=27

3. گیرنده های سلولی
4. اسیدهای نوکلئیک DNA یا RNA
5. میکرو ارگانیسم یا سلول کامل
6. بافت
7. گیرنده های سنتتیک
آشکارساز و مبدل: که پس از واکنشِ ماده‌ای خاص با پذیرنده‌هایِ زیستی، وارد عمل می‌شوند و می‌توانند نوع و مقدارِ واکنش را با روش‌هایِ مختلفِ فیزیکی-شیمایی کرده (مثلاً با بررسیِ تغییرهایِ الکتروشیمیایی، نوری، جرمی یا حرارتیِ قبل و بعد از واکنش) و به وسیله‌ی سیگنال‌هایِ مناسب به پردازنده ارسال کنند.
انواع متداول مبدل های مورد استفاده در بیوسنسورها شامل:
سنسورهای الکتروشیمیایی
مبدل های الکتروشیمیایی به سه دسته پتانسیومتری تقسیم می شوند (این روش مبتنی بر اندازه گیری پتانسیل یک پیل در جریان صفر است). این پتانسیل با لگاریتم غلظت ماده مورد سنجش متناسب است، (ولتامتری) یک پتانسیل به پیل اعمال می شود تا اکسایش (یا کاهش) ماده مورد سنجش اتفاق افتد و یک افزایش یا کاهش در جریان پیل ایجاد شود. این روش به آمپرمتری معروف است و رسانایی سنجی محلول های حاوی یون هادی الکترون هستند. بزرگی این رسانایی در اثر واکنش شیمیایی تغییر می یابد.رابطه بین رسانایی و غلظت به طبیعت واکنش وابسته است.
سنسور های نوری( لومینسانس، جذب و تشدید پلاسمون سطح )
روش های مورد استفاده در بیوسنسورهای نوری شامل طیف سنجی جذب، طیف سنجی فلورسانس، طیف سنجی انعکاس داخلی، پراش نور است.
این سنسورها دارای دو نوع حساس به تغییر جرم و حرارتی می باشند.
تمام فرایندهای شیمیایی با تولید یا جذب انرژی همراه هستند. این حرارت را می توان با یک ترمیستور حساس اندازه گیری کرد و آن را به میزان واکنش نسبت داد.
پردازنده های سیگنال که عمدتا مسئول برای نمایش نتایج و انجام محاسبات حسگر هستند.
حسگرهای زیستی طی سالهای اخیر مورد توجه بسیاری از مراکز تحقیقاتی قرار گرفته است. حسگرهای زیستی یا سنسورهای بر پایه مواد بیولوژیکی اکنون گستره ی وسیعی از کاربردها نظیر صنایع دارویی، صنایع خوراکی، علوم محیطی، صنایع نظامی بخصوص شاخه Biowar و ... را شامل می شود.
به طور کلی میتوان گفت حسگر های زیستی یک گروه از سیستمهای اندازه گیری می باشند و طراحی آنها بر مبنای شناسایی انتخابی آنالیتها بر اساس اجزا بیولوژیک وآشکارسازهای فیزیکی و شیمیایی صورت می پذیرد
از آنجا که حسگر های زیستی ابزاری توانمند جهت شناسایی مولکول های زیستی می باشند، امروزه از آنها در علوم مختلف پزشکی، صنایع شیمیایی، صنایع غذایی، مانیتورینگ محیط زیست، تولید محصولات دارویی، بهداشتی و غیره بهره می گیرند.در واقع این حسگرها ابزاری توانمند جهت شناسایی مولکولهای زیستی می باشند. حواس بویایی و چشایی انسان که به شناسایی بوها و طعمهای مختلف می پردازد و یا سیستم ایمنی بدن که میلیونها نوع مولکول مختلف را شناسایی می کند، نمونه هایی از حسگرهای زیستی طبیعی می باشند. بیشترین کاربرد حسگرهای زیستی در تشخیص های پزشکی و علوم آزمایشگاهی است، در حال حاضر بیوسنسور های گلوکز از موفق ترین بیوسنسور های موجود در بازار بوده که برای اندازه گیری غلظت گلوکز خون بیماران دیابتی استفاده می شود.
در پانکراس بیماران دیابتی به میزان کافی انسولین تولید نمی‌شود. در این گونه موارد برای تنظیم مصرف انسولین، سنجش مداوم میزان گلوکز خون ضروری است. این ابزار به بیماران مبتلا به دیابت کمک می کند تا در طول روز به سنجش سطح گلوکز خون خود پرداخته و در زمان های مورد نیاز انسولین تزریق کنند.
کاربردهای مختلفی برای حسگرهای زیستی در پزشکی و بالین متصور است که در ذیل اشاره می شود:
**تشخیص ودرمان بیماریها ( سرطان، دیابت و ......)
** تشخیص بیماریها در سطح ژن( سرطان، دیابت و ......)
**تشخیص عوامل بیماریزا
**اندازه گیری داروها و متابولیتهای آنها، کشف داروهای جدید و ارزیابی فعالیت آنها
** ارزیابی و اندازه گیری آنالیتها ی موجود در نمونه بیولوژیک
** تشخیص سریع بیماریها با استفاده از تستهای سریع یا Point-of- care ، ویژگی این تستها سرعت و ارزان بودن روش آزمایش است.
نانوحسگرهای زیستی
با ورود علوم و فناوری نانو و فراهم شدن امکان ساخت الکترودهایی در مقیاس بسیار کوچک، ساخت حسگرهای نانومتری نیز میسر شد. این حسگرها به لحاظ دارا بودن سایز نانومتری و کاربردشان در محیط های زیستی، نانوبیوسنسور (نانوحسگر زیستی) نامگذاری شدند. نانوحسگرهای زیستی الکترودهای بسیار کوچکی در اندازهء نانومتری و ابعاد سلولی هستند که از طریق تثبیت آنزیم های خاصی روی سطح آنها، نسبت به تشخیص گونه های شیمیایی یا بیولوژیک مورد نظر در سلول ها حساس شده اند. از این حسگرها برای آشکارسازی و تعیین مقدار گونه ها در سیستم های بیولوژیک استفاده می شود. این تکنیک، روش بسیار مفیدی در تشخیص عبور بعضی ملکول ها از دیواره یا غشای سلولی است.
در طی دههء گذشته، با پیشرفت فناوری ساخت فیبر نوری و ساخت نانوفیبرها، در پژوهش های پزشکی و بیولوژیک نیز تحول عظیمی صورت گرفته و فناوری ساخت حسگرهای زیستی و دانش تولید نانومتریِ این ابزارها روزبه روز گسترش یافته است. این حسگرها به لحاظ استفاده از فیبر نوری در ساختارشان «حسگرهای نوری» نامیده شده اند و به دو دستهء شیمیایی و بیولوژیکی تقسیم می شوند. بسته به اینکه بخواهیم این حسگر را برای تجزیهء گونهء داخل سلول، مایع بیولوژیک بین سلولی یا داخل خون به کار ببریم، ابعاد نوک حسگر، زاویهء مخروطی شدن نوک آن و میزان نرمی پوشش روی فیبر متفاوت خواهد بود.
تولید نانوحسگرهای زیستی نوری
برای تهیهء این فیبر به عنوان نوک حسگر، می توانیم از دستگاه های مورد استفاده برای کشش فیبرهای نوری استفاده نماییم.
در این دستگاه از لیزر دی اکسید کربن برای گرم کردن فیبر و از وسیله ای برای کشش فیبر در جهت محور اصلی آن استفاده می شود. محققان موفق شده اند با تغییر دما و میزان نیروی کششیِ اعمال شده به فیبر، نوک هایی برای حسگرهای زیستی بسازند که قطرشان بین 20 تا 500 نانومتر است. این تکنیک سرعت بالا (حدود 3 ثانیه) و روند تولید نسبتاً ساده ای دارد.
حسگرهای زیستی انواع مختلفی دارند اما مستقل از نوعشان همگی دارای سازو کاری مشترک اند. هر حسگر زیستی شامل دو بخش اصلی است: ۱/ عنصر تشخیص دهنده (recognition element) که برقراری پیوند شیمیایی با هدف را توسط ligand میسر می‌سازد، ۲/ انتقال دهنده (transducer) که وظیفه تبدیل سیگنال‌ها را بر عهده دارد.
حسگرهای زیستی به دو دسته مستقیم و غیر مستقیم تقسیم می‌شوند. در حسگرهای زیستی مستقیم هدف بدون هیچ واسطه‌ای با لیگاند پیوند برقرار کرده و شناسایی می‌شود. اما در حسگر غیرمستقیم این کار توسط یک عنصر واسطه انجام می‌گیرد.
در انتخاب حسگر مناسب باید دقت داشت که سرعت و سادگی حسگرهای مستقیم نسبت به غیرمستقیم بیشتر بوده و هم چنین قابلیت استفاده در حالت غیر مستقیم را نیز دارد و می توان برای اندازه گیری تغییرات فیزیکی (خواص اپتیکی، الکتریکی و شیمیایی) از آن استفاده کرد.
حسگرهای زیستی به دو دسته اپتیکی و مکانیکی تقسیم می‌شوند که از انواع اپتیکی می توان به SPR(Surface Plasmon Resonator), LSPR, … اشاره کرد که به شکل‌های فیبری (tip & taper) وجود دارند و مورد بحث ما هستند. از انواع مکانیکی نیز می توان از MEMS, quartz plasmon resonator یاد کرد، که در ابعاد نانو کاربردهای بسیار زیادی دارند.
این حسگرها از سه بخش تشکیل شده‌اند.
1.پذیرندهی زیستی یا عنصرِ زیستیِ حساس: یک مادهٔ زیستی (پادتن‌ها، اسید نوکلئیکها، آنزیم‌ها، سلول‌ها و دیگر ماده‌هایِ زیستی) که می‌تواند به صورتِ انتخابی تنها با مادهٔ خاصی واکنش نشان دهد.
2.آشکارساز و مبدل: که پس از واکنشِ ماده‌ای خاص با پذیرنده‌هایِ زیستی، وارد عمل می‌شوند و می‌توانند نوع و مقدارِ واکنش را با روش‌هایِ مختلفِ فیزیکی-شیمایی کرده (مثلاً با بررسیِ تغییرهایِ الکتروشیمیایی، نوری، جرمی یا حرارتیِ قبل و بعد از واکنش) و به وسیلهٔ سیگنال‌هایِ مناسب به پردازنده ارسال کنند.
بخشِ پردازنده که همچنین مسئولیتِ نمایشِ نتیجهٔ فعالیتِ حسگر را نیز بر عهده دارد. به طور کلی می‌توان گفت حسگر زیستیها (زیست حسگرها) یک گروه از سیستمهای اندازه گیری می‌باشند و طراحی آنها بر مبنای شناسایی انتخابی آنالیتها بر اساس اجزا بیولوژیک وآشکارسازهای فیزیکو شیمیایی صورت می‌پذیرد. حسگرهای زیستی متشکل از سه جزء عنصر بیولوژیکی، آشکار ساز و مبدل می‌باشند. طراحی حسگرهای زیستی در زمینه‌های مختلف علوم بیولوژی، پزشکی در دو دهه گذشته گسترش چشمگیری داشته‌است.
فناوری حسگر زیستی در حقیقت نشان دهنده ترکیبی از علوم بیوشیمی، بیولوژی مولکولی، شیمی، فیزیک، الکترونیک و کامپیوتراست. یک حسگر زیستی در حقیقت شامل یک حسگر کوچک و ماده بیولوژیک تثبیت شده بر آن می‌باشد. از آنجا که حسگرهای زیستی ابزاری توانمند جهت شناسایی مولکول‌های زیستی می‌باشند، امروزه از آنها در علوم مختلف پزشکی، صنایع شیمیایی، صنایع غذایی، مانیتورینگ محیط زیست، تولید محصولات دارویی، بهداشتی و غیره بهره می‌گیرند. در واقع این حسگرها ابزاری توانمند جهت شناسایی مولکولهای زیستی می‌باشند.
حواس بویایی و چشایی انسان که به شناسایی بوها و طعمهای مختلف می‌پردازد و یا سیستم ایمنی بدن که میلیونها نوع مولکول مختلف را شناسایی می‌کند، نمونه‌هایی از حسگرهای زیستی طبیعی می‌باشند. در حقیقت حسگرهای زیستی ابزارهای آنالیتیکی بشمار می‌روند که می‌توانند با بهره گیری از هوشمندی مواد بیولوژیک، ترکیب یا ترکیباتی را شناسایی نموده، با آنها واکنش دهند. و بدین ترتیب یک پیام شیمیایی، نوری و یا الکتریکی ایجاد نمایند. بیشترین کاربرد حسگرهای زیستی در تشخیص‌های پزشکی و علوم آزمایشگاهی است، در حال حاضر حسگرهای زیستی گلوکز از موفق ترین حسگرهای زیستیی موجود در بازار بوده که برای اندازه گیری غلظت گلوکز خون بیماران دیابتی استفاده می‌شود. همانگونه که ذکر گردید، اساس کار یک حسگر زیستی تبدیل پاسخ بیولوژیکی به یک پیام است. حسگرهای زیستی مرکب از سه بخش ۱)دریافتگر زیستی یا بیورسپتور ۲) آشکارساز و ۳) مبدل می‌باشند.
دریافتگرهای زیستی که در حسگرهای زیستی مورد استفاده قرار می‌گیرند به شرح ذیل می‌باشند:
۱. آنزیم
۲. پادتن
۳. گیرنده‌های سلولی
۴. اسیدهای نوکلئیک DNA یا RNA
۵. میکروارگانیسم یا سلول کامل
۶. بافت
۷. گیرنده‌های سنتتیک
در این سیستمها اندازه گیری تغییرات فیزیکی وشیمیایی انجام شده در سطح بیورسپتور و تبدیل آن به انرژی قابل اندازه گیری توسط مبدل انجام می‌شود. همچنین هدایت سیگنالهای فرستاده شده از مبدل به پرداشگر، تقویت، آنالیز و در نهایت تبدیل آن به واحد غلظت توسط آشکار ساز انجام می‌گیرد. انواع متداول مبدل‌های مورد استفاده در حسگر زیستیها شامل:
۱) الکتروشیمیایی ۲) نوری (تابناکی، جذب و تشدید پلاسمون سطح) ۳) حساس به تغییر جرم و ۴) حرارتی می‌باشند.
به عبارتی دیگر یک حسگر زیستی به طور کلی شامل یک سیستم بیولوژیکی تثبیت شده می‌باشد که در حضور آنالیت مورد اندازه گیری باعث تغییر خواص محیط اطراف می‌شود. وسیله اندازه گیری که به این تغییرات حساس است، سیگنالی متناسب با میزان و یا نوع تغییرات تولید می‌نماید که متعاقباً به سیگنالی قابل فهم برای دستگاههای الکترونیکی تبدیل می‌گردد. اختصاصیت و قدرت شناسایی یک آنالیت از میان دیگر آنالیتهای موجود در نمونه مورد آزمایش از ویژگی‌های یک حسگر زیستی می‌باشد. قابلیت انتخاب یک حسگر زیستی توسط بخش پذیرنده و مبدل آن تعیین می‌شود. بدین ترتیب مزایای حسگرهای زیستی بر سایر سامانه‌های اندازه‌گیری موجود را می توان در ۳ مورد زیر خلاصه نمود:
سیستم‌های اندازه گیری موجود توانایی سنجش مولکولهای غیرقطبیی که در بافتهای حیاتی تشکیل می‌گردند را ندارند در حالی که حسگر زیستیها می‌توانند این ترکیبات را شناسایی و سنجش کنند.
از آنجایی که مبنای کار حسگرهای زیستی بر اساس سامانه بیولوژیکی تثبیت و تعبیه شده در خود آنهاست، بنابراین آنها اثرات جانبی بر سایر بافتها ندارند.
کنترل پیوسته و بسیار سریع فعالیتهای متابولیسمی توسط این حسگرها امکان پذیر است.
حسگرهای زیستی بر اساس نحوه شناسایی آنالیت به دو گروه عمده تقسیم می‌گردند:
۱. حسگر زیستی با اساس شناسایی مستقیم پادگن (آنتی‌ژن): که واکنش پذیرنده با آنالیت مستقیما توسط حسگر شناسایی می‌گردد. عناصر بیولوژیک مورد استفاده در این گروه، گیرنده‌های سلولی و آنتی بادی‌ها می‌باشند.
۲. حسگر زیستی با اساس شناسایی غیر مستقیم پادگن: واکنش پذیرنده با آنالیت به طور غیر مستقیم توسط حسگر شناسایی می‌گردد. عناصر بیولوژیک مورد استفاده در این گروه ترکیبات نشاندار، مثل آنتی بادیها ی نشاندار شده و یا ترکیباتی با خاصیت کاتالیتیکی مانند آنزیم‌ها می‌باشند. توسعه حسگر زیستیها ازسال ۱۹۶۲ با ساخت الکترود اکسیژن توسط لی لند کلارک در سین سیناتی آمریکا برای اندازه گیری غلظت اکسیژن حل شده در خون آغاز شد. این حسگر همچنین بنام سازندهٔ آن گاهی الکترود کلارک نیز خوانده می‌شود. بعداً با پوشاندن سطح الکترود با آنزیمی که به اکسیده شدن گلوکز کمک می‌کرد از این حسگر برای اندازه گیری قند خون استفاده شد. بطور مشابه با پوشاندن الکترود توسط آنزیمی که قابلیت تبدیل اوره به کربنات آمونیوم را داراست در کنار الکترودی از جنس یون NH4 + زیست‌حسگری ساخته شده که می‌توانست میزان اوره در خون یا ادرار را اندازه گیری کند. این دو حسگر زیستی از مبدل‌های متفاوتی در بخش تبدیل سیگنال خویش استفاده می‌کردند. بطوریکه در نوع اول میزان قند خون با اندازه گیری جریان الکتریکی تولید شده اندازه گیری می‌شد (آمپرسنجانه=آمپرومتریک). و درنوع دوم اندازه گیری غلظت اوره بر اساس میزان بار الکتریکی ایجاد شده در الکترودها صورت می‌پذیرفت (پتانسیل‌سنجانه=پتانسیومتریک).
ویژگی‌های حسگرهای زیستی عناصر بیولوژیکی
همانطور که ذکر گردید حسگرهای زیستی سیستمهای اندازه گیری بسیار دقیق، حساس و اختصاصی می‌باشند و وجود بیورسپتورهای خاص علت ویژگیهای منحصر به فرد این سیستمهای اندازه گیری می‌باشد. در حقیقت اساس شناسایی وسنجش ترکیبات در این سیستمها، اتصال ویژه آنالیت مورد اندازه گیری به حسگر توسط بیورسپتورها می‌باشد. اهمیت این اجزا در عملکرد بسیار اختصاصی آنها نسبت به آنالیت خاصی است که بدین وسیله از مداخلهٔ مواد مزاحم که موجب عدم کارایی بسیاری از روشهای اندازه گیری است، جلوگیری می‌کند. جزء بیولوژیک ممکن است واکنش سوبسترا را کاتالیز کند(آنزیم) یا به طور انتخابی به سوبسترا متصل شود. آنزیم‌ها یکی از متداولترین عناصر بیولوژیکی هستند که در این سیستمها مورد استفاده قرار می‌گیرند. عناصر بیولوژیکی عامل اصلی گزینش در زیست‌حسگر محسوب می‌شوند که عمدتا در سه گروه تقسیم بندی میگردندکه به شرح زیر می‌باشد:
پادتن
آنزیم
اسید نوکلئیک
ساختارهای سلولی/ سلول‌ها
روش‌های تثبیت اجزای زیستی:به منظور ساخت یک حسگر زیستی پایدار، باید جزء بیولوژیکی به طرز خاصی به مبدل‌ها متصل گردد، چنین فرآیندی را تثبیت گویند. برای این منظور پنج روش به شرح زیر ارائه شده‌است:
جذب سطحی
ریزپوشینه‌سازی
محبوس‌سازی
پیوند عرضی
پیوند کووالانسی
مبدل:، تغییر قابل مشاهده فیزیکی یا شیمیایی را به یک پیغام قابل اندازه گیری، که بزرگی آن متناسب با غلظت ماده یا گروهی از مواد مورد سنجش است، تبدیل می‌نماید، چنین عملی ازتلفیق دو فرایند متفاوت حاصل می‌شود؛ این وسیله ویژگی و حساسیت مواد بیولوژیکی را با قدرت محاسبه گری ریزپردازشگر ترکیب می‌نماید. بیشتر حسگر زیستیها از مبدل‌های الکتروشیمیایی ساخته شده‌اند. مبدل‌ها را می‌توان به انواع زیر تقسیم بندی نمود:
مبدل‌های نوری
مبدل‌های الکتروشیمیایی
مبدل‌های پیزوالکتریک
مبدل‌های گرمایی
حسگر زیستی سیستمی با اندازه کوچک، حساسیت بالا وقابل حمل بوده که می‌تواند آنالیت مورد نظررا درغلظتهای بسیار کم در نمونه‌های بیولوژیک اندازه گیری کند. دو عامل در طراحی یک حسگر زیستی مناسب نقش ایفا می‌کند:
1-روش مناسب تثبیت دریافتگر زیستی در سطح جامد که موجب افزایش طول عمر، حساسیت و پایداری آن می‌گردد.
2-انتخاب مبدل مناسب.
استفاده از حسگرهای زیستی به دلیل دقت و حساسیت روش‌و همچنین در مواردی به دلیل عدم نیاز به وسایل پیشرفته و صرف زمان و هزینه زیاد برای تشخیص آنالیت‌ها در مراکز کوچک و در مراکز با امکانات کم و حتی در منزل نیز کاربرد دارد. این روشها می‌توانند در شناخت مکانیسم برخی بیماریها و اختلالات، در امر تشخیص و درمان بیماریها و عوارض آنها و شناسایی علل و زمینه‌های به وجود آورنده آنها و نیز در سایر علوم مرتبط نظیر داروسازی، سامانه‌های پیشرفته دارورسانی و شناسایی داروهای جدید و ارزیابی فعالیت بیولوژیک آنها فعالیّت نماید.
جزئیات فنی حسگر اپتیکی تشدیدگر پلاسمون سطح:حسگر تشدید پلاسمون سطح (SPR)‌مناسب‌ترین ابزار برای تحلیل برهمکنش‌های انواع مختلفی از مولکولهاست. ساده ترین و متداول ترین این برهم‌کنش‌ها، برهم‌کنش پادتن-پادگن است.
این سامانه‌ها بر اساس آشکارسازی مدولاسیون مکانی فاز (SMPD) است. در این سیستم نور تکفام موازی به منظور برانگیختن SPR استفاده می‌شود و فاز نور بازتابی به صورت مکانی مدوله شده تا یک طرح تداخلی ایجاد کند. در روابط پرتوهای تداخلی φ اختلاف فاز بین پرتوها، I شدت پرتوها، و f فرکانس فضایی خطوط تداخلی است.
نمونه‌های تجاری امروزی این نوع حسگرها بر اساس شدت آشکارسازی نور کار می‌کنند که بسیار مکانیزم ساده‌ای دارد، اما خطاهای موجود در منبع نوری، آشکار ساز نور و تقویت کننده موجب کاهش دقت حسگر شده و بیشتر از چیزی در حدود 10^-6 (RIU) نخواهد بود. به منظور افزایش دقت حسگر به جای اندازه گیری شدت، تغییرات فازی را اندازه گیری می‌کنند. همچنین برانگیختن حسگر باعث افزایش سرعت تغییر شدت و فاز می‌گردد.(دقت: 10^-4 (RIU))
اجزای SPR
لیزر He-Ne، 632.8nm ۲. دریچه ۱۰ میکرومتری(واقع در فاصله کانونی لنزها)، آلمینیومی ۳. بسط دهندهٔ پرتو ۴. صفحه موج ½ ۵. دیافراگم مثلثی ۶. منشور متساوی الاضلاع کریشمان (شیشه ZF5، ضریب شکست 1.740) ۷. تراشه حسگر ۸. سلول جریان ۹. منشور ولاتسون (زاویه جدایی.۳ درجه) ۱۰. منشور قطبنده ۱۱. لنز تصویرساز ۱۲. دوربین CCD متصل به رایانه ۱۳. رایانه
اساس کار حسگرهای اپتیکی بر پایه تغییر ضریب شکست نور در مرز منشور(فیبر) که در تماس با لیگاند است می‌باشد. به منظور افزایش جذب انرژی نور و دقت بیشتر یک لایه فلز (معمولا طلا) بر روی سطح منشور (فیبر) استفاده می‌کنند. حسگر فیبری SPR:در حسگر فیبری به جای استفاده از منشور از فیبر استفاده می‌شود. مزیت این نوع حسگر اندازه کوچک آن است. عملکرد فیبر نیز به همان شکل تغییر در ضریب شکست و فاز پرتوی بازگشتی است. در این شکل فیبر از قسمت نازک تر در تماس محلول مورد بررسی قرار گرفته، نور عبوری از فیبر (که دائما در حال بازتاب داخلی در فیبر است) در اثر وجود ویروس مورد نظر در محلول و قرار گرفتن بر روی لیگاند، دچار تغییر ضریب شکست شده و پرتو خروجی تغییر فاز نشان می‌دهد. با اندازه گیری شیفت در طول موج نور خروجی، به میزان غلظت ویروس و یا وجود یا عدم وجود ویروس پی می‌بریم. همچنین در قسمت زیرین فیبر از یک کره استفاده شده که باعث رفت و برگشت بیشتر نور و در نتیجه تقویت پرت می‌گردد.
برای ساختن تیپ فیبر را به مدت حدودا ۴۵ دقیقه در 1400ml اسید HF %48 به همراه 800 ml روغن قرار داده و سپس توسط NaOH اسید را خنثی و تیپ را می‌شویند. هرچه تیپ متقارن تر باشد پرتوی خروجی از آن دارای شکل متقارن تری است و در اندازه گیری دقت بیشتری به دست می‌دهد.
کاربردهای SPR
بررسی DNA به منظور کشف هرگونه نقص ژنتیکی و یا ابتلا به سرطان‌ها در بدو تولد.
در این روش با مقایسه طیف DNA با طیف ناشی از DNA دارای نقص در ترتیب که منجر به ایجاد سرطان می‌شود، از بدو تولد می‌توان از ابتلا به سرطان و یا سایر بیماریهای ژنتیکی اطلاع یافت.
به دست آوردن غلظت محلولی (گلوکز خون):
در این روش مخصوصا با تلفیقی از MEMSاز کپسول‌هایی استفاده می‌شود که با کاشت در بدن می‌توانند اطلاعات مربوط به بیمار را به طور لحظه‌ای به رایانه شخصی وی ارسال کنند.
حسگرهای زیستی نانومکانیکی
اگر چه استفاده از حسگرها قدمت زیادی دارد، اما در سال های اخیر نانوفناوری نقش مهم و فزاینده ای در توسعه آنها ایفا کرده است. نانوحسگرهایی که بخش اصلی حسگر در آنها ماهیت زیستی داشته باشند، با اسم نانوحسگر زیستی(Nano-biosensor) شناخته می شوند. نانوحسگرهای زیستی به دلیل دارا بودن اندازه نانومتری می توانند سنجش در محیط های زیستی را آسانتر، حساس تر و سریعتر انجام دهند.
حسگرهای زیستی ابزارهای تجزیه ای هستند که دارای سه جزء اصلی عنصر زیستی، مبدل و سیستم قرائت می باشند. عضو زیستی از گزینش‌پذیری بالایی برای برهم کنش زیستی و آشکارسازی آنالیت (ماده مورد تجزیه) برخوردار است. مبدل فیزیکی (Transducer) پدیده شناسایی را به یک اثر قابل اندازه گیری مانند سیگنال الکتریکی، نشر نوری یا حرکت مکانیکی تبدیل می کند. این اثر در نهایت توسط سیستم قرائت اندازه گیری می شود. نانوکانتیلورها و میکروکانتیلورها می توانند تعدادی از پدیده ها نظیر تغییرات جرم، دما، گرما، فشار و رطوبت را به انحراف (شیوه استاتیک) یا تغییر در فرکانس رزونانسی (شیوه دینامیک) تبدیل کنند. کانتیلورها در ساختمان زیست حسگرها بعنوان مبدل سیگنال شیمیایی به حرکت مکانیکی با حساسیت بالا بکار می روند. کلید استفاده از میکروکانتیلورها برای آشکارسازی گزینشی مولکول ها قدرت عاملدار کردن سطح کانیتلور است.
میکروکانیتلورها در آشکارسازی مواد شیمیایی مانند ترکیبات فرار، مواد منفجره، گونه های یونی، سموم، آلاینده های غذا و محیط، آفت کش ها و مواد زیستی مانند آشکارسازی DNA و پروتئین و گلوکز و ... بکار می روند.
نانوساختارهای مختلفی در ساخت نانوحسگرهای زیستی استفاده می شوند که بعضی از آنها عبارتند از: نانوذرات، نقاط کوانتومی، نانولوله ها، نانوفیبرها و نانو سیم ها.
اجزای اصلی زیست حسگر
حسگرهای زیستی ابرازهای تجزیه ای هستند که دارای سه جزء اصلی عنصر زیستی(به عنوان جزء اصلی تشخیص دهنده یونها یا مولکولهای هدف)، مبدل (Transducer) و سیستم قرائت(Read out Sys--) می باشند. در حسگرهای زیستی، عضو زیستی با روش های مختلف روی مبدل تثبیت(Immobilize) شده است . این عضو زیستی از گزینش پذیری بالایی برای برهم کنش های زیستی و آشکارسازی آنالیت برخوردار است (در سیستم های زیستی بین گیرنده و لیگاند مربوط به آن ارتباط اختصاصی وجود دارد که نمونه جالب آن رابطه کاملا اختصاصی بین آنزیم و پیش‌ماده (Substrate) آن می باشد. بدین معنا که آنزیم فقط پیش‌ماده خاص خود را می پذیرد و واکنش موردنظر را تنها بر روی پیش‌ماده ویژه کاتالیز می کند. این ویژگی از تطابق ساختار جایگاه فعال آنزیم (Active site) با ساختار پیش‌ماده ناشی می شود. مبدل فیزیکی پدیده شناسایی را به یک اثر قابل اندازه گیری مانند سیگنال الکتریکی، نشر نوری یا حرکت مکانیکی تبدیل می کند. این اثر در نهایت توسط سیستم قرائت اندازه گیری می شود.
معمولترین عضو زیستی در زیست حسگرها آنزیم ها، آنتی بادی ها، اندامک ها، گیرنده ها و اسیدهای نوکلئیک هستند که با اتصال ویژه به آنالیت موردنظر امکان تجزیه کمی و کیفی آن را فراهم می آورند.
مبدل های معمول در ساخت زیست حسگرها شامل انواع نوری، الکتروشیمیایی، ترمومتری، پیزوالکتریک و ... می باشند که به ترتیب سیگنال ایجاد شده را به علایم نوری،الکترونیکی، تغییرات گرمایی و نوسانی تبدیل می کنند.
این حسگرها بر مبنای نوع جزء زیستی، نحوه کار مبدل یا کاربرد آنها تقسیم بندی می شوند .
امتیازات و عوامل پیشرفت زیست حسگر ها
در اوایل 1960 کلارک و لایونز و آپدایک و هیکز اولین زیست حسگرها را بر مبنای برهمکنش کاتالیتیکی ویژه آنزیم گلوکز اکسیداز با گلوکز توسعه دادند. بعد از آن رشد سریعی در مطالعه فعالیت ها در این زمینه اتفاق افتاد که باعث پیشرفت بزرگی در توسعه ابزارهای حسگر برای اندازه گیری مولکول های زیستی در زمینه های مختلف صنعتی، دارویی، بالینی و کنترل های محیطی گردید.
پیشرفت در میکروفناوری و نانوفناوری پیشرفت حسگرهای بسیار حساس (با توانایی آشکارسازی خمیدگی های در حد نانومتر)، با امتیاز کوچک بودن (امکان سنجش آسانتر محیط های زیستی) را منجر شد. توانمندی بالا، قابلیت اطمینان، صرف انرژی کم، صرفه جویی در زمان و قیمت و آنالیت از مزایای استفاده از این نانو زیست حسگرهاست. سهولت و سرعت بالای اندازه گیری، تکرارپذیری، عملکرد اختصاصی، قابلیت حمل، امکان ساخت آرایه های چند عنصری برای اندازه گیری همزمان و قرائت چندین نمونه، حساسیت بالا و امکان جمع شدن با فناوری میکروالکترونیک از دیگر مزایا می‌باشند. این روش آشکارسازی نیاز به نشاندار کردن (Labeling) ندارد.
معرفی زیست حسگرهای نانومکانیکی
میکروکانتیلورها برای میکروزیست حسگرها و نانوزیست حسگرها بسیار امیدبخش هستند و از کانتیلورهای مورد استفاده در میکروسکوپ نیروی اتمی Atomic Force Microscopy-AFM)) مشتق می شوند. کانتیلورها سکوهای فنری در اندازه های نانو و میکرو می باشند و بر مبنای انحراف سکو و یا تغییر فرکانس رزونانسی حاصل از حضور آنالیت در سطح کانتیلور عمل می کنند.
زمانیکه یک برهمکنش زیست مولکولی در سطح آنها اتفاق می افتد میکروکانتیلور شناسایی مولکولی زیست مولکول ها را به اشارات نانومکانیکی ترجمه می کند که بطور رایج به یک سیستم قرائت نوری (Optical Readout Sys--) یا پیزورسیستیو (Piezo-Resistive Readout Sys--) بعنوان مبدل نیروی مکانیکی به جریان الکتریکی کوپل می شود. میکروکانتیلور مثال جالبی از همراهی نانوفناوری و زیست فناوری است . حسگرهای مبتنی بر کانتیلوردر محیط هوا, خلا و مایع عمل می کنند.
توسعه زیست حسگرهای مجتمع (Integrated) برای آشکاسازی همزمان گونه های مهم زیستی منجر به مفهوم زیست تراشه ها (Biochip) شده است که به عنوان بسترهای دارای میکرو آرایه های زیست پذیرنده ها (Bioreceptor) تعریف می شوند. زیست تراشه های حاوی نانو و میکروکانتیلورها بعنوان عناصر حسگر به نیروی خارجی، نشان دار کردن (Labling) و مولکول های فلورسان نیاز ندارند .
امروزه طیفی از حسگرهای فیزیکی، شیمیایی و زیستی قرار گرفته روی سکوی کانتیلور مورد مطالعه هستند. اگر چه آشکارسازهای منفرد بر مبنای کانتیلورها توسعه یافته اند ولی یک آرایه (Array) از چنین حسگرهایی می تواند اطلاعات فزاینده ای فراهم کند که توسط ابزارهای منفرد قابل دسترسی نیستند. حسگرهای میکروکانتیلور چندعاملی (Multifunctional) با تنوعی از پوشش ها امکان اندازه-گیری مخلوطی از بخارات را با حساسیت بالا فراهم می کنند. تنوعی از پوشش ها و ضخامت ها می توانند برای آشکارسازی بخارات شیمیایی بکار روند. پاسخ آرایه می-تواند برای شناسایی مخلوطی از اجزای شیمیایی بکار رود. استفاده از آرایه ها روی یک تراشه و بدست آوردن مجموعه ای از اطلاعات سبب سهولت نصب و ساخت، استفاده سیار از سیستم، کاهش هزینه و نیرو در طیف وسیعی از کاربردها از صنعت تا محیط زیست را فراهم می کند .
پیشرفت های آینده بهینه سازی ابعاد و شکل کانتیلور را برای رسیدن به کارایی های ویژه شامل می‌شود. حساسیت فشاری، جرمی و دمایی حداکثری، استفاده از آرایه کانتیلورهای موازی که با معدل گیری از نتایج آنها نسبت S/N (نسبت پاسخ حسگر به مولکول هدف (سیگنال) به پاسخ های بی هدف (نویز) که هرچه بیشتر باشد کارآیی حسگر مطلوب تر است)افزایش می یابد، آنالیزهای چندگانه با کانتیلورهای با پذیرنده‌های مختلف, ساده تر کردن قسمتهای مختلف و تجمع آنها از این دسته‌اند.
استفاده های جاری از زیست حسگرها به دنبال ابزارهایی است که قادر باشند توسط هر کس در هر جایی و برای آزمایش هر چیزی در زمان واقعی و با هزینه جزئی عمل کنند. برای قابل حمل بودن زیست حسگرها، حذف اثرات محیط و خودکارسازی عملکرد زیست حسگر ضروری است .
عملکرد کانتیلورها
کانتیلورها می توانند تعدادی از پدیده ها نظیر تغییرات جرم، دما، گرما، فشار و رطوبت را به انحراف (شیوه استاتیک) یا تغییر در فرکانس رزونانسی (شیوه دینامیک) تبدیل کنند و در ساختمان زیست حسگرها بعنوان مبدل سیگنال شیمیایی به حرکت مکانیکی با حساسیت بالا بکار می روند . جذب سطحی مولکول ها وقتی به یکی از سطوح کانتیلور محدود می شود فشار سطحی اختلافی تولید می کند که کانتیلور را خم می کند و همزمان فرکانس رزونانسی کانتیلور به خاطر بارگذاری تغییر می کند. خمیدگی و تغییر در فرکانس رزونانسی می تواند توسط چندین تکنیک: خمیدگی محور نوری (Optical Beam Deflection)، مقاومت پیزو (Piezoresistivity) ، پیزوالکتریستی (Piezoelectricity)، تداخل سنجی (Interferometry) ، تغییرات ظرفیت خازنی (Capacitance) و ... نمایش داده شوند.
اساس حسگری با توجه به وسیله، مولکول های آنالیت و دقت مورد نیاز متنوع است . بطور کلی حسگرهای شیمیایی اغلب بر مبنای شیوه تبدیل، به چهار زمینه عمده الکتروشیمیایی (Electrochemical)، نوری (Optical)، حساس به گرما (Thermosensitive) و حساس به جرم (Mass Sensitive) طبقه بندی می شوند. پاسخ حسگرهای حساس به جرم، با جرم آنالیت بر همکنش کننده با سطح عنصر حسگر متناسب است . حسگرهای میکروکانتیلور به هیچ برچسبی (Label) جهت پاسخ به حضور مولکول روی سطح زیست حسگر نیاز ندارند. در روش های بدون برچسب می توان از نمونه های اصلاح نشده استفاده کرد، در نتیجه امکان قرائت پاسخ در زمان واقعی فراهم می شود. حسگرهای نانومکانیکی حساسیت بالایی در یک ناحیه کوچک (100μm2) در مقایسه با زیست حسگرهای بدون برچسب دیگر نظیر تشدید پلاسمون سطحی (SPR) و ریز ترازوی بلور کوارتز (Quarrtz Crystal Microbalance-QCMB)دارند . زمانیکه اتم های سطح کانتیلور تحت بازآرایی ناشی از جذب سطحی گونه های شیمیایی قرار می گیرند، تغییرات مهمی در فشار روی سطح اتفاق می افتد. این تغییرات کششی یا تراکمی به طبیعت گونه جذب شده بستگی دارد . روش استاتیک یک تکنیک آشکارسازی dc (جریان مستقیم) است که انحراف ناشی از فشار اتصال مولکول هدف به پذیرنده در سطح میکروکانتیلور را آشکارسازی می کند. روش دینامیک آشکارسازی ac (جریان متناوب) است که تغییرات جرم کانتیلور را با استفاده از جابه جایی فرکانس رزونانسی آشکارسازی می-کند .
رایج ترین سیستم های قرائت
تکمیل یک سیستم قرائت با ظرفیت نشان دادن تغییرات با دقت nm ضروری است. برای این منظور روشهای آشکارسازی استاتیک و دینامیک تأیید شده اند که بسیار حساس اند .
روش استاتیک
انعطاف پذیری کانتیلور در این روش سبب می شود تا اتصال مولکول هدف به پذیرنده که بر سطح کانتیلور تثبیت شده منجر به انحراف و خمیدگی در کانتیلور شود. این شیوه اجازه می دهد حسگر تغییرات بینهایت کوچک ناشی از جذب سطحی مولکولی را اندازه بگیرد. به این علت کانتیلورها زیست‌حسگرهای بسیار حساسی هستند و با تکنیک کانتیلور، آشکارسازی فشار سطحی تا حد4-10 N/m ممکن است. چنین اندازه گیری همچنین کمی و مرتبط با غلظت آنالیت موردنظر است. چندین تکنیک برای آشکارسازی خمیدگی کانتیلور بکار می روند که تکنیک های نوری و مقاومت پیزو و روش‌های خازنی معمولترین روش ها هستند. تحت شرایط واقعی حسگرها باید در طولانی مدت پایدار و نسبت به مولکول هدف حساس و انتخابگر باشند .
روش های نوری
الف- نور لیزر بر انتهای آزاد کانتیلور که به عنوان آیینه عمل می کند متمرکز می شود. به منظور افزایش انعکاس کانتیلورهای تجاری عمدتاً با لایه نازکی از طلا پوشش داده می شوند. نور منعکس شده به آشکارساز نوری برخورد می کند. وقتی کانتیلور خم می شود نور لیزر بر روی آشکارساز نوری حرکت می کند. فاصله طی شده توسط محور لیزر با انحراف کانتیلور متناسب بوده و با فاصله کانتیلور- آشکارساز نوری افزایش می یابد که باید در کالیبراسیون لحاظ شود. نکته قابل توجه در این روش این است که شیب در نقطه برخورد لیزر به کانتیلور جهت تعیین نسبت خمیدگی کانتیلور به جابه جایی تنظیم شود.
-این روش، تفکیک در حد آنگسترم را فراهم می کند که به آسانی انجام می گیرد. مشکل عمده این تکنیک این است که نیاز به ابزارهای خارجی برای اندازه گیری انحراف دارد. بنابراین چینش متوالی و کالیبره کردن آن بسیار وقت گیر است.
برای بدست آوردن پاسخ آرایه ها به این روش یک چالش تکنولوژیکی وجود دارد چرا که به آرایه ای از منابع لیزر به تعداد آنالیت های مورد شناسایی نیاز است. در این تکنیک ترتیب on و off هر منبع لیزر برای اجتناب از همپوشانی محورهای منحرف شده روی آشکارساز نوری ضروری است. این مشکل عمدتاً با استفاده از روبش منبع لیزر حل می شود و محور لیزر مرتباً طول آرایه را اسکن می کند.
ب- برای مینیاتوری کردن (Miniaturization)، کانتیلور باید بصورت تجمعی با یک سیستم قرائت ساخته شود تا از تنظیمات خارجی و اثرات محیطی اجتناب شود. یک راه برای تأمین چنین هدفی استفاده از نوعی سیستم های مجتمع نوری است که در آن میزان خمیدگی از طریق نشان دادن تغییرات در شدت نور انتقال یافته از طریق کانتیلور که بعنوان انتقال دهنده موج عمل می کند تعیین می شود. نور پس از ورود به سیستم از طریق انتقال دهنده موج، ورودی عرض شکاف را به سمت کانتیلور طی می کند و پس از کوپل به کانتیلور مسیر خود را ادامه می دهد و از طریق موج بر خروجی از سیستم خارج می شود. وقتی کانتیلور خم می شود مقداری از نوری که می تواند به موج بر کانتیلور کوپل شود کاهش می یابد و شدت نور خروجی افت می کند. از تغییرات شدت نور می توان به میزان خمیدگی کانتیلور پی برد . زیست حسگرهای نوری نسبت به انواع دیگر زیست حسگرها از امتیازاتی چون آشکارسازی های چندآنالیتی و مونیتورینگ پیوسته برخوردارند .
کانتیلورهای پیزو
حسگرهای مبتنی بر میکروکانتیلور مقاومتی پیزور، تغییرات مقاومت ناشی از فشار قرار گرفتن در معرض آنالیت موردنظر را اندازه می گیرند. این فشار زمانی اتفاق می افتد که آنالیت جذب سطحی یا متصل به ماده حسگر پوشش یافته روی کانتیلور می شود. در این سیستم کانتیلور بطور کامل یا جزئی داخل مواد حسگر قرار می گیرد.
قسمتی از ماده حسگر که در معرض آنالیت ها است آنالیت را بطور انتخابی جذب می کند و در نتیجه تغییر حجم کوچکی در ماده حسگر ایجاد می شود که به عنوان تغییر مقاومت در کانتیلور اندازه گیری می شود. به این ترتیب آنالیت آشکارسازی می شود. عنصر کلیدی در طراحی این نوع کانتیلور ساخت ترکیبی است که در معرض آنالیت موردنظر متورم شده یا ابعادش تغییر کند. از پلیمرهای آلی رایج بعنوان ماده حسگر برای آشکارسازی حضور بخار آب و بسیاری ترکیبات آلی فرار مانند استون، تولوئن، اتانول، هگزان و .... استفاده شده است. مولکول های آنالیتی که پارامترهای انحلال آنها نزدیک و متناسب با پلیمر باشد به آسانی روی آن پلیمر توزیع می شوند. بنابراین از آرایه هایی از حسگرها با پارامترهای انحلال پذیری مختلف می توان برای شناسایی دامنه وسیعی از گونه های آنالیت استفاده کرد. هیدروژل های سنتزی (Synthetic Hydrogels) می توانند تغییرات حجمی بزرگی را در پاسخ به تغییرات دما، pH، رطوبت و فاکتورهای دیگر تحمل کرده و مواد مناسبی جهت طراحی کانتیلورهای مقاومتی پیزو برای ثبت تغییرات این پارامترها محسوب می شوند. مواد زیستی خالص نیز که در اثر اتصال به آنالیت تغییرات حجم سنجی قابل اندازه گیری با کانتیلور را داشته باشند می توانند به عنوان حسگر استفاده شوند. مولکولهای لایه حسگر ممکن است آنالیت را جذب سطحی کنند یا با آن مخلوط شوند و یا پیوند شیمیایی ایجاد کنند.
برای اینکه مقاومت پیزو قابل مشاهده باشد، هدایت الکتریکی در طول ضخامت کانتیلور باید نامتقارن باشد که اغلب توسط اختلاط (Dopping) اختلافی ماده صورت می گیرد. وقتی ماده مقاومتی پیزور مانند سیلیکون مختلط شده (Dopped) تحت شرایط مکانیکی قرار می گیرد، هدایت الکتریکی آن تغییر می کند. برای اندازه گیری تغییر در مقاومت، کانتیلورهای سیلیکون باید در شرایط بایاس (Bias) مستقیم پل وتستون قرار گیرند. در پل وتستون یک زوج کانتیلور قرار می گیرد که یکی بعنوان رفرانس عمل می کند. خروجی سیستم، سیگنال تفاضلی بین دو کانتیلور است. نسبت سیگنال به نویز در این روش قویاً بهبود می یابد و نویز حاصل از اتصالات غیرویژه، نوسانات حرارتی و لرزش ها حذف می شود. اتصالات غیرویژه به سطح مشکلی عمومی است که باید در تمام آنالیزها به حداقل برسد. اگر چه حذف کامل این پارامترها غیرممکن است می توان تأثیر آن روی آشکارسازی را با استفاده از کانتیلور رفرانس کنترل کرد.
کانتیلورهای پیزورسیستیو در مقایسه با نوع نوری چندین امتیاز دارند:
- آشکارسازی پیزورسیستیو می تواند در محلول های غیرشفاف و مایعات آشفته صورت گیرد.
- نیازی به چینش وقت گیر لیزر نیست.
- این سیستم قرائت می تواند بصورت ائتلافی روی ورق سیلیکون قرار گیرد.
- کنترل دما به آسانی انجام می گیرد.
- با کوچک کردن و ساخت آرایه ها سازگار است و هزینه کمتری دارد.
ضعف عمده، سطح نویز ذاتی است که در مقایسه با کانتیلورهای نوری مستقیماً بر تفکیک و حساسیت اثر می گذارد . کنترل دما می تواند بعنوان ابزاری برای شکستن پیوندهای لیگاند- پذیرنده بکار رود. بنابراین لایه حسگر بازتولید می-شود .
روش دینامیک
در روش دینامیک، کانتیلور بطور مکانیکی در فرکانس رزونانسی خود تحریک می شود که اتصال آنالیت موجب جابه جایی این فرکانس رزونانسی می شود و توسط پل وتستون مجتمع با پیزورسیسیتو حس می شود .
تغییرات در فرکانس رزونانسی می تواند با اندازه گیری نویز گرمایی کانتیلور آشکارسازی شود. هنگام کار در مایعات پیک رزونانس بسیار کمتر از هوا انتقال پیدا می کند که از اثر میرایی مایعات ناشی می شود. این فاکتور اندازه گیری های بر مبنای روش دینامیک را به شدت متاثر می کند. در نتیجه این روش برای نشان دادن فرآیندهای بیوشیمیایی در محیط آبی نسبت به روش استاتیک کارآمدی کمتری دارد. حسگرهای کانتیلور که در روش استاتیک عمل می کنند بعنوان شیوه ای برای سنجش های نانومکانیکی زیست مولکولی مفید ترند. برای رسیدن به حساسیت بالا هنگام کار با مایعات در روش دینامیک پیش فعالسازی کانتیلور با استفاده از تغییر زمینه الکتریکی، مغناطیسی یا صوتی ضروری است . بطور کلی حساسیت روش استاتیک دو تا سه برابر از روش دینامیک بیشتر است .
پل وتستون پیزو رسیستیو برای تشخیص نوسان رزونانسی در لبه کانتیلور جایی که ماکزیمم فشار مکانیکی وجود دارد جاگذاری می شود. در حالیکه در مورد سیستم استاتیک حیطه اندازه گیری در طول کانتیلور بوده و منطقه وسیعتری را پوشش می دهد .
در بررسی مولکول های پیچیده مثل پروتئین ها چند منبع فشار احتمالی دیگر غیر از اثر جذب سطحی آنالیت روی کانتیلور وجود دارد. برهمکنش الکترواستاتیک جذب سطحی شده های مجاور، تغییرات در آبگریزی سطح و تغییرات ساختاری مولکول های جذب شده همگی می توانند عامل فشار باشند. در نتیجه تغییرات در فشار می‌تواند مستقیماً به انرژی پیوند لیگاند- پذیرنده مرتبط نباشد .این مسئله مخصوصاً برای جذب سطحی زیستی به خاطر پیچیدگی برهمکنش های مربوطه مطرح است. بعنوان مثالی از پیچیدگی این مسئله مشاهده نحوه جذب سطحی DNA مکمل روی سطح کانتیلور است که می تواند بسته به نیروی یونی بافری که هیبریداسیون در آن اتفاق می افتد منجر به فشار کششی یا تراکمی شود که ناشی از برهمکنش دو نیروی مخالف است. کاهش آنتروپی ناشی از جذب سطحی DNA بعد از هیبریداسیون که منجر به کاهش فشار تراکمی است و دافعه الکتروستاتیک بین DNA جذبی که منجر افزایش فشار تراکمی است . از اثر پیوندهای غیرویژه مولکول ها و منابع نویز مانند لرزش و تغییرات دما با استفاده از کانتیلور رفرنس می توان اجتناب کرد .
در کانتیلورها با افزایش نسبت طول به ضخامت حساسیت بالا می رود و نویز مکانیکی خارجی مستقیماً حداقل انحراف قابل آشکارسازی را متأثر می کند. حساسیت بالا و بطور همزمان نویز پایین با استفاده از کانتیلورهای کوچکتر فراهم می شود. کانتیلورهای کوچکتر همچنین به خاطر فرکانس رزونانسی بالا دارای قدرت پاسخ‌دهی بالا می باشند .
حساسیت آشکارسازی انحراف کانتیلور ناشی از جذب سطحی و تغییر فرکانس رزونانسی ناشی از بارگذاری می تواند در حد ppb و ppt باشد .میکروکانتیلورهای بسیار نازک تا نیروی N18-10 را اندازه می گیرند .
لیزر دی اکسید کربن
لیزر وسیله‌ای برای تولید پرتوی تکفام و همدوس در نواحی نور فرابنفش ، مرئی و یا فروسرخ از طیف امواج الکترومغناطیسی است. کلمه لیزر در حقیقت از حروف اول کلمه‌های عبارت انگلیسی زیر گرفته شده است:
Light Amplification by Stimulated Emission of Radiation
این عبارت به معنی "تقویت نور با روش گسیل القایی تابش" گرفته شده است، که همه آنها اصطلاحهایی فیزیکی هستند. از آنجا که باریکه نور لیزر همدوس است (یعنی امواج آن همفاز هستند و به عبارت دیگر مانند سربازانی هستند که باهم پا می‌کوبند، با واگرایی بسیار کم پیش می‌رود و مانند نور معمولی نبوده و کمتر پخش می‌شود) و در نتیجه چگالی و یا تراکم آن در فضا ثابت می‌باشد. پرتو لیزر همچنین مزیت تمرکز زیاد انرژی در واحد سطح را دارد.
مبانی نظری
اتمها در حالتهای گسسته‌ای از انرژی وجود دارند. وقتی یک اتم که در حالت پایه (پایین‌ترین حالت انرژی) است انرژی جذب کند، به حالت انرژی برانگیخته‌ای صعود می‌کند. به دنبال آن در بازگشت به حالت پایه چه بطور مستقیم و چه از طریق حالتهای انرژی میانی ، فوتونهای تابشی با بسامد و طول موجی گسیل می‌دارد که بستگی به اختلاف انرژی بین حالتهای انرژی "شبه پایدار" می‌باشند.گسیل فوتون از اتمها در حالتهای انرژی شبه پایدار گاه به تأخیر می‌افتد تا در نهایت به گسیل تابش فلورسانسی یا فسفرسانسی منجر شود.
اتمهایی که برای عملکرد لیزر مناسب می‌باشند، باید حداقل دارای چنین حالت شبه پایداری باشند. وقتی یک فوتون که از حالت شبه پایدار اتمی گسیل شده ، از نزدیکی یک اتم دیگر که در همان حالت است عبور کند می‌تواند آن اتم را ترغیب کند تا یک فوتون تابشی گسیل دارد که دارای انرژی (و طول موج) ، جهت ، قطبش و فاز یکسان مانند خودش باشد. هر یک از چنین فوتونهای ترغیب شده‌ای خود نیز می‌توانند باز هم فوتون مشابه دیگری را ترغیب کنند. این فرآیند که اساس عملکرد لیزر است یک فرآیند جمع شونده و پیوسته است و می‌توان با ایجاد شرایط مناسب آن را تقویت کرد.
تهیه تعداد لازم از اتمهایی که در حالت انرژی شبه پایدار صحیح باشند، ضرورت اساسی برای عملکرد لیزر است. عملکرد لیزر بستگی به ایجاد یک "وارونی تعداد" دارد که در آن بیشتر اتمها در حالت شبه پایدار می‌باشند. انرژی را باید به این تعداد "پمپ کرد" تا وارونی لازم را ایجاد کنند. بنابراین حالت شبه پایدار مستقیما و یا با تنزل از یک حالت بالاتر بوجود می‌آید.
لیزرهای دی اکسیدکربن
لیزر دی اکسیدکربن (CO2) نمونه‌ای از یک لیزر گاز مولکولی پر قدرت است. باریکه خروجی وقتی کانونی شود می‌تواند صفحات الماس و فولاد ضخیم را در عرض چند ثانیه برش دهد. نمودار تراز انرژی یک گاز مولکولی بطور قابل توجهی پیچیده‌تر از آن برای یک اتم است. حالتهای انرژی که قبلا توضیح داده شده بصورت ترازها منجر به گسیل نور مرئی می‌شوند. هر تراز الکترونی در یک مولکول گاز بطور کلی دارای زیر ترازهایی مربوط به ارتعاشات مجاز مولکولی می‌باشد و هر یک از این ترازهای ارتعاشی نیز زیر ترازهایی بر اساس دوران مجاز مولکولی دارند.
عملکرد لیزر از طریق گذارهای بین ترازهای ارتعاشی - دورانی مختلف امکان پذیر می‌شود و تابش خروجی به صورت فرو سرخ (فوتونهای کم انرژی) می‌باشد. لیزر CO2 با استفاده از این نوع گذار یک باریکه خروجی مثلا به طول موج 10.6 میکرومتر در عملکرد موج پیوسته (CW) می‌دهد. طراحی لیزر ، CO2 شبیه He - Ne است، با این تفاوت که مخلوط گاز (9% دی اکسید کربن ، 15% نیتروژن ، 76% هلیوم) پیوسته و بطور یکنواخت از داخل لوله عبور می‌کند. پمپ کردن این لیزر مانند لیزر هلیوم- نئون با برانگیزش dc انجام می‌گیرد. لوله را باید خنک کرد، این کار معمولا با جریان آب بطور یکنواخت از میان یک پوشش به دور لوله صورت می گیرد.


لیزر زایی در CO2
عمل لیزر کنندگی در لیزر CO2 بواسطه انتقال انرژی از اتمهای نیتروژن برانگیخته به ترازهای انرژی مجاور مولکولهای CO2 صورت می‌گیرد. بهره توان بالای لیزر CO2 (حدود 15%) به دلیل پایین قرار داشتن حالتهای انرژی ارتعاشی و دورانی دی اکسیدکربن که انرژی کمی برای برانگیختگی لازم دارند. با قرار دادن یک Q - سوئیچ می‌توان لیزر CO2 را از عملکرد موج پیوسته به عملکرد پالسی (ضربه‌ای) تبدیل کرد. با استفاده از این شیوه یک لیزر 100 واتی CW می‌تواند پالسهای 100 کیلو واتی در عرض 150 نانو ثانیه و با 400 پالس در ثانیه ایجاد کند.
لیزر CO2 نمونه‌ای از یک نوع طیفی غنی از منبع انرژی است، زیرا تعداد بسیار زیادی از انتقالهای لیزری امکان پذیر می‌باشند. لیزرهای با چنین مشخصه‌ای را لیزرهای قابل تنظیم می‌گویند. لیزرهای CO2 جدید بعضا روی بیش از 85 طول موج مختلف قابل تنظیم هستند. تنظیم ممکن است با شیوه خوش ساختی از طیف نگار "لیترو" که در آن از یک منشور و یا از یک توری پراش برای پراکندگی استفاده می‌شود، انجام گیرد. در یک انتهای لیزر ، منشور تمام نقره اندودی که قابل چرخش است قرار دارد و نور را طوری پراکنده (پاشنده) می‌کند که فقط خط طیف با محور لیزر هم خط می‌شود و به دنبال آن تقویت می‌گردد و امواج ایستاده بجای می‌گذارد.
فیبر نوری
دسته‌ای از تارهای نوری فیبر نوری یا تار نوری (Optical Fiber)‏ رشته ی باریک و بلندی از یک ماده ی شفاف مثل شیشه یا پلاستیک است که می‌تواند نوری را که از یک سرش به آن وارد شده، از سر دیگر خارج کند. فیبر نوری داری پهنای باند بسیار بالاتر از کابل‌های معمولی می‌باشد، با فیبر نوری می‌توان داده‌های تصویر، صوت و داده‌های دیگر را به راحتی با پهنای باند بالا تا ۱۰ گیگابایت انتقال داد.
تاریخچه ی ساخت فیبر نوری
رونمایی از پروژه - ریسرچطبیعت در سال ۱۸۸۴ توسط ژان دانیل کلادوناولین کسانی که در قرون اخیر به فکر استفاده از نور افتادند، انتشار نور را در جو زمین تجربه کردند. اما وجود موانع مختلف نظیر گرد و خاک، دود، برف، باران، مه و... انتشار اطلاعات نوری در جو را با مشکل مواجه ساخت. بعدها استفاده از لوله و کانال برای هدایت نور مطرح گردید. نور در داخل این کانالها بوسیله آینه‌ها و عدسی‌ها هدایت می‌شد، اما از آنجا که تنظیم این آینه‌ها و عدسی‌ها کار بسیار مشکلی بود این کار نیز غیر عملی تشخیص داده شد و مردود ماند.
.شاید اولین تلاش در سیر تکاملی سیستم ارتباط نوری به وسیله الکساندر گراهام بل صورت گرفت که در سال ۱۸۸۰، درست ۴ سال پس از اختراع تلفن، اختراع تلفن نوری (فوتوفون) یا سیستمی که صدا را تا فواصل چندین صد متر منتقل می کرد، به ثبت رساند. تلفن نوری بر مبنای مدوله کردن نور خورشید بازتابیده با به ارتعاش در آوردن آینه ای کار می کرد. گیرنده یک فتوسل بود. در این روش نور در هوا منتشر می شد و بنابراین امکان انتقال اطلاعات تا بیش از ۲۰۰ متر میسر نبود. به همین دلیل، اگرچه دستگاه بل ظاهراً کار می کرد اما از موفقیت تجاری برخوردار نبود.
ایده استفاده از انکسار (شکست) برای هدایت نور (که اساس فیبرهای نوری امروزی است) برای اولین بار در سال ۱۸۴۰ توسط Daniel Colladon و Jacques Babinet در پاریس پیشنهاد شد. همچنین John Tyndall در سال ۱۸۷۰ در کتاب خود ویژگی بازتاب کلی را شرح داد: «وقتی نور از هوا وارد آب می شود به سمت خط عمود بر سطح خم می‌شود و وقتی از آب وارد هوا می شود از خط عمود دور می شود. اگر زاویه ی پرتو نور با خط عمود در تابش از داخل آب بزرگتر از ۴۸ درجه شود هیچ نوری از آب خارج نمی شود در واقع نور به طور کامل از سطح آب منعکس می شود. زاویه ای که انعکاس کلی آغاز می شود را زاویه بحرانی می نامیم»
کاکو و کوکهام انگلیسی برای اولین بار استفاده از شیشه را بعنوان محیط انتشار مطرح ساختند. آنان مبنای کار خود را بر آن گذاشتند که به سرعتی حدود ۱۰۰ مگابیت بر ثانیه و بیشتر بر روی محیط‌های انتشار شیشه دست یابند. این سرعت انتقال با تضعیف زیاد انرژی همراه بود. این دو محقق انگلیسی، کاهش انرژی را تا آنجا می‌پذیرفتند که کمتر از ۲۰ دسی بل نباشد. اگر چه آنان در رسیدن به هدف خود ناکام ماندند، اما شرکت آمریکائی (کورنینگ گلس) به این هدف دست یافت. در اوایل سال ۱۹۶۰ میلادی با اختراع اشعه لیزر ارتباطات فیبرنوری ممکن گردید. در سال ۱۹۶۶ میلادی، دانشمندان در این نظریه که نور در الیاف شیشه‌ای هدایت می‌شود پیشرفت کردند که حاصل آن از کابلهای معمولی بسیار سودمندتر بود. چرا که فیبرنوری بسیار سبکتر و ارزانتر از کابل مسی است و در عین حال ظرفیت انتقالی تا چندین هزار برابر کابل مسی دارد.
توسعه فناوری فیبرنوری از سال ۱۹۸۰ میلادی به بعد باعث شد که همواره مخابرات نوری بعنوان یک انتخاب مناسب مطرح باشد. تا سال ۱۹۸۵ میلادی در دنیا نزدیک به ۲ میلیون کیلومتر کابل نوری نصب شده و مورد بهره برداری قرار گرفته‌است.
فیبر نوری از پالس‌های نور برای انتقال داده‌ها از طریق تارهای سیلیکون بهره می‌گیرد. یک کابل فیبر نوری که کمتر از یک اینچ قطر دارد می‌تواند صدها هزار مکالمه ی صوتی را حمل کند. فیبرهای نوری تجاری ظرفیت ۲٫۵ گیگابایت در ثانیه تا ۱۰ گیگابایت در ثانیه را فراهم می‌سازند. فیبر نوری از چندین لایه ساخته می‌شود. درونی‌ترین لایه را هسته می‌نامند. هسته شامل یک تار کاملاً بازتاب کننده از شیشه خالص (معمولاً) است. هسته در بعضی از کابل‌ها از پلاستیک کا ملاً بازتابنده ساخته می‌شود، که هزینه ساخت را پایین می‌آورد. با این حال، یک هسته پلاستیکی معمولاً کیفیت شیشه را ندارد و بیشتر برای حمل داده‌ها در فواصل کوتاه به کار می‌رود. حول هسته بخش پوسته قرار دارد، که از شیشه یا پلاستیک ساخته می‌شود. هسته و پوسته به همراه هم یک رابط بازتابنده را تشکیل می‌دهند که با عث می‌شود که نور در هسته تا بیده شود تا از سطحی به طرف مرکز هسته باز تابیده شود که در آن دو ماده به هم می‌رسند. این عمل بازتاب نور به مرکز هسته را (بازتاب داخلی کلی) می‌نامند.
فیبر نوری قطر هسته و پوسته با هم حدود ۱۲۵ میکرون است (هر میکرون معادل یک میلیونیم متر است)، که در حدود اندازه یک تار موی انسان است. بسته به سازنده، حول پوسته چند لایه محافظ، شامل یک پوشش قرار می‌گیرد.
یک پوشش محافظ پلاستکی سخت لایه بیرونی را تشکیل می‌دهد. این لایه کل کابل را در خود نگه می‌دارد، که می‌تواند صدها فیبر نوری مختلف را در بر بگیرد. قطر یک کابل نمونه کمتر از یک اینچ است.
از لحاظ کلی دو نوع فیبر وجود دارد:
تک حالتی single-mode
چند حالتی multi-mode
فیبر تک حالتی یک سیگنال نوری را در هر زمان انتشار می‌دهد. (نظیر تلفن)
فیبر چند حالتی می‌تواند صدها حالت نور را به طور هم‌زمان انتقال بدهد . (نظیر شبکه‌های کامپیوتری)
فیبرهای تک حالته دارای یک هسته کوچک (تقریباً ۹ میکرون قطر) بوده و قادر به ارسال نور لیزری مادون قرمز (طول موج از ۱۳۰۰ تا ۱۵۵۰ نانو متر )می باشند.
فیبرهای چند حالته دارای هسته بزرگتر (تقریباً ۶۲.۵ میکرون قطر) و قادر به ارسال نور مادون قرمز از طریق LED می باشند.
فیبر چند مدی با ضریب شکست پله ای :
ضریب شکست هسته: ۴۸/۱ =n۱
ضریب شکست غلاف: ۴۵۶/۱ =n۲
قطر هسته: ۵۰ الی ۴۰۰ میکرون
قطر غلاف: ۱۲۵ الی ۵۰۰ میکرون
قطر روکش: ۲۵۰ الی ۱۰۰۰ میکرون
تضعیف: ۱db/km الی ۵۰db/km
پهنای باند: ۶MHZ.km الی ۲۵MHZ.km
روزنه عددی: ۰.۱۶الی ۰.۵
فیبر تک مدی با ضریب شکست پله ای :
ضریب شکست هسته: ۴۶۰/۱ = n۱
ضریب شکست غلاف: ۴۵۶/۱ = n۲
قطر هسته: ۳ الی ۱۲ میکرون
قطر غلاف: ۵۰ الی ۱۲۵ میکرون
قطر روکش محافظ: ۲۵۰ الی ۱۰۰۰ میکرون
تضعیف: ۲db/km الی ۵db/km
پهنای باند: ۵۰۰MHZ.km و تا حدود ۲۰۰GHZ.km
روزنه عددی: ۰۸/۰ الی ۱۵/۰ (معمولاً حدود ۱/۰)
فیبر چند مدی با ضریب شکست مرحله ای :
ضریب شکست هسته: ۴۸/۱ = n۱
ضریب شکست غلاف: ۴۶/۱ = n۲
قطر هسته: ۳۰ الی ۱۰۰ میکرون(در مخابرات ۵۰ میکرون)
قطر غلاف: ۱۰۰ الی ۱۵۰ میکرون (در مخابرات ۱۲۵ میکرون کاربرد دارد)
قطر روکش محافظ: ۲۵۰ الی ۱۰۰۰ میکرون
تضعیف: ۷db/km الی ۱۰db/km
پهنای باند: ۱۵۰MHZ.km الی ۲GHZ.km
روزنه عددی: ۲/۰ الی ۳/۰
دی ان ای و ساختار آن
ساختار دی‌ان‌ای
دی‌ان‌ای یک ساختار دو رشته ایی متشکل از ۴ نوکلئوتید است. این نوکلئوتیدها عبارتند از (A) آدنین، (G) گوانین، (C) سیتوسین و تیمین (T). ساختار شیمیایی دی‌ان‌ای به صورت پیوند مشخصی از دو دنباله خطی از این ۴ نوکلئوتید می‌باشد. که این اتصال‌ها فقط به صورت (A-T) , (T-A) , (C-G) , (G-C) وجود دارند.
کشف ساختار دی‌ان‌ای
در پایان سده نوزدهم یک بیوشیمی‌دان آلمانی بنام اسوالد اوری نشان داد که اسیدهای نوکلئیک دارای قند، اسید فسفریک و چند باز نیتروژن‌دار می‌باشند. اندکی بعد مشخص شد که قند موجود در اسیدهای نوکلئیک می‌تواند ریبوز یا دئوکسی ریبوز باشد. پس، اسیدهای نوکلئیک به دو دسته DNA DeoxyriboNucleic Acid)) که قند موجود در آنها دئوکسی ریبوز است و RNA RiboNucleic Acid)) که قند موجود در آنها ریبوز است تقسیم می‌شوند.
در سال ۱۹۴۸ لینوس پاولینگ کشف کرد که بسیاری از مولکول‌های پروتئینی به شکل یک مارپیچ هستند، و کم و بیش شکلی همانند فنر دارند. در سال ۱۹۵۰ نیز اروین شارگاف نشان داد که اگرچه آرایش بازهای موجود در ساختار DNA بسیار گوناگون است، ولی همواره نسبت باز آدنین و باز تیمین موجود در آن با هم برابر است و همین طور نسبت باز سیتوزین با باز گوانین. این دو یافته نقش مهمی را در آشکار شدن ساختار مولکول DNA داشتند. در دهه ۱۹۵۰ همچنان رقابت برای یافتن ساختار DNA ادامه داشت. در دانشگاه کمبریج فرانسیس کریک و جیمز واتسون برپایه کارهای پاولینگ کوشش داشتند تا با آرایه مدل‌های فیزیکی ساختارهای احتمالی ممکن برای DNA را محدود کنند تا سرانجام به ساختار درست دست یابند. گروه دیگری در برگیرنده موریس ویلکینز و رزالین فرانکلین نیز در کالج کینگ لندن همزمان سرگرم مطالعه DNA بوند. روش کار این گروه با گروه پیشین متفاوت بود. آنها کوشش داشتند تا با روش آزمایشگاهی به ویژه با بکارگیری تصاویر پراش اشعه X از مولکول DNA، ساختار آن را معین کنند. رزالین الیس فرانکلین دانشمند زن انگلیسی در بیست وپنجمین روز ژوئیه 1920 در ناتینگ هیل لندن متولد شد.رزالین در 15 سالگی و درحالی که اروپا از زنان و دختران جز خانه داری انتظار دیگری نداشت تصمیم می گیرد دانشمند شود اما با مخالفت پدر روبرو می شود با اینحال او در 18 سالگی وارد دانشگاه کمبریج لندن می شود و سه سال بعد در رشته شیمی از کالج نینونهام در کمبریج فارغ التحصیل میشود. وی برای تحقق بخشیدن به اهدافش وارد مرکز تحقیقات زغال لندن شد وبررسی های خود را برای اخذ مدرک دکترادر زمینه ریز ساختمان گرافیت وکربن ادامه داد. رزالین فرانکلین جوان 4سال بعد و در 25 سالگی موفق به اخذ مدرک دکترا در زمینه بیوفیزیک ملکولی از دانشگاه کمبریج گردید.وی پس از جنگ جهانی دوم به مدت سه سال به فرانسه رفت ودر یک آزمایشگاه دولتی شیمی در پاریس مشغول به کار شد در آنجا با تکنیک پراش اشعه ایکس آشنا شد و در سال1950 مجدداً به انگلستان و به کمبریج برگشت تا مقامی درآزمایشگاه فیزیک شیمی کینگزکالج که بخشی از دانشگاه کمبریج لندن است به دست آورد. در دانشگاه همزمان با موریس ویلکینز اما در دو گروه جداگانه اقدام به بررسی روی مولکول DNA نمود. وی بعد از آزمایشات سخت و طولانی سرانجام مجموعه‌ای از تصویر پراش پرتوی ایکس با کیفیت بالا، از بلور DNAتهیه کرد که البته هیچگاه به نام او به ثبت نرسید. 3 سال بعد به آزمایشگاه کالج بریک بک رفت و در آنجاشروع به مطالعه روی ویروس موزائیک تنباکو کرد . او ثابت کرد که RNAویروس یک مارپیچ یگانه است وی همچنین روی پولیو ویروسها کار دیگری را آغاز کرد به عنوان مثال پس از آن او به مطالعه ی بسیار خطرناک روی ویروس های زنده ی فلج اطفال پرداخت در همان زمان بود که دو محقق انگلیسی یعنی واتسون و کریک معروف با استفاده از عکس هایی که رزالین تهیه کرده بود مدل ساختار دورشته ای مولکول DNAرا بدون اینکه اسمی از رزالین ببرند ارائه دادند. رزالین الیس فرانکلین جوان پس از سالها تلاش در راه علم زیست شناسی به علت قرار گرفتن به طور مستقیم در معرض اشعهx و کریستالو گرافی مبتلا به سرطان شد و سرانجام در سال1958 در16 آوریل در چلسی بعد از دوسال دست و پنجه نرم کردن با سرطان و در38 سالگی درگذشت. 4سال بعد از مرگ فرانکلین واتسون و کریک و موریس ویلکینز جایزه نوبل فیزیولوژی و پزشکی را ازآن خود کردند.
در سال ۱۹۵۱، فرانکلین دریافت که DNA با نگرش به میزان نم هوای پیرامون، می‌تواند دو شکل متفاوت داشته باشد و بنابراین نتیجه گیری کرد که بخش فسفات مولکول در سمت بیرونی آن قرار دارد. اندکی بعد او با بکارگیری تصاویر اشعه X فهمید که DNA در حالت «نمناک» از همگی ویژگی‌های یک مارپیچ برخوردار است؛ این احتمال که حالت دیگر مولکول DNA نیز به شکل مارپیچی باشد به ذهن او خطور کرد، ولی نمی‌خواست تا زمانی که شواهد پایانی برای این حدس پیدا کند آن را اعلام نماید. در ژانویه ۱۹۵۳ ویلکینز که از به نتیجه رسیدن تحقیقات ناامید شده بود، نتایج تحقیقات فرانکلین را بدون اطلاع و خشنودی او، با واتسون در میان گذاشت. واتسون و کریک با بکارگیری این نتایج مدلی بسیار شگفت انگیز را برای ساختار DNA پیشنهاد نمودند. آنها مولکول را به گونه دو زنجیر مارپیچی در برگیرنده نوکلئوتیدها تصور کردند که یکی از آنها بالا می‌رفت و دیگری پایین می‌آمد. کریک که به تازگی یافته‌های شارگاف را هم مطالعه کرده بود کوشش کرد با بکارگیری آنها روش قرار گرفتن بازها را در مولکول DNA مشخص کند. او اظهار کرد که بازها در میانه این مارپیچ دوتایی دو به دو به هم متصل می‌شوند تا فاصله میان دو مارپیچ ثابت بماند. آنها ادعا کردند که هر یک از این دو مارپیچ مولکول DNA می‌تواند به نام قالبی برای ایجاد دیگری بهره گیری شود. در تقسیم سلولی این دو رشته از هم جدا می‌شوند و بر روی هر یک از آنها یک نمونه جدید همانند رشته مقابل پیشین ساخته می‌شود. با این روش بدون اینکه ساختار DNA عوض شود، یک DNA همانند آن فرآوری می‌شود. در اندک مواردی که در این روند خطایی پیش بیاید، گواه «جهش» خواهیم بود. مدل آنها چنان با اطلاعات برآمده از آزمایش‌ها مطابقت داشت که بی درنگ مورد قبول همه واقع شد. کشف ساختار DNA را می‌توان مهمترین یافته زیستی در صد سال گذشته دانست. در سال ۱۹۶۲ واتسون، کریک و ویلکینز موفق به دریافت پاداش نوبل شدند، ولی فرانکلین در گذشته بود.
فصل دوم
روش SPR(Surface Plasmon Resonance)
تشدید پلاسمونی سطح،جمع آوری نوسانات الکترونی در یک سطح جامد یا مایع بوسیله ی پرتو نور فرودی است.شرایط تشدید وقتی ایجاد می شود که فرکانس فوتون های نور با فرکانس طبیعی الکترون های نوسان کننده یکی باشد.الکترون هایی که علی رغم وجود نیروی بازگرداننده ی هسته های مثبت نوسان می کنند. SPRاندازه ای نانومتری دارد و به آن تشدید پلاسمونی نقطه ای سطح نیز گویند.این روش پایه ی بسیاری از ابزارهای اندازه گیری میزان absorption مواد در سطوح فلزی مانند طلا و نقره و یا سطوح نانو ذرات فلزی است.همچنین این روش اساس کار بسیاری از بیو سنسورها با پایه ی رنگی است.

ساختار پلاسمونی سطح شامل امواج الکترومغناطیسی هستند که به صورت موازی با سطح مقطع فلز- دی الکتریک یا فلز خلا منتشر می شوند.از آنجایی که این امواج مرز بین فلز و محیط خارجی (آب یا هوا)هستند این نوسانات به تغییرات این مرز بسیار حساس است. شرایطی مانند جذب مولکولها در سطح فلز و ...
برای توصیف وجود و مشخصات این ساختارها می توان از روش های گوناگونی مانند مدل نظریه ی کوانتومی،مدل دروده و... استفاده کرد.ساده ترین راه برای دست یابی به مسئله این است که رفتار هر ماده را به صورت همگن و پیوسته و با احتساب گذردهی نسبی مستقل از فرکانس بین سطح ماده و سطح خارجی بررسی کنیم.این پارامتر همان ثابت دی الکتریک سطح است زیرا این پارامتر نمایانگر توصیف وجود پلاسمون های الکترونی سطح است.
قسمت حقیقی ثابت دی الکتریک برای فلز باید منفی باشد و مقدار آن نیز از آنچه برای یک عایق در نظر گرفته می شود بزرگتر است.
مثلا این شرایط در سطح جدایی فلز و هوا و یا آب در محدوده ی امواج مادون قرمز قرار دارد.(که در آن بخش حقیقی ثابت دی الکتریک فلز منفی بوده و ثابت دی الکتریک آب و هوا مثبت است.)LSPR یا همان SPRنقطه ای نیز جمع شدن بار الکترونهای نوسان کننده روی نانوذرات فلزی است که بوسیله ی نور بر انگیخته شده اند.این میدان کاملا روی سطح نانو ذره متمرکز شده و به دلیل پراکندگی بلند برد ذرات به سرعت از سطح مقطع نانوذره –عایق به سمت زیر لایه ی عایق پراکنده می شود.شدت نور یکی از مهمترین پارامترها در این روش است.متمرکز بوده یعنی اینکه LSPR دقت و کیفیت بسیار بالایی دارد که فقط اندازه ی نانو ذره روی آن اثر می گذارد.
به دلیل امکان اندازه گیری دامنه ی میدان اثراتی که مربوط به تغییر دامنه هستند مانند اثرات اپتیکی- مغناطیسی به روش LSPR و SPRبررسی می شوند.
روش تشدید کرشمان(kretchmann configuration) برای بر انگیختن پلاسمون های سطحی به کار می رود که در آن از یک پرتو الکترونی یا نوری (طیف مریی یا مادون قرمز)استفاده می شود.تکانه ی پرتو ورودی طوری انتخاب می شود که از تکانه ی پلاسمون ها بیشتر باشد و این در حالتی است که از نور پلاریزه ی p استفاده شود.(پلاریزاسیون موازی با سطح صفحه ی فرودی).
ممکن است با عبور نور از داخل تیغه ی شیشه ای طول موج یا تکانه افزایش پیدا کند وپدیده ی تشدید در طول موج در زاویه ی خاصی اتفاق بیفتد.نور پلاریزه ی s (پلاریزاسیون عمودی بر سطح صفحه ی فرودی)نمی تواند پلاسمون های الکترونی سطح را بر انگیخته کند.پلاسمون های الکتریکی و مغناطیسی سطح با روابط زیر توصیف می شوند:
K(ω)=ω/c(ε1μ1ε2μ2/ ε1μ1 + ε2μ2)1/2
که در آن ε ثابت دی الکتریک و μ. ثابت گذر دهی مغناطیسی فلز،بلور شیشه ای و سطح لایه ی نازک فلزی هستند.
موادی که وجود پلاسمون های سطحی را تضمین می کنند عبارتند از نقره و طلا اما فلزاتی مانند مس ، تیتانیوم و کروم نیز مورد استفاده قرار می گیرند.
وقتی از نور برای بر انگیخته کردن امواج SP استفاده می شود معمولا دو حالت اتفاق می افتد.در ساختار OHO روشنایی نور سطح دیواره ی بلوک را روشن می کند و معمولا بازتابش داخلی اتفاق می افتد. یک لایه ی نازک فلزی از جنس طلا نیز تا حد امکان نزدیک دیواره ی بلوک قرار می گیرد به طوری که امواج بازتابشی با امواج پلاسمای سطح بر هم کنش کنند و به این ترتیب پلاسمون ها بر انگیخته شوند.در ساختار کریشمان فیلم فلزی روی سطح دیواره ی بلوک لایه نشانی شده است. نور دوباره سطح بلوک را روشن می کند و امواج بازتابشی در فیلم فلزی نفوذ می کنند.به این ترتیب پلاسمون ها در سطح دیگر لایه ی نازک فلزی بر انگیخته می شوند. این روشی است که در اکثر کاربرد ها مورد استفاده قرار می گیرد.
تابش SPR
وقتی امواج پلاسمونی سطح با یک ذره یا نقص ساختاری برخورد می کنند(چیزی شبیه زبری های سطحی)مقداری از انرژی آنها دوباره به صورت نور تابش می شود.این نور تابشی را می توان در پشت لایه ی نازک فلزی و در جهات مختلف مشاهده کرد.
کاربرد ها
پلاسمون های سطحی برای محاسبه ی درجه ی حساسیت سطوح در چندین اندازه گیری اسپکتروسکوپی شامل اثر فلورسانس،پراکندگی رامان و تولید هارمونیک های دوم مورد استفاده قرار می گیرد.به هر حال در ساده ترین کاربرد از اندازه گیری بازتابش SPR می توان برای مشاهده ی جذب مولکولی موادی مانند پلیمر ها،DNAیاپروتئین های متصل به آن استفاده کرد.
از لحاظ عملی معمول است که زاویه ی کمترین بازتابش (بیشترین جذب)را اندازه گیری کنند.این زاویه در طی اندازه گیری جذب یک لایه ی ضخیم(در حد نانو متر)از مرتبه ی 1/0 درجه تغییر می کند.در بعضی روش ها نیز تغییر در طول موج جذب بررسی می شود.مکانیسم آشکار سازی اینگونه است که مولکولهای جذب شده باعث ایجاد تغییرات موضعی در ضریب بازتابش سطح شده و تغییر در شرایط تشدید در امواج پلاسمونی سطح را بوجود می آورند.
اگر سطح از چند نوع بیو پلیمر تشکیل شده باشد با استفاده از سنسورهای تصویر برداری و ادوات اپتیکی کافی این روش را می توان به تصویر برداری تشدید پلاسمونی SPRIبسط داد.این روش تصاویری با وضوح بالا را بر اساس جذب مولکول ها بدست می دهند که مشابه میکروسکوپ های زاویه ی بروستر است.
برای نانو ذرات نوسانات پلاسمونی نقطه ای سطح می تواند تا ایجاد پرتو های نوری شدید رشد کند.نانو ذرات و نانو سیم ها توانایی جذب زیادی در محدوده ی بین نور مریی و فرابنفش از خود نشان می دهند. که در فلزات حجمی وجود ندارد.این جذب دور از انتظار با افزایش جذب نور افزایش می یابد.درست همان پدیده ای که در سلول های فوتو ولتایی اتفاق می افتد.انرژی(رنگ)این جذب وقتی پلاریزاسیون نور عمودی یا موازی با سطح نانو سیم باشد متفاوت است.جابجایی در این تشدید ناشی از تغییرات موضعی در ضریب پراش و جذب نانو ذرات می تواند برای تشخیص بیو پلیمرهایی مانند DNAو پروتئین های متصل به آنها مورد استفاده قرار گیرد.
مهمترین اصل اپتیکی مورد استفاده برای مدل سازی این سیستم اصل فرنل است که در آن لایه های ضخیم به صورت نا محدود در نظر گرفته می شود.همچنین لایه های دی الکتریک به صورت پیوسته فرض میشوند.این توصیف ممکن است شامل ضریب پراش چندگانه و ضخامت های مختلف باشد.به هر حال معمولا فقط یک حل در محدوده ی داده های منطقی وجود خواهد داشت.
پلاسمون های ذرات فلزی معمولا بال استفاده از نطریه ی پراکندگی MIEمدل سازی می شوند.در بسیاری از حالت ها مدلی که تمام جزییات را در نظر بگیرد وجود ندارد . سنسورهای مورد استفاده برای کاربرد های خاص کالیبره شده و با استفاده از منحنی کالیبراسیون دقت آنها تعیین می شود.
بیو سنسورهای فیبر نوری
سنسورها طوری توسعه پیدا می کنند تا پاسخ گوی نیاز تحلیل همزمان با اندازه گیری باشند.کار در عمل بسیار ساده است.رابطه ی مستقیمی بین زمان و مقدار اندازه گیری سنسور و تحلیل داده ها برقرار می شود.سنسورهای بیو شیمیایی که بر پایه ی فیبر نوری عمل می کنند نمونه ای از این سنسورها هستند.همانطور که از اسم آنها مشخص است این سنسورها وسایلی برای انتقال اطلاعات شیمیایی از یک نمونه ی در حال اندازه گیری به واحد پردازش و تحلیل و ایجاد یک سیگنال مفید هستند.تمامی این قسمت ها در ارتباط با هم و کاملا فشرده و در ارتباط مستقیم با نمونه ی اندازه گیری شده هستند.بیو سنسورهای فیبر نوری از یک فیبر نوری برای ایجاد و انتقال اطلاعات استفاده می کنند.
این سنسورها بر اساس نوع مولفه ی مورد استفاده برای اندازه گیری طبقه بندی می شوند.و بر همین اساس به 5 دسته قابل تقسیم هستند:
1-بیو سنسورهای فیبر نوری آنزیمی:
که ازیک آنزیم خالص و یا مخلوطی از چند جزبیولوژیکی مانند سلول و یا visideاستفاده می کنند.آنزیم ها واکنش ها را به طور ویژه ای کاتالیز می کنند. و محصولات واکنش ها را به طور مستقیم و یا با انجام واکنش با معرف ها تعیین و آشکارسازی می کنند.
2- بیو سنسورهای فیبر نوریimmunoassay:
این بیو سنسورها از پیوند بین آنتی بادی ها و آنتی ژن ها استفاده می کنند.این پیوند به طور غیر مستقیم و با استفاده از نشانه های نوری فلوروسنس و یا به طور مستقیم اندازه گیری و تغییرات ضریب پراش را تعیین می کنند.
3- بیو سنسورهای فیبر نوری اسید های نوکلئیک:
که از تمایل تبدیل SSDNA(single-standed DNA) به DSDNA(double- standed DNA)استفاده می کنند. این سنسورها معمولا از نشانه گذاری یک عضو SSDNA توسط شناساگرهای نوری استفاده کرده و به همین دلیل به سنسورهای DNAیا genosensorsنیز معروف شده اند.
4- بیوسنسورهای فیبرنوری تمام سلولی:
این سنسورها اثرات تاثیر یک analyte را روی ریز ساختارها بررسی می کنند.آشکارسازی اپتیکی بوسیله ی یک معرف یا خواص اپتیکی خود سلول ها انجام می شود.باکتری های بیو لومینسانس (bioluminescent) که به روش مهندسی ژنتیک ساخته شده است نیز مورد استفاده قرار می گیرد.
5- بیو سنسورهای فیبر نوری biomimetic:
که از مواد غیر بیولوژیکی برای انجام انتخاب های بیولوژیکی استفاده می کنند.
تمام انواع این سنسورها تقریبا شرایط فیزیکی کارکرد مشابهی دارند. یعنی از لحاظ ساختار عملی و ابزار مورد استفاده می توان یک مدل کلی برای آنها در نظر گرفت مثلا شرایط ساخت و اساس کار آنها مشابه است.
در طی دهه‌ی گذشته، با پیشرفت فناوری ساخت فیبر نوری و ساخت نانوفیبرها، در پژوهش‌های پزشکی و بیولوژیکی نیز تحولات عظیمی صورت گرفته و فناوری ساخت حسگرهای زیستی و دانش تولید نانومتریِ این ابزارها روزبه‌روز گسترش یافته است. این حسگرها به لحاظ استفاده از نانو فیبر نوری در ساختارشان "نانو حسگرهای نوری" نامیده شده‌ و به دو دسته ی شیمیایی و بیولوژیکی تقسیم می‌شوند. بسته به اینکه بخواهیم این حسگر را برای تجزیه‌ی گونه‌ی داخل سلول، مایع بیولوژیک بین سلولی یا داخل خون به کار ببریم، ابعاد نوک حسگر، زاویه‌ی مخروطی شدن نوک آن و میزان نرمی پوشش روی فیبر متفاوت خواهد بود.برای نمونه، در (شکل زیر)نحوه تهیه‌ی نوک حسگر از روش کشش فیبرهای نوری آورده شده است.

الف ـ شیوه کشیدن فیبر برای ساخت نانوفیبرها از نمای بالا. ب ـ نمای جانبی از یک فیبر کشیده‌شده
در این دستگاه از لیزر دی‌اکسیدکربن برای گرم‌کردن فیبر و از وسیله‌ای برای کشش فیبر در جهت محور اصلی آن استفاده می‌شود. محققان موفق شده‌اند با تغییر دما و میزان نیروی کششیِ اعمال‌شده به فیبر، نوک‌هایی برای حسگرهای زیستی بسازند که قطرشان بین 20 تا 500 نانومتر است. این تکنیک سرعتی بالا (حدود 3 ثانیه) و روند تولید نسبتاً ساده‌ای دارد. در تصویر زیر یک نانوفیبر تولیدشده به شیوه‌ی کشش لیزری در سمت راست و عبور آن از غشای سلولی در سمت چپ نشان داده شده‌‌است.

نانوفیبر تولیدشده به شیوه‌ی کشش لیزری(سمت راست) و عبور نوک حسگر از غشای سلولی (سمت چپ)
حسگرهای فیبر نوری متراکم، سبک، مقرون به صرفه و مقاوم در برابر خوردگی، پرتوهای تشعشعی، حرارت بالا و تداخل‌های الکترومغناطیسی می‌باشند. داشتن این ویژگی‌ها باعث شده است تا فیبرهای نوری، در حوزه انتقال چندتایی به منظور تبادل داده‌های سنسورها کارایی زیادی داشته باشد. همچنین در بافت‌های زنده، دریافت علائم حیاتی درون‌سلولی جهت شناسایی هدف‌های بیوشیمیایی همچون تترول بنزوپیرین، سیتوکروم C، دنباله‌های DNA و ترکیباتی نظیر اینها، به مرحله‌ی کاربردی شدن سوق پیدا کرده‌اند.
در فصل بعد مدل ساده شده ای برای این مکانیسم ها معرفی کرده و سعی می کنیم معادلات حاکم بر آنها را معرفی کنیم. در ادامه شرایطی برای شبیه سازی آنها بیان می کنیم. این شرایط عموما مربوط به ساختار اپتیکی مسئله و شرایط بهینه سازی آن خواهد بود.
نانو بیو سنسور الکتروشیمیایی DNA،اصل و کاربرد ها

—d1926

فهرست نمودار‌ها
TOC h z t "نمودار,6" نمودار3-1 پارامترهای ژنتیکی جمعیت استان کرمانشاه برحسب درصد PAGEREF _Toc409966026 h 60نمودار3-2 پارامترهای ژنتیک جمعیت استان یزد برحسب درصد PAGEREF _Toc409966027 h 64

چکیده
بررسی تنوع ژنتیکی اقوام ایرانی با استفاده از STR
مونا داودبیگی
بررسی تنوع ژنتیکی در جمعیت‏ها با استفاده ار تعیین فراوانی آللی و پارامترهای ژنتیکی روش نوینی است که در سال‏های گذشته در بسیاری از جمعیت‏های جهان صورت گرفته و با استفاده از آن شباهت بسیاری از جمعیت‏ها به یکدیگر مشخص گردیده. شباهت جمعیت‏ها نشان‌دهنده‏ی همسان‌بودن خزانه‏ی ژنتیکی آنها و احتمالا یکسان‌بودن آن جمعیت‏ها در گذشته است. پس این احتمال وجود دارد که این جمعیت‏ها در گذشته یک جمعیت بوده باشند و بعد‏ها به دلایل جغرافیایی و یا مهاجرت‏ها از یکدیگر جدا شده باشند. یکی از راه‏های بررسی تنوع‌ ژنتیکی در جمعیت‏ها استفاده از توالی‏های کوتاه تکراری می‏باشد .هدف این مطالعه بررسی تنوع ژنتیکی در دو قوم یزد و کرد (کرمانشاه) از ایران بود. بدین منظور پروفایل ژنتیکی پنجاه فرد غیر‌خویشاوند از هر یک از جمعیت‏های کرمانشاه و یزد با استفاده از کیت ABIتهیه شد. این کیت حاوی پانزده جایگاه D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOX و TH01 و ژن آمیلوژنین (برای تعیین جنسیت افراد) می‏باشد. نتایج نشان‌دادند که به جز دو جایگاه D7S820 وD19S433 در جمعیت کرمانشاه و سه جایگاه D21S11 ,D19S433 و VWA در یزد سایر جایگاه‏ها در تعادل هاردی‏واینبرگ بودند. همچنین پارامترهای پزشکی‌قانونی شامل PIC,PD,PE,MP در این مطالعه بررسی شدند. سپس دو جمعیت با جمعیت‏های کشورهای همسایه مقایسه شدند. این مطالعه نشان داد که این جایگاه‏ها، جایگاه‏های مناسب برای استفاده در تست‏های تعیین هویت و مطالعات جمعیتی می‏باشند. در نتیجه‏‏ی مقایسات هم دیده شد که هر دو جمعیت یزد و کرمانشاه شباهت زیادی به جمعیت کشور ترکیه داشتند ولی با سایر کشورها متفاوت بودند. از طرفی یزد نسبت به کرمانشاه دارای جمعیت همگن‌تری بود که این مسئله می‏تواند به‌علت بکر بودن این جمعیت در طول سالیان مختلف باشد.
کلمات کلیدی: توالیهای کوتاه تکراری، نشانگرهای مولکولی، ژنتیک جمعیت
Abstract
Genetic variation in two Iranian population with STR
Mona Davood Beigi
In recent years studying genetic variation among population by determination of allele frequencies and genetic parameters became a new method that it has been done in different population all around the world. By using this method lots of similarities has been founded among population around the world. These similarities represent the same genetic pool and also it may show the same population in the past as well. So it seems that different population were one at the first and geographical situations or migrations were the reasons that caused its separation.
Studying short tandem repeats (STR) in genome is the best way to founding genetic variation in population. The aim of this study was to investigate the genetic variation of two population of Iran, Yazd and Kermanshah people.
For this purpose the genetic profile of 50 unrelated individual from each population prepared by using ABI kit. This kit contains fifteen str loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) and also amylogenin gene for sex determination. The result showed all the loci were in Hardy Weinberg equilibrium except two loci(D19s433 , D2s820) in Kermanshah and three loci (D19s433, D21s11 and VWA) in Yazd population. More over forensic parameters including PIC, PD, PE and MP have been calculated. After all the results have been compared with other population in neighbor countries.
This study revealed that these loci were the suitable loci for identification people and studying genetic population variation. Also the comparison showed that both of Yazd and Kermanshah people were similar to Turkish genetically, but were different from other countries. In addition Yazd has more homogeneous population than Kermanshah, that it could be due to pristine gene pool of this population in the past centuries.
Keywords: Short tandem repeats; Microsatellite markers; Population genetic
فصل اول
مقدمه
1-1 مقدمهدرگذشته مطالعه‏ی تکامل و مهاجرت‏ها از طریق کشف و بررسی بقایای اسکلتی و فسیل‏ها انجام می‏شد. اما از حدود سه دهه‏ی پیش، باستان‏شناسان و زیست‏شناسان با به‌کار‏گیری آنالیز‏های DNA موفق به کشف‏های بسیار دقیقی شدند که کمک فراوانی به ردیابی تاریخ مهاجرت بشر و تکامل انسان‏ها نموده است. یکی از پر‏کاربرد‏ترین راه‏های آنالیز DNA، بررسی نشان‌گرهای ژنتیکی افراد است، که از مهم‌ترین آنها می‏توان به توالی‏های کوتاه تکراری موسوم به STR اشاره کرد. STR‏ها، توالی‏هایی به طول یک تا سیزده نوکلئوتید هستند که در ژنوم موجودات در نواحی غیر‌کد‏کننده موجود می‏باشند. هر فرد توالی‏های منحصر به فردی دارد و هیچ دو نفری در جهان نیستند که توالی‏های یکسانی داشته باشند. به همین دلیل ازSTR ‏ها می‏توان در مطالعات جمعیتی و بررسی تنوع ژنتیکی در جمعیت‏ها سود جست [1].
علاوه بر مطالعات جمعیتی ازSTR ‏ها می‏توان در موارد تعیین هویت‏، تعیین ابویت، تست‏های پزشکی‏قانونی و سایر موارد استفاده کرد. به طور معمول STRهایی که برای تعیین هویت و مطالعات ژنتیکی جمعیت به‌کار می‏روند، یکسان هستند و شامل پانزده جایگاه به نام‏های D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOXو TH01 می‏باشند [1].
هم‌چنین از روش مشترکی موسوم به تعیین الگوی DNA در این زمینه‏ها استفاده می‏شود. هر فرد دارای الگوی DNA منحصر به فرد است که تا پایان عمر تغییر نخواهد کرد. محققان دریافتند که افراد یک جمعیت در الگوهای ژنتیکی خود دارای تشابهاتی هستند که منحصر به همان جمعیت است و با الگوی افراد جمعیت‏های دیگر متفاوت است. از این تفاوت‏ها می‏توان برای ردیابی تاریخ مهاجرت و تکامل انسان‏ها استفاده نمود (1).
1-2 نشان‌گر چیست؟
صفاتی را که می‏توانند به عنوان نشانه‏ای برای شناسایی افراد حامل آن صفت مورد استفاده قرار گیرند، نشان‌گر می‏نامند. مندل نخستین کسی بود که از نشان‌گرهای ظاهری برای مطالعه چگونگی توارث صفات در نخود‌فرنگی استفاده کرد. اما گاهی صفات به سادگی و با چشم غیر مسلح قابل مشاهده نیستند، مانند گروه خونی. برای مشاهده چنین صفاتی باید آزمایش‏های خاصی صورت گیرد. به طور کلی هر صفتی که بین افراد متفاوت باشد، ناشی از تفاوت موجود میان محتوای ژنوم آنها می‏باشد. حتی بروز صفات به صورت متفاوت در میان افراد (در شرایط محیطی یکسان)، به علت تفاوت‏ در ژنوم آنها است. این تفاوت‏ها می‏توانند به عنوان نشانه یا نشان‌گر ژنتیک به کار گرفته شوند. به طور کلی برای آنکه صفتی به عنوان نشان‌گر ژنتیک مورد استفاده قرار گیرد، باید دست کم دو ویژگی داشته باشد‌:
1-در بین دو فرد متفاوت باشد (چند شکلی)
2-به توارث برسد (2).
1-3 انواع نشان‌گرهای ژنتیکینشان‌گرهای ژنتیکی عبارتند از:
1-نشان‌گرهای مورفولوژیک
2-نشان‌گرهای پروتئینی
3-نشان‌گرهای مولکولی در سطح DNA و RNA
1-3-1 نشان‌گرهای مورفولوژیک
کاربرد نشان‌گرهای مورفولوژیک به ده‏ها سال پیش از کشف DNA مربوط می‏شود. نشان‌گرهای مورفولوژیکی که پیامد جهش‏های قابل رویت در مورفولوژی هسته، از ابتدای این سده مورد استفاده قرار گرفتند. صفات مورفولوژیکی که عمدتا توسط یک ژن کنترل می‏شوند، می‏توانند به عنوان نشان‌گر مورد استفاده قرار گیرند. این نشان‌گرها شامل دامنه وسیعی از ژن‏های کنترل‌کننده صفات فنوتیپی هستند و جز نخستین نشان‌گرها به شمار می‌آیند و از زمان‏های بسیار دور یعنی از زمانی که محل ژن‏ها روی کروموزوم مشخص شد، مورد استفاده قرار می‏گرفتند (2).
معایب نشان‌گرهای مورفولوژیک
اغلب دارای توارث غالب و مغلوب بوده و اثرات اپیستازی و پلیوتروپی دارند.
تحت تاثیر شرایط محیطی و مرحله رشد موجود قرار می‏گیرند.
فراوانی و تنوع کمی دارند.
گاهی برای مشاهده و ثبت آنها باید منتظر ظهور آنها ماند.
اساس ژنتیک بسیاری از نشان‌گرهای مورفولوژیک هنوز مشخص نشده است‌(2).
1-3-2 نشان‌گرهای پروتئینی
در دهه‌ی 1950، نشان‌گرهای پروتئینی قابل مشاهده توسط الکتروفورز پروتئین‏ها تحول شگرفی را ایجاد نمودند. برخی از تفاوت‏های موجود در ردیفDNA بین دو موجود ممکن است به صورت پروتئین‏هایی با اندازه‏های مختلف تجلی کنند، که به روش‏های مختلف بیوشیمیایی قابل ثبت و مطالعه می‏گردند. این قبیل نشان‌گرها را نشان‌گرهای مولکولی در سطح پروتئین می‏نامند که از آن جمله می‏توان به سیستم آیزوزایم/آلوزایم اشاره کرد. معمول‏ترین نوع نشان‌گرهای پروتئینی آیزوزایم‏ها هستند که فرم‏های مختلف یک آنزیم را نشان می‏دهند. آیزوزایم‏ها به‏ طور گسترده در بررسی تنوع ژنتیکی به‌کار گرفته‌شدند. نشان‌گرهای پروتئینی تغییرات را در سطح ردیف و عمل ژن به صورت نشان‌گرهای هم‌بارز نشان می‏دهند. اما این دسته از نشان‌گرها هم دارای معایبی هستند. برخی از معایب آن‏ها عبارت‌اند از:
محدود بودن فراوانی این نوع نشان‌گرها؛
تعداد آیزوزایم‏های قابل ثبت و مشاهده که می‏توان از آنها به عنوان نشان‌گر استفاده کرد به یکصد عدد نمی‏رسد؛
محدود بودن تنوع ژنتیکی قابل ثبت در آیزوزایم‏ها‌(نداشتن چند شکلی)؛
پیچیدگی فنوتیپ‏های الکتروفورزی آیزوزایم‏ها به دلیل دخیل بودن آنزیم‏های مرکب از چند پلی‌پپتید مستقل در ترکیب برخی از آیزوزایم‏ها‌(3).
اما پیشرفت‏هایی که در زمینه‏ی الکتروفورز دو‏بعدی با قدرت تفکیک زیاد پدید آمده، تجزیه تحلیل هم‌زمان هزاران پروتئین را میسر ساخته و مجددا به‌عنوان فناوری پیشتاز در عرصه نشان‌گر‏های مولکولی مطرح شده‏اند. تاثیرپذیری نشان‌گرها از محیط که به‌طور معمول به‌عنوان یکی از محدودیت‏ها و نکات منفی نشان‌گرهای مولکولی یاد می‏شود، در مورد این نشان‌گر‏ها تبدیل به برتری شده و جایگاه متمایزی را در بین سایر نشان‌گرها به ارمغان آورده است. پروتئومیکس‌(مطالعه سراسری کل پروتئین‏های موجود در یک سلول یا یک ارگانیسم) می‏تواند به‌طور هم‌زمان برای مطالعه بیان ژن و هم‌چنین برای شناسایی پروتئین‏های واکنش دهنده به شرایط محیطی مورد استفاده قرار گیرد(3).
1-3-3 نشان‌گرهای مولکولیDNA وRNA
دسته‌ای دیگر از تفاوت‏های موجود در سطح DNA هیچ تظاهری ندارند. نه صفت خاصی را کنترل می‏کنند و نه در ردیف اسید‏های آمینه پروتئین‏ها تاثیری برجای می‌گذارند. این دسته از تفاوت‏ها را می‏توان با روش‏های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشان‌گر مورد استفاده قرار داد. این نشان‌گر‏ها که تعدادشان تقریبا نا‏محدود است، فقط از راه تجزیه و تحلیل مستقیم DNA قابل ثبت هستند. بنابراین به آنها نشان‌گرهای مولکولی در سطح DNA گفته می‏شود. نشان‌گرهای مولکولی فراوان و در هر موجود زنده‌ای می‌توانند مورد استفاده قرار گیرند. تاکنون تعداد زیادی از نشان‌گرهای DNA معرفی شده‌اند. این نشان‌گرها از نظر بسیاری از ویژگی‏ها مانند درجه‏ی چندشکلی، غالب یا هم‌بارز بودن، تعداد جایگاه‏های تجزیه شده در هر آزمایش DNA، توزیع در سطح کروموزوم، تکرار‌پذیری، نیاز یا عدم نیاز به توالی‏یابی DNA الگو و هزینه‏ی مورد نیاز با همدیگر متفاوت‌اند. انتخاب بهترین نشان‌گر به هدف مطالعه (انگشت نگاری، تهیه نقشه پیوستگی، ژنتیک جمعیت و روابط تکاملی) و سطح پلوئیدی موجود مورد مطالعه بستگی دارد‌(4).
مزایای کاربرد نشان‌گرهای مولکولی
عدم تاثیرپذیری آنها از شرایط محیطی خارجی و داخلی موجود؛
امکان به‌کارگیری آنها در مراحل نخستین رشد جنینی حیوانات و مراحل نخستین رشد موجودات؛
فراهم نمودن امکان مطالعه موجودات در خارج از فصل و محیط کشت؛
دقت و قابلیت مطلوب تفسیر نتایج؛
هم‌بارز بودن بسیاری از این نشان‌گرها؛
امکان استفاده از آنها در مورد گونه‏های منقرض شده؛
سهولت تشخیص افراد ناخالص از خالص؛
سهولت امتیازدهی و تجزیه و تحلیل نتایج؛
دسترسی به برنامه‏های رایانه‏ای قوی برای تجزیه و تحلیل و تفسیر سریع نتایج‌(4)
انواع نشان‌گرهای مولکولی
نشان‌گرهای DNA گروه بزرگی از نشان‌گرها را تشکیل می‏دهند. این نشان‌گرها سیر تحول و تکامل خود را به پایان نرسانده‏اند و ابداع و معرفی روش‏های متنوع و جدیدتر ثبت و مشاهده‏ی تفاوت‏های ژنتیک بین موجودات از طریق مطالعه‏ی مستقیم تفاوت‏های موجود در بین ردیف‏های DNA هم‌چنان ادامه دارد. نشان‌گر‏های DNA در مدت یک دهه تکاملی شگرف و تحسین‌برانگیز داشته‏اند‌(5).
ابداع و معرفی واکنش زنجیره‌ای پلی‌مراز یا PCR یک روش سریع تکثیر آزمایشگاهی قطعه یا قطعه‌های مورد نظر DNA است. در واقع PCR روشی بسیار قوی است که تکثیر ردیف منتخبی از مولکول یک ژنوم را تا چندین میلیون در کم‌تر از نیم‌روز امکان‌پذیر می‏سازد. اما این فرایند هنگامی امکان‌پذیر است که دست‌کم ردیف کوتاهی از دو انتهای قطعه DNA مورد نظر معلوم باشد. در این فرایند که تقلیدی از فرایند همانندسازی DNAدر طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده دو انتهای قطعه‏ی مورد‌نظرDNA هستند، به‌عنوان آغازگر مورد استفاده قرار می‏گیرند تا واکنش آنزیمی همانندسازی DNA درون لوله‌ی آزمایش امکان‌پذیر شود. این همانند‏سازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‏های پلی‌مراز صورت می‏گیرد. امروزه تعداد زیادی از این نوع آنزیم‏ها به صورت تجاری دردسترس هستند‌(6).
واکنش زنجیره‏ای پلی‌مراز (PCR) در سال 1983 توسط کری‌مولیس در حالیکه در یک نیمه شب تابستانی در حال رانندگی بود، ابداع گردید و سبب انقلاب عظیمی در زیست شناسی مولکولی شد(6).
همان‌گونه که در شکل 1-1 نشان داده شده است، نشان‌گرهای DNAبه دو دسته‏ی کلی طبقه‌بندی می‏شوند.
نشان‌گرهای DNAمبتنی بر PCR
نشان‌گرهای DNA غیر مبتنی PCR(6).

شکل 1-1 انواع نشان‌گرهای ژنتیکی‌(10)
1-3-3-1 نشان‌گرهای غیر مبتنی بر PCRاین دسته از نشان‌گرهای DNA بدون استفاده از روشPCR تولید می‌شوند و مورد استفاده قرار می‌گیرند.
انواع نشان‌گرهای غیر مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‏های محدودگر(RFLP)


پویش ژنومی نشانه‏های هضم (RLGS)
ماهوارک‏ها
1-3-3-1-1 تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‌های محدودگر( (RFLPسرگروه نشان‌گرهای غیر‌مبتنی برPCR ، همان تفاوت طول قطعه‏های حاصل از هضم DNA توسط آنزیم‏های محدودگر یا RFLP است. از بین نشان‌گرهای مولکولی DNA، RFLP ها اولین نشان‌گرهایی بودند که برای نقشه‌یابی ژنوم انسان توسط بوتستین و همکاران در سال 1980 و پس از آن برای نقشه‌یابی ژنوم گیاهان توسط بر و همکاران در سال 1983 مورد استفاده قرار گرفتند. در اوایل دهه 1980 بوتستین و همکاران استفاده از تفاوت طول قطعه‏های حاصل از هضم یا RFLP را برای مطالعه‏ی مستقیم DNA و یافتن نشان‌گر‏های ژنتیک جدید معرفی کردند. این تحول از پیامد‏های منطقی کشف آنزیم‏های محدودگر بود. این آنزیم‏ها که بسیار اختصاصی‏ هستند، ردیف‏های ویژه‏ای را روی مولکولDNA شناسایی کرده و آنها را از محل خاصی (نقطه‏ی برش) برش می‏دهند‌(7).
RFLP الزاما مختص ژن‏های خاص نیست، بلکه در کل ژنوم پراکنده است. ازاین رو، از نشان‌گرهای RFLP برای نقشه‌یابی تمام ژن‌ها در ژنوم انسان استفاده می‏شد(5). علاوه برRFLP که هنوز هم از قدرتمندترین و معتبرترین نشان‌گرهایDNA است، انواع مختلف نشان‌گرهایDNA با تفاوت‌های زیادی از نظر تکنیکی و روش تولید، نحوه‌ی کاربرد، امتیاز‌بندی، تجزیه و تحلیل و تفسیر نتایج به سرعت ابداع ومعرفی شده‌اند‌(7).
مهم‌ترین مزایای RFLP
تکرارپذریری، دقت و قابلیت اعتماد این نشان‌گر فوق‌العاده زیاد است؛
این نشان‌گر هم‌بارز است و امکان تشخیص افراد خالص را از افراد ناخالص فراهم می‏آورد؛
فراوانی این نشان‌گر در حد بالایی است؛
RFLP تحت تاثیر عوامل محیطی داخلی و خارجی نبوده و صد در صد ژنتیکی است(8).
برخی معایب RFLP
دشواری، پیچیدگی و وقت‌گیر بودن؛
RFLP ژنوم‌های بزرگ نیازمند کاربرد مواد پرتوزا یا روش‌های پیچیده‏تر و گران‏تر بیوشیمیایی است؛
RFLP نیازمند نگه‌داری میکروارگانیسم‌ها به‌منظور تهیه‏ی کاوشگر است که خود بر پیچیدگی این روش می‏افزاید؛
هزینه‏ی اولیه و نگه‏داری کاوشگر‏ها و کاربرد آنها بسیار زیاد است؛
نیازمندی به مقدار نسبتا زیاد DNA از محدودیت‏های دیگر روش RFLPاست به‌طوری که ده‏ها میکروگرم از DNAبرای هر فرد به منظور تجزیه‏ی ژنوم مورد نیاز است؛
از دیگر محدودیت‏های این نشان‌گر آن است که در گونه‏های بسیار نزدیک به یکدیگر این نوع نشان‌گر‏ها آلل‏های مشابهی را نشان می‏دهند(8).
1-3-3-1-2 پویش ژنومی نشانه‏های هضم (RLGS)در سال1991، هاتادا و همکاران روشی را برای شناسایی و انگشت‌نگاری موجودات عالی ابداع و معرفی کردند. پیش از ابداع این روش که بر مبنای نشان‌دار کردن هم‌زمان انتهای هضم شده‏ی هزاران قطعه‌ی DNA است، ردیابی و ثبت موجودات عالی با روش نشان‌دار کردن انتهای هضم شده غیر ممکن می‌نمود. دو دلیل اصلی برای این تصور ذکر شده است:
ژنوم موجودات عالی بسیار بزرگ و پیچیده است برای مثال ژنوم انسان 109×3 جفت باز دارد و در نتیجه‏ی هضم آن با آنزیمی مانند EcoRI بیش از یک میلیون قطعه‌ی DNA به وجود می‌آید. تفکیک این تعداد مولکولDNA حتی با الکتروفورز دو بعدی نیز غیر ممکن است.
معمولا DNA ژنومی در هنگام استخراج به صورت تصادفی و غیر‌اختصاصی شکسته می‌شود و ایجاد مولکول‏هایی با انتهای تصادفی می‏کند. این امر سبب ایجاد پس‌زمینه‌ی ناشی از نشان‌دار شدن این انتهاها طی فرایند نشان‌دارکردن می‏شود‌(9).
برای رفع این دو نقص تدابیری پیش‏بینی شد و روش RLGS ابداع گردید. این روش جدید که برای تجزیه و تحلیلDNA ژنومی به‌کار می‌رود، بر مبنای این فرضیه است که نقاط برش اختصاصی آنزیم‏های محدودگر می‌توانند به‌عنوان نشانه و وجهه تمایز ارقام و افراد به کار گرفته‌شوند.
در این روش انتهای آزاد مولکول‌های DNA که در اثر صدمات مکانیکی در طی استخراج به وجود آمده‏اند، مسدود می‏شود. سپس برای کاهش پیچیدگی، DNA ژنومی توسط آنزیم‏های محدودگر، با محل برش نادر، هضم و نقاط برش به‌طور مستقیم با فسفر پرتوزا نشان‌دار می‏شوند. آنزیم‏های با محل برش نادر معمولا هزاران قطعه DNA به وجود می‏آورند. سپس با الکتروفورز دو‌بعدی، قطعه‏های هضم‌شده‏یDNA از هم جدا شده و خودپرتونگاری صورت می‏گیرد. این روش یک الگوی دو بعدی با هزاران نقطه‏ی پراکنده (قطعه‏های نشان‌دارDNA) ایجاد می‏کند که هر یک می‏توانند به عنوان یک نشان‌گر به کار گرفته شوند(10)
برخی از مزایای روشRLGS
در هر آزمایش هزاران نشان‌گر به‌دست می‌آید؛
مقدار کمی DNAمورد نیاز است؛
در صورت استفاده از آنزیم‌های محدودگر متفاوت، تفاوت‏های بیشتری ظاهر و ثبت خواهند شد[10].
برخی از معایب روش RLGS
DNA مورد نیاز برای این روش باید از کیفیت مطلوبی برخوردار باشد؛
هضم ناقص DNA توسط آنزیم‏های محدودگر نتایج تکرار ناپذیر و گمراه کننده‏ای خواهد داشت؛
این روش پیچیدگی فوق العاده‏ای داشته و تفسیر نتایج حاصل از آن دشوار است(10).
1-3-3-1-3 ماهوارک‏ها
ماهوارک‏ها نخستین بار در سال 1985 توسط جفری و همکاران گزارش شدند. پس از آن در سال 1988 تکثیر جایگاه‏های ژنی خاص نواحی تکرارشونده، روی ماهوارک‏ها در ژنوم انسان انجام شد.
این دسته از نشان‌گرها از نظر تکنیکی مبتنی بر استفاده از کاوشگرهای مصنوعی و کاربرد مواد پرتوزا و روش ساترن هستند.
ماهوارک‌ها واحدهایی 10 تا 100 جفت بازی هستند که ممکن است صدها بار تکرار شده باشند. آنها معمولا یک هسته مشترک 10 تا 15 جفت بازی دارند که احتمالا در تنوع‌پذیری ماهوارک‌ها موثرند. ماهوارک‌ها بیش‌تر در نواحی یوکروماتین ژنوم پستانداران، قارچ‌ها و گیاهان متمرکز‌ند. تنوع‌پذیری ماهوارک‌ها در حدی است که گاهی در انگشت‌نگاریDNA انسان مورد استفاده قرار می‏گیرند. از جمله‌ی ماهوارک‌ها می‏توان به تکرارهای پشت سر هم با فراوانی بالا (VNTR) اشاره کرد[11]. VNTR ها به دو دسته‌ی کلی تقسیم می‌شوند: VNTR تک مکانی و VNTR چند مکانی.
دسته‏ی نخست، تعداد متفاوت ردیف‌های تکراری در یک جایگاه ژنی و دسته‏ی دوم تعداد متفاوت ردیف‌های تکرار‌شونده در چندین جایگاه ژنی را نشان می‌دهند. الگوی بانددهی به‌دست آمده با استفاده از کاوشگر‌های VNTR تک مکانی ساده‏تر و قابل فهم‌تر است، زیرا هر فرد تعداد کمی باند واضح را نشان می‏دهد. در حالی‌که تعداد باندهای به دست آمده از کاوشگرهای مخصوص VNTRچند‌مکانی بیش‌تر است، به‌طوری که به‌طور هم‌زمان تا بیش از 30 باند به دست می‏آید(12).
در نخستین نشان‌گرهای مبتنی بر ماهوارک‌ها، از الیگونوکلئوتید‏های حاوی ریزماهواره به عنوان کاوشگر استفاده گردید و توسط علی و همکاران انگشت‌نگاری الیگونوکلئوتیدی نام‌گذاری شد.
از کاوشگرهای الیگونوکلئوتیدی نشان‏دار‌شده مکمل با موتیف‌های کوتاه تکرار‌شونده در هیبریداسیون در ژل، با به کارگیری DNAژنومی برش داده شده با آنزیم‌های برشی خاص و الکتروفورز ژل آگارز استفاده شده است. گوبتا و وارشنی در سال2000 طی تحقیقات خود مراحل زیر را برای انگشت‌نگاری الیگونوکلئوتیدی مطرح کردند:
جداسازیDNA ژنومی با وزن مولکولی زیاد
هضم DNAژنومی با یک آنزیم محدودگر مناسب
تفکیک قطعه‌های حاصل از هضم روی ژل آگارز
انتقال ساترن قطعه ها به غشا
دو ‏رگ‏گیری غشا با کاوشگر‏های(نشاندار با مواد پرتوزا یا غیر پرتوزا) الیگونوکلئوتیدی دربردارنده‏ی ردیف‌های دو یا سه تایی تکراری
خودپرتونگاری یا رنگ آمیزی برای مشاهده‏ی قطعه‌های دو رگ‌شده.
به‌کمک این روش می‌توان تنوع نواحی تکرار‌شونده‏ی مورد نظر را آشکار کرد. قطعه‌هایی از DNA که با الیگونوکلئوتیدها دو ‌رگ می‌شوند، در دامنه‌ای از اندازه‏ی چند صد جفت تا ده کیلو جفت باز قرار می‏گیرند. هم‌چنین گاهی بیش از یک نوع ماهواره در داخل یک قطعه‏ی برش داده شده قرار می‌گیرد. تفاوت‏هایی که این نوع نشان‌گرها نشان می‏دهند، به دلیل تفاوت در طول قطعه‌های برش داده‌شده‌ای است که در بردارنده‏ی ماهوارک‌ها هستند. از این روش برای شناسایی ژنوتیپ‌ها و همچنین در ژنتیک جمعیت استفاده می‌شود(12).
پس از مدتی، لیت و لوتی و سه گروه دیگر همین روش را برای ریزماهواره‏ها(عمدتا از نوع (CA)n) به‌کار بردند و دریافتند که ریز ماهواره‏ها به دو دلیل به مراتب آسانتر از ماهوارک‌ها با روش PCR تکثیر می‏شوند:
1-ریزماهواره‏ها کوچکتر از ماهوارک‏ها هستند؛
2-ردیف‌های تکرار‌شونده ریز ماهواره‏ای فراوانتر و توزیع آنها در کل ژنوم یکنواخت‌تر ازماهوارک‏هاست(13).
1-3-3-2 نشان‌گرهای مبتنی بر PCRنشان‌گرهای مبتنی بر PCR نشان‌گرهایی هستند که از توالی الیگونوکلئوتیدی به عنوان آغازگر برای تکثیر قطعه‏ی خاصی از DNA استفاده می‌کنند. روش‏های مختلف در این گروه، در طول و توالی آغازگرها، سختی شرایط PCR و روش‏های جداسازی و آشکار کردن قطعات با همدیگر فرق دارند.
انواع نشان‌گرهای مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعه‌های حاصل از تکثیر(AFLP)
DNA چند شکل تکثیر‌شده‏ی تصادفی(RAPD)
تفاوت تک نوکلئوتیدی(SNP)
نشان‌گرهای مبتنی برنقاط نشانمند از ردیف (STS)
1-3-3-2-1 تفاوت طول قطعه‌های حاصل از تکثیر (AFLP)
در سال 1995 نشان‌گرهای جدیدی ابداع و معرفی شدند که به نظر می‌رسد بسیاری از محدودیت‌های نشان‌گر‌های پیشین را نداشته باشند. در این روش که AFLP نامیده می‏شود نشان‌گرهایی تولید می‏شوند که علاوه بر دارا بودن مزایایRFLP مانند دقت و تکرار‌پذیری ویژگی‌های مثبت روش‌های مبتنی بر واکنش زنجیره‌ای پلی‌مراز را نیز دارند. پایه‌ی این روش تکثیر انتخابی برخی قطعه‌ها از بین تمام قطعه‌های هضم شده‌ی DNA است و سه مرحله‌ی مجزا دارد:
هضمDNA با یه جفت آنزیم محدودگر و اتصال آنها به آداپتور‌های اولیگونوکلئوتیدی؛
طراحی، ساخت آغازگر و تکثیر انتخابی دسته‌ای از قطعه‌های حاصل از هضم .با استفاده از ردیف بازی آداپتور‌ها و نیز ردیف بازی نقاط برش، طراحی و ساخت آغازگر انجام می‌شود، اما برای تکثیر انتخابی قطعه‌های حاصل از هضم دو، سه یا چند نوکلئوتید به انتهای’3 ردیف آغازگر اضافه می‌شود که موجب می‌گردد فقط قطعه‌هایی تکثیر‌شوند که ردیف بلافصل آنها در مجاورت نقطه‌ی برش ،مکمل نوکلئوتیدهای یاد شده باشد؛
جداسازی قطعه‌های حاصل از تکثیر روی ژل‌های توالی‌یابی(پلی‌اکریل‌آمید) و خودپرتونگاری یا رنگ‌آمیزی نقره برای ثبت نتیجه‌ها.
با استفاده از این روش تعداد زیادی از قطعه‌های حاصل از هضم، تکثیر و قابل رویت می‌شوند. این در حالی است که نیازی به دانش اولیه در مورد توالی‌بازی قطعه‌هایی که تکثیر می‌شوند، وجود ندارند. هر یک از این قطعه‌هایی که به صورت باند روی ژل ظاهر می‌شوند، می‌توانند به عنوان یک نشان‌گر ژنتیک مورد استفاده قرار گیرند.
تعداد قطعه‌هایی که با این روش تکثیر می‌شوند، به دقت و توانمندی روش‌های جداسازی (الکتروفورز)، ثبت نتایج و تعداد نوکلئوتید اضافه شده به انتهای آغازگر بستگی دارد. معمولا در این روش بین پنجاه تا صد قطعه‌ی حاصل از هضم تکثیر و با استفاده از ژل‌های پلی‌اکریل‌امید واسرشت ساز ثبت می‏شوند(19)
مزایای AFLP
این روش در مقایسه یا سایر روش‌ها بیشترین تعدا نشان‌گر‌ها به ازای هر ژل را ایجاد می‌کند؛
در این روش نیازی به تهیه و تدارک و نگه‌داری کاوشگر نیست .دقت و تکرار‌پذیری این نشان‌گر به دلیل انتخاب دمای زیاد هم رشته‌سازی و اتصال آغازگر به DNA الگو بیشتر از RAPD است(20).
معایب AFLP
پیچیدگی نسبی این روش در مقایسه با سایر روش‌های میتنی برPCR ؛
عدم اطلاع از جایگاه ژنی نشان‌گر‌ها؛
غالب بودن این نشان‌گر موجب عدم امکان تشخیص افراد خالص از ناخالص می‏گردد؛
تکثیر قطعه‌های غیر‌واقعی در AFLP موجب کاهش قابلیت اعتماد این روش می‏گردد(20).
1-3-3-2-2 DNA چندشکل تکثیرشده‏ی تصادفی(RAPD)در این روش از تک آغازگرهایی به طول هشت تا ده نوکلئوتید که ردیف بازی آن به طور قراردادی تعیین می‌گردد، استفاده می‏شود. در این واکنش یک آغازگر منفرد نقاط مکمل خود را روی دو رشته‏ی DNA ژنومی می‌یابد و در آن نقاط به رشته‌های DNAمتصل می‌شود. چنانچه محل اتصال آغازگرها در روی دو رشته‏ی مقابل به هم نزدیک باشند(فاصله‏ای که DNA قابل تکثیر باشد)، ردیف بین آن دو نقطه طی واکنش PCR تکثیر خواهد شد. فراورده‌های واکنش PCRروی ژل آگارز از هم جدا می‏شوند. تولید هر باند بیانگر وجود شباهت زیاد بین ردیف بازی آغازگرها و ردیف بازی محل اتصال درDNA ژنوم است. به طور معمول هر آغازگر تکثیر چندین جایگاه مختلف را درDNA ژنومی هدایت خواهد کرد. وجود یا عدم وجود یک باند واحد در ژل های RAPD بیانگر جهش نقطه‌ای در محل اتصال آغازگرها و یا حذف یا (اضافه) شدن در ناحیه قابل تکثیر است. بنابراین چند شکلی در RAPDمعمولا به شکل حضور و غیاب یک باند پدیدار می‏شود. بدین معنی که نشان‌گرهای RAPD از نوع غالب‌اند و افرادی که دو نسخه از یک آلل دارند، به طور کمی از افرادی که یک نسخه از آن آلل را دارند، قابل تشخیص نیستند. تفاوت طول قطعه‏ها در RAPD از طریق تکثیر قطعه‌های DNA مکمل با ردیف‌های آغازگرهای اختیاری (ردیف مشخص ولی تصادفی) به‌دست می‌آیند. قطعه‏های تکثیر شده به صورت نوارهایی با وزن مولکولی متفاوت به‌طور مستقیم روی ژل قابل مشاهده‌اند (15).
مزایای RAPD
عدم نیاز به کاوشگر، مواد پرتوزا و غیره؛
امکان بررسی هم زمان چندین جایگاه در ژنوم؛
عدم نیاز به اطلاعات اولیه در مورد ریف DNA برای ساخت آغازگر(16).
معایب RAPD
عدم تکرار پذیری؛
حساسیت بسیار به آلودگی؛
در صورت تغییر شرایط محیطی ظهور باندهای جدید؛
نامعلوم بودن جایگاه نشان‌گر RAPD روی نقشه‌ی ژنتیکی(16).
1-3-3-2-3 تفاوت تک نوکلئوتیدی(SNP)تنوع‌ها و تفاوت‌هایی که به واسطه‏ی اختلاف در یک جایگاه نوکلئوتیدی(به علت جایگزینی، حذف یا ازدیاد) اتفاق می‌افتند، با عنوان تفاوت تک نوکلئوتیدی نامیده می‏شوند. این نوع از تنوع به‌وفور در ژنوم انسان اتفاق می‏افتد به طوری که مطالعات انجام گرفته توسط کاتانو-آنولز و گرس هوف (1998) در ژنوم انسان و اسب نشان می‏دهد که در فاصله‏ی هر دویست و پنجاه تا چهارصد نوکلئوتید یک SNP وجود دارد(17).
با اینکه‌SNP ها به وفور در ژنوم انسان یافت می‌شوند، ولی ایجاد و توسعه‌ی نشان‌گرهای SNP چندان آسان نیست. تهیه نشان‌گر‏های SNP شامل مراحل زیر است:
تعیین ردیف DNA اطراف SNP؛
تکثیر قطعه‌ای منحصر به فرد از DNA به کمک PCR به منظور غربال SNP؛
شناسایی SNP که شامل مشاهده‌ی دو آلل در افراد مختلف می‌باشد؛
مکان‌یابی نشان‌گر SNP و تعیین جایکاه خاص کروموزومی آن؛
تعیین فراوانی دو آلل در جمعیت؛
بررسی SNP در افراد و ژنوتیپ‌های مختلف(17).
برخی از معایب نشاگرهای SNP
SNPها به دلیل داشتن فقط دو آلل در یک جایگاه ژنی نسبت به نشان‌گر‌های چند آللی، اطلاعات کمتری را در نقشه‌های پیوستگی نشان می‌دهند؛
شناسایی نشان‌گرSNP بسیار پر‌هزینه و هم‌چنین زمان‌بر است(17).
1-3-3-2-4 نشان‌گرهای مبتنی برنقاط نشانمند از ردیف(STS)هر نشان‌گری که مبتنی بر واکنش PCR باشد و با استفاده از آغازگرهای اختصاصی (معمولا بیش از بیست نوکلئوتید) ایجاد شود، یک نقطه‌ی نشانمند از ردیف نامیده می‏شود، زیرا پیش از طراحی آغازگر، بی‏شک در یک مرحله ردیف‌یابی صورت گرفته است. نشان‌گرهایی همچون تفاوت طول قطعه‌های قابل تکثیر (ALP) و ریزماهواره‏ها از آن جهت که مستلزم ردیف‏یابی برای طراحی آغازگر به منظور تکثیر DNA در یک نقطه‌ی خاص هستند، ذیل STS دسته‌بندی می‌شوند:
-تفاوت طول قطعه‏های قابل تکثیر(ALP)
-ریز ماهواره‌ها (18).
1-3-3-2-4-1 تفاوت طول قطعه‏های قابل تکثیر(ALP)
ALP یکی از ساده‏ترین و سریع‏ترین نشان‌گرهای مبتنی بر PCR است. اگر ردیف باز‏های قطعه‏ای از DNA در یک موجود مشخص باشد (یا دست کم بخشی از دو انتهای آن قطعه معلوم باشد)، براساس آن می‏توان به طراحی و ساخت مصنوعی آغازگرهایی به طول بیست تا سی نوکلئوتید اقدام کرد. چنان‌چه نمونه‏های مختلف DNA توسط این آغازگرها و از طریق واکنش زنجیره‏ای پلی‌مراز تکثیر و سپس روی ژل الکتروفورز از هم جدا شوند، در صورت وجود اختلاف در طول قطعه‏ی قابل تکثیر، باندهایی به اندازه‏های مختلف تولید خواهند شد که بیانگر وقوع پدیده‏ی حذف یا اضافه در بین نمونه‏های مورد مطالعه است. این تفاوت در اندازه‏ی قطعه‏های قابل تکثیر که جهش‏های ژنتیک را نشان می‏دهد به عنوان نشان‌گرهای ژنتیک مورد استفاده قرار می‏گیرد(14).
مزایای ALP
از نظر کاربردی در بین نشان‌گرهای DNA،یکی از سریع ترین و ارزان‌ترین‌ها است؛
به‌کاربرد مواد پرتوزا یا بیوشیمیایی پیچیده نیاز ندارد؛
به‌تدارک، نگهداری و کاربرد کاوشگرها نیاز ندارد؛
بسیار اختصاصی عمل می‌کند، تکرار پذیری آن خوب است و تا حد بسیار زیادی می‌توان به نتایج آن اعتماد داشت؛
به‌مقدار خیلی کمی از DNA نیاز است؛
هم‌بارز بودن این نشان‌گر امکان تشخیص افراد خالص از هر یک از انواع افراد ناخالص را فراهم می‌آورد(14).
معایب ALP
طراحی و ساخت آغازگرها، به اطلاعات اولیه در مورد ردیف DNAژنوم مورد مطالعه نیاز دارد که با توجه به اینکه ژنوم بسیاری از موجودات به طور کامل در دسترس نیست این روش استفاده بسیار کمی دارد؛
هزینه‌ی اولیه مورد نیاز به منظور تولید تعداد کافی نشان‌گر ژنتیک با توزیع مناسب در سرتاسر ژنوم بسیار زیاد و مستلزم صرف وقت است(14).
1-3-3-2-4-2 ریزماهواره‌هاریزماهواره‏ها شامل واحدهای یک الی شش تایی تکرار شونده هستند که در ژنوم بیشتر یوکاریوت‏ها پراکنده‏شده‏اند. به طوری که در هر ده کیلو جفت باز از ردیف DNA دست کم یک ردیف ریزماهواره‏ای دیده می‏شود. طول ریز‌ماهواره‏ها معمولا کمتر از 100 جفت باز بوده و توسط دو ردیف منحصر به فرد در دو طرف محدود شده‏اند. ریزماهواره‏ها به سه گروه عمده‌ی تکرارهای کامل، تکرارهای ناکامل (معمولا توسط بازهای غیرتکرارشونده قطع می‌شوند) و تکرارهای مرکب(دو یا تعداد بیشتری از واحدهای مجاور یکدیگر) تقسیم می‏شوند. تعداد تکرارها در هر واحد بسیار متفاوت است. حداقل تعداد واحد تکرار‌شونده برای ریز ماهواره‏های دو نوکلئوتیدی به ترتیب ده و هفت بار تکرار تعیین شده است(21).
مزایای ریزماهواره‏ها
کاربرد آنها و تفسیر نتایج نسبتا ساده است؛
سیستم چند آللی(تا 11 آلل) از ویژگی‌های بارز این نوع نشان‌گر است؛
ریزماهواره‌ها بسیار متنوعند؛
به وفور در ژنوم یوکاریوت‏ها یافت می‏شوند؛
بیشتر ریزماهواره‏ها غیر‏عملکردی هستند؛
همبارز هستند [22].
1-4 فراوانی، توزیع و سازماندهی ریزماهواره‏ها در داخل ژنومریزماهواره‌ها بسیار فراوان بوده و در کل ژنوم موجودات به صورت تصادفی پراکنده اند. فراوانی ریزماهواره ها در بین موجودات زنده متفاوت است. برای مثال تخمین زده شده است که ژنوم انسان به طور میانگین ده برابر بیشتر از گیاهان ریزماهواره دارد. علاوه برDNA کروموزومی تعداد زیادی ریزماهواره در DNA کلروپلاست ها نیز گزارش شده است. به کمک روش‏هایی از قبیل دورگه‏گیری در ژل، نقشه‏یابی ژنتیکی و فیزیکی و هم چنین دورگه‏گیری در محل فلورسنت، ثابت شده است که ریزماهواره ها به طور یکنواخت در ژنوم پراکنده‏اند. اگرچه در برخی موارد می توانند به صورت مجتمع قرار گرفته باشند(12).
1-5 مکانیسم ایجاد تنوع در طول توالی‏های تکراریچنین فرض می‏شود که جهش در تعداد واحدهای تکرار شونده در هر یک ازDNA های تکرار شونده با یکی از دو سازوکار کراسینگ آور نامساوی(uco) یا جفت نشدن ناشی از سرخوردن در طول رشته (خطای همانندسازی DNA ) صورت می‏گیرد. بیشتر عقیده بر این است که ریزماهواره‏ها و ماهواره‏ها توسط سازوکار کراسینگ آور نامساوی ایجاد می‏شوند، ولی در مورد ریزماهواره‏ها برخی افراد یکی از دو سازوکار و برخی دیگر هر دو سازوکار را موثر می‏دانند(23).
1-5-1 کراسینگ اور نابرابرگاهی کراسینگ اور نابرابر در داخل تکرارهای ریزماهواره‏ای بین کروموزوم های مشابه یا خواهری اتفاق می‏افتد و سبب تغییر در تعداد واحدهای تکرار شونده می‏شود.(شکل 1-2).کراسینگ اور نابرابر می‏تواند هم در میوز و هم میتوز اتفاق بیفتد. چنین توجیه می‏شود که وجود نواحی تکرارشونده احتمالا مانع از ردیف شدن کامل در همولوگ یا کروموزوم‏های خواهری می‏شود. به نظرمی‏رسد که این نوترکیبی مکانیزم اصلی ایجاد تنوع مینی‏ستلایتی است(23).

شکل 1-2 کراسینگ آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف شدگی یا الحاق می‌شود(23.)
1-5-2 عدم جفت شدن ناشی از سرخوردن DNA در طول رشته(خطاهای همانند سازی)گاهی DNA پلی‌مراز در طول همانند سازی در نواحی تکرار شونده‏ی ریز ماهواره‏ای سر می‏خورد و موجب تغییر در تعداد واحد تکرار شونده می‏شود. در حقیقت سر خوردن پلی‌مراز در طول نواحی تکراری موجب عدم جفت شدن کامل دو رشته‏ی DNA شده و در نهایت حلقه‌هایی در رشته‌ی الگو یا رشته‏ی جدید ایجاد می‏شود(شکل1-3). این امر مکانیسم اصلی به وجود آورنده‏ی چندشکلی در میکروستلایت‌هاست(23).

شکل 1-3 متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد(23).اگر نتیجه‏ی همانند سازی ایجاد واحد های تکرار شونده‏ی اضافی باشد، حلقه در رشته ی جدید و اگر نتیجه‌ی همانند سازی کاهش در تعداد واحد‏های تکرار شونده باشد، حلقه در رشته‏ی الگو تشکیل خواهد شد(23).
گلدستین و شلوترر فرضیه‏ی عدم جفت شدن ناشی از سر‏خوردن در طول رشته را نسبت به فرضیه کراسینگ آور نامساوی به دلایل زیر به واقعیت نزدیکتر دانسته‏اند:
الف)‌در انسان بسیاری از تغییرات ریز ماهواره‏ای موجب تغییر در نشان‌گر های مجاور ناحیه ی ریز ماهواره‏ای نمی‌شود. بنابراین در ایجاد چنین تغییراتی نوترکیبی بی‏تاثیر است. از آنجا که جهش در فرضیه کراسینگ اور نامساوی، وابسته به نوترکیبی است، تغییرات ریز ماهواره ای و عدم تغییر نقاط مجاور با این فرضیه قابل توجیه نیست.
ب)‌نقصان در ژن‏هایی که در نوترکیبی نقش اساسی دارند تاثیری در پایداری ریز ماهواره‏ها ندارد.
ج)‌مطالعات انجام گرفته در ساکارومایسزسرویزیه نشان می‏دهد که پایداری ریز ماهواره‏ها در سلول‏هایی که تقسیم میوز را انجام می‏دهند مشابه با یاخته ها در تقسیم میتوز است. با توجه به اینکه نوترکیبی در میوز بیشتر از میتوز است، پس اگر فرضیه‏ی کراسینگ اور نامساوی صادق باشد، باید ریز ماهواره‏ها در میوز ناپایدارتر از میتوز باشد(23).
1-6 دامنه تنوع واحدهای تکرارشوندهدو مدل متفاوت برای توصیف دامنه‏ی تنوع تعداد واحدهای تکرار شونده‏ی ریز ماهواره‏ای وجود دارد:
1.مدل جهش گام به گام
2. مدل آللی نا محدود
1-6-1 مدل جهش گام به گاماگر فرض کنیم در ریزماهواره‏ها یک گام معادل تغییر در یک واحد تکرار شونده باشد، بنابر این مدل ریز ماهواره‏ها از نظر اندازه فقط در تعداد محدودی گام تفاوت دارند، به‌طوری که هر گام از گام بعدی به وسیله‏ی یک واحد تکرار شونده جدا می‏شود. در این مدل چنین فرض می‏شود که بسیاری از جهش‏های با فراوانی زیاد، فقط ریزماهواره‏ها را در یک گام یا دو گام‌(در یک زمان) تغییر می‏دهند. طرفداران این نظریه معتقدند که در بیشتر آزمایش‏ها، بیشترین تغییر در ساختار ریزماهواره‏ها مربوط به افزایش یا کاهش در یک واحد تکرار شونده بوده است(10).
1-6-2 مدل آللی نا‏محدودبر اساس این مدل هیچگونه محدودیتی در اندازه‏ی پتانسیل ریزماهواره‏ها وجود ندارد. از این رو تعداد نا محدودی از انتخاب‏ها می‌توانند اتفاق بیفتند که تمامی آنها احتمال یکسان را داشته باشند.
بسیاری از پژوهشگران معتقدند که ترکیبی از این دو مدل(عموما تغییر در یک یا دو واحد تکرار شونده و به مقدار کمتر تغییرات بزرگتر) بهتر می‌تواند تغییرات جهشی در ریزماهواره‏ها را توضیح دهد(10).
1-7 مارکرهای STRتوالی‏های تکراری کوتاه پشت سر هم(STRS) ، توالی‏های تکرارشونده کوتاه با طول 1-13 نوکلئوتید هستند که به شکل سر به دم قرار می‏گیرند. در ژنوم انسان، معمول‏ترینSTR ، توالی دو نوکلئوتیدی [CA]n است،که در این فرمول n تعداد تکرارهاست که معمولا بین 5 تا 20 بار متغیر است(24).
1-8 کاربرد مارکرهای STRمارکرهایSTR کاربردهای فراوانی دارد که از مهمترین آنها تعیین هویت افراد است(25). تعیین هویت در موارد بسیاری کاربرد دارد که از جمله‏ی آنها می‌توان به موارد زیر اشاره کرد:
1- مطالعات شجره‏ای و روابط فامیلی
2- شناسایی هویت قربانیان حوادث
3- تعیین هویت در موارد جنایی
4- ردیابی تاریخ بشر و مطالعات جمعیتی(26).
1-8-1 مطالعات شجره‏ای و روابط فامیلیاز مارکرهایSTR می توان برای بررسی خویشاوندی دو یا چند نفر استفاده کرد. این نوع مطالعه را آنالیز فامیلی می‌گویند و کاربرد متداول آن در بررسی رابطه والدین ـ فرزندی است(27).
هرساله بیش از 300000 مورد تست ابویت به منظور تعیین رابطه پدر فرزندی در ایالات متحده انجام می‏شود. این تست‏ها معمولا شامل یک مادر، یک کودک و یک یا چند پدر مدعی است. همانطور که می‏دانیم هر فرد دارای دو سری آلل می‏باشد که یک سری آن را از پدر و سری دیگر را از مادر دریافت کرده است. بدین منظور آلل‏های پدر و فرزند برای یافتن تعدادی از جایگاه‏هایSTR مورد بررسی قرار می‏گیرند. اساس این تست بر این است که در فقدان جهش، آلل‏های کودک باید مطابقت کاملی با آلل‏های پدری و مادری داشته باشد(28-29-30).

شکل 1-4 آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد(26).علاوه بر این بسیاری از افراد برای شناسایی اقوام خود از مارکرهایSTR استفاده می‏کنند. برای مثال با آنالیز STR های کروموزومY می توان نسبت فامیلی میان مردان یک خانواده را مشخص کرد. زیرا همان‌طور که می‏دانید کروموزومY توارث پدری دارد و از پدر به تمام پسران به ارث می‌رسد. پس طبیعی است که تمام پسران خانواده در همه‏ی نسل‌هاSTR های یکسانی روی کروموزوم Y خود داشته باشند. آزمایشی که بدین منظور انجام می‏گیرد آزمایش Y-filer نامیده می‏شود. به کمک این آزمایش می‏توان روابط میان برادرها، عمو و برادرزاده و... را مشخص نمود(27-31).
1-8-2 شناسایی هویت قربانیان حوادثفجایع بزرگ، طبیعی یا بدست بشر، می‌تواند جان افراد بسیاری را بگیرد، تست‏‏‏هایی که برای شناسایی قربانیان حادثه انجام می‏شود، تست تعیین هویت قربانیان حادثه نامیده می‏شود. از این تست در مواردی مانند سقوط هواپیما ،آتش سوزی‏های بزرگ و حوادث تروریستی استفاده می‏شود. در این قبیل حوادث با استفاده از اسامی افراد، خانواده‏های آنها شناسایی می‏شوند و پس از مراجعه‏ی خانواده‌ها، از اعضای خانواده شامل پدر، مادر، فرزند، خواهر و برادر نمونه‏ی DNA گرفته می‏شود و نواحی STR آنها بررسی می‏شود. پس از این مرحله با استفاده از DNAبه دست آمده از بقایای اجساد پروفایل ژنتیکی آنها تهیه می‏شود و در نهایت با مقایسه‏ی پروفایل‏های تهیه شده هویت قربانیان شناسایی می‏شود(32).
1-8-3 تعیین هویت در موارد جناییتعیین هویت در موارد جنایی شامل دو بخش می‏باشد:
شناسایی افراد مجهول الهویه
ردیابی مجرمین(25).
1-8-3-1 شناسایی افراد مجهول الهویههر ساله میلیون‏ها نفر در سراسر جهان تحت شرایط مشکوکی مفقود می‏شوند. بسیاری از این افراد قربانی فعالیت‏های مجرمانه از قبیل تجاوز و قتل می‏شوند و هویت آنها ناشناس باقی می‏ماند. در این موارد هم می‏توان از مارکرهای ژنتیکی موجود در DNA افراد برای تعیین هویت آنها استفاده کرد(33).
سه دسته نمونه در مورد افراد قربانی وجود دارد:
1-نمونه مستقیم از فرد قربانی
2-نمونه خانواده قربانی
3-نمونه‌های ناشناس باقی مانده از انسان در صحنه‏ی جرم
این نمونه‏ی باقی مانده می‏تواند استخوان، دندان، بافت، تار مو، لکه ی خون و یا هر چیز دیگری باشد(34).
1-8-3-2 ردیابی مجرمینعلاوه بر این می‏توان از آنالیز DNA برای ردیابی و شناسایی مجرمین استفاده کرد. این که فردی مرتکب جرم و جنایتی بشود و نمونه‌ای از DNA خود را به جا نگذارد، تقریبا غیرممکن است. مو، لکه‌های خون و حتی اثر انگشت، مقادیر بسیار جزئی از DNA را دارند که برای مطالعه با PCR کافی هستند. این بررسی‌ها لازم نیست که بلافاصله انجام شوند، زیرا در سال‌های اخیر، با آزمایش DNA روی مواد بایگانی شده، تعدادی از جنایات گذشته ـ با عنوان پرونده‌های مختومه ـ نیز روشن شده است(35).
باید به خاطر داشته باشیم که یک پروفایل DNA به تنهایی فاقد اعتبار است و کاربردی ندارد. همیشه برای بررسی یک پروفایل DNA نیاز است که یک مقایسه‏ای انجام شود:
1-نمونه ی مورد بررسی که با Q مشخص می شود
2-نمونه شناخته شده که با K نمایش داده می شود
در موارد جنایی، نمونه ی صحنه ی جرم (Q) با نمونه ی فرد مظنون (K) و یا مظانین (K1,K2,K3,K...) مقایسه می شود . در یک مورد بدون مظنون، نمونه ی صحنه ی جرم با نمونه هایی که در اطلاعات کامپیوتری از افراد سابقه دار وجود دارد، بررسی می شود . (K1,K….,KN)(34).

شکل 1-5 شناسائی مجرمین به کمک مارکرهای STR(26).1-8-4 ردیابی تاریخ بشر و مطالعات جمعیتیباستان شناسان با بررسی و مقایسه توالی DNA انسان‌های امروزی با افراد مرده، به کشف منشأ تکاملی انسان امروزی و مسیرهای استقرار انسان در کره زمین می‌پردازند. این زمینه تحقیقاتی آرکئوژنتیک نامیده می‌شود(35).
ردیابی مهاجرت انسانی در طول تاریخ با استفاده از آنالیز DNA روش نوینی است. هدف از این کار تخمین ارتباط میان جمعیت ها بر اساس شباهت‏ها و تفاوت‏هایDNA آنها است. به همین منظور پروژه‏ی عظیمی در سال2005 به منظور ردیابی تاریخ بشر انجام شد که در آن از ده ها هزار نفر از افراد در سراسر جهان آزمایش به عمل آمد. اساس کار بر این مطلب است که اگر تکامل ژنوم‏ها به دلیل انباشتگی جهش ها رخ داده باشد، بنابراین میزان اختلاف در توالی نوکلئوتید های دو ژنوم می تواند زمان حضور جد مشترک آنها را مشخص نماید. انتظار می رود دو ژنومی که اخیرا از یکدیگر جدا شده اند در مقایسه با دو ژنومی که جد مشترک آنها قدیمی‏تر است، اختلاف کمتری داشته باشند(36).
در مطالعه روی یافتن مبدا انسان‏های امروزی و الگوی جغرافیایی مهاجرت‏های بشر از مطالعه‏ی ژن‏ها در جمعیت‏ها می‏توان استفاده کرد. بدین منظور ژن‏های انتخابی جهت بررسی باید دارای گوناگونی باشند. در صورت فقدان گوناگونی ژن‏ها، اطلاعات فیلوژنتیکی بدست نمی‏آید، زیرا همه‏ی افراد حتی اگر به جمعیت‏های مجزایی تقسیم شده باشند که تنها به صورت متناوب با یکدیگر آمیزش داشته‏اند، همچنان دارای همانندی‏های بسیاری خواهند بود. بدین معنی که توالی DNA مورد استفاده در آنالیز فیلوژنتیکی باید از متنوع ترین توالی‏های متغیر باشد(36).
در انسان از سه نوع توالی استفاده می‏شود :
ژن های چند آللی مانند اعضای خانواده‏ی HLA، که اشکال بسیار متفاوتی دارند .
ریز ماهواره‏ها که STR ها نیز جز این گروه به حساب می‏آیند .
DNA میتوکندریایی که به دلیل فقدان سیستم‏های ترمیمی موجود در هسته‌های سلول انسان که نسبتا به سرعت دچار انباشتگی نوکلئوتیدی می‏شوند. انواع مختلف DNA میتوکندریایی موجود در یک گونه را هاپلوگروه می‏نامند(36).
باید توجه نمود که آلل‌ها و هاپلوگروه‌های مختلف به طور هم‌زمان در جمعیت‌ها وجود دارند. به این ترتیب این لوکوس‏ها چند شکلی بوده و به کمک مقایسه ترکیب آلل‌ها و یا هاپلوگروه‌های آنها می‌توان اطلاعات مربوط به وابستگی بین افراد مختلف را بدست آورد. به دلیل جهش‌های ایجاد شده در سلول‏های تولید مثلی هر یک از موجودات، آلل‏ها و هاپلوگروه‏های جدیدی در جمعیت ظاهر می‏شوند. هر یک از آلل‏ها، فراوانی آللی خود را دارند که در طول زمان به دلیل انتخاب طبیعی و تغییر ژنتیکی اتفاقی تغییر می‌کند. انتخاب طبیعی به دلیل تغییر در تناسب (توانائی یک موجود جهت بقا و تولید نسل) رخ می‌دهد و بنابر نظریه‌ی داروین منجر به حفظ انواع مناسب و از بین رفتن انواع زیان آور می‏گردد. به این ترتیب انتخاب طبیعی، فراوانی آلل‏های کاهنده‏ی تناسب را کم کرده و فراوانی آلل‏های افزاینده‌‌ی تناسب را افزایش می‏دهد. در حقیقت در یک جمعیت آلل‏های اندکی ایجاد می‏شوند که تاثیر قابل توجهی بر تناسب موجود داشته باشند، اما هم‌چنان فراوانی آنها به دلیل تغییر ژنتیکی اتفاقی که جز جدا نشدنی طبیعت تولد،تولید مثل و مرگ است در حال تغییر می‏باشد. به دلیل انتخاب طبیعی یا تغییر ژنتیکی اتفاقی ممکن است یک آلل در جمعیت غالب شده و فراوانی آن به صد در صد نیز برسد، به طوریکه این آلل در جمعیت تثبیت شود. اگر یک گونه به دو جمعیت تقسیم شود به طوریکه آمیزش‌های فراوانی بین دو جمعیت رخ ندهد، فراوانی آلل در دو جمعیت به طور مختلف تغییر می‌کند. بنابراین پس از چند ده نسل این دو جمعیت ویژگی‏های ژنتیکی مجزایی را کسب می‏کنند. سرانجام جایگزینی ژنی متفاوتی در این دو جمعیت اتفاق می‏افتد ولی حتی قبل از آن نیز می‏توان از روی اختلاف فراوانی آللی در دو جمعیت، آن دو را از هم باز شناخت(36).
محققان طی سال‏ها تحقیقات در سراسر جهان با استفاده از اصول تئوری اطلاعات، پارامترهای عمومی برای هر جمعیت را به منظور تعیین مقدار اطلاعاتی که مارکرهای STR در جمعیت‏ها به ما می‏دهند، تعریف کردند. در یک نمونه‏گیری از مارکرهای افراد از سراسر جهان، مارکرهایی که بیشترین چندشکلی را در میان جمعیت‏های مختلف داشتند و منحصر به جمعیت‏های خاص بودند، انتخاب شدند .امروزه از این مارکرها برای بررسی تنوع و تفاوت میان جمعیت‏ها استفاده می‏شود(37).
1-9 سایر کاربردهای مارکرهای STRمارکرهای مختلف STR تحت عنوان کیت های تجاری مختلف در کنار تست‏های تعیین هویت کاربردهای گسترده‏ی دیگری دارند که از مهم ترین آنها می‏توان به موارد زیر اشاره کرد:
جمع آوری سلول های جنینی از خون مادر؛
بیماری های نقشه‏ی ژنومی؛
مشخص نمودن خطوط سلولی؛
تعیین هویت افراد استفاده کننده‏ی سرنگ مشترک؛
تشخیص کلون‏های موفق؛
بررسی و نظارت بر روی پیوند عضو؛
تشخیص کایمرهای ژنتیکی؛
تشخیص تومورهای سرطانی(26).
1-9-1 جمع آوری سلول های جنینی از خون مادرهنگامی که یک خانم باردار است تعدادی از سلول‌های جنینی می‏توانند از راه جفت وارد جریان خون مادر شوند. جمع‌آوری این سلول ها که تحت عنوان micro chimerism خوانده می‏شود و بررسی آنها با مارکرهای STR یک روش غیر تهاجمی برای تعیین رابطه‌ی پدر فرزندی است. همچنین با استفاده از این روش می‏توان جنسیت جنین را نیز تعیین نمود(26).
1-9-2 نقشه‏ی ژنوم بیماری‏ها
اسکن ژنوم انسان برای شناسایی نقشه ژنوم بیماری‏ها به طور معمول با استفاده از حدود چهارصد نشان‌گر STR در سراسر ژنوم در فواصل 10 سانتی مورگان انجام می‏شود. مرکز تحقیقات بیماری‏های ارثی در طول سال ها مطالعات و آزمایشات بسیاری را روی صدها نفر با استفاده از مارکرهای STR انجام داده است. هدف از این آزمایشات یافتن ارتباط میان فراوانی آللی در جمعیت های مختلف و بیماری های ژنتیکی بود. در پژوهش‌های صورت یافته ارتباط میان برخی مارکرها و بیماری‏ها مشخص شد. پس از آن از مارکر‏های مذکور می‏توان برای شناسایی تعیین دقیق محل ناشناخته‏ی ژن بیماری استفاده کرد(26).
1-9-3 تعیین هویت افراد استفاده کننده از سرنگ مشترکیکی دیگر از کاربردهای مارکرهایSTR نشان دادن به اشتراک گذاری سرنگ در میان مصرف کنندگان مواد مخدر است. با این روش و با استفاده ازجایگاه D8 آزمایشگاه قادر به تشخیص هویت فرد و یا افرادی است که از یک سرنگ مشترک برای تزریق مواد مخدر استفاده کرده‏اند. با این روش می‏توان هویت شخصی را که منشا انتقال بیماری عفونی بوده و از سرنگ مشترک با سایر افراد استفاده می‏کرده تعیین نمود(26).
1-9-4 تشخیص کلون‏های موفقهنگامی که یک موجود کلون می‏شود ازSTR Typing برای آزمایش آن موجود استفاده می‏شود. برای مثال در کلون کردن موجوداتی مانند سگ و گربه. این روش برای آزمودن میزان موفقیت در کلون کردن به کار می‏رود. اگر یک پروفایل STR یکسان میان موجود کلون شده و سلول‎های مادری اولیه مشاهده نشود، در این صورت کلون کردن موفقیت آمیز نبوده(26).
1-9-5 بررسی و نظارت روی پیوند عضواز کاربردهای دیگر مارکرهای STR، نظارت پیوند سلول‏های پیوند شده بعد از پیوند مغز استخوان است، آزمایش STR از فردی که پیوند گرفته می‏تواند در تشخیص نارسایی پیوند مفید واقع شود(26).
1-9-6 تشخیص کایمرهای ژنتیکیChimerism حضور دو خط سلولی ژنتیکی متفاوت در یک ارگانیسم است که می‏تواند از طریق پیوند سلول‏های بنیادی خونی و یا انتقال خون و یا به طور ارثی در شخص اتفاق بیفتد. در سال 2004 آزمایشی روی افراد دهنده و گیرنده‏ی پیوند انجام شد که توانایی بالای 27 نشان‌گر STR به کار گرفته شده، ازجمله نشان‌گرهای CODIS در تشخیص کایمرها شگفت انگیز بود(26).
1-9-7 مشخص نمودن خطوط سلولیدر آزمایشگاه خطوط سلولی می‏توانند با سایر خطوط سلولی آلوده شوند. در نتیجه ممکن است با هم مخلوط و یا به یکدیگر تبدیل شوند احراز هویت خط سلولی انسان در حال حاضر به وسیله ی سازمانی در آمریکا انجام شده است. به کمک مارکرهای STR می‏توان آلودگی متقاطع بین خطوط سلولی مختلف را به سرعت کشف کرد و همچنین می‏توان برای مشخص کردن خطوط سلولی انسان به عنوان یک مرجع جهانی سود جست. در طول چند سال گذشته بیش از 500 خط سلولی از انسان به کمک این روش و با استفاده از 8 جایگاه STR بدست آمده است(26).
1-9-8 تشخیص تومورهای سرطانیفقدان هتروزیگوسیتی (LOH) پدیده‏ای است که در آن حذف در یک ناحیه‏ی لوکوس منجر به عدم تکثیر در PCR می‏شود، به طوری که یک هتروزیگوت واقعی به عنوان یک هموزیگوت به نظر می رسد. این پدیده در بسیاری از افراد مبتلا به تومورهای سرطانی دیده می‏شود. بررسی روی بافت های سرطانی با بافت نرمال با استفاده از STR نشان می‏دهد که جایگاه های مختلف در بافت سالم ارتفاع بلندتری نسبت به بافت های سرطانی نشان می دهند؛چرا که LOH سبب حذف در آن ناحیه شده است(26).
1-10 روش‏های کلی شناسایی هویت افراد در سطح مولکولیدو روش کلی برای شناسایی هویت افراد در سطح مولکولی عبارتند از:
اثر انگشت ژنتیکی از طریق هیبرید کردن با DNA جستجوگر
تعیین الگوی DNA با PCR توالی‌های کوتاه تکراری(38).
1-10-1 روش انگشت‌نگاری ژنتیکی از طریق هیبرید کردن با DNA جستجوگراولین روشی که در آنالیز DNA با هدف شناسایی افراد به کار رفت، روشی بود که در اواسط دهه 1980 توسط سر آلک جفری از دانشگاه لیستر ارائه شد . این روش براساس نوع دیگری از تنوع ژنوم انسان، موسوم به توالی تکراری بسیار متغیر پراکنده بود. همانگونه که از نام این توالی‌ها بر می‌آید، این توالی‌ها عبارتند از یک توالی تکراری که در جایگاه مختلفی‌(به‌طور پراکنده) از ژنوم انسان وجود دارد. نکته کلیدی این توالی‌ها این است که جایگاه ژنتیکی آنها متنوع است و در افراد مختلف در جایگاه‌های مختلفی از ژنوم قرار دارند(38).
توالی که در ابتدا برای انگشت‌نگاری ژنتیکی بکار رفت، توالی GGGCAGGANG (N: هریک از چهار نوکلئوتید) بود. برای تهیه اثر انگشت یک نمونه، DNA آن را با آنزیم محدودگر برش می‌دهند و قطعات حاصل را با استفاده از الکتروفورز ژل آگارز از هم تفکیک کرده و با آزمون ساترن بلات مورد بررسی قرار می‌دهند. هیبریداسیون با جستجوگری که دارای این توالی بود چند سری از نوارها را مشخص کرد. هریک از این نوارها مربوط به قطعه‌ای از DNA هضم شده بود که دارای این توالی تکراری بود. به دلیل تنوع جایگاه‌های این توالی اگر این آزمون با نمونه DNA فرد دیگری تکرار شود، نتیجه متفاوتی به دست می‌آید و می‌توان نتایج حاصل را انگشت‌نگاری ژنتیک این افراد محسوب نمود . در شکل 1-6 مراحل انگشت نگاری ژنتیکی نشان داده شده است(38).

شکل 1-6 مراحل انگشت نگاری ژنتیکی(38)
1-10-1-1 محدودیت‏های روش انگشت نگاریاین روش در کارهای جنایی خود را بسیار ارزشمند نشان داد اما سه محدودیت داشت:
مقادیر بالایی از DNA برای انجام آزمون مورد نیاز است، زیرا این روش نیازمند آنالیز هیبریداسیون است. برای انگشت‌نگاری نمی‌توان از مقادیر اندک DNA موجود در مو و لکه‌های خون استفاده کرد.
بحث کردن در مورد الگوهای حاصل از انگشت‌نگاری مشکل است، زیرا نوارهای حاصل شدت و ضعف‌های متفاوتی دارند. از نظر قانونی، کوچک‌ترین اختلاف شدت در انگشت‌نگاری ژنتیکی یک متهم برای برائت او کافی است.
با وجود اینکه جایگاه‌های تکراری پراکنده بسیار متنوع هستند، اما اندک احتمالی نیز برای یکسان بودن یا حداقل تشابه الگوی حاصل از دو فرد وجود دارد. این موضوع می‌تواند منجر به برائت یک متهم شود(38).
1-10-2 روش پروفایلینگ
روش قدرتمند پروفایلینگ DNA چنین مشکلاتی را ندارد. در پروفایلینگ از توالی‌های معروف به توالی‌های چند شکلی STR استفاده می‌شود. در این روش، به وسیله PCR با پرایمرهایی که به توالی‌های جانبی STR می‌چسبند، به سرعت می‌توان مقادیر بسیار اندک DNA را افزایش داد. بعد از PCR، محصولات از نظر اندازه نوارها یا وجود نوارهایی که الل‌ یا آلل‌های موجود در نمونه DNAی مورد آزمون هستند، با الکتروفورز ژل آگارز بررسی می‌شوند. روش پروفایلینگ DNA، به دلیل استفاده از PCR بسیار حساس است و امکان انجام آزمون روی مو و دیگر نمونه‌هایی که مقادیر اندکی DNA دارند، فراهم می‌آورد. در نتایج حاصل نیز شکی وجود ندارد و مقایسه میان پروفایل‌های DNA معمولا به عنوان یک مدرک پذیرفته می‌شود. با استفاده از این روش امکان اینکه دو نفر، البته بجز دوقلوهای یکسان، دارای پروفایل‌ مشابهی باشند برابر یک در 1015 می‌باشد. با توجه به جمعیت کره زمین که حدود 109×6 می‌باشد، امکان تشابه آماری پروفایل مربوطه در دو نفر به قدری اندک است که می‌تواند غیرممکن تلقی گردد. نوع هر STR با PCR بوسیله پرایمرهایی که با فلورسنت نشاندار شده‌اند و به دو طرف نواحی تکرار شونده متصل می‌گردند، تعیین می‌شود. سپس الل‌های موجود در STRها با تعیین اندازه به وسیله ژل الکتروفورز موئینه‌ای مشخص می‌شوند. دو یا چند STR می‌تواند با PCR چندگانه مشخص گردد، مشروط به اینکه محصولات از لحاظ اندازه همپوشانی نداشته باشند یا هر جفت پرایمر با فلورسانت متفاوتی نشاندار شده باشند تا امکان تشخیص در ژل الکتروفورز موئینه را داشته باشند. در شکل 1-7 مراحل روش پروفایلینگ نشان داده شده است‌(38).

شکل 1-7 مراحل پروفایلینگ ‌DNA(36).1-11 تاریخچه استفاده از مارکرهایSTR
مارکرهای STRبرای اولین بار به عنوان ابزاری قوی در تست تعیین هویت انسانی در سال 1990 به‌کار گرفته شدند. دستگاه پزشکی قانونی ((FSS مطالعه برای شناسایی جایگاه‌های جدید و ارتباط جایگاه های شناخته شده با تنوع در جمعیت‏ها را آغاز کرد. پس از آن پلیس سلطنتی کانادا (RCMP) به همراه تعدادی از آزمایشگاه‌های اروپا تلاش‌های اولیه را در رابطه با جایگاه های STR آغاز کردند. اولین جایگاه‏های مورد استفاده شامل چهار جایگاه TH01،VWA ، FES/FPS و.F13A1 نسل دوم کیت‌ها ((SGM شامل جایگاه‌های TH01، VWA‌، FGA ،D8S1179 ،D18S51 و D21S11 بود. پایگاه داده‌های ملی DNA انگلستان ((NDNAD در سال 1995 جایگاه ژن آمیلوژنین (برای تعیین جنسیت) را به کیت SGM اضافه کرد. با توجه به تکنولوژی STR Typingو موفقیت‏هایی که در این زمینه در انگلستان به‌دست آمد، FBI درصدد برآمد که با استفاده از لوکوس‌های STR، بنیان CODIS را شکل دهد(41).
1-12 CODIS چیست؟سیستم شاخص اندیس‌دهی ترکیبی CODISشامل سیزده جایگاه STRاست. در شکل 1-8 محل قرارگیری این جایگاه‌ها روی کروموزوم‌های انسان نشان داده شده‌اند. نرم افزار CODIS در سال 1990 به عنوان نرم افزاری برای FBI تاسیس گردید. این نرم افزار در صورت اولیه برای آنالیز پروفایل‏های RFLP مورد استفاده قرار می‏گرفت که در بانک اطلاعاتی قابل جستجو بود. تکنولوژی DNA پزشکی قانونی و تکنولوژی کامپیوتری با یکدیگر ادغام گردیدند و باعث بهبود این نرم افزار شدند و این بهبود در جهت نیاز‌های پزشکی قانونی صورت گرفت. در سال 1997نرم افزار CODIS بر اساس مارکرهای STR طراحی شد. سیزده جایگاه STRکه امروزه تحت عنوان CODIS خوانده می‏شوند، عبارتند‌از:
D8S2179
D21S11
D7S820
CSF1PO
D3S1358
TH01
D13S317
D16S539
VWA
TPOX
D18S51
D5S818
FGA (42).

شکل 1-8 جایگاه‌های CODIS روی کروموزوم های انسان(25).1-13 کیت مورد استفاده در تعیین هویت
برای تعیین هویت از کیتAmp FI STR Identifiler PCR Amplification استفاده می‌شود، که حاوی 15 جایگاه تترانوکلئوتید STRبه همراه مارکر آمیلوژنین که برای تشخیص جنسیت به کار می‏رود می‏باشد. از این پانزده جایگاه، سیزده جایگاه، جایگاه‌های شناخته شده‏ی سیستم اندیس دهی ترکیبی‌(CODIS) هستند، اما علاوه بر آنها دو جایگاه دیگر هم در این کیت گنجانده شده است. جدول(۱-1) نشان دهنده‌ی نام جایگاه‏های موجود در CODIS، به همراه موقعیت کروموزومی هر یک از جایگاه‏ها و آلل‏های موجود در هر جایگاه است(43).
جدول 1-1 جایگاه‏های موجود در کیت ABIآلل‌های موجود در هر جایگاه موقعیت کروموزومی نام جایگاه
8,9,10,11,12,13,14,15,16,17,18,19 8 D8S2179
24,24.2,25,26,27,28,28.2,29,29.2,
30,30.2,31,31.2,32,32.2,33,33.2,
34,34.2,35,35.2,36,37,38 21q11.2-q21 D21S11
6,7,8,9,10,11,12,13,14,15 7q11.21-22 D7S820
6,7,8,9,10,11,12,13,14,15 5q33.3-34 CSF1PO
12,13,14,15.16,17,18,19 3p D3S1358
4,5,6,7,8,9,9.3,10,11,13.3 11p15.5 TH01
8,9,10,11,12,13,14,15 13q22-31 D13S317
5,8,9,10,11,12,13,14,15 16q24-qter D16S539
15,16,17,18,19,20,21,22,23,24,25,
26,27,28 2q35-37.1 D2S1338
9,10,11,12,12.2,13,13.2,14,14.2,15,
15.2,16,16.2,17,17.2 19q12-13.1 D19S433
11,12,13,14,15,16,17,18,19,20,21,
22,23,24 12p12-pter VWA
6,7,8,9,10,11,12,13 2p23-2per TPOX
7,9,10,10.2,11,12,13,13.2,14,14.2,
15,16,17,18,19,20,21,22,23,24,25
26,27 18q21.3 D18S51
X,Y Amelogenin
7,8,9,10,11,12,13,14,15,16 5q21-31 D5S818
17,18,19,20,21,22,23,24,25,26,26.2
27,28,29,30,30.2,31.2,32.2,33.2,
42.2,43.2,44.2,45.2,46.2,47.2,48.2
50.2,51.2 4q28 FGA
1-14 معرفی استان‏ها1-14-1 استان کرمانشاه
کرمانشاه یکی از باستانی‌ترین شهرهای ایران است و بر اساس افسانه ها توسط طهمورث دیوبند - پادشاه افسانه‌ای پیشدادیان ساخته شده است. برخی از مورخین بنای آن را به بهرام پادشاه ساسانی نسبت می‌دهند. کرمانشاه در زمان قباد اول و انوشیروان ساسانی به اوج عظمت خود رسید. در اوایل حکومت شاه اسماعیل صفوی سلطان مراد آق قویونلو با 70 هزار نفر کرمانشاه و همدان را اشغال کرد. صفویه برای جلوگیری از تجاوز احتمالی امپراطوری عثمانی این شهر را مورد توجه قرار داد. در زمان شیخ علیخان زنگنه صدر اعظم صفوی به آبادانی و رونق کرمانشاه افزوده شد. تاورنیه، جهانگرد و بازرگان فرانسوی، درباره کرمانشاه چنین نوشته‌ است: ” هم زمان با حمله افغان و سقوط اصفهان که طومار فرمانروایی خاندان صفوی در نوردیده شد، کرمانشاه به جرم قرب جوار، با تهاجم عثمانی‌ها مواجه گردید و بار دیگر شهر رو به خرابی نهاد.“ نادر شاه به منظور آمادگی در مقابل تجاوز عثمانی‌ها، به این شهر توجهی خاص مبذول داشت. در زمان نادر شاه این شهر مورد هجوم عثمانی‌ها قرار گرفت. اما نادرشاه عثمانی‌ها را به عقب راند، ولی در اواخر زندگی نادرشاه، کرمانشاه با محاصره و تاراج عثمانی‌ها مواجه شد. کرمانشاه در عهد زندیه دستخوش آشوب فراوانی گردید. به طوری‌که درکتاب ”تحفه العالم“ عبدالصیف جزایری از کرمانشاه به عنوان خرابه نام برده شده است. در دوره قاجار تا حدی از حملات عثمانی‌ها به ناحیه کرمانشاه کاسته شد. در سال 1267ه.ق، امام قلی میرزا از طرف ناصرالدین شاه به سرحدداری کرمانشاه منصوب شد و مدت 25 سال در این شهر حکومت کرد و در همین دوره بناهایی را احداث و به یادگار گذاشت. این شهر در جنبش مشروطه سهمی به سزا داشت و در جنگ جهانی اول و دوم به تصرف قوای بیگانه درآمد و پس از پایان جنگ تخلیه شد. در نتیجه جنگ تحمیلی عراق علیه ایران، این شهر خسارات زیادی دید و پس از جنگ اقدامات مؤثری در جهت بازسازی آن صورت گرفت. در حال حاضر شهر کرمانشاه، مرکز استان کرمانشاه یکی از هفت کلانشهر کشور(تهران، مشهد، اصفهان، تبریز، شیراز، کرمانشاه و اهواز) است‌(44).
1-14-1-1 موقعیت جغرافیایی
استان کرمانشاه در موقعیت ۳۴ درجه شرقی و ۴۷ درجه شمالی شمالی قرار دارد. از شمال به کردستان، از غرب به کشور عراق، از شرق به استان لرستان و همدان و از جنوب به استان ایلام محدود می گردد. شهرستان‌های این استان عبارت‌اند از: اسلام‌آباد غرب، سنقر، پاوه، صحنه، ثلاث باباجانی، قصر شیرین، جوانرود، دالاهو، روانسر، کرمانشاه، کنگاور، گیلان غرب، سر‌پل ذهاب، هرسین. در شکل1-13 استان کرمانشاه به همراه شهرستان‌های آن دیده می‌شود(44).

شکل 1-9 موقعیت جغرافیائی استان کرمانشاه)44.(1-14-2 استان یَزدیزد سرزمینی کهن با پیشینه‌ای در خور توجه، در تاریخ پر فراز و نشیب ایران است. نام یزد برای اولین بار در آثار دوره‌ی ماد‌ها (701 تا 550 قبل از میلاد) دیده می‌شود که گواهی بر قدمت سه هزار ساله‌ی این سرزمین است. در دوره‌های هخامنشی، اشکانی و ساسانی نیز در اسناد و کتیبه‌ها بار‌ها به نام یزد برمی‌خوریم(45).
حسن پیر‌نیا، در کتاب خود،"ایران باستان"،به نقل از تاریخ هرودوت، مورخ یونانی(484 تا 420 قبل از میلاد)، بر مبنای کتیبه‌های داریوش، یزد را بنا بر رسم یونانیان، به نام ایساتیس می‌خواند. وی می‌افزاید: یزد در عصر اشکانی در قلمرو حکومت مهرداد اول بود و در این شهر به نام او سکه ضرب می‌کردند. در دوره‌ی پادشاهی اردشیر بابکان، (241-224‌م) بنیان‌گذار سلسله‌ی ساسانی، یزد زیر نفوذ او بود. پس از ظهور اسلام و فروپاشی دولت ساسانی، در زمان خلافت عمر، و به روایت برخی، در دوران عثمان (دهه ی سوم هجری)، شهر یزد و نواحی آن فتح شد. از آن زمان تا پایان حکومت امویان، فرمانروایان عرب بر این ولایت حکم‌رانی می‌کردند. چنان‌که آمده است، در دوران خلافت حضرت علی(ع)، مسلم ابن زیاد، والی فارس، مالیات یزد را هم می‌گرفت. چنین بود تا هنگامی‌که به‌دست خود ایرانیان، حکومت های مستقل و نیمه مستقلی تشکیل شد و فرمانروایان ایرانی بر ولایت یزد حاکم شدند(45).
مرکز این استان، شهر یزد است. یزد منطقه‌ای خشک و بیابانی است. گروه بزرگی از زرتشتیان ایران در استان یزد و بویژه شهر یزد زندگی می‌کنند. زبان مردم استان یزد فارسی با لهجه یزدی است. آبادی نشینی در این منطقه از قدمت طولانی برخوردار است. این سرزمین از گذرگاه‌های مهم در ادوار تاریخی محسوب می‌شده‌ است. این ناحیه در دوره هخامنشیان از راه‌های معتبر موسسه‌های راهداری، مراکز پستی و چاپاری برخوردار بوده‌است. راهداری در یزد قدیم چنان اهمیتی داشت که خاندان آل مظفر از منصب راهداری ناحیه میبد به پادشاهی رسیدند. با این‌همه این استان از درگیری‌ها و جنگ‌های تاریخ کشور ایران تا حدودی ایمنی داشته‌است. سخت‌گذر بودن راه‌ها به همراه محدودیت منابع آبی مانع عمده تسخیر این منطقه توسط بعضی از حکومت های بزرگ و کوچک حاشیه و پیرامون این منطقه در طول تاریخ بوده‌است. همان طور که در شکل 1-14 دیده می شود استان یزد دارای شهرستان های ابرکوه، اردکان، بافق، بهاباد، تفت، خاتم، صدوق، طبس، مهریز، میبد و یزد می باشد که شهرستان های مهریز و تفت از آب و هوای خوبی برخوردار می باشد (45).
1-14-2-1 موقعیت جغرافیایی
استان یزد در مرکز ایران در قلمرو سلسله جبال مرکزی ایران بین عرض های جغرافیایی 29 درجه و 48 دقیقه تا 33 درجه و 30 دقیقه شمالی و طول جغرافیایی 52 درجه و 45 دقیقه تا 56 درجه و 30 دقیقه شرقی از نصف النهار مبدا قرار گرفته است. استان یزد از سرزمین‌های تاریخی است که در میان ایالت های قدیمی و بزرگ پارس، اصفهان، کرمان و خراسان قرار داشته‌است(45).

شکل 1-10 موقعیت جغرافیائی استان یزد(45).1-15 هدف از تحقیق:آنچه که باعث استفاده از مارکرهای STR در جمعیت شناسی شده است، این واقعیت است که درجه فراوانی آللی هر مارکر STR در هر جمعیت منحصر به فرد است. در حقیقت طبق مطالعات انجام شده فراوانی آلل‏های STR در نژاد‏های مختلف و حتی در مناطق جغرافیایی خاص، تفاوت‏هایی را نشان داده است. بنابراین بررسی هر یک از لوکوس های STR در هر نژاد یا جمعیت خاص برای تفسیر صحت نتایج حاصل از انجام آزمایش های تعین الگوی ژنتیکی به کمکSTR و انجام محاسبات آماری مربوطه امری ضروری است. برای بهره گیری از فواید این فناوری نوپا در زمینه‏ی تشخیص افراد، ضروری است تا فراوانی آللی لوکوس‏هایSTR مختلف در جمعیت بومی کشور مورد بررسی قرار گیرند (45).
مطالعات گذشته روی جمعیت های ایرانی، حضور تعدادی از آلل‏ها را با پلی مورفیسم بالا نشان می‏دهد‌(37-46.)
هدف از این مطالعه به دست آوردن پارامترهای جمعیتی بر اساس فراوانی آللی به دست آمده از شانزده جایگاه STR، در جمعیت‏های کرمانشاه و یزد به منظور بررسی تفاوت ژنتیکی میان این دو جمعیت و سایر جمعیت‏ها می‏باشد.

فصل دوم
2-1 نمونه‌گیریبرای نمونه‌گیری از اقوام کرد و یزد از نمونه هایی که به آزمایشگاه ژنتیک پزشکی تهران رجوع می‌کردند، استفاده شد. پس ازکسب رضایت نامه 4 میلی لیتر خون محیطی از افراد غیر خویشاوند بر اساس محل تولد و اطلاعات مربوط به سه نسل گذشته (پدری و مادری) تهیه شد و در لوله‌های حاوی ماده ضد انعقاد (EDTA) ریخته شد برای تکمیل نمونه‌های یزدی از همکاری آزمایشگاهی در یزد استفاده گردید و برای نمونه‌های کرد به استان کرمانشاه رفته و از آزمایشگاه بیمارستان طالقانی نمونه‌گیری به عمل آمد.
2-2 استخراج DNA به روش نمک اشباعاستخراج DNA با استفاده از روش استاندارد نمک اشباع طبق مراحل زیر انجام شد:
۱- ۳ میلی لیتر از نمونه‌ی خون محیطی حاوی ماده‌ی ضد انعقاد EDTA، داخل فالکون ۱۵ میلی لیتری ریخته شد و با استفاده از آب مقطر سرد به حجم ۱۰ میلی لیتر رسانده شد. سپس فالکون به شدت حرکت داده شد این کار جهت لیز بهتر گلبول‌های قرمز از طریق فرآیند تورژسانس می‌باشد. سپس نمونه را در دستگاه EBA 20 Hettich zentrifugen به مدت ۱۰ دقیقه با دور ۵۰۰۰ سانتریفیوژ شد و محلول رویی خارج گردید و رسوب انتهایی فالکون نگه داشته شد.
۲- با افزودن آب مقطر سرد به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد و مجدداً با همان شرایط ذکر شده آن را سانتریفیوژ گردید و رسوب حاصل که حاوی گلبول‌های سفید است نگه داشته شد.
۳- پس از افزودن ml10 محلول I استخراج DNA به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد. سپس در شرایط ذکر شده آن را سانتریفوژ کرده و محلول رویی آن دور ریخته شد.
جدول2-1 محلولI استخراج DNA (محلول لیز کننده گلبول‌های قرمز)غلظت مواد
10 mM Tris-Hcl: pH:7.5
0.32 mM Sacarose
5 mM MgCl2
%1 Triton X-100
4-5/۱ میلی لیتر از محلول II استخراج DNA(از قبل تهیه شده به شرح زیر)، lμ ۲۵ سدیم دو دسیل سولفات ‌ SDS و lμ ۲۰ پروتئیناز K به رسوب سفید رنگ انتهای فالکون افزوده شد.
جدول 2-2 محلول II استخراج DNA (محلول لیز کننده گلبول‌های سفید)غلظت مواد
10 mM Tris-HCl: pH:8.2
2mM EDTA: pH:8
0.45mM NaCl
۵- نمونه‌ها به مدت ۳۰ تا ۴۵ دقیقه در دمایc° ۵۶ و یا به مدت یک شب در دمایc° ۳۷ در انکوباتور قرار داده شد تا رسوب حل شود.
۶- پس از افزودن lμ ۵۰۰ نمک اشباع به نمونه، به آرامی تکان داده شد و به مدت ۱۰ دقیقه در ۴۰۰۰ دور سانتریفیوژ شد. سپس محلول رویی به یک فالکون حاوی ۲ میلی لیتر اتانول خالص (۱۰۰ درصد) انتقال یافت و به آرامی حرکت داده شد تا کلاف DNA شکل بگیرد.
۷- کلاف DNA توسط سمپلر به درون یک ویال حاوی ۱ میلی لیتر الکل ۷۰ درصد انتقال یافت تا الکل 100 خارج شود. در مرحله‌ی بعدی ویال را به مدت ۳ دقیقه در ۱۳۰۰۰ دور در دستگاه 20 Hettich zentrifugen Mikro سانتریفیوژ گشت.
۸- محلول رویی دور ریخته شد و ویال حاوی DNA به مدت ۵ دقیقه در انکوباتور قرار داده شد تا اتانول کاملاً تبخیر گردد.
۹- بر حسب میزان DNA بین ۵۰ تا ۳۰۰ ماکرولیتر TE به آن افزوده و به مدت یک شب در انکوباتور C°۳۷ قرار داده شد تا DNA به طور کامل حل شود.
جدول 2-3 ترکیبات TEغلظت محتویات
10mM Tris-Hcl, PH:7.6
1mM EDTA, PH:8
2-3 آماده‌سازی نمونه‌ها جهت انجام تست DNA Typingدر هر واکنش Multiplex PCR بهتر است از lμ ۵ نمونه‌ی DNA انسانی با غلظت ng ۱۰۰-50 استفاده شود. اگر‌چه حساسیت آنالیزی این روش در حد ng۵۰-20 از DNA می‌باشد. روش استخراج و نگهداری DNA می‌تواند روی نتایج PCR تأثیر گذار باشد. این روش نیاز به کیت خاصی برای استخراج DNA ندارد با این وجود توجه به این مسئله که در نمونه‌ها غلظت بالایی از آلودگی با نمک وجود نداشته باشد حائز اهمیت است. در این روش نباید از خون هپارینه استفاده شود زیرا هپارین می‌تواند ممانعت کننده‌ی مرحله‌ی PCR باشد. نمونه‌ی DNA را باید در TE حل کرد. pH نمونه‌ی DNA باید بین ۸ تا ۵/۸ باشد تا از دپوریناسیون در طی مرحله‌ی حرارت دادن اولیه جلوگیری شود. بهتر است در صورتی‌که قصد نگهداری طولانی مدت نمونه‌های DNA را داشته، نمونه را در دمای C°۲۰- نگهداری کرد. اگرچه DNA پس از حل شدن در TE به شدت پایدار است اما نگهداری طولانی مدت آن در دمای C °۴ ممکن است منجر به آلودگی آن با میکروارگانیسم‌ها شود .
۲-3-1 رسوب گذاری با اتانولبا توجه به این مسئله که نتایج مربوط به روش STR در نهایت با یکدیگر مقایسه می‌شوند، بهتر است نمونه‌های انتخاب شده از یک نوع بافت گرفته شوند و با روش یکسانی استخراج شوند. در مواردی که از نمونه‌های DNA قدیمی یا نمونه‌هایی با کیفیت نامناسب استفاده می‌شود و یا مواقعی که غلظت DNA مورد استفاده کمتر از ng/µl۴ است، روش‌های خالص سازی DNA مانند روش رسوب گذاری با اتانول، می‌تواند سبب بهبود کیفیت نمونه‌ها و ایجاد نتایج بهتر و مطمئن‌تری شود. استفاده از روش رسوب گذاری با اتانول آلودگی‌های ناشی از یون‌ها، نمک‌ها، اتانول و... را کاهش می‌دهد. غلظت نمک (NaCl)، نباید بیشتر از mM ۶۰ باشد تا دناتوراسیون به طور کامل انجام شود. هم‌چنین غلظت EDTA نباید بیش از mM۱ باشد زیرا EDTA به منیزیوم متصل شده و مانع انجام مرحله‌ی PCR می‌گردد. ناخالصی‌های یونی مانند آهن، اتانول و فنل نیز باعث کاهش فعالیت پلی‌مراز می‌گردند.
رسوب‌گذاری با اتانول به شیوه زیر بر روی نمونه‌ها انجام گرفت.
به میزان ۱/۰ حجم اولیه‌ی نمونه‌ی DNA استات سدیم M ۳ با 5/4:pH به نمونه‌ها اضافه شد.
به اندازه‌ی ۳ برابر حجم (پس از افزودن سدیم استات) به نمونه‌ها اتانول سرد خالص افزوده شد.

user834

Studying short tandem repeats (STR) in genome is the best way to founding genetic variation in population. The aim of this study was to investigate the genetic variation of two population of Iran, Yazd and Kermanshah people.
For this purpose the genetic profile of 50 unrelated individual from each population prepared by using ABI kit. This kit contains fifteen str loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) and also amylogenin gene for sex determination. The result showed all the loci were in Hardy Weinberg equilibrium except two loci(D19s433 , D2s820) in Kermanshah and three loci (D19s433, D21s11 and VWA) in Yazd population. More over forensic parameters including PIC, PD, PE and MP have been calculated. After all the results have been compared with other population in neighbor countries.
This study revealed that these loci were the suitable loci for identification people and studying genetic population variation. Also the comparison showed that both of Yazd and Kermanshah people were similar to Turkish genetically, but were different from other countries. In addition Yazd has more homogeneous population than Kermanshah, that it could be due to pristine gene pool of this population in the past centuries.
Keywords: Short tandem repeats; Microsatellite markers; Population genetic
فصل اول
مقدمه
1-1 مقدمهدرگذشته مطالعه‏ی تکامل و مهاجرت‏ها از طریق کشف و بررسی بقایای اسکلتی و فسیل‏ها انجام می‏شد. اما از حدود سه دهه‏ی پیش، باستان‏شناسان و زیست‏شناسان با به‌کار‏گیری آنالیز‏های DNA موفق به کشف‏های بسیار دقیقی شدند که کمک فراوانی به ردیابی تاریخ مهاجرت بشر و تکامل انسان‏ها نموده است. یکی از پر‏کاربرد‏ترین راه‏های آنالیز DNA، بررسی نشان‌گرهای ژنتیکی افراد است، که از مهم‌ترین آنها می‏توان به توالی‏های کوتاه تکراری موسوم به STR اشاره کرد. STR‏ها، توالی‏هایی به طول یک تا سیزده نوکلئوتید هستند که در ژنوم موجودات در نواحی غیر‌کد‏کننده موجود می‏باشند. هر فرد توالی‏های منحصر به فردی دارد و هیچ دو نفری در جهان نیستند که توالی‏های یکسانی داشته باشند. به همین دلیل ازSTR ‏ها می‏توان در مطالعات جمعیتی و بررسی تنوع ژنتیکی در جمعیت‏ها سود جست [1].
علاوه بر مطالعات جمعیتی ازSTR ‏ها می‏توان در موارد تعیین هویت‏، تعیین ابویت، تست‏های پزشکی‏قانونی و سایر موارد استفاده کرد. به طور معمول STRهایی که برای تعیین هویت و مطالعات ژنتیکی جمعیت به‌کار می‏روند، یکسان هستند و شامل پانزده جایگاه به نام‏های D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOXو TH01 می‏باشند [1].
هم‌چنین از روش مشترکی موسوم به تعیین الگوی DNA در این زمینه‏ها استفاده می‏شود. هر فرد دارای الگوی DNA منحصر به فرد است که تا پایان عمر تغییر نخواهد کرد. محققان دریافتند که افراد یک جمعیت در الگوهای ژنتیکی خود دارای تشابهاتی هستند که منحصر به همان جمعیت است و با الگوی افراد جمعیت‏های دیگر متفاوت است. از این تفاوت‏ها می‏توان برای ردیابی تاریخ مهاجرت و تکامل انسان‏ها استفاده نمود (1).
1-2 نشان‌گر چیست؟
صفاتی را که می‏توانند به عنوان نشانه‏ای برای شناسایی افراد حامل آن صفت مورد استفاده قرار گیرند، نشان‌گر می‏نامند. مندل نخستین کسی بود که از نشان‌گرهای ظاهری برای مطالعه چگونگی توارث صفات در نخود‌فرنگی استفاده کرد. اما گاهی صفات به سادگی و با چشم غیر مسلح قابل مشاهده نیستند، مانند گروه خونی. برای مشاهده چنین صفاتی باید آزمایش‏های خاصی صورت گیرد. به طور کلی هر صفتی که بین افراد متفاوت باشد، ناشی از تفاوت موجود میان محتوای ژنوم آنها می‏باشد. حتی بروز صفات به صورت متفاوت در میان افراد (در شرایط محیطی یکسان)، به علت تفاوت‏ در ژنوم آنها است. این تفاوت‏ها می‏توانند به عنوان نشانه یا نشان‌گر ژنتیک به کار گرفته شوند. به طور کلی برای آنکه صفتی به عنوان نشان‌گر ژنتیک مورد استفاده قرار گیرد، باید دست کم دو ویژگی داشته باشد‌:
1-در بین دو فرد متفاوت باشد (چند شکلی)
2-به توارث برسد (2).
1-3 انواع نشان‌گرهای ژنتیکینشان‌گرهای ژنتیکی عبارتند از:
1-نشان‌گرهای مورفولوژیک
2-نشان‌گرهای پروتئینی
3-نشان‌گرهای مولکولی در سطح DNA و RNA
1-3-1 نشان‌گرهای مورفولوژیک
کاربرد نشان‌گرهای مورفولوژیک به ده‏ها سال پیش از کشف DNA مربوط می‏شود. نشان‌گرهای مورفولوژیکی که پیامد جهش‏های قابل رویت در مورفولوژی هسته، از ابتدای این سده مورد استفاده قرار گرفتند. صفات مورفولوژیکی که عمدتا توسط یک ژن کنترل می‏شوند، می‏توانند به عنوان نشان‌گر مورد استفاده قرار گیرند. این نشان‌گرها شامل دامنه وسیعی از ژن‏های کنترل‌کننده صفات فنوتیپی هستند و جز نخستین نشان‌گرها به شمار می‌آیند و از زمان‏های بسیار دور یعنی از زمانی که محل ژن‏ها روی کروموزوم مشخص شد، مورد استفاده قرار می‏گرفتند (2).
معایب نشان‌گرهای مورفولوژیک
اغلب دارای توارث غالب و مغلوب بوده و اثرات اپیستازی و پلیوتروپی دارند.
تحت تاثیر شرایط محیطی و مرحله رشد موجود قرار می‏گیرند.
فراوانی و تنوع کمی دارند.
گاهی برای مشاهده و ثبت آنها باید منتظر ظهور آنها ماند.
اساس ژنتیک بسیاری از نشان‌گرهای مورفولوژیک هنوز مشخص نشده است‌(2).
1-3-2 نشان‌گرهای پروتئینی
در دهه‌ی 1950، نشان‌گرهای پروتئینی قابل مشاهده توسط الکتروفورز پروتئین‏ها تحول شگرفی را ایجاد نمودند. برخی از تفاوت‏های موجود در ردیفDNA بین دو موجود ممکن است به صورت پروتئین‏هایی با اندازه‏های مختلف تجلی کنند، که به روش‏های مختلف بیوشیمیایی قابل ثبت و مطالعه می‏گردند. این قبیل نشان‌گرها را نشان‌گرهای مولکولی در سطح پروتئین می‏نامند که از آن جمله می‏توان به سیستم آیزوزایم/آلوزایم اشاره کرد. معمول‏ترین نوع نشان‌گرهای پروتئینی آیزوزایم‏ها هستند که فرم‏های مختلف یک آنزیم را نشان می‏دهند. آیزوزایم‏ها به‏ طور گسترده در بررسی تنوع ژنتیکی به‌کار گرفته‌شدند. نشان‌گرهای پروتئینی تغییرات را در سطح ردیف و عمل ژن به صورت نشان‌گرهای هم‌بارز نشان می‏دهند. اما این دسته از نشان‌گرها هم دارای معایبی هستند. برخی از معایب آن‏ها عبارت‌اند از:
محدود بودن فراوانی این نوع نشان‌گرها؛
تعداد آیزوزایم‏های قابل ثبت و مشاهده که می‏توان از آنها به عنوان نشان‌گر استفاده کرد به یکصد عدد نمی‏رسد؛
محدود بودن تنوع ژنتیکی قابل ثبت در آیزوزایم‏ها‌(نداشتن چند شکلی)؛
پیچیدگی فنوتیپ‏های الکتروفورزی آیزوزایم‏ها به دلیل دخیل بودن آنزیم‏های مرکب از چند پلی‌پپتید مستقل در ترکیب برخی از آیزوزایم‏ها‌(3).
اما پیشرفت‏هایی که در زمینه‏ی الکتروفورز دو‏بعدی با قدرت تفکیک زیاد پدید آمده، تجزیه تحلیل هم‌زمان هزاران پروتئین را میسر ساخته و مجددا به‌عنوان فناوری پیشتاز در عرصه نشان‌گر‏های مولکولی مطرح شده‏اند. تاثیرپذیری نشان‌گرها از محیط که به‌طور معمول به‌عنوان یکی از محدودیت‏ها و نکات منفی نشان‌گرهای مولکولی یاد می‏شود، در مورد این نشان‌گر‏ها تبدیل به برتری شده و جایگاه متمایزی را در بین سایر نشان‌گرها به ارمغان آورده است. پروتئومیکس‌(مطالعه سراسری کل پروتئین‏های موجود در یک سلول یا یک ارگانیسم) می‏تواند به‌طور هم‌زمان برای مطالعه بیان ژن و هم‌چنین برای شناسایی پروتئین‏های واکنش دهنده به شرایط محیطی مورد استفاده قرار گیرد(3).
1-3-3 نشان‌گرهای مولکولیDNA وRNA
دسته‌ای دیگر از تفاوت‏های موجود در سطح DNA هیچ تظاهری ندارند. نه صفت خاصی را کنترل می‏کنند و نه در ردیف اسید‏های آمینه پروتئین‏ها تاثیری برجای می‌گذارند. این دسته از تفاوت‏ها را می‏توان با روش‏های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشان‌گر مورد استفاده قرار داد. این نشان‌گر‏ها که تعدادشان تقریبا نا‏محدود است، فقط از راه تجزیه و تحلیل مستقیم DNA قابل ثبت هستند. بنابراین به آنها نشان‌گرهای مولکولی در سطح DNA گفته می‏شود. نشان‌گرهای مولکولی فراوان و در هر موجود زنده‌ای می‌توانند مورد استفاده قرار گیرند. تاکنون تعداد زیادی از نشان‌گرهای DNA معرفی شده‌اند. این نشان‌گرها از نظر بسیاری از ویژگی‏ها مانند درجه‏ی چندشکلی، غالب یا هم‌بارز بودن، تعداد جایگاه‏های تجزیه شده در هر آزمایش DNA، توزیع در سطح کروموزوم، تکرار‌پذیری، نیاز یا عدم نیاز به توالی‏یابی DNA الگو و هزینه‏ی مورد نیاز با همدیگر متفاوت‌اند. انتخاب بهترین نشان‌گر به هدف مطالعه (انگشت نگاری، تهیه نقشه پیوستگی، ژنتیک جمعیت و روابط تکاملی) و سطح پلوئیدی موجود مورد مطالعه بستگی دارد‌(4).
مزایای کاربرد نشان‌گرهای مولکولی
عدم تاثیرپذیری آنها از شرایط محیطی خارجی و داخلی موجود؛
امکان به‌کارگیری آنها در مراحل نخستین رشد جنینی حیوانات و مراحل نخستین رشد موجودات؛
فراهم نمودن امکان مطالعه موجودات در خارج از فصل و محیط کشت؛
دقت و قابلیت مطلوب تفسیر نتایج؛
هم‌بارز بودن بسیاری از این نشان‌گرها؛
امکان استفاده از آنها در مورد گونه‏های منقرض شده؛
سهولت تشخیص افراد ناخالص از خالص؛
سهولت امتیازدهی و تجزیه و تحلیل نتایج؛
دسترسی به برنامه‏های رایانه‏ای قوی برای تجزیه و تحلیل و تفسیر سریع نتایج‌(4)
انواع نشان‌گرهای مولکولی
نشان‌گرهای DNA گروه بزرگی از نشان‌گرها را تشکیل می‏دهند. این نشان‌گرها سیر تحول و تکامل خود را به پایان نرسانده‏اند و ابداع و معرفی روش‏های متنوع و جدیدتر ثبت و مشاهده‏ی تفاوت‏های ژنتیک بین موجودات از طریق مطالعه‏ی مستقیم تفاوت‏های موجود در بین ردیف‏های DNA هم‌چنان ادامه دارد. نشان‌گر‏های DNA در مدت یک دهه تکاملی شگرف و تحسین‌برانگیز داشته‏اند‌(5).
ابداع و معرفی واکنش زنجیره‌ای پلی‌مراز یا PCR یک روش سریع تکثیر آزمایشگاهی قطعه یا قطعه‌های مورد نظر DNA است. در واقع PCR روشی بسیار قوی است که تکثیر ردیف منتخبی از مولکول یک ژنوم را تا چندین میلیون در کم‌تر از نیم‌روز امکان‌پذیر می‏سازد. اما این فرایند هنگامی امکان‌پذیر است که دست‌کم ردیف کوتاهی از دو انتهای قطعه DNA مورد نظر معلوم باشد. در این فرایند که تقلیدی از فرایند همانندسازی DNAدر طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده دو انتهای قطعه‏ی مورد‌نظرDNA هستند، به‌عنوان آغازگر مورد استفاده قرار می‏گیرند تا واکنش آنزیمی همانندسازی DNA درون لوله‌ی آزمایش امکان‌پذیر شود. این همانند‏سازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‏های پلی‌مراز صورت می‏گیرد. امروزه تعداد زیادی از این نوع آنزیم‏ها به صورت تجاری دردسترس هستند‌(6).
واکنش زنجیره‏ای پلی‌مراز (PCR) در سال 1983 توسط کری‌مولیس در حالیکه در یک نیمه شب تابستانی در حال رانندگی بود، ابداع گردید و سبب انقلاب عظیمی در زیست شناسی مولکولی شد(6).
همان‌گونه که در شکل 1-1 نشان داده شده است، نشان‌گرهای DNAبه دو دسته‏ی کلی طبقه‌بندی می‏شوند.
نشان‌گرهای DNAمبتنی بر PCR
نشان‌گرهای DNA غیر مبتنی PCR(6).

شکل 1-1 انواع نشان‌گرهای ژنتیکی‌(10)
1-3-3-1 نشان‌گرهای غیر مبتنی بر PCRاین دسته از نشان‌گرهای DNA بدون استفاده از روشPCR تولید می‌شوند و مورد استفاده قرار می‌گیرند.
انواع نشان‌گرهای غیر مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‏های محدودگر(RFLP)
پویش ژنومی نشانه‏های هضم (RLGS)
ماهوارک‏ها
1-3-3-1-1 تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‌های محدودگر( (RFLPسرگروه نشان‌گرهای غیر‌مبتنی برPCR ، همان تفاوت طول قطعه‏های حاصل از هضم DNA توسط آنزیم‏های محدودگر یا RFLP است. از بین نشان‌گرهای مولکولی DNA، RFLP ها اولین نشان‌گرهایی بودند که برای نقشه‌یابی ژنوم انسان توسط بوتستین و همکاران در سال 1980 و پس از آن برای نقشه‌یابی ژنوم گیاهان توسط بر و همکاران در سال 1983 مورد استفاده قرار گرفتند. در اوایل دهه 1980 بوتستین و همکاران استفاده از تفاوت طول قطعه‏های حاصل از هضم یا RFLP را برای مطالعه‏ی مستقیم DNA و یافتن نشان‌گر‏های ژنتیک جدید معرفی کردند. این تحول از پیامد‏های منطقی کشف آنزیم‏های محدودگر بود. این آنزیم‏ها که بسیار اختصاصی‏ هستند، ردیف‏های ویژه‏ای را روی مولکولDNA شناسایی کرده و آنها را از محل خاصی (نقطه‏ی برش) برش می‏دهند‌(7).
RFLP الزاما مختص ژن‏های خاص نیست، بلکه در کل ژنوم پراکنده است. ازاین رو، از نشان‌گرهای RFLP برای نقشه‌یابی تمام ژن‌ها در ژنوم انسان استفاده می‏شد(5). علاوه برRFLP که هنوز هم از قدرتمندترین و معتبرترین نشان‌گرهایDNA است، انواع مختلف نشان‌گرهایDNA با تفاوت‌های زیادی از نظر تکنیکی و روش تولید، نحوه‌ی کاربرد، امتیاز‌بندی، تجزیه و تحلیل و تفسیر نتایج به سرعت ابداع ومعرفی شده‌اند‌(7).
مهم‌ترین مزایای RFLP
تکرارپذریری، دقت و قابلیت اعتماد این نشان‌گر فوق‌العاده زیاد است؛
این نشان‌گر هم‌بارز است و امکان تشخیص افراد خالص را از افراد ناخالص فراهم می‏آورد؛


فراوانی این نشان‌گر در حد بالایی است؛
RFLP تحت تاثیر عوامل محیطی داخلی و خارجی نبوده و صد در صد ژنتیکی است(8).
برخی معایب RFLP
دشواری، پیچیدگی و وقت‌گیر بودن؛
RFLP ژنوم‌های بزرگ نیازمند کاربرد مواد پرتوزا یا روش‌های پیچیده‏تر و گران‏تر بیوشیمیایی است؛
RFLP نیازمند نگه‌داری میکروارگانیسم‌ها به‌منظور تهیه‏ی کاوشگر است که خود بر پیچیدگی این روش می‏افزاید؛
هزینه‏ی اولیه و نگه‏داری کاوشگر‏ها و کاربرد آنها بسیار زیاد است؛
نیازمندی به مقدار نسبتا زیاد DNA از محدودیت‏های دیگر روش RFLPاست به‌طوری که ده‏ها میکروگرم از DNAبرای هر فرد به منظور تجزیه‏ی ژنوم مورد نیاز است؛
از دیگر محدودیت‏های این نشان‌گر آن است که در گونه‏های بسیار نزدیک به یکدیگر این نوع نشان‌گر‏ها آلل‏های مشابهی را نشان می‏دهند(8).
1-3-3-1-2 پویش ژنومی نشانه‏های هضم (RLGS)در سال1991، هاتادا و همکاران روشی را برای شناسایی و انگشت‌نگاری موجودات عالی ابداع و معرفی کردند. پیش از ابداع این روش که بر مبنای نشان‌دار کردن هم‌زمان انتهای هضم شده‏ی هزاران قطعه‌ی DNA است، ردیابی و ثبت موجودات عالی با روش نشان‌دار کردن انتهای هضم شده غیر ممکن می‌نمود. دو دلیل اصلی برای این تصور ذکر شده است:
ژنوم موجودات عالی بسیار بزرگ و پیچیده است برای مثال ژنوم انسان 109×3 جفت باز دارد و در نتیجه‏ی هضم آن با آنزیمی مانند EcoRI بیش از یک میلیون قطعه‌ی DNA به وجود می‌آید. تفکیک این تعداد مولکولDNA حتی با الکتروفورز دو بعدی نیز غیر ممکن است.
معمولا DNA ژنومی در هنگام استخراج به صورت تصادفی و غیر‌اختصاصی شکسته می‌شود و ایجاد مولکول‏هایی با انتهای تصادفی می‏کند. این امر سبب ایجاد پس‌زمینه‌ی ناشی از نشان‌دار شدن این انتهاها طی فرایند نشان‌دارکردن می‏شود‌(9).
برای رفع این دو نقص تدابیری پیش‏بینی شد و روش RLGS ابداع گردید. این روش جدید که برای تجزیه و تحلیلDNA ژنومی به‌کار می‌رود، بر مبنای این فرضیه است که نقاط برش اختصاصی آنزیم‏های محدودگر می‌توانند به‌عنوان نشانه و وجهه تمایز ارقام و افراد به کار گرفته‌شوند.
در این روش انتهای آزاد مولکول‌های DNA که در اثر صدمات مکانیکی در طی استخراج به وجود آمده‏اند، مسدود می‏شود. سپس برای کاهش پیچیدگی، DNA ژنومی توسط آنزیم‏های محدودگر، با محل برش نادر، هضم و نقاط برش به‌طور مستقیم با فسفر پرتوزا نشان‌دار می‏شوند. آنزیم‏های با محل برش نادر معمولا هزاران قطعه DNA به وجود می‏آورند. سپس با الکتروفورز دو‌بعدی، قطعه‏های هضم‌شده‏یDNA از هم جدا شده و خودپرتونگاری صورت می‏گیرد. این روش یک الگوی دو بعدی با هزاران نقطه‏ی پراکنده (قطعه‏های نشان‌دارDNA) ایجاد می‏کند که هر یک می‏توانند به عنوان یک نشان‌گر به کار گرفته شوند(10)
برخی از مزایای روشRLGS
در هر آزمایش هزاران نشان‌گر به‌دست می‌آید؛
مقدار کمی DNAمورد نیاز است؛
در صورت استفاده از آنزیم‌های محدودگر متفاوت، تفاوت‏های بیشتری ظاهر و ثبت خواهند شد[10].
برخی از معایب روش RLGS
DNA مورد نیاز برای این روش باید از کیفیت مطلوبی برخوردار باشد؛
هضم ناقص DNA توسط آنزیم‏های محدودگر نتایج تکرار ناپذیر و گمراه کننده‏ای خواهد داشت؛
این روش پیچیدگی فوق العاده‏ای داشته و تفسیر نتایج حاصل از آن دشوار است(10).
1-3-3-1-3 ماهوارک‏ها
ماهوارک‏ها نخستین بار در سال 1985 توسط جفری و همکاران گزارش شدند. پس از آن در سال 1988 تکثیر جایگاه‏های ژنی خاص نواحی تکرارشونده، روی ماهوارک‏ها در ژنوم انسان انجام شد.
این دسته از نشان‌گرها از نظر تکنیکی مبتنی بر استفاده از کاوشگرهای مصنوعی و کاربرد مواد پرتوزا و روش ساترن هستند.
ماهوارک‌ها واحدهایی 10 تا 100 جفت بازی هستند که ممکن است صدها بار تکرار شده باشند. آنها معمولا یک هسته مشترک 10 تا 15 جفت بازی دارند که احتمالا در تنوع‌پذیری ماهوارک‌ها موثرند. ماهوارک‌ها بیش‌تر در نواحی یوکروماتین ژنوم پستانداران، قارچ‌ها و گیاهان متمرکز‌ند. تنوع‌پذیری ماهوارک‌ها در حدی است که گاهی در انگشت‌نگاریDNA انسان مورد استفاده قرار می‏گیرند. از جمله‌ی ماهوارک‌ها می‏توان به تکرارهای پشت سر هم با فراوانی بالا (VNTR) اشاره کرد[11]. VNTR ها به دو دسته‌ی کلی تقسیم می‌شوند: VNTR تک مکانی و VNTR چند مکانی.
دسته‏ی نخست، تعداد متفاوت ردیف‌های تکراری در یک جایگاه ژنی و دسته‏ی دوم تعداد متفاوت ردیف‌های تکرار‌شونده در چندین جایگاه ژنی را نشان می‌دهند. الگوی بانددهی به‌دست آمده با استفاده از کاوشگر‌های VNTR تک مکانی ساده‏تر و قابل فهم‌تر است، زیرا هر فرد تعداد کمی باند واضح را نشان می‏دهد. در حالی‌که تعداد باندهای به دست آمده از کاوشگرهای مخصوص VNTRچند‌مکانی بیش‌تر است، به‌طوری که به‌طور هم‌زمان تا بیش از 30 باند به دست می‏آید(12).
در نخستین نشان‌گرهای مبتنی بر ماهوارک‌ها، از الیگونوکلئوتید‏های حاوی ریزماهواره به عنوان کاوشگر استفاده گردید و توسط علی و همکاران انگشت‌نگاری الیگونوکلئوتیدی نام‌گذاری شد.
از کاوشگرهای الیگونوکلئوتیدی نشان‏دار‌شده مکمل با موتیف‌های کوتاه تکرار‌شونده در هیبریداسیون در ژل، با به کارگیری DNAژنومی برش داده شده با آنزیم‌های برشی خاص و الکتروفورز ژل آگارز استفاده شده است. گوبتا و وارشنی در سال2000 طی تحقیقات خود مراحل زیر را برای انگشت‌نگاری الیگونوکلئوتیدی مطرح کردند:
جداسازیDNA ژنومی با وزن مولکولی زیاد
هضم DNAژنومی با یک آنزیم محدودگر مناسب
تفکیک قطعه‌های حاصل از هضم روی ژل آگارز
انتقال ساترن قطعه ها به غشا
دو ‏رگ‏گیری غشا با کاوشگر‏های(نشاندار با مواد پرتوزا یا غیر پرتوزا) الیگونوکلئوتیدی دربردارنده‏ی ردیف‌های دو یا سه تایی تکراری
خودپرتونگاری یا رنگ آمیزی برای مشاهده‏ی قطعه‌های دو رگ‌شده.
به‌کمک این روش می‌توان تنوع نواحی تکرار‌شونده‏ی مورد نظر را آشکار کرد. قطعه‌هایی از DNA که با الیگونوکلئوتیدها دو ‌رگ می‌شوند، در دامنه‌ای از اندازه‏ی چند صد جفت تا ده کیلو جفت باز قرار می‏گیرند. هم‌چنین گاهی بیش از یک نوع ماهواره در داخل یک قطعه‏ی برش داده شده قرار می‌گیرد. تفاوت‏هایی که این نوع نشان‌گرها نشان می‏دهند، به دلیل تفاوت در طول قطعه‌های برش داده‌شده‌ای است که در بردارنده‏ی ماهوارک‌ها هستند. از این روش برای شناسایی ژنوتیپ‌ها و همچنین در ژنتیک جمعیت استفاده می‌شود(12).
پس از مدتی، لیت و لوتی و سه گروه دیگر همین روش را برای ریزماهواره‏ها(عمدتا از نوع (CA)n) به‌کار بردند و دریافتند که ریز ماهواره‏ها به دو دلیل به مراتب آسانتر از ماهوارک‌ها با روش PCR تکثیر می‏شوند:
1-ریزماهواره‏ها کوچکتر از ماهوارک‏ها هستند؛
2-ردیف‌های تکرار‌شونده ریز ماهواره‏ای فراوانتر و توزیع آنها در کل ژنوم یکنواخت‌تر ازماهوارک‏هاست(13).
1-3-3-2 نشان‌گرهای مبتنی بر PCRنشان‌گرهای مبتنی بر PCR نشان‌گرهایی هستند که از توالی الیگونوکلئوتیدی به عنوان آغازگر برای تکثیر قطعه‏ی خاصی از DNA استفاده می‌کنند. روش‏های مختلف در این گروه، در طول و توالی آغازگرها، سختی شرایط PCR و روش‏های جداسازی و آشکار کردن قطعات با همدیگر فرق دارند.
انواع نشان‌گرهای مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعه‌های حاصل از تکثیر(AFLP)
DNA چند شکل تکثیر‌شده‏ی تصادفی(RAPD)
تفاوت تک نوکلئوتیدی(SNP)
نشان‌گرهای مبتنی برنقاط نشانمند از ردیف (STS)
1-3-3-2-1 تفاوت طول قطعه‌های حاصل از تکثیر (AFLP)
در سال 1995 نشان‌گرهای جدیدی ابداع و معرفی شدند که به نظر می‌رسد بسیاری از محدودیت‌های نشان‌گر‌های پیشین را نداشته باشند. در این روش که AFLP نامیده می‏شود نشان‌گرهایی تولید می‏شوند که علاوه بر دارا بودن مزایایRFLP مانند دقت و تکرار‌پذیری ویژگی‌های مثبت روش‌های مبتنی بر واکنش زنجیره‌ای پلی‌مراز را نیز دارند. پایه‌ی این روش تکثیر انتخابی برخی قطعه‌ها از بین تمام قطعه‌های هضم شده‌ی DNA است و سه مرحله‌ی مجزا دارد:
هضمDNA با یه جفت آنزیم محدودگر و اتصال آنها به آداپتور‌های اولیگونوکلئوتیدی؛
طراحی، ساخت آغازگر و تکثیر انتخابی دسته‌ای از قطعه‌های حاصل از هضم .با استفاده از ردیف بازی آداپتور‌ها و نیز ردیف بازی نقاط برش، طراحی و ساخت آغازگر انجام می‌شود، اما برای تکثیر انتخابی قطعه‌های حاصل از هضم دو، سه یا چند نوکلئوتید به انتهای’3 ردیف آغازگر اضافه می‌شود که موجب می‌گردد فقط قطعه‌هایی تکثیر‌شوند که ردیف بلافصل آنها در مجاورت نقطه‌ی برش ،مکمل نوکلئوتیدهای یاد شده باشد؛
جداسازی قطعه‌های حاصل از تکثیر روی ژل‌های توالی‌یابی(پلی‌اکریل‌آمید) و خودپرتونگاری یا رنگ‌آمیزی نقره برای ثبت نتیجه‌ها.
با استفاده از این روش تعداد زیادی از قطعه‌های حاصل از هضم، تکثیر و قابل رویت می‌شوند. این در حالی است که نیازی به دانش اولیه در مورد توالی‌بازی قطعه‌هایی که تکثیر می‌شوند، وجود ندارند. هر یک از این قطعه‌هایی که به صورت باند روی ژل ظاهر می‌شوند، می‌توانند به عنوان یک نشان‌گر ژنتیک مورد استفاده قرار گیرند.
تعداد قطعه‌هایی که با این روش تکثیر می‌شوند، به دقت و توانمندی روش‌های جداسازی (الکتروفورز)، ثبت نتایج و تعداد نوکلئوتید اضافه شده به انتهای آغازگر بستگی دارد. معمولا در این روش بین پنجاه تا صد قطعه‌ی حاصل از هضم تکثیر و با استفاده از ژل‌های پلی‌اکریل‌امید واسرشت ساز ثبت می‏شوند(19)
مزایای AFLP
این روش در مقایسه یا سایر روش‌ها بیشترین تعدا نشان‌گر‌ها به ازای هر ژل را ایجاد می‌کند؛
در این روش نیازی به تهیه و تدارک و نگه‌داری کاوشگر نیست .دقت و تکرار‌پذیری این نشان‌گر به دلیل انتخاب دمای زیاد هم رشته‌سازی و اتصال آغازگر به DNA الگو بیشتر از RAPD است(20).
معایب AFLP
پیچیدگی نسبی این روش در مقایسه با سایر روش‌های میتنی برPCR ؛
عدم اطلاع از جایگاه ژنی نشان‌گر‌ها؛
غالب بودن این نشان‌گر موجب عدم امکان تشخیص افراد خالص از ناخالص می‏گردد؛
تکثیر قطعه‌های غیر‌واقعی در AFLP موجب کاهش قابلیت اعتماد این روش می‏گردد(20).
1-3-3-2-2 DNA چندشکل تکثیرشده‏ی تصادفی(RAPD)در این روش از تک آغازگرهایی به طول هشت تا ده نوکلئوتید که ردیف بازی آن به طور قراردادی تعیین می‌گردد، استفاده می‏شود. در این واکنش یک آغازگر منفرد نقاط مکمل خود را روی دو رشته‏ی DNA ژنومی می‌یابد و در آن نقاط به رشته‌های DNAمتصل می‌شود. چنانچه محل اتصال آغازگرها در روی دو رشته‏ی مقابل به هم نزدیک باشند(فاصله‏ای که DNA قابل تکثیر باشد)، ردیف بین آن دو نقطه طی واکنش PCR تکثیر خواهد شد. فراورده‌های واکنش PCRروی ژل آگارز از هم جدا می‏شوند. تولید هر باند بیانگر وجود شباهت زیاد بین ردیف بازی آغازگرها و ردیف بازی محل اتصال درDNA ژنوم است. به طور معمول هر آغازگر تکثیر چندین جایگاه مختلف را درDNA ژنومی هدایت خواهد کرد. وجود یا عدم وجود یک باند واحد در ژل های RAPD بیانگر جهش نقطه‌ای در محل اتصال آغازگرها و یا حذف یا (اضافه) شدن در ناحیه قابل تکثیر است. بنابراین چند شکلی در RAPDمعمولا به شکل حضور و غیاب یک باند پدیدار می‏شود. بدین معنی که نشان‌گرهای RAPD از نوع غالب‌اند و افرادی که دو نسخه از یک آلل دارند، به طور کمی از افرادی که یک نسخه از آن آلل را دارند، قابل تشخیص نیستند. تفاوت طول قطعه‏ها در RAPD از طریق تکثیر قطعه‌های DNA مکمل با ردیف‌های آغازگرهای اختیاری (ردیف مشخص ولی تصادفی) به‌دست می‌آیند. قطعه‏های تکثیر شده به صورت نوارهایی با وزن مولکولی متفاوت به‌طور مستقیم روی ژل قابل مشاهده‌اند (15).
مزایای RAPD
عدم نیاز به کاوشگر، مواد پرتوزا و غیره؛
امکان بررسی هم زمان چندین جایگاه در ژنوم؛
عدم نیاز به اطلاعات اولیه در مورد ریف DNA برای ساخت آغازگر(16).
معایب RAPD
عدم تکرار پذیری؛
حساسیت بسیار به آلودگی؛
در صورت تغییر شرایط محیطی ظهور باندهای جدید؛
نامعلوم بودن جایگاه نشان‌گر RAPD روی نقشه‌ی ژنتیکی(16).
1-3-3-2-3 تفاوت تک نوکلئوتیدی(SNP)تنوع‌ها و تفاوت‌هایی که به واسطه‏ی اختلاف در یک جایگاه نوکلئوتیدی(به علت جایگزینی، حذف یا ازدیاد) اتفاق می‌افتند، با عنوان تفاوت تک نوکلئوتیدی نامیده می‏شوند. این نوع از تنوع به‌وفور در ژنوم انسان اتفاق می‏افتد به طوری که مطالعات انجام گرفته توسط کاتانو-آنولز و گرس هوف (1998) در ژنوم انسان و اسب نشان می‏دهد که در فاصله‏ی هر دویست و پنجاه تا چهارصد نوکلئوتید یک SNP وجود دارد(17).
با اینکه‌SNP ها به وفور در ژنوم انسان یافت می‌شوند، ولی ایجاد و توسعه‌ی نشان‌گرهای SNP چندان آسان نیست. تهیه نشان‌گر‏های SNP شامل مراحل زیر است:
تعیین ردیف DNA اطراف SNP؛
تکثیر قطعه‌ای منحصر به فرد از DNA به کمک PCR به منظور غربال SNP؛
شناسایی SNP که شامل مشاهده‌ی دو آلل در افراد مختلف می‌باشد؛
مکان‌یابی نشان‌گر SNP و تعیین جایکاه خاص کروموزومی آن؛
تعیین فراوانی دو آلل در جمعیت؛
بررسی SNP در افراد و ژنوتیپ‌های مختلف(17).
برخی از معایب نشاگرهای SNP
SNPها به دلیل داشتن فقط دو آلل در یک جایگاه ژنی نسبت به نشان‌گر‌های چند آللی، اطلاعات کمتری را در نقشه‌های پیوستگی نشان می‌دهند؛
شناسایی نشان‌گرSNP بسیار پر‌هزینه و هم‌چنین زمان‌بر است(17).
1-3-3-2-4 نشان‌گرهای مبتنی برنقاط نشانمند از ردیف(STS)هر نشان‌گری که مبتنی بر واکنش PCR باشد و با استفاده از آغازگرهای اختصاصی (معمولا بیش از بیست نوکلئوتید) ایجاد شود، یک نقطه‌ی نشانمند از ردیف نامیده می‏شود، زیرا پیش از طراحی آغازگر، بی‏شک در یک مرحله ردیف‌یابی صورت گرفته است. نشان‌گرهایی همچون تفاوت طول قطعه‌های قابل تکثیر (ALP) و ریزماهواره‏ها از آن جهت که مستلزم ردیف‏یابی برای طراحی آغازگر به منظور تکثیر DNA در یک نقطه‌ی خاص هستند، ذیل STS دسته‌بندی می‌شوند:
-تفاوت طول قطعه‏های قابل تکثیر(ALP)
-ریز ماهواره‌ها (18).
1-3-3-2-4-1 تفاوت طول قطعه‏های قابل تکثیر(ALP)
ALP یکی از ساده‏ترین و سریع‏ترین نشان‌گرهای مبتنی بر PCR است. اگر ردیف باز‏های قطعه‏ای از DNA در یک موجود مشخص باشد (یا دست کم بخشی از دو انتهای آن قطعه معلوم باشد)، براساس آن می‏توان به طراحی و ساخت مصنوعی آغازگرهایی به طول بیست تا سی نوکلئوتید اقدام کرد. چنان‌چه نمونه‏های مختلف DNA توسط این آغازگرها و از طریق واکنش زنجیره‏ای پلی‌مراز تکثیر و سپس روی ژل الکتروفورز از هم جدا شوند، در صورت وجود اختلاف در طول قطعه‏ی قابل تکثیر، باندهایی به اندازه‏های مختلف تولید خواهند شد که بیانگر وقوع پدیده‏ی حذف یا اضافه در بین نمونه‏های مورد مطالعه است. این تفاوت در اندازه‏ی قطعه‏های قابل تکثیر که جهش‏های ژنتیک را نشان می‏دهد به عنوان نشان‌گرهای ژنتیک مورد استفاده قرار می‏گیرد(14).
مزایای ALP
از نظر کاربردی در بین نشان‌گرهای DNA،یکی از سریع ترین و ارزان‌ترین‌ها است؛
به‌کاربرد مواد پرتوزا یا بیوشیمیایی پیچیده نیاز ندارد؛
به‌تدارک، نگهداری و کاربرد کاوشگرها نیاز ندارد؛
بسیار اختصاصی عمل می‌کند، تکرار پذیری آن خوب است و تا حد بسیار زیادی می‌توان به نتایج آن اعتماد داشت؛
به‌مقدار خیلی کمی از DNA نیاز است؛
هم‌بارز بودن این نشان‌گر امکان تشخیص افراد خالص از هر یک از انواع افراد ناخالص را فراهم می‌آورد(14).
معایب ALP
طراحی و ساخت آغازگرها، به اطلاعات اولیه در مورد ردیف DNAژنوم مورد مطالعه نیاز دارد که با توجه به اینکه ژنوم بسیاری از موجودات به طور کامل در دسترس نیست این روش استفاده بسیار کمی دارد؛
هزینه‌ی اولیه مورد نیاز به منظور تولید تعداد کافی نشان‌گر ژنتیک با توزیع مناسب در سرتاسر ژنوم بسیار زیاد و مستلزم صرف وقت است(14).
1-3-3-2-4-2 ریزماهواره‌هاریزماهواره‏ها شامل واحدهای یک الی شش تایی تکرار شونده هستند که در ژنوم بیشتر یوکاریوت‏ها پراکنده‏شده‏اند. به طوری که در هر ده کیلو جفت باز از ردیف DNA دست کم یک ردیف ریزماهواره‏ای دیده می‏شود. طول ریز‌ماهواره‏ها معمولا کمتر از 100 جفت باز بوده و توسط دو ردیف منحصر به فرد در دو طرف محدود شده‏اند. ریزماهواره‏ها به سه گروه عمده‌ی تکرارهای کامل، تکرارهای ناکامل (معمولا توسط بازهای غیرتکرارشونده قطع می‌شوند) و تکرارهای مرکب(دو یا تعداد بیشتری از واحدهای مجاور یکدیگر) تقسیم می‏شوند. تعداد تکرارها در هر واحد بسیار متفاوت است. حداقل تعداد واحد تکرار‌شونده برای ریز ماهواره‏های دو نوکلئوتیدی به ترتیب ده و هفت بار تکرار تعیین شده است(21).
مزایای ریزماهواره‏ها
کاربرد آنها و تفسیر نتایج نسبتا ساده است؛
سیستم چند آللی(تا 11 آلل) از ویژگی‌های بارز این نوع نشان‌گر است؛
ریزماهواره‌ها بسیار متنوعند؛
به وفور در ژنوم یوکاریوت‏ها یافت می‏شوند؛
بیشتر ریزماهواره‏ها غیر‏عملکردی هستند؛
همبارز هستند [22].
1-4 فراوانی، توزیع و سازماندهی ریزماهواره‏ها در داخل ژنومریزماهواره‌ها بسیار فراوان بوده و در کل ژنوم موجودات به صورت تصادفی پراکنده اند. فراوانی ریزماهواره ها در بین موجودات زنده متفاوت است. برای مثال تخمین زده شده است که ژنوم انسان به طور میانگین ده برابر بیشتر از گیاهان ریزماهواره دارد. علاوه برDNA کروموزومی تعداد زیادی ریزماهواره در DNA کلروپلاست ها نیز گزارش شده است. به کمک روش‏هایی از قبیل دورگه‏گیری در ژل، نقشه‏یابی ژنتیکی و فیزیکی و هم چنین دورگه‏گیری در محل فلورسنت، ثابت شده است که ریزماهواره ها به طور یکنواخت در ژنوم پراکنده‏اند. اگرچه در برخی موارد می توانند به صورت مجتمع قرار گرفته باشند(12).
1-5 مکانیسم ایجاد تنوع در طول توالی‏های تکراریچنین فرض می‏شود که جهش در تعداد واحدهای تکرار شونده در هر یک ازDNA های تکرار شونده با یکی از دو سازوکار کراسینگ آور نامساوی(uco) یا جفت نشدن ناشی از سرخوردن در طول رشته (خطای همانندسازی DNA ) صورت می‏گیرد. بیشتر عقیده بر این است که ریزماهواره‏ها و ماهواره‏ها توسط سازوکار کراسینگ آور نامساوی ایجاد می‏شوند، ولی در مورد ریزماهواره‏ها برخی افراد یکی از دو سازوکار و برخی دیگر هر دو سازوکار را موثر می‏دانند(23).
1-5-1 کراسینگ اور نابرابرگاهی کراسینگ اور نابرابر در داخل تکرارهای ریزماهواره‏ای بین کروموزوم های مشابه یا خواهری اتفاق می‏افتد و سبب تغییر در تعداد واحدهای تکرار شونده می‏شود.(شکل 1-2).کراسینگ اور نابرابر می‏تواند هم در میوز و هم میتوز اتفاق بیفتد. چنین توجیه می‏شود که وجود نواحی تکرارشونده احتمالا مانع از ردیف شدن کامل در همولوگ یا کروموزوم‏های خواهری می‏شود. به نظرمی‏رسد که این نوترکیبی مکانیزم اصلی ایجاد تنوع مینی‏ستلایتی است(23).

شکل 1-2 کراسینگ آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف شدگی یا الحاق می‌شود(23.)
1-5-2 عدم جفت شدن ناشی از سرخوردن DNA در طول رشته(خطاهای همانند سازی)گاهی DNA پلی‌مراز در طول همانند سازی در نواحی تکرار شونده‏ی ریز ماهواره‏ای سر می‏خورد و موجب تغییر در تعداد واحد تکرار شونده می‏شود. در حقیقت سر خوردن پلی‌مراز در طول نواحی تکراری موجب عدم جفت شدن کامل دو رشته‏ی DNA شده و در نهایت حلقه‌هایی در رشته‌ی الگو یا رشته‏ی جدید ایجاد می‏شود(شکل1-3). این امر مکانیسم اصلی به وجود آورنده‏ی چندشکلی در میکروستلایت‌هاست(23).

شکل 1-3 متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد(23).اگر نتیجه‏ی همانند سازی ایجاد واحد های تکرار شونده‏ی اضافی باشد، حلقه در رشته ی جدید و اگر نتیجه‌ی همانند سازی کاهش در تعداد واحد‏های تکرار شونده باشد، حلقه در رشته‏ی الگو تشکیل خواهد شد(23).
گلدستین و شلوترر فرضیه‏ی عدم جفت شدن ناشی از سر‏خوردن در طول رشته را نسبت به فرضیه کراسینگ آور نامساوی به دلایل زیر به واقعیت نزدیکتر دانسته‏اند:
الف)‌در انسان بسیاری از تغییرات ریز ماهواره‏ای موجب تغییر در نشان‌گر های مجاور ناحیه ی ریز ماهواره‏ای نمی‌شود. بنابراین در ایجاد چنین تغییراتی نوترکیبی بی‏تاثیر است. از آنجا که جهش در فرضیه کراسینگ اور نامساوی، وابسته به نوترکیبی است، تغییرات ریز ماهواره ای و عدم تغییر نقاط مجاور با این فرضیه قابل توجیه نیست.
ب)‌نقصان در ژن‏هایی که در نوترکیبی نقش اساسی دارند تاثیری در پایداری ریز ماهواره‏ها ندارد.
ج)‌مطالعات انجام گرفته در ساکارومایسزسرویزیه نشان می‏دهد که پایداری ریز ماهواره‏ها در سلول‏هایی که تقسیم میوز را انجام می‏دهند مشابه با یاخته ها در تقسیم میتوز است. با توجه به اینکه نوترکیبی در میوز بیشتر از میتوز است، پس اگر فرضیه‏ی کراسینگ اور نامساوی صادق باشد، باید ریز ماهواره‏ها در میوز ناپایدارتر از میتوز باشد(23).
1-6 دامنه تنوع واحدهای تکرارشوندهدو مدل متفاوت برای توصیف دامنه‏ی تنوع تعداد واحدهای تکرار شونده‏ی ریز ماهواره‏ای وجود دارد:
1.مدل جهش گام به گام
2. مدل آللی نا محدود
1-6-1 مدل جهش گام به گاماگر فرض کنیم در ریزماهواره‏ها یک گام معادل تغییر در یک واحد تکرار شونده باشد، بنابر این مدل ریز ماهواره‏ها از نظر اندازه فقط در تعداد محدودی گام تفاوت دارند، به‌طوری که هر گام از گام بعدی به وسیله‏ی یک واحد تکرار شونده جدا می‏شود. در این مدل چنین فرض می‏شود که بسیاری از جهش‏های با فراوانی زیاد، فقط ریزماهواره‏ها را در یک گام یا دو گام‌(در یک زمان) تغییر می‏دهند. طرفداران این نظریه معتقدند که در بیشتر آزمایش‏ها، بیشترین تغییر در ساختار ریزماهواره‏ها مربوط به افزایش یا کاهش در یک واحد تکرار شونده بوده است(10).
1-6-2 مدل آللی نا‏محدودبر اساس این مدل هیچگونه محدودیتی در اندازه‏ی پتانسیل ریزماهواره‏ها وجود ندارد. از این رو تعداد نا محدودی از انتخاب‏ها می‌توانند اتفاق بیفتند که تمامی آنها احتمال یکسان را داشته باشند.
بسیاری از پژوهشگران معتقدند که ترکیبی از این دو مدل(عموما تغییر در یک یا دو واحد تکرار شونده و به مقدار کمتر تغییرات بزرگتر) بهتر می‌تواند تغییرات جهشی در ریزماهواره‏ها را توضیح دهد(10).
1-7 مارکرهای STRتوالی‏های تکراری کوتاه پشت سر هم(STRS) ، توالی‏های تکرارشونده کوتاه با طول 1-13 نوکلئوتید هستند که به شکل سر به دم قرار می‏گیرند. در ژنوم انسان، معمول‏ترینSTR ، توالی دو نوکلئوتیدی [CA]n است،که در این فرمول n تعداد تکرارهاست که معمولا بین 5 تا 20 بار متغیر است(24).
1-8 کاربرد مارکرهای STRمارکرهایSTR کاربردهای فراوانی دارد که از مهمترین آنها تعیین هویت افراد است(25). تعیین هویت در موارد بسیاری کاربرد دارد که از جمله‏ی آنها می‌توان به موارد زیر اشاره کرد:
1- مطالعات شجره‏ای و روابط فامیلی
2- شناسایی هویت قربانیان حوادث
3- تعیین هویت در موارد جنایی
4- ردیابی تاریخ بشر و مطالعات جمعیتی(26).
1-8-1 مطالعات شجره‏ای و روابط فامیلیاز مارکرهایSTR می توان برای بررسی خویشاوندی دو یا چند نفر استفاده کرد. این نوع مطالعه را آنالیز فامیلی می‌گویند و کاربرد متداول آن در بررسی رابطه والدین ـ فرزندی است(27).
هرساله بیش از 300000 مورد تست ابویت به منظور تعیین رابطه پدر فرزندی در ایالات متحده انجام می‏شود. این تست‏ها معمولا شامل یک مادر، یک کودک و یک یا چند پدر مدعی است. همانطور که می‏دانیم هر فرد دارای دو سری آلل می‏باشد که یک سری آن را از پدر و سری دیگر را از مادر دریافت کرده است. بدین منظور آلل‏های پدر و فرزند برای یافتن تعدادی از جایگاه‏هایSTR مورد بررسی قرار می‏گیرند. اساس این تست بر این است که در فقدان جهش، آلل‏های کودک باید مطابقت کاملی با آلل‏های پدری و مادری داشته باشد(28-29-30).

شکل 1-4 آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد(26).علاوه بر این بسیاری از افراد برای شناسایی اقوام خود از مارکرهایSTR استفاده می‏کنند. برای مثال با آنالیز STR های کروموزومY می توان نسبت فامیلی میان مردان یک خانواده را مشخص کرد. زیرا همان‌طور که می‏دانید کروموزومY توارث پدری دارد و از پدر به تمام پسران به ارث می‌رسد. پس طبیعی است که تمام پسران خانواده در همه‏ی نسل‌هاSTR های یکسانی روی کروموزوم Y خود داشته باشند. آزمایشی که بدین منظور انجام می‏گیرد آزمایش Y-filer نامیده می‏شود. به کمک این آزمایش می‏توان روابط میان برادرها، عمو و برادرزاده و... را مشخص نمود(27-31).
1-8-2 شناسایی هویت قربانیان حوادثفجایع بزرگ، طبیعی یا بدست بشر، می‌تواند جان افراد بسیاری را بگیرد، تست‏‏‏هایی که برای شناسایی قربانیان حادثه انجام می‏شود، تست تعیین هویت قربانیان حادثه نامیده می‏شود. از این تست در مواردی مانند سقوط هواپیما ،آتش سوزی‏های بزرگ و حوادث تروریستی استفاده می‏شود. در این قبیل حوادث با استفاده از اسامی افراد، خانواده‏های آنها شناسایی می‏شوند و پس از مراجعه‏ی خانواده‌ها، از اعضای خانواده شامل پدر، مادر، فرزند، خواهر و برادر نمونه‏ی DNA گرفته می‏شود و نواحی STR آنها بررسی می‏شود. پس از این مرحله با استفاده از DNAبه دست آمده از بقایای اجساد پروفایل ژنتیکی آنها تهیه می‏شود و در نهایت با مقایسه‏ی پروفایل‏های تهیه شده هویت قربانیان شناسایی می‏شود(32).
1-8-3 تعیین هویت در موارد جناییتعیین هویت در موارد جنایی شامل دو بخش می‏باشد:
شناسایی افراد مجهول الهویه
ردیابی مجرمین(25).
1-8-3-1 شناسایی افراد مجهول الهویههر ساله میلیون‏ها نفر در سراسر جهان تحت شرایط مشکوکی مفقود می‏شوند. بسیاری از این افراد قربانی فعالیت‏های مجرمانه از قبیل تجاوز و قتل می‏شوند و هویت آنها ناشناس باقی می‏ماند. در این موارد هم می‏توان از مارکرهای ژنتیکی موجود در DNA افراد برای تعیین هویت آنها استفاده کرد(33).
سه دسته نمونه در مورد افراد قربانی وجود دارد:
1-نمونه مستقیم از فرد قربانی
2-نمونه خانواده قربانی
3-نمونه‌های ناشناس باقی مانده از انسان در صحنه‏ی جرم
این نمونه‏ی باقی مانده می‏تواند استخوان، دندان، بافت، تار مو، لکه ی خون و یا هر چیز دیگری باشد(34).
1-8-3-2 ردیابی مجرمینعلاوه بر این می‏توان از آنالیز DNA برای ردیابی و شناسایی مجرمین استفاده کرد. این که فردی مرتکب جرم و جنایتی بشود و نمونه‌ای از DNA خود را به جا نگذارد، تقریبا غیرممکن است. مو، لکه‌های خون و حتی اثر انگشت، مقادیر بسیار جزئی از DNA را دارند که برای مطالعه با PCR کافی هستند. این بررسی‌ها لازم نیست که بلافاصله انجام شوند، زیرا در سال‌های اخیر، با آزمایش DNA روی مواد بایگانی شده، تعدادی از جنایات گذشته ـ با عنوان پرونده‌های مختومه ـ نیز روشن شده است(35).
باید به خاطر داشته باشیم که یک پروفایل DNA به تنهایی فاقد اعتبار است و کاربردی ندارد. همیشه برای بررسی یک پروفایل DNA نیاز است که یک مقایسه‏ای انجام شود:
1-نمونه ی مورد بررسی که با Q مشخص می شود
2-نمونه شناخته شده که با K نمایش داده می شود
در موارد جنایی، نمونه ی صحنه ی جرم (Q) با نمونه ی فرد مظنون (K) و یا مظانین (K1,K2,K3,K...) مقایسه می شود . در یک مورد بدون مظنون، نمونه ی صحنه ی جرم با نمونه هایی که در اطلاعات کامپیوتری از افراد سابقه دار وجود دارد، بررسی می شود . (K1,K….,KN)(34).

شکل 1-5 شناسائی مجرمین به کمک مارکرهای STR(26).1-8-4 ردیابی تاریخ بشر و مطالعات جمعیتیباستان شناسان با بررسی و مقایسه توالی DNA انسان‌های امروزی با افراد مرده، به کشف منشأ تکاملی انسان امروزی و مسیرهای استقرار انسان در کره زمین می‌پردازند. این زمینه تحقیقاتی آرکئوژنتیک نامیده می‌شود(35).
ردیابی مهاجرت انسانی در طول تاریخ با استفاده از آنالیز DNA روش نوینی است. هدف از این کار تخمین ارتباط میان جمعیت ها بر اساس شباهت‏ها و تفاوت‏هایDNA آنها است. به همین منظور پروژه‏ی عظیمی در سال2005 به منظور ردیابی تاریخ بشر انجام شد که در آن از ده ها هزار نفر از افراد در سراسر جهان آزمایش به عمل آمد. اساس کار بر این مطلب است که اگر تکامل ژنوم‏ها به دلیل انباشتگی جهش ها رخ داده باشد، بنابراین میزان اختلاف در توالی نوکلئوتید های دو ژنوم می تواند زمان حضور جد مشترک آنها را مشخص نماید. انتظار می رود دو ژنومی که اخیرا از یکدیگر جدا شده اند در مقایسه با دو ژنومی که جد مشترک آنها قدیمی‏تر است، اختلاف کمتری داشته باشند(36).
در مطالعه روی یافتن مبدا انسان‏های امروزی و الگوی جغرافیایی مهاجرت‏های بشر از مطالعه‏ی ژن‏ها در جمعیت‏ها می‏توان استفاده کرد. بدین منظور ژن‏های انتخابی جهت بررسی باید دارای گوناگونی باشند. در صورت فقدان گوناگونی ژن‏ها، اطلاعات فیلوژنتیکی بدست نمی‏آید، زیرا همه‏ی افراد حتی اگر به جمعیت‏های مجزایی تقسیم شده باشند که تنها به صورت متناوب با یکدیگر آمیزش داشته‏اند، همچنان دارای همانندی‏های بسیاری خواهند بود. بدین معنی که توالی DNA مورد استفاده در آنالیز فیلوژنتیکی باید از متنوع ترین توالی‏های متغیر باشد(36).
در انسان از سه نوع توالی استفاده می‏شود :
ژن های چند آللی مانند اعضای خانواده‏ی HLA، که اشکال بسیار متفاوتی دارند .
ریز ماهواره‏ها که STR ها نیز جز این گروه به حساب می‏آیند .
DNA میتوکندریایی که به دلیل فقدان سیستم‏های ترمیمی موجود در هسته‌های سلول انسان که نسبتا به سرعت دچار انباشتگی نوکلئوتیدی می‏شوند. انواع مختلف DNA میتوکندریایی موجود در یک گونه را هاپلوگروه می‏نامند(36).
باید توجه نمود که آلل‌ها و هاپلوگروه‌های مختلف به طور هم‌زمان در جمعیت‌ها وجود دارند. به این ترتیب این لوکوس‏ها چند شکلی بوده و به کمک مقایسه ترکیب آلل‌ها و یا هاپلوگروه‌های آنها می‌توان اطلاعات مربوط به وابستگی بین افراد مختلف را بدست آورد. به دلیل جهش‌های ایجاد شده در سلول‏های تولید مثلی هر یک از موجودات، آلل‏ها و هاپلوگروه‏های جدیدی در جمعیت ظاهر می‏شوند. هر یک از آلل‏ها، فراوانی آللی خود را دارند که در طول زمان به دلیل انتخاب طبیعی و تغییر ژنتیکی اتفاقی تغییر می‌کند. انتخاب طبیعی به دلیل تغییر در تناسب (توانائی یک موجود جهت بقا و تولید نسل) رخ می‌دهد و بنابر نظریه‌ی داروین منجر به حفظ انواع مناسب و از بین رفتن انواع زیان آور می‏گردد. به این ترتیب انتخاب طبیعی، فراوانی آلل‏های کاهنده‏ی تناسب را کم کرده و فراوانی آلل‏های افزاینده‌‌ی تناسب را افزایش می‏دهد. در حقیقت در یک جمعیت آلل‏های اندکی ایجاد می‏شوند که تاثیر قابل توجهی بر تناسب موجود داشته باشند، اما هم‌چنان فراوانی آنها به دلیل تغییر ژنتیکی اتفاقی که جز جدا نشدنی طبیعت تولد،تولید مثل و مرگ است در حال تغییر می‏باشد. به دلیل انتخاب طبیعی یا تغییر ژنتیکی اتفاقی ممکن است یک آلل در جمعیت غالب شده و فراوانی آن به صد در صد نیز برسد، به طوریکه این آلل در جمعیت تثبیت شود. اگر یک گونه به دو جمعیت تقسیم شود به طوریکه آمیزش‌های فراوانی بین دو جمعیت رخ ندهد، فراوانی آلل در دو جمعیت به طور مختلف تغییر می‌کند. بنابراین پس از چند ده نسل این دو جمعیت ویژگی‏های ژنتیکی مجزایی را کسب می‏کنند. سرانجام جایگزینی ژنی متفاوتی در این دو جمعیت اتفاق می‏افتد ولی حتی قبل از آن نیز می‏توان از روی اختلاف فراوانی آللی در دو جمعیت، آن دو را از هم باز شناخت(36).
محققان طی سال‏ها تحقیقات در سراسر جهان با استفاده از اصول تئوری اطلاعات، پارامترهای عمومی برای هر جمعیت را به منظور تعیین مقدار اطلاعاتی که مارکرهای STR در جمعیت‏ها به ما می‏دهند، تعریف کردند. در یک نمونه‏گیری از مارکرهای افراد از سراسر جهان، مارکرهایی که بیشترین چندشکلی را در میان جمعیت‏های مختلف داشتند و منحصر به جمعیت‏های خاص بودند، انتخاب شدند .امروزه از این مارکرها برای بررسی تنوع و تفاوت میان جمعیت‏ها استفاده می‏شود(37).
1-9 سایر کاربردهای مارکرهای STRمارکرهای مختلف STR تحت عنوان کیت های تجاری مختلف در کنار تست‏های تعیین هویت کاربردهای گسترده‏ی دیگری دارند که از مهم ترین آنها می‏توان به موارد زیر اشاره کرد:
جمع آوری سلول های جنینی از خون مادر؛
بیماری های نقشه‏ی ژنومی؛
مشخص نمودن خطوط سلولی؛
تعیین هویت افراد استفاده کننده‏ی سرنگ مشترک؛
تشخیص کلون‏های موفق؛
بررسی و نظارت بر روی پیوند عضو؛
تشخیص کایمرهای ژنتیکی؛
تشخیص تومورهای سرطانی(26).
1-9-1 جمع آوری سلول های جنینی از خون مادرهنگامی که یک خانم باردار است تعدادی از سلول‌های جنینی می‏توانند از راه جفت وارد جریان خون مادر شوند. جمع‌آوری این سلول ها که تحت عنوان micro chimerism خوانده می‏شود و بررسی آنها با مارکرهای STR یک روش غیر تهاجمی برای تعیین رابطه‌ی پدر فرزندی است. همچنین با استفاده از این روش می‏توان جنسیت جنین را نیز تعیین نمود(26).
1-9-2 نقشه‏ی ژنوم بیماری‏ها
اسکن ژنوم انسان برای شناسایی نقشه ژنوم بیماری‏ها به طور معمول با استفاده از حدود چهارصد نشان‌گر STR در سراسر ژنوم در فواصل 10 سانتی مورگان انجام می‏شود. مرکز تحقیقات بیماری‏های ارثی در طول سال ها مطالعات و آزمایشات بسیاری را روی صدها نفر با استفاده از مارکرهای STR انجام داده است. هدف از این آزمایشات یافتن ارتباط میان فراوانی آللی در جمعیت های مختلف و بیماری های ژنتیکی بود. در پژوهش‌های صورت یافته ارتباط میان برخی مارکرها و بیماری‏ها مشخص شد. پس از آن از مارکر‏های مذکور می‏توان برای شناسایی تعیین دقیق محل ناشناخته‏ی ژن بیماری استفاده کرد(26).
1-9-3 تعیین هویت افراد استفاده کننده از سرنگ مشترکیکی دیگر از کاربردهای مارکرهایSTR نشان دادن به اشتراک گذاری سرنگ در میان مصرف کنندگان مواد مخدر است. با این روش و با استفاده ازجایگاه D8 آزمایشگاه قادر به تشخیص هویت فرد و یا افرادی است که از یک سرنگ مشترک برای تزریق مواد مخدر استفاده کرده‏اند. با این روش می‏توان هویت شخصی را که منشا انتقال بیماری عفونی بوده و از سرنگ مشترک با سایر افراد استفاده می‏کرده تعیین نمود(26).
1-9-4 تشخیص کلون‏های موفقهنگامی که یک موجود کلون می‏شود ازSTR Typing برای آزمایش آن موجود استفاده می‏شود. برای مثال در کلون کردن موجوداتی مانند سگ و گربه. این روش برای آزمودن میزان موفقیت در کلون کردن به کار می‏رود. اگر یک پروفایل STR یکسان میان موجود کلون شده و سلول‎های مادری اولیه مشاهده نشود، در این صورت کلون کردن موفقیت آمیز نبوده(26).
1-9-5 بررسی و نظارت روی پیوند عضواز کاربردهای دیگر مارکرهای STR، نظارت پیوند سلول‏های پیوند شده بعد از پیوند مغز استخوان است، آزمایش STR از فردی که پیوند گرفته می‏تواند در تشخیص نارسایی پیوند مفید واقع شود(26).
1-9-6 تشخیص کایمرهای ژنتیکیChimerism حضور دو خط سلولی ژنتیکی متفاوت در یک ارگانیسم است که می‏تواند از طریق پیوند سلول‏های بنیادی خونی و یا انتقال خون و یا به طور ارثی در شخص اتفاق بیفتد. در سال 2004 آزمایشی روی افراد دهنده و گیرنده‏ی پیوند انجام شد که توانایی بالای 27 نشان‌گر STR به کار گرفته شده، ازجمله نشان‌گرهای CODIS در تشخیص کایمرها شگفت انگیز بود(26).
1-9-7 مشخص نمودن خطوط سلولیدر آزمایشگاه خطوط سلولی می‏توانند با سایر خطوط سلولی آلوده شوند. در نتیجه ممکن است با هم مخلوط و یا به یکدیگر تبدیل شوند احراز هویت خط سلولی انسان در حال حاضر به وسیله ی سازمانی در آمریکا انجام شده است. به کمک مارکرهای STR می‏توان آلودگی متقاطع بین خطوط سلولی مختلف را به سرعت کشف کرد و همچنین می‏توان برای مشخص کردن خطوط سلولی انسان به عنوان یک مرجع جهانی سود جست. در طول چند سال گذشته بیش از 500 خط سلولی از انسان به کمک این روش و با استفاده از 8 جایگاه STR بدست آمده است(26).
1-9-8 تشخیص تومورهای سرطانیفقدان هتروزیگوسیتی (LOH) پدیده‏ای است که در آن حذف در یک ناحیه‏ی لوکوس منجر به عدم تکثیر در PCR می‏شود، به طوری که یک هتروزیگوت واقعی به عنوان یک هموزیگوت به نظر می رسد. این پدیده در بسیاری از افراد مبتلا به تومورهای سرطانی دیده می‏شود. بررسی روی بافت های سرطانی با بافت نرمال با استفاده از STR نشان می‏دهد که جایگاه های مختلف در بافت سالم ارتفاع بلندتری نسبت به بافت های سرطانی نشان می دهند؛چرا که LOH سبب حذف در آن ناحیه شده است(26).
1-10 روش‏های کلی شناسایی هویت افراد در سطح مولکولیدو روش کلی برای شناسایی هویت افراد در سطح مولکولی عبارتند از:
اثر انگشت ژنتیکی از طریق هیبرید کردن با DNA جستجوگر
تعیین الگوی DNA با PCR توالی‌های کوتاه تکراری(38).
1-10-1 روش انگشت‌نگاری ژنتیکی از طریق هیبرید کردن با DNA جستجوگراولین روشی که در آنالیز DNA با هدف شناسایی افراد به کار رفت، روشی بود که در اواسط دهه 1980 توسط سر آلک جفری از دانشگاه لیستر ارائه شد . این روش براساس نوع دیگری از تنوع ژنوم انسان، موسوم به توالی تکراری بسیار متغیر پراکنده بود. همانگونه که از نام این توالی‌ها بر می‌آید، این توالی‌ها عبارتند از یک توالی تکراری که در جایگاه مختلفی‌(به‌طور پراکنده) از ژنوم انسان وجود دارد. نکته کلیدی این توالی‌ها این است که جایگاه ژنتیکی آنها متنوع است و در افراد مختلف در جایگاه‌های مختلفی از ژنوم قرار دارند(38).
توالی که در ابتدا برای انگشت‌نگاری ژنتیکی بکار رفت، توالی GGGCAGGANG (N: هریک از چهار نوکلئوتید) بود. برای تهیه اثر انگشت یک نمونه، DNA آن را با آنزیم محدودگر برش می‌دهند و قطعات حاصل را با استفاده از الکتروفورز ژل آگارز از هم تفکیک کرده و با آزمون ساترن بلات مورد بررسی قرار می‌دهند. هیبریداسیون با جستجوگری که دارای این توالی بود چند سری از نوارها را مشخص کرد. هریک از این نوارها مربوط به قطعه‌ای از DNA هضم شده بود که دارای این توالی تکراری بود. به دلیل تنوع جایگاه‌های این توالی اگر این آزمون با نمونه DNA فرد دیگری تکرار شود، نتیجه متفاوتی به دست می‌آید و می‌توان نتایج حاصل را انگشت‌نگاری ژنتیک این افراد محسوب نمود . در شکل 1-6 مراحل انگشت نگاری ژنتیکی نشان داده شده است(38).

شکل 1-6 مراحل انگشت نگاری ژنتیکی(38)
1-10-1-1 محدودیت‏های روش انگشت نگاریاین روش در کارهای جنایی خود را بسیار ارزشمند نشان داد اما سه محدودیت داشت:
مقادیر بالایی از DNA برای انجام آزمون مورد نیاز است، زیرا این روش نیازمند آنالیز هیبریداسیون است. برای انگشت‌نگاری نمی‌توان از مقادیر اندک DNA موجود در مو و لکه‌های خون استفاده کرد.
بحث کردن در مورد الگوهای حاصل از انگشت‌نگاری مشکل است، زیرا نوارهای حاصل شدت و ضعف‌های متفاوتی دارند. از نظر قانونی، کوچک‌ترین اختلاف شدت در انگشت‌نگاری ژنتیکی یک متهم برای برائت او کافی است.
با وجود اینکه جایگاه‌های تکراری پراکنده بسیار متنوع هستند، اما اندک احتمالی نیز برای یکسان بودن یا حداقل تشابه الگوی حاصل از دو فرد وجود دارد. این موضوع می‌تواند منجر به برائت یک متهم شود(38).
1-10-2 روش پروفایلینگ
روش قدرتمند پروفایلینگ DNA چنین مشکلاتی را ندارد. در پروفایلینگ از توالی‌های معروف به توالی‌های چند شکلی STR استفاده می‌شود. در این روش، به وسیله PCR با پرایمرهایی که به توالی‌های جانبی STR می‌چسبند، به سرعت می‌توان مقادیر بسیار اندک DNA را افزایش داد. بعد از PCR، محصولات از نظر اندازه نوارها یا وجود نوارهایی که الل‌ یا آلل‌های موجود در نمونه DNAی مورد آزمون هستند، با الکتروفورز ژل آگارز بررسی می‌شوند. روش پروفایلینگ DNA، به دلیل استفاده از PCR بسیار حساس است و امکان انجام آزمون روی مو و دیگر نمونه‌هایی که مقادیر اندکی DNA دارند، فراهم می‌آورد. در نتایج حاصل نیز شکی وجود ندارد و مقایسه میان پروفایل‌های DNA معمولا به عنوان یک مدرک پذیرفته می‌شود. با استفاده از این روش امکان اینکه دو نفر، البته بجز دوقلوهای یکسان، دارای پروفایل‌ مشابهی باشند برابر یک در 1015 می‌باشد. با توجه به جمعیت کره زمین که حدود 109×6 می‌باشد، امکان تشابه آماری پروفایل مربوطه در دو نفر به قدری اندک است که می‌تواند غیرممکن تلقی گردد. نوع هر STR با PCR بوسیله پرایمرهایی که با فلورسنت نشاندار شده‌اند و به دو طرف نواحی تکرار شونده متصل می‌گردند، تعیین می‌شود. سپس الل‌های موجود در STRها با تعیین اندازه به وسیله ژل الکتروفورز موئینه‌ای مشخص می‌شوند. دو یا چند STR می‌تواند با PCR چندگانه مشخص گردد، مشروط به اینکه محصولات از لحاظ اندازه همپوشانی نداشته باشند یا هر جفت پرایمر با فلورسانت متفاوتی نشاندار شده باشند تا امکان تشخیص در ژل الکتروفورز موئینه را داشته باشند. در شکل 1-7 مراحل روش پروفایلینگ نشان داده شده است‌(38).

شکل 1-7 مراحل پروفایلینگ ‌DNA(36).1-11 تاریخچه استفاده از مارکرهایSTR
مارکرهای STRبرای اولین بار به عنوان ابزاری قوی در تست تعیین هویت انسانی در سال 1990 به‌کار گرفته شدند. دستگاه پزشکی قانونی ((FSS مطالعه برای شناسایی جایگاه‌های جدید و ارتباط جایگاه های شناخته شده با تنوع در جمعیت‏ها را آغاز کرد. پس از آن پلیس سلطنتی کانادا (RCMP) به همراه تعدادی از آزمایشگاه‌های اروپا تلاش‌های اولیه را در رابطه با جایگاه های STR آغاز کردند. اولین جایگاه‏های مورد استفاده شامل چهار جایگاه TH01،VWA ، FES/FPS و.F13A1 نسل دوم کیت‌ها ((SGM شامل جایگاه‌های TH01، VWA‌، FGA ،D8S1179 ،D18S51 و D21S11 بود. پایگاه داده‌های ملی DNA انگلستان ((NDNAD در سال 1995 جایگاه ژن آمیلوژنین (برای تعیین جنسیت) را به کیت SGM اضافه کرد. با توجه به تکنولوژی STR Typingو موفقیت‏هایی که در این زمینه در انگلستان به‌دست آمد، FBI درصدد برآمد که با استفاده از لوکوس‌های STR، بنیان CODIS را شکل دهد(41).
1-12 CODIS چیست؟سیستم شاخص اندیس‌دهی ترکیبی CODISشامل سیزده جایگاه STRاست. در شکل 1-8 محل قرارگیری این جایگاه‌ها روی کروموزوم‌های انسان نشان داده شده‌اند. نرم افزار CODIS در سال 1990 به عنوان نرم افزاری برای FBI تاسیس گردید. این نرم افزار در صورت اولیه برای آنالیز پروفایل‏های RFLP مورد استفاده قرار می‏گرفت که در بانک اطلاعاتی قابل جستجو بود. تکنولوژی DNA پزشکی قانونی و تکنولوژی کامپیوتری با یکدیگر ادغام گردیدند و باعث بهبود این نرم افزار شدند و این بهبود در جهت نیاز‌های پزشکی قانونی صورت گرفت. در سال 1997نرم افزار CODIS بر اساس مارکرهای STR طراحی شد. سیزده جایگاه STRکه امروزه تحت عنوان CODIS خوانده می‏شوند، عبارتند‌از:
D8S2179
D21S11
D7S820
CSF1PO
D3S1358
TH01
D13S317
D16S539
VWA
TPOX
D18S51
D5S818
FGA (42).

شکل 1-8 جایگاه‌های CODIS روی کروموزوم های انسان(25).1-13 کیت مورد استفاده در تعیین هویت
برای تعیین هویت از کیتAmp FI STR Identifiler PCR Amplification استفاده می‌شود، که حاوی 15 جایگاه تترانوکلئوتید STRبه همراه مارکر آمیلوژنین که برای تشخیص جنسیت به کار می‏رود می‏باشد. از این پانزده جایگاه، سیزده جایگاه، جایگاه‌های شناخته شده‏ی سیستم اندیس دهی ترکیبی‌(CODIS) هستند، اما علاوه بر آنها دو جایگاه دیگر هم در این کیت گنجانده شده است. جدول(۱-1) نشان دهنده‌ی نام جایگاه‏های موجود در CODIS، به همراه موقعیت کروموزومی هر یک از جایگاه‏ها و آلل‏های موجود در هر جایگاه است(43).
جدول 1-1 جایگاه‏های موجود در کیت ABIآلل‌های موجود در هر جایگاه موقعیت کروموزومی نام جایگاه
8,9,10,11,12,13,14,15,16,17,18,19 8 D8S2179
24,24.2,25,26,27,28,28.2,29,29.2,
30,30.2,31,31.2,32,32.2,33,33.2,
34,34.2,35,35.2,36,37,38 21q11.2-q21 D21S11
6,7,8,9,10,11,12,13,14,15 7q11.21-22 D7S820
6,7,8,9,10,11,12,13,14,15 5q33.3-34 CSF1PO
12,13,14,15.16,17,18,19 3p D3S1358
4,5,6,7,8,9,9.3,10,11,13.3 11p15.5 TH01
8,9,10,11,12,13,14,15 13q22-31 D13S317
5,8,9,10,11,12,13,14,15 16q24-qter D16S539
15,16,17,18,19,20,21,22,23,24,25,
26,27,28 2q35-37.1 D2S1338
9,10,11,12,12.2,13,13.2,14,14.2,15,
15.2,16,16.2,17,17.2 19q12-13.1 D19S433
11,12,13,14,15,16,17,18,19,20,21,
22,23,24 12p12-pter VWA
6,7,8,9,10,11,12,13 2p23-2per TPOX
7,9,10,10.2,11,12,13,13.2,14,14.2,
15,16,17,18,19,20,21,22,23,24,25
26,27 18q21.3 D18S51
X,Y Amelogenin
7,8,9,10,11,12,13,14,15,16 5q21-31 D5S818
17,18,19,20,21,22,23,24,25,26,26.2
27,28,29,30,30.2,31.2,32.2,33.2,
42.2,43.2,44.2,45.2,46.2,47.2,48.2
50.2,51.2 4q28 FGA
1-14 معرفی استان‏ها1-14-1 استان کرمانشاه
کرمانشاه یکی از باستانی‌ترین شهرهای ایران است و بر اساس افسانه ها توسط طهمورث دیوبند - پادشاه افسانه‌ای پیشدادیان ساخته شده است. برخی از مورخین بنای آن را به بهرام پادشاه ساسانی نسبت می‌دهند. کرمانشاه در زمان قباد اول و انوشیروان ساسانی به اوج عظمت خود رسید. در اوایل حکومت شاه اسماعیل صفوی سلطان مراد آق قویونلو با 70 هزار نفر کرمانشاه و همدان را اشغال کرد. صفویه برای جلوگیری از تجاوز احتمالی امپراطوری عثمانی این شهر را مورد توجه قرار داد. در زمان شیخ علیخان زنگنه صدر اعظم صفوی به آبادانی و رونق کرمانشاه افزوده شد. تاورنیه، جهانگرد و بازرگان فرانسوی، درباره کرمانشاه چنین نوشته‌ است: ” هم زمان با حمله افغان و سقوط اصفهان که طومار فرمانروایی خاندان صفوی در نوردیده شد، کرمانشاه به جرم قرب جوار، با تهاجم عثمانی‌ها مواجه گردید و بار دیگر شهر رو به خرابی نهاد.“ نادر شاه به منظور آمادگی در مقابل تجاوز عثمانی‌ها، به این شهر توجهی خاص مبذول داشت. در زمان نادر شاه این شهر مورد هجوم عثمانی‌ها قرار گرفت. اما نادرشاه عثمانی‌ها را به عقب راند، ولی در اواخر زندگی نادرشاه، کرمانشاه با محاصره و تاراج عثمانی‌ها مواجه شد. کرمانشاه در عهد زندیه دستخوش آشوب فراوانی گردید. به طوری‌که درکتاب ”تحفه العالم“ عبدالصیف جزایری از کرمانشاه به عنوان خرابه نام برده شده است. در دوره قاجار تا حدی از حملات عثمانی‌ها به ناحیه کرمانشاه کاسته شد. در سال 1267ه.ق، امام قلی میرزا از طرف ناصرالدین شاه به سرحدداری کرمانشاه منصوب شد و مدت 25 سال در این شهر حکومت کرد و در همین دوره بناهایی را احداث و به یادگار گذاشت. این شهر در جنبش مشروطه سهمی به سزا داشت و در جنگ جهانی اول و دوم به تصرف قوای بیگانه درآمد و پس از پایان جنگ تخلیه شد. در نتیجه جنگ تحمیلی عراق علیه ایران، این شهر خسارات زیادی دید و پس از جنگ اقدامات مؤثری در جهت بازسازی آن صورت گرفت. در حال حاضر شهر کرمانشاه، مرکز استان کرمانشاه یکی از هفت کلانشهر کشور(تهران، مشهد، اصفهان، تبریز، شیراز، کرمانشاه و اهواز) است‌(44).
1-14-1-1 موقعیت جغرافیایی
استان کرمانشاه در موقعیت ۳۴ درجه شرقی و ۴۷ درجه شمالی شمالی قرار دارد. از شمال به کردستان، از غرب به کشور عراق، از شرق به استان لرستان و همدان و از جنوب به استان ایلام محدود می گردد. شهرستان‌های این استان عبارت‌اند از: اسلام‌آباد غرب، سنقر، پاوه، صحنه، ثلاث باباجانی، قصر شیرین، جوانرود، دالاهو، روانسر، کرمانشاه، کنگاور، گیلان غرب، سر‌پل ذهاب، هرسین. در شکل1-13 استان کرمانشاه به همراه شهرستان‌های آن دیده می‌شود(44).

شکل 1-9 موقعیت جغرافیائی استان کرمانشاه)44.(1-14-2 استان یَزدیزد سرزمینی کهن با پیشینه‌ای در خور توجه، در تاریخ پر فراز و نشیب ایران است. نام یزد برای اولین بار در آثار دوره‌ی ماد‌ها (701 تا 550 قبل از میلاد) دیده می‌شود که گواهی بر قدمت سه هزار ساله‌ی این سرزمین است. در دوره‌های هخامنشی، اشکانی و ساسانی نیز در اسناد و کتیبه‌ها بار‌ها به نام یزد برمی‌خوریم(45).
حسن پیر‌نیا، در کتاب خود،"ایران باستان"،به نقل از تاریخ هرودوت، مورخ یونانی(484 تا 420 قبل از میلاد)، بر مبنای کتیبه‌های داریوش، یزد را بنا بر رسم یونانیان، به نام ایساتیس می‌خواند. وی می‌افزاید: یزد در عصر اشکانی در قلمرو حکومت مهرداد اول بود و در این شهر به نام او سکه ضرب می‌کردند. در دوره‌ی پادشاهی اردشیر بابکان، (241-224‌م) بنیان‌گذار سلسله‌ی ساسانی، یزد زیر نفوذ او بود. پس از ظهور اسلام و فروپاشی دولت ساسانی، در زمان خلافت عمر، و به روایت برخی، در دوران عثمان (دهه ی سوم هجری)، شهر یزد و نواحی آن فتح شد. از آن زمان تا پایان حکومت امویان، فرمانروایان عرب بر این ولایت حکم‌رانی می‌کردند. چنان‌که آمده است، در دوران خلافت حضرت علی(ع)، مسلم ابن زیاد، والی فارس، مالیات یزد را هم می‌گرفت. چنین بود تا هنگامی‌که به‌دست خود ایرانیان، حکومت های مستقل و نیمه مستقلی تشکیل شد و فرمانروایان ایرانی بر ولایت یزد حاکم شدند(45).
مرکز این استان، شهر یزد است. یزد منطقه‌ای خشک و بیابانی است. گروه بزرگی از زرتشتیان ایران در استان یزد و بویژه شهر یزد زندگی می‌کنند. زبان مردم استان یزد فارسی با لهجه یزدی است. آبادی نشینی در این منطقه از قدمت طولانی برخوردار است. این سرزمین از گذرگاه‌های مهم در ادوار تاریخی محسوب می‌شده‌ است. این ناحیه در دوره هخامنشیان از راه‌های معتبر موسسه‌های راهداری، مراکز پستی و چاپاری برخوردار بوده‌است. راهداری در یزد قدیم چنان اهمیتی داشت که خاندان آل مظفر از منصب راهداری ناحیه میبد به پادشاهی رسیدند. با این‌همه این استان از درگیری‌ها و جنگ‌های تاریخ کشور ایران تا حدودی ایمنی داشته‌است. سخت‌گذر بودن راه‌ها به همراه محدودیت منابع آبی مانع عمده تسخیر این منطقه توسط بعضی از حکومت های بزرگ و کوچک حاشیه و پیرامون این منطقه در طول تاریخ بوده‌است. همان طور که در شکل 1-14 دیده می شود استان یزد دارای شهرستان های ابرکوه، اردکان، بافق، بهاباد، تفت، خاتم، صدوق، طبس، مهریز، میبد و یزد می باشد که شهرستان های مهریز و تفت از آب و هوای خوبی برخوردار می باشد (45).
1-14-2-1 موقعیت جغرافیایی
استان یزد در مرکز ایران در قلمرو سلسله جبال مرکزی ایران بین عرض های جغرافیایی 29 درجه و 48 دقیقه تا 33 درجه و 30 دقیقه شمالی و طول جغرافیایی 52 درجه و 45 دقیقه تا 56 درجه و 30 دقیقه شرقی از نصف النهار مبدا قرار گرفته است. استان یزد از سرزمین‌های تاریخی است که در میان ایالت های قدیمی و بزرگ پارس، اصفهان، کرمان و خراسان قرار داشته‌است(45).

شکل 1-10 موقعیت جغرافیائی استان یزد(45).1-15 هدف از تحقیق:آنچه که باعث استفاده از مارکرهای STR در جمعیت شناسی شده است، این واقعیت است که درجه فراوانی آللی هر مارکر STR در هر جمعیت منحصر به فرد است. در حقیقت طبق مطالعات انجام شده فراوانی آلل‏های STR در نژاد‏های مختلف و حتی در مناطق جغرافیایی خاص، تفاوت‏هایی را نشان داده است. بنابراین بررسی هر یک از لوکوس های STR در هر نژاد یا جمعیت خاص برای تفسیر صحت نتایج حاصل از انجام آزمایش های تعین الگوی ژنتیکی به کمکSTR و انجام محاسبات آماری مربوطه امری ضروری است. برای بهره گیری از فواید این فناوری نوپا در زمینه‏ی تشخیص افراد، ضروری است تا فراوانی آللی لوکوس‏هایSTR مختلف در جمعیت بومی کشور مورد بررسی قرار گیرند (45).
مطالعات گذشته روی جمعیت های ایرانی، حضور تعدادی از آلل‏ها را با پلی مورفیسم بالا نشان می‏دهد‌(37-46.)
هدف از این مطالعه به دست آوردن پارامترهای جمعیتی بر اساس فراوانی آللی به دست آمده از شانزده جایگاه STR، در جمعیت‏های کرمانشاه و یزد به منظور بررسی تفاوت ژنتیکی میان این دو جمعیت و سایر جمعیت‏ها می‏باشد.

فصل دوم
2-1 نمونه‌گیریبرای نمونه‌گیری از اقوام کرد و یزد از نمونه هایی که به آزمایشگاه ژنتیک پزشکی تهران رجوع می‌کردند، استفاده شد. پس ازکسب رضایت نامه 4 میلی لیتر خون محیطی از افراد غیر خویشاوند بر اساس محل تولد و اطلاعات مربوط به سه نسل گذشته (پدری و مادری) تهیه شد و در لوله‌های حاوی ماده ضد انعقاد (EDTA) ریخته شد برای تکمیل نمونه‌های یزدی از همکاری آزمایشگاهی در یزد استفاده گردید و برای نمونه‌های کرد به استان کرمانشاه رفته و از آزمایشگاه بیمارستان طالقانی نمونه‌گیری به عمل آمد.
2-2 استخراج DNA به روش نمک اشباعاستخراج DNA با استفاده از روش استاندارد نمک اشباع طبق مراحل زیر انجام شد:
۱- ۳ میلی لیتر از نمونه‌ی خون محیطی حاوی ماده‌ی ضد انعقاد EDTA، داخل فالکون ۱۵ میلی لیتری ریخته شد و با استفاده از آب مقطر سرد به حجم ۱۰ میلی لیتر رسانده شد. سپس فالکون به شدت حرکت داده شد این کار جهت لیز بهتر گلبول‌های قرمز از طریق فرآیند تورژسانس می‌باشد. سپس نمونه را در دستگاه EBA 20 Hettich zentrifugen به مدت ۱۰ دقیقه با دور ۵۰۰۰ سانتریفیوژ شد و محلول رویی خارج گردید و رسوب انتهایی فالکون نگه داشته شد.
۲- با افزودن آب مقطر سرد به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد و مجدداً با همان شرایط ذکر شده آن را سانتریفیوژ گردید و رسوب حاصل که حاوی گلبول‌های سفید است نگه داشته شد.
۳- پس از افزودن ml10 محلول I استخراج DNA به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد. سپس در شرایط ذکر شده آن را سانتریفوژ کرده و محلول رویی آن دور ریخته شد.
جدول2-1 محلولI استخراج DNA (محلول لیز کننده گلبول‌های قرمز)غلظت مواد
10 mM Tris-Hcl: pH:7.5
0.32 mM Sacarose
5 mM MgCl2
%1 Triton X-100
4-5/۱ میلی لیتر از محلول II استخراج DNA(از قبل تهیه شده به شرح زیر)، lμ ۲۵ سدیم دو دسیل سولفات ‌ SDS و lμ ۲۰ پروتئیناز K به رسوب سفید رنگ انتهای فالکون افزوده شد.
جدول 2-2 محلول II استخراج DNA (محلول لیز کننده گلبول‌های سفید)غلظت مواد
10 mM Tris-HCl: pH:8.2
2mM EDTA: pH:8
0.45mM NaCl
۵- نمونه‌ها به مدت ۳۰ تا ۴۵ دقیقه در دمایc° ۵۶ و یا به مدت یک شب در دمایc° ۳۷ در انکوباتور قرار داده شد تا رسوب حل شود.
۶- پس از افزودن lμ ۵۰۰ نمک اشباع به نمونه، به آرامی تکان داده شد و به مدت ۱۰ دقیقه در ۴۰۰۰ دور سانتریفیوژ شد. سپس محلول رویی به یک فالکون حاوی ۲ میلی لیتر اتانول خالص (۱۰۰ درصد) انتقال یافت و به آرامی حرکت داده شد تا کلاف DNA شکل بگیرد.
۷- کلاف DNA توسط سمپلر به درون یک ویال حاوی ۱ میلی لیتر الکل ۷۰ درصد انتقال یافت تا الکل 100 خارج شود. در مرحله‌ی بعدی ویال را به مدت ۳ دقیقه در ۱۳۰۰۰ دور در دستگاه 20 Hettich zentrifugen Mikro سانتریفیوژ گشت.
۸- محلول رویی دور ریخته شد و ویال حاوی DNA به مدت ۵ دقیقه در انکوباتور قرار داده شد تا اتانول کاملاً تبخیر گردد.
۹- بر حسب میزان DNA بین ۵۰ تا ۳۰۰ ماکرولیتر TE به آن افزوده و به مدت یک شب در انکوباتور C°۳۷ قرار داده شد تا DNA به طور کامل حل شود.

user6-712

شکل 2-1 ماهی سفید2-1-1-2 کپور معمولینام علمی این ماهی سیپرینوس کارپیو است. بدنی قطور و سری کوتاه دارد. از این ماهی سه نژاد برای پرورش معرفی شده است. کپور فلس دار که کاملا از فلس پوشیده شده است. کپور آینه‌ای که فلس‌های بزرگ و پراکنده دارد و بالاخره، کپور خطی که فلس نداشته و بدن ظاهری خط دار دارد. کپور معمولی که نژاد بانکوکی نیز نامیده می‌شود، از کپورهای چینی است که در سال‌های 1929 و 1957 از سری لانکا و تایلند به هند وارد شد. کپور فلس دار و کپور آینه‌ای در محیط‌های معمولی رشد می‌کنند. ولی کپور خطی به آب سرد حساسیت بیشتری دارد. این ماهی همه چیز خوار است و از لارو حشرات، کرم‌ها، نرم تنان و شاخ و برگ گیاهان غوطه ور در آب و گاهی از زئوپلانکتون ها نیز تغذیه می‌کند. حداکثر طول و وزن این ماهی‌ها به ترتیب 75 سانتی متر و 6 کیلوگرم می‌رسد. از ماهیانی هستند که رشد سریعی دارند و تا حدی جزو ماهیان مقاوم به شمار می‌آیند. در سال اول پرورش وزن آن‌ها به حدود 5/1-1 کیلوگرم می‌رسد، طول این ماهی‌ها در این وزن بین 45-40 سانتی متر است. تمام نژادهای این ماهی در استخرها و حوضچه‌های پرورشی بدون تزریق عصاره هیپوفیز تولید مثل می‌کنند. تخم‌ها در این ماهی، چسبنده بوده و به گیاهان غوطه‌ور در آب می‌چسبند. کپور معمولی به همراه کپور نقره‌ای و علفخوار به عنوان ماهیان تمیزکننده شناخته شده‌اند. زیرا جزو کنترل کننده‌های زیستی و در مقام حفظ تعادل بوم سازگان استخرها به شمار می‌آیند (رفیعی، 1384).
این ماهی در حوضه های دریای خزر، رودخانه تجن و تمام حوضه‌های آبریز ایران پراکنش دارد. دندان حلقی سه ردیفی ( 3.2.1- 1.2.3)، بیشینه طول 150 (میانگین 38) سانتی متر است، بدن این ماهی تاحدی دراز است و طول آن سه برابر ارتفاع است. سطح بدن از فلس‌های درشت پوشیده شده است، سر ماهی بزرگ و پوزه کند است، باله پشتی خیلی طویل و باله مخرجی کوتاه است، در باله پشتی 3 تا 4 خار سخت و 15 (16) تا 21 (22) شعاع نرم و شاخه شاخه دارد، در باله مخرجی نیز سه خار سخت و 5 یا 6 شعاع نرم شاخه شاخه دیده می‌شود. دو زوج سبیلک دارد و زوجی که بر روی آرواره پائین قرار دارد، طویل‌تر است، همه چیز خوار است و از موجودات ریز بستر آب، کرم‌ها، سخت پوستان، نوزاد حشرات و حتی فضولات حیوانی و گیاهی، لاشه حیوانات، تخم ماهیان و نوزادان خود را نیز مصرف می‌کند. در دمای کمتر از 7 درجه سانتی گراد به صورت دسته جمعی به خواب زمستانی فرو می‌رود، در آب شیرین به سر می‌برد و آب‌های گرم، آرام و پوشیده از گیاه را دوست دارد (شکل 2-2) (ستاری و همکاران، 1386).

شکل 2-2 کپور معمولیدر سواحل جنوبی دریای خزر، اغلب استخرهای پرورش ماهیان گرمابی، تالاب‌ها، آبگیرهای طبیعی و رودخانه‌های شرق، مرکزی و غرب حوضه پراکنش دارند. بیشترین فراوانی این گونه در جنوب شرقی دریای خزر (خلیج گرگان و تالاب گمیشان) می‌باشد. اگرچه این گونه به صورت بومی و طبیعی در تمام سواحل جنوبی دریای خزر وجود دارد و برای تولید مثل وارد مصب رودخانه‌ها می‌شود، اما در سال‌های اخیر صید بیش از حد و از بین رفتن محل‌های تولیدمثل در زمان تولیدمثل این گونه بسیاری از رودخانه‌های این منطقه یا خشک شده یا آب شیرین ندارند. ضمن اینکه در اثر از بین رفتن پیچ و خم‌های رودخانه مخصوصا در رودخانه قره سو، بسیاری از چمنزارهایی که در فصل بهار غرقاب بوده و محل تولیدمثل این گونه بوده‌اند، از بین رفته، نسل آن کاهش پیدا نموده و اگرچه شیلات ایران اقدام به تکثیر مصنوعی آن نموده اما باید نسبت به احیاء مناطق تولیدمثلی آن اقدام نمود (عبدلی و نادری، 1387).
2-2 زیستگاهزیستگاه کپور معمولی دارای فرم‌های مختلف است. نمونه‌هایی از آن در دریا و برخی دیگر در قسمت‌های پائینی رودخانه‌ها و تالاب‌ها زندگی می‌کنند. بیشتر مناطق پوشیده از گیاهان آبزی (مخصوصا نی زارها) را ترجیح می‌دهند. تغییرات دمای آب، اکسیژن محلول و گل آلودگی را تا حد زیادی تحمل می‌نمایند. در قسمت‌های پائین رودخانه تجن تعداد زیادی از آن وجود دارد. ماهی سفید در دوره‌ای که در دریا است، تا عمق 30 متری در نواحی که موجودات کف‌زی مخصوصا نرم‌تنان وجود دارند، در زمستان به قسمت‌های ساحلی در نزدیکی مصب رودخانه‌ها نزدیک می‌شود. در فصل پاییز قسمت‌های عمیق‌تر را ترجیح می‌دهد. تغییرات دمایی و جریان‌های آبی باعث بروز مهاجرت‌هایی برای این گونه می‌شود (عبدلی و نادری، 1387).
2-3 تغذیهکپور معمولی در تالاب‌ها و استخرهای پرورشی تا حد زیادی از شیرونومیده و در دریای خزر از نرم تنان، سخت‌پوستان، کرم‌ها و مواد پوسیده گیاهی و جانوری تغذیه می‌کنند. در مراحل لاروی تغذیه ماهی سفید از فیتوپلانکتون‌ها، بعد از آن همراه با رشد بدن به ترتیب زئوپلانکتون ها، لارو شیرونومیده، لارو حشرات آبزی، نرم‌تنان، سخت‌پوستان (گاماروس، خرچنگ پهن) و کرم پرتار است. در دوران بلوغ غذای اصلی ماهی سفید از نرم‌تنان می‌باشد. در زمان مهاجرت به رودخانه تغذیه آن متوقف می‌شود (عبدلی و نادری، 1387).
2-4 سن بلوغسن بلوغ از شاخص‌های بسیار مهمی است که می‌توان از آن میزان رشد نسبی ماهیان را پیش‌گویی کرد، اما مقادیر رشد مطلق، تحت تاثیر عوامل محیطی قرار دارند. بنابراین، ماهیان مشخصا در ماه‌های اول سال زندگی تا رسیدن به بلوغ، رشد خیلی سریعی از خود نشان می‌دهند. سپس افزایش مقادیر انرژی، به جای رشد بافت‌های بدنی، باعث رشد غدد جنسی می‌شود. در نتیجه میزان رشد ماهیان بالغ، بسیار کندتر از ماهیان نابالغ است. ماهیا بالغ تا حدودی به دلیل مقدار بافت غدد جنسی به ازا واحد طول، مشخصا سنگین‌تر از ماهیان نابالغ هستند و این امر در بالاتر بودن ضریب چاقی (k) انعکاس یافته است (ستاری، 1381).
ماهی کپور معمولی در سن 3 تا 4 سالگی بالغ می‌شود. تولید مثل آن در فصل بهار از اردیبهشت ماه شروع تا اوایل تیرماه ادامه می‌یابد. در حوضه جنوبی دریای خزر در تالاب انزلی دوره مهاجرت از اواخر اردیبهشت تا پایان خرداد است و در رودخانه قره سو و گرگان رود از فروردین تا پایان اردیبهشت می‌باشد. دمای مناسب برای تولیدمثل از 17 تا 23 درجه سانتی گراد می‌باشد. محل تولیدمثل روی گیاهان آبزی غوطه ور در آب است. هماوری مطلق آن 96 هزار تا 8/1 میلیون تخمک است. در ماهی سفید نرها در 2 تا 3 سالگی و ماده‌ها در 3 تا 4 سالگی بالغ می‌شوند. ابتدا از قسمت‌های عمیق‌تر آب به مناطق ساحلی می‌آیند (اواخر بهمن ماه و اوایل اسفندماه) و اوج کوچ این ماهیان در نیمه دوم فروردین و نیمه اول اردیبهشت ماه با دمای آب 12 تا 13 درجه سانتی گراد می‌باشد. بستر مناسب برای تولیدمثل قلوه سنگی است. در سردآبرود و چالوس، این گونه در فاصله 10 تا 15 کیلومتر از مصب رودخانه در عمق 20 سانتی متری تولیدمثل می‌نماید. ماهیان مولد بعد از تولیدمثل به دریا باز می‌گردند و برخی از آن‌ها در تالاب انزلی تا 2 سالگی نیز در آب شیرین می‌مانند. در فصل تولیدمثل روی قسمت‌های مختلف بدن ماهی نر (مخصوصا سرها) برجستگی‌های جنسی دیده می‌شود. فرم مهاجر پاییزه این گونه به تعداد محدود در برخی از رودخانه‌های جنوبی دریای خزر وجود دارد (عبدلی و نادری، 1387).
2-5 رشد و عوامل موثر بر آنرشد یکی از جنبه‌های بیولوژیکی ماهی است که بیش از سایر مباحث مورد مطالعه قرار گرفته است و شاخص خوبی برای تعیین سلامت افراد یک جمعیت و یا جمعیت‌های مختلف ماهیان به حساب می‌آید. رشد سریع نشان دهنده وفور غذا و وجود سایر شرایط مطلوب است در صورتی که رشد کند احتمالا عکس آن را نشان می‌دهد. رشد، تغییر در اندازه (طول، وزن) در طی زمان و یا به عبارت دیگر، تغییر کالری مصرفی به صورت ذخیره‌ای، به شکل بافت بدنی و بافت تولیدمثلی است. از آن جا که معمولا رشد مثبت است (برای مثال افزایش در طول زمان)، موازنه مثبت انرژی در هنگام سوخت و ساز، ضروری است. سوخت و ساز حاصل آنابولیسم (سنتز بافت یا سازندگی در سوخت و ساز) و کاتابولیسم (شکستن اتصالات شیمیایی با استفاده از انرژی یا تخریب) است. بنابراین در یک ماهی در حال رشد میزان آنابولیسم بیشتر از کاتابولیسم است. عوامل عمده‌ای که میزان آنابولیک را کنترل می‌کنند، شامل هورمون رشد است که از هیپوفیز ترشح می‌شود و همچنین هورمون‌های استروئیدی که از گنادها (غدد جنسی) ترشح آن‌ها را بر عهده دارند (ستاری، 1381).
2-5-1 تنظیم رشدعوامل مختلف موثر بر میزان رشد همانند دما، اکسیژن محلول، آمونیاک، شوری، رقابت، قابلیت دستیابی به غذا و سن بلوغ از طریق تغییر میزان ترشحات هورمونی، تاثیر خود را به خوبی اعمال می‌کنند (ستاری، 1381).
2-5-2 هورمون رشدهورمون رشد ماهی، در سلول‌های بخش قدامی غده هیپوفیز تولید می‌شود (دان، 1997 و دین و همکاران، 2008). این هورمون در غده هیپوفیز همه ماهیان، به استثنای ماهیان دهان گرد وجود دارد. دو واریانت مولکولی از هورمون رشد در ماهیان استخوانی وجود دارد. اخیرا نیز مشخص شده است که در کنترل تنظیم اسمزی، حداقل در آزاد ماهیان دخالت دارد. گزارش شده است که هورمون رشد اگزوژن (با منشاء خارجی) باعث افزایش رشد بدن می‌شود. یون‌های سدیم، پتاسیم و فعالیت ATP آز در سلول‌های کلراید آبشش‌ها افزایش می‌یابد. غلظت‌های پلاسمایی خون و میزان تصفیه متابولیکی در هنگام ورود ماهی در دریا بالا می‌رود (ستاری، 1381). هورمون رشد پلی پپتیدی متشکل از 192 اسید آمینه است که در ساختمان آن دو پیوند دی سولفیدی وجود دارد. در ماهیان این هورمون پپتیدی 22 کیلو دالتون وزن داشته که در تنظیم فشار اسمزی، تولید مثل، فعالیت‌های ایمنی و ضریب تبدیل غذا و اشتها نقش مهمی را بر عهده دارد (مگ و همکاران، 2004). این هورمون به شکل بارزی با تولید مثل جانوران مثل رشد و سازگاری اسمزی مرتبط است (گومز و همکاران، 1998 و مک کورمیک، 2001). علاوه بر این هورمون رشد می‌تواند به عنوان یک عامل مهم محرک رشد در آبزی پروری نقش ایفا کند (زوهار، 1989 ) و برای رشد توده بدنی و تولیدمثل در ماهیان استخوانی و سازگاری اسمزی در ماهیان یوری هالین ضروری است (سیارا و همکاران، 2006). همچنین در میان مهره‌داران، هورمون رشد برای رشد عادی الزامی است و در تنظیم بسیاری از فرایندهای آنابولیک موثر است (اکسو و همکاران، 2001 ).
گیرنده‌های هورمون رشد در کبد، آبشش، روده و کلیه خلفی ماهی قزل آلا مشاهده شده است. با این وجود، تصور می‌شود که بسیاری از اثرات هورمون رشد، همانند آنچه در مهره‌داران رده‌های بالاتر روی می‌دهد توسط واسطه‌هایی مانند فاکتور شبه انسولین (IGF) و خصوصا IGF-1 اعمال می‌شود. هورمون رشد هم IGF و هم RNA را در کبد، آبشش و کلیه تنظیم می‌کند و نشان داده شده است که به وسیله هورمون رشد، IGF-1 تحمل در برابر شوری را در عرض 48 ساعت افزایش می‌دهد (ستاری، 1381).
2-5-3 کنترل ترشح هورمون رشدترشح هورمون رشد در موجودات مختلف تحت تاثیر فاکتورهای زیادی از جمله استرس، تغذیه، خواب، خود هورمون رشد و همچنین مرحله رشد، سن، تغذیه، تحریکات عصبی هیپوکلسیمی، فاکتورهای آزاد کننده هورمون رشد، فاکتورهای بازدارنده هورمون رشد، فاکتورهای رشد از قبیل فاکتور رشد شبه انسولین نوع 1، هورمون تیروئید آدرنال، پانکراس و تعدادی از متابولیت ها واقع می‌شود (ماهنامه جهان دامپروری، 1385). کنترل‌های اولیه رشد توسط دو هورمون هیپوتالاموس (هورمون آزاد کننده هورمون رشد و سوماتواستاتین) و یک هورمون از معده (گرلین) صورت می‌گیرد. هورمون آزادکننده هورمون رشد یک پپتید هیپوتالامیک است که هم سنتز و هم ترشح هورمون رشد را تحریک می‌کند. اما سوماتواستاتین پپتیدی است که آزاد شدن هورمون رشد رادر پاسخ به هورمون آزادکننده هورمون رشد از طریق دیگر فاکتورهای محرک مانند غلظت پایین گلوکز خون ممانعت می‌کند. گرلین با اتصال به گیرنده‌های روی سوماتوتروف ها، همانند هورمون آزاد کننده هورمون رشد ترشح هورمون رشد را تحریک می‌کند. ترشح هورمون رشد همچنین متاثر از فیدبک منفی فاکتور رشد شبه انسولین نوع 1 می‌باشد. سطوح بالای آن در خون منجر به کاهش ترشح هورمون رشد نه فقط از طریق ممانعت مستقیم سوماتوتروف، بلکه از طریق تحرک آزادسازی سوماتواستاتین از هیپوتالاموس می‌شود. جهت ممانعت از ترشح هورمون، اثر فیدبک و احتمالا اثر ممانعت مستقیم (اتوکراین) نسبت به ترشح از سوماتوتروف دارد. ترشح هورمون رشد مانند بیشتر هورمون‌های هیپوفیزی حالت یک جریان دائمی و یکنواخت ندارد بلکه به صورت جریاناتی ضربانی انجام می‌پذیرد (شهبازی، 1378).
2-5-4 اثرات متابولیکی هورمون رشد هورمون رشد اثرات مهمی روی متابولیسم پروتئین، لیپید و کربوهیدرات دارد. در بعضی موارد، اثرات مستقیم هورمون رشد ثابت شده است، از طرفی دیگر که فاکتورهای رشد شبه انسولین نوع 1 در این بین نقش واسطه‌ای داشته و در بعضی موارد هردوی آن‌ها اثرات مستقیم و غیر مستقیم ایفا می‌کنند.
2-5-4-1 افزایش سرعت پروتئین سازی در بیشتر سلول‌های بدنگرچه مکانیسم‌های دقیق افزایش ذخیره پروتئین به وسیله هورمون رشد معلوم نیست، ولی یک رشته اثرات متعدد شناخته شده‌اند که همه آن‌ها می‌تواند منجر به ذخیره پروتئین شوند.
هورمون رشد مستقیما انتقال اسیدهای آمینه یا شاید بیشتر اسیدهای آمینه را از غشاء سلول به درون سلول تقویت می‌کند. غلظت اسیدهای آمینه درون سلول را زیاد می‌کند و تصور بر این است که حداقل تا حدی مسئول افزایش پروتئین سازی است. این تنظیم اسیدهای آمینه شبیه اثر انسولین بر انتقال گلوکز از غشاء است (سپهری، 1385).
2-5-4-2 افزایش رونویسی هسته‌ای DNA برای ساخت RNAهورمون رشد طی دوره‌های طولانی‌تر (24 تا 48 ساعت) رونویسی DNA درون هسته را هم تحریک می‌کند و موجب ساخت مقادیر بیشتری RNA می‌شود. به این ترتیب، اگر انرژی، اسیدهای آمینه، ویتامین‌ها و سایر عوامل رشد کافی در دسترس باشند، پروتئین سازی افزایش می‌یابد و رشد به میزان بیشتری صورت می‌گیرد، این کار احتمالا مهم‌ترین عمل هورمون در بلند مدت است. خلاصه اینکه هورمون رشد تقریبا تمام جنبه‌های دریافت اسیدآمینه و ساخت پروتئین در سلول را تقویت می‌کند و در عین حال تجزیه پروتئین‌ها را کاهش می‌دهد (سپهری، 1385).
2-5-4-3 افزایش میزان چربی‌ها برای تولید انرژیهورمون رشد اثر ویژه‌ای در آزاد سازی اسیدهای چرب دارد و به این ترتیب غلظت اسیدهای چرب را در مایعات بدن افزایش می‌دهد. به علاوه هورمون رشد تبدیل اسیدهای چرب استیل 36 COA و مصرف بعدی آن برای تولید انرژِی را در بافت‌های سراسر بدن تقویت می‌کند. بنابراین، تحت تاثیر هورمون رشد، چربی مقدم بر کربوهیدرات‌ها و پروتئین‌ها انرژی مصرف می‌شود (سپهری، 1385).
2-5-4-4 کاهش مصرف کربوهیدرات‌هاهورمون رشد اعمال متعددی دارد که بر متابولیسم کربوهیدرات‌ها اثر می‌گذارند، از جمله:
کاهش برداشت گلوکز در بافت‌ها مثل عضله اسکلتی و بافت چربی.
افزایش تولید گلوکز در کبد.
افزایش ترشح انسولین.
همه این تغییرات، «نتیجه مقاومت به انسولین» ناشی از هورمون رشد است که اثرات انسولین در تحریک برداشت و مصرف گلوکز در عضله اسکلتی و بافت چربی و مهار گلوکونئوژنز در کبد را تضعیف می‌کند. مکانیسم مقاومت به انسولین و کاهش مصرف گلوکز توسط سلول‌ها، بر اثر هورمون رشد هنوز معلوم نیست. به هر حال، هورمون رشد با افزایش غلظت اسیدهای چرب در خون ممکن است سبب اختلال در اثر انسولین بر مصرف گلوکز در بافت‌ها شود (سپهری، 1385).
2-6 ژن هورمون رشداین ژن به طور مستقیم و غیر مستقیم نقش مهمی در فرایندهای رشد سلول‌های بدنی، رشد اسکلت و تقسیم سلولی و سنتز پروتئین بعد از تولد را دارا می‌باشد، علاوه بر آن هورمون رشد میزان اکسیداسیون چربی و نقل و انتقال گلوکز به بافت پیرامونی و تنظیم فعالیت ترجمه ریبوزومی که در سنتز پروتئین مرتبط است دخالت دارد (دی سانتیس و جری، 2007). مطالعاتی که روی حیوانات انجام شد دلالت بر این دارد که ژن هورمون رشد می‌تواند یک ژن کاندید باشد که برای صفات تولیدی همانند رشد (تامباسو و همکاران،2003) مقاومت در برابر بیماری و تولید تخم (دان کانمینگ، 1997) میزان چربی (کنور و همکاران،2003) اثر به سزایی داشته باشد. پروتئین اصلی این هورمون از تحول تدریجی در طی زمان و تکامل محفوظ مانده است و اطلاعات بسیار ارزشمندی را در زمینه تغییرات پروتئینی و عملکرد هورمون رشد به ما می‌دهد (دین و همکاران، 2008).
بر اساس مطالعاتی که روی ژن هورمون رشد در ماهیان صورت گرفته مشخص شد که ژن هورمون رشد در ماهیان به صورت محافظت شده نمی‌باشد. به عنوان مثال ژن هورمون رشد کپور ماهیان همانند پستانداران دارای 4 اینترون و 5 اگزون می‌باشد (هو،1991) ولی در اکثر ماهیان دیگر دارای یک اگزون اضافی (6 اگزون و 5 اینترون) می‌باشد (آگلون و همکاران، 1988 و بر و دانیال، 1993) اندازه اگزون‌ها در همه ماهیان تقریبا برابر است به جزء اگزون 5 که در طول تکامل به دو قسمت تبدیل شده است (آلمولی و همکاران،2000). فرض بر این است که اضافه شدن اینترون 5 به اگزون 5 و تبدیل اگزون 5 به دو قسمت منجر به واگرایی بین کپور ماهی شکلان و دیگر ماهیان استخوانی شده باشد.
با بررسی تکامل اینترون 5، ماهیان را به سه گروه متفاوت تقسیم بندی کرده‌اند. گروه اول ماهیانی که فاقد اینترون 5 می‌باشند و ساختار این ژن مانند پستانداران و پرندگان می‌باشد مانند کپورماهیان و گربه ماهیان. گروه دوم ماهیانی که اینترون 5 آن‌ها به طول 100-70 جفت باز است مانند تیلاپیا، کفشک ماهی و جراح ماهی دم زرد و گروه سوم که طول اینترون 5 در ژن هورمون رشد 200 تا 600 جفت باز می‌باشد که در برگیرنده خانواده آزادماهیان می‌باشد (یانگ و همکاران، 1997). محققین بر این باورند که دو نسخه‌ای شدن کل ژنوم ماهیان در طول دوره تکامل ماهیان استخوانی اتفاق افتاده است (کریستوفل و همکاران، 2004). اما فقط در آزاد ماهیان و کپور معمولی و تیلاپیا ژن هورمون رشد به صورت دو نسخه‌ای تا به حال گزارش شده است (آگلون و همکاران، 1988). که ماهی سفید و کپور معمولی دارای دو ژن هورمون رشد GH-1 و GH-2 می‌باشد.
2-7 نشانگرهای ژنتیکیهر آنچه که در میان افراد، لاین‌ها، جمعیت‌ها، گونه‌ها، نژادها و یا سویه‌های مختلف به لحاظ ژنتیکی تفاوت داشته و سبب تمایز آن‌ها از یکدیگر گردد به عنوان نشانگر ژنتیکی شناخته می‌شود (بنابازی، 1381). چند شکلی بودن و توارث پذیری از جمله شرایط لازم برای یک نشانگر ژنتیکی می‌باشند.
از مهم‌ترین ویژگی‌های یک نشانگر برتر می‌توان به این موارد اشاره نمود (نقوی، 1388) :
تشخیص آسان همه فنوتیپ‌های ممکن (افراد هتروزیگوت و افراد هموزیگوت).
نداشتن تاثیر روی آلل های موجود در سایر جایگاه‌های ژنی نشانگر (نداشتن اپیستازی).
تظاهر در مراحل اولیه نمو.
حداقل بودن یا عدم اثر متقابل با نشانگرهای دیگری که می‌توانند به طور هم زمان در یک جمعیت در حال تفرق مورد استفاده قرار گیرند.
پیوستگی بسیار نزدیک با ژن‌های مورد نظر.
توارث پذیری کامل.
آسان بودن اندازه گیری.
2-7-1 نشانگرهای ریخت شناسیبه علائمی گفته می‌شوند که به طور مستقیم در فنوتیپ فرد قابل تشخیص بوده و توارث پذیرند، مانند تعداد فلس‌ها روی خط جانبی، اتولیت ها و شکل زوائد پیلوریک و از این دست پارامترها که به راحتی قابل ردیابی هستند. این نشانگرها غالبا تحت تاثیر محیط قرار داشته و متاثر از سن هستند. اگرچه نشانگرهای ریخت شناسی در علوم زیستی مورد استفاده قرار گرفته‌اند، ولی دارای محدودیت‌های اساسی هستند و به همین دلیل توجه محققین به انواع دیگری از نشانگرها جلب شده است (مردانی، 1372).
2-7-2 نشانگرهای فیزیولوژیکیمطالعات مربوط به تولید شیر نشان می‌دهند که افزایش تولید شیر با افزایش سطح برخی از هورمون‌ها در پلاسما همراه است. پس میزان این هورمون‌ها می‌تواند به عنوان یک نشانگر فیزیولوژیک محسوب شود. اشکال نشانگرهای فیزیولوژیک این است که این نشانگرها (از جمله سطح هورمون‌ها در پلاسمای خون) علاوه بر ژن‌ها به شدت تحت تاثیر محیط داخلی، سن و جنس حیوان هستند (مردانی، 1372).
2-7-3 نشانگرهای سیتوژنتیکیدر بسیاری از موجودات زنده تفاوت‌های گسترده کروموزمی مشاهده می‌شوند که می‌توانند به عنوان نشانگر به کار روند. تلوسنتریک ها، ایزوکروموزوم ها، جابجائی ها و الگوهای نواربندی از جمله این نشانگرها می‌باشند (مردانی، 1372).
2-7-4 نشانگرهای پروتئینی برآورد شده است که 20 تا 50 درصد ژن‌های یک موجود حاوی اطلاعات کدکننده پروتئین‌ها می‌باشند. تنوع و گوناگونی یک پروتئین معین حاصل جابجایی و یا جایگزینی اسیدهای آمینه زنجیره پلی پپتیدی است. این تفاوت‌ها بار الکتریکی و در نتیجه حرکت پروتئین بر حسب نوع و تعداد اسیدهای آمینه جابه جا شده را تغییر می‌دهند. وجود پروتئین‌های چند شکل یا تغییر در اسید آمینه یک پروتئین نشان دهنده جابجایی و یا جایگزینی نوکلئوتیدها در زنجیره DNA بر اثر جهش می‌باشد. این تغییر در اسیدهای آمینه پروتئین و نوکلئوتیدهای یک ژن، نقش اساسی فرآورده ژن را تغییر نمی‌دهد بلکه محصولی را به وجود می‌آورد که با محصول ژن جهش نیافته متفاوت نبوده و این تغییر نشان دهنده جهش در زنجیره DNA است. از معایب نشانگرهای پروتئینی این است که تعداد نشانگرهای پروتئینی محدود است. چند شکلی در این نشانگرها چندان زیاد نیست. فنوتیپ‌های الکتروفورزی در آن‌ها پیچیده است (بنابازی، 1381). تحت تاثیر تغییرات پس از ترجمه هستند و تظاهر کمی، برخی از آنزیم‌ها و پروتئین‌ها تحت تاثیر مرحله رشد قرار می‌گیرد (نقوی، 1388).
2-7-5 نشانگرهای DNA یا نشانگرهای مولکولیبا مقایسه ردیف بازهای مولکول DNA در کروموزوم‌های دو فرد هم گونه در می‌یابیم که اکثر جفت بازها یکسان می‌باشند. مناطق معینی که تفاوت‌های ردیفی در آنها به وقوع می‌پیوندند را تحت عنوان نشانگرهای DNA یا نشانگرهای مولکولی می‌شناسیم. به عبارت دیگر این نوع تغییرات انعکاس دهنده مستقیم تنوع در ساختار ژنتیکی (ساختمان DNA) هستند. وقتی تغییرات DNA در درون ژن‌ها رخ می‌دهند، توانایی تاثیر روی عمل ژن‌ها و در نتیجه فنوتیپ فرد را دارا می‌باشند ولی اکثر نشانگرهای مولکولی با یک فنوتیپ قابل مشاهده همراه نیستند و بایستی این تغییرات را از طریق آنالیز مستقیم DNA مطالعه نمود (امتیازی و کریمی، 1384).
نشانگرهای مولکولی به دو دسته تقسیم می‌شوند:نشانگرهای مولکولی مبتنی بر PCR.نشانگرهای مولکولی غیرمبتنی بر PCR.
2-8 نشانگرهای DNA مبتنی بر واکنش زنجیره‌ای پلیمرازواکنش زنجیره‌ای پلیمراز که معمولا به طور اختصار PCR خوانده می‌شود روشی بسیار قوی است که تکثیر ردیف منتخبی از مولکول یک ژنوم را تا چندین میلیون برابر در کمتر از نیم روز امکان پذیر می‌کند. اما این فرایند هنگامی امکان پذیر است که دست کم ردیف کوتاهی از دو انتهای قطعه دی. ان. ای مورد نظر معلوم باشد (نقوی، 1388). در این فرایند که تقلیدی از فرایند همانند سازی دی. ان. ای در طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده دو انتهای قطعه مورد نظر DNA هستند، به عنوان آغازگر مورد استفاده قرار می‌گیرند تا واکنش آنزیمی همانند سازی دی. ان. ای در درون لوله آزمایش امکان پذیر شود. این همانندسازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‌های پلیمراز صورت می‌گیرد. امروزه تعداد زیادی از این نوع آنزیم‌ها به صورت تجاری در دسترساند (نقوی، 1388).
این واکنش از آن روی ارزشمند است که عمل آن بسیار اختصاصی است و به سادگی ماشینی شده و قادر است عمل تکثیر را از مقادیر فوق العاده کم DNA الگو آغاز کند. به کمک این روش می‌توان نزدیک به 5 کیلو باز از ژنوم را بدون هیچ مشکلی تکثیر نمود. از روش PCR بیشتر در نقشه یابی DNA، انتخاب به کمک شناساگرها و همچنین در فیلوژنیک مولکولی استفاده می‌شود. همچنین از PCR می‌توان برای تکثیر DNA‌های به وجود آمده از RNA ها نیز استفاده نمود. نشانگرهای DNA تفاوت قابل ملاحظه‌ای با نشانگرهای پروتئینی و مورفولوژیک داشته و دارای مزایای به شرح زیر می‌باشد:
دقت و سهولت تعقیب آن‌ها.


امکان به کارگیری آن‌ها در مراحل اولیه زندگی.
فراوانی فوق العاده این نشانگرها.
امکان استفاده برنامه‌های کامپیوتری برای تجزیه و تحلیل نتایج.
عدم تاثیرپذیری از شرایط داخلی و خارجی موجود (نقوی، 1388).
2-9 واکنش رنجیره ای پلیمراز (PCR)بی تردید ابداع و معرفی واکنش زنجیره‌ای پلیمراز بیشترین نقش را در توسعه و تکامل نشانگرهای DNA داشته است. این تکنیک در سال 1985 به وسیله کری مولیس و همکارانش ابداع شد و اکنون کاربردهای نامحدودی در تمامی حوزه‌ها یافته است (امتیازی و کریمی، 1384). این تکنیک ساده امکان ایجاد رونوشت‌هایی نامحدود از قطعات خاصی از DNA را فراهم می‌نماید. DNA ی الگو که PCR روی آن انجام می‌گیرد، می‌تواند DNA ی ژنومی (که از گلبول‌های سفید خون یا نمونه‌ای از طحال یا هر بافت دیگری استخراج گردیده است) و یا قطعه‌ای از DNA (از هر منبعی) باشد. PCR تقریبا یک میلیون رونوشت از قطعه‌ای کوچک از DNA ی الگو ایجاد می‌نماید که این مقدار برای استفاده در هر نوع مطالعه ژنتیکی (ردیف یابی، انتقال ژن، هضم آنزیمی و غیره) کافی است. قبل از انجام PCR لازم است ردیف قطعه‌ای که باید تکثیر شود و یا حداقل ردیف هر دو انتهای آن شناسایی گردد. با استفاده از این ردیف‌ها دو قطعه چند نوکلئوتیدی که هر یک حدود 20 باز طول دارند، طراحی و ساخته می‌شود که یکی از آن‌ها مکمل پایانه '3 یکی از رشته‌های قطعه‌ای است که تکثیر خواهد شد و دیگری نیز مکمل پایانه '3 رشته دیگر می‌باشد. وجود این دو قطعه چند نوکلئوتیدی برای شروع سنتز رشته‌های جدید DNA لازم است و آن‌ها را آغازگر می‌نامند. DNA الگو، آغازگرها، مقداری دئوکسی نوکلئوتیدها شامل گوانین (G)، سیتوزین (C)، تیمین (T) و آدنین (A) در داخل تیوپ کوچکی ریخته می‌شود برای اینکه DNA الگو واسرشته شود، مخلوط واکنش را در دمای 95  درجه سانتی گراد قرار می‌دهند. آنزیم DNA پلیمراز می‌تواند دمای بالا را تحمل کند. شکل رایج این آنزیم، Taq پلیمراز است که از باکتری گرمادوست به دست می‌آید. پس از مرحله واسرشته سازی، دما به حدود 60-50 درجه سانتی گراد کاهش پیدا می‌کند تا آغازگرها به ردیف‌های مکمل مربوطه متصل شوند. این مرحله را جفت شدن می‌گویند. به محض اتصال آغازگرها، دما به حدود 70 درجه سانتی گراد افزایش می‌یابد. این دما برای فعالیت آنزیم DNA پلیمراز مناسب است. این مرحله بسط نامیده می‌شود. آنزیم از انتهای '3 هر آغازگر ساخت و بسط رشته جدید را آغاز می‌نماید. پس از طی زمان کافی برای ساخت رشته‌های جدید، مجددا دما به 95 درجه سانتی گراد افزایش می‌یابد و به‌این‌ترتیب چرخه‌ای جدید از واکنش آغاز می‌گردد و سه مرحله قبلی این بار روی DNA دو رشته‌ای جدید صورت می‌گیرد و این رشته‌ها خود به عنوان الگو برای چرخه‌های بعدی عمل خواهند کرد (امتیازی و کریمی، 1384). طول هر چرخه تکثیر حدود 5 دقیقه است (15 ثانیه برای واسرشته سازی، 30 ثانیه برای جفت شدن و 90 ثانیه برای بسط به علاوه حداقل زمان مورد نیاز برای تغییر دماها در بین مراحل که حدود 30 تا 60 ثانیه برای هر تغییر لازم است) (امتیازی و کریمی، 1384).
چرخه‌های تکثیر معمولا در ماشین‌های PCR که از نظر طول و دمای هر مرحله در هر چرخه دقیقا قابل برنامه ریزی و کنترل هستند، انجام می‌گردد. تعداد چرخه‌ها 30 تا 35 بار می‌باشد. نتیجه این تعداد چرخه بین 230 تا 235 رونوشت از قطعه مورد نظر است که معادل حدود یک میلیون قطعه مشابه می‌باشد (این مقدار فراورده PCR نامیده می‌شود). در عمل، این تکثیر نمایی کامل نیست ولی احتمال رسیدن به حداقل یک میلیون بار تکثیر و در نتیجه به دست آوردن یک میکروگرم فراورده PCR بسیار زیاد است (امتیازی و کریمی، 1384).
2-9-1 بافر RCRاین بافر معمولا شامل Tris با 8/8-3/8 pH = و یک نمک مثل کلرید پتاسیم (KCl) یا سولفات آمونیوم می‌باشد. این بافر می‌تواند حاوی افزودنی‌هایی مانند Tween 20، Triton X-100، DMSO (دی متیل سولفوکساید) و ژلاتین باشد که کارایی RCP را افزایش می‌دهند (فرسون و همکاران، 2000 ). این بافر معمولا به صورت 10x تهیه و همراه با آنزیم نک پلیمراز ارائه می‌گردد. غلظت مناسب آن در واکنش معمولا 1X می‌باشد. KCl به اتصال آغازگر به DNA الگو کمک می‌کند اگرچه در غلظت‌های بالا این عمل ممکن است بیش از حد مطلوب گردد و باعث پایداری اتصال غیر اختصاصی آغازگر به DNA الگو و ایجاد محصولات ناخواسته شود (فرسون و همکاران، 2000 ).
2-9-2 کلرید منیزیم (Mgcl2)از اجزا به سیر مهم PCR است و غلظت بهینه آن در کارایی واکنش نقش مهمی دارد. با افزایش غلظت یون منیزیم (Mg+2) قدرت اتصال آغازگرها افزایش می‌یابد و به دمای اتصال بالاتری نیاز است و احتمال تشکیل پرایمر-دایمر اقزایش می‌یابد و این امر موجب اتصال آغازگرها به صورت دوتایی با یکدیگر یا به صورت حلقوی با خودشان شده و در اثر تکثیر غیر اختصاصی آن‌ها، تجمعی از قطعات کوچک به وجود می‌آید. مقداری از آغازگرها نیز بدین ترتیب از واکنش خارج می‌شوند. افزایش غلظت یون منیزیم موجب افزایش دمای مرحله واسرشته سازی و افزایش فعالیت پلیمرازی آنزیم تک پلیمراز (این آنزیم برای فعالیت پلیمرازی خود به یون آزاد Mg+ نیاز دارد) می‌شود. همچنین یون منیزیم با نوکلئوتیدها ترکیب می‌شود و کمپلکس محلولی را به وجود می‌آورد که برای ورود و جایگزین شدن آن‌ها در زنجیره DNA بسیار لازم است. در صورتی که در غلظت‌های بسیار پایین بازده واکنش کم خواهد شد. غلظت منیزیوم آزاد تحت تاثیر غلظت dNTP ها، پیروفسفات آزاد (PPi) و EDTA می‌باشد (فرسون و همکاران، 2000 ).
2-9-3 دی اکسی نوکلئوتیدها (dNTPs)نوکلئوتیدها واحدهای سازنده DNA هستند و از مواد مهم مورد نیاز واکنش PCR می‌باشند. آنزیم‌های DNA پلیمراز ساخت زنجیره پلی نوکلئوتیدی را از این مونومرها یا واحدها کاتالیز می‌کنند. در واکنش PCR نیز همانند سنتز طبیعی DNA از چهار نوع نوکلئوتید به فرم دی اکسی (dTTP، dGTP، dCTP، dATP) استفاده می‌شود. این نوکلئوتیدها معمولا به طور جداگانه یا مخلوط به صورت تجاری در دسترس هستند. باید از غلظت برابر نوکلئوتیدها استفاده شود در غیر این صورت اشتباه جایگزینی رخ می‌دهد و ممکن است باعث تفاوت توالی فرآورده PCR با توالی الگو شود. کیفیت و مقدار dNTP مورد استفاده در کارایی و اختصاصی بودن PCR موثر است. چنانچه مقدار dNTP بیشتر از نیاز واکنش باشد امکان تشکیل نقاط آغازین اشتباه و تشکیل قطعات غیر اختصاصی وجود دارد (فرسون و همکاران، 2000 ).
2-9-4 آنزیم تک پلیمرازاین آنزیم به شکل طبیعی یا نوترکیب تولید می‌شود و از سایر انواع DNA پلیمرازها معروف‌تر است و بیشتر از آن‌ها مورد استفاده قرار می‌گیرد. این آنزیم با شناسایی انتهای آزاد هیدروکسیل '3 آغازگر، نوکلئوتیدها را به ترتیب ارائه شده از روی زنجیره مکمل به آن متصل می‌کنند و یک رشته DNA مکمل رشته الگو می‌سازد. سرعت اتصال نوکلئوتیدها و حرکت آنزیم پلیمراز در انواع مختلف این آنزیم متفاوت بوده و بین 5 الی 80 نوکلئوتید در ثانیه می‌باشد. اگر غلظت آنزیم زیاد باشد قطعات غیراختصاصی در فراورده PCR دیده خواهد شد که گاهی به صورت کشیدگی مشاهده می‌شود و در صورتی که مقدار آنزیم کمتر از حد مورد نیاز واکنش باشد، فرآورده مورد نظر به اندازه کافی تولید نمی‌شود و به ویژه در موارد تشخیصی نتایج منفی کاذب را به وجود می‌آورد (فرسون و همکاران، 2000 ).
2-9-5 آغازگرهادر طی واکنش PCR، آغازگرها به دو طرف توالی هدف اتصال یافته و امکان آغاز فعالیت پلیمرازی آنزیم DNA پلیمراز را فراهم می‌آورند. مهم‌ترین ویژگی آغازگر، توالی صحیح آن برای مکان مورد تکثیر می‌باشد. با در اختیار داشتن توالی هدف امکان تعیین توالی آغازگرها به وجود می‌آید. طول آغازگر نیز مهم است و طول مناسب از اتصال آغازگر به مناطق غیر هدف می‌کاهد. طویل بودن پرایمر (پرایمرهای با بیش از 30 جفت باز) امکان اتصال آن‌ها به خود و به یکدیگر را تشدید می‌کند و زمان اتصال را نیز افزایش می‌دهد. در طراحی آغازگرها نکات متعددی مانند طول آغازگر، ترکیب نوکلئوتیدی (محتوای GC)، دمای ذوب (Tm) و غیره را باید در نظر داشت (فرسون و همکاران، 2000 ). برای طراحی آغازگرها نرم افزارهای متعددی وجود دارد که می‌توان به DNA MAN، DNASIS و Oligo tech اشاره نمود.
2-10 چند شکلی فضایی رشته‌های منفردSSCP) )این روش در سال 1989 ابداع شد. در الکتروفورز SSCP، ابتدا از یک ماده واسرشته ساز مانند اوره استفاده می‌شود تا DNA ی دو رشته به DNA ی تک رشته‌ای تبدیل شود. به هنگام راندن DNA ی تک رشته‌ای روی ژل اثرات متقابل درون مولکولی روی می‌دهد. به عبارت دیگر بین بخش‌هایی از این DNA پیوند ایجاد می‌شود و ساختمان ثانویه‌ای تشکیل می‌دهد. بنابراین حرکت مولکول‌های DNA در این حالت به جای اینکه تابع اندازه مولکول باشد به ساختمان ثانویه DNA ی تک رشته‌ای بستگی دارد. در طی الکتروفورز، این ساختمان‌ها که به توالی رشته مورد نظر بستگی دارد به وسیله برودت حفظ می‌شود. اگر در این توالی جهشی رخ داده باشد، نوع پیوندهایی که تشکیل می‌شوند متفاوت بوده و باند مربوطه روی ژل نیز متفاوت خواهد بود. در صورتی که چند شکلی در قسمت ابتدائی محصول PCR باشد، تشخیص آن از طریق SSCP آسان‌تر است. عواملی مثل دمای ژل (نباید بالا باشد)، درصد ژل اکریل آمید (5 تا 6 درصد مناسب است) و اندازه قطعه DNA مورد بررسی (معمولا بین 100 تا 250 جفت باز و ایده آل 155 جفت باز) در موفقیت SSCP نقش دارد (رضوانی، 1997).
2-11 مروری بر برخی پژوهش‌های انجام شده:طبق مطالعات انجام شده مشخص شد که ساختار ژن هورمون رشد در بین ماهیان استخوانی یکسان نیست. به طور مثال، در کپور ماهیان همانند پستانداران، این ژن دارای پنج اگزون و چهار اینترون است اما در دیگر ماهیان متفاوت بوده و دارای یک اگزون اضافی است (اهکوبو و همکاران، 1996). جهش‌های موجود در نواحی مختلف ژن‌ها همواره مورد توجه بسیاری از متخصصان علم اصلاح نژاد بوده است. ارتباط چند شکلی این ژن‌ها با خصوصات فنوتیپی برای مثال رشد به طور وسیعی در دیگر حیوانات مورد بررسی قرار گرفته و مطالعاتی محدود نیز در مورد ماهی انجام شده است (گروس و نیلسون، 1999).
طبق پژوهش‌های گروس و نیلسون (1999) تنوع ژن GH-1 در ماهی قزل آلای رنگین کمان مورد بررسی قرار گرفت. تعداد نمونه‌های مورد بررسی در این پژوهش 579 ماهی از 22 جمعیت مختلف بود که از شمال اروپا تهیه و به روش PCR-RFLP و با استفاده از 10 نوع آنزیم تنوع این ژن مورد مطالعه قرار گرفت که سه نوع هاپلوتیپ مختلف در جمعیت‌های مورد مطالعه مشاهده شد.
اندازه‌های چهار اگزون در طول دوره تکامل بدون تغییر باقی مانده‌اند به جز اگزون 5 که به دو قسمت تبدیل شده است به طوری که دو نوع ساختار ژن هورمون رشد را در ماهیان استخوانی به وجود آورده است. برای مثال، خانواده کپور ماهیان دارای پنج اگزون و گونه‌های دیگر همانند آزاد ماهیان و سوف ماهیان دارای شش اگزون می‌باشند (آلمولی و همکاران، 2000). در ضمن، در ماهیان دو نوع متفاوت از ژن هورمون رشد شامل GH-1 و GH-2 برای مثال در ماهیانی نظیر آزاد اطلس نیز گزارش شده است (تائو و بولدینگ، 2003).
این ژن به صورت موفقیت آمیزی در گونه سیم دریایی (کالدوچ گینر و همکاران، 2003) و ماهی تیلاپیا (کاجیمورا و همکاران، 2004) و چندین گونه دیگر کلون شده است. ولی در خصوص چندشکلی این ژن و ارتباط آن با میزان رشد در ماهیان گزارشی مشاهده نشده است. در حیوانات دیگر پژوهش‌های زیادی به عمل آمده است که ارتباط بسیار زیاد این ژن با میزان رشد فنوتیپی را نشان می‌دهد.
پریمر و رینانن (2004) در پژوهشی تنوع ژن GH-1 در ماهی قزل آلای رنگین کمان را به روش PCR-RFLP بررسی و SNP را شناسایی کردند. از تعداد 9 جمعیت مختلف شامل 2 جمعیت از شمال آمریکا و 7 جمعیت در اروپا نمونه برداری شده بود. چند شکلی مشاهده شده در مناطق بالا دست و پایین دست ژن هورمون رشد، اینترون 3 و اینترون 4 نشان دهنده اختلاف بین جمعیت‌های آمریکای شمالی و اروپا بود.
مو و همکاران (2004) در هفت جمعیت کپور وحشی، هفت نوع الگو (A، B، C، D، E، F و G) در ناحیه اینترون 2 ژن GH-1 به روش PCR-SSCP شناسایی کردند که طول آن‌ها به ترتیب 189، 196، 204، 205، 206، 207 و bp 209 بود.
کوخر و کهلمن (2011) چندشکلی‌های ژن هورمون رشد در لای ماهی از خانواده کپور ماهیان را بررسی کردند. پژوهش‌های آن‌ها نشان داد این ماهی مانند همه کپور ماهیان دارای چهار اینترون و پنج اگزون می‌باشد و با دو روش PCR-RFLP و تعیین توالی، اختلاف موجود در ساختار ژنتیکی ژن هورمون رشد در تعداد 17 نمونه از دو جمعیت مختلف مورد بررسی قرار دادند. از 14 چندشکلی مشاهده شده از 12 جایگاه در منطقه اینترون و 2 جایگاه در منطقه اگزون، در مجموع 13 هاپلوتیپ مختلف در جمعیت‌های مورد مطالعه مشاهده شد که کل جمعیت را به دو کلاس اروپای شرقی و اروپای غربی تقسیم نمود.
نی و همکاران (2012) در یک جمعیت از ماهی کراکر زرد، نتایج PCR-SSCP دو هاپلوتیپ از اینترون 1 را به نام ژنوتیپ های AA و AB نشان دادند. در AB، یک چند شکلی تک نوکلئوتیدی (SNP) در موقعیت 196 (G→A) مشاهده شد که با وزن بدن همبستگی منفی و با طول/ ارتفاع استاندارد بدن همبستگی مثبت داشت. در جمعیت دیگر، دو ژنوتیپ مختلف CC و CD در اینترون 2 شناسایی شدند که در CD یک SNP در موقعیت 692 (T→C) مشخص شد. ژنوتیپ CD همبستگی مثبت قابل توجهی با وزن کل و طول بدن داشت.
تیان و همکاران (2014) چندشکلی ژن GH و ارتباط آن با صفات رشد را در 282 نمونه ماهی سوف چینی مورد بررسی قرار دادند. با استفاده از توالی‌یابی، چهار SNP در ژن GH شناسایی شد که دو جهش در اینترون 4، یک جهش در اگزون 5 و یک جهش در اینترون 5 رخ داده بود که سه جهش از آن‌ها ارتباط مثبت معنی داری را با رشد نشان دادند.

فصل سوممواد و روش‌ها3-1 نمونه بردارینمونه برداری از 150 قطعه ماهی سفید از کارگاه شهید رجایی و 150 قطعه ماهی کپور معمولی از کارگاه پرورش ماهی نصر ساری انجام شد. ماهی سفید از دوره هچری به سالن تکثیر منتقل و تا 3 ماهگی نگهداری شدند. سپس از آن‌ها نمونه گیری شد و تمامی آن‌ها در سن 3 ماهگی بودند ولی در ماهی کپور 84 قطعه از آن‌ها در سن 4 ماهگی، 54 قطعه در سن 12 ماهگی، 5 قطعه ماهی در سن 24 ماهگی و 7 قطعه ماهی در سن 6 ماهگی بودند. نمونه گیری به میزان 3-2 گرم از بافت باله دمی ماهی سفید و کپور معمولی انجام شد. نمونه‌های باله دمی در الکل 96 درصد فیکس شده و سپس تا زمان استخراج DNA در دمای 20- درجه سانتیگراد قرار داده شدند. نمونه‌های جمع آوری شده به آزمایشگاه ژنتیک مولکولی و بیوتکنولوژی دام دانشگاه علوم کشاورزی و منابع طبیعی ساری منتقل شده و DNA ژنومی استخراج گردید.
3-2 بررسی فاکتور وضعیتیکی از شاخص‌های رشد فاکتور وضعیت است که ضریب چاقی نیز نامیده می‌شود. برای به دست آوردن آن طول کل که فاصله پوزه تا انتهای باله دمی است؛ بر حسب سانتی متر اندازه گیری شد. وزن ماهی نیز به وسیله ترازو دیجیتالی بر حسب گرم اندازه گیری شد. فاکتور وضعیت یا ضریب چاقی برابر است با:
CF= W/L3 *100
W: وزن و L: طول بدن می‌باشد.
3-3 استخراج DNA به روش نمکی بهینه یافتهاستخراج DNA به روش نمکی بهینه یافته (میلر و همکاران، 1988) انجام شد. قبل از شروع استخراج تمام بافرها تهیه و مواد و وسایل مورد نیاز برای استخراج آماده و جهت ضدعفونی اتوکلاو شد.
3-3-1 طرز تهیه بافرهای استخراج DNA برای تهیه بافر STE 7/0 گرم تریس، 2/0 گرم نمک 07/0 مولار را با cc50 آب مقطر حل کرده، سپس 100 میکرولیتر محلول EDTA 5/0 مولار به آن اضافه می‌شود. برای تهیه EDTA 5/0 مولار، 3/9 گرم پودر EDTA را با cc50 آب مقطر حل کرده و pH آن به 8 می‌رسد، برای تنظیم pH از دستگاه pH متر، برای کاهش pH از HCl و برای افزایش pH از NaoH استفاده می‌شود. برای تهیه SDS و استات آمونیوم 10% بایستی به نسبت 1 به 10 پودر آن با آب مقطر حل شود. برای تهیه استات سدیم 3 مولار، بایستی 3/12 گرم پودر آن با cc 50 آب حل شود.
سی میلی گرم از باله را جدا کرده و در محیط بیرون قرار داده تا الکل آن تبخیر شود، سپس آن را خرد نموده و در تیوپ‌های 5/1 میلی لیتری ریخته و به آن 500 میکرولیتر بافر STE برای انفجار سلولی، 50 میکرولیتر بافر SDS 10% برای هضم چربی‌های موجود در بافت و 6-5 میکرولیتر پروتئیناز K برای هضم پروتئین‌ها اضافه شد. سپس نمونه‌ها را به خوبی ورتکس کرده و به مدت یک ساعت روی دستگاه شیکر با سرعت 90 قرار داده تا این مواد به طور کامل با هم مخلوط گردد و در نهایت به مدت 16 ساعت در بن ماری با دمای 58 درجه سانتی گراد گذاشته تا بافرها بهتر عمل کرده و عمل لیز شدن و هضم آنزیمی به خوبی انجام شود. پس از بیرون آوردن آن‌ها از بن ماری 160 میکرولیتر استات آمونیوم 10% به نمونه‌ها اضافه نموده و به مدت یک ساعت روی شیکر با سرعت 90 قرار داده شد تا خوب مخلوط شود و بعد به مدت 10 دقیقه با دور 13000 سانتریفیوژ شد. پس از پایان سانتریفیوژ دو فاز درون تیوپ تشکیل می‌شود، فاز زیرین حاوی بافت خرد شده باله و چربی و پروتئین بافت است و فاز بالایی حاوی DNA می‌باشد. به آرامی فاز بالایی را جدا کرده و درون تیوپ‌های جدید ریخته شد. به مایع درون تیوپ‌های جدید 600 میکرولیتر الکل ایزوپروپانول یا الکل مطلق سرد و 30 میکرولیتر استات سدیم اضافه شده (در این حالت کلاف شفافی در تیوپ قابل مشاهده است که همان DNA می‌باشد). سپس نمونه‌ها به مدت 40-30 دقیقه در یخچال C°20- نگهداری شده، بعد به مدت چند دقیقه از یخچال بیرون آورده تا یخ آن آب شود. نمونه‌ها را به مدت 15 دقیقه با دور 13000 سانتریفیوژ کرده، سپس محلول را دور ریخته و تیوپ حاوی DNA را با 100 میکرولیتر الکل 70% شستشو داده و به مدت 2 دقیقه با دور 13000 سانتریفیوژ شد. مجددا محلول رویی را دور ریخته و تیوپ‌ها در دمای آزمایشگاه کاملا خشک شده و سپس 50 میکرولیتر آب مقطر یا بافر TE به تیوپ حاوی DNA اضافه نموده و در یخچال C°20- تا زمان ازمایش نگهداری شدند.
3-4 تعیین ویژگی‌های کمی و کیفی DNA استخراج شده:به منظور تعیین کیفیت و کمیت DNA استخراج شده دو روش استفاده می‌شود:
الف) ژل آگارز.
ب) دستگاه اسپکتروفتومتر.
در این پژوهش به منظور بررسی کیفیت و کمیت DNA استخراج شده از ژل آگارز استفاده شد.
3-4-1 ژل آگارز آگارز یک پلیمر خطی است و از زیر واحدهای L ,D گالاکتوز که با پیوندهای گلیکوزیدی 3→1α و 4→1β به یکدیگر پیوسته‌اند، درست شده است. برخی از آگارزها دارای اندکی ناخالصی آنیونی همچون سولفات و پیروات هستند. هر چه ناخالصی ژل کمتر باشد توان آن برای جداسازی DNA بیشتر می‌شود. اندازه روزنه‌ها در زمینه ژل به غلظت آگارز وابسته است. به گونه‌ای که در غلظت زیاد آگارز، روزنه‌ها کوچک می‌شوند. با توجه به غلظت‌های آگارز می‌توان تکه‌هایی از 5/0 تا 50 کیلو باز جدا سازی کرد. اندازه مولکول‌های DNA، غلظت آگارز، ساختار فضایی DNA، ولتاژ بکار رفته شده، نوع آگارز و توان یونی بافر الکتروفورزی که به کار گرفته می‌شود، از سازه‌های کارآمد برای جدا سازی DNA در ژل آگارز هستند (لی و همکاران، 2012).
شکل 3-1 دستگاه الکتروفورز افقی3-4-2 رنگ آمیزی ژل آگارز در این پژوهش رنگ آمیزی ژل آگارز با اتیدیوم بروماید انجام پذیرفت. اتیدیوم بروماید یک رنگ فلورسانت است که دارای یک گروه سه حلقه‌ای بوده که می‌تواند در بین بازهای DNA جای گیرد. روش کار به‌این گونه است که پرتو فرابنفش به وسیله اسید نوکلئیک گرفته شده و به اتیدیوم بروماید می‌رسد. این پرتو در طول موج 302 تا 366 نانومتر به وسیله اتیدیوم بروماید پیوسته به اسیدنوکلئیک دریافت شده و دوباره به وسیله اتیدیوم بروماید در طول موج 590 نانومتر بازتاب می‌یابد. این طول موج در گستره روشنایی سرخ نارنجی پرتویی آشکار می‌باشد که می‌توان آن را دید. برای انجام این کار مقدار 3 میکرو لیتر دیانای و 2 میکرولیتر بافر بارگذاری را روی کاغذ پارافیلم با هم مخلوط کرده و داخل چاهک ژل آگارز قرار داده شد. بعد از بار گذاری تانک الکتروفورز را به یک منبع الکتریکی وصل کرده و ولتاژ دستگاه را روی 85 ولت تنظیم شد. نمونه‌ها به مدت 60 تا 90 دقیقه درون ژل آگارز موجود در تانک در حرکت بودند. سپس ژل را از داخل تانک الکتروفورز برداشته و به مدت 5 دقیقه در محلول اتیدیوم بروماید قرار داده و جهت مشاهده باندها و تعیین کیفیت دیانای، از دستگاه ژل داک استفاده شد. اجزای تشکیل دهنده بافر بارگذاری در جدول 3-1 نشان داده شد (لی و همکاران، 2012).
جدول 3-1 اجزای تشکیل دهنده بافر بارگذاریمواد استفاده شده مقدار مواد (میکرولیتر)
گلیسرول
برموفنول آبی (10 درصد)
فرمامید
EDTA(5/0 مولار) 190
10
800
2
3-5 تعیین غلظت DNA استخراج شده با استفاده از اسپکتوفتومتربرای بررسی غلظت DNA استخراج شده از دستگاه اسپکتوفتومتر استفاده شد. برای این منظور ابتدا میزان رقت DNA مشخص شد (مثلاً 100 برابر یا بیشتر). دستگاه برای دو طول موج 260 و 280 نانومتر تنظیم و به تعداد نمونه لوله استریل در آماده شد. با توجه به حجم کووت دستگاه و میزان رقت در لوله‌ها از بافر TE یا آب مقطر استفاده و DNA مورد نیاز به لوله‌ها اضافه شد (با توجه به ضریب رقت). ابتدا دستگاه با بافر TE یا آب مقطر کالیبره شد. لوله حاوی DNA رقیق شده چند بار وارونه شد. کووت دستگاه که برای بررسی غلظت DNA از آن استفاده می‌شود با بافر TE یا آب مقطر شسته می‌شود. DNA رقیق شده موجود در لوله را در کووت دستگاه قرار داده و OD های 260 و 280 نانومتر به اضافه نسبت دو طول موج یاداشت شد (OD260 مربوط به جذب DNA و OD280 مربوط به جذب پروتئین می‌باشد). اگر این نسبت کمتر از 8/1 باشد نشان دهنده آلودگی با پروتئین و یا دیگر ناخالصی‌ها می‌باشد و اگر این نسبت بیشتر از 2 باشد نشان دهنده آلودگی DNA با RNA است. برای به‌دست آوردن غلظت DNA مورد نظر از فرمول زیر استفاده شد.
ضریب رقت
*عدد بدست آمده غلظت DNA استخراج شده بر حسب نانو گرم بر میکرو لیتر می‌باشد که بسته به مقدار نیاز در واکنش PCR از آن استفاده می‌شود.
3-6 واکنش زنجیره‌ای پلیمراز (PCR)3-6-1 پروتکل و مواد استفاده شده در PCR
مواد مورد نیاز برای انجام واکنش زنجیره‌ای پلی مراز برای نشانگر استفاده شده در این تحقیق در جدول 3-2 نشان داده شد:
جدول 3-2 مواد استفاده شده در واکنش زنجیره‌ای پلیمرازمواد غلظت مواد مقدار در حجم 20 میکرولیتر
دیانای الگو
آغازگر (*F)
آغازگر (**R)
مستر میکس***
آب مقطر 120 نانوگرم
20 پیکومول
20 پیکومول
-
- 5/1
1
1
10
5/6
*Forward **Backward ***Master Mix
3-6-2 مراحل PCRقبل از انجام پی سی آر، آغازگرها با توجه به دستور العمل شرکت سازنده آن‌ها با میزان آب مقطر مشخص شده بر حسب میکرولیتر رقیق شدند تا غلظت آن‌ها به 100 پیکومول برسد. سپس به مدت 24 ساعت در شرایط یخچال نگهداری شدند تا کاملا حل شوند. سپس تیوب‌های مورد استفاده بعد از استریل کردن، شماره خورده و به منظور جلوگیری از پاک شدن شماره‌ها برچسب نصب شدند. تمام اجزای واکنش (به غیر از DNA که در تیوپ‌های جداگانه ریخته شدند) با توجه به تعداد نمونه‌های استفاده شده برای پی سی آر به صورت مخلوط در تیوب جدا گانه ریخته شدند. لازم به ذکر است که در تهیه مخلوط اصلی واکنش، با توجه به تعداد نمونه‌های استفاده شده در پی سی آر یک ضریب خطا در نظر گرفته شد. بعد از تهیه مخلوط اصلی، مقدار 5/18 میکرولیتر از آن، به هر یک از تیوپ‌های حاوی 5/1 میکرو لیتر DNA افزوده شده تا حجم کل مخلوط واکنش در هر تیوب به 20 میکرو لیتر برسد. به منظور مخلوط شدن اجزای تشکیل دهنده واکنش، تیوب‌ها به مدت 15 ثانیه و با سرعت 3000 دور در دقیقه سانتریفوژ شدند. بعد از سانتریفوژ تیوپ‌ها برای انجام پی سی آر در دستگاه ترموسایکلر قرار داده شدند.

شکل 3-2 دستگاه ترموسایکلر3-6-3 تنظیم سیکل‌های حرارتی PCR
همانند سازی و تکثیر توالی مورد نظر در پی سی آر در طی سه مرحله انجام می‌پذیرد:3-6-3-1 واسرشته سازی قطعه الگو
پیوندهای هیدروژنی که در واقع اتصال دهنده دو رشته DNA هستند در دمای 95-93 درجه سانتی‌گراد تخریب می‌شوند بنابراین در این حرارت دو رشته DNA الگو از هم جدا می‌شوند. پس از تک رشته‌ای شدن DNA الگو، آغازگر و سایر مواد شرکت کننده در واکنش، فعالیت خود را آغاز می‌کنند.
3-6-3-2 اتصال آغازگرها: در این مرحله آغازگرها به رشته DNA الگو می‌چسبند. دمای اتصال با توجه به دمای ذوب آغازگرها تنظیم می‌شود که معمولا بین 50 تا 65 درجه سانتی گراد می‌باشد. آغازگرهای مورد استفاده در این پژوهش برای ژن هورمون رشد در بر گیرنده قسمتی از اگزون 4 و اینترون 4 و اگزون 5 به طور کامل هستند (گروس و همکاران،1996).
جدول 3-3 توالی آغازگر اختصاصی برای جایگاه GHمنبع نام جایگاه توالی نوع پرایمر
گروس و همکاران

–229

1-3-1-5) تونیکا آلبوژینایک غلاف سفید مایل به آبی است که از جنس بافت همبند متراکم می باشد. این غلاف در طول کنار خلفی بیضه ضخیم تر شده، مدیاستینوم بیضه را بوجود می آورد. عروق و اعصاب بیضه از طریق این ناحیه وارد بیضه می شوند. تعدادی تیغه بنام تیغه های بیضه از مدیاستینوم بیضه وارد بیضه شده وآن را به حدود 250 لبول ناقص تقسیم می کنند. هر لبول بیضه دارای یک تا سه مجرای اسپرم ساز پیچ در پیچ می باشد. مجاری اسپرم ساز به مجاری مستقیمی ختم می شوند که در مدیاستینوم بیضه یک شبکه بنام شبکه ی بیضه تشکیل داده اند. شبکه ی بیضه با مجاری افرنت ارتباط داشته و از این طریق با سر اپی دیدیم مرتبط می شوند(حسن زاده، 1391).
1-3-1-6) تونیکا واسکولوزااز جنس بافت همبند سست بوده و حاوی عروق خونی فراوان می باشد. این غلاف سطح داخلی غلاف آلبوژینه را پوشانده و همراه با تیغه های آن وارد بیضه می شود(حسن زاده، 1391).
1-3-1-7) عصب گیری بیضه
اعصاب بیضه و اپی دیدیم همراه با شریان بیضه نزول می کنند. این اعصاب از شبکه های کلیوی و آئورتیک مشتق می شوند. الیاف سمپاتیک آن از دهمین و یازدهمین سگمان نخاع سینه ای می باشند. دردهای بیضه در قسمت تحتانی جدار شکم حس می شوند.
1-3-2) مجرای دفران مجرایی است به طول 40 تا 50 سانتی متر که از دم اپی دیدیم شروع می شود. این لوله ابتدا در مجاورت کنار خلفی بیضه، در داخل اپی دیدیم صعود می کند. در مجاورت انتهای فوقانی بیضه، مجرای دفران در قسمت خلفی طناب اسپرماتیک قرار گرفته و در ضخامت آن صعود می کند. همراه با طناب اسپرماتیک از کانال اینگوینال عبور کرده و در سوراخ عمقی اینگوینال، طناب را ترک می کند. سپس شریان اپی گاستریک تحتانی را از خارج دور زده و در جلوی شریان ایلیاک خارجی صعود می کند. پس از آن، بطور مایل بطرف عقب و پایین می آید و بعد از تقاطع با عروق ایلیاک خارجی، وارد لگن کوچک می شود. این مجرا در حالیکه نسبت به شریان مسدود شده ی نافی، عروق و عصب ابتراتور و عروق مثانه ای در داخل قرار گرفته، از بین جدار خارجی لگن و صفاق بطرف عقب می رود. سپس با حالب تقاطع کرده و در سطح خلفی مثانه قرار می گیرد. در سطح خلفی مثانه، در حالی که نسبت به سمینال وزیکول در داخل قرار گرفته نزول می کند و بتدریج در مجاورت مجرای طرف مقابل قرار می گیرد. در قاعده ی پروستات مجرای دفران با مجرای سمینال وزیکول پیوند شده، مجرای انزالی ایجاد می شود. مجرای دفران در خلف مثانه متسع و پیچ دار می شود. این قسمت از مجرای دفران را آمپول می نامند. با توجه به اینکه جدار مجرای دفران ضخیم است و مجرای داخلی آن کوچک می باشد، در هنگام لمس این مجرا به شکل طناب است(حسن زاده، 1391).
1-3-2-1) ساختمان مجرای دفرانمجرای دفران شامل سه طبقه ی مخاطی، عضلانی و همبندی است. مخاط آن دارای چینهای طولی بوده و اپی تلیوم آن از نوع مطبق کاذب است که سلولهای منشوری آن فاقد مژه می باشند. طبقه ی عضلانی ضخیم بوده و از دو لایه طولی داخلی و خارجی تشکیل شد ه است که یک لایه حلقوی در بین آن ها قرار می گیرد.
1-3-2-2) عصب گیریمجرای دفران از شبکه هیپوگاستریک عصب گیری می کند.
1-3-3) مجاری ابرنتیک مجرای باریک و بن بست به نام مجرای ابرنت دمی به قسمت دمی اپی دیدیم یا ابتدای مجرای دفران متصل می شود. این مجرا 5 تا 35 سانتی متر طول دارد و فاقد پیچ و خم است.
یک مجرای ابرنت سری نیز بر روی سر اپی دیدیم دیده می شود که با شبکه بیضه ارتباط دارد. مجاری ابرنت از مجاری مزونفریک مشتق می شوند.
1-3-4) پارادیدیممجموعه ی کوچکی از مجاری پیچ و خم دار است که در جلوی طناب اسپرماتیک در بالای سر اپی دیدیم قرار دارند. این مجاری بقایای مزونفروس هستند.
1-3-5) طناب اسپرماتیکطناب اسپرماتیک از سوراخ عمقی کانال اینگوینال تا بیضه امتداد می یابد. این طناب شامل مجرای دفران، شریان مجرای دفران، عروق و اعصاب بیضه می باشد. عناصر فوق توسط سه لایه احاطه شده اند که این سه لایه در اطراف بیضه نیز قرار می گیرند و عبارتند از: فاسیای اسپرماتیک داخلی، فاسیای کرماستریک و فاسیای اسپرماتیک خارجی. در دوران جنینی، هنگامی که بیضه نزول می کند، از داخل کانال اینگوینال عبور کرده، وارد اسکروتوم می شود. در این مرحله عناصری که همراه بیضه هستند (مجرای دفران، عروق مجرای دفران و بیضه و اعصاب بیضه )، لایه هایی از جدار شکم را با خود به طرف اسکروتوم می برند. فاسیای اسپرماتیک داخلی، یک لایه ی نازک و سست است که از فاسیای عرضی شکم مشتق می شود. فاسیای کرماستریک شامل الیاف عضلانی و مقداری بافت همبند سست است که در امتداد عضله مایل داخل شکم قرار می گیرد. فاسیای اسپرماتیک خارجی یک لایه ی متراکم است که در امتداد نیام عضله ی مایل خارجی شکم می باشد. بنابراین مشخص می شود که در داخل کانال اینگوینال، فاسیای اسپرماتیک خارجی وجود ندارد. طناب اسپرماتیک چپ کمی طویل تر از طناب اسپرماتیک راست می باشد. به همین دلیل بیضه ی چپ پایین تر از بیضه ی راست قرار می گیرد. طناب اسپرماتیک در بین سوراخ سطحی کانال اینگوینال و بیضه از جلوی تندون عضله ی آدوکتورلونگوس عبور می کند. شریان پودندال خارجی سطحی از جلو و شریان پودندال خارجی عمقی از عقب با طناب تقاطع می کنند. عناصری که درون طناب اسپرماتیک قرار دارند، عبارتند از: مجرای دفران، شریان بیضه، شریان مجرای دفران، شریان کرماستریک ( شاخه ای از شریان اپی گاستریک تحتانی)، شبکه ی پیچک مانند و وریدهای بیضه، عروق لنفاوی بیضه، شاخه ی ژنیتال عصب ژنیتوفمورال (L2 ) و اعصاب بیضه. در لابلای عناصر فوق مقداری بافت همبند سست قرار می گیرد .
1-3-6) اسکروتوم یا کیسه بیضهکیسه ای است که در پایین سمفیزیس پوبیس، در بین سطوح قدامی داخلی رانها قرار دارد. بیضه ها، اپی دیدیمها و قسمت های تحتانی طنابهای اسپرماتیک درون این کیسه قرار می گیرند. اسکروتوم از دو نیمه ی راست و چپ تشکیل شده است که توسط یک سجاف پوستی به یکدیگر متصل می شوند. این سجاف پوستی در جلو در سطح تحتانی پنیس ودر عقب در خط میانی پرینه تا مقعد امتداد می یابد و بیانگر مبدأ دو طرفه ی اسکروتوم از برجستگیهای لبیواسکروتال است. اسکروتوم در افراد پیر و در هنگام گرما، صاف و آویزان شده ولی در افراد جوان و در هنگام سرما کوتاه و چین خورده است. لایه های کیسه بیضه عبارتند از: پوست، عضله ی دارتوس، فاسیای اسپرماتیک خارجی، فاسیای کرماستیک و فاسیای اسپرماتیک داخلی. پوست اسکروتوم نازک، قابل کشش وتیره رنگ است. این پوست دارای چین های عرضی است که از سجاف میانی به طرف خارج می روند. عضله ی دارتوس یک لایه ی نازک از الیاف عضلانی صاف است که در امتداد لایه ی سطحی فاسیای سطحی شکم قرار می گیرند. عضله ی دارتوس در تشکیل تیغه ی اسکروتال که دو بیضه را از یکدیگر جدا می کند، شرکت می نماید. اتصال عضله ی دارتوس به پوست بسیار محکم ولی به لایه های زیرین سست است. یک نوار لیفی عضلانی بنام رباط اسکروتال از عضله ی دارتوس به انتهای تحتانی بیضه متصل می شود که در تنظیم درجه حرارت بیضه نقش دارد. فاسیای اسپرماتیک داخلی که فاسیای اینفاندیبولیفورم نیز نامیده می شود به سستی به لایه ی جداری تونیکا واژینالیس متصل م
ی گردد(حسن زاده، 1391).
1-3-6-1) عصب گیری
13 قدامی اسکروتوم از طریق عصب ایلیواینگوینال و شاخه ی ژنیتال عصب ژنیتوفمورال از اولین عصب نخاعی کمری (L1) عصب گیری می کند. 23 خلفی اسکروتوم از طریق شاخه های اسکروتال خلفی عصب پودندال و شاخه های پرینه آل عصب جلدی رانی خلفی از سومین عصب نخاعی خاجی (S3) عصب گیری می کند. عضله ی دارتوس از الیاف سمپاتیک همراه با شاخه های ژنیتال عصب ژنیتوفمورال عصب گیری می کند(حسن زاده، 1391).
1-3-7) سمینال وزیکولهاهر سمینال وزیکول لوله ی بن بستی است که به دور خود پیچ خورده و حالت لوبولی دارد. طول این عضو هرمی شکل 5 سانتی متر است و قاعده اش متوجه بالا، عقب و خارج می باشد. سطح قدامی سمینال وزیکول با قاعده ی مثانه مجاورت دارد و سطح خلفی آن به واسطه ی فاسیای رکتووزیکال ( فاسیای دنون ویلیه) از رکتوم جدا می شود. رأس این عضو در پایین، بصورت یک لوله ی مستقیم است که به آن آمپول مجرای دفران متصل شده و در تشکیل مجرای انزالی شرکت می کند. هر سمینال وزیکول در داخل با آمپول مجرای دفران، در خارج با وریدهای شبکه ی پروستاتیک که به ورید ایلیاک داخلی تخلیه می شوند ودر پایین با پروستات مجاورت دارد(Snell ,2008).
1-3-7-1) ساختمان سمینال وزیکولجدار سمینال وزیکول از سه لایه تشکیل می شود: طبقه ی مخاطی، طبقه عضلانی و طبقه آدوانتیس. مخاط دارای چین های متعدد بوده و اپی تلیوم آن مطبق کاذب یا منشوری ساده است. طبقه ی عضلانی نازکتر از طبقه ی عضلانی مجرای دفران می باشد و از یک لایه طولی خارجی و یک لایه حلقوی داخلی تشکیل شده است. بافت همبند آدوانتیس دارای تعدادی الیاف الاستیک می باشد . 70 درصد مایع منی توسط سمینال وزیکولها ترشح می شود(Snell ,2008).
1-3-7-2) عصب گیری
سمینال وزیکول ها از شبکه های لگنی، عصب گیری می کنند. الیاف سمپاتیک که از اولین گانگلیون کمری خارج می شوند، به عنوان عصب حرکتی عضلات جدار سمینال وزیکولها عمل می کنند و تحریک آنها باعث تخلیه ترشحات این عضو می گردد(Snell ,2008)..
1-3-8) مجرای انزالیهر مجرای انزالی، لوله ای است به طول 2 سانتیمتر که از اتصال مجرای دفران به مجرای سمینال وزیکول ایجاد می شود. این مجرا از قاعده ی پروستات شروع شده، از بین لوب میانی و لوب های راست و چپ پروستات به طرف پایین و جلو آمده و در روی کولیکولوس سمینالیس باز می شود. دو مجرای انزالی در ضخامت پروستات به یکدیگر نزدیک شده و در طرفین اوتریکول پروستاتی به کولیکولوس سمینالیس می رسند(Snell ,2008).
1-3-8-1) ساختمان
مخاط مجاری انزالی مشابه مجاری دفران است ولی این ساختمان فاقد لایه ی عضلانی می باشد. مجرای انزالی از خارج توسط بافت همبند احاطه می شود که با استرومای پروستات یکی می شود(Snell ,2008)..
1-3-9) پروستات
عضوی مخروطی شکل یا مشابه شاه بلوط است که در زیر گردن مثانه قرار گرفته، قاعده آن در بالا و رأس آن در پایین می باشد. این عضو، پیشابراه پروستاتی را در بر می گیرد. پروستات دارای یک سطح قدامی، یک سطح خلفی و دو سطح تحتانی خارجی می باشد. قطر عرضی قاعده ی این عضو تقریباً 4 سانتی وقطر قدامی خلفی آن تقریباً 2 سانتی متر است. ارتفاع پروستات تقریبا ً3 سانتیمتر و. وزن این عضو تقریباً 8 گرم می باشد. قاعده پروستات با گردن مثانه مجاورت داشته و پیشابراه از این سطح وارد پروستات می گردد. رأس این عضو در پایین ترین قسمت قرار گرفته و پیشابراه پروستاتی از جلوی آن خارج می شود. سطح قدامی باریک و محدب است و تقریباً 2 سانتی متر عقب تر از سمفیزیس پوبیس قرار می گیرد. پیشابراه از پایین ترین قسمت این سطح، در مجاورت رأس، خارج می شود. سطح خلفی به طور عرضی مسطح و بطور عمودی محدب است و توسط فاسیای رکتووزیکال (فاسیاید نون ویلیه) از رکتوم جدا می شود. مجاری انزالی درست در زیر مثانه وارد این سطح می شوند. سطوح تحتانی خارجی با بخشهای قدامی عضلات لواتورآنی مجاورت دارند(حسن زاده، 1391)..
1-3-9-1) ساختمان پروستات
پروستات از 30 تا 50 غده ی لوله ای حبابی تشکیل شده است و توسط یک کپسول همبندی سرشار از الیاف عضلانی صاف احاطه می شود. آلوئلهای ترشحی و مجاری بسیار نامنظم هستند و اپی تلیوم آنها از نوع منشوری ساده یا مطبق کاذب است. نزدیک به 30 درصد مایع منی توسط پروستات ترشح می شود که این ترشحات به سینوس های پروستات در پیشابراه پروستاتی می ریزند. غالباً در مجرای پروستات اجسام مدور کوچکی از جنس گلیکوپروتئین دیده می شود که به آنها اجسام آمیلاسه می گویند. با افزایش سن بر تعداد اجسام آمیلاسه افزوده می شود(حسن زاده، 1391)..
1-3-9-2) لوب های پروستاتبطور قراردادی پروستات را به 5 لوب تقسیم می کنند که عبارتند از: لوب قدامی، لوب میانی، لوب خلفی و دو لوب خارجی البته بایستی توجه داشت که مرز کاملاً مشخصی بین این لوبها وجود ندارد. لوب قدامی ناحیه ی کوچکی در جلوی پیشابراه است که از نظر ترشحی اهمیت زیادی ندارد. لوب میانی در اطراف پیشابراه پروستاتی قرار داشته و ممکن است در سنین بالای 50 سال دچار هیپرتروفی خوش خیم گردد. بقیه غده مجموعه ای از لوب های خارجی و خلفی می باشد که برای راحتی بیان تحت عنوان لوب های چپ و راست نامگذاری می گردد. اهمیت لوب های چپ و راست از آن جهت است که بیشترین تغییرات سرطانی در این نواحی مشاهده می شود (حسن زاده، 1391).
1-3-9-3) عصب گیری
عصب گیری این عضو از شبکه ی هیپوگاستریک تحتانی می باشد. الیاف سمپاتیک باعث انقباض الیاف عضلانی و تخلیه غده در هنگام انزال می شوند. الیاف پاراسمپاتیک از اعصاب احشایی لگنی می باشند(حسن زاده، 1391).
1-3-10)غدد بولبواورترالغدد بولبواورترال یا غدد کوپر، یک جفت عضو مدور، کوچک و زرد رنگ هستند که تقریباً یک سانتی متر قطر داشته و در طرفین پیشابراه غشایی قرار می گیرند. این غدد در سنین بالا کوچکتر می شوند. مجرای خروجی هر غده تقریباً 3 سانتی متر طول دارد و در خارج مخاط پیشابراه غشایی بطور مایل بطرف جلو می رود. این مجرا پس از سوراخ کردن فاسیای دیافراگماتیک تحتانی (غشاء پرینه آل ) در کف پیشابراه اسفنجی باز می شود. سوراخ مجرای فوق، 5/2 سانتی متر پایین تر از غشاء پرینه آل قرار می گیرد(حسن زاده، 1391)..
1-3-10-1) ساختمان
غدد بولبواورترال از نوع غدد لوله ای – حبابی با اپی تلیوم مکعبی ساده هستند. در جدار این غدد الیاف عضلانی صاف و مخطط دیده می شود. ترشحات موکوسی غدد بولبواورترال به عنوان نرم کننده ی مجرا عمل می کنند(حسن زاده، 1391)..
1-4) سلول های سری اسپرماتوژنزسلول های سری اسپرماتوژنز، سلول های متفاوتی از بافت پوششی لوله های منی ساز هستند که در 4 تا 8 لایه در کنار یکدیگر قرار گرفته و فضای بین لایه قاعده ای تا مجرای لوله را اشغال می کنند. این سلول ها به ترتیب در برگیرنده چند نسل سلول های اسپرماتوگونی با عنوان گروه A وB روی غشای پایه وسپس یک نسل اسپرماتوسیت اولیه، یک نسل اسپرماتوسیت ثانویه، یک نسل اسپرماتید ویک نسل اسپرماتوزوئید است(Eurell and Frappier, 2006).
1-5) سلولهای پشتیبان یا سرتولیسلول های سرتولی، سلولهای هرمی شکل هستند که قاعده آنها به لایه بازال میچسبد، در حالی که انتهای رأسی آنها معمولاً تا مجرای لوله منی ساز امتداد می یابد. این زوائد به عنوان مجراهایی هستند که سلولهای زایا در مراحل مختلف رشد و تکامل دربین آنها قرار داشته و به سمت مجرا حرکت می کنند. بعد از بلوغ اسپرماتوسیت ها، اتصالات محکم جدیدی بین زوائد سلولهای سرتولی در پشت آنها پدید می آید و اتصالات قدیمی جلوی آنها باز می شود و به این ترتیب بدون درهم ریختن جامعیت سد خونی- بیضوی که توسط سیتوپلاسم سلولهای سرتولی ایجاد شده است، اسپرماتوسیتها از بخش قاعده ای به بخش مجرائی عبور میکند. سیتوپلاسم این سلولها به عنوان فیلتر عمل کرده و تنها به مواد خاصی اجازه عبور می دهند(بیگدلی، 1383). این سد در حفظ سلولهای زایای جنس مذکّر در مقابل مواد مضر موجود در خون دارای اهمیت است. در زیر این اتصالات، اسپرماتوگونی ها در یک محوطه قاعده ای قرار می گیرند و در نتیجه به راحتی به مواد درون خون دسترسی می یابند. هنگام اسپرماتوژنز، سلولهای اسپرماتوسیت لپتوتن نهایی و زیگوتن، از این اتصالات گذشته و در محوطه جنب مجرایی قرار می گیرند. از اینجا به بعد، مراحل پیشرفته تر اسپرماتوژنز به کمک سد خونی- بیضوی از دسترس مواد موجود در خون حفظ می شوند. سلول های سرتولی بوسیله اتصالات شکافدار نیز به هم متصل شده اند که خود سبب ایجاد ارتباط یونی و شیمیایی بین سلولها می شود. چنانچه در انسان و حیوانات دیگر شرایط نامطلوبی مانند عفونت، سوء تغذیه و تشعشع اشعه X به سلول های سرتولی آسیب برساند، باعث اختلال سریع در فرایند اسپرماتوژنز می شود و در صورت مرگ سلولهای سرتولی، نا باروری دائمی رخ خواهد داد (Junqueira , 2005).
سلولهای سرتولی با همکاری سد خونی- بیضوی اعمالی همچون؛ پشتیبانی، حفاظت و تغذیه اسپرماتوزوئیدهای درحال تکامل، فاگوسیتوز در حین اسپرمیوژنز را انجام می دهند. سیتوپلاسم باقیمانده اسپرماتیدها به صورت اجسام باقیمانده از آنها جدا گشته و توسط سلولهای سرتولی فاگوسیته و توسط لیزوزوم آنها تجزیه می گردند، علاوه براین چنانچه ذرات خارجی و باکتریها بدینجا رسیده باشند توسط سلولهای سرتولی بیگانه خواری می شوند (جلوگیری از واکنشهای اتوایمن) ترشح سلولهای سرتولی به طور مداوم مایعی به درون لوله های منی ساز ترشّح می کنند که در جهت مجاری تناسلی جریان یافته و برای حمل اسپرم به کار می رود. با کنترل هورمونFSH، یک پروتئین متصل شونده به آندروژن (ABP) ترشح می کند که مسئول تغلیظ تستوسترون در درون لوله های منی ساز می باشد(رجحان، 1376). سلولهای سرتولی قادر به تبدیل تستوسترون به استرادیول هستند. این سلول ها پپتیدی به نام اینهیبین نیز ترشح می کنند که ساخت و آزاد شدن FSH در بخش قدامی غده هیپوفیز را مهار می کند. همچنین تولید هورمون آنتی مولرین، که یک گلیکوپروتئین است و در دوره جنینی، تحلیل مجاری مولر را در جنین مذکر تحریک می کند (Junqueira, 2005).

1-6) اسپرماتوژنزفرآیند تولید اسپرماتوزوئیدها را اسپرماتوژنز می گویند. اسپرماتوژنز در توبول های سمینیفر به طور معمول از ۱۳ سالگی و در نتیجه تحریک هورمون های گنادوتروپیک هیپوفیز قدامی شروع میشود و تا پایان زندگی ادامه مییابد (Guyton and Hall, 2006). تولید اسپرم بطور پیوسته در سرتاسر دوره زندگی تولیدمثلی مرد انجام میشود، تقریبأ ۲۰۰-۱۰۰ میلیون اسپرم روزانه تولید میشود. برای تولید این مقدار انبوه، نیاز است که اسپرماتوگونی ها با تقسیمات سلولی طی چرخه اسپرماتوژنز خود را تجدید کنند (Junqueira, 2005). چرخه اسپرماتوژنز در همه جانوران الگوی یکسان دارد و از سه مرحله مجزا تشکیل میشود:
1-6-1) اسپرماتوسیتوژنزاین فرآیند از یک سلول زایای اولیه (اسپرماتوگونی) که مجاورلایه قاعده ای قرار گرفته است، آغاز میشود. به هنگام بلوغ جنسی، این سلول دستخوش یک سری تقسیم میتوز شده و سلولهایی که تازه تشکیل شدهاند، یکی از این دو راه را انتخاب میکنند: این سلولها ممکن است بعد از یک یا چند تقسیم میتوزی باز به تقسیم ادامه داده و به صورت سلولهای بنیادی تمایز نیافته به نام اسپرماتوگونی نوع A درآیند و یا در حین چرخههای پیش رونده میتوزی به اسپرماتوگونی نوع B تمایز حاصل کنند. اسپرماتوگونی نوع B نیز به نوبت به اسپرماتوسیتهای اولیه تبدیل میشود Junqueira, 2005)).
1-6-2) میوزاسپرماتوسیتهای اولیه، کمی پس از تشکیل در اولین تقسیم میوزی وارد پروفاز میشوند. در این هنگام اسپرماتوسیت دارای ۴۶ کروموزوم وn۴،DNA میباشد. سلول در طی پروفاز یک، از چهار مرحله عبور میکند- لپتوتن، زیگوتن، پاکیتن و دیپلوتن و وارد مرحله دیاکینز میشود که در این مرحله کروموزومها از یکدیگر جدا میشوند. در طی این مراحل از تقسیم میوز، تقاطع ژنهای ۱۶ کروموزومی با یکدیگر صورت میگیرد. پس از آن سلول وارد مرحله متافاز میشود و کروموزومها در مرحله آنافاز به سمت قطبها حرکت میکنند. از آنجائیکه مرحله پروفاز در این تقسیم در حدود ۲۲ روز به طول میانجامد، بیشتر سلولهایی که در مقاطع بافت شناسی مشاهده میشوند، در این مرحله قرار دارند. اسپرماتوسیت های اولیه بزرگترین سلولهای دودمان اسپرماتوژن هستند. از تقسیم اول میوز سلولهای کوچکتری به نام اسپرماتوسیت های ثانویه که تنها دارای ۲۳ کروموزوم (X+۲۲،Y+۲۲) هستند، حاصل میشوند. این کاهش تعداد کروموزوم از ۴۶ به ۲۳ همراه با کاهش مقدار DNA از n۴ به n۲ در هر سلول می باشد. مشاهده اسپرماتوسیتهای ثانویه در برشهای بافتی مشکل است. چون این سلولها دارای عمر کوتاه بوده و مدت زمان بسیار کوتاهی در مرحله اینترفاز باقی مانده (۲ تا ۳ روز) سریعأ وارد دومین مرحله تقسیم میوزی میگردند. از تقسیم اسپرماتوسیتهای ثانویه، اسپرماتیدها به وجود میآیند که دارای ۲۳ کروموزوم هستند. چون مرحله S یعنی مرحله سنتز DNA بین تقسیمات اول و دوم میوزی اسپرماتوسیتها وجود ندارند، لذا مقدار DNA موجود در اسپرماتیدها به نصف مقدار DNA اسپرماتوسیتهای ثانویه تقلیل یافته و شامل n ۱ کروموزوم میشود. بنابراین،فرآیند میوز سبب تشکیل سلولهایی با تعداد کروموزومهای هاپلوئید (n۱) میشود. در هنگام لقاح سلولهای جنسی، این تعداد مجددأ به تعداد دیپلوئید طبیعی میرسد. در واقع فرآیند میوز وجود تعداد ثابتی از کروموزومها را در هرگونه از جانوران تضمین میکند(Junqueira, 2005).
1-6-3) اسپرمیوژنزاسپرماتیدها سلولهایی هستند که در نتیجه تقسیم ثانویه اسپرماتوسیتها به وجود میآیند. این سلولها را میتوان به کمک اندازه کوچک آنها، هسته دارای کروماتین متراکم و قرارگیری در نزدیکی مجرای لوله های منی ساز تشخیص داد. اسپرماتیدها دستخوش یک فرآیند پیچیده تمایز، موسوم به اسپرمیوژنز میشوند که بطور خلاصه شامل مراحل زیر است: تشکیل آکروزوم، متراکم و طویل شدن هسته، تشکیل تاژک و دفع مقدار زیادی از سیتوپلاسم به صورت اجسام باقیمانده نتیجه نهایی این فرآیند تولید اسپرماتوزوئید بالغ است که به واسطه فرآیندی موسوم به اسپرمیاسیون به درون مجرای لولههای منی ساز آزاد میشود. در تقسیم سلولهای اسپرماتوگونیا، عمل سیتوکینزیز غیر کامل است، یعنی سیتوپلاسم آنها از هم جدا نمیشود. حاصل تقسیم یک اسپرماتوگونیا، تعداد زیادی اسپرماتوسیت اولیه، ثانویه و اسپرماتید متصل بهم حاصل می باشد که سیتوپلاسم آنها بوسیله پلی بهم متصل بوده و بصورت سین سی تیوم هستند و بعد از تکامل اسپرماتوزونها، اجسام باقیمانده از آنها جدا شده و هر اسپرم منفردا از زنجیره سین سی تیوم جدا میشود (رجحان، 1376).
1-7) مورفولوژی اسپرماسپرم از لحاظ ساختمانی به دو بخش سر و دم تقسیم میشود. سر اسپرم در بیشتر گونهها از جمله پستانداران عمدتأ به شکل پهن و بیضی شکل است و در جوندگان سر اسپرم داسی شکل می باشند (ضمیری، 1385).
1-7-1) سر اسپرم
ساختار سر اسپرم از دو جزء هسته و آکروزوم تشکیل گشته است:
الف- هسته سر اسپرم واجد کروموزوم هاپلوئیدی است که در هنگام لقاح با هسته n کروموزومی تخمک ادغام گشته و موجب تشکیل تخم 2n کروموزومی میگردد. ویژگیهای هسته اسپرم n کروموزومی بودن و داشتن کروماتین بسیار متراکم و یکنواخت می باشد (Eddy et al, 2004). مهمترین عاملی که باعث این فشردگی شدید شده است، جایگزینی پروتئینهای پروتامین به جای پروتئینهای DNA که هیستونها هستند میباشد. این تراکم و فشردگی باعث محافظت DNA در برابر صدمات فیزیکی و شیمیایی میشود (Knobi and Neills, 2006).
ب- آکروزوم: قسمت قدامی هسته توسط آکروزوم پوشیده شده که واجد دو غشاء داخلی و خارجی است، که این دو غشا در انتهای خلفی به همدیگر متصل میشوند. کلاهک آکروزومی مقادیر متنابهی از آنزیم های هیدرولیتیک و پروتئولیتیک دارد. زمانی که پدیده ظرفیت گیری اسپرماتوزوآ در لوله رحمی صورت می پذیرد، این انزیم ها آزاد شده و برای ایجاد نفوذ پذیری در پرده شفاف اووسیت ها، وارد عمل می شوند. ناحیه خلفی آکروزوم جایی است که کلاهک نازک شده و مواد درون آن متراکم تر می شوند. این ناحیه بخش استوایی آکروزوم اطلاق می شود (Eurell and Frappier, 2006). ازجمله آنزیم های هیدرولیتیک آکروزوم آنزیم هیالورونیداز است که اسپرم توسط این آنزیم اتصالات بین سلول های کومولوس را از بین می برد و خود را به تخمک می رساند. آنزیم مهم دیگر آکروزین است که اسپرم توسط آن زوناپلوسیدا را تجزیه می کند(ضمیری، 1385).
1-7-2) دم اسپرمدم ساختاری تاژک مانند است که موجبات حرکت اسپرم را بوجود آورده و نیروی لازم جهت حرکت اسپرم را نیز فراهم میکند (ضمیری، 1385) و از ۴ قسمت گردن، قطعه میانی- اصلی و انتهایی تشکیل شده است.

تصویر 1-1. ساختمان طبیعی اسپرم انسان (Parsiteb, 2013)1-7-3) اسپرم های غیر طبیعیبین ظاهر طبیعی اسپرم و تحرک آن، رابطه ی مستقیمی وجود دارد. در تمام انزالها، تعدادی اسپرم غیرطبیعی حضور دارد. ارزیابی مورفولوژی اسپرم پس از رنگ آمیزی با ائوزین- نگروزین انجام میگیرد. اسپرمهای غیرطبیعی به ۵ گروه زیر تقسیم میشوند:
الف- بدون دم
ب- سر غیر طبیعی
ج- ساختارهای غیر طبیعی دم
د- ساختارهای غیر طبیعی دم، به همراه قطره سیتوپلاسمی پیشین
ه- ساختارهای غیر طبیعی دم، به همراه قطره سیتوپلاسمی پسین (Hafez, 2000)

تصویر 2-1 انواع شکل های اسپرم(blogfa, 2013)1-8) سرنوشت و اعمال آندروژن ها1-8-1) آندروژن های داخل بیضه ایتستوسترون حاصل از سلولهای لایدیگ چندین عملکرد و سرنوشت در پیش دارد. به دلیل نزدیکی سلولهای لایدیگ- لوله های سمینیفر مقادیر زیادی از تستوسترون به لوله های سمینیفر انتشار می یابند و در جزء ادولومینال به واسطهABP تغلیط می شوند. سطوح تستوسترون در لوله های سمینیفری در مقایسه با غلظت گردش خون 100 برابر بیشتر است، زیرا برای اسپرماتوژنز طبیعی نیاز مطلق به تستوسترون وجود دارد. سلولهای سرتولی آنزیمی به نام CYP19(آروماتاز) بیان میکنند که مقادیر اندکی تستوسترون را به استروژن بسیار قوی به نام استرادیول 17- بتا تبدیل میکند. سلولهای اسپرم انسان حداقل یک گیرنده استروژن را بیان می کنند (Bern et al, 2010).
1-8-2) تبدیل محیطی استروژندر چندین بافت به ویژه در بافت چربی، تستوسترون به استروژن تبدیل می شود.استروژن محیطی نقشی مهم در بلوغ سازی استخوان و زیست شناسی مردان، پیش برد حساسیت انسولینی، بهبود پروفایل های لیپوپروتئینی(یعنی افزایش HDL، کاهش LDL و تری گلیسرید) و اعمال فیدبک منفی بر گنادوتروپین های هیپوفیز ایفا می کند(Bern et al, 2010).
1-8-3)تبدیل محیطی دی هیدروتستوسترونتستوسترون از طریق آنزیم 5- آلفا- ردوکتاز به آندروژن غیر قابل آرومانیز به نام 5- آلفا- دی هیدروتستوسترون (DHT) تبدیل می شود. دو ایزوفرم برای آنزیم 5-آلفا-ردوکتاز وجود دارد.به نام های 5-آلفا-ردوکتاز نوع 1 و 5-آلفا-ردوکتاز نوع 2. جایگاههای اصلی بیان 5-آلفا-ردوکتاز نوع2 مجرای تناسلی مرد، پوست تناسلی، فولیکول مو وکبد می باشد. 5- آلفا- ردوکتاز نوع 2 هورمون DHT را تولید میکند که برای عضلانی سازی اندام تناسلی خارجی در رحم و برای بروز بسیاری از تغییرات مرتبط با بلوغ از جمله رشد و فعالیت غده پروستات، رشد آلت تناسلی، کدر شدن و چین خوردگی های اسکروتوم، رشد مو در بدن و صورت و افزایش توده عضلانی فرد لازم است. بیان 5-آلفا-ردوکتاز نوع 1 با بلوغ جنسی اتفاق می افتد. این ایزوفرم در پوست بیان شده و در فعالیت غده سباسیوس و بروز آکنه در هنگام بلوغ دخالت دارد (Bern et al, 2010).
1-8-4) اعمال محیطی تستوسترونتستوسترون عملکرد سلولهای سرتولی را تنظیم میکند. این هورمون پیدایش مجرای تناسلی مرد از مجرای مزونفریک را در غیاب آنزیم 5-آلفا-ردوکتاز انجام می دهد.تستوسترون چندین اثر متابولیک شامل افزایش لیپوپروتئین دانسیته پایین LDL را داراست. در مقابل، این هورمون HDL را کاهش می دهد و موجب پیش برد رسوب بافت چربی در ناحیه شکم، افزایش تولید گلبول قرمز خون، پیشروی رشد و سلامت استخوان و اعمال اثر آنابولیک پروتئین در عضله می شود. تستوسترون برای حفظ عملکرد لیبیدو کافی است(Bern et al, 2010).
1-8-5) مکانیسم عمل آندروژنتستوسترون و دی هیدرو تستوسترون از طریق گیرنده آندروژن (AR) عمل میکنند. AR در سیتوپلاسم به صورت متصل به پروتئین های مراقب در غیاب لیگاند قرار دارد. اتصال تستوسترون-AR یا اتصال DHT- AR باعث تفکیک پروتئین های مراقب می شود به دنبال آن کمپلکس AR-آندروژن تشکیل می شود، آنگاه دیمریزاسیون رخ می دهد و در نهایت این مجموعه به هسته می رود و به عنصر پاسخی آندروژن (ARE) متصل می شود و موجب بسیج پروتئین های فعال کننده همراه و فاکتورهای نسخه برداری عمومی برای بسیاری از پروموتورهای خاص ژنی میگردد. این موضوع هنوز ناشناخته باقی مانده است که چگونه تستوسترون و DHT و توانایی آنها برای فعال سازی AR در بین انواع سلول های مختلف تفاوت قائل می شوند، هر چند حضور پروتئین های فعال کننده همراه مختلف احتمالاًًً در انواع سلول های متفاوت درگیر می باشد(Bern et al, 2010).


1-8-6) انتقال و متابولیسم آندروژن هابه مجرد این که تستوسترون وارد گردش خون محیطی می شود، به پروتئین های سرمی متصل می شوند و به سرعت با آنها به تعادل می رسند حدود 60% تستوسترون گردش خونی متصل به گلبولین اتصالی- هورمون جنسی (SHBG)، 38% متصل به آلبومین و حدود 2% به صورت هورمون آزاد هستند. تستوسترون و متابولیت های آن اصولا در ادرار دفع می شوند. تقریبا 50% آندروژن های دفعی به صورت 17- کتواستروئید های ادراری یافت میشوند. بخش اعظم باقیمانده به صورت آندروژن های کونژوگه یا مشتقات دی ال و تری ال هستند. تنهاحدود 30 % سولفات موجود در کبد کونژوگه می شوند و استروئید های کونژوگه در ادرار دفع می شوند(Bern et al, 2010).
1-8-7) محور هیپوتالاموس- هیپوفیز- بیضهتستوسترون توسط محور اندوکرینی درگیر با نورون های پاروی سلولی هورمون آزاد کننده گنادوتروپین (GnRH) و گنادوتروف های هیپوفیزی که هورمون لوتنینگ (LH)، و محرک فولیکولی (FSH) تولید می کنند تنظیم می شوند(Bern et al, 2010).

تصویر1-3: محور هیپوتالاموسی- هیپوفیزی- بیضه ای (Bern et al, 2010)1-9) بلئومایسین بلئومایسین(N1-[3-(dimethylsulphonio)propyl]bleomycin-amide) آنتی بیوتیکی کموتراپیک است که توسط باکتری Streptomyces Verticillus تولید میگردد (Sánchez et al, 2000). بلئومایسین‌ در درمان‌ سرطان‌ بیضه، سلولهای‌ سنگفرشی‌ سر و گردن‌، گلو، سرویکس‌، پوست و کلیه‌ کاربرد دارد. همچنین‌ این‌ دارو ممکن‌است‌ در افوزیونهای‌ بدخیم‌ پریتونال‌ و پلورال‌ و در درمان‌ لنفوم‌ هوچکینی‌ وغیرهوچکینی‌ موثر باشد(Lewis et al, 2006). این دارو به صورت پودر در ویال های 15و 30 میلی گرمی موجود بوده و به آسانی در آب مقطر به صورت محلول در می آید. بلئومایسین به طرق مختلف؛ عضلانی، داخل وریدی و یا زیر جلدی تزریق می گردد. فرمول مولکولی آن C55H84N17O21S3 • XH2SO4 بوده و وزن مولکولی محاسبه شده 1414 می باشد (Polovich et al, 2005).
1-9-1) تاریخچه و ساختمان شیمیایی بلئومایسینبلئومایسین برای اولین بار در سال 1966 توسط دانشمند ژاپنی به نام Hamao Umezawa کشف شد. وی در طی غربالگری باکتری S. verticillus به خاصیت ضدسرطانی این ماده پی برد . Umezawa در سال1966 اقدام به انتشارکشف خود نمود. Nippon Kayaku اولین فردی بود که در سال 1969 بلئومایسین را مورد استفاده قرار داد. در جولای 1969 تاییده ی FDA به داروی بلئومایسین داده شد و تحت عنوان تجاری Blenoxane توسط Myers در آزمایشگاه بریستول ایالات متحده ساخته و به بازار عرضه گردید. (Umenzawa et al, 1966 ). بلئومایسین خاصیت ضد سرطانی داشته و به صورت آمپولهای 15 واحدی موجود است. مصرف این دارو در دوران حاملگی غیرمجاز است. مگر اینکه در شرایط ویژه و حداقل استفاده گردد بلئومایسین بر روی کروماتین اسپرم و همچنین پروتئین های سر اسپرم تاثیرات قابل توجهی ایجاد میکند. همچنین ممکن است یک تاثیر منفی بر عملکرد باروری ، باروری و همچنین فرزندان افراد تحت درمان داشته باشد(Lambert and Eriksson, 1979).

تصویر 1-4: ساختمان شیمیایی بلئومایسین(Umenzawa et al, 1966 ).1-9-2) مکانیسم اثر بلئومایسین:بلئومایسین‌ آنتی‌بیوتیکی ‌است‌ که‌ اثر خود را هم‌ بر روی‌ سلولهای ‌قابل‌ تقسیم‌ و هم‌ سلولهایی‌ که‌ در حال‌ رشد نیستند، می‌گذارد. مکانیسم‌ احتمالی‌ آن ‌تداخل‌ در فاز2 Gتقسیم‌ سلولی‌ وجلوگیری‌ از رشد سلول‌ سرطانی‌ است‌. در واقع این دارو باعث مهار چرخه سلولی در مرحله 2 Gو سبب قطعه قطعه شدن DNA و تجزیه RNA شده و با پیدایش رادﻳﻜﺎل ﻫﺎی آزاد ﺳـﺒﺐ ﻣـﺮگ و ﺗﺨﺮﻳـﺐ ﺳﻠﻮلﻫﺎی ﺗﻮﻣﻮرال و در ﺣﺎل ﺗﻜﺜﻴﺮ ﻣﻲ ﺷﻮد. (Yamamoto, 2006)

تصویر 1-5: مکانسم عمل بلئومایسین(Nature, 2013)با فعال شدن بلئومایسین، گیرنده های آسیب در دو رشته DNA فعال می شوند، تا کنون همه گیرنده های مستقیم آسیب DNA شناخته نشده اند ولی به احتمال زیاد این سنسورها بسته به نوع آسیب متفاوت هستند. در هر صورت این گیرنده ها سبب فعالسازی انتقال دهنده سیگنال مرکزی(ATM) میشوند.
ATM یک شبه فسفوتیدیل اینوزیتول 3 کیناز می باشد که چندین پروتئین درون سلولی را فسفریله میکند. به طور مثال با فسفریله نمودن NBS1 در کمپلکس نوکلئاز NBS1- MRE11- RAD50 سبب فعالسازی آن شده که در نتیجه انتهاهای تک رشته ای مورد نیاز در مسیر ترمیم نوترکیبی همولوگ تولید می شوند. علاوه بر این ATM با فعالسازی CHK2 که یک عامل کلیدی در تنظیم چرخه سلولی است سبب فعال شدن P53 میشود. P53 یک سرکوب کننده تومور و جز اصلی توقف چرخه سلولی و آپوپتوز می باشد. توقف چرخه سلولی قبل و یا در حین فرایند میتوز در پاسخ به آسیب دورشته ای DNA منجر به مرگ سلول میتوزی و شکست هسته ای و زیر واحدهای کاتالیزی DNA پروتئین کیناز میشود.
1-9-3) کاربردهای بالینی
در طی 50 سال اخیر به منظور پیشگیری از بیماری هایی همچون سرطان از روشهای شیمی درمانی بهره گرفته میشود. دراین روش داروهایی مورد استفاده قرار میگیرند که رشد سلول های سرطانی را متوقف یا آهسته نمایند. شیمی درمانی با تأثیر روی توانایی سلول هایی که رشد بالایی دارند (مثل سلول های سرطانی) مانع از تقسیم یا تولید آن ها می گردد. گرچه مصرف این داروها باعث بقای عمر بیمار و بهبودی بیماری میگردد اما همراه با عوارض جانبی خطرناکی همراه است. این عوارض میتوانند عملکرد طبیعی بدن را دستخوش تغییرات ناخوشایندی نماید. بلئومایسین، دارویی است که بطور گسترده در درمان سرطان بیضه و نئوپلاسم بدخیم در دوران نوجوانی و جوانی استفاده میگردد. تجویز همزمان بلئومایسین، اتوپوزید و سیس پلاتین (BEP) عمر مبتلایان به این سرطان را تا 5 سال افزایش میدهد(Robinson et al, 2007).
1-9-4) عوارض جانبی 
بلئومایسین
بر روی کروماتین اسپرم، پروتئین های سر اسپرم، عملکرد باروری ، باروری و همچنین فرزندان متولد شده افراد تحت درمان تاثیرات نامطلوب قابل توجهی ایجاد نماید(Lambert and Eriksson ,1979). با مصرف طولانی مدت بلئومایسین ایدیوسنکرازی و سمیت ریوی بروز می‎‏نماید. مهمترین عارضه این دارو، ایجاد سوختگی و زخم در محل تزریق است. سندرم رینود نیز در بعضی موارد دیده می‏شود. از دیگر عوارض این دارو میتوان به ایجاد دانه های پوستی، راش، تب و لرز، آثار پوستی بر روی لثه و زبان و فیبروز ریه بویژه در افراد سالمند، خستگی، ریزش مو، حالت تهوع و استفراغ، آسیب به کلیه، آسیب به اعصاب، آسیب به عروق خونیِ قلب ، افزایش احتمال بیماری قلبی عروقی، آسیب ریوی و بروز سرطان ثانویه در جایی جدید، مثل خون (لوکمی)، ریه، رودۀ بزرگ، پانکراس، مثانه، معده یا سایر ارگان ها اشاره نمود (Amato et al, 2004).
1-10) استرس اکسیداتیودر حقیقت استرس اکسیداتیو همان پیروزی رادیکال های آزاد بر دفاع آنتی اکسیدانی بدن موجود زنده می باشد و به نوعی به حمله های بیولوژیک علیه ارگانیزم بدن اطلاق می شود. رادیکال های اکسیژن بطور مداوم در همه ارگانیزم های زنده تولید می شوند و با اثرات مخرب خود، منجر به آسیب سلولی و مرگ می گردند. تولید گونه های اکسیدان در شرایط فیزیولوزیک دارای سرعت کنترل شده ای است اما این تولید در شرایط اکسیداتیو افزایش می یابد. قرار گرفتن در معرض سیستم های بیولوژیک در مقابل زنوبیوتیک ها و یا ایجاد شرایط پاتولوژیک منجر به استرس اکسیداتیو ودرنتیجه افزایش تولید اکسی رادیکال ها می شود(Aitken, 1994; Warren et al, 1987 ).
1-10-1) گونه های فعال اکسیژن(ROS):(ROS) شامل ملکولهای بسیار فعال واجد اکسیژن از جمله رادیکال های آزاد میباشد((Warren et al, 1987. رادیکال هیدروکسیل، رادیکال آنیون سوپراکسید، پراکسید هیدروژن، اکسیژن تک، رادیکال NO ،رادیکال هیپوکلریت ولیپید پراکسید های مختلف (Aitken et al, 1994) از جمله گونه های فعال اکسیژن هستند. همه این عوامل قادرند با لیپید های غشا، اسید نوکلئیک پروتئین ها ، آنزیم ها و سایر ملکولهای کوچک واکنش داده ومنجر به آسیب سلولی شوند.
1-10-2) پیامدهای استرس اکسیداتیو در دستگاه تولید مثلی نر:گونه های اکسیژن فعال (ROS) مانند پراکسید هیدروژن (H2O2)، آنیون سوپر اکسید (O2-U)، مولکول و یا رادیکال هیدروکسیل (UOH) برهر دو گامت نر و ماده تاثیر می گذارند(Agarwal et al, 2008). ROS تولید شده توسط اسپرم نقش مهمی در فرآیندهای فیزیولوژیک مانند ظرفیت یابی اسپرم، واکنش آکروزومی، همجوشی با تخمک و ثبات کپسول میتوکندری در اواسط قطعه بازی می کند(Aitken et al, 2007; Agarwal et al, 2008(a); de Lamirande et al, 2008). تولید (ROS) در دستگاه تولید مثلی نر به دلیل اثرات توکسیک شدید آنها بر روی کیفیت و عملکرد اسپرم، به موضوعی حائز اهمیت در آندرولوژی تبدیل شده است (Saleh and Agarwal, 2002). مطالعات صورت گرفته نشان داده اند که 45 - 25% مردان نابارور دارای سطوح بالایی از ROS در نمونه های مایع منی خود بودها ند (Agarwal et al., 2004). اما با این وجود باید خاطر نشان کرد که وجود مقادیر اندک ROS برای اسپرم جهت لقاح، واکنش آکروزومی، تحرک و ظرفیت یابی لازم است (Agarwal et al.,2004). واژه استرس اکسیداتیو زمانی به کار میرود که میزان اکسیدانتها از آنتی اکسیدانت ها پیشی بگیرد (Sies , 1993). در واقع این رویداد بیانگر نوعی عدم تعادل بین توالی ROS و مکانیسمهای مهاری آن است (Sikka, 2001). اسپرمها حساسیت ویژهای نسبت به آسیبهای ناشی از استرس اکسیداتیو دارند چرا که غشای پلاسمای آنها دارای مقادیر بالایی اسیدهای چرب غیراشباع با چند پیوند دوگانه (PUFAs) بوده و در سیتوپلاسم آنها میزان اندکی آنزیم مهاری وجود دارد (Sharma and Agarwal, 1996). علاوه بر این، آنزیم های آنتی اکسیدانت داخل سلولی قادر به محافظت از غشای پلاسمایی احاطه کننده آکروزوم و دم اسپرم نیستند، از این روی اسپرمها جهت تقویت سیستم دفاع آنتیاکسیدانتی داخلی محدود خود از مکانیسمهای دفاعی پلاسمایی منی بهره می جویند (Zini et al, 1993). مطالعات متعدد نشان داده اند که از میان انواع سلول های مختلف موجود در مایع منی، اسپرم های غیرطبیعی و نابالغ و لکوسیتها منابع اصلی تولیدROS را تشکیل میدهند
(Aitken and West, 1990; Kessopolou et al, 1992; Garrido et al, 2004).

تصویر 1-6: پیامدهای استرس اکسیداتیو در دستگاه تولید مثلی نر(Clevelandclinic, 2013)بررسیها نشان داده است که بین کیفیت پایین اسپرم و افزایش تولید ROS ارتباط مستقیمی وجود دارد. در واقع بقایای سیتوپلاسمی اسپرم، حلقه گمشده ارتباطی بین این دو فرایند میباشند (Gomez et al, 1998). در مواردی که اسپرماتوژنز دچار اختلال می شود، مکانیسم های بیرون راندن سیتوپلاسم دچار نقص شده و اسپرم به همراه بقایای سیتوپلاسمی از اپیتلیوم زایا جدا میشود. اسپرمی که تحت این شرایط آزاد میشود، نابالغ بوده و دارای نقص عملکردی میباشد (Huszar et al, 1997). باقی ماندن این قطرات سیتوپلاسمی در اسپرم وابستگی مستقیمی با تولید ROS از طریق مکانیسم هایی دارد که به نظر میرسد به واسطه آنزیم سیتوزولی گلوکز-6-فسفات دهیدروژناز صورت می گیرد (Aitken, 1999). از سوی دیگر، اسپرمها به سبب نیاز مداوم به انرژی جهت حرکت، دارای میتوکندریهای فراوانی میباشند. از این روی، اختلال در عملکرد میتوکندریها میتواند به افزایش تولید ROS منجر گردد که این امر به نوبه خود مجدداً میتوکندریها را تحت تأثیر قرار میدهد، چرا که ROS موجب آسیب غشای میتوکندریها شده و این غشاهای آسیب دیده موجبات افزایش میزان ROS را فراهم میآورند (Evenson et al, 1982).
از سوی دیگر، کاهش کیفیت اسپرم و نیز نقص عملکردی آنها با افزایش میزان لکوسیتها در مایع منی در ارتباط است. لکوسیتهای پراکسیداز مثبت که یکی از منابع اصلی تولید ROS در مایع منی محسوب میگردند، لکوسیتهای هستند که هسته چند شکلی دارند و 60-50% لکوسیتهای مایع منی را تشکیل می دهند. غده پروستات و کیسههای منی منابع اصلی این لکوسیتهای پراکسیداز مثبت میباشند (Wolff, 1995). لکوسیتها در پاسخ به محرکهای مختلفی نظیر عفونت و آماس، فعال شده و این لکوسیتهای فعال قادر خواهند بود 100 برابر لکوسیتهای غیر فعال ROS تولید نمایند (Plante et al, 1994). این مکانیسم به واسطه افزایش تولید NADPH از مسیر هگزوز منو فسفات صورت میپذیرد که فعال سازی سیستم میلو پراکسیداز لکوسیتهای دارای هسته چند شکلی و ماکروفاژ را در پی داشته، نهایتاً به انفجار تنفسی و تولید مقادیر بالای ROS میانجامد. بنابراین، افزایش غیرطبیعی میزان لکوسیتهای مایع منی و یا جداسازی اسپرم از پلاسمای منی جهت انجام کارهای آزمایشگاهی، میتواند به آسیب دیدن اسپرمها توسط ROS تولیدی لکوسیتها منجر گردد (Shekarriz et al, 1995).
تمامی ترکیبات سلولی نظیر لیپیدها، پروتئینها، اسیدهای نوکلئیک و قندها، اهداف بالقوه استرس اکسیداتیو میباشند. میزان آسیب ناشی از استرس اکسیداتیو به ماهیت و میزان ROS ، مدت زمان قرار گرفتن در معرض ROS و فاکتورهای خارج سلولی مانند دما و اجزاء محیط ( یونها، پروتئین ها و آنتی اکسیدانت ها ) بستگی دارد(Makker et al, 2009). ROS به اسیدهای چرب غیراشباع با چند پیوند دوگانه (PUFAs) که در غشاء سلولی حضور دارند حمله کرده و مجموعهای از واکنش های شیمیایی را که در مجموع پراکسیداسیون لیپیدی نامیده میشود، موجب میگردد (Aitken, 1995; Kodama et al, 1996).
این فرآیند با واکنش رادیکالهای آزاد با زنجیره های اسیدچرب و آزادسازی رادیکالهای آزاد لیپیدی آغاز میگردد. این رادیکالهای آزاد لیپیدی متعاقباً با اکسیژن مولکولی وارد واکنش شده و رادیکالهای پروکسیل لیپیدی را شکل میدهند. رادیکالهای پروکسیل نیز میتوانند با اسیدهای چرب واکنش داده ، رادیکالهای آزاد لیپیدی تولید کنند که این امر موجب تداوم چرخه واکنشها میگردد (Alvares and Storey, 1995). یکی از محصولات جانبی پراکسیداسیون لیپیدی، مالون دی آلدئید میباشد. این محصول جانبی در ارزیابیهای بیوشیمیایی متعددی جهت برآورد میزان آسیب پراکسیداتیو کاربرد دارد (Aitken et al, 1995).
1-11) آنتی اکسیدانت ها و نقش حفاظتی آنها در برابر استرس اکسیداتیو:خوشبختانه تولید رادیکالهای آزاد بوسیله آنتی اکسیدانت ها کنترل می شود. هنگامی که دسترسی به آنتی اکسیدانت ها محدود شود آسیب افزایش یافته و بدن ناتوان میگردد. آنتی اکسیدانت ها قادرند عوامل اکسیدان را قبل از حمله به سلولها پایدار ،غیر فعال ویا بلع کنند. بنابراین آنتی اکسیدانت ها برای نگهداری بدن در حالت سلامت وبهبودی کاملا ضروری هستند. عملکرد آنتی اکسیدانت ها شامل ظرفیت بلع رادیکال های آزاد ،ممانعت از پراکسیداسیون لیپید ها، توانایی غیر فعال نمودن یونهای فلزی وظرفیت احیا کنندگی آنهاست (Jha et al, 1995). به طورکلی آنتی اکسیدانت ها از نظر شکل، خصوصیات فیزیکی وشیمیایی وجایگاه عملشان با هم فرق دارند.
1-آنتی اکسیدانت های آنزیمی: آنزیم هایی هستند نظیر گلوتاتیون احیا، SOD ، کاتالاز، گلوتاتیون پراکسیداز.این عوامل، تولید گونه های فعال اکسیژن را بوسیله حذف ظرفیت اکسیدانی یا تغییر شکل آنها (ROS&RNS)به اجزا پایدار تقلیل می دهند( Davies, 1995).
2-ساختارهای با وزن ملکولی بالا (پروتئین ها) شامل آلبومین ، سرولوپلاسمین، ترانسفرین، هاپتوگلوبولین که با جایگاه فعال فلزات باند میشوند وتولید فلزات کاتالیز کننده رادیکالهای آزاد را محدود می کنند(Chaudiere et al, 1999)..
3-ساختارهای با وزن ملکولی پائین، شامل دو دسته آنتی اکسیدانت های محلول در چربی (توکوفرول، کاروتنوئید، کوئینین و برخی پلی فنل ها) و آنتی اکسیدانت های محلول در آب (اسکوربیک اسید، اسید اوریک وبرخی پلی فنل ها). (Chaudiere et al, 1999)
4-مینرال ها (سلنیوم، منگنز، مس و روی) آنتی اکسیدانت های همه کاره (Chaudiere et al, 1999)
5-ویتامین ها.(Jha et al, 1995)
6-آنتی اکسیدانت های گیاهی(Jha et al, 1995)
1-11-1) سیستم دفاع آنتی اکسیدانی در بدن
مطالعات نشان داده اند که آنتی اکسیدانت ها دارای اثرات گسترده ای در آندرولوژی بوده و قادرند از اسپرم ها در برابر ناهنجاری های ناشی از ROS محافظت نمایند. این ترکیبات همچنین موجب مهار ROS تولید شده توسط لکوسیت ها و بهبود کیفیت مایع منی شده و از قطعه قطعه شدن DNA و بلوغ نا بهنگام اسپرم ها جلوگیری می کنند. سه سیستم آنتی اکسیدانتی متفاوت و وابسته به هم که نقش کلیدی در کاهش استرس اکسیداتیو در جنس نر ایفا می کنند عبارتند از: آنتی اکسیدانت های رژیم غذایی، آنتی اکسیدانت های اندروژن و پروتئین های غیرفعال کننده یون های فلزی ( Hughes et al, 1998; Agarwal et al, 2004).
آنتی اکسیدانتهای موجود در پلاسمای منی و اسپرم در گروه آنتی اکسیدانتهای اندروژن قرار میگیرند. پلاسمای منی دارای سه آنتی اکسیدانت آنزیمی اصلی سوپراکسید دیسموتاز (SOD)، کاتالاز و گلوتاتیون پراکسیداز/گلوتاتیون ردوکتاز (GPX/GRD) در کنار طیف وسیعی از آنتی اکسیدانتهای غیرآنزیمی مانند آسکوربات، اورات، ویتامینE، ویتامین A، پیروات، گلوتاتیون، آلبومین، یوبی کوئیتول، تائورین و هایپوتائورین میباشد. اسپرمها علاوه بر SOD که عمده ترین آنتی اکسیدانت موجود در آنها را تشکیل میدهد، دارای آنتی اکسیدانتهای آنزیمی اولیه نیز میباشند. آنتی اکسیدانت های رژیم غذایی غالباً به شکل ویتامین C، ویتامین E، بتاکاروتنها، کاروتنوئیدها و فلاونوئیدها میباشند. پروتئین های غیرفعال کننده یونهای فلزی نظیر آلبومین، سرولوپلاسمین، متالوتیونئین، ترانسفرین، فریتین و میوگلوبولین ، به واسطه غیرفعال کردن انتقال یونهای فلزی که تولید رادیکالهای آزاد را کاتالیز میکنند، عمل میکنند (Sies, 1993; Tarin et al, 1998; Greco et al, 2005a) این ترکیبات همچنین پراکسیداسیون لیپیدی غشاء پلاسمایی اسپرم را کنترل می کنند و موجب حفظ یکپارچگی آن میگردند (Wroblewski et al, 2003).
بررسیهای آزمایشگاهی صورت گرفته نیز نقش آنتیاکسیدانتها را در کاهش تولید ROS توسط اسپرم و بهبود توانایی تکاملی جنین مورد تأیید قرار داده است (Ta--oto et al, 2001; Ali et al, 2003; Esfandiari et al, 2005). در همین راستا ، گزارشات دیگری نیز بر نقش آنتی اکسیدانتها در کاهش آسیب DNA و آپوپتوز در اسپرمها و نیز افزایش میزان بارداری و لانه گزینی بالینی صحهگذاردهاند (Hughes et al, 1998; Greco et al, 2005b). از این روی با توجه به کاربرد روز افزون تکنیک های آزمایشگاهی نظیرIVF، ارزیابی سطوح ROS و وضعیت استرس اکسیداتیو در نمونههای اسپرم پیش از IVF و نیز استفاده از آنتی اکسیدانتهای مؤثر و کارا میتوانند ما را به نتایج بهینه رهنمون سازد . همچنان که تحقیقات صورت گرفته نشان داده است که این ترکیبات قادرند اثرات سمی پراکسید هیدروژن بر روی جنین را به نحو مطلوبی کاهش دهند (Zhang et al, 2005).
1-12) سنجش استرس اکسیداتیو1-12-1) مالون دی آلدئید (MDA)
مالون دی آلدئید (MDA) یکی از محصولات نهایی در پروسه پراکسیداسیون لیپید هاست. پر اکسیداسیون لیپیدها یک روند اتولیزی است که نتیجه معمول مرگ سلولی است. این پروسه می تواند منجر به آسیب پراکسیداتیو بافتها در التهاب ،سرطان ومسمومیت با زنوبیوتیک ها و افزایش سن شود(Oranje and Roundas, 1999). MDA در خلال دژنراسیون اکسیداتیو بعنوان یکی از محصولات حاصل از رادیکالهای آزاد اکسیژن شکل می گیرد و به عنوان شاخصی از پراکسیداسیون لیپیدها پذیرفته می شود(Yagi, 1998).
1-12-2) گلوتاتیون احیا (GSH)

–248

2-13مصارف اقتصادی و دارویی 30
2-14 برخی از توالی های ژنی مورد استفاده در سیستماتیک مولکولی 31
2-14-1 توالی های DNA هستهای 31
2-15 PCR اساس مارکرها 32
2-15-1 اجزای واکنش زنجیره‌ای پلیمراز(PCR) 33
2-15-2آغازگر 33
2-15-3 آنزیم 34
2-15-4الگو 34
فهرست مطالب
عنوان صفحه
2-15-5 دزاکسی ریبونوکلئوزید تری‌فسفات‌ها 34
2-15-6کلرید منیزیم 34
2-15-7 بافر 35
2-15-8 مراحل تکثیر 35
2-16 درخت فیلوژنتیک 35
فصل سوم: مواد و روش ها37
3-1مطالعه منابع 38
3-2مطالعه هر بار یومی 38
3-3استفاده از DNA در سیستماتیک مولکولی 38
3-4بررسی روابط فیلوژنی بر اساس صفات مولکولی 40
3-4-1استخراج DNAاز برگ 40
3-4-2تکثیر قطعات مورد نظر با استفاده از واکنش زنجیره ای پلیمر از 42
3-4-3الکتروفورزژل آگارز 43
3-4-4تعیین توالی مناطق تکثیر شده 45
3-5آنالیز فیلوژنی 45
3-5-1روش ماکزیمم پارسیمونی 46
3-5-2روش Bayesian 46
3-5-3مقایسه دو روش آنالیزی ماکزیمم پارسیمونی و Bayesian 47
فصل چهارم: بحث و نتیجه گیری49
4-1 انالیز ماکزیمم پارسیمونی 50
4-2 انالیز Bayesian 52
4-3 فیلوژنی قبیله Cynoglosseae 54
4-4 روابط فیلوژنی جنس Rindera 55
منابع 61
فهرست شکل ها
عنوان صفحه
شکل 1-1 7
شکل 1-2 8
شکل 1-3 25
شکل 1-4 28
شکل 1-5 39
شکل 1-6 44
شکل 1-7 44
شکل 1-8 45
شکل 1-9 45
شکل1-10 51
شکل1-11 53
فهرست جداول
عنوان صفحه
جدول 1-1 گزارش عدد پایه کروموزومی تعدادی از گونه های Boraginaceae در ایران 24
جدول 1-2 مقایسه دریچه دانه گرده بین قبیله های Boraginaceae s.str 26
جدول 1-3 تاکسون های مورد استفاده برای تکثیر قطعه - جدول nrDNA ITS 40
جدول 1-4 توالی آغازگر های مورد استفاده برای تکثیر قطعه - جدولnrDNA ITS 42
جدول1-5 ترکیبات مورد استفاده برای مخلوط کلیpcr 42
جدول 1-6 برنامه مورد استفاده برای واکنش PCR قطعه ITS nrDNA 43
چکیده
تیره گاوزبان دارای 100 جنس و 1600 گونه بوده و دارای پراکنش جهانی می باشد. این تیره هم اکنون در گروه EuasteridsI واقع شده ودر بین راسته های این گروه جایگاهی ندارد. از مهمترین قبیله های تیره
s. str Boraginaceae در ایران، می توان قبیله هایBoragineae, Lithospermeae, Cynoglosseae, Echiochileae, Echieae, را نام برد در تحقیق حاضر 5گونه با استفاده از توالی nrDNAITS، به روش بیشنه صرفه جویی (mp: Parsimony Maximum) تعبیه شده در نرم افزار PAUP*4.0b10 و همچنین با روش Bayesian با نرم افزارVersion3.12 Mr Bayes آنالیز شدند. توالی همردیف سازی شده nrDNAITS دارای 658 جایگاه نوکلئوتیدی می باشد. که از این توالی ITS نشان داد جایگاه 146 جایگاه برای توالی nrDNAITS اطلاعاتی می باشد آنالیز انجام شده بر اساس داده های توالی ITS نشان داد،، قبیله Cynoglosseae تک تبار نمی باشداز این قبیله 5 گونه از جنس Rinderaو 3 گونه از جنس Cynoglossum آنالیز شدند و دو گونه از قبیله Lithospermeae مورد آنالیز قرار گرفتند .
و دو گونه HeliotropiumBacciferum, TournefortiaRubicunda به عنوان برون گروه قرار گرفتند قبیله Cynoglesseae دارای فندقه های خاردار است که در سطح پشتی – شکمی تخت و گاهی در حاشیه بالدارند در آنالیز انجام شده نشان داده شد که بین گونه های جنس Rindera روابط حل نشده است وبا جنس Cynoglossum در یک کلاد با حمایت قوی قرار گرفته اند
کلمات کلیدی: توالی هسته ای nrDNA ITSفیلوژنی مولکولی، Cynoglesseae ،Rindera ، تیره گاوزبان
534670108585فصل اول
مقدمه
00فصل اول
مقدمه

1-1تیره گاو زبان (Boraginaceae)
تیره Boraginaceae یا گاوزبانیان یکی از تیره های بزرگ گیاهان و دولپه های حقیقی است. جنس معروف آن Borago است که ازکلمات لاتین Bor و ago به معنای من محرک قلبم مشتق شده و از این نظر که گیاهان این تیره دارای اثر درمانی روی قلب می باشند، تیره را به این نام نامیده اند (خوش سخن، 1388)
تیره Boraginaceae در کلاد Euastrid I (Lamiids) قرار می گیرد که در حال حاضر در میان هیچ یک از راسته های این کلاد جای نگرفته است (APG III 2009) تیره Boraginaceae (subfamily Boraginaceae) دارای 100 سرده و حدود 1600 گونه در دنیا با مراکز پراکنش در اوراسیا می باشد (Weigend et al., 2010)
در فلور ایران Boraginaceae s.I دارای 41 سرده و 218 گونه و Boraginaceae s.str دارای 36 سرده و حدود 180 گونه است. (Khatamsaz, 2002)
در تیره Boraginaceae s.i دو جنس Onosma و Heliotropium بیشترین گونه ها را دارند. تقریبا درتمامی مناطق کشور و در رویشگاه های مختلف پراکنده شده اند. در مناطق کویری و کوهستانی دیده می شوند و گونه هایی از آنها نیز به صورت علف های هرز مزارع و یا در مجاورت مناطق مسکونی و زمین های مخروبه می رویند (kazempour Osaloo,1993)
تیره Boraginaceae s.str شامل یک سری گونه های علفی دو جنسی، ندرتا درختی و درختچه ای اغلب با پوششی از کرک یا موهای زبر، برگ ها معمولا ساده و بدون گوشواره، گل آذین گرزن دم عقربی ساده یا مرکب یا خوشه ای، کاسه گل 5 قسمتی، اغلب بعد از گلدهی وسیع شده، جام گل 5 لبه، منظم یا به ندرت نامنظم، معمولا با لوله مشخص، محل اتصال لب ها به لوله جام اغلب زائده دار، پرچم ها 5 عدد، متصل به سطح بیرونی جام، تخمدان فوقانی، 2 برچه و 4 خانه، خامه منفرد، 2-1 کلاله، جفت بندی قاعده ای، میوه شیزوکارپ معمولا با 4 فندقه می باشند.
این تیره دامنه تنوع وسیعی را به ویژه در ویژگی های میوه وگل نشان می دهد. به همین دلیل تا به حال به صورمختلف رده بندی شده است.
اهداف تحقیق
1.تعیین حدود گونه ای این جنس با استفاده ازتوالیDNA
2.مقایسه نتیجه حاصله با داده ی مورفولوژی
3.بازسازی مولکولی وتعیین حدود جنس Rinderaبااستفاده ازتوالی DNA
687070133350فصل دوم
مرور بر منابع
00فصل دوم
مرور بر منابع

2-1موقعیت تاکسونومیکی تیره Boraginaceae
این تیره در طبقه بندی های دالگرن (Dahlgren,1989) و تختاجان (Takhtajan,1997) در راسته Boraginales براساس نظر کوانکوئیست (Cronquist,1988) در راسته Lamiales و برطبق رده بندی تورن (Thorne,1983) در راسته Solanales قرار می گیرد.
اکنون تیره گاوزبان براساس بررسی های مولکولی در گروه Euasterids I قراردارد و فعلا در میان راسته های گیاهی موجود جایگاهی ندارد (APG III 2009) شکل (1-1)
Euastrids I یک نام غیر رسمی است که برای یک گروه تک تبار شامل چهار راسته به کار می رود Solananles,Gentianales,Lamiales,Garyales به اضافه تعدادی تیره که در راسته های این گروه جایی ندارند. مثل (APG III 2009)Boraginaceae شکل (1-1)
گورکه (Gurke, 1897) جانسون (Jahnston, 1951) و کرانکوئیست (Cronquist, 1981) تیره مذکور را براساس ویژگی های میوه به عنوان یک واحد طبیعی از گروه های خویشاوند مشتمل بر چهار زیر تیره
Heliotropioideae ,Ehretioideae ,Cordioideae ,Boragionideae در نظرگرفتند.
هم اکنون تیره گاو زبان با 4 زیر تیره ذکر شده، به عنوان Boraginaceae sensu lato در نظرگرفته می شود.
Boraginaceae sensu stricto فقط شامل زیر تیره Boraginoideae می باشد و زیر تیره های دیگر به عنوان تیره های مجزا معرفی شده اند و شامل Heliotropaceaee,Cordiaceae,Ehreticeae می باشند(Simpson, 2006). (تصاویر تعدادی از گونه های این تیره در شکل 1-2 آمده است.)
در فلور ایرانیکا Boraginaceae s.I به 4 زیر خانواده، Heliotropioideae,Cordioideae, Ehretioideae، (Boraginaceae s.str) Boraginoideae تقسیم بندی می شود و Boraginaceae s.str شامل قبیله های
Eritrichieae,Myosotideae,Trichodesmeae,Cynoglosseae,Lithospermeae,Boragineae
است.

شکل 1-1) درخت فیلوژنی نشان دهنده روابط بین راسته های نهاندانگان در APG III، موقعیت تیره Boraginoideae در کلاد Lamiids مشخص شده است. (APG III 2009).

شکل 1-2) برخی از گونه های تیره Boraginaceae
A:Onosma longilobum
B: Anchusa italica
C:Onosma dichroantum
D:Paracaryum
E:Nonea lutea
F:Borago officinalis
G:Echium italicum
H:Symphytum officinale
I:Cynoglossum germanicum
J:Maharanga emodi
2-1-1ویژگی های قبیله Cynoglosseae
قبیله Cynoglesseae دارای فندقه های خاردار است که در سطح پشتی – شکمی تخت و گاهی در حاشیه بالدارند (Hilger ,1985). قبیله Cynoglosseae در ایران با داشتن 11 جنس
Heliocarya,Rindera,Trachelanthus,Lindelofia,Omphalodes,Solenanthus,
Cynoglossum,Paracaryum,Microparacaryum,Caccinia,Trichodesma
سومین قبیله بزرگ تیره گاوزبان به شمار می رود که به طورگسترده در نواحی گرمسیری و معتدله پراکنش دارند. دانه گرده در گیاهان این قبیله به صورت 6 شیار ناجور دیده می شود که 3 شیار مرکب و 3 شیار ساده به طور متناوب قرار گرفته اند و عدد پایه کروموزومی در این قبیله عموماx=12 می باشد. این ها گیاهانی با پایه خامه (ژینوباز) مخروطی، هرمی یا به ندرت استوانه ای کوتاه هستند. در این گروه فندقه ها معمولا 4 عدد، و از تمام طول به پایه خامه متصل اند و یا فقط در قسمت انتهایی متصل می باشند و راس فندقه ها در بالاترین نقطه اتصال غیر برآمده می باشد. این قبیله در فلور ایران شامل 11 جنس و 53 گونه می باشد (khatamsaz, 2002)
2-1-2 ویژگی کلی جنسPall Rindera
گیاهی علفی، چند ساله، بدون کرک یا با کرک، ساقه افراشته، اغلب غیر منشعب، برگ ها تخم مرغی تا نواری، برگ های قاعده ای با دمبرگ طویل، گل آذین خوشه مرکب، خوشه ها مجتمع یا به صورت گرزن یک سویه، دمگل در حالت میوه وسیع شده، کاسه قسمتی تا قاعده شکافته شده، دندانه های کاسه باریک و غیر قابل تغییر، در حالت گل افراشته و در حالت میوه برگشته، جام گل لوله ای، با زایده بین لبه های جام، منقسم شده به 5 لبه کوتاه یا بلند، پرچم ها 5 عدد، بساک نواری – استوانه ای در قاعده تیرکمانی، یا بیضوی. خامه رشته ای شکل، معمولا خارج از جام گل و به ندرت داخل جام گل، کلاله سرسان و همیشه بدون چین خوردگی، فندقه ها چسبیده به خامه، بادکرده و با حاشیه غشایی وسیع شده و به صورت بال درآمده
1:R.Regia
حاشیه بال فندقه یک لبه. پرچم ها حداکثر تا لبه جام گل. زایده بزرگ و در انتهای جام گل، برگ ها مستطیلی نیزه ای یا نواری
حاشیه بال فندقه دولبه، پرچم ها بلندتر از جام گل، زایده در قسمت قاعده ای جام گل و تقریبا ً کوچک. برگ ها نیزه ای – نواری

Rindera regia
2:R.Lanata
گل آذین چتری، گل ها ارغوانی
گل آذین خوشه ای، گل ها قرمز، آبی یا سفید

Rindera lantana
3:R.Cyclodonta
گیاه پوشیده از کرک های پشمی، کاسبرگ ها پوشیده از کرک های پشمی زایده بین لبه های جام باد کرده و مربع شکل.
گیاه نسبتا بدون کرک ,کاسبرگها با کرک های انبوه. زایده بین لب ها کوچک وغیر باد کرده.

Rindera cyclodonta
4 :R.Albida
لب های جام گل طویل، جام گل فقط کمی بلندتر از کاسه، لب های جام گل کوتاهتر از لوله. جام گل 2 تا 3 برابر کاسه

Rindera albida
5 :R.Bungei
لبه داخلی بال میوه کاملا خم شده به داخل
لبه داخلی بال میوه کمی خم شده به داخل

Rindera bungei
6:R.Media
1-R.Regia
گیاهی چند ساله با ریزوم ضخیم، ساقه منفرد، افراشته، پوشیده از کرک های بلند پشمی سفید، برگ های قاعده ای نیزه ای با قاعده کشیده بردمبرگ، به طول 15 تا 20 و عرض 5/0 تا 2 سانتی متر، هردو سطح برگ پوشیده از کرک های بلند پشمی سفید، نوک تیز، در قاعده باریک شونده، برگ های ساقه ای نیزه ای، نواری، برگ های قاعده ساقه پهن تر و طویل تر و برگ های انتهایی باریک ترو کوچک تر، گل آذین متشکل از چندین گرزن که به صورت چتر درآمده اند. کاسه گل به طول 4 تا 6 میلی متر. جام گل ارغوانی، کمی طویل تر و کاسه، لب ها تخم مرغی کشیده، پرچم ها تا دهانه جام گل، با میله کوتاه، بساک تیر کمانی، خامه ارغوانی و طویل.
2-R.Lanata
گیاهی چند ساله، علفی، پوشیده از کرک های پشمی تا با کرک های اندک پشمی، در بعضی مواقع کرک ها ریزان و فقط قاعده آنها باقی می ماند. ساقه افراشته، منفرد یا منقسم، به ارتفاع 15 تا 65 سانتی متر. برگ های قاعده ای با دمبرگ طویل، مستطیلی – نواری یا مستطیلی، به طول 5 تا 15 و عرض یا تا 5/2 سانتی متر، با پوشش کرکی متراکم یا تقریبا بدون کرک، برگ های ساقه ای تخم مرغی تا نواری، بدون دمبرگ وبرگ های انتهایی تقریبا ساقه آغوش، گل آذین خوشه مرکب، متشکل از چندین گرزن، دمگل ها طویل تر از کاسه. کاسه گل استکانی، به طول 4 تا 7 میلی متر، پوشیده از کرک های پشمی سفید، جام گل قرمز، آبی یا سفید متمایل به زرد، بلندتر از کاسه، لب ها تخم مرغی کشیده، زایده بین لب ها مربع شکل و باد کرده، پرچم ها تا دهانه جام گل، میله کوتاه، بساک تیرکمانی، خامه طویل، فندقه دایره ای، به قطر 15 تا 22 میلی متر، حاشیه با بال غشایی ساده یا چین خورده.
زمان گل دهی تابستان، گیاه خاص مراتع و حاشیه جنگل ها و ارتفاعات خزری و ایران و تورانی.
3-R.Cyclodonta
گیاهی علفی، چند ساله، نسبتا بدون کرک، ساقه منفرد، انباشته به ارتفاع 15 تا 60 سانتی متر. برگ های قاعده ای با دمبرگ طویل، به طول 15 تا 25 و عرض 2 تا 6 سانتی متر، تخم مرغی، نوک کوچک.
برگ های ساقه ای تخم مرغی و بدون دمبرگ. برگ های انتهایی ساقه آغوش، هر دو سطح برگ بدون کرک و گاهی با غده های سفید. گل آذین خوشه مرکب، انتهایی، دمگل در حالت میوه طویل، کاسه گل استکانی، به طول 6 تا 8 میلی متر، جام گل استوانه ایی به طول 60 تا 13 میلی متر، آبی، زایده بین لبه ها کوچک و فرورفته (غیر باد کرده) پرچم ها تا لبه جام، بساک نواری، تیرکمانی، خامه نسبتا کوتاه فندقه دایره ای، به قطر حدود 15 میلی متر، با حاشیه غشایی و بال مانند.
4-R.Albida
گیاهی علفی، چند ساله پوشیده از کرک های سفید، کپه ای، ساقه ها افراشته و در انتها منشعب، به ارتفاع 10 تا 40 سانتی متر، برگ های قاعده ای نیزه ای یا نواری، قاشقی باریک یا نواری به طول 7 تا 10 و عرض 3/0 تا 5/0 سانتی متر، با دمبرگ کوتاه، برگ های ساقه ای کوچک و بدون دمبرگ، هر دو سطح برگ پوشیده از کرک های سفید انبوه، گل آذین خوشه مرکب.
دمگل در زمان میوه دهی طویل، کاسه گل استکانی، به طول 4 تا 5 میلی متر، پوشیده از کرک های متراکم، جام گل قرمز ارغوانی، استکانی – استوانه ای، 2 تا 3 برابر کاسه گل، زایده در قسمت قاعده ای جام گل، کوچک لب های جام گل کوچکتر از لوله جام. پرچم ها بلندتر از جام گل، بساک بیضوی، خامه طویل، به طول 12 تا 14 میلی متر، فندقه دایره ای، به قطر حدود 15 میلی متر، حاشیه غشایی، بال دو لبه، لبه ها ساده یا چین خورده و دندانه دار.
5-R.Bungei
گیاهی علفی، چند ساله، کپه ای، کوچک، پوشیده از کرک های زرد رنگ، ساقه افراشته به ارتفاع 5 تا 15 سانتی متر. برگ های قاعده ای نواری، با دمبرگ کوتاه، به طول 4 تا 10 و عرض 4/0 تا 6/0 سانتی متر. برگ های ساقه ای کوچکتر، بدون دمبرگ. گل آذین خوشه مرکب، دمگل در حالت میوه طویل، کاسه گل استکانی به طول 5 تا 7 میلی متر، پوشیده از کرک های انبوه، جام گل استوانه ای، کمی بلندتر از کاسه، لب های جام گل طویل، زایده در قسمت قاعده ای لوله جام گل و نسبتا کوچک. پرچم ها بلندتر از جام گل، بساک بیضوی، میله پرچم ها طویل، فندقه دایره ای، به قطر 5 تا 7 میلی متر. با حاشیه غشایی و با دولبه، لبه داخلی با بال میوه کاملا به داخل خم شده و لبه خارجی دندانه دار تاموج دار.
زمان گل دهی و میوه دهی: تابستان، گیاه خاص منطقه ایران وتورانی
6- R.Media
گیاهی علفی, چند ساله, کپه ای کوچک, پوشیده از کرک. ساقه افراشته به ارتفاع 5تا20سانتی متر.
برگهای قاعده ای نیزه ای –نواری ,به طول 3تا 10وعرض3/0تا 5/0سانتی متر, هر دو سطح برگ پوشیده از کرکهای انبوه. برگهای ساقه ای کم ,نواری نیزه ای.گل اذین خوشه مرکب ,انتهایی. دمگل طویل تر از کاسه. کاسه گل استکانی,پوشیده از کرک.جام گل خط کمی طویل تر از کاسه,لب های جام طویل, با زایده بین لب ها کوچک. پرچم ها طویل تر از جام گل ,بساک بیضوی.خامه طویل تر از جام گل.
فندقه دایره ای به قطر 5تا7میلی متر, حاشیه غشایی و با دو لبه ,لبه داخلی بال کمی به داخل خم شده.(خاتم ساز،2002)
Rindera pallus
علفی های چند ساله، ساقه ها معمولاً ساده، کرکی نرم(به ندرت بدون کرک)، برگ ها بیضوی تا خطی، دمگل بلند. گل آذین به فرم دیهیم،. پرانکل ها در میوه به هم می چسبند. کاسه گل 5 قسمتی، لوب ها کشیده بیضوی یا نوک تیز هستند. جام گل استوانه ای،
2- 12 1برابر کاسه گل بوده و شاخه های زیرین کوتاهتر یا بلندتر از لوله گل هستند. ضمائم حلقوی بیضوی - قلبی شکل یا مثلثی شکل، متمایز، تحلیل رفته، میله های پرچم برآمده، بساک ها کشیده هستند. خامه از کاسه گل بیرون، معمولا برآمده از جام گل هستند، فندقه چسبیده به خامه، مسطح، همراه با یک بال غشایی خارجی پهن و همچنین به ندرت یک بال داخلی باریکتر و خمیده هستند.
1.Caespitosa
لوله کاسه گل بلند تر یا مساوی با اندام زیرین ضمائم حلقوی به شکل تا خورده،0.1-0.3 mm هستند.
لوله کاسه گل کوتاهتر از اندام زیرین، ضمائم حلقوی مشخص 0.9 mm یا بیشتر
2.Lanata
2 -لوله کاسه گل 18 - 14 برابر طول اندام زیرین، بساک ها فندقه با یک بال پهن
3.Albida
3 -لوله کاسه گل 23 - 12 برابر طول اندام زیرین، بساک ها برآمده فندقه همراه با دو بال، بال درونی باریک و خمیده.
R.caespitosa
چند ساله های با کرک های نقره ای، خاکستری، ساقه های ساده، 5-10-30 cm، برگدار متراکم، برگ ها خطی – نوک تیز هستند. گل آذین انتهایی به فرم دیهیم، لوب های کاسه گل 5.5-6.5 mm، نوک تیز – بیضوی، به صورت گرد، تک رشته ای هستند. کاسه گل قرمز مایل به بنفش، 8-11.5 mm، لوله گل مساوی یا اندکی بلندتر از اندام های زیرین می باشد. ضمائم حلقوی بسیار کوچک، به صورت تاخورده.
R.Lanata
چند ساله های علفی قائم با ریشه های اصلی باریک محکم هستند. ساقه ها ساده و به ندرت در قسمت پایین منشعب، 15-55cm، کرک دار ، (پراکنده، کم پشت) یا بدون کرک هستند. برگ ها دارای دمگل بلند، بیضوی، دوک مانند یا خطی، با پهنک 20-150 2-25 mm، نوک تیز تا با زاویه منفرجه، برگچه نازک، کرکدار، بدون کرک های برآمده، یا بدون مو همراه با تعداد زیادی برجستگی آهکی، ساقه پایین شیاردار یا خطی، در انتها نازک، ساقه های بالاتر عموماً بیضوی، نوک تیز، توسعه یافته است.
تعداد زیادی سنبله، تشکیل یک گل آذین انتهایی بسیار بزرگ را می دهند. پرانکل ها تا حد زیادی در میوه توسعه می یابند. کاسه گل 3.5 -8 mm، لوب ها بیضوی، بسیار متراکم، سفید پشمی است. جام گل صورتی، 7-12 mm، زنگوله ای – استوانه ای، لوله گل 14 - 18 برابر اندام زیرین است. ضمائم حلقوی،رأس آن نا منظم است. پرچم ها در بردارنده میله هایی که با هم برابر (مساوی و اندازه)،
23 - 12 1 برابر طول بساک است. خامه 7-16 mm و معمولاً برآمده است. فندقه (اغلب 2 تا عقیم اند) مدور، 15 - 23 mm 14-26 ×، صاف، برگ ها با حاشیه ی صاف یا موج دار و اغلب آبی و بدون خار هستند.
برگ های پایه کشیده، بیضوی یا تخم مرغی 5-25 mm 25- 140× است (var. lantana)
برگ های پایه خطی یا خطی – نوک تیز، 20 -130 -2 – 12 mm است. (var.canescens)
R.albida
ساقه ها ساده، 25-4 cm، پر برگ، خاکستری – پشمی نسبتاً ضخیم هستند. برگ های پایه نوک تیز یا خطی نوک تیز، پهنک 4-11 mm 40-130× و برگ 20-40mm، ساقه خطی، نوک تیز، 1-8 mm 10-70 × است. کاسه گل 5-9 mm، لوب ها نوک تیز – بیضوی، با زاویه تند، کرک دار سفید نسبتاً ضخیم هستند. جام گل مایل به قرمز – بنفش، آبی محو، خشک شونده سیاه – بنفش، 7-12 mm، اندام زیرین به 12 تقسیم شده است. ضمائم حلقوی کشیده – نوک تیز، با زاویه تند، قلبی شکل هستند. پرچم ها و خامه معمولاً اندکی برآمده هستند. فندقه ها10.5-15 mm 9 -15×، با دوبال، بال بیرونی با عرض 4mm، با حاشیه موج دار، بال داخلی با عرض 1.8 mm خمیده به سمت داخل با حاشیه دندانه دار، و کاملاً بدون خار هستند. (Davis P.H ,1978)
جنس Rindera pall
کاسه گل تقریباً در قسمت پایه به لوب باریک عوض نشده، خمیده در میوه و قائم در گل تقسیم شدند. جام گل لوله ای شکل، با طول 8-14mm، اندکی یا دو برابر طول کاسه گل، متمایل به زرد، اغلب همراه با رنگ آنتوسیانین – بنفش روی دندانه یا لوله، به ندرت صاف، اغلب با چین های چروکیده متقاطع یا فلس، به ندرت فلس ها در قسمت میانی یا یک سوم پایینی لوله هستند، با لوب های قائم یا اندکی رو به زوال (و سپس اندام های زیرین اندکی قیف مانند اند)، اغلب نوک تیز، کشیده، تقریبا به بلندی لوله گل، به ندرت کوتاه و گرد شده – گوشه باز هستند.
میله ها (پرچم) کوتاه، به ندرت متصل (به زیر) گلوگاه هستند. بساک ها خطی – کشیده، با طول 2-4 mm، در پایین به صورت سهمی یا مطابق معمول، راس اغلب گوشه باز (منفرجه) یا دندانه دار، به ندرت نوک تیز و هممیشه برآمده از لوب های جام گل نیست.
خامه به صورت رشته ای، معمولاً از کاسه گل برآمده و به ندرت در آن مانده است، کلاله در یک نقطه یا اندکی رأسی و همیشه یکپارچه است. فندقه ها نسبتاً بزرگ، بالدار، بال از این سو به آن سو 10-20 mm، با پشتی صاف (Flat back) به صورت دیسک هستند.
برآمدگی اندک تیغه میانی به صورت یک خط به نظر می رسد که در کناره های چین دار پایین متورم می باشد.، فندقه ها صاف، درخشان، یا صیقلی و یا پوشیده در امتداد یک دیسک، به ندرت در کناره ها با چرخش به دور خود و با سر لنگر مانند یا یک ردیف با چرخش های لنگر مانند بزرگ و مسطح در طول تیغه هستند. بال های فندقه ها عریض، کما بیش مسطح، حاشیه خارجی اغلب به رنگ آبی است. حاشیه به ندرت صاف و اغلب به خوبی دندانه دار هستند. چند ساله ها، به ندرت ارتفاع 60-100 cm دارند، بدون کرک یا علف های بدون کرک با ریشه های کوتاه یا کم وبیش تیره نازک که در مناطق باستانی مدیترانه ای (تا یونان در غرب) رشد می کنند.
R.lanata
چند ساله ای ،ریشه عمودی اصلی به سمت پایین باریک و تیره می شود، ارتفاع ساقه ها 20-50 cm، به تعداد 1-2، افراشته، تراش دار، کرک دار، با شاخه زایی خوشه ای (به صورت پانیکول)، مولد گل و گاهی اوقات شاخه های دراز شده، برگ ها کما بیش پرزدار بوده و خاکستری، برگ های ریشه چه ای نوک تیز تا کشیده یا sublinear، با زاویه ای تنگ که به تدریج به صورت یک دمبرگ بلند باریک می شود که طول آن به 8-10 cm(و تا 30cm) می رسد و عرض آن1-2 (تا 6cm) است. برگ های ساقه ای اغلب پر پشت، بی پایه، که به تدریج به طرف بالا در اندازه کاهش می یابند،. گل آذین پانیکول (خوشه ایی دارای گل های افشان) در بالا دیهیم دو فرمی می شود، براکته ایی شده، پرانکل ها به آرامی (اغلب به طور قابل ملاحظه ای) از کاسه گل بلند تر می شود، خاکستری – پرزدار، کاسه گل کرک دار با طول 4-6 mm، با لوب های کشیده است، طول جام گل 10-11mm، صورتی، در حال تبدیل نشدن به آبی، لوب های آن قائم نوک تیز – خطی، و طول آن به اندازه لوله گل، فلس ها تقریباً برابر، پرچم ها در وسط لوله ی جام گل هستند، طول خامه 9-12 mm و برآمده هستند، فندقه ها (با بال) تخم مرغی شکل و از این سو تا آن سویش 17-22 mm، صفحه آنها صاف است، طول تخمدان 9mmبوده
R.cyclodonta
چند ساله ای، ریشه ضخیم، تیره، 1-3 ساقه، با ارتفاع در حدود 30 mm، در بالا به صورت پشمی، تراش دار، شاخه دهی در گل آذین، برگ های اندکی کرکی در حال تبدیل شدن به بدون کرک، خطی – نوک تیز، نوک تیز یا کشیده – نوک تیز، ریشه چه کما بیش و به تدریج در حال باریک شدن و تبدیل به دمبرگ، با طول 20cm، و گاهی با عرض 7cm و اغلب باریک تر و کوتاهتر 100 cm طول و 105 cm عرض.
جام گل بنفش، لوله ای، لوب های آن نوک تیز، افراشته (قائم)، تقریباً از نظر طول هم اندازه یا 23 طول لوله را دارد. کاسه گل کرکدار، لوب های آن خطی، تقریباً هم اندازه (از نظر طول) لوله کاسه گل،
گل آذین کوچک بلند، فقط بالایی ها کوتاهتر از کاسه گل هستند، مودار – پشمی، فلس ها به عنوان چین خوردگی های متقاطع تقریباً در گلوگاه توسعه یافتند. طول بساک ها 2-3 mm، کشیده، به صورت سهمی در پایین، گرد، دو تا سه برابر طویل تر از میله های عریض تر کوتاه هستند. میوه گرد، با بال های پهن، صفحه ی صاف، اغلب حاشیه ی بال با دندانه های مشخص می شوند.
Lipskil)) به درستی از که هیچ تفاوت اساسی بین این گونه و گونه ی پیشین نیست، تفاوت ها صرفاً قراردادی و فن آن ها را به دلیل عرف حفظ کردم. این صحیح تر خواهد بود که گونه ها ادغام شوند. در آسیای مرکزی آن ها یک چرخه ی پیچیده تر فرم ها را ایجاد می کنند که تفاوت های بین R.tetraspis مناسب و R.cyclodonta مناسب حذف می شوند، به هر حال تعداد زیادی فرم های محلی وجود دارند. یک نژاد منحصر به فرد در صحرای Mujunkum رشد می کند، یک نژاد دیگر با برگ های بسیار باریک از Kara Tau شمال، زندگی می کند، فرم های جنوبی از جنوب Dzhizak به R.baldshuanica نزدیک هستند. R.tetraspis یک نژاد از این گونه چند ریختی است. فرم های باستانی (اجدادی) به ویژه در E Tien shan فراوان هستند.(Popov M.G ,1953)
R.Karabaghensis با یک نژاد مشخص با بال های از Paropamisus(اشتباهاً توسط Brand به عنوان Bukhara"" توصیف شده است) و به علاوه در منطقه ی Eeast Dagh رشد می کند. (shamli, 1948 , Blinovskii).
2-2ترکیبات اسیدهای چرب
مثل لینولنیک اسید و انواع توکوفرول ها مثل a، δ،γ توکوفرول در این تیره ارزش تاکسونومیکی بالقوه دارند (Velasco & Goffman, 1999) مطالعات نشان داده است که آلفا لینولنیک اسید، لینولئیک اسید و اولئیک اسید به عنوان اسیدهای چرب معمول و گاما لینولنیک اسید و استئاریدونیک اسید از اسیدهای چرب غیرمعمول و تا حدی نیز توکومانول ها در دانه های روغنی این تیره ارزش تاکسونومیک دارند. به طور خاص وجود یا عدم وجود زنجیره طویل اوریک اسید و وجود یا عدم وجود استخلاف 6-متیلن در پلی انوئیک اسیدهایی مثل گاما لینولنیک اسید و استئاریدونیک اسید به عنوان شاخصی از طبقه بندی شناخته شده است Aitzetmuller & Altan2008, Bagci,Brueh,2008.) عمده اسیدهای چرب اشباع نشده در اعضای تیره گاوزبان آلفا لینولنیک اسید، لینولئیک اسید و اولئیک اسید می باشند. اما گاما لینولنی اسید و استئاریک اسید سطح قابل ملاحظه ای را در این گیاهان به خود اختصاص داده اند. درصد و نسبت اسیدهای چرب اشباع شده و اشباع نشده به عنوان شاخص های تاکسونومیک در این تیره محسوب می شوند (Ozcan, 2009)
گل و اعضای مختلف گیاه Borago officinalis دارای لعاب نسبتا فراوان مواد معدنی و مقدار کمی آلانتوئین می باشند. ریشه و ریزوم گیاه Cymphytum officinalis دارای موسیلاژ، اسید گالیک، آلانتوئین و آلکالوئیدی به نام کونسولیدین می باشد. ریشه گیاه Cymphytum officinalis حاوی کولین، مواد رزینی وآلکالوئیدهایی مثل سینوگلوسین و سینوگلوسئین است. قشر سطحی دانه Lithospermum officinale دارای کربنات کلسیم و سیلیکات کلسیم است. (زرگری، 1368).
2-3 فیزیولوژی
اعضای این تیره با فیزیولوژی C3 و C4 وجود دارند. فیزیولوژی C3 در،
Lappula,Lithospermum,Moltakiopsis,Onosmodium,Trichodesma,Arnebia,Heliotropoium و فیزیولوژی C4 در Heliotropium گزارش شده است(Watson & Dallwits,2011)
.
2-4میکرومورفولوژی
این تیره از حیث گرده شناسی بسیار متنوع است و گستره وسیعی از اشکال دریچه و آراستار را نشان می دهد. از 3 شیار، روزن (Tricolporate) یا 3 روزن (Triporate) گرفته تا چند شیاری (Polycolpate) و یا چند شیار – روزن (Polycolporate) و گاهی 6 شیار ناجور (Hetrocolpate) دیده می شود که به طور متناوب یکی دارای روزن و دیگری بدون روزن می باشد (Simpson ,2006).
تعداد دریچه های دانه گرده بین 3 تا 20 متغیر است دانه گرده آن ها 3 و یا به ندرت 2 هسته ای است. دانه گرده دو هسته ای در Cordia,Helitortopium,Coldenia دیده می شود و در اکثر جنس ها سه هسته ای است (Watson & Dallwits,2011)
2- 5 بررسی کروموزومی Boraginaceae s.str
تغییرات کروموزومی اولین محرک گونه زایی در تکامل گیاهان گلدار محسوب می شوند، به طوری که این تغییرات می تواند زیست شناختی موجود راتحت تاثیر قرار دهد و یا باعث جدایی جمعیتی با ایجاد جدایی های تولید مثلی شود.
Boraginaceae s.str دارای تنوع کروموزومی قابل توجهی است مطالعه مشخصات کروموزومی آن به درک بهتر مسیر تکاملی این تیره کمک می کند. ارزش خصوصیات کروموزومی در سیستماتیک این تیره بعد از مطالعات Britton(1951),strey(1931),smith(1932) مشخص شد که نشان داد این تیره دارای تنوع در سطوح پلوئیدی، عدد پایه کروموزومی و سایز و ریخت شناسی کروموزوم است (Selvi et al ,2006).
قبیله های Boraginaeae، Lithospermeae تنوع زیادی در عدد پایه کروموزومی نشان می دهند به طوری که x=6,7,8,9,10,15 از آنها گزارش شده است. قبیله Cynoglosseae کمترین تنوع در عدد پایه کروموزومی را نشان می دهد ودر اکثرسرده ها x=12 کمترین تنوع در عدد پایه کروموزومی را نشان می دهد و در اکثر سرده ها x=12 گزارش شده است. از قبیله Eritrichieae اعداد x=10,11,12 گزارش شده است عدد پایه نسبتا بالا و سایز کوچک کروموزوم ها در این قبیله قرابت آن را با قبیله Cynoglosseae نشان می دهد. (Coppi et al,2006)
مطالعات کروموزومی Onosma بزرگترین سرده تیره Boraginaceae s.str نشان دهنده نقش مهم پلوئیدی در تاریخچه تکاملی و غالبیت X=6,7 در این سرده است، همچنین نوعی کروموزوم غیر طبیعی به نام B-chromosome نیز در گونه های از سرده Onosma مشاهده شده است (Martonfi et al, 2008).
کمترین عدد کروموزومی گزارش شده از Boraginaceae s.str مربوط به گونه Amsinckia lunaris 2n=8 و بیشترین عدد گزارش شده مربوط به گونه 2n=144 symphytum tuberrosum است
(Coppi et al,2006)
جدول 1-1) گزارش عدد پایه کروموزومی تعدادی از گونه های Boraginaceae در ایران (Ghaffari, 1996)
Lavel of ploidy N Taxonon
Tetra ploid 14 Alkanna bracteosa
Diploid 8 Echium amoneom
Diploid 11 Arnebia decumbens
Diploid 14 Moltkia cearulea
Diploid 16 Anchea caspice
Diploid 14 Nonnea caspica
Tetra ploid 12 Lappula microcarpa
Diploid 24 Heterocayum macrocarpum
Tetra ploid 12 Caccinia strigose
Diploid 12 Paracaryum rugulosome
Diploid 12 Solenanthus stamineous
Diploid 12 Trichodesma incanum
Diploid 8 Onosma microcarpa
Diploid 22 Onosma albo-rosea
Tetra ploid 16 Onosuma sericea
2- 6 بررسی گرده شناسی Boraginaceae s.str
تیره مزبور از حیث گرده شناسی بسیار متنوع است به طوری که گستره وسیعی از اشکال، دریچه آراستار و غیره را نشان می دهد. دانه گرده دراین تیره منفرد و از نوع
Subprolate,prolate,isopolar,zonocolporate است تعداد دریچه ها از 13-4 عدد متفاوت است، در برخی از سرده های این تیره دریچه درونی با کمربند استوایی ادغام شده و endocingulum نامیده می شود hatgtove. L et al,2003))
قبیله Cynoglosseae دارای دانه گرده 6 ناجور شیار قبیله Erithrichieae دارای گرده های کوچک 10 و 8 و 6 ناجور شیار، بیضوی یا مستطیلی در نمای استوایی و شش ضلعی در نمای راس است قبیله Boragineae دارای 15 نوع گرده متفاوت در بین سرده ها و یا حتی گونه ها است قبیله Lithospremeae دارای متنوع ترین خصوصیات ریخت شناسی دانه گرده و دریچه است.
(S.Ovchinnikova,2009)
شکل 1-3) دانه گرده برخی گونه های Boraginaceae s.str
Rindera tetraspis Anchusa. arvensis
Nonea lutea
جدول 1-2) مقایسه دریچه دانه گرده بین قبیله های Boraginaceae s.str
Comparis on of the pollen apertures among the tribes the subfamily boraginioiseae
Types of pollen apertures Tribes
3-Colporate 3-syncolporate ,4-8-colporate.
4-6-syncolpate ,6-7-colpate Lithospermeae
3-colporate,4-colporate,5-colporate or more Boragineae
3-Colporate,3-pseudocolpate Trigonotideae
3-Colporate,3-pseudocolpate Eritichieae
3-Colporate,3-pseudocolpate Cynoglosseae
3-Colporate,3-pseudocolpate Myosotideae
2- 7 تقسیمات تاکسونومیکی زیر تیره Boraginoideae (Boraginaceae s.str)
گیاه شناسان متعدد این زیر تیره را به چهار الی هفت قبیله تقسیم کرده اند که با اقتباس از Mabberley 1990 پنج قبیله در زیر ارائه می شود:
Cynoglosseae (گل ها منظم، پایه خامه کم و بیش مخروطی، رئوس فندقه ها در بالاترین نقطه اتصال برآمده نیست)
Eritrichieae (گل ها منظم، پایه خام کم و بیش مخروطی، رئوس فندقه ها در بالاترین نقطه اتصال برآمده است).
Boragineae (گل ها منظم، پایه خامه مسطح و یاکمی محدب، فندقه ها با سطح اتصال مقعر).
Lithospermeae (گل ها منظم، پایه خامه مسطح، فندقه ها نیز با سطح اتصال مسطح).
Echieae (گل ها نامنظم)
2-8 مطالعات مولکولی DNA
مطالعات مولکولی انجام شده به صورت نمونه برداری های پراکنده با استفاده از مارکرهای مولکولی مختلف (matk,atpB,nrDNA ITS) انجام شده است. در مهم ترین مطالعه انجام شده بر روی تیره گاوزبان Langstrom & chase,2002 با استفاده از توالی DNAکلروپلاستی atp B روابط فیلوژنتیکی قبیله های موجود در زیر تیره Boraginoiseae را با تعداد معدودی جنس و گونه از هر قبیله بازسازی کردند. اخیرا فیلوژنی مولکولی قبیله Eritrichieae با استفاده از توالی DNA هسته ای ITS و توالی DNA کلروپلاستی trnL-F انجام شده است (2008 khoshsokhan et al.2010 khoshsokhan & kezempour osoloo) است اما طبق آخرین مطالعات مولکولی weigend و همکاران (2010) با نمونه برداری های کم نشان دادند که 3 قبیله
Trigonotideae,Myosotideae,Eritrichieae جزئی از قبیله Cynoglosseae sensu lato هستند.
اولین مطالعه مولکولی انجام شده پراکندگی سرده Echium L را در Macronesia توصیف می کنند 0 Bohle et al, 1996 ,Hilger, H. H. Bohle, 2000)، مطالعه مولکولی دیگر وسیعترین مطالعه از نظر تاکسون های نمونه گیری شده از قبیله Lithospermeae با تاکید بر سرده مدیترانه ی Lithodora Thomas et,2008 al بوده است. (Hacioglu & Erik2011) همچنین گزارشی از فیلوژنی سرده symphtum ارائه داده اند.
2- 9 تولید مثل و گرده افشانی
اعضای تیره گاوزبان اغلب گیاهانی تک پایه اند اما گاهی گیاهان دوپایه درگونه هایی از heliotropium دیده شده است. گرده افشانی این گیاهان از طریق حشرات و عمدتا توسط پروانه ها صورت می گیرد.
(waton & dallwits,2011)
روابط فیلوژنی درون قبیله Lithospermeae به عنوان بزرگترین زیرگروه Boraginaceae S.Str بسیار پیچیده است. در محدوده تاکسونومیکی (Johnston ,1954) و (seibert, 1978) قبیله Lithospermeae حاوی 450 گونه و حدود 22 تا 28 سرده می باشد که سرده اورسیایی Onosma L یک سوم گونه ها را تشکیل می دهد. گونه ها و سرده های این قبیله ازنظر محدوده فیلوژنتیکی بسیار مسئله دار است و تنها داده های محدودی درباره این قبیله منتشر شده است (Weigend et al, 2009).

پراکنش تیره Boraginaceae s.str
تیره Boraginaceae s.str در قلمروهای Antractic,Australian,Cape,Neotropic,Halorctic پراکنده شده است. در نواحی گرمسیری رشد می کنند، جهان شمول و در موارد نادری در نواحی سردسیری دیده شده اند (WWW.mobot.com).
برای این تیره در جنوب غرب آمریکا 113 تاکسون با مرکز پراکنش در ایالت های آریزونا و نیومکزیکو همچنین نواحی بیابانی جنوب شرقی کالیفورنیا تشخیص داده شده است. (Higgins, 1997)
شکل 1-4 نقشه پراکنش تیره (www.mobot.com)Boraginaceae
2-10مطالعات پیشین تیره Boraginaceae s.str
در گذشته مطالعاتی چند از حیث ریخت شناسی (,zarinkamar,2006,Hilger,1984,kazmpour osaloo,1993) گرده شناسی (khatamsaz, 2001,Kazempour Osaloo & Khatamsaz, 1994, 1984 Ahn & Lee ,1986 kazempour Osaloo, 1993,Clarke, 1977,Diez) سیتولوژی (Ghaffari 1996,selvi et al., 2006 ,luque,1900,Luque & Valdes,1984) مولکولی(Winkworth et al.,2002,Khoshsokhan et al.,2008) بر روی تعدادی از تاکسون های تیره انجام شده است. مطالعات مولکولی انجام شده به صورت نمونه برداری های پراکنده با استفاده از نشانگرهای مولکولی مختلف (trnL-F,mark,atpB,nrDNAITS) در خارج و داخل کشور انجام شده است. از مطالعات انجام شده روی قبیله Lithospermeae می توان کار
(Langstrom & Chase 2002,James et al.,2009,chosen et al., 2009,cecchi et al.,2009,weinged et al., 2009,2010,Liu et al., 2010 ,2008) را نام برد.
در مطالعات (2009,2010،.Weinged etal نمونه برداری های محدود از سرده های Lithospermum,Buglossoides,Echium,Cerinthe,Brunnera,podonosma,Arnebia,MoltkIA,echiochilon,Alkana,Symphytum انجام شده است و روابط تا حدودی حل شده اند. همچنین (.،Kolarcik et al 2010) در مطالعه خود تعدادی از گونه های اروپایی sec Asterotricha از سرده Onosma را مورد بررسی های جمعیتی و تکاملی قرار دادند.
ولی بسیاری از گونه های سرده های Onosma همچنین سرده های Suchtelenia,Hormozakia بررسی نشده اند.
2-11اختصاصات بیوشیمیایی و شیمیایی تیره
غالبا این گیاهان آلکالوئیدهای گروه پیرولیزیدین و یک نفتاکیننون قرمز به نام آلکانین تولید می کنند وفاقد ترکیبات ایریدوئیدند. فقط به ندرت ترکیبات سیانوژنیک و ساپونین دار ونه تانن دار به وجود می آورند. معمولا فاقد اسید الاژیک و پروآنتوسیانین ها هستند. غالبا فروکتوزان ها (عمدتا ایزوهپتوز و ایزوکتوز) را به عنوان کربوهیدرات های ذخیره ای و آلانتوئین (یک امید) را به عنوان ماده غذایی ارائه انباشته می کنند (Cronquist ,1981).
2-12کاربرد اقتصادی تیره
بسیاری از اعضای این تیره خواص دارویی دارند و به عنوان یک داروی سنتی برای درمان زخم ها، بیماری های پوستی، قلب و درد سینه و... استفاده می شوند.تعدادی از نمونه های دارویی این تیره در زیر ذکرمی شود:
Borago officinalis: گل واعضای مختلف گیاه دارای لعاب نسبتا فراوان مواد معدنی و مقدار کمی آلانتوئین می باشند. گل و برگ این گیاه اثر نرم کننده، معرق و مدر، آرام کننده و تصفیه کننده خون است.
Symphytum officinalis: ریشه و ریزوم گیاه دارای موسیلاژ، اسیدگالیک، آلانتوئین و آلکالوئیدی به نام کونسولیدین می باشد. از ریشه گیاه به عنوان نرم کننده تسکین دهنده آرام کننده درد و التیام دهنده استفاده می شود.
Cynoglossum officinale: ریشه گیاه دارای کولین، مواد رزینی و آلکالوئیدهایی مثل سینوگلوسین، سینوگلوسئین است. گل آن آرام کننده سرفه و دارای اثر مخدر به صورت خفیف است. ریشه آن اثر قابض ملایم وبرگ آن اثر ملین دارد. ریشه و برگ گیاه هم در رفع اسهال، سرفه های خشک و عصبی، اسپاسم های روده و خونریزی های داخلی مصرف می شود.
Lithospermum officinale: قشر سطحی دانه دارای کربنات کلسیم و سیلیکات کلسیم است. پوشش ریشه آن دارای ماده ای قرمز به نام لیتوسپرمین است که در رنگ کردن مواد غذایی استفاده می شود دانه این گیاه طعم ملایم لعابی و اثر مدر دارد.
Heliotropium europium: از ریشه و دانه آن آلکائیدی به نام سینوگلوسین به دست آمده است که اثر صفرابر و تب بر است.
از نمونه های دارویی دیگر نیز
cerinthe major,africanum,trichodesma,onosma,echium,vulgare
,anchusa italic,myxa cordial,alkanna tinctoria,pulmonaria officinalis رامی توان نام برد (زرگری، 1368).
در آخرین گزارش (Wiegend et. al.,2010) زیر تیره Boraginoideae را براساس توالی کلروپلاستی trnL-F به 4 قبیله Cynoglosseae,Echiochileae,Lthospermeae,Boragineae، S.L تقلیل داده است.
2-13مصارف اقتصادی و دارویی
بعضی از گیاهان این تیره به صورت گلدانی و برای مصارف زینتی استفاده می شوند. از ترکیبات رنگی این گیاهان در رنگ آمیزی چوب و سنگ استفاده می شود. در تهیه انواع داروها، شراب و لوازم آرایشی کاربرد دارند. و در عین حال از گیاهان مهم در تولید عسل به شمار می روند (2011 Dallwits &Watson., پوست ریشه Lithospermum officinale دارای ماده ی قرمز به نام لیتوسپرمین است که در رنگ کردن موادغذایی استفاده می شود (زرگری .،1368).
میوه بعضی از گونه های این تیره مصرف خوراکی دارد. در جنوب آفریقا از برگ، ساقه و میوه خشک شده
Ehretia rigida subsp.nevifolia چای تهیه می کنند ریشه خشک شده angufolia trichodesma مخلوط با آب سرد در درمان اسهال مورد استفاده قرار می گیرد. برگ گیاه Lobos--on سرخ شده در روغن بادام شیرین از داروهای قدیمی در درمان عفونت های قارچی انواع زخم ها و سوختگی ها است.
در سراسر اروپا، شمال آفریقا و آمریکا از شاخه، برگ و گل گیاه borago afficinalis در سالاد و نیز به عنوان ادویه استفاده می شود. این گیاه در طب سنتی هم کاربرد دارد. در اروپا از گل و ریشه cynolossum officinale در طب سنتی و برای درمان جراحات استفاده می شود. lithospermum officinale در طب سنتی اروپا در درمان نقرس مورد استفاده است (Retief, 2004).
گل و برگ گیاه Borago officinalis اثر نرم کننده، معرق، مدر، آرام کننده دارد و همچنین تصفیه کننده خون است. ریشه گیاه symphytum officinalis اثر نرم کننده، تسکین دهنده و آرام کننده درد و التیام دهنده دارد. گل cynoglossum officinale آرام کننده سرفه و دارای اثر مخدر خفیفی است. ریشه آن قابض و برگ آن اثر ملین دارد. ریشه و برگ گیاه هم در رفع اسهال، سرفه های خشک و عصبی، اسپاسم های روده و خونریزی های داخلی مصرف می شود. دانه گیاه Lithospermum officinale اثر مدر دارد. از ریشه ودانهheliotropium europium آلکالوئیدی به نام سینوگلوسین به دست امده که صفرابر و تب بر است (زرگری،1368).
2-14 برخی از توالی های ژنی مورد استفاده در سیستماتیک مولکولی
2-14-1 توالی های DNA هستهای
از متداولترین توالیهای هستهای مورد استفاده در سیستماتیک internal transcribed spacer nr DNAITS یا فاصلهگر رونویسی شونده درونی میباشد. ITS مربوط به توالی ریبوزومی هستهای است که ناحیه بین اگزون S 18 و S 26 واقع شده است و شامل ناحیه ITS1 و S 5.8 و ITS2 میباشد (شکل 2-1) فاصلهگرهای بین ژنی دارای سیگنالهای مورد نیاز برای پردازش و رونویسی rRNA است وغالبا برای فیلوژنی استنباطی شده واکثرا برای حل روابط در سطح زیر تیره یا پایینتر استفاده میشود برای سطوح بالاتر ITS آن قدر تنوع دارد که هم ردیف سازی توالی بسیار مشکل است (Alvarez and Wendel, 2003).
از فواید ITS برای بازسازی فیلوژنی میتوان موارد زیر را نام برد:
توارث دو والدی ITS: این ویژگی ITS را برای آشکار کردن شبکه سازیها، گونهزایی هیبدریدی و نشان دادن پلی پلوئیدی ارزشمند میسازد.
عمومی (جامع) بودن ITS: این ویژگی باعث میشود که توالی ITS در بعد وسیعی از موجودات (قارچ ها و اکثر گیاهان) کاربرد داشته باشد.
سادگی (simplicity): ژنهای ریبوزوم هستهای از تکرارهای 265 –S 5.8 –S 18 تشکیل شدهاند که این تکرارها Kbp10 در اندازه متفاوت اند. چون صدها تا هزاران تکرار از آنهاد وجود دارد، پس نسبت به لوکوسهای هستهای یا کپی کمتر، راحتتر خالص می شوند. در آنژیوسپرمها توالی ITS از 700-500 جفت باز و در ژیمنوسپرم ها تا 3700-1500 جفت باز متغیر است.
یکنواختی در ITS: معمولا در تیره های چند ژنی تکامل همزمان وجود دارد تکامل همزمان زمانی رخ می دهد که اختلافات توالی ها (حاصل از تجمع موتاسیون ها) در میان کپی های تکرار شونده در یک ژنوم توسط مکانیسم های مثل کراسینگ اورنا برابر و واژگونی ژنی، یکنواخت و هم شکل شده و توالی یکسانی ایجاد می شود.
تنوع بین ژنومی ITS: تنوع توالی ITS جهت استنباط فیلوزنتیکی در سطوح گونه جنس و تیره مناسب است. همچنین تنوع در سطوح سلسله مراتبی به عواملی مثل پلی مورفیسمهای نوکلئوتیدی نسبت داده میشود.Alvarez and Wendel, 2003
2- 15 PCR اساس مارکرها
PCR، به طور آنزیماتیک تکثیر یک منطقه تعریف شده از DNA الگو است. تکثیر قطعهی DNA وابسته به آغازگر بوده که آغازگرها توالی DNA مکمل موجود در DNA دو رشتهی را تشخیص می دهند و با آن پیوند برقرار میکند.
برای به دست آوردن محصولات PCR باید:
الف- دو آغازگر که هر دو دارای ردیفهای واحدی هستند به رشتههای مخالف بچسبند.
ب- دو آغازگر باید در جهت عکس هم آرایش یابند(انتهای ́3 آنها مجاور ناحیهای باشد که قرار است تکثیر شود)
پ- دو آغازگر باید با فاصلهای کوتاه نسبت به یکدیگر (به طور معمول کمتر از 4 جفت کیلوباز) به DNA الگو متصل شوند. دلیل این امر این است که پلی مراز Taq فقط در این فاصله میتواند فعال باشد و رشتهی دوم را سنتز کند. در حقیقت ساخته شدن رشتهی مکمل DNA به این دلیل است که پلیمراز Taq سبب طویل شدن آغازگر از انتهای́3 با اضافه کردنdNTPها میگردد. بعد از چند چرخه PCR، قطعههای سنتز شده جدید نسبت به قطعهی اولیه ژنومی غالب میشوند و از نظر تئوری به صورت توالی تکثیر خواهند شد.
2-15-1 اجزای واکنش زنجیره‌ای پلیمراز(PCR)
این روش در اواســـــط دهــــه 1980 به وسیـــــله کری مولیس معرفی شد. واکنش زنجیره‌ای پلیمراز مبتنی بر همانند‌سازی نیمه حفاظت شده DNA می‌باشد. در این واکنش قطعه‌ای از DNA بین دو ناحیه با توالی شناخته شده تکثیر می‌شود. تکثیر به وسیله دو توالی الیگونوکلئوتیدی به عنوان آغازگر که به دو رشته DNA و در ناحیه مکمل خود متصل می‌شوند صورت می‌گیرد (Chawla, 2002). اجزای تشکیل دهنده این واکنش به شرح زیر است.
2-15-2آغازگر
آغازگرهای PCR، الیگووکلئوتیدهایی هستند که بر روی رشته الگو به توالی‌های مکمل خود متصل می‌شوند و حدود محصولات تکثیر را مشخص می‌کنند. هنگام طراحی آغازگرها عوامل متعددی مانند پرهیز از مکمل بودن توالیهای درون یک آغازگر و یا بین آغازگرها، محتوی GC آغازگر، طول آغازگرها و دمای ذوب (Tm) آغازگر مورد توجه قرار می‌گیرد. دمای ذوب، درجه حرارتی است که در آن نیمی از آغازگرها به جایگاه هدف اتصال پیدا کرده باشند. دمای ذوب آغازگر در انتخاب دمای اتصال اهمیت دارد و معمولاً دمای اتصال چند درجه کمتر از دمای ذوب انتخاب می‌شود (Dawson, 1998).
2-15-3 آنزیم
مهم‌ترین ویژگی آنزیم مورد استفاده در واکنش زنجیره‌ای پلیمراز، مقاومت به حرارت می‌باشد. آنزیمی که به طور معمول در PCR استفاده می‌شود، آنزیم تـــــک DNA پلیمراز می‌باشد که از باکتری گرمادوست Thermus aquaticus استخراج می‌شود. این آنزیم فاقد فعالیت اگزونوکلئازی َ3 به َ5 بوده و قادر به تصحیح بازهای اشتباه نمی‌باشد. آنــزیم اضافه در واکنش سبب تکثیر توالی‌های غیرهدف می گردد Mcpherson M. and S. G. Moller2000))
2-15-4الگو
نمونه مورد استفاده جهت تکثیر در PCR ممکن است DNA تک رشته و یا دو رشتهای حیوانات، گیاهان و حتی باکتریها باشد. مولکول های RNA شامل RNA کل، و یا tRNA نیز می توانند بعد از اینکه توسط آنزیم ترانس‌کریپتاز معکوس بهDNA مکمل(cDNA) تبدیل شدند، به عنوان الگو برای تکثیر مورد استفاده قرار گیرند Dawson , M.T.,A.Powell and F ,1998).)
2-15-5 دزاکسی ریبونوکلئوزید تری‌فسفات‌ها
در واکنش زنجیره‌ای پلیمراز مرسوم، هرچهار نوع دزاکسی ریبونوکلئوزید تری‌فسفات با غلظت‌های مساوی به کار برده می‌شوند. غلظت مناسب dNTPs به عوامل متعددی مانند طول رشته مورد نظر، غلظت آغازگر، غلظت MgCl2 و تعداد سیکل‌های تکثیر بستگی دارد. جهت بهینه‌سازی یک واکنش ضروری است که بهترین غلظت به صورت عملی تعیین شود.
2-15-6کلرید منیزیم
کلرید منیزیم (MgCl2) یک عنصر اساسی برای تکثیر DNA در واکنش PCR می باشد زیرا یون Mg2+ با dNTPs کمپلکسی تشکیل می دهد که برای وارد کردن dNTP در رشته ضروری است. به علاوه، این یون از طریق تحریک فعالیت پلیمرازی، واکنش متقابل آغازگر – الگو را افزایش می‌دهد. غلظت MgCl2 باید برای هر جفت الگو– آغازگر بهینه شود. معمولاً غلظت پایین یون Mg2+ باعث کاهش محصولات PCRو غلظت زیاد آن منجر به تجمع محصولات غیراختصاصی می‌شود.
2-15-7 بافر
بافر موردنیاز برای فعالیت آنزیم تک‌ پلیمراز در واکنش زنجیره‌ای پلیمراز شامل 50 mM KCl، Tris-HCL 10 mM و Gelatin 1% pH 8.3 می‌باشد. قابل ذکر است که در صورت استفاده از سایر آنزیم‌های پلیمراز مقاوم به حرارت، ترکیبات بافر متفاوت خواهد بود (McPherson, 2000).
2-15-8 مراحل تکثیردر هر چرخه واکنش ابتدا توسط حرارت پیوندهای هیدروژنی دو رشته DNA شکسته شده و رشته‌ها از هم باز می‌شوند. جداشدن رشته‌ها معمولاً در دمای oC94 صورت می‌گیرد و واسرشته‌سازی نام دارد. سپس مخلوط واکنش سرد می‌شود تا آغازگرها به نواحی مکمل خود متصل شوند. این مرحله که به طور معمول در دمای oC65-35 انجام می‌گیرد، مرحله اتصال نامیده می‌شود. در مرحله سوم که دما حدود oC72 بوده و بسط نام دارد آنزیم پلیمراز از روی DNA الگو همانند سازی کرده و بسط یک ناحیه از DNA صورت می‌گیرد. نکته مهم در این چرخه، دمای واکنش در مرحله اتصال آغازگر است. دما برای اتصال تدریجی باید به حد کافی پائین باشد تا امکان دورگه‌گیری بین آغازگر و الگو وجود داشته باشد و از طرفی به حد کافی بالا باشد تا از تشکیل دورگه‌های اشتباه جلوگیری کند (Chawla, 2000).
2-16 درخت فیلوژنتیکبررسی فیلوژنتیکی یک خانواده بر اساس ترادف اسید نوکلئیک یا پروتئین تعیین میکند که چه طور یک خانواده در مسیر تکاملی خویش از اجداد اولیه خود مشتق شدهاند. ارتباطات تکاملی در میان ترادفها توسط مکان یا رتبه ترادفها که به عنوان شاخههای بیرونی یک درخت میباشند نمایش داده میشود. ارتباطات بین شاخهای در بخش داخلی درخت منعکس کننده درجهای است که ترادفهای متفاوت را که با هم ارتباط دارند را نمایش میدهد. دو ترادف که همانندی خیلی زیادی با هم دارند به صورت شاخههای بیرونی مجاور واقع خواهند شد و به یک شاخه مشترک (معمولی) که در زیر آنها واقع شده متصل میشوند. هدف از بررسی فیلوژنتیکی پیدا کردن ارتباطات بین شاخههای درخت و طول شاخهها می باشد. بررسی فیلوژنتیکی ترادفهای پروتئین و اسید نوکلئیک در حال حاضر وجود دارد و به صورت ناحیه مهمی از آنالیز ترادفی ادامه خواهد یافت. وقتی یک ژن خانوادگی در یک موجود زنده کشف شود، ارتباطات فیلوژنتیکی در میان ژنها میتواند به پیشگویی این که یکی از آنها ممکن است یک عملکرد مشابه داشته باشد کمک کند. که این پیشگوییهای کاربردی میتواند به وسیله آزمایشات ژنتیکی بررسی شوند. بررسی فیلوژنتیکی در دنبال کردن تغییراتی که به وقوع میپیوندند در گونههایی که به سرعت تغییر میکنند، مانند یک ویروس میتوانند استفاده شوند.
برنامههای بررسی فیلوژنتیکی زیادی در دسترس میباشند که هزینه کمی دارند و یا هزینهای ندارند. از مهم ترین این برنامهها که مورد استفاده قرار میگیرد برنامههای PHYLIP و PAUP میباشند. نسخههای جدید از این برنامهها 3 روش اصلی را برای بررسی فیلوژنتیکی شامل Parsimony, Distance, Maximum likelihood را فراهم کرد و همچنین تعداد زیادی از مدلهای تکاملی را برای درجه تنوع ترادف را شامل میشود. برنامه دیگر MacClade میباشدکه برای آنالیزهای با جزئیات بیشتر مفید است.
534670-576580فصل سوم
مواد و روش ها
00فصل سوم
مواد و روش ها

3-1مطالعه منابع
ابتدا به مطالعه منابع موجود در اینترنت و کتب مرجع جهت مطالعه مقالات بررسی تحقیقاتی که اخیراً صورت گرفته و تعیین چارچوب کاری پرداخته شد از فلور ایران Khatamsaz,2002)) و به عنوان شناسایی نمونه های هر بار یومی و بررسی صفات کیفی و کمی ریخت شناسی استفاده گردید.
نمونه برداری از آنجایی که محدوده پراکنش گونه ها وسیع بود و همچنین به علت عدم وجود امکانات و زمان کافی برای جمع آوری به موقع گیاهان بخش عمده بر روی نمونه های هر بار یومی انجام گرفت.
.
3-2مطالعه هر بار یومی
استفاده ازDNA در سیستماتیک مولکولی داده های مولکولی مخصوصاً توالی DNA برای بازسازی روابط فیلوژنی نسبت به سایر روشهای دیگر از صحت بیشتری برخوردار است به همین دلیل امروزه به خصوص از زمان پیدایش واکنش زنجیره ای پلیمراز این روش با استقبال محققین مواجهه شده است (Chase et al. ,1993).
3-3استفاده از DNA در سیستماتیک مولکولی
در گیاهان 3 نوع اصلی از توالی های DNAدر دسترس است که عبارتند از:توالی های هسته ای (nr DNA)، توالی های کلروپلاستی (cp DNA) و توالی میتوکندر یایی. توالی میتوکندر یایی به علت سرعت تکاملی پایین کمتر در بررسی روابط خویشاوندی گیاهان مورد استفاده قرار می گیرند.
اما توالی های کلروپلاستی و هسته ای در ابعاد وسیعی بدین منظور به کار می روند (معین، 1389).
(Internal Transcribed spacer) ITS یا ناحیه فاصله گذار رونویسی شونده درونی بخش از ریبوزومی هسته می باشد (شکل1-5) درون این ناحیه، نواحی کد گذار بسیار حفاظت شده
, 26snrDNA) (18nrDNA,5,8 snrDNAبه همراه نواحی غیر کد گذار (ETS و ITS)قرار دارند. نواحی ITS1 و 2 ITS در بالغ شدن و پردازش ریبوزوم نقش مهمی را ایفا می کنند اما ناحیهITS پس از پردازش ریبوزوم ترجمه نمی شود و به همین علت کمتر تحت فشار عملکردی است. و سرعت بالای تکاملی، این ناحیه را برای بررسی روابط فیلوژنتیکی مناسب کرده است (Baldwin et al. ,1995,Alvarez &vendel ,2003)
شکل 1-5 ساختار ناحیه - شکل 2 nrDNA ITS برگرفته از Baldwin et al.,1995 با اندکی تغییر

دهه اخیر از داده های توالی ITS به عنوان ابزاری برای تعیین روابط فیلوژنتیکی در سطح پائین تاکسونومی و مخصوصاً جنس های نزدیک استفاده شده است (2008،. Soltis et al)
دلایل استفاده از این ناحیه در بازسازی روابط فیلوژنی را می توان به صورت زیر بیان کرد:
1-دارای کپی های فراوان که به صورت تکرار های در یک یا چند لوکوس کروموزومی ژنوم هسته ای قرار گرفتند که سبب سهولت در تکثیر کلونینگ و توالی یابی آن می شود.
2-یکی از مهمترین ویژگی های این ناحیه برای بازسازی روابط فیلوژنی وجود تکامل هماهنگ در این منطقه از طریق کراسیگ اوور نابرابر و برابر می باشد.
3- اندازه کوچک این ناحیه (کمتر از 700 جفت باز در نهاندانگان) و حضور توالی های بسیار حفاظت شده در مجاورت آن، سبب سهولت در تکثیر این ناحیه حتی از نمونه های هر بار یومی می شود.
White و همکاران (1990) پرایمرهای همگانی برای تکثیر این قطعه در موجودات یوکاریوت طراحی کردند.
4- برتری این ناحیه نسبت به ژنوم کلروپلاستی در به ارث رسیدن از دو والد است که این ویژگی سبب می شود تا درصد هیبرید ها و پلی پلوئیدی ها را نیز تشخیص داد (Baldwin et al. ,1995).
عمومیت این ژن در تمامی نهاندانگان، مزیت آن برای استفاده از گیاهان انگل است که بخشی یا تمامی کلروپلاست خود را از دست داده اند (معین، 1389).
3-4بررسی روابط فیلوژنی بر اساس صفات مولکولی
به منظور بررسی و بازرسانی تاریخچه تکاملی قبیله Cynoglosseae از توالیهای هسته ای
nrDNAITS (Nuclear Ribosomal DNA Internal Tran cribed spacer)
استفاده شد تاکسونهای مورد بررسی در این مطالعه در جدول آورده شده است
1-3 تاکسون های مورد استفاده برای تکثیر قطعه - جدول nrDNA ITS
نام تاکسون محل جمع اوری محل نگهداری وشماره هرباریومی
Rindera regia موسسه جنگل هاو مراتع
Rindera lanata موسسه جنگل هاو مراتع
Rindera cyclodonta موسسه جنگل هاو مراتع
Rindera albida موسسه جنگل هاو مراتع
Rindera bungei موسسه جنگل هاو مراتع
Rindera media 3-4-1استخراج DNAاز برگ
استخراج DNA کل از سلولهای برگ نمونه های هربایومی صورت گرفت استخراج به روشCTAB
(Doyle,1987& Doyle) انجام گرفت گیاهان این تیره حاوی مقادیر قابل توجهی از متابولیت های ثانویه هستند. به منظوربالا رفتن کیفیت کار بافر استخراج هر روز درست و استفاده می شد.
مراحل استخراج DNA به شرح زیر است:
1-یک تکه برگ خشک را در هاون اتو کلاو شده می سابیم تا کاملاً پودر شود. (باید توجه داشت که از برگهای زرد، قهوه ای و بیمار استفاده نشود)
2-به پودر حاصل به نسبت برگ به کار رفته محلول CTAB اضافه می کنیم تا جاییکه محلول یکدست و به رنگ سبز روشن در آید.
3-700میکرولیتر از محلول فوق را درون میکروتیوبهای 2 میلی لیتری اتو کلاو شده می ریزیم.
4- زیر هود به هر میکروتیوب 20 میکرولیتر مر کاپتواتانول می افزائیم.
5- میکروتیوبها را به مدت 1 الی 2 ساعت در بن ماری 65 درجه سانتیگراد قرار می دهیم و هر 5 دقیقه یکبار به دلیل ته نشین شدن مر کاپتواتانول میکروتیوبها را تکان می دهیم.
6- 800 میکرو لیتر کلروفرم – ایزو آمیل الکل با نسبت 1: 24 به میکروتیوبها اضافه کردیم و سپس آنها را به مدت 20 دقیقه با دست تکان دادیم.
7- میکروتیوبها را به مدت 15 دقیقه با سرعت 11000 دور سانتریفیوژ می کنیم.
8- در این مرحله 3 فاز تشکیل می شود فاز بالایی حاوی DNA است برای اینکه با فاز پائینی مخلوط نشودDNAرا برداشته و به میکروتیوب استریل دیگری منتقل می کنیم.
9-و باز دوباره کلروفرم و ایزوآمیل الکل به حجم 800 میکرو لیتر به آن اضافه می کنیم و باز دوباره میکروتیوبها را به مدت 10 الی 20 دقیقه با دست تکان می دهیم باز سانتریفیوژ به مدت 15 دقیقه با سرعت 11000 دور.
10- میکروتیوبها از سانتریفیوژ خارج کرده و 200 میکرو لیتر از فاز بالایی می کشیم و به میکروتیوبهای جدید انتقال می دهیم.
11- 700 میکرو لیتر ایزوپروپانول اضافه می کنیم و در دمای منفی 20 درجه به مدت2 الی 24 ساعت می گذاریم.
12- میکروتیوبها را از یخچال در آورده و با سرعت 8000 دور در 15 دقیقه سانتریفیوژ می کنیم.
13 –بلافاصله محلول رویی را دور ریخته و اتانول 70% سرد را به مقدار 200 میکرولیتر به رسوب DNA اضافه می کنیم.
14- میکروتیوبها را به مدت 5 دقیقه با سرعت 8000سانتریفیوژ می کنیم.
15- میکروتیوب ها را از دستگاه سانتریفیوژ خارج می کنیم و بلافاصله محلول رویی را دور ریخته و میکروتیوب های حاوی رسوب DNA را در دمای آزمایشگاه قرار می دهیم تا کاملاً خشک شود و اتانول تبخیر گردد.
16- به هر میکروتیوب با توجه به مقدار رسوب DNA حدود 20تا 40 میکرولیتر آب دیونیزه اضافه می کنیم.
17- میکروتیوبها را در دمای 20 درجه نگه داری می کنیم تا در صورت نیاز از DNA استفاده کنیم.
3-4-2تکثیر قطعات مورد نظر با استفاده از واکنش زنجیره ای پلیمر از (PCR =Polymerase chaine Reaction).
به منظور تکثیر توالیهای nrDNA ITS از آغازگر های ITS1F و ITS4 (White et al.1990) استفاده گردید.
توالیهای آغازگرهای مورد استفاده در جدول 1-4آمده است.
جدول 1-4 توالی آغازگر های مورد استفاده برای تکثیر قطعه - جدولnrDNA ITS
توالی آغازگر جهت حرکت آغازگر نام آغاز گر
5-AAGGTTTCCGTAGGTGAACC-3 آغازگر رفت ITS1F
5-TCCTCCGCTTATTGATATGC-3 آغازگر برگشت ITS4
جهت انجام واکنش PCR ابتدا مخلوط کلی طبق جدول پایین تهیه گردید.
جدول1-5 ترکیبات مورد استفاده برای مخلوط کلیpcr
مقدار مورد استفاده غلظت نام ماده


7 میکرو لیتر برای تکثیر قطعه هسته nrDNA ITS - آب دیونیزه
10میکرو لیتر 2X PCRmaster Mix
1میکرو لیتر 10PmoL /ML آغاز گر رفت
1میکرو لیتر 10PmoL/ML آغاز گر برگشت
1میکرو لیتر 20-25ng/ML DNA الگو

مراحل اصلی در یک واکنش PCR به ترتیب زیر است:
واسرشتگی اولیه: مخلوط تا 95 درجه سانتی گراد حرارت داده می شود این دما پیوندهای هیدروژنی بین 2 رشته DNA را می شکند و باعث واسر شتگی دو رشته DNA می گردد.
واسر شتگی ثانویه: مرحله اول مجدداً تکرار می شود تا اطمینان حاصل گردد که دو رشته DNA کاملاً از یکدیگر جدا شده اند.
اتصال: مخلوط تا دمای 64-60 درجه سانتیگراد خنک می شود در این دما آغازگرها به محل های ویژه ای از DNA متصل می شوند.
بسط اولیه: دما تا 72 درجه سانتیگراد افزایش می یابد. این دما برای عملکرد آنزیم Taq پلیمر از مناسب است تا رشته جدیدی از DNA ساخته شود.
بسط نهایی: مرحله قبل مجدداً تکرار می شود تا قطعاتی که هنوز تکثیرشان کامل نشده تکمیل گردند
در هر واکنش PCR مراحل 2تا 4 بسته به نمونه های مختلف 25تا 30 مرتبه تکرار می گردد.
جدول1-6 برنامه مورد استفاده برای واکنش PCR قطعه ITS nrDNA
زمان دما چرخه
5 ثانیه 950C واسرشتگی اولیه 25-30
1دقیقه 950C  واسرشتگی ثانویه 45ثانیه 0C 64-60 اتصال آغازگر 1دقیقه 720C بسط اولیه 7دقیقه 720C بسط نهایی 3-4-3الکتروفورزژل آگارز
الکتروفورز روشی است که در آن مولکول های DNA با بار منفی در میدان الکتریکی قرار می گیرند.
مولکول های DNA از میان شبکه ژل آگارز به سمت قطب مثبت حرکت می کنند که سرعت حرکت مولکول ها وابسته به اندازه قطعات DNA می باشد.
به منظور حصول اطمینان از تکثیر ناحیه مورد نظر در DNA، پس از انجام فرایند PCR محصولات در ژل آگارز 1 % الکتروفورز شدند.
بدین ترتیب 6 % آگارز وزن شد و در 60 میلی لیتر TBE IX به کمک حرارت حل شد 5/1 میکرو لیتر اتیدیوم برو ماید اضافه می کنیم. بعد از خنک شدن، محلول حاصل در سینی مخصوص که شانه در آن قرار داده شده بود ریخته شد. پس ژل برای بسته شدن درون یخچال قرار گرفت. بعد از قرار دادن ژل درون دستگاه الکتروفورز 3 میکرولیتر از محصولات PCR درون چاهک های افقی ژل تزریق شد. همچنین درون یکی از چاهک ها Ladder تزریق شد.
دستگاه الکتروفورز افقی (GeL XL Ultrauk) که با TBE IX برشده است به مدت 1 ساعت بر روی 75 ولتاژ تنظیم شد.
بعد از اتمام کار برای مشاهده ژل از دستگاه UV Light استفاده شد. باید توجه داشت که وجود باند در ستون کنترل منفی نشان دهنده آلودگی در محلول PCR و یا حین کار است.
براساس نوارهای وزنی Ladder بر روی ژل می توان به طول قطعه تکثیر شده پی برد.
تصویر ژل آماده شود.

شکل 1-6 nrDNA IT’S حاصل از تکثیر DNAژل الکتروفورز محصول

به طور کلی آغازگرهای PCR، براساس نواحی بسیار حفاظت شده ای طراحی می شوند که در دو سوی نواحی بسیار متغیر قرار دارند. مثلا آغازگر trn-c مورد استفاده در این مطالعه دارای ژن trnF (GAA) می باشند که ضمن انجام فرآیند PCRمطابق شکل1-7 به جایگاه های مربوطه متصل شده و ناحیه مورد نظر را تکثیر می کنند.

شکل 1-7 ناحیه فاصله گر رونویسی شونده داخلی (nrDNAITS)، زیر واحد ها، جهت و موقعیت آغاز گرها نشان داده شده است (برگرفته از Soltis et al., 1998).

شکل 1-8. ناحیه توالی DNA کلروپلاستی دو منطقه ی غیر کد شونده: اینترون trnL و فاصله گر بین ژنی trnL-F، جهت و موقعیت آغازگرها نشان داده شده است (برگرفته از (Quanddt et al., 2004.
3-4-4تعیین توالی مناطق تکثیر شده
محصولات PCRتک باند قوی و بدون کشیدگی ، جهت تعیین توالی از طریق شرکت ژن فن آوران به کشور کره فرستاده شد. برای تعیین توالی نمونه های مربوط به nrDNAITS از آغازگرهای ITS5 یا ITS5m وI4 یا AB101F و AB101R استفاده گردید
3-5آنالیز فیلوژنی
برای آنالیز داده های مولکولی، کروماتوگرام های حاصل از تعیین توالی نمونه ها با استفاده از نرم افزار Bioedit ویرایش و به text تبدیل شد و سپس به دو طریق دستی و با استفاده از نرم افزار ClustalW (Thompson et al., 1994) هم ردیف سازی گردید. با روش بیشینه ی صرفه جویی (Maximum parsimony) با استفاده از نرم افزار PAUP*4.0bl0 (Sowfford, 2002) و همچنین با روش Bayesian با نرم افزارversion 3.12) MrBayes Ronquist & Huelsenbeck, 2003) آنالیز شدند.

شکل 1-9 کروماتوگرام حاصل از تعیین توالی قطعه - شکل nrDNA ITS
3-5-1روش ماکزیمم پارسیمونی
بر اساس روش پارسیمونی مناسب ترین درخت، درختی است که به حداقل تعداد تغییرات برای توضیح داده ها (توالی های نوکلئوتیدی) نیاز داشته باشد و بنابراین بهترین درخت، کمترین تغییرات را در مسیر تکامل طی کرده و کمترین میزان هموپلازی ناشی از همگرایی یا برگشت را دارد و کوتاهترین درخت است.
در آنالیز پارسیمونی ممکن است چند کوتاهترین درخت به دست آید، در این صورت درخت توافقی (strict consensus tree) آنها را نشان می دهند که در این درخت کلادهای مشترک بین آن درختان نشان داده می شود ولی روابط ناسازگار بین آنها به صورت پلی تومی دیده می شود (Hall, 2001, Soltis & Soltis ,2003).
برای آنالیز داده های nrDNAITS، cpDNAtrnL-F و ترکیب ایندو، از جست و جوی ابتکاری (Heuristic search) و روش تبادل شاخه ای (Swapping)، دو نیمه سازی درخت و اتصال مجدد شاخه
هاTree Bisection Reconnection (TBR) و گزینه چندین درخت (MULTrees) با 100 تکرار از Random addition sequences و MaxTrees = 20000 (بیشینه درختان ذخیره شده) استفاده گردید.
برای تعیین حدود اطمینان کلاد ها در درخت مطلق مرکزی (Strict Consensus) حاصل از هر یک از آنالیز های مذکور، آنالیـز (Felsenstein 1985) Bootstrap با روش جستجوی ابتـکاری و انتخاب گزیـنه های Simple addition sequences و TBR و با انتخاب گزینه off برای MULTREES، انجام شد. تعداد تکرارها در تمامی آنالیزهای Bootstrapping، 20000 تکرار در نظر گرفته شد. بیشینه ی درختان ذخیره شده به ازای هر تکرار در تمامی موارد 100 درخت انتخاب شد.
3-5-2روش Bayesian
آنالیز Bayesian بر اساس قاعده آماری Bayes بنا نهاده شده است. در این قاعده برآمد نهایی آزمایش به انچه در مراحل قبلی رخ می دهند، بستگی دارد.
روش استنباطی Bayesian اخیرا به فیلوژنی راه یافته و یک ابزار قوی برای پاسخ به سوالات پیچیده در بیولوژی تکاملی است. Bayesian در فیلوژنی بر اساس کمیتی است که احتمال ثانویه نام دارد. در واقع تئوری Bayes، ترکیب احتمال اولیه (prior probability) از فیلوژنی(pr [Tree]) با احتمال (pr [Data / Tree])، برای ایجاد یک احتمال ثانویه (posterior probability) بر درخت (pr [Tree / Data)
است (Hall ,2001, Soltis & Soltis, 2003, Huelsenbeck et al., 2001).
این روش بر مدل های تکاملی متمرکز می شود و تمامی مکان های جانشینی را بررسی می کند. برای آنالیز داده های nrDNAITS، cpDNAtrnL-F و ترکیب ایندو، مدلهای تکاملی با استفاده از برنامه MrModeltest version 2.3 (Nylander, 2004)، اجرا شده در MrMTgui (Nuin 2005) بر اساس معیار اطلاعاتیAkaike (AIC) (Posada & Buckley 2004) انتخاب شدند. برطبق این آنالیز، مجموعه داده ها با استفاده از مدلهای K81uf + I + G و SYM +I + G، به ترتیب برای داده های cpDNAtrnL-F و nrDNAITS آنالیز شدند. مجموعه داده های ترکیبی در دو بخش با استفاده از ترکیب مدلهای مشابه یا به عنوان یک بخش با مدل GTR + I + G آنالیز شدند. برنامه MrBayes version 3.12 (Ronquist & Huelsenbeck 2003) برای آنالیز های فیلوژنتیکی Bayesian استفاده شد. برای آنالیز بخش بندی شده (partitioned analysis) و غیر بخش بندی ((nonpartitioned data، اجازه داده شد تخمین های جانشینی ها و طول شاخه ها به طور مستقل در هر بخش متغیر باشد. احتمالات ثانویه بر روی پارامترهای مدل از داده ها با استفاده از پیش فرض های اولیه برآورد شدند. آنالیز های ترکیبی و جدا از هم در 2 میلیون نسل تکرار شدند. 4 زنجیره مارکوف مونته کارلو (MCMC) در یک زمان از یک درخت به طور تصادفی شروع به کار کرد. یک درخت را در هر 100 نسل نمونه برداری کرد. درختان نمونه برداری شده بعد از رسیدن به فاز خطی (بعد از 500000 نسل یا 5000 نمونه) جمع آوری شدند و برای ایجاد یک درخت توافقی با بیشینه 50%، همراه با ارزشهای احتمال ثانویه با استفاده ازTreeview (Page 1996) استفاده شدند.
3-5-3مقایسه دو روش آنالیزی ماکزیمم پارسیمونی و Bayesian
در روش ماکزیمم پارسیمونی، بهترین تفسیر از درخت، ساده ترین تفسیر است. در این روش، درختانی انتخاب می شوند که حداقل تعداد تغییرات را داشته باشند. مزایای این روش این است که انتخاب درخت با کوتاهترین طول، تعداد جانشینی های نوکلئوتیدی و هموپلازی ناشی از تکامل موازی و برگشت را نیز به حداقل می رساند. این روش آنالیزی به آسانی در برنامه PAUP* قابل اجراست و می تواند جایگاه های اطلاعاتی و مشکلدار را شناسایی کند. همچنین این روش قادر است به حالت های اجدادی نیز پی ببرد. از معایب این روش این است که ممکنست بر اساس توالی های وارد شده، نتایج متفاوت ناشی از چندین جستجو به دست آید. همچنین این آنالیز با مجموعه داده های بزرگ نسبتا کند انجام می شود. روش Bayesian از یک سری فنون جستجوی بسیار کارآمد استفاده می کند. این روش با در نظر گرفتن احتمال اولیه قبل از آنالیز و بر اساس احتمال ثانویه، نتیجه تولید می کند. از مزایای این روش بر ماکزیمم پارسیمونی اینست که از بسیاری از امکانات آماری و مدلهای تکاملی استفاده می کند در حالیکه روش پارسیمونی فقط بر اساس صفات بنا نهاده شده است. روش Bayesian می تواند مجموعه داده های نسبتا بزرگ را آنالیز کند و همچنین ارزشهای حمایتی بالایی دارد (Soltis & Soltis, 2003).
8394701098550فصل چهارم
بحث و نتیجه گیری
00فصل چهارم
بحث و نتیجه گیری

4-1 آنالیز ماکزیمم پارسیمونی
طول این ناحیه هسته ای برای 5 تاکسونی که مورد مطالعه قرار گرفت. 658 جفت باز میباشد. ماتریکس توالی های nrDND ITS شامل 13 تاکسون درون گروه و2 تاکسون برون گروه می باشد. صفات اطلاعاتی 146 وصفات غیراطلاعاتی 512 میباشد. انالیز دادهای nrDNA ITS با روشMPتعداد کوتاهترین درخت با337 گام میباشد. با شاخص پایداری یا ثبات CI 671/0،شاخص گروه پذیری یا ابقا RI 613/0ایجاد کرد.
در این آنالیز دو نمونهTournefortia Rubicunda,Heliotropium Bacciferum به عنوان
برون گروه انتخاب شدند.بعد از برون گروه کلادوگرام شامل 8 زیرکلاد میباشد اولین زیر کلاد با حمایت 100به دو زیر کلاد تقسیم می شود که یک کلاد تک تبار شامل Echiochilon persicumوکلاد بعدیEchiochilon Fruticosum میباشد که این دو با حمایت 100میباشد زیر کلاد بعدی با حمایت 100شامل گونه Solenanthus circinatusمیباشد وزیرشاخه بعدی به گونه هایی از جنس Rinderaکه یک کلاد با حمایت 54 که کمترین حمایت میباشد شامل یک گونه R.lanataو شاخه بعدی گونه R.Bungei می باشد زیر کلاد بعدی با حمایت 100 به یک کلاد تقسیم میشود. که شامل گونه incerpicua Lepechiniella میباشد و کلاد بعدی شامل گونه paracaryum میباشد. همچنین زیر کلاد بعدی با حمایت 58به یک شاخه که شامل گونه R.Cyclodonta میباشد. زیر کلاد بعدی نیز به یک گونه Cynoglossum creticum میباشد و یک زیر کلاد نیز با حمایت 86 به 2 شاخه که شامل گونه های Lindelofialongiflora,cynoglossum officinalis
تقسیم می شود که این 3 گونه با R.Cyclodontaخواهران متوالی اند.

شکل 1-10فیلوگرام حاصل از آنالیز داده های nrDNAITS با روش ماکزیمم پارسیمونی. اعداد روی شاخه ها، نشانگرحدود اطمینان شاخه هاست.
4-2 آنالیز Bayesian
در این فیلو گرام 2 گونهHeliotropium BacciferumوToumefortia Rubicundaبه عنوان برون گروه میباشند.فیلوگرام به 2 شاخه تقسیم می شود که این شاخه خود به 2 زیر کلاد با حمایت 00/1 می باشد زیر کلاد اولی به 2 شاخه تقسیم شده با حمایت 00/1 که 2 گونه Echiochilon persicum وEchiochilon fruticosumمیباشد که به عنوان کلاد خواهری هستند ومونوفیلند و شاخه بعدی به 2زیر کلاد تقسیم میشود که یک کلاد گونه Solenanthus circinatus وهستش وهمچنین گونه های جنس RinderaوSolenenthus با حمایت 90/0گروه تک تبار را تشکیل میدهند و گونهRindera bungieوR.Lanataبا حمایت 99/0 کلاد خواهری را تشکیل میدهند.شاخه بعدی که با حمایت 90/0 خارج شده خود به 2 زیر کلاد تقسیم شده که زیر کلاد اولی به گونه Paracaryum spوشاخه بعدی با حمایت 78/0 که گونه
incerpicua Lepechiniella را شامل میشود و زیر شاخه بعدی به 2 شاخه تقسیم میشود که شامل گونه
R. cyclodontaبا حمایت 60/0 میباشد و شاخه بعدی با حمایت 86/0به 2شاخه که شامل 3 گونه که اولی cynoglossum certicumبا حمایت 99/0 و زیر شاخه بعدی شامل lindelofialongiflora وcynoglossum officinaleبا حمایت 97/0 کلاد خواهری را تشکیل میدهند.
که گونهParacaryumو incerpicua Lepechiniella و R.Cyclodontaوcynoglossum certicum
و lindelofialongiflora وcynoglossum officinale پیرا تبار میباشد.
-579755-200025CynoglossumOfficinale
Lindelofialongiflora
0.97
CynoglossumCreticum
0.99
R.cyclodonata
0.86
Lepechiniella incerpicua
0.60
ParacaryumSP
0.70
R.lanata
R.bungei
0.99
R.albida
R.regia
Solenanthuscircinatus
0.98
EchiochilonPersicumIRan
EchiochilonFruticosum
1.00
1.00
TournefortiaRubicunda
HeliotropiumBacciferum
0.1
00CynoglossumOfficinale
Lindelofialongiflora
0.97
CynoglossumCreticum
0.99
R.cyclodonata
0.86
Lepechiniella incerpicua
0.60
ParacaryumSP
0.70
R.lanata
R.bungei
0.99
R.albida
R.regia
Solenanthuscircinatus
0.98
EchiochilonPersicumIRan
EchiochilonFruticosum
1.00
1.00
TournefortiaRubicunda
HeliotropiumBacciferum
0.1

شکل 1-11درخت فیلوژنی حاصل از آنالیز nrDNAITS با استفاده از روش Bayesian. اعداد نشان داده شده، حمایت آماری کلادها را نمایش میدهد.
4-3 فیلوژنی قبیله Cynoglosseae
همان گونه که درفیلوگرام نمایش داده شده در آنالیز ماکزیمم پارسیمونی حاصل از داده های ITSنمایش داده شده است گونه متعلق به جنس Echiochilon یک کلاد با حمایت 100 را با گونه های Echiochilon persicum و E. fruticosum و به عنوان اولین کلاد از درخت خارج می شوند را تشکیل داده اند.این 2گونه در تبارEchiochileaeقرار دارندکه بر اساس مطالعات لنگستروم (2002) به این قبیله معرفی شد.
گونه R.cyclodonta نیز دور از سایر گونه های جنس Rindera قرار گرفته است.بنابرابن جنس Rindera تک تبار نمی باشد.
اعضای قبیله Cynoglosseae دارای خامه ای با تقسیماتی در راس با 2 تا 4 کلاله، همچنین با فندقه های دارای اثر اتصال قاعده ای وسیع مشخص می شوند. از نظر کروموزومی عدد پایه کروموزومی 8 دارند. (Lugue & valdes ,1984)
قبیله Echiochileae با دو گونه آنالیز شده(Fruticosum E.percicum, Echiochilon)
تک تبار می باشد و این قبیله معمولا در قاعده درخت قرار گرفته است. اعضای این قبیله فرم چوبی دارند. در حالیکه بقیه اعضای زیرتیره علفی اند. از نظر گرده شناسی گونه های Echiochilon شبیه به گونه های Heliotropium، 3 شیاره (3- colpate) هستند.
(Kazempour osaloo& khatam saz ,1994, Diez& valdes 1986)
گروهی از گیاهشناسان (De candolle ,1846) Echiochilon را در قبیله Echieae و عده ای دیگر Al shehbaz, 1991 آن را در قبیله Eritrichieae قرار داده بودند.
khatamsaz,2002, Riedl ,1997 نیز این جنس را متعلق به قبیله Lithospermeae می دانستند.
در توضیح قبیله Cynoglosseae.s.L می توان گفت که پهنای قبیله Cynoglosseae در یک کلاد با حمایت بالا قرار می گیرد و تک تبار نیست. (سعادتی، 1390).
گونه های جنس Rindera همراه با گونه Solenanthus circinatus یک کلاد با حمایت بالا (pp=100) را تشکیل داده اند، این 2 جنس در داشتن برگهای قاعده ای با دمبرگ طویل. گل آذین خوشه مرکب، جام گل لوله ای پرچم ها 5 عدد، کلاله سرسان مشترک هستند. صفت نامساوی بودن شکل برگها – تعداد فندقه و شکل بساک میان سایر اعضای این قبیله صرفاً مختص به این دو جنس می باشد.
گونه های جنس Rindera در کلادی با حمایت 100 قرار گرفته اند. اعضای این کلاد، یک کلاد خواهری Solenanthus circinatus تشکیل داده اند این دو جنس در داشتن برگهای قاعده ای با دمبرگ طویل هستند. بنابراین ویژگی برگهای قاعده ای یک صفت طبیعی برای طبقه بندی اعضای این قبیله محسوب می شود. و موید قرابت این دو جنس است.
در پلی تومی 4 شاخه ای که در میانه فیلوگرام شکل گرفته، گونه های جنس Solenanthus در یک کلاد با حمایت 100 قرار گرفته که دال بر تک تبار بودن این جنس است (اسماعیل بگی کرماتی ،1391)
اعضای جنس ها Cynoglossum و lindelofia در فیلوگرام نیز در یک کلاد با حمایت 86 قرار گرفته اند. اعضای این دو جنس هیچ کلادتک تباری را تشکیل نداده اند. اما مجموعه ی کلادی با حمایت 86 ایجاد کرده اند. این دو جنس ظاهراً تک تبار نیستند اما خویشاوند نزدیک یکدیگر به شمار می روند. جنس های Cynoglossum و lindelofia در داشتن گل آذین انتهایی بدون براکته، زائده مستطیلی شکل بین لب ها در دهانه جام و فندقه های خاردار مشابه هستند.
گونه های جنس Rindera در دو زیر کلاد نزدیک به هم قرار دارند و به همراه جنس Lepechiniella incerpicua و یک گونه از جنس paracaryum پارافیلتیک را تشکیل داده اند. براساس نتایج حاصل از این مطالعه جنس Rindera تک تبار نمی باشد.
4-4 روابط فیلوژنی جنس Rindera
جنس Rindera 5 گونه از (R. Regia, R.Albida, R.Bungei, R.lanata, R.Cyclodanta)این جنس با استفاده از توالی هسته ای ITSآنالیز شده که درخت حاصل از آن نشان داد که این جنس تک تبار نمی باشد. آنالیز نیز نشان داد R.Cyclodontaبه عنوان گروه خواهری با کلادی متشکل از گونه های جنس, Lepechiniella ,paracaryum, cynoglossum creticum,lindelofialong, cynogolossum officinale) قرار می گیرد. و در آنالیز انجام شده با استفاده از توالی هسته ای ITSگونه های Rindera در کنارparararyum, Lepechiniella incerpicua قرار گرفته اند و نشان می دهد این گونه ها به هم نزدیکند.
خصوصیات مشترک جنس Rinderaعلفی، کپه ای کوچک، پوشیده از کرک،ساقه افراشته،کاسه گل استکانی هستند.. (خاتم ساز1381)
علفی،ساقه ها معمولا ساده، کرکی نرم،(به ندرت بدون کرک)برگها بیضوی،دمگل بلند،گل اذین به فرم دیهم،کاسه گل 5قسمتی (Davis P.H ,1978))
کاسه گل تقریبا در قسمت پایه به لوب باریک،در میوه خمیده،در گل قایم تقسیم میشود.جام گل لوله ای شکل(Popov M.G ,1953)
در جنس Rinderaدر فیلوگرام نمایش داده شده گونه Cyclodonta.Rدور از گونه های دیگر قرار گرفته
زیرا از لحاظ مورفولوژیکی به دلیل داشتن برگهای نسبتا بدون کرک،برگهای قاعده ای با دمبرگ طویل،
برگهای ساقه ای تخم مرغی و خامه نسبتا کوتاه از سایر جنس ها دور افتاده اند

–269

1-6- سئوالات 31
1-7- ضرورت انجام تحقیق32
1-8- جنبه جدید بودن و نوآوری تحقیق32
1-9- واژه نامه ها و اصطلاحات فنی32
فصل دوم مروری بر ادبیات تحقیق و پیشینه تحقیق34
بررسی متون:35
فصل سوم :مواد وروشها39
3-1-مواد و تجهیزات40
3-1-1-دستگاه ها ووسایل مورد نیاز:40
3-1-2-مواد مصرفی مورد نیاز: 41
3-1-3- محیطهای کشت مورد استفاده: 41
3-2-ترکیبات و محلولهای مورد نیاز و فرمول ساخت آنها42
3-2-1-تهیه محلول(%25) SDS:42
3-2-2- محلول EDTA(5/0 مولار):42
3-2-3-تامپون لیز کننده سلول42
3-2-4- تامپون TE حاوی RNase42
3-2-5- بافر(5X)TBE:42
3-2-7- محلول فنل-کلروفروم-ایزو آمیلیک الکل(PCI):43
3-3- روش انجام طرح:44
3-3-1- نوع مطالعه:44
3-3-2-جامعه مورد مطالعه:44
3-3-3- جمع آوری اطلاعات:44
3-3-4- انجام امور باکتریولوژیک:44
3-4- ژنوتایپینگ ایزوله های سالمونلا با استفاده از روش MLVA46
3-4-1- انجام آزمایش PCR جهت تکثیر لوکوس های VNTR46
3-4-2- الکتروفورز محصولات VNTR50
3-4-3- محاسبه ی اندازه و تعداد تکرار های VNTR52
3-4-4-تجزیه و تحلیل داده های VNTR 52
فصل چهارم یافته ها54
4-1- نمتایج حاصل از جمع آوری نمونه ها 55
4-2- نتایچ حاصل از استخراج ژنوم باکتریایی57
4-3- نتایج حاصل از واکنش PCR جهت تکثیر لوکوس های VNTR58
4-4- میزان تنوع الل های VNTR74
4-5- آنالیز داده ها با استفاده از الگوریتم Minimum Spanning Tree 74
4-6- آنالیز داده های VNTR با استفاده از روش NJ75
فصل پنجم :بحث ونتیجه گیری 77
5-1- بحث78
5-2- نتیجه گیری و جمع بندی91
منابع:92
چکیده انگلسی 96

فهرست جداول و نمودارها
عنوان صفحه
جدول1-1، ویژگی های بیو شیمیایی سالمونلا8
جدول 1-2، طبقه بندی نوین سالمونلا و میزان سروتایپ ها در زیر گونه ها9
جدول 3-1، نام لوکوس ها و پرایمر های اختصاصی47
جدول 3-2،مقادیرموردنیازجهت انجام واکنش هایPCRبرای تکثیرلوکوسهایVNTR48
جدول 3-3، برنامه ریزی دستگاه ترموسایکلر جهت تکثیر لوکوس های SENTR2،
SENTR3 و SE-749
جدول3-4،برنامه ریزی دستگاهترموسایکلرجهت تکثیرلوکوسهایENTR6وSE-849
جدول 3-5، برنامه ریزی دستگاه ترموسایکلر برای تکثیر لوکوس SE-4 49
جدول 3-6، برنامه ریزی دستگاه ترموسایکلر جهت تکثیر لوکوس SE-1050
جدول 3-7، برنامه ریزی دستگاه ترموسایکلر جهت تکثیر لوکوس SE-650
جدول 4-1، در فایل EXCEL73
جدول 4-2، ضریب تنوع هانتر- گاتسون برای هر لوکوس محاسبه شده 74
نمودار 4-1، میزان فراوانی هر یک از سرو تایپ های سالمونلا در پژوهش حاضر56
نمودار 4-2، میزان شیوع هر یک از سرو تایپ های سالمونلا در پژوهش حاضر56
فهرست اشکال
عنوان صفحه
شکل 1-1 تصویر دکتر سالمون دامپزشک آمریکایی.5
شکل1-2 باکتری سالمونلا 6
شکل 1-4مای شماتیک از VNTR ها 23
شکل 1-5 پروفایل اللی 24
شکل 1-6 آنالیز MLVA بوسیله MST 25
شکل 1-7، مزایای MLVA 26
شکل 1-8، مراحل انجام MLVA 27
شکل 4-1، میزان خلوص DNA نمونه ی شماره ی 5357
شکل 4-2، میزان خلوص DNA نمونه ی شماره ی 2457
شکل 4-3، لوکوس ENTR6 58
شکل 4-4، لوکوس SE4 59
شکل 4-5، لوکوس SE4 60
شکل 4-6، لوکوسSE6 61
شکل 4-7، لوکوس SE6 62
شکل 4-8، لوکوسSE7 63
شکل 4-9، لوکوسSE7 64
شکل 4-10، لوکوسSE8 65
شکل 4-11، لوکوسSE8 66
شکل 4-12، لوکوسSE10 67
شکل 4-13، لوکوسSE10 68
شکل 4-14، لوکوسSENTR2 69
شکل 4-15، لوکوسSENTR2 70
شکل 4-16، لوکوسSENTR3 71
شکل 4-17، لوکوسSENTR3 72
شکل 4-18، آنالیز داده های VNTR با استفاده از الگوریتم MST. 75
شکل 4-22، درختچه ی NJ 76
چکیده فارسی :
ژنوتایپینگ سویه های سالمونلا انتریکا سرووار انتریتیدیس جدا شده از نمونه های بالینی در تهران بر پایه روش آنالیز چند لوکوسی متغیر تکراری( MLVA)
مقدمه:سالمونلاانتریکا سبب ایجاد سالمونلوزیس در انسان می شود. سالمونلا انتریکا سرووار انتریتیدیس، دومین سروتایپی می باشد که در سطح دنیا سبب ایجاد سالمونلوزیس می شود. تکنیک MLVA، یکی از روش های نوین ژنوتایپینگ جهت تمایز ایزوله های باکتریایی در همه گیری ها و یا تعیین قرابت فیلوژنتیکی این ایزوله ها می باشد. هدف از این پژوهش، ژنوتایپینگ سویه های سالمونلا انتریتیدیس جدا شده از نمونه های بالینی در تهران بر پایه ی روش MLVA.
مواد و روش ها: در این پژوهش، 51 ایزوله ی سالمونلا انتریکا سرووار انتریتیدیس از نمونه های بالینی در طی سال های 1387 تا 1389 در تهران جدا شدند. ایزوله های سالمونلا انتریتیدیس با استفاده از تکنیک های بیوشیمیایی و سرولوژیکی تایید شدند. جهت انجام تکنیک MLVA، از هشت لوکوس VNTR استفاده شد.
نتایج: 10 ژنوتایپ متفاوت MLVA، در این پزوهش شناسایی شد. با استفاده از روش MST، 51 ایزوله ی سالمونلا انتریتیدیس در 2 کلونال کمپلکس قرار گرفتند. همچنین با استفاده از تکنیک NJ، این ایزوله ها در دو کلاستر جای گرفتند.
بحث و نتیجه گیری: نتایج حاصل از این پژوهش نشان داد که تکنیک MLVA، یک روش قدرتمند و آسان می باشد و می توان از این تکنیک در اپیدمی ها ی ناشی از سالمونلا انتریتیدیس استفاده نمود.
کلمات کلیدی: سالمونلا، MLVA، VNTR
68580077470

کلیات تحقیق
بیان مسئله
سالمونلا باسیل گرم منفی،واجدتاژک پری تریش وجزءخانوادهیانتروباکتریاسهمیباشد.گروه سالمونلا شامل یک جنس منفرد به نام سالمونلا است. این جنس شامل ارگانیسم هایی است که قبلا تحت عنوان سالمونلا و آریزونا شناخته می شدند. وقتی سالمونلا ها از طریق مسیر خوراکی به انسان و حیوانات منتقل شوند، بیماریزا هستند. این باکتری از طریق حیوان و فروارده های حیوانی به انسان سرایت می کنند و موجب تب روده ای، مسمومیت های غذایی و گاستروانتریت در انسان می شوند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(7).
طبقه بندی سالمونلا در طی سالیان متمادی دچار تغییرات زیادی شده است. سالمونلا گروه بزرگی از باکتری های روده ای شامل تقریبا 2200 سروتایپ می باشد. بر مبنای مدل اخیر طبقه بندی CDC تنها یک گروه منفرد از سالمونلا وجود دارد که به هفت زیر گروه(1،2،،a3،b3،4،5،6) طبقه بندی می شوند. طبقه بندی اخیر بر مبنای شباهت ژنتیکی ایزوله های سالمونلا) 16S r RNA) است. سیستم های طبقه بندی قدیمی تر شامل 1) طبقه بندی کافمن_وایت: که هر سروتایپ را به صورت یک گونه منفرد سالمونلا شناسایی می کند. 2) سیستم ادواردز_اوینگ: که سالمونلاها را به سه گونه( سالمونلا کلراسوئیس، سالمونلا تایفی، سالمونلا انتریتیدیس) و صدها سروتایپ تقسیم بندی می کند. 3) مدل هیبریداسیون DNA: که سالمونلا ها را به یک گونه به نام سالمونلا انتریتیدیس و زیر گونه های اریزونه، بونگوری، دی اریزونه، انتریکا، سالاما،هاتنا، تقسیم می نمایند که طبقه بندی CDC با کمی تغییر از همین طبقه بندی استفاده می کند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite><Cite><Author>Murray</Author><Year>2013</Year><RecNum>2</RecNum><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">2</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Murray, P.R.</author><author>Rosenthal, K.S.</author><author>Pfaller, M.A.</author></authors></contributors><titles><title>Medical Microbiology</title></titles><dates><year>2013</year></dates><publisher>Mosby/Elsevier</publisher><isbn>9780323054706</isbn><urls><related-urls><url>https://books.google.com/books?id=O92zd8fV-RcC</url></related-urls></urls></record></Cite><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(4-6).
روش های مختلفی برای جداسازی باکتری سالمونلا از نمونه های محیطی وجود دارند که شامل: روش های کشت سنتی و بیوشیمیایی، سرولوژی و مولکولی می باشد. در کشت سنتی از محیط های پیش انتخابی و اختصاصی نظیر S.S Agarو XLD Agar استفاده می شود. روش های سرولوژی براساس واکنش انتی بادی با انتی ژن تولیدی توسط باکتری می باشد.
استفاده از روش های سرولوژیک بدلیل تنوع گسترده خصوصیات آنتی ژنتیکی باکتریایی و نیاز به طیف گسترده و وسیعی از آنتی بادی ها و همچنین هزینه گزاف تولید و مصرف آن، به مرور جایگاه خود را از دست داده اند. تا کنون از روش های مولکولی متنوعی جهت ژنوتایپینگ گونه های مختلف سالمونلا استفاده شده است. به کارگیری این روش ها، اهمیت ویژه ای در پژوهش های اپیدمیولوژیکی دارد . با شروع عصر مولکولی دانشمندان رویکرد خود را از فنوتیپ به ژنوتیپ تغییر داده اند.
روش های مختلفی مثل Rep- PCR، RAPD- PCR، Ribotyping، PFGE، MLST و MLVA جهت ژنتوتایپینگ سویه های سالمونلا تا به حال مورد استفاده قرار گرفته است بطوریکه هریک ازاینروش ها معایب و مزایایی دارند، که در این میان روش MLVA از روش هایی مولکولی جدید و نوینی جهت ژنوتایپینگ باکتریایی مطرح شده است و بر این اساس توسعه یافتهُ است ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1605</RecNum><record><rec-number>1605</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1605</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><periodical><full-title>Euro Surveill</full-title></periodical><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7).
این روش با مزایایی که نسبت به تکنیک PFGE دارد روز به روز به اهمیت و محبوبیت آن افزوده می شود. بطوریکه در آینده جایگاه ویژه ای در بین اپیدمیولوژیست ها خواهد داشت. در تکنیک MLVA بطور خاص، توالی های تکراری پشت سر هم مورد بررسی و ارزیابی قرار می گیرند و از نظر تعداد تکرار های VNTR با یکدیگر مقایسه می شوند. مجموعه ای از این تکرار ها بصورت دسته ای از اعداد که در اصطلاح پروفایل اللی گفته می شود. برای هر سویه باکتری نمایش داده می شود و به عنوان یک کد اطلاعاتی برای آن سویه در نظر گرفته می شود. ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1605</RecNum><record><rec-number>1605</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1605</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><periodical><full-title>Euro Surveill</full-title></periodical><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7)
MLVA دارای مزایای زیادی نسبت به PFGE می باشد. در MLVA تنها نیاز به دستگاه PCR است و این روش یک تکنیک PCR-bassed میباشد در حالیکه در PFGE نیاز به امکانات و تجهیزات مخصوص و پر هزینه است. در MLVA تنها داشتن DNA باکتری کافیست در حالیکه در PFGE نیاز به باکتری زنده است.هزینه MLVA به مراتب از PFGE کمتر است و بسیار سریع تر از آن انجام پذیر می باشد. و نکته بسیار مهم اینست که، داده های حاصل از MLVA از آنجایی که بصورت مجموعه ای از ارقام ذخیره می شود را می توان به راحتی در بانک های اطلاعاتی ذخیره نمود و با نتایج سایر پژوهشگران مقایسه نمود هر چند چنین چیزی در PFGE دیده نمی شود گرچه تلاش های مانند شبکه Plus Net در جهت حل این موضوع ایجاد شده است.به این ترتیب MLVA بعنوان یک تکنیک جایگزین PFGE برای کشور های در حال توسعه مطرح می باشد ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1605</RecNum><record><rec-number>1605</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1605</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><periodical><full-title>Euro Surveill</full-title></periodical><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7).
هر گونه باکتریایی، توالی های VNTR مخصوص به خود را دارد که می توان با طراحی پرایمر برای آنها، الل مورد نظر را تکثیر داد و از نظر تعداد تکرار مورد بررسی قرار داد. در طرح حاضر سعی شده است با انتخاب توالی هایVNTR مناسب، یک روش جدید، کم هزینه، سریع برای ژنوتایپینگ سویه های سالمونلا انتریکا سرووار انتریتیدیس بکار گرفته شود تا در آینده بتواند جایگزین روش های گرانقیمتی مانند PFGE شود و بتوان از آن در آزمایشگاه های تحقیقاتی که تنها تجهیز به دستگاه PCR باشند، استفاده نمود و بتواند به سرعت هر نوع اپیدمی را شناسایی کند و پژوهشگران بتوانند نتایج خود را با یکدیگر مقایسه نمایند(7).
1-2- کلیات
1-2-1، تاریخچه
دو دانشمند فرانسوی با نام های کومل و لوئی در اوایل قرن نوزدهم میلادی علائم کلینیکی تب تیفوئید را بررسی کردند. در سال 1823 میلادی برتونئو به علت تورم غدد لنفاوی روده آن بیماری را به نام روده جوشان نام گذاری نمود. کرهارد در اپیدمی تیفوئید در فیلادلفیا ایالات متحده آمریکا در سال 1837 میلادی، تیفوس و حصبه را از متمایز کرد.در سال 1839 میلادی شونلین تیفوس را به نام تیفوس اگژنتماتیکوس و حصبه را تیفوس احشایی نام گذاری نمود. در میان سال های 1849-1851 در انگلستان، جنر با استفاده از علائم بیماری های تب دانه دار، حصبه را تشخیص داد و عامل آن را سالمونلا تایفی نامید. اسم سالمونلا بر گرفته شده از دامپزشک آمریکایی به نام دکتر دانیال المر سالمون می باشد که به پاس تحقیقات و زحمات گسترده این دانشمند نام گذاری شده است.هوپ در سال 1886 از ادرار، فیفیر در سال 1885 از مدفوع، در سال 1888 ویلچور از خون سالمونلا را جدا نمودند.در سال 1896 سیکارد و ویدال آنتی بادی علیه سالمونلا را از خون جداسازی کردند (2و3) .

شکل 1-1: تصویر دکتر سالمون دامپزشک آمریکایی.
1-2-2، باکتریولوژی سالمونلا
سالمونلا از اجزای خانواده انتروباکتریاسه می باشد که واجد تاژک پری تریش می باشد ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4) این باکتری از طریق حیوانات و محصولات حیوانی آلوده به این باکتری به انسان منتقل شده و سبب بیماری در انسان می شود ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4). سالیانه تخمین زده می شود 1.4 میلیون نفر در ایلات متحده آمریکا توسط سالمونلا بیمار می شوندPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NZWFkPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48UmVj
TnVtPjcwNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzA2PC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idzBkZmV4MDA0MHJ2enpld2VweXBkc3J1enA5
dnN0c3gwMnR0Ij43MDY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h
bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1l
YWQsIFAuIFMuPC9hdXRob3I+PGF1dGhvcj5TbHV0c2tlciwgTC48L2F1dGhvcj48YXV0aG9yPkRp
ZXR6LCBWLjwvYXV0aG9yPjxhdXRob3I+TWNDYWlnLCBMLiBGLjwvYXV0aG9yPjxhdXRob3I+QnJl
c2VlLCBKLiBTLjwvYXV0aG9yPjxhdXRob3I+U2hhcGlybywgQy48L2F1dGhvcj48YXV0aG9yPkdy
aWZmaW4sIFAuIE0uPC9hdXRob3I+PGF1dGhvcj5UYXV4ZSwgUi4gVi48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EaXZpc2lvbiBvZiBCYWN0ZXJpYWwgYW5k
IE15Y290aWMgRGlzZWFzZXMsIENlbnRlcnMgZm9yIERpc2Vhc2UgQ29udHJvbCBhbmQgUHJldmVu
dGlvbiwgQXRsYW50YSwgR2VvcmdpYSAzMDMzMywgVVNBLiBwZm0wQGNkYy5nb3Y8L2F1dGgtYWRk
cmVzcz48dGl0bGVzPjx0aXRsZT5Gb29kLXJlbGF0ZWQgaWxsbmVzcyBhbmQgZGVhdGggaW4gdGhl
IFVuaXRlZCBTdGF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW1lcmcgSW5mZWN0IERpczwv
c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVtZXJnIElu
ZmVjdCBEaXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42MDctMjU8L3BhZ2VzPjx2
b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxlZGl0aW9uPjE5OTkvMTAvMDg8L2Vk
aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFjdXRlIERpc2Vhc2U8L2tleXdvcmQ+PGtleXdvcmQ+
QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5Gb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD4qRm9vZGJvcm5lIERpc2Vhc2VzL2NsYXNzaWZpY2F0aW9uL2VwaWRlbWlvbG9neS9tb3J0
YWxpdHkvdmlyb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+R2FzdHJvZW50ZXJpdGlzLyplcGlkZW1p
b2xvZ3kvKm1pY3JvYmlvbG9neS9tb3J0YWxpdHk8L2tleXdvcmQ+PGtleXdvcmQ+SG9zcGl0YWxp
emF0aW9uLypzdGF0aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3Jk
Pkh1bWFuczwva2V5d29yZD48a2V5d29yZD5MaXN0ZXJpYS9pc29sYXRpb24gJmFtcDsgcHVyaWZp
Y2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+UG9wdWxhdGlvbiBTdXJ2ZWls
bGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYS9pc29sYXRpb24gJmFt
cDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VG94b3BsYXNt
YS9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtl
eXdvcmQ+VW5pdGVkIFN0YXRlcy9lcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48cHViLWRhdGVzPjxkYXRlPlNlcC1PY3Q8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xMDgwLTYwNDAgKFByaW50KSYjeEQ7MTA4MC02MDQwIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMDUxMTUxNzwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy
eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTA1MTE1MTc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjYy
NzcxNDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMzIwMS9laWQwNTA1Ljk5
MDUwMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5NZWFkPC9BdXRob3I+PFllYXI+MTk5OTwvWWVhcj48UmVj
TnVtPjcwNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+NzA2PC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0idzBkZmV4MDA0MHJ2enpld2VweXBkc3J1enA5
dnN0c3gwMnR0Ij43MDY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5h
bCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPk1l
YWQsIFAuIFMuPC9hdXRob3I+PGF1dGhvcj5TbHV0c2tlciwgTC48L2F1dGhvcj48YXV0aG9yPkRp
ZXR6LCBWLjwvYXV0aG9yPjxhdXRob3I+TWNDYWlnLCBMLiBGLjwvYXV0aG9yPjxhdXRob3I+QnJl
c2VlLCBKLiBTLjwvYXV0aG9yPjxhdXRob3I+U2hhcGlybywgQy48L2F1dGhvcj48YXV0aG9yPkdy
aWZmaW4sIFAuIE0uPC9hdXRob3I+PGF1dGhvcj5UYXV4ZSwgUi4gVi48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PGF1dGgtYWRkcmVzcz5EaXZpc2lvbiBvZiBCYWN0ZXJpYWwgYW5k
IE15Y290aWMgRGlzZWFzZXMsIENlbnRlcnMgZm9yIERpc2Vhc2UgQ29udHJvbCBhbmQgUHJldmVu
dGlvbiwgQXRsYW50YSwgR2VvcmdpYSAzMDMzMywgVVNBLiBwZm0wQGNkYy5nb3Y8L2F1dGgtYWRk
cmVzcz48dGl0bGVzPjx0aXRsZT5Gb29kLXJlbGF0ZWQgaWxsbmVzcyBhbmQgZGVhdGggaW4gdGhl
IFVuaXRlZCBTdGF0ZXM8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RW1lcmcgSW5mZWN0IERpczwv
c2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkVtZXJnIElu
ZmVjdCBEaXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz42MDctMjU8L3BhZ2VzPjx2
b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+NTwvbnVtYmVyPjxlZGl0aW9uPjE5OTkvMTAvMDg8L2Vk
aXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPkFjdXRlIERpc2Vhc2U8L2tleXdvcmQ+PGtleXdvcmQ+
QW5pbWFsczwva2V5d29yZD48a2V5d29yZD5Gb29kIE1pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD4qRm9vZGJvcm5lIERpc2Vhc2VzL2NsYXNzaWZpY2F0aW9uL2VwaWRlbWlvbG9neS9tb3J0
YWxpdHkvdmlyb2xvZ3k8L2tleXdvcmQ+PGtleXdvcmQ+R2FzdHJvZW50ZXJpdGlzLyplcGlkZW1p
b2xvZ3kvKm1pY3JvYmlvbG9neS9tb3J0YWxpdHk8L2tleXdvcmQ+PGtleXdvcmQ+SG9zcGl0YWxp
emF0aW9uLypzdGF0aXN0aWNzICZhbXA7IG51bWVyaWNhbCBkYXRhPC9rZXl3b3JkPjxrZXl3b3Jk
Pkh1bWFuczwva2V5d29yZD48a2V5d29yZD5MaXN0ZXJpYS9pc29sYXRpb24gJmFtcDsgcHVyaWZp
Y2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+UG9wdWxhdGlvbiBTdXJ2ZWls
bGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+U2FsbW9uZWxsYS9pc29sYXRpb24gJmFt
cDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VG94b3BsYXNt
YS9pc29sYXRpb24gJmFtcDsgcHVyaWZpY2F0aW9uL3BhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtl
eXdvcmQ+VW5pdGVkIFN0YXRlcy9lcGlkZW1pb2xvZ3k8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48cHViLWRhdGVzPjxkYXRlPlNlcC1PY3Q8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xMDgwLTYwNDAgKFByaW50KSYjeEQ7MTA4MC02MDQwIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xMDUxMTUxNzwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy
eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTA1MTE1MTc8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGN1c3RvbTI+MjYy
NzcxNDwvY3VzdG9tMj48ZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+MTAuMzIwMS9laWQwNTA1Ljk5
MDUwMjwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9y
ZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE.DATA (8).
بیشتر سروتایپ های این باکتری برای انسان و اکثر حیوانات بیماریزا هستند. سالمونلا در دستگاه گوارش مهره داران یافت شده و بیماری های متعدد با علائم متفاوت را ایجاد می نماید ADDIN EN.CITE <EndNote><Cite><Author>Baumler</Author><Year>1998</Year><RecNum>1613</RecNum><record><rec-number>1613</rec-number><foreign-keys><key app="EN" db-id="w0dfex0040rvzzewepypdsruzp9vstsx02tt">1613</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Baumler, A. J.</author><author>Tsolis, R. M.</author><author>Ficht, T. A.</author><author>Adams, L. G.</author></authors></contributors><auth-address>Department of Medical Microbiology and Immunology, College of Medicine, Texas A&amp;M University, College Station, Texas 77843-4467, USA.abaumler@tamu.edu</auth-address><titles><title>Evolution of host adaptation in Salmonella enterica</title><secondary-title>Infect Immun</secondary-title></titles><periodical><full-title>Infect Immun</full-title></periodical><pages>4579-87</pages><volume>66</volume><number>10</number><edition>1998/09/24</edition><keywords><keyword>*Adaptation, Biological</keyword><keyword>Animals</keyword><keyword>*Biological Evolution</keyword><keyword>Humans</keyword><keyword>Mammals/*microbiology</keyword><keyword>Models, Biological</keyword><keyword>Plasmids/genetics</keyword><keyword>Salmonella Infections/microbiology</keyword><keyword>Salmonella enterica/*pathogenicity</keyword><keyword>Virulence/genetics</keyword></keywords><dates><year>1998</year><pub-dates><date>Oct</date></pub-dates></dates><isbn>0019-9567 (Print)&#xD;0019-9567 (Linking)</isbn><accession-num>9746553</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=9746553</url></related-urls></urls><custom2>108564</custom2><language>eng</language></record></Cite></EndNote>(9). یکی از علل مهم مسمومیت های غذایی در اروپا و ایالات متحده آمریکا، سالمونلا انتریکا سرووار انتریتیدیس می باشد. براورد شده است که 93.8 میلیون نفر سالانه در کل جهان به سالمونلا مبتلا می شوند که نتیجه آن 155000 مورد مرگ در سال می باشد.

شکل1-2: در شکل سمت چپ باکتری سالمونلا با تاژک پری تریش دیده می شود و در شکل سمت راست میزان شیوع باکتری سالمونلا در سطح جهان را نشان می دهد.
1-2-3، تست ها و خواص بیوشیمیایی
این باکتری تست اندول و ONPG آن منفی بوده و لاکتوز را تخمیر نمی کند اما این باکتری متحرک بوده و تست سیترات و SH2 آن مثبت می باشد. واکنش آنتی بادی علیه آنتی ژن های Vi و H و O این باکتری مبنای سروتایپینگ سالنونلا است.
در حالیکه مبنای اصلی طبقه بندی سالمونلا سروتایپینگ آنتی ژن های سطحی می باشد اما اساس تفریق سروتایپ تایفی تست های بیوشیمیایی می باشد . سروتایپ تایفی از نظر تست های بیوشیمیایی به صورت خنثی می باشد. سروتایپ تایفی در همه تست های تولید گاز از گلوکز، موسینات،آرابینوز، سیمون سیترات، اورنی تین دکربوکسیلاز و مصرف استات منفی را بروز می دهد. سروتایپ تایفی مسئول تیفوئید بوده و سایر سروتایپ ها باعث انتریت و انتروکولیت می شودPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkJhdW1sZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxSZWNOdW0+
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSdFTicgZGItaWQ9J3BhMGZ6MnAwOGF4OXd0ZXh3ZTg1NTJ0ZTBkdjBhd3dhOTlm
cyc+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdKb3VybmFsIEFydGljbGUn
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmF1bWxlciwgQS4g
Si48L2F1dGhvcj48YXV0aG9yPlRzb2xpcywgUi4gTS48L2F1dGhvcj48YXV0aG9yPkZpY2h0LCBU
LiBBLjwvYXV0aG9yPjxhdXRob3I+QWRhbXMsIEwuIEcuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9n
eSBhbmQgSW1tdW5vbG9neSwgQ29sbGVnZSBvZiBNZWRpY2luZSwgVGV4YXMgQSZhbXA7TSBVbml2
ZXJzaXR5LCBDb2xsZWdlIFN0YXRpb24sIFRleGFzIDc3ODQzLTQ0NjcsIFVTQS5hYmF1bWxlckB0
YW11LmVkdTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkV2b2x1dGlvbiBvZiBob3N0IGFk
YXB0YXRpb24gaW4gU2FsbW9uZWxsYSBlbnRlcmljYTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5J
bmZlY3QgSW1tdW48L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+NDU3OS04NzwvcGFn
ZXM+PHZvbHVtZT42Njwvdm9sdW1lPjxudW1iZXI+MTA8L251bWJlcj48ZWRpdGlvbj4xOTk4LzA5
LzI0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD4qQWRhcHRhdGlvbiwgQmlvbG9naWNhbDwv
a2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPipCaW9sb2dpY2FsIEV2
b2x1dGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFtbWFs
cy8qbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgQmlvbG9naWNhbDwva2V5
d29yZD48a2V5d29yZD5QbGFzbWlkcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25l
bGxhIEluZmVjdGlvbnMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEg
ZW50ZXJpY2EvKnBhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VmlydWxlbmNlL2dlbmV0
aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PHB1Yi1kYXRl
cz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE5LTk1NjcgKFBy
aW50KSYjeEQ7MDAxOS05NTY3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT45NzQ2NTUz
PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku
bmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQm
YW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz05NzQ2NTUzPC91cmw+PC9yZWxhdGVkLXVy
bHM+PC91cmxzPjxjdXN0b20yPjEwODU2NDwvY3VzdG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFn
ZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5aaW5zc2VyPC9BdXRob3I+PFllYXI+MTk5
NzwvWWVhcj48UmVjTnVtPjExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhk
dmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MTE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlppbnNz
ZXIsIEguPC9hdXRob3I+PGF1dGhvcj5Kb2tsaWssIFcuSy48L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Wmluc3NlciBNaWNyb2Jpb2xvZ3k8L3RpdGxlPjwv
dGl0bGVzPjxkYXRlcz48eWVhcj4xOTk3PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5QcmVudGlj
ZSBIYWxsPC9wdWJsaXNoZXI+PGlzYm4+OTc4OTgxNDAwOTE5NTwvaXNibj48dXJscz48cmVsYXRl
ZC11cmxzPjx1cmw+aHR0cHM6Ly9ib29rcy5nb29nbGUuY29tL2Jvb2tzP2lkPWs1cHpQZ0FBQ0FB
SjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkJhdW1sZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxSZWNOdW0+
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlz
PjxrZXkgYXBwPSdFTicgZGItaWQ9J3BhMGZ6MnAwOGF4OXd0ZXh3ZTg1NTJ0ZTBkdjBhd3dhOTlm
cyc+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdKb3VybmFsIEFydGljbGUn
PjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QmF1bWxlciwgQS4g
Si48L2F1dGhvcj48YXV0aG9yPlRzb2xpcywgUi4gTS48L2F1dGhvcj48YXV0aG9yPkZpY2h0LCBU
LiBBLjwvYXV0aG9yPjxhdXRob3I+QWRhbXMsIEwuIEcuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9n
eSBhbmQgSW1tdW5vbG9neSwgQ29sbGVnZSBvZiBNZWRpY2luZSwgVGV4YXMgQSZhbXA7TSBVbml2
ZXJzaXR5LCBDb2xsZWdlIFN0YXRpb24sIFRleGFzIDc3ODQzLTQ0NjcsIFVTQS5hYmF1bWxlckB0
YW11LmVkdTwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkV2b2x1dGlvbiBvZiBob3N0IGFk
YXB0YXRpb24gaW4gU2FsbW9uZWxsYSBlbnRlcmljYTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5J
bmZlY3QgSW1tdW48L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+NDU3OS04NzwvcGFn
ZXM+PHZvbHVtZT42Njwvdm9sdW1lPjxudW1iZXI+MTA8L251bWJlcj48ZWRpdGlvbj4xOTk4LzA5
LzI0PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD4qQWRhcHRhdGlvbiwgQmlvbG9naWNhbDwv
a2V5d29yZD48a2V5d29yZD5BbmltYWxzPC9rZXl3b3JkPjxrZXl3b3JkPipCaW9sb2dpY2FsIEV2
b2x1dGlvbjwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFtbWFs
cy8qbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPk1vZGVscywgQmlvbG9naWNhbDwva2V5
d29yZD48a2V5d29yZD5QbGFzbWlkcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5TYWxtb25l
bGxhIEluZmVjdGlvbnMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEg
ZW50ZXJpY2EvKnBhdGhvZ2VuaWNpdHk8L2tleXdvcmQ+PGtleXdvcmQ+VmlydWxlbmNlL2dlbmV0
aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PHB1Yi1kYXRl
cz48ZGF0ZT5PY3Q8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDE5LTk1NjcgKFBy
aW50KSYjeEQ7MDAxOS05NTY3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT45NzQ2NTUz
PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmku
bmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQm
YW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz05NzQ2NTUzPC91cmw+PC9yZWxhdGVkLXVy
bHM+PC91cmxzPjxjdXN0b20yPjEwODU2NDwvY3VzdG9tMj48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFn
ZT48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5aaW5zc2VyPC9BdXRob3I+PFllYXI+MTk5
NzwvWWVhcj48UmVjTnVtPjExPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xMTwvcmVjLW51
bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhk
dmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MTE8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iQm9vayI+NjwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPlppbnNz
ZXIsIEguPC9hdXRob3I+PGF1dGhvcj5Kb2tsaWssIFcuSy48L2F1dGhvcj48L2F1dGhvcnM+PC9j
b250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+Wmluc3NlciBNaWNyb2Jpb2xvZ3k8L3RpdGxlPjwv
dGl0bGVzPjxkYXRlcz48eWVhcj4xOTk3PC95ZWFyPjwvZGF0ZXM+PHB1Ymxpc2hlcj5QcmVudGlj
ZSBIYWxsPC9wdWJsaXNoZXI+PGlzYm4+OTc4OTgxNDAwOTE5NTwvaXNibj48dXJscz48cmVsYXRl
ZC11cmxzPjx1cmw+aHR0cHM6Ly9ib29rcy5nb29nbGUuY29tL2Jvb2tzP2lkPWs1cHpQZ0FBQ0FB
SjwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE.DATA (4, 9, 10).
ویژگی های بیوشیمیایی سالمونلا همان ویژگی های عمومی خانواده انتروباکتریاسه می باشد. تخمیر کربوهیدرات توسط سالمونلا همراه با تولید گاز و اسید می باشد. سالمونلا مانیتول، آرابینوز، گلوکز، دولسیتول، سوربیتول و مالتوز را تخمیر می کند اما سالیسین، آدنیتول، لاکتوز و ساکارز را تخمیر نمی کند ولی سالمونلا کلراسوئیس و تعدادی از سویه های سالمونلا تایفی، قادر به تخمیر آرابینوز نیستند. سالمونلا کلراسوئیس، سالمونلا پولروم، برخی از سویه های سالمونلا پاراتایفی و تقریبا تمام سویه های سالمونلا تایفی قادر به تخمیر دولسیتول نمی باشند. سالمونلا گالیناروم، برخی از سروتایپ های سالمونلا تایفی موریوم، سالمونلا تایفی و سالمونلا دابلین هنگام تخمیر کربوهیدرات، گاز ایجاد نمی کند. برخی از سویه ها قادر به تخمیر ساکارز، رافینوز و لاکتوز هستند، این ویژگی های غیر عادی بدلیل وجود پلاسمید است. اکثرا سالمونلا آریزونه واجد فعالیت بتاگالاکتوزیداز می باشد و لاکتوز را یا به سرعت و یا به آهستگی تخمیر می کند. بیشتر سویه هایی که قند های خاص را تخمیر میکنند، این عمل را با شدت بالا انجام می دهند و در آب پپتون دار در دمای 37 درجه سانتی گراد و در مدت زمان 6 تا 10 ساعت، اسید تولید می کنند. ممکن است سویه های غیر تخمیر کننده در اثر چهش به تخمیر کننده تبدیل شوند و بعد از گذشت چند روز اسید ایجاد کنند و امکان دارد با سایر سالمونلا ها که تخمیر کننده هستند، اشتباه گرفته شوند. برخی از سویه ها دارای نقص در فرایند جذب قند هستند و اسید را در طول مدت 10 الی 20 ساعت ایجاد می کنند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-4، طبقه بندی سالمونلا
طبقه بندی سالمونلا بسیار دشوار است، به علت اینکه از گونه های متععدی تشکیل شده است. معمولا گونه های سالمونلا را بر اساس ویژگی های بیوشیمیایی، اپیدمیولوژی، میزبان و آنتی ژن های O، H و Vi طبقه بندی می شوند. برای اولین بار در سال 1929 میلادی طبقه بندی سالمونلا توسط کافمن صورت گرفت که توسط وایت این طبقه بندی تکمیل گردید. بر اساس این طبقه بندی، سروتایپ های سالمونلا در یک گونه منفرد قرار گرفت. طبقه بندی دیگری که وجود دارد،ادواردز-اوینگ می باشد که سالمونلا را در سه گونه ی سالمونلا تایفی، سالمونلا کلراسوئیس و انتریتیدیس و صد ها سروتایپ طبقه بندی می کند(4و10).
طبقه بندی سومی که برای سالمونلا وجود دارد، بر اساس هیبریداسیون DNA می باشد. که بر اساس آن جنس سالمونلا شامل دو گونه ی سالمونلا بونگوری و سالمونلا انتریکا می باشد. در این طبقه بندی اکثر پاتوژن های انسان در گونه ی انتریکا جای گرفته اند.
سالمونلا انتریکا به شش زیر گونه تقسیم می شودکه شامل: سالمونلا انتریکا، سالمونلا سالاما، سالمونلا آریزونه، سالمونلا دی آریزونه، سالمونلا هونته و سالمونلا انتریتیدیس می باشد(5).
جدول1-1، ویژگی های بیو شیمیایی سالمونلا
زیرگووه گونه
ویژگی
1 2 3a 3b 4 5 6
انتریکا سالامه آریزونه دی آریزونه هونته بونگوری اندیکا
ONPG - - + + - + متغییر
هضم ژلاتین - + + + + - +
مصرفD تارتارات + - - - - - -
مصرف مالونات - + + + - - -
تخمیر دولسیتول + + - - - + متغییر
تخمیر لاکتوز - - - + - -
تخمیر سالیسین - - - - + - -
تخمیر سوربیتول + + + + + + -
تخمیر Dگالاکتورونات - - + + + +
گاماگلوتامیل ترانسفراز + + - + + + +
تاژک دو فازی دو فازی تک فازی دو فازی تک فازی تک فازی دو فازی
رشد در حضورKCN - - - - + + +
جدول 1-2، طبقه بندی نوین سالمونلا و میزان سروتایپ ها در زیر گونه هاPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkhvbG1lczwvQXV0aG9yPjxZZWFyPjE5Njg8L1llYXI+PFJlY051bT4y
MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2xtZXMsIEEu
IEouPC9hdXRob3I+PGF1dGhvcj5FaXNlbnN0YXJrLCBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv
bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgbXV0YWdlbmljIGVmZmVjdCBvZiB0aHltaW5l
LXN0YXJ2YXRpb24gb24gU2FsbW9uZWxsYSB0eXBoaW11cml1bTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5NdXRhdCBSZXM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs
bC10aXRsZT5NdXRhdCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNS0yMTwv
cGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGVkaXRpb24+MTk2OC8w
MS8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+TXV0YWdlbnMvcGhhcm1hY29sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPipNdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5QZW5pY2lsbGluIFJl
c2lzdGFuY2U8L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNpbGxpbnM8L2tleXdvcmQ+PGtleXdvcmQ+
U2FsbW9uZWxsYSB0eXBoaW11cml1bTwva2V5d29yZD48a2V5d29yZD5TZWxlY3Rpb24sIEdlbmV0
aWM8L2tleXdvcmQ+PGtleXdvcmQ+VGh5bWluZS8qbWV0YWJvbGlzbTwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTY4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuLUZlYjwvZGF0
ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMjctNTEwNyAoUHJpbnQpJiN4RDswMDI3LTUx
MDcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjQ4NzMzMzE8L2FjY2Vzc2lvbi1udW0+
PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRy
ZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlv
biZhbXA7bGlzdF91aWRzPTQ4NzMzMzE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0
cm9uaWMtcmVzb3VyY2UtbnVtPjAwMjctNTEwNyg2OCk5MDA3Ni02IFtwaWldPC9lbGVjdHJvbmlj
LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENp
dGU+PEF1dGhvcj5Cb2NrPC9BdXRob3I+PFllYXI+MTk4NDwvWWVhcj48UmVjTnVtPjIzPC9SZWNO
dW0+PHJlY29yZD48cmVjLW51bWJlcj4yMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg
YXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MjM8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJvY2ssIEsuPC9hdXRob3I+
PGF1dGhvcj5NZWxkYWwsIE0uPC9hdXRob3I+PGF1dGhvcj5CdW5kbGUsIEQuIFIuPC9hdXRob3I+
PGF1dGhvcj5JdmVyc2VuLCBULjwvYXV0aG9yPjxhdXRob3I+R2FyZWdnLCBQLiBKLjwvYXV0aG9y
PjxhdXRob3I+Tm9yYmVyZywgVC48L2F1dGhvcj48YXV0aG9yPkxpbmRiZXJnLCBBLiBBLjwvYXV0
aG9yPjxhdXRob3I+U3ZlbnNvbiwgUy4gQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+VGhlIGNvbmZvcm1hdGlvbiBvZiBTYWxtb25lbGxhIE8tYW50aWdl
bmljIHBvbHlzYWNjaGFyaWRlIGNoYWlucyBvZiBzZXJvZ3JvdXBzIEEsIEIsIGFuZCBEMSBwcmVk
aWN0ZWQgYnkgc2VtaS1lbXBpcmljYWwsIEhhcmQtU3BoZXJlIChIU0VBKSBjYWxjdWxhdGlvbnM8
L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2FyYm9oeWRyIFJlczwvc2Vjb25kYXJ5LXRpdGxlPjwv
dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNhcmJvaHlkciBSZXM8L2Z1bGwtdGl0bGU+
PC9wZXJpb2RpY2FsPjxwYWdlcz4yMy0zNDwvcGFnZXM+PHZvbHVtZT4xMzA8L3ZvbHVtZT48ZWRp
dGlvbj4xOTg0LzA3LzE1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5DYXJib2h5ZHJhdGUg
Q29uZm9ybWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+
TW9kZWxzLCBNb2xlY3VsYXI8L2tleXdvcmQ+PGtleXdvcmQ+KlBvbHlzYWNjaGFyaWRlcywgQmFj
dGVyaWFsPC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEvKmltbXVub2xvZ3k8L2tleXdvcmQ+
PGtleXdvcmQ+U2Vyb3R5cGluZzwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5
PC9rZXl3b3JkPjxrZXl3b3JkPlRoZXJtb2R5bmFtaWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh
dGVzPjx5ZWFyPjE5ODQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWwgMTU8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4wMDA4LTYyMTUgKFByaW50KSYjeEQ7MDAwOC02MjE1IChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT42NDc4NDU5PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy
ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5
LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp
c3RfdWlkcz02NDc4NDU5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl
c291cmNlLW51bT4wMDA4LTYyMTUoODQpODUyNjctMiBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJj
ZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ccm9va3M8L0F1dGhvcj48WWVhcj4yMDEyPC9ZZWFyPjxS
ZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+QnJvb2tzLCBHLjwvYXV0aG9y
PjxhdXRob3I+Q2Fycm9sbCwgSy5DLjwvYXV0aG9yPjxhdXRob3I+QnV0ZWwsIEouPC9hdXRob3I+
PGF1dGhvcj5Nb3JzZSwgUy48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxl
cz48dGl0bGU+SmF3ZXR6IE1lbG5pY2smYW1wO0FkZWxiZXJncyBNZWRpY2FsIE1pY3JvYmlvbG9n
eSAyNi9FPC90aXRsZT48L3RpdGxlcz48ZGF0ZXM+PHllYXI+MjAxMjwveWVhcj48L2RhdGVzPjxw
dWJsaXNoZXI+TWNncmF3LWhpbGw8L3B1Ymxpc2hlcj48aXNibj45NzgwMDcxNzkwMzE0PC9pc2Ju
Pjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwczovL2Jvb2tzLmdvb2dsZS5jb20vYm9va3M/
aWQ9VVVTWFY4QjlpOXNDPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48Q2l0ZT48QXV0aG9yPkhvbG1lczwvQXV0aG9yPjxZZWFyPjE5Njg8L1llYXI+PFJlY051bT4y
MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjA8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIwPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Ib2xtZXMsIEEu
IEouPC9hdXRob3I+PGF1dGhvcj5FaXNlbnN0YXJrLCBBLjwvYXV0aG9yPjwvYXV0aG9ycz48L2Nv
bnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5UaGUgbXV0YWdlbmljIGVmZmVjdCBvZiB0aHltaW5l
LXN0YXJ2YXRpb24gb24gU2FsbW9uZWxsYSB0eXBoaW11cml1bTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5NdXRhdCBSZXM8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVs
bC10aXRsZT5NdXRhdCBSZXM8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xNS0yMTwv
cGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGVkaXRpb24+MTk2OC8w
MS8wMTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+TXV0YWdlbnMvcGhhcm1hY29sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPipNdXRhdGlvbjwva2V5d29yZD48a2V5d29yZD5QZW5pY2lsbGluIFJl
c2lzdGFuY2U8L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNpbGxpbnM8L2tleXdvcmQ+PGtleXdvcmQ+
U2FsbW9uZWxsYSB0eXBoaW11cml1bTwva2V5d29yZD48a2V5d29yZD5TZWxlY3Rpb24sIEdlbmV0
aWM8L2tleXdvcmQ+PGtleXdvcmQ+VGh5bWluZS8qbWV0YWJvbGlzbTwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTY4PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SmFuLUZlYjwvZGF0
ZT48L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjAwMjctNTEwNyAoUHJpbnQpJiN4RDswMDI3LTUx
MDcgKExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjQ4NzMzMzE8L2FjY2Vzc2lvbi1udW0+
PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRy
ZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlv
biZhbXA7bGlzdF91aWRzPTQ4NzMzMzE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGVsZWN0
cm9uaWMtcmVzb3VyY2UtbnVtPjAwMjctNTEwNyg2OCk5MDA3Ni02IFtwaWldPC9lbGVjdHJvbmlj
LXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5nPC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PENp
dGU+PEF1dGhvcj5Cb2NrPC9BdXRob3I+PFllYXI+MTk4NDwvWWVhcj48UmVjTnVtPjIzPC9SZWNO
dW0+PHJlY29yZD48cmVjLW51bWJlcj4yMzwvcmVjLW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkg
YXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6ZXZ3Mjl6dyI+MjM8
L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwv
cmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJvY2ssIEsuPC9hdXRob3I+
PGF1dGhvcj5NZWxkYWwsIE0uPC9hdXRob3I+PGF1dGhvcj5CdW5kbGUsIEQuIFIuPC9hdXRob3I+
PGF1dGhvcj5JdmVyc2VuLCBULjwvYXV0aG9yPjxhdXRob3I+R2FyZWdnLCBQLiBKLjwvYXV0aG9y
PjxhdXRob3I+Tm9yYmVyZywgVC48L2F1dGhvcj48YXV0aG9yPkxpbmRiZXJnLCBBLiBBLjwvYXV0
aG9yPjxhdXRob3I+U3ZlbnNvbiwgUy4gQi48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+VGhlIGNvbmZvcm1hdGlvbiBvZiBTYWxtb25lbGxhIE8tYW50aWdl
bmljIHBvbHlzYWNjaGFyaWRlIGNoYWlucyBvZiBzZXJvZ3JvdXBzIEEsIEIsIGFuZCBEMSBwcmVk
aWN0ZWQgYnkgc2VtaS1lbXBpcmljYWwsIEhhcmQtU3BoZXJlIChIU0VBKSBjYWxjdWxhdGlvbnM8
L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Q2FyYm9oeWRyIFJlczwvc2Vjb25kYXJ5LXRpdGxlPjwv
dGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkNhcmJvaHlkciBSZXM8L2Z1bGwtdGl0bGU+
PC9wZXJpb2RpY2FsPjxwYWdlcz4yMy0zNDwvcGFnZXM+PHZvbHVtZT4xMzA8L3ZvbHVtZT48ZWRp
dGlvbj4xOTg0LzA3LzE1PC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5DYXJib2h5ZHJhdGUg
Q29uZm9ybWF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+
TW9kZWxzLCBNb2xlY3VsYXI8L2tleXdvcmQ+PGtleXdvcmQ+KlBvbHlzYWNjaGFyaWRlcywgQmFj
dGVyaWFsPC9rZXl3b3JkPjxrZXl3b3JkPlNhbG1vbmVsbGEvKmltbXVub2xvZ3k8L2tleXdvcmQ+
PGtleXdvcmQ+U2Vyb3R5cGluZzwva2V5d29yZD48a2V5d29yZD5TcGVjaWVzIFNwZWNpZmljaXR5
PC9rZXl3b3JkPjxrZXl3b3JkPlRoZXJtb2R5bmFtaWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRh
dGVzPjx5ZWFyPjE5ODQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5KdWwgMTU8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4wMDA4LTYyMTUgKFByaW50KSYjeEQ7MDAwOC02MjE1IChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT42NDc4NDU5PC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy
ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5
LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp
c3RfdWlkcz02NDc4NDU5PC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxlbGVjdHJvbmljLXJl
c291cmNlLW51bT4wMDA4LTYyMTUoODQpODUyNjctMiBbcGlpXTwvZWxlY3Ryb25pYy1yZXNvdXJj
ZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE.DATA (1, 8, 9)
اسم گونه میزان سرو تایپ در سال 2000 میلادی میزان سرو تایپ در سال 2001 میلادی میزان سرو تایپ در سال 2002 میلادی
الف- گونه سالمونلا انتریکا
1-سالمونلا انتریکا زیر گونه انتریکا
2-سالمونلا انتریکا زیر گونه سالامه
3-سالمونلا انتریکا زیر گونه آریزونه
4-سالمونلا انتریکا زیر گونه دی آریزونه
5-سالمونلا انتریکا زیر گونه هونته
6- سالمونلا انتریکا زیر گونه اندیکا
ب- گونه بونگوری
جمع کل 2469
1610
497
94
325
69
12
21
2628 2491
1624
499
95
329
69
13
21
2650 2509
1636
501
95
331
70
13
30
2668
1-2-5، آنتی ژن های سالمونلا
الف) آنتی ژن O
آنتی ژن O در برابر الکل و حرارت مقاوم است و در سالمونلا 67 انتی ژن O وجود دارد که با عدد نشان داده می شود. آنتی ژن O می تواند حرارت جوش را به مدت دو ساعت و نیم تحمل کند اما آنتی ژن فلاژل و آنتی ژن فیمبریه در این درجه حرارت نابود می شوند و قادر به تحمل آن نیستند. خاصیت آنتی ژن O بوسیله لیپوپلی ساکارید که در دیواره باکتری های گرم منفی وجود دارد ایجاد می شود.
بدلیل هیدروفیل بودن آنتی ژن O در محلول نمکی0.85% NaCl، یک سوسپانسیون یکنواخت ایجاد می کند.آنتی ژن O می تواند در درجه حرارت 37 درجه سانتی گراد اتانول 96 درصد به مدت زمان چهار ساعت تحمل کند اما فرمالین 0.2% باعث غیر فعاسازی آنتی ژن O میشود. (2و3).
ب)آنتی ژن فلاژلی یا آنتی ژن H
آنتی ژن H در برابر الکل و حرارت حساس می باشد و در درجه حرارت 100 درجه سانتی گراد به مدت زمان سی دقیقه همه ی فلازل ها از باکتری جدا می شود. این فرایند جدا شدن فلاژل ها از باکتری در دمای 60 درجه سانتی گراد آغاز می شود اما این فلاژل هایی که از باکتری جدا می شوند، سیستم ایمنی را تحریک می کنند. آنتی ژن H یکی دیگر از آنتی ژن های سالمونلا می باشد که این آنتی ژن مربوط به فلاژل باکتری می باشد. هنگامیکه که ما سوسپانسیون باکتری را به مدت دو نیم ساعت بجوشانیم این خاصیت ایمنی زایی باکتری از بین می رود اما اگر در دمای پایین تر از دمای جوش قرار گیرد خاصیت اگلوتیناسیون آنتی ژن از بین رفته اما قدرت آنتی ژن از بین نمی رود (2و3).
آنتی ژن فلاژلی دو نوع است که عبارت است از : 1) آنتی ژن فلاژلی فاز یک(H₁) 2) آنتی ژن فلاژلی فاز دو(H₂).
آنتی ژن H₁ با حروف لاتین نشان داده می شود و از حرف a تا حرف z میباشد. به علت اینکه تعداد آنتی ژن H₁ بسیاز بیشتر از 25 می باشد، سایر آنتی ژن های H با اضافه کردن عدد به حرف Z مشخص می شود. آنتی ژن H₂ به صورت عدد از 1 تا 12 نشان داده می شود.تعداد آنتی ژن H₁، 93 عدد می باشد (3).
ج) آنتی ژن K یا آنتی کپسولی
سه نوع آنتی ژن کپسولی در سالمونلا وجود دارد که شامل: آنتی ژن M، آنتی ژن Vi و آنتی ژن 5
آنتی ژن M:
آنتی ژن M شامل کولانیک اسید است. آنتی ژن M باعث ایجاد کلونی های مخاطی می گردد. آنتی ژن M پلی ساکارید های خارج سلولی می باشد. مکانیسم جلوگیری از آگلوتیناسیون به وسیله آنتی سرم علیه O، شبیه مکانیسم عمل آنتی ژن Vi می باشد. خصوصیت آنتی ژن M با آنتی ژن Vi تفاوت دارد.برخی از آنتی ژن های کپسولی اشرشیاکلی (مثل: K₃₀ و K₃₉) و K₈ و K₃ کلبسیلا با آنتی ژن M سالمونلا واکنش متقاطع دارند. برای تعیین آنتی ژن M، کلونی ها حالت لعابی پیدا می کند و به کشت باکتری سرم ضد آنتی ژن M اضافه می کنیم که می توان از آزمایش تورم کپسولی استفاده نمود(3).
آنتی ژن Vi:
آنتی ژن Vi یک پلی ساکارید کپسولی می باشد و از واحد های هموپلیمرN- استیل گالاکتوز آمینورونیک اسید تشکیل شده است که با پیوند 1 به 4 بهم متصل شده اند و کربن شماره ی 3 آن استیله می باشد. هنگامیکه از خون بیماران مبتلا به تب روده ای، سالمونلا انتریکا سرووار تایفی جدا شود، این سالمونلا ها در برابر آنتی سرم O₉ آگلوتینه نمی شوند. بدلیل آنکه این آنتی ژن برای موش دارای قدرت بیماریزایی بیشتر می باشد به آن آنتی ژن حدت گفته می شود.
سویه هایی که دارای آنتی ژن Vi می باشند در برابر آب اکسیژنه حساس اند و به همین علت دانشمندان معتقند که آنتی ژن Vi در مکانیسم فاگوسیتوز نوتروفیل ها اختلال ایجاد نمی کند بلکه در برابر عمل انفجار اکسیداتیوی که در داخل نوتروفیل ها رخ می دهد، مقاوم است. آنتی ژن Vi میزان تثبیت C₃ در سطح سالمونلا تایفی کاهش می دهد(زهرایی سال1378 Murray, Rosenthal et al. 2013). به علت آنکه آنتی ژن Vi مانع از عمل آگلوتیناسیون به وسیله آنتی سرم ضد آنتی ژن O می شود، برای حذف آنتی ژن Vi، باید باکتری را در دمای صد درجه سانتی گراد( دمای جوش) به مدت یک ساعت جوشاند(1 و 3).
آنتی ژن 5:
در ابتدا این آنتی ژن به عنوان آنتی ژن O شناسایی شد و این آنتی ژن دارای تفاوت هایی با سایر آنتی ژن های پیکری است.
کافمن نشان داد که این آنتی ژن در برابر کلریدریک اسید حساس بوده و در مجاورت آن تخریب می شود و ویژگی آگلوتیناسیون آنتی ژن 5 در درجه حرارت 120 درجه سانتی گراد از بین می رود که این ویژگی بر خلاف آنتی ژن O₄ می باشد.این آنتی ژن در برابر الکل مقاوم است که این ویژگی مشابه آنتی ژن O₄ می باشد.آنتی ژن 5 در ارتباط با بیماریزایی سروتایپ ها بی تاثیر است، به عنوان مثال سالمونلا انتریکا سرووار تایفی موریوم که فاقد آنتی ژن 5 می باشد برای موش به شدت بیماریزا است. می توان آنتی سرم ضد آنتی ژن 5 را بوسیله کشت فرمالین اشکال بدون فلاژل با کشت حرارت دیده سالمونلا پارا تایفیB بدست اوردPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2xtZXM8L0F1dGhvcj48WWVhcj4xOTY4PC9ZZWFyPjxS
ZWNOdW0+MjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwPC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0
d3pldncyOXp3Ij4yMDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs
IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9s
bWVzLCBBLiBKLjwvYXV0aG9yPjxhdXRob3I+RWlzZW5zdGFyaywgQS48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhlIG11dGFnZW5pYyBlZmZlY3Qgb2Yg
dGh5bWluZS1zdGFydmF0aW9uIG9uIFNhbG1vbmVsbGEgdHlwaGltdXJpdW08L3RpdGxlPjxzZWNv
bmRhcnktdGl0bGU+TXV0YXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj
YWw+PGZ1bGwtdGl0bGU+TXV0YXQgUmVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
MTUtMjE8L3BhZ2VzPjx2b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxlZGl0aW9u
PjE5NjgvMDEvMDE8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPk11dGFnZW5zL3BoYXJtYWNv
bG9neTwva2V5d29yZD48a2V5d29yZD4qTXV0YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNp
bGxpbiBSZXNpc3RhbmNlPC9rZXl3b3JkPjxrZXl3b3JkPlBlbmljaWxsaW5zPC9rZXl3b3JkPjxr
ZXl3b3JkPlNhbG1vbmVsbGEgdHlwaGltdXJpdW08L2tleXdvcmQ+PGtleXdvcmQ+U2VsZWN0aW9u
LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPlRoeW1pbmUvKm1ldGFib2xpc208L2tleXdvcmQ+
PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk2ODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbi1G
ZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTUxMDcgKFByaW50KSYjeEQ7
MDAyNy01MTA3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT40ODczMzMxPC9hY2Nlc3Np
b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5n
b3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9
Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz00ODczMzMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4wMDI3LTUxMDcoNjgpOTAwNzYtNiBbcGlpXTwvZWxl
Y3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+Qm9jazwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4y
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Cb2NrLCBLLjwv
YXV0aG9yPjxhdXRob3I+TWVsZGFsLCBNLjwvYXV0aG9yPjxhdXRob3I+QnVuZGxlLCBELiBSLjwv
YXV0aG9yPjxhdXRob3I+SXZlcnNlbiwgVC48L2F1dGhvcj48YXV0aG9yPkdhcmVnZywgUC4gSi48
L2F1dGhvcj48YXV0aG9yPk5vcmJlcmcsIFQuPC9hdXRob3I+PGF1dGhvcj5MaW5kYmVyZywgQS4g
QS48L2F1dGhvcj48YXV0aG9yPlN2ZW5zb24sIFMuIEIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRoZSBjb25mb3JtYXRpb24gb2YgU2FsbW9uZWxsYSBP
LWFudGlnZW5pYyBwb2x5c2FjY2hhcmlkZSBjaGFpbnMgb2Ygc2Vyb2dyb3VwcyBBLCBCLCBhbmQg
RDEgcHJlZGljdGVkIGJ5IHNlbWktZW1waXJpY2FsLCBIYXJkLVNwaGVyZSAoSFNFQSkgY2FsY3Vs
YXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNhcmJvaHlkciBSZXM8L3NlY29uZGFyeS10
aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DYXJib2h5ZHIgUmVzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjMtMzQ8L3BhZ2VzPjx2b2x1bWU+MTMwPC92b2x1
bWU+PGVkaXRpb24+MTk4NC8wNy8xNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2FyYm9o
eWRyYXRlIENvbmZvcm1hdGlvbjwva2V5d29yZD48a2V5d29yZD5NZXRob2RzPC9rZXl3b3JkPjxr
ZXl3b3JkPk1vZGVscywgTW9sZWN1bGFyPC9rZXl3b3JkPjxrZXl3b3JkPipQb2x5c2FjY2hhcmlk
ZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhLyppbW11bm9sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPlNlcm90eXBpbmc8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVj
aWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaGVybW9keW5hbWljczwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTg0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVsIDE1PC9kYXRl
PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwOC02MjE1IChQcmludCkmI3hEOzAwMDgtNjIx
NSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQ3ODQ1OTwvYWNjZXNzaW9uLW51bT48
dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJl
ei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9u
JmFtcDtsaXN0X3VpZHM9NjQ3ODQ1OTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+MDAwOC02MjE1KDg0KTg1MjY3LTIgW3BpaV08L2VsZWN0cm9uaWMt
cmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0Vu
ZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5Ib2xtZXM8L0F1dGhvcj48WWVhcj4xOTY4PC9ZZWFyPjxS
ZWNOdW0+MjA8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIwPC9yZWMtbnVtYmVyPjxmb3Jl
aWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0
d3pldncyOXp3Ij4yMDwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFs
IEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+SG9s
bWVzLCBBLiBKLjwvYXV0aG9yPjxhdXRob3I+RWlzZW5zdGFyaywgQS48L2F1dGhvcj48L2F1dGhv
cnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VGhlIG11dGFnZW5pYyBlZmZlY3Qgb2Yg
dGh5bWluZS1zdGFydmF0aW9uIG9uIFNhbG1vbmVsbGEgdHlwaGltdXJpdW08L3RpdGxlPjxzZWNv
bmRhcnktdGl0bGU+TXV0YXQgUmVzPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGlj
YWw+PGZ1bGwtdGl0bGU+TXV0YXQgUmVzPC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
MTUtMjE8L3BhZ2VzPjx2b2x1bWU+NTwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxlZGl0aW9u
PjE5NjgvMDEvMDE8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3b3JkPk11dGFnZW5zL3BoYXJtYWNv
bG9neTwva2V5d29yZD48a2V5d29yZD4qTXV0YXRpb248L2tleXdvcmQ+PGtleXdvcmQ+UGVuaWNp
bGxpbiBSZXNpc3RhbmNlPC9rZXl3b3JkPjxrZXl3b3JkPlBlbmljaWxsaW5zPC9rZXl3b3JkPjxr
ZXl3b3JkPlNhbG1vbmVsbGEgdHlwaGltdXJpdW08L2tleXdvcmQ+PGtleXdvcmQ+U2VsZWN0aW9u
LCBHZW5ldGljPC9rZXl3b3JkPjxrZXl3b3JkPlRoeW1pbmUvKm1ldGFib2xpc208L2tleXdvcmQ+
PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MTk2ODwveWVhcj48cHViLWRhdGVzPjxkYXRlPkphbi1G
ZWI8L2RhdGU+PC9wdWItZGF0ZXM+PC9kYXRlcz48aXNibj4wMDI3LTUxMDcgKFByaW50KSYjeEQ7
MDAyNy01MTA3IChMaW5raW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT40ODczMzMxPC9hY2Nlc3Np
b24tbnVtPjx1cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5n
b3YvZW50cmV6L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9
Q2l0YXRpb24mYW1wO2xpc3RfdWlkcz00ODczMzMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT4wMDI3LTUxMDcoNjgpOTAwNzYtNiBbcGlpXTwvZWxl
Y3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+Qm9jazwvQXV0aG9yPjxZZWFyPjE5ODQ8L1llYXI+PFJlY051bT4y
MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5
cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5
enciPjIzPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJuYWwgQXJ0aWNs
ZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Cb2NrLCBLLjwv
YXV0aG9yPjxhdXRob3I+TWVsZGFsLCBNLjwvYXV0aG9yPjxhdXRob3I+QnVuZGxlLCBELiBSLjwv
YXV0aG9yPjxhdXRob3I+SXZlcnNlbiwgVC48L2F1dGhvcj48YXV0aG9yPkdhcmVnZywgUC4gSi48
L2F1dGhvcj48YXV0aG9yPk5vcmJlcmcsIFQuPC9hdXRob3I+PGF1dGhvcj5MaW5kYmVyZywgQS4g
QS48L2F1dGhvcj48YXV0aG9yPlN2ZW5zb24sIFMuIEIuPC9hdXRob3I+PC9hdXRob3JzPjwvY29u
dHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRoZSBjb25mb3JtYXRpb24gb2YgU2FsbW9uZWxsYSBP
LWFudGlnZW5pYyBwb2x5c2FjY2hhcmlkZSBjaGFpbnMgb2Ygc2Vyb2dyb3VwcyBBLCBCLCBhbmQg
RDEgcHJlZGljdGVkIGJ5IHNlbWktZW1waXJpY2FsLCBIYXJkLVNwaGVyZSAoSFNFQSkgY2FsY3Vs
YXRpb25zPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkNhcmJvaHlkciBSZXM8L3NlY29uZGFyeS10
aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5DYXJib2h5ZHIgUmVzPC9mdWxs
LXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+MjMtMzQ8L3BhZ2VzPjx2b2x1bWU+MTMwPC92b2x1
bWU+PGVkaXRpb24+MTk4NC8wNy8xNTwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+Q2FyYm9o
eWRyYXRlIENvbmZvcm1hdGlvbjwva2V5d29yZD48a2V5d29yZD5NZXRob2RzPC9rZXl3b3JkPjxr
ZXl3b3JkPk1vZGVscywgTW9sZWN1bGFyPC9rZXl3b3JkPjxrZXl3b3JkPipQb2x5c2FjY2hhcmlk
ZXMsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5d29yZD5TYWxtb25lbGxhLyppbW11bm9sb2d5PC9r
ZXl3b3JkPjxrZXl3b3JkPlNlcm90eXBpbmc8L2tleXdvcmQ+PGtleXdvcmQ+U3BlY2llcyBTcGVj
aWZpY2l0eTwva2V5d29yZD48a2V5d29yZD5UaGVybW9keW5hbWljczwva2V5d29yZD48L2tleXdv
cmRzPjxkYXRlcz48eWVhcj4xOTg0PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+SnVsIDE1PC9kYXRl
PjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDAwOC02MjE1IChQcmludCkmI3hEOzAwMDgtNjIx
NSAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+NjQ3ODQ1OTwvYWNjZXNzaW9uLW51bT48
dXJscz48cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJl
ei9xdWVyeS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9u
JmFtcDtsaXN0X3VpZHM9NjQ3ODQ1OTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+MDAwOC02MjE1KDg0KTg1MjY3LTIgW3BpaV08L2VsZWN0cm9uaWMt
cmVzb3VyY2UtbnVtPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdlPjwvcmVjb3JkPjwvQ2l0ZT48L0Vu
ZE5vdGU+AG==
ADDIN EN.CITE.DATA (11, 12).
د) آنتی ژن های فیمبریه ای
اکثر سروتایپ های سالمونلا دارای جایگاهی برای آنتی ژن فیمبریه هستند و فیمبریه تولید می کنند. با توجه به بررسی هایی که بر روی سالمونلا انتریتیدیس و سالمونلا تایفی موریوم صورت پذیرفت، اطلاعاتی در مورد فیمبریه ی سالمونلاها بدست آمد. آنتی ژن فیمبریه ای در برابر فرمالدئید0.1-0.2 ثابت می شود که این ویژگی مشابه آنتی ژن فلاژل می باشد. برخی از آنتی ژن های فیمبریه ای دارای خاصیت پوشانندگی آگلوتیناسیون O وH می باشند، این ویژگی باعث می شود که هنگامیکه از سالمونلایی که در مرحله اول فیمبریه قرار دارد، آنتی بادی ضد فیمبریه جدا شود و از این آنتی بادی استفاده شود، باعث ایجاد واکنش متقاطع و گیج کننده ای می شود. برای آنکه این واکنش صورت نگیرد باید از کشت هایی برای تهیه سوسپانسیون استفاده شود که در مرحله غیر فیمبریه ای باشند. فیمبریه اگر به مدت 30 دقیقه در حرارت 100 درجه سانتی گراد قرار گیرد از باکتری جدا می شود ولی در دمای 121 درجه سانتی گراد به مدت سی دقیقه قرار گیرد، غیر فعال می شود ADDIN EN.CITE <EndNote><Cite><Author>Murray</Author><Year>2013</Year><RecNum>2</RecNum><record><rec-number>2</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">2</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Murray, P.R.</author><author>Rosenthal, K.S.</author><author>Pfaller, M.A.</author></authors></contributors><titles><title>Medical Microbiology</title></titles><dates><year>2013</year></dates><publisher>Mosby/Elsevier</publisher><isbn>9780323054706</isbn><urls><related-urls><url>https://books.google.com/books?id=O92zd8fV-RcC</url></related-urls></urls></record></Cite></EndNote>(5).
1-2-6، عوامل دخیل در بیماریزایی در سالمونلا
سالمونلا دارای عوامل بیماریزایی متعددی می باشد که شامل: انتروتوکسین، سیتوتوکسین، اندوتوکسین، سیدروفور، آنتی ژن های سطحی و غیره می باشد و این عوامل در سروتایپ های مختلف سالمونلا نقش مختلفی در بیماریزایی سالمونلا در میزبان های مختلف بر عهده دارند مثلا سالمونلا تایفی موریوم در میزبان طبیعی خود، موش، بیماری هایی شبیه حصبه ایجاد می کند ولی در انسان ، گاستروانتریت خود محدودشونده ایجاد می کند در حالیکه سالمونلا تایفی حتی به صورت خوراکی در حیوانات ایجاد بیماری نمی کند و تنها در انسان بیماری ایجاد می کند. این باکتری انگل اختیاری داخل سلولی می باشد. بقاء سالمونلا داخل سلول های میزبان به دلیل پاسخ های متفاوت سیستم اینمنی میزبان های مختلف سالمونلا در برابر این باکتری می باشد(3).
الف) سیتوتوکسین
فعالیت سیتوتوکسین تنها در عصاره باکتری دیده می شود، این ویژگی بدلیل وابستگی توکسین به غشای خارجی باکتری می باشد. میزان تولید سیتوتوکسین توسط سروتایپ های مختلف سالمونلا، متفاوت می باشد. سروتایپ تایفی کمترین میزان و سروتایپ های انتریتیدیس و کلراسوئیس بیشترین میزان توکسین را تولید می نمایند. سیتوتوکسین در سلول های یوکاریوتی باعث مهار سنتز پروتئین می گردد. درانتریت سالمونلایی تخریب سلول های پوشش روده دیده می شود که احتمال داده می شود این تخریب توسط سیتوتوکسین سالمونلا ایجاد شود. عملکرد سیتوتوکسین در بیماریزایی سالمونلا هنوز بطور کامل معلوم نمی باشد اما احتمال داده می شود این سم باعث ایجاد تغییراتی در غشای سلولی که می شود که موجب مختل شدن عبور و مرور انتخابی مولکول ها از غشای سلولی می گردد که این عملکرد در نهایت باعث نکروز شدن انتروسیت ها می شود. اسیب بافتی ناشی از سیتوتوکسین باعث سهولت در تهاجم سالمونلا می شود(3،10 ).
ب) اندوتوکسین
علامت هایی که در حیوانات آزمایشکاهی نظیر موش در اثر تزریق اندوتوکسین ایجاد می شود مشابه علایمی است که در اثر سپتمی سمی ناشی از سالمونلا ایجاد می گردد. علامت هایی که در اثر اندوتوکسین سالمونلا ایجاد می شود نظیر کاهش فشار خون، لکوپنی و در نهایت لکوسیتوز، شوک، اسیدوز و تب می باشد. عامل اصلی سمیت اندوتوکسین، لیپید A موجود در غشای خارجی باکتری های گرم منفی می باشد. حساسیت انسان در برابر اندوتوکسین از سایر موجودات زنده بسیاربالاتر می باشد و این بدلیل آن می باشد که بروز حالت تحمل در برابر اندوتوکسین بدلیل افزایش آهسته درجه حرارت از بین می رود. سلول های مختلفی از بدن مثل پلاکت ها، مونوسیت ها، سلول ها، ماکروفاژها و نوتروفیل ها تحت تاثیر اندوتوکسین قرار گرفته و موادی از این سلول ها آزاد می شود مثل اینترلوکین هشت، آنافیلاتوکسین، اینترلوکین یک، اینترلوکین شش و فاکتور نکروز دهنده تومور می باشد که هریک از این مواد برروی اندام های بدن تاثیر می گذارد(3).
ج) انتروتوکسین
توکسین حساس به حرارت که نوسط اشرشیا کلی و ویبریو کلرا تولید می شود توسط برخی از سویه های سالمونلا تایفی موریوم نیز تولید می گردد که از نظر مکانیسم مشابه سم تولیدی توسط ویبریو کلرا می باشد و با فعال کردن ادنیلات سیکلاز و در نهایت باعث افزایش cAMP می گردد. انتروتوکسینی که توسط برخی از سویه های سالمونلا تایفی موریوم تولید می شود از لحاظ نیاز به نفوذ نوتروفیل ها با کلراتوکسین متفاوت می باشد در نتیجه ارتباطی بین میزان بیماریزایی سالمونلا تایفی موریوم و توانایی تحریک نفوذ نوتروفیل ها وجود دارد. این باکتری باعث غالب شدن نوتروفیل ها در بین سایر لکوسیت ها در طی تهاجم در غشای روده می شود و با تهاجم نوتروفیل ها به باکتری، انتروتوکسین از باکتری آزاد می گردد.انترو توکسین همراه با دیواره باکتری می باشد و ماهیت پروتئینی دارد ADDIN EN.CITE <EndNote><Cite><Author>Isenberg</Author><Year>1992</Year><RecNum>225</RecNum><record><rec-number>225</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">225</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Isenberg, H.D.</author><author>American Society for Microbiology</author></authors></contributors><titles><title>Clinical microbiology procedures handbook</title></titles><dates><year>1992</year></dates><publisher>American Society of Microbiology</publisher><urls><related-urls><url>https://books.google.com/books?id=0JpKAQAAIAAJ</url></related-urls></urls></record></Cite></EndNote>(13).
1-2-7. بیماری های ناشی از سالمونلا
بیماری های ناشی از سالمونلا که در انسان ایجاد می شوند شامل: گاستروانتریت، سپتی سمی، تیفوئید و انترو کولیت حاد می باشد ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
الف) حصبه
سالمونلابه انتهای دیواره اپیتلیال روده حمله می کند و سپس به گره های لنفاوی روده منتقل می شود، در این گره های لنفاوی، سالمونلا توسط ماکروفاژها- مونوسیت ها و پلی مورفونوکلئوز بلعیده می شود و سالمونلاهایی که توسط PMN ها بلعیده می شود، از بین می روند اما سالمونلاهایی که توسط ماکروفاژها بلعیده می شوند در درون واکوئل آن ها تکثیر یافته و ماکروفاژها به عنوان یک ناقل برای سالمونلا عمل می کند و باعث انتقال سالمونلا به بافت های مختلف رتیکلواندوتلیال می شود. در نهایت این ماکروفاژهای آلوده به سالمونلا تخریب شده و سالمونلا آزاد می شود و باعث ایجاد سپتی سمی می شود. حصبه توسط دو سروتایپ تایفی و پاراتایفی ایجاد می گردد ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
علایم حصبه بعد از 7 تا 14 روز بروز می کند و شامل: بی حالی، تب، بی اشتهایی، سرفه خشک، یبوست و سردرد می باشد. در این دو هفته از بیماری، گلبول های سفید در حد نرمای بوده و سالمونلا در مدفوع وجود ندارد. در هفته دوم از بیماری، بیمار به شدت نا خوش است به این دلیل که سالمونلاها از ماکروفاژهای آلوده آزاد می گردد. روی بدن بیمار لکه های به قطر دو تا سه میلی متر دیده می شود که شاید این ماکولوپاپولار شامل سالمونلا باشد ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
هنگامیکه بیمار مبتلا به حصبه بهبود یابد در تمام طول زندگی در برابر تیفوئید مقاوم خواهد بود.هنگامیکه بیماری به موقع درمان پیدا نکند، فرد مبتلا به حصبه وارد مرحله ی جدیدی از بیماری می شود که فرد مبتلا به سختی رنج می کشد و دارای علایمی شامل: یبوست شدید، اسهال زرد رنگ و تب بالا می باشد.
در هفته سوم از بیماری، فرد وارد مرحله تب روده ای شده و دارای علایمی می باشد که شامل: بی حالی، کاهش شدید وزن بدن و ممکن است نفخ در ناحیه شکم نیز مشاهده شود. در هفته چهارم به تدریج علائم کم شده و دمای بدن بعد 7 تا 10 روز به حالت طبیعی باز می گردد اما ممکن بعد از دو هفته که تب پایین آمد سایر علائم نیز دوباره بروز کنند. علایمی که حیات بیمار را تهدید می کند در مرحله تب روده ای رخ می دهدPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYWxrZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxS
ZWNOdW0+MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2Fsa2VyLCBULlMuPC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1pY3JvYmlvbG9neTwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
PlcuQi4gU2F1bmRlcnMgQ29tcGFueTwvcHVibGlzaGVyPjxpc2JuPjk3ODA3MjE2NDY0MTE8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD1EdGxwQUFBQU1BQUo8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFyPjxSZWNOdW0+
MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24t
a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2
dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy
dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Z2lmY2kg
RXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0aG9yPjxhdXRob3I+RGVyeWEg
QXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRhbDwvYXV0aG9yPjxhdXRob3I+


RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0i
ZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTaujwvc3R5bGU+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+cnUsIDwvc3R5bGU+PHN0eWxl
IGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Y
ozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNoIGNoaWxkcmVuOiAzNyBjYXNl
cyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVuIDE5OTMgYW5kIDIwMDI8L3Rp
dGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp
Y2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVkaWF0cmljczogSW50ZXJuYXRp
b25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43NS04MDwv
cGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+
PFJlY051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48
Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTky
Y3QydHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv
dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv
cj5QYXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1
eWV0PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBK
b2huPC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZp
bmgsIEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldo
aXRlLCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+
PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xl
LXR1YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFt
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5
PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5h
bCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl
cz4yODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48
ZGF0ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5XYWxrZXI8L0F1dGhvcj48WWVhcj4xOTk4PC9ZZWFyPjxS
ZWNOdW0+MzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MzwvcmVjLW51bWJlcj48Zm9yZWln
bi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3QydHd6
ZXZ3Mjl6dyI+Mzwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9y
ZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+V2Fsa2VyLCBULlMuPC9hdXRo
b3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk1pY3JvYmlvbG9neTwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjE5OTg8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
PlcuQi4gU2F1bmRlcnMgQ29tcGFueTwvcHVibGlzaGVyPjxpc2JuPjk3ODA3MjE2NDY0MTE8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD1EdGxwQUFBQU1BQUo8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4yMDA0PC9ZZWFyPjxSZWNOdW0+
MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3JlYy1udW1iZXI+PGZvcmVpZ24t
a2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2
dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJKb3VybmFsIEFy
dGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+Z2lmY2kg
RXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0aG9yPjxhdXRob3I+RGVyeWEg
QXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRhbDwvYXV0aG9yPjxhdXRob3I+
RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0i
ZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBmYWNlPSJub3JtYWwiIGZvbnQ9
ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTaujwvc3R5bGU+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+cnUsIDwvc3R5bGU+PHN0eWxl
IGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7Y
ozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48
dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNoIGNoaWxkcmVuOiAzNyBjYXNl
cyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVuIDE5OTMgYW5kIDIwMDI8L3Rp
dGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2Rp
Y2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVkaWF0cmljczogSW50ZXJuYXRp
b25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz43NS04MDwv
cGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+
PFJlY051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48
Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTky
Y3QydHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9Ikpv
dXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhv
cj5QYXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1
eWV0PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBK
b2huPC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZp
bmgsIEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldo
aXRlLCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+
PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xl
LXR1YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFt
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5
PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5h
bCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdl
cz4yODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48
ZGF0ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJs
cz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT5=
ADDIN EN.CITE.DATA (6, 14, 15).
بیماری شبیه تب روده ای معمولا نسبت به حصبه دارای علائم خفیف تری می باشد و دارای عوارض شدید نمی باشد. دوره ی بهبود بیماری شبه حصبه که توسط سروتایپ پاراتایفی ایجاد می شود نسبت به حصبه کمتر می باشد.
شدیدترین عوارضی که طی بیماری ایجاد می شود، سوراخ شدن روده و خونریزی می باشد که معمولا در هفته سوم از بیماری ایجاد می شود. خونریزی روده با علایمی چون: شوک، دیده شدن خون در مدفوع و افت ناگهانی فشار می باشد. سوراخ شدن روده باعث ایجاد شرایط اوراژنسی می شود و فرد باید تحت مراقبت های ویژه قرار گیرد، این وضعیت به دلیل ورود محتویات روده به حفره شکمی طی سوراخ شدن روده کوچک یا بزرگ می باشدPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4y
MDA0PC9ZZWFyPjxSZWNOdW0+MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+Z2lmY2kgRXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0
aG9yPjxhdXRob3I+RGVyeWEgQXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRh
bDwvYXV0aG9yPjxhdXRob3I+RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBm
YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTa
ujwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
cnUsIDwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0i
MTc4IiBzaXplPSIxMDAlIj7Yozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm
YXVsdCIgc2l6ZT0iMTAwJSI+xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250
cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNo
IGNoaWxkcmVuOiAzNyBjYXNlcyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVu
IDE5OTMgYW5kIDIwMDI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2Fs
IFBhZWRpYXRyaWNzOiBJbnRlcm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVk
aWF0cmljczogSW50ZXJuYXRpb25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz43NS04MDwvcGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4yMDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+RXJnaW48L0F1dGhvcj48WWVhcj4y
MDA0PC9ZZWFyPjxSZWNOdW0+MjI2PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yMjY8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIyNjwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+Z2lmY2kgRXJnaW48L2F1dGhvcj48YXV0aG9yPmd1cml6LCBIYWx1azwvYXV0
aG9yPjxhdXRob3I+RGVyeWEgQXlzZXYsIEFobWV0PC9hdXRob3I+PGF1dGhvcj5JbmNlLCBFcmRh
bDwvYXV0aG9yPjxhdXRob3I+RXJkZW0sIEJpcnNlbDwvYXV0aG9yPjxhdXRob3I+PHN0eWxlIGZh
Y2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+RG88L3N0eWxlPjxzdHlsZSBm
YWNlPSJub3JtYWwiIGZvbnQ9ImRlZmF1bHQiIGNoYXJzZXQ9IjE3OCIgc2l6ZT0iMTAwJSI+2KTa
ujwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgc2l6ZT0iMTAwJSI+
cnUsIDwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVmYXVsdCIgY2hhcnNldD0i
MTc4IiBzaXplPSIxMDAlIj7Yozwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIgZm9udD0iZGVm
YXVsdCIgc2l6ZT0iMTAwJSI+xZNsa2VyPC9zdHlsZT48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250
cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxsYSBiYWN0ZXJhZW1pYSBpbiBUdXJraXNo
IGNoaWxkcmVuOiAzNyBjYXNlcyBzZWVuIGluIGEgdW5pdmVyc2l0eSBob3NwaXRhbCBiZXR3ZWVu
IDE5OTMgYW5kIDIwMDI8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2Fs
IFBhZWRpYXRyaWNzOiBJbnRlcm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvc2Vjb25kYXJ5LXRpdGxl
PjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFubmFscyBvZiBUcm9waWNhbCBQYWVk
aWF0cmljczogSW50ZXJuYXRpb25hbCBDaGlsZCBIZWFsdGg8L2Z1bGwtdGl0bGU+PC9wZXJpb2Rp
Y2FsPjxwYWdlcz43NS04MDwvcGFnZXM+PHZvbHVtZT4yNDwvdm9sdW1lPjxudW1iZXI+MTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4yMDA0PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDI3Mi00OTM2PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPgB=
ADDIN EN.CITE.DATA (14, 15).
یکسری علائم غیر معمول نیز وجود دارد که شامل: التهاب لوزالمعده، مننژیت، عفونت کلیه یا مثانه، مشکلات روانی مثل توهم، سایکوز، میوکاردیت و عفونت ریوی می باشد که تمام این علائم آتیپیک می باشد. اگر درمان صورت نگیرد ممکن است فرد مبتلا دچار مرگ شود ولی اکثر افراد در کشورهای توسعه یافته با درمان فوری به سرعت درمان می یابندPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FcmdpbjwvQXV0aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJl
Y051bT4yMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5n
aWZjaSBFcmdpbjwvYXV0aG9yPjxhdXRob3I+Z3VyaXosIEhhbHVrPC9hdXRob3I+PGF1dGhvcj5E
ZXJ5YSBBeXNldiwgQWhtZXQ8L2F1dGhvcj48YXV0aG9yPkluY2UsIEVyZGFsPC9hdXRob3I+PGF1
dGhvcj5FcmRlbSwgQmlyc2VsPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBm
b250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5Ebzwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIg
Zm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7YpNq6PC9zdHlsZT48c3R5
bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5ydSwgPC9zdHlsZT48
c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNzgiIHNpemU9IjEw
MCUiPtijPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj7Fk2xrZXI8L3N0eWxlPjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5TYWxtb25lbGxhIGJhY3RlcmFlbWlhIGluIFR1cmtpc2ggY2hpbGRyZW46IDM3
IGNhc2VzIHNlZW4gaW4gYSB1bml2ZXJzaXR5IGhvc3BpdGFsIGJldHdlZW4gMTk5MyBhbmQgMjAw
MjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm5hbHMgb2YgVHJvcGljYWwgUGFlZGlhdHJpY3M6
IEludGVybmF0aW9uYWwgQ2hpbGQgSGVhbHRoPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl
cmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc1
LTgwPC9wYWdlcz48dm9sdW1lPjI0PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5
ZWFyPjIwMDQ8L3llYXI+PC9kYXRlcz48aXNibj4wMjcyLTQ5MzY8L2lzYm4+PHVybHM+PC91cmxz
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlBhcnJ5PC9BdXRob3I+PFllYXI+MTk5OTwv
WWVhcj48UmVjTnVtPjIyNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjI3PC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yMjc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlBhcnJ5LCBDaHJpc3RvcGhlciBNPC9hdXRob3I+PGF1dGhvcj5Ib2EsIE5ndXllbiBU
aGkgVHV5ZXQ8L2F1dGhvcj48YXV0aG9yPkRpZXAsIFRvIFNvbmc8L2F1dGhvcj48YXV0aG9yPldh
aW4sIEpvaG48L2F1dGhvcj48YXV0aG9yPkNoaW5oLCBOZ3V5ZW4gVHJhbjwvYXV0aG9yPjxhdXRo
b3I+VmluaCwgSGE8L2F1dGhvcj48YXV0aG9yPkhpZW4sIFRyYW4gVGluaDwvYXV0aG9yPjxhdXRo
b3I+V2hpdGUsIE5pY2hvbGFzIEo8L2F1dGhvcj48YXV0aG9yPkZhcnJhciwgSmVyZW15IEo8L2F1
dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VmFsdWUgb2YgYSBz
aW5nbGUtdHViZSBXaWRhbCB0ZXN0IGluIGRpYWdub3NpcyBvZiB0eXBob2lkIGZldmVyIGluIFZp
ZXRuYW08L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jp
b2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K
b3VybmFsIG9mIGNsaW5pY2FsIG1pY3JvYmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+
PHBhZ2VzPjI4ODItMjg4NjwvcGFnZXM+PHZvbHVtZT4zNzwvdm9sdW1lPjxudW1iZXI+OTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDA5NS0xMTM3PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DaGl1PC9BdXRob3I+
PFllYXI+MjAwNDwvWWVhcj48UmVjTnVtPjIzMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
MjMyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5Zndw
OXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzI8L2tleT48L2ZvcmVpZ24ta2V5cz48
cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkNoaXUsIFMuPC9hdXRob3I+PGF1dGhvcj5DaGl1LCBDLiBILjwv
YXV0aG9yPjxhdXRob3I+TGluLCBULiBZLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48YXV0aC1hZGRyZXNzPkRpdmlzaW9uIG9mIFBlZGlhdHJpYyBJbmZlY3Rpb3VzIERpc2Vhc2Vz
LCBEZXBhcnRtZW50IG9mIFBlZGlhdHJpY3MsIENoYW5nIEd1bmcgQ2hpbGRyZW4mYXBvcztzIEhv
c3BpdGFsLCA1IEZ1LUhzaW4gU3RyZWV0LCBLd2Vpc2hhbiwgVGFveXVhbiwgVGFpd2FuIDMzMywg
Uk9DLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlNhbG1vbmVsbGEgZW50ZXJpY2Egc2Vy
b3R5cGUgQ2hvbGVyYWVzdWlzIGluZmVjdGlvbiBpbiBhIG1lZGljYWwgY2VudGVyIGluIG5vcnRo
ZXJuIFRhaXdhbjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE1pY3JvYmlvbCBJbW11bm9sIElu
ZmVjdDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkog
TWljcm9iaW9sIEltbXVub2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
OTktMTAyPC9wYWdlcz48dm9sdW1lPjM3PC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGVkaXRp
b24+MjAwNC8wNi8wODwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWR1bHQ8L2tleXdvcmQ+
PGtleXdvcmQ+QWdlZDwva2V5d29yZD48a2V5d29yZD5BbnRpLUJhY3RlcmlhbCBBZ2VudHMvcGhh
cm1hY29sb2d5L3RoZXJhcGV1dGljIHVzZTwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJlbWlhL21p
Y3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DZXBoYWxvc3Bvcmlucy9waGFybWFjb2xvZ3kv
dGhlcmFwZXV0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPkZlY2VzL21pY3JvYmlvbG9neTwva2V5
d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+RmV2ZXIvZXRpb2xvZ3k8L2tl
eXdvcmQ+PGtleXdvcmQ+Rm9jYWwgSW5mZWN0aW9uL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5NaWNy
b2JpYWwgU2Vuc2l0aXZpdHkgVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8L2tl
eXdvcmQ+PGtleXdvcmQ+UmV0cm9zcGVjdGl2ZSBTdHVkaWVzPC9rZXl3b3JkPjxrZXl3b3JkPlNh
bG1vbmVsbGEgSW5mZWN0aW9ucy8qbWljcm9iaW9sb2d5LypwaHlzaW9wYXRob2xvZ3k8L2tleXdv
cmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSBlbnRlcmljYS9kcnVnIGVmZmVjdHMvKmlzb2xhdGlvbiAm
YW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+VGFpd2FuPC9rZXl3b3JkPjxrZXl3
b3JkPldvdW5kcyBhbmQgSW5qdXJpZXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+
PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xNjg0LTExODIgKFByaW50KSYjeEQ7MTY4NC0xMTgyIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTE4MTQ5MTwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy
eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTUxODE0OTE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVu
ZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5FcmdpbjwvQXV0aG9yPjxZZWFyPjIwMDQ8L1llYXI+PFJl
Y051bT4yMjY8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNjwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI2PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5n
aWZjaSBFcmdpbjwvYXV0aG9yPjxhdXRob3I+Z3VyaXosIEhhbHVrPC9hdXRob3I+PGF1dGhvcj5E
ZXJ5YSBBeXNldiwgQWhtZXQ8L2F1dGhvcj48YXV0aG9yPkluY2UsIEVyZGFsPC9hdXRob3I+PGF1
dGhvcj5FcmRlbSwgQmlyc2VsPC9hdXRob3I+PGF1dGhvcj48c3R5bGUgZmFjZT0ibm9ybWFsIiBm
b250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5Ebzwvc3R5bGU+PHN0eWxlIGZhY2U9Im5vcm1hbCIg
Zm9udD0iZGVmYXVsdCIgY2hhcnNldD0iMTc4IiBzaXplPSIxMDAlIj7YpNq6PC9zdHlsZT48c3R5
bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIxMDAlIj5ydSwgPC9zdHlsZT48
c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBjaGFyc2V0PSIxNzgiIHNpemU9IjEw
MCUiPtijPC9zdHlsZT48c3R5bGUgZmFjZT0ibm9ybWFsIiBmb250PSJkZWZhdWx0IiBzaXplPSIx
MDAlIj7Fk2xrZXI8L3N0eWxlPjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0
bGVzPjx0aXRsZT5TYWxtb25lbGxhIGJhY3RlcmFlbWlhIGluIFR1cmtpc2ggY2hpbGRyZW46IDM3
IGNhc2VzIHNlZW4gaW4gYSB1bml2ZXJzaXR5IGhvc3BpdGFsIGJldHdlZW4gMTk5MyBhbmQgMjAw
MjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5Bbm5hbHMgb2YgVHJvcGljYWwgUGFlZGlhdHJpY3M6
IEludGVybmF0aW9uYWwgQ2hpbGQgSGVhbHRoPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBl
cmlvZGljYWw+PGZ1bGwtdGl0bGU+QW5uYWxzIG9mIFRyb3BpY2FsIFBhZWRpYXRyaWNzOiBJbnRl
cm5hdGlvbmFsIENoaWxkIEhlYWx0aDwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc1
LTgwPC9wYWdlcz48dm9sdW1lPjI0PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5
ZWFyPjIwMDQ8L3llYXI+PC9kYXRlcz48aXNibj4wMjcyLTQ5MzY8L2lzYm4+PHVybHM+PC91cmxz
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlBhcnJ5PC9BdXRob3I+PFllYXI+MTk5OTwv
WWVhcj48UmVjTnVtPjIyNzwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjI3PC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yMjc8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlBhcnJ5LCBDaHJpc3RvcGhlciBNPC9hdXRob3I+PGF1dGhvcj5Ib2EsIE5ndXllbiBU
aGkgVHV5ZXQ8L2F1dGhvcj48YXV0aG9yPkRpZXAsIFRvIFNvbmc8L2F1dGhvcj48YXV0aG9yPldh
aW4sIEpvaG48L2F1dGhvcj48YXV0aG9yPkNoaW5oLCBOZ3V5ZW4gVHJhbjwvYXV0aG9yPjxhdXRo
b3I+VmluaCwgSGE8L2F1dGhvcj48YXV0aG9yPkhpZW4sIFRyYW4gVGluaDwvYXV0aG9yPjxhdXRo
b3I+V2hpdGUsIE5pY2hvbGFzIEo8L2F1dGhvcj48YXV0aG9yPkZhcnJhciwgSmVyZW15IEo8L2F1
dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+VmFsdWUgb2YgYSBz
aW5nbGUtdHViZSBXaWRhbCB0ZXN0IGluIGRpYWdub3NpcyBvZiB0eXBob2lkIGZldmVyIGluIFZp
ZXRuYW08L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jp
b2xvZ3k8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5K
b3VybmFsIG9mIGNsaW5pY2FsIG1pY3JvYmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+
PHBhZ2VzPjI4ODItMjg4NjwvcGFnZXM+PHZvbHVtZT4zNzwvdm9sdW1lPjxudW1iZXI+OTwvbnVt
YmVyPjxkYXRlcz48eWVhcj4xOTk5PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDA5NS0xMTM3PC9pc2Ju
Pjx1cmxzPjwvdXJscz48L3JlY29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5DaGl1PC9BdXRob3I+
PFllYXI+MjAwNDwvWWVhcj48UmVjTnVtPjIzMjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+
MjMyPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5Zndw
OXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzI8L2tleT48L2ZvcmVpZ24ta2V5cz48
cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9y
cz48YXV0aG9ycz48YXV0aG9yPkNoaXUsIFMuPC9hdXRob3I+PGF1dGhvcj5DaGl1LCBDLiBILjwv
YXV0aG9yPjxhdXRob3I+TGluLCBULiBZLjwvYXV0aG9yPjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9y
cz48YXV0aC1hZGRyZXNzPkRpdmlzaW9uIG9mIFBlZGlhdHJpYyBJbmZlY3Rpb3VzIERpc2Vhc2Vz
LCBEZXBhcnRtZW50IG9mIFBlZGlhdHJpY3MsIENoYW5nIEd1bmcgQ2hpbGRyZW4mYXBvcztzIEhv
c3BpdGFsLCA1IEZ1LUhzaW4gU3RyZWV0LCBLd2Vpc2hhbiwgVGFveXVhbiwgVGFpd2FuIDMzMywg
Uk9DLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlNhbG1vbmVsbGEgZW50ZXJpY2Egc2Vy
b3R5cGUgQ2hvbGVyYWVzdWlzIGluZmVjdGlvbiBpbiBhIG1lZGljYWwgY2VudGVyIGluIG5vcnRo
ZXJuIFRhaXdhbjwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5KIE1pY3JvYmlvbCBJbW11bm9sIElu
ZmVjdDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkog
TWljcm9iaW9sIEltbXVub2wgSW5mZWN0PC9mdWxsLXRpdGxlPjwvcGVyaW9kaWNhbD48cGFnZXM+
OTktMTAyPC9wYWdlcz48dm9sdW1lPjM3PC92b2x1bWU+PG51bWJlcj4yPC9udW1iZXI+PGVkaXRp
b24+MjAwNC8wNi8wODwvZWRpdGlvbj48a2V5d29yZHM+PGtleXdvcmQ+QWR1bHQ8L2tleXdvcmQ+
PGtleXdvcmQ+QWdlZDwva2V5d29yZD48a2V5d29yZD5BbnRpLUJhY3RlcmlhbCBBZ2VudHMvcGhh
cm1hY29sb2d5L3RoZXJhcGV1dGljIHVzZTwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJlbWlhL21p
Y3JvYmlvbG9neTwva2V5d29yZD48a2V5d29yZD5DZXBoYWxvc3Bvcmlucy9waGFybWFjb2xvZ3kv
dGhlcmFwZXV0aWMgdXNlPC9rZXl3b3JkPjxrZXl3b3JkPkZlY2VzL21pY3JvYmlvbG9neTwva2V5
d29yZD48a2V5d29yZD5GZW1hbGU8L2tleXdvcmQ+PGtleXdvcmQ+RmV2ZXIvZXRpb2xvZ3k8L2tl
eXdvcmQ+PGtleXdvcmQ+Rm9jYWwgSW5mZWN0aW9uL21pY3JvYmlvbG9neTwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+TWFsZTwva2V5d29yZD48a2V5d29yZD5NaWNy
b2JpYWwgU2Vuc2l0aXZpdHkgVGVzdHM8L2tleXdvcmQ+PGtleXdvcmQ+TWlkZGxlIEFnZWQ8L2tl
eXdvcmQ+PGtleXdvcmQ+UmV0cm9zcGVjdGl2ZSBTdHVkaWVzPC9rZXl3b3JkPjxrZXl3b3JkPlNh
bG1vbmVsbGEgSW5mZWN0aW9ucy8qbWljcm9iaW9sb2d5LypwaHlzaW9wYXRob2xvZ3k8L2tleXdv
cmQ+PGtleXdvcmQ+U2FsbW9uZWxsYSBlbnRlcmljYS9kcnVnIGVmZmVjdHMvKmlzb2xhdGlvbiAm
YW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+PGtleXdvcmQ+VGFpd2FuPC9rZXl3b3JkPjxrZXl3
b3JkPldvdW5kcyBhbmQgSW5qdXJpZXMvbWljcm9iaW9sb2d5PC9rZXl3b3JkPjwva2V5d29yZHM+
PGRhdGVzPjx5ZWFyPjIwMDQ8L3llYXI+PHB1Yi1kYXRlcz48ZGF0ZT5BcHI8L2RhdGU+PC9wdWIt
ZGF0ZXM+PC9kYXRlcz48aXNibj4xNjg0LTExODIgKFByaW50KSYjeEQ7MTY4NC0xMTgyIChMaW5r
aW5nKTwvaXNibj48YWNjZXNzaW9uLW51bT4xNTE4MTQ5MTwvYWNjZXNzaW9uLW51bT48dXJscz48
cmVsYXRlZC11cmxzPjx1cmw+aHR0cDovL3d3dy5uY2JpLm5sbS5uaWguZ292L2VudHJlei9xdWVy
eS5mY2dpP2NtZD1SZXRyaWV2ZSZhbXA7ZGI9UHViTWVkJmFtcDtkb3B0PUNpdGF0aW9uJmFtcDts
aXN0X3VpZHM9MTUxODE0OTE8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PGxhbmd1YWdlPmVu
ZzwvbGFuZ3VhZ2U+PC9yZWNvcmQ+PC9DaXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA (14-16).
سپتی سمی
سپتی سمی دارای علایمی است که شامل: باکتریمی، بی اشتهایی، کاهش وزن بدن، کم خونی، بزرگ شدن کبد و طحال و تب ناگهانی می باشد. پس از تهاجم به ایلئوم در بیماران دارای کم خونی ممکن است عفونت به سمت سپتی سمی سوق داده شود. درمان آنتی بیوتیکی سپتی سمی شامل: سفتریاکسون، سپیروفلوکساسین و سفوپرازون می باشد و باید از افراد مبتلا به سپتی سمی کشت خون انجام شود بدلیل آنکه باکتری در داخل خون این افراد می باشد. ممکن است باکتریمی سبب عفونت در جاهای غیر عادی بدلیل وارد شدن ارگانیسم به اندام های مختلف شود. همچنین باعث سپسیس نیز می شود ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
ب) گاستروانتریت
سالمونلا با تولید انتروتوکسین و تهاجم به دیواره ی روده باعث ایجاد علایمی چون استفراغ، اسهال و تهوع می شود. بیشتر سروتایپ های سالمونلا می توانند باعث ایجاد انتریت می گردند.وجودPMN ها در مدفوع باعث اثبات هجوم باکتری به بافت ها شود اما بطور غیر معمول سالمونلا از دستگاه گوارش به سایر اندام های بدن منتقل می گردد.
سالمونلا از طریق محصولات دامی آلوده به انسان انتقال می یابد و این عفونت بین انسان و دام مشترک می باشد و این یک عفونت زئونوز می باشد.
ممکن است علاوه بر فراورده های لبنی آلوده به سالمونلا، آب شده به مدفوع یا ادرار حیوانات یا غذا از دیگر منابع انتریت ناشی از سالمونلا می باشند ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
ج) انترو کولیت
این بیماری تظاهر عفونت سالمونلایی می باشد. در ایالات متحده آمریکا، سالمونلا تایفی موریوم و سالمونلا انتریتیدیس غالب هستند، اما انتروکولیت توسط هرکدام از 1400 سروتایپ گروه یک سالمونلا می تواند ایجاد شود. 8 تا 48 ساعت پس از خورده شدن سالمونلا، تهوع، اسهال پر حجم، سردرد، استفراغ روی می دهد و تعداد کمی گلبول سفید در مدفوع دیده می شود. تب خفیف، شایع است ولی دوره بیماری 2 تا 3 روز پایان می پذیرد.
ضایعات التهابی در روده کوچک و روده بزرگ وجود دارد. باکتریمی غیر شایع است( 2 تا 4 درصد) به غیر از مواردی که بیمار دارای نقص سیستم ایمنی است. نتیجه کشت خون منفی است ولی نتیجه کشت مدفوع برای سالمونلاها مثبت بوده و ممکن است تا چند هفته پس از رفع علائم بالینی مثبت باقی بماند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-8. اپیدمیولوژی سالمونلا
سالمونلا باعث مسومیت های غذایی، حصبه، سپتی سمی و انتروکولیت می شود و از طریق دهانی وارد بدن انسان و سایر حیوانات می شودPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TWlsbGVyPC9BdXRob3I+PFllYXI+
MjAwMDwvWWVhcj48UmVjTnVtPjIzNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM2PC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4
YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5
cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0
aG9ycz48YXV0aG9yPk1pbGxlciwgU2FtdWVsIEk8L2F1dGhvcj48YXV0aG9yPlBlZ3VlcywgREE8
L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxs
YSBzcGVjaWVzLCBpbmNsdWRpbmcgU2FsbW9uZWxsYSB0eXBoaTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5QcmluY2lwbGVzIGFuZCBwcmFjdGljZSBvZiBpbmZlY3Rpb3VzIGRpc2Vhc2VzPC9zZWNv
bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJpbmNpcGxlcyBh
bmQgcHJhY3RpY2Ugb2YgaW5mZWN0aW91cyBkaXNlYXNlczwvZnVsbC10aXRsZT48L3BlcmlvZGlj
YWw+PHBhZ2VzPjIzNDQtMjM2MzwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGRhdGVzPjx5ZWFy
PjIwMDA8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB
dXRob3I+TG9uZ288L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjM3PC9SZWNOdW0+
PHJlY29yZD48cmVjLW51bWJlcj4yMzc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIzNzwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TG9uZ28sIEQuPC9hdXRob3I+PGF1dGhvcj5GYXVj
aSwgQS48L2F1dGhvcj48YXV0aG9yPkthc3BlciwgRC48L2F1dGhvcj48YXV0aG9yPkhhdXNlciwg
Uy48L2F1dGhvcj48YXV0aG9yPkphbWVzb24sIEouPC9hdXRob3I+PGF1dGhvcj5Mb3NjYWx6bywg
Si48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SGFycmlz
b24mYXBvcztzIFByaW5jaXBsZXMgb2YgSW50ZXJuYWwgTWVkaWNpbmUsIDE4dGggRWRpdGlvbjwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
Pk1jR3Jhdy1IaWxsIEVkdWNhdGlvbjwvcHVibGlzaGVyPjxpc2JuPjk3ODAwNzE3NDg5MDI8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD03Z3hqTVY4aENsc0M8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5QYXJyeTwvQXV0aG9yPjxZZWFyPjE5OTk8L1llYXI+PFJl
Y051bT4yMjc8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjIyNzwvcmVjLW51bWJlcj48Zm9y
ZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFlZXhkdmlwOTkyY3Qy
dHd6ZXZ3Mjl6dyI+MjI3PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9IkpvdXJu
YWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5Q
YXJyeSwgQ2hyaXN0b3BoZXIgTTwvYXV0aG9yPjxhdXRob3I+SG9hLCBOZ3V5ZW4gVGhpIFR1eWV0
PC9hdXRob3I+PGF1dGhvcj5EaWVwLCBUbyBTb25nPC9hdXRob3I+PGF1dGhvcj5XYWluLCBKb2hu
PC9hdXRob3I+PGF1dGhvcj5DaGluaCwgTmd1eWVuIFRyYW48L2F1dGhvcj48YXV0aG9yPlZpbmgs
IEhhPC9hdXRob3I+PGF1dGhvcj5IaWVuLCBUcmFuIFRpbmg8L2F1dGhvcj48YXV0aG9yPldoaXRl
LCBOaWNob2xhcyBKPC9hdXRob3I+PGF1dGhvcj5GYXJyYXIsIEplcmVteSBKPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPlZhbHVlIG9mIGEgc2luZ2xlLXR1
YmUgV2lkYWwgdGVzdCBpbiBkaWFnbm9zaXMgb2YgdHlwaG9pZCBmZXZlciBpbiBWaWV0bmFtPC90
aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkpvdXJuYWwgb2YgY2xpbmljYWwgbWljcm9iaW9sb2d5PC9z
ZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+Sm91cm5hbCBv
ZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4y
ODgyLTI4ODY8L3BhZ2VzPjx2b2x1bWU+Mzc8L3ZvbHVtZT48bnVtYmVyPjk8L251bWJlcj48ZGF0
ZXM+PHllYXI+MTk5OTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTUtMTEzNzwvaXNibj48dXJscz48
L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TWlsbGVyPC9BdXRob3I+PFllYXI+
MjAwMDwvWWVhcj48UmVjTnVtPjIzNjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM2PC9y
ZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4
YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzY8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5
cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0
aG9ycz48YXV0aG9yPk1pbGxlciwgU2FtdWVsIEk8L2F1dGhvcj48YXV0aG9yPlBlZ3VlcywgREE8
L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+U2FsbW9uZWxs
YSBzcGVjaWVzLCBpbmNsdWRpbmcgU2FsbW9uZWxsYSB0eXBoaTwvdGl0bGU+PHNlY29uZGFyeS10
aXRsZT5QcmluY2lwbGVzIGFuZCBwcmFjdGljZSBvZiBpbmZlY3Rpb3VzIGRpc2Vhc2VzPC9zZWNv
bmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+UHJpbmNpcGxlcyBh
bmQgcHJhY3RpY2Ugb2YgaW5mZWN0aW91cyBkaXNlYXNlczwvZnVsbC10aXRsZT48L3BlcmlvZGlj
YWw+PHBhZ2VzPjIzNDQtMjM2MzwvcGFnZXM+PHZvbHVtZT41PC92b2x1bWU+PGRhdGVzPjx5ZWFy
PjIwMDA8L3llYXI+PC9kYXRlcz48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxB
dXRob3I+TG9uZ288L0F1dGhvcj48WWVhcj4yMDAxPC9ZZWFyPjxSZWNOdW0+MjM3PC9SZWNOdW0+
PHJlY29yZD48cmVjLW51bWJlcj4yMzc8L3JlYy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFw
cD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhhZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjIzNzwv
a2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSJCb29rIj42PC9yZWYtdHlwZT48Y29u
dHJpYnV0b3JzPjxhdXRob3JzPjxhdXRob3I+TG9uZ28sIEQuPC9hdXRob3I+PGF1dGhvcj5GYXVj
aSwgQS48L2F1dGhvcj48YXV0aG9yPkthc3BlciwgRC48L2F1dGhvcj48YXV0aG9yPkhhdXNlciwg
Uy48L2F1dGhvcj48YXV0aG9yPkphbWVzb24sIEouPC9hdXRob3I+PGF1dGhvcj5Mb3NjYWx6bywg
Si48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRvcnM+PHRpdGxlcz48dGl0bGU+SGFycmlz
b24mYXBvcztzIFByaW5jaXBsZXMgb2YgSW50ZXJuYWwgTWVkaWNpbmUsIDE4dGggRWRpdGlvbjwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+PC9kYXRlcz48cHVibGlzaGVy
Pk1jR3Jhdy1IaWxsIEVkdWNhdGlvbjwvcHVibGlzaGVyPjxpc2JuPjk3ODAwNzE3NDg5MDI8L2lz
Ym4+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHBzOi8vYm9va3MuZ29vZ2xlLmNvbS9ib29r
cz9pZD03Z3hqTVY4aENsc0M8L3VybD48L3JlbGF0ZWQtdXJscz48L3VybHM+PC9yZWNvcmQ+PC9D
aXRlPjwvRW5kTm90ZT4A
ADDIN EN.CITE.DATA (15, 17, 18).
در آمریکا انتریت سومین فرم شایع مسومیت غذایی است و سالیانه حدود 50000 مورد انتریت گزارش می شود که اکثرا به وسیله سالمونلا انتریکا سرو تایپ تایفی موریوم می باشد ADDIN EN.CITE <EndNote><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(6).
خانوم ها سالمونلا را در داخل کیسه صفراوی خود حمل می نمایند، در حالیکه هیچگونه علایمی از خود بروز نمی دهنند به این دلیل که سالمونلا دارای تمایل بالا به لوکالیزه شدن در کیسه صفرا می باشد و باعث می شود که این ناقلان برای سالها سالمونلا را به محیط اطراف منتقل نمایند.
مقدار حدود 10⁶ تا 10⁷ دوز از سالمونلا برای ایجاد عفونت نیاز است این به دلیل آن می باشد که سالمونلا به اسید معده حساس بوده که این خصوصیت بر خلاف شیگلا می باشد. افرادی که دارو های ضد اسید معده مصرف می کنند در برابر عفونت با سالمونلا حساس تر می باشند.
مدفوع افرادی که بیماری تحت بالینی نامحسوسی دارند و یا آنهایی که ناقل هستند نسبت به افرادی که وضعیت بالینی آشکاری دارند، منبع آلودگی بسیار مهم تری هستند، مثلا زمانی که ناقلینی که در تهیه مواد غذایی شاغل هستند و ارگانیسم را دفع می نمایند. بسیاری از حیوانات از جمله دام ها، جوندگان و ماکیان به طور طبیعی با انواعی از سالمونلا آلوده می شوند و باکتری در بافت های آنها( مثل گوشت)، مدفوع و تخم ها وجود دارد. در مورد شیوع بالای سالمونلاها در محصولات مرغ تجاری به طور گسترده اطلاع رسانی شده است. در ایالات متحده آمریکا بروز تب تیفوئید کاهش یافته ولی وقوع سایر عفونت های سالمونلایی به طور چشمگیری افزایش یافته است. به احتمال زیاد مشکل در استفاده وسیع از خوراک دام و طیور حاوی مواد دارویی ضد میکروبی است که شرایط برای رشد سویه های مقاوم سالمونلا تسهیل کرده و این سویه ها به انسان انتقال یافته و می تواند در انسان بیماری ایجاد نمایند. منابعی که ممکن سبب عفونت با سالمونلا در انسان شوند شامل: آب، شیر و سایر فراورده های لبنی، صدف، تخم مرغ پودر یا فریز شده، گوشت و فراورده های گوشتی، رنگ های با منشاء حیوانی، مواد مخدر مثل ماری جوانا و حیوانات دست آموز خانگی می باشند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-9، تشخیص آزمایشگاهی سالمونلا
سالمونلا درمحیطهای S.S Agar، بیسموت سولفیت، بریلیانت گرین و HEA-SS رشد می کند ولی سایر کلی فرم ها همچون اشرشیا کلی بدلیل وجود آنتی بیوتیک ها قادر به رشد بر روی این محیط ها نیستند. در عفونت گاستروانتریت ناشی از سالمونلا، در اسمیر نازک از مدفوع اسهالی، گلبول های سفید همراه با باکتری سالمونلا در زیر میکروسکوپ دیده خواهد شد. کلونی های سالمونلا بر روی محیط بلاد آگار به صورت محدب و مرطوب به رنگ خاکستری به قطر دو تا سه میلی متر دیده می شود که این کلونی ها بعد گذشت بیست و چهار ساعت در دمای 37 درجه سانتی گراد ایجاد می گردد. در محیط مکانکی آگار کلونی های سالمونلا بیرنگ دیده می شود و رنگ محیط بدلیل عدم تخمیر قند لاکتوز زرد کهربایی می گردد ولی سایر باکتری های گرم منفی که جزء خانواده ی انترو باکتریاسه می باشند و تخمیر کننده ی قند لاکتوز هستند، برروی محیط مکانکی اگار کلونی هایی به رنگ صورتی ایجاد می نمایند. سالمونلا و شیگلا بر روی محیط های سلینت F و محیط مایع GN به سرعت تکثیر پیدا می کنند به این دلیل که این محیط ها مانع از رشد باکتری های گرم مثبت می گردند ADDIN EN.CITE <EndNote><Cite><Author>Budowle</Author><Year>2005</Year><RecNum>238</RecNum><record><rec-number>238</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">238</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Budowle, Bruce</author><author>Schutzer, Steven E</author><author>Ascher, Michael S</author><author>Atlas, Ronald M</author><author>Burans, James P</author><author>Chakraborty, Ranajit</author><author>Dunn, John J</author><author>Fraser, Claire M</author><author>Franz, David R</author><author>Leighton, Terrance J</author></authors></contributors><titles><title>Toward a sys-- of microbial forensics: from sample collection to interpretation of evidence</title><secondary-title>Applied and environmental microbiology</secondary-title></titles><periodical><full-title>Applied and environmental microbiology</full-title></periodical><pages>2209-2213</pages><volume>71</volume><number>5</number><dates><year>2005</year></dates><isbn>0099-2240</isbn><urls></urls></record></Cite></EndNote>(19).
الف) تست های سرولوژیک
بررسی تیتر آنتی بادی و وجود آنتی بادی در سرم بیماران بویسله ی تست ویدال مشخص می گردد. آگلوتیناسیون که در اثر واکنش مستقیم بین آنتی ژنهای پیکری(O) و آنتی ژن تاژک(H) با آنتی بادی ضد آنها ایجاد می شود، اساس تست ویدال می باشد. تست ویدال به دو صورت روش اسلاید و روش لوله ای صورت می گیرد. روش اسلایدی به صورت سریع و روش لوله ای به صورت کند، صورت می پذیرد. به علت پایین بودن سرعت روش لوله ای، این روش تنها برای آنتی ژن هایی که در روش اسلایدی مثبت شده اند، صورت می پذیرد. با وجود اینکه تست ویدال آسان می باشد ولی میزان دقت و حساسیت آن پایین است ADDIN EN.CITE <EndNote><Cite><Author>Bhutta</Author><Year>2006</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">239</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhutta, Zulfiqar A</author></authors></contributors><titles><title>Current concepts in the diagnosis and treatment of typhoid fever</title><secondary-title>BMJ</secondary-title></titles><periodical><full-title>BMJ</full-title></periodical><pages>78-82</pages><volume>333</volume><number>7558</number><dates><year>2006</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(20) .
حساسیت و دقت روشهای سنتی اعم از کشت و تست های سرولوژی پایین است، به این دلیل روشهای ژنوتایپینگ که بر مبنای ژنوم باکتری می باشد جایگزین روش های فنوتایپینگ شده است. از روش های ژنوتایپینگ که برای شناسایی سالمونلا تایفی استفاده می شود می توان به Nested-PCR با استفاده از پرایمر های HI-d اشاره نمود ADDIN EN.CITE <EndNote><Cite><Author>Bhutta</Author><Year>2006</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">239</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhutta, Zulfiqar A</author></authors></contributors><titles><title>Current concepts in the diagnosis and treatment of typhoid fever</title><secondary-title>BMJ</secondary-title></titles><periodical><full-title>BMJ</full-title></periodical><pages>78-82</pages><volume>333</volume><number>7558</number><dates><year>2006</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(20) .
روش های جدیدی همچون Tubex و Typhidot جایگزین تست ویدال شده است. این تست ها قادر به شناسایی آنتی بادی های IgM ایجاد شده در میزبان بر ضد آنتی ژن های سالمونلا تایفی می باشد ADDIN EN.CITE <EndNote><Cite><Author>Bhutta</Author><Year>2006</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">239</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhutta, Zulfiqar A</author></authors></contributors><titles><title>Current concepts in the diagnosis and treatment of typhoid fever</title><secondary-title>BMJ</secondary-title></titles><periodical><full-title>BMJ</full-title></periodical><pages>78-82</pages><volume>333</volume><number>7558</number><dates><year>2006</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(20) .
ب) کشت مدفوع
نمونه هایی که مشکوک به عفونت با سالمونلا هستند بر روی محیط های انتخابی SS Agar و EMB وهمچنین محیط های غنی GN و سلینت F کشت داده می شوند. پس از کشت این محیط ها را داخل انکوباکتور در دمای 37 درحه سانتی گراد به مدت یک شبانه روز قرار می دهند.
بر روی کلونی های بیرنگ و SH₂ دار تست های بیوشیمیایی مناسب را انجام می دهند. سالمونلا فاقد آنزیم اوره از می باشد و در نتیجه تست اوره آن منفی است. تمام سالمونلا ها به جزء سالمونلا پارا تایفی A برو ی محیط کلیگر آیرون آگار، SH₂ تولید می نمایند. تست IMVIC برای سالمونلا پاراتایفی B و C به صورت +- و +- می باشد و این تست برای سالمونلا پارا تایفی A به صورت +- بوده و برای سالمونلا تایفی به صورت – می باشد.
هنگامیکه سالمونلا تایفی مزمن شود، در داخل کیسه صفرا کلونیزه می شود و باکتری از طریق مدفوع از بدن خارج می شود و سالمونلا را می تران از طریق کشت مدفوع جدا نمود ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite><Cite><Author>Walker</Author><Year>1998</Year><RecNum>3</RecNum><record><rec-number>3</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">3</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Walker, T.S.</author></authors></contributors><titles><title>Microbiology</title></titles><dates><year>1998</year></dates><publisher>W.B. Saunders Company</publisher><isbn>9780721646411</isbn><urls><related-urls><url>https://books.google.com/books?id=DtlpAAAAMAAJ</url></related-urls></urls></record></Cite></EndNote>(4,6).
در مورد عفونت های گاستروانتریت و انتروکولیت باید از بیمار کشت مدفوع صورت پذیرد اما از بیماران مشکوک به تب روده ای باید کشت خون صورت گیرد. سروتایپینگ به این صورت انجام می شود که یک قطره از آنتی سرم O بر روی لام ریخته و با یک کلونی از باکتری مخلوط می کنیم، اگر آگلوتیناسیون بعد از گذشت یک الی دو دقیقه صورت گرفت، مثبت بودن تست را مشخص می کند. در سالمونلا انتریتیدیس، سالمونلا پاراتایفی C و سالمونلا تایفی آنتی ژن کپسولی بر روی آنتی ژن پیکری قرار می گیرد در نتیجه ممکن است باکتری با هیچکدام از آنتی سرم های O واکنش ندهد و لخته ایجاد نشود ADDIN EN.CITE <EndNote><Cite><Author>Budowle</Author><Year>2005</Year><RecNum>238</RecNum><record><rec-number>238</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">238</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Budowle, Bruce</author><author>Schutzer, Steven E</author><author>Ascher, Michael S</author><author>Atlas, Ronald M</author><author>Burans, James P</author><author>Chakraborty, Ranajit</author><author>Dunn, John J</author><author>Fraser, Claire M</author><author>Franz, David R</author><author>Leighton, Terrance J</author></authors></contributors><titles><title>Toward a sys-- of microbial forensics: from sample collection to interpretation of evidence</title><secondary-title>Applied and environmental microbiology</secondary-title></titles><periodical><full-title>Applied and environmental microbiology</full-title></periodical><pages>2209-2213</pages><volume>71</volume><number>5</number><dates><year>2005</year></dates><isbn>0099-2240</isbn><urls></urls></record></Cite><Cite><Author>Schaechter</Author><Year>2001</Year><RecNum>240</RecNum><record><rec-number>240</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">240</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Schaechter, Moselio</author></authors></contributors><titles><title>Escherichia coli andSalmonella 2000: the View From Here</title><secondary-title>Microbiology and molecular biology reviews</secondary-title></titles><periodical><full-title>Microbiology and molecular biology reviews</full-title></periodical><pages>119-130</pages><volume>65</volume><number>1</number><dates><year>2001</year></dates><isbn>1092-2172</isbn><urls></urls></record></Cite></EndNote>(19,21) .
ج) کشت خون
سالمونلا تایفی بر روی محیط کلیگر آیرون آگار در قسمت شیب دار محیط به صورت لکه های سیاه رنگ، SH₂ تولید می کند. می توان از طریق تست لیزین، سالمونلا را از سیتروباکتر تشخیص داد. سالمونلا در تست لیزین دآمیناز منفی بوده اما در تست لیزین دکربوکسیلاز مثبت است.
برای انجام کشت خون، باید از بیمار حدود 10 میلی لیتر در هنگام تب خون گرفت و خون را در محیط تریپتیکاز سوی براث تزریق نمود و محیط را در داخل انکوباتور در دمای 37 درجه سانتیگراد به مدت یک شبانه روز قرار داد. در تب روده ای کشت خون در هفته اول مثبت می باشدPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWRvd2xlPC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjIzODwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM4PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJj
dDJ0d3pldncyOXp3Ij4yMzg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91
cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y
PkJ1ZG93bGUsIEJydWNlPC9hdXRob3I+PGF1dGhvcj5TY2h1dHplciwgU3RldmVuIEU8L2F1dGhv
cj48YXV0aG9yPkFzY2hlciwgTWljaGFlbCBTPC9hdXRob3I+PGF1dGhvcj5BdGxhcywgUm9uYWxk
IE08L2F1dGhvcj48YXV0aG9yPkJ1cmFucywgSmFtZXMgUDwvYXV0aG9yPjxhdXRob3I+Q2hha3Jh
Ym9ydHksIFJhbmFqaXQ8L2F1dGhvcj48YXV0aG9yPkR1bm4sIEpvaG4gSjwvYXV0aG9yPjxhdXRo
b3I+RnJhc2VyLCBDbGFpcmUgTTwvYXV0aG9yPjxhdXRob3I+RnJhbnosIERhdmlkIFI8L2F1dGhv
cj48YXV0aG9yPkxlaWdodG9uLCBUZXJyYW5jZSBKPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp
YnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRvd2FyZCBhIHN5c3RlbSBvZiBtaWNyb2JpYWwgZm9yZW5z
aWNzOiBmcm9tIHNhbXBsZSBjb2xsZWN0aW9uIHRvIGludGVycHJldGF0aW9uIG9mIGV2aWRlbmNl
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFwcGxpZWQgYW5kIGVudmlyb25tZW50YWwgbWljcm9i
aW9sb2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
QXBwbGllZCBhbmQgZW52aXJvbm1lbnRhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJp
b2RpY2FsPjxwYWdlcz4yMjA5LTIyMTM8L3BhZ2VzPjx2b2x1bWU+NzE8L3ZvbHVtZT48bnVtYmVy
PjU8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTktMjI0
MDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Qmh1dHRh
PC9BdXRob3I+PFllYXI+MjAwNjwvWWVhcj48UmVjTnVtPjIzOTwvUmVjTnVtPjxyZWNvcmQ+PHJl
Yy1udW1iZXI+MjM5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p
ZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzk8L2tleT48L2ZvcmVp
Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv
bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJodXR0YSwgWnVsZmlxYXIgQTwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DdXJyZW50IGNvbmNlcHRzIGlu
IHRoZSBkaWFnbm9zaXMgYW5kIHRyZWF0bWVudCBvZiB0eXBob2lkIGZldmVyPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkJNSjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm
dWxsLXRpdGxlPkJNSjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc4LTgyPC9wYWdl
cz48dm9sdW1lPjMzMzwvdm9sdW1lPjxudW1iZXI+NzU1ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk1OS04MTM4PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5TY2hhZWNodGVyPC9BdXRob3I+PFllYXI+MjAwMTwv
WWVhcj48UmVjTnVtPjI0MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjQwPC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yNDA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlNjaGFlY2h0ZXIsIE1vc2VsaW88L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+RXNjaGVyaWNoaWEgY29saSBhbmRTYWxtb25lbGxhIDIwMDA6IHRo
ZSBWaWV3IEZyb20gSGVyZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5k
IG1vbGVjdWxhciBiaW9sb2d5IHJldmlld3M8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy
aW9kaWNhbD48ZnVsbC10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5kIG1vbGVjdWxhciBiaW9sb2d5IHJl
dmlld3M8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTktMTMwPC9wYWdlcz48dm9s
dW1lPjY1PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48aXNibj4xMDkyLTIxNzI8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5CdWRvd2xlPC9BdXRob3I+PFllYXI+MjAwNTwvWWVhcj48
UmVjTnVtPjIzODwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjM4PC9yZWMtbnVtYmVyPjxm
b3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJj
dDJ0d3pldncyOXp3Ij4yMzg8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91
cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9y
PkJ1ZG93bGUsIEJydWNlPC9hdXRob3I+PGF1dGhvcj5TY2h1dHplciwgU3RldmVuIEU8L2F1dGhv
cj48YXV0aG9yPkFzY2hlciwgTWljaGFlbCBTPC9hdXRob3I+PGF1dGhvcj5BdGxhcywgUm9uYWxk
IE08L2F1dGhvcj48YXV0aG9yPkJ1cmFucywgSmFtZXMgUDwvYXV0aG9yPjxhdXRob3I+Q2hha3Jh
Ym9ydHksIFJhbmFqaXQ8L2F1dGhvcj48YXV0aG9yPkR1bm4sIEpvaG4gSjwvYXV0aG9yPjxhdXRo
b3I+RnJhc2VyLCBDbGFpcmUgTTwvYXV0aG9yPjxhdXRob3I+RnJhbnosIERhdmlkIFI8L2F1dGhv
cj48YXV0aG9yPkxlaWdodG9uLCBUZXJyYW5jZSBKPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJp
YnV0b3JzPjx0aXRsZXM+PHRpdGxlPlRvd2FyZCBhIHN5c3RlbSBvZiBtaWNyb2JpYWwgZm9yZW5z
aWNzOiBmcm9tIHNhbXBsZSBjb2xsZWN0aW9uIHRvIGludGVycHJldGF0aW9uIG9mIGV2aWRlbmNl
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFwcGxpZWQgYW5kIGVudmlyb25tZW50YWwgbWljcm9i
aW9sb2d5PC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBlcmlvZGljYWw+PGZ1bGwtdGl0bGU+
QXBwbGllZCBhbmQgZW52aXJvbm1lbnRhbCBtaWNyb2Jpb2xvZ3k8L2Z1bGwtdGl0bGU+PC9wZXJp
b2RpY2FsPjxwYWdlcz4yMjA5LTIyMTM8L3BhZ2VzPjx2b2x1bWU+NzE8L3ZvbHVtZT48bnVtYmVy
PjU8L251bWJlcj48ZGF0ZXM+PHllYXI+MjAwNTwveWVhcj48L2RhdGVzPjxpc2JuPjAwOTktMjI0
MDwvaXNibj48dXJscz48L3VybHM+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+Qmh1dHRh
PC9BdXRob3I+PFllYXI+MjAwNjwvWWVhcj48UmVjTnVtPjIzOTwvUmVjTnVtPjxyZWNvcmQ+PHJl
Yy1udW1iZXI+MjM5PC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p
ZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yMzk8L2tleT48L2ZvcmVp
Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv
bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkJodXR0YSwgWnVsZmlxYXIgQTwvYXV0aG9yPjwv
YXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5DdXJyZW50IGNvbmNlcHRzIGlu
IHRoZSBkaWFnbm9zaXMgYW5kIHRyZWF0bWVudCBvZiB0eXBob2lkIGZldmVyPC90aXRsZT48c2Vj
b25kYXJ5LXRpdGxlPkJNSjwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxm
dWxsLXRpdGxlPkJNSjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjc4LTgyPC9wYWdl
cz48dm9sdW1lPjMzMzwvdm9sdW1lPjxudW1iZXI+NzU1ODwvbnVtYmVyPjxkYXRlcz48eWVhcj4y
MDA2PC95ZWFyPjwvZGF0ZXM+PGlzYm4+MDk1OS04MTM4PC9pc2JuPjx1cmxzPjwvdXJscz48L3Jl
Y29yZD48L0NpdGU+PENpdGU+PEF1dGhvcj5TY2hhZWNodGVyPC9BdXRob3I+PFllYXI+MjAwMTwv
WWVhcj48UmVjTnVtPjI0MDwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjQwPC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yNDA8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlNjaGFlY2h0ZXIsIE1vc2VsaW88L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PHRpdGxlcz48dGl0bGU+RXNjaGVyaWNoaWEgY29saSBhbmRTYWxtb25lbGxhIDIwMDA6IHRo
ZSBWaWV3IEZyb20gSGVyZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5k
IG1vbGVjdWxhciBiaW9sb2d5IHJldmlld3M8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVy
aW9kaWNhbD48ZnVsbC10aXRsZT5NaWNyb2Jpb2xvZ3kgYW5kIG1vbGVjdWxhciBiaW9sb2d5IHJl
dmlld3M8L2Z1bGwtdGl0bGU+PC9wZXJpb2RpY2FsPjxwYWdlcz4xMTktMTMwPC9wYWdlcz48dm9s
dW1lPjY1PC92b2x1bWU+PG51bWJlcj4xPC9udW1iZXI+PGRhdGVzPjx5ZWFyPjIwMDE8L3llYXI+
PC9kYXRlcz48aXNibj4xMDkyLTIxNzI8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0
ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE.DATA (19-21).
1-2-10. پیشگیری و کنترل
معیار های بهداشتی برای جلوگیری از آلودگی غذا و آب توسط جوندگان و سایر حیواناتی که سالمونلا را از خود دفع می کنند، باید در نظر گرفته شود. محصولات طیور، گوشت و تخم مرغ های آلوده باید به خوبی پخته شوند. افراد ناقل نباید در کار تهیه مواد غذایی مشغول شوند و نظارت و احتیاط های شدید بهداشتی باید انجام شود.
دو واکسن تیفوئید هم اکنون در ایالات متحده آمریکا در دسترس می باشد. یک واکسن خوراکی تخفیف حدت یافته و یک واکسن از کپسول پلی ساکاریدی Vi که داخل ماهیچه تزریق می گردد. واکسیناسیون برای افرادی که به مناطق اندمیک سفر می کنند به خصوص آنهایی که در نظر دارند به مناطق روستایی که انتخاب های غذایی محدودی دارند بروند، توصیه می شود. هر واکسن کارایی در حدود 50 تا 80% دارد. زمان مورد نیاز برای واکسیناسیون اولیه و محدودیت های سنی برای هر واکسن متفاوت می باشد و افراد باید با وب سایت پیشگیری و کنترل بیماری ها مراجعه کرده و یا با یک کلینیک مخصوص مسافران مشورت نمایند تا بر اساس آخرین اطلاعات مربوط به واکسن عمل شود ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-11، ایمنی
عفونت با سالمونلا تایفی و سالمونلا پاراتایفی معمولا درجاتی از ایمنی را در افراد ایجاد می نماید. عفونت مجدد می تواند اتفاق بیوفتد اما نسبت به عفونت نخست، شدت کمتری دارد. آنتی بادی ها در گردش خون علیه آنتی ژن های O و Vi در ایمنی علیه عفونت و بیماری نقش ایفا می کند. البته امکان عود بیماری ظرف دو الی سه هفته و با وجود حضور آنتی بادی ها امکان پذیر می باشد. IgA ترشحی می تواند جلوی اتصال سالمونلا ها را به اپیتلیوم روده بگیرد.افرادی که هموگلوبین نوع S/S دارند و دارای بیماری سلول های داسی می باشند، حساسیت بیشتری به عفونت های سالمونلایی به خصوص استئو میلیت دارند. افرادی که هموگلوبین A/S دارند( خصلت سلول های داسی) بیش از افراد عادی( آنهایی که هموگلوبین نوع A/A دارند) حساس هستند ADDIN EN.CITE <EndNote><Cite><Author>Brooks</Author><Year>2012</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">1</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Brooks, G.</author><author>Carroll, K.C.</author><author>Butel, J.</author><author>Morse, S.</author></authors></contributors><titles><title>Jawetz Melnick&amp;Adelbergs Medical Microbiology 26/E</title></titles><dates><year>2012</year></dates><publisher>Mcgraw-hill</publisher><isbn>9780071790314</isbn><urls><related-urls><url>https://books.google.com/books?id=UUSXV8B9i9sC</url></related-urls></urls></record></Cite></EndNote>(4).
1-2-12، درمان
در پاکستان،بنگلادش،هند،ویتنام،آفریقاوخاورمیانه درطی سالهای1980تا1990 میلادی، اپیدمی هایی در اثر سالمونلا تایفی مقاوم به همه ی دارو های خط اول درمان که شامل کوتریموکسازول، آمپی سیلین و کلرامفنیکل بودند، ایجاد شد. سویه های سالمونلا تایفی که به کلرافنیکل مقاوم هستند به تتراسایکلین، استرپتومایسین و سولفونامید نیز مقاومت از خود نشان می دهند و برای درمان می توان از آنتی بیوتیک های موثر نظیر کوتریموکسازول و آموکسی سیلین استفاده نمود ADDIN EN.CITE <EndNote><Cite><Author>Longo</Author><Year>2001</Year><RecNum>237</RecNum><record><rec-number>237</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">237</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Longo, D.</author><author>Fauci, A.</author><author>Kasper, D.</author><author>Hauser, S.</author><author>Jameson, J.</author><author>Loscalzo, J.</author></authors></contributors><titles><title>Harrison&apos;s Principles of Internal Medicine, 18th Edition</title></titles><dates><year>2001</year></dates><publisher>McGraw-Hill Education</publisher><isbn>9780071748902</isbn><urls><related-urls><url>https://books.google.com/books?id=7gxjMV8hClsC</url></related-urls></urls></record></Cite></EndNote>(18).
برای درمان حصبه و شبه حصبه ازآنتی بیوتیک ها استفاده می شود که از این آنتی بیوتیک ها می توان به کوتریموکسازول، کینولون ها، آزیترومایسین، آزترونام، بتالاکتام و کلرامفنیکل اشاره نمود. به علت ایجاد عوارض و مقاومت بالا به کلرامفنیکل، از سال 1972 میلادی به بعد دیگر از این آنتی بیوتیک در درمان حصبه استفاده نمی شود.
بیمارانی که دارای مشکلات تغذیه ای هستند باید از غذاهای پر کالری، کم حجم و سالم استفاده کنند. برای جلوگیری از تب طولانی و کم آبی ناشی از اسهال، به بیماران نوشیدن مایعات توصیه می شود اما در مواردی که این کم آبی شدید است باید بیماران مایعات را از طریق ورید دریافت کنند ADDIN EN.CITE <EndNote><Cite><Author>Glynn</Author><Year>2004</Year><RecNum>241</RecNum><record><rec-number>241</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">241</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Glynn, M Kathleen</author><author>Reddy, Vasudha</author><author>Hutwagner, Lori</author><author>Rabatsky-Ehr, Therese</author><author>Shiferaw, Beletshachew</author><author>Vugia, Duc J</author><author>Segler, Suzanne</author><author>Bender, Jeff</author><author>Barrett, Timothy J</author><author>Angulo, Frederick J</author></authors></contributors><titles><title>Prior antimicrobial agent use increases the risk of spo--ic infections with multidrug-resistant Salmonella enterica serotype Typhimurium: a FoodNet case-control study, 1996–1997</title><secondary-title>Clinical infectious diseases</secondary-title></titles><periodical><full-title>Clinical infectious diseases</full-title></periodical><pages>S227-S236</pages><volume>38</volume><number>Supplement 3</number><dates><year>2004</year></dates><isbn>1058-4838</isbn><urls></urls></record></Cite></EndNote>(22).
مواردی از استفاده سالمونلا به عنوان یک آلوده کننده بیولوژیک وجود دارد به این علت که سرعت رشد و تکثیر سالمونلا بالاست و سویه هایی از سالمونلا تایفی می توانند سبب آلودگی مواد غذایی شوند.
هم اکنون برای درمان حصبه از سفالوسپورین های نسل سوم مثل سفتازیدیم و سفتریاکسون و فولورو کینولون ها مثل سیپروفلوکساسین و افلوکساسین استفاده می شود. جهت درمان سویه های مقاوم به کینولون، آزیترومایسین یا سفتریاکسون استفاده می گردد. البه شایان ذکر است در برخی از نقاط جهان درصد بالای از مقاومت سویه های سالمونلا به فلوروکینولون و سفالوسپورین های نسل سوم دیده شده است هنگامیکه این شرایط پیش می آید باید برای درمان این سویه های مقاوم از آزترونام و آزیترومایسین اسفاده نمود. هنگامی که باکتری به چند دارو مقاوم باشد برای درمان باید از یک سفکسیم یا فلوروکینولون استفاده نمود در حالیکه برای جداسازی باکتری حساس باید از فلوروکینولون ها مثل سپیروفلوکساسین و افلو کساسین استفاده نمود ADDIN EN.CITE <EndNote><Cite><Author>Bhutta</Author><Year>2006</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">239</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Bhutta, Zulfiqar A</author></authors></contributors><titles><title>Current concepts in the diagnosis and treatment of typhoid fever</title><secondary-title>BMJ</secondary-title></titles><periodical><full-title>BMJ</full-title></periodical><pages>78-82</pages><volume>333</volume><number>7558</number><dates><year>2006</year></dates><isbn>0959-8138</isbn><urls></urls></record></Cite></EndNote>(23).
1-3 – مروری بر روش های تایپینگ باکتری ها
تیپ بندی باکتری ها به دو صورت انجام می شود که به صورت زیر می باشد:
فنوتایپینگ: که بر اساس ویژگی های ظاهری باکتری ها می باشد مثل: کشت، تست های بیو شیمیایی، فاژتایپینگ و آنتی بیوگرام.
ژنوتایپینگ: که از میزان دقت و حساسیت بالایی نسبت به فنوتایپینگ بر خوردار است و این تکنیک ها بر پایه ی ژنوم میکرو ارگانیسم ها شکل گرفته اند مثل: MLST، PFGE، MLVA، Plasmid Profiling، REP-PCR، ERIC-PCR، PCR-RFLP، AFLP، AP-PCR،RAPD-PCR و Multiplex PCR.
البته در میان تکنیک های ژنوتایپینگ دو تکنیک MLVA و MLST از همه جدیدتر بوده است. البته شایان ذکر دو تکنیک Real Time- PCR و تکنیک LAMP برای تشخیص میکرو ارگانیسم ها استفاده می شود. البته در این میان LAMP دارای سرعت بالا و هزینه پایین نسبت به Real Time- PCR می باشد ADDIN EN.CITE <EndNote><Cite><Author>Mori</Author><Year>2009</Year><RecNum>242</RecNum><record><rec-number>242</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">242</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Mori, Yasuyoshi</author><author>Notomi, Tsugunori</author></authors></contributors><titles><title>Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases</title><secondary-title>Journal of infection and chemotherapy</secondary-title></titles><periodical><full-title>Journal of infection and chemotherapy</full-title></periodical><pages>62-69</pages><volume>15</volume><number>2</number><dates><year>2009</year></dates><isbn>1341-321X</isbn><urls></urls></record></Cite></EndNote>(23).
در ابتدا برای تشخیص باکتری ها و بررسی های اپیدمیولوژیکی از تست های سرولوژی استفاده شد. البته تست های سرولوژی با مشکلاتی اعم از هزینه بالای تولید و مصرف آن، تنوع وسیع خصوصیات آنتی ژنتیکی و نیاز به استفاده از طیف وسیعی از آنتی بادی به خصوص در هنکام استفاده از این تست برای شناسایی اشرشیا کلی، به همین دلیل تکنیک های مولکولی جایگزین تست های سرولوژی شده اند.
نگرش دانشمندان و محققان با شروع عصر مولکولی با کشف ژنوم از ویژگی های ظاهری باکتری( فنوتیپ) به به خصوصیات ژنتیکی و باطنی باکتری( ژنوتیپ) تغییر یافته است. البته تکنیک های ژنوتایپینگ خود به دو دسته تقسیم می شوند که به صورت زیر می باشد:
روش های ژنوتایپینگی که بر پایه ی تکثیر و همانند سازی DNA شکل گرفته اند که شامل: انواع مختلف PCR، MLVA و MLST
تکنیک هایی که بر پایه ی تکثیر و همانند سازی DNA نمی باشند که شامل: PFGE و FISH
تا کنون از تکنیک های مولکولی مختلفی جهت ژنوتایپینگ سویه مختلف سالمونلا انتریکا سرووار انتریتیدیس صورت گرفته که به تفصیل در فصل دوم و پنجم توضیح داده خواهد شد.
تمام این تکنیک هایی مولکولی دارای معایب و مزایایی نسبت به یکدیگر می باشند. MLVA یکی از روش های ژنوتایپینگ سریع و کم هزینه می باشد که مدت زمان زیادی نیست که پا به عرصه وجود کذاشته است و با توجه به مزایایی که نسبت به سایر روش های مولکولی دارد، امید می رود این تکنیک جایگزین سایرروش های ژنوتایپینگگران قیمت شود.البته شایانذکر است کهبحث مقایسه ی سایر روش های مولکولی از گنجایش این پایان نامه بدلیل گستردگی این روش ها، خارج است و سعی شده تا تکنیک MLVA را به طور کامل معرفی کرده و آنرا با سایر روش های مولکولی مقایسه کنیم و مزایا و معایب آنرا با سایر روش های مولکولی مشخص کنیم ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="vr2xrzwaadtex1exae9v9vdz2e2sedf2w0xt">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7).
1-3-1- اصول و مبانی روش MLVA
MLVA بر پایه ی توالی های تکرار شونده می باشد. توالی های تکرار شونده درداخل ژنوم ارگانیسم ها می باشند که دارای الگوهایی از اسید نوکلئیک( DNA یا RNA) می باشند که در چندین نسخه در ژنوم ارگانیسم ها وجود دارند. به طور کلی این توالی ها ی تکرار شونده به دو گروه اصلی تقسیم می شوند که شامل: 1) تکرار های پراکنده مثل SINEs و LINEs 2) تکرار های پشت سرهم که شامل میکرو ماهواره ها، ماهواره ها و مینی ماهواره ها می باشند. هنگامی که دو یا تعداد بیشتری از نوکلئوتید ها در کنار هم تکرار گردند، توالی تکرار های پشت سرهم شکل می گیرد به عنوان مثال توالی GTACGTACGTAC که توالی تکرار شونده ی آن GTAC است. اگر اندازه ی توالی تکرار شونده بین 10 تا 60 نوکلئوتید باشد، این توالی را مینی ماهواره و اگر این اندازه از 60 نوکلئتید بزرگتر باشد آنرا ماهواره و اگر این اندازه از 10 نوکلئوتید کوچکتر باشد آنرا میکرو ماهواره نام گذاری می کنند ADDIN EN.CITE <EndNote><Cite><Author>van Belkum</Author><Year>2007</Year><RecNum>275</RecNum><record><rec-number>275</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">275</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>van Belkum, A.</author></authors></contributors><auth-address>Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands. a.vanbelkum@erasmusmc.nl</auth-address><titles><title>Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA)</title><secondary-title>FEMS Immunol Med Microbiol</secondary-title></titles><periodical><full-title>FEMS Immunol Med Microbiol</full-title></periodical><pages>22-7</pages><volume>49</volume><number>1</number><edition>2007/02/03</edition><keywords><keyword>Bacillus anthracis/genetics</keyword><keyword>Bacteria/classification/*genetics/isolation &amp; purification</keyword><keyword>Bioterrorism</keyword><keyword>DNA, Bacterial/*genetics</keyword><keyword>Genome, Bacterial</keyword><keyword>Humans</keyword><keyword>*Minisatellite Repeats</keyword><keyword>Mycobacterium tuberculosis/genetics</keyword><keyword>Staphylococcus aureus/genetics</keyword></keywords><dates><year>2007</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0928-8244 (Print)&#xD;0928-8244 (Linking)</isbn><accession-num>17266711</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=17266711</url></related-urls></urls><electronic-resource-num>FIM173 [pii]&#xD;10.1111/j.1574-695X.2006.00173.x</electronic-resource-num><language>eng</language></record></Cite></EndNote>(24).

شکل 1-4، در تصویر بالا یک نمای شماتیک از VNTR ها یا همان توالی های تکرار شونده دیده می شود که هر مربع آبی نشان دهنده یک توالی تکرار شونده می باشد. VNTR ها در هر سویه باکتریایی متفاوت می باشند.VNTR یا تکرار های پشت سرهم با تعداد متغییر در اصطلاح به تکرار های پشت سرهمی گفته می شود که در یک ارگانیسم در مقایسه با سایر جمعیت های آن از لحاظ تعداد تکرار متفاوت می باشند. این ویژگی جالب سبب شده از زمان کشف VNTR، از این توالی های خاص در زیست شناسی، تحقیقات پزشکی جنایی، انگشت نگاری DNAو ژنتیک استفاده می نمایند. برای اولین بار VNTR ها در ژنوم سلول های یوکاریوتی مثل انسان پیدا شد ولی این توالی ها در ژنوم سلول های پروکاریوتی مثل باکتری ها نیز وجود دارند. VNTR ها در جنس و گونه های مختلف با هم متفاوت می باشند و هر VNTR مخصوص به خود همان گونه و جنس است و با VNTR گونه یا جنس دیگر متفاوت می باشد. لیز خوردن آنزیم DNA پلیمراز در حین همانند سازی ژنوم باعث ایجاد VNTR ها می شود به همین دلیل در تعداد تکرار های VNTR تنوع وجود دارد ADDIN EN.CITE <EndNote><Cite><Author>Moller</Author><Year>1995</Year><RecNum>279</RecNum><record><rec-number>279</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">279</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Moller </author><author>Brinkmann, B</author></authors></contributors><titles><title>PCR-VNTRs (PCR-Variable Number of Tandem Repeats) in forensic science</title><secondary-title>Cellular and molecular biology (Noisy-le-Grand, France)</secondary-title></titles><periodical><full-title>Cellular and molecular biology (Noisy-le-Grand, France)</full-title></periodical><pages>715-724</pages><volume>41</volume><number>5</number><dates><year>1995</year></dates><isbn>0145-5680</isbn><urls></urls></record></Cite><Cite><Author>Levinson</Author><Year>1987</Year><RecNum>280</RecNum><record><rec-number>280</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">280</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Levinson, Gene</author><author>Gutman, George A</author></authors></contributors><titles><title>Slipped-strand mispairing: a major mechanism for DNA sequence evolution</title><secondary-title>Molecular biology and evolution</secondary-title></titles><periodical><full-title>Molecular biology and evolution</full-title></periodical><pages>203-221</pages><volume>4</volume><number>3</number><dates><year>1987</year></dates><isbn>0737-4038</isbn><urls></urls></record></Cite></EndNote>(25و26).
همانطور که ذکر شد MLVA بر اساس VNTR ها شکل گرفته است. این تکنیک به تازگی برای ژنوتایپینگ باکتری ها استفاده شده است و خود را به عنوان یک تکنیک قدرتمند با حساسیت بالا در میان سایر تکنیک های مولکولی مطرح کرده است. معمولا برای انجام MLVA تعداد هفت یا بیشتر لوکوس VNTR از ژنوم باکتری انتخاب می گردد. پس از انجام PCR و الکتروفورز، ما تعداد تکرار های هر لوکوس VNTR را بدست می آوریم. در اصطلاح به این مجموعه ی تعداد تکرار ها را الگوی اللی( پروفایل اللی) می نامند به عنوان مثال پروفایل اللی نمونه شماره یک به صورت 1-2-5-6-3-4-7 و برای نمونه شماره ی دو به صورت 3-2-6-5-4-1-7 می باشد البته برای آنکه معنای پروفایل اللی را بهتر متوجه شویم می توان گفت پروفایل اللی مانند یک بارکد برای هر نمونه می باشد و با ذخیره سازی این داده ها در بانک های اطلاعاتی، امکان مقایسه این داده ها با سایر داده ها و حتی پردازش مجدد این داده ها وجود دارد ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="vr2xrzwaadtex1exae9v9vdz2e2sedf2w0xt">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7).

شکل 1-5، تصویر بالا پروفایل اللی مربوط به دو سویه ی باکتریایی را نشان می دهد. مربع های رنگی توالی های مختلف VNTR را نشان می دهد.
1-2-3- کلمات و اصطلاحات کاربردی در MLVA
بعد از انجام کارهای عملی مربوط به MLVA و ایجاد پروفایل اللی برای هر نمونه، نوبت به استفاده از مجموعه ای از الگوریتم های ریاضی می رسد که با استفاده از این الگوریتم ها می توان به تجزیه و تحلیل روابط فیلوژنتیکی و قرابت بین ایزوله ها پی برد. در MLVA برای بررسی ایزوله های جمعیتی از الگوریتم های MST استفاده می شود، البته از MST در تکنیک MLST نیز استفاده می شود. برای نخستین باردر سال 1960 میلادی مهندسان شهرداری برای انتخاب کوتاهترین مسیر ها برای نصب خطوط برق و مخابراتی یا انجام لوله کشی آب و فاضلاب، از این الگوریتم ها استفاده نمودند. سپس از این الگوریتم ها در زیست شناسی برای ترسیم کوتاهترین مسیر های تکاملی استفاده شد. امروزه از این الگوریتم ها برای تجزیه و تحلیل داده های تکنیک های MLST و MLVA استفاده می شود ADDIN EN.CITE <EndNote><Cite><Author>Weniger</Author><Year>2012</Year><RecNum>281</RecNum><record><rec-number>281</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">281</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weniger, Thomas</author><author>Krawczyk, Justina</author><author>Supply, Philip</author><author>Harmsen, Dag</author><author>Niemann, Stefan</author></authors></contributors><titles><title>Online tools for polyphasic analysis of&lt; i&gt; Mycobacterium tuberculosis&lt;/i&gt; complex genotyping data: Now and next</title><secondary-title>Infection, Genetics and Evolution</secondary-title></titles><periodical><full-title>Infection, Genetics and Evolution</full-title></periodical><pages>748-754</pages><volume>12</volume><number>4</number><dates><year>2012</year></dates><isbn>1567-1348</isbn><urls></urls></record></Cite></EndNote>(27).

شکل 1-6، در تصویر بالا آنالیز MLVA بوسیله MST را در یک سویه ی باکتریایی مشاهده می کنید. ایزوله هایی که در خرج ازخوشه های رنگی هستند،یکSingleton می باشند و هر خوشه رنگی نشان دهنده یک کلونال کمپلکس می باشد.
اگر دو ایزوله در یک لوکوس VNTR در پروفایل اللی خود با هم تفاوت داشته باشند، در اصطلاح نسبت به هم، SLV می باشند به عنوان مثال ایزوله ی شماره یک با پروفایل اللی 3-2-1-7-2-4-3 نسبت به ایزوله ی شماره دو با پروفایل اللی 3-2-1-7-2-4-2، SLV می باشد. حال اگر دو ایزوله در دولوکوسVNTRدرپروفایل اللی خودباهم تفاوت داشته باشند، در اصطلاح نسبت به یکدیگر، DLVهستند. هرعدد غیر مشابه ای نشان دهنده ی یک الل جدید می باشد و تنها در اینجا تفاوت در جایگاه های لوکوسی دارای اهمیت می باشد. بنیان گذار زیر گروه در اصطلاح به ایزوله ای گفته می شود که حداقل دو SLV از آن منشاء گرفته است. کلونال کمپلکس یا دودمان در اصطلاح به یک ایزوله ی مرکزی همراه با SLV و DLV های مربوط به آن گفته می شود. اعضای مربوط به یک کلونال کمپلکس قرابت ژنتیکی نزدیکی به هم دارند و احتمالا از یکدیگر مشتق شده اند. Singleton در اصطلاح به ایزوله هایی گفته می شود که در هیچ کلونال کمپلکسی قرار ندارند یا به عبارتی دارای بیش از دو تفاوت در جایگاه های لوکوسی در پروفایل اللی خود هستند. جمعیت های باکتریایی از تعدادی singleton و کلونال کمپلکس تشکیل شده اند. البته شایان ذکر است که MST نشان دهنده زمان تکامل نمی باشد و تنها ارتباط تکاملی ایزوله ها را نشان می دهد ADDIN EN.CITE <EndNote><Cite><Author>Weniger</Author><Year>2012</Year><RecNum>281</RecNum><record><rec-number>281</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">281</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Weniger, Thomas</author><author>Krawczyk, Justina</author><author>Supply, Philip</author><author>Harmsen, Dag</author><author>Niemann, Stefan</author></authors></contributors><titles><title>Online tools for polyphasic analysis of&lt; i&gt; Mycobacterium tuberculosis&lt;/i&gt; complex genotyping data: Now and next</title><secondary-title>Infection, Genetics and Evolution</secondary-title></titles><periodical><full-title>Infection, Genetics and Evolution</full-title></periodical><pages>748-754</pages><volume>12</volume><number>4</number><dates><year>2012</year></dates><isbn>1567-1348</isbn><urls></urls></record></Cite></EndNote>(27).
1-3-3- مزایای MLVA نسبت به سایر روش های ژنوتایپنگ
هر تکنیک ژنوتایپینگ دارای مزایا و معایبی می باشد. مزایای بیشمار تکنیک MLVA سبب شده که این تکنیک جای خود را در میان سایر تکنیک های ژنوتایپینگ باز کند و بیشتر مورداستفاده ی میکروبیولوژیستهاو اپید میولوژیستها قرارگیرد. بهطور خلاصه مزایای تکنیکMLVA رادر شکل 1-7 مشاهده می نمایید.

شکل 1-7، در تصویر بالا تعدادی از مزایای MLVA را به طور خلاصه مشاهده می کنید.
مزایای تکنیک MLVA عبارت است از:
هزینه: مشکلاتی که همواره پیش روی طرح های تحقیقاتی میباشد، هزینه ی انجام این طرح ها است و این هزینه ها در کشورهای در حال توسعه دارای اهمیت می باشد. MLVA یک تکنیک مبتنی بر PCR است و دارای هزینه های به مراتب کمتر نسبت به سایر تکنیک ها از جمله PFGE و MLST می باشد. در تکنیک PFGE نیاز به دستگاه ها و مواد گرانقیمت می باشد و در MLST ممکن است به علت تعیین توالی محصولات PCR هزینه ها به اندازه ی تکنیک PFGE یا بیشتر از PFGE شود ADDIN EN.CITE <EndNote><Cite><Author>Nadon</Author><Year>2013</Year><RecNum>1</RecNum><record><rec-number>1</rec-number><foreign-keys><key app="EN" db-id="vr2xrzwaadtex1exae9v9vdz2e2sedf2w0xt">1</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>Nadon, C. A.</author><author>Trees, E.</author><author>Ng, L. K.</author><author>Moller Nielsen, E.</author><author>Reimer, A.</author><author>Maxwell, N.</author><author>Kubota, K. A.</author><author>Gerner-Smidt, P.</author></authors></contributors><auth-address>National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</auth-address><titles><title>Development and application of MLVA methods as a tool for inter-laboratory surveillance</title><secondary-title>Euro Surveill</secondary-title></titles><pages>20565</pages><volume>18</volume><number>35</number><edition>2013/09/07</edition><keywords><keyword>Clinical Laboratory Techniques/instrumentation/*methods/standards</keyword><keyword>Consensus</keyword><keyword>Consensus Development Conferences as Topic</keyword><keyword>Disease Outbreaks/*prevention &amp; control</keyword><keyword>Humans</keyword><keyword>International Cooperation</keyword><keyword>Multilocus Sequence Typing/instrumentation/*methods/standards</keyword><keyword>Population Surveillance/*methods</keyword><keyword>*Quality Control</keyword><keyword>Tandem Repeat Sequences/*genetics</keyword></keywords><dates><year>2013</year></dates><isbn>1560-7917 (Electronic)&#xD;1025-496X (Linking)</isbn><accession-num>24008231</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=24008231</url></related-urls></urls><language>eng</language></record></Cite></EndNote>(7).
راحتی و سادگی انجام آن: مزیت تکنیک MLVA اینست که نیاز به تبحر و تخصص خاصی ندارد. موفقیت MLVA نسبت به سایر تکنیک های مبتنی بر PCR آنست که این تکنیک ساده می باشد و آنالیز داده های آن نیز سریع استPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5OYWRvbjwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl
Y051bT4xPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWdu
LWtleXM+PGtleSBhcHA9J0VOJyBkYi1pZD0ndnIyeHJ6d2FhZHRleDFleGFlOXY5dmR6MmUyc2Vk
ZjJ3MHh0Jz4xPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0
aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5OYWRvbiwg
Qy4gQS48L2F1dGhvcj48YXV0aG9yPlRyZWVzLCBFLjwvYXV0aG9yPjxhdXRob3I+TmcsIEwuIEsu
PC9hdXRob3I+PGF1dGhvcj5Nb2xsZXIgTmllbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPlJlaW1l
ciwgQS48L2F1dGhvcj48YXV0aG9yPk1heHdlbGwsIE4uPC9hdXRob3I+PGF1dGhvcj5LdWJvdGEs
IEsuIEEuPC9hdXRob3I+PGF1dGhvcj5HZXJuZXItU21pZHQsIFAuPC9hdXRob3I+PC9hdXRob3Jz
PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgTWljcm9iaW9sb2d5IExhYm9y
YXRvcnksIFB1YmxpYyBIZWFsdGggQWdlbmN5IG9mIENhbmFkYSwgV2lubmlwZWcsIE1hbml0b2Jh
LCBDYW5hZGEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgYW5kIGFw
cGxpY2F0aW9uIG9mIE1MVkEgbWV0aG9kcyBhcyBhIHRvb2wgZm9yIGludGVyLWxhYm9yYXRvcnkg
c3VydmVpbGxhbmNlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm8gU3VydmVpbGw8L3NlY29u
ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+MjA1NjU8L3BhZ2VzPjx2b2x1bWU+MTg8L3ZvbHVt
ZT48bnVtYmVyPjM1PC9udW1iZXI+PGVkaXRpb24+MjAxMy8wOS8wNzwvZWRpdGlvbj48a2V5d29y
ZHM+PGtleXdvcmQ+Q2xpbmljYWwgTGFib3JhdG9yeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlv
bi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29uc2Vuc3VzPC9rZXl3b3Jk
PjxrZXl3b3JkPkNvbnNlbnN1cyBEZXZlbG9wbWVudCBDb25mZXJlbmNlcyBhcyBUb3BpYzwva2V5
d29yZD48a2V5d29yZD5EaXNlYXNlIE91dGJyZWFrcy8qcHJldmVudGlvbiAmYW1wOyBjb250cm9s
PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbnRlcm5hdGlvbmFs
IENvb3BlcmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk11bHRpbG9jdXMgU2VxdWVuY2UgVHlwaW5n
L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9w
dWxhdGlvbiBTdXJ2ZWlsbGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlF1YWxpdHkg
Q29udHJvbDwva2V5d29yZD48a2V5d29yZD5UYW5kZW0gUmVwZWF0IFNlcXVlbmNlcy8qZ2VuZXRp
Y3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMzwveWVhcj48L2RhdGVzPjxp
c2JuPjE1NjAtNzkxNyAoRWxlY3Ryb25pYykmI3hEOzEwMjUtNDk2WCAoTGlua2luZyk8L2lzYm4+
PGFjY2Vzc2lvbi1udW0+MjQwMDgyMzE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs
cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9
UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTI0
MDA4MjMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPnZhbiBCZWxrdW08L0F1dGhvcj48WWVhcj4y
MDA3PC9ZZWFyPjxSZWNOdW0+Mjc1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yNzU8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjI3NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+dmFuIEJlbGt1bSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljYWwgTWljcm9iaW9sb2d5IGFuZCBJ
bmZlY3Rpb3VzIERpc2Vhc2VzLCBSb3R0ZXJkYW0sIFRoZSBOZXRoZXJsYW5kcy4gYS52YW5iZWxr
dW1AZXJhc211c21jLm5sPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+VHJhY2luZyBpc29s
YXRlcyBvZiBiYWN0ZXJpYWwgc3BlY2llcyBieSBtdWx0aWxvY3VzIHZhcmlhYmxlIG51bWJlciBv
ZiB0YW5kZW0gcmVwZWF0IGFuYWx5c2lzIChNTFZBKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5G
RU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp
b2RpY2FsPjxmdWxsLXRpdGxlPkZFTVMgSW1tdW5vbCBNZWQgTWljcm9iaW9sPC9mdWxsLXRpdGxl
PjwvcGVyaW9kaWNhbD48cGFnZXM+MjItNzwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxudW1i
ZXI+MTwvbnVtYmVyPjxlZGl0aW9uPjIwMDcvMDIvMDM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3
b3JkPkJhY2lsbHVzIGFudGhyYWNpcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJp
YS9jbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwv
a2V5d29yZD48a2V5d29yZD5CaW90ZXJyb3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0
ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm9tZSwgQmFjdGVyaWFsPC9rZXl3
b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD4qTWluaXNhdGVsbGl0ZSBSZXBl
YXRzPC9rZXl3b3JkPjxrZXl3b3JkPk15Y29iYWN0ZXJpdW0gdHViZXJjdWxvc2lzL2dlbmV0aWNz
PC9rZXl3b3JkPjxrZXl3b3JkPlN0YXBoeWxvY29jY3VzIGF1cmV1cy9nZW5ldGljczwva2V5d29y
ZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RmVi
PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDkyOC04MjQ0IChQcmludCkmI3hEOzA5
MjgtODI0NCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTcyNjY3MTE8L2FjY2Vzc2lv
bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv
di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D
aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE3MjY2NzExPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5GSU0xNzMgW3BpaV0mI3hEOzEwLjExMTEvai4xNTc0
LTY5NVguMjAwNi4wMDE3My54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5n
PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5OYWRvbjwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl
Y051bT4xPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWdu
LWtleXM+PGtleSBhcHA9J0VOJyBkYi1pZD0ndnIyeHJ6d2FhZHRleDFleGFlOXY5dmR6MmUyc2Vk
ZjJ3MHh0Jz4xPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0
aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5OYWRvbiwg
Qy4gQS48L2F1dGhvcj48YXV0aG9yPlRyZWVzLCBFLjwvYXV0aG9yPjxhdXRob3I+TmcsIEwuIEsu
PC9hdXRob3I+PGF1dGhvcj5Nb2xsZXIgTmllbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPlJlaW1l
ciwgQS48L2F1dGhvcj48YXV0aG9yPk1heHdlbGwsIE4uPC9hdXRob3I+PGF1dGhvcj5LdWJvdGEs
IEsuIEEuPC9hdXRob3I+PGF1dGhvcj5HZXJuZXItU21pZHQsIFAuPC9hdXRob3I+PC9hdXRob3Jz
PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgTWljcm9iaW9sb2d5IExhYm9y
YXRvcnksIFB1YmxpYyBIZWFsdGggQWdlbmN5IG9mIENhbmFkYSwgV2lubmlwZWcsIE1hbml0b2Jh
LCBDYW5hZGEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgYW5kIGFw
cGxpY2F0aW9uIG9mIE1MVkEgbWV0aG9kcyBhcyBhIHRvb2wgZm9yIGludGVyLWxhYm9yYXRvcnkg
c3VydmVpbGxhbmNlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm8gU3VydmVpbGw8L3NlY29u
ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+MjA1NjU8L3BhZ2VzPjx2b2x1bWU+MTg8L3ZvbHVt
ZT48bnVtYmVyPjM1PC9udW1iZXI+PGVkaXRpb24+MjAxMy8wOS8wNzwvZWRpdGlvbj48a2V5d29y
ZHM+PGtleXdvcmQ+Q2xpbmljYWwgTGFib3JhdG9yeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlv
bi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29uc2Vuc3VzPC9rZXl3b3Jk
PjxrZXl3b3JkPkNvbnNlbnN1cyBEZXZlbG9wbWVudCBDb25mZXJlbmNlcyBhcyBUb3BpYzwva2V5
d29yZD48a2V5d29yZD5EaXNlYXNlIE91dGJyZWFrcy8qcHJldmVudGlvbiAmYW1wOyBjb250cm9s
PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbnRlcm5hdGlvbmFs
IENvb3BlcmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk11bHRpbG9jdXMgU2VxdWVuY2UgVHlwaW5n
L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9w
dWxhdGlvbiBTdXJ2ZWlsbGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlF1YWxpdHkg
Q29udHJvbDwva2V5d29yZD48a2V5d29yZD5UYW5kZW0gUmVwZWF0IFNlcXVlbmNlcy8qZ2VuZXRp
Y3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMzwveWVhcj48L2RhdGVzPjxp
c2JuPjE1NjAtNzkxNyAoRWxlY3Ryb25pYykmI3hEOzEwMjUtNDk2WCAoTGlua2luZyk8L2lzYm4+
PGFjY2Vzc2lvbi1udW0+MjQwMDgyMzE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs
cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9
UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTI0
MDA4MjMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPnZhbiBCZWxrdW08L0F1dGhvcj48WWVhcj4y
MDA3PC9ZZWFyPjxSZWNOdW0+Mjc1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yNzU8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjI3NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+dmFuIEJlbGt1bSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljYWwgTWljcm9iaW9sb2d5IGFuZCBJ
bmZlY3Rpb3VzIERpc2Vhc2VzLCBSb3R0ZXJkYW0sIFRoZSBOZXRoZXJsYW5kcy4gYS52YW5iZWxr
dW1AZXJhc211c21jLm5sPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+VHJhY2luZyBpc29s
YXRlcyBvZiBiYWN0ZXJpYWwgc3BlY2llcyBieSBtdWx0aWxvY3VzIHZhcmlhYmxlIG51bWJlciBv
ZiB0YW5kZW0gcmVwZWF0IGFuYWx5c2lzIChNTFZBKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5G
RU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp
b2RpY2FsPjxmdWxsLXRpdGxlPkZFTVMgSW1tdW5vbCBNZWQgTWljcm9iaW9sPC9mdWxsLXRpdGxl
PjwvcGVyaW9kaWNhbD48cGFnZXM+MjItNzwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxudW1i
ZXI+MTwvbnVtYmVyPjxlZGl0aW9uPjIwMDcvMDIvMDM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3
b3JkPkJhY2lsbHVzIGFudGhyYWNpcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJp
YS9jbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwv
a2V5d29yZD48a2V5d29yZD5CaW90ZXJyb3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0
ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm9tZSwgQmFjdGVyaWFsPC9rZXl3
b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD4qTWluaXNhdGVsbGl0ZSBSZXBl
YXRzPC9rZXl3b3JkPjxrZXl3b3JkPk15Y29iYWN0ZXJpdW0gdHViZXJjdWxvc2lzL2dlbmV0aWNz
PC9rZXl3b3JkPjxrZXl3b3JkPlN0YXBoeWxvY29jY3VzIGF1cmV1cy9nZW5ldGljczwva2V5d29y
ZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RmVi
PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDkyOC04MjQ0IChQcmludCkmI3hEOzA5
MjgtODI0NCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTcyNjY3MTE8L2FjY2Vzc2lv
bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv
di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D
aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE3MjY2NzExPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5GSU0xNzMgW3BpaV0mI3hEOzEwLjExMTEvai4xNTc0
LTY5NVguMjAwNi4wMDE3My54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5n
PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (7, 24) (شکل 1-8).

شکل 1-8، آنچه سبب موفقیت این تکنیک نسبت به سایر روش های تایپینگ شده است، سریع بودن و سادگی آن است. مراحلی که در MLVA انجام می شود شامل: 1) کشت دادن باکتری 2) استخراج ژنوم باکتری 3) انجام دادن واکنش PCR برای لوکوس های VNTR 4) الکتروفورز محصولات PCR بر روی ژل آکاروز 5) عکس گرفتن از ژل پس از انجام الکتروفورز 6) تبدیل کردن اندازه ی باند ها به تعداد تکرار و آنالیز داده ها که در مرحله ی آخر صورت می گیرد.
در دسترس بودن: به وجود داشتن تجهیزات، مواد مصرفی و نوع مهارت به تکنیک مورد نظر وابسته است. تکنیک هایی که بر پایه ی PCR هستند مانند MLVA، تنها نیاز به یک دستگاه ترموسایکلر دارند ولی در تکنیک هایی مثل PFGE نیاز به مواد و دستگاه هایی است که دارای قیمت بسیار بالایی هستند. در ضمن تکنیک هایی که بر پایه ی PCR می باشند را می تواند در یک آزمایشگاه معمولی انجام پذیرد و نیاز به افرادی که دارای تخصص و تبحر هستند، نیستPEVuZE5vdGU+PENpdGU+PEF1dGhvcj52YW4gQmVsa3VtPC9BdXRob3I+PFllYXI+MjAwNzwvWWVh
cj48UmVjTnVtPjI3NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc1PC9yZWMtbnVtYmVy
Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5
OTJjdDJ0d3pldncyOXp3Ij4yNzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i
Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0
aG9yPnZhbiBCZWxrdW0sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo
LWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9neSBhbmQgSW5mZWN0aW91
cyBEaXNlYXNlcywgUm90dGVyZGFtLCBUaGUgTmV0aGVybGFuZHMuIGEudmFuYmVsa3VtQGVyYXNt
dXNtYy5ubDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRyYWNpbmcgaXNvbGF0ZXMgb2Yg
YmFjdGVyaWFsIHNwZWNpZXMgYnkgbXVsdGlsb2N1cyB2YXJpYWJsZSBudW1iZXIgb2YgdGFuZGVt
IHJlcGVhdCBhbmFseXNpcyAoTUxWQSk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RkVNUyBJbW11
bm9sIE1lZCBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48
ZnVsbC10aXRsZT5GRU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L3Blcmlv
ZGljYWw+PHBhZ2VzPjIyLTc8L3BhZ2VzPjx2b2x1bWU+NDk8L3ZvbHVtZT48bnVtYmVyPjE8L251
bWJlcj48ZWRpdGlvbj4yMDA3LzAyLzAzPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5CYWNp
bGx1cyBhbnRocmFjaXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+QmFjdGVyaWEvY2xhc3Np
ZmljYXRpb24vKmdlbmV0aWNzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+
PGtleXdvcmQ+QmlvdGVycm9yaXNtPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsLypn
ZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+Kk1pbmlzYXRlbGxpdGUgUmVwZWF0czwva2V5
d29yZD48a2V5d29yZD5NeWNvYmFjdGVyaXVtIHR1YmVyY3Vsb3Npcy9nZW5ldGljczwva2V5d29y
ZD48a2V5d29yZD5TdGFwaHlsb2NvY2N1cyBhdXJldXMvZ2VuZXRpY3M8L2tleXdvcmQ+PC9rZXl3
b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkZlYjwvZGF0ZT48
L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA5MjgtODI0NCAoUHJpbnQpJiN4RDswOTI4LTgyNDQg
KExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3MjY2NzExPC9hY2Nlc3Npb24tbnVtPjx1
cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6
L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24m
YW1wO2xpc3RfdWlkcz0xNzI2NjcxMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+RklNMTczIFtwaWldJiN4RDsxMC4xMTExL2ouMTU3NC02OTVYLjIw
MDYuMDAxNzMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3Vh
Z2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TmFkb248L0F1dGhvcj48WWVhcj4yMDEz
PC9ZZWFyPjxSZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3ZyMnhyendhYWR0ZXgxZXhhZTl2
OXZkejJlMnNlZGYydzB4dCc+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdK
b3VybmFsIEFydGljbGUnPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo
b3I+TmFkb24sIEMuIEEuPC9hdXRob3I+PGF1dGhvcj5UcmVlcywgRS48L2F1dGhvcj48YXV0aG9y
Pk5nLCBMLiBLLjwvYXV0aG9yPjxhdXRob3I+TW9sbGVyIE5pZWxzZW4sIEUuPC9hdXRob3I+PGF1
dGhvcj5SZWltZXIsIEEuPC9hdXRob3I+PGF1dGhvcj5NYXh3ZWxsLCBOLjwvYXV0aG9yPjxhdXRo
b3I+S3Vib3RhLCBLLiBBLjwvYXV0aG9yPjxhdXRob3I+R2VybmVyLVNtaWR0LCBQLjwvYXV0aG9y
PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIE1pY3JvYmlv
bG9neSBMYWJvcmF0b3J5LCBQdWJsaWMgSGVhbHRoIEFnZW5jeSBvZiBDYW5hZGEsIFdpbm5pcGVn
LCBNYW5pdG9iYSwgQ2FuYWRhLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3Bt
ZW50IGFuZCBhcHBsaWNhdGlvbiBvZiBNTFZBIG1ldGhvZHMgYXMgYSB0b29sIGZvciBpbnRlci1s
YWJvcmF0b3J5IHN1cnZlaWxsYW5jZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FdXJvIFN1cnZl
aWxsPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBhZ2VzPjIwNTY1PC9wYWdlcz48dm9sdW1l
PjE4PC92b2x1bWU+PG51bWJlcj4zNTwvbnVtYmVyPjxlZGl0aW9uPjIwMTMvMDkvMDc8L2VkaXRp
b24+PGtleXdvcmRzPjxrZXl3b3JkPkNsaW5pY2FsIExhYm9yYXRvcnkgVGVjaG5pcXVlcy9pbnN0
cnVtZW50YXRpb24vKm1ldGhvZHMvc3RhbmRhcmRzPC9rZXl3b3JkPjxrZXl3b3JkPkNvbnNlbnN1
czwva2V5d29yZD48a2V5d29yZD5Db25zZW5zdXMgRGV2ZWxvcG1lbnQgQ29uZmVyZW5jZXMgYXMg
VG9waWM8L2tleXdvcmQ+PGtleXdvcmQ+RGlzZWFzZSBPdXRicmVha3MvKnByZXZlbnRpb24gJmFt
cDsgY29udHJvbDwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+SW50
ZXJuYXRpb25hbCBDb29wZXJhdGlvbjwva2V5d29yZD48a2V5d29yZD5NdWx0aWxvY3VzIFNlcXVl
bmNlIFR5cGluZy9pbnN0cnVtZW50YXRpb24vKm1ldGhvZHMvc3RhbmRhcmRzPC9rZXl3b3JkPjxr
ZXl3b3JkPlBvcHVsYXRpb24gU3VydmVpbGxhbmNlLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3Jk
PipRdWFsaXR5IENvbnRyb2w8L2tleXdvcmQ+PGtleXdvcmQ+VGFuZGVtIFJlcGVhdCBTZXF1ZW5j
ZXMvKmdlbmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+
PC9kYXRlcz48aXNibj4xNTYwLTc5MTcgKEVsZWN0cm9uaWMpJiN4RDsxMDI1LTQ5NlggKExpbmtp
bmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI0MDA4MjMxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy
ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5
LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp
c3RfdWlkcz0yNDAwODIzMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48bGFuZ3VhZ2U+ZW5n
PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj52YW4gQmVsa3VtPC9BdXRob3I+PFllYXI+MjAwNzwvWWVh
cj48UmVjTnVtPjI3NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc1PC9yZWMtbnVtYmVy
Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5
OTJjdDJ0d3pldncyOXp3Ij4yNzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i
Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0
aG9yPnZhbiBCZWxrdW0sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo
LWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9neSBhbmQgSW5mZWN0aW91
cyBEaXNlYXNlcywgUm90dGVyZGFtLCBUaGUgTmV0aGVybGFuZHMuIGEudmFuYmVsa3VtQGVyYXNt
dXNtYy5ubDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRyYWNpbmcgaXNvbGF0ZXMgb2Yg
YmFjdGVyaWFsIHNwZWNpZXMgYnkgbXVsdGlsb2N1cyB2YXJpYWJsZSBudW1iZXIgb2YgdGFuZGVt
IHJlcGVhdCBhbmFseXNpcyAoTUxWQSk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RkVNUyBJbW11
bm9sIE1lZCBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48
ZnVsbC10aXRsZT5GRU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L3Blcmlv
ZGljYWw+PHBhZ2VzPjIyLTc8L3BhZ2VzPjx2b2x1bWU+NDk8L3ZvbHVtZT48bnVtYmVyPjE8L251
bWJlcj48ZWRpdGlvbj4yMDA3LzAyLzAzPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5CYWNp
bGx1cyBhbnRocmFjaXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+QmFjdGVyaWEvY2xhc3Np
ZmljYXRpb24vKmdlbmV0aWNzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+
PGtleXdvcmQ+QmlvdGVycm9yaXNtPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsLypn
ZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+Kk1pbmlzYXRlbGxpdGUgUmVwZWF0czwva2V5
d29yZD48a2V5d29yZD5NeWNvYmFjdGVyaXVtIHR1YmVyY3Vsb3Npcy9nZW5ldGljczwva2V5d29y
ZD48a2V5d29yZD5TdGFwaHlsb2NvY2N1cyBhdXJldXMvZ2VuZXRpY3M8L2tleXdvcmQ+PC9rZXl3
b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkZlYjwvZGF0ZT48
L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA5MjgtODI0NCAoUHJpbnQpJiN4RDswOTI4LTgyNDQg
KExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3MjY2NzExPC9hY2Nlc3Npb24tbnVtPjx1
cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6
L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24m
YW1wO2xpc3RfdWlkcz0xNzI2NjcxMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+RklNMTczIFtwaWldJiN4RDsxMC4xMTExL2ouMTU3NC02OTVYLjIw
MDYuMDAxNzMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3Vh
Z2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+TmFkb248L0F1dGhvcj48WWVhcj4yMDEz
PC9ZZWFyPjxSZWNOdW0+MTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MTwvcmVjLW51bWJl
cj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSdFTicgZGItaWQ9J3ZyMnhyendhYWR0ZXgxZXhhZTl2
OXZkejJlMnNlZGYydzB4dCc+MTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlwZSBuYW1lPSdK
b3VybmFsIEFydGljbGUnPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRob3JzPjxhdXRo
b3I+TmFkb24sIEMuIEEuPC9hdXRob3I+PGF1dGhvcj5UcmVlcywgRS48L2F1dGhvcj48YXV0aG9y
Pk5nLCBMLiBLLjwvYXV0aG9yPjxhdXRob3I+TW9sbGVyIE5pZWxzZW4sIEUuPC9hdXRob3I+PGF1
dGhvcj5SZWltZXIsIEEuPC9hdXRob3I+PGF1dGhvcj5NYXh3ZWxsLCBOLjwvYXV0aG9yPjxhdXRo
b3I+S3Vib3RhLCBLLiBBLjwvYXV0aG9yPjxhdXRob3I+R2VybmVyLVNtaWR0LCBQLjwvYXV0aG9y
PjwvYXV0aG9ycz48L2NvbnRyaWJ1dG9ycz48YXV0aC1hZGRyZXNzPk5hdGlvbmFsIE1pY3JvYmlv
bG9neSBMYWJvcmF0b3J5LCBQdWJsaWMgSGVhbHRoIEFnZW5jeSBvZiBDYW5hZGEsIFdpbm5pcGVn
LCBNYW5pdG9iYSwgQ2FuYWRhLjwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPkRldmVsb3Bt
ZW50IGFuZCBhcHBsaWNhdGlvbiBvZiBNTFZBIG1ldGhvZHMgYXMgYSB0b29sIGZvciBpbnRlci1s
YWJvcmF0b3J5IHN1cnZlaWxsYW5jZTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5FdXJvIFN1cnZl
aWxsPC9zZWNvbmRhcnktdGl0bGU+PC90aXRsZXM+PHBhZ2VzPjIwNTY1PC9wYWdlcz48dm9sdW1l
PjE4PC92b2x1bWU+PG51bWJlcj4zNTwvbnVtYmVyPjxlZGl0aW9uPjIwMTMvMDkvMDc8L2VkaXRp
b24+PGtleXdvcmRzPjxrZXl3b3JkPkNsaW5pY2FsIExhYm9yYXRvcnkgVGVjaG5pcXVlcy9pbnN0
cnVtZW50YXRpb24vKm1ldGhvZHMvc3RhbmRhcmRzPC9rZXl3b3JkPjxrZXl3b3JkPkNvbnNlbnN1
czwva2V5d29yZD48a2V5d29yZD5Db25zZW5zdXMgRGV2ZWxvcG1lbnQgQ29uZmVyZW5jZXMgYXMg
VG9waWM8L2tleXdvcmQ+PGtleXdvcmQ+RGlzZWFzZSBPdXRicmVha3MvKnByZXZlbnRpb24gJmFt
cDsgY29udHJvbDwva2V5d29yZD48a2V5d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+SW50
ZXJuYXRpb25hbCBDb29wZXJhdGlvbjwva2V5d29yZD48a2V5d29yZD5NdWx0aWxvY3VzIFNlcXVl
bmNlIFR5cGluZy9pbnN0cnVtZW50YXRpb24vKm1ldGhvZHMvc3RhbmRhcmRzPC9rZXl3b3JkPjxr
ZXl3b3JkPlBvcHVsYXRpb24gU3VydmVpbGxhbmNlLyptZXRob2RzPC9rZXl3b3JkPjxrZXl3b3Jk
PipRdWFsaXR5IENvbnRyb2w8L2tleXdvcmQ+PGtleXdvcmQ+VGFuZGVtIFJlcGVhdCBTZXF1ZW5j
ZXMvKmdlbmV0aWNzPC9rZXl3b3JkPjwva2V5d29yZHM+PGRhdGVzPjx5ZWFyPjIwMTM8L3llYXI+
PC9kYXRlcz48aXNibj4xNTYwLTc5MTcgKEVsZWN0cm9uaWMpJiN4RDsxMDI1LTQ5NlggKExpbmtp
bmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjI0MDA4MjMxPC9hY2Nlc3Npb24tbnVtPjx1cmxzPjxy
ZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6L3F1ZXJ5
LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24mYW1wO2xp
c3RfdWlkcz0yNDAwODIzMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48bGFuZ3VhZ2U+ZW5n
PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (7, 24).
سرعت انجام آن: زمان مورد نیاز جهت انجام و آماده سازی یک تکنیک را اصطلاحا سرعت آن تکنیک می گویند. تکنیک PFGE یک تکنیک زمانبر می باشد و زمان مورد نیاز برای انجام حداقل سه روز کاری می باشد ولی به دلیل آنکه MLVA یک روشی است که بر پایه ی PCR صورت می پذیرد به همین دلیل در کمترین زمان ممکن( چند ساعت) قابل انجام است. سرعت تکنیک هایی نظیر ERIC-PCR، REP-PCR، RAPD-PCR، MLST و MLVA به دلیل مبتنی بودن بر PCR نسبت تکنیک هایی مثل: ریبوتایپینگ و PFGE بسیار بالاتر استPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5OYWRvbjwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl
Y051bT4xPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWdu
LWtleXM+PGtleSBhcHA9J0VOJyBkYi1pZD0ndnIyeHJ6d2FhZHRleDFleGFlOXY5dmR6MmUyc2Vk
ZjJ3MHh0Jz4xPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0
aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5OYWRvbiwg
Qy4gQS48L2F1dGhvcj48YXV0aG9yPlRyZWVzLCBFLjwvYXV0aG9yPjxhdXRob3I+TmcsIEwuIEsu
PC9hdXRob3I+PGF1dGhvcj5Nb2xsZXIgTmllbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPlJlaW1l
ciwgQS48L2F1dGhvcj48YXV0aG9yPk1heHdlbGwsIE4uPC9hdXRob3I+PGF1dGhvcj5LdWJvdGEs
IEsuIEEuPC9hdXRob3I+PGF1dGhvcj5HZXJuZXItU21pZHQsIFAuPC9hdXRob3I+PC9hdXRob3Jz
PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgTWljcm9iaW9sb2d5IExhYm9y
YXRvcnksIFB1YmxpYyBIZWFsdGggQWdlbmN5IG9mIENhbmFkYSwgV2lubmlwZWcsIE1hbml0b2Jh
LCBDYW5hZGEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgYW5kIGFw
cGxpY2F0aW9uIG9mIE1MVkEgbWV0aG9kcyBhcyBhIHRvb2wgZm9yIGludGVyLWxhYm9yYXRvcnkg
c3VydmVpbGxhbmNlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm8gU3VydmVpbGw8L3NlY29u
ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+MjA1NjU8L3BhZ2VzPjx2b2x1bWU+MTg8L3ZvbHVt
ZT48bnVtYmVyPjM1PC9udW1iZXI+PGVkaXRpb24+MjAxMy8wOS8wNzwvZWRpdGlvbj48a2V5d29y
ZHM+PGtleXdvcmQ+Q2xpbmljYWwgTGFib3JhdG9yeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlv
bi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29uc2Vuc3VzPC9rZXl3b3Jk
PjxrZXl3b3JkPkNvbnNlbnN1cyBEZXZlbG9wbWVudCBDb25mZXJlbmNlcyBhcyBUb3BpYzwva2V5
d29yZD48a2V5d29yZD5EaXNlYXNlIE91dGJyZWFrcy8qcHJldmVudGlvbiAmYW1wOyBjb250cm9s
PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbnRlcm5hdGlvbmFs
IENvb3BlcmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk11bHRpbG9jdXMgU2VxdWVuY2UgVHlwaW5n
L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9w
dWxhdGlvbiBTdXJ2ZWlsbGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlF1YWxpdHkg
Q29udHJvbDwva2V5d29yZD48a2V5d29yZD5UYW5kZW0gUmVwZWF0IFNlcXVlbmNlcy8qZ2VuZXRp
Y3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMzwveWVhcj48L2RhdGVzPjxp
c2JuPjE1NjAtNzkxNyAoRWxlY3Ryb25pYykmI3hEOzEwMjUtNDk2WCAoTGlua2luZyk8L2lzYm4+
PGFjY2Vzc2lvbi1udW0+MjQwMDgyMzE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs
cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9
UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTI0
MDA4MjMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPnZhbiBCZWxrdW08L0F1dGhvcj48WWVhcj4y
MDA3PC9ZZWFyPjxSZWNOdW0+Mjc1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yNzU8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjI3NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+dmFuIEJlbGt1bSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljYWwgTWljcm9iaW9sb2d5IGFuZCBJ
bmZlY3Rpb3VzIERpc2Vhc2VzLCBSb3R0ZXJkYW0sIFRoZSBOZXRoZXJsYW5kcy4gYS52YW5iZWxr
dW1AZXJhc211c21jLm5sPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+VHJhY2luZyBpc29s
YXRlcyBvZiBiYWN0ZXJpYWwgc3BlY2llcyBieSBtdWx0aWxvY3VzIHZhcmlhYmxlIG51bWJlciBv
ZiB0YW5kZW0gcmVwZWF0IGFuYWx5c2lzIChNTFZBKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5G
RU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp
b2RpY2FsPjxmdWxsLXRpdGxlPkZFTVMgSW1tdW5vbCBNZWQgTWljcm9iaW9sPC9mdWxsLXRpdGxl
PjwvcGVyaW9kaWNhbD48cGFnZXM+MjItNzwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxudW1i
ZXI+MTwvbnVtYmVyPjxlZGl0aW9uPjIwMDcvMDIvMDM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3
b3JkPkJhY2lsbHVzIGFudGhyYWNpcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJp
YS9jbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwv
a2V5d29yZD48a2V5d29yZD5CaW90ZXJyb3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0
ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm9tZSwgQmFjdGVyaWFsPC9rZXl3
b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD4qTWluaXNhdGVsbGl0ZSBSZXBl
YXRzPC9rZXl3b3JkPjxrZXl3b3JkPk15Y29iYWN0ZXJpdW0gdHViZXJjdWxvc2lzL2dlbmV0aWNz
PC9rZXl3b3JkPjxrZXl3b3JkPlN0YXBoeWxvY29jY3VzIGF1cmV1cy9nZW5ldGljczwva2V5d29y
ZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RmVi
PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDkyOC04MjQ0IChQcmludCkmI3hEOzA5
MjgtODI0NCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTcyNjY3MTE8L2FjY2Vzc2lv
bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv
di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D
aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE3MjY2NzExPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5GSU0xNzMgW3BpaV0mI3hEOzEwLjExMTEvai4xNTc0
LTY5NVguMjAwNi4wMDE3My54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5n
PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5OYWRvbjwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl
Y051bT4xPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWdu
LWtleXM+PGtleSBhcHA9J0VOJyBkYi1pZD0ndnIyeHJ6d2FhZHRleDFleGFlOXY5dmR6MmUyc2Vk
ZjJ3MHh0Jz4xPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0
aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5OYWRvbiwg
Qy4gQS48L2F1dGhvcj48YXV0aG9yPlRyZWVzLCBFLjwvYXV0aG9yPjxhdXRob3I+TmcsIEwuIEsu
PC9hdXRob3I+PGF1dGhvcj5Nb2xsZXIgTmllbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPlJlaW1l
ciwgQS48L2F1dGhvcj48YXV0aG9yPk1heHdlbGwsIE4uPC9hdXRob3I+PGF1dGhvcj5LdWJvdGEs
IEsuIEEuPC9hdXRob3I+PGF1dGhvcj5HZXJuZXItU21pZHQsIFAuPC9hdXRob3I+PC9hdXRob3Jz
PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgTWljcm9iaW9sb2d5IExhYm9y
YXRvcnksIFB1YmxpYyBIZWFsdGggQWdlbmN5IG9mIENhbmFkYSwgV2lubmlwZWcsIE1hbml0b2Jh
LCBDYW5hZGEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgYW5kIGFw
cGxpY2F0aW9uIG9mIE1MVkEgbWV0aG9kcyBhcyBhIHRvb2wgZm9yIGludGVyLWxhYm9yYXRvcnkg
c3VydmVpbGxhbmNlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm8gU3VydmVpbGw8L3NlY29u
ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+MjA1NjU8L3BhZ2VzPjx2b2x1bWU+MTg8L3ZvbHVt
ZT48bnVtYmVyPjM1PC9udW1iZXI+PGVkaXRpb24+MjAxMy8wOS8wNzwvZWRpdGlvbj48a2V5d29y
ZHM+PGtleXdvcmQ+Q2xpbmljYWwgTGFib3JhdG9yeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlv
bi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29uc2Vuc3VzPC9rZXl3b3Jk
PjxrZXl3b3JkPkNvbnNlbnN1cyBEZXZlbG9wbWVudCBDb25mZXJlbmNlcyBhcyBUb3BpYzwva2V5
d29yZD48a2V5d29yZD5EaXNlYXNlIE91dGJyZWFrcy8qcHJldmVudGlvbiAmYW1wOyBjb250cm9s
PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbnRlcm5hdGlvbmFs
IENvb3BlcmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk11bHRpbG9jdXMgU2VxdWVuY2UgVHlwaW5n
L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9w
dWxhdGlvbiBTdXJ2ZWlsbGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlF1YWxpdHkg
Q29udHJvbDwva2V5d29yZD48a2V5d29yZD5UYW5kZW0gUmVwZWF0IFNlcXVlbmNlcy8qZ2VuZXRp
Y3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMzwveWVhcj48L2RhdGVzPjxp
c2JuPjE1NjAtNzkxNyAoRWxlY3Ryb25pYykmI3hEOzEwMjUtNDk2WCAoTGlua2luZyk8L2lzYm4+
PGFjY2Vzc2lvbi1udW0+MjQwMDgyMzE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs
cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9
UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTI0
MDA4MjMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPnZhbiBCZWxrdW08L0F1dGhvcj48WWVhcj4y
MDA3PC9ZZWFyPjxSZWNOdW0+Mjc1PC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4yNzU8L3Jl
Yy1udW1iZXI+PGZvcmVpZ24ta2V5cz48a2V5IGFwcD0iRU4iIGRiLWlkPSJ4YTlmd3A5enZlNXhh
ZWV4ZHZpcDk5MmN0MnR3emV2dzI5enciPjI3NTwva2V5PjwvZm9yZWlnbi1rZXlzPjxyZWYtdHlw
ZSBuYW1lPSJKb3VybmFsIEFydGljbGUiPjE3PC9yZWYtdHlwZT48Y29udHJpYnV0b3JzPjxhdXRo
b3JzPjxhdXRob3I+dmFuIEJlbGt1bSwgQS48L2F1dGhvcj48L2F1dGhvcnM+PC9jb250cmlidXRv
cnM+PGF1dGgtYWRkcmVzcz5EZXBhcnRtZW50IG9mIE1lZGljYWwgTWljcm9iaW9sb2d5IGFuZCBJ
bmZlY3Rpb3VzIERpc2Vhc2VzLCBSb3R0ZXJkYW0sIFRoZSBOZXRoZXJsYW5kcy4gYS52YW5iZWxr
dW1AZXJhc211c21jLm5sPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+VHJhY2luZyBpc29s
YXRlcyBvZiBiYWN0ZXJpYWwgc3BlY2llcyBieSBtdWx0aWxvY3VzIHZhcmlhYmxlIG51bWJlciBv
ZiB0YW5kZW0gcmVwZWF0IGFuYWx5c2lzIChNTFZBKTwvdGl0bGU+PHNlY29uZGFyeS10aXRsZT5G
RU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvc2Vjb25kYXJ5LXRpdGxlPjwvdGl0bGVzPjxwZXJp
b2RpY2FsPjxmdWxsLXRpdGxlPkZFTVMgSW1tdW5vbCBNZWQgTWljcm9iaW9sPC9mdWxsLXRpdGxl
PjwvcGVyaW9kaWNhbD48cGFnZXM+MjItNzwvcGFnZXM+PHZvbHVtZT40OTwvdm9sdW1lPjxudW1i
ZXI+MTwvbnVtYmVyPjxlZGl0aW9uPjIwMDcvMDIvMDM8L2VkaXRpb24+PGtleXdvcmRzPjxrZXl3
b3JkPkJhY2lsbHVzIGFudGhyYWNpcy9nZW5ldGljczwva2V5d29yZD48a2V5d29yZD5CYWN0ZXJp
YS9jbGFzc2lmaWNhdGlvbi8qZ2VuZXRpY3MvaXNvbGF0aW9uICZhbXA7IHB1cmlmaWNhdGlvbjwv
a2V5d29yZD48a2V5d29yZD5CaW90ZXJyb3Jpc208L2tleXdvcmQ+PGtleXdvcmQ+RE5BLCBCYWN0
ZXJpYWwvKmdlbmV0aWNzPC9rZXl3b3JkPjxrZXl3b3JkPkdlbm9tZSwgQmFjdGVyaWFsPC9rZXl3
b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD4qTWluaXNhdGVsbGl0ZSBSZXBl
YXRzPC9rZXl3b3JkPjxrZXl3b3JkPk15Y29iYWN0ZXJpdW0gdHViZXJjdWxvc2lzL2dlbmV0aWNz
PC9rZXl3b3JkPjxrZXl3b3JkPlN0YXBoeWxvY29jY3VzIGF1cmV1cy9nZW5ldGljczwva2V5d29y
ZD48L2tleXdvcmRzPjxkYXRlcz48eWVhcj4yMDA3PC95ZWFyPjxwdWItZGF0ZXM+PGRhdGU+RmVi
PC9kYXRlPjwvcHViLWRhdGVzPjwvZGF0ZXM+PGlzYm4+MDkyOC04MjQ0IChQcmludCkmI3hEOzA5
MjgtODI0NCAoTGlua2luZyk8L2lzYm4+PGFjY2Vzc2lvbi1udW0+MTcyNjY3MTE8L2FjY2Vzc2lv
bi1udW0+PHVybHM+PHJlbGF0ZWQtdXJscz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdv
di9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1D
aXRhdGlvbiZhbXA7bGlzdF91aWRzPTE3MjY2NzExPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxz
PjxlbGVjdHJvbmljLXJlc291cmNlLW51bT5GSU0xNzMgW3BpaV0mI3hEOzEwLjExMTEvai4xNTc0
LTY5NVguMjAwNi4wMDE3My54PC9lbGVjdHJvbmljLXJlc291cmNlLW51bT48bGFuZ3VhZ2U+ZW5n
PC9sYW5ndWFnZT48L3JlY29yZD48L0NpdGU+PC9FbmROb3RlPn==
ADDIN EN.CITE.DATA (7, 24).
تکرارپذیری: توانایی یک تکنیک ژنوتایپینگ در تولید نتیجه های کاملا یکسان و شبیه را بر روی یک نمونه ی مشخص در مکان ها و زمان های مختلف را اصطلاحا تکرار پذیری می نامند. تکرار پذیری به مسائل مختلفی وابسته است که عبارتند از دستور العمل هایی که هنگام انجام یک تکنیک استفاده می شود و پایداری الل ها. قدرت تکرار پذیری تحت تاثیر فاکتور هایی قرار دارد که این فاکتور ها عبارت اند از: آنالیز و تفسیر داده ها، تجهیزات و دستگاه هایی که حین انجام تکنیک از آنها استفاده می شوند، جگونگی تهیه مواد مورد نیاز جهت انجام تکنیک مثل نحوه استخراج DNA و تفاوت هایی که در شرایط رشد وجود دارد و ترکیبات و موادی که طی واکنش مصرف می شوند. تکنیک هایی که برای ژنوتایپینگ انتخاب می شوند باید به گونه ای باشند که هم در آزمایشکاه و هم در سایر آزمایشکاه ها، قابلیت تکرار را داشته باشند. بکار گرفتن افراد متخصص و آموزش دیده و استفاده از دستورالعمل استاندارد، باعث می شود به میزان قابل توجهی تکرار پذیری افزایش یابد. داده های MLVA همانند داده های MLST به شکل رقم هایی ذخیره می گردند، به همین دلیل به راحتی می توان این داده ها را به سایر آزمایشگاه ها و مراکز پژوهشی انتقال داد و حتی می توان این داده ها را با هم مقایسه نمود. برای استاندارد سازی تکنیک PFGE نیز تلاش هایی انجام شده است مثل: دستورالعمل های استاندارد CDC درباره ی اشرشیا کلی انترو هموراژیک O157:H7 و یا سایر باکتری ها(WWW.cdc.gov/pulsnet). ذخیره کردن داده ها در بانک های اطلاعاتی و همچنین استفاده کردن از این داده ها یک مزیت بسیار مهم می باشدPEVuZE5vdGU+PENpdGU+PEF1dGhvcj5OYWRvbjwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl
Y051bT4xPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWdu
LWtleXM+PGtleSBhcHA9J0VOJyBkYi1pZD0ndnIyeHJ6d2FhZHRleDFleGFlOXY5dmR6MmUyc2Vk
ZjJ3MHh0Jz4xPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0
aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5OYWRvbiwg
Qy4gQS48L2F1dGhvcj48YXV0aG9yPlRyZWVzLCBFLjwvYXV0aG9yPjxhdXRob3I+TmcsIEwuIEsu
PC9hdXRob3I+PGF1dGhvcj5Nb2xsZXIgTmllbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPlJlaW1l
ciwgQS48L2F1dGhvcj48YXV0aG9yPk1heHdlbGwsIE4uPC9hdXRob3I+PGF1dGhvcj5LdWJvdGEs
IEsuIEEuPC9hdXRob3I+PGF1dGhvcj5HZXJuZXItU21pZHQsIFAuPC9hdXRob3I+PC9hdXRob3Jz
PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgTWljcm9iaW9sb2d5IExhYm9y
YXRvcnksIFB1YmxpYyBIZWFsdGggQWdlbmN5IG9mIENhbmFkYSwgV2lubmlwZWcsIE1hbml0b2Jh
LCBDYW5hZGEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgYW5kIGFw
cGxpY2F0aW9uIG9mIE1MVkEgbWV0aG9kcyBhcyBhIHRvb2wgZm9yIGludGVyLWxhYm9yYXRvcnkg
c3VydmVpbGxhbmNlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm8gU3VydmVpbGw8L3NlY29u
ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+MjA1NjU8L3BhZ2VzPjx2b2x1bWU+MTg8L3ZvbHVt
ZT48bnVtYmVyPjM1PC9udW1iZXI+PGVkaXRpb24+MjAxMy8wOS8wNzwvZWRpdGlvbj48a2V5d29y
ZHM+PGtleXdvcmQ+Q2xpbmljYWwgTGFib3JhdG9yeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlv
bi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29uc2Vuc3VzPC9rZXl3b3Jk
PjxrZXl3b3JkPkNvbnNlbnN1cyBEZXZlbG9wbWVudCBDb25mZXJlbmNlcyBhcyBUb3BpYzwva2V5
d29yZD48a2V5d29yZD5EaXNlYXNlIE91dGJyZWFrcy8qcHJldmVudGlvbiAmYW1wOyBjb250cm9s
PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbnRlcm5hdGlvbmFs
IENvb3BlcmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk11bHRpbG9jdXMgU2VxdWVuY2UgVHlwaW5n
L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9w
dWxhdGlvbiBTdXJ2ZWlsbGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlF1YWxpdHkg
Q29udHJvbDwva2V5d29yZD48a2V5d29yZD5UYW5kZW0gUmVwZWF0IFNlcXVlbmNlcy8qZ2VuZXRp
Y3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMzwveWVhcj48L2RhdGVzPjxp
c2JuPjE1NjAtNzkxNyAoRWxlY3Ryb25pYykmI3hEOzEwMjUtNDk2WCAoTGlua2luZyk8L2lzYm4+
PGFjY2Vzc2lvbi1udW0+MjQwMDgyMzE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs
cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9
UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTI0
MDA4MjMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlR5bGVyPC9BdXRob3I+PFllYXI+MTk5Nzwv
WWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjgyPC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yODI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlR5bGVyLCBLRDwvYXV0aG9yPjxhdXRob3I+V2FuZywgRzwvYXV0aG9yPjxhdXRob3I+
VHlsZXIsIFNEPC9hdXRob3I+PGF1dGhvcj5Kb2huc29uLCBXTTwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GYWN0b3JzIGFmZmVjdGluZyByZWxpYWJpbGl0
eSBhbmQgcmVwcm9kdWNpYmlsaXR5IG9mIGFtcGxpZmljYXRpb24tYmFzZWQgRE5BIGZpbmdlcnBy
aW50aW5nIG9mIHJlcHJlc2VudGF0aXZlIGJhY3RlcmlhbCBwYXRob2dlbnM8L3RpdGxlPjxzZWNv
bmRhcnktdGl0bGU+Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L3NlY29uZGFyeS10
aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIGNsaW5pY2Fs
IG1pY3JvYmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjMzOTwvcGFnZXM+
PHZvbHVtZT4zNTwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTk3PC95
ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj5OYWRvbjwvQXV0aG9yPjxZZWFyPjIwMTM8L1llYXI+PFJl
Y051bT4xPC9SZWNOdW0+PHJlY29yZD48cmVjLW51bWJlcj4xPC9yZWMtbnVtYmVyPjxmb3JlaWdu
LWtleXM+PGtleSBhcHA9J0VOJyBkYi1pZD0ndnIyeHJ6d2FhZHRleDFleGFlOXY5dmR6MmUyc2Vk
ZjJ3MHh0Jz4xPC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBlIG5hbWU9J0pvdXJuYWwgQXJ0
aWNsZSc+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhvcnM+PGF1dGhvcj5OYWRvbiwg
Qy4gQS48L2F1dGhvcj48YXV0aG9yPlRyZWVzLCBFLjwvYXV0aG9yPjxhdXRob3I+TmcsIEwuIEsu
PC9hdXRob3I+PGF1dGhvcj5Nb2xsZXIgTmllbHNlbiwgRS48L2F1dGhvcj48YXV0aG9yPlJlaW1l
ciwgQS48L2F1dGhvcj48YXV0aG9yPk1heHdlbGwsIE4uPC9hdXRob3I+PGF1dGhvcj5LdWJvdGEs
IEsuIEEuPC9hdXRob3I+PGF1dGhvcj5HZXJuZXItU21pZHQsIFAuPC9hdXRob3I+PC9hdXRob3Jz
PjwvY29udHJpYnV0b3JzPjxhdXRoLWFkZHJlc3M+TmF0aW9uYWwgTWljcm9iaW9sb2d5IExhYm9y
YXRvcnksIFB1YmxpYyBIZWFsdGggQWdlbmN5IG9mIENhbmFkYSwgV2lubmlwZWcsIE1hbml0b2Jh
LCBDYW5hZGEuPC9hdXRoLWFkZHJlc3M+PHRpdGxlcz48dGl0bGU+RGV2ZWxvcG1lbnQgYW5kIGFw
cGxpY2F0aW9uIG9mIE1MVkEgbWV0aG9kcyBhcyBhIHRvb2wgZm9yIGludGVyLWxhYm9yYXRvcnkg
c3VydmVpbGxhbmNlPC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkV1cm8gU3VydmVpbGw8L3NlY29u
ZGFyeS10aXRsZT48L3RpdGxlcz48cGFnZXM+MjA1NjU8L3BhZ2VzPjx2b2x1bWU+MTg8L3ZvbHVt
ZT48bnVtYmVyPjM1PC9udW1iZXI+PGVkaXRpb24+MjAxMy8wOS8wNzwvZWRpdGlvbj48a2V5d29y
ZHM+PGtleXdvcmQ+Q2xpbmljYWwgTGFib3JhdG9yeSBUZWNobmlxdWVzL2luc3RydW1lbnRhdGlv
bi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+Q29uc2Vuc3VzPC9rZXl3b3Jk
PjxrZXl3b3JkPkNvbnNlbnN1cyBEZXZlbG9wbWVudCBDb25mZXJlbmNlcyBhcyBUb3BpYzwva2V5
d29yZD48a2V5d29yZD5EaXNlYXNlIE91dGJyZWFrcy8qcHJldmVudGlvbiAmYW1wOyBjb250cm9s
PC9rZXl3b3JkPjxrZXl3b3JkPkh1bWFuczwva2V5d29yZD48a2V5d29yZD5JbnRlcm5hdGlvbmFs
IENvb3BlcmF0aW9uPC9rZXl3b3JkPjxrZXl3b3JkPk11bHRpbG9jdXMgU2VxdWVuY2UgVHlwaW5n
L2luc3RydW1lbnRhdGlvbi8qbWV0aG9kcy9zdGFuZGFyZHM8L2tleXdvcmQ+PGtleXdvcmQ+UG9w
dWxhdGlvbiBTdXJ2ZWlsbGFuY2UvKm1ldGhvZHM8L2tleXdvcmQ+PGtleXdvcmQ+KlF1YWxpdHkg
Q29udHJvbDwva2V5d29yZD48a2V5d29yZD5UYW5kZW0gUmVwZWF0IFNlcXVlbmNlcy8qZ2VuZXRp
Y3M8L2tleXdvcmQ+PC9rZXl3b3Jkcz48ZGF0ZXM+PHllYXI+MjAxMzwveWVhcj48L2RhdGVzPjxp
c2JuPjE1NjAtNzkxNyAoRWxlY3Ryb25pYykmI3hEOzEwMjUtNDk2WCAoTGlua2luZyk8L2lzYm4+
PGFjY2Vzc2lvbi1udW0+MjQwMDgyMzE8L2FjY2Vzc2lvbi1udW0+PHVybHM+PHJlbGF0ZWQtdXJs
cz48dXJsPmh0dHA6Ly93d3cubmNiaS5ubG0ubmloLmdvdi9lbnRyZXovcXVlcnkuZmNnaT9jbWQ9
UmV0cmlldmUmYW1wO2RiPVB1Yk1lZCZhbXA7ZG9wdD1DaXRhdGlvbiZhbXA7bGlzdF91aWRzPTI0
MDA4MjMxPC91cmw+PC9yZWxhdGVkLXVybHM+PC91cmxzPjxsYW5ndWFnZT5lbmc8L2xhbmd1YWdl
PjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPlR5bGVyPC9BdXRob3I+PFllYXI+MTk5Nzwv
WWVhcj48UmVjTnVtPjI4MjwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+MjgyPC9yZWMtbnVt
YmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2
aXA5OTJjdDJ0d3pldncyOXp3Ij4yODI8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFt
ZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48
YXV0aG9yPlR5bGVyLCBLRDwvYXV0aG9yPjxhdXRob3I+V2FuZywgRzwvYXV0aG9yPjxhdXRob3I+
VHlsZXIsIFNEPC9hdXRob3I+PGF1dGhvcj5Kb2huc29uLCBXTTwvYXV0aG9yPjwvYXV0aG9ycz48
L2NvbnRyaWJ1dG9ycz48dGl0bGVzPjx0aXRsZT5GYWN0b3JzIGFmZmVjdGluZyByZWxpYWJpbGl0
eSBhbmQgcmVwcm9kdWNpYmlsaXR5IG9mIGFtcGxpZmljYXRpb24tYmFzZWQgRE5BIGZpbmdlcnBy
aW50aW5nIG9mIHJlcHJlc2VudGF0aXZlIGJhY3RlcmlhbCBwYXRob2dlbnM8L3RpdGxlPjxzZWNv
bmRhcnktdGl0bGU+Sm91cm5hbCBvZiBjbGluaWNhbCBtaWNyb2Jpb2xvZ3k8L3NlY29uZGFyeS10
aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48ZnVsbC10aXRsZT5Kb3VybmFsIG9mIGNsaW5pY2Fs
IG1pY3JvYmlvbG9neTwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjMzOTwvcGFnZXM+
PHZvbHVtZT4zNTwvdm9sdW1lPjxudW1iZXI+MjwvbnVtYmVyPjxkYXRlcz48eWVhcj4xOTk3PC95
ZWFyPjwvZGF0ZXM+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+
ADDIN EN.CITE.DATA (7, 28).
انطباق اپیدمیولوژیکی: نتایجی که از یک روش ژنوتایپینگ بدست می آید باید بتواند ارزیابی درست و صحیحی از جمعیت باکتریایی به ما نشان دهد. این تکنیک ها باید در اپیدمی ها ( همه گیری) کاربرد داشته باشند و باید بتوانند بین سویه هایی که باعث ایجاد اپیدمی شده اند ( سویه هایی که احتمالا از یک سویه ی واحد یا کلون مشتق شده اند) و سایر سویه های غیر مرتبط، تمایز قائل شوند. در همان ابتدا از تکنیک MLVA در اپیدمی ها حهت بررسی اپیدمیولوژکی استفاده شد و توانست همانند PFGE و MLST در اپیدمی ها کاربرد داشته باشد ADDIN EN.CITE <EndNote><Cite><Author>van Belkum</Author><Year>2007</Year><RecNum>275</RecNum><record><rec-number>275</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">275</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>van Belkum, A.</author></authors></contributors><auth-address>Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands. a.vanbelkum@erasmusmc.nl</auth-address><titles><title>Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA)</title><secondary-title>FEMS Immunol Med Microbiol</secondary-title></titles><periodical><full-title>FEMS Immunol Med Microbiol</full-title></periodical><pages>22-7</pages><volume>49</volume><number>1</number><edition>2007/02/03</edition><keywords><keyword>Bacillus anthracis/genetics</keyword><keyword>Bacteria/classification/*genetics/isolation &amp; purification</keyword><keyword>Bioterrorism</keyword><keyword>DNA, Bacterial/*genetics</keyword><keyword>Genome, Bacterial</keyword><keyword>Humans</keyword><keyword>*Minisatellite Repeats</keyword><keyword>Mycobacterium tuberculosis/genetics</keyword><keyword>Staphylococcus aureus/genetics</keyword></keywords><dates><year>2007</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0928-8244 (Print)&#xD;0928-8244 (Linking)</isbn><accession-num>17266711</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=17266711</url></related-urls></urls><electronic-resource-num>FIM173 [pii]&#xD;10.1111/j.1574-695X.2006.00173.x</electronic-resource-num><language>eng</language></record></Cite></EndNote>(24).
قدرت تفکیک و تمایز: قدرت تفکیک و تمایز در اصطلاح به توانایی یک تکنیک در تمایز دو ایزوله ی غیر مرتبط( که به صورت تصادفی از یک جمعیت باکتریایی جدا شده است)، گفته می شود. برای محاسبه ی قدرت تفکیک و تمایز از ضرایب گوناگونی استفاده می شود که از این ضرایب می توان به ضریب تنوع سیمپسون و ضریب هانتر- کاتسون اشاره نمود. عددی که توسط این ضرایب محاسبه می شود، چیزی بین صفر و یک می باشد. عدد صفر نشان دهنده ی عدم تنوع است و عدد یک نشان دهنده ی حداکثر میزان تنوع می باشد. تکنیک ژنوتایپینگی که قدرت تفکیک و تمایز آن، حداقل 0.95 یا بلالاتر باشد، یک تکنیک مناسب و ایده آل می باشد. قدرت تفکیک و تمایز تکنیک های ژنوتایپینگ همچون ERIC- PCR، REP- PCR و RAPD-PCR بسیار کمتر از MLST، PFGE و MLVA می باشد. قدرت تفکیک وتمایزMLVAاگرازPFGE وMLST بالاتر نباشد، کمتر هم نمی باشد ADDIN EN.CITE <EndNote><Cite><Author>van Belkum</Author><Year>2007</Year><RecNum>275</RecNum><record><rec-number>275</rec-number><foreign-keys><key app="EN" db-id="xa9fwp9zve5xaeexdvip992ct2twzevw29zw">275</key></foreign-keys><ref-type name="Journal Article">17</ref-type><contributors><authors><author>van Belkum, A.</author></authors></contributors><auth-address>Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands. a.vanbelkum@erasmusmc.nl</auth-address><titles><title>Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA)</title><secondary-title>FEMS Immunol Med Microbiol</secondary-title></titles><periodical><full-title>FEMS Immunol Med Microbiol</full-title></periodical><pages>22-7</pages><volume>49</volume><number>1</number><edition>2007/02/03</edition><keywords><keyword>Bacillus anthracis/genetics</keyword><keyword>Bacteria/classification/*genetics/isolation &amp; purification</keyword><keyword>Bioterrorism</keyword><keyword>DNA, Bacterial/*genetics</keyword><keyword>Genome, Bacterial</keyword><keyword>Humans</keyword><keyword>*Minisatellite Repeats</keyword><keyword>Mycobacterium tuberculosis/genetics</keyword><keyword>Staphylococcus aureus/genetics</keyword></keywords><dates><year>2007</year><pub-dates><date>Feb</date></pub-dates></dates><isbn>0928-8244 (Print)&#xD;0928-8244 (Linking)</isbn><accession-num>17266711</accession-num><urls><related-urls><url>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=17266711</url></related-urls></urls><electronic-resource-num>FIM173 [pii]&#xD;10.1111/j.1574-695X.2006.00173.x</electronic-resource-num><language>eng</language></record></Cite></EndNote>(24).
پایداری: پایداری ماکر هایی که برای ژنوتایپینگ استفاده می گردند، از اهمیت ویژه ای برخوردار می باشد. این مارکر ها زمانی قابل اطمینان هستند که در هر سویه ی باکتریایی به سرعت دچار تغییرنشوند.این مارکرهانبایددرجداسازی اولیه هر ایزوله، نگهداری و کشت مجدد این ایزولهها تغییر پیدا کنند. تنها مسئله ای که غیر قابل اجتناب است این موضوع می باشدکه همیشه ماشاهدنوترکیبی ها و جهش ها در جمعیت های باکتریایی هستیم. مارکر هایی که برای MLVA انتخاب می شود همان توالی های VNTR می باشد. VNTR ها دارای پایداری قابل توجهی هستند در نتیجه MLVA می تواند با سایر روش ها مثل PFGE و MLST رقابت کند. حال باید به این نکته توجه داشته باشیم که هر چقدر اندازه ی توالی های VNTR، بزرگتر باشد، سرعت تکامل در آنها کمتر می باشد و در نتیجه میزان تنوع آنها نیز پایین تر است و نمی توانند به سرعت دچار تغییر شوند. بر عکس این موضوع نیز وجود دارد، اگراندازه ی توالیهایVNTR،کوچک باشد، سرعت تکامل در آنها بیشتر می باشد و در نتیجه میزان تنوع این توالی ها بالاتر است و به همین دلیل سرعت تغییر در آنها نیز بالاتر می باشد. آنچه در MLVA دارای اهمیت می باشد، نوع انتخاب مارکرها می باشد. از مارکرهایی با اندازه ی تکرار بزرگتر در بررسی های اپیدمیولوژیکی استفاده می گردد. از مارکرهایی با اندازه تکرار کوتاه تر برای ژنوتایپینگ و تمایز باکتری های مونومورفیک مثل سالمونلا انتریکا سرووار اینفنتیس، سالمونلا انتریکا سرووار تایفی، سالمونلا انتریکا سرووار انتریتیدیس، مایکو باکتریوم توبرکلوزیس، شیگلا سونئی و اشرشیا کلی انترو هموراژیک O157:H7 استفاده می گرددPEVuZE5vdGU+PENpdGU+PEF1dGhvcj52YW4gQmVsa3VtPC9BdXRob3I+PFllYXI+MjAwNzwvWWVh
cj48UmVjTnVtPjI3NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc1PC9yZWMtbnVtYmVy
Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5
OTJjdDJ0d3pldncyOXp3Ij4yNzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i
Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0
aG9yPnZhbiBCZWxrdW0sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo
LWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9neSBhbmQgSW5mZWN0aW91
cyBEaXNlYXNlcywgUm90dGVyZGFtLCBUaGUgTmV0aGVybGFuZHMuIGEudmFuYmVsa3VtQGVyYXNt
dXNtYy5ubDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRyYWNpbmcgaXNvbGF0ZXMgb2Yg
YmFjdGVyaWFsIHNwZWNpZXMgYnkgbXVsdGlsb2N1cyB2YXJpYWJsZSBudW1iZXIgb2YgdGFuZGVt
IHJlcGVhdCBhbmFseXNpcyAoTUxWQSk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RkVNUyBJbW11
bm9sIE1lZCBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48
ZnVsbC10aXRsZT5GRU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L3Blcmlv
ZGljYWw+PHBhZ2VzPjIyLTc8L3BhZ2VzPjx2b2x1bWU+NDk8L3ZvbHVtZT48bnVtYmVyPjE8L251
bWJlcj48ZWRpdGlvbj4yMDA3LzAyLzAzPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5CYWNp
bGx1cyBhbnRocmFjaXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+QmFjdGVyaWEvY2xhc3Np
ZmljYXRpb24vKmdlbmV0aWNzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+
PGtleXdvcmQ+QmlvdGVycm9yaXNtPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsLypn
ZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+Kk1pbmlzYXRlbGxpdGUgUmVwZWF0czwva2V5
d29yZD48a2V5d29yZD5NeWNvYmFjdGVyaXVtIHR1YmVyY3Vsb3Npcy9nZW5ldGljczwva2V5d29y
ZD48a2V5d29yZD5TdGFwaHlsb2NvY2N1cyBhdXJldXMvZ2VuZXRpY3M8L2tleXdvcmQ+PC9rZXl3
b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkZlYjwvZGF0ZT48
L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA5MjgtODI0NCAoUHJpbnQpJiN4RDswOTI4LTgyNDQg
KExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3MjY2NzExPC9hY2Nlc3Npb24tbnVtPjx1
cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6
L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24m
YW1wO2xpc3RfdWlkcz0xNzI2NjcxMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+RklNMTczIFtwaWldJiN4RDsxMC4xMTExL2ouMTU3NC02OTVYLjIw
MDYuMDAxNzMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3Vh
Z2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWNodG1hbjwvQXV0aG9yPjxZZWFyPjIw
MDg8L1llYXI+PFJlY051bT4yODQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4NDwvcmVj
LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFl
ZXhkdmlwOTkyY3QydHd6ZXZ3Mjl6dyI+Mjg0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl
IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5BY2h0bWFuLCBNYXJrPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3Jz
Pjx0aXRsZXM+PHRpdGxlPkV2b2x1dGlvbiwgcG9wdWxhdGlvbiBzdHJ1Y3R1cmUsIGFuZCBwaHls
b2dlb2dyYXBoeSBvZiBnZW5ldGljYWxseSBtb25vbW9ycGhpYyBiYWN0ZXJpYWwgcGF0aG9nZW5z
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFubnUuIFJldi4gTWljcm9iaW9sLjwvc2Vjb25kYXJ5
LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFubnUuIFJldi4gTWljcm9i
aW9sLjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjUzLTcwPC9wYWdlcz48dm9sdW1l
PjYyPC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PC9kYXRlcz48aXNibj4wMDY2LTQy
Mjc8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkNoaW91
PC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjI4MzwvUmVjTnVtPjxyZWNvcmQ+PHJl
Yy1udW1iZXI+MjgzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p
ZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yODM8L2tleT48L2ZvcmVp
Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv
bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNoaW91LCBDaGllbi1TaHVuPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk11bHRpbG9jdXMgdmFyaWFibGUt
bnVtYmVyIHRhbmRlbSByZXBlYXQgYW5hbHlzaXMgYXMgYSBtb2xlY3VsYXIgdG9vbCBmb3Igc3Vi
dHlwaW5nIGFuZCBwaHlsb2dlbmV0aWMgYW5hbHlzaXMgb2YgYmFjdGVyaWFsIHBhdGhvZ2Vuczwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9kYXRlcz48aXNibj4xNDcz
LTcxNTk8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE PEVuZE5vdGU+PENpdGU+PEF1dGhvcj52YW4gQmVsa3VtPC9BdXRob3I+PFllYXI+MjAwNzwvWWVh
cj48UmVjTnVtPjI3NTwvUmVjTnVtPjxyZWNvcmQ+PHJlYy1udW1iZXI+Mjc1PC9yZWMtbnVtYmVy
Pjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1pZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5
OTJjdDJ0d3pldncyOXp3Ij4yNzU8L2tleT48L2ZvcmVpZ24ta2V5cz48cmVmLXR5cGUgbmFtZT0i
Sm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNvbnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0
aG9yPnZhbiBCZWxrdW0sIEEuPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3JzPjxhdXRo
LWFkZHJlc3M+RGVwYXJ0bWVudCBvZiBNZWRpY2FsIE1pY3JvYmlvbG9neSBhbmQgSW5mZWN0aW91
cyBEaXNlYXNlcywgUm90dGVyZGFtLCBUaGUgTmV0aGVybGFuZHMuIGEudmFuYmVsa3VtQGVyYXNt
dXNtYy5ubDwvYXV0aC1hZGRyZXNzPjx0aXRsZXM+PHRpdGxlPlRyYWNpbmcgaXNvbGF0ZXMgb2Yg
YmFjdGVyaWFsIHNwZWNpZXMgYnkgbXVsdGlsb2N1cyB2YXJpYWJsZSBudW1iZXIgb2YgdGFuZGVt
IHJlcGVhdCBhbmFseXNpcyAoTUxWQSk8L3RpdGxlPjxzZWNvbmRhcnktdGl0bGU+RkVNUyBJbW11
bm9sIE1lZCBNaWNyb2Jpb2w8L3NlY29uZGFyeS10aXRsZT48L3RpdGxlcz48cGVyaW9kaWNhbD48
ZnVsbC10aXRsZT5GRU1TIEltbXVub2wgTWVkIE1pY3JvYmlvbDwvZnVsbC10aXRsZT48L3Blcmlv
ZGljYWw+PHBhZ2VzPjIyLTc8L3BhZ2VzPjx2b2x1bWU+NDk8L3ZvbHVtZT48bnVtYmVyPjE8L251
bWJlcj48ZWRpdGlvbj4yMDA3LzAyLzAzPC9lZGl0aW9uPjxrZXl3b3Jkcz48a2V5d29yZD5CYWNp
bGx1cyBhbnRocmFjaXMvZ2VuZXRpY3M8L2tleXdvcmQ+PGtleXdvcmQ+QmFjdGVyaWEvY2xhc3Np
ZmljYXRpb24vKmdlbmV0aWNzL2lzb2xhdGlvbiAmYW1wOyBwdXJpZmljYXRpb248L2tleXdvcmQ+
PGtleXdvcmQ+QmlvdGVycm9yaXNtPC9rZXl3b3JkPjxrZXl3b3JkPkROQSwgQmFjdGVyaWFsLypn
ZW5ldGljczwva2V5d29yZD48a2V5d29yZD5HZW5vbWUsIEJhY3RlcmlhbDwva2V5d29yZD48a2V5
d29yZD5IdW1hbnM8L2tleXdvcmQ+PGtleXdvcmQ+Kk1pbmlzYXRlbGxpdGUgUmVwZWF0czwva2V5
d29yZD48a2V5d29yZD5NeWNvYmFjdGVyaXVtIHR1YmVyY3Vsb3Npcy9nZW5ldGljczwva2V5d29y
ZD48a2V5d29yZD5TdGFwaHlsb2NvY2N1cyBhdXJldXMvZ2VuZXRpY3M8L2tleXdvcmQ+PC9rZXl3
b3Jkcz48ZGF0ZXM+PHllYXI+MjAwNzwveWVhcj48cHViLWRhdGVzPjxkYXRlPkZlYjwvZGF0ZT48
L3B1Yi1kYXRlcz48L2RhdGVzPjxpc2JuPjA5MjgtODI0NCAoUHJpbnQpJiN4RDswOTI4LTgyNDQg
KExpbmtpbmcpPC9pc2JuPjxhY2Nlc3Npb24tbnVtPjE3MjY2NzExPC9hY2Nlc3Npb24tbnVtPjx1
cmxzPjxyZWxhdGVkLXVybHM+PHVybD5odHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvZW50cmV6
L3F1ZXJ5LmZjZ2k/Y21kPVJldHJpZXZlJmFtcDtkYj1QdWJNZWQmYW1wO2RvcHQ9Q2l0YXRpb24m
YW1wO2xpc3RfdWlkcz0xNzI2NjcxMTwvdXJsPjwvcmVsYXRlZC11cmxzPjwvdXJscz48ZWxlY3Ry
b25pYy1yZXNvdXJjZS1udW0+RklNMTczIFtwaWldJiN4RDsxMC4xMTExL2ouMTU3NC02OTVYLjIw
MDYuMDAxNzMueDwvZWxlY3Ryb25pYy1yZXNvdXJjZS1udW0+PGxhbmd1YWdlPmVuZzwvbGFuZ3Vh
Z2U+PC9yZWNvcmQ+PC9DaXRlPjxDaXRlPjxBdXRob3I+QWNodG1hbjwvQXV0aG9yPjxZZWFyPjIw
MDg8L1llYXI+PFJlY051bT4yODQ8L1JlY051bT48cmVjb3JkPjxyZWMtbnVtYmVyPjI4NDwvcmVj
LW51bWJlcj48Zm9yZWlnbi1rZXlzPjxrZXkgYXBwPSJFTiIgZGItaWQ9InhhOWZ3cDl6dmU1eGFl
ZXhkdmlwOTkyY3QydHd6ZXZ3Mjl6dyI+Mjg0PC9rZXk+PC9mb3JlaWduLWtleXM+PHJlZi10eXBl
IG5hbWU9IkpvdXJuYWwgQXJ0aWNsZSI+MTc8L3JlZi10eXBlPjxjb250cmlidXRvcnM+PGF1dGhv
cnM+PGF1dGhvcj5BY2h0bWFuLCBNYXJrPC9hdXRob3I+PC9hdXRob3JzPjwvY29udHJpYnV0b3Jz
Pjx0aXRsZXM+PHRpdGxlPkV2b2x1dGlvbiwgcG9wdWxhdGlvbiBzdHJ1Y3R1cmUsIGFuZCBwaHls
b2dlb2dyYXBoeSBvZiBnZW5ldGljYWxseSBtb25vbW9ycGhpYyBiYWN0ZXJpYWwgcGF0aG9nZW5z
PC90aXRsZT48c2Vjb25kYXJ5LXRpdGxlPkFubnUuIFJldi4gTWljcm9iaW9sLjwvc2Vjb25kYXJ5
LXRpdGxlPjwvdGl0bGVzPjxwZXJpb2RpY2FsPjxmdWxsLXRpdGxlPkFubnUuIFJldi4gTWljcm9i
aW9sLjwvZnVsbC10aXRsZT48L3BlcmlvZGljYWw+PHBhZ2VzPjUzLTcwPC9wYWdlcz48dm9sdW1l
PjYyPC92b2x1bWU+PGRhdGVzPjx5ZWFyPjIwMDg8L3llYXI+PC9kYXRlcz48aXNibj4wMDY2LTQy
Mjc8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48Q2l0ZT48QXV0aG9yPkNoaW91
PC9BdXRob3I+PFllYXI+MjAxMDwvWWVhcj48UmVjTnVtPjI4MzwvUmVjTnVtPjxyZWNvcmQ+PHJl
Yy1udW1iZXI+MjgzPC9yZWMtbnVtYmVyPjxmb3JlaWduLWtleXM+PGtleSBhcHA9IkVOIiBkYi1p
ZD0ieGE5ZndwOXp2ZTV4YWVleGR2aXA5OTJjdDJ0d3pldncyOXp3Ij4yODM8L2tleT48L2ZvcmVp
Z24ta2V5cz48cmVmLXR5cGUgbmFtZT0iSm91cm5hbCBBcnRpY2xlIj4xNzwvcmVmLXR5cGU+PGNv
bnRyaWJ1dG9ycz48YXV0aG9ycz48YXV0aG9yPkNoaW91LCBDaGllbi1TaHVuPC9hdXRob3I+PC9h
dXRob3JzPjwvY29udHJpYnV0b3JzPjx0aXRsZXM+PHRpdGxlPk11bHRpbG9jdXMgdmFyaWFibGUt
bnVtYmVyIHRhbmRlbSByZXBlYXQgYW5hbHlzaXMgYXMgYSBtb2xlY3VsYXIgdG9vbCBmb3Igc3Vi
dHlwaW5nIGFuZCBwaHlsb2dlbmV0aWMgYW5hbHlzaXMgb2YgYmFjdGVyaWFsIHBhdGhvZ2Vuczwv
dGl0bGU+PC90aXRsZXM+PGRhdGVzPjx5ZWFyPjIwMTA8L3llYXI+PC9kYXRlcz48aXNibj4xNDcz
LTcxNTk8L2lzYm4+PHVybHM+PC91cmxzPjwvcmVjb3JkPjwvQ2l0ZT48L0VuZE5vdGU+AG==
ADDIN EN.CITE.DATA (24, 29, 30).
1-4- اهداف پایان نامه
1-4-1- هدف علمی پایان نامه
ژنوتایپبنگ سویه های سالمونلا انتریکا سرووار انتریتیدیس جدا شده از نمونه های بالینی در تهران بر پایه روشMultilocus VNTR Analysis( MLVA)
1-4-2- اهداف جزئی
تعیین هویت و بررسی تنوع اللی در هر لوکوس VNTR در جمعیت سویه های سالمونلا ی مورد نظر
انتخاب پرایمر مناسب جهت الل ها برای انجام PCR
انجام PCR برروی ژن ها و پرایمر انتخابی
آنالیز و بررسی داده ها
1-4-3- اهداف کاربردی
بکارگیری یک روش سریع، کم هزینه و ارزشمند جهت ژنوتایپینگ برای بررسی و شناسایی میکروارگانیسم ها در زمینه پیشگیری و کنترل عفونت ها
1-5- فرضیه ها
لوکوسهایVNTR در سویه های سالمونلا انتریکا سرووار انتریتیدیس از تنوع بالایی برخوردارند
سویه های سالمونلا از نظر ژنوتیپ با روش MLVA قابل طبقه بندی هستند.
1-6- سئوالات
آیا لوکوس های VNTR در سویه های سالمونلا انتریکا سرووار انتریتیدیس از تنوع بالایی برخورد دارند؟
آیا سویه های سالمونلا از نظر ژنوتیپ با روش MLVA قابل طبقه بندی هستند؟
1-7- ضرورت انجام تحقیق
چون روش های مولکولی زیادی نظیر PFGE، MLST و MLVA و غیره جهت ژنوتایپینگ سویه های سالمونلا وجود دارد، MLVA نسبت به سایر روش ها نظیر PFGE از نظر اقتصادی مقرون به صرفه بوده و با امکانات کمی( PCR و الکتروفورز) قابل انجام است.
1-8- جنبه جدید بودن و نوآوری تحقیق
از آنجاییکه از این تکنیک برای ژنوتایپینگ سالمونلا در کشور استفاده نشده است لذا برای اولین بار قصد داریم سویه های سالمونلا انتریکا سرووار انتریتیدیس را با این روش دسته بندی نمائیم.
1-9- واژه نامه ها و اصطلاحات فنی
ژنوتایپینگ باکتری ها: نوعی روش مولکولی که برای طبقه بندی و دسته بندی ایزوله ها یا سویه های یک گونه ی باکتریایی خاص برای مطالعه ی روابط تکاملی یا قرابت ژنتیکی بین آنها استفاده می شود.
VNTR: VNTR در اصطلاح به تکرار های پشت سرهم با تعداد متغییر گفته می شود. این توالی ها معادل ماهواره ها در ژنوم می باشند.
MLVA( آنالیز چند لوکوسی تکرار های پشت سرهم): نوعی تکنیک مولکولی می باشد که برای ژنوتایپینگ باکتری ها استفاده می شود. این تکنیک مبتنی بر PCR بوده و اساس آن VNTR ها می باشد.

–277

2-8-1- برهم‌کنش حشرات و گیاهان میزبان PAGEREF _Toc336514294 h 19
2-8-2- برهم کنش حشرات و پاتوژن‌ها PAGEREF _Toc336514295 h 21
2-8-3- مقاوت به حشره‌کش‌ها PAGEREF _Toc336514296 h 22
2-8-4- روابط شکار- شکارگر- پارازیتوئید PAGEREF _Toc336514297 h 23
2-8-5- سیستماتیک مولکولی PAGEREF _Toc336514298 h 24
2-8-6- حشرات تراریخته PAGEREF _Toc336514299 h 25
2-9- میکروستلایت‌ها یا توالی‌های ساده تکرار شونده PAGEREF _Toc336514300 h 26
2-10- نشانگر ISSR و کاربرد آن در مطالعات گیاهی و جانوری PAGEREF _Toc336514301 h 30
2-11- منابع تغییرات و چند شکلی PAGEREF _Toc336514302 h 31
2-11-1- نمونه DNA PAGEREF _Toc336514303 h 32
2-11-2- طبیعت آغازگرهای مورد استفاده: PAGEREF _Toc336514304 h 32
2-11-3- روش کشف PAGEREF _Toc336514305 h 33
2-12- کاربردهای تکنیک ISSR PAGEREF _Toc336514306 h 34
2-12-1- انگشت‌نگاری ژنتیکی PAGEREF _Toc336514307 h 34
2-12-2- تنوع ژنتیکی و آنالیز فیلوژنتیکی PAGEREF _Toc336514308 h 34
2-12-3- نقشه‌یابی ژنتیکی PAGEREF _Toc336514309 h 34
2-12-4- تعیین فراوانی توالی‌های ساده تکراری (SSR) PAGEREF _Toc336514310 h 35
2-12-5- مطالعه جمعیت‌های طبیعی و گونه‌زایی PAGEREF _Toc336514311 h 35
2-13- چشم انداز کاربرد ISSR در ژنتیک مولکولی PAGEREF _Toc336514312 h 36
2-14- کاربرد نشانگر ISSR در حشره شناسی PAGEREF _Toc336514313 h 37
2-15- نشانگرهای DNA مبتنی بر واکنش زنجیره‌ای پلیمراز PAGEREF _Toc336514314 h 38
فصل سوم
مواد و روش‌ها PAGEREF _Toc336514316 h 40
3-1- جمع آوری نمونه‌ها PAGEREF _Toc336514317 h 41
3-2- استخراج DNA زنبور عسل PAGEREF _Toc336514318 h 43
3-3- تعیین کیفیت DNA استخراج شده PAGEREF _Toc336514319 h 45
3-3-1- الکتروفورز DNA در ژل آگارز 1 درصد PAGEREF _Toc336514320 h 45
3-3-2- بررسی غلظت DNA استخراج شده PAGEREF _Toc336514321 h 46
3-3-3- رقیق سازی DNA استخراجی برای دستیابی به غلظت ng/µl25 PAGEREF _Toc336514322 h 47
3-4- واکنش زنجیره‌ای پلیمراز PAGEREF _Toc336514323 h 47
3-5- الکتروفورز محصول PCR روی ژل آگارز PAGEREF _Toc336514324 h 49
3-6- نمره دهی باندهای مشاهده شده روی آگارز نشانگر غالب ISSR PAGEREF _Toc336514325 h 50
3-7- ورود داده‌های حاصل از ژل‌ها به نرم افزار اکسل PAGEREF _Toc336514326 h 51
3-8- اندازه گیری فواصل و تشابه‌های ژنتیکی PAGEREF _Toc336514327 h 54
3-9- روش های گروهبندی داده ها PAGEREF _Toc336514328 h 55
3-10- تجزیه خوشه ای PAGEREF _Toc336514329 h 56
3-11- نیکویی برازش خوشه بندی یا ضریب کوفنتیک PAGEREF _Toc336514330 h 56
3-12- تجزیه به مولفه های اصلی PAGEREF _Toc336514331 h 57
3-13- آنالیز داده‌های مولکولی PAGEREF _Toc336514332 h 58
3-14- بررسی‌های مورفولوژیکی PAGEREF _Toc336514333 h 58
3-15- تجزیه به مؤلفه اصلی PAGEREF _Toc336514334 h 60
3-16- آنالیز داده‌های مورفولوژیکی PAGEREF _Toc336514335 h 61
فصل چهارم
نتایج PAGEREF _Toc336514337 h 62
بررسی تنوع مرفولوژیکی نژادهای زنبور عسل مورد مطالعه PAGEREF _Toc336514338 h 63
4-2- نتایج مربوط به هفت صفت ظاهری اندازه‌گیری شده روی زنبوران عسل پنج استان ایران PAGEREF _Toc336514339 h 63
4-3- همبستگی خصوصیات ظاهری زنبور عسل پنج استان ایران PAGEREF _Toc336514340 h 64
4-4- ماتریس‌های شباهت و تفاوت بین زنبورهای پنج استان مختلف ایران PAGEREF _Toc336514341 h 65
4-5- تجزیه خوشه‌ای و تجزیه به مولفه‌های اصلی بر اساس داده‌های مرفومتریک PAGEREF _Toc336514342 h 66
4-6- بررسی تنوع ژنتیکی نژادهای زنبور عسل مورد مطالعه PAGEREF _Toc336514343 h 67
4-7- تعداد باندهای تولیدی هر آغازگر برای زنبورهای استان‌های مورد مطالعه PAGEREF _Toc336514344 h 72
4-8- تعداد باندهای تولیدی در هر نژاد زنبور عسل PAGEREF _Toc336514345 h 72
4-9- تعداد باندهای تولید هر آغازگر و کارایی آنها در تکثیر PAGEREF _Toc336514346 h 73
4-10- ماتریس‌های شباهت و تفاوت بین زنبورهای پنج استان مختلف ایران PAGEREF _Toc336514347 h 74
4-11- تجزیه خوشه‌ای و تجزیه به مولفه‌های اصلی بر اساس داده‌های مولکولی PAGEREF _Toc336514348 h 74
4-12- بررسی شاخص نشانگری و قدرت تمایز آغازگرهای مورد مطالعه روی زنبور عسل PAGEREF _Toc336514349 h 76
4-13- تعداد کل جایگاه‌های ژنی و تعداد جایگاه‌های ژنی چندشکل در زنبورهای مورد مطالعه PAGEREF _Toc336514350 h 77
4-14- دندوگرام اجماعی حاصل از داده‌های ژنتیکی و مرفومتریک PAGEREF _Toc336514351 h 78
فصل پنجم
بحث و نتیجه‌گیری PAGEREF _Toc336514353 h 79
چگونگی کاربرد و آنالیز نشانگر ISSR در تنوع ژنتیکی زنبور عسل PAGEREF _Toc336514354 h 81
بررسی تنوع ژنتیکی نژادهای زنبورعسل مورد مطالعه PAGEREF _Toc336514355 h 87
پیشنهادات: PAGEREF _Toc336514356 h 90
منابع PAGEREF _Toc336514357 h 91

فهرست جداول
TOC h z t "Jadavel,1" جدول 2-1: نام‌های متفاوت و همنام تکنیک ISSR-PCR PAGEREF _Toc336519789 h 31جدول3-1: مکان‌ و آدرس‌های محل نمونه برداری زنبور عسل PAGEREF _Toc336519790 h 42جدول 3-2 مواد واکنش، ‌حجم و غلظت نهایی اجزای واکنش زنجیره پلیمراز PAGEREF _Toc336519791 h 48جدول3-3: صفات مرفولوژیک اندازه‌گیری شده PAGEREF _Toc336519792 h 59جدول 4-1: میانگین هفت صفت مرفولوژیک زنبوران کارگر مورد مطالعه PAGEREF _Toc336519793 h 63جدول4-2: اندازه هفت صفت مرفولوژیک زنبور عسل پنج استان ایران PAGEREF _Toc336519794 h 64جدول 4-3: همبستگی بین صفات ظاهری اندازه‌گیری شده در زنبور عسل PAGEREF _Toc336519795 h 65جدول 4-4: ضریب فاصله مرفولوژیکی و تشابه مرفولوژیکی بین پنج جمعیت زنبور عسل PAGEREF _Toc336519796 h 65جدول 4-5: لیست آغازگرها، توالی آنها و چند شکلی مشاهده شده در نژادهای زنبور عسل PAGEREF _Toc336519797 h 68جدول 4-6: تعداد باندهای تولیدی هر آغازگر برای زنبورهای استان‌های مورد مطالعه PAGEREF _Toc336519798 h 72جدول 4-7: ضریب تشابه ژنتیکی و فاصله ژنتیکی بین پنج جمعیت زنبور عسل بر اساس نشانگر ISSR PAGEREF _Toc336519799 h 74جدول 4-8: میزان برخی شاخص‌های آغازگرهای مورد استفاده در مطالعه تنوع ژنتیکی زنبور عسل PAGEREF _Toc336519800 h 76
فهرست اشکال
TOC h z t "Ashkal,1" شکل 2-1: نقاشی کشف شده از زنبورداری در والنسیای اسپانیا PAGEREF _Toc336519870 h 6شکل 2-2: طبقه بندی انواع نشانگرهای ژنتیکی PAGEREF _Toc336519871 h 17شکل3-1: پنج استان جمع آوری نمونه‌ی زنبور عسل PAGEREF _Toc336519872 h 41شکل3-2: نمایی از مکان‌های جمع آوری نمونه‌های زنبور عسل PAGEREF _Toc336519873 h 42شکل 3-3: دستگاه حمام آب مورد استفاده در این آزمایشات PAGEREF _Toc336519874 h 43شکل 3-4: دستگاه سانتریفیوژ مورد استفاده در این آزمایشات PAGEREF _Toc336519875 h 44شکل 3-5: بررسی کیفیت DNA استخراج شده ژنومی روی ژل آگارز 1 درصد PAGEREF _Toc336519876 h 46شکل 3-6: دستگاه نانودراپ اسپکتروفوتومتر مورد استفاده در تعیین غلظت DNA PAGEREF _Toc336519877 h 47شکل 3-7: برنامه واکنش زنجیره‌ای پلیمراز PAGEREF _Toc336519878 h 49شکل 3-8: دستگاه‌های PCR مورد استفاده در این آزمایشات PAGEREF _Toc336519879 h 49شکل 3-9: تانک‌ الکتروفورز ژل آگارز مورد استفاده در این آزمایشات PAGEREF _Toc336519880 h 50شکل 3-10: دستگاه BioDoc Analyzer و سیستم تصویربرداری از ژل آگارز PAGEREF _Toc336519881 h 50شکل 3-11: باندهای موجود و نمره‌دهی لوکوس‌های موجود حاصل از تصویربرداری ژل‌های آگارز نشانگر ISSR PAGEREF _Toc336519882 h 51شکل 3-12: ورود داده‌های حاصل از نمره‌دهی ژل‌های آگارز به نرم افزار اکسل جهت آنالیز PAGEREF _Toc336519883 h 51شکل 3-13: نمایی از بال جلویی زنبور عسل و صفات اندازه‌گیری شده PAGEREF _Toc336519884 h 60شکل 3-14: دستگاه استریومیکروسکوپ مجهز به دوربین مورد استفاده در آزمایشات PAGEREF _Toc336519885 h 60شکل 4-1: دندروگرام حاصل از آنالیز خوشه‌ای بر اساس روش UPGMA با ماتریس تشابهCorr PAGEREF _Toc336519886 h 66شکل 4-2: مقایسه زنبورهای عسل مورد بررسی با استفاده از روش تجزیه به مولفه‌های اصلی PAGEREF _Toc336519887 h 67شکل 4-3: تصاویر ژل آگارز 5/1 درصد آغازگر 1 با استفاده از مارکر bp 50 PAGEREF _Toc336519888 h 69شکل 4-4: تصاویر ژل آگارز 5/1 درصد آغازگر 2 با استفاده از مارکر bp 50 PAGEREF _Toc336519889 h 70شکل 4-5: تصاویر ژل آگارز 5/1 درصد آغازگر 3 با استفاده از مارکر bp 50 PAGEREF _Toc336519890 h 70شکل 4-6: تصاویر ژل آگارز 5/1 درصد آغازگر 4 با استفاده از مارکر bp 50 PAGEREF _Toc336519891 h 71شکل 4-7: تصاویر ژل آگارز 5/1 درصد آغازگر 5 با استفاده از مارکر bp 50 PAGEREF _Toc336519892 h 71شکل 4-8: تعداد باندهای تولیدی در نژادهای زنبور عسل PAGEREF _Toc336519893 h 73شکل 4-9: تعداد باندهای تولیدی آغازگرهای مورد استفاده PAGEREF _Toc336519894 h 73شکل 4-10: دندروگرام حاصل از آنالیز خوشه ای بر اساس روش UPGMA با ماتریس تشابه Jaccard PAGEREF _Toc336519895 h 75شکل 4-11: پلات سه بعدی حاصل از تجزیه به مختصات اصلی به‌روش ماتریس تشابه Jaccard PAGEREF _Toc336519896 h 75شکل 4-12: تعداد کل جایگاه‌های ژنی و تعداد جایگاه‌های ژنی چندشکل PAGEREF _Toc336519897 h 77شکل 4-13: دندروگرام اجماعی حاصل از داده‌های ژنتیکی و مرفولوژیکی PAGEREF _Toc336519898 h 78
فهرست معادلات
TOC h z t "Moadele,1" معادله 3-1: محتوای اطلاعات چندشکلی نشانگر PAGEREF _Toc336520013 h 52معادله 3-2: میزان چندشکلی نشانگر PAGEREF _Toc336520014 h 52معادله 3-3: ارزشمندی باندها PAGEREF _Toc336520015 h 53معادله 3-4: قدرت حل هر آغازگر PAGEREF _Toc336520016 h 53معادله 3-5: میانگین قدرت حل هر آغازگر PAGEREF _Toc336520017 h 53معادله 3-6: نسبت چندگانه موثر PAGEREF _Toc336520018 h 53معادله 3-7: شاخص نشانگری PAGEREF _Toc336520019 h 54معادله 3-8: ضریب تشابه جاکارد PAGEREF _Toc336520020 h 55
چکیدهنشانگر مولکولی ISSR به منظور جداسازی نژادهای زنبور عسل Apis mellifera پنچ استان خوزستان، کردستان، مرکزی، اصفهان و فارس مورد استفاده قرار گرفت. استخراج DNA از زنبورهای کارگر با استفاده از روش بهینه نمکی صورت گرفت و پس از سنجش کمی و کیفی DNA استخراج شده و رقیق سازی آن، مقادیر حاصل از باندهای بدست آمده بر روی ژل آگارز 5/1 درصد نمره‌دهی و آنالیز صورت گرفت. نتایج نشان داد که باندهای آغازگرهای مورد مطالعه شده در محدوده‌‌ی 150 جفت باز تا 1000 جفت باز قرار دارند و بیشترین تعداد باند مشاهده شده مربوط به آغازگر 1 و کمترین آنها مربوط به آغازگر 3 و 4 بوده است. آنالیز خوشه‌ای نژاد‌های مورد مطالعه آنها را در دو گروه اصلی قرار داد. در گروه اول فارس و در گروه دیگر که به دو زیر گروه تقسیم شده یکی شامل اصفهان و دیگری شامل مرکزی، خوزستان و کردستان، دو استان کردستان و خوزستان دارای بیشترین شباهت بودند. به نظر می‌رسد نشانگر ISSR بتواند به خوبی نژاد‌های زنبور عسل با منشاء مختلف را از هم جدا سازد.

واژه‌های کلیدی: نشانگر مولکولی، زنبور عسل، بهینه نمکی، تنوع ژنتیکی
فصل اولمقدمهمقدمه
براساس آمار سازمان خواربار جهانی بیش از هفتاد میلیون کلنی زنبور عسل در جهان وجود دارد که محصولات تولیدی آنها در راستای تامین نیازهای غذایی، دارویی و بهداشتی مورد استفاده قرار می‌گیرد. بعلاوه زنبور عسل با گرده افشانی گیاهان زراعی و باغی نقش بسیار مهمی در افزایش محصولات کشاورزی و پایداری محیط زیست ایفا می‌کند. در بین حشرات گرده افشان زنبور عسل بدلیل حمایت بشر، جمعیت بیشتر کلنی و جابجایی کلنی‌ها برای تولید محصول بیشتر و دامنه فعالیت وسیع‌تر، خصوصیات بیولوژیکی، رفتاری و مرفولوزیک خاص بهترین نقش را ایفا می‌کند و از اهمیت بالاتری برخوردار است. منطقه‌ی انتشار طبیعی زنبور عسل در جهان محدوده‌ی وسیعی است که از شمال به جنوب کشور های اسکاندیناوی، از غرب به داکار، از جنوب به دماغه امیدنیک و از شرق به کوه‌های اورال، مشهد و عمان محدود می‌شود، البته این حشره توسط انسان به سایر نقاط جهان نیز منتقل شده است (طهماسبی و همکاران، 1378). از زمان آشنایی بشر با زنبور عسل تولیدات آن بویژه عسل همواره به عنوان یک ماده‌ی غذایی ایده‌آل مورد توجه بوده است. عسل در فرهنگ عامه به عنوان یکی از شفابخش‌ترین فراورده‌های غذایی مطرح است. بررسی‌ها نشان می‌دهد که محصولات کندو و از جمله عسل علاوه بر مغذی بودن‌، دارای اثرات درمانی نیز می‌باشد (توپچی و علمی، 1388). برای تولید بیشتر عسل نیاز به جمعیت‌های قوی می‌باشد و تولید جمعیت‌های قوی نیز در سایه‌ی مدیریت صحیح بر پایه‌ی دانش علمی ممکن می‌باشد. یکی از مسائلی که ممکن است باعث اثرات نامطلوب و در نتیجه تضعیف کلنی‌ها گردد، پدیده‌ی تلاقی‌های خویشاوندی می‌باشد که منجرب به افزایش هم‌خونی یا هموزیگوتی آلل‌های جنسی می‌گردد (Mayer, 1996).
تعیین وضعیت ژنتیکی موجودات زنده زیربنای اصلاح نژاد آنها در هر منطقه است برای تعیین این وضعیت و تفکیک توده‌های مختلف زنبور عسل در یک منطقه از روشهای مرفولوژیکی، تنوع پروتئین‌ها و DNA نگاری استفاده می‌شود (طهماسبی و همکاران، 1376). برخی از تفاوت‌های موجود در ردیف DNAبین دو موجود ممکن است به صورت پروتئین‌هایی با اندازه‌های مختلف تجلی کنند که بروش‌های مختلف بیوشیمیایی قابل ثبت و رویت و مطالعه می‌گردند. این قبیل نشانگرها را نشانگرهای مولکولی در سطح پروتئین می‌نامند‌ که از آن جمله می‌توان به سیستم آیزوزایم/ آللوزیم اشاره کرد. اما دسته‌ی دیگر از تفاوت‌های موجود در سطح DNA هیچ تظاهری ندارند، نه صفت خاصی را کنترل می‌کنند و نه در ردیف اسیدهای آمینه پروتئین‌ها تاثیری برجای می‌گذارند. این دسته از تفاوت‌ها را می‌توان با روش‌های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشانگر مورد استفاده قرار داد. این نشانگرها که تقریباً تعدادشان نامحدود است فقط از راه تجزیه وتحلیل مستقیم DNA قابل ثبت هستند و بنابراین به آنها نشانگرهای مولکولی در سطح DNA گفته می‌شود. طی سالیان اخیر شناسایی و بررسی تنوع ژنتیک در بین گونه‌های حشرات بر اساس نشانگر‌های مولکولی و روش‌های مبتنی بر واکنش زنجیره‌ای پلیمراز PCR بسیار متداول گشته است. ولی در کشور ما بررسی تنوع مولکولی در زمینه حشره شناسی بسیار کم انجام گرفته است. امروزه میکروساتلیت‌ها نقش مهمی در تعیین تنوع ژنتیکی و روابط خویشاوندی جانوران و گیاهان و مخصوصاً حشرات ایفا می‌کنند. استفاده از نشانگر ISSR بیشتر جهت تنوع ژنتیکی گیاهان استفاده شده و در جهان حشرات هم اکنون استفاده از این نشانگر جهت بررسی تنوع ژنتیکی راسته بالپولکداران به ویژه دو خانواده Noctuidae و Bombycidae ، راسته دوبالان و بال غشائیان در کانون توجه مجامع علمی قرار گرفته است(Luque, et al., 2002; Hundsdoerfer, et al., 2005; Radjab, et al., 2012).اهداف کلی در این تحقیق عبارتند از :
بهینه سازی کاربرد نشانگر ISSR در بررسی تنوع ژنتیکی زنبور عسل.
ارزیابی میزان خویشاوندی نژادهای زنبور عسل ایران نسبت به یکدیگر.
بررسی کارایی نشانگر ISSR در جداسازی و دسته بندی روابط خویشاوندی زنبور عسل ایران.
بررسی تفاوت و تشابه نتایج بدست آمده از مطالعه نشانگر ISSR و نتایج بدست آمده از خصوصیات مورفولوژیک زنبور عسل.
فصل دومبررسی و مرور منابع2-1- تاریخچه زنبور عسل و پرورش آن در جهان و ایران
قدیمی‌ترین زنبور عسل حفظ شده در کهربا در منطقه‌ای از میانمار برمه کشف شده است که عمر این فسیل به 100 میلیون سال پیش در دوره‌ی ‌کرتاسه باز می‌گردد که دوره‌ی زندگی دایناسورها بوده است، بنابراین قدمت زنبورها از قاره‌ی استرالیا نیز بیشتر است، البته این زنبورهای کشف شده دارای زندگی اجتماعی نبوده‌اند. نگهداری عسل توسط زنبورهای اجتماعی در دوره‌‌‌ی میوسن در حدود 20-10 میلیون سال قبل گسترش یافته است (Campbell and Campbell, 2007)و کهن‌ترین نمونه زنبور عسل در موزه‌‌ی تاریخ طبیعی نیویورک مربوط به 20 میلیون سال پیش است (سعادتمند، 1389).
نقاشی‌هایی بروی غاری در والنسیای اسپانیا کشف شده که در آنها برای رسیدن به لانه از نردبان و ظروفی برای نگه داشتن عسل به تصویر کشیده شده‌اند (شکل2-1).

شکل 2-1: نقاشی کشف شده از زنبورداری در والنسیای اسپانیااولین تصویر از پرورش زنبور عسل مربوط به 2400 سال قبل از میلاد بدست آمده است که در آن تصویر زنبورها دارای 4 پا و 2 بال هستند و اینک در موزه‌‌ی لوور پاریس نگهداری می‌شود. مصریان باستان عسل را در مراسم مذهبی، تغذیه حیوانات مقدس و در بسیاری از تشریفات دیگر و حتی حفظ اجساد، مورد استفاده قرار می‌دادند(Crane, 2004) . دست نوشته‌هایی از مصریان باستان مربوط به 3000 سال قبل وجود دارد که فعالیت‌های پرورش زنبور عسل در آن به ثبت رسیده است (Campbell and Campbell, 2007).
در کتاب‌های فارسی و هندی از جمله کتاب ابن‌سینا و کتاب مقدس هندو به نام ودا که 3-2 هزار سال قبل از میلاد مسیح به زبان سانسکریت نوشته شده است، از زنبور عسل با احترام یاد می‌شود. شینو به اعتقاد پیروان مکتب هندو، به عنوان حامی و محافظ پرقدرت خدای دو، از خدایان سه گانه هندوئیسم بوده که به شکل زنبور عسل آبی رنگ در یک گل نیلوفر آبی مجسم می‌شود. خدای عسل بومیان هند شرقی به نام کاما است، که کمانی در دست دارد و زه این کمان متشکل از زنبورهای بسیار و درهم تنیده است (سعادتمند، 1389). در نسخه‌های خطی اروپائیان عسل به عنوان غذا، دارو، نوشیدنی و اهداف مختلف نگهداری مواد و همچنین در مراسم‌های مذهبی توصیف شده است. در بسیاری از فرهنگ‌‌ها عسل خوردنی نیست، اما یک نوشیدنی الکلی با استفاده از تخمیر قند عسل می‌سازند و مصرف می‌‌کنند.
تا حدود سال 1500میلادی زنبورها طی فرایند جمع آوری عسل در مکان زندگی خود کشته می‌شدند، پس از آن زمان اروپائیان تکنیک‌‌های زنبورداری را گسترش دادند.
زنبورداری در ایران سابقه‌ای دیرینه داشته و یکی از حرفه‌های اصیل و قدیمی ایرانی‌ها است، دشنه مفرغی منقش به شکل زنبور عسل متعلق به ‌800 سال قبل از میلاد که در لرستان بدست آمده است وهم اکنون در موزه‌ی شهر بروکسل نگهداری می‌شود، معرف قدمت آشنایی ایرانی‌ها با این حشره‌ی مفید است. با جستجوی کلمه عسل و احتمالاً زنبور عسل در اشعار به خصوص شعرهای قدیمی می‌توانیم از قدمت و آشنایی ایرانی‌ها با زنبور عسل پی‌برد (آقایی نراقی، 1388).
ابن مقیصه از پیامبر اکرم(ص) نقل می‌کند که عسل درمان هر بیماری است و قران درمان تمام بیماری‌های ذهن است، بنابراین من به شما توصیه هر دو درمان عسل و قران را دارم (Campbell and Campbell, 2007).
2-2- ارزش اقتصادی زنبور عسلآلبرت چی کاکس می‌نویسد: که هیچ جاندار دیگری به اندازه‌ی زنبور عسل به طرق مختلف به انسان خدمت نمی‌کند. زنبور عسل نقش بسیار مهمی در گرده افشانی بیش از 90 گیاه (Al-Otaibi, 2008) در نتیجه بقا، گونه و همچنین افزایش کمی و کیفی محصولات آنها دارد، علاوه بر این زنبور عسل خود دارای تولیدات متنوعی مانند عسل، موم، بره موم، ژله، رویال و زهره نیز می‌باشد. تولید عسل مهمترین صفت اقتصادی زنبور عسل می‌باشد (مستاجران، 1379). امروزه نقش عظیم زنبور عسل در گرده افشانی گیاهان زراعی و باغی و احیای مراتع و بهبود محیط زیست به حدی شناخته شده و آشکار می‌باشد که تولیدات آن یعنی عسل و غیره را تحت شعاع قرار می‌‌دهد. اساساً نباتات از نظر گرده افشانی وابسته به حشرات هستند که در رأس آنها زنبور عسل قرار دارد، به عبارت دیگر گرده افشانی 47 درصد از محصولات کشاورزی وابسته به زنبور عسل است، به همین دلیل ارزش اقتصادی زنبور عسل در دنیا 100-25 برابر ارزش عسل تولید شده در سال محاسبه می‌شود. به گفته‌ی Mc. Gregor پژوهشگر امریکایی در سال 1973، زارعین امریکا بیش از 40 میلیارد دلار سود از افزایش محصولات زراعی در رابطه با گرده افشانی نباتات دگرگشن داشته‌اند که نقش مهمی از این آزمایش به عهده‌ی زنبور عسل است. زنبور عسل جز گرده افشان‌های اصلی گیاهان روغنی خصوصاً آفتابگردان می‌باشد، نتیجه‌ی یک طر ح تحقیقاتی در همین رابطه در کشور امریکا که استقرار 2 کندو به ازای هر هکتار آفتابگردان سبب افزایش چشمگیر محصول شده، به طوری که محصول بدست آمده در مزرعه تحت آزمایش 50-20 درصد بیشتر از مزارع شاهد بوده است (میراب‌زاده، 1372).در ایران نزدیک به 6/4 میلیون کندوی مدرن با تولید متوسط 38/9 کیلوگرم عسل به ازای هر کندو در سال وجود دارد به این ارقام می‌بایست 380 هزار کندوی بومی با تولید 04/4 کیلوگرم عسل برای هر کندو در سال افزود. بنابراین تولید عسل سالیانه کشور را در حدود 45 هزار تن محاسبه نموده و ارزش ریالی آن را حدود 800 میلیارد می‌دانند. حال چنانچه ارزش گرده افشانی را به آن بیافزائیم ارزش اقتصادی واقعی زنبور عسل بالغ بر 20 تریلیون ریال خواهد بود (آمارنامه وزارت جهاد کشاورزی، 1389).


2-3- جایگاه سیستماتیک زنبور عسلزنبور عسل به رده‌ی حشرات، راسته‌ی بال غشائیان و خانواده‌ی Apidae، جنس Apis و گونه A. mellifera تعلق دارد. راسته‌ی بال غشائیان که زنبور عسل به این راسته تعلق دارد، بزرگترین راسته پس از راسته سخت بال پوشان است. این راسته دارای مفیدترین حشرات برای انسان‌ است، دارای گونه‌هایی است که از نظر انگلی، شکارچی و گرده افشانی نقش مهمی دارد.Kingdom: Animalia
Phylum: Arthropoda
Sub Class: Insecta
Order: Hymenoptera
Super family: Apoidea
Family: Apidae
Genus: Apis
Species: Apis mellifera L.
چها گونه اصلی زنبور عسل براساس جثه عبارتند از A. dorsata، A. mellifera، A. cerena، A.florea که کشور ایران میزبان دوگونه A. mellifera، A.florea می‌باشد. گونه‌ی A. mellifera تنها گونه‌ای می‌باشد که بیشترین قدرت سازگاری را برخوردار می‌باشد. زیر گونه‌ها با نژادهای این گونه 24 عدد می‌باشند، نژاد زنبور عسل ایرانی با نام A. mellifera medaمی‌باشد. تنها 4 نژاد از این نژادها متعلق به نژادهای اقتصادی می‌باشندکه در اغلب برنامه‌های اصلاح نژادی جهان از این نژادهای برتر استفاده می‌گردد (بصیری، 1386) که عبارتند از: زنبور عسل معمولی سیاهA. mellifera mellifera ، زنبور عسل معمولی ایتالیایی A. mellifera ligustica، زنبور عسل معمولی قفقازی A. mellifera caucasina، زنبور عسل معمولی اروپایی A. mellifera carnica. این نژادها و هیبریدها در طول این سال‌ها با نژاد بومی ایران آمیخته شده و می‌توان گفت تقریباً در تمام مناطق زنبورداری ایران جایگزین شده‌‌اند (عبادی، 1366).
2-4- اصلاح نژاد در زنبور عسلمعمولاً هدف اصلی اجرای برنامه‌‌های اصلاح نژاد زنبور عسل، افزایش تولید محصولاتی مانند عسل، گرده، رویال و غیره است در ضمن آرام بودن و تمایل به بچه دادن، از ویژگی‌های یک کلنی زنبور عسل است. مقدار عسل به جمعیت و فعالیت کلنی بستگی دارد، جمعیت کلنی نیز به ظرفیت تخم گذاری ملکه، قابلیت زنده ماندن نوزادان و طول عمر زنبورهای کارگر وابسته است، برای نیل به چنین هدفی باید با آگاهی از نحوه‌ی توارث صفات، وراثت پذیری و همبستگی ژنوتیپی و فنوتیپی بین آنها برای انتخاب و آمیزش برنامه‌ریزی شود (بصیری، 1386). اصلاح نژاد زنبور عسل بدلیل ویژگی‌های خاص این موجود، دارای پیچیدگی‌‌های خاصی در مقایسه با سایر حیوانات است (Woyke, 1986).
یکی از این ویژگی‌ها مکانیسم ژنتیکی تعیین جنسیت در زنبور عسل می‌باشد که محدودیت‌های شدیدی را در سیستم‌های اصلاح نژادی ایجاد می‌کند (Woyke, 1988; Page et al., 1982). تعیین جنسیت در اکثر موجودات زنده بویژه پستانداران به وسیله کروموزوم‌های جنسی صورت می‌پذیرد، به طوریکه از اجتماع دو کروموزوم جنسی X جنس ماده (XX) و از دو کروموزوم جنسی X و Y جنس نر (XY) بوجود می‌آید. ولی در زنبور عسل برخلاف اکثر موجودات زنده، تعیین جنسیت به وسیله آلل‌های جنسی چندگانه در زنبور عسل انجام می‌پذیرد (Woyke, 1986; Ruttner, 1988). تعداد این ژن‌ها یا آلل‌های جنسی در جوامع مختلف متفاوت است و در بررسی‌های متعدد آنها بین 20-6 آلل براورد شده است (Woyke, 1986) (سپهری و همکاران، 1386). ولی باید توجه داشت که زنبوران کارگر و ملکه فقط حامل یک جفت و زنبوران نر هاپلوئید تنها حامل یک نوع از آلل‌های جنسی چندگانه هستند (میرزایی و همکاران، 1384).بنابراین تعیین جنسیت در زنبور عسل به وسیله‌ی آلل‌های جنسی به یکی از سه حالت زیر اتفاق می‌افتد: الف) اگر در تخم‌های لقاح یافته دو آلل جنسی مختلف aو b در یک مکان ژنی به صورت هتروزیگوت قرار گیرند. از این تخم‌ها زنبوران ماده (ملکه یا کارگر) تکامل می‌یابند، که از نظر ژنتیکی دیپلوئید بوده و تخم آنها توسط ملکه کلنی در سلول‌های کارگر گذاشته می‌شوند(Woyke, 1976, 1986) .
ب) اگر در تخم‌های لقاح نیافته تنها یک نوع آلل جنسی مثل a در یک مکان ژنی به صورت همیزیگوت باشد، از این تخم‌ها براثر پدیده بکرزایی، زنبوران نر هاپلوئید بوجود می‌آیند. چنین تخم هایی توسط ملکه کلنی در سلول‌های نر تخم‌‌ریزی می‌شوند(Woyke, 1976, 1986) .ج) در مورد آمیزش‌های خویشاوندی، اگر در تخم‌های لقاح یافته دو آلل جنسی مشابه مثل aو a در یک مکان ژنی به صورت هموزیگوت قرار گیرند، از این تخم‌ها نرهای دیپلوئید بوجود می‌آیند. ملکه تخم نرهای دیپلوئید را در سلول‌های کارگر تخمگذاری می‌کند. البته نرهای دیپلوئید به طور طبیعی قادر به ادامه حیاط نیستند چرا که لارو نرهای دیپلوئید فاقد فرمون ترشح شده توسط نوزادان طبیعی هستند به همین دلیل حدود 6 ساعت بعد از تفریخ از تخم، توسط زنبوران کارگر از بین می‌روند(Woyke, 1976, 1986) .
تولید جمعیت قوی زنبور عسل برای تولید بیشتر در سایه‌ی مدیریت صحیح بر پایه‌ی دانش علمی ممکن می‌باشد (اسعدی دیزجی و همکاران، 1387). یکی از مسائلی که ممکن است باعث اثرات نامطلوب و در نتیجه تضعیف کلنی‌ها گردد، پدیده‌ی تلاقی‌های خویشاوندی می‌باشد که منجرب به افزایش هم‌خونی یا هموزیگوتی آلل‌های جنسی می‌گردد (Mayer, 1996). این مسئله به طور کلی باعث کاهش قدرت زنده‌مانی نوزادان، حساسیت به بیماری‌ها، کاهش بازده و عملکرد، بروز صفات و رفتارهای نامطلوب و عوارض متعدد دیگری می‌گردد (Ruttner, 1988; Mirsha and Kumar, 1992) (میرزایی و همکاران، 1384).
برای برنامه ریزی اصولی اصلاح نژادی، اولین قدم مشخص کردن وضعیت ژنتیکی زنبور عسل در کشور است. این کار به روش‌‌های مختلفی در دنیا صورت می‌گیرد، که در بین آنها می‌توان به استفاده از خصوصیات ظاهری، تنوع پروتئین‌ها و خصوصیات DNA اشاره نمود (طهماسبی و همکاران 1378). بررسی‌ها نشان می‌دهد که تاکنون در ایران، فعالیت چندانی در مورد اصلاح نژاد زنبور عسل صورت نگرفته است، اما به سبب وارد کردن ملکه‌های خارجی بدون کنترل صحیح در دهه‌های گذشته اجرای برنامه‌های اصلاح نژادی برای زنبور عسل امری ضروری است (بصیری، 1386).
2-5- ژنوم زنبور عسلپروژه تعیین توالی ژنوم زنبور عسل با حمایت مالی اولیه موسسه ملی بهداشت و درمان ژنوم انسانی با کمک وزارت کشاورزی ایالات متحده، در دسامبر 2002 آغاز شد. نتایج حاصل از این تلاش به رهبری کالج بیلور مرکز پزشکی تعیین توالی ژنوم بشر و با مشارکت بیش از 100 آزمایشگاه تحقیقاتی از 16 کشور، در بیش از 50 پروژه - ریسرچدر بسیاری از مجلات برجسته علمی منتشر شد. براین اساس ژنوم زنبور عسل در مجموع دارای حدود 250 میلیون پایگاه‌های DNA است. براساس برنامه‌های کامپیوتری ژن تاکنون بیش از 10هزار مکان ژنی تشخیص داده شده است، که این کمتر از 13 هزار ژن‌های شناسایی شده از ژنوم مگس میوه که یکی از فشرده‌ترین ژنوم مورد مطالعه در زیست شناسی بوده است. انتظار می‌رود که تعداد ژن‌های شناسایی شده در ژنوم زنبور عسل در آینده افزایش یابد. ژنوم زنبور عسل شامل میزان بیشتری از نوکلئوتید آدنین و تیمین نسبت به ژنوم مگس میوه است. این وضعیت دقیقاً در مقابل ژنوم انسان، که ژنوم آن حاوی نسبت‌های بیشتری از نوکلئوتید گوانین و سیتوزین است قرار می‌گیرد.
2-6- تعریف نشانگراستفاده از نشانگرهای ژنتیکی قدمتی برابر با تاریخ بشر دارد. انسان‌های نخستین، حتی آنهایی که هنوز کشاورزی را فرا نگرفته بودند و برای ادامه زندگی مجبور به جمع آوری بذر و میوه گیاهان بودند، بدون اینکه خود بدانند از نشانگرهای مرفولوژیک برای شناختن و تمایز انواع بذر و میوه وجانوران وحشی استفاده می‌کردند و برخی را به دیگری ترجیح می‌دادند اما به صورت مدون و دانش‌مدار، شاید مندل نخستین کسی بود که از نشانگرهای مرفولوژیک یا نشانگرهای مبتنی بر فنوتیپ برای مطالعات چگونگی توارث صفات در نخود فرنگی استفاده کرد. به طور کلی هر صفتی که بین افراد متفاوت باشد، ناشی از تفاوت موجود بین ردیف‌های DNA کروموزوم‌های آنها است که به نتایج نیز منتقل می‌شود، حتی صفاتی که تحت تاثیر شرایط محیط نیز به صورت متفاوت بروز می‌کنند (تفاوت در بین افراد در شرایط محیطی یکسان)، بازتاب‌ تفاوت‌های موجود در ردیف‌های DNA هستند. این تفاوت‌ها می‌توانند به عنوان نشانه یا نشانگر ژنتیکی به کار گرفته شوند (نقوی و همکاران، 1388).2-6-1- نشانگرهای مرفولوژیکاین تفاوت‌ها ممکن است به طرق مختلفی تظاهر یابند، برخی از این تفاوت‌ها در صفات قابل رویتی مانند رنگ گل، وجود یا عدم وجود ریشک در گلچه غلات، صاف یا چروک بودن سطح دانه‌ی نخود فرنگی در آزمایش‌های مندل تجلی می‌کنند. این گونه‌‌ نشانه‌ها را نشانگرهای مرفولوژیک می‌نامند (نقوی و همکاران، 1388).
2-6-1-1- نشانگرهای مرفولوژیک و زنبور عسلبررسی‌های روتنر و همکاران روی نژادهای زنبور عسل جهان، با استفاده از خصوصیات ظاهری متعدد و با استفاده از روش آماری تجزیه به مولفه‌ی اصلی، نژادهای مختلف را به خوبی از یکدیگر متمایز کرد. در مطالعات وی نژادهای اروپایی (مانند کارنیولان و قفقازی) با جثه‌های بزرگتر در سمت راست محور ترسیم شده و نژادهای آفریقایی (مانند یمنی و مصری) در سمت چپ محور قرار می‌گیرد. در این بررسی نژاد ایرانی در وسط این محور قرار گرفته است (Ruttner et al., 1978).
مطالعات عبدالطیف و همکاران روی توده زنبور عسل عراق، با استفاده از دوازده صفت ظاهری، نشان داد که زنبور عسل موجود در عراق جمعیتی از نژاد زنبور عسل سوری است (Abdellatif et al., 1977).
داتون و همکاران در بررسی‌های خود روی توده‌های زنبور عسل عمان نتیجه گرفتند که اولاً دو جمعیت کاملاً مجزا در شمال و جنوب این کشور وجود دارد و ثانیاً توده موجود در عمان به نژادهای آفریقایی از جمله نژاد یمنی شباهت زیادی داشته و با نژادهای آسیایی فاصله بیشتری دارد (Dutton et al., 1981).
عطاا... و همکاران در مقایسه نژاد مصری با کارنیولان و ایتالیایی نتیجه گرفتند که کارگران نژاد مصری در یازده صفت و نرها در 3 صفت با دو نژاد اروپایی تفاوت معنی داری دارند ولی ملکه ‌های سه نژاد فاقد تفاوت معنی‌دار هستند (Atallah et al., 1988).
میکسنر و همکاران در بررسی‌های مرفولوژیک خود روی توده‌های زنبور عسل موجود در کنیا به این نتیجه رسیدند که در ارتفاعات بالای 2000 متر، نژاد مونتی‌کولا و در ارتفاعات زیر 2000 متر نژاد اسکوتلاتا و در منطقه حد واسط مخلوطی از دو نژاد زندگی می‌کنند (Meixner et al., 1994).
در بررسی‌های دالی و همکاران مشخص شد که ارتفاع محل زیست روی صفات مربوط به اندازه بدن مثل طول بال، اندازه زوایای بال، طول رگبال‌ها و اندازه غدد موم‌ساز تأثیر می‌گذارد (Daly et al., 1991). بطوریکه در ارتفاعات پایین‌تر و هوای خشک و گرم اندازه صفات مذکور کاهش می‌یابد. همچنین در بررسی‌های میکسنر و روتنر مشخص شد که شرایط اقلیمی و ارتفاع روی صفات ظاهری تأثیر می‌گذارد و با افزایش ارتفاع محل زیست زنبورها، طول بدن و طول موهای روی بدن آنها افزایش می‌یابد (Mixner, 1992; Ruttner et al., 1978).
در بررسی‌های طهماسبی و همکاران مشخص شد که زمان و فصل روی صفات طول و عرض بال جلو، ایندکس کوبیتال، زاویه A4، طول خرطوم، طول پای عقب، طول نیم حلقه سوم و چهارم شکمی، رنگ سپرچه، رنگ نیم حلقه سوم و چهارم شکمی تأثیر می‌گذارد ولی روی زوایای D7 و G18 تأثیر نداشته است. در ایران واردات ملکه‌های خارجی از سال 1340 باعث آمیخته شدن توده بومی با نژادهای خارجی شده است. از سوی دیگر به علت قطع واردات در دهه‌های اخیر، انتظار می‌رود تثبیت ژنتیکی نسبی در توده موجود صورت گرفته باشد. طهماسبی و همکاران دریافتند که به دلیل پایداری نژاد ایرانی، این نژاد هویت خود را از دست نداده و حتی در سال‌های اخیر ویژگی‌های نژاد ایرانی بیشتر تثبیت گردیده است.
علاوه بر شرایط محیطی، عوامل دیگری که می‌تواند باعث این تفاوت‌ها شود اختلافات اقلیمی حاصل از تغییرات فصل است. تفاوت‌های نوع دوم می‌تواند باعث خطا در برآوردهای مربوط به تفاوت‌های حاصل از شرایط محیطی شود. تحقیقات انجام شده در کشورهای دیگر نشان دهنده این است که شرایط فصلی روی صفات مورفولوژیک بال جلویی زنبور عسل تأثیر می‌گذارد که میزان تحت تاثیر قرار گرفتن صفات و تنوع ایجاد شده در صفات مختلف بال جلویی بین 29-3 درصد بوده است (Nazzi, 1992). مطالعه انجام شده دیگر نیز نشان می‌دهد که آلودگی به کنه واروا در فصول مختلف روی بال جلویی زنبور عسل تاثیر می‌گذارد. به طوری که در آلودگی‌های مربوط به 5-4 کنه در هر سلول یا بیشتر همبستگی منفی بین تعداد کنه و اندازه مربوط به بال جلو وجود دارد که دلیل آن می‌تواند کاهش پروتئین ذخیره و تاثیر آن روی اسکلت خارجی باشد (Daly et al., 1988).
2-6-2- نشانگرهای مولکولیبرخی از تفاوت‌های موجود در ردیف DNAبین دو موجود ممکن است به صورت پروتئین‌هایی با اندازه‌های مختلف تجلی کنند که بروش‌های مختلف بیوشیمیایی قابل ثبت و رویت و مطالعه می‌گردند. این قبیل نشانگرها را نشانگرهای مولکولی در سطح پروتئین می‌نامند‌ که از آن جمله می‌توان به سیستم آیزوزایم/ آللوزیم اشاره کرد. اما دسته‌ی دیگر از تفاوت‌های موجود در سطح DNA هیچ تظاهری ندارند، نه صفت خاصی را کنترل می‌کنند و نه در ردیف اسیدهای آمینه پروتئین‌ها تاثیری برجای می‌گذارند. این دسته از تفاوت‌ها را می‌توان با روش‌های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشانگر مورد استفاده قرار داد. این نشانگرها که تقریباً تعدادشان نامحدود است فقط از راه تجزیه وتحلیل مستقیم DNA قابل ثبت هستند و بنابراین به آنها نشانگرهای مولکولی در سطح DNA گفته می‌شود (نقوی و همکاران، 1388).
پس به صور کلی برای اینکه صفتی به عنوان نشانگر ژنتیکی مورد استفاده قرار گیرد باید حداقل دو ویژگی زیر را داشته باشد: الف) در بین دو فرد متفاوت باشد (چند شکلی نشان دهد). ب) به توارث برسد.

شکل 2-2: طبقه بندی انواع نشانگرهای ژنتیکی2-7- نشانگرهای مولکولی و حشراتحشرات بزرگترین ترکیب گونه‌‌ها در کل سلسله جانوران را تشکیل می‌دهند و دارای تنوع ژنتیکی گسترده‌ای هستند که می‌توان با استفاده از تکنیک‌های مارکر مولکولی کشف و استخر ژن به کاوش در آنها پرداخت (Behura, 2006). روند کنونی استفاده از تکنیک‌های مارکر DNA در حوزه‌های گوناگون از مطالعات زیست محیطی حشرات نشان می‌دهد که نشانگرهای DNA میتوکندری، میکروستلایت، DNA چند شکل تکثیر شده تصادفی، ابراز برچسب دنباله و طول قطعات حاصل از تکثیر به میزان قابل توجهی برای پیشرفت در جهت درک اساس ژنتیکی تنوع حشرات، جایگاه صفت کمی در حشرات و نقشه برداری ژن‌ها در پزشکی و کشاورزی دخالت داشته‌اند (Behura, 2006). جدای از این سیستم نشانگرهای پرمصرف، روش جدید دیگر از جمله توالی خاص پلی مورفیسم تکثیر و نشانگرهای مرتبط با واکنش زنجیره‌ای پلیمراز به عنوان سیستم نشانگرهای جایگزین در مطالعات شناسایی حشرات شناخته شده‌اند.
طی سالیان اخیر شناسایی و بررسی تنوع ژنتیک در بین گونه‌های حشرات بر اساس نشانگر‌های مولکولی و روش‌های مبتنی بر واکنش زنجیره‌ای پلیمراز بسیار متداول گشته است. ولی در کشور ما بررسی تنوع مولکولی در زمینه حشره شناسی بسیار کم انجام گرفته است. امروزه میکروساتلیت‌ها نقش مهمی در تعیین تنوع ژنتیکی و روابط خویشاوندی جانوران و گیاهان و مخصوصاً حشرات ایفا می‌کنند. استفاده از نشانگر‌ها بیشتر جهت تنوع ژنتیکی گیاهان استفاده شده و در جهان حشرات هم اکنون استفاده از این نشانگر جهت بررسی تنوع ژنتیکی راسته بالپولکداران به ویژه دو خانواده Noctuidae و Bombycidae در کانون توجه مجامع علمی قرار گرفته است(Radjabi et al., 2012). نشانگرهای مولکولی در مقایسه با نشانگرهای فنوتیپیک سنتی چندین مزیت دارد که از آن جمله می‌توان به موارد زیر اشاره کرد:
عدم تاثیرپذیری بوسیله محیط
قابل یافت شدن در تمام مراحل نموی
در برگیرنده کل ژنوم
2-8- کاربرد اصلی نشانگرهای مولکولی در مطالعات اکولوژیکی حشراتبررسی‌های اکولوژیکی روی گونه‌های مختلف موجودات مانند حشرات، اطلاعات بسیار با ارزشی را در زمینه‌های ساختار جمعیتی، گونه‌زایی، جریان ژنی و تنوع ژنتیکی فراهم می‌آورد. این بررسی‌ها همچنین اطلاعات لازم جهت توجیه ایجاد تنوع در حشرات در اثر تاثیرات متقابل با فاکتورهای محیطی را فراهم می‌آورد. در بسیاری از موارد وقتی که هیچ راه دقیقی جهت تشخیص گونه‌های مختلف وجود ندارد، استفاده از داده‌های نشانگرهای مولکولی بسیار راه‌گشا خواهد بود. نشانگرهای مولکولی کاربردهای بیشماری در زمینه‌های مختلف اکولوژیکی حشرات ایفا می‌کنند که به برخی از آنها اشاره می‌شود (حسینی، 1389).
2-8-1- برهم‌کنش حشرات و گیاهان میزبانیکی از کاربردهای نشانگرهای مولکولی در مطالعات مربوط به حشرات، بررسی روابط متقابل گیاهان و حشرات است (حسینی، 1389). Alpha
نشانگرهای DNA ابزاری برای نقشه برداری ژن در گیاهان زراعی مهم است که مقاوم به حشرات آفت هستند، همچنین این نشانگرها در توصیف ژن‌های غیر بیماریزا در حشرات متعامل با گیاهان میزبان مفید هستند(Harris et al., 2003). اطلاعات مولکولی ژنتیک بدست آمده از داده‌های نشانگرها برای توصیف توانایی‌های فنوتیپی حمله حشرات به انواع گیاه خاص استفاده شده است (Behura, 2006). یکی از مثال‌ها در این مورد حشره‌ی گالزا از آفات مهم برنج و گندم است. حشره Orseolia oryzae آفتی بسیار مهم در کشورهای کشت کننده برنج در جنوب و جنوب شرقی آسیاست. این آفت سبب خسارت غیرقابل پیش بینی در تولید برنج می‌گردد. شبیه به این آفت گونه گالزای دیگری بنام Mayetiola destructor سبب خسارت‌های اقتصادی بسیار سنگینی در محصول گندم می‌شود (Behura, 2006). نکته قابل توجه این است که علی رغم استفاده از 32 ژن مقاوم در گندم جهت مقابله با خسارت ناشی از این آفت در آمریکای شمالی استرین‌های مقاومی در مقابل ژن‌های مقاومت تکامل یافته‌اند. این مسئله سبب گردید تا آفت مذکور طغیان نموده و به طور میانگین خسارتی حدود 100 میلیون دلار در سال وارد نماید (حسینی، 1389). بدین منظور وقتی نشانگر RAPD را با مجموعه‌ای از DNA استرین‌های مختلف این آفت استفاده نمودند (Behura, 2006)، نتیجه جالب توجه شناسایی چندین مکان ژنی خاص در افراد مختلفی در استرین‌‌ها بود. سپس با تائید آن با روش ساترن بلات و متعاقباً توالی‌یابی این نقاط، نشانگرهای SCAR تهیه گردید. با استفاده از این نشانگرها آلل‌های خاص را که چنین نشانگرهایی تشخیص می‌دادند تکثیر شدند. چنین روشی سبب شد تا روابط متقابل بین ژنوتیپ و فنوتیپ‌های مشاهده شده در این بیوتیپ‌ها تعیین گردید (حسینی، 1389).
مثال دیگر در شته‌های زیرخانواده‌ی Aphidinae است که دو تیپ بالدار و بدون بال دارد. افرادی که به میزبان اصلی خود حمله می‌کنند افراد نر و ماده بالدار هستند. این ماده‌های بالدار بکرزا هستند که به میزبان ثانویه (گیاهان علفی) برمی‌گردند. در چنین شرایطی نشانگرهای مولکولی DNA اطلاعات بسیار مفیدی را در جهت فهم اساس ژنتیکی چند تیپی در این شته‌ها فراهم آوردند. با استفاده از نشانگر RAPD کشف گردید که در بین فنوتیپ بالدار و فنوتیپ بدون بال اختلافات ژنتیکی عمده‌ای وجود دارد(Lushai et al., 1997). جمعیت‌های‌‌‌‌ طبیعی شته Sitobion avenae دارای میزبان‌های مختلف علفی و همچنین غلات است (Lushai et al., 2002). استفاده از نشانگر RAPD نشان داد که بین الگوی باندهای تشکیل شده بوسیله‌ی این نشانگرها و سازش به یک گیاه میزبان رابطه‌ای وجود دارد. از چنین پروفایل‌هایی می‌توان ژنوتیپ‌های تخصصی را که روی علف هرز خاص یافت می‌شوند از کل ژنوتیپ‌هایی که روی گیاهان کشت شده و علف‌های هرز یافت می‌شوند تشخیص داد (حسینی، 1389). اساس ژنتیکی گیاهانی که میزبان شته ریشه کاهو هستند توسط نشانگرهای SSR مطالعه شده است(Miller et al., 2005). در تحقیق دیگری درجه خسارت‌زایی کلنی‌هایی از شته نخود در پاسخ به مقاومت طبیعی در یونجه بوسیله نشانگرهای RAPD مطالعه شده است(Bournoville et al., 2000). مطالعه برهم کنش بین موجودات گیاهخوار همانند حشرات و گیاهان میزبان از اساسی‌ترین موضوعات بررسی روابط تکامل متقابل می‌باشد. معمولاً مطالعه و بررسی چنین موضوعاتی بسیار دشوار است. از جمله مشکل‌ترین برهم کنش‌های اکولوژیکی مطالعه رفتارهای تغذیه‌ای حشرات است. حشره‌شناسان برای شناسایی غذای حشرات شکارگر از روش‌های بیوشیمیایی و مولکولی استفاده نموده‌اند. از چنین تکنیک‌هایی می‌توان در تعیین روابط گیاهخوار و گیاه نیز استفاده کرد (حسینی، 1389). محققین از روش مولکولی برای شناسایی DNA گونه‌های گیاهان میزبان در محتویات معده حشرات استفاده نمودند. این محققین ابتدا 23 گونه‌ی گیاهی مختلفی را که در ناحیه مورد تحقیق خود یافت می‌شدند را جمع آوری و زیرواحد بزرگ ژن ریبولوز بیس‌فسفات‌کبوکسیلاز از ژن‌های کلروپلاست را برای تمامی گونه‌های جمع آوری شده مورد بررسی و توالی‌یابی قرار دادند. از طرفی هشت خانواده مختلف از حشراتی که در همان محل روی گیاهان ذکر شده فعالیت داشتند را نیز جمع آوری نمودند. پس از بررسی‌های ژنتیکی، نتایج توالی‌یابی نشان داد که تمامی 23 گیاه جمع آوری شده از طریق قطعه ژن 157 جفت بازی rbcL2 کلروپلاست قابل شناسایی هستند. نتایج همچنین نشان دادDNA گیاهان میزبانی که در محتویات معده حشرات گیاهخوار نیز وجود داشتند به راحتی با این روش قابل ردیابی و شناسایی است (حسینی، 1389). در بررسی‌های دیگر مشخص شد که با توالی‌یابی قطعه‌ای از ژنtrnL کلروپلاست می‌توان گیاهانی که به عنوان میزبان سوسک‌های برگخوار بودند را از مخلوط DNA استخراج شده از حشرات، ردیابی و شناسایی کرد. به علاوه نتایج نشان داد که روش مذکور قادر به تعیین ترجیح غذایی سوسک‌های برگخوار است (حسینی، 1389).
2-8-2- برهم کنش حشرات و پاتوژن‌هانشانگرهای مولکولی ابزارهای مناسبی جهت فهم برهم کنش‌های ژنتیکی بین پاتوژن‌های عامل بیماری و حشرات ناقل انتشار دهنده آنها می‌باشند (Behura, 2006; Crampton et al., 1997). بعضی از گونه‌های سن‌های خانواده‌ی Reduviidae از ناقلین بیماری شاگاس در بسیاری از کشورهای آمریکای جنوبی هستند. همچنین بعضی از پشه‌های آنوفل ناقل بیماری مالاریا می‌باشند. از نشانگرهای مولکولی مانند RAPD جهت بررسی توانایی ناقل بودن در این حشرات استفاده شده است (Bosio et al., 2000; Pinto et al., 1998). در زمینه‌های کشاورزی نیز نشانگرهای مولکولی جهت بررسی روابط پاتوژن و حشره ناقل استفاده شده است. به عنوان مثال توانایی انتقال بیماری ویروسی تریستیزای مرکبات توسط شته مرکبات بررسی شده است (حسینی، 1389).
محققین با استفاده از روش Real-time PCR نمایه‌دار قادر به شناسایی و ردیابی ویروس لکه پژمردگی گوجه فرنگی در حشرات ناقل آن یعنی تریپس شدند. از آنجایی که گونه‌های متعددی از تریپس‌ها ناقل ویروس این بیماری هستند، روش فوق قادر به پایش گونه‌ها و جمعیت‌های ناقل ویروس بیماریزا در مزرعه گردید. همچنین محققین با استفاده از روش مذکور قادر به ارزیابی کمیت ویروس نواری برنج در گیاه برنج و ناقل آن یعنی زنجرک Leodelphax striatellus شدند (حسینی، 1389). مطالعات دیگری از جمله شناسایی پاتوژن‌های مفید و غربال کردن آنها به وسیله‌ی نشانگرهای مولکولی جهت کنترل حشرات آفت توسط محققین در حال انجام است (Hodge et al., 1995; Castrillo et al., 2004).
2-8-3- مقاوت به حشره‌کش‌ها
یکی از مهم‌ترین حوضه‌های تحقیق در حشره‌شناسی که از اهمیت پزشکی و کشاورزی برخوردار است، مطالعه مقاومت به حشره‌کش‌ها است. از نشانگرهای مولکولی به منظور شناسایی و مکان‌یابی ژن‌های مقاومت در حشرات علیه حشره‌کش‌ها استفاده شده است. از نشانگر SSR در تعیین فنوتیپ‌های مقاوم به د. د. ت. در Anophels gambiae استفاده گردید. نشانگرهای RFLP نیز علت مقاومت مگس خانگی به د. د. ت. را تعیین نمو (Knipple et al., 1994). بررسی مقاومت Rhyzoptera dominica به فسفین نیز بوسیله نشانگرهای RAPD میسر گردید. بررسی مکان‌های ژنتیکی مقاومت در سوسک سیب‌زمینی نسبت به پایریتروئیدها (حسینی، 1389) و پروانه پشت الماسی نسبت به باسیلوس تروژینسیس توسط نشانگرهای RFLP انجام گردید (Heckel et al., 1999). با استفاده از روش ژنوتاپینگ DNA، جهش‌های موضعی مرتبط با مقاومت به حشره‌کش‌های آزینفوس متیل و پرمترین را بررسی نمودند (Clark et al., 2001).
در بررسی و ردیابی مقاومت به حشره‌کش‌ها، محققین در گونهHypothenemus hampei مقاومت به حشره‌کش اندوسولفان را به روش مولکولی ردیابی نمودند. از آنجایی که گونه مذکور به شدت نسبت به حشره‌کش آندوسولفان و سایر سیکلودین‌ها مقاوم شده بود و در سال‌های طغیانی 90% میوه‌های قهوه به آن آلوده شده بودند محققین بر آن شدند تا علت مقاومت را بررسی نمایند. آنها با استفاده از آغازگرهای انتخابی PCR بخشی از ژن Rd1 تکثیر نمودند. این ژن کد کننده گاما آمینو بوتریک اسید در ناحیه‌ی کانال یون کلراید است. با توال‌یابی ناحیه‌ی ذکر شده آنها ثابت کردن که استرین‌های مقاوم H. hampei در اسیدهای آمینه خود دچار تغییراتی شده‌اند که همانند تغییزات مشاهده شده در استرین‌های مقاوم Drosophia melanogaster است. این تغییر در اسید آمینه شامل جایگزینی اسید آمینه آلانین به سرین می‌باشد. چنین روشی ثابت نمود که می‌توان افراد مقاوم یا حساس را در مراحل تخم، لارو و یا بالغ ردیابی نمود و از آن در پایش جمعیت‌های حشرات در مزرعه استفاده کرد(Ffrench- Constant et al., 1994) .
2-8-4- روابط شکار- شکارگر- پارازیتوئیدنشانگرهای مولکولی در فهم بهتر روابط غذایی شکار- شکارگر- پارازیتوئید در حشرات نقش بسیار مهمی را ایفا نموده‌اند. بررسی و مطالعه روابط غذایی شکار- شکارگر در شرایط مزرعه امری دشوار و در بسیاری از موارد غیر ممکن است زیرا شکارگر جثه‌ای کوچک و رفتاری اختفاگرایی داشته و مشاهده رفتار تغذیه‌ای آن ناممکن است، اما بوسیله‌ی نشانگرهای مولکولی شناسایی یک یا چندین نوع شکار در محتویات معده حشرات شکارگر امکان‌پذیر شده است. به عنوان مثال با نشانگرهای اختصاصی تهیه شده SCAR بر پایه‌ی PCR از مکان‌های ژنی خاصی که توسط نشانگرهای RAPD ایجاد شده بود. محققین توانستند بقایای دو نوع شکار (Trialeurodes vaporariorum, Helicoverpa armigera) را در محتویات معده سن شکارگر Dicyphus tamaninii ردیابی کنند (Agusti et al., 1999).
علاوه بر شناسایی، نشانگرهای مولکولی همچنین برای تعیین کمیت و درصد پارازیتیسم نیز در حشرات مورد استفاده قرار گرفته‌اند. محققان با ساختن نشانگر اختصاصی Lysiphlebus testacipes توانستند این زنبور را در شته‌های مختلف ردیابی کرده و درصد پارازیتیسم را در شته‌ها تخمین بزنند. تناسب تناوب میزان ردیابی پارازیتوئیدها بوسیله داده‌های مولکولی این مسئله را عنوان می‌کند که کاربرد نشانگرهای مولکولی قادر به تخمین صحیحی از میزان پارازیتیسم خواهد بود (Walton et al., 1990).
2-8-5- سیستماتیک مولکولیمطالعه انواع مختلف موجودات و روابط بین آنها علم سیستماتیک نامیده می‌شود. این بخش از علوم زیستی شامل مطالعه و بررسی طبقه‌بندی و تاکسونومی موجودات است. بطور سنتی اساس این علم بر پایه‌ی شباهت‌ها و تفاوت‌های مرفولوژیک در بین موجودات بنا گذاشته شده است، اما به بدلیل پیشرفت‌های شگرف دهه اخیر تغییرات قابل ملاحظه‌ای در این علم صورت گرفته است. از مهمترین این دلایل ورود تکنیک‌های جدید مولکولی از جمله آنالیز ایزوآنزیم‌ها، سیتوژنتیک مولکولی، ایمونولوژی، هیبریداسیون DNA- DNA و غیره به این عرصه از علم می‌باشد. در واقع در سیستماتیک مولکولی از ساختمان مولکولی موجودات به عنوان منبع اطلاعات سود جسته و از آن در بررسی روابط تکاملی آنها استفاده می‌نمایند. از مهم‌ترین این تکنیک‌ها روش‌های مبتنی بر DNA است که زمینه تشخیص‌های دقیق و تفکیک گونه‌ها را میسر ساخته است. فیلوژنی مولکولی از چنین داده‌هایی در جهت ترسیم درخت روابط تکاملی موجودات استفاده می‌کنند.
از مهمترین موضوعات مورد استفاده در شناسایی شباهت‌ها و تفاوت‌ها، مقایسه توالی‌های بین ژن‌ها با تکنیک ردیف سازی توالی‌ها است. از کاربردهای دیگر فیلوژنی مولکولی، DNA barcoding است. در این روش گونه‌های مختلف یک موجود زنده با استفاده از بخش کوچکی از توالی DNA میتوکندری و یا ژن دیگری شناسایی می‌شوند. از کاربردهای دیگر این علم در ژنتیک انسانی است. با این روش‌ها می‌توان هویت بچه‌ای را که پدر و مادر آن مورد شک هستند تعیین نمود. همچنین از این روش‌ها در علوم جنایی برای تعیین هویت اجساد و یا متهمین استفاده می‌شود. این روش معروف به انگشت نگاری DNA است.
همه‌ی موجودات زنده دارای ماده‌ی ژنتیکی DNA، RNA و پروتئین هستند. این فاکتورها اساس مطالعات تکاملی را تشکیل می‌دهند. از آنجا که اساس مواد ژنتیکی نیز بر پایه‌ی توالی بازها یا نوکلئوتیدها بنا نهاده شده است. بنابراین موجوداتی که از لحاظ خویشاوندی به یکدیگر نزدیک باشند در ساختمان مولکولی‌شان شباهت‌های بسیار بالایی وجود دارد. این در حالی است که موجودات غیر خویشاوند از نظر این نوع ترکیبات با همدیگر متفاوتند. در حال حاضر توالی‌یابی تمام ژنوم یک موجود اوری بسیار گران قیمت است و این کار فقط برای تنها چند گونه صورت پذیرفته است. به هر حال تعیین توالی قسمت‌های معینی از کروموزوم‌های خاص امکان‌پذیر است. بطور کلی برای تجزیه و تحلیل سیستماتیک مولکولی گونه‌ها، توالی حدود 1000 جفت باز احتیاج است. در بررسی و مقایسه هر بخش از یک توالی در گونه‌های مختلف ممکن است اختلافاتی در بازها وجود داشته باشد و گونه‌هایی که به یکدیگر شبیه هستند اختلاف کمتری در نوکلئوتیدها داشته و توالی شبیه به هم خواهند داشت (حسینی، 1389).
2-8-6- حشرات تراریخته
حشرات تراریخته حشراتی هستند که DNA موجودات دیگر را بطور مصنوعی به ژنوم آنها وارد نموده‌اند. مهندسی ژنتیک و اصلاحات انجام شده در اطلاعات ژنتیکی حشرات و کنه‌ها، برنامه‌های کنترل تلفیقی آفات را در آینده تحت تأثیر قرار خواهد داد. یکی از این اهداف شامل تغییر ژنتیکی در پشه‌ها و سایر حشرات ناقل بیماری در گیاهان، انسان و حیوانات است که قابلیت انتقال پاتوژن‌ها بیماریزا را به میزبان نداشته باشند. روش‌های تراریخته قادر به ارتقاء برنامه‌های کنترل ژنتیکی نیز خواهند شد. به عنوان مثال با ایجاد تغییرات ژنتیکی در جمعیت یک گونه فقط افراد نر بطور انبوه پرورش یابند و سپس با تابانیدن پرتوهای رادیواکتیو عقیم گردند. افراد عقیم شده پس از رهاسازی در طبیعت با افراد ماده وحشی در طبیعت جفت‌گیری نموده و نتیجه آن تخم‌های غیربارور خواهد بود. فقط تولید افراد نر عقیم یا فقط افراد ماده بوسیله روش‌های تراریخته، تأثیر و کارایی چنین برنامه‌هایی را ارتقاء خواهد داد. سایر اهدافی که توسط گروه‌های مختلف تحقیقاتی در حال انجام است تولید زنبوران عسل و کرم ابریشم مقاوم در برابر بیماری با داشتن ویژگی‌های اقتصادی مورد نظر می‌باشد. دشمنان طبیعی مورد استفاده در برنامه‌های کنترل بیولوژیکی جهت افزایش کارایی و تأثیرشان با روش‌های تراریخته قابل اصلاح هستند. از جمله این تغییرات می‌توان به اصلاح در نسبت جنسی، میزان تحمل نسبت به دما و رطوبت محیط و دیاپوز اشاره کرد (حسینی، 1389).
2-9- میکروستلایت‌ها یا توالی‌های ساده تکرار شونده
میکروستلایت‌ها یا ریزماهواره‌ها که به طور خلاصه SSR نامیده می‌شوند قطعاتی از DNA هستند که 6-1 باز متوالی تکرار می‌شود. به عنوان مثال توالی ریزماهواره‌ای که دو باز CA در آن 12 بار تکرار می‌شود بصورت CACACACACACACACACACACACA است که در چنین حالتی توالی مکمل آن (GT)12 خواهد بود. ریزماهواره‌ها در ژنوم هسته و کلروپلاست و همچنین ژنوم میتوکندری بعضی از گونه‌ها یافت شده‌اند. تاکنون یافتن نشانگرهای ریز‌ماهواره‌ای کاری بسیار زمان‌بر و پر هزینه بوده اما امروزه استفاده از این نشانگرها بخاطر وجود اطلاعات توالی‌های متعدد در بانک‌های اطلاعاتی DNA نسبتاً کم هزینه‌تر شده است. روش عمومی مورد استفاده در جستجوی این نوع نشانگرها کلون کردن قسمت‌هایی از DNA بصورت کتابخانه ژنتیکی و سپس غربال نمودن این اطلاعات با کاوش‌های ریزماهواره است. کلون‌هایی که حاوی ریز‌ماهواره هستند سپس جدا و نهایتاً توالی یابی می‌شوند. آغازگرهایی که ناحیه ریز‌ماهواره را تکثیر می‌نمایند از روی بخش‌های غیر تکرار شونده توالی ریزماهواره طراحی می‌گردند. توالی‌هایی که این ریزماهواره‌ها را در بر می‌گیرد اغلب در بین گونه‌های نزدیک به هم ثابت است. این بدان معنی است که می‌توان از آغازگرهای ریزماهواره‌‌ها برای چندین گونه استفاده نمود. ریزماهواره‌ها به مراتب سریع‌تر از انواع دیگری از توالی‌ها جهش می‌یابند. میزان بالای پلی‌مورفیسم در ریزماهواره‌ها آنها را جهت بررسی‌های تنوع ژنتیکی افراد و جمعیت‌ها مناسب می‌سازد (حسینی، 1389).نشانگرهای ژنتیکی مبتنی بر میکروساتلیت‌ها در تمام نواحی ژنوم در هر دو بخش نواحی کد کننده و نواحی غیرکد کننده یوکاریوت‌ها و پروکاریوت‌ها پراکنده شده است و واجد تمام شرایط مناسب یک نشانگر می‌باشد. میکروساتلیت‌ها توالی‌های کوتاه تکراری مونو، دی، تری، تترا، پنتا و هگزا نوکلئوتیدی همچون (A)n، (CA)n، (GA)n، (GTA)n، (ATT)n، (GATA)n، (ATTTT)n، (ACGTCG)n می‌‌باشند.
ریزماهوارهها در ژنوم تمام یوکاریوتها وجود دارند. این نشانگرها به دلیل فراوانی زیاد، برای مکان‌یابی ژنتیکی و مطالعه جمعیتها، نشانگرهای ایدهآلی هستند. در موجودات عالی (نظیر گیاهان) قسمت زیادی از ماده وراثتی DNA قابل نسخه برداری نیست. زیرا دارای آغازگر، محل اتصال ریبوزومی و پایانگر نیست. بنابراین این قطعات توسط آنزیمهای نسخهبردار، رونوشت برداری نمیشوند. برای این قسمتها وظیفه‌ای شناخته نشده است، گرچه برخی محققین وظایف بسیار مهمی برای آنها قائل هستند. گاهی این قسمتها حاوی توالیهای تکرار شوندهای هستند که چند صد جفت باز دارند. این توالیها که معمولاً در نواحی سانترومری کروموزومها دیده می‌شوند، ماهواره نامیده می‌شوند. در موارد دیگر یک توالی مرکزی 60-10 جفت بازی چند صد بار تکرار میشود. به این توالیها ماهوارک گفته میشود. ریزماهوارهها شامل واحدهای 6-1 تایی هستند که به دفعات تکرار میشوند. ریزماهوارهها یا همان توالیهای تکراری ساده در سراسر ژنوم پراکنده هستند. تعداد تکرار هر واحد تکرار شونده متفاوت است، ولی حداقل تکرار آن در ریزماهوارههای با هسته دو نوکلئوتیدی10 بار و در ریزماهوارهای با هسته سه نوکلئوتیدی7 بار برآورد شده است.
بر اساس توالی‌های تکرار شونده ریزماهواره‌ها به 3 دسته تقسیم می‌شوند:
الف) ریزماهواره‌های کامل: در این نوع ریزماهوارهها یک واحد ریزماهواره کامل و پشت سر هم مانند GTGTGTGTGTGT بدون هیچ گونه تداخلی دیده میشوند.
ب) ریز ماهواره‌های ناقص: در این نوع ریزماهوارهها در درون واحدهای ریزماهواره‌ای یک یا دو نوکلئوتید غیر ریزماهوارهای مشاهده می‌شود که در ساختمان ریزماهواره تداخل ایجاد می‌کند مانند GTGTGTCGTGTGT.
ج) ریز ماهواره مرکب: در این نوع ریزماهوارهها دو ساختار ریزماهوارهای پشت سر هم قرار داشته و یا یکی درون دیگری قرار می‌گیرد مانند GTGTGTGTGCGCGCGC.
این تنوع در تعداد توالی‌های ریزماهواره، به کمک PCR و الکتروفورز روی ژل پلی‌اکریلامید به خوبی قابل بررسی است. علل مختلفی برای تنوع زیاد تعداد ریزماهوارهها در افراد مختلف یک جمعیت ذکر شده است. در یکی از نظریه‌های بسیار مهم چنین گفته میشود. که تغییر در توالی‌های ریزماهواره‌ای بیشتر به علت خطاهای ناشی از همانندسازی آنزیم پلیمراز است. نکته بسیار مهم و اساسی در مورد ریزماهواره‌ها این است که این توالی‌ها دارای دو توالی منحصر به فرد در دو سمت خود هستند که معمولاً ثابت و حفاظت شده میباشند ولی تعداد تکرار واحدها درون محدوده این دو توالی بسیار متغیر است.
این توالیها در گونههای خویشاوند ثابت مانده و تغییراتی را متحمل نمیشوند. بنابراین اگر بتوان توالی دو طرف ریزماهواره را شناسایی نمود میتوان بر اساس آن آغازگرهایی را طراحی کرد و به کمک PCR قطعه ریزماهواره را تکثیر نمود. البته سختترین و پرهزینهترین قسمت کار نشانگرها تعیین توالی قسمتهای دو طرف ریزماهوارهها میباشد. این مطالعات درگیاهان مختلف و با صرف وقت و هزینههای زیاد انجام میپذیرد. ریزماهوارهها تنوع زیادی دارند و به طور مناسبی در ژنوم گیاهان پخش شدهاند و تعداد آنها نیز در ژنوم گیاهان نسبتاً زیاد است. کارکردن با ریزماهوارهها نسبتاً ساده است و میتوان به راحتی نتایج حاصله را تفسیر نمود، مخصوصاً امروزه نرم‌افزارهای مختلف رایانهای کمکهای شایانی به محققین نموده است. نشانگرهای ریزماهواره از دسته نشانگرهایی هستند که میتوانند به راحتی تفاوت بین افراد هموزیگوت و هتروزیگوت را نشان دهند و به کمک آنها میتوان آللهای مختلف را شناسایی نمود. با توجه به این خصوصیت مهم و چند شکلی بالا، امرزه از این نشانگرها به وفور استفاده میشود. نشانگرهای ریزماهواره بر اساس نحوه طراحی آغازگرها تقسیم بندی میشوند. در یک دسته آغازگرها به نحوی طراحی میشوند که ریزماهوارهها ازدیاد شوند ولی در دستههای دیگر نواحی بین ریزماهوارهای ازدیاد میشود. امروزه روش‌های زیادی برای شناسایی چند شکلی جایگاههای ریزماهوارهای و همچنین جایگاههای میان ریزماهوارهها وجود دارد. در یکی از اولین روش‌ها که به نام PCR تکرارهای کوتاه پیاپی مشهور است، از نواحی مجاور ریزماهواره که معمولاً حالت ثابت دارند، جهت طراحی آغازگر استفاده میشود. تکرارهای کوتاه پیاپی قطعاتی چند نوکلئوتیدی هستند که به طور پیاپی تکرار میشوند و نمونه بارز آن، ریزماهوارهها هستند. بنابراین پس از انجام واکنش PCR، ناحیه وسط این دو آغازگر که در واقع یک توالی تکراری ساده است ازدیاد می‌شود. بسته به تعداد تکرارهای انجام شده، چند شکلی متفاوتی روی ژلهای پلی‌اکریلامید مشخص می‌شود و میتوان آللهای متفاوتی را مشاهده نمود. چنین فرض می‌شود که جهش در تعداد واحدهای تکرار شونده و ایجاد چند شکلی بالا در ریزماهوارهها با یکی از دو مکانیزم کراسینک‌اور نامساوی یا جفت نشدن ناشی از سر خوردن در طول رشته (خطاهای همانندسازی DNA) انجام می‌گیرد.
ریزماهوارهها اغلب چند شکلی بالایی دارند. آنها تک لوکوس بوده و دارای سیستم چندآللی و توارث همبارز هستند. در ژنوم یوکاریوتها به وفور یافت میشوند. چون مقدار بسیار اندک DNA برای بررسی ریزماهوارهها کفایت میکند بنابراین نمونهگیری از موجودات بدون از بین رفتن آنها امکان پذیر میشود. قابلیت تکرار پذیری بالا، امتیازدهی آسان و دقیق، تبادل آسان دادهها در بین آزمایشگاهها و گزینش بدون ابهام آللها از مزایای دیگر ریزماهوارهها هستند.
از معایب ریزماهوارهها میتوان به صرف وقت و هزینه زیاد در مرحله ایجاد و شناسایی، استفاده از مواد خطرناک (مثل اکریل امید و مواد رادیو اکتیو)، دانش اندک در مورد نحوه جهش و لزوم ایجاد روش‌های جدید برای تجزیه و تحلیل دادهها اشاره کرد. دیگر این که شناسایی ریزماهوارهها نیاز به کلون‌سازی و تهیه کتابخانه ژنومی دارد.
2-10- نشانگر ISSR و کاربرد آن در مطالعات گیاهی و جانوری ISSR نشانگر DNA مبتنی بر PCR برای تحقیق در روابط ژنتیکی بسیاری از جمعیت‌ها و کالتیوارهای گیاهی و جانوری استفاده شده است (Zietkiewics et al., 1994; Prevost and Wilkinson, 1990; Tsumura et al., 1996; Deshpande et al., 2001; Bornet et al., 2002). در روش ISSR تکثیر قطعه DNA بین دو ناحیه تکراری ریزماهواره مشابه، در دو جهت مختلف صورت می‌گیرد. این تکنیک ریزماهواره‌هایی با طول 16 الی 25 جفت باز را به عنوان آغازگر در واکنش PCR تک آغازگره استفاده و چندین جایگاه ژنی عمدتاً توالی‌های بینابینی با اندازه‌های مختلف را تکثیر می‌کند. توالی‌های ریزماهواره‌های مورد استفاده به عنوان آغازگر می توانند دی نوکلئوتید، تری نوکلئوتید، تترا و پنتا نوکلئوتید می‌باشند (Gupta et al., 1994; Meyer et al., 1993).
آغازگرها ممکن است در یکی از دو انتهای 3َ یا 5َ با 1 تا 4 باز دژنره شده انکورد شوند. این تکنیک بیشتر مزایای آنالیز ریزماهواره‌ها و AFLP را همراه با آغازگرهای اختیاری RAPD ترکیب می‌کند. ISSR به دلیل کاربرد آغازگرهای طولانی‌تر (16 تا 25 مری) از نشانگر RAPD (با آغازگر 10 مری) تکرار پذیری بیشتری دارد و کاربرد دمای بالای اتصال آغازگر به نمونه DNA در مقایسه با نشانگر RAPD به قدرت باندی بالاتری منجرب شده است.
مطالعه روی تکرار پذیری نشان داد که تنها باندهای کمرنگ‌تر تکرار پذیرند. حدود 92 تا 95 درصد قطعات نمره داده شده در یک نمونه DNA در یک کالتیوار با PCR جدا در روی ژل اکریلامید تکرار می‌شوند (Fang and Roose., 1997; Fang et al., 1997; Moreno et al., 1998).
10 نانوگرم نمونه DNA همان کارایی را در مورد فراورده‌های تکثیر شده نشان داد که نمونه‌های 25 و 50 نانوگرمی در مخلوط واکنش 20 میکرولیتری از خود نشان دادند. دمای اتصال آغازگز به محتوای بازهای G+C بستگی دارد و در مورد آغازگرهای ISSR بین 45 تا 65 درجه سلیسیوس متغیر است.
ISSR نشانگر غالب بوده و از قوانین ساده مندل تبعیت می‌کند (Gupta et al., 1994; Tsumura et al., 1996; Ratnaparkhe et al., 1998; Wang et al., 1998) با وجود این در برخی موارد هم بارز نشان داده شده است که می‌تواند هوموزیگوزیتی را از هتروزیگوزیتی متمایز سازد (Akagi et al., 1996; Wang et al., 1998; Sankar and Moore, 2001). این نشانگر با واژه‌های مختلف توسط محققین مختلف معرفی شده است (جدول 2-1)
جدول 2-1: نام‌های متفاوت و همنام تکنیک ISSR-PCRاصطلاح استفاده شده منبع
MP-PCR, Microsatellite primed PCR (refers to unanchored primer) Meyer et al. (1993)
SSR-anchored PCR, Inter-SSR amplification Zietkiewicz et al. (1994)
SPAR (single primer amplification reaction) Gupta et al. (1994)
RAMPs (random amplified microsatellite polymorphisms) Wu et al. (1994)
RAMs (randomly amplified microsatellites) Hantula et al. (1996)
AMP-PCR (anchored microsatellite primed PCR) Weising et al. (1998)
ASSR (anchored simple sequence repeats) Wang et al. (1998)
2-11- منابع تغییرات و چند شکلیتغییر نرخ تکاملی درون ریزماهواره‌ها به طور قابل توجهی بیشتر از انواع دیگر DNA می‌باشد از این رو احتمال چندشکلی در این توالی‌ها بیشتر است منبع تغییرات در باندهای بدست آمده از نشانگر ISSR می‌تواند به یکی از دلایل زیر یا ترکیبی از آنها نسبت داده شود:
2-11-1- نمونه DNAسرایش آنزیم DNAپلیمراز در طول رونویسی DNA و شکست در تعمیر mismatch به عنوان مکانیسم برای ایجاد تفاوت در توالی‌های تکراری ساده یا SSR قلمداد می‌شود. جهش در نقطه اتصال آغازگر همچون RAPD سبب تشکیل یا عدم تشکیل باند و نمرات 0 و 1 می‌شود. حذف و قرارگرفتن درون نواحی تکراری ساده به غیبت باند یا چندشکلی طویل بسته به تشکیل اندازه قطعه قابل تکثیر منجر می‌شود. تفاوت در تعداد نوکلئوتیدها درون تکرارهای ریزماهواره‌ها به چند شکلی طویل منجر خواهد شد وقتی از آغازگر انکورد شده در انتهای 5َ استفاده شود.
2-11-2- طبیعت آغازگرهای مورد استفاده:سطح چند شکلی به انکورد شدن یا نشدن، انکورد شدن در انتهای 3َ یا 5َ و توالی آغازگر مورد استفاده بستگی دارد. زمانی که از آغازگرهای انکورد نشده استفاده می‌شود باندهای واضح و تمیز به دلیل تمایل آغازگر به سرایش بین واحدهای تکراری در حین تکثیر جای خود را به باندهای ضعیف می‌دهند. وقتی آغازگر در انتهای َ5 انکورد می‌شود فراورده‌های چند شکل بیشتری تکثیر شده می‌شود. معمولاً آغازگرهای دی نوکلئوتید انکورد شده در دو انتهای َ3 و 5َ چند شکلی بیشتری نشان می‌دهند (Joshi et al., 2000; Nagaoka and Ogihara, 1997). آغازگرهای انکورد شده در انتهای 3َ در مقایسه با آغازگرهای انکورد شده در انتهای 5َ باندهای شفاف‌تری تولید می‌کنند (Tsumura et al., 1996; Nagaoka and Ogihara, 1997). چون آغازگرها توالی‌های ساده تکراری با توزیع و فراوانی متفاوت در ژنوم هستند بر تولید باند در گونه‌های مختلف تاثیر می‌گذارند. با در نظر گرفتن دی و تری نوکلئوتیدها در کنار هم یک توالی ساده تکراری یا ISSR در هر 33 کیلو باز از توالی DNA هسته‌ای در مقایسه با 423 کیلوباز از توالی DNA اندامی وجود دارد (Wang et al., 1994). در کل آغازگرهایی با توالی(CA)، (AC)، (TC)، (CT)، (GA)، (AG) چند شکلی بیشتری در مقایسه با دی، تری و تترانوکلئوتیدها از خود نشان می‌دهند. توالی A+T فراوان‌ترین دی‌نوکلئوتید در گیاهان هست. تری و تترانوکلئوتیدها فراوانی کمتری در مقایسه با دی‌نوکلئوتیدها داشته و کمتر در مطالعات استفاده می‌شوند.
توالی‌های AG و GA باندهای شفافی در مطالعه برنج و نخود تولید می‌کنند (Joshi et al., 2000;Reddy et al., 2000; Sarla et al., 2000; Ratnaparkhe et al., 1998) در حالی که آغازگرهای مبتنی بر AC در سیب زمینی و گندم کارایی بهتری دارند (Nagaoka and Ogihara, 1997; Kojima et al., 1998;).
قدرت حل (Rp) شاخصیست که برای مقایسه ارزش آغازگرهای مختلف از لحاظ باندهای اطلاعات دهنده بدست آمده از سری بانک ژن توسعه یافت (Provest and Wilkinson, 1999).
2-11-3- روش کشفسطح چند شکلی کشف شده، نشان داده شده که با روش کشف مورد استفاده متفاوت است. الکتروفورز روی ژل اکریلامید در ترکیب با رادیواکتیویته حساس‌ترین است و در جایگاه دوم ژل اکریلامید رنگ‌آمیزی شده با نیترات نقره قرار دارد. ژل آگارز و رنگ آمیزی با اتیدیوم بروماید در جایگاه سوم قرار می‌گیرد. کاربرد ژل اکریلامید تعداد باندهای به مراتب بیشتری را در مقایسه با آگارز نشان داد (Moreno et al., 1998). در مطالعه نارنگی سه برگه رنگ آمیزی نیترات نقره همه باندهای کشف شده با اتورادیوگرافی را نشان داد (Fang et al., 1997). با وجود این سطح بالای چند شکلی کشف شده حتی وقتی که فراورده‌های تکثیر ISSR روی ژل آگارز بدون نشاندار شدن استفاده شد مشاهده گردید. بنابراین نیاز به رادیواکتیویته می‌تواند اجتناب شود وقتی که نمونه‌های بسیاری از بانک ژن مطالعه می‌شوند. ISSR-PCR تکنیک موثره سریع، ساده با تکرارپذیری بالاست که در آن کاربرد رادیواکتیویته لازم نیست. آغازگرهای اختصاصی آن به راحتی سنتز می‌شوند و تفاوت در طول و توالی آن امکان‌پذیر است. فراورده‌های تکثیر شده معمولاً 2000-200 جفت باز طول دارند و بوسیله الکتروفورز آگارز و اکریلامید نتیجه مناسب را ارایه می‌دهند.
2-12- کاربردهای تکنیک ISSR2-12-1- انگشت‌نگاری ژنتیکیانگشت‌نگاری DNA ابزار مهمی برای دسته بندی بانک ژن و استقرار شباهت در میان واریته‌ها، هیبریدها و منابع والدینی در مدیریت بانک ژن و برنامه‌های اصلاح نژاد می‌باشد. آغازگرهای دی‌نوکلئوتید ISSR انکورد شده در یکی از دو انتهای َ3 یا 5َ در مطالعه انگشت‌نگاری با تکرارپذیری بالا برای حفظ مجموعه گیاه کاکائو استفاده شده است (Charters and Wilkinson, 2000). تکنیک ISSR چند شکلی مناسبی برای تمایز واریته‌های مختلف گل داوودی نشان داد ((Wolf et al., 1998.
2-12-2- تنوع ژنتیکی و آنالیز فیلوژنتیکیتکنیک ISSR به طور موفقیت آمیزی برای تخمین تنوع ژنتیکی در سطح درون و بین گونه‌ای طیف وسیعی از گونه‌های گیاهی همچون برنج (Joshi et al., 2000)، گندم (Nagaoka and Ogihara, 1997)، سیب زمینی، بارهنگ (Wolf and Morgan-Richards, 1998) و ارزن انگشتی ((Salimath et al., 1995 و گونه‌های جانوری استفاده شد. آغازگرهای توالی‌های ساده تکراری انکورد شده مفیدتر و تکرارپذیرتر از ایزوزایم‌ها، RAPD و RFLP در تجزیه تنوع بانک ژن پرتقال سه برگه معرفی شد (Fang et al., 1997). ISSR برای تجزیه تنوع در جنس Elusine به لحاظ کمی و کیفی نسبت به نشانگرهای RAPD و RFLP برتری داشت (Salimath et al., 1995). به طور معنی‌داری تکنیک ISSR در سطح گونه کارایی مناسبی برای تمایز واریته‌ها از خود نشان داد برای مثال 5 آغازگر انکورد شده در انتهای 5 توانستند 20 کالتیوار Brassica napus را از یکدیگر متمایز سازند (Charters et al., 1996).
2-12-3- نقشه‌یابی ژنتیکیاکثر مطالعات نقشه‌یابی ژنتیکی بروی گیاهان استوار است، با استفاده از تکنیک‌های ISSR، RAPD و Isozyme موفق به کشف نقشه ژنی شاه‌بلوط شدند (Casasoli et al., 2000) و همچنین کاربرد نشانگرهای RFLP، RAPD و ISSR برای نقشه یابی کاج سیاه ژاپنی و اروپایی (Arcade et al., 2000)، مشخص کرد که نشانگرهای ISSR و RAPD به لحاظ کیفی نسبت به Isozyme برتری دارند(Casasoli et al., 2000) .
2-12-4- تعیین فراوانی توالی‌های ساده تکراری (SSR)ISSR دیدگاه مناسبی جهت سازماندهی، فراوانی و سطح چند شکلی توالی‌های تکراری ساده متفاوت در ژنوم‌های گیاهی و جانوری ارایه می‌دهد. در گندم و برنج توالی‌های ساده تکراری دی‌‌نوکلئوتیدی به عنوان آغازگر استفاده و تعداد زیادی باند تولید کرد بنابراین نسبت به تکرارهایی با توالی ساده با واحدهای بزرگتر، عمومی‌تر هستند (Nagaoka and Ogihara, 1997). آغازگرهای GA انکورد شده در انتهای َ3 پنج مرتبه باندهای بیشتری نسبت به توالی GT تولید می‌کنند که نشان دهنده فراوانی کم یا فقدان توالی GT می‌باشد. نشان داده شده است که توالی‌های تترانوکلئوتیدی در طول ژنوم یوکاریوت‌ها فراوانند (Gupta et al.,1994) و تترامر AGAC و GACA در ژنوم علف‌ها پخش شده‌اند (Pasakinskiene et al., 2000). توالی‌های تترانوکلئوتیدی در تمایز درون گونه‌ای مگس‌های Simuliidae عملکرد مناسبی داشتند (Dusinsky et al., 2006).
2-12-5- مطالعه جمعیت‌های طبیعی و گونه‌زایینشانگر ISSR l معرفی شده تا در سیستماتیک و آزمایش فرضیه‌های گونه‌زایی مفید باشد (Wolf et al.,1998). منشا گونه Pens--on clevelandi با کاربرد تنها 8 نشانگر ISSR شناسایی شد. کاربرد این تکنیک مولکولی در اکولوژی طیف زیادی از خانواده‌های گیاهی استفاده شده است که عبارتند از: Brassicacea، Orchidaceae، Poaceae، Violaceae، Hippocastanaceae، Scrophulariaceae و Asteraceae تفاوت‌های درون و بین جمعیتی را می‌توان با نشانگر چند جایگاه ژنی ISSR شناسایی کرد. نشان داده شده است میزان تفاوت بین جمعیت‌های O. granulate از نواحی مختلف (2/49 درصد) بیشتر از تفاوت‌های جمعیتی درون یک ناحیه (38 درصد) یا درون یک جمعیت (12 درصد) با استفاده از نشانگر ISSR است (Qian et al., 2001).
2-13- چشم انداز کاربرد ISSR در ژنتیک مولکولینیاز به تنوع گونه‌های گیاهی و جانوری جهت توسعه و بهبود آن در اصلاح نژاد آینده بسیار با اهمیت بوده و نشانگر مولکولی ISSR بی‌شک نقش مهمی در این زمینه ایفا می‌کند زیرا این نشانگر قادر به تشخیص چندشکلی زیاد در گونه‌ها و واریته‌های نزدیک به هم بوده و در تمایز آنها کارایی خوبی دارد و می‌تواند در مقایسه با نشانگرهای دیگر ارزان‌تر و مفیدتر باشد ( Gupta et al., 1994; Salimath et al., 1995; Virk et al., 2000). در بسیاری از مطالعات به منظور تعیین چندشکلی و مقایسه سیستم‌های مولکولی برای مثال در گروه SSR از تری و تترانوکلئوتیدها استفاده می‌شود. چنین توالی‌هایی در مقایسه با دی‌نوکلئوتیدها نه تنها فراوان نیستند بلکه نمی‌توانند در دسته‌بندی واریته‌ها و گونه‌ها مفید باشند. داده‌های بسیاری با کاربرد توالی‌های SSR بدست می‌آید که در محدوده وسیع‌تری از ژنوم انتشار داشته باشند. با کاربرد ISSR با نشانگر RAPD میزان بیشتری چند شکلی قابل اکتشاف می‌باشد ((Joshi et al., 2000; Becker and Heun, 1995.تکنیک ISSR بدون محدودیت نمی‌باشد برای مثال همچون RAPD ممکن است قطعات هم حرکت از نواحی غیر هومولوگ منشا و با هم حرکت کنند که ممکن است سبب ایراداتی در تخمین شباهت ژنتیکی گردد (Sanchez et al., 1996). طبیعت مولکولی چند شکلی تنها در صورتی شناخته می‌شود که قطعه استخراج شده از ژل توالی‌یابی شود. نشانگر ISSR متصل به صفات مهمی زراعی توالی‌یابی شد و در نشانگر STS برای انتخاب مارکر مناسب مورد استفاده قرار گرفت. یکی از مزایای ISSR در پیوستگی آنها با جایگاه‌های ژنی SSR می‌باشد. اگر چه ریزماهواره‌ها احتمالاً خودشان به طور انتخابی خنثی و بدون عمل می‌باشند پی برده شده که به نواحی کدکننده متصل هستند به همین دلیل ISSR احتمالاً نشان دهنده نواحی قوی ژنی می‌باشند (Kojima et al., 1998).
2-14- کاربرد نشانگر ISSR در حشره شناسیمطالعات محدودی از کاربرد نشانگر ISSR در حشره‌شناسی چاپ شده است و عمده این مطالعات روی دو راسته بالپولکداران و دوبالان متمرکز بوده و دو مطالعه روی زنجره‌ها و شته‌ها از راسته جوربالان، دو مطالعه روی زنبور عسل از بال‌غشائیان، مطالعه‌ای روی سوسک کرگدنی از سخت بالپوشان صورت گرفته است. مطالعات صورت گرفته به شرح زیر می‌باشند:
مطالعه تنوع ژنتیکی زنجره Sogatella furcifera در چین (Liu et al., 2010).
مطالعه کاربرد نشانگر ISSR در تعیین تفاوت فردی و جمعیتی دو گونه شته Pemphigus obesinymphae و Acythosiphum pisum و یک گونه مگس موسکوئیت Aedes aegypti در آمریکا (Abbot, 2001).
بررسی چندشکلی 3 جمعیت زنجرک جنس Homalodisca از خانواده Cicadellidae با نشانگر ISSR در آمریکا (De Leon and Walker, 2004).
مطالعه تنوع ژنتیکی دو گونه از مگس‌های جنس Mayetiola از خانواده Cecidomyiidae در تونس (Mezghani Khemakhem et al., 2005).
بررسی کاربرد نشانگر ISSR در تنوع ژنتیکی درون و بین گونه ای مگس‌های خانواده Simuliidae (Dusinsky et al., 2006).
کاربرد نشانگر ISSR در بررسی چندشکلی پروانه‌های خانواده Noctuidae (Hundsdoerfer and Wink., 2005).
کاربرد ISSR-PCR در فیلوژنیHyles euphorbiaecomplex از پروانه‌های خانواده Sphingidae (Hundsdoerfer et al., 2005).
مطالعه ساختار جمعیت‌های وحشی و نیمه اهلی کرم ابریشم Antherae mylitta با نشانگر ISSR (Kar et al., 2005; Liu et al., 2010).
تنوع ژنتیکی آفت سوسک کرگدنی خرما Oryctes rhinocerus از خانواده Scarabaeidae با نشانگر ISSR (Manjeri et al., 2011).
بررسی تنوع ژنتیکی کرم ابریشم دارای دیاپوز و فاقد دیاپوز با نشانگر ISSR و همراهی آن با برخی صفات اقتصادی در هند (Reddy et al., 1999; Velu et al., 2008; Chatterjee and Mohandas, 2003; Liu et al., 2010; Awashti et al., 2008).
ارزیابی ژنتیکی کرم ابریشم اری Samia Cynthia ricini و ردیابی جایگاه‌های مرتبط با کمیت و موقعیت جغرافیایی در هند (P--eep et al., 2010; Liu et al., 2010).
بررسی نژادهای مختلف زنبور عسل مقاوم و حساس به کنه Varroa در امارات (Al-OItaibi, 2008; Paplauskiene et al., 2006).
در بخش کنه‌شناسی نیز مطالعات محدودی صورت گرفته است:
کاربرد نشانگر ISSR در تنوع ژنتیکی کنه Tyrophagus putrescentiae از خانواده Acaridae (Zhu et al., 2010)
آنالیز ژنتیکی زنبور Bombus hypocrita با بهینه کردن نشانگر ISSR (Geng et al., 2009)
2-15- نشانگرهای DNA مبتنی بر واکنش زنجیره‌ای پلیمرازواکنش زنجیره‌ای پلیمراز یک روش سریع، آسان و نامحدود (Powledge, 2004) سنتز آنزیمی DNA در محیط بی‌جان است که در برگیرنده‌ی فرایندی از سیکل‌های تکراری با مرحله‌های مشخص و تعریف شده در هر سیکل است (معتمدی، 1385).
در این فرایند که تقلیدی از فراین همانند سازی DNA در طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده‌‌ی دو انتهای قطعه مورد نظر DNA هستند، به عنوان آغازگر مورد استفاده قرار می‌گیرند تا واکنش آنزیمی همانند سازی DNA در درون لوله‌ آزمایش امکان‌پذیر شود. این همانند سازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‌های پلیمراز صورت می‌گیرد (نقوی و همکاران، 1388).
فصل سوممواد و روش‌ها3-1- جمع آوری نمونه‌هابرای انجام بررسی‌های ژنتیکی و مرفولوژیکی توده‌های زنبور عسل برخی از نواحی ایران، از پنج استان خوزستان، کردستان، مرکزی، اصفهان، فارس (شکل 3-1 و جدول3-1)، از بین زنبوردارانی که کوچ خارج از استان نداشته، دارای بیش 50 کلنی و حدود سه سال یا بیشتر سابقه زنبورداری داشتند به صورت تصادفی از 5-3 کلنی، زنبور کارگر نمونه‌ برداری انجام شد. نمونه برداری در فروردین و اردیبهشت 1391 انجام شد. از هر کلنی 50 زنبور کارگر به صورت تصادفی توسط اسپیراتور جمع آوری شده و نمونه‌ها به ظرف حاوی یخ منتقل و تا زمان انتقال به آزمایشگاه نگهداری شدند (شکل 3-2).

شکل3-1: پنج استان جمع آوری نمونه‌ی زنبور عسل:1- خوزستان 2- کردستان 3- مرکزی 4- اصفهان 5- فارسجدول3-1: مکان‌ و آدرس‌های محل نمونه برداری زنبور عسلمکان زنبورستان شماره 1 زنبورستان شماره 2 زنبورستان شماره 3
استان خوزستان شوش، ایستگاه راه آهن شوش، ایستگاه راه آهن شوش، روستای جریه
استان کردستان روستای نشور (احمد کر) روستای قلیان منطقه کتوش (پدیسار) روستای برازان(نباتی)
استان مرکزی نظم اباد(مختاری) جاده فراهان، پارک جنگلی (رفیعی) سنجان، شهرک نبئی (تقوایی‌نژاد)
استان اصفهان نجف اباد، جاده پولادشهر (شاطری) نجف اباد، جاده پولادشهر (بی نام) نجف اباد، جاده پولادشهر (بی نام)
استان فارس کفترک، بونک اول (حکمت روستا) کفترک، بونک اول (زارع) جاده سروستان روستای مهارلو (کاووس روستا)

شکل3-2: نمایی از مکان‌های جمع آوری نمونه‌های زنبور عسل3-2- استخراج DNA زنبور عسلروزانه از 10 نمونه حشره کامل به صورت زیر DNA استخراج شد:
1- جداسازی بال حشرات و خرد کردن بدن کامل یک حشره کامل ماده درون ازت مایع و انتقال آن به میکروتیوب 7/1 میلی‌لیتری.
2- اضافه کردن 400 میکرولیتر بافر استخراج و 40میکرولیترSDS 20 درصد و قرار دادن در حمام آب گرم (شکل 3-3) 65 درجه سلیسیوس به مدت 2 ساعت با تکان‌های چند دقیقه ای در طول 2 ساعت.

شکل 3-3: دستگاه حمام آب مورد استفاده در این آزمایشات بافر استخراج حاوی موارد زیر است:
Tris-HCl…..10mM
EDTA…...….2mM
NaCl…...…0.4mM
PH=8
نکته: EDTA مانع فعالیت سایر آنزیم‌ها می‌گردد. SDS به عنوان یک پاک کننده غشا سلولی را مضمحل می‌کند. دمای بالا سبب می‌شود تا SDS غشا سلولی را بهتر شکسته و از هم گسیخته نماید و همچنین به اضمحلالل RNA کمک می‌کند.
3- افزودن 300 میکرولیتر NaCl 5/4 مولار به نمونه‌ها.
نکته: در استخراج DNA، وجود نمک با غلظت بالا پلی‌ساکاریدها را ته‌نشین می‌کند.

–278

بررسی کلونهای نوترکیب به روش سریع..........................................................................................21
PCR بر روی کلنی های باکتریایی/مخمری......................................................................................22
استخراج پلاسمید در مقیاس کم.......................................................................................................22
استخراج پلاسمید در مقیاس زیاد.....................................................................................................23
الکتروفورز پروتئین بر روی ژل پلی اکریل آمید(SDS-PAGE)........................................................24
سنتز ژن gcsf...................................................................................................................................29
PCR اختصاصی بر روی ژن gcsf....................................................................................................30
کلون نمودن ژن gcsf در وکتور بیانی هانسونلا.................................................................................31
هضم آنزیمی وکتور pGH-gcsf.......................................................................................................32
هضم آنزیمی وکتوربیانی pHan......................................................................................................33
کلون نمودن قطعه gcsf در وکتور بیانی pHan.................................................................................33
بررسی کلون های نوترکیب pHan-gcsf...........................................................................................34
هضم آنزیمی وکتور pHan-gcsf......................................................................................................35
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf.....................................................35
PCR اختصاصی بر روی ژن مقاومت به زئوسین..............................................................................35
کلون نمودن ژن zeocin در وکتور کلونینگ pGEM-T Easy..........................................................37
بررسی کلون های نوترکیب pGEM-zeo.........................................................................................38
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf......................................................39
هضم آنزیمی وکتور pHan-gcsf و pGEM-zeo..............................................................................39
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی تیمار شده با آلکالین فسفاتاز pHan-gcsf.........40
بررسی کلونهای نوترکیب pHan-gcsf-zeocin.................................................................................41
انتقال پلاسمید نوترکیب pHan-gcsf-zeocin به سلول هانسونلا پلی مورفا.......................................41
هضم آنزیمی وکتور بیانی pHan-gcsf-zeocin.................................................................................41
الکتروپوریشن سلول های هانسونلا پلی مورفا...................................................................................42
تأیید کلونهای نوترکیب هانسونلا با روش Colony PCR اختصاصی ژن زئوسین.............................43
بیان پروتئینGCSF در هانسونلا پلی مورفا......................................................................................44
کشت سلولهای مخمری....................................................................................................................44
بررسی بیان پروتئین نوترکیب با روش SDS-PAGE........................................................................44
تزریق نمونه پروتئینی به خرگوش.....................................................................................................45
ایمونوبلاتینگ...................................................................................................................................46
فصل سوم نتایج
سنتز ژن gcsf...................................................................................................................................49
PCR اختصاصی بر روی ژن gcsf...................................................................................................49
طراحی پرایمر های اختصاصی ژن gcsf...........................................................................................49
بهینه سازی واکنش PCR برای ژن gcsf...........................................................................................50
کلون نمودن ژن gcsf در وکتور بیانی هانسونلا.................................................................................51
هضم آنزیمی وکتور کلونینگ pGH-gcsf و وکتور بیانی pHan.......................................................51
بررسی کلونهای نوترکیب pHan-gcsf.............................................................................................52
بررسی کلونها به روش سریع...........................................................................................................52
انجام PCR ژن gcsf بر روی پلاسمید نوترکیب pHan-gcsf............................................................52
هضم آنزیمی وکتور تأیید شده pHan-gcsf......................................................................................53
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf.....................................................54
PCR اختصاصی بر روی ژن مقاومت به زئوسین (Sh ble).............................................................54
کلون نمودن ژن zeocin در وکتور کلونینگ pGEM-T Easy..........................................................55
تأیید کلون های نوترکیب pGEM-zeocin.......................................................................................55
بررسی سریع کلونهای نوترکیب........................................................................................................55
هضم آنزیمی پلاسمید نوترکیب pGEM-zeo با BglII.....................................................................56
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf......................................................57
بررسی کلونهای نوترکیب pHan-gcsf-zeocin..............................................................................57
بررسی سریع کلونهای نوترکیب........................................................................................................57
بررسی کلونها به روش Colony-PCR.............................................................................................58
برش آنزیمی وکتور نوترکیب pHan-gcsf-zeo.................................................................................58
انتقال پلاسمید نوترکیب pHan-gcsf-zeocin به سلول هانسونلا پلی مورفا.......................................59
هضم آنزیمی وکتور بیانی pHan-gcsf-zeocin و انتقال به سلول هانسونلا........................................59
تأیید کلونهای نوترکیب هانسونلا با روش Colony-PCR ژن زئوسین..............................................59
بیان پروتئینGCSF در هانسونلا پلی مورفا.....................................................................................60
تأیید پروتئین نوترکیب تولید شده با روش Immuno-Blotting.......................................................61
فصل چهارم :بحث و پیشنهادات
رویکرد کلی پژوهش........................................................................................................................63
فصل پنجم : منابع و پیوست
فهرست منابع و مواخذ......................................................................................................................66
پیوست‌ها..........................................................................................................................................75
مقدمه
تولید پروتئین های نوترکیب یک بازار میلیارد دلاری دارا می باشد. از طرف دیگر تولید یک محصول نوترکیب جدید با انتخاب یک میزبان مناسب شروع می شود. در میان سیستم های بیانی مختلف، سلولهای مخمری به عنوان تک سلولی های تولید کننده با ویژگی دستکاری های ژنتیکی ساده و داشتن مسیرهای ترشحی اختصاصی که در تولید پروتئین کامل و فعال و انتقال آن به خارج از سلول مؤثر می باشند، یکی از بهترین انواع سیستم های شناخته شده می باشند. ساکارومیسس سرویزیه، پیکیا پاستوریس و هانسونلا پلی مورفا در اکثر مطالعات به عنوان سلولهای مخمری میزبانی مورد استفاده قرار گرفته اند که دارای مسیر مشترک بیوشیمیایی در متابولیسم متانول می باشند. در حال حاضر تکنولوژی هانسونلا به دلیل میزان بیان بالا مورد توجه جهانی قرار گرفته است. از جمله اقلام دارویی تولید شده در این سلولها میتوان به واکسن هپاتیت B، انسولین و اینترفرون آلفا و بتا اشاره نمود.
هدف از این مطالعه ، استفاده از وکتور بیانی طراحی شده جهت بیان فاکتور رشد کلنی گرانولوسیتی (GCSF) نوترکیب به عنوان پروتئین کاندید می باشد.
مواد و روش ها
cDNA کد کننده ژن فاکتور محرک رشد کلونی گرانولوسیتی در وکتور بیانی طراحی شده مربوط به هانسونلا پلی مورفا که شامل پروموتر، توالی سیگنال پپتید، توالی خاتمه دهنده رونویسی و شاخص انتخابی اوکسوتروفی می باشد کلون گردید و بدین ترتیب وکتور بیانی مورد نظر ساخته شد. هضم های آنزیمی به منظور تأیید قطعات کلون شده در وکتور بیانی طراحی شده انجام شد. القاء بیان پروتئین نوترکیب در این سیستم با متانول صورت گرفت و ایمونوبلاتینگ جهت تأیید پروتئین تولید شده نوترکیب صورت گرفت.
نتایج
ماهیت توالیهای کلون شده در وکتور بیانی از طریق هضم های آنزیمی با استفاده از سایتهای طراحی شده در توالی سنتز شده و مشاهده قطعات مورد نظر در ژل آگارز ارزیابی شد. وکتور نوترکیب به فرم خطی با روش الکتروپوریشن به سلول مستعد هانسونلا پلی مورفا انتقال داده شد و القاء بیان پروتئین با متانول صورت پذیرفت. پروتئینی حدوداً 20 کیلو دالتونی بر روی ژل SDS-PAGE مشاهده گردید که با ایمونوبلاتینگ پروتئین تولید شده به عنوان GCSF تأیید شد.
بحث
پروتئین تولید شده با روش بلاتینگ تأیید گردید. در ادامه بایستی عملکرد این پروتئین در واکنشهای ایمونولوژیکی مورد بررسی قرار گیرد. از طرف دیگر عملکرد این پروتئین در مقایسه با فرم تولید شده در E. coli مقایسه شود.
کلید واژه ها
هانسونلا پلی مورفا، فاکتور محرک رشد کلونی گرانولوسیتی (GCSF)، مهندسی ژنتیک
فصل اول : مقدمه
در طول چند دهه اخیر به سه دلیل زیر مطالعات زیادی بر روی مخمر هانسونلا پلی مورفا صورت گرفته است:
رشد سریع این مخمر با مصرف متانول به عنوان تنها منبع کربن و انرژی،
تحمل دماهای بالا (توانایی رشد در دمای °C49)،
تبادل آسان محتوای ژنتیکی بین سلولهای هاپلوئید و دیپلوئید ( (Teunisson, 1960.
1-1میکروبیولوژی هانسونلا
این مخمر برای اولین بار در سال 1951 از آب پرتقال حاوی 50% قند در فلوریدای آمریکا جداسازی شد.
سلولهای هانسونلا به هر دو صورت سلولهای دیپلوئیدی و هاپلوئیدی رشد می کنند. کلنی ها بر روی محیط کشت جامد دارای طیف رنگی صورتی هستند که به علت آسکوسپورها می باشد. کلنی سلولهای هاپلوئیدی و دیپلوئیدی از نظر رنگ، اندازه، چیدمان سلولی و سایر ویژگیها با یکدیگر متفاوت می باشند.
تاکنون اطلاعاتی در مورد توانایی هانسونلا پلی مورفا در تشکیل میسلیوم کاذب پیدا نشده است (Teunisson, 1960; Wickerham, 1970).

شکل 1-1 مخمر H. polymorpha
هانسونلا پلی مورفا میتواند در دمای بالا و در °C42 رشد کند. به نظر می رسد در این مخمر سنتز تره هالوز قسمتی از پاسخ به قحطی منبع کربن و شوک حرارتی است و پیشنهاد شده که این ترکیب، فاکتور مهمی در مقاومت دمایی است (Reinders, 1999).
مطالعات انجام شده بر روی هانسونلا پلی مورفا به طور عمده به بررسی پروتئین های سلولی، ساختار سلولهای مخمر در حال رشد و یا بررسی متابولیسم مخمر پرداخته اند.
در سویه هایی از این مخمر که از متانول به عنوان منبع انرژی استفاده می کنند، آنزیمهای متانول اکسیداز و کاتالاز، به فرم کریستالی درون اندامکی به نام پراکسی زوم قرار گرفته اند (Van Dijken, 1975).
هانسونلا پلی مورفا بعنوان یک ارگانیسم متیلوتروف، یک مدل مطلوب برای تحقیق در مورد عملکرد پراکسی زم ها و تکامل حیات می باشد. همچنین به منظور بررسی ژنتیکی جنبه های مختلف متابولیسم سلولی از جمله متابولیسم متانول، جذب نیترات و مقاومت به فلزات سنگین مورد مطالعه قرار می گیرد ( (Mannazzu, 2000.
با وجود این ویژگیها، هنوز قابلیت های ژنتیکی و طبیعی سویه های مورد استفاده از این مخمر کاملاً مشخص نیست و کنترل ژنتیکی فرایندهای سلولی پایه از جمله کنترل تقسیم سلولی، تولید مثل و اسپورزایی هنوز با سؤالات زیادی مواجه می باشد.
با اینحال هانسونلا پلی مورفا به عنوان یک میزبان برای تولید پروتئین های خارجی(ترشحی به خارج از سلول) توجه زیادی را به خود جلب کرده است ( (Gellissen, 2000.
1-2مطالعات ژنتیکی
تحقیقات ژنتیکی تاکنون تنها بر روی سه سویه از این مخمر انجام شده است که شامل سویه های DL-1، CBS 4732 و NCYC 495 می باشند.
پیدایش سویه های هانسونلا پلی مورفا از سویه های جهش یافته اکسوتروف شروع شده است.این موتانت ها از سویه هایی که در بالا نام برده شد با استفاده از ترکیب شیمیایی N-متیل-N-نیترونیتروزو گوانیدین یا اتیل متان سولفونات به دنبال یک مرحله غنی سازی با نیستاتین به دست آمده اند.
از طرف دیگر اشعه ماوراء بنفش نیز یک موتاژن بسیار قوی است که طیف موتانت های ایجاد شده بوسیله آن در مقایسه با موتانت های حاصل از مواد شیمیایی متفاوت و گسترده تر می باشد (Roggenkamp, 1986).
بطور کلی فرایندهای جهش زایی متعددی در این مخمر انجام شده است که یکی از این فرایندها، جهش های ژنتیکی است که منجر به سنتز اسیدآمینه های آروماتیک می شود که به مخمر اجازه رشد در محیط غنی YPD را نمی دهند (Krappmann, 2000).
از جمله انواع جهش یافته های اکسوتروف میتوان به موارد زیر اشاره نمود:
سویه هانسونلا پلی مورفای جهش یافته ای که برای رشد بر روی محیط های معدنی الزاماً به ریبوفلاوین نیاز دارد و محدود نمودن منبع ریبوفلاوین تأثیر شدیدی بر روی سنتز مجموعه الکل اکسیداز و تکثیر پروکسی زومهای سلولی دارد (Evers, 1994).
نوع دوم جهشهای ایجاد شده در ژن FAD1 است که اسید چرب دلتا را کد می کند. کاربرد این سلولهای جهش یافته در بررسی ژنتیکی سنتز اسیدهای چرب غیراشباع می باشد ( (Anamnart, 1998.
تحقیقات اخیر نشان داده است که هانسونلا پلی مورفا میتواند برای بررسی مقاومت به فلزات سنگین مورد استفاده قرار گیرد چراکه توانایی رشد در حضور تجمع فلزات سنگین متفاوت را که برای سایر موجودات سمی است دارا می باشد (Mannazzu, 1997).
در طی رشد در محیط حاوی vanadate، سلول ها افزایش قابل توجهی از پلی فسفات های واکوئلی پیدا میکنند. احتمالاً نقش این واکوئل ها در فعال کردن مکانیسم های اتوفاژی است که شاید برای جبران کمبود مواد مغذی و یا حذف ساختارهای سلولی ناهنجار القاء شده توسط این یون فلزی لازم باشند (Mannazzu, 1998).
سلول های هانسونلا پلی مورفا در مقایسه با S. cerevisiae به یون های کادمیوم(cd2+) بسیار مقاومند )این مقاومت به شدت به ماهیت منبع کربن استفاده شده بستگی دارد. سلول ها اغلب زمانیکه بر روی محیط حاوی گلوکز رشد میکنند به کادمیم مقاومتراند اما در طی رشد بر روی محیط حاوی متانول، به عنوان منبع کربن و انرژی، به این یون بسیار حساس می باشند. سویه های جهش یافته مقاوم به کادمیوم به سه گروه cds1، cds2 و cds3 تقسیم میشوند ( (Lahtchev, unpublished data.
جهش در ژنهای کدکننده آنزیم های پراکسی زومی یا سیتوپلاسمی درگیر در متابولیسم متانول
ژن AOX1 (MOX)، کدکننده آنزیم الکل اکسیداز (AO) موجود در ماتریکس پروکسی زوم است و یکی از بهترین ژن های هانسونلا پلی مورفا در تحقیقات می باشد (Ledeboer, 1985). الکل اکسیداز یک آنزیم فلاووهومواکتامری است که اولین مرحله در متابولیسم متانول را کاتالیز میکند. مونومر این آنزیم در سیتوپلاسم سنتز شده و به صورت هومواکتامر فعال، تجمع یافته و در داخل پراکسی زوم قرار میگیرد. حدود 210 نوع جهش یافته از ژن AO وجود دارد ( (Titorenko, 1995. بیان این ژن در مرحله رونویسی تنظیم میشود.

شکل 1-2 مورفولوژی سلولهای H. polymorpha جهش یافته
در هانسونلا پلی مورفا وقایع مربوط به مهار و القاء ژنهای کد کننده آنزیم های اختصاصی متانول و یا آنزیمهای پراکسی زومی به شدت کنترل می شوند. تنظیم در سطح رونویسی با مکانیسم های کنترلی قابل ملاحظه ای انجام میشود. عناصر تنظیمی به فرم سیس در بالادست ژنهای DAS، CAT و FMD با نقش مهاری برای گلوکز شناسایی شده اند.
1-3 نقشه ژنتیکی
آنالیز تتراد در هانسونلا پلی مورفا امکان پذیر است اما اندازه کوچک اسپورها روند این آنالیز را کند می نماید. در کشت سلول های دیپلوئیدی تفکیک مندلی نرمال در مورد بیشتر مارکرهای ژنتیکی مشاهده شده است.
الکتروفورز DNA کروموزومی هانسونلا پلی مورفا به روش pulse field، 3 تا 7 باند را نشان داده است که به نوع سویه وابسته است (Mari, 1993)اما بطور کلی مشخص شده است که هانسونلا پلی مورفا حداقل 7 کروموزوم دارد که بعضی از آنها مضاعف (دو تایی) هستند (Naumov, 1992).
1-4 تولیدمثل و اسپورزایی
فاکتورهایی در تولیدمثل و اسپورزایی هانسونلا پلی مورفا درگیرند که هنوز بطور کامل شناسایی نشده اند. از القاء کننده های قوی تولیدمثل جنسی میتوان به مالتوز، گلیسرول و سوربیتول اشاره کرد (Lahtchev, unpublished data).
سلول های هاپلوئید بر اساس نوع فنوتیپشان به چهار گروه تقسیم میشوند:
سویه های گروه 1 و 2 میتوانند هیبریداسیون متقاطع داشته باشند. این سویه ها سریع الرشد و تهاجمی بوده و پس از گذشت یک روز در محیط انتخابی، دیپلوئیدی می شوند. سویه های گروه 3 توانایی جفتگیری با اعضای گروه 1 و 2 را دارند و سویه های مثبت (+) نامگذاری می شوند. سویه های گروه 4 تنها میتوانند با گروه مثبت جفتگیری کنند و گروه منفی (-) را تشکیل دهند.
1-4-1 اسپورزایی
در هانسونلا پلی مورفا سلولهای هاپلوئیدی توانایی اسپورزایی دارند. اسپورزایی هاپلوئیدها بعد از گذشت 8 روز در محیط حاوی 3% مالتوز در دماهای پائین قابل تشخیص است. اسپورزایی با ظاهر شدن کلنی های دیپلوئیدی به رنگ صورتی روشن همراه می باشد.
در اواخر دهه 1960 کشف شد که مخمرها توانایی رشد بر روی محیط حاوی متانول به عنوان منبع کربن و انرژی را دارند (Ogata, 1969). اخیراً در تحقیقات پایه، متیلوتروف ها به عنوان منبع پروتئین های تک سلولی (SCP) ((Cooney and Levine, 1976) و آنزیم های غیرمعمول و متابولیت ها توجه بسیاری را به خود جلب کرده اند. با استفاده از روشهای جدید کلونینگ، ژن های کد کننده آنزیم های کلیدی در متابولیسم متانول شناسایی شده اند (Wegner, 1990).
پروموترهای MOX و FMD بعد از القاء، بسیار قوی عمل می نمایند. این مطلب با مشاهده میزان بالای بیان محصولات تحت تأثیر این پروموترها قابل انتظار است.
این یافته ها استفاده از هانسونلا پلی مورفا، به عنوان یک میزبان مناسب برای بیان به میزان زیاد ژنهای هترولوگ با استفاده از این پروموترها، به عنوان اجزاء کنترل کننده بیان، را قابل قبول نماید (Roggenkamp, 1984; Hollenberg and Janowicz, 1988).
سیستم بیانی شامل هانسونلا پلی مورفا سویه RB11 و پلاسمیدهای حاوی توالی های URA3و HARS1 است که به دنبال هم قرار گرفته اند. استفاده از پروموترهای FMD یا MOX و ترمیناتور MOX همراه با جایگاههای برش آنزیمی کوتاه مربوط به کلونینگ (MSC) بین این دو واحد، کلونینگ و بیان ORFهای هترولوگ را ممکن ساخته است.
آنالیز سویه های بیانی، پایداری میتوزی قابل توجه پلاسمید های الحاق شده به درون ژنوم را نشان می دهد که در بعضی موارد بیانگر سرعت بیان بالای ORF هترولوگ می باشد.
از طرف دیگر، سویه RB11، اغلب دستکاری های ژنتیکی به صورت نوترکیبی را به راحتی نمی پذیرد که شاید ناشی از پایداری میتوزی فوق باشد. به نظر می رسد سویه DL-1 نسبت به سویه RB11 توانایی پذیرش بیشتری را دارد (Gellissen, 1992).
1-6 پروموترهای مورد استفاده در سیستم های بیانی هانسونلا پلی مورفا RB11
یکی از پروموترهای مورد استفاده برای تولید پروتئینهای هترولوگ در هانسونلا پلی مورفا سویه RB11، پروموتر ژن MOX می باشد که طول آن بیش از 5/1 کیلوباز بوده و در حضور منبع کربن تنظیم می شود. به این صورت که در حضور گلوکز، پروموتر MOX مهار می شود ولی در حضور متانول، القاء می گردد.
پروموتر سایر ژن های کدکننده آنزیم های کلیدی در کاتابولیسم متانول از جمله FMD، DAS و CAT نیز مشابه با پروموتر ژن MOX کنترل می شوند اما سطح تنظیمی بعضی از آنها همچون CAT مشخص نیست (Veenhuis, 1983).
اگرچه پروموترهای FMD و MOX به طور واضحی مقایسه نشده اند اما بعضی مقایسه ها نشان داده است که مزایای پروموتر FMD از پروموتر MOX بیشتر است. بعنوان مثال، هانسونلا پلی مورفا سویه RB11 بیان کننده ژن فیتاز تحت کنترل پروموتر FMD، بازده زیادی در تخمیر در شرایط قحطی گلوکز دارد.
1-6-1 HARS1
پلاسمیدهای بیانی مورد استفاده در هانسونلا پلی مورفا سویه RB11 دارای عنصر HARS1 به طول تقریبی 5/0 کیلوباز می باشند. این قطعه ژنی در سالهای اخیر در طراحی وکتورهای مناسب برای انتقال به هانسونلا پلی مورفا مورد توجه قرار گرفته است Roggenkamp, 1986)). پلاسمیدهای حامل توالی HARS1 در 30-20 نسل ابتدایی رشد سلولها به صورت اپی زومال باقی می مانند اما پس از آن در ژنوم سلول مزبان به صورت تکرارهای متوالی به تعداد زیاد الحاق می شوند. این در حالی است که ناحیه ای که این پلاسمیدها دقیقاً در ژنوم ادغام می شوند هنوز مشخص نیست Gellissen, 1990)). چهار عنصر دیگر از خانواده قطعه ژنی HARS در سویه های DL-1 به دست آمده است اما تعداد کپی آنها از تعداد عناصر HARS1 در سویه RB11 کمتر است.
جزئیات مکانیسم ادغام شدن پلاسمیدهای حاوی توالی HARS1 در ژنوم این مخمر هنوز مشخص نیست. تنها ویژگی شناخته شده، توانایی ادغام شدن به صورت توالیی تکراری و غیرتصادفی است که قسمت خاصی از ژنوم را انتخاب می کند (Sohn, 1996).

شکل 1-3 تصویر پلاسمید بیانی مخمر H. polymorpha
1-7 بیان همزمان:
با چنین سیستم هایی، مجموعه های پروتئینی هترومری تولید می شود. یک مثال قابل توجه از این نوع بیان، بیان همزمان آنتی ژن های S و Lویروس هپاتیت B است.
از دیگر موارد بیان همزمان میتوان به بیان ژن های کد کننده گلیکولات اکسیداز (GO) اسفناج و کاتالاز (CTT1) T ساکارومیسس سرویزیه در هانسونلا پلی مورفا اشاره نمود.
بیان، پردازش، تغییر و تبدیل و یا ترشح مؤثر پروتئینهای نوترکیب خاص در هانسونلا پلی مورفا ممکن است دچار تغییر شود. این محدودیت می تواند با بیان همزمان ژن مورد نظر با یک ژن دوم (یا بیش از یک ژن دیگر) برطرف شود به همراه می آورد. به عنوان مثال فرآیند پردازش نادرست اینترفرون آلفا 2a، می تواند با بیان همزمان ژن KEX2 ساکارومیسس سرویزیه بهبود یابد.
1-8 ترشح پروتئین های هترولوگ الیگومری و فعال
هانسونلا پلی مورفا مقدار کمی پروتئین درونی (خودی) ترشح می کند و در نتیجه این ویژگی، پروتئین های هترولوگ ترشح شده به محیط کشت، عموماً خالص هستند. بنابراین استفاده از این میزبان بیانی، روش مناسبی جهت تولید پروتئین های نوترکیب خارجی به فرم محلول می باشد. ترشح پروتئین ها توسط توالیهای نشانه (سیگنال) قابل جداسازی انجام می شود. اگرچه گاهاً مستقل از سیگنال ترشحی، در مواردی ترشح خودبخودی پروتئین هترولوگ نیز مشاهده شده است (Gellissen, 2000).
برای درک توانایی هانسونلا پلی مورفا در تولید و ترشح پروتئین های هترولوگ، سویه هایی از این مخمر به منظور ترشح الکل اکسیداز (AOX) مهندسی گردیدند. الکل اکسیداز، یک پروتئین هومواکتامر کوفاکتوری است که هر زیرواحد آن دارای یک مولکول FAD می باشد (van der Klei et al, 1991). زمانیکه هانسونلا پلی مورفا بر روی محیط حاوی متانول رشد می کند فعالیت پروتئین AOX در ماتریکس پراکسی زومی، جائیکه اکثر پروتئین های اصلی وجود دارند، محدود می شود.
از طرف دیگر، برای فهم چگونگی ترشح الکل اکسیداز، سویه هایی از هانسونلا پلی مورفا مهندسی گردید که ژن اندوژن AOX با ژن AOX به دنبال سیگنال ترشحی در انتهای N، جایگزین شد. به دنبال کشت این سویه در محیط کشت حاوی متانول، حضور AOX فعال شناسایی گردید که این بیان نشان می دهد هانسونلا پلی مورفا قادر به تولید و ترشح کمپلکسهای پروتئینی دارای کوفاکتور و ساختارهای الیگومری می باشد (van der Heide and Veenhuis, Unpublished results).
1-9 تولید واکسن نوترکیب
در بسیاری از کشورها واکسن های علیه هپاتیت در اوایل دهه 1980 در دسترس عموم قرار گرفت. این واکسن ها با جداسازی آنتی ژن HBs از سرم افراد ناقل تولید شده بود که اگرچه مؤثر بودند اما به دلیل مشتق شدن از سرم، گران بوده و مدت زمان کوتاهی به سیستم ایمنی عرضه می شوند. به همین دلیل، تولید آنتی ژن HBS هترولوگ در سیستم های بیانی مختلف از جمله مخمر، باکتری، سلولهای گیاهی یا جانوری و نیز حیوانات تراریخته توسعه پیدا نمود. (Billman-Jacobe, 1996, Makrides, 1996).


1-10 مخمرها به عنوان میکروارگانیسم های تولیدی
سیستم های مخمری دارای مزایایی از جمله توانایی دستکاری ژنتیکی آسان، فرآیند های پس از ترجمه یوکاریوتی با میزان بالای تولید محصول و فرآیندهای تخمیری ارزان قیمت هستند. بنابراین تعجب آور نیست که ساکارومیسس سرویزیه به عنوان یکی از میزبانهای مطلوب در تولید پروتئین های هترولوگ شناخته شده است (Hinnen et al, 1995; Barr et al, 2000).
تاکنون دو روش در سیستم بیانی هانسونلا پلی مورفا به منظور تولید زیرواحدهای adw2 و adr از آنتی ژن HBs ابداع شده است که یکی از آنها توسط سازمان بهداشت جهانی (WHO) تأیید شده است (Gregg et al, 1985; Gregg and Madden, 1987).
1-10 ساخت سویه هانسونلا پلی مورفا بیان کننده آنتی ژن HBs
به طور کلی تولید سویه های هانسونلا پلی مورفا نوترکیب نیازمند دنبال کردن پروتکل استاندارد زیر است:
تولید کاست بیانی و وکتور پلاسمیدی
انتقال وکتور طراحی شده به سلول هانسونلا پلی مورفا
جداسازی سویه های نوترکیب
1-10-1 تولید کاست بیانی و وکتور پلاسمیدی
تولید سویه H415 بیان کننده آنتی ژن HBs بوسیله گروهی از محققین یک مثال از این فرآیند است. توالی کدکننده آنتی ژن به طول 683 نوکلئوتید از پلاسمید pRIT10616 جدا گردید (Harford et al, 1987) و قطعه پروموتریMOX به عنوان سیگنال برای رونویسی از ژن MOX هانسونلا پلی مورفا مشتق شد (Ledeboer et al, 1985; Eckart 1988). این سه عنصر ترکیب شده و قطعه MOX promoter-HBsAg gene-MOX terminator را تشکیل می دهند که اساس کاست بیانی می باشند (Stinchcomb et al, 1980). سپس این کاست دارای عملکرد بیانی درون وکتور پلاسمیدی حاوی عناصر زیر قرار داده شد. ژن مقاومت به کلرامفنیکل به منظور تکثیر در باکتری E. coli، توالی همانند سازی هانسونلا پلی مورفا (HARS1) و ژن URA3 از ساکارومیسس سرویزیه به عنوان مارکر انتخابی در بررسی انتقال پلاسمید به هانسونلا پلی مورفا می باشند.
پلاسمیدهای دارای توالی HARS1 توانایی بالایی برای ادغام در ژنوم میزبان دارند. امروزه سویه هایی شناسایی شده که دارای بیش از 60 کپی از کاست بیانی خارجی اند که این مطلب به دلیل وجود این توالی می باشد.
1-11 انتقال (ترانسفرم) وکتورهای بیانی به هانسونلا پلی مورفا
1-11-1 روش پلی اتیلن گلیکول
پلاسمیدpRBS-269 با استفاده از روش پلی اتیلن گلایکول به سویه RB10 انتقال یافت و برای مشخص شدن ادغام پلاسمید به درون ژنوم، غربالگری صورت گرفت (Gregg et al, 1985).
تاکنون چندین سویه ترانسفرم شده با کاست های بیانی الحاقی بطور پایدار تولید شده است و سویه H415 یکی از این سویه هاست که برای بیان آنتی ژن HBs تحت شرایط خاص مورد آزمایش قرار گرفته است (Janowicz et al, 1991).
1-12 جداسازی سویه های نوترکیب
تشخیص بیان پروتئین با رشد سویه های ترنسفورم شده بر روی محیط های تقریباً مغذی حاوی گلوکز، گلیسرول و یا متانول بررسی می شود. در این راستا، مقدار آنتی ژنHBs تولید شده در این سیستم بیانی در مقایسه با مقدار استاندارد آنتی ژن خالص با روش ایمونوبلاتینگ کمی اندازه گیری شد. میزان تولید د ر سویه H415 در محیط کشت حاوی متانول mg100 بود. زمانیکه سلول ها در محیط حاوی گلیسرول قرار گرفتند سنتز آنتی ژن HBs 70% کاهش پیدا کرد و زمانیکه سلول ها به محیط حاوی گلوکز منتقل شدند آنتی ژنی تولید نگردید که این مطلب نشان دهنده تولید این آنتی ژن به طور طبیعی تحت کنترل ژن MOX میباشد (Rutgers et al, 1988).
1-13 تنظیم متابولیسم متانول
تنظیم آنزیم های احیاکننده به روش مهاری و نه القاء صورت می پذیرد. در طی فرایند رشد، در شرایط کمبود گلوکز این آنزیم ها افزایش پیدا می کنند (Egli, 1980). تجزیه و تحلیل منطقه پروموتر ژن کد کننده AOD نشان داده است که در H. polymorpha بیان ژن MOX نیز توسط یک مکانیسم مهاری تنظیم می شود (Roggenkamp, 1984; Sakai and Tani, 1992).
1-14 فاکتور محرک رشد کلنی گرانولوسیتی (G-CSF)
در دهه 60 میلادی، دو گروه به طور همزمان روش هایی را برای توسعه و بهبود رشد کلنی های گرانولوسیتی و مونوسیتی مغز استخوان موش و یا سلول های طحال بر روی آگار نیمه جامد مورد بررسی قرار دادند. رشد کلنی این سلولها به حضور فاکتورهایی بستگی دارد که اصطلاحاً آنها را فاکتورهای محرک رشد کلنی(CSF) می نامند. تلاش برای شناخت بیولوژیکی و بیوشیمیایی این محرکها آزمایشگاههای زیادی را تا اواسط دهه 80 میلادی درگیر کرده بود (Metcalf, 2010). این تحقیقات نشان دادند که CSF ها عملکردی اختصاصی و مجزا ندارند بلکه چهار CSF که از نظر بیوشیمیایی کاملاً متفاوت هستند با هم همکاری می کنند. این چهار CSF با توجه به نوع فعالیت شان بر روی کلنی های متفاوت، نامگذاری شدند. به طور مثال GM-CSF که محرک رشد کلنی ماکروفاژها و گرانولوسیت ها می باشد.M-CSF محرک تولید کلنی ماکروفاژها و G-CSF محرک رشد کلنی گرانولوسیتی می باشد.
1-15 ژن gcsf
این ژن بر روی کروموزوم 17 قرار گرفته و دارای 4 اینترون است. دو نوع پلی پپتید متفاوت در نتیجه پردازش های مختلف از این ژن ایجاد می شود. تفاوت این دو پلی پپتید در وجود و یا عدم وجود 3 اسید آمینه می باشد. مطالعات انجام گرفته بر روی بیان این دو نشان می دهد که هر دوی آنها دارای فعالیت های مربوط به GCSF می باشند.
1-16 پروتئین GCSF
فاکتور محرک رشد کلنی گرانولوسیتی (GCSF)که فاکتور محرک کلنی3 هم نامیده می شود، یک سیتوکین وهورمون محرک رشد و دارای 175 اسید آمینه می باشد. گلیکوپروتئین های طبیعی انسانی در دو فرم وجود دارند. 174 آمینو اسیدی و 180 آمینو اسیدی که پروتئینی طویل با وزن مولکولی 19600 دالتون می باشد. فرم 174 آمینو اسیدی بیشترین فعالیت را دارد که در محصولات دارویی به کمک تکنولوژی DNA نوترکیب ساخته می شود. این فاکتور در بافت های مختلف اثربخشی خود را از طریق تحریک مغز استخوان برای ساخت گرانولوسیت و سلولهای بنیادی انجام می دهد.GCSF همچنین توسط اندوتلیوم، ماکروفاژها و تعدادی از سلولهای ایمنی تولید می شود.

شکل 1-4 ساختار کریستالی از 3 مولکول G-CSF انسانی
1-17 عملکرد پروتئین GCSF
G-CSF مغز استخوان را برای انتشار گرانولوسیت و سلولهای بنیادی در خون تحریک می کند. این پروتئین همچنین باعث تحریک بقاء، تکثیر، تمایز و عملکرد پیش سازه های نوتروفیلی و نوتروفیل های بالغ می شود که تنظیم این واکنش ها از طریق Janus kinase (JAK)، مبدل سیگنال و فعال کننده رونویسی STAT، پروتئین کیناز میتوژنی فعال (MAPK) و فسفاتیدیل اینوزیتول-3-کیناز انجام میشود.
شکل 1-5 مکانیسم عملکرد GCSF
گیرنده های GCSF بر روی سلول های پیش ساز مغز استخوان قرار دارند و در پاسخ به GCSF تحریک می شوند و این باعث رشد و تمایز این سلول ها به گرانولوسیت بالغ می شود. این پروتئین همچنین یک القاء کننده قوی برای انتقال سلول های بنیادی خون ساز هماتوپویتیک از مغز استخوان به درون خون می باشد (Wonganu, 2008).
GCSF همچنین محرک تولید گلبولهای سفید خون نیز می باشد و در انکولوژی و هماتولوژی، در بعضی سرطان های خاص برای افزایش سرعت بهبودی افراد نوتروپنی بعد از شیمی درمانی از شکل نوترکیب آن استفاده می شود. شیمی درمانی سبب تولید سطح غیر قابل قبول (کم) سلولهای سفید خون می شود که این مورد بیماران را در مقابل حملات میکروبی و عفونت ها حساس می نماید.
به نظر میرسدGCSF برای یک بارداری امن در طی مرحله لانه گزینی مؤثر باشد که این امر در بارداری های دوم و سوم بیشتر می شود (Strife, 2013).
در کنار تاثیر بر روی سیستم خون سازی، GCSF همچنین می تواند بر روی سلول های عصبی به عنوان مثال فاکتور نوتروفیک تأثیر بگذارد. در واقع گیرنده های این گلیکوپروتئین بر روی نورون های مغز و نخاع ظاهر می شوند (Cooper, 2011).
همچنین از GCSF برای درمان تخریب بافت قلب از طریق تزریق در خون محیطی به همراهSDF stromal) (cell-derived factor استفاده می شود (Anderlini, 2005) .
امروزهGCSF نوترکیب انسانی در سیستم بیانی باکتری E. coli تولید می شود که با نام فیلگراستیم شناخته شده است. فیلگراستیم از لحاظ ساختاری تفاوت کمی با گلیکوپروتئین طبیعی GCSF دارد. فیلگراستیم (Neupogen) و فیلگراستیم پگیله شده (Neulasta) (PEG-filgrastim) دو نوع تجاری متداول فرم نوترکیب GCSF انسانی rhG-CSF هستند. فرم پگیله، نیمه عمر طولانی تری دارد و این موضوع سبب کاهش ضرورت تزریق روزانه این دارو می شود.
شکل دیگر GCSF نوترکیب انسانی در سلولهای تخمدان هامستر چینی (CHO cells) ساخته می شود که با نام لنوگراستیم شناخته می شود. از آنجا که این سیستم بیانی در سلول پستانداران می باشد، لنوگراستیم تولیدی تفاوت بسیار کمی (غیر قابل تشخیص) در 174 آمینو اسید با GCSF طبیعی انسان دارد.
برای اولین بار در سال 1999 در آکادمی بیوتکنیک چین، ژنوم انسان به عنوان رشته الگو برای کلونینگ و بیان GCSF در غدد پستانی موش استفاده شد و قطعه ای به طول 5/1 کیلوباز با PCR بدست آمد(Lu, 1999).
در سال 2009 محققین به بیان پروتئین نوترکیب GCSF در مخمرPichia Pastoris پرداختند که نتیجه این تلاش بیان این پروتئین تحت پروموتور AOX1 بوده که در نتیجه القاء با متانول میزان پروتئین شده به 2 میلی گرم در لیتر رسید (Apte-Deshpande, 2009).
در سال 1387 محققین ایرانی به جهش زایی هدفمند در فاکتور محرک رشد کلنی گرانولوسیت انسانی و کلونینگ و بیان آن در باکتری E. coli پرداختند و نتایج آنها نشان داد که پروتئین نوترکیب مورد نظر با موفقیت در سیستم پروکاریوتی کلون و بیان شده است (حامد ناقوسی، 1387).
به دلیل اهمیت بالینی بالا و نیز نیاز گسترده به GCSF در مراقبت های بهداشتی، تلاش های زیادی به منظور تولید مولکولهای مشابه با فرم طبیعی انسانی آن که دارای عملکرد باشند در حال انجام است.
در سالهای گذشته محققین ایرانی سعی در بیان آن در کاهوی تراریخته داشتنه اند چراکه در این سالها گیاهان تراریخته برای تولید انواع داروی نوترکیب و واکسن ها مورد استفاده قرار گرفته اند (مهدی شریفی تبار،1392).
فصل دوم مواد و روش ها
2-1 میکروارگانیسم های مورد استفاده
از باکتری E. coli سویه ' TOP10F به منظور کلونینگ و تکثیر پلاسمیدها و از مخمر Hansenula polymorpha سویه RB11 به عنوان میزبان بیانی مخمری استفاده شد.
2-2 محیط های کشت مورد نیاز
جهت رشد باکتری‌ E. coli از محیط کشت LB جامد یا مایع و جهت رشد مخمر از محیطهای کشت YPD جامد یا مایع، BMMY و BMGY استفاده شد (پیوست 1).
پس از آماده نمودن محیط¬های کشت میکروبی مورد نیاز، این محیط ها در دمای 121 درجه سانتیگراد به مدت 15 دقیقه در فشار یک اتمسفر اتوکلاو گردیدند. محلول‌های قندی یا محلولهای حساس به اتوکلاو با استفاده از فیلترهای 22/0 میکرون استریل شدند.
2-3 پلاسمیدهای مورد استفاده
وکتور کلونینگ pGH برای کلون نمودن ژن سنتز شده gcsf توسط شرکت مربوطه مورد استفاده قرار گرفت (شکل 3-1). وکتور بیانی مورد نیاز برای سلولهای مخمری به صورت سنتتیک و با درج عناصر ضروری جهت بیان پروتئین های هترولوگ در این سلولها با استفاده از وکتور کلونینگ pGH به عنوان وکتور اولیه ساخته شده است.

شکل 3-1. وکتور کلونینگ pGH
2-4 آنزیم ها و کیت‌ها
آنزیم Taq DNA polymerase، آنزیم های محدودالأثر، RNaseA و آنزیم T4 DNA ligase از شرکت Fermentas تهیه شدند.
کیت استخراج محصول PCR یا DNA از ژل آگارز از شرکت Roche تهیه گردید.
2-5 آنتی بیوتیکها
آنتی بیوتیک ها (آمپی سیلین، تتراسایکلین و زئوسین) با غلظت مناسب (پیوست 2) تهیه و در 20- درجه سانتیگراد نگهداری شدند.
2-6 روش های عمومی
2-6-1 الکتروفورز افقی محصول PCR و یا نمونه DNA بر روی ژل آگارز
به منظور بررسی نتایج PCR و یا کیفیت هرنوع مولکول DNA، از ژل آگارز استفاده می شود. به همین جهت ابتدا ژل آگارز با غلظت متناسب با سایز مولکول مورد بررسی تهیه می شود. با توجه به ظرفیت کاست ژل، ابتدا پودر آگارز وزن شده و سپس در حجم مشخصی از بافر TAE (پیوست 3) با رقت X1 حل می گردد. این مخلوط به مدت 10 دقیقه در دمای اتاق باقی مانده و سپس مخلوط به مدت 1 دقیقه جوشانده می شود تا به خوبی حل شده و محلول یکنواختی حاصل شود. پس از کاهش دمای محلول تا حدود °C40، به میزان لازم از محلول رنگی DNA Safety Stain به آن اضافه کرده و به آرامی به درون کاست ژل ریخته شده و شانه روی آن قرار داده می شود. پس از چند دقیقه و پس از بستن کامل ژل، شانه به آرامی و به صورت عمودی از داخل آن خارج ‌شده و ژل به همراه کاست در داخل تانک الکتروفورز افقی حاوی بافر TAE (X1) قرار داده می شود. در ادامه نمونه های DNA همراه با حجم مشخصی از بافر بارگذاری ، با ترتیب مشخص به آرامی به درون چاهک ها ریخته می شود. سپس الکترودهای تانک به منبع تغذیه متصل می شود. پس از گذشت مدت زمان مشخص با توجه به اندازه قطعه، جریان برق قطع گشته و ژل از درون کاست خارج می گردد. ژل را در معرض نور فرابنفش قرار داده و باندها را مشاهده می نماییم.
نکته: در صورتی که قرار است DNA از ژل تخلیص شود، به هیچ‌وجه نمی‌بایست به مدت طولانی در معرض اشعه فرابنفش قرار گیرد زیرا این اشعه طول موج پایینی داشته و قادر است در توالی DNA جهش ایجاد کند.
2-6-2 تخلیص محصول هضم آنزیمی با استفاده از کیت تخلیص از ژل آگارز
جهت انجام کلونینگ، تخلیص محصول هضمهای آنزیمی فوق با استفاده از کیت تخلیص از ژل (Roche) و بر اساس پروتوکل موجود در کیت به شرح زیر انجام ‌شد:
1.به ازای هر mg100 ژل آگارز بریده شده ، µl300 بافر 1 (Binding buffer) به هر تیوب اضافه گردید.
2.تیوب ها به مدت 30-15 ثانیه ورتکس شده و سپس به مدت 10 دقیقه در دمای C°56 گرماگذاری شدند.
3.در این مرحله به ازای هر mg100 ژل اولیه، µl150 ایزوپروپانول به تیوب ها اضافه شده وسپس ورتکس گردیدند.
4.محتویات هر تیوب به یکی از ستون های کیت افزوده شده و این مجموعه را با بالاترین سرعت (rpm13000) به مدت 30-60 ثانیه سانتریفوژ نمودیم.
5.مایع زیرین دور ریخته شده و سپس µl500 بافر شستشو به هر ستون اضافه گردید.
6.پس از سانتریفوژ در بالاترین سرعت به مدت 1 دقیقه، مایع زیرین دور ریخته شده و در این مرحله µl250 بافر شستشو مجدداً اضافه گردید.
7.پس از سانتریفوژ به مدت 1 دقیقه (در بالاترین سرعت)، هریک از ستون ها را به تیوب های 5/1 میلی لیتری انتقال داده و µl35 آب دیونیزه به فیلتر ستون ها اضافه کرده و پس از انکوباسیون 5 دقیقه ای در دمای اتاق، هریک از تیوبها را مشابه با مراحل قبلی سانتریفیوژ نمودیم.
2-6-3 واکنش لیگاسیون قطعات تخلیص شده
واکنش لیگاسیون پس از تعیین غلظت وکتور و قطعه الحاقی تخلیص شده از ژل آگارز، بر طبق واکنش مندرج در جداول مربوطه انجام گرفت. در نمونه کنترل منفی، وکتور خطی شده به تنهایی در یک واکنش لیگاسیون وارد گردید. به عبارت دیگر، در این واکنش به جای قطعه DNA، آب دیونیزه به مخلوط واکنش اضافه گردید. تمامی تیوب ها به مدت 16 ساعت (ON) در دمای °C4 گرماگذاری شدند. این دما کمک می‌کند تا تشکیل پیوندهای هیدروژنی بین انتهاهای چسبنده آسان‌تر و با پایداری بیشتری انجام شود و آنزیم لیگاز نیز زمان کافی برای تشکیل پیوند فسفودی‌استری را خواهد داشت.
2-6-4 تهیه سلول‌ های مستعد 'E. coli TOP10F به روش تیمار با کلرید کلسیم
باکتری مستعد، سلولی است که توانایی لازم برای وارد نمودن پلاسمید به درون خود را پیدا کرده است.
1.یک کلنی از باکتری مورد نظر به مدت 3-2 ساعت در حضور تتراسایکلین در محیط LB مایع و در دمای °C37 بر روی شیکر با سرعت rpm 150 کشت داده شد تا جذب نوری محیط کشت در طول موج nm600 (OD600nm) به 6/0-4/0 رسید.
2.محیط کشت در شرایط استریل (در کنار شعله) به میکروتیوپ استریل منتقل شده و با سرعت rpm9000 به مدت 3 دقیقه سانتریفوژ شد.
3.محیط کشت دور ریخته شده و رسوب سلولی در µl720 کلرید سدیم mM100 سرد استریل، حل شده و به مدت 20 دقیقه در یخ گذاشته شد.
4.پس از گذشت این مدت، سوسپانسیون باکتریایی با دور rpm9000 و به مدت 3 دقیقه سانتریفوژ شده و مراحل 3 و 4 تکرار شدند.
5.رسوب باکتریایی حاصل در µl300 محلول کلرید کلسیم حل گردید.
2-6-5 انتقال پلاسمید به سلول های مستعد (ترانسفورماسیون)
1.µl100 از سوسپانسیون سلول های مستعد به تیوپ استریل انتقال داده شد.
2.حجم مشخصی از پلاسمید و یا محصول لیگاسیون به سوسپانسیون باکتریایی اضافه شده و تیوب ها به مدت 30 دقیقه درون یخ قرار داده می شوند.
3.بلافاصله تیوب ها به حمام آبی دمای °C42 منتقل شده و به مدت 90 ثانیه گرماگذاری شدند. پس از اتمام این زمان سریعاً تیوب ها را به ظرف یخ منتقل نمودیم.
4.ml 1 محیط کشت مایع LB به محتویات هر یک از تیوبها اضافه کرده و به مدت 1 ساعت در °C37 گرماگذاری گردیدند.
5.100 تا 150 میکرولیتر از سوسپانسیون باکتریایی بر روی محیط کشت LB جامد حاوی آنتی بیوتیک های مناسب (آمپی سیلین، تتراسایکلین یا زئوسین) کشت داده شد و پلیت ها به مدت 16 ساعت در دمای °C37 گرماگذاری شدند.
6.پس از گذشت این مدت، از کلنی های تشکیل شده بر روی محیط کشت جامد، ماتریکس سلولی تهیه گردید.
2-6-6 بررسی کلونهای نوترکیب به روش سریع
1.مقدار µl50 از محلول EDTA(10 میلی مولار) به تیوبها اضافه کرده و حدود 70% از ماتریکس باکتریایی را در آن حل نموده و سوسپانسیون را ورتکس نمودیم.
2.مقدارµl 50 از محلول NSS (پیوست 4) را به هر تیوب افزوده و به مدت 30 ثانیه ورتکس نمودیم.
3.تیوب ها را به مدت 5 دقیقه در حمام آبی°C 70 گرماگذاری نمودیم.
4.مقدار µl 5/1 از محلول KCl (4 مولار) به تیوب ها اضافه کرده و هر تیوب به مدت 30 ثانیه ورتکس گردیده و سپس به مدت 5 دقیقه بر روی یخ قرار داده شد.
5.محتویات هر سلول در دمای 4 درجه به مدت 3 دقیقه در g3000 سانتریفوژ گردید.
6.مایع رویی هر تیوب به تیوب جدید منتقل شد و میزان µl25 از آن بر روی ژل آگارز 1% برده شد.
2-6-7 PCR بر روی کلنی های باکتریایی/ مخمری
با رعایت شرایط استریل، از کلنی های رشد یافته بر روی پلیت ماتریکس، مقداری باکتری برداشته و در مقداری آب دیونیزه استریل حل نموده و به مدت 5 دقیقه در بن ماری در حال جوش (100 درجه سانتی گراد) جوشانده و سپس از این محلول بعنوان الگوی DNA برای انجام PCR بر اساس پروتوکل مندرج در قسمت مربوطه استفاده می شود.

2-6-8 استخراج پلاسمید در مقیاس کم
1.باکتری E. coli حاوی پلاسمید مورد نظر را به لوله ml5 محیط کشت LB مایع حاوی آنتی بیوتیک مناسب تلقیح کرده و به مدت 16 ساعت (ON) درون شیکر انکوباتور در دمای C°37 با دور 140 rpm قرار می دهیم.
2.سلولهای باکتریایی را با سرعت rpm10000 به مدت 3 دقیقه جمع آوری می نماییم.
3.در این مرحله رسوب باکتریایی را می توان در دمای °C20- نگهداری نمود.
4.رسوب حاصله از مرحله 3 را در µl100 از محلول شماره 1 (پیوست 5) حل می کنیم.
5. µl200 از محلول شماره 2 (پیوست 5) را به محلول حاصل از مرحله قبل اضافه کرده و به مدت 5 دقیقه درون یخ قرار می دهیم.
6.µl150 استات سدیم به محلول فوق اضافه کرده و به مدت 5 دقیقه درون ظرف یخ نگهداری می نماییم.
7.محلول فوق را در rpm12000 به مدت 10 دقیقه سانتریفوژ می نماییم.
8.با دقت مایع رویی را به تیوپ دیگری منتقل می کنیم.
9.هم حجم مایع بدست آمده از مرحله قبل به آن مخلوط فنل، کلروفرم و ایزوآمیل الکل به نسبت 25، 24، 1 اضافه می کنیم.
10.محلول را در rpm12000 به مدت 10 دقیقه سانتریفوژ می نماییم.
11.با دقت مایع رویی را به تیوپ دیگری منتقل می کنیم.
12.به میزان ml1 اتانول 96% سرد به مایع رویی اضافه کرده و به مدت 16 ساعت (ON) در °C20- نگهداری می نماییم.
13.نمونه را در rpm12000 به مدت 10 دقیقه سانتریفوژ می نماییم.
14.به میزان µl750 اتانول 70% سرد به رسوب مرحله قبل اضافه کرده و مشابه با مرحله قبل سانتریفوژ می نماییم.
15.رسوب بدست آمده را در µl30-20 آب دیونیزه استریل حل می نماییم.
2-6-9 استخراج پلاسمید در مقیاس زیاد
برای این کار از روش لیز قلیایی استفاده شد. مراحل انجام این روش به شرح زیر می باشد:
1.میزان µl450 از محلول آنتی بیوتیکی تتراسایکلین (غلظت نهاییml / µg15) را به ml300 محیط کشت مایع LB اضافه نموده و سپس سلول E. coli TOP10F' حاوی پلاسمید مورد نظر را به این محیط تلقیح کرده و به مدت 16 ساعت (ON) بر روی شیکر انکوباتور C°37 قرار می دهیم.
2.محیط کشت به لوله های 50 میلی لیتری منتقل شده و با سرعت rpm10000 به مدت 4 دقیقه سانتریفوژ می گردد.
3.پس از انجام سانتریفوژ، محیط کشت رویی تخلیه شده و رسوب سلولی جمع آوری می گردد. در این مرحله می توان رسوب سلولی را در دمای °C 20- نگهداری نمود.
4.رسوب حاصل از مرحله 3 را در ml6 از محلول شماره 1 (پیوست 5) حل می کنیم.
5.به مقدار ml12 از محلول شماره 2 (پیوست 5) به تیوب فوق اضافه نموده و 10 دقیقه درون یخ قرار می دهیم.
6.سی میلی لیتر از محلول استات سدیم M3 (2/5pH) به محلول فوق اضافه کرده و به مدت 30 دقیقه درون یخ نگهداری می نماییم.
7.محلول را به مدت 15 دقیقه در rpm12000 در دمای 4 درجه سانتیگراد سانتریفوژ می نماییم.
8.مایع رویی را از گاز استریل عبور داده و به محلول فیلتر شده، ml16 ایزوپروپانول اضافه نموده و به مدت 10 دقیقه در دمای اتاق نگهداری می کنیم. سپس این محلول را در دمای 4 درجه به مدت 10 دقیقه در rpm12000 سانتریفوژ نموده، مایع رویی را دور ریخته و رسوب حاصله را در دمای اتاق خشک می کنیم.
9.رسوب خشک شده را در ml1 آب دیونیزه استریل حل کرده و به آن µl40 از محلول RNaseA (mg/ml10) اضافه کرده و به مدت 1 ساعت در دمای °C37 گرماگذاری می نماییم.
10. به محلول فوق به نسبت 1:1 از فنل و کلروفرم اضافه نموده و به مدت 10 دقیقه در rpm12000 سانتریفوژ می نماییم.
11.فاز رویی (فاز آبی) را به تیوپ جدید منتقل کرده و دو برابر حجم این فاز، به آن اتانول 96% سرد اضافه نموده و به مدت 16 ساعت (ON) در °C 20- قرار داده و سپس به مدت 10 دقیقه در rpm12000 سانتریفوژمی نماییم.
12.مایع رویی را دور ریخته و به رسوب حاصل ml1 اتانول 70% سرد اضافه نموده و مجدداً سانتریفوژ می نماییم.
13.مایع رویی را دور ریخته و رسوب حاصله را در دمای اتاق خشک نموده و سپس در µl150-100 آب دیونیزه حل می کنیم.
2-6-10 الکتروفورز پروتئین بر روی ژل پلی اکریل آمید (SDS-PAGE)
مقدمه
الکتروفورز در واقع همان حرکت ذرات باردار تحت تأثیر میدان الکتریکی، می باشد. خصوصیات مولکول ها (اندازه، شکل، میزان بار الکتریکی)، شرایط محیطی (قدرت یونی، pH، درجه حرارت و نوع ژل) و فاکتورهای الکتریکی (اختلاف پتانسیل، شدت جریان و ولتاژ) میتوانند در این فرایند مؤثر باشند. از متداول ترین محیط های نیمه جامد برای الکتروفورز پروتئین ها پلی اکریل آمید می باشد که پروتئین ها را در محدوده وزنی 500 تا 250000 دالتون از هم جدا می کند. این ماتریکس، پلیمری از مولکول های خطی اکریل آمید و N و N- متیلن بیس اکریل آمید می باشد. مولکول های بیس اکریل آمید پل های عرضی را بین مولکول های خطی اکریل آمید ایجاد می کنند و تشکیل یک شبکه رشته ای را می دهند که قادرند پروتئین ها را از هم جدا کنند. پلیمریزاسیون این ترکیبات در حضور آمونیوم پرسولفات آغاز می شود و به دلیل سرعت کم این واکنش، از ماده TEMED بعنوان کاتالیزور واکنش پلیمریزاسیون استفاده می شود. عامل اصلی حرکت مولکول های باردار در الکتروفورز، اختلاف پتانسیل (V) بین قطب های مثبت و منفی می باشد. در روش SDS-PAGE پروتئین ها در حضور شوینده یونی SDS، الکتروفورز می شوند. این ماده به اسید های آمینه هیدروفوب پروتئین ها متصل شده و ساختمان طبیعی پروتئین ها را واسرشته کرده و به ازای طول زنجیره پپتیدی بار منفی ثابتی به آن ها اضافه می کند. بنابر این در این نوع الکتروفورز، به دلیل خنثی شدن اثر بار پروتئین ها توسط SDS، پروتئین ها تنها بر اساس اندازه و شکل از هم جدا می شوند(Sambrook, 2001).
مواد لازم
-اکریل آمید
-N,N متیلن بیس اکریل آمید
-سدیم دو دسیل سولفات (SDS)
-تریس بازی
-TEMED
-آمونیوم پرسولفات (APS)
-آب مقطر
-رنگ کوماس بلو (شامل کوماسی بریلینت بلو G250، متانول، اسید استیک گلاسیال می باشد)
-بافر نمونه x6 ( شامل تریس بازی، گلیسرول، SDS، برومو فنل بلو و 2-مرکاپتو اتانول (2-ME) می باشد)
-بافر تانک X1 (شامل تریس، گلایسین،SDS و آب مقطر می باشد، پیوست 6).
-الکل 96%
وسایل لازم
•سیستم الکتروفورز (منبع تغذیه، تانک، شیشه ها، فضا سازها و شانه )
•سرنگ هامیلتون
روش انجام کار
روش تهیه ژل تحتانی یا جدا کننده (پیوست 6)
•ژل تحتانی بر اساس جدول (3-1) تهیه می شود. درصد ژل بستگی به وزن مولکولی پروتئین دارد. هر چه وزن مولکولی نمونه، بیشتر باشد از درصد پائین تر ژل استفاده می شود تا پروتئین بهتر بتواند در ژل حرکت کند.
•محلول ها را تا قبل از اضافه نمودن TEMED اضافه نموده و خوب مخلوط نمایید.
2-6-10-1روش تهیه ژل فوقانی (پیوست 6)