشن، جیمیل و ...)، وبگاههای اشتراکگذاری محتوای ویدیویی (یوتیوب و ...)، وبگاههای شبکههای اجتماعی ( فیسبوک و مایاسپیس و ...) و حتی وبگاههای اشتراک پروندههای غیرقانونی(Kim et al. , 2011).
در هرحال همچنان که پاک کردن کامل دنیای حقیقی از جرائم و اعمال غیراخلاقی و غیرقانونی امری غیرممکن است، در دنیای مجازی نیز وضع به همین منوال است. لذا بهترین کار، کنترل تهدیدات و نگه داشتن آنها در یک سطح قابل تحمل است.
تهدیدات و فریبکاریهای اینترنتی انواع گوناگونی دارند که از آن جمله میتوان به هرزنامه‌ها، ویروسها و کرمهای کامپیوتری، رخنه، حملات دی‌اواِس، کلاهبرداریهای برخط، دزدیده شدن هویت افراد، تجاوز از حقوق مالکیت دیجیتال و تجاوز از حریم شخصی اشاره کرد. در ادامه به بررسی یکی از چالشبرانگیزترین کلاهبرداریهای اینترنتی در حوزهی بانکداری الکترونیکی میپردازیم.
2-7- دامگستریواژهی «Phishing» در زبان انگلیسی واژهای جدید است که برخی آن را مخفف عبارت «Password Harvesting Fishing» به معنای «شکار گذرواژهی کاربر از طریق طعمه‌گذاری» و برخی دیگر آن را استعاره‌ای از واژهی «Fishing» به معنای «ماهیگیری» تعبیر کرده‌اند. سازندگان این واژه کوشیده‌اند با جایگزین کردن Ph به جای F مفهوم فریفتن را به مخاطب القا کنند( نوعی پور، 1383).
دامگستری، یکی از روشهای مهندسی اجتماعی است که معنای آن فریب کاربران اینترنت از طریق هدایت آنها به سمت وبگاههایی است که از نظر ظاهری کاملاً شبیه به وبگاه موردنظر کاربر هستند؛ این موضوع معمولاً در مورد وبگاه بانکها، مؤسسات اعتباری، حراجهای اینترنتی، شبکههای اجتماعی محبوب و مردمی، وبگاههای ارائهدهنده خدمات اینترنتی و ... صورت می‌گیرد. ایده اصلی این حمله آن است که طعمهای برای افراد فرستاده میشود به امید اینکه آنان، طعمه را گرفته و شکار شوند. در بسیاری موارد، این طعمه رایانامه یا هرزنامه است که کاربر را برای ورود به وبگاه، فریب میدهد. این نوع از فریبکاری، کاربر را به سمتی هدایت می‌کند که اطلاعات حیاتی خود مانند نام، گذرواژه، مشخصات کارت اعتباری، مشخصات حساب بانکی و ... را وارد وبگاه کند. سپس این اطلاعات سرقت شده و برای مقاصدی مثل دزدی، کلاهبرداری و .. مورد استفاده قرار میگیرند (Peppard and Rylander, 2005).
دامگستری در اواسط دههی 1990 میلادی در شبکهی برخط امریکا آغاز شد. دامگسترها خود را به جای کارکنان AOL جا میزدند و برای قربانیان پیامهای فوری ارسال میکردند و به ظاهر از آنها میخواستند تا گذرواژههایشان را بازبینی یا برای تأیید اطلاعات صورتحساب، وارد کنند. به محض اینکه قربانی گذرواژهاش را افشا میکرد، مهاجم با دسترسی به حساب کاربری او قادر بود هر فعالیت غیرقانونی انجام دهد. پس از اینکهAOL اینگونه دامگستریهای مبتنی بر پیام فوری را محدود کرد، دامگسترها مجبور شدند به سراغ سایر ابزار به ویژه رایانامه بروند. همچنین دامگسترها دریافتند که میتوانند از مؤسسات مالی و اعتباری سود قابل توجهی کسب کنند. با این هدف در ژانویه 2001، کاربرانِ شبکهی پرداخت برخط E-gold مورد حمله قرار گرفتند. گرچه این حملات با استفاده از رایانامههای متنی خام، موفق نبود اما پس از یازدهم سپتامبر 2001 به شیوههای دیگری که مؤثرتر بودند ادامه پیدا کرد. شیوههایی که از آن پس رایج شد به شکل حملات دامگستری کنونی است که در آن پیوندی از وبگاه جعلی در رایانامه وجود دارد و فرد با کلیک روی آن به وبگاه دامگستری شده هدایت میشود (Miller, 2010).
اولین بررسی در مورد مفهوم دامگستری مربوط به کنفرانس اینترکس در سال 1987 است. جری فلیکس و کریس هاک، در پروژه - ریسرچای تحت عنوان «امنیت سامانه: از دید نفوذگر» روشی را توصیف کردند که در آن شخص سومی از خدمات مورد اطمینان در محیط وب تقلید می کند (Robson, 2011).
2-7-1- انواع دامگستری
به طور کلی می توان انواع دامگستری را به سه دسته تقسیم کرد:
الف- جعل هویت
این روش نسبت به سایر روشها رایجتر و به مراتب آسانتر است. این روش شامل ساخت وبگاهی کاملاً جعلی است که کاربر ترغیب میشود از آن بازدید کند. این وبگاه جعلی تصاویری از وبگاه اصلی را در بر دارد و حتی ممکن است پیوندهایی به آن داشته باشد (James, 2005).
ب- ارسال (دامگستری مبتنی بر رایانامه)
این روش بیشتر در وبگاههایی نظیر آمازون، Ebay و PayPal مشاهده شده است و در آن رایانامهای به کاربران ارسال میشود که تمامی نمادها و گرافیک وبگاه قانونی را دارد. وقتی قربانی از طریق پیوند درون این رایانامه، اطلاعات محرمانه خود را وارد میکند، این اطلاعات به کارساز متخاصم فرستاده میشود. پس از آن یا کاربر به وبگاه صحیح و قانونی هدایت می‌شود یا با پیغام خطا در ورود اطلاعات مواجه میگردد. امروزه به علت حجم بالای html در اینگونه رایانامهها، بسیاری از ویروسکشها و پادهرزنامهها، جلوِ آنها را میگیرند که از دید دام‌گستران ضعف این روش محسوب میشود (James, 2005).
ج- پنجرههای بالاپَر
این روش حملهای خلاقانه اما محدود است. این نوع دامگستری در سپتامبر سال 2003 هنگامی شناسایی شد که سیتیبانک پشت سرهم مورد حملهی دامگستری قرار میگرفت. این روش بدین صورت است که شما روی پیوند درون رایانامه کلیک میکنید و با یک پنجرهی بالاپَر مواجه میشوید. اما پشت این پنجره وبگاه اصلی و قانونی هدف دامگسترها قرار دارد. لذا این روش بسیار ماهرانه و گمراهکننده است و بیش از سایر روشهای دامگستری، اعتماد کاربران را جلب میکند. البته این روش امروزه ناکارآمد است زیرا بیشتر مرورگرهای وب برای جلوگیری از باز شدن پنجرههای بالاپَر به صورت پیشفرض «سدّکنندهی پنجرهی بالاپر» را در خود دارند (James, 2005).
یکی از شاخههای حملات دامگستری ، «دامگستری صوتی» نام دارد. واژهی «Vishing» از ترکیب دو واژهی انگلیسی «Voice» به معنای «صدا» و «Phishing» به وجود آمده است که در آن به جای فرستادن رایانامه به سمت کاربر و درخواست از او برای کلیک بر روی پیوندی خاص، رخنهگر طی یک تماس تلفنی، شماره تلفنی را برای کاربر ارسال میکند و از وی میخواهد که با آن شماره تماس بگیرد. وقتی کاربر تماس گرفت، یک صدای ضبط شده از او میخواهد که اطلاعات شخصی خود را وارد کند. مثلاً وقتی کاربر مشکلی در حساب بانکی یا کارت اعتباری خود دارد، این پیام از پیش ضبط شده از او میخواهد که با یک شماره خاص تماس بگیرد و برای حل مشکل تقاضای کمک کند. در بسیاری موارد، سخنگو از نوع سخن گفتن افراد بخش پیشگیری از کلاهبرداری بانک یا شرکت کارت اعتباری تقلید میکند؛ اگر پیام، متقاعدکننده باشد، برخی افراد گیرنده پیام، با شماره داده شده تماس خواهند گرفت (Forte, 2009).
2-8- آمارهای مربوط به دامگستری
حملات دامگستری با آهنگ رو به تزایدی در حال رشد هستند. به گزارش کنسرسیوم بین المللی «گروه پادامگستری»، تعداد وبگاههای دامگستری شده در حال افزایش است (Toolan and Carthy, 2011). در سال 2006، تعداد قربانیان 25/3 میلیون نفر بود که در سال 2007 این تعداد به 5/4 میلیون نفر افزایش پیدا کرد (Abu-Nimeh et al., 2008). بنا به گزارش این گروه، در سال 2006، تعداد حملات دامگستری 1800 مورد بوده است (Yu et al., 2009). در دسامبر 2007، شرکت گارتنر گزارش داد حملات دامگستری در امریکا در مقایسه با دو سال قبل افزایش پیدا کرده است (Abu-Nimeh et al., 2008). پس از آن در سال 2008 هم تعداد 34758 حمله دامگستری گزارش شد (Toolan and Carthy, 2011). براساس گزارش شرکت امنیتی آر اس ای، حملات دامگستری در سال 2010 در مقایسه با سال قبل از آن 27% افزایش یافت (Esther, 2011). این اعداد نشان دهندهی افزایش حجم حملات دامگستری در سالهای اخیر است.
میزبانی حملات دامگستری متفاوت از حجم حملات دامگستری است. میزبانی حملات، اشاره به کارسازهایی دارد که مهاجمان برای حمله از آنها بهره بردهاند به این معنا که اسکریپتهای دامگستری خود را بر روی کارساز آنها بارگذاری کردهاند (این کار بدون اطلاع صاحبان کارساز و از طریق رخنهکردن وبگاه صورت میگیرد). حال آنکه، منظور از حجم حملات، تعداد دفعاتی است که وبگاههای کشوری مورد حملهی دامگستری واقع شدهاند. آمارهای گروه پادامگستری نشان میدهد که در ماه مارس 2006، بیشترین میزبانی حملات مربوط به امریکا (13/35%)، چین (93/11%) و جمهوری کره (85/8%) بوده است (Chen and Guo, 2006). در میان کشورهای میزبان دامگستری، امریکا رتبهی اول را داراست و بیشترین حجم حملات دامگستری به ترتیب مربوط به دو کشور امریکا و انگلستان بوده است. بعد از امریکا، در فاصله بین اکتبر تا دسامبر 2010، کانادا از رتبه هفتم به رتبه دوم رسید. اما کمی بعد در ژانویه 2011 جای خود را به کره جنوبی داد(RSA, 2011).
هرچه یک وبگاه دامگستری مدت زمان بیشتری فعال بماند، قربانیها و مؤسسات مالی پول بیشتری از دست میدهند. در اوایل سال 2008، هر حمله دامگستری به طور میانگین 50 ساعت مؤثر بوده است (مدت زمانی که کاربران در معرض خطا در تشخیص وبگاه واقعی بوده اند)، اما در اواخر سال 2009، این مقدار به 32 ساعت کاهش یافته است (APWG, 2010). این کاهش مبیّن افزایش سرعت و دقت در تشخیص دامگستری است. شکل 2-1 تغییرات دام‌گستری مبتنی بر رایانامه را بین سال‌های 2004 تا 2012 نشان می‌دهد.

شکل 2-1 تغییرات دامگستری مبتنی بر رایانامه در سطح جهان بین سالهای 2004 تا 2012 (Pimanova, 2012)
بر اساس گزارش APWG، حدود دوسوم حملات دامگستری در نیمهی دوم سال 2009، از طرف گروهی به نام «اَوِلانش» صورت گرفته است. این گروه احتمالاً جانشین گروه «راک‌فیش» شده بودند. گروه اولانش مسؤولیت 126000 حمله را پذیرفت که البته میزان موفقیت کمی داشتند. مهمترین دلیل عدم توفیق آنها، همکاری نزدیک بانکهای هدف، ثبت‌کنندگان نام دامنهها و سایر فراهمکنندگان خدمات، برای جلوگیری از حملات دامگستری بوده است. برخلاف اکثر دامگسترها که بیشتر دامنههای .com را برای حمله در اولویت قرار میدهند (47% حملات)، گروه اولانش بیشتر به دامنههای .eu ، .uk و .net ، تمایل دارد. البته هنوز 23% حملات این گروه مربوط به دامنه .com است (APWG, 2010).
همانطور که شکل 2-2 نشان می‌دهد، در ژوئیهی سال 2012 بیشترین حملات دام‌گستری به ترتیب مربوط به ارائه‌دهنده‌های خدمات اطلاعاتی (مانند کتابخانهها و شبکههای اجتماعی)، بانکها و شرکتهای فعال در زمینهی تجارت الکترونیکی بوده است (Pimanova, 2012).

شکل 2-2 سازمانهای مورد حملهی دامگستری در سال 2012 به تفکیک صنعت (Pimanova, 2012)
در جدول 2-2، وبگاههایی که بیش از سایر وبگاهها مورد حملات دامگستری بودهاند معرفی شدهاند. همچنان که در این جدول مشاهده میشود اکثر وبگاههای این فهرست بانکی هستند.
جدول 2-2 ده وبگاه برتر از نظر میزان حملات دامگستری در سالهای اخیر(Walsh, 2010; Kaspersky Lab, 2011)رتبه از طریق وبگاه جعلی (روش جعل هویت) از طریق رایانامه (روش ارسال)
1 Paypal Paypal
2 ebay Common Wealth Bank of Australia
3 Facebook Absa Bank of South Africa
4 Banco Real of Brazil Chase Bank
5 Lloyds TSB Western Union Bank
6 Habbo Bank of America
7 Banco de Brandesco Banco de Brandesco
8 NatWest Lloyds TSB
9 Banco Santander, S.A. NedBank of South Africa
10 Battle.Net Yahoo!
2-8-1- خسارات ناشی از دامگستری
دامگستری از زوایای مختلفی به کاربران، سازمان ها و ارزش نمانامها ضرر و زیان وارد میکند. در زیر به پیامدهای اینگونه حملات اشاره میکنیم (Kabay, 2004):
الف- اثر مستقیم دامگستری که موجب افشای اطلاعات محرمانهی کاربران اینترنت مانند شناسهی کاربری و گذرواژه یا سایر مشخصات حساس کارت اعتباری آنها شده و از این طریق به آنها خسارات مالی وارد میسازد.
ب- حسن نیت و اعتماد کاربران نسبت به تراکنش و مبادلات مالی اینترنتی را از بین میبرد و باعث ایجاد نگرشی منفی در آنها میشود که شرکتهای طرف قرارداد در بستر اینترنت از جمله بانکها، مؤسسات مالی و فروشگاه ها، به هیچ وجه اقدامات کافی برای محافظت از مشتریانشان را انجام نمیدهند.
ج- به تدریج در اثر سلب اطمینان کاربران، موجب خودداری مردم از انجام خرید و فروش و کاربرد اینترنت در انجام فعالیتهای تجاری شده و مانع گسترش و موفقیت هرچه بیشتر تجارت الکترونیکی میشود.
د- ارتباطات و تراکنشهای مؤثر و موفق اینترنتی را تحت تأثیر قرار داده و تهدید میکند.
ه- دامگستری بر نگرش سهامداران تأثیر منفی میگذارد و منجر به ناتوانی در حفظ ارزش نمانامها شده و در نهایت باعث ورشکستگی آنها میشود.
اعتماد یکی از مهمترین مشخصههای موفقیت در بانکداری الکترونیکی است (Aburrous et al., 2010c). همانطور که اشاره شد، دامگستری میتواند به شدت به کسب و کار در اینترنت صدمه بزند چراکه مردم در اثر ترس از اینکه قربانی کلاهبرداری شوند، به تدریج اعتماد خود به تراکنشهای اینترنتی را از دست میدهند (Ragucci and Robila, 2006). برای مثال بسیاری از مردم فکر میکنند استفاده از بانکداری اینترنتی احتمال اینکه گرفتار دامگستری و دزدی هویت شوند را افزایش میدهد. این درحالی است که بانکداری برخط نسبت به بانکداری کاغذی، محافظت بیشتری از هویت افراد به عمل میآورد (Aburrous et al., 2010c).
نتایج بررسیها نشان میدهد که با ارسال 5 میلیون رایانامهی دامگستری، 2500 نفر فریب میخورند. هرچند این تعداد، تنها 05/0% از افراد تشکیل میدهند. اما منفعت حاصل از این تعداد، همچنان دامگستری را منبع خوبی برای کسب درآمد توسط کلاهبرداران اینترنتی کرده است (Toolan and Carthy, 2011). به طور کلی برآورد حجم خسارات مالی ناشی از حملات دامگستری، کار دشواری است زیرا:
بانک ها و مؤسسات مالی تمایلی به افشای چنین جزئیاتی ندارند.
در برخی موارد، حملات دامگستری توسط کاربران گزارش داده نمیشوند.
نمیتوان در همهی مواقع، برداشته شدن پول از حساب بانکی را، با قطعیت به علت دزدیده شدن گذرواژهی مشتری طی حمله دامگستری دانست.
مهاجمان گاهی برای دزدیدن پول به وبگاهها حمله نمیکنند. بلکه گاهی منابع دیگری را دزدیده و استفاده کنند. به عنوان مثال، دامگسترهایی که به آژانسهای گزارش اعتبار (شرکتهایی که اطلاعات مربوط به اعتبار مشتریان را به تفکیک نام آنها، از منابع مختلف و برای کاربردهای مالی و اعتباری، گردآوری میکنند) حمله میکنند تا دادههای مربوط به مشتریان معتبر، را به دست آورند و یا دامگسترهایی که به کارسازهای رایگان پست الکترونیکی حمله میکنند تا بتوانند از طریق آنها هرزنامه ارسال کنند و قربانیهای بیشتری را فریب دهند. چنین حملات دامگستری منجر به خسارتهایی میشوند که به سختی قابل برآورد هستند (Auron, 2010).
مطالعات انجام شده، نشاندهندهی رشد ثابت و مداوم در فعالیتهای دامگستری و میزان خسارات مالی مربوط به آن است (Abu-Nimeh et al., 2008; Yu et al., 2009). اعداد و ارقامی که در ادامه به آنها اشاره میکنیم هم به خوبی مؤید این مطلب هستند.
در سال 2003، میزان خسارتهای مالی به بانکها و مؤسسات اعتباری امریکا 2/1 میلیارد دلار تخمین زده شده است که این عدد در سال 2005 به 2 میلیارد دلار رسید (Abu-Nimeh et al., 2008). در سال 2004، مؤسسه گارتنر گزارش کرد که در فاصلهی آوریل 2003 تا آوریل 2004، 8/1 میلیون نفر قربانی دامگستری بوده اند که در مجموع 2/1 میلیارد دلار خسارت مالی وارد کرد (Chen and Guo, 2006). بر اساس تحقیقی که این مؤسسه انجام داده است، حملات دامگستری در امریکا در سال 2007 افزایش یافته و 2/3 میلیارد دلار خسارت وارد کرد. تحقیق دیگری هم نشان میدهد که 6/3 میلیون نفر بین اوت 2006 تا اوت 2007 متحمل خسارت مالی ناشی از دامگستری شده اند. این درحالی است که سال قبل از آن این تعداد 3/2 میلیون نفر بودند. نتایج این تحقیق نشان میدهد که حملات دامگستری و بدافزار همچنان رشد خواهد کرد (Yu et al., 2009). در سال 2004، گارتنر تخمین زد که هر قربانی دامگستری، 1244 دلار خسارت میبیند (Aburrous et al., 2010a). در سال 2007 گزارش دیگری نشان داد که سالانه 311449 نفر مورد حمله دامگستری قرار میگیرند که 350 میلیون دلار خسارت ایجاد میکند (Aburrous et al., 2010a). به گزارش یکی از تحلیلگران گارتنر، خسارات مالی ناشی از دامگستری در سال 2011 در حدود 5/2 میلیارد دلار تخمین زده شده است (Seidman, 2012).
البته شایان ذکر است که شرکت مایکروسافت به میزان خساراتی که مؤسسه گارتنر تخمین زده است، اعتراض کرد و اعداد اعلام شده را غلو شده خواند. مایکروسافت ادعا کرد که تعداد بسیار کمی از افراد تحت تأثیر دامگستری فریب میخورند و میزان خسارات 50 برابر کمتر از میزان تخمینی توسط تحلیلگران است. بنا به گفتهی مایکروسافت میزان خسارات سالانه تنها 61 میلیون دلار (40 میلیون یورو) است. در مقابل مؤسسه گارتنر نیز از صحت برآوردهای خود دفاع کرد و ریشهی این اختلافها را در عدم انتشار میزان خسارات وارده توسط بانکها و مؤسسات مالی و اعتباری دانست (Espiner, 2009). البته گارتنر در سال 2008، نتیجهی جالبی را اعلام کرد: در سال 2008 به طور متوسط در هر حملهی دامگستری 351 دلار خسارت ایجاد شده است که در مقایسه با سال 2007، 60% کاهش داشته است و علت این کاهش، بهبود روشهای تشخیص توسط مؤسسات مالی بوده است که البته ایجاد این بهبودها خود هزینهبر است (Moscaritolo, 2009). لذا در مجموع هزینهها کاهش چشمگیری نیافته است. جدول 2-3 خلاصهی مهمترین آمار منتشر شده را نشان میدهد. شایان ذکر است با توجه به محدودیتهای موجود در خصوص دسترسی به آمار و ارقام دامگستری که پیش از این هم به آن اشاره شد، در مورد خانههای خالی جدول هیچ اطلاعاتی در دست نبود.
جدول 2-3 خسارات مالی دامگستریسال خسارت مالی تعداد قربانیان
2003 - 2004 2/1 میلیارد دلار 8/1 میلیون نفر
2004- 2005 2 میلیارد دلار -
2005- 2006 - 3/2 میلیون نفر
2006- 2007 - 6/3 میلیون نفر
2007- 2008 2/3 میلیارد دلار 3111449 نفر
2011- 2012 5/2 میلیارد دلار -
2-8-2- دامگستری در ایران
موضوع دامگستری در ایران نیز بسیار حائز اهمیت است زیرا آمار نشان میدهد، جرائم رایانه‌ای در سال 1390 در کشور رشد ۸/۳ برابری نسبت به سال گذشته داشته و بیشترین آمار مربوط به جرایم رایانه‌ای بانکی بوده است. براساس این گزارش، حملات دامگستری و شیوهای از آن به نام «فارمینگ» مقام سوم را در میان جرایم اینترنتی کشور دارد. علاوه بر این در سال 1389 تعداد 1035 فقره جرم اینترنتی در ایران به ثبت رسیده است که این آمار در سال 1390 به 4000 مورد افزایش یافته است و در صورت ادامه روند کنونی رشد جرائم اینترنتی در ایران، میزان این جرائم در سال 1391 به ۸ تا ۱۰هزار فقره افزایش می‌یابد (راه پرداخت، 1391).
با توجه به نکات فوق واضح است که مقابله با دامگستری یکی از مسائل جدی در عرصهی امنیت شبکههای بانکداری الکترونیکی است. از این رو در بخش بعد به شناسایی روشهای مرسوم تشخیص دامگستری میپردازیم.
2-9- روشهای تشخیص دامگستریبیشتر روشهای مقابله با دامگستری شامل احراز هویت، فیلتر کردن، ردیابی و تحلیل حمله، گزارش دامگستری و فشار حقوقی و اعمال قوانین است. این خدمات پادامگستری اینترنتی در کارسازهای رایانامه و مرورگرهای وب پیادهسازی شده است و از طریق نوار ابزار مرورگر وب قابل دسترسی و استفاده است (Zhang et al., 2011).
از دیدگاه کلّی میتوان تمامی روشهای تشخیص دامگستری را به دو دستهی اصلی تقسیم‌ کرد: یکی دفاع سمت کارساز، که از گواهیهای SSL و تصاویر وبگاههای انتخاب شده توسط کاربر و تعدادی مشخصههای امنیتی دیگر استفاده و سعی میکند به این صورت به کاربر کمک نماید تا از قانونی بودن وبگاه، اطمینان حاصل کند و دیگری دفاع سمت کارخواه، که مرورگرهای وب را به ابزارهای خودکار تشخیص دامگستری مجهز میکند تا به کاربران در برابر وبگاههای مشکوک اخطار دهد (Yue and Wang, 2008).
به دلیل اهمیت موضوع دامگستری، ظرف یک دههی اخیر روشهای مختلفی برای شناسایی و مبارزه با این روش فریب ارائه شده است. در ادامه این روشها را دستهبندی کرده و به اجمال بررسی میکنیم:
2-9-1- رویکرد اول: فیلتر موجود در نوار ابزار مرورگر وب
یکی از روشهای رایج برای حل مشکل دامگستری، افزودن ویژگیهای امنیتی به مرورگرهای اینترنت است. اینگونه فیلترها بدین صورت عمل میکنند که به محض کلیک کاربر بر روی پیوند مربوط به وبگاه مشکوک به دامگستری و یا وارد کردن URL آن در نوار نشانی، واکنش نشان میدهند. این واکنش عموماً به صورت یک اخطار است که قصد دارد کاربر را از ورود به وبگاه منصرف کند. چنین مرورگرهایی مکانیزمی دارند که تحت عنوان فهرست سیاه شناخته می‌شود (Sharif, 2005).
بیشتر فهرستهای سیاه با استفاده از مکانیزمهای خودکار ایجاد میشوند. گرچه فهرست سیاه طراحی و پیادهسازی آسانی دارد، اما مشکل بزرگی هم دارد و آن کامل نبودن است. جرایم در فضای مجازی به شدت زیرکانه هستند و مجرمان با استفاده از روشهای پیچیدهای از فهرست سیاه فرار میکنند. (Yue and Wang, 2008) برای جلوگیری از فریب کاربران در برابر دامگستری، به جای اخطار دادن، رویکرد جدیدی پیشنهاد داده اند و آن یک ابزار پادام‌گستری منحصر به فرد سمت کاربر به نام «بوگسبایتر» است که به صورت نامحسوس تعداد بسیار زیادی، اطلاعات محرمانهی جعلی وارد وبگاه مشکوک میکند و به این صورت اطلاعات محرمانهی واقعی قربانی را در میان اطلاعات غیرواقعی پنهان میکند. اطلاعات جعلی وارد شده به وبگاه، دامگسترها را وادار میکند که با آزمودن تمامی اطلاعات جمعآوری شده، اطلاعات اصلی و صحیح را پیدا کنند و همین عمل (بررسی صحت اطلاعات توسط دامگستران) فرصتی برای وبگاه اصلی ایجاد میکند تا از سرقت اطلاعات آگاه شود. این روش از آن جهت سودمند است که نیازی به واکنش کاربر نسبت به خطای ارسالی ندارد و کاملاً خودکار عمل میکند اما همچنان نقص استفاده از فهرستهای سیاه که همانا نیاز به بروز شدن است را به همراه دارد.
2-9-2- رویکرد دوم: پیشگیری از دامگستری در مرحلهی رایانامه
این رویکرد مربوط به زمانی است که کاربر برای اولین بار رایانامهی حاوی پیوند وبگاه دام‌گستری شده را دریافت میکند. بدین منظور روشهای مختلفی مورد استفاده قرار میگیرد که مهمترین آنها عبارتند از:
الف- استفاده از روش شبکهی بیزی
شبکه‌ی بیز عبارت است از مجموعه‌ای از متغیرهای تصادفی (گسسته یا پیوسته) که گره‌های شبکه را تشکیل داده به همراه مجموعه‌ای از پیوندهای جهت‌دار که ارتباط هر زوج گره را تعیین می‌کنند. برای هر گره توزیع احتمال شرطی تعریف می‌شود که تأثیر والدین را روی آن تعریف می‌کند. گره‌های این شبکه هیچ دور جهت داری ندارد (صابری، 1389). در پژوهش (Abu-Nimeh et al., 2008)، یک معماری کارساز و کارخواه توزیعشده به نام «سی بارت» ارائه شده است که بر اساس نسخهی اصلاح شدهی درخت رگرسیون بیزی است. این معماری جدید برای آن است تا همچنان که از دقت بالای سیبارت بهره میبرد، سربار آن را حذف کند. در این معماری توزیع شده، «سیبارت» درون یک کارساز مرکزی پیاده‌سازی شده و کارخواه‌ها که منابع محدودی دارند از «کارت» که نوعی دستهبند است، استفاده میکنند. درخت رگرسیون بیزی، یادگیرنده‌ای برای پیشبینی نتیجههای کمّی است که از رگرسیون روی مشاهدات استفاده می‌کند. رگرسیون فرایند پیشبینی خروجیهای کمّی پیوسته است. اما وقتی نتیجه‌های کیفی را پیشبینی میکنیم به آن مسئله دسته‌بندی میگویند. پیشبینی دام‌گستری هم یک مسئلهی دسته‌بندی دودویی است. زیرا در بررسی رایانامهها ما دو خروجی به دست میآوریم: یا دامگستری شده است (=1) یا قانونی است (=0) و ثابت شده است که «بارت» یا «درخت رگرسیون جمعپذیر بیزی» روش امیدبخشی برای دستهبندی هرزنامهها است.
همان‌طور که میدانیم در دستگاههای بیسیم و انواع PDA ، ظرفیت حافظه و قابلیت پردازش کم است. این محدودیتها بر راهحلهای امنیتی اثر میگذارند. مطالعه (Abu-Nimeh et al., 2008) بر این هدف تمرکز دارد و در واقع راه حلی برای تشخیص رایانامههای دام‌گستر در محیطهای سیار ارائه میدهد.
ب- استفاده از روشهای یادگیری ماشین
برای استفاده از شیوههای یادگیری ماشین در دستهبندی رایانامه‌های دریافتی تلاشهای زیادی صورت گرفته است. یکی از مهمترین جنبههای موفقیت هر سامانهی یادگیری ماشین، مجموعه ویژگیهایی است که برای نشان دادن هر نمونه استفاده میشود. در تحقیق (Toolan and Carthy, 2011)، ویژگیهایی که در حال حاضر در سامانههای خودکار تشخیص رایانامههای دامگستر استفاده میشود، مورد بررسی قرار گرفته و در نهایت چهل ویژگی شناسایی شده است. سپس بر اساس این ویژگیها، یک دستهبند به نام C5.0 طراحی شده است. این دستهبند از سه گروه ویژگی استفاده میکند که با «بهترین»، «متوسط» و «بدترین» برچسبگذاری شدهاند.
ج- استفاده از الگوریتم ژنتیک
در این روش برای تولید مجموعه قواعدی که پیوند قانونی را از پیوند جعلی تشخیص میدهد از الگوریتم ژنتیک استفاده شده است. این سامانه میتواند تنها به عنوان بخشی از راهحل پادام‌گستری وبگاه استفاده شود. الگوریتم ژنتیک طی مراحل تابع برازش، تقاطع و جهش، مجموعه قواعدی را تولید میکند که قادر به شناسایی پیوند جعلی است. این مجموعه قواعد در پایگاه داده ذخیره میشود. بدین ترتیب پیش از اینکه کاربر رایانامه را باز کند، از وضعیت آن مطلع میگردد. الگوریتم ژنتیک فقط برای تشخیص دامگستری مفید نیست بلکه میتواند کاربران را در برابر پیوندهای ناخواسته و مخرّب موجود در صفحات وب نیز محافظت کند (Shreeram et al.,2011).
2-9-3- رویکرد سوم: استفاده از مشابهت ظاهری
در مقالات (Fu et al., 2006; Wenyin et al., 2006; Hara et al., 2009; Zhang et al., 2011)، از مشابهت ظاهری صفحات وب برای تشخیص استفاده شده است. اما شیوهی استفاده از مشابهت ظاهری برای تشخیص دامگستری در هرکدام از آنها متفاوت است. روش‌های استفاده شده به سه دستهی زیر تقسیم میشود:
الف- اندازهگیری مشابهت ظاهری با استفاده از ویژگیهای بصری صفحه‌ی وب (Wenyin et al, 2005)
ب- اندازهگیری مشابهت ظاهری با استفاده از EMD (Fu et al., 2006)
ج- اندازهگیری مشابهت ظاهری با استفاده از سامانهی ImgSeek (Hara et al., 2009)
به طور کلی در روشهای مبتنی بر مشابهت ظاهری، تلاش میشود میزان مشابهت ظاهری وبگاه مشکوک با وبگاه اصلی اندازه‌گیری گردد و تشخیص بر مبنای این میزان مشابهت صورت گیرد.
برای تشخیص مشابهت، پروژه - ریسرچی (Wenyin et al, 2005) از سه اندازه استفاده میکند: شباهت در سطح بلوک، شباهت layout و شباهت کلی style. صفحه‌ی نخست وبگاه ابتدا با در نظر گرفتن نکات بصری به بلوکهایی مشخص تقسیم میشود. محتوای بلوک ممکن است تصویری یا متنی باشد. برای نمایش بلوکهای تصویری و متنی از ویژگیهای مختلفی استفاده میشود. براساس تعداد بلوکهای مشابه، یک وزن به آن تعلق میگیرد. شباهت layout براساس نسبت وزن بلوکهای مشابه به کل بلوکهای صفحه‌ی اصلی تعریف میشود. شباهت Style کلی، برمبنای هیستوگرام ویژگی style محاسبه میشود. در بررسی مشابهت دو بلوک در سامانهی پیشنهادی پروژه - ریسرچی (Wenyin et al, 2005)، اگر چنانچه دو بلوک از دو نوع مختلف باشند، مشابهت صفر در نظر گرفته میشود ولی میتوان یک بلوک تصویری را به یک بلوک متنی تبدیل و مشابهت آنها را با استفاده از روش مشابهت‌یابی بلوک متنی اندازه‌گیری کرد. همینطور این امکان برای تبدیل بلوک متنی به تصویری نیز وجود دارد.
رویکرد پروژه - ریسرچی (Fu et al., 2006) نیز، صرفاً در سطح پیکسلهای صفحهی وب است و نه سطح متن. لذا صرفاً به مشابهت ظاهری مینگرد و توجهی به مشابهت کدها ندارد. در نتیجه سامانهی پیشنهادی نمیتواند صفحات دامگستری شده بدون شباهت ظاهری را تشخیص دهد. این سامانه، یک صفحه‌ی وب را به صورت کامل و نه فقط بخشی از آن را ارزیابی میکند. اگر دامگستر یک وبگاه بسازد که بخشی از آن شبیه وبگاه اصلی باشد، سامانه مورد پیشنهاد این پروژه - ریسرچممکن است شکست بخورد. از طرفی، روش پروژه - ریسرچی (Fu et al., 2006) نباید فقط به سمت کارساز محدود شود. می‌توان یک برنامه برای سمت کارخواه تولید نمود که میتواند توسط کاربران نصب شود. این برنامه شبیه یک ویروسکش عمل میکند و میتواند به صورت دورهای، پایگاه خود را از طریق کارساز بروز کند و تابعی داشته باشد که لینکهای دامگستر تازه کشف شده را به کارساز معرفی کند تا به پایگاه داده افزوده شود.
2-9-4- رویکرد چهارم: روشهای فازی
ویژگیها و عوامل زیادی وجود دارند که میتوانند وبگاه قانونی را از نوع تقلّبی آن متمایز کنند که از آن جمله میتوان خطاهای نگارشی و نشانی طولانی URL را نام برد. به وسیلهی مدلی که در (Aburrous et al., 2010a) براساس عملگرهای منطق فازی ارائه شده است، میتوان عوامل و نشانگرهای دامگستری را به متغیرهای فازی تبدیل کرد و در نتیجه شش سنجه و معیار حملهی دامگستری را با یک ساختار لایهای به دست آورد.
روش (Aburrous et al., 2008) آن است که نشانگرهای اصلی دامگستری را با استفاده از متغیرهای زبانی بیان کند. در این مرحله توصیفکنندههای زبانی مانند «بالا»، «پایین» و «متوسط» به هر شاخص دامگستری، نسبت داده میشوند. تابع عضویت برای هر شاخص دام‌گستری طراحی میشود. در نهایت میزان ریسک دامگستری وبگاه محاسبه میشود و مقادیر «کاملاً قانونی»، «قانونی»، «مشکوک»، « دامگستری شده»، «حتماً دامگستری شده»، به آن نسبت داده میشوند.
روش پیشنهادی در(Aburrous et al., 2010b)، یک مدل هوشمند بر اساس الگوریتمهای دادهکاوی دستهبندی و انجمنی است. قواعد تولید شده از مدل دستهبندی تجمعی، نشان‌دهنده‌ی رابطه‌ی بین ویژگیهای مهمی مانند URL، شناسه دامنه، امنیت و معیارهای رمزنگاری در نرخ تشخیص دامگستری است. نتایج این تحقیق نشان میدهد که استفاده از روش دستهبندی تجمعی در مقایسه با الگوریتمهای سنتی دستهبندی عملکرد بهتری دارد. الگوریتم‌های تجمعی، مهمترین ویژگیها و مشخصههای وبگاههای دامگستری شده در بانکداری الکترونیکی و چگونگی ارتباط این مشخصهها با یکدیگر را شناسایی می‌کنند.
2-10- نتیجهگیریدر این فصل پس از مرور مفهوم بانکداری الکترونیکی، مزایا و چالشهای آن، زیرساختهای مورد نیاز و امنیت بانکداری الکترونیکی را بررسی کردیم. پس از آن به شرح مفهوم دامگستری و بخشی از مباحث مربوط به آن پرداختیم. همچنین روشهای قبلی ارائه شده برای تشخیص دامگستری را دستهبندی و مرور کردیم. استفاده از نظریهی فازی برای تشخیص دامگستری، تلاش میکند از مزایای روشهای قبلی بهره برده و ضمن افزایش دقت و صحت نتایج و از بین بردن افزونگیها، درصد بیشتری از وبگاههای دامگستری شده را تشخیص داده و از اینگونه حملات به نحو مطلوبتری جلوگیری به عمل آورد، به همین دلیل در فصل بعد به بررسی مفاهیم اصلی نظریهی مجموعههای فازی و نظریهی مجموعههای ژولیده خواهیم پرداخت.
فصل سوم- نظریهی مجموعههای فازی و مجموعههای ژولیده
سیستم فازی3-1- مقدمهمشخص کردن وبگاههای دامگستریشده کاری پیچیده و در عین حال پویا است که عوامل و معیارهای فراوانی در آن مؤثر هستند. همچنین به دلیل عدم قطعیت و ابهام موجود در این تشخیص، مدل منطق فازی میتواند ابزار کارآمدی در ارزیابی و شناسایی وبگاههای دامگستری شده باشد چراکه روشی طبیعی برای کار کردن با عوامل کیفی را در اختیار ما قرار میدهد.
در سامانه‌های عملی، اطلاعات مهم از دو منبع سرچشمه می‌گیرند: یکی افرادِ خبره که دانش و آگاهیشان را دربارهی سامانه با زبان طبیعی تعریف می‌کنند. منبع دیگر اندازه گیریها و مدل‌های ریاضی هستند که از قواعد فیزیکی مشتق شده‌اند. لذا مسئلهی مهم، ترکیبِ این دو نوع از اطلاعات در طراحی سامانه‌ها است. در انجام این امر سؤالی کلیدی وجود دارد و آن اینکه چگونه می‌توان دانش بشری را در چارچوبی مشابه مدل‌های ریاضی فرمولبندی کرد. به عبارتِ دیگر سؤال اساسی این است که چگونه می‌توان دانش بشری را به فرمولی ریاضی تبدیل کرد. اساساً آنچه سامانه‌های فازی انجام می‌دهد، همین تبدیل است.
نظریهی مجموعههای ژولیده نیز همچون فازی با مسائل شامل عدم قطعیت و ابهام سرو کار دارد. اصولاً مجموعهی ژولیده، تقریبی از مفهومی مبهم به کمک یک زوج مفهوم صریح به نام «تقریب بالا» و «تقریب پایین» است. امروزه این نظریه در هوش مصنوعی، سامانههای خبره، دادهکاوی، علوم شناختی، یادگیری ماشین، کشف دانش و تشخیص الگو کاربردهای فراوانی دارد. در این فصل ابتدا با بررسی نظریهی مجموعه‌های فازی به تعریف سامانهی فازی پرداخته و ویژگیها و مبانی ریاضی مورد نیاز در طراحی سامانهی فازی را بیان خواهیم کرد. سپس به طور اجمالی نظریهی مجموعههای ژولیده و ترکیب آن را با مجموعههای فازی را شرح خواهیم داد.
3-2- نظریه‌ی مجموعه‌های فازیمحققانی که با مواد فیزیکی سر و کار دارند باید توجه خود را به استانداردهای بسیار دقیق، روشن و حتمی معطوف کنند. متر به عنوان استانداردی برای اندازه گیری پذیرفته شده است اما در شرایطی ممکن است ریزترین تقسیم بندی به‌کار برود ولی درآزمایشگاه به معیاری بازهم کوچکتر نیاز باشد. به عبارت دیگر به‌طور حتم و یقین در همه‌ی معیار‌های اندازه‌گیری ، بدون توجه به دقت و شفافیت، امکان خطا وجود دارد. دومین پدیدهی محدود کنندهی حتمیت مورد انتظار، کاربرد زبان محاورهای برای توصیف و انتقال دانش و آگاهی است. همه‌ ما تجربه‌ی سوء تفاهمات ناشی از بکارگیری واژه‌ها در غیر معنی اصلی خود در زندگی عادی و روزمره‌ی خویش را داریم. درک ما از مفهوم واژه‌ها با شالوده‌های فرهنگی و ارتباطات شخصی ما گره خورده است. بدین لحاظ،‌ اگر چه ممکن است در اصل معنی واژه‌ها تفاهم داشته و قادر به ارتباط نسبی و قابل قبول در اغلب موارد با همدیگر باشیم، لیکن توافق کامل و بدون ابهام در بسیاری از مواقع بسیار مشکل و بعید به نظر می‌رسد. به عبارت دیگر، زبان طبیعی و محاوره ای غالباً دارای مشخصه‌ی ابهام و عدم شفافیت است ADDIN EN.CITE <EndNote><Cite><Author>Ross</Author><Year>2004</Year><RecNum>23</RecNum><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zp5v9zvzhsrr25et59bv5vso2pevxeda525z">23</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Timothy J. Ross</author></authors></contributors><titles><title>Fuzzy logic with engineering applications</title></titles><dates><year>2004</year></dates><publisher>John Wiley &amp; Sons,ltd</publisher><urls></urls></record></Cite></EndNote>(Ross, 2004).
عسگر لطفی زاده در سال 1965 نظریهی جدید مجموعههای فازی را که از نظریه‌ی احتمالات متمایز بود ابداع کرد ADDIN EN.CITE <EndNote><Cite><Author>Ross</Author><Year>2004</Year><RecNum>23</RecNum><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zp5v9zvzhsrr25et59bv5vso2pevxeda525z">23</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Timothy J. Ross</author></authors></contributors><titles><title>Fuzzy logic with engineering applications</title></titles><dates><year>2004</year></dates><publisher>John Wiley &amp; Sons,ltd</publisher><urls></urls></record></Cite></EndNote>(Ross, 2004). زاده علاقه‌ی فراوانی به حل مسائل سامانه‌های پیچیده به روش مدل سازی داشت. تجربه‌های گوناگون علمی و عملی او گویای این واقعیت بود که روش‌های معمول ریاضی قادر به این طریق از مدل‌سازی نبودند.
به‌رغم مجموعه‌های کلاسیک با مرز‌های قطعی مجموعه‌های فازی دارای مرز‌های قطعی و شفافی نیستند. عنصر یاد شده ممکن است در یک مجموعه دارای درجه‌ی عضویتی بیشتر و یا کمتر از عناصر دیگر باشد. هر مجموعه‌ی فازی با تابع عضویت خاص خود قابل تعریف است و هر عضو در داخل آن با درجه‌ی عضویتی بین صفر تا یک مشخص می‌شود. در ابتدا، نظریه‌ی پیشنهادی مجموعه‌های فازی مورد استقبال زیاد قرار نگرفت. لیکن در دهه 1970 چندین اثر مهم و پایه ای توسط این پژوهشگران منتشر شد که توجه بسیاری از محققان را به خود جلب کرد. به‌عنوان نمونه نظریه‌ی بسیار مهم کنترل فازی و سپس کاربرد موفقیت آمیز آن در صنعت در این برهه از زمان ارائه شد. امروزه علاوه بر کاربرد‌های مهندسی، در دنیای تجارت، سرمایه، اقتصاد، جامعه شناسی و سایر زمینه‌های علمی بویژه سامانه‌های تصمیم‌یار از از نظریه‌ی فازی استفاده‌های فراوان می‌شود. کاربرد نظریه‌ی فازی همچنین در سامانه‌های خبره، سامانه‌های پایگاه داده و بازیابی اطلاعات، تشخیص الگو و خوشه‌بندی، سامانه‌های روباتیک، پردازش تصویر و سیگنال‌ها، بازشناسی صحبت، تجزیه و تحلیل ریسک، پزشکی، روانشناسی، شیمی، اکولوژی و اقتصاد به وفور یافت می‌شود (فسنقری، 1385).
با دقت در زندگی روزمرّه خواهیم دید که ارزشگذاری گزاره‌ها در مغز انسان و نیز اکثر جملاتی را که در زبان گفتاری به‌کار می‌بریم ذاتاً فازی و مبهم هستند. از این‌رو به‌منظور شبیه سازی و به دست آوردن مدل ریاضی برای منطق زبانی، منطق فازی به ما اجازه می‌دهد به تابع عضویت مقداری بین صفر و یک را نسبت داده، ابهام را جایگزین قطعیت کنیم.
با دانستن اصول اولیه مربوط به منطق قطعی و مجموعه‌های قطعی، با تکیه بر اصول فازی، به تعریف منطق و مجموعه‌های فازی می‌پردازیم. به‌گونه ای که روابط و تعاریف مجموعه‌های فازی در حالت خاص باید همان روابط و تعاریف مجموعه‌های قطعی باشد.
اگر X مجموعهی مرجعی باشد که هر عضو آن را با x نمایش دهیم مجموعه فازی A در X به‌صورت زوج‌های مرتب زیر بیان می‌شود:
(3-1)
تابع عضویت و یا درجه‌ی عضویت است که مقدار عددی آن، میزان تعلق x به مجموعه‌ی فازی را نشان می‌دهد. برد این تابع، اعداد حقیقی غیر منفی است که در حالت معمولی به صورت فاصله‌ی بسته‌ی [1و0] در نظر گرفته می‌شود. بدیهی است در صورتی‌که برد این تابع تنها اعداد صفر و یک باشد همان مجموعهی قطعی را خواهیم داشت.
در تمامی کاربردهای فازی به تعریف تابع عضویت نیاز داریم. لذا در ذیل به چند نمونه از توابع عضویت معروف اشاره شده است PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (تشنه لب و همکاران، 1389):
الف) تابع عضویت زنگوله‌ای (گوسی): تابع عضویت زنگوله‌ای برای دو حالت پیوسته و گسسته در شکل (3-1) نشان داده شده و معادله‌ی مربوط به حالت پیوسته در رابطهی (3-2) تعریف شده است:
(3-2) μAxi=11=d(xi-c)2که در آن d پهنای زنگوله، عنصری از مجموعه‌ی مرجع و c مرکز محدوده‌ی عدد فازی است. برای حالت گسسته فرمول خاصی وجود ندارد و تنها پس از رسم نقاط مربوط به عدد فازی، شکلی مشابه با قسمت ب در شکل 3-1، به دست می‌آید.
الف) تابع عضویت زنگوله ای برای حالت پیوسته
ب) تابع عضویت زنگوله ای برای حالت گسسته

c
d
x

c
x
1
1

شکل 3-1 تابع عضویت زنگوله ایب) تابع عضویت مثلثی: تابع عضویت عدد مثلثی (شکل 3-2) با رابطهی زیر تعریف می‌شود:
(3-3) μAx=0 if c-x<b21-2c-xb if c-x>b2a
c
b
x

1

شکل 3-2 تابع عضویت مثلثیج) تابع عضویت ذوزنقه‌ای: تابع عضویت عدد ذوزنقه ای (شکل 3-3) با رابطهی زیر تعریف می‌شود:
(3-4) μAx=x-a1b1-a1 a1≤x≤b11 b1≤x≤b2 x-a2b2-a2 a1≤x≤b10 else

x
1

شکل 3-3 تابع عضویت ذوزنقه ایدر این قسمت عملیات اساسی بر روی چند مجموعه فازی را بیان میکنیم PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5


bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (تشنه لب و همکاران، 1389):
الف-مکمل: مکمل مجموعه‌ی فازی A مجموعه‌ی فازی است و تابع عضویت آن بدین شکل تعریف می‌شود.
(3-5) μAx=1-μA(x)ب- اجتماع: با فرض آنکه A و B دو مجموعه‌ی فازی در U باشند، اجتماع دو مجموعه‌ی فازی A و B به صورت ذیل تعریف می‌شود:
(3-6)
ج- اشتراک: با فرض آنکه A و B دو مجموعه‌ی فازی در U باشند، اشتراک دو مجموعه‌ی فازی A و B به صورت ذیل تعریف می‌شود:
(3-7)
به دلیل نوع اظهار نظری که خبرگان امنیت در هنگام جمع آوری اطلاعات مورد نیاز داشتند و به سبب سهولت در جمع آوری اطلاعات مورد نظر، محاسبات ریاضی به کار رفته در طراحی سامانهی خبره تشخیص دامگستری، با استفاده از اعداد ذوزنقه ای صورت گرفته است. لذا در ادامه به تشریح چگونگی عملیات محاسباتی اعداد ذوزنقهای پرداخته شده است (فسنقری، 1385؛ PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA تشنه لب و همکاران، 1389).
اگر A و B دو عدد فازی ذوزنقهای به شکل زیر باشند:
(3-8) A1=a11,b11,b21,a21 , A2=(a12,b12,b22,a22)آنگاه داریم:
الف- جمع اعداد فازی:
(3-9) A1+A2=(a11+a12,b11+b12,b21+b22,a21+a22)ب- ضرب عدد حقیقی در عدد ذوزنقه ای: حاصلضرب عدد ذوزنقه ای A در عدد حقیقی r نیز عددی ذوزنقه ای است.
(3-10) rA=(ra1,rb1,rb2,ra2) ج- تقسیم عدد ذوزنقه ای بر عددی حقیقی: این عملیات به صورت ضرب A در تعریف می‌شود، مشروط بر آنکه باشد.
(3-11) Ar=(a1r, b1r,b2r,a2r)3-3- سامانهی فازیسامانه، مجموعهای از اجزا است که برای رسیدن به هدف معیّنی گرد هم جمع آمده اند؛ به‌طوری‌که باگرفتن ورودی و انجام پردازش بر روی آن، خروجی مشخصی را تحویل می‌دهد (Wasson, 2006).
سامانه‌های فازی، سامانه‌هایی «دانش-بنیاد» یا «قاعده-بنیاد» هستند. قلب هر سامانهی فازی پایگاه قواعدِ آن است که از قواعد «اگر-آنگاه» فازی تشکیل شده استPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (تشنه لب و همکاران، 1389، ص113). قاعدهی اگر-آنگاه فازی، عبارتی متشکل از دو بخش «اگر» و «آنگاه» است که در آنها مقدار متغیر فازی با استفاده از توابعِ عضویت مشخص شده‌اند. به‌عنوان مثال می‌توان قاعده فازی ذیل را مطرح کرد:
« اگر سرعت خودرو بالا است، آنگاه نیروی کمتری به پدال گاز وارد کنید. »
که کلمات بالا و کم توسط توابعِ عضویت نشان داده شده در شکل 3-4، مشخص شده‌اند.
45
55
65
1
سرعت (متر/ثانیه)
تابعِ عضویت "بالا"
1
نیروی پدال
تابعِ عضویت "کم"
4
7
10
الف- تابعِ عضویت واژه بالا
الف- تابعِ عضویت واژه کم

شکل 3-4 تابع عضویت برای واژه "بالا" و "کم" در مثال اتومبیلحداکثر تعداد قواعد فازی در پایگاه قواعد فازی برای سامانهای که از دو ورودی تشکیل شده است و مقادیر آنها به‌صورت واژگان زبانی بیان می‌شود برابر m×n (حاصل‌ضرب تعداد واژگان زبانی ورودی) است که برای به دست آوردن l خروجیِ متفاوت (l<m×n) به‌عنوان نتیجه یا خروجی سامانه، مورد استفاده قرار می‌گیرند. قواعد این سامانه را می‌توان در جدولی مانند جدول 3-1، جمع آوری کرده و به عنوان پایگاه قواعد سامانه استفاده کرد. در این جدول فرض بر آن بوده است که در تعیین قواعد، متغیر اول یا A از n واژه‌ی زبانی و B نیز از m واژه‌ی زبانی تشکیل یافته اند.
مشابه شکل 3-5، با قرار دادن یک فازی‌ساز در ابتدای ورود متغیرها برای تبدیلشان به مجموعه‌های فازی و استفاده از وافازی‌ساز در انتهای خروجی سامانه برای تبدیل مجموعه‌های فازی به متغیر‌هایی با مقادیرِ حقیقی، می‌توان سامانهی فازی با فازی‌ساز و وافازی‌ساز را ایجاد کرد (Filev and Yager,1993).
جدول 3-1 پایگاه قواعد سامانه با دو متغیر ورودی ... ... ... ...
... ... ... ... ...
... ... ... ... ...

شکل 3-5 ساختار اصلی سامانهی فازی با فازی‌ساز و نافازی‌سازسامانهی خبرهی فازی برای تشخیص دامگستری، اطلاعات را در قالب عدد دریافت کرده و خروجی‌ای هم که به کاربران تحویل می‌دهد در قالب عدد است لذا از سامانهی فازی در شکل 3-5 پیروی می‌کند و دانش خبرگان را در قالب گزاره‌های فازی مورد استفاده قرار می‌دهد.3-4- نظریهی مجموعههای ژولیدهدر سال 1982 نظریهی مجموعههای ژولیده توسط پاولاک به عنوان تعمیمی از نظریهی مجموعهها برای مطالعهی سامانههای هوشمند با اطلاعات ناکافی و نادقیق ارائه گردید. این نظریه، مشترکات زیادی با نظریهی گواه و نظریهی مجموعههای فازی دارد. در سالهای اخیر روشهای زیادی برای درک و بهکارگیری دانش ناکامل ارائه شده است. یکی از موفقترین این روشها، نظریهی مجموعههای فازی است. نظریهی مجموعههای ژولیده، رویکرد ریاضی دیگری برای حل این مسئله است و همچون فازی با مسائل شامل عدم قطعیت و ابهام سر و کار دارد. نظریهی مجموعههای فازی و مجموعههای ژولیده نه رقیب که مکمل یکدیگر هستند (Dubois and P--e, 1992; Pawlak, 1995).
مجموعهی ژولیده، تقریبی از یک مفهوم مبهم به کمک یک زوج مفهوم صریح به نام «تقریب بالا» و «تقریب پایین» است. هر زیرمجموعهی دلخواه از مجموعهی مرجع، بین تقریبهای پایین و بالای خود قرار میگیرد، به این معنی که هر عنصر در تقریب پایین، لزوماً عضوی از مجموعه خواهد بود، ولی عناصر تقریب بالا، ممکن است عضو مجموعه نباشند. نظریهی مجموعههای ژولیده برای حذف ویژگیهای دارای افزونگی از مجموعههای دادهای با مقادیر گسسته، به کار میرود (Jensen and Shen, 2004).
مفاهیم اصلی در نظریهی مجموعههای ژولیده عبارتند از (Wang and Zhou, 2009):
الف- سامانهی اطلاعاتی/ تصمیم: سامانهی اطلاعاتیِ مجموعه، به صورت چهارتایی S=<U,A=C∪D,Vaa∈At,faa∈At) تعریف میشود که در آن U مجموعهی غیرتهی از موضوعات، A مجموعه غیرتهی از ویژگیها است که شامل دو زیرمجموعه C مجموعه ویژگیهای شرایط و D مجموعه ویژگیهای تصمیم میباشد، Va مجموعه غیرتهی از مقادیر برای هر ویژگی و fa:U→2va یک تابع اطلاعات برای ویژگی a∈A میباشد. سامانهی اطلاعاتی ابزار مناسبی برای نمایش موضوعات برحسب مقادیرشان است.
ب- عدم تمایز: نسبت به یک ویژگی دلخواه a∈A یک رابطه Ra به صورت زیر داده شده است:
(3-12) ∀x,y∈UxRay ⇔fax=fa(y)یعنی دو موضوع از دید ویژگی a نامتمایز نامیده میشوند، اگر و تنها اگر دقیقاً مقادیر مشابهی داشته باشند. Ra یک رابطه همارزی است که خواص بازتابی، تقارن و تعدی آن بلافاصله از تعریف نتیجه میشود. برای یک زیرمجموعه از ویژگیها مانند P⊆A این تعریف را میتوان تعمیم داد:
(3-13) ∀x,y∈UxRPy ⇔∀a∈Pfax=fa(y)برای عنصر x∈U کلاس همارزی توسط رابطه INDP=yxRPy تعریف میشود. افراز مجموعه مرجع U که توسط رابطه RP تولید میشود را با U/Pنمایش میدهیم.
ج- تقریبهای پایین و بالا و نواحی مثبت، منفی و مرزی: برای هر زیرمجموعه X⊆U، تقریبهای پایین و بالا به صورت زیر ساخته میشود:
(3-14) PX=x[x]P⊆XPX=x[x]P∩X≠∅فرض کنید P و Q روابط همارزی روی U باشند، نواحی مثبت، منفی و مرزی به ترتیب به صورت زیر تعریف میشوند:
(3-15) POSPQ=X∈U/QPX, NEGPQ=U-X∈U/QPX,BND=X∈U/QPX-X∈U/QPX.ناحیه مثبت شامل تمام موضوعاتی از Uاست که با استفاده از دانش موجود در ویژگیهای P میتوانند در کلاسهای U/Q طبقهبندی شوند. ناحیه مرزی شامل تمام موضوعاتی است که با احتمال و نه با قطعیت قابل طبقهبندی هستند و ناحیه منفی مجموعهای از ویژگیها است که نمیتوانند در کلاسهای U/Q طبقهبندی شوند. شکل 3-6 نمایشی از این نواحی را برای مجموعه Xنمایش میدهد.

شکل 3-6 نواحی مثبت، منفی، مرزی و تقریبهای مجموعه3-5- انتخاب ویژگیاغلب ویژگیهای زیادی در یک پایگاهداده وجود دارد. طبعاً انتظار میرود هرچه ویژگیهای بیشتری در نظر گرفته میشوند، اطلاعات کاملتری برای دستهبندی داشته باشیم. اما اگر همزمان با افزودن هر ویژگی، حجم مجموعه دادهی آموزشی زیاد نشود، این برداشت صحیح نخواهد بود. به این وضعیت اصطلاحاً «دردسر ابعادی» گفته میشود. در مجموعههای دادهای با ابعاد بالا، بیشتر ممکن است حالتی پیش بیاید که در آن دادهکاوی الگوهای نادرستی را پیدا کند که عمومیت ندارند (Jensen, 2005).
مدیریت دانش، عنصر کلیدی در استخراج ارزش است. فرایند کشف دانش به ویژه کشف دانش در یک پایگاهداده، موضوع مهمی است. این فرایند از مراحل زیر تشکیل شده است (Düntsch, 2000):

user8341

***فهرست اشکال*** TOC h z t "شکل;1"
شکل 1-1- مراحل زنجیره‌ی پروتون – پروتون که در خورشید اتفاق می‌افتد PAGEREF _Toc421519544 h 6شکل 1-2- انرژی پتانسیل بر حسب فاصله‏ی دو هسته‏ی باردار که با انرژی مرکز جرم به هم نزدیک می‏شوند. PAGEREF _Toc421519545 h 10شکل 1-3- نمایی از کپسول هدف PAGEREF _Toc421519546 h 12شکل 1-4- مراحل همجوشی به روش محصورسازی لختی PAGEREF _Toc421519547 h 13شکل1-5- راکتور آینه ای PAGEREF _Toc421519548 h 16شکل 1-6- نمایی از دستگاه چنبرهای پلاسما PAGEREF _Toc421519550 h 17شکل 1-7- راکتور توکاماک ایتر PAGEREF _Toc421519551 h 19شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی PAGEREF _Toc421519552 h 19شکل1-9- شماتیک هندسی راکتور استلاتور PAGEREF _Toc421519553 h 21شکل2-1- واکنش پذیری انواع سوخت‌ها PAGEREF _Toc421519554 h 26شکل2-2- روش‌های گرم کردن پلاسما PAGEREF _Toc421519555 h 36شکل23: مدارهای لارمور در یک میدان مغناطیسی PAGEREF _Toc421519556 h 44شکل 2-4: نمایش میدان مغناطیسی توروئیدی و پولوئیدی و تبدیل چرخشی PAGEREF _Toc421519557 h 44شکل 2-5: سوق‌گیری ذره، در میدان‌های الکتریکی و مغناطیسی متعامد PAGEREF _Toc421519558 h 45شکل 2-6: حرکت مارپیچی الکترون‏ها و یون‏ها در امتداد خطوط مغناطیسی PAGEREF _Toc421519559 h 46شکل2-7- آهنگ واکنش به صورت تابعی از دما برای واکنش‌های مختلف همجوشی با توزیع سرعت ماکسولی PAGEREF _Toc421519560 h 50شکل2-8- معیار لاوسون nτE برحسب دما T(keV) برای پلاسمای D-3He و D-T با فرض محصورسازی کامل ذرات باردار محصولات عمل PAGEREF _Toc421519561 h 59شکل4-1- مقایسه تغییرات پارامتر واکنشپذیری برای واکنش همجوشی D-T و D-3He براساس روش باکی PAGEREF _Toc421519562 h 83شکل 4-2- چگالی پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519563 h 86شکل 4-3- دمای پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519564 h 88شکل 4-4- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519565 h 89شکل 4-5- پارامتر β پلاسمای دوتریوم و هلیوم 3 برحسب زمان در حالت ناپایدار برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519566 h 90شکل 4-6- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519567 h 91شکل 4-7- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایداربر حسب زمان بدون ناخالصی و با ناخالصی PAGEREF _Toc421519568 h 92شکل 4-8- توان اهمی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519570 h 93شکل 4-9- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی PAGEREF _Toc421519571 h 94شکل4-10- چگالی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519572 h 95شکل 4-11- دمای پلاسمای دوتریوم و هلیوم3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519574 h 95شکل 4-12- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519575 h 96شکل 4-13-پارامتر پلاسمای دوتریوم و هلیوم 3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519576 h 97شکل 4-14- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519577 h 97شکل 4-15- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت پایداربر حسب زمان بدون ناخالصی و با ناخالصی PAGEREF _Toc421519578 h 98شکل 4-16- توان اهمی پلاسمای دوتریوم هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519579 h 99شکل 4-17- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی PAGEREF _Toc421519580 h 99

لیست علائم اختصاری
D-T Deuterium-tritiumD-3He Deuterium-Helium3
D-D Deuterium- Deuterium
T-T Tritium- tritium
ICF Inertial confinement fusion
H1ProtiumH2DeuteriumH3TritiumRWMResistive-Wall ModeRFPReversed field pinch NTMNeoclassical Tearing-ModeMHDMagnetohydrodynamicTFToroidal Fieldمقدمه
مقدمهیکی از مهمترین اهداف بشر در جهتگیری زمینههای تحقیقاتی و پژوهشی، دستیابی به منابع جدید انرژی می‌باشد. در این راستا بشر تلاش کرده است تا با ساخت رآکتورهای هستهای، به منبعی از انرژی دست یابد که بتواند مدت زمان بیشتری از آن، نسبت به سوخت‌های فسیلی استفاده کند. بطور کلی دو شیوه بنیادی، برای آزادسازی انرژی از یک اتم وجود دارد: شکافت هستهای و همجوشی هسته‌ای.
مزیت همجوشی هسته‌ای نسبت به شکافت هسته‌ای، فراوانی بسیار زیاد منابع سوختی آن (سوخت اصلی راکتورهای همجوشی دوتریوم می‌باشد که در آب دریاها به وفور وجود دارد. تولید انرژی بالاتر نسبت به روش شکافت هسته‌ای به ازای هر نوکلئون از ماده سوخت (به عنوان مثالی از انرژی تولیدی در یک راکتور همجوشی می‌توان گفت اگر یک گالن از آب دریا را که دارای مقدار کافی دوترون است در واکنش همجوشی استفاده کنیم معادل ۳۰۰ گالن گازوئیل، انرژی بدون آلودگی تولید می‌کند) ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]، عدم وجود معضل پسماندهای هسته‌ای با طول عمر طولانی در روش همجوشی و در نهایت ایمن‌تر بودن راکتورهای همجوشی در هنگام وقوع حوادث احتمالی است که سبب برتری آن بر شکافت هستهای گردیده است. سوخت‌های متنوعی در فرایند همجوشی هستهای قابل بکارگیری می‌باشد. از آن جمله دوتریوم-تریتیوم(D-T) ، دوتریوم-هلیوم 3 (D-3He)، دوتریوم-دوتریوم (D-D) و تریتیوم-تریتیوم (T-T) می‌باشد. بیشتر تحقیقات انجام شده در فرایندهای همجوشی بر روی سوخت D-T انجام شده است و علت عمده آن نیز بالا بودن سطح مقطع واکنش پذیری این سوخت نسبت به سایر سوخت‌ها در بازه‌ی دمایی عملکردی راکتورها می‌باشد. این سوخت در کنار مزیت ذکر شده و سایر مزیت ها محدودیتهایی نیز دارد، نظیر پرتوزایی زیاد و گران بودن سوخت تریتیوم که جزو مواد اولیه این واکنش‌ها است. از طرفی دیگر واکنش همجوشی D-3He از میان سایر سوخت‌ها، به دلیل بازدهی بالاتر، تبدیل مستقیم انرژی و کاهش خطرات ناشی از تابش، هزینه تعمیر و نگهداری پایینتر و... مورد توجه قرار گرفت ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2-4]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite><Cite><Author>Kulcinski</Author><Year>1992</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060514">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kulcinski, G. L.; et al.;</author></authors></contributors><titles><secondary-title>Fusion Technology</secondary-title></titles><periodical><full-title>Fusion Technology</full-title></periodical><volume>21</volume><number>1779</number><dates><year>1992</year></dates><urls></urls></record></Cite><Cite><Author>Santarius</Author><Year>2003</Year><RecNum>4</RecNum><record><rec-number>4</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060578">4</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title> Fusion Science and technology</secondary-title></titles><volume>44</volume><number>289</number><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[2-4]. که این فرایند در راکتورهای متفاوت با شرایط مختلفی قابل انجام است.
لذا با این مقدمه از فرایند همجوشی هستهای، در فصل اول به بیان روشهای مختلف همجوشی هستهای و سوخت‌های قابل استفاده می‌پردازیم. در فصل دوم سینتیک فرایند همجوشی دوتریوم و هلیوم 3 و پارامترهای موثر بر همجوشی تشریح شده و به بررسی پارامترهای موثر بر همجوشی پلاسمای دوتریوم و هلیوم 3 به روش محصورسازی مغناطیسی پرداخته و فرایند با پارامتر مورد نظر شبیه سازی میگردد. در فصل چهار برخی از روشهای کنترل ناپایداری در راکتور بیان شده و در ادامه نتایج حاصل از شبیه سازی به کمک پارامترهای ترمودینامیکی مربوط به سوخت دوتریوم و هلیوم 3 با نتایج بدست آمده در سایر مطالعات مقایسه می‌شود.
فصل اول
همجوشی هستهای
فصل اول-همجوشی هسته‌ایواکنش‌های هسته‌ای تبدیلات خودبخودی یا مصنوعی بعضی از هسته‌ها به هسته دیگر که سبب تغییر ساختار هسته یا تغییر تعداد نوکلئونها (ذرات هسته‌ای) می‌گردد، واکنش‌های هسته‌ای نام دارند. همجوشی هسته‌ای و شکافت هسته‌ای، دو روش اصلی انجام واکنش‌های هسته‌ای می‌باشد.
شکافت هسته‌ایدر واکنش شکافت، هسته‌ی سنگین یک عنصر رادیو اکتیو مانند اورانیوم یا پلوتونیوم به دو یا چند هسته با جرم متوسط تجزیه می‌شود. به طور مثال اورانیوم 235 مورد اصابت یک نوترون قرار می‌گیرد و هسته فوق‌العاده ناپایداری تشکیل می‌شود که تقریبا بلافاصله می‌شکافد و کریپتون و باریم و مقدار زیادی انرژی تولید می‌شود. که ناشی از تبدیل جرم ناپدید شده (با مقایسه میان جرم سوخت‌های اولیه و محصولات واکنش) به انرژی است. این انرژی حدود 5 دهه است که مورد استفاده قرار گرفته است اینک این نیرو همان اندازه از برق جهان را تامین می‌کند که 40 سال پیش بوسیله تمام منابع انرژی تأمین می‌شد شکافت هسته‌ای مزایای بسیاری نسبت به سوخت‌های فسیلی دارد اما مسئله‌ی پسماندهای آن که حاوی مواد پرتوزا با طول عمر طولانی هستند از جمله مهم‌ترین مسائل خاص در مورد استفاده از شکافت هسته‌ای می‌باشد. از سوی دیگر ذخایر اورانیوم جهان برای استفاده در راکتورهای شکافت تنها در یک سده کفایت می‌کنند.
موادی که انجام یک واکنش شکافت هسته‌ای را ممکن می‌سازند عبارتند از: 239Pu ، 235U ، 238U ، و ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هسته‌ای با تاباندن نوترون به 233Th بوجود می‌آید.
در اثر برخورد نوترون حرارتی به ایزوتوپ235U ، هسته اتم به 235U تحریک شده تبدیل می‌شود. اورانیوم تحریک شده بعد از شکافت، به باریم و کریپتون و سه نوترون تبدیل می‌گردد ADDIN EN.CITE <EndNote><Cite><Author>Krane</Author><Year>1996</Year><RecNum>5</RecNum><DisplayText>[5]</DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060620">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Krane, K.S.; </author></authors></contributors><titles><secondary-title>Modern Physics. published by Wiley</secondary-title></titles><periodical><full-title>Modern Physics. published by Wiley</full-title></periodical><dates><year>1996</year></dates><urls></urls></record></Cite></EndNote>[5].
1n + 235U → 236U → 144Ba+89Kr + 3 1n
اما مسئله مهمتر اینکه هر نوترون‌ آزاد شده بر اثر شکافتن هسته 235U می‌تواند دو هسته دیگر را شکافته و چهار نوترون را بوجود آورد. شکافت هسته‌ای و آزاد شدن نوترون‌ها بصورت زنجیروار به سرعت تکثیر و توسعه می‌یابد. در هر دوره تعداد نوترون‌ها دو برابر می‌شود. در واکنش‌های کنترل شده تعداد شکافت در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگه‌داشته می‌شود. برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع، لازم است که موادی قابل دسترس باشند که بتوانند نوترون‌های اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست. زمانی که هسته اتمی 235U به دو قسمت شکافته می‌شود تولید عناصر استرتیوم 90، کریپتون 91، ایتریوم 91، زیرکونیوم 95، 126I ، 137U ، باریم 142، سریم 144 امکان پذیر هستند.
همجوشی هسته‌ایواکنش‌های همجوشی هسته‌ای از نوع واکنش‌هایی است که در خورشید و ستارگان صورت می‌گیرد. این واکنش عبارت است از ترکیب (برخورد) هستههای چهار اتم هیدروژن معمولی (شکل 1-1) که ضمن آزاد سازی مقدار زیادی انرژی ناشی از تبدیل جرم به انرژی است (E=mc2)، یک هسته‌ی هلیوم در دماهای بسیار بالای مرکز خورشید و ستارگان تولید می‌گردد ADDIN EN.CITE <EndNote><Cite><Author>Wilhelemsson</Author><Year>2004</Year><RecNum>6</RecNum><DisplayText>[6]</DisplayText><record><rec-number>6</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060659">6</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wilhelemsson, H.;</author></authors></contributors><titles><title>Fusion and the cosmos</title><secondary-title>Condensed Matter Physics</secondary-title></titles><periodical><full-title>Condensed Matter Physics</full-title></periodical><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[6].
در کره‌ی زمین، این انرژی را می‌توان به سه روش محصور سازی مغناطیسی، محصورسازی اینرسی یا لختی و محصور سازی از طریق کاتالیزور میون، تولید کرد؛ که البته همه در مرحله‌ی آزمایش قرار دارند. همجوشی هسته‌ای به دلیل پرتوزایی کمتر و ایمنی بیشتر و فراوانی بیشتر سوخت اولیه برای انجام واکنش‌ها نسبت یه شکافت مورد توجه بیشتری قرار گرفته است. برای تولید انرژی در مقیاس بزرگ، به تعداد زیادی از واکنش‌هایی که با هم رخ دهند، نیاز است. دافعه‏ی کولنی، مانع رخ دادن همجوشی هسته‏ای می‏گردد. برای غلبه بر این دافعه، به دما و چگالی بالایی مورد نیاز است. در نتیجه سوخت باید در حالت پلاسما باشد.در دمای به قدر کافی بالا، سرعت‏های حرارتی ذرات خیلی زیاد خواهند شد. در این صورت، ذرات این فرصت را خواهند داشت که به اندازه‏ی کافی به هم نزدیک شده، بر دافعه‏ی کولنی چیره شوند وتوانایی پیوند داشته باشند. در طی این فرایند انرژی بسیار زیادی آزاد میگردد.
اگر چگالی پلاسما بیشتر از ١٠20 یون در هر سانتی‌متر مکعب باشد، آن گاه زمان محصورسازی می‌تواند کوتاهتر باشد. اگر پلاسما خیلی فشرده شود، زمان محصورسازی، بی نهایت کوتاه و انرژی آزاد شده، فوقالعاده شدید است. در این صورت با یک بمب سر و کار خواهیم داشت نه یک راکتور کنترل شده. بههمین دلیل، با وجود آن که وظیفه محصورسازی مشکل میگردد، چگالی پلاسما در حداقل نگه داشته می‌شود.
بطور عملی هنوز محفظهای وجود ندارد که بتواند پلاسما با دمایی در حدود چند صد میلیون درجه را محصور سازد. حتی محفظههایی که از فلزات مقاوم در دماهای بالا ساخته شده باشند، تنها در دماهای پایینتر از چند هزار درجه قابل استفاده خواهند بود. ستارگانی نظیر خورشید کره عظیم پلاسمای خود را از طریق جاذبه حفظ میکنند. پلاسما از ذرات باردار تشکیل یافته است. این ذرات نمی توانند خطوط میدان مغناطیسی را قطع کنند، اما حول این خطوط میچرخند. این نکته، خلاصهای از مبنای فکری طرح محصورسازی پلاسما توسط خطوط میدان مغناطیسی را تشکیل داده است.
در یک تعریف کلی فرایند جلوگیری از برخورد پلاسما با دیواره‌های مخزنی که در آن جای دارد، محصورسازی نامیده می‌شود و همچنین زمان تقریبی برای اینکه یون‌ها توسط میدان احاطه کننده به دام افتاده باقی بمانند، زمان محصورسازی نامیده می‌شود.

شکل 1-1- مراحل زنجیره‌ی پروتون – پروتون که در خورشید اتفاق می‌افتد ADDIN EN.CITE <EndNote><Cite><Author>McCollam</Author><Year>2013</Year><RecNum>7</RecNum><DisplayText>[7]</DisplayText><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061554">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>McCollam, K.; </author></authors></contributors><titles><title>Magnetic confinement in plasma physics</title><secondary-title>UW–Madison Physics Dept.</secondary-title></titles><periodical><full-title>UW–Madison Physics Dept.</full-title></periodical><dates><year>2013</year></dates><urls></urls></record></Cite></EndNote>[7]
انتخاب سوخت مناسبباتوجه به فرآیندهای طبیعی و نتایج حاصل از آنها، مشخص شده است که واکنشهای همجوشی بسیاری وجود دارد. متغیرها برای واکنشهای مختلف، هستههای سوخت درگیر، محصولهای واکنش که خارج می شوند، مقدار واکنش و بستگی احتمال انجام واکنش به خواص جنبشی واکنش دهندهها، می باشند.
برهم کنش ایزوتوپهای هیدروژنی (دوتریم وهلیوم 3) یکی از واکنش‌های مورد توجه در فرآیند همجوشی میباشد. به دلیل این‌که ایزوتوپ های هیدروژن فقط یک بار الکتریکی دارند و انرژی حرارتی کمتری برای نزدیک شدن به یکدیگر نیاز دارند، به عبارت دیگر در دماهای پایین همجوشی ایزوتوپهای هیدروژن اتفاق میافتد. به علت عدد اتمی واحد ایزوتوپها، این برهم کنش هیدروژنی دارای قابلیت نفوذ بسیار بالایی در سد کولنی میباشد. برای تعیین سوخت‌های همجوشی مناسب، باید در دسترس بودن سوخت مورد نظر، شرایط نگهداری و سطح مقطع واکنش مورد نظر را در نظر گرفت. برخی از واکنش‌های گوناگون همجوشی، شامل واکنش‌های ذکر شده در جدول(1-1) می‌باشد. در بیشتر واکنش‏های همجوشی، دو هسته‏ سبک با هم ترکیب و به هسته‏‏ سنگین‏تر تبدیل می‏شوند که رابطه‏ واکنش هسته‏ای آن‏ها به صورت زیر است:

جدول1-1- برخی از واکنش‌های همجوشی ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]
سوخت واکنش همجوشی شکل اختصاری بهره انرژی بر حسب ژول
DT D+T→42He+10n T(d,n)4He 2.8×10-12
DDn D+D→32He+10n D(d,n)3He 5.24×10-13
TT T+T→42He+10n+10n T(t,2n)4He 1.81×10-12
DDp D+D→T+P D(d,P)T 6.46×10-13
D-3He D+32He→42He+P 3He(d,P)4He 2.93×10-12
P_6Li P+63Li→42He+32He 6Li(p,x)3He 6.44×10-13
P_11B P+115B→3(42He) 11B(p,2x)4He 1.39×10-12
واکنش D-T دارای بیشترین سطح مقطع میباشد، مقدار بیشینه سطح مقطع آن 5 بارن برآورد شده است ADDIN EN.CITE <EndNote><Cite><Author>al.</Author><Year>2002</Year><RecNum>111</RecNum><DisplayText>[8]</DisplayText><record><rec-number>111</rec-number><foreign-keys><key app="EN" db-id="tx9da0v069srt5eteeoxtwa7fvfdz5wd09zx" timestamp="0">111</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>HarmsA. et al.</author></authors></contributors><titles><title>Principles of Fusion Energy</title><secondary-title>World Scientific Publishing Co. pte. 1td.</secondary-title></titles><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[8].
(1-1)
واکنش همجوشی قابل دسترس دیگر، در برگیرندهی هستهی دوتریم به عنوان سوخت است:
(1-2)
این نمایش نشان میدهد که واکنش D+Dاز طریق دو کانال واکنش متمایز، همجوشی میکند که تقریبا با احتمالهای برابر صورت میگیرد. سطح مقطع برای هریک از آنها حدود 100 مرتبه کوچکتر از واکنشD-T است از این دو واکنش در مییابیم که خواص واکنش D-T مطلوبتر از خواص واکنش D-D است ADDIN EN.CITE <EndNote><Cite><Author>Biberian</Author><Year>2009</Year><RecNum>9</RecNum><DisplayText>[9]</DisplayText><record><rec-number>9</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061676">9</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Biberian, J.P.;</author></authors></contributors><titles><title>Experiments and Methods in Cold Fusion</title><secondary-title> Journal of Condensed Matter Nuclear Science</secondary-title></titles><volume>2</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[9].
همچنین ممکن است دوتریم، با محصولهای واکنش تریتیوم و هلیوم-3 همجوشی کند که افزون بر معادله‌ی (1-1)، داریم:
(1-3)
واکنش همجوشی یاد شده، در برگیرندهی دوتریم و همچنین هستههای سبک دارای جرم بیشتری هستند. از مزایای این واکنش نسبت به D-D میتوان به سوختی رادیواکتیو نبودن و یک واکنش نوترونیک بودن اشاره کرد. به عبارت دیگر در مسیر واکنش همجوشی هیچ نوترونی تابش نمیکند، در نتیجه تابش نوترون به طور چشمگیری کاهش مییابد که میتواند به معنای یک محافظ خیلی ارزان برای راکتور استفاده شود؛ زیرا تابشهای نوترونی باعث تخریب دیواره راکتور میشوند ADDIN EN.CITE <EndNote><Cite><Author>Brereton</Author><Year>1988</Year><RecNum>10</RecNum><DisplayText>[10]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061736">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Brereton, S. J.; Kazimi, M. S.;</author></authors></contributors><titles><secondary-title> Fusion Engineering and design</secondary-title></titles><volume>30</volume><number>207</number><dates><year>1988</year></dates><urls></urls></record></Cite></EndNote>[10]. قلهی آهنگ واکنش برابر با58 است. اما تولید هلیوم -3 بسیار سخت است، در حال حاضر میتوان آن را محصولی از راکتورهای شکافت دانست، زیرا تریتیوم تولید شده در راکتورهای شکافت به طور طبیعی بعد از مدتی به هلیوم 3 واپاشی میکند.
اگر این شکل ادامه یابد، برای واکنش هستهای ، تعداد زیادی کانالهای واکنش مشخص شده است:
(1-4)
واکنشهای هستهای که درگیر هستههای سبک، مانند پروتون، میباشند ممکن است مطابق فرآیندهای زیر روی دهد ADDIN EN.CITE <EndNote><Cite><Author>Atzeni</Author><Year>2004</Year><RecNum>11</RecNum><DisplayText>[11]</DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061786">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Atzeni, S.;</author></authors></contributors><titles><title>The Physics of Inertial Fusion</title><secondary-title> Rome: Clarendon PRESS</secondary-title></titles><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[11]:
(1-5 الف) (1-5 ب)
(1-5 ج)
و همچنین دیگر واکنشهای مبتنی بر و ، عبارتند از:
(1-6)
(1-7)
(1-8)
نمایش فیزیکی واکنشهای همجوشی، تنها بررسیهای لازم برای تعیین و گزینش آن، به عنوان سوخت راکتور همجوشی نیست بلکه بررسیهای دیگری در برگیرندهی قابل دسترس بودن سوختهای همجوشی، سختی در نگهداری و دانسیتهی میزان واکنش کافی، نیز لازم میباشد.
تاکید بر دیگر نکات واکنشهای همجوشی یاد شده، ضروری است. در هر حالت، کسرهای مختلف از مقدار واکنش، در شکل انرژی جنبشی ذرات باردار و نوترونهای خنثی باقی میماند، در نتیجه ایدهی یک راکتور همجوشی پایه گذاری شده با بازده بالا؛ تبدیل مستقیم انرژی ذرات باردار، به ویژه برای واکنشهایی که کسر بزرگتری از مقدار آنها در شکل انرژی جنبشی باردار باقی میماند، مناسب به نظر میرسد. این نکته به طور ویژهای مورد توجه است؛ چرا که نوترونهایی که به عنوان محصول واکنش همجوشی پدیدار میشوند، به گونهی تغییر ناپذیری به محصولات رادیو اکتیو در مواد مهارکننده قلب همجوشی کمک میکنند.
کمیتی مهم در ارتباط با واکنش‌های هسته‌ای، سطح مقطع واکنش است که به صورت احتمال برهم‌کنش هر جفت از ذرات، تعریف می‌شود. برای وقوع واکنش همجوشی، دو هسته‏ی باردار مثبت باید با غلبه بر نیروی دافعه‏ی کولنی، با هم برخورد کنند. تابع پتانسیل دافعه‏ی کولنی به صورت زیر است:

که Z1 , Z2، عدد اتمی هسته‌های برهم‌کنش کننده می‌باشد.
نیروی دافعه‏ی کولنی در فاصله‏ بیشتر از مجموع شعاع دو هسته برقرار است. شعاع دو هسته از رابطه‏ زیر بدست می‏آید:

که A1,A2 اعداد جرمیِ هسته‌های برهم‌کنش‏ کننده هستند.
شکل1-2 نشاندهنده انرژی پتانسیل برحسب فاصله‏ دو هسته‏ باردار می‌باشد که با انرژی مرکز جرم به هم نزدیک می‏شوند و نشان‏دهنده‏ چاه هسته‏ای، سد کولنی و نقطه‏ی بازگشتی کلاسیکی است.

شکل 1-2- انرژی پتانسیل بر حسب فاصله‏ی دو هسته‏ی باردار که با انرژی مرکز جرم به هم نزدیک می‏شوند ADDIN EN.CITE <EndNote><Cite><Author>Atzeni</Author><Year>2004</Year><RecNum>11</RecNum><DisplayText>[11]</DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061786">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Atzeni, S.;</author></authors></contributors><titles><title>The Physics of Inertial Fusion</title><secondary-title> Rome: Clarendon PRESS</secondary-title></titles><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[11].در فاصله‏ی r <rn، دو هسته تحت تأثیر نیروی جاذبه‏ی هسته‏ای قرار می‏گیرند که با چاه پتانسیل به عمق، مشخص می‌شود. با استفاده از معادلات می‏توان ارتفاع سد پتانسیل را پیدا کرد:

بر طبق مکانیک کلاسیک، فقط هسته‌هایی با انرژی بیشتر از این مقدار می‏توانند بر سد کولنی غلبه کرده و با هم برخورد کنند و هسته‌هایی با انرژی نسبی () کمتر از، می‏‏توانند تا نقطه‏ی بازگشت کلاسیکی به هم نزدیک شوند. ولی در مکانیک کوانتومی، واکنش همجوشی بین دو هسته با انرژی کمتر از سد کولنی، نیز ممکن است؛ چون تونل‏زنی از سد کولنی مجاز است. پارامترهای دخیل در برهم‌کنش بین پرتابه و هدف، سطح مقطع واکنش و واکنش‏پذیری هستند.
ایده‌های راکتور همجوشیانواع روشهای محصورسازی مورد استفاده در راکتورهای همجوشی هسته‌ای، همجوشی از طریق محصورسازی اینرسی، همجوشی از طریق کاتالیزور میون و محصورسازی از طریق محبوس کردن مغناطیسی می‏باشند که هدف هر سه روش، برآورده ساختن معیار لاوسون می‌باشد. محصورسازی لختی، فرایند نگهداری پلاسما را در چگالی‏های بالا و در زمان کوتاه انجام می‏دهد و محصورسازی مغناطیسی، پلاسما را در چگالی‏های پایین، در زمان نسبتاً طولانی محصور می‏سازد و روش کاتالیز میون در دماهای معمولی رخ می‌دهد ADDIN EN.CITE <EndNote><Cite><Author>Jones</Author><Year>1986</Year><RecNum>16</RecNum><DisplayText>[12]</DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062363">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jones, S.E.;</author></authors></contributors><titles><title> Muon-Catalysed Fusion Revisited</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>127-133</pages><volume>321</volume><number>6066</number><dates><year>1986</year></dates><urls></urls></record></Cite></EndNote>[12].
1-5-1- همجوشی هستهای کنترل شده توسط لختی(ICF)زمان محصورسازی در محصورسازی لختی خیلی کوتاه است. در نتیجه برای داشتن نرخ واکنش همجوشی بیشتر، نیازمند چگالی بالای پلاسما هستیم. در این روش، سوخت با استفاده از نیروهای قوی بیرونی، باید تا 1000 برابر چگال‌تر از حالت جامد فشرده شود.
کپسول با استفاده از پرتوهای محرک که از اطراف سطح خارجی آن تابیده می‌شود، متراکم می‌گردد. در محصورسازی به روش لختی، از روش‌های مختلفی برای تراکم کپسول استفاده می‌شود. در هر کدام از این روش‌ها سعی بر آن است که نسبت انرژی خروجی به انرژی ورودی را بالا ببرند. نوع پرتوهای محرک که برای تراکم کپسول استفاده می‌شود، عامل اصلی بالا و پایین بردن بهره انرژی در ICF می‌باشد. از پرتوهای لیزرهای پر توان پالسی، باریکه‌هایی از ذرات باردار نظیر یون‌های سنگین، یون‌های سبک و باریکه‌های الکترونی برای متراکم نمودن کپسول‌ها می‌توان استفاده کرد. این پرتوهای محرک که بصورت پالس‌هایی با توانW‌ 1014 تهیه می‌شود، دارای بهره انتقال انرژی متفاوتی به کپسول هستند. پرتوهای لیزری و باریکه‌های یون سنگین نسبت به سایر پرتوهای محرک به علت بهره بالاتر جذب انرژی در کپسول‌ها مورد توجه بیشتری قرار گرفتند. در طراحی کپسول‌های سوخت هر دو روش پرتوهای محرک لیزری و باریکه‌های یون سنگین مورد بررسی قرار گرفته است ADDIN EN.CITE <EndNote><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[13, 14].
انتخاب پرتوهای یون سنگین به علت قابلیت بالای انتقال انرژی به کپسول، بالای 25 درصد در مقایسه با باریکه‌های لیزری با بهره‌ی انرژی کمتر از 10 درصد روشی موثر به ‌شمار می‌رود که به خاطر ناپایداری‌هایی که در اثر نایکنواختی و ناهمزمانی باریکههای یونی اتفاق می‌افتد، اخیرا بصورت غیر مستقیم مورد استفاده قرار می‌گیرد. نور لیزر، ساده‌ترین و کم هزینه‌ترین روشی است که طراحان از آن برای تراکم کپسول استفاده می کنند ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite></EndNote>[13, 14].

شکل 1-3- نمایی از کپسول هدف ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]
کپسول هدف در این روش، قرص کوچکی با شعاع کمتر از ، حاوی یک لایه‏ی کروی است که بطور مثال با گاز دوتریوم– تریتیوم بصورت متقارن و یکنواخت بصورت شکل 1-3 پر شده است. این لایه، حاوی یک ماده با Z بالا در ناحیه‏ی خارج و DT در داخل است که توده‏ی سوخت را تشکیل می‏دهد.
برای رسیدن به شرایط دما و چگالی بالای مورد نیاز برای همجوشی، باید این کپسول تا جایی که ممکن است به طور متقارن و با انرژی انفجاری خیلی زیادی تابش ببیند. انرژی مورد نیاز، برای راه‏اندازی این فرایند بسیار زیاد است. برای گرمایش یک کپسول سوخت با قطر ، تا دمای، به اندازه‏ی انرژی مورد نیاز است که این انرژی می‌تواند با نور شدید لیزر یا توسط پرتوهای یونی تامین شود. این مقدار انرژی باید در چند پیکوثانیه به قسمت خارجی لایه‏ی هدف منتقل شود. به دلیل انفجار انرژی روی قسمت خارجی لایه‏ی هدف، این لایه‏ گرم شده بلافاصله یونیزه و تبخیر می‌شود. این فرایند کندگی نام دارد. وقتی این قسمت کنده می‌شود، قسمت داخلی و سوخت به دلیل بقای اندازه‏ حرکت، به سمت داخل رانده می‌شود (شکل1-4). در حین این رانش، چگالی سوخت تا چند صد گرم بر سانتیمتر مکعب و دمای سوخت تا حد دمای احتراق برای همجوشی افزایش می‌یابند. در نتیجه، احتراق رخ می‏دهد و فشاری به سمت خارج ایجاد می‌شود که بر موج انفجار به داخل غلبه کرده و منجر به انفجاری به خارج می‌شود. بدین ترتیب چگالی و دمای مورد نظر بدست می‏آیند ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[14].

شکل 1-4- مراحل همجوشی به روش محصورسازی لختی ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[14]
1-5-2- همجوشی هستهای توسط کاتالیزور میون(µCF)
روش دیگری برای رسیدن به انرژی همجوشی هسته‌ای در سال 1957 مطرح شد، که تحت عنوان همجوشی از طریق کاتالیزر میون معروف است و یک فرآیند همجوشی گسترده و تجدید پذیر است که در دماهای معمولی رخ می‌دهد. همانطور که گفته شد یکی از مهم‌ترین مسایل در فرآیند همجوشی، غلبه بر نیروی دافعه‌ی کلونی و ایجاد شرایطی که یون‌ها در محدوده‌ی نیروهای جاذبه‌ی نیرومند هسته‌ای قرار گیرند، می‌باشد. پیدایش میون در مدار اتم هیدروژن، اثر کاهش دافعه‌ی نیروی کلونی دارد. میون ذره‌ای بنیادی است که خواص آن مانند الکترون است، با این تفاوت که جرم میون تقریبا 207 برابر جرم الکترون است و ذره‌ای ناپایدار با زمان عمر µS2/2 می‌باشد. پس از گذشت این زمان میون به یک الکترون e- و یک نوترینوی میونی و به یک پادنوترینوی الکترونی واپاشی می‌کند. بصورت دقیق در اوایل 1980مورد مطالعه قرار گرفت ADDIN EN.CITE <EndNote><Cite><Author>Jones</Author><Year>1986</Year><RecNum>16</RecNum><DisplayText>[12]</DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062363">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jones, S.E.;</author></authors></contributors><titles><title> Muon-Catalysed Fusion Revisited</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>127-133</pages><volume>321</volume><number>6066</number><dates><year>1986</year></dates><urls></urls></record></Cite></EndNote>[12].
جرم زیاد میون نسبت به الکترون، به آن اجازه می‌دهد که وارد مدار اتم هیدروژن با شعاع بوهر، 207 مرتبه کوچکتر از شعاع الکترون شود و این باعث می‌شود که این اتم هیدروژن نسبت به دیگر اتم‌ها یا یون‌های هیدروژن، سنگین‌تر است. بنابر این، این هسته‌ی سنگین به دلیل کاهش نیروی دافعه‌ی کلونی می‌تواند با صرف انرژی کمتری به اتم‌ها و یون‌های دیگر هیدروژن، بسیار نزدیک شود و هنگامیکه هیدروژن میون‌دار و هیدروژن معمولی به اندازه‌ای به هم نزدیک شوند که تغییرات توزیع بار را احساس کنند، به حدی رسیده‌اند که نیروهای جاذبه‌ی هسته‌ای بین آن‌ها ایجاد شده است و پدیده همجوشی را بوجود می‌آورد بنابر این یکی از روش‌های ایجاد همجوشی در دمای پایین استفاده از کاتالیزور میون است.
میون اولین بار توسط اندرسون وندرمییر در سال ١٩٣٧ کشف شد. از طرف دیگر هنگامی که پاول ذره پایون را در سال ١٩۴٧ کشف کرد، فرانک پیشنهاد کرد که پایون‌های منفی می‌توانند به کمک محصور سازی شیمیایی، واکنشهای همجوشی را کاتالیز نمایند ADDIN EN.CITE <EndNote><Cite><Author>Frank</Author><Year>1947</Year><RecNum>17</RecNum><DisplayText>[15]</DisplayText><record><rec-number>17</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062414">17</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frank, F.;</author></authors></contributors><titles><secondary-title> Nature</secondary-title></titles><volume>160</volume><number>525</number><dates><year>1947</year></dates><urls></urls></record></Cite></EndNote>[15]:
pπ + d → pdπ→3He + π(1-9)
با وجود اینکه، احتمال جذب پایون توسط هسته بسیار بزرگ است، اما پایون زمان کافی برای تشکیل pdπ را نخواهد داشت. یک سال بعد، ساخارف پیشنهاد همجوشی کاتالیزور میونی را مطرح کرد ADDIN EN.CITE <EndNote><Cite><Author>Sakharov</Author><Year>1948</Year><RecNum>18</RecNum><DisplayText>[16]</DisplayText><record><rec-number>18</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062457">18</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sakharov, A.;</author></authors></contributors><titles><secondary-title>Lebedev Physics Institute Report</secondary-title></titles><periodical><full-title>Lebedev Physics Institute Report</full-title></periodical><dates><year>1948</year></dates><urls></urls></record></Cite></EndNote>[16].
به دلیل اینکه تشکیل مولکول‌های میون‌دار در اثر فرایندهای برخوردی چند مرحله‌ای صورت می‌گیرد، بازده همجوشی کاتالیزور میونی، به شرایط ماکروسکوپی از قبیل دما، چگالی محیط و کسر غلظت‌های هیدروژن مایع و ضریب چسبندگی میونی وابسته است و می‌تواند به کمک تئوری سینتیکی که اساس آن آهنگ‌های برخوردی میکروسکوپی و سطح مقطع‌ها می‌باشد بهینه گردد. در سال‌های اخیر برای افزایش چرخه میونی، مخلوط سه تایی H/D/T پیشنهاد شده، که گزارشات و مقالات متناقضی در مورد افزایش یا کاهش ضریب تکثیر میونی گزارش شده است ADDIN EN.CITE <EndNote><Cite><Author>Eskandari</Author><Year>1998</Year><RecNum>19</RecNum><DisplayText>[17-19]</DisplayText><record><rec-number>19</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062505">19</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eskandari, M. R.; and Deilami S.;</author></authors></contributors><titles><title>Stability studies of D/T/H sys-- using Hurwitz method</title><secondary-title>IPAC, Kerman</secondary-title></titles><periodical><full-title>IPAC, Kerman</full-title></periodical><dates><year>1998</year></dates><urls></urls></record></Cite><Cite><Author>Markushin</Author><Year>1991</Year><RecNum>20</RecNum><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062559">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Markushin, V. E.; et al.;</author></authors></contributors><titles><title> Kinetics of muon catalyzed fusion in the triple H2-D2-T2 mixture atlow deuterium and tritium concentrations</title><secondary-title> Technical Report PSI-PR-41-92, Preprint from Paul Scherrer Institute, Villigen</secondary-title></titles><dates><year>1991</year></dates><urls></urls></record></Cite><Cite><Author>Eskandari</Author><Year>1999</Year><RecNum>22</RecNum><record><rec-number>22</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062767">22</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eskandari, M. R.; et al.;</author></authors></contributors><titles><secondary-title> Journal of Nuclear Science</secondary-title></titles><volume>36</volume><number>1</number><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[17-19].
1-5-3- محصورسازی مغناطیسی (MCF) در محصورسازی مغناطیسی از میدان‌های مغناطیسی و الکترونیکی برای گرما دادن و فشردن پلاسمای هیدروژن در راکتور ITER استفاده میشود ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Author>Wagner</Author><RecNum>23</RecNum><DisplayText>[20]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062841">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title> ThePhysics Basis of ITER Confinement</title><secondary-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</secondary-title></titles><periodical><full-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</full-title></periodical><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20].
راکتورهای همجوشی هستهای که در آنها پلاسما به روش مغناطیسی محصورشده است براین اساس که میدان مغناطیسی تمام یا قسمتی از سطح پلاسما را بپوشاند، به دو گروه زیر تقسیم شدهاند:
چنبرهای
انتها باز
از معروفترین ماشین‌های پینچ می‌توان از تتا پینچ و Z پینچ نام برد ADDIN EN.CITE <EndNote><Cite><Author>Polsgrove</Author><Year>2011</Year><RecNum>24</RecNum><DisplayText>[21]</DisplayText><record><rec-number>24</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062899">24</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Polsgrove, T.; Robert, S.F.; Adams ,B;</author></authors></contributors><titles><title>Design of Z-pinch and Dense Plasma Focus Powered Vehicles</title><secondary-title>49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition</secondary-title></titles><periodical><full-title>49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition</full-title></periodical><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[21]. این سیستم‌ها آرایش استوانه‌ای دارند. در تتا پینچ جریانی از یک سیم‌پیچ استوانه‌ای پلاسما را دور می‌زند، و میدان حاصل از آن منجر به محصورسازی آن می‌شود. در Z پینچ توسط الکترودهایی که در قاعده‌ها قرار دارد جریانی در جهت محوری تولید می‌شود میدان ناشی از آن، پلاسما را گرم و متراکم می‌کند.
پینچ معکوس نوعی پینچ است که در آن جریانی در خلاف جهت جریان پلاسما اعمال می‌شود. در این دستگاه برهم‌کنش میدان قطبی ناشی از جریان رسانای داخلی، با جریان پلاسما منجر به حرکت پلاسما به سمت خارج می‌شود. در این دستگاه از دو استوانه هم محور به عنوان الکترود استفاده می‌شود. با تخلیه‌ی شعاعی میان دو الکترود میدان مغناطیسی قطبی القا می‌شود که پلاسما را گرم و متراکم می‌کند.
در سیستم‌های آینه‌ای پلاسما، از یک سیم‌پیچ ین-یانگ استفاده می‌شود پلاسما در این آرایش در ناحیه‌ای که از حداقل میدان مغناطیسی برخوردار است، محصور می‌شود. این نوع دستگاه‌ها عملکرد پایا دارند اما در آنها پلاسما از انتهای باز میدان خارج و تلف می‌شود، بنابراین باید از روش‌های کنترل انرژی خروجی استفاده کرد.
از جمله آزمایش‌های آینه‌ای در جهان عبارتند از: GDT و GoL-3-II در روسیه، Qt-UP و Gamma-10 در ژاپن. در حال حاضر با توجه به نتایج عملی و تجربی به دست آمده بیشتر آزمایش‌های مغناطیسی بر توکامک متمرکز شده‌اند. در شکل 1-5 یک راکتور از نوع آینه‌ای نشان داده شده است.

شکل1-5- راکتور آینهای ADDIN EN.CITE <EndNote><Cite><Author>Stacy</Author><Year>2010</Year><RecNum>25</RecNum><DisplayText>[22]</DisplayText><record><rec-number>25</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063009">25</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Stacy, M. Stacey;</author></authors></contributors><titles><title>Fusion An Introduction to tHe physics and technology of magnetic confinement fusion</title><secondary-title>Second, completely Revsed and enlarged Edition</secondary-title></titles><periodical><full-title>Second, completely Revsed and enlarged Edition</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[22]
همچنین بنابر نوع عملکرد راکتورها، آنها را میتوان به انواع زیر نیز تقسیم بندی کرد (از مهمترین آنها می‎توان به دستگاههای چنبره‎ای مانند توکامک، استلاراتور، چنبره برآمده ، اسفرومک، اسفراتور، تورساترون و دستگاههای انتها بازی چون آینه‎های مغناطیسی، پینچها و پلاسمای کانونی اشاره کرد.):
پایا: در این نوع راکتور واکنش‌های همجوشی به صورت مداوم انجام میگیرند.
تپی: این راکتور به طور مرتب قطع و وصل میگردد. زمان همجوشی تقریبا با زمان محصور بودن پلاسما برابر است.
شبه پایا: در مقایسه با انواع نامبرده، یک راکتور متوسط محسوب میگردد . زمان همجوشی آن اندکی بیشتر از زمان محصور شدن پلاسما است. اما در هر حال زمان محدودی است. (توکامک نمونهای از این نوع راکتور است.)
طبقه بندی انواع راکتور ها برحسب روش محصور کردن پلاسمادر دستگاه چنبره‎ای، پلاسما توسط میدان‌ مغناطیسی محصور می‎گردد. میدان اصلی در توکامک میدان چنبره‎ای است که بطور نمادین در شکل(1-6) نشان داده شده است. در جدول (1-2) نیز خلاصهای از انواع راکتورها برحسب روش محصور کردن پلاسما و نوع عملکرد آنها آورده شده است.
جدول1-2- انواع راکتورها برحسب روش محصور کردن پلاسماآرایش میدان مغناطیسی دستگاه نوع عملکرد
چنبره ای توکامک شبه پایا
تنگش میدان وارونه شبه پایا
استلاراتور پایا
هلیوترون پایا
تنگش چنبره ای تپی
انتها باز آیینه ای پایا
تنگش مستقیم تپی
پلاسمای کانونی تپی
شکل 1-6- نمایی از دستگاه چنبرهای پلاسما ADDIN EN.CITE <EndNote><Cite><Author>Glasstone</Author><Year>1980</Year><RecNum>27</RecNum><DisplayText>[23, 24]</DisplayText><record><rec-number>27</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063252">27</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Glasstone, S.;</author></authors></contributors><titles><title>Fusion Energy</title><secondary-title>U.S. Department of Energy, Technical Information Center</secondary-title></titles><periodical><full-title>U.S. Department of Energy, Technical Information Center</full-title></periodical><dates><year>1980</year></dates><urls></urls></record></Cite><Cite><Author>Emrich</Author><Year>2001</Year><RecNum>26</RecNum><record><rec-number>26</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063119">26</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Emrich, W. J.;</author></authors></contributors><titles><title>Field-Reversed Magnetic Mirrors for Confinement of Plasmas</title><secondary-title>NASA Tech Briefs</secondary-title></titles><periodical><full-title>NASA Tech Briefs</full-title></periodical><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>[23, 24]


1-6-1- راکتور توکامکتوکاماک یکی از انواع رآکتورهای همجوشی هستهای است که عمل محصورسازی را به خوبی انجام میدهد. طرح توکاماک در دهه پنجاه میلادی توسط روس‌ها پیشنهاد شد. کلمه توکاماک از کلمات "toroidalnaya", "kamera", and "magnitnaya" به معنی " اتاقک مغناطیسی چنبره‌ای" گرفته شده است. این سیستمها حاوی پلاسمای سوخت هستند که توسط دو سری میدان مغناطیسی نگهداری میشوند، و شکلی مانند چنبره تشکیل می‌دهند. ITER اسم مجموعهایست که اولین رآکتور همجوشی جهان از نوع توکاماک را ساخته است. این مجموعه متشکل از کشورهای روسیه، اروپا، ژاپن، کانادا، چین، ایالات متحده و جمهوری کره می‌باشد. آنها در این راه از فوق هادیها برای قسمتهای مغناطیسی رآکتور استفاده کرده و توان خروجی این توکاماک 410 مگا وات می‌باشد.
1-6-2- قسمتهای اصلی راکتور توکاماک ITERنمایی از راکتور توکامک ایتر در شکل(1-7) و (1-8) آورده شده است که شامل قسمتهای متفاوتی برای انجام فرایند محصورسازی پلاسما به روش مغناطیسی می‌باشد. این اجزا به همراه فرایندی که در آن انجام می‌گیرد بصورت خلاصه و در حد لزوم در زیر آمده است:
لوله خلأ: پلاسما را نگه داشته و از محفظه فعل و انفعال محافظت میکند
انژکتور پرتو خنثی(سیکلوترون یون): ذرات پرتو را از شتاب دهنده به پلاسما تزریق میکند تا به پلاسما برای رسیدن به دمای بحرانی کمک نماید.
میدان مغناطیسی مارپیچ: رفتار مغناطیسی بسیار قوی که شکل و محتوای پلاسمای استفاده شده در میدان مغناطیسی را محدود میکند.
ترانسفورماتور/ سولنوئید مرکزی: الکتریسیته را برای میدان مغناطیسی مارپیچ تامین میکند.
سیستم خنک کننده: آهنربا را خنک میکند.
سیستم عایق: ساخته شده از لیتیم است؛ گرما و انرژی بالای نوترون را از راکتور همجوشی هسته‌ای جذب میکند.
دایورتور: خروج محصولات هلیم از راکتور همجوشی

شکل 1-7- راکتور توکاماک ایتر ADDIN EN.CITE <EndNote><Cite><Author>Wagner</Author><Year>2012</Year><RecNum>28</RecNum><DisplayText>[25]</DisplayText><record><rec-number>28</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063339">28</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title>Fusion Energy by Magnetic Confinement</title><secondary-title> Research Laboratory for Advanced Tokamak Physics, St. Petersburg Polytechnical State</secondary-title></titles><dates><year>2012</year></dates><urls></urls></record></Cite></EndNote>[25]

شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Author>Wagner</Author><Year>2009</Year><RecNum>23</RecNum><DisplayText>[20]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062841">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title> ThePhysics Basis of ITER Confinement</title><secondary-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</secondary-title></titles><periodical><full-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</full-title></periodical><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20]
1-6-3- راکتور اسفرومکاسفرومک نوع دیگری از راکتورهای همجوشی است که بر خلاف توکامک که شکل چنبرهای دارد، بصورت کروی است. در مرکز اسفرومک هیچ مادهای وجود ندارد. اسفرومک از ترانسفورماتور (مانند آنچه که در توکامک بکار رفته) برای تولید سطوح پیچیده شار به شکل دوقطبی مورد نیاز برای محبوس سازی استفاده نمیکند بلکه پلاسمای بسیار داغ را در یک سیستم میدان مغناطیسی ساده و فشرده که فقط از یک سری ساده از کویلهای کوچک پایدار کننده استفاده می‌کند، بوجود می‌آورد. میدان‌های مغناطیسی قوی لازم درون پلاسما با چیزی که دینام مغناطیسی نامیده می‌شود تولید می‌شوند. در اسفرومک شعاع اصلی با شعاع فرعی برابر است یعنی پلاسما مطابق شکل در سیستمی کروی محصور می‎شود.
1-6-4- سایر راکتورهای محصورسازی مغناطیسیغیر از توکامک و اسفرومک دستگاه‌های دیگری برای محصورسازی مغناطیسی وجود دارد ، که تفاوت آنها در نوع آرایش میدان مغناطیسی و شکل آنهاست. برخی از این دستگاهها، تنگش میدان- وارونه، استلاراتور (شکل1-9) و هلیوترون،چنبره فشرده، دستگاه تنگش-تتا، دستگاه تنگش-Z ، پلاسمای کانونی می‌باشد.
استلاراتور وسیله‌ای برای حبس پلاسمای داغ به وسیله میدان مغناطیسی به منظور حفظ یک واکنش همجوشی کنترل شده است و یکی از ابتدایی‌ترین ابزارهای کنترل شده همجوشی بوده که اولین بار توسط لیمان اسپیتزر در سال 1950 اختراع شد. این اختراع تغییر در هندسه دستگاه‌های همجوشی قبلی بود.

شکل1-9- شماتیک هندسی راکتور استلاتور ADDIN EN.CITE <EndNote><Cite><Author>Emrich</Author><Year>2001</Year><RecNum>26</RecNum><DisplayText>[23, 24]</DisplayText><record><rec-number>26</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063119">26</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Emrich, W. J.;</author></authors></contributors><titles><title>Field-Reversed Magnetic Mirrors for Confinement of Plasmas</title><secondary-title>NASA Tech Briefs</secondary-title></titles><periodical><full-title>NASA Tech Briefs</full-title></periodical><dates><year>2001</year></dates><urls></urls></record></Cite><Cite><Author>Glasstone</Author><Year>1980</Year><RecNum>27</RecNum><record><rec-number>27</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063252">27</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Glasstone, S.;</author></authors></contributors><titles><title>Fusion Energy</title><secondary-title>U.S. Department of Energy, Technical Information Center</secondary-title></titles><periodical><full-title>U.S. Department of Energy, Technical Information Center</full-title></periodical><dates><year>1980</year></dates><urls></urls></record></Cite></EndNote>[23, 24]
از مزایای استلاراتورها می‌توان عدم احتیاج به جریان چنبره‌ای (در نتیجه افزایش احتمال فعالیت مداوم) و ثبات سیستم بیشتر را نام برد.
فصل دوم
سینیتیک همجوشی پلاسمای دوتریوم – هلیوم 3
فصل دوم: سینیتیک همجوشی پلاسمای دوتریوم–هلیوم 3سوخت‌های جدید و خواص آنهامشکلات مربوط به پسمان همجوشی را می‌توان با انتخاب یک سوخت بهتر کاهش داد. کاندیداهای مختلفی برای سوخت‌های همجوشی وجود دارند که سوخت‌های پیشرفته نامیده می‌شوند و تعداد نوترون‌های تولید شده در آن ها نسبت به همجوشی D-T بسیار کمتر است و بنا براین مشکلات مربوط به رادیواکتیویته و ایمنی و زیست محیطی ندارند. به طور کلی، همجوشی غیر نوترونی به هر شکلی از همجوشی اطلاق می‌شود که در آن کمتر از یک در صد از انرژی آزاد شده توسط نوترون‌ها حمل شود، ولی شرایط لازم برای کنترل همجوشی غیر نوترونی بسیار دشوارتر از شرایط لازم برای چرخه سوخت متداول دوتریم-تریتیم است و هنوز به طور تجربی حاصل نشده است.
دلایل اصلی اهمیت مطالعه برای یافتن چرخه‌های سوخت پیشرفته عبارتند از ADDIN EN.CITE <EndNote><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[13, 14]:
حذف تریتیوم از چرخه سوخت به منظور ساده سازی چرخه سوخت (عدم نیاز به زایش تریتیوم) و افزایش ذخیره سوخت همجوشی (ذخیره لیتیم زمین مقدار کل تریتیمی را که قابل تولید با پوشش‌های زاینده هست محدود می‌کند.)
(حذف و یا کاهش فوق العاده) تولید نوترون در رآکتورهای همجوشی به منظور اجتناب از (یا تا حد ممکن کاهش دادن) فعالسازی اجزای راکتورها و تخریب ناشی از نوترون‌ها.
دو چرخه مهم سوخت پیشرفته p-11B و D-3He می‌باشد، چرخه سوخت D-3He، تعداد خیلی کمتری نوترون نسبت به چرخه سوخت D-T تولید می‌کند و انرژی این نوترون‌ها نیز خیلی کمتر است، بنابراین، میزان تخریب مواد کاهش خواهد یافت. مطالعات نشان داده‌اند که چرخه سوخت D-3He به میزان قابل توجهی مساله طول عمر اجزای راکتور را با کاهش تخریب نوترونی حل می‌کند در حالی که مشکل فعال سازی نوترونی و تولید پسماندهای مربوط به آن کماکان باقی می‌ماند. در این چرخه، تریتیم حذف شده است ولی ایزوتوپ نایاب هلیم 3 جایگزین آن شده است. بر روی زمین در حدود 400 کیلوگرم هلیم3 قابل حصول است که در حدود GW-year 8 انرژی همجوشی بدست می‌دهد و مقادیر بیشتر از این باید یا از طریق واکنش‌هایی که شامل نوترون هستند، تهیه شود (که مزیت بالقوه همجوشی غیر نوترونی را از بین می‌برد) و یا اینکه از منابع ماورای زمین تهیه شود. بر روی سطح ماه در حدود 109 کیلوگرم هلیم3 وجود دارد که معادل هزار سال مصرف انرژی فعلی جهان است. همچنین، در اتمسفر سیارات عظیم گازی در حدود 1023 کیلوگرم هلیوم 3 وجود دارد که قادر است در حدود 1017 سال مصرف فعلی انرژی جهان را تولید کند، یعنی منابع هلیم 3 منظومه شمسی عملا پایان ناپذیرند ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>2006</Year><RecNum>29</RecNum><DisplayText>[26]</DisplayText><record><rec-number>29</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063586">29</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J.;</author></authors></contributors><titles><title>A Strategy for D–3He Development</title><secondary-title>Fusion Technology Institute</secondary-title></titles><periodical><full-title>Fusion Technology Institute</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[26].
ولی استخراج هلیم 3 از این منابع و انتقال آن به زمین بسیار دشوار و پرهزینه خواهد بود و تنها در آینده‌های دور می‌توان به آن اندیشید ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[2].
چرخه سوخت D-3He نسبت به D-T برای احتراق، نیازمند شرایط محصورسازی بالاتری nτET=2.4×1023keV.s/m3) ) است و در فشار پلاسمای یکسان، چگالی توان همجوشی کمتری نسبت به همجوشی D-T بدست خواهد داد. همچنین گرچه واکنش اصلی 3He(D,p)αرا می‌توان غیر نوترونی دانست ولی تولید نوترون از طریق واکنش جانبی D(D,n)3He و واکنش ثانویه D(T,n)α اجتناب ناپذیر است.
واکنش همجوشی 11B-p ایمن‌ترین و بهترین واکنش هسته‌ای هست که وجود دارد، 11B به فراوانی در آب دریا و منابع دیگر یافت می‌شود و 80 درصد بور موجود بر روی زمین را شامل می‌شود و هیدروژن هم که فراوان ترین عنصر در عالم هستی است. بنابراین، مشکلی از نظر محدودیت منابع سوخت وجود ندارد. حاصل واکنش آن‌ها نیز گاز بی اثر هلیم است و هیچ نوترونی تولید نخواهد شد ADDIN EN.CITE <EndNote><Cite><Author>Bussard</Author><Year>2006</Year><RecNum>30</RecNum><DisplayText>[27, 28]</DisplayText><record><rec-number>30</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063640">30</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bussard, W.; et al.;</author></authors></contributors><titles><title> The Advent of Clean Nuclear Fusion: Superperformance Space Power and Propulsion</title><secondary-title> 57th International Astronautical Congress(IAC), Valencia, Spain</secondary-title></titles><dates><year>2006</year></dates><urls></urls></record></Cite><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[27, 28].
برای بهره برداری عملی از همجوشی، انرژی حاصل از همجوشی باید بیش از انرژی لازم برای گرمایش پلاسما باشد، بدین منظورشروط متعددی باید برآورده شوند که مهمترین آنها، دستیابی به مقادیر مناسب برای حاصل ضرب nτ و حاصل ضرب nTτ است که مجموع اینها معیار لاوسون نامیده می‌شود. یعنی باید پلاسما را با چگالی مناسب تا دمای مناسبی گرم کرد و این پلاسمای داغ و چگال را به مدت کافی محصور نمود ADDIN EN.CITE <EndNote><Cite><Author>Wesson</Author><Year>2004</Year><RecNum>32</RecNum><DisplayText>[29]</DisplayText><record><rec-number>32</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063806">32</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wesson, J.;</author></authors></contributors><titles><title> Tokamaks</title><secondary-title>Clarendon Press-Oxford</secondary-title></titles><periodical><full-title>Clarendon Press-Oxford</full-title></periodical><volume>third edition</volume><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[29].
مقدار عدد به دست آمده در معیار لاوسون برای سوخت دوتریم تریتیم ازسال 1969 تا سال 2000 حدود 500 هزار برابر افزایش یافته است. سوخت‌های جدید مورد نظر هنوز نیاز به یک تا دو مرتبه افزایش در بزرگی دارند. بررسی‌های نظری نشان داده‌اند که این کار شدنی است ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>2006</Year><RecNum>33</RecNum><DisplayText>[30]</DisplayText><record><rec-number>33</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063863">33</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, F.;et al.;</author></authors></contributors><titles><title>Role of Advanced-Fuel and Innovative Concept Fusion in the Nuclear Renaissance</title><secondary-title>APS Division of Plasma Physics Meeting, Philadelphia</secondary-title></titles><periodical><full-title>APS Division of Plasma Physics Meeting, Philadelphia</full-title></periodical><volume>31</volume><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[30].
خواص دوتریومدوتریوم همان عنصر هیدروژن است که علاوه بر یک پروتون یک نوترون نیز درون هسته آن وجود دارد. اگرمولکول آب توسط دوتریوم تشکیل شود به آن آب سنگین () می‌گویند. در هر لیتر از آب دریا (۳۵) گرم دوتریوم وجود دارد. دوتریوم یکی از پایه‌های لازم برای همجوشی هسته‌ای است. در آب در کنار هر ۷۰۰۰ اتم هیدروژن ۱ اتم دوتریوم موجود است که جدا کردن آن با توجه به نزدیکی خواص آب سنگین و آب سبک بسیار سخت است. این دوتریومها باید تغلیظ و انبار شوند تا ابتدا به آب سنگین ۱۵٪ و سپس به آب ۹۹٪ تبدیل شود، جدا سازی آب سنگین از آب سبک بسیار سنگین ، پیچیده و سخت است. به دلیل آنکه گرمای تبخیر آب سنگین بشتر از آب معمولی می‌باشد، از آن در نیروگاههای اتمی جهت خنک کردن راکتورها استفاده میکنند.
دوتریوم را می توان به آسانی از آب استخراج کرد. هیدروژن موجود در زمین شامل دوتریوم به نسبت جرمی 1:5000 است. یک تریلی پر از دوتریوم انرژی معادل 2 میلیون تن زغال سنگ یا 1.3میلیون تن نفت (10میلیون بشکه)، یا 30 تن اکسید اورانیوم، آزاد خواهد کرد.
دوتریوم در واکنش‌های همجوشی زیر با آهنگ واکنش مساوی شرکت میکنند:
(2-1)
(2-2)
محیطى که به این درجه از گرما برسد، نمی‌تواند در یک جداره مادى بگنجد.
خواص هلیوم 3هلیوم 3 یکی از ایزوتوپ‌های غیر پرتوزای عنصر گازی هلیوم است که دارای ۲ پروتون و یک نوترون است. از این ماده به عنوان سوخت در تحقیقات مربوط به راکتورهای هسته‌ای، استفاده می‌شود. در زمین به ندرت یافت می‌شود و عموما در لایه‌های فوقانی سنگی کره ماه که طی بیش از میلیاردها سال توسط بادهای خورشیدی ایجاد شده است، به فراوانی موجود است. هلیون هسته اتم هلیوم 3 حاوی دو پروتون و تنها یک نوترون می‌باشد. این در حالی است که هلیوم معمولی حاوی دو نوترون می‌باشد. وجود فرضی آن اولین بار در 1934 پیشنهاد شد ADDIN EN.CITE <EndNote><Cite><Author>Oliphant</Author><Year>1934</Year><RecNum>34</RecNum><DisplayText>[31]</DisplayText><record><rec-number>34</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063934">34</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Oliphant, M. L. E.; Harteck ,P.; Rutherford, E.;</author></authors></contributors><titles><title> Transmutation Effects Observed with Heavy Hydrogen</title><secondary-title>Proceedings of the Royal Society</secondary-title></titles><periodical><full-title>Proceedings of the Royal Society</full-title></periodical><pages>692-703</pages><volume>144</volume><number>853</number><dates><year>1934</year></dates><urls></urls></record></Cite></EndNote>[31].
بخاطر جرم اتمی پایین‌ترش نسبت به هلیوم4 دارای خصوصیات فیزیکی متفاوتی نسبت به آن است. به سبب تعامل ضعیف ناشی از پیوندهای دو قطبی-دو قطبی بین اتم‌های هلیوم، خواص فیزیکی ماکروسکوپی آن عمدتا توسط نقطه صفر انرژی آن (انرژی جنبشی حداقل) تعیین می‌شود. همچنین خواص میکروسکوپی هلیوم 3 سبب می‌شود که نقطه صفر انرژی آن بالاتر از هلیوم 4 باشد. این نشان می‌دهد که هلیوم3 می‌تواند بر تعامل دو قطبی-دو قطبی با انرژی حرارتی کمتری نسبت به هلیوم-4، غلبه کند.
هلیوم 3 می‌تواند توسط یکی از دو واکنش زیر در واکنش‌های همجوشی شرکت کند:
2D + 3He →   4He +  1p + 18.3 MeV(2-3)
3He + 3He → 4He   + 2 1p+ 12.86 MeV(2-4)
که هدف در این مطالعه استفاده از دوتریوم و هلیوم 3 می‌باشد. سرعت‌های واکنش با دما متغیر است اما سرعت واکنش D-3He هرگز بالاتر از 56/3 برابر سرعت واکنش D-D نمی‌باشد. شکل 2-1 بیانگر حالت مقایسه‌ای بین انواع سوخت‌هاست.

شکل2-1- واکنش پذیری انواع سوخت‌ها ADDIN EN.CITE <EndNote><Cite><Author>Tang</Author><Year>2011</Year><RecNum>35</RecNum><DisplayText>[32]</DisplayText><record><rec-number>35</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063997">35</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Tang, R.;</author></authors></contributors><titles><title>Study of the G--ynamic Mirror (GDM) Propulsion Sys--</title><secondary-title> thesis (A dissertation submitted in partial fulfillment ofthe requirements for the degree of Doctor of Philosophy) in the University of Michigan</secondary-title></titles><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[32]
سرعت واکنش همجوشی به سرعت با دما افزایش می‌یابد تا اینکه به بیشینه مقداری رسیده و سپس به تدریج افت می‌کند. در مقایسه‌ای کلی جدول 2-1 را خواهیم داشت.
سوخت‌های پیشرفته، همجوشی سوخت‌های نسل دوم و سوم هستند که مقادیر بسیار کم یا اصلا هیچ نوترونی تابش نمی‌کنند و چرخه‌های سوخت نسل اول در آنها وجود ندارد. تعداد نوترون‌های تولید شده در واکنش‌های شامل هلیوم 3 بسیار کم است (در مورد واکنش 3He-3He عملا صفر و در مورد D-3He حدود 01/0 تا 05/0 همجوشی D-T و کمتر از 02/0 همجوشی D-D است.
محصول نسل سوم واکنش‌های همجوشی فقط ذرات باردار است و هر گونه واکنش جانبی نسبتا بی اهمیت است. در شرایط مناسب، فقط 1/0 درصد از انرژی حاصل از واکنش p-11B، توسط نوترون‌های تولید شده از واکنش‌های جانبی حمل می‌شود ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[2].
استفاده از سوخت‌های جدید نسبت به D-T با مسایل بیشتری مواجه است. به عنوان مثال در مورد D-3He باید:
دمای احتراق دست کم حدود 6 برابر افزایش یابد.
مقدار neτe حداقل حدود 8 برابر
حاصل ضرب nτT حداقل در حدود 50 برابر افزایش می‌یابد.
جدول2-1- نسل‌های مختلف سوخت‌های همجوشی PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaHZlc3l1azwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+
PFJlY051bT44PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNiwgMzMtMzddPC9EaXNwbGF5VGV4dD48
cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6cmE1d3hzZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFt
cD0iMTQyMzA2MTYyMiI+ODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy
bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+
S2h2ZXN5dWssIFYuIEkuOyBhbmQgWXUgQ2hpcmtvdiwgQS47PC9hdXRob3I+PC9hdXRob3JzPjwv
Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxvdy1yYWRpb2FjdGl2aXR5IETigJMzSGUgZnVz
aW9uIGZ1ZWwgY3ljbGVzIHdpdGggM0hlIHByb2R1Y3Rpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRST0xMRUQgRlVTSU9OPC9zZWNvbmRhcnktdGl0bGU+
PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRS
T0xMRUQgRlVTSU9OPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjUzLTI2MDwvcGFn
ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjwvZGF0ZXM+PHVy
bHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNhbnRhcml1czwvQXV0aG9y
PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT4yOTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6cmE1d3hz
ZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFtcD0iMTQyMzA2MzU4NiI+Mjk8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNhbnRhcml1cywgSi47PC9h
dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgU3RyYXRlZ3kg
Zm9yIETigJMzSGUgRGV2ZWxvcG1lbnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RnVzaW9uIFRl
Y2hub2xvZ3kgSW5zdGl0dXRlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+
PGZ1bGwtdGl0bGU+RnVzaW9uIFRlY2hub2xvZ3kgSW5zdGl0dXRlPC9mdWxsLXRpdGxlPjwvcGVy
aW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub2RkPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48
UmVjTnVtPjM2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpyYTV3eHNkOHo1djV1ZTk1c2c1NWF4ajlw
MDIyMHMwMHh4NSIgdGltZXN0YW1wPSIxNDIzMDY0OTQwIj4zNjwva2V5PjwvZm9yZWlnbi1rZXlz
PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0
b3JzPjxhdXRob3JzPjxhdXRob3I+VG9kZCwgSC5SaWRlcjs8L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBHZW5lcmFsIENyaXRpcXVlIG9mIEluZXJ0aWFs
IEVsZWN0cm9zdGF0aWMgQ29uZmluZW1lbnQgRnVzaW9uIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRh
cnktdGl0bGU+dGhlc2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9s
b2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+dGhl
c2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9sb2d5PC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MTk5NDwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Sb2Jlcmc8L0F1dGhvcj48WWVhcj4y
MDExPC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMt
bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2NXVl
OTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzU4NDYiPjc0PC9rZXk+PC9m
b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl
Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Sb2JlcmcsIEcuOzwvYXV0aG9yPjwvYXV0
aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgUG93ZXIgb2YgdGhlIEZ1dHVy
ZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OdWNsZWFyIEZ1c2lvbjwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xlYXIgRnVzaW9uPC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CZXJ0dWxhbmk8L0F1dGhvcj48WWVh
cj4yMDEwPC9ZZWFyPjxSZWNOdW0+NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjczPC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2
NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzUxNDIiPjczPC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZXJ0dWxhbmksIEMuQS47PC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXIgUmVhY3Rp
b25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNz
LCBXaWxleS1WQ0gsIEJlcmxpbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNzLCBXaWxleS1WQ0gsIEJl
cmxpbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9k
YXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WWFtYW5ha2E8
L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNOdW0+Mzc8L1JlY051bT48cmVjb3JkPjxyZWMt
bnVtYmVyPjM3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i
enJhNXd4c2Q4ejV2NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNjYx
NjciPjM3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZYW1hbmFrYSwg
Qy47PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPiBJbnRy
b2R1Y3Rpb24gdG8gTGFzZXIgRnVzaW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkhhcndhcmQg
QWNhZGVtaWMgUHVibGlzaGVyczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPkhhcndhcmQgQWNhZGVtaWMgUHVibGlzaGVyczwvZnVsbC10aXRsZT48L3Bl
cmlvZGljYWw+PGRhdGVzPjx5ZWFyPjE5OTE8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaHZlc3l1azwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+
PFJlY051bT44PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNiwgMzMtMzddPC9EaXNwbGF5VGV4dD48
cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6cmE1d3hzZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFt
cD0iMTQyMzA2MTYyMiI+ODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy
bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+
S2h2ZXN5dWssIFYuIEkuOyBhbmQgWXUgQ2hpcmtvdiwgQS47PC9hdXRob3I+PC9hdXRob3JzPjwv
Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxvdy1yYWRpb2FjdGl2aXR5IETigJMzSGUgZnVz
aW9uIGZ1ZWwgY3ljbGVzIHdpdGggM0hlIHByb2R1Y3Rpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRST0xMRUQgRlVTSU9OPC9zZWNvbmRhcnktdGl0bGU+
PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRS
T0xMRUQgRlVTSU9OPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjUzLTI2MDwvcGFn
ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjwvZGF0ZXM+PHVy
bHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNhbnRhcml1czwvQXV0aG9y
PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT4yOTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6cmE1d3hz
ZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFtcD0iMTQyMzA2MzU4NiI+Mjk8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNhbnRhcml1cywgSi47PC9h
dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgU3RyYXRlZ3kg
Zm9yIETigJMzSGUgRGV2ZWxvcG1lbnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RnVzaW9uIFRl
Y2hub2xvZ3kgSW5zdGl0dXRlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+
PGZ1bGwtdGl0bGU+RnVzaW9uIFRlY2hub2xvZ3kgSW5zdGl0dXRlPC9mdWxsLXRpdGxlPjwvcGVy
aW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub2RkPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48
UmVjTnVtPjM2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpyYTV3eHNkOHo1djV1ZTk1c2c1NWF4ajlw
MDIyMHMwMHh4NSIgdGltZXN0YW1wPSIxNDIzMDY0OTQwIj4zNjwva2V5PjwvZm9yZWlnbi1rZXlz
PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0
b3JzPjxhdXRob3JzPjxhdXRob3I+VG9kZCwgSC5SaWRlcjs8L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBHZW5lcmFsIENyaXRpcXVlIG9mIEluZXJ0aWFs
IEVsZWN0cm9zdGF0aWMgQ29uZmluZW1lbnQgRnVzaW9uIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRh
cnktdGl0bGU+dGhlc2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9s
b2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+dGhl
c2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9sb2d5PC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MTk5NDwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Sb2Jlcmc8L0F1dGhvcj48WWVhcj4y
MDExPC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMt
bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2NXVl
OTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzU4NDYiPjc0PC9rZXk+PC9m
b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl
Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Sb2JlcmcsIEcuOzwvYXV0aG9yPjwvYXV0
aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgUG93ZXIgb2YgdGhlIEZ1dHVy
ZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OdWNsZWFyIEZ1c2lvbjwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xlYXIgRnVzaW9uPC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CZXJ0dWxhbmk8L0F1dGhvcj48WWVh
cj4yMDEwPC9ZZWFyPjxSZWNOdW0+NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjczPC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2
NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzUxNDIiPjczPC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZXJ0dWxhbmksIEMuQS47PC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXIgUmVhY3Rp
b25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNz
LCBXaWxleS1WQ0gsIEJlcmxpbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNzLCBXaWxleS1WQ0gsIEJl
cmxpbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9k
YXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WWFtYW5ha2E8
L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNOdW0+Mzc8L1JlY051bT48cmVjb3JkPjxyZWMt
bnVtYmVyPjM3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i
enJhNXd4c2Q4ejV2NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNjYx
NjciPjM3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZYW1hbmFrYSwg
Qy47PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPiBJbnRy
b2R1Y3Rpb24gdG8gTGFzZXIgRnVzaW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkhhcndhcmQg
QWNhZGVtaWMgUHVibGlzaGVyczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPkhhcndhcmQgQWNhZGVtaWMgUHVibGlzaGVyczwvZnVsbC10aXRsZT48L3Bl
cmlvZGljYWw+PGRhdGVzPjx5ZWFyPjE5OTE8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA [26, 33-37]
n/MeV بهره انرژی محصولات واکنش‌ها
سوخت‌های همجوشی نسل اول
0.306 3.268 MeV32He + 10n 21H + 21H (D-D)
0 4.032 MeV31H + 11p 21H + 21H (D-D)
0.057 17.571 MeV42He + 10n 21H + 31H (D-T)
سوخت‌های همجوشی نسل دوم
0 18.354 MeV42He + 11p 21H + 32He (D-3He)
سوخت‌های همجوشی نسل سوم
0 12.86 MeV42He+ 211p 32He + 32He
0 8.68 MeV3 42He115B + 11p
نتیجه کل سوختن دوتریوم(مجموع 4 سطر اول)
0.046 43.225 MeV2(4He + n + p) 6D
سوخت هسته‌ای در زمان حال
0.001 ~200 MeV2 FP+ 2.5n 235U + n
در استفاده از سوخت D-3He کاهش فوق العاده شار نوترونی باعث کاهش قابل ملاحظه تخریب تابشی می‌شود ودرنتیجه طول عمر دیواره اولیه و حفاظ تابشی افزایش می‌یابد و به حفاظ تابشی کوچک‌تری نیاز خواهد بود و تعمیرات و نگهداری راحت‌تر می‌شوند. افزایش شار ذرات باردار امکان تبدیل مستقیم انرژی همجوشی را با بازده بالا فراهم می سازد.
مشکلات عمده در استفاده از انرژی هسته‌ای در سالیان گذشته از سه مساله اصلی، احتمال پخش مواد رادیواکتیو، مشکلات مربوط به نگهداری پسماندهای هسته‌ای با عمر طولانی، احتمال استفاده از مواد حاصل برای کاربردهای تسلیحاتی می‌باشد. تمام این مشکلات مربوط به رآکتورهای هسته‌ای، مربوط است به:
سوخت رادیواکتیو
محصولات رادیواکتیو واکنش
نوترونها
همجوشی هسته‌ای تا حدودی از این مشکلات می‌کاهد ADDIN EN.CITE <EndNote><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><DisplayText>[28]</DisplayText><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[28].
مزیت عمده سوخت‌های جدید همجوشی این است که سوخت و محصولات واکنش‌های نسل دوم و سوم همجوشی میزان پرتوزایی (تخریب حرارتی و وجود تریتیم) و نکات بالقوه مربوط به تکثیر تسلیحاتی و همینطور مشکلات مربوط به پسمانداری را تا حد زیادی کاهش داده یا حذف می‌کنند، ولی برای استفاده از آنها به پیشرفت فیزیکی و مهندسی زیادی نیاز است. از این سوخت‌های جدید می‌توان برای ساخت نیروگاه‌های برق ایمن، تمیز و اقتصادی، در سفینه‌های فضایی و موشک‌ها به عنوان سوخت و نیز برای کاربردهای پزشکی و غیره استفاده کرد. از مزایای دیگر آنها می‌توان از عدم نیاز به پوشش‌های زاینده تریتیم و حلقه‌های پیچیده سرمایش ثانویه و عدم نیاز به دستگاه‌های پیچیده تست نوترون و مدت زمان‌های بررسی طولانی نام برد ADDIN EN.CITE <EndNote><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><DisplayText>[28]</DisplayText><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[28].
پارامترهای متعددی در استفاده از سوخت‌های مختلف دخیلند، از جمله: .
انرژی کل محصولات همجوشی : Efus
محصولات باردار همجوشی: Ech
عدد اتمی ذرات درگیر در واکنش: Z
میزان انرژی حمل شده توسط نوترون ها
اتلاف انرژی از طریق تابش ترمزی و....
در رابطه با همجوشی D-D و D-T اتلاف انرژی از طریق تابش ترمزی مشکل جدی و مهمی است که باید حل شود، برای سوخت‌های سنگین‌تر D-3He و p-11 B و 3He-3He میزان این اتلاف به قدری است که کار یک راکتور همجوشی بر اساس طرح‌های توکامک و همجوشی لیزری را ناممکن می‌سازد.
تابش سینکروترونی نیز نکته دیگری است که باید مورد توجه قرار گیرد. بررسی‌ها نشان داده‌اند که درمورد همجوشی D-T تابش سینکروترونی نقش چندانی در بالانس انرژی ندارد، در حالی که در مورد همجوشی 3He-D این اثر قابل توجه است. و این مشکل باید در طراحی رآکتورهای احتمالی3 He -D حل شود ADDIN EN.CITE <EndNote><Cite><Author>Lerner</Author><Year>2003</Year><RecNum>38</RecNum><DisplayText>[38]</DisplayText><record><rec-number>38</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066296">38</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lerner, E.J.;</author></authors></contributors><titles><title>ProspectsFor p-11B Fusion With The Dense Plasma Focus: New Results</title><secondary-title>Conf. Current Trends in International Fusion Research, Washington, USA</secondary-title></titles><periodical><full-title>Conf. Current Trends in International Fusion Research, Washington, USA</full-title></periodical><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[38].
درصدی از انرژی کل واکنش که توسط نوترون‌ها حمل می‌شود، در مورد D-T حدود 80 درصد، در مورد D-D حدود 66 درصد و در مورد 3 He –D و p-11B بسیار ناچیز و نزدیک به صفر است که این امر مشکلات مختلف مربوط به نوترون‌ها از جمله تخریب تابشی، حفاظ‌گذاری بیولوژیکی، کنترل از دور، ایمنی و اتلاف توان همجوشی توسط آنها را کاهش می‌دهد ADDIN EN.CITE <EndNote><Cite><Author>Sadowski</Author><Year>1998</Year><RecNum>39</RecNum><DisplayText>[39]</DisplayText><record><rec-number>39</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066348">39</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sadowski, M.;</author></authors></contributors><titles><secondary-title>Special Suppl. School of Physics - Georgia Institute of Technology</secondary-title></titles><periodical><full-title>Special Suppl. School of Physics - Georgia Institute of Technology</full-title></periodical><pages>3-4</pages><volume>39</volume><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[39].
پلاسما حالت چهارم مادهپلاسما گازی یونیزه و داغ می‌باشد که حاوی تعداد تقریبا برابری از یونهای مثبت باردارشده و الکترونهای با بار منفی می‌باشد. مشخصات پلاسما کاملا با گازهای خنثی طبیعی متفاوت است (گازهای معمولی به سبب خنثی بودنشان از لحاظ بار الکتریکی توانایی عکس ‌العمل در مقابل مغناطیس و میدان وابسته به آن را ندارند.) از این روست که پلاسما به عنوان حالت چهارم ماده معرفی شده است. برای مثال، به این علت که پلاسماها ذرات باردار الکتریکی تولید میکنند، تا زمانی که گاز بطور خنثی نباشد، به شدت تحت تاثیر میدان‌های مغناطیسی و الکتریکی قرار می‌گیرد. مثالی از چنین تاثیری، به دام اندازی ذرات باردار پر انرژی در عرض خطوط میدان مغناطیسی زمین، به فرم کمربندهای تشعشی ون آلن است.
علاوه بر میدان‌های خارجی اعمال شده، مانند میدان مغناطیسی زمین و یا میدان مغناطیسی بین سیارهها، پلاسما براساس میدان‌های الکتریکی و مغناطیسی ایجاد شده توسط خود پلاسما و از طریق تغییر غلظت بار محلی و جریان الکتریکی ایجاد شده عمل میکند، که در نتیجه حرکتهای متفاوت یونها و الکترونها ایجاد می‌شود. نیروهای اعمال شده توسط این میدان روی ذرات بارداری که عمل پلاسما را در طول فواصل طولانی ایجاد میکند، تاثیر گذاشته و سبب یکنواختی رفتار انتقالی ذرات و کیفیت بالایی میگردد که در گازهای خنثی دیده نمی‌شود. به رغم وجود غلظت بارهای محلی و پتانسیل های الکتریکی، پلاسما از نظر الکتریکی "شبه خنثی" است، زیرا بطور کل، تعداد تقریبا برابری از ذرات باردار مثبت و منفی طوری پراکنده شدهاند که تاثیر بارهای یکدیگر را از بین میبرند.
روشهای تولید پلاسماالف) تخلیه الکتریکی:
اگر میدان الکتریکی نیرومندی بر گازی معمولی اعمال کنیم ممکن است تعدادی از الکترونها، اتمهای خود را ترک کنند. هر اتم که به این ترتیب تحت تاثیر قرار بگیرد به طور مثبت باردار می‌شود و در این حالت میگوییم اتم به یون تبدیل شده است. الکترونهای جدا شده که بار منفی دارند آزادانه در دستگاه حرکت می‌کنند و از میدان الکتریکی انرژی میگیرند، با افزایش سرعت، به اتمهای دیگر برخورد میکنند و سبب آزاد شدن الکترونهای بیشتری میشوند. این کار به طور پیدرپی صورت می‌گیرد و تعداد الکترونهای آزاد شده مدام افزایش می‌یابد. این فرآیند به فرآیند آبشاری معروف است. در این میان تخلیه الکتریکی گسترش می‌یابد و جریان الکتریکی برقرار می‌شود. گاز قبل از تخلیه الکتریکی، نارسانا بود. در مواقعی که تخلیه الکتریکی بسیار قدرتمندی انجام می‌گیرد، ممکن است تمام اتمهای گاز به سبب فرآیند آبشاری یونیزه شوند و گاز به پلاسما تبدیل شود.
مخلوط همجوشی با فشار کم را در محفظه چنبرهاى شکل داخل کرده، به کمک یک سیستم اولیه متشکل از چند بوبین، یک میدان مغناطیسى معروف به چنبره‌اى، پدید میآید. سپس، به کمک هایپِرفرکانسها (فوق بسامدها)، محتوى محفظه چنبرهای، یونیزه گشته و در نهایت از طریق القا با افزایش تدریجى میدان مغناطیسى پدیدآمده بوسیله‌ی یک سیم لوله (سولونوئید( که در جهت محور سامانه قرار داده شده است، یک جریان پلاسما بوجود میآید.
ب) تولید پلاسما در درجه حرارت های بالا:
با رساندن دمای گاز به درجه حرارتهای بالا نیز میتوان پلاسما بوجود آورد. دمای لازم برای تولید این نوع پلاسما به روش یونیزاسیون حرارتی بسیار زیاد و از مرتبه دهها هزار درجه است و واقعیت این است که دانشمندان در مواقع بسیار نادر و ویژه از این روش برای تولید پلاسما استفاده میکنند.
پارامترهای بنیادی پلاسماهمه مقادیر در واحد گاووسی (cgs) بیان شده است. غیر از دما که در واحد الکترون ولت آورده شده است و جرم یون که بر حسب واحد جرم پروتون و بصورت μ=mimp می‌باشد. Z مقدار بار، k ثابت بولتزمن، K عدد موج، lnʌ لگاریتم کولن است ADDIN EN.CITE <EndNote><Cite><Author>Suryanarayana</Author><Year>2010</Year><RecNum>40</RecNum><DisplayText>[40]</DisplayText><record><rec-number>40</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066400">40</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Suryanarayana, N.S.; Kaur, J.; Dubey, V.;</author></authors></contributors><titles><title>Study of propagation of Ion Acoustic waves in plasma</title><secondary-title>Departman of physics,Govt.</secondary-title></titles><periodical><full-title>Departman of physics,Govt.</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[40].
که برای الکترون: lnᴧ≈13.6
و برای یک یون: lnᴧ≈6.8
2-6-1- فرکانسها در پلاسمافرکانس زاویهای حرکت چرخشی الکترون در جهت عمود بر میدان مغناطیسی:
ωce=eB/mec=1.76×107 B--/s
فرکانس زاویهای حرکت چرخشی یون در جهت عمود بر میدان مغناطیسی:
ωci=ZeB/mic=9.58×103 Zμ-1 B--/s
فرکانس الکترونهایی که نوسان میکنند(نوسان پلاسما):
ωpe=(4πnee2/me)1/2=5.64×104 ne1/2 --/s
فرکانس پلاسمای یونی:
ωpi=(4πniZ2 e2/mi)1/2=1.32×103 Zμ-1/2 ni1/2 --/s
سرعت به دام اندازی الکترون:
????Te=(eKE/me)1/2=7.26×108 K1/2 E1/2 s-1
سرعت به دام اندازی یون:
????Ti=(ZeKE/mi)1/2=1.69×107 Z1/2 K1/2 E1/2μ-1/2 s-1
سرعت برخورد الکترون در پلاسمای کاملا یونیزه شده:
????e=2.91×10-6 ne lnᴧ Te-3/2 s-1
سرعت برخورد یون در پلاسمای کاملا یونیزه شده:
????i=4.80×10-8 Z4 μ-1/2 ni lnᴧ Ti-3/2 s-1
سرعت برخورد الکترون (یون) در پلاسمای کمی یونیزه شده: υe,i=Nσe,iυ=N0∞σ(υ)e,if(υ)υdυ
که <σν>e,i سطح مقطع برخورد الکترون (یون) در اتمهای (مولکولهای) گاز عامل، f(ν) تابع توزیع الکترون (یون) در پلاسما و N غلظت گاز عامل می‌باشد ADDIN EN.CITE <EndNote><Cite><Author>Suryanarayana</Author><Year>2010</Year><RecNum>40</RecNum><DisplayText>[40]</DisplayText><record><rec-number>40</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066400">40</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Suryanarayana, N.S.; Kaur, J.; Dubey, V.;</author></authors></contributors><titles><title>Study of propagation of Ion Acoustic waves in plasma</title><secondary-title>Departman of physics,Govt.</secondary-title></titles><periodical><full-title>Departman of physics,Govt.</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[40].
2-6-2- سرعتها در پلاسماسرعت حرارتی الکترون: سرعت معمول یک الکترون در توزیع ماکسول-بولتزمن
????Te= (kTe/me)1/2=4.19×107 Te1/2 cm/s
سرعت حرارتی یون: سرعت معمول یک یون در توزیع ماکسول-بولتزمن
????Ti= (kTi/mi)1/2=9.79×105 μ-1/2 Ti1/2 cm/s
گرم کردن پلاسمایکی از مهمترین مسائل در طراحی راکتورها گرم کردن پلاسما برای ایجاد شرایط مورد نیاز همجوشی خوبخودی می‌باشد. حتی برای سادهترین واکنش‌های همجوشی که بطور معمول برای تولید الکتریسیته با صرفه اقتصادی، معمولا به حدود 100 میلیون درجه سانتیگراد دما نیاز است. این نیاز به دمای بالا به 4 روش تامین میگردد ADDIN EN.CITE <EndNote><Cite><Author>Harms</Author><Year>2002</Year><RecNum>41</RecNum><DisplayText>[41]</DisplayText><record><rec-number>41</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066441">41</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Harms, A.A.; Schoef ,K.F.; Miley G.H.; Kingdon ,D.R.;</author></authors></contributors><titles><title>principles of Fusion Energy</title><secondary-title>World scientific co.</secondary-title></titles><periodical><full-title>World scientific co.</full-title></periodical><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[41]:
گرم کردن مقاومتی
گرم کردن از طریق فشردن
گرم کردن توسط تاثیر میدان‌های الکترومغناطیسی
تزریق پرتو خنثی
2-7-1- گرمایش مقاومتیگرم کردن از طریق سیم فلزی حامل جریان صورت می‌گیرد. ولتاژ مناسب برای لوازم خانگیV220 می‌باشد و اگر جریان بیش از حد بالا برای این ولتاژ خالص V220 اعمال شود جعبه فیوز خانگی از ذوب شدن سیمها جلوگیری میکند. وارد کردن مقدار ایمن و مناسبی از جریان نیز از تاثیرات دمایی بالا برای سیمها و شروع آتش سوزی جلوگیری میکند ADDIN EN.CITE <EndNote><Cite><Author>Harms</Author><Year>2002</Year><RecNum>41</RecNum><DisplayText>[41]</DisplayText><record><rec-number>41</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066441">41</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Harms, A.A.; Schoef ,K.F.; Miley G.H.; Kingdon ,D.R.;</author></authors></contributors><titles><title>principles of Fusion Energy</title><secondary-title>World scientific co.</secondary-title></titles><periodical><full-title>World scientific co.</full-title></periodical><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[41].
به استثنای مواد ابر رسانا، هیچ محیط رسانایی، مانند سیمهای فلزی، وجود ندارد که در آن، الکترونها بتوانند از یک اتم به آسانی به اتم دیگر بپرند مگر اینکه بخشی از انرژی خود را بصورت گرما از دست بدهند که علت آن از دست دادن بخشی از اندازه حرکت الکترونها در برخورد با سایر ذرات طبق اصل پایستگی تکانه و تبدیل آن به گرما می‌باشد. پلاسما بسیار خوب است اما یک هادی ایدهآل نیست و مقاومت آن از مرتبه یک میلیونیوم اهم است. این مقدار مقاومت جزیی باعث گرم شدن پلاسماهایی با چگالی کم (مانند پلاسماهایی که در توکامک استفاده می‌شود) تا دماهایی از مرتبه میلیون درجه سانتیگراد میگردد و تا دماهای 10 میلیون درجه سانتیگرادموثر می‌باشد. در مقادیر دمایی فراتر، مقاومت پلاسما بیش از حد ضعیف شده و اثر بخشی روش را کاهش میدهد. گرمایش مقاومتی سبب ذخیره توانی در واحد حجم پلاسما، با معادله (2-5) داده می‌شود:
PΩMWm3=ηI2=10-6ηj2=2.85×10-15ZeffI2a4mTe32(kev) (2-5)
که در آن I، شدت پلاسما، چگالی جریان که به طور یکنواخت در سطح مقطع پلاسما (I=????a2j) وجود دارد. Zeff، میانگین بارهای موثر همهی یونهای تشکیل دهندهی پلاسما می‌باشد و η، مقاومت پلاسما است. این پارامترها به تعدادی پدیده برخورد بستگی دارد و ممکن است بصورت معادله (2-6) ارائه شود:
η≈Aη(KT)-32 (2-6)
با استفاده از قانون آمپر
µ0I=2π(2-7)

user8293

شناسایی عوامل مؤثر در تشخیص حملات دامگستری در وبگاههای بانکداری الکترونیکی
تشخیص وبگاههای جعلی طراحی شده توسط دامگستران که مانع از سرقت هویت مشتریان و وارد آمدن خسارت مالی به مشتریان و بانکها میشود.
1-5- فرضیهی تحقیقفرضیهی اصلی این پایاننامه به شرح زیر است:
به کمک نظریهی فازی میتوان سامانهای خبره طراحی کرد که حملات دامگستری به وبگاه بانکها را شناسایی کند.
علاوه بر این پرسشهای اصلی پژوهش عبارت است از:
آیا سامانهی خبرهی فازی میتواند فرایند تشخیص وبگاههای دامگستری شده را بهبود بخشد؟
آیا روشهای دادهکاوی فازی میتوانند در استخراج ویژگیها و قواعد مؤثرتر در سامانه‌ی خبره فازی مفید باشند؟
1-6- روش تحقیقاین تحقیق از حیث روش تحقیق، تحقیقی توصیفی-کمّی است که از دو روش تفکر عمیق و مطالعه‌ی پیمایشی بهره برده است. در جمع‌آوری نیز از ابزار مختلف این فن یعنی: مصاحبه، مشاهده، پرسشنامه و بررسی اسناد استفاده شده است. روشگان تحقیق در شکل 1-1 آمده است.
تعریف مسئلهبررسی نظریه فازی، نظریه ژولیده و سامانه خبره فازیروش های حمله به بانک های الکترونیکیبررسی ویژگی های بانکداری الکترونیکیشناسایی عوامل و شاخص های دام گستری در بانکداری الکترونیکیطراحی سامانه خبره فازی برای تشخیص دام گستری و سپس بهبود آن با استفاده از الگوریتم انتخاب ویژگی فازی-ژولیدهاعمال سامانه طراحی شده بر نمونه هایی از حملات دام گستری در وبگاه بانک هااعتبارسنجی نتایج حاصل از سامانه خبره فازی طراحی شده برای تشخیص دام گسترینتیجه گیری و ارائه پیشنهادهای تکمیلی برای تحقیقمطالعات اکتشافی و مقدماتی و کلیات پژوهشمطالعات کتابخانه ایتفکر عمیقمطالعات میدانیتحلیل نتایجفصل اولفصل دوم و سومفصل پنجمفصل پنجمفصل چهارم
شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 1 روشگان اجرای پژوهشعلاوه بر این ابزار و روش‌های گرد آوری داده و فنون مورد استفاده برای تحلیل داده‌ها نیز به‌تفکیک مراحل تحقیق در جدول 1-1 آمده است.
جدول STYLEREF 1 s ‏1 SEQ جدول * ARABIC s 1 1 روشها و ابزار مورد استفاده در تحقیق به تفکیک مراحلمرحله هدف خروجی روش و ابزار
مطالعات اکتشافی کلان تبیین کامل مسأله کلیات تحقیق مطالعات کتابخانه‌ای، مصاحبه با خبرگان
مطالعات عمیق و تکمیلی 1. شناخت انواع حملات اینترنتی به ویژه انواع دامگستری
2. شناخت بانکداری الکترونیکی
3. شناخت مجموعههای فازی
4. شناخت سامانهی خبره فازی
5. شناخت مجموعههای ژولیده منابع تحقیق استفاده از تسهیلات اینترنتی و منابع موجود کتابخانه‌ای
بهره گیری از نظریات خبرگان
6. شناخت عوامل و شاخص های مؤثر در تشخیص دام گستری روش شناسی تحقیق کتابخانه‌ای، طراحی پرسشنامه، تفکر عمیق و استفاده از نرم افزار R و SPSS و اکسل
جمع آوری داده‌ها جمعآوری دادههای مربوط به حدود واژگان فازی هریک از شاخصهای فازی و همینطور داده‌های مربوط به نمونههای واقعی دامگستری ایجاد پایگاه داده مطالعات پیمایشی به کمک پرسشنامه و استفاده از آرشیو حملات دامگستری در وبگاه فیشتنک
طراحی و اجرای سامانهی خبرهی اولیه طراحی سامانهی خبره فازی اولیه برای تشخیص دامگستری سامانهی خبرهی فازی اولیه برای تشخیص دام‌گستری استفاده از روش تحقیق تفکر عمیق و مطالعهی پیمایشی در طراحی سامانهی فازی شناسایی دامگستری با استفاده از نظر خبرگان
استفاده از نرم افزارمتلب
ادامه‌ی جدول 1-1
بهبود سامانهی خبرهی اولیه با استفاده از نظریهی مجموعههای ژولیدهی فازی جمع آوری نمونههای واقعی درگاه پرداخت بانکهای ایرانی و همچنین جمع آوری سایر نمونه‌های دامگستری در بانکهای سراسر جهان برای انجام عملیات کاهش ویژگی مجموعهی ژولیده جهت استخراج اطلاعدهندهترین زیرمجموعه از شاخصهای مؤثر در شناسایی دامگستری در وبگاه بانکهای ایرانی و حذف شاخص‌های زائد دارای افزونگی استخراج مجموعه فروکاست شامل 6 شاخص اصلی و مؤثر از بین 28 شاخص اولیه برای شناسایی دام‌گستری استفاده از روش تحقیق تفکر عمیق و مطالعهی پیمایشی استفاده از نرمافزار دادهکاوی Weka
طراحی و اجرای سامانهی خبرهی ثانویه و بهینه شده طراحی سامانهی خبره فازی-ژولیده برای تشخیص دام‌گستری سامانهی خبره فازی بهینه برای تشخیص دام‌گستری با استفاده از 6 شاخص استفاده از روش تحقیق تفکر عمیق و استفاده از نرم افزار متلب
اعتبارسنجی سامانهی خبرهی فازی برای تشخیص دامگستری ارزیابی نتایج بدست آمده از پیاده‌سازی سامانهی خبره فازی برای تشخیص دامگستری نتایج ارزیابی شده مقایسه با الگوهای معتبر
1-7- محدودیتهای تحقیقمحدودیت اصلی در این تحقیق دشوار بودن دسترسی به خبرگان در زمینهی دامگستری بود. از آنجا که دامگستری شاخهای کاملاً تخصصی از امنیت اطلاعات در فضای اینترنت است، دسترسی به متخصصانی که در مبحث دامگستری خبره بوده و اطلاعات دقیق داشته باشند کاری دشوار بود.
هدف از ابزار توسعهدادهشده، مدلکردن دقیق فضای عدم قطعیت مسئله به کمک مجموعه‌های فازی بود، از طرفی به علت نبودن چنین درسی در مجموعهی دروس مصوب رشتهی «مهندسی فناوری اطلاعات-تجارت الکترونیکی» در دانشکدهی آموزشهای الکترونیکی دانشگاه شیراز، عدم آشنایی پژوهشگر با «نظریهی مجموعههای فازی» در بدو امر، یکی از محدودیتهای مهم انجام پژوهش بود. لذا پژوهشگر موظف بود پیش از آغاز پژوهش، «منطق فازی» را به صورت کلاسیک فرا بگیرد.
از دیگر محدودیتهای این پژوهش، جمعآوری دادههای فازی بود. جدید بودن موضوع و محدود بودن دسترسی به منابع کتابخانهای کشور به دلیل نبودن منابع علمی مرتبط و عدم درک برخی از خبرگان از موضوع تحقیق، دریافت اطلاعات را با مشکل مواجه میکرد.
همچنین یکی از مهمترین محدودیتهای پژوهش، عدم دسترسی به مثالها و آمار دقیق و واقعی دربارهی دامگستری در بانکهای ایرانی و نیز در دسترس نبودن نمونههای واقعی حملات دامگستری به بانکهای ایرانی بود.
1-8- جنبههای جدید و نوآوری تحقیقدر این پژوهش، ویژگیهای مؤثر در تشخیص حملات دامگستری در وبگاهها و به ویژه بانکداری الکترونیکی ایران معرفی خواهد شد که با استفاده از نظریات خبرگان و روشهای ریاضی و آماری به دست آمده است. نوآوری دیگر این پژوهش طراحی سامانهی خبره برای تشخیص حمله دامگستری با استفاده از ویژگیهای مذکور به صورت کارآمد است.
1-9- نتیجهگیریدر این فصل ابتدا موضوع پیشنهادی معرفی و ضرورت انجام آن تبیین شد و سپس مفاهیم اصلی این تحقیق مانند دامگستری، بانکداری الکترونیکی، مجموعههای ژولیده و سامانهی خبرهی فازی معرفی شدند که در فصلهای آینده به تفصیل بررسی خواهند شد.

فصل دوم- امنیت بانکداری الکترونیکی و حملات دامگستری2-1- مقدمهتجارت الکترونیکی مهمترین دستاورد به‌کارگیری فنّاوری اطلاعات در زمینه‌های اقتصادی است. برای توسعه‌ی تجارت الکترونیکی در کشور و ورود به بازارهای جهانی، داشتن نظام بانکی کارآمد از الزامات اساسی به‌‌‌شمار می‌آید. اگرچه طی سال‌های اخیر برخی روش‌های ارائه‌ی خدمات بانکداری الکترونیکی نظیر دستگاه‌های خودپرداز، کارت‌های بدهی،پیش‌پرداخت و غیره در نظام بانکی کشور مورد استفاده قرار گرفته است، اما تا رسیدن به سطحی قابل قبول از بانکداری الکترونیکی راهی طولانی در پیش است. در این میان بحث امنیت نیز به عنوان رکن بقای هر سامانهی الکترونیکی مطرح است. بدون امنیت، بانک الکترونیکی نه تنها فایدهای نخواهد داشت بلکه خسارتهای فراوانی نیز وارد میکند. دنیای امروز ما تفاوتهای چشمگیری با گذشته دارد. در گذشته پیچیدگی کار رخنهگرها و ابزارهایی که در دسترس آنها قرار داشت بسیار محدود و کمتر از امروز بود. گرچه جرایم اینترنتی در گذشته نیز وجود داشت اما به هیچ وجه در سطح گسترده و خطرناک امروز نبود. رخنهگرهای دیروز، امروزه متخصصان امنیت اطلاعات هستند که سعی میکنند از تأثیرات گسترده‌ی حملات اینترنی بکاهند. امروزه مجرمان اینترنتی نه تنها نیاز به خلاقیت زیادی ندارند بلکه اغلب در زمینهی رخنه از دانش چندانی برخوردار نیستند ولی در عین حال بسیار خطرناک هستند. در فضای اینترنت کنونی حتی کودکان نیز میتوانند به آسانی به رایانهها نفوذ کرده و برای اهداف مخربی از آنها بهره بگیرند. در گذشته هدف رخنهگرها عموماً دانشگاهها، کتابخانهها و رایانههای دولتی بود و اغلب انگیزههای بیضرر و کنجکاوی شخصی منجر به حمله میشد؛ حال آنکه امروز با گسترش پهنای باند، رخنهگرها تقریباً هرآنچه آسیبپذیر است را هدف قرار میدهند (James, 2005).
در این فصل ابتدا بانکداری الکترونیکی را تعریف میکنیم و پس از مرور چالشها و زیرساختهای مورد نیاز آن به معرفی یکی از مهمترین و آسیبرسانترین انواع حملات تهدیدکنندهی بانکداری الکترونیکی یعنی دامگستری میپردازیم. در ادامه آمارهای مربوط به دام‌گستری را بررسی کرده و در نهایت با دستهبندی روشهای تشخیص دامگستری فصل را به پایان میبریم.
2-2- بانکداری الکترونیکیبانکداری الکترونیکی عبارت است از ارائهی خدمات بانکی از طریق شبکه‌های رایانه‌ای عمومی و قابل دسترسی (اینترنت یا اینترانت) که از امنیت بالایی برخوردار باشند. بانکداری الکترونیکی دربرگیرنده سامانههایی است که مؤسسات مالی و اشخاص را قادر میسازد تا به حساب خود دسترسی داشته باشند و اطلاعاتی درباره‌ی خدمات و محصولات مالی بهدست آورند. در سامانه‌های بانکداری الکترونیکی از فنّاوری‌های پیشرفته‌ی نرم‌افزاری و سخت‌افزاری مبتنی بر شبکه و مخابرات برای تبادل منابع و اطلاعات مالی بهصورت الکترونیکی استفاده میشود که در نهایت می‌تواند منجر به عدم حضور فیزیکی مشتری در شعب بانکها شود (سعیدی و همکاران، 1386).
براساس تحقیقات مؤسسۀ دیتامانیتور مهم‌ترین مزایای بانکداری الکترونیکی عبارتند از: تمرکز بر شبکههای توزیع جدید، ارائه خدمات اصلاح شده به مشتریان و استفاده از راهبردهای جدید تجارت الکترونیکی. بانکداری الکترونیکی در واقع اوج استفاده از فنّاوری جدید برای حذف دو قید زمان و مکان از خدمات بانکی است (Shah et al., 2005). جدول 2-1 خلاصه‌ای از مزایای بانکداری الکترونیکی را از دیدگاه‌های مختلف بیان میکند.
جدول 2-1 مزایای بانکداری الکترونیکی از جنبههای مختلف (ساروخانی، 1387)دیدگاه مزایا بانکها و مؤسسات مالی حفظ مشتریان علی‌رغم تغییرات مکانی بانکها
کاهش محدودیت جغرافیایی ارائه‌ی خدمات
عدم وابستگی مشتریان به شعبه
افزایش قدرت رقابت
مدیریت بهتر اطلاعات
امکان ردگیری و ثبت کلیه عملیات مشتری
امکان هدایت مشتری به سوی شبکه‌های مناسب
امکان درآمدزایی بر اساس خدمات جدید
کاهش اسناد کاغذی
امکان جستجوی مشتریان جدید در بازارهای هدف
افزایش قدرت رقابت
امکان یکپارچه سازی کانالهای توزیع جدید
افزایش بازدهی
کاهش اشتباهات انسانی
سهولت ارائه خدمات
کاهش مراجعه مستقیم مشتریان به شعب
امکان ارائه آسان خدمات سفارشی
بهینه شدن اندازه موسسه
کاهش هزینهها
کاهش هزینه ارائه خدمات
کاهش هزینه پرسنلی
کاهش هزینه پردازش تراکنشها
کاهش هزینههای نقل و انتقال پول
مشتریان محو شدن مرزهای جغرافیایی
در دسترس بودن خدمات بهصورت 24 ساعته در تمامی روزهای هفته
عدم نیاز به حضور فیزیکی (برخی انواع)
کاهش هزینه استفاده از خدمات
کاهش زمان دسترسی به خدمات
افزایش سرعت ارائه و انجام خدمات
افزایش کیفیت خدمات
عدم وابستگی به شعبه خاص
امکان مدیریت یکپارچه خدمات مورد استفاده
افزایش امنیت تبادلات
پاسخ سریع به مشکلات مشتریان
امکان تهیه گزارشهای متنوع
ادامه‌ی جدول 2-1
جامعه کم شدن هزینه نشر، توزیع و جمعآوری اسکناس
افزایش امنیت تبادلات مالی
رونق تجارت الکترونیکی
2-3- چالشهای بانکداری الکترونیکی در ایراندر این بخش به برخی چالشها و مشکلات توسعه‌ی بانکداری الکترونیکی در ایران اشاره می‌شود. از منظر مشکلات پیادهسازی بانکداری الکترونیکی در بانکهای ایرانی میتوان به سه دسته از عوامل اشاره کرد (فتحیان و همکاران، 1386؛ سعیدی و جهانگرد، 1388):
الف- چالشهای قبل از تحقّق سامانه
عدم توسعه‌ی طرحهای مطالعاتی، نیازسنجی و امکانسنجی پیادهسازی فنّاوری‌های جدید
عدم گزینش و پیادهسازی فنّاوری با بالاترین کارایی در جهت رفع نیازها
نبود فرهنگ پذیرش و دانش کم بانکها در خصوص بانکداری و پول الکترونیکی
ضعف مدیریت در به‌کارگیری متخصصان حرفهای در بخش فنّاوری اطلاعات
عدم تغییر در نگرش سنتی نسبت به باز مهندسی فرایندها
ب- چالشهای هنگام تحقّق سامانه
ضعف زیرساختهایی نظیر خطوط پرسرعت مخابراتی
کمبود حمایت مالی و اعتبارات مورد نیاز
نبود یا کافی نبودن مؤسسات خصوصی مورد نیاز و یا عدم حمایت آنان از بانکداری الکترونیکی شبیه مؤسسات بیمه، گواهی‌دهنده‌ها و غیره.
تحریم اقتصادی و دشواری تهیه‌ی تجهیزات و ملزومات سختافزاری و نرمافزاری
نبود تجربه در تهیه‌ی محتوای لازم و کاربرپسند برای وبگاه بانکها
ج- چالشهای پس از تحقّق سامانه
نبود قوانین و محیط حقوقی لازم و عدم استناد پذیری ادلّه‌ی الکترونیکی
عدم تمایل افراد به فاش کردن مسائل اقتصادی خود (خود سانسوری)
نبود انگیزه‌ی کاربری و عدم فرهنگ سازی برای مردم
عدم اعتماد کاربران
فقدان بسترهای امنیتی مانند امضای دیجیتالی و زیرساخت کلید عمومی
لذا برای توسعه و گسترش بانکداری الکترونیکی، مقدمات و زیرساختهای گوناگونی باید وجود داشته باشد که در صورت عدم توسعۀ مناسب این زیرساختها، دستیابی به تمامی مزایای بانکداری الکترونیکی ممکن نخواهد شد.
2-4- زیرساختهای بانکداری الکترونیکیدر این بخش زیرساختها و بسترهای مورد نیاز بانکداری الکترونیکی را معرفی کرده و به اختصار شرح میدهیم (فتحیان و همکاران، 1386؛ سعیدی و جهانگرد، 1388).
2-4-1- زیرساخت ارتباطی
مهمترین و اثرگذارترین ابزار در آغاز فرایند بانکداری الکترونیکی دسترسی عمومی به بسترهای زیرساختی ارتباطات الکترونیکی است. در مدیریت بانکداری الکترونیکی باید برحسب نوع خدمات و انتظاراتی که از خدمات جدید میرود از مناسبترین ابزار ارتباطی بهره برد. این ابزار شامل استفاده از شبکهی جهانی اینترنت با پهنای باند متناسب، شبکههای داخلی مثل اینترانت، LAN، WAN، سامانههای ماهوارهای، خطوط فیبر نوری، شبکهی گستردهی تلفن همراه، تلفن ثابت و سایر موارد میباشد.
2-4-2- زیرساخت مالی و بانکی
یکی از مهمترین اقدامات بانکها در مسیر تبدیل شدن به بانکی الکترونیکی ایجاد زیرساخت‌هایی مانند کارتهای اعتباری، کارتهای هوشمند، توسعهی سختافزاری شبکههای بانکی و فراگیر کردن دستگاه‌های خودپرداز است. همچنین تطبیق پروتکلهای داخلی شبکه‌های بین بانکی با یکدیگر و پایانههای فروش کالاها تا نقش کارت‌های ارائه شده از طرف بانک در مبادلات روزمره نیز گسترش پیدا کند.
2-4-3- زیرساخت حقوقی و قانونی
برای اینکه بانکداری الکترونیکی با اقبال عمومی مواجه شود در گام اول باید بسترهای قانونی مورد نیاز آن فراهم شود و با شناخت تمامی احتمالات در فرایند بانکداری الکترونیکی درصد ریسک کاهش و اعتماد عمومی و حقوقی نسبت به سامانههای بانکداری الکترونیکی افزایش پیدا کند. گام دوم برای این منظور، تدوین قانون استنادپذیری ادلّهی الکترونیکی است زیرا در فرایند بانکداری الکترونیکی، رکوردهای الکترونیکی جایگزین اسناد کاغذی میشود. بنابراین قانون ادلّهی الکترونیکی یکی از نیازمندیهای اصلی تحقق بانکداری الکترونیکی است.
2-4-4- زیرساخت فرهنگی و نیروی انسانی
برای توسعهی بانکداری الکترونیکی نیاز جدی به فرهنگسازی برای جذب و توجیه اقتصادی جهت بهرهبرداری از این سامانهها برای مشتریان است.
2-4-5- زیرساخت نرمافزاری و امنیتی
یکی از عوامل مهم در مقبولیت و گسترده شدن فرایندهای بانکداری الکترونیکی توسعه‌ی نرم‌افزاری و افزایش امنیت در سامانههای آن است. در صورتی که زمینه‌ی لازم جهت تأمین این دو نیاز فراهم شود کاربرد عمومی سامانههای الکترونیکی گسترش و تسهیل مییابد، ریسک استفاده از این سامانهها کاهش مییابد و اعتماد و رضایتمندی مشتری افزایش مییابد. برای یک ارسال امن نکات زیر باید رعایت شود(Endicott et al., 2007; Gregory, 2010):
اطلاعات برای گیرنده و فرستنده قابل دسترسی باشند. (در دسترس بودن)
اطلاعات در طول زمان ارسال تغییر نکرده باشد. (صحت)
گیرنده مطمئن شود که اطلاعات از فرستنده مورد نظر رسیده است. (اصالت)
اطلاعات فقط برای گیرنده حقیقی و مجاز افشا شود. (محرمانگی)
فرستنده نتواند منکر اطلاعاتی که میفرستد بشود. (انکار ناپذیری)
2-5- امنیت در بانکداری الکترونیکیبانکداری الکترونیکی متکی بر محیط مبتنی بر شبکه و اینترنت است. اینترنت به عنوان شبکه‌ای عمومی، با مباحث محرمانگی و امنیت اطلاعات مواجه است. به همین دلیل بانکداری اینترنتی و برخط میتواند مخاطرههای فراوانی برای مؤسسات و بنگاههای اقتصادی داشته باشد که با گزینش و انتخاب یک برنامهی جامع مدیریت ریسک، قابل کنترل و مدیریت خواهند بود. حفظ امنیت اطلاعات از مباحث مهم تجارت الکترونیکی است.
امنیت بانکداری الکترونیکی را میتوان از چند جنبه مورد بررسی قرار داد (صفوی، 1387):
امنیت فیزیکی
امنیت کارمندان و کاربران سامانه
امنیت نرمافزار سامانهی یکپارچهی بانکداری الکترونیکی
اینترنت شبکهای عمومی و باز است که هویت کاربران آن به آسانی قابل شناسایی نیست. علاوه بر این مسیرهای ارتباطی در اینترنت فیزیکی نیستند که موجب میشود انواع حملات و مزاحمتها برای کاربران ایجاد شود. به طور کلی میتوان سه مشکل اصلی امنیتی در بانکداری الکترونیکی را موارد زیر دانست (عموزاد خلیلی و همکاران، 1387):
چگونه میتوانیم به مشتری این اطمینان را بدهیم که با ورود به وبگاه و انجام معامله در آن، شماره رمز کارت اعتباری وی مورد سرقت و جعل قرار نخواهد گرفت؟
شنود: چگونه میتوانیم مطمئن شویم که اطلاعات شماره حساب مشتری هنگام معامله در وب، قابل دستیابی توسط متخلفان نیست؟
مشتری چگونه میتواند یقین حاصل کند که اطلاعات شخصی او توسط متخلفان قابل تغییر نیست؟
2-6- تهدیدات و کلاهبرداریها در اینترنتبه طور کلی اهداف متفاوتی را میتوان برای کلاهبرداران اینترنتی برشمرد که عبارتند از : کسب سودهای مالی، تغییر عرف و رسوم اخلاقی، و اهداف گوناکون دیگری که میتواند برای هر فرد متفاوت باشد. در تجارت الکترونیکی، هدف اصلی فریبکاریها، کسب سودهای مالی است. آسیبهای حاصل از خرابکاریهای اینترنتی عبارتند از : از دست دادن سرمایه، رسوایی، خدشهدار شدن حریم شخصی و خسارتهای فیزیکی که هر کدام از این موارد، به دنبال خود از دست دادن زمان و همچنین ایجاد نگرانیهای ذهنی را برای افراد زیاندیده به همراه خواهد داشت (Kim et al., 2011).
طبیعت اینترنت منجر به پررنگ شدن تهدیدات و فریبکاریهای مختلف در آن و گسترش جنبهی تاریک و مبهم شبکه میشود. دسترسی جهانی به اینترنت، سرعت انتشار بالا، گمنامی افراد و عدم ملاقات رو در رو، دسترسی رایگان به خدمات و محتواهای با ارزش و همچنین کمبود قوانین مناسب و توافقهای بین المللی از جمله عواملی هستند که موجب شده تا بسیاری از این تهدیدات فراگیر شده و پیگرد آنها دشوار گردد. در ادامه به توضیح مختصر برخی از این عوامل میپردازیم:
الف- گمنامی
بسیاری از وبگاهها، برای عضویت در وبگاه، تنها نشانی یک رایانامه معتبر را از کاربر درخواست میکنند و یک فرد میتواند به عنوان چندین کاربر و با نشانی رایانامههای متفاوت عضو وبگاه موردنظر شود. گمنامی باعث میشود که برخی افراد بدون هرگونه حس بازدارنده به اعمالی مثل حملات اینترنتی، انتشار اطلاعات نادرست و مطالب نامربوط در مورد سایر افراد و ... بپردازند (Kim et al. , 2011).
ب- دسترسی رایگان به خدمات و محتواهای با ارزش
دسترسی رایگان به محتواهایی با ارزش بالا، گاهی باعث میشود که ارزش محصولات و خدمات در محیط اینترنت، پایینتر از حد طبیعی خود جلوه کند و کاربران اینترنت همیشه انتظار دریافت محصولات و خدمات رایگان را داشته باشند که این مسئله میتواند به عنوان چالش و تهدیدی برای افراد فعال در زمینه تجارت الکترونیکی مطرح شود. به عنوان مثال از محتواهای رایگان میتوان به این موارد اشاره کرد: جویشگرها که انواع محتواهای رایگان را برای کاربران جستجو کرده و در اختیار آنها قرار میدهند، دریافت نرم افزارهای رایگان (گوگل اپلیکیشن، جیمیل و ...)، وبگاههای اشتراکگذاری محتوای ویدیویی (یوتیوب و ...)، وبگاههای شبکههای اجتماعی ( فیسبوک و مایاسپیس و ...) و حتی وبگاههای اشتراک پروندههای غیرقانونی(Kim et al. , 2011).
در هرحال همچنان که پاک کردن کامل دنیای حقیقی از جرائم و اعمال غیراخلاقی و غیرقانونی امری غیرممکن است، در دنیای مجازی نیز وضع به همین منوال است. لذا بهترین کار، کنترل تهدیدات و نگه داشتن آنها در یک سطح قابل تحمل است.
تهدیدات و فریبکاریهای اینترنتی انواع گوناگونی دارند که از آن جمله میتوان به هرزنامه‌ها، ویروسها و کرمهای کامپیوتری، رخنه، حملات دی‌اواِس، کلاهبرداریهای برخط، دزدیده شدن هویت افراد، تجاوز از حقوق مالکیت دیجیتال و تجاوز از حریم شخصی اشاره کرد. در ادامه به بررسی یکی از چالشبرانگیزترین کلاهبرداریهای اینترنتی در حوزهی بانکداری الکترونیکی میپردازیم.
2-7- دامگستریواژهی «Phishing» در زبان انگلیسی واژهای جدید است که برخی آن را مخفف عبارت «Password Harvesting Fishing» به معنای «شکار گذرواژهی کاربر از طریق طعمه‌گذاری» و برخی دیگر آن را استعاره‌ای از واژهی «Fishing» به معنای «ماهیگیری» تعبیر کرده‌اند. سازندگان این واژه کوشیده‌اند با جایگزین کردن Ph به جای F مفهوم فریفتن را به مخاطب القا کنند( نوعی پور، 1383).
دامگستری، یکی از روشهای مهندسی اجتماعی است که معنای آن فریب کاربران اینترنت از طریق هدایت آنها به سمت وبگاههایی است که از نظر ظاهری کاملاً شبیه به وبگاه موردنظر کاربر هستند؛ این موضوع معمولاً در مورد وبگاه بانکها، مؤسسات اعتباری، حراجهای اینترنتی، شبکههای اجتماعی محبوب و مردمی، وبگاههای ارائهدهنده خدمات اینترنتی و ... صورت می‌گیرد. ایده اصلی این حمله آن است که طعمهای برای افراد فرستاده میشود به امید اینکه آنان، طعمه را گرفته و شکار شوند. در بسیاری موارد، این طعمه رایانامه یا هرزنامه است که کاربر را برای ورود به وبگاه، فریب میدهد. این نوع از فریبکاری، کاربر را به سمتی هدایت می‌کند که اطلاعات حیاتی خود مانند نام، گذرواژه، مشخصات کارت اعتباری، مشخصات حساب بانکی و ... را وارد وبگاه کند. سپس این اطلاعات سرقت شده و برای مقاصدی مثل دزدی، کلاهبرداری و .. مورد استفاده قرار میگیرند (Peppard and Rylander, 2005).
دامگستری در اواسط دههی 1990 میلادی در شبکهی برخط امریکا آغاز شد. دامگسترها خود را به جای کارکنان AOL جا میزدند و برای قربانیان پیامهای فوری ارسال میکردند و به ظاهر از آنها میخواستند تا گذرواژههایشان را بازبینی یا برای تأیید اطلاعات صورتحساب، وارد کنند. به محض اینکه قربانی گذرواژهاش را افشا میکرد، مهاجم با دسترسی به حساب کاربری او قادر بود هر فعالیت غیرقانونی انجام دهد. پس از اینکهAOL اینگونه دامگستریهای مبتنی بر پیام فوری را محدود کرد، دامگسترها مجبور شدند به سراغ سایر ابزار به ویژه رایانامه بروند. همچنین دامگسترها دریافتند که میتوانند از مؤسسات مالی و اعتباری سود قابل توجهی کسب کنند. با این هدف در ژانویه 2001، کاربرانِ شبکهی پرداخت برخط E-gold مورد حمله قرار گرفتند. گرچه این حملات با استفاده از رایانامههای متنی خام، موفق نبود اما پس از یازدهم سپتامبر 2001 به شیوههای دیگری که مؤثرتر بودند ادامه پیدا کرد. شیوههایی که از آن پس رایج شد به شکل حملات دامگستری کنونی است که در آن پیوندی از وبگاه جعلی در رایانامه وجود دارد و فرد با کلیک روی آن به وبگاه دامگستری شده هدایت میشود (Miller, 2010).
اولین بررسی در مورد مفهوم دامگستری مربوط به کنفرانس اینترکس در سال 1987 است. جری فلیکس و کریس هاک، در پروژه - ریسرچای تحت عنوان «امنیت سامانه: از دید نفوذگر» روشی را توصیف کردند که در آن شخص سومی از خدمات مورد اطمینان در محیط وب تقلید می کند (Robson, 2011).
2-7-1- انواع دامگستری
به طور کلی می توان انواع دامگستری را به سه دسته تقسیم کرد:
الف- جعل هویت
این روش نسبت به سایر روشها رایجتر و به مراتب آسانتر است. این روش شامل ساخت وبگاهی کاملاً جعلی است که کاربر ترغیب میشود از آن بازدید کند. این وبگاه جعلی تصاویری از وبگاه اصلی را در بر دارد و حتی ممکن است پیوندهایی به آن داشته باشد (James, 2005).
ب- ارسال (دامگستری مبتنی بر رایانامه)
این روش بیشتر در وبگاههایی نظیر آمازون، Ebay و PayPal مشاهده شده است و در آن رایانامهای به کاربران ارسال میشود که تمامی نمادها و گرافیک وبگاه قانونی را دارد. وقتی قربانی از طریق پیوند درون این رایانامه، اطلاعات محرمانه خود را وارد میکند، این اطلاعات به کارساز متخاصم فرستاده میشود. پس از آن یا کاربر به وبگاه صحیح و قانونی هدایت می‌شود یا با پیغام خطا در ورود اطلاعات مواجه میگردد. امروزه به علت حجم بالای html در اینگونه رایانامهها، بسیاری از ویروسکشها و پادهرزنامهها، جلوِ آنها را میگیرند که از دید دام‌گستران ضعف این روش محسوب میشود (James, 2005).
ج- پنجرههای بالاپَر
این روش حملهای خلاقانه اما محدود است. این نوع دامگستری در سپتامبر سال 2003 هنگامی شناسایی شد که سیتیبانک پشت سرهم مورد حملهی دامگستری قرار میگرفت. این روش بدین صورت است که شما روی پیوند درون رایانامه کلیک میکنید و با یک پنجرهی بالاپَر مواجه میشوید. اما پشت این پنجره وبگاه اصلی و قانونی هدف دامگسترها قرار دارد. لذا این روش بسیار ماهرانه و گمراهکننده است و بیش از سایر روشهای دامگستری، اعتماد کاربران را جلب میکند. البته این روش امروزه ناکارآمد است زیرا بیشتر مرورگرهای وب برای جلوگیری از باز شدن پنجرههای بالاپَر به صورت پیشفرض «سدّکنندهی پنجرهی بالاپر» را در خود دارند (James, 2005).
یکی از شاخههای حملات دامگستری ، «دامگستری صوتی» نام دارد. واژهی «Vishing» از ترکیب دو واژهی انگلیسی «Voice» به معنای «صدا» و «Phishing» به وجود آمده است که در آن به جای فرستادن رایانامه به سمت کاربر و درخواست از او برای کلیک بر روی پیوندی خاص، رخنهگر طی یک تماس تلفنی، شماره تلفنی را برای کاربر ارسال میکند و از وی میخواهد که با آن شماره تماس بگیرد. وقتی کاربر تماس گرفت، یک صدای ضبط شده از او میخواهد که اطلاعات شخصی خود را وارد کند. مثلاً وقتی کاربر مشکلی در حساب بانکی یا کارت اعتباری خود دارد، این پیام از پیش ضبط شده از او میخواهد که با یک شماره خاص تماس بگیرد و برای حل مشکل تقاضای کمک کند. در بسیاری موارد، سخنگو از نوع سخن گفتن افراد بخش پیشگیری از کلاهبرداری بانک یا شرکت کارت اعتباری تقلید میکند؛ اگر پیام، متقاعدکننده باشد، برخی افراد گیرنده پیام، با شماره داده شده تماس خواهند گرفت (Forte, 2009).
2-8- آمارهای مربوط به دامگستری
حملات دامگستری با آهنگ رو به تزایدی در حال رشد هستند. به گزارش کنسرسیوم بین المللی «گروه پادامگستری»، تعداد وبگاههای دامگستری شده در حال افزایش است (Toolan and Carthy, 2011). در سال 2006، تعداد قربانیان 25/3 میلیون نفر بود که در سال 2007 این تعداد به 5/4 میلیون نفر افزایش پیدا کرد (Abu-Nimeh et al., 2008). بنا به گزارش این گروه، در سال 2006، تعداد حملات دامگستری 1800 مورد بوده است (Yu et al., 2009). در دسامبر 2007، شرکت گارتنر گزارش داد حملات دامگستری در امریکا در مقایسه با دو سال قبل افزایش پیدا کرده است (Abu-Nimeh et al., 2008). پس از آن در سال 2008 هم تعداد 34758 حمله دامگستری گزارش شد (Toolan and Carthy, 2011). براساس گزارش شرکت امنیتی آر اس ای، حملات دامگستری در سال 2010 در مقایسه با سال قبل از آن 27% افزایش یافت (Esther, 2011). این اعداد نشان دهندهی افزایش حجم حملات دامگستری در سالهای اخیر است.
میزبانی حملات دامگستری متفاوت از حجم حملات دامگستری است. میزبانی حملات، اشاره به کارسازهایی دارد که مهاجمان برای حمله از آنها بهره بردهاند به این معنا که اسکریپتهای دامگستری خود را بر روی کارساز آنها بارگذاری کردهاند (این کار بدون اطلاع صاحبان کارساز و از طریق رخنهکردن وبگاه صورت میگیرد). حال آنکه، منظور از حجم حملات، تعداد دفعاتی است که وبگاههای کشوری مورد حملهی دامگستری واقع شدهاند. آمارهای گروه پادامگستری نشان میدهد که در ماه مارس 2006، بیشترین میزبانی حملات مربوط به امریکا (13/35%)، چین (93/11%) و جمهوری کره (85/8%) بوده است (Chen and Guo, 2006). در میان کشورهای میزبان دامگستری، امریکا رتبهی اول را داراست و بیشترین حجم حملات دامگستری به ترتیب مربوط به دو کشور امریکا و انگلستان بوده است. بعد از امریکا، در فاصله بین اکتبر تا دسامبر 2010، کانادا از رتبه هفتم به رتبه دوم رسید. اما کمی بعد در ژانویه 2011 جای خود را به کره جنوبی داد(RSA, 2011).
هرچه یک وبگاه دامگستری مدت زمان بیشتری فعال بماند، قربانیها و مؤسسات مالی پول بیشتری از دست میدهند. در اوایل سال 2008، هر حمله دامگستری به طور میانگین 50 ساعت مؤثر بوده است (مدت زمانی که کاربران در معرض خطا در تشخیص وبگاه واقعی بوده اند)، اما در اواخر سال 2009، این مقدار به 32 ساعت کاهش یافته است (APWG, 2010). این کاهش مبیّن افزایش سرعت و دقت در تشخیص دامگستری است. شکل 2-1 تغییرات دام‌گستری مبتنی بر رایانامه را بین سال‌های 2004 تا 2012 نشان می‌دهد.

شکل 2-1 تغییرات دامگستری مبتنی بر رایانامه در سطح جهان بین سالهای 2004 تا 2012 (Pimanova, 2012)
بر اساس گزارش APWG، حدود دوسوم حملات دامگستری در نیمهی دوم سال 2009، از طرف گروهی به نام «اَوِلانش» صورت گرفته است. این گروه احتمالاً جانشین گروه «راک‌فیش» شده بودند. گروه اولانش مسؤولیت 126000 حمله را پذیرفت که البته میزان موفقیت کمی داشتند. مهمترین دلیل عدم توفیق آنها، همکاری نزدیک بانکهای هدف، ثبت‌کنندگان نام دامنهها و سایر فراهمکنندگان خدمات، برای جلوگیری از حملات دامگستری بوده است. برخلاف اکثر دامگسترها که بیشتر دامنههای .com را برای حمله در اولویت قرار میدهند (47% حملات)، گروه اولانش بیشتر به دامنههای .eu ، .uk و .net ، تمایل دارد. البته هنوز 23% حملات این گروه مربوط به دامنه .com است (APWG, 2010).
همانطور که شکل 2-2 نشان می‌دهد، در ژوئیهی سال 2012 بیشترین حملات دام‌گستری به ترتیب مربوط به ارائه‌دهنده‌های خدمات اطلاعاتی (مانند کتابخانهها و شبکههای اجتماعی)، بانکها و شرکتهای فعال در زمینهی تجارت الکترونیکی بوده است (Pimanova, 2012).

شکل 2-2 سازمانهای مورد حملهی دامگستری در سال 2012 به تفکیک صنعت (Pimanova, 2012)
در جدول 2-2، وبگاههایی که بیش از سایر وبگاهها مورد حملات دامگستری بودهاند معرفی شدهاند. همچنان که در این جدول مشاهده میشود اکثر وبگاههای این فهرست بانکی هستند.
جدول 2-2 ده وبگاه برتر از نظر میزان حملات دامگستری در سالهای اخیر(Walsh, 2010; Kaspersky Lab, 2011)رتبه از طریق وبگاه جعلی (روش جعل هویت) از طریق رایانامه (روش ارسال)
1 Paypal Paypal
2 ebay Common Wealth Bank of Australia
3 Facebook Absa Bank of South Africa
4 Banco Real of Brazil Chase Bank
5 Lloyds TSB Western Union Bank
6 Habbo Bank of America
7 Banco de Brandesco Banco de Brandesco
8 NatWest Lloyds TSB
9 Banco Santander, S.A. NedBank of South Africa
10 Battle.Net Yahoo!
2-8-1- خسارات ناشی از دامگستری
دامگستری از زوایای مختلفی به کاربران، سازمان ها و ارزش نمانامها ضرر و زیان وارد میکند. در زیر به پیامدهای اینگونه حملات اشاره میکنیم (Kabay, 2004):
الف- اثر مستقیم دامگستری که موجب افشای اطلاعات محرمانهی کاربران اینترنت مانند شناسهی کاربری و گذرواژه یا سایر مشخصات حساس کارت اعتباری آنها شده و از این طریق به آنها خسارات مالی وارد میسازد.
ب- حسن نیت و اعتماد کاربران نسبت به تراکنش و مبادلات مالی اینترنتی را از بین میبرد و باعث ایجاد نگرشی منفی در آنها میشود که شرکتهای طرف قرارداد در بستر اینترنت از جمله بانکها، مؤسسات مالی و فروشگاه ها، به هیچ وجه اقدامات کافی برای محافظت از مشتریانشان را انجام نمیدهند.
ج- به تدریج در اثر سلب اطمینان کاربران، موجب خودداری مردم از انجام خرید و فروش و کاربرد اینترنت در انجام فعالیتهای تجاری شده و مانع گسترش و موفقیت هرچه بیشتر تجارت الکترونیکی میشود.
د- ارتباطات و تراکنشهای مؤثر و موفق اینترنتی را تحت تأثیر قرار داده و تهدید میکند.
ه- دامگستری بر نگرش سهامداران تأثیر منفی میگذارد و منجر به ناتوانی در حفظ ارزش نمانامها شده و در نهایت باعث ورشکستگی آنها میشود.
اعتماد یکی از مهمترین مشخصههای موفقیت در بانکداری الکترونیکی است (Aburrous et al., 2010c). همانطور که اشاره شد، دامگستری میتواند به شدت به کسب و کار در اینترنت صدمه بزند چراکه مردم در اثر ترس از اینکه قربانی کلاهبرداری شوند، به تدریج اعتماد خود به تراکنشهای اینترنتی را از دست میدهند (Ragucci and Robila, 2006). برای مثال بسیاری از مردم فکر میکنند استفاده از بانکداری اینترنتی احتمال اینکه گرفتار دامگستری و دزدی هویت شوند را افزایش میدهد. این درحالی است که بانکداری برخط نسبت به بانکداری کاغذی، محافظت بیشتری از هویت افراد به عمل میآورد (Aburrous et al., 2010c).
نتایج بررسیها نشان میدهد که با ارسال 5 میلیون رایانامهی دامگستری، 2500 نفر فریب میخورند. هرچند این تعداد، تنها 05/0% از افراد تشکیل میدهند. اما منفعت حاصل از این تعداد، همچنان دامگستری را منبع خوبی برای کسب درآمد توسط کلاهبرداران اینترنتی کرده است (Toolan and Carthy, 2011). به طور کلی برآورد حجم خسارات مالی ناشی از حملات دامگستری، کار دشواری است زیرا:
بانک ها و مؤسسات مالی تمایلی به افشای چنین جزئیاتی ندارند.
در برخی موارد، حملات دامگستری توسط کاربران گزارش داده نمیشوند.
نمیتوان در همهی مواقع، برداشته شدن پول از حساب بانکی را، با قطعیت به علت دزدیده شدن گذرواژهی مشتری طی حمله دامگستری دانست.
مهاجمان گاهی برای دزدیدن پول به وبگاهها حمله نمیکنند. بلکه گاهی منابع دیگری را دزدیده و استفاده کنند. به عنوان مثال، دامگسترهایی که به آژانسهای گزارش اعتبار (شرکتهایی که اطلاعات مربوط به اعتبار مشتریان را به تفکیک نام آنها، از منابع مختلف و برای کاربردهای مالی و اعتباری، گردآوری میکنند) حمله میکنند تا دادههای مربوط به مشتریان معتبر، را به دست آورند و یا دامگسترهایی که به کارسازهای رایگان پست الکترونیکی حمله میکنند تا بتوانند از طریق آنها هرزنامه ارسال کنند و قربانیهای بیشتری را فریب دهند. چنین حملات دامگستری منجر به خسارتهایی میشوند که به سختی قابل برآورد هستند (Auron, 2010).
مطالعات انجام شده، نشاندهندهی رشد ثابت و مداوم در فعالیتهای دامگستری و میزان خسارات مالی مربوط به آن است (Abu-Nimeh et al., 2008; Yu et al., 2009). اعداد و ارقامی که در ادامه به آنها اشاره میکنیم هم به خوبی مؤید این مطلب هستند.
در سال 2003، میزان خسارتهای مالی به بانکها و مؤسسات اعتباری امریکا 2/1 میلیارد دلار تخمین زده شده است که این عدد در سال 2005 به 2 میلیارد دلار رسید (Abu-Nimeh et al., 2008). در سال 2004، مؤسسه گارتنر گزارش کرد که در فاصلهی آوریل 2003 تا آوریل 2004، 8/1 میلیون نفر قربانی دامگستری بوده اند که در مجموع 2/1 میلیارد دلار خسارت مالی وارد کرد (Chen and Guo, 2006). بر اساس تحقیقی که این مؤسسه انجام داده است، حملات دامگستری در امریکا در سال 2007 افزایش یافته و 2/3 میلیارد دلار خسارت وارد کرد. تحقیق دیگری هم نشان میدهد که 6/3 میلیون نفر بین اوت 2006 تا اوت 2007 متحمل خسارت مالی ناشی از دامگستری شده اند. این درحالی است که سال قبل از آن این تعداد 3/2 میلیون نفر بودند. نتایج این تحقیق نشان میدهد که حملات دامگستری و بدافزار همچنان رشد خواهد کرد (Yu et al., 2009). در سال 2004، گارتنر تخمین زد که هر قربانی دامگستری، 1244 دلار خسارت میبیند (Aburrous et al., 2010a). در سال 2007 گزارش دیگری نشان داد که سالانه 311449 نفر مورد حمله دامگستری قرار میگیرند که 350 میلیون دلار خسارت ایجاد میکند (Aburrous et al., 2010a). به گزارش یکی از تحلیلگران گارتنر، خسارات مالی ناشی از دامگستری در سال 2011 در حدود 5/2 میلیارد دلار تخمین زده شده است (Seidman, 2012).
البته شایان ذکر است که شرکت مایکروسافت به میزان خساراتی که مؤسسه گارتنر تخمین زده است، اعتراض کرد و اعداد اعلام شده را غلو شده خواند. مایکروسافت ادعا کرد که تعداد بسیار کمی از افراد تحت تأثیر دامگستری فریب میخورند و میزان خسارات 50 برابر کمتر از میزان تخمینی توسط تحلیلگران است. بنا به گفتهی مایکروسافت میزان خسارات سالانه تنها 61 میلیون دلار (40 میلیون یورو) است. در مقابل مؤسسه گارتنر نیز از صحت برآوردهای خود دفاع کرد و ریشهی این اختلافها را در عدم انتشار میزان خسارات وارده توسط بانکها و مؤسسات مالی و اعتباری دانست (Espiner, 2009). البته گارتنر در سال 2008، نتیجهی جالبی را اعلام کرد: در سال 2008 به طور متوسط در هر حملهی دامگستری 351 دلار خسارت ایجاد شده است که در مقایسه با سال 2007، 60% کاهش داشته است و علت این کاهش، بهبود روشهای تشخیص توسط مؤسسات مالی بوده است که البته ایجاد این بهبودها خود هزینهبر است (Moscaritolo, 2009). لذا در مجموع هزینهها کاهش چشمگیری نیافته است. جدول 2-3 خلاصهی مهمترین آمار منتشر شده را نشان میدهد. شایان ذکر است با توجه به محدودیتهای موجود در خصوص دسترسی به آمار و ارقام دامگستری که پیش از این هم به آن اشاره شد، در مورد خانههای خالی جدول هیچ اطلاعاتی در دست نبود.
جدول 2-3 خسارات مالی دامگستریسال خسارت مالی تعداد قربانیان
2003 - 2004 2/1 میلیارد دلار 8/1 میلیون نفر
2004- 2005 2 میلیارد دلار -
2005- 2006 - 3/2 میلیون نفر
2006- 2007 - 6/3 میلیون نفر
2007- 2008 2/3 میلیارد دلار 3111449 نفر
2011- 2012 5/2 میلیارد دلار -
2-8-2- دامگستری در ایران
موضوع دامگستری در ایران نیز بسیار حائز اهمیت است زیرا آمار نشان میدهد، جرائم رایانه‌ای در سال 1390 در کشور رشد ۸/۳ برابری نسبت به سال گذشته داشته و بیشترین آمار مربوط به جرایم رایانه‌ای بانکی بوده است. براساس این گزارش، حملات دامگستری و شیوهای از آن به نام «فارمینگ» مقام سوم را در میان جرایم اینترنتی کشور دارد. علاوه بر این در سال 1389 تعداد 1035 فقره جرم اینترنتی در ایران به ثبت رسیده است که این آمار در سال 1390 به 4000 مورد افزایش یافته است و در صورت ادامه روند کنونی رشد جرائم اینترنتی در ایران، میزان این جرائم در سال 1391 به ۸ تا ۱۰هزار فقره افزایش می‌یابد (راه پرداخت، 1391).
با توجه به نکات فوق واضح است که مقابله با دامگستری یکی از مسائل جدی در عرصهی امنیت شبکههای بانکداری الکترونیکی است. از این رو در بخش بعد به شناسایی روشهای مرسوم تشخیص دامگستری میپردازیم.
2-9- روشهای تشخیص دامگستریبیشتر روشهای مقابله با دامگستری شامل احراز هویت، فیلتر کردن، ردیابی و تحلیل حمله، گزارش دامگستری و فشار حقوقی و اعمال قوانین است. این خدمات پادامگستری اینترنتی در کارسازهای رایانامه و مرورگرهای وب پیادهسازی شده است و از طریق نوار ابزار مرورگر وب قابل دسترسی و استفاده است (Zhang et al., 2011).
از دیدگاه کلّی میتوان تمامی روشهای تشخیص دامگستری را به دو دستهی اصلی تقسیم‌ کرد: یکی دفاع سمت کارساز، که از گواهیهای SSL و تصاویر وبگاههای انتخاب شده توسط کاربر و تعدادی مشخصههای امنیتی دیگر استفاده و سعی میکند به این صورت به کاربر کمک نماید تا از قانونی بودن وبگاه، اطمینان حاصل کند و دیگری دفاع سمت کارخواه، که مرورگرهای وب را به ابزارهای خودکار تشخیص دامگستری مجهز میکند تا به کاربران در برابر وبگاههای مشکوک اخطار دهد (Yue and Wang, 2008).
به دلیل اهمیت موضوع دامگستری، ظرف یک دههی اخیر روشهای مختلفی برای شناسایی و مبارزه با این روش فریب ارائه شده است. در ادامه این روشها را دستهبندی کرده و به اجمال بررسی میکنیم:
2-9-1- رویکرد اول: فیلتر موجود در نوار ابزار مرورگر وب
یکی از روشهای رایج برای حل مشکل دامگستری، افزودن ویژگیهای امنیتی به مرورگرهای اینترنت است. اینگونه فیلترها بدین صورت عمل میکنند که به محض کلیک کاربر بر روی پیوند مربوط به وبگاه مشکوک به دامگستری و یا وارد کردن URL آن در نوار نشانی، واکنش نشان میدهند. این واکنش عموماً به صورت یک اخطار است که قصد دارد کاربر را از ورود به وبگاه منصرف کند. چنین مرورگرهایی مکانیزمی دارند که تحت عنوان فهرست سیاه شناخته می‌شود (Sharif, 2005).
بیشتر فهرستهای سیاه با استفاده از مکانیزمهای خودکار ایجاد میشوند. گرچه فهرست سیاه طراحی و پیادهسازی آسانی دارد، اما مشکل بزرگی هم دارد و آن کامل نبودن است. جرایم در فضای مجازی به شدت زیرکانه هستند و مجرمان با استفاده از روشهای پیچیدهای از فهرست سیاه فرار میکنند. (Yue and Wang, 2008) برای جلوگیری از فریب کاربران در برابر دامگستری، به جای اخطار دادن، رویکرد جدیدی پیشنهاد داده اند و آن یک ابزار پادام‌گستری منحصر به فرد سمت کاربر به نام «بوگسبایتر» است که به صورت نامحسوس تعداد بسیار زیادی، اطلاعات محرمانهی جعلی وارد وبگاه مشکوک میکند و به این صورت اطلاعات محرمانهی واقعی قربانی را در میان اطلاعات غیرواقعی پنهان میکند. اطلاعات جعلی وارد شده به وبگاه، دامگسترها را وادار میکند که با آزمودن تمامی اطلاعات جمعآوری شده، اطلاعات اصلی و صحیح را پیدا کنند و همین عمل (بررسی صحت اطلاعات توسط دامگستران) فرصتی برای وبگاه اصلی ایجاد میکند تا از سرقت اطلاعات آگاه شود. این روش از آن جهت سودمند است که نیازی به واکنش کاربر نسبت به خطای ارسالی ندارد و کاملاً خودکار عمل میکند اما همچنان نقص استفاده از فهرستهای سیاه که همانا نیاز به بروز شدن است را به همراه دارد.
2-9-2- رویکرد دوم: پیشگیری از دامگستری در مرحلهی رایانامه
این رویکرد مربوط به زمانی است که کاربر برای اولین بار رایانامهی حاوی پیوند وبگاه دام‌گستری شده را دریافت میکند. بدین منظور روشهای مختلفی مورد استفاده قرار میگیرد که مهمترین آنها عبارتند از:
الف- استفاده از روش شبکهی بیزی
شبکه‌ی بیز عبارت است از مجموعه‌ای از متغیرهای تصادفی (گسسته یا پیوسته) که گره‌های شبکه را تشکیل داده به همراه مجموعه‌ای از پیوندهای جهت‌دار که ارتباط هر زوج گره را تعیین می‌کنند. برای هر گره توزیع احتمال شرطی تعریف می‌شود که تأثیر والدین را روی آن تعریف می‌کند. گره‌های این شبکه هیچ دور جهت داری ندارد (صابری، 1389). در پژوهش (Abu-Nimeh et al., 2008)، یک معماری کارساز و کارخواه توزیعشده به نام «سی بارت» ارائه شده است که بر اساس نسخهی اصلاح شدهی درخت رگرسیون بیزی است. این معماری جدید برای آن است تا همچنان که از دقت بالای سیبارت بهره میبرد، سربار آن را حذف کند. در این معماری توزیع شده، «سیبارت» درون یک کارساز مرکزی پیاده‌سازی شده و کارخواه‌ها که منابع محدودی دارند از «کارت» که نوعی دستهبند است، استفاده میکنند. درخت رگرسیون بیزی، یادگیرنده‌ای برای پیشبینی نتیجههای کمّی است که از رگرسیون روی مشاهدات استفاده می‌کند. رگرسیون فرایند پیشبینی خروجیهای کمّی پیوسته است. اما وقتی نتیجه‌های کیفی را پیشبینی میکنیم به آن مسئله دسته‌بندی میگویند. پیشبینی دام‌گستری هم یک مسئلهی دسته‌بندی دودویی است. زیرا در بررسی رایانامهها ما دو خروجی به دست میآوریم: یا دامگستری شده است (=1) یا قانونی است (=0) و ثابت شده است که «بارت» یا «درخت رگرسیون جمعپذیر بیزی» روش امیدبخشی برای دستهبندی هرزنامهها است.
همان‌طور که میدانیم در دستگاههای بیسیم و انواع PDA ، ظرفیت حافظه و قابلیت پردازش کم است. این محدودیتها بر راهحلهای امنیتی اثر میگذارند. مطالعه (Abu-Nimeh et al., 2008) بر این هدف تمرکز دارد و در واقع راه حلی برای تشخیص رایانامههای دام‌گستر در محیطهای سیار ارائه میدهد.
ب- استفاده از روشهای یادگیری ماشین
برای استفاده از شیوههای یادگیری ماشین در دستهبندی رایانامه‌های دریافتی تلاشهای زیادی صورت گرفته است. یکی از مهمترین جنبههای موفقیت هر سامانهی یادگیری ماشین، مجموعه ویژگیهایی است که برای نشان دادن هر نمونه استفاده میشود. در تحقیق (Toolan and Carthy, 2011)، ویژگیهایی که در حال حاضر در سامانههای خودکار تشخیص رایانامههای دامگستر استفاده میشود، مورد بررسی قرار گرفته و در نهایت چهل ویژگی شناسایی شده است. سپس بر اساس این ویژگیها، یک دستهبند به نام C5.0 طراحی شده است. این دستهبند از سه گروه ویژگی استفاده میکند که با «بهترین»، «متوسط» و «بدترین» برچسبگذاری شدهاند.
ج- استفاده از الگوریتم ژنتیک
در این روش برای تولید مجموعه قواعدی که پیوند قانونی را از پیوند جعلی تشخیص میدهد از الگوریتم ژنتیک استفاده شده است. این سامانه میتواند تنها به عنوان بخشی از راهحل پادام‌گستری وبگاه استفاده شود. الگوریتم ژنتیک طی مراحل تابع برازش، تقاطع و جهش، مجموعه قواعدی را تولید میکند که قادر به شناسایی پیوند جعلی است. این مجموعه قواعد در پایگاه داده ذخیره میشود. بدین ترتیب پیش از اینکه کاربر رایانامه را باز کند، از وضعیت آن مطلع میگردد. الگوریتم ژنتیک فقط برای تشخیص دامگستری مفید نیست بلکه میتواند کاربران را در برابر پیوندهای ناخواسته و مخرّب موجود در صفحات وب نیز محافظت کند (Shreeram et al.,2011).
2-9-3- رویکرد سوم: استفاده از مشابهت ظاهری
در مقالات (Fu et al., 2006; Wenyin et al., 2006; Hara et al., 2009; Zhang et al., 2011)، از مشابهت ظاهری صفحات وب برای تشخیص استفاده شده است. اما شیوهی استفاده از مشابهت ظاهری برای تشخیص دامگستری در هرکدام از آنها متفاوت است. روش‌های استفاده شده به سه دستهی زیر تقسیم میشود:
الف- اندازهگیری مشابهت ظاهری با استفاده از ویژگیهای بصری صفحه‌ی وب (Wenyin et al, 2005)
ب- اندازهگیری مشابهت ظاهری با استفاده از EMD (Fu et al., 2006)
ج- اندازهگیری مشابهت ظاهری با استفاده از سامانهی ImgSeek (Hara et al., 2009)
به طور کلی در روشهای مبتنی بر مشابهت ظاهری، تلاش میشود میزان مشابهت ظاهری وبگاه مشکوک با وبگاه اصلی اندازه‌گیری گردد و تشخیص بر مبنای این میزان مشابهت صورت گیرد.
برای تشخیص مشابهت، پروژه - ریسرچی (Wenyin et al, 2005) از سه اندازه استفاده میکند: شباهت در سطح بلوک، شباهت layout و شباهت کلی style. صفحه‌ی نخست وبگاه ابتدا با در نظر گرفتن نکات بصری به بلوکهایی مشخص تقسیم میشود. محتوای بلوک ممکن است تصویری یا متنی باشد. برای نمایش بلوکهای تصویری و متنی از ویژگیهای مختلفی استفاده میشود. براساس تعداد بلوکهای مشابه، یک وزن به آن تعلق میگیرد. شباهت layout براساس نسبت وزن بلوکهای مشابه به کل بلوکهای صفحه‌ی اصلی تعریف میشود. شباهت Style کلی، برمبنای هیستوگرام ویژگی style محاسبه میشود. در بررسی مشابهت دو بلوک در سامانهی پیشنهادی پروژه - ریسرچی (Wenyin et al, 2005)، اگر چنانچه دو بلوک از دو نوع مختلف باشند، مشابهت صفر در نظر گرفته میشود ولی میتوان یک بلوک تصویری را به یک بلوک متنی تبدیل و مشابهت آنها را با استفاده از روش مشابهت‌یابی بلوک متنی اندازه‌گیری کرد. همینطور این امکان برای تبدیل بلوک متنی به تصویری نیز وجود دارد.
رویکرد پروژه - ریسرچی (Fu et al., 2006) نیز، صرفاً در سطح پیکسلهای صفحهی وب است و نه سطح متن. لذا صرفاً به مشابهت ظاهری مینگرد و توجهی به مشابهت کدها ندارد. در نتیجه سامانهی پیشنهادی نمیتواند صفحات دامگستری شده بدون شباهت ظاهری را تشخیص دهد. این سامانه، یک صفحه‌ی وب را به صورت کامل و نه فقط بخشی از آن را ارزیابی میکند. اگر دامگستر یک وبگاه بسازد که بخشی از آن شبیه وبگاه اصلی باشد، سامانه مورد پیشنهاد این پروژه - ریسرچممکن است شکست بخورد. از طرفی، روش پروژه - ریسرچی (Fu et al., 2006) نباید فقط به سمت کارساز محدود شود. می‌توان یک برنامه برای سمت کارخواه تولید نمود که میتواند توسط کاربران نصب شود. این برنامه شبیه یک ویروسکش عمل میکند و میتواند به صورت دورهای، پایگاه خود را از طریق کارساز بروز کند و تابعی داشته باشد که لینکهای دامگستر تازه کشف شده را به کارساز معرفی کند تا به پایگاه داده افزوده شود.
2-9-4- رویکرد چهارم: روشهای فازی
ویژگیها و عوامل زیادی وجود دارند که میتوانند وبگاه قانونی را از نوع تقلّبی آن متمایز کنند که از آن جمله میتوان خطاهای نگارشی و نشانی طولانی URL را نام برد. به وسیلهی مدلی که در (Aburrous et al., 2010a) براساس عملگرهای منطق فازی ارائه شده است، میتوان عوامل و نشانگرهای دامگستری را به متغیرهای فازی تبدیل کرد و در نتیجه شش سنجه و معیار حملهی دامگستری را با یک ساختار لایهای به دست آورد.
روش (Aburrous et al., 2008) آن است که نشانگرهای اصلی دامگستری را با استفاده از متغیرهای زبانی بیان کند. در این مرحله توصیفکنندههای زبانی مانند «بالا»، «پایین» و «متوسط» به هر شاخص دامگستری، نسبت داده میشوند. تابع عضویت برای هر شاخص دام‌گستری طراحی میشود. در نهایت میزان ریسک دامگستری وبگاه محاسبه میشود و مقادیر «کاملاً قانونی»، «قانونی»، «مشکوک»، « دامگستری شده»، «حتماً دامگستری شده»، به آن نسبت داده میشوند.
روش پیشنهادی در(Aburrous et al., 2010b)، یک مدل هوشمند بر اساس الگوریتمهای دادهکاوی دستهبندی و انجمنی است. قواعد تولید شده از مدل دستهبندی تجمعی، نشان‌دهنده‌ی رابطه‌ی بین ویژگیهای مهمی مانند URL، شناسه دامنه، امنیت و معیارهای رمزنگاری در نرخ تشخیص دامگستری است. نتایج این تحقیق نشان میدهد که استفاده از روش دستهبندی تجمعی در مقایسه با الگوریتمهای سنتی دستهبندی عملکرد بهتری دارد. الگوریتم‌های تجمعی، مهمترین ویژگیها و مشخصههای وبگاههای دامگستری شده در بانکداری الکترونیکی و چگونگی ارتباط این مشخصهها با یکدیگر را شناسایی می‌کنند.
2-10- نتیجهگیریدر این فصل پس از مرور مفهوم بانکداری الکترونیکی، مزایا و چالشهای آن، زیرساختهای مورد نیاز و امنیت بانکداری الکترونیکی را بررسی کردیم. پس از آن به شرح مفهوم دامگستری و بخشی از مباحث مربوط به آن پرداختیم. همچنین روشهای قبلی ارائه شده برای تشخیص دامگستری را دستهبندی و مرور کردیم. استفاده از نظریهی فازی برای تشخیص دامگستری، تلاش میکند از مزایای روشهای قبلی بهره برده و ضمن افزایش دقت و صحت نتایج و از بین بردن افزونگیها، درصد بیشتری از وبگاههای دامگستری شده را تشخیص داده و از اینگونه حملات به نحو مطلوبتری جلوگیری به عمل آورد، به همین دلیل در فصل بعد به بررسی مفاهیم اصلی نظریهی مجموعههای فازی و نظریهی مجموعههای ژولیده خواهیم پرداخت.
فصل سوم- نظریهی مجموعههای فازی و مجموعههای ژولیده
سیستم فازی3-1- مقدمهمشخص کردن وبگاههای دامگستریشده کاری پیچیده و در عین حال پویا است که عوامل و معیارهای فراوانی در آن مؤثر هستند. همچنین به دلیل عدم قطعیت و ابهام موجود در این تشخیص، مدل منطق فازی میتواند ابزار کارآمدی در ارزیابی و شناسایی وبگاههای دامگستری شده باشد چراکه روشی طبیعی برای کار کردن با عوامل کیفی را در اختیار ما قرار میدهد.
در سامانه‌های عملی، اطلاعات مهم از دو منبع سرچشمه می‌گیرند: یکی افرادِ خبره که دانش و آگاهیشان را دربارهی سامانه با زبان طبیعی تعریف می‌کنند. منبع دیگر اندازه گیریها و مدل‌های ریاضی هستند که از قواعد فیزیکی مشتق شده‌اند. لذا مسئلهی مهم، ترکیبِ این دو نوع از اطلاعات در طراحی سامانه‌ها است. در انجام این امر سؤالی کلیدی وجود دارد و آن اینکه چگونه می‌توان دانش بشری را در چارچوبی مشابه مدل‌های ریاضی فرمولبندی کرد. به عبارتِ دیگر سؤال اساسی این است که چگونه می‌توان دانش بشری را به فرمولی ریاضی تبدیل کرد. اساساً آنچه سامانه‌های فازی انجام می‌دهد، همین تبدیل است.
نظریهی مجموعههای ژولیده نیز همچون فازی با مسائل شامل عدم قطعیت و ابهام سرو کار دارد. اصولاً مجموعهی ژولیده، تقریبی از مفهومی مبهم به کمک یک زوج مفهوم صریح به نام «تقریب بالا» و «تقریب پایین» است. امروزه این نظریه در هوش مصنوعی، سامانههای خبره، دادهکاوی، علوم شناختی، یادگیری ماشین، کشف دانش و تشخیص الگو کاربردهای فراوانی دارد. در این فصل ابتدا با بررسی نظریهی مجموعه‌های فازی به تعریف سامانهی فازی پرداخته و ویژگیها و مبانی ریاضی مورد نیاز در طراحی سامانهی فازی را بیان خواهیم کرد. سپس به طور اجمالی نظریهی مجموعههای ژولیده و ترکیب آن را با مجموعههای فازی را شرح خواهیم داد.
3-2- نظریه‌ی مجموعه‌های فازیمحققانی که با مواد فیزیکی سر و کار دارند باید توجه خود را به استانداردهای بسیار دقیق، روشن و حتمی معطوف کنند. متر به عنوان استانداردی برای اندازه گیری پذیرفته شده است اما در شرایطی ممکن است ریزترین تقسیم بندی به‌کار برود ولی درآزمایشگاه به معیاری بازهم کوچکتر نیاز باشد. به عبارت دیگر به‌طور حتم و یقین در همه‌ی معیار‌های اندازه‌گیری ، بدون توجه به دقت و شفافیت، امکان خطا وجود دارد. دومین پدیدهی محدود کنندهی حتمیت مورد انتظار، کاربرد زبان محاورهای برای توصیف و انتقال دانش و آگاهی است. همه‌ ما تجربه‌ی سوء تفاهمات ناشی از بکارگیری واژه‌ها در غیر معنی اصلی خود در زندگی عادی و روزمره‌ی خویش را داریم. درک ما از مفهوم واژه‌ها با شالوده‌های فرهنگی و ارتباطات شخصی ما گره خورده است. بدین لحاظ،‌ اگر چه ممکن است در اصل معنی واژه‌ها تفاهم داشته و قادر به ارتباط نسبی و قابل قبول در اغلب موارد با همدیگر باشیم، لیکن توافق کامل و بدون ابهام در بسیاری از مواقع بسیار مشکل و بعید به نظر می‌رسد. به عبارت دیگر، زبان طبیعی و محاوره ای غالباً دارای مشخصه‌ی ابهام و عدم شفافیت است ADDIN EN.CITE <EndNote><Cite><Author>Ross</Author><Year>2004</Year><RecNum>23</RecNum><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zp5v9zvzhsrr25et59bv5vso2pevxeda525z">23</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Timothy J. Ross</author></authors></contributors><titles><title>Fuzzy logic with engineering applications</title></titles><dates><year>2004</year></dates><publisher>John Wiley &amp; Sons,ltd</publisher><urls></urls></record></Cite></EndNote>(Ross, 2004).
عسگر لطفی زاده در سال 1965 نظریهی جدید مجموعههای فازی را که از نظریه‌ی احتمالات متمایز بود ابداع کرد ADDIN EN.CITE <EndNote><Cite><Author>Ross</Author><Year>2004</Year><RecNum>23</RecNum><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zp5v9zvzhsrr25et59bv5vso2pevxeda525z">23</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Timothy J. Ross</author></authors></contributors><titles><title>Fuzzy logic with engineering applications</title></titles><dates><year>2004</year></dates><publisher>John Wiley &amp; Sons,ltd</publisher><urls></urls></record></Cite></EndNote>(Ross, 2004). زاده علاقه‌ی فراوانی به حل مسائل سامانه‌های پیچیده به روش مدل سازی داشت. تجربه‌های گوناگون علمی و عملی او گویای این واقعیت بود که روش‌های معمول ریاضی قادر به این طریق از مدل‌سازی نبودند.
به‌رغم مجموعه‌های کلاسیک با مرز‌های قطعی مجموعه‌های فازی دارای مرز‌های قطعی و شفافی نیستند. عنصر یاد شده ممکن است در یک مجموعه دارای درجه‌ی عضویتی بیشتر و یا کمتر از عناصر دیگر باشد. هر مجموعه‌ی فازی با تابع عضویت خاص خود قابل تعریف است و هر عضو در داخل آن با درجه‌ی عضویتی بین صفر تا یک مشخص می‌شود. در ابتدا، نظریه‌ی پیشنهادی مجموعه‌های فازی مورد استقبال زیاد قرار نگرفت. لیکن در دهه 1970 چندین اثر مهم و پایه ای توسط این پژوهشگران منتشر شد که توجه بسیاری از محققان را به خود جلب کرد. به‌عنوان نمونه نظریه‌ی بسیار مهم کنترل فازی و سپس کاربرد موفقیت آمیز آن در صنعت در این برهه از زمان ارائه شد. امروزه علاوه بر کاربرد‌های مهندسی، در دنیای تجارت، سرمایه، اقتصاد، جامعه شناسی و سایر زمینه‌های علمی بویژه سامانه‌های تصمیم‌یار از از نظریه‌ی فازی استفاده‌های فراوان می‌شود. کاربرد نظریه‌ی فازی همچنین در سامانه‌های خبره، سامانه‌های پایگاه داده و بازیابی اطلاعات، تشخیص الگو و خوشه‌بندی، سامانه‌های روباتیک، پردازش تصویر و سیگنال‌ها، بازشناسی صحبت، تجزیه و تحلیل ریسک، پزشکی، روانشناسی، شیمی، اکولوژی و اقتصاد به وفور یافت می‌شود (فسنقری، 1385).
با دقت در زندگی روزمرّه خواهیم دید که ارزشگذاری گزاره‌ها در مغز انسان و نیز اکثر جملاتی را که در زبان گفتاری به‌کار می‌بریم ذاتاً فازی و مبهم هستند. از این‌رو به‌منظور شبیه سازی و به دست آوردن مدل ریاضی برای منطق زبانی، منطق فازی به ما اجازه می‌دهد به تابع عضویت مقداری بین صفر و یک را نسبت داده، ابهام را جایگزین قطعیت کنیم.
با دانستن اصول اولیه مربوط به منطق قطعی و مجموعه‌های قطعی، با تکیه بر اصول فازی، به تعریف منطق و مجموعه‌های فازی می‌پردازیم. به‌گونه ای که روابط و تعاریف مجموعه‌های فازی در حالت خاص باید همان روابط و تعاریف مجموعه‌های قطعی باشد.
اگر X مجموعهی مرجعی باشد که هر عضو آن را با x نمایش دهیم مجموعه فازی A در X به‌صورت زوج‌های مرتب زیر بیان می‌شود:
(3-1)
تابع عضویت و یا درجه‌ی عضویت است که مقدار عددی آن، میزان تعلق x به مجموعه‌ی فازی را نشان می‌دهد. برد این تابع، اعداد حقیقی غیر منفی است که در حالت معمولی به صورت فاصله‌ی بسته‌ی [1و0] در نظر گرفته می‌شود. بدیهی است در صورتی‌که برد این تابع تنها اعداد صفر و یک باشد همان مجموعهی قطعی را خواهیم داشت.
در تمامی کاربردهای فازی به تعریف تابع عضویت نیاز داریم. لذا در ذیل به چند نمونه از توابع عضویت معروف اشاره شده است PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (تشنه لب و همکاران، 1389):
الف) تابع عضویت زنگوله‌ای (گوسی): تابع عضویت زنگوله‌ای برای دو حالت پیوسته و گسسته در شکل (3-1) نشان داده شده و معادله‌ی مربوط به حالت پیوسته در رابطهی (3-2) تعریف شده است:
(3-2) μAxi=11=d(xi-c)2که در آن d پهنای زنگوله، عنصری از مجموعه‌ی مرجع و c مرکز محدوده‌ی عدد فازی است. برای حالت گسسته فرمول خاصی وجود ندارد و تنها پس از رسم نقاط مربوط به عدد فازی، شکلی مشابه با قسمت ب در شکل 3-1، به دست می‌آید.
الف) تابع عضویت زنگوله ای برای حالت پیوسته
ب) تابع عضویت زنگوله ای برای حالت گسسته

c
d
x

c
x
1
1

شکل 3-1 تابع عضویت زنگوله ایب) تابع عضویت مثلثی: تابع عضویت عدد مثلثی (شکل 3-2) با رابطهی زیر تعریف می‌شود:
(3-3) μAx=0 if c-x<b21-2c-xb if c-x>b2a
c
b
x

1

شکل 3-2 تابع عضویت مثلثیج) تابع عضویت ذوزنقه‌ای: تابع عضویت عدد ذوزنقه ای (شکل 3-3) با رابطهی زیر تعریف می‌شود:
(3-4) μAx=x-a1b1-a1 a1≤x≤b11 b1≤x≤b2 x-a2b2-a2 a1≤x≤b10 else

x
1

شکل 3-3 تابع عضویت ذوزنقه ایدر این قسمت عملیات اساسی بر روی چند مجموعه فازی را بیان میکنیم PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48


UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (تشنه لب و همکاران، 1389):
الف-مکمل: مکمل مجموعه‌ی فازی A مجموعه‌ی فازی است و تابع عضویت آن بدین شکل تعریف می‌شود.
(3-5) μAx=1-μA(x)ب- اجتماع: با فرض آنکه A و B دو مجموعه‌ی فازی در U باشند، اجتماع دو مجموعه‌ی فازی A و B به صورت ذیل تعریف می‌شود:
(3-6)
ج- اشتراک: با فرض آنکه A و B دو مجموعه‌ی فازی در U باشند، اشتراک دو مجموعه‌ی فازی A و B به صورت ذیل تعریف می‌شود:
(3-7)
به دلیل نوع اظهار نظری که خبرگان امنیت در هنگام جمع آوری اطلاعات مورد نیاز داشتند و به سبب سهولت در جمع آوری اطلاعات مورد نظر، محاسبات ریاضی به کار رفته در طراحی سامانهی خبره تشخیص دامگستری، با استفاده از اعداد ذوزنقه ای صورت گرفته است. لذا در ادامه به تشریح چگونگی عملیات محاسباتی اعداد ذوزنقهای پرداخته شده است (فسنقری، 1385؛ PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA تشنه لب و همکاران، 1389).
اگر A و B دو عدد فازی ذوزنقهای به شکل زیر باشند:
(3-8) A1=a11,b11,b21,a21 , A2=(a12,b12,b22,a22)آنگاه داریم:
الف- جمع اعداد فازی:
(3-9) A1+A2=(a11+a12,b11+b12,b21+b22,a21+a22)ب- ضرب عدد حقیقی در عدد ذوزنقه ای: حاصلضرب عدد ذوزنقه ای A در عدد حقیقی r نیز عددی ذوزنقه ای است.
(3-10) rA=(ra1,rb1,rb2,ra2) ج- تقسیم عدد ذوزنقه ای بر عددی حقیقی: این عملیات به صورت ضرب A در تعریف می‌شود، مشروط بر آنکه باشد.
(3-11) Ar=(a1r, b1r,b2r,a2r)3-3- سامانهی فازیسامانه، مجموعهای از اجزا است که برای رسیدن به هدف معیّنی گرد هم جمع آمده اند؛ به‌طوری‌که باگرفتن ورودی و انجام پردازش بر روی آن، خروجی مشخصی را تحویل می‌دهد (Wasson, 2006).
سامانه‌های فازی، سامانه‌هایی «دانش-بنیاد» یا «قاعده-بنیاد» هستند. قلب هر سامانهی فازی پایگاه قواعدِ آن است که از قواعد «اگر-آنگاه» فازی تشکیل شده استPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWNrbGV5PC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjE2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPldpbGxpYW0gU2lsZXIg
YW5kIEphbWVzIEouIEJ1Y2tsZXk8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgZXhwZXJ0IHN5c3RlbXMgYW5kIGZ1enp5IHJlYXNvbmluZzwvdGl0
bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDU8L3llYXI+PC9kYXRlcz48cHVibGlzaGVyPkpv
aG4gd2lsZXkgJmFtcDsgc29ucyxpbmMuPC9wdWJsaXNoZXI+PHVybHM+PC91cmxzPjwvcmVjb3Jk
PjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlRydWJhdGNoPC9BdXRob3I+PFllYXI+MTk5NzwvWWVhcj48
UmVjTnVtPjE5PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xOTwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1OWJ2NXZzbzJw
ZXZ4ZWRhNTI1eiI+MTk8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iQm9vayI+
NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlJpemEgQy4gQmVya2Fu
IFNoZWxkb24gTC4gVHJ1YmF0Y2g8L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRp
dGxlcz48dGl0bGU+RnV6enkgU3lzdGVtcyBEZXNpZ24gUHJpbmNpcGxlczogQnVpbGRpbmcgRnV6
enkgSWYtVGhlbiBSdWxlczwvdGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTc8L3llYXI+
PC9kYXRlcz48cHVibGlzaGVyPklFRUUgUHJlc3M8L3B1Ymxpc2hlcj48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+2KfZgdmK2YjZhtmKPC9BdXRob3I+PFllYXI+MTM4
NTwvWWVhcj48UmVjTnVtPjE1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xNTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpwNXY5enZ6aHNycjI1ZXQ1
OWJ2NXZzbzJwZXZ4ZWRhNTI1eiI+MTU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2YUuINiq2LTZhtmHINmE2Kg8L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1
bHQiIHNpemU9IjEwMCUiPiw8L3N0eWxlPjwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5v
cm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Zhi4g2LXZgdin
2b7ZiNixPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj4sPC9zdHlsZT48L2F1dGhvcj48YXV0aG9yPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2K8uINin2YHZitmI2YbZijwvc3R5
bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+LDwvc3R5
bGU+PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPjxzdHls
ZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+
2LPZitiz2KrZheKAjNmH2KfZiiDZgdin2LLZiiDZiCDZg9mG2KrYsdmEINmB2KfYstmKPC9zdHls
ZT48L3RpdGxlPjwvdGl0bGVzPjxlZGl0aW9uPjM8L2VkaXRpb24+PGRhdGVzPjx5ZWFyPjEzODU8
L3llYXI+PC9kYXRlcz48cHViLWxvY2F0aW9uPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9ImRl
ZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KrZh9ix2KfZhjwvc3R5bGU+PC9wdWIt
bG9jYXRpb24+PHB1Ymxpc2hlcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBj
aGFyc2V0PSIxNzgiIHNpemU9IjEwMCUiPtiv2KfZhti02q/Yp9mHINi12YbYudiq2Yog2K7ZiNin
2KzZhyDZhti12YrYsdin2YTYr9mK2YYg2LfZiNiz2Yo8L3N0eWxlPjwvcHVibGlzaGVyPjx1cmxz
PjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (تشنه لب و همکاران، 1389، ص113). قاعدهی اگر-آنگاه فازی، عبارتی متشکل از دو بخش «اگر» و «آنگاه» است که در آنها مقدار متغیر فازی با استفاده از توابعِ عضویت مشخص شده‌اند. به‌عنوان مثال می‌توان قاعده فازی ذیل را مطرح کرد:
« اگر سرعت خودرو بالا است، آنگاه نیروی کمتری به پدال گاز وارد کنید. »
که کلمات بالا و کم توسط توابعِ عضویت نشان داده شده در شکل 3-4، مشخص شده‌اند.
45
55
65
1
سرعت (متر/ثانیه)
تابعِ عضویت "بالا"
1
نیروی پدال
تابعِ عضویت "کم"
4
7
10
الف- تابعِ عضویت واژه بالا
الف- تابعِ عضویت واژه کم

شکل 3-4 تابع عضویت برای واژه "بالا" و "کم" در مثال اتومبیلحداکثر تعداد قواعد فازی در پایگاه قواعد فازی برای سامانهای که از دو ورودی تشکیل شده است و مقادیر آنها به‌صورت واژگان زبانی بیان می‌شود برابر m×n (حاصل‌ضرب تعداد واژگان زبانی ورودی) است که برای به دست آوردن l خروجیِ متفاوت (l<m×n) به‌عنوان نتیجه یا خروجی سامانه، مورد استفاده قرار می‌گیرند. قواعد این سامانه را می‌توان در جدولی مانند جدول 3-1، جمع آوری کرده و به عنوان پایگاه قواعد سامانه استفاده کرد. در این جدول فرض بر آن بوده است که در تعیین قواعد، متغیر اول یا A از n واژه‌ی زبانی و B نیز از m واژه‌ی زبانی تشکیل یافته اند.
مشابه شکل 3-5، با قرار دادن یک فازی‌ساز در ابتدای ورود متغیرها برای تبدیلشان به مجموعه‌های فازی و استفاده از وافازی‌ساز در انتهای خروجی سامانه برای تبدیل مجموعه‌های فازی به متغیر‌هایی با مقادیرِ حقیقی، می‌توان سامانهی فازی با فازی‌ساز و وافازی‌ساز را ایجاد کرد (Filev and Yager,1993).
جدول 3-1 پایگاه قواعد سامانه با دو متغیر ورودی ... ... ... ...
... ... ... ... ...
... ... ... ... ...

شکل 3-5 ساختار اصلی سامانهی فازی با فازی‌ساز و نافازی‌سازسامانهی خبرهی فازی برای تشخیص دامگستری، اطلاعات را در قالب عدد دریافت کرده و خروجی‌ای هم که به کاربران تحویل می‌دهد در قالب عدد است لذا از سامانهی فازی در شکل 3-5 پیروی می‌کند و دانش خبرگان را در قالب گزاره‌های فازی مورد استفاده قرار می‌دهد.3-4- نظریهی مجموعههای ژولیدهدر سال 1982 نظریهی مجموعههای ژولیده توسط پاولاک به عنوان تعمیمی از نظریهی مجموعهها برای مطالعهی سامانههای هوشمند با اطلاعات ناکافی و نادقیق ارائه گردید. این نظریه، مشترکات زیادی با نظریهی گواه و نظریهی مجموعههای فازی دارد. در سالهای اخیر روشهای زیادی برای درک و بهکارگیری دانش ناکامل ارائه شده است. یکی از موفقترین این روشها، نظریهی مجموعههای فازی است. نظریهی مجموعههای ژولیده، رویکرد ریاضی دیگری برای حل این مسئله است و همچون فازی با مسائل شامل عدم قطعیت و ابهام سر و کار دارد. نظریهی مجموعههای فازی و مجموعههای ژولیده نه رقیب که مکمل یکدیگر هستند (Dubois and P--e, 1992; Pawlak, 1995).
مجموعهی ژولیده، تقریبی از یک مفهوم مبهم به کمک یک زوج مفهوم صریح به نام «تقریب بالا» و «تقریب پایین» است. هر زیرمجموعهی دلخواه از مجموعهی مرجع، بین تقریبهای پایین و بالای خود قرار میگیرد، به این معنی که هر عنصر در تقریب پایین، لزوماً عضوی از مجموعه خواهد بود، ولی عناصر تقریب بالا، ممکن است عضو مجموعه نباشند. نظریهی مجموعههای ژولیده برای حذف ویژگیهای دارای افزونگی از مجموعههای دادهای با مقادیر گسسته، به کار میرود (Jensen and Shen, 2004).

user8277

در فصل سوم به بررسی ساختار فیبر نوری، مزایا و معایب آن و سرعت انتقال اطلاعات در فیبر نوری می پردازیم. همچنین انواع منابع نوری را بررسی می کنیم و با توجه به بررسیهایی که انجام می دهیم طول موج مناسب منبع نوری وفیبر نوری مناسبی را که در سیستمهای نوین امروزی استفاده می شود ، انتخاب می کنیم. که در همه معادلات و شبیه سازیهای پایان نامه در بخشهای بعدی از آنها استفاده می کنیم. در بخش انتهایی این فصل به بررسی سرعت نور در فیبر نوری می پردازیم و به این نتیجه می رسیم که پدیده SBS می تواند باعث تغییر سرعت نور در فیبر گردد.
در فصل چهارم واکنش بین فیبر نوری و پرتو نوری را برای پدیده پراکندگی بریلوئن بررسی می کنیم . در بخش اول پراکندگی بریلوئن در فیبر نوری را بررسی می کنیم و انواع پراکندگی های بریلوئن ایجاد شده را نام می بریم. در بخش دوم و سوم این فصل سعی داریم با استفاده از خواص فیزیکی محیط و روابط ریاضی ، به ترتیب پدیده پراکندگی بریلوئن خود بر انگیخته و بر انگیخته شده را تحلیل کنیم و روابط ریاضی که توصیف کننده این دو پدیده باشند را در فیبر نوری بدست آوریم. در بخش چهارم این فصل دو پارامتر مهم پدیده SBS (توان آستانه بریلوئن وضریب تقویت بریلوئن) را معرفی می کنیم.
در فصل پنجم پدیده SBS آبشاری را به طور کامل توضیح خواهیم داد. در بخش اول، ابتدا SBS آبشاری بدون عنصر بازخورد را بررسی می کنیم و با تحلیل معادلات شدت پرتوها نشان می دهیم که SBS مرتبه بالاتر برای این چنین سیستمی ضعیف می باشد. دربخش دوم این فصل SBS آبشاری را برای سیستم با بازخورد قوی مورد بررسی قرار می دهیم و نشان می دهیم که می توانیم با استفاده از توری براگ در ورودی فیبر، SBS های مرتبه بالاتر و با شدت قوی را ایجاد کنیم. با استفاده از معادلات شدتها و شرایط مرزی برای این چنین سیستمی ، طیف توان خروجی را بدست می آوریم. در بخش سوم اثر SBS آبشاری را بر سیگنال بررسی می کنیم و با حل معادلات دیفرانسیل جفت شده پدیده SBS اثر آن را بر سیگنال بررسی می کنیم و با افزایش توان پمپ ورودی و بدست آوردن طیف بهره سیگنال، اثر SBS آبشاری را بر سیگنال تحلیل می کنیم.
فصل دوم196786535750500
اصول پراکندگی نور2-1- مقدمه
نور عبوری از مواد شفاف که دارای ضریب شکستهای مختلف میباشند ممکن است بر اثر پدیده های غیر خطی پراکنده گردد. پراکندگی نور در مواد به عوامل مختلفی بستگی دارد . از جمله این عوامل می تواند جنس ماده ، ضریب شکست و وابستگی ضریب شکست به طول موج نور باشد . دو نوع پراکندگی به صورت عمده در مواد شفاف رخ می دهد و تحقیقات بسیاری در مورد آنها انجام شده است . یکی از آنها پراکندگی بریلوئن و دیگری پراکندگی رامان می باشد. در این فصل پراکندگی بریلوئن را بررسی می کنیم و معادلاتی برای شدتهای نور بدست می آوریم که در فصلهای بعدی پایان نامه، از این معادلات استفاده خواهیم کرد. سپس در بخش دوم پراکندگی رامان بررسی خواهد شد.
2-2- پراکندگی القایی بریلوئن
12744453619500
00
در صورتی که پراکندگی از نوسانات ایجاد شده توسط اثرات حرارتی، بوجود بیاید به آن پراکندگی خود بخودی می گویند، اما در شرایطی که پراکندگی بخاطر نوسانات ایجاد شده در حضور میدان موج اپتیکی باشد، به آن پراکندگی القایی گفته می شود. پراکندگی القایی همواره موثرتر از پراکندگی خود بخودی است. به عنوان مثال بخاطر پراکندگی خود بخودی نور در عبور از 1cm از یک مایع مثل آب، تنها یک قسمت از 105 قسمت توان پرتو پراکنده میشود، اما در صورتی که شدت نور به اندازه کافی زیاد باشد، گاهی تا 100% پرتو در عبور از 1cm از محیط بخاطر پراکندگی القایی پراکنده خواهد شد. پراکندگی القایی که در این قسمت به بررسی آن خواهیم پرداخت، نتیجه تغییرات چگالی ماده می باشد. فرآیند پراکندگی بریلوئن القائی در شکل (2-1) نشان داده شده است:

شکل (2- SEQ شکل_(2- * ARABIC 1).شماتیک پراکندگی القایی بریلوئن.در شکل(2-1)، نور لیزر، توسط تغییرات ضریب شکست ایجاد شده توسط موج صوتی با فرکانس Ω ، پراکنده شده است. از آنجایی که موج آکوستیک در جهت موج فرودی حرکت می کند، نور پراکنده شده به فرکانس پایین تری یعنی فرکانس ωS=ωL-Ω شیف مییابد.
وقتی دو موج با فرکانس های ωS و ωL با هم بر همکنش می کنند، به نحوی که اختلاف این دو فرکانس همان فرکانس موج آکوستیک Ω، باشد، منجر به پراکندگی بریلوئن خواهد شد. پاسخ سیستم مادی به این ترم تداخلی می تواند شبیه به یک منبع عمل کند که موجب افزایش دامنه موج صوتی می شود. بنابراین زنش نور لیزر و موج آکوستیک سبب ایجاد موج استوکس می گردد، در صورتی که زنش موج های استوکس و لیزر موجب تقویت موج آکوستیک می شود. دو مکانیزم متفاوت برای توجیه این اثر وجوددارد. یک مکانیزم electrostriction می باشد. در این مکانیزم بیان می شود که ماده در مکان هایی که میدان فرودی شدت بیشتری دارد، چگالتر می شود. مکانیزم دیگر جذب اپتیکی است که بیان میکند گرم شدن منطقه توسط جذب موج اپتیکی با شدت بالاتر سبب می شود که ماده در آن منطقه منبسط تر شود بنابراین با تابش نور به محیط، نوسانات چگالی را خواهیم دید. از مکانیزم دوم کمتر از مکانیزم اول استفاده می شود زیرا مکانیزم دوم تنها در مواد اپتیکی اتلافی اتفاق می افتد.
وقتی پدیده پراکندگی بریلوئن القایی مورد مطالعه قرار می گیرد، دو فرآیند متفاوت باید بررسی شود، که یکی از این دو، تولید کننده پراکنندگی بریلوئن القائی است.

شکل (2- SEQ شکل_(2- * ARABIC 2) شماتیک تولید کننده پراکنندگی القایی بریلوئن.که در این فرآیند فقط پرتو نور لیزر است که به صورت خارجی استفاده شده است. میدان های استوکس و آکوستیک بیشتر از نویز در طول منطقه بر همکنش، رشد می کنند. نویزی که پراکندگی بریلوئن القایی را آغاز می کند، ناشی از پراکندگی نور لیزر از فونون های تولید شده حرارتی است ]15[ .در این حالت فرکانس استوکس نزدیک حالتی است که در آن حالت پراکندگی بریلوئن القایی بهره ماکزیمم دارد. فرآیند دوم تقویت کننده پراکنندگی بریلوئن القایی است.

شکل (2- SEQ شکل_(2- * ARABIC 3) شماتیک تقویت کننده پراکندگی القایی بریلوئن.در این حالت پرتوهای لیزر و استوکس هر دو بصورت عامل های خارجی اعمال می گردند. اگر فرکانس استوکس پرتو خارجی اعمال شده نزدیک به فرکانس استوکس تولید کننده پراکندگی بریلوئن القایی باشد، پس یک کوپلاژ قوی بین دو پرتو خارجی اعمال شده، رخ خواهد داد. فرآیند پراکندگی بریلوئن القایی به تقویت موج استوکس در هر جهتی به غیر از جهت نور لیزر منجر می شود. معمولا پراکندگی بریلوئن القایی فقط در جهت رو به عقب دیده می شود چون همپوشانی فضای پرتوهای لیزر و استوکس تحت این شرایط ماکزیمم است]16 [.
در صورتی که شدت نور فرودی را به مقدار کافی زیاد کنیم، این نور با استفاده از پدیده electrostriction می تواند روی خصوصیات محیط تاثیر بگذارد و نور پراکنده شده قوی ای را تولید کند، به عبارت دیگر در ابتدا نور لیزر فرودی توسط اثرات حرارتی محیط یا به عبارتی موج آکوستیک موجود در محیط پراکنده می شود و موج استوکس را تولید می کند، سپس کوپلاژ بین نور استوکس و نور لیزر فرودی با استفاده از پدیده electrostriction، نوسانات چگای را در محیط ایجاد می کند، نور لیزر فرودی دوباره توسط نوسانات ضریب شکست ناشی از این نوسانات چگالی پراکنده می شود که فرکانس نور پراکنده شده دوباره در فرکانس استوکس خواهد بود، بنابراین دو موج آکوستیک و استوکس رشد هم را تقویت می کنند. برای تقویت کننده های پراکندگی بریلوئن القایی، موج استوکس بصورت خارجی به محیط اعمال می شود که فرکانس آن ω2 بود، اگر فرکانس نور لیزر فرودی ω1 در نظر گرفته شود، فرکانس موج آکوستیک حاصله به این صورت بدست می آید:
Ω=ω1-ω2 (2-1)
که در حالت کلی با فرکانس بریلوئن، ωB ، متفاوت است. در صورتی که ω2 به نحوی انتخاب گردد که Ω-ΩB خیلی کوچک باشد یا در حد پهنای باند بریلوئن، τB ، باشد، موج آکوستیک بصورت موثر بر انگیخته خواهد شد. حال به بر همکنش سه موج می پردازیم:
میدان اپتیکی داخل محیط بریلوئن بصورت Ez,t=E1z,t+E2z,t در نظ گرفته می شود که:
E1z,t=A1z,teik1z-ω1t+CC) (2-2
E2z,t=A2z,teik2z-ω2t+CC
موج آکوستیک نیز بصورت جملاتی از نوسانات چگالی نوشته می شود:
ρz,t=ρ0 +ρz,teiqz-tΩ+CC(2-3)
Ω =ω1-ω2 که و p0 چگالی متوسط محیط است، فرض می شود که چگالی ماده از معادله موج آکوستیک تبعیت می کند:
∂2∆p∂t2-Γ'∇2∂p∂t-v2∇2p=∇.f (2-4)
که در آن v سرعت صوت است و Γ'ثابت اتلاف می باشد. جمله سمت راست، واگرایی نیرو در واحد حجم می باشد که به صورت زیر داده می شود:
f=-∇Pstو Pst= γeE8 π (2-5)
که در آنPst فشار electrostriction می باشد. با توجه به میدان های ذکر شده، این جمله به صورت زیر بدست می آید:
∇.f=γeq24 πA1A2*eiqz-tΩ+C.C (2-6)
با جایگذاری pz,tو ∇.f در معادله (2-4) و این فرض که دامنه موج آکوستیک در فضا و زمان کند تغییر است، داریم:
-2iΩ∂p∂t+ΩB2-Ω2-iΩΓBp-2iq v2∂p∂z=γeq24 πA1A2* (2-7)
بصورتی که پهنای باند بریلوئن به این شکل تعریف می شود:
ΓB=q2Γ' (2-8)
که τB=ΓB-1طول عمر فونون را می دهد. برای سادگی آخرین جمله سمت چپ رابطه بالا حذف می شود که این ترم انتشار فونون ها را می دهد. از آنجایی که فاصله انتشار فونون در مقابل فاصله ای که جمله سمت راست تساوی بصورت موثر در آن تغییر می کند، خیلی کوچک است (چون فونون سریع جذب می شود) بنابراین جمله∂p∂z را حذف می کنیم، اگر جمله تغییرات فضایی حذف گردد و شرایط پایا در نظر گرفته شود پس ∂p∂tحذف می شود، بنابراین دامنه موج آکوستیک به این شکل بدست می آید:
pz,t=γeq2 4 π A1A2*ΩB2-Ω2-iΩΓB (2-9)
میدان های اپتیکی نیز توسط معادلات موج زیر شرح داده می شوند:
∂2Ei∂z2-1c/n2∂2Ei∂t2=4 π∂2Pic2∂t2, i=1,2 ) (2-10
قطبش غیر خطی که بعنوان جمله منبع در این معادلات وجود دارد، به این صورت بدست می آید:
P=∆x E= ∆ε4 π E = 14 π p0γepE (2-11)
بنابراین داریم:
P1=P1eik1z-ω1t+C.C (2-12)
P2=P2ei-k2z-ω2t+C.Cکه:
P1=γe4 π p0pA2,P2=γe4 π p0P* A1 (2-13)
با قرار دادن معادلات میدان در معادله موج بالا و استفاده از تقریب دامنه کند تغییر داریم:
∂A1∂z+1c/n∂A1∂t=iωγe2nc p0pA2 (2-14)
-∂A2∂z+1c/n∂A2∂t=iωγe2nc p0p*A1
در رابطه بالا فرض شده است که ω1=ω2≅ω با بکار بردن حالت پایا، مشتق زمانی را حذف می کنیم، بنابراین داریم:
dA1dz=iωq2γe28n π c p0 A22 A1ΩB2-Ω2-iΩΓB(2-15)
dA2dz=-iωq2γe28n π c p0 A12 A2ΩB2-Ω2+iΩΓBاین فرایند بصورت اتوماتیک دارای تطابق فازی نیز هست، بنابراین بیان معادلات برای شدت های دو موج اپتیکی ممکن است. شدت ها به این صورت تعریف می شوند [5]:
Ii=nc2πAiAi* (2-16)
بنابراین:
dI1dz=-gI1I2,dI2dz=-gI1I2 (2-17)
که در آن g فاکتور بهره است که با یک تقریب مناسب به این صورت داده می شود:
g=g0ΓB/22ΩB-Ω2+ΓB/22 (2-18)
که خط مرکزی بهره به این صورت می باشد:
g0=γe2 ω2nvc3 p0ΓB (2-19)
برای حل معادلات dI1dz وdI2dz ابتدا فرض می کنیم که شدت پمپ ثابت است، =cte I1 بنابراین:
I2z=I2LegI1L-z (2-20)
در این حالت یک موج استوکس داخل محیط در z=L تزریق می شود که یک رشد نمایی را تجربه می کند.
این تئوری برای شرح انتشار موج در فرکانس آنتی استوکس نیز بکار می رود. ωas ≅ ωL+ ΩB به این صورت تعریف می کنیم که ω1را با ωasو ω2 را با ωL جایگزین می کنیم، از طرفیI2z=cte بنابراین:
I1z=I10e-gI2z (2-21)
از آنجا که ω1در جهت مثبت محور z ها منتشر می شود، دیده می شود که این موج یک اتلاف را در مسیر خود تجربه می کند.
وقتی که موج استوکس در حد شدتی قابل مقایسه با موج پمپ رشد داده شود، یک کاهش موثر موج پمپ باید اتفاق بیافتد، در این حالت باید معادلات کوپل شده شدت بصورت همزمان برای شرح فرایند پراکندگی بریلوئن القایی حل شوند. با استفاده از معادله (2-17) دیده می شود که:
dI1dz=dI2dz (2-22)
بنابراین:
I1z=I2z+c (2-23)
که مقدار ثابت انتگرال، C، به شرایط مرزی وابسته است. با استفاده از رابطه بالا و رابطه(2-17) داریم:
dI2I2I2+c=-g dz (2-24)
با انتگرال گیری از این رابطه خواهیم داشت:
I2(0)I2(z)dI2I2I2+c=0zg dz' (2-25) که:
lnI2zI20+cI20I2z+c=-gcz (2-26)
بنابراین: z=0 را در I2 از آنجایی که
C=I1 0-I2(0) (2-27)
با حل معادله بالا برای (z) I2 داریم:
I2z=I20I1 0-I20I1 0expgzI1 0-I20-I20 (2-28)
بنابراین:
(2-29) I1z=I2z+I1 0-I2(0)از آنجا که مقادیر مرزی I1 0و I2 L را می دانیم، بنابراین I2 0 را می توان با استفاده از این مقادیر مشخص کرد:
(2-30) I2(L)=I1 0I2 0I1 01-I2 0I1 0exp gI1 0 L1-I2 0I1 0-I2 0I1 0با استفاده از این رابطه می توان مقدار نا معین I2 0I1 0 را بدست آورد.
برای یک تولید کننده پراکندگی بریلوئن القایی، هیچ میدان استوکسی بصورت خارجی وارد ناحیه نمی شود، بنابراین مقدار شدت استوکس در نزدیکی مرز z=L مشخص نیست. فرآیند پراکندگی بریلوئن القایی توسط فونونهای آکوستیکی که از پراکندگی بریلوئن خود به خود در نزدیکی صفحه خروجی، z=L، تولید می شوند، آغاز می شود. بنابراین انتظار داریم که شدت موج ورودی استوکس، I2(L)، با، I1(L) متناسب باشد، این ثابت تناسب را با f نشان می دهیم:


(2-31) I2L=fI1(L)
حال حالت نزدیک ولی زیر حد آستانه برای پراکندگی بریلوئن القایی را در نظر می گیریم، بصورتی که انعکاس آن یعنی R=I2 0I1 0 خیلی کوچکتر از واحد باشد، در این حالت شدت لیزر در طول محیط لزوما ثابت است و شدت استوکس خروجی با شدت استوکس ورودی توسط رابطه زیر متناسب است:
I20=I2LeG (2-32)
که G=gI1 0L .چون I1 z ثابت است پسI2L=fI1(0) بنابراین داریم:
R=I2 0I1 0=feG (2-33) نتایج تجربی نشان می دهد که برای پراکندگی بریلوئن القایی باید G به یک مقدار Gth برسد که برای اغلب موارد در حدود 30-20 می باشد. f باید از درجهe-Gth باشد یا تقریبا برابر با 10-12تا 10-11باشد. برای پراکندگی بریلوئن القایی در حالت کلی باید G>Gth باشد بنابراین از معادله (2-30) داریم:
I2 LI1 0=R1-RexpG1-R -R (2-34)با یک تقریب خوب جمله-R را از مخرج کسر در سمت راست حذف می کنیم. رابطه (2-29) را به این صورت می نویسیم:
I1 L-I2 L=I1 0-I2 0 (2-35)
با استفاده از معادله (2-31) و فرض کوچک بودن f، سمت چپ معادله بالا را با f-1 I2 L جایگذاری می کنیم، با ضرب دو طرف معادله در fI1 0داریم:
I2 LI1 0=f 1-R (2-36)
وقتی این معادله در رابطه (2-34) قرار داده شود خواهیم داشت:
(2-37) GGth=Gth-1InR+11-Rکه در آن به جای Inf ، Gth قرار داده شده است. در شکل (2-4) وابستگی انعکاس SBS به بهره سیگنال کوچک، نشان داده شده است [5]:

شکل (2- SEQ شکل_(2- * ARABIC 4) وابستگی انعکاس SBS به بهره سیگنال کوچک.همانطور که در شکل(2-4) دیده می شود، در صورتی که G کمتر از Gth باشد، هیچ موجی استوکسی دیده نمی شود. برای مقادیر بزرگتر از Gth، R ناگهان رشد می کند. در شرایطی که G>>Gth ، این R به سمت 100%می رود. کمی بالاتر از شرایط آستانه پراکندگی بریلوئن القایی مثلا G≥3Gth می توان معادله (2-37) را به این صورت تقریب زد:
GGth=11-R (2-38)
بنابراین داریم:
G≥Gth , R=1-1GGth (2-39)
از آنجایی که شدت I1 L به این صورت داده می شود، I1 L=I1 0 1-R ، در شرایطی که رابطه قبلی صادق باشد، شدت پرتو عبوری به این صورت بیان می گردد:
I1 L=GthgL (2-40)
با بدست آوردن مقدار شدت استوکس در صفحه z=0 از رابطه (2-37)، توزیع شدت ها در طول محیط بر همکنش از معادلهI2z و I1z بدست می آید. شکل زیر توزیع شدت ها در ناحیه برهمکنش یک تولید کننده پراکندگی بریلوئن القایی را نشان می دهد.

شکل (2- SEQ شکل_(2- * ARABIC 5) توزیع شدت استوکس و لیزر در ناحیه
بر همکنش تولید کننده SBS ]5[حال می توان مقدار مینیمم توان لیزر، Pth ، را برای بر انگیخته کردن پراکندگی بریلوئن القایی تحت شرایط بهینه تقریب زد. فرض می کنیم که پرتو لیزر یک پروفایل گاوسی دارد که داخل یک محیط فعال بریلوئن متمرکز شده است. مقدار شدت پرتو در کمر پرتو، I=Pπ w02 می باشد، که w0کمر پرتو می باشد. طول ناحیه بر همکنش، L، به طول مشخصه پراش، b=2π w02λمحدود می گردد. بنابراین بجای G=g IL می توان نوشت:
G=2gPλ (2-41)
با مساوی قرار دادن این عبارت با Gth، می توان مقدار مینیمم توان لیزر مورد نیاز برای برانگیختن پراکندگی بریلوئن القایی را بدست آورد:
Pth=Gth λ2g (2-42)
2-3- خلاصه فصلبرای اینکه بتوانیم اصول پراکندگی نور را در فیبرهای نوری بررسی کنیم نیاز به شناخت کامل انواع پراکندگی نور در مواد داشتیم . از آنجاییکه در این پایان نامه به بررسی SBS آبشاری در فیبر نوری می پردازیم لازم بود که پراکندگی بریلوئن برانگیخته (القایی) به طور کامل بررسی شود. زیرا قبل از اینکه SBS در فیبر نوری بررسی شود ، باید اصول آن و چگونگی رخداد آن به طور پایه در مواد شفاف بررسی شود. همانطوریکه مشاهده شد معادلات شدتهای موج ورودی و موج استوکس را در حالتهای مختلف بدست آوردیم. در فصل بعدی به بررسی ساختار فیبرهای نوری و مشخصه های آنها و همچنین منابع نوری که امروزه در عمل استفاده می شود می پردازیم وعلت استفاده از نوع فیبر نوری و منبع نوری با طول موج خاص که در شبیه سازی های این پایان نامه انجام گرفته است را توضیح می دهیم.
فصل سوم2120265-2540000
فیبر نوری و مشخصه های آن3-1- مقدمهانتقال اطلاعات در سالهای اخیر بوسیله فیبر نوری بسیار مورد توجه قرار گرفته است. انواع و اقسام فیبرهای نوری با توجه به کاربرد، مزایا و معایب آنها طراحی و ساخته شده اند. همچنین منابع نوری مختلفی با توجه به پیشرفت ساخت فیبرهای نوری ساخته شده اند. در این فصل به بررسی ساختار ، عملکرد و مشخصه های فیبرهای نوری می پردازیم و توضیح می دهیم که چه نوع فیبر نوری و منبع نوری با چه طول موجی در سالهای اخیر برای انتقال اطلاعات در سیستمهای عملی امروزه استفاده می شود. بنابراین در این پایان نامه نیز نتایج شبیه سازیها با استفاده از فیبرها و منابع نوری با طول موج سیستمهای نوین امروزی می باشد. در انتهای این فصل به بررسی سرعت انتقال اطلاعات در فیبر نوری می پردازیم زیرا همانطوریکه در فصلهای بعدی مشاهده می کنیم پدیده SBS یا SBS آبشاری می تواند سرعت پالس نوری را در فیبر نوری تغییر دهد و باعث ایجاد تاخیر زمانی گرددکه درساخت بافرهای نوری از این پدیده استفاده می شود.

3-2- بازتاب کلی داخلی
کلادون، ویلر و تیندال ]17[ در هر یک از آزمایشاتشان به پدیده ای به نام بازتاب کلی داخلی که اساس درک انتقال نوری است متکی بودند. بنابراین ما هم مجبوریم که به فیزیک اپتیک بپردازیم.
اگر تکه ای چوب را در آب فرو کنیم متوجه خمیدگی ظاهر آن شده و یا حتی آدم گرسنه ای که سعی در شکار ماهی دارد متوجه می شود که ماهی در جائی که به نظر می آید باشد نیست. این پدیده یا شکست نور به علت تفاوت ضریب شکست هوا با آب رخ می دهد. ضریب شکست، مقدار نسبتی است که بین سرعت نور در خلاء و سرعت نور در محیطی دیگر برقرار است. نور در محیط های فیزیکی کند تر از هوا حرکت می کنند و بدین ترتیب ضریب شکست (n) را می توان از رابطه زیر بدست آورد:
سرعت نور در محیط دیگر/ سرعت نور در خلاء
ضریب شکست هر محیط دیگری بزرگتر از یک است.
این موضوع چه اهمیتی دارد؟ اهمیت این موضوع در آن است که در حقیقت نور هنگامی خم می شود که از محل تلاقی دو محیطی که دارای ضریب شکست متفاوتی هستند عبور کند. برای مثال اگر یک منبع نور، پرتو نوری را به درون فیبر شیشه ای بتاباند نور خم می شود زیرا از هوا به درون شیشه عبور می کند. میزان خمش نور به دو عامل بستگی دارد: تفاوت ضریب شکست دو محیط و زاویه ای که تحت آن نور به شیشه برخورد می کند یا همان زاویه تابش. این زاویه برابر زاویه ای است که خط عمود بر سطح دو محیط با پرتو تابش می سازد. برای سیستم های انتقال فیبر نوری این موضوع حائز اهمیت است. (شکل 3-1)

شکل (3- SEQ شکل_(3- * ARABIC 1) زاویه تابش و ضریب شکست
رابطه بین زوایه تابش و زاویه شکست قانون اسنل نام دارد. این قانون در سیستم های فیبر بسیار مهم بوده زیرا سعی می شود که نور حاصل از منبع طوری به فیبر تابانده شود که زاویه تابش به حداقل برسد. در صورتی که زاویه تابش بیش از حد بزرگ باشد، نور از شیشه خارج می شود که در این حالت افت سیگنال خواهیم داشت (شکل 3-2).

شکل (3- SEQ شکل_(3- * ARABIC 2) قانون اسنل
بر طبق قانون اسنل، اگر زاویه تابش بیشتراز زاویه حد باشد، شکست اتفاق نمی افتد. اگر نور به سطح جدا کننده محیط هوا و شیشه (ماده ای با ضریب شکست بیشتر) طوری بتابد که زاویه آن به اندازه کافی کم باشد، در این صورت نور خارج نخواهد شد و دوباره به شیشه بر خواهد گشت. این فرایند (شکل 3-3) بازتاب کلی نامیده می شود که اساس انتقال از طریق فیبر نوری است.

شکل (3- SEQ شکل_(3- * ARABIC 3) بازتاب کلی
هر چه نور بیشتری درون فیبر نگه داشته شود، شدت (توان) سیگنال ارسالی نیز بهتر خواهد بود زاویه ای که تحت آن پرتو تابش به سطح فیبر برخورد می کند، زوایه پذیرش یا روزنه عددی نام دارد. اگر هدف ارسال سیگنال به مسافت نسبتا زیاد باشد این زاویه مهم جلوه می کند. پس لازم است که در هنگام کار با دستگاه های لیزر احتیاط لازم را مبذول داشت و اطمینان حاصل کرد که وجهی از لیزر که سیگنال را تولید می کند تا حد امکان با سطح فیبر به ویژه مقطع عرضی فیبر که نور از آن عبور می کند همتراز باشد. (شکل3-4).

شکل (3- SEQ شکل_(3- * ARABIC 4) زاویه پذیرش
با دقت بیشتر متوجه می شویم که فیبر تک مد دارای سطح مقطعی با قطر تقریبا 8 میکرون است پس لیزر نیز باید حدودا این قطر را داشته باشد تا بتواند از درون آن عبور کند. توجه کنید که قطر موی انسان در حدود 50 میکرون است.
حتی در بهترین سیستم ها، با حدود 4 درصد سیگنال در سطح جدا کننده هوا/ شیشه و بین لیزر و کر فیبر هدر می رود. در صنعت به این افت، افت فرنل اطلاق می شود. فیبر نوری به دلیل طراحی ویژه اش، نور را به درستی هدایت می کند. فیبر نوری شامل دو لایه است: سطح مقطع درونی که از میان آن نور سیر می کند و غلاف خارجی که نور را در درون هسته نگه می دارد. (شکل3-5)

شکل (3- SEQ شکل_(3- * ARABIC 5) فیبر نوری
این پدیده با استفاده از قانون اسنل انجام می گیرد. در یک فیبر نوری، ضریب شکست هسته، کمی بیشتر از ضریب شکست غلاف است. به این ترتیب، زاویه تابش به حداقل رسیده و نور نا چیزی از هسته، خارج می شد. اگر غلاف وجود نداشته باشد، بیشتر نور از هسته خارج شده و هدر می رود.
3-3- منابع نوری
امروزه، متداولترین منابع نوری برای سیستم های نوری از نوع دیود های نور افشان یا دیود های لیزری می باشند. اگر چه از هر دو استفاده می شود ولی دیود های لیزری به دلیل داشتن سیگنال منسجم برای کاربرد های پر سرعت مناسب تر هستند. اگر چه در طول سالیان لیزر ها انواع گوناگونی از قبیل سیلیکا و هلیوم- نئون داشته اند ولی لیزر های نیمه رسانا از اوایل دهه 1960 به بعد به دلیل هزینه پایین و دوام زیادشان مورد مصرف بیشتری قرار گرفتند.
3-3-1- دیود های نور افشان (LEDs) دیود های نور افشان به دو صورت موجودند: LED با انتشار سطحی و LED با انتشار لبه ای. LED با انتشار سطحی (شکل3-6) نور را با زاویه باز خارج می کند، بنابراین مناسب سیستم های داده های نوری که به انسجام بیشتری نیاز دارند نمی باشند زیرا متمرکز ساختن نور گسیل شده به دورن مغزی فیبر گیرنده مشکل است.

شکل (3- SEQ شکل_(3- * ARABIC 6) LED با انتشار سطحی
در عوض بیشتر به عنوان نشانگر ها و دستگاه های سیگنال دهنده کاربرد دارند. با اینحال گران نبوده و برای کاربردهای نه چندان دقیق طراحی شده اند. نوع دیگر از LED ها، LED انتشار لبه ای است (شکل 3-7).

شکل (3- SEQ شکل_(3- * ARABIC 7) LED با انتشار لبه ای
LED انتشار لبه ای نور را با زاویه باریکتری گسیل کرده و فضای گسیل آن کوچکتر می باشد که این به معنای سهولت تمرکز بر هسته فیبر است. این قطعات سریعتر از انتشار سطحی می باشند ولی یک نقص دارند: به دما حساس بوده و باید در شرایط محیطی کنترل شده نصب شوند تا از پایداری سیگنال ارسالی اطمینان یافت.
3-3-2- دیود های لیزری
یک دیود لیزری سطح گسیل کوچکتری دارد و معمولا قطرش بیشتر از چند میکرون نیست یعنی می توان مقدار زیادی نور گسیل شده را به درون یک فیبر هدایت کرد. به دلیل داشتن منبعی منسجم، زاویه گسیل دیود لیزری بی نهایت کوچک است. دیود های لیزری سریع ترین قطعه در میان سه قطعه گفته شده می باشند ]18[.
انواع گوناگونی از دیود های لیزری موجودند. متداول ترین آن ها عبارتند از : لیزر مدوله شده الکترون- جاذب (EML) که لیزر دارای موج پیوسته(CW) را با یک دستگاه دیافراگم مدوله کننده ترکیب می کند، لیزر بازخورد توزیعی که یک ساختار توری مجتمع برای حفظ فرکانس خروجی در حد معینی می باشد؛ یک لیزر از نوع گسیل سطحی کاواک عمودی (VCSEL) که از فضای ریز و مدوری نور را ساطع کرده و منجر به تولید پرتوی نوری می شود که نسبت به انتشار سطحی ها پخش کمتری دارد. VCSELها قطعات چند بسامدی و ارزان و با توان پایین محسوب می شوند.
(شکل 3-8) ویژگی های گسیل سه دستگاه را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 8) مقایسه گسیل نور بین LED و دیود لیزری
LED انتشار سطحی گسترده ترین گسیل را داشته و بعد از آن انتشار خطی قرار دارد. دیود لیزری دارای منسجم ترین نور بوده و بنابراین موثرترین نوع نور محسوب می شود. در حقیقت، توزیع فضایی شدت پرتو خروجی این LED نسبت به لیزر نسبتا مناسب تر است همان طور که در شکل(3-9) مشخص است. (محور عمودی درجه بندی نشده است)

شکل (3- SEQ شکل_(3- * ARABIC 9) توزیع فضایی شدت پرتو LED و لیزر
3-4- مزایا و معایب فیبر نوری برای انتقال سیگنال
انواع بسیار متنوعی از فیبر های نوری موجود می باشند، بعضی از آن ها متعلق به نسل قبلی تکنولوژی نوری بوده و هنوز هم کاربرد دارند. در مابقی نیز تغییرات کلی یا جزئی صورت گرفته است.
در حقیقت از دو نوع فیبر استفاده می شود: چند مدی که ابتدایی ترین فیبر نوری است و قطر مغزی آن زیاد بوده و در فواصل کوتاه عمل می کند و پهنای باند کمی دارد. فیبر تک- مد مغزی باریک بوده، پهنای باند بیشتر داشته و مناسب برای فواصل بیشتر است. به جزئیات و انواع این دو بعدا خواهیم پرداخت.
برای درک دلیل وجود اشکالات گوناگون فیبر باید نکاتی را در نظر گرفت که در ابتدا مهندسان طراح شبکه های نوری مواجه با آن بودند.
فیبر نوری مزایای زیادی نسبت به مس دارد. سبک وزن بوده و پهنای باند آن بیشتر است و در ضمن قدرت کشسانی آن بسیار قابل توجه می باشد و می تواند بطور همزمان چند کانال را پوشش داده و نسبت به تداخلات الکترو مغناطیسی نیز مقاوم تر است. با اینحال استفاده از فیبر نوری مشکلاتی دارد که نمی توان از آن ها چشم پوشی کرد. اولین مشکل اتلاف یا تضعیف سیگنال ارسالی در طی مسافت است. تضعیف نتیجه دو عامل است: اولی تفرق و جذب بوده که هر یک اثر دیگری را افزایش می دهد و دومی پاشندگی نامیده می شود و منظور از آن پخش کردن سیگنال ارسالی می باشد که مشابه با نویز است.
3-4-1- تفرق
پراکندگی به دلیل نا خالصی ها یا بی نظمی های موجود در ساختار فیزیکی خود فیبر رخ می دهد: معروف ترین تفرق، تفرق رایلی است که توسط یون های فلزی درون شبکه سیلیس ایجاد می شود و منجر به تفرق پرتوهای نور در جهات مختلف می شود. این پدیده در (شکل3-10 ) نشان داده شده است.

شکل (3- SEQ شکل_(3- * ARABIC 10) تفرق نور
تفرق شعاع نور غالبا در حدود طول موج های 1000nm رخ می دهد و مسئول 90 درصد تضعیف نور در سیستم های نوری مدرن است. این پدیده هنگامی رخ می دهد که طول موج های نور ارسالی هم اندازه ساختارهای مولکولی فیزیکی شبکه سیلیسی باشند، بدین ترتیب طول موج های کوتاه نسبت به طول موج های بلند تر بیشتر تحت تاثیر تفرق عادی تابش ها قرار می گیرند. در حقیقت به دلیل تفرق عادی تابش ها است که آسمان به نظر آبی می آید. طول موج های کوتاه تر نور (آبی) بیشتر از طول موج های بلند تر نور پراکنده می شوند.
3-4-2- جذب
جذب در نتیجه سه عامل رخ می دهد: یون های هیدورکسیل (-OH: آب) موجود در سیلیس، ناخالصی های سیلیسی و باقی مانده های حاصل از فرآیند تولید. این ناخالصی ها، انرژی سیگنال ارسالی را جذب کرده و آن را به گرما تبدیل می کنند و منجر به تضعیف سیگنال نوری می شوند. جذب هیدورکسیل در 25/1 و 39/1 میکرومتر صورت می گیرد: در 7/1 میکرومتر خود سیلیس نیز به دلیل رزونانس طبیعی دی اکسید سیلسیوم شروع به جذب انرژی می کند.
3-4-3- پاشندگی
همان طور که قبلا نیز اشاره شد، پاشندگی یک اصطلاح نوری برای پخش پالس نور ارسال شده در هنگام عبور آن از فیبر است. این پدیده محدود کننده پهنای باند بوده و به دو صورت می باشد: پاشندگی چند - مد و پاشندگی رنگی.
پاشندگی رنگی نیز به دو صورت وجود دارد: پاشندگی ماده و پاشندگی طول موج
پاشندگی چند - مد: برای درک پاشندگی چند - مد ابتدا باید مفهوم مد را متوجه شد. (شکل3-11) ، فیبری را با هسته نسبتا پهن نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 11) فیبر با هسته پهن.به دلیل پهنای هسته آن، پرتوهای نور تحت زوایای گوناگون ( در این مورد سه تا) وارد فیبر شده و تا گیرنده انتقال می یابند. به دلیل مسیر های پیموده شده هر پرتوی نور یا مد بطور همزمان به گیرنده نرسیده و سیگنال پراکنده ای را موجب می شوند.
حال به (شکل 3-12) نگاه کنید.

شکل (3- SEQ شکل_(3- * ARABIC 12) فیبر با هسته باریکمغزی بسیار باریکتر بوده و تنها اجازه عبور یک پرتوی نور یا مد را می دهد. این امر موجب اتلاف انرژی کمتر شده و از پاشندگی که در سیستم های چند - مد رخ می دهد جلوگیری می کند.
پاشندگی رنگی: سرعت سیر یک سیگنال نوری به طول موج آن بستگی دارد. اگر سیگنالی متشکل از چند طول موج باشد در این صورت هر یک با سرعت متفاوتی حرکت می کنند و باعث پخش و یا پراکنده شدن سیگنال می گردند. همان طور که پیشتر نیز بیان شد، پاشندگی رنگی به دو صورت پاشندگی ماده و پاشندگی موجبر است.
پاشندگی ماده: این حالت به این دلیل که طول موج های متفاوت نور درون فیبر نوری با سرعت های مختلفی سیر می کنند اتفاق می افتد. برای به حداقل رساندن این پدیده دو عامل را باید در نظر گرفت: اولین عامل تعداد طول موج هایی است که سیگنال ارسالی را تشکیل می دهند. برای مثال یک LED ، گستره ای از طول موج های 30nm تا 180 nm را گسیل می کند در حالی که لیزر، طیف باریکتری یعنی کمتر از 5nm را گسیل می کند. بدین ترتیب، سیگنال لیزری نسبت به سیگنال LED بسیار کمتر تحت تاثیر این پدیده قرار می گیرد.
دومین عامل که در میزان پاشندگی ماده اثر دارد، ویژگی به نام طول موج مرکزی سیگنال منبع است. در مجاورت 850nm طول موج های بلند تر یعنی قرمز سریعتر از طول موج های کوتاهتر یعنی آبی حرکت می کنند ولی در 1550 nm، این حالت بر عکس می شود و طول موج های آبی سریعتر حرکت می کنند. البته در این میان نقطه ای وجود دارد که میزان پاشندگی در آن به حداقل مقدار خود می رسد که در گسترده nm1310 بوده و طول موج پاشندگی صفر نامیده می شود. واضح است که این نقطه، محل ایده آلی برای ارسال سیگنال داده ها است زیرا اثرات پاشندگی به حداقل می رسد. همان طور که بعدا نیز خواهیم دید، عوامل دیگری نیز اثر گذار هستند، در فیبرهای تک- مد، پاشندگی ماده بسیار دردسر ساز است.
پاشندگی موجبر: به دلیل متفاوت بودن ضریب شکست های غلاف و هسته فیبر، سرعت نور در هسته کمی کمتر از سرعت نور در غلاف است. این امر منجر به پاشندگی می شود ولی با تغییر طول موج به مقدار بخصوصی می توان پاشندگی موجبر و ماده را به حداقل رساند.
فکر می کنید این مطالب چه ارتباطی با انتقال سرعت بالای صدا، تصویر و داده داشته باشد؟ اطلاع از اینکه در کجا پاشندگی و تضعیف نور صورت می گیرد به مهندسان طراح نوری کمک می کند تا با در نظر گرفتن نوع فیبر و مسافت و عوامل دیگری که بر شدت سیگنال ارسالی اثر می گذارند، بهترین طول موج ارسالی را تعیین کنند. به منحنی (شکل 3-13) نگاه کنید که قلمروی انتقال نوری و همچنین نواحی بروز مشکل را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 13) منحنی تغییرات اتلاف بر حسب طول موجتضعیف dB/km روی محور y و طول موج بر حسب نانومتر در راستای محور x نشان داده شده اند.
توجه کنید که چهار پنجره انتقال در نمودار وجود دارند. اولین پنجره در حدود 850nm، دومی 1310nm، سومی در 1550nm و چهارمی در 1625nm می باشند. دو پنجره آخر باند L و باند C نامیده می شوند. در ابتدا باند 850 nm به دلیل تطابق آن با طول موج LED مورد استفاده قرار گرفت.
دومین پنجره در 1310nm از پاشندگی پایین برخوردار است. در اینجا اثرات پاشندگی به حداقل می رسند. 1550nm یا به اصطلاح باند c موج ایده آل برای سیستم های دور برد می باشد. در این ناحیه افت و پاشندگی به حداقل می رسد. باند L نسبتا جدید بوده و پنجره موثر دیگری محسوب می شود. یک باند جدید به نام باند s نیز تحت بررسی می باشد.
توجه کنید که تفرق رایلی در 1000nm یا حدود آن رخ می دهد در حالی که جذب هیدوکسی در 1240nm و 1390 nm صورت می گیرد.
نیازی به ذکر این مطلب نیست که طراحان شبکه از نقاطی روی منحنی که تفرق رایلی رخ می دهد اجتناب کردند. تفرق رایلی، افت زیاد و جذب هیدوکسیل، بالاترین تاثیر را در آن نقاط دارند. توجه داشته باشید که در پنجره دوم نمودار، خط پایینی یا پاشندگی به حداقل مقدار می رسد در حالی که در پنجره سوم، خط بالائی یا افت سیگنال به حداقل مقدار ممکن می رسد. در حقیقت، در فیبر تک- مد در طول موج 1310nm پاشندگی به حداقل رسیده در حالی که در 1550nm افت به حداقل مقدار می رسد. دراین صورت این سوال مطرح می شود: شما خواهان به حداقل رساندن کدام کمیت هستید، افت یا پاشندگی؟
خوشبختانه امروزه مجبور به این انتخاب نیستید. اکنون (DSF) ها بسیار متداول شده اند. مهندسان با اصلاح فرایند ساخت قادر به تغییر نقطه ای هستند که در آن حداقل پاشندگی از 1310nm تا 1550nm وجود دارد و در نتیجه قادر به تطابق آن به نقطه ای می باشند که افت به حداقل می رسد یعنی افت و پاشندگی در یک طول موج رخ می دهند. به همین دلیل در فصلهای بعدی پایان نامه از فیبر (DSF) و طول موج منبع نوری در حدود nm1550 استفاده می کنیم.
3-4-4- اثرهای غیر خطی های فیبر
همان طور که تقاضای بازار برای انتقال سیگنال به مسافت بیشتر با حداقل تقویت و تعداد طول موج های بیشتر در هر فیبر و در عین حال نرخ ارسال بیت های بالاتر و توان بیشتر، افزایش یافت یکسری عیوب تحت عنوان غیر خطی های فیبر مهندسان را به چالش خواند. این مشکلات فراتر از افت و پاشندگی بود و موانع اجرایی مهمی محسوب می شدند.
دو موضوع اساسی منجر به این غیر خطی شدن گردیدند. موضوع اول ( و شاید مهمترین) این حقیقت است که ضریب شکست هسته فیبر نوری رابطه مستقیمی با توان سیگنال ارسالی درون آن دارد. هر چقدر سیگنال ارسالی قوی تر باشد، اختلال نیز بزرگتر خواهد بود. به دلیل این رابطه، برای به حداقل رساندن مشکل قوی دو کار را باید در نظر گرفت. اولین اقدام به حداقل رساندن توان ارسالی سیگنال است که ظاهرا باعث کاهش افت سیگنال می شود. عیب اینکار در این است که مسافت انتقال را محدود کرده و روش مطلوبی به حساب نمی اید زیرا توان کمتر به معنای این است که برای مسیر های دور- برد باید از تقویت کننده های بیشتری استفاده نمود. خود تقویت کننده ها نیز مشکل دیگری را ایجاد می کنند. راه حل دوم که قابل قبول تر است به حداکثر رساندن سطح موثر فیبر است که مقیاسی برای سطح مقطع عرضی هسته فیبر حامل سیگنال ارسالی می باشد. با افزایش سطح موثر فیبر، توانائی فیبر در جمع آوری سیگنال افزایش یافته و نیاز برای سیگنال بسیار قوی کم تر می شود ]19[.

user3-2095

جدول2-4- مقادیر عددی C1 و C2 و C3 برای واکنش‌های D-T, D-D و D-3He PAGEREF _Toc411025934 h 54
جدول 3-1- پارامترهای ITER90-HP PAGEREF _Toc411025935 h 73
جدول 3-2- شرایط اولیه ی پلاسما PAGEREF _Toc411025936 h 74
جدول 3-3- نقطه تعادل–نقطه احتراق PAGEREF _Toc411025937 h 79
جدول 3-4- پارامترهای کمیت کنترل PAGEREF _Toc411025938 h 81

***فهرست اشکال*** TOC h z t "شکل;1"
شکل 1-1- مراحل زنجیره‌ی پروتون – پروتون که در خورشید اتفاق می‌افتد PAGEREF _Toc421519544 h 6شکل 1-2- انرژی پتانسیل بر حسب فاصله‏ی دو هسته‏ی باردار که با انرژی مرکز جرم به هم نزدیک می‏شوند. PAGEREF _Toc421519545 h 10شکل 1-3- نمایی از کپسول هدف PAGEREF _Toc421519546 h 12شکل 1-4- مراحل همجوشی به روش محصورسازی لختی PAGEREF _Toc421519547 h 13شکل1-5- راکتور آینه ای PAGEREF _Toc421519548 h 16شکل 1-6- نمایی از دستگاه چنبرهای پلاسما PAGEREF _Toc421519550 h 17شکل 1-7- راکتور توکاماک ایتر PAGEREF _Toc421519551 h 19شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی PAGEREF _Toc421519552 h 19شکل1-9- شماتیک هندسی راکتور استلاتور PAGEREF _Toc421519553 h 21شکل2-1- واکنش پذیری انواع سوخت‌ها PAGEREF _Toc421519554 h 26شکل2-2- روش‌های گرم کردن پلاسما PAGEREF _Toc421519555 h 36شکل23: مدارهای لارمور در یک میدان مغناطیسی PAGEREF _Toc421519556 h 44شکل 2-4: نمایش میدان مغناطیسی توروئیدی و پولوئیدی و تبدیل چرخشی PAGEREF _Toc421519557 h 44شکل 2-5: سوق‌گیری ذره، در میدان‌های الکتریکی و مغناطیسی متعامد PAGEREF _Toc421519558 h 45شکل 2-6: حرکت مارپیچی الکترون‏ها و یون‏ها در امتداد خطوط مغناطیسی PAGEREF _Toc421519559 h 46شکل2-7- آهنگ واکنش به صورت تابعی از دما برای واکنش‌های مختلف همجوشی با توزیع سرعت ماکسولی PAGEREF _Toc421519560 h 50شکل2-8- معیار لاوسون nτE برحسب دما T(keV) برای پلاسمای D-3He و D-T با فرض محصورسازی کامل ذرات باردار محصولات عمل PAGEREF _Toc421519561 h 59شکل4-1- مقایسه تغییرات پارامتر واکنشپذیری برای واکنش همجوشی D-T و D-3He براساس روش باکی PAGEREF _Toc421519562 h 83شکل 4-2- چگالی پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519563 h 86شکل 4-3- دمای پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519564 h 88شکل 4-4- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519565 h 89شکل 4-5- پارامتر β پلاسمای دوتریوم و هلیوم 3 برحسب زمان در حالت ناپایدار برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519566 h 90شکل 4-6- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519567 h 91شکل 4-7- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایداربر حسب زمان بدون ناخالصی و با ناخالصی PAGEREF _Toc421519568 h 92شکل 4-8- توان اهمی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519570 h 93شکل 4-9- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی PAGEREF _Toc421519571 h 94شکل4-10- چگالی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519572 h 95شکل 4-11- دمای پلاسمای دوتریوم و هلیوم3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی PAGEREF _Toc421519574 h 95شکل 4-12- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519575 h 96شکل 4-13-پارامتر پلاسمای دوتریوم و هلیوم 3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519576 h 97شکل 4-14- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی PAGEREF _Toc421519577 h 97شکل 4-15- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت پایداربر حسب زمان بدون ناخالصی و با ناخالصی PAGEREF _Toc421519578 h 98شکل 4-16- توان اهمی پلاسمای دوتریوم هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی PAGEREF _Toc421519579 h 99شکل 4-17- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی PAGEREF _Toc421519580 h 99

لیست علائم اختصاری
D-T Deuterium-tritiumD-3He Deuterium-Helium3
D-D Deuterium- Deuterium
T-T Tritium- tritium
ICF Inertial confinement fusion
H1ProtiumH2DeuteriumH3TritiumRWMResistive-Wall ModeRFPReversed field pinch NTMNeoclassical Tearing-ModeMHDMagnetohydrodynamicTFToroidal Fieldمقدمه
مقدمهیکی از مهمترین اهداف بشر در جهتگیری زمینههای تحقیقاتی و پژوهشی، دستیابی به منابع جدید انرژی می‌باشد. در این راستا بشر تلاش کرده است تا با ساخت رآکتورهای هستهای، به منبعی از انرژی دست یابد که بتواند مدت زمان بیشتری از آن، نسبت به سوخت‌های فسیلی استفاده کند. بطور کلی دو شیوه بنیادی، برای آزادسازی انرژی از یک اتم وجود دارد: شکافت هستهای و همجوشی هسته‌ای.
مزیت همجوشی هسته‌ای نسبت به شکافت هسته‌ای، فراوانی بسیار زیاد منابع سوختی آن (سوخت اصلی راکتورهای همجوشی دوتریوم می‌باشد که در آب دریاها به وفور وجود دارد. تولید انرژی بالاتر نسبت به روش شکافت هسته‌ای به ازای هر نوکلئون از ماده سوخت (به عنوان مثالی از انرژی تولیدی در یک راکتور همجوشی می‌توان گفت اگر یک گالن از آب دریا را که دارای مقدار کافی دوترون است در واکنش همجوشی استفاده کنیم معادل ۳۰۰ گالن گازوئیل، انرژی بدون آلودگی تولید می‌کند) ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]، عدم وجود معضل پسماندهای هسته‌ای با طول عمر طولانی در روش همجوشی و در نهایت ایمن‌تر بودن راکتورهای همجوشی در هنگام وقوع حوادث احتمالی است که سبب برتری آن بر شکافت هستهای گردیده است. سوخت‌های متنوعی در فرایند همجوشی هستهای قابل بکارگیری می‌باشد. از آن جمله دوتریوم-تریتیوم(D-T) ، دوتریوم-هلیوم 3 (D-3He)، دوتریوم-دوتریوم (D-D) و تریتیوم-تریتیوم (T-T) می‌باشد. بیشتر تحقیقات انجام شده در فرایندهای همجوشی بر روی سوخت D-T انجام شده است و علت عمده آن نیز بالا بودن سطح مقطع واکنش پذیری این سوخت نسبت به سایر سوخت‌ها در بازه‌ی دمایی عملکردی راکتورها می‌باشد. این سوخت در کنار مزیت ذکر شده و سایر مزیت ها محدودیتهایی نیز دارد، نظیر پرتوزایی زیاد و گران بودن سوخت تریتیوم که جزو مواد اولیه این واکنش‌ها است. از طرفی دیگر واکنش همجوشی D-3He از میان سایر سوخت‌ها، به دلیل بازدهی بالاتر، تبدیل مستقیم انرژی و کاهش خطرات ناشی از تابش، هزینه تعمیر و نگهداری پایینتر و... مورد توجه قرار گرفت ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2-4]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite><Cite><Author>Kulcinski</Author><Year>1992</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060514">3</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Kulcinski, G. L.; et al.;</author></authors></contributors><titles><secondary-title>Fusion Technology</secondary-title></titles><periodical><full-title>Fusion Technology</full-title></periodical><volume>21</volume><number>1779</number><dates><year>1992</year></dates><urls></urls></record></Cite><Cite><Author>Santarius</Author><Year>2003</Year><RecNum>4</RecNum><record><rec-number>4</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060578">4</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title> Fusion Science and technology</secondary-title></titles><volume>44</volume><number>289</number><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[2-4]. که این فرایند در راکتورهای متفاوت با شرایط مختلفی قابل انجام است.
لذا با این مقدمه از فرایند همجوشی هستهای، در فصل اول به بیان روشهای مختلف همجوشی هستهای و سوخت‌های قابل استفاده می‌پردازیم. در فصل دوم سینتیک فرایند همجوشی دوتریوم و هلیوم 3 و پارامترهای موثر بر همجوشی تشریح شده و به بررسی پارامترهای موثر بر همجوشی پلاسمای دوتریوم و هلیوم 3 به روش محصورسازی مغناطیسی پرداخته و فرایند با پارامتر مورد نظر شبیه سازی میگردد. در فصل چهار برخی از روشهای کنترل ناپایداری در راکتور بیان شده و در ادامه نتایج حاصل از شبیه سازی به کمک پارامترهای ترمودینامیکی مربوط به سوخت دوتریوم و هلیوم 3 با نتایج بدست آمده در سایر مطالعات مقایسه می‌شود.
فصل اول
همجوشی هستهای
فصل اول-همجوشی هسته‌ایواکنش‌های هسته‌ای تبدیلات خودبخودی یا مصنوعی بعضی از هسته‌ها به هسته دیگر که سبب تغییر ساختار هسته یا تغییر تعداد نوکلئونها (ذرات هسته‌ای) می‌گردد، واکنش‌های هسته‌ای نام دارند. همجوشی هسته‌ای و شکافت هسته‌ای، دو روش اصلی انجام واکنش‌های هسته‌ای می‌باشد.
شکافت هسته‌ایدر واکنش شکافت، هسته‌ی سنگین یک عنصر رادیو اکتیو مانند اورانیوم یا پلوتونیوم به دو یا چند هسته با جرم متوسط تجزیه می‌شود. به طور مثال اورانیوم 235 مورد اصابت یک نوترون قرار می‌گیرد و هسته فوق‌العاده ناپایداری تشکیل می‌شود که تقریبا بلافاصله می‌شکافد و کریپتون و باریم و مقدار زیادی انرژی تولید می‌شود. که ناشی از تبدیل جرم ناپدید شده (با مقایسه میان جرم سوخت‌های اولیه و محصولات واکنش) به انرژی است. این انرژی حدود 5 دهه است که مورد استفاده قرار گرفته است اینک این نیرو همان اندازه از برق جهان را تامین می‌کند که 40 سال پیش بوسیله تمام منابع انرژی تأمین می‌شد شکافت هسته‌ای مزایای بسیاری نسبت به سوخت‌های فسیلی دارد اما مسئله‌ی پسماندهای آن که حاوی مواد پرتوزا با طول عمر طولانی هستند از جمله مهم‌ترین مسائل خاص در مورد استفاده از شکافت هسته‌ای می‌باشد. از سوی دیگر ذخایر اورانیوم جهان برای استفاده در راکتورهای شکافت تنها در یک سده کفایت می‌کنند.
موادی که انجام یک واکنش شکافت هسته‌ای را ممکن می‌سازند عبارتند از: 239Pu ، 235U ، 238U ، و ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هسته‌ای با تاباندن نوترون به 233Th بوجود می‌آید.
در اثر برخورد نوترون حرارتی به ایزوتوپ235U ، هسته اتم به 235U تحریک شده تبدیل می‌شود. اورانیوم تحریک شده بعد از شکافت، به باریم و کریپتون و سه نوترون تبدیل می‌گردد ADDIN EN.CITE <EndNote><Cite><Author>Krane</Author><Year>1996</Year><RecNum>5</RecNum><DisplayText>[5]</DisplayText><record><rec-number>5</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060620">5</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Krane, K.S.; </author></authors></contributors><titles><secondary-title>Modern Physics. published by Wiley</secondary-title></titles><periodical><full-title>Modern Physics. published by Wiley</full-title></periodical><dates><year>1996</year></dates><urls></urls></record></Cite></EndNote>[5].
1n + 235U → 236U → 144Ba+89Kr + 3 1n
اما مسئله مهمتر اینکه هر نوترون‌ آزاد شده بر اثر شکافتن هسته 235U می‌تواند دو هسته دیگر را شکافته و چهار نوترون را بوجود آورد. شکافت هسته‌ای و آزاد شدن نوترون‌ها بصورت زنجیروار به سرعت تکثیر و توسعه می‌یابد. در هر دوره تعداد نوترون‌ها دو برابر می‌شود. در واکنش‌های کنترل شده تعداد شکافت در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگه‌داشته می‌شود. برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع، لازم است که موادی قابل دسترس باشند که بتوانند نوترون‌های اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست. زمانی که هسته اتمی 235U به دو قسمت شکافته می‌شود تولید عناصر استرتیوم 90، کریپتون 91، ایتریوم 91، زیرکونیوم 95، 126I ، 137U ، باریم 142، سریم 144 امکان پذیر هستند.
همجوشی هسته‌ایواکنش‌های همجوشی هسته‌ای از نوع واکنش‌هایی است که در خورشید و ستارگان صورت می‌گیرد. این واکنش عبارت است از ترکیب (برخورد) هستههای چهار اتم هیدروژن معمولی (شکل 1-1) که ضمن آزاد سازی مقدار زیادی انرژی ناشی از تبدیل جرم به انرژی است (E=mc2)، یک هسته‌ی هلیوم در دماهای بسیار بالای مرکز خورشید و ستارگان تولید می‌گردد ADDIN EN.CITE <EndNote><Cite><Author>Wilhelemsson</Author><Year>2004</Year><RecNum>6</RecNum><DisplayText>[6]</DisplayText><record><rec-number>6</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060659">6</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wilhelemsson, H.;</author></authors></contributors><titles><title>Fusion and the cosmos</title><secondary-title>Condensed Matter Physics</secondary-title></titles><periodical><full-title>Condensed Matter Physics</full-title></periodical><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[6].
در کره‌ی زمین، این انرژی را می‌توان به سه روش محصور سازی مغناطیسی، محصورسازی اینرسی یا لختی و محصور سازی از طریق کاتالیزور میون، تولید کرد؛ که البته همه در مرحله‌ی آزمایش قرار دارند. همجوشی هسته‌ای به دلیل پرتوزایی کمتر و ایمنی بیشتر و فراوانی بیشتر سوخت اولیه برای انجام واکنش‌ها نسبت یه شکافت مورد توجه بیشتری قرار گرفته است. برای تولید انرژی در مقیاس بزرگ، به تعداد زیادی از واکنش‌هایی که با هم رخ دهند، نیاز است. دافعه‏ی کولنی، مانع رخ دادن همجوشی هسته‏ای می‏گردد. برای غلبه بر این دافعه، به دما و چگالی بالایی مورد نیاز است. در نتیجه سوخت باید در حالت پلاسما باشد.در دمای به قدر کافی بالا، سرعت‏های حرارتی ذرات خیلی زیاد خواهند شد. در این صورت، ذرات این فرصت را خواهند داشت که به اندازه‏ی کافی به هم نزدیک شده، بر دافعه‏ی کولنی چیره شوند وتوانایی پیوند داشته باشند. در طی این فرایند انرژی بسیار زیادی آزاد میگردد.
اگر چگالی پلاسما بیشتر از ١٠20 یون در هر سانتی‌متر مکعب باشد، آن گاه زمان محصورسازی می‌تواند کوتاهتر باشد. اگر پلاسما خیلی فشرده شود، زمان محصورسازی، بی نهایت کوتاه و انرژی آزاد شده، فوقالعاده شدید است. در این صورت با یک بمب سر و کار خواهیم داشت نه یک راکتور کنترل شده. بههمین دلیل، با وجود آن که وظیفه محصورسازی مشکل میگردد، چگالی پلاسما در حداقل نگه داشته می‌شود.
بطور عملی هنوز محفظهای وجود ندارد که بتواند پلاسما با دمایی در حدود چند صد میلیون درجه را محصور سازد. حتی محفظههایی که از فلزات مقاوم در دماهای بالا ساخته شده باشند، تنها در دماهای پایینتر از چند هزار درجه قابل استفاده خواهند بود. ستارگانی نظیر خورشید کره عظیم پلاسمای خود را از طریق جاذبه حفظ میکنند. پلاسما از ذرات باردار تشکیل یافته است. این ذرات نمی توانند خطوط میدان مغناطیسی را قطع کنند، اما حول این خطوط میچرخند. این نکته، خلاصهای از مبنای فکری طرح محصورسازی پلاسما توسط خطوط میدان مغناطیسی را تشکیل داده است.
در یک تعریف کلی فرایند جلوگیری از برخورد پلاسما با دیواره‌های مخزنی که در آن جای دارد، محصورسازی نامیده می‌شود و همچنین زمان تقریبی برای اینکه یون‌ها توسط میدان احاطه کننده به دام افتاده باقی بمانند، زمان محصورسازی نامیده می‌شود.

شکل 1-1- مراحل زنجیره‌ی پروتون – پروتون که در خورشید اتفاق می‌افتد ADDIN EN.CITE <EndNote><Cite><Author>McCollam</Author><Year>2013</Year><RecNum>7</RecNum><DisplayText>[7]</DisplayText><record><rec-number>7</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061554">7</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>McCollam, K.; </author></authors></contributors><titles><title>Magnetic confinement in plasma physics</title><secondary-title>UW–Madison Physics Dept.</secondary-title></titles><periodical><full-title>UW–Madison Physics Dept.</full-title></periodical><dates><year>2013</year></dates><urls></urls></record></Cite></EndNote>[7]
انتخاب سوخت مناسبباتوجه به فرآیندهای طبیعی و نتایج حاصل از آنها، مشخص شده است که واکنشهای همجوشی بسیاری وجود دارد. متغیرها برای واکنشهای مختلف، هستههای سوخت درگیر، محصولهای واکنش که خارج می شوند، مقدار واکنش و بستگی احتمال انجام واکنش به خواص جنبشی واکنش دهندهها، می باشند.
برهم کنش ایزوتوپهای هیدروژنی (دوتریم وهلیوم 3) یکی از واکنش‌های مورد توجه در فرآیند همجوشی میباشد. به دلیل این‌که ایزوتوپ های هیدروژن فقط یک بار الکتریکی دارند و انرژی حرارتی کمتری برای نزدیک شدن به یکدیگر نیاز دارند، به عبارت دیگر در دماهای پایین همجوشی ایزوتوپهای هیدروژن اتفاق میافتد. به علت عدد اتمی واحد ایزوتوپها، این برهم کنش هیدروژنی دارای قابلیت نفوذ بسیار بالایی در سد کولنی میباشد. برای تعیین سوخت‌های همجوشی مناسب، باید در دسترس بودن سوخت مورد نظر، شرایط نگهداری و سطح مقطع واکنش مورد نظر را در نظر گرفت. برخی از واکنش‌های گوناگون همجوشی، شامل واکنش‌های ذکر شده در جدول(1-1) می‌باشد. در بیشتر واکنش‏های همجوشی، دو هسته‏ سبک با هم ترکیب و به هسته‏‏ سنگین‏تر تبدیل می‏شوند که رابطه‏ واکنش هسته‏ای آن‏ها به صورت زیر است:

جدول1-1- برخی از واکنش‌های همجوشی ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]
سوخت واکنش همجوشی شکل اختصاری بهره انرژی بر حسب ژول
DT D+T→42He+10n T(d,n)4He 2.8×10-12
DDn D+D→32He+10n D(d,n)3He 5.24×10-13
TT T+T→42He+10n+10n T(t,2n)4He 1.81×10-12
DDp D+D→T+P D(d,P)T 6.46×10-13
D-3He D+32He→42He+P 3He(d,P)4He 2.93×10-12
P_6Li P+63Li→42He+32He 6Li(p,x)3He 6.44×10-13
P_11B P+115B→3(42He) 11B(p,2x)4He 1.39×10-12
واکنش D-T دارای بیشترین سطح مقطع میباشد، مقدار بیشینه سطح مقطع آن 5 بارن برآورد شده است ADDIN EN.CITE <EndNote><Cite><Author>al.</Author><Year>2002</Year><RecNum>111</RecNum><DisplayText>[8]</DisplayText><record><rec-number>111</rec-number><foreign-keys><key app="EN" db-id="tx9da0v069srt5eteeoxtwa7fvfdz5wd09zx" timestamp="0">111</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>HarmsA. et al.</author></authors></contributors><titles><title>Principles of Fusion Energy</title><secondary-title>World Scientific Publishing Co. pte. 1td.</secondary-title></titles><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[8].
(1-1)
واکنش همجوشی قابل دسترس دیگر، در برگیرندهی هستهی دوتریم به عنوان سوخت است:
(1-2)
این نمایش نشان میدهد که واکنش D+Dاز طریق دو کانال واکنش متمایز، همجوشی میکند که تقریبا با احتمالهای برابر صورت میگیرد. سطح مقطع برای هریک از آنها حدود 100 مرتبه کوچکتر از واکنشD-T است از این دو واکنش در مییابیم که خواص واکنش D-T مطلوبتر از خواص واکنش D-D است ADDIN EN.CITE <EndNote><Cite><Author>Biberian</Author><Year>2009</Year><RecNum>9</RecNum><DisplayText>[9]</DisplayText><record><rec-number>9</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061676">9</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Biberian, J.P.;</author></authors></contributors><titles><title>Experiments and Methods in Cold Fusion</title><secondary-title> Journal of Condensed Matter Nuclear Science</secondary-title></titles><volume>2</volume><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[9].
همچنین ممکن است دوتریم، با محصولهای واکنش تریتیوم و هلیوم-3 همجوشی کند که افزون بر معادله‌ی (1-1)، داریم:
(1-3)
واکنش همجوشی یاد شده، در برگیرندهی دوتریم و همچنین هستههای سبک دارای جرم بیشتری هستند. از مزایای این واکنش نسبت به D-D میتوان به سوختی رادیواکتیو نبودن و یک واکنش نوترونیک بودن اشاره کرد. به عبارت دیگر در مسیر واکنش همجوشی هیچ نوترونی تابش نمیکند، در نتیجه تابش نوترون به طور چشمگیری کاهش مییابد که میتواند به معنای یک محافظ خیلی ارزان برای راکتور استفاده شود؛ زیرا تابشهای نوترونی باعث تخریب دیواره راکتور میشوند ADDIN EN.CITE <EndNote><Cite><Author>Brereton</Author><Year>1988</Year><RecNum>10</RecNum><DisplayText>[10]</DisplayText><record><rec-number>10</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061736">10</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Brereton, S. J.; Kazimi, M. S.;</author></authors></contributors><titles><secondary-title> Fusion Engineering and design</secondary-title></titles><volume>30</volume><number>207</number><dates><year>1988</year></dates><urls></urls></record></Cite></EndNote>[10]. قلهی آهنگ واکنش برابر با58 است. اما تولید هلیوم -3 بسیار سخت است، در حال حاضر میتوان آن را محصولی از راکتورهای شکافت دانست، زیرا تریتیوم تولید شده در راکتورهای شکافت به طور طبیعی بعد از مدتی به هلیوم 3 واپاشی میکند.
اگر این شکل ادامه یابد، برای واکنش هستهای ، تعداد زیادی کانالهای واکنش مشخص شده است:
(1-4)
واکنشهای هستهای که درگیر هستههای سبک، مانند پروتون، میباشند ممکن است مطابق فرآیندهای زیر روی دهد ADDIN EN.CITE <EndNote><Cite><Author>Atzeni</Author><Year>2004</Year><RecNum>11</RecNum><DisplayText>[11]</DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061786">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Atzeni, S.;</author></authors></contributors><titles><title>The Physics of Inertial Fusion</title><secondary-title> Rome: Clarendon PRESS</secondary-title></titles><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[11]:
(1-5 الف) (1-5 ب)
(1-5 ج)
و همچنین دیگر واکنشهای مبتنی بر و ، عبارتند از:
(1-6)
(1-7)
(1-8)
نمایش فیزیکی واکنشهای همجوشی، تنها بررسیهای لازم برای تعیین و گزینش آن، به عنوان سوخت راکتور همجوشی نیست بلکه بررسیهای دیگری در برگیرندهی قابل دسترس بودن سوختهای همجوشی، سختی در نگهداری و دانسیتهی میزان واکنش کافی، نیز لازم میباشد.
تاکید بر دیگر نکات واکنشهای همجوشی یاد شده، ضروری است. در هر حالت، کسرهای مختلف از مقدار واکنش، در شکل انرژی جنبشی ذرات باردار و نوترونهای خنثی باقی میماند، در نتیجه ایدهی یک راکتور همجوشی پایه گذاری شده با بازده بالا؛ تبدیل مستقیم انرژی ذرات باردار، به ویژه برای واکنشهایی که کسر بزرگتری از مقدار آنها در شکل انرژی جنبشی باردار باقی میماند، مناسب به نظر میرسد. این نکته به طور ویژهای مورد توجه است؛ چرا که نوترونهایی که به عنوان محصول واکنش همجوشی پدیدار میشوند، به گونهی تغییر ناپذیری به محصولات رادیو اکتیو در مواد مهارکننده قلب همجوشی کمک میکنند.
کمیتی مهم در ارتباط با واکنش‌های هسته‌ای، سطح مقطع واکنش است که به صورت احتمال برهم‌کنش هر جفت از ذرات، تعریف می‌شود. برای وقوع واکنش همجوشی، دو هسته‏ی باردار مثبت باید با غلبه بر نیروی دافعه‏ی کولنی، با هم برخورد کنند. تابع پتانسیل دافعه‏ی کولنی به صورت زیر است:

که Z1 , Z2، عدد اتمی هسته‌های برهم‌کنش کننده می‌باشد.
نیروی دافعه‏ی کولنی در فاصله‏ بیشتر از مجموع شعاع دو هسته برقرار است. شعاع دو هسته از رابطه‏ زیر بدست می‏آید:

که A1,A2 اعداد جرمیِ هسته‌های برهم‌کنش‏ کننده هستند.
شکل1-2 نشاندهنده انرژی پتانسیل برحسب فاصله‏ دو هسته‏ باردار می‌باشد که با انرژی مرکز جرم به هم نزدیک می‏شوند و نشان‏دهنده‏ چاه هسته‏ای، سد کولنی و نقطه‏ی بازگشتی کلاسیکی است.

شکل 1-2- انرژی پتانسیل بر حسب فاصله‏ی دو هسته‏ی باردار که با انرژی مرکز جرم به هم نزدیک می‏شوند ADDIN EN.CITE <EndNote><Cite><Author>Atzeni</Author><Year>2004</Year><RecNum>11</RecNum><DisplayText>[11]</DisplayText><record><rec-number>11</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061786">11</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Atzeni, S.;</author></authors></contributors><titles><title>The Physics of Inertial Fusion</title><secondary-title> Rome: Clarendon PRESS</secondary-title></titles><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[11].در فاصله‏ی r <rn، دو هسته تحت تأثیر نیروی جاذبه‏ی هسته‏ای قرار می‏گیرند که با چاه پتانسیل به عمق، مشخص می‌شود. با استفاده از معادلات می‏توان ارتفاع سد پتانسیل را پیدا کرد:

بر طبق مکانیک کلاسیک، فقط هسته‌هایی با انرژی بیشتر از این مقدار می‏توانند بر سد کولنی غلبه کرده و با هم برخورد کنند و هسته‌هایی با انرژی نسبی () کمتر از، می‏‏توانند تا نقطه‏ی بازگشت کلاسیکی به هم نزدیک شوند. ولی در مکانیک کوانتومی، واکنش همجوشی بین دو هسته با انرژی کمتر از سد کولنی، نیز ممکن است؛ چون تونل‏زنی از سد کولنی مجاز است. پارامترهای دخیل در برهم‌کنش بین پرتابه و هدف، سطح مقطع واکنش و واکنش‏پذیری هستند.
ایده‌های راکتور همجوشیانواع روشهای محصورسازی مورد استفاده در راکتورهای همجوشی هسته‌ای، همجوشی از طریق محصورسازی اینرسی، همجوشی از طریق کاتالیزور میون و محصورسازی از طریق محبوس کردن مغناطیسی می‏باشند که هدف هر سه روش، برآورده ساختن معیار لاوسون می‌باشد. محصورسازی لختی، فرایند نگهداری پلاسما را در چگالی‏های بالا و در زمان کوتاه انجام می‏دهد و محصورسازی مغناطیسی، پلاسما را در چگالی‏های پایین، در زمان نسبتاً طولانی محصور می‏سازد و روش کاتالیز میون در دماهای معمولی رخ می‌دهد ADDIN EN.CITE <EndNote><Cite><Author>Jones</Author><Year>1986</Year><RecNum>16</RecNum><DisplayText>[12]</DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062363">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jones, S.E.;</author></authors></contributors><titles><title> Muon-Catalysed Fusion Revisited</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>127-133</pages><volume>321</volume><number>6066</number><dates><year>1986</year></dates><urls></urls></record></Cite></EndNote>[12].
1-5-1- همجوشی هستهای کنترل شده توسط لختی(ICF)زمان محصورسازی در محصورسازی لختی خیلی کوتاه است. در نتیجه برای داشتن نرخ واکنش همجوشی بیشتر، نیازمند چگالی بالای پلاسما هستیم. در این روش، سوخت با استفاده از نیروهای قوی بیرونی، باید تا 1000 برابر چگال‌تر از حالت جامد فشرده شود.
کپسول با استفاده از پرتوهای محرک که از اطراف سطح خارجی آن تابیده می‌شود، متراکم می‌گردد. در محصورسازی به روش لختی، از روش‌های مختلفی برای تراکم کپسول استفاده می‌شود. در هر کدام از این روش‌ها سعی بر آن است که نسبت انرژی خروجی به انرژی ورودی را بالا ببرند. نوع پرتوهای محرک که برای تراکم کپسول استفاده می‌شود، عامل اصلی بالا و پایین بردن بهره انرژی در ICF می‌باشد. از پرتوهای لیزرهای پر توان پالسی، باریکه‌هایی از ذرات باردار نظیر یون‌های سنگین، یون‌های سبک و باریکه‌های الکترونی برای متراکم نمودن کپسول‌ها می‌توان استفاده کرد. این پرتوهای محرک که بصورت پالس‌هایی با توانW‌ 1014 تهیه می‌شود، دارای بهره انتقال انرژی متفاوتی به کپسول هستند. پرتوهای لیزری و باریکه‌های یون سنگین نسبت به سایر پرتوهای محرک به علت بهره بالاتر جذب انرژی در کپسول‌ها مورد توجه بیشتری قرار گرفتند. در طراحی کپسول‌های سوخت هر دو روش پرتوهای محرک لیزری و باریکه‌های یون سنگین مورد بررسی قرار گرفته است ADDIN EN.CITE <EndNote><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[13, 14].
انتخاب پرتوهای یون سنگین به علت قابلیت بالای انتقال انرژی به کپسول، بالای 25 درصد در مقایسه با باریکه‌های لیزری با بهره‌ی انرژی کمتر از 10 درصد روشی موثر به ‌شمار می‌رود که به خاطر ناپایداری‌هایی که در اثر نایکنواختی و ناهمزمانی باریکههای یونی اتفاق می‌افتد، اخیرا بصورت غیر مستقیم مورد استفاده قرار می‌گیرد. نور لیزر، ساده‌ترین و کم هزینه‌ترین روشی است که طراحان از آن برای تراکم کپسول استفاده می کنند ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite></EndNote>[13, 14].

شکل 1-3- نمایی از کپسول هدف ADDIN EN.CITE <EndNote><Cite><Author>falzner</Author><Year>2006</Year><RecNum>1</RecNum><DisplayText>[1]</DisplayText><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060407">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>falzner, S.P.;</author></authors></contributors><titles><title>An Introduction to Interial Confinement Fusion.</title><secondary-title>New York: CRC Press</secondary-title></titles><periodical><full-title>New York: CRC Press</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[1]
کپسول هدف در این روش، قرص کوچکی با شعاع کمتر از ، حاوی یک لایه‏ی کروی است که بطور مثال با گاز دوتریوم– تریتیوم بصورت متقارن و یکنواخت بصورت شکل 1-3 پر شده است. این لایه، حاوی یک ماده با Z بالا در ناحیه‏ی خارج و DT در داخل است که توده‏ی سوخت را تشکیل می‏دهد.
برای رسیدن به شرایط دما و چگالی بالای مورد نیاز برای همجوشی، باید این کپسول تا جایی که ممکن است به طور متقارن و با انرژی انفجاری خیلی زیادی تابش ببیند. انرژی مورد نیاز، برای راه‏اندازی این فرایند بسیار زیاد است. برای گرمایش یک کپسول سوخت با قطر ، تا دمای، به اندازه‏ی انرژی مورد نیاز است که این انرژی می‌تواند با نور شدید لیزر یا توسط پرتوهای یونی تامین شود. این مقدار انرژی باید در چند پیکوثانیه به قسمت خارجی لایه‏ی هدف منتقل شود. به دلیل انفجار انرژی روی قسمت خارجی لایه‏ی هدف، این لایه‏ گرم شده بلافاصله یونیزه و تبخیر می‌شود. این فرایند کندگی نام دارد. وقتی این قسمت کنده می‌شود، قسمت داخلی و سوخت به دلیل بقای اندازه‏ حرکت، به سمت داخل رانده می‌شود (شکل1-4). در حین این رانش، چگالی سوخت تا چند صد گرم بر سانتیمتر مکعب و دمای سوخت تا حد دمای احتراق برای همجوشی افزایش می‌یابند. در نتیجه، احتراق رخ می‏دهد و فشاری به سمت خارج ایجاد می‌شود که بر موج انفجار به داخل غلبه کرده و منجر به انفجاری به خارج می‌شود. بدین ترتیب چگالی و دمای مورد نظر بدست می‏آیند ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[14].

شکل 1-4- مراحل همجوشی به روش محصورسازی لختی ADDIN EN.CITE <EndNote><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><DisplayText>[14]</DisplayText><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[14]
1-5-2- همجوشی هستهای توسط کاتالیزور میون(µCF)
روش دیگری برای رسیدن به انرژی همجوشی هسته‌ای در سال 1957 مطرح شد، که تحت عنوان همجوشی از طریق کاتالیزر میون معروف است و یک فرآیند همجوشی گسترده و تجدید پذیر است که در دماهای معمولی رخ می‌دهد. همانطور که گفته شد یکی از مهم‌ترین مسایل در فرآیند همجوشی، غلبه بر نیروی دافعه‌ی کلونی و ایجاد شرایطی که یون‌ها در محدوده‌ی نیروهای جاذبه‌ی نیرومند هسته‌ای قرار گیرند، می‌باشد. پیدایش میون در مدار اتم هیدروژن، اثر کاهش دافعه‌ی نیروی کلونی دارد. میون ذره‌ای بنیادی است که خواص آن مانند الکترون است، با این تفاوت که جرم میون تقریبا 207 برابر جرم الکترون است و ذره‌ای ناپایدار با زمان عمر µS2/2 می‌باشد. پس از گذشت این زمان میون به یک الکترون e- و یک نوترینوی میونی و به یک پادنوترینوی الکترونی واپاشی می‌کند. بصورت دقیق در اوایل 1980مورد مطالعه قرار گرفت ADDIN EN.CITE <EndNote><Cite><Author>Jones</Author><Year>1986</Year><RecNum>16</RecNum><DisplayText>[12]</DisplayText><record><rec-number>16</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062363">16</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Jones, S.E.;</author></authors></contributors><titles><title> Muon-Catalysed Fusion Revisited</title><secondary-title>Nature</secondary-title></titles><periodical><full-title>Nature</full-title></periodical><pages>127-133</pages><volume>321</volume><number>6066</number><dates><year>1986</year></dates><urls></urls></record></Cite></EndNote>[12].
جرم زیاد میون نسبت به الکترون، به آن اجازه می‌دهد که وارد مدار اتم هیدروژن با شعاع بوهر، 207 مرتبه کوچکتر از شعاع الکترون شود و این باعث می‌شود که این اتم هیدروژن نسبت به دیگر اتم‌ها یا یون‌های هیدروژن، سنگین‌تر است. بنابر این، این هسته‌ی سنگین به دلیل کاهش نیروی دافعه‌ی کلونی می‌تواند با صرف انرژی کمتری به اتم‌ها و یون‌های دیگر هیدروژن، بسیار نزدیک شود و هنگامیکه هیدروژن میون‌دار و هیدروژن معمولی به اندازه‌ای به هم نزدیک شوند که تغییرات توزیع بار را احساس کنند، به حدی رسیده‌اند که نیروهای جاذبه‌ی هسته‌ای بین آن‌ها ایجاد شده است و پدیده همجوشی را بوجود می‌آورد بنابر این یکی از روش‌های ایجاد همجوشی در دمای پایین استفاده از کاتالیزور میون است.
میون اولین بار توسط اندرسون وندرمییر در سال ١٩٣٧ کشف شد. از طرف دیگر هنگامی که پاول ذره پایون را در سال ١٩۴٧ کشف کرد، فرانک پیشنهاد کرد که پایون‌های منفی می‌توانند به کمک محصور سازی شیمیایی، واکنشهای همجوشی را کاتالیز نمایند ADDIN EN.CITE <EndNote><Cite><Author>Frank</Author><Year>1947</Year><RecNum>17</RecNum><DisplayText>[15]</DisplayText><record><rec-number>17</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062414">17</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Frank, F.;</author></authors></contributors><titles><secondary-title> Nature</secondary-title></titles><volume>160</volume><number>525</number><dates><year>1947</year></dates><urls></urls></record></Cite></EndNote>[15]:


pπ + d → pdπ→3He + π(1-9)
با وجود اینکه، احتمال جذب پایون توسط هسته بسیار بزرگ است، اما پایون زمان کافی برای تشکیل pdπ را نخواهد داشت. یک سال بعد، ساخارف پیشنهاد همجوشی کاتالیزور میونی را مطرح کرد ADDIN EN.CITE <EndNote><Cite><Author>Sakharov</Author><Year>1948</Year><RecNum>18</RecNum><DisplayText>[16]</DisplayText><record><rec-number>18</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062457">18</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sakharov, A.;</author></authors></contributors><titles><secondary-title>Lebedev Physics Institute Report</secondary-title></titles><periodical><full-title>Lebedev Physics Institute Report</full-title></periodical><dates><year>1948</year></dates><urls></urls></record></Cite></EndNote>[16].
به دلیل اینکه تشکیل مولکول‌های میون‌دار در اثر فرایندهای برخوردی چند مرحله‌ای صورت می‌گیرد، بازده همجوشی کاتالیزور میونی، به شرایط ماکروسکوپی از قبیل دما، چگالی محیط و کسر غلظت‌های هیدروژن مایع و ضریب چسبندگی میونی وابسته است و می‌تواند به کمک تئوری سینتیکی که اساس آن آهنگ‌های برخوردی میکروسکوپی و سطح مقطع‌ها می‌باشد بهینه گردد. در سال‌های اخیر برای افزایش چرخه میونی، مخلوط سه تایی H/D/T پیشنهاد شده، که گزارشات و مقالات متناقضی در مورد افزایش یا کاهش ضریب تکثیر میونی گزارش شده است ADDIN EN.CITE <EndNote><Cite><Author>Eskandari</Author><Year>1998</Year><RecNum>19</RecNum><DisplayText>[17-19]</DisplayText><record><rec-number>19</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062505">19</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eskandari, M. R.; and Deilami S.;</author></authors></contributors><titles><title>Stability studies of D/T/H sys-- using Hurwitz method</title><secondary-title>IPAC, Kerman</secondary-title></titles><periodical><full-title>IPAC, Kerman</full-title></periodical><dates><year>1998</year></dates><urls></urls></record></Cite><Cite><Author>Markushin</Author><Year>1991</Year><RecNum>20</RecNum><record><rec-number>20</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062559">20</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Markushin, V. E.; et al.;</author></authors></contributors><titles><title> Kinetics of muon catalyzed fusion in the triple H2-D2-T2 mixture atlow deuterium and tritium concentrations</title><secondary-title> Technical Report PSI-PR-41-92, Preprint from Paul Scherrer Institute, Villigen</secondary-title></titles><dates><year>1991</year></dates><urls></urls></record></Cite><Cite><Author>Eskandari</Author><Year>1999</Year><RecNum>22</RecNum><record><rec-number>22</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062767">22</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Eskandari, M. R.; et al.;</author></authors></contributors><titles><secondary-title> Journal of Nuclear Science</secondary-title></titles><volume>36</volume><number>1</number><dates><year>1999</year></dates><urls></urls></record></Cite></EndNote>[17-19].
1-5-3- محصورسازی مغناطیسی (MCF) در محصورسازی مغناطیسی از میدان‌های مغناطیسی و الکترونیکی برای گرما دادن و فشردن پلاسمای هیدروژن در راکتور ITER استفاده میشود ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Author>Wagner</Author><RecNum>23</RecNum><DisplayText>[20]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062841">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title> ThePhysics Basis of ITER Confinement</title><secondary-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</secondary-title></titles><periodical><full-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</full-title></periodical><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20].
راکتورهای همجوشی هستهای که در آنها پلاسما به روش مغناطیسی محصورشده است براین اساس که میدان مغناطیسی تمام یا قسمتی از سطح پلاسما را بپوشاند، به دو گروه زیر تقسیم شدهاند:
چنبرهای
انتها باز
از معروفترین ماشین‌های پینچ می‌توان از تتا پینچ و Z پینچ نام برد ADDIN EN.CITE <EndNote><Cite><Author>Polsgrove</Author><Year>2011</Year><RecNum>24</RecNum><DisplayText>[21]</DisplayText><record><rec-number>24</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062899">24</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Polsgrove, T.; Robert, S.F.; Adams ,B;</author></authors></contributors><titles><title>Design of Z-pinch and Dense Plasma Focus Powered Vehicles</title><secondary-title>49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition</secondary-title></titles><periodical><full-title>49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition</full-title></periodical><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[21]. این سیستم‌ها آرایش استوانه‌ای دارند. در تتا پینچ جریانی از یک سیم‌پیچ استوانه‌ای پلاسما را دور می‌زند، و میدان حاصل از آن منجر به محصورسازی آن می‌شود. در Z پینچ توسط الکترودهایی که در قاعده‌ها قرار دارد جریانی در جهت محوری تولید می‌شود میدان ناشی از آن، پلاسما را گرم و متراکم می‌کند.
پینچ معکوس نوعی پینچ است که در آن جریانی در خلاف جهت جریان پلاسما اعمال می‌شود. در این دستگاه برهم‌کنش میدان قطبی ناشی از جریان رسانای داخلی، با جریان پلاسما منجر به حرکت پلاسما به سمت خارج می‌شود. در این دستگاه از دو استوانه هم محور به عنوان الکترود استفاده می‌شود. با تخلیه‌ی شعاعی میان دو الکترود میدان مغناطیسی قطبی القا می‌شود که پلاسما را گرم و متراکم می‌کند.
در سیستم‌های آینه‌ای پلاسما، از یک سیم‌پیچ ین-یانگ استفاده می‌شود پلاسما در این آرایش در ناحیه‌ای که از حداقل میدان مغناطیسی برخوردار است، محصور می‌شود. این نوع دستگاه‌ها عملکرد پایا دارند اما در آنها پلاسما از انتهای باز میدان خارج و تلف می‌شود، بنابراین باید از روش‌های کنترل انرژی خروجی استفاده کرد.
از جمله آزمایش‌های آینه‌ای در جهان عبارتند از: GDT و GoL-3-II در روسیه، Qt-UP و Gamma-10 در ژاپن. در حال حاضر با توجه به نتایج عملی و تجربی به دست آمده بیشتر آزمایش‌های مغناطیسی بر توکامک متمرکز شده‌اند. در شکل 1-5 یک راکتور از نوع آینه‌ای نشان داده شده است.

شکل1-5- راکتور آینهای ADDIN EN.CITE <EndNote><Cite><Author>Stacy</Author><Year>2010</Year><RecNum>25</RecNum><DisplayText>[22]</DisplayText><record><rec-number>25</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063009">25</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Stacy, M. Stacey;</author></authors></contributors><titles><title>Fusion An Introduction to tHe physics and technology of magnetic confinement fusion</title><secondary-title>Second, completely Revsed and enlarged Edition</secondary-title></titles><periodical><full-title>Second, completely Revsed and enlarged Edition</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[22]
همچنین بنابر نوع عملکرد راکتورها، آنها را میتوان به انواع زیر نیز تقسیم بندی کرد (از مهمترین آنها می‎توان به دستگاههای چنبره‎ای مانند توکامک، استلاراتور، چنبره برآمده ، اسفرومک، اسفراتور، تورساترون و دستگاههای انتها بازی چون آینه‎های مغناطیسی، پینچها و پلاسمای کانونی اشاره کرد.):
پایا: در این نوع راکتور واکنش‌های همجوشی به صورت مداوم انجام میگیرند.
تپی: این راکتور به طور مرتب قطع و وصل میگردد. زمان همجوشی تقریبا با زمان محصور بودن پلاسما برابر است.
شبه پایا: در مقایسه با انواع نامبرده، یک راکتور متوسط محسوب میگردد . زمان همجوشی آن اندکی بیشتر از زمان محصور شدن پلاسما است. اما در هر حال زمان محدودی است. (توکامک نمونهای از این نوع راکتور است.)
طبقه بندی انواع راکتور ها برحسب روش محصور کردن پلاسمادر دستگاه چنبره‎ای، پلاسما توسط میدان‌ مغناطیسی محصور می‎گردد. میدان اصلی در توکامک میدان چنبره‎ای است که بطور نمادین در شکل(1-6) نشان داده شده است. در جدول (1-2) نیز خلاصهای از انواع راکتورها برحسب روش محصور کردن پلاسما و نوع عملکرد آنها آورده شده است.
جدول1-2- انواع راکتورها برحسب روش محصور کردن پلاسماآرایش میدان مغناطیسی دستگاه نوع عملکرد
چنبره ای توکامک شبه پایا
تنگش میدان وارونه شبه پایا
استلاراتور پایا
هلیوترون پایا
تنگش چنبره ای تپی
انتها باز آیینه ای پایا
تنگش مستقیم تپی
پلاسمای کانونی تپی
شکل 1-6- نمایی از دستگاه چنبرهای پلاسما ADDIN EN.CITE <EndNote><Cite><Author>Glasstone</Author><Year>1980</Year><RecNum>27</RecNum><DisplayText>[23, 24]</DisplayText><record><rec-number>27</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063252">27</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Glasstone, S.;</author></authors></contributors><titles><title>Fusion Energy</title><secondary-title>U.S. Department of Energy, Technical Information Center</secondary-title></titles><periodical><full-title>U.S. Department of Energy, Technical Information Center</full-title></periodical><dates><year>1980</year></dates><urls></urls></record></Cite><Cite><Author>Emrich</Author><Year>2001</Year><RecNum>26</RecNum><record><rec-number>26</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063119">26</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Emrich, W. J.;</author></authors></contributors><titles><title>Field-Reversed Magnetic Mirrors for Confinement of Plasmas</title><secondary-title>NASA Tech Briefs</secondary-title></titles><periodical><full-title>NASA Tech Briefs</full-title></periodical><dates><year>2001</year></dates><urls></urls></record></Cite></EndNote>[23, 24]
1-6-1- راکتور توکامکتوکاماک یکی از انواع رآکتورهای همجوشی هستهای است که عمل محصورسازی را به خوبی انجام میدهد. طرح توکاماک در دهه پنجاه میلادی توسط روس‌ها پیشنهاد شد. کلمه توکاماک از کلمات "toroidalnaya", "kamera", and "magnitnaya" به معنی " اتاقک مغناطیسی چنبره‌ای" گرفته شده است. این سیستمها حاوی پلاسمای سوخت هستند که توسط دو سری میدان مغناطیسی نگهداری میشوند، و شکلی مانند چنبره تشکیل می‌دهند. ITER اسم مجموعهایست که اولین رآکتور همجوشی جهان از نوع توکاماک را ساخته است. این مجموعه متشکل از کشورهای روسیه، اروپا، ژاپن، کانادا، چین، ایالات متحده و جمهوری کره می‌باشد. آنها در این راه از فوق هادیها برای قسمتهای مغناطیسی رآکتور استفاده کرده و توان خروجی این توکاماک 410 مگا وات می‌باشد.
1-6-2- قسمتهای اصلی راکتور توکاماک ITERنمایی از راکتور توکامک ایتر در شکل(1-7) و (1-8) آورده شده است که شامل قسمتهای متفاوتی برای انجام فرایند محصورسازی پلاسما به روش مغناطیسی می‌باشد. این اجزا به همراه فرایندی که در آن انجام می‌گیرد بصورت خلاصه و در حد لزوم در زیر آمده است:
لوله خلأ: پلاسما را نگه داشته و از محفظه فعل و انفعال محافظت میکند
انژکتور پرتو خنثی(سیکلوترون یون): ذرات پرتو را از شتاب دهنده به پلاسما تزریق میکند تا به پلاسما برای رسیدن به دمای بحرانی کمک نماید.
میدان مغناطیسی مارپیچ: رفتار مغناطیسی بسیار قوی که شکل و محتوای پلاسمای استفاده شده در میدان مغناطیسی را محدود میکند.
ترانسفورماتور/ سولنوئید مرکزی: الکتریسیته را برای میدان مغناطیسی مارپیچ تامین میکند.
سیستم خنک کننده: آهنربا را خنک میکند.
سیستم عایق: ساخته شده از لیتیم است؛ گرما و انرژی بالای نوترون را از راکتور همجوشی هسته‌ای جذب میکند.
دایورتور: خروج محصولات هلیم از راکتور همجوشی

شکل 1-7- راکتور توکاماک ایتر ADDIN EN.CITE <EndNote><Cite><Author>Wagner</Author><Year>2012</Year><RecNum>28</RecNum><DisplayText>[25]</DisplayText><record><rec-number>28</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063339">28</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title>Fusion Energy by Magnetic Confinement</title><secondary-title> Research Laboratory for Advanced Tokamak Physics, St. Petersburg Polytechnical State</secondary-title></titles><dates><year>2012</year></dates><urls></urls></record></Cite></EndNote>[25]

شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی ADDIN EN.CITE <EndNote><Cite ExcludeYear="1"><Author>Wagner</Author><Year>2009</Year><RecNum>23</RecNum><DisplayText>[20]</DisplayText><record><rec-number>23</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062841">23</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wagner, F.;</author></authors></contributors><titles><title> ThePhysics Basis of ITER Confinement</title><secondary-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</secondary-title></titles><periodical><full-title>Max-Planck-Institut für Plasmaphysik EURATOM Association</full-title></periodical><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[20]
1-6-3- راکتور اسفرومکاسفرومک نوع دیگری از راکتورهای همجوشی است که بر خلاف توکامک که شکل چنبرهای دارد، بصورت کروی است. در مرکز اسفرومک هیچ مادهای وجود ندارد. اسفرومک از ترانسفورماتور (مانند آنچه که در توکامک بکار رفته) برای تولید سطوح پیچیده شار به شکل دوقطبی مورد نیاز برای محبوس سازی استفاده نمیکند بلکه پلاسمای بسیار داغ را در یک سیستم میدان مغناطیسی ساده و فشرده که فقط از یک سری ساده از کویلهای کوچک پایدار کننده استفاده می‌کند، بوجود می‌آورد. میدان‌های مغناطیسی قوی لازم درون پلاسما با چیزی که دینام مغناطیسی نامیده می‌شود تولید می‌شوند. در اسفرومک شعاع اصلی با شعاع فرعی برابر است یعنی پلاسما مطابق شکل در سیستمی کروی محصور می‎شود.
1-6-4- سایر راکتورهای محصورسازی مغناطیسیغیر از توکامک و اسفرومک دستگاه‌های دیگری برای محصورسازی مغناطیسی وجود دارد ، که تفاوت آنها در نوع آرایش میدان مغناطیسی و شکل آنهاست. برخی از این دستگاهها، تنگش میدان- وارونه، استلاراتور (شکل1-9) و هلیوترون،چنبره فشرده، دستگاه تنگش-تتا، دستگاه تنگش-Z ، پلاسمای کانونی می‌باشد.
استلاراتور وسیله‌ای برای حبس پلاسمای داغ به وسیله میدان مغناطیسی به منظور حفظ یک واکنش همجوشی کنترل شده است و یکی از ابتدایی‌ترین ابزارهای کنترل شده همجوشی بوده که اولین بار توسط لیمان اسپیتزر در سال 1950 اختراع شد. این اختراع تغییر در هندسه دستگاه‌های همجوشی قبلی بود.

شکل1-9- شماتیک هندسی راکتور استلاتور ADDIN EN.CITE <EndNote><Cite><Author>Emrich</Author><Year>2001</Year><RecNum>26</RecNum><DisplayText>[23, 24]</DisplayText><record><rec-number>26</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063119">26</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Emrich, W. J.;</author></authors></contributors><titles><title>Field-Reversed Magnetic Mirrors for Confinement of Plasmas</title><secondary-title>NASA Tech Briefs</secondary-title></titles><periodical><full-title>NASA Tech Briefs</full-title></periodical><dates><year>2001</year></dates><urls></urls></record></Cite><Cite><Author>Glasstone</Author><Year>1980</Year><RecNum>27</RecNum><record><rec-number>27</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063252">27</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Glasstone, S.;</author></authors></contributors><titles><title>Fusion Energy</title><secondary-title>U.S. Department of Energy, Technical Information Center</secondary-title></titles><periodical><full-title>U.S. Department of Energy, Technical Information Center</full-title></periodical><dates><year>1980</year></dates><urls></urls></record></Cite></EndNote>[23, 24]
از مزایای استلاراتورها می‌توان عدم احتیاج به جریان چنبره‌ای (در نتیجه افزایش احتمال فعالیت مداوم) و ثبات سیستم بیشتر را نام برد.
فصل دوم
سینیتیک همجوشی پلاسمای دوتریوم – هلیوم 3
فصل دوم: سینیتیک همجوشی پلاسمای دوتریوم–هلیوم 3سوخت‌های جدید و خواص آنهامشکلات مربوط به پسمان همجوشی را می‌توان با انتخاب یک سوخت بهتر کاهش داد. کاندیداهای مختلفی برای سوخت‌های همجوشی وجود دارند که سوخت‌های پیشرفته نامیده می‌شوند و تعداد نوترون‌های تولید شده در آن ها نسبت به همجوشی D-T بسیار کمتر است و بنا براین مشکلات مربوط به رادیواکتیویته و ایمنی و زیست محیطی ندارند. به طور کلی، همجوشی غیر نوترونی به هر شکلی از همجوشی اطلاق می‌شود که در آن کمتر از یک در صد از انرژی آزاد شده توسط نوترون‌ها حمل شود، ولی شرایط لازم برای کنترل همجوشی غیر نوترونی بسیار دشوارتر از شرایط لازم برای چرخه سوخت متداول دوتریم-تریتیم است و هنوز به طور تجربی حاصل نشده است.
دلایل اصلی اهمیت مطالعه برای یافتن چرخه‌های سوخت پیشرفته عبارتند از ADDIN EN.CITE <EndNote><Cite><Author>Nakai</Author><Year>1990</Year><RecNum>13</RecNum><DisplayText>[13, 14]</DisplayText><record><rec-number>13</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423061968">13</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nakai, S.; et al.; </author></authors></contributors><titles><title>Inertial Confinement</title><secondary-title>Nuclear Fusion</secondary-title></titles><periodical><full-title>Nuclear Fusion</full-title></periodical><pages>1779-1797</pages><volume>30</volume><number>9</number><dates><year>1990</year></dates><urls></urls></record></Cite><Cite><Author>Blanc</Author><Year>2010</Year><RecNum>15</RecNum><record><rec-number>15</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423062093">15</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Blanc, X.; Despres, B.;</author></authors></contributors><titles><title>Numerical Methods for inertial confinement fusion</title><secondary-title>Laboratoire Jacques-Louis Lions</secondary-title></titles><periodical><full-title>laboratoire Jacques-Louis Lions</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[13, 14]:
حذف تریتیوم از چرخه سوخت به منظور ساده سازی چرخه سوخت (عدم نیاز به زایش تریتیوم) و افزایش ذخیره سوخت همجوشی (ذخیره لیتیم زمین مقدار کل تریتیمی را که قابل تولید با پوشش‌های زاینده هست محدود می‌کند.)
(حذف و یا کاهش فوق العاده) تولید نوترون در رآکتورهای همجوشی به منظور اجتناب از (یا تا حد ممکن کاهش دادن) فعالسازی اجزای راکتورها و تخریب ناشی از نوترون‌ها.
دو چرخه مهم سوخت پیشرفته p-11B و D-3He می‌باشد، چرخه سوخت D-3He، تعداد خیلی کمتری نوترون نسبت به چرخه سوخت D-T تولید می‌کند و انرژی این نوترون‌ها نیز خیلی کمتر است، بنابراین، میزان تخریب مواد کاهش خواهد یافت. مطالعات نشان داده‌اند که چرخه سوخت D-3He به میزان قابل توجهی مساله طول عمر اجزای راکتور را با کاهش تخریب نوترونی حل می‌کند در حالی که مشکل فعال سازی نوترونی و تولید پسماندهای مربوط به آن کماکان باقی می‌ماند. در این چرخه، تریتیم حذف شده است ولی ایزوتوپ نایاب هلیم 3 جایگزین آن شده است. بر روی زمین در حدود 400 کیلوگرم هلیم3 قابل حصول است که در حدود GW-year 8 انرژی همجوشی بدست می‌دهد و مقادیر بیشتر از این باید یا از طریق واکنش‌هایی که شامل نوترون هستند، تهیه شود (که مزیت بالقوه همجوشی غیر نوترونی را از بین می‌برد) و یا اینکه از منابع ماورای زمین تهیه شود. بر روی سطح ماه در حدود 109 کیلوگرم هلیم3 وجود دارد که معادل هزار سال مصرف انرژی فعلی جهان است. همچنین، در اتمسفر سیارات عظیم گازی در حدود 1023 کیلوگرم هلیوم 3 وجود دارد که قادر است در حدود 1017 سال مصرف فعلی انرژی جهان را تولید کند، یعنی منابع هلیم 3 منظومه شمسی عملا پایان ناپذیرند ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>2006</Year><RecNum>29</RecNum><DisplayText>[26]</DisplayText><record><rec-number>29</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063586">29</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J.;</author></authors></contributors><titles><title>A Strategy for D–3He Development</title><secondary-title>Fusion Technology Institute</secondary-title></titles><periodical><full-title>Fusion Technology Institute</full-title></periodical><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[26].
ولی استخراج هلیم 3 از این منابع و انتقال آن به زمین بسیار دشوار و پرهزینه خواهد بود و تنها در آینده‌های دور می‌توان به آن اندیشید ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[2].
چرخه سوخت D-3He نسبت به D-T برای احتراق، نیازمند شرایط محصورسازی بالاتری nτET=2.4×1023keV.s/m3) ) است و در فشار پلاسمای یکسان، چگالی توان همجوشی کمتری نسبت به همجوشی D-T بدست خواهد داد. همچنین گرچه واکنش اصلی 3He(D,p)αرا می‌توان غیر نوترونی دانست ولی تولید نوترون از طریق واکنش جانبی D(D,n)3He و واکنش ثانویه D(T,n)α اجتناب ناپذیر است.
واکنش همجوشی 11B-p ایمن‌ترین و بهترین واکنش هسته‌ای هست که وجود دارد، 11B به فراوانی در آب دریا و منابع دیگر یافت می‌شود و 80 درصد بور موجود بر روی زمین را شامل می‌شود و هیدروژن هم که فراوان ترین عنصر در عالم هستی است. بنابراین، مشکلی از نظر محدودیت منابع سوخت وجود ندارد. حاصل واکنش آن‌ها نیز گاز بی اثر هلیم است و هیچ نوترونی تولید نخواهد شد ADDIN EN.CITE <EndNote><Cite><Author>Bussard</Author><Year>2006</Year><RecNum>30</RecNum><DisplayText>[27, 28]</DisplayText><record><rec-number>30</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063640">30</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bussard, W.; et al.;</author></authors></contributors><titles><title> The Advent of Clean Nuclear Fusion: Superperformance Space Power and Propulsion</title><secondary-title> 57th International Astronautical Congress(IAC), Valencia, Spain</secondary-title></titles><dates><year>2006</year></dates><urls></urls></record></Cite><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[27, 28].
برای بهره برداری عملی از همجوشی، انرژی حاصل از همجوشی باید بیش از انرژی لازم برای گرمایش پلاسما باشد، بدین منظورشروط متعددی باید برآورده شوند که مهمترین آنها، دستیابی به مقادیر مناسب برای حاصل ضرب nτ و حاصل ضرب nTτ است که مجموع اینها معیار لاوسون نامیده می‌شود. یعنی باید پلاسما را با چگالی مناسب تا دمای مناسبی گرم کرد و این پلاسمای داغ و چگال را به مدت کافی محصور نمود ADDIN EN.CITE <EndNote><Cite><Author>Wesson</Author><Year>2004</Year><RecNum>32</RecNum><DisplayText>[29]</DisplayText><record><rec-number>32</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063806">32</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Wesson, J.;</author></authors></contributors><titles><title> Tokamaks</title><secondary-title>Clarendon Press-Oxford</secondary-title></titles><periodical><full-title>Clarendon Press-Oxford</full-title></periodical><volume>third edition</volume><dates><year>2004</year></dates><urls></urls></record></Cite></EndNote>[29].
مقدار عدد به دست آمده در معیار لاوسون برای سوخت دوتریم تریتیم ازسال 1969 تا سال 2000 حدود 500 هزار برابر افزایش یافته است. سوخت‌های جدید مورد نظر هنوز نیاز به یک تا دو مرتبه افزایش در بزرگی دارند. بررسی‌های نظری نشان داده‌اند که این کار شدنی است ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>2006</Year><RecNum>33</RecNum><DisplayText>[30]</DisplayText><record><rec-number>33</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063863">33</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, F.;et al.;</author></authors></contributors><titles><title>Role of Advanced-Fuel and Innovative Concept Fusion in the Nuclear Renaissance</title><secondary-title>APS Division of Plasma Physics Meeting, Philadelphia</secondary-title></titles><periodical><full-title>APS Division of Plasma Physics Meeting, Philadelphia</full-title></periodical><volume>31</volume><dates><year>2006</year></dates><urls></urls></record></Cite></EndNote>[30].
خواص دوتریومدوتریوم همان عنصر هیدروژن است که علاوه بر یک پروتون یک نوترون نیز درون هسته آن وجود دارد. اگرمولکول آب توسط دوتریوم تشکیل شود به آن آب سنگین () می‌گویند. در هر لیتر از آب دریا (۳۵) گرم دوتریوم وجود دارد. دوتریوم یکی از پایه‌های لازم برای همجوشی هسته‌ای است. در آب در کنار هر ۷۰۰۰ اتم هیدروژن ۱ اتم دوتریوم موجود است که جدا کردن آن با توجه به نزدیکی خواص آب سنگین و آب سبک بسیار سخت است. این دوتریومها باید تغلیظ و انبار شوند تا ابتدا به آب سنگین ۱۵٪ و سپس به آب ۹۹٪ تبدیل شود، جدا سازی آب سنگین از آب سبک بسیار سنگین ، پیچیده و سخت است. به دلیل آنکه گرمای تبخیر آب سنگین بشتر از آب معمولی می‌باشد، از آن در نیروگاههای اتمی جهت خنک کردن راکتورها استفاده میکنند.
دوتریوم را می توان به آسانی از آب استخراج کرد. هیدروژن موجود در زمین شامل دوتریوم به نسبت جرمی 1:5000 است. یک تریلی پر از دوتریوم انرژی معادل 2 میلیون تن زغال سنگ یا 1.3میلیون تن نفت (10میلیون بشکه)، یا 30 تن اکسید اورانیوم، آزاد خواهد کرد.
دوتریوم در واکنش‌های همجوشی زیر با آهنگ واکنش مساوی شرکت میکنند:
(2-1)
(2-2)
محیطى که به این درجه از گرما برسد، نمی‌تواند در یک جداره مادى بگنجد.
خواص هلیوم 3هلیوم 3 یکی از ایزوتوپ‌های غیر پرتوزای عنصر گازی هلیوم است که دارای ۲ پروتون و یک نوترون است. از این ماده به عنوان سوخت در تحقیقات مربوط به راکتورهای هسته‌ای، استفاده می‌شود. در زمین به ندرت یافت می‌شود و عموما در لایه‌های فوقانی سنگی کره ماه که طی بیش از میلیاردها سال توسط بادهای خورشیدی ایجاد شده است، به فراوانی موجود است. هلیون هسته اتم هلیوم 3 حاوی دو پروتون و تنها یک نوترون می‌باشد. این در حالی است که هلیوم معمولی حاوی دو نوترون می‌باشد. وجود فرضی آن اولین بار در 1934 پیشنهاد شد ADDIN EN.CITE <EndNote><Cite><Author>Oliphant</Author><Year>1934</Year><RecNum>34</RecNum><DisplayText>[31]</DisplayText><record><rec-number>34</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063934">34</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Oliphant, M. L. E.; Harteck ,P.; Rutherford, E.;</author></authors></contributors><titles><title> Transmutation Effects Observed with Heavy Hydrogen</title><secondary-title>Proceedings of the Royal Society</secondary-title></titles><periodical><full-title>Proceedings of the Royal Society</full-title></periodical><pages>692-703</pages><volume>144</volume><number>853</number><dates><year>1934</year></dates><urls></urls></record></Cite></EndNote>[31].
بخاطر جرم اتمی پایین‌ترش نسبت به هلیوم4 دارای خصوصیات فیزیکی متفاوتی نسبت به آن است. به سبب تعامل ضعیف ناشی از پیوندهای دو قطبی-دو قطبی بین اتم‌های هلیوم، خواص فیزیکی ماکروسکوپی آن عمدتا توسط نقطه صفر انرژی آن (انرژی جنبشی حداقل) تعیین می‌شود. همچنین خواص میکروسکوپی هلیوم 3 سبب می‌شود که نقطه صفر انرژی آن بالاتر از هلیوم 4 باشد. این نشان می‌دهد که هلیوم3 می‌تواند بر تعامل دو قطبی-دو قطبی با انرژی حرارتی کمتری نسبت به هلیوم-4، غلبه کند.
هلیوم 3 می‌تواند توسط یکی از دو واکنش زیر در واکنش‌های همجوشی شرکت کند:
2D + 3He →   4He +  1p + 18.3 MeV(2-3)
3He + 3He → 4He   + 2 1p+ 12.86 MeV(2-4)
که هدف در این مطالعه استفاده از دوتریوم و هلیوم 3 می‌باشد. سرعت‌های واکنش با دما متغیر است اما سرعت واکنش D-3He هرگز بالاتر از 56/3 برابر سرعت واکنش D-D نمی‌باشد. شکل 2-1 بیانگر حالت مقایسه‌ای بین انواع سوخت‌هاست.

شکل2-1- واکنش پذیری انواع سوخت‌ها ADDIN EN.CITE <EndNote><Cite><Author>Tang</Author><Year>2011</Year><RecNum>35</RecNum><DisplayText>[32]</DisplayText><record><rec-number>35</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063997">35</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Tang, R.;</author></authors></contributors><titles><title>Study of the G--ynamic Mirror (GDM) Propulsion Sys--</title><secondary-title> thesis (A dissertation submitted in partial fulfillment ofthe requirements for the degree of Doctor of Philosophy) in the University of Michigan</secondary-title></titles><dates><year>2011</year></dates><urls></urls></record></Cite></EndNote>[32]
سرعت واکنش همجوشی به سرعت با دما افزایش می‌یابد تا اینکه به بیشینه مقداری رسیده و سپس به تدریج افت می‌کند. در مقایسه‌ای کلی جدول 2-1 را خواهیم داشت.
سوخت‌های پیشرفته، همجوشی سوخت‌های نسل دوم و سوم هستند که مقادیر بسیار کم یا اصلا هیچ نوترونی تابش نمی‌کنند و چرخه‌های سوخت نسل اول در آنها وجود ندارد. تعداد نوترون‌های تولید شده در واکنش‌های شامل هلیوم 3 بسیار کم است (در مورد واکنش 3He-3He عملا صفر و در مورد D-3He حدود 01/0 تا 05/0 همجوشی D-T و کمتر از 02/0 همجوشی D-D است.
محصول نسل سوم واکنش‌های همجوشی فقط ذرات باردار است و هر گونه واکنش جانبی نسبتا بی اهمیت است. در شرایط مناسب، فقط 1/0 درصد از انرژی حاصل از واکنش p-11B، توسط نوترون‌های تولید شده از واکنش‌های جانبی حمل می‌شود ADDIN EN.CITE <EndNote><Cite><Author>Santarius</Author><Year>1998</Year><RecNum>2</RecNum><DisplayText>[2]</DisplayText><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423060467">2</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Santarius, J. F.; et al.;</author></authors></contributors><titles><secondary-title>Journal of Fusion Energy</secondary-title></titles><periodical><full-title>Journal of Fusion Energy</full-title></periodical><pages>33-40</pages><volume>17</volume><number>1</number><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[2].
استفاده از سوخت‌های جدید نسبت به D-T با مسایل بیشتری مواجه است. به عنوان مثال در مورد D-3He باید:
دمای احتراق دست کم حدود 6 برابر افزایش یابد.
مقدار neτe حداقل حدود 8 برابر
حاصل ضرب nτT حداقل در حدود 50 برابر افزایش می‌یابد.
جدول2-1- نسل‌های مختلف سوخت‌های همجوشی PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaHZlc3l1azwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+
PFJlY051bT44PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNiwgMzMtMzddPC9EaXNwbGF5VGV4dD48
cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6cmE1d3hzZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFt
cD0iMTQyMzA2MTYyMiI+ODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy
bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+
S2h2ZXN5dWssIFYuIEkuOyBhbmQgWXUgQ2hpcmtvdiwgQS47PC9hdXRob3I+PC9hdXRob3JzPjwv
Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxvdy1yYWRpb2FjdGl2aXR5IETigJMzSGUgZnVz
aW9uIGZ1ZWwgY3ljbGVzIHdpdGggM0hlIHByb2R1Y3Rpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRST0xMRUQgRlVTSU9OPC9zZWNvbmRhcnktdGl0bGU+
PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRS
T0xMRUQgRlVTSU9OPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjUzLTI2MDwvcGFn
ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjwvZGF0ZXM+PHVy
bHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNhbnRhcml1czwvQXV0aG9y
PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT4yOTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6cmE1d3hz
ZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFtcD0iMTQyMzA2MzU4NiI+Mjk8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNhbnRhcml1cywgSi47PC9h
dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgU3RyYXRlZ3kg
Zm9yIETigJMzSGUgRGV2ZWxvcG1lbnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RnVzaW9uIFRl
Y2hub2xvZ3kgSW5zdGl0dXRlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+
PGZ1bGwtdGl0bGU+RnVzaW9uIFRlY2hub2xvZ3kgSW5zdGl0dXRlPC9mdWxsLXRpdGxlPjwvcGVy
aW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub2RkPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48
UmVjTnVtPjM2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpyYTV3eHNkOHo1djV1ZTk1c2c1NWF4ajlw
MDIyMHMwMHh4NSIgdGltZXN0YW1wPSIxNDIzMDY0OTQwIj4zNjwva2V5PjwvZm9yZWlnbi1rZXlz
PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0
b3JzPjxhdXRob3JzPjxhdXRob3I+VG9kZCwgSC5SaWRlcjs8L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBHZW5lcmFsIENyaXRpcXVlIG9mIEluZXJ0aWFs
IEVsZWN0cm9zdGF0aWMgQ29uZmluZW1lbnQgRnVzaW9uIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRh
cnktdGl0bGU+dGhlc2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9s
b2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+dGhl
c2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9sb2d5PC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MTk5NDwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Sb2Jlcmc8L0F1dGhvcj48WWVhcj4y
MDExPC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMt
bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2NXVl
OTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzU4NDYiPjc0PC9rZXk+PC9m
b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl
Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Sb2JlcmcsIEcuOzwvYXV0aG9yPjwvYXV0
aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgUG93ZXIgb2YgdGhlIEZ1dHVy
ZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OdWNsZWFyIEZ1c2lvbjwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xlYXIgRnVzaW9uPC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CZXJ0dWxhbmk8L0F1dGhvcj48WWVh
cj4yMDEwPC9ZZWFyPjxSZWNOdW0+NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjczPC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2
NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzUxNDIiPjczPC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZXJ0dWxhbmksIEMuQS47PC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXIgUmVhY3Rp
b25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNz
LCBXaWxleS1WQ0gsIEJlcmxpbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNzLCBXaWxleS1WQ0gsIEJl
cmxpbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9k
YXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WWFtYW5ha2E8
L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNOdW0+Mzc8L1JlY051bT48cmVjb3JkPjxyZWMt
bnVtYmVyPjM3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i
enJhNXd4c2Q4ejV2NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNjYx
NjciPjM3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZYW1hbmFrYSwg
Qy47PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPiBJbnRy
b2R1Y3Rpb24gdG8gTGFzZXIgRnVzaW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkhhcndhcmQg
QWNhZGVtaWMgUHVibGlzaGVyczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPkhhcndhcmQgQWNhZGVtaWMgUHVibGlzaGVyczwvZnVsbC10aXRsZT48L3Bl
cmlvZGljYWw+PGRhdGVzPjx5ZWFyPjE5OTE8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5LaHZlc3l1azwvQXV0aG9yPjxZZWFyPjIwMDI8L1llYXI+
PFJlY051bT44PC9SZWNOdW0+PERpc3BsYXlUZXh0PlsyNiwgMzMtMzddPC9EaXNwbGF5VGV4dD48
cmVjb3JkPjxyZWMtbnVtYmVyPjg8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0i
RU4iIGRiLWlkPSJ6cmE1d3hzZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFt
cD0iMTQyMzA2MTYyMiI+ODwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3Vy
bmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+
S2h2ZXN5dWssIFYuIEkuOyBhbmQgWXUgQ2hpcmtvdiwgQS47PC9hdXRob3I+PC9hdXRob3JzPjwv
Y29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkxvdy1yYWRpb2FjdGl2aXR5IETigJMzSGUgZnVz
aW9uIGZ1ZWwgY3ljbGVzIHdpdGggM0hlIHByb2R1Y3Rpb248L3RpdGxlPjxzZWNvbmRhcnktdGl0
bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRST0xMRUQgRlVTSU9OPC9zZWNvbmRhcnktdGl0bGU+
PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UExBU01BIFBIWVNJQ1MgQU5EIENPTlRS
T0xMRUQgRlVTSU9OPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjUzLTI2MDwvcGFn
ZXM+PHZvbHVtZT40NDwvdm9sdW1lPjxkYXRlcz48eWVhcj4yMDAyPC95ZWFyPjwvZGF0ZXM+PHVy
bHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlNhbnRhcml1czwvQXV0aG9y
PjxZZWFyPjIwMDY8L1llYXI+PFJlY051bT4yOTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
Mjk8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ6cmE1d3hz
ZDh6NXY1dWU5NXNnNTVheGo5cDAyMjBzMDB4eDUiIHRpbWVzdGFtcD0iMTQyMzA2MzU4NiI+Mjk8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlNhbnRhcml1cywgSi47PC9h
dXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPkEgU3RyYXRlZ3kg
Zm9yIETigJMzSGUgRGV2ZWxvcG1lbnQ8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RnVzaW9uIFRl
Y2hub2xvZ3kgSW5zdGl0dXRlPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+
PGZ1bGwtdGl0bGU+RnVzaW9uIFRlY2hub2xvZ3kgSW5zdGl0dXRlPC9mdWxsLXRpdGxlPjwvcGVy
aW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAwNjwveWVhcj48L2RhdGVzPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Ub2RkPC9BdXRob3I+PFllYXI+MTk5NDwvWWVhcj48
UmVjTnVtPjM2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4zNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InpyYTV3eHNkOHo1djV1ZTk1c2c1NWF4ajlw
MDIyMHMwMHh4NSIgdGltZXN0YW1wPSIxNDIzMDY0OTQwIj4zNjwva2V5PjwvZm9yZWlnbi1rZXlz
PjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0
b3JzPjxhdXRob3JzPjxhdXRob3I+VG9kZCwgSC5SaWRlcjs8L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+QSBHZW5lcmFsIENyaXRpcXVlIG9mIEluZXJ0aWFs
IEVsZWN0cm9zdGF0aWMgQ29uZmluZW1lbnQgRnVzaW9uIFN5c3RlbXM8L3RpdGxlPjxzZWNvbmRh
cnktdGl0bGU+dGhlc2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9s
b2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+dGhl
c2lzIGluIHRoZSBNYXNzYWNodXNldHRzIEluc3RpdHV0ZSBvZiBUZWNobm9sb2d5PC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MTk5NDwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5Sb2Jlcmc8L0F1dGhvcj48WWVhcj4y
MDExPC9ZZWFyPjxSZWNOdW0+NzQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjc0PC9yZWMt
bnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2NXVl
OTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzU4NDYiPjc0PC9rZXk+PC9m
b3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBl
Pjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Sb2JlcmcsIEcuOzwvYXV0aG9yPjwvYXV0
aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgUG93ZXIgb2YgdGhlIEZ1dHVy
ZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5OdWNsZWFyIEZ1c2lvbjwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPk51Y2xlYXIgRnVzaW9uPC9mdWxsLXRp
dGxlPjwvcGVyaW9kaWNhbD48ZGF0ZXM+PHllYXI+MjAxMTwveWVhcj48L2RhdGVzPjx1cmxzPjwv
dXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5CZXJ0dWxhbmk8L0F1dGhvcj48WWVh
cj4yMDEwPC9ZZWFyPjxSZWNOdW0+NzM8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjczPC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ienJhNXd4c2Q4ejV2
NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNzUxNDIiPjczPC9rZXk+
PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10
eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5CZXJ0dWxhbmksIEMuQS47PC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk51Y2xlYXIgUmVhY3Rp
b25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNz
LCBXaWxleS1WQ0gsIEJlcmxpbjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPldpbGV5IEVuY3ljbG9wZWRpYSBvZiBQaHlzaWNzLCBXaWxleS1WQ0gsIEJl
cmxpbjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9k
YXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+WWFtYW5ha2E8
L0F1dGhvcj48WWVhcj4xOTkxPC9ZZWFyPjxSZWNOdW0+Mzc8L1JlY051bT48cmVjb3JkPjxyZWMt
bnVtYmVyPjM3PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0i
enJhNXd4c2Q4ejV2NXVlOTVzZzU1YXhqOXAwMjIwczAweHg1IiB0aW1lc3RhbXA9IjE0MjMwNjYx
NjciPjM3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5ZYW1hbmFrYSwg
Qy47PC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPiBJbnRy
b2R1Y3Rpb24gdG8gTGFzZXIgRnVzaW9uPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkhhcndhcmQg
QWNhZGVtaWMgUHVibGlzaGVyczwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2Fs
PjxmdWxsLXRpdGxlPkhhcndhcmQgQWNhZGVtaWMgUHVibGlzaGVyczwvZnVsbC10aXRsZT48L3Bl
cmlvZGljYWw+PGRhdGVzPjx5ZWFyPjE5OTE8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA [26, 33-37]
n/MeV بهره انرژی محصولات واکنش‌ها
سوخت‌های همجوشی نسل اول
0.306 3.268 MeV32He + 10n 21H + 21H (D-D)
0 4.032 MeV31H + 11p 21H + 21H (D-D)
0.057 17.571 MeV42He + 10n 21H + 31H (D-T)
سوخت‌های همجوشی نسل دوم
0 18.354 MeV42He + 11p 21H + 32He (D-3He)
سوخت‌های همجوشی نسل سوم
0 12.86 MeV42He+ 211p 32He + 32He
0 8.68 MeV3 42He115B + 11p
نتیجه کل سوختن دوتریوم(مجموع 4 سطر اول)
0.046 43.225 MeV2(4He + n + p) 6D
سوخت هسته‌ای در زمان حال
0.001 ~200 MeV2 FP+ 2.5n 235U + n
در استفاده از سوخت D-3He کاهش فوق العاده شار نوترونی باعث کاهش قابل ملاحظه تخریب تابشی می‌شود ودرنتیجه طول عمر دیواره اولیه و حفاظ تابشی افزایش می‌یابد و به حفاظ تابشی کوچک‌تری نیاز خواهد بود و تعمیرات و نگهداری راحت‌تر می‌شوند. افزایش شار ذرات باردار امکان تبدیل مستقیم انرژی همجوشی را با بازده بالا فراهم می سازد.
مشکلات عمده در استفاده از انرژی هسته‌ای در سالیان گذشته از سه مساله اصلی، احتمال پخش مواد رادیواکتیو، مشکلات مربوط به نگهداری پسماندهای هسته‌ای با عمر طولانی، احتمال استفاده از مواد حاصل برای کاربردهای تسلیحاتی می‌باشد. تمام این مشکلات مربوط به رآکتورهای هسته‌ای، مربوط است به:
سوخت رادیواکتیو
محصولات رادیواکتیو واکنش
نوترونها
همجوشی هسته‌ای تا حدودی از این مشکلات می‌کاهد ADDIN EN.CITE <EndNote><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><DisplayText>[28]</DisplayText><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[28].
مزیت عمده سوخت‌های جدید همجوشی این است که سوخت و محصولات واکنش‌های نسل دوم و سوم همجوشی میزان پرتوزایی (تخریب حرارتی و وجود تریتیم) و نکات بالقوه مربوط به تکثیر تسلیحاتی و همینطور مشکلات مربوط به پسمانداری را تا حد زیادی کاهش داده یا حذف می‌کنند، ولی برای استفاده از آنها به پیشرفت فیزیکی و مهندسی زیادی نیاز است. از این سوخت‌های جدید می‌توان برای ساخت نیروگاه‌های برق ایمن، تمیز و اقتصادی، در سفینه‌های فضایی و موشک‌ها به عنوان سوخت و نیز برای کاربردهای پزشکی و غیره استفاده کرد. از مزایای دیگر آنها می‌توان از عدم نیاز به پوشش‌های زاینده تریتیم و حلقه‌های پیچیده سرمایش ثانویه و عدم نیاز به دستگاه‌های پیچیده تست نوترون و مدت زمان‌های بررسی طولانی نام برد ADDIN EN.CITE <EndNote><Cite><Author>Soto</Author><Year>2005</Year><RecNum>31</RecNum><DisplayText>[28]</DisplayText><record><rec-number>31</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423063739">31</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Soto, L.;</author></authors></contributors><titles><secondary-title>Plasma Physics and Controlled Fusion-IOPscience</secondary-title></titles><periodical><full-title>Plasma Physics and Controlled Fusion-IOPscience</full-title></periodical><pages>361-381</pages><volume>47</volume><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[28].
پارامترهای متعددی در استفاده از سوخت‌های مختلف دخیلند، از جمله: .
انرژی کل محصولات همجوشی : Efus
محصولات باردار همجوشی: Ech
عدد اتمی ذرات درگیر در واکنش: Z
میزان انرژی حمل شده توسط نوترون ها
اتلاف انرژی از طریق تابش ترمزی و....
در رابطه با همجوشی D-D و D-T اتلاف انرژی از طریق تابش ترمزی مشکل جدی و مهمی است که باید حل شود، برای سوخت‌های سنگین‌تر D-3He و p-11 B و 3He-3He میزان این اتلاف به قدری است که کار یک راکتور همجوشی بر اساس طرح‌های توکامک و همجوشی لیزری را ناممکن می‌سازد.
تابش سینکروترونی نیز نکته دیگری است که باید مورد توجه قرار گیرد. بررسی‌ها نشان داده‌اند که درمورد همجوشی D-T تابش سینکروترونی نقش چندانی در بالانس انرژی ندارد، در حالی که در مورد همجوشی 3He-D این اثر قابل توجه است. و این مشکل باید در طراحی رآکتورهای احتمالی3 He -D حل شود ADDIN EN.CITE <EndNote><Cite><Author>Lerner</Author><Year>2003</Year><RecNum>38</RecNum><DisplayText>[38]</DisplayText><record><rec-number>38</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066296">38</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Lerner, E.J.;</author></authors></contributors><titles><title>ProspectsFor p-11B Fusion With The Dense Plasma Focus: New Results</title><secondary-title>Conf. Current Trends in International Fusion Research, Washington, USA</secondary-title></titles><periodical><full-title>Conf. Current Trends in International Fusion Research, Washington, USA</full-title></periodical><dates><year>2003</year></dates><urls></urls></record></Cite></EndNote>[38].
درصدی از انرژی کل واکنش که توسط نوترون‌ها حمل می‌شود، در مورد D-T حدود 80 درصد، در مورد D-D حدود 66 درصد و در مورد 3 He –D و p-11B بسیار ناچیز و نزدیک به صفر است که این امر مشکلات مختلف مربوط به نوترون‌ها از جمله تخریب تابشی، حفاظ‌گذاری بیولوژیکی، کنترل از دور، ایمنی و اتلاف توان همجوشی توسط آنها را کاهش می‌دهد ADDIN EN.CITE <EndNote><Cite><Author>Sadowski</Author><Year>1998</Year><RecNum>39</RecNum><DisplayText>[39]</DisplayText><record><rec-number>39</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066348">39</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Sadowski, M.;</author></authors></contributors><titles><secondary-title>Special Suppl. School of Physics - Georgia Institute of Technology</secondary-title></titles><periodical><full-title>Special Suppl. School of Physics - Georgia Institute of Technology</full-title></periodical><pages>3-4</pages><volume>39</volume><dates><year>1998</year></dates><urls></urls></record></Cite></EndNote>[39].
پلاسما حالت چهارم مادهپلاسما گازی یونیزه و داغ می‌باشد که حاوی تعداد تقریبا برابری از یونهای مثبت باردارشده و الکترونهای با بار منفی می‌باشد. مشخصات پلاسما کاملا با گازهای خنثی طبیعی متفاوت است (گازهای معمولی به سبب خنثی بودنشان از لحاظ بار الکتریکی توانایی عکس ‌العمل در مقابل مغناطیس و میدان وابسته به آن را ندارند.) از این روست که پلاسما به عنوان حالت چهارم ماده معرفی شده است. برای مثال، به این علت که پلاسماها ذرات باردار الکتریکی تولید میکنند، تا زمانی که گاز بطور خنثی نباشد، به شدت تحت تاثیر میدان‌های مغناطیسی و الکتریکی قرار می‌گیرد. مثالی از چنین تاثیری، به دام اندازی ذرات باردار پر انرژی در عرض خطوط میدان مغناطیسی زمین، به فرم کمربندهای تشعشی ون آلن است.
علاوه بر میدان‌های خارجی اعمال شده، مانند میدان مغناطیسی زمین و یا میدان مغناطیسی بین سیارهها، پلاسما براساس میدان‌های الکتریکی و مغناطیسی ایجاد شده توسط خود پلاسما و از طریق تغییر غلظت بار محلی و جریان الکتریکی ایجاد شده عمل میکند، که در نتیجه حرکتهای متفاوت یونها و الکترونها ایجاد می‌شود. نیروهای اعمال شده توسط این میدان روی ذرات بارداری که عمل پلاسما را در طول فواصل طولانی ایجاد میکند، تاثیر گذاشته و سبب یکنواختی رفتار انتقالی ذرات و کیفیت بالایی میگردد که در گازهای خنثی دیده نمی‌شود. به رغم وجود غلظت بارهای محلی و پتانسیل های الکتریکی، پلاسما از نظر الکتریکی "شبه خنثی" است، زیرا بطور کل، تعداد تقریبا برابری از ذرات باردار مثبت و منفی طوری پراکنده شدهاند که تاثیر بارهای یکدیگر را از بین میبرند.
روشهای تولید پلاسماالف) تخلیه الکتریکی:
اگر میدان الکتریکی نیرومندی بر گازی معمولی اعمال کنیم ممکن است تعدادی از الکترونها، اتمهای خود را ترک کنند. هر اتم که به این ترتیب تحت تاثیر قرار بگیرد به طور مثبت باردار می‌شود و در این حالت میگوییم اتم به یون تبدیل شده است. الکترونهای جدا شده که بار منفی دارند آزادانه در دستگاه حرکت می‌کنند و از میدان الکتریکی انرژی میگیرند، با افزایش سرعت، به اتمهای دیگر برخورد میکنند و سبب آزاد شدن الکترونهای بیشتری میشوند. این کار به طور پیدرپی صورت می‌گیرد و تعداد الکترونهای آزاد شده مدام افزایش می‌یابد. این فرآیند به فرآیند آبشاری معروف است. در این میان تخلیه الکتریکی گسترش می‌یابد و جریان الکتریکی برقرار می‌شود. گاز قبل از تخلیه الکتریکی، نارسانا بود. در مواقعی که تخلیه الکتریکی بسیار قدرتمندی انجام می‌گیرد، ممکن است تمام اتمهای گاز به سبب فرآیند آبشاری یونیزه شوند و گاز به پلاسما تبدیل شود.
مخلوط همجوشی با فشار کم را در محفظه چنبرهاى شکل داخل کرده، به کمک یک سیستم اولیه متشکل از چند بوبین، یک میدان مغناطیسى معروف به چنبره‌اى، پدید میآید. سپس، به کمک هایپِرفرکانسها (فوق بسامدها)، محتوى محفظه چنبرهای، یونیزه گشته و در نهایت از طریق القا با افزایش تدریجى میدان مغناطیسى پدیدآمده بوسیله‌ی یک سیم لوله (سولونوئید( که در جهت محور سامانه قرار داده شده است، یک جریان پلاسما بوجود میآید.
ب) تولید پلاسما در درجه حرارت های بالا:
با رساندن دمای گاز به درجه حرارتهای بالا نیز میتوان پلاسما بوجود آورد. دمای لازم برای تولید این نوع پلاسما به روش یونیزاسیون حرارتی بسیار زیاد و از مرتبه دهها هزار درجه است و واقعیت این است که دانشمندان در مواقع بسیار نادر و ویژه از این روش برای تولید پلاسما استفاده میکنند.
پارامترهای بنیادی پلاسماهمه مقادیر در واحد گاووسی (cgs) بیان شده است. غیر از دما که در واحد الکترون ولت آورده شده است و جرم یون که بر حسب واحد جرم پروتون و بصورت μ=mimp می‌باشد. Z مقدار بار، k ثابت بولتزمن، K عدد موج، lnʌ لگاریتم کولن است ADDIN EN.CITE <EndNote><Cite><Author>Suryanarayana</Author><Year>2010</Year><RecNum>40</RecNum><DisplayText>[40]</DisplayText><record><rec-number>40</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066400">40</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Suryanarayana, N.S.; Kaur, J.; Dubey, V.;</author></authors></contributors><titles><title>Study of propagation of Ion Acoustic waves in plasma</title><secondary-title>Departman of physics,Govt.</secondary-title></titles><periodical><full-title>Departman of physics,Govt.</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[40].
که برای الکترون: lnᴧ≈13.6
و برای یک یون: lnᴧ≈6.8
2-6-1- فرکانسها در پلاسمافرکانس زاویهای حرکت چرخشی الکترون در جهت عمود بر میدان مغناطیسی:
ωce=eB/mec=1.76×107 B--/s
فرکانس زاویهای حرکت چرخشی یون در جهت عمود بر میدان مغناطیسی:
ωci=ZeB/mic=9.58×103 Zμ-1 B--/s
فرکانس الکترونهایی که نوسان میکنند(نوسان پلاسما):
ωpe=(4πnee2/me)1/2=5.64×104 ne1/2 --/s
فرکانس پلاسمای یونی:
ωpi=(4πniZ2 e2/mi)1/2=1.32×103 Zμ-1/2 ni1/2 --/s
سرعت به دام اندازی الکترون:
????Te=(eKE/me)1/2=7.26×108 K1/2 E1/2 s-1
سرعت به دام اندازی یون:
????Ti=(ZeKE/mi)1/2=1.69×107 Z1/2 K1/2 E1/2μ-1/2 s-1
سرعت برخورد الکترون در پلاسمای کاملا یونیزه شده:
????e=2.91×10-6 ne lnᴧ Te-3/2 s-1
سرعت برخورد یون در پلاسمای کاملا یونیزه شده:
????i=4.80×10-8 Z4 μ-1/2 ni lnᴧ Ti-3/2 s-1
سرعت برخورد الکترون (یون) در پلاسمای کمی یونیزه شده: υe,i=Nσe,iυ=N0∞σ(υ)e,if(υ)υdυ
که <σν>e,i سطح مقطع برخورد الکترون (یون) در اتمهای (مولکولهای) گاز عامل، f(ν) تابع توزیع الکترون (یون) در پلاسما و N غلظت گاز عامل می‌باشد ADDIN EN.CITE <EndNote><Cite><Author>Suryanarayana</Author><Year>2010</Year><RecNum>40</RecNum><DisplayText>[40]</DisplayText><record><rec-number>40</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066400">40</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Suryanarayana, N.S.; Kaur, J.; Dubey, V.;</author></authors></contributors><titles><title>Study of propagation of Ion Acoustic waves in plasma</title><secondary-title>Departman of physics,Govt.</secondary-title></titles><periodical><full-title>Departman of physics,Govt.</full-title></periodical><dates><year>2010</year></dates><urls></urls></record></Cite></EndNote>[40].
2-6-2- سرعتها در پلاسماسرعت حرارتی الکترون: سرعت معمول یک الکترون در توزیع ماکسول-بولتزمن
????Te= (kTe/me)1/2=4.19×107 Te1/2 cm/s
سرعت حرارتی یون: سرعت معمول یک یون در توزیع ماکسول-بولتزمن
????Ti= (kTi/mi)1/2=9.79×105 μ-1/2 Ti1/2 cm/s
گرم کردن پلاسمایکی از مهمترین مسائل در طراحی راکتورها گرم کردن پلاسما برای ایجاد شرایط مورد نیاز همجوشی خوبخودی می‌باشد. حتی برای سادهترین واکنش‌های همجوشی که بطور معمول برای تولید الکتریسیته با صرفه اقتصادی، معمولا به حدود 100 میلیون درجه سانتیگراد دما نیاز است. این نیاز به دمای بالا به 4 روش تامین میگردد ADDIN EN.CITE <EndNote><Cite><Author>Harms</Author><Year>2002</Year><RecNum>41</RecNum><DisplayText>[41]</DisplayText><record><rec-number>41</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066441">41</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Harms, A.A.; Schoef ,K.F.; Miley G.H.; Kingdon ,D.R.;</author></authors></contributors><titles><title>principles of Fusion Energy</title><secondary-title>World scientific co.</secondary-title></titles><periodical><full-title>World scientific co.</full-title></periodical><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[41]:
گرم کردن مقاومتی
گرم کردن از طریق فشردن
گرم کردن توسط تاثیر میدان‌های الکترومغناطیسی
تزریق پرتو خنثی
2-7-1- گرمایش مقاومتیگرم کردن از طریق سیم فلزی حامل جریان صورت می‌گیرد. ولتاژ مناسب برای لوازم خانگیV220 می‌باشد و اگر جریان بیش از حد بالا برای این ولتاژ خالص V220 اعمال شود جعبه فیوز خانگی از ذوب شدن سیمها جلوگیری میکند. وارد کردن مقدار ایمن و مناسبی از جریان نیز از تاثیرات دمایی بالا برای سیمها و شروع آتش سوزی جلوگیری میکند ADDIN EN.CITE <EndNote><Cite><Author>Harms</Author><Year>2002</Year><RecNum>41</RecNum><DisplayText>[41]</DisplayText><record><rec-number>41</rec-number><foreign-keys><key app="EN" db-id="zra5wxsd8z5v5ue95sg55axj9p0220s00xx5" timestamp="1423066441">41</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Harms, A.A.; Schoef ,K.F.; Miley G.H.; Kingdon ,D.R.;</author></authors></contributors><titles><title>principles of Fusion Energy</title><secondary-title>World scientific co.</secondary-title></titles><periodical><full-title>World scientific co.</full-title></periodical><dates><year>2002</year></dates><urls></urls></record></Cite></EndNote>[41].
به استثنای مواد ابر رسانا، هیچ محیط رسانایی، مانند سیمهای فلزی، وجود ندارد که در آن، الکترونها بتوانند از یک اتم به آسانی به اتم دیگر بپرند مگر اینکه بخشی از انرژی خود را بصورت گرما از دست بدهند که علت آن از دست دادن بخشی از اندازه حرکت الکترونها در برخورد با سایر ذرات طبق اصل پایستگی تکانه و تبدیل آن به گرما می‌باشد. پلاسما بسیار خوب است اما یک هادی ایدهآل نیست و مقاومت آن از مرتبه یک میلیونیوم اهم است. این مقدار مقاومت جزیی باعث گرم شدن پلاسماهایی با چگالی کم (مانند پلاسماهایی که در توکامک استفاده می‌شود) تا دماهایی از مرتبه میلیون درجه سانتیگراد میگردد و تا دماهای 10 میلیون درجه سانتیگرادموثر می‌باشد. در مقادیر دمایی فراتر، مقاومت پلاسما بیش از حد ضعیف شده و اثر بخشی روش را کاهش میدهد. گرمایش مقاومتی سبب ذخیره توانی در واحد حجم پلاسما، با معادله (2-5) داده می‌شود:
PΩMWm3=ηI2=10-6ηj2=2.85×10-15ZeffI2a4mTe32(kev) (2-5)
که در آن I، شدت پلاسما، چگالی جریان که به طور یکنواخت در سطح مقطع پلاسما (I=????a2j) وجود دارد. Zeff، میانگین بارهای موثر همهی یونهای تشکیل دهندهی پلاسما می‌باشد و η، مقاومت پلاسما است. این پارامترها به تعدادی پدیده برخورد بستگی دارد و ممکن است بصورت معادله (2-6) ارائه شود:
η≈Aη(KT)-32 (2-6)
با استفاده از قانون آمپر
µ0I=2π(2-7)
و با معرفی ضریب ایمنی در پلاسما:
qa=aB∅R0Bθ (2-8)

–389

واحد اراک
دانشکده فنی و مهندسی ، گروه مهندسی شیمی
پایان نامه برای دریافت درجه کارشناسی ارشد (M.Sc.)
رشته: مهندسی فرآوری و انتقال گاز
عنوان:
مدلسازی و بررسی شرایط فیزیکی تشکیل هیدرات در لوله‌های انتقال گاز
با حضور استاد راهنما، استاد مشاور و هیأت داوران در دانشگاه آزاد اسلامی واحد اراک
در مورخ 25/06/1393 برگزار گردید.
تصویب و ارزیابی شده توسط هیأت داوران با نمره 20 (بیست) و درجه عالی
دکتر مجید تاجداری (استاد راهنما) ...................................................................................................
دکتر بهنام کوهستانی (استاد مشاور) .................................................................................................
دکتر حسین مظاهری (استاد داور) .....................................................................................................
دکتر علی حسنی (مدیر گروه) .....................................................................................................

سپاسگزاری
نخستین سپاس و ستایش از آن خداوندی است که بنده کوچکش را در دریای بیکران اندیشه، قطره ای ساخت تا وسعت آن را از دریچه اندیشه‌های ناب آموزگارانی بزرگ به تماشا نشیند. لذا اکنون که در سایه‌سار بنده نوازی‌‌هایش پژوهش حاضر به انجام رسیده است، بر خود لازم می‌دانم تا مراتب سپاس را از بزرگوارانی به جا آورم که اگر دست یاریگرشان نبود، هرگز این پژوهش به انجام نمی‌رسید.
ابتدا از استاد گرانقدرم جناب آقای دکتر مجید تاجداری که زحمت راهنمایی این پژوهش را بر عهده داشتند، کمال سپاس را دارم.
از استاد عالی قدرم جناب آقای دکتر بهنام کوهستانی که زحمت مشاوره این پژوهش را متحمل شدند، صمیمانه تشکر می کنم.
از اعضای هیئت علمی گروه مهندسی شیمی دانشگاه آزاد اسلامی اراک بلاخص مدیریت جناب آقایان دکتر‌محمود سلیمی در مقطع کارشناسی و دکتر‌علی‌حسنی‌جوشقانی در مقطع کارشناسی ارشد، کمال تشکر و قدردانی را دارم.
سپاس آخر را به مهربانترین همراهان زندگیم، به پدر و مادرم تقدیم می‌کنم که حضورشان در فضای زندگیم مصداق بی ریای سخاوت بوده است.

تقدیم به پدر گرامی و مادر عزیزم
آنان که همیشه دوستشان دارم و سلامتشان را از خداوند متعال خواستارم.

فهرست مطالب
ردیف عنوان صفحه
TOC o "1-7" h z u 1فصل اول : هیدرات گازی و عوامل مؤثر در آن‌
1-1هیدرات PAGEREF _Toc399410706 h 31-2تشکیل هیدرات ها PAGEREF _Toc399410707 h 31-3شرایط تشکیل هیدرات PAGEREF _Toc399410708 h 41-4فاکتورهای مؤثر در تشکیل هیدرات PAGEREF _Toc399410709 h 51-5آب و گاز طبیعی PAGEREF _Toc399410710 h 61-5-1آب آزاد PAGEREF _Toc399410711 h 71-6بیان مساله پژوهش PAGEREF _Toc399410712 h 81-7ضرورت و اهمیت انجام پژوهش PAGEREF _Toc399410713 h 91-7-1اهمیت هیدرات‌های گازی PAGEREF _Toc399410714 h 101-7-2زمینه‌های تحقیقاتی هیدرات PAGEREF _Toc399410715 h 111-8وجه تمایز پژوهش با سایر پژوهش‌ها PAGEREF _Toc399410716 h 111-9اهداف پژوهش PAGEREF _Toc399410717 h 121-10سؤالات پژوهش PAGEREF _Toc399410718 h 121-11فرضیه‌های پژوهش PAGEREF _Toc399410719 h 131-12انواع و ساختار هیدرات PAGEREF _Toc399410720 h 131-12-1ساختار هیدرات نوع I PAGEREF _Toc399410721 h 151-12-2ساختار هیدرات نوع II PAGEREF _Toc399410722 h 151-12-3ساختار هیدرات نوع H PAGEREF _Toc399410723 h 161-13اندازۀ مولکول مهمان PAGEREF _Toc399410724 h 171-14سایر تشکیل دهنده‌های هیدرات PAGEREF _Toc399410725 h 191-14-1فرئون‌ها PAGEREF _Toc399410726 h 191-14-2هالوژن‌ها PAGEREF _Toc399410727 h 191-14-3گازهای نجیب PAGEREF _Toc399410728 h 191-14-4هوا PAGEREF _Toc399410729 h 191-14-5سایر تشکیل دهنده‌ها PAGEREF _Toc399410730 h 201-15کاربرد‌های هیدرات PAGEREF _Toc399410731 h 201-15-1کریستال هیدرات در فرآیند‌های جداسازی PAGEREF _Toc399410732 h 201-15-2غنی سازی اکسیژن با استفاده از تشکیل هیدرات گازی PAGEREF _Toc399410733 h 211-15-3تغلیظ به کمک تشکیل هیدرات PAGEREF _Toc399410734 h 211-15-4هیدرات گازی و شیرین سازی آب دریا PAGEREF _Toc399410735 h 211-15-5جدا سازی دی اکسید کربن دریایی PAGEREF _Toc399410736 h 221-15-6ذخیره و انتقال گاز طبیعی PAGEREF _Toc399410737 h 221-16کریستال هیدرات در محیط زیست PAGEREF _Toc399410738 h 231-17راه‌های جلوگیری از تشکیل هیدرات PAGEREF _Toc399410739 h 231-18اثر افزودنی‌ها بر تشکیل هیدرات PAGEREF _Toc399410740 h 241-19عوامل بازدارنده‌ تشکیل هیدرات‌ها PAGEREF _Toc399410741 h 261-19-1بازدارنده‌های ترمودینامیکی PAGEREF _Toc399410742 h 271-19-2بازدارنده‌های سینتیکی PAGEREF _Toc399410743 h 281-19-3بازدارنده‌های ضدتجمی یا ضد کلوخه ای PAGEREF _Toc399410744 h 291-19-4مواد افزودنی که هیدرات‌ها را در یکی از ساختار‌های I، II یا H پایدار می‌کند PAGEREF _Toc399410745 h 302فصل دوم : تاریخچه و تحقیقات انجام شده در مورد هیدرات گازی
2-1تاریخچه کشف هیدرات PAGEREF _Toc399410747 h 312-2پیشینه تحقیق در ایران PAGEREF _Toc399410748 h 322-2-1مطالعات پایه PAGEREF _Toc399410749 h 332-2-1-1تعادلات فازی PAGEREF _Toc399410750 h 332-2-1-1-1مطالعات تجربی PAGEREF _Toc399410751 h 332-2-1-1-2مطالعات تئوری PAGEREF _Toc399410752 h 352-2-1-2سینتیک تشکیل و تجزیه هیدرات PAGEREF _Toc399410753 h 362-2-1-3مطالعه ساختارهای مولکولی PAGEREF _Toc399410754 h 372-2-1-4خواص فیزیکی - حرارتی PAGEREF _Toc399410755 h 382-2-2مباحث زیست محیطی هیدرات PAGEREF _Toc399410756 h 382-2-2-1اثرات گاز متان بر محیط زیست PAGEREF _Toc399410757 h 382-2-2-2ذخیره سازی گاز دی اکسید کربن به شکل هیدرات PAGEREF _Toc399410758 h 392-2-3توسعه هیدرات و کاربردهای نوین PAGEREF _Toc399410759 h 392-2-3-1جداسازی مخلوط های گازی PAGEREF _Toc399410760 h 392-2-3-2نمک زدایی آب دریا PAGEREF _Toc399410761 h 402-2-3-3ذخیره سازی و انتقال گاز طبیعی به صورت هیدرات PAGEREF _Toc399410762 h 402-2-3-4ذخیره سازی انرژی گرمایی PAGEREF _Toc399410763 h 412-2-4اکتشاف و بهره برداری منابع طبیعی هیدرات گازی PAGEREF _Toc399410764 h 412-2-5تحلیل آماری PAGEREF _Toc399410765 h 422-3پیشینه تحقیق در خارج از ایران PAGEREF _Toc399410766 h 422-4نمودارهای فازی برای طبقه بندی هیدرات‌ها PAGEREF _Toc399410767 h 442-5روش‌های محاسباتی دستی برای پیش‌بینی تشکیل هیدرات PAGEREF _Toc399410768 h 442-5-1روش وزن مخصوص گاز PAGEREF _Toc399410769 h 452-5-2روش ثابت تعادلی K PAGEREF _Toc399410770 h 462-5-3روش بیلی- ویچرت PAGEREF _Toc399410771 h 472-5-4دیگر روابط همبستگی PAGEREF _Toc399410772 h 472-5-4-1ماکاگون PAGEREF _Toc399410773 h 472-5-4-2کوبایاشی و همکاران PAGEREF _Toc399410774 h 482-5-4-3مطیعی PAGEREF _Toc399410775 h 482-5-4-4کسترگارد و همکاران PAGEREF _Toc399410776 h 482-5-4-5تولر و مخاطب PAGEREF _Toc399410777 h 492-6روش‌های رایانه‌ای برای پیش‌بینی تشکیل هیدرات PAGEREF _Toc399410778 h 492-6-1تعادل فازی PAGEREF _Toc399410779 h 492-6-2واندروالس و پلاتیو PAGEREF _Toc399410780 h 512-6-3پاریش و پراسنیتز PAGEREF _Toc399410781 h 512-6-4انجی و رابینسون PAGEREF _Toc399410782 h 523فصل سوم : بررسی روشهای بازدارنده در تشکیل هیدرات
3-1روش تحقیق PAGEREF _Toc399410784 h 533-2مرحله قبل از پیدایش هیدرات PAGEREF _Toc399410785 h 543-2-1نم‌زدایی از گاز طبیعی PAGEREF _Toc399410786 h 543-2-1-1نم‌زدایی از طریق گلایکول PAGEREF _Toc399410787 h 553-2-1-1-1جاذب‌های مایع PAGEREF _Toc399410788 h 553-2-1-1-2گلایکول‌ها PAGEREF _Toc399410789 h 563-2-1-1-3توصیف فرآیند PAGEREF _Toc399410790 h 563-2-1-2غربال‌های مولکولی PAGEREF _Toc399410791 h 573-2-1-2-1توصیف فرآیند PAGEREF _Toc399410792 h 583-2-1-3تبرید PAGEREF _Toc399410793 h 593-2-1-3-1توصیف فرآیند PAGEREF _Toc399410794 h 593-3تشکیل هیدرات حین شروع پدیده PAGEREF _Toc399410795 h 603-4تشکیل هیدرات با پیدایش مستمر پدیده PAGEREF _Toc399410796 h 653-4-1دینامیک سیالات عددی پژوهش PAGEREF _Toc399410797 h 663-4-1-1مراحل آنالیز جریان به کمک نرم افزار کامسول PAGEREF _Toc399410798 h 673-4-1-2پیش پردازش PAGEREF _Toc399410799 h 673-4-1-3حل عددی میدان جریان PAGEREF _Toc399410800 h 683-4-1-4پس پردازش نتایج PAGEREF _Toc399410801 h 693-4-1-5نکات مهم در شبیه سازی عددی جریان PAGEREF _Toc399410802 h 703-4-1-6چگونگی شبیه سازی عددی جریان PAGEREF _Toc399410803 h 713-4-1-7مشکلات عمده PAGEREF _Toc399410804 h 723-4-1-8خطا‌ها PAGEREF _Toc399410805 h 723-4-2تئوری و فرمولاسیون PAGEREF _Toc399410806 h 733-4-2-1معادلات Mixture Model, Laminar Flow PAGEREF _Toc399410807 h 733-4-2-2معادلات Laminar Flow PAGEREF _Toc399410808 h 763-4-2-3معادلات Heat Transfer in Fluid PAGEREF _Toc399410809 h 763-4-2-4معادلات Transport of Diluted Species PAGEREF _Toc399410810 h 773-4-3محاسبات تبخیر ناگهانی PAGEREF _Toc399410811 h 773-4-4مدل سازی و شرح مسئله PAGEREF _Toc399410812 h 783-5مرحله بعد از پیدایش هیدرات PAGEREF _Toc399410813 h 843-5-1انتخاب بازدارنده برتر PAGEREF _Toc399410814 h 884فصل چهارم : تجزیه و تحلیل داده‌ها (یافته‌ها)
4-1مبارزه با هیدرات با استفاده از گرما و فشار PAGEREF _Toc399410816 h 924-1-1کاهش فشار PAGEREF _Toc399410817 h 924-1-2استفاده از گرما PAGEREF _Toc399410818 h 934-1-3اتلاف گرما از یک خط لولۀ مدفون PAGEREF _Toc399410819 h 944-1-3-1سهم سیال PAGEREF _Toc399410820 h 954-1-3-2سهم لوله PAGEREF _Toc399410821 h 954-1-3-3سهم زمین PAGEREF _Toc399410822 h 964-1-3-4ضریب کلی انتقال حرارت PAGEREF _Toc399410823 h 964-1-3-5حرارت منتقل شده PAGEREF _Toc399410824 h 964-2مبارزه با هیدرات با استفاده از مقاومت های انتقال حرارت و انتقال جرم PAGEREF _Toc399410825 h 974-2-1انتقال جرم PAGEREF _Toc399410826 h 974-2-2انتقال حرارت PAGEREF _Toc399410827 h 984-3نتایج شبیه سازی مدل PAGEREF _Toc399410828 h 994-4نتایج شبیه سازی شبکه انتقال گاز PAGEREF _Toc399410829 h 1114-5انتخاب بازدارنده برتر PAGEREF _Toc399410830 h 1175فصل پنجم : نتیجه گیری و پیشنهادات
5-1نم‌زدایی گاز PAGEREF _Toc399410832 h 1215-2مقاومت‌های انتقال جرم و حرارت هیدرات PAGEREF _Toc399410833 h 1225-3مدل سازی قطاعی از لوله دارای هیدرات PAGEREF _Toc399410834 h 1235-4شبکه انتقال گاز PAGEREF _Toc399410835 h 1255-5انتخاب بازدارنده برتر PAGEREF _Toc399410836 h 126 پیشنهادات ......................................................................................................................128
منابع و مأخذ .................................................................................................................129
فهرست جدول‌ها
عنوان صفحه
TOC h z c "جدول" جدول ‏31 : محاسبات تبخیر ناگهانی سیستم متان- آب در دمای 274 کلوین PAGEREF _Toc399412518 h 77جدول ‏32 : محاسبات تبخیر ناگهانی سیستم اتان- آب در دمای 274 کلوین PAGEREF _Toc399412519 h 77جدول ‏33 : محاسبات تبخیر ناگهانی سیستم پروپان- آب در دمای 274 کلوین PAGEREF _Toc399412520 h 78جدول ‏34 : خواص گوشت لوله از جنس Stainless Steel PAGEREF _Toc399412521 h 79جدول ‏35 : خواص آب درون لوله به صورت پراکنده PAGEREF _Toc399412522 h 79جدول ‏36 : خواص گاز درون لوله به صورت پیوسته (گاز متان) PAGEREF _Toc399412523 h 79جدول ‏37 : شرایط مرزی برای جریان سیال PAGEREF _Toc399412524 h 79جدول ‏38 : شرایط مرزی برای فاز پراکنده PAGEREF _Toc399412525 h 79جدول ‏39 : مشخصات جریان مخلوط در درون لوله PAGEREF _Toc399412526 h 79جدول ‏310 : ورودی خواص سیال و ذرات جامد پراکنده به نرم افزار PAGEREF _Toc399412527 h 80جدول ‏311 : شرایط مرزی برای جریان سیال PAGEREF _Toc399412528 h 80جدول ‏312 : ورودی شرایط سیال آرام داخل لوله به نرم افزار PAGEREF _Toc399412529 h 80جدول ‏313 : داده‌های ورودی انتقال حرارت به نرم افزار PAGEREF _Toc399412530 h 81جدول ‏314 : شرایط مرزی برای انتقال حرارت داخل لوله PAGEREF _Toc399412531 h 81جدول ‏315 : داده‌های ورودی مومنتوم به نرم افزار PAGEREF _Toc399412532 h 81جدول ‏316 : شرایط مرزی برای غلظت گونه گازی (متان CA) داخل لوله PAGEREF _Toc399412533 h 81جدول ‏317 : مشخصات مش بندی شبکه لوله PAGEREF _Toc399412534 h 82جدول ‏318 : مشخصات حل کننده شبیه سازی PAGEREF _Toc399412535 h 82جدول ‏319 : تفکیک کننده‌های مسئله برای اعتبار سنجی حل کننده PAGEREF _Toc399412536 h 82جدول ‏320 : داده‌های ورودی خط ایستگاه S003 PAGEREF _Toc399412537 h 84جدول ‏321 : داده‌های ورودی خط ایستگاه S001 PAGEREF _Toc399412538 h 84جدول ‏322 : داده‌های خروجی خط ایستگاه D001 PAGEREF _Toc399412539 h 84جدول ‏323 : ترکیبات ورودی خط S003 به همراه ترکیب درصد‌های مولی PAGEREF _Toc399412540 h 84جدول ‏324 : ترکیبات ورودی خط S001 به همراه ترکیب درصد‌های مولی PAGEREF _Toc399412541 h 85جدول ‏325 : شرایط فیزیکی و محیطی لوله‌های انتقال گاز شبکه PAGEREF _Toc399412542 h 86جدول ‏326 : ترکیبات گازی لاوان PAGEREF _Toc399412543 h 88جدول ‏327 : تزریق مواد بازدارنده شیمیایی در ابتدای خط انتقال گاز (حالت 1) PAGEREF _Toc399412544 h 90جدول ‏328 : تزریق مواد بازدارنده شیمیایی در انتهای خط انتقال گاز (حالت 1) PAGEREF _Toc399412545 h 91جدول ‏329 : تزریق مواد بازدارنده شیمیایی در ابتدای خط انتقال گاز (حالت 2) PAGEREF _Toc399412546 h 91جدول ‏330 : تزریق مواد بازدارنده شیمیایی در انتهای خط انتقال گاز (حالت 2) PAGEREF _Toc399412547 h 91

‌ فهرست نمودار‌ها
عنوان صفحه
TOC h z c "نمودار" نمودار ‏21 : نمودار نیمه لگاریتمی رشد انتشارات هیدرات در قرن بیستم PAGEREF _Toc399412648 h 32نمودار ‏22 : تعداد مقالات چاپ شده در سال‌های مختلف PAGEREF _Toc399412649 h 42نمودار ‏31 : تغییرات ارتفاع در خط L005 PAGEREF _Toc399412650 h 85نمودار ‏32 : تغییرات ارتفاع در خط L006 PAGEREF _Toc399412651 h 85نمودار ‏33 : تغییرات ارتفاع در خط L008 PAGEREF _Toc399412652 h 86نمودار ‏34 : منحنی تشکیل هیدرات برای بازدارنده MeOH با درصد وزنی مختلف PAGEREF _Toc399412653 h 88نمودار ‏35 : منحنی تشکیل هیدرات برای بازدارنده NaCL با درصد وزنی مختلف PAGEREF _Toc399412654 h 88نمودار ‏36 : منحنی تشکیل هیدرات برای بازدارنده KBr با درصد وزنی مختلف PAGEREF _Toc399412655 h 89نمودار ‏37 : منحنی تشکیل هیدرات برای بازدارنده Na2SO4 با درصد وزنی مختلف PAGEREF _Toc399412656 h 89نمودار ‏38 : منحنی تشکیل هیدرات برای بازدارنده NaF با درصد وزنی مختلف PAGEREF _Toc399412657 h 89نمودار ‏39 : منحنی تشکیل هیدرات برای بازدارنده KCL با درصد وزنی مختلف PAGEREF _Toc399412658 h 90نمودار ‏41 : مقایسه نتایج تجربی و مدلسازی غلظت فاز پراکنده برای مقطع 5/1 متری ورودی PAGEREF _Toc399412659 h 100نمودار ‏42 : مقایسه غلظت فاز جامد حاصل از مدلسازی، در مقطعی ثابت در زمان‌های مختلف PAGEREF _Toc399412660 h 101نمودار ‏43 : توزیع سرعت محوری در زمان‌های 01/0 ،1/0 و 1 ثانیه پس از برقراری جریان PAGEREF _Toc399412661 h 101نمودار ‏44 : توزیع غلظت فاز جامد مدلسازی در دو سرعت ورودی 0.061 m/s و 0.029 m/s PAGEREF _Toc399412662 h 102نمودار ‏45 : مقایسه نتایج تجربی و مدلسازی کسر‌حجمی فاز پراکنده در مقطع پایین لوله PAGEREF _Toc399412663 h 103نمودار ‏46 : مقایسه نتایج تجربی و مدلسازی غلظت فاز پیوسته در مقطع پایین لوله PAGEREF _Toc399412664 h 103نمودار ‏47 : مقایسه نتایج تجربی و مدلسازی غلظت فاز پراکنده در مقطع پایین لوله PAGEREF _Toc399412665 h 104نمودار ‏48 : تغییرات دما در طول لوله در سه مقطع اصلی PAGEREF _Toc399412666 h 108نمودار ‏49 : تغییرات فشار در طول لوله در سه مقطع اصلی PAGEREF _Toc399412667 h 108نمودار ‏410 : تغییرات کسر حجمی فاز پراکنده در طول لوله در سه مقطع اصلی PAGEREF _Toc399412668 h 109نمودار ‏411 : تغییرات سرعت مخلوط در طول لوله در سه مقطع اصلی PAGEREF _Toc399412669 h 109نمودار ‏412 : تغییرات دما در قطر لوله در دو مقطع میانی PAGEREF _Toc399412670 h 109نمودار ‏413: تغییرات فشار در قطر لوله در دو مقطع میانی PAGEREF _Toc399412671 h 110نمودار ‏414: تغییرات کسر حجمی فاز پیوسته و پراکنده در قطر لوله در دو مقطع میانی PAGEREF _Toc399412672 h 110نمودار ‏415 : تغییرات غلظت فاز پیوسته و پراکنده در قطر لوله در دو مقطع میانی PAGEREF _Toc399412673 h 110نمودار ‏416 : منحنی‌های تشکیل هیدرات برای هر سه خط شبکه انتقال PAGEREF _Toc399412674 h 111نمودار ‏417: تغییرات فشار در طول لوله برای هر سه خط شبکه انتقال PAGEREF _Toc399412675 h 112نمودار ‏418: تغییرات دما در طول لوله برای هر سه خط شبکه انتقال PAGEREF _Toc399412676 h 112نمودار ‏419 : تغییرات آنتالپی در طول لوله برای هر سه خط شبکه انتقال PAGEREF _Toc399412677 h 113نمودار ‏420: تغییرات دانسیته در طول لوله برای هر سه خط شبکه انتقال PAGEREF _Toc399412678 h 113نمودار ‏421 : تغییرات ویسکوزیته گاز در طول لوله برای هر سه خط شبکه انتقال PAGEREF _Toc399412679 h 114نمودار ‏422 : تغییرات سرعت مخلوط در طول لوله برای هر سه خط شبکه انتقال PAGEREF _Toc399412680 h 115نمودار ‏423 : phase Envelope و منحنی هیدرات و بدون تزریق بازدارنده PAGEREF _Toc399412681 h 116نمودار ‏424 : phase Envelope و منحنی هیدرات و بازدارنده متانول با 20 درصد غلظت PAGEREF _Toc399412682 h 116نمودار ‏425 : phase Envelope و منحنی هیدرات و بازدارنده متانول با 30 درصد غلظت PAGEREF _Toc399412683 h 116نمودار ‏426 : مقایسه بازدارنده‌های نمکی تشکیل هیدرات‌گازی میدان لاوان با 10 درصد وزنی PAGEREF _Toc399412684 h 119نمودار ‏427 : مقایسه بازدارنده‌های نمکی تشکیل هیدرات‌گازی میدان لاوان با 20 درصد وزنی PAGEREF _Toc399412685 h 119نمودار ‏428 : مقایسه بازدارنده‌های نمکی تشکیل هیدرات‌گازی میدان لاوان با 30 درصد وزنی PAGEREF _Toc399412686 h 119نمودار ‏429 : مقایسه بازدارنده‌های نمکی تشکیل هیدرات‌گازی میدان لاوان با 40 درصد وزنی PAGEREF _Toc399412687 h 120نمودار ‏430 : مقایسه بازدارنده‌های نمکی تشکیل هیدرات‌گازی میدان لاوان با 50 درصد وزنی PAGEREF _Toc399412688 h 120نمودار ‏431 : مقایسه بازدارنده‌های نمکی تشکیل هیدرات‌گازی میدان لاوان با 60 درصد وزنی PAGEREF _Toc399412689 h 120

فهرست شکل‌ها
عنوان صفحه
TOC h z c "شکل" شکل ‏11 : شماتیکی از تشکیل هیدرات در جداره لوله PAGEREF _Toc399445212 h 9شکل ‏12 : ساختار کریستال پایه برای یخ 4I PAGEREF _Toc399445213 h 13شکل ‏13 : پیوند هیدروژنی میان پنج مولکول آب و تشکیل یک حلقه 5 مولکولی PAGEREF _Toc399445214 h 14شکل ‏14 : تشکیل پیوند هیدروژنی میان دو مولکول آب PAGEREF _Toc399445215 h 14شکل ‏15 : ساختار I PAGEREF _Toc399445216 h 15شکل ‏16 : ساختار II PAGEREF _Toc399445217 h 16شکل ‏17 : ساختار H PAGEREF _Toc399445218 h 16شکل ‏18 : ساختارهای مختلف هیدرات گازی PAGEREF _Toc399445219 h 17شکل ‏19 : مقایسه اندازه مولکول‌های مهمان، نوع هیدرات و حفره‌های اشغال شده PAGEREF _Toc399445220 h 18شکل ‏110: دستگاه‌های تولید هیدرات گاز طبیعی PAGEREF _Toc399445221 h 22شکل ‏111: دستگاه‌های تجزیه هیدرات PAGEREF _Toc399445222 h 22شکل ‏112 : منحنی وابستگی هیدرات به دما و فشار PAGEREF _Toc399445223 h 24شکل ‏113 : انواع افزودنی‌های هیدرات PAGEREF _Toc399445224 h 27شکل ‏114 : مکانسیم بازدارندگی از تشکیل هیدرات PAGEREF _Toc399445225 h 30شکل ‏115 : ساختار هیدرات به وجود آمده با تترا هیدرو فوران PAGEREF _Toc399445226 h 30شکل ‏21 : هزینه انتقال گاز در فواصل مختلف با روش‌های مختلف PAGEREF _Toc399445227 h 41شکل ‏22: نمودار فازی برای برخی از هیدروکربن گاز طبیعی ساده که هیدرات تشکیل می دهند PAGEREF _Toc399445228 h 44شکل ‏23 : نمودار هیدرات برای سه مخلوط مورد بررسی ویلکاکس و همکاران PAGEREF _Toc399445229 h 46شکل ‏31 : فرآیند ساده شده یک واحد نم‌زدایی از طریق گلایکول PAGEREF _Toc399445230 h 57شکل ‏32 : فرآیند ساده شده یک واحد خشک کن جامد به همراه دو برج PAGEREF _Toc399445231 h 58شکل ‏33 : فرآیند جریان ساده شده برای یک واحد تبرید به همراه تزریق گلایکول PAGEREF _Toc399445232 h 60شکل ‏34 : شمای کلی تغییرات دما در فاز مایع و کریستال هیدرات PAGEREF _Toc399445233 h 61شکل ‏35 : پروفایل غلظت در مسیر نفوذ گاز تا رسیدن به سطح هیدرات PAGEREF _Toc399445234 h 62شکل ‏36 : شماتیک مدل ارائه شده در حال تشکیل هیدرات PAGEREF _Toc399445235 h 66شکل ‏37 : شماتیک مکانیزم پیشنهادی تشکیل هیدرات از یک قطره آب PAGEREF _Toc399445236 h 66شکل ‏38 : شماتیکی از مدل لوله به همراه شرایط مرزی PAGEREF _Toc399445237 h 78شکل ‏39 : شماتیکی از مش بندی شبکه لوله PAGEREF _Toc399445238 h 82شکل ‏310 : همگرایی شبیه سازی توسط حل کننده خطی PAGEREF _Toc399445239 h 83شکل ‏311 : همگرایی شبیه سازی توسط حل کننده غیر خطی PAGEREF _Toc399445240 h 83شکل ‏312 : گرافیک جریان‌های عبوری و ته نشین شدن ذرات هیدرات PAGEREF _Toc399445241 h 83شکل ‏313 : شماتیک فرآیند انتقال گاز در یک شبکه گاز PAGEREF _Toc399445242 h 84شکل ‏314 : نتایج اجرای شبیه سازی شبکه گاز با استفاده از نرم افزار PipePhase PAGEREF _Toc399445243 h 87شکل ‏41 : فرآیند هم فشار و هم دما برای تشکیل هیدرات PAGEREF _Toc399445244 h 97شکل ‏42 : پروفایل غلظت پیشنهادی مولکول‌های گاز در فرآیند تشکیل هیدرات PAGEREF _Toc399445245 h 98شکل ‏43 : گرافیک و الگوی جریان ته نشین شدن ذرات جامد (هیدرات) در کف لوله PAGEREF _Toc399445246 h 104شکل ‏44 : گرافیک و مقادیری از کسر حجمی فاز جامد دیسپرس شده PAGEREF _Toc399445247 h 105شکل ‏45 : گرافیک پروفایل سرعت و جهت آن درون لوله PAGEREF _Toc399445248 h 105شکل ‏46 : گرافیک پروفایل فشار و میزان آن در نقاطی از لوله PAGEREF _Toc399445249 h 106شکل ‏47 : گرافیک پروفایل فشار در کل مخلوط و میزان آن در نقاطی از لوله PAGEREF _Toc399445250 h 106شکل ‏48 : گرافیک پروفایل دما درون لوله PAGEREF _Toc399445251 h 106شکل ‏49 : گرافیک پروفایل غلظت فاز پراکنده درون لوله PAGEREF _Toc399445252 h 107شکل ‏410 : گرافیک پروفایل سرعت لغزش مخلوط درون لوله PAGEREF _Toc399445253 h 107شکل ‏411 : مقاطع انتخاب شده برای بررسی پارامترهای مختلف PAGEREF _Toc399445254 h 108
چکیده :
امروزه یکی از معضلات در خطوط انتقال گاز، پدیده هیدرات گازی است که ترکیبی از گازهای سبک مثل متان، اتان یا دی اکسید کربن با مولکول‌های آب تحت شرایط خاص دمایی و فشاری ماده‌ای شبیه به یخ را تشکیل می‌دهد که حجم زیادی از گاز را در خود جای داده است. هیدارت های گازی عموماً ته نشین شده و در نهایت توان عملیاتی خط را کاهش داده یا حتی به انسداد کلی خط لوله منجر می شود. بررسی پارامترها، متغییرها و عوامل تأثیر گذار تشکیل و حذف پدیده بسیار حائز اهمیت می باشد که در این پژوهش ابتدا مورد تجزیه‌ و تحلیل قرار‌ گرفته و سپسس سه وضعیت قبل، بعد و حین تشکیل هیدرات بررسی شده است.‌ در ‌قبل، نگاهی به روش‌ها، فرآیند‌ها، مزایا و معایب واحدهای نم‌زدایی گاز شده است. مقاومت‌های انتقال جرم و حرارت در حین پیدایش نیز بررسی کامل شد و نشان داد که نرخ تشکیل هیدرات توسط مکانیسم انتقال جرم کنترل شده و هر‌چه انتقال حرارت سریعتر انجام گیرد هیدرات تشکیل شده پایدارتر است. سپس با یک مدلسازی میدان توزیع سرعت، فشار، دما، کسرحجمی برای سیال و همچنین توزیع غلظت ذرات جامد در یک جریان آرام دو فاز گاز‌- جامد در داخل یک لوله افقی، توسط بسته نرم‌افزاری کامسول(COMSOL Multiphysics) شبیه سازی شده است. نتایج حاصل از شبیه سازی نشان میدهد که کاهش سرعت متوسط منجر به کاهش نیروهای پراکنده کننده شده و نهایتاً غلظت بیشتر ذرات جامد در کف لوله را سبب می‌شود.
واژه‌های کلیدی: هیدرات گازی، نم‌زدایی گاز، مدلسازی و شبیه سازی هیدرات

پیشگفتارگاز طبیعی منبع انرژی تقریباً پاکیزه، فراوان و ارزان قیمتی است که هم اکنون نیز به مقیاس وسیع برای مصارف صنعتی و خانگی به کار رفته و در طی دهه‌های آینده بهره‌برداری از آن گسترش خواهد یافت. در توسعه اقتصادی جهان، مناطق و کشورهای مختلف، به دلیل منابع و ذخایر عظیم در دسترس و توسعه تکنولوژی‌های خلاق، باعث کاهش هزینه‌ها و زمان اجرای پروژه‌ها و در نتیجه بهبود اقتصاد پروژه‌های توسعه و انتقال گاز شده است. همچنین تلاش جهانی برای کاهش گازهای گلخانه‌ای و گاز CO2 مزیت استفاده از گاز طبیعی در مقایسه با سایر سوخت‌ها را نشان می‌دهد.
امروزه در خطوط انتقال گاز پدیده هیدرات گازی که ترکیبی از گازهای سبک مثل متان، اتان یا دی‌اکسیدکربن است که تحت یک شرایط خاص دمایی و فشاری با مولکول‌های آب ترکیب شده و ماده‌ای شبیه به یخ را تشکیل می‌دهد، که حجم زیادی از گاز را در خود جای داده است. هیدرات های گازی ته نشین شده در نهایت توان عملیاتی ممکن را کاهش داده یا حتی به انسداد کلی خط لوله منجر می شود. بررسی پارامترها، متغییرها و عوامل تأثیر گذار تشکیل و حذف پدیده بسیار حائز اهمیت می باشید. این پژوهش در سه بخش قبل، هنگام تشکیل و بعد از تشکیل هیدرات تقسیم شده است تا بتواند همه پارامترها را بررسی کند. هنگام پیدایش به دو بخش: مقاومت های حین شروع پدیده و پیدایش مستمر پدیده نگاهی جامع داشته است. بررسی مقاومت های انتقال حرارت و جرم حین شروع، مدلسازی قطاعی از لوله درحال تشکیل هیدرات و شبیه سازی یک شبکه گازرسانی توانست نتایجی کاملی از پدیده هنگام تشکیل به ما ارائه کند. انتخاب بازدارنده مناسب با ساختارهای نمک و گلایکولی نیز بررسی گردیده است.
فصل اولهیدرات گازی و عوامل مؤثر در آن‌هیدراتهیدرات‌های گازی ترکیبات جامد کریستالی هستند که جزء خانواده اندرون گیر‌ها یا کلاترات به حساب می‌آیند. اندرون گیر یک ترکیب ساده است که یک مولکول از ماده‌ای (مولکول مهمان) در شبکه ساخته شده از مولکول ماده‌ای دیگر (مولکول میزبان) به دام می‌افتد. اندرون گیر مربوط به آب، هیدرات نامیده می‌شود. در ساختمان آنها مولکول‌های آب به علت داشتن پیوند هیدروژنی با به وجود آوردن حفره‌هایی تشکیل ساختار شبه شبکه‌ای می‌دهند. این شبکه که ناپایدار است به عنوان شبکه خالی هیدرات شناخته می‌شود که در دما و فشار خاص (در دمای پایین و فشار بالا) با حضور اجزاء گازی مختلف با اندازه و شکل مناسب، می‌تواند به یک ساختار پایدار تبدیل شود. در این نوع از کریستال‌ها، هیچ نوع پیوند شیمیایی بین مولکول‌های آب و مولکول‌های گاز محبوس شده تشکیل نمی‌شود و تنها عامل پایداری کریستال‌ها به وجود آمدن پیوند هیدروژنی بین مولکول‌های میزبان (مولکول‌های آب) و نیروی واندروالسی است که بین مولکول‌های میزبان و مولکول‌های مهمان (مولکول‌های گاز) به وجود می‌آید]1-3[.
ساختار هیدرات شبیه به یخ است با این تفاوت که کریستال هیدرات می‌تواند در دمای بالاتری نسبت به نقطه ذوب یخ، در شرایطی که فشار بالاتر از فشار محیط باشد پایدار بماند و ذوب نشود. از موارد دیگری که باعث شباهت بین کریستال هیدرات و یخ می‌شود افزایش حجم و آزاد شدن گرما به هنگام تشکیل می‌باشد.
تشکیل هیدرات هاتشکیل هیدراتها نتیجۀ پیوند هیدروژنی است. پیوند هیدروژنی سبب میشود که مولکولهای آب در جهات منظم قرار گیرند. وجود ترکیبات خاصی موجب پایدار شدن مولکولهای منظم و رسوب مخلوط جامدی میشود. مولکولهای آب، مولکولهای میزبان نیز خوانده میشوند و ترکیبات دیگری که کریستال را پایدار میکنند، مولکولهای مهمان نامیده میشوند. در این پژوهش، مولکولهای مهمان در اغلب موارد به نام "تشکیل دهندهها" خوانده میشوند. کریستالهای هیدرات ساختارهای سه بعدی پیچیدهای دارند که در آن‌ مولکولهای آب بهصورت قفس عمل میکند و مولکولهای مهمان در این قفسها به دام میافتند.
پایداری ناشی از مولکولهای مهمان به وجود نیروهای واندروالسی نسبت داده شده که بهدلیل جاذبۀ بین مولکولهاست نه جاذبۀ الکترواستاتیک. همان طور که پیشتر نیز شرح داده شد، پیوند هیدروژنی با نیروهای واندروالسی متفاوت است، زیرا پیوند هیدروژنی بر اساس جاذبه الکترواستاتیک قوی است، هر چند برخی، پیوند هیدروژنی را به عنوان نیروی واندروالسی طبقه بندی میکنند.
یکی دیگر از نکات جالب توجه در مورد هیدراتهای گاز این است که هیچ پیوندی بین مولکول‌های مهمان و میزبان وجود ندارد. مولکولهای مهمان آزادانه درون قفسهای ساخته شده بهوسیله‌ی مولکولهای میزبان میچرخند. این چرخش از طریق ابزار طیفسنجی اندازه گیری شده است. بنابراین این ترکیبات را میتوان بهصورت محلول‌های جامد تعریف کرد.
شرایط تشکیل هیدراتتشکیل هیدرات نیازمند سه شرط است:
1- ترکیب مناسب دما و فشار دمای کم و فشار زیاد برای تشکیل هیدرات شرایط مطلوبی است؛
2- وجود تشکیلدهندۀ هیدرات: تشکیلدهندههای هیدرات عبارتند از: متان، اتان، پروپان، ایزوبوتان، سولفید هیدروژن و دیاکسیدکربن؛
3- آب کافی، نه بیش از حد و نه خیلی کم.
دمای کم و فشار زیاد شرایط مطلوبی برای تشکیل هیدرات است. دما و فشار دقیق، به ترکیب گاز بستگی دارد. هیدراتها در دمایی بیشتر از صفر درجۀ سلسیوس نقطۀ انجماد آب، شکل می‌گیرند.
برای جلوگیری از تشکیل هیدرات صرفاً باید یکی از سه شرط مذکور را از بین برد. بهطور معمول نمی‌توان تشکیلدهندههای هیدرات را از مخلوط حذف کرد. در مورد گاز طبیعی، تشکیلدهنده‌های هیدرات، محصولات مطلوبی هستند. بنابراین با از بین بردن دو شرط دیگر میتوان از تشکیل هیدرات جلوگیری کرد]4-6[.

فاکتورهای مؤثر در تشکیل هیدراتسایر فاکتورهایی که بر روی تشکیل هیدرات اثر می‌گذارند عبارتند از:
میزان اختلاط (آشفتگی و تلاطم)، سنتیک، سطح تشکیل کریستال، مکان هسته زایی، میزان تجمع و شوری سیستم. این پدیده‌ها می‌تواند تشکیل هیدرات را افزایش دهد امّا برای فرآیند تشکیل ضروری نیستند. این پدیدهها امکان تشکیل هیدرات را افزایش میدهند که عبارتند از]7-11[:
1- تلاطم
الف. سرعت زیاد
امکان تشکیل هیدرات در مناطقی که در آن‌ سرعت سیال زیاد است، بیشتر میباشد. این مسئله موجب میشود که شیرهای اختناق(ماسوره) مستعد تشکیل هیدرات باشند. دلیل اول این است، هنگامی که گاز طبیعی از ماسوره عبور میکند، به علت اثر ژول- تامسون افت دمای چشمگیری اتفاق میافتد و دلیل دوم سرعت زیاد در این شیر است.
ب. اختلاط
اختلاط در خط لوله، مخازن فرآوری، مبدلهای حرارتی و... احتمال تشکیل‌هیدرات را افزایش می‌دهد.
2- مکانهای هستهزایی
بهطور کلی، مکان هستهزایی جایی است که در آن‌ تغییر فاز اتفاق میافتد و در این مورد فاز سیال به جامد تبدیل میشود. برای مثال در رستورانهای تهیۀ غذای آماده برای درست کردن سیب‌زمینی سرخ کرده از ماهیتابۀ گود استفاده میشود. در این ماهیتابه، روغن بسیار داغ است امّا حباب جوشی وجود ندارد، زیرا هیچ مکان مناسبی برای هستهزایی نیست. با این حال، هنگامی که سیبزمینیها را در روغن قرار می‌دهند، بیدرنگ به جوش میآید، زیرا سیب زمینی سرخ کرده مکان بسیار مناسبی را برای هستهزایی فراهم میکند. مکانهای هستهزایی برای تشکیل هیدرات عباراتند از:
نقصهای موجود در خط لوله، نقاط جوش، اتصالات خط لوله (زانویی، سهراهی، شیرها و غیره). گل و لای، جرم، خاک و شن و ماسه نیز مکانهای مناسبی برای هستهزایی فراهم میکنند.
3- آب آزاد
ممکن است این سوال مطرح شود که آیا برای تشکیل هیدرات وجود آب آزاد الزامی است؟ خیر، این گفته با اظهارات قبلی متناقض نیست. آب آزاد برای تشکیل هیدرات الزامی نیست، امّا وجود آب بیشک احتمال تشکیل هیدرات را افزایش میدهد. علاوه براین سطح تماس آب و گاز محل هستهزایی بسیار خوبی برای تشکیل هیدرات گازی است.
موارد بالا تنها احتمال تشکیل هیدرات را افزایش میبرد و شرط لازم برای تشکیل آن‌ نیست. سه شرطی که پیشتر به آن‌ اشاره شد، شروط لازم برای تشکیل هیدرات است. یکی دیگر از جنبههای مهم تشکیل هیدرات، تجمع جامدات است. هیدراتهای گازی لزوماً در همان نقطهای تشکیل میشوند، منعقد نمی‌شوند. در خط لوله هیدرات میتواند همراه با فاز سیال بهویژه مایع جریان داشته باشد و تمایل دارد در همان جایی که مایع تجمع مییابد، منعقد شود. بهطور معمول انعقاد هیدرات مشکل ایجاد میکند. در خط لولۀ چندفازی، این تجمعات خط لوله را میبندد و به تجهیزات آسیب میرساند.
اغلب اوقات توپکرانی برای حذف هیدرات از خط لوله کافی است. توپکرانی، فرآیندی است که طی آن‌ ابزاری به نام توپک را وارد خط لوله میکنند. توپکهای مدرن کاربردهای فراوانی دارند، امّا مهمترین وظیفۀ آنها، تمیز کردن خط لوله است. نوعی از توپکها، داخل خط لوله را میخراشد و باز طریق جریان سیال در لوله حرکت میکند و بدین صورت هر جامدی را از درون خط لوله جابهجا میکند (هیدرات، موم، لجن و غیره). توپکرانی برای حذف پسماندههای مایعات نیز بهکار میرود]12[.
توپکرانی باید طوری برنامهریزی شود که تجمع هیدراتها مشکلساز نشود. بهطور معمول توپک‌رانی برای تمیز کردن هیدرات در خط لوله استفاده نمیشود. از مزایای دیگر توپکرانی، حذف نمک و رسوبات است که این کار برای عملکرد مناسب خط لوله ضروری است. این امر به معنای آن‌ است که مکانهای مناسب برای تشکیل هستههای هیدرات از بین میروند.
آب و گاز طبیعیآب اغلب همراه گاز طبیعی است و در مخازن همواره آب وجود دارد. بنابراین گاز طبیعی تولیدی همیشه اشباع از آب است. علاوه بر این آب سازند نیز گاهی همراه با گاز تولید میشود. همچنان که دما و فشار طی تولید گاز تغییر میکند، آب مایع نیز معیان میشود. بهعلاوه آب اغلب در فرآیندهای گاز طبیعی وجود دارد. در فرآیند شیرینسازی گاز طبیعی (برای مثال برای حذف سولفید هیدروژن و دیاکسیدکربن، به اصطلاح "گازهای اسیدی" اغلب از محلولهای آبی استفاده میشود. مرسومترین این فرآیندها شامل محلول آبی آلکانولآمین است. به همین دلیل، گاز شیرین (محصول فرآیند شیرینسازی) این فرآیندها نیز، اشباع از آب است.
فرآیندهای مختلفی برای حذف آب از گاز طبیعی طراحی شدهاند که در فصل سوم بررسی خواهند شد. همراهی آب و گاز طبیعی به این معناست که در تمامی مراحل تولید و فرآوری گاز طبیعی احتمال تشکیل هیدرات وجود دارد. بخش زیادی از این پژوهش به پیشبینی شرایط تشکیل هیدرات اختصاص دارد. با این دانش، مهندسان شاغل در صنعت گاز طبیعی خواهند دانست که آیا هیدرات در برنامۀ آنها مشکلساز خواهد بود یا نه؟ پس از آنکه مشخص شد هیدرات برای ما مشکل ایجاد میکند یا حتی یک مشکل بالفعل است، چه می‌توان کرد؟ یکی دیگر از بخشهای این پژوهش به این موضوع میپردازد.
آب آزادافسانهای در صنعت گاز طبیعی وجود دارد که میگوید وجود "آب آزاد" (برای مثال یک فاز آبی) برای تشکیل هیدرات ضروری است. در بخشهای بعدی نشان داده خواهد شد که این عقیده درست نیست. بی‌شک آب آزاد احتمال تشکیل هیدرات را افزایش میدهد، ولی وجود آن‌ ضروری نیست. استدلال قوی برای نشان دادن اینکه آب آزاد برای تشکیل هیدرات ضروری نیست، در فصل چهارم روی نمودارهای فازی آوردی شده است.
یکی دیگر از موضوعات مورد توجه، اصطلاح "برفک" است که سؤال سادهای را مطرح میکند: آیا وجود آب آزاد برای تشکیل یخ ضروری است؟ پاسخ منفی است. برفکها بدون وجود آب مایع نیز شکل میگیرند. برفک از هوا روی اتومبیل در شبهای زمستانی تصعید میشود. بهطور مستقیم از هوا به فاز جامد میرود، بدون آنکه مایعی تشکیل شود. مخلوط هوا/آب یک گاز است، آب بهصورت مایع در هوا وجود ندارد. اگر یک فریزر قدیمی را در نظر بگیریم (فریزری که بدون برفک نیست) با نگاه کردن به داخل آن‌ میتوان مشاهده کرد که لایهای از برفک در آن‌ شکل گرفته است، بدون آنکه آب مایعی تشکیل شده باشد. هیدراتها از طریق این سازوکار میتوانند ایجاد شوند.
یکی از دلایلی که چرا اعتقاد بر این است که آب آزاد برای تشکیل هیدرات ضروری است، این است که هیدرات شکلگرفته بدون آب آزاد، مشکلساز نیست. داخل لوله ممکن است با برفکهای هیدرات پوشیده شود، امّا همچنان بهخوبی کار کند. یا مقدار هیدرات ممکن است کم باشد و در نتیجه خط لوله بسته نشود و به تجهیزات فرآوری نیز آسیبی وارد نشود. این هیدراتهای برفکی را میتوان به آسانی با فرآیند توپکرانی تمیز کرد.
فرآیند تبدیل مستقیم جامد به گاز، تصعید نامیده میشود. برای مثال، دیاکسیدکربن در فشار اتمسفری تصعید میشود. CO2 جامد، که بهطور معمول یخ خشک نامیده میشود، بهطور مستقیم از فاز جامد بدون تشکیل مایع به فاز بخار میرود. در این فشار اتمسفری CO2 در دمای 78- درجۀ سلسیوس (108- درجۀ فارنهایت) از جامد به بخار تبدیل میشود. مثال دیگری از جامداتی که در فشار اتمسفری تصعید میشوند، نفتالین است که مهمترین جزء گلولههای ضدبید محسوب میشود. دلیل اینکه گلولههای ضدبید از خود بو متصاعد میکنند، این است که نفتالین بهطور مستقیم از فاز جامد به فاز بخار میرود. در واقع همۀ مواد خالص از جمله آب خالص در فشارهای زیر فشار نقطۀ سهگانۀ خود تصعید میشوند. بنابراین جای تعجب نیست که هیدرات در شرایط مناسب میتواند بهطور مستقیم از فاز گاز به فاز جامد برود.
بیان مساله پژوهشمتان کلاترات که با نام هیدرات متانی و یخ متان نیز شناخته میشود، ترکیبی است که در آن‌ مقدار زیادی متان در داخل یک ساختار بلوری آب محبوس شده و ساختاری جامد تشکیل میدهد. ابتدا تصور میشد که هیدرات فقط در خارج از منظومه شمسی که دما بسیار پایین است تشکیل میشود ولی با پیشرفت علم کشف شد که مخازن وسیعی از آن‌ در کف اقیانوسها موجود است.
هیدراتها میتوانند در طول عملیات تولید گاز طبیعی نیز تشکیل شوند. این امر زمانی روی میدهد که آب مایع در حضور متان در فشار بالا متراکم شود. مشخص شده است که مولکول‌های بزرگتر مانند اتان و پروپان نیز می‌توانند هیدرات تشکیل دهند. در چند دهه اخیر هیدرات گازی به‌عنوان یک معضل درخطوط انتقال گاز مطرح بوده و جهت جلوگیری از تشکیل آن‌ از تزریق مواد بازدارنده به خطوط لوله استفاده شده است. از سوی دیگر مواد تزریقی مشکلات دیگری مانند جداسازی ثانویه و یا مسموم کردن مواد ایجاد می‌کنند که اگر بدون بررسی دقیق شرایط به خط تزریق شوند میتوانند بجای کاهش هزینهها موجب افزایش آن‌ گردند.
هیدراتها پس از تشکیل میتوانند خط لوله و تجهیزات پردازش را مسدود نموده و خساراتی ایجاد کنند. در این مرحله هیدراتها با صرف هزینه و وقت و اعمال روشهایی چون کاهش فشار، گرمکردن و حل بهکمک مواد شیمیایی مانند متانول، الکل‌ها و گلایکول قابل حذف میباشند امّا مراقبت و کنترل دقیقی برای اطمینان از حذف هیدرات لازم است. بهترین راه برای جلوگیری از ایجاد خسارات هیدراتها در خطوط انتقال گاز، جلوگیری از رسیدن به شرایط مناسب فیزیکی برای تشکیل آن‌ است که این امر نیازمند شناخت کامل و پیش بینی به موقع تشکیل هیدرات در خطوط انتقال است که در این پژوهش با استفاده از نرم افزار کامسول انجام میشود.
در این پژوهش شرایط خط لوله فرضی مورد مطالعه معلوم هستند. همچنین شرایط محیطی مختلف نیز به‌عنوان ورودی معلوم به نرم افزار وارد میشوند و شرایط و خواص فیزیکی گاز در حال انتقال نیز جزء متغییرهای معلوم به حساب میآیند. احتمال تشکیل‌هیدرات در خط لوله به‌عنوان مجهول بدست خواهد آمد.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 1 : شماتیکی از تشکیل هیدرات در جداره لولهضرورت و اهمیت انجام پژوهشتشکیل هیدرات در خطوط لوله گاز یکی از مشکلات بزرگ میعانات گازی و مشکلات عملیاتی طراحی خطوط لوله انتقال جریان‌ها بخصوص جریان‌های دو فازی فراروی کارکنان عملیات بهره‌برداری و مهندسین اداره بهره برداری است که هر ساله هزینه‌های بسیاری را به خود اختصاص میدهد. هزینه‌های ناشی از ایجاد خوردگی تأسیسات، انجام عملیات توپک‌رانی در خطوط لوله و... همگی به واسطه مشکل تولید هیدرات گازی در خطوط لوله است که باید با مدیریتی صحیح در راستای حل این مشکل گامی اساسی برداشته شود.
هیدرات‌ها تمایل زیادی برای متراکم شدن و چسبیدن به دیواره لوله و در نتیجه مسدود نمودن خط لوله دارند. درصورت تشکیل هیدرات، برای جدایش و تجزیه آن‌ درجه حرارت بالاتر و یا فشار پایین تر مورد نیاز است. حتی در این شرایط نیز فرآیند جدا کردن هیدرات‌ها، فرآیندی آهسته است. بنابراین کلید مسأله، جلوگیری از تشکیل هیدرات باشد.
تشکیل هیدرات افت فشار را افزایش داده و باعث انسداد و نهایتاً انفجار خط لوله انتقال جریان می‌شود. وجود آب و میعانات گازی در خطوط لوله جمع آوری و انتقال گاز طبیعی(به صورت جریان‌های دوفازی)، باعث پیدایش مشکلات زیر می‌گردد:
الف) تشکیل‌هیدرات‌گاز طبیعی در خط لوله جریانی و در نتیجه کاهش بازده و ایمنی خط لوله انتقال جریان
ب) تجمع مایعات در خطوط لوله انتقال جریان و در نتیجه کاهش بازده انتقال جریان
ج) خوردگی و ساییدگی خط لوله و در نتیجه بروز پدیده نشتی در خطوط
د) مشکلات عملیاتی و اعمال هزینه‌های سربار مثل توپک‌رانی


فلسفه واقعیت شکل هیدرات به شرایط عملیاتی از قبیل فشار، دما، نوع سیال، گاز مایع، حضورآب و... بستگی دارد. در این پایان نامه به بررسی شرایط فیزیکی و تشکیل هیدرات در خطوط لوله انتقال جریان گاز طبیعی و راه‌های مقابله با آن‌ شرح داده می شوند.
اهمیت هیدرات‌های گازیتاریخچه کشف هیدرات گازی به سال 1810 توسط همفر دیوی هنگام تولید حباب کلر در آب سرد به روش آزمایشگاهی بر می‌گردد. دوره دوم آن‌ تقریباً از سال 1934 وقتی که اولین خط لوله گاز طراحی شد و مورد بهره برداری قرار گرفت، که پدیده هیدرات باعث بسته شدن وگرفتگی خطوط انتقال گاز طبیعی شده است. این پدیده توسط هامراشمیت در آمریکا مطرح شد. در این دوره هیدرات به عنوان مشکلی برای تولیدکنندگان و فرآورش گاز طبیعی در نظر گرفته شد. این بخش و تاریخچه هیدرات به صنایع و مشکلات در آن‌ اختصاص دارد. دوره سوم با کشف این حقیقت که طبیعت میلیون‌ها سال پیش از بشر، هیدرات‌ها را تولید نموده، از اواسط دهه 1970 میلادی شروع شده و تا کنون ادامه دارد. این دوره با کشف منابع زیر هیدرات در اعماق اقیانوس ها در عمق 500 متری با فشار حدود 50 بار و دمای حدود 5-4 سانتی‌گراد آغاز گردیده است.
هیدرات‌های گازی به علت دارا بودن پتانسیل‌های مختلف ، مورد توجه محققان قرار گرفته است. موارد اهمیت هیدرات‌های گازی را می‌توان به صورت زیر بیان نمود:
هیدرات‌های گازی تامین کننده سوخت جهان در سال‌های آینده ( مکس و همکاران 2006)
هیدرات‌های گازی وسیله‌ای برای انتقال گاز
مسدود کردن خطوط انتقال گاز و چاه‌ها
خطرات حفاری (هارد اج و همکاران 2006)
ناپایداری بستر دریا
زمینه‌های تحقیقاتی هیدراتظرفیت و حجم بالای هیدرات در طبیعت سبب شده که امروزه تحقیقات گسترده‌ای برای بکارگیری این پتانسیل در علوم مهندسی به صورت زیر انجام شود.
شبیه سازی و مدلسازی ترمودینامیکی و سینتیکی هیدرات‌های گازی
اکتشاف، حفاری، بهره برداری و مطالعه مخازن هیدرات گازی
تشکیل هیدرات گازی در فرآیندهای صنعتی و نانوفناوری
بازدارندگی و پیش برندگی در تشکیل هیدرات
تولید، ذخیره سازی و انتقال گاز به صورت هیدرات گازی
خواص فیزیکی و ساختار مولکولی هیدرات‌های گازی
محیط زیست، ایمنی و مدیریت منابع هیدرات گازی (نانو فناوری)
تشکیل هیدرات‌های گازی در فرآیند‌های صنعتی
وجه تمایز پژوهش با سایر پژوهش‌هادر این تحقیق بررسی شرایط فیزیکی هیدرات گازی در لوله‌های انتقال گاز با استفاده از نرم افزار کامسول مالتی فیزیک برای اولین بار مورد بررسی قرار میگیرد. مهم‌ترین ویژگی مثبت نرم افزار کامسول در مقایسه با بسته‌های مشابه، قابل اعتماد بودن، پیشرفته بودن و جدید بودن بسته نرم افزاری می‌باشد.
این پژوهش برخلاف کار قبلی انجام شده از فرضهای ساده کننده با خطای بالا مانند فرض همدما بودن یا مدلسازی یک بعدی استفاده نکرده و از فرض وجود توزیع دما در داخل خط لوله استفاده مینماید و بنابراین دقت پیش بینی آن‌ بسیار بالاتر است. همچنین در حل معادلات از نرم افزار کامسول استفاده شده که قابلیت اطمینان به مدلسازی و همچنین امکان استفاده صنعتی از این مدلسازی را افزایش میدهد. در این پژوهش برخلاف کارهای قبلی بصورت همزمان سه معادله بقا حل می‌شوند در حالی که در کارهای قبلی مدلها از یک معادله بقا و معادلات حالت برای محاسبات استفاده کردهاند.

اهداف پژوهشیکی از مهمترین اهداف تحقیق حل همزمان معادلات بقای جرم، انرژی و مومنتوم و مقایسه با شرایط ترمودینامیکی لازم برای تشکیل هیدرات و پیش بینی تشکیل آن‌ در خطوط لوله انجام می‌گیرد تا به کمک آن‌ طرز تشکیل هیدرات جلوگیری گردد. مقایسه روشهای موجود و انتخاب روش بهینه برای جلوگیری از تشکیل هیدرات در خطوط لوله انتقال گاز انجام می‌گیرد که در صنایع مرتبط کاربرد داشته و از ایجاد مشکلات عملیاتی و فرآیندی در خطوط لوله جلوگیری می‌شود لذا بررسی آن‌ ضروری است. محاسبه توزیع پارامترهای ترمودینامیکی در داخل خطوط لوله انتقال به چه صورت خواهد بود. و افت فشار در طول لوله به چه میزان می‌تواند بر تشکیل هیدرات تأثیر بگذارد. نقش دانسیته، ویسکوزیته، آنتالپی و... به چه صورت است و با تزریق بازدارنده‌ها تا چه میزان می‌توان مانع از تشکیل هیدرات شد.
سؤالات پژوهشدر این پژوهش سعی میشود تا به پرسشهای زیر پاسخ داده شود:
آیا دما و فشار پارامترهای اصلی تشکیل هیدرات هستند؟ وابستگی تشکیل هیدرات به پارامترهای دما و فشار به چه میزان خواهد بود؟
اتلاف دما در یک خط لوله مدفون تحت تأثیر کدام متغییرها می‌باشد؟
مقایسه روشهای جلوگیری از تشکیل هیدرات در انتخاب روش بهینه برای کاهش هرچه بیشتر احتمال تشکیل هیدرات.
آیا واحد‌های نم‌زدایی‌گاز برای عدم تشکیل‌هیدرات مؤثر هستند و کدام روش نم‌زدایی بهتر می‌باشد؟
مقاومت‌های تشکیل هیدرات و پارامترهای مؤثر جرمی و حرارتی کدامند؟
آیا میتوان با استفاده از مدلسازی با خطای کم شرایط تشکیل هیدرات در خطوط انتقال گاز را بررسی و پیش بینی نمود؟
در صورت پیش بینی تشکیل هیدرات آیا با تغییر شرایط اولیه و استفاده از روشهای موجود میتوان کاهش احتمال تشکیل هیدرات را محاسبه نمود؟
توزیع غلظت ذرات جامد در یک جریان آرام دو فاز گاز‌- جامد چگونه می باشد؟
تغییرات دما، فشار، سرعت، آنتالپی، ویسکوزیته، دانسیته با تشکیل هیدرات رابطه‌ای دارد؟
آیا با تزریق بازدارنده می‌توان مانع از تشکیل هیدرات شد؟
بررسی تزریق مواد بازدارنده ترمودینامیکی در نحوه از بین بردن هیدرات به چه صورت خواهد بود.
بررسی تزریق مواد بازدارنده نمکی در نحوه از بین بردن هیدرات به چه صورت خواهد بود.
فرضیه‌های پژوهشدر انجام این پژوهش تمام معادلات بقای جرم، بقای انرژی، بقای مومنتوم حل میشوند و بنابراین از فرضهای ساده کننده با خطای بالا نظیر فرض همدما بودن فرآیند استفاده نشده است هرچند که اگر در طول مدلسازی نیاز به پارامترهای خاصی باشد با ذکر دلیل از معادلات جریان ایده آل استفاده میشود. انتخاب بعد مناسب (2D)(3D)، فیزیک صحیح که شامل بقا، جرم و حرارت به خاطر داشتن دوفاز در لوله با الهام گرفتن از قوانین دوفازی سبب شده تا در محاسبه پارامترهای ویسکوزیته، لغزش، سرعت ظاهری و واقعی، چگالی و... به خاطر مدل سیال ترکیبی که داریم از قوانین و معادلات مربوطه استفاده کنیم. مثلاً در محاسبه ویسکوزیته روش‌های مختلفی ارائه شده که در این پژوهش از روشی استفاده شده است که درصد خطای کمتری برخوردار است.
انواع و ساختار هیدراتهیدراتها براساس آرایش مولکولهای آب در کریستال و بهعبارت دیگر براساس ساختار کریستال طبقهبندی میشوند. در صنعت نفت و گاز بهطور معمول دو نوع هیدرات مشاهده میشود: نوع I و نوع II و گاهی نیز به نام ساختار I و II شناخته میشوند. نوع سومی از هیدرات نیز به نام هیدرات نوع H (یا ساختار H) وجود دارد، امّا بسیار کم دیده میشود]13-17[.
ساختار هیدرات به طور متوسط شامل 85 درصد آب می‌باشد و بسیاری از خواص مکانیکی آن‌ شبیه به یخ است. بنابراین، ابتدا لازم است راجع به مولکول آب و ساختار آن‌ کمی توضیح داده شود. متداول ترین فرم آب به صورت جامد، یخ I است که ساختمان مولکولی آن‌ به صورت نمایش داده شده در REF _Ref397264725 h شکل ‏12 می‌باشد.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 2 : ساختار کریستال پایه برای یخ 4Iیک مولکول آب در حالت گازی، شامل یک اتم اکسیژن و دو اتم هیدروژن است. اتم اکسیژن دارای چهار الکترون در مدار آخر است که دو الکترون را به اشتراک با دو اتم گذاشته است. این سه اتم در یک ساختمان، با شکل هرمی (با قاعده مثلثی) قرار می‌گیرند و اتم اکسیژن کمی از مرکز هرم به گوشه سمت راست کشیده شده است. مولکول آب در حالت مایع این جفت الکترون آزاد را به طور نسبی در اختیار سایر هیدروژن‌های مولکول دیگر آب قرار می‌دهد و باعث تشکیل پیوند هیدروژنی می‌شود( REF _Ref399373384 h شکل ‏13). با تشکیل این پیوند، یک شبکه پلیمری در آب به صورت فاز مایع تشکیل می‌شود. در REF _Ref399373405 h شکل ‏14، پیوند هیدروژنی به صورت میله‌های هاشور زده شده نمایش داده شده است.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 3 : پیوند هیدروژنی میان پنج مولکول آب و تشکیل یک حلقه 5 مولکولی
شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 4 : تشکیل پیوند هیدروژنی میان دو مولکول آبحلقه‌های تشکیل شده از مولکول‌های آب، ناشی از پیوند هیدروژنی، بسیار پایدار‌تر از زنجیر‌های باز با همان تعداد مولکول هستند. اگر این حلقه‌ها شامل پنج مولکول آب باشند دوازده عدد از این حلقه‌ها یک دوازده وجهی منتظم را تشکیل می‌دهند که به صورت 512 نمایش داده می‌شود.
مطالعه ساختمان هیدرات اولین بار توسط مولر صورت گرفته است. بر اساس نظریات وی تا آن‌ موقع دو نوع شبکه کریستالی برای هیدرات شناسایی شده بود. هر دو ساختار مکعبی بوده و تحت عنوان ساختار‌های I و II شناخته می‌شدند. تا قبل از کشف ساختاری دیگر به نام H، تصور بر این بود که مولکول‌های بزرگ تر از نرمال بوتان به علت بزرگی اندازه شان نمی‌توانند در فضای ایجاد شده شبکه کریستالی هیدرات قرار بگیرند و به همراه آب شبکه کریستالی هیدرات را تشکیل دهند. ریپمیستر با کشف هیدرات نوع H، نشان داده است که مولکول‌هایی نظیر متیل سیکلوهگزان با همراهی مولکول‌های گازی کوچک نظیر متان یا سولفید هیدروژن که گاز کمکی نامیده می‌شود نیز می‌توانند کریستال هیدرات H تولید کنند.
ساختار هیدرات نوع Iساختار I معمولاً با مولکول‌های کوچک تر مانند متان، دی اکسید کربن، اتان و ... تشکیل می‌شود. در این ساختار دو حفره 512 (حفره کوچک) و شش حفره 51262 (حفره بزرگ) با اشتراک گذاشتن ضلع‌ها در اثر تکرار در فضا با هم شبکه‌ی این فضا را تشکیل می‌دهند. بنابراین، هر واحد سلولی این ساختار شامل 46 مولکول آب می‌باشد و دارای هشت حفره برای مولکول‌های گاز است که از میان این حفرات دو حفره کوچک و شش حفره بزرگ است و ساختار به صورت مکعب است. بنابراین، در این ساختار 46 مولکول آب به ازای هشت مولکول گاز وجود دارد. ساختار I چهار درصد از حالت کروی انحراف دارد.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 5 : ساختار Iساختار هیدرات نوع IIمولکول‌هایی با قطر بین 5 تا 7/6 آنگستروم که نمی‌توانند در ساختار I قرار بگیرند، فقط می‌توانند ساختار II را اشغال کنند. بنابراین، این ساختار به وسیله مولکول‌های بزرگ تر مانند پروپان و ایزو بوتان تشکیل می‌شود. این ساختار با اشتراک گذاشتن سطح‌ها از ترکیب شانزده حفره 512 (حفره کوچک) و هشت حفره 51264 (حفره بزرگ) تشکیل شده است. بنابراین، هر واحد سلولی این ساختار شامل 136 مولکول آب است و دارای 24 حفره برای مولکول‌های گاز است که از میان این حفرات، هشت حفره کوچک و شانزده حفره بزرگ است. بنابراین، در این ساختار 136 مولکول آب به ازای 24 مولکول گاز وجود دارد. ساختار II ده درصد از حالت کروی انحراف دارد. بنابراین، کروی ترین ساختار را در میان ساختار‌های هیدرات دارا می‌باشد. این ساختار برای شیرین سازی آب مناسب است.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 6 : ساختار IIساختار هیدرات نوع Hاین ساختار تا سال 1987 ناشناخته بود و هنوز هم به اندازه دو ساختار دیگر شناخته شده نیست. این ساختار از ترکیب سه حفره 512 (حفره کرچک) دو حفره 435663 (حفره متوسط) و یک حفره 51268 (حفره بزرگ) تشکیل شده است. بنابراین، هر واحد سلولی این ساختار شامل 34 مولکول آب می‌باشد و دارای شش حفره برای مولکول‌های گاز است که از میان این حفرات سه حفره کوچک، دو حفره متوسط، و یک حفره بزرگ است. بنابراین، در این ساختار 34 مولکول آب به ازای شش مولکول گاز موجود می‌باشد.
زمانی که اجزای گاز طبیعی مثل پروپان و ایزوبوتان وجود دارند این ساختار تشکیل نمی‌شود. ساختار H تحت عنوان ساختار دوگانه شناخته می‌شود و برای تشکیل آن‌ یک نوع مولکول کوچک مانند متان و یک نوع مولکول بزرگ مانند متیل سیکلو هگزان باید موجود باشند تا بتوانند ساختار آن‌ را پایدار کنند. از مهمترین خواص مکانیکی ساختار H، فشار تشکیل پایین و ظرفیت ذخیره سازی بالا است.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 7 : ساختار H
شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 8 : ساختارهای مختلف هیدرات گازیاندازۀ مولکول مهمانوان استکلبرگ رابطۀ بین اندازۀ یک مولکول و نوع هیدرات تشکیلی را کشف کرد. وی نموداری رسم کرد که پس از تصحیحاتی در شکل ‏19 آورده شده است و طبیعت هیدرات براساس اندازۀ مولکول مهمان را نشان می‌دهد. در قسمت بالای نمودار مولکولهای کوچک قرار دارند و همچنان که به سمت پایین نمودار میرویم، اندازۀ مولکولها نیز افزایش مییابد. هیدروژن و هلیوم با قطرهای Å 7/2 و Å 3/2 از کوچکترین مولکولها هستند (قابل ذکر است که 1Å= 1×10-10m). نمودار نشان میدهد که مولکولهای با قطرهای کمتر از Å 8/3 هیدرات تشکیل نمی‌دهند.
با افزایش اندازۀ مولکولها، با حرکت به سمت پایین نمودار، اولین تشکیلدهندههای هیدرات مانند کریپتون و نیتروژن را میبینیم. محدودۀ بین دو مستطیل هاشورزده با مولکول‌هایی با اندازۀ بین Å 8/3 تا Å 2/4 هیدرات نوع II را تشکیل میدهند. این مواد به حدی کوچکند که هم قفسهای کوچک و هم قفس‌های بزرگ این ساختار هیدروژنی را اشغال میکنند. همینطور که به سمت پایین میرویم، وارد ناحیۀ بعدی میشویم (تقریباً بین Å 4/4 تا Å 4/5). این ناحیه شامل متان، سولفید هیدروژن و دیاکسیدکربن است. مولکولهای این بازه، هیدرات نوع I تشکیل میدهند و این مولکولها به حدی کوچکند که هم قفسهای بزرگ و هم قفسهای کوچک را اشغال می‌کنند.
مولکولهای بزرگتر در ناحیۀ بعدی نمودار قرار دارند (تقریباً از Å 6/5 تا Å 8/5). این ناحیه بسیار محدود است و تنها مادۀ مهم قابل ذکر آن‌ اتان است. ترکیباتی که از نظر اندازه در این محدوه قرار میگیرند، هیدراتهای نوع I را ایجاد میکنند، امّا فقط قفسهای بزرگ را اشغال میکنند. این مولکولها برای وارد شدن به قفسهای کوچک هیدرات نوع I بیش از حد بزرگ هستند.
ناحیۀ بعدی که نشاندهندۀ مولکولهای بزرگتر (در محدوۀ بین Å 6 تا Å 9/6) است. شامل پروپان و ایزوبوتان است. این مولکولها تشکیلدهندههای هیدرات نوع II هستند، امّا تنها قفسهای بزرگ ساختار نوع II را اشغال میکنند. مولکولهایی که اندازۀ آنها در این محدوه قرار دارد، برای ورود به قفسهای کوچک هیدرات نوع II بیش از حد کوچک هستند. در نهایت به یک حد نهایی میرسیم. مولکولهای بزرگتر از Å 7 نه هیدرات نوع I و نه هیدرات نوع II تشکیل نمیدهند. بنابراین مولکولهایی مانند پنتان، هگزان و هیدروکربنهای پارافینی بزرگتر هم هیدرات تشکیل نمیدهند. REF _Ref397265361 h شکل ‏19 نشان میدهد که سیکلوپروپان (C-C3H8) و نرمال بوتان در نواحی هاشورزده قرار دارند. مولکولهای کمی بزرگتر می‌توانند هیدراتهای نوع H تشکیل دهند، امّا اندازۀ بیشینه برای این ترکیبات برای تشکیل‌هیدرات تقریباً Å 9 است.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 9 : مقایسه اندازه مولکول‌های مهمان، نوع هیدرات و حفره‌های اشغال شده برای تشکیل دهنده‌های هیدرات مختلفسایر تشکیل دهنده‌های هیدراتاین پژوهش بر روی هیدراتهای حاصل از گاز طبیعی تمرکز دارد، امّا اشاره به چند ترکیب تشکیل دهندۀ هیدرات دیگر هم جالب توجه است.
فرئونهافرئونها ترکیب آلی حاصل از کلر و فلوئور زمانی بهعنوان مبرد استفاده میشد. با‌توجه به نگرانی‌های زیست‌ محیطی، استفاده از آنها محدود شد. با این حال بسیاری از فرئونها بهویژه انواع کوچک آنها هیدرات تشکیل می‌دهند. این احتمال وجود دارد که فرئونهای جدیدتر و سازگار با محیطزیست نیز هیدرات تشکیل دهند. بنابراین تشکیل هیدرات ممکن است در صورت خشک نبودن حلقۀ تبرید مشکلزا باشد.
هالوژنهاهالوژنها، عناصر‌ستون A7 جدول تناوبی هستند. بین این عناصر، کلر و بروم تشکیل دهندههای هیدرات شناختهشدهای هستند. این احتمال وجود دارد که بهعلت اندازه وخواص شیمیایی، فلوئور نیز هیدرات تشکیل دهند. از لحاظ تاریخی، کلر اولین مادۀ شناختهشدهای بود که هیدرات تشکیل میداد. ید، یکی دیگر از هالوژنها، مانند نرمال‌بوتان تنها در حضور یک تشکیلدهندۀ هیدرات دیگر، هیدرات ایجاد میکند.
گازهای نجیبگازهای نجیب (گروه سمت راست جدول تناوبی)، یا گازهای بیاثر، شامل آرگون، کریپتون، زنون و رادون هستند که همگی هیدرات تشکیل میدهند. همانطور که پیشتر نیز اشاره شد، یکی از اعضای گروه گازهای نجیب (هلیوم) هیدرات ایجاد نمیکند. احتمال تشکیل هیدرات از طریق نئون، که گاز کوچکی است، بعید بهنظر میرسد. این گازها بهدلیل پایداری شیمیایی بسیار قابل توجه هستند. تنها در شرایط شدید میتوان آنها را مجبور به واکنش و تشکیل ترکیب کرد. این موضوع که این گازها هیدرات تشکیل نمیدهند، گویای این واقعیت است که در هیدرات هیچ پیوند شیمیایی بین مولکولهای میزبان و مهمان وجود ندارد.
هوایکی دیگر از ترکیبات مهمی که هیدرات تشکیل میدهد، اکسیژن است. از آنجا که نیتروژن نیز هیدرات ایجاد میکند، در نتیجه هوا خود تشکیلدهندۀ هیدرات است. هم اکسیژن و هم نیتروژن در فشارهای بسیار زیاد هیدرات تشکیل میدهند. بههمین علت زمانی تصور میشد که این دو ماده هیدرات ایجاد نمیکنند.
سؤالی که در اینجا مطرح میشود، این است که اگر هوا میتواند هیدرات تشکیل دهد، آیا هیچکدام از "یخهای" روی سطح زمین شامل هیدرات هوا هستند؟ پاسخ منفی است. برای اینکه هوا هیدرات تشکیل دهد، به فشار زیادی نیاز دارد. در واقع فشارهای بالا روی سطح زمین وجود ندارند.
سایر تشکیل دهنده‌هادی اکسیدگوگرد نیز هیدرات ایجاد میکند. این مسئله تا حدی شگفتانگیز است، زیرا SO2 به نسبت در آب محلول است و احتمالاً جزء محلولترین ترکیباتی است که هیدرات تشکیل میدهند. بهعنوان یک قاعدۀ کلی، گازهایی که حلالیت آنها بیشتر از SO2 است، هیدرات تشکیل نمیدهند. مرکاپتانهای کوچک (متانتیول، اتانتیول و پروپانتیول) نیز هیدرات تشکیل میدهند. یکی دیگر از ترکیبات جالبی که هیدرات ایجاد میکند، اتیلناکسید است. اتیلناکسید یک مادۀ شیمیایی مهم صنعتی است که به طور معمول بهعنوان مادۀ اولیه به کار میرود. تشکیلدهندههای هیدرات دیگر عبارتند از: SbH3, AsH3, PH3, H2Se, N2O و ClO3F. بدیهی است که این فهرست در صنعت گاز طبیعی استفادهای ندارد، ولی در کل مشاهدۀ این موضوع که گروه وسیعی از مواد هیدرات تشکیل میدهند، موضوع جالب و قابل تأملی است.
کاربرد‌های هیدراتاستفاده صحیح این پدیده در کنار صرفه اقتصادی می‌تواند در زمان، حفظ محیط زیست، بالا بردن کیفیت فرآیندها تأثیر بسزایی داشته باشد. به نمونه چندین کاربرد صنعتی هیدرات را تشریح شده است]18-21[.
کریستال هیدرات در فرآیند‌های جداسازیجداسازی از طریق تشکیل هیدرات گازی یک روش جدید است. دو دلیل برای استفاده از هیدرات در فرآیند‌های جداسازی وجود دارد:
1- کریستال هیدرات فقط از مولکول‌های میهمان و آب تشکیل می‌شود.
2- هر مولکول گازی به عنوان مولکول میهمان نمی‌تواند در ساختار کریستال‌های هیدرات قرار بگیرد و تنها مولکول‌های خاص با توجه به طبیعت شیمیایی، شکل و اندازه می‌توانند در ساختار هیدرات شرکت کنند. جداسازی اجزای یک مخلوط گازی، تغلیظ محلول‌ها و شیرین سازی آب، از سری شاخه‌های جداسازی از طریق تشکیل هیدرات گازی می‌باشند.
غنی سازی اکسیژن با استفاده از تشکیل هیدرات گازیبا استفاده از تشکیل هیدرات گازی می‌توان اکسیژن را غنی کرد. با‌توجه به این که حلالیت اکسیژن در آب از نیتروژن بیشتر است میزان سرعت تبدیل به هیدرات برای اکسیژن از هیدروژن بیشتر است از‌این‌رو با استفاده از‌ تشکیل هیدرات‌گازی می‌توان اکسیژن را از غلظت 21 درصد استاندارد در هوا به مقدار 28 درصد غنی کرد. در این روش، برای کاهش فشار عملیاتی مورد نیاز در جداسازی می‌توان تترا‌هیدرو فوران به‌عنوان افزودنی استفاده کرد.
تغلیظ به کمک تشکیل هیدراتهنگامی که محلولی که قرار است تغلیظ شود در مجاورت یک جزء گازی باشد که توانایی تشکیل هیدرات را داشته باشد، تحت شرایط مناسبی از دما و فشار، هیدرات تشکیل می‌شود و به علت حضور آب در ساختار هیدرات از میزان آب محلول کاسته می‌شود و محلول مورد نظر تغلیظ می‌شود. از جمله موارد کاربرد این روش می‌توان به این موارد اشاره کرد:
- تغلیظ قهوه
- تغلیظ مایعات یونی
- تغلیظ کلرید سدیم در محلول آبی
- تغلیظ انواع مختلفی از آب میوه‌ها
هیدرات گازی و شیرین سازی آب دریاشیرین سازی آب دریا نیز مثالی دیگر برای استفاده از تشکیل کریستال هیدرات در فرآیند‌های جداسازی است. فکر شیرین سازی آب دریا با استفاده از هیدرات گازی بر این مبنا استوار است که در حین تشکیل هیدرات، نمک‌های موجود در آب‌های شور در ساختار فاز هیدرات تشکیل شده قرار نمی‌گیرند بنابراین می‌توان با جداسازی فاز هیدرات از محلول آب دریا، آب شیرین به دست آورد. از جمله مزایای این روش، مصرف بسیار کم انرژی برای این کار است. تاکنون چند فرآیند مختلف برای شیرین سازی آب دریا در حد نیمه صنعتی با استفاده از تشکیل هیدرات (مخصوصاً با گاز پروپان) ابداع شده است، امّا همه آنها با مشکل جداسازی کریستال از آب شور و بازیابی گاز‌های حاصل از تجزیه هیدرات رو به رو بوده‌اند و به همین دلیل از توجیه اقتصادی خوبی برخوردار نبودند.
جدا سازی دی اکسید کربن دریاییحدود 64 درصد از اثر گاز گلخانه‌ای به خاطر انتشار گاز CO2 می‌‌باشد که بیشتر از 6 Gt/year مربوط به فعالیت‌های برخورد بشر با طبیعت نسبت داده می‌شود. اثبات شده که اثر گلخانه‌ای برای گرم شدن زمین غیر قابل انکار می‌باشد و کاهش مقدار CO2 آزاد شده به اتمسفر یک چالش محیطی بزرگ می‌باشد. CO2 به طور جزئی می‌تواند با روش‌های گوناگونی نظیر جذب شیمیایی به وسیله آمین‌ها یا جداسازی به وسیله واسطه‌های زمین شناسی و اقیانوس‌ها جدا می‌شوند. این قبیل کار‌ها می‌توانند با آزاد کردن CO2 در آب با استفاده از فرآیند تزریق به اعماق صورت گیرد. تا عمق 400 متری آب، تزریق CO2 گازی می‌تواند با حل شدن در آب به دام بیفتد. بین 1000 تا 2000 متری، CO2 به شکل مایع می‌تواند در اقیانوس حل شود. در مجموع، هیدرات‌های CO2 می‌تواند از عمق 500 تا 900 متر در آب دریا تشکیل گردد و بسته به جرم حجمی در عمق دریا ، جایی که به مدت زیادی در آن‌ جا تثبیت می‌شوند، غوطه ور یا شناور گردند. جداسازی دی اکسید کربن اخیراً در مرحله آزمایشی است و تحقیقات بیشتر در زمینه حلالیت CO2، سینتیک تشکیل هیدرات CO2 و پایداری هیدرات CO2 در حال انجام می‌باشد.
ذخیره و انتقال گاز طبیعیاین فرآیند شامل سه مرحله می‌باشد:
مرحله تولید هیدرات
انتقال به مکان دیگر برای استفاده
بازیافت گاز به وسیله تجزیه ساختار هیدرات گاز

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 10: دستگاه‌های تولید هیدرات گاز طبیعی ]18[
شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 11: دستگاه‌های تجزیه هیدرات ]18[ذخیره کردن گاز در هیدرات فضای کمی اشغال می‌کند به همین دلیل رقیبی برای روش‌های مایع سازی و متراکم کردن می‌باشد. چون این گازهای خطرناک داخل شبکه یخ به دام افتاده اند از لحاظ ایمنی نیز قابل اطمینان برای حمل و نقل می‌باشند. فشار ذخیره سازی در این روش پایین تر از سایر روش‌ها بوده، زیرا هیدرات‌ها در فشار اتمسفریک و دمای پایین تر از انجماد آب (تا 15- درجه سانتیگراد) تحت شرایط آدیاباتیک پایدار می‌باشند و نهایتا سرعت آزاد شدن گاز نیز کند می‌باشد.
کریستال هیدرات در محیط زیستتجزیه کریستال‌های هیدرات موجود در لایه‌های زمین می‌تواند اثرات منفی بر روی محیط زیست داشته باشد. برای مثال، در مخازن نفتی دریایی به علت تشکیل کریستال هیدرات در اعماق زمین و جدا شدن هیدروکربن‌های سبک برای شرکت در ساختمان هیدرات، نفت سنگین دیگر به سرعت استخراج نمی‌شود و به تدریج در لایه‌های مخزن به سمت بالا می‌آید و باعث آلودگی محوطه وسیعی از کف دریا شده و خسارات جدی به محیط زیست دریا وارد می‌کند. از سوی دیگر، به علت افزایش درجه حرارت کره زمین، هیدرات‌های موجود در لایه‌های زمین به تدریج تجزیه شده و متان حبس شده را آزاد می‌کند. اثر متان در تشدید اثر گلخانه‌ای به تنهایی 21 برابر دی اکسید کربن است و این روند با تجزیه مداوم هیدرات تشدید می‌شود. همچنین، اضافه کردن بازدارنده‌ها به گاز طبیعی و عدم بازیابی مؤثر آنها در نقاط مصرف از منابع مهم آلودگی محیط زیست به شمار می‌رود.
راه‌های جلوگیری از تشکیل هیدراتفلسفه پیشگیری از هیدرات‌ها، سه سطح ایمنی است که بر اساس اولویت لیست شده اند :
پرهیز از شرایط کاری که منجر به تشکیل هیدرات‌ها می‌شوند
جلوگیری از تشکیل هیدرات‌ها با اضافه کردن مواد شیمیایی که آستانه تشکیل هیدرات را کاهش می‌دهند(بازدارنده‌ها).
تغییر موقت شرایط کار جهت جلوگیری از تشکیل هیدرات
برای بررسی شرایط عملیاتی تشکیل هیدرات (دما و فشار لازم)، روش‌های متفاوتی وجود دارد. یکی از این روش‌ها، رسم منحنی تغییرات لگاریتم فشار بر حسب دمای گاز است. در این حالت، منحنی یاد شده به صورت یک خط راست خواهد بود که به آسانی قابل تجزیه و تحلیل می‌باشد. نمودار REF _Ref397265397 h شکل ‏112 زیر رفتار فضای عمومی سیستم هیدرات، آب و گاز طبیعی را نشان میدهد. در این نمودار، منحنی 1 و 2 و3 شرایط تشکیل هیدرات را زمانیکه آب به صورت مایع در سیستم وجود داشته باشد، ارایه میدهد. خط عمودی در نقطه 2 نشان دهنده نقطه انجماد آب است. زیر منحنی 1-2، آب وجود نداشته و بالای آن‌، فاز جامد یخ و هیدرات وجود دارد. نقطه 3 را نقطه چهارگانه می‌نامند؛ زیرا در این دما و فشار، چهار فاز(آب مایع، بخار، هیدرات و هیدروکربن مایع) می توانند وجود داشته باشند. نقطه 3، نقطه شبنم گاز در دما و فشار معین است که بالاتر از آن‌، دو فاز آب مایع و هیدروکربن وجود دارند. بعد از نقطه 3، منحنی تشکیل هیدرات به خط عمودی تبدیل می‌شود. در معمولا حقیقت، این نقطه بالاترین درجه حرارت تشکیل هیدرات است که از تقاطع منحنی تشکیل هیدرات و منحنی نقاط شبنم به دست می‌آید. به عبارت دیگر، منحنی تشکیل هیدرات بین دو نقطه 2 و 3 که اولین نقطه، نقطه یخ زدن آب و دیگری نقطه چهارگانه است، قرار میگیرد. رسم این منحنی برای هر سیستم گازی با ترکیب درصد معین، میسر بوده و بدین ترتیب می‌توان شرایط عملیاتی تشکیل هیدرات را برای آن‌ سیستم، مشخص نمود. REF _Ref397265397 h شکل ‏112 منحنی تشکیل و تجزیه هیدرات‌ها را نشان میدهد.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 12 : منحنی وابستگی هیدرات به دما و فشاراثر افزودنی‌ها بر تشکیل هیدراتراه دیگر جلوگیری از تشکیل هیدرات گازی استفاده از مواد شیمیایی(مواد ممانعت کننده تشکیل هیدرات گازی) مانند نمک‌ها، الکل‌ها، گلایکول‌ها و سایرالکترولیت‌ها به جریان گاز در ورودی خط لوله می‌باشد. (بهترین و اقتصادی‌ترین روش). الکترولیت‌ها، بازدارنده‌های بسیار مؤثری هستند. نمک‌ها در محلول با جذب دوقطبی‌های حاصل از مولکول‌های آب عمل می کنند. این مولکول‌ها، بیشتر تمایل دارند که با یون‌ها ترکیب شوند تا این که اطراف مولکول‌های گاز موجود در محلول، شبکه تشکیل دهند. به این ترتیب در یک فشار مشخص، تشکیل شبکه‌های هیدرات از مولکولهای آب به دمای کمتری نیاز دارد. به همین دلیل، حلالیت گاز در آب نیز کاهش می‌یابد. بنا بر تحقیقات ماکوگان (1981)، نمک‌هایی که بیشترین اثر بازدارندگی را دارند، مربوط به کاتیون‌های ذیل می باشند:
Al3+>Mg2+>Ca2+>Na+>K+
اغلب، کلرید کلسیم به دلیل کارایی و قیمت پایین انتخاب می شود. سولفات‌ها به ویژه MgSO4، Na2SO4 و Al2(SO4)3 هم مورد استفاده قرار می‌گیرند. فسفات‌ها و به ویژه فسفات سدیم نیز مناسب هستند. در نظر گرفتن میزان نمک‌های محلول در حضور آب سازند، برای برآورد خطرات تشکیل هیدرات لازم است. با این وجود، با توجه به خطر خوردگی و ایجاد رسوب، در عمل استفاده از نمک‌ها به عنوان بازدارنده بسیار کم است.
طبق تحقیقات انجام شده توسط اندرسون و پرازنیتز (1986)، استفاده از الکل‌ها (مانند متانول که دمای تشکیل هیدرات را پایین آورده و در هر دمایی میتواند مؤثر باشد)در مقایسه با نمک‌ها و گلایکول‌ها (منواتیلن‌گلایکول) ‌به دلایل زیر‌ و دی‌اتیلن‌گلایکول بهترین نوع ممانعت برای تشکیل هیدرات گازی است.
غلظت نمک تزریقی در جریان ورودی به خط لوله، به دلیل بالابودن دمای جریان در آن‌ نقاط افزایش یافته به طوری که پس از رسیدن به نقاط سرد خط لوله، در آنجا رسوب می‌نمایند. به عبارت دیگر این‌گونه ممانعت کننده‌ها در جایی که احتمال تشکیل هیدرات افزایش می‌یابد با غلظت کمتری وارد عمل می‌شوند. همچنین نمک‌ها نسبت به سایر ممانعت کننده‌ها دارای خاصیت خورندگی بیشتری هستند.
الکل‌ها نسبت به گلایکول‌ها دارای میزان فراریت بیشتری بوده به طوری که در نقاط بالادست جریان، به راحتی تبخیرشده و همراه جریان گاز به نقاط سرد خط لوله منتقل می‌شوند. به عبارت دیگر الکل تزریقی در ورودی خط لوله انتقال جریان، در جایی حضور می‌یابد که احتمال تشکیل هیدرات‌گازی در آن‌ نقاط، بیشتر باشد. در حالی که گلایکول‌ها به راحتی تبخیر شده بنابراین غلظت کم آنها در نقاط سرد خط لوله، مانع از تشکیل هیدرات نمی‌شود.
متانول به دلیل کارایی، قیمت پایین و در دسترس بودن، بیشتر به طور موقتی برای تخریب کلوخه و به شکل دائم برای جلوگیری از تشکیل هیدرات به کار میرود. متانول، ویسکوز نبوده و خورنده نیز نمی‌باشد. با وجود این، فشار بخار بالای آن‌، سبب اتلاف اساسی آن‌ در فاز گاز می‌شود. علاوه بر این، بازیافت متانول گران است؛ بنابراین توسط تقطیر نسبتاً اغلب به طور دائمی بدون بازیافت مصرف می‌شود. گلایکول‌ها این مزیت را دارند که به راحتی در فاز مایع قابل بازیافت بوده و توسط تقطیر، بازیابی شده و بازگردانده می‌شوند؛ ولی این عیب را دارند که دارای ویسکوزیته نسبتاً بالایی هستند.
بین گلایکول‌ها، اتیلن گلایکول یکی از بهترین بازدارنده‌های هیدرات است که به علت وزن مولکولی پایین‌تر، در یک غلظت‌خاص، از دی‌اتیلن‌گلایکول و تری‌اتیلن‌گلایکول مؤثرتر است. با وجود این، استفاده از دی‌اتیلن‌گلایکول امکانپذیر بوده و برای کاهش اتلاف حلال در گاز، قابل توجیه است. اگر قرار باشد که گاز پس از عبور از لوله انتقال دهیدراته شود، دی‌اتیلن‌گلایکول می تواند طی مراحل انتقال دهیدراته کردن، به عنوان تنها حلال مورد استفاده واقع شود.
تری‌اتیلن‌گلایکول و تترا اتیلن‌گلایکول در هیدروکربن‌های مایع بسیار محلول بوده و برای استفاده عمومی دارای ویسکوزیته بالایی هستند و به عنوان ممانعت کننده تشکیل هیدرات به کار برده نمی‌شوند. نمک‌ها، دارای خاصیت خورندگی بیشتر و احتمال ایجاد رسوب در نقاط سرد خط لوله می باشند(که در این نقاط، احتمال تشکیل هیدرات گازی بیشتر است). همچنان که گفته شد، الکل‌ها به دلیل خاصیت فراریت بالا در نقاط بالادست جریان به راحتی تبخیر شده و همراه جریان گاز به نقاط سرد خط لوله منتقل می‌شوند؛ بنابراین غلظت کم آنها در نقاط سرد خط لوله از تشکیل هیدرات جلوگیری می‌کند. بازدارنده‌ها، برای خطوط لوله طولانی (بیش از 2 یا 3 کیلومتر) مورد استفاده قرار می‌گیرند.
آمونیاک، بازدارنده بسیار مؤثری است امّا خورنده و سمی بوده و کربنات‌های حاصل از واکنش آن‌ با دی‌اکسیدکربن در حضور آب، می توانند رسوب جامد تشکیل دهند. همچنین فشار بخار آمونیاک زیاد بوده و بازیافت آن‌ مشکل است. منو‌اتانول‌آمین نیز به عنوان یک بازدارنده توصیه می شود(علی اف1981). این ماده، در غلظتی خاص، از دی اتیلن گلایکول مؤثرتر بوده و در صورتی که بتوان از آن‌ برای شیرین سازی گاز هم استفاده کرد، جذابیت بیشتری می‌یابد.
عوامل بازدارنده‌ تشکیل هیدرات‌هادر خطوط لوله انتقال گاز باید از تشکیل هیدرات جلوگیری شود تا سبب مسدود شدن لوله نگردد. برای این کار باید یا در دمای بالا و فشار پایین کار کرد و اگر مقدور نباشد باید از بازدارنده‌های شیمیایی نظیر متانول یا LDHI استفاده کرد و به مسیر تزریق کرد. افزودنی‌ها در یک تقسیم بندی کلی به چهار دسته تقسیم می‌شوند]22-26[:
- بازدارنده‌های ترمودینامیکی
- بازدارنده‌های سینتیکی
- بازدارنده‌های ضدتجمی یا ضد‌کلوخه‌ای
- مواد افزودنی که هیدرات را در یکی از ساختار‌های I، II یا H پایدار می‌کنند.

شکل STYLEREF 1 s ‏1 SEQ شکل * ARABIC s 1 13 : انواع افزودنی‌های هیدراتبازدارنده‌های ترمودینامیکیبازدارنده‌های ترمودینامیکی به صورت ترمودینامیکی بر تشکیل هیدرات‌ها تأثیر می‌گذارند. آنها با افزایش فشار تشکیل هیدرات و کاهش دمای تشکیل هیدرات باعث می‌شوند هیدرات در شرایط سخت‌تری تشکیل شود. ساز و کار آنها به این گونه است که با افزودن این مواد پیوند هیدروژنی مولکول‌های آب ضعیف می‌شود و سبب می‌شود هیدرات در دما و فشاری که قبلاً تشکیل می‌شد ناپایدار شود و برای تشکیل هیدراتی پایدار نیاز به فشار بالاتر و دمای پایین‌تری می‌باشد. از جمله بازدارنده‌های ترمودینامیکی می‌توان به انواع الکل‌ها و نمک‌ها اشاره کرد.
بازدارنده‌های ترمودینامیکی با اضافه شدن به سیال باعث تغییر پتانسیل شیمیایی و جابه‌جایی تعادل ترمودینامیکی تشکیل هیدرات می‌شود به گونه‌ای که منحنی تعادل هیدرات را به سمت دمای پایین‌تر و فشار بالاتر سوق می‌دهد و تا زمانی که سیستم از حالت پایداری دور باشد هیدرات تشکیل نخواهد شد. ساختمان مولکولی این مواد سبب می‌شود که پیوند قوی هیدروژنی این مواد با آب از تمایل مولکول‌های آب به تشکیل هیدرات بکاهد. از مهمترین ترکیبات این گروه می‌توان متانول، مونو‌اتیلین‌گلیکول را نام برد.
برای مؤثر بودن گلایکول‌ها باید به صورت قطرات بسیار ریزی به درون گاز مرطوب پاشیده شوند. اگر مخلوط یک دستی از گلایکول مایع پاشیده شده و در گاز طبیعی به دست نیامد، گلایکول نخواهد توانست از تشکیل هیدرات گازی جلوگیری کند. این موضوع در تزریق متانول به آن‌ اندازه مهم نمی‌باشد زیرا تمام یا کسر قابل توجهی از متانول به جریان گازی تبخیر شده و یک اثر حفاظتی را اعمال خواهد کرد. در جاهایی که تزریق پیوسته است و با حجم زیاد گاز مواجه هستیم، برای جلوگیری از تشکیل هیدرات، گلایکول ارزانتر می‌باشد. برای سرمایه گذاری‌های کمتر (بدون بازیافت) برای تاسیسات موقت و با حجم گاز اندک، به صورت غیر پیوسته، متانول بیشتر مصرف می‌گردد.
تزریق متانول کاملاً با تزریق گلایکول متفاوت می‌باشد زیرا :
اولاً متانول اغلب قابل بازیافت نمی‌باشد لذا تاسیسات بازیافت برای آن‌ لازم نیست. ثانیاً نباید متانول اتمیزه گردد. صرفا یک پمپ با دبی کم و قابل اندازه گیری به این منظور کفایت می‌کند. قدرت محافظت و سهولت تزریق، از امتیازات تزریق متانول می‌باشد. ماکوگن (1981) شرایط انتخاب یک بازدارنده را به صورت زیر ارائه کرده است:
مواد بازدارنده باید:

–269

1-7- ضرورت انجام تحقیق32
1-8- جنبه جدید بودن و نوآوری تحقیق32
1-9- واژه نامه ها و اصطلاحات فنی32
فصل دوم مروری بر ادبیات تحقیق و پیشینه تحقیق34
بررسی متون:35
فصل سوم :مواد وروشها39
3-1-مواد و تجهیزات40
3-1-1-دستگاه ها ووسایل مورد نیاز:40
3-1-2-مواد مصرفی مورد نیاز: 41
3-1-3- محیطهای کشت مورد استفاده: 41
3-2-ترکیبات و محلولهای مورد نیاز و فرمول ساخت آنها42
3-2-1-تهیه محلول(%25) SDS:42
3-2-2- محلول EDTA(5/0 مولار):42
3-2-3-تامپون لیز کننده سلول42
3-2-4- تامپون TE حاوی RNase42
3-2-5- بافر(5X)TBE:42
3-2-7- محلول فنل-کلروفروم-ایزو آمیلیک الکل(PCI):43
3-3- روش انجام طرح:44
3-3-1- نوع مطالعه:44
3-3-2-جامعه مورد مطالعه:44
3-3-3- جمع آوری اطلاعات:44
3-3-4- انجام امور باکتریولوژیک:44
3-4- ژنوتایپینگ ایزوله های سالمونلا با استفاده از روش MLVA46
3-4-1- انجام آزمایش PCR جهت تکثیر لوکوس های VNTR46
3-4-2- الکتروفورز محصولات VNTR50
3-4-3- محاسبه ی اندازه و تعداد تکرار های VNTR52
3-4-4-تجزیه و تحلیل داده های VNTR 52
فصل چهارم یافته ها54
4-1- نمتایج حاصل از جمع آوری نمونه ها 55
4-2- نتایچ حاصل از استخراج ژنوم باکتریایی57
4-3- نتایج حاصل از واکنش PCR جهت تکثیر لوکوس های VNTR58
4-4- میزان تنوع الل های VNTR74
4-5- آنالیز داده ها با استفاده از الگوریتم Minimum Spanning Tree 74
4-6- آنالیز داده های VNTR با استفاده از روش NJ75
فصل پنجم :بحث ونتیجه گیری 77
5-1- بحث78
5-2- نتیجه گیری و جمع بندی91
منابع:92
چکیده انگلسی 96

فهرست جداول و نمودارها
عنوان صفحه
جدول1-1، ویژگی های بیو شیمیایی سالمونلا8
جدول 1-2، طبقه بندی نوین سالمونلا و میزان سروتایپ ها در زیر گونه ها9
جدول 3-1، نام لوکوس ها و پرایمر های اختصاصی47
جدول 3-2،مقادیرموردنیازجهت انجام واکنش هایPCRبرای تکثیرلوکوسهایVNTR48
جدول 3-3، برنامه ریزی دستگاه ترموسایکلر جهت تکثیر لوکوس های SENTR2،
SENTR3 و SE-749
جدول3-4،برنامه ریزی دستگاهترموسایکلرجهت تکثیرلوکوسهایENTR6وSE-849
جدول 3-5، برنامه ریزی دستگاه ترموسایکلر برای تکثیر لوکوس SE-4 49
جدول 3-6، برنامه ریزی دستگاه ترموسایکلر جهت تکثیر لوکوس SE-1050
جدول 3-7، برنامه ریزی دستگاه ترموسایکلر جهت تکثیر لوکوس SE-650
جدول 4-1، در فایل EXCEL73
جدول 4-2، ضریب تنوع هانتر- گاتسون برای هر لوکوس محاسبه شده 74
نمودار 4-1، میزان فراوانی هر یک از سرو تایپ های سالمونلا در پژوهش حاضر56
نمودار 4-2، میزان شیوع هر یک از سرو تایپ های سالمونلا در پژوهش حاضر56
فهرست اشکال
عنوان صفحه
شکل 1-1 تصویر دکتر سالمون دامپزشک آمریکایی.5
شکل1-2 باکتری سالمونلا 6
شکل 1-4مای شماتیک از VNTR ها 23
شکل 1-5 پروفایل اللی 24
شکل 1-6 آنالیز MLVA بوسیله MST 25
شکل 1-7، مزایای MLVA 26
شکل 1-8، مراحل انجام MLVA 27
شکل 4-1، میزان خلوص DNA نمونه ی شماره ی 5357
شکل 4-2، میزان خلوص DNA نمونه ی شماره ی 2457
شکل 4-3، لوکوس ENTR6 58
شکل 4-4، لوکوس SE4 59
شکل 4-5، لوکوس SE4 60
شکل 4-6، لوکوسSE6 61
شکل 4-7، لوکوس SE6 62
شکل 4-8، لوکوسSE7 63
شکل 4-9، لوکوسSE7 64
شکل 4-10، لوکوسSE8 65
شکل 4-11، لوکوسSE8 66
شکل 4-12، لوکوسSE10 67
شکل 4-13، لوکوسSE10 68
شکل 4-14، لوکوسSENTR2 69
شکل 4-15، لوکوسSENTR2 70
شکل 4-16، لوکوسSENTR3 71
شکل 4-17، لوکوسSENTR3 72
شکل 4-18، آنالیز داده های VNTR با استفاده از الگوریتم MST. 75
شکل 4-22، درختچه ی NJ 76
چکیده فارسی :
ژنوتایپینگ سویه های سالمونلا انتریکا سرووار انتریتیدیس جدا شده از نمونه های بالینی در تهران بر پایه روش آنالیز چند لوکوسی متغیر تکراری( MLVA)
مقدمه:سالمونلاانتریکا سبب ایجاد سالمونلوزیس در انسان می شود. سالمونلا انتریکا سرووار انتریتیدیس، دومین سروتایپی می باشد که در سطح دنیا سبب ایجاد سالمونلوزیس می شود. تکنیک MLVA، یکی از روش های نوین ژنوتایپینگ جهت تمایز ایزوله های باکتریایی در همه گیری ها و یا تعیین قرابت فیلوژنتیکی این ایزوله ها می باشد. هدف از این پژوهش، ژنوتایپینگ سویه های سالمونلا انتریتیدیس جدا شده از نمونه های بالینی در تهران بر پایه ی روش MLVA.
مواد و روش ها: در این پژوهش، 51 ایزوله ی سالمونلا انتریکا سرووار انتریتیدیس از نمونه های بالینی در طی سال های 1387 تا 1389 در تهران جدا شدند. ایزوله های سالمونلا انتریتیدیس با استفاده از تکنیک های بیوشیمیایی و سرولوژیکی تایید شدند. جهت انجام تکنیک MLVA، از هشت لوکوس VNTR استفاده شد.
نتایج: 10 ژنوتایپ متفاوت MLVA، در این پزوهش شناسایی شد. با استفاده از روش MST، 51 ایزوله ی سالمونلا انتریتیدیس در 2 کلونال کمپلکس قرار گرفتند. همچنین با استفاده از تکنیک NJ، این ایزوله ها در دو کلاستر جای گرفتند.
بحث و نتیجه گیری: نتایج حاصل از این پژوهش نشان داد که تکنیک MLVA، یک روش قدرتمند و آسان می باشد و می توان از این تکنیک در اپیدمی ها ی ناشی از سالمونلا انتریتیدیس استفاده نمود.
کلمات کلیدی: سالمونلا، MLVA، VNTR
68580077470

کلیات تحقیق
بیان مسئله
سالمونلا باسیل گرم منفی،واجدتاژک پری تریش وجزءخانوادهیانتروباکتریاسهمیباشد.گروه سالمونلا شامل یک جنس منفرد به نام سالمونلا است. این جنس شامل ارگانیسم هایی است که قبلا تحت عنوان سالمونلا و آریزونا شناخته می شدند. وقتی سالمونلا ها از طریق مسیر خوراکی به انسان و حیوانات منتقل شوند، بیماریزا هستند. این باکتری از طریق حیوان و فروارده های حیوانی به انسان سرایت می کنند و موجب تب روده ای، مسمومیت های غذایی و گاستروانتریت در انسان می شوند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(7).
طبقه بندی سالمونلا در طی سالیان متمادی دچار تغییرات زیادی شده است. سالمونلا گروه بزرگی از باکتری های روده ای شامل تقریبا 2200 سروتایپ می باشد. بر مبنای مدل اخیر طبقه بندی CDC تنها یک گروه منفرد از سالمونلا وجود دارد که به هفت زیر گروه(1،2،،a3،b3،4،5،6) طبقه بندی می شوند. طبقه بندی اخیر بر مبنای شباهت ژنتیکی ایزوله های سالمونلا) 16S r RNA) است. سیستم های طبقه بندی قدیمی تر شامل 1) طبقه بندی کافمن_وایت: که هر سروتایپ را به صورت یک گونه منفرد سالمونلا شناسایی می کند. 2) سیستم ادواردز_اوینگ: که سالمونلاها را به سه گونه( سالمونلا کلراسوئیس، سالمونلا تایفی، سالمونلا انتریتیدیس) و صدها سروتایپ تقسیم بندی می کند. 3) مدل هیبریداسیون DNA: که سالمونلا ها را به یک گونه به نام سالمونلا انتریتیدیس و زیر گونه های اریزونه، بونگوری، دی اریزونه، انتریکا، سالاما،هاتنا، تقسیم می نمایند که طبقه بندی CDC با کمی تغییر از همین طبقه بندی استفاده می کند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite><Cite><Author>Murray</Author><Year>2013</Year><RecNum>2</RecNum><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">2</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Murray, P.R.</author><author>Rosenthal, K.S.</author><author>Pfaller, M.A.</author></authors></contributors><titles><title>Medical Microbiology</title></titles><dates><year>2013</year></dates><publisher>Mosby/Elsevier</publisher><isbn>9780323054706</isbn><urls><related-urls><url>https://books.google.com/books?id=O92zd8fV-RcC</url></related-urls></urls></record></Cite><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(4-6).
روش های مختلفی برای جداسازی باکتری سالمونلا از نمونه های محیطی وجود دارند که شامل: روش های کشت سنتی و بیوشیمیایی، سرولوژی و مولکولی می باشد. در کشت سنتی از محیط های پیش انتخابی و اختصاصی نظیر S.S Agarو XLD Agar استفاده می شود. روش های سرولوژی براساس واکنش انتی بادی با انتی ژن تولیدی توسط باکتری می باشد.
استفاده از روش های سرولوژیک بدلیل تنوع گسترده خصوصیات آنتی ژنتیکی باکتریایی و نیاز به طیف گسترده و وسیعی از آنتی بادی ها و همچنین هزینه گزاف تولید و مصرف آن، به مرور جایگاه خود را از دست داده اند. تا کنون از روش های مولکولی متنوعی جهت ژنوتایپینگ گونه های مختلف سالمونلا استفاده شده است. به کارگیری این روش ها، اهمیت ویژه ای در پژوهش های اپیدمیولوژیکی دارد . با شروع عصر مولکولی دانشمندان رویکرد خود را از فنوتیپ به ژنوتیپ تغییر داده اند.
روش های مختلفی مثل Rep- PCR، RAPD- PCR، Ribotyping، PFGE، MLST و MLVA جهت ژنتوتایپینگ سویه های سالمونلا تا به حال مورد استفاده قرار گرفته است بطوریکه هریک ازاینروش ها معایب و مزایایی دارند، که در این میان روش MLVA از روش هایی مولکولی جدید و نوینی جهت ژنوتایپینگ باکتریایی مطرح شده است و بر این اساس توسعه یافتهُ است ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1605</RecNum><record><rec-number>1605</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1605</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><periodical><full-title>Euro Surveill</full-title></periodical><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7).
این روش با مزایایی که نسبت به تکنیک PFGE دارد روز به روز به اهمیت و محبوبیت آن افزوده می شود. بطوریکه در آینده جایگاه ویژه ای در بین اپیدمیولوژیست ها خواهد داشت. در تکنیک MLVA بطور خاص، توالی های تکراری پشت سر هم مورد بررسی و ارزیابی قرار می گیرند و از نظر تعداد تکرار های VNTR با یکدیگر مقایسه می شوند. مجموعه ای از این تکرار ها بصورت دسته ای از اعداد که در اصطلاح پروفایل اللی گفته می شود. برای هر سویه باکتری نمایش داده می شود و به عنوان یک کد اطلاعاتی برای آن سویه در نظر گرفته می شود. ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1605</RecNum><record><rec-number>1605</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1605</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><periodical><full-title>Euro Surveill</full-title></periodical><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7)
MLVA دارای مزایای زیادی نسبت به PFGE می باشد. در MLVA تنها نیاز به دستگاه PCR است و این روش یک تکنیک PCR-bassed میباشد در حالیکه در PFGE نیاز به امکانات و تجهیزات مخصوص و پر هزینه است. در MLVA تنها داشتن DNA باکتری کافیست در حالیکه در PFGE نیاز به باکتری زنده است.هزینه MLVA به مراتب از PFGE کمتر است و بسیار سریع تر از آن انجام پذیر می باشد. و نکته بسیار مهم اینست که، داده های حاصل از MLVA از آنجایی که بصورت مجموعه ای از ارقام ذخیره می شود را می توان به راحتی در بانک های اطلاعاتی ذخیره نمود و با نتایج سایر پژوهشگران مقایسه نمود هر چند چنین چیزی در PFGE دیده نمی شود گرچه تلاش های مانند شبکه Plus Net در جهت حل این موضوع ایجاد شده است.به این ترتیب MLVA بعنوان یک تکنیک جایگزین PFGE برای کشور های در حال توسعه مطرح می باشد ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1605</RecNum><record><rec-number>1605</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1605</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><periodical><full-title>Euro Surveill</full-title></periodical><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7).
هر گونه باکتریایی، توالی های VNTR مخصوص به خود را دارد که می توان با طراحی پرایمر برای آنها، الل مورد نظر را تکثیر داد و از نظر تعداد تکرار مورد بررسی قرار داد. در طرح حاضر سعی شده است با انتخاب توالی هایVNTR مناسب، یک روش جدید، کم هزینه، سریع برای ژنوتایپینگ سویه های سالمونلا انتریکا سرووار انتریتیدیس بکار گرفته شود تا در آینده بتواند جایگزین روش های گرانقیمتی مانند PFGE شود و بتوان از آن در آزمایشگاه های تحقیقاتی که تنها تجهیز به دستگاه PCR باشند، استفاده نمود و بتواند به سرعت هر نوع اپیدمی را شناسایی کند و پژوهشگران بتوانند نتایج خود را با یکدیگر مقایسه نمایند(7).
1-2- کلیات
1-2-1، تاریخچه
دو دانشمند فرانسوی با نام های کومل و لوئی در اوایل قرن نوزدهم میلادی علائم کلینیکی تب تیفوئید را بررسی کردند. در سال 1823 میلادی برتونئو به علت تورم غدد لنفاوی روده آن بیماری را به نام روده جوشان نام گذاری نمود. کرهارد در اپیدمی تیفوئید در فیلادلفیا ایالات متحده آمریکا در سال 1837 میلادی، تیفوس و حصبه را از متمایز کرد.در سال 1839 میلادی شونلین تیفوس را به نام تیفوس اگژنتماتیکوس و حصبه را تیفوس احشایی نام گذاری نمود. در میان سال های 1849-1851 در انگلستان، جنر با استفاده از علائم بیماری های تب دانه دار، حصبه را تشخیص داد و عامل آن را سالمونلا تایفی نامید. اسم سالمونلا بر گرفته شده از دامپزشک آمریکایی به نام دکتر دانیال المر سالمون می باشد که به پاس تحقیقات و زحمات گسترده این دانشمند نام گذاری شده است.هوپ در سال 1886 از ادرار، فیفیر در سال 1885 از مدفوع، در سال 1888 ویلچور از خون سالمونلا را جدا نمودند.در سال 1896 سیکارد و ویدال آنتی بادی علیه سالمونلا را از خون جداسازی کردند (2و3) .

شکل 1-1: تصویر دکتر سالمون دامپزشک آمریکایی.
1-2-2، باکتریولوژی سالمونلا
سالمونلا از اجزای خانواده انتروباکتریاسه می باشد که واجد تاژک پری تریش می باشد ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4) این باکتری از طریق حیوانات و محصولات حیوانی آلوده به این باکتری به انسان منتقل شده و سبب بیماری در انسان می شود ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4). سالیانه تخمین زده می شود 1.4 میلیون نفر در ایلات متحده آمریکا توسط سالمونلا بیمار می شوندPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NZWFkPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48UmVj
TnVtPjcwNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzA2PC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idzBkZmV4MDA0MHJ2enpld2VweXBkc3J1enA5
dnN0c3gwMnR0Ij43MDY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h
bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1l
YWQsIFAuIFMuPC9hdXRob3I+PGF1dGhvcj5TbHV0c2tlciwgTC48L2F1dGhvcj48YXV0aG9yPkRp
ZXR6LCBWLjwvYXV0aG9yPjxhdXRob3I+TWNDYWlnLCBMLiBGLjwvYXV0aG9yPjxhdXRob3I+QnJl
c2VlLCBKLiBTLjwvYXV0aG9yPjxhdXRob3I+U2hhcGlybywgQy48L2F1dGhvcj48YXV0aG9yPkdy
aWZmaW4sIFAuIE0uPC9hdXRob3I+PGF1dGhvcj5UYXV4ZSwgUi4gVi48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EaXZpc2lvbiBvZiBCYWN0ZXJpYWwgYW5k
IE15Y290aWMgRGlzZWFzZXMsIENlbnRlcnMgZm9yIERpc2Vhc2UgQ29udHJvbCBhbmQgUHJldmVu
dGlvbiwgQXRsYW50YSwgR2VvcmdpYSAzMDMzMywgVVNBLiBwZm0wQGNkYy5nb3Y8L2F1dGgtYWRk
cmVzcz48dGl0bGVzPjx0aXRsZT5Gb29kLXJlbGF0ZWQgaWxsbmVzcyBhbmQgZGVhdGggaW4gdGhl
IFVuaXRlZCBTdGF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW1lcmcgSW5mZWN0IERpczwv
c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVtZXJnIElu
ZmVjdCBEaXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42MDctMjU8L3BhZ2VzPjx2
b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxlZGl0aW9uPjE5OTkvMTAvMDg8L2Vk
aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFjdXRlIERpc2Vhc2U8L2tleXdvcmQ+PGtleXdvcmQ+
QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5Gb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD4qRm9vZGJvcm5lIERpc2Vhc2VzL2NsYXNzaWZpY2F0aW9uL2VwaWRlbWlvbG9neS9tb3J0
YWxpdHkvdmlyb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+R2FzdHJvZW50ZXJpdGlzLyplcGlkZW1p
b2xvZ3kvKm1pY3JvYmlvbG9neS9tb3J0YWxpdHk8L2tleXdvcmQ+PGtleXdvcmQ+SG9zcGl0YWxp
emF0aW9uLypzdGF0aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3Jk
Pkh1bWFuczwva2V5d29yZD48a2V5d29yZD5MaXN0ZXJpYS9pc29sYXRpb24gJmFtcDsgcHVyaWZp
Y2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+UG9wdWxhdGlvbiBTdXJ2ZWls
bGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYS9pc29sYXRpb24gJmFt
cDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VG94b3BsYXNt
YS9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtl
eXdvcmQ+VW5pdGVkIFN0YXRlcy9lcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48cHViLWRhdGVzPjxkYXRlPlNlcC1PY3Q8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xMDgwLTYwNDAgKFByaW50KSYjeEQ7MTA4MC02MDQwIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMDUxMTUxNzwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy
eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTA1MTE1MTc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjYy
NzcxNDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMzIwMS9laWQwNTA1Ljk5
MDUwMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NZWFkPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48UmVj
TnVtPjcwNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzA2PC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idzBkZmV4MDA0MHJ2enpld2VweXBkc3J1enA5
dnN0c3gwMnR0Ij43MDY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h
bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1l
YWQsIFAuIFMuPC9hdXRob3I+PGF1dGhvcj5TbHV0c2tlciwgTC48L2F1dGhvcj48YXV0aG9yPkRp
ZXR6LCBWLjwvYXV0aG9yPjxhdXRob3I+TWNDYWlnLCBMLiBGLjwvYXV0aG9yPjxhdXRob3I+QnJl
c2VlLCBKLiBTLjwvYXV0aG9yPjxhdXRob3I+U2hhcGlybywgQy48L2F1dGhvcj48YXV0aG9yPkdy
aWZmaW4sIFAuIE0uPC9hdXRob3I+PGF1dGhvcj5UYXV4ZSwgUi4gVi48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EaXZpc2lvbiBvZiBCYWN0ZXJpYWwgYW5k
IE15Y290aWMgRGlzZWFzZXMsIENlbnRlcnMgZm9yIERpc2Vhc2UgQ29udHJvbCBhbmQgUHJldmVu
dGlvbiwgQXRsYW50YSwgR2VvcmdpYSAzMDMzMywgVVNBLiBwZm0wQGNkYy5nb3Y8L2F1dGgtYWRk
cmVzcz48dGl0bGVzPjx0aXRsZT5Gb29kLXJlbGF0ZWQgaWxsbmVzcyBhbmQgZGVhdGggaW4gdGhl
IFVuaXRlZCBTdGF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW1lcmcgSW5mZWN0IERpczwv
c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVtZXJnIElu
ZmVjdCBEaXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42MDctMjU8L3BhZ2VzPjx2
b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxlZGl0aW9uPjE5OTkvMTAvMDg8L2Vk
aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFjdXRlIERpc2Vhc2U8L2tleXdvcmQ+PGtleXdvcmQ+
QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5Gb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD4qRm9vZGJvcm5lIERpc2Vhc2VzL2NsYXNzaWZpY2F0aW9uL2VwaWRlbWlvbG9neS9tb3J0
YWxpdHkvdmlyb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+R2FzdHJvZW50ZXJpdGlzLyplcGlkZW1p
b2xvZ3kvKm1pY3JvYmlvbG9neS9tb3J0YWxpdHk8L2tleXdvcmQ+PGtleXdvcmQ+SG9zcGl0YWxp
emF0aW9uLypzdGF0aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3Jk
Pkh1bWFuczwva2V5d29yZD48a2V5d29yZD5MaXN0ZXJpYS9pc29sYXRpb24gJmFtcDsgcHVyaWZp
Y2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+UG9wdWxhdGlvbiBTdXJ2ZWls
bGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYS9pc29sYXRpb24gJmFt
cDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VG94b3BsYXNt
YS9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtl
eXdvcmQ+VW5pdGVkIFN0YXRlcy9lcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48cHViLWRhdGVzPjxkYXRlPlNlcC1PY3Q8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xMDgwLTYwNDAgKFByaW50KSYjeEQ7MTA4MC02MDQwIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMDUxMTUxNzwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy


eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTA1MTE1MTc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjYy
NzcxNDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMzIwMS9laWQwNTA1Ljk5
MDUwMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE.DATA (8).
بیشتر سروتایپ های این باکتری برای انسان و اکثر حیوانات بیماریزا هستند. سالمونلا در دستگاه گوارش مهره داران یافت شده و بیماری های متعدد با علائم متفاوت را ایجاد می نماید ADDIN EN.CITE <EndNote><Cite><Author>Baumler</Author><Year>1998</Year><RecNum>1613</RecNum><record><rec-number>1613</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1613</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Baumler, A. J.</author><author>Tsolis, R. M.</author><author>Ficht, T. A.</author><author>Adams, L. G.</author></authors></contributors><auth-address>Department of Medical Microbiology and Immunology, College of Medicine, Texas A&amp;M University, College Station, Texas 77843-4467, USA.abaumler@tamu.edu</auth-address><titles><title>Evolution of host adaptation in Salmonella enterica</title><secondary-title>Infect Immun</secondary-title></titles><periodical><full-title>Infect Immun</full-title></periodical><pages>4579-87</pages><volume>66</volume><number>10</number><edition>1998/09/24</edition><keywords><keyword>*Adaptation, Biological</keyword><keyword>Animals</keyword><keyword>*Biological Evolution</keyword><keyword>Humans</keyword><keyword>Mammals/*microbiology</keyword><keyword>Models, Biological</keyword><keyword>Plasmids/genetics</keyword><keyword>Salmonella Infections/microbiology</keyword><keyword>Salmonella enterica/*pathogenicity</keyword><keyword>Virulence/genetics</keyword></keywords><dates><year>1998</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0019-9567 (Print)&#xD;0019-9567 (Linking)</isbn><accession-num>9746553</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=9746553</url></related-urls></urls><custom2>108564</custom2><language>eng</language></record></Cite></EndNote>(9). یکی از علل مهم مسمومیت های غذایی در اروپا و ایالات متحده آمریکا، سالمونلا انتریکا سرووار انتریتیدیس می باشد. براورد شده است که 93.8 میلیون نفر سالانه در کل جهان به سالمونلا مبتلا می شوند که نتیجه آن 155000 مورد مرگ در سال می باشد.

شکل1-2: در شکل سمت چپ باکتری سالمونلا با تاژک پری تریش دیده می شود و در شکل سمت راست میزان شیوع باکتری سالمونلا در سطح جهان را نشان می دهد.
1-2-3، تست ها و خواص بیوشیمیایی
این باکتری تست اندول و ONPG آن منفی بوده و لاکتوز را تخمیر نمی کند اما این باکتری متحرک بوده و تست سیترات و SH2 آن مثبت می باشد. واکنش آنتی بادی علیه آنتی ژن های Vi و H و O این باکتری مبنای سروتایپینگ سالنونلا است.
در حالیکه مبنای اصلی طبقه بندی سالمونلا سروتایپینگ آنتی ژن های سطحی می باشد اما اساس تفریق سروتایپ تایفی تست های بیوشیمیایی می باشد . سروتایپ تایفی از نظر تست های بیوشیمیایی به صورت خنثی می باشد. سروتایپ تایفی در همه تست های تولید گاز از گلوکز، موسینات،آرابینوز، سیمون سیترات، اورنی تین دکربوکسیلاز و مصرف استات منفی را بروز می دهد. سروتایپ تایفی مسئول تیفوئید بوده و سایر سروتایپ ها باعث انتریت و انتروکولیت می شودPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkJhdW1sZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxSZWNOdW0+
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSdFTicgZGItaWQ9J3BhMGZ6MnAwOGF4OXd0ZXh3ZTg1NTJ0ZTBkdjBhd3dhOTlm
cyc+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdKb3VybmFsIEFydGljbGUn
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmF1bWxlciwgQS4g
Si48L2F1dGhvcj48YXV0aG9yPlRzb2xpcywgUi4gTS48L2F1dGhvcj48YXV0aG9yPkZpY2h0LCBU
LiBBLjwvYXV0aG9yPjxhdXRob3I+QWRhbXMsIEwuIEcuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9n
eSBhbmQgSW1tdW5vbG9neSwgQ29sbGVnZSBvZiBNZWRpY2luZSwgVGV4YXMgQSZhbXA7TSBVbml2
ZXJzaXR5LCBDb2xsZWdlIFN0YXRpb24sIFRleGFzIDc3ODQzLTQ0NjcsIFVTQS5hYmF1bWxlckB0
YW11LmVkdTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkV2b2x1dGlvbiBvZiBob3N0IGFk
YXB0YXRpb24gaW4gU2FsbW9uZWxsYSBlbnRlcmljYTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5J
bmZlY3QgSW1tdW48L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+NDU3OS04NzwvcGFn
ZXM+PHZvbHVtZT42Njwvdm9sdW1lPjxudW1iZXI+MTA8L251bWJlcj48ZWRpdGlvbj4xOTk4LzA5
LzI0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD4qQWRhcHRhdGlvbiwgQmlvbG9naWNhbDwv
a2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPipCaW9sb2dpY2FsIEV2
b2x1dGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFtbWFs
cy8qbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgQmlvbG9naWNhbDwva2V5
d29yZD48a2V5d29yZD5QbGFzbWlkcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25l
bGxhIEluZmVjdGlvbnMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEg
ZW50ZXJpY2EvKnBhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VmlydWxlbmNlL2dlbmV0
aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PHB1Yi1kYXRl
cz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE5LTk1NjcgKFBy
aW50KSYjeEQ7MDAxOS05NTY3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT45NzQ2NTUz
PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku
bmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQm
YW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz05NzQ2NTUzPC91cmw+PC9yZWxhdGVkLXVy
bHM+PC91cmxzPjxjdXN0b20yPjEwODU2NDwvY3VzdG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFn
ZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5aaW5zc2VyPC9BdXRob3I+PFllYXI+MTk5
NzwvWWVhcj48UmVjTnVtPjExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhk
dmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MTE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlppbnNz
ZXIsIEguPC9hdXRob3I+PGF1dGhvcj5Kb2tsaWssIFcuSy48L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Wmluc3NlciBNaWNyb2Jpb2xvZ3k8L3RpdGxlPjwv
dGl0bGVzPjxkYXRlcz48eWVhcj4xOTk3PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5QcmVudGlj
ZSBIYWxsPC9wdWJsaXNoZXI+PGlzYm4+OTc4OTgxNDAwOTE5NTwvaXNibj48dXJscz48cmVsYXRl
ZC11cmxzPjx1cmw+aHR0cHM6Ly9ib29rcy5nb29nbGUuY29tL2Jvb2tzP2lkPWs1cHpQZ0FBQ0FB
SjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkJhdW1sZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxSZWNOdW0+
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSdFTicgZGItaWQ9J3BhMGZ6MnAwOGF4OXd0ZXh3ZTg1NTJ0ZTBkdjBhd3dhOTlm
cyc+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdKb3VybmFsIEFydGljbGUn
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmF1bWxlciwgQS4g
Si48L2F1dGhvcj48YXV0aG9yPlRzb2xpcywgUi4gTS48L2F1dGhvcj48YXV0aG9yPkZpY2h0LCBU
LiBBLjwvYXV0aG9yPjxhdXRob3I+QWRhbXMsIEwuIEcuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9n
eSBhbmQgSW1tdW5vbG9neSwgQ29sbGVnZSBvZiBNZWRpY2luZSwgVGV4YXMgQSZhbXA7TSBVbml2
ZXJzaXR5LCBDb2xsZWdlIFN0YXRpb24sIFRleGFzIDc3ODQzLTQ0NjcsIFVTQS5hYmF1bWxlckB0
YW11LmVkdTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkV2b2x1dGlvbiBvZiBob3N0IGFk
YXB0YXRpb24gaW4gU2FsbW9uZWxsYSBlbnRlcmljYTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5J
bmZlY3QgSW1tdW48L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+NDU3OS04NzwvcGFn
ZXM+PHZvbHVtZT42Njwvdm9sdW1lPjxudW1iZXI+MTA8L251bWJlcj48ZWRpdGlvbj4xOTk4LzA5
LzI0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD4qQWRhcHRhdGlvbiwgQmlvbG9naWNhbDwv
a2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPipCaW9sb2dpY2FsIEV2
b2x1dGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFtbWFs
cy8qbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgQmlvbG9naWNhbDwva2V5
d29yZD48a2V5d29yZD5QbGFzbWlkcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25l
bGxhIEluZmVjdGlvbnMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEg
ZW50ZXJpY2EvKnBhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VmlydWxlbmNlL2dlbmV0
aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PHB1Yi1kYXRl
cz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE5LTk1NjcgKFBy
aW50KSYjeEQ7MDAxOS05NTY3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT45NzQ2NTUz
PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku
bmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQm
YW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz05NzQ2NTUzPC91cmw+PC9yZWxhdGVkLXVy
bHM+PC91cmxzPjxjdXN0b20yPjEwODU2NDwvY3VzdG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFn
ZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5aaW5zc2VyPC9BdXRob3I+PFllYXI+MTk5
NzwvWWVhcj48UmVjTnVtPjExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhk
dmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MTE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlppbnNz
ZXIsIEguPC9hdXRob3I+PGF1dGhvcj5Kb2tsaWssIFcuSy48L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Wmluc3NlciBNaWNyb2Jpb2xvZ3k8L3RpdGxlPjwv
dGl0bGVzPjxkYXRlcz48eWVhcj4xOTk3PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5QcmVudGlj
ZSBIYWxsPC9wdWJsaXNoZXI+PGlzYm4+OTc4OTgxNDAwOTE5NTwvaXNibj48dXJscz48cmVsYXRl
ZC11cmxzPjx1cmw+aHR0cHM6Ly9ib29rcy5nb29nbGUuY29tL2Jvb2tzP2lkPWs1cHpQZ0FBQ0FB
SjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE.DATA (4, 9, 10).
ویژگی های بیوشیمیایی سالمونلا همان ویژگی های عمومی خانواده انتروباکتریاسه می باشد. تخمیر کربوهیدرات توسط سالمونلا همراه با تولید گاز و اسید می باشد. سالمونلا مانیتول، آرابینوز، گلوکز، دولسیتول، سوربیتول و مالتوز را تخمیر می کند اما سالیسین، آدنیتول، لاکتوز و ساکارز را تخمیر نمی کند ولی سالمونلا کلراسوئیس و تعدادی از سویه های سالمونلا تایفی، قادر به تخمیر آرابینوز نیستند. سالمونلا کلراسوئیس، سالمونلا پولروم، برخی از سویه های سالمونلا پاراتایفی و تقریبا تمام سویه های سالمونلا تایفی قادر به تخمیر دولسیتول نمی باشند. سالمونلا گالیناروم، برخی از سروتایپ های سالمونلا تایفی موریوم، سالمونلا تایفی و سالمونلا دابلین هنگام تخمیر کربوهیدرات، گاز ایجاد نمی کند. برخی از سویه ها قادر به تخمیر ساکارز، رافینوز و لاکتوز هستند، این ویژگی های غیر عادی بدلیل وجود پلاسمید است. اکثرا سالمونلا آریزونه واجد فعالیت بتاگالاکتوزیداز می باشد و لاکتوز را یا به سرعت و یا به آهستگی تخمیر می کند. بیشتر سویه هایی که قند های خاص را تخمیر میکنند، این عمل را با شدت بالا انجام می دهند و در آب پپتون دار در دمای 37 درجه سانتی گراد و در مدت زمان 6 تا 10 ساعت، اسید تولید می کنند. ممکن است سویه های غیر تخمیر کننده در اثر چهش به تخمیر کننده تبدیل شوند و بعد از گذشت چند روز اسید ایجاد کنند و امکان دارد با سایر سالمونلا ها که تخمیر کننده هستند، اشتباه گرفته شوند. برخی از سویه ها دارای نقص در فرایند جذب قند هستند و اسید را در طول مدت 10 الی 20 ساعت ایجاد می کنند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-4، طبقه بندی سالمونلا
طبقه بندی سالمونلا بسیار دشوار است، به علت اینکه از گونه های متععدی تشکیل شده است. معمولا گونه های سالمونلا را بر اساس ویژگی های بیوشیمیایی، اپیدمیولوژی، میزبان و آنتی ژن های O، H و Vi طبقه بندی می شوند. برای اولین بار در سال 1929 میلادی طبقه بندی سالمونلا توسط کافمن صورت گرفت که توسط وایت این طبقه بندی تکمیل گردید. بر اساس این طبقه بندی، سروتایپ های سالمونلا در یک گونه منفرد قرار گرفت. طبقه بندی دیگری که وجود دارد،ادواردز-اوینگ می باشد که سالمونلا را در سه گونه ی سالمونلا تایفی، سالمونلا کلراسوئیس و انتریتیدیس و صد ها سروتایپ طبقه بندی می کند(4و10).
طبقه بندی سومی که برای سالمونلا وجود دارد، بر اساس هیبریداسیون DNA می باشد. که بر اساس آن جنس سالمونلا شامل دو گونه ی سالمونلا بونگوری و سالمونلا انتریکا می باشد. در این طبقه بندی اکثر پاتوژن های انسان در گونه ی انتریکا جای گرفته اند.
سالمونلا انتریکا به شش زیر گونه تقسیم می شودکه شامل: سالمونلا انتریکا، سالمونلا سالاما، سالمونلا آریزونه، سالمونلا دی آریزونه، سالمونلا هونته و سالمونلا انتریتیدیس می باشد(5).
جدول1-1، ویژگی های بیو شیمیایی سالمونلا
زیرگووه گونه
ویژگی
1 2 3a 3b 4 5 6
انتریکا سالامه آریزونه دی آریزونه هونته بونگوری اندیکا
ONPG - - + + - + متغییر
هضم ژلاتین - + + + + - +
مصرفD تارتارات + - - - - - -
مصرف مالونات - + + + - - -
تخمیر دولسیتول + + - - - + متغییر
تخمیر لاکتوز - - - + - -
تخمیر سالیسین - - - - + - -
تخمیر سوربیتول + + + + + + -
تخمیر Dگالاکتورونات - - + + + +
گاماگلوتامیل ترانسفراز + + - + + + +
تاژک دو فازی دو فازی تک فازی دو فازی تک فازی تک فازی دو فازی
رشد در حضورKCN - - - - + + +
جدول 1-2، طبقه بندی نوین سالمونلا و میزان سروتایپ ها در زیر گونه هاPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkhvbG1lczwvQXV0aG9yPjxZZWFyPjE5Njg8L1llYXI+PFJlY051bT4y
MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2xtZXMsIEEu
IEouPC9hdXRob3I+PGF1dGhvcj5FaXNlbnN0YXJrLCBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv
bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgbXV0YWdlbmljIGVmZmVjdCBvZiB0aHltaW5l
LXN0YXJ2YXRpb24gb24gU2FsbW9uZWxsYSB0eXBoaW11cml1bTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5NdXRhdCBSZXM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs
bC10aXRsZT5NdXRhdCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNS0yMTwv
cGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGVkaXRpb24+MTk2OC8w
MS8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+TXV0YWdlbnMvcGhhcm1hY29sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPipNdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5QZW5pY2lsbGluIFJl
c2lzdGFuY2U8L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNpbGxpbnM8L2tleXdvcmQ+PGtleXdvcmQ+
U2FsbW9uZWxsYSB0eXBoaW11cml1bTwva2V5d29yZD48a2V5d29yZD5TZWxlY3Rpb24sIEdlbmV0
aWM8L2tleXdvcmQ+PGtleXdvcmQ+VGh5bWluZS8qbWV0YWJvbGlzbTwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTY4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuLUZlYjwvZGF0
ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMjctNTEwNyAoUHJpbnQpJiN4RDswMDI3LTUx
MDcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjQ4NzMzMzE8L2FjY2Vzc2lvbi1udW0+
PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRy
ZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlv
biZhbXA7bGlzdF91aWRzPTQ4NzMzMzE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0
cm9uaWMtcmVzb3VyY2UtbnVtPjAwMjctNTEwNyg2OCk5MDA3Ni02IFtwaWldPC9lbGVjdHJvbmlj
LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENp
dGU+PEF1dGhvcj5Cb2NrPC9BdXRob3I+PFllYXI+MTk4NDwvWWVhcj48UmVjTnVtPjIzPC9SZWNO
dW0+PHJlY29yZD48cmVjLW51bWJlcj4yMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg
YXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MjM8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJvY2ssIEsuPC9hdXRob3I+
PGF1dGhvcj5NZWxkYWwsIE0uPC9hdXRob3I+PGF1dGhvcj5CdW5kbGUsIEQuIFIuPC9hdXRob3I+
PGF1dGhvcj5JdmVyc2VuLCBULjwvYXV0aG9yPjxhdXRob3I+R2FyZWdnLCBQLiBKLjwvYXV0aG9y
PjxhdXRob3I+Tm9yYmVyZywgVC48L2F1dGhvcj48YXV0aG9yPkxpbmRiZXJnLCBBLiBBLjwvYXV0
aG9yPjxhdXRob3I+U3ZlbnNvbiwgUy4gQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+VGhlIGNvbmZvcm1hdGlvbiBvZiBTYWxtb25lbGxhIE8tYW50aWdl
bmljIHBvbHlzYWNjaGFyaWRlIGNoYWlucyBvZiBzZXJvZ3JvdXBzIEEsIEIsIGFuZCBEMSBwcmVk
aWN0ZWQgYnkgc2VtaS1lbXBpcmljYWwsIEhhcmQtU3BoZXJlIChIU0VBKSBjYWxjdWxhdGlvbnM8
L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2FyYm9oeWRyIFJlczwvc2Vjb25kYXJ5LXRpdGxlPjwv
dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNhcmJvaHlkciBSZXM8L2Z1bGwtdGl0bGU+
PC9wZXJpb2RpY2FsPjxwYWdlcz4yMy0zNDwvcGFnZXM+PHZvbHVtZT4xMzA8L3ZvbHVtZT48ZWRp
dGlvbj4xOTg0LzA3LzE1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5DYXJib2h5ZHJhdGUg
Q29uZm9ybWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+
TW9kZWxzLCBNb2xlY3VsYXI8L2tleXdvcmQ+PGtleXdvcmQ+KlBvbHlzYWNjaGFyaWRlcywgQmFj
dGVyaWFsPC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEvKmltbXVub2xvZ3k8L2tleXdvcmQ+
PGtleXdvcmQ+U2Vyb3R5cGluZzwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5
PC9rZXl3b3JkPjxrZXl3b3JkPlRoZXJtb2R5bmFtaWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh
dGVzPjx5ZWFyPjE5ODQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWwgMTU8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4wMDA4LTYyMTUgKFByaW50KSYjeEQ7MDAwOC02MjE1IChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT42NDc4NDU5PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy
ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5
LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp
c3RfdWlkcz02NDc4NDU5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl
c291cmNlLW51bT4wMDA4LTYyMTUoODQpODUyNjctMiBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJj
ZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkhvbG1lczwvQXV0aG9yPjxZZWFyPjE5Njg8L1llYXI+PFJlY051bT4y
MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2xtZXMsIEEu
IEouPC9hdXRob3I+PGF1dGhvcj5FaXNlbnN0YXJrLCBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv
bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgbXV0YWdlbmljIGVmZmVjdCBvZiB0aHltaW5l
LXN0YXJ2YXRpb24gb24gU2FsbW9uZWxsYSB0eXBoaW11cml1bTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5NdXRhdCBSZXM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs
bC10aXRsZT5NdXRhdCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNS0yMTwv
cGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGVkaXRpb24+MTk2OC8w
MS8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+TXV0YWdlbnMvcGhhcm1hY29sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPipNdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5QZW5pY2lsbGluIFJl
c2lzdGFuY2U8L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNpbGxpbnM8L2tleXdvcmQ+PGtleXdvcmQ+
U2FsbW9uZWxsYSB0eXBoaW11cml1bTwva2V5d29yZD48a2V5d29yZD5TZWxlY3Rpb24sIEdlbmV0
aWM8L2tleXdvcmQ+PGtleXdvcmQ+VGh5bWluZS8qbWV0YWJvbGlzbTwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTY4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuLUZlYjwvZGF0
ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMjctNTEwNyAoUHJpbnQpJiN4RDswMDI3LTUx
MDcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjQ4NzMzMzE8L2FjY2Vzc2lvbi1udW0+
PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRy
ZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlv
biZhbXA7bGlzdF91aWRzPTQ4NzMzMzE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0
cm9uaWMtcmVzb3VyY2UtbnVtPjAwMjctNTEwNyg2OCk5MDA3Ni02IFtwaWldPC9lbGVjdHJvbmlj
LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENp
dGU+PEF1dGhvcj5Cb2NrPC9BdXRob3I+PFllYXI+MTk4NDwvWWVhcj48UmVjTnVtPjIzPC9SZWNO
dW0+PHJlY29yZD48cmVjLW51bWJlcj4yMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg
YXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MjM8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJvY2ssIEsuPC9hdXRob3I+
PGF1dGhvcj5NZWxkYWwsIE0uPC9hdXRob3I+PGF1dGhvcj5CdW5kbGUsIEQuIFIuPC9hdXRob3I+
PGF1dGhvcj5JdmVyc2VuLCBULjwvYXV0aG9yPjxhdXRob3I+R2FyZWdnLCBQLiBKLjwvYXV0aG9y
PjxhdXRob3I+Tm9yYmVyZywgVC48L2F1dGhvcj48YXV0aG9yPkxpbmRiZXJnLCBBLiBBLjwvYXV0
aG9yPjxhdXRob3I+U3ZlbnNvbiwgUy4gQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+VGhlIGNvbmZvcm1hdGlvbiBvZiBTYWxtb25lbGxhIE8tYW50aWdl
bmljIHBvbHlzYWNjaGFyaWRlIGNoYWlucyBvZiBzZXJvZ3JvdXBzIEEsIEIsIGFuZCBEMSBwcmVk
aWN0ZWQgYnkgc2VtaS1lbXBpcmljYWwsIEhhcmQtU3BoZXJlIChIU0VBKSBjYWxjdWxhdGlvbnM8
L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2FyYm9oeWRyIFJlczwvc2Vjb25kYXJ5LXRpdGxlPjwv
dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNhcmJvaHlkciBSZXM8L2Z1bGwtdGl0bGU+
PC9wZXJpb2RpY2FsPjxwYWdlcz4yMy0zNDwvcGFnZXM+PHZvbHVtZT4xMzA8L3ZvbHVtZT48ZWRp
dGlvbj4xOTg0LzA3LzE1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5DYXJib2h5ZHJhdGUg
Q29uZm9ybWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+
TW9kZWxzLCBNb2xlY3VsYXI8L2tleXdvcmQ+PGtleXdvcmQ+KlBvbHlzYWNjaGFyaWRlcywgQmFj
dGVyaWFsPC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEvKmltbXVub2xvZ3k8L2tleXdvcmQ+
PGtleXdvcmQ+U2Vyb3R5cGluZzwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5
PC9rZXl3b3JkPjxrZXl3b3JkPlRoZXJtb2R5bmFtaWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh
dGVzPjx5ZWFyPjE5ODQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWwgMTU8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4wMDA4LTYyMTUgKFByaW50KSYjeEQ7MDAwOC02MjE1IChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT42NDc4NDU5PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy
ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5
LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp
c3RfdWlkcz02NDc4NDU5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl
c291cmNlLW51bT4wMDA4LTYyMTUoODQpODUyNjctMiBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJj
ZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE.DATA (1, 8, 9)
اسم گونه میزان سرو تایپ در سال 2000 میلادی میزان سرو تایپ در سال 2001 میلادی میزان سرو تایپ در سال 2002 میلادی
الف- گونه سالمونلا انتریکا
1-سالمونلا انتریکا زیر گونه انتریکا
2-سالمونلا انتریکا زیر گونه سالامه
3-سالمونلا انتریکا زیر گونه آریزونه
4-سالمونلا انتریکا زیر گونه دی آریزونه
5-سالمونلا انتریکا زیر گونه هونته
6- سالمونلا انتریکا زیر گونه اندیکا
ب- گونه بونگوری
جمع کل 2469
1610
497
94
325
69
12
21
2628 2491
1624
499
95
329
69
13
21
2650 2509
1636
501
95
331
70
13
30
2668
1-2-5، آنتی ژن های سالمونلا
الف) آنتی ژن O
آنتی ژن O در برابر الکل و حرارت مقاوم است و در سالمونلا 67 انتی ژن O وجود دارد که با عدد نشان داده می شود. آنتی ژن O می تواند حرارت جوش را به مدت دو ساعت و نیم تحمل کند اما آنتی ژن فلاژل و آنتی ژن فیمبریه در این درجه حرارت نابود می شوند و قادر به تحمل آن نیستند. خاصیت آنتی ژن O بوسیله لیپوپلی ساکارید که در دیواره باکتری های گرم منفی وجود دارد ایجاد می شود.
بدلیل هیدروفیل بودن آنتی ژن O در محلول نمکی0.85% NaCl، یک سوسپانسیون یکنواخت ایجاد می کند.آنتی ژن O می تواند در درجه حرارت 37 درجه سانتی گراد اتانول 96 درصد به مدت زمان چهار ساعت تحمل کند اما فرمالین 0.2% باعث غیر فعاسازی آنتی ژن O میشود. (2و3).
ب)آنتی ژن فلاژلی یا آنتی ژن H
آنتی ژن H در برابر الکل و حرارت حساس می باشد و در درجه حرارت 100 درجه سانتی گراد به مدت زمان سی دقیقه همه ی فلازل ها از باکتری جدا می شود. این فرایند جدا شدن فلاژل ها از باکتری در دمای 60 درجه سانتی گراد آغاز می شود اما این فلاژل هایی که از باکتری جدا می شوند، سیستم ایمنی را تحریک می کنند. آنتی ژن H یکی دیگر از آنتی ژن های سالمونلا می باشد که این آنتی ژن مربوط به فلاژل باکتری می باشد. هنگامیکه که ما سوسپانسیون باکتری را به مدت دو نیم ساعت بجوشانیم این خاصیت ایمنی زایی باکتری از بین می رود اما اگر در دمای پایین تر از دمای جوش قرار گیرد خاصیت اگلوتیناسیون آنتی ژن از بین رفته اما قدرت آنتی ژن از بین نمی رود (2و3).
آنتی ژن فلاژلی دو نوع است که عبارت است از : 1) آنتی ژن فلاژلی فاز یک(H₁) 2) آنتی ژن فلاژلی فاز دو(H₂).
آنتی ژن H₁ با حروف لاتین نشان داده می شود و از حرف a تا حرف z میباشد. به علت اینکه تعداد آنتی ژن H₁ بسیاز بیشتر از 25 می باشد، سایر آنتی ژن های H با اضافه کردن عدد به حرف Z مشخص می شود. آنتی ژن H₂ به صورت عدد از 1 تا 12 نشان داده می شود.تعداد آنتی ژن H₁، 93 عدد می باشد (3).
ج) آنتی ژن K یا آنتی کپسولی
سه نوع آنتی ژن کپسولی در سالمونلا وجود دارد که شامل: آنتی ژن M، آنتی ژن Vi و آنتی ژن 5
آنتی ژن M:
آنتی ژن M شامل کولانیک اسید است. آنتی ژن M باعث ایجاد کلونی های مخاطی می گردد. آنتی ژن M پلی ساکارید های خارج سلولی می باشد. مکانیسم جلوگیری از آگلوتیناسیون به وسیله آنتی سرم علیه O، شبیه مکانیسم عمل آنتی ژن Vi می باشد. خصوصیت آنتی ژن M با آنتی ژن Vi تفاوت دارد.برخی از آنتی ژن های کپسولی اشرشیاکلی (مثل: K₃₀ و K₃₉) و K₈ و K₃ کلبسیلا با آنتی ژن M سالمونلا واکنش متقاطع دارند. برای تعیین آنتی ژن M، کلونی ها حالت لعابی پیدا می کند و به کشت باکتری سرم ضد آنتی ژن M اضافه می کنیم که می توان از آزمایش تورم کپسولی استفاده نمود(3).
آنتی ژن Vi:
آنتی ژن Vi یک پلی ساکارید کپسولی می باشد و از واحد های هموپلیمرN- استیل گالاکتوز آمینورونیک اسید تشکیل شده است که با پیوند 1 به 4 بهم متصل شده اند و کربن شماره ی 3 آن استیله می باشد. هنگامیکه از خون بیماران مبتلا به تب روده ای، سالمونلا انتریکا سرووار تایفی جدا شود، این سالمونلا ها در برابر آنتی سرم O₉ آگلوتینه نمی شوند. بدلیل آنکه این آنتی ژن برای موش دارای قدرت بیماریزایی بیشتر می باشد به آن آنتی ژن حدت گفته می شود.
سویه هایی که دارای آنتی ژن Vi می باشند در برابر آب اکسیژنه حساس اند و به همین علت دانشمندان معتقند که آنتی ژن Vi در مکانیسم فاگوسیتوز نوتروفیل ها اختلال ایجاد نمی کند بلکه در برابر عمل انفجار اکسیداتیوی که در داخل نوتروفیل ها رخ می دهد، مقاوم است. آنتی ژن Vi میزان تثبیت C₃ در سطح سالمونلا تایفی کاهش می دهد(زهرایی سال1378 Murray, Rosenthal et al. 2013). به علت آنکه آنتی ژن Vi مانع از عمل آگلوتیناسیون به وسیله آنتی سرم ضد آنتی ژن O می شود، برای حذف آنتی ژن Vi، باید باکتری را در دمای صد درجه سانتی گراد( دمای جوش) به مدت یک ساعت جوشاند(1 و 3).
آنتی ژن 5:
در ابتدا این آنتی ژن به عنوان آنتی ژن O شناسایی شد و این آنتی ژن دارای تفاوت هایی با سایر آنتی ژن های پیکری است.
کافمن نشان داد که این آنتی ژن در برابر کلریدریک اسید حساس بوده و در مجاورت آن تخریب می شود و ویژگی آگلوتیناسیون آنتی ژن 5 در درجه حرارت 120 درجه سانتی گراد از بین می رود که این ویژگی بر خلاف آنتی ژن O₄ می باشد.این آنتی ژن در برابر الکل مقاوم است که این ویژگی مشابه آنتی ژن O₄ می باشد.آنتی ژن 5 در ارتباط با بیماریزایی سروتایپ ها بی تاثیر است، به عنوان مثال سالمونلا انتریکا سرووار تایفی موریوم که فاقد آنتی ژن 5 می باشد برای موش به شدت بیماریزا است. می توان آنتی سرم ضد آنتی ژن 5 را بوسیله کشت فرمالین اشکال بدون فلاژل با کشت حرارت دیده سالمونلا پارا تایفیB بدست اوردPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2xtZXM8L0F1dGhvcj48WWVhcj4xOTY4PC9ZZWFyPjxS
ZWNOdW0+MjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwPC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0
d3pldncyOXp3Ij4yMDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs
IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9s
bWVzLCBBLiBKLjwvYXV0aG9yPjxhdXRob3I+RWlzZW5zdGFyaywgQS48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhlIG11dGFnZW5pYyBlZmZlY3Qgb2Yg
dGh5bWluZS1zdGFydmF0aW9uIG9uIFNhbG1vbmVsbGEgdHlwaGltdXJpdW08L3RpdGxlPjxzZWNv
bmRhcnktdGl0bGU+TXV0YXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj
YWw+PGZ1bGwtdGl0bGU+TXV0YXQgUmVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
MTUtMjE8L3BhZ2VzPjx2b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxlZGl0aW9u
PjE5NjgvMDEvMDE8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPk11dGFnZW5zL3BoYXJtYWNv
bG9neTwva2V5d29yZD48a2V5d29yZD4qTXV0YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNp
bGxpbiBSZXNpc3RhbmNlPC9rZXl3b3JkPjxrZXl3b3JkPlBlbmljaWxsaW5zPC9rZXl3b3JkPjxr
ZXl3b3JkPlNhbG1vbmVsbGEgdHlwaGltdXJpdW08L2tleXdvcmQ+PGtleXdvcmQ+U2VsZWN0aW9u
LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPlRoeW1pbmUvKm1ldGFib2xpc208L2tleXdvcmQ+
PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk2ODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbi1G
ZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTUxMDcgKFByaW50KSYjeEQ7
MDAyNy01MTA3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT40ODczMzMxPC9hY2Nlc3Np
b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5n
b3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9
Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz00ODczMzMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4wMDI3LTUxMDcoNjgpOTAwNzYtNiBbcGlpXTwvZWxl
Y3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+Qm9jazwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4y
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Cb2NrLCBLLjwv
YXV0aG9yPjxhdXRob3I+TWVsZGFsLCBNLjwvYXV0aG9yPjxhdXRob3I+QnVuZGxlLCBELiBSLjwv
YXV0aG9yPjxhdXRob3I+SXZlcnNlbiwgVC48L2F1dGhvcj48YXV0aG9yPkdhcmVnZywgUC4gSi48
L2F1dGhvcj48YXV0aG9yPk5vcmJlcmcsIFQuPC9hdXRob3I+PGF1dGhvcj5MaW5kYmVyZywgQS4g
QS48L2F1dGhvcj48YXV0aG9yPlN2ZW5zb24sIFMuIEIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRoZSBjb25mb3JtYXRpb24gb2YgU2FsbW9uZWxsYSBP
LWFudGlnZW5pYyBwb2x5c2FjY2hhcmlkZSBjaGFpbnMgb2Ygc2Vyb2dyb3VwcyBBLCBCLCBhbmQg
RDEgcHJlZGljdGVkIGJ5IHNlbWktZW1waXJpY2FsLCBIYXJkLVNwaGVyZSAoSFNFQSkgY2FsY3Vs
YXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNhcmJvaHlkciBSZXM8L3NlY29uZGFyeS10
aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DYXJib2h5ZHIgUmVzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjMtMzQ8L3BhZ2VzPjx2b2x1bWU+MTMwPC92b2x1
bWU+PGVkaXRpb24+MTk4NC8wNy8xNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2FyYm9o
eWRyYXRlIENvbmZvcm1hdGlvbjwva2V5d29yZD48a2V5d29yZD5NZXRob2RzPC9rZXl3b3JkPjxr
ZXl3b3JkPk1vZGVscywgTW9sZWN1bGFyPC9rZXl3b3JkPjxrZXl3b3JkPipQb2x5c2FjY2hhcmlk
ZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhLyppbW11bm9sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPlNlcm90eXBpbmc8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVj
aWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaGVybW9keW5hbWljczwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTg0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVsIDE1PC9kYXRl
PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwOC02MjE1IChQcmludCkmI3hEOzAwMDgtNjIx
NSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQ3ODQ1OTwvYWNjZXNzaW9uLW51bT48
dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJl
ei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9u
JmFtcDtsaXN0X3VpZHM9NjQ3ODQ1OTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+MDAwOC02MjE1KDg0KTg1MjY3LTIgW3BpaV08L2VsZWN0cm9uaWMt
cmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0Vu
ZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2xtZXM8L0F1dGhvcj48WWVhcj4xOTY4PC9ZZWFyPjxS
ZWNOdW0+MjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwPC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0
d3pldncyOXp3Ij4yMDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs
IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9s
bWVzLCBBLiBKLjwvYXV0aG9yPjxhdXRob3I+RWlzZW5zdGFyaywgQS48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhlIG11dGFnZW5pYyBlZmZlY3Qgb2Yg
dGh5bWluZS1zdGFydmF0aW9uIG9uIFNhbG1vbmVsbGEgdHlwaGltdXJpdW08L3RpdGxlPjxzZWNv
bmRhcnktdGl0bGU+TXV0YXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj
YWw+PGZ1bGwtdGl0bGU+TXV0YXQgUmVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
MTUtMjE8L3BhZ2VzPjx2b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxlZGl0aW9u
PjE5NjgvMDEvMDE8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPk11dGFnZW5zL3BoYXJtYWNv
bG9neTwva2V5d29yZD48a2V5d29yZD4qTXV0YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNp
bGxpbiBSZXNpc3RhbmNlPC9rZXl3b3JkPjxrZXl3b3JkPlBlbmljaWxsaW5zPC9rZXl3b3JkPjxr
ZXl3b3JkPlNhbG1vbmVsbGEgdHlwaGltdXJpdW08L2tleXdvcmQ+PGtleXdvcmQ+U2VsZWN0aW9u
LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPlRoeW1pbmUvKm1ldGFib2xpc208L2tleXdvcmQ+
PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk2ODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbi1G
ZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTUxMDcgKFByaW50KSYjeEQ7
MDAyNy01MTA3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT40ODczMzMxPC9hY2Nlc3Np
b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5n
b3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9
Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz00ODczMzMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4wMDI3LTUxMDcoNjgpOTAwNzYtNiBbcGlpXTwvZWxl
Y3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+Qm9jazwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4y
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Cb2NrLCBLLjwv
YXV0aG9yPjxhdXRob3I+TWVsZGFsLCBNLjwvYXV0aG9yPjxhdXRob3I+QnVuZGxlLCBELiBSLjwv
YXV0aG9yPjxhdXRob3I+SXZlcnNlbiwgVC48L2F1dGhvcj48YXV0aG9yPkdhcmVnZywgUC4gSi48
L2F1dGhvcj48YXV0aG9yPk5vcmJlcmcsIFQuPC9hdXRob3I+PGF1dGhvcj5MaW5kYmVyZywgQS4g
QS48L2F1dGhvcj48YXV0aG9yPlN2ZW5zb24sIFMuIEIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRoZSBjb25mb3JtYXRpb24gb2YgU2FsbW9uZWxsYSBP
LWFudGlnZW5pYyBwb2x5c2FjY2hhcmlkZSBjaGFpbnMgb2Ygc2Vyb2dyb3VwcyBBLCBCLCBhbmQg
RDEgcHJlZGljdGVkIGJ5IHNlbWktZW1waXJpY2FsLCBIYXJkLVNwaGVyZSAoSFNFQSkgY2FsY3Vs
YXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNhcmJvaHlkciBSZXM8L3NlY29uZGFyeS10
aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DYXJib2h5ZHIgUmVzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjMtMzQ8L3BhZ2VzPjx2b2x1bWU+MTMwPC92b2x1
bWU+PGVkaXRpb24+MTk4NC8wNy8xNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2FyYm9o
eWRyYXRlIENvbmZvcm1hdGlvbjwva2V5d29yZD48a2V5d29yZD5NZXRob2RzPC9rZXl3b3JkPjxr
ZXl3b3JkPk1vZGVscywgTW9sZWN1bGFyPC9rZXl3b3JkPjxrZXl3b3JkPipQb2x5c2FjY2hhcmlk
ZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhLyppbW11bm9sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPlNlcm90eXBpbmc8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVj
aWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaGVybW9keW5hbWljczwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTg0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVsIDE1PC9kYXRl
PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwOC02MjE1IChQcmludCkmI3hEOzAwMDgtNjIx
NSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQ3ODQ1OTwvYWNjZXNzaW9uLW51bT48
dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJl
ei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9u
JmFtcDtsaXN0X3VpZHM9NjQ3ODQ1OTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+MDAwOC02MjE1KDg0KTg1MjY3LTIgW3BpaV08L2VsZWN0cm9uaWMt
cmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0Vu
ZE5vdGU+AG==
ADDIN EN.CITE.DATA (11, 12).
د) آنتی ژن های فیمبریه ای
اکثر سروتایپ های سالمونلا دارای جایگاهی برای آنتی ژن فیمبریه هستند و فیمبریه تولید می کنند. با توجه به بررسی هایی که بر روی سالمونلا انتریتیدیس و سالمونلا تایفی موریوم صورت پذیرفت، اطلاعاتی در مورد فیمبریه ی سالمونلاها بدست آمد. آنتی ژن فیمبریه ای در برابر فرمالدئید0.1-0.2 ثابت می شود که این ویژگی مشابه آنتی ژن فلاژل می باشد. برخی از آنتی ژن های فیمبریه ای دارای خاصیت پوشانندگی آگلوتیناسیون O وH می باشند، این ویژگی باعث می شود که هنگامیکه از سالمونلایی که در مرحله اول فیمبریه قرار دارد، آنتی بادی ضد فیمبریه جدا شود و از این آنتی بادی استفاده شود، باعث ایجاد واکنش متقاطع و گیج کننده ای می شود. برای آنکه این واکنش صورت نگیرد باید از کشت هایی برای تهیه سوسپانسیون استفاده شود که در مرحله غیر فیمبریه ای باشند. فیمبریه اگر به مدت 30 دقیقه در حرارت 100 درجه سانتی گراد قرار گیرد از باکتری جدا می شود ولی در دمای 121 درجه سانتی گراد به مدت سی دقیقه قرار گیرد، غیر فعال می شود ADDIN EN.CITE <EndNote><Cite><Author>Murray</Author><Year>2013</Year><RecNum>2</RecNum><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">2</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Murray, P.R.</author><author>Rosenthal, K.S.</author><author>Pfaller, M.A.</author></authors></contributors><titles><title>Medical Microbiology</title></titles><dates><year>2013</year></dates><publisher>Mosby/Elsevier</publisher><isbn>9780323054706</isbn><urls><related-urls><url>https://books.google.com/books?id=O92zd8fV-RcC</url></related-urls></urls></record></Cite></EndNote>(5).
1-2-6، عوامل دخیل در بیماریزایی در سالمونلا
سالمونلا دارای عوامل بیماریزایی متعددی می باشد که شامل: انتروتوکسین، سیتوتوکسین، اندوتوکسین، سیدروفور، آنتی ژن های سطحی و غیره می باشد و این عوامل در سروتایپ های مختلف سالمونلا نقش مختلفی در بیماریزایی سالمونلا در میزبان های مختلف بر عهده دارند مثلا سالمونلا تایفی موریوم در میزبان طبیعی خود، موش، بیماری هایی شبیه حصبه ایجاد می کند ولی در انسان ، گاستروانتریت خود محدودشونده ایجاد می کند در حالیکه سالمونلا تایفی حتی به صورت خوراکی در حیوانات ایجاد بیماری نمی کند و تنها در انسان بیماری ایجاد می کند. این باکتری انگل اختیاری داخل سلولی می باشد. بقاء سالمونلا داخل سلول های میزبان به دلیل پاسخ های متفاوت سیستم اینمنی میزبان های مختلف سالمونلا در برابر این باکتری می باشد(3).
الف) سیتوتوکسین
فعالیت سیتوتوکسین تنها در عصاره باکتری دیده می شود، این ویژگی بدلیل وابستگی توکسین به غشای خارجی باکتری می باشد. میزان تولید سیتوتوکسین توسط سروتایپ های مختلف سالمونلا، متفاوت می باشد. سروتایپ تایفی کمترین میزان و سروتایپ های انتریتیدیس و کلراسوئیس بیشترین میزان توکسین را تولید می نمایند. سیتوتوکسین در سلول های یوکاریوتی باعث مهار سنتز پروتئین می گردد. درانتریت سالمونلایی تخریب سلول های پوشش روده دیده می شود که احتمال داده می شود این تخریب توسط سیتوتوکسین سالمونلا ایجاد شود. عملکرد سیتوتوکسین در بیماریزایی سالمونلا هنوز بطور کامل معلوم نمی باشد اما احتمال داده می شود این سم باعث ایجاد تغییراتی در غشای سلولی که می شود که موجب مختل شدن عبور و مرور انتخابی مولکول ها از غشای سلولی می گردد که این عملکرد در نهایت باعث نکروز شدن انتروسیت ها می شود. اسیب بافتی ناشی از سیتوتوکسین باعث سهولت در تهاجم سالمونلا می شود(3،10 ).
ب) اندوتوکسین
علامت هایی که در حیوانات آزمایشکاهی نظیر موش در اثر تزریق اندوتوکسین ایجاد می شود مشابه علایمی است که در اثر سپتمی سمی ناشی از سالمونلا ایجاد می گردد. علامت هایی که در اثر اندوتوکسین سالمونلا ایجاد می شود نظیر کاهش فشار خون، لکوپنی و در نهایت لکوسیتوز، شوک، اسیدوز و تب می باشد. عامل اصلی سمیت اندوتوکسین، لیپید A موجود در غشای خارجی باکتری های گرم منفی می باشد. حساسیت انسان در برابر اندوتوکسین از سایر موجودات زنده بسیاربالاتر می باشد و این بدلیل آن می باشد که بروز حالت تحمل در برابر اندوتوکسین بدلیل افزایش آهسته درجه حرارت از بین می رود. سلول های مختلفی از بدن مثل پلاکت ها، مونوسیت ها، سلول ها، ماکروفاژها و نوتروفیل ها تحت تاثیر اندوتوکسین قرار گرفته و موادی از این سلول ها آزاد می شود مثل اینترلوکین هشت، آنافیلاتوکسین، اینترلوکین یک، اینترلوکین شش و فاکتور نکروز دهنده تومور می باشد که هریک از این مواد برروی اندام های بدن تاثیر می گذارد(3).
ج) انتروتوکسین
توکسین حساس به حرارت که نوسط اشرشیا کلی و ویبریو کلرا تولید می شود توسط برخی از سویه های سالمونلا تایفی موریوم نیز تولید می گردد که از نظر مکانیسم مشابه سم تولیدی توسط ویبریو کلرا می باشد و با فعال کردن ادنیلات سیکلاز و در نهایت باعث افزایش cAMP می گردد. انتروتوکسینی که توسط برخی از سویه های سالمونلا تایفی موریوم تولید می شود از لحاظ نیاز به نفوذ نوتروفیل ها با کلراتوکسین متفاوت می باشد در نتیجه ارتباطی بین میزان بیماریزایی سالمونلا تایفی موریوم و توانایی تحریک نفوذ نوتروفیل ها وجود دارد. این باکتری باعث غالب شدن نوتروفیل ها در بین سایر لکوسیت ها در طی تهاجم در غشای روده می شود و با تهاجم نوتروفیل ها به باکتری، انتروتوکسین از باکتری آزاد می گردد.انترو توکسین همراه با دیواره باکتری می باشد و ماهیت پروتئینی دارد ADDIN EN.CITE <EndNote><Cite><Author>Isenberg</Author><Year>1992</Year><RecNum>225</RecNum><record><rec-number>225</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">225</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Isenberg, H.D.</author><author>American Society for Microbiology</author></authors></contributors><titles><title>Clinical microbiology procedures handbook</title></titles><dates><year>1992</year></dates><publisher>American Society of Microbiology</publisher><urls><related-urls><url>https://books.google.com/books?id=0JpKAQAAIAAJ</url></related-urls></urls></record></Cite></EndNote>(13).
1-2-7. بیماری های ناشی از سالمونلا
بیماری های ناشی از سالمونلا که در انسان ایجاد می شوند شامل: گاستروانتریت، سپتی سمی، تیفوئید و انترو کولیت حاد می باشد ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
الف) حصبه
سالمونلابه انتهای دیواره اپیتلیال روده حمله می کند و سپس به گره های لنفاوی روده منتقل می شود، در این گره های لنفاوی، سالمونلا توسط ماکروفاژها- مونوسیت ها و پلی مورفونوکلئوز بلعیده می شود و سالمونلاهایی که توسط PMN ها بلعیده می شود، از بین می روند اما سالمونلاهایی که توسط ماکروفاژها بلعیده می شوند در درون واکوئل آن ها تکثیر یافته و ماکروفاژها به عنوان یک ناقل برای سالمونلا عمل می کند و باعث انتقال سالمونلا به بافت های مختلف رتیکلواندوتلیال می شود. در نهایت این ماکروفاژهای آلوده به سالمونلا تخریب شده و سالمونلا آزاد می شود و باعث ایجاد سپتی سمی می شود. حصبه توسط دو سروتایپ تایفی و پاراتایفی ایجاد می گردد ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
علایم حصبه بعد از 7 تا 14 روز بروز می کند و شامل: بی حالی، تب، بی اشتهایی، سرفه خشک، یبوست و سردرد می باشد. در این دو هفته از بیماری، گلبول های سفید در حد نرمای بوده و سالمونلا در مدفوع وجود ندارد. در هفته دوم از بیماری، بیمار به شدت نا خوش است به این دلیل که سالمونلاها از ماکروفاژهای آلوده آزاد می گردد. روی بدن بیمار لکه های به قطر دو تا سه میلی متر دیده می شود که شاید این ماکولوپاپولار شامل سالمونلا باشد ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
هنگامیکه بیمار مبتلا به حصبه بهبود یابد در تمام طول زندگی در برابر تیفوئید مقاوم خواهد بود.هنگامیکه بیماری به موقع درمان پیدا نکند، فرد مبتلا به حصبه وارد مرحله ی جدیدی از بیماری می شود که فرد مبتلا به سختی رنج می کشد و دارای علایمی شامل: یبوست شدید، اسهال زرد رنگ و تب بالا می باشد.
در هفته سوم از بیماری، فرد وارد مرحله تب روده ای شده و دارای علایمی می باشد که شامل: بی حالی، کاهش شدید وزن بدن و ممکن است نفخ در ناحیه شکم نیز مشاهده شود. در هفته چهارم به تدریج علائم کم شده و دمای بدن بعد 7 تا 10 روز به حالت طبیعی باز می گردد اما ممکن بعد از دو هفته که تب پایین آمد سایر علائم نیز دوباره بروز کنند. علایمی که حیات بیمار را تهدید می کند در مرحله تب روده ای رخ می دهدPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYWxrZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxS
ZWNOdW0+MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2Fsa2VyLCBULlMuPC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1pY3JvYmlvbG9neTwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
PlcuQi4gU2F1bmRlcnMgQ29tcGFueTwvcHVibGlzaGVyPjxpc2JuPjk3ODA3MjE2NDY0MTE8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD1EdGxwQUFBQU1BQUo8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFyPjxSZWNOdW0+
MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24t
a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2
dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy
dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Z2lmY2kg
RXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0aG9yPjxhdXRob3I+RGVyeWEg
QXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRhbDwvYXV0aG9yPjxhdXRob3I+
RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0i
ZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTaujwvc3R5bGU+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+cnUsIDwvc3R5bGU+PHN0eWxl
IGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Y
ozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNoIGNoaWxkcmVuOiAzNyBjYXNl
cyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVuIDE5OTMgYW5kIDIwMDI8L3Rp
dGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp
Y2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVkaWF0cmljczogSW50ZXJuYXRp
b25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43NS04MDwv
cGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+
PFJlY051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48
Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTky
Y3QydHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv
dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv
cj5QYXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1
eWV0PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBK
b2huPC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZp
bmgsIEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldo
aXRlLCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+
PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xl
LXR1YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFt
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5
PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5h
bCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl
cz4yODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48
ZGF0ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYWxrZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxS
ZWNOdW0+MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2Fsa2VyLCBULlMuPC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1pY3JvYmlvbG9neTwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
PlcuQi4gU2F1bmRlcnMgQ29tcGFueTwvcHVibGlzaGVyPjxpc2JuPjk3ODA3MjE2NDY0MTE8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD1EdGxwQUFBQU1BQUo8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFyPjxSZWNOdW0+
MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24t
a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2
dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy
dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Z2lmY2kg
RXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0aG9yPjxhdXRob3I+RGVyeWEg
QXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRhbDwvYXV0aG9yPjxhdXRob3I+
RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0i
ZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTaujwvc3R5bGU+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+cnUsIDwvc3R5bGU+PHN0eWxl
IGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Y
ozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNoIGNoaWxkcmVuOiAzNyBjYXNl
cyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVuIDE5OTMgYW5kIDIwMDI8L3Rp
dGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp
Y2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVkaWF0cmljczogSW50ZXJuYXRp
b25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43NS04MDwv
cGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+
PFJlY051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48
Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTky
Y3QydHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv
dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv
cj5QYXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1
eWV0PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBK
b2huPC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZp
bmgsIEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldo
aXRlLCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+
PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xl
LXR1YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFt
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5
PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5h
bCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl
cz4yODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48
ZGF0ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE.DATA (6, 14, 15).
بیماری شبیه تب روده ای معمولا نسبت به حصبه دارای علائم خفیف تری می باشد و دارای عوارض شدید نمی باشد. دوره ی بهبود بیماری شبه حصبه که توسط سروتایپ پاراتایفی ایجاد می شود نسبت به حصبه کمتر می باشد.
شدیدترین عوارضی که طی بیماری ایجاد می شود، سوراخ شدن روده و خونریزی می باشد که معمولا در هفته سوم از بیماری ایجاد می شود. خونریزی روده با علایمی چون: شوک، دیده شدن خون در مدفوع و افت ناگهانی فشار می باشد. سوراخ شدن روده باعث ایجاد شرایط اوراژنسی می شود و فرد باید تحت مراقبت های ویژه قرار گیرد، این وضعیت به دلیل ورود محتویات روده به حفره شکمی طی سوراخ شدن روده کوچک یا بزرگ می باشدPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4y
MDA0PC9ZZWFyPjxSZWNOdW0+MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+Z2lmY2kgRXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0
aG9yPjxhdXRob3I+RGVyeWEgQXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRh
bDwvYXV0aG9yPjxhdXRob3I+RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBm
YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTa
ujwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
cnUsIDwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0i
MTc4IiBzaXplPSIxMDAlIj7Yozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm
YXVsdCIgc2l6ZT0iMTAwJSI+xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250
cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNo
IGNoaWxkcmVuOiAzNyBjYXNlcyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVu
IDE5OTMgYW5kIDIwMDI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2Fs
IFBhZWRpYXRyaWNzOiBJbnRlcm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVk
aWF0cmljczogSW50ZXJuYXRpb25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz43NS04MDwvcGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4yMDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4y
MDA0PC9ZZWFyPjxSZWNOdW0+MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+Z2lmY2kgRXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0
aG9yPjxhdXRob3I+RGVyeWEgQXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRh
bDwvYXV0aG9yPjxhdXRob3I+RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBm
YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTa
ujwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
cnUsIDwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0i
MTc4IiBzaXplPSIxMDAlIj7Yozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm
YXVsdCIgc2l6ZT0iMTAwJSI+xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250
cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNo
IGNoaWxkcmVuOiAzNyBjYXNlcyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVu
IDE5OTMgYW5kIDIwMDI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2Fs
IFBhZWRpYXRyaWNzOiBJbnRlcm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVk
aWF0cmljczogSW50ZXJuYXRpb25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz43NS04MDwvcGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4yMDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE.DATA (14, 15).
یکسری علائم غیر معمول نیز وجود دارد که شامل: التهاب لوزالمعده، مننژیت، عفونت کلیه یا مثانه، مشکلات روانی مثل توهم، سایکوز، میوکاردیت و عفونت ریوی می باشد که تمام این علائم آتیپیک می باشد. اگر درمان صورت نگیرد ممکن است فرد مبتلا دچار مرگ شود ولی اکثر افراد در کشورهای توسعه یافته با درمان فوری به سرعت درمان می یابندPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FcmdpbjwvQXV0aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJl
Y051bT4yMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5n
aWZjaSBFcmdpbjwvYXV0aG9yPjxhdXRob3I+Z3VyaXosIEhhbHVrPC9hdXRob3I+PGF1dGhvcj5E
ZXJ5YSBBeXNldiwgQWhtZXQ8L2F1dGhvcj48YXV0aG9yPkluY2UsIEVyZGFsPC9hdXRob3I+PGF1
dGhvcj5FcmRlbSwgQmlyc2VsPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBm
b250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5Ebzwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIg
Zm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7YpNq6PC9zdHlsZT48c3R5
bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5ydSwgPC9zdHlsZT48
c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNzgiIHNpemU9IjEw
MCUiPtijPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj7Fk2xrZXI8L3N0eWxlPjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5TYWxtb25lbGxhIGJhY3RlcmFlbWlhIGluIFR1cmtpc2ggY2hpbGRyZW46IDM3
IGNhc2VzIHNlZW4gaW4gYSB1bml2ZXJzaXR5IGhvc3BpdGFsIGJldHdlZW4gMTk5MyBhbmQgMjAw
MjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm5hbHMgb2YgVHJvcGljYWwgUGFlZGlhdHJpY3M6
IEludGVybmF0aW9uYWwgQ2hpbGQgSGVhbHRoPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl
cmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc1
LTgwPC9wYWdlcz48dm9sdW1lPjI0PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5
ZWFyPjIwMDQ8L3llYXI+PC9kYXRlcz48aXNibj4wMjcyLTQ5MzY8L2lzYm4+PHVybHM+PC91cmxz
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlBhcnJ5PC9BdXRob3I+PFllYXI+MTk5OTwv
WWVhcj48UmVjTnVtPjIyNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjI3PC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yMjc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlBhcnJ5LCBDaHJpc3RvcGhlciBNPC9hdXRob3I+PGF1dGhvcj5Ib2EsIE5ndXllbiBU
aGkgVHV5ZXQ8L2F1dGhvcj48YXV0aG9yPkRpZXAsIFRvIFNvbmc8L2F1dGhvcj48YXV0aG9yPldh
aW4sIEpvaG48L2F1dGhvcj48YXV0aG9yPkNoaW5oLCBOZ3V5ZW4gVHJhbjwvYXV0aG9yPjxhdXRo
b3I+VmluaCwgSGE8L2F1dGhvcj48YXV0aG9yPkhpZW4sIFRyYW4gVGluaDwvYXV0aG9yPjxhdXRo
b3I+V2hpdGUsIE5pY2hvbGFzIEo8L2F1dGhvcj48YXV0aG9yPkZhcnJhciwgSmVyZW15IEo8L2F1
dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VmFsdWUgb2YgYSBz
aW5nbGUtdHViZSBXaWRhbCB0ZXN0IGluIGRpYWdub3NpcyBvZiB0eXBob2lkIGZldmVyIGluIFZp
ZXRuYW08L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jp
b2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K
b3VybmFsIG9mIGNsaW5pY2FsIG1pY3JvYmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+
PHBhZ2VzPjI4ODItMjg4NjwvcGFnZXM+PHZvbHVtZT4zNzwvdm9sdW1lPjxudW1iZXI+OTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDA5NS0xMTM3PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DaGl1PC9BdXRob3I+
PFllYXI+MjAwNDwvWWVhcj48UmVjTnVtPjIzMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
MjMyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5Zndw
OXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzI8L2tleT48L2ZvcmVpZ24ta2V5cz48
cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkNoaXUsIFMuPC9hdXRob3I+PGF1dGhvcj5DaGl1LCBDLiBILjwv
YXV0aG9yPjxhdXRob3I+TGluLCBULiBZLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48YXV0aC1hZGRyZXNzPkRpdmlzaW9uIG9mIFBlZGlhdHJpYyBJbmZlY3Rpb3VzIERpc2Vhc2Vz
LCBEZXBhcnRtZW50IG9mIFBlZGlhdHJpY3MsIENoYW5nIEd1bmcgQ2hpbGRyZW4mYXBvcztzIEhv
c3BpdGFsLCA1IEZ1LUhzaW4gU3RyZWV0LCBLd2Vpc2hhbiwgVGFveXVhbiwgVGFpd2FuIDMzMywg
Uk9DLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlNhbG1vbmVsbGEgZW50ZXJpY2Egc2Vy
b3R5cGUgQ2hvbGVyYWVzdWlzIGluZmVjdGlvbiBpbiBhIG1lZGljYWwgY2VudGVyIGluIG5vcnRo
ZXJuIFRhaXdhbjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE1pY3JvYmlvbCBJbW11bm9sIElu
ZmVjdDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkog
TWljcm9iaW9sIEltbXVub2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
OTktMTAyPC9wYWdlcz48dm9sdW1lPjM3PC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGVkaXRp
b24+MjAwNC8wNi8wODwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWR1bHQ8L2tleXdvcmQ+
PGtleXdvcmQ+QWdlZDwva2V5d29yZD48a2V5d29yZD5BbnRpLUJhY3RlcmlhbCBBZ2VudHMvcGhh
cm1hY29sb2d5L3RoZXJhcGV1dGljIHVzZTwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJlbWlhL21p
Y3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DZXBoYWxvc3Bvcmlucy9waGFybWFjb2xvZ3kv
dGhlcmFwZXV0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPkZlY2VzL21pY3JvYmlvbG9neTwva2V5
d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+RmV2ZXIvZXRpb2xvZ3k8L2tl
eXdvcmQ+PGtleXdvcmQ+Rm9jYWwgSW5mZWN0aW9uL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5NaWNy
b2JpYWwgU2Vuc2l0aXZpdHkgVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8L2tl
eXdvcmQ+PGtleXdvcmQ+UmV0cm9zcGVjdGl2ZSBTdHVkaWVzPC9rZXl3b3JkPjxrZXl3b3JkPlNh
bG1vbmVsbGEgSW5mZWN0aW9ucy8qbWljcm9iaW9sb2d5LypwaHlzaW9wYXRob2xvZ3k8L2tleXdv
cmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSBlbnRlcmljYS9kcnVnIGVmZmVjdHMvKmlzb2xhdGlvbiAm
YW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+VGFpd2FuPC9rZXl3b3JkPjxrZXl3
b3JkPldvdW5kcyBhbmQgSW5qdXJpZXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+
PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xNjg0LTExODIgKFByaW50KSYjeEQ7MTY4NC0xMTgyIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTE4MTQ5MTwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy
eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTUxODE0OTE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVu
ZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FcmdpbjwvQXV0aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJl
Y051bT4yMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5n
aWZjaSBFcmdpbjwvYXV0aG9yPjxhdXRob3I+Z3VyaXosIEhhbHVrPC9hdXRob3I+PGF1dGhvcj5E
ZXJ5YSBBeXNldiwgQWhtZXQ8L2F1dGhvcj48YXV0aG9yPkluY2UsIEVyZGFsPC9hdXRob3I+PGF1
dGhvcj5FcmRlbSwgQmlyc2VsPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBm
b250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5Ebzwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIg
Zm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7YpNq6PC9zdHlsZT48c3R5
bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5ydSwgPC9zdHlsZT48
c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNzgiIHNpemU9IjEw
MCUiPtijPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj7Fk2xrZXI8L3N0eWxlPjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5TYWxtb25lbGxhIGJhY3RlcmFlbWlhIGluIFR1cmtpc2ggY2hpbGRyZW46IDM3
IGNhc2VzIHNlZW4gaW4gYSB1bml2ZXJzaXR5IGhvc3BpdGFsIGJldHdlZW4gMTk5MyBhbmQgMjAw
MjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm5hbHMgb2YgVHJvcGljYWwgUGFlZGlhdHJpY3M6
IEludGVybmF0aW9uYWwgQ2hpbGQgSGVhbHRoPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl
cmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc1
LTgwPC9wYWdlcz48dm9sdW1lPjI0PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5
ZWFyPjIwMDQ8L3llYXI+PC9kYXRlcz48aXNibj4wMjcyLTQ5MzY8L2lzYm4+PHVybHM+PC91cmxz
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlBhcnJ5PC9BdXRob3I+PFllYXI+MTk5OTwv
WWVhcj48UmVjTnVtPjIyNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjI3PC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yMjc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlBhcnJ5LCBDaHJpc3RvcGhlciBNPC9hdXRob3I+PGF1dGhvcj5Ib2EsIE5ndXllbiBU
aGkgVHV5ZXQ8L2F1dGhvcj48YXV0aG9yPkRpZXAsIFRvIFNvbmc8L2F1dGhvcj48YXV0aG9yPldh
aW4sIEpvaG48L2F1dGhvcj48YXV0aG9yPkNoaW5oLCBOZ3V5ZW4gVHJhbjwvYXV0aG9yPjxhdXRo
b3I+VmluaCwgSGE8L2F1dGhvcj48YXV0aG9yPkhpZW4sIFRyYW4gVGluaDwvYXV0aG9yPjxhdXRo
b3I+V2hpdGUsIE5pY2hvbGFzIEo8L2F1dGhvcj48YXV0aG9yPkZhcnJhciwgSmVyZW15IEo8L2F1
dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VmFsdWUgb2YgYSBz
aW5nbGUtdHViZSBXaWRhbCB0ZXN0IGluIGRpYWdub3NpcyBvZiB0eXBob2lkIGZldmVyIGluIFZp
ZXRuYW08L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jp
b2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K
b3VybmFsIG9mIGNsaW5pY2FsIG1pY3JvYmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+
PHBhZ2VzPjI4ODItMjg4NjwvcGFnZXM+PHZvbHVtZT4zNzwvdm9sdW1lPjxudW1iZXI+OTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDA5NS0xMTM3PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DaGl1PC9BdXRob3I+
PFllYXI+MjAwNDwvWWVhcj48UmVjTnVtPjIzMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
MjMyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5Zndw
OXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzI8L2tleT48L2ZvcmVpZ24ta2V5cz48
cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkNoaXUsIFMuPC9hdXRob3I+PGF1dGhvcj5DaGl1LCBDLiBILjwv
YXV0aG9yPjxhdXRob3I+TGluLCBULiBZLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48YXV0aC1hZGRyZXNzPkRpdmlzaW9uIG9mIFBlZGlhdHJpYyBJbmZlY3Rpb3VzIERpc2Vhc2Vz
LCBEZXBhcnRtZW50IG9mIFBlZGlhdHJpY3MsIENoYW5nIEd1bmcgQ2hpbGRyZW4mYXBvcztzIEhv
c3BpdGFsLCA1IEZ1LUhzaW4gU3RyZWV0LCBLd2Vpc2hhbiwgVGFveXVhbiwgVGFpd2FuIDMzMywg
Uk9DLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlNhbG1vbmVsbGEgZW50ZXJpY2Egc2Vy
b3R5cGUgQ2hvbGVyYWVzdWlzIGluZmVjdGlvbiBpbiBhIG1lZGljYWwgY2VudGVyIGluIG5vcnRo
ZXJuIFRhaXdhbjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE1pY3JvYmlvbCBJbW11bm9sIElu
ZmVjdDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkog
TWljcm9iaW9sIEltbXVub2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
OTktMTAyPC9wYWdlcz48dm9sdW1lPjM3PC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGVkaXRp
b24+MjAwNC8wNi8wODwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWR1bHQ8L2tleXdvcmQ+
PGtleXdvcmQ+QWdlZDwva2V5d29yZD48a2V5d29yZD5BbnRpLUJhY3RlcmlhbCBBZ2VudHMvcGhh
cm1hY29sb2d5L3RoZXJhcGV1dGljIHVzZTwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJlbWlhL21p
Y3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DZXBoYWxvc3Bvcmlucy9waGFybWFjb2xvZ3kv
dGhlcmFwZXV0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPkZlY2VzL21pY3JvYmlvbG9neTwva2V5
d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+RmV2ZXIvZXRpb2xvZ3k8L2tl
eXdvcmQ+PGtleXdvcmQ+Rm9jYWwgSW5mZWN0aW9uL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5NaWNy
b2JpYWwgU2Vuc2l0aXZpdHkgVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8L2tl
eXdvcmQ+PGtleXdvcmQ+UmV0cm9zcGVjdGl2ZSBTdHVkaWVzPC9rZXl3b3JkPjxrZXl3b3JkPlNh
bG1vbmVsbGEgSW5mZWN0aW9ucy8qbWljcm9iaW9sb2d5LypwaHlzaW9wYXRob2xvZ3k8L2tleXdv
cmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSBlbnRlcmljYS9kcnVnIGVmZmVjdHMvKmlzb2xhdGlvbiAm
YW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+VGFpd2FuPC9rZXl3b3JkPjxrZXl3
b3JkPldvdW5kcyBhbmQgSW5qdXJpZXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+
PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xNjg0LTExODIgKFByaW50KSYjeEQ7MTY4NC0xMTgyIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTE4MTQ5MTwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy
eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTUxODE0OTE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVu
ZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA (14-16).
سپتی سمی
سپتی سمی دارای علایمی است که شامل: باکتریمی، بی اشتهایی، کاهش وزن بدن، کم خونی، بزرگ شدن کبد و طحال و تب ناگهانی می باشد. پس از تهاجم به ایلئوم در بیماران دارای کم خونی ممکن است عفونت به سمت سپتی سمی سوق داده شود. درمان آنتی بیوتیکی سپتی سمی شامل: سفتریاکسون، سپیروفلوکساسین و سفوپرازون می باشد و باید از افراد مبتلا به سپتی سمی کشت خون انجام شود بدلیل آنکه باکتری در داخل خون این افراد می باشد. ممکن است باکتریمی سبب عفونت در جاهای غیر عادی بدلیل وارد شدن ارگانیسم به اندام های مختلف شود. همچنین باعث سپسیس نیز می شود ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
ب) گاستروانتریت
سالمونلا با تولید انتروتوکسین و تهاجم به دیواره ی روده باعث ایجاد علایمی چون استفراغ، اسهال و تهوع می شود. بیشتر سروتایپ های سالمونلا می توانند باعث ایجاد انتریت می گردند.وجودPMN ها در مدفوع باعث اثبات هجوم باکتری به بافت ها شود اما بطور غیر معمول سالمونلا از دستگاه گوارش به سایر اندام های بدن منتقل می گردد.
سالمونلا از طریق محصولات دامی آلوده به انسان انتقال می یابد و این عفونت بین انسان و دام مشترک می باشد و این یک عفونت زئونوز می باشد.
ممکن است علاوه بر فراورده های لبنی آلوده به سالمونلا، آب شده به مدفوع یا ادرار حیوانات یا غذا از دیگر منابع انتریت ناشی از سالمونلا می باشند ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
ج) انترو کولیت
این بیماری تظاهر عفونت سالمونلایی می باشد. در ایالات متحده آمریکا، سالمونلا تایفی موریوم و سالمونلا انتریتیدیس غالب هستند، اما انتروکولیت توسط هرکدام از 1400 سروتایپ گروه یک سالمونلا می تواند ایجاد شود. 8 تا 48 ساعت پس از خورده شدن سالمونلا، تهوع، اسهال پر حجم، سردرد، استفراغ روی می دهد و تعداد کمی گلبول سفید در مدفوع دیده می شود. تب خفیف، شایع است ولی دوره بیماری 2 تا 3 روز پایان می پذیرد.
ضایعات التهابی در روده کوچک و روده بزرگ وجود دارد. باکتریمی غیر شایع است( 2 تا 4 درصد) به غیر از مواردی که بیمار دارای نقص سیستم ایمنی است. نتیجه کشت خون منفی است ولی نتیجه کشت مدفوع برای سالمونلاها مثبت بوده و ممکن است تا چند هفته پس از رفع علائم بالینی مثبت باقی بماند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-8. اپیدمیولوژی سالمونلا
سالمونلا باعث مسومیت های غذایی، حصبه، سپتی سمی و انتروکولیت می شود و از طریق دهانی وارد بدن انسان و سایر حیوانات می شودPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TWlsbGVyPC9BdXRob3I+PFllYXI+
MjAwMDwvWWVhcj48UmVjTnVtPjIzNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM2PC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4
YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5
cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0
aG9ycz48YXV0aG9yPk1pbGxlciwgU2FtdWVsIEk8L2F1dGhvcj48YXV0aG9yPlBlZ3VlcywgREE8
L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxs
YSBzcGVjaWVzLCBpbmNsdWRpbmcgU2FsbW9uZWxsYSB0eXBoaTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5QcmluY2lwbGVzIGFuZCBwcmFjdGljZSBvZiBpbmZlY3Rpb3VzIGRpc2Vhc2VzPC9zZWNv
bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJpbmNpcGxlcyBh
bmQgcHJhY3RpY2Ugb2YgaW5mZWN0aW91cyBkaXNlYXNlczwvZnVsbC10aXRsZT48L3BlcmlvZGlj
YWw+PHBhZ2VzPjIzNDQtMjM2MzwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGRhdGVzPjx5ZWFy
PjIwMDA8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB
dXRob3I+TG9uZ288L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjM3PC9SZWNOdW0+
PHJlY29yZD48cmVjLW51bWJlcj4yMzc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIzNzwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TG9uZ28sIEQuPC9hdXRob3I+PGF1dGhvcj5GYXVj
aSwgQS48L2F1dGhvcj48YXV0aG9yPkthc3BlciwgRC48L2F1dGhvcj48YXV0aG9yPkhhdXNlciwg
Uy48L2F1dGhvcj48YXV0aG9yPkphbWVzb24sIEouPC9hdXRob3I+PGF1dGhvcj5Mb3NjYWx6bywg
Si48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SGFycmlz
b24mYXBvcztzIFByaW5jaXBsZXMgb2YgSW50ZXJuYWwgTWVkaWNpbmUsIDE4dGggRWRpdGlvbjwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
Pk1jR3Jhdy1IaWxsIEVkdWNhdGlvbjwvcHVibGlzaGVyPjxpc2JuPjk3ODAwNzE3NDg5MDI8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD03Z3hqTVY4aENsc0M8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TWlsbGVyPC9BdXRob3I+PFllYXI+
MjAwMDwvWWVhcj48UmVjTnVtPjIzNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM2PC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4
YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5
cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0
aG9ycz48YXV0aG9yPk1pbGxlciwgU2FtdWVsIEk8L2F1dGhvcj48YXV0aG9yPlBlZ3VlcywgREE8
L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxs
YSBzcGVjaWVzLCBpbmNsdWRpbmcgU2FsbW9uZWxsYSB0eXBoaTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5QcmluY2lwbGVzIGFuZCBwcmFjdGljZSBvZiBpbmZlY3Rpb3VzIGRpc2Vhc2VzPC9zZWNv
bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJpbmNpcGxlcyBh
bmQgcHJhY3RpY2Ugb2YgaW5mZWN0aW91cyBkaXNlYXNlczwvZnVsbC10aXRsZT48L3BlcmlvZGlj
YWw+PHBhZ2VzPjIzNDQtMjM2MzwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGRhdGVzPjx5ZWFy
PjIwMDA8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB
dXRob3I+TG9uZ288L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjM3PC9SZWNOdW0+
PHJlY29yZD48cmVjLW51bWJlcj4yMzc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIzNzwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TG9uZ28sIEQuPC9hdXRob3I+PGF1dGhvcj5GYXVj
aSwgQS48L2F1dGhvcj48YXV0aG9yPkthc3BlciwgRC48L2F1dGhvcj48YXV0aG9yPkhhdXNlciwg
Uy48L2F1dGhvcj48YXV0aG9yPkphbWVzb24sIEouPC9hdXRob3I+PGF1dGhvcj5Mb3NjYWx6bywg
Si48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SGFycmlz
b24mYXBvcztzIFByaW5jaXBsZXMgb2YgSW50ZXJuYWwgTWVkaWNpbmUsIDE4dGggRWRpdGlvbjwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
Pk1jR3Jhdy1IaWxsIEVkdWNhdGlvbjwvcHVibGlzaGVyPjxpc2JuPjk3ODAwNzE3NDg5MDI8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD03Z3hqTVY4aENsc0M8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA (15, 17, 18).
در آمریکا انتریت سومین فرم شایع مسومیت غذایی است و سالیانه حدود 50000 مورد انتریت گزارش می شود که اکثرا به وسیله سالمونلا انتریکا سرو تایپ تایفی موریوم می باشد ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
خانوم ها سالمونلا را در داخل کیسه صفراوی خود حمل می نمایند، در حالیکه هیچگونه علایمی از خود بروز نمی دهنند به این دلیل که سالمونلا دارای تمایل بالا به لوکالیزه شدن در کیسه صفرا می باشد و باعث می شود که این ناقلان برای سالها سالمونلا را به محیط اطراف منتقل نمایند.
مقدار حدود 10⁶ تا 10⁷ دوز از سالمونلا برای ایجاد عفونت نیاز است این به دلیل آن می باشد که سالمونلا به اسید معده حساس بوده که این خصوصیت بر خلاف شیگلا می باشد. افرادی که دارو های ضد اسید معده مصرف می کنند در برابر عفونت با سالمونلا حساس تر می باشند.
مدفوع افرادی که بیماری تحت بالینی نامحسوسی دارند و یا آنهایی که ناقل هستند نسبت به افرادی که وضعیت بالینی آشکاری دارند، منبع آلودگی بسیار مهم تری هستند، مثلا زمانی که ناقلینی که در تهیه مواد غذایی شاغل هستند و ارگانیسم را دفع می نمایند. بسیاری از حیوانات از جمله دام ها، جوندگان و ماکیان به طور طبیعی با انواعی از سالمونلا آلوده می شوند و باکتری در بافت های آنها( مثل گوشت)، مدفوع و تخم ها وجود دارد. در مورد شیوع بالای سالمونلاها در محصولات مرغ تجاری به طور گسترده اطلاع رسانی شده است. در ایالات متحده آمریکا بروز تب تیفوئید کاهش یافته ولی وقوع سایر عفونت های سالمونلایی به طور چشمگیری افزایش یافته است. به احتمال زیاد مشکل در استفاده وسیع از خوراک دام و طیور حاوی مواد دارویی ضد میکروبی است که شرایط برای رشد سویه های مقاوم سالمونلا تسهیل کرده و این سویه ها به انسان انتقال یافته و می تواند در انسان بیماری ایجاد نمایند. منابعی که ممکن سبب عفونت با سالمونلا در انسان شوند شامل: آب، شیر و سایر فراورده های لبنی، صدف، تخم مرغ پودر یا فریز شده، گوشت و فراورده های گوشتی، رنگ های با منشاء حیوانی، مواد مخدر مثل ماری جوانا و حیوانات دست آموز خانگی می باشند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-9، تشخیص آزمایشگاهی سالمونلا
سالمونلا درمحیطهای S.S Agar، بیسموت سولفیت، بریلیانت گرین و HEA-SS رشد می کند ولی سایر کلی فرم ها همچون اشرشیا کلی بدلیل وجود آنتی بیوتیک ها قادر به رشد بر روی این محیط ها نیستند. در عفونت گاستروانتریت ناشی از سالمونلا، در اسمیر نازک از مدفوع اسهالی، گلبول های سفید همراه با باکتری سالمونلا در زیر میکروسکوپ دیده خواهد شد. کلونی های سالمونلا بر روی محیط بلاد آگار به صورت محدب و مرطوب به رنگ خاکستری به قطر دو تا سه میلی متر دیده می شود که این کلونی ها بعد گذشت بیست و چهار ساعت در دمای 37 درجه سانتی گراد ایجاد می گردد. در محیط مکانکی آگار کلونی های سالمونلا بیرنگ دیده می شود و رنگ محیط بدلیل عدم تخمیر قند لاکتوز زرد کهربایی می گردد ولی سایر باکتری های گرم منفی که جزء خانواده ی انترو باکتریاسه می باشند و تخمیر کننده ی قند لاکتوز هستند، برروی محیط مکانکی اگار کلونی هایی به رنگ صورتی ایجاد می نمایند. سالمونلا و شیگلا بر روی محیط های سلینت F و محیط مایع GN به سرعت تکثیر پیدا می کنند به این دلیل که این محیط ها مانع از رشد باکتری های گرم مثبت می گردند ADDIN EN.CITE <EndNote><Cite><Author>Budowle</Author><Year>2005</Year><RecNum>238</RecNum><record><rec-number>238</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">238</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Budowle, Bruce</author><author>Schutzer, Steven E</author><author>Ascher, Michael S</author><author>Atlas, Ronald M</author><author>Burans, James P</author><author>Chakraborty, Ranajit</author><author>Dunn, John J</author><author>Fraser, Claire M</author><author>Franz, David R</author><author>Leighton, Terrance J</author></authors></contributors><titles><title>Toward a sys-- of microbial forensics: from sample collection to interpretation of evidence</title><secondary-title>Applied and environmental microbiology</secondary-title></titles><periodical><full-title>Applied and environmental microbiology</full-title></periodical><pages>2209-2213</pages><volume>71</volume><number>5</number><dates><year>2005</year></dates><isbn>0099-2240</isbn><urls></urls></record></Cite></EndNote>(19).
الف) تست های سرولوژیک
بررسی تیتر آنتی بادی و وجود آنتی بادی در سرم بیماران بویسله ی تست ویدال مشخص می گردد. آگلوتیناسیون که در اثر واکنش مستقیم بین آنتی ژنهای پیکری(O) و آنتی ژن تاژک(H) با آنتی بادی ضد آنها ایجاد می شود، اساس تست ویدال می باشد. تست ویدال به دو صورت روش اسلاید و روش لوله ای صورت می گیرد. روش اسلایدی به صورت سریع و روش لوله ای به صورت کند، صورت می پذیرد. به علت پایین بودن سرعت روش لوله ای، این روش تنها برای آنتی ژن هایی که در روش اسلایدی مثبت شده اند، صورت می پذیرد. با وجود اینکه تست ویدال آسان می باشد ولی میزان دقت و حساسیت آن پایین است ADDIN EN.CITE <EndNote><Cite><Author>Bhutta</Author><Year>2006</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">239</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhutta, Zulfiqar A</author></authors></contributors><titles><title>Current concepts in the diagnosis and treatment of typhoid fever</title><secondary-title>BMJ</secondary-title></titles><periodical><full-title>BMJ</full-title></periodical><pages>78-82</pages><volume>333</volume><number>7558</number><dates><year>2006</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(20) .
حساسیت و دقت روشهای سنتی اعم از کشت و تست های سرولوژی پایین است، به این دلیل روشهای ژنوتایپینگ که بر مبنای ژنوم باکتری می باشد جایگزین روش های فنوتایپینگ شده است. از روش های ژنوتایپینگ که برای شناسایی سالمونلا تایفی استفاده می شود می توان به Nested-PCR با استفاده از پرایمر های HI-d اشاره نمود ADDIN EN.CITE <EndNote><Cite><Author>Bhutta</Author><Year>2006</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">239</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhutta, Zulfiqar A</author></authors></contributors><titles><title>Current concepts in the diagnosis and treatment of typhoid fever</title><secondary-title>BMJ</secondary-title></titles><periodical><full-title>BMJ</full-title></periodical><pages>78-82</pages><volume>333</volume><number>7558</number><dates><year>2006</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(20) .
روش های جدیدی همچون Tubex و Typhidot جایگزین تست ویدال شده است. این تست ها قادر به شناسایی آنتی بادی های IgM ایجاد شده در میزبان بر ضد آنتی ژن های سالمونلا تایفی می باشد ADDIN EN.CITE <EndNote><Cite><Author>Bhutta</Author><Year>2006</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">239</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhutta, Zulfiqar A</author></authors></contributors><titles><title>Current concepts in the diagnosis and treatment of typhoid fever</title><secondary-title>BMJ</secondary-title></titles><periodical><full-title>BMJ</full-title></periodical><pages>78-82</pages><volume>333</volume><number>7558</number><dates><year>2006</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(20) .
ب) کشت مدفوع
نمونه هایی که مشکوک به عفونت با سالمونلا هستند بر روی محیط های انتخابی SS Agar و EMB وهمچنین محیط های غنی GN و سلینت F کشت داده می شوند. پس از کشت این محیط ها را داخل انکوباکتور در دمای 37 درحه سانتی گراد به مدت یک شبانه روز قرار می دهند.
بر روی کلونی های بیرنگ و SH₂ دار تست های بیوشیمیایی مناسب را انجام می دهند. سالمونلا فاقد آنزیم اوره از می باشد و در نتیجه تست اوره آن منفی است. تمام سالمونلا ها به جزء سالمونلا پارا تایفی A برو ی محیط کلیگر آیرون آگار، SH₂ تولید می نمایند. تست IMVIC برای سالمونلا پاراتایفی B و C به صورت +- و +- می باشد و این تست برای سالمونلا پارا تایفی A به صورت +- بوده و برای سالمونلا تایفی به صورت – می باشد.
هنگامیکه سالمونلا تایفی مزمن شود، در داخل کیسه صفرا کلونیزه می شود و باکتری از طریق مدفوع از بدن خارج می شود و سالمونلا را می تران از طریق کشت مدفوع جدا نمود ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(4,6).
در مورد عفونت های گاستروانتریت و انتروکولیت باید از بیمار کشت مدفوع صورت پذیرد اما از بیماران مشکوک به تب روده ای باید کشت خون صورت گیرد. سروتایپینگ به این صورت انجام می شود که یک قطره از آنتی سرم O بر روی لام ریخته و با یک کلونی از باکتری مخلوط می کنیم، اگر آگلوتیناسیون بعد از گذشت یک الی دو دقیقه صورت گرفت، مثبت بودن تست را مشخص می کند. در سالمونلا انتریتیدیس، سالمونلا پاراتایفی C و سالمونلا تایفی آنتی ژن کپسولی بر روی آنتی ژن پیکری قرار می گیرد در نتیجه ممکن است باکتری با هیچکدام از آنتی سرم های O واکنش ندهد و لخته ایجاد نشود ADDIN EN.CITE <EndNote><Cite><Author>Budowle</Author><Year>2005</Year><RecNum>238</RecNum><record><rec-number>238</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">238</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Budowle, Bruce</author><author>Schutzer, Steven E</author><author>Ascher, Michael S</author><author>Atlas, Ronald M</author><author>Burans, James P</author><author>Chakraborty, Ranajit</author><author>Dunn, John J</author><author>Fraser, Claire M</author><author>Franz, David R</author><author>Leighton, Terrance J</author></authors></contributors><titles><title>Toward a sys-- of microbial forensics: from sample collection to interpretation of evidence</title><secondary-title>Applied and environmental microbiology</secondary-title></titles><periodical><full-title>Applied and environmental microbiology</full-title></periodical><pages>2209-2213</pages><volume>71</volume><number>5</number><dates><year>2005</year></dates><isbn>0099-2240</isbn><urls></urls></record></Cite><Cite><Author>Schaechter</Author><Year>2001</Year><RecNum>240</RecNum><record><rec-number>240</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">240</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Schaechter, Moselio</author></authors></contributors><titles><title>Escherichia coli andSalmonella 2000: the View From Here</title><secondary-title>Microbiology and molecular biology reviews</secondary-title></titles><periodical><full-title>Microbiology and molecular biology reviews</full-title></periodical><pages>119-130</pages><volume>65</volume><number>1</number><dates><year>2001</year></dates><isbn>1092-2172</isbn><urls></urls></record></Cite></EndNote>(19,21) .
ج) کشت خون
سالمونلا تایفی بر روی محیط کلیگر آیرون آگار در قسمت شیب دار محیط به صورت لکه های سیاه رنگ، SH₂ تولید می کند. می توان از طریق تست لیزین، سالمونلا را از سیتروباکتر تشخیص داد. سالمونلا در تست لیزین دآمیناز منفی بوده اما در تست لیزین دکربوکسیلاز مثبت است.
برای انجام کشت خون، باید از بیمار حدود 10 میلی لیتر در هنگام تب خون گرفت و خون را در محیط تریپتیکاز سوی براث تزریق نمود و محیط را در داخل انکوباتور در دمای 37 درجه سانتیگراد به مدت یک شبانه روز قرار داد. در تب روده ای کشت خون در هفته اول مثبت می باشدPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWRvd2xlPC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjIzODwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM4PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJj
dDJ0d3pldncyOXp3Ij4yMzg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91
cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y
PkJ1ZG93bGUsIEJydWNlPC9hdXRob3I+PGF1dGhvcj5TY2h1dHplciwgU3RldmVuIEU8L2F1dGhv
cj48YXV0aG9yPkFzY2hlciwgTWljaGFlbCBTPC9hdXRob3I+PGF1dGhvcj5BdGxhcywgUm9uYWxk
IE08L2F1dGhvcj48YXV0aG9yPkJ1cmFucywgSmFtZXMgUDwvYXV0aG9yPjxhdXRob3I+Q2hha3Jh
Ym9ydHksIFJhbmFqaXQ8L2F1dGhvcj48YXV0aG9yPkR1bm4sIEpvaG4gSjwvYXV0aG9yPjxhdXRo
b3I+RnJhc2VyLCBDbGFpcmUgTTwvYXV0aG9yPjxhdXRob3I+RnJhbnosIERhdmlkIFI8L2F1dGhv
cj48YXV0aG9yPkxlaWdodG9uLCBUZXJyYW5jZSBKPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp
YnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRvd2FyZCBhIHN5c3RlbSBvZiBtaWNyb2JpYWwgZm9yZW5z
aWNzOiBmcm9tIHNhbXBsZSBjb2xsZWN0aW9uIHRvIGludGVycHJldGF0aW9uIG9mIGV2aWRlbmNl
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFwcGxpZWQgYW5kIGVudmlyb25tZW50YWwgbWljcm9i
aW9sb2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
QXBwbGllZCBhbmQgZW52aXJvbm1lbnRhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJp
b2RpY2FsPjxwYWdlcz4yMjA5LTIyMTM8L3BhZ2VzPjx2b2x1bWU+NzE8L3ZvbHVtZT48bnVtYmVy
PjU8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTktMjI0
MDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Qmh1dHRh
PC9BdXRob3I+PFllYXI+MjAwNjwvWWVhcj48UmVjTnVtPjIzOTwvUmVjTnVtPjxyZWNvcmQ+PHJl
Yy1udW1iZXI+MjM5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p
ZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzk8L2tleT48L2ZvcmVp
Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv
bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJodXR0YSwgWnVsZmlxYXIgQTwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DdXJyZW50IGNvbmNlcHRzIGlu
IHRoZSBkaWFnbm9zaXMgYW5kIHRyZWF0bWVudCBvZiB0eXBob2lkIGZldmVyPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkJNSjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm
dWxsLXRpdGxlPkJNSjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc4LTgyPC9wYWdl
cz48dm9sdW1lPjMzMzwvdm9sdW1lPjxudW1iZXI+NzU1ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk1OS04MTM4PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5TY2hhZWNodGVyPC9BdXRob3I+PFllYXI+MjAwMTwv
WWVhcj48UmVjTnVtPjI0MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjQwPC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yNDA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlNjaGFlY2h0ZXIsIE1vc2VsaW88L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+RXNjaGVyaWNoaWEgY29saSBhbmRTYWxtb25lbGxhIDIwMDA6IHRo
ZSBWaWV3IEZyb20gSGVyZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5k
IG1vbGVjdWxhciBiaW9sb2d5IHJldmlld3M8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy
aW9kaWNhbD48ZnVsbC10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5kIG1vbGVjdWxhciBiaW9sb2d5IHJl
dmlld3M8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTktMTMwPC9wYWdlcz48dm9s
dW1lPjY1PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48aXNibj4xMDkyLTIxNzI8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWRvd2xlPC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjIzODwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM4PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJj
dDJ0d3pldncyOXp3Ij4yMzg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91
cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y
PkJ1ZG93bGUsIEJydWNlPC9hdXRob3I+PGF1dGhvcj5TY2h1dHplciwgU3RldmVuIEU8L2F1dGhv
cj48YXV0aG9yPkFzY2hlciwgTWljaGFlbCBTPC9hdXRob3I+PGF1dGhvcj5BdGxhcywgUm9uYWxk
IE08L2F1dGhvcj48YXV0aG9yPkJ1cmFucywgSmFtZXMgUDwvYXV0aG9yPjxhdXRob3I+Q2hha3Jh
Ym9ydHksIFJhbmFqaXQ8L2F1dGhvcj48YXV0aG9yPkR1bm4sIEpvaG4gSjwvYXV0aG9yPjxhdXRo
b3I+RnJhc2VyLCBDbGFpcmUgTTwvYXV0aG9yPjxhdXRob3I+RnJhbnosIERhdmlkIFI8L2F1dGhv
cj48YXV0aG9yPkxlaWdodG9uLCBUZXJyYW5jZSBKPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp
YnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRvd2FyZCBhIHN5c3RlbSBvZiBtaWNyb2JpYWwgZm9yZW5z
aWNzOiBmcm9tIHNhbXBsZSBjb2xsZWN0aW9uIHRvIGludGVycHJldGF0aW9uIG9mIGV2aWRlbmNl
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFwcGxpZWQgYW5kIGVudmlyb25tZW50YWwgbWljcm9i
aW9sb2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
QXBwbGllZCBhbmQgZW52aXJvbm1lbnRhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJp
b2RpY2FsPjxwYWdlcz4yMjA5LTIyMTM8L3BhZ2VzPjx2b2x1bWU+NzE8L3ZvbHVtZT48bnVtYmVy
PjU8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTktMjI0
MDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Qmh1dHRh
PC9BdXRob3I+PFllYXI+MjAwNjwvWWVhcj48UmVjTnVtPjIzOTwvUmVjTnVtPjxyZWNvcmQ+PHJl
Yy1udW1iZXI+MjM5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p
ZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzk8L2tleT48L2ZvcmVp
Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv
bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJodXR0YSwgWnVsZmlxYXIgQTwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DdXJyZW50IGNvbmNlcHRzIGlu
IHRoZSBkaWFnbm9zaXMgYW5kIHRyZWF0bWVudCBvZiB0eXBob2lkIGZldmVyPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkJNSjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm
dWxsLXRpdGxlPkJNSjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc4LTgyPC9wYWdl
cz48dm9sdW1lPjMzMzwvdm9sdW1lPjxudW1iZXI+NzU1ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk1OS04MTM4PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5TY2hhZWNodGVyPC9BdXRob3I+PFllYXI+MjAwMTwv
WWVhcj48UmVjTnVtPjI0MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjQwPC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yNDA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlNjaGFlY2h0ZXIsIE1vc2VsaW88L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+RXNjaGVyaWNoaWEgY29saSBhbmRTYWxtb25lbGxhIDIwMDA6IHRo
ZSBWaWV3IEZyb20gSGVyZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5k
IG1vbGVjdWxhciBiaW9sb2d5IHJldmlld3M8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy
aW9kaWNhbD48ZnVsbC10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5kIG1vbGVjdWxhciBiaW9sb2d5IHJl
dmlld3M8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTktMTMwPC9wYWdlcz48dm9s
dW1lPjY1PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48aXNibj4xMDkyLTIxNzI8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE.DATA (19-21).
1-2-10. پیشگیری و کنترل
معیار های بهداشتی برای جلوگیری از آلودگی غذا و آب توسط جوندگان و سایر حیواناتی که سالمونلا را از خود دفع می کنند، باید در نظر گرفته شود. محصولات طیور، گوشت و تخم مرغ های آلوده باید به خوبی پخته شوند. افراد ناقل نباید در کار تهیه مواد غذایی مشغول شوند و نظارت و احتیاط های شدید بهداشتی باید انجام شود.
دو واکسن تیفوئید هم اکنون در ایالات متحده آمریکا در دسترس می باشد. یک واکسن خوراکی تخفیف حدت یافته و یک واکسن از کپسول پلی ساکاریدی Vi که داخل ماهیچه تزریق می گردد. واکسیناسیون برای افرادی که به مناطق اندمیک سفر می کنند به خصوص آنهایی که در نظر دارند به مناطق روستایی که انتخاب های غذایی محدودی دارند بروند، توصیه می شود. هر واکسن کارایی در حدود 50 تا 80% دارد. زمان مورد نیاز برای واکسیناسیون اولیه و محدودیت های سنی برای هر واکسن متفاوت می باشد و افراد باید با وب سایت پیشگیری و کنترل بیماری ها مراجعه کرده و یا با یک کلینیک مخصوص مسافران مشورت نمایند تا بر اساس آخرین اطلاعات مربوط به واکسن عمل شود ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-11، ایمنی
عفونت با سالمونلا تایفی و سالمونلا پاراتایفی معمولا درجاتی از ایمنی را در افراد ایجاد می نماید. عفونت مجدد می تواند اتفاق بیوفتد اما نسبت به عفونت نخست، شدت کمتری دارد. آنتی بادی ها در گردش خون علیه آنتی ژن های O و Vi در ایمنی علیه عفونت و بیماری نقش ایفا می کند. البته امکان عود بیماری ظرف دو الی سه هفته و با وجود حضور آنتی بادی ها امکان پذیر می باشد. IgA ترشحی می تواند جلوی اتصال سالمونلا ها را به اپیتلیوم روده بگیرد.افرادی که هموگلوبین نوع S/S دارند و دارای بیماری سلول های داسی می باشند، حساسیت بیشتری به عفونت های سالمونلایی به خصوص استئو میلیت دارند. افرادی که هموگلوبین A/S دارند( خصلت سلول های داسی) بیش از افراد عادی( آنهایی که هموگلوبین نوع A/A دارند) حساس هستند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record><