–272

جرم مولکولی kg/mol M
تعداد الکترون‌های انتقالی به ازای یک مول مصرف سوخت n
شار مولی اجزاءmol/m.s N
فشار atm P
چگالی توان پیل w/m Pcell
بار الکتریکی C Q
نرخ مصرف حجمی mol/m.s R
ثابت جهانی گازها J/mol.K 8.314 R
مقاومت اهمیک.m ROhmic
مقاومت نفوذ اکسیژن از طریق فاز غشاء s/m
مقاومت نفوذ اکسیژن از طریق آبs/m
مختصات شعاعی m r
دما K T
حجم توده m Vagg
حجم مولار اکسیژن در نقطه جوش نرمال m/mol 25.6
کسر مولی اجزاء X
مختصه مکانی در دستگاه مختصات m Z
علائم یونانی نسبت شار مولی 
ضریب انتقال بار آند و کاتد c,a
ضخامت m 
تخلخل 
مدول تایلی 
افت ولتاژ v 
محتویات آب غشاء 
ویسکوزیته آب cP 
زاویه فاز هر جزء 
چگالی kg/m 
قابلیت هدایت الکترونی S/m 
پارامتر وابستگی 
ضریب استکیومتری 
زیرنویس‌ها و بالانویس‌ها مؤثر eff
تبادلی 0
بی‌بعد *
میانگین ¯
فعال‌سازی act
توده agg
کربن C
لایه کاتالیست CL
آیونومر i
آیونومر درون توده i,agg
محدود کننده L
جریان داخلی n
اکسیژن در سطح خارجی توده Ol
اکسیژن نفوذی در غشاء Oاکسیژن در سطح داخلی توده Osاکسیژن نفوذی در آب Ow
ذرات پلاتین – کربن Pt/C
واکنش‌دهنده R
مرجع ref
جامد s
اشباع sat
آب آند w,a
آب کاتد w,c
فصل اولمقدمه
23837903448685020000
مقدمهامروزه به دلیل بحران آلودگی‌هایزیستمحیطیناشی از مصرف سوخت‌هایفسیلیروش‌های پاک تولیدانرژی از اهمیتویژه‌ای برخوردار است. بشر به سبب افزایشآلودگی و کاهش منابع سوخت طبیعی مجبور به یافتن راه حلی شد که در اینفرآیند،تولیدانرژی از طریقهیدروژن کشف شد. در طی مطالعات و آزمایشاتی که برایتولیدانرژی از طریقهیدروژن انجام می‌گردیدوسیله‌ای که هیدروژن را به عنوان سوخت استفاده می‌کردپیلسوختینامیدند. سیستم‌هایپیل‌هایسوختی به عنوان یکی از گزینه‌هایتولیدانرژی پاک محسوب می‌شوند. توان تولید شده اینسیستم‌هایک گستره وسیعبین چند وات تا چند هزار کیلو وات را شامل می‌شود، به طوریکهاینسیستم‌هااز یک سوتامین کننده توان مورد نیازبراییکبیمارستان و یایک واحد ساختمانی به عنوان کاربرد ساکن، و از سویدیگرتامین کننده بخشی از توان مورد نیازیک فضا پیما، وسیلهنقلیه، لپ تاپ و یاحتی قلب مصنوعی به عنوان کاربردهای متحرک می‌باشند [REF _Ref333997665 h * MERGEFORMAT1]. دانشمندان معتقد بودند که هیدروژنمی‌تواند راه حلیکارآمدبرایتأمین بخشی ازنیازهایانرژیدنیا در آینده باشد. پیلسوختییکوسیله‌ای است که هیدروژن و اکسیژن را ترکیب کرده و آب و الکتریسیتهتولیدمی‌کند. انرژیتولید شده توسط پیلسوختیمی‌تواند در مصارف روزمره استفاده گردد.پیلسوختیمزایایبسیاری نسبت به وسایل مرسوم تولیدانرژی دارد از جمله این مزایا راندمان بالا،عدم ایجاد سر و صدا و آلودگیاست.
ساخت لایه‌های مختلف پیلسوختینظیرلایه‌های نفوذ گاز، صفحات دو قطبی، غشاء و لایهکاتالیستدشوار بوده و نیازمندفناوریپیشرفته‌ایمی‌باشد. چون در ساخت این لایهها از موادی نظیر فیبر بسیار نازک کربن، آیونومر، نفیون و ... استفاده میشود که فرآوری آنها نیازمند یک پروسه پیشرفته و دشوار میباشد و در انحصار کشورهای خاصی قرار دارد، همچنین مراحل ساخت برخی از این لایهها نظیر لایه کاتالیست که شامل فاز جامد، فاز غشاء و فضای خالی است بسیار پیچیده میباشد. بنابراین بدون انجام یکمدل‌سازی کامل از کل لایه‌هایپیلسوختی، ساخت یک تودهپیلسوختیکار دشواری خواهد بود.همچنین ممکن است پیل ساخته شده از نظر هزینه‌های تمام شده مقرون به صرفه نباشد. به منظور بررسیکارایی و عملکرد پیل‌هایسوختی،بایدلایههای مختلف یکپیلسوختی را مورد مطالعه قرار داده و شبیه‌سازی نمود. در اینپایان‌نامهمدل‌سازییکبعدی عملکرد یکپیلسوختی غشا پلیمری انجام می‌پذیرد، و تمامیلایه‌هایاینپیلسوختی تک سلولیشبیه‌سازیمی‌شوند. مدل ارائه شده برایلایهکاتالیست، مدل توده‌ایمی‌باشد. این مدل افت غلظت موجود در منحنیقطبیتپیل را که در چگالیجریان بالا اتفاق می‌افتد بدون اضافه کردن روابط نیمهتجربی مربوط به افت غلظت درستپیش‌بینیمی‌کندهمچنین در حالتی که اندازه تودهها به سمت صفر میرود(تودههای بسیار کوچک) این مدل به مدل همگن ساده میشود. لایه‌های نفوذ گاز نیزکه در دو طرف آند و کاتد پیل قرار دارند با استفاده از معادلات مربوط به نفوذ گازهای چند جزئی مدل شده‌اند. غشاء نیز با مدل کردن انواع مکانیزم‌های انتقال آب که در آن وجود دارد شبیه‌سازی شده است. عملکرد یکپیلسوختی توسط منحنی ولتاژ بر حسب چگالیجریانبیانمی‌شود. این عملکرد با کسر نمودن افت‌های مربوط به ولتاژ فعال‌سازی، اهمیک و غلظت از ولتاژ بازگشت‌پذیرپیل در یکچگالیجریان بدست می‌آید. سپس با تغییرچگالیجریان، منحنیجریان–ولتاژپیل بدست می‌آید. در اینپایان‌نامه معادلات حاکم بر عملکرد لایه‌های مختلف پیل (که ترکیبی از معادلات دیفرانسیل و معادلات جبریمی‌باشند) بدست آمده سپس این معادلات حل می‌گردد تا افت‌هایقید شده بدست آید. در انتها یکسری مطالعات پارامتری به منظور بررسیمیزانحساسیت تابع عملکرد به یکسریپارامترها انجام می‌پذیرد.
تاریخچهاگرچهپیلسوختیبهتازگیبهعنوانیکیازراهکارهایتولیدانرژیالکتریکیمطرحشدهاستولیتاریخچهآنبهقرننوزدهمو کاردانشمندانگلیسیویلیامگروبرمی‌گردد.اواولینپیلسوختیرادرسال۱۸۳۹باسرمشقگرفتنازواکنشالکترولیزآب،طیواکنشمعکوسودرحضورکاتالیستپلاتینساخت.
واژهپیلسوختیدرسال۱۸۸۹توسطلودویکمندوچارلزلنجربهکارگرفتهشد.آن‌هانوعیپیلسوختیکههواوسوختذغالسنگرامصرفمی‌کرد،ساختند.تلاش‌هایمتعددیدراوایلقرنبیستمدرجهتتوسعهپیلسوختیانجامشدکهبهدلیلعدمدرکعلمیمسئلههیچیکموفقیتآمیزنبود.علاقهبهاستفادهازپیلسوختیباکشفسوخت‌هایفسیلیارزانورواجموتورهایبخارکمرنگگردید.
فصلیدیگرازتاریخچهتحقیقاتپیلسوختیتوسطفرانسیسبیکنازدانشگاهکمبریجانجامشد.اودرسال۱۹۳۲بررویماشینساختهشدهتوسطمندولنجراصلاحاتبسیاریانجامداد.ایناصلاحاتشاملجایگزینیکاتالیستگرانقیمتپلاتینبانیکلوهمچنیناستفادهازهیدروکسیدپتاسیمقلیاییبهجایاسیدسولفوریکبهدلیلمزیتعدمخورندگیآنمی‌باشد.ایناختراعکهاولینپیلسوختیقلیاییبود، پیلبیکننامیدهشد.او۲۷سالتحقیقاتخودراادامهدادتاتوانستیکپیلسوختیکاملوکارا، ارائهنماید.بیکندرسال۱۹۵۹پیلسوختیباتوان۵کیلوواتراتولیدنمودکهمی‌توانستنیرویمحرکهیکدستگاهجوشکاریراتأمیننماید.
تحقیقاتجدیددراینعرصهازاوایلدهه۶۰میلادیبااوجگیریفعالیت‌هایمربوطبهتسخیرفضاتوسطانسانآغازشد.مرکزتحقیقاتناسادرپیتأمیننیروجهتپروازهایفضاییباسرنشینبود.ناساپسازردگزینههایموجودنظیرباتری(بهعلتسنگینی)،انرژیخورشیدی (بهعلتگرانبودن)وانرژیهسته ای (بهعلتریسکبالا)پیلسوختیراانتخابنمود.تحقیقاتدراینزمینهبهساختپیلسوختیپلیمریتوسطشرکتجنرالالکتریکمنجرشد.ایالاتمتحدهآمریکافناوریپیلسوختیرا در برنامه فضاییجمینیاستفادهنمودکهاولینکاربردتجاریپیلسوختیبود.پرتوویتنیدوسازندهموتورهواپیما،پیلسوختیقلیاییبیکنرابهمنظورکاهشوزنوافزایشطولعمراصلاحنمودهوآنرادربرنامهفضاییآپولوبهکاربردند.درهردوپروژهپیلسوختیبه عنوانمنبع برای تأمینانرژیالکتریکیبرایفضاپیمااستفادهشد[REF _Ref332024462 h * MERGEFORMAT2]. امادرپروژهآپولوپیلهایسوختیبرایفضانوردانآبآشامیدنینیزتولیدمی‌کرد. پسازکاربردپیلهایسوختیدراینپروژه‌ها،دولت‌هاوشرکت‌هابهاینفنآوریجدیدبهعنوانمنبعمناسبیبرایتولیدانرژیپاکدرآیندهتوجهروزافزونینشاندادند.
ازسال۱۹۷۰فنآوریپیلسوختیبرایسیستم‌هایزمینیتوسعهیافت. تحریمنفتیازسال1973-1979 موجبتشدیدتلاشدولتمردانآمریکاومحققیندرتوسعهاینفنآوریبهجهتقطعوابستگیبهوارداتنفتیگشت.
درطولدهه۸۰تلاشمحققین، در جهتتهیهموادموردنیاز، انتخابسوختمناسبوکاهشهزینهاستواربود.همچنیناولینمحصولتجاریجهتتأمیننیرویمحرکهخودرودرسال۱۹۹۳توسطشرکتبلاردارائهشد [REF _Ref332024462 h * MERGEFORMAT2].
تاریخچهپیلسوختیPEMفنآوریپیلسوختیپلیمریدرسال۱۹۶۰درشرکتجنرالالکتریکتوسط گروب و نیدرچابداعشد. اولینموفقیتجنرال الکتریکدرتولیدپیلسوختیپلیمریدراواسطدهه۱۹۶۰درپیهمکاریاینشرکتباکمیتهنیرویدریاییآمریکا و رسته مخابرات ارتش آمریکابهمنظورساختمولدهایکوچکبرقبود. اینمولدهاباسوختهیدروژنتولیدیازترکیبآبوهیدریدلیتیمتغذیهمی‌شدند. پیلسوختیتهیهشدهکوچکوقابلحملبودودرآنازکاتالیستگرانقیمتپلاتیناستفادهشدهبود[REF _Ref332024550 h * MERGEFORMAT4].
دربرنامههایفضاییمرکوریازباتریبهعنوانمنابعتأمینانرژیاستفادهشدولیبرایپروژهآپولونیازبهوسیلهایباطولعمربیشتربود. لذابرایاینمنظورپیلهایسوختیپلیمریساختشرکتجنرالالکتریکموردتستوآزمایشقرارگرفت.ناسادرپروازهایفضاییبعدیخودازپیلسوختیقلیاییاستفادهنمود.
شرکتجنرالالکتریکفعالیتخودرادردهه۱۹۷۰باتوسعهفناوریالکترولیزجهتتجهیزاتزیردریاییباحمایتواحدتولیداکسیژننیرویدریاییآمریکاآغازنمود. ناوگان سلطنتیانگلیسیدراوایلدهه۱۹۸۰اینفناوریرابرایناوگانزیردریاییخودپذیرفت. دراوایلدهه۱۹۹۰سایرگروه‌هانیزتحقیقاتدراینزمینهراآغازنمودند.آزمایشگاهملیلوسآلاموسودانشگاهتگزاسروش‌هاییراجهتکاهشمیزانکاتالیستموردنیازآزمایشنمودند [REF _Ref332024462 h * MERGEFORMAT2].
مزایا و معایبپیلسوختیعمدهترینمزایایپیل‌هایسوختی به شرح زیر هستند:
پیلسوختیآلودگیناشیازسوزاندنسوخت‌هایفسیلیراحذفنمودهوتنهامحصولجانبیآنآب و گرمامی‌باشد.
درصورتیکههیدروژنمصرفیحاصلازالکترولیزآبباشدنشرگازهایگلخانه‌ایبهصفرمی‌رسد.
به دلیلوابستهنبودنبهسوخت‌هایفسیلیمتداولنظیربنزینونفت،وابستگیاقتصادی،کشورهایجهان سومراحذفمی‌کند[REF _Ref332024462 h * MERGEFORMAT2].
بانصبپیلهایسوختینیروگاهیکوچک،شبکهغیرمتمرکزنیروگستردهمی‌گردد.
پیل‌هایسوختیراندمانبالاترینسبتبهدستگاه‌هایاحتراقی استفاده کننده از سوخت‌هایفسیلیمتداولدارند.
هیدروژندرهرمکانی که حیات باشد (آب باشد) طی پروسه الکترولیزازآبوبرقتولیدمی‌گردد. لذاپتانسیلتولیدسوخت،غیرمتمرکزخواهدشد [REF _Ref332024462 h * MERGEFORMAT2].
اکثرپیل‌هایسوختیدرمقایسهباموتورهایمتداولبسیاربیصداهستند.
انتقالگرماازپیل‌هایدماپایینبسیارکممی‌باشد،لذاآن‌هابرایکاربردهاینظامیمناسبخواهندبود.
زمانعملکردآن‌هاازباتری‌هایمتداولبسیارطولانی‌تراست، مثلاًفقطبادوبرابرنمودنسوختمصرفیمی‌توانزمانعملکردرادو برابرنمودونیازیبهدوبرابرکردن اندازهخودپیلنمی‌باشد.
به علتعدموجوداجزایمتحرکهزینهتعمیر و نگهداریازآن‌هابسیارکماست.
نصبوبهرهبرداریازپیل‌هایسوختیبسیارسادهومقرونبهصرفهمی‌باشد.
اینمولدهاقابلیتتولیدهمزمانبرقوحرارترادارند.
عمدهترینمعایبپیل‌هایسوختی:
تبدیلهیدروکربنبههیدروژنازطریقمبدلهنوزباچالش‌هاییروبروستوهنوزفنآوری کاملاًپاکنمی‌باشد.
پیل‌هایسوختیازباتری‌هایمتداولسنگین‌ترهستندومحققیندرپیکاهشوزنآن‌هامی‌باشند.
تولیدپیلسوختیبدلیلنداشتنخطتولیدهنوزگراناست.
برخیپیل‌هایسوختیازموادگرانقیمتاستفادهمی‌کنند.
اینفنآوریهنوزکاملاًتوسعهنیافتهومحصولاتکمیازآنموجوداست.
شناخت کلیپیلسوختیپیلسوختینوعیوسیلهالکتروشیمیاییاستکهانرژیشیمیاییحاصلازواکنشرامستقیماًبهانرژیالکتریکیتبدیلمی‌کند.سازهوبدنهاصلیپیلسوختیازالکترولیت،الکترودآندوالکترودکاتدتشکیلشدهاست. نمایکلییکپیلسوختیبههمراهگازهایواکنشدهندهوتولیدشدهومسیرحرکتیون‌ها و الکترون‌هادر REF _Ref331172597 h * MERGEFORMAT شکل‏11ارائهشدهاست.
پیلسوختییکدستگاهتبدیلانرژیاستکهبهلحاظنظریتازمانیکهمادهاکسیدکنندهوسوختدرالکترودهایآنتأمینشوندقابلیتتولیدانرژیالکتریکیرادارد.البتهدرعملاستهلاک،خوردگیوبدعملکردناجزایتشکیلدهنده،طولعمرپیلسوختیرا کاهشمی‌دهد.
دریکپیلسوختی،سوختبهطورپیوستهبهالکترودآندواکسیژنبهالکترودکاتدتزریقمی‌شودوواکنش‌هایالکتروشیمیاییدرالکترودهاانجامشدهوباایجادپتانسیلالکتریکیجریانالکتریکیبرقرارمی‌گردد. اگرچهپیلسوختیاجزاءوویژگی‌هایمشابهیکباتریرادارداماازبسیاریجهاتباآنمتفاوتاست. باترییکوسیلهذخیرهانرژیاستوبیشترینانرژیقابلاستحصالازآنبهوسیلهمیزانمادهشیمیاییواکنشدهندهکهدرخودباتریذخیرهشدهاست (عموماًدرالکترودها)تعیینمی‌شود. چنانچهمادهواکنشدهندهدرباتریکاملاًمصرفشود،تولیدانرژیالکتریکیمتوقفخواهدشد (باتریتخلیهمی‌شود).درباتری‌هاینسلدوممادهواکنشدهندهباشارژمجدد،دوبارهاحیامی‌شودکهاینعملمستلزمتأمینانرژیازیکمنبعخارجیاست. دراینحالتنیزانرژیالکتریکیذخیرهشدهدرباتری،محدودووابستهبهمیزانمادهواکنشدهندهدرآنخواهدبود.
گازاکسیدکنندهنظیرهوایااکسیژنخالصدرالکترودکاتدکهباصفحهالکترولیتدرتماساستجریانپیدامی‌کند.بااکسیداسیونالکتروشیمیاییسوختکهمعمولاًهیدروژناستوبااحیاءاکسیدکننده، انرژیشیمیاییگازهایواکنشگربهانرژیالکتریکیتبدیلمی‌شود.
ازنظرتئوری،هرمادهایکهبهصورتشیمیاییقابلاکسیدشدنباشدوبتوانآنرابهصورتپیوسته (بهصورتسیال) بهپیلسوختیتزریقکرد،می‌تواندبهعنوانسوختدرالکترودآندپیلسوختیمورداستفادهقرارگیرد.بهطورمشابهمادهاکسید کنندهسیالیاستکهبتواندبانرخمناسبیاحیاء شود.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 1:شماتیکطریقه عملکرد پیلسوختیPEM [REF _Ref334005828 h * MERGEFORMAT3].در پیل سوختی پلیمری گازهیدروژنبهعنوانسوختایدهآلمورداستفادهقرارمی‌گیرد.هیدروژنرا می‌توانازتبدیلهیدروکربن‌هاازطریقواکنشکاتالیستی،تولیدوبهصورت‌هایگوناگونذخیرهسازیکرد. اکسیژنموردنیازدرپیلسوختی را میتوانبهطورمستقیمازهواتهیهنمود.بررویسطحالکترودهایآندوکاتدپیلسوختیواکنشاکسیداسیونواحیاءدرناحیهسهفازی (ودرصورتجامدبودنالکترولیتدوفازی) نزدیکسطحمشترکواکنشدهنده‌ها (فاز گاز)،کاتالیست (فاز جامد)والکترولیت(در برخی از پیلها فاز مایع و در برخی دیگر نظیر PEM فاز جامد) صورتمی‌گیرد. اینناحیه دویا سهفازینقشمهمیدرعملکردالکتروشیمیاییپیلسوختیبهویژهپیل‌هایسوختیباالکترولیتجامددارد. دراینگونهپیل‌هایسوختی،گازهایواکنشدهندهازمیانیکلایهنازکازالکترولیتکهسطحالکترودهایمتخلخلراپوشاندهاستعبورکردهوواکنشالکتروشیمیاییمناسبرویسطحالکترودمربوطهانجاممی‌شود.
چنانچهالکترودمتخلخلحاویمقادیربیشازحدالکترولیتباشدالکتروددر اصطلاحغرقشدهوبه اینترتیبانتقالالکترونهابهمکان‌هایواکنشمحدودمی‌شود.درنتیجهعملکردالکتروشیمیاییالکترودمتخلخلتضعیفمی‌شودلذاضروریاستکهدرساختارالکترودهایمتخلخلیکتعادلمناسببینالکترود،الکترولیتوفازگازیایجادشود.
تلاش‌هایاخیربر بهبودعملکردواکنشالکتروشیمیایی،کاهشهزینه‌هایتولید،کاهشضخامتاجزایپیلسوختیودرعینحالاصلاحوبهبودساختارالکترودهاوالکترولیتمتمرکزشدهاست. الکترولیتباهدایتیون‌هابینالکترودهاسببتکمیلمدارالکتریکیپیلسوختیمی‌شود. الکترولیتیکمانعفیزیکیبینسوختوگازاکسیژنایجادمی‌کندومانعاختلاطمستقیمآن‌هامی‌شود. از جمله وظایف مهمصفحاتالکترودمتخلخلدرپیلسوختیعبارتاند از:
1- ایجادیکسطحفعال کافیومناسبکهواکنش‌هایالکتروشیمیاییرویاینسطوحانجاممی‌شود.
2- هدایتیون‌هایحاصلازواکنشبهداخلیاخارجازناحیهتبادلسهفازیوانتقالالکترون‌هایتولیدیبهمدارخارجی(الکترودهابایدهدایتالکتریکیخوبیداشتهباشند).
3- انتقال واکنش دهندهها به سطوح انجام واکنش.
4- انتقال گرمای تولید شده در لایه کاتالیست کاتد به سیستم خنککاری پیل، بویژه برای پیلهای دما بالا.
برایافزایشسطحتماسواکنشدهنده‌هاباکاتالیستلازماستکهساختارالکترود،متخلخلبودهومیزانسطحدردسترس، وپوششدادهشدهتوسطکاتالیستنسبتبهحجمالکترود (مساحت در واحد حجم سطح مؤثر پلاتین)(m/m)زیادباشد. ساختارمتخلخل،دسترسیراحتاجزاءواکنشدهندهبهمراکزفعالراتسهیلمینماید.
نرخواکنش‌هایالکتروشیمیباافزایشدماافزایشپیدامی‌کند،لذاخاصیتکاتالیزوریالکترودهادرپیلهایسوختیدماپایینازاهمیتبیشتریدرمقایسهباپیلسوختیدمابالابرخورداراست. الکترودهایمتخلخلبایددرهردوطرفتماسباالکترولیتوگازهایواکنشدهنده،نفوذپذیرباشندتاحدیکهتوسطالکترولیتاشباعنشدهوبوسیلهگازهایواکنشدهندهخشکنشوند [REF _Ref332024462 h * MERGEFORMAT2].

پیلسوختیPEMپیل‌هایسوختی غشاءمبادله‌گر پروتون (پلیمری) اولین بار در دهه 1960 برای برنامهجمینی ناسا استفاده شد. ایننوع پیل سوختی از نقطه نظر طراحی و کارکردیکی از جذاب‌ترین انواع پیلسوختی است. پیلسوختیپلیمریدارایالکترولیتپلیمری به شکلیک ورقه نازک منعطف است کههادییونهیدروژن(پروتون)می‌باشد و بین دو الکترود متخلخل قرار می‌گیرد. جهت کارایی مطلوب لازم است الکترولیت، از آب اشباع باشد. نفیونیکی از بهترینالکترولیت‌های مورد استفاده در این نوع پیل سوختی است. این غشاء کوچک و سبک است و در دمایپایین 80 درجه سانتی‌گراد(تقریباً 175 درجه فارنهایت) کارمی‌کند. در پیل سوختیپلیمریواکنشاحیاءاکسیژنواکنشکندتر است (اینواکنشپنج مرتبه کندتر از واکنشاکسید شدن هیدروژن است [REF _Ref332024550 h * MERGEFORMAT4]). کاتالیست مورد استفاده در اینپیل سوختی اغلب از جنس پلاتین بوده و میزانکاتالیستمصرفی در الکترودهایاین نوع پیل سوختیبیشتر از سایر انواع پیل سوختی است.
بازدهالکتریکیاین نوع پیل سوختی بر اساس ارزش حرارتی پایین در حدود 40% تا 50% است [REF _Ref332024550 h * MERGEFORMAT4]. سوخت مصرفی در پیل سوختیپلیمرینیازمندهیدروژنتقریباً خالص است لذا مبدل در خارج پیل سوختی جهت تبدیلسوخت‌های متانول و یابنزین به هیدروژننیاز است.گسترهتوان تولیدیاین نوع پیل سوختیبیشتر از انواع دیگرپیل سوختی است. محدوده توان در این نوع پیل سوختیبین(1W الی 100kW) است[REF _Ref332024550 h * MERGEFORMAT4]. طول عمر پیش‌بینی شده برایپیل سوختیپلیمریبیش از 20000 ساعت است [REF _Ref334011700 h * MERGEFORMAT5].
در پیل سوختیپلیمری سوخت مورد استفاده هیدروژنمی‌باشد. مولکولهایهیدروژن در آند به یون‌های پروتون و الکترونیونیزه شده، و الکترون‌هااز پروتونها جدا می‌شوند. یون‌هایهیدروژنکه شامل بار مثبت هستند (پروتون) به یک سطح غشاء متخلخل نفوذ می‌کنند و به سمت کاتدمی‌روند. الکترون‌هاینمی‌توانند از این غشاء عبور کنندبلکه از یک مدار خارجی عبور کرده و موجب تولید برق می‌شوند. در کاتدالکترون‌ها، پروتون‌های و اکسیژن موجود در هوا با هم ترکیبمی‌شوند و مطابق REF _Ref331172597 h * MERGEFORMATشکل‏11 آب را تشکیلمی‌دهند.واکنش‌ها در الکترودها به شرح ذیلمی‌باشند:
(1- SEQ 1- * ARABIC1) واکنش سمت آند:
(1- SEQ 1- * ARABIC2) واکنش سمتکاتد:
(1- SEQ 1- * ARABIC3) واکنشکلیپیل:
واکنش سمت آند به مقدار خیلی کمی گرماگیر است و واکنش سمت کاتداین نوع پیل سوختی به دلیلدمایپایین به زمان کمیبرایراه‌اندازینیاز دارد و همینخصوصیتآن را بهترینگزینه در کاربردهایوسایلنقلیهبه عنوانجایگزینبرای موتور احتراق داخلیدیزلی و بنزینیمعرفیمی‌نماید. همچنیناینسیستم‌هاکاربریمناسبی در زمینهمولدهایخانگی، نیروگاهیکوچک، صنعت حمل‌ونقل و نظامی دارند [REF _Ref332024462 h * MERGEFORMAT2].
لایههایتشکیل دهنده پیلسوختی غشاء پلیمریهر یک از سلول‌هاییکپیلسوختی غشاء پلیمری از یکسریلایهتشکیل شده است، که در هر یک از اینلایه‌هافرآیندهایخاصی انجام می‌شود. در این قسمت به اختصار هر یک از لایههایپیل را معرفیمی‌کنیم، سپس در فصول بعد به تفصیلبه معرفیاینلایه‌ها و مدل‌سازیآن‌هامی‌پردازیم.
لایه نفوذ گازلایه‌هاینفوذگازیبهطورعمومیساختارمتخلخلبرمبنایکربندولایهدارند،شماییازلایهنفوذگازیبین کانال جریانولایهکاتالیستیدر REF _Ref331328151 h * MERGEFORMAT شکل ‏12نشاندادهشدهاست.لایهاوللایهنفوذگازی،یکساختارکربنیماکرومتخلخلباپارچه‌هایکربنیویاورقه‌هایکربنیاست.ساختارماکرومتخلخلبهعنوانجمعکنندهجریانعملمی‌کند.دومینلایه،لایهمیکرومتخلخلنازکیاستکهشاملپودرکربنوبرخیعواملآبگریزاست. اینلایهدرتماسبالایهکاتالیستاست.اینمیکرولایهمتخلخلازبروزطغیاندرلایهنفوذگازیجلوگیریکردهوتماسالکتریکیبینسطحولایهکاتالیستراافزایشمی‌دهد [REF _Ref332025360 h * MERGEFORMAT6].

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 2: شمایی از یک لایه نفوذ گازی دو لایه.لایهکاتالیستبرایافزایشنرخواکنش‌هایشیمیاییبهیکلایهکاتالیستاحتیاجاست. لایهکاتالیستتنهاجاییاستکهدرآنواکنش‌هایالکتروشیمیاییداخلپیلسوختیاتفاقمی‌افتدودربقیهنواحیپیلمانندکانال‌ها،لایه‌هایپخشگازوغشاءهیچواکنشالکتروشیمیاییاتفاقنمی‌افتد. درپیلسوختیهیدروژنیهردولایهکاتالیستکاتدوآندعموماًیکسانهستندوشاملیکفازهدایت‌کنندهیونبراینمونهنفیون، یکفازهدایت‌کنندهالکترونمعمولاًذراتکربن،حفره‌ها (تخلخل‌ها)کهازآن‌هاگازهایواکنشگرانتقالپیدامی‌کندویکفلزنجیب(فلزی که واکنش شیمیایی را تسهیل میکند) کاتالیستعموماًپلاتینهستند،تاواکنش‌هایالکتروشیمیاییراتسهیلکنند. دلیلدیگراستفادهازکربنایناستکهمساحتسطحتماسکاتالیستزیادشود.گازهایواکنشگرازلایهپخشگازواردلایهکاتالیستمی‌شوندوازمیانحفره‌هایموجوددرلایهکاتالیستپخشمی‌شوند.برایرسیدنبهپلاتینیعنیمحلانجامواکنش،واکنشگرهابایدمحلولشوندواینباردرمیانپلیمری (آیونومر)کهدانه‌هایکربنرااحاطهکرده‌اندپخشمی‌شوند.ایندانه‌هایکربنباپلاتینپوششدادهشده‌اندوبارسیدنگازهایواکنشگربهاینکربن‌ها،واکنشالکتروشیمیاییشروعمی‌شود. درواقعداخللایهکاتالیستدومسیرپخش وجود دارد، یکی نفوذ درمیانحفره‌هاودیگری نفوذدرونپلیمرمی‌باشد. افزایشمقاومتدرمقابلنفوذدرطولهرکدامازایندومسیر،عملکردلایهکاتالیستراکاهشمی‌دهد. REF _Ref331417729 h * MERGEFORMAT شکل ‏13نماییازلایهکاتالیسترانشانمی‌دهد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 3: نماییازلایهکاتالیست.لایه کاتالیست یکی از پیچیده‌ترین اجزاء در پیل سوختیمی‌باشد، به همین دلیل در مدل‌سازی لایه کاتالیست، مدل‌های مختلفی در دهه‌های اخیر با درجات مختلفی از دقّت و جزئیات ارائه شده است. که از آن جمله می‌توان به روش‌های لایه نازک، همگن و توده‌ای اشاره کرد. در سال‌های اخیر دو روش همگن و توده‌ای بیشتر مورد توجّه بوده است.
در روش لایه نازک، لایه کاتالیست به صورت یک سطح مشترک بین لایه نفوذ گاز و غشاء مدل می‌شود. این روش در حقیقت ساختار درونی لایه کاتالیست را بررسی نمی‌کند، و تنها رابطه‌ای بین افت فعال‌سازیو چگالی جریان پیل (رابطه تافل) ارائه می‌دهد.در فصل سوم مفصل‌تر این رابطه ارائه می‌شود. به طور کلی این مدل هنگامی استفاده می‌شود که هدف مطالعه، بررسی رفتار لایه کاتالیست نمی‌باشد، بلکه بررسی رفتار لایه های دیگر پیل مدّ نظر است.
روش همگن یکی از روش‌های متداول بررسی لایه کاتالیست می‌باشد. در این روش فرض می‌شود که تمامی اجزاء تشکیل‌دهنده لایه کاتالیست به صورت کاملاً یکنواخت و همگن در سرتاسر لایه کاتالیست توزیع شده‌اند، این بر خلاف مدل توده‌ای است. در مدل توده ای ذرات پلاتین بر روی ذرات کربن پایه ریزی می‌شوند، سپس با تجمع تعدادی از این ذرات کربن کنار یکدیگر، یک توده کروی شکل ایجاد می‌شود که درون آن پر از آیونومر می‌باشد. تفاوت این دو مدل، در نحوه پیش‌بینی منحنی قطبیّت پیل است. دلیل این تفاوت در منحنی قطبیت،خصوصاً در چگالی جریان‌های بالا در فصل دوم شرح داده می‌شود.
غشاءغشاءها بایستی دارای قابلیت زیادی برای عبور یون پروتون از خود باشند. آن‌ها شرایطی فراهم می‌آورند که گازهای ورودی به پیل سوختی از دو طرف با هم مخلوط نشوند. از لحاظ شیمیایی (خوردگی) و مکانیکی (استحکام) بایستی سازگار با شرایط عملکرد پیل سوختی باشند [REF _Ref332024936 h * MERGEFORMAT7]. غشاءیکه در پیل سوختی پروتونی بکار می‌رود، از پلیمری بنام پرفلئورو کربن-سولفونیک اسید ساخته می‌شود. بهترین ماده‌ی غشاء موسوم به نفیونمی‌باشد که دارای شاخه‌ی پروفلئورو-سولفیلفلئوراید-اتیل-پروپیل-وینیلمی‌باشد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 4: شاخه پلیمری پرفلئوروسولفونیک اسید (Perfluorosulfonate). REF _Ref331339393 h * MERGEFORMAT شکل ‏14 زیر شاخه‌ی پلیمری پرفلئورو سولفونیت را برای نفیون نشان می‌دهد. انتهای شاخه، گروه اسید سولفونیک مشاهده می‌شود که شامل یون‌های پروتون H+ و می‌باشد. این ساختار شدیداً آب دوست است. این خاصیت در انتهای شاخه یعنی جاییکه اسید سولفونیک وجود دارد رخ می‌دهد. این خاصیت به غشاء اجازه می‌دهد که مقدار بسیار زیادی آب جذب نماید. یون پروتون از این ناحیه مرطوب عبور می‌کند و این کمیت را بهصورت قابلیت هدایت تعریف می‌کنند [REF _Ref332024550 h * MERGEFORMAT4].
انواع مختلف نفیون را با حرف N و با سه یا چهار رقم به فرمN---- نشان می‌دهند، دو رقم اوّل وزن معادل را تقسیم بر صد نشان می‌دهد و دو رقم بعدی ضخامت غشاء را بر حسب میل نشان می‌دهد [REF _Ref332025524 h * MERGEFORMAT8]. قابل ذکر است که: . نفیونهای موجود در بازار دارای ضخامتهای 2، 3.5، 5، 7 و 10 میل میباشند. به عنوان مثال N117 دارای وزن معادل 1100 g/eqو ضخامت 7 میل (0.178 mm) میباشد.وزن معادل هر ماده برابر است با جرمی از آن مادهکه یک مول پروتون (H+) را تامین میکند، یا با یک مول پروتون در یک واکنش پایه اسیدی واکنش میدهد.
عملکرد پیلسوختیعملکرد یکپیلسوختی را می‌توان از طریق نمودار ولتاژ–چگالی جریان آن بررسی و تحلیل کرد. این نمودار که منحنی ولتاژ-چگالیجریاننامیدهمی‌شود، خروجی ولتاژ یکپیلسوختی را در یک چگالیجریانورودی نشان می‌دهد.این نمودار، منحنیقطبیتنیز نامیدهمی‌شود که در REF _Ref331172664 h * MERGEFORMAT شکل ‏15آن را مشاهده می‌کنید. محور افقیچگالیجریان، یعنیجریان بر واحد سطح پیل را نشان می‌دهد. به کار بردن چگالیجریان به ایندلیل است که یکپیل با ابعاد بزرگ‌تر مقدار الکتریسیتهبیشتری از یکپیلکوچک‌ترتولیدمی‌کند در نتیجهمنحنی‌هایقطبیت با سطح پیلسوختی نرمال سازیمی‌شوند تا قابل مقایسه با یکدیگر باشند.
REF _Ref331172664 h * MERGEFORMAT شکل ‏15منحنیقطبیت را که دارای چهار ناحیهافتجریانداخلی، افتفعال‌سازی، افتاهمیک و افت انتقال جرم که توسط افت‌های موجود در پیلسوختی مورد تأثیر قرار گرفته‌اند را نشان می‌دهد. افتفعال‌سازی در ناحیه افتفعال‌سازیمنحنیقطبیت، غالب است. سینتیک الکترود،ناحیه مربوط به افتفعال‌سازی را کنترل می‌کند. افتناحیهاهمیک در منحنیقطبیت به سبب مقاومت‌هایپروتونیک و الکترونیک موجود در پیلسوختیمی‌باشد. افت غلظت بیشترین مقدار خود را در انتهایمنحنیقطبیت (یعنیناحیه‌ای که انتقال جرم واکنشگرها با مشکل مواجه است) دارد. در چگالیجریان‌های بالا، میزانواکنشگرهای مورد نیاز به مراتب افزایشمی‌یابد، این در حالی است که میزان آب تولیدینیززیادمی‌شود. اینمیزان آب مایعمی‌تواند سبب مسدود شدن مسیرهای عبور واکنشگرها شود (خصوصاً در پیلهای دما پایین)،این امر سبب افت غلظت واکنش‌دهنده‌هاشده و در پی آن افت ولتاژ را بوجود می‌آورد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 5:منحنیقطبیتیکپیلسوختی [REF _Ref334022735 h * MERGEFORMAT9].خروجیولتاژواقعییکپیلسوختی کمتر از ولتاژ ایده آل یا ولتاژ ترمودینامیکی است. ولتاژ خروجی از یکپیلسوختی بر روی توان کلیتولید شده تأثیرمی‌گذارد. چگالی توان تولید شده از پیلسوختی توسط حاصل ضرب ولتاژ در چگالی جریان (P=V.i) حاصل می‌شود. منحنیچگالی توان، چگالی توان خروجی را به صورت تابعی از چگالیجریانپیلسوختی نشان می‌دهد این منحنی در نتایج مدلسازی نظیر REF _Ref331174635 h * MERGEFORMATشکل ‏211 رسم شده است. چهار نوع اصلی افت در پیلسوختی (در نمودار قطبیتنیز نشان داده شده است) وجود دارند، که این چهار افت به این شرح هستند:
الف) افت فعال‌سازی
ب) افتجریانداخلی
ج) افتاهمیک
د) افت غلظت
افتفعال‌سازیعامل ایجاد افت فعال سازیکندیواکنش‌هایی است که روی سطوح الکترودها رخ می‌دهد. در نتیجهقسمتی از ولتاژ تولیدی صرف غلبه بر انرژیفعال‌سازی واکنش شیمیایی و به راه انداختن واکنش می‌شود. افت فعال‌سازی را با η نشان می‌دهند. در سال 1905 تافل مشاهده کرد که افت فعال‌سازی موجود در هر یک از الکترودها با لگاریتمچگالیجریانتقریباً رابطه خطی دارد، به طوریکه مقدار این افت تا یکچگالیجریان خاص که چگالیجریانتبادلیپیلنامیده شد صفر است، چگالیجریانتبادلی، i0، را می‌توانچگالیجریانی در نظر گرفت که افت ولتاژ فعال‌سازی از صفر شروع به تغییرمی‌کند. روند تغییراتاین افت بر حسب لگاریتمچگالیجریان عمدتاً به صورت خطی است که در REF _Ref331172831 h * MERGEFORMAT شکل ‏16برای دو نمونه نشان داده شده است.

شکل STYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 6: نمودار تافل برایواکنش‌هایالکتروشیمیاییسریع و کند [REF _Ref332024550 h * MERGEFORMAT4].تافل این نمودار را با معادله زیرتقریب زد:
(1- SEQ 1- * ARABIC4)
در معادله REF _Ref330209497 h * MERGEFORMAT (1- 4)، i0، چگالیجریانتبادلی و aشیب خط تافل هستند که به الکتروشیمی واکنش بستگی دارند [REF _Ref332025607 h * MERGEFORMAT11].همین‌طور که در REF _Ref331172831 h * MERGEFORMAT شکل ‏16مشاهدهمی‌شود هر چه واکنش سریع‌تر انجام شود شیبمنحنی تافل به مراتب کمتر می‌شود و با توجه به رابطه REF _Ref330209497 h * MERGEFORMAT (1- 4)میزان افت فعال‌سازی برای یک چگالی جریان ثابت کاهش می‌یابد.چگالیجریانتبادلی، i، نیز در واکنش‌هایی که سریع‌تر اتفاق می‌افتد، بزرگ‌تر است، بنابراینمیزان افت فعال‌سازی در محدوده وسیع‌تری صفر خواهد بود[REF _Ref332024550 h * MERGEFORMAT4]. درپیلسوختیغشاء پلیمری، افت فعال‌سازی به طور عمده در سمت کاتد رخ می‌دهدزیراiدر واکنش آند چندین مرتبه (چهار - پنج مرتبه) نسبت به واکنش کاتد بزرگتر است، به عبارت دیگر واکنش اکسایش هیدروژن در لایه کاتالیست آند بسیار سریع‌تر از واکنش کاهش اکسیژن در لایه کاتالیست کاتد است [REF _Ref332025607 h * MERGEFORMAT11]. به همین علت اغلب در بررسی افت فعال‌سازی از افت فعال‌سازی آند در مقابل کاتد صرف نظر می‌شود.
افتجریانداخلیغشاء پلیمری نسبت به گازهایواکنش‌دهنده (سوخت) نفوذ ناپذیر است اما همواره از یکسو مقدار کمی از سوخت و از سویدیگر تعداد اندکی الکترون به غشاء پلیمری نفوذ می‌کند. نفوذ سوخت در غشاء معادل از دست رفتن سوخت بدون تولیدجریان در مدار خارجی است. به عبارت دیگر به ازای عبور هر مولکول هیدروژن از درون غشاء قابلیت عبور دو الکترون از مدار خارجی از بینمی‌رود و در حقیقتیک مدار اتصال کوتاه در پیلایجادمی‌شود که جریانداخلینامیدهمی‌شود. این نوع افت ولتاژ در حالتی که پیلسوختی تحت بار نیست (حالت مدار باز، i=0) وجود دارد، چون حتی در این حالت نیز سوخت می‌تواند درون غشاء نشت کند. به همیندلیل ولتاژ مدار باز به طور محسوسی از ولتاژ تئوریبازگشت‌پذیر کمتر است، میزان این افت ولتاژ از ولتاژ تئوریبازگشت‌پذیر از همان ابتدای منحنی قطبیت(i=0) در REF _Ref331172664 hشکل‏15 نشان داده شده است. مقدار نشت هیدروژن از غشاء تابعی از نفوذ پذیری، ضخامت غشاء، شرایطعملکردیپیل و گرادیان فشار جزئیهیدروژناست [REF _Ref332025559 h * MERGEFORMAT10]. مقدار جریانداخلیتولید شده ناشی از عبور همزمان هیدروژن و الکترون از درون غشاء را با inنشان می‌دهند. برای محاسبه افت ناشی از جریان داخلی کافی است که مقدار in به مقدار چگالی جریان پیل اضافه کنیم:
(1- SEQ 1- * ARABIC5)
افتاهمیکافت‌هایاهمیکبه دلیلمقاومت‌هایی که در برابر جریانالکترون‌ها در الکترودها و اتصالات داخلی مختلف و همچنینمقاومت‌هایی که بر سر راه جریانیون‌های مثبت در الکترولیت وجود دارند، می‌باشند. این افت ولتاژ متناسب با چگالیجریان و خطی است [REF _Ref332024550 h * MERGEFORMAT4] و با ηOhmic نشان می‌دهند. از قانون اهم داریم:
(1- SEQ 1- * ARABIC6)
که iچگالی جریان پیل، RElectronic و RIonicمقاومت‌های ویژهالکترونیک و یونیک بر حسب m2 در پیلسوختی هستند. قسمت عمده افت اهمی، مقاومت یونی غشاء می‌باشدبطوریکهتقریباً کل افت اهمیک موجود در پیل را می‌توانبا مقاومت یونیک موجود در الکترولیت با دقت خوبیتخمین زد [REF _Ref332025559 h * MERGEFORMAT10]. افت اهمی وابسته به جنس قطعات به کار رفته در پیل است.

افت غلظتدر چگالیجریان‌های بالا بر اثر مصرف زیاد واکنش دهنده‌ها، غلظت واکنش دهنده‌هاروی سطح الکترودها کاهش می‌یابد و سبب افت ولتاژ می‌شود و با ηconcentration نشان می‌دهند [REF _Ref332024550 h * MERGEFORMAT4]. البته این رابطه، یک رابطه نیمه تجربی میباشد، که در برخی از روشهای شبیهسازی نظیر مدل همگن لایه کاتالیست از آن استفاده میشود:
(1- SEQ 1- * ARABIC7)
iLچگالیجریان محدود کننده است و زمانیایجادمی‌شود که غلظت واکنش دهنده روی سطح در محل واکنش به صفر برسد.
اگر CR غلظت واکنش دهندهها در ورودی لایه نفوذ گاز و CRS غلظت واکنش دهندهها در سطوح انجام واکنش باشد، آنگاه شار عبوری واکنش دهندهها برابر است با:
(1- SEQ 1- * ARABIC8)
که در آن Dضریب نفوذ پذیری واکنش دهنده‌ها[cm/s]،A سطح فعال الکترودو δ ضخامت لایه نفوذ گاز هستند.
از طرفی طبق قانون فارادی (پیوست 1)، نرخ مصرف واکنش دهندهها با نرخ جریان تولیدی به صورت زیر متناسب است:
(1- SEQ 1- * ARABIC9)
n تعداد الکترون‌های انتقال یافته به ازای یک مول سوختمیباشد. اکنون با ترکیب کردن معادلات (1-4) و (1-5) داریم:
(1- SEQ 1- * ARABIC10)
همانطور که میدانیم در چگالیجریان محدود کننده که غلظت واکنش دهنده روی سطح در محل واکنش به صفر میرسدCRS=0.بنابراین چگالی جریان محدود کننده برابر است با [REF _Ref332025777 h * MERGEFORMAT12]:
(1- SEQ 1- * ARABIC11)
Bدر معادله REF _Ref331420287 h * MERGEFORMAT (1- 7)عدد ثابت است و کاملاً وابسته به شرایطعملکردیپیلمی‌باشد.این عدد معمولاً به صورت تجربیبرایپیلهای مختلف گزارش می‌شود به طوریکه ابتدا منحنیتجربیقطبیتپیل با انجام تست در چگالیجریان‌های مختلف بدست می‌آید سپس اینمنحنی را با رابطه REF _Ref330220987 h * MERGEFORMAT (1- 12)که در حقیقت ولتاژ واقعیپیل در چگالیجریان‌های مختلف می‌باشد، و از کم کردن تمامیافت‌ها از ولتاژ بازگشت‌پذیرپیل بدست می‌آید، برازش می‌کنند تا ثوابتینظیرa،B بدست آیند [REF _Ref332024550 h * MERGEFORMAT4].
(1- SEQ 1- * ARABIC12)
افت غلظت با بهینهسازی انتقال جرم در الکترودها و ساختار جریانپیلسوختی قابل کم شدن است.
مروری بر پروژه - ریسرچ‌هافیزیک حاکم بر یکپیلسوختیبسیارپیچیده است. تعداد زیادیفرآیند که به طور هم زمان در پیلسوختی رخ می‌دهند، وجود دارند و مطالعه هر فرآیندی که در پیلسوختی انجام می‌گردد دشوار می‌باشد. تاکنون محققان مختلفی بر رویجنبه‌های متفاوت پیلسوختی تمرکز کرده‌اند. تحقیقاتتجربیپیلسوختیبسیار زمان بر و گران قیمتاست. محققان اولیه تنها بر رویجنبه‌هایخاصی از پیلسوختی مثل صفحات دو قطبی، لایهکاتالیست، لایه نفوذ گاز و غشاء تمرکز کرده‌اند. در این بخش ابتدا مروری بر رویانواع مدل‌سازی‌های انجام شده بر رویلایهکاتالیست انجام می‌دهیم و سپس برخی از مدل‌سازی‌های مربوط به غشاء و لایه نفوذ گاز ارائه می‌گردد:
لایهکاتالیستبه طور کلی سه روش مختلف به منظور مدل‌سازیلایهکاتالیست وجود دارد:
مدل لایه نازک
مدل همگن
مدل تودهای
در سال‌هایاولیه توان محاسباتی محدود بوده و در نتیجه تنها یک مدل عددییکبعدیپیلسوختی غشاء پلیمری توسط برناردی و همکارانش [REF _Ref332025833 h * MERGEFORMAT13] توسعه یافته بود و نتایج آن با مدل تجربیمقایسه شده بود.برناردی و همکارانش اولینمحققینی بودند که لایهکاتالیست کاتد را به روش همگن مدل‌سازی کردند. آن‌هارفتار لایهکاتالیست مسئله مدیریت آب در پیلسوختی و همچنین عملکرد پیل را مورد بررسی قرار دادند. نتایج کار آن‌هابیانگراینواقعیت بود که واکنش کاهش اکسیژندر یکلایهبسیارباریکی از لایهکاتالیست که نزدیک به لایه نفوذ گاز می‌باشد انجام می‌شود. بعدها خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14]نشان دادند که در یک ولتاژ عملکردیپیل (A m-5000) تنها 5% از لایهکاتالیست که در مجاورت سطح مشترک لایهکاتالیست با لایه نفوذ گازمی‌باشد در واکنش کاهش اکسیژنشرکت می‌کنند، اینیعنیاینکهاکسیژنمصرفی به محض ورود به قلمرو لایهکاتالیست مصرف می‌شود. بنابراینبراییکطراحیبهینه و مقرون به صرفه،تجمع بارگذاریپلاتین در مجاورت سطح مشترک لایهکاتالیست با لایه نفوذ گاز می‌تواند به عنوان یکگزینه مورد توجه باشد.
برناردی و وربروگ[REF _Ref332025833 h * MERGEFORMAT13] همچنینمعادلات استفان- بولتزمن را برای مدل کردن انتقال جرم در لایه نفوذ گاز، معادله باتلر- ولمر را برای سینتیک واکنش و معادله نرنست – پلانک را برای انتقال جرم در غشاء به کار بردند. یک سال بعد آن‌ها مدل خود را از بخش کاتد به دو بخش آند و کاتد پیل سوختی بسط دادند. اینبار افت اهمیک در اثر انتقال الکترون در لایه نفوذ گاز، افت فعال‌سازی و افت اهمیک در اثر عبور پروتون در غشاء را در مدل‌سازی خود مورد مطالعه قرار دادند.
برناردی و وربروگ در سال 1992 پیل سوختی غشاء پلیمری جامد را با استفاده از روش همگن مدل کردند [REF _Ref332025887 h * MERGEFORMAT15]. آن‌ها مکانیزم انتقال اجزاء در شبکه پیچیده پیل در فازهای مختلف گاز و مایع و فاکتورهای مؤثر بر کارایی پیل را در تحقیق خود مورد تحلیل و بررسی قرار دادند. در این بررسی رفتار قطبیت پیل با داده‌های آزمایشگاهی مقایسه شده است. استفاده از ضخامت‌های متفاوت الکترود در کار آن‌ها نشان می‌دهد که برای دوری جستن از اینکه چگالی جریان محدود کننده پیل، در جریانهای پایینتر اتفاق افتد، نسبت حجمی الکترود کاتد (تخلخل لایه نفوذ گاز سمت کاتد) برای انتقال گازها باید بیش از 20 درصد باشد. به عبارت دیگر آنها ثابت کردند که به ازای مقادیر بسیار اندک تخلخل الکترد کاتد(به عنوان مثال 11%) چگالی جریان محدود کنندهپیل به دلیل محدود شدن انتقال جرم به سرعت اتفاق میافتد. نتایج مدل آن‌ها همچنین نشان می‌دهد که در گستره وسیعی از چگالی‌های جریان، هیچ نیازی به آب خارجی وجود ندارد زیرا آب تولیدی در کاتد به منظور تأمین نیازمندی‌های آبی غشاء کافی است.
در سال 2002 جنویو همکارانش [REF _Ref332025901 h * MERGEFORMAT16]مدلسازی لایه کاتالیست را بر اساس روش همگن ارائه کردند. اثر انتقال جرم و حرارت در پیل سوختی غشاء پلیمری بر طبق الکتروشیمی لایه کاتالیست در مدل آن‌ها مورد بررسی قرار گرفته است. همچنین با استفاده از مدل خود نشان دادند، هنگامیکه غلظت اکسیژن در مرز لایه کاتالیست و غشاء به صفر می‌رسد، چگالی جریان محدود کننده حاصل می‌شود. آن‌ها با استفاده از فرض کاملاً توسعه یافته بودن سیال در کانال‌های انتقال گاز، یک بعدی و همگن بودن لایه کاتالیست، به مقدار بهینه استفاده از کاتالیست پلاتین در لایه کاتالیست رسیدند. همچنین از مدل‌سازی خود به این نتیجه رسیدند که افزایش دما بیش از حد معقول، باعث کم آب شدن آیونومر لایه کاتالیست شده و کارائی پیل را کاهش می‌دهد و نشان دادند که تخلخل و میزان بارگذاری پلاتین در لایه کاتالیست نقش بسیار مهمی را در کارائی پیل ایفا می‌کنند.
در سال 1999 سینگ و همکارانش [REF _Ref332025916 h * MERGEFORMAT17]لایهکاتالیستپیلسوختی غشاء پلیمری را به صورت دو بعدیمدل‌سازی کردند، آن‌هاهمچنینجریان‌های واکنش دهنده‌ها در آند و کاتد را به صورت همسو و غیر همسو مدل کرده و نتایج آن را با هم مقایسه کردند.آن‌هانتیجه گرفتند که مدل‌سازی دو بعدی نقش مهمی بر رویپیش‌بینیصحیح عملکرد پیلسوختیایفامی‌کند، این امر در چگالیجریان‌هایپایینشدیدتر است. مار و لی [REF _Ref332025950 h * MERGEFORMAT18] اثراتساختاریاجزایتشکیلدهنده‌ییکلایهکاتالیست همگن را بر روی عملکرد پیلسوختی غشاء پلیمری مورد بررسی قرار دادند. آن‌هانتیجه گرفتند که به منظور دستیابی به بالاترینمیزانکاراییپیلاز نقطه نظر ساختاریباید همواره 40% از لایهکاتالیست از ذرات پلاتین–کربن(Pt/C)ساخته شده باشد. در سال 2010 خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14]یک مطالعه جامع پارامتری را بر رویلایهکاتالیستی که به روش همگن مدل کرده بودند انجام دادند. در این مطالعه، اثر شش پارامتر ساختاری بر روی عملکرد پیلسوختی غشا پلیمری مورد بررسی قرار گرفت. آن‌ها نشان دادند که برخی از پارامتر هایساختارینظیر کسر حجمی فاز غشاء موجود در لایهکاتالیست، ضخامت لایهکاتالیست و بارگذاری کربن ازتأثیرگذارترینپارامترها بر رویمنحنیقطبیتپیل هستند.
علیرغمموفقیت‌های ذکر شده در مورد مدل همگن لایهکاتالیست،پیش‌بینی عملکرد سلول سوختی با استفاده از مدل همگن در چگالیجریان‌های بالا بسیارضعیف است و با نتایجتجربی اختلاف قابل ملاحظه‌ای دارد. این اختلاف به دلیل این است که افت غلظت در مدل همگن به خوبی و بدون استفاده از روابط تجربی قابل پیش‌بینینیست. اکنون مدل توده‌ای که کمی از مدل همگن نوین‌تر است می‌توانداین مشکل را مرتفع سازد.
گراف‌های میکرو الکترونی، بروکا و اکدونج[REF _Ref332026000 h * MERGEFORMAT19] نشان داد که ذرات Pt/Cموجود در لایه کاتالیست، نزدیک به یکدیگر و به شکل یک توده کروی انباشته شده‌اند، همچنیناین توده کروینیز با لایهنازکی از آیونومر احاطه شده است. آن‌هاهمچنینلایهکاتالیست کاتد را با استفاده از مدل همگن و توده‌ایشبیه‌سازی کرده و نتایجآن‌ها را با یکدیگرمقایسهکرده‌اند. سان و همکارانش [REF _Ref332026047 h * MERGEFORMAT20]در سال 2005 مدل تودهای را برایبررسیاثر بارگذاریآیونومرنفیون و پلاتین بر روی عملکرد پیل مورد بررسی قرار دادند. آن‌ها 36% را یک کسر وزنیبهینهبرایبارگذارینفیونبدست آوردند. در سال 2007 سیکنل و همکارانش [REF _Ref332026057 h * MERGEFORMAT21] الکترود کاتد یکپیلسوختی غشاء پلیمری را که بهروشتوده‌ای مدل شده بود با استفاده از روش بهینه‌سازی چند متغیرهبهینه کردند. آن‌هانتیجه گرفتند کههرچه شعاع ذرات توده ای موجود در لایهکاتالیست و همچنین ضخامتلایهآیونومر اطراف آن‌هاکوچک‌تر باشد، عملکرد پیلبهینه‌تر است. در واقع تا آنجایی که فرآیندهای ساخت اجازه می‌دهندباید شعاعذرات توده‌ای و ضخامت آیونومر دور آن‌ها کوچک باشد. آن‌ها کسر حجمیبهینه را برای فاز جامد و غشاء موجود در لایهکاتالیست به ترتیب 22.05% و 53.95% گزارش کردند. البته اینمقادیر در چگالیجریان‌های متوسط گزارش شده‌اند.
در سال 2012، کاماراجوگادا و مازومدر [REF _Ref332026073 h * MERGEFORMAT22]لایه کاتالیست را به روش توده‌ایمدل‌سازی کردند، البته یک فرق اساسی که مدلآن‌ها با سایر روش‌هایتوده‌ای داشت، این است که آن‌ها فرض کردند ذرات توده‌ای با شعاع‌های متفاوت با یکدیگر تداخل داشته باشند. نتایج کار آن‌ها نشان می‌دهد که تا هنگامی که اندازه ذرات توده‌ای کوچک (کوچکتر از nm 200) باشد، اثر آن‌ها بر روی منحنی قطبیت پیل اندک است. اما برای ذرات بزرگتر اثر آن‌هابر روی منحنی قطبیت قابل ملاحظه است. به ویژه در چگالی جریان بالا جایی که افت غلظت شدید بوده و مقاومت در برابر انتقال جرم به درون توده به شکل توده وابسته است، این اثر بحرانی‌تر خواهد بود. آن‌ها همچنین نتیجه گرفتند که کارایی پیل در این حالت نسبت به حالتی که توده‌ها به صورت کروی و جدا از هم هستند به ازای یک حجم یکسان به مراتب بیشتر است و به نتایج تجربی نیز نزدیکتر می‌باشد.
لایه نفوذ گاز و غشاءلایههای نفوذ گاز به دلیلیکنواخت کردن جریانگازهای واکنش دهنده بکار می‌روند. البته استفاده از اینلایه‌ها باعث کاهش فشار واکنش دهنده‌ها نیزمی‌گردد. غشاء نیزیکلایه مرطوب می‌باشد که پروتون‌ها از طریق آن از آند به سمت کاتد مهاجرت می‌کنند. در پیل‌هایسوختی غشاء پلیمری از انواع نفیون‌ها به عنوان غشاء استفادهمی‌شود. میزان آب موجود در غشاء ازاهمیتویژه‌ای برخوردار است. تمامی خواص غشاء اعم از میزاننفوذ آب، قابلیت هدایتپروتونی و مقاومت پروتونی به میزان آب موجود در غشاء بستگی دارد. اگر دمایپیل بالا باشد (oC100) ممکن است که رطوبت غشاء از دست برود و مقاومت پروتونیکافزایشیابد. از سویدیگرزیادی آب درون غشاء باعث ایجادپدیدهغرقابی شده و منافذ نفوذ گاز را مسدود می‌کند.
اثر دما و ضخامت غشاء بر بازده پیل سوختی و اثر انتقال آب در داخل لایه غشاء، مواردی هستند که اشپرینگر و همکارانش [REF _Ref332026117 h * MERGEFORMAT23]در مدل‌سازی پیل سوختی با استفاده از روش لایه نازک به بررسی آن‌ها پرداخته‌اند.اشپرینگر و همکارانش در سال 1991یکپیلسوختیپلیمری با نفیونN117 به عنوان غشاء مدل‌سازی کردند. آن‌ها هوا و هیدروژنورودی به کاتد و آند را کاملاً اشباع در نظر گرفتند. آن‌ها اثر برخی از پارامترهایساختاری و عملکردیپیل را بر رویکاراییپیل مورد بررسی قرار دادند، و به طور خاص اثر جزء آب موجود در غشاء و دما را بر روی مقاومت پروتونیک غشاء و در نتیجهکاراییپیل مورد بررسی قرار دادند. آن‌هانتیجه گرفتند که هر چه دمایپیلسوختی بالاتر باشد و همچنین هر چه ضخامت غشاء بیشتر باشد جزء آب موجود در غشاء کاهش و در پی آنمقاومت پروتونیک غشاء افزایشمی‌یابد.آن‌ها به این نتیجه رسیدند که با افزایش چگالی جریان پیل، مقاومت غشاء نیز افزایش مییابد، که برای کاهش این مقاومت میتوان از غشاء با ضخامت کمتر استفاده نمود، همچنین دریافتند که نسبت شارخالص آب عبوری به شار پروتون در داخل غشاء، از میزان پیش‌بینی شده توسط پدیده کشش الکترواسمزی بسیار کمتر است.
موتوپالی و همکارانش [REF _Ref332026155 h * MERGEFORMAT24] نفوذ آب درون نفیونN115 را مورد بررسی قرار دادند. آن‌ها شار نفوذ آب را در درون غشاء با استفاده از قانون فیک مدل کردند. نتایج کار آن‌ها نشان داد که گرادیانضریبفعالیت آب در داخل غشاء به فشار عملکرد پیلسوختیبستگی دارد. شان-های و بائو-لیان [REF _Ref332026180 h * MERGEFORMAT25]اثر نوع جریانواکنشگرها در کانال‌هایورودی (همسو و غیر همسو) را بر رویفرآیندهای انتقال درون غشاء (مهاجرت پروتون و انتقال آب)، مقاومت اهمیک و توزیع آب درون غشاء بررسی کردند. آن‌ها اثبات کردند که جریانغیر همسو می‌تواند باعث بهبود عملکرد پیلسوختی شود. جنگ و همکارانش [REF _Ref332026198 h * MERGEFORMAT26] نفوذ اکسیژن را در الکترود کاتد پیل سوختی با استفاده از یکضریبنفوذ معادل به صورت دو بعدی مدل کردند. آن‌ها اثر ضخامت لایه نفوذ گاز را بررسی کردند و اثبات کردند که هر چه ضخامت لایه نفوذ گاز کمتر باشد عملکرد پیلبهینه‌تر خواهد بود، البته این امر در مورد لایه‌های نفوذ گاز با تخلخل اندک می‌باشد.
اهداف پروژه و خلاصهای از کارهای صورت گرفتهبا توجه به مطالب ذکر شده در بخشهای قبلی میتوان نتیجه گرفت که به منظور طراحی صحیح و بهینه یک سیستم پیل سوختی نیازمند یک مدلسازی از عملکرد لایههای مختلف پیل سوختی نظیر مدلسازی لایه کاتالیست، لایه نفوذ گاز و غشاء هستیم. هدف اصلی از انجام این پایاننامه ارائه یک مدل کارآمد جهت پیشبینی عملکرد لایههای مختلف پیل و بررسی تاثیر پارامترهای مختلف (عملکردی و ساختاری) بر روی کارایی پیل میباشد. این مدل میتواند آغاز راه برای سازندههای پیل سوختی غشاء پلیمری باشد.
از اینرو در اینپایان‌نامهمدل‌سازییکبعدی عملکرد یکپیلسوختی غشا پلیمری انجام می‌پذیرد، و تمامیلایه‌هایاینپیلسوختی تک سلولیشبیه‌سازیمی‌شوند. مدل ارائه شده برایلایهکاتالیست، مدل توده‌ایمی‌باشد. این مدل افت غلظت موجود در منحنیقطبیتپیل را که در چگالیجریان بالا اتفاق می‌افتد بدون اضافه کردن روابط نیمهتجربی مربوط به افت غلظت درستپیش‌بینیمی‌کندهمچنین در حالتی که اندازه تودهها به سمت صفر میرود(تودههای بسیار کوچک) این مدل به مدل همگن ساده میشود. لایه‌های نفوذ گاز نیز که در دو طرف آند و کاتد پیل قرار دارند با استفاده از معادلات مربوط به نفوذ گازهای چند جزئی مدل شده‌اند. غشاء نیز با مدل کردن انواع مکانیزم‌های انتقال آب که در آن وجود دارد شبیه‌سازی شده است. عملکرد یکپیلسوختی توسط منحنی ولتاژ بر حسب چگالیجریانبیانمی‌شود. این عملکرد با کسر نمودن افت‌های مربوط به ولتاژ فعال‌سازی، اهمیک و غلظت از ولتاژ بازگشت‌پذیرپیل در یکچگالیجریان بدست می‌آید. سپس با تغییرچگالیجریان، منحنیجریان–ولتاژ پیل بدست می‌آید. در اینپایان‌نامه معادلات حاکم بر عملکرد لایه‌های مختلف پیل (که ترکیبی از معادلات دیفرانسیل و معادلات جبریمی‌باشند) بدست آمده سپس این معادلات حل می‌گردد تا افت‌هایقید شده بدست آید. در انتها یکسری مطالعات پارامتری به منظور بررسیمیزانحساسیت تابع عملکرد به یکسریپارامترها انجام می‌پذیرد.

فصل دوممدل‌سازی لایه کاتالیست به روش توده‌ای و نتایج آن25050754247515020000
معرفی لایه کاتالیستلایه کاتالیست لایه بسیار نازکی است که بین غشاء و الکترود (ناحیه‌ی متخلخل) فشرده شده است. در این ناحیه واکنش الکتروشیمیایی رخ می‌دهد و بهطوردقیق‌تر واکنش الکتروشیمیایی در سطح کاتالیست رخ می‌دهد. سهمؤلفه که شامل الکترون‌ها و پروتون‌ها و گازها هستند در واکنش شرکت می‌کنند بنابراین واکنش در ناحیه‌ای رخ می‌دهد که این سه ماده وجود داشته باشند. الکترون‌ها از جامدی که رسانای الکتریسیته است عبور می‌کند و خود را به سطح کاتالیست می‌رساند. پروتون‌ها نیز از فاز غشاء عبور می‌کنند و خود را به سطح کاتالیست می‌رساند و در نهایت گازهای واکنش‌دهنده از منافذ خالی عبور می‌کنند. بنابراین الکترود باید متخلخل باشد تا به گازها اجازه دهد به محل انجام واکنش برسند. آب تولید شده بایستی بهصورت موثر و بهینه خارج شود، در ضمن ممکن است که پدیده غرقابی رخ دهد، در این حالت آب مایع منافذ خالی الکترود را می‌پوشاند و مانع رسیدن گازها (اکسیژن) به لایه کاتالیست(کاتد) می‌شود.
همان‌طور که در REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (الف) مشاهده می‌شود واکنش در مرز سه فازی رخ می‌دهد که شامل فاز غشاء، فاز جامد و فضای خالی می‌باشد. البته اگر فاز غشاء جامد باشد این مرز دو فازی خواهد بود. این ناحیه گاهی تنها بهصورت یک سطح تداخلی در نظر گرفته می‌شود. در عمل چون ممکن است نفوذ گاز از غشاء صورت گیرد، ناحیه‌ی واکنش بزرگ‌تر از یک خط مرزی سه فازی است. محیط واکنش ممکن است با وجود نفوذ غشاء به قسمتی از کاتالیست بهصورت یک ناحیه در نظرگرفتهشود( REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (ب)). اما در اغلب موارد، تمام سطح کاتالیست با فاز غشاء پوشیده می‌شود( REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (پ)). مسلماًیک حالت بهینه برای کسر حجمیهریک از این‌ فازهای غشاء، جامد و فضای خالی به منظور بهترین کارکرد لایه‌ی کاتالیست قابل حصول است.
متداول‌ترین کاتالیستی که در پیل‌های سوختی پروتونی برای واکنش کاهش اکسیژن و اکسایش هیدروژن کاربرد دارد، پلاتین است. در پیل‌های قدیمی مقادیر زیادی پلاتین استفاده می‌شد(mg/cm2 28). در اواخر سال 1990 این مقدار به mg/cm20.3-0.4رسید. مسئله مهم در ساختمان کاتالیست‌ها سطح آن‌هاست نه وزنشان، زیرا هر چه که سطح کاتالیست بیشتر باشد، سطوح انجام واکنش افزایش مییابد، بنابراین ذرات پلاتین بایستی ریز باشند (کمتر از nm4) زیرا به ازای یک مقدار بارگذاری معین هر چه ذرات کاتالیست ریزتر باشند سطوح انجام واکنش افزایش مییابد.
(الف) (ب) (پ)

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 1: نمایش گرافیکی سطحی که در آن واکنش رخ می‌دهد[REF _Ref332025524 h8].برای به حداقل رساندن افت پتانسیل که ناشی از کاهش نرخ انتقال پروتون و نفوذ گازهای واکنش‌دهنده به عمق لایه‌ی کاتالیست می‌باشد، این ناحیه بایستی به اندازه‌ی کافی نازک باشد. همزمان بایستی مساحت سطح موثر پلاتین نیز ماکزیمم باشد و برای این منظور ذرات پلاتین نیز بایستی تا حدامکان کوچک باشد. بهخاطر دلیل اول بایستی ذرات پلاتین– کربن(Pt/C) هرچه زیادتر باشد (از لحاظ وزنی این کسر بالاتر از 40٪ باشد)، از طرفی ذرات پلاتین باید کوچک‌تر باشند، تا سطح موثر واکنش، با وجود درصد بارگذاری کمتر، افزایش یابد ( REF _Ref331265979 h * MERGEFORMAT جدول ‏21).
باربیر [REF _Ref332025524 h * MERGEFORMAT8] گزارش کرده است که عملکرد پیل وقتی که درصد ذرات پلاتین –کربن(Pt/C) بین 10٪ تا 40٪ با بارگذاری mg/cm20.4 می‌باشد، تغییری نمی‌کند. اما عملکرد پیل وقتی که درصد ذرات پلاتین – کربن(Pt/C) از 40٪ بیشتر می‌شود، کاهش می‌یابد. این مسئله بیانگر این واقعیت است که هنگامی که درصد ذرات پلاتین–کربن(Pt/C) در گستره‌ی 10 تا 40٪ باشدتغییر قابل چشم‌پوشی برای مساحت سطح موثر کاتالیست و در گستره بالاتر از 40٪کاهش قابل ملاحظه‌ای در سطح موثر لایه‌ی کاتالیست اتفاق میافتد.
REF _Ref331265979 h * MERGEFORMAT جدول ‏21[REF _Ref332025524 h * MERGEFORMAT8] مساحت موثر کاتالیست را برای درصدهای مختلف پلاتین – کربن (Pt/C) نشان می‌دهد.
در عمل بارگذاری بیشتر پلاتین، پتانسیل بیشتر و عملکرد بهتر را برای پیل به ارمغان می‌آورد (با فرض قابل استفاده بودن و ضخامت معقول برای لایه‌ی کاتالیست). نکته‌ی کلیدی برای بهبود عملکرد پیل‌های سوختی افزایش بارگذاری پلاتین نیست بلکه افزایش استفاده از کاتالیست (افزایش سطح موثر) است.
جدول STYLEREF 1 s‏2SEQ جدول_ * ARABIC s 1 1: مساحت موثر کاتالیست برای درصدهای مختلف پلاتین – کربن.Active Area, m2/gPt XRD Pt Crystallite Size, nm Wt. % Pt on Carbone
(Pt/C)
120 2.2 40
105 2.5 50
88 3.2 60
62 4.5 70
20-25 5.5-6 Pt Black
شرح پدیده‌هایی که در لایه کاتالیست رخ می‌دهدهمان‌طور که در بخش REF _Ref330375638 n h * MERGEFORMAT ‏1-8-1-اشاره شد، لایه کاتالیست را عموماً به سه روش زیر مدل‌سازیمی‌کنند:
مدل لایه نازک
مدل همگن
مدل توده ای
اختلاف اصلی بین این سه روش را می‌توان در مکانیزم انتقال اکسیژن جستجو کرد در حالی که مدل‌های نام برده در نحوه انتقال الکترون و پروتون به یکدیگر شباهت زیادی دارند.
از آنجایی که در دهه اخیر از مدل سوم یعنی توده‌ای بیشتر از دو مدل دیگر استفاده شده است، لذا فقط به معرفی ابتدایی دو مدل اوّل بسنده کرده‌ایم، و برای مدل‌سازی لایه کاتالیست از مدل توده‌ای که جامع‌تر از دو مدل قبلی است و نواقص آن دو مدل را پوشش می‌دهد استفاده شده است.
مدل لایه نازکدر مدل لایه نازک[REF _Ref332026335 h * MERGEFORMAT27] فرض بر این است که در لایه کاتالیست، ذرات پلاتین روی سطح کربن قرار داده شده و همان‌گونه که در REF _Ref331173016 h * MERGEFORMAT شکل ‏22نشان داده شده است این ذرات بوسیله الکترولیتی احاطه می‌شوند که با حفره گاز در تماس است. در اینمدل تقارن محوری وجود دارد که در REF _Ref331173016 h * MERGEFORMAT شکل ‏22با خط چین نشان داده شده است، بنابراین در فاصله‌یحفره‌ی گاز و الکترولیت، هیچ شاری از صفحات متقارن عبور نمی‌کند (شرط تقارن). در این مدل ضخامت الکترولیت و فاصله بین ذره‌ای، ثابت در نظر گرفته می‌شود، همچنین تخلخل لایه کاتالیست در این مدل صفر است. فرآیندهای انتشار، همدما بوده و سیستم نیز در شرایط حالت پایا فرض می‌شوند.
مدل لایه نازک معمولاً هنگامی استفاده می‌شود که هدف ما مطالعه اثرات ترکیب لایه کاتالیست نباشد [REF _Ref332025607 h * MERGEFORMAT11]. در این مدل لایه کاتالیست به صورت لایه بسیار نازکی فرض می‌شود و با فرض اینکه همه خواص در این لایه یکنواخت باشند، ترکیب و ساختار آن در نظر گرفته نمی‌شود. سپس این لایه به صورت فاصله‌ای مابین غشاء و لایه نفوذ گاز ملاحظه می‌شود.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 2: شماتیک مدل لایه نازک با تقارن محوری نشان داده شده بوسیله خط چین [REF _Ref332026373 h * MERGEFORMAT28].به منظور مدل کردن اثر لایه کاتالیست بر کارایی پیل در این مدل، تنها یک معادله مورد استفاده قرار می‌گیرد (معادله تافل) که در هنگام مدل سازی به صورت یک شرط مرزی بین لایه نفوذ گاز و غشاء مطرح می‌شود. همان‌گونه که اشاره شد، به نظر می‌رسد که این مدل زمانی کافی باشد که اثرات دیگر، نسبت به اثرات لایه کاتالیست دارای اهمیت بیشتری باشند.
مدل همگنمدل همگن را می‌توان شکل اصلاح شده مدل لایه نازک نامید. در این مدل، لایه کاتالیست به صورت یک ساختار متخلخل متشکل از: یک ماده هادی جامد (معمولاً کربن)، کاتالیست (معمولاً پلاتین) و یک الکترولیت (معمولاً نفیون) ساخته می‌شود، REF _Ref331173107 h * MERGEFORMAT شکل ‏23.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 3: تصویر شماتیک لایه کاتالیست سمت کاتد بر اساس مدل همگن[REF _Ref332025841 h * MERGEFORMAT14].مدل همگن فرض می‌کند که فضای حفره، ماده هادی جامد و الکترولیت بهطور یکنواخت در لایه کاتالیست توزیع شده‌اند، این واقعیت در REF _Ref331173169 h * MERGEFORMAT شکل ‏24به خوبی به تصویر کشیده شده است.
واکنش روی سطح ذرات کاتالیست نهاده شده روی ماده هادی جامد اتفاق می‌افتد. بنابراین پروتون‌ها، الکترون‌ها و اکسیژن باید از میان لایه کاتالیست عبور کنند تا به محل انجام واکنش برسند. در لایه کاتالیست کاتد، الکترون‌ها از طریق ماده هادی جامد، پروتون‌ها از طریق الکترولیت و اکسیژن از طریق فضای حفره انتقال داده می‌شوند. مسیر انتقال اکسیژن به دو صورت فرض می‌شود. برخی از محققین فرض می‌کنند که اکسیژن از طریق آب مایعی که فضاهای حفره را پر می‌کند انتقال داده می‌شود [REF _Ref332025887 h * MERGEFORMAT15]. برخی دیگر از محققین فرض می‌کنند که اکسیژن از طریق انتشار در فاز گاز در میان حفره‌های گازی انتقال داده می‌شود [REF _Ref332026434 h * MERGEFORMAT29-REF _Ref332026924 h * MERGEFORMAT33]. هر دو فرض مدلی را نتیجه می‌دهند که برخی از اثرات بسیار مهم که در لایه کاتالیست اتفاق می‌افتد را شرح می‌دهند. هر دو فرض، همچنین ترکیب لایه کاتالیست را از طریق ربط دادن خواص لایه کاتالیست به نسبت حجمی هر فاز نشان می‌دهند.

شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 4: نمایی از لایه کاتالیست همگن و تودهای و اجزاء تشکیل دهنده آنها.مدل توده‌ایدر سال 1980 ایزکوفسکی و کاتلیپ جزء اولین کسانی بودند که مدل توده‌ای را برای شبیه‌سازی لایه کاتالیست به کار بردند. آن‌ها از توده‌های استوانه‌ای برای شبیه‌سازی خود استفاده کردند و نشان دادند که لایه کاتالیست از توده‌های کربن تقویت شده توسط پلاتین ساخته شده است که بوسیله لایه‌ای نازک از نفیون احاطه شده و بوسیله حفره‌ها از هم جدا می‌شوند. این توده‌ها اگلومریتنامیده می‌شوند. توده‌ها، کره‌هایی از الکترولیت معمولاً نفیون، هستند که با کربن و ذرات پلاتین پر شده‌اند و دارای شعاع حدوداً یک میکرونهستند [REF _Ref332026047 h * MERGEFORMAT20].این مدل، از جدیدترین مدل‌هایی است که برای لایه کاتالیست پیل سوختی ارائه شده است، REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) یک نمای میکروسکوپیک از لایه کاتالیست که حاوی ذرات اگلومریت (توده) است را نشان می‌دهد.REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) نشان می‌دهد که ذرات تودهای از یک طرف با فیبرهای (رشته‌های) کربن موجود در لایه نفوذ گاز که در مرز مشترک لایه کاتالیست با لایه نفوذ گاز قرار دارد در تماس بوده، و از طرف دیگر نیز در تماس با آیونومر الکترولیت موجود در مرز مشترک لایه کاتالیست با غشاءمی‌باشند. در این بین، ذرات تودهای به صورت نامنظم در آیونومر موجود در لایه کاتالیست مستغرق می‌باشند. همان‌طور که در REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) دیده می‌شود یک سری فضای خالی ما بین این ذرات وجود دارد، معمولاً فرض می‌شود که این فضاهای خالی با آب مایع بوجود آمده ناشی از انجام واکنش کاملاً پر می‌شود. این فرض مخصوصاً در مورد پیل‌های دما پایین که در آن‌ها تمامی آب تولیدی به صورت آب مایع می‌باشدصحیح بهنظرمی‌رسد. به این حالت، حالت غرقابی کاملمی‌گویند. REF _Ref331173305 h * MERGEFORMAT شکل ‏25 (ب) نمای بزرگ شده یکی از هزاران توده‌یموجود در لایه کاتالیست را نشان می‌دهد. این ذرات با یک فیلم بسیار نازک از آیونومر احاطه شده‌اند. همان‌طور که در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) دیده می‌شود ذرات پلاتین که بروی ذرات کربن بار گذاری شده‌اند و بوسیله آن‌ها تقویت شده‌اند به صورت کاتوره‌ایدرون آیونومر موجود در توده پخش شده‌اند.
به صورت کلی نفوذ اکسیژن از مرز مشترک لایه نفوذ گاز با لایه کاتالیست تا درون هر توده‌ی موجود در لایه کاتالیست را می‌توان به ترتیبدر فرآیندهای زیر خلاصه نمود:
نفوذ اکسیژن به درون لایه کاتالیست با حل شدن در آب مایع موجود در مرز مشترک لایه کاتالیست با لایه نفوذ گاز،
حل شدن اکسیژن در فاز آیونومر و همچنین فضاهای خالی پر شده از آب مایع، به منظور رسیدن به سطح توده‌ها،
نفوذ اکسیژن به درون فیلم آیونومر اطراف هر اگلومریت،
حل شدن اکسیژن درون توده و واکنش کاهش اکسیژن درون سایت‌های انجام واکنش (پلاتین‌ها).
REF _Ref331173381 h * MERGEFORMAT شکل ‏26تصویر میکروالکترونی (SEM)از توده‌ها را نشان می‌دهد. در شکل ناحیه خاکستری روشن آیونومر است. انتقال گاز در کاتالیست توسط حفره‌های ماکرو در ابعاد m10-1آسان‌تر می‌شود. قطر ذراتکاتالیست پلاتین حدود3 nm است.همان‌طور که در REF _Ref331173381 h * MERGEFORMAT شکل ‏26مشاهدهمی‌شود مدل تودهای به تصاویر میکروالکترونیلایه کاتالیست بسیار شبیه تر ازمدل همگن است.
با توجه به مطالب گفته شده می‌توان گفت که روش همگن نسبت به روش توده‌ای از دقت کمتری برخوردار است. مطالعات بسیاری نشان داده‌اند که مدل انباشته پیشگویی‌های بهتری نسبت به نتایج آزمایشگاهی در اختیار قرار می‌دهد [REF _Ref332026000 h * MERGEFORMAT19]. مدل‌های انباشته نیازمند پارامترهایی هستند که به صورت تجربی تعیین شده‌اند و این امر می‌تواند دلیلی برای نزدیک‌تر بودن نتایج مدل نسبت به نتایج آزمایشگاهی باشد.
(الف)
(ب)
شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 5: (الف) نمای لایه کاتالیست به روش توده‌ای که بین لایه نفوذ گاز و غشاء فشرده شده است (ب) نمای بزرگ شده از یک عدد توده موجود در لایه کاتالیست.
شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 6: تصویر SEM لایه کاتالیست [REF _Ref332026000 h19].استخراج روابط حاکم بر مدل تودهایشبیهسازی انجام شده بر اساس مدل توده‌ای بوده و بر فرضیات زیر استوار می‌باشد:
الف) پیل سوختی غشاء پلیمری در حالت پایا کار می‌کند.
ب) تمامی واکنش‌ها در دما و فشار ثابت انجام می‌شوند.
پ) گازها ایده آل فرض می‌شوند.
ت) کاتد و آند پیل سوختی به ترتیببا اکسیژن و هیدروژن خالص تغذیه می‌شوند.
ث)حفرههای موجود در مرز مشترک لایه کاتالیست با لایه نفوذ گاز و همچنین فضای خالی بین ذرات توده‌ای پر از آب مایع در نظر گرفته شده است (شرایط کاملاً غرقابی).
ج) ذرات توده‌ای به صورت کروی و با شعاع یکسان در نظر گرفته می‌شوند.
چ) تمامی واکنش‌هایی که در لایه کاتالیست رخ می‌دهند مرتبه اوّل می‌باشند، این بدین معنی است که نرخ مصرف اکسیژن در لایه کاتالیست کاتد با غلظت آن متناسب است.
دراین بخش معادلات دیفرانسیل معمولی حاکم بر لایه کاتالیست کاتد شرح داده می‌شود:
نرخ واکنش الکتروشیمیایی در مدل توده‌ایاستخراج معادله نرخ واکنش الکتروشیمیایی مستلزم شبیه‌سازی کامل فرآیندها نفوذ اکسیژن در لایه کاتالیست می‌باشد (فرآیندهای بخش REF _Ref331683273 r h * MERGEFORMAT ‏2-2-3-). بنابراین این بخش به چهار زیر بخش تقسیم شده است و در هر زیر بخش قسمتی از نفوذ اکسیژن مدلسازی شده است.
واکنش کاهش اکسیژن درون تودهدر ابتدا مکانیزم نفوذ اکسیژن درون هر توده، یعنی فرآیند 4 بخش REF _Ref331683273 r h * MERGEFORMAT ‏2-2-3- مدل می‌شود.
قانون بقای مولی برای اکسیژن درون یک توده در حالت پایا به صورت زیر بیان می‌گردد:
(2- SEQ 2- * ARABIC1)که در آن(ترم چشمه) بیان کننده نرخ اکسیژن مصرفی ناشی از واکنش الکتروشیمیایی درون توده است. انتقال جرم اکسیژن درون تودهبا استفاده از قانون فیک به صورت زیر مدل می‌شود:
(2- SEQ 2- * ARABIC2)که در آن ضریب نفوذ مؤثر اکسیژن درون یک توده است. از آنجا که اکسیژن برای نفوذ در هر توده باید در آیونومر موجود در آن توده حل شود لذا این ضریب نفوذ مؤثر را می‌توان با استفاده از تصحیح برگمان در محیط متخلخل به صورت زیر گزارش کرد:
(2- SEQ 2- * ARABIC3)
که در آن Li,agg کسر حجمی فاز غشاء موجود در هر توده می‌باشد. نیز ضریب نفوذ اکسیژن درون آیونومر است که خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] از داده های تجربی فرمول زیر را با برازش منحنی پیشنهاد می‌کنند:
(2- SEQ 2- * ARABIC4)
اکنون با توجه به فرض آخر در بخش REF _Ref331435271 r h‏2-3-(فرض (چ))، نرخ حجمی مصرف اکسیژن به صورت زیر بیان می‌شود:
(2- SEQ 2- * ARABIC5)که در آن kCثابت نیمواکنش سمت کاتد می‌باشد. و علامت منفی در معادله REF _Ref330398231 h * MERGEFORMAT (2- 5) بیانگر مصرف اکسیژن می‌باشد.
با جایگذاری معادلات REF _Ref330398315 h * MERGEFORMAT (2- 2) و REF _Ref330398231 h * MERGEFORMAT (2- 5) در معادله REF _Ref330398327 h * MERGEFORMAT (2- 1)می‌توان نوشت:
(2- SEQ 2- * ARABIC6)اکنون اگر معادله REF _Ref330580384 h * MERGEFORMAT (2- 6) برای یک ذره توده‌ای کروی شکل در دستگاه مختصات کروی بسط داده شود، میتوان نوشت:
(2- SEQ 2- * ARABIC7)معادله REF _Ref330398567 h * MERGEFORMAT (2- 7) یک معادله دیفرانسیل معمولی مرتبه دوم می‌باشد، بنابراین دو شرط مرزی برای حل آن نیاز است این دو شرط در ادامه توضیح داده شده‌اند(برای جزئیات بیشتر به REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) رجوع شود):
شرط مرزی در سطح داخلی توده،r = ragg: غلظت اکسیژن در سطح داخلی توده برابر با در نظر گرفته شده است( REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب)):
(2- SEQ 2- * ARABIC8)شرط مرزی در مرکز توده،r =: در مرکز توده شرط تقارن وجود دارد:
(2- SEQ 2- * ARABIC9)اگر معادله دیفرانسیل REF _Ref330398567 h * MERGEFORMAT (2- 7) با شرایط مرزی معادلات REF _Ref330399466 h * MERGEFORMAT (2- 8) و REF _Ref330399471 h * MERGEFORMAT (2- 9) حل شود آنگاه جواب زیر حاصل می‌گردد:
where and (2- SEQ 2- * ARABIC10)گروه بی بعد  که در معادله REF _Ref330399611 h * MERGEFORMAT (2- 10) ظاهر شده است را عدد تایلی یا مدول تایلی می‌نامند که برابر است با [REF _Ref332026047 h * MERGEFORMAT20]:
(2- SEQ 2- * ARABIC11) REF _Ref331173594 h * MERGEFORMAT شکل ‏27نحوه تغییرات شعاعی غلظت بی بعد اکسیژن را درون یک توده به ازای مقادیر مختلف عدد تایلی نشان می‌دهد.
بر اساس معادله REF _Ref330399927 h * MERGEFORMAT (2- 11) حالت  حداقل با یکی از دو شرایط زیر متناظر است:
الف)ragg: ذرات تودهای بسیار ریز باشند،
ب)kC : ترم چشمه، به سمت صفر میل کند.
حالت (الف) متناظر است با حالتی که ذرات تودهای بسیار ریز باشند، در این حالت مدل توده‌ای به مدل همگن ساده می‌شود، به زبان دیگر این حالت بسیار به مدل همگن و مفروضات همگن پخش شدن اجزاءدر لایه کاتالیست نزدیک است. از طرف دیگر حالت (ب) متناظر با حالتی است که مصرف اکسیژن درون لایه کاتالیست به صفر رسیده است. در هر صورت همان‌طور که در REF _Ref331173594 h * MERGEFORMAT شکل ‏27 مشاهده می‌شود حالت حدی  ناشی از هر دو حالت (الف) یا (ب) که باشد، منجربه توزیع تقریباً یکنواخت غلظت اکسیژن درون کل توده است.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 7: تغییرات شعاعی غلظت بی بعد اکسیژن درون یک توده برای مدول تایلی مختلف.از طرف دیگر حالت حدی (مثل = 10در REF _Ref331173594 h * MERGEFORMAT شکل ‏27) متناظر با مصرف بسیار زیاد اکسیژن درون لایه کاتالیست است، به نحوی که نرخ نفوذ اکسیژن درون توده بسیار کمتر از نرخ مصرف اکسیژن است. این امر سبب می‌شود که اکسیژن توانایی نفوذ به اعماق توده را نداشته باشد و پس از کمی نفوذ درون توده به سرعت مصرف گردد در این حالت غلظت اکسیژن در r* = 1 به سرعت افت می‌کند که در REF _Ref331173594 h * MERGEFORMAT شکل ‏27مشخص است.
نرخ حجمی واکنش کاهش اکسیژن[mol m-3 s-1]، که همان میانگین نرخ حجمی مصرف اکسیژن درون توده می‌باشد با انتگرال گیری بر روی حجم کل توده به صورت زیر قابل محاسبه است:
(2- SEQ 2- * ARABIC12)در معادله REF _Ref330580866 h * MERGEFORMAT (2- 12)، Vagg حجم یک توده می‌باشد، که برابر است با:
(2- SEQ 2- * ARABIC13)
اکنون معادله REF _Ref330399611 h * MERGEFORMAT (2- 10) در معادله REF _Ref330398231 h * MERGEFORMAT (2- 5) جایگذاری شده، و سپس حاصل آن در معادله REF _Ref330580866 h * MERGEFORMAT (2- 12) جایگذاری می‌شود و انتگرال روی حجم توده محاسبه می‌شود، نرخ میانگین حجمی مصرف اکسیژن به صورت بی‌بعد و بر حسب عدد تایلی بدست می‌آید:
(2- SEQ 2- * ARABIC14)در فرمول REF _Ref330581539 h * MERGEFORMAT (2- 14)، مقدار نرمال شده (بی‌بعد) نرخ مصرف حجمی اکسیژن می‌باشد که برابر است با:
(2- SEQ 2- * ARABIC15)
طبق فرض (چ) در بخش REF _Ref331435271 r h‏2-3-، نرخ حجمی مصرف اکسیژن با غلظت آن متناسب است، بنابراین ماکزیمم نرخ حجمی مصرف اکسیژن درون توده که در r = ragg رخ می‌دهد برابر است با ( REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب)):
(2- SEQ 2- * ARABIC16)ضریب موثرEr، که نسبت میانگین نرخ حجمی مصرفی اکسیژن به ماکزیمم نرخ مصرف اکسیژن می‌باشد، به صورت زیر تعریف می‌شود:
(2- SEQ 2- * ARABIC17) در حالت حدی، معادله REF _Ref330583898 h * MERGEFORMAT (2- 17) مقدارErرا برابر با 1 پیش‌بینیمی‌کند. از این نکته در بخش بعد برای تطبیق دادن مدل همگن و توده‌ای در شرایط حدی فوق استفاده می‌شود. اکنون معادلات REF _Ref330584219 h * MERGEFORMAT (2- 16) و REF _Ref330583898 h * MERGEFORMAT (2- 17) برای بدست آوردن با هم ادغام می‌شود:
(2- SEQ 2- * ARABIC18)نفوذ اکسیژن درون فیلم آیونومر اطراف تودهاکسیژن از طریق نفوذ در لایه نازک اطراف توده به درون آن نفوذ می‌کند.وبهترتیب غلظت اکسیژن در سطحبیرونی و داخلی فیلم آیونومر میباشد، این موضوع در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) نشان داده شده است. اکنون شار مولی نفوذی اکسیژن به درون فیلم آیونومر اطراف هر توده را می‌توان با استفاده از مقاومت پخشی اکسیژن در مختصات کروی به صورت زیر بدست آورد:
(2- SEQ 2- * ARABIC19)agg، ضخامت مفروض لایه آیونومر اطراف توده است.
اگر aagg، سطح مؤثر (مساحت سطح مفید جهت نفوذ اکسیژن به درون تودهها نسبت به حجم لایه کاتالیست m/m) کل توده‌های موجود درون لایه کاتالیست باشد، اکنون نرخ کل اکسیژن مصرفی درون لایه کاتالیست برابر است با:
(2- SEQ 2- * ARABIC20)از سوی دیگر غلظت اکسیژن بر روی سطح بیرونی لایه آیونومر، ، با استفاده از قانون هانری قابل محاسبه است (قانون هانری در پیوست 2 توضیح داده شده است)، بطوریکه:
(2- SEQ 2- * ARABIC21)، ثابت هانری مربوط به انحلال اکسیژن درون آیونومر است. سان و همکارانش [REF _Ref332026047 h * MERGEFORMAT20]مقدار آن را 0.3125 [atm m3 mol-1] گزارش کرده‌اند.
اکنون مقدار غلظت اکسیژن در سطح داخلی فیلم آیونومر، ، با ادغام معادلات REF _Ref330627395 h * MERGEFORMAT (2- 18)، REF _Ref330627402 h * MERGEFORMAT (2- 19)، REF _Ref330627421 h * MERGEFORMAT (2- 21)و REF _Ref330627456 h * MERGEFORMAT (2- 20) بدست می‌آید:
(2- SEQ 2- * ARABIC22)نرخ واکنش الکتروشیمیایینرخ واکنش الکتروشیمیایی از ادغام قانون فارادی و معادله REF _Ref330398327 h * MERGEFORMAT (2- 1) به صورت زیر قابل محاسبه است(شرحی بر قانون فارادی در پیوست 1 آمده است):
(2- SEQ 2- * ARABIC23)CL تخلخل لایه کاتالیست است.
نهایتاً نرخ واکنش الکتروشیمیایی در مدل توده‌ای با جایگزین کردن معادله REF _Ref330628360 h * MERGEFORMAT (2- 22) در معادله REF _Ref330627395 h * MERGEFORMAT (2- 18) و جایگذاری معادله حاصله درون رابطه REF _Ref330628414 h * MERGEFORMAT (2- 23) بدست می‌آید:
مدل توده ای:(2- SEQ 2- * ARABIC24)معادله REF _Ref330628605 h * MERGEFORMAT (2- 24) از دو بخش تشکیل شده است:
and (2- SEQ 2- * ARABIC25)بعداً اثبات می‌شود که Term I در معادله REF _Ref330628753 h * MERGEFORMAT (2- 25) تنها بخشی از مدل توده‌ای است که در مدل همگن نیز وجود دارد، Term II یک بخش اضافی است که در مدل توده‌ای ظاهر شده است و مدل همگن فاقد آن است.Term II، ترمی است که شامل پارامترهای ساختاری و هندسی ذرات توده‌ای بوده و به صورت مستقیم به شرایط عملکردی و چگالی جریان پیل وابسته نیست، از طرف دیگر Term I ترمی است که کاملاً وابسته به شرایط عملکردی و چگالی جریان پیل می‌باشد. در بخش نتایج این دو ترم از نظر مرتبه بزرگی با یکدیگر مقایسه شده‌اند. به نظر می‌رسد که دلیل ایجاد افت غلظت در چگالی جریان بالا در منحنی قطبیت پیل در مدل توده‌ای، همین اختلاف بین دو مدل همگن و توده ای یعنی، Term IIباشد. در نبود این ترم، مدل توده‌ای به مدل همگن کاهش می‌یابد، که در این حالت مدل همگن قادر به پیش بینی افت غلظت در چگالی جریان‌های بالا نیست و این یکی از اصلی‌ترین معایب مدل همگن بشمار می‌رود.
در معادله REF _Ref330628605 h * MERGEFORMAT (2- 24) تنها ترم مجهول kCمی‌باشد. این پارامتر با استفاده از بررسی یک حالت حدی که در آن مدل توده‌ای به مدل همگن کاهش می‌یابد بدست می‌آید. مدل همگن تحت شرایط زیر از مدل توده‌ای قابل بازیافت است:
Er 1  Term II  (ragg, agg)مدل همگن:
(2- SEQ 2- * ARABIC26)از طرف دیگر نرخ واکنش الکتروشیمیایی در مدل همگن با استفاده از رابطه باتلر- ولمر به صورت زیر بدست می‌آید [REF _Ref332025841 h * MERGEFORMAT14]:
مدل همگن:
(2- SEQ 2- * ARABIC27)نهایتاً kC از تساوی دو رابطه REF _Ref330630372 h * MERGEFORMAT (2- 26) و REF _Ref330630376 h * MERGEFORMAT (2- 27) بدست می‌آید:
(2- SEQ 2- * ARABIC28)
aeff سطح موثر پلاتین بر واحد حجم لایه کاتالیست است ([m2 m-3]). aوcبه ترتیب ضرایب انتقال بار سمت آند و کاتد میباشد.چگالی جریان مرجع می‌باشد که پرتاساراتی و همکارانش [REF _Ref332026674 h * MERGEFORMAT34] فرمول زیر را از برازش داده های تجربی پیشنهاد داده‌اند:
(2- SEQ 2- * ARABIC29)
غلظت مرجع اکسیژن می‌باشد که خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] مقدار آن را 1.2mol m-3گزارش کرده‌اند.
انتقال جرم اکسیژنخواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] توزیع غلظت اکسیژن را بر حسب چگالی جریان محلی پیل (i) به صورت زیر بدست آورده‌اند:
(2- SEQ 2- * ARABIC30)که در آن Itotوبه ترتیب چگالی جریان پیل سوختی و ضریب نفوذ مؤثر کلی اکسیژن در کل لایه کاتالیست می‌باشد.
همان‌طور که قبلاً اشاره شد فرض بر این است که فضای خالی بین توده‌ها از آب مایع پر شده است، بنابراین همان‌طور که در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(الف) دیده می‌شود دو مسیر موازی برای رسیدن اکسیژن به محل‌های انجام واکنش وجود دارد:
مسیر اول:انتقال اکسیژن به وسیله حل شدن در فاز آیونومر موجود در لایه کاتالیست.
مسیردوم: انتقال اکسیژن از طریق حل شدن در آب مایع موجود در فضای خالی بین ذرات توده‌ای.
اکنون برای محاسبه ، هر یک از دو مسیر بالا با یک مقاومت نفوذ بر اساس کسر حجمی متناظر با هر بخشی که اکسیژن به درون آن نفوذ کرده مدلسازی میشود.بر این اساس با در نظر گرفتن یک حجم کنترل به صورت کروی به شعاع r حول یک توده به شعاع raggمی‌توانمقاومت نفوذ به درون تودهاز طریق هر یک از مسیرها را به صورت زیر محاسبه کرد:
(2- SEQ 2- * ARABIC31)مقاومت نفوذ مسیر اول:
مقاومت نفوذ مسیر دوم:
در اینجا NوWبه ترتیب نشان دهنده زاویه‌ای از فاز آیونومر و بخش حفره در حجم کنترل انتخاب شده می‌باشد، که با توجه به کسر حجمی فازهای غشاء (Li)، فاز جامد (LS) و فضای خالی (CL) برابرند با:
(2- SEQ 2- * ARABIC32)ونیز به ترتیب ضریب انتشار مؤثر اکسیژن در آیونومر و آب مایع می‌باشد که با استفاده از تصحیح برگمان به صورت زیر به دست می‌آید:
(2- SEQ 2- * ARABIC33)
(2- SEQ 2- * ARABIC34)
ضریب نفوذ اکسیژن در آب مایع می‌باشد که با استفاده از رابطه وایلک- چنگ بدست می‌آید [REF _Ref332027179 h * MERGEFORMAT35]:
(2- SEQ 2- * ARABIC35)
که در آن، وزن مولکولی آب بوده و برابر باg/mol 18 است.، حجم مولار اکسیژن در نقطه جوش نرمال است که برابر باcm3/mol 25.6است. پارامتر وابستگی است که برای آب مقدار آن 2.26می‌باشد.ویسکوزیته آب بر حسب سانتی پوآز [cP]می‌باشد، وایت[REF _Ref332027206 h * MERGEFORMAT36] مقدار آن را برای آب مایع به صورت زیر پیشنهاد کرده است:
(2- SEQ 2- * ARABIC36)
اکنون مقاومت معادل دو مقاومت موازی مسیرهای اول و دوم به صورت زیر قابل محاسبه می‌باشد:
(2- SEQ 2- * ARABIC37)
با جانشین کردن معادله REF _Ref330634607 h * MERGEFORMAT (2- 32) درمعادله REF _Ref330634616 h * MERGEFORMAT (2- 31) و استفاده از معادلههای حاصله در رابطه REF _Ref330634659 h * MERGEFORMAT (2- 37)مقدار بدست می‌آید:
(2- SEQ 2- * ARABIC38)
محاسبه افت فعال‌سازیمقاومت در برابر عبور جریان پروتونی و الکترونی در فازهای غشاء و جامد موجود در لایه کاتالیست مربوط به افت فعال‌سازیمی‌باشد و با استفاده از قانون اهم بدست می‌آید. مار و لی [REF _Ref332025950 h * MERGEFORMAT18] رابطه زیر را بدست آورده‌اند:
(2- SEQ 2- * ARABIC39)که در آن، keffوeffبه ترتیب قابلیت هدایت مؤثر پروتونی و الکترونی فازهای غشاء و جامد در لایه کاتالیست می‌باشد، با استفاده از تصحیح برگمان و کسر حجمی متناظر با هر فاز میتوان نوشت:
(2- SEQ 2- * ARABIC40)
مقادیر kو در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 آمده است.
شرایط مرزیمعادلات حاکم بر انتقال اجزاء یک دستگاه معادلات دیفرانسیل معمولی بوده که شامل معادلات REF _Ref330628605 h * MERGEFORMAT (2- 24)، REF _Ref330636162 h * MERGEFORMAT (2- 30) و REF _Ref330636169 h * MERGEFORMAT (2- 39)می‌باشد. این دستگاه معادلات مرتبه اول غیر خطی و کوپل است. برای حل این دستگاه سه شرط مرزی مستقل لازم است که در ادامه توضیح داده می‌شود:
شرایط مرزی در سطح مشترک لایه نفوذ گاز با لایه کاتالیست (z=0):حفره‌های موجود در سطح مشترک لایه نفوذ گاز با لایه کاتالیست پر از آب فرض شده‌اند(فرض (ث) در بخش REF _Ref331435271 r h ‏2-3-). بنابراین اکسیژن برای نفوذ به درون لایه کاتالیست باید در آب حل شود. از این‌رو غلظت اکسیژن در این مرز با استفاده از قانون هانری بدست می‌آید:
(2- SEQ 2- * ARABIC41)که در آن ، ثابت هانری برای انحلال اکسیژن در آب می‌باشد. برناردی و همکارانش [REF _Ref332025833 h * MERGEFORMAT13] این پارامتر را به صورت تابعی از دمای پیل بر حسب atm m3 mol-1 گزارش کرده‌اند، بطوریکه:
(2- SEQ 2- * ARABIC42)
فرض بر این است که تمامی پروتون‌هایی که از لایه کاتالیست آند به سمت کاتد از درون غشاء مهاجرت می‌کنندقبل از رسیدن به مرز مشترک لایه کاتالیست با لایه نفوذ گاز کاملاً مصرف می‌شوند، بنابراین در این مرز میزان چگالی جریان پروتونی محلی صفر خواهد بود.
(2- SEQ 2- * ARABIC43)این دومین شرط در این مرز می‌باشد.
شرط مرزی در سطح مشترک غشاء با لایه کاتالیست (z=LCL):چگالی جریان محلی در این مرز به بیشینه مقدار خود، یعنی چگالی جریان کلی پیل،Itot، می‌رسد:
(2- SEQ 2- * ARABIC44)جایگذاری معادله REF _Ref330637704 h * MERGEFORMAT (2- 44)در معادله REF _Ref330636162 h * MERGEFORMAT (2- 30) نتیجه می‌دهد که شار غلظت اکسیژن در این مرز برابر با صفر است، این یعنی اینکه اکسیژن موجود در لایه کاتالیست نمی‌تواند از طریق این مرز به داخل غشاء عبور کند (شار نفوذ اکسیژن در این مرز صفر است).
تمامی شروط مرزی را که در بخش‌های REF _Ref331452886 r h * MERGEFORMAT ‏2-7-1- و REF _Ref331452893 r h * MERGEFORMAT ‏2-7-2- توضیح داده شده است، به صورت شماتیکی در REF _Ref331453206 h * MERGEFORMAT شکل ‏28 نشان داده شده است.

شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 8: شماتیک شروط مرزی در دو طرف لایه کاتالیست.شرحی بر پارامترهای استفاده شده در مدل‌سازیمقدار برخی از پارامترهای ساختاری و عملکردی برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 گزارش شده است. باقیمانده پارامترها در ادامه توضیح داده می‌شوند.
مساحت سطح مؤثر پلاتیندر لایه‌های کاتالیست مدرن مساحت سطوح انجام واکنش بسیار بیشتر از مساحت اسمی لایه کاتالیست می‌باشد. این به دلیل زبری لایه کاتالیست است که مساحت واقعی واکنش را تا چندین هزار برابر افزایش می‌دهد[REF _Ref332024550 h * MERGEFORMAT4]. مساحت سطح مؤثر پلاتین،aeff، در حقیقت نسبت مساحت سطح واقعی انجام واکنش به حجم لایه کاتالیست است، بطوریکه:
(2- SEQ 2- * ARABIC45)در معادله REF _Ref330642170 h * MERGEFORMAT (2- 45)، l، نسبت سطح مؤثر پلاتین می‌باشد. As مساحت سطح واقعی واکنش بر واحد جرم پلاتین است. ایتک[REF _Ref332027291 h * MERGEFORMAT37] مقدار آن را به صورت تجربی بر حسب کسر جرمی پلاتین به فرم زیر بیان می‌کند:
(2- SEQ 2- * ARABIC46)
f نسبت بارگذاری جرمی پلاتین به بارگذاری جرمی کل فاز جامد (پلاتین + کربن) می‌باشد، یعنی:
(2- SEQ 2- * ARABIC47)
mPtوmCبه ترتیب بارگذاری جرمی پلاتین و کربن است که مقدار آن‌ها برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 گزارش شده است.
تخلخل لایه کاتالیستمساحت سطح مؤثر توده‌ها برابر با سطح تمامی توده‌ها (سطح در دسترس برای نفوذ اکسیژن به درون توده‌ها) بر واحد حجم لایه کاتالیست است، و به صورت زیر بدست می‌آید:
(2- SEQ 2- * ARABIC48)در رابطه REF _Ref330643201 h * MERGEFORMAT (2- 48)،CLبه منظور محاسبه سطح در دسترس برای نفوذ اکسیژن به درون توده‌ها بکار برده شده است. پارامتر n درمعادله REF _Ref330643201 h * MERGEFORMAT (2- 48)، تعداد توده‌ها بر واحد حجم لایه کاتالیست می‌باشد و به صورت زیر تعریف می‌گردد:
(2- SEQ 2- * ARABIC49)تعداد توده‌ها (#) از تقسیم زیر بدست می‌آید:
(2- SEQ 2- * ARABIC50)
بنابراین:


(2- SEQ 2- * ARABIC51)که در آن Ls نسبت حجم کل Pt/C های موجود در لایه کاتالیست به حجم کل لایه کاتالیست است، یعنی:
(2- SEQ 2- * ARABIC52)
و Li,agg کسر حجمی غشاء درون هر توده می‌باشد،یعنی:
(2- SEQ 2- * ARABIC53)
که مقدار آن برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 آمده است.
از آنجایی که درون توده‌ها فقط ذرات Pt/Cو فاز آیونومر است لذا می‌توان نوشت که:
(2- SEQ 2- * ARABIC54)
شایان ذکر است که حجم هر یک از توده‌ها برابر است با:
(2- SEQ 2- * ARABIC55)
کسر حجمی فاز جامد در لایه کاتالیست،Ls، به بارگذاری پلاتین و کربن وابسته است، بطوریکه:
(2- SEQ 2- * ARABIC56)PtوCبه ترتیب چگالی پلاتین و کربن می‌باشد.
فاز آیونومر درون لایه کاتالیست از دو قسمت تشکیل شده است: (الف) آیونومر درون ذرات توده‌ای (ب) فیلم نازک آیونومر اطراف ذرات. بنابراین کسر حجمی فاز غشاء در کل لایه کاتالیست برابر است با:
(2- SEQ 2- * ARABIC57)
نهایتاً تخلخل لایه کاتالیست از کم کردن کسر حجمی فازهای غشاء و جامد از عدد یک بدست می‌آید:
(2- SEQ 2- * ARABIC58)جدول STYLEREF 1 s‏2SEQ جدول_ * ARABIC s 1 2: پارامترهای عملکردی، فیزیکی و سینیتکی مدل (حالت پایه).پارامترها کمیت مقدار/مرجع
T دما، 50oC
P فشار گازهای ورودی، 5 atm
کسر مولی اکسیژن سمت کاتد، 100 %
کسر مولی هیدروژن سمت آند، 100 %
LCLضخامت لایه کاتالیست، 50 m [ REF _Ref332025841 h * MERGEFORMAT 14]
Rohmic مقاومت اهمیک پیل، 0.47×10-4m2[ REF _Ref332027389 h * MERGEFORMAT 38]
mPtبارگذاری جرمی پلاتین بر واحد سطح کاتد،0.0035 kg m-2[ REF _Ref332027389 h 38]
mC بارگذاری جرمی کربن بر واحد سطح کاتد، 0.045 kg m-2[ REF _Ref332025841 h * MERGEFORMAT 14]
Pt چگالی پلاتین،21400 kg m-3C چگالی کربن، 1800 kg m-3

—d1244

5-1-3 تکنیک های کاهش اثرات حمله در لایه ی فیزیکی ................................................... 15
1-5-1-3 تغییر کانال ...................................................................................................... 16
2-5-1-3 عقب نشینی فضایی ....................................................................................... 16
3-5-1-3 استفاده از کرم چاله ها ................................................................................. 17
4-5-1-3 نقشه برداری منطقه ی مسدود شده ......................................................... 17
5-5-1-3 تکنیک های طیف گسترده .......................................................................... 17
6-5-1-3 نظریه ی بازی ................................................................................................. 17
7-5-1-3 گره های عسل ................................................................................................ 18
8-5-1-3 سایر استراتژی های موجود ......................................................................... 18
2-3 حملات در لایه ی MAC ................................................................................................................ 18
1-2-3 تقسیم بندی حملات در لایه ی MAC ........................................................................ 18
1-1-2-3 حملات نقض احراز هویت/نقض برقرای ارتباط ........................................ 18
2-1-2-3 حمله ی مدت زمان تورمی ........................................................................... 19
3-1-2-3 حمله بر علیه i802.11 ................................................................................. 19
4-1-2-3 حمله بر علیه گره های به خواب رفته ........................................................ 19
5-1-2-3 حملات لایه ی MAC کامل ...................................................................... 19
2-2-3 مقابله در لایه ی MAC ................................................................................................... 20
1-2-2-3 شناسایی شنود آدرس MAC ..................................................................... 20
2-2-2-3 محافظت از فریم های کنترلی و مدیریتی از طریق رمز نگاری ............. 20
3-2-2-3 تعمیر پروتکل ................................................................................................... 21
4-2-2-3 پازل رمز نگاری شده (کاربر) ......................................................................... 21
5-2-2-3 سایر راه حل های رمز نگاری نشده ............................................................. 21
3-3 حملات DOS به شبکه های 802.11، شامل لایه ی MAC و لایه های بالاتر ............... 22
1-3-3 اقدامات متقابل ...................................................................................................................... 23
1-1-3-3 فیلترینگ ........................................................................................................... 23
2-1-3-3 سیستم های شناسایی نفوذ ........................................................................... 23
4-3 اقدامات متقابل در لایه ی MAC با استفاده از لایه ی فیزیکی .............................................. 23
1-4-3 شناسایی ایستگاه از طریق ویژگی های سیگنال ............................................................ 24
4- نتیجه گیری ................................................................................................................................................ 25
5- مراجع ............................................................................................................................................................ 27
1- تشریح مسئله
ظهور شبکه های بی سیم، مجموعه ای از مشکلات امنیتی را به همراه آورد. سهولت استفاده و قیمت های پایین شبکه های مبتنی بر 802.11 سبب گسترش وسیع استفاده از آن شده است، اما در گسترش شبکه های بی سیم، در درجه ی اول باید آسیب پذیری های مربوط به دسترسی غیر مجاز و نقض محرمانگی رسیدگی گردد]2 [. واسط انتقال که توسط همه ی کاربران شبکه به اشتراک گذاشته می شود، راهی جذاب برای حملات به سرویس های بی سیم را ارائه می کند]2,8,9[. شبکه های بی سیم به دلیل طبیعت داده پراکنی خود، نسبت به حملات DOS آسیب پذیرند. حملات DOS گونه از حملات هستند که قابلیت دسترسی را هدف قرار می دهند و تلاش می کنند از دسترسی کاربران مجاز به شبکه جلوگیری نمایند]4[.

شکل SEQ تصویر * ARABIC 1- دیاگرام داده پراکنی شبکه های بی سیم
تجهیزات تخصصی و یا مهارت های بالای خاصی برای از کار انداختن شبکه های بی سیم از طریق حمله ی DOS نیاز نیست، تعداد زیادی آسیب پذیری در 802.11 وجود دارد که در سال های اخیر به صورت تجربی نشان داده شده است]4[.
1-1 انواع فریم در شبکه های 802.11]4[
سه نوع فریم (بسته) در شبکه های 802.11 وجود دارد: فریم های مدیریتی، کنترلی و داده. هر نوع فریم شامل زیر فریم هایی نیز می شود. فریم های مدیریتی برای مدیریت شبکه و پذیرش کنترل، به کار گرفته می شوند، فریم های کنترلی برای کنترل دسترسی و فریم های داده برای حمل داده به کار می روند. در حملات DOS از فریم های مدیریتی خاصی استفاده می گردد]4[. بنابراین در بین این سه نوع فریم، فریم های مدیریتی بیشتر مورد بررسی قرار خواهند گرفت.

شکل SEQ تصویر * ARABIC 2 - نمایش لایه های OSI در فریم 802.11

شکل SEQ تصویر * ARABIC 3- انواع فریم ها در 802.11
2-1 تقسیم بندی شبکه های 802.11
شبکه های بی سیم به طور کلی به دو دسته تقسیم می شوند : شبکه های مبتنی بر زیر ساخت (Wlan, Cellular net,…) و شبکه های بدون زیرساخت (ad-hoc net) ]2[. شبکه های سیار ad-hoc دارای معماری شبکه ای خود سازماندهی شده می باشند. این حالت زمانی رخ می دهد که مجموعه ای از گره های سیار، توسط رابط شبکه ی بی سیم، یک شبکه ی موقتی بدون هیچ زیرساخت و یا مدیریت متمرکز ایجاد نمایند. بر اساس تعریف IETF (Internet Engineering Task Force) ]1[، شبکه های بی سیم ad-hoc سیستمی خودگردان از روتر های سیار هستند که از طریق پیوند های بی سیم به یکدیگر متصل شده اند]1[. توپولوژی شبکه های بی سیم ممکن است به دفعات و بدون پیش بینی تغییر کند]1[.

شکل SEQ تصویر * ARABIC 4 - شبکه های مبتنی بر زیر ساخت (تصویر بالا) و شبکه های بدون زیرساخت (تصویر پایین)
1-2-1 شبکه های بدون زیرساخت
خصوصیات شبکه های ad-hoc (توپولوژی پویا، بدون زیرساخت بودن، گنجایش پیوند های متفاوت و...) ریشه ی بسیاری از مسائل هستند. پهنای باند محدود، انرژی محدود، هزینه بالا و امنیت، برخی از مشکلاتی هستند که اینگونه شبکه ها با آن مواجه می شوند]1[. حملات DOS تلاش می کنند تا منابع انرژی اندک این شبکه ها را مصرف کنند]1[. به دلیل اینکه منابع انرژی شبکه های ad-hoc محدود است، استفاده از راه های سنگین مانند PKI (Public Key Infrastructure) موثر نیستند]1[. به دلیل خصوصیت های ویژه ی شبکه های ad-hoc، مسیر یابی، جنبه ای مهم در این شبکه ها محصوب می گردد. بین گره های شبکه امکان وجود چندین راه مجزا وجود دارد، در نتیجه مسیریابی چند مسیره می تواند به صورت آماری، محرمانگی تبادل پیام ها را بین منبع و مقصد بالا ببرد. ارسال داده های محرمانه از طریق یک مسیر، به حمله کننده این امکان را می دهد تا تمام داده ها را دریافت کند، اما ارسال آن به صورت چند قسمتی در مسیر های متفاوت، استحکام محرمانگی را بالاتر می برد، به دلیل اینکه این کاملا غیر ممکن است که، تمام قسمت های پیامی را که تقسیم شده و در مسیر های متفاوت موجود بین منبع و مقصد ارسال شده را به دست آورد]1[. با توجه به ویژگی ها، شبکه های بی سیم بدون زیر ساخت علاوه بر نیاز به غلبه بر مسائلی که با آن روبرو می گردد باید برای مقابله با حملات DOS احتمالی نیز آمادگی داشته باشد، و عدم وجود زیر ساخت در این زمینه مسائلی را پیش خواهد آورد.
2-2-1 شبکه های مبتنی بر زیرساخت
در شبکه های مبتنی بر زیر ساخت، تمام AP ها (نقاط دسترسی) فریم های beacon را در فاصله های زمانی ثابتی ارسال می کنند. کاربران برای شناسایی AP هایی که در محدوده ی آن ها هستند به بسته های beacon گوش می دهند. به همین ترتیب فریم های درخواست Prob نیز توسط ایستگاه ها (گره ها) به طور مداوم برای جستجوی شبکه های بی سیم موجود تولید می گردند. ایستگاه ها به وسیله ی آدرس MAC خود شناسایی می شوند. هنگامی که یک AP فریم Prob را دریافت می کند، با فریم Prob دیگر پاسخ آن را ارسال می کند، که بسیار شبیه فریم beacon بوده و شامل اطلاعات مورد نیاز موجود در BSS (Basic Service Set) است. تنها تفاوت آن در این است که beacon شامل نقشه ی نشانه گذاری ترافیک (Traffic Indication Map – TIM) می باشد. TIM نشان می دهد که برای کدام یک از ایستگاه هایی که جهت صرفه جویی در مصرف انرژی به خواب رفته اند، بسته هایی در بافر AP در انتظار است. بعد از شناسایی یک BSS موجود، یک ایستگاه باید برای برخورداری از امتیازات بیشتر توسط AP احراز هویت گردد. بنابراین درخواست ها و پاسخ های احراز هویت تبادل می شوند. زمانی که سیستم احراز هویت باز (بدون احراز هویت – آزاد) جایگزین کلید اشتراک گذاری شده در WEP (Wired Equivalent Privecy) شده باشد، احراز هویت به دست آمده ضعیف است و پس از آن نیاز است تا توسط 802.11i تکمیل گردد. یک ایستگاه می تواند توسط چند AP احراز هویت شده باشد، اگرچه باید در یک زمان فقط با یک AP در ارتباط باشد. پس از احراز هویت، فریم درخواست ها و پاسخ های برقراری ارتباط برای ایجاد ارتباط تبادل می شوند]4[.
3-1 فریم های نقض احراز هویت
فریم های قطع احراز هویت، فریم هایی هستند که برای بازگشت به حالت اول احراز هویت نشده، مرتبط نشده، تبادل می گردند. فریم های قطع ارتباط نیز برای بازگشت به حالت احراز هویت شده، مرتبط نشده، به کار می روند. هیچ کدام از فریم های مدیریتی از طریق رمزنگاری محافظت نمی گردند، در نتیجه هر ایستگاهی می تواند چنین فریم هایی را ارسال کند]4[.
4-1 دسترسی به کانال
802.11 DCF (Distributed Coordination Function) یک مکانیسم دسترسی به کانال بر پایه ی CSMA/CA است. در حالت عادی ایستگاه ها، در حالت دریافت قرار دارند، به واسطه ی بسته های دریافتی در صف انتقال یک ایستگاه، به حالت ارسال، تغییر حالت داده و یک مقدار عقب کشیدن (backoff) تصادفی که توسط مقدار متغیر خاص ایستگاه CW (Contention Window)، محدود شده، انتخاب کرده و شروع به اتصال به کانال می کند. ماژول CCA (Clear Channel Assessment) برای تعیین وضعیت کانال به کار می رود . زمانی که CCA اعلام می کند که رسانه ی انتقال، بی کار است، ایستگاه برای مقدار زمانی به اندازه ی DIFS (Distributed Inter-Frame Space) صبر می کند، اگر کانال به اندازه ی DIFS بی کار ماند، ایستگاه (یا AP) اندازه ی backoff خود را برای هر بازه ی زمانی که حس کرد کانال بی کار است، کاهش می دهد. پس از پایان شمارنده ی backoff، فرستنده بسته های RTS (Request-To-Send) را برای گرفتن کانال و اعلام آمادگی برای آغاز ارسال به گیرنده، ارسال می کند. دریافت کننده با یک بسته ی CTS (Clear To Send) پاسخ ارسال کننده را می دهد، سپس فرستنده فریم های داده را ارسال می کند. استفاده از فریم های RTS/CTS در 802.11 اختیاری است و فریم های داده می توانند بدون استفاده از آن ها، ارسال شوند. در این تبادل، گیرنده و فرستنده، زمانی به اندازه ی SIFS (Short Inter-Frame Space)، برای شروع ارسال فریم صبر می کنند، اگر ارسال با شکست مواجه شود، اندازه ی فعلی CW دو برابر شده و فرستنده سعی می کند با تکرار کامل زنجیره، بسته را مجددا ارسال کند]4[.

شکل SEQ تصویر * ARABIC 5 - نمودار زمانی انتظار

شکل SEQ تصویر * ARABIC 6 - نمودار زمانی ارسال فریم
هر فریم شامل یک فیلد مدت زمان برای تعیین پیش بینی مدت زمان (بر اساس میکرو ثانیه) پایان موفق دست دهی در حال انجام است که NAV (Network Allocation Vector) را در هر یک از ایستگاه های همسایه به روز می کند. دسترس کانال تا انقضای NAV به تعویق می افتد]4[.

شکل SEQ تصویر * ARABIC 7- انتظار برای دسترسی به کانال
5-1 PLCP
فریم های MAC در 802.11، توسط هدر PLCP (Physical Layer Convergence Protocol) کپسوله می شوند. فریمی که با مقدمه ی PLCP آغاز می شود، شامل یک فیلد sync است، که مدار شناسایی انرژی ، که تمایز بین نویز یا مداخله و تداخل را در یک انتقال فریم موجود نشان می دهد را، راه اندازی می کند. این فریم ها برای هماهنگ سازی نمادی گیرنده به کار رفته و شامل فیلد SFD (Start FrameDelimiter) هستند، که محل حقیقی شروع هدر PLCP را مشخص می کند. PLCP شامل فیلد زیر است: سیگنال، سرویس، طول و CRC (Cyclic Redundancy check) که در طول هدر PLCP محاسبه می شود. فریم MAC شامل یک CRC جداگانه که روی فریم MAC محاسبه شده است، می باشد]4[.

شکل SEQ تصویر * ARABIC 8 - فریم PLCP
6-1 کانال های 802.11
802.11 b/g از 11 کانال همپوشان (فقط 3 کانال همپوشانی ندارند) در باند 2.4 گیگاهرتز ISM (Industrial,Scintific,Medical) در کانادا و آمریکا استفاده می کند (در ژاپن از 14 کانال، فرانسه 4 کانال، اسپانیا 2 کانال و 13 کانال در سایر نقاط اروپا استفاده می کنند.)]4[.


شکل SEQ تصویر * ARABIC 9- کانال ها در 802.11
7-1 احراز هویت و دست دهی چهار طرفه
در شبکه های محلی بی سیم به وضوح شناخته شده است، که احراز هویت ایستگاه ها با آدرس های MAC آن ها، از امنیت برخوردار نیست، به این دلیل که یافتن آدرس های مجاز، و تغییر MAC به آن آدرس، برای حمله کننده کار ساده ای است]4[.
WEP (Wired Equivalent Privacy) از آغاز تصویب استاندارد 802.11 بخشی از آن بوده است و احراز هویت از طریق کلید اشتراک گذاری شده را فراهم می سازد. در ژوئن 2004، IEEE استاندارد امنیتی 802.11i را تایید کرد که، ویژگی های قبلی WEP را که ضعف های امنیتی شدیدی داشت، به روز نمود. 802.11i با به کار گیری دست دهی چهارگانه، احراز هویت متقابل ایجاد می کند و یک کلید مخفی اشتراک گذاری شده برای محافظت از فریم های داده در نشست های ارتباطات پس از آن، تولید می نماید]4[.
در پروتکل 802.11i سه طرف دیگر وجود دارد، درخواست کننده (ایستگاه)، احراز هویت کننده (AP) و سرور احراز هویت (مانند سرور RADIUS). اگر کلید اشتراک گذاری شده از قبل تنظیم یا ذخیره نشده باشد، ایستگاه و سرور احراز هویت یکی از پروتکل های احراز هویت دو طرفه را در چهارچوب EAP (Extensible Authentication Portal) برای تولید MSK (Master Session Key) جهت استفاده در دست دهی چهار طرفه اجرا می کنند. این پروتکل معمولا به عنوان امنیت لایه ی انتقال EAP انتخاب می شود (EAP-LTS) (جانشین پروتکل شناخته شده ی SSL). در اجرای EAP-TLS، AP به عنوان تقویت کننده (رله) عمل می کند و نشانه های 8 بیتی بسته ها، برای پیگیری درخواست ها و پاسخ ها به کار می روند]4[.
دست دهی چهار طرفه فقط زمانی بین ایستگاه و AP اجرا می شود که کلید اصلی به صورت ایمن از سرور احراز هویت به AP منتقل شده باشد. در ابتدا AP و ایستگاه، هر دو کلیدی مخفی که PMK (Pairwise Master Key) نامیده می شود، بر اساس MSK تولید می نمایند، سپس اطمینان حاصل می کنند که شریک دیگر کلید PMK مشابه را در دست دهی به کار می برد. در پایان هر دو شرکت کننده یک PTK (Pairwise Transient Key) مشتق شده، برای به کارگیری در نشست داده ی فعلی تولید می کنند. PTK همچنین می تواند از روی کلید از پیش اشتراک گذاری شده (PSK) تولید شود، به شرطی که ایستگاه و AP به این شکل تنظیم شده باشند. تا زمانی که دست دهی به صورت موفقیت آمیزی تکمیل نگردد، هیچ بسته ی داده ای مجاز به ارسال نیست]4[.

شکل SEQ تصویر * ARABIC 10 - احراز هویت گره (منبع: http://www.cisco.com)
2- اهداف و کاربرد موضوع
در سال های اخیر، به دلیل گسترش بهره گیری از شبکه های کامپیوتری در زمینه های گوناگون، راه های نوینی برای دسترسی به این تکنولوژی ارائه و استفاده شده اند. شبکه های سیمی به صورت گسترده در محیط های اداری و تجاری استفاده می شوند. این گونه شبکه ها نیاز به پیاده سازی و پشتیبانی داشته و اجرای چنین ساختاری نیاز به هزینه های بالایی دارد، بدون در نظر گرفتن هزینه ی کابل های شبکه، نیاز به تجهیزات گوناگونی از قبیل داکت، پریز، رک، سوئیچ و ... و همچنین نصب تمام این تجهیزات می باشد. بدین دلیل که شبکه های سیمی از سرعت بسیار بالاتر، امنیت بیشتر، کیفیت مناسب و... نسبت به شبکه های بی سیم برخوردارند، برای محیط های کاری که نیاز به چنین شبکه هایی دارند، بسیار مناسب هستند. اما در چند سال اخیر نیازمندی های جدیدی مانند برخورداری از شبکه ی سیار و... مطرح گردیده است که راه را برای تکنولوژی های جدید تری هموار میسازد، علاوه بر این ها، کاربران خانگی نمی توانند هزینه های بالای پیاده سازی و پشتیبانی از شبکه های سیمی را متقبل گردند، درنتیجه با این اوصاف شبکه های بی سیم با پیاده سازی و پشتیبانی آسان و هزینه ی پایین انتخاب بسیار مناسبی به نظر می آیند. با ازدیاد روز افزون شبکه های بی سیم و پوشش شهر ها با امواج رادیویی این شبکه ها، هر روزه آسیب پذیری های جدیدی در این شبکه ها کشف می گردد. مهمترین آسیب پذیری شبکه های بی سیم، ضعف آنها در حملات DOS می باشد. این گونه حملات می توانند به راحتی و توسط مبتدی ترین افراد، به سادگی شبکه های بی سیم را از پای درآورند. با توجه به افزایش این گونه حملات و تولید روز افزون راه های ایجاد و تولید این گونه حمله ها، نیاز است تا برای مقابله و کاهش اثرات آن ها راه کارهایی قابل اجرا و قطعی ایجاد شوند. از زمان ارئه ی تکنولوژی های بی سیم، ارائه ی راه کارهای مقابله با حملات DOS جزء جدایی ناپذیر تحقیقات محققان و سازمان های دولتی و خصوصی بوده است. با وجود تمام این تحقیقات هنوز نمی توان به طور قطع راه کاری به عنوان بهترین شیوه ی موجود پیشنهاد نمود. برای رسیدن به نقطه ای که بتوان به جرات شبکه ی بی سیمی امن ارائه کرد، تحقیقات بسیاری نیاز است. یکی از ابتدایی ترین قدم ها، پیاده سازی و آزمایش راه های ارائه شده تا کنون و بررسی عیوب، نقاط ضعف و قوت آنها است.

شکل SEQ تصویر * ARABIC 11 - کاربرد شبکه های بی سیم و سیمی
3- مسائل، مشکلات و راه حل های ارائه شده
یکی از اصلی ترین خطرات امنیتی شبکه های بی سیم حملات انسداد ( پارازیت ) است]2[. چنین حملاتی زیر مجموعه ای از حملات DOS به شمار می آید ]2,10,11,12[ و یکی از خطر ناکترین آن ها محسوب می گردند]2[، به این دلیل که با وجود معماری فعلی شبکه های بی سیم، فعالیت های محدودی وجود دارد که می توان برای غلبه بر حملات انسداد انجام داد]2[. حملات DOS که بر اساس مسدود کننده انجام می شوند، بر روی جلوگیری از برقراری ارتباط گره های شبکه متمرکز می گردند]2[، به عبارت دیگر حملات انسداد به معنای مسدود نمودن کانال ارتباطی با مقصود جلوگیری از جریان اطلاعات می باشد]2[.
1-3 حملات انسداد
یک مسدود کننده (پارازیت دهنده) موجودیتی است که به صورت هدفمند تلاش می کند که در ارسال و دریافت فیزیکی تداخل ایجاد کند. یکی از پر کاربرد ترین الگوریتم ها برای مقابله با حملات انسداد، تغییر کانال ارتباطی می باشد]2,13[.
حملات پارازیت را می توان به دو دسته تقسیم بندی نمود، مسدود نمودن (ایجاد پارازیت در) لایه ی فیزیکی و نادیده گرفتن مقررات لایه ی MAC ]2[. انسداد در لایه ی فیزیکی، شامل تولید پارازیت های ثابت در رسانه ی ارتباطی شبکه های بی سیم (هوا) به منظور ناتوان ساختن گره های تحت نفوذ از شرکت در هرگونه فعالیت های بیشتر شبکه است]2[. حملات انسداد می توانند با پیروی نکردن از پروتکل های زیر لایه ی MAC نیز پیاده سازی شوند. برای این منظور مسدود کننده ها می توانند از نفوذپذیری های پروتکل های 802.11 b، و g در شبکه ی بی سیم سوء استفاده نمایند]2,12,14[.
1-1-3 تقسیم بندی کلی حملات انسداد
به طور کلی یکی از چهار روش زیر برای انسداد دنبال می شود]2,15[:
ثابت: این نوع مسدود کننده به صورت متوالی بیت های تصادفی داده را روی کانال ارسال می کند.
فریبنده: این نوع مسدود کننده بسته های معتبر را با سرعت بسیار بالا به گره های نزدیک خود ارسال می کند، به این ترتیب گره های معتبر به اشتباه مسدود کننده را یک گره قانونی و معتبر می پندارند.
تصادفی: این نوع مسدود کننده ها بین حالت خواب و ارسال پارازیت متناوبا تغییر حالت می دهند.
واکنشی: این نوع حملات مسدود کننده، فقط زمانی حمله می کنند که در کانالی که به طور مداوم مورد پویش قرار می دهند، متوجه برقراری ارتباط شوند.
صرفنظر از نوع مسدود کننده ای که به کار گرفته شده است، حملات پارازیت سبب ایجاد پارازیت و تداخل سیگنال کافی، که برای ایجاد ازدحام در شبکه ی بی سیم منتهی می گردد، می شود. نتیجه می تواند قطع کامل خدمات باشد. بیشتر این عملیات بر روی باند های بدون نیاز به مجوز 2.4 گیگاهرتز و 5.2 گیگاهرتز که هر گره ای بدون نیاز به تایید قبلی می تواند از آن استفاده کند، انجام می شود. برخی از مسدو کننده های رادیویی از انرژی زیادی استفاده می کنند یا از تقویت کننده برای تقویت سیگنال هایشان بهره می برند، تا انرژی کافی را حتی برای آسیب رسانی به قطعات الکترونیکی نقاط دسترسی و ناتوان ساختن، تولید نمایند]2[، این امر حتی با ماندن در محدوده و مرز مجاز تولید حداکثر 4 میلی وات انرژی (طبق دستورالعمل های شبکه های بی سیم آمریکا ]2,16[ توسط تقویت کننده ها، امکان پذیر است. این ویژگی های حملات پارازیت، آن ها را تبدیل به ترسناکترین نوع حملات DOS در شبکه های بی سیم نموده است]2[.

شکل SEQ تصویر * ARABIC 12- حملات انسداد در شبکه های بدون زیرساخت
حملات DOS در لایه ی فیزیکی عموما با نام انسداد شناخته می شوند ]23,24,4[. این حملات می توانند با توجه به اهداف (مثلا بخش خاصی از مقدمه ی فریم یا فریم کامل)، زمان بندی (مانند مستمر، دوره ای، تصادفی و یا واکنشی) و بودجه ی انرژی (به عنوان مثال کم و زیاد)، طبقه بندی شوند]4[.
2-1-3 تقسیم بندی حملات انسداد
در اینجا حملات DOS لایه ی فیزیکی با توجه به این ویژگی ها طبقه بندی می گردند]4[.
1-2-1-3 حمله با منابع نا محدود (RUA)]4[
اگر مسدود کننده، منابع تقریبا نا محدودی داشته باشد (مانند انرژی، قدرت، پهنای باند)، می تواند قدرت سیگنال را بر روی هر گیرنده ای به طور مستمر و در محدوده ی فرکانس وسیع بالا نگاه دارد. در این گونه حملات انسداد، تمام دستگاه های بی سیم موجود در محدوده ی موثر و پهنای باند مسدود شده، تا زمانی که حمله ادامه داشته باشد، مسدود می گردند. (نمونه ی این گونه حملات انسداد، در جنگ جهانی دوم گزارش شده بود). با این وجود، این امکان پذیر است که یک گیرنده را با سیگنالی خیلی ضعیف تر از توان سیگنال انتقال یک فریم مجاز، مختل نمود.
2-2-1-3 حمله ی مقدمه ]4[
با ارسال مستمر یک الگوی SYNC یک مسدود کننده می تواند به طور موثر از همگام سازی یک ایستگاه گیرنده، با انتقالات هر ایستگاه دیگری جلوگیری کند]4,23[. این نشان می دهد که اینگونه مسدود کننده می تواند، سبب از دست رفتن قابل توجه فریم ها شود، حتی با وجود این که توان دریافت شده ی آن سه برابر کمتر از توان دریافتی آن برای ارسال یک فریم مجاز باشد. بعلاوه، اگر حمله ی مقدمه در مدل خاموش/روشن دوره ای، پیاده سازی شود، واحد AGC توسط مسدود کننده فریب می خورد، که این سبب از دست رفتن فریم به دلیل خطا های بیتی می گردد.
3-2-1-3 حمله ی SFD ]4[
یک الگوی SFD ابتدای هدر واقعی PLCP را منتشر می کند. اگر گیرنده الگوی SFD ارسال شده توسط مسدود کننده را قبل از الگوی SFD فرستنده ببیند، شروع به پردازش بیت های در حال آمدن، بر طبق الگوی SFD با ترتیب غلط، می کند، که سبب تولید خطای CRC در هدر PLCP و فریم MAC می شود(فیلد های PLCP مانند طول و CRC از روی نمونه های غلط ایجاد شده اند).
4-2-1-3 حملات واکنش ]4[
ارسال مستمر، منابع انرژی مسدود کننده را خالی می کند. یک روش مصرف انرژی کارآمد در انسداد، انسداد واکنشی است. در این روش، مسدود کننده منفعلانه، تا زمانی که یک انتقال فریم احساس کند، به مانیتور کردن کانال می پردازد. در صورت شناسایی ارسال فریم در حال انجام، مسدود کننده شروع به ارسال سیگنال های مداخله، برای خراب کردن انتقال فریم در حال انجام می کند]4,24[. به همین ترتیب، هنگامی که مسدود کننده شروع یک دست دهی DCF در حال رخداد را شناسایی می کند، می تواند بدون نیاز به شناسایی یک انتقال در حال وقوع، سیگنال های مداخله را تولید نماید. شانس انسداد در تمام مراحل دست دهی وجود دارد.
5-2-1-3 حمله ی HR (Hit and Run) ]4[
اگر ایستگاه مسدود کننده به صورت مستمر، سیگنال های انسداد ارسال کند، مصرف انرژی بالایی خواهد داشت، همچنین یافتن چنین ایستگاهی ساده خواهد بود. حال آنکه اگر سیگنال های انسداد به صورت دوره ای و یا تصادفی، خاموش و روشن شوند، مصرف انرژی چنین ایستگاهی کمتر شده و شناسایی و پیدا کردن آن دشوارتر خواهد شد]4,24[.
6-2-1-3 حمله ی نماد ]4[
فریم های 802.11 و b802.11 شامل هیچ گونه طرح FEC (Forward Error Correction) نمی باشد. در نتیجه، ایجاد خطا در نماد سیگنال، تمام فریم را غیر قابل استفاده خواهد کرد. مانند حملات واکنشی در طول رخداد یک انتقال، مسدود کننده یک سیگنال قوی برای طول مدت یک نماد سیگنال، ارسال می نماید و می تواند در نابود کردن تمام فریم موفق باشد.
7-2-1-3 حمله ی به انحصار کشیدن ]4[
حمله کننده می تواند با ارسال یک فریم کوتاه در هر دوره ی SIFS برای به انحصار در آوردن کانال تلاش کند، اگرچه تعداد فریم های مورد نیاز برای قطعی کامل بسیار زیاد است]25[. (برای دوره های SIFS 20 میکرو ثانیه، 50.000 بسته در ثانیه مورد نیاز است.)
حملات SFD و مقدمه، در درجه ی اول، بیت های مقدمه را هدف قرار می دهند، اما هر دوی آن ها بر روی بیت هایی که به دنبال مقدمه می آیند نیز تاثیر می گذارند. حملات SFD و مقدمه هر دو می توانند از هر استراتژی زمانی بهره ببرند (مانند واکنشی، دوره ای، مستمر و تصادفی). از طرف دیگر حملات واکنشی، HR، نماد و به انحصار کشیدن، می توانند با الگوی SFD و یا SYNC پیاده سازی شوند. از این رو، با توجه به ویژگی های در هم تنیده ی حملات لایه ی فیزیکی ذکر شده، طبقه بندی بیشتر این حملات معنی دار نیست]4[.
3-1-3 شناسایی حملات انسداد
پارامتر های ذیل برای شناسایی حملات انسداد به کار می روند]2[:
نسبت سیگنال به نویز (SNR): SNR نسبت انرژی سیگنال به انرژی پارازیت موجود در سیگنال دریافتی است. SNR بالاتر نشان دهنده ی کارایی بهتر شبکه است.
نسبت تحویل بسته (PDR): نسبت تعداد بسته هایی که به صورت موفقیت آمیزی به مقاصد مورد نظر تحویل شده اند به تعداد کل بسته های ارسال شده از گره.
معمولا مجموعه ی ترکیبی از متریک های نشان دهنده ی SNR و PDR به کار می روند تا مشخص گردد که یک گره مسدود شده یا فقط یک خطا در آن رخ داده است.
4-1-3 مقابله با حملات انسداد
رویکرد های مقابله با حملات پارازیت، سه گام ذیل را شامل می گردند]2[:
1- شناسایی حمله: شناسایی حمله روندی است که در آن مکانیزم شناسایی تعیین می کند آیا سیستم تحت تاثیر یک حمله است یا خیر. شناسایی می تواند در دو جایگاه انجام شود]2, 17[: لایه ی MAC و لایه ی فیزیکی.
شناسایی در لایه ی MAC:
پروتکل های بی سیم، به ویژه آن هایی که بر پایه ی معماری 802.11 هستند، از CSMA-CA ]2,18[ برای برقراری ارتباط قابل اطمینان در شبکه استفاده می کنند. برای اینکه CSMA به درستی عمل کند، کانال باید برای گره در زمانی کمتر از یک حد آستانه قابل دسترس باشد. حد آستانه می تواند هم به صورت تئوری و هم به صورت تجربی تنظیم شود. اگر در کانال زمان دسترسی به طور مداوم و مکرر از حد آستانه فراتر رود، گره اینگونه تصور می کند که یک حمله ی DOS رخ داده است]2[.
شناسایی در لایه ی فیزیکی: در حملات DOS بر اساس مسدود کننده، SNR پارامتری عمده برای تشخیص یک حمله است. SNR خیلی کم، نشان دهنده ی احتمال وجود یک حمله ی DOS است. برای عملکرد صحیح این نوع از شناسایی، هر دستگاه باید SNR را در فواصل منظم نمونه سازی کند تا دیدگاهی مناسب از SNR در حالت طبیعی فعالیت شبکه ی بی سیم به دست آید]2[.
2- کاهش اثرات حمله:
بعد از اینکه شناسایی حمله انجام شد، مکانیسم کاهش اثرات حمله برای غلبه بر تاثیرات حمله انجام می گردد]2[.
3- جلوگیری از حمله:
این اقدامات برای جلوگیری از رخداد یک حمله در شبکه استفاده می شوند]2[.
5-1-3 تکنیک های کاهش اثرات حمله در لایه ی فیزیکی
با بررسی مقالات و تحقیقات اخیر تکنیک های زیر برای کاهش اثرات حملات انسداد حاصل شده است :
تغییر کانال ]2,19,7[
عقب نشینی فضایی ]2,19,7[
استفاده از کرمچاله ها]2,20,7[
نگاشت مناطق مسدود شده]2,21,7[
تکنیک های گسترش طیف ]2,22,7[
نظریه ی بازی]7[
گره های عسل ]2[
1-5-1-3 تغییر کانال]2,7[:
تغییر کانال بر اساس یک مکانیسم گریز طیفی است که در آن، گره ای که زیر حملات انسداد قرار می گیرد، استراتژی کاهش اثرات را با جا به جایی به کانالی دیگر پی خواهد گرفت. در تشخیص یک حمله گره ها، کانال عملیاتی خود را بر اساس یک توالی شبه تصادفی از پیش تعریف شده که به آن ها ابلاغ شده است تغییر می دهند. به منظور بررسی وجود یا عدم وجود گره ها، یک نقطه ی دسترسی مکررا امواج beacon را برای گره های مرتبط ارسال می کند، اگر هریک از آن ها به امواج beacon پاسخ ندادند، نقطه ی دسترسی دستور تغییر کانال را صادر می کند، که به گره های باقی مانده می گوید تا بر روی یک کانال عملیاتی جدید که بر اساس توالی شبه تصادفی از پیش تعیین شده، انتخاب شده، پرش کنند.
2-5-1-3 عقب نشینی فضایی]2,7[:
الگوریتم عقب نشینی فضایی بر اساس گریز فضایی است. نقاط دسترسی اجزای ساکن یک شبکه هستند و ثابت می مانند، اما گره های معمولی مرتبط، از منطقه ی نقطه ی دسترسی فعلی (که در حال حاضر مسدود شده است) به منطقه ی یک نقطه ی دسترسی اضطراری که بر اساس لیست نقاط دسترسی اضطراری، که توسط نقطه ی دسترسی اصلی، در طول ارتباط در طول ارتباط با آن ها داده شده است، تعیین گردیده، نقل مکان می کنند. هنگامی که گره ها از نقطه ی دسترسی فعلی به سمت نقطه ی دسترسی اضطراری حرکت می کنند، در تلاشند تا به نقطه ی دسترسی مسدود شده ی خود متصل شوند. اگر یک ارتباط پیدا شد، گره از حرکت باز می ایستد، در غیر این صورت، به ناحیه ی نقطه ی دسترسی اضطراری حرکت کرده و از طریق یک مکانیسم دست به دست کردن مناسب، با آن ارتباط برقرار می کند.
3-5-1-3 استفاده از کرم چاله ها]2,7[:
در حملات کرم چاله، دو (یا بیشتر) حمله کننده، از طریق یک مکانیسم حمله ی هماهنگ، مانند یک حمله کننده عمل می کنند. مشابه همین مکانیسم، هنگام برقراری ارتباط یک گره مسدود شده با گره ای مسدود نشده از طریق رسانه ی مسدود نشده، برای کاهش اثرات حمله رخ می دهد. رسانه ی مسدود نشده ی اشتراک گذاری شده، مانند کرم چاله عمل می کند.
4-5-1-3 نقشه برداری منطقه ی مسدود شده]2,7[:
این تکنیک بدون تمرکز بر اقدامات متقابل از هر نوعی، بر روی نقشه برداری از منطقه ی مسدود شده، با تعریف یک پروتکل نقشه برداری متمرکز شده است. این روش بر پایه ی پاسخ های در یافت شده از گره هایی که در درازای مرز منطقه ی مسدود شده قرار دارند، می باشد. در این شیوه هدف کاهش اثرات مسدود کننده با تعریف و ایزوله نمودن منطقه ی مسدود شده و سپس تلاش برای تعیین راه مسیریابی جایگزین برای بسته های داده می باشد.
5-5-1-3 تکنیک های طیف گسترده]2[:
سیستم های قدیمی تلاش می کنند تا به اجبار بیشترین میزان اطلاعات را بر داخل کمترین میزان پهنای باند موجود وارد نمایند. فرکانس مسدود کننده ی توان بالایی که باند فرکانس این سیستم ها را پوشش می دهند، به راحتی می تواند سیستم را مسدود کنند. در سیستم طیف گسترده، سیگنال، در پهنای باندی به گسترده ترین صورت ممکن پخش می شود. بدین وسیله تشخیص و مسدود نمودن ارتباطات ایجاد شده بسیار سخت خواهد شد. دو نوع تکنیک محتلف طیف گسترده، قابل استفاده می باشد، طیف گسترده ی توالی مستقیم (DSSS) ]2,22,28,29[ و پرش فرکانس گسترده (FHSS) ]2[.
6-5-1-3 نظریه ی بازی]7[:
اخیرا استفاده از تئوری بازی، توجه تحقیقات فراوانی را، در حوزه های مختلف ارتباطات بی سیم به خود جلب کرده است]7[. در این شیوه، اجزای شبکه ی بی سیم، مسدود کننده و نیز ویژگی ها و اجزای آن ها در قالب یک بازی مدل سازی شده و سپس برای پیروزی و یا رقابت در این بازی، به ارائه ی نظریه و فرموله سازی پرداخته می شود. در سال های اخیر بسیاری از مقالات به بررسی و مدل سازی در این زمینه پرداخته اند]7[.
7-5-1-3 گره های عسل]2[:
گره های عسل بر اساس مفهومی شبیه به ظرف عسل شکل گرفته اند. این گره ها تلاش می کنند تا به مسدود کننده ها حمله کنند، در نتیجه قادر خواهند بود تا اطلاعاتی در باره ی حمله و حمله کننده جمع آوری نمایند. اگر یک گره ی عسل حمله ای را تشخیص دهد، به ارسال سیگنال در همان کانال ادامه داده و در همین زمان ایستگاه اصلی را از حمله ای که در شرف وقوع است آگاه می کند تا استراتژی های از پیش تعیین شده ی کاهش اثرات و... را به کار گیرد]2[.
8-5-1-3 سایر استراتژی های موجود]7[:
در این زمینه استراتژی های دیگری نیز معرفی شده اند، یکی از استراتژی ها شامل ساخت یک کانال زمانبندی نرخ پایین در لایه ی فیزیکی به رغم حضور مسدود کننده می باشد]7[. در جایی دیگر پروتکلی مقاوم در برابر پارازیت برای شبکه های بی سیم تک هاپی معرفی گشته است]7[. با توجه به رشد فناوری های بی سیم و تحقیقات وسیعی که در این زمینه انجام می گیرد، در سال های اخیر مقالات بسیاری به بررسی ای موضوعات پرداخته اند و تحقیقات به سرعت در حال رشد و گسترش است.
2-3 حملات در لایه ی MAC ]4[
پروتکل MAC در 802.11 به حمله کننده اجازه می دهد که به طور انتخابی یا کامل، دسترسی شبکه را با تعداد اندکی بسته و مصرف انرژی پایین، از بین ببرد. انتخابی بدین معنی است که حمله کننده می تواند یک ایستگاه منحصر به فرد را هدف قرار دهد و نیازی نیست به تمام شبکه حمله کند. این گونه حملات DOS از یک آسیب پذیری مرکزی اصلی بهره می برند که آن، سهولت شنود آدرس MAC در شبکه های بی سیم است.
1-2-3 تقسیم بندی حملات در لایه ی MAC
1-1-2-3 حملات نقض احراز هویت/نقض برقرای ارتباط ]4[
امنیت از طریق رمزنگاری هنوز برای بسته های مدیریتی در استاندارد 801.11 پیاده سازی نشده است. در نتیجه با گوش دادن به ترافیک شبکه و یاد گرفتن آدرس های MAC ایستگاه ها و AP، یک حمله کننده می تواند با جعل فریم نقض احراز هویت/نقض برقرای ارتباط و ارسال آن، ایستگاه را از شبکه خارج کند. حملات نقض احراز هویت از حملات نقض برقراری ارتباط کارایی بیشتری دارند، به این دلیل که برای ایستگاه، زمان و کار بیشتری نیاز است تا به حالت مرتبط شده برگردد. اگر حمله به طور مداوم تکرار گردد، ایستگاه به طور نا محدود از دسترسی به شبکه منع می شود]4,25[.
2-1-2-3 حمله ی مدت زمان تورمی ]4[
اگر حمله کننده در محدوده ی رادیویی هدف خود باشد، می تواند به صورت مستمر، انتقال اطلاعات هدف را با تولید فیلد مدت زمان بزرگ در RTS، CTS و دیگر فریم های خود، به تعویق بیاندازد. باید به این نکته توجه داشت که در استاندارد 802.11، هر ایستگاه همسایه باید NAV خود را بر طبق مقدار فیلد مدت زمان به روز کند، اما این ویژگی به درستی در اکثر دستگاه های بی سیم، پیاده سازی نشده است ]4,25[.
3-1-2-3 حمله بر علیه i802.11 ]4[
اگر حمله کننده سبب شود که پروتکل i502.11 در برخی نقاط با شکست مواجه شود (مثلا توسط جعل مجموعه های امنیتی مذاکره شده)، نیاز است ایستگاه مجاز برای بازیابی دوباره، پیام های اضافی تبادل کند. اگر زمان بازیابی به اندازه ی کافی بزرگ باشد و ضمنا اجرای دوباره ی حمله امکان پذیر باشد، این یک حمله ی موثر DOS برای یک ایستگاه خاص خواهد بود. همچنین، این امکان وجود دارد که با ارسال پشت سر هم پیام های آغازین جعلی در دست دهی چهارطرفه ی i802.11، حافظه ی ایستگاه را از پای در آورد]4,26[.
4-1-2-3 حمله بر علیه گره های به خواب رفته ]4[
در پروتکل 802.11 ایستگاه ها قادرند برای صرفه جویی در مصرف انرژی به خواب بروند. در این حالت AP فریم ها را برای ایستگاه بافر می کند و به محض دریافت یک پیام رای گیری از ایستگاه، بیدار شده، بسته ها را برای ایستگاه ارسال می کند و آن ها را از بافر خود حذف می نماید. با شنود پیام رای گیری ایستگاه، حمله کننده می تواند سبب حذف پیام هایی که مقصد آن ها، ایستگاه مورد نظر است گردد. همچنین امکان پذیر است تا با جعل پیام های TIM نقطه ی دسترسی (AP)، ایستگاه را قانع کرد که داده ای در انتظار او نیست. یک حمله ی DOS می تواند سبب شود تا ایستگاه از همگامی با AP خارج گردد، در زمان نادرست از خواب بیدار شود و در نتیجه بسته ها را از دست بدهد]4,25[.
5-1-2-3 حملات لایه ی MAC کامل ]4[
حملاتی که تشریح گردید، قادرند برای قطع دسترسی تمام ایستگاه های یک AP تعمیم یابند. حال آنکه حملاتی با کارایی بیشتر در مصرف منابع، برای ایجاد قطعی کامل وجود دارد. حمله کننده می تواند به راحتی AP را مورد هدف قرار دهد و منابع محدود محاسباتی و/یا حافظه ی آن را تمام کند تا دیگر نتواند به هیچ ایستگاه دیگری خدمات دهد.
1- سیل درخواست های Probe ]4[
ایده ی اصلی این است که با ارسال پشت سر هم درخواست های Probe با آدرس های MAC برای مقاصد متفاوت، حجم کار سنگینی به AP تحمیل گردد، تا AP دیگر نتواند به ایستگاه های مجاز خدمت رسانی کند ]4,27[.
2- سیل درخواست های احراز هویت یا ارتباط ]4[
حمله کننده می تواند با ارسال پشت سر هم درخواست های احراز هویت و برقراری ارتباط، منابع AP را هدر دهد. نشان داده شده است که اگر WEP روی AP فعال شده باشد، مجبور است تا بار بیشتری را مدیریت کند و در نتیجه با ترافیک کمتری مسدود می گردد]4,27[. بسیاری از AP ها به درخواست های برقراری ارتباط در حالت اولیه ی خود، پاسخ می دهند. اگر i802.11 پیاده سازی شده باشد، حمله کننده می تواند فضای شناسه ی بسته ی EAP را که فقط 8 بیت طول دارد، با سیل درخواست برقراری ارتباط تمام کند]4,26[.
2-2-3 مقابله در لایه ی MAC ]4[
1-2-2-3 شناسایی شنود آدرس MAC ]4[
یک روش (بدون استفاده از رمزنگاری) برای شنود آدرس MAC، بر اساس فیلد شماره ی توالی (ترتیب) است، که مقدار آن به ازای هر فریم بخش بندی نشده، یکی اضافه می گردد. حمله کننده قادر نخواهد بود که مقدار فیلد شماره ی توالی را جایگزین کند، اگر نتواند عملکرد سیستم عامل کارت بی سیم خود را کنترل کند]4,30,31[. از طریق تحلیل الگوی شماره ی توالی ترافیک بی سیم شنود شده، سیستم شناسایی قابلیت شناسایی شنود آدرس MAC را برای مشخص کردن حملات نقض احراز هویت/نقض برقراری ارتباط دارد]4,30 [.
2-2-2-3 محافظت از فریم های کنترلی و مدیریتی از طریق رمز نگاری ]4[
راه حل رمزنگاری می تواند در مقابل حملات گوناگونی به کار گرفته شود، اما به طور خاص رمزنگاری از طریق کلید عمومی گران بوده و خود می تواند به راحتی هدف حملات DOS قرار بگیرد. برای اینکه حفره ای دیگر برای حملات DOS ایجاد نگردد، کارایی پروتکل های جدید (مانند w802.11) در این زمینه بسیار مهم است. استفاده از رمزنگاری پس از شناسایی وقوع یک حمله ی DOS می تواند یک راه جایگزین باشد، که ارزش تحقیقات آتی را داراست. به منظور گسترش راه حل های رمزنگاری برای فریم های مدیریتی دیگر، باید محدودیت هایی اضافی در نظر گرفته شوند. به عنوان مثال توسعه، مستقیما برای جستجوی درخواست و پاسخ پیاده سازی نمی شود، به این دلیل که موارد لزوم تولید کلید، پیش از تبادل فریم موجود نیستند، تا زمانی که، دو طرف، یک کلید امنیتی بلند مدت را به اشتراک بگذارند.
3-2-2-3 تعمیر پروتکل ]4[
پس از تعریف حملات DOS مربوط به جعل اولین پیام دست دهی در i802.11، یک پروتکل به استاندارد i802.11 پیشنهاد شد که در آخرین بررسی های آن کارگروه به تصویب رسید ]4,26[. موضوع دیگر در مورد تعمیر پروتکل، تبادل در i802.11 است، که در حالت احراز هویت شده/مرتبط شده انجام می شود. نشان داده شده است که از بین بردن سیل درخواست برقراری ارتباط با به کارگیری i802.11 قبل از برقراری ارتباط امکان پذیر می باشد ]4,32[. اما، این نیازمند تغییرات بزرگ در استاندارد است ]4,26[، بنابراین به سادگی می توان گفت تمام تعمیرات پروتکل نمی توانند یک راه حل عملی کوتاه مدت باشند.
4-2-2-3 پازل رمز نگاری شده (کاربر) ]4[
ایده ی اصلی پازل کاربر به شکل زیر است:
هنگامی که یک سرور درخواستی دریافت می کند، یک پازل به کابر توزیع می کند. فقط پس از اینکه تایید گردید پازل به درستی توسط کاربر حل شده است، سرور به درخواست او پاسخ می دهد. در صورتی که سرور تشخیص دهد زیر حملات DOS قرار گرفته است و حملات در حال شدید تر شدن هستند، سختی پازل می تواند بیشتر شود.
استاندارد i802.11 می تواند برای شامل شدن این حفاظت به روز گردد، اگرچه تحقیقات آتی نیاز است تا مشخص شود که آیا امکان پذیر است یک پازل موثر برای شبکه های بی سیم ساخته شود، به طوری که حل آن برای ایستگاه های مجاز با منابع متوسط آسان باشد، اما به اندازه ی کافی برای مسدود نمودن حمله کننده ها که حملات سیل ایجاد می کنند، دشوار باشد.
5-2-2-3 سایر راه حل های رمز نگاری نشده ]4[
با وجود اینکه راه حل های رمز نگاری، راه حل های امیدوار کننده ای برای جلوگیری بعضی از موثرترین حملات DOS ارائه می کنند، آن ها نیازمند به روز رسانی در استاندارد i802.11 هستند. راه حل های زیر بیشتر مختص یک نوع از حملات هستند، اما نیازی به یک تغییر در استاندارد ندارند.
1- به تاخیر انداختن تاثیر درخواست ]4[
اگر تاثیر درخواست های نقض احراز هویت و نقض برقراری ارتباط برای چند ثانیه به تاخیر بیافتد، درخواست می تواند به صورت امنی حذف شود، اگر بسته ای پس از آن دریافت شود. این راه حل یک آسیب پذیری جدید DOS برای ایستگاه های بی سیم سیار ایجاد می کند، و یک محدودیت قابل توجه از دیدگاه عملی به نظر نمی رسد ]4,25[.
2- تعریف تفسیر جدید از فیلد مدت زمان ]4[
چهار نوع فریم کلیدی که شامل مقادیر مدت زمان می باشند، ACK، DATA، RTS و CTS هستند. از آنجایی که قطعه بندی (تکه تکه شدن) تقریبا هیچ وقت در شبکه های 802.11 استفاده نمی شود، فیلد مدت زمان فریم های DATA و ACK که با یک قطعه دنبال نمی شوند، به راحتی می توانند نادیده گرفته شوند. برای فریم RTS، مانند راه حل قبل، ما می توانیم تاثیر فیلد مدت زمان را به تاخیر بیاندازیم و تاثیر آن را اگر بسته های داده ی بعدی دیده نشدند، حذف کنیم. بزرگترین چالش فریم های CTS هستند، بدین دلیل که راه حل استفاده شده برای RTS به صورت مستقیم قابل اعمال نیست که دلیل آن وجود مشکل پایانه های مخفی می باشد. یک راه حل ناکامل می تواند نادیده گرفتن بسته های CTS ایزوله شده برای بخشی از زمان باشد]4,25[.
3- کاهش محدودیت سعی مجدد ]4[
زمانی که یک حد سعی مجدد بالا برای فریم های تصدیق نشده (مانند پیام پاسخ Probe) تعیین می گردد، حملات سیل، آسیب رسان تر می شوند. یک راه حل، تغییر حد سعی مجدد به مقداری کوچکتر به محض شناسایی یک حمله ی DOS، است. اگرچه گزارش شده است که پیاده سازی این راه حل بالاتر از سطح سیستم عامل دستگاه، دشوار است.
3-3 حملات DOS به شبکه های 802.11، شامل لایه ی MAC و لایه های بالاتر ]4[
پروتکل حل آدرس (ARP) یک پروتکل بدون وضعیت است که برای مشخص کردن نگاشت بین آدرس IP و MAC استفاده می شود. از آنجایی که هیچ منبع احراز هویتی در ARP وجود ندارد، حمله کننده می تواند مخزن ARP ایستگاه دیگری را با ارسال پاسخ های ARP غلط، زمانی که آن ها در یک دامنه ی داده پراکنی هستند، مسموم کند. این مشکل به طور منطقی در شبکه های سیمی کاهش پیدا کرده است، در صورتی که در زمینه ی شبکه های بی سیم، نیازمند آنیم تا مشکل را دوباره بررسی کنیم، چرا که دامنه ی داده پراکنی با حضور AP ها بزرگتر شده و شامل شبکه های سیمی و بی سیم می گردد]4,33[.
گونه ای دیگر از حملات DOS نیز به دلیل محدودیت در پهنای باند شبکه های بی سیم در مقایسه با شبکه های سیمی، امکان پذیر می باشد. برای مثال، یک فرد می تواند با ایجاد سیل ICMP ping یا TCP sync از یک شبکه ی سیمی، پهنای باند بی سیم را خالی کند.
1-3-3 اقدامات متقابل ]4[
راه حل قدیمی در مقابله با این حملات لایه های بالاتر، فیلترینگ (برای جلوگیری) و سیستم های شناسایی نفوذ (برای شناسایی) می باشد.
1-1-3-3 فیلترینگ ]4[
ریسک مسموم کردن ARP و حملات سیل می تواند با پیاده سازی فیلترینگ بسته کاهش یابد. یک دیوار آتش بین سوئیچ هایی که AP ها را به یکدیگر متصل می کنند و شبکه ی سیمی، می تواند ترافیک را فیلتر نموده و از حملات ARP که از شبکه های سیمی سرچشمه گرفته اند، جلوگیری کند.
2-1-3-3 سیستم های شناسایی نفوذ ]4[
هنگامی که جلوگیری از حمله امکان پذیر نیست، شناسایی تنها راه دفاع است. این نیازمند آن است اطمینان حاصل گردد که اقدامات دفاعی واقعا کار می کنند]4,33[. سیستم های شناسایی نفوذ ممکن است قادر باشند تا حملات مسموم سازی ARP و همچنین حملات دیگری که از نقض در پروتکل های شبکه بهره گیری می کنند را، با تعداد بیش از اندازه ی پاسخ های ناخواسته شناسایی کنند. با این حال شناسایی بدون واکنش معمولا تاثیر زیادی ندارد.
4-3 اقدامات متقابل در لایه ی MAC با استفاده از لایه ی فیزیکی ]4[
اکثر حملات DOS فقط به این دلیل امکان پذیر هستند که یک حمله کننده می تواند توسط یک آدرس MAC ساختگی تغییر ظاهر دهد. خصوصیات لایه ی فیزیکی مانند قدرت سیگنال و ویژگی های فرستنده را می توان برای تولید اثرانگشت هایی نسبتا قابل اعتماد و دشوار برای جعل، به منظور شناسه ی یک ایستگاه به کار برد ]4,32,34[.

شکل SEQ تصویر * ARABIC 13- تولید کننده ی نرم افزاری سیگنال
1-4-3 شناسایی ایستگاه از طریق ویژگی های سیگنال ]4[
موقعیت یک ایستگاه، با کمی ابهام (به دلیل انحراف ذاتی استاندارد انتشار سیگنال های RF در حدود مقداری میانی)، از طریق اندازه گیری های RSSI (Receive Signal Strength Indicator) از فریم های ارسال شده توسط چند AP، قابل شناسایی می باشد.
اندازه گیری های RSSI از یک ایستگاه مشخص، توسط هر AP، در یک ردگیری سیگنال از یک موجودیت مرکزی، ترکیب می شوند. RSSI خصوصیات مشخصی دارد که آن را قادر می سازد تا به عنوان یک معیار معتبر استفاده شود:
1- جعل ویژگی های RSSI دشوار است.
2- RSSI همبستگی زیادی با مکان فیزیکی ایستگاه دارد.
3- RSSI ایستگاه های ساکن، نسبتا ثابت است.
گزارش شده است که ردیابی سیگنال بر اساس RSSI را می توان به طور قابل اطمینان برای تعریف مکان نسبی ایستگاه به کار برد، و نیز به شرطی که گره ها در مجاورت نزدیکی، نباشند، به صورت فیزیکی بین آنها تمایز قائل شد ]4,34[، این مطلب پتانسیل آن را دارد تا به عنوان دو اقدام متقابل استفاده شود:
1- برای شناسایی و رها کردن زیر مجموعه ی فریم هایی که از همان ایستگاه سرچشمه می گیرند تا از حملات کاهش منابع جلوگیری کنند.
2- برای شناسایی حملات، با مقایسه ی اثر انگشت درخواست های متناقض (احراز هویت و نقض احراز هویت).
باید در نظر داشت که در اینجا هدف تعیین فیزیکی مکان ایستگاه نمی باشد، بلکه هدف متمایز نمودن آن در میان سایرین است.
این تکنیک ها قابلیت این را دارند که فقط واکنش صحیح از حذف فریم های سرچشمه گرفته از ایستگاه متخاصم را ارائه کنند. سایر روش های شناسایی بر اساس تحلیل ردیابی ترافیک، نمی توانند واکنش مناسب را به حملاتی که در آن حمله کننده از آدرس های MAC جعلی استفاده می کند، نشان دهد و هیچ مکانیسم شناسایی دیگری در این جایگاه وجود ندارد. برای مثال، هنگامی که بسیار قدرتمند در برابر رفتار حریصانه ی کاربران مجاز که به صورت رمزنگاری شده توسط AP احراز هویت شده اند، عمل کنیم و در نتیجه آن ها نتوانند آدرس MAC خود را تغییر دهند، نرم افزار DOMINO ]4,35[ اگر به تنهایی استفاده شود، نمی تواند حمله کننده ای را که فقط قصد حمله ی DOS را دارد شناسایی نموده و با آن مقابله کند.
می توان این گونه در نظر گرفت، تکنیک های مکان یابی برای شبکه ها بی سیم، که بر انواع دیگر اندازه گیری (مانند، TDOA، [4]Time Difference Of Arrival) وابسته هستند نیز می توانند در مقابل حملات DOS استفاده شوند. به همین ترتیب، اثر انگشت RF فرستنده می تواند برای شناسایی به کار گرفته شود. در ]4,36[ یک سیستم کامل برای شناسایی ایستگاه های 802.11، بر اساس ویژگی های سیگنال RF نشان داده شده است.
4- نتیجه گیری
هدف اصلی این سمینار، بررسی کلی حملات DOS و نیز راه های جلوگیری و کاهش اثرات این حملات است. انواع حمله های ارائه شده و راهکار های مقابله ی مطرح شده، تماما از مقالات علمی معنبر استخراج گردیده اند، اما تنها با مطالعه ی مقالات نمی توان به بررسی و مطالعه ی این گونه مسائل امنیتی پرداخت، چرا که اکثر کار های انجام شده در این زمینه یا به صورت پروژه - ریسرچبه چاپ نمی رسند و یا زمان زیادی بعد از ارائه ی آن عمومی می شوند. برای آگاهی از تمام جوانب موجود اولین راه کار ورود مستقیم به عرصه ی پژوهش های آزمایشگاهی در این حیطه و در مرحله ی بعد پیگیری کار های شرکت های معتبر و جستجو در اینترنت به صورت گسترده است. با وجود اینکه اطلاعات موجود در اینترنت از صحت قابل اعتمادی برخوردار نیستند اما جدید ترین مسائل ابتدا در این محیط منتشر خواهند شد (مگر تحقیقات علمی آزمایشگاهی).
شیوه های بحث شده ی حملات و تقابل با آن در این سمینار، نشان می دهد که این حیطه فضای زیادی برای تحقیقات آتی دارد. شیوه های مطرح گشته ی حملات، روش هایی است که تا کنون به صورت علمی به ثبت رسیده اند و به طور قطع هر روزه روش ها و ابزار های جدیدی ابداع می گردند و بسیاری از راه کار ها نیز هرگز عمومی نخواهند شد. مهم ترین مبحث در حملات DOS بی سیم مسدود کننده ها هستند که به راحتی قابل ساخت و به روز رسانی با تکنولوژی های جدید هستند. اکثر مسدود کننده های موثر به طور قطع هرگز توسط عموم شناخته نخواهند شد چرا که بیشتر کاربرد نظامی و یا دولتی دارند، اما به دلیل شناخته شده بودن تکنولوژی، قابل تولید توسط افراد بسیاری هستند. روش های حملات با به کار گیری لایه های دیگر نیز هر روز در حال گسترش و پیشرفت هستند تا جایی که هرگز نمی توان مطمئا بود که داده های شبکه ی بی سیم شما به هیچ وجه آسیب نمی بینند. به حر حال در این زمینه نیز ره کار هایی ارائه شد که میتوانند سکوی پرتابی برای تحقیقات آینده باشند. به سهولت و با جمع بندی کامل می توان این گونه بیان نمود که مطالب بیان شده در هر پروژه - ریسرچ، پیرامون این مطالب، چندی پس از ارائه منسوخ خواهند شد، چرا که این تکنولوژی هنوز به مرحله ی بلوغ خود نرسیده و فضای زیادی برای پیشرفت و بهتر شدن دارد.
مراجع
[1] Jalel Ben Othmana, Lynda Mokdadb, “Enhancing data security in ad hoc networks based on multipath routing”, Journal of Parallel and Distributed Computing, vol. 70, pp. 309_316, 2010
[2] Sudip Misra, Sanjay K. Dhurandher, Avanish Rayankula, Deepansh Agrawal, “Using honeynodes for defense against jamming attacks in wireless infrastructure-based networks”, Computers and Electrical Engineering, vol. 36, pp. 367–382, 2010
[3] Ningrinla Marchang, Raja Datta, “Collaborative techniques for intrusion detection in mobile ad-hoc networks”, Ad Hoc Networks vol. 6, pp. 508–523, 2008
[4] Kemal Bicakci, Bulent Tavli , “Denial-of-Service attacks and countermeasures in IEEE 802.11 wireless networks”, Computer Standards & Interfaces vol. 31,pp. 931–941,2009
[5] Shafiullah Khan, Kok-Keong Loo, Tahir Naeem, Mohammad Abrar Khan, “Denial of Service Attacks and Challenges in Broadband Wireless Networks”, International Journal of Computer Science and Network Security, vol. 8 No. 7, July 2008.
[6] S. A. Arunmozhi, Y. Venkataramani, “DDoS Attack and Defense Scheme in Wireless Ad hoc Networks”, International Journal of Network Security & Its Applications, vol. 3, No. 3, May 2011.
[7] Lin Chen, Jean Leneutre, “Fight jamming with jamming – A game theoretic analysis of jamming attack in wireless networks and defense strategy”, Computer Networks, vol. 55, pp. 2259–2270, 2011.
[8] Mahadevan K, Hong S, Dullum J, “Anti-jamming: a study”, <http://www users.itlabs.umn.edu/classes/Fall-2007/csci5271/jamming.pdf>.
[9] Negi R, Perrig A, “Jamming analysis of MAC protocols”, Carnegie Mellon Technical Memo, 2003.
[10] Wood AD, Stankovic JA, “Denial of service in sensor networks”, IEEE Comp, vol. 35(10), pp. 54–62, 2002.

—d1215

ممکن. تک ماشینه 1m ماشین کاملا یکسان به موازات هم قرار میگیرند؛ هرکدام از
کارها نیاز به یک عملیات دارد و بر روی یکی از ماشینهای
موجود پردازش میشود. ماشینهای موازی یکسان Pmحالت کلیتر ماشینهای موازی یکسان؛ ماشینها دارای سرعت
پردازش متفاوت هستند. ماشینهای موازی یکنواخت Qmحالت کلیتر ماشینهای موازی یکنواخت؛ سرعت پردازش
ماشینها هم به نوع ماشین و هم به نوع کار بستگی دارد. ماشینهای موازی نامرتبط Rmm ماشین به صورت متوالی وجود دارد؛ هر کدام از کارها بر
روی تمامی ماشینها پردازش میشوند، تمامی کارها مسیر
پردازش یکسانی دارند. کارگاه جریانی Fmحالت کلیتر کارگاه جریانی؛ m ایستگاه پردازش به صورت
متوالی وجود دارد؛ در هر ایستگاه یکی از حالات سه گانه ماشین-
های موازی برای پردازش یک کار رخ میدهد. کارگاه جریانی منعطف FFmهر کدام از کارها دارای مسیر پردازش متمایز بر روی m ماشین
موجود میباشند. تولید کارگاهی Jmحالت کلیتر تولید کارگاهی؛ m مرکز پردازش وجود دارد؛ در
هر ایستگاه یکی از حالات سه گانه ماشینهای موازی برای
پردازش یک کار رخ میدهد. تولید کارگاهی منعطف FJmm ماشین وجود دارد؛ هر کدام از کارها بر روی هر کدام از
ماشینها یک یا چند بار پردازش میشود؛ محدودیتی برای مسیر
پردازش کارها وجود ندارد. کارگاه باز Omجدول SEQ جدول * ARABIC 2 جدول 2-2. نمادهای متداول برای β.توضیحات مسئله نماد
کار j نمیتواند قبل از زمان آمادهسازی خود(rj) پردازش خود را آغاز کند. زمان آمادهسازی غیر صفر برای کارها rjپردازش یک کار روی یک ماشین میتواند قبل از اتمام پرداش قطع شود و کار دیگری پردازش شود. شکست کارها prmpقبل از شروع پردازش یک کار یک یا چند کار مشخص باید پردازش شده باشند. اولویت پردازش کارها precزمان نصب یک کار به روی یک ماشین به کار قبلی پردازش شده روی آن ماشین بستگی دارد. زمان نصب وابسته به توالی کارها stsk,stijkکارهای موجود گروهبندی شده و کارهای یک گروه میتوانند بدون زمان نصب پشت سر هم پردازش شوند. گروه کاری fmlsیک ماشین میتواند دستهای از کارها را همزمان پردازش کنند. زمان پردازش کارها لزوما یکسان نیستند. پردازش دستهای batch(b)یک ماشین ممکن است به طور مداوم در دسترس نباشد. خرابی ماشین brkdwnیک کار ممکن است تنها روی ماشینهای مشخصی قابلیت پردازش داشته باشد. دسترسی محدود به ماشینها Mjدر مسائل کارگاهی جریانی، ترتیب پردازش کارها روی تمام ماشینها یکسان باشد. جایگشت prmuدر مسائل کارگاهی جریانی با ظرفیت محدود بین ماشینآلات هنگامی که بافر پر باشد کار روی ماشین قفل میشود. بلوکه شدن blockدر مسائل کارگاهی جریانی، کارها باید بدون هیچگونه توقفی مسیر پردازش را طی کنند. بدون انتظار nwtدر مسائل تولید کارکاهی یک کار ممکن است در یک مرکز کاری بیش از یک بار پردازش شود. گردش مجدد rcrcجدول SEQ جدول * ARABIC 3 جدول 2-3. نمادهای متداول برای γ.توضیحات مسئله نماد
زمان تکمیل آخرین کار را نشان میدهد. زمان تکمیل بیشینه Cmaxبیشترین انحراف زمانی از موعد تحویل را محاسبه میکند زمان تاخیر بیشینه Lmaxمجموع زمانهای تکمیل کارها را اندازهگیری میکند. زمان تکمیل کل Cjمجموع انحرافات زمانی از موعد تحویل را درنظر میگیرد. زمان دیرکرد کل Tjتعداد کارهای دارای دیرکرد زمانی را محاسبه میکند. تعداد کارهای با تاخیر کل Ujمجموع زمانهای زودکرد و دیرکرد را نشان میدهد. زمانهای زودکرد و دیرکرد کل Ej+Tjمجموع زمانهای تکمیل وزنی کارها را محاسبه میکند. زمان تکمیل وزنی کل wjCjمجموع انحرافات وزنی از موعد تحویل را محاسبه میکند. زمان دیرکرد وزنی کل wjTjتعداد وزنی کارهای دارای دیرکرد وزنی را نشان میدهد. تعداد کارهای با تاخیر وزنی کل wjUjمجموع زمانهای زودکرد و دیرکرد وزنی کارها را محاسبه میکند. زمانهای زودکرد و دیرکرد وزنی کل wj'Ej+wj"Tjسیستم تولید جریانی منعطف یکی از پرکاربردترین سیسستمهای تولیدی است که در واقع حالت کلیتر سیستم تولید جریانی و حالت خاصی از سیستم ماشینهای موازی است. از آنجا که چنین چیدمانی از ماشینها انعطاف پذیری خطوط تولیدی را تا حد زیادی افزایش میدهند، امروزه این حوزه توجه زیادی را به خود جلب کرده است.
از زمانی که اولین تحقیقات در زمینه سیستم تولید جریانی منعطف تاکنون انجام شده است، محدودیتهای بسیاری نظیر زمان نصب وابسته به توالی کارها، پردازش گروهی و … در این نحوه تولید مورد مطالعه قرار گرفتهاند. اما بررسی پردازش بدون انتظار نه تنها در حوزه سیستم تولید جریانی منعطف بلکه در سیستم تولید جریانی معمول نیز کمتر مورد بررسی قرار گرفته است. در این تحقیق، مسئله زمانبندی سیستم تولید جریانی بدون انتظار منعطف با در نظر گرفتن ظرفیت محدود تولید ماشینآلات، رد یا قبول سفارشات و زمان نصب وابسته به توالی کارها و با رویکرد مدیریتی ترکیبی تولید برای ذخیره و تولید برای سفارش با هدف به حداقل رساندن هزینهها(هزینههای ناشی از زودکرد و دیرکرد وزنی و رد کردن یا تحویل ناقص سفارش) مورد بررسی قرار میگیرد. به منظور مرور ادبیات تحقیق، اهم پژوهشهای انجام شده در این حوزه به تفکیک محدودیتها و تابع هدف مورد بررسی قرار میگیرند.
2-2. پردازش بدون انتظارپردازش بدون انتظار یک کار به این معنی است که از زمان شروع پرداش کار روی اولین ماشین تا زمان اتمام پرداش روی آخرین ماشین هیچ وقفه زمانی وجود نداشته باشد. با توجه به این شرایط، شروع پرداش یک کار روی اولین ماشین باید تا زمانی که شرایط پرداش بدون انتظار آن فراهم باشد به تعویق بیفتد [40]. یکی از رایجترین مثالها برای تولید بدن انتظار، صنایع فولاد است. فهرست کاملی از کاربردهای این روش تولیدی توسط هال و اسریسکاندراجاه (1996) [26]، فرامینان و ناگارو (2008) [18] و فرامینان و همکارانش (2010) [17] گرداوری شده است.
با نگاهی اجمالی، تحقیقات انجام شده در زمینه پردازش بدون انتظار را میتوان در سه دسته کلی جای داد که در این بخش اهم تحقیقات انجام شده در هر دسته ارائه میشوند.
2-2-1. سیستم تولید جریانی با دو ماشیندر این سیستم جریانی تنها دو ماشین وجود دارد. آلدوویزان (1998) [8] این مسئله را همراه با محدودیت زمان نصب جدا از زمان پردازش و با تابع هدف مجموع زمانهای تکمیل کارها مورد بررسی قرار داد. پس از آن آلدوویزان (2001) [9] همین مسئله را به کمک روش شاخه و کران حل کرد. بعدها هر دوی این محققان کار خود را برای همین مسئله در حالت سه ماشین تعمیم دادند. شیو(2004) [48] مسئله F2|nwt,sij|Ci را به کمک نمایش مسئله به فرم مسئله فروشنده دورهگرد به کمک الگوریتم کلونی مورچگان حل کرد و نشان داد که نتایج حاصل از آن بهتر از روشهای ابتکاری است که توسط اللهوردی و آلدوویزان بدست آمده بود.
2-2-2. سیستم تولید جریانی با بیش از دو ماشیندر این دسته پژوهشهای زیادی انجام شده است که از آن جمله میتوان به پژوهش انجام شده توسط توکلی مقدم و همکارانش(2008) [50] اشاره کرد که مسئله زمانبندی تولید جریانی بدون انتظار با توابع هدف مینیممسازی متوسط زمان تکمیل وزنی و متوسط دیرکرد وزنی را به کمک الگوریتم سیستم ایمنی مصنوعی حل کرد. بابک جوادی و همکارانش(2008) [27] مسئله چند هدفه سیستم جریانی بدون انتظار فازی را به کمک برنامهریزی خطی حل کرد. که پن و همکارانش(2009) [41] همین مسئله را با توابع هدف مینیممسازی بیشینه زمان تکمیل و مینیممسازی بیشینه دیرکرد به کمک الگوریتم دیفرانسیل تکاملی حل کرد. یوتسنگ و تای لین(2010) [52] مسئله مورد بحث را توسط الگوریتم ژنتیک ترکیبی حل کردند. ونگ و همکارانش نیز(2010) [55] روشی بر پایه الگوریتم جستجوی ممنوع به نام جستجوی ممنوع شتاب داده شده برای حل مسئله زمانبندی تولید جریانی بدون انتظار با تابع هدف مینیممسازی بیشینه دیرکرد ارائه کردند که در آن از سه روش ابتکاری جهت تولید جواب کاندیدا استفاده شده بود. در ادامه پژوهشهای انجام شده چینگ یینگ و همکارانش(2012) [58] مسئله تولید جریانی بدون انتظار را در شرایط تولید سلولی و با محدودیت زمان نصب وابسته به گروهبندی کارها مورد مطالعه قرار دادند. ناگانو و همکارانش(2013) [47] این مسئله را با در نظر گرفتن زمانهای نصب جدا از زمان پردازش بررس کرده و روش حلی با رویکرد جستجوی خوشهبندی تکاملی برای این مسئله با تابع هدف زمان درجریان ساخت نهایی ارائه کردند. داوندرا و همکارانش(2013) [12] با بهرهگیری از الگوریتم تاکید خود سازمانی گسسته جوابهای نسبتا خوبی برای مسئله تولید جریانی بدون انتظار با هدف مینیممسازی ماکزیمم زمان تکمیل بدست آوردند.
2-2-3. سیستم تولید جریانی منعطف تحقیقات انجام شده در این دسته خود به دو بخش سیستمهای تولید جریانی منعطف با دو ایستگاه کاری یا بیش از دو ایستگاه کاری تقسیمبندی میشوند. اما در کل پژوهشهای انجام شده در این دسته از نظر فراوانی بسیار کمتر از دو دسته قبل است. برای مثال، ونگ و لیو(2013) [56] مسئله تولید جریانی بدون انتظار را در محیطی مشتمل بر دو ایستگاه کاری مورد بررسی قرار دادند و روش حلی بر پایه الگوریتم ژنتیک برای این مسئله ارائه کردند. جولایی و همکارانش(2013) [28] این مسئله را با دو تابع هدف مینیممسازی بیشینه زمان تکمیل و مینیممسازی بیشینه دیرکرد بررسی کرده و به کمک رویکرد دو هدفه الگوریتم تبرید شبیهسازی شده به حل آن پرداختند. همچنین همین نویسنده به کمک همکارانش (2009) [29] به بررسی این مسئله در شرایط وجود بیش از دو ایستگاه کاری و وجود احتمال رد سفارشات پرداخته و با رویکرد پنجرههای زمانی مدل ریاضی این مسئله را ارائه کرده است همچنین با استفاده از الگوریتم ژنتیک روش حلی نیز برای آن ارائه داده است.
مقالات مورد بررسی در این بخش در جدول(2-4) آورده شدهاند.
جدول SEQ جدول * ARABIC 4 جدول 2-4. مسائل تولید جریانی با محدودیت پردازش بدون انتظارنویسنده مسئله رویکرد سال شماره ارجاع
آلدوویزان F2|nwt,sij|Cj- 1998 8
آلدوویزان F2|nwt,sij|Cjشاخه و کران 2001 9
شیو و همکاران F2|nwt,sij|Ciبا رویکرد تبدیل مسئله به فروشنده دورهگرد با الکوریتم کلونی مورچگان حل شد. 48
توکلی مقدم و همکاران FmnwtWiCiWi,WiTiWiرویکرد چند هدفه الگوریتم سیستم ایمنی مصنوعی 2008 50
جوادی و همکاران FmnwtWiCiWi,WiEiWiرویکرد چند هدفه فازی به کمک برنامهریزی خطی 2008 27
که پن و همکاران FmnwtCmax,Lmaxالگوریتم دیفرانسیل تکاملی 2009 41
تسنگ و تای لین FmnwtCmaxالگوریتم ترکیبی ژنتیک 2010 52
ونگ و همکاران FmnwtLmaxالگوریتم جستجوی ممنوع شتابدهی شده 2010 56
چینگ یینگ و همکاران Fmnwt,cellCmaxسه الگوریتم بر پایههای الگوریتمهای ژنتیک، تبرید شبیهسازی شده و تکرار حریصانه 2012 58
ناگانو و همکاران FmnwtCiرویکرد جدید جستجوی خوشهبندی تکاملی 2012 47
داوندرا و همکاران FmnwtCmaxالگوریتم تاکید خود سازمانی گسسته 2013 12
2-3. زمان نصب وابسته به توالی کارهابه زمان صرف شده جهت آمادهسازی ماشین برای انتقال کار روی آن زمان نصب میگویند. زمان نصب عموما صرف نصب ابزارهای لازم روی ماشین، تمیزکاری و … میشود. با نگاهی کلی به تاریخ پژوهشهای انجام شده در حوزه زمانبندی میتوان دریافت که تا دههها زمان نصب در ادبیات زمانبندی به کلی نادیده گرفته میشده است و عموما جزیی از زمان پرداش کار در نظر گرفته میشده است. این رویه شاید در برخی صنایع قابل توجیه باشد اما لزوم در نظر گرفتن زمان نصب بطور جداگانه در بسیاری از موارد غیر قابل انکار است.
به طور کلی مسائل زمانبندی از حیث در نظر گرفتن زمان نصب به دو دسته کلی تقسیم میشوند: در دسته اول که زمان نصب مستقل از توالی نامیده میشود و در آن زمان نصب یک کار بر روی ماشین تنها به خود آن کار بستگی دارد و به کار قبل از آن و یا اصطلاحا به توالی وابسته نیست. دسته دوم که آن را زمان نصب وابسته به توالی کارها مینامند به حالتی اطلاق میشود که زمان نصب یک کار روی ماشین به کار قبلی که روی آن ماشین نصب شده است نیز بستگی دارد. در این دسته حالت خاص دیگری نیز وجود دارد که آن را زمان نصب وابسته به گروههای کاری مینامند که به معنای این است که زمان نصب کارهای درون یک گروه کاری با گروه کاری دیگر متفاوت است و اگر دو کار از دو گروه متفاوت بلافاصله روی ماشین قرار بگیرند زمان نصب بزرگتری نسبت به حالتی دارد که کارهای یک گروه پشت سر هم قرار بگیرند.
اهمیت مدنظر قرار دادن زمان نصب به عنوان عاملی تاثیرگذار در بهرهوری سیستم تولیدی در تحقیقات متعددی مورد بحث قرار گرفته است. فلین [19] تاثیر زمانهای نصب وابسته به توالی را مورد تحقیق قرار داده است و ورتمن [57] فاکتورهایی که بیشترین تاثیر را در عملکرد سیستم دارند مورد بررسی قرار داد که در آن زمان نصب یکی از موثرترین راهها برای بهبود خدمات به مشتریان و کاهش هزینههای انبارداری معرفی شده است.
اگرچه محدودیت زمان نصب وابسته به توالی در اغلب چیدمانهای مسائل زمانبندی مورد مطالعه قرار گرفته است اما از آنجا که مسئله مورد بحث در حوزه تولید جریانی است در ادامه تنها به ارائه مهمترین مطالعات انجام شده در مسائل زمانبندی با محدودیت زمان نصب وابسته به توالی کارها در محیطهای مختلف سیستم تولید جریانی و به خصوص در سیستمهای تولید جریانی بدون انتظار اکتفا میشود.
2-3-1. سیستمهای تولید جریانیسیستم تولید جریانی مشتمل بر تعدادی ماشین است که به طور متوالی قرار گرفتهاند و کارها عموما با ترتیب یکسانی روی ماشینها پردازش میگردند. در نظر گرفتن محدودیت زمان نصب وابسته به توالی کارها میتواند معیارهای بهینهسازی را در چنین سیستمهایی تحت تاثیر قرار دهد. وانچیپورا و سریدهاران [54] برای مسئله Fm|sijk|Cmax دو الگوریتم جهت تخصیص زمانهای نصب تعریف کرده و سپس مسئله را با روشی ابتکاری بر پایه ساختن توالی حل کردهاند. میرابی [36] نیز همین مسئله را به کمک رویهای ترکیبی از الگوریتم ژنتیک حل کرده است.
سیستمهای تولید جریانی منعطف نیز ساختاری مشابه سیستم تولید جریانی ساده دارند، با این تفاوت که حداقل در یکی از ایستگاههای کاری بیش از یک ماشین وجود دارند. لذا مسئله مورد بحث تعمیمی از حالت مسئله ماشینهای موازی است. میرصانعی و همکارانش [37] این مسئله را با هدف بیشینه زمان تکمیل کارها مطالعه نموده و رویه حلی با رویکرد الگوریتم تبرید شبیهسازی شده برای آن ارائه نمودند. حکیمزاده و زندیه [25] مسئله فوق را با در نظر گرفتن دو تابع هدف و نیز وجود بافرهای محدود بین ایستگاههای کاری حل کردند.
2-3-2. سیستمهای تولید جریانی بدون انتظارسیستمهای تولید جریانی بدون انتظار از نظر نحوه چیدمان ماشینآلات تفاوتی با سیستمهای تولید جریانی بدون انتظار ندارند، تنها تفاوت در نحوه پردازش بدون انتظار کارها روی ماشینآلات است. در چنین شرایطی زمان نصب وابسته به توالی کارها میزان تاخیر احتمالی در شروع کار روی ماشین اول را که برای تامین شرایط پردازش بدون انتظار لازم است تحت تاثیر قرار میدهد.
عرب عامری و سلماسی(2013) [10] نیز روش حلی با رویکرد الگوریتم ترکیبی بهینهسازی تجمعی ذرات و جستجوی ممنوع برای مسئله Fm|nwt,sijk|wj'Ej+wj"Tj پیشنهاد دادند. گاوو و همکارانش [21] مسئله تولید جریانی بدون انتظار را با محدودیت زمان نصب وابسته به توالی و تابع هدف زمان در جریان کل بررسی نموده و چهار رویه ابتکاری برای حل آن پیشنهاد دادهاند. رمضانی و همکاران [43] مسئله سیستم تولید جریانی منعطف بدون انتظار را در حالتی که ماشینهای درون هر ایستگاه عملکرد مشابه و نسبتهای سرعت مشخص دارند مدنظر قرار داده و به کمک رویکرد ترکیبی فراابتکاری به حل آن پرداخته است.
پژوهشهای مرور شده در این بخش در جدول(2-5) خلاصه شدهاند.
جدول SEQ جدول * ARABIC 5 جدول 2-5. مسائل سیستم تولید جریانی با محدودیت زمان نصب وابسته به توالی کارهانویسنده مسئله رویکرد سال شماره ارجاع
وانچیپوراو سریدهاران Fm|sijk|Cmaxروش ابتکاری بر پایه ساختن جواب 2013 54
میرابی Fm|sijk|Cmaxرویه ترکیبی براساس الگوریتم ژنتیک 2014 36
میرصانعی و همکاران Fm|sijk|Cmaxالگوریتم شبیهسازی تبرید 2011 37
حکیم زاده و زندیه Fmsijk,bCmax,Tjچند رویه فراابتکاری 2012 25
عرب عامری و سلماسی Fm|nwt,sijk|wj'Ej+wj"Tjالگوریتم ترکیبی از بهینهسازس تجمعی ذرات و جستجوی ممنوع 2013 10
گاوو و همکاران Fm|nwt,sijk|Cjچهار رویه ابتکاری 2013 21
رمضانی و همکاران FFm|nwt,sijk|Cmaxسه روش فراابتکاری بر پایه الگوریتمهای ژنتیک، تبرید شبیهسازی شده و تکرار حریصانه 2013 43


2-4. محدودیت کاری ماشینآلاتمحدودیت کاری ماشینآلات به این معنی است که هر ماشین پس از انجام حجم مشخصی از کار از دسترس خارج میشود که این مسئله میتواند دلایل متعددی همچون انجام تعمیرات اساسی و … داشته باشد. برای مثال یک ماشین پرس عموما بعد از انجام تعداد مشخصی پرس جهت تنظیم، تعویض روغن و تعمیرات برای مدتی از دسترس خارج میگردد. پیادهسازی این محدودیت در مسائل بهینهسازی معمولا به دو صورت انجام میشود: در دسته اول مسائل، ماشینها پس از گذراندن تعداد یا حجم مشخصی از کار از دسترس خارج میگردند و در دسته دوم، ماشینها پس از سپری کردن زمان مشخصی از لحظه شروع به کار از دسترس خارج میشوند. به کار بردن هر کدام از این دو رویکرد به ویژگیهای ماشینآلات و محصول تولیدی بستگی دارد. محمدی و فاطمی قمی [38] مسئله محدودیت ساعات کاری ماشینآلات را با در نظر گرفتن زمان نصب وابسته به توالی کارها در محیط تولید جریانی مورد مطالعه قرار دادند و آن را با رویکردی ابتکاری بر پایه الگوریتم ژنتیک حل نمودند. همین نویسنده به کمک همکارانش [39] دو روش الگوریتمی جدید را نیز برای مسئله تولید جریانی همراه با محدودیت حجم کاری، زمان نصب وابسته به توالی و تولید بر مبنای تقاضا ارائه کردند. جورجیادیس و پولیتو [22] نیز همین محدودیت را در حالتی که تعداد کار پردازش شده در روز محدود باشد در سیستمهای تولید جریانی بررسی کردند. بابایی و همکاران [11] نیز مسئله بهینهسازی همزمان تولید محصولات بر پایه تقاضا و زمانبندی را در محیط تولیدی جریانی مطالعه نموده و برای آن به کمک الگوریتم ژنتیک جوابهای با کیفیتی بدست آوردند.
مقالات مروری در این بخش در جدول(2-6) خلاصه شدهاند.
جدول SEQ جدول * ARABIC 6 جدول 2-6. مسائل سیستم تولید جریانی با محدودیت حجم کاری ماشینآلاتنویسنده مسئله رویکرد سال شماره ارجاع
محمدی و فاطمی قمی Fm|sijk|MINcostالگوریتم ژنتیک 2011 38
محمدی و همکاران Fm|sijk|MINcostدو الگوریتم ترکیبی جدید 2011 39
جورجیادیس و پولیتو Fm||MINcostرویه فراابتکاری جدید 2013 22
بابایی و همکاران Fm||MINcostالگوریتم ژنتیک 2013 11
2-5. استراتژیهای مدیریت تولیدمدیریت تولید به معنای تعیین میزان تولید محصولات با استفاده از پیشبینیهای انجام شده از نیاز بازار، تعیین زمان مناسب تحویل و … است. همانطور که از تعریف برمیآید مدیریت تولید به دلیل مشخص نمودن تعداد کارها و موعد تحویل ارتباط تنگاتنگی با زمانبندی تولید محصولات دارد. یکی از مهمترین مسائل در مدیریت تولید این مسئله است که محصول با رویکرد تولید برای سفارش تولید شوند یا با استراتژی تولید برای ذخیره [24]. در استراتژی تولید برای سفارش، محصولات یک سفارش تنها از زمانی که سفارش به سیستم تولیدی ابلاغ میشود توانایی تولید شدن دارند. استراتژی تولید برای ذخیره نیز تعداد محصولات را با توجه به نیاز بازار و سهم محیط تولیدی از بازار پیشبینی مینماید. از اصلیترین اشکالات استراتژی تولید برای ذخیره هزینه نگهداری محصولات است. استراتژی تولید برای سفارش هم به دلیل متغیر بودن تعداد و حجم سفارشات و لزوم تحویل به موقع جهت کسب رضایت مشتری زمانبندی را مشکلتر خواهند کرد. از این رو در سالهای اخیر توجه به استراتژیهای ترکیبی مدیریت تولید رو به افزایش بوده است. یوسف و همکاران [24] تاثیر زمانبندی بر استراتژیهای ترکیبی تولید برای ذخیره و تولید برای سفارش را در زمانبندی تک ماشین در پروژه - ریسرچمفصلی مورد بحث قرار داده است. در این پروژه - ریسرچاو محصولات را به دو گروه تقسیم کرده است: تعداد زیادی از محصولات که تقاضای کمی دارند و تعداد کمی از محصولات که تقاضا برای آنها زیاد است. در نهایت محصولات با تقاضای زیاد را با استراتژی تولید برای ذخیره و محصولات با تقاضای کم را با رویه تولید برای سفارش به خط تولید میفرستد. همین رویکرد توسط آدان و وال [7] نیز مورد مطالعه قرار گرفته است. عیوضی و همکاران [16] نیز مدل توسعه یافتهای بر مبنای زمانبندی و کنترل تولید نیمههادیها ارائه کردند که در آن دو رویکرد برای اولویت دادن به کارهای تولید برای سفارش و تولید برای ذخیره وجود دارد. زائر پور و همکاران [59] نیز ساختار تصمیمگیری برای ترکیب استراتژیهای تولید را مورد بررسی قرار داده و با رویهای ترکیبی از رویکردهای ایاچپی و تاپسیس به اتخاذ تصمیم پرداخته است.
مقالات مروری در این بخش در جدول(2-7) خلاصه شدهاند.
جدول SEQ جدول * ARABIC 7 جدول 2-7. مسائل با محدودیت استراتژیهای ترکیبی مدیریت تولیدنویسنده مسئله رویکرد سال شماره ارجاع
یوسف و همکاران 1||Cmax- 2004 24
آدان و وان -- 1998 7
عیوضی و همکاران -- 2009 16
زائرپور و همکاران -AHP,TOPSIS 2009 59
2-6. تابع هدفگسترش مفاهیم تولید به موقع اهمیت زمانهای زودکرد را برای دانشمندان علم زمانبندی بیش از پیش روشن کرده است. پس از بکارگیری موفق این مفاهیم در صنعت و تاثیر قابل توجه آن بر عملکرد تولید و کاهش موجودی انبار تعداد پژوهشهای زمانبندی که به این مسئله توجه نشان داده بودند افزایش چشمگیری یافت. در عمل محصولاتی که زودتر از موعد ساخته میشوند باید به انبار بروند و محصولاتی که دیرتر از موعد تحویل میگردند نیز نارضایتی مشتریان را در پی دارند. از آنجا که بسته به شرایط اهمیت این دو هزینه برای هر کدام از کارها میتواند متفاوت باشد، ضرایب وزنی هزینهها برای هرکار متفاوت تعریف میگردد.
در کنار رشد تحقیقات زمانبندی که درآنها مفهوم تولید به موقع مدنظر قرار گرفته است، پژوهشهایی نیز انجام شده است که با حفظ مفهوم تولید به موقع به سایر هزینههای موجود در سیستم نیز پرداختهاند. در این تحقیقات هزینههایی نظیر عدم پذیرش کارها، هزینههای انبارداری و … نیز در نظر گرفته میشوند.
در این نمونههایی از تحقیقات انجام شده در زمینه تولید جریانی بدون انتظار که در آنها رویکرد تولید به موقع به عنوان تابع هدف در نظر گرفته شده است مرور میشوند.
عرب عامری و سلماسی [10] مسئله زمانبندی تولید جریانی بدون انتظار را با محدودیت زمان نصب وابسته به توالی کارها و با محدودیت مجموع زمانهای زودکرد و دیرکرد وزنی به کمک الگوریتم ترکیبی بهینهسازی تجمعی ذرات و جستجوی ممنوع حل کردند. جولایی و همکاران [29] نیز با حفظ مفهوم تولید به موقع تابع هدفی شامل مجموع وزنی زودکردها و دیرکردها و ضرر ناشی از رد سفارشات جهت رسیدن به بیشینه سود حاصل از پردازش کارها برای مسئله تولید جریانی بدون انتظار تعریف کردند.
در جدول(2-8) پژوهشهای مرور شده در این بخش به اختصار آورده شدهاند.
جدول SEQ جدول * ARABIC 8 جدول 2-8. مسائل سیستم تولید جریانی با تابع هدفهای تولید به موقعنویسنده مسئله رویکرد سال شماره ارجاع
عرب عامری و سلماسی Fm|nwt,sijk|wj'Ej+wj"Tjالگوریتم ترکیبی از بهینهسازس تجمعی ذرات و جستجوی ممنوع 2013 10
جولایی و همکاران FFm|nwt|MAXbenefitالگوریتم ژنتیک 2009 29
2-7. جمعبندیدر این فصل، ابتدا به کمک رویکرد سه نمادی به طبقهبندی مسائل زمانبندی پرداخته شد. پس از آن ادبیات سیستم تولید جریانی منعطف بدون انتظار تشریح گردید. در ادامه فصل جهت مرور ادبیات موضوع مورد بررسی مقالات و پژوهشهای انجام شده به تفکیک محدودیتها و تابع هدف تحقیق مورد بررسی قرار گرفت. با توجه به مطالب عنوان شده در این فصل تحقیق پیش رو از جنبه تابع هدف، کاربرد رویکردهای مدیریت تولید در زمانبندی و بکارگیری مسئله محدودیت ساعات کاری در محیط سیستم تولیدی تولیدی منعطف بدون انتظار نوآوری دارد.
فصل سوممدل ریاضی پیشنهادی3-1. مقدمهرویکردهایی همچون برنامهریزی خطی و غیرخطی، برنامهریزی عدد صحیح و … به عنوان رویکردهای دقیق برای بدست آوردن جواب از توانایی محدودی برخوردارند. با پیچیده شدن مسائل دنیای واقعی این واقعیت بیش از پیش برای دانشمندان روشن گردید که برای حل مسائل جدید به ابزارهایی کارآمدتر نیازمندند. از این رو امروزه تمرکز مطالعاتی از بدست آوردن جواب دقیق توسط این روشها به بدست آوردن جوابهای نزدیک به بهینه به کمک روشهای ابتکاری و فراابتکاری معطوف گردیده است. اگر چه روشهای دقیق امروزه بسیار کمتر مورد استفاده قرار میگیرند اما همچنان به عنوان ابزاری برای اعتبارسنجی روشها و مدلها بسیار سودمندند.
در این فصل، مسئله زمانبندی تولید جریانی منعطف با محدودیت ساعات کاری ماشینآلات و زمانهای نصب وابسته به توالی کارها و نیز با درنظر گرفتن رویکرد مدیریت تولید ترکیبی تولید برای سفارش و تولید برای ذخیره مورد بررسی قرار میگیرد. در ادامه مدل ریاضی ارائه شده برای این مسئله به طور کامل تشریح شده و اعتبارسنجی میگردد.
3-2. تعریف مسئلهمسئله زمانبندی تولید جریانی منعطف با محدودیت ساعات کاری ماشینآلات و زمانهای نصب وابسته به توالی کارها و نیز با درنظر گرفتن رویکرد مدیریت تولید ترکیبی تولید برای سفارش و تولید برای ذخیره به صورت زیر ارائه میگردد:
یک محیط صنعتی با قابلیت تولید N محصول متفاوت و مستقل در نظر گرفته میشود. چیدمان ماشینآلات در این محیط تولیدی به صورت سیستم جریانی منعطف است، به این معنی که حداقل در یکی از ایستگاههای کاری بیش از یک ماشین وجود دارد. ماشینهای موجود در هر ایستگاه کاری کاملا مشابه هستند و هر کدام مقدار زمان مشخصی میتوانند در حال کار باشند و پس از آن از دسترس خارج میشوند. هر سیستم تولیدی با توجه به پیشبینیهای انجام شده براساس فروش قبلی خود سهم مشخصی از بازار را برای خود متصور است. از طرفی سیستم تولیدی ممکن است سفارشاتی را نیز دریافت کند(برای مثال سفارشات صادراتی یا تولید محصول برای یک ارگان مشخص). این سفارشات در زمان خاصی به سیستم تولیدی ارائه شده و موعد تحویل مشخصی دارند. معیار بهینهسازی این مسئله به حداقل رساندن هزینههای ناشی از رد کردن سفارشات، تحویل ناقص سفارشات(به دلیل محدودیت ظرفیت تولید) و هزینههای ناشی از زودکرد و دیرکرد تحویل سفارشات است. برای هر کدام از هزینههای ذکر شده براساس اهمیتی که برای مدیریت دارد ضرایب وزنی مشخصی در نظر گرفته میشود. برای درک بهتر مسئله نمای کلی محیط تولیدی -241304619625شکل SEQ شکل * ARABIC 1 شکل 3-1. نمای کلی مسئله مورد بررسی0شکل SEQ شکل * ARABIC 1 شکل 3-1. نمای کلی مسئله مورد بررسی-2578723158170در شکل(3-1) نشان داده شده است.
3-2-1. مفروضات مسئلهمفروضات زیر بر مسئله مورد بررسی حاکم است:
هر ماشین در هر لحظه تنها توانایی پردازش یک کار را دارد و هر کار در هر ایستگاه تنها باید بر روی یک ماشین پردازش شود.
هر سفارش شامل تعداد مشخصی از هر کدام از محصولات قابل تولید است.
کارهایی که برای ذخیره در انبار و براورده کردن سهم بازار تولید میشوند از لحظه صفر در دسترس خواهند بود و تا پایان افق برنامهریزی برای تکمیل تولید فرصت دارند.
زمانهای پردازش، ضرایب انواع هزینهها، تعداد ماشینهای هر ایستگاه و ظرفیت تولید(مقدار ساعتی که هر ایستگاه در دسترس است) مشخص است.
بیکاری ماشینها مجاز است.
3-3. مدل پیشنهادیدر این بخش، مدل ریاضی عدد صحیح غیرخطی پیشنهادی برای مسئله مورد بحث ارائه میگردد. پیش از ارائه کامل مدل، پارامترهای ورودی، متغیرهای تصمیمگیری، تابع هدف و محدودیتها به طور مجزا تشریح میگردند.
3-3-1. پارامترهای ورودی مسئله:s تعداد ایستگاههای کاری s=1, …,S:k تعداد ماشینهای موجود در هر ایستگاه کاریs. s=1, …,S ، k=1, …,ms:i تعداد سفارشات (برای سهولت در مدلسازی، i=1 مجموع کارهای با رویکرد تولید برای سفارش را نمایندگی میکند) i=1, …, N:j تعداد کارهای (محصولات) قابل تولید در محیط تولیدی j=1, …, J:t شماره هر کار در هر سفارش (sumi مجموع تعداد کارهای هر سفارش)t=1, …, sumi, i=1, …, N
:q محل قرارگیری هر کار در توالی کلی کارها (Z مجموع تعداد کارهای سفارشات پذیرفته شده به علاوه کارهای رویکرد تولید برای ذخیره)q=1, …, Z:Ri زمان در دسترس قرار گرفتن سفارش i (کارهای تولید برای ذخیره از لحظه صفر در دسترس هستند) i=2, …, N:Di موعد تحویل سفارش i به مشتری (کارهای تولید برای ذخیره تا پایان افق برنامهریزی برای تحویل فرصت دارند) i=2, …, N:Wti وزن دیرکرد در تحویل سفارش i به ازای هر واحد زمانی i=2, …, N
:Wei وزن زودکرد در تحویل سفارش i به ازای هر واحد زمانی i=2, …, N
:Wni وزن هزینه ناشی از رد سفارش (کارهای تولید برای ذخیره همیشه پذیرفته شده هستند و رد کردن برای آنها متصور نیست) i=2, …, N
:Wgi وزن هزینه ناشی از تحویل ناقص سفارش i به مشتری به ازای هر کار تحویل نشده (به دلیل محدودیت ساعات کاری ممکن است یک سفارش به طور کامل پردازش نشود، کارهای تولید برای ذخیره هم در صورت تحویل ناکامل توانایی براورده کردن نیاز بازار را ندارند) i=1, …, N
:cas محدودیت زمانی هر ماشین k در ایستگاه کاری s. s=1, …, S:pjs زمان پردازش کار نوع j در ایستگاه کاری s. j=1, …, J , s=1, …,S:hji تعداد کار نوع j در سفارش i. i=1, …, N, j=1, …, J:sjj'sk زمان نصب کار نوع j' هنگامی که این کار دقیقا پس از کار نوع j در ایستگاه کاری s روی ماشین k انجام شود. j,j'=1, …, J, s=1, …,S, k=1, …,ms3-3-2. متغیرهای تصمیمگیری مسئله:xtiq 1 اگر کار شماره t از سفارش i در محل q از توالی کارها قرار بگیرد و 0 در غیر اینصورت. t=1, …, sumi, i=1, …, N, q=1, …, Z:yqsk 1 اگر کار قرار گرفته در موقعیت q از توالی کارها روی ماشین k در ایستگاه s پردازش شود و 0 در غیر اینصورت. q=1, …, Z, , s=1, …,S, k=1, …,ms:vqj 1 اگر کار قرار گرفته در موقعیت q از توالی کارها از نوع j باشد و 0 در غیر اینصورت. q=1, …, Z, j=1, …, J:fi 1 اگر سفارش i پذیرفته شود و 0 در غیر اینصورت. i=1, …, N:stqs زمان شروع کار قرار گرفته در موقعیت q از توالی کارها در ایستگاه کاری s. q=1, …, Z, s=1, …,S:cqs زمان تکمیل کار قرار گرفته در موقعیت q از توالی کارها در ایستگاه کاری s. q=1, …, Z, s=1, …,S:deq زمان تاخیر لازم برای برقراری شرایط پردازش بدون توقف برای کار قرار گرفته در موقعیت q از توالی کارها. q=1, …, Z:avqs زمان در دسترس قرار گرفتن ایستگاه کاری s برای پردازش کار قرار گرفته در موقعیت q توالی کارها. q=1, …, Z, s=1, …,S:gq 1 اگر کار قرار گرفته در موقعیت q از توالی کارها انجام شود و 0 در غیر اینصورت (به دلیل محدودیت ساعات کاری ایستگاهها ممکن است کار انجام نشود). q=1, …, Z3-3-3. تابع هدفminZ=i=2Ntardii× fi×wti+i=2Nearlii ×fi×wei+i=1Nwni×1-fi+i=1Nsumi-nondi×fi×wgiاز آنجا که در صنایع امروزی اهمیت تحویل به موقع محصولات به مشتریان از اهمیت ویژهای برخوردار است، تابع هدف این مسئله با رویکرد تولید به موقع تعیین شده است. در اکثر پژوهشهایی که تاکنون انجام شده است هزینه دیرکرد برای کارهای پردازش شده محاسبه میشود، اما در این تحقیق از آنجا که بستههای سفارش داده شده باید تحویل مشتری شوند، هزینههای مربوطه نیز برای سفارشات محاسبه میشوند. برای یک بسته سفارشی مفروض چهار هزینه متصور است که به شرح زیر هستند.
هزینه دیرکرد: هزینه دیرکرد برای هر سفارش برابر است با بیشینه دیرکرد کارهای آن سفارش ضرب در میزان اهمیت(وزن) دیرکرد آن سفارش. لازم به ذکر است چنانچه سفارش مربوطه پذیرفته شده باشد (fi=1) هزینه دیرکرد برای آن متصور است و در غیر این صورت هزینه رد سفارش که در ادامه خواهد آمد باید محاسبه گردد. به دلیل اینکه موعد تحویل محصولات تولید برای ذخیره پایان افق برنامهریزی است، محاسبه هزینه دیرکرد برای آنها معنی پیدا نمیکند به همین دلیل این هزینه تنها برای سفارشات تولید برای سفارش محاسبه میشود(i=2). عبارت هزینه دیرکرد در تابع هدف به صورت زیر است:
(3-1) i=2Ntardii× fi×wtiهزینه زودکرد: این هزینه نیز مانند هزینه دیرکرد برای بستههای سفارشی پذیرفته شده(fi=1) محاسبه میشود. برای یک بسته سفارشی مفروض مقدار زودکرد برابر است با بیشینه زودکرد هر کدام از کارهای سفارش ضرب در اهمیت(وزن) زودکرد آن سفارش. از آنجا که موعد تحویل محصولات با استراتژی تولید برای ذخیره پایان افق برنامهریزی است برای آنها هزینه زودکرد متصور نیست(i=2). عبارتی که محاسبه هزینه زودکرد را در تابع هدف نمایندگی میکند به صورت زیر است:
(3-2) i=2Nearlii ×fi×weiهزینه رد سفارش: عدم پذیرش سفارش به دلیل از دست دادن سود ناشی از تولید آن برای سیستم تولیدی دارای هزینه است. هزینه رد سفارش برابر است با اهمیت(وزن) آن سفارش. در این بخش وزن سفارش میتواند میزان سود از دست رفته را نمایندگی کند. عبارت مربوط به این هزینه در تابع هدف مطابق رابطه(3-3) است.
(3-3) i=1Nwni×1-fiهزینه تحویل ناقص سفارش: چنانچه یک یا چند کار در سفارشات پذیرفته شده به دلیل محدودیت ساعات کاری ماشینآلات نتوانند پردازش خود را کامل کنند، بسته سفارشی ناقص پردازش میگردد. در چنین شرایطی یا سفارش باید ناقص تحویل شود و یا از موجودی انبار که کالاهای تولید برای ذخیره است برای کامل کردن سفارش استفاده شود که در هر دو حالت هزینههایی را در پی دارد. هزینه تحویل ناقص سفارش به صورت شمارش تعداد کارهای پردازش نشده در یک سفارش پذیرفته شده ضرب در میزان اهمیت(وزن) آن سفارش محاسبه میشود. تعداد کارهای پردازش نشده برای هر سفارش(sumi-nondi) با استفاده از تعداد کارهای پردازش شده هر سفارش که در محدودیتها محاسبه میشود محاسبه میگردد. بدیهی است این هزینه نیز تنها برای سفارشات پذیرفته شده متصور است. عبارت مربوط به هزینه تحویل ناقص در تابع هدف مطابق عبارت(3-4) است.
(3-4) i=1Nsumi-nondi×fi×wgi3-3-4. محدودیتهاj=1Jhji fi≤mscas , s=1,…,Sاین محدودیت تضمین میکند که مجموع زمان پردازش کارهایی که پذیرفته میشوند از مجموع زمان در دسترس در هر ایستگاه بیشتر نباشد.
f1≥1این محدودیت وجود کارهایی که تحت استراتژی تولید برای ذخیره تولید میشوند را در توالی کارهای نهایی تضمین میکند.
sumi=j=1Jhji, i=1,…, Nاین محدودیت مجموع محصولات سفارش داده شده در هر بسته سفارشی را محاسبه میکند.
Z=i=1Nsumi fi, i=1,…,N
این محدودیت تعداد کل کارهایی که در اثر پذیرفته شدن سفارشات باید پردازش شوند را محاسبه میکند.
t=1Zxtiq=1, q=1,…,Z and i=1,…,Nq=1Zxtiq=1, t=1,…,Z and i=1,…,N این مجموعه محدودیتها تخصیص هر کار به یک مکان در توالی و تخصیص هر مکان در توالی به یک کار را تضمین میکنند.
k=1msyqsk=1, q=1,…,Z and s=1, …,Sاین محدودیت تخصیص یک ماشین در هر ایستگاه کاری به هر کار موجود در توالی را تضمین میکند.
deq=maxi=1Nt=1sumiri xqit,avqs-avqs-1,…, avq2-avq1, q=1,…,Zمحاسبه میزان تاخیر در شروع پردازش هر کار در توالی در ایستگاه اول برای تامین شرایط پردازش بدون انتظار توسط این محدودیت انجام میشود. میزان تاخیر لازم برای پردازش بدون انتظار برابر با بیشینه فاصله زمانهای در دسترس برای آن کار در هر دو ایستگاه کاری متوالی است.
st11=deq+avq1stq1=deq+avq1+j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yq1k yq-11k) sjj'1k, q=2,…,Zstqs=cqs-1+ j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yqsk yq-1sk) sjj'sk, s=2,…, S and q=2,…,Zاین مجموعه از محدودیتها زمان شروع پردازش هر کار را در هر ایستگاه کاری را محاسبه میکند. اگر هر دو کار متوالی روی یک ماشین در هر ایستگاه از دو نوع متفاوت باشند زمان نصب به کار دوم تعلق میگیرد.
cqs=stqs+j=1Jvqj pjs, s=1,…,Sاین محدودیت زمان تکمیل پردازش هر کار در هر ایستگاه کاری را تعیین میکند.
avqs=min1≤k≤msmax1≤q≤q'-1cq's yq'sk, s=1,…,S and q=1,…,Zمحاسبه زمان در دسترس قرار گرفتن هر ایستگاه کاری برای هر کار توسط این محدودیت محاسبه میگردد. همانطور که از محدودیت مشخص است زمان در دسترس قرار گرفتن هر ایستگاه کاری برای هر کار برابر است با کمینه زمان در دسترس قرار گرفتن ماشینهای درون آن ایستگاه. زمان در دسترس قرار گرفتن هر ماشین نیز برابر است با بیشینه زمانهای تکمیل کل کارهایی که تاکنون روی آن ماشین پردازش شده است.
tardii=max0, max1≤q≤zt=1zxtiq cqs-di, i=2,…,N and s=Searlii=max0,di-max1≤q≤zt=1zxtiq cqs, i=2,…,N and s=Sاین دو محدودیت میزان دیرکرد و زودکرد را برای هر بسته سفارشی محاسبه میکند. دیرکرد یک سفارش برابر است با بیشینه مقدار دیرکرد هر کدام از کارهای آن سفارش و مقدار زودکرد هر سفارش برابر است با بیشینه زودکرد هر کدام از کارهای آن سفارش.
gq-k=1msyqsk=0 q=1, …, Z , s=Sاین محدودیت انجام شدن یا نشدن هر کار را تعیین میکند. اگر هیچ یک از ماشینهای ایستگاه کاری آخر به کار در موقعیت q در توالی کارها به تخصیص پیدا نکنند، به این معنی است که کار به پایان پردازش خود نرسیده است.
gq-k=1msyqsk=nondi=sumi-t=1sumiq=1Zgqxtiq, i=1, …, N این محدودیت تعداد کارهای انجام شده در هر سفارش را محاسبه میکند.
با توجه به توضیحات ارائه شده مدل ریاضی پیشنهادی به صورت زیر خواهد بود:
minZ=i=2Ntardii× fi×wti+i=2Nearlii ×fi×wei+i=1Nwni×1-fi+i=1Nsumi-nondi×fi×wgi Subject to:
j=1Jhji fi pjs≤mscas, s=1,…,S f1≥1sumi=j=1Jhji, i=1,…, NZ=i=1Nsumi fi, i=1,…,Nt=1Zxtiq=1, q=1,…,Z and i=1,…,N
q=1Zxtiq=1, t=1,…,Z and i=1,…,N k=1msyqsk=1, q=1,…,Z and s=1, …,S deq=maxi=1Nt=1sumiri xqit,avqs-avqs-1,…, avq2-avq1, q=1,…,
st11=deq+avq1stq1=deq+avq1+j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yq1k yq-11k) sjj'1k, q=2,…,Zstqs=cqs-1+ j=1Jj'=1Jq'=1q-1k=1ms(vqj' vq-1j yqsk yq-1sk) sjj'sk, s=2,…, S and q=2,…,Z
cqs=stqs+j=1Jvqj pjs, s=1,…,Savqs=min1≤k≤msmax1≤q≤q'-1cq's yq'sk, s=1,…,S and q=1,…,Ztardii=max0, max1≤q≤zt=1zxtiq cqs-di, i=2,…,N and s=Searlii=max0,di-max1≤q≤zt=1zxtiq cqs, i=2,…,N and s=Sgq-k=1msyqsk=nondi=sumi-t=1sumiq=1Zgqxtiq, i=1, …, N 3-4. اعتبارسنجی مدلاعتبارسنجی مدل گام مهمی در اطمینان از صحت یک مدل ریاضی است. از آنجا که طبق مطالعات پژوهشگر چنین تحقیقی تاکنون انجام نشده است و مدل ارائه شده از چند نظر جدید است لزوم انجام اعتبارسنجی کاملا روشن به نظر میرسد.
اعتبارسنجی به این معنی است که نتایج بدست آمده از حل مدل باید با واقعیت مطابقت داشته باشد. بر این اساس اعتبارسنجی مدل ریاضی ارائه شده در دو مرحله انجام میگردد. مرحله اول اعتبارسنجی مدل به کمک یک مسئله حل شده و مرحله دوم حل یک مسئله تولید شده و بررسی اعتبار مدل.
3-4-1. اعتبارسنجی مدل به کمک مسئله حل شدهدر این بخش تحقیق انجام شده توسط ونگ و لیو [56] که مسئله تولید جریانی بدون انتظار منعطف با دو ایستگاه کاری و تابع هدف بیشینه زمان تکمیل کارها که حاوی حل تعدادی مسئله جهت استفاده سایر پژوهشگران است به عنوان مسئله جهت اعتبارسنجی مدل ارائه شده مدنظر قرار گرفته است.
جهت انجام فرایند اعتبارسنجی لازم است پارامترهای مدل ارائه شده در این تحقیق طوری تعریف شوند که مسئله با نمونه ارائه شده در پروژه - ریسرچونگ و لیو [56] مشابه گردد. بر این اساس، تعداد کارهای موجود در هر سفارش یک تعریف شده است. زمانهای نصب صفر در نظر گرفته شده و نوع کارهای موجود در سفارش متفاوت تعریف شده است. همچنین ظرفیت کاری ماشینآلات نامتناهی تعریف شده و امکان رد سفارش حذف گردیده است. همچنین از آنجا که تابع هدف این پروژه - ریسرچبیشینه زمان تکمیل است، تابع هدف مدل ارائه شده را نیز بیشینه زمان تکمیل سفارشات قرار داده تا نتایج قابل مقایسه باشند. قابل ذکر است که تغییر تابع هدف تاثیری در صحت عملکرد محدودیتها ندارد. تغییرات انجام شده در مدل پیشنهادی به طور خلاصه در جدول(3-1) آمدهاند.
جدول SEQ جدول * ARABIC 9 جدول 3-1. تغییرات اعمال شده در مدل پیشنهادی جهت اعتبارسنجیفاکتور وضعیت اصلی وضعیت تغییر یافته
تابع هدف کمینه هزینهها بیشینه زمان تکمیل کارها
زمان نصب بزرگتر از صفر صفر
تعداد کارهای موجود در سفارش از انواع متفاوت و معمولا بیش از یک کار از انواع متفاوت و یک کار
قابلیت رد سفارش وجود دارد وجود ندارد
ظرفیت کاری ماشینآلات محدود نامحدود
در تحقیق مورد استفاده سیستم تولید جریانی بدون انتظار شامل دو ایستگاه کاری و هر ایستگاه شامل دو ماشین یکسان است. کوچکترین ابعاد مسئله مورد بررسی در این پروژه - ریسرچمسئلهای مشتمل بر ده کار است که بنابر توضیحات ارائه شده در بالا در مدل پیشنهادی ما به صورت ده سفارش که هر کدام شامل یک کار است تعبیر میشوند. زمان پردازش کارها روی ماشین نیز دارای توزیع یکنواخت بین [50 ،1] میباشد بر همین مبنا با استفاده از تابع تولید اعداد تصادفی یکنواخت در نرمافزار متلب اعداد زیر به عنوان زمانهای پردازش تولید شدهاند.
(3-5) pqs=41 7 32 14 48 8 48 48 22 4546 46 5 28 49 49 25 8 46 48این مسئله در نرمافزار لینگو 9 حل شده است که در نتیجه آن توالی سفارشات به صورت q7, q3, q9, q8, q1, q10, q5, q2, q4, q6 و مقدار تابع هدف برابر 326 است. این در حالی است که مقدار تابع هدف در تحقیق مورد استفاده برای این مسئله برابر 292.3 است. این تفاوت حدودا 11% میتواند به دلیل متفاوت بودن مقدار زمانهای پردازش بوده باشد.
3-4-2. اعتبار سنجی مدل به کمک مسئله تولیدیدر این روش، اعتبارسنجی به کمک یک مسئله تولید شده و بررسی درستی عملکرد محدودیتها صورت میگیرد. این روش به عنوان مکملی برای روش قبلی است چرا که در روش قبل به دلیل تفاوت توابع هدف تغییر آن ناگزیر بود. برای انجام این روش دادههای ارائه شده در جدول(3-2) مورد استفاده قرار میگیرند.
جدول SEQ جدول * ARABIC 10 جدول 3-2. دادههای لازم جهت پیادهسازی مدل ریاضیفاکتور مقدار
تعداد سفارش 5
تعداد کارهای موجود در هر سفارش 1
تعداد ایستگاه 2
تعداد ماشین در هر ایستگاه 2
زمانهای پردازش unif [1, 50]زمانهای نصب 0
موعدهای تحویل 50
وزنهای زودکرد و دیرکرد 10
وزن رد سفارش 20
امکان رد سفارش وجود دارد
ظرفیت ماشینآلات نامحدود
لازم به ذکر است که دلیل اصلی کوچک در نظر گرفتن ابعاد مسئله یا حذف فاکتوری همچون محدودیت ظرفیت ماشینآلات تنها به دلیل افزایش چشمگیر زمان حل مسئله در نرمافزار لینگو و امکان نرسیدن به جواب بهینه کلی بوده است و از آنجا که این تغییرات جزیی از دامنه تغییرات ممکن این فاکتورها است تاثیری در اعتبارسنجی مدل نخواهند داشت.
-241304295775شکل SEQ شکل * ARABIC 2 شکل 3-2. گانت چارت جواب بهینه مسئله طراحی شده جهت اعتبارسنجی مدل ریاضی.0شکل SEQ شکل * ARABIC 2 شکل 3-2. گانت چارت جواب بهینه مسئله طراحی شده جهت اعتبارسنجی مدل ریاضی.right10596120مسئله مورد بررسی در این بخش در نرمافزار لینگو 9 حل شد و جواب بهینه برابر 2830 بود. توالی کارها نیز به صورت q2, q3, q5, q1, q4 بدست آمد. جهت اطمینان از درستی عملکرد مدل گانت چارت جواب بهینه در شکل(3-2) رسم شده است.
3-5. تعیین پیچیدگی مسئلهانتخاب روش حل مناسب میتواند در دقت و کیفیت و زمان مورد نیاز برای حل یک مسئله تاثیر قابل توجهی داشته باشد. شاخهای از علوم کامپیوتر با نام نظریه پیچیدگی بر مطالعه این مبحث تمرکز دارد. به طور خلاصه پیچیدگی یک مسئله با میزان محاسبات لازم جهت حل آن ارتباط مستقیم دارد. این بدان معناست که با افزایش ابعاد مسئله طبیعتا زمان حل آن نیز افزایش مییابد. چنانچه زمان حل مسئله نسبت به ابعاد آن با تابعی چندجملهای افزایش یابد، زمان این مسئله را چندجملهای میگویند. چنین مسائلی عمدتا با روشهای دقیق قابل حل هستند.
دسته بزرگتر و مهمتری از مسائل بهینهسازی که عمدتا مسائل زمانبندی نیز در این دسته قرار میگیرند دارای تابع زمانی غیر چندجملهای هستند. چنین مسائلی را در علم پیچیدگی NP-hard مینامند. این دسته از مسائل با روشهای دقیق قابل حل نبوده و لذا از روشهای تقریبی جهت یافتن نزدیکترین جواب به بهینه کلی بهره گرفته میشود. در نتیجه شناخت مسئله از نقطه نظر پیچیدگی آن میتواند بر کیفیت جواب تاثیر مستقیم داشته باشد.
8426456118225شکل SEQ شکل * ARABIC 3 شکل 3-4. سلسله مراتب پیچیدگی در توابع هدف مسائل زمانبندی [6].00شکل SEQ شکل * ARABIC 3 شکل 3-4. سلسله مراتب پیچیدگی در توابع هدف مسائل زمانبندی [6].10096503163570شکل SEQ شکل * ARABIC 4 شکل 3-3. سلسله مراتب پیچیدگی در مسائل کارگاهی زمانبندی [6].00شکل SEQ شکل * ARABIC 4 شکل 3-3. سلسله مراتب پیچیدگی در مسائل کارگاهی زمانبندی [6].center17732300center567841500پیندو [6] در کتاب مفصل خود پیرامون موضوع زمانبندی سلسله مراتب مسائل پیچیدگی در مسائل زمانبندی را در گرافهایی تشریح میکند. این گرافها در شکلهای(3-3) و (3-4) آمدهاند.
همانطور که از این شکلها مشخص است میزان پیچدگی یک مسئله زمانبندی به نحوه چیدمان ماشینآلات و تابع هدف مسئله بستگی مستقیم دارد. نکته قابل تعمل در مسئله پیچیدگی آن است که پس از تشخیص میزان پیچیدگی یک مسئله به کمک این گرافها میتوان این میزان را به حالات خاص این مسائل نیز تعمیم داد. به عنوان مثال مقدار پیچیدگی مسئله 1||Cj که حالت خاصی از مسئله 1||WjCj است را میتوان معادل مقدار پیچیدگی مسئله 1||WjCj دانست. این مسئله را در علم پیچیدگی به صورت 1||Cj∝1||WjCj نشان میدهند.
در این تحقیق مسئله زمانبندی تولید جریانی منعطف بدون انتظار با محدودیت ساعات کاری ماشینآلات، زمان نصب وابسته به توالی کارها و استراتژی ترکیبی تولیید با هدف حداقل سازی هزینهها مورد بررسی قرار میگیرد. راک [45] نشان داد که مسئله تولید جریانی بدون انتظار با تابع هدف بیشینه زمانهای تکمیل NP-hard است. با توجه به نتایج مطرح شده در مورد میزان پیچیدگی مسئله پردازش بدون انتظار به یقین میتوان گفت که مسئله مورد بحث در این تحقیق نیز از میزان پیچیدگی NP-hard برخوردار است لذا حل این مسئله در ابعاد بزرگ را نمیتوان به طور کارایی با روشهای دقیق انجام داد. در فصل آینده روشهای حل کارایی با استفاده از رویکردهای فراابتکاری ارائه میگردند. ولید جریانی منعطف بدون انتظار با محدودیت ساعات کاری ماشین
3-6. جمعبندیدر این فصل، پس از بیان تعریف مسئله مورد بررسی و تشریح ویژگیهای آن، مدل ریاضی عدد صحیح غیر خطی جدیدی برای حل آن ارائه گردید. در ادامه فصل نیز اعتبار مدل ریاضی ارائه شده با استفاده از دو رویکرد سنجیده شد. در پایان فصل نیز دلایلی مبنی بر ناکارامدی روشهای حل دقیق برای مسئله مذکور بیان شده و میزان پیچیدگی آن مورد بررسی قرار گرفت.
فصل چهارمالگوریتمهای فراابتکاری پیشنهادی و نتایج محاسباتی
4-1. مقدمههدف از حل هر مسئله بهینهسازی یافتن بهترین ترکیب ممکن از متغیرهای جواب برای آن مسئله است. مسائل بهینهسازی از منظر ماهیت جواب شدنی برای آنها به دو دسته کلی مسائل پیوسته و مسائل گسسته تقسیم میشوند. مسائل حوزه زمانبندی به عنوان دستهای مهم از مسائل بهینهسازی ترکیبی یکی از شناخته شده ترین مسائل با ساختار گسسته هستند. فاکتورهای جواب این دسته از مسائل باید به صورت گسسته کدگذاری شوند. با توجه به اهمیت مسائل این حوزه تاکنون رویکردهای جواب متنوعی برای حل این مسائل ارائه گردیدهاند. با نگاهی کلی، روشهای حل ارائه شده را میتوان در دو گروه کلی روشهای دقیق و تقریبی جای داد. ساختار رویکردهای دقیق به گونهای است که عملکرد آنها را تنها به حل مسائل با پیچیدگی مشخص و ابعاد کوچک محدود میکند. این رویکردها برای مسائل با ابعاد بزرگ زمانهای حل بسیار ناکارامدی را ارائه میدهند. برهمین اساس، لزوم استفاده از رویکردهای تقریبی در حل مسائل پیچیده بدیهی به نظر میرسد. این رویکردها بسته به نوع آنها میتوانند جوابهای با کیفیت قابل قبول را در زمان منطقی ارائه دهند.
روشهای فراابتکاری دسته مهمی از روشهای تقریبی هستند که عموما با الگوبرداری از رفتار طبیعت تدوین گردیدهاند. وجه تمایز اصلی این روشها با روشهای تقریبی دیگر استفاده از متدهایی برای اجتناب از توقف فرایند جستجو در بهینه محلی است. براساس استراتژیهای بکار رفته در فرایند الگوریتم، امروزه طیف گستردهای از روشهای فراابتکاری به جامعه محققین ارائه شده است که برای مثال میتوان به الگوریتمهایی نظیر ژنتیک، جستجوی ممنوع، مورچگان، تبرید شبیهسازی شده، سیستم ایمنی مصنوعی و … اشاره کرد.
در ادامه فصل پیش رو، الگوریتمهای فراابتکاری ارائه شده به منظور حل مسئله مورد بررسی شامل الگوریتم سیستم ایمنی مصنوعی و تبرید شبیهسازی شده با رویکرد ابری به طور کامل تشریح میگردند. پس از آن با استفاده از رویکرد تنظیم پارامترها به روش تاگوچی الگوریتمهای ارائه شده کالیبره شده و به وسیله آزمایشات طراحی شده مورد سنجش قرار میگیرند. در نهایت نتایج استخراج شده از اجرای آزمایشات تشریح میگردند.
4-2. الگوریتم سیستم ایمنی مصنوعیالگوریتم سیستم ایمنی مصنوعی یکی از جدیدترین الگوریتمهای الگوبرداری شده از رفتارهای طبیعی پدیدهها است. همانگونه که از نام آن هویدا است، این الگوریتم از سیستم ایمنی بدن موجودات زنده و بالاخص پستانداران الگوبرداری شده است. روند کلی الگوریتم بسیار شبیه به الگوریتم ژنتیک بوده اما وجود تفاوتهایی تاثیرگذار باعث برتری نسبی این الگوریتم نسبت به الگوریتم ژنتیک در برخی مسائل بهینهسازی ترکیبی گردیده است.
سیستم ایمنی بدن انسان مجموعهای پیچیده است که وظیفه حفاظت بدن در مقابل خطرات و حفظ سلامتی آن را به عهده دارد [34]. این سیستم این وظیفه را با شناسایی عوامل مضر خارجی به نام پاتوژنها و تلاش جهت نابودسازی آنها انجام میدهد. این عوامل عموما به کمک فاکتور پروتئینی موجود در ساختارشان که آنتیژن نام دارد شناسایی میشوند. پس از شناسایی آنتیژن، بدن فاکتور پروتئینی مناسب جهت نابودسازی آنتیژن مربوطه را که آنتیبادی نام دارد ساخته و به جریان خون میفرستد و از این طریق عامل خارجی مضر را نابود میکند این فرایند را پاسخ اولیه ایمنی مینامند. پس از رفع خطر، بدن بهترین آنتیبادی ساخته شده را در حافظه خود نگه میدارد تا چنانچه این آنتیژن بار دیگر وارد بدن شد بتواند عملکرد سریعتری داشته باشد. دلیل علمی واکسیناسیون نیز همین است.
در کل سیستم ایمنی بدن انسان به زیر شاخه سیستم ایمنی ذاتی و سیستم ایمنی قابل انطباق تقسیم میشود [34]. سیستم ایمنی ذاتی وظیفه دفاع عمومی بدن را برعهده داشته و تنها توانایی مبارزه با بیماریهای مشخصی را دارد، چیزی را به یاد نمیسپارد و عملکرد خود را بهبود نمیبخشد. اما سیستم ایمنی قابل انطباق توانایی مواجهه با عوامل بیماریزای جدید را داشته و در هر زمان بهترین عملکرد خود را در مقابل پاتوژنهای جدید به خاطر میسپارد. لازم به ذکر است که تمام الگوریتمهای ایجاد شده براساس سیستم ایمنی بدن براساس سیستم ایمنی قابل انطباق تدوین شدهاند.
رویه جستجوی بهترین آنتیبادی و نحوه به یاد سپاری آن برای تقریبا تمام عمر در بدن توجه بسیاری از پژوهشگران را جلب کرده است. به همین دلیل الگوریتمهای متعددی که هر کدام از بخشی از فرایند ایمنی الگوبرداری شدهاند در طی سالها ایجاد شده است. در یک تقسیمبندی کلی الگوریتمهای ایمنی ارائه شده را میتوان در سه دسته الگوریتم ایمنی تولید انتخابی، شبکه ایمنی و جستجوی منفی تقسیم کرد. الگوریتم ایمنی مصنوعی با رویکرد تولید انتخابی عموما در مسائل تعیین توالی بهینه و زمانبندی مورد استفاده قرار میگیرد حال آنکه دو رویکرد بعدی عموما برای مسائل تشخیص عوامل مخرب و مسائل خوشهبندی یا جستجوی الگو مورد استفاده قرار میگیرند. در تحقیق پیش رو نیز رویکرد تولید انتخابی الگوریتم ایمنی مصنوعی مورد استفاده قرار گرفته است لذا از این پس عبارت الگوریتم سیستم ایمنی مصنوعی به اختصار به جای عبارت رویکرد تولید انتخابی الگوریتم سیستم ایمنی مصنوعی به کار میرود.
الگوریتم سیستم ایمنی مصنوعی فرایند جستجوی خود را با جامعهای از آنتیبادیهای تصادفی که در واقع نشان دهنده جوابهای شدنی هستند آغاز میکند. در الگوریتم ایمنی مصنوعی آنتیژن تابع هدف را نمایندگی میکند. لذا هر کدام از جوابها از نظر میزان تطابق با تابع هدف مورد ارزیابی قرار میگیرند و در نهایت جوابها براساس میزان تطابقشان با تابع هدف که همان میزان برازندگی در الگوریتم ژنتیک است مرتب میشوند. پس از آن تعدادی مشخص از بهترین جوابها انتخاب شده و براساس رابطهای که بسته به نوع مسئله تعریف میشود، از هر جواب بسته به میزان تطابق آن تکثیر میشود. یعنی هرچه تطابق بیشتر باشد تعداد تکثیر نیز بیشتر میشود. در مرحله بعد هر جواب بسته به میزان تطابق خود تحت عملگر جهش قرار میگیرد، یعنی هر چه تطابق یک جواب بیشتر باشد میزان جهش کمتر خواهد بود. در نهایت میزان تطابق جوابهای جهش یافته بررسی شده و به تعدادی که در مراحل قبل بهترین جوابها برگزیده شده بودند، از بهترین جوابهای جهش یافته برداشته میشود و با همان تعداد از بدترین جوابهای جامعه مرجع جایگزین میگردد. این رویه تا فرارسیدن شروط توقف ادامه مییابد.
الگوریتم سیستم ایمنی مصنوعی به دلیل ساختار خود نقاط قوتی را در مقابل سایر الگوریتمها دارا است. از آنجا که این الگوریتم همزمان دستهای از جوابها را مورد بررسی قرار میدهد توانایی جستجوی همزمان نقاط متفاوتی از فضای حل را دارا میباشد و این مسئله توانایی الگوریتم برای رسیدن به بهینه کلی را افزایش داده و از به دام افتادن الگوریتم در بهینه موضعی جلوگیری میکند. به علاوه از آنجا که این الگوریتم فاقد عملگر تقاطع است در شرایط مساوی سرعت بالاتری نسبت به الگوریتم ژنتیک داشته و نیز از آنجا که عملگرهای بازتولید و جهش نیز در این الگوریتم تابعی از میزان تطابق جواب هستند سرعت همگرایی آن نسبت به الگوریتم ژنتیک بیشتر است.
4-2-1. شمای کلی الگوریتم سیستم ایمنی مصنوعیفرایند اجرای الگوریتم تولید انتخابی سیستم ایمنی مصنوعی مطابق شبه برنامه زیر است:
تولید جامعه اولیه آنتیبادیها(جوابها) به صورت تصادفی.
محاسبه میزان تطابق جوابهای تولید شده با آنتیبادی(تابع هدف) و مرتب کردن جامعه اولیه براساس میزان تطابق جوابها.
انتخاب تعدادی مشخص از بهترین جوابها.
تکثیر جوابهای انتخاب شده براساس میزان تطابق آنها.
اعمال جهش روی جوابهای تکثیر شده.
محاسبه میزان تطابق جوابهای جهش یافته با تابع هدف و مرتبسازی آنها براساس میزان تطابق.
جایگزین کردن تعدادی مشخص از بهترین جوابهای تولید شده با بدترین جوابهای جامعه جاری.

user8327

لغات کلیدی
شبیه ساز میدان مغناطیسی، مگنتورکر ،تجهیزات تست آزمایشگاهی ،حلقه های هلمهولتز ،گشتاور دوقطبی مغناطیسی ،زیرسیستم تعیین و کنترل وضعیت ،شبیه ساز میدان مغناطیسی فضایی ، کنترل اتوماتیک شبیه ساز میدان مغناطیسی
TOC o "1-6" u 1-مقدمه PAGEREF _Toc408530999 h 17
2-مروری بر مدلهای ژئومغناطیسی PAGEREF _Toc408531000 h 19
3-معرفی مدل مغناطیسی جهانی آمریکایی/انگلیسی برای سال 2005-2010 (WMM) PAGEREF _Toc408531001 h 21
1-1تکنیک مدلسازی PAGEREF _Toc408531002 h 21
1-2اطلاعات بدست آمده از داده ها و کنترل کیفیت PAGEREF _Toc408531003 h 28
1-2-1-داده های ماهواره PAGEREF _Toc408531004 h 28
3-1-1-Orsted PAGEREF _Toc408531005 h 30
3-1-1-1-مغناطیس سنج ها PAGEREF _Toc408531006 h 31
3-1-1-2-ابزار جمع آوری داده ها[data products] PAGEREF _Toc408531007 h 31
3-1-2-CHAMP PAGEREF _Toc408531008 h 32
3-1-2-1-مغناطیس سنج ها PAGEREF _Toc408531009 h 32
3-1-2-2-وسایل جمع آوری داده ها PAGEREF _Toc408531010 h 32
3-1-3-SAC-C PAGEREF _Toc408531011 h 34
3-2داده های پایش PAGEREF _Toc408531012 h 34
3-3تامین تجهیزات PAGEREF _Toc408531013 h 35
3-4جمع آوری داده ها و کنترل کیفیت PAGEREF _Toc408531014 h 36
3-5انتخاب داده برای WMM2005 PAGEREF _Toc408531015 h 38
3-6انتخاب و پیش پردازش برای مدل ها PAGEREF _Toc408531016 h 40
3-7انتخاب برای توانایی پیشگویی پیشرو تا 2010 PAGEREF _Toc408531017 h 40
3-8روشهای مدلسازی PAGEREF _Toc408531018 h 41
3-9پیشبینی تغییرات ارضی PAGEREF _Toc408531019 h 41
3-10تکنیکهای وزندهی به دادهها PAGEREF _Toc408531020 h 41
3-11قطب مغناطیسی و محل دوقطبی خارج از مرکز PAGEREF _Toc408531021 h 42
3-12پارامتریسازی مدل PAGEREF _Toc408531022 h 43
3-13ضرایب مدل PAGEREF _Toc408531023 h 46
1-معادلات به کار گرفته شده PAGEREF _Toc408531024 h 52
1-1مؤلفه های شتاب جاذبه را بصورت زیرمی باشد: PAGEREF _Toc408531025 h 52
1-2مدل باد خورشیدی پارکر به صورت زیر محاسبه می گردد. PAGEREF _Toc408531026 h 53
1-3برای محاسبه پارامتر های میدان مغناطیسی، مؤلفههای برداری میدان X'، Y'و Z'در مختصات ژئودزی به صورت ذیل محاسبه میشوند: PAGEREF _Toc408531027 h 55
1-4پارامترهای ناشی از اتمسفر زمین PAGEREF _Toc408531028 h 57
1-میدان مغناطیسی چیست ؟ PAGEREF _Toc408531029 h 63
2-مبانی فیزیکی پیچه هلمهولتز PAGEREF _Toc408531030 h 64
2-1میدان مغناطیسی حلقه PAGEREF _Toc408531031 h 65
2-2پیچه هلمهولتز و میدان مغناطیسی آن PAGEREF _Toc408531032 h 67
2-3ویژگی و کاربردهای حلقه های هلمهولتز PAGEREF _Toc408531033 h 69
2-4تغییرات میدان تولیدی توسط حلقه های هلمهولتز در فضای بین حلقه ها PAGEREF _Toc408531034 h 70
2-4-1-جابجایی در راستای محور حلقه ها PAGEREF _Toc408531035 h 70
2-4-2-جابجایی عمود بر راستای محور حلقه ها : PAGEREF _Toc408531036 h 78
2-4-2-1-نحوه محاسبه مؤلفه های مغناطیسی در یک نقطه از فضا PAGEREF _Toc408531037 h 78
2-4-2-2-میدان تولیدی توسط دوجفت حلقه PAGEREF _Toc408531038 h 93
2-5القاء و القاء متقابل PAGEREF _Toc408531039 h 94
2-6شار میدان مغناطیسی : PAGEREF _Toc408531040 h 96
2-7اصل القاء PAGEREF _Toc408531041 h 98
2-8نیروی محرکه الکتریکی : PAGEREF _Toc408531042 h 98
2-9قانون القاء فارادی PAGEREF _Toc408531043 h 99
2-10قانون لنز PAGEREF _Toc408531044 h 100
2-11پدیده خود القایی و ضریب خود القایی PAGEREF _Toc408531045 h 100
2-12القاء متقابل PAGEREF _Toc408531046 h 101
2-13فرمول نویمن PAGEREF _Toc408531047 h 103
2-14تاریخچه حلقه های هلمهولتز PAGEREF _Toc408531048 h 105

TOC c "تصویر" تصویر 1-1- شمایی از خطوط میدان مغناطیسی زمین PAGEREF _Toc408488972 h 21
تصویر 2- شمای جریان پلاسما در اطراف زمین PAGEREF _Toc408488973 h 23
تصویر 3- نمای ماهواره اورستد PAGEREF _Toc408488974 h 28
تصویر 4-نمای روبروی ماهواره چمپ PAGEREF _Toc408488975 h 30
تصویر 5- ماهواره SAC-C در مدار PAGEREF _Toc408488976 h 32
تصویر 6-مناطق پایش گر در نقاط مختلف زمین PAGEREF _Toc408488977 h 34
تصویر 7- میدان تولیدی ت.سط سیم حامل جریان PAGEREF _Toc408488978 h 62
تصویر 8- میدان در نقطه ای روی محور تک حلقه PAGEREF _Toc408488979 h 64
تصویر 9- حلقه های هلمهولتز PAGEREF _Toc408488980 h 65

TOC h z c "جدول" جدول 1- معرفی مدل های مختلف ژئومغناطیسی و مشخصات آنها PAGEREF _Toc408489035 h 19جدول 2-دامنه تغییرات اجزاء مغناطیسی و GV در سطح زمین PAGEREF _Toc408489036 h 27جدول 3- حل مثال عددی برای مدل شتاب ناشی از میدان جاذبه زمین PAGEREF _Toc408489037 h 52جدول 4- مدل پارامتر های ناشی از میدان مغناطیسی زمین PAGEREF _Toc408489038 h 56جدول 5- مدل پارامتر های ناشی از اتمسفر زمین PAGEREF _Toc408489039 h 58

مقدمه
ماهواره ها ابزار و تجهیزاتی بودند که انسان با دستیابی به آنها توانست به امکانات و توانایی هایی دست یابد که تا آن زمان فقط آنها را در رویا و خیال می دید . در واقع انسان توانست به چشم ها و بازوهایی دست یابد که به وسیله آنها بتواند در محیطهایی حضور یابد که امکان حضور فیزیکی اش در آنها وجود نداشت . به سرعت این تکنولوژی جدید جای خود را در زندگی بشر پیدا کرد و توانست به عاملی تعیین کننده در امور زندگی بشر از فرهنگی و اقتصادی گرفته تا نظامی و سیاسی ، تبدیل شود .
با آغاز به کار اولین ماهواره مباحث جدیدی نیز مطرح شد که اهمیت و ارزشی کمتر از خود ماهواره نداشت . اکتشاف درباره محیط فضا و یافتن عوامل تأثیر گذار بر سامانه های فضایی ، نحوه تأثیر پذیری سامانه های فضایی از این عوامل مؤثر ، چگونگی مقابله و کنترل این عوامل و در صورت امکان استفاده مفید از آنها ، راهکارهای افزایش طول عمر سامانه های فضایی و بالا بردن قابلیت اطمینان آنها ؛ از مهمترین موضوعاتی بودند که ذهن دانشمندان را به خود مشغول کردند . البته علاوه بر جنبه های علمی نمی توان انکار کرد مسائل مادی و هزینه بسیار بالای ساخت یک سامانه فضایی ( و با توجه به شرایط و نیازهای فعلی کشور ما ماهواره ) از مهمترین انگیزه هایی استکه به این مسائل ارزش می بخشید . در اینجا بود که برای نخستین بار بحث آزمایش و تست پیش از پرتاب ماهواره ها ( با دیدی جامع تر سامانه های فضایی ) و شبیه سازی محیط فضا و عوامل تأثیرگذار آن بر ماهواره مطرح شد .از دید اینجانب عوامل تأثیر گذار فضایی را می توان در دو دسته تقسیم بندی کرد ؛ دسته اول عبارتند از عواملی که اساساً ماهیت مادی دارند و بدنه ماهواره در مقابل تأثیر گذاری آنها مانند سدی عمل می کند . ریز اجرام فضایی و شهابها ، ذرات سنگین و پرانرژی حاصل از تابشهای خورشیدی (بادهای خورشیدی ) ، غلظت محیط و بحث اصطکاک و تولید پسا در ارتفاعات پایین از دسته عواملی هستند که تأثیری مادی و اصطلاحاً مکانیکی بر ماهواره می گذارند .
اما دسته دوم عبارتند از عواملی که ماهیت غیر مادی داشته و بدنه ماهواره بر عمق تأثیر آنها بی تأثیر است . در واقع این عوامل کل ماهواره از بدنه گرفته تا زیرسیستمهای داخلی را یکجا تحت تأثیر قرار می دهند . از مهمترین این عوامل میدان گرانش زمین و دیگر اجرام آسمانی و نیز میدان مغناطیسی زمین ( به دلیل اینکه ماهواره در فضای مغناطیسی زمین قرار دارد ) هستند .
هرچند که میدان مغناطیسی به عنوان یکی از تاثیر گذارترین عوامل خارجی در تعیین طول عمر و قابلیت اطمینان ماهواره ها ( تا حدودی دیگر سامانه های فضایی ) در پاسخگویی به نیازهای مأموریتی بسیار مؤثر است اما اطلاعات ما درباره آن بسیار اندک است . حتی ما درباره اینکه آیا در اطراف کرات آسمانی دیگر در منظومه ما و یا در اطراف کرات منظومه های دیگر میدان مغناطیسی وجود دارد یا نه اطلاعات مستدلی نداریم . ولی از آنجاییکه دانشگاهها و مؤسسات تحقیقاتی در دنیا در حال تدوین نقشه مغناطیسی فضا هستند ، جای امید وجود دارد . این در واقع گام آغازین در راه تحقیقات الکترومغناطیس فضایی است که البته از سالها پیش بخش مطالعاتی آن آغاز شده است .
همانطور که بیان شد میدان مغناطیسی یکی از مهمترین عوامل تأثیر گذار بر ماهواره محسوب می شود که به واسطه ماهیت غیر مادی اش تمام اجزاء ماهواره از بارمحموله گرفته تا زیرسیستمهای مختلف را یکجا تحت تأثیر قرار می دهد ؛ به عنوان نمونه میدان مغناطیسی بر اجزاء مخابراتی ماهواره ( چه به عنوان بارمحموله ماهواره های مخابراتی و چه به عنوان زیرسیستم مخابرات) تأثیر گذار است ؛ همین میدان با تغییر خطوط میدان مغناطیسی در داخل موتورهای حالت گاز و اصطلاحاً الکتریکی یا یونی بر میزان تراست و ضربه ویژه قابل استحصال از آنها تأثیر می گذارد ؛ میدانهای مغناطیسی با توان بالا این پتانسیل را دارند که بر دوربینها و سنسورهایی که به عنوان بارمحموله مورد استفاده قرار می گیرند تأثیر گذارده و راندمان کاری آنها را کاهش دهند . از سوی دیگر این میدان مغناطیسی
است که بر ذرات بار دار پر انرژی اثر می کند و خط سیر آنها را مشخص کرده و به آنها انرژی مضاعف می دهد و با انرژی و تکانه بسیار آنها را بر بدنه ماهواره ، آرایه های خورشیدی و دیشها و آنتنها می کوبد و به شدت موجب افت در کارایی آنها و کاهش طول عمر آنها و به دنبال آن کاهش طول عمر ماهواره می شود . برای مثال برای آرایه های سیلیکونی در مدار LEO افت راندمان سالانه به 3.75% می رسد که 2.50% آن ناشی از برخورد ذرات باردار پر انرژی است]2 [.
از سوی دیگر یکی از با سابقه ترین ابزارهای کنترلی ماهواره ها مگنتورکرها هستند . مگنتورکرها با اندرکنش با میدان مغناطیسی زمین این توانایی را دارند تا ماهواره را در راستای دو محور کنترل کرده و یا پایدار کنند و یا از روی چرخهای مومنتومی بار برداری کنند . دوپل مغناطیسی تولیدی برای مگنتورکرها مهمترین و برای کنترل ماهواره تعیین کننده ترین فاکتور است . تاکنون هیچ راه مستقیمی برای تست بزرگی دوپل تولیدی مگنتورکرها ارائه نشده است ]5 [. در این پایان نامه بعد از تأکید بر تمامی تواناییهای شبیه ساز میدان مغناطیسی ، نگاهی ویژه به اندرکنش بین شبیه ساز و مگنتورکر شده و الگوریتم و روشی برای تعیین دوپل تولیدی مگنتورکر مفروض با استفاده از " شبیه ساز میدان مغناطیسی " ارائه شده است .
آنچه ذکر شد دلایلی است که مقوله بررسی میدان مغناطیسی را به مقوله ای ارزشمند و قابل سرمایه گذاری مالی و زمانی تبدیل می کند . در عین حال به مسئله انجام تست و آزمایش اندرکنشهای اجزاء مختلف ماهواره با میدان مغناطیسی ، ارزش و اهمیتی صد چندان می دهد .
اما بدیهی است که برای تست عملکرد اجزاء تحت تأثیر میدان مغناطیسی ، باید بتوانیم میدانی قابل کنترل و در عین حال قابل پیش بینی بسازیم . بنابر آنچه در فصل اول تحت عنوان " ماهیت و ذات میدان مغناطیسی و روابط حاکم بر آن " مورد بحث و بررسی قرار می گیرد ؛ خواهیم دید که میدان مغناطیسی کمیتی برداری و در عین حال بسیار حساس است که با تغییر مکانی جزئی ، اندازه و راستای آن به شدت تغییر می کند و همین مسئله کار با آن را دشوار و در عین حال ظریف می سازد . در علم فیزیک ( در حال حاضر و در دنیای مواد نرمال ) تنها یک وسیله وجود دارد که این توانایی را دارد که میدانی یکنواخت و قابل پیش بینی در محدوده ای کوچک از فضا را تولید کند که " پیچه های هلمهولتز " خوانده می شود . به بیان دیگر چنین می توان گفت که :
برای تست تأثیرگذاری میدان بر ماهواره در وحله اول باید میدانی قابل کنترل و پیش بینی تولید کرد که با توجه به نیاز ما قابل تغییر باشد .
در وحله دوم برای تولید میدانی که در بالا توصیفات آن ذکر شد نیاز است تا پیچه های هلمهولتز ساخته شود .
در واقع بررسی میدان مغناطیسی زمین ، شبیه سازی آن و بررسی تأثیرات آن بر ماهواره نیازهایی بودند که به عنوان مبنای اصلی بحث این پایان نامه مطرح هستند . عواملی که موجب شدند تا عنوان "طراحی و ساخت شبیه ساز میدان مغناطیسی" برای پایان نامه پیش روی شما انتخاب و تصویب شود .

شاید اگر بگویم دو ترم آغازین در مقطع کارشناسی ارشد سخت ترین دوران تحصیلم بوده است گزاف نگفته باشم اما اکنون با تمام وجود می بینم و احساس می کنم که انتخاب اشتباهی نکرده ام .

خط سیر و روال فصول گزارش پایان نامه
در مورد یک کار عملیاتی المانهای مختلفی وارد بحث می شوند که گاه نیاز به بررسی مطالعاتی و یا نیاز به کار عملیاتی و گاه نیاز به هر دو این موارد دارند . در این گزارش نیز چنین نگاهی حاکم است و سعی شده تا تک تک المانهای مؤثر در انجام پروژه تک تک تفکیک شده و بررسی های تئوریک و کارهای عملیاتی انجام شده بر آن به تفصیل شرح داده شوند و در صورت ضرورت تصاویر ، نقشه ها و جداولی نیز به جهت افزایش توانایی انتقال مطالب به کار گرفته شوند . در نهایت نیز تستها و آزمایشاتی که از دستگاه نهایی گرفته شده است ارائه شده است .
در فصل اول با عنوان " ماهیت میدان مغناطیسی و حلقه های هلمهولتز " به بررسی ذات میدان مغناطیسی ، حلقه های هلمهولتز و روابط حاکم بر آنها خواهیم پرداخت در انتهای این فصل شرحی از سیر تاریخی شبیه سازی میدان ارائه خواهد شد . در فصل دوم با عنوان " نشط میدان مغناطیسی در فضا و مگنتورکر " به بررسی روابط گسترش میدان مغناطیسی در فضا و تأثیرات آن بر محیط مادی و اندرکنش میدان با مگنتورکر به عنوان محیطی مادی خواهیم پرداخت . در نهایت نیز به توصیف الگوی حرکتی مگنتورکر تحت تأثیر میدان خارجی خواهیم پرداخت و سعی می کنیم تا رابطه ای برای توصیف حرکت آن استخراج کنیم . فصل سوم با عنوان " سنسور و مدار راه انداز دو المان دیگر شبیه ساز میدان " فصلی است کم حجم که به بررسی و توصیف دو المان اختیاری و قابل انتخاب برای شبیه ساز می پردازد . فصل چهارم با عنوان " فرایند و نقشه های ساخت شبیه ساز میدان مغناطیسی " قلب پایان نامه است که در آن به بررسی مراحل و نقشه های ساخت شبیه ساز خواهیم پرداخت . فصل پنجم تحت عنوان " نتایج تستهای شبیه ساز میدان مغناطیسی " به توصیف نتایج تستهای گسترده ای که برای کالیبراسیون شبیه ساز انجام شده است ؛ می پردازد . در فصل ششم با عنوان " الگوریتم کاری شبیه ساز میدان مغناطیسی " به توصیف روش و ساختار برنامه ای خواهیم پرداخت که بر مبنای آن و با استفاده از دستگاه شبیه ساز میدان مغناطیسی می توان برای اولین بار ، دوپل مغناطیسی مگنتورکر را به شکل مستقیم استخراج کرد. در انتهای این فصل شرح آزمایشی که مگنتورکر نانوساختار NSFe99.99-1 پشت سر گذاشته است و نتایج حاصل از تست آن با استفاده از سامانه شبیه ساز میدان مغناطیسی (سامانه کوثر100) ارائه شده است.
همانطور که گفتیم در فصل پنج نتایج تست "سامانه شبیه ساز میدان مغناطیسی" ارائه شده است. لازم بود تا صحت این نتایج مورد تأیید قرار گیرد و برای این منظور از نرم افزار شبیه ساز Vizimag استفاده شد. در ضمیمه الف، شبیه ساز مذکور و نتایج حاصل از استفاده آن ارائه شده است.

36474401184275400000328422019050فصل اول
00فصل اول

-79565523495مدلهای رایج شبیه سازی
میدان مغناطیسی زمین
00مدلهای رایج شبیه سازی
میدان مغناطیسی زمین

مقدمهیکی پدیده های بسیار مهم که در این بخش بررسی می شود، میدان مغناطیسی زمین است. منشاء به وجود آمدن میدان مغناطیسی زمین سه عامل مهم است. در حدود 99 درصد این عوامل ناشی از میدان های درونی زمین بوده که به صورت خاص شامل مواد موجود در هسته زمین و همچنین مواد مغناطیسی موجود در قسمت های سخت زمین است. تغییرات میدان مغناطیسی زمین بسیار کند و آهسته بوده و 05/0 در صد در سال است، یعنی در هر 100 سال فقط 5 در صد تغییر می یابد .
هر میدان مغناطیسی دارای دو قطب است که قطب های میدان مغناطیسی زمین در سیبری و جنوب استرالیا قرار دارند.مینیمم اندازه میدان مغناطیسی در اطراف استوا بوده که برابر با تسلا و بیشترین اندازه آن نیز در اطراف قطب ها برابر با تسلا است.
بدین ترتیب مشخص می شود که میدان مغناطیسی زمین دارای دو بیشینه در قطب ها و دو کمینه در استوا است.کمترین مقدار میدان مغناطیسی در ناحیه ای محصور بین آمریکای جنوبی، آفریقای جنوبی و قطب جنوب است. توفان های ژئومغناطیسی نیز سبب تغییری برابر در میدان مغناطیسی زمین می شوند. هنگامی که بادهای خورشیدی به سمت سیاره های منظومه شمسی میوزند، میدان مغناطیسی این سیاره ها در برابر باد های خورشیدی عکس العمل نشان می دهد. خطوط میدان مغناطیسی زمین در اثر بادهای خورشیدی در راستای وزش باد متراکم شده و ناحیه وسیع متراکمی را در مقابل آن ها ایجاد می کند که مگنتوسفیر نامیده می شود. ناحیه مگنتوسفیر به صورت ناحیه ای قطره ای شکل در اطراف زمین ایجاد می شود. آثار ناشی از پدیده مگنتوسفیر نیز 1 در صد علل وجود میدان مغناطیسی زمین را شامل می شود.در بحث میدان مغناطیسی زمین، نیاز به شناختن عامل دیگری به نام یونوسفر داریم که در فصول آتی به معرفی مدل مربوطه خواهیم پرداخت. این ناحیه از اهمیت کاربردی خاصی برخوردار بوده زیرا بر امواج رادیویی تاثیر گذار است.

مروری بر مدلهای ژئومغناطیسیدر سال 1600 گیلبرت، شدت میدان مغناطیسی زمین را کشف نمود و در سال 1634، گلیبراند دریافت که این میدان با زمان تغییر میکند. این پدیده در ابتدا در سامانه های ناوبری دریائی و هوائی به کار گرفته شد. در سال 1830 مشاهدات ژئومغناطیسی به طور پیوسته بازبینی شد که گزارش این بررسی ها هر 5-10 سال انجام گرفت. در سالهای 1590 الی 1990 یک ساختار پیوسته کاربردی از مدل میدان مغناطیسی در قالب 365694 مشاهده تهیه گردید.
در 20 سال اخیر مشاهدات ماهواره ها دقت این مطالعات را بالا برده، به صورتی که یک پوشش جهانی درست و اطلاعات کامل میدانی با دقتی معادل 5 تا 10 نانو تسلا تهیه میکنند.
در جدول1 به نمونه هایی از این مدل ها و دامنه کاربرد آنها اشاره می کنیم:
نام مدل دامنه کاربرد درجه مدل ساختار مدل محدودیت سنجش(Km)
NGDC-720 شدت میدان های مگنتوسفریک و میدان های پوسته و اصلی 16 تا720 هارمونیک های کروی 56 الی2500
IGRF اعماق درونی زمین، پوسته، یونوسفر و مگنتوسفر است 13 هارمونیک های کروی تا 700
EMAG3 نقشه مغناطیسی دیجیتالی جهانی - اطلاعات ماهواره ها و زیردریاییها و نمونه گیری های مغناطیس زمینی ارتفاع 5
EEJM1 محاسبه جریان الکتریکی قوی در طول استوائی و در منطقه E لایه یونوسفر - هارمونیک های کروی -
MF6و
MF5 تعیین مسیر مغناطیسی اقیانوس-تخمین عمر پوسته های اقیانوسی 120 هارمونیک های کروی تا 333
POMME4 شدت میدان های اصلی زمین 720 ترکیبی از مدل های MF5 و NGDC-720 1000
WMM شدت میدان های اصلی زمین 12 هارمونیک های کروی تا 700
جدول SEQ جدول * ARABIC 1- معرفی مدل های مختلف ژئومغناطیسی و مشخصات آنهادر بخش بعد به مدل مغناطیسی جهانی (WMM) می پردازیم:

معرفی مدل مغناطیسی جهانی آمریکایی/انگلیسی برای سال 2005-2010 (WMM)این مدل مشتمل بر یک بررسی کامل از داده های مورد استفاده، تکنیک های مدلسازی به کار رفته و نتایج بدست آمده در تولید مدل مغناطیسی جهانی(WMM) برای سال 2005 است. این مدل که تا سال 2010 معتبر است، برای استفاده در سیستم های جستجوی هوایی و دریایی استفاده می شود. WMM مدلی از میدان مغناطیسی اصلی زمین است یعنی همان قسمت از میدان که در هسته زمین تولید می شود.
مدل مغناطیس جهانی یک محصول از آژانس زمین و فضای ملیNGA ایالات متحده است. WMM توسط مرکز داده های زمین فیزیک ملی NGDC ایالات متحده و سرویس زمین شناسی بریتانیا BGS به کمک اطالاعات و سرمایه گذاری NGA ایالات متحده و آژانس تصویر نگاری جغرافیایی وزارت دفاع DGIA بریتانیا تولید شده است.
مدل مغناطیسی جهانی، مدل استاندارد مورد قبول در سازمان دفاع ایالات متحده، وزارت دفاع بریتانیا، سازمان پیمان آتلانتیک شمالیNATO)) و استاندارد مورد استفاده در سیستم های ناوبری و تعیین وضعیت اداره آبنگاری جهان (WHO) است. این مدل در سیستم های ناوبری عمرانی نیز به صورت گسترده استفاده می شود.
تکنیک مدلسازیمیدان مغناطیسی زمین،B ، یک مقدار برداری است که با توجه به مکانr و زمان t تغییر می کند. آن میدان مغناطیسی زمین که توسط یک سنسور مغناطیسی بر روی زمین و یا بالای سطح زمین اندازه- گیری می شود، در واقعیت یک ترکیب از میدان های مغناطیسی مختلف است که توسط چندین منبع مختلف تولید شده است. این میدان ها بر روی هم می افتند و از طریق فرایند القا با هم اندرکنش دارند. اهم این منابع ژئومغناطیسی عبارتند از:
الف) میدان اصلی(تصویر1-1)، که در لایه بیرونی هسته مذاب و هادی زمین تولید می شود.Bm
ب) میدان پوسته ای ناشی از منتلِ (قشر زیر پوسته و حول هسته زمین) یا بالای زمین.Bc
ج) میدان ترکیبی مزاحم ناشی از جریانهای الکتریکی که در ارتفاع بالای جو و مگنتوسفیر جاری بوده و باعث القای جریانهای الکتریکی در زمین و دریا می شوند.Bd
بدینسان، میدان مغناطیسی مورد بحث به صورت حاصل جمع این میدانها خواهد شد.
(1-1) Br,t=Bmr,t+Bcr,t+Bdr,tBm قسمت دائم میدان است، که 95% از کل قدرت میدان را در سطح زمین به خود اختصاص می دهد. تغییرات مستقل تغیییر آرام در زمان Bm است. میدان ناشی از صخره های کروستال مغناطیسیBc، نسبت به فضا تغییر میکند ولی با توجه به مقیاس زمانی که در اینجا در نظر گرفته می شود، نسبت به زمان ثابت فرض می شود.

تصویر SEQ تصویر * ARABIC 1-1- شمایی از خطوط میدان مغناطیسی زمینبا توجه به شکل1-1 میدان مغناطیسی اصلی ناشی از جریانهای مذاب در لایه بیرونی هسته.خطوط میدان تقریباً غیر قطبی شده، بالای سطح زمین، در جنوبی ترین قسمت همیوسفر به سمت بیرون و در شمالی ترین قسمت آن به سمت داخل هستند.
Bc از نظر مقدار غالباً خیلی کوچکتر ازBm است. میدان کروستال نسبت به مقیاس های زمانی مورد نظر در این مطالعه، ثابت است. میدان ناشی از جریانهای یونوسفر و مگنتوسفیر و جریانهای القایی منتجه آنها در منتل و کراست زمین،Bd، هم نسبت به مکان و هم نسبت به زمان تغییر می کند. WMM فقط میدان مغناطیسی اصلی زمین را نشان می دهدBm)). برای ایجادکردن یک مدل دقیق از میدان مغناطیسی اصلی، لازم است که اطلاعات کافی با یک پوشش جهانی مناسب و حداقل سطح اغتشاشات در دست داشت. مجموعه اطلاعات ماهواره دنیش اورستد و جرمن چمپاین نیازمندیها را تامین می کند. هر دو ماهواره اطلاعات برداری و اسکالر دارای کیفیت بالایی را در تمام طول ها و عرض های جغرافیایی تامین می کنند. اما این عمل در طول کل دوره های زمانی مورد نیاز برای مدلسازی انجام نمی گیرد. بر این اساس این اطلاعات ماهواره ای با اطلاعات متوسط ساعتی از پایش زمینی که تقریباً در تمام بازه زمانی مورد دلخواه به صورت پیوسته در دسترس است، دائماً افزایش می یابد. هرچند که فضای پوشش ضعیفی بدست دهد. بدینسان اطلاعات بدست آمده از پایش، قیود با ارزشی را برای زمان تغییر میدان مغناطیسی زمین فراهم می کنند. استفاده همزمان از اطلاعات بدست آمده از پایش زمینی و همچنین اطلاعات دریافتی از ماهواره، یک مجموعه اطلاعات دارای کیفیت قابل قبول برای مدلسازی رفتار میدان مغناطیسی اصلی نسبت به زمان و مکان برای ما تامین می کند.
Bc دارای تغییرات فضایی در دامنه چندین متر تا چندین هزار کیلومتر است و نمی توان آن را با مدل های هارمونیک کروی دارای درجه پایین، به طور کامل مدل کرد. بر همین اساس، WMM شامل تاثیر هم مرز کراستنیست جز برای آن قسمت با طول موج بسیار بالا.Bc عموماً در دریا کوچکتر از خشکی است و با افزایش ارتفاع، کاهش می یابد. مغناطیسی شدن صخره در اثرBc، می تواند یا به صورت القایی(بوسیله میدان مغناطیسی اصلی) یا دائمی و یا یک ترکیب از هر دو باشد.
اصل این پدیده این است که جو در نور روز در ارتفاع های 100-130 کیلومتر ، در اثر تشعشع خورشید یونیزه شده و توسط باد و جزر و مد در میدان اصلی زمین به حرکت در می آید و بدینسان شرایط لازم برای فعالیت یک دینام (حرکت یک هادی در یک میدان مغناطیسی) فراهم می شود. دیگر تغییرات روزانه و سالیانه، در اثر چرخش زمین در میدان مگنتوسفر خارجیدر یک مرجع خورشید آهنگ ایجاد می شود. تغییرات بی قاعده ناشی از توفان های مغناطیسی و ریز توفانها است. توفانهای مغناطیسی در حالت کلی دارای سه فاز هستند: فاز اولیه – اغلب همراه با یک شروع ناگهانی و افزایش میدان افقی در عرض های جغرافیایی میانی -یک فاز اصلی و یک فاز احیاء. فاز اصلی حاوی یک تشدید از جریان حلقه(شکل1-2) از صفحه پلاسما است.

تصویر SEQ تصویر * ARABIC 2- شمای جریان پلاسما در اطراف زمیندر شکل1-2 سیستم جریان مگنتوسفری(قرمز) یک میدان مغناطیسی تقریبا یکنواخت، نزدیک به زمین تولید می کند. جریانهای همخط با میدان (زرد)، جریانهای مگنتوسفری را با جریانهای یونوسفر نزدیک زمین جفت می کنند. [افتر کیولسون و راسل 1995]
در طول فاز احیاء، جریان حلقه به حالت نرمال در مدت چند روز و ریز توفانهای زیر مجاور مرتبط باز می گردد. طوفان مغناطیسی و اثرات ریز توفانها در عرض جغرافیایی بزرگ مغناطیس زمین عموماً شدیدتر هستند. چرا که در آنجا، منطقه یونیزه قسمتهای بالایی جو(یونوسفر)توسط جریانهای هم خط میدان، با مگنتوسفیر جفت شده اند و در نتیجه بشدت از میدان مغناطیسی درون سیاره ای و سیستم های جریان در دنباله مغناطیسی تاثیر می پذیرند. هم تغییرات میدان مزاحم با قاعده و هم بی قاعده، هر دو با فصل و چرخه فعالیت مغناطیسی خورشید مدوله می شوند. میدان مزاحم اولیه اغلب به عنوان میدان خارجی شناخته می شود، چراکه منابع اصلی آن-یونوسفر و مگنتوسفر-خارج از سطح زمین که اندازه گیریهای مغناطیس زمین به صورت سنتی در آن انجام می شود، هستند. با اینحال این جمله می تواند گمراه کننده باشد و در هنگام استفاده از داده های ماهواره ای از آن صرفنظر می کنیم. چرا که یونوسفر پایین تر از ارتفاعی قرار دارد که این اطلاعات می آیند و بر همین اساس به صورت کامل در بطن این سطح پایش قرار گرفته است. برای اطلاعات بیشتر در مورد کراستال و میدانهای مزاحم (و اطلاعات کلی راجع به مغناطیس زمین) مریل و همکاران 1996 و پارکینسون1983 را ببینید.
بردار میدان مغناطیسی زمین B با 7 جزء مشخص می شود. این اجزاء عبارتند از:
– مولفه های قائمX (با شدت شمالی )
Y (با شدت شرقی)
Z (شدت عمودی-مثبت به سمت پایین)
F شدت کل، Hشدت افقی
I شیب مغناطیسی (زاویه میل، زاویه بین صفحه افقی و بردار میدان-مثبت اندازه گیری به سمت پایین)
D انحراف مغناطیسی(زاویه انحراف، زاویه افقی بین شمال حقیقی و بردار میدان- راستای مثبت اندازه گیری به سمت شرق).
GV، تغییرات شبکه
را می توان از روی مولفه های قائم با استفاده از رابطه های 1-16به دست آورد. جدول 2دامنه مقادیر مورد انتظار برای مولفه های مغناطیسی و GV در سطح زمین را نشان می دهد.
WMM برای 2005 تا 2010 یک مدل از میدان اصلی کروی-هارمونیک با درجه و مرتبه 12 برای 2005 را با یک مدل متغیر پیشگوی مستقل کروی-هارمونیک با درجه و مرتبه 8 برای دوره 2005 تا 2010 مقایسه می کند.
مدل برنامه کامپیوتری در نظر گرفته شده، مولفه های X،Y ،Z ،F ،D ، I،H و GV در مختصات زمین شناختیرا محاسبه می کند.
دامنه در سطح زمین
واحد Max Min نام جانشین نام جزء
nT 42،000 17،000- شدت شمالی مولفه شمالی X
nT 18،000 18،000- شدت شرقی مولفه شرقی Y
nT 61،000 67،000- مولفه پایین Z
nT 42،000 0 کل میدان شدت افقی H
nT 67،000 22،000 شیب مغناطیسی شدت کل F
درجه 90 90- تغییرات مغناطیسی زاویه میل I
درجه 180 180- انحراف مغناطیسی D
درجه 180 180- تغییرات مغناطیسی شبکه تغییرات شبکه GV
جدول SEQ جدول * ARABIC 2-دامنه تغییرات اجزاء مغناطیسی و GV در سطح زمیناطلاعات بدست آمده از داده ها و کنترل کیفیتداده های ماهوارهاساسی ترین مشخصه داده های ماهواره پوشش جهانی آنها است که غالباً در یک بازه نسبتاً کوچک زمانی بدست می آید. زاویه اینکلینیشن مدار (زاویه بین صفحه مداری مسیر گردش ماهواره و صفحه استوای زمین) دامنه طول جغرافیایی تحت پوشش را نشان می دهد. یک زاویه 90 درجه، پوشش 100% به دست می دهد. یک زاویه کمی کمتر یا بیشتر از 90 درجه، در مناطق کوچکی حول قطبهای جغرافیایی، فواصلی را ایجاد می کند که هیچ پوشش اطلاعاتی ندارد. مشخصه مهم دیگر داده های ماهواره این است که میدان کراستال به علت فاصله ماهواره از پوسته زمین، به شدت ضعیف شده است.
یک ماهواره با زاویه میل بالا نسبت به زمان وضعی در حالی که زمین زیر آن می چرخد، ثبوت کمتر و یا بیشتری دارد. بدینسان در مدت 24 ساعت، یک تصویر خام از زمین به دست می دهد. در این مدت زمان، ماهواره حدود 15 دور حول مدارش می گردد. با یک فاصله طولی در حدود 24 درجه. یک نقص این مدار خورشید آهنگ، این است که کل پایش در شب در یک عرض جغرافیاییمورد نظر، برای یک دوره زمانی طولانی، تقریباً زمان وضعی مشابهی دارد. در نتیجه، مدلسازی میدان های خارجی که وابسته به زمان وضعی می باشد، از روی یک چنین داده هایی می تواند مشکل باشد. ماهوارۀ مگ ست، که به مدت 7 ماه در زمستان 1979/1980 یک نقشه برداری (مساحی) دقیق بردار مغناطیسی انجام داد، یک مثال از یک مدار کاملاً خورشید آهنگ با نقص و کمبود زمان وضعی مشابه آنچه گفته شد، است. به صورت مشابه، ماهوارهSAC-C بر روی یک مدار ثابت ظهر/نیمروز قرار دارد. در حالیکه اورستد و چمپ به آرامی در زمان وضعی حرکت آرام می شوند.
حرکت آرام زمان وضعی وابسته به زاویه میل مدار است. که معمولاً به صورتی انتخاب می شود که از تضریب فرکانس های سالیانه جلوگیری کند تا قادر به تفکیک اثر هر یک از میدان مغناطیسی خارجی وابسته به سال و وابسته به زمان وضعی باشد. چون ارتباط بین ستاره نگار و مغناطیس سنج برداری درSAC-Cدارای خطاست، فقط داده های اورستد و چمپ برای تولید WMM2005 استفاده شده اند.
در ذیل به معرفی این ماهواره ها و نحوه عملکرد آنها اشاره می کنیم.
Orstedماهواره دانمارکی اورستد ماهواره ای است که برای مدل سازی میدان مغناطیسی زمین اختصاص داده شده است و داده ها را با کیفیت بالا جمع آوری و ارسال می کند و نقصی در عملکرد آن مشاهده نشدهاست.

تصویر SEQ تصویر * ARABIC 3- نمای ماهواره اورستدمغناطیس سنج هادر ساکت ترین موقعیت، نوک بوم 8 متری، مغناطیس متر اورهویزر(OVM) شدت میدان مغناطیسی را اندازه می گیرد(بدون وابستگی به راستا) و تا نیم تسلا دقت دارد. کاربرد اصلی آن، کالیبراسیون دقیق(مطلق) مقادیر اندازه گیری شده توسط ابزار CSC (سیم پیچ کروی فشرده) است. برای جلوگیری از تداخل جزئی مغناطیس مترها، در فاصله معینی از OVM، بردار میدان مغناطیسی، توسط یک مغناطیس سنج حساس CSC اندازه گیری میشود و شدت و راستا و راستای آن تعیین میگردد. این وسیله تا بازه های زمانی چند روزه تا حدود 5/0 نانو تسلا پایدار است.
ابزار جمع آوری داده ها[data products]ابزار جمع آوری داده ها برای مدلسازی میدان اصلی عبارتند ازMAG-F برای اندازه گیری شدت میدان (مقادیر اسکالر) و MAG-L برای میدان برداری.

CHAMPماهواره کوچک تحقیقاتی چمپ یک ماهواره آلمانی با ماموریت بهبود مدلهای میدان مغناطیسی و جاذبه زمین می باشد. در ابتدا ماموریت برای 5 سال در نظر گرفته شده بود ولی تا سال 2008 تمدید شد. مدار چمپ دوبار برای طولانی تر کردن مدت ماموریت، افزایش داده شده است.
ابزار مغناطیسی چمپ بسیار مشابه با ابزار اورستد است. چمپ همان ابزار مغناطیس سنج برداری و اسکالر را حمل میکند.
مغناطیس سنج هادر فاصله چهار متری از سر بوم، یک مغناطیس سنج اورهیزر با دقت پروتن یکبار در هر ثانیه،کل شدت میدان مغناطیسی را اندازه می گیرد. این وسیله، دارای دقت مطلق 5/0 نانو تسلا است.

تصویر SEQ تصویر * ARABIC 4-نمای روبروی ماهواره چمپوسایل جمع آوری داده هاوسایل علمی استاندارد چمپ از سطح 0 تا سطح 4 شماره بندی شده اند. بسته به میزان پیش پردازش که توسط آنها بر روی داده های اصلی انجام می شود، تجهیزات علمی از ابزار سطح 2 شروع می شوند که با مدارهای دقیق کالیبره، نشانه گذاری و ترکیب شده اند و به عنوان فایل های روزانه درCDF (فرمت داده های روزانه)ذخیره شده اند. تجهیزات سطح 3 آخرین اطلاعات تجزیه و تحلیل شده، اصلاح شده و کالیبره شده را مقایسه می کند.

SAC-Cفضاپیمای SAC-C آرژانتین، برای مطالعه ساختار و دینامیک جو زمین، یونوسفر و میدان مغناطیسی زمین طراحی شده بود.

تصویر SEQ تصویر * ARABIC 5- ماهواره SAC-C در مدارمغناطیس سنج برداری و ستاره نگار بسیار با نمونه های به کار رفته در اورستد شبیه هستند. داده های رسیده از این ماهواره خیلی مفید هستند چونSAC-C در یک مدار زمانی موضعی ثابت قرار گرفته است. و تکمیل کننده حرکت آرام مدارهای اورستد وچمپ می باشد. بدلیل عدم وجود کالیبراسیون دقیق، از داده های SAC-C نمی توان برایWMM2005 استفاده کرد.
داده های پایشیکی از مشخصه های اصلی پایش، پوشش زمانی طولانی و پیوسته آن در زمان، در منطقه ای که قرار است WMM استفاده شود، است. این بدین معنی است که پیش بینی میدان مغناطیسی برای سالهای متمادی در آینده چنان که مورد نیاز WMM باشد، مقدور است و اینکه تغییرات با قاعده و بی قاعده در میدان خارجی می تواند دسته بندی و اثر آنها در WMM به حداقل رسانده شود. توزیع فضایی پایش به طور اعم توسط موقعیت مورد نظر و با توجه به تبحر محلی، بودجه، تامین انرژی و وقتهای پراکنده بدست آمده است و در برخی از موقعیت ها، تا حد منطقی نسبت به زمان ثابت است.
تامین تجهیزاتسه نوع تجهیزات در یک پایش وجود دارد. اولین گزینه متغیر سنج ها را مقایسه می کند که اندازه گیری های پیوسته از بردار مغناطیسی میدان زمین انجام می دهد. هم متغیر مترهای دیجیتال و هم آنالوگ، هر دو نیاز به محیط کنترل شده دمایی و سکوهای کاملاً ثابت دارند. ولی می تواند عموماً بدون دخالت دست کار کند. عادی ترین و ساده ترین نوع متغیر مترهای امروزی، مغناطیس متر سه محوره است. دومین گزینه، شامل ابزار دقیق است که می توانند از میدان مغناطیسی زمین بر مبنای واحد های پایه ای فیزیکی دقیق و یا ثابت های فیزیکی عمومی، اندازه گیری نمایند.
ساده ترین نوع ابزار دقیق، شاردروازه های اندازه گیری زاویه است. برای اندازه گیری D و I و مغناطیس مترهای با دقت پروتون برای اندازه گیریF.
در ابزار اول، واحد اندازه گیری زاویه است. برای تعیین این زوایا از سنسور شار ورودی که بر روی تلسکوپ یک زاویه سنج غیر مغناطیسی نصب شده است، استفاده می شود تا زمان عمود شدن آن بر بردار میدان مغناطیسی باشد ردیابی گردد.

تصویر SEQ تصویر * ARABIC 6-مناطق پایش گر در نقاط مختلف زمینبرای تعیین D,I شمال واقعی با مراجعه به یک علامت ثابت در یک ارتفاع مشخص تعیین می شود. این کار با پایش نجومی انجام می گیرد. اندازه گیری توسط یک شاردروازه زاویه سنج تنها به صورت دستی انجام می گیرد. در حالیکه، یک مغناطیس متر پروتونی می تواند به صورت خودکارکار کند.
سومین گزینه مقادیر اندازه گیری شده نیمه دقیق را مقایسه می کند. این ها ابزار هایی هستند که انحراف از یک میدان که به صورت با قاعده و با استفاده از یک ابزار دقیق تعیین شده اند.
جمع آوری داده ها و کنترل کیفیتBGSو NGDCاطلاعات و داده های پایش را از طریق مشارکت فعالانه خود در سیستم مرکزی دادههای دنیا جمعآوری می کند .
آنها اطلاعات و داده های مناسب برای مدلسازی میدان مغناطیسی را نگه می دارند. با سازمانهایی که داده های پایش مغناطیسی را به کار می برند در تماس اند و با سایر WDC ها همکاری دارند.
هر سال BGS درخواست خود راجع به دریافت آخرین داده ها و سایر اطلاعات وابسته را به همه سازمانهایی که در حوزه پایش دادهها کار میکنند میفرستد. WDC ها در ادینبورگ BGS و بولدرNGDC مقادیر متوسط سالیانه یکسانی را برآورد می کنند.WDC ها در کپنهاگ و بولدر نیز مقادیر متوسط ساعتی یکسانی را بر آورد می کنند. مقادیر متوسط ساعتی که برای WMM استفاده می شوند، از سایت WDC کپنهاگن دریافت می شوند.
BGS نیز فعالانه داده های پایش جهانی را از طریق مشارکت خود در اینترمگنت (بین مغناطیسی) جمع آوری می کند. کار اینتر مگنت ایجاد یک شبکه جهانی از پایش گره های مغناطیسی مرتبط به منظور هماهنگ کردن مشخصات استاندارد مدرن برای تجهیزات اندازه گیری و ثبت و ضبط داده ها است. اینکه بتواند از این طریق تبادل داده ها را تسهیل کرده و تولید ابزار مغناطیس سنج زمین را به زمان واقعی نزدیک کند.
کیفیت داده ای که یک پایشگر تولید می کند، بستگی به مسئولیت پذیری اپراتور دارد. مهمترین جنبه مدلسازی جهانی پایداری خطوط پایه است. یک خط پایه عبارت است از اختلاف بین داده های متغیر متری کالیبره شده، و پایش های دقیق. یک خط پایه با نقاط بسیار، پراکندگی پایین، حرکت آرام و جابجایی کم نشانه ای از یک کیفیت عالی است. نقشه های خطوط پایه برای پایش های اینتر مگنت بر رویCD های سالیانه ای از داده های تعیین شده آورده شده اند. اطمینان از کیفیت و کنترل اندازه ها، به غیر از آنچه که توسط کاربر پایش گری انجام می گیرد، توسط اینتر مگنت از طریق برنامه استانداردسازی پایشگری آن انجام می گیرد. مراکز داده های جهانی، و با شرکت بسیاری از کاربران پایشگر در کارگاه های پایشگری بین المللی مرتبط با مغناطیس زمین آخرین پروسه کنترل کیفیت پایش از اجرای WMM توسط BGS انجام می گیرد. برای متوسط های ساعتی، این عمل شامل رسم کلیه داده ها برای تشخیص خطا های توپوگرافیک و پرش ها و رسم اختلاف بین داده ها و مدل های جهانی اولیه برای تشخیص حرکت های آرام است.
انتخاب داده برای WMM2005WMM میدان اصلی (Bm) و تغییرات آرام آن با زمان را مدل می کند (تغییرات سکیولار برای 2005 تا 2010). با این وجود، میدان مغناطیسی زمین آنچنان که بر روی سطح زمین اندازه گیری می شود و یا در ماهواره ، عرض جغرافیایی یک ترکیب از چندین میدان مغناطیسی است. ریسک بایاس کردن مدل Bm بسیاری از میدانهای تولید شده در خارج از زمین بسیار متغیر است و نسبت به زمان و مدلسازی آنها مشکل است. پروسه انتخاب داده ها از این رو به منظور کمینه کردن سهم این میدان ها و اثرت القا شده آنها در زمین است. سه گزینه استاندارد وجود دارد:
1- اطلاعات فقط در نیمه شب زمین انتخاب شده اند
2- داده فقط در دوره های آرام مغناطیسی انتخاب شده است
3-فقط داده های اسکالر در عرض های جغرافیایی بالا انتخاب شده اند.
اولین استاندارد برای کمینه کردن توزیع سهم میدان مغناطیسی تولید شده در یونوسفر بسیار موثر است. چون هدایت یونوسفر تنها در نیمه روز زمین بالا است. دوره های آرام مغناطیسی شامل آن بازه های زمانی است که میدانهای خارجی به شدت ضعیف هستند و زمانیکه آنها نسبت به زمان تغییرات اضافی ندارند. شناخت دوره های آرام مبتنی بر اندیس های DST واست. (محاسبه از داده های پایشگری) از قدرت و راستای اندازه گیری شده میدان مغناطیسی درون سیاره ای( IMF ) و سرعت بادهای خورشیدی خواهد بود. داده های اسکالر در ارتفاع بالا انتخاب شده است تا اثرات سیستم های جریانی موجود را در این مناطق به کمترین مقدار ممکن برساند؛ این مناطق به نوبه خود باعث تولید نویز بسیار زیادی در داده های برداری می شوند.
اندیسkp صفحه ای بر مبنای اندیس K است. یک اندیس موضعی از دامنه ای سه ساعتی در فعالیت مغناطیسی دو مولفه افقی میدان x,y نسبت به یک منحنی مفروض و روز آرام برای پایش مغناطیس زمین درجه اغتشاشات موضعی با اندازه گیری در بازه های زمانی 3 ساعته برای بسیاری از مولفه های میدان مغناطیسی دچار اغتشاش شده انجام می گیرد. سپس این دامنه، با استفاده از یک محور لگاریتمی شده که متعلق به وضعیت معلوم است، به یک اندیس K موضعی تبدیل می شود. این کار تلاشی برای نرمال کردن فرکانس حدوث اغتشاشات با اندازههای مختلف است. اندیس Kp سه ساعته (میانگین مقدار K از 13 مورد انتخاب شده از میان مشاهدات ایستگاههای لرویک، اسکدالمیور و هارتلند) که در مقیاس سه تایی ارائه شدهاست (28 مقدار).
ذرات بارداری که توسط میدان مغناطیسی زمین در حرکت های آرام مگنتوسفر حول زمین در فاصلهای معادل 3 تا 8 برابر شعاع زمین به دام افتاده اند، یک حلقه جریان الکتریکی در راستای غرب ایجاد می کنند. که میدان آن با میدان مغناطیسی اصلی زمین مخالفت می کند. قدرت این میدان از مرتبه 10 هاnT در دوره های زمانی آرام و چندین صد nT در زمان بادهای مغناطیسی است. جریان وقفه مغناطیسی، دم و حلقه جزئی موجب اغتشاشات اضافی می شوند و باعث عدم تقارن در میدان می شوند که در مدت طوفانهای مغناطیسی افزایش یافته اند. قسمت متقارن این میدان مزاحم مرکب توسط DST بررسی شده است. زمان طوفان مزاحم برای 4 مورد پایش و اندازه گیری در ارتفاع پایین به دست آمده است.
از آنجایی که WMM با اهداف تحقیقاتی مورد استفاده قرار میگیرد، باید بتواند به صورت دقیق مقادیر میدان مغناطیسی را برای یک بازه زمانی 5 ساله محاسبه کند. بر این اساس، توانایی در محاسبه تغییرات ارضی، خیلی مهم است و داده های بازه های زمانی طولانی در این مرحله به کار می آید.
انتخاب و پیش پردازش برای مدل ها
مجموعه داده های ماهواره ای اورستد و چمپ نیازمندی های WMM را برطرف می کنند. چمپ پایین تر از دو ماهواره قرار دارد و از اینرو در معرض سطح آلودگی بیشتری است. این آلودگی ناشی از سیگنال میدان پوسته و همچنین سیستم های جریان الکتریکی که بین سطح زمین و مسیر ماهواره در جریان است، می باشد. از سوی دیگر، داده های چمپ که در ارتفاع پایین به دست آمده قید های بهتری را بر روی طول موج های کوچک مدل میدان مغناطیسی داخلی، تامین می کند.
هر دو ماهواره، داده های برداری و اسکالر با کیفیت بسیار بالا در تمام عرض ها و طول های جغرافیایی تأمین می کنند. گپ ها کاملاً در اتصالات بین مجموعه داده های متوسط ساعتی پایش شده تقریباً در کل دوره مورد نظر پیوسته است. هرچندکهپوشش فضایی ضعیفاستشکل1ضمیمه (الف) داده های پایشی از اینرو قید های خوبی را در مدت زمان تغییرات میدان مغناطیسی زمین به دست می دهد. سطح نویز در داده های پایش بیشتر از داده های ماهواره ای است. که علت آن نزدیکی پایشگرها به اجسام هادی در پوستهاست.میدان هایخارجیمتغیر بازمان،جریان هایالکتریکی را به اینهادی ها القا می کند و باعث تولید تزاحم مغناطیسی در پایشگرها می شود.
مقادیر اندازه گیری شده مغناطیسی ماهواره چمپ بدلیل اثر دیا مغناطیسی محیط پلاسمای اطراف، تحت تأثیر قرار می گیرد و باعث کاهش توانایی خواندن میدان مغناطیسی می شود. این اثر در مرتبه یک چندnT بوده و در نزدیکی استوای مغناطیسی در ساعت های پیش از نیمه شب قوی تر است. با استفاده از چگالی الکترون و دماهای خوانده شده توسط پراب(سنجنده) لانگمور چمپ، یک اصلاح دیا مغناطیسی ساده بر روی داده های چمپ اعمال می شود.
انتخاب برای توانایی پیشگویی پیشرو تا 2010پیشگویی تغییرات سکیولار تا 2010 تا حدودی وابسته به مجموعه طولانی از پایش های متوسط سالیانه در X،Y،Z از آنجایی که داده های ماهواره و داده های متوسط ساعتی پایش فقط حدود 5 سال را پوشش می دهند. این شامل انتخاب موضوعی بر مبنای پیوستگی و طول مجموعه های زمانی و توانایی پایش و رسم داده ها برای شناسایی، پرش های تعیین نشده و اولین قسمت های ضبط شده که نویزی بوده اند. هر عدم پیوستگی شناخته شده به عنوان مثال ناشی از تغییر موضع ستون، پایه- های پایش مطلق به کار گرفته شده است. لیست پایشگرهای استفاده شده و پوشش زمانی در جدول 6 ضمیمه (ب) آمده است.
روشهای مدلسازیابتدا یک مدل اصلی بر اساس تمامی دادههای موجود تشکیل داده میشود، تا به منظور سنتز مقادیر میدان مغناطیسی در خلال (1999-2000 الی 2004-2005) مورد استفاده قرار گیرد.
پیشبینی تغییرات ارضیپیشبینی تغییرات آتی میدان مغناطیسی، از روی دادههای میانگین سالیانه مشاهده شده بلندمدت و نیز برونیابی چند جملهای مدل اصلی و بر اساس دادههای ماهوارهای و مقادیر میانگین ساعتی مشاهده شده انجام میگیرد. دادههای میانگین با استفاده از تعیین و اعمال فیلترهای خطی پیشبینی کننده بر سری تفاضلی مرتبه اول پردازش میشوند و حاصل تقریبی از تغییرات ارضی تا سال 2010 (مک میلان و کوئین 2000) قابل استفاده می باشد.
تکنیکهای وزندهی به دادههایکی از عمدهترین مسایل در حین مدلسازی میدان ژئومغناطیسی، برآورد وزنی است که باید به هر یک از دسته دادهها اعمال گردد و در هر دسته از دادهها، وزنی که باید به هر یک از دادهها اعمال گردد. در اصل دادهها را باید با معکوس واریانس خطای اندازهگیری وزن دهی کرد، اما این واریانس نیز به نوبه خود اغلب مجهول است. علاوه بر این، مدل های میدان مغناطیسی، تمامی منابع میدان مغناطیسی اندازهگیری شده را مدل نمیکنند بنابراین وزن دادهها باید تأثیر این سیگنال های مدل نشده را نیز در خود بگنجانند. به منظور حفظ اثرات چگالی در نزدیکی قطبین و افزایش میزان نویز در عرض جغرافیایی بالا، به دادههای حاصل از ماهوارهها در این محدودهها وزن کاهیده اعمال میشود. روند مشابهی در بکارگیری دادههای مشاهداتی مورد استفاده قرار میگیرد که توزیع آنها در اروپای غربی و آمریکای شمالی زیاد است و در نیمکره جنوبی کم است.
لایه یونوسفر در عرض جغرافیایی بالا، همواره در معرض بارش ذرات بارداری است که باعث میشوند رسانایی آن حتی در شرایط تاریکی مطلق بالا باشد. تأثیر میدانهای مغناطیسی مگنتوسفیر در یونوسفر قطبی ظاهر میشود و سیستم های مختلف جریان از آن مشتق میشوند. این سیستم جریانها خیلی متغیر هستند اما حتی در دورههای سکوت مغناطیسی نیز وجود دارند. بنابراین دادههای جمعآوری شده در این نواحی باید به دلیل وجود نویز بالا با وزن کاهیده در سری دخالت داده شوند. به همین منوال، دادههای برداشت شده در طلوع و غروب خورشید از آنهایی که در نیمهشب برداشت میشوند خیلی نویزدارتر هستند؛ علیالخصوص در ارتفاعات بالا این مسئله جدیتر است و وزندهی باید به نحوی صورت گیرد که این نکته را در خود لحاظ کند. چگالی بالای داده بَرداری ماهوارهای در عرض جغرافیایی بالا، و شکافی که در دادههای مربوط به قطبین وجود دارد، از خصوصیات مدار ماهواره ناشی میشود. سایر نامنظمیهای پوشش دادههای فضایی از ارجح بودن انتخاب دادههای مربوط به دوره سکوت ناشی میشود. جهت جبران معضل ناشی از دادههای نامساوی، تعداد دادهها در نواحی مساوی شمرده میشود و دادههای هر یک از نواحی در معکوس تعداد دادههای همان ناحیه ضرب میشود.
قطب مغناطیسی و محل دوقطبی خارج از مرکزقطبهای ژئومغناطیسی، که از آنها تحت عنوان دو قطبی نیز یاد میشود را میتوان از طریق 3 ضریب نخست گاوسی مورد محاسبه قرار داد. با استفاده از ضرایب WMM2005 که در سال 2005 برای قطب مغناطیسی شمالی محاسبه شدهاست، این قطب در طول جغرافیایی 78/71 درجه غربی و عرض جغرافیایی ژئودزی 74/79 درجه شمالی قرار دارد؛ و قطب جنوب ژئومغناطیسی در طول جغرافیایی 22/108 درجه شرقی و عرض جغرافیایی 79/74 درجه جنوبی قرار دارد.
قطبهای مغناطیسی که با عنوان قطبهای فرورفته نیز شناخته میشوند، از تمامی ضرایب گاوسی و با استفاده از یک روش تکراری محاسبه میشوند. در سال 2005 قطب مغناطیسی شمالی در طول جغرافیایی 23/118درجه غربی و عرض جغرفیایی ژئودزی 21/83 درجه شمالی قرار داشت و قطب جنوب مغناطیسی در طول جغرافیایی 86/137 درجه شرقی و عرض جغرافیایی 53/64 درجه جنوبی قرار داشت. در عمل، میدان ژئومغناطیسی در این قطبین فرورفته کاملاً قائم است، اما در طول روز مسیر هایی به صورت بیضیگون را طی میکند که از روزی به روز دیگر تغییرات چشمگیری دارد و تقریباً در مرکز موقعیت فرورفتگی قرار دارد.
موقعیت مرکز دوقطبی خارج از مرکز که از آن با عنوان مرکز مغناطیسی نیز یاد میشود، با استفاده از 8 ضریب اول گاوسی محاسبه میشود که در سال 2005 تقریباً بودهاست.
پارامتریسازی مدلمیدان هندسی اندازهگیری شده در سطح زمین یا در مدار ماهواره، حاصلجمع میدانهای حاصل از منابع داخلی یا خارجی کره زمین است. برخلاف منابعش، میدان مغناطیسی داخلی B یک میدان پتانسیل است و بنابراین میتوان آن را به صورت منفی گرادیان یک کمیت اسکالر نوشت. این پتانسیل برحسب ترمهای هارمونیک کروی به صورت ذیل نوشته میشود:
(2-1)
که در آن a (2/6371 کیلومتر) شعاع مرجع میدان مغناطیسی استاندارد زمین است، عرض جغرافیایی، طول جغرافیایی و شعاع در یک دستگاه مختصات مرجع کروی ژئوسنتریک است وضرایب گاوسی وابسته به زمان از درجه n و مرتبه m است که منشاءهای داخلی میدان را توصیف میکند.توابع لژاندر شبه نرمال اشمیت هستند.[ضمیمه الف]
در این توابع تعداد n = 36جمله مورد استفاده قرار داده شده و از باقی جملات صرفنظر شدهاست. فرض آن است که ضرایب داخلی گاوسی[جدول 1 ضمیمه ب] از درجه 1 تا 8 چندجملهای درجه 2 نسبت به زمان هستند،
(3-1)

در سمت چپ معادله 3-2، وتوابع متغیر با زمان هستند ودر سمت راست معادله نماینده ثوابت هستند. زمان بر حسب سال دهدهی داده شده است و t0 تاریخ مرجع مدل است و تقریباً در نقطه میانی گستره زمانی ماهواره و مقادیر میانگین ساعتی مشاهده انتخاب شدهاند. از درجه 9 تا 12 وابستگی ضرایب گاوسی داخلی به زمان، به صورت خطی در نظر گرفته میشود، و در درجات بالاتر نسبت به زمان ثابت فرض میشود. این عدد، آخرین عددی است که در آن میتوان ضرایب را بدون اثر دمپینگ به صورت روباست تعیین کرد.
مدلی که در معادله 2-2 ارائه شده است، صرفاً در مواردی که منشاء داخل کره زمین است کاربرد دارد؛ نظیر میدان پوسته زمین و میدان داخلی اصلی زمین. برای میدانهای خارجی ناشی از جریانات یونوسفر و مگنتوسفیر، یک نمایش هارمونیک کروی نظیر معادله 2-1 مناسب است. با این حال، میدانهای خارجی معمولاً در دستگاه مختصات مرجع متصل به خورشید بیان میشوند. مدل فعلی ما، نوعی مدل پارامتری مگنتوسفیری درجه 2 ثابت است که در دستگاه مختصات مرجع خورشیدی بیان میشود. برای مشاهده کننده مدوری که به زمین متصل شدهاست، این میدان تغییرات منظم روزانه و فصلی دارد.
جابجاییهای جزر و مدی آب دریا از طریق میدان مغناطیسی زمین، میدانها و جریانهای الکتریکی القایی و میدانهای مغناطیسی ثانویپدید میآورد که تا حدود 7 نانو تسلا در سطح اقیانوسو 3 نانو- تسلا در مدار ماهوارهای میرسد. این میدانها به خوبی از دادههای ماهوارهای قابل استخراج و تجزیه و تحلیل هستند و با پیشبینیهای مربوط به جریانهای اقیانوسی جذر و مدی اشتراکاتی دارند (تایلر و دیگران، 2003).
در نهایت وقتی مجموعه دادهها شامل دادههای میانگین مشاهدات ساعتی باشد، جابجایی عددی در هر یک از جایگاههای ناظر نیز باید لحاظ گردد تا اثر میدانهای محلی که اکثراًً در پوسته زمین تولید میشوند و به وسیله مدل قابل توصیف نیستند نیز تفکیک گردد. سپس در جایگاه مشاهده، میدان مغناطیسی B به صورت:
(4-1)
خواهد بود. که بردار جابجایی عددی، که با عنوان انحراف پوستهای نیز خوانده میشود، نسبت به زمان ثابت میماند.
پارامتریسازی فوق برای برازش مجموعه دادههای منتخب از اندازهگیریهای ماهوارهای و مقادیر میانگین ساعتی مشاهده شده مورد استفاده قرار میگیرد.
نوع دیگری از دستگاه محورهای مختصات که در حوزه مدلسازی میدان مغناطیسی بکار میرود، سیستم مختصات ژئومغناطیسی است. لازم به ذکر است در نرم افزار طراحی شده ما، کاربر اطلاعات مربوط به طول و عرض جغرافیایی را وارد میکند و برنامه این اطلاعات را به مختصات ژئو مغناطیسی بر میگرداند. این سیستم مختصات در بدست آوردن WMM2005 برای شناسایی مکان دادهها در یک باند عرض جغرافیایی از استوای ژئومغناطیسی که در آن مقادیر دادههای برداری مورد نیاز هستند بکار میرود و بر مبنای میدان دوقطبی داخلی مرکزی شده قرار دارد و با سه ضریب اول میدان اصلی در یک مدل هارمونیکی کروی جهانی بیان میشود. محور مرجع آن همراستا با محور دوقطبی قرار دارد که از محور گردش زمین حدود 11 درجه انحراف داشته و سطح زمین را در قطبهای ژئومفناطیسی قطع میکند. استوای ژئومغناطیسی، دایره عظیمهای است که نسبت به قطبین ژئومغناطیسی در موقعیت 90 درجه قرار دارد و عرض جغرافیایی ژئومغناطیسی بین صفر درجه در استوای ژئومغناطیسی تا 90 درجه در قطبین ژئومغناطیسی متغیر است.[ضمیمه الف]
ضرایب مدلضرایب مدل، که از آنها با عنوان ضرایب گاوسی نیز یاد میشود، تصویر دقیق و مناسبی از میدان مغناطیسی اصلی زمین ارائه میکند. مقادیر مربوط به آنها در جدول 1 ضمیمه (الف) ارائه شدهاست. این ضرایب برای محاسبه مقادیر المانهای میدان و نرخ سالیانه آنها در نقاط مختلف نزدیک سطح زمین و در هر تاریخی در خلال سالهای 2005 الی 2010 مورد استفاده قرار میگیرند.
9-2 معادلات مربوط به محاسبه عناصر میدان مغناطیسی
روشی گام به گام برای محاسبه عناصر میدانهای مغناطیسی در یک مکان و زمان مشخص ارائه گردیدهاست. که در آن h ارتفاع جغرافیایی، و طول و عرض ژئودزی و t زمان برحسب سنوات دهدهی است.
در نخستین گام، مختصات ژئودزی بیضیگون بوسیله تبدیل زیر به مختصات کروی ژئوسنتریک منتقل میشود:
(5-2)
(6-2)
که در آن A = 6378.137 km محور شبهاصلی (شعاع استوایی) بیضیگون وB = 6356.75231 kmمحور شبه فرعی بیضیگون مرجع WGS84 است.
در قدم بعدی، ضرایب گاوسی درجه n و مرتبه m در زمان مشخصی تعیین میشوند. این کار از طریق تنظیم ضرایبمیدان در زمان 2005 برای تغییرات ارضی خطی انجام میگیرد:
(7-2)

که در آن زمان داده شده بر حسب سال دهدهی است و t0 = 2005زمان مرجع مدل است.
در گام سوم، مؤلفههای برداری میدان X'،Y' و Z' در مختصات ژئودزی به صورت ذیل محاسبه می شوند
(8-1)
(9-1)
(10-1)
در این نقطه، میتوان تغییرات ارضی مؤلفه های میدان را نیز به صورت زیر محاسبه کرد
(11-1)
(12-1)
(13-1)
در گام چهارم، مؤلفههای برداری X'، Y' و Z' به دستگاه مختصات ژئودزی برگردانده میشوند.
(14-1)

که در آن اختلاف میان عرضهای جغرافیایی ژئوسنتریک و ژئودتیک است و در گام 1 محاسبه شده است. به روش مشابه، مشتقات زمانی مؤلفههای برداری با استفاده از رابطه 15-1 محاسبه میشوند.
(15-1)

در گام بعدی، المانهای مغناطیسی H، F، D، Iو تغییرات شبکه GV به طرق زیر از روی مؤلفههای برداری محاسبه میشود
(16-1)

که در آن arctan(a, b)، tan-1(a/b) است. با در نظر داشتن ربع زاویهای، و اجتناب از تقسیم آن بر صفر که منجر به کاهش در بازه 180- درجه تا 180 درجه و افزایش در بازه 90- تا 90 خواهد شد؛ در H = 0 کاهش، تعریف نشده خواهد بود.
تغییرات ارضی این المانها با استفاده از
(17-1)
انجام میگیرد که در آن بر حسب درجه بر سال هستند. در اینجا، عاملاز رادیان به درجه تغییر میکند. این ضریب تبدیل در معادله 16-1 حضور نخواهد داشت، البته با این فرض که تابع arctan برحسب درجه خواهد بود.
بنابراین با توجه به اطلاعات به روز شده ماهواره های چمپ و اورستد و تعیین ضرایب مدل، به مدل- سازی میدان مغناطیسی زمین بپردازیم.

328422078105فصل دوم
00فصل دوم
36474401184275400000
-662305243205 تبدیل معادلات استخراج شده
به
مدل قابل استفاده
00 تبدیل معادلات استخراج شده
به
مدل قابل استفاده

معادلات به کار گرفته شده
در این بخش به معرفی معادلات به کار گرفته شده در الگوریتم ها می پردازیم. لازم به ذکر است که اثبات این معادلات در فصل قبلی آورده شده است.
مؤلفه های شتاب جاذبه را بصورت زیرمی باشد:
(1-2)
که در آنU، تابع پتانسیل جاذبه، ، فاصله از مرکز زمین،، عرض جغرافیایی زمین مرکزی و، طول جغرافیایی بوده و ،و بترتیب مولفه های بردار شتاب جاذبه در راستای ، و هستند .
حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل شتاب ناشی از میدان جاذبه زمین ارتفاعm 1500
عرض جغرافیاییDegree 20 -9.8084
طول جغرافیاییDegree 85
درجه مدل تا 360 20
جدول SEQ جدول * ARABIC 3- حل مثال عددی برای مدل شتاب ناشی از میدان جاذبه زمینمدل باد خورشیدی پارکر به صورت زیر محاسبه می گردد.(2-2)

r فاصله مرکز خورشید تا نقطه مورد نظر وشعاع بحرانی( ) و سرعت صوت() می باشد.( پارامتر گرانشی خورشید و T دمای تاج خورشیدی و )
برای محاسبه دمای الکترون و پروتون در هنگام روز و شب از [ جدول 3 ضمیمه ب] و رابطه زیر استفاده می کنیم:
(3-2)
که در آن دمای لایه i ام و ارتفاع لایه i ام و نرخ نیواری دما (تغییرات دما بر حسب ارتفاع،) در لایه i می باشد.
مطابق جدول [2 ضمیمه ب]، عدد لکه خورشیدی(R) بر اساس F10.7
(4-2)
که در آن F10.7، شار خورشیدی در طول موج 7/10 سانتی متر می باشد.
رابطه باد خورشیدی با فعالیت های ژئومغناطیسی در 1AU
(5-2)
که در آن نمایه ‍ ژئومغناطیسی دامنه روزانه سیاره ای است.
حل مثال عددی:
نام مدل ورودی ها خروجی ها
مدل باد خورشیدی ارتفاعm
(1AU for solar wind)
زمانyear(1996-2017)
ماه(1-12)
روز یا شب 300000 71/310 4/18
1300 4/13
2008 800 5/9
10 36/493 87/106
* 92/449 53/42
53/411 76/6
7/151 3/96 7/68 برای محاسبه پارامتر های میدان مغناطیسی، مؤلفههای برداری میدان X'، Y'و Z'در مختصات ژئودزی به صورت ذیل محاسبه میشوند:(6-2)

مؤلفههای برداری X'، Y' و Z' به دستگاه مختصات ژئودزی برگردانده میشوند
(7-2)

که در آن اختلاف میان عرضهای جغرافیایی ژئوسنتریک و ژئودتیک است.
المانهای مغناطیسی H، F، D،I و تغییرات شبکه GV به طرق زیر از روی مؤلفههای برداری محاسبه میشود:
(8-2)

حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل پارامتر های ناشی از میدان مغناطیسی زمینارتفاعm 2000 31 52/0
زمانyear(2005-2010) 20 7/87 7/47
عرض جغرافیاییDegree 30 7/33594 5/30-
طول جغرافیاییDegree 10 1/306 8/36973-
8/36973 7/33594-
1/33596 1/306
6/49957 جدول SEQ جدول * ARABIC 4- مدل پارامتر های ناشی از میدان مغناطیسی زمینپارامترهای ناشی از اتمسفر زمیندر مدل سازی اتمسفر برای ارتفاع های زیر 86 کیلومتر با استفاده از [جدول 4 ضمیمه ب] داریم:
T0 = 288.16 (k) ,P0 = 1.01325e5 (pa), = 1.225 (kg/m^3)
(9-2)

به ترتیب ارتفاع، فشار، دماوچگالیدرلایه میباشد و n عدد مربوطبه لایه میباشد و λ > 0 (λ، نرخ نیواری دما) به معنای افزایش دما با ارتفاع می باشد.
بدین ترتیب دما و فشار و چگالی بدست آمد. برای محاسبه سرعت صوت از رابطه:
(10-2)
استفاده می کنیم که:
= 1.4 نرخ گرمای ویژه
R = 287(J/kg-K)ثابت هوا
برای ارتفاع های بالاتر از 86 کیلومتر که اتمسفر تحت تاثیر فعالیت های خورشیدی و پارامتر F10.7می باشد از [جدول 5 ضمیمه ب] استفاده می کنیم.
حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل پارامتر های ناشی از اتمسفر زمینارتفاعm 90000 54/193
6/179
5/182
18/0
17/0
18/0

8/278
67/268
85/270
جدول SEQ جدول * ARABIC 5- مدل پارامتر های ناشی از اتمسفر زمین
328422078105فصل سوم
00فصل سوم
36474401184275400000
-662305243205 توصیف نرم افزار شبیه ساز
میدان مغناطیسی
00 توصیف نرم افزار شبیه ساز
میدان مغناطیسی

299466078105فصل چهارم
00فصل چهارم
36474401184275400000
-662305243205 ماهیت میدان مغناطیسی
و
شبیه ساز کوثر100
00 ماهیت میدان مغناطیسی
و
شبیه ساز کوثر100

میدان مغناطیسی چیست ؟میدان عبارتست از فضایی اطراف المانی فرضی چون A که در آن محدوده المان غالب و تعیین کننده شرایط همان المان A است . حال اگر المان A دارای خاصیت مغناطیسی باشد ، میدان اطراف آن میدان مغناطیسی خواهد بود . در این صورت اگر ذره متحرک بار داری با بار q و سرعت V وارد فضای میدان مغناطیسی به بزرگی B شود ، بر آن نیرویی به بزرگی F وارد خواهد شد . در واقع میدان عامل این انحراف از مسیر اولیه ذره است . میزان این انحراف تابع میزان و راستای نیروی F است که از رابطه زیر قابل حصول است .
( 4- 1 ) F=q V×Bدر رابطه بالا F بر حسب نیوتن و q بر حسب کلون و V نیز برحسب متر بر ثانیه است . در این صورت میدان مغناطیسی مولد این نیرو دارای واحد تسلا خواهد بود . واحد میدان مغناطیسی در دستگاه SI تسلا است ( هرتسلا معادل نیوتن-ثانیه بر کولن- متر است ) و هر تسلا عبارتست از بزرگی میدانی که به ذره ای یک کولنی که با سرعت یک متر بر ثانیه عمود بر راستای میدان درحال حرکت است ، نیرویی یک نیوتنی وارد کند .
(1- 2 ) then T=N.sC.mB=FqVاما هر تسلا مقدار بزرگی است برای رفع این مشکل در مصارف آزمایشگاهی واحد دیگری به نام گوس مورد استفاده قرار می گیرد و بین گوس و تسلا رابطه زیر برقرار است .
1 تسلا = 10000 گوس
مبانی فیزیکی پیچه هلمهولتزاساس کارکرد پیچه هلمهولتز ، قانون و رابطه بیو و ساوار است . البته در مراجع اصلی فیزیک این رابطه با دو فرم دیفرانسیلی و غیردیفرانسیلی ذکر شده که در ادامه در قالب روابط 1-4 و 1-5 ارائه شده اند . در واقع این روابط میدان مغناطیسی حاصل از المان مبدل میدان را به صورت جزئی ( دیفرانسیلی ) از میدان مغناطیس نهایی در نظر گرفته و با انتگرال گیری از آن در تمام طول جریان به میدان نهایی می رسد . فرم کلی این روابط به شکل روابط 1-4 و 1-5 است .
(4- 4 )* dBr2=μ04π×IdI×(r2-r1)r2-r13(4- 5 )* Br2=μ04πIdI×(r2-r1)r2-r13
تصویر SEQ تصویر * ARABIC 7- میدان تولیدی ت.سط سیم حامل جریان*پارامتر هایی که به صورت پر رنگ نوشته شده اند ، بردار هستند .
19761203402965تصویر 1-1 ) میدان تولیدی توسط سیم حامل جریان
00تصویر 1-1 ) میدان تولیدی توسط سیم حامل جریان
در رابطه و تصویر فوق جنس متغیر ها به قرار زیراست :
: *I جریان مبدل میدان مغناطیسی بر حسب آمپر (A)
r2 : موقعیت نقطه ای که میدان در آن خواسته شده نسبت به مرجعی مطلوب
r1 : موقعیت المان مبدل میدان نسبت به مرجعی مطلوب
0µ : ضریب گذردهی مغناطیسی خلاء برابر با 4.10-7 (N.s2/C2)
B: میدان مغناطیسی تولیدی
* : باید توجه کرد که شدت جریان کمیتی برداری نیست و در روابطی مانند رابطه های 4-4 و 4-5 که در آنها لازم است I نقش بردار را بازی کند ؛ برداری فرضی در رابطه مورد استفاده قرار می گیرد که دارای بزرگی و جهت شدت جریان و راستای سیم حامل جریان است .
در انتهای این بحث باید این مطلب را ذکر کرد که بر اساس روابط 4-4 و 4-5 شدت میدان مغناطیسی در هر نقطه از فضا اولاً به موقعیت آن نقطه و سپس به شدت جریانی که از مدار می گذرد بستگی دارد . اما باید توجه کرد که در بحت پیچه ها شدت جریان گذرا از پیچه ها بر اثر عواملی چون القاء متقابل پیچه ها و دیگری پدیده خود القایی با جریانی که توسط منبع به پیچه ها اعمال می شود ( و البته در محدوده ای بسیار کوتاه از زمان ) متفاوت است و برای ثبت نتایج در آزمایش حلقه های هلمهولتز یا باید صبر شود تا این محدوده زمانی بگذرد و ثبت نتایج صورت گیرد و یا در صورت انجام آزمایش در این محدوده زمانی باید انواع پدیده های القاء وارد روابط شده و روابط اصلاح شوند ( مطالب مذکور در بخش القاء در انتهای همین فصل به طور کامل مورد بررسی قرار خواهد گرفت ) .
میدان مغناطیسی حلقه
میدان مغناطیسی حاصل از یک حلقه هلمهولتز به شعاع a ، در نقطه ای منطبق بر محور مرکزی آن و در فاصله z از مرکز حلقه ( مانند تصویر شماره 1-2 ) با استفاده از قانون بیو و ساوار با استفاده از روش زیر محاسبه می شود :


تصویر SEQ تصویر * ARABIC 8- میدان در نقطه ای روی محور تک حلقه (4- 6 ) dI=adθ(-i Sinθ+j Cosθ) (4- 7 ) r2-r1=-ia Cosθ-j aSinθ+kz(4- 8 ) r2-r1=a2+z21/2از قرار دادن روابط فوق در رابطه 4-5 خواهیم داشت :
(4- 9 ) Bz=μ04πI02πi za Cosθ+j zaSinθ+ka2a2+z23/2 dθنتیجه انتگرال دو جمله اول صفر می شود و آنچه باقی می ماند عبارتست از :
(4- 10 )* Bz=μ0I2a2a2+z23/2k* iو j و k ، بردارهای واحد دستگاه دکارتی هستند .
پیچه هلمهولتز و میدان مغناطیسی آنپیچه هلمهولتز از دو پیچه مستدیر با شعاعهای مساوی و محور مشتورک تشکیل شده که جریانی همسو از آنها می گذرد . فاصله میان دو صفحه پیچه طوری انتخاب می شود که مشتق دوم میدان مغناطیسی در نقطه ای واقع بر محور و به فاصله مساوی از پیچه ها صفر شود . تصویر 1-3 چنین دستگاهی را نشان می دهد .

تصویر SEQ تصویر * ARABIC 9- حلقه های هلمهولتزمیدان مغناطیسی در نقطه P عبارتست از :
(4- 11 ) BKz=Nμ0Ia221a2+z23/2 +12b-z2+a23/2عدد N در رابطه بالا مربوط است به حالتی که در آن هر یک از پیچه ها N دور سیم پیچ دارند . مشتق اول Bz نسبت به z عبارتست از :
(4- 12 ) dBdz=Nμ0Ia22-322za2+z25/2 -322(z-2b)2b-z2+a25/2در نقطه z=b مقدار این مشتق صفر است و مشتق دوم تابع میدان نسبت به Z به شکل زیر است
(4-13)
d2Bdz2=-3Nμ0Ia221a2+z252-522z2a2+z272+12b-z2+a252-522z-2b22b-z2+a272 و در نقطه z=b مقدار آن برابر است با :
(4- 14 ) d2Bdz2z=b=-3Nμ0Ia22b2+a2-5b2+b2+a2-5b2b2+a27/2که به ازاء a2-4b2=0 صفر می شود . پس انتخاب مناسب برای b عبارتست از :
2b=aیعنی فاصله بین دو پیچه باید برابر با شعاع پیچه ها باشد . با این شرط و با استفاده از رابطه 4-11 بزرگی میدان در نقطه وسط حلقه ها برابر است با :
(4- 15 ) B(T)=Nμ0Ia853/2 =8.992×10-7NIaدر رابطه بالا شدت جریان بر حسب آمپر و شعاع حلقه بر حسب متر وارد معادله شده تعداد دور سیم نیز بدون بعد است . در نهایت میدان مغناطیسی تولیدی در مرکز فاصله بین دو پیچه بر حسب تسلا خواهد بود .
برای سهولت می توان رابطه 4-15 را به شکل زیر بازنویسی کرد :
(4- 16 ) B(G)=32πN532a*I10در رابطه 4-16 بزرگی میدان مغناطیسی بر حسب گاوس ، شعاع بر حسب سانتیمتر و شدت جریان نیز بر حسب آمپر هستند .
ویژگی و کاربردهای حلقه های هلمهولتزبنابر آنچه گفتیم میدان مغناطیسی به واسطه ذاتی که دارد چه از نظر بزرگی و چه راستا به شدت تابع موقعیت و فاصله نسبت به مولد میدان مغناطیسی است . ویژگی و معجزه حلقه های هلمهولتز تولید میدانی یکنواخت ( چه جهت و چه اندازه ) و درعین حال قابل پیش بینی در محدوده ای از فضاست . همین توانایی حلقه ها ، این حلقه ها را به سامانه های پرکاربرد در زمینه انجام تست و کالیبراسیون محصولات دیگر مرتبط با میدان مغناطیسی تبدیل کرده است . از آنجا که میدانهای الکترومغناطیس در امروزه بسیار پر کاربرد هستند ، حلقه های هلمهولتز اهمیتی صدچندان پیدا می کند .
حلقه های هلمهولتز در تست ابزارهای سنجش بزرگی میدان های الکترومغناطیس مانند اسیلوسکوپها ، تست رادارها و سونارها ، تعیین میزان پاسخگویی سطوح در مقابل میدانهای خارجی ، تعیین ضرایب گذردهی و پذیرفتاری مغناطیسی سطوح با جنس مختلف ( مخصوصاً مواد نانو و نوترکیب ) و ... کاربرد دارد . در عرصه هوافضا نیز هر جا میدان مغناطیسی مطرح است ( در مقدمه از اهمیت میدان مغناطیسی صحبت کرده ایم ) می توان از شبیه ساز میدان مغناطیسی نیز استفاده کرد . تست و تعیین دوپل مغناطیسی مگنتورکرها ، تست و تعیین میزان حساسیت سنسورها و آنتنها نسبت به امواج الکترومغناطیس و میدانهای مغناطیسی ، سمت و سو دادن و هدایت پرتوهای ذرات باردار و سنگین در دستگاههای شبیه ساز محیط تابشی فضا ؛ کاربردهای شبیه ساز میدان مغناطیسی یا حلقه های هلمهولتز است .
تغییرات میدان تولیدی توسط حلقه های هلمهولتز در فضای بین حلقه ها
پیچه های هلمهولتز نقش مهمی در تحقیق علمی دارند و غالباً برای تولید یک میدان مغناطیسی نسبتاً یکنواخت در ناحیه کوچکی از فضا به کار می روند . اما نکته دیگری نیز مطرح است و آن اینکه در چه محدوده ای از فضا می توان میدان را با تقریب خوبی یکنواخت انگاشت یا در دستگاه مختصات دکارتی و در راستای سه بعد از نقطه مرکزی تا چه فاصله ای می توان جابجا شد در عین اینکه میدان مغناطیسی تولیدی با تقریب خوبی ثابت بماند . برای بحث و بررسی این مطلب دو حالات زیر مورد برررسی قرار گرفته اند .
جابجایی در راستای محور حلقه ها
بحث تحلیل نحوه تغییرات مؤلفه های میدان عمود بر محورهای مختصات و نیز در راستای محورهای مختصات از این رو مطرح است که ، جسمی که به عنوان مورد آزمایش در داخل پیچه ها قرار می گیرد دارای ابعاد بوده و در واقع دارای طولی است که در راستای محور مختصاتی و سطحی است که عمود بر محور گسترده شده اند . در این قسمت بحث مربوط به تغییرات مؤلفه های میدان در راستای محورهای مختصات و در بخش آتی بحث مربوط به بررسی تغییرات مؤلفه ها در راستای عمود بر محورها به طور کامل مورد بررسی قرار خواهد گرفت .
به منظور بررسی این موضوع کافیست بسط تیلور میدان حول نقطه مرکزی دو پیچه را تا جمله مرتبه چهارم بنویسیم
(4- 17 ) Bz=Ba2+z-a2∂B∂za2+12z-a22∂2B∂z2a2+…در رابطه بالا Z همان فاصله از یکی از حلقه هاست مانند آن فاصله ای که در تصویر 1-3 نشان داده شده است . چون سه مشتق اول تابع در مرکز دو حلقه صفر است . با محاسبه مشتق چهارم تابع چنین می توان نوشت :
(4- 18 ) Bz=Ba2+124z-a24∂4B∂z4a2+…(4- 19 ) Bz≈Ba21-144125z-a2a4حال برای نقطه ای به فاصله از مرکز دو حلقه رابطه 1-18 و 19 چنین قابل نوشتن است :
(4- 20 )Ba2+ε≈Ba21-144125a2+ε-a2a4(4- 21 ) Ba2+ε-Ba2=-Ba2.144125εa4رابطه 4-20 همان رابطه 4-19 است که در آنa/2 + جایگزین Z شده است در این صورت با تغییر ، بزرگی میدان مغناطیسی در فاصله از مرکز حلقه محاسبه می شود . اما رابطه 4-21 نیز بیانگر اختلاف بزرگی میدان در نقطهa/2 + با نقطه مرکزی حلقه است که این اختلاف تابع بزرگی میدان در مرکز پیچه هاست .
حال اگر به اختلاف میدان در نقاطa/2 + و a/2مقدار دهیم ، می توانیم ماکسیمم فاصله ای را که در آن اختلاف به آن مقدار مفروض می رسد را بدست آوریم :
→110= 144125εa4Ba2+ε-Ba2=110Ba2⇒ε=0.543a→1100= 144125εa4Ba2+ε-Ba2=1100Ba2⇒ε=0.305a→11000= 144125εa4Ba2+ε-Ba2=11000Ba2⇒ε=0.172aنمودار تصویر 10 نشان دهنده تغییرات بزرگی میدان در نقطه مرکزی فاصله بین حلقه ها با فاصله گرفتن از نقطه مرکزی فاصله ، واقع بر خط واصل مرکز دو حلقه است .

user8332

1-2-1-3 حمله با منابع نا محدود (RUA) ................................................................... 13
2-2-1-3 حمله ی مقدمه ................................................................................................... 13
3-2-1-3 حمله ی SFD .................................................................................................. 13
4-2-1-3 حملات واکنش ................................................................................................... 13
5-2-1-3 حمله ی HR (Hit and Run) ................................................................ 14
6-2-1-3 حمله ی نماد ....................................................................................................... 14
7-2-1-3 حمله ی به انحصار کشیدن ............................................................................. 14
3-1-3 شناسایی حملات انسداد ................................................................................................... 14
4-1-3 مقابله با حملات انسداد ..................................................................................................... 15
5-1-3 تکنیک های کاهش اثرات حمله در لایه ی فیزیکی ................................................... 15
1-5-1-3 تغییر کانال ...................................................................................................... 16
2-5-1-3 عقب نشینی فضایی ....................................................................................... 16
3-5-1-3 استفاده از کرم چاله ها ................................................................................. 17
4-5-1-3 نقشه برداری منطقه ی مسدود شده ......................................................... 17
5-5-1-3 تکنیک های طیف گسترده .......................................................................... 17
6-5-1-3 نظریه ی بازی ................................................................................................. 17
7-5-1-3 گره های عسل ................................................................................................ 18
8-5-1-3 سایر استراتژی های موجود ......................................................................... 18
2-3 حملات در لایه ی MAC ................................................................................................................ 18
1-2-3 تقسیم بندی حملات در لایه ی MAC ........................................................................ 18
1-1-2-3 حملات نقض احراز هویت/نقض برقرای ارتباط ........................................ 18
2-1-2-3 حمله ی مدت زمان تورمی ........................................................................... 19
3-1-2-3 حمله بر علیه i802.11 ................................................................................. 19
4-1-2-3 حمله بر علیه گره های به خواب رفته ........................................................ 19
5-1-2-3 حملات لایه ی MAC کامل ...................................................................... 19
2-2-3 مقابله در لایه ی MAC ................................................................................................... 20
1-2-2-3 شناسایی شنود آدرس MAC ..................................................................... 20
2-2-2-3 محافظت از فریم های کنترلی و مدیریتی از طریق رمز نگاری ............. 20
3-2-2-3 تعمیر پروتکل ................................................................................................... 21
4-2-2-3 پازل رمز نگاری شده (کاربر) ......................................................................... 21
5-2-2-3 سایر راه حل های رمز نگاری نشده ............................................................. 21
3-3 حملات DOS به شبکه های 802.11، شامل لایه ی MAC و لایه های بالاتر ............... 22
1-3-3 اقدامات متقابل ...................................................................................................................... 23
1-1-3-3 فیلترینگ ........................................................................................................... 23
2-1-3-3 سیستم های شناسایی نفوذ ........................................................................... 23
4-3 اقدامات متقابل در لایه ی MAC با استفاده از لایه ی فیزیکی .............................................. 23
1-4-3 شناسایی ایستگاه از طریق ویژگی های سیگنال ............................................................ 24
4- نتیجه گیری ................................................................................................................................................ 25
5- مراجع ............................................................................................................................................................ 27
1- تشریح مسئله
ظهور شبکه های بی سیم، مجموعه ای از مشکلات امنیتی را به همراه آورد. سهولت استفاده و قیمت های پایین شبکه های مبتنی بر 802.11 سبب گسترش وسیع استفاده از آن شده است، اما در گسترش شبکه های بی سیم، در درجه ی اول باید آسیب پذیری های مربوط به دسترسی غیر مجاز و نقض محرمانگی رسیدگی گردد]2 [. واسط انتقال که توسط همه ی کاربران شبکه به اشتراک گذاشته می شود، راهی جذاب برای حملات به سرویس های بی سیم را ارائه می کند]2,8,9[. شبکه های بی سیم به دلیل طبیعت داده پراکنی خود، نسبت به حملات DOS آسیب پذیرند. حملات DOS گونه از حملات هستند که قابلیت دسترسی را هدف قرار می دهند و تلاش می کنند از دسترسی کاربران مجاز به شبکه جلوگیری نمایند]4[.

شکل SEQ تصویر * ARABIC 1- دیاگرام داده پراکنی شبکه های بی سیم
تجهیزات تخصصی و یا مهارت های بالای خاصی برای از کار انداختن شبکه های بی سیم از طریق حمله ی DOS نیاز نیست، تعداد زیادی آسیب پذیری در 802.11 وجود دارد که در سال های اخیر به صورت تجربی نشان داده شده است]4[.
1-1 انواع فریم در شبکه های 802.11]4[
سه نوع فریم (بسته) در شبکه های 802.11 وجود دارد: فریم های مدیریتی، کنترلی و داده. هر نوع فریم شامل زیر فریم هایی نیز می شود. فریم های مدیریتی برای مدیریت شبکه و پذیرش کنترل، به کار گرفته می شوند، فریم های کنترلی برای کنترل دسترسی و فریم های داده برای حمل داده به کار می روند. در حملات DOS از فریم های مدیریتی خاصی استفاده می گردد]4[. بنابراین در بین این سه نوع فریم، فریم های مدیریتی بیشتر مورد بررسی قرار خواهند گرفت.

شکل SEQ تصویر * ARABIC 2 - نمایش لایه های OSI در فریم 802.11

شکل SEQ تصویر * ARABIC 3- انواع فریم ها در 802.11
2-1 تقسیم بندی شبکه های 802.11
شبکه های بی سیم به طور کلی به دو دسته تقسیم می شوند : شبکه های مبتنی بر زیر ساخت (Wlan, Cellular net,…) و شبکه های بدون زیرساخت (ad-hoc net) ]2[. شبکه های سیار ad-hoc دارای معماری شبکه ای خود سازماندهی شده می باشند. این حالت زمانی رخ می دهد که مجموعه ای از گره های سیار، توسط رابط شبکه ی بی سیم، یک شبکه ی موقتی بدون هیچ زیرساخت و یا مدیریت متمرکز ایجاد نمایند. بر اساس تعریف IETF (Internet Engineering Task Force) ]1[، شبکه های بی سیم ad-hoc سیستمی خودگردان از روتر های سیار هستند که از طریق پیوند های بی سیم به یکدیگر متصل شده اند]1[. توپولوژی شبکه های بی سیم ممکن است به دفعات و بدون پیش بینی تغییر کند]1[.

شکل SEQ تصویر * ARABIC 4 - شبکه های مبتنی بر زیر ساخت (تصویر بالا) و شبکه های بدون زیرساخت (تصویر پایین)
1-2-1 شبکه های بدون زیرساخت
خصوصیات شبکه های ad-hoc (توپولوژی پویا، بدون زیرساخت بودن، گنجایش پیوند های متفاوت و...) ریشه ی بسیاری از مسائل هستند. پهنای باند محدود، انرژی محدود، هزینه بالا و امنیت، برخی از مشکلاتی هستند که اینگونه شبکه ها با آن مواجه می شوند]1[. حملات DOS تلاش می کنند تا منابع انرژی اندک این شبکه ها را مصرف کنند]1[. به دلیل اینکه منابع انرژی شبکه های ad-hoc محدود است، استفاده از راه های سنگین مانند PKI (Public Key Infrastructure) موثر نیستند]1[. به دلیل خصوصیت های ویژه ی شبکه های ad-hoc، مسیر یابی، جنبه ای مهم در این شبکه ها محصوب می گردد. بین گره های شبکه امکان وجود چندین راه مجزا وجود دارد، در نتیجه مسیریابی چند مسیره می تواند به صورت آماری، محرمانگی تبادل پیام ها را بین منبع و مقصد بالا ببرد. ارسال داده های محرمانه از طریق یک مسیر، به حمله کننده این امکان را می دهد تا تمام داده ها را دریافت کند، اما ارسال آن به صورت چند قسمتی در مسیر های متفاوت، استحکام محرمانگی را بالاتر می برد، به دلیل اینکه این کاملا غیر ممکن است که، تمام قسمت های پیامی را که تقسیم شده و در مسیر های متفاوت موجود بین منبع و مقصد ارسال شده را به دست آورد]1[. با توجه به ویژگی ها، شبکه های بی سیم بدون زیر ساخت علاوه بر نیاز به غلبه بر مسائلی که با آن روبرو می گردد باید برای مقابله با حملات DOS احتمالی نیز آمادگی داشته باشد، و عدم وجود زیر ساخت در این زمینه مسائلی را پیش خواهد آورد.
2-2-1 شبکه های مبتنی بر زیرساخت
در شبکه های مبتنی بر زیر ساخت، تمام AP ها (نقاط دسترسی) فریم های beacon را در فاصله های زمانی ثابتی ارسال می کنند. کاربران برای شناسایی AP هایی که در محدوده ی آن ها هستند به بسته های beacon گوش می دهند. به همین ترتیب فریم های درخواست Prob نیز توسط ایستگاه ها (گره ها) به طور مداوم برای جستجوی شبکه های بی سیم موجود تولید می گردند. ایستگاه ها به وسیله ی آدرس MAC خود شناسایی می شوند. هنگامی که یک AP فریم Prob را دریافت می کند، با فریم Prob دیگر پاسخ آن را ارسال می کند، که بسیار شبیه فریم beacon بوده و شامل اطلاعات مورد نیاز موجود در BSS (Basic Service Set) است. تنها تفاوت آن در این است که beacon شامل نقشه ی نشانه گذاری ترافیک (Traffic Indication Map – TIM) می باشد. TIM نشان می دهد که برای کدام یک از ایستگاه هایی که جهت صرفه جویی در مصرف انرژی به خواب رفته اند، بسته هایی در بافر AP در انتظار است. بعد از شناسایی یک BSS موجود، یک ایستگاه باید برای برخورداری از امتیازات بیشتر توسط AP احراز هویت گردد. بنابراین درخواست ها و پاسخ های احراز هویت تبادل می شوند. زمانی که سیستم احراز هویت باز (بدون احراز هویت – آزاد) جایگزین کلید اشتراک گذاری شده در WEP (Wired Equivalent Privecy) شده باشد، احراز هویت به دست آمده ضعیف است و پس از آن نیاز است تا توسط 802.11i تکمیل گردد. یک ایستگاه می تواند توسط چند AP احراز هویت شده باشد، اگرچه باید در یک زمان فقط با یک AP در ارتباط باشد. پس از احراز هویت، فریم درخواست ها و پاسخ های برقراری ارتباط برای ایجاد ارتباط تبادل می شوند]4[.
3-1 فریم های نقض احراز هویت
فریم های قطع احراز هویت، فریم هایی هستند که برای بازگشت به حالت اول احراز هویت نشده، مرتبط نشده، تبادل می گردند. فریم های قطع ارتباط نیز برای بازگشت به حالت احراز هویت شده، مرتبط نشده، به کار می روند. هیچ کدام از فریم های مدیریتی از طریق رمزنگاری محافظت نمی گردند، در نتیجه هر ایستگاهی می تواند چنین فریم هایی را ارسال کند]4[.
4-1 دسترسی به کانال
802.11 DCF (Distributed Coordination Function) یک مکانیسم دسترسی به کانال بر پایه ی CSMA/CA است. در حالت عادی ایستگاه ها، در حالت دریافت قرار دارند، به واسطه ی بسته های دریافتی در صف انتقال یک ایستگاه، به حالت ارسال، تغییر حالت داده و یک مقدار عقب کشیدن (backoff) تصادفی که توسط مقدار متغیر خاص ایستگاه CW (Contention Window)، محدود شده، انتخاب کرده و شروع به اتصال به کانال می کند. ماژول CCA (Clear Channel Assessment) برای تعیین وضعیت کانال به کار می رود . زمانی که CCA اعلام می کند که رسانه ی انتقال، بی کار است، ایستگاه برای مقدار زمانی به اندازه ی DIFS (Distributed Inter-Frame Space) صبر می کند، اگر کانال به اندازه ی DIFS بی کار ماند، ایستگاه (یا AP) اندازه ی backoff خود را برای هر بازه ی زمانی که حس کرد کانال بی کار است، کاهش می دهد. پس از پایان شمارنده ی backoff، فرستنده بسته های RTS (Request-To-Send) را برای گرفتن کانال و اعلام آمادگی برای آغاز ارسال به گیرنده، ارسال می کند. دریافت کننده با یک بسته ی CTS (Clear To Send) پاسخ ارسال کننده را می دهد، سپس فرستنده فریم های داده را ارسال می کند. استفاده از فریم های RTS/CTS در 802.11 اختیاری است و فریم های داده می توانند بدون استفاده از آن ها، ارسال شوند. در این تبادل، گیرنده و فرستنده، زمانی به اندازه ی SIFS (Short Inter-Frame Space)، برای شروع ارسال فریم صبر می کنند، اگر ارسال با شکست مواجه شود، اندازه ی فعلی CW دو برابر شده و فرستنده سعی می کند با تکرار کامل زنجیره، بسته را مجددا ارسال کند]4[.

شکل SEQ تصویر * ARABIC 5 - نمودار زمانی انتظار

شکل SEQ تصویر * ARABIC 6 - نمودار زمانی ارسال فریم
هر فریم شامل یک فیلد مدت زمان برای تعیین پیش بینی مدت زمان (بر اساس میکرو ثانیه) پایان موفق دست دهی در حال انجام است که NAV (Network Allocation Vector) را در هر یک از ایستگاه های همسایه به روز می کند. دسترس کانال تا انقضای NAV به تعویق می افتد]4[.

شکل SEQ تصویر * ARABIC 7- انتظار برای دسترسی به کانال
5-1 PLCP
فریم های MAC در 802.11، توسط هدر PLCP (Physical Layer Convergence Protocol) کپسوله می شوند. فریمی که با مقدمه ی PLCP آغاز می شود، شامل یک فیلد sync است، که مدار شناسایی انرژی ، که تمایز بین نویز یا مداخله و تداخل را در یک انتقال فریم موجود نشان می دهد را، راه اندازی می کند. این فریم ها برای هماهنگ سازی نمادی گیرنده به کار رفته و شامل فیلد SFD (Start FrameDelimiter) هستند، که محل حقیقی شروع هدر PLCP را مشخص می کند. PLCP شامل فیلد زیر است: سیگنال، سرویس، طول و CRC (Cyclic Redundancy check) که در طول هدر PLCP محاسبه می شود. فریم MAC شامل یک CRC جداگانه که روی فریم MAC محاسبه شده است، می باشد]4[.

شکل SEQ تصویر * ARABIC 8 - فریم PLCP
6-1 کانال های 802.11
802.11 b/g از 11 کانال همپوشان (فقط 3 کانال همپوشانی ندارند) در باند 2.4 گیگاهرتز ISM (Industrial,Scintific,Medical) در کانادا و آمریکا استفاده می کند (در ژاپن از 14 کانال، فرانسه 4 کانال، اسپانیا 2 کانال و 13 کانال در سایر نقاط اروپا استفاده می کنند.)]4[.

شکل SEQ تصویر * ARABIC 9- کانال ها در 802.11
7-1 احراز هویت و دست دهی چهار طرفه
در شبکه های محلی بی سیم به وضوح شناخته شده است، که احراز هویت ایستگاه ها با آدرس های MAC آن ها، از امنیت برخوردار نیست، به این دلیل که یافتن آدرس های مجاز، و تغییر MAC به آن آدرس، برای حمله کننده کار ساده ای است]4[.
WEP (Wired Equivalent Privacy) از آغاز تصویب استاندارد 802.11 بخشی از آن بوده است و احراز هویت از طریق کلید اشتراک گذاری شده را فراهم می سازد. در ژوئن 2004، IEEE استاندارد امنیتی 802.11i را تایید کرد که، ویژگی های قبلی WEP را که ضعف های امنیتی شدیدی داشت، به روز نمود. 802.11i با به کار گیری دست دهی چهارگانه، احراز هویت متقابل ایجاد می کند و یک کلید مخفی اشتراک گذاری شده برای محافظت از فریم های داده در نشست های ارتباطات پس از آن، تولید می نماید]4[.
در پروتکل 802.11i سه طرف دیگر وجود دارد، درخواست کننده (ایستگاه)، احراز هویت کننده (AP) و سرور احراز هویت (مانند سرور RADIUS). اگر کلید اشتراک گذاری شده از قبل تنظیم یا ذخیره نشده باشد، ایستگاه و سرور احراز هویت یکی از پروتکل های احراز هویت دو طرفه را در چهارچوب EAP (Extensible Authentication Portal) برای تولید MSK (Master Session Key) جهت استفاده در دست دهی چهار طرفه اجرا می کنند. این پروتکل معمولا به عنوان امنیت لایه ی انتقال EAP انتخاب می شود (EAP-LTS) (جانشین پروتکل شناخته شده ی SSL). در اجرای EAP-TLS، AP به عنوان تقویت کننده (رله) عمل می کند و نشانه های 8 بیتی بسته ها، برای پیگیری درخواست ها و پاسخ ها به کار می روند]4[.
دست دهی چهار طرفه فقط زمانی بین ایستگاه و AP اجرا می شود که کلید اصلی به صورت ایمن از سرور احراز هویت به AP منتقل شده باشد. در ابتدا AP و ایستگاه، هر دو کلیدی مخفی که PMK (Pairwise Master Key) نامیده می شود، بر اساس MSK تولید می نمایند، سپس اطمینان حاصل می کنند که شریک دیگر کلید PMK مشابه را در دست دهی به کار می برد. در پایان هر دو شرکت کننده یک PTK (Pairwise Transient Key) مشتق شده، برای به کارگیری در نشست داده ی فعلی تولید می کنند. PTK همچنین می تواند از روی کلید از پیش اشتراک گذاری شده (PSK) تولید شود، به شرطی که ایستگاه و AP به این شکل تنظیم شده باشند. تا زمانی که دست دهی به صورت موفقیت آمیزی تکمیل نگردد، هیچ بسته ی داده ای مجاز به ارسال نیست]4[.

شکل SEQ تصویر * ARABIC 10 - احراز هویت گره (منبع: http://www.cisco.com)
2- اهداف و کاربرد موضوع
در سال های اخیر، به دلیل گسترش بهره گیری از شبکه های کامپیوتری در زمینه های گوناگون، راه های نوینی برای دسترسی به این تکنولوژی ارائه و استفاده شده اند. شبکه های سیمی به صورت گسترده در محیط های اداری و تجاری استفاده می شوند. این گونه شبکه ها نیاز به پیاده سازی و پشتیبانی داشته و اجرای چنین ساختاری نیاز به هزینه های بالایی دارد، بدون در نظر گرفتن هزینه ی کابل های شبکه، نیاز به تجهیزات گوناگونی از قبیل داکت، پریز، رک، سوئیچ و ... و همچنین نصب تمام این تجهیزات می باشد. بدین دلیل که شبکه های سیمی از سرعت بسیار بالاتر، امنیت بیشتر، کیفیت مناسب و... نسبت به شبکه های بی سیم برخوردارند، برای محیط های کاری که نیاز به چنین شبکه هایی دارند، بسیار مناسب هستند. اما در چند سال اخیر نیازمندی های جدیدی مانند برخورداری از شبکه ی سیار و... مطرح گردیده است که راه را برای تکنولوژی های جدید تری هموار میسازد، علاوه بر این ها، کاربران خانگی نمی توانند هزینه های بالای پیاده سازی و پشتیبانی از شبکه های سیمی را متقبل گردند، درنتیجه با این اوصاف شبکه های بی سیم با پیاده سازی و پشتیبانی آسان و هزینه ی پایین انتخاب بسیار مناسبی به نظر می آیند. با ازدیاد روز افزون شبکه های بی سیم و پوشش شهر ها با امواج رادیویی این شبکه ها، هر روزه آسیب پذیری های جدیدی در این شبکه ها کشف می گردد. مهمترین آسیب پذیری شبکه های بی سیم، ضعف آنها در حملات DOS می باشد. این گونه حملات می توانند به راحتی و توسط مبتدی ترین افراد، به سادگی شبکه های بی سیم را از پای درآورند. با توجه به افزایش این گونه حملات و تولید روز افزون راه های ایجاد و تولید این گونه حمله ها، نیاز است تا برای مقابله و کاهش اثرات آن ها راه کارهایی قابل اجرا و قطعی ایجاد شوند. از زمان ارئه ی تکنولوژی های بی سیم، ارائه ی راه کارهای مقابله با حملات DOS جزء جدایی ناپذیر تحقیقات محققان و سازمان های دولتی و خصوصی بوده است. با وجود تمام این تحقیقات هنوز نمی توان به طور قطع راه کاری به عنوان بهترین شیوه ی موجود پیشنهاد نمود. برای رسیدن به نقطه ای که بتوان به جرات شبکه ی بی سیمی امن ارائه کرد، تحقیقات بسیاری نیاز است. یکی از ابتدایی ترین قدم ها، پیاده سازی و آزمایش راه های ارائه شده تا کنون و بررسی عیوب، نقاط ضعف و قوت آنها است.

شکل SEQ تصویر * ARABIC 11 - کاربرد شبکه های بی سیم و سیمی
3- مسائل، مشکلات و راه حل های ارائه شده
یکی از اصلی ترین خطرات امنیتی شبکه های بی سیم حملات انسداد ( پارازیت ) است]2[. چنین حملاتی زیر مجموعه ای از حملات DOS به شمار می آید ]2,10,11,12[ و یکی از خطر ناکترین آن ها محسوب می گردند]2[، به این دلیل که با وجود معماری فعلی شبکه های بی سیم، فعالیت های محدودی وجود دارد که می توان برای غلبه بر حملات انسداد انجام داد]2[. حملات DOS که بر اساس مسدود کننده انجام می شوند، بر روی جلوگیری از برقراری ارتباط گره های شبکه متمرکز می گردند]2[، به عبارت دیگر حملات انسداد به معنای مسدود نمودن کانال ارتباطی با مقصود جلوگیری از جریان اطلاعات می باشد]2[.
1-3 حملات انسداد
یک مسدود کننده (پارازیت دهنده) موجودیتی است که به صورت هدفمند تلاش می کند که در ارسال و دریافت فیزیکی تداخل ایجاد کند. یکی از پر کاربرد ترین الگوریتم ها برای مقابله با حملات انسداد، تغییر کانال ارتباطی می باشد]2,13[.
حملات پارازیت را می توان به دو دسته تقسیم بندی نمود، مسدود نمودن (ایجاد پارازیت در) لایه ی فیزیکی و نادیده گرفتن مقررات لایه ی MAC ]2[. انسداد در لایه ی فیزیکی، شامل تولید پارازیت های ثابت در رسانه ی ارتباطی شبکه های بی سیم (هوا) به منظور ناتوان ساختن گره های تحت نفوذ از شرکت در هرگونه فعالیت های بیشتر شبکه است]2[. حملات انسداد می توانند با پیروی نکردن از پروتکل های زیر لایه ی MAC نیز پیاده سازی شوند. برای این منظور مسدود کننده ها می توانند از نفوذپذیری های پروتکل های 802.11 b، و g در شبکه ی بی سیم سوء استفاده نمایند]2,12,14[.
1-1-3 تقسیم بندی کلی حملات انسداد
به طور کلی یکی از چهار روش زیر برای انسداد دنبال می شود]2,15[:
ثابت: این نوع مسدود کننده به صورت متوالی بیت های تصادفی داده را روی کانال ارسال می کند.
فریبنده: این نوع مسدود کننده بسته های معتبر را با سرعت بسیار بالا به گره های نزدیک خود ارسال می کند، به این ترتیب گره های معتبر به اشتباه مسدود کننده را یک گره قانونی و معتبر می پندارند.


تصادفی: این نوع مسدود کننده ها بین حالت خواب و ارسال پارازیت متناوبا تغییر حالت می دهند.
واکنشی: این نوع حملات مسدود کننده، فقط زمانی حمله می کنند که در کانالی که به طور مداوم مورد پویش قرار می دهند، متوجه برقراری ارتباط شوند.
صرفنظر از نوع مسدود کننده ای که به کار گرفته شده است، حملات پارازیت سبب ایجاد پارازیت و تداخل سیگنال کافی، که برای ایجاد ازدحام در شبکه ی بی سیم منتهی می گردد، می شود. نتیجه می تواند قطع کامل خدمات باشد. بیشتر این عملیات بر روی باند های بدون نیاز به مجوز 2.4 گیگاهرتز و 5.2 گیگاهرتز که هر گره ای بدون نیاز به تایید قبلی می تواند از آن استفاده کند، انجام می شود. برخی از مسدو کننده های رادیویی از انرژی زیادی استفاده می کنند یا از تقویت کننده برای تقویت سیگنال هایشان بهره می برند، تا انرژی کافی را حتی برای آسیب رسانی به قطعات الکترونیکی نقاط دسترسی و ناتوان ساختن، تولید نمایند]2[، این امر حتی با ماندن در محدوده و مرز مجاز تولید حداکثر 4 میلی وات انرژی (طبق دستورالعمل های شبکه های بی سیم آمریکا ]2,16[ توسط تقویت کننده ها، امکان پذیر است. این ویژگی های حملات پارازیت، آن ها را تبدیل به ترسناکترین نوع حملات DOS در شبکه های بی سیم نموده است]2[.

شکل SEQ تصویر * ARABIC 12- حملات انسداد در شبکه های بدون زیرساخت
حملات DOS در لایه ی فیزیکی عموما با نام انسداد شناخته می شوند ]23,24,4[. این حملات می توانند با توجه به اهداف (مثلا بخش خاصی از مقدمه ی فریم یا فریم کامل)، زمان بندی (مانند مستمر، دوره ای، تصادفی و یا واکنشی) و بودجه ی انرژی (به عنوان مثال کم و زیاد)، طبقه بندی شوند]4[.
2-1-3 تقسیم بندی حملات انسداد
در اینجا حملات DOS لایه ی فیزیکی با توجه به این ویژگی ها طبقه بندی می گردند]4[.
1-2-1-3 حمله با منابع نا محدود (RUA)]4[
اگر مسدود کننده، منابع تقریبا نا محدودی داشته باشد (مانند انرژی، قدرت، پهنای باند)، می تواند قدرت سیگنال را بر روی هر گیرنده ای به طور مستمر و در محدوده ی فرکانس وسیع بالا نگاه دارد. در این گونه حملات انسداد، تمام دستگاه های بی سیم موجود در محدوده ی موثر و پهنای باند مسدود شده، تا زمانی که حمله ادامه داشته باشد، مسدود می گردند. (نمونه ی این گونه حملات انسداد، در جنگ جهانی دوم گزارش شده بود). با این وجود، این امکان پذیر است که یک گیرنده را با سیگنالی خیلی ضعیف تر از توان سیگنال انتقال یک فریم مجاز، مختل نمود.
2-2-1-3 حمله ی مقدمه ]4[
با ارسال مستمر یک الگوی SYNC یک مسدود کننده می تواند به طور موثر از همگام سازی یک ایستگاه گیرنده، با انتقالات هر ایستگاه دیگری جلوگیری کند]4,23[. این نشان می دهد که اینگونه مسدود کننده می تواند، سبب از دست رفتن قابل توجه فریم ها شود، حتی با وجود این که توان دریافت شده ی آن سه برابر کمتر از توان دریافتی آن برای ارسال یک فریم مجاز باشد. بعلاوه، اگر حمله ی مقدمه در مدل خاموش/روشن دوره ای، پیاده سازی شود، واحد AGC توسط مسدود کننده فریب می خورد، که این سبب از دست رفتن فریم به دلیل خطا های بیتی می گردد.
3-2-1-3 حمله ی SFD ]4[
یک الگوی SFD ابتدای هدر واقعی PLCP را منتشر می کند. اگر گیرنده الگوی SFD ارسال شده توسط مسدود کننده را قبل از الگوی SFD فرستنده ببیند، شروع به پردازش بیت های در حال آمدن، بر طبق الگوی SFD با ترتیب غلط، می کند، که سبب تولید خطای CRC در هدر PLCP و فریم MAC می شود(فیلد های PLCP مانند طول و CRC از روی نمونه های غلط ایجاد شده اند).
4-2-1-3 حملات واکنش ]4[
ارسال مستمر، منابع انرژی مسدود کننده را خالی می کند. یک روش مصرف انرژی کارآمد در انسداد، انسداد واکنشی است. در این روش، مسدود کننده منفعلانه، تا زمانی که یک انتقال فریم احساس کند، به مانیتور کردن کانال می پردازد. در صورت شناسایی ارسال فریم در حال انجام، مسدود کننده شروع به ارسال سیگنال های مداخله، برای خراب کردن انتقال فریم در حال انجام می کند]4,24[. به همین ترتیب، هنگامی که مسدود کننده شروع یک دست دهی DCF در حال رخداد را شناسایی می کند، می تواند بدون نیاز به شناسایی یک انتقال در حال وقوع، سیگنال های مداخله را تولید نماید. شانس انسداد در تمام مراحل دست دهی وجود دارد.
5-2-1-3 حمله ی HR (Hit and Run) ]4[
اگر ایستگاه مسدود کننده به صورت مستمر، سیگنال های انسداد ارسال کند، مصرف انرژی بالایی خواهد داشت، همچنین یافتن چنین ایستگاهی ساده خواهد بود. حال آنکه اگر سیگنال های انسداد به صورت دوره ای و یا تصادفی، خاموش و روشن شوند، مصرف انرژی چنین ایستگاهی کمتر شده و شناسایی و پیدا کردن آن دشوارتر خواهد شد]4,24[.
6-2-1-3 حمله ی نماد ]4[
فریم های 802.11 و b802.11 شامل هیچ گونه طرح FEC (Forward Error Correction) نمی باشد. در نتیجه، ایجاد خطا در نماد سیگنال، تمام فریم را غیر قابل استفاده خواهد کرد. مانند حملات واکنشی در طول رخداد یک انتقال، مسدود کننده یک سیگنال قوی برای طول مدت یک نماد سیگنال، ارسال می نماید و می تواند در نابود کردن تمام فریم موفق باشد.
7-2-1-3 حمله ی به انحصار کشیدن ]4[
حمله کننده می تواند با ارسال یک فریم کوتاه در هر دوره ی SIFS برای به انحصار در آوردن کانال تلاش کند، اگرچه تعداد فریم های مورد نیاز برای قطعی کامل بسیار زیاد است]25[. (برای دوره های SIFS 20 میکرو ثانیه، 50.000 بسته در ثانیه مورد نیاز است.)
حملات SFD و مقدمه، در درجه ی اول، بیت های مقدمه را هدف قرار می دهند، اما هر دوی آن ها بر روی بیت هایی که به دنبال مقدمه می آیند نیز تاثیر می گذارند. حملات SFD و مقدمه هر دو می توانند از هر استراتژی زمانی بهره ببرند (مانند واکنشی، دوره ای، مستمر و تصادفی). از طرف دیگر حملات واکنشی، HR، نماد و به انحصار کشیدن، می توانند با الگوی SFD و یا SYNC پیاده سازی شوند. از این رو، با توجه به ویژگی های در هم تنیده ی حملات لایه ی فیزیکی ذکر شده، طبقه بندی بیشتر این حملات معنی دار نیست]4[.
3-1-3 شناسایی حملات انسداد
پارامتر های ذیل برای شناسایی حملات انسداد به کار می روند]2[:
نسبت سیگنال به نویز (SNR): SNR نسبت انرژی سیگنال به انرژی پارازیت موجود در سیگنال دریافتی است. SNR بالاتر نشان دهنده ی کارایی بهتر شبکه است.
نسبت تحویل بسته (PDR): نسبت تعداد بسته هایی که به صورت موفقیت آمیزی به مقاصد مورد نظر تحویل شده اند به تعداد کل بسته های ارسال شده از گره.
معمولا مجموعه ی ترکیبی از متریک های نشان دهنده ی SNR و PDR به کار می روند تا مشخص گردد که یک گره مسدود شده یا فقط یک خطا در آن رخ داده است.
4-1-3 مقابله با حملات انسداد
رویکرد های مقابله با حملات پارازیت، سه گام ذیل را شامل می گردند]2[:
1- شناسایی حمله: شناسایی حمله روندی است که در آن مکانیزم شناسایی تعیین می کند آیا سیستم تحت تاثیر یک حمله است یا خیر. شناسایی می تواند در دو جایگاه انجام شود]2, 17[: لایه ی MAC و لایه ی فیزیکی.
شناسایی در لایه ی MAC:
پروتکل های بی سیم، به ویژه آن هایی که بر پایه ی معماری 802.11 هستند، از CSMA-CA ]2,18[ برای برقراری ارتباط قابل اطمینان در شبکه استفاده می کنند. برای اینکه CSMA به درستی عمل کند، کانال باید برای گره در زمانی کمتر از یک حد آستانه قابل دسترس باشد. حد آستانه می تواند هم به صورت تئوری و هم به صورت تجربی تنظیم شود. اگر در کانال زمان دسترسی به طور مداوم و مکرر از حد آستانه فراتر رود، گره اینگونه تصور می کند که یک حمله ی DOS رخ داده است]2[.
شناسایی در لایه ی فیزیکی: در حملات DOS بر اساس مسدود کننده، SNR پارامتری عمده برای تشخیص یک حمله است. SNR خیلی کم، نشان دهنده ی احتمال وجود یک حمله ی DOS است. برای عملکرد صحیح این نوع از شناسایی، هر دستگاه باید SNR را در فواصل منظم نمونه سازی کند تا دیدگاهی مناسب از SNR در حالت طبیعی فعالیت شبکه ی بی سیم به دست آید]2[.
2- کاهش اثرات حمله:
بعد از اینکه شناسایی حمله انجام شد، مکانیسم کاهش اثرات حمله برای غلبه بر تاثیرات حمله انجام می گردد]2[.
3- جلوگیری از حمله:
این اقدامات برای جلوگیری از رخداد یک حمله در شبکه استفاده می شوند]2[.
5-1-3 تکنیک های کاهش اثرات حمله در لایه ی فیزیکی
با بررسی مقالات و تحقیقات اخیر تکنیک های زیر برای کاهش اثرات حملات انسداد حاصل شده است :
تغییر کانال ]2,19,7[
عقب نشینی فضایی ]2,19,7[
استفاده از کرمچاله ها]2,20,7[
نگاشت مناطق مسدود شده]2,21,7[
تکنیک های گسترش طیف ]2,22,7[
نظریه ی بازی]7[
گره های عسل ]2[
1-5-1-3 تغییر کانال]2,7[:
تغییر کانال بر اساس یک مکانیسم گریز طیفی است که در آن، گره ای که زیر حملات انسداد قرار می گیرد، استراتژی کاهش اثرات را با جا به جایی به کانالی دیگر پی خواهد گرفت. در تشخیص یک حمله گره ها، کانال عملیاتی خود را بر اساس یک توالی شبه تصادفی از پیش تعریف شده که به آن ها ابلاغ شده است تغییر می دهند. به منظور بررسی وجود یا عدم وجود گره ها، یک نقطه ی دسترسی مکررا امواج beacon را برای گره های مرتبط ارسال می کند، اگر هریک از آن ها به امواج beacon پاسخ ندادند، نقطه ی دسترسی دستور تغییر کانال را صادر می کند، که به گره های باقی مانده می گوید تا بر روی یک کانال عملیاتی جدید که بر اساس توالی شبه تصادفی از پیش تعیین شده، انتخاب شده، پرش کنند.
2-5-1-3 عقب نشینی فضایی]2,7[:
الگوریتم عقب نشینی فضایی بر اساس گریز فضایی است. نقاط دسترسی اجزای ساکن یک شبکه هستند و ثابت می مانند، اما گره های معمولی مرتبط، از منطقه ی نقطه ی دسترسی فعلی (که در حال حاضر مسدود شده است) به منطقه ی یک نقطه ی دسترسی اضطراری که بر اساس لیست نقاط دسترسی اضطراری، که توسط نقطه ی دسترسی اصلی، در طول ارتباط در طول ارتباط با آن ها داده شده است، تعیین گردیده، نقل مکان می کنند. هنگامی که گره ها از نقطه ی دسترسی فعلی به سمت نقطه ی دسترسی اضطراری حرکت می کنند، در تلاشند تا به نقطه ی دسترسی مسدود شده ی خود متصل شوند. اگر یک ارتباط پیدا شد، گره از حرکت باز می ایستد، در غیر این صورت، به ناحیه ی نقطه ی دسترسی اضطراری حرکت کرده و از طریق یک مکانیسم دست به دست کردن مناسب، با آن ارتباط برقرار می کند.
3-5-1-3 استفاده از کرم چاله ها]2,7[:
در حملات کرم چاله، دو (یا بیشتر) حمله کننده، از طریق یک مکانیسم حمله ی هماهنگ، مانند یک حمله کننده عمل می کنند. مشابه همین مکانیسم، هنگام برقراری ارتباط یک گره مسدود شده با گره ای مسدود نشده از طریق رسانه ی مسدود نشده، برای کاهش اثرات حمله رخ می دهد. رسانه ی مسدود نشده ی اشتراک گذاری شده، مانند کرم چاله عمل می کند.
4-5-1-3 نقشه برداری منطقه ی مسدود شده]2,7[:
این تکنیک بدون تمرکز بر اقدامات متقابل از هر نوعی، بر روی نقشه برداری از منطقه ی مسدود شده، با تعریف یک پروتکل نقشه برداری متمرکز شده است. این روش بر پایه ی پاسخ های در یافت شده از گره هایی که در درازای مرز منطقه ی مسدود شده قرار دارند، می باشد. در این شیوه هدف کاهش اثرات مسدود کننده با تعریف و ایزوله نمودن منطقه ی مسدود شده و سپس تلاش برای تعیین راه مسیریابی جایگزین برای بسته های داده می باشد.
5-5-1-3 تکنیک های طیف گسترده]2[:
سیستم های قدیمی تلاش می کنند تا به اجبار بیشترین میزان اطلاعات را بر داخل کمترین میزان پهنای باند موجود وارد نمایند. فرکانس مسدود کننده ی توان بالایی که باند فرکانس این سیستم ها را پوشش می دهند، به راحتی می تواند سیستم را مسدود کنند. در سیستم طیف گسترده، سیگنال، در پهنای باندی به گسترده ترین صورت ممکن پخش می شود. بدین وسیله تشخیص و مسدود نمودن ارتباطات ایجاد شده بسیار سخت خواهد شد. دو نوع تکنیک محتلف طیف گسترده، قابل استفاده می باشد، طیف گسترده ی توالی مستقیم (DSSS) ]2,22,28,29[ و پرش فرکانس گسترده (FHSS) ]2[.
6-5-1-3 نظریه ی بازی]7[:
اخیرا استفاده از تئوری بازی، توجه تحقیقات فراوانی را، در حوزه های مختلف ارتباطات بی سیم به خود جلب کرده است]7[. در این شیوه، اجزای شبکه ی بی سیم، مسدود کننده و نیز ویژگی ها و اجزای آن ها در قالب یک بازی مدل سازی شده و سپس برای پیروزی و یا رقابت در این بازی، به ارائه ی نظریه و فرموله سازی پرداخته می شود. در سال های اخیر بسیاری از مقالات به بررسی و مدل سازی در این زمینه پرداخته اند]7[.
7-5-1-3 گره های عسل]2[:
گره های عسل بر اساس مفهومی شبیه به ظرف عسل شکل گرفته اند. این گره ها تلاش می کنند تا به مسدود کننده ها حمله کنند، در نتیجه قادر خواهند بود تا اطلاعاتی در باره ی حمله و حمله کننده جمع آوری نمایند. اگر یک گره ی عسل حمله ای را تشخیص دهد، به ارسال سیگنال در همان کانال ادامه داده و در همین زمان ایستگاه اصلی را از حمله ای که در شرف وقوع است آگاه می کند تا استراتژی های از پیش تعیین شده ی کاهش اثرات و... را به کار گیرد]2[.
8-5-1-3 سایر استراتژی های موجود]7[:
در این زمینه استراتژی های دیگری نیز معرفی شده اند، یکی از استراتژی ها شامل ساخت یک کانال زمانبندی نرخ پایین در لایه ی فیزیکی به رغم حضور مسدود کننده می باشد]7[. در جایی دیگر پروتکلی مقاوم در برابر پارازیت برای شبکه های بی سیم تک هاپی معرفی گشته است]7[. با توجه به رشد فناوری های بی سیم و تحقیقات وسیعی که در این زمینه انجام می گیرد، در سال های اخیر مقالات بسیاری به بررسی ای موضوعات پرداخته اند و تحقیقات به سرعت در حال رشد و گسترش است.
2-3 حملات در لایه ی MAC ]4[
پروتکل MAC در 802.11 به حمله کننده اجازه می دهد که به طور انتخابی یا کامل، دسترسی شبکه را با تعداد اندکی بسته و مصرف انرژی پایین، از بین ببرد. انتخابی بدین معنی است که حمله کننده می تواند یک ایستگاه منحصر به فرد را هدف قرار دهد و نیازی نیست به تمام شبکه حمله کند. این گونه حملات DOS از یک آسیب پذیری مرکزی اصلی بهره می برند که آن، سهولت شنود آدرس MAC در شبکه های بی سیم است.
1-2-3 تقسیم بندی حملات در لایه ی MAC
1-1-2-3 حملات نقض احراز هویت/نقض برقرای ارتباط ]4[
امنیت از طریق رمزنگاری هنوز برای بسته های مدیریتی در استاندارد 801.11 پیاده سازی نشده است. در نتیجه با گوش دادن به ترافیک شبکه و یاد گرفتن آدرس های MAC ایستگاه ها و AP، یک حمله کننده می تواند با جعل فریم نقض احراز هویت/نقض برقرای ارتباط و ارسال آن، ایستگاه را از شبکه خارج کند. حملات نقض احراز هویت از حملات نقض برقراری ارتباط کارایی بیشتری دارند، به این دلیل که برای ایستگاه، زمان و کار بیشتری نیاز است تا به حالت مرتبط شده برگردد. اگر حمله به طور مداوم تکرار گردد، ایستگاه به طور نا محدود از دسترسی به شبکه منع می شود]4,25[.
2-1-2-3 حمله ی مدت زمان تورمی ]4[
اگر حمله کننده در محدوده ی رادیویی هدف خود باشد، می تواند به صورت مستمر، انتقال اطلاعات هدف را با تولید فیلد مدت زمان بزرگ در RTS، CTS و دیگر فریم های خود، به تعویق بیاندازد. باید به این نکته توجه داشت که در استاندارد 802.11، هر ایستگاه همسایه باید NAV خود را بر طبق مقدار فیلد مدت زمان به روز کند، اما این ویژگی به درستی در اکثر دستگاه های بی سیم، پیاده سازی نشده است ]4,25[.
3-1-2-3 حمله بر علیه i802.11 ]4[
اگر حمله کننده سبب شود که پروتکل i502.11 در برخی نقاط با شکست مواجه شود (مثلا توسط جعل مجموعه های امنیتی مذاکره شده)، نیاز است ایستگاه مجاز برای بازیابی دوباره، پیام های اضافی تبادل کند. اگر زمان بازیابی به اندازه ی کافی بزرگ باشد و ضمنا اجرای دوباره ی حمله امکان پذیر باشد، این یک حمله ی موثر DOS برای یک ایستگاه خاص خواهد بود. همچنین، این امکان وجود دارد که با ارسال پشت سر هم پیام های آغازین جعلی در دست دهی چهارطرفه ی i802.11، حافظه ی ایستگاه را از پای در آورد]4,26[.
4-1-2-3 حمله بر علیه گره های به خواب رفته ]4[
در پروتکل 802.11 ایستگاه ها قادرند برای صرفه جویی در مصرف انرژی به خواب بروند. در این حالت AP فریم ها را برای ایستگاه بافر می کند و به محض دریافت یک پیام رای گیری از ایستگاه، بیدار شده، بسته ها را برای ایستگاه ارسال می کند و آن ها را از بافر خود حذف می نماید. با شنود پیام رای گیری ایستگاه، حمله کننده می تواند سبب حذف پیام هایی که مقصد آن ها، ایستگاه مورد نظر است گردد. همچنین امکان پذیر است تا با جعل پیام های TIM نقطه ی دسترسی (AP)، ایستگاه را قانع کرد که داده ای در انتظار او نیست. یک حمله ی DOS می تواند سبب شود تا ایستگاه از همگامی با AP خارج گردد، در زمان نادرست از خواب بیدار شود و در نتیجه بسته ها را از دست بدهد]4,25[.
5-1-2-3 حملات لایه ی MAC کامل ]4[
حملاتی که تشریح گردید، قادرند برای قطع دسترسی تمام ایستگاه های یک AP تعمیم یابند. حال آنکه حملاتی با کارایی بیشتر در مصرف منابع، برای ایجاد قطعی کامل وجود دارد. حمله کننده می تواند به راحتی AP را مورد هدف قرار دهد و منابع محدود محاسباتی و/یا حافظه ی آن را تمام کند تا دیگر نتواند به هیچ ایستگاه دیگری خدمات دهد.
1- سیل درخواست های Probe ]4[
ایده ی اصلی این است که با ارسال پشت سر هم درخواست های Probe با آدرس های MAC برای مقاصد متفاوت، حجم کار سنگینی به AP تحمیل گردد، تا AP دیگر نتواند به ایستگاه های مجاز خدمت رسانی کند ]4,27[.
2- سیل درخواست های احراز هویت یا ارتباط ]4[
حمله کننده می تواند با ارسال پشت سر هم درخواست های احراز هویت و برقراری ارتباط، منابع AP را هدر دهد. نشان داده شده است که اگر WEP روی AP فعال شده باشد، مجبور است تا بار بیشتری را مدیریت کند و در نتیجه با ترافیک کمتری مسدود می گردد]4,27[. بسیاری از AP ها به درخواست های برقراری ارتباط در حالت اولیه ی خود، پاسخ می دهند. اگر i802.11 پیاده سازی شده باشد، حمله کننده می تواند فضای شناسه ی بسته ی EAP را که فقط 8 بیت طول دارد، با سیل درخواست برقراری ارتباط تمام کند]4,26[.
2-2-3 مقابله در لایه ی MAC ]4[
1-2-2-3 شناسایی شنود آدرس MAC ]4[
یک روش (بدون استفاده از رمزنگاری) برای شنود آدرس MAC، بر اساس فیلد شماره ی توالی (ترتیب) است، که مقدار آن به ازای هر فریم بخش بندی نشده، یکی اضافه می گردد. حمله کننده قادر نخواهد بود که مقدار فیلد شماره ی توالی را جایگزین کند، اگر نتواند عملکرد سیستم عامل کارت بی سیم خود را کنترل کند]4,30,31[. از طریق تحلیل الگوی شماره ی توالی ترافیک بی سیم شنود شده، سیستم شناسایی قابلیت شناسایی شنود آدرس MAC را برای مشخص کردن حملات نقض احراز هویت/نقض برقراری ارتباط دارد]4,30 [.
2-2-2-3 محافظت از فریم های کنترلی و مدیریتی از طریق رمز نگاری ]4[
راه حل رمزنگاری می تواند در مقابل حملات گوناگونی به کار گرفته شود، اما به طور خاص رمزنگاری از طریق کلید عمومی گران بوده و خود می تواند به راحتی هدف حملات DOS قرار بگیرد. برای اینکه حفره ای دیگر برای حملات DOS ایجاد نگردد، کارایی پروتکل های جدید (مانند w802.11) در این زمینه بسیار مهم است. استفاده از رمزنگاری پس از شناسایی وقوع یک حمله ی DOS می تواند یک راه جایگزین باشد، که ارزش تحقیقات آتی را داراست. به منظور گسترش راه حل های رمزنگاری برای فریم های مدیریتی دیگر، باید محدودیت هایی اضافی در نظر گرفته شوند. به عنوان مثال توسعه، مستقیما برای جستجوی درخواست و پاسخ پیاده سازی نمی شود، به این دلیل که موارد لزوم تولید کلید، پیش از تبادل فریم موجود نیستند، تا زمانی که، دو طرف، یک کلید امنیتی بلند مدت را به اشتراک بگذارند.
3-2-2-3 تعمیر پروتکل ]4[
پس از تعریف حملات DOS مربوط به جعل اولین پیام دست دهی در i802.11، یک پروتکل به استاندارد i802.11 پیشنهاد شد که در آخرین بررسی های آن کارگروه به تصویب رسید ]4,26[. موضوع دیگر در مورد تعمیر پروتکل، تبادل در i802.11 است، که در حالت احراز هویت شده/مرتبط شده انجام می شود. نشان داده شده است که از بین بردن سیل درخواست برقراری ارتباط با به کارگیری i802.11 قبل از برقراری ارتباط امکان پذیر می باشد ]4,32[. اما، این نیازمند تغییرات بزرگ در استاندارد است ]4,26[، بنابراین به سادگی می توان گفت تمام تعمیرات پروتکل نمی توانند یک راه حل عملی کوتاه مدت باشند.
4-2-2-3 پازل رمز نگاری شده (کاربر) ]4[
ایده ی اصلی پازل کاربر به شکل زیر است:
هنگامی که یک سرور درخواستی دریافت می کند، یک پازل به کابر توزیع می کند. فقط پس از اینکه تایید گردید پازل به درستی توسط کاربر حل شده است، سرور به درخواست او پاسخ می دهد. در صورتی که سرور تشخیص دهد زیر حملات DOS قرار گرفته است و حملات در حال شدید تر شدن هستند، سختی پازل می تواند بیشتر شود.
استاندارد i802.11 می تواند برای شامل شدن این حفاظت به روز گردد، اگرچه تحقیقات آتی نیاز است تا مشخص شود که آیا امکان پذیر است یک پازل موثر برای شبکه های بی سیم ساخته شود، به طوری که حل آن برای ایستگاه های مجاز با منابع متوسط آسان باشد، اما به اندازه ی کافی برای مسدود نمودن حمله کننده ها که حملات سیل ایجاد می کنند، دشوار باشد.
5-2-2-3 سایر راه حل های رمز نگاری نشده ]4[
با وجود اینکه راه حل های رمز نگاری، راه حل های امیدوار کننده ای برای جلوگیری بعضی از موثرترین حملات DOS ارائه می کنند، آن ها نیازمند به روز رسانی در استاندارد i802.11 هستند. راه حل های زیر بیشتر مختص یک نوع از حملات هستند، اما نیازی به یک تغییر در استاندارد ندارند.
1- به تاخیر انداختن تاثیر درخواست ]4[
اگر تاثیر درخواست های نقض احراز هویت و نقض برقراری ارتباط برای چند ثانیه به تاخیر بیافتد، درخواست می تواند به صورت امنی حذف شود، اگر بسته ای پس از آن دریافت شود. این راه حل یک آسیب پذیری جدید DOS برای ایستگاه های بی سیم سیار ایجاد می کند، و یک محدودیت قابل توجه از دیدگاه عملی به نظر نمی رسد ]4,25[.
2- تعریف تفسیر جدید از فیلد مدت زمان ]4[
چهار نوع فریم کلیدی که شامل مقادیر مدت زمان می باشند، ACK، DATA، RTS و CTS هستند. از آنجایی که قطعه بندی (تکه تکه شدن) تقریبا هیچ وقت در شبکه های 802.11 استفاده نمی شود، فیلد مدت زمان فریم های DATA و ACK که با یک قطعه دنبال نمی شوند، به راحتی می توانند نادیده گرفته شوند. برای فریم RTS، مانند راه حل قبل، ما می توانیم تاثیر فیلد مدت زمان را به تاخیر بیاندازیم و تاثیر آن را اگر بسته های داده ی بعدی دیده نشدند، حذف کنیم. بزرگترین چالش فریم های CTS هستند، بدین دلیل که راه حل استفاده شده برای RTS به صورت مستقیم قابل اعمال نیست که دلیل آن وجود مشکل پایانه های مخفی می باشد. یک راه حل ناکامل می تواند نادیده گرفتن بسته های CTS ایزوله شده برای بخشی از زمان باشد]4,25[.
3- کاهش محدودیت سعی مجدد ]4[
زمانی که یک حد سعی مجدد بالا برای فریم های تصدیق نشده (مانند پیام پاسخ Probe) تعیین می گردد، حملات سیل، آسیب رسان تر می شوند. یک راه حل، تغییر حد سعی مجدد به مقداری کوچکتر به محض شناسایی یک حمله ی DOS، است. اگرچه گزارش شده است که پیاده سازی این راه حل بالاتر از سطح سیستم عامل دستگاه، دشوار است.
3-3 حملات DOS به شبکه های 802.11، شامل لایه ی MAC و لایه های بالاتر ]4[
پروتکل حل آدرس (ARP) یک پروتکل بدون وضعیت است که برای مشخص کردن نگاشت بین آدرس IP و MAC استفاده می شود. از آنجایی که هیچ منبع احراز هویتی در ARP وجود ندارد، حمله کننده می تواند مخزن ARP ایستگاه دیگری را با ارسال پاسخ های ARP غلط، زمانی که آن ها در یک دامنه ی داده پراکنی هستند، مسموم کند. این مشکل به طور منطقی در شبکه های سیمی کاهش پیدا کرده است، در صورتی که در زمینه ی شبکه های بی سیم، نیازمند آنیم تا مشکل را دوباره بررسی کنیم، چرا که دامنه ی داده پراکنی با حضور AP ها بزرگتر شده و شامل شبکه های سیمی و بی سیم می گردد]4,33[.
گونه ای دیگر از حملات DOS نیز به دلیل محدودیت در پهنای باند شبکه های بی سیم در مقایسه با شبکه های سیمی، امکان پذیر می باشد. برای مثال، یک فرد می تواند با ایجاد سیل ICMP ping یا TCP sync از یک شبکه ی سیمی، پهنای باند بی سیم را خالی کند.
1-3-3 اقدامات متقابل ]4[
راه حل قدیمی در مقابله با این حملات لایه های بالاتر، فیلترینگ (برای جلوگیری) و سیستم های شناسایی نفوذ (برای شناسایی) می باشد.
1-1-3-3 فیلترینگ ]4[
ریسک مسموم کردن ARP و حملات سیل می تواند با پیاده سازی فیلترینگ بسته کاهش یابد. یک دیوار آتش بین سوئیچ هایی که AP ها را به یکدیگر متصل می کنند و شبکه ی سیمی، می تواند ترافیک را فیلتر نموده و از حملات ARP که از شبکه های سیمی سرچشمه گرفته اند، جلوگیری کند.
2-1-3-3 سیستم های شناسایی نفوذ ]4[
هنگامی که جلوگیری از حمله امکان پذیر نیست، شناسایی تنها راه دفاع است. این نیازمند آن است اطمینان حاصل گردد که اقدامات دفاعی واقعا کار می کنند]4,33[. سیستم های شناسایی نفوذ ممکن است قادر باشند تا حملات مسموم سازی ARP و همچنین حملات دیگری که از نقض در پروتکل های شبکه بهره گیری می کنند را، با تعداد بیش از اندازه ی پاسخ های ناخواسته شناسایی کنند. با این حال شناسایی بدون واکنش معمولا تاثیر زیادی ندارد.
4-3 اقدامات متقابل در لایه ی MAC با استفاده از لایه ی فیزیکی ]4[
اکثر حملات DOS فقط به این دلیل امکان پذیر هستند که یک حمله کننده می تواند توسط یک آدرس MAC ساختگی تغییر ظاهر دهد. خصوصیات لایه ی فیزیکی مانند قدرت سیگنال و ویژگی های فرستنده را می توان برای تولید اثرانگشت هایی نسبتا قابل اعتماد و دشوار برای جعل، به منظور شناسه ی یک ایستگاه به کار برد ]4,32,34[.

شکل SEQ تصویر * ARABIC 13- تولید کننده ی نرم افزاری سیگنال
1-4-3 شناسایی ایستگاه از طریق ویژگی های سیگنال ]4[
موقعیت یک ایستگاه، با کمی ابهام (به دلیل انحراف ذاتی استاندارد انتشار سیگنال های RF در حدود مقداری میانی)، از طریق اندازه گیری های RSSI (Receive Signal Strength Indicator) از فریم های ارسال شده توسط چند AP، قابل شناسایی می باشد.
اندازه گیری های RSSI از یک ایستگاه مشخص، توسط هر AP، در یک ردگیری سیگنال از یک موجودیت مرکزی، ترکیب می شوند. RSSI خصوصیات مشخصی دارد که آن را قادر می سازد تا به عنوان یک معیار معتبر استفاده شود:
1- جعل ویژگی های RSSI دشوار است.
2- RSSI همبستگی زیادی با مکان فیزیکی ایستگاه دارد.
3- RSSI ایستگاه های ساکن، نسبتا ثابت است.
گزارش شده است که ردیابی سیگنال بر اساس RSSI را می توان به طور قابل اطمینان برای تعریف مکان نسبی ایستگاه به کار برد، و نیز به شرطی که گره ها در مجاورت نزدیکی، نباشند، به صورت فیزیکی بین آنها تمایز قائل شد ]4,34[، این مطلب پتانسیل آن را دارد تا به عنوان دو اقدام متقابل استفاده شود:
1- برای شناسایی و رها کردن زیر مجموعه ی فریم هایی که از همان ایستگاه سرچشمه می گیرند تا از حملات کاهش منابع جلوگیری کنند.
2- برای شناسایی حملات، با مقایسه ی اثر انگشت درخواست های متناقض (احراز هویت و نقض احراز هویت).
باید در نظر داشت که در اینجا هدف تعیین فیزیکی مکان ایستگاه نمی باشد، بلکه هدف متمایز نمودن آن در میان سایرین است.
این تکنیک ها قابلیت این را دارند که فقط واکنش صحیح از حذف فریم های سرچشمه گرفته از ایستگاه متخاصم را ارائه کنند. سایر روش های شناسایی بر اساس تحلیل ردیابی ترافیک، نمی توانند واکنش مناسب را به حملاتی که در آن حمله کننده از آدرس های MAC جعلی استفاده می کند، نشان دهد و هیچ مکانیسم شناسایی دیگری در این جایگاه وجود ندارد. برای مثال، هنگامی که بسیار قدرتمند در برابر رفتار حریصانه ی کاربران مجاز که به صورت رمزنگاری شده توسط AP احراز هویت شده اند، عمل کنیم و در نتیجه آن ها نتوانند آدرس MAC خود را تغییر دهند، نرم افزار DOMINO ]4,35[ اگر به تنهایی استفاده شود، نمی تواند حمله کننده ای را که فقط قصد حمله ی DOS را دارد شناسایی نموده و با آن مقابله کند.
می توان این گونه در نظر گرفت، تکنیک های مکان یابی برای شبکه ها بی سیم، که بر انواع دیگر اندازه گیری (مانند، TDOA، [4]Time Difference Of Arrival) وابسته هستند نیز می توانند در مقابل حملات DOS استفاده شوند. به همین ترتیب، اثر انگشت RF فرستنده می تواند برای شناسایی به کار گرفته شود. در ]4,36[ یک سیستم کامل برای شناسایی ایستگاه های 802.11، بر اساس ویژگی های سیگنال RF نشان داده شده است.
4- نتیجه گیری
هدف اصلی این سمینار، بررسی کلی حملات DOS و نیز راه های جلوگیری و کاهش اثرات این حملات است. انواع حمله های ارائه شده و راهکار های مقابله ی مطرح شده، تماما از مقالات علمی معنبر استخراج گردیده اند، اما تنها با مطالعه ی مقالات نمی توان به بررسی و مطالعه ی این گونه مسائل امنیتی پرداخت، چرا که اکثر کار های انجام شده در این زمینه یا به صورت پروژه - ریسرچبه چاپ نمی رسند و یا زمان زیادی بعد از ارائه ی آن عمومی می شوند. برای آگاهی از تمام جوانب موجود اولین راه کار ورود مستقیم به عرصه ی پژوهش های آزمایشگاهی در این حیطه و در مرحله ی بعد پیگیری کار های شرکت های معتبر و جستجو در اینترنت به صورت گسترده است. با وجود اینکه اطلاعات موجود در اینترنت از صحت قابل اعتمادی برخوردار نیستند اما جدید ترین مسائل ابتدا در این محیط منتشر خواهند شد (مگر تحقیقات علمی آزمایشگاهی).
شیوه های بحث شده ی حملات و تقابل با آن در این سمینار، نشان می دهد که این حیطه فضای زیادی برای تحقیقات آتی دارد. شیوه های مطرح گشته ی حملات، روش هایی است که تا کنون به صورت علمی به ثبت رسیده اند و به طور قطع هر روزه روش ها و ابزار های جدیدی ابداع می گردند و بسیاری از راه کار ها نیز هرگز عمومی نخواهند شد. مهم ترین مبحث در حملات DOS بی سیم مسدود کننده ها هستند که به راحتی قابل ساخت و به روز رسانی با تکنولوژی های جدید هستند. اکثر مسدود کننده های موثر به طور قطع هرگز توسط عموم شناخته نخواهند شد چرا که بیشتر کاربرد نظامی و یا دولتی دارند، اما به دلیل شناخته شده بودن تکنولوژی، قابل تولید توسط افراد بسیاری هستند. روش های حملات با به کار گیری لایه های دیگر نیز هر روز در حال گسترش و پیشرفت هستند تا جایی که هرگز نمی توان مطمئا بود که داده های شبکه ی بی سیم شما به هیچ وجه آسیب نمی بینند. به حر حال در این زمینه نیز ره کار هایی ارائه شد که میتوانند سکوی پرتابی برای تحقیقات آینده باشند. به سهولت و با جمع بندی کامل می توان این گونه بیان نمود که مطالب بیان شده در هر پروژه - ریسرچ، پیرامون این مطالب، چندی پس از ارائه منسوخ خواهند شد، چرا که این تکنولوژی هنوز به مرحله ی بلوغ خود نرسیده و فضای زیادی برای پیشرفت و بهتر شدن دارد.
مراجع
[1] Jalel Ben Othmana, Lynda Mokdadb, “Enhancing data security in ad hoc networks based on multipath routing”, Journal of Parallel and Distributed Computing, vol. 70, pp. 309_316, 2010
[2] Sudip Misra, Sanjay K. Dhurandher, Avanish Rayankula, Deepansh Agrawal, “Using honeynodes for defense against jamming attacks in wireless infrastructure-based networks”, Computers and Electrical Engineering, vol. 36, pp. 367–382, 2010
[3] Ningrinla Marchang, Raja Datta, “Collaborative techniques for intrusion detection in mobile ad-hoc networks”, Ad Hoc Networks vol. 6, pp. 508–523, 2008
[4] Kemal Bicakci, Bulent Tavli , “Denial-of-Service attacks and countermeasures in IEEE 802.11 wireless networks”, Computer Standards & Interfaces vol. 31,pp. 931–941,2009
[5] Shafiullah Khan, Kok-Keong Loo, Tahir Naeem, Mohammad Abrar Khan, “Denial of Service Attacks and Challenges in Broadband Wireless Networks”, International Journal of Computer Science and Network Security, vol. 8 No. 7, July 2008.
[6] S. A. Arunmozhi, Y. Venkataramani, “DDoS Attack and Defense Scheme in Wireless Ad hoc Networks”, International Journal of Network Security & Its Applications, vol. 3, No. 3, May 2011.
[7] Lin Chen, Jean Leneutre, “Fight jamming with jamming – A game theoretic analysis of jamming attack in wireless networks and defense strategy”, Computer Networks, vol. 55, pp. 2259–2270, 2011.
[8] Mahadevan K, Hong S, Dullum J, “Anti-jamming: a study”, <http://www users.itlabs.umn.edu/classes/Fall-2007/csci5271/jamming.pdf>.
[9] Negi R, Perrig A, “Jamming analysis of MAC protocols”, Carnegie Mellon Technical Memo, 2003.
[10] Wood AD, Stankovic JA, “Denial of service in sensor networks”, IEEE Comp, vol. 35(10), pp. 54–62, 2002.
[11] Lin G, Noubir G, “On link-layer denial of service in data wireless LANs”, J Wireless Comm Mob Comput, vol. 5(3), pp. 273–84, 2005.
[12] Bellardo J, Savage S, “802.11 denial-of-service attacks: Real vulnerabilities and practical solutions”, In: Proceedings of the USENIX security symposium, pp. 15–28, 2003.
[13] Xu W, Trappe W, Zhang Y, Wood T, “Channel surfing and spatial retreats: defenses against wireless denial of service”, ACM Wireless Security, pp. 80–9, 2004.
[14] LAN MAN Standards Committee of IEEE Computer Society, Draft International Standard ISO/IEC 8802-11 IEEE P802.11/D10, January 1999.
[15] Xu W, Ma K, Trappe W, Zhang Y, “Jamming sensor networks: attack and defense strategies”, IEEE Network, May/June 2006.
[16] FCC Part 15 regulations for low power, non-licensed transmitters, OET Bulletin 63, <http://www.fcc.gov/oet/info/documents/bulletins/>, October 1993.
[17] Xu W, Trappe W, Zhang Y, Wood T, “The feasibility of launching and detecting jamming attacks in wireless networks”, In: Proceedings of MobiHoc’05, May 25–27, 2005, Urbana-Champaign, IL, USA, p. 46–57.
[18] Colvin A. CSMA with collision avoidance. Comp Commun, vol. 6(5), pp. 227–35, 1983.
[19] Xu W, Trappe W, Zhang Y, Wood T, “Channel surfing and spatial retreats: defenses against wireless denial of service”, ACM Wireless Security, pp. 80–9, 2004.
[20] Cagali M, Capkun S, “Wormhole-based anti-jamming techniques in sensor networks”, IEEE Trans Mobile Comput, vol. 6(1), pp. 100–14, 2007.
[21] Wood AD, Stankovic JA, Son SH, “JAM: a jammed-area mapping service for sensor networks”, In: Proceedings of the 24th IEEE international real-time sys-- symposium, pp. 286–297, 2003.
[22] Pickholtz R, Schilling D, Milstein L, “Theory of spread-spectrum communications – a tutorial”, IEEE Trans Commun, pp. 855–84, 1982.
[23] R. Gummadi, D.Wetherall, B. Greenstein, S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks”, Proceedings of the ACM SIGCOMM, pp. 385–396, 2007.
[24] W. Xu, K. Ma,W. Trappe, Y. Zhang, “Jamming in sensor networks: attack and defense strategies”, IEEE Network, vol. 20 pp. 41–47, 2006.
[25] J. Bellardo, S. Savage, “802.11 Denial-of-Service attacks: real vulnerabilities and practical solutions”, Proceedings of USENIX Security Symposium, 2003.
[26] C. He, J.C. Mitchell, “Security analysis and improvements for IEEE 802.11i”, Proceedings of the 12th Annual Network and Distributed Sys-- Security Symposium (NDSS'05), pp. 90–110, 2005.

user8309

قراردادهای فروش برون مرزی
قراردادهای تبدیل انرژی
قرارداد عمده فروشی در بازار رقابتی در واقع همان بازار پویایی است که رقابت در آن بر سر قیمت نهایی فروش برق بین خریداران(برق های منطقه ای) و فروشندگان برق(نیروگاه ها) انجام می شود و موضوعی که در این پایان نامه بر روی آن کار شده است در این فضا مدل سازی و بهینه سازی می شود. قرارداد خرید تضمینی، قراردادی است که بین یک فروشنده و یک خریدار منعقد می شود و با یک نرخ ثابت کالای برق مورد معامله قرار می گیرد، در این نوع قرارداد ها عملاً ریسکی انجام نمی شود و به ازای متحمل نشدن ریسک قیمت فروش برق نیز پایین تر از نرخ های وسوسه کننده در بازار رقابتی برق می باشد به گونه ای که معمولاً نیروگاه ها با مالکیت خصوصی کمتر راضی به فروش محصول خود با نرخ های تضمینی مصوب وزارت نیرو می گردند.
قراردادهای دوجانبه نیز مابین یک تولیدکننده و یک مصرف کننده منعقد می شوند به طوری که تنها از شبکه برق سراسری برای انتقال انرژی استفاده می کنند و مابه ازای این استفاده، هزینه ای را به عنوان هزینه ترانزیت می پردازند. قراردادهای فروش برق برون مرزی با کسب مجوز های لازم از وزارت نیرو با متقاضیان برق در خارج از مرزهای کشور عزیزمان بسته شده و به نوعی صادر می گردند. همچنین قرارداد های تبدیل انرژی نیز فی مابین برخی از نیروگاه ها و وزارت نیرو منعقد شده و نیروگاه صرف نظر از بهای برق تولیدی و هزینه سوخت مصرفی و یک سری هزینه های مورد توافق، تنها وتنها درآمدی را به ازای تبدیل سوخت مصرفی به برق تولیدی دارا خواهد شد.
موضوع اصلی مورد بحث در این پایان نامه ساختار بازار رقابتی برق ایران و چگونگی شکل گیری رقابت در فضای بازار می باشد. با عنایت به راه اندازی بازار عمده فروشی برق در کشورمان از آبان ماه سال 1382 تحت نظارت هیئت تنظیم بازار برق ایران و قوانین مصوب این هیئت، موضوع پیشنهاد قیمت بهینه برای فروش برق توسط تولیدکنندگان(نیروگاه ها) و همچنین خریداران(شرکت های برق منطقه ای) اهمیت ویژه ای مخصوصاً در سال های اخیر پیدا کرده است.
موضوع بدین ترتیب می باشد که یک حداکثر قیمت(383 ریال برای هر کیلووات در حال حاضر) و حداقل قیمت(235 ریال برای هر کیلووات در حال حاضر) برای فروش برق نیروگاه ها توسط هیئت تنظیم بازار برق ایران در نظر گرفته شده است و نیروگاه ها در نرم افزاری که توسط بازار ارائه شده است هر روزه، قیمت سه روز آتی را پیش بینی می کنند و ابراز آمادگی جهت حضور در مدار شبکه می نمایند.
بعد از ابراز آمادگی نیروگاه ها و ظرفیت مگاوات اعلام شده از سوی آن ها برای حضور در مدار، نرم افزار بازار اجرا شده و متناسب با مصرف احتمالی کل کشور و به تفکیک نقاط مختلف و بر اساس پیشنهادهای خریداران و فروشندگان(بازیگران بازار)، آرایش تولید برای نیروگاه ها در روزهای آتی اعلام می گردد، نیروگاه هایی که قیمت آن ها مناسب نباشد بازنده شده و برق آنها در صورت نیاز شبکه به قیمت های بسیار نازل خریداری می گردد.
شکل 1-1 معرف خوبی از فرآیند مشارکت نیروگاه ها در بازار برق ایران و چگونگی برنده و بازنده شدن نیروگاهها را نشان می دهد. منطق بازار مینیمم کردن هزینه های خرید برق، انتقال و تلفات شبکه سراسری برق می باشد به طوری که قیمت های پیشنهادی نیروگاه ها از کم به زیاد مرتب می گردد و پیشنهاد نیروگاه ها طبعاً تا جایی پذیرفته خواهد بود که مصرف برق کشور بر اساس اعلام نیاز برق های منطقه ای تامین گردد بنابراین برنده شدن و بازنده شدن معنا پیدا می کند.
با توجه به گرایش نسبت به خصوصی سازی در صنعت برق، تمایل برای کسب سود بیشتر در ازای ریسک بالاتر افزایش یافته است و بازیگران بازار برق به دنبال کشف نقطه تسویه بازار می باشند. در بخش 1-2 ، این نقطه بسیار مهم بیشتر معرفی می شود.

شکل SEQ شکل * ARABIC 1-1: منحنی عرضه و تقاضا و نقطه تسویه بازارفاکتورهای زیادی بر پیچیده شدن مسئله دخالت دارند و بدست آوردن یک قیمت بهینه را دشوار می سازند. موقعیت جغرافیایی که نیروگاه ها و شرکت های برق منطقه ای در آن قرار دارند، قیمت های پیشنهادی دیگر بازیگران بازار برق، قیمت سوخت مصرفی تعیین شده بر اساس مصوبات، ساعات روز، روزهای هفته، تعطیلی های رسمی کشور(به طور مثال مینیمم مصرف سال کشورمان در روزهای عاشورا و تاسوعا اتفاق می افتد)، الگوی مصرف مردم که به مرور زمان تغییر می کند، محدودیت هایی که به لحاظ فنی برای نیروگاه ها وجود دارند(مانند: ظرفیت ترانس نیروگاه ها، محدودیت آب پشت سد یک نیروگاه آبی، پست مشترک ورودی برق به شبکه برای چند نیروگاه) و ... از جمله این موارد می باشند.
یکی از سختی های حل این مسئله چگونگی مدل سازی و استخراج معادلات و روابط ریاضی، از این مفاهیم انتزاعی است که با توجه به وجود درس هایی همچون برنامه ریزی ریاضی پیشرفته، تحلیل سیستم های انرژی، مبانی اقتصاد که در رشته مهندسی سیستم های انرژی وجود دارند پایه و اساس انجام چنین پژوهش هایی در این رشته تحصیلی قابل توجیه می باشد.
با توجه به اینکه یکی از ارتباطات رشته تحصیلی مهندسی سیستم های انرژی به این موضوع، مدل سازی صحیح این بازار، استخراج تابع هدف مناسب و معقول که نتایج خروجی از تابع هدف مورد نظر انتظارات لازم را برآورده کند، می باشد لذا ارتباط موضوع پایان نامه با رشته تحصیلی کاملاً مشهود می باشد. به همین علت ذکر نام دروسی که در مدل سازی و فراهم آوردن شرایط بهینه سازی و فضای حاکم بر مسئله تاثیر زیادی داشته اند، ضروری است:
درس مبانی اقتصاد: شناخت مفاهیم بازار و تاثیرگذاری عرضه و تقاضا بر روی ارائه کالای مورد نظر(برق)
درس تحلیل سیستم های انرژی: تحلیل کلی از بازار برق ایران و شناخت این سیستم پیچیده
درس برنامه ریزی ریاضی پیشرفته: تبدیل اطلاعات موجود در کشور به معادلات حاکم بر مسئله جهت حل مسئله، و همچنین بدست آوردن تابع هدف مناسب با تعریف صحیح از فضای حل که یکی از ورودی های الگوریتم ژنتیک جهت نیل به هدف بهینه سازی می باشد.
درس قابلیت اطمینان و تحلیل ریسک: از مهمترین و پیچیده ترین فاکتورهای دخیل در طرح این پروژه آنالیز ریسک و وابستگی قیمت ها به میزان ریسک می باشد، هرچه میزان ریسک بالاتر باشد و بازیگر برنده گردد، سود ماکزیمم می شود.
بازار برق دنیا و اصول پیشنهاد قیمت در بازار برق ایرانبا شروع به کار بازار برق ایران، مساله پیشنهاد قیمت برای شرکت‌های فروشنده برق دارای اهمیت بسیار بوده و فاکتور مهمی جهت کسب درآمد و سودآوری برای این شرکت‌ها محسوب می‌شود. همراه با تغییر در ساختار اقتصادی صنعت برق ایران و راه‌اندازی بازار برق، مسأله تنظیم و تامین هزینه‌های سالیانه شرکت‌های برق منطقه ای با چالش‌ها و مشکلات ویژه‌ای مواجه شد. بهترین دلیل برای این وضعیت وجود عدم قطعیت‌های مختلف تأثیرگذار بر درآمدها و هزینه‌های این شرکت‌ها در فرایند فروش انرژی به بازار برق می باشد.
با راه‌اندازی بازار برق ایران در سطح عمده فروشی و در سمت فروشندگان در آبان‌ماه سال 1382، درآمد شرکت‌های برق منطقه‌ای به نحوه قیمت دهی وابسته شده است. بنابراین بازاربرق، در شرکت‌های آب و برق منطقه‌ای تولید کننده انرژی الکتریکی، انگیزه مضاعفی جهت پیشنهاد قیمت بهینه ایجاد نموده است. محدودیت‌هایی در بازار برق ایران نظیر محدودیت‌های انتقال، عدم خروج واحدهای سیکل ترکیبی و بخاری بزرگ و... موجود است.
مسأله تنظیم و تامین هزینه متوسط و برنامه‌ریزی جهت تحقق آن از جمله مهمترین مسائل مطرح در افق زمانی میان مدت برای هر بنگاه اقتصادی است. حل دقیق این مسأله، نقشی کلیدی در جهت نیل به اهداف مورد نظر بنگاه اقتصادی و رشد و توسعه اقتصادی آن دارد. در فضای سنتی صنعت برق، حل مسأله برنامه‌ریزی هزینه‌ها با توجه به عدم قطعیت نه‌چندان قابل توجه موجود در درآمدها و هزینه ها، با مشکل چندانی مواجه نبود، اما با ایجاد فضای رقابتی در صنعت برق و جداسازی بخش‌های تولید، انتقال و توزیع و در نتیجه تصمیم‌گیری مستقل بنگاه‌های اقتصادی، مسأله تخمین هزینه درفضای سنتی به مسأله کنترل هزینه‌ها و درآمدهای بنگاه‌های اقتصادی تغییر یافت. از طرف دیگر مسأله تخمین و تنظیم درآمدها و هزینه‌های بنگاه‌های اقتصادی به علت تغییر رفتار بازیگران بازار با توجه به اطلاعات ناقصشان از محیط بازار برق دارای عدم قطعیت محسوسی می‌باشد. همچنین تخمین درآمدها و هزینه‌های هر بنگاه اقتصادی در افق زمانی میان‌مدت باید به گونه‌ای صورت گیرد که اهداف موجود دراستراتژی قیمت‌دهی را نیز برآورده سازد و بالعکس. حل مسائل برنامه‌ریزی میان مدت مستلزم مدل سازی عدم قطعیت‌های موجود در متغیرهای مسأله و بکارگیری روش‌های بهینه‌سازی است. آشنایی با برخی تحقیقات انجام‌شده در این زمینه لازم است.
در مرجع [1] رفتار بهینه مصرف‌کننده‌ها جهت خرید انرژی از بازار برق با توجه به قید بودجه آن‌ها که محدودکننده میزان هزینه خرید انرژی می‌باشد تعیین شده است. استراتژی تعیین میزان تعرفه توسط بهره‌بردار شبکه انتقال بلژیک برای مصرف‌کنندگان و تولیدکنندگانی که از خدمات آن بهره می‌گیرند با در نظر گرفتن قید هزینه بهره بردار تنظیم می‌گردد [2]. قید بودجه به گونه‌ای عمل می‌کند که سود بهره‌بردار ناشی از ارائه خدمات انتقال و هزینه سرمایه‌گذاری آن از حد معینی بیشتر باشد. در این شرایط نیاز به روشی کارا جهت مدل‌سازی عدم قطعیت‌های موجود در مسأله تخمین درآمدها و هزینه‌ها در افق زمانی میان مدت و هماهنگ با استراتژی‌های قیمت‌دهی و با در نظرگرفتن اهداف و قیود بنگاه اقتصادی ضروری به نظر می‌رسد.
در مرجع [3] مدلی جهت مدیریت ریسک ناشی از قیمت سوخت، تقاضا، دبی آب و قیمت برق که نیروگاه‌های آبی یا حرارتی در بازار برق با آن‌ها مواجه هستند ارائه شده است. در مرجع [4] از درخت تصمیم به منظور مینیمم کردن هزینه‌های بهره‌برداری هفتگی واحدهای تولیدی با توجه به عدم قطعیت تقاضا استفاده شده است. در مرجع [5] مدلی ریاضی به منظور بهره‌برداری بهینه برای سیستم تولید که از واحدهای آبی و حرارتی تشکیل شده، ارائه شده است. در این مرجع عدم قطعیت‌های جریان آب ورودی به سد برای واحد آبی و قیمت سوخت در مورد نیروگاه حرارتی درنظر گرفته شده‌است. در مرجع [6] با استفاده از درخت تصمیم، مدلی به منظور ماکزیمم کردن درآمد با توجه به وجود قراردادهای میان مدت برای واحدهای آبی ارائه شده‌است.
به علت عدم قطعیت‌های موجود در بازار برق، شناسایی و مدل‌سازی عدم قطعیت‌ها در درآمدها و هزینه‌های شرکت برق منطقه‌ای در افق زمانی میان مدت امری ضروری است. با توجه به اینکه عدم قطعیت‌ها در افق زمانی میان‌مدت مدل‌سازی می‌شوند و به علت اینرسی بالای قیمت سوخت درایران از عدم قطعیت موجود در قیمت سوخت صرف‌نظر می‌شود. بنابراین تنها، نیاز به مدل‌سازی رفتار قیمت تسویه بازار به‌طور ماهانه می‌باشد. البته می‌توان عدم قطعیت ناشی از وقوع پیش‌آمدهای اتفاقی در سیستم قدرت و تغییرات تقاضا را نیز جهت مدل‌سازی دقیق‌تر مسأله در نظر گرفت. با جمع‌آوری اطلاعات قیمت تسویه بازار برق برای هر ماه در سال‌های گذشته و انتخاب بازه‌های تغییر قیمت تسویه بازار (تعیین بازه‌های پیشامدهای قیمت پایین، متوسط و بالا) و بهره‌گیری از مدل فرکانسی، احتمال وقوع پیشامدهای مختلف برای مقدار قیمت تسویه بازار در هر ماه تعیین می‌گردد[7].
تولیدکنندگان با ارائه مقدار تولید و قیمت پیشنهادی در بازار برق شرکت می‌کنند. بهره‌بردار بازار نیز پیشنهاد برنده را مشخص می‌کند. در مبادلات قراردادی مانند قراردادهای دوطرفه روند مناظره و بحث بین دو طرف لازم است. البته شایان ذکر است که قیمت دهی درطرف مصرف هم به مرور زمان و با توسعه بازار در سمت خرید برق، دارای اهمیت خواهد شد.
مسأله پیشنهاد قیمت در بازارهای برق به مبادلات حراج مربوط است و تولیدکنندگان با ارائه پیشنهاد قیمت و مقدار تولید به بهره بردار بازار، در آن شرکت می‌کنند و بهره‌بردار بازار، برندگان و مقدار پول تخصیص یافته به آنان را مشخص می‌کند.
قوانین تخصیص پول به شرکت کنندگان نیز عبارتند از:
پرداخت به میزان پیشنهاد (PAB)
تخصیص یکنواخت (UP)
به طور خیلی خلاصه می توان گفت که در بازار PAB ، نیروگاه ها بر اساس قیمتی که می دهند و در سامانه مربوطه ثبت می کنند، در صورتی که در بازار برنده شوند مبلغی را که به ازای هر کیلووات ساعت برق اعلام داشته اند دریافت می نمایند. در این بازار ها انگیزه ای در جهت پیشنهاد قیمت بهینه(قیمتی که سود را بیشینه گرداند تا جایی که بازیگر بازنده و متضرر نشود) به وجود می آید و استراتژی پیش روی نیروگاه ها کشف و یا به عبارت دیگر حدس قیمت سایر بازیگران بازار می باشد. در نوع دیگر اجرای بازار یعنی به روش UP ، آخرین قیمت پذیرفته شده در بازار(بعد از این قیمت سایر بازیگران بازنده اعلام می شوند) مبنای پرداخت به تمام نیروگاه های برنده شده ماقبل قرار می گیرد یعنی پرداخت به ازای حاصلضرب ظرفیت برنده شده هر نیروگاه برنده در آخرین قیمت برنده شده در بازار انجام می شود. در نظر اول کمی ظالمانه به نظر می رسد اما در بسیاری از کشورهای پیشرفته از این روش استفاده می گردد، چرا؟
پاسخ به این سوال بسیار راحت می باشد! در واقع منطق اصلی از اجرای این بازار ها بیشینه کردن سود به وسیله بیشینه کردن درآمد حاصل از فروش نیست بلکه نیروگاه ها را تشویق به کاهش هزینه های تولید خود می کند. یعنی ارزش قیمت هر کیلووات برق در هر روز بازار مشخص می گردد و از همه بازیگران برنده به آن قیمت مشخص برق خریداری می گردد و رقابتی بین نیروگاه ها در جهت کاهش هزینه ها، کاهش آلاینده ها، افزایش راندمان سیکل های تولید، کاهش هزینه های بهره برداری از نیروگاه و همچنین کاهش هزینه های ساخت و احداث اولیه نیروگاه ها شکل می گیرد و این موضوع درنهایت به نفع کل کشور خواهد بود.
مساله پیشنهاد قیمت به طور کلی به صورت یافتن قیمت بهینه و تعیین استراتژی مناسب جهت رقابت با فروشندگان دیگر تعریف می‌شود. مساله مدنظر ما شرکت در حراج می‌باشد که به صورت مناقصه اجرا می‌شود. به بیان دیگر مساله پیشنهاد قیمت عبارت خواهد بود از تعیین قیمت‌های بهینه در افق زمانی بهره‌برداری از بازارهای بلادرنگ (از چند دقیقه در بازارگرفته تا چندین ساعت در بازارهای روزانه) به‌طوری‌که عوامل موثر بر پارامترهای مورد توجه فروشنده (مانند سود، درآمد، ریسک و ...) در نظر گرفته‌شود.
با توجه به مطالعات انجام شده عواملی که فروشنده باید درهنگام پیشنهاد قیمت در مناقصه‌های انرژی لحاظ کند در زیرخلاصه شده اند:
عدم قطعیت‌ها
نحوه بستن بازار و پرداخت پول به برندگان بازار
ساختار و قوانین بازار
هزینه تولید
قیود حاکم بر ژنراتور و قیود شبکه انتقال
لحاظ کردن سود بلندمدت
نحوه قیمت‌دهی طرف مصرف
قراردادهای دوطرفه
وجود بازارهای مختلف و تأثیر آنها بر یکدیگر
البته دو مورد آخر پس از توسعه بازار برق ایران و راه‌اندازی بازارهای مختلف و قراردادهای دوجانبه در مساله قیمت‌دهی دخیل خواهند بود. مطالعات انجام‌شده در زمینه مساله پیشنهاد قیمت به دو بخش قابل تقسیم‌اند: PAB و UP.
بدیهی است که نحوه مدل‌سازی و فرمول‌بندی مساله در بازارهای مختلف به دلیل تفاوت قوانین کاملا متفاوت است. مدیریت بازار برق ایران به صورت حراج PAB است. مطالعات انجام‌شده نشان می‌دهد که به مساله پیشنهاد قیمت به صورت جدی در بازارهای PABپرداخته نشده است. دلیل این امر شاید این باشد که حراج PAB در بسیاری از بازارهای دنیا به‌کار گرفته نمی‌شود و اکثر بازارهای دنیا بر مبنای حراج UP می‌باشد. به علاوه بازارهایی که حراج PAB مبناست، حجم کمی از معاملات را به خود اختصاص داده است. از آن ‌جا که حراج بازار برق ایران بر مبنای حراج PAB است نیاز به تحقیقات جدی در این زمینه احساس می‌شود.
بررسی مساله پیشنهاد قیمت از دید یک تولیدکننده انرژی در ابتدای راه است. در حراج PAB به این دلیل که پول تخصیص یافته بابت هر مگاوات انرژی برابر با قیمت پیشنهادی ارائه شده ازسوی فروشنده می‌باشد، مساله پیشنهاد قیمت از اهمیت دسته از قیود در محیط سنتی وجود نداشته ولی درمحیط جدید باید لحاظ شوند.
قید درآمد، قیدی است که یک شرکت به واسطه سیاست‌های مالی خود لحاظ می‌کند. به‌طور مثال از سیاست‌های کلی شرکت این نتیجه به‌دست آمده که در آمد شرکت در طول یک دوره پیشنهاد قیمت از یک مقدار خاص نباید کمتر باشد. این مساله در فرآیند پیشنهاد قیمت باید لحاظ شود.
قید حداقل فروش، قیدی است که برای اجتناب از جریمه پیشنهاد قیمت لحاظ می‌شود زیرا اگر قیمت واحدهای بخاری یا سیکل ترکیبی برنده نشوند دچار جریمه 0,9 حداقل قیمت می‌شوند. بنابراین حداقل تولید مجاز واحدهای بخاری به ‌فروش خواهد رسید. پس قیمت این واحدها باید به‌گونه‌ای ارائه شود تا تولید موجب ضرر نشود و از طرفی دچار جریمه نیز نگردد. در فرآیند حل مساله پیشنهاد قیمت، جهت دستیابی به ‌روش‌های کارا جهت حل مساله باید پارامترهایی که بر پاسخ مساله و قیمت بهینه تاثیر می‌گذارند، استخراج گردند. این پارامترها بسته به قوانین بازار، شرایط شبکه انتقال و موقعیت جغرافیایی تغییر می‌کنند. بنابراین برای هر شرکتی باید پارامترهای موثر به صورت جداگانه استخراج شوند.
تشکیل بازار برق ایران و خصوصی سازی صنعت برقشاید نتوان کشوری را یافت که متاثر از موج تحولات یک دهه اخیر صنعت برق نباشد. این تحولات در قالب بحث تجدید ساختار باعث شفافیت و تفکیک وظایف بخشهای مختلف گردیده که به تدریج باعث ایجاد بازار برق در سطح عمده فروشی و به دنبال آن در سطح خرده فروشی شده است. موفقیت این برنامه‌ها متاثر از عوامل مختلفی نظیر اجرای صحیح برنامه‌های تجدید ساختار و تقویت نتایج تجدید ساختار با اجرای برنامه خصوصی‌سازی در صنعت برق می باشد. در این میان اجرای برنامه آزادسازی به موقع مشترکین، پیشگیری از شکل گیری پدیده قدرت بازار، باز بینی منظم بازار، ایجاد فضایی منصفانه برای دستیابی همه علاقمندان به فعالیت در صنعت برق، تدوین تعرفه خدمات انتقال و توزیع، تعریف خدمات پشتیبان و تدوین تعرفه متناسب برای آنها و غیره از جمله مطالب مهمی هستند که اهمیت بسزایی در موفقیت یا شکست برنامه تجدید ساختار و بازار برق دارند.
تلاش برای تحقق بخشیدن به تئوری های اقتصادی و تشکیل آرمان شهر بازار رقابت کامل اگر چه(به شکل کامل) هیچ گاه از لای صفحات و متون اقتصادی فراتر نرفته اما این حسن بزرگ را داشته که بهبود قابل توجهی در سامان دهی به بازار را باعث شود. گر چه صنعت برق در ابتدا و با احداث واحدهای کوچک و خصوصی تولید برق حیات خود را آغاز کرد اما به تدریج و با درک اهمیت این صنعت روند دولتی شدن(و بنابراین انحصاری شدن) آن آغاز شد. بنابراین صنعت برق به عنوان یک صنعت یکپارچه و کاملا انحصاری در اذهان شکل گرفت که هر کسی توان ورود به این عرصه و انجام فعالیت در آن را نداشت. با همین ذهنیت بود که دولت ها(به طور عام) کنترل صنعت برق را در دست گرفتند. به تدریج و با بروز مشکلاتی در اداره دولتی صنعت برق، همانند ناتوانی دولت در تامین مالی مناسب برای این صنعت، ناکارایی سرمایه گذاری و بهره برداری و… این سئوال شکل گرفت که به چه نحوی می توان از پتانسیل بخش خصوصی در این صنعت استفاده کرد؟ پاسخ به این سئوال همزاد شکستن ائتلاف عمودی این صنعت و ورود تدریجی بخش خصوصی به حوزه های مختلف فعالیت آن است. اولین نتایج این موضوع تفکیک بخشهای تولید، شبکه و عرضه بود. بنابراین با تفکیک انجام شده این امکان فراهم شد تا برخی متخصصان اقتصاد صنعت برق به امکان ایجاد رقابت در بخش تولید فکر کنند و این در واقع زمینه تشکیل بازار عمده فروشی برق بود. تحولات بعدی صنعت برق را باید مدیون این جسارت و تجربه قلمداد کرد.
ساختار جدید بازار برق و عمده فروشیهمان طور که اشاره شد بروز مشکلات ناشی از ساختار سابق صنعت برق باعث گردید سیاستگزاران و تصمیم گیرندگان این صنعت تجدید نظری اساسی در نوع نگاه به این صنعت و چگونگی اداره آن صورت دهند. جدای از مشکلاتی که دلیل اصلی تجدید ساختار بود، تلاش برای ایجاد فضایی جدید که انعطاف پذیری بیشتری داشته و با اهداف کلان اقتصادی نیز هماهنگ باشد، به طور مضاعفی اجرای برنامه های تجدید ساختار را تجویز می کرد. بنابراین به طور کلی اهداف تجدید ساختار را می توان به صورت زیر ذکر کرد:
الف- بهبود فضا و قاعده بازی برای ارتقای کارایی
ب- ایجاد فرصت های شغلی بیشتر
ج- شفاف نمودن و تفکیک بخشهای مختلف از هم
د- ایجاد فضای مناسب برای محوری نمودن علائم اقتصادی در تصمیم سازی
ه- جایگزینی تفکر بنگاهی در صنعت برق به جای تلقی خدمت عمومی از برق
اما نکته قابل توجه اینکه بحث تجدید ساختار و خصوصی سازی دو مقوله متفاوت از هم هستند. در واقع تجدید ساختار می تواند زمینه های خصوصی سازی صحیح را فراهم کند. اهداف خصوصی سازی را می توان به صورت زیر خلاصه کرد:
الف- کاهش تصدی دولت و تقویت بعد نظارتی آن با واگذاری امور به بخش خصوصی
ب- کاهش بار مالی دولت و انتقال آن به بخش خصوصی
سایر اهداف ریز را می توان در موارد فوق خلاصه کرد. در واقع این موارد باعث شد مجموعه اقداماتی در صنعت برق صورت پذیرد که به طور کلی باعث تغییر نوع نگاه به کالای برق شدند.


تغییر تفکر و نوع نگاه به برقدر واقع برای درک انگیزه های تجدید ساختار و تشکیل بازار برق باید توجه داشت که مدتهای مدیدی این تصور در میان سیاستگزاران و متخصصان صنعت برق کشورهای مختلف نهادینه شده بود که صنعت برق از یک انحصار ذاتی برخوردار است و قابلیت و انعطاف پذیری لازم جهت رقابتی شدن را ندارد. تاسیسات هزینه برآن باید در تملک دولت باشد و بخش خصوصی در این زمینه نه علاقمندی خواهد داشت و نه حضورآن نتیجه مثبتی ! این عقیده در اوایل دهه 90 میلادی با تحرکات اولیه صنعت برق کشورانگلستان متزلزل شد[8] و اکنون تقریبا به فرضیه ای فراموش شده تبدیل گردیده است. اگر صنعت برق را به چهار بخش عمده تولید، انتقال، توزیع و عرضه(خدمات مشترکین)‌ تقسیم کنیم،‌ تجربه بسیاری از کشورها نشان می دهد دو بخش تولید و عرضه(خدمات مشترکین) انعطاف پذیری کافی برای رقابتی شدن را دارند. به همین خاطر و همان طور که در بخش مربوط به ساختارهای صنعت برق ملاحظه خواهد شد تمرکز زدایی اولین اقدام در اجرای تغییرات ساختاری این صنعت بود بلکه زمینه برای تفکیک بخشهای دارای پتانسیل رقابتی از سایر بخش ها فراهم گردد. سپس در بخش تولید با فراهم کردن زمینه برای مشارکت بخش خصوصی و احداث نیروگاه توسط سرمایه گذاران داخلی و خارجی و یا واگذاری ظرفیت های نصب شده موجود، فراهم سازی زمینه رقابت(با افزایش تولید کنندگان) و ایجاد شرایطی برای رقابت درکاهش هزینه ها و فروش برق به مدیر شبکه، سعی در جایگزینی فضای رقابتی بجای شرایط انحصار گردیده که در بسیاری از کشورها این امر موفقیت آمیز بوده است. اما بخش انتقال با توجه به ماهیتی که دارد و این واقعیت که نمی توان دو یا چند شبکه موازی درکنار هم تاسیس کرد تا برای انتقال برق با هم رقابت نمایند، تقریبا هنوز هم به شکل انحصاری اداره شده و به عنوان شبکه ملی باقی مانده است.
در بخش توزیع نیز که کلیه فعالیتها از نقطه دریافت برق از شبکه انتقال تا تحویل به مصرف کنده نهایی انحصاری بود، ابتدا بخش خطوط‌ از بخش مشترکین تفکیک شده سپس این بخش یا در تملک دولت باقی مانده و یا در برخی کشورها تجهیزات توزیع به بخش خصوصی واگذار شده اند[9]. هرچند تجربه و مطالعات انجام شده نشان از عدم تفاوت معنی دار کارایی و کاهش هزینه در واگذاری این شرکت ها به بخش خصوصی دارد اما حسن این کار فراهم سازی زمینه رقابتی شدن است که معمولاً افزایش کارایی را به دنبال داشته است. در بخش خدمات مشترکین نیز کلیه امور از درخواست مشترک برای اتصال به شبکه برق تا صدور صورتحساب و وصول مطالبات و … توسط شرکت های خرده فروشی انجام می گردد. از آنجایی که این بخش از شرایطی متفاوت با بخشهای انتقال و توزیع برخوردار می باشد، فعالیتهای این بخش از خاصیت انحصاری برخوردار نبوده و بنابراین شرکت های خرده فروش همزمان می توانند برای جلب رضایت مشتری با هم رقابت نمایند که به بهبود کیفیت و کاهش هزینه ها منتهی خواهدشد. لذا واگذاری امور به بخش خصوصی وایجاد زمینه مناسب برای رقابتی کردن این بخش نتایج مثبت قابل توجهی به همراه داشته است.
در واقع آنچه در صنعت برق در طی دهه اخیر اتفاق افتاده بر یک محور اساسی استوار است بدین معنی که به تدریج نگاه کالایی به برق جایگزین تفکر تلقی برق به عنوان یک خدمت عمومی شده است[10]. در واقع در فضای بازار این ایده مورد تاکید قرار گرفته که هر علاقمندی که محدودیت ها و استانداردهای شبکه را رعایت نماید می تواند از شبکه(همانند جاده ها) استفاده و برق تولیدی خود را به مشتری تحویل دهد. این نگاه را می توان اساس تحولات نوین صنعت برق قلمداد کرد.
شکل گیری بازار برق در ایراندر ایران نیز از چند سال قبل برنامه هایی برای اجرای فرایند تجدید ساختار و ایجاد بازار برق تدارک دیده شده است. لیکن پیشنهاد تشکیل بازار برق در ایران به تغییراتی برمی گردد که در سال 1382 در ساختار برق کشور(تشکیل شرکتهای مادر تخصصی، پیش بینی تشکیل شرکت مدیریت بازار(مدیریت شبکه برق ایران)، تغییر نظام مبادلات و بودجه ای شرکتها، حذف یارانه بین بنگاهی و…) پیش بینی شده بود. در همین راستا دستورالعملی برای خرید و فروش رقابتی برق توسط هیات تنظیم بازار برق ایران تهیه شد که مقدمه ای برای تشکیل بازار برق در ایران است[11]. اولین جلسه هیات تنظیم در تاریخ 09/07/1382 تشکیل و اصول ایجاد یک بازار رقابتی در فضایی منطقی پایه گذاری گردید[12]. گرچه این دستورالعمل محتاط عمل کرده و قیمت ها در آن تنها در یک بازه معین(با تعریف یک نرخ پایه و تعریف ضرایبی برای اوقات مختلف و انحراف پیشنهاد نرخ خریداران و فروشندگان در یک بازه معین) شکل خواهند گرفت، اما به هر حال زمینه ای برای ایجاد بازار برق در ایران محسوب می شود. در شرایط فعلی اکثر واحدهای تولید و عرضه دولتی بوده و به نظر نمی رسد مکانیزم پیشنهادی در کوتاه مدت تحولی در صنعت برق به وجود بیاورد اما مقدمه مناسبی در کشور فراهم شده است که می تواند زمینه را برای تحولات آینده فراهم نماید. در این دستورالعمل بهای پرداختی به تولید کنندگان بر اساس قیمت پیشنهادی و قدرت تحویلی آنان خواهد بود که با اعمال قیمت نهایی بازار و پرداخت بها بر اساس آن به همه تولید کنندگان در یک ساعت معین(نظامی که اکثر کشورها هم اکنون آن را پیاده می کنند) تفاوت دارد[13].

موانع شکل گیری و یا انحراف بازار رقابتی برقایجاد بازار رقابتی صحیح در بخش برق علی رغم نتایج بسیار ارزشمند آن می تواند بسیار شکننده بوده و از سوی دیگر نتایج آن(با فرض عدم پیش بینی و برنامه ریزی صحیح، عدم نظارت مناسب و عدم ایجاد شرایط مساعد برای ورود بخش خصوصی به بازار) می تواند عقیم و یا حتی مخرب باشد. ایالت کالیفرنیا نمونه ای از شکست بازار و مخرب بودن طراحی نامناسب بازار می باشد. در زیر به مواردی که می تواند باعث انحراف یا شکست بازار شود اشاره می شود[10].
ذینفع بودن بهره بردار مستقل سیستم و بازار از مبادلاتدر واقع در ابتدای امر لازم است نهادهایی(شرکت هایی) مسئولیت هماهنگی عرضه کنندگان و تقاضا کنندگان(خریداران و فروشندگان عمده) را به عهده داشته باشند. حال اگر این نهادها نتوانند بی طرفی خود را حفظ کنند، عملاً ممکن است توسعه پتانسیل تولید و شبکه و بهره برداری بهینه از منابع موجود بر اساس عملکرد بازار صورت نگیرد.
قدرت بازاردر واقع در صورتی که هر یک از تقاضا کنندگان و عرضه کنندگان بازار سهم بزرگی از بازار را به خود اختصاص دهند(در برخی کشورها سهم فوق 15% می باشد) به طوری که بتوانند بر عملکرد بازار اثر گذاشته و باعث تغییر و انحراف قیمت های بازار شوند، این موضوع می تواند به شکست بازار منتهی شود.
ذخیره تولیددر صورتی که در بخش تولید(عرضه)به اندازه کافی ذخیره تولید وجود نداشته باشد این امر می تواند به انحراف و شکست بازار منتهی شود.
نیروگاههای خاصبرخی نیروگاهها (حتی گاهی اوقات یک نیروگاه کوچک)به واسطه موقعیت خاص خود می توانند در پایداری شبکه نقش بسیار مهمی ایفا نمایند، حال اگر این نیروگاهها در اختیار بخش خصوصی قرار گیرند و مرکز کنترل نتواند اختیار تعیین زمان ورود و خروج آنها را داشته باشد،صاحب این قدرت می تواند از این موقعیت برای انحراف قیمت های بازار استفاده نماید.
تبانیاین موضوع که به شکل گیری قدرت بازار برای گروه خاصی منتهی می گردد می تواند باعث انحراف و حتی شکست بازار منتهی گردد.
دسترسی منصفانه به شبکهیکی از ویژگی های هر بازار رقابت کامل امکان ورود و خروج فعالان به این بازار است.در صنعت برق این موضوع باید با تهیه دستورالعمل معینی برای دسترسی بیطرفانه علاقمندان به شبکه دنبال شود. زیرا عدم تهیه یک دستورالعمل منسجم می تواند به ایجاد تبعیض میان فعالان صنعت منتهی گردد.
تعرفه های استفاده از خدمات انتقال و توزیعتدوین تعرفه های استفاده از خدمات انتقال و توزیع می تواند باعث شفاف شدن مبادلات شده و تولیدکنندگان و عرضه کنندگان می دانند در صورت استفاده از بخشهای انتقال و توزیع برای جابجایی انرژی و قدرت مورد نیاز چه مبلغی باید به شبکه بپردازند.این موضوع در تصمیم گیری خریداران برای انتخاب فروشنده برق بسیار حائز اهمیت است.
بازبینی مستمر بر عملکرد بازارطبیعی است در صورتی که مکانیزم بازار به طور مستقیم و دقیق دنبال نشود تشخیص یک مشکل تنها می تواند پس از فروپاشی بازار صورت گیرد.
البته نکات دیگری را نیز می توان ذکر کرد که مواد فوق از اهم آنها انتخاب شده اند.
فصل دوممدل سازی با استفاده از شبکه عصبی
معرفی شبکه عصبی مصنوعیقدرت و سرعت کامپیوترهای امروزی به راستی شگفتانگیز است؛ زیرا کامپیوترهای قدرتمند می‌توانند میلیون‌ها عملیات را در کمتر از یک ثانیه انجام دهند. شاید آرزوی بسیاری از ما انسان‌ها این باشد که ای کاش می‌شد ما نیز مانند این دستگاه‌ها کارهای خود را با آن سرعت انجام می‌دادیم، ولی این نکته را نباید نادیده بگیریم که کارهایی هستند که ما می‌توانیم آن‌ها را به آسانی و در کمترین زمان ممکن انجام دهیم، ولی قوی‌ترین کامپیوترهای امروزی نیز نمی‌توانند آن‌ها را انجام دهند و آن قدرت تفکری است که مغز ما انسان‌ها دارد. حال تصور کنید که دستگاهی وجود داشته باشد که علا‌وه بر قدرت محاسبه و انجام کارهای فراوان در مدت زمان کوتاه، قدرت تفکر نیز داشته باشد یا به قول معروف هوشمند باشد! این تصور در حقیقت هدف فناوری هوش مصنوعی یا به اختصار AI است[14].
یکی از راه‌حل‌های تحقق این هدف، شبکه‌های عصبی است. شبکه‌های عصبی در واقع از شبکه‌های عصبی و سیستم عصبی انسان الگوبرداری می‌کنند. برخی از محققان براین باورند که هوش مصنوعی و شبکه‌های عصبی دو راه‌حل متفاوت و در دو جهت مختلف هستند، ولی این باور را نمی‌توان کاملاً صحیح دانست؛ چرا که در حقیقت علم شبکه‌های عصبی و هوش‌مصنوعی وابسته به هم هستند. بدین‌معنا که قبل از این‌که Symbolها بتوانند توسط هوش مصنوعی شناسایی شوند، باید مراحلی طی شود. مثلاً تصور کنید که Symbol هایی مانند خانه، انسان یا میز وجود دارند. قبل از این که AI بتواند هر کدام از این Symbol ها را شناسایی کند، باید از توانایی‌ها و صفات هر کدام از این‌ها اطلاع کامل حاصل کند. مثلاً تصور کنید که یک روبات که هوش مصنوعی دارد، یک انسان را می‌بیند، ولی از کجا می‌فهمد که این جسم یک انسان است؟ مثلاً بر اساس مشخصاتی مثل داشتن دو پا، دست، صورت، دهان و قدرت تکلم. اما شما وقتی یک انسان دیگر را می‌بینید، نیازی ندارید که اول تعداد پاهای او را بشمارید و بعد بگویید که این جسم، انسان است. مغز انسان‌ها می‌تواند با دیدن یک جسم فقط برای یک بار یاد بگیرد و اگر مجدداً آن جسم را مشاهده کرد، می‌تواند سریع تشخیص دهد و قسمت‌های مختلف مغز می‌توانند به صورت همزمان فعالیت کنند و از اطلاعات درون مغز استفاده نمایند. شبکه‌های عصبی در بسیاری از پروژه‌های هوش مصنوعی به کار گرفته می‌شود. مثلاً برای برنامه‌های تشخیص و الگوبرداری، شناسایی تصویر و کاراکتر، روبات‌ها و برنامه‌های فیلترینگ اطلاعات. این شبکه‌ها امروزه حتی در اتومبیل‌های بی‌سرنشین نیز کاربرد دارد. به طوری‌که با دیدن و بررسی رانندگی انسان‌ها، می‌توانند رانندگی کنند.
شبکه های عصبی نسبت به کامپیوتر های معمولی مسیر متفاوتی را برای حل مسئله طی می کنند. کامپیوتر های معمولی یک مسیر الگوریتمی را استفاده می کنند به این معنی که کامپیوتر یک مجموعه از دستور العمل ها را به قصد حل مسئله پی می گیرد. بدون اینکه قدم های مخصوصی که کامپیوتر نیاز به طی کردن دارد شناخته شده باشند، کامپیوتر قادر به حل مسئله نیست. این حقیقت قابلیت حل مسئله ی کامپیوتر های معمولی را به مسائلی محدود می کند که ما قادر به درک آنها هستیم و می دانیم چگونه حل می شوند. اما اگر کامپیوتر ها می توانستند کار هایی را انجام دهند که ما دقیقا نمی دانیم چگونه انجام دهیم، خیلی پر فایده تر بودند.
شبکه های عصبی اطلاعات را به روشی مشابه با کاری که مغز انسان انجام می دهد پردازش می کنند. آنها از تعداد زیادی از عناصر پردازشی(سلول عصبی) که فوق العاده بهم پیوسته اند تشکیل شده است که این عناصر به صورت موازی باهم برای حل یک مسئله مشخص کار می کنند. شبکه های عصبی با مثال کار می کنند و نمی توان آنها را برای انجام یک وظیفه خاص برنامه ریزی کرد. مثال ها می بایست با دقت انتخاب شوند در غیر این صورت زمان سودمند، تلف می شود و یا حتی بدتر از این، شبکه ممکن است نادرست کار کند. امتیاز شبکه عصبی این است که خودش کشف می کند که چگونه مسئله را حل کند، عملکرد آن غیر قابل پیش گویی است.
از طرف دیگر کامپیوتر های معمولی از یک مسیر مشخص برای حل یک مسئله استفاده می کنند. راه حلی که مسئله از آن طریق حل می شود باید از قبل شناخته شود و به صورت دستورات کوتاه و غیر مبهمی شرح داده شود. این دستورات سپس به زبان های برنامه نویسی سطح بالا برگردانده می شود و بعد از آن به کدهایی که کامپیوتر قادر به درک آنها است تبدیل می شود. به طور کلی این ماشین ها قابل پیش گویی هستند و اگر چیزی به خطا انجام شود به یک اشتباه سخت افزاری یا نرم افزاری بر می گردد.
شبکه های عصبی و کامپیوتر های معمولی با هم در حال رقابت نیستند بلکه کامل کننده یکدیگرند. وظایفی وجود دارد که بیشتر مناسب روش های الگوریتمی هستند نظیر عملیات محاسباتی و وظایفی نیز وجود دارد که بیشتر مناسب شبکه های عصبی هستند. حتی فراتر از این، مسائلی وجود دارد که نیازمند به سیستمی است که از ترکیب هر دو روش بدست می آید(به طور معمول کامپیوتر های معمولی برای نظارت بر شبکه های عصبی به کار گرفته می شوند) به این قصد که بیشترین کارایی بدست آید.
شبکه های عصبی معجزه نمی کنند اما اگر خردمندانه به کار گرفته شوند نتایج شگفت آوری را خلق می کنند.

سابقه تاریخیبه نظر میآید شبیهسازیهای شبکه عصبی یکی از پیشرفتهای اخیر باشد. اگرچه این موضوع پیش از ظهور کامپیوترها بنیانگذاری شده و حداقل یک مانع بزرگ تاریخی و چندین دوره مختلف را پشت سر گذاشته است.
خیلی از پیشرفتهای مهم با تقلیدها و شبیهسازیهای ساده و ارزان کامپیوتری بدست آمده است. در پی یک دوره ابتدائی اشتیاق و فعالیت در این زمینه، یک دورهی بیمیلی و بدنامی را هم پشت سرگذاشته است. در طول این دوره سرمایه گذاری و پشتیبانی حرفهای از این موضوع در پایینترین حد خود بود، پیشرفتهای مهمی به نسبت تحقیقات محدود در این زمینه صورت گرفت که بدین وسیله پیشگامان قادر شدند تا به گسترش تکنولوژی متقاعدکنندهای بپردازند که خیلی برجستهتر از محدودیتهایی بود که توسط Minsky و Papert شناسانده شد. Minsky وPapert کتابی را در سال 1969 منتشر کردند که در آن عقیده عمومی راجع به میزان محرومیت شبکههای عصبی را در میان محققان معین کرده بود و بدین صورت این عقیده بدون تجزبه و تحلیلهای بیشتر پذیرفته شد. هماکنون، زمینه تحقیق شبکههای عصبی از تجدید حیات علایق و متناظر با آن افزایش سرمایهگذاری لذت میبرد.
اولین سلول عصبی مصنوعی در سال 1943 بهوسیله یک neurophysiologist به نامWarren McCulloch و یک منطق دان به نام Walter Pits ساخته شد اما محدودیتهای تکنولوژی در آن زمان اجازه کار بیشتر به آنها نداد.
ساختار شبکه های عصبی مصنوعیشبکه های عصبی مصنوعی جز آن دسته از سیستمهای دینامیکی قرار دارند که با پردازش روی دادههای تجربی، دانش یا قانون نهفته در ورای دادهها را به ساختار شبکه منتقل میکنند. به همین خاطر به این سیستمها هوشمند میگویند، چرا که بر اساس محاسبات روی دادههای عددی یا مثالها، قوانین کلی را یاد می گیرند. برای نخستین بار شخصی به نام سگال اعلام کرد که مغز از عناصر اصلی ساختاری به نام نرون تشکیل شده است و هر نرون بیولوژیکی به عنوان اجتماعی از مواد آلی، اگر چه دارای پیچیدگی یک میکروپروسسور است، ولی دارای سرعت محاسباتی برابر با یک میکروپروسسور نیست. دانشمندان علم بیولوژی دریافتهاند که عملکرد نرونهای بیولوژیکی از قبیل ذخیرهسازی و حفظ اطلاعات، در خود نرونها و ارتباطات بین نرونها نهفته است. گرچه همه نرونها کارکرد یکسانی دارند، ولی اندازه و شکل آنها بستگی به محل استقرارشان در سیستم عصبی دارد.
با وجود این همه تنوع، بیشتر نرونها از سه قسمت اساسی تشکیل شدهاند:
بدنه سلول (که شامل هسته و قسمت های حفاظتی دیگر است)
دندریت
اکسون
دو قسمت آخر، عناصر ارتباطی نرون را تشکیل می دهند. شکل 2-1 ساختمان سلول عصبی را نشان میدهند.

شکل 2- SEQ شکل_2- * ARABIC 1: ساختمان سلول عصبینرون ها بر اساس ساختارهایی که بین آنها پیامها هدایت میشوند به سه دسته تقسیم میگردند:
نرونهای حسی که اطلاعات را از ارگانهای حسی به مغز و نخاع می فرستند.
نرونهای محرک که سیگنالهای فرمان را از مغز و نخاع به ماهیچهها و غدد هدایت میکنند.
نرونهای ارتباطی که نرونها را به هم متصل میکنند.
روابط بین نرونهای ارتباطی موجبات انجام کارهای پیچیده را از قبیل تفکر، احساسات، ادراک و محفوظات فراهم میآورد. با توجه به مقدمات فوق، میتوان گفت که با تمام اغراقها در مورد شبکههای عصبی مصنوعی، این شبکهها اصلا سعی در حفظ پیچیدگی مغز ندارند. از جمله شباهت این دو سیستم میتوان به موارد زیر اشاره نمود:
بلوکهای ساختاری در هر دو شبکه مصنوعی و بیولوژیکی، دستگاههای محاسباتی خیلی ساده هستند و علاوه بر این، نرونهای مصنوعی از سادگی بیشتری برخوردار هستند.
ارتباطهای بین نرونها، عملکرد شبکه را تعیین میکند اگر چه نرونهای بیولوژیکی از نرونهای مصنوعی که توسط مدارهای الکتریکی ساخته میشوند، بسیار کندتر هستند(یک میلیون بار)، اما عملکرد مغز، خیلی سریعتر از عملکرد یک کامپیوتر معمولی است. علت این پدیده بیشتر به خاطر ساختار کاملا موازی نرونها است و این یعنی همه نرونها معمولا به طور همزمان کار میکنند و پاسخ میدهند.
شبکههای عصبی مصنوعی هم دارای ساختار کاملا موازی هستند. اگرچه بیشتر شبکههای عصبی مصنوعی هم اکنون توسط کامپیوترهای سریع پیادهسازی میشوند، اما ساختار موازی شبکههای عصبی، این امکان را فراهم میآورد که به طور سختافزاری، توسط پردازشگرهای موازی، سیستمهای نوری و تکنولوژی پیاده سازی شوند.
شبکههای عصبی مصنوعی با وجود این که با سیستم عصبی طبیعی قابل مقایسه نیستند ویژگیهایی دارند که آنها را در بعضی از کاربردها مانند تفکیک الگو، رباتیک، کنترل و به طور کلی در هرجا که نیاز به یادگیری یک نگاشت خطی و یا غیرخطی باشد، ممتاز مینماید. این ویژگی ها به شرح زیر هستند:
قابلیت یادگیری: استخراج نتایج تحلیلی از یک نگاشت غیرخطی که با چند مثال مشخص شده، کار سادهای نیست. زیرا نرون یک دستگاه غیرخطی است و در نتیجه یک شبکه عصبی که از اجتماع این نرونها تشکیل میشود نیز یک سیستم کاملا پیچیده و غیرخطی خواهد بود. بهعلاوه، خاصیت غیرخطی عناصر پردازش، در کل شبکه توزیع میگردد. پیادهسازی این نتایج با یک الگوریتم معمولی و بدون قابلیت یادگیری، نیاز به دقت و مراقبت زیادی دارد. در چنین حالتی سیستمی که بتواند خود این رابطه را استخراج کند، بسیار سودمند بهنظر میرسد. خصوصا افزودن مثالهای احتمالی در آینده به یک سیستم با قابلیت یادگیری، به مراتب آسانتر از انجام آن در یک سیستم بدون چنین قابلیتی است، چراکه در سیستم اخیر، افزودن یک مثال جدید به منزله تعویض کلیه کارهای انجام شده قبلی است. قابلیت یادگیری یعنی توانایی تنظیم پارامترهای شبکه(وزنهای سیناپتیکی) در مسیر زمان که محیط شبکه تغییر میکند و شبکه شرایط جدید را تجربه میکند، با این هدف که اگر شبکه برای یک وضعیت خاص آموزش دید و تغییر کوچکی در شرایط محیطی آن(وضعیت خاص) رخ داد، شبکه بتواند با آموزش مختصر برای شرایط جدید نیز کارآمد باشد.
پراکندگی پردازش اطلاعات بهصورت متن: آنچه شبکه فرا میگیرد(اطلاعات یا دانش) در وزنهای سیناپسی مستتر میباشد. رابطه یکبهیک بین ورودیها و وزنهای سیناپتیکی وجود ندارد. میتوان گفت که هر وزن سیناپسی مربوط به همه ورودیها است ولی به هیچیک از آنها به طور منفرد و مجزا مربوط نیست. بهعبارت دیگر هر نرون در شبکه، از کل فعالیت سایر نرونها متاثر است. در نتیجه، اطلاعات بهصورت متن توسط شبکههای عصبی پردازش میشوند. بر این اساس چنانچه بخشی از سلولهای شبکه حذف شوند و یا عملکرد غلط داشته باشند باز هم احتمال رسیدن به پاسخ صحیح وجود دارد. اگر چه این احتمال برای تمام ورودیها کاهش یافته ولی برای هیچ یک از بین نرفته است.
قابلیت تعمیم: پس از آنکه مثالهای اولیه به شبکه آموزش داده شد، شبکه میتواند درمقابل یک ورودی آموزش داده نشده قرار گیرد و یک خروجی مناسب ارائه کند. این خروجی بر اساس مکانیزم تعمیم، که همانا چیزی جز فرایند درونیابی نیست به دست میآید. به عبارت روشنتر، شبکه، تابع را یاد میگیرد، الگوریتم را میآموزد یا رابطه تحلیلی مناسبی را برای تعدادی نقاط در فضا به دست میآورد.
پردازش موازی: هنگامیکه شبکه عصبی در قالب سختافزار پیاده میشود، سلولهایی که در یک تراز قرار میگیرند میتوانند بهطور همزمان به ورودیهای آن تراز پاسخ دهند. این ویژگی باعث افزایش سرعت پردازش میشود. در واقع در چنین سیستمی، وظیفه کلی پردازش بین پردازندههای کوچکتر مستقل از یکدیگر توزیع میگردد.
مقاوم بودن: در یک شبکه عصبی هر سلول به طور مستقل عمل میکند و رفتار کلی شبکه، برآیند رفتارهای محلی سلولهای متعدد است؛ این ویژگی باعث می شود تا خطاهای محلی از چشم خروجی نهایی دور بمانند.
مبانی محاسباتی شبکه های عصبی مصنوعیدر شکل های 2-2 و 2-3 الگوی کلی یک شبکه عصبی مصنوعی نشان داده شده است. در الگوی نشان داده شده در شکل 2-2، سه لایه قابل تشخیص است.

شکل 2- SEQ شکل_2- * ARABIC 2: الگوی کلی از یک شبکه عصبیلایه ورودیلایه ورودی: یک لایه از نرونها که اطلاعات را از منابع بیرونی دریافت میکنند و آنها را به شبکه منتقل میکنند.
لایه پنهانیلایه پنهانی: یک لایه از نرونها که اطلاعات را از لایه ورودی دریافت میکنند و آنها را به صورت مخفی پردازش می کنند.
لایه خروجیلایه خروجی:لایهای از نرونها که اطلاعات پردازششده را دریافت میکنند و آنها را به سیستم میفرستند.

شکل 2- SEQ شکل_2- * ARABIC 3: شماتیک ارتباطات بین لایه ها و وزن های سیناپتیکی در شبکه عصبیبایاس: مانند یک افست روی سیستم عمل میکند. عمل بایاس به اینگونه است که یک سرآغاز برای فعال سازی نرون ایجاد میکند. بایاس روی لایه مخفی و لایه خروجی عمل میکند.
تناظر بین شبکه عصبی و شبکه عصبی مصنوعی در شکل 2-4 قابل مشاهده است.

شکل 2- SEQ شکل_2- * ARABIC 4: تناظر بین شبکه عصبی و شبکه عصبی مصنوعیتعداد نرونهای ورودیها به تعداد متغیر ورودی و تعداد نرونهای خروجی به تعداد متغیرهای پاسخ بستگی دارد. تعداد نرونهای لایه مخفی هم به کاربرد شبکه بستگی دارد. مهمترین عنصر شبکههای عصبی، نرون است. نرونها شامل عناصر محاسباتی هستند که عمل یک شبکه عصبی را انجام می دهند. شکل 2-5 یک نرون از شبکه عصبی را نشان میدهد.

شکل 2- SEQ شکل_2- * ARABIC 5: نمای شماتیک یک نرونعناصر محاسباتی یک نرونورودیها و خروجیها: ورودیها باan ، a2 ، a1 و خروجیها با bj نمایش داده شدهاند.
وزن ها: این متغیرها باwnj ،w2j و w1j نمایش داده میشوند که هر کدام به یک ورودی مرتبط هستند. این متغیرها همانند سیناپسها در سلولهای عصبی واقعی هستند. آنها ضرایب تطبیقپذیری در شبکه هستند که شدت سیگنال ورودی را معین میکنند. هر ورودی با وزن مربوطهاش ضرب شده و نرون از حاصلجمع این حاصلضربها استفاده میکند. اگر علامت وزن مثبت باشد، حاصلضرب وزن در ورودی اثر نرون را تقویت میکند و اگر منفی باشد، اثر نرون را کم میکند. در یک شبکه عصبی مقدار وزنها با توجه به یک توزیع آماری مشخص میشوند و سپس در طول آموزش شبکه این مقادیر تغییر کرده و به مقدار ثابتی خواهند رسید.
بایاس ورودی: ورودی دیگر به نرون، T است که به سرآغاز یا بایاس معروف است.
بایاس یک مقدار تصادفی است که به صورت زیر در معادله نرون وارد می شود:
(2-1) Total Activation= xi= i=1n(wij ai)- Tj Total Activation به اندازه بایاس ورودی بستگی دارد. اگر بایاسی به نرون وارد نشود، بایاس صفر فرض می شود.
در شکل 2-6 اجزای یک نرون بیولوژیکی و مصنوعی مقایسه شده است.

شکل 2- SEQ شکل_2- * ARABIC 6: شبیه سازی یک نرون بیولوژیکی و مصنوعیتابعانتقال، برروی Total Activation عمل کرده وخروجی نرون مشخص میشود. تابع انتقال میتواند به صورت خطی یا غیرخطی عمل کند. تعدادی از توابع انتقال بهصورت شکل 2-7 میباشند.

شکل 2- SEQ شکل_2- * ARABIC 7: برخی از توابع انتقال غیرخطی قابل استفاده در شبکه عصبی
معرفی برخی از توابع انتقال خطی و غیرخطی قابل استفاده در شبکه عصبیاز توابع انتقال دیگر رایج در شبکه عصبی می توان توابع زیر را نام برد:
تابع انتقال Hard limitاین تابع انتقال در صورتی که n<0 باشد خروجی 0 (صفر) و در صورتی که n≥0 باشد خروجی 1 می دهد. منحنی این تابع در شکل 2-8 قابل مشاهده است.

شکل 2- SEQ شکل_2- * ARABIC 8: تابع انتقال Hard limitتابع انتقال خطیاین تابع همان مقدار ورودی را به عنوان خروجی چاپ می کند.

شکل 2- SEQ شکل_2- * ARABIC 9: تابع انتقال خطی
تابع انتقال Log sigmoidاین تابع انتقال مقادیر ورودی را در محدوده ی ∞- تا ∞ دریافت و خروجی بین 0 و 1 تولید می نماید.

شکل 2- SEQ شکل_2- * ARABIC 10: تابع انتقال Log sigmoidتابع انتقال Radial basis
شکل 2- SEQ شکل_2- * ARABIC 11: تابع انتقال Radial basisتابع انتقال Tan sigmoid
شکل 2- SEQ شکل_2- * ARABIC 12: تابع انتقال Tan sigmoidنحوه عملکرد شبکه عصبیهمان‌طور که در شکل 2-13 مشاهده می‌کنید، نرون‌ها به صورت گروهی لایه‌بندی می‌شوند. وقتی سیگنال یا پالسی  به یک لایه ارسال می‌شود، این سیگنال از لایه بالایی شروع به فعالیت می‌کند و توسط نرون‌های آن لایه بررسی و اصلاح می‌گردد. در حقیقت هر نورون قدرت سیگنال را بالا می‌برد و آن پالس را به لایه بعدی انتقال می‌دهد.

شکل 2- SEQ شکل_2- * ARABIC 13: نمایش لایه ای از شبکه عصبیهمان‌طور که در شکل 2-14 مشاهده می‌کنید، این شبکه دارای سه لایه است. لایه 1 یا لایه بالایی این شبکه که در حقیقت لایه ورودی است، پارامترهای پالس را تنظیم می‌کند و این مقادیر را همراه سیگنال یا پالس به لایه‌های بعدی پاس می‌دهد، ولی نرون‌های لایه 3 یا لایه خروجی‌ که در پایین‌ترین سطح شبکه قرار دارد، هیچ سیگنالی را به لایه دیگری نمی‌فرستند و در واقع فقط خروجی دارند.

شکل 2- SEQ شکل_2- * ARABIC 14: نمایش شبکه عصبی سه لایه ایحال قسمت اصلی کار شبکه فرا می‌رسد؛ یعنی آموختن به شبکه عصبی.
برای این‌که به شبکه عصبی موجود توانایی آموختن بدهیم، بعد از این‌که سیگنال از لایه اول شبکه به لایه پایینی شبکه می‌رود، باید اطلاعات هر نورون را که روی سیگنال ما اثر می‌گذارد، بروزآوری و اصلاح کنیم. این رویه را به اصطلاح BP یا Back Propagation می‌گویند.
در حقیقت با این کار یعنی مقایسه خروجی‌ای که خودمان محاسبه کرده‌ایم با خروجی شبکه، می‌توانیم مقدار اشتباهاتی که شبکه ما انجام می‌دهد را به دست آوریم. مثلاً تصور کنید که در یک سلول نورون در لایه آخر شبکه یا لایه خروجی اشتباهی داریم، هر نورون در واقع رکورد تمامی نرون‌هایی که سیگنال از آن عبور می‌کند را نگهداری می‌نماید و می‌داند که کدام یک از نرون‌های قبلی یا به اصطلاح نرون‌های والد باعث این اشتباه می‌شوند. همچنین می‌دانیم که هر کدام از این نرون‌های شبکه یک مقدار اشتباه را محاسبه کرده‌اند و از این طریق شبکه ما می‌تواند یاد بگیرد و اگر مقدار دیگری نیز به آن داده شد، می‌تواند توانایی محاسبه داشته باشد.
توابع آموزشدر نرم افزار MATLAB 7.8(2009a) هر یک از توابع موجود در جدول 2-1 را به عنوان تابع آموزش شبکه می توان استفاده نمود.
جدول 2- SEQ جدول_2- * ARABIC 1: انواع توابع آموزشآموزش به روش پس انتشار شبه نیوتن trainbfg
آموزش به روش پس انتشار شیب به روش Powell-Beale traincgb
آموزش به روش پس انتشار شیب به روش Fletcher-Powell traincgf
آموزش به روش پس انتشار شیب به روش Polak-Ribiere traincgp
آموزش به روش پس انتشارکاهش شیب traingd
آموزش به روش الگوریتم کاهش شیب پس انتشار به وسیله ی قاعده ی آموزش سازگار traingda
آموزش به روش الگوریتم کاهش شیب پس انتشار مومنتوم و پس انتشار آموزش سازگار traingdx
آموزش به روش پس انتشار شیب Levenberg-Marquardt trainlm
آموزش به روش پس انتشار Resilient trainrp
آموزش به روش پس انتشار گرادیان مقیاس بندی شده trainscg
فصل سومبهینه سازی مدل با استفاده از الگوریتم ژنتیک
مقدمه ای بر الگوریتم ژنتیکالگوریتم ژنتیک از دسته الگوریتم های بهینه سازی تکاملی و برگرفته از نظریه تکامل زیستی داروین (١٨۵٩) است. این الگوریتم اول بار توسط جان هولند معرفی شد الگوریتم ژنتیک برای بهینه سازی مسائل پیچیده به ویژه در مسائلی که اطلاعات کافی در مورد فضای جستجو در دسترس نیست بسیار مورد استفاده قرار می گیرد. اگرچه الگوریتم ژنتیک تضمین نمی کند که بهترین جواب ممکن را تولید کند اما معمولا در زمان کوتاهی با تقریب مناسب جواب بهینه را تولید خواهد کرد. برای حل هر مسئله به کمک الگوریتم ژنتیک، مجموعه ای از جواب های ممکن برای مسئله، با جمعیتی از کروموزوم ها مدل می شود. به هر کروموزوم بر اساس میزان برآورده کردن مطلوبات مورد نظر یک ضریب تناسب نسبت می دهیم. با اعمال عملگرهای الگوریتم ژنتیک مانند تولید مثل ژنتیکی ، جهش ژنتیکی و انتخاب گونه های قوی تر بر این جمعیت، به تدریج مجموعه جواب به سمت جواب های بهینه پیش می رود. در زیر برخی از این عملگرهای ژنتیکی توضیح داده شده اند:
انتخاب گونه های قوی تر: در هر نسل کروموزوم هایی که جواب های مناسب تر را مدل می کنند برای تولید نسل جدید انتخاب می شوند و گونه های ضعیف تر به تدریج حذف می شوند.
تولید مثل ژنتیکی: ژن های دو کروموزوم انتخاب شده برای تولید مثل به صورت تصادفی با هم ترکیب می شوند و کروموزوم های جدیدی تولید می شود.
جهش ژنتیکی: به صورت تصادفی تغییراتی در برخی ژن های موجود در تعدادی از کروموزوم ها ایجاد می کنند که منجر به تولید کروموزوم های جهش یافته می شود.
نکات مهم در الگوریتم های ژنتیکالف- شرایط جمعیت اولیه می‌تواند در سرعت رسیدن به جواب بسیار تأثیرگذار باشد. یعنی اگر جمعیت اولیه مناسب‌تر باشد، بسیار سریع‌تر به جواب می‌رسیم. بنابراین گاهی در بعضی از مسئله‌ها به جای آن که جمعیت اولیه به صورت تصادفی ایجاد شود، از اعمال شرایط خاص مسئله به جمعیت اولیه نیز استفاده می‌شود.
ب- با توجه به وجود پارامترهای تصادفی در الگوریتم مسئله حتی در صورت استفاده از جمعیت اولیه یکسان ممکن است در اجراهای مختلف الزاماً جواب های یکسان به دست نیاید و البته در صورت استفاده از جمعیت اولیه متناوت این پدیده ملموس تر خواهد بود.
ج- تابع هدف در این‌گونه از الگوریتم‌ها از اهمیت بسزایی برخوردار است؛ چرا که معمولاً در اکثر مسائل در اثر ترکیب، حالت‌هایی رخ می‌دهد که منطبق بر شرایط مسئله نیست و حتی فاقد معنی و مفهوم است. بنابراین تابع ارزش باید به گونه‌ای طراحی شود که به ازای این حالات مقادیر بسیار کمی برگرداند و از طرفی باید برای نزدیک شدن به هدف بسیار خوب تخمین بزند(این همان نکته ای است که در مدل سازی با استفاده از شبکه عصبی و همچنین استخراج یک تایع هدف مناسب در فصل قبل به آن پرداخته شده است که نتایج کار را در فصل های آتی مشاهده خواهد شد).
د- یکی از پدیده‌های جالب این است که ممکن است در نسل‌های میانی نمونه‌هایی بروز کنند که از نظر تابع ارزش و خوب بودن بسیار مناسب باشند. یک روش این است که اینگونه موارد را شناسایی کنیم و در نسل بعدی نیز از آن‌ها استفاده کنیم. به این تکنیک نخبه‌گرایی می‌گویند که عملاً تأثیر بسزایی در رسیدن به جواب مسئله دارد[15].
مفاهیم اولیه در الگوریتم ژنتیکاصول پایه
الگوریتم های ژنتیکی براساس تئوری تکاملی داروین می باشند و جواب مساله ای که از طریق الگوریتم ژنتیک حل می شود مرتباً بهبود می یابد. الگوریتم ژنتیک با یک مجموعه از جواب ها که از طریق کرموزومها نشان داده می شوند شروع می شود. این مجموعه جواب ها جمعیت اولیه نام دارند. در این الگوریتم جواب های حاصل از یک جمعیت برای تولید جمعیت بعدی استفاده می شوند. در این فرایند امید است که جمعیت جدید نسبت به جمعیت قبلی بهتر باشد. انتخاب بعضی از جواب ها از میان کل جواب ها(والدین) به منظور ایجاد جواب های جدید یا همان فرزندان بر اساس میزان مطلوبیت آن ها می باشد. طبیعی است که جواب های مناسب تر شانس بیشتری برای تولید مجدد داشته باشند. این فرایند تا برقراری شرطی که از پیش تعیین شده است مانند تعداد جمعیت ها یا میزان بهبود جواب ادامه می یابد.
شمای کلی الگوریتم ژنتیک
١) تولید جمعیت تصادفی شامل n کروموزوم
٢) بررسی تابع هدف (x) f هر کروموزوم در جمعیت
٣) ایجاد یک جمعیت جدید بر اساس تکرار قدم های زیر:
3-١) انتخاب دو کروموزوم والد از یک جمعیت بر اساس میزان مطلوبیت آن ها
3-٢) درنظر گرفتن مقدار مشخصی برای احتمال اعمال عملگر تقاطعی
وسپس انجام عملیات ترکیب بر روی والدین به منظور ایجاد فرزندان. اگر هیچ ترکیب جدیدی صورت نگیرد، فرزندان همان والدین خواهند بود.
٣-3) در نظر گرفتن احتمال جهش وسپس تغییرفرزندان با اعمال عملگرجهشی
3-۴) جایگزینی فرزندان جدید در جمعیت جدید
۴) استفاده از جمعیت جدید برای اجراهای بعدی الگوریتم
5) توقف اجرای الگوریتم در صورت مشاهده شرایط توقف و برگرداندن بهترین جواب در جمعیت فعلی
۶) رفتن به قدم ٢
همانطور که مشاهده می شود، اصول پایه ای الگوریتم ژنتیک بسیار عمومی است. بنابراین برای مسائل مختلف فاکتورهای مختلف زیادی وجود دارد که باید مورد بررسی قرار گیرد. اولین سؤال این است که ایجاد یک کروموزوم چگونه است؟ یا اینکه چه نوعی از کدینگ انتخاب شود؟
دوعملگر بسیار مهم و پایه ای الگوریتم ژنتیک عملگرهای تقاطعی وجهشی می باشند. سؤال بعدی این است که برای ترکیب والدین به منظور ایجاد فرزندان جدید چگونه والدین را انتخاب کنیم. این کار به طرق مختلف می تواند صورت بگیرد، اما ایده اصلی در تمامی آن ها این است که والدین بهتر انتخاب شوند، به این امید که والدین بهتر باعث ایجاد فرزندان بهتر شوند. مساله ای که ممکن است در اینجا مورد سؤال باشد این است که اگر جمعیت جدید تنها از طریق فرزندان جدید ایجاد شود، این فرایند منجر به حذف بهترین کرموزوم های نسل قبل می گردد. برای جلوگیری از این پیشامد، همیشه بهترین جواب نسل قبل را بدون هیچ تغییری به نسل جدید منتقل می کنیم.
کد کردنالگوریتم ژنتیک بجای اینکه بر روی پارامترها یا متغیرهای مساله کارکند، با شکل کد شده آن ها بطور مناسب سر و کار دارد. روش های کدگذاری متداول در الگوریتم ژنتیک عبارتند از کدینگ باینری، کدینگ درختی، کدینگ ارزشی و کدینگ جهشی. تعداد بیت هایی که برای کدگذاری متغیرها استفاده می شود وابسته به دقت مورد نظر برای جواب ها، محدوده تغییرات پارامترها و رابطه بین متغیرها می باشد.
انواع کدینگکدینگ به دو صورت کلی می باشد :
کدینگ مستقیم
در این روش کل یک جواب به عنوان یک کروموزوم در نظر گرفته می شود. برای مسائل پیچیده چنین روشی مناسب نیست، زیرا عملگرهای ژنتیکی بخاطرگستردگی زیاد فرزندان، غیرکاربردی می شوند و در نتیجه منجر به جواب های غیرقابل قبول و غیرقانونی می شوند.
کدینگ غیرمستقیم
در این روش تنها قسمتی از یک جواب بصورت یک کروموزوم کد می شود.
روش های کدینگکدینگ باینریاین نوع کدینگ، متداولترین نوع کدینگ می باشد. در این روش کدگذاری، هر کروموزوم یک رشته از بیت های شامل ٠و ١ می باشد. کدینگ باینری می تواند حالت های زیادی را پوشش دهد.

شکل 3- SEQ شکل_3- * ARABIC 1: کدینگ باینریاز طرف دیگر این نوع کدینگ برای خیلی از مسائل حالت طبیعی ندارد و اغلب اوقات لازم است که بعد از تقاطع و جهش اصلاحاتی صورت بگیرد.
کدینگ جهشیاین نوع کدینگ می تواند در مسائل ترتیبی نظیر مساله فروشنده دوره گرد یا مساله ترتیب کارها بکار رود. در کدینگ جهشی، هر کروموزوم یک رشته از اعداد می باشد. شکل زیر نمونه ای از این نوع کدینگ را نشان می دهد.

شکل 3- SEQ شکل_3- * ARABIC 2: کدینگ جهشیکدینگ جهشی تنها برای مسائل ترتیبی مفید است حتی برای همین مسائل نیز گاهی اوقات باید تقاطع ها و جهش های اصلاحی به منظور ایجاد کروموزوم های سازگار و مناسب انجام شود.
کدینگ ارزشیاین نوع کدینگ درمسائلی که در آن ها مقادیر پیچیده نظیر اعداد حقیقی بکارمی روند استفاده می شود. استفاده از کدینگ باینری برای چنین مسائلی بسیار سخت می باشد. در کدینگ ارزشی هر ژن یک کروموزوم ارزش خاصی دارد. این پارامتر باارزش می تواند عدد، حرف یا کلمه باشد. در این نوع کدینگ نیاز به توسعه عملگرهای جابجایی و جهش جدیدی برای مسائل خاص می باشد.

شکل 3- SEQ شکل_3- * ARABIC 3: کدینگ ارزشیکدینگ درختیکدینگ درختی در برنامه های تکاملی به منظور برنامه ریزی تکاملی بکار می رود. در کدینگ درختی هرکروموزوم یک درخت از اشیائی نظیر توابع یا دستورها در زبان برنامه نویسی می باشد. شکل زیر دو نمونه از این کروموزوم ها را نشان می دهد. این نوع کدینگ برای برنامه های تکاملی بسیار عالی است. اغلب از این نوع کدینگ استفاده می شود و این بدین علت است که برنامه LISP زبان برنامه نویسی های آن به این فرم نمایش داده می شوند و می توانند براحتی مورد تجزیه قرار بگیرند. بنابراین عمل تقاطع و جهش نیز به همان نسبت راحت انجام می شوند.

شکل 3- SEQ شکل_3- * ARABIC 4: کدینگ درختیمسائل مربوط به کدینگنکته ای که در انتهای این قسمت باید به آن توجه کرد این است که در الگوریتم های ژنتیکی کدینگ یک رابطه بین فضای کدینگ و فضای جواب ها می باشد بطوریکه الگوریتم ژنتیک عملیات تکاملی را بطور متناوب در این دو فضا انجام می دهد(شکل3-5). انتخاب طبیعی نیز به عنوان یک رابطه بین کروموزوم ها و عملکرد جواب های کد شده آن ها می باشد.

user8325

در مدل سازی خطی، ترک را به صورت باز (open crack) در نظر می گیرند، یعنی فرض می شود که ترک در حین ارتعاش همواره باز باقی می ماند و تغییری در آن ایجاد نمی شود. بررسی های انجام شده، در مراجع [13،14،17،18] از این فرض استفاده کرده اند.
در مدل سازی غیرخطی، فرض می شود که ترک در حین ارتعاش باز و بسته می شود که به این نوع ترک ها (breathing crack) گفته می شود. یعنی ترک از یک موقعیت کاملا باز به یک موقعیت کاملا بسته تغییر می کند. با این فرض اثرات غیرخطی ناشی از باز و بسته شدن ترک در معادلات وارد می شود، مانند تحقیقات موجود در مراجع[67،68،69].
بیان مسئله مدل سازی ترک بازیکی از راه های بررسی و تحقیق در مورد تیر ترکدار بررسی فرکانس های طبیعی مربوط به آن است. در مدل های قبلی ارائه شده، در موقعیت ترک، یک فنر پیچشی قرار داده می شود و تیر در این موقعیت، به دو قسمت تقسیم شده که توسط فنر به یکدیگر متصل می شوند. موضوع مورد اهمیت در این مدل سازی پیدا کردن سفتی این فنر می باشد. برای محاسبه سفتی فنر از روابط موجود در مکانیک شکست استفاده شده اما اشکال این مدل سازی در این است که در محاسبه سفتی، پارامتر در نظر گرفته شده تنها عمق ترک می باشد و پارامترهای دیگر، مانند موقعیت و طول دهانه ترک به عنوان پارامتر تأثیر گذار در نظر گرفته نمی شود. در این پژوهش سعی شده به ارائه مدلی پرداخته شود که اثر همه این پارامترها برای پیدا کردن فرکانس طبیعی دخالت داده شود، ضمن اینکه دیگر به استفاده از روابط مکانیک شکست نیازی نباشد. بر این اساس، ترک را با یک تیر که دارای گشتاور دوم سطح متفاوت نسبت به قسمت های بدون ترک تیر است مدل کرده و سپس شرایط پیوستگی، برای دو طرف این تیر تأمین می شود. با این کار اثر عمق ترک، موقعیت ترک و نیز طول دهانه ترک در معادلات وارد می شود و چون دیگر فنری در مدل سازی وجود ندارد نیازی به استفاده از روابط مکانیک شکست نخواهیم داشت. در ادامه با این مدل سازی به بررسی تیر ترکدار با دو و سه ترک و تیر ترکدار با شکل های هندسی مختلف ترک مانند ترک بیضوی، سهموی و مثلثی می پردازیم.
اهداف و مسائل بررسی شده در پایان نامههدف از این پژوهش و بررسی، ارائه مدلی برای مدل سازی ترک باز (مدل سازی خطی) و همچنین ارائه مدلی برای مدل سازی ترک باز و بسته شونده (مدل سازی غیرخطی) می باشد. در قسمت اول مدلی ارائه شده تا اثر همه پارامترهای ترک مانند عمق، موقعیت و طول دهانه ترک را در ارتعاش تیر در نظر بگیرد. مزیت این روش نسبت به سایر مدل سازی ها این است که در مدل سازی های قبلی تنها اثر عمق ترک در نظر گرفته می شد و از اثر موقعیت و طول دهانه ترک را به عنوان پارامتر تأثیرگذار چشم پوشی می شد و دیگر اینکه نیاز به استفاده از روابط علم مکانیک شکست برای پیدا کردن فرکانس طبیعی تیر ترکدار نمی باشد. در ادامه به بررسی تیر ترکدار با شکل های هندسی مختلف ترک پرداخته می شود. در این قسمت برای پیدا کردن فرکانس های طبیعی نیاز به روش گالرکین می باشد. ضمن اینکه برای این قسمت به دلیل عدم وجود نتایج تجربی یا تحقیقات دیگر مقایسه ای انجام نشده است، و تنها نشان دادیم که فرکانس های طبیعی بدست آمده از تیر سالم کمتر است. در قسمت دوم به ارائه مدل غیرخطی پرداخته شده است که باز و بسته شدن ترک را در حین ارتعاش بررسی می کند و با استفاده از روش میانگین گیری (averaging) به حل مسأله و پیدا کردن فرکانس های طبیعی و نیز زاویه باز و بسته شدن ترک در حین ارتعاش پرداخته شده است.

مدل سازی خطی و غیر خطی ترک و بررسی معادلات حرکت
مقدمهدر بسیاری از بررسی های انجام گرفته برای تحلیل ارتعاش تیر ترکدار، از فرض ترک باز استفاده می شود. یعنی ترک در حین ارتعاش باز باقی می ماند. از این رو در بیشتر مدل سازی های صورت گرفته قسمت ترکدار را با یک فنر پیچشی مدل می کنند، یعنی تیر مانند شکل 2-1 الف در قسمت ترک به دو بخش تقسیم شده که این دو بخش با این فنر پیچشی به هم متصل می شوند مانند شکل 2-1 ب. نکته مهم در این مدل سازی پیدا کردن سفتی فنر می باشد. برای پیدا کردن سفتی فنر با استفاده از علم مکانیک شکست یک رابطه بر حسب عمق ترک تخمین زده می شود. که این روابط در پیوست آورده شده است. اما در مدل ارائه شده در این پژوهش به جای آنکه از فنر و روابط مکانیک شکست استفاده کنیم، در موقعیت ترک، یک تیر قرار می دهیم که این تیر با توجه به عمق ترک دارای گشتاور دوم سطحی متفاوت از قسمت های بدون ترک تیر می باشد. با این مدل دیگر نیاز به استفاده از سفتی فنر پیچشی و استفاده از روابط مکانیک شکست نمی باشد.

(الف) (ب)
شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 1:الف، تیر به طول با یک ترک به عمق در موقعیت نشان داده شده .ب)همان تیر با فنر پیچشی جایگزین ترک با سفتی
معادلات ارتعاش آزاددر این قسمت به بررسی معادلات حرکت و شرایط پیوستگی با استفاده از تئوری های اویلر- برنولی و تیموشنکو برای تیر ترکدار با مدل سازی بیان شده می پردازیم.
تئوری اویلر - برنولیتیری به طول l و ارتفاع h و ضخامت b و ترکی به طول دهانه do و عمق hc در موقعیت نشان داده شده، مانند شکل 2-2 در نظر بگیرید. همان طور که قبلا بیان شد قسمت ترکدار تیر را با یک تیر که ممان اینرسی متفاوتی نسبت به مقاطع بدون ترک دارد، مدل سازی می کنیم. معادلات حرکت با فرض تئوری اویلر- برنولی برای هر قسمت تیر به صورت زیر است:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 2: تیر ترکدار به طول L ، ارتفاع h، عمق ترک hc و طول دهانه doبرای قسمت ابتدایی تیر یعنی از ابتدای تیر تا ابتدای ترک:

(2-1)
با معرفی پارامترهای بی بعد و روش جداسازی متغیرها، معادله حرکت و شکل مد قسمت اول برابر است با:
(2-2)
(2-3)
(2-4)
برای قسمت ترکدار تیر، معادلات حرکت به صورت زیر است:


(2-5)
با معرفی پارامترهای بی بعد و روش جداسازی متغیرها، معادله حرکت و شکل مد قسمت دوم برابر است با:
(6-2)
(7-2)
(8-2)
برای قسمت انتهایی تیر یعنی از انتهای ترک تا انتهای تیر:
(2-9)
(2-10)
با معرفی پارامترهای بی بعد و روش جداسازی متغیرها معادله حرکت و شکل مد قسمت سوم برابر است با:
(2-11)
(2-12)
(2-13)
پارامترهای بی بعد برای پیدا کردن فرکانس طبیعی برای هر قسمت تیر برابر است با:
(2-14)
با توجه به برابر بودن فرکانس طبیعی برای تیر، رابطه بین پارامترهای بی بعدو برابر است با:
(2-15)
(2-16)
(2-17)
گشتاور خمشی و نیروی برشی طبق تئوری اویلر – برنولی اینگونه تعریف می شود:
(2-18) EId2wdx2:خمشی گشتاور (2-19) EId3wdx3 : برشی نیروی شرایط پیوستگی در دو سمت ترک به ترتیب از برابری جابجایی، شیب، گشتاور خمشی و نیروی برشی بدست می آید:
برابری جابجایی:
(2-20)
برابری شیب:
(2-21)
برابری گشتاور خمشی:
(2-22)
برابری نیروی برشی:
(2-23)
که برای تیر با یک ترک خواهد بود.
با اعمال شرایط پیوستگی 8 ثابت از 12 ثابت موجود محاسبه می شود، 4 ثابت باقیمانده از شرط مرزی ابتدا و انتهای تیر بدست می آید. در قسمت بعد مسئله را برای شرایط مرزی مختلف بررسی می کنیم.
تیر دو سر گیردارتیر دو سرگیردار با یک ترک، در موقعیت نشان داده شده، مانند شکل2-3 در نظر می گیریم:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 3 تیر دو سر گیر داربرای پیدا کردن فرکانس طبیعی و ثابت های مجهول، ماتریس ضرایب را با استفاده از شرایط مرزی و شرایط پیوستگی بدست می آوریم. برای تیر دو سرگیردار در ابتدا و انتهای تیر، جابجایی و شیب برابر صفر می باشد.
شرط مرزی ابتدای تیر :
(2-24)
(2-25)
(2-26)
با اعمال شرایط پیوستگی در دو طرف ترک و استفاده از روابط (2-20) تا (2-23)، در سمت چپ ترک، یعنی در موقعیت خواهیم داشت:
برابری جابجایی:
(2-27)
برابری شیب:
(2-28)
برابری گشتاور خمشی:
(2-29)
برابری نیروی برشی:
(2-30)
در سمت راست ترک، یعنی در موقعیت نیز روابط زیر را خواهیم داشت:
برابری جابجایی:
(2-31)
برابری شیب:
(2-32)
برابری گشتاور خمشی:
(2-33)
برابری نیروی برشی:
(2-34)
برای قسمت انتهایی تیر، یعنی خواهیم داشت:
(2-35)
(2-36)
بنابراین ماتریس ضرایب عبارتند از:

معادله فرکانسی، همان دترمینان ماتریس ضرایب می باشد و از برابر صفر قرار دادن دترمینان ماتریس ضرایب و جایگذاری روابط بین و فرکانس طبیعی بدست خواهد آمد.
برای سایر شرایط مرزی تنها شرایط مرزی ابتدا و انتهای تیر، یعنی دو سطر اول و دو سطر آخر در ماتریس ضرایب تغییر خواهد کرد.
تیر یک سر گیردار- یک سر آزادبرای تیر یکسر گیردار مانند شکل 2-4 شرایط مرزی ابتدا و انتهای تیر به صورت زیر خواهد بود:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 4: تیر یک سر گیر دار – یک سر آزاددر ابتدای گیردار مانند معادلات (2-25) و (2-26)، جابجایی و شیب برابر صفر است، و در انتهای آزاد نیز گشتاور خمشی و نیروی برشی برابر صفر می باشد.
(2-37)
(2-38)
تیر دو سرلولابرای دو سرلولا، مانند شکل 2-5 شرایط مرزی ابتدا و انتهای تیر به صورت زیر خواهد بود:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 5 تیر دو سر لولادر ابتدای تیر، جابجایی طبق معادله (2-25) و گشتاور خمشی برابر صفر است:
(2-39)
در انتهای تیر، جابجایی طبق معادله (2-35) و گشتاور خمشی با معادله (2-37)، برابر صفر است.
تیر گیردار- مفصل برشیبرای تیر گیردار- مفصل برشی مانند شکل 2-6 شرایط مرزی ابتدا و انتهای تیر به صورت زیر خواهد بود:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 6: تیر گیردار – مفصل برشی (در مفصل برشی، شیب و نیروی برشی صفر است.)در ابتدای گیردار، جابجایی و شیب، مانند معادلات (2-25) و (2-26) برابر صفر است. در انتهای مفصل برشی، شیب و نیروی برشی برابر صفر است:
(2-40)
(2-41)
در فصل بعد به ارائه نتایج با تغییر پارامترهای موثر و مختلف ترک و مقایسه آنها با یکدیگر می پردازیم.
تئوری تیموشنکودر این قسمت با استفاده از همان مدل سازی قبلی، به بررسی معادلات حرکت و بررسی شرایط مرزی مختلف با استفاده از تئوری تیموشنکو می پردازیم. تفاوت این قسمت با قسمت قبلی این است که در تئوری تیموشنکو، معادلات حرکت و تعاریف مربوط به شیب، گشتاور خمشی و نیروی برشی متفاوت است. روند کار مشابه قسمت قبل است یعنی با استفاده از دترمینان ماتریس ضرایب و معادله فرکانسی، فرکانس های طبیعی بدست می آید. به دلیل آنکه در تئوری تیموشنکو، اثر تغییر شکل برشی و تنش برشی در نظر گرفته می شود، فرکانس طبیعی بدست آمده از تئوری اویلر – برنولی کمتر است.
معادله یک تیر تیموشنکو به صورت زیر است[70]:
(2-42)
(2-43)
با شرایط در نظر گرفته شده مانند شکل 1، به دلیل آنکه صلبیت خمشیEI برای هر قسمت تیر ثابت است، معادله بالا، به شکل زیر خواهد بود:
(2-44)
(2-45)
که در رابطه بالا k، تعداد ترک و i مربوط به هر قسمت تیر می باشد.
با معرفی پارامترهای بی بعد زیر و استفاده از معادلات بالا، به پیدا کردن X, ϕ, ω می پردازیم:
(2-46)
(2-47)
(2-48)
(2-49)
(2-50)
(2-51)
(2-52)
با در نظر گرفتن یک حل پریودیک و روش جداسازی متغیرها و استفاده از دو معادله آخر داریم:
(2-53)
(2-54)
(2-55)
از معادله فوق نسبت به پارامتر بی بعد ξ، مشتق می گیریم:
(2-56)
مقدار را از معادله (2-54)، در معادله (2-56) جایگذاری می کنیم:
(2-57)
با مرتب کردن جملات معادله فوق، به معادله دیفرانسیل مرتبه 4، بر حسب X می رسیم:
(2-58)
با در نظر گرفتن یک حل به صورت زیر، معادله دیفرانسیل مرتبه 4 بالا را حل می کنیم:
(2-59)
(2-60)
(2-75)
(2-61)
(2-62)
همان طور که نشان داده شد عبارت زیر رادیکال، همواره مثبت است؛ با فرض آنکه
(2-63)
بنابراین، جواب های بدست آمده برای λ2 به ترتیب مثبت و منفی می باشد، که جواب های مثبت به صورت هیپربولیکی و جواب های منفی به صورت سینوسی و کسینوسی نمایش داده می شود.
(2-64)
(2-65)
بنابراین :
(2-66)
اندیس i، پاسخ مربوط به هر قسمت تیر می باشد.
با توجه به معادله و جایگذاری Χ بدست آمده از معادله قبلی و انتگرال گیری بر حسب ξ، رابطه ϕ اینگونه بدست می آید:
(2-67)
(2-68)
همان طور که قبلا بیان کردیم، رابطه گشتاور خمشی و نیروی برشی در تئوری تیموشنکو و اویلر – برنولی با یکدیگر متفاوت است. نیروی برشی و گشتاور خمشی برای هر قسمت تیر، در تئوری تیموشنکو به صورت زیر تعریف می شود:
(2-69) kAiGdXidξ-Φi→برشی نیروی (2-70) EIidΦidξ→خمشی گشتاور شرط پیوستگی در موقعیت ترک از نظر مفهوم، همان برابری جابجایی، شیب، گشتاور و نیروی برشی است، تنها تعاریف و روابط مربوط به آنها تغییر می کند.
شرایط پیوستگی در موقعیت ترک برابر است با:
برابری جابجایی:
(2-71)

برابری شیب:
(2-72)

برابری گشتاور خمشی:
(2-73)

برابری نیروی برشی:
(2-74)

که برای تیر با یک ترک می باشد.
در ماتریس ضرایب، جملات مربوط به شرایط پیوستگی برای هر شرط مرزی ثابت بوده، و تنها شرایط مرزی ابتدا و انتهای تیر تغییر می کند.
تیر دو سر گیرداربرای مثال تیر ترکدار دو سرگیردار مانند شکل 2-3 را در نظر بگیرید، در ابتدای گیردار جابجایی و شیب صفر است:
(2-75)
(2-76)
در انتهای گیردار نیز، جابجایی و شیب صفر است:
(2-77)
(2-78)

بنابراین ماتریس ضرایب برای تیر دو سر گیردار به صورت زیر است:

که از حل دترمینان ماتریس فوق برابر صفر، فرکانس های طبیعی سیستم بدست می آید. در ادامه به بررسی سایر شرایط مرزی می پردازیم، و در فصل بعد نتایج مربوط به آنها را نمایش خواهیم داد.
تیر یک سر گیردار -یک سر آزاد
تیر یک سر گیردار – یک سر آزاد مانند شکل 2-4 را در نظر می گیریم، شرایط پیوستگی مربوط به دو طرف ترک مانند تیر دو سرگیردار تغییری نمی کند، و تنها شرایط مرزی ابتدا و انتهای تیر در ماتریس ضرایب تغییر خواهد کرد. در ابتدای گیردار، جابجایی و شیب صفر است که همان معادلات (2-75) و (2-76) می باشد، اما در انتهای آزاد، گشتاور و نیروی برشی، صفر خواهد بود:
(2-79)
(2-80)
تیر دو سرلولابرای تیر دو سرلولا مانند شکل 2-5، در ابتدا و انتهای تیر، جابجایی و گشتاور خمشی برابر صفر است. معادلات مربوط به جابجایی، معادلات (2-75) و (2-77) بوده و معادلات مربوط به گشتاور، معادلات زیر می باشند:
(2-81)
(2-82)
تیر گیردار- مفصل برشیبرای تیر گیردار- مفصل برشی مانند شکل 2-6، شرط مرزی ابتدای تیر، معادلات (2-75) و (2-76) بوده و شرط مرزی انتهای تیر بدین صورت خواهد بود که در مفصل برشی، شیب و نیروی برشی برابر صفر است:
(2-83)
(2-84)
در فصل بعد به ارائه نتایج مربوط به این مدل سازی با تغییر در پارامترهای موثر و مختلف ترک پرداخته و آنها را با یکدیگر مقایسه می کنیم.
در ادامه این فصل به بررسی و مدل سازی تیر ترکدار با شکل های هندسی مختلف ترک می پردازیم:
بررسی تیر شامل چند ترکدر قسمت های قبلی، تیر بررسی شده شامل یک ترک بود، در این قسمت با همان مدل سازی، یک تیر شامل چند ترک را مورد بررسی قرار می دهیم. شکل2-7 یک تیر با دو ترک و شکل2-8 یک تیر با سه ترک را نشان می دهد. با فرض اینکه ترک از نوع باز (open crack) بوده و با استفاده از مدل سازی انجام شده در بخش قبل، هر ترک را با به صورت یک تیر با گشتاور دوم سطح متفاوت مدل سازی می کنیم. تنها تفاوت این بخش با بخش قبلی، بیشتر شدن تعداد ثابت ها و معادلات مربوط به شرایط پیوستگی می باشد. معادلات حاکم و شرایط پیوستگی، برای هر تئوری همان معادلات قبلی برای هر قسمت تیر می باشد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 7 : تیر به طول ,شامل دو ترک به عمق وارتفاعو طول دهانه ترک

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 8 تیر به طول ,شامل سه ترک به عمقوارتفاعو طول دهانه ترک
تئوری اویلر- برنولیبرای تئوری اویلر – برنولی، معادلات را با رابطه کلی، به صورت اندیس دار به شکل زیر می توان نشان داد، (با فرض آنکه، عمق همه ترک ها با یکدیگر برابر باشد):
برای قسمت های بدون ترک :
(2-85)
(2-86)
(2-87)
(2-88)
تعداد ترک می باشد.
برای قسمت های ترکدار:
(2-89)
(2-90)
(2-91)
شرایط پیوستگی در دو طرف ترک، همان برابری جابجایی، شیب، گشتاور و نیروی برشی می باشد.
برای سمت چپ ترک:
(2-92)
(2-93)
(2-94)
(2-95)

برای سمت راست ترک:
(2-96)
(2-97)
(2-98)
(2-99)
(2-100)
تئوری تیموشنکوبرای تئوری تیموشنکو نیز مانند معادلات اویلر – برنولی، معادلات را با رابطه کلی، به صورت اندیس دار با فرض آنکه، عمق همه ترک ها با یکدیگر برابر باشد به صورت زیر می توان نشان داد:
برای قسمت های بدون ترک:

(2-101)
(2-102)
(2-103)
تعداد ترک می باشد
برای قسمت های ترکدار:

(2-104)
(2-105)
(2-106)
شرایط پیوستگی در دو طرف ترک، همان برابری جابجایی، شیب، گشتاور و نیروی برشی می باشد.
برای سمت چپ ترک:
(2-107)
(2-108)
(2-109)
(2-110)

برای سمت راست ترک:
(2-111)
(2-112)
(2-113)
(2-114)
(2-115)
در فصل بعد، به ارائه نتایج برای تیر شامل دو و سه ترک، طبق تئوری اویلر – برنولی و تیموشنکو می پردازیم.
ترک با شکل های هندسی مختلف:در قسمت قبل، به مدل سازی تیر ترکدار با ترک مستطیلی، با فرض باز بودن ترک پرداختیم. در این قسمت برای ترک، شکل های هندسی مختلف فرض شده است؛ مانند ترک مثلثی، بیضوی و سهموی. هدف این قسمت آن است که نشان دهیم با ارائه همان مدل می توانیم ترک های با شکل های هندسی مختلف را نیز مدل سازی کرده و نتایج را بدست آوریم. با توجه به مدل سازی صورت گرفته، که ترک را با یک المان تیر، که گشتاور دوم سطح متفاوت دارد، مدل کرده بودیم، در این قسمت با همان مدل سازی به بررسی ترک با شکل های بیان شده می پردازیم. نکته مهم در مورد این ترک ها، این است که گشتاور دوم سطح آنها مانند ترک مستطیلی در طول ترک ثابت نمی باشد. یعنی با توجه به موقعیت در طول ترک، گشتاور دوم سطح آنها نسبت به موقعیت قبلی، ثابت نیست. در ناحیه ترکدار، رابطه برای ارتعاش آزاد تیر صادق است. به دلیل ثابت نبودن برای این معادله حل تحلیلی وجود ندارد. بنابراین باید از روش های تقریبی یا نیمه تحلیلی استفاده کرد. با استفاده از روش گالرکین و روش متعامدسازی ابتدا ماتریس های جرمی و سفتی را بدست آورده و با استفاده از مقادیر ویژه این دو ماتریس، فرکانس طبیعی تیر را بدست می آوریم. تئوری استفاده شده در این قسمت، تئوری اویلر – برنولی می باشد، ضمن اینکه در روش گالرکین نیاز به استفاده از یک تابع برای شکل مد است که شرایط مرزی هندسی را برآورده کند. برای بدست آوردن این تابع شکل مد، از شکل مد تیر سالم برای هر شرط مرزی استفاده می کنیم.
حل ارتعاش آزاد برای یک تیر با استفاده از تئوری اویلر– برنولی به صورت زیر است:
(2-116)
با استفاده از روش متعامد سازی:
(2-117)
با جایگذاری در معادله فوق خواهیم داشت:
(2-118)
با دو بار انتگرال گیری جز به جز، جمله اول معادله فوق به معادله زیر تبدیل می شود:
(2-119)
بنابراین خواهیم داشت:
(2-120)
در بازه انتگرال گیری اول ، و سوم، ، به دلیل ثابت بودن مقطع، عبارت نیز ثابت می باشد، اما در بازه، به دلیل وجود ترک با شکل هندسی بیان شده عبارات تابعی از می باشد.
بنابراین :
(2-121)
معادله در ناحیه ترکدار با توجه به هندسه ترک و تابع با توجه به شرط مرزی تیر مشخص خواهد شد، که با جایگذاری در معادله قبلی، در نهایت به فرم زیر می رسیم:
(2-122)
که مقادیر ویژه ماتریس فوق، فرکانس طبیعی تیر را نتیجه می دهد.
در ادامه شکل های هندسی مختلف ترک، بررسی شده و روابط حاکم بر را نشان می دهیم. اما عبارت کلی در ناحیه ترکدار این گونه خواهد بود:
برای ترک دو طرفه:
(2-123)
(2-124)
برای ترک یک طرفه:
(2-125)
(2-126)
ترک مثلثی شکل
برای ترک مثلثی مانند شکل2-9 ناحیه ترکدار را به صورت زیر تقسیم بندی کرده و در هر قسمت رابطه مربوط به آن را در نظر می گیریم:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 9 : تیر به طول ,و ارتفاع ، شامل یک ترک مثلثی به عمق و طول دهانه ترک
(2-127)
(2-128)
ترک بیضی شکل
معادله یک بیضی به مرکز و قطرهای برابر است با:
(2-129)
ترک نشان داده شده در شکل 2-10 به مرکز و قطرهای می باشد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 10 : تیر به طول ,و ارتفاع ، شامل یک ترک بیضوی به عمق و طول دهانه ترک
معادله این ترک به صورت زیر است:
(2-130)
لازم به ذکر است به دلیل آنکه نیمه پایینی ترک، مد نظر می باشد از علامت منفی در پشت رادیکال استفاده شده است.
ترک سهمی شکل
معادله یک سهمی عمودی، که راس آن در نقطه و فاصله راس تا کانون آن a باشد، به صورت زیر است:
(2-131)
اگر سهمی، ماکسیمم داشته باشد، علامت آن مثبت، و اگر مینیمم داشته باشد علامت آن منفی می باشد.
معادله یک سهمی عمودی، مانند شکل 2-11 که راس آن در نقطه و با فرض آنکه کانون این سهمی در نقطه قرار داشته باشد :
(2-132)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 11 : تیربه طول , وارتفاع ، شامل یک ترک سهموی به صورت عمودی به عمق و طول دهانه ترک
معادله یک سهمی افقی که راس آن در نقطه و فاصله راس تا کانون آن a باشد، به صورت زیر است:
(2-133)
اگر دهانه سهمی به سمت راست باشد علامت آن مثبت و اگر به سمت چپ باشد، علامت آن منفی می باشد.
معادله یک سهمی افقی، مانند شکل2-20 که راس آن در نقطه و با فرض آنکه کانون این سهمی در نقطه قرار داشته باشد :
(2-134)
علامت منفی به دلیل آنست که قسمت پایینی سهمی مورد نظر می باشد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 12 : تیر به طول , وارتفاع ، شامل یک ترک سهموی به صورت افقی به عمق و طول دهانه ترک
در فصل بعد به ارائه نتایج مربوط به این قسمت پرداخته ایم، ضمن اینکه در قسمت پیوست ها توابع شکل مد مورد استفاده برای هر شرط مرزی آمده است.
مدل سازی ترک باز و بسته شوندهدر این قسمت به مدل سازی غیرخطی تیر ترکدار می پردازیم. بر خلاف قسمت قبل که فرض می شد ترک در حین ارتعاش همواره باز باقی می ماند، در این قسمت، فرض بر این است که ترک در حین ارتعاش باز و بسته می شود، یعنی ترک از یک حالت کاملا باز به یک حالت کاملا بسته تغییر می کند. این فرض باعث ایجاد ترمهای غیرخطی در معادلات شده که در ادامه بررسی می شود. برای حل این معادلات غیر خطی از روش میانگین گیری استفاده می کنیم.و نتایج را برای حالتهای تک مود و دو مود نشان خواهیم داد.
مدل سازی ترک ساختار منحنیدر این قسمت ترکی با ساختار منحنی شکل مطابق شکل2-21 را مورد بررسی قرار می‌دهیم. زاویه ترک منحنی شکل در وضعیت اولیه θ0 است که در حین ارتعاش این زاویه بتدریج تغییر می‌نماید. عمق ترک برابر h0 و طول وجه ترک برابر lc است. فرض کنید که ترک با شکل منحنی دارای شعاع انحنای ρ است. اگر برای مثال ترک به صورت قسمتی از دایره با شعاع ρ در نظر گرفته شود، نقاط ابتدایی و انتهایی ترک و از آنجا مقدار گشودگی دهانه به صورت زیر خواهد بود:
(2-135)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 13 : تیر ترکدار با ترک منحنی شکل با شعاع انحناهای متفاوت، عمق و طول وجه

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 14 ترک با ساختار منحنی دایره ای شکل به شعاع انحنایدر دو طرف و زاویه اولیه و طول دهانه
در این صورت در اثر نیروها و حرکت حاصله زاویه ترک و گشودگی دهانه مربوطه تغییر می‌کند. این تغییرات موجب می‌گردد که سطوح منحنی‌ها بر روی هم غلتیده و از طول وجه اولیه lc ترک و یا گشودگی اولیه دهانه کاسته شود، مانند شکل2-15، اگر که ترک در جهت بسته‌شدن دچار تغییر زاویه شود. به این ترتیب اگر شیب منحنی خیز تیر در نقطه وسط ترک برابر باشد، در این صورت زاویه مابین بصورت زیر خواهد بود.
(2-136)
و سطحی از ترک که بر روی هم می‌غلتد نیز به صورت زیر خواهد بود.
(2-137)
این میزان از غلتش سطوح بر روی هم از عمق اولیه به همین میزان خواهد کاست. در نتیجه میزان عمق ترک در حین بسته شدن در نقطه ترک xc به صورت زیر تغییر خواهد کرد.
(2-138)
و محدوده ترک بصورت زیر تغییر خواهد کرد.
(2-139)
مقدار گشودگی دهانه ترک نیز به صورت زیر تعیین خواهد شد.
(2-140)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 15 : موقعیت نقاط ابتدا و انتهای ترک و نیز تغییرات هندسه ترک در حین ارتعاشطول وجه ترک نیز بصورت زیر تعیین خواهد شد:
(2-141)
که برای ترک دایره‌ای با شعاع ثابت ρ به صورت زیر درخواهد آمد
(2-142)
(2-143)
(2-144)
طول وجه ترک نیز برابر خواهد شد با:
(2-145)
عمق ترک در هر نقطه به صورت زیر در خواهد آمد:
(2-146)
(2-147)
در ادامه ساختار ترک را نسبت به موقعیت میانی ترک متقارن در نظر گرفته می‌شود. اگر زاویه ترک کوچک باشد و شعاع انحنای ترک نسبت به ضخامت تیر بزرگ باشد، در این صورت ترک را می‌توان در هر لحظه بتقریب به صورت V شکل به صورت معادله (2-136) در نظر گرفت، در ادامه از این فرض ساده‌کننده برای حل استفاده خواهد شد. با این فرض محدوده ترک بصورت زیر تغییر خواهد کرد:
(2-148)
(2-149)
نقاط گوشه‌ای ترک به صورت زیر می‌باشند:
(2-150)
در این معادله خطی که برای تقریب وجوه در هر لحظه استفاده می‌شود، بصورت زیر تعیین می‌گردد.
(2-151)
در این صورت ارتفاع دهانه باز ترک برابر است با:
(2-152)
انرژی جنبشی تیر به صورت زیر می‌باشد.
(2-153)
با جایگذاری رابطه (2-152) در رابطه (2-153)، انرژی جنبشی برابر است با:
(2-154)
به همین ترتیب انرژی پتانسیل برابر است با:
(2-155)
با جایگذاری رابطه (2-152) در رابطه (2-155)، انرژی پتانسیل برابر است با:
(2-156)

با قرار دادن در معادلات زیر داریم:
(2-157)

(2-158)

(2-159)

با تعریف روابط زیر :
(2-160)
(2-161)
(2-162)
(2-163)
(2-164)
(2-165)
در حالت واقعی محدوده ترک کوچک می‌باشد، لذا انتگرال‌های مربوطه را می‌توان بصورت‌های زیر تقریب زد:
(2-166)
(2-167)
(2-168)

(2-169)

(2-170)

(2-171)

کمیت های بی بعد را به صورت زیر تعریف می کنیم:
(2-172)
با قرار دادن روابط (2-160) تا (2-171) در معادله (2-159) و قرار دادن روابط (2-160) تا (2-162) در معادله (2-158) و قراردادن روابط (2-163) تا (2-165) در رابطه (2-157) و جایگذاری روابط بدست آمده در معادله لاگرانژ، و وارد کردن کمیت های بی بعد تعریف شده در رابطه بدست آمده از این جایگذاری ها و ساده سازی، معادله حرکت بدست می آید:
(2-173)

بررسی ترک v- شکلدر قسمت قبل معادله حرکت را برای ترک دایره ای شکل بدست آوردیم، در این قسمت معادله حرکت را برای ترک -v شکل بدست خواهیم آورد. زاویه ترک V شکل در وضعیت اولیه θ0 است که در حین ارتعاش این زاویه بتدریج تغییر می‌نماید. عمق ترک برابر h0 و طول وجه ترک برابر lc است که . در این صورت گشودگی دهانه ترک در وضعیت اولیه برابر خواهد بود. در این صورت محدوده اولیه ترک بصورت زیر مشخص می‌گردد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 16 ترک با ساختار v-شکل و مشخصات هندسی (2-174)
(2-175)
در اثر نیروها و حرکت حاصله زاویه ترک و گشودگی دهانه مربوطه تغییر می‌کند و مقدار گشودگی دهانه ترک نیز به صورت زیر تعیین خواهد شد.
(2-176)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 17 : ترک با ساختار v- شکل در حین ارتعاش در هنگام بسته شدن.در این صورت زاویه ترک در حین ارتعاش از رابطه بدست خواهد آمد و محدوده ترک بصورت زیر تغییر خواهد کرد.
(2-177)
(2-178)
وجه ترک به صورت یک خط با رابطه‌ای به صورت زیر است:
(2-179)
در این صورت ارتفاع دهانه باز ترک برابر است با:
(2-180)
با استفاده از رابطه (2-154) انرژی جنبشی برابر است با:
(2-181)
به همین ترتیب انرژی پتانسیل با استفاده از رابطه (2-155) برابر است با:
(2-182)
حال جابجایی تیر را به صورت در نظر می‌گیریم،در این صورت با استفاده از معادلات لاگرانژ داریم:
(2-183)
(2-184)
(2-185)
(2-186)
(2-187)
در این صورت معادلات حرکت بصورت زیر خواهند بود:
(2-188)

در حالت واقعی محدوده ترک کوچک می‌باشد، لذا انتگرال‌های مربوطه را می‌توان بصورت‌های زیر تقریب زد.
(2-189)
(2-190)
(2-191)
(2-192)
(2-193)
که با جایگذاری در معادله خواهیم داشت:
(2-194)
تفاوت معادلات بدست آمده برای ترک دایره ای شکل و ترک V- شکل نشان دهنده این است که مدل ارائه شده نسبت به پارامتر شکل ترک حساس است، یعنی مدل ارائه شده با تغییر شکل ترک تغییر می کند.
حل مسئله با روش میانگین گیریمعادله حرکت بدست آمده در قسمت قبل غیرخطی می باشد. برای حل معادلات غیرخطی روش های مختلفی مانند پرتوربیشن، میانگین گیری و... وجود دارد در این قسمت با استفاده از روش میانگین گیری به حل معادله بدست آمده در قسمت قبل می پردازیم، با فرض یک مد، معادله (2-194) بصورت زیر تبدیل می‌گردد:
(2-195)
برای تعیین نحوه تغییر دامنه و فرکانس با زمان، با استفاده از روش میانگین‌گیری، حلی به صورت زیر در نظر گرفته می‌شود.
(2-196)
که
(2-197)
در این صورت با مشتق‌گیری از رابطه (2-196) داریم:
(2-198)
برای اینکه معادله فوق دارای حل پریودیک باشد، عبارت زیر باید برابر صفر باشد:
(2-200)
بنابراین:
(2-201)
با مشتق‌گیری از داریم:
(2-202)
که با جایگذاری رابطه (2-196)، (2-201) و (2-202) ، در معادله (2-195)، معادله حرکت به فرم زیر تبدیل می‌گردد:
(2-203)
برای پیداکردن دامنه و فاز حرکت از رابطه زیر استفاده می کنیم:
(2-204)
با قراردادن رابطه( 2-203 )در معادله ( 2-204)، تابع F1τ,ω0,ϕ,a را به صورت زیر بدست می آوریم:
(2-205)
با استفاده از روابط (2-200) و (2-204) دامنه و فاز حرکت بصورت زیر تعیین می‌شوند:
(2-206)
(2-207)
از حل معادلات دیفرانسیل فوق مقادیر در بازه زمانی مشخص بدست می آید.
برای ترک دایره ای شکل نیز با فرض یک مود، به روشی مشابه ترک V- شکل معادله بدست آمده برابر است با:
(2-208)

که مشابه روش قسمت قبل، برابر است با:
(2-209)

در فصل بعد نتایج مربوط به این مدل سازی و تغییرات فرکانس زاویه ای و زاویه ترک را در حین ارتعاش به صورت شکل های مختلف برای هر شرط مرزی نشان می دهیم.

نتایج مدل سازی
مقدمهدر این فصل با استفاده از روابط فصل دوم و مدل سازی انجام شده به ارائه نتایج می پردازیم. نتایج این فصل در بخش های مختلف ارائه می شود. ابتدا در قالب جداول، نتایج مربوط به ترک باز ساده، سپس نتایج مربوط به تیر چند ترکه و در انتها، نتایج مربوط به شکل های هندسی مختلف ترک ارائه گردیده است. در ادامه نتایج مربوط به ترک باز و بسته شونده در قالب شکل های مختلف ارائه می شود.
نتایج ترک باز ساده
در این قسمت به ارائه نتایج مربوط به ترک باز ساده می پردازیم. این نتایج برای شرایط مرزی مختلف، عمق های مختلف ترک، موقعیت های مختلف ترک و طول دهانه های مختلف ترک نشان داده می شود و اثر هر کدام از این پارامترها را روی فرکانس طبیعی بررسی می کنیم، و همچنین برای بررسی درستی نتایج، آنها را با نتایج مربوط از روش ارائه شده در مرجع [67] مقایسه می کنیم.
ویژگی های هندسی و مکانیکی تیر مورد نظر به صورت زیر است:

تیر با نسبت های مختلف عمق ترک:در این بخش به ارائه نتایج برای نسبت های مختلف عمق ترک می پردازیم. پارامتر بی بعد عمق ترک را برای مقادیر مختلف در نظر گرفته و نتایج بدست آمده از روش ارائه شده را با روش متعارف [67] یعنی روشی که در آن با استفاده از روابط مکانیک شکست در موقعیت ترک، فنر گذاشته می شود، مقایسه می کنیم. در همه جداول ستونی مربوط به سه فرکانس طبیعی اول تیر سالم (بدون ترک) برای هر شرط مرزی آورده شده است، که برای نشان دادن این مطلب است که فرکانس طبیعی تیر ترکدار همواره از تیر بدون ترک کمتر است زیرا سفتی تیر ترکدار از تیر سالم کمتر است.
در جدول3-1 فرکانس های طبیعی بی بعد، مربوط به سه مود اول ارتعاشی را برای شرط مرزی گیردار-گیردار با موقعیت ترک و طول دهانه ترک، را برای تیر اویلر- برنولی و تیر تیموشنکو نشان می دهیم. همان طور که از نتایج جداول پیداست با افزایش عمق ترک، سفتی تیر کاهش پیدا کرده و در نتیجه فرکانس طبیعی تیر نیز کاهش می یابد. همچنین نتایج این روش با روش متعارف نزدیکی و تطابق بسیار خوبی دارد.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 1 : فرکانس های طبیعی مربوط به تیر دو سر گیردار با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه نتایج با روش متعارف و تیر سالمhchتیر سالم تیر ترکدار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 22.373 22.276 22.329 22.233 22.360 22.264
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 120.579 118.506 120.770 118.691
0.2 22.373 22.276 22.205 22.111 22.333 22.237
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 119.682 117.644 120.540 118.47
0.3 22.373 22.276 21.993 21.901 22.282 22.187
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 118.185 116.204 120.138 118.045
0.4 22.373 22.276 21.670 21.582 22.185 22.091
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 116.016 114.113 119.416 117.39
0.5 22.373 22.276 21.225 21.142 21.992 21.9012
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 113.223 111.417 118.049 116.0748
0.6 22.373 22.276 20.676 20.599 21.578 21.491
61.672 61.062 61.672 61.062 61.672 61.06
120.90 118.818 110.075 108.369 115.314 113.4377
0.7 22.373 22.276 20.076 20.007 20.610 20.5349
61.672 61.062 61.672 61.062 61.672 61.057
120.90 118.818 106.978 105.363 109.718 108.0231
در جداول 3-2 تا 3-4، سه فرکانس طبیعی بی بعد اول را، برای شرایط مرزی مختلف به ازای عمق های ترک از تا و موقعیت ترک و طول دهانه ترک ، برای تیر اویلر – برنولی و تیر تیموشنکو نشان داده شده است. در بالای هر جدول، شرط مرزی مربوط به آن تیر نشان داده شده است، ضمن آنکه مانند جدول قبل به ازای افزایش عمق ترک، فرکانس طبیعی تیر کمتر شده و همچنین فرکانس تیر ترکدار از تیر سالم کمتر می باشد. از نتایج پیداست که تطابق خوبی بین نتایج روش ارائه شده و روش متعارف وجود دارد.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 2 : فرکانس های طبیعی مربوط به تیر یکسر گیردار با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه نتایج با روش متعارف و تیر سالمتیر ترکدار یکسرگیردار تیر سالم hchروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 3.514 3.515 3.512 3.513 # "0.00%" 3.513 3.5142 3.5160 0.1
21.946 22.022 21.899 21.974 21.9582 22.0344 61.192 61.697 61.192 61.697 61.1927 61.6972 3.513 3.5148 3.506 3.507 3.5142 3.5160 0.2
21.924 22.000 21.732 21.806 21.9582 22.0344 61.192 61.697 61.192 61.697 61.1927 61.6972 3.511 3.5134 3.495 3.496 3.5142 3.5160 0.3
21.887 21.962 21.445 21.517 21.9582 22.0344 61.192 61.697 61.191 61.697 61.1927 61.6972 3.509 3.510 3.477 3.478 3.5142 3.5160 0.4
21.816 21.891 21.007 21.076 21.9582 22.0344 61.192 61.696 61.190 61.696 61.1927 61.6972 3.503 3.505 3.450 3.452 3.5142 3.5160 0.5
21.677 21.751 20.399 20.464 21.9582 22.0344 61.191 61.696 61.188 61.694 61.1927 61.6972 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 3 : فرکانس های طبیعی مربوط به تیر گیردار- مفصل برشی با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه نتایج با روش متعارف و تیر سالمتیر ترکدار گیردار-مفصل برشی تیر سالم hchروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 5.5896 5.5944 5.586 5.5930 5.5872 5.5933 0.1
30.081 30.214 30.031 30.163 30.0926 30.2258 73.906 74.632 73.882 74.608 73.9131 74.6389 5.5890 5.5939 5.586 5.5922 5.5872 5.5933 0.2
30.06 30.193 29.859 29.989 30.0926 30.2258 73.895 74.613 73.797 74.523 73.9131 74.6389 5.5882 5.5931 5.584 5.590 5.5872 5.5933 0.3
30.022 30.154 29.563 29.690 30.0926 30.2258 73.875 74.601 73.651 74.376 73.9131 74.6389 5.5872 5.5927 5.582 5.588 5.5872 5.5933 0.4
29.950 30.082 29.113 29.234 30.0926 30.2258 73.839 74.565 73.431 74.155 73.9131 74.6389 5.5861 5.5915 5.579 5.585 5.5872 5.5933 0.5
29.807 29.937 28.494 28.607 30.0926 30.2258 73.767 74.494 73.130 73.854 73.9131 74.6389 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 4: فرکانس های طبیعی مربوط به تیر دو سر لولا با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار دو سر لولا تیر سالم hchروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 9.853 9.864 9.833 9.843 9.8591 9.8696 0.1
39.3125 39.478 39.3125 39.478 39.3125 39.4784 87.947 88.778 87.764 88.590 87.9946 88.8264 9.844 9.854 9.758 9.769 9.8591 9.8696 0.2
39.3125 39.478 39.3125 39.478 39.3125 39.4784 87.865 88.693 87.125 87.936 87.9946 88.8264 9.827 9.837 9.630 9.64 9.8591 9.8696 0.3
39.3124 39.478 39.3125 39.478 39.3125 39.4784 87.719 88.544 86.05 86.835 87.9946 88.8264 9.796 9.806 9.430 9.439 9.8591 9.8696 0.4
39.3123 39.478 39.3125 39.478 39.3125 39.4784 87.450 88.268 84.869 85.221 87.9946 88.8264 9.734 9.744 9.147 9.156 9.8591 9.8696 0.5
39.312 39.478 39.3125 39.478 39.3125 39.4784 86.921 87.727 82.4 83.106 87.9946 88.8264 تیر با نسبت های مختلف طول دهانه ترک:در این قسمت نتایج را به ازای تغییر در طول دهانه ترک نشان خواهیم داد. همان گونه که قبلا بیان شد، مزیت روش ارائه شده نسبت به روش های دیگر این است که در روش ارائه شده، فرکانس طبیعی با تغییر در طول دهانه ترک تغییر می کند، اما نتایج روش متعارف، نسبت به تغییر طول دهانه ترک ثابت است.
جدول 3-5، سه فرکانس طبیعی بی بعد مربوط به سه مود اول ارتعاش تیر ترکدار گیردار-گیردار را به ازای عمق ترک ثابت و موقعیت ترک و طول های مختلف دهانه ترک از تا نشان می دهد.
در جداول 3-6 تا 3-8، فرکانس های طبیعی بی بعد مربوط به سه مود اول را برای شرایط مرزی مختلف به ازای طول های مختلف دهانه ترک از تا و موقعیت ترک و عمق ترک ، برای تیرهای اویلر – برنولی و تیر تیموشنکو نشان داده شده است. همان طور که از نتایج پیداست با افزایش طول دهانه ترک، فرکانس طبیعی تیر کاهش می یابد. ضمن اینکه به دلیل آنکه روش متعارف نسبت به پارامتر طول دهانه ترک حساسیتی ندارد نتایج مربوط به روش متعارف به ازای تغییر این پارامتر تغییر نمی کند.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 5: فرکانس های طبیعی تیر دو سر گیردار با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمdoLتیر سالم تیر ترکدار دو سر گیردار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.001 22.373 22.276 22.329 22.233 22.3699 22.273
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.869 118.786
0.002 22.373 22.276 22.329 22.233 22.3667 22.270
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.836 118.754
0.004 22.373 22.276 22.329 22.233 22.3600 22.263
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.770 118.691
0.005 22.373 22.276 22.329 22.233 22.3568 22.260
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.737 118.659
0.008 22.373 22.276 22.329 22.233 22.3470 22.251
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.640 118.566
0.01 22.373 22.276 22.329 22.233 22.3406 22.244
61.672 61.062 61.672 61.062 61.6726 61.063
120.90 118.818 120.579 118.506 120.576 118.505
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 6 : فرکانس های طبیعی مربوط به تیر یکسر گیردار با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار تیر سالم doLروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 3.509 3.510 3.450 3.452 3.5142 3.5160 0.001
21.816 21.891 20.399 20.464 21.9582 22.0344 61.192 61.696 61.188 61.694 61.1927 61.6972 3.503 3.505 3.450 3.452 3.5142 3.5160 0.002
21.677 21.751 20.399 20.464 21.9582 22.0344 61.191 61.696 61.188 61.694 61.1927 61.6972 3.498 3.500 3.450 3.452 3.5142 3.5160 0.003
21.542 21.615 20.399 20.464 21.9582 22.0344 61.190 61.696 61.188 61.694 61.1927 61.6972 3.493 3.495 3.450 3.452 3.5142 3.5160 0.004
21.412 21.484 20.399 20.464 21.9582 22.0344 61.189 61.696 61.188 61.694 61.1927 61.6972 3.483 3.485 3.450 3.452 3.5142 3.5160 0.006
21.161 21.232 20.399 20.464 21.9582 22.0344 61.187 61.695 61.188 61.694 61.1927 61.6972 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 7: فرکانس های طبیعی مربوط به تیر گیردار- مفصل برشی با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار تیر سالم doLروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 5.584 5.591 5.579 5.585 5.5872 5.5933 0.001
29.947 30.079 28.494 28.607 30.0926 30.2258 73.8391 74.5649 73.130 73.854 73.9131 74.6389 5.583 5.590 5.579 5.585 5.5872 5.5933 0.002
29.807 29.937 28.494 28.607 30.0926 30.2258 73.767 74.494 73.130 73.854 73.9131 74.6389 5.582 5.588 5.579 5.585 5.5872 5.5933 0.003
29.672 29.799 28.494 28.607 30.0926 30.2258 73.699 74.425 73.130 73.854 73.9131 74.6389 5.580 5.586 5.579 5.585 5.5872 5.5933 0.004
29.540 29.667 28.494 28.607 30.0926 30.2258 73.632 74.359 73.130 73.854 73.9131 74.6389 5.580 5.585 5.579 5.585 5.5872 5.5933 0.006
29.290 29.413 28.494 28.607 30.0926 30.2258 73.506 74.234 73.130 73.854 73.9131 74.6389 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 8: فرکانس های طبیعی مربوط به تیر دو سر لولا با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار تیر سالم doLروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 9.796 9.806 9.147 9.156 9.8591 9.8696 0.001
39.312 39.478 39.312 39.478 39.3125 39.4784 87.445 88.263 82.398 83.106 87.9946 88.8264 9.734 9.744 9.147 9.156 9.8591 9.8696 0.002
39.312 39.478 39.312 39.478 39.3125 39.4784 86.921 87.727 82.398 83.106 87.9946 88.8264 9.673 9.683 9.147 9.156 9.8591 9.8696 0.003
39.312 39.478 39.312 39.478 39.3125 39.4784 86.423 87.217 82.398 83.106 87.9946 88.8264 9.614 9.624 9.147 9.156 9.8591 9.8696 0.004
39.312 39.478 39.312 39.478 39.3125 39.4784 85.95 86.732 82.398 83.106 87.9946 88.8264 9.499 9.508 9.147 9.156 9.8591 9.8696 0.006
39.312 39.478 39.312 39.478 39.3125 39.4784 85.065 85.827 82.398 83.106 87.9946 88.8264 بررسی اثر تغییر موقعیت ترکدر این قسمت، موقعیت ترک را از قسمت های ابتدایی تیر تا قسمت های انتهایی تیر، به ازای عمق و طول دهانه ثابت تغییر می دهیم و نتایج را نشان می دهیم. نکته قابل توجه در این قسمت این است که، تنها در حالت شرط مرزی تیر یک سر گیردار با تغییر موقعیت ترک از ابتدا تا انتها، فرکانس طبیعی مربوط به مود اول، افزایش می یابد و در مورد شرایط مرزی دو سر گیردار و دو سر لولا به علت تقارن، در فاصله های برابر از تکیه گاه ها، فرکانس های طبیعی یکسان است. برای حالت دوسر لولا با نزدیک کردن موقعیت ترک به میانه تیر فرکانس طبیعی اول کاهش پیدا کرده و بعد از آن افزایش می یابد. در مورد بقیه شرایط مرزی، نظم خاصی وجود ندارد. نتایج مربوط به هر دو روش ارائه شده و روش متعارف نشان دهنده این موضوع می باشد. ضمن اینکه تطابق و نزدیکی خوبی بین نتایج دو روش وجود دارد.
در جداول 3-9 تا 3-12، نتایج مربوط به بررسی اثر موقعیت ترک به ازای و نشان داده شده است. شرط مرزی هر تیر نیز در بالای جدول مربوط به آن آورده شده است.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 9: فرکانس های طبیعی مربوط به تیر دو سر گیردار با موقعیت های مختلف ترک و طول دهانه و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمLCLتیر سالم تیر ترکدار دو سر گیردار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 22.373 22.276 21.572 21.484 22.202 22.107
61.672 61.062 61.289 60.695 61.594 60.986
120.90 118.818 120.862 118.774 120.899 118.839
0.2 22.373 22.276 22.343 22.247 22.372 22.275
61.672 61.062 60.304 59.721 61.454 60.848
120.90 118.818 114.532 112.712 119.971 117.678
0.3 22.373 22.276 22.133 22.039 22.341 22.245
61.672 61.062 58.111 57.586 61.016 60.423
120.90 118.818 118.575 116.619 120.445 118.385
0.4 22.373 22.276 21.516 21.430 22.231 22.137
61.672 61.062 59.761 59.200 61.318 60.718
120.90 118.818 119.153 117.113 120.577 118.498
0.5 22.373 22.276 21.225 21.142 22.177 22.082
61.672 61.062 61.672 61.063 61.672 61.062
120.90 118.818 113.224 111.417 119.397 117.371
0.6 22.373 22.276 21.516 21.430 22.231 22.137
61.672 61.062 59.761 59.200 61.318 60.718
120.90 118.818 119.153 117.113 120.577 118.498
0.7 22.373 22.276 22.133 22.039 22.341 22.245
61.672 61.062 58.111 57.586 61.016 60.423
120.90 118.818 118.575 116.619 120.445 118.385
0.8 22.373 22.276 22.343 22.247 22.372 22.275
61.672 61.062 60.304 59.721 61.454 60.848
120.90 118.818 114.532 112.712 119.971 117.678
0.9 22.373 22.276 21.572 21.484 22.202 22.107
61.672 61.062 61.289 60.695 61.594 60.986
120.90 118.818 120.862 118.774 120.899 118.839
همان طور که از نتایج جدول فوق مشخص است در فاصله های برابر از تکیه گاه ها، مثلا در موقعیت ترک و به علت تقارن فرکانس های طبیعی بدست آمده برابر می باشد.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 10: فرکانس های طبیعی مربوط به تیر یک سر گیردار با موقعیت های مختلف ترک و طول دهانه و عمق ترک و مقایسه نتایج با روش متعارف و تیر سالمLCLتیر سالم تیر ترکدار یک سر گیردار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 3.5160 3.5142 3.156 3.155 3.445 3.443
22.0344 21.9582 21.288 21.221 21.874 21.799
61.6972 61.1927 61.309 60.821 61.618 61.115
0.2 3.5160 3.5142 3.250 3.248 3.465 3.463
22.0344 21.9582 22.019 21.943 22.035 21.959
61.6972 61.1927 60.345 59.857 61.481 60.979
0.3 3.5160 3.5142 3.332 3.331 3.482 3.480
22.0344 21.9582 21.714 21.639 21.986 21.910
61.6972 61.1927 58.189 57.758 61.051 60.561
0.4 3.5160 3.5142 3.400 3.399 3.495 3.494
22.0344 21.9582 20.950 20.881 21.846 21.771
61.6972 61.1927 59.864 59.413 61.358 60.864
0.5 3.5160 3.5142 3.452 3.450 3.505 3.503
22.0344 21.9582 20.463 20.399 21.751 21.677
61.6972 61.1927 61.693 61.188 61.696 61.191
0.6 3.5160 3.5142 3.486 3.484 3.512 3.510
22.0344 21.9582 20.543 20.478 21.767 21.693
61.6972 61.1927 59.451 58.972 61.266 60.766
0.7 3.5160 3.5142 3.505 3.503 3.516 3.514
22.0344 21.9582 21.091 21.022 21.867 21.794
61.6972 61.1927 57.024 56.592 60.800 60.310
0.8 3.5160 3.5142 3.513 3.512 3.52 3.517
22.0344 21.9582 21.711 21.637 21.978 21.902
61.6972 61.1927 58.228 57.781 61.091 60.597
0.9 3.5160 3.5142 3.515 3.514 3.521 3.519
22.0344 21.9582 22.003 21.927 22.041 21.965
61.6972 61.1927 61.165 60.667 61.613 61.109
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 11: فرکانس های طبیعی مربوط به تیر دو سر لولا با موقعیت های مختلف ترک و طول دهانه و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمLCLتیر سالم تیر ترکدار دو سر لولا
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 9.8696 9.8591 9.793 9.783 9.857 9.847
39.4784 39.31251 38.395 38.240 39.302 39.138
88.8264 87.9946 84.441 83.705 88.084 87.269
0.2 9.8696 9.8591 9.602 9.592 9.825 9.815
39.4784 39.31251 36.931 36.790 39.026 38.865
88.8264 87.9946 83.902 83.176 87.841 87.032
0.3 9.8696 9.8591 9.381 9.372 9.786 9.776

user8266

فصل اول
مقدمه و هدف
فصل اول: مقدمه و هدفبه منظور بررسی تغییرات جنین در طی دوره تکامل از تکنیک‏های مختلفی استفاده می شود که می توان آنها را به طور عمده به دو گروه تقسیم کرد. گروه اول شامل روش‏هایی است که در آنها جنین را در یک سن خاص از تخم خارج کرده و ضمن کشتن آن مطالعاتی از قبیل بررسی‏های هیستوپاتولوژی، هیستوکمیستری، مورفولوژی و ... را انجام می دهیم. گروه دوم روش‏هایی است که می توان در آنها، به دلیل زنده ماندن جنین، تغییرات ساختاری اندام‏های بدن را در طول دوره جنینی و یا نتایج حاصل از دستکاری بر روی یک جنین را بررسی نمود. در این گروه روش‏هایی مثل جراحی، نشان دار کردن سلول‏های جنینی، تصویر برداری Time lapse، سونوگرافی، ام آر آی و ... قرار می گیرند که با توجه به هدف مطالعه، بسته به مورد از هر کدام از این روش ها استفاده می شود. در مطالعات جنینی پرندگان، برخی از این روش ها با محدودیت‏هایی از جمله مرگ ناخواسته جنین به دلیل تهاجمی بودن تکنیک، کسب اطلاعات مختصر و سطحی به دلیل قدرت کم نفوذ به داخل ساختارهای جنینی، ایجاد آسیب‏های جنینی و به وجود آمدن ناهنجاری‏های مربوطه به دلیل ماهیت تکنیک، همراه هستند.
تکنیک ام ار ای جزو کم خطرترین روش‏های تصویر برداری غیر تهاجمی است که ضمن ارائه اطلاعات دقیق و جزئی از ساختارهای مورد مطالعه، کمترین آسیب را به آن ها می رساند. این روش سال ها است که در پزشکی و پس از آن در دامپزشکی مورد استفاده قرار گرفته است. اما بررسی جنین پرندگان به کمک آن سابقه کمی داشته و به جز چند مطالعه که بر روی جنین بلدرچین و جوجه صورت گرفته کار دیگری در این زمینه انجام نشده. در بیشتر این گروه مطالعات، بررسی بر روی جنین فیکس شده انجام گرفته است.
باتوجه به مطالب ذکر شده تصمیم به بررسی جنین زنده شترمرغ بوسیله تکنیک ام ار ای با دستگاه‏های موجود در ایران گرفتیم که تاکنون انجام نشده است. در این مطالعه به دنبال ارائه یک پروتوکل ام ار ای با دستگاه‏های موجود در کشور، به منظور بررسی تخم جنین دار شترمرغ در نیمه اول دوران جنینی و همچنین بررسی تغییرات ساختاری تخم جنین دار شترمرغ در نیمه اول دوره جنینی و مقایسه این تغییرات با تخم بدون نطفه هستیم.
فصل دوم
کلیات و برررسی منابع موجود
فصل دوم: کلیات و برررسی منابع موجود1-2- علت مطالعهشترمرغ پرندهای است بزرگ و فاقد قدرت پرواز که بومی آفریقا است. این پرنده خوراکش دانه‌ ها و گیاهان و حشرات کوچک است. شترمرغ نر پرهای سیاهی دارد که انتهای پرها و بال‌ها سفید است، ولی پرهای شترمرغ ماده قهوه‌ای رنگ است. از نظر رده فیلوژنی شترمرغ جزء سلسله جانوران، شاخه طنابداران، رده پرندگان، راسته سینهپهنان، خانواده شترمرغ سانان، سرده شترمرغ، گونه Struthio Camellus می باشد. البته پرندگانی مانند Emu، Rhea، Kiwi، Tinamou و Cassowary هم از راسته سینهپهنان می باشند (2).
هم اکنون تقاضای زیادی در زمینه پرورش شترمرغ در سطح بین المللی وجود دارد و مهمترین عاملی را که می توان در رابطه با شکل گیری این تقاضا دخیل دانست قیمت بالای محصولات شترمرغ در بازارهای جهانی و بازدهی زیاد پرورش این موجود در مقایسه با سایر حیوانات می باشد.
در حال حاضر بررسی روند تکامل در جانداران از چندین لحاظ دارای اهمیت است. ابتدا برای بدست آوردن اطلاعات در مورد تکوین هر جاندار و تفاوت آن با گونههای دیگر که احتمالا مورد نیاز شاخه‏های مختلف علوم مانند زیستشناسی، کشاورزی و دامپزشکی می باشد، دوم به خاطر بدست آوردن اطلاعاتی در زمینه روند تکوینی رویان انسان به واسطه وجود تشابهات و یا با ایجاد حالت ها و ناهنجاری‏های تجربی و سوم به خاطر کسب اطلاعات و توسعه روش‏هایی که در شاخههای جدید علم مانند سلول‏های بنیادی، تولید پروتئین‏های نوترکیب، دستکاری ژنتیک و تولید جانوران کایمر و شبیه‏سازی کاربرد دارند.
رویان پرندگان در هر دو مرحله لایه زایی و تشکیل اندام ها مستقیما در داخل تخم قابل دسترسی است در حالیکه دستکاری تجربی پستانداری مانند موش در داخل رحم فقط در نیمه دوم دوره آبستنی (دوره جنینی) امکان پذیر است. این قابلیت به حدی ارزشمند است که می توان گفت رویان جوجه در قرن اخیر نقش بسیار مهمی در مطالعه تکوین مهرهداران داشته است.
مزایای گوناگون پرندگان به ویژگی‏های ژنتیک و فیزیولوژیک این موجود برمی گردد. البته اهلی بودن و سهولت دسترسی به رویان آن ها نیز تاثیر بسزایی در انتخابشان برای تحقیقات بیولوژی داشته است.
2-2- شترمرغ (Struthio camellus)
شترمرغ پرندهای است بزرگ، فاقد قدرت پرواز که بومی آفریقا است. گردن و پاهای درازی دارد و می ‌تواند با سرعتی در حدود ۶۵ کیلومتر در ساعت بدود. شترمرغ بزرگ ‌ترین پرنده موجود و تنها نمونه زنده از این خانواده و این سرده است. طول قد آن به 7/2 متر و وزن آن به ۱۴۰ کیلوگرم (در نرها تا 155 کیلوگرم) می‌ رسد. تخم این پرنده تا ۲۰ سانتی متر طول و 5/1 کیلوگرم وزن دارد که ظرف حدود نیم ساعت پخته می‌شود. این پرنده خوراکش دانه‌ها و گیاهان و حشرات کوچک است. شترمرغ برای دفاع از خود در مقابل شکارچیان و حیوانات وحشی از پاهای پر قدرت خود بهره می‌ گیرد و قادر است با لگد خود انسان و حتی شیر را از پا در آورد. جوجه این پرنده ظرف ۴۰ روز سر از تخم در می ‌آورند و ظرف سه تا چهار سال یک پرنده بالغ می ‌شوند. شترمرغ نر پرهای سیاهی دارد که انتهای پرها و بال‌ها سفید است، ولی پرهای شترمرغ ماده قهوه‌ای رنگ است. سر و گردن پر ندارد و طاس است. این پرنده اغلب بصورت گروهی در بین گورخرها یا حیوانات دیگر چون گاومیش به سر می‌برد. از نظر رده فیلوژنی شترمرغ جزء سلسله جانوران، شاخه طناب داران، رده پرندگان، راسته سینهپهنان، خانواده شترمرغ سانان، سرده شترمرغ، گونه Struthio Camellus میباشد. البته پرندگانی مانند Emu، Rhea، Kiwi، Tinamou و Cassowary هم از راسته سینه پهنان می باشند (2 و 4).
3-2- تاریخچه پرورش شترمرغ در جهانبیش از 20 میلیون سال پیش اکثر شترمرغ‏های امروزی در کمربند وسیعی که از اسپانیا در غرب آغاز و در طول کرانه‏های شمالی دریای مدیترانه امتداد یافته و به چین در شرق ختم میشد، ساکن بوده اند. توجه انسان به شترمرغ و محصولات آن تقریبا به 2500 سال پیش بر میگردد (5).
اولین اثر حاکی از وجود شتر مرغ در صحرا، سنگی منقوش می باشد که شکار شترمرغ را توسط یک پلنگ به تصویر کشیده است (500 سال قبل از میلاد).
مصریان باستان از پرهای متقارن شترمرغ به عنوان سمبل عدالت و از تخم هایش برای مصارف دارویی استفاده می کردند. فرعون از بادبزن ساخته شده از پرهای شترمرغ در سفرهایش به سرزمین‏های دور استفاده می کرد. در تاریخ اساطیری یونان نیز شترمرغ ها از پیدایش ارابه جایگاه خاصی را به عنوان حیوانات باربر به خود اختصاص می دادند. تورات کهن از شترمرغ به عنوان موجودی خشن یاد می کند. در این کتاب مقدس ذکر گردیده است که شترمرغ ها در خانه ها و کاخ‏های بیابانی زندگی می کنند. آن ها نسبت به فرزندانشان رفتاری خشونت آمیزتر از گرگ ها دارند. یهودیان گوشت شترمرغ را حرام دانسته و از آن تغذیه نمی کنند (5 و 6).
اولین پرورش شترمرغ در باغ وحش در انتهای قرن 19 در مارسی انجام گرفت. اولین جوجه کشی مصنوعی در سال 1875 در الجزایر و در مدت کوتاهی بعد از آن در فلورانس توسط پرنس دمیروف صورت گرفت (6).
4-2- تاریخچه پرورش شترمرغ در ایرانبا اینکه هم اکنون کشورهای آفریقای جنوبی، آمریکا و آلمان طلایه دار صنعت پرورش شترمرغ در دنیا هستند و از ایران هیچ نامی به چشم نمی خورد، لیکن مطابق آثار و شواهد و منابع تاریخی، ایرانیان باستان از جمله پرورش دهندگان شترمرغ در آن زمان بوده اند و موید این مطلب مورد ذیل است. در سال 128 قبل از میلاد مسیح، سیاح معروف چینی به نام چانگ کین به مدت یک سال در نواحی شرقی رود جیحون در کشور باکتریا (بلخ) که در آن موقع تحت سلطه سکاها بود، به سر برده و سپس به دربار ایران راه پیدا کرد. وی پس از آنکه ماموریت خود را که مورد رضایت و خوشنودی پادشاه ایران (اشکانی) قرار گرفت به اتمام رساند با هیئتی که از طرف پادشاه ایران معین شده بود و هدایای نفیس از جمله تخم شتر مرغ فراوان همراه عده ای شعبده باز به چین روانه گردید. حدود 90-80 سال پیش در خرم آباد، روس ها و انگلیس ها شترمرغ را وارد ایران کردند. اما پرورش این پرنده صورت نگرفت. در دوازدهم اردیبهشت 1376 اولین تخم شترمرغ در ایران توسط آقای دکتر درویشیها و مهندس موسوی در مزرعه گلبرگ طوبی متعلق به آقای سهراب، هچ شد. اما بنیانگذار اصلی پرورش شترمرغ در ایران آقای نیامنش است که در حال حاضر رئیس اتحادیه و صنف شترمرغ داران می باشد که از سال 1374 فعالیت خود را آغاز کرده و مجوز گرفته است. در حال حاضر تعداد مزارع شترمرغ در ایران بیش از 100 عدد است که احتمالا حدود 10000 شترمرغ دارند و از هر 3 نژاد گردن قرمز، آبی و سیاه هستند. اولین شترمرغ به دنیا آمده در ایران نژاد گردن سیاه و جوجه شترمرغ نر بوده است که از آفریقا جنوبی تخمش وارد ایران شده بود (1و5).
5-2-اهمیت پرورش شترمرغ در ایران
با توجه به جمعیت رو به تزاید کشور، تامین نیاز پروتئینی برای این جمعیت امری مهم و اساسی به حساب می آید. سرانه تولید مواد پروتئینی با منشا دامی برای هر ایرانی در سال برابر 13 کیلوگرم و سرانه پروتئین در روز حدود 20 گرم بوده است. در صورتی که بخواهیم کیفیت امنیت غذایی را ارتقاء داده و به وضع مطلوب برسانیم، سرانه پروتئین دامی با حفظ ترکیب تولید فعال بایستی حدود 40% افزایش یابد (5 و 8).
عملکرد و بازدهی زیاد پرورش شترمرغ نسبت به سایر دام‏های اهلی عبارت است از:
الف- تعداد تخم‏های شترمرغ در سال برابر 30 تا 100 عدد می باشد.
ب- درصد باروری تخم‏های شتر مرغ 90-30 درصد است.
ج- میزان جوجه درآوری در تخم‏های نطفه دار 60 تا 90 درصد تخمین زده شده است.
د- بازدهی لاشه شترمرغ کشتاری در سن 14-12 ماهگی 55 درصد تخمین زده می شود.
ن- بازدهی اقتصادی پوست، چرم و پر شترمرغ زیاد است.
6-2- سود آوری زیاد پرورش شترمرغهم اکنون تقاضای زیادی در زمینه پرورش شترمرغ در سطح بین المللی وجود دارد و مهمترین عاملی را که می توان در رابطه با شکل گیری این تقاضا دخیل دانست قیمت بالای محصولات شترمرغ در بازارهای جهانی و بازدهی زیاد پرورش این موجود در مقایسه با سایر حیوانات می باشد (8).
7-2- اهمیت گوشت شترمرغ و ترکیبات آنمشتریان با تجربه، به گوشت شترمرغ به عنوان یک شاخص سلامت در خوراک شناسی توجه دارند. گوشت شترمرغ ترد بوده و به سهولت از هم جدا می شود و لیکن این خاصیت طعم غذا را تغییر نمی دهد. گوشت شترمرغ یکی از کم چرب ترین گوشت‏های قرمز موجود می باشد.
خواص آن عبارتند از:
- کم چرب بودن (فیله یا استیک ،کمتر از 1/1% چربی).
- پایین بودن میزان کلسترول (حدود 600 میلی گرم در هر کیلو گرم).
- بالا بودن میزان پروتئین (بیش از 20%).
- تردی استثنایی.
- واکنش مطلوب نسبت به ادویه جات.
هر 100 گرم گوشت شترمرغ حاوی 5/12 میلی گرم منیزیوم، 208 میلی گرم فسفات و 4/315 میلی گرم پتاسیم می باشد. در مورد اکثر گوشت ها پایین بودن میزان چربی با تردی گوشت در تضاد است، در حالی که گوشت شترمرغ از این لحاظ یک استثناء می باشد. هر دو نوع فیله و استیک آن بسیار ترد و نرم می باشد. بیشترین گوشت قابل استفاده از لحاظ تجاری از ران‏های شترمرغ بدست می آید (5).
8-2- طبقه بندی جانور شناسیشترمرغ ها به طبقه پرندگان تعلق دارند و یکی از پنج زیر راسته پنهان محسوب می شوند. مشخصه اصلی آن عدم قدرت پرواز به علت فقدان کامل ستیغ استخوان سینه می باشد. ویژگی اخیر علت نام گذاری فوق شده است زیرا در زبان لاتین به کشتی فاقد لبه زیرین، کلک و یا کله اطلاق می شود.
شترمرغ در زیر راسته استروتیونی فرم ها به صورت زیر قرار می گیرد:
خانواده: استروتیونیده
جنس: استروتیو
گونه: استروتیو کاملوس که زیر گونه‏های زیر را شامل می شود:
استرتیو کاملوس آسترالیس (شترمرغ آفریقای جنوبی یا زولو) در آفریقای جنوبی.
2- استرتیو کاملوس کاملوس (شترمرغ مالی یا بربر) در آفریقای شمالی.
3- استروتیو کاملوس ماسائیکوس (شتر مرغ ماسائی) در شرق آفریقا.
4- استروتیو کاملوس مولیبدوفانس (شترمرغ سومالی) در اتیوپی، کینای شمالی و سومالی.
5- استروتیو کاملوس سیریاکوس (شترمرغ عربی) که از حدود 1970 منقرض شده است.
برای اهداف تجاری اکثرا از اصطلاحاتی مانند گردن آبی، گردن قرمز و گردن سیاه استفاده می شود. زیر گونه‏های کاملوس و ماسائیکوس به شترمرغ‏های گردن قرمز تعلق دارند (3 و 6). اکثر زیر گونه‏های ماسائیکوس به ایالت متحده آمریکا صادر شده اند و گردن آبی ها زیر گونه مولیبدوفانس و آسترالیس را شامل می شوند. گردن آبی و قرمز ها نسبت به گردن سیاه آفریقایی جثه بزرگ تری دارند. سیاه آفریقایی نتیجه تلاقی زیر گونه استروتیو کاملوس آفریقایی شمالی و زیر گونه استروتیو کامالوس آسترا لیس می باشند. گردن سیاه آفریقایی کوچک تر و دارای بدن فشرده تر و پرهای با کیفیت استثنایی هستند و به طور کلی بخش اعظم شترمرغ‏های اهلی شده دنیا را تشکیل می دهند (2 و 5).
9-2-تشکیل تخم مرغتشکیل تخم مرغ نزدیک به 25 ساعت طول می کشد. مواد خام زرده تخم در کبد سنتز شده و در پلاسمای خون به سمت سلول‏های لایه دانه دار حرکت می کنند که پس از آن، آن ها را به اووسیت می فرستند. اووسیت آن ها را به شکل زرده کروی و مایع بازسازی می کند. هیچ سنتز بیوشیمیایی زرده تخم در خود اووسیت انجام نمی گیرد.
تخم مرغ از ناحیه قیفی شکل در مدت 15 دقیقه می گذرد. شالاز در این ناحیه ساخته می شود و زرده را در دو انتهای تخم معلق نگه می دارد. زرده به سرعت وارد مگنوم که بخشی از اویداکت است، می شود. جایی که بخش غلیظ آلبومین به آن اضافه می شود. شکل تخم تا حد زیادی به این قسمت بستگی دارد، گذر از مگنوم طی 3 ساعت انجام می شود. سفیده در این ناحیه ترشح می شود.
عبور از تنگه 75 دقیقه زمان نیاز دارد. غشاهای داخلی و خارجی در این ناحیه شکل می گیرند. قبل از تشکیل این غشاها مقدار کمی پروتئین به سفیده تخم افزوده می شود.
تخم مرغ نزدیک 20 ساعت رحم را اشغال می کند. ازدیاد حجمی در اینجا روی می دهد که افزوده شدن محلول‏های آبی به تخم است (4).
205105103192تخمک وارد اویداکت می شود
00تخمک وارد اویداکت می شود
-1447804868545تخم برای دریافت رنگدانه به رحم می رود
00تخم برای دریافت رنگدانه به رحم می رود
25507954059029تخم رنگدانه دار از رحم خارج می شود
00تخم رنگدانه دار از رحم خارج می شود
35984363377565در تنگه (Isthmus) پوسته نازک اضافه می شود
00در تنگه (Isthmus) پوسته نازک اضافه می شود
-1441452113280آلبومین دور تخمک را فرا می گیرد
00آلبومین دور تخمک را فرا می گیرد

تصویر 2- SEQ تصویر_2- * ARABIC 1: روند تشکیل تخم10-2-ساختار تخم در پرندگان:تخم دربر دارنده یک دیسک زاینده، غشاهای پیرامون زرده، سفیده و یک پوسته است.

تصویر 2- SEQ تصویر_2- * ARABIC 2: ساختار تخم درپرندگاندیسک زاینده: دیسک زاینده (در صورت باروری، بلاستودرم و در صورت سترونی، بلاستودیسک)، دیسک کوچک سیتوپلاسمی است که باقیمانده هسته را دربر می گیرد. این دیسک بر سطح زرده تخم تازه، مانند نقطه دایره شکل سفید ناشفاف قابل مشاهده است که در ماکیان اهلی 3 تا 4 میلی متر قطر دارد.
زرده تخم: زرده ماده غلیظ چسبناکی است که در حدود 50 درصد آن مواد جامد است و 99 درصد آن را پروتئین ها تشکیل می دهند. همانند خزندگان، زرده منبع اصلی غذای رویان را تشکیل می دهد. دو نوع زرده سفید و زرد وجود دارد، در زرده سفید یا لاتبرا (Latebra) نزدیک به ⅔ پروتئین و ⅓ چربی وجود دارد. این زرده از یک قسمت توده ای کوچک کروی، به نام مرکز لاتبرا به وجود آمده است که با یک ستون باریک به نام گردن لاتبرا به یک دیسک مخروطی (دیسک لاتبرا) در زیر دیسک زاینده متصل شده است. زرده زرد رنگ که در حدود ⅔ چربی و ⅓ پروتئین است، اغلب در ماکیان اهلی در درون لایه‏های متناوب سفید و زرد شکل می گیرد.
غشاهای زرده: این غشاها سدی بین زرده و سفیده با مقاومت مکانیکی زیاد را تشکیل می دهند، اما در مقابل آب و نمک ها تراوا است. میکروسکوپ الکترونی غشاهایی با چهار لایه را نشان می دهد.
سفیده تخم مرغ: سفیده غلیظ تخم به مقدار نسبتا زیاد از اووموسین و احتمالا مقداری الیاف موسینی را دربرمی گیرد. سفیده رقیق آبکی تر و دارای اووموسین کمتر است و تقریبا هیچ الیاف موسینی را دربر نمی گیرد. لایه شالازی یک لایه نازک از سفیده غلیظ است که غشاهای زرده را دربر می گیرد (4).
شالاز دو ساختار طناب شکل است که زرده را در وسط تخم نگه می دارد و در شیپور شروع به تشکیل می کند. شالاز همچنین مثل یک محور عمل می کند که زرده می تواند بچرخد و دیسک زایا را در تمام زمان ها در سمت بالا نگه می دارد (17). دو لایه شالاز از الیاف ظریف اووموسین تشکیل شده است. شالاز در انتهای باریک خود دو رشته ای است، در حالی که در انتهای ضخیم یک رشته ای است. سفیده سه لایه دارد، لایه داخلی و خارجی سفیده رقیق و لایه میانی سفیده غلیظ است (4).
پوسته: پوسته متشکل از غشاهای پوسته ای، پوسته آهکی و کوتیکول است. غشاهای بیرونی و درونی پوسته هر کدام ترکیبی از چندین لایه الیافی هستند. در سر پهن تخم، غشا پوسته بیرونی و درونی پس از تخم گذاری که تخم فورا سرد شده، از یکدیگر جدا می شوند و اتاقک هوایی را تشکیل می دهند. سر جنین نزدیک به زیر این فضا که در خزندگان وجود ندارد قرار می گیرد. غشا بیرونی پوسته به شدت به پوسته آهکی می چسبد. بخش عمده پوسته را پوسته آهکی تشکیل می دهد. ضخامت پوسته شدیدا در میان گونه‏های مختلف پرندگان تغییر می کند که این ضخامت در شترمرغ تقریبا به 2 میلی متر می رسد. پوسته آهکی یک ماتریکس آلی از الیاف نازک و یک عنصر غیرآلی جامد بسیار بزرگ (98 درصد کل) را دربر می گیرد که عمدتا کلسیت (فرم کریستالین کربنات کلسیم) است (4).
در بیشتر گونه‏های پرندگان هزاران منافذ ریز بر روی سطح پوسته باز می شوند و بین کریستال ها تا غشاهای پوسته امتداد می یابند. در ماکیان اهلی منافذ غالبا در سر پهن تخم نزدیک سلول هوایی جمع می شوند، بدین ترتیب نزدیک سر جوجه قرار دارند. منافذ به وسیله کوتیکول پوشیده می شوند.
کوتیکول لایه ممتدی است که روی پوسته آهکی و منافذ را می پوشاند. دافع آب است و هدرروی آب درون تخم را کاهش می دهد و به عنوان سدی در برابر باکتری ها عمل می کند.
11-2-مراحل رشد جنینی درپرندگان:تخم مرغ در دستگاه تناسلی مرغ بالغ که از تخمدان و اویداکت تشکیل شده، شکل می گیرد. برخی پرندگان ماده دو تخمدان فعال دارند، اما اغلب ماکیان از جمله شترمرغ یک تخمدان و یک اویداکت فعال دارند.
در مراحل اولیه رشد جنینی هر پرنده ماده دو تخمدان دارد اما فقط تخمدان سمت چپ رشد می کند و به صورت یک ارگان فعال در می آید. در برخی پرندگان مثل شاهین، تخمدان و اویداکت راست شکل می گیرد.
تخمدان بالغ شبیه خوشه انگور است که ممکن است تا 4000 تا تخمک کوچک که به سلول‏های پر زرده تبدیل می شود، داشته باشد. هر تخمک به وسیله یک کیسه فولیکولی که شبکه ظریفی از عروق خونی دارد به تخمدان متصل شده است (17).
بعداز اینکه تخمک در قسمت شیپور اینفاندیبولوم گرفته شد، لقاح تقریبا بلافاصله در صورت وجود اسپرم انجام می شود. سلول‏های اسپرم که توسط نر وارد اویداکت شده در کیسه ذخیره اسپرم در ناحیه اینفاندیبولوم نگه داری می شود. وقتی تخمک از این ناحیه عبور می کند اسپرم ها آزاد شده و باعث لقاح آن می گردند. یک اسپرماتوزوئید حتما باید غشاء نازک زرده ای را پاره کند و به سلول ماده اتصال پیدا کند تا لقاح کامل شود. وقتی سلول زیگوت شکل گرفت غشاء زرده ای ضخیم می شود (17).
تقسیم سلولی تقریبا بلافاصله پس از لقاح شروع می شود. این تقسیم در صورتی که تخم مرغ در دمای بالاتر از 19 درجه سانتی گراد نگهداری شود ادامه پیدا می کند و در غیر این صورت متوقف می شود. اولین تقسیم سلولی تخم مرغ تقریبا در زمانی که تخم وارد تنگه می شود شروع می گردد. تقسیمات سلولی بعدی تقریبا هر 20 دقیقه یکبار انجام می شود. درنتیجه در زمان تخم گذاری هزاران سلول که مجموعا رویانی به نام گاسترولا را بوجود آورده اند، شکل گرفته اند (17). در زمان تخم گذاری دمای تخم پایین است و تکامل جنین معمولا متوقف می شود تا زمانیکه شرایط محیطی مناسب برای انکوباسیون فراهم شود. در صورت فراهم شدن شرایط رشد جنینی دوباره آغاز می گردد.
254002596100
تصویر 2- SEQ تصویر_2- * ARABIC 3: مراحل تقسیم سلولی در جنین مرغبعد از شروع انکوباسیون یک لایه ضخیم شده سلولی نوک تیز سریعا در سمت پسین یا دم انتهایی جنین قابل مشاهده است. این ناحیه خط اولیه است و محور طولی جنین را بوجود می آورد.
قبل از اینکه اولین روز انکوباسیون به پایان برسد در جنین جوجه مرغ ارگان‏های زیادی شکل گرفته است. سر جنین قابل تشخیص است، پیش ساز قسمت پیشین لوله گوارش شکل گرفته و جزایر خونی ظاهر شده که بعدا قرار است دستگاه گردش خون را بوجود آورند. چین عصبی شکل گرفته که قرار است در آینده لوله عصبی را بوجود آورد و شکل گیری چشم ها آغاز شده است (17).
در روز دوم انکوباسیون تخم مرغ جزایر خونی شروع به ارتباط پیدا کردن با یکدیگر می کنند و یک شبکه خونی اولیه را بوجود می آورند. این اتفاق در حالی است که قلب در جای دیگری درحال شکل گیری است.
در ساعت 44 انکوباسیون تخم مرغ قلب و شبکه اولیه خونی به هم وصل می شوند و قلب شروع به ضربان می کند. در این زمان دو دستگاه گردش خون مستقل شکل گرفته است. یک دستگاه جنینی برای جنین و یک دستگاه زرده ای در اطراف کیسه زرده وجود دارد که داخل تخم و خارج بدن جنین تکامل پیدا کرده است.
در مراحل بعدی جنینی دو دستگاه گردش خون خارج جنینی بوجود می آید. یک دستگاه سیستم زرده ای است که موادغذایی را از زرده به جنین منتقل کرده و قبل از روز چهارم مسئول اکسیژنه کردن خون است. دستگاه دیگر از عروق آلانتوئیس درست شده که کار آن در ارتباط با تنفس و ذخیره کردن مواد دفعی در آلانتوئیس است. از روز چهارم به بعد وظیفه اکسیژنه کردن خون جنین مرغ با این سیستم است.
وقتی جنین از تخم خارج می شود هر دو این سیستم ها عمل خود را از دست می دهند (17). در روز دوم انکوباسیون تخم مرغ شیار عصبی شکل می گیرد و قسمت سری این شیار شروع به شکل دهی قسمت‏های مختلف مغز می کند. جنین در این روز آن قدر بزرگ شده است که کمانی شکل شدن آن دیده می شود. گوش ها آرام آرام شروع به شکل گرفتن کرده اند و عدسی در چشم در حال شکل گیری است.
در پایان روز سوم انکوباسیون تخم مرغ نوک شروع به شکل گیری می کند و اندام حرکتی (بال ها و دو پا) بیرون زده اند. سه کمان حلقی در هر طرف سر و گردن قابل مشاهده است. این ساختارها برای شکل گیری دستگاه سرخرگی که از قلب به جلو بیرون می زنند، لازم اند. این کمان ها شیپوراستاش، صورت، فک ها و بعضی از غدد را بوجود می آورند.
در این روز آمنیونی که پر از مایع است در اطراف جنین دیده می شود که وظیفه محافظت از آن را بعهده دارد. همچنین دم و کیسه آلانتوئیس دیده می شوند. کیسه آلانتوئیس یک ارگان تنفسی و دفعی است که وظیفه انتقال مواد غذایی از سفیده و کلسیوم از پوست به جنین را بر عهده دارد (17).
پیچ خوردگی و خمیدگی که از قبل شروع شده در طول روز چهارم در جنین مرغ بیشتر اتفاق می افتد. بدن رویان º90 می چرخد به شکلی که سمت چپ آن بر روی زرده قرار می گیرد. سر و دم در اثر این چرخش در نزدیکی هم قرار می گیرند. در نتیجه جنین به شکل یک حرف C در می آید.
دهان، زبان و سوراخ‏های بینی به عنوان قسمتی از دستگاه‏های گوارش و تنفس شکل گرفته است. قلب به رشد خود ادامه می دهد به حدی که دیگر بدن جنین مرغ قادر به جای دادن قلب درون خود نمی باشد و قلب از بدن جنین بیرون زده است. اگر تخم با دقت باز شود و جنین زنده بماند ضربان قلب در این روز در جنین مرغ دیده می شود.
سایر ارگان‏های داخلی در حال شکل گیری و تکامل هستند. در پایان روز چهارم انکوباسیون تخم مرغ تمام ارگان‏هایی که برای زنده ماندن جنین بعد از هچ نیاز دارد رشد پیدا کرده و از اغلب قسمت‏های جنین قابل تشخیص است. در این مرحله جنین پرنده از جنین پستاندار قابل تفکیک نیست زیرا شکل مشابه هم دارند (17).
جنین خیلی سریع به رشد و تکامل خود ادامه می دهد. در روز هفتم انکوباسیون تخم مرغ انگشت ها در اندام حرکتی ظاهر شده اند. بدن به اندازه ای بزرگ شده که می تواند قلب را در خود جای دهد و قلب کاملا در قفسه سینه جای گرفته است. در این مرحله جنین به شکل پرنده است.
بعد از روز دهم انکوباسیون تخم مرغ پرها و تنه‏های پرها در جنین قابل مشاهده است. نوک ضخیم شده و در روز چهارده انکوباسیون تخم مرغ پنجه ها در حال شکل گیری اند و جنین آهسته برای هچ جابه جا می شود. در روز شانزدهم انکوباسیون تخم مرغ، آلبومن تقریبا تمام شده است. درنتیجه زرده تنها منبع تغذیه جنین می باشد.
بعد از روز بیست انکوباسیون تخم مرغ، جنین در وضعیت هچ قرار گرفته و نوک شروع به سوراخ کردن کیسه اتاقک هوا می کند. در همین روز تنفس ریوی شروع می شود. در این زمان کیسه زرده کاملا در حفره بدن قرار گرفته و جنین آماده هچ است.
موقعیت طبیعی هچ جوجه مرغ بدین صورت است که سر در سمت بزرگ تخم و زیر بال راست قرار گرفته و پاها به سمت سر کشیده شده اند. اگر سر در سمت کوچک تخم قرار بگیرد شانس زنده بودن جوجه به نصف کاهش می یابد که این حالت یک موقعیت بد برای هچ است.

تصویر 2- SEQ تصویر_2- * ARABIC 4: تغییرات جنینی در جنین مرغ12-2-شکل گیری ساختارهای خارج جنینی:هم زمان با عمل تاخوردگی بدنی یک جفت تاخوردگی شامل سوماتوپلور خارج رویانی شروع به بالا رفتن می کند. این تاخوردگی‏های کوریوآمنیوتیک که بدوا در قسمت قدامی سر تشکیل شده، به طور پیشرونده ای در سطح خلفی تر طرفین رویان بالا می آید (7). سپس وقایع مشابهی در انتهای دمی رویان رخ می دهد. تاخوردگی‏های کوریوآمنیوتیک به طرف پشتی توسعه یافته و در بالای خط میانی پشتی رویان به هم رسیده و متصل می شوند ADDIN EN.CITE <EndNote><Cite><Author>Noden</Author><Year>1372</Year><RecNum>14</RecNum><DisplayText>[11]</DisplayText><record><rec-number>14</rec-number><foreign-keys><key app="EN" db-id="efx229s08adteqef0a9x2959zefzw029xrvs">14</key></foreign-keys><ref-type name="Book">6</ref-type><contributors><authors><author>Duran Noden</author><author>Alexander Dela Honta</author></authors><subsidiary-authors><author><style face="normal" font="default" charset="178" size="100%">رضا قاضی</style></author><author><style face="normal" font="default" charset="178" size="100%">بیژن رادمهر</style></author><author><style face="normal" font="default" charset="178" size="100%">هدایت الله رشیدی</style></author></subsidiary-authors></contributors><titles><title><style face="normal" font="default" charset="178" size="100%">جنین شناسی حیوانات اهلی، مکانسم های رشد تکاملی و ناهنجاری ها</style></title></titles><edition><style face="normal" font="default" charset="178" size="100%">1</style></edition><dates><year><style face="normal" font="default" charset="178" size="100%">1372</style></year></dates><pub-location><style face="normal" font="default" charset="178" size="100%">شیراز</style></pub-location><publisher><style face="normal" font="default" charset="178" size="100%">انتشارات دانشگاه شیراز</style></publisher><urls></urls></record></Cite></EndNote> (7). لایه خارجی تر سوماتوپلور کوریون و لایه داخلی تر آمنیون می باشد.
حفره بین رویان و آمنیون، حفره آمنیوتیک نامیده می شود که به وسیله مایع آمنیوتیک پر می شود. این مایع از ترشحات اکتودرم آمنیوتیک و سپس از مایعات کلیه‏های جنین و ترشحات غدد دهانی و مجاری تنفسی ناشی می شود. مایع آمنیوتیک جهت شناور ساختن و محافظت رویان و ایجاد محیطی که در آن رویان بتواند بدن و دست و پا را حرکت دهد بکار می رود (7).

تصویر 2- SEQ تصویر_2- * ARABIC 5: تصویر شماتیک تخم مرغ جنین دارکوریون به سرعت توسعه یافته و در جنین مرغ تا روز 7 الی 8 انکوباسیون کاملا با غشاء داخلی پوسته مجاور شده و به اتفاق غشاء داخلی پوسته آلانتوئیس تشکیل می شود. کوریون واسطه تبادل گازی و آبی می باشد.


آلانتوئیس به عنوان ته کیسه پسین روده رویان ظاهر می شود. تا 10 روزگی انکوباسیون جنین مرغ آلانتوئیس حفره بین آمنیون و کوریون را پر می سازد.
حفره آلانتوئیک برای جمع آوری مواد زائد ترشحی ادرار، که بیشتر آن در پرندگان به صورت اسید اوریک ته نشین می شود، به کار می رود (7).
13-2-معرفی تکنیک‏های بررسی جنین1-13-2رنگ آمیزی جنین:هدف اصلی این روش مشخص کردن جنین ها در گروه‏های مختلف و مشاهده حرکات آنها پس از ترک Nest است. در مطالعات مدیریتی حیات وحش، که در آنها مشاهده جنین اردک ها دشوار است این روش با رنگ آمیزی جنین با رنگ روشن کار را آسان می کند (11).
2-13-2-نمایش جنین‏های زنده:با باز کردن تخم انکوبه شده می توان رشد و تکوین جنین را به صورت روزانه و منظم و با جزئیات زیاد مشاهده کرد. این روشی جالب است که در آن تکوین جنین به دقت مطالعه می شود. بعد از یاد گرفتن باز کردن تخم‏های انکوبه شده می توانید به اشخاص دیگر روند رشد جنین را نشان دهید. در این روش جنین پس از باز شدن از بین می رود و دیگر قدر به ادامه رشد نمی باشد (11).
هنگام آماده سازی جنین باید از ابزار‏هایی دقیق استفاده کنید و همچنین نام علمی تمام پرده‏های جنینی را باید بدانید.
3-13-2تکنیک‏های تصویر برداری تشخیصی:
از جمله تکنیک‏های تصویر برداری تشخیصی، رادیولوژی و سیتی اسکن است که به علت استفاده از اشعه X در این دو تکنیک و مضر بودن این اشعه بر روی جنین به جز در برخی مطالعات پایه زیاد مورد استفاده قرار نگرفته است. در مقایسه با این تکنیک ها، از سونوگرافی و MRI به علت بی خطر بودن و امکان بررسی جنین در سنین مختلف نسبت به تکنیک‏های ذکر شده استفاده بیشتری شده است. تکنیک سونوگرافی در مورد جنین پستانداران بسیار کاربردی و در اولویت اول قرار دارد. در پرندگان این حالت به علت ساختار تخم متفاوت است و تکنیک عکس برداری با کمک تشدید مغناطیس در اولویت اول روش‏های عکس برداری تشخیصی قرار دارد که با توجه به پیشرفت دستگاه‏های MRI و افزایش قدرت و توانایی‏های این دستگاه ها، استفاده از این تکنیک در بررسی جنین پرندگان بیشتر شده و در حال گسترش است (12، 16 و 17).
14- 2تکنیک MRI ( Magnetic Resonace Imaging) : روشی خوبی برای بررسی تغییرات آناتومیک جنین در مراحل مختلف رشد جنین موجود زنده است. این تکنیک به دلیل غیر تهاجمی بودن، می تواند روش مناسبی در بررسی جنین پرندگان باشد. با استفاده از MRI جنین درون تخم می توان زرده، آلبومین و ساختار جنین را بررسی کرد. یکی از معایب استفاده از این روش برای بررسی جنین زنده، حرکت کردن جنین است که ایجاد آرتیفکت در تصاویر می کند. در مقایسه انجام MRI روی بافت‏های جنین فیکس شده که در آن حرکات جنین مشاهده نمی شود بسیار ساده تر می باشد (14، 16 و 17).
برای کنترل حرکات جنین در مطالعه Duce و همکاران بر روی جنین بلدرچین از سرد کردن تخم بوسیله آب سرد استفاده شده که نتایج خوبی در تصویر برداری داشته است (9 و 16).
Diffusion Tensor Imaging (DTI) نیز پروتکلی جدید از تکنیک MRI برای مطالعه سیستم عصبی مرکزی جنین است که می تواند به عنوان جایگزینی برای پروتکل‏های قدیمی تر استفاده شود (12 و 15).
فصل سوم
مواد و روش کار
فصل سوم: مواد و روش کار1-3- مواد مصرفی:نمونه ها: تعداد 10 عدد تخم شترمرغ نژاد کانادایی 7 تخم نطفه دار و 3 تخم بدون نطفه برای این مطالعه انتخاب شد.
سیلیکات ژل: به عنوان جاذب رطوبت استفاده شد.
2-3- وسایل مورد نیاز:_ دستگاه انکوباتور: دستگاه انکوباتور یا ستر ساخت شرکت توسن در ایران می باشد و ظرفیت 135 عدد تخم شترمرغ را دارد.
_ جعبه یونولیتی: جعبه یونولیتی که به رطوبت سنج و دماسنج مجهز شده جهت حمل تخم شترمرغ از مزرعه تا مرکز ام ار ای و بلعکس استفاده شد.
_ دستگاه ام ار ای: دستگاه ام ار ای مورد استفاده در این مطالعه، دستگاه مرکز کوثر واقع در بیمارستان امام رضا (ع) مشهد بود که ساخت شرکت زیمنس می باشد. مدل این دستگاه سمفونی و با قدرت 5/1 تسلا است.
3-3- روش کار:تعداد 6 عدد تخم شترمرغ اصلاح نژاد شده کانادایی (گردن مشکی) جهت این مطالعه انتخاب شد. این تخم ها از خانواده‏های پنج تایی شامل دو نر و سه ماده با سن حدود چهار سال برداشته شد.
تخم ها یک ساعت پس از تخمگذاری از داخل پن برداشته شد و در اتاق انبار قرار گرفت. در این اتاق دما c°18 و رطوبت 40 درصد بود. تخم ها در این مرحله روزانه بین 4 الی 6 مرتبه چرخانده شد و در یک روز مشخص در هفته داخل دستگاه قرار داده شد. قبل از قراردادن تخم ها در دستگاه، دمای تخم برای مدت 12 ساعت به c°25 رسید و بعد از ضدعفونی با گاز حاصل از مخلوط شدن فرمالین و پرمنگنات در دستگاه ستر در محل مزرعه و در طبقه بالای ستر قرار داده شد.
دمای دستگاه ستر c°36.4 و رطوبت آن 18.5 درصد تنظیم شد که با دستگاه کالیبراسیون تستو امتحان گردید که از این طریق از صحت اعداد تنظیمی دستگاه مطمئن شدیم. بازه تغییرات دمای دستگاه c°0.1 و تغییرات رطوبت 0.5 درصد قرار داده شد.
تخم ها از محل مزرعه تا مرکز ام ار ای توسط جعبه یونولیت حمل می شدند که مجهز به دماسنج و رطوبت سنج شده بود تا دما و رطوبت تخم ها تا حدامکان حفظ شود. در صورت زیاد شدن رطوبت از پودر ژل سیلیکات برای پایین آوردن آن استفاده می شد.
کویل‏های مورد استفاده در این مطالعه کویل‏های سر، زانو و نخایی بوده است.
اولین مرحله ام ار ای در روز صفر و قبل از گذاشتن تخم ها در دستگاه انجام شد. سپس در روز‏های 2، 4، 6، 8، 10، 14، 16 و 18 ام ار ای بر روی این تخم ها انجام شد. سه عدد تخم بی نطفه با توجه به شکل ظاهری، سابقه تولید فنس و وزن تخم انتخاب شد تا به عنوان گروه شاهد منفی در این تحقیق استفاده شود تا با نمونه‏های نطفه دار مقایسه شود.
تصاویر با پروتکل‏های T1W و T2W گرفته شد. برش تصاویر به روش 3D انجام شده است. و با نرم افزار Syngopack مورد مطالعه قرار گرفت.
تصاویر با مقطع عرضی و سهمی گرفته شده که بسته به نوع پروتکل مورد استفاده تعداد مقاطع و نوع تصاویر متفاوت است.
در زمان عکس برداری به علت نداشتن زمان کافی، هزینه بر بودن این تصاویر و عدم وجود مرکز ام ار ای دامپزشکی مجبور به قرار دادن دو تخم در کنار هم هنگام عکس برداری بودیم.
تصاویر به صورت خام در اختیار ما قرار گرفت که با استفاده از نرم افزار Syngopack اطلاعات بررسی و پردازش شد.
پس از اتمام کار در روز هجدهم برای تایید تشخیص نطفه دار بودن تخم ها، آن ها را باز کرده و به صورت ماکروسکوپی جنین دار و یا بی نطفه بودن مورد تایید قرار گرفت.
فصل چهارم
نتایج
فصل چهارم: نتایجدر این قسمت تصاویر در دو گروه بی نطفه و نطفه دار تنظیم شده است. در هر کدام از این دو گروه، از دو نوع تصویر سهمی و عرضی استفاده شده. این تصاویر از بین کلیه عکس‏های حاصل از این پژوهش گرد آوری شده و بهترین عکس‏های مورد نظر جهت بررسی قسمت ها و ساختارهای تخم می باشد.
تصاویر نطفه دار با حرف (الف) و بی نطفه با حرف (ب) مشخص شده است.
سعی شده از کلیه تصاویر T1W و T2W مطلوبه بدست آمده در مطالعه، بنا به مورد استفاده شود.
1-4- تخم روز صفر :
در هر دو گروه مشخصات یکسانی دیده می شود و هیچ تفاوتی با یکدیگر ندارند. زرده در وسط قرار دارد که به علت تفاوت در تراکم آن به صورت لایه لایه دیده می شود. در بالای زرده اتاقک هوا قرار دارد و اطراف زرده را سفیده پر کرده است. لتبرا و پایک لتبرا به راحتی قابل رویت است که در تصاویر نامگذاری شده.

تصویر4- SEQ تصویر4- * ARABIC 1: الف، مقطع سهمی تخم شترمرغ نطفه دار صفر روزه، پروتوکل T1W ، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لایه های زرده، 5: لتبرا، 6: پایک لتبرا.
تصویر4- SEQ تصویر4- * ARABIC 2 : الف، مقطع عرضی تخم شترمرغ نطفه دار صفر روزه، پروتوکل T1W ، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا.

تصویر4- SEQ تصویر4- * ARABIC 3: ب، مقطع سهمی تخم شترمرغ بی نطفه صفر روزه، پروتوکل T1W ، 1: اتاقک هوا 2: زرده 3: سفیده 4: لتبرا 5: پایک لتبرا 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 4: ب، مقطع عرضی تخم شترمرغ بی نطفه صفر روزه، پروتوکل T1W ، 1: سفیده 2: زرده 3: لایه های زرده 4: لتبرا

2-4- تخم دو روزهدر تصویر تخم دو روزه تغییر محسوسی نسبت به تخم روز صفر دیده نمی شود. لتبرا، پایک لتبرا، زرده و... بدون تغییر نسبت به روز صفر قرار دارند و در هردو گروه نطفه دار و بی نطفه یکسان هستند.

تصویر4- SEQ تصویر4- * ARABIC 5: الف، مقطع سهمی تخم شترمرغ نطفه دار دو روزه ، پروتوکل T1W ، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: پایک لتبرا، 5: لتبرا
تصویر4- SEQ تصویر4- * ARABIC 6: ب ، مقطع سهمی تخم شترمرغ بی نطفه دو روزه، پروتوکل T1W ، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لایه های زرده، 5: لتبرا
تصویر4- SEQ تصویر4- * ARABIC 7: الف، مقطع عرضی تخم شترمرغ نطفه دار دو روزه ، پروتوکل T1W ، 1: سفیده، 2: زرده، 3: لتبرا
تصویر4- SEQ تصویر4- * ARABIC 8: ب ، مقطع عرضی تخم شترمرغ بی نطفه دو روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا3-4- تخم چهار روزهدر هر دو گروه اتاقک هوا بزرگ تر شده است. در گروه نطفه دار زرده در حال از دست دادن حالت لایه لایه خود است. در گروه بی نطفه به جز بزرگ تر شدن اتاقک هوا، تغییر محسوس دیگری مشاهده نمی شود. لتبرا و پایک لتبرا در هر دو گروه بدون تغییر است.

تصویر4- SEQ تصویر4- * ARABIC 9: الف ، مقطع سهمی تخم شترمرغ نطفه دار چهار روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: پایک لتبرا، 5: لتبرا تصویر4- SEQ تصویر4- * ARABIC 10: الف ، مقطع عرضی تخم شترمرغ نطفه دار چهار روزه، پروتوکل T1W ، 1: زرده، 2: سفیده، 3: لتبرا، 4: پایک لتبرا
تصویر4- SEQ تصویر4- * ARABIC 11: ب ، مقطع سهمی تخم شترمرغ بی نطفه چهار روزه، پروتوکل T1W، 1: کیسه هوا، 2: سفیده، 3: زرده، 4: پایک لتبرا، 5: لتبرا، 6: لایه های زرده.
تصویر4- SEQ تصویر4- * ARABIC 12: ب ، مقطع عرضی تخم شترمرغ بی نطفه چهار روزه، پروتوکل T1W، 1: زرده، 2: سفیده، 3: لایه های زرده، 4: پایک لتبرا4-4- تخم شش روزهدر گروه نطفه دار زرده از حالت دایره ای به شکل بیضی در آمده، رشد دیسک جنینی در بالای لتبرا دیده می شود، زرده کاملا حات لایه لایه خود را از دست داده است و رگه‏های خونی جنین از نمای بالا بر روی سطح زرده قابل مشاهده است. در گروه بی نطفه تغییر خاصی دیده نمی شود. لایه‏های زرده، لتبرا، پایک لتبرا و زرده بدون تغییر نسبت به تصاویر سنین پایین تر گروه بی نطفه دیده می شود.

تصویر4- SEQ تصویر4- * ARABIC 13: الف، مقطع سهمی تخم شترمرغ نطفه دار شش روزه ، پروتوکل T1W ، 1. اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: دیسک جنینی یا جنین لاروی
تصویر4- SEQ تصویر4- * ARABIC 14: الف، مقطع عرضی تخم شترمرغ نطفه دار شش روزه، پروتوکل T2W، 1: سفیده، 2: زرده، 3: لتبرا، 4: مقطع عروق خونی
تصویر4- SEQ تصویر4- * ARABIC 15: ب، مقطع سهمی تخم شترمرغ بی نطفه شش روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: پایک لتبرا، 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 16: ب، مقطع عرضی تخم شترمرغ بی نطفه شش روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا5-4- تخم هشت روزهجنین در بالای کیسه زرده در گروه نطفه دار قابل مشاهده است. لتبرا حالت منظم خود را از دست داده و به صورت منتشر درآمده. زرده حالت لایه لایه خود را از دست داده است. در گروه بی نطفه زرده حالت دایره ای خود را حفظ کرده است. لتبرا و پایک لتبرا تغییری نسبت به روزهای اولیه ندارد. حالت لایه لایه زرده به خوبی قابل مشاهده است.

تصویر4- SEQ تصویر4- * ARABIC 17: الف، مقطع سهمی تخم شترمرغ نطفه دار هشت روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: عروق خونی، 5: جنین
تصویر4- SEQ تصویر4- * ARABIC 18: الف، مقطع عرضی تخم شترمرغ نطفه دار هشت روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: عروق خونی
تصویر4- SEQ تصویر4- * ARABIC 19: ب، مقطع سهمی تخم شترمرغ بی نطفه هشت روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: لتبرا، 5: پایک لتبرا، 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 20: ب، مقطع عرضی تخم شترمرغ بی نطفه هشت روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لتبرا، 4: لایه های زرده6-4- تخم ده روزهجنین به راحتی قابل مشاهده است و حفره حدقه چشم دیده می شود. لتبرا منتشر شده و زرده کشیده تر دیده می شود. در گروه بی نطفه تغییر خاصی نسبت به تصاویر سنین قبل دیده نمی شود و لتبرا به صورت قبل دیده می شود. همچنین زرده حالت لایه لایه خود را حفظ کرده است.

تصویر4- SEQ تصویر4- * ARABIC 21: الف، مقطع سهمی تخم شترمرغ نطفه دار ده روزه، پروتوکل T1W، 1: کیسه هوا، 2: سفیده، 3: زرده، 4: عروق خونی، 5: چشم جنین
تصویر4- SEQ تصویر4- * ARABIC 22: الف، مقطع عرضی تخم شترمرغ نطفه دار ده روزه، پروتوکل T2W، 1: کیسه هوا، 2: زرده، 3: امنیون
تصویر4- SEQ تصویر4- * ARABIC 23: ب، مقطع سهمی تخم شترمرغ بی نطفه ده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: پایک لتبرا، 6: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 24: ب، مقطع عرضی تخم شترمرغ بی نطفه ده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا7-4- تخم چهارده روزهزرده در گروه نطفه دار به صورت کشیده درآمده، جنین کاملا قابل مشاهده است و مقطع عروق خونی جنین بر روی زرده دیده می شود. کیسه آمنیون جنین در تصویر افقی قابل تفکیک است. در تخم بی نطفه تغییری دیده نمی شود.

تصویر4- SEQ تصویر4- * ARABIC 25: الف ، مقطع سهمی تخم شترمرغ نطفه دار چهارده روزه ، پروتوکل T1W ، 1: اتاقک هوا، 2: سفیده، 3 :زرده، 4: جنین، 5: مقطع عروق جنین
تصویر4- SEQ تصویر4- * ARABIC 26: الف ، مقطع عرضی تخم شترمرغ نطفه دار چهارده روزه ، پروتوکل T1W ، 1:جنین
تصویر4- SEQ تصویر4- * ARABIC 27: ب، مقطع سهمی تخم شترمرغ بی نطفه چهارده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: لایه های زرده، 6: پایک لتبرا
تصویر4- SEQ تصویر4- * ARABIC 28: ب، مقطع عرضی تخم شترمرغ بی نطفه چهارده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لایه های زرده، 4: لتبرا8-4- تخم شانزده روزهسر و بدن جنین در تخم نطفه دار کاملا دیده می شود. عروق روی زرده به راحتی قابل مشاهده است. زرده کاملا فضای زیر کیسه هوا را پر کرده و اتاقک هوا بزرگ تر شده است. اتاقک هوا در گروه بی نطفه بزرگ تر شده ولی لایه‏های زرده و لتبرا بدون تغییر مانده است.

تصویر4- SEQ تصویر4- * ARABIC 29: الف، مقطع سهمی تخم شترمرغ نطفه دار شانزده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: جنین، 4: زرده، 5: مقطع عروق خونی
تصویر4- SEQ تصویر4- * ARABIC 30: الف، مقطع عرضی تخم شترمرغ نطفه دار شانزده روزه، پروتوکل T1W، 1: سرجنین، 2: عروق خونی جنین
تصویر4- SEQ تصویر4- * ARABIC 31: ب، مقطع سهمی تخم شترمرغ بی نطفه شانزده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: زرده، 3: سفیده، 4: لتبرا، 5: لایه های زرده
تصویر4- SEQ تصویر4- * ARABIC 32: ب، مقطع عرضی تخم شترمرغ بی نطفه شانزده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لتبرا، 4: لایه های زرده 9-4- تخم هجده روزهبدن جنین کاملا قابل مشاهده است که به علت حرکت جنین در هنگام عکس برداری آرتیفکت دیده می شود. آمنیون در تصویر دیده می شود. مقطع عروق، سر و تنه در تصویر مشخص است. در گروه بی نطفه لتبرا، پایک لتبرا و حالت لایه لایه زرده هنوز قابل مشاهده است و تغییر محسوسی نسبت به تصویر سنین پایین تر نکرده است.

تصویر4- SEQ تصویر4- * ARABIC 33: الف، مقطع سهمی تخم شترمرغ نطفه دار هجده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: جنین، 5: مقطع عروق
تصویر4- SEQ تصویر4- * ARABIC 34: الف، مقطع عرضی تخم شترمرغ نطفه دار هجده روزه، پروتوکل T1W، 1: سر جنین، 2: تنه جنین و آمنیون
تصویر4- SEQ تصویر4- * ARABIC 35: ب، مقطع سهمی تخم شترمرغ بی نطفه هجده روزه، پروتوکل T1W، 1: اتاقک هوا، 2: سفیده، 3: زرده، 4: لتبرا، 5: پایک لتبرا
تصویر4- SEQ تصویر4- * ARABIC 36: ب، مقطع عرضی تخم شترمرغ بی نطفه هجده روزه، پروتوکل T1W، 1: سفیده، 2: زرده، 3: لتبرا، 4: لایه های زردهفصل پنجم
بحث و نتیجه گیری
فصل پنجم: بحث و نتیجه گیری
به منظور استفاده از تکنیک‏های تصویربرداری تشخیصی جهت مطالعه جنین موجود زنده، مطالعات متنوعی انجام شده است. این مطالعات در پستانداران با توجه به موقعیت و محل جنین عمدتا با استفاده از تکنیک سونوگرافی بوده و با درجه کمتر از MRI استفاده شده. این روند به علت امکان سونوگرافی در جنین پستانداران بوده که تصاویر مناسبی نیز بدست می آید. واضح است که در تمام مطالعات جنینی استفاده از سیتی اسکن و رادیولوژی به علت وجود اشعه X در این تکنیک ها، و مضررات آن برای جنین، در اولویت آخر قرار می گیرند.
اما در بررسی جنین پرندگان، برخلاف پستانداران، سونوگرافی در اولویت اول قرار ندارد. تصویربرداری با تشدید مغناطیس به علت ارائه تصاویر با کیفیت، قابلیت نفوذ به لایه‏های تخم پرندگان و بی خطر یا کم خطر بودن برای جنین، تکنیکی است که از میان انواع روش‏های تصویربرداری تشخیصی در پرندگان بیشتر مورد استفاده قرار گرفته است. در مطالعات متعددی از تکنیک MRI در بررسی جنین مرغ و بلدرچین استفاده شده است (12، 16 و 17). در این مطالعه به منظور تعیین نطفه دار بودن تخم و بررسی تغییرات ساختاری تخم نطفه دار با توجه به نوع و قدرت دستگاه‏های MRI موجود در کشور از تکنیک تصویربرداری با تشدید مغناطیس استفاده شد.
دستگاه ام ار ای مورد استفاده در این مطالعه، دستگاه مرکز کوثر واقع در بیمارستان امام رضا (ع) مشهد بود که ساخت شرکت زیمنس می باشد. مدل این دستگاه سمفونی و با قدرت 5/1 تسلا است. برخی از توانایی‏های این دستگاه، امکان تصویر برداری از تمام نسوج بدن با کیفیت بالا، مقطع تصویر کمتر از یک میلی متر، انجام تصویربرداری از تمام نسوج و اندام‏های بدن و توانایی کنترل حرکات قلبی، تنفسی همزمان با تهیه تصاویر دینامیک بود. البته استفاده از تمام این امکانات در مطالعه حاضر با توجه به هدف و نوع مطالعه ضروری نبود و یا در مواردی به دلیل از دست رفتن جنین و عدم توان پیگیری روند تغییرات آن امکان پذیر نبود.
یکی از اهداف ما در این بررسی ارزیابی دستگاه‏های موجود در کشور و قابلیت‏های آن ها برای این نوع مطالعات بود. واضح است که با دستگاه‏های پیشرفته تر و قوی تری که مانند آن در مطالعه duce و همکاران استفاده شد و از نوع Bruker Avance بود، با قدرت 1/7 تسلا و ضخامت برش 1 میلی متر بود تصاویر واضح تر و دقیق تری به دست خواهد آمد (16 و 17). از طرف دیگر در مطالعات یاد شده استفاده از دستگاه‏های مذکور با محدودیت‏های زیادی همراه بوده است. زمان طولانی این گونه تصویربرداری ها و قدرت مغناطیسی زیاد این دستگاه ها می توانسته از جمله عوامل آسیب رسان به جنین پرندگان بوده باشد. سرد کردن تخم ها قبل از شروع MRI جهت کاهش حرکات جنین برای جلوگیری از ایجاد آرتیفکت در تصاویر، از جمله عوامل آسیب رسان به جنین در این مطالعات بوده است. عدم امکان استفاده از کویل‏های موجود و معمول هم از نقص‏های بررسی‏های انجام شده است که برای کاهش این نقیصه از قفس طراحی شده ای استفاده شده است . شاید به همین دلیل در بیشتر این مطالعات از جنین مرده استفاده شده است (14، 16 و 17).
در کلیه این مطالعات از پروتکل T1W و T2W به تناسب موقعیت استفاده شده است. در این مطالعه نیز از پروتکل‏های T1W و T2W بنا به ضرورت استفاده شده است. کنتراست مایعات با غلظت‏های متفاوت، بافت ها و اندام‏های مختلف در این دو پروتکل با هم فرق می کند. برای مثال معمولا در بیمارانی که دارای بافتی متفاوت از بافت اصلی بدن هستند (بافت‏های سرطانی) از پروتوکل T2W استفاده می شود. در این مطالعه زرده در پروتوکل T1W روشن و زرد رنگ بوده و در پروتکل T2W سیاه رنگ دیده می شود. برای بررسی حضور عروق خونی بر روی زرده از پروتوکل T2W بیشتر استفاده شده است. ولی در بیشتر عکس برداری ها از پروتوکل T1W استفاده شد که تصاویر بهتری برای بررسی تغییرات زرده به ما داده است.
در شروع این مطالعه، بر روی چند نمونه در سنین مختلف کویل‏های ام ار ای امتحان شد تا بهترین کویل برای این پژوهش انتخاب شود. کویل ها باعث تمرکز امواج و بیشتر شدن کیفیت تصاویر می شوند که باتوجه به شکل هندسی اندام مختلف بدن انسان طراحی و استفاده می شود تا اندام یا قسمت مورد بررسی بدن در داخل آن قرار گیرد. اما از طرف دیگر هر چقدر که کویل بزرگتر شود خاصیت گیرندگی آن کاهش پیدا میکند. کویل‏های مختلف مورد استفاده در این مرکزعبارتند از کویل زانو، نخاعی، سر و انگشت.
کویل مورد استفاده در این مطالعه کویل زانو بود. در این بررسی از کویل سر و زانو تصاویر مطلوب و یکسانی بدست آمد اما چون در کویل زانو امکان قرار دادن دو تخم به صورت هم زمان وجود داشت و در زمان و هزینه صرفه جویی می شد، از کویل زانو در این مطالعه استفاده شد.
در این مطالعه برش‏های تخم‏های نطفه دار به شکلی انجام شد که برای تهیه تصاویر 3D استفاده می شود. تعداد بالای تصاویر حاصل از این روش و همچنین ضخامت پایین این برش ها مزایایی است که در مطالعه‏های گذشته نیز به آنها توجه شده است.
در این مطالعه از نرم افزار سینگو پک استفاده شد که مخصوص دیدن تصاویر ام ار ای می باشد و امکان دیدن تصاویر، تغییرات در کنتراست آنها، اندازه گیری ابعاد و بسیاری امکانات دیگر را به ما می دهد. باتوجه به نوع دستگاه‏های MRI از نرم افزاهای مختلفی برای بررسی تصاویر استفاده می شود. در مطالعات انجام شده نرم افزار مورد استفاده برای مشاهده و آنالیز تصاویر Amira Imaging PC-based است (12، 14 و 17).
زرده زرد در ابتدای امر در هر دو گروه به شکل هندسی بیضی و در زیر کیسه هوا در عکس‏های سهمی دیده شود که در عکس‏های عرضی به شکل کروی مشخص شوده است. زرده در پروتوکل T1W روشن و سفید رنگ است ودر پروتکل T2W تیره و سیاه رنگ دیده شده است.
در روز‏های ابتدایی رشد جنین، زرده در عکس‏های عرضی و سهمی به شکل لایه لایه وبا وضوح بالا مشخص است که به علت تفاوت در غلظت زرده در لایه‏های مختلف آن می باشد. در گروه نطفه دار حالت لایه دار بودن زرده از دو روزگی شروع به تغییر کرده و در چهار روزگی یک دست شدن رنگ و کنتراست آن به وضوح قابل مشاهده است. در حالی که حالت لایه دار بودن در گروه بی نطفه تا پایان هجده روزگی که عکس برداری انجام شد، کاملا دیده شد.
لایه لایه بودن زرده در هر دو گروه تصویر عرضی و سهمی پروتکل T1W دیده شد. اما باتوجه به سیاه بودن کنتراست زرده در پروتوکل T2W در هیچکدام از تصاویر عرضی و سهمی این حالت قابل مشاهده نبود.
زرده در گروه بی نطفه در تمام عکس ها و تا پایان مراحل عکس برداری (هجده روزگی) نظم و شکل هندسی خود را حفظ کرد. فقط کمی به کیسه هوا نزدیک تر شده بود. این در حالی است که در گروه نطفه دار زرده کشیده تر شده و به زیر کیسه هوا نزدیک شده بود. همان طور که در تصویر سیزده در شش روزگی این موضوع قابل رویت و در تصویر بیست و یک در ده روزگی کاملا فضای زیر کیسه هوا را پر کرده است.
غشاء زرده در هر دو گروه نطفه دار و بی نطفه و در هر دو مجموعه تصاویر عرضی و سهمی پروتکل T1W قابل تشخیص و تفکیک است.
لتبرا یا زرده سفید به همراه پایک لتبرا در کلیه تصاویر سهمی و عرضی و با هردو پروتوکل T1W و T2W و در هر دو گروه نطفه دار و بی نطفه در سنین ابتدایی قابل مشاهده است.
در نمای سهمی، لتبرا و پایک آن به شکل یک پیاز دیده می شود (تصویر 3) . پایک لتبرا از مرکز لتبرا تا حاشیه زرده در قسمت بالای تخم کشیده شده که قیفی شکل و محل اتصال بلاستودرم است (تصویر 9).
در گروه نطفه دار لتبرا و پایک آن در روز هشتم و از آن به بعد قابل مشاهده نیست. این در حالی است که در گروه بی نطفه تا پایان دوره تصویر برداری از تخم ها (هجده روزگی) لتبرا و پایک آن به وضوح دیده می شود. در مطالعه Duce و همکاران بر روی جنین بلدرچین نیز لتبرا تا روز شش در تصاویر MRI تشخیص داده شد، اما در آن مطالعه مقایسه ای بین تخم نطفه دار و بی نطفه انجام نگرفت (16).
در هر دو گروه بی نطفه و نطفه دار اناقک هوااز روز اول قابل رویت است و با افزایش سن شروع به بزرگ شدن می کند که در تصاویر قابل مشاهده است. تفاوت قابل ملاحظه ای در تغییر اندازه اناقک هوا در بین دو گروه نطفه دار و بی نطفه مشاهده نمی شود. اناقک هوا و اندازه آن در تصاویر سهمی قابل مشاهده و بررسی است ودر هر دو پروتکل T1W و T2W سیاه رنگ و تیره دیده می شود.
این یافته ها با یافته‏های دیگر محققین روی جنین بلدرچین متفاوت است، در مطالعه آنها اناقک هوا از روز دوم قابل مشاهده است (16). این مسئله احتمالا مربوط به نفاوت در مدت زمان و نحوه انبار این دو نوع تخم پرنده و ساختار متفاوت تخم شترمرغ و بلدرچین است.
در شش روزگی عروق خونی در اطراف زرده به صورت یک حلقه قابل مشاهده است که در حال حرکت به سمت مرکز زرده می باشد. عروق خونی در پروتوکل T2W بر روی زرده بهتر دیده می شوند البته این عروق در پروتکل T1W هم قابل مشاهده با کنتراست کمتر هستند. به نظر می رسد به دلیل تفاوت زیاد در کنتراست رنگ زرده و عروق در پروتکل T2W، عروق در این پروتکل به راحتی و با وضوح بالا دیده می شوند.
در تصویر چهارده در شش روزگی با پروتکل T2W به عروق روی کیسه زرده در گروه نطفه دار قابل مشاهده است. در روزهای بعد هم در پروتکل T1W عروق خونی بر روی زرده قابل مشاهده است. این عروق از شش روزگی به بعد در تمام تصاویر نطفه دار قابل تشخیص است و با بیشتر شدن سن جنین، عروق با وسعت و تعداد بیشتری مشاهده می شود. در روند تکوین جنین بلدرچین عروق خونی به کمک MRI در روز سه تشخیص داده شده است (16). با توجه به اختلاف طول دوره انکوباسیون بین بلدرچین و شترمرغ می توان مقداری از این اختلاف فاز تشخیصی را توجیه کرد. به هر حال از آنجایی که در مطالعه یاد شده تشخیص عروق خونی به کمک ماده حاجب و دستگاه MRI قویتری انجام شده است، طبیعتا امکان تشخیص زودتر عروق خونی وجود داشته است.
در این مطالعه در هشت روزگی جنین لاروی شکل تشخیص داده شد. جنین لاروی در بالای زرده و زیر اناقک هوا دیده شد. البته حضور جنین باتوجه به دانسیته تصویر و موقعیت لتبرا در سن شش روزگی تشخیص داده شد اما لاروی بودن جنین در تصاویر MRI مربوط به آن سن قابل تایید نبود.
در سن ده روزگی (تصویر بیست و یک) سر جنین و حفره حدقه چشم در تصویر قابل شناسایی است. در همین سن (تصویر بیست و دو) مقطع عرضی آمنیون قابل تشخیص است. البته در سن چهارده روزگی و در مقطع عرضی (تصویر بیست و پنج) تصویر بهتری از آمنیون دیده شد. در همین تصویر سر، چشم ها، گردن و تنه جنین قابل تفکیک است. عروق کوریوآلانتوئیس در سن چهارده روزگی (تصویر بیست و پنج) دیده می شود. این در حالی است که در مطالعات انجام شوده توسط Duce و همکاران در بررسی جنین بلدرچین به روش MRI نتایج نشان داده که آمنیون در روز پنجم انکوباسیون تخم، و جنین در روز سوم قابل مشاهده است (16).
منابع و مراجع
منابع و مراجعپوستی، ایرج و ادیب مرادی، مسعود. (1373) . بافت شناسی مقایسه ای هیستوتکنیک, انتشارات دانشگاه تهران.
ترکنژاد، احمد. (1379). ایران 1400 و ارزیابی چالش‏های غذایی جمعیت 110 میلیونی, نشریه بزرگمهر.
حمیدی، محمد سعید. (1380). مدیریت و اقتصاد پرورش شترمرغ در ایران, ناشر بین المللی شمس
دادرس، جبیب الله و منصوری، سید هادی. (1373). پرندگان، ساختار و فعالیت بدنی آنها. انتشارات دانشگاه شیراز.
ADDIN EN.REFLIST شریفی، علی. (1375). پرورش شترمرغ. کتابچه آموزشی اداری طیور بومی و سایر ماکیان., معاونت امور جهادسازندگی.
غفوری، علی، موسوی، مسعود. (1378). " مدیریت پرورش شترمرغ." انتشارات مرکز نشر سپر 1: 94-96.
قاضی، رضا ، رادمهر، بیژن ، رشیدی، هدایت الله. 1375.جنین شناسی حیوانات اهلی، مکانسم‏های رشد تکاملی و ناهنجاری ها. شیراز, انتشارات دانشگاه شیراز.
کیاست، محسن. (1379). "اهمیت غذایی یک ضرورت اجتناب ناپذیر." نشریه دامداران ایران 6: 38-47
مهدوی، مازیار. (1389). ام آر آی در یک نگاه (فشرده ای از تشدید مغناطیسی هسته ای و کار برد آن برای تکنولوژیست‏های رادیولوژی), آوند اندیشه شیراز.Franson, R. (1972). Anatomy and physiology of farm animal. Philadelphia, Lea & Febiger.Fraser, M. (2008). Avian embryology London, UK, Academic press.
Jon O. Cleary, M. M., Francesca C. Norris, Anthony N. Price, Sujatha A. Jayakody,, N. D. E. G. Juan Pedro Martinez-Barbera, David J. Hawkes, Roger J. Ordidge,, et al. (2011). "Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping." NeuroImage 54: 769–778.
Nagai, H., et al., (2011). "Embryonic Development of the Emu, Dromaius novaehollandiae." DEVELOPMENTAL DYNAMICS 240: 162–175.
Ruffins, S. W., M. Martin, et al. (2007). "Digital three-dimensional atlas of quail development using high-resolution MRI." ScientificWorldJournal 7: 592-604.
Sutton, D. (2003). A Textbook of Radiology and Imaging, Churchill Livingstone.
Suzanne Ducea, F. M., Monique Weltenc, Glenn Baggottd, Cheryll Tickleb and (2011). "Micro-magnetic resonance imaging study of live quail embryos during embryonic development." Magnetic Resonance Imaging 29 132–139.
Xiaojing Li, Jia Liu, et al. ( 2007). "Micro-magnetic resonance imaging of avian embryos." J Anat. 211(6): 798–809.

Abstract
This study aimed to investigate structural changes ostrich’s embryonated egg in the first half of embryonic period using MRI technique.
After primary assessment in choosing the type of MRI protocol, study began by 10 Canadian ostrich eggs.
In the present study we used 1.5 Tesla MRI device, similar studies done in chicken and quail eggs using 7 Tesla devices. This study carried on Kosar MRI Center in Imam Reza Hospital, Mashhad.

user8271

بی شک شناخت کافی از مرحله قبل از تشکیل هسته‌ها و نظریه ذرات بنیادی می‌تواند شناخت بهتری از هسته‌ها و تشکیل آن‌ها برای ما به همراه داشته باشد. با اطمینان می‌توان گفت ذرات بنیادی سنگ بنای تشکیل ساختارهای کوچک و بزرگ جهان می با شد. بهترین تئوری ذرات بنیادی که تاکنون شناخته شده است، مدل استاندارد است. بنا بر این مدل تمام مواد از سه نوع ذره بنیادی ساخته شده‌اند. کوارک ها، لپتون ها و واسطه‌ها.
این تعداد ذرات به اصطلاح بنیادی به صورتی نسبتاً سر راست، راه را به سمت ساختار داخلی نوکلئون ها، یعنی کوارک ها هموار کرد. همچنین مزون پایون و تمام هادرون های دیگر از کوارک ساخته شده‌اند. الکترون و نوترینو، نیروی قوی هسته‌ای را احساس نمی‌کنند و بنابراین هادرون نیستند. آن‌ها گروه مجزایی از ذرات به نام لپتون ها را تشکیل می‌دهند. نوترینو ها تنها در برهم کنش ضعیف شرکت می‌کنند، اما الکترون که بار نیز دارد می‌تواند برهم کنش الکترومغناطیسی را نیز حس کند. لپتون ها مانند کوارک ها مرکب نیستند و بنابراین مستقیماً به همراه کوارک ها به عنوان ذرات بنیادی نقطه‌ای در جدول (1-1) وارد شده‌اند.

جدول (1- SEQ جدول_(1- * ARABIC 1): اجزای بنیادی جهان و مشخصات آنCharge
(Q) Lepton
Number
(L) Baryon
Number
(B) Spin
(S) Name +2/3 0 1/3 1/2 u (up) -1/2 0 1/3 1/2 d(down) +2/3 0 1/3 1/2 s(strange) -1/2 0 1/3 1/2 c(charm) Quarks
+2/3 0 1/3 1/2 t(top) -1/2 0 1/3 1/2 b(bottom) -1 1 0 1/2 e(electron) 0 1 0 1/2 νe(e-noutrino) -1 1 0 1/2 μ(muon) 0 1 0 1/2 νμ(μ-noutrinoLeptons
-1 1 0 1/2 τ(tau) 0 1 0 1/2 ντ(τ-noutrino) 0 0 0 1 γ(photon) ±1,0 0 0 1 w±,z0(weak boson Gauge
boson
0 0 0 1 gi(i=1,…,8 gluons) تعداد شش لپتون وجود دارد که بر حسب بار الکتریکی و عدد لپتونی دسته بندی می‌شوند. همچنین شش آنتی لپتون وجود دارد که علامت آن‌ها بر عکس لپتون ها است.
بنا بر این مدل شش طعم کوارک با اسپین 12 وجود دارد. که بالا (u)، پایین (d)، شگفتی (s)، افسون (c)، زیبایی (b) و حقیقت (t) نام دارند که هر کدام دارای یک آنتی کوارک می‌باشند. ضمنا هر کدام از کوارک ها و آنتی کوارک ها دارای سه رنگ (آبی- قرمز- سبز) هستند.
و در نهایت هر بر هم کنشی واسطه مخصوص خود را دارد. چهار نیروی اصلی و بنیادی در طبیعت وجود دارد قوی، الکترومغناطیس، ضعیف و جاذبه. نیروی جاذبه در مدل استاندارد بررسی نمی‌شود. فوتون ها واسطه نیروهای الکترومغناطیس هستند و به همین دلیل به آن‌ها حاملان نیرو می‌گویند و چون فوتون ها ذراتی بدون جرم هستند، نیروهای الکترومغناطیسی برد بالایی دارند. بوزون های باردار+ w و w- و بوزون خنثی z واسطه نیروهای ضعیف هستند، به این بوزون ها حاملان بار ضعیف می‌گویند و به علت جرم زیاد ذرات واسطه، بر هم کنش ضعیف کوتاه برد است. گلئون ها که بدون جرم اند و از نظر بار الکتریکی خنثی هستند، واسطه نیروهای قوی هستند و به آن‌ها حاملان رنگ گفته می‌شود. بر هم کنش قوی نیز به علت بدون جرم بودن گلئون ها، برد بالایی دارند اما نسبت به بر هم کنش الکترومغناطیس برد محدودتری دارند.
centercenterفصل دوم
00فصل دوم

2- مدل‌های هسته‌ای2-1- مقدمهبرهمکنش متقابل میان نوکلئون ها هنگامی که برای تشکیل هسته‌های سنگین و متوسط متراکم می‌شوند، برای مدت طولانی مورد تجزیه و تحلیل قرار گرفته‌اند. مفهوم نیروی بین هسته‌ای و محاسبه خصوصیات هسته‌ای بسیار پیچیده است و برای شناخت هسته و خصوصیات آن، تنها راه ساده سازی، شبیه سازی و استفاده از مدل‌های هسته‌ای خاص و نیروهای هسته‌ای ساده شده است.
در هر هسته حالتی با کم‌ترین انرژی، حالت پایه نامیده می‌شود و حالت‌هایی با انرژی بالاتر را، حالت‌های برانگیخته می‌نامند. بسیاری از خصوصیات نیروهای هسته‌ای را می‌توان از بررسی هسته در حالت پایه بدست آورد، در برسی های دقیق‌تر ویژگی‌های معینی ظاهر می‌شوند. مدل‌های هسته‌ای برای توضیح این ویژگی‌ها توسعه داده شده‌اند. در غیاب یک تئوری دقیق تعدادی از مدل‌های هسته‌ای توسعه یافته‌اند. برای این کار فرضیات بسیاری برای ساده سازی روابط به کار رفته‌اند. هر مدل تنها قادر به توضیح بخشی از دانش تجربی ما راجع به هسته است.
در حالت کلی مدل‌های هسته‌ای به دو گروه تقسیم می‌شوند: مدل‌های ذره مستقل (IPM) که در آن نوکلئون ها به طور مستقل در یک پتانسیل هسته‌ای معمولی حرکت می‌کنند. گروه دیگر، مدل‌های برهم کنش قوی (SIM) که در آن نوکلئون ها به طور قوی با یکدیگر جفت شده‌اند. ساده‌ترین مدل برهم کنش قوی، مدل قطره مایع است و ساده‌ترین مدل ذره مستقل، مدل گاز فرمی است.
2-2- مدل قطره مایعی و فرمول نیمه تجربی جرمنظریه مفصل بستگی هسته‌ای، مبتنی بر روش‌های ریاضی و مفاهیم فیزیکی پیچیده، توسط بروکنر و همکارانش (از 1954 تا 1961) ابداع شده است. مدل بسیار ساده شده‌ای نیز در سال 1935 توسط وایس زکر با پیشنهاد بور بدست آمد. در این مدل از بعضی ویژگی‌های ظریف‌تر نیروهای هسته‌ای صرف نظر شده است، ولی بر جاذبه قوی بین نوکلئونی تاکید می‌کند. در این مدل فرض می‌شود که نوکلئون ها با همسایه‌های نزدیک خود فعل و انفعال متقابل دارند، درست همان گونه که مولکول‌ها در یک قطره آب با هم برهم کنش دارند [5,4,3].
فرض‌های اساسی به قرار زیرند:
1- هسته از ماده غیر قابل تراکم تشکیل شده است، به طوری که R∝A1/3.
2- نیروی هسته‌ای برای هر نوکلئون یکسان است و به نوع آن بستگی ندارد.
3- نیروی هسته‌ای اشباع می‌شود.
آثار کولومبی و مکانیک کوانتومی را به طور جداگانه بررسی می‌کنیم. طبق فرض‌های 2 و 3، در یک هسته نامتناهی با A نوکلئون، انرژی بستگی اصلی متناسب با A است. اما چون هسته‌های واقعی متناهی هستند، معمولاً یک شکل کروی برای آن در نظر می‌گیرند. از این رو نوکلئون های سطحی، به اندازه آنچه هم اکنون تخمین زدیم، تحت جاذبه یکسان از طرف دیگر نوکلئون ها قرار نمی‌گیرند و از این رو باید جمله‌ای متناسب با تعداد نوکلئون های سطحی یا متناسب با مساحت سطح را از تخمین مبتنی بر هسته‌ی نا متناهی، کم کرد. از طرفی نیروی دافعه کولومبی که بین تمام جفت پروتون‌ها برقرار است، از انرژی بستگی کم خواهد کرد. (نیروی کولومبی دارای برد زیاد است و اشباع نمی‌شود). علاوه بر این، جمله‌ای را باید معرفی کنیم که به هسته‌های با N=Z، بیشترین بستگی را نسبت دهد. این جمله، پیامد مستقیمی از رفتار مکانیک کوانتومی نوترون‌ها و پروتون‌ها می‌باشد. بالاخره، باید جملات تصحیحی لازمی را معرفی کنیم که بیشترین بستگی را برای هسته‌های زوج- زوج و کمترین بستگی را برای هسته‌های فرد- فرد به دست بدهند و آثار پوسته‌ای را منعکس کنند.
اهمیت این مدل در این حقیقت نهفته است که جنبه‌های علمی داده‌های جرم هسته‌ای را تبیین می‌کند. این امر تایید کننده آن است که جمله انرژی بستگی اصلی، که متناسب با A می‌باشد، باید تصحیح شود. چون این جمله در بین فرض‌های دیگر به فرض "استقلال از بار" نیروهای هسته‌ای بستگی دارد، می‌توان نتیجه گرفت که بر هم کنش‌های هسته‌ای n-n، p-p، p-n یکسان هستند.
انرژی بستگی، B، یک هسته عبارت است از اختلاف انرژی بین جرم هسته و جرم کل پروتون‌ها (Z پروتون) و نوترون‌های تشکیل دهنده آن (N نوترون) که به صورت زیر نوشته می‌شود.
(2- SEQ (2- * ARABIC 1)B={Zmp+Nmn-mX-Zme}رابطه انرژی بستگی کل یک هسته را می‌توان به صورت زیر نوشت.
(2- SEQ (2- * ARABIC 2)BA,Ztot=avA-asA23-acZZ-1A-13-aa(N-Z)2A-1±δ+ηکه در آن
avA جمله حجمی
asA23 جمله سطحی متناسب با مساحت سطح کره(4πr2).
±δ جمله انرژی زوجیت، که برای هسته‌های با A ی فرد برابر صفر است، برای هسته‌های (N زوج - Aزوج) علامت (+) و برای هسته‌های (N فرد – Aفرد) علامت (-) را به کار می‌بریم و ???? جمله پوسته‌ای، که اگر N یا Z یک عدد جادویی باشد مثبت است.
aa(N-Z)2A-1/3 جمله انرژی عدم تقارن و acZZ-1A-13 جمله انرژی کولنی هستند.
2-2-1- انرژی عدم تقارنجمله عدم تقارن نتیجه مستقیم رفتار کوانتوم مکانیکی پروتون‌ها و نوترون‌ها است و بیشترین بستگی را به هسته‌هایی با N=Z، بیشترین بستگی را نسبت می‌دهد.
طبق اصل طرد پائولی در هر طراز فقط یک نوکلئون می‌تواند وجود داشته باشد و فرض می‌کنیم ترازها در فاصله یکسان ∆ از هم قرار داشته باشند، انرژی عدم تقارن عبارت است از اختلاف بین انرژی هسته-ای یک هسته با اعداد نوترونی و پروتونی N و Z با انرژی ایزوباری که در آن اعداد نوترونی و پروتونی، هردو، مساوی A2 است. اگر بخواهیم هسته اول را از هسته دوم بسازیم باید v پروتون به نوترون تبدیل شود، یعنی
N=12A+v و Z=12A-v → v=12(N-Z) و انرژی لازم برای این کار v2∆ است. و با قرار دادن 1A به جای ∆، جمله انرژی عدم تقارن بدست می‌آید.
2-2-2- انرژی کولنیما در فرض‌های اولیه، دافعه کولنی بین پروتون‌ها را در نظر نگرفتیم، این نیرو دارای برد بلند است و اشباع نمی‌شود، برای محاسبه این نیرو، هسته را به صورت یک کره با بار Ze و شعاع R در نظر بگیریم، آنگاه انرژی کولنی با توجه به روابط زیر محاسبه می‌شود:
(2- SEQ (2- * ARABIC 3)Eکولنی=0ZeQ(r)rdQاز طرفی
(2- SEQ (2- * ARABIC 4)Qr=Ze(rR)3(2- SEQ (2- * ARABIC 5)dQ=3Zer2R3drبا جایگذاری دو عبارت بالا در عبارت اول داریم:
(2- SEQ (2- * ARABIC 6) Eکولنی=0R3(Ze)2rr5R6dr=35(Ze)2Rعبارت بالا شامل یک جمله خود انرژی 3e25R برای هر پروتون است (که با قرار دادن Z=1 پیدا می‌شود)، که اضافه محاسبه شده است، و باید این جمله برای Z پروتون از جمله بالا کسر گردد.
(2- SEQ (2- * ARABIC 7): Ec=35Z(Z-1)e2A13نمودار انرژی بستگی هسته‌ها بر حسب داده‌های تجربی و فرمول نیمه تجربی جرم در شکل‌های .(2-1) و (2-2) نشان داده شده است.

شکل(2- SEQ شکل(2- * ARABIC 1): انرژی بستگی هسته‌ها که به صورت تجربی به دست آمده‌اند.
شکل(2- SEQ شکل(2- * ARABIC 2): انرژی بستگی هسته‌ها براساس فرمول نیمه تجربی جرمهر چند که مدل قطره مایعی را بیشتر بر حالت‌های پایه اعمال می‌کنند، ولی می‌توان آن را برای حالت‌های برانگیخته نیز به کار برد. این حالت‌ها می‌توانند توسط نوسان‌های سطحی قطره‌ی هسته، یا توسط چین و شکن‌هایی که بر روی سطح آن حرکت می‌کنند، ایجاد شوند. این عقیده مخصوصاً در توجیه بعضی از جنبه‌های شکافت هسته‌ای موفق بوده است. مدل قطره مایعی بر آثار جمعی بین نوکلئون های متعدد موجود در هسته نیز تایید دارد و پیشقراول مدل‌های جمعی ساختار هسته‌ای است. آنچه در این مدل صراحت دارد تقسیم سریع انرژی بین نوکلئون هاست که مبنای نظری بوهر را در مورد شکل بندی هسته مرکب در واکنش‌های هسته‌ای تشکیل می‌دهد [6].
2-3- مدل پوسته‌ای هسته2-3-1- مقدمهنظریه اتمی با استفاده از مدل پوسته‌ای توانسته است به طور کاملاً روشن جزئیات پیچیده ساختار اتم‌ها را توضیح دهد. به همین دلیل متخصصان فیزیک هسته‌ای، به امید آنکه بتوانند به توصیف روشنی از خواص هسته‌ها دست یابند، سعی کردند در بررسی ساختار هسته‌ای از نظریه مشابهی استفاده کنند. در مدل پوسته‌ای اتم‌ها، پوسته‌ها را با الکترون‌هایی که انرژی‌شان به ترتیب افزایش می‌یابد پر می‌کنیم، و این آرایش الکترونی به گونه‌ای است که اصل طرد پائولی در آن رعایت می‌شود. بدین ترتیب، هر اتم متشکل است از: یک ناحیه مرکزی خنثی که پوسته‌های پر دارد، و چند الکترون ظرفیت که در پوسته‌ای خارج از این ناحیه مرکزی قرار می‌گیرند. در این مدل، فرض بر این است که عمدتاً همین الکترون‌های ظرفیت هستند که خواص اتم‌ها را تعیین می‌کنند. هنگامی که پیش بینی‌های این مدل را با بعضی از خواص اندازه گیری شده سیستم‌های اتمی مقایسه می‌کنیم، آن‌ها را به خوبی یا هم سازگار می‌یابیم. بویژه مشاهده می‌کنیم که تغییرات خواص اتمی در محدوده هر زیر پوسته تدریجی و کم است، در حالی که وقتی از یک زیر پوسته به زیر پوسته دیگر می‌رویم تغییرات خواص ناگهانی و زیاد است.
هنگامی که سعی می‌کنیم تا این مدل را به قلمرو هسته‌ای هم گسترش دهیم، از همان آغاز کار با چند مانع روبرو می‌شویم. در مورد اتم‌ها، پتانسیل حاکم را میدان کولنی هسته تأمین می‌کند. یعنی یک عامل خارجی زیر پوسته‌ها (یا مدارها) را سازمان می‌دهد. اما در مورد هسته هیچ عامل خارجی وجود ندارد، و نوکلئون ها در پتانسیلی که خودشان به وجود می‌آورند در حرکت اند. یکی دیگر از جنبه‌های جالب توجه نظریه پوسته‌ای اتم‌ها وجود مدارهای فضایی است. خواص اتم‌ها را اغلب بر حسب مدارهای فضایی الکترون‌ها توصیف می‌کنیم. الکترون‌ها می‌توانند نسبتاً آزادانه در این مدارها حرکت کنند، بدون اینکه برخوردی با الکترون‌های دیگر داشته باشند. قطر نوکلئون ها در مقایسه با اندازه هسته نسبتاً بزرگ است. در حالی که هر نوکلئون منفرد در خلال حرکتش در هر مدار می‌تواند برخوردهای متعددی با نوکلئون های دیگر داشته باشد، چگونه می‌توان نوکلئون ها را در مدارهای کاملاً مشخص در حرکت تصور کرد. در مدل پوسته‌ای، مسئله پتانسیل هسته‌ای را با بیان این فرض بنیادی حل می‌کنیم: حرکت هر نوکلئون منفرد را تحت تأثیر پتانسیل واحدی که نوکلئون های دیگر همه در تولید آن شرکت دارند، در نظر می‌گیریم. اگر هر یک از نوکلئون ها را به این نحو مورد بررسی قرار دهیم، آنگاه برای تمامی نوکلئون های موجود در هسته می‌توانیم ترازهای انرژی متناظر به زیر پوسته‌ها را به دست آوریم. وجود مدارهای فضایی مشخص را اصل طرد پائولی تعیین می‌کند. فرض می‌کنیم که در یک هسته سنگین، تقریباً در ته چاه پتانسیل، برخوردی بین دو نوکلئون صورت می‌گیرد و نوکلئون ها هنگام برخورد با هم انرژی تولید می‌کنند، اما اگر تمامی ترازهای انرژی تا تراز نوکلئون های ظرفیت پر شده باشد، هیچ راهی برای کسب انرژی نوکلئون نمی‌ماند؛ مگر آنکه مقدار انرژی به اندازه‌ای باشد که نوکلئون را به تراز ظرفیت برساند. سایر ترازهای نزدیک‌تر به تراز اولیه نوکلئون همگی پر هستند و نمی‌توانند یک نوکلئون اضافی را بپذیرند. انرژی لازم برای این انتقال که از ترازی نزدیک به تراز پایه به نوار ظرفیت انجام می‌شود، بیشتر از مقداری است که معمولاً در برخورد بین دو نوکلئون از یکی از آن‌ها به دیگری منتقل می‌شود. از این رو، چنین برخوردی بین نوکلئون ها نمی‌تواند صورت گیرد، و گویی نوکلئون ها در حرکت مداری شان با هیچ گونه ممانعتی از طرف نوکلئون های درون هسته روبرو نمی‌شوند [7].

2-3-2- پتانسیل مدل پوسته‌اینخستین گام در ارائه مدل پوسته‌ای، انتخاب پتانسیل هسته‌ای مناسب است. در آغاز دو نوع پتانسیل چاه نا متناهی و نوسانگر هماهنگ را در نظر می‌گیریم. همچنانکه در فیزیک اتمی دیدیم، واگنی هر تراز را تعداد نوکلئون هایی که می‌توانند در آن قرار بگیرند تعیین می‌کند. به عبارت دیگر، واگنی هر تراز برابر 2(l+1) می‌شود که در آن عامل (l+1) از طریق واگنی ml و عامل 2 از طریق واگنی ms حاصل شده است. نوترون‌ها و پروتون‌ها، چون ذرات نایکسان هستند، به طور جداگانه شمرده می‌شوند. بنابراین در تراز 1s علاوه بر 2 نوترون، 2 پروتون هم می‌تواند قرار گیرد. ظهور اعداد جادویی 2، 8 و 20 در هر دو نوع پتانسیل دل گرم کننده است، ولی در ترازهای انرژی بالاتر هیچ گونه ارتباطی با اعداد جادویی تجربی به چشم نمی خورد. به عنوان اولین گام در اصلاح مدل، سعی می‌کنیم پتانسیل واقع بینانه تری را انتخاب کنیم. چاه نا متناهی، بنابر دلایلی، تقریب خوبی برای پتانسیل هسته‌ای نیست: برای جدا کردن یک نوترون یا پروتون از هسته، با صرف انرژی کافی باید بتوانیم آن را از چاه خارج کنیم.دراین صورت،عمق چاه نمی نواند بی نهایت باشد. بعلاوه،لبه پتانسیل هسته‌ای نباید تیز باشد بلکه مثل توزیع بار و جرم هسته‌ای، مقدار پتانسیل بعد از شعاع میانگین، R، باید به آهستگی به سوی صفر میل کند. از طرف دیگر، پتانسیل نوسانگر هماهنگ هم لبه اش به اندازه کافی تیز نیست و انرژی جدایی آن نیز بی نهایت می‌شود. از این رو شکل واقع بینانه تر پتانسیل را به صورت بینابینی
(2- SEQ (2- * ARABIC 8)Vr=-V01+exp⁡[(r-R)a]انتخاب می‌کنیم که منحنی نمایش آن در شکل (2- SEQ شکل(2- * ARABIC 3):رسم شده است. پارامترهای R و a به ترتیب شعاع میانگین و ضخامت پوسته هستند، که مقادیرشان تقریباً برابر است با: R=1.25A13fm و a=0.524fm. عمق چاه V0چنان تنظیم می‌شود که برای انرژی‌های جدایی که از مرتبه 50Mev است، مقادیر مناسبی به دست می‌آید. ترازهای انرژی حاصل در شکل (2-4) نشان داده شده است. نتیجه پتانسیل جدید، در مقایسه با نوسانگر هماهنگ این است که واگنی l را در پوسته‌های جدید برطرف می‌کند. هر چه به طرف انرژی‌های بالاتر پیش می‌رویم، فاصله ایجاد شده در این مورد بیشتر می‌شود، به طوری که سرانجام این فاصله بن فاصله بین ترازهای نوسانگر هماهنگ قابل مقایسه خواهد شد. وقتی پوسته‌های حاصل را به ترتیب با 2(l+1) نوکلئون پر می‌کنیم، باز هم اعداد جادویی 2، 8 و 20 را به دست می‌آوریم، ولی اعداد جادویی بالاتر را نمی‌توان با این محاسبات پیدا کرد.

شکل(2- SEQ شکل(2- * ARABIC 4): پتانسیل هسته‌ای بین نوکلئون های هسته به همراه پتانسیل کولنی.2-3-3- پتانسیل اسپین- مداراین پتانسیل را چگونه می‌توانیم اصلاح کنیم تا همه اعداد جادویی را از آن بدست آوریم؟ چون نمی- خواهیم محتوای فیزیکی این مدل را از بین ببریم، مسلماً نمی‌توانیم تغییر زیادی در پتانسیل وارد کنیم. دلایل توجیهی معادله (2- SEQ (2- * ARABIC 9) را به عنوان یک حدس خوب پتانسیل هسته‌ای قبلاً ارائه کردیم. بنابراین، برای بهبود محاسبات لازم است که جمله‌های مختلفی به معادله (2- SEQ (2- * ARABIC 10) افزوده شود. در دهه 1940 تلاش‌های نافرجام زیادی برای یافتن این جمله تصحیحی صورت گرفت و سرانجام مایر، هاکسل، سوئس و جنسن در سال 1949 موفق شدند که با افزودن یک پتانسیل اسپین- مدار فاصله‌های مناسبی بین زیر پوسته‌ها به دست آورند [9,8].
در اینجا بار دیگر به فیزیک اتمی روی می‌آوریم، یکی دیگر از مفاهیم آن را به کار می‌گیریم. برهم کنش اسپین- مدار در فیزیک اتمی که مولد ساختار ریز مشاهده شده در خطوط طیفی است، از برهم کنش الکترومغناطیسی بین گشتاور مغناطیسی الکترون و میدان مغناطیسی ناشی از حرکت الکترون به دور هسته حاصل می‌شود. اثر این برهم کنش نوعاً خیلی کوچک و شاید از مرتبه یک قسمت از 105 قسمت فاصله بین ترازهای اتمی است.
هیچ برهم کنش الکترومغناطیسی از این نوع نخواهد توانست تغییرات محسوسی را در فواصل تراز هسته‌ای ایجاد و اعداد جادویی را باز تولید کند. با وجود این، در اینجا مفهوم نیروی اسپین- مدار هسته‌ای را به همان صورت نیروی اسپین- مدار اتمی، ولی نه از نوع الکترومغناطیسی آن، در نظر می‌گیریم. در واقع، به توجه به آزمایش‌های پراکندگی شواهدی قوی در دست است که حاکی از وجود نیروی اسپین- مدار در برهم کنش نوکلئون- نوکلئون است.
برهم کنش اسپین مدار را به صورت Vsorl∙s در نظر می‌گیریم، ولی شکل Vsor خیلی مهم نیست. این عامل l∙s است که باعث تجدید سازمان ترازها می‌شود. همچنان که در فیزیک اتمی دیدیم، حالت‌ها را در حظور برهم کنش اسپین- مدار بایر با تکانه زاویه‌ای کل j=l+s نشانه گذاری می‌کنیم. عدد کوانتومی اسپین هر نوکلئون برابر s=12 است، پس مقادیر ممکن برای عدد کوانتومی تکانه زاویه‌ای کل عبارت اند از j=l+12 و j=l-12 ( البته به استثنای مورد l=0 که در آن فقط مقدار j=12 مجاز است). مقدار انتظاری l∙s را با استفاده از یک شگرد متداول می‌توان محاسبه کرد. نخست مقدار j2=(l+s)2 را به دست می‌آوریم.
(2- SEQ (2- * ARABIC 11)j2=l2+2l∙s+s2(2- SEQ (2- * ARABIC 12)l∙s=12(j2-l2-s2)با قرار دادن مقادیر انتظاری در این معادله، رابطه زیر حاصل می‌شود.
(2- SEQ (2- * ARABIC 13)l∙s=12[jj+1-ll+1-ss+1]اکنون تراز 1f (l=3) را که دارای واگنی 2(l+1)=14 است را در نظر می‌گیریم. مقادیر ممکی برای j در این تراز عبارتند از l∓12=52, 72 بنابراین، ترازهای مورد نظر به صورت 1f52 و 1f72 خواهند بود. واگنی هر تراز برابر (2j+1) است که از مقادیر mj حاصل می‌شود. ( در حضور برهم کنش اسپین- مدار، ms و ml دیگر اعداد کوانتومی «خوب» به حساب نمی آیند و نمی‌توان آن‌ها را برای نمایاندن حالت‌ها یا شمردن وگنی ها به کار برد.) در این صورت، ظرفیت نوکلئونی تراز 1f52 برابر 6 و ظرفیت 1f72 برابر 8 می‌شود که از جمع آن‌ها مجددا 14 حالت به دست می‌آید ( تعداد حالت‌های ممکن باید حفظ شود، فقط نحوه دسته بندی آن‌ها را تغییر داده ایم ). فاصله انرژی بین حالت‌های 1f52 و 1f72 که زوج اسپین مدار یا دوتایه نامیده می‌شوند، متناسب با مقدار l∙s است. در واقع می‌توان اختلاف انرژی هر زوج حالتی را که در آن l>0 باشد را محاسبه کرد.
(2- SEQ (2- * ARABIC 14)l∙sj=l+12-l∙sj=l-12=12(2l+1)شکافتگی (یا فاصله) انرژی بین حالت‌ها با افزایش j افزایش می‌یابد. حال اگر اثر Vsor را به صورت منفی در نظر بگیریم، عضوی از زوج، که مقدار j در آن بزرگتر است در سطح پایین‌تر قرار خواهد گرفت. اثر این شکافتگی در نمودار شکل (4-2) نشان داده شده است. در اینجا، تراز 1f72 در فاصله (یا گاف) بین پوسته‌های دوم و سوم قرار می‌گیرد. ظرفیت این تراز برابر 8 نوکلئون است، بدین سان عدد جادویی 28 از آرایش جدید حاصل خواهد شد. شکافتگی های d و p به اندازه‌ای نیستند که تغییرات مهمی در دسته بندی ترازها به وجود آورند.) اثر مهم بعدی ناشی از جمله تصحیحی اسپین- مدار را در تراز 1g می‌بینیم. حالت 1g9/2 آنقدر به پایین رانده می‌شود که در پوسته اصلی پایین‌تر قرار می‌گیرد، و وقتی ظرفیت 10 نوکلئونی آن به پوسته 40 نوکلئونی قبلی افزوده می‌شود، عدد جادویی 50 به دست می‌آید. این اثر روی پوسته‌های اصلی دیگر نیز تکرار می‌شود. در هر یک از این موارد، عضو کم انرژی تر زوج اسپین- مدار از پوسته بعدی به پوسته قبلی تنزل می‌کند، و بدین ترتیب باقیمانده اعداد جادویی هم طبق انتظار به دست می‌آید.
مدل پوسته‌ای با وجود سادگی‌اش، در توضیح اسپین و پاریته حالت پایه تقریباً تمام هسته‌ها موفق بوده است، و آن‌ها را به خوبی باز تولید می‌کند. برای گشتاورهای دوقطبی مغناطیسی و چهار قطبی الکتریکی آن‌ها نیز توضیحی نسبتاً موفق (و رضایت بخش) به دست می‌دهد. کاربرد خاصی از مدل پوسته‌ای را که در اینجا در نظر گرفتیم، مدل ذره‌ای خیلی مستقل می‌گویند. فرضیه اساسی مدل ذره‌ی خیلی مستقل این است که به استثنای یکی از نوکلئون ها، بقیه نوکلئون های موجود در هسته تزویج شده‌اند و خواص هسته از همین نوکلئون تزویج نشده منفرد ناشی می‌شود. روشن است که چنین برخوردی مسئله را بیش از حد ساده می‌کند، و بهتر است که در تقریب بعدی تمام ذرات موجود در زیر پوسته پر نشده را در نظر بگیریم [7].
32258005924179c0c
22771105925449b0b
14839955914126a0a

شکل(2- SEQ شکل(2- * ARABIC 5): ترازهای انرژی هسته‌ها. (a با در نظرگرفتن پتانسیل نوسانگر هماهنگ ساده . (b با در نظر گرفتن چاه پتانسیل با لبه‌های گرد شده. (c چاه پتانسیل با لبه گرد شده همراه با برهم کنش اسپین- مدار.
centercenterفصل سوم
00فصل سوم

3- فرایند تبدیل داخلی3-1- خواص دینامیک هسته‌هاهمان طوریکه اتم‌ها جدول مندلیف را با نظم خاصی پر می‌کنند و می‌توانند حالت‌های برانگیخته داشته باشند، پیش بینی می‌شد که هسته‌ها هم بتوانند دارای ترازهای انرژی و حالت‌های برانگیخته باشند. با این تفاوت که هسته‌ها در هنگام گذار از حالت‌های برانگیخته به حالت پایه پرتوهای گاما تابش می‌کنند. از طرفی هسته‌ها می‌توانند با گسیل ذرات آلفا و بتا یا از طریق بمباران و یا سایر واکنش‌های هسته‌ای به یکدیگر تبدیل شوند. خواص دینامیک هسته‌ها را می‌توان با گذار از یک حالت اولیه به حالت نهایی مشخص کرد.
با مطالعه گسیل گاما و فرایند رقیب آن یعنی تبدیل داخلی، تعیین اسپین و پاریته حالات برانگیخته امکان پذیر می‌شود. یک هسته برانگیخته همواره می‌تواند با گسیل تابش الکترومغناطیسی یا تبدیل داخلی به حالت‌های کم انرژی تر واپاشی کند. از طرفی هسته‌ها می‌توانند با گسیل ذرات α و β، یا از طریق بمباران و یا سایر واکنش‌های هسته‌ای به یک دیگر تبدیل شوند. در تمام برهم کنش‌های بالا، اصول پایستگی انرژی، اندازه حرکت خطی، اندازه حرکت زاویه‌ای، بار الکتریکی و تعداد نوکلئون ها برقرار است. اصول پایستگی فوق توانسته است در کشف مجهولات به دانشمندان کمک شایانی کند. مانند کشف نوترینو که وجود آن به کمک پایستگی انرژی و اندازه حرکت خطی پیش بینی و در آزمایشگاه تایید شد.

3-1-1- واپاشی آلفاییتا کنون بیش از 1000 هسته تولید شده و در آزمایشگاه مورد مطالعه قرار گرفته است. هر چند فقط کمتر از 300 تا از این هسته‌ها پایدارند و بقیه آن‌ها رادیواکتیو هستند. هسته‌های پایدار فقط در یک باند بسیار کوچک در نمودار N-Z اتفاق می‌افتد.
ذرات آلفا به عنوان کم نفوذترین تابش‌هایی که از مواد طبیعی گسیل می‌شود، شناسایی شده‌اند.
در سال 1909 رادرفورد نشان داد همانطور که حدس زده می‌شد، ذرات آلفا واقعاً از هسته‌های هلیم تشکیل شده‌اند. تعداد زیادی از هسته‌های سنگین، مخصوصاً هسته‌های مربوط به سری‌های رادیواکتیو طبیعی با گسیل آلفا واپاشی می‌کنند. گسیل هر نوع نوکلئون دیگر در فرایند واپاشی رادیواکتیو خود به خود به ندرت اتفاق می‌افتد. به عنوان مثال گسیل دوتریوم در فرایند واپاشی های طبیعی ملاحظه نشده است. بنابراین باید دلیل خاصی برای انتخاب گسیل آلفا نسبت به سایر مدهای واپاشی وجود داشته باشد. واپاشی آلفایی در هسته‌های سنگین به طور فزاینده‌ای اهمیت پیدا می‌کند، زیرا آهنگ افزایش نیروی دافعه کولنی که به صورت تابعی از z2 افزایش می‌یابد از نیروی بستگی هسته که تقریباً متناسب با A افزایش می‌یابد بیشتر است.
ذره آلفا به دلیل ساختار بسیار پایدار و نسبتاً مقیدش، در مقایسه با اجزای تشکیل دهنده‌اش، جرم نسبتاً کمی دارد. بنابراین در مواردی که امیدواریم محصولات فروپاشی تا جایی که امکان دارد سبک و انرژی آزاد شده حداکثر مقدار را داشته باشد، باید گسیل این ذره را انتظار داشته باشیم. اغلب هسته‌های با A>190 (و بسیاری از هسته‌ها با 150<A<190) از لحاظ انرژی در برابر گسیل آلفا ناپایدارند ولی فقط نیمی از آن‌ها بقیه شرایط را نیز دارا هستند [10].
3-1-2- واپاشی بتازاواپاشی بتا متداول‌ترین نوع واپاشی پرتوزا است. در هسته‌های سبک‌تر احتمال واپاشی α بسیار کم است. این هسته‌ها برای رسیدن به پایداری یک یا چند شکل از واپاشی بتا را متحمل می‌شوند. گسیل الکترون‌های منفی معمولی از هسته، یکی از اولین پدیده‌های واپاشی رادیواکتیوی بود که مشاهده شد. فرایند معکوس گیراندازی الکترون مداری توسط هسته، تا سال 1938 مشاهده نشده بود در این سال آلوارز پرتوهای x مشخصه گسیل شده در اثر پر شدن جای خالی الکترون‌های گیراندازی شده را آشکارسازی کرد. در سال 1934 ژولیو- کوری برای اولین بار فرایند گسیل الکترون مثبت (پوزیترون) در فرایند رادیواکتیو را، دو سال پس از کشف پوزیترون در پرتوهای کیهانی، مشاهده کردند. سه فرایند فوق ارتباط نردیک با هم دارند و تحت عنوان مشترک واپاشی بتازا رده بندی می‌شوند [11].
3-1-3- واپاشی گامابیشتر واپاشی های آلفازا و بتازا، و در حقیقت بیشتر واکنش‌های هسته‌ای، هسته نهایی را در حالت برانگیخته باقی می‌گذارند. این حالات برانگیخته با گسیل یکی دو پرتو گاما که همان فوتون های تابش الکترومغناطیس مانند پرتوهای x یا نور مرئی هستند، به سرعت به حالت پایه واپاشیده می‌شوند. انرژی پرتوهای گاما در گسترهMev 0.1 تاMev 10 هستند. محدوده طول موج آن‌ها بین 104 تا fm 100 است. واپاشی گامازا علاوه بر اینکه تایید کننده مدل لایه‌ای برای هسته‌ها است، اطلاعات خوبی از ساختار هسته و طیف‌های انرژی آن نیز در اختیار ما قرار می‌دهد. این پرتوها به دلیل قدرت نفوذ بالا و جذب و پراکندگی ناچیز در هوا به خوبی قابل آشکارسازی هستند. انرژی پرتوهای گاما با دقت زیادی قابل اندازه گیری هستند. به علاوه مطالعه گسیل گاما و فرایند رقیب آن یعنی تبدیل داخلی، تعیین اسپین و پاریته حالات برانگیخته را امکان پذیر می‌سازد [12].
3-1-4- تبدیل داخلیفرایند تبدیل داخلی یک فرایند الکترومغناطیسی است که با گسیل γ رقابت می‌کند. در این مورد، میدان‌های چند قطبی الکترومغناطیسی هسته سبب گسیل فوتون نمی‌شوند، بلکه برهم کنش میدان‌ها با الکترون‌های اتمی باعث گسیل یکی از الکترون‌های اتم می‌شود (در این حالت هسته با الکترون از طریق فوتون های مجازی بجای فوتون های واقعی برهم کنش دارد). بر خلاف واپاشی بتازا، الکترون در فرایند واپاشی خلق نمی‌شود، بلکه الکترونی است که از قبل در یکی از مدارهای اتم وجود داشته است. به این دلیل، آهنگ واپاشی تبدیل داخلی با تغییر محیط شیمیایی و در نتیجه تغییر مدارهای اتمی می‌تواند اندکی تغییر کند. اما باید توجه کرد که این فرایند دو مرحله‌ای نیست که در آن ابتدا فوتون توسط هسته گسیل شود و سپس الکترون اتمی را با فرایندی مشابه پدیده فوتوالکتریک بیرون براند، احتمال چنین فرایندی بسیار ناچیز است.
در این حالت انرژی هسته‌ای ∆E=Ei-Ef به یک الکترون اتمی منتقل می‌شود و آنرا با انرژی جنبشی:
(3- SEQ (3- * ARABIC 1)Te=Ei-Ef-Bnبیرون می‌اندازد، که در آن Bn انرژی بستگی الکترون در لایه اتمی است که الکترون از آن بیرون انداخته شده است. به علت اینکه انرژی بستگی الکترون از مداری به مدار دیگر فرق می‌کند، حتی برای یک گذار معین ∆E هم الکترون‌های تبدیل داخلی دارای انرژی‌های متفاوتی خواهند بود. بدین سان، طیف الکترون چشمه ای که یک گامای منفرد گسیل می‌کند از مولفه های مختلف تشکیل شده است؛ و این مولفه ها بر خلاف الکترون‌هایی که در واپاشی بتازا گسیل می‌شوند انرژی‌های گسسته ای دارند. بیشتر چشمه های رادیواکتیو، هم الکترون‌های واپاشی بتازا و هم الکترون‌های تبدیل داخلی گسیل می‌کنند، و جدا کردن قله های ناپیوسته الکترون‌های تبدیل داخلی که روی طیف پیوسته β قرار دارند کار نسبتاً آسانی است. شکل (3-1).

شکل(3- SEQ شکل(3- * ARABIC 1): نمونه‌ای از طیف الکترون که ممکن است از یک چشمه رادیواکتیو گسیل شود. چند قله ناپیوسته تبدیل داخلی روی زمینه ناپیوسته واپاشی بتازا قرار دارند.طبق معادله (3- SEQ (3- * ARABIC 2) ، فرایند تبدیل داخلی انرژی آستانه‌ای برابر انرژی بستگی در یک مدار خاص دارد؛ در نتیجه الکترون‌های تبدیل با توجه به پوسته الکترونی که از آن سرچشمه گرفته‌اند با K و L و M و ... مشخص می‌شوند که متناظر با اعداد کوانتومی اصلی n=1,2,3,… هستند. بعلاوه اگر توان تفکیک بسیار زیاد باشد، حتی زیر ساختارهای متناظر با تک تک الکترون‌های هر پوسته را ملاحظه خواهیم کرد. برای مثال پوسته L (n=2 ) دارای اربیتال های اتمی 2s1/2، 2p1/2 و 2p3/2 است؛ الکترون‌های ناشی از این پوسته‌ها به ترتیب الکترون‌های تبدیل LI، LII و LIII نامیده می‌شوند.
پس از فرایند تبدیل، جای الکترون گسیل شده در یکی از پوسته‌های اتم خالی می‌ماند که آن را تهیجا می‌گویند. این تهیجا به سرعت توسط الکترون‌های پوسته‌های بالاتر پر می‌شود، و در نتیجه گسیل پرتوx مشخصه را نیز همراه الکترون‌های تبدیل داخلی مشاهده می‌کنیم.
شکل (3-2)، طیف الکترون 203Hg را نشان می‌دهد. در این شکل طیف پیوسته β و خطوط الکترونی، در انرژی‌های محاسبه شده، قابل مشاهده‌اند.
یکی از نکاتی که در این شکل کاملاً مشهود است، شدت متغیر الکترون‌های تبدیل در واپاشی است. این تغییرات به خصوصیت چند قطبی میدان تابش بستگی دارد؛ در حقیقت اندازه گیری احتمالات نسبی گسیل الکترون تبدیلی یکی از راه‌های اصلی تعیین مشخصات چند قطبی است.
در بعضی موارد، تبدیل داخلی بر تابش گاما ارجحیت دارد؛ در بقیه موارد ممکن است در مقایسه با گسیل گاما کاملا˝ ناچیز باشد. به عنوان یک قانون کلی، در محاسبه احتمال واپاشی گاما باید تصحیح تبدیل داخلی انجام شود. یعنی اگر نیمه عمر (t12∝1λ) یک تراز خاص را بدانیم، احتمال واپاشی کل λt ( برابر0.693t12 ) دارای دو مولفه است، یکی (λγ) ناشی از گسیل گاما و دیگری (λe) ناشی از تبدیل داخلی
(3- SEQ (3- * ARABIC 3)λt=λe+(λγ)واپاشی تراز از طریق فرایند ترکیبی (گسیل گاما و تبدیل داخلی) خیلی سریع‌تر از گسیل گاما به تنهایی خواهد بود. ضریب تبدیل داخلی α را به صورت زیر تعریف می‌کنیم:
(3- SEQ (3- * ARABIC 4)α=λeλγضریب تبدیل داخلی α، احتمال گسیل الکترون را نسبت به گسیل گاما نشان می‌دهد، که بزرگی آن از مقادیر بسیار کوچک (تقریباً صفر) تا مقادیر بسیار بزرگ تغییر می‌کند. بدین ترتیب، احتمال کلی واپاشی به صورت زیر است
(3- SEQ (3- * ARABIC 5)λt=λγ(1+α)
شکل(3- SEQ شکل(3- * ARABIC 2): طیف الکترون حاصل از واپاشی 203Hg در تصویر بالا، طیف پیوسته بتا همراه با خطوط تبدیل K، L و M تفکیک نشده قابل مشاهده است. در تصویر میانی طیف تبدیل با تفکیک بیشتر نشان داده شده است؛ خطوط L و M به خوبی جدا شده اند و حتی L III نیز تفکیک شده است. در تفکیک خیلی بهتر شکل پایینی، خطوط LI وLII به خوبی از هم جدا شده‌اند.اگر α را ضریب تبدیل داخلی کل بدانیم، آنگاه می‌توانیم ضریب‌های جزئی مربوط به پوسته‌های اتمی مختلف را به صورت زیر در نظر می‌گیریم:
(3- SEQ (3- * ARABIC 6)λt=λγ(1+αK+αL+αM+…)و در نتیجه
(3- SEQ (3- * ARABIC 7)α=αK+αL+αM+…که با در نظر گرفتن زیر پوسته‌ها، می‌توانیم آن را به صورت زیر بنویسیم:
(3- SEQ (3- * ARABIC 8)αL=αLI+αLII+αLIIIو برای سایر پوسته‌ها هم می‌توانیم روابط مشابهی را بنویسیم.
اهمیت تبدیل داخلی در مطالعات مربوط به ساختار هسته در این واقعیت نهفته است که به ازای یک اختلاف انرژی مفروض Ei-Ef و عدد اتمی Z هسته واپاشنده، ضریب تبدیل محسوسا˝ به نوع و مرتبه قطبیت گذار الکترومغناطیسی متناظر بستگی دارد [14,13].
3-2- محاسبه ضریب تبدیل داخلیهمانطور که گفته شد فرایند تبدیل داخلی یک فرایند الکترومغناطیسی است که در آن هسته با بیرون انداختن یک الکترون اتمی به جای گسیل گاما از حالت برانگیخته خارج می‌شود. الکترون‌هایی را که به این صورت بیرون انداخته شده را الکترون‌های تبدیل می‌نامند. ضریب تبدیل داخلی به عدد اتمی هسته ، انرژی و خصوصیات چند قطبی بودن گذار بستگی دارد. بنابراین مطالعه ما کمک بزرگی در بررسی سطوح انرژی هسته است.
در اینجا یکی از ساده‌ترین موارد را بررسی می‌کنیم. فرض می‌کنیم هسته در یک حالت برانگیخته است که می‌تواند با گسیل تابش E1 به حالت پایه برود. هسته را می‌توان با یک دوقطبی الکتریکی با فرکانس ω مقایسه کرد. حضور این دوقطبی ممکن است باعث القای گذارهایی از حالت پایه اتم به حالت برانگیخته شود. به طور خاص، الکترون‌های K، که در حالت 1S هستند، می‌توانند با تابش دو قطبی به حالت p بروند. برای محاسبه احتمال این گذار از قانون طلایی فرمی استفاده می‌کنیم.
احتمال این گذار طبق قانون دوم فرمی به صورت زیر است:
(3- SEQ (3- * ARABIC 9)w=2πℏMif2ρ(Ef)می‌خواهیم المان‌های ماتریسی Mif و چگالی حالت‌های نهایی قابل دسترس ρ(Ef) را محاسبه کنیم.
تابع موج اولیه الکترون در حالت 1s.
(3- SEQ (3- * ARABIC 10)ᴪi(r,t)=ui(r)exp⁡(-iEiℏt)و ویژه تابع حالت نهایی الکترون به صورت زیر است:
(3- SEQ (3- * ARABIC 11)ᴪf(r,t)=uf(r)⁡exp(-iEfℏt)گذار از حالت اولیه به حالت نهایی توسط میدان الکتریکی هسته القا می‌شود، که به وسیله ممان دوقطبی الکتریکی P که در راستای محور z و با فرکانس ω با زمان تغییر می‌کند توصیف می‌شود. پتانسیل الکتریکی این دو قطبی به صورت زیر است:
(3- SEQ (3- * ARABIC 12)Vr,t=p0cosθr2cos ωt=p0cosθr212(eiωt+e-iωt)در اینجا θ زاویه بین r و محور z است. المان‌های ماتریسی گذارهای القا شده به این صورت است:
(3- SEQ (3- * ARABIC 13)Mif=eᴪf*(r,t)Vᴪi(r,t)dτMif دارای بزرگی قابل توجهی است، فقط اگر
(3- SEQ (3- * ARABIC 14)Ei-EF=ℏω(3- SEQ (3- * ARABIC 15)uf=Ncos θkr12j32(kr)و برای kr بزرگ
(3- SEQ (3- * ARABIC 16)uf=-N cosθ2πk2r212coskrبا در نظر گرفتن سیستم در یک کره بسیار بزرگ به شعاع R می‌توانیم ویژه تابع آن را تعیین می‌کنیم.
(3- SEQ (3- * ARABIC 17)N=k(34R)1/2برای تابع موج اولیه، تابع موجی شبیه به تابع موج هیدروژن را در نظر می‌گیریم:
(3- SEQ (3- * ARABIC 18)ui=1π1/2(za0)3/2exp-zra0 with a0=ℏ2me2سپس المان ماتریسی به صورت زیر است:
(3- SEQ (3- * ARABIC 19)Mif=p0cosωtek34R121π12za032×0∞exp-zra0 cosθr2 J32krkr12cosθdτ=p0cosωt(ωt)1/2ek(za0)3/2I
با
(3- SEQ (3- * ARABIC 20)I=0∞exp-zra0 J32krkr12drچگالی حالت‌های نهایی باید فقط به حالت‌های p محدود باشد. از شرط ufR=0، شرط کوانتیزیشن به صورت زیر است:
(3- SEQ (3- * ARABIC 21)kR=(n+12)πو n عدد انتگرال گیری است. بنابراین در فاصله k تا ∆k داریم:
(3- SEQ (3- * ARABIC 22)R∆kπ=∆Nو از این معادله داریم:
(3- SEQ (3- * ARABIC 23)ρ=dNdE=Rℏπϑبا ترکیب معادلات (3- 19) و (3- 23) برای دو تا الکترون‌های K بدست می‌آوریم:
(3- SEQ (3- * ARABIC 24)λe=14πℏp02e2k23(za0)3I2ϑℏاز طرفی دیگر λγ با این معادله داده می‌شود:
(3- SEQ (3- * ARABIC 25)λγ=13p02ω3ℏc3با توجه به معادله (3-4) ضریب تبدیل داخلی به صورت زیر است:
(3- SEQ (3- * ARABIC 26)α=4πℏk2e2ϑ(za0)3c3ω3I2از a0z≫1k، این به این معنی است که انرژی گذار در مقایسه با انرژی بستگی الکترون خیلی بزرگ است. همچنین فرض می‌کنیم الکترون خارج شده نسبیتی نیست. برای سازگاری فرض می‌کنیم که برای الکترون mv22≅(ℏk)22m≅ℏω.
انتگرال I با در نظرگرفتن این فرض که e-zra0=1 و داریم:
(3- SEQ (3- * ARABIC 27)I=0∞J32krdrkr12=(2πk2)1/2با جایگذاری در معادله (3- SEQ (3- * ARABIC 28) و با در نظر گرفتن تقریب ذکر شده در بالا داریم:
(3- SEQ (3- * ARABIC 29)αk=8ℏe2m12(2ℏω)12za03c3ω3(3- SEQ (3- * ARABIC 30) =12z3(e2ℏc)4(2mc2ℏω)7/2این فرمول تحت فرضیه‌های ذکر شده برای تابش دوقطبی است، و برای تابش El، به صورت زیر بدست می‌آید:
(3- SEQ (3- * ARABIC 31)αkl=z3(e2ℏc)4ll+1(2mc2ℏω)l+(5/2)ضریب تبدیل داخلی α به عدد اتمی، اتمی که فرایند در آن رخ می‌دهد، انرژی گذار و چند قطبی بودن آن بستگی دارد. به طور کلی نتایج زیر برای چند قطبی‌های الکتریکی (E) و مغناطیسی (M) بدست می‌آید.
(3- SEQ (3- * ARABIC 32)αEL≅Z3n3LL+1e24πℏε0c42mec2EL+52(3- SEQ (3- * ARABIC 33)αML≅Z3n3e24πℏε0c42mec2EL+32در این روابط Z عدد اتمی مربوط به اتمی است که در آن تبدیل داخلی صورت گرفته است و n عدد کوانتومی اصلی تابع موج الکترون مقید است؛ عامل (Zn)3 ناشی از جمله ᴪi.e(0)2 است که در آهنگ تبدیل ظاهر می‌شود. عامل بی بعد e24πε0ℏc همان ثابت ساختار ریز با مقداری نزدیک به 137 / 1 است.
این نحوه برخورد با ضرایب تبدیل تقریبی است، زیرا الکترون را باید نسبیتی در نظر گرفت ( انرژی‌های گذار نوعاً از مرتبه 0.5 تا Mev1 هستند). اما همین معادلات تعدادی از خصوصیات ضرایب تبدیل را مشخص می‌کند.
1- این ضرایب متناسب با z3 افزایش می‌یابند، و در نتیجه فرایند تبدیل در هسته‌های سنگین مهم‌تر از هسته‌های سبک است.
2- ضریب تبدیل با افزایش انرژی گذار به سرعت کاهش می‌یابد.( برعکس، احتمال گسیل γ که با افزایش انرژی به سرعت افزایش می‌یابد.)
3- ضرایب تبدیل با افزایش مرتبه چند قطبی به سرعت افزایش می‌یابند. در حقیقت، برای مقادیر زیادتر L، گسیل الکترون تبدیل ممکن است بسیار محتمل‌تر از گسیل γ باشد.
4- ضرایب تبدیل برای پوسته‌های اتمی بالاتر ( 1n> ) متناسب با 1/n3 کاهش می‌یابد. بنابراین، برای گذار معین به تقریب می‌توان انتظار داشت αKαL≅8 باشد.
بنابراین انتظار داریم که در هسته‌های سنگین برای گذارهای کم انرژی و چند قطبی‌های مرتبه بالا با ضرایب تبدیل نسبتاً بزرگ پوسته K، و در سایر موارد( پوسته‌های اتمی بالاتر، انرژی‌های گذار بیشتر، هسته‌های سبک‌تر و چند قطبی‌های مرتبه پایین‌تر) با مقادیر کوچک‌تر روبرو شویم.
باید متذکر شد که ضرایب مربوط به گذارهای الکتریکی و مغناطیسی به طور قابل ملاحظه‌ای با هم تفاوت دارند؛ بنابراین با اندازه گیری α می‌توانیم پاریته نسبی حالات هسته‌ای را تعیین کنیم. در یک کاربرد دیگر هم استفاده از تبدیل داخلی مهم است، و آن مشاهده گذارهای E0 است که از طریق تابش الکترومغناطیسی ممنوع اند. گذار E0 مخصوصاً در واپاشی های از حالات اولیه 0+ به حالات نهایی 0+ که با هیچ فرایند مستقیم دیگری امکان پذیر نیست، حائز اهمیت است[16,15] .
البته باید توجه داشت که برای همه گذارها از حالت اولیه به حالت نهایی یک فرایند الکترومغناطیسی دیگر نیز امکان پذیر است که در آن هسته برانگیخته به شکل یک زوج الکترون- پوزیترون ظاهر می‌شود که به آن تولید زوج می‌گویند. اما احتمال این فرایند بسیار کم و از مرتبه 10-4 گسیل گاما است.


centercenterفصل چهارم
00فصل چهارم

4- مدل کوارکی و نگرشی جدید به فرایند تبدیل داخلی4-1- مقدمهدر مدل ساختار جمعی هسته‌ها، هسته مانند یک جسم واحد در نظر گرفته شده، مانند یک قطره مایع، بعضی از خواص هسته‌ها نیز بر اساس همین فرض استخراج شده است، که در فصل دوم به آن‌ها اشاره شد. از طرفی در مدل پوسته‌ای اجزاء تشکیل دهنده هسته‌ها یعنی پروتون‌ها و نوترون‌ها نیز در نظر گرفته شده است. این مدل با در نظر گرفتن برهم کنش هسته‌ای بین نوکلئونها در توجیه بعضی خواص هسته‌ای به خوبی موفق بوده است. مدل‌های هسته‌ای دیگری در طی سالیان اخیر، به منظور توصیف جنبه‌های متفاوت هسته‌ها، توسط گروه‌های متعددی ارائه شده است. مانند مدل آلفا- ذره‌ای هسته‌ای. یکی دیگر از این مدل‌ها، مدل شبه کوارکی است.
مدل شبه کوارکی علاوه بر اینکه پروتون‌ها و نوترون‌ها را در تشکیل هسته در نظر می‌گیرد، کوارکهای سازنده نوکلئونها را نیز در نظر می‌گیرد. با توجه به نزدیکی بسیار زیاد نوکلئونها در هسته‌ها، قطعاً کوارکهای سازنده آن‌ها نیروی شدیدی به همدیگر وارد می‌سازند، که باعث می‌شود نوکلئونها، به صورت لحظه‌ای هم که باشد، فروپاشیده شوند و سپس نوکلئونهای جدید تشکیل گردند. این پروسه می‌تواند مکرراً در هسته در حال اتفاق باشد. گرچه در این شرایط محیط هسته را نمی‌توان یک محیط با کوارکهای آزاد در نظر گرفت. با این حال فرض می‌شود که هسته را بتوان با تقریب یک محیط کوارکی در نظر گرفت که شدیداً با هم برهمکنش دارند. گرچه در این مدل نظریه واحدی که بتواند برخی از خواص هسته‌ها را یکجا ارائه دهد وجود ندارد، با این حال با استفاده از این مدل می‌توان اعداد جادویی هسته را بدست آورد. همچنین در این مدل فرمولی برای انرژی بستگی هسته‌ها ارائه شده که هم زمان هم کوارکهای سازنده هسته و هم نوکلئونهای سازنده هسته را در نظر گرفته است.
4-1-1- پلاسمای کوارک- گلئونی و سرچشمه اعداد جادوییدر فیزیک هسته‌ای یک عدد جادویی تعداد نوکلئونهایی ( پروتون‌ها و نوترون‌ها ) است که درون پوسته‌های کامل مربوط به هسته‌های اتمی قرار می‌گیرند. این اعداد و وجود آن‌ها اولین بار توسط السیسر در سال 1933 [17] مورد توجه قرار گرفته است. چیزی که باعث جادویی بودن این اعداد می‌شود، خواصی است که هسته‌ها با این تعداد پروتون‌ها و نوترون‌ها دارا می‌باشند. از جمله این خواص می‌توان به پایداری هسته‌های جادویی، فراوانی بیشتر هسته‌های جادویی در عالم و اینکه جرم هسته‌های جادویی از مقدار پیش بینی شده توسط فرمول نیمه تجربی جرم به طور قابل توجهی کمتر است، اشاره نمود.
در این مدل فرض بر این است که در محیط ترمودینامیکی پلاسمای کوارک- گلئونی، کوارکهای تقریباً مجزا سعی در تشکیل نوکلئونها دارند؛ و اگر بپذیریم که بیشینه بی نظمی و بیشترین مقدار ترکیب‌ها رخ می‌دهد، آنگاه با در نظر گرفتن سیستم‌های جداگانه‌ای شامل یک کوارک مرکزی و تعداد 2، 3، 4، 5، 6، 7 و نهایتاً 8 کوارک اطراف به حالت‌های بیشینه‌ای برابر با اعداد جادویی می‌رسیم [19,18]. اگر پلاسمای کوارک- گلئونی را به عنوان یک محیط ترمودینامیکی فرض نماییم، بایستی تحقیق نمود این محیط ترمودینامیکی که همانند هر محیط دیگر از این نوع به سمت بیشینه بی نظمی پیش می‌رود، چگونه به تعادل نزدیک می‌شود. حالت ترمودینامیکی از کوارکها را در نظر می‌گیریم که این کوارکها تقریباً آزادانه در حال حرکت می‌باشند. اگر دقیق‌تر به محیط پلاسمای کوارک- گلئونی نگاه کنیم، می‌بینیم که در سوپ کوارک- گلئونی آزادی محض وجود ندارد.

شکل(4- SEQ شکل(4- * ARABIC 1): محیط یک پلاسمای کوارک- گلئونی
در شکل (4-1) یک محیط پلاسمای کوارک- گلئونی فرضی رسم شده است، که کوارکها همانند ذرات یک گاز ایده آل در فضا پراکنده‌اند. در این محیط فرضی یک کوارک را در نظر بگیرید که جهت تشکیل یک پروتون یا نوترون تلاش می‌کند. هر کوارک با گیر انداختن دو کوارک دیگر تشکیل یک نوکلئون می‌دهد. در این فضای رقابتی میان کوارک ها حالات مختلفی از تشکیل یک نوکلئون می‌تواند روی دهد. به عنوان مثال به شکل پایین توجه کنید.

شکل(4- SEQ شکل(4- * ARABIC 2): شبکه مکعبی پلاسمای کوارک- گلئونیدر شکل (4-2) کوارکها همانند یک محیط شبکه‌ای در اطراف یکدیگر قرار دارند. کوارک u مرکزی برای تشکیل یک نوترون در حال تلاش است، و برای این امر باید دو کوارک d را گیر اندازد. اگر اینطور فرض کنیم که از تمام کوارکهای اطراف این کوارک u دو کوارک d باشد، آنگاه رقابت دو کوارک رقابت ساده‌ای است. در نگاه اول یک حالت ممکن بیشتر وجود ندارد و آن هم حالت udd است. در نگاه دقیق‌تر دو حالت وجود دارد، یعنی u قرمز به همراه d1 آبی و d2 سبز یا u قرمز به همراه d1 سبز و d2 آبی. پس دو حالت به دست می‌آید. حال شرایطی را در نظر بگیرید که سه کوارک d در اطراف کوارک u جهت گیوند با آن رقابت می‌کنند. در چنین شرایطی ترکیبات ممکن عبارتند از: ud1d2، ud1d3 و ud2d3. اگر رنگ کوارک ها را هم منظور کنیم 6 حالت ممکن به وجود می‌آید که از این 6 حالت با 2 حالت قبل روی هم 8 حالت را نشان می‌دهد. ذکر این نکته ضروری است که هر کدام از این حالت‌ها می‌تواند تشکیل نوکلئون بدهد ولی حداکثر حالاتی که می‌تواند با 3 کوارک اتفاق بیفتد 8 حالت است. مشابه حالت 3 کوارکی عدد به دست آمده برای حالت 4 کوارکی برابر 20 می‌باشد. با در نظر گرفتن 5 کوارک d اطراف کوارک مرکزی با استدلالی مشابه استدلال بالا 20 حالت جدید به دست خواهد آمد که با مجموع قبلی عدد 40 برای عدد جادویی بعدی بدست خواهد آمد، در حالی که عدد جادویی بعدی 28 خواهد بود. از آنجا که شرایط محیط کوارک – گلئونی بیشتر به یک سوپ کوارک- گلئونی شبیه است، مطابق تلاش‌های صورت گرفته در نظریه کرمودینامیک کوانتومی شبکه‌ای این امر تقریباً محرز است که نیروی جاذبه بین کوارکها کاملاً از بین نمی‌رود. بنابراین اگر هر کوارک d ( اطراف کوارک u مرکزی) را نزدیک به کوارکهای دیگر فرض کنیم، آنگاه به عنوان مثال اگر کوارک d2 توسط u جذب شود. ناگزیر کوارک پنجمی که بیشترین نیروی جاذبه با d2 را دارد و نام آن را d2َ می گذاریم، وارد کار می‌شود که آن را کوارک "تحمیل شده" می نامیم. پس هر 4 کوارک d هنگام جذب توسط کوارک u مرکزی می‌توانند کوارکی را در سطحی فراتر از کوارک های اولیه به واسطه فاصله نزدیک و یا اینکه بازنشدگی کامل از هم، به سیستم تحمیل نمایند، که این حالت جدید را چنین می نویسیم:
ud1d1َ , ud2َ , ud3d3َ , ud4d4َ
که به همراه رنگ‌های مختلف آن 8 حالت جدید به وجود می‌آید. این 8 حالت و 20 حالت قبل 28 حالت در اختیار ما می‌گذارد. این موضوع که توسط 4 کوارک d دو عدد مجزای 20 حالته و 28 حالته تولید شده است. به طور مشابه برای 5، 6 و 7 کوارک d اعداد 50، 82 و 126 و نهایتاً با 8 کوارک عدد 184 به دست می‌آید. شواهدی مبنی بر وجود چنین عدد جادویی وجود دارد [20]. کار با بیش از 8 کوارک مستلزم عبور از سطح اول به سطح دوم است (چون در یک شبکه مکعبی تنها 8 کوارک در یک فاصله برابر از کوارک مرکزی قرار دارند)، که این موضوع یعنی جاذبه‌ای که سطح اول و دوم را کاملاً تحت تأثیر قرار می‌دهد و حالت‌های اجباری و تحمیلی، سطح سوم را نیز ایجاد می‌نماید و یا می‌توان از شبکه‌های هندسی دیگری با بیش از 8 کوارک استفاده کرد.

4-1-2- انرژی بستگی هسته‌ها از دیدگاه مدل شبه کوارکیدر مدل پلاسمای کوارک- گلئونی ارائه شده [22,21] دیدگاه جدیدی برای هسته ارائه شده است. در این دیدگاه، هسته شامل پلاسمای سوپ مانند از کوارکها و گلئونها می‌باشد که می‌توان خواص هسته‌ها را با توجه به کوارکهای محتوی به جای نوکلئونها بدست آورد.
به منظور به دست آوردن انرژی بستگی هسته‌ای، با توجه به نگاه شبه کوارکی به نکات زیر توجه می‌کنیم:
1- برای تشکیل هسته‌ها باید انرژی بستگی مثبت باشد.
2- انرژی بستگی مثبت از مرتبه یک درصد انرژی جرم سکون کوارک های درون هسته mqc2 می‌باشد که q نشان دهنده کوارکهای بالا و پایین است.
3- در این مدل انرژی بستگی با حجم پلاسمای کوارک- گلئونی متناسب است. با توجه به اینکه هر نوکلئون از سه کوارک تشکیل شده است، لذا به ازای عدد جرمی A برای هسته، انرژی بستگی متناسب با A3 است.
4- با توجه به عدم تقارن بین تعداد پروتون‌ها و نوترون‌ها، به خصوص در هسته‌های سنگین و در نظر گرفتن نیروی کولنی می‌توان این عدم تقارن و تصحیح کولنی را مابین کوارکهای بالا و پایین موجود در پلاسمای کوارک- گلئونی درون هسته را به صورت N2-Z2Z در نظر گرفت.
با در نظر گرفتن نکات فوق فرمول زیر برای محاسبه انرژی بستگی هسته‌ها ارائه شده است.
(4- SEQ (4- * ARABIC 1)BA,Z=A-N2-Z2+δN-Z3Z+3×mNc2α A>5(4- SEQ (4- * ARABIC 2) δN-Z=1N=Z0N≠Zدر فرمول بالا α = 90 – 100 است.
در مقایسه با مدل قطره مایعی که شامل هفت جمله در انرژی بستگی می‌باشد، این مدل شامل دو جمله است که وابسته به Z و N است که حاکی از سادگی بیشتر و دید جامع‌تری نسبت به هسته است. در این مدل، ذرات هسته‌ای محتوایی آزاد در یک محیط پلاسما مانند چگالی بررسی می‌شود [24,23].
4-2- ضریب تبدیل داخلی بر اساس مدل کوارکی هسته‌هادر مدل شبه کوارکی، هسته شامل پلاسمایی سوپ مانند از کوارکها و گلئونها است که می‌توان خواص هسته‌ها را با توجه به کوارکهای محتوایی به جای نوکلئونها بدست آورد. در فرمول زیر با در نظر گرفتن کوارکهای سازنده نوکلئونها ضریب تبدیل داخلی را بررسی کرده‌ایم. در فرمول زیر شاخص L تابش را به گونه‌ای تعریف می‌کنیم که 2L مرتبه چند قطبی باشد ( برای دو قطبی L=1، برای چار قطبی L=2 و ....). با تخصیص E برای خواص الکتریکی و M برای خواص مغناطیسی فرمول ضریب تبدیل داخلی با توجه به نگاه شبه کوارکی به صورت زیر ارائه شده است.
با در نظر گرفتن پروتون‌ها ضریب تبدیل داخلی برای گذارهای الکتریکی:
(4- SEQ (4- * ARABIC 3)αEL≅Z3n3LL+1e24πℏε0c4((23)3+(23)3+(13)3) 2mec2EL+52و ضریب تبدیل داخلی برای گذارهای مغناطیسی به صورت زیر ارائه شده است
(4- SEQ (4- * ARABIC 4)αML≅Z3n3e24πℏε0c4((23)3+(23)3+(13)3) 2mec2EL+32و اگر علاوه بر پروتون‌ها نوترون‌ها را هم در تابش گاما موثر بدانیم [25]، فرمول‌های زیر به ترتیب برای گذارهای الکتریکی و مغناطیسی ارائه می‌شود:
(4- SEQ (4- * ARABIC 5)αEL≅Z3n3LL+1e24πℏε0c4(233+233+133+233+133+133) 2mec2EL+52≅Z3n3LL+1e24πℏε0c4 2mec2EL+52(4- SEQ (4- * ARABIC 6)
αML≅Z3n3e24πℏε0c4233+233+133+233+133+1332mec2EL+32≅Z3n3e24πℏε0c42mec2EL+32به منظور بررسی فرمول‌های ارائه شده ضریب تبدیل داخلی برای دوازده عدد اتمی، ده چند قطبی E1-E5 و M1-M5 و 8 مقدار انرژی گاما محاسبه و با مقادیر تئوری و تجربی مقایسه شده است [26].
در جدول‌های (4-1) تا (4-39)، ستون اول مقادیر آزمایشگاهی، ستون دوم مقادیر تئوری محاسبه شده با استفاده از فرمول ضریب تبدیل داخلی و ستون سوم، مقادیر محاسبه شده با در نظر گرفتن کوارکهای سازنده پروتون‌ها را نشان می‌دهند. با توجه به معادلات (4-5) و (4-6)، نتایج حاصل از در نظر گرفتن کوارکهای سازنده پروتون‌ها و نوترون‌ها در تابش گاما با مقادیر عددی ستون دوم برابر است.

جدول (4- SEQ جدول_(4- * ARABIC 1): EB =5.50 E-02k shellz=3Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 6.55 E-02 10.00 E-02 6.30 E-02
15 E2 5.65 E+00 9.08 E+00 5.72 E +00
E3 4.10 E+02 6.96 E+02 4.38 E+02
E4 2.83 E+04 5.06 E+04 3.18 E+04
E5 1.92 E+06 3.59 E+06 2.26 E+06
20 E1 2.48 E-02 3.65 E-02 2.30 E-02
E2 1.63 E+00 2.49 E+00 1.56 E+00
E3 8.99 E+01 14.36 E+01 9.04 E+01
E4 4.72 E+03 7.80 E+03 6.91 E+03
E5 2.43 E+05 4.15 E+05 2.61 E+05
32 E1 5.06 E-03 7.05 E-03 4.44 E-03
E2 2.12 E-01 3.00 E-01 1.90 E-01
E3 7.50 E+00 10.79 E+00 6.80 E+00
E4 2.52 E+02 3.67 E+02 2.31 E+02
E5 8.29 E+03 12.23 E+03 7.80 E+03
50 E1 1.11 E-03 1.47 E-03 0.92 E-03
E2 3.07 E-02 4.03 E-02 2.53 E-02
E3 7.12 E-01 9.27 E-01 5.84 E-01
E4 1.57 E+01 2.02 E+01 1.27 E+01
E5 3.39 E+02 4.30 E+02 2.70 E+02
80 E1 2.26 E-04 2.85 E-04 1.79 E-04
E2 4.03 E-03 4.86 E-03 3.08 E-03
E3 6.05 E-02 6.99 E-02 4.40 E-02
E4 8.64 E-01 9.52 E-01 7.00 E-01
E5 1.21 E+01 1.26 E+01 0.80 E+01
120 E1 5.77 E-05 6.90 E-05 4.37 E-05
E2 7.12 E-04 7.84 E-04 4.94 E-04
E3 7.42 E-03 7.51 E-03 4.73 E-03
E4 7.35 E-02 6.82 E-02 4.29 E-02
E5 7.12 E-01 6.05 E-01 3.89 E-01
200 E1 4.41 E-08 3.65 E-08 2.29 E-08
E2 6.99 E-08 2.48 E-07 1.56 E-07
E3 1.08 E-07 1.43 E-05 0.90 E-05
E4 1.66 E-07 0.78 E-05 0.50 E-05
E5 2.55 E-07 0.41 E-05 0.25 E-05
جدول (4- SEQ جدول_(4- * ARABIC 2): EB =2.84 E-01k shellz=6Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 4.38 E-01 8.00 E-01 5.04 E-01
15 E2 3.51 E+01 7.27 E+01 4.58 E+01
E3 2.36 E+03 5.57 E+03 3.50 E+03
E4 1.52 E+05 4.05 E+05 2.55 E+05
E5 9.63 E+06 28.74 E+06 14.47 E+06
20 E1 1.71 E-01 2.92 E-01 1.83 E-01
E2 1.05 E+01 1.99 E+01 1.25 E+01
E3 5.45 E+03 11.45 E+03 6.21 E+03
E4 2.69 E+04 6.24 E+04 3.93 E+04
E5 1.31 E+06 3.32 E+06 2.09 E+06
32 E1 3.62 E-02 5.64 E-02 3.55 E-02
E2 1.45 E+00 2.40 E+00 1.51 E+00
E3 4.87 E+01 8.63 E+01 5.43 E+01
E4 1.56 E+03 2.94 E+03 1.85 E+03
E5 4.90 E+04 9.78 E+04 6.16 E+04
50 E1 8.21 E-03 11.83 E-03 7.45 E-03
E2 2.18 E-01 3.22 E-01 2.02 E-01
E3 4.87 E+00 7.41 E+00 4.46 E+00
E4 1.03 E+02 1.61 E+02 1.01 E+02
E5 2.15 E+03 3.44 E+03 2.16 E+03
80 E1 1.71 E-03 2.28 E-03 1.43 E-03
E2 2.97 E-02 3.89 E-02 2.45 E-02
E3 4.33 E-01 5.59 E-01 3.52 E-01
E4 5.99 E+00 7.62 E+00 4.81 E+00
E5 8.13 E+01 10.14 E+01 6.81 E+01
120 E1 4.46 E-04 5.52 E-04 3.51 E-04
E2 5.38 E-03 6.27 E-03 4.01 E-03
E3 5.48 E-02 6.01 E-02 3.93 E-02
E4 5.24 E-01 5.46 E-01 3.50 E-01
E5 5.01 E+00 4.84 E+00 2.82 E+00
200 E1 8.43 E-05 9.24 E-05 5.92 E-05
E2 6.53 E-04 6.30 E-04 4.00 E-04
E3 4.30 E-03 3.62 E-03 2.38 E-03
E4 2.70 E-02 1.97 E-02 1.24 E-02
E5 1.65 E-01 1.05 E-01 0.66 E-01

جدول (4- SEQ جدول_(4- * ARABIC 3): EB =8.67 E-01k shellz=10Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 1.05 E+00 3.70 E+00 2.33 E+00
15 E2 1.11 E+02 3.36 E+02 2.11 E+02
E3 6.67 E+03 25.80 E+03 14.25 E+03
E4 3.83 E+05 18.75 E+05 11.02 E+05
E5 2.18 E+07 13.30 E+07 8.01 E+07
20 E1 6.24 E-01 13.53 E-01 8.42 E-01
E2 3.51 E+01 9.22 E+01 5.40 E+01
E3 1.65 E+03 5.30 E+03 3.15 E+03
E4 7.40 E+04 28.90 E+04 15.05 E+04
E5 3.29 E+06 15.38 E+06 8.60 E+06
32 E1 1.38 E-01 2.61 E-01 1.64 E-01
E2 5.17 E+00 11.12 E+00 6.89 E+00
E3 1.61 E+02 3.99 E+02 2.51 E+02
E4 4.81 E+03 13.69 E+03 8.42 E+03
E5 1.41 E+05 4.53 E+05 2.85 E+05
50 E1 3.26 E-02 5.47 E-02 3.66 E-02
E2 8.21 E-01 14.93 E-01 8.82.50 E01
E3 1.73 E+01 3.43 E+01 2.09 E+01
E4 3.47 E+02 7.48 E+02 4.58 E+02
E5 6.80 E+03 15.94 E+03 9.45 E+03
80 E1 7.02 E-03 10.57 E-03 6.65 E-03
E2 1.17 E-01 1.80 E-01 1.13 E-01
E3 1.63 E+00 2.58 E+00 1.62 E+00
E4 2.16 E+01 3.52 E+01 2.21 E+01
E5 2.81 E+02 4.69 E+02 2.59 E+02
120 E1 1.87 E-03 2.55 E-03 1.60 E-03
E2 2.19 E-02 2.90 E-02 1.85 E-02
E3 2.15 E-01 2.78 E-01 1.80 E-01
E4 2.01 E+00 2.52 E+00 1.60 E+00
E5 1.48 E+01 2.24 E+01 1.41 E+01
200 E1 3.63 E-04 4.28 E-04 2.75 E-04
E2 2.74 E-03 2.91 E-03 1.89 E-03
E3 1.76 E-02 1.67 E-02 1.10 E-02
E4 1.07 E-01 0.91 E-01 0.60 E-01
E5 6.42 E-01 4.86 E-01 3.19 E-01
جدول (4- SEQ جدول_(4- * ARABIC 4): EB =1.83 E+00k shellz=14Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 3.30 E+00 10.16 E+00 6.01 E+00
15 E2 2.09 E+02 9.23 E+02 5.67 E+02
E3 1.09 E+04 7.08 E+04 4.21 E+04
E4 9.49 E+05 51.45 E+05 32.01 E+05
E5 2.75 E+07 36.51 E+07 22.08 E+07
20 E1 1.30 E+00 3.71 E+00 2.33 E+00
E2 6.92 E+01 25.30 E+01 15.33 E+01
E3 2.91 E+03 14.55 E+03 9.16 E+03
E4 1.17 E+05 7.93 E+05 4.80 E+05
E5 4.70 E+06 42.21 E+06 26.34 E+06
32 E1 3.15 E-01 7.17 E-01 4.41 E-01
E2 1.09 E+01 3.53 E+01 2.22 E+01
E3 3.13 E+02 10.97 E+02 6.35 E+02
E4 8.64 E+03 37.37 E+03 12.96 E+03
E5 2.36 E+05 12.43 E+05 7.56 E+05
50 E1 7.65 E-02 15.03 E-02 9.40 E-02
E2 1.82 E+00 4.09 E+00 2.25 E+00
E3 3.60 E+01 9.42 E+01 5.67 E+01
E4 6.81 E+02 20.54 E+02 12.06 E+02
E5 1.27 E+04 4.37 E+04 2.75 E+04
80 E1 1.70 E-02 2.90 E-02 1.82 E-02
E2 2.71 E-01 4.94 E-01 3.08 E-01
E3 3.60 E+00 7.10 E+00 4.41 E+00
E4 4.50 E+01 9.68 E+01 6.06 E+01
E5 5.68 E+02 12.88 E+02 7.95 E+02
120 E1 4.63 E-03 7.02 E-03 4.42 E-03
E2 5.23 E-02 7.97 E-02 5.02 E-02
E3 4.94 E-01 7.63 E-01 4.80 E-01
E4 4.45 E+00 6.93 E+00 4.36 E+00
E5 3.93 E+01 6.15 E+01 3.88 E+01
200 E1 9.19 E-04 11.74 E-04 7.39 E-04
E2 6.77 E-03 8.00 E-03 5.04 E-03
E3 4.22 E-02 4.60 E-02 2.92 E-02
E4 2.51 E-01 2.50 E-01 1.57 E-01
E5 1.40 E+00 1.33 E+00 0.83 E+00
جدول (4- SEQ جدول_(4- * ARABIC 5): EB =2.47 E+00k shellz=16Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 4.37 E+00 15.17 E+00 9.13 E+00
15 E2 2.56 E+02 13.78 E+02 8.01 E+02
E3 1.24 E+04 10.56 E+02 6.30 E+02
E4 5.25 E+05 56.80 E+05 30.20 E+05
E5 2.67 E+07 34.51 E+07 21.07 E+07
20 E1 1.83 E+00 5.54 E+00 3.49 E+00
E2 8.73 E+01 37.70 E+01 21.68 E+01
E3 3.44 E+03 21.71 E+03 13.04 E+03
E4 1.31 E+05 11.83 E+05 6.93 E+05
E5 4.94 E+06 63.01 E+06 34.69 E+06
32 E1 4.29 E-01 10.70 E-01 6.34 E-01
E2 1.42 E+01 4.55 E+01 2.67 E+01
E3 3.92 E+02 16.37 E+02 10.00 E+02
E4 1.03 E+04 5.57 E+04 3.38 E+04
E5 2.70 E+05 18.55 E+05 11.34 E+05
50 E1 1.06 E-01 2.24 E-01 1.41 E-01
E2 2.44 E+00 6.11 E+00 3.84 E+00
E3 467 E+01 14.06 E+01 8.19 E+01
E4 8.55 E+02 30.66 E+02 17.64 E+02
E5 1.55 E+04 6.52 E+04 4.04 E+04
80 E1 2.38 E-02 4.33 E-02 2.72 E-02
E2 3.71 E-01 7.37 E-01 4.54 E-01
E3 4.81 E+00 10.60 E+00 6.31 E+00
E4 5.94 E+01 14.45 E+01 8.92 E+01
E5 7.24 E+02 19.23 E+02 12.11 E+02
120 E1 6.56 E-03 10.48 E-03 6.60 E-03
E2 7.27 E-02 11.90 E-02 7.49 E-02
E3 6.74 E-01 11.40 E-01 7.18 E-01
E4 5.95 E+00 10.39 E+00 6.73 E+00
E5 5.16 E+01 9.19 E+01 5.73 E+01
200 E1 1.32 E-03 1.75 E-03 1.10 E-03
E2 9.57 E-03 11.94 E-03 7.52 E-03
E3 5.89 E-02 6.86 E-02 4.32 E-02
E4 3.44 E-01 3.74 E-01 2.35 E-01
E5 1.98 E+00 1.99 E+00 1.25 E+00
جدول (4- SEQ جدول_(4- * ARABIC 6): EB =4.03 E+00k shellz=20Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 6.78 E+00 29.64 E+00 18.28 E+00
15 E2 3.35 E+02 26.92 E+02 16.38 E+02
E3 1.33 E+04 20.64 E+04 11.07 E+04
E4 5.12 E+05 15.001E+05 9.45 E+05
E5 1.98 E+07 10.60E+07 6.67 E+07
20 E1 2.90 E+00 10.83 E+00 6.82 E+00
E2 1.21 E+02 7.37 E+02 4.06 E+02
E3 4.13 E+03 42.42 E+03 26.46 E+03
E4 1.36 E+05 23.12 E+05 14.49 E+05
E5 4.46 E+06 123.07E+06 7.56 E+06
32 E1 7.05 E-01 20.90 E-01 12.60 E-01
E2 2.13 E+1 8.90 E+1 5.04 E+1
E3 5.31 E+02 31.98 E+02 19.53 E+02
E4 1.27 E+04 10.89 E+04 6.30 E+04
E5 3.02 E+05 36.24 E+05 22.68 E+05
50 E1 1.79 E-01 4.38 E-01 2.69 E-01
E2 3.85 E+00 11.94 E+00 6.93 E+00
E3 6.85 E+1 27.47 E+1 10.45 E+1
E4 1.17 E+03 5.98 E+03 3.71 E+03
E5 1.97 E+04 12.75 E+04 7.56 E+04
80 E1 4.13 E-02 8.46 E-02 5.06 E-02
E2 6.11 E-01 14.41 E-01 8.82 E-01
E3 7.51 E+00 20.71 E+00 12.40 E+00
E4 8.80 E+1 28.22 E+1 16.64 E+1
E5 1.02 E+03 3.75 E+03 2.36 E+03
120 E1 1.16 E-02 2.04 E-02 1.28 E-02
E2 1.23 E-01 2.32 E-01 1.40 E-01
E3 1.10 E+00 2.22 E+00 1.36 E+00
E4 9.29 E+00 20.23 E+00 12.06 E+00
E5 7.74 E+01 17.94 E+01 10.78E+01
200 E1 2.38 E-03 3.42 E-03 2.15 E-03
E2 1.68 E-02 2.33 E-02 1.46 E-02
E3 1.10 E-01 1.34 E-01 0.84 E-01
E4 5.67 E-01 7.31 E-01 4.60 E-01
E5 3.16 E+00 3.89 E+00 2.45 E+00
جدول (4- SEQ جدول_(4- * ARABIC 7): EB =4.96 E+00k shellz=22Eγ (Kev) EL α (exp) α (TE) α (QM)
E1 8.97 E+00 39.45 E+00 24.00 E+00
15 E2 3.59 E+02 35.84 E+02 22.05 E+02
E3 1.27 E+04 27.47 E+04 17.01 E+04
E4 4.34 E+05 199.67E+05 11.91 E+05
E5 1.49 E+07 141.71E+07 10.08 E+07
20 E1 3.50 E+00 14.41 E+00 8.82 E+00
E2 1.35 E+02 9.82 E+02 5.67 E+02
E3 4.22 E+03 56.46 E+03 35.02 E+03
E4 1.27 E+05 30.77 E+05 18.90 E+05
E5 3.86 E+06 163.81E+06 10.08 E+06
32 E1 8.63 E-01 27.82 E-01 17.01 E-01
E2 2.48 E+01 11.84 E+01 6.93 E+01
E3 5.83 E+02 42.56 E+02 26.46 E+02
E4 1.32 E+04 14.50 E+04 8.82 E+04
E5 2.38 E+05 48.24 E+05 30.24 E+05
50 E1 2.22 E-01 5.83 E-01 3.67 E-01
E2 4.60 E+00 15.90 E+00 8.86 E+00
E3 7.87 E+01 36.56 E+01 22.68 E+01
E4 1.29 E+03 7.97 E+03 4.43 E+03
E5 2.10 E+04 16.97 E+04 10.10 E+04

user8277

در فصل سوم به بررسی ساختار فیبر نوری، مزایا و معایب آن و سرعت انتقال اطلاعات در فیبر نوری می پردازیم. همچنین انواع منابع نوری را بررسی می کنیم و با توجه به بررسیهایی که انجام می دهیم طول موج مناسب منبع نوری وفیبر نوری مناسبی را که در سیستمهای نوین امروزی استفاده می شود ، انتخاب می کنیم. که در همه معادلات و شبیه سازیهای پایان نامه در بخشهای بعدی از آنها استفاده می کنیم. در بخش انتهایی این فصل به بررسی سرعت نور در فیبر نوری می پردازیم و به این نتیجه می رسیم که پدیده SBS می تواند باعث تغییر سرعت نور در فیبر گردد.
در فصل چهارم واکنش بین فیبر نوری و پرتو نوری را برای پدیده پراکندگی بریلوئن بررسی می کنیم . در بخش اول پراکندگی بریلوئن در فیبر نوری را بررسی می کنیم و انواع پراکندگی های بریلوئن ایجاد شده را نام می بریم. در بخش دوم و سوم این فصل سعی داریم با استفاده از خواص فیزیکی محیط و روابط ریاضی ، به ترتیب پدیده پراکندگی بریلوئن خود بر انگیخته و بر انگیخته شده را تحلیل کنیم و روابط ریاضی که توصیف کننده این دو پدیده باشند را در فیبر نوری بدست آوریم. در بخش چهارم این فصل دو پارامتر مهم پدیده SBS (توان آستانه بریلوئن وضریب تقویت بریلوئن) را معرفی می کنیم.
در فصل پنجم پدیده SBS آبشاری را به طور کامل توضیح خواهیم داد. در بخش اول، ابتدا SBS آبشاری بدون عنصر بازخورد را بررسی می کنیم و با تحلیل معادلات شدت پرتوها نشان می دهیم که SBS مرتبه بالاتر برای این چنین سیستمی ضعیف می باشد. دربخش دوم این فصل SBS آبشاری را برای سیستم با بازخورد قوی مورد بررسی قرار می دهیم و نشان می دهیم که می توانیم با استفاده از توری براگ در ورودی فیبر، SBS های مرتبه بالاتر و با شدت قوی را ایجاد کنیم. با استفاده از معادلات شدتها و شرایط مرزی برای این چنین سیستمی ، طیف توان خروجی را بدست می آوریم. در بخش سوم اثر SBS آبشاری را بر سیگنال بررسی می کنیم و با حل معادلات دیفرانسیل جفت شده پدیده SBS اثر آن را بر سیگنال بررسی می کنیم و با افزایش توان پمپ ورودی و بدست آوردن طیف بهره سیگنال، اثر SBS آبشاری را بر سیگنال تحلیل می کنیم.
فصل دوم196786535750500
اصول پراکندگی نور2-1- مقدمه
نور عبوری از مواد شفاف که دارای ضریب شکستهای مختلف میباشند ممکن است بر اثر پدیده های غیر خطی پراکنده گردد. پراکندگی نور در مواد به عوامل مختلفی بستگی دارد . از جمله این عوامل می تواند جنس ماده ، ضریب شکست و وابستگی ضریب شکست به طول موج نور باشد . دو نوع پراکندگی به صورت عمده در مواد شفاف رخ می دهد و تحقیقات بسیاری در مورد آنها انجام شده است . یکی از آنها پراکندگی بریلوئن و دیگری پراکندگی رامان می باشد. در این فصل پراکندگی بریلوئن را بررسی می کنیم و معادلاتی برای شدتهای نور بدست می آوریم که در فصلهای بعدی پایان نامه، از این معادلات استفاده خواهیم کرد. سپس در بخش دوم پراکندگی رامان بررسی خواهد شد.
2-2- پراکندگی القایی بریلوئن
12744453619500
00
در صورتی که پراکندگی از نوسانات ایجاد شده توسط اثرات حرارتی، بوجود بیاید به آن پراکندگی خود بخودی می گویند، اما در شرایطی که پراکندگی بخاطر نوسانات ایجاد شده در حضور میدان موج اپتیکی باشد، به آن پراکندگی القایی گفته می شود. پراکندگی القایی همواره موثرتر از پراکندگی خود بخودی است. به عنوان مثال بخاطر پراکندگی خود بخودی نور در عبور از 1cm از یک مایع مثل آب، تنها یک قسمت از 105 قسمت توان پرتو پراکنده میشود، اما در صورتی که شدت نور به اندازه کافی زیاد باشد، گاهی تا 100% پرتو در عبور از 1cm از محیط بخاطر پراکندگی القایی پراکنده خواهد شد. پراکندگی القایی که در این قسمت به بررسی آن خواهیم پرداخت، نتیجه تغییرات چگالی ماده می باشد. فرآیند پراکندگی بریلوئن القائی در شکل (2-1) نشان داده شده است:

شکل (2- SEQ شکل_(2- * ARABIC 1).شماتیک پراکندگی القایی بریلوئن.در شکل(2-1)، نور لیزر، توسط تغییرات ضریب شکست ایجاد شده توسط موج صوتی با فرکانس Ω ، پراکنده شده است. از آنجایی که موج آکوستیک در جهت موج فرودی حرکت می کند، نور پراکنده شده به فرکانس پایین تری یعنی فرکانس ωS=ωL-Ω شیف مییابد.
وقتی دو موج با فرکانس های ωS و ωL با هم بر همکنش می کنند، به نحوی که اختلاف این دو فرکانس همان فرکانس موج آکوستیک Ω، باشد، منجر به پراکندگی بریلوئن خواهد شد. پاسخ سیستم مادی به این ترم تداخلی می تواند شبیه به یک منبع عمل کند که موجب افزایش دامنه موج صوتی می شود. بنابراین زنش نور لیزر و موج آکوستیک سبب ایجاد موج استوکس می گردد، در صورتی که زنش موج های استوکس و لیزر موجب تقویت موج آکوستیک می شود. دو مکانیزم متفاوت برای توجیه این اثر وجوددارد. یک مکانیزم electrostriction می باشد. در این مکانیزم بیان می شود که ماده در مکان هایی که میدان فرودی شدت بیشتری دارد، چگالتر می شود. مکانیزم دیگر جذب اپتیکی است که بیان میکند گرم شدن منطقه توسط جذب موج اپتیکی با شدت بالاتر سبب می شود که ماده در آن منطقه منبسط تر شود بنابراین با تابش نور به محیط، نوسانات چگالی را خواهیم دید. از مکانیزم دوم کمتر از مکانیزم اول استفاده می شود زیرا مکانیزم دوم تنها در مواد اپتیکی اتلافی اتفاق می افتد.
وقتی پدیده پراکندگی بریلوئن القایی مورد مطالعه قرار می گیرد، دو فرآیند متفاوت باید بررسی شود، که یکی از این دو، تولید کننده پراکنندگی بریلوئن القائی است.

شکل (2- SEQ شکل_(2- * ARABIC 2) شماتیک تولید کننده پراکنندگی القایی بریلوئن.که در این فرآیند فقط پرتو نور لیزر است که به صورت خارجی استفاده شده است. میدان های استوکس و آکوستیک بیشتر از نویز در طول منطقه بر همکنش، رشد می کنند. نویزی که پراکندگی بریلوئن القایی را آغاز می کند، ناشی از پراکندگی نور لیزر از فونون های تولید شده حرارتی است ]15[ .در این حالت فرکانس استوکس نزدیک حالتی است که در آن حالت پراکندگی بریلوئن القایی بهره ماکزیمم دارد. فرآیند دوم تقویت کننده پراکنندگی بریلوئن القایی است.

شکل (2- SEQ شکل_(2- * ARABIC 3) شماتیک تقویت کننده پراکندگی القایی بریلوئن.در این حالت پرتوهای لیزر و استوکس هر دو بصورت عامل های خارجی اعمال می گردند. اگر فرکانس استوکس پرتو خارجی اعمال شده نزدیک به فرکانس استوکس تولید کننده پراکندگی بریلوئن القایی باشد، پس یک کوپلاژ قوی بین دو پرتو خارجی اعمال شده، رخ خواهد داد. فرآیند پراکندگی بریلوئن القایی به تقویت موج استوکس در هر جهتی به غیر از جهت نور لیزر منجر می شود. معمولا پراکندگی بریلوئن القایی فقط در جهت رو به عقب دیده می شود چون همپوشانی فضای پرتوهای لیزر و استوکس تحت این شرایط ماکزیمم است]16 [.
در صورتی که شدت نور فرودی را به مقدار کافی زیاد کنیم، این نور با استفاده از پدیده electrostriction می تواند روی خصوصیات محیط تاثیر بگذارد و نور پراکنده شده قوی ای را تولید کند، به عبارت دیگر در ابتدا نور لیزر فرودی توسط اثرات حرارتی محیط یا به عبارتی موج آکوستیک موجود در محیط پراکنده می شود و موج استوکس را تولید می کند، سپس کوپلاژ بین نور استوکس و نور لیزر فرودی با استفاده از پدیده electrostriction، نوسانات چگای را در محیط ایجاد می کند، نور لیزر فرودی دوباره توسط نوسانات ضریب شکست ناشی از این نوسانات چگالی پراکنده می شود که فرکانس نور پراکنده شده دوباره در فرکانس استوکس خواهد بود، بنابراین دو موج آکوستیک و استوکس رشد هم را تقویت می کنند. برای تقویت کننده های پراکندگی بریلوئن القایی، موج استوکس بصورت خارجی به محیط اعمال می شود که فرکانس آن ω2 بود، اگر فرکانس نور لیزر فرودی ω1 در نظر گرفته شود، فرکانس موج آکوستیک حاصله به این صورت بدست می آید:
Ω=ω1-ω2 (2-1)
که در حالت کلی با فرکانس بریلوئن، ωB ، متفاوت است. در صورتی که ω2 به نحوی انتخاب گردد که Ω-ΩB خیلی کوچک باشد یا در حد پهنای باند بریلوئن، τB ، باشد، موج آکوستیک بصورت موثر بر انگیخته خواهد شد. حال به بر همکنش سه موج می پردازیم:
میدان اپتیکی داخل محیط بریلوئن بصورت Ez,t=E1z,t+E2z,t در نظ گرفته می شود که:
E1z,t=A1z,teik1z-ω1t+CC) (2-2
E2z,t=A2z,teik2z-ω2t+CC
موج آکوستیک نیز بصورت جملاتی از نوسانات چگالی نوشته می شود:
ρz,t=ρ0 +ρz,teiqz-tΩ+CC(2-3)
Ω =ω1-ω2 که و p0 چگالی متوسط محیط است، فرض می شود که چگالی ماده از معادله موج آکوستیک تبعیت می کند:
∂2∆p∂t2-Γ'∇2∂p∂t-v2∇2p=∇.f (2-4)
که در آن v سرعت صوت است و Γ'ثابت اتلاف می باشد. جمله سمت راست، واگرایی نیرو در واحد حجم می باشد که به صورت زیر داده می شود:
f=-∇Pstو Pst= γeE8 π (2-5)
که در آنPst فشار electrostriction می باشد. با توجه به میدان های ذکر شده، این جمله به صورت زیر بدست می آید:
∇.f=γeq24 πA1A2*eiqz-tΩ+C.C (2-6)
با جایگذاری pz,tو ∇.f در معادله (2-4) و این فرض که دامنه موج آکوستیک در فضا و زمان کند تغییر است، داریم:
-2iΩ∂p∂t+ΩB2-Ω2-iΩΓBp-2iq v2∂p∂z=γeq24 πA1A2* (2-7)
بصورتی که پهنای باند بریلوئن به این شکل تعریف می شود:
ΓB=q2Γ' (2-8)
که τB=ΓB-1طول عمر فونون را می دهد. برای سادگی آخرین جمله سمت چپ رابطه بالا حذف می شود که این ترم انتشار فونون ها را می دهد. از آنجایی که فاصله انتشار فونون در مقابل فاصله ای که جمله سمت راست تساوی بصورت موثر در آن تغییر می کند، خیلی کوچک است (چون فونون سریع جذب می شود) بنابراین جمله∂p∂z را حذف می کنیم، اگر جمله تغییرات فضایی حذف گردد و شرایط پایا در نظر گرفته شود پس ∂p∂tحذف می شود، بنابراین دامنه موج آکوستیک به این شکل بدست می آید:
pz,t=γeq2 4 π A1A2*ΩB2-Ω2-iΩΓB (2-9)
میدان های اپتیکی نیز توسط معادلات موج زیر شرح داده می شوند:
∂2Ei∂z2-1c/n2∂2Ei∂t2=4 π∂2Pic2∂t2, i=1,2 ) (2-10
قطبش غیر خطی که بعنوان جمله منبع در این معادلات وجود دارد، به این صورت بدست می آید:
P=∆x E= ∆ε4 π E = 14 π p0γepE (2-11)
بنابراین داریم:
P1=P1eik1z-ω1t+C.C (2-12)
P2=P2ei-k2z-ω2t+C.Cکه:
P1=γe4 π p0pA2,P2=γe4 π p0P* A1 (2-13)
با قرار دادن معادلات میدان در معادله موج بالا و استفاده از تقریب دامنه کند تغییر داریم:
∂A1∂z+1c/n∂A1∂t=iωγe2nc p0pA2 (2-14)
-∂A2∂z+1c/n∂A2∂t=iωγe2nc p0p*A1
در رابطه بالا فرض شده است که ω1=ω2≅ω با بکار بردن حالت پایا، مشتق زمانی را حذف می کنیم، بنابراین داریم:
dA1dz=iωq2γe28n π c p0 A22 A1ΩB2-Ω2-iΩΓB(2-15)
dA2dz=-iωq2γe28n π c p0 A12 A2ΩB2-Ω2+iΩΓBاین فرایند بصورت اتوماتیک دارای تطابق فازی نیز هست، بنابراین بیان معادلات برای شدت های دو موج اپتیکی ممکن است. شدت ها به این صورت تعریف می شوند [5]:
Ii=nc2πAiAi* (2-16)
بنابراین:
dI1dz=-gI1I2,dI2dz=-gI1I2 (2-17)
که در آن g فاکتور بهره است که با یک تقریب مناسب به این صورت داده می شود:
g=g0ΓB/22ΩB-Ω2+ΓB/22 (2-18)
که خط مرکزی بهره به این صورت می باشد:
g0=γe2 ω2nvc3 p0ΓB (2-19)
برای حل معادلات dI1dz وdI2dz ابتدا فرض می کنیم که شدت پمپ ثابت است، =cte I1 بنابراین:
I2z=I2LegI1L-z (2-20)
در این حالت یک موج استوکس داخل محیط در z=L تزریق می شود که یک رشد نمایی را تجربه می کند.
این تئوری برای شرح انتشار موج در فرکانس آنتی استوکس نیز بکار می رود. ωas ≅ ωL+ ΩB به این صورت تعریف می کنیم که ω1را با ωasو ω2 را با ωL جایگزین می کنیم، از طرفیI2z=cte بنابراین:
I1z=I10e-gI2z (2-21)
از آنجا که ω1در جهت مثبت محور z ها منتشر می شود، دیده می شود که این موج یک اتلاف را در مسیر خود تجربه می کند.
وقتی که موج استوکس در حد شدتی قابل مقایسه با موج پمپ رشد داده شود، یک کاهش موثر موج پمپ باید اتفاق بیافتد، در این حالت باید معادلات کوپل شده شدت بصورت همزمان برای شرح فرایند پراکندگی بریلوئن القایی حل شوند. با استفاده از معادله (2-17) دیده می شود که:
dI1dz=dI2dz (2-22)
بنابراین:
I1z=I2z+c (2-23)
که مقدار ثابت انتگرال، C، به شرایط مرزی وابسته است. با استفاده از رابطه بالا و رابطه(2-17) داریم:
dI2I2I2+c=-g dz (2-24)


با انتگرال گیری از این رابطه خواهیم داشت:
I2(0)I2(z)dI2I2I2+c=0zg dz' (2-25) که:
lnI2zI20+cI20I2z+c=-gcz (2-26)
بنابراین: z=0 را در I2 از آنجایی که
C=I1 0-I2(0) (2-27)
با حل معادله بالا برای (z) I2 داریم:
I2z=I20I1 0-I20I1 0expgzI1 0-I20-I20 (2-28)
بنابراین:
(2-29) I1z=I2z+I1 0-I2(0)از آنجا که مقادیر مرزی I1 0و I2 L را می دانیم، بنابراین I2 0 را می توان با استفاده از این مقادیر مشخص کرد:
(2-30) I2(L)=I1 0I2 0I1 01-I2 0I1 0exp gI1 0 L1-I2 0I1 0-I2 0I1 0با استفاده از این رابطه می توان مقدار نا معین I2 0I1 0 را بدست آورد.
برای یک تولید کننده پراکندگی بریلوئن القایی، هیچ میدان استوکسی بصورت خارجی وارد ناحیه نمی شود، بنابراین مقدار شدت استوکس در نزدیکی مرز z=L مشخص نیست. فرآیند پراکندگی بریلوئن القایی توسط فونونهای آکوستیکی که از پراکندگی بریلوئن خود به خود در نزدیکی صفحه خروجی، z=L، تولید می شوند، آغاز می شود. بنابراین انتظار داریم که شدت موج ورودی استوکس، I2(L)، با، I1(L) متناسب باشد، این ثابت تناسب را با f نشان می دهیم:
(2-31) I2L=fI1(L)
حال حالت نزدیک ولی زیر حد آستانه برای پراکندگی بریلوئن القایی را در نظر می گیریم، بصورتی که انعکاس آن یعنی R=I2 0I1 0 خیلی کوچکتر از واحد باشد، در این حالت شدت لیزر در طول محیط لزوما ثابت است و شدت استوکس خروجی با شدت استوکس ورودی توسط رابطه زیر متناسب است:
I20=I2LeG (2-32)
که G=gI1 0L .چون I1 z ثابت است پسI2L=fI1(0) بنابراین داریم:
R=I2 0I1 0=feG (2-33) نتایج تجربی نشان می دهد که برای پراکندگی بریلوئن القایی باید G به یک مقدار Gth برسد که برای اغلب موارد در حدود 30-20 می باشد. f باید از درجهe-Gth باشد یا تقریبا برابر با 10-12تا 10-11باشد. برای پراکندگی بریلوئن القایی در حالت کلی باید G>Gth باشد بنابراین از معادله (2-30) داریم:
I2 LI1 0=R1-RexpG1-R -R (2-34)با یک تقریب خوب جمله-R را از مخرج کسر در سمت راست حذف می کنیم. رابطه (2-29) را به این صورت می نویسیم:
I1 L-I2 L=I1 0-I2 0 (2-35)
با استفاده از معادله (2-31) و فرض کوچک بودن f، سمت چپ معادله بالا را با f-1 I2 L جایگذاری می کنیم، با ضرب دو طرف معادله در fI1 0داریم:
I2 LI1 0=f 1-R (2-36)
وقتی این معادله در رابطه (2-34) قرار داده شود خواهیم داشت:
(2-37) GGth=Gth-1InR+11-Rکه در آن به جای Inf ، Gth قرار داده شده است. در شکل (2-4) وابستگی انعکاس SBS به بهره سیگنال کوچک، نشان داده شده است [5]:

شکل (2- SEQ شکل_(2- * ARABIC 4) وابستگی انعکاس SBS به بهره سیگنال کوچک.همانطور که در شکل(2-4) دیده می شود، در صورتی که G کمتر از Gth باشد، هیچ موجی استوکسی دیده نمی شود. برای مقادیر بزرگتر از Gth، R ناگهان رشد می کند. در شرایطی که G>>Gth ، این R به سمت 100%می رود. کمی بالاتر از شرایط آستانه پراکندگی بریلوئن القایی مثلا G≥3Gth می توان معادله (2-37) را به این صورت تقریب زد:
GGth=11-R (2-38)
بنابراین داریم:
G≥Gth , R=1-1GGth (2-39)
از آنجایی که شدت I1 L به این صورت داده می شود، I1 L=I1 0 1-R ، در شرایطی که رابطه قبلی صادق باشد، شدت پرتو عبوری به این صورت بیان می گردد:
I1 L=GthgL (2-40)
با بدست آوردن مقدار شدت استوکس در صفحه z=0 از رابطه (2-37)، توزیع شدت ها در طول محیط بر همکنش از معادلهI2z و I1z بدست می آید. شکل زیر توزیع شدت ها در ناحیه برهمکنش یک تولید کننده پراکندگی بریلوئن القایی را نشان می دهد.

شکل (2- SEQ شکل_(2- * ARABIC 5) توزیع شدت استوکس و لیزر در ناحیه
بر همکنش تولید کننده SBS ]5[حال می توان مقدار مینیمم توان لیزر، Pth ، را برای بر انگیخته کردن پراکندگی بریلوئن القایی تحت شرایط بهینه تقریب زد. فرض می کنیم که پرتو لیزر یک پروفایل گاوسی دارد که داخل یک محیط فعال بریلوئن متمرکز شده است. مقدار شدت پرتو در کمر پرتو، I=Pπ w02 می باشد، که w0کمر پرتو می باشد. طول ناحیه بر همکنش، L، به طول مشخصه پراش، b=2π w02λمحدود می گردد. بنابراین بجای G=g IL می توان نوشت:
G=2gPλ (2-41)
با مساوی قرار دادن این عبارت با Gth، می توان مقدار مینیمم توان لیزر مورد نیاز برای برانگیختن پراکندگی بریلوئن القایی را بدست آورد:
Pth=Gth λ2g (2-42)
2-3- خلاصه فصلبرای اینکه بتوانیم اصول پراکندگی نور را در فیبرهای نوری بررسی کنیم نیاز به شناخت کامل انواع پراکندگی نور در مواد داشتیم . از آنجاییکه در این پایان نامه به بررسی SBS آبشاری در فیبر نوری می پردازیم لازم بود که پراکندگی بریلوئن برانگیخته (القایی) به طور کامل بررسی شود. زیرا قبل از اینکه SBS در فیبر نوری بررسی شود ، باید اصول آن و چگونگی رخداد آن به طور پایه در مواد شفاف بررسی شود. همانطوریکه مشاهده شد معادلات شدتهای موج ورودی و موج استوکس را در حالتهای مختلف بدست آوردیم. در فصل بعدی به بررسی ساختار فیبرهای نوری و مشخصه های آنها و همچنین منابع نوری که امروزه در عمل استفاده می شود می پردازیم وعلت استفاده از نوع فیبر نوری و منبع نوری با طول موج خاص که در شبیه سازی های این پایان نامه انجام گرفته است را توضیح می دهیم.
فصل سوم2120265-2540000
فیبر نوری و مشخصه های آن3-1- مقدمهانتقال اطلاعات در سالهای اخیر بوسیله فیبر نوری بسیار مورد توجه قرار گرفته است. انواع و اقسام فیبرهای نوری با توجه به کاربرد، مزایا و معایب آنها طراحی و ساخته شده اند. همچنین منابع نوری مختلفی با توجه به پیشرفت ساخت فیبرهای نوری ساخته شده اند. در این فصل به بررسی ساختار ، عملکرد و مشخصه های فیبرهای نوری می پردازیم و توضیح می دهیم که چه نوع فیبر نوری و منبع نوری با چه طول موجی در سالهای اخیر برای انتقال اطلاعات در سیستمهای عملی امروزه استفاده می شود. بنابراین در این پایان نامه نیز نتایج شبیه سازیها با استفاده از فیبرها و منابع نوری با طول موج سیستمهای نوین امروزی می باشد. در انتهای این فصل به بررسی سرعت انتقال اطلاعات در فیبر نوری می پردازیم زیرا همانطوریکه در فصلهای بعدی مشاهده می کنیم پدیده SBS یا SBS آبشاری می تواند سرعت پالس نوری را در فیبر نوری تغییر دهد و باعث ایجاد تاخیر زمانی گرددکه درساخت بافرهای نوری از این پدیده استفاده می شود.

3-2- بازتاب کلی داخلی
کلادون، ویلر و تیندال ]17[ در هر یک از آزمایشاتشان به پدیده ای به نام بازتاب کلی داخلی که اساس درک انتقال نوری است متکی بودند. بنابراین ما هم مجبوریم که به فیزیک اپتیک بپردازیم.
اگر تکه ای چوب را در آب فرو کنیم متوجه خمیدگی ظاهر آن شده و یا حتی آدم گرسنه ای که سعی در شکار ماهی دارد متوجه می شود که ماهی در جائی که به نظر می آید باشد نیست. این پدیده یا شکست نور به علت تفاوت ضریب شکست هوا با آب رخ می دهد. ضریب شکست، مقدار نسبتی است که بین سرعت نور در خلاء و سرعت نور در محیطی دیگر برقرار است. نور در محیط های فیزیکی کند تر از هوا حرکت می کنند و بدین ترتیب ضریب شکست (n) را می توان از رابطه زیر بدست آورد:
سرعت نور در محیط دیگر/ سرعت نور در خلاء
ضریب شکست هر محیط دیگری بزرگتر از یک است.
این موضوع چه اهمیتی دارد؟ اهمیت این موضوع در آن است که در حقیقت نور هنگامی خم می شود که از محل تلاقی دو محیطی که دارای ضریب شکست متفاوتی هستند عبور کند. برای مثال اگر یک منبع نور، پرتو نوری را به درون فیبر شیشه ای بتاباند نور خم می شود زیرا از هوا به درون شیشه عبور می کند. میزان خمش نور به دو عامل بستگی دارد: تفاوت ضریب شکست دو محیط و زاویه ای که تحت آن نور به شیشه برخورد می کند یا همان زاویه تابش. این زاویه برابر زاویه ای است که خط عمود بر سطح دو محیط با پرتو تابش می سازد. برای سیستم های انتقال فیبر نوری این موضوع حائز اهمیت است. (شکل 3-1)

شکل (3- SEQ شکل_(3- * ARABIC 1) زاویه تابش و ضریب شکست
رابطه بین زوایه تابش و زاویه شکست قانون اسنل نام دارد. این قانون در سیستم های فیبر بسیار مهم بوده زیرا سعی می شود که نور حاصل از منبع طوری به فیبر تابانده شود که زاویه تابش به حداقل برسد. در صورتی که زاویه تابش بیش از حد بزرگ باشد، نور از شیشه خارج می شود که در این حالت افت سیگنال خواهیم داشت (شکل 3-2).

شکل (3- SEQ شکل_(3- * ARABIC 2) قانون اسنل
بر طبق قانون اسنل، اگر زاویه تابش بیشتراز زاویه حد باشد، شکست اتفاق نمی افتد. اگر نور به سطح جدا کننده محیط هوا و شیشه (ماده ای با ضریب شکست بیشتر) طوری بتابد که زاویه آن به اندازه کافی کم باشد، در این صورت نور خارج نخواهد شد و دوباره به شیشه بر خواهد گشت. این فرایند (شکل 3-3) بازتاب کلی نامیده می شود که اساس انتقال از طریق فیبر نوری است.

شکل (3- SEQ شکل_(3- * ARABIC 3) بازتاب کلی
هر چه نور بیشتری درون فیبر نگه داشته شود، شدت (توان) سیگنال ارسالی نیز بهتر خواهد بود زاویه ای که تحت آن پرتو تابش به سطح فیبر برخورد می کند، زوایه پذیرش یا روزنه عددی نام دارد. اگر هدف ارسال سیگنال به مسافت نسبتا زیاد باشد این زاویه مهم جلوه می کند. پس لازم است که در هنگام کار با دستگاه های لیزر احتیاط لازم را مبذول داشت و اطمینان حاصل کرد که وجهی از لیزر که سیگنال را تولید می کند تا حد امکان با سطح فیبر به ویژه مقطع عرضی فیبر که نور از آن عبور می کند همتراز باشد. (شکل3-4).

شکل (3- SEQ شکل_(3- * ARABIC 4) زاویه پذیرش
با دقت بیشتر متوجه می شویم که فیبر تک مد دارای سطح مقطعی با قطر تقریبا 8 میکرون است پس لیزر نیز باید حدودا این قطر را داشته باشد تا بتواند از درون آن عبور کند. توجه کنید که قطر موی انسان در حدود 50 میکرون است.
حتی در بهترین سیستم ها، با حدود 4 درصد سیگنال در سطح جدا کننده هوا/ شیشه و بین لیزر و کر فیبر هدر می رود. در صنعت به این افت، افت فرنل اطلاق می شود. فیبر نوری به دلیل طراحی ویژه اش، نور را به درستی هدایت می کند. فیبر نوری شامل دو لایه است: سطح مقطع درونی که از میان آن نور سیر می کند و غلاف خارجی که نور را در درون هسته نگه می دارد. (شکل3-5)

شکل (3- SEQ شکل_(3- * ARABIC 5) فیبر نوری
این پدیده با استفاده از قانون اسنل انجام می گیرد. در یک فیبر نوری، ضریب شکست هسته، کمی بیشتر از ضریب شکست غلاف است. به این ترتیب، زاویه تابش به حداقل رسیده و نور نا چیزی از هسته، خارج می شد. اگر غلاف وجود نداشته باشد، بیشتر نور از هسته خارج شده و هدر می رود.
3-3- منابع نوری
امروزه، متداولترین منابع نوری برای سیستم های نوری از نوع دیود های نور افشان یا دیود های لیزری می باشند. اگر چه از هر دو استفاده می شود ولی دیود های لیزری به دلیل داشتن سیگنال منسجم برای کاربرد های پر سرعت مناسب تر هستند. اگر چه در طول سالیان لیزر ها انواع گوناگونی از قبیل سیلیکا و هلیوم- نئون داشته اند ولی لیزر های نیمه رسانا از اوایل دهه 1960 به بعد به دلیل هزینه پایین و دوام زیادشان مورد مصرف بیشتری قرار گرفتند.
3-3-1- دیود های نور افشان (LEDs) دیود های نور افشان به دو صورت موجودند: LED با انتشار سطحی و LED با انتشار لبه ای. LED با انتشار سطحی (شکل3-6) نور را با زاویه باز خارج می کند، بنابراین مناسب سیستم های داده های نوری که به انسجام بیشتری نیاز دارند نمی باشند زیرا متمرکز ساختن نور گسیل شده به دورن مغزی فیبر گیرنده مشکل است.

شکل (3- SEQ شکل_(3- * ARABIC 6) LED با انتشار سطحی
در عوض بیشتر به عنوان نشانگر ها و دستگاه های سیگنال دهنده کاربرد دارند. با اینحال گران نبوده و برای کاربردهای نه چندان دقیق طراحی شده اند. نوع دیگر از LED ها، LED انتشار لبه ای است (شکل 3-7).

شکل (3- SEQ شکل_(3- * ARABIC 7) LED با انتشار لبه ای
LED انتشار لبه ای نور را با زاویه باریکتری گسیل کرده و فضای گسیل آن کوچکتر می باشد که این به معنای سهولت تمرکز بر هسته فیبر است. این قطعات سریعتر از انتشار سطحی می باشند ولی یک نقص دارند: به دما حساس بوده و باید در شرایط محیطی کنترل شده نصب شوند تا از پایداری سیگنال ارسالی اطمینان یافت.
3-3-2- دیود های لیزری
یک دیود لیزری سطح گسیل کوچکتری دارد و معمولا قطرش بیشتر از چند میکرون نیست یعنی می توان مقدار زیادی نور گسیل شده را به درون یک فیبر هدایت کرد. به دلیل داشتن منبعی منسجم، زاویه گسیل دیود لیزری بی نهایت کوچک است. دیود های لیزری سریع ترین قطعه در میان سه قطعه گفته شده می باشند ]18[.
انواع گوناگونی از دیود های لیزری موجودند. متداول ترین آن ها عبارتند از : لیزر مدوله شده الکترون- جاذب (EML) که لیزر دارای موج پیوسته(CW) را با یک دستگاه دیافراگم مدوله کننده ترکیب می کند، لیزر بازخورد توزیعی که یک ساختار توری مجتمع برای حفظ فرکانس خروجی در حد معینی می باشد؛ یک لیزر از نوع گسیل سطحی کاواک عمودی (VCSEL) که از فضای ریز و مدوری نور را ساطع کرده و منجر به تولید پرتوی نوری می شود که نسبت به انتشار سطحی ها پخش کمتری دارد. VCSELها قطعات چند بسامدی و ارزان و با توان پایین محسوب می شوند.
(شکل 3-8) ویژگی های گسیل سه دستگاه را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 8) مقایسه گسیل نور بین LED و دیود لیزری
LED انتشار سطحی گسترده ترین گسیل را داشته و بعد از آن انتشار خطی قرار دارد. دیود لیزری دارای منسجم ترین نور بوده و بنابراین موثرترین نوع نور محسوب می شود. در حقیقت، توزیع فضایی شدت پرتو خروجی این LED نسبت به لیزر نسبتا مناسب تر است همان طور که در شکل(3-9) مشخص است. (محور عمودی درجه بندی نشده است)

شکل (3- SEQ شکل_(3- * ARABIC 9) توزیع فضایی شدت پرتو LED و لیزر
3-4- مزایا و معایب فیبر نوری برای انتقال سیگنال
انواع بسیار متنوعی از فیبر های نوری موجود می باشند، بعضی از آن ها متعلق به نسل قبلی تکنولوژی نوری بوده و هنوز هم کاربرد دارند. در مابقی نیز تغییرات کلی یا جزئی صورت گرفته است.
در حقیقت از دو نوع فیبر استفاده می شود: چند مدی که ابتدایی ترین فیبر نوری است و قطر مغزی آن زیاد بوده و در فواصل کوتاه عمل می کند و پهنای باند کمی دارد. فیبر تک- مد مغزی باریک بوده، پهنای باند بیشتر داشته و مناسب برای فواصل بیشتر است. به جزئیات و انواع این دو بعدا خواهیم پرداخت.
برای درک دلیل وجود اشکالات گوناگون فیبر باید نکاتی را در نظر گرفت که در ابتدا مهندسان طراح شبکه های نوری مواجه با آن بودند.
فیبر نوری مزایای زیادی نسبت به مس دارد. سبک وزن بوده و پهنای باند آن بیشتر است و در ضمن قدرت کشسانی آن بسیار قابل توجه می باشد و می تواند بطور همزمان چند کانال را پوشش داده و نسبت به تداخلات الکترو مغناطیسی نیز مقاوم تر است. با اینحال استفاده از فیبر نوری مشکلاتی دارد که نمی توان از آن ها چشم پوشی کرد. اولین مشکل اتلاف یا تضعیف سیگنال ارسالی در طی مسافت است. تضعیف نتیجه دو عامل است: اولی تفرق و جذب بوده که هر یک اثر دیگری را افزایش می دهد و دومی پاشندگی نامیده می شود و منظور از آن پخش کردن سیگنال ارسالی می باشد که مشابه با نویز است.
3-4-1- تفرق
پراکندگی به دلیل نا خالصی ها یا بی نظمی های موجود در ساختار فیزیکی خود فیبر رخ می دهد: معروف ترین تفرق، تفرق رایلی است که توسط یون های فلزی درون شبکه سیلیس ایجاد می شود و منجر به تفرق پرتوهای نور در جهات مختلف می شود. این پدیده در (شکل3-10 ) نشان داده شده است.

شکل (3- SEQ شکل_(3- * ARABIC 10) تفرق نور
تفرق شعاع نور غالبا در حدود طول موج های 1000nm رخ می دهد و مسئول 90 درصد تضعیف نور در سیستم های نوری مدرن است. این پدیده هنگامی رخ می دهد که طول موج های نور ارسالی هم اندازه ساختارهای مولکولی فیزیکی شبکه سیلیسی باشند، بدین ترتیب طول موج های کوتاه نسبت به طول موج های بلند تر بیشتر تحت تاثیر تفرق عادی تابش ها قرار می گیرند. در حقیقت به دلیل تفرق عادی تابش ها است که آسمان به نظر آبی می آید. طول موج های کوتاه تر نور (آبی) بیشتر از طول موج های بلند تر نور پراکنده می شوند.
3-4-2- جذب
جذب در نتیجه سه عامل رخ می دهد: یون های هیدورکسیل (-OH: آب) موجود در سیلیس، ناخالصی های سیلیسی و باقی مانده های حاصل از فرآیند تولید. این ناخالصی ها، انرژی سیگنال ارسالی را جذب کرده و آن را به گرما تبدیل می کنند و منجر به تضعیف سیگنال نوری می شوند. جذب هیدورکسیل در 25/1 و 39/1 میکرومتر صورت می گیرد: در 7/1 میکرومتر خود سیلیس نیز به دلیل رزونانس طبیعی دی اکسید سیلسیوم شروع به جذب انرژی می کند.
3-4-3- پاشندگی
همان طور که قبلا نیز اشاره شد، پاشندگی یک اصطلاح نوری برای پخش پالس نور ارسال شده در هنگام عبور آن از فیبر است. این پدیده محدود کننده پهنای باند بوده و به دو صورت می باشد: پاشندگی چند - مد و پاشندگی رنگی.
پاشندگی رنگی نیز به دو صورت وجود دارد: پاشندگی ماده و پاشندگی طول موج
پاشندگی چند - مد: برای درک پاشندگی چند - مد ابتدا باید مفهوم مد را متوجه شد. (شکل3-11) ، فیبری را با هسته نسبتا پهن نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 11) فیبر با هسته پهن.به دلیل پهنای هسته آن، پرتوهای نور تحت زوایای گوناگون ( در این مورد سه تا) وارد فیبر شده و تا گیرنده انتقال می یابند. به دلیل مسیر های پیموده شده هر پرتوی نور یا مد بطور همزمان به گیرنده نرسیده و سیگنال پراکنده ای را موجب می شوند.
حال به (شکل 3-12) نگاه کنید.

شکل (3- SEQ شکل_(3- * ARABIC 12) فیبر با هسته باریکمغزی بسیار باریکتر بوده و تنها اجازه عبور یک پرتوی نور یا مد را می دهد. این امر موجب اتلاف انرژی کمتر شده و از پاشندگی که در سیستم های چند - مد رخ می دهد جلوگیری می کند.
پاشندگی رنگی: سرعت سیر یک سیگنال نوری به طول موج آن بستگی دارد. اگر سیگنالی متشکل از چند طول موج باشد در این صورت هر یک با سرعت متفاوتی حرکت می کنند و باعث پخش و یا پراکنده شدن سیگنال می گردند. همان طور که پیشتر نیز بیان شد، پاشندگی رنگی به دو صورت پاشندگی ماده و پاشندگی موجبر است.
پاشندگی ماده: این حالت به این دلیل که طول موج های متفاوت نور درون فیبر نوری با سرعت های مختلفی سیر می کنند اتفاق می افتد. برای به حداقل رساندن این پدیده دو عامل را باید در نظر گرفت: اولین عامل تعداد طول موج هایی است که سیگنال ارسالی را تشکیل می دهند. برای مثال یک LED ، گستره ای از طول موج های 30nm تا 180 nm را گسیل می کند در حالی که لیزر، طیف باریکتری یعنی کمتر از 5nm را گسیل می کند. بدین ترتیب، سیگنال لیزری نسبت به سیگنال LED بسیار کمتر تحت تاثیر این پدیده قرار می گیرد.
دومین عامل که در میزان پاشندگی ماده اثر دارد، ویژگی به نام طول موج مرکزی سیگنال منبع است. در مجاورت 850nm طول موج های بلند تر یعنی قرمز سریعتر از طول موج های کوتاهتر یعنی آبی حرکت می کنند ولی در 1550 nm، این حالت بر عکس می شود و طول موج های آبی سریعتر حرکت می کنند. البته در این میان نقطه ای وجود دارد که میزان پاشندگی در آن به حداقل مقدار خود می رسد که در گسترده nm1310 بوده و طول موج پاشندگی صفر نامیده می شود. واضح است که این نقطه، محل ایده آلی برای ارسال سیگنال داده ها است زیرا اثرات پاشندگی به حداقل می رسد. همان طور که بعدا نیز خواهیم دید، عوامل دیگری نیز اثر گذار هستند، در فیبرهای تک- مد، پاشندگی ماده بسیار دردسر ساز است.
پاشندگی موجبر: به دلیل متفاوت بودن ضریب شکست های غلاف و هسته فیبر، سرعت نور در هسته کمی کمتر از سرعت نور در غلاف است. این امر منجر به پاشندگی می شود ولی با تغییر طول موج به مقدار بخصوصی می توان پاشندگی موجبر و ماده را به حداقل رساند.
فکر می کنید این مطالب چه ارتباطی با انتقال سرعت بالای صدا، تصویر و داده داشته باشد؟ اطلاع از اینکه در کجا پاشندگی و تضعیف نور صورت می گیرد به مهندسان طراح نوری کمک می کند تا با در نظر گرفتن نوع فیبر و مسافت و عوامل دیگری که بر شدت سیگنال ارسالی اثر می گذارند، بهترین طول موج ارسالی را تعیین کنند. به منحنی (شکل 3-13) نگاه کنید که قلمروی انتقال نوری و همچنین نواحی بروز مشکل را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 13) منحنی تغییرات اتلاف بر حسب طول موجتضعیف dB/km روی محور y و طول موج بر حسب نانومتر در راستای محور x نشان داده شده اند.
توجه کنید که چهار پنجره انتقال در نمودار وجود دارند. اولین پنجره در حدود 850nm، دومی 1310nm، سومی در 1550nm و چهارمی در 1625nm می باشند. دو پنجره آخر باند L و باند C نامیده می شوند. در ابتدا باند 850 nm به دلیل تطابق آن با طول موج LED مورد استفاده قرار گرفت.
دومین پنجره در 1310nm از پاشندگی پایین برخوردار است. در اینجا اثرات پاشندگی به حداقل می رسند. 1550nm یا به اصطلاح باند c موج ایده آل برای سیستم های دور برد می باشد. در این ناحیه افت و پاشندگی به حداقل می رسد. باند L نسبتا جدید بوده و پنجره موثر دیگری محسوب می شود. یک باند جدید به نام باند s نیز تحت بررسی می باشد.
توجه کنید که تفرق رایلی در 1000nm یا حدود آن رخ می دهد در حالی که جذب هیدوکسی در 1240nm و 1390 nm صورت می گیرد.
نیازی به ذکر این مطلب نیست که طراحان شبکه از نقاطی روی منحنی که تفرق رایلی رخ می دهد اجتناب کردند. تفرق رایلی، افت زیاد و جذب هیدوکسیل، بالاترین تاثیر را در آن نقاط دارند. توجه داشته باشید که در پنجره دوم نمودار، خط پایینی یا پاشندگی به حداقل مقدار می رسد در حالی که در پنجره سوم، خط بالائی یا افت سیگنال به حداقل مقدار ممکن می رسد. در حقیقت، در فیبر تک- مد در طول موج 1310nm پاشندگی به حداقل رسیده در حالی که در 1550nm افت به حداقل مقدار می رسد. دراین صورت این سوال مطرح می شود: شما خواهان به حداقل رساندن کدام کمیت هستید، افت یا پاشندگی؟
خوشبختانه امروزه مجبور به این انتخاب نیستید. اکنون (DSF) ها بسیار متداول شده اند. مهندسان با اصلاح فرایند ساخت قادر به تغییر نقطه ای هستند که در آن حداقل پاشندگی از 1310nm تا 1550nm وجود دارد و در نتیجه قادر به تطابق آن به نقطه ای می باشند که افت به حداقل می رسد یعنی افت و پاشندگی در یک طول موج رخ می دهند. به همین دلیل در فصلهای بعدی پایان نامه از فیبر (DSF) و طول موج منبع نوری در حدود nm1550 استفاده می کنیم.
3-4-4- اثرهای غیر خطی های فیبر
همان طور که تقاضای بازار برای انتقال سیگنال به مسافت بیشتر با حداقل تقویت و تعداد طول موج های بیشتر در هر فیبر و در عین حال نرخ ارسال بیت های بالاتر و توان بیشتر، افزایش یافت یکسری عیوب تحت عنوان غیر خطی های فیبر مهندسان را به چالش خواند. این مشکلات فراتر از افت و پاشندگی بود و موانع اجرایی مهمی محسوب می شدند.