–379

عنوان صفحه
چکیده ......................................................................................................................................................................1
مقدمه .......................................................................................................................................................................2
فصل اول : انواع ناخالصی‌های سولفور موجود در گاز مایع و روش‌های جداسازی آن‌ها........................................3
1-1- انواع ناخالصی‌های سولفور موجود در گاز مایع........................................................................................4
1-1-1- ناخالصی‌های اصلی و عمده................................................................................................................5
1-1-2- ناخالصی‌های فرعی و متحمل............................................................................................................7
1-2- دلایل جداسازی ناخالصی‌های اصلی سولفور موجود در گاز مایع...........................................................8
1-3- روش‌های جداسازی ناخالصی‌های سولفور موجود در گاز مایع...............................................................9
1-3-1- فرآیندهای خشک.............................................................................................................................13
1-3-1-1- فرآیندهای خشک احیاناپذیر........................................................................................................13
1-3-1-2- فرآیندهای خشک احیاپذیر..........................................................................................................15
1-3-1-3- فرآیندهای خشک هیبریدی........................................................................................................17
1-3-2- فرآیندهای مرطوب...........................................................................................................................18
1-3-2- 1- سولفورزدایی با حلال‌های شیمیایی (آمین‌ها)............................................................................19
1-3-2-2- سولفورزدایی با حلال‌های فیزیکی..............................................................................................20
1-3-2-2-1- حلال فیزیکی سلکسول.........................................................................................................21
1-3-2-2-2- محلول‌های سودسوزآور..........................................................................................................23
1-3-2-3- سولفورزدایی با حلال‌های هیبریدی............................................................................................24
1-3-3- جمع‌بندی فرآیندهای شیرین‌سازی گاز مایع....................................................................................25
فصل دوم : فرآیند شیرین‌سازی گاز مایع با محلول فیزیکی سود.........................................................................28
2-1- مقدمه.....................................................................................................................................................29
2-2- شرح فرآیند مرکاپتان‌زدایی از گاز مایع توسط سود...............................................................................29
2-2-1- شرح فرآیند واحد استخراج پروپان....................................................................................................29
2-2-2- شرح فرآیند واحد استخراج بوتان.....................................................................................................30
2-2-3- شرح فرآیند واحد احیا کاستیک........................................................................................................32
2-3- واکنش‌های فرآیند مرکاپتان‌زدایی توسط سود......................................................................................33
2-3-1- واکنش‌های اصلی.............................................................................................................................33
2-3-2- واکنش‌های فرعی............................................................................................................................35
2-4- کاتالیست فرآیند مرکاپتان‌زدایی توسط سود.........................................................................................38
2-5- بررسی عوامل مؤثر بر فرآیند استخراج مرکاپتانها و تصفیه گاز مایع..................................................40
2-5-1- تعادل فازها و یونیزاسیون اسیدها و بازهای موجود..........................................................................40
2-5-1-1- تعادل اسیدها و بازهای موجود در فاز آبی...................................................................................41
2-5-1-2- تعادل بین فازهای هیدروکربنی و آبی.........................................................................................43
2-5-2- تأثیر نوع مرکاپتان بر فرآیند استخراج..............................................................................................48
2-5-3- تأثیر غلظت محلول هیدروکسید بر فرآیند استخراج و واکنش تبدیل مرکاپتان‌ها به مرکاپتایدهای‌سدیم...........................................................................................................................................50
2-5-4- مقدار سود مصرفی موردنیاز..............................................................................................................52
2-5-5- تأثیر دما بر فرآیند استخراج..............................................................................................................55
2-5-6- روابط تجربی ارائه‌شده برای ضرایب توزیع و استخراج....................................................................56
2-5-7- جمع‌بندی عوامل مؤثر بر فرآیند استخراج مرکاپتان از گاز مایع......................................................60
2-6- عوامل مؤثر بر فرآیند احیا سود..............................................................................................................61
2-6-1- تأثیر غلظت سود بر واکنش تبدیل مرکاپتایدهای‌سدیم به دی‌سولفیدها.........................................61
2-6-2- تأثیر غلظت سود بر حلالیت کاتالیست در محلول سود...................................................................63
2-6-3- تأثیر غلظت سود بر نفوذ مرکاپتایدها و رادیکال‌های آزاد................................................................64
2-6-4- تأثیر دما بر واکنش اکسیداسیون مرکاپتایدهای‌سدیم......................................................................65
2-6-5- تأثیر دما بر فعالیت کاتالیست در محلول سود..................................................................................66
2-6-6- تأثیر ساختار مولکولی مرکاپتان بر سرعت واکنش...........................................................................68
2-6-7- تأثیر روش تهیه محلول کاتالیست توزیع‌شده در سود بر سرعت واکنش........................................68
2-6-8- تأثیر محیط گازی بر فعالیت کاتالیست CoSPc و سرعت واکنش.................................................70
2-6-9- تأثیر سرعت اختلاط محلول کاتالیستی سود و هوا بر سرعت واکنش اکسیداسیون مرکاپتایدسدیم..................................................................................................................................................71
2-6-10- جمع‌بندی عوامل مؤثر بر فرآیند احیا سود.....................................................................................71
فصل سوم : نتایج تحقیقات پیشین روی فرآیند شیرین‌سازی گاز مایع با محلول فیزیکی سود...........................73
فصل چهارم : تشریح شبیه‌سازی و بررسی نتایج حاصل از آن..............................................................................77
4-1- مقدمه.....................................................................................................................................................78
4-2- تشریح شبیه‌سازی.................................................................................................................................81
4-3- مقایسه نتایج شبیه‌سازی با مقادیر طراحی............................................................................................89
4-4- بهینه‌سازی متغیرهای علمیاتی بخش احیاء سود...................................................................................91
4-4-1- مقدار بهینه هوای ورودی به بستر اکسیدایزر برای احیاء سود..........................................................91
4-4-2- مقدار بهینه غلظت محلول سود ورودی به بستر اکسیدایزر برای احیاء سود...................................93
4-4-3- مقدار بهینه برای دمای اکسیدایزر....................................................................................................95
فصل پنجم : جمع‌بندی مطالب و نتیجه‌گیری.......................................................................................................96
فهرست منابع فارسی............................................................................................................................................100
فهرست منابع غیرفارسی......................................................................................................................................101
چکیده انگلیسی....................................................................................................................................................104
صفحه عنوان به زبان انگلیسی............................................................................................................................105
فهرست جداول
عنوان صفحه
جدول 1-1- حداکثر غلظت مجاز برای مرکاپتان‌های سبک و سولفیدهیدروژن....................................................9
جدول 1-2- انواع جاذب‌ها یا حلال‌های مورداستفاده در فرآیندهای شیرین‌سازی گاز مایع...............................10
جدول 1-3- توانایی جاذب‌ها و حلال‌های مختلف در جداسازی ناخالصی‌های سولفور.......................................11
جدول 1-4- حلالیت نسبی گازهای مختلف در حلال سلکسول.........................................................................22
جدول 1-5- هزینه‌های عملیاتی و سرمایه‌گذاری موردنیاز برای شیرین‌سازی pbsd 10000 سوخت جت توسط دو فرآیند شیرین‌سازی با سود و شیرین‌سازی با کمک غربال‌های مولکولی........................................................27
جدول 2-1- ثابت تعادلی برای واکنش سولفیدکربنیل و آب................................................................................37
جدول 2-2- مقایسه فعالیت و پایداری انواع کاتالیست‌های مورداستفاده در شیرین‌سازی برش‌های هیدروکربنی سبک توسط محلول سودسوزآور............................................................................................................................39
جدول 2-3- ثابت یونیزاسیون اسیدهای موجود در ترکیبات نفتی در دمای 34 درجه سانتی‌گراد........................43
جدول 2-4- مقدار اکتیویته آب در غلظت‌های مختلف محلول سود در دمای 32 درجه سانتی‌گراد...................45
جدول 2-5- ضریب استخراج KE برای مرکاپتان‌ها و سولفیدهیدروژن بر اساس کار yabroff.........................47
جدول 2-6- ثابت‌های معادله (2-7)....................................................................................................................47
جدول 2-7- حلالیت مرکاپتان‌ها در آب خالص در دمای 20 درجه سانتی‌گراد...................................................48
جدول 2-8- ماتریس طراحی و نتایج آزمایشگاهی...............................................................................................54
جدول 2-9- مقدار ثابت A برحسب نوع مرکاپتان برای معادله (2-17)..............................................................57
جدول 2-10- مقدار ثابت B برای معادله (2-18)................................................................................................58
جدول 2-11- میزان جذب CO+2 به‌عنوان جزء فعال کاتالیست و مقدار تبدیل پروپیل مرکاپتایدسدیم به دی‌سولفید در محلول سود......................................................................................................................................64
جدول 4-1- مقایسه نتایج طراحی شرکت اکْسِنس با نتایج شبیه‌سازی فعلی برای جریان سود ورودی به اکسیدایزر و سود احیاشده خروجی از آن................................................................................................................89
جدول 4-2- مقایسه نتایج طراحی شرکت اکْسِنس با نتایج شبیه‌سازی فعلی برای سود احیاشده برگشتی به واحدهای استخراج..................................................................................................................................................90
جدول 4-3- مقایسه نتایج طراحی شرکت اکْسِِنْس با نتایج شبیه‌سازی فعلی برای جریان هوای خروجی از مخزن جداکننده دی‌سولفیداویل از سود.................................................................................................................90
فهرست اشکال
عنوان صفحه
شکل 2-1- دیاگرام جریان بخش استخراج..........................................................................................................31
شکل 2-2- دیاگرام جریان بخش احیاء سود........................................................................................................32
شکل 2-3- ساختار مولکولی کاتالیست سولفونیتدکبالت‌فتالوسیانین....................................................................38
شکل 2-4- مقایسه بین مقادیر ضریب استخراج (KE) تجربی و تئوری به‌دست‌آمده از معادله (2-10).........46
شکل 2-5- حلالیت نرمال‌مرکاپتان‌ها در آب و توزیع مرکاپتان‌ها بین فاز هیدروکربنی ایزواکتان و فاز آبی محلول سود 5/0 نرمال..........................................................................................................................................49
شکل 2-6- اثر مقدار و غلظت محلول سود در استخراج مرکاپتان‌ها...................................................................51
شکل 2-7- تغییرات ویسکوزیته محلول سود با غلظت آن..................................................................................51
شکل 2-8- تأثیر غلظت سود بر واکنش پروپیل‌مرکاپتان و سود..........................................................................52
شکل 2-9- قابلیت اشباع سود توسط مرکاپتان‌ها (Y’2, Y2)، به‌عنوان یک عامل محدودکننده، برحسب غلظت محلول سود.............................................................................................................................................................53
شکل 2-10- اثر درجه حرارت بر روی ضریب استخراج متیل و اتیل مرکاپتان‌ها برای سیستم ایزواکتان و محلول سود 25/4 مولار.........................................................................................................................................55
شکل 2-11- اثر درجه حرارت بر روی ضریب استخراج بوتیل‌مرکاپتان در سیستم ایزواکتان و محلول سود 5/0 نرمال......................................................................................................................................................................56
شکل 2-12- مقدار متغیر B مربوط به معادله 2-18 برحسب مولاریته سود.......................................................59
شکل 2-13- ضریب استخراج KE برای مرکاپتان‌های C2,C1 در سیستم ایزواکتان و محلول سود..................60
شکل 2-14- تأثیر غلظت سود بر واکنش اکسیداسیون پروپیل مرکاپتایدهای‌سدیم به دی‌سولفیداویل.............62
شکل 2-15- طیف ماوراءبنفش کاتالیست CoSPc برای 100 میلی‌لیتر محلول سود با غلظت‌های مختلف.....63
شکل 2-16- تغییرات چسبندگی محلول سود با غلظت آن.................................................................................65
شکل 2-17- تأثیر دما بر واکنش اکسیداسیون پروپان مرکاپتایدسدیم (سایر پارامترهای عملیاتی ثابت)...........65
شکل 2-18- مقدار جذب جزء فعال کاتالیست (CO+2) و درنتیجه فعالیت کاتالیست بر اساس دما و زمان نگهداری کاتالیست.................................................................................................................................................66
شکل 2-19- تأثیر دمای نگهداری کاتالیست بر سرعت واکنش اکسیداسیون پروپان مرکاپتایدسدیم................67
شکل 2-20- تأثیر ساختار مولکولی مرکاپتایدهای‌سدیم بر واکنش اکسیداسیون آن‌ها.......................................68
شکل 2-21- مقایسه مقدار جذب امواج ماوراءبنفش و درنتیجه فعالیت کاتالیست برای محلول کاتالیستی سود تهیه‌شده به روش‌های مختلف...............................................................................................................................69
شکل 2-22- تأثیر روش تهیه محلول سود و کاتالیست بر سرعت واکنش اکسیداسیون پروپان مرکاپتایدسدیم........................................................................................................................................................69
شکل 2-23- فعالیت کاتالیست سولفونیتدکبالت‌فتالوسیانین در مجاورت محیط‌های گازی مختلف....................70
شکل 2-24- تأثیر سرعت اختلاط بر واکنش اکسیداسیون پروپان مرکاپتایدسدیم.............................................71
شکل 4-1- تکمیل اطلاعات ضروری در پوشه Setup.......................................................................................81
شکل 4-2- انتخاب مواد تشکیل‌دهنده جریان‌ها..................................................................................................82
شکل 4-3- انتخاب مدل ترمودینامیکی...............................................................................................................84
شکل 4-4- تکمیل پوشه مشخصات جریان‌ها.....................................................................................................85
شکل 4-5- تکمیل پوشه مشخصات تجهیزات....................................................................................................86
شکل 4-6- تعریف استوکیومتری واکنش‌ها.........................................................................................................87
شکل 4-7- تکمیل سربرگ مربوط به ضرایب تعادل واکنش‌ها...........................................................................88
شکل 4-8- تکمیل سربرگ مربوط به ضرایب تعادل نمک‌ها..............................................................................88
شکل 4-9- تأثیر مقدار هوای مورداستفاده بر راندمان احیاء سود.........................................................................93
شکل 4-10- تأثیر غلظت محلول سود بر مقدار احیاء سود..................................................................................94
شکل 4-11- تأثیر دمای اکسیدایزر بر میزان احیاء سود....................................................................................99
چکیده
حذف مرکاپتان‌ها از جریان‌های هیدروکربنی توسط روش‌های گوناگونی انجام می‌پذیرد. استفاده از محلول سودسوزآور و بسترهای غربال موکولی ازجمله پرکاربردترین روش‌ها هستند. در صنایع نفت و گاز کشور ما، اغلب جهت حذف مرکاپتان‌های سبک از روش شستشو با محلول کاستیک نسبتاً رقیق استفاده می‌شود. در این پروژه فرآیند احیا کاستیک شرح داده می‌شود و عوامل مؤثر بر این فرآیند بررسی می‌گردد. همچنین در مورد مقدار بهینه پارامترهای عملیاتی این فرآیند بحث می‌شود. غلظت سود مصرفی، دمای عملیات و دبی اکسیژن ورودی به راکتور (اکسیدایزر) مهم‌ترین پارامترهای عملیاتی می‌باشند. نتایج این مطالعه نشان می‌دهد که غلظت بهینه سود برای تبدیل مرکاپتایدهای‌سدیم به دی‌سولفیدها در حدود 9/1 مول بر لیتر است اما به دلیل چرخش محلول سود در سیستم، مقدار بهینه غلظت سود باید برای کل سیستم مشخص شود. با توجه به نتایج آزمایشگاهی مقدار بهینه غلظت سود برای مرکاپتان‌زدایی از گاز مایع بین 75/2 و 25/4 مول بر لیتر است. ضمناً دمای پیشنهادی برای خروجی اکسیدایزر 50 درجه سانتی‌گراد می‌باشد؛ بنابراین پروفایل دما در اکسیدایزر 10 درجه سانتی‌گراد خواهد بود. همچنین 06/1 الی 1/1 مقدار استوکیومتری اکسیژن برای سودی که در ورودی اکسیدایزر دارای ppm 8680 وزنی مرکاپتاید است، پیشنهاد می‌شود.
مقدمه
هدف از انجام این پروژه بررسی فرآیند احیا سود و عوامل مؤثر بر آن و بهینه‌سازی پارامترهای عملیاتی واحد مذکور می‌باشد. در فصل اول به‌منظور کسب اطلاعات پایه‌ای موردنیاز، انواع ناخالصی‌های گوگردی موجود در گاز مایع و لزوم جداسازی آن‌ها موردبررسی قرارگرفته و روش‌های مختلف شیرین‌سازی گاز مایع، موارد کاربرد هر یک و نیز مزایا و معایب مربوطه آورده ‌شده است تا در صورت نیاز با توجه به طراحی مجتمع پارس جنوبی و امکانات موجود، از تجهیزات مکمل برای بهبود عملکرد فرآیند استفاده شود به‌گونه‌ای که تغییرات اعمال‌شده ازلحاظ اقتصادی نیز توجیه‌پذیر باشد.
در فصل دوم به روش مورداستفاده در فازهای 4 و 5 پرداخته‌شده و فرآیند مرکاپتان‌زدایی از گاز مایع توسط حلال فیزیکی سود به‌تفصیل بررسی‌شده است.
در فصل سوم، نتایج تحقیقات پیشین روی فرآیند شیرین‌سازی گاز مایع با محلول فیزیکی سود آورده شده است.
در فصل چهارم، مراحل شبیه‌سازی تشریح شده و نتایج حاصل از شبیه‌سازی فرآیند آورده شده و مقادیر بهینه پارامترهای عملیاتی برای فرآیند احیا سود، مورد تجزیه‌وتحلیل قرارگرفته‌اند. لازم به ذکر است که شبیه‌سازی واحد مذکور توسط نرم‌افزارهای Plus Aspen و Aspen Dynamic و بر پایه نتایج آزمایشگاهی و روابط تجربی ارائه‌شده در فصل دوم صورت گرفته است.
درنهایت در فصل پنجم جمع‌بندی، نتیجه‌گیری و پیشنهاد‌ها مربوطه آورده شده است.
فصل اول:
انواع ناخالصی‌های سولفور موجود در گاز مایع و روش‌های جداسازی آن‌ها
1-1- انواع ناخالصی‌های سولفور موجود در گاز مایع
گاز مایع به‌عنوان سوخت صنعتی، سوخت خانگی و ماده شیمیایی خام کاربرد فراوانی دارد و اغلب دارای ناخالصی‌های دی‌اکسیدکربن، سولفیدهیدروژن، سولفیدکربنیل، دی‌سولفیدکربن و مرکاپتان‌های نوع متیل و اتیل می‌باشد.
با توجه به مضرات ناخالصی‌های سولفور، یکی از مهم‌ترین فرآیندهای تصفیه گاز مایع در صنعت، فرآیند شیرین‌سازی آن می‌باشد. امروزه مقادیر مجاز سولفور موجود در گاز مایع به‌شدت کاهش‌یافته است. برای مثال مقدار سولفور مجاز در پروپان و بوتان مورداستفاده در تولید پلی‌پروپیلن و پلی بوتیلن کمتر از ppm 5 می‌باشد. این امر موجب شده تا در صنایع تولیدی بالادستی و نیز صنایع تصفیه پایین‌دستی مقادیر سولفور مجاز کمتری در طراحی فرآیندها مدنظر قرار گیرد [1].
ناخالصی‌های سولفور موجود در گاز مایع به دو گروه اصلی (عمده) و فرعی (محتمل) تقسیم می‌گردند که در ادامه آورده شده‌اند.
1-1-1- ناخالصی‌های اصلی و عمده
سولفیدهیدروژن
سولفیدهیدروژن به‌طورکلی از واکنش‌های کراکینگ مولکول‌های سولفور ناشی می‌شود و غلظت‌های بالای ppm 2 آن موجب خاصیت خورندگی شدید گاز می‌گردد. همچنین درصورتی‌که برش نفتی به‌عنوان ماده خام استفاده شود، سولفیدهیدروژن باعث تشکیل سولفور آزاد و مرکاپتان‌ها می‌گردد.
سولفیدهیدروژن مخرب‌ترین ناخالصی‌ای هست که می‌تواند در گاز مایع وجود داشته باشد.
سولفیدکربنیل
سولفیدکربنیل ممکن است در برش پروپان موجود باشد و اگرچه به‌خودی‌خود، خورنده نیست اما در حضور آب هیدرولیز شده و سولفیدهیدروژن تولید می‌کند و درنتیجه گاه موجب خاصیت خورندگی محصول می‌شود.
تشکیل سولفیدکربنیل اساساً توسط واکنش هیدرولیزی برگشت‌پذیر و تعادلی زیر صورت می‌گیرد:
COS + H2O ↔ H2S + CO2 (1-1)
هنگام برداشت از مخزن، به دلیل اینکه گاز طبیعی معمولاً با آب اشباع‌شده است، سولفیدکربنیل تشکیل نمی‌شود. البته در بعضی موارد در غیاب آب هم سولفیدکربنیل تشکیل می‌شود. مثلاً در غربال‌های مولکولی مخصوص آب‌زدایی، در اثر واکنش سولفیدهیدروژن با دی‌اکسیدکربن، سولفیدکربنیل تشکیل می‌شود. سولفیدکربنیل تشکیل‌شده در غربال‌های مولکولی که بالادست واحد گاز مایع قرار دارند، در محصول پروپان تجمع می‌کند. حتی مقادیر حجمی بسیار کم سولفیدکربنیل در صورت فراهم بودن شرایط تعادلی مناسب، با آب ترکیب‌شده و سولفیدهیدروژن تولید می‌کند.
حضور سولفیدکربنیل در محصول پروپان فروشی معمولاً بررسی نمی‌شود چراکه این ترکیب مستقیماً تست خوردگی را تحت تأثیر قرار نمی‌دهد. در صورت حضور آب در سیستم انتقال پروپان، وجود حتی مقادیر بسیار کم سولفیدکربنیل و هیدرولیز آن منجر به مردود شدن محصول دریافتی در مقصد (در تست خوردگی) خواهد شد. تشکیل سولفیدکربنیل در واحدهای آب‌زدایی که از غربال‌های مولکولی 4 یا 5 انگستروم استفاده می‌کنند، تسریع می‌شود. غربال‌های مولکولی ذکرشده تشکیل سولفیدکربنیل را به دلایل زیر تسریع می‌کنند:
سطح تماس زیاد کریستال‌های زئولیت موجود به‌عنوان کاتالیست
ساختار کریستالی
غلظت بالای سولفیدهیدروژن و دی‌اکسیدکربن در سوراخ‌های غربال به دلیل جذب سریع و کمبود آب
تکنولوژی‌های موجود برای جداسازی سولفیدکربنیل شامل شیرین‌سازی با آمین یا جاذب می‌باشد. درصورتی‌که سولفیدکربنیل تنها ناخالصی موجود در محصول پروپان باشد، شیرین‌سازی با جاذب اغلب اقتصادی‌تر است [2].
دی‌سولفیدکربن
دی‌سولفیدکربن اگرچه به‌خودی‌خود، خورنده نیست اما در حضور آب هیدرولیز شده و سولفیدهیدروژن تولید می‌کند و درنتیجه موجب خاصیت خورندگی محصول می‌شود.
مرکاپتان‌های نوع متیل و اتیل (CH3SH و C2H5SH)
مرکاپتان‌ها و محصولات حاصل از احتراق آن‌ها در صورت زیاد بودن باعث بوی بد محصولات نفتی سبک مانند گاز مایع و بنزین می‌شوند اما خاصیت خورندگی ندارند. مرکاپتان‌ها همچنین منشأ تشکیل صمغ‌ها هستند. غلظت مرکاپتان‌ها در محصولات نفتی بسته به مخزنی که نفت از آن برداشت‌شده و نیز نحوه توزیع سولفور در نفت خام متغیر است. مقادیر قابل‌توجهی از مرکاپتان‌ها از تجزیه سایر ترکیبات سولفور در خلال فرایندهای تقطیر و کراکینگ نفت، تولید می‌شوند [3].
برش پروپان تنها شامل متیل‌مرکاپتان می‌باشد و مقدار اتیل‌مرکاپتان موجود در آن بسیار کم است.
برش بوتان تنها شامل مرکاپتان‌های اتیل و متیل می‌باشد.
فرمول شیمیایی برای همه مرکاپتان‌ها R-SH می‌باشد که در آن R گروه هیدروکربن، S اتم سولفور و H اتم هیدروژن می‌باشد [4].
1-1-2- ناخالصی‌های فرعی و متحمل
سولفیدهای‌دی‌الکیل (RSR)
دی‌آلکیل‌ها در اثر واکنش بین مرکاپتان‌ها و اولفین‌ها تشکیل می‌شوند. این ترکیبات نامطلوب نیستند و تصفیه نمی‌شوند.
دی‌سولفیدها
منشأ تولید دی‌سولفیدها، اکسیداسیون مرکاپتان‌ها می‌باشد. این ترکیبات ازلحاظ حرارتی ناپایدار هستند و در دماهای بین 170-150 درجه سانتی‌گراد به مرکاپتان‌ها تجزیه می‌شوند.
عنصر سولفور
عناصر سولفور از اکسیداسیون سولفیدهیدروژن تولید می‌شوند:
H2S + 1/2 O2 ↔ H2O + S (1-2)
مخلوط سولفیدهیدروژن و گوگرد عنصری حتی در مقادیر کمتر از ppm 5/0 شدیداً خورنده است و باعث مردود شدن محصول در تست خوردگی می‌شود.
ترکیبات اکسیژن‌دار مانند اسیدهای نفتنیک
به‌غیراز موارد بسیار معدود، اسیدهای نفتنیک در برش‌های چگالیده با نقطه‌جوش نهایی کمتر از 160 درجه سانتی‌گراد حضور ندارند. در مقابل این ترکیبات در محصول گاز مایع به‌دست‌آمده از شکست حرارتی، حاضر هستند. حضور مبهم برش نفت سفید معمولاً با حضور اسیدهای نفتنیک گره‌خورده است. ترکیب این اسیدها با فلزات باعث تشکیل نمک‌هایی می‌گردد که ممکن است منجر به مسدود شدن فیلترها شوند. نمک‌های مذکور همچنین موجب تسریع تشکیل صمغ‌ها می‌شوند.
1-2- دلایل جداسازی ناخالصی‌های اصلی سولفور موجود در گاز مایع
متیل و اتیل مرکاپتان‌ها، سولفیدهیدروژن، سولفیدکربنیل و دی‌سولفیدکربن در صورت حضور در گاز مایع باید به دلایل زیر جداسازی شوند:
سولفیدکربنیل در حضور آب تمایل به هیدرولیز شدن و تولید سولفیدهیدروژن و دی‌اکسیدکربن دارد؛ بنابراین سولفیدکربنیل موجود در برش پروپان به‌منظور جلوگیری از خوردگی باید جداسازی شود.
سولفیدهیدروژن و مرکاپتان‌های C1 و C2 بسیار سمی هستند و دارای بوی بسیار بد و فراریت بالا می‌باشند. (نقطه‌جوش متیل‌مرکاپتان 6 درجه سانتی‌گراد و اتیل‌مرکاپتان 35 درجه سانتی‌گراد است). حضور این ناخالصی‌ها در گاز باعث بروز مشکلات اکولوژیکی در خلال انتقال، ذخیره‌سازی و به‌ویژه هنگام سرریز جریان هیدروکربنی می‌شود.
سولفیدهیدروژن و مرکاپتان‌های اتیل و متیل باعث خوردگی خط لوله و سیستم ذخیره‌سازی در خلال فرآیند تصفیه یا انتقال سیال، می‌شوند.
سولفیدهیدروژن و مرکاپتان‌های متیل و اتیل محلول در آب هستند (حلالیت متیل‌مرکاپتان در آب بالای 3 درصد حجمی است) و مشکلاتی را هنگام تصفیه آب پسماند تانک‌ها و واحدهای نمک‌زدایی ایجاد می‌کنند.
تجربه صنایع پالایش روسیه نشان می‌دهد که مرکاپتان‌ها در راکتورهای hydro treating نوع IB-180 ◦C باعث تشکیل سریع کک روی لایه کاتالیست می‌شوند. علت این پدیده سرعت بالای تجزیه حرارتی مرکاپتان‌ها در دماهای (2500-220) درجه سانتی‌گراد می‌باشد که قبل از ورود به راکتور صورت گرفته است [5].
بعضی از مرکاپتان‌های دارای نقطه‌جوش بالاتر موجود در برش بنزین با سایر ناخالصی‌ها واکنش داده و صمغ‌های غیر فرار تولید می‌کنند. این صمغ‌ها در داخل قسمت‌های مختلف موتور باقی می‌مانند [4].
جدول 1-1- حداکثر غلظت مجاز برای مرکاپتان‌های سبک و سولفیدهیدروژن [5]
نوع مرکاپتان فرمول شیمیایی نقطه‌جوش
(درجه سانتی‌گراد) MPCW.Z. (میلی‌گرم بر مترمکعب) MPCW.S. (میلی‌گرم بر مترمکعب) مقدار مجاز ازلحاظ بوی بد (میلی‌گرم بر مترمکعب)
متیل‌مرکاپتان CH3SH 6 8/0 9×10-6 2×10-5
اتیل‌مرکاپتان C2H5SH 36 1 3×10-5 6×10-5
ایزو پروپیل‌مرکاپتان I-C3H7SH 60 5/1 1×10-4 2×10-4
سولفیدهیدروژن H2S -61 10 8×10-3 2/1×10-5
1-3- روش‌های جداسازی ناخالصی‌های سولفور موجود در گاز مایع
برای جداسازی ناخالصی‌های گاز مایع، با توجه به نوع ناخالصی‌ها و مقدار آن‌ها روش‌های مختلفی وجود دارند. به‌طورکلی فرآیندهای سولفورزدایی از گاز مایع به دو دسته خشک و مرطوب تقسیم‌بندی می‌شوند.
فرآیندهای خشک شامل جاذب‌های احیاناپذیر، جاذب‌های احیاپذیر و جاذب‌های هیبریدی (ترکیبی از جاذب‌های احیاپذیر و احیاناپذیر) می‌شود.
فرآیندهای مرطوب شامل حلال‌های شیمیایی (آمین‌ها)، حلال‌های فیزیکی و حلال هیبریدی (ترکیبی از حلال‌های شیمیایی و فیزیکی) می‌شود.
در جدول (1-2) انواع جاذب‌ها و حلال‌های مورداستفاده برای شیرین‌سازی گاز مایع آورده شده است.
جدول 1-2- انواع جاذب‌ها یا حلال‌های مورداستفاده در فرآیندهای شیرین‌سازی گاز مایع
جاذب‌ها و کاتالیست‌های مورداستفاده در فرآیندهای خشک احیا‌پذیر جاذب‌های مورداستفاده در فرآیندهای خشک احیاناپذیر فرآیندهای مرطوب
اکسیدهای ترکیبی فلزات جامدات قلیایی حلال‌های شیمیایی حلال‌های فیزیکی حلال‌های هیبریدی (شیمیایی/ فیزیکی)
غربال‌های مولکولی اکسیدهای روی بهبودیافته هیدروکسیدسدیم جامد آمین‌های ترکیبی هیدروکسیدسدیم حلال‌های خانواده فلکسورب
مونو‌اتانول‌آمین آلومینای فعال اکسید آهن مانند آهن اسفنجی یا سولفاترت هیدروکسیدپتاسیم جامد دی‌اتانول‌آمین سلکسول LE-701
ژل سیلیکای فعال اکسیدهای ترکیبی دارای پایه اکسیدمس ترکیب از جامدات آلکالین شامل هیدروکسیدهای سدیم و پتاسیم جامد دی‌گلیکول‌آمین متانول سولفینول‌ام‌دی
دی‌ایزو‌پروپانول‌آمین حلال‌های شرکت DOW
کربن فعال اکسیدهای ترکیبی نیکل متیل‌دی‌اتانول‌آمین مورفری سرب اکسون
جدول (1-3) علاوه بر معرفی جاذب‌ها و حلال‌های مورداستفاده در صنایع شیرین‌سازی توانایی جاذب‌ها و حلال‌های مختلف را در جداسازی ناخالصی‌های سولفور ارائه می‌نماید.
جدول 1-3- توانایی جاذب‌ها و حلال‌های مختلف در جداسازی ناخالصی‌های سولفور
حلال یا جاذب توضیح توانایی جداسازی سولفیدهیدروژن توانایی جداسازی مرکاپتان‌ها و سولفیدکربنیل توانایی جداسازی انتخابی سولفیدهیدروژن امکان کاهش قدرت حلال
مونو‌اتانول‌آمین (MEA) حلال شیمیایی بله به‌طور نسبی خیر بله (توسط CO2 و COS و CS2)
دی‌اتانول‌آمین (DEA) حلال شیمیایی بله به‌طور نسبی خیر تا حدی (توسط CO2 و COS و CS2)
دی‌گلیکول‌آمین (DGA) حلال شیمیایی بله به‌طور نسبی خیر بله (توسط CO2 و COS و CS2)
متیل‌دی‌اتانول‌آمین (MDEA) حلال شیمیایی بله به‌طور نسبی بله خیر
آمین ترکیبی از نوع Dow's Gas Spec شامل MDEA/ DIPA حلال شیمیایی بله به‌طور نسبی بله خیر
آمین ترکیبی از نوع BASF's aMDEA حلال شیمیایی بله به‌طور نسبی بله خیر
آمین ترکیبی از نوع Exxon's Flexsorb دارای آمین پایه MDEA حلال شیمیایی بله به‌طور نسبی- سولفیدکربنیل را کاملاً حذف می‌کند. - خیر
آمین ترکیبی از نوع Union Carbide's Ucarsol دارای آمین پایه TEA حلال شیمیایی بله به‌طور نسبی - -
سلکسول (Selexol) حلال فیزیکی بله بله بله خیر
سود (هیدروکسیدسدیم) حلال فیزیکی بله بله بله خیر
سولفینول (Sulfinol) حلال هیبریدی بله بله اما نه کاملاً بله تا حدی توسط CO2 و CS2
حلال‌های شرکت DOW حلال هیبریدی بله بله (بازده بسیار بالا) بله -
حلال‌های خانواده فلکسورب Flexsorb SE or Felex sorb PS حلال هیبریدی بله بله اما نه تا مقدار زیر 30 ppm (برای برش گاز مایع) - -
غربال‌های مولکولی (Molecular Sieves) جاذب احیاپذیر بله بله (بازده بسیار بالا) بله -
آهن اسفنجی (اکسید آهن) (Iron Spange) جاذب احیاناپذیر بله به‌طور نسبی (بازده بسیار پایین) بله -
اکسیدهای روی بهبودیافته جاذب احیاناپذیر بله بله برای سولفیدکربنیل بله -
اکسیدهای ترکیبی دارای پایه اکسیدمس جاذب احیاناپذیر بله بله (بازده بسیار بالا) بله -
اکسیدهای ترکیبی دارای پایه اکسیدنیکل جاذب احیاناپذیر بله بله (بازده بسیار بالا) بله -
جامد قلیایی ترکیبی سافنولایم‌آرجی
(Sufnolime RG) جاذب احیاناپذیر بله به‌طور نسبی خیر -
هات‌پتاسیم‌بنفیلد
(Hot Potassium Benfield) جاذب احیاناپذیر قلیایی بله خیر خیر خیر
1-3-1- فرآیندهای خشک
فرآیندهای خشک بر اساس قابلیت احیای جاذب مورداستفاده به سه دسته احیاناپذیر، احیاپذیر و هیبریدی (ترکیبی از فرآیندهای احیاناپذیر و احیاپذیر) تقسیم می‌گردند که در ادامه هرکدام شرح داده می‌شوند.
1-3-1-1- فرآیندهای خشک احیاناپذیر
در این فرآیندها جداسازی سولفیدهیدروژن و مرکاپتان‌ها از جریان گاز توسط یک جاذب جامد و از طریق واکنش صورت می‌گیرد. اکثر این فرآیندها احیاناپذیر هستند اگرچه بعضی از آن‌ها قابلیت احیا نسبی دارند و در هر سیکل احیا، جاذب بخشی از فعالیت خود را از دست می‌دهد.
جاذب‌های احیاناپذیر شامل اکسیدهای فلزی، اکسیدهای ترکیبی فلزات و جامدات قلیایی می‌باشند.
در فرآیندهای احیاناپذیر دارای جاذب اکسید فلزی به دلیل اینکه مبنای فرآیند واکنش اکسیداسیون می‌باشد، ناخالصی‌های سولفوری که امکان اکسیده شدن در شرایط فرآیند را ندارند به این روش جداسازی نمی‌شوند. در این فرآیندها، گاز شور به درون بستر از گرانول‌های جاذب (اکسید فلزی) فرستاده می‌شود که این گرانول‌ها معمولاً با ناخالصی سولفور به‌ویژه سولفیدهیدروژن واکنش داده و سولفید فلزی پایدار تولید می‌کنند. تشکیل سولفید فلزی در جاذب یک واکنش غیرقابل‌برگشت است که ما را از یک محصول تصفیه‌شده با خلوص بالا مطمئن می‌سازد.
جاذب مصرف‌شده ممکن است بازیافت شود و یا اینکه به‌عنوان زباله بی‌خطر دور ریخته شود. اگرچه واکنش جاذب با ناخالصی‌های گوگردی تحت تأثیر فشار نمی‌باشد اما در دماهای بالا بهتر انجام می‌شود. بنابراین به دلیل افزایش فعالیت جاذب با ازدیاد دما، بسترهای جاذب معمولاً در پایین‌دست کمپرسورها نصب می‌شوند.
در فرآیندهای دارای قابلیت احیا نسبی، سولفید فلزی تشکیل‌شده قادر است که با اکسیژن واکنش داده و درنتیجه سولفور عنصری به همراه اکسید فلزی احیاشده تولید کند. بنابراین این نوع از فرآیندهای خشک شیرین‌سازی دو دسته‌اند. در یک دسته در اثر واکنش اکسیداسیون، سولفور تولیدشده و در دسته دیگر اکسیدهای سولفوری تولید می‌شوند. فرآیندهای خشک سولفورزدایی با جاذب، بسیار ساده و تمیز هستند. جاذب مصرف‌شده (سولفید فلزی) ممکن است برای بازیافت فلز فروخته شود و درنتیجه هزینه‌های انهدام مواد مصرف‌شده و زائد کاهش‌یافته یا حذف می‌شود.
برای ظرفیت‌های سولفورزدایی بالا و در مقیاس صنعتی، استفاده از اکسیدهای فلزی بهبودیافته ضروری می‌باشد. همچنین به‌منظور جداسازی ناخالصی‌های سولفور آلی که دارای فعالیت کمتری هستند مانند مرکاپتان‌ها و نیز انجام فرآیند در دماهای عملیاتی پایین‌تر از 120 درجه سانتی‌گراد باید از اکسیدهای فلزی ترکیبی که شامل فلزاتی نظیر روی، مس، منگنز، آلومینیم، سرب، نقره و آهن هستند استفاده کرد [6].
اکسیدروی فعال بهبودیافته، اکسید آهن، اکسیدهای دارای پایه نیکل، اکسیدهای دارای پایه مس، اکسیدهای ترکیبی مس و روی، ترکیبی از اکسیدهای مس و روی درون پوشش آلومینا و نیز ترکیبی از اکسیدهای روی و مس و آلومینا به شکل قرص انواعی از جاذب‌های صنعتی هستند که امروزه بکار می‌روند.
جاذب‌های ترکیبی اکسیدهای فلزی، مانند آنچه ذکر شد، قادر به سولفورزدایی در دماهای پایین بوده (پایین‌تر از 120 درجه سانتی‌گراد) و فرمولاسیون آن‌ها به‌گونه‌ای است که دارای سطح‌فعال وسیعی هستند [7 و 1].
در فرآیندهای احیاناپذیر دارای جاذب جامد قلیایی، از جاذب‌های هیدروکسیدی، نظیر آنچه در فرآیندهای گاز با سودسوزآور به کار می‌رود، استفاده می‌شود. شکل بهبودیافتۀ جامدهایی که پایه قلیایی دارند مانند نوع سافنولایم‌آرجی که مخلوطی از هیدروکسیدها در یک جامد دانه‌ای می‌باشد، قادر است سولفیدهیدروژن، دی‌اکسیدکربن، سولفیدکربنیل، دی‌اکسیدگوگرد و ترکیبات گوگرددار آلی را حذف کند اما توانایی آن بیشتر در حذف سولفیدهیدروژن و دی‌اکسیدکربن است. بستر پرشده در میان دو‌لایه از ساچمه سرامیکی در بالا و پایین نگه‌داشته می‌شود و جهت جریان به سمت بالاست.
در این فرآیند واکنش‌های زیر صورت می‌گیرد:
2NaOH+H2S⟶Na2S+2H2O (1-3)
Ca(OH)2+CO2⟶CaCO3+H2O (1-4)
سافنولایم‌آرجی علاوه بر سولفیدهیدروژن، دی‌اکسیدکربن را حذف می‌کند. نوع دیگری از جاذب‌های جامد قلیایی، هیدروکسید‌پتاسیم جامد می‌باشد. هیدروکسید‌پتاسیم جامد، به‌عنوان باز جامد قادر به جداسازی تنها مقادیر کم سولفیدهیدروژن، سولفیدکربنیل و مرکاپتان‌ها از جریان پروپان و گاز مایع است و زمانی کاربرد دارد که شیرین‌سازی مقادیر کم پروپان ترش در عملیات ناپیوسته مدنظر باشد. چون ماده مورداستفاده در این فرآیندها یک نوع باز غیرقابل احیا می‌باشد. ممکن است پسماند آن موجب بروز مشکلاتی گردد [7].
1-3-1-2- فرآیندهای خشک احیاپذیر
جاذب‌هایی که در فرآیندهای خشک احیاپذیر بکار می‌روند عبارتند از غربال‌های مولکولی. در بعضی موارد در کنار غربال‌های مولکولی از آلومینای فعال، سیلیکاژل، کربن فعال و غیره به‌عنوان کاتالیست هیدرولیز استفاده می‌شود. غربال‌های مولکولی به‌عنوان جاذب‌های احیاپذیر طی سی سال اخیر کاربردهای بسیاری داشته‌اند. این انواع از جاذب‌ها علاوه بر جداسازی سولفیدهیدروژن و دی‌اکسیدکربن قادر به جداسازی ترکیبات سولفور آلی مانند سولفیدکربنیل، دی‌سولفیدکربن و مرکاپتان‌های سبک با بازده بالا می‌باشند. این جاذب‌ها معمولاً برای حذف آب از جریان‌های گازی فشار بالا و حذف مرکاپتان‌ها به همراه دیگر آلاینده‌ها از محصولات هیدروکربنی سبک به کار می‌روند و عموماً در مواردی استفاده می‌شوند که خلوص بسیار بالای محصول موردنیاز است؛ بنابراین درصورتی‌که از غربال‌های مولکولی مناسب استفاده گردد، امکان رطوبت‌زدایی و شیرین‌سازی گاز مایع در یک مرحله وجود دارد و محصولی با مشخصات رطوبتی و سولفور موردنیاز تولید خواهد شد که تست خوردگی را نیز برای سولفورهای فرار با موفقیت طی می‌کند.
به‌طورکلی رطوبت‌زدایی توسط غربال‌های مولکولی 3 و 4 انگستروم انجام می‌شود درحالی‌که حذف دی‌اکسیدکربن و ترکیبات گوگردی با غربال‌های مولکولی بزرگ‌تر از 5 انگستروم صورت می‌گیرد.
یکی از تکنولوژی‌های شیرین‌سازی برش‌های هیدروکربنی با استفاده از غربال‌های مولکولی تکنولوژی زئوکم می‌باشد. شرکت زئوکم معمولاً صدها تن در سال غربال مولکولی را برای موارد شیرین‌سازی مختلف در سرتاسر جهان، در مقیاس‌های بزرگی چون پالایشگاه، کارخانجات گاز و غیره تا مقیاس‌های کوچک تأمین می‌کند و تجربه زیادی در این زمینه دارد. این شرکت بر اساس مطالعات انجام‌شده بر روی فرآیندهای صنعتی و با تکیه‌بر نتایج آزمایشات صورت گرفته پارامترهای عملیاتی فرآیندهای شیرین‌سازی با غربال‌های مولکولی را ازلحاظ اقتصادی بهینه‌سازی نموده است. در بسیاری از موارد شیرین‌سازی برش‌های هیدروکربنی مایع سبک مدنظر که دارای ناخالصی‌های مرکاپتانی هستند. با توجه به اینکه سینتیک جذب در فاز مایع بسیار کندتر از سینتیک جذب در فاز گاز است، طبیعتاً بهره‌برداری از غربال‌های مولکولی برای شیرین‌سازی گاز مایع مشکل‌تر می‌باشد. درزمینهی افزایش سرعت جذب یا به‌عبارت‌دیگر افزایش ظرفیت غربال‌های مولکولی نیز، تکنولوژی زئوکم پیشرفت‌های زیادی داشته است و برای مثال ظرفیت جذب غربال‌های مولکولی برای جداسازی ناخالصی‌های گوگردی موجود در گاز مایع مانند مرکاپتان‌ها در حدود 13 الی 20 درصد افزایش‌یافته است.
همان‌گونه که قبلاً ذکر شد غربال‌های مولکولی احیاپذیر هستند و روش احیاء بستر غربال‌های مولکولی در هر دو مورد شیرین‌سازی گاز طبیعی یا گاز مایع مشابه است. معمولاً مقدار کمی از گاز طبیعی یا گاز مایع شیرین شده برای حرارت دادن و احیاء بستر به کار می‌رود. در فرآیند شیرین‌سازی گاز مایع مراحل پر کردن و تخلیه بستر از گاز مایع احیاء کننده به مراحل فرآیندی احیاء بستر اضافه می‌شود [10 و 9 و 8].
مزایای فرآیندهای خشک احیاپذیر به شرح زیر است:
فرآیندهای شیرین‌سازی با غربال مولکولی، ترکیبات گوگردی مانند سولفیدهیدروژن، سولفیدکربنیل و مرکاپتان‌ها را به‌طور گزینشی حذف می‌نماید.
در صورت استفاده از غربال مولکولی امکان رطوبت‌زدایی و شیرین‌سازی گاز طبیعی یا گاز مایع به‌طور همزمان وجود دارد.
در صورت زیاد بودن سولفیدکربنیل در برش هیدروکربنی پروپان، می‌توان با نصب یک بستر کاتالیستی هیدرولیز که تبدیل‌کننده سولفیدکربنیل به سولفیدهیدروژن و دی‌اکسیدکربن است، در بالادست بستر غربال مولکولی مقدار جداسازی سولفیدکربنیل را افزایش داد.
با افزایش تعداد دفعات احیاء بستر می‌توان ظرفیت گوگردزدایی را افزایش داد.
در کارخانه‌ای که دارای واحد غربال مولکولی برای رطوبت‌زدایی است و برای گوگردزدایی از روش‌های دیگری مانند حلال‌های فیزیکی استفاده می‌شود، در صورت نیاز با جایگزین کردن غربال‌های مولکولی رطوبت‌زدایی با انواعی که قادر به گوگردزدایی نیز هستند، ناخالصی‌های سولفور باقیمانده در محصول شیرین شده را می‌توان تا مقادیر بسیار پایین‌تر وزنی و حتی تا زیر ppm 5 وزنی کاهش داد.
1-3-1-3- فرآیندهای خشک هیبریدی
فرآیندهای هیبریدی مانند سلکسورب نوعی از فرآیندهای احیاناپذیر هستند که از فرآیندهای خشک احیاپذیر و احیاناپذیر توأماً استفاده می‌کنند، در این فرآیندها پس از بسترهای جاذب احیاناپذیر، بستری از غربال‌های مولکولی استاندارد درجه (4A) مانند Zeochem's 24-01 به‌منظور خشک‌کردن و حذف CO2 به کار می‌رود.
فرآیندهای هیبریدی دارای مزایای ذیل هستند:
با افزایش تعداد دفعات احیاء، امکان جداسازی بیشتر ترکیبات گوگردی وجود دارد.
همچنین گاز احیاء کننده می‌تواند دوباره به کار رود بنابراین فرآیند در تمام موارد اقتصادی است. علت امکان استفاده مجدد از گاز احیاء کننده غربال‌های مولکولی آن است که این غربال‌ها فقط برای رطوبت‌زدایی و حذف دی‌اکسیدکربن به‌کاررفته‌اند.
هزینه‌های عملیاتی طولانی‌مدت آن در مقایسه با دیگر فرآیندهای خشک پایین‌تر است.
عیب فرآیندهای هیبریدی آن است که چون پیچیده می‌باشند و بستر جاذب گوگرد باید هر 6 ماه یا در مورد مقادیر بالای گوگرد حتی سریع‌تر تعویض شود، هزینه‌های سرمایه‌گذاری برای تجهیزات بالاست.
1-3-2- فرآیندهای مرطوب
فرآیندهای مرطوب که البته احیاپذیر هستند، با کمک حلال‌های فیزیکی (مانند سود)، حلال‌های هیبریدی (فیزیکی- شیمیایی) یا حلال‌های شیمیایی (آمین‌ها) انجام می‌شوند.
حلال‌های فیزیکی مانند سود (هیدروکسیدسدیم)، سلکسورب و غیره برای جداسازی مرکاپتان‌ها و ترکیبات گوگردی سنگین‌تر و نیز مقادیر کم سولفیدهیدروژن و دی‌اکسیدکربن به کار می‌روند. حلال فیزیکی هیدروکسیدپتاسیم نیز در جداسازی سولفیدهیدروژن و متیل‌مرکاپتان از گاز مایع مؤثر می‌باشد.
حلال‌های شیمیایی یا آمین‌ها قادر به جداسازی سولفیدهیدروژن و دی‌اکسیدکربن از جریان گاز می‌باشند و برای جداسازی ترکیبات گوگردی سنگین‌تر مانند مرکاپتان‌ها، آمین‌ها به‌اندازه کافی قوی نیستند که بتوانند تمام مرکاپتان‌های اتیل و متیل را از جریان گاز مایع حذف کنند. درنتیجه حلال‌های شیمیایی (آمین‌ها) زمانی برای شیرین‌سازی جریان‌های گازی به کار می‌روند که ناخالصی‌های اصلی موجود و مشکل‌زا، سولفیدهیدروژن و دی‌اکسیدکربن باشند. اگرچه حلال‌های فیزیکی مقادیر بسیار زیاد مرکاپتان را از جریان گاز مایع جداسازی می‌کنند و از این نظر از حلال‌های شیمیایی (آمین‌ها) قوی‌تر هستند اما در عوض حلالیت فاز هیدروکربنی در حلال‌های فیزیکی بیشتر از حلالیت آن در حلال‌های شیمیایی است.
حلال‌های هیبریدی عملکردی مابین عملکرد حلال‌های شیمیایی (آمین‌ها) و حلال‌های فیزیکی دارند. حلال‌های هیبریدی این توانایی را دارند که در عین جداسازی مرکاپتان‌ها و برخی دیگر از ترکیبات آلی، مقادیر کمتری از برش هیدروکربنی را در مقایسه با حلال‌های فیزیکی در خود جذب ‌کنند. البته نباید فراموش کرد که ازلحاظ جداسازی مرکاپتان‌ها حلال‌های هیبریدی بازده حلال‌های فیزیکی را ندارند اما از حلال‌های آمینی قوی‌تر هستند [12 و 11 و 3].
1-3-2-1- سولفورزدایی با حلال‌های شیمیایی (آمین‌ها)
حلال‌های آمینی دهه‌هاست که برای جداسازی سولفیدهیدروژن و دی‌اکسیدکربن از برش‌های مختلف گاز استفاده می‌شوند؛ اما بازده آن‌ها در حذف مرکاپتان چندان مطلوب نیست. ازآنجاکه مرکاپتان‌ها نسبت به سولفیدهیدروژن یا دی‌اکسیدکربن اسیدهای بسیار ضعیف‌تری هستند، تنها به میزان کمی با آمین‌ها واکنش می‌دهند و به همین دلیل برای حذف مؤثر مرکاپتان‌های بازهای قوی‌تری چون محلول‌های سودسوزآور موردنیاز هستند [11].
روش‌های اولیه طراحی واحدهای شیرین‌سازی گاز با آمین طی سالیان متمادی اصلاح‌شده‌اند و اصلاح این روش‌ها با گذشت زمان و کسب تجربیات بیشتر همچنان ادامه دارد.
فرآیندهای آمینی تصفیه گاز مایع و تصفیه گاز طبیعی مشابه هستند چراکه در هر دو مورد یک فاز هیدروکربنی با چگالی پایین (مایع یا گاز) با یک فاز مایع سنگین‌تر و غیرقابل امتزاج (محلول آبی الکالونامین) تماس برقرار می‌کند. CO2، H2S و COS از فاز هیدروکربنی به فاز آبی منتقل می‌شوند و در آنجا با آمین واکنش می‌دهند. آمین مصرف‌شده، بازیافت شده و به سیستم بازگردانده می‌شود. در واحدهای تصفیه گاز، به دلیل حجم زیاد گاز موجود و ظرفیت محدود گاز در حالت طغیان کرده، فاز گاز معمولاً (نه همیشه) فاز پیوسته است؛ اما در مورد گاز مایع اگرچه دبی حجمی فاز هیدروکربن نسبتاً پایین است اما به‌هرحال دبی آن بالاتر از دبی حجمی فاز آمین است و در طراحی فرآیند هر یک از فازهای آمین یا هیدروکربن ممکن است به‌عنوان فاز پیوسته در نظر گرفته شوند [3].
آمین‌های متداول در شیرین‌سازی عبارتند از مونو‌اتانول‌آمین (MEA)، دی‌اتانول‌آمین (DEA)، دی‌اتیلن‌گلیکول‌آمین (DGA)، دی‌ایزو‌پروپانول‌آمین (DIPA) و متیل‌دی‌اتانول‌آمین (MDEA). همچنین آمین‌هایی ترکیبی که مخلوطی از چندین آمین با برخی افزودنی‌ها هستند در صنایع به کار می‌روند که بسیار مؤثرتر از متیل‌دی‌اتانول‌آمین به‌تنهایی هستند. این آمین‌های ترکیبی معمولاً دارای آمین پایه و سه‌تایی متیل‌دی‌اتانول‌آمین (MDEA) یا تری‌‌اتانول‌آمین (TEA) می‌باشند و آمین‌های دیگری نظیر مونو‌اتانول‌آمین یا دی‌‌‌ایزو‌پروپانول‌آمین به آن‌ها افزوده می‌شوند تا آمین ترکیبی ساخته شود. آمین‌های ترکیبی علاوه بر جداسازی سولفیدهیدروژن و دی‌اکسیدکربن قادر به جداسازی ترکیبات سولفور آلی نظیر سولفیدکربنیل و دی‌سولفیدکربن نیز می‌باشند.
حلال آمینی مناسب بر اساس نوع و مقدار ترکیبات اسیدی و همچنین مشخصات گاز تعیین می‌شود. تفاوت عمده در کاربرد حلال‌های آمینی مختلف، تفاوت در غلظت محلول، میزان جذب، نقطه‌جوش و تجزیه‌پذیری هر یک از آن‌هاست.
مونو‌اتانول‌آمین (MEA) معمولاً به میزان 10 تا 20 درصد وزنی در محلول آبی به کار می‌رود. دی‌اتانول‌آمین (DEA) نیز به میزان 10 تا 30 درصد وزنی در محلول آبی استفاده می‌شود. دی‌‌ایزو‌پروپانول‌آمین (DIPA)، دی‌اتیلن‌گلیکول‌آمین (DGA) و متیل‌دی‌اتانول‌آمین (MDEA) در غلظت‌های بالاتر به کار می‌روند. محدوده غلظتی که برای دی‌ایزو‌پروپانول‌آمین و متیل‌دی‌اتانول‌آمین به کار می‌رود معمولاً 30 تا 50 درصد وزنی در محلول آبی است.
پالایشگاه‌های قدیمی گوگردزدایی از گاز طبیعی عمدتاً از حلال‌های مونو‌اتانول‌آمین و دی‌اتانول‌آمین استفاده می‌کردند [13 و 12].
1-3-2-2- سولفورزدایی با حلال‌های فیزیکی
از حلال‌های فیزیکی برای حذف ترکیبات گوگردی مانند سولفیدکربنیل، دی‌سولفیدکربن، دی‌متیل‌دی‌سولفاید، متیل‌مرکاپتان، اتیل‌مرکاپتان و پروپیل مرکاپتان‌ها استفاده می‌شود. برخی ناخالصی‌های گوگردی، مانند مرکاپتان‌ها در آب به‌راحتی یونیزه نشده و اسید تولید نمی‌کنند یا اصطلاحاً مانند سولفیدهیدروژن فعال نیستند، درنتیجه حلال‌های آمینی قادر به جداسازی آن‌ها نمی‌باشند. برای جداسازی این ناخالصی‌ها از طریق روش‌های مرطوب باید از یک حلال فیزیکی استفاده کرد.
حلال‌های فیزیکی دارای فراریت کم، ویسکوزیته پایین تا متوسط، نقطه‌جوش بالا و پایداری شیمیایی و حرارتی بسیار خوبی می‌باشند.
حلالیت ناخالصی‌های سولفیدهیدروژن، دی‌اکسیدکربن، متیل‌مرکاپتان، دی‌سولفیدکربن و دی‌اکسیدگوگرد در حلال‌های فیزیکی بهتر از حلالیت متان، اتان، مونوکسیدکربن، هیدروژن، نیتروژن و اکسیژن در این حلال‌ها می‌باشد اما هیدروکربن‌های سنگین‌تر و آب نیز در این حلال‌ها حل می‌شوند؛ بنابراین حلال‌های فیزیکی به دلیل تفاوت حلالیت مواد مختلف در آن‌ها یک یا چند جزء از ناخالصی‌های موجود در جریان گاز را به‌طور گزینشی جذب می‌کنند [12].
تمایل حلال‌های فیزیکی برای جذب ترکیبات اسیدی باید بیش از تمایل آن‌ها برای جذب هیدروکربن‌ها باشد. این امر از طریق کنترل نحوه توزیع حلال و نیز کنترل آب موجود در آن و شرایط عملیاتی، امکان‌پذیر می‌گردد.
پس از بررسی تأثیر پارامترهای عملیاتی مختلف در محدود ساختن هم‌جذبی هیدروکربن‌ها به همراه ناخالصی‌ها توسط حلال فیزیکی، دبی حلال فیزیکی به‌عنوان مؤثرترین عامل شناخته‌شده است. با کاهش دبی حلال، جذب هیدروکربن‌های پروپان و بوتان توسط حلال حداقل می‌شود درحالی‌که جذب مرکاپتان‌ها توسط حلال در حد عالی حفظ می‌شود. علت این امر حلالیت کمتر پروپان و بوتان در حلال در مقایسه با حلالیت زیاد ناخالصی‌ها می‌باشد.
برخی طراحی‌های فرآیند از سیستم‌های اختلاط شدیدی استفاده می‌کنند که فازهای سود هیدروکربن را امولسیون می‌کند. در این موارد یک فیلتر شنی یا تجهیز شستشو دهنده با آب، قطرات آبی به دام افتاده در فاز روغنی را از محصول هیدروکربن جدا می‌کند. در فرآیندهای مدرن تماس میان فازها بدون نیاز به اختلاط انجام‌شده و درنتیجه بدون نیاز به مراحل پاک‌سازی ذکرشده فازها به‌خوبی از یکدیگر جدا می‌شوند [14].
1-3-2-2-1- حلال فیزیکی سلکسول
حلال سلکسول یک حلال فیزیکی و البته احیاپذیر است که قادر به حذف گزینشی یا ترکیبی ناخالصی‌هایی چون CO2، H2S، COS، CS2 و H2O و مرکاپتان‌ها از جریان‌های مختلف گاز طبیعی یا سنتزی می‌باشد.
ازجمله خصوصیات این حلال، نیاز به انرژی احیای اندک (احیاء اغلب با پایین آوردن فشار انجام می‌شود)، پایداری شیمیایی و حرارتی (حتی با اکسیژن)، خورندگی پایین، خاصیت ضد کف زایی و میزان پایین اتلاف حلال حین تصفیه گاز می‌باشد.
در جدول (1-4) حلالیت نسبی گازهای مختلف در حلال فیزیکی سلکسول آورده شده است. همان‌گونه که در این جدول مشخص می‌باشد، قابلیت انحلال ناخالصی‌های CO، COS، H2S، CS2 و مرکاپتان‌ها، حلال را برای کاربردهای وسیع تصفیه گاز مؤثر می‌سازد. آب نیز به‌راحتی توسط این حلال جذب می‌شود و درنتیجه امکان شیرین‌سازی همزمان با رطوبت‌زدایی از جریان گاز وجود دارد [15].
جدول 1-4- حلالیت نسبی گازهای مختلف در حلال سلکسول [16]
نوع ماده حلالیت در حلال سلکسول نوع ماده حلالیت در حلال سلکسول نوع ماده حلالیت در حلال سلکسول
هیدروژن 2/0 نیتروژن 3/0 مونوکسیدکربن 43/0
متان 0/1 اتان 5/6 اتیلن 2/7
دی‌اکسیدکربن 2/15 پروپان 4/15 ایزوبوتان 0/28
نرمال بوتان 0/36 سولفیدکربنیل 0/35 ایزوپنتان 0/68
استیلن 0/68 آمونیاک 73 نرمال‌پنتان 83
سولفیدهیدروژن 134 هگزان 167 متیل‌مرکاپتان 340
هپتان 360 دی‌سولفیدکربن 360 دی‌اکسید‌گوگرد 1400
بنزن 3800 آب 11000 با توجه به جدول (1-4) حلالیت زیاد مرکاپتان‌ها، سولفیدهیدروژن، سولفیدکربنیل و دیگر ترکیبات گوگردی در حلال نسبت به حلالیت کم اتان، متان، پروپان و تا حدی بوتان (حلالیت متیل‌مرکاپتان تقریباً 10 برابر بوتان است)، این حلال را برای شیرین‌سازی گاز طبیعی و برش پروپان مایع مناسب می‌سازد.
هم‌جذبی هیدروکربن‌های سنگین‌تر از پروپان نیاز به ملاحظات بیشتر در ارزیابی بازده حلال سلکسول و طراحی فرآیند دارد. این حلال قادر است که ناخالصی‌های گوگرد موجود در گاز طبیعی را به مقادیری کمتر از ppm 16 و مقدار دی‌اکسیدکربن موجود را به مقادیر کمتر از ppm 2000 برساند و گاز طبیعی شیرینی با نقطه شبنم گاز و نقطه شبنم آب مطلوب تولید نماید [15].
1-3-2-2-2- محلول‌های سودسوزآور
مدت زیادی است که در صنعت پالایش فرآورده‌های هیدروکربنی مایع، از محلول‌های سودسوزآور برای استخراج ناخالصی‌های اسیدی مانند سولفیدهیدروژن، مرکاپتان‌ها و سایر ترکیبات گوگرددار آلی استفاده می‌شود. هنوز هم فرآیندهای شیرین‌سازی با استفاده از حلال سودسوزآور پرطرفدارترین بین فرآیندهای مرطوب می‌باشند. حلال فیزیکی سودسوزآور درصورتی‌که به‌درستی بازیافت و تصفیه شود، هیچ‌گونه پسماند مضر و خطرناکی را به وجود نیاورده و مورد تأیید قوانین زیست‌محیطی نیز می‌باشد. گازهای پالایشگاهی، گاز مایع و نفتای سبک اغلب در سراسر جهان توسط حلال فیزیکی سود تصفیه می‌شوند. اگرچه پیش از فرآیند شستشو با سود ناخالصی‌های سولفیدهیدروژن و دی‌اکسیدکربن باید توسط حلال‌های آمینی یا جاذب‌های خشک جداسازی شده باشند.
سود استفاده‌شده در فرآیندهای شیرین‌سازی گاز مایع که غنی از مرکاپتان است، در یک سیستم تصفیه کاتالیستی بازیافت می‌شود [14].
متأسفانه، ترکیبات گوگردی موجود در برش‌های هیدروکربنی سنگین مانند نفتای سنگین، سوخت جت و دیزل نمی‌توانند با سود استخراج شوند و محلول‌های سود در این زمینه‌ تنها برای تبدیل مرکاپتان‌های بدبو و خورنده به روغن‌های دی‌سولفید مجاز بکار می‌روند.
با توجه به مطالب ذکرشده، حلال سود در صنایع پالایش برای حذف ترکیبات گوگردی از برش‌های هیدروکربنی سبک و یا اکسایش مرکاپتان‌های موجود در برش‌های سنگین‌تر به کار می‌رود.
در خلال فرآیندهای شیرین‌سازی برش‌های سنگین با سود محصولات جانبی آلی‌ای نظیر سود فنولی و محلول‌های سود نفتنی تولید می‌شوند که بایستی هنگام طراحی واحد تصفیه در نظر گرفته شوند. بخشی از فنول‌ها موجود در بنزین‌های حاصل از شکست به‌طور اتفاقی با حلال فیزیکی سود استخراج می‌شوند. محلول‌های سود فنولی و نفتنی ممکن است فروخته شوند یا به‌گونه‌ای مناسب در واحد به کار روند [14].
مزایای حلال فیزیکی سود‌سوزآور به شرح زیر است:
در میان حلال‌های فیزیکی، سود یکی از ارزان‌ترین بازهای غیرآلی موجود در صنایع پالایش هیدروکربن‌ها می‌باشد. در طولانی‌مدت قیمت سود با سرعت اندکی کمتر از تورم افزایش‌یافته است.
در واحدهای فرآیندی، پمپ کردن و کنترل سود آسان است. در دماهای عملیاتی زیر 93 درجه سانتی‌گراد، لازمه متالوژی معمولاً کربن استیلی است که هزینه پایینی می‌برد.
در مقایسه با فرآیندهای خشک احیاپذیری که در آن‌ها از غربال‌های مولکولی استفاده می‌شود، هزینه‌های سرمایه‌گذاری و عملیاتی فرآیندهای مرطوب استفاده‌کننده از سودسوزآور 80 الی 90 درصد پایین‌تر است. فرآیندهای شیرین‌سازی گاز مایع با سود در مقایسه با غربال‌های مولکولی نه‌تنها ارزان‌تر هستند بلکه اطمینان از حصول محصولی با مشخصات موردنظر در صورت استفاده از سود بیشتر است.
سود مصرف‌شده برای شیرین‌سازی برش هیدروکربنی سبک گاز مایع به‌راحتی توسط یک فرآیند اکسیداسیون کاتالیستی احیاشده و به برج استخراج مرکاپتان‌ها برگردانده می‌شود. ازآنجاکه سود در هیدروکربن‌ها محلول نیست، جداسازی کامل فازها می‌تواند در واحدی که به‌خوبی طراحی‌شده است، به دست آید.
در مقایسه با دیگر مواد شیمیایی مورداستفاده در صنایع پالایش و پتروشیمی، سود حین ذخیره، انتقال و در ارتباط با پرسنلی که با آن سروکار دارند، ایمنی بیشتری دارد و مقررات ایمنی مرتبط با سودسوزآور به‌سختی مقررات وضع‌شده برای مواد شیمیایی دیگر موجود در پالایشگاه‌ها مانند سولفیدهیدروژن، آمین‌ها، آمونیاک گازی، اسیدسولفوریک و اسیدهیدروفلوریک و غیره نمی‌باشد [14].
1-3-2-3- سولفورزدایی با حلال‌های هیبریدی
حلال‌هایی که به‌عنوان حلال «هیبریدی» دسته‌بندی می‌شوند، ترکیبی از حلال‌های شیمیایی و فیزیکی می‌باشند. این حلال‌ها معمولاً شامل (30- 20) درصد وزنی آب، (60- 40) درصد وزنی آمین و (40- 10) درصد وزنی حلال فیزیکی می‌باشند [14]. ترکیب آمینی مورداستفاده در حلال‌های هیبریدی معمولاً متیل‌دی‌اتانول‌آمین (MDEA) یا دی‌ایزو‌پروپانول‌آمین (DIPA) می‌باشد.
حلال‌های هیبریدی عملکردی مابین عملکرد حلال‌های شیمیایی (آمین‌ها) و حلال‌های فیزیکی دارند. اگرچه حلال‌های فیزیکی مقادیر بسیار زیاد مرکاپتان را از جریان گاز مایع جداسازی می‌کنند و از این نظر از حلال‌های شیمیایی (آمین‌ها) قوی‌تر هستند اما در عوض حلالیت فاز هیدروکربنی در حلال‌های فیزیکی بیشتر از حلالیت آن در حلال‌‌های شیمیایی است. حلال‌های هیبریدی این توانایی را دارند که در عین جداسازی مرکاپتان‌ها و برخی دیگر از ترکیبات آلی، مقادیر کمتری از برش هیدروکربنی را در مقایسه با حلال‌های فیزیکی در خود جذب می‌کنند. البته نباید فراموش کرد که ازلحاظ جداسازی مرکاپتان‌ها حلال‌های هیبریدی بازده حلال‌های فیزیکی را ندارند اما از حلال‌های آمینی قوی‌تر هستند.
از انواع مختلف حلال‌های هیبریدی می‌توان از سولفینول حلال‌های اختصاصی ارائه‌شده توسط شرکت داو و حلال‌های هیبریدی فلکسورب نام برد.
به‌هرحال باوجود توانایی این حلال‌ها در جداسازی مرکاپتان‌ها، درصورتی‌که مقدار مجاز سولفور در محصول گاز مایع کمتر از 30 میلی‌گرم بر مترمکعب در محل دریافت محصول باشد. مقدار سولفور قبل از عملیات انتقال باید کمتر از 20 الی 25 میلی‌گرم بر مترمکعب باشد. در این صورت پس از بازیابی ترکیبات اسیدی توسط حلال‌های هیبریدی باید عملیات شیرین‌سازی تکمیلی نیز صورت گیرد تا مرکاپتان‌ها و سایر ترکیبات در صورت حضور در گاز مایع جداسازی شوند [11 و 9].
1-3-3- جمع‌بندی فرآیندهای شیرین‌سازی گاز مایع
حلال‌های آمینی مدت‌هاست که به‌عنوان حلال‌های شیمیایی مؤثر در جداسازی سولفیدهیدروژن و دی‌اکسیدکربن به‌کاررفته‌اند اما این حلال‌ها برای جداسازی مرکاپتان‌ها چندان مؤثر نیستند.
آمین‌های ترکیبی علاوه بر جداسازی سولفیدهیدروژن و دی‌اکسیدکربن قادر به جداسازی ترکیبات سولفور آلی نظیر سولفیدکربنیل و دی‌سولفیدکربن نیز می‌باشند. حلال‌های آمینی معمولی سولفیدکربنیل را به میزان کافی جذب نمی‌کنند یا جذب سولفیدکربنیل به قیمت جذب همزمان هیدروکربن‌ها توسط آمین انجام می‌شود. حلال‌های ترکیبی مانند a MDEA متعلق به شرکت BASF می‌توانند مقدار سولفیدکربنیل زیادی را، تقریباً 99 درصد، جذب کنند درحالی‌که حلالیت کمی برای هیدروکربن‌ها دارند و این در‌حالیست که دبی حلال موردنیاز زیاد نیست. مطالعه بر روی این آمین‌ها برای افزایش قدرت آن‌ها در جداسازی مرکاپتان‌های موجود در گاز مایع (شامل متیل و اتیل مرکاپتان‌ها) و سایر ترکیبات آلی در حال انجام است.
مرکاپتان‌ها در مقایسه با سولفیدهیدروژن و دی‌اکسیدکربن اسیدهای بسیار ضعیف‌تری هستند واکنش آن‌ها با آمین‌ها بسیار کم انجام می‌شود. درنتیجه بازهای قوی‌تری مانند محلول‌های سود برای جداسازی مؤثر مرکاپتان‌ها به کار می‌روند.
حلال‌های هیبریدی در جذب مرکاپتان‌ها موفق‌تر از حلال‌های آمینی هستند اما درصورتی‌که محصولی با مشخصات سولفور زیر ppm 30 جرمی مدنظر باشد این حلال‌ها هم برای جداسازی مرکاپتان‌ها پاسخگو نیستند، اگرچه در جداسازی سولفیدهیدروژن، دی‌اکسیدکربن و ترکیبات گوگردی آلی نظیر دی‌سولفیدکربن و سولفیدکربنیل بازده بالایی دارند.
طراحی فرآیندهایی که از حلال‌های هیبریدی استفاده می‌کنند مانند فرآیندهای آمینی است؛ اما هزینه‌های سرمایه‌گذاری و نیازمندی‌های انرژی برای حلال‌های هیبریدی کمتر است و علت اصلی آن بازده بالای حلال هیبریدی در دبی‌های کمتر می‌باشد. در مقایسه با حلال‌های آمینی دبی حلال هیبریدی در حال چرخش 30 الی 50 درصد کمتر است.
غربال‌های مولکولی که احیاپذیر هم هستند، نیز قادر به جداسازی ترکیبات سولفور آلی و مرکاپتان‌ها هستند و البته این جاذب‌ها سولفیدهیدروژن و دی‌اکسیدکربن را نیز با بازده بالا جداسازی می‌کنند. غربال‌های مولکولی این مزیت را نیز دارا هستند که همزمان با فرآیند شیرین‌سازی، عمل رطوبت‌زدایی را نیز از جریان هیدروکربنی انجام می‌دهند.
از میان فرآیندهای خشک، ازلحاظ توانایی جداسازی ناخالصی‌ها، تنها فرآیندهای شیرین‌سازی توسط غربال‌های مولکولی قادر به رقابت با حلال‌های فیزیکی مثل سود هستند.
در مقایسه با فرآیندهای شیرین‌سازی مرطوب که در آن‌ها از حلال‌های فیزیکی نظیر سود استفاده می‌شود، استفاده از غربال‌های مولکولی نیازمند صرف هزینه‌های سرمایه‌گذاری بالایی بوده و هزینه‌های عملیاتی مربوط به احیاء بستر آن‌ها نیز زیاد می‌باشد.
در جدول (1-5) هزینه‌های عملیاتی و سرمایه‌گذاری به‌منظور شیرین‌سازی bpsd 10000 سوخت جت، برای فرآیند مرطوب سود و فرآیند خشک غربال‌های مولکولی باهم مقایسه شده است در مقایسه با فرآیند تصفیه توسط غربال‌های مولکولی، فرآیند شیرین‌سازی با سود نه‌تنها ارزان‌تر است بلکه امکان دستیابی به محصولاتی باکیفیت مطمئن‌تر ازلحاظ ناخالصی‌های گوگردی، بیشتر است.
جدول 1-5- هزینه‌های عملیاتی و سرمایه‌گذاری موردنیاز برای شیرین‌سازی pbsd 10000 سوخت جت توسط دو فرآیند شیرین‌سازی با سود و شیرین‌سازی با کمک غربال‌های مولکولی [14]
هزینه‌های سرمایه‌گذاری
(دلار آمریکا به ازای هر بشکه) هزینه‌های عملیاتی
(دلار آمریکا به ازای هر بشکه)
شیرین‌سازی با سود
(فرایند احیاپذیر) 100-200 0/0172 0/005 0/06 0/023
شیرین‌سازی با غربال‌های مولکولی
(فرایند احیاپذیر) 1500-2500 0/380 0/025 0/012 0/417
به‌هرحال توصیه می‌شود که پیش از مشخص کردن یک تکنولوژی خاص برای شیرین‌سازی گاز مایع یا برش‌های تشکیل‌دهنده آن، آنالیز کاملی برای تعیین میزان و انواع ترکیبات گوگردی، آب، دی‌اکسیدکربن و ترکیبات اولفینی مانند اتیلن، پروپیلن و بوتیلن در صورت وجود در برش پروپان یا بوتان انجام شود. این اطلاعات کمک می‌کند تا روشی بهینه برای برخورد با محصولات مختلف یا فروش آن‌ها در نظر گرفته شود.
فصل دوم:
فرآیند شیرین‌سازی گاز مایع با محلول فیزیکی سود
2-1- مقدمه
فرآیند شیرین‌سازی گاز مایع توسط محلول سود دارای حدود 50 سال سابقه در صنایع تصفیه گاز می‌باشد. به دلیل پیشرفت‌های صورت گرفته در فرآیند و کاتالیست شیرین‌سازی برش‌های گاز توسط سود، این فرآیند یکی از موفق‌ترین فرآیندهای تحت لیسانس شرکت‌های مذکور بوده است. علی‌رغم قوانین جدید که محدودکننده مقدار سولفور مجاز در محصول می‌باشند، فرآیند شیرین‌سازی با سود هنوز یکی از فرآیندهای کلیدی برای جداسازی مرکاپتان‌ها و یا شیرین‌سازی آن‌ها می‌باشد. در تمام انواع فرآیندهای مذکور، اکسیداسیون کاتالیستی مرکاپتان‌ها به دی‌سولفیدها در محیط بازی هیدروکسیدسدیم صورت می‌گیرد.
2-2- شرح فرآیند‌ مرکاپتان‌زدایی از گاز مایع

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

2-2-1- شرح فرآیند واحد استخراج پروپان
هدف این واحد حذف مرکاپتان‌ها و آب از پروپان است. خوراک ورودی، پروپان ترش از واحد 107 و محصولات، پروپان خشک (که به سمت واحد 147 هدایت می‌شود) و محلول کاستیک با مرکاپتان (که برای احیا به سمت واحد 113 هدایت می‌شود) می‌باشد.
در این واحد ترکیبات سولفور بخصوص مرکاپتان‌ها و آب موجود در جریان گاز ترش پروپان صادره از واحد 107 حذف می‌شود. بر اساس طراحی انجام‌شده از محلول کاستیک سودا با غلظت 15 تا %20 برای تصفیه پروپان ترش استفاده می‌شود و محلول سود پس از جذب مرکاپتان‌ها در واحد 113 دوباره تصفیه و بازیابی می‌شود و وارد سیکل می‌گردد. پروپان شیرین شده پس از خشک شدن برای ذخیره‌سازی به واحد 147 فرستاده می‌شود.
برای جداسازی مرکاپتان‌ها از پروپان در مرحله اول از فرآیند استخراج (extraction) استفاده می‌شود که در برجی به نام Extractor به‌صورت جریان متقابل با محلول کاستیک در تماس و انتقال جرم قرار می‌گیرد.
کاستیک از بالای سینی 15 و پروپان از پایین برج وارد می‌شوند. بعد از جداسازی مرکاپتان‌ها، پروپان از بالای برج خارج‌شده و در صورت داشتن کاستیک در یک settler شسته می‌شود و بعد از فیلتر شدن وارد خشک‌کننده شده و بعد از خشک شدن و آبگیری در خشک‌کننده‌ها دوباره فیلتر شده و جهت ذخیره‌سازی به واحد 147 ارسال می‌گردد. درصورتی‌که پروپان محصول واحد دارای کیفیت مناسب جهت ذخیره‌سازی نباشد از طریق یک پمپ به واحد 106 ارسال‌شده و به خط سراسری گاز می‌پیوندد.
جهت بازیابی خشک‌کننده‌ها از پروپان استفاده می‌گردد؛ بدین‌صورت که مقداری از پروپان وارد کوره شده و بعد از حرارت دادن تا C280 جهت خشک‌کردن ذرات مولکولی استفاده می‌شود.
همچنین به علت وجود COS همراه پروپان در این واحد بیش از % 90 از این ترکیبات در برج از گاز جدا می‌شود اما جهت جداسازی % 10 باقیمانده از COS از یک درام تمام‌کننده (finishing drum) با کاستیک % 7 استفاده می‌کنیم.
2-2-2- شرح فرآیند واحد استخراج بوتان
هدف این واحد حذف مرکاپتان‌ها، آب و CO2 از بوتان است. خوراک ورودی، بوتان ترش از واحد 107 و محصولات، بوتان خشک (که به سمت واحد 148 هدایت می‌شود) و محلول کاستیک با مرکاپتان (که به سمت واحد 113 هدایت می‌شود) می‌باشد.
بر اساس طراحی انجام‌شده، از محلول کاستیک (NaOH) با غلظت 15 تا %20 برای تصفیه بوتان ترش استفاده می‌گردد و محلول سود پس از جذب مرکاپتان‌ها در واحد 113 دوباره تصفیه و بازیابی می‌شود و وارد سیکل می‌گردد و بوتان شیرین شده پس از خشک شدن جهت ذخیره‌سازی به سمت واحد 148 هدایت می‌شود.
جهت جداسازی مرکاپتان‌ها از بوتان در مرحله اول از فرآیند استخراج استفاده می‌شود که در برجی به نام Extractor گاز بوتان و کاستیک به‌صورت جریان متقابل، انتقال جرم انجام دهند. این فرآیند که استخراج مایع از مایع می‌باشد در دمای C40 و فشار bar9 می‌باشد.
کاستیک از بالای سینی 15 و بوتان از پایین وارد برج می‌شود. بعد از جداسازی مرکاپتان‌ها، بوتان از بالای برج خارج‌شده (پس از انتقال جرم و جذب مرکاپتان‌ها توسط محلول کاستیک) و پس از شستشو در آب در settler برای جداسازی محلول کاستیک carry over شده احتمالی در فرآیند استخراج به سمت sand filter جهت فیلتر شدن هدایت می‌گردد. بعد از آبگیری و خشک‌کردن که در یک بستر پر از ذرات مولکولی انجام می‌شود، گاز فیلتر شده و جهت ذخیره‌سازی به سمت واحد 148 هدایت می‌گردد. درصورتی‌که بوتان محصول واحد دارای کیفیت مناسبی جهت ذخیره‌سازی نباشد از طریق یک پمپ به واحد 106 ارسال‌شده و به خط سراسری گاز می‌پیوندد.
دیاگرام جریان بخش‌های استخراج در شکل (2-1) ارائه‌شده است:

شکل 2-1- دیاگرام جریان بخش استخراج
2-2-3- شرح فرآیند واحد احیا کاستیک
کاستیک خروجی از واحدهای 114 و 115 که کاستیک سنگین نامیده می‌شود بعد از مخلوط شدن با یکدیگر خوراک واحد 113 را تشکیل می‌دهند. کاستیکی که در این واحد احیا می‌شود کاستیک % 15 وزنی بوده که برای تصفیه و بازیابی آن از اکسیداسیون در مجاورت کاتالیست مایع و هوا استفاده می‌شود که باعث تبدیل‌شدن مرکاپتان‌های محلول در کاستیک به DSO یا دی‌سولفاید و آب می‌شود.
البته این واکنش که با تزریق هوا در اکسیدایزر انجام می‌شود در مجاورت کاتالیستی با نام تجاری LCPS30 می‌باشد. بعد از واکنش به‌وسیله یک جداساز می‌توانیم دی‌سولفاید و کاستیک سبک را از یکدیگر جدا کنیم. دی‌سولفاید با دانسیته پایین‌تر از بالای جداکننده به واحد 146 برای ذخیره‌سازی فرستاده می‌شود و جهت استفاده در بعضی از کارگاه‌های شیمیایی به کار می‌رود. کاستیک سبک توسط بوتان شسته شده تا اگر ترکیبات مرکاپتان اضافی همراه آن باشد وارد فاز بوتان شده و کاستیک با غلظت مناسب و بالاتر از % 15 به سمت واحد 114 و 115 هدایت می‌شود. همچنین هوای اضافی و جداشده از کاستیک سبک که Spend Air نامیده می‌شود از بالای جداساز دی‌سولفاید جداشده و به سمت واحد 121 هدایت می‌گردد.
دیاگرام جریان بخش احیاء سود در شکل (2-2) ارائه‌شده است:

شکل 2-2- دیاگرام جریان بخش احیاء سود
2-3- واکنش‌های فرآیند مرکاپتان‌زدایی توسط سود
واکنش‌های فرآیند مرکاپتان‌زدایی توسط سود به دو دسته اصلی و فرعی تقسیم‌بندی می‌شوند که در ادامه آورده شده‌اند.
2-3-1- واکنش‌های اصلی
واکنش کلی به‌صورت زیر می‌باشد:
2RSH +12 O2 → RSSR + H2O (2-1)
(دی‌سولفیداویل) (مرکاپتان)
این واکنش فقط در محیط بازی انجام‌شده و به دلیل حضور کاتالیست سولفونیتدکبالت‌فتالوسیانین، واکنش در دمای محیط به‌سرعت پیشروی می‌کند. مرکاپتان‌های دارای وزن مولکولی پایین که در گاز مایع حضور دارند شامل اتیل و متیل‌مرکاپتان‌ها هستند و در محلول سود حلالیت زیادی دارند. وقتی‌که فاز هیدروکربن و فاز آبی سود در تماس با یکدیگر قرار گیرند، این مرکاپتان‌ها جذب فاز آبی می‌شوند [4].
پس از جذب مرکاپتان‌ها توسط فاز آب و سود واکنش زیر بین مرکاپتان‌ها و سود در فاز آبی انجام می‌شود:
RSH + NaOH → RSNa + H2O (2-2)
این واکنش در برج استخراج صورت می‌گیرد و درنتیجه برش سبک هیدروکربنی مانند گاز مایع یا بوتان یا پروپان تصفیه‌شده و از بالای برج استخراج خارج می‌شود.
مکانیزم واکنش به‌صورت زیر می‌باشد:
RSH → RS− + H+
NaOH → Na+ + OH−
RS− + Na+ → RSNa
H+ + OH− → H2O
فاز آبی شامل مرکاپتایدهای‌سدیم، خروجی از پایین برج استخراج، به‌منظور احیاء سود با هوا ترکیب‌شده و به اکسیدایزر فرستاده می‌شود، قطرات کاتالیست سولفونیتدکبالت‌فتالوسیانین در فاز آبی به‌صورت توزیع‌شده وجود دارد چراکه محلول آب و سود در سیستم در حال چرخش است. در اکسیدایزر، مرکاپتایدهای‌سدیم موجود در فاز آب، در حضور کاتالیست با اکسیژن موجود در هوا واکنش داده و درنتیجه سود احیا می‌شود. واکنش به‌صورت زیر می‌باشد:
2 RSNa+12O2+H2O⟶RSSR+2NaOH (2-3)
به دلیل حضور کاتالیست ذکرشده واکنش در دمای محیط به‌سرعت پیشروی می‌کند. مکانیزم واکنش در ادامه آمده است:
RSNa ↔ RS− + Na+
Kt + O2 ↔ [Kt … O2]
[Kt … O2] + RS− → RS◦ + Kt +O2°-RS◦ + RS◦ → RSSR
Kt + RSSR ↔ [Kt … RSSR]
O2°-+H2O⟶2OH-+12O2OH− + Na+ ↔ NaOH
معادله سرعت اکسیداسیون مرکاپتایدهای‌سدیم (سدیم‌متیل‌مرکاپتاید و سدیم‌اتیل‌مرکاپتاید) در حضور اکسیژن در فاز آب و سود به‌صورت زیر می‌باشد:
r RSNa =K1KpRSKtO21+KpO2+KrRSSR(2-4)
ثابت‌های معادله (2-4) در دمای 55 درجه سانتی‌گراد و غلظت سود 10 الی 20 درصد وزنی عبارتند از:
K1Kp = 2.07×10-2 m3/Pa.mol.s
Kp = 1.1×10-4 Pa-1
Kr = 950 m3/mol
غلظت یون مرکاپتاید [RS]، کاتالیست [kt] و دی‌سولفید [RSSR] برحسب مول بر مترمکعب (mol/m3) و غلظت اکسیژن [O2] برحسب پاسکال (Pa) می‌باشد [17 و 5 و 4].
نهایتاً، دی‌سولفیدها که نامحلول در فاز آب و سود هستند توسط نیروی جاذبه جداسازی می‌شوند.
2-3-2- واکنش‌های فرعی
درصورتی‌که سولفید‌هیدروژن، سولفید‌کربنیل و دی‌سولفید‌کربن در گاز مایع وجود داشته باشند و قبل از برج استخراج توسط فرآیند پیش شستشو با سود رقیق جداسازی نشوند، مشکلات متعددی به وجود می‌آید که ناشی از واکنش‌های فرعی و رقابتی زیر می‌باشد:
(استخراج) H2S + NaOH → NaHS + H2O
(استخراج) NaHS + NaOH → Na2S + H2O
(اکسیداسیون) 3Na2S + 4O2 + H2O → Na2 S2O3 + Na2 SO4 + 2NaOH
در اکثر واکنش سولفید‌هیدروژن با سود، بسته به PH محلول ممکن است که بی‌سولفید‌سدیم یا سولفید‌سدیم تولید شوند. در PH های پایین‌تر (12-10) تشکیل نمک بی‌سولفیدسدیم غالب است درحالی‌که در PH های بالاتر (بالاتر از 12) نمک سولفیدسدیم بیشتر تشکیل می‌شود. به دلیل اینکه سولفیدهیدروژن اسید ضعیفی است، در PH های کمتر از 8، محلول به‌اندازه کافی قلیایی نیست و درنتیجه سولفیدهیدروژن جداسازی نمی‌شود.
(استخراج) CO2 + 2NaOH → Na2CO3 + H2O
نباید فراموش کرد که در PH های بالای 10، دی‌اکسید‌کربن توسط محلول سود جذب‌شده و در اثر واکنش آن با سود نمک کربنات‌سدیم تشکیل می‌شود که مطلوب نیست. در اثر تشکیل این نمک علاوه بر بالا رفتن مصرف سود، به دلیل رسوب این نمک مشکلات گرفتگی در سیستم به وجود خواهد آمد.
بنابراین درصورتی‌که غلظت دی‌اکسیدکربن زیاد باشد (65 درصد)، مقداری دی‌اکسیدکربن توسط جریان گاز جذب‌شده و درنتیجه مقدار سود بیشتری مصرف می‌گردد و کربنات‌سدیم تولید می‌شود [19 و 18 و 4].
COS + 4NaOH → Na2S + Na2CO3 + 2H2O (استخراج)
مکانیزم واکنش سولفید‌کربنیل با سود به‌صورت زیر است:
COS + H2O ⇆ H2S+ CO2
H2S + 2NaOH → Na2S + H2O
CO2 + 2NaOH → Na2S + H2O
CO2 + 2NaOH → Na2CO3 + H2O
ثابت تعادلی برای واکنش تعادلی سولفیدکربنیل با آب در جدول (2-1) ارائه‌شده است.
جدول 2-1- ثابت تعادلی برای واکنش سولفیدکربنیل و آب [20]
Kp=H2O×[COS]CO2×[H2S]دما (درجه سانتی‌گراد)
1/38×10- 6 20
3/16×10-5 100
3/64×4-10 200
8/1×10-3 300
4/5×10-2 400
CS2 + 6NaOH → 2Na2S + Na2CO3 + 3H2O
درصورتی‌که ناخالصی‌های سولفیدهیدروژن، سولفیدکربنیل و دی‌سولفیدکربن در برج پیش شستشو جدا نشوند و همراه مرکاپتان‌ها وارد برج استخراج بشوند مشکلات زیر به وجود می‌آید:
سود به‌صورت بازگشت‌ناپذیر مصرف می‌شود چراکه بازیابی سود از اکسیداسیون سولفیدسدیم به‌راحتی امکان‌پذیر نیست و درنتیجه بخشی از محلول سود دائماً هدررفته و باید به سیستم اضافه شود.
در اثر حضور سولفیدهیدروژن همان‌گونه که واکنش‌ها نشان می‌دهند سولفات سدیم در اکسیدایزر تولید می‌شود. تولید سولفات سدیم و یا به‌عبارت‌دیگر اکسیداسیون سولفیدسدیم هشت برابر اکسیداسیون سدیم مرکاپتاید اکسیژن مصرف می‌کند. درنتیجه عدم امکان تزریق اکسیژن کافی یک عامل محدودکننده برای احیاء سود می‌باشد و این امر منجر به تجمع سولفیدهیدروژن در محلول سود احیاشده می‌شود.
حضور نمک‌های سدیم در سود، قدرت سود را در جذب مرکاپتان‌ها در برج استخراج کاهش می‌دهد.
چون نمک‌های سدیم در فرآیند تجمع می‌کنند، ته‌نشینی آن‌ها منجر به مشکلات گرفتگی در سیستم می‌گردد [19 و 18 و 4].
2-4- کاتالیست فرآیند مرکاپتان‌زدایی توسط سود
قدرت کاتالیست در تسریع واکنش اکسیداسیون مرکاپتان‌ها به دی‌سولفیدها، مبنای تمام انواع فرآیندهای مرکاپتان‌زدایی از گاز مایع توسط محلول سود می‌باشد. کاتالیست رایج در صنعت برای احیای محلول سود در کلیه فرآیندهایی که از سودسوزآور برای مرکاپتان‌زدایی استفاده می‌کنند عبارت است از سولفونیتد‌کبالت‌فتالوسیانین. این ماده شیمیایی در حالت طبیعی به‌صورت مایع بوده، خیلی سمی نیست و معمولاً محلول 30 درصد وزنی آن در آب با محلول سود ترکیب‌شده و در فرآیند بکار برده می‌شود [19 و 18]. شرکت‌های تأمین‌کننده کاتالیست‌های شیرین‌سازی، ازجمله کاتالیست سولفونیتدکبالت‌فتالوسیانین، عبارتند از شرکت اکسنس، شرکت اِل‌اِل‌سی و یواُپی. این کاتالیست دارای نام‌های تجاری مختلف می‌باشد و برحسب اینکه تولیدکننده آن شرکت یواُپی، شرکت اکسنس یا شرکت اِل‌اِل‌سی باشد، به ترتیب ممکن است کاتالیست مراکس یا اِل- سی- پی- اس و یا غیره نامیده شود. ساختار مولکولی کاتالیست مذکور در زیر آورده شده است.

شکل 2-3- ساختار مولکولی کاتالیست سولفونیتدکبالت‌فتالوسیانین [5]
-R: -So3H-, cl-, OH-, Br-
-R1: PhCH2-, NO2-, NH2-
فعالیت و پایداری انواع کاتالیست‌های فتالوسیانین‌های فلزی مورداستفاده در شیرین‌سازی گاز مایع توسط محلول سود در جدول (2-2) آورده شده است [4].
جدول 2-2- مقایسه فعالیت و پایداری انواع کاتالیست‌های مورداستفاده در شیرین‌سازی برش‌های هیدروکربنی سبک توسط محلول سودسوزآور [17]
فتالوسیانین‌های فلز (MePc) Without Catalyst فعالیت کاتالیست(اکسیداسیون PrSNa) پایداری(اکسیداسیون Mepc)
Keff-*104(S-1)Keff-×105S-1PcMn(SO3H)4 0/23 68/8
PcZn(SO3H)4 0/24 46/7
PcAlCl(SO3H)2 0/25 20/10
PcSbCl(SO3H)2 0/26 60/12
PcCrCl(SO3H)2 0/24 93/2
PcFe(SO3H)4 0/34 40/11
PcNi(SO3Na)2 0/29 44/1
PcCu(SO3H)2 0/52 22/0
PcCo(SO3Na)2 5/35 84/9
PcCo(COOH)8 25/40 39/40
PcCo(NO2)4(SO3H)4 20/71 7/55
PcCoNH(oct)CH2COOH 42/52 8/42
PcCo Sulfamoil 14/00 9/42
PcCo[SO2N(PhCH2)CH2COOH]2 58/03 8/65
PcCoBr7(OH)8 73/81 2/04
Meroxâ 2 14/20 7/51
PcCo(OH)4(SO3H)2 37/52 8/71
MOSKAZ-1 25/40 0/18
MOSKAZ-2 124/00 1/39
IVKAZ-2 187/00 4/54
IVKAZ 65/42 2/05
همان‌گونه که در جدول (2-2) مشاهده می‌شود امروزه انواع جدیدی از کاتالیست‌ها در محلول سود بکار می‌روند که فعالیت آن‌ها از کاتالیست مراکس (سولفونیتدکبالت‌فتالوسیانین) بیشتر است. ازجمله این کاتالیست‌ها، کاتالیست IVKAZ-2 می‌باشد که فعالیت آن بیش از 13 برابر کاتالیست مراکس می‌باشد [17].
2-5- بررسی عوامل مؤثر بر فرآیند استخراج مرکاپتانها و تصفیه گاز مایع
پیش از ورود گاز مایع به برج استخراج باید سولفیدهیدروژن و سایر ناخالصی‌های موجود در گاز مانند سولفیدکربنیل و دی‌سولفیدکربن در یک برج پیش شستشو توسط محلول سودی که رقیق‌تر است (معمولاً محلول سود 7 درصد) جداسازی شوند. در برج استخراج محلول سود و برش گاز مایع تحت تماس با یکدیگر قرار می‌گیرند و درنتیجه مرکاپتان‌های موجود در فاز روغن وارد فاز آب شده و با سود واکنش داده و به مرکاپتایدهای‌سدیم تبدیل می‌شوند، سپس فازهای روغن و آب از یکدیگر جداشده و درنتیجه گاز مایع تصفیه میشود. استخراج مرکاپتانها توسط محلول سود به نوع و مقدار آن‌ها، غلظت پایه محلول سود، تعداد مراحل استخراج و درجه حرارت عملیات و در فرآیند مداوم همچنین به مقدار مرکاپتان بازیافت شده توسط سود (که تابعی از شرایط احیا می‌باشد) بستگی دارد. در ادامه اثر هرکدام از این عوامل بر روی عملیات استخراج بررسی می‌گردد.
2-5-1- تعادل فازها و یونیزاسیون اسیدها و بازهای موجود
توزیع مرکاپتان‌ها بین یک‌فاز هیدروکربنی و فاز آبی سود به دلیل ماهیت فیزیکی شیمیایی عمل استخراج به شکل زیر بیان می‌گردد:
I II
RSH RSH RS-
(فاز آبی) (فاز آبی) (فاز روغنی)
بنابراین در این مجموعه آبی و آلی دو تعادل ایجاد می‌گردد.
تعادل I: تعادل بین فاز هیدروکربنی و فاز آبی.
تعادل II: تعادل در فاز آبی بین مقداری از اسید تفکیک نشده و یون‌های اسیدی.
تعادل (I) بستگی به حلالیت مرکاپتان‌های خنثی نشده در فازهای سود و هیدروکربن دارد درحالی‌که تعادل (II) به ثابت یونیزاسیون مرکاپتان‌ها و غلظت هیدروکسید آزاد و آب وابسته است.
2-5-1-1- تعادل اسیدها و بازهای موجود در فاز آبی
مرکاپتان‌ها اسیدهای مونو‌هیدریک می‌باشند که در فاز آبی طبق واکنش زیر تفکیک می‌گردند:
RSH⇌RS-+H+مقدار تفکیک توسط ثابت یونیزاسیون و به‌صورت زیر بیان می‌گردد:
KA=RS-H+RSHطبیعتاًً اثر نوع مرکاپتان‌ها در عملیات استخراج در مقدار ثابت تعادل آن‌ها منعکس می‌گردد.
هرچه ثابت یونیزاسیون بزرگ‌تر باشد غلظت یون هیدروژن H+ و یون اسیدیRS- در محلول بیشتر بوده و بنابراین اسید مقدار بیشتری از سود را خنثی می‌کند.
ناخالصی سولفیدهیدروژن در صورت حضور، در عملیات پیش شستشوی پروپان توسط محلول سود 7 درصد قبل از ورود به برج استخراج جداسازی می‌شود. این ماده، یک اسید دی‌هیدریک است که در دو مرحله تفکیک‌شده و دارای دو یون فعال هیدروژن می‌باشد. سولفیدهیدروژن در محلول‌های آبی طبق واکنش‌های زیر تفکیک می‌گردد:
H2S⇌HS-+H+HS-⇄H++S=و ثابت‌های یونیزاسیون عبارتند از:
KA1=H+HS-H2S &KA2=H+S=HS- ثابت تفکیک مرحله اول سولفیدهیدروژن خیلی بزرگ‌تر از ثابت تفکیک مرحله دوم آن است. (جدول 3-1) و درنتیجه می‌توان فرض کرد که سولفیدهیدروژن تنها در یک مرحله تفکیک‌شده و یک اسید مونوهیدریک است.
هیدروکسیدسدیم نیز یک باز یک ظرفیتی، با یک یون فعال هیدروکسید می‌باشد که در محلول‌های آبی طبق واکنش زیر تفکیک می‌شود:
NAOH⇄Na++OH-و ثابت یونیزاسیون هیدروکسیدسدیم در دمای 90 درجه فارنهایت برابر است با 100 و به‌صورت زیر محاسبه می‌شود:
KB=OH-Na+NaOH=1.0×102at900F آب نیز به‌صورت زیر تفکیک می‌گردد:
H2O⇄H++OH-و ثابت یونیزاسیون آن به شکل زیر تعریف می‌شود:
Kw=H+OH-H2O=H+OH-by conventionهنگامی‌که یک اسید یا باز در محلول آبی قرار می‌گیرند غلظت یون هیدروژن H+ و یون هیدروکسیدOH- که در تمامی ثابت‌های تعادل به کار می‌رود برابر غلظت کلی یون‌های H+ و OH- است که حاصل از تفکیک آب و اسید و باز می‌باشد.
جدول 2-3 ثابت یونیزاسیون را برای اغلب اسیدهایی که معمولاً در واحدهای فرآیندی هیدروکربن‌ها وجود دارند نشان می‌دهد [21].
جدول 2-3- ثابت یونیزاسیون اسیدهای موجود در ترکیبات نفتی در دمای 34 درجه سانتی‌گراد [21]
اسید KA
ثابت یونیزاسیون در 0F90
سولفیدهیدروژن (H2S) KA1=3/6×10-8KA2=3/1×10-12متیل‌مرکاپتان (CH3SH) اتیل‌مرکاپتان (C2H5SH) 04/4×10-11پروپیل‌مرکاپتان (C3H9SH) 62/3×10-11بوتیل‌مرکاپتان (C4H11SH) 54/3×10-11فنل (phenol) 0/1×10-11کرسول‌ها (Cresols) 8/0×10-11زایلنون (Xylenol) 5/0×10-7تایوفنول (Thiophenol) 5/1×10-7پنتان‌نفتنیک‌اسید (C5-Naphtenic acid) 2/1×10-5در اثر خنثی شدن مرکاپتان‌ها با سود نمک مرکاپتایدسدیم تشکیل می‌شود.
2-5-1-2- تعادل بین فازهای هیدروکربنی و آبی
برای به دست آوردن مدل ریاضی نحوه توزیع مرکاپتان‌ها بین دو فاز هیدروکربن و محلول سود ابتدا ضریب تقسیم Kp مطابق زیر تعریف می‌شود:
Kp=RSHaq.RSHoil Since RS-=0که Kp نسبت تعادلی کل اسید در فاز آبی به کل اسید در فاز هیدروکربنی می‌باشد وقتی‌که PH به‌اندازه کافی پایین نگه‌داشته شود که مانع از تفکیک اسید گردد. اکنون ضریب استخراج KE با در نظر گرفتن تفکیک اسید مطابق زیر تعریف می‌گردد:
KE=RS-aq.+RSHaq.RSHoil با ترکیب معادلات مربوط Kp و Kw با معادله KE روابط زیر به دست می‌آیند:
KE=RSHaq.+RSHaq.KAH+RSHoil KE=RSHaq.+RSHaq.KAKWOH-H2ORSHoil (2-5)
KE=KP+KPKA/KW×H2O (2-6)
در معادله فوق مقدار KP در مقایسه با KA/KW خیلی کوچک می‌باشد تا آنجائی که ازجمله اول معادله (2-6) در مقابل جمله دوم آن می‌توان صرف‌نظر کرد.
KE=KPKA/KWOH-/H2O (2-7)
غلظت نسبی آب در قلیا برحسب فعالیت آب (a) بیان می‌گردد:
KE=KPKA/KWOH-/a (2-8)
که
a=Vapor Pressure of water over CausticVapor Pressure of Pure Waterمعادله (2-8) توسط yabroff برای استخراج مرکاپتان از بنزین توسط قلیا به‌دست‌آمده است [13].
به‌منظور مشخص شدن واحدهای فیزیکی کمیت‌های معادله (2-8) این معادله به شکل زیر بسط داده‌می‌شود:
KE=KPH+A-HAH+OH-OH-a (2-9)
در معادله (2-9) اگر جمله‌های داخل کروشه‌ها بدون بعد باشند KE و KP هم بدون بعد خواهند بود. به دلیل این‌که a یک عدد بدون بعد می‌باشد بنابراین باقی‌مانده پارامترها نیز بایستی مجموعاً بدون بعد باشند. در مقالات مقدارKA و KW غیر متغیر بوده و برحسب گرم یون بر لیتر گزارش می‌شود پس [OH-] بایستی برحسب گرم یون بر لیتر باشد که در موارد عملی هم‌ارز با مولاریته محلول سود آزاد است [21].
KW=1.72×10-14 at 900FKE=KP0.582×1014KA/aCaustic Molarity (2-10)
مقدار اکتیویته آب در غلظت‌های مختلف در جدول (2-4) آورده شده است.
جدول 2-4- مقدار اکتیویته آب در غلظت‌های مختلف محلول سود در دمای 32 درجه سانتی‌گراد [21].
مولاریته سود آزاد اکتیویته آب در 2/32 درجه سانتی‌گراد
85/1 965/0
97/2 90/0
25/4 85/0
معادله (2-10) تعادل کلی بین فاز آبی و فاز هیدروکربن را بیان می‌کند. در به دست آوردن این معادله تلویحاً فرض شده است که اسید واکنش داده و نمک در فاز هیدروکربن نامحلول می‌باشند.
لازم به توضیح است که معادله (2-10) به مرکاپتان‌ها محدود نمی‌گردد و می‌تواند برای تمامی ترکیبات اسیدی که در فاز آبی و فاز هیدروکربن محلول می‌باشند به کار رود.
مقدار KE به‌دست‌آمده از کار Yabroff در شکل (2-4) و همچنین در جدول (2-5) برای مرکاپتان‌ها در دمای 0F90 آورده شده است.
در شکل (2-4) مقدار KE محاسبه‌شده از معادله (2-10) و مقدار تجربی آن برای مرکاپتان‌های مختلف در دمای 32 درجه سانتی‌گراد مقایسه شده است. Yabroff علت این اختلافات را ناشی از پدیده Salting-out می‌داند که درنتیجه افزایش غلظت سود است.

شکل 2-4- مقایسه بین مقادیر ضریب استخراج (KE) تجربی و تئوری به‌دست‌آمده از معادله (2-10) [21]
شکل (2-4) نشان میدهد که با بزرگ شدن مقدار KE، اثر پدیده Salting-out کمتر می‌شود و مقدار تجربی و تئوری به هم نزدیک‌تر می‌شوند بنابراین در مورد سولفیدهیدروژن می‌توان انتظار داشت که اثر پدیده Salting-out حداقل و قابل صرف‌نظر باشد [21].
جدول 2-5- ضریب استخراج KE برای مرکاپتان‌ها و سولفیدهیدروژن بر اساس کار yabroff (معادله 2-10) [21].
ترکیب اسیدی نقطه‌جوش در فشار اتمسفریک (0F) KP در 0F90 (برای سیستم ایزواکتان و آب)
Wtvol.CausticWt/Vol.HCKE در 0F90Wtvol.CausticWt/Vol.HCمتیل‌مرکاپتان (CH3SH) 46 88/1×10-1860 1200 1390
اتیل‌مرکاپتان (C2H5SH) 95 26/4×10-2160 220 270
پروپیل‌مرکاپتان (C3H7SH) 155 40/9×10-328 35 5/36
بوتیل‌مرکاپتان (C4H9SH) 208 16/2×10-39/4 1/5 3/5
سولفیدهیدروژن (H2S) 76- 15/2×10-11,510,000 2,600,000 3,930,000
Ghorayeb و Manieh در سال 1981 معادله‌ای به شکل زیر برای تعیین ضریب استخراج KE ارائه نمودند [22].
KEi=AiBBi (2-11)
که M مولاریته محلول سود و ثابت‌های A و B برای مرکاپتان‌های مختلف و سولفیدهیدروژن در جدول 2-6 ارائه‌شده است.
جدول 2-6- ثابت‌های معادله 2-7 [21]
ترکیب اسیدی ثابت A ثابت B
سولفیدهیدروژن (H2S) 1/801678 084/1
متیل‌مرکاپتان (CH3SH) 5/549 674/0
اتیل‌مرکاپتان (C2H5SH) 9/100 727/0
پروپیل‌مرکاپتان (C3H7SH) 20 552/0
بوتیل‌مرکاپتان (C4H9SH) 8/3 543/0
کاربرد معادله (2-11) به غلظت‌های زیر 3 مولار سود محدود می‌گردد زیرا از غلظت 3 مولار به بعد تغییرات KE با مولاریته خیلی کم بوده و این معادله نمی‌تواند آن را پیش‌بینی کند ولی در غلظت‌های زیر 3 مولار این معادله مقدار KE را بسیار دقیق برآورد می‌کند.
2-5-2- تأثیر نوع مرکاپتان بر فرآیند استخراج
در ابتدا چنین تصور می‌شد که علت کم بودن ضریب استخراج مرکاپتان‌های سنگین نسبت به مرکاپتان‌های سبک در تماس با محلول‌های قلیایی نظیر سود ناشی از کاهش قدرت اسیدی با افزایش وزن مولکولی می‌باشد. اما yabroff در تجربیات خود در مورد اسیدهای کربوکسیلیک آلیفاتیک به این نتیجه رسید که افزایش وزن مولکولی اثر کمی بر روی ثابت یونیزاسیون دارد اما به مقدار قابل‌توجهی سبب کاهش حلالیت در آب می‌گردد. جدول 2-7 اثر وزن مولکولی را بر روی حلالیت مرکاپتان‌ها در آب نشان می‌دهد [21].
جدول 2-7- حلالیت مرکاپتان‌ها در آب خالص در دمای 20 درجه سانتی‌گراد [21]
نوع مرکاپتان حلالیت در آب (مول بر لیتر)
اتیل‌مرکاپتان 11200/0
نرمال‌پروپیل‌مرکاپتان 02500/0
نرمال‌بوتیل‌مرکاپتان 00661/0
ترت‌بوتیل‌مرکاپتان 01070/0
نرمال‌آمیل (n-Amyl) 00150/0
نرمال‌هپتیل (n-hepthyl) 00007/0
در شکل (2-5)، Kp و KE مرکاپتان‌های مختلف برای سیستم ایزواکتان و محلول سود 5/0 نرمال و همچنین حلالیت در آب، برای نرمال‌مرکاپتان‌های مختلف نشان داده‌شده است. در این شکل آشکار است که حلالیت مرکاپتان‌ها در آب با افزایش وزن موکولی به‌سرعت کاهش می‌یابد (منحنی 1 در شکل (2-5)). ضریب تقسیم (KP) مطابق منحنی (3) کاهش می‌یابد که متناظر با آن ضریب استخراج (KE) کاهش پیدا می‌کند (منحنی2). موازی و نزدیک بودن منحنی‌های (3 و 2) در شکل (2-5) نشان می‌دهد که ثابت یونیزاسیون نرمال‌مرکاپتان‌ها به مقدار خیلی کم متأثر از جرم موکولی آن‌ها است.
حلالیت مرکاپتان شاخه‌دار در آب بیشتر از مرکاپتان‌های مستقیم با همان تعداد کربن می‌باشد ولی KE مرکاپتان‌های شاخه‌دار کمتر از KE مرکاپتان‌های مستقیم است که این نشان می‌دهد ثابت یونیزاسیون مرکاپتان‌های شاخه‌دار کمتر از ثابت یونیزاسیون مرکاپتان‌های مستقیم می‌باشد و کارهای Ellis نیز این امر را تأیید می‌کند [21].

تعداد اتم‌های کربن در نرمال‌مرکاپتان‌ها
1- حلالیت نرمال‌مرکاپتان‌ها در آب (مول بر لیتر)
2- ضریب توزیع مرکاپتان‌ها بین فاز هیدروکربنی ایزواکتان و فاز آبی محلول سود 5/0 نرمال (KE)
3- توزیع مرکاپتان‌ها بین فاز هیدروکربنی ایزواکتان و آب (KP)
شکل 2-5- حلالیت نرمال‌مرکاپتان‌ها در آب و توزیع مرکاپتان‌ها بین فاز هیدروکربنی ایزواکتان و فاز آبی محلول سود 5/0 نرمال [21].
2-5-3- تأثیر غلظت محلول هیدروکسید بر فرآیند استخراج و واکنش تبدیل مرکاپتان‌ها به مرکاپتایدهای‌سدیم
با افزایش غلظت محلول هیدروکسید، ضریب استخراج (KE) افزایش می‌یابد. در مورد پروپیل و بویتل مرکاپتان‌ها این افزایش برای محلول سود تا غلظت حدود 3 مولار قابل‌توجه می‌باشد و از این غلظت به بعد با افزایش غلظت، ضریب استخراج در حد انتظار افزایش پیدا نمی‌کند که علت این امر همان‌طور که قبلاً توضیح داده شد مربوط به پدیده Salting–out می‌باشد که سبب کاهش KP و درنتیجه افزایش کم در مقدار KE با افزایش غلظت هیدروکسید می‌شود.
Setschenow اثر پدیده Salting–out را به‌صورت معادله زیر بیان کرده است [21].
LogSoSc=KC (2-12)
حلالیت در آب So:
حلالیت در محلول نمک Sc:
غلظت نمک در محلول آبی C:
ثابت پدیده K: Salting-out
K = 0/075for Ethyl Mercaptan
K = 0/181for n-Buthyl Mercaptan
شکل (2-6) نیز اثر غلظت و مقدار عامل استخراج‌کننده را در حذف مرکاپتان‌ها نشان می‌دهد. با افزایش غلظت عامل استخراج‌کننده اگرچه عملیات استخراج بهبود می‌یابد ولی این افزایش غلظت تا حدی مجاز می‌باشد، زیرا اگر غلظت عامل استخراج‌کننده بیشتر از مقدار معینی ازدیاد پیدا کند ویسکوزیته آن افزایش پیداکرده و در این وضعیت جداسازی فاز آبی و هیدروکربن خیلی مشکل می‌شود.

شکل 2-6- اثر مقدار و غلظت محلول سود در استخراج مرکاپتان‌ها
شکل (2-7) تغییرات ویسکوزیته محلول هیدروکسیدسدیم را با غلظت آن نشان می‌دهد. در دمای 0C 25 اگر غلظت محلول از 10% به 50% برسد ویسکوزیته آن 40 برابر می‌گردد.

شکل 2-7- تغییرات ویسکوزیته محلول سود با غلظت آن [21].
پس از استخراج مرکاپتان‌ها از فاز هیدروکربن توسط محلول سود، واکنش مرکاپتان‌ها با سود و تشکیل مرکاپتایدهای‌سدیم مطابق واکنش زیر صورت می‌گیرد:
RSH+NaOH⟶RSNa+H2OR:CH3, C2H5همان‌گونه که در شکل (2-8) نشان داده‌شده است، به دلیل اینکه واکنش فوق یک واکنش تعادلی است، مقدار تبدیل مرکاپتان‌ها به مرکاپتایدهای‌سدیم با افزایش غلظت سود، افزایش می‌یابد. با تغییر غلظت سود از صفر تا 75/2 مول بر لیتر، افزایش درصد تبدیل مرکاپتان‌ها به مرکاپتایدهای‌سدیم چشمگیر می‌باشد، اما پس‌ازآن با افزایش غلظت سود، تغییر درصد تبدیل واکنش چندان قابل‌توجه نمی‌باشد.

غلظت مرکاپتان: 915/0 مول بر لیتر
نسبت حجمی سود به هیدروکربن: 1/1
سرعت همزمان: rpm 1000
دما: 23 درجه سانتی‌گراد
شکل 2-8- تأثیر غلظت سود بر واکنش پروپیل‌مرکاپتان و سود
2-5-4- مقدار سود مصرفی موردنیاز
سود به‌عنوان ماده اولیه مورداستفاده در شیرین‌سازی گاز مایع و جداسازی مرکاپتان‌ها، دارای منابع بسیار محدودی است. مقدار سود مهم‌ترین عامل کنترل‌کننده اقتصاد فرآیند مرکاپتان‌زدایی با سود می‌باشد [23].
طبق مطالعات انجام‌شده مقدار سود مصرفی موردنیاز برای مرکاپتان‌زدایی از گاز مایع به مقدار اولیه مرکاپتان در گاز مایع، مقدار جداسازی مدنظر و غلظت اولیه سود بستگی دارد.
اطلاعات و آزمایشات انجام‌شده به همراه تست‌های انجام‌شده در واحدهای مرکاپتان‌زدایی از گاز مایع با سود، نشان داده‌اند که مقدار اشباع محلول سود توسط مرکاپتان‌ها مهم‌ترین معیار برای تشخیص بازده مرکاپتان‌زدایی آن محلول می‌باشد. مقدار اشباع (که به‌صورت مول S= به ازاء هر مول سود بیان می‌شود) به مقدار اولیه مرکاپتان موجود در گاز مایع بستگی نداشته و به غلظت محلول سود بستگی دارد به‌طوری‌که قابلیت اشباع محلول سود از مرکاپتان‌ها با افزایش غلظت اولیه سود کاهش می‌یابد. بنابراین همان‌گونه که در شکل (2-9) نشان داده‌شده است، برای یک محلول سود با غلظت مشخص و ثابت و مقدار معینی مرکاپتان‌زدایی، مقدار اشباع مشخص و ثابت است [23].

Breakthrough of treated product with respect to mercaptan content : ????
averaging of treated product with respect to mercaptan content : Δ
شکل 2-9- قابلیت اشباع سود توسط مرکاپتان‌ها (Y’2, Y2)، به‌عنوان یک عامل محدودکننده، برحسب غلظت محلول سود
بر اساس طراحی‌های آماری و تحلیل نتایج آزمایشگاهی مطالعات رگرسیونی زیر به‌دست‌آمده‌اند. درواقع این معادلات بر اساس داده‌های واحدهای عملیاتی شیرین‌سازی به‌دست‌آمده‌اند که نتایج آزمایشگاهی را نیز به‌دقت توصیف می‌کنند.
Y2 = 0/35 − 0/ 008 X1
مقدار اشباع محلول سود به‌طور متوسط (مول S= بر مول سود) :Y2
Y’2 = 0/ 624 − 0/ 016 X1
مقدار اشباع محلول سود برای break thraush (مول S= بر مول سود) :Y’2
در کلیه اندازه‌گیری‌ها مقدار نهایی مرکاپتان در محصول 014/0- 013/0 درصد وزنی بوده است. به‌عبارت‌دیگر مقدار اتیل‌مرکاپتان در جزء شیرین شده نرمال هگزان در خلال فرآیند 002/0±02/0 درصد بوده است. ماتریس طراحی مربوط به واحدهای فرآیندی به همراه نتایج آزمایشگاهی، در جدول (2-8) نشان داده‌شده است. به‌منظور محاسبه ضرایب معادلات رگرسیونی و خطای مربوط از داده‌های جدول (2-11) استفاده‌شده است.
جدول 2-8- ماتریس طراحی و نتایج آزمایشگاهی

Text of Final Project -فایل پروژه - ریسرچ-.Pdf)

-1-2-2 ساختار روتور و استاتور22
-2-2-2 سیم بندی های ماشین سنکرون 23..............
-3-2 توصیف ریاضی ماشین سنکرون 23..............................
-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون 23...............
-2-3-2 معادلات حرکت 28...................................................................................................
-4-2 پارامترهای ماشین سنکرون 29....................................................................
-1-4-2 پارامترهای اساسی29
-2-4-2 پارامترهای عملیاتی 30........................................
-3-4-2 پارامترهای دینامیکی31
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای اساسی
ماشین31
-1-5-2 محاسبه راکتانسهای ماشین 33..................................................................................
-2-5-2 محاسبه ثابت زمانی های ماشین35
5
-6-2 مراتب مختلف مدلهای ماشین سنکرون بر اساس مدل دو محوری پارک37
فصل سوم: بررسی روشهای شناسایی پارامترهای دینامیکی ژنراتور سنکرون..39
-1-3 مروری بر پیشینه شناسایی پارامترهای ژنراتورهای سنکرون 40..............................
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون 42................................
-1-2-3 روشهای کلاسیک اندازه گیری پارامترهای دینامیکی ژنراتورهای شبکه42
-2-2-3 روشهای جدید تعیین پارامترهای دینامیکی ژنراتورهای سنکرون43
فصل چهارم: شناسایی بلادرنگ پارامترهای ژنراتور سنکرون با استفاده از شبکه عصبی
مصنوعی ....45
-1-4 کلیات و اصول کارشبکه های عصبی 46....................................
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها46
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی.48
-2-2-4 تست شبکه عصبی تخمینگر50
-3-4 نتایج 51...................................................................
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر53
-2-3-4 بررسی تحلیلی نتایج .89
فصل پنجم: نتیجهگیری و پیشنهادات ...97
ضمیمهها100
ضمیمهالف- طرحهای بکار گرفته شده برای شبیهسازی ژنراتور سنکرون101
ضمیمهب- نمودار پارامترهای بکار گرفته شده در شبیهسازی ژنراتور سنکرون..105
منابع و ماخذ.110
6
فهرست جدول ها
عنوان شماره صفحه
1-2 : مراتب مختلف مدلهای ژنراتور سنکرون 24
1-4 : فهرست پارامترهای دینامیکی ژنراتورهای سنکرون 38
2-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه فراوانی خطا 81
3-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه دامنه خطا 82

7
فهرست شکلها
عنوان شماره صفحه
: 1-1 نمای کلی فرایند ارزیابی و بهبود سیستمهای قدرت 3
: 1-2 مدارهای استاتور و روتور ماشین سنکرون 9
:2-2 مدار معادل ماشین بر اساس تئوری پارک 13
:3-2 توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار 18
:4-2 مدار معادل ژنراتور سنکرون در حالت ماندگار 19
:5-2 مدار معادل ماشین سنکرون در دوره گذرا 20
:6-2 مدار معادل ماشین سنکرون طی دوره زیر گذرا 20
:7-2 مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز 21
: 8-2 مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز 22
: :1-4 طرح کلی سلول عصبی انسان 32
:2-4 شکل کلی سلول عصبی مصنوعی 33
:3-4 ساختار شبکه عصبی توسعه یافته 33
:4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون 35
:5-4 آلگوریتم آموزش شبکه عصبی 36
:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی 37
:7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd" 39
:8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 39
:9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 40
:10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 40
:11-4 هیستوگرام خطای شبکه عصبی در مرحله تست 41
:12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 41
:13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 42

8
:14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 42
:15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 43
:16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 43
:17-4 هیستوگرام خطای شبکه عصبی در مرحله تست 44
:18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 44
:19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 45
:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 45
:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 46
:22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 46
:23-4 هیستوگرام خطای شبکه عصبی در مرحله تست 47
:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 47
:25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq" 48
:26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 48
:27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 49
:28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 49
:29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 50
:30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 50
:31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 51
:32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 51
:33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 52
:34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq" 52
:35-4 هیستوگرام خطای شبکه عصبی در مرحله تست 53
:36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 53
:37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 54
:38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 54
:39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 55
9
:40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 55
:41-4 هیستوگرام خطای شبکه عصبی در مرحله تست 56
:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 56
:43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td" 57
:44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 57
:45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 58
:46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 58
:47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 59
:48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 59
:49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 60
:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 60
:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 61
:52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 61
:53-4 هیستوگرام خطای شبکه عصبی در مرحله تست 62
:54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 62
:55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 63
:56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 63
:57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 64
:58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 64
:59-4 هیستوگرام خطای شبکه عصبی در مرحله تست 65
:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 65
:61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq" 66
:62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 66
:63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 67
:64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 67
:65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 68
10
:66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 68 :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 69 :68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 69 :69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 70 :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq" 70 :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست 71 :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 71 :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 72 :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 72 :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 73 :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 73 :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست 74 :78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 74 ض-:1 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 88 ناگهانی تحریک ض-:2 طرح شبیه سازی ژنراتور سنکرون متـصل بـه شـین بینهایـت بـا اغنـشاش 89 اتصالکوتاه درترمینال ژنراتور ض-:3 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 90 ناگهانی توان ورودی ض-:4 تغییرات مقادیر Xd بکار گرفته شده 92 ض-:5 تغییرات مقادیر Xd' بکار گرفته شده 92 ض-:6 تغییرات مقادیر Xd" بکار گرفته شده 92 ض-:7 تغییرات مقادیر Xq بکار گرفته شده 93 ض-:8 تغییرات مقادیر Xq" بکار گرفته شده 93 ض-:9 تغییرات مقادیر Xl بکار گرفته شده 93 ض-:10 تغییرات مقادیر Td' بکار گرفته شده 94 ض-:11 تغییرات مقادیر Td" بکار گرفته شده 94 11
ض-:12 تغییرات مقادیر Tq" بکار گرفته شده 94
ض-:13 تغییرات مقادیر Rs بکار گرفته شده 95
ض-:14 تغییرات مقادیر WR بکار گرفته شده 95
ض-:15 تغییرات مقادیر H بکار گرفته شده 95
12
چکیده پایاننامه:
این پروژه روشی نو را برای بکارگیری رؤیتگرهای شبکه عـصبی در جهـت شناسـایی و تعیـین پارامترهـای دینامیکی ژنراتورهای سنکرون با استفاده از اطلاعات بهرهبرداری ارائه کرده است. اطلاعات بهـرهبـرداری از طریق اندازهگیریهای بلادرنگ بعمل آمده در قبال اغتشاشات حوزه بهرهبرداری فراهم مـیشـود. دادههـای آموزشی مورد نیاز شبکه عصبی از طریق شبیهسازیهای غیرهمزمـان بهـرهبـرداری از ژنراتـور سـنکرون در محیط یک ماشین متصل به شین بینهایت فراهم شده است. مقـادیر نمونـه ژنراتورهـای سـنکرون در مـدل مذکور بکار گرفته شدهاند. شبکه آموزش دیده در قبال اندازهگیریهای بلادرنگ شبیهسازی شـده در جهـت تخمین پارامترهای دینامیکی ژنراتورهای سنکرون تست شده است. مجموعه نتایج بدست آمده نشان دهنـده قابلیتهای نوید بخش شبکه عصبی مصنوعی در حوزه تخمین پارامترهای دینامیکی ژنراتورهـای سـنکرون، بصورت بلادرنگ و با استفاده از اطلاعات بهرهبرداری میباشد. اگرچه برای دست یـابی بـه خطـای تخمـین قابل قبول در مسیر شناسایی کلیه پارامترهای دینامیکی ژنراتورهای سنکرون، پارهای اصلاحات ضروری بـه نظر میرسد. در نگاه کلّی این اقدامات تکامل بخش را میتوان به دو مجموعه: پیشنهادات مربوط به اصـلاح شبکه عصبی رؤیتگر در حوزه شبیهسازی و آموزش و بخش دیگر را به عنوان گامهای تکاملی تلقی نمود، که سازماندهی این گامها در مبادی ورودی و خروجی شبکه عصبی، زمینه مناسبتـری را بـرای بهـرهگیـری از قابلیتهای آن فراهم خواهد کرد.
کلید واژه:
ژنراتور سـنکرون، پارامترهـای دینـامیکی، شناسـایی بلادرنـگ، شـبکههـای عـصبی مـصنوعی، اطلاعـات بهرهبرداری
13
14
مقدمه:
در سالهای اخیر با پیشرفت سیستمهای کامپیوتری, سیستمهای هوش مصنوعی نیز متولد شده و رشد کرده است. یکی از سیستمهای هوش مصنوعی, شبکه های عصبی مصنوعی هستند. این شبکه ها به علت عواملی چون قطعیت در پاسخ, سادگی در اجرا, قابلیت انعطاف بالا و .... جایگاه ویژه ای را به خود اختصاص داده اند. با توجه به ساختار و کارکرد شبکه های عصبی مصنوعی و اهمیت تعیین پارامترهای دینامیکی اجزاء سیستمهای قدرت از جمله ژنراتورهای سنکرون, بهره گیری از شبکه های عصبی مصنوعی در این حوزه قابل طرح است. از طرف دیگی نتایج ارائه شده از بکار گیری این شبکه ها در حوزه های مشابه, کارکردهای نوید بخشی را نشان می دهد. با توجه به مراتب فوق این پروژه بر آنست تا با طراحی و اجرای طرح شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون با استفاده از شیکه عصبی مصنوعی, قابلیت های این سیستم را در حوزه شناسایی بلادرنگ پارامترهای دینامیکی ژنراتورهای سنکرون نیز بیازماید.
15
فصلاول:

کلیات
16
سیستم های قدرت متشکلند از مجموعه ای از مراکز تولید(نیروگاهها) که توسط شبکه های انتقال و توزیع و تجهیزات حفاظتی و کنترل آن به مراکز مصرف متصل می گردند. وظیفه اصلی یک سیستم قـدرت تولیـد و تامین انرژی الکتریکی مورد نیاز مصرف کنندگان با حفظ شرایط سه گانه:
-1 ارزانی قیمت انرژی
-2 کیفیت بالا
-3 امنیت تامین انرژی میباشد. مراد از امنیت، پیوستگی و تداوم در تولید و تامین انرژی می باشد. عوامل مؤثر در امنیـت عبارتنـد از:
-1 سرمایه گذاری اولیه (تجهیزات سیستم ) -2 روشها و امکانات نگهداری و تعمیرات سیستم قدرت.
همانگونه که در کلیه وسایل و سیستم های غیرالکتریکی همواره دو ویژگی ارزانـی و بـالا بـودن کیفیـت-
امنیت با یکدیگر متعارض و متقابل می باشند در مقوله انرژی الکتریکی و سیستم هـای قـدرت نیـز بهمـان گونه خواهد بود. امنیت یک سیستم قدرت در حقیقت درجه و میدان توانایی آن سیستم در مواجهه با حـوادث
اغتشاشات می باشد . امنیت کلی یک سیستم به دو زیر شاخه:
امنیت دینامیکی
امنیت استاتیکی
قابل تقسیم است. از توانایی سیستم قدرت برای حفظ و نگهداری خود در دوره وقوع اختلال (که خود از سـه دامنه فوق گذرا-گذرا-دینامیک تشکیل شده است) با عنوان امنیت دینامیکی تعبیر مـی گـردد. بـا توجـه بـه اهمیت بسیار زیاد امنیت سیستمهای قدرت، فرایند ارزیابی وبهبود آن همواره مورد توجه مهندسـین طـراح و بهرهبردار بوده، به قسمی که عملیات ارزیابی و بهبود امنیت سیستم های قدرت یکی از وظایف بسیار مهـم و اساسی مراکز کنترل و بهره برداری شبکه های قدرت می باشد. شکل کلی فرایند ارزیـابی و بهبـود سیـستم های قدرت در شکل1-1 بیان شده است. باتوجه به اهمیت امنیت در سیستم های قدرت و همچنین تغییرات مستمری که در حین عملیات بهره برداری 24 ساعته در شبکه اتفاق می افتد ضرورت دارد که دائماً از طرف بهره بردار، عملیات بهره برداری به شکلهای مختلف بر روی سیستم های قدرت اعمال گردد،اما با توجه بـه ویژگی بالا بودن امنیت نباید این عملیات بگونه ای باشدکه سبب بروز اغتشاش در رفتار سیستم و در نتیجـه نقض غرض گردد. از طرفی سیستم قدرت هر کشور منحصر بفرد بوده به قسمی که نمونه دومی نمی تـوان برای آن ایجاد نمود. بنابر این با توجه به ویژگی منحصر بفرد بودن سیستمهای قدرت و ضـرورت اجتنـاب از عملیات بهره برداری بررسی نشده، برای ارزیابی اولیه از نتایج عملیات بهره برداری و یا طراحی ضرورتاً مـی باید از یک نمونه مشابه سیستم قدرت استفاده نمود تا بتوان ابتداً نتایج مانورهای طراحی یا بهـره بـرداری را برآن آزمایش و در صورت اطمینان از بی خطر بودن، نتایج آن مانورها را بر شبکه واقعی اعمال نمود.
17

نمونه مشابه سیستم قدرت را شبیه ساز1 و عملیات آزمایشی بـرروی نمونـه مـشابه را محاسـبات و مطالعـات شبیه سازی2 گویند. فرایند شبیه سازی سیستمهای قدرت فارغ از اینکه دیجیتال باشد یـا آنـالوگ از مراحلـی بدین ترتیب تشکیل شده است:
_1 شناسایی اجزاء سیستم قدرت
_2 ساخت و یا استخراج معادلات حاکم بر اجزاء
_3 ترکیب اجزاء و یا معادلات آنها
_4 حل معادلات با روشهای ریاضی بوسیلهکامپیوتر
_5 استخراج نتایج که در این میان مدلسازی اجزاء سیستم قدرت که همان شناسایی و استخراج معـادلات حـاکم بـر اجـزاء آن
است یکی از قدم های اصلی این فرایند بشمار میرود. به بیان دیگر یک متخـصص شـبکه در روش کـاری خود اولویت بندی هایی دارد که اولین آنها رساندن انرژی الکتریکی تولیدی به مصرف کننده است، در مرحله
دوم به تامین امنیت شبکه اهتمام می ورزد. و نهایتاً تلاش خویش را در جهت بهبود هر چـه بیـشتر کیفیـت انرژی که به مصرف کننده تحویل داده می شود مصروف می دارد. اگر چه بسیاری از اقداماتی که در جهـت امنیت سیستم های قدرت انجام می شود کیفیت توان را نیز ارتقاء می دهد. تامین امنیت سیستم خود شـامل مراحل و اولویتهایی است که اولین گام آن را مقاوم سازی و پایدار سازی شبکه در حالت های گذرا می باشد

1-simulator 2-simulation
18
و دومین گام شامل پایدار سازی دینامیکی شبکه می شود. از دیدگاه فرکانسی می توان حالت هـای گـذرا در شبکه را با نوسانات فرکانس بالا و حالت های دینامیکی آن را با نوسانات فرکانس پایین معرفی کرد. در اکثر شبکه های دنیا خاصه با پیچیده شدن شبکه ها پدیده نوسانات فرکانس پایین مشاهده شده است. ژنراتورهـا به عنوان تولید کننده نقش اصلی در ارتباط با این نوسانات دارند. اینها از نوع نوسان در پارامترها هستند و با اغتشاشات حالتهای گذرا متفاوتند. گاه این اغتشاشات بدون رخ دادن هیچ واقعهای در طی کار معمول شـبکه بوجود می آیند مثلاً با تغییر تپ ترانس درکم باری و مواردی از این قبیل. اگرچه در مرحله بعد از حالت هـای گذرای شبکه (از دیدگاه زمانی) نیز چنین بحثی مطرح می شود. بایـد توجـه داشـت کـه ایـن نوسـانات را در مقایسه با فرکانس شبکه، فرکانس پایین نام نهاده اند. دامنه فرکانسی مطرح از کسر یک تا چند هرتـز اسـت که بطور معمول بازه 0.5-2.5HZ را در بر می گیرند و در موارد حدی 0.1-4HZ می باشد. این نوسانات را به انواع :
-1 محلی
-2 بین ناحیه ای تقسیم کرده اند. که نوسانات یک ماشین نسبت به شبکه بزرگ یا شین بی نهایت متّصل به آن را محلّی نـام
نهاده اند. نوسانات بین ناحیه ای نمونه هایی مانند دو ژنراتور که با خطوطی به هم متصل هستند یا مجموعه دو ناحیه با یکدیگر را در برمی گیرد. از دیدگاه فرکانسی نیز این دو نوع نوسانات دینامیکی باهم تفاوت دارند.
ثابت می شود عامل این نوسانات، مد مکانیکی توربوژنراتور است. همانگونه کـه پـیشتـر توضـیح داده شـد تامین امنیت سیستم های قدرت در برابر نوسانات دینامیکی مانند سایر شاخه ها نیازمند شبیه سازی شبکه از این زاویه دید میباشد. مقادیر پارامترهای دینامیکی اجزاء در این شبیه سازی دارای نقش کلیدی هـستند. بـا توجه به نقش ژنراتور در میان اجزاء شبکه از دیدگاه نوسانات دینامیکی تعیین پارامترهـای آن بـسیار مهـم و تعیین کننده خواهد بود. صحت و دقّت تعیین این پارامترها وابسته است به روش بکار گرفته شده برای بـرای تعیین آنها . این مطالب موجب پیدایش روشهای گوناگون برای تعیین این پارامترها شده است. از طرف دیگـر این پارامترها برای هر ژنراتور مقدار ثابتی نیستند و بخـاطر عـواملی چـون پیرشـدن ژنراتـور، ایجـاد بعـضی خطاهای داخلی و ..... تغییر می کنند. این شرایط موجـب طـرح روشـهای بلادرنـگ1 در تعیـین پارامترهـای دینامیکی ژنراتور سنکرون شده است. از جهت دیگر روش بکارگیری و تبعات عملی یک تکنیک شناسـایی و ملزومات آن نیز حائز اهمیت است. گروهی از این روشها اگر چه نتایج نسبتاً دقیق و قابل اعتمادی نیز فراهم می آورند لیکن به علت خطر های ناشـی از تـست هـای مطـرح در آنهـا (ماننـد آزمـایش اتـصال کوتـاه2 و
باربرداری( 3 و یا ملزوماتشان چون جداسازی ژنراتور از شبکه چندان مطلـوب نیـستند. بعـضی از اجـزاء ایـن گروه روشها به مرور مطرود شده اند. مقالات جدید ارائه شده در سایر اجزاء این گروه با هـدف بهبـود آنهـا و حذف مشکلات مذکور شکل گرفتهاند. دسته دیگر این روشها نمونههـایی هـستند کـه بـا چنـین مـشکلاتی

3-On-Line 4-Short Circuit 5-Load Rejection
19
مواجه نیستند(مانند استفاده از تخمینگر شبکه عصبی مصنوعی.(1 کارهای انجام شده درباره ایـن روشـها در راستای بهبود هرچه بیشتر آنها و یا اطمینان از نتایج حاصله توسط آنها شکل گرفته اند. با توجه بـه مقدمـه ذکر شده ابتداً لازم است کلیات روشهای مدل سازی ژنراتور سنکرون مورد بررسی قرارگیـرد تـا درگـام بعـد نسبت به بررسی روشهای شناسایی پارامترهای آن اقدام شود.

6- Artificial-Neural Network
20
فصل دوم:

مدل سازی ماشین سنکرون
21
-1-2 پیشگفتار:
شبیه سازی رفتار ژنراتورهای سنکرون برای انجام مطالعات گوناگون دینامیکی در سیستمهای قدرت، مستلزم انتخاب یک مدل مناسب جهت مدلسازی ماشین میباشد. مدل ارائه شده برای هر سیستم شامل یک ساختار و تعدادی پارامتر میباشد که جهت پیشگویی رفتار آن سیستم در حالتهای مورد نظر بکار گرفته میشود. مدل مورد استفاده برای یک سیستم باید به سادگی قابل فهم بوده، بکارگیری آن سهل باشد و در عین حال بتواند رفتار سیستم را با دقت و صحت قابل قبولی برای یک محدوده مشخص پیشگویی نماید.
بعبارت بهتر رفتار پیشبینی شده سیستم بواسطه شبیهسازی براساس مدل ارائه شده تا حد قابل قبولی به رفتار واقعی سیستم نزدیک باشد. هر چند این دو خاصیت از مدل یعنی سادگی و واقعی بودن همواره در تضاد با یکدیگر هستند، (یعنی مدلهای واقعی به ندرت ساده هستند و مدلهای ساده به ندرت میتوانند واقعی باشند)، اما میتوان جهت رسیدن به پاسخ دلخواه مصالحهای منطقی مابین این دو خاصیت برقرار کرد. مدل دو محوری پارک از معمولترین و پذیرفتهترین مدلهای ماشین سنکرون میباشد. در این فصل ابتدا اصول مدلسازی ماشین سنکرون براساس تئوری دو محوری پارک به اختصار بررسی میشود، سپس پارامترهای ماشین سنکرون معرفی شده و نحوه محاسبه پارامترها براساس مدل دو محوری پارک و همچنین نحوه مدلسازی ماشین با داشتن پارامترهای آن بررسی میگردد. همچنین در این فصل ارتباط میان مرتبههای مختلف مدل پارک با نوع ژنراتور و نوع مطالعه مورد نظر تشریح میشود.
-2-2 ساختار فیزیکی ماشین سنکرون:
-1-2-2 ساختار روتور و استاتور:
بزرگترین و شاید متداولترین ماشین های الکتریکی که با سرعت سنکرون می چرخند، ماشین های سنکرون سه فاز میباشند. اگرچه ساخت ماشین های سنکرون سه فاز پر هزینه میباشد، اما بازده بالای این ماشینها در قدرتهای بالا بزرگترین مزیت آنها میباشد.
استاتور ماشینهای سنکرون معمولاً متشکل از یک هسته مورق فرومغناطیس با شیارهایی جهت قرار گیری سیم پیچیهای سه فاز گسترده میباشد. روتور ماشین نیز میتواند بصورت قطب برجسته یا قطب صاف ساخته شود. ماشینهای قطب برجسته اغلب به عنوان ژنراتورهای آبی جهت تطبیق سرعت پائین توربین-
های آبی با سرعت سنکرون استفاده میشوند. قطبهای روتور این نوع ماشین به صورت جداگانه ساخته شده و سپس بر روی یک استوانه سوار میشوند. ساختار روتور گرد یا قطب صاف نیز برای کاربردهای سرعت بالا مناسب است. ماشینهای سنکرون با روتور گرد با دو یا چهار قطب به عنوان ژنراتورهای واحدهای بخاری جهت تطابق با سرعت بالای توربین به کار میروند. همچنین در این ماشینها میتوان نسبت قطر به طول روتور را به منظور محدود کردن تنش های مکانیکی ناشی از نیروهای گریز از مرکز کوچک گرفت.
22
-2-2-2 سیمبندیهای ماشین
ماشین سنکرون سه فاز معمولاً متشکل از یک سیم پیچی سه فاز به عنوان آرمیچر و یک سیم پیچی تحریک میباشد که بنام سیم پیچی میدان نیز نامیده میشود. سیمپیچی آرمیچر معمولاً در ولتاژی بسیار بالاتر از ولتاژ تحریک کار میکند و از این رو نیازمند فضایی بیشتر برای عایقبندی مناسب میباشد.
همچنین با توجه به اینکه جریانهای گذرای شدیدی از این سیمپیچیها عبور می کند، باید قدرت مکانیکی کافی داشته باشند. از این رو معمول است که سیمپیچی آرمیچر را بر روی استاتور ماشین قرار دهند. از نظر فضایی سیمپیچیهای سه فاز آرمیچر، 120º با یکدیگر اختلاف مکان دارند و این موضوع سبب میشود که با چرخش یکنواخت روتور و به تبع آن چرخش یکنواخت میدان تحریک، در این سیمپیچیها ولتاژهایی القا شود که از نظر زمانی 120º با یکدیگر اختلاف فاز دارند. سیم پیچی تحریک یا میدان معمولاً بر روی روتور قرار داده میشود. در ماشینهای قطب برجسته معمولاً میله های مسی یا برنجی در سطح قطب جای می-
گیرند که عموماً این میلهها در دوانتها به وسیله حلقههایی به یکدیگر متصل میشوند تا یک قفس سنجابی شبیه آنچه در یک موتور القایی وجود دارد، ساخته شود. مجموعه این میلهها و حلقهها به عنوان سیم پیچی میراکننده میباشند.
روتور ژنراتورهای قطب صاف بصورت استوانهای است که از فولاد یکپارچه ساخته میشود. سیم پیچیهای میدان در این گونه روتورها بصورت یکنواخت در شکافهای بدنه روتور توزیع شدهاند که معمولاً به کمک گوههایی در جای خود محکم میشوند. اغلب در چنین ماشینهایی سیم پیچی میراکننده وجود ندارد، زیرا که روتور یکپارچه فلزی اجازه عبور جریانهای گردابی را فراهم می آورد که تاثیری مشابه جریانهای سیمپیچی-
های میراکننده دارد. برخی از سازندگان تاثیر میرایی بیشتر و قابلیت عبور جریان مولفه منفی را با استفاده از گوههای فلزی مستقر در شکافهای سیمپیچی تحریک (که در انتها به یکدیگر متصل شدهاند) یا با استفاده از میلههای مسی مستقل زیر گوههای نگه دارنده، فراهم میآورند.
-3-2 توصیف ریاضی ماشین سنکرون
-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون
در این قسمت مدل ریاضی ماشین سنکرون بر اساس تئوری دو محوری بصورت خلاصه پارک تشریح می-
شود. شکل (1-2) مدارهای در نظر گرفته شده برای استاتور و روتور ماشین را نشان میدهد. مدار استاتور شامل یک سیم پیچی سه فاز است و روتور نیز یک سیم پیچی تحریک و یک سیمپیچی میراکننده بر روی محور d و دو سیم پیچی میراکننده بر روی محور q دارد. تعداد سیم پیچیهای میراکننده در نظرگرفته شده به عوامل متعددی از جمله نوع ژنراتور بستگی دارد که در قسمتهای بعدی به آن اشاره خواهد شد. مدل نشان داده شده در شکل (1-2) مدل 2-2 براساس استاندارد IEEE Std 1110 میباشد.
23
i fd d ωr a e fd q ib i1d ikq Ψb Ψa θ eb i1q b a ia ea ec
c

Ψc
ic

شکل :(1-2) مدارهای استاتور و روتور ماشین سنکرون
:c , b, a سیم پیچی های سه فاز استاتور : fd سیم پیچی تحریک

: 1d سیم پیچی میرا کننده محور d

1q و : 2q سیم پیچی های میراکننده محور q : ωr سرعت زاویه ای روتور برحسب رادیان بر ثانیه
: θ زاویه مابین محور مغناطیسی روتور و محور مرجع (محور مغناطیسی فاز (a
در بدست آوردن معادلات ماشین سنکرون برای ساده سازی فرضیات زیر درنظر گرفته میشود:
الف ) شکافهای موجود بر روی سطح داخلی استاتور تاثیر قابل توجهی بر اندوکتانسهای روتور درحال حرکت ندارند.
) پسماند مغناطیسی آهن استاتور و روتور قابل صرف نظر کردن است.
) از نظر تاثیر متقابل استاتور و روتور، سیم پیچیهای استاتور بصورت سینوسی در امتداد فاصله هوایی
توزیع شدهاند.
هر چند در مدل ارائه شده اثر اشباع مستقیماً منظور نشدهاست، اما با تصحیح راکتانسهای دو محور با استفاده از ضرایب اشباع و یا با داخل کردن مولفههای جبرانکننده درتحریک میدان اصلی، پدیده اشباع نیز لحاظ میشود.
با فرض حالت ژنراتوری معادلات ولتاژ مربوط به سیم بندی های استاتور و روتور را میتوان به شکل روابط
(1-2) و (2-2) نوشت.
Ψs d vs  −is Rs  dt (1-2) d vr  −ir Rr  Ψr dt که در آن :
24
vs  v a vb vc t vr  v f v1d v1q v2q t is  i a ib ic t ir  i f i1d i1q i2q t Ys  Ya Yb Yc t Yr  Y f Y1d Y1q Y2q t Ra 0 0 0 Rb Rs  0 0 0 Rc Rf 0 0 0 R1d Rr  0 0 0 0 0 R1q 0 0 0 0 R2q :درک نایب ریز لکش هب ناوت یم ار روتور و روتاتسا یاهرودراش تلاداعم Ψs  Lssis  Lsrir (2-2) Ψ  Lt .i  L i r sr srr r : نآ رد هک
Lss  − −

Lls  L0 − Lms cos 2θr 1 L0 − Lms cos 2(θr − π 1 L0 − Lms cos 2(θr  π − 3 ) − 3 ) 2 2 1 π 2π 1 2 L0 − Lms cos 2(θr − 3 ) Lls  L0 − Lms cos 2(θr − 3 ) − 2 L0 − Lms cos 2(θr −π) 1 L0 − Lms cos 2(θr  π 1 L0 − Lms cos 2(θr  π) Lls  L0 − Lms cos 2(θr  2π ) − ) 2 3 2 3 25
0 0 L f 1d Llf  L f 0 0 L L L  L 1d l1d 1df L1q 2q Ll1q  L1q 0 0 rr Ll 2q  L2q L2q1q 0 0 Ls 2q cosθr Ls1q cosθr 2π Ls 2q cos(θr − 2π ) ( cos(θr − 3 3 2π Ls 2q cos(θr  2π ) 3 ( 3 cos(θr 
s1q
s1q

L L

Ls1d sin θr
Ls1d sin(θr − 23π )

Ls1d sin(θr  23π )

Lsf sin θr 2π t ( − r sin(θ sf L  rs L sr L 3 ( 2π sin(θr  Lsf 3 با استفاده از دسته معادلات (2-1) و((2-2 میتوان بطور کامل ماشین سنکرون را بررسی نمود. اما همچنانکه در این معادلات نیز دیده میشود، معادلات دارای عباراتی هستند که با θ تغییر میکنند. با توجه به اینکه θ نیز تابعی از زمان میباشد، این موضوع سبب پیچیدهتر شدن تحلیل ماشینهای سنکرون می-
شود. میتوان با تبدیل مناسبی متغیرهای استاتور را به شکل سادهتری درآورد. این تبدیل به نام تبدیل پارک معروف است. تبدیل پارک به صورت رابطه (3-2) میباشد.
2π cos(θ  Sa ) 3 (3-2) Sb ) 2π −sin(θ  3 1 Sc 2
( 2π − cos(θ cosθ 3 2 2π 3 ) −sin(θ − 3 −sinθ 1 1 2 2
Sd
Sq S0
که S میتواند هر کدام از متغیرهای ولتاژ، جریان یا شاردور ماشین باشد. عکس تبدیل پارک نیز بصورت رابطه (4-2) بیان میشود.
1 −sinθ Sd 2 (4-2) Sq 1 ( 2π −sin(θ − 2 3 S0 1 ( 2π −sin(θ  2 3
cosθ 2π 2 ( cos(θ − 3 3 ( 2π cos(θ  3
Sa
Sb Sc
با اعمال تبدیل، معادلات حاکم بر ماشین و متغیرهای متناظر بسیار ساده میشوند. این ساده شدن در دو مفهوم کلیدی زیر ریشه دارد:
الف: با اعمال این تبدیل در شرایط بهرهبرداری عادی و حالت ماندگار تمامی جریانها و شارهای سیم-
پیچیهای استاتور و روتور دارای مقدار ثابتی خواهند بود.
26
ب: با انتخاب دو محور d و q که 90درجه اختلاف فاز دارند، شارهای تولید شده توسط جریانها بر روی یک محور هیچ پیوندی با شارهای محور دیگر نخواهند داشت. بنابراین دو دسته متغیر متعامد بدست خواهد آمد که این موضوع باعث ساده سازی بسیاری خواهد شد، زیرا هم باعث ساده سازی مقادیر راکتانسها میشود و هم می توان مدار معادل ماشین را بصورت دو مدار مستقل از هم در نظر گرفت.
معادلات نهایی پریونیت شده در دستگاه مرجع روتور به شکل روابط (5-2) و (6-2) میباشند. جزئیات بدست آوردن این معادلات در مراجع مختلف تشریح شدهاست و در اینجا از تکرار مجدد آن خودداری می-
شود. باداشتن روابط فوق، رفتار الکتریکی ماشین شبیه سازی می شود.
(5-2)
(6-2)

Yd 1 d Yq + wr V d = - i d Ra - w0 dt w0 Y d 1 Y + wr + a R q = - i q V q w0 dt d w0 Yfd 1 d efd = i fd Rfd + w0 dt Y d 1 + 1d R 1d 0 = i 1d w0 dt Y d 1 + 1q R 1q 0 = i 1q w0 dt Y2q d 1 0 = i 2q R 2q + w0 dt id Xad Xad Xl  Xad 1 Yd i fd Xad Xlf  Xad Xad  Yfd Xad Xad W0 Xl1q  Xad i1d Y1d i Xaq Xaq Xl  Xaq Yq i q Xaq Xl1q  Xaq Xaq 1  Y1q W 1q Xaq Xaq 0 Xl2q  Xaq i2q Y 2q x 0i 0 1 Y0 = - w0 براساس روابط ولتاژ و شار ارائه شده میتوان مدار معادل ماشین سنکرون را بدست آورد. این مدار درشکل
(2-2) نشان داده شده است.
27

الف: محور طولی،

ب: محور عرضی، q
xl i 0 R0
+
V 0
ج: محور صفر

-
شکل :(2-2) مدار معادل ماشین بر اساس تئوری پارک
-2-3-2 معادلات حرکت
معادلات حرکت معادلاتی هستند که اهمیت اساسی در مطالعات پایداری سیستمهای قدرت دارند. این معادلات که بعنوان معادلات لختی چرخشی نیز نامیده میشوند، تاثیر عدم تعادل بین گشتاور الکترومغناطیسی و گشتاور مکانیکی ماشین سنکرون را بیان مینمایند. در این بخش نیز معادلات حاکم بدون ذکر جزئیات بیان میشوند که برای دسترسی به جزئیات کامل میتوان به مراجع مختلف موجود مراجعه نمود.
زمانی که عدم تعادل بین گشتاورهای اعمال شده بر روی روتور وجود داشته باشد، گشتاور خالص اعمال شده، باعث شتاب گرفتن (یا کندشدن حرکت) روتور میشود. این گشتاور برابر است با:
Ta  Tm −Te(5-2)
: Ta گشتاور شتاب دهنده برحسب N.m
28
: Tm گشتاور شتاب مکانیکی برحسبN.m : Te گشتاور الکترومغناطیسی برحسب N.m معادله حرکت نیز به صورت رابطه (6 - 2) میباشد: (6-2) TaTm−Te dωr J dt در شبیه سازیهای ماشین سنکرون معمولاً شارها به عنوان متغیرهای حالت فرض میشوند. در این صورت توان الکتریکی ماشین در مبنای واحد به شکل رابطه (7-2) خواهد بود.
Pe ωr (ψd iq −ψqid )(7-2)
با تقسیم رابطه توان الکتریکی بر سرعت مکانیکی روتور، رابطه گشتاور الکترومغناطیسی به شکل رابطه -2) (7 در میآید :
Te ψd iq −ψqid(8-2)
-4-2 پارامترهای ماشین سنکرون
در معادلات حاکم بر ماشین سنکرون که در قسمت 3-2 ارائه شد، اندوکتانسها و مقاومتهای مدارهای استاتور و روتور به صورت پارامتر ظاهر شدند. این پارامترها موسوم به پارامترهای اصلی یا اساسی ماشین هستند و بصورت اجزای مدارهای معادل دو محور d و q در شکل (2-2) قابل تشخیص هستند. هر چند این پارامترها بطور کامل مشخصههای الکتریکی ماشین را بیان میکنند، اما آنها را نمیتوان از عکسالعملهای قابل اندازهگیری ماشین مستقیماً بدست آورد. از اینرو، روش مرسوم در تعیین اطلاعات ماشین این است که آنها را برحسب پارامترهایی بیان میکنند که از رفتار قابل مشاهده ماشین در پایانههای آن قابل تشخیص بوده و تحت آزمایشهای مناسب، قابل اندازهگیری هستند. در این قسمت انواع پارامترهای ماشین و ارتباط آن با پارامترهای اساسی مورد بررسی قرار میگیرد.
-1-4-2 پارامترهای اساسی ماشین
پارامترهای اساسی ماشین یا پارامترهای مدار معادل، از اعمال تبدیل پارک بر روی معادلات حوزه زمان ماشین سنکرون بدست میآیند و مشخص کننده عناصر مدارهای معادل محورهای طولی و عرضی ماشین هستند. تعداد این پارامترها با مرتبه مدل تغییر میکنند. از مشکلات عمده کار با این پارامترها، مشخص نبودن دقیق مقدار همگی آنها است. بعبارت دیگر روشی برای تعیین مقادیر دقیق این پارامترها بصورت یک-
جا وجود ندارد و روشهای موجود همگی مقادیر تقریبی مربوط به این پارامترها را بدست می دهند.
29
بعنوان نمونه اگر مدل 2-2 استاندارد IEEE Std1110 که در شکل (1-2) نشان داده شدهاست را درنظر بگیریم، کلیه عناصر مداری که در شکل نشان داده شدهاند، پارامترهای مدار معادل بوده و به راحتی قابل محاسبه و اندازهگیری نمیباشند. حتی بعضی از آنها مخصوصاً بعضی از پارامترهای برخی از شاخههای مدار محور q وجود فیزیکی خارجی نداشته و صرفاً جهت مدل سازی رفتار ماشین در نظر گرفته میشوند.
-2-4-2 پارامترهای عملیاتی
همانگونه که از نام این پارامترها پیداست، پارامترهای عملیاتی، ماشین سنکرون را از دید سیستمی بیان می-
کنند و معین کننده رابطه ورودی و خروجی ماشین سنکرون هستند. در این حالت تغییرات شار محور طولی و عرضی، تغییرات جریان محورهای طولی و عرضی و تغییرات ولتاژ سیستم تحریک بعنوان ورودی یا خروجیهای سیستم در نظرگرفته شده و با استفاده از پارامترهای عملیاتی این ورودیها و خروجیها به یکدیگر مرتبط میشوند.
در شکل عملیاتی, معادلات روتور را میتوان به صورت سیستمی با پارامترهای گسترده محسوب کرد. این پارامترها را می توان از طریق محاسبات طراحی و یا آسانتر از طریق آزمایش پاسخ فرکانسی بدست آورد.
زمانیکه تعداد محدودی مدار برای روتور در نظر گرفته شود، می توان این پارامترها را بصورت نسبت دو چند جملهای برحسب S (عملگر لاپلاس) بیان نمود. درجه چند جملهای مخرج حداکثر برابر تعداد مدارهای فرض شده بر روی روتور است. پارامترهای عملیاتی نسبت به پارامترهای مدار معادل کاربرد بیشتری داشته و به ماشین وجهه سیستمی میدهند. این پارامترها درحقیقت مشخصههای فرکانسی ماشین سنکرون هستند و عبارتند از یک دسته منحنیهای مشخصه یا روابط تحلیلی که رابطه بین امپدانس مختلط (یا عکس آن) را نسبت به لغزش در فرکانس نامی مشخص مینمایند. در زیر سه مشخصه فرکانسی مهم ماشین معرفی می شوند .
الف ) امپدانس عملیاتی محور طولی ( ( Zd(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی و ماندگار ولتاژ آرمیچر (ناشی از مولفه محور طولی جریان آرمیچر) به دامنه مولفه اصلی و مختلط این جریان که بصورت تابعی از فرکانس بیان میشود، تعریف شده و آن را Zd(s) مینامند. این مشخصه را در حالتی که سیم بندی میدان اتصال کوتاه گردیده است، برای فرکانسهای مختلف اندازهگیری مینمایند.
ب) امپدانس عملیاتی محور عرضی ( ( Zq(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر تولید شده توسط شار مغناطیسی محور عرضی ناشی از مولفه جریان آرمیچر در جهت محور عرضی به دامنه مولفه اصلی این جریان تعریف شده و بر حسب تابعی از فرکانس(لغزش) بیان میگردد.
ج) مشخصه فرکانسی G(s) بین سیم بندی میدان و آرمیچر
30
این مشخصه به صورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر ناشی از جریان سیمبندی میدان در فرکانسهای مختلف به دامنه مولفه اصلی ولتاژ اعمالی در سیم بندی میدان تعریف میگردد.
-3-4-2 پارامترهای دینامیکی
این پارامترها به لحاظ سابقه، اهمیت و کاربرد فراوان آنها پارامترهای استاندارد ماشین نامیده میشوند، اما از آنجائیکه بیشتر حالتهای گذرا و دینامیکی ژنراتور را مدنظر دارند، به آنها پارامترهای دینامیکی نیز اطلاق می شود. یکی از دلایل اهمیت این پارامترها، قابلیت تشخیص و اندازهگیری آنها میباشد. این پارامترها را میتوان با استفاده از آزمایشهای خاصی که بعضی استانداردها نیز به آن اشاره دارند، مستقیماً بدست آورد. با استفاده از این پارامترها میتوان ژنراتور سنکرون را بویژه در حالات گذرا و دینامیکی تحلیل نمود. آزمایشات مربوط به استخراج این پارامترها سابقه نسبتاً زیادی دارد. تقسیم بندی این پارامترها که شامل اندوکتانسها و ثابت زمانیها هستند، به صورت پارامترهای دینامیکی محور طولی،محور عرضی همچنین پارامترهای
تندگذر و کندگذر میباشند که بسته به نوع تحلیل، جهت بررسی یک پدیده، پارامترهای مورد نیاز متفاوت
خواهد بود. این پارامترها بطور خلاصه شامل راکتانسهای سنکرون ( X q , X d )، راکتانسهای تندگذر و کندگذر محورهای طولی و عرضی( ( X ′q′, X ′d′, X ′q , X ′d ثابت زمانیهای کندگذر و تندگذر مدار باز محورهای طولی و عرضی ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do و ثابت زمانیهای کندگذر و تندگذر اتصال کوتاه محورهای طولی و عرضی ( ( Tq′′,Td′′,Tq′,Td′ می باشند.
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای
اساسی ماشین
در محاسبه مقادیر اولیه شارهای گذرا در مدارهای تزویج شده از تئوری ثابت بودن شار دور استفاده میشود.
این تئوری بطور خلاصه عبارتست از اینکه شاردور مدار القائی با مقاومت و emf کوچک نمیتواند بطور لحظهای تغییر یابد. در حقیقت اگر emf یا مقاومتی در مدار موجود نباشد، شاردور آن ثابت خواهد ماند. این تئوری را میتوان در محاسبه جریانها بلافاصله بعد از تغییر شرایط مدار برحسب جریانهای قبل از تغییر استفاده کرد. هنگامی که یک اغتشاش همانند اتصال کوتاه در سمت استاتور ماشین اتفاق میافتد، شار استاتور تغییر میکند. پاسخ ماشین به اغتشاش براساس نحوه تغییرات جریانها و شارها عموماً به سه دوره زیرگذرا، دوره گذرا و ماندگار تقسیم میشود. در دوره زیرگذرا تغییر در جریان سیمپیچیهای میراکننده مانع از نفوذ شار ایجاد شده توسط استاتور به روتور میگردد. با کاهش جریان سیم پیچیهای میراکننده، دوره گذرا آغاز میشود که در آن تغییر جریانهای سیمپیچی میدان همان اثر را، اما ضعیفتر خواهد داشت. در نهایت در حالت ماندگار شار ایجاد شده استاتور به داخل روتور نفوذ خواهد کرد. شکل (3-2) توزیع شار در دورههای زیر گذرا، گذرا و ماندگار ماشین پس از وقوع یک اغتشاش سمت استاتور را نشان میدهد که بر اساس مسیر شار در هر یک از این حالتها میتوان راکتانسهای سنکرون، گذرا و زیرگذرای ماشین را تعریف کرد.
31

دوره زیرگذرا

دوره گذرا

حالت ماندگار

25%

25%

90 9090

90 9090

25%
25%
شکل (3-2) توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار
در این قسمت نحوه محاسبه پارامترهای دینامیکی ماشین سنکرون برحسب پارامترهای اساسی یا همان پارامترهای مدار معادل ماشین تشریح میشود. همچنین مدار معادل ماشین برای هر یک حالتهای ماندگار، گذرا و زیرگذرا ارائه میشود. مدل در نظر گرفته شده برای ژنراتور بر اساس استاندارد IEEE Std1110،
32
مدل 2-2 میباشد. در صورت استفاده از مدلهایی با مرتبه متفاوت، رابطه پارامترهای دینامیکی تغییر یافته اما نحوه محاسبه آنها بصورت مشابه میباشد.
-1-5-2 محاسبه راکتانسهای ماشین
الف – راکتانسهای سنکرون
معمولاً اندوکتانس را به عنوان نسبت شاردور به جریان تعریف می کنند. وقتی که قله mmf گردان در امتداد محور d قرار گرفت، نسبت شاردور استاتور به جریان استاتور اندوکتانس محور (Ld) d نامیده میشود.
با بدست آمدن اندوکتانسها بدیهی است که راکتانسهای متناظر نیز به سادگی قابل محاسبه هستند.
همچنین وقتی قله mmf گردان در امتداد محور q قرار بگیرد، نسبت شاردور استاتور به جریان آن، اندوکتانس سنکرون محور (Lq) q خواهد بود. شکل (4-2) مدار معادل ماشین در شرایط حالت ماندگار را نشان می دهد.
x fd xl x1q xl i fd i1q  0 x1d X d → x2q X q → xad xaq 0 i i2q  0 1d الف-مدار معادل محور d ب-مدار معادل محورq شکل :(4-2) مدار معادل ژنراتور سنکرون در حالت ماندگار
در حالت ماندگار، راکتانسهای سنکرون محور d و q به ترتیب با توجه به شکل (4-2) محاسبه می شوند.
مقادیر این راکتانس ها در روابط (9-2) و (10-2) ارائه شده است.
(9-2) X d  xl  xad
(10-2) X q  xl  xaq
ب- راکتانسهای گذرا
برای محور مستقیم، با توجه به اینکه مقاومت سیمپیچیهای میراکننده معمولاً بزرگتر از مقاومت سیم بندی میدان میباشد، جریان القایی در این سیم پیچیها بسیار سریعتر از جریانهای القایی در سیم بندی میدان میرا میشود. برای دوره گذرا فرض میشود که حالت گذرای میراکننده با میرایی فوقالعاده زیاد تمام شده است، در حالیکه جریانهای القایی در سیم بندی میدان هنوز برای مخالفت با تغییر شاردور ناشی از جریان-

های استاتور تغییر میکنند. مدارهای معادل ماشین در دوره گذرا مطابق شکل (5-2) می باشد. مدار معادل محور q نیز به طریق مشابه قابل توجیه است.

33
x fd xl Vfd x1d X ′d → xad i1d  0 الف-مدار معادل محور d ب-مدار معادل محورq
شکل :(5-2) مدار معادل ماشین سنکرون در دوره گذرا
براساس مدارهای معادل بدست آمده، راکتانس های گذرای محورهای d و q به شکل روابط (11-2) و(-2 (12 محاسبه می گردند.
(11-2) xad x fd x fd xl  X ′d  xl  xad xad  x fd (12-2) xaq x1q x1q xl  X ′q  xl  xaq x aq x 1q ج-راکتانس های زیر گذرا
در دوره زیرگذرا، جریانهای گذرای القا شده در سیم بندیهای روتور سعی دارند تا شاردور هر یک از مدارهای روتور را در ابتدا ثابت نگه دارند. براین اساس مدارهای معادل محورهای d و q ماشین سنکرون در این حالت مطابق شکل (6-2) میباشد.

الف-مدار معادل محور dب-مدار معادل محورq
شکل :(6-2) مدار معادل ماشین سنکرون طی دوره زیر گذرا
در این حالت برای محور d راکتانس دیده شده معادل سه راکتانس موازی xad ، x fd و x1d میباشد که با xl سری شده است. راکتانس زیر گذرای مدار باز محور q نیز مشابه محور d محاسبه میشود. براساس مدار معادل های ارائه شده، این راکتانس ها طبق روابط (13-2) و (14-2) محاسبه میشوند.
(13-2) xad x fd x1d xl x fd  x1d X ′d′  xl  xad xad x fd  xad x1d  x fd x1d 34
(14-2) xad x fd x1d xl x1d x fd  X ′d′  xl  xad x x x ad x fd x ad x fd 1d 1d -2-5-2 محاسبه ثابت های زمانی ماشین
حضور دو مجموعه سیم بندی برروی روتور، دو مجموعه ثابت زمانی مختلف را سبب شدهاست. مجموعه با مقادیر بزرگتر مربوط به ثابت زمانیهای گذرا و مجموعه با مقادیر کوچکتر مربوط به ثابت زمانیهای زیرگذرا هستند. معمولاً سیم بندیهای میراکننده که مقاومت بیشتری نسبت به سیم بندیهای میدان دارند، با ثابت زمانیهای زیرگذرا متناظرند.
ثابت زمانیهای گذرا و زیرگذرا بر روی محورهای d و q معمولاً در دو حالت تعریف میشوند. در یک حالت که استاتور مدار باز است و ثابت زمانیهای مدار باز تعریف میشود، ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do، و درحالت دیگرسیم پیچی استارتور بصورت اتصال کوتاه فرض می شود( .( Tq′′,Td′′,Tq′,Td′ میتوان نشان داد که نسبت ثابت زمانی گذرای محور d با استاتور اتصال کوتاه به ثابت زمانی گذرای محور d با استاتور مدار باز برابر است با نسبت راکتانس ظاهری که جریان استاتور با سیم بندی میدان اتصال کوتاه شده می بیند، به راکتانسی که جریان استاتور با سیم بندی میدان مدار باز میبیند.
الف -ثابت زمانی های گذرا
مدار معادل ماشین جهت استخراج ثابت زمانیهای گذرای مدار باز محور d و q در شکل (7-2) نمایش داده شدهاست.

Rfd
′ T do ← R1d
i1q=0
xfd
Rsxl
x1d
xad
الف :
محور dب: محورq
شکل :(7-2) مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز
براساس فرضیات فوق و مدارمعادل شکل (7-2) ثابت زمانیهای مدارباز ماشین بصورت روابط (15-2) و
(16-2) بدست می آیند. (15-2) xfdxad 1 T ′do  ω0 R fd (16-2) x1qxaq 1 T ′qo  R ω 0 1q 35
همچنین مقادیر ثابت زمانیهای گذرا با استاتور اتصال کوتاه شده بر اساس روابط (17-2) و (18-2) محاسبه میشوند.
(17-2) x′d  Td′ xd T ′do (18-2) x′q  Tq′ xq T ′qo ب- ثابت زمانیهای زیر گذرا
ثابت زمانی زیرگذرای مدار باز محور d عبارتست از زمان لازم برای کاهش مولفه d جریان به مقدار 1e ام مقدار اولیه خود، هنگامی که در ترمینال ماشینی که با سرعت نامی می چرخد، بطور ناگهانی اتصال کوتاهی رخ دهد. بعبارت دیگر این ثابت زمانی عبارتست از ثابت زمانی جریان سیمبندی میراکننده d وقتی سیمبندی میدان اتصال کوتاه شده و سیمبندیهای استاتور مدار باز باشند. از مقاومت سیم بندی میدان در این دوره کاهش ولتاژ صرف نظر میشود. ثابت زمانی های زیر گذرای مدار باز محور q نیز به طریق مشابه تعریف میشوند. مدار معادل ماشین جهت استخراج ثابت زمانیهای زیرگذرای مدار باز مطابق شکل (8-2) میباشد.

براساس فرضیات فوق و مدار معادلهای ماشین در دوره زیرگذرا و ثابت زمانیهای زیرگذرای مدار باز ماشین بر اساس روابط (19-2) و (20-2) محاسبه میگردند.

الف : محورdب:محورq
شکل :(8-2) مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز
(19-2)
(20-2)

 x fd xad x fd  xad x1q xaq  aq x x 1q
1 1 ′′ xad  ω x1dxfd x1d R R 0 Tdo  ω 1d 0 1d 1 1 ′′ xaq  ω x2qx1q x2q 2q R 0 R 0 Tqo  ω 2q 36
-6-2 مراتب مختلف مدلهای ژنراتور سنکرون براساس مدل دو محوری پارک
روابط ارائه شده در قسمت (3-2) تا حدود قابل قبولی عملکرد الکتریکی دینامیکی یک ماشین سنکرون را بیان می کنند. اما گاهی این روابط را نمی توان بطور مستقیم برای مطالعات سیستمهای قدرت بزرگ بکار برد. از طرفی برخی از اوقات نیز لازم است رفتار ماشین سنکرون با جزئیات بیشتری مدل شود. در مدل دو محوری پارک همانگونه که قبلاً هم تشریح شد، مقادیر استاتور به دو سری مقادیر در دو جهت تبدیل می-
شوند که یکی در راستای محور مغناطیسی سیم پیچی میدان بوده (محور (d و دیگری با 90 درجه اختلاف با محور d عمود بر محور مغناطیسی سیم پیچی میدان میباشد (محور .(q محور d روتور شامل سیم پیچی میدان و سیم پیچیهای میراکننده میباشد. محور q نیز شامل سیم پیچیهای میراکننده این محور است.
باتوجه به تعداد سیم پیچیهای درنظر گرفته شده برای محور d و q روتور، مراتب مختلفی برای مدل ژنراتور سنکرون متصور است. براساس استاندارد IEEE Std 1110، مدل ژنراتور بایک شماره دورقمی Model AB مشخص میشود که A تعداد سیم پیچیهای درنظر گرفته شده برای محور d روتور و B

تعداد سیمپیچیهای منظور شده برای محور q روتور میباشد. جدول (1-2) مراتب مختلف ژنراتور سنکرون را نشان میدهد. نوع مدل انتخاب شده برای ژنراتور سنکرون وابسته به پارامترهای مختلفی از جمله نوع ژنراتور و ساختار فیزیکی روتور و انواع مطالعه مورد نظر است که در قسمتهای بعدی تشریح میشود.
37
جدول :(1-2) مراتب مختلف مدلهای ژنراتور سنکرون

فصل سوم:

بررسی روشهای شناسایی پارامترهای
دینامیکی ژنراتورهای سنکرون
39
-1-3 مروری بر پیشینه شناسایی پارامترهای دینامیکی ژنراتور سنکرون:
بحث پارامترهای دینامیکی ماشین سنکرون و یا به عبارت دیگر این مطلب کـه بـرای بیـان رفتـار ماشـین سنکرون در حالتهای گذرا از راکتانسهای مربوط به حالت دائم نمیتوان استفاده کرد، برای اولین بار در سـال
1920 با طرح مفهوم راکتانس اتصال کوتاه مطرح گردید. بعدها این ایده بعنوان پایه و اسـاس اولیـه تئـوری
"ثابت بودن شاردور در برگیرنده" قرار گرفت و در مقالاتی توسط دوهرتی1 درسال 1923 و بیـولی2 در سـال
1929 دوباره عنوان گردید.
آقای کری3 این مطلب را به این صورت طرح کرد که در هر مدار بسته بلافاصله بعد از هر تغییر بوجود آمـده در جریان، ولتاژ ویا موقعیت فیزیکی این مدار نسبت به موقعیت مدارات دیگـر کـه بـا آن بطـور مغناطیـسی درگیر میباشند، شار دور در برگیرنده ثابت باقی خواهد ماند . با توجه به مقاومت موجود در سیم پیچی میدان و دیگر سیم پیچیهای روتور (دمپرها) و در نتیجه تغییرات حاصله در شاردور در بر گیرنده در طی مدت زمان بعد از وقوع تغییرات ناگهانی، لزوم معرفی ثابت زمانیهای گوناگون ماشین نیز بعدها بـرای تحلیـل دقیـق تـر مورد ملاحظه قرار گرفت.
بر این اساس پارک4 و روبیرتسون5 در سال 1928 راکتانسهای دیگری از قبیل راکتانسها و ثابـت زمانیهـای محور عرضی و محور طولی را برای رژیم های تندگذر و کندگذر و به همین صورت مفاهیم دیگری همچون حالات کندگذر و تندگذر را در شارها، ولتاژها و جریانها نیز مطرح نمودند. گام بعدی در همین رونـد معرفـی مدار معادل ماشین بود. بسط منطقی این طریقه تحلیـل رفتـار ماشـین (بعـد از هـر تغییـر ناگهـانی) معرفـی مدارهای مربوط به محورهای طولی و عرضی ماشین با این فرض بود که بتوان یک اندوکتانس متقابل بـین سیم بندیهای موجود در روتور و استاتور تعریف نمود. بدین ترتیب و با در نظر گرفتن یک اندوکتانس متقابـل برای کوپلاژ بین سیم بندیهای روتور و استاتور و همچنین انتساب یک اندوکتانس پراکندگی به هـر کـدام از سیم بندیها (استاتور، میدان وبدنه روتور) مدار معادل مربوط به محور طولی ماشین. در سال 1931،کیلگوری6
در طی یک پروژه - ریسرچفاکتورهای مؤثر در محاسبات مربوط به بدست آوردن راکتانسهای ماشین سـنکرون را کـه مبنای خواص فیزیکی و ابعاد هندسی ماشین(استاتور، روتور و سیم پیچی میدان) میباشند بیان نمود. در ایـن مسیر در سال 1929، پارک نیز ایده محورهای طولی و عرضی برای ماشین را که قبلا توسط خـود او مطـرح شده بود به تبدیلات d-q که طی آن کمیات مربوط به سه فاز به متغیرهای q-d مرتبط می گردیـد بـسط داده و به این ترتیب پایه معادلات ماشین بر مبنای تئوری دو محوری بنا نهاده شد.

1-Doherty 2- Biowly 3- Cary 4- Park 5- Robertson 6- Kilgore
40
در سال 1931، شروین1 روابط لازم جهت بدست آوردن پارامترهای ماشین سنکرون را بـرای حالـت دائـم و گذرا، از طریق نتایج آزمایش ارائه نمود و این در حقیقت اولین روش پذیرفته شده بطور عام برای آزمایشهای ماشین سنکرون بود.که در سال 1945 میلادی توسط کمیته مربوط به ماشین سنکرون AIEE چاپ گردید.
از لحاظ تاریخی کمیته ماشینهای الکتریکی و استاندارد شماره 115 مربوط به IEEE ماحصل همان کمیتـه و همان روش آزمایشی ارائه شده در طی سالهای بعدی می باشد.
در طی اوائل دهه 60 میلادی به همان صورت که ابزار و تکنیکهای محاسباتی کـه در تحلیـل سیـستمهای قدرت بکار می رفت از لحاظ ابعاد و سرعت با روند رو به رشدی روبرو بود نیاز به مـدلهای دقیـقتـر ماشـین سنکرون جهت مطالعات پایداری نیز محسوس شده و بـرای ایـن خـاطر روشـهای کلاسـیک بدسـت آوردن پارامترهای ماشین سنکرون نیز دوباره مورد توجه بیشتر و دقیقتر قرار گرفت. در طی ایـن سـالها عـلاوه بـر مقالات متعددی که در این رابطه به چاپ رسید، استانداردهایی نظیر اسـتانداردBS, IEC, IEEE مربـوط به بخش ماشین نیز به دفعات متعدد چاپ و مورد تجدید نظر قـرار گرفتنـد. ایـن اسـتانداردها از میـان انـواع روشهای متفاوت و گوناگونی که ارائه میگردیدند و با توجه به رعایت نکات عملی و تکنیکهای انـدازهگیـری در طی جلسات متعدد کمیتههای ماشینهای الکتریکی، آنهایی را که تا حدی قابل قبول تشخیص مـی دادنـد انتخاب کرده و در استانداردها به عنوان روشهای کلاسیک مطرح و مورد تایید قرار می دادنـد. از مشخـصات مهم آزمایشات کلاسیک مربوط به قبل از دهه 80 تاکید روی آزمایش اتصال کوتاه سه فاز ناگهـانی و سـعی در بدست آوردن پارامترهای ماشین بـا اسـتفاده از چنـین آزمایـشی بـود کـه در حـال حاضـر هنـوز هـم در مشخصات ارائه شده در نیروگاهها نتایج حاصل از آزمایش اتصال کوتاه ناگهانی ارائه می گردد.
از جمله نکات محدودکننده اینگونه آزمایشها عدم دسترسی به پارامترهای مربـوط بـه محـور عرضـی، عـدم صرفه اقتصادی و قابلیت انجام آن در محل نیروگاهها و در تحت ولتاژ نامی بود. در حقیقت تـا قبـل از سـال
1983 روشهای دسترسی به پارامترهای مربوط به محور q در استانداردها مسکوت گذارده شده بود.
در طی سالهای 1960 الـی 1980 آزمایـشات گونـاگونی جهـت پاسـخگویی بـه سـؤالاتی از قبیـل اهمیـت پارامترهای مربوط به محور عرضی و همچنین درجه دقّت مورد لزوم برای پارامترهای ماشین و یا درجه مدل بکار رفته برای ماشین مطرح شده است. آزمایشات نیروگاه نورث فلیت2 در سال 1969 و تحقیقات انجام شده مؤسساتی چون EPRI, NPCC & Ontario-Hydro از این دسـتهانـد. ایـن مجموعـه فعالیـتهـا نتایجی از این قبیل را به همراه داشت:
در شبیه سازی دینامیکی رفتار ماشینهای الکتریکی، اطلاع دقیـق از پارامترهـای ماشـین بـه انـدازه درجه مدل انتخابی اهمیت دارد. این اهمیت در باب پارامترهای محور عرضی بارزتر است.
در تعیین پارامترهای ماشین همواره آزمایشاتی که منجر به تغییرات کوچک(بزرگ) در مقادیر ولتاژ و جریانهای ماشین گردند، اطلاعات مناسبی از پارامترها برای مطالعات مربوط بـه اغتـشاشات بـزرگ (کوچک) را در اختیار قرار نمیدهد.

7- Shervin 8- North Fleet
41
با توجه به این نکته پارامترها باید بسته به نوع مطالعه تصحیح و بهینه سازی شوند.
ارزش پارامترهای محور عرضی در شبیه سازی رفتار توربوژنراتورهای با روتـور یکپارچـه بـه حـدی است که انجام آزمایشهای جداگانه در این جهت راتوجیه میکند.
بدین ترتیب در سالهای بعد از 1980 آزمایشهای جدیدتری چون میرائی شار1 جایگاه ویژهای در حوزه تعیـین پارامترهای دینامیکی ماشینهای سنکرون پیدا کردند.
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون:
به طور کلی آزمایشهای موجود در حوزه تعیین پارامترهای دینامیکی ژنراتور سنکرون را می توان به دو دسته :
روشهای کلاسیک
روشهای جدید
تقسیم بندی کرد. روشهای کلاسیک، آزمایشهایی محدود را تشکیل میدهند که عموماَ از نظر زمانی نیز، بـر روشهای جدید تقدم دارند. مهمترین معیارهای مطرح در انتخاب روشهای مورد استفاده عبارتنداز:
انجام آزمایش در آن کشور ممکن باشد و به ابزار پیچیده نیاز نداشته باشد.
استانداردهای معتبر آن را تایید کند.
با بکارگیری آن تعداد بیشتری از کمیتها را بتوان شناسایی کرد.
آن روش قادر به اندازهگیری پارامترهای محور عرضی نیز باشد.
-1-2-3 روشهای کلاسیک اندازهگیری پارامترهای دینامیکی ژنراتور سنکرون:
روشهای کلاسیک روشهایی محدود هستند که عموما قبل از دهه 80 میلادی ابداع شدهاند و بـا انجـام آنهـا تنها یک یا چند پارامتر شناسایی میشود. این روشها برروی هر ژنراتـوری قابـل اجـرا بـوده و بـه تجهیـزات پیشرفته و پیچیده نیاز ندارد. تغییرات این روشها در خلال این سالها عموما از جنس اصلاح روابط محاسـباتی میباشد. اغلب آنها استاندارد شدهاند، ولی متاسفانه با انجام هر یک از این آزمایشها تنهـا تعـداد محـدودی از پارامترها بدست میآیند. از نقاط ضعف این روشها مساله تعیین پارامترهای محور q اسـت. از معایـب عمـده دیگر بعضی از این روشها مخرب بودن آنهاست. با این شرایط مجوز استفاده از این روشها علیرغم اسـتاندارد بودن آنها صادر نمیگردد.
به عنوان نمونه آزمایش اتصال کوتاه سهفاز اگر چه نتایج خوبی را از جهت تعیین پارامترها در بر داشته باشد، به علت آثار مخرب الکتریکی و مکانیکی جبران ناپذیر آن چندان مورد توجـه نیـست. اغلـب کمیتهـایی کـه توسط آزمایشهای کلاسیک تعیین میشود بر پایه مدل استاندارد IEEE تبیین شـدهانـد بـا یـک سـیمپـیچ میرایی محور طولی و عرضی. بسیاری از این روشها در تعیین پارامترها برای مدلهایی از مرتبـه بـالاتر ناکـام خواهند بود.

9- dc decay
42
-2-2-3 روشهای جدید در تعیین پارامترهای دینامیکی ژنراتورهای سنکرون:
همگام با رشد سیستمهای کـامپیوتری، توسـعه تجهیـزات انـدارهگیـری و پدیـد آمـدن سیـستمهای هـوش مصنوعی، مجموعه جدیدی از روشها برای شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون پدیـد آمدنـد.
بطور کلی در این روشها با اعمال ورودیهای مناسب در وضعیتهای متفاوت روتور(ایـستا یـا متحـرک) و ثبـت خروجیها، توابع انتقال ماشین شناسایی شده است. سپس با فرض یک مدل خاص بـرای ماشـین مـیتـوان پارامترهای ماشین را با روشهای مناسبی تخمین زد. اخیرا مدلهایی با مرتبه بالاتر نیز در اسـتانداردها مطـرح شدهاند. شناسایی پارامترهای دیگری که همگام با رشد درجه مدل مطرح شدهاند را صرفا میتوان با اسـتفاده از روشهای جدید تعیین پارامترهای دینامیکی ژنراتور سنکرون شناسایی کرد، اگر چه توانایی روشهای مذکور در تعیین این پارامترها متفاوت است. در مجموع روشهای جدید را میتوان تلاشـهایی بـرای دسـتیـابی بـه اهداف زیر دانست:
أ- دستیابی به روشهای بلادرنگ در تخمین پارامترها ب- استفاده از اطلاعات بهره برداری برای شناسایی پارامترها ت- شناسایی پارامترها با دقت هرچه بیشتر ث- تلاش در سادهسازی مکانیزم تخمین
به عنوان نمونه از مهمترین روشهای مطرح در این دسته به موارد زیر میتوان اشاره کرد: (1 روشهای بنا شده برپایه سیستمهای هوش مصنوعی:
(a تخمین پارامترهای دینامیکی با استفاده از شبکه عصبی (b تخمین پارامترهای دینامیکی با استفاده از الگوریتم ژنتیک
(2 روشهای بنا شده بر پایه تکنیکهای معادلات معادلات جزئی: (a تعیین پارامترها با استفاده از تکنیک اجزاء محدود
(3 شناسایی پارامترها ماشین سنکرون با استفاده از تست پاسخ فرکانسی
(4 شناسایی پارامترها با استفاده از دامنه وسیع تحریک
(5 شناسایی پارامترها با استفاده از اطلاعات تست باربرداری
(6 شناسایی پارامترها با استفاده از اطلاعات میرایی شار
(7 شناسایی پارامترها با اطلاعات بدست آمده از اغتشاشات بهره برداری (a تخمین پارامترها با استفاده از اغتشاشات بزرگ بهره برداری (b تخمین پارامترها با استفاده از اغتشاشات کوچک بهره برداری
عموم این روشها غیر مخرب بوده و نتایج خوبی را در تخمین پارامترها نشان داده اند. از نکات قابـل توجـه در این روشها توانایی آنها در تعیین پارامترهای محور عرضی علاوه بر محور طولی و همچنـین امکـان تخمـین پارامترها، متناظر مدلهایی با درجههای مختلف است. البته این به معنی توانایی برابر این روشها برای تخمین
43
و شناسایی پارامترها در جهات مختلف نیست. البته همه این روشـها در حـال تکامـل و بهبـود مـیباشـند و
بسیاری از آنها هنوز استاندارد نشدهاند.
44
فصل چهارم:

شناسایی بلادرنگ پارامترهای
دینامیکی ژنراتورهای سنکرون با
استفاده از رویتگر شبکه عصبی
45
-1-4 اصول کار شبکه های عصبی:
یکی از روشهای مشهور در حوزه هوش مصنوعی شبکه عصبی مصنوعی است. شبکههای عصبی مـصنوعی الهام گرفته از شبکه عصبی انسان هستند که توانایی بالایی در تقلید رفتار توابـع غیـر خطـی از خـود نـشان دادهاند. انسان با استفاده از تجربیاتی که از وقایع پیرامون خود دارد و ارتباطی که بین آن وقایع و عوامل مؤثر بر آنها برقرار میکند، نسبت به تخمین وقایع آتی بر پایه وضـعیت عوامـل مـؤثر اقـدام مـینمایـد. براسـاس تحلیلهای موجود شبکه عصبی مغز انسان از لایههای مختلفی تشکیل شده که لایه خـارجی آن(کـورتکس)
متصل به مجاری ورودی است. این ورودیها در انسان حواس او هستند. تجربیات ما به صورت تفاوت قوت و ضعف نقاط اتصال سلولهای عصبی به یکدیگر(سیناپسها) بروز مـیکنـد. هـر یـک از نـرونهـا پیونـدهای متعددی با سلولهای لایه بعد دارند.

شکل:1-4 طرح کلی سلول عصبی انسان
مسلم است که هرچه تعداد پیوندهای عرضی بیشتر باشد شبکه توانایی بیشتری در آموزش رفتـار توابـع غیـر خطی خواهد داشت.
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها:
با درنظر گرفتن مبادی ذکر شده، مراحل شبیهسازی شبکههای عصبی بدین صورت خواهد بود:
ساخت نرون مصنوعی
ساختاربندی آن در قالب لایههای مختلف
تهیه بانک اطلاعات لازم برای آموزش شبکه عصبی
آموزش شبکه عصبی
تست شبکه
46

شکل :2-4 شکل کلی سلول عصبی مصنوعی
لایههای شبکه عصبی را به سه دسته لایه ورودی، لایه خروجی، و لایه (لایههای) مخفی تقسیم مـیکننـد.
تعداد عناصر لایه ورودی و خروجی باید برابر تعداد ورودی، خروجیهای در نظـر گرفتـه شـده بـرای شـبکه باشند. افزایش تعداد لایههای مخفی در شبکه عصبی دو اثر متضاد را به همراه دارد. از یک طرف تقلیـد هـر چه بهتر رفتار هر تابع غیر خطی را امکان پذیر می سـازد و از طـرف دیگـر مـشکلات شـبیه سـازی و مـدت آموزش را افزایش میدهد. در عمل باید بسته به شرایط، بین این دو عامل بهینهسازی شود. در عمل در طـی تحقیقات متعدد انجام شده شبکه عصبی با یک لایه مخفی به عنوان حالت بهینه مطرح شده است.

شکل:3-4 ساختار شبکه عصبی توسعه یافته
همانگونه که پیشتر مطرح شد تعداد نرونهای لایه خروجی شبکه عصبی برابـر تعـداد خروجـیهـای در نظـر گرفته شده برای آن شبکه است. در این طرح، شبکه عصبی با یک خروجی در نظر گرفته شده است. بنابراین برای تخمین هر یک از پارامترهای مورد نظر باید یک شبکه مستقل تـشکیل شـده، آمـوزش دیـده و مـورد استفاده قرار گیرد. این روش اگرچه مشکلاتی را در تشکیل و آموزش شبکههای متعدد به همـراه دارد لـیکن گامی در جهت دستیابی به حداکثر قابلیت شبکههای عصبی در تخمین پارامترهـای دینـامیکی ژنراتورهـای سنکرون بر اساس دادههای بهرهبرداری است. همانگونه که همواره بهینهسازیهای تک هدفه نتایج بهتـری از جهت دستیابی به نتیجه مورد نظر دارند، با توجه به تشابه ساختاری این معنی در باب شـبکههـای عـصبی نیز صادق است. تعداد نرونهای لایه ورودی نیز برابر تعداد ورودیهای در نظر گرفته شده برای شبکه عـصبی
47
است. تعداد شش ورودی برای شبکه مورد نظر در نظر گرفته شده است. تعداد ورودیها در این طرح با توجه به مجموعه پارامترهای قابل اندازهگیری در خروجی ژنراتورهای سنکرون انتخاب شده است. البته انتخـاب و ترتیب آرایش این پارامترها برپایه رؤیت پذیری پارامترهای دینامیکی ژنراتور سنکرون در رفتار دینـامیکی آن شکل گرفته است. این بحث در طی مطالعات پیشین انجام شـده در مرکـز مطالعـات دینامیـک ایـران مـورد بررسی قرار گرفته است.
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی تخمینگر:
از نکات بسیار مهم در تشکیل شبکه عصبی مـصنوعی، بانـک اطلاعـات آموزشـی مـورد اسـتفاده اسـت. در تجربیات گذشته که در حوزه استفاده از شبکههای عصبی مصنوعی مطرح است، گاه اصلاح مکانیزم تهیـه و تغییر دامنه دادههای آموزشی، یک شبکه عصبی با نتایج ضعیف را به شبکهای بـا نتـایج قابـل قبـول تبـدیل کرده است. شاید بتوان مهمترین نکته در گردآوری اطلاعات آموزشـی را شـمول و فراگیـری آن نـسبت بـه حالتهای مختلف رفتاری مطرح در حوزه مورد نظر دانست. اگرچه این شمول را نباید با بزرگی ابعـاد اشـتباه گرفت. عامل مهم نگاه ریشهای و بنیادین به حالات مطرح در آن حوزه است. از آنجا که این شبکه بر آنـست تا بر پایه اطلاعات بهرهبرداری نسبت به تخمین پارامترهای دینامیکی ژنراتور سنکرون اقدام نماید، لـذا بایـد بانک اطلاعات لازم برای آموزش شبکه عصبی در این حوزه فراهم شود. مجموعه اغتـشاشاتی کـه در طـی بهرهبرداری از ژنراتورها رخ میدهد را میتوان به سه دسته عمده تقسیم کرد:
اغتشاشاتی که در حوزه تحریک رخ می دهند
اغتشاشاتی که در حوزه توان ورودی رخ میدهند
اغتشاشاتی که در شبکه تحت تغذیه رخ میدهند
بدین ترتیب از هر یک از این حوزههای سهگانه یک نمونه شایع به عنوان نماینده آن گروه بـدین ترتیـب در
نظر گرفته شده است:
تغییر ناگهانی %10 در تحریک ژنراتور
تغییر ناگهانی %10 در توان ورودی ژنراتور
وقوع اتصال کوتاه سهفاز 10-5)میلی ثانیه) در خروجی ژنراتور
48

شکل :4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون
(برای آموزش و تست شبکه عصبی)
60 مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون به عنوان مقـادیر پایـه در تـشکیل بانـک اطلاعات آموزشی شبکه عصبی در نظر گرفته شده است. این مجموعه از دادههایی مربوط به:
واحدهای بخاری- فسیلی
واحدهای بخاری-فسیلی با پیوند عرضی
واحدهای بخاری- هستهای
واحدهای آبی
واحدهای با توربین احتراقی
تشکیل شده است. برای هر مجموعه از این پارامترها دو گام افزایشی و دو مرحله کاهش در نظر گرفته شده
است. هر یک از این مراحل تغییرات %10 پارامترها را بهمراه خواهد داشت. مجموعه نهایی دربرگیرنـده 225
مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون میباشد. مجموعه یک ژنراتور متصل به شین
بینهایت برای شبیه سازی رفتار ژنراتور سنکرون در نظر گرفته شده است. برای این که آثـار تفـاوت سـاختار
شبکه در رفتار ژنراتور نیز لحاظ شده باشد در هر مرحله از شبیهسازی بصورت همگام با تغییرات پارامترهـای
ژنراتور، تغییراتی در حوزه پارامترهای شبکه نیز در نظر گرفته شده است. در هر دوره شبیه سازی از خروجـی
ژنراتور 1000 نمونهگیری با فاصله زمانیهایی برابر0,01 ثانیه بعمل آمده است. 20 نمونه از اندازهگیری های
انجام شده و پارامترهای متناظر با آن به عنـوان مجموعـه اطلاعـات آموزشـی در نظـر گرفتـه شـده اسـت.
نمونههای منتخب از میان اندازهگیریهای انجام شده با گامهای متغیر و قابل کنترل گزینش شـدهانـد، ایـن
رویکرد امکان تهیه تصویری بهتر از رفتار دینامیکی ژنراتور سنکرون در قبال یک اغتـشاش را بـا رعایـت دو
مشخصه حداقل حجم اطلاعات و حفظ حداکثر مشخصات رفتاری فراهم میآورد.
49

شکل:5-4 آلگوریتم آموزش شبکه عصبی
آموزش شبکه بر پایه الگوریتم پسانتشار و با استفاده از راهبرد مارکوئیس_لونبرگ انجام شده است. برای هر یک از انواع سهگانه اغتشاشات ذکر شده بانک اطلاعات آموزشی مستقلی در نظـر گرفتـه شـده اسـت. ایـن روش امکان مقایسه بین نتایج اخذ شده در قبال هر یک از انواع اغتشاشات را فـراهم مـیآورد. ایـن راهبـرد امکان مقایسه درجه قابلیت اطمینان نتایج حاصل از تخمین پارامترهای گوناگون در قبال اغتشاشات مختلـف را نیز فراهم میĤورد.
-2-2-4 تست شبکه عصبی تخمینگر:
تست شبکه عصبی با استفاده از اطلاعات بهره برداری که در مجموعه آموزشی لحـاظ نـشده، شـکل گرفتـه است. بدین ترتیب تصویر واقعگرایانهتری از قابلیتهای شبکه مذکور خواهیم داشت. برای تحقق این معنـی اطلاعات مربوط به 75 ژنراتور سنکرون متفاوت با نمونه های مطـرح شـده در مجموعـه آموزشـی، دادههـای حاصل از اندازهگیریهای بعمل آمده در قبال رفتار دینامیکی آنهـا و مقـادیر حقیقـی پارامترهـای دینـامیکی متناظر با آن به عنوان مجموعه دادههای تست شبکه عصبی در نظر گرفته شده است. طرح کلی روش تست و بهرهبرداری شبکه عصبی مذکور در شکل4-6 بیان شده است. هریک از مراحـل آمـوزش و تـست شـبکه عصبی تخمینگر با مشخصات ذکر شده در قبال سه اغتشاش نمونه مطرح در نظر گرفته شده است.
50

شکل:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی
-3-4 نتایج:
مجموعه نتایج در سه بخش سازماندهی شده است. هربخش در برگیرنده نتایج آموزش و تست شبکه عصبی بر پایه یکی از انواع سهگانه اغتشاش میباشد. این طریقه بررسی امکان مقایسه بهتر نتایج را فراهم سـاخته، شاهدی بر رؤیت پذیری پارامترهای دینامیکی ژنراتورهای سنکرون در ازای اغتشاشات مختلف مـیباشـد. از طرف دیگر بررسی مقایسهای نتایج درجه دقـت شـبکه عـصبی در تخمـین پارامترهـای دینـامیکی بـر پایـه اطلاعات مختلف بهرهبرداری را نیز بیان میکند. برداشتهای مقایسهای امکان تعیین بهتر قابلیتهای شبکه عصبی را بدور از آثار ناشی از الگوی آموزشی فراهم میآورد، زیرا ابعاد و مکانیزم تشکیل مجموعـه آموزشـی در تخمین همه این پارامترها مشابه بوده است.
برای بررسی رفتار هر شبکه عصبی دو معیار اصلی دامنه و توزیع فراوانی خطا در نظر گرفتـه شـده اسـت. در تحلیل بر اساس توزیع فراوانی خطا، درصد فراوانی غالب و دامنه خطای متناظر با آن بیان شدهاند. با توجه به حجم زیاد مجموعه نتایج، چند نمونه از شبکههای تخمینگر و دادههای بدست آمده از طریق آنها در مرحلـه آموزش و تست ارائه شده است. این مجموعه به سه حوزه آموزش و تست بر اساس اطلاعـات بهـرهبـرداری شکل گرفته برپایه تغییر ناگهانی تحریک، تغییر ناگهانی تـوان ورودی و اغتـشاش حـوزه شـبکه متـصل بـه ژنراتور تقسیم شده است. برای فراهم سازی امکان مقایسه بیشتر، نتایج متناظر هر پارامترکه با استفاده از هر یک از بانکهای اطلاعاتی سهگانه مذکور بدست آمده اسـت در اختیـار خواننـده محتـرم قـرار گرفتـه اسـت.
پارامترهای دینامیکی مطرح برای ژنراتورهای سنکرون _در نگاه اشتراکی بین انواع مختلف آن _کـه مـا بـه تخمین آنها همت گماشته ایم مجموعهای بدین صورت را تشکیل خواهد داد:
51
جدول( (1-4 ردیف نام پارامتر مشخصه واحد
1 راکتانس سنکرون محور d Xd pu
2 راکتانس حالت گذرا محور d Xd' Pu
3 راکتانس فوق گذرا محور d Xd" Pu
4 راکتانس سنکرون محور q Xq pu
5 راکتانس فوق گذرا محور q Xq" Pu
6 راکتانس پوتیه Xl pu
7 ثابت زمانی محور d در دوره گذرا Td' s
8 ثابت زمانی محور d در دوره فوق گذرا Td" s
9 ثابت زمانی محور q در دوره فوق گذرا Tq" s
10 ثابت اینرسی H s
52
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر:
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd"

شکل :8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
53

شکل :9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
54

شکل :11-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
55
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل :14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
56

شکل :15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
57

شکل :17-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
58
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
59

شکل:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
60

شکل :23-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
61
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq"

شکل :26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
62

شکل :27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
63

شکل :29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
64
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
65

شکل :33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq"
66

شکل :35-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
67
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
68

شکل :39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
69

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

شکل :41-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
70
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td"

شکل :44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
71

شکل :45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
72

شکل :47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
73
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
74

شکل:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
75

شکل :53-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
76
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل :56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
77

شکل :57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
78

شکل :59-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
79
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq"

شکل :62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
80

شکل :63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
81

شکل :65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
82
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

.
شکل:68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
83

شکل:69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq"
84

شکل :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
85
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

شکل :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
86

شکل :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
87

شکل :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
88
-2-3-4 بررسی تحلیلی نتایج:
در طی این پروژه، شبیه سازیهای مربوطه در جهت تخمین کلیه پارامترهای مذکور انجام شده و بـر اسـاس اغتشاش بکار گرفته شده در تهیه دادههای بهرهبرداری تقسیم بندی و مقایسه شـده اسـت. بررسـی تحلیلـی نتایج در قالب شاخصبندیهای زیر ارائه شده است:
.1 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره آموزش:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحلـه آمـوزش، شـکل گرفتـه است. در مسیر تخمین هر یک از پارامترها نتایج سهگانه بدست آمده به ترتیب بر اساس برازندگی از دیدگاه حداقل خطا مرتب شده است. این نتایج برپایه اغتشاش متناظر با آنها نام گذاری و در جـدول
2-4 جای گرفتهاند.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شـاخص حـداکثر خطـا ارزیـابی و اولویت بندی شدهاند. نتایج این تحلیل به ترتیب بیان شده در گام قبل نامگذاری و در قالـب جـدول
3-4 در اختیار قرار گرفته است.
.2 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره تست:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحله تست، شکل گرفته است.
در مسیر تخمین هر یک از پارامترها، نتایج سهگانه بدست آمده بر اساس برازندگی از دیدگاه حداقل خطا ترتیب یافته است. این نتایج برپایه اغتشاش متناظر با آنها نام گـذاری و در جـدول 2-4 جـای گرفتهاند. به علّت اهمیت خاص نتایج حاصل در این بخش، علاوه بر تحلیلهای فوق شاخص خطای متناظر با فراوانی غالب و درصد فراوانی مربوطه در بهترین حالت نیز ارزیابی و در جدول 2-4 ارائـه شده است.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
89
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شاخص حداکثر خطا ارزیابی و بـر اساس برازندگی مرتب شده است. نتایج این تحلیل به همان صورت نامگذاری و در جدول 3-4 ارائه شده است.
درباب عملکرد شبکه عصبی در تخمین :Xd
با مقایسه نتایج بدست آمده با استفاده اغتشاشات مختلف هیستوگرام خطای شبکه در مرحله آموزش بهتـرین توزیع فراوانی را در وقوع قبال اتصال کوتاه در ترمینال ژنراتور نشان میدهـد نتـایج حاصـله بـر پایـه تغییـر ناگهانی تحریک و تغییر توان ورودی در مراتب بعدی قرار میگیرند.
از نظر دامنه خطا نیز در این مرحله بهترین نتایج به ترتیب در قبال نتایج حاصله از وقوع اتصال کوتاه, تغییـر توان ورودی و تغییر ناگهانی تحریک شکل گرفته اند.
در مرحله تست بهترین توزیع فراوانی در مرحله اول مربوط به نتـایج حاصـل از تغییـر ناگهـانی تحریـک، در مرحله دوم مربوط به نتایج حاصله بر پایه وقوع اتصال کوتاه و نهایتًا از تغییر توان ورودی بدست میآید.
کمترین دامنه خطا به ترتیب متعلق به تخمین برپایه نتایج حاصل از وقوع اتصال کوتاه، تغییر تـوان ورودی و نهایتًا تغییر تحریک میباشد.
در مرحله تست محدودترین دامنه خطا مربوط به وقوع اتصال کوتاه است. نتایج حاصل از تغییر تـوان ورودی و تغییر ناگهانی تحریک در مراتب بعدی قرار دارند.