—d1896

3-4. شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو36
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. فازهای مجزا نمونه روی همزن52
4-2. نمونه‌های در قالب ریخته شده52
4-3. نمونه الکوژل53
4-4. نمونه آئروژل54
4-5. تصاویر FE-SEM نمونه‌ها الف) 10%، ب) 15%، ج) 20%.55
4-6. نمودار توزیع اندازه ذرات الف) 10%، ب) 15% و ج) 20%56
4-7 . پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% پیش از عملیات حرارتی58
4-8. پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% در دمای 600 درجهی سانتیگراد59
4-9. پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% در دمای 800 درجهی سانتیگراد60
4-10. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 600 درجه‌ی سانتی ‌گراد61
4-11. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 800 درجه‌ی سانتی ‌گراد62
4-12. طیف‌های جذبی FT-IR الف) 10%، ب) 15% و ج) 20%.65
4-13. تصویر TEM یکی از نمونه‌ها67
4-14. نمودارهای لانگمیر الف) 10%، ب) 15% و ج) 20%69
4-15. نمودارهای BET الف) 10%، ب) 15% و ج) 20%71
4-16. جذب و واجذب الف) 10%، ب) 15% و ج) 20%.72
4-17. حلقه پسماند نمونه‌ها قبل از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.74
4-18. حلقه پسماند نمونه‌ها بعد از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.75

فهرست جداول
عنوان صفحه
فصل سوم - ساخت آئروژل و کاربردهای آن
3-1. کاربردهای مختلف آئروژل‌ها48
TOC o "1-3" h z u
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. میزان گرم و لیتر مواد مورد نیاز51
4-2. نتایج حاصل از XRD63
لیست علایم و اختصارات
برونر، امت، تلر(Brunauer, Emmett, Teller) BET
پراش پرتو ایکس (X-Ray Diffraction) XRD
مغناطیسسنج نمونهی ارتعاشی (Vibrating Sample Magnetometer) VSM
میکروسکوپ الکترونی گسیل میدانی (Field Emission Scanning Electron Microscopy) FE-SEM
میکروسکوپ الکترونی عبوری (Transmission Electron Microscopy) TEM
آنگسترم (Angestrom) Å
اورستد (Oersted) Oe
نانومتر (Nanometer) nm
واحد مغناطیسی (Electromagnetic Units) emu
فصل اولمفاهیم اولیه1854668136024
مقدمهاز اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.
در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شدهاست. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتیمتر به اندازه‌هایی در حدود یک دهم نانومتر یا کمتر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [1].
1-1 شاخه‌های فناوری نانوتفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهمترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و میتوانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعهای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [4].
1-2 روش‌های ساخت نانوساختارهاتولید و بهینهسازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [6 و5]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی و رشد خود به خودی. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:
 چگالش بخار
 سنتز شیمیایی
 فرآیندهای حالت جامد (خردایشی)
 استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
 استفاده از امواج ماکروویو و امواج مافوق صوت
 استفاده از باکتری‌هایی که میتوانند نانوذرات مغناطیسی و نقره‌ای تولید کنند
پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکشدهی یا اصلاح شیمیایی نیز استفاده کرد [7].
1-3 کاربردهای نانوساختارهایکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.
با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشهها، عمر آن‌ها را نیز چندین برابر نمودهاست .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوششهای سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با استفاده از نانوذرات تولید شده‌اند.
وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیشماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفته‌اند. هاروتا و تامسون اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [7].
1-4 مواد نانومتخلخلمواد نانو متخلخل دارای حفره‌هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن‌ها را فضای خالی تشکیل می‌دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی زیاد، گزینشپذیری خوب و مقاومت گرمایی و صوتی از ویژگی‌های مهم آن‌ها می‌باشد. با توجه به ویژگی‎‌های ساختاری، این به عنوان تبادل‌گر یونی، جدا کننده، کاتالیزور، حس‌گر، غشا و مواد عایق استفاده می‌شود.
نسبت حجمی فضای خالی ماده‌ی متخلخل به حجم کل ماده‌ تخلخل نامیده میشود. به موادی که تخلخل آن‌ها بین 2/0 تا 95/0 باشد نیز مواد متخلخل می‌گویند. حفره‌ای که متصل به سطح آزاد ماده است حفره‌ی باز نام دارد که برای صاف کردن غشا، جداسازی و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی (جداسازی مواد با استفاده از رنگ آن‌ها) مناسب است. به حفره‌ای که دور از سطح آزاد ماده است حفره‌ی بسته می‌گویند که وجود آن‌ها تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره‌ها دارای اشکال گوناگونی همچون کروی، استوانهای، شیاری، قیفی شکل و یا آرایش شش گوش هستند. همچنین تخلخل‌ها می‌توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [7].
بر اساس دستهبندی که توسط آیوپاک صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفره‌ها، مواد سازنده و نظم ساختار به سه گروه تقسیمبندی میشوند که در شکل 1-1 نشان داده شده است:
الف) دسته بندی بر اساس اندازهی حفره:
میکرومتخلخل: دارای حفرههایی با قطر کمتر از 2 نانومتر.
مزومتخلخل: دارای حفرههایی با قطر 2 تا 50 نانومتر.
right59626500ماکرومتخلخل: دارای حفرههایی با قطر بیش از 50 نانومتر.
center1720850شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].
0شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].

بر اساس شکل و موقعیت حفره‌ها نسبت به یکدیگر در داخل مواد متخلخل، حفره‌ها به چهار دسته تقسیم می‌شود: حفره‌های راه به راه، حفره‌های کور، حفره‌های بسته و حفره‌های متصل به هم که در شکل (2-1) به صورت شماتیک این حفره‌ها را نشان داده شده است.

شکل 1-2 نوع تخلخل‌ها بر اساس شکل و موقعیت [8].
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل را برای موادی که دارای حفرههایی با قطر کمتر از 100 نانومتر هستند به کار می‌برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.
ب) دستهبندی بر‌اساس مواد تشکیل دهنده:
مواد نانومتخلخل آلی
مواد نانومتخلخل معدنی
تقسیمبندی مواد نانومتخلخل آلی
1) مواد کربنی: کربن فعال، کربنی است که حفره‌های بسیار زیاد دارد و مهم‌ترین کربن از دسته مواد میکرومتخلخل است.
2) مواد بسپاری: مواد نانو متخلخل بسپاری به دلیل ساختار انعطاف‌پذیر خود، حفره‌های پایداری ندارند و تنها چند ترکیب محدود از این نوع وجود دارد [8].
تقسیم بندی مواد نانومتخلخل معدنی
1) مواد میکرومتخلخل
زئولیت‌ها: مهم‌ترین ترکیبات میکرومتخلخل بوده که دارای ساختار منظم بلوری و حفره‌دار با بار ذاتی منفی می‌باشند. در اکثر موارد ساختار زئولیتی از قطعات چهار وجهی با چهار اتم اکسیژن و یک اتم مرکزی مثل آلومینیوم، سیلیکون، گالیم یا فسفر تشکیل شده‌اند که با کاتیون‌ها خنثی می‌شوند [8].
چارچوب فلزی-آلی: از واحد‌های یونی فلزی یا خوشه‌ی معدنی و گروه‌های آلی به عنوان اتصالدهنده تشکیل شده است که اتصال آن‌ها به هم، حفره‌ای با شکلی معین مانند کره یا هشت وجهی به وجود می‌آورد. ویژگی بارز این ترکیبات، چگالی کم و سطح ویژه‌ی بالای آن‌هاست [9].
هیبرید‌های آلی-معدنی: از قطعاتی معدنی تشکیل شده‌اند که توسط واحد‌های آلی به هم متصل هستند [10].
2) مواد مزومتخلخل:
سیلیکا: ترکیبات MCM، معروف‌ترین سیلیکای مزومتخلخل هستند.
اکسید فلزات و سایر ترکیبات مزومتخلخل: اکسیدهای نانومتخلخل فلزات مثل تیتانیوم دی اکسید، روی اکسید، زیرکونیوم دی اکسید و آلومینا، فعالیتی بیشتر از حالت معمولی خود دارند. ترکیبات سولفید و نیترید هم میتوانند ساختار مزومتخلخل داشته باشند.
3) مواد ماکرومتخلخل:
بلور کلوییدی: از مجموعه کره‌هایی مانند سیلیکا ساخته می‌شود که فضای بین آن‌ها خالی است. در بلور کلوییدی معکوس کره‌ها توخالی و فضای بین آن‌ها پر است [10].
آئروژل‌ها مواد مزومتخلخل با سطح ویژه و حجم تخلخل بالا هستند که در فصل بعد به آن‌ها می‌پردازیم.
1-5 کامپوزیت‌هاکامپوزیت‌ها (مواد چند رسانهای یا کاهگل‌های عصر جدید) رده‌ای از مواد پیشرفته هستند که در آن‌ها از ترکیب مواد ساده به منظور ایجاد مواد جدیدی با خواص مکانیکی و فیزیکی برتر استفاده شده است. اجزای تشکیلدهنده ویژگی‌های خود را حفظ کرده، در یکدیگر حل نشده و با هم ترکیب نمی‌شوند.
استفاده از این مواد در طول تاریخ مرسوم بوده است. از اولین کامپوزیت‌ها یا چندسازه‌های ساخت بشر می‌توان به آجرهای گلی که در ساخت آن‌ها از کاه استفاده شده است اشاره کرد. هنگامی که این دو با هم مخلوط بشوند، در نهایت آجر پخته بهدست می‌آید که بسیار ماندگار‌تر و مقاوم‌تر از هر دو ماده اولیه، یعنی کاه و گل است. شاید هم اولین کامپوزیت‌ها را مصری‌ها ساخته باشند که در قایق‌هایشان به چوب بدنه قایق مقداری پارچه می‌آمیختند تا در اثر خیس شدن، آب توسط پارچه جذب شده و چوب باد نکند. قایق‌هایی که سرخپوستان با فیبر و بامبو می‌ساختند و تنورهایی که از گل، پودر شیشه و پشم ساخته می‌شدند از نخستین کامپوزیت‌ها هستند [11].
1-5-1 کامپوزیت یا مواد چندسازهچندسازه‌ها به موادی گفته می‌شود که از مخلوط دو یا چند عنصر با فازهای کاملا متمایز ساخته شده باشند. در مقیاس ماکروسکوپیک فازها غیر قابل تشخیص‌اند. اما در مقیاس‌های میکروسکوپیک فازها کاملا مجزا هستند و هر فاز خصوصیات عنصر خالص را نمایش می‌دهد. در چندسازه‌ها، نه تنها خواص هر یک از اجزاء باقی مانده بلکه در نتیجهی پیوستن آن‌ها به یکدیگر، خواص جدیدتر و بهتر بهدست می‌آید [11].
1-5-2 ویژگی‌های مواد کامپوزیتیمواد زیادی می‌توانند در دسته‌بندی مواد کامپوزیتی قرار بگیرند، در واقع موادی که در مقیاس میکروسکوپی قابل شناسایی بوده و دارای فازهای متفاوت و متمایز باشند در این دسته‌بندی قرار می‌گیرند. امروزه کامپوزیت‌ها به علت وزن کم و استحکام بالا در صنایع مختلف، به طور گستره‌ای مورد استفاده واقع می‌شوند. کامپوزیت‌ها با کاهش وزن و ویژگی‌های فیزیکی بسیار عالی، گزینه‌ای مناسب برای استفاده در تجهیزات ساختاری می‌باشند. علاوه بر ‌این، کامپوزیت‌ها جایگزین مناسب برای مواد سنتی در کاربردهای صنعتی، معماری، حمل و نقل و حتی در کاربردهای زیر بنایی می‌باشد [12].
یکی از ویژگی‌های بارز کامپوزیت‌ها، حضور فاز تقویـتکننده مجزا از فاز زمینه می‌باشد. ویژگی‌های اختصاصی این دو فاز، در ترکیب با یکدیگر، ویژگی‌های یکسانی را به کل کامپوزیت می‌بخشد. در یک دسته‌بندی ویژه، کامپوزیت‌ها همواره به دو فاز زمینه و تقویتکننده تقسیم می‌شوند. می‌توان گفت در واقع زمینه مانند چسبی است که تقویتکننده‌ها را به یکدیگر چسبانده و آن‌ها را از آثار محیطی حفظ می‌کند.
1-5-3 مواد زمینه کامپوزیتزمینه با محصور کردن فاز تقویت کننده، باعث افزایش توزیع بار بر روی کامپوزیت می‌گردد. در واقع زمینه، برای اتصال ذرات تقویتکننده، انتقال بارها به تقویتکننده، تهیه یک ساختار شبکه‌ای شکل از آن‌ها و حفظ تقویتکننده از آثار محیطی ناسازگار به کار گرفته می‌شود.
1-5-4 تقویتکننده‌هادسته‌ای از مواد معمولی که به عنوان فاز تقویت کننده به کار گرفته می‌شوند، عبارتند از شیشه‌ها، فلزات، پلیمرها و گرانیت. تقویتکننده‌ها در شکل‌های مختلفی از جمله فیبرهای پیوسته، فیبرهای کوتاه یا ویسکرها و ذرات تولید می‌شوند (شکل3-3). تقویت کننده‌ها باعث ایجاد ویژگی‌های مطلوبی از جمله استحکام و مدول بالا، وزن کم، مقاومت محیطی مناسب، کشیدگی خوب، هزینه کم، در دسترسپذیری مناسب و سادگی ساخت کامپوزیت می‌گردند [12].
1-5-5 نانو کامپوزیتنانو کامپوزیت‌ها مواد مرکبی هستند که ابعاد یکی از اجزای تشکیلدهنده آن‌ها در محدوده نانو‌متری باشد. نانوکامپوزیت‌ها هم، در دو فاز تشکیل می‌شود. در فاز اول، ساختار بلوری در ابعاد نانو ساخته می‌شود که زمینه کامپوزیت به شمار می‌رود. در فاز دوم هم ذراتی در مقیاس نانو به عنوان تقویت کننده برای بهبود ویژگی‌ها به فاز زمینه افزوده می‌شود. توزیع یکنواخت این فاز در ماده زمینه باعث می‌شود که فصل مشترک ماده تقویت کننده با ماده زمینه در واحد حجم، مساحت بالایی داشته باشد [13].

شکل 1-3 نمایشی از انواع مختلف تقویت کننده‌ها در کامپوزیت [12].
1-6 خلاصهدر این فصل به بیان بعضی مفاهیم اولیه پرداختهشد. خلاصه کوتاهی از فناوری نانو، نانوساختارها و روش‌های ساخت آن‌ها گفته شد. بعد از آن مواد متخلخل بررسی شد و در نهایت مختصری در مورد کامپوزیت‌ها، ویژگی‌ها و نانوکامپوزیت‌ها بیان شد.
فصل دومآئروژلها و مروری بر خواص مغناطیسی15418474142773
2-1 تاریخچهحوزهی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص دادهاست.
اولین بار ساموئل استفان کیستلر در سال 1931 با ایدهی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارجکرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبهکند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیمقرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].
در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطهی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیهی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].
این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلیگرم بر سانتیمتر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].
آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آیندهی محیط زیست توسط گاز‌های گلخانهای تولید شده بهدست بشر را تأیید می‌کند. آیندهی انرژی‌های قابل دسترس به خاطر کمشدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازدهی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریبنشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعهی بیشتری نیاز دارد [17].
2-2 شیمی سطح آئروژلسیلیکا آئروژل حاوی ذرات نانومتری هستند. این ترکیبات دارای نسبت سطح به حجم بالا و مساحت سطح ویژهی زیادی هستند. شیمی سطح داخلی در آئروژل‌ها نقش اساسی را در بروز رفتار‌های بی‌نظیر فیزیکی و شیمیایی آن‌ها، ایفا می‌کند. ماهیت سطح آئروژل‌ها تا حد زیادی به شرایط تهیهی آن‌ها بستگی دارد. انتخاب فرآیند مربوط به ترکیبات شیمیایی و ویژگی‌های مورد نظر مشخص برای نانوذرات وابسته است. دو روش پایه برای تولید نانوذرات استفاده می‌شود:
روش از بالا به پایین
اشاره به خردکردن مکانیکی مواد با استفاده از فرآیند آسیابکاری دارد. در این فرآیند مواد اولیه به بلوک‌های پایهی بیشتری شکسته می‌شوند.
روش پایین به بالا
اشاره به ساخت سیستم پیچیده به وسیله ترکیب اجزای سطح اتم دارد. در این فرآیند ساختارها به وسیله فرآیندهای شیمیایی ساخته می‌شوند.
روش پایین به بالا بر پایه ویژگی‌های فیزیکی و شیمیایی اتمی یا مولکولی خود تنظیم می‌شوند. این روش به دلیل ساختار پیچیده اتم یا مولکول، کنترل بهتر اندازه و شکل آن‌ها انتخاب شد. روش پایین به بالا شامل فرآیندهای آئروسل، واکنش‌های بارش و فرآیند سل-ژل است [18].
مرحله اول ساختن آئروژل تولید ژل خیس است که بهترین روش برای ساخت آن استفاده از پیشماده الکوکسید سیلیکون، مانند TEOS است. شیمی ساخت Si(OCH2CH3)TEOS است که با اضافه کردن آب، واکنش شیمیایی زیر صورت می‌گیرد [19] :
Si(OCH2CH3)4(liq)+2(H2O)(liq)→SiO2solid+4(HOCH2CH3)liq
اتم سلیکون به دلیل داشتن بار جزئی مثبت کاهشیافته (+) نسبت به دیگر انواع آئروژل بیشتر مورد مطالعه قرار گرفت. در Si(OEt)+ حدود 32/0 است. این بار مثبت جزئی کاهش یافته، روند ژل شدن پیشماده سیلیکا را آهسته می‌کند.
پیشمادهی الکوکسید M(OR) هستندکه اولین بار توسط امبلن برای سنتز سیلیکا آئروژل استفاده شد. در این ترکیب M نشان دهندهی گروه فلزی، OR گروه الکوکسید و R تعیینکنندهی گروه الکلی هستند. الکوکسیدها معمولا در محلول منبع الکلی خود موجود هستند و امکان خشک کردن این ژل‌ها را در چنین محلول‌هایی فراهم می‌کند [20].
اگر آئروژل از طریق خشک کردن به وسیله الکل تهیه گردد، گروه‌های آلکوکسی (OR) تشکیل دهنده سطح آن است و در این سطح آئروژل خاصیت آبگریزی پیدا می‌کند. اگر تهیه آئروژل از طریق فرآیند دی اکسید کربن باشد آنگاه سطح آئروژل را گروه‌های هیدروکسید (OH) فرا می‌گیرد و خاصیت آب‌دوست پیدا خواهدکرد و مستقیما می‌تواند رطوبت هوا را جذب نماید. البته با حرارت دادن می‌توان رطوبت جذب شده را از ساختار آئروژل حذف نمود. شکل 1-2 به خوبی خاصیت آب‌دوست و آبگریزی را در ساختار آئروژل‌های با گروه‌های عاملی مختلف نشان می‌دهد [21].

شکل 2-1 برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست [18].
2-3 تئوری فیزیکیاتصال شبکه نانو مقیاس سیلیکای جامد آئروژل‌های پایه سیلیکا، ویژگی‌های منحصر به فردی را به آن‌ها می‌دهد. کسر یونی پیوند کووالانت قطبی برای اکسیدهای فلزی مختلف از رابطهی زیر نتیجه می‌شود:
Fionic=1-exp⁡(-0.25 XM-XO2)که XO و XM الکترون‌خواهی O و M را نشان می‌دهد. 2SiO مقدار Fionic 54/0 دارد که طیف مقدار زاویه Si-O-Si را گسترده کرده و شبکه تصادفی را می‌دهد. چهار اکسید دیگر زاویه یونی بزرگ‌تر و مقدار کوچک‌تر زاویه پیوند را سبب می‌شوند. به این معنی که پیوند تصادفی فقط روی ماکرومقیاس‌های بیشتر با ذرات کلوییدی بزرگ‌تر و متراکم‌تر اتفاق می‌افتد، در این صورت، ژل به جای شکلگرفتن شبکهی تصادفی اتصالات به صورت ذره تشکیل می‌شود [14]. شبکهی اتصالات سیلیکا برای وزن نسبی‌اش یک جامد محکم را ایجاد می‌کند.
2-4 خاصیت مغناطیسی مواد2-4-1 منشأ خاصیت مغناطیسی موادیکی از مهمترین ویژگی‌های مواد، خاصیت مغناطیسی آن‌هاست که از زمآن‌های نسبتا دور مورد توجه بوده و هم اکنون نیز در طیف وسیعی از کاربردهای صنعتی قرار گرفته است.
منشأ خاصیت مغناطیسی در جامدها، الکترون‌های متحرک می‌باشند. گرچه بعضی از هسته‌های اتمی دارای گشتاور دو قطبی مغناطیسی دائمی هستند ولی اثر آن‌ها چنان ضعیف است که نمی‌تواند آثار قابل ملاحظه‌ای داشته باشد؛ مگر در تحت شرایط خاص مانند اینکه نمونه در زیر دمای یک درجهی کلوین قرار گیرد یا وقتی که تحت میدان الکترومغناطیسی با بسامدی قرار گیرد که حرکت تقدیمی هسته را تشدید نماید. در بدو ظهور نظریات مغناطیس آزمایش‌های زیادی نشان داد که اندازه حرکت زاویهای کل یک الکترون و گشتاور مغناطیسی وابسته به آن بزرگ‎تر از مقداری است که به حرکت انتقالی آن نسبت داده می‌شد. بنابراین یک سهم اضافی که از خصوصیت ذاتی با یک درجه آزادی داخلی ناشی می‌شد، به الکترون نسبت داده شد و چون این خصوصیت دارای اثر مشابه چرخش الکترون حول محورش بود اسپین نامیده گردید [22].
2-4-2 فازهای مغناطیسیبه طورکلی مواد در میدان مغناطیسی خارجی رفتارهای متفاوتی از خود نشان می‌دهند و با توجه به جهت‌گیری مغناطش، به پنج گروه تقسیم می‌شوند که به بیان آن‌ها می‌پردازیم.
2-4-2-1 مواد دیامغناطیسدر این مواد الکترون‌ها به صورت جفت بوده و اتمها دارای گشتاور مغناطیسی دائمی نیستند و با قرارگرفتن در میدان مغناطیسی خارجی دارای گشتاور مغناطیسی القایی در خلاف جهت میدان خارجی می‌شوند و آن را تضعیف می‌کند. پذیرفتاری مغناطیسی χ چنین موادی منفی و خیلی کم است. خاصیت دیامغناطیس ظاهراً در تمام انواع مواد یافت می‌شود، اما اثر آن غالباً به وسیله‌ی آثار قویتر پارامغناطیس یا فرومغناطیس که می‌توانند با این خاصیت همراه باشند، مخفی می‌شود. خاصیت دیامغناطیسی خصوصاً در موادی بارز است که کلاً اتمها یا یونهایی با پوسته‌های بسته‌ی الکترونی تشکیل شده باشند، زیرا در این مواد تمام تأثیرات پارامغناطیسی حذف می‌شوند.
2-4-2-2 مواد پارامغناطیسمواد پارامغناطیس، موادی هستند که برخی از اتمها یا تمامی آن‌ها گشتاور دو قطبی دائمی دارند، به عبارت دیگر گشتاور دو قطبی در غیاب میدان مغناطیسی، غیرصفر است. این دو قطبیهای دائمی رفتاری مستقل از هم داشته که در نهایت جهت‌گیری تصادفی دارند و در میدان‌های کوچک رقابتی بین اثر هم‌خط‌سازی میدان و بی‌نظمی گرمایی وجود دارد، اما به طور متوسط تعداد گشتاورهای موازی با میدان بیشتر از گشتاورهای پادموازی با میدان است. پذیرفتاری در این مواد مثبت است و با افزایش دما، که در اثر آن بی‌نظمی گرمایی زیاد می‌شود، کاهش مییابد. منگنز، پلاتین، آلومینیوم، فلزخاکی قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت از جمله مواد پارامغناطیس‌اند.
2-4-2-3 مواد فرومغناطیس
در برخی از مواد مغناطیسی، گشتاورهای مغناطیسی کوچک به طور خودبهخود با گشتاورهای مجاور خود هم‌خط می‌شوند. اینگونه مواد را فرومغناطیس می‌نامند. در عمل، همه‌ی حوزه‌های مغناطیسی در یک ماده‌ی مغناطیسی در یک راستا قرار ندارند، بلکه این مواد از حوزه‌های بسیار کوچکی با ابعاد خیلی کمتر از میلیمتر تشکیل شده‌اند، به طوری که گشتاورهای مغناطیسی هر حوزه با حوزه‌های مجاور آن تفاوت دارد.
ممکن است سمتگیری و اندازه‌ی حوزه‌های مغناطیسی در یک ماده‌ی فرو مغناطیس به گونه‌ای باشد که در کل اثر یکدیگر را خنثی کنند و ماده در مجموع فاقد مغناطش است. اعمال میدان مغناطیسی خارجی بر حوزه‌های مغناطیسی سبب می‌شود که گشتاورهای مغناطیسی هر حوزه تحت تأثیر میدان قرار گرفته و جهت آن‌ها در جهت میدان خارجی متمایل شود. علاوه بر این حوزههایی که با میدان همسویند، رشد میکنند، یعنی حجم آن‌ها زیاد می‌شود و در نتیجه، حوزه‌هایی که سمتگیری آن‌ها نسبت به میدان مناسب نیست کوچک می‌شوند، مرز بین این حوزه‌ها جابجا می‌شود و در نتیجه ماده در مجموع خاصیت مغناطیسی پیدا می‌کند . پذیرفتاری مغناطیسی این مواد مثبت است. آهن، کبالت، نیکل و چندین عنصر قلیایی خاکی جز فرومغناطیس‌ها می‌باشند [23].
مواد فرومغناطیس دارای چند مشخصه‌ی اصلی به صورت زیر می‌باشند:
الف) مغناطش خودبه‌خودی و مغناطش در حضور میدان
ب) حساسیت مغناطش به دما
ج) مغناطش اشباع
د) منحنی پسماند
2-4-2-4 مواد پادفرومغناطیس
در مواد پادفرومغناطیس گشتاورهای مغناطیسی مجاور به صورت موازی، برابر و غیرهم راستا جهتگیری
می‌کنند. این مواد در غیاب میدان مغناطیسی دارای گشتاور صفرند. کروم و اکسیدهای آن ، جز مواد پادفرومغناطیس می‌باشند. چنین موادی معمولاً در دماهای پایین پادفرومغناطیساند. با افزایش دما ساختار نواحی مغناطیسی شکسته شده و ماده پارامغناطیسی می‌شود. این رفتار در مواد فرومغناطیس نیز اتفاق می‌افتد به این ترتیب که در این مواد پذیرفتاری مغناطیسی مواد مغناطیسی با افزایش دما به تدریج کاهش می‌یابد تا زمانی که ماده پادفرومغناطیس شود .
پذیرفتاری مغناطیسی این مواد عدد مثبت بسیار کوچک و نزدیک به صفر است. به دمایی که در آن ماده از حالت پادفرومغناطیس به فرومغناطیس گذار می‌کند، دمای نیل می‌گویند.
χ= CT+TN
که C ثابت کوری و TN دمای نیل است.
2-4-2-5 مواد فریمغناطیس
فریمغناطیس شکل خاصی از پادفرومغناطیس است که در آن گشتاورهای مغناطیسی در جهت موازی و عکس یکدیگر قرار گرفته‌اند، اما با یکدیگر برابر نیستند و به صورت کامل یکدیگر را حذف نمی‌کنند. در مقیاس ماکروسکوپی، مواد فریمغناطیس همانند فرومغناطیس بوده و دارای مغناطش خودبه‌خودی در زیر دمای کوری بوده و دارای منحنی پسماند می‌باشند[23و24]. شکل 2-2 فازهای مغناطیسی را نشان می‌دهد.

شکل 2-2 فازهای مغناطیسی، الف) پارامغناطیس، ب) فرومغناطیس، ج) پادفرومغناطیس، د) فری مغناطیس [24].
دو خاصیت مهم و کلیدی مواد مغناطیسی دمای کوری و هیستروسیس مغناطیسی است. جفت شدگی ‏تبادلی و بنابراین انرژی تبادلی هیسنبرگ مستقیماً با دمای کوری ‏‎(Tc)‎‏ مواد فرو و فریمغناطیس در ‏ارتباط است. در کمتر از دمای ‏Tc، ممان مغناطیسی همان جهت بلوروگرافی ویژه‌ی محور صفر این ‏مواد است. این محور در ‏نتیجه‌ی جفت‌شدگی این اسپین الکترون و ممنتوم زاویهای اوربیتال الکترون ایجاد می‌شود.
‏از آنجایی که مواد فرومغناطیسی مواد جالبی بر حسب کاربردهایشان هستند، خواص آن‌ها باید به ‏طور کمی اندازه‌گیری شود و حلقهی پسماند خواص مغناطیسی جالبی را در این مواد آشکار ‏می‌کند. یک حلقه‌ی پسماند را می‌توان با قراردادن نمونه در یک مغناطیس‌سنج و پاسخ ماده ‏‎(M,)‎‏ ‏به میدان مغناطیسی اعمالی ‏‎(H)‎‏ اندازه‌گیری کرد. چندین کمیت ممکن است از روی حلقه‌ی پسماند ‏به‌دست آید. ‏
اشباع مغناطیسی ‏‎(Ms)‎‏ یا اشباع مغناطیسی ویژه (‏s‏) مواردی‌اند که مقدار مغناطیسشدگی را وقتی ‏که همه دوقطبی‌ها در جهت میدان مغناطیسی اعمالی مرتب شده‌اند نشان می‌دهد.‏
مغناطیس باقیمانده ‏‎(Mr)‎‏ مغناطیسشدگی نمونه در میدان مغناطیسی صفر است و نیروی ‏بازدارندگی ‏‎(Hc)‎، نیرویی از میدان مغناطیسی است که برای تغییر مغناطیسشدگی باقیمانده نیاز است. ‏تغییر بایاس میدان ‏‎(HE)‎، مقدار جابجایی از مرکز حلقهی پسماند را نشان می‌دهد.‏
2-4-5 حلقه پسماندوقتی به یک ماده مغناطیسی، میدان مغناطیسی اعمال شود، مغناطش محیط سریع افزایش می‌یابد، با افزایش مقدار میدان اعمالی، شتاب افزایش و مغناطش کاهش می‌یابد، این کاهش شتاب ادامه می‌یابد تا مغناطش به مقدار اشباع خود Ms برسد [25].
تغییرات مغناطش مواد مغناطیسی در هنگام کاهش میدان، از رفتار قبلی خود تبعیت نمی‌کند، بلکه به خاطر ناهمسانگردی مغناطیسی در محیط، مقداری انرژی را در خود ذخیره می‌کنند. بنابراین وقتی میدان اعمالی در محیط صفر شود، مغناطش در ماده صفر نشده و دارای مقدار خاصی است که به آن مغناطش پسماند Mr گفته می‌شود. با کاهش بیشتر میدان به سمت مقادیر منفی، خاصیت مغناطیسی القا شده به تدریج کاهش می‌یابد و با رسیدن شدت میدان به یک مقدار منفی خواص مغناطیسی ماده کاملا از بین می‌رود. این میدان مغناطیس‌زدا را با Hc نشان می‌دهند و به نیروی ضد پسماند یا وادارندگی مغناطیسی معروف است. پسماند یا نیروی وادارنده عبارتست از میدان معکوسی که برای کاهش مغناطش به صفر نیاز است. با کاهش بیشتر شدت میدان، القای مغناطیسی منفی می‌شود و در نهایت به مقادیر اشباع منفی خود می‌تواند برسد. افزایش مجدد شدت میدان به سمت مقادیر مثبت، حلقه پسماند را مطابق شکل 2-3 کامل می‌کند. مغناطیس‌های دائمی غالبا در ربع دوم حلقه پسماند خود، مورد استفاده قرار می‌گیرند [26].

شکل 23 حلقه پسماند ماده فرو مغناطیس [26].
مواد مغناطیسی از نظر رفتار آن‌ها در میدان مغناطیس دو گروه تقسیم می‌شوند:
الف) مواد مغناطیس نرم
مواد مغناطیسی نرم با اعمال میدان مغناطیسی کوچک به راحتی مغناطیده می‌شود و با قطع میدان سریعاً گشتاور مغناطیسی خود را از دست می‌دهند. به عبارتی این مواد دارای نیروی وادارندگی پایین، اشباع مغناطیسی بالا و گشتاور پسماند پایین هستند.
مواد مغناطیس نرم در جاهایی که به تغییر سریع گشتاور مغناطیسی با اعمال میدان مغناطیسی کوچک نیاز است مانند موتورها، حسگرها، القاگرها و فیلترهای صوتی مورد استفاده قرار می‌گیرد.
ب) مواد مغناطیس سخت
مواد مغناطیس سخت موادی‌اند که به راحتی مواد مغناطیس نرم، مغناطیده نمی‌شوند و به میدان مغناطیسی اعمالی بزرگ‌تری جهت مغناطیده کردن آن‌ها نیاز است. این مواد گشتاور مغناطیسی را تا مدت‌ها پس از قطع میدان حفظ می‌کنند. همچنین دارای اشباع مغناطیسی، گشتاور پسماند و نیروی وادارندگی بالایی هستند. ساخت یا پخت این مواد در میدان مغناطیسی، ناهمسانگردی مغناطیسی را در این مواد افزایش می‌دهد که حرکت دیواره حوزه‌ها را سخت‌تر می‌کند و نیروی وادارندگی را افزایش می‌دهد. این امر می‌تواند تولید مادهی سخت مغناطیسی بهتری را تضمین کند. کاربرد این مواد در آهن‌رباهای دائمی و حافظه‌های مغناطیسی است [26].

شکل 24 حلقه پسماند در مواد فرومغناطیس نرم و سخت[26].
2-5 فریتفریت به آن دسته از مواد مغناطیسی اطلاق می‌شود که جزء اصلی تشکیل دهندهی آن‌ها اکسید آهن است و دارای خاصیت فریمغناطیس می باشند (آرایشی از فرومغناطیس) و پارامترهای مغناطیسی مطلوبی نظیر ضریب نفوذپذیری مغناطیسی بالا از جمله اصلی‌ترین خصیصه‌های آن‌ها به شمار می‌رود. بدین جهت کاربردهای بسیار وسیعی را در زمینه صنایع برق، الکترونیک، مخابرات، کامپیوتر و… به خود اختصاص داده‌اند.
یکی از انواع فریت‌ها نوع اسپینلی آن است، فریت‌های اسپینلی با فرمول عمومی 2-o2+A3+B که در آن 2+A و 3+B به ترتیب کاتیون‌های دو و سه ظرفیتی می‌یاشند.
فریت‌ها دارای خاصیت فریمغناطیس می‌باشند نظم مغناطیسی موجود در فریمغناطیس‌ها ناشی از برهم‌کنش‌های دو قطبی‌های مغناطیسی نیست بلکه ناشی از برهم‌کنش تبادلی است در برهمکنش تبادلی هم‌پوشانی اوربیتال‌های اتمی مد نظر می‌باشد در فریت‌ها برهم‌کنش تبادلی ناشی از هم‌پوشانی الکترون‌های اوربیتال d3 یون‌های A و B و الکترون‌های اوربیتالP 2 یون‌‎های اکسیژن است. و قدرت این بر‌هم‌کنش تبادلی است که خاصیت مغناطیسی نمونه را رقم می‌زند.
2-6 خلاصهدر این فصل به شیمی آئروژل و دو روش بالا به پایین و پایین به بالای تولید نانوذرات اشاره شد. سپس خاصیت مغناطیسی مواد و فاز‌های مغناطیسی ممکن برای مواد مغناطیسی بررسی شد. پس از آن توضیح کوتاهی در مورد حلقهی پسماند و موارد قابل اندازه‌گیری از آن گفته شد و در نهایت مختصری از مواد فریتی بیان گردید.
فصل سومساخت آئروژل و کاربردهای آن19509215088990
مقدمهسیلیکا آئروژل‌ها به دلیل ویژگی‌های منحصر به فرد، هم در علم و هم در تکنولوژی توجه زیادی را به خود اختصاص داده‌اند. آئروژل‌ها از پیشماده مولکولی با روش‌های مختلف و تکنیک‌های خشک کردن متفاوت برای جایگزینی منافذ مایع با گاز همراه با حفظ شبکهی جامد، تهیه می‌شوند. [27]
علی‌رغم تمامی تلاش‌های قابل توجهی که در این زمینه صورت گرفته است، چالش‌های اصلی تحت کنترل عوامل یکنواختی(همگنی)، بارگذاری، اندازه و توزیع نانوذرات در شبکه‌ی میزبان آلی باقی ماندهاست، در عوض این شبکه‌ی میزبان به طور مستقیم ویژگی‌های الکتریکی، نوری، مغناطیسی و کاتالیزوری مواد نانوکامپوزیت را حفظ می‌کند.
3-1 سنتز آئروژل با فرآیند سل-ژلتفاوت در ویژگی‌های شیمیایی پیش‌ماده‌ها برای فاز نانو (معمولاً نمک فلزی) و برای ماتریس آلی (عموماً الکوکسید‌ها) موضوع مهمی هستند، چرا که پارامترهای فرآیند سل-ژل بر روی هیدرولیز و چگالش هر کدام از این پیشماده‌ها تأثیر متفاوتی دارد [28]. هر چند این موضوع مساله‌ی مهمی در طراحی هر نانوکامپوزیت سل-ژل است اما در رابطه با آئروژل‌ها حیاتی‌تر می‌باشد، زیرا نیازمند جایگزین شدن حلال موجود در ژل (معمولاً اتانول یا متانول در الکوژل و آب در آکوژل) با تغییر حلال و در نهایت حذف کردن به وسیلهی استخراج حلال فوق بحرانی است. مرحله خشک کردن فوق بحرانی، بسته به این که الکل یا کربن دی اکسید به صورت فوق بحرانی تخلیه شود (به ترتیب نیازمند حرارتی در حدود 350 و 40 درجهی سانتیگراد است). این مرحله مسائل دیگری درباره حلالیت پیشماده‌ها و پایداری حرارتی در شرایط خشک کردن فوق بحرانی را مطرح می‌کند [29]. استراتژی‌های مختلف اتخاذ شده برای سنتر نانوکامپوزیت‌های آئروژل، بسته به اینکه فاز نانو (یا پیش‌مادهی آن) در حین یا بعد از فرآیند سل-ژل اضافه شود، دو رویکرد کلی دارند.
روش اول شامل هیدرولیز و ژل شدن نانوذرات و ماتریس پیشماده و ژل شدن ماتریس پیش‌ماده به همراه شکل‌گیری نانوذرات است. مزیت این روش تولید موادی با بارگذاری نانوذرات قابل کنترل است. از طرفی، چندین اشکال در مورد آن مطرح است. برای بهدست آوردن ژل دارای چند ترکیب همگن شرایط سنتز باید به صورت دقیق انتخاب شود و پیشماده‌های نانوذرات و همچنین عوامل پوشش دهی موردنیاز در شکل‌گیری نانوذرات کلوئیدی ممکن است بر سنتز سل-ژل ماتریس تأثیر بگذارد.
روش دوم شامل روش‌های مبتنی بر اضافه کردن فاز نانو بعد از فرآیند سل-ژل است و باید ساختار متخلخل و مورفولوژی ماتریس را حفظ کند. این روش‌ها شامل تلقیح فاز نانو با اشباع، ته‌نشینی و روش رسوبگذاری بخار شیمیایی می‌باشد. طرح‌واره روش‌های مختلف برای شیمی سنتز نانوکامپوزیت آئروژل در شکل 3-1 نشان داده شده است.
هرچند این روشها نیز دارای دو اشکال عمده هستند: یکی همگنی ضعیف ترکیب نانوکامپوزیت تولیدشده، دیگری ترد و شکننده بودن آئروژل‌ها. اتصال فلز در یک ماتریس با گروه‌های هماهنگ اصلاح شده است و غوطه‌ور کردن الکوژل و آکوژل در محلول قبل از خشک کردن فوق بحرانی، به ترتیب به عنوان راهحلهایی برای غلبه بر کاستی‌های گفته شده است. رسوب نانوذرات از فاز بخار، بر خلاف روش‌های تلقیح مرطوب، ماتریس متخلخل را تغییر نمیدهد و تضمین میکند که فاز مهمان در سراسر ماتریس توزیع خواهد شد [30].

شکل 3-1 طرح‌واره‌ای از روش‌های مختلف برای شیمی سنتز نانوکامپوزیت [33].
3-2 شکل‌گیری ژل خیسژل‌های سیلیکا به طور عمومی با هیدرولیز و واکنش چگالش پیشماده سیلیکا به‌دست می‌آیند. ماتریس سیلیکای نهایی متخلخل است و حفره‌های ژل با حلال جانبی هیدرولیز و واکنش پلیمریزه شدن پر شده است. اگر ترکیب محلول بهتواند از ژل خیس بدون سقوط قابل ملاحظه ساختار خارج شود، آئروژل شکل می‌گیرد [31].
روش سل-ژل شامل یک یا چند پیشماده سیلیکون است که متداول‌ترین آن‌ها TEOS و TMOS می‌باشند و داراری چهار گروه الکوکسید شناخته شده در آرایش چهار وجهی در اطراف اتم سیلیکون مرکزی است. واکنش هیدرولیز در چهار جهت اتفاق می‌افتد و منجر به پیوند Si-O-Si می‌شود و یک مادهی کپهای که ترکیبی از 2SiO را می‌دهد. اگر یکی از شاخه‌های الکوکسید اتم سیلیکون توسط گروه عاملی مختلفی که قادر نیست تحت واکنش چگالش قرار گیرد، جایگزین شود گروه عاملی با پیوند کووالانسی به اتم سیلیکون درون ماتریس ژل باقی خواهد ماند. الکوکسیدهای فلزی به راحتی با آب واکنش می‌دهد و بر حسب میزان آب و حضور کاتالیست، عمل هیدرولیز ممکن است کامل انجام شود.
ملکول‌های شکلگرفته آلی-فلزی به مرور زمان بزرگ می‌شوند و به صورت یک ساختار پیوسته در داخل مایع در می‌آیند. این ساختار پیوسته که حالت الاستیک دارد، ژل گفته می‌شود [32].
به طور کلی شکل‌گیری محلول پایدار الکوکسید یا پیشماده‌های فلزی حل شده مرحله اول فرآیند تهیه آئروژل است. این محلول همگن به‌دست آمده در مرحله دوم به علت وجود آب هیدرولیز شده و سل یکنواختی را ایجاد می‌کند. در مرحله سوم واکنش بسپارش ادامه پیدا می‌کند تا سل به ژل تبدیل شود. این مرحله، پیرسازی نیز گفته می‌شود. پس از آن مرحلهی نهایی که خشک کردن است باقی می‌ماند.
3-3 خشک کردن آلکوژلبعد از شکل‌گیری ژل توسط هیدرولیز و واکنش چگالش، شبکه Si-O-Si شکل می‌گیرد. بخش پیرسازی به تشدید شبکه ژل اشاره دارد؛ ممکن است چگالش بیشتر، تجزیه، و ته‌نشینی ذرات سل یا تبدیل فاز داخل فاز جامد یا مایع صورت گیرد. این نتایج در یک جامد متخلخل که حلال در آن گیر افتاده است اتفاق می‌افتد. فرآیند حذف حلال اصلی از ژل (که معمولاً آب و الکل است) را خشککردن می‌گویند. در طول فرآیند خشککردن، ترکخوردگی اتفاق می‌افتد به این دلیل که نیروی مویینگی در گذار مایع-گاز در داخل منافذ ریز وجود دارد. معادله لاپلاس در اینجا به کار می‌رود، هر چه شعاع مویینگی کوچک‌تر باشد، ارتفاع مایع بیشتر و فشار هیدروستاتیک بالاتر خواهد بود. هنگامی که انرژی سطح باعث بالا رفتن ستون مایع داخل مویرگ‌ها می‌شود، مقدار فشار سطحی داخل مویرگ قابل محاسبه است.
قطر حفره در ژل از مرتبهی نانومتر است، به طوری که مایع ژل فشار هیدروستاتیک بالایی را باید اعمال کند. هلال داخل حفره‌ها و نیروهای کشش سطحی سعی می‌کند تا ذرات را به عنوان مایع در حفره‌ها تبخیر کند. این نیروها می‌توانند به گونه‌ای عمل کنند که باعث سقوط حفره و ساختار شوند. بنابراین ژل‌ها با حفره‌های ریز زیاد تمایل به انقباض و ترک خوردن دارند [33]. سل ژلهایی که شیمی سطح آن‌ها اصلاح نشده (شکل3-2) و در شرایط محیط خشک شدند به علت این فروپاشی منافذ تا حدود یک هشتم حجم اولیهی خود کوچک میشوند؛ ماده حاصل زیروژل نامیده میشود. اگر این فرآیند خشککردن به آرامی رخ دهد، زیروژل یکپارچه سالم میتواند تولید شود. اما برای تولید یک آئروژل، باید از عبور از مرز فاز بخار-مایع اجتناب کرد.

شکل 3-2 اصلاح شیمی سطح ژل [34].
روشهای کنونی برای پرهیز از فروپاشی منافذ درساخت آئروژل را میتوان در سه تکنیک کلی دستهبندی کرد. هرکدام از این تکنیکها طراحی شدهاند تا نیروهای مویینگی ناشی از اثرات کشش سطحی را کاسته و یا حذف نمایند. این تکنیکها الف) خشک کردن در شرایط محیط پس از اصلاح سطح، ب) خشک کردن انجمادی و ج) خشک کردن فوق بحرانی است [34]. توضیح کلی درباره هرکدام از این تکنیکها در ادامه آمده است.
3-3-1 فرآیند‌های خشککردن در شرایط محیطاین تکنیکهای خشک کردن طراحی شدهاند تا ژل خیس را در فشار محیط خشک کنند. این روشها نیازمند فرآیندهای شیمیایی با تعویض طولانی مدت حلال برای کاهش نیروهای مویینگی وارد بر نانوساختار یا برای افزایش توانایی نانوساختار در تحمل این نیروهاست (یا با قویتر کردن ساختار و یا با منعطف‌تر ساختن آن). تغییر شیمی سطح ژل خیس بر پایه TEOS برای ارتقاع انقباض قابل برگشت با استفاده از تبادل حلال با هگزان به وسیله اصلاح سطح با فرآیند کاهش گروه سیلانولی با TMCS [35و36]. همچنین استفاده از پیری ژل در محلول الکل یا الکوکسید برای سفت شدن میکرو ساختار به منظور جلوگیری از فروپاشی منافذ است [37]. به علاوه ترکیبکردن شاخه‌های متقاطع سیلیکا آئروژل است که می‌تواند نیروهای مویینگی در حین خشک کردن تحت فشار محیط را تحمل نماید [38].
3-3-2 خشککردن انجمادیخشککردن انجمادی یک ژل خیس منجر به تولید کریوژل میشود. خشککردن انجمادی باعث تولید پودر آئروژل کدر می‌شود [39]. این تکنیک حلال اضافی را با تصعید حذف میکند. ژل خیس منجمد میشود و سپس حلال در فشار پایین تصعید میشود [40]. میکروبلور‌های منجمد که حین فرآیند خشککردن انجمادی شکل می‌گیرند منجر به آئروژل‌های ماکروحفره‌تری در مقایسه با روش استخراج فوق بحرانی میشوند [41].
3-3-3 خشک کردن فوق بحرانیروشهای استخراج فوق بحرانی از مرز بین مایع و بخار با بردن حلال به بالاتر از نقطه فوق بحرانی آن اجتناب می‌کند و سپس از ماتریس سل-ژل به عنوان یک مایع فوق بحرانی حذف می‌شود. در این حالت هیچ مرز مایع-بخاری وجود ندارد، بنابراین هیچ فشار مویینگی دیده نمی‌شود. شکل 3-3 چرخه فشار-دما در طول فرآیند فوق بحرانی را نشان می‌دهد. در عمل انواع متعددی از روشهای استخراج فوق بحرانی وجود دارد که شامل تکنیک‌هایی با دمای بالا، دمای پایین و سریع است.

شکل 3-3 چرخه فشار-دما در حین فرآیند خشک کردن فوق بحرانی [42].
تکنیک‌های استخراج فوق بحرانی الکل دمای بالا، ژل خیس را به حالت فوق بحرانی حلال (معمولاً متانول یا اتانول) در یک اتوکلاو و یا هر مخزن فشار دیگری می‌برد. این مستلزم فشارهای بالا حدود Mpa 8 و دماهای بالا حدود 260 درجهی سانتیگراد می‌باشد [42]. شکل 3-4 شماتیکی از دستگاه خشککن فوق بحرانی اتوکلاو را نشان می‌دهد.

شکل 3-4 شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو [42].
تکنیکهای استخراج فوق بحرانی دمای پایین بر اساس استخراج 2CO است که دمای نقطه بحرانی پایین‌تری نسبت به مخلوط الکل باقیمانده در منافذ سل-ژل بعد از پلیمریزاسیون دارد. این روش به تبادل حلال به طور سری نیازمند است، ابتدا حلال غیرقطبی و سپس با کربن دیاکسید مایع پیش از استخراج فوق بحرانی که می‌تواند در نقطه فوق بحرانی 2CO اتفاق بیافتد [43]. مزایای این تکنیک دمای بحرانی پایین‌تر و حلال پایدارتر است؛ هرچند مراحل اضافه شده به فرآیند سبب طولانی‌تر شدن زمان آمادهسازی آئروژل می‌شود. از آنجائیکه فشار بحرانی مورد نیاز نسبت به روشهای فوق بحرانی دما بالا تغییری چندانی ندارد (فشار بحرانی 2CO مشابه متانول و اتانول است)، این فرآیند نیز نیاز به استفاده از مخازن فشار دارد. به علاوه روند انتشار تبادل حلال وابسته به اندازهی ژل است.
تکنیکهای استخراج فوق بحرانی سریع از یک قالب محدود استفاده می‌کند، چه در مخزن فشار و چه در یک فشار داغ هیدرولیک قرار بگیرند. این تکنیکها فرآیندهای تک مرحله‌ای پیش‌ماده به آئروژل هستند و آئروژل را در کمتر از 3 ساعت بهدست می‌آورند. در این روش پیشماده‌های شیمیایی مایع و کاتالیست در یک قالب دو قسمتی ریخته می‌شوند سپس به سرعت گرم می‌شوند [44]. در ابتدا فشار با بستن دو بخش قالب با هم یا با اعمال فشار هیدروستاتیکی خارجی به جای مخازن فشار بزرگ‌تر یا با ترکیبی از این دو تنظیم می‌شود. زمانیکه نقطه فوق بحرانی الکل فرارسید، اجازه داده میشود تا مایع فوق بحرانی خارج شود [45]. برای مثال گوتیه و همکارانش [46] در روند انجام این فرآیند از یک فشار داغ هیدرولیکی برای مهروموم کردن و گرم کردن قالب حاوی مخلوط پیشماده آئروژل استفاده کردند. مخلوط مایع از پیشماده‌های آئروژل در یک قالب فلزی ریخته شد و سپس در فشار داغ قرار گرفت. در طول اجرا، فشار داغ برای مهروموم کردن ترکیب به جای قالب استفاده شد و یک نیروی باز دارندهی فشاری را فراهم کرد. سپس قالب و مخلوط به بالای دما و فشار فوق بحرانی متانول برده شد. در مدت زمان این فرآیند گرم کردن، پیشمادههای آئروژل واکنش نشان داده و یک ژل خیس نانوساختاری متخلخل را تشکیل داد. زمانیکه به حالت بحرانی رسید، فشار کاهش داده شد و مایع فوق بحرانی رها شد.
3-3-4 مقایسه روش‌هاهر یک از روش‌های ساخت آئروژل شرح داده شده در بالا، نقاط قوت و محدودیت‌هایی دارند. مقایسه مستقیم تکنیک‌های مختلف خشک کردن به علت دستورالعمل‌های پیشماده متفاوت، شرایط ژل شدن مختلف، و زمان پیر سازی، به خوبی روش‌های استخراج متفاوت هستند. برای مثال خشککردن فوق بحرانی دما پایین نیاز به زمان پیرسازی کافی دارد، به طوری که ژل‌ها می‌توانند از ظرف اولیه برای استخراج و تبادل حلال خارج شوند.
در فرآیند خشککردن سریع، عموما زمان پیرسازی کوتاه است؛ گرچه، دمای بالا در این فرآیند اثر مشخصی را روی روند واکنش چگالش دارد.
مزیت اصلی تکنیک‌های خشک کردن در فشار محیط، عدم نیاز به تجهیزات فشار بالا می باشد که گران قیمت و به طور بالقوه خطرناک است؛ اگرچه به مراحل پردازش چندگانه با تبادل حلال نیاز دارند. تا به حال مطالعات اندکی در رابطه با استفاده از روش‌های خشککردن انجمادی شده است. این تکنیک‌ها نیاز به تجهیزات خاصی برای رسیدن به دمای پایین لازم برای تصعید حلال و منجر شدن به پودر آئروژل، دارند.
محدودیت اصلی تکنیکهای فوق بحرانی دما بالا، رسیدن به دماهای بالای مورد نیاز برای دست یافتن به نقطه بحرانی حلال الکل و نیز ملاحظات ایمنی در بکار بردن مخزن فشار در این شرایط است.
روش استخراج دما پایین به طور گسترده در تولید آئروژل‌های یکپارچه کوچک تا بسیار بزرگ استفاده شده است، اگرچه می‌تواند روزها تا هفته‌ها تولید آن طول بکشد و مراحل چندگانه تبادل حلال مورد نیاز، آن را تبدیل به فرآیندی پیچیده کند و اتلاف قابل ملاحظه‌ای از حلال و 2CO ایجاد می‌کند. تکنیک‌های خشککردن سریع ساده‌تر و سریع‌تر است. تمامی فرآیند، بر خلاف مراحل چندگانه و مقیاس‌های زمانی در ابعاد روزها و ماهها در سایر روش‌ها، در یک مرحله انجام شده و می‌تواند در چند ساعت تکمیل شود. همچنین این روش‌ها اتلاف کمتری را به وجود می‌آورند. یک ایراد روش‌های خشککردن سریع، نیاز به دما و فشار بالاست [47].
3-4 مروری بر کارهای انجام شدهاگرچه میدانیم که این گزارش‌های جامعی از مقالات مرتبط با نانوکامپوزیت‌های آئروژل نیست، اما تأکید بر این مطلب است که چگونه ترکیب نانوذرات ممکن است احتمال استفاده از آئروژل‌ها را به عنوان مواد جدید افزایش دهد و چگونه مسیر آماده سازی مورد اطمینان برای به‌دست آوردن نانوکامپوزیت‌های آئروژل برای کاربرد خاص را انتخاب نماییم.
پس از آنکه کیستلر در سال 1931 برای اولین بار بدون درهم شکستن ساختار ژل، فاز مایع را از آن جدا کرد، در سال 1938 به مطالعه روی رسانایی گرمایی آئروژل و در سال 1943 درباره سطح ویژه آن‌ها به مطالعه پرداخت [48]. بعد از آن حدود نیمقرن دانشمندان علاقه‌ای به آئروژل‌ها نشان ندادند تا در اویل 1980 آئروژل به عرصه پژوهش بازگشت.
در سال 1992تیلسون و هاربش از TEOS به عنوان پیشمادهی سیلیکا ژل استفاده کردند و از میکروسکوپ الکترونی روبشی برای مشخصه‌یابی آن‌ها استفاده نمودند [49] و سپس هر ساله تحقیقات زیادی روی آئروژل‌ها صورت می‌گیرد.
در سال 2001 کاساس و همکارانش نانوکامپوزیت مغناطیسی را با ورود ذرات اکسید آهن در سیلیکا آئروژل میزبان سنتز کردند. این سنتز که به روش سل-ژل و با خشککردن فوق بحرانی متانول انجام شد، دو نمک آهن استفاده شد: O2H9.(3ON)Fe و O2H2.(EDTA)FeNa. در این پژوهش ارتباط واضحی بین پیشماده، آب و تخلخل و سطح ویژه آئروژل حاصل وجود داشت. استفاده از ترکیب EDTA به عنوان پیش‌مادهی نانوذرات، قطر میانگین حفره‌ها را افزایش داد، گرچه قابلیت حل پایین نمک EDTA در محلول یک مانع بزرگ برای رسیدن به آهن در این روش بود. مساحت سطح ویژه‌ی نمونه‌های کاساس بین /g2m 200 و /g2m 619 بهدست آمد و برخی نمونه‌ها رفتار پارامغناطیس و برخی دیگر رفتار مغناطیس نرم از خود نشان دادند [50].
در سال 2002 واگنر و همکارانش ذرات سیلیکا با هستهی مغناطیسی را با روش ته‌نشینی به‌دست آوردند [51]. و چند سال بعد در سال 2006 ژانگ و همکارانش ذرات پوسته‌ای هسته‌دار را با روش سل-ژل تهیه کردند. این ذرات شامل هستهی مغناطیسی فریت کبالت و پوستهی سیلیکا بودند که از TEOS به عنوان پیشمادهی سیلیکا استفاده کردند. پس از آنکه ژل‌ها به‌دست آمدند، در 110 درجهی سانتیگراد برای 4 ساعت در خلاء خشک شدند زیرا اگر در هوا خشک شوند احتمال ته‌نشینی بلور‌های اکسید وجود داشت. سپس به مدت 2 ساعت در دماهای مختلف برای به‌دست آوردن نانو بلور پراکنده در ماتریس سیلیکا حرارت داده شد. برای نمونه‌ی آن‌ها شکل‌گیری فاز فریت کبالت در دمای 800 درجهی سانتیگرادکامل شد و خوشه‌های فریت کبالت به سمت نانو بلوری شدن پیش رفتند، زمانی که برهم‌کنش بین خوشه‌های فریت کبالت با ماتریس سیلیکا شکسته شد پیوندهای Si-O-Fe ناپدید شدند. بر طبق گزارش آن‌ها اشباع مغناطیسی نانوکامپوزیت‌ها با افزایش غلظت بیشتر فریت در ماتریس افزایش یافت تا مقدار بیشینه emu/g 98/66 برای نمونه با نسبت مولی 1:1 (wt% 80 فریت کبالت) به‌دست آمد [52].
سیلوا و همکارانش در سال 2007 کامپوزیت ذرات فریت کبالت پخش شده در ماتریس سیلیکا را به روش سل-ژل تهیه کردند. آن‌ها از TEOS به عنوان پیشماده سیلیکا و از نیترات به عنوان پیش‌ماده فریت استفاده کردند. پس از گذشت زمان پیرسازی، نمونه برای 12 ساعت در 110 درجهی سانتیگراد خشک شدند و ذرات فریت کبالت در ماتریس سیلیکا شکل گرفتند. پس از آن عملیات حرارتی برای 2 ساعت در دماهای 300، 500، 700 و 900 درجهی سانتیگراد انجام شد که باعث افزایش در اندازهی ذرات شد. رسوب ذرات خوشه‌ای فریت در دیواره‌های منافذ زیروژل با افزایش دما بیشتر شد و در دماهای بالاتر از 700 درجهی سانتیگراد بلورهای بزرگ‌تر کبالت داخل منافذ ماتریس شکل گرفتند و افزایش در مغناطش اشباع و پسماند مغناطیسی را باعث شدند [53].
در همان سال فرناندز و همکارانش نانو کامپوزیت سیلیکا آئروژل/ آهن اکسید را با فرآیند سل-ژل و تبخیر فوق بحرانی حلال سنتز کردند. آن‌ها نمونه‌ها با پیشماده‌های TEOS و TMOS را با تبخیر فوق بحرانی اتانول و متانول خشک کردند. ذرات مغناطیسی با اندازهی متوسط nm 6 با TEOS و متانول سنتز شدند در حالی که فری‌هیدرات‌ها از TMOS و اتانول به‌دست آمدند. بعضی نمونه‌های آن‌ها رفتار ابر پارامغناطیس از خود نشان دادند [54].
دو سال بعد ژنفا زی و همکارانش نانوذرات فریت کبالت را به روش هم‌نهشت شیمیایی و خشک شدن در هوا در دمای80 درجهی سانتیگراد تهیه کردند. اندازهی قطر نانوذرات سنتز شده nm 20 تا nm 30 بود و دمای کوری در فرآیند افزایش دما کمتر از فرآیند کاهش دما بود. مقدار اشباع مغناطیسی این ذرات emu/g 77/61 بهدست آمد که نسبت که مقدار کپه آن کوچک‌تر بود. در این پژوهش مقدار پایین نیروی وادارندگی به دو دلیل اتفاق می‌افتد: ذرات فریت ممکن است ساختار چند دامنه داشته باشند. شکل‌گیری چند دامنه‌ها و حرکت دیوارهای دامنه می‌تواند کاهش دامنه را نتیجه دهد. همچنین اگر اندازهی بحرانی ذرات [55] بهدست آمده بزرگ‌تر از قطر میانگین ذرات باشد، رفتار تک دامنه را از خود نشان می‌دهند. آن‌ها گزارش کردند که کاهش وادارندگی نمونه‌ها به رفتار وابسته به اندازهی ذرات بستگی دارد [56].
بلازینسکی و همکارانش در پژوهشی که در سال 2013 انجام دادند، سیلیکا آئروژل را با روش سل-ژل و فرآیند فوق بحرانی تهیه کردند. آن‌ها دریافتند که روش خشک کردن فوق بحرانی مؤثرترین روش برای بهدست آوردن بهترین ویژگی این محصولات است. بدین منظور آن‌ها دستگاه خشک کن فوق بحرانی را برای خود ساختند که فشار و دما به طور دستی تنظیم می‌شد و مرحله مهم در آمادهسازی سیلیکا آئروژل‌ها بود. به این ترتیب آن‌ها سیلیکا آئروژل‌های شفاف با مساحت سطح ویژه بالا به‌دست آوردند [57].
در گزارشی دیگر در سال 2014 ساجیا و همکارانش پودر آمورف فریت کبالت را به روش سل-ژل تهیه کردند و این روش را بهترین روش تهیه نانوذرات عنوان کردند. آن‌ها دریافتند که عملیات حرارتی برای تجزیه کامل مقدار مواد آلی و نیترات حاضر در پودر آمورف لازم است. در این فرآیند برای جلوگیری از ته‌نشینی یا رسوبگذاری این واکنش اسید سیتریک به آن اضافه کردند و سپس مراحل خشک کردن و عملیات حرارتی انجام شد. پارامترهای عملیات حرارتی، مرحله نهایی در آماده‌سازی نانوذرات فریت کبالت بودند که بررسی شدند. ساختار اسپینل در همهی نمونه‌های آن‌ها شکل گرفته بود و هنگامی که ذرات شروع به رشد کردند ناخالصی‌ها حذف شد. ویژگی مغناطیسی مرتبط با رفتار فریمغناطیس این نمونه‌ها مقدار emu/g 62 برای اشباع مغناطیسی را نشان می‌دهد [58].
در جدیدترین پژوهشی که دربارهی آمادهسازی و ارزیابی نانوکامپوزیت سیلیکا آئروژل/فریت در سال 2014 صورت گرفته است، کاتاگر و همکارانش نانوذرات فریت را به روش ته‌نشینی آماده کردند و سپس TMOS را به آن اضافه نمودند. برای این کار آن‌ها O2H6. 2NiCl، O2H6. 3FeCl و 2ZnCl را با اضافه کردن آب مقطر حل کردند. PH محلول در رفلاکس 110 درجهی سانتیگراد به مدت 24 ساعت 13 تنظیم شده بود. با حذف NaOH که برای PH اضافه شده بود، و شستن مکرر با آب مقطر و اتانول نانوذرات نتیجه شدند. بعد از بهدست آمدن نانوذرات به طور مستقیم به TMOS اضافه شدند و 3NH و آب دیونیزه به عنوان کاتالیست برای تهیه سل همگن اضافه گردیدند. برای مرحله پیر سازی قالب‌های حاوی سل را در اتانول به مدت 2 ساعت و دمای 50 درجهی سانتیگراد پیرسازی کردند و در نهایت ژل خیس را با خشک کردن فوق بحرانی کربن دی اکسید بهدست آوردند. تحقیقات آن‌ها نشان داد که زمان ژل شدن با افزایش نسبت مولی اتانول/TMOS افزایش یافت. همچنین به دلیل کشش سطحی اتانول، نمونه‌ها منقبض می‌شوند یا ترک می‌خورند. نانوکامپوزیت به‌دست آمده ساختار اسکلت شبکه‌ی سه بعدی را حفظ کرد. مساحت سطح ویژه با افزایش مقدار فریت از /g2m 700 تا /g2m 300 تغییر کرد. به علاوه ویژگی مغناطیسی فریت در ساختار نانو کامپوزیت تغییر نکرد [59].
3-5 برخی از کاربردهای آئروژل3-5-1 آئروژل‌ها به عنوان کامپوزیتهمانطور که پیشمادهی الکوکسید سیلیکون برای شکل‌گیری شبکه‌ی ژل با اکسیدهای فلزی دیگر به اندازه‌ی کافی واکنشی است، مطالعات زیادی در زمینه سنتز سیلیکا آئروژل برای کاربردهای مختلف صورت گرفته است [1].
3-5-2 آئروژل‌ها به عنوان جاذبآئروژل‌های فوق آبگریز و انعطافپذیر برای در جذب حلال‌های معدنی و روغن‌ها سنتز شدند. ونکاتشوارا رائو و همکارانش چگالی جذب و واجذب سیلیکا آئروژل‌های فوق آبگریز را با استفاده از یازده حلال و سه روغن بررسی کردند [60].
3-5-3 آئروژل‌ها به عنوان حسگرآئروژل‌ها تخلخل بالا، حفره‌های در دسترس، و سطح در معرض بالا دارند. از این رو کاندیداهای خوبی برای استفاده به عنوان حسگر هستند.بر اساس مطالعه وانگ و همکارانش روی آئروژل لایه‌ی نازک نانوذرات سیلیکا آئروژل نشان داد که مقاومت الکتریکی به طور قابل ملاحظه‌ای با افزایش رطوبت کاهش یافت. زیروژل همان مواد حساسیت کم‌تری را نشان داد. آئروژل‌هایی که اصلاح سطح شدند در مقایسه با آئروژل‌های آب‌گریز کمتر تحت تأثیر رطوبت قرار گرفتند و می‌توانند به عنوان ضد زنگ و عوامل آب‌گریز مورد استفاده قرار بگیرند [61].
چن و همکارش آئروژل‌هایی را برای کاربرد حسگرهای زیستی مطالعه کردند. در مطالعه آن‌ها، آئروژل‌های مزوحفره به وسیله پلیمریزاسیون سل-ژل با یک مایع یونی به عنوان حلال تهیه کردند. نتایج نشان می‌دهدکه آئروژل آماده شده می‌تواند به عنوان یک بسترشناسایی برای اسید نوکلوئیدها به کار رود [62].
3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایینلایه نازک‌های آئروژل 2SiO توجه خاصی را به خود اختصاص داد، به دلیل ثابت دی الکتریک خیلی پایین، تخلخل و پایداری حرارتی بالا. پارک و همکارانش لایه نازک سیلیکا آئروژل را برای لایهی داخلی دی الکتریک مورد بررسی قرار دادند و ثابت دی الکتریک را تقریبا 9/1 اندازه‌گیری کردند. آن‌ها ثابت دی الکتریک بسیار پایین فیلم‌های آئروژل را برای لایهی داخلی مواد دی الکتریک تولید کردند. فیلم های سیلیکا آئروژل به ضخامت Å 9500، % 5/79 تخلخل، و ثابت دی الکتریک پایین 2 با روش فرآیند خشک کردن محیط با استفاده از n-هپتان به عنوان حلال خشک کن به‌دست آوردند [63].
3-5-5 آئروژل به عنوان کاتالیزورمساحت سطح ویژه‌ی بالای آئروژل‌ها منجر به کاربردهای زیادی می‌شود، از جمله جاذب شیمیایی برای پاکسازی نشتی. این ویژگی کاربرد زیادی را به عنوان کاتالیزور یا حامل کاتالیزور به همراه دارد. آئروژل‌ها در کاتالیست‌های همگن مناسب هستند، زمانی که واکنش‌دهنده‌ها هم در فاز مایع و هم در فاز گاز هستند [27].
3-5-6 آئروژل به عنوان ذخیره سازیتخلخل بالا و مساحت سطح زیاد سیلیکا آئروژل‌ها می‌تواند برای کاربردهایی مثل فیلترهای گازی، جذب رسانهای برای کنترل اتلاف، محصور سازی، ذخیره سوخت هیدروژن به کار رود. آئروژل‌ها می‌توانند در مقابل تنش گذار مایع/گاز مقاومت کنند زیرا بافت آنها در طول پخت تقویت شد به عنوان مثال در ذخیره سازی، انتقال مایعات چون سوخت موشک‌ها کار برد دارد. به علاوه وزن پایین آئروژل‌ها بزرگ‌ترین مزیت است که در سیستم حمل دارو به دلیل ویژگی زیست سازگار آن‌ها مورد استفاده است [64]. کربن آئروژل‌ها در ساخت الکتروشیمی ابر خازن دو لایه کوچک استفاده شد. ابر خازن‌های آئروژل مقاومت ظاهری پایینی در مقایسه با ابر خازن‌های معمولی دارد و می‌تواند جریان بالا را تولید یا جذب کند.
3-5-7 آئروژل‌ها به عنوان قالبفیلم‌های سیلیکا آئروژل برای سلول‌های خورشیدی رنگ حساس استفاده شدند. مساحت سطح ویژه‌ی فیلم‌های آئروژل روی فیلم‌های شیشه‌ای رسانا تهیه شدند. نشست لایه اتمی برای پوشش قالب آئروژل با ضخامت‌های مختلف 2TiO با دقت کمتر از نانومتر انجام شد. غشاء آئروژل پوشش داده شده با 2TiO در سلول خورشیدی رنگ حساس گنجانیده شد. طول نفوذ شارژ با افزایش ضخامت 2TiO افزایش یافت که منجر به افزایش جریان شد [65].
3-5-8 آئروژل به عنوان عایق گرماجدای از تخلخل بالا و چگالی پایین یکی از جذاب‌ترین ویژگی‌های آئروژل رسانندگی گرمایی پایین آن‌ها است، علاوه بر این، از یک شبکه‌ی سه بعدی با ذرات ریز متصل شده تشکیل شده‌اند. بنابراین انتقال گرما از میان بخش جامد آئروژل‌ها از طریق مسیر پر پیچ و خمی است. فضای اشغال نشده در یک جامد توسط آئروژل به طور معمول با هوا پر شده مگر آن که تحت خلاء مهروموم شده باشد. این گازها می‌توانند انرژی حرارتی را از طریق آئروژل انتقال دهند. حفره‌های آئروژل باز هستند و اجازه عبور گاز از میان مواد را می‌دهند [27].
3-5-9 آئروژل‌ها در کاربرد فضاییناسا از آئروژل‌ها برای به دام انداختن ذرات گرد و غبار روی فضاپیما استفاده کرد. ذرات در برخورد با جامد اسیر شده، گازها تبخیر می‌شوند و ذرات در آئروژل به دام می‌افتند [27].
جدول 3-1 کاربردهای مختلف آئروژل‌ها را به طور مختصر نشان می‌دهد.
3-6 خلاصهدر این فصل پس از مقدمه‌ی کوتاه، اندکی در مورد سنتز آئروژل با روش سل-ژل گفته شد. پس از آن فرآیند‌های لازم برای شکل‌گیری ژل بیان شد و سپس تکنیک‌های مختلف خشک کردن و شرایط لازم برای این کار با مختصری توضیح نوشته شد. بعد مروری کوتاه به برخی از تلاش‌های انجام شده در این زمینه داشتیم و در آخر برخی از کاربردهای مختلف آئروژل‌ها را با ذکر مثال درج شد.
جدول 3-1 کاربردهای مختلف آئروژل‌ها [27].
خاصیت ویژگی کاربرد
رسانایی الکتریکی بهترین جامد عایق
شفاف
مقاومت در برابر درجه حرارت بالا
سبک ساخت و ساز ساختمآن‌ها و عایقبندی لوازم خانگی
ذخیره سازی
ماشین، وسیله نقلیه فضایی
دستگاه‌های خورشیدی
چگالی/تخلخل سبک‌ترین جامد مصنوعی
سطح ویژه_ی بالا
کامپوزیت‌های چندگانه کاتالیزور
حسگر
ذخیرهی سوخت
تبادل یون
فیلترهای آلاینده‌های گازی
اهداف ICF
حامل رنگ‌دانه
قالب
اپتیکی شفافیت
شاخص بازتاب پایین
کامپوزیت‌های چندگانه اپتیک سبک وزن
آشکارسازهای چرنکوف
راهنماهای نوری
عایق صوتی سرعت صوت پایین اتاق‌های ضد صدا
تطبیق مقاومت ظاهری صوتی در التراسونیک
مکانیکی الاستیک
سبک جاذب انرژی
تله برای ذرات سرعت بالا
الکتریکی ثابت دی الکتریک پایین
قدرت دی الکتریک بالا
سطح ویژهی بالا دی الکتریک برای ICها


جدا کنندهی الکترودهای خلا
خازن
فصل چهارمسنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت21434265186580مقدمهآئروژل‌ها کاندیدا‌های ایدهآلی برای طراحی نانوکامپوزیت‌های کاربردی تقویت شده با نانوذرات فلزی یا اکسید فلزی هستند. مساحت سطح ویژهی بالا با ساختار حفره‌ای، آئروژل‌ها را قادر می‌سازد تا به طور موثری میزبان نانوذرات ریز پراکندهشده باشند و این اطمینان را می‌دهد که نانوذرات در دسترس هستند.
راه گسترش آئروژل‌های کاربردی برای تهیهی مواد کاربردی خلاق از طریق طراحی نانوکامپوزیت‌ها است، به طوری که نانوذرات فلز یا اکسید فلز به داخل ماتریس آئروژل الحاق می‌شوند. با توجه به گسترش محدوده و قابلیت زیستی آئروژل‌ها، تهیه این نانوکامپوزیت‌ها برای جلوگیری از تجمع نانوبلورها و رشد از طریق ذرات بستر برای یک کاربرد خاص را فراهم می‌کند.
4-1 مواد مورد استفاده در پژوهش آلکوکسیدهای فلزی یک دسته از خانواده‌ی ترکیبات آلی فلزی میبا شند که شامل یک بنیان آلی چسبیده به یک عنصر فلزی یا شبهفلزی میباشند. تترا اتیل اورتو سیلیکات (TEOS) که دارای نماد شیمیایی 4)5H2Si(OC می‌باشد از جمله الکوکسیدهایی است که به عنوان پیشماده در سنتز سیلیکا آئروژل به کار می‌رود. در این پژوهش از TEOS به عنوان پیشماده سیلیکا ژل با جرم مولی g/mol 33/208 استفاده شد. متداول‌ترین آئروژل‌ها با بسپارش سل-ژل سیلیکا الکوکسید سنتز شدند [66]. نیترات آهن(ΙΙΙ) 9 آبه و نیترات کبالت(ΙΙ) 6 آبه به ترتیب با جرم مولی‌های g/mol 404 و g/mol 04/291 برای تهیه نانوذرات فریت کبالت به کار رفت. متانول و آب دیونیزه به عنوان حلال نیاز بود.
4-2 روش تجربی و جزئیاتدر ابتدا برای سه درصد وزنی مورد نظر میزان گرم و لیتر مورد نیاز هر ماده محاسبه شد که در جدول 1 نشان داده شدهاست. در همهی درصد وزنی‌ها نسبت نیترات آهن(ΙΙΙ) 9 آبه به نیترات کبالت(ΙΙ) 6 آبه 2 به 1 باقی ماند.
جدول 4-1 میزان گرم و لیتر مواد مورد نیاز.
10% 15% 20% lit 0/20 lit 9/18 lit 8/17 TEOS
gr 4/2 gr 0/4 gr 8/4 نیترات آهن(ΙΙΙ) 9 آبه
gr 87/0 gr 4/1 gr 7/1 نیترات کبالت(ΙΙ) 6 آبه

user8290

4-9. پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% در دمای 800 درجهی سانتیگراد60
4-10. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 600 درجه‌ی سانتی ‌گراد61
4-11. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 800 درجه‌ی سانتی ‌گراد62
4-12. طیف‌های جذبی FT-IR الف) 10%، ب) 15% و ج) 20%.65
4-13. تصویر TEM یکی از نمونه‌ها67
4-14. نمودارهای لانگمیر الف) 10%، ب) 15% و ج) 20%69
4-15. نمودارهای BET الف) 10%، ب) 15% و ج) 20%71
4-16. جذب و واجذب الف) 10%، ب) 15% و ج) 20%.72
4-17. حلقه پسماند نمونه‌ها قبل از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.74
4-18. حلقه پسماند نمونه‌ها بعد از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.75

فهرست جداول
عنوان صفحه
فصل سوم - ساخت آئروژل و کاربردهای آن
3-1. کاربردهای مختلف آئروژل‌ها48
TOC o "1-3" h z u
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. میزان گرم و لیتر مواد مورد نیاز51
4-2. نتایج حاصل از XRD63
لیست علایم و اختصارات
برونر، امت، تلر(Brunauer, Emmett, Teller) BET
پراش پرتو ایکس (X-Ray Diffraction) XRD
مغناطیسسنج نمونهی ارتعاشی (Vibrating Sample Magnetometer) VSM
میکروسکوپ الکترونی گسیل میدانی (Field Emission Scanning Electron Microscopy) FE-SEM
میکروسکوپ الکترونی عبوری (Transmission Electron Microscopy) TEM
آنگسترم (Angestrom) Å
اورستد (Oersted) Oe
نانومتر (Nanometer) nm
واحد مغناطیسی (Electromagnetic Units) emu
فصل اولمفاهیم اولیه1854668136024
مقدمهاز اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.
در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شدهاست. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتیمتر به اندازه‌هایی در حدود یک دهم نانومتر یا کمتر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [1].
1-1 شاخه‌های فناوری نانوتفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهمترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و میتوانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعهای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [4].
1-2 روش‌های ساخت نانوساختارهاتولید و بهینهسازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [6 و5]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی و رشد خود به خودی. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:
 چگالش بخار
 سنتز شیمیایی
 فرآیندهای حالت جامد (خردایشی)
 استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
 استفاده از امواج ماکروویو و امواج مافوق صوت
 استفاده از باکتری‌هایی که میتوانند نانوذرات مغناطیسی و نقره‌ای تولید کنند
پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکشدهی یا اصلاح شیمیایی نیز استفاده کرد [7].
1-3 کاربردهای نانوساختارهایکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.
با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشهها، عمر آن‌ها را نیز چندین برابر نمودهاست .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوششهای سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با استفاده از نانوذرات تولید شده‌اند.
وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیشماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفته‌اند. هاروتا و تامسون اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [7].
1-4 مواد نانومتخلخلمواد نانو متخلخل دارای حفره‌هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن‌ها را فضای خالی تشکیل می‌دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی زیاد، گزینشپذیری خوب و مقاومت گرمایی و صوتی از ویژگی‌های مهم آن‌ها می‌باشد. با توجه به ویژگی‎‌های ساختاری، این به عنوان تبادل‌گر یونی، جدا کننده، کاتالیزور، حس‌گر، غشا و مواد عایق استفاده می‌شود.
نسبت حجمی فضای خالی ماده‌ی متخلخل به حجم کل ماده‌ تخلخل نامیده میشود. به موادی که تخلخل آن‌ها بین 2/0 تا 95/0 باشد نیز مواد متخلخل می‌گویند. حفره‌ای که متصل به سطح آزاد ماده است حفره‌ی باز نام دارد که برای صاف کردن غشا، جداسازی و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی (جداسازی مواد با استفاده از رنگ آن‌ها) مناسب است. به حفره‌ای که دور از سطح آزاد ماده است حفره‌ی بسته می‌گویند که وجود آن‌ها تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره‌ها دارای اشکال گوناگونی همچون کروی، استوانهای، شیاری، قیفی شکل و یا آرایش شش گوش هستند. همچنین تخلخل‌ها می‌توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [7].
بر اساس دستهبندی که توسط آیوپاک صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفره‌ها، مواد سازنده و نظم ساختار به سه گروه تقسیمبندی میشوند که در شکل 1-1 نشان داده شده است:
الف) دسته بندی بر اساس اندازهی حفره:
میکرومتخلخل: دارای حفرههایی با قطر کمتر از 2 نانومتر.
مزومتخلخل: دارای حفرههایی با قطر 2 تا 50 نانومتر.
right59626500ماکرومتخلخل: دارای حفرههایی با قطر بیش از 50 نانومتر.
center1720850شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].
0شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].

بر اساس شکل و موقعیت حفره‌ها نسبت به یکدیگر در داخل مواد متخلخل، حفره‌ها به چهار دسته تقسیم می‌شود: حفره‌های راه به راه، حفره‌های کور، حفره‌های بسته و حفره‌های متصل به هم که در شکل (2-1) به صورت شماتیک این حفره‌ها را نشان داده شده است.

شکل 1-2 نوع تخلخل‌ها بر اساس شکل و موقعیت [8].
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل را برای موادی که دارای حفرههایی با قطر کمتر از 100 نانومتر هستند به کار می‌برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.
ب) دستهبندی بر‌اساس مواد تشکیل دهنده:
مواد نانومتخلخل آلی
مواد نانومتخلخل معدنی
تقسیمبندی مواد نانومتخلخل آلی
1) مواد کربنی: کربن فعال، کربنی است که حفره‌های بسیار زیاد دارد و مهم‌ترین کربن از دسته مواد میکرومتخلخل است.
2) مواد بسپاری: مواد نانو متخلخل بسپاری به دلیل ساختار انعطاف‌پذیر خود، حفره‌های پایداری ندارند و تنها چند ترکیب محدود از این نوع وجود دارد [8].
تقسیم بندی مواد نانومتخلخل معدنی
1) مواد میکرومتخلخل
زئولیت‌ها: مهم‌ترین ترکیبات میکرومتخلخل بوده که دارای ساختار منظم بلوری و حفره‌دار با بار ذاتی منفی می‌باشند. در اکثر موارد ساختار زئولیتی از قطعات چهار وجهی با چهار اتم اکسیژن و یک اتم مرکزی مثل آلومینیوم، سیلیکون، گالیم یا فسفر تشکیل شده‌اند که با کاتیون‌ها خنثی می‌شوند [8].
چارچوب فلزی-آلی: از واحد‌های یونی فلزی یا خوشه‌ی معدنی و گروه‌های آلی به عنوان اتصالدهنده تشکیل شده است که اتصال آن‌ها به هم، حفره‌ای با شکلی معین مانند کره یا هشت وجهی به وجود می‌آورد. ویژگی بارز این ترکیبات، چگالی کم و سطح ویژه‌ی بالای آن‌هاست [9].
هیبرید‌های آلی-معدنی: از قطعاتی معدنی تشکیل شده‌اند که توسط واحد‌های آلی به هم متصل هستند [10].
2) مواد مزومتخلخل:
سیلیکا: ترکیبات MCM، معروف‌ترین سیلیکای مزومتخلخل هستند.
اکسید فلزات و سایر ترکیبات مزومتخلخل: اکسیدهای نانومتخلخل فلزات مثل تیتانیوم دی اکسید، روی اکسید، زیرکونیوم دی اکسید و آلومینا، فعالیتی بیشتر از حالت معمولی خود دارند. ترکیبات سولفید و نیترید هم میتوانند ساختار مزومتخلخل داشته باشند.
3) مواد ماکرومتخلخل:
بلور کلوییدی: از مجموعه کره‌هایی مانند سیلیکا ساخته می‌شود که فضای بین آن‌ها خالی است. در بلور کلوییدی معکوس کره‌ها توخالی و فضای بین آن‌ها پر است [10].
آئروژل‌ها مواد مزومتخلخل با سطح ویژه و حجم تخلخل بالا هستند که در فصل بعد به آن‌ها می‌پردازیم.
1-5 کامپوزیت‌هاکامپوزیت‌ها (مواد چند رسانهای یا کاهگل‌های عصر جدید) رده‌ای از مواد پیشرفته هستند که در آن‌ها از ترکیب مواد ساده به منظور ایجاد مواد جدیدی با خواص مکانیکی و فیزیکی برتر استفاده شده است. اجزای تشکیلدهنده ویژگی‌های خود را حفظ کرده، در یکدیگر حل نشده و با هم ترکیب نمی‌شوند.
استفاده از این مواد در طول تاریخ مرسوم بوده است. از اولین کامپوزیت‌ها یا چندسازه‌های ساخت بشر می‌توان به آجرهای گلی که در ساخت آن‌ها از کاه استفاده شده است اشاره کرد. هنگامی که این دو با هم مخلوط بشوند، در نهایت آجر پخته بهدست می‌آید که بسیار ماندگار‌تر و مقاوم‌تر از هر دو ماده اولیه، یعنی کاه و گل است. شاید هم اولین کامپوزیت‌ها را مصری‌ها ساخته باشند که در قایق‌هایشان به چوب بدنه قایق مقداری پارچه می‌آمیختند تا در اثر خیس شدن، آب توسط پارچه جذب شده و چوب باد نکند. قایق‌هایی که سرخپوستان با فیبر و بامبو می‌ساختند و تنورهایی که از گل، پودر شیشه و پشم ساخته می‌شدند از نخستین کامپوزیت‌ها هستند [11].
1-5-1 کامپوزیت یا مواد چندسازهچندسازه‌ها به موادی گفته می‌شود که از مخلوط دو یا چند عنصر با فازهای کاملا متمایز ساخته شده باشند. در مقیاس ماکروسکوپیک فازها غیر قابل تشخیص‌اند. اما در مقیاس‌های میکروسکوپیک فازها کاملا مجزا هستند و هر فاز خصوصیات عنصر خالص را نمایش می‌دهد. در چندسازه‌ها، نه تنها خواص هر یک از اجزاء باقی مانده بلکه در نتیجهی پیوستن آن‌ها به یکدیگر، خواص جدیدتر و بهتر بهدست می‌آید [11].
1-5-2 ویژگی‌های مواد کامپوزیتیمواد زیادی می‌توانند در دسته‌بندی مواد کامپوزیتی قرار بگیرند، در واقع موادی که در مقیاس میکروسکوپی قابل شناسایی بوده و دارای فازهای متفاوت و متمایز باشند در این دسته‌بندی قرار می‌گیرند. امروزه کامپوزیت‌ها به علت وزن کم و استحکام بالا در صنایع مختلف، به طور گستره‌ای مورد استفاده واقع می‌شوند. کامپوزیت‌ها با کاهش وزن و ویژگی‌های فیزیکی بسیار عالی، گزینه‌ای مناسب برای استفاده در تجهیزات ساختاری می‌باشند. علاوه بر ‌این، کامپوزیت‌ها جایگزین مناسب برای مواد سنتی در کاربردهای صنعتی، معماری، حمل و نقل و حتی در کاربردهای زیر بنایی می‌باشد [12].
یکی از ویژگی‌های بارز کامپوزیت‌ها، حضور فاز تقویـتکننده مجزا از فاز زمینه می‌باشد. ویژگی‌های اختصاصی این دو فاز، در ترکیب با یکدیگر، ویژگی‌های یکسانی را به کل کامپوزیت می‌بخشد. در یک دسته‌بندی ویژه، کامپوزیت‌ها همواره به دو فاز زمینه و تقویتکننده تقسیم می‌شوند. می‌توان گفت در واقع زمینه مانند چسبی است که تقویتکننده‌ها را به یکدیگر چسبانده و آن‌ها را از آثار محیطی حفظ می‌کند.
1-5-3 مواد زمینه کامپوزیتزمینه با محصور کردن فاز تقویت کننده، باعث افزایش توزیع بار بر روی کامپوزیت می‌گردد. در واقع زمینه، برای اتصال ذرات تقویتکننده، انتقال بارها به تقویتکننده، تهیه یک ساختار شبکه‌ای شکل از آن‌ها و حفظ تقویتکننده از آثار محیطی ناسازگار به کار گرفته می‌شود.
1-5-4 تقویتکننده‌هادسته‌ای از مواد معمولی که به عنوان فاز تقویت کننده به کار گرفته می‌شوند، عبارتند از شیشه‌ها، فلزات، پلیمرها و گرانیت. تقویتکننده‌ها در شکل‌های مختلفی از جمله فیبرهای پیوسته، فیبرهای کوتاه یا ویسکرها و ذرات تولید می‌شوند (شکل3-3). تقویت کننده‌ها باعث ایجاد ویژگی‌های مطلوبی از جمله استحکام و مدول بالا، وزن کم، مقاومت محیطی مناسب، کشیدگی خوب، هزینه کم، در دسترسپذیری مناسب و سادگی ساخت کامپوزیت می‌گردند [12].
1-5-5 نانو کامپوزیتنانو کامپوزیت‌ها مواد مرکبی هستند که ابعاد یکی از اجزای تشکیلدهنده آن‌ها در محدوده نانو‌متری باشد. نانوکامپوزیت‌ها هم، در دو فاز تشکیل می‌شود. در فاز اول، ساختار بلوری در ابعاد نانو ساخته می‌شود که زمینه کامپوزیت به شمار می‌رود. در فاز دوم هم ذراتی در مقیاس نانو به عنوان تقویت کننده برای بهبود ویژگی‌ها به فاز زمینه افزوده می‌شود. توزیع یکنواخت این فاز در ماده زمینه باعث می‌شود که فصل مشترک ماده تقویت کننده با ماده زمینه در واحد حجم، مساحت بالایی داشته باشد [13].

شکل 1-3 نمایشی از انواع مختلف تقویت کننده‌ها در کامپوزیت [12].
1-6 خلاصهدر این فصل به بیان بعضی مفاهیم اولیه پرداختهشد. خلاصه کوتاهی از فناوری نانو، نانوساختارها و روش‌های ساخت آن‌ها گفته شد. بعد از آن مواد متخلخل بررسی شد و در نهایت مختصری در مورد کامپوزیت‌ها، ویژگی‌ها و نانوکامپوزیت‌ها بیان شد.
فصل دومآئروژلها و مروری بر خواص مغناطیسی15418474142773
2-1 تاریخچهحوزهی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص دادهاست.
اولین بار ساموئل استفان کیستلر در سال 1931 با ایدهی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارجکرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبهکند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیمقرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].
در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطهی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیهی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].
این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلیگرم بر سانتیمتر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].
آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آیندهی محیط زیست توسط گاز‌های گلخانهای تولید شده بهدست بشر را تأیید می‌کند. آیندهی انرژی‌های قابل دسترس به خاطر کمشدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازدهی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریبنشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعهی بیشتری نیاز دارد [17].
2-2 شیمی سطح آئروژلسیلیکا آئروژل حاوی ذرات نانومتری هستند. این ترکیبات دارای نسبت سطح به حجم بالا و مساحت سطح ویژهی زیادی هستند. شیمی سطح داخلی در آئروژل‌ها نقش اساسی را در بروز رفتار‌های بی‌نظیر فیزیکی و شیمیایی آن‌ها، ایفا می‌کند. ماهیت سطح آئروژل‌ها تا حد زیادی به شرایط تهیهی آن‌ها بستگی دارد. انتخاب فرآیند مربوط به ترکیبات شیمیایی و ویژگی‌های مورد نظر مشخص برای نانوذرات وابسته است. دو روش پایه برای تولید نانوذرات استفاده می‌شود:
روش از بالا به پایین
اشاره به خردکردن مکانیکی مواد با استفاده از فرآیند آسیابکاری دارد. در این فرآیند مواد اولیه به بلوک‌های پایهی بیشتری شکسته می‌شوند.
روش پایین به بالا
اشاره به ساخت سیستم پیچیده به وسیله ترکیب اجزای سطح اتم دارد. در این فرآیند ساختارها به وسیله فرآیندهای شیمیایی ساخته می‌شوند.
روش پایین به بالا بر پایه ویژگی‌های فیزیکی و شیمیایی اتمی یا مولکولی خود تنظیم می‌شوند. این روش به دلیل ساختار پیچیده اتم یا مولکول، کنترل بهتر اندازه و شکل آن‌ها انتخاب شد. روش پایین به بالا شامل فرآیندهای آئروسل، واکنش‌های بارش و فرآیند سل-ژل است [18].
مرحله اول ساختن آئروژل تولید ژل خیس است که بهترین روش برای ساخت آن استفاده از پیشماده الکوکسید سیلیکون، مانند TEOS است. شیمی ساخت Si(OCH2CH3)TEOS است که با اضافه کردن آب، واکنش شیمیایی زیر صورت می‌گیرد [19] :
Si(OCH2CH3)4(liq)+2(H2O)(liq)→SiO2solid+4(HOCH2CH3)liq
اتم سلیکون به دلیل داشتن بار جزئی مثبت کاهشیافته (+) نسبت به دیگر انواع آئروژل بیشتر مورد مطالعه قرار گرفت. در Si(OEt)+ حدود 32/0 است. این بار مثبت جزئی کاهش یافته، روند ژل شدن پیشماده سیلیکا را آهسته می‌کند.
پیشمادهی الکوکسید M(OR) هستندکه اولین بار توسط امبلن برای سنتز سیلیکا آئروژل استفاده شد. در این ترکیب M نشان دهندهی گروه فلزی، OR گروه الکوکسید و R تعیینکنندهی گروه الکلی هستند. الکوکسیدها معمولا در محلول منبع الکلی خود موجود هستند و امکان خشک کردن این ژل‌ها را در چنین محلول‌هایی فراهم می‌کند [20].
اگر آئروژل از طریق خشک کردن به وسیله الکل تهیه گردد، گروه‌های آلکوکسی (OR) تشکیل دهنده سطح آن است و در این سطح آئروژل خاصیت آبگریزی پیدا می‌کند. اگر تهیه آئروژل از طریق فرآیند دی اکسید کربن باشد آنگاه سطح آئروژل را گروه‌های هیدروکسید (OH) فرا می‌گیرد و خاصیت آب‌دوست پیدا خواهدکرد و مستقیما می‌تواند رطوبت هوا را جذب نماید. البته با حرارت دادن می‌توان رطوبت جذب شده را از ساختار آئروژل حذف نمود. شکل 1-2 به خوبی خاصیت آب‌دوست و آبگریزی را در ساختار آئروژل‌های با گروه‌های عاملی مختلف نشان می‌دهد [21].

شکل 2-1 برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست [18].
2-3 تئوری فیزیکیاتصال شبکه نانو مقیاس سیلیکای جامد آئروژل‌های پایه سیلیکا، ویژگی‌های منحصر به فردی را به آن‌ها می‌دهد. کسر یونی پیوند کووالانت قطبی برای اکسیدهای فلزی مختلف از رابطهی زیر نتیجه می‌شود:
Fionic=1-exp⁡(-0.25 XM-XO2)که XO و XM الکترون‌خواهی O و M را نشان می‌دهد. 2SiO مقدار Fionic 54/0 دارد که طیف مقدار زاویه Si-O-Si را گسترده کرده و شبکه تصادفی را می‌دهد. چهار اکسید دیگر زاویه یونی بزرگ‌تر و مقدار کوچک‌تر زاویه پیوند را سبب می‌شوند. به این معنی که پیوند تصادفی فقط روی ماکرومقیاس‌های بیشتر با ذرات کلوییدی بزرگ‌تر و متراکم‌تر اتفاق می‌افتد، در این صورت، ژل به جای شکلگرفتن شبکهی تصادفی اتصالات به صورت ذره تشکیل می‌شود [14]. شبکهی اتصالات سیلیکا برای وزن نسبی‌اش یک جامد محکم را ایجاد می‌کند.
2-4 خاصیت مغناطیسی مواد2-4-1 منشأ خاصیت مغناطیسی موادیکی از مهمترین ویژگی‌های مواد، خاصیت مغناطیسی آن‌هاست که از زمآن‌های نسبتا دور مورد توجه بوده و هم اکنون نیز در طیف وسیعی از کاربردهای صنعتی قرار گرفته است.
منشأ خاصیت مغناطیسی در جامدها، الکترون‌های متحرک می‌باشند. گرچه بعضی از هسته‌های اتمی دارای گشتاور دو قطبی مغناطیسی دائمی هستند ولی اثر آن‌ها چنان ضعیف است که نمی‌تواند آثار قابل ملاحظه‌ای داشته باشد؛ مگر در تحت شرایط خاص مانند اینکه نمونه در زیر دمای یک درجهی کلوین قرار گیرد یا وقتی که تحت میدان الکترومغناطیسی با بسامدی قرار گیرد که حرکت تقدیمی هسته را تشدید نماید. در بدو ظهور نظریات مغناطیس آزمایش‌های زیادی نشان داد که اندازه حرکت زاویهای کل یک الکترون و گشتاور مغناطیسی وابسته به آن بزرگ‎تر از مقداری است که به حرکت انتقالی آن نسبت داده می‌شد. بنابراین یک سهم اضافی که از خصوصیت ذاتی با یک درجه آزادی داخلی ناشی می‌شد، به الکترون نسبت داده شد و چون این خصوصیت دارای اثر مشابه چرخش الکترون حول محورش بود اسپین نامیده گردید [22].
2-4-2 فازهای مغناطیسیبه طورکلی مواد در میدان مغناطیسی خارجی رفتارهای متفاوتی از خود نشان می‌دهند و با توجه به جهت‌گیری مغناطش، به پنج گروه تقسیم می‌شوند که به بیان آن‌ها می‌پردازیم.
2-4-2-1 مواد دیامغناطیسدر این مواد الکترون‌ها به صورت جفت بوده و اتمها دارای گشتاور مغناطیسی دائمی نیستند و با قرارگرفتن در میدان مغناطیسی خارجی دارای گشتاور مغناطیسی القایی در خلاف جهت میدان خارجی می‌شوند و آن را تضعیف می‌کند. پذیرفتاری مغناطیسی χ چنین موادی منفی و خیلی کم است. خاصیت دیامغناطیس ظاهراً در تمام انواع مواد یافت می‌شود، اما اثر آن غالباً به وسیله‌ی آثار قویتر پارامغناطیس یا فرومغناطیس که می‌توانند با این خاصیت همراه باشند، مخفی می‌شود. خاصیت دیامغناطیسی خصوصاً در موادی بارز است که کلاً اتمها یا یونهایی با پوسته‌های بسته‌ی الکترونی تشکیل شده باشند، زیرا در این مواد تمام تأثیرات پارامغناطیسی حذف می‌شوند.
2-4-2-2 مواد پارامغناطیسمواد پارامغناطیس، موادی هستند که برخی از اتمها یا تمامی آن‌ها گشتاور دو قطبی دائمی دارند، به عبارت دیگر گشتاور دو قطبی در غیاب میدان مغناطیسی، غیرصفر است. این دو قطبیهای دائمی رفتاری مستقل از هم داشته که در نهایت جهت‌گیری تصادفی دارند و در میدان‌های کوچک رقابتی بین اثر هم‌خط‌سازی میدان و بی‌نظمی گرمایی وجود دارد، اما به طور متوسط تعداد گشتاورهای موازی با میدان بیشتر از گشتاورهای پادموازی با میدان است. پذیرفتاری در این مواد مثبت است و با افزایش دما، که در اثر آن بی‌نظمی گرمایی زیاد می‌شود، کاهش مییابد. منگنز، پلاتین، آلومینیوم، فلزخاکی قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت از جمله مواد پارامغناطیس‌اند.
2-4-2-3 مواد فرومغناطیس
در برخی از مواد مغناطیسی، گشتاورهای مغناطیسی کوچک به طور خودبهخود با گشتاورهای مجاور خود هم‌خط می‌شوند. اینگونه مواد را فرومغناطیس می‌نامند. در عمل، همه‌ی حوزه‌های مغناطیسی در یک ماده‌ی مغناطیسی در یک راستا قرار ندارند، بلکه این مواد از حوزه‌های بسیار کوچکی با ابعاد خیلی کمتر از میلیمتر تشکیل شده‌اند، به طوری که گشتاورهای مغناطیسی هر حوزه با حوزه‌های مجاور آن تفاوت دارد.
ممکن است سمتگیری و اندازه‌ی حوزه‌های مغناطیسی در یک ماده‌ی فرو مغناطیس به گونه‌ای باشد که در کل اثر یکدیگر را خنثی کنند و ماده در مجموع فاقد مغناطش است. اعمال میدان مغناطیسی خارجی بر حوزه‌های مغناطیسی سبب می‌شود که گشتاورهای مغناطیسی هر حوزه تحت تأثیر میدان قرار گرفته و جهت آن‌ها در جهت میدان خارجی متمایل شود. علاوه بر این حوزههایی که با میدان همسویند، رشد میکنند، یعنی حجم آن‌ها زیاد می‌شود و در نتیجه، حوزه‌هایی که سمتگیری آن‌ها نسبت به میدان مناسب نیست کوچک می‌شوند، مرز بین این حوزه‌ها جابجا می‌شود و در نتیجه ماده در مجموع خاصیت مغناطیسی پیدا می‌کند . پذیرفتاری مغناطیسی این مواد مثبت است. آهن، کبالت، نیکل و چندین عنصر قلیایی خاکی جز فرومغناطیس‌ها می‌باشند [23].
مواد فرومغناطیس دارای چند مشخصه‌ی اصلی به صورت زیر می‌باشند:
الف) مغناطش خودبه‌خودی و مغناطش در حضور میدان
ب) حساسیت مغناطش به دما
ج) مغناطش اشباع
د) منحنی پسماند
2-4-2-4 مواد پادفرومغناطیس
در مواد پادفرومغناطیس گشتاورهای مغناطیسی مجاور به صورت موازی، برابر و غیرهم راستا جهتگیری
می‌کنند. این مواد در غیاب میدان مغناطیسی دارای گشتاور صفرند. کروم و اکسیدهای آن ، جز مواد پادفرومغناطیس می‌باشند. چنین موادی معمولاً در دماهای پایین پادفرومغناطیساند. با افزایش دما ساختار نواحی مغناطیسی شکسته شده و ماده پارامغناطیسی می‌شود. این رفتار در مواد فرومغناطیس نیز اتفاق می‌افتد به این ترتیب که در این مواد پذیرفتاری مغناطیسی مواد مغناطیسی با افزایش دما به تدریج کاهش می‌یابد تا زمانی که ماده پادفرومغناطیس شود .
پذیرفتاری مغناطیسی این مواد عدد مثبت بسیار کوچک و نزدیک به صفر است. به دمایی که در آن ماده از حالت پادفرومغناطیس به فرومغناطیس گذار می‌کند، دمای نیل می‌گویند.
χ= CT+TN
که C ثابت کوری و TN دمای نیل است.
2-4-2-5 مواد فریمغناطیس
فریمغناطیس شکل خاصی از پادفرومغناطیس است که در آن گشتاورهای مغناطیسی در جهت موازی و عکس یکدیگر قرار گرفته‌اند، اما با یکدیگر برابر نیستند و به صورت کامل یکدیگر را حذف نمی‌کنند. در مقیاس ماکروسکوپی، مواد فریمغناطیس همانند فرومغناطیس بوده و دارای مغناطش خودبه‌خودی در زیر دمای کوری بوده و دارای منحنی پسماند می‌باشند[23و24]. شکل 2-2 فازهای مغناطیسی را نشان می‌دهد.

شکل 2-2 فازهای مغناطیسی، الف) پارامغناطیس، ب) فرومغناطیس، ج) پادفرومغناطیس، د) فری مغناطیس [24].
دو خاصیت مهم و کلیدی مواد مغناطیسی دمای کوری و هیستروسیس مغناطیسی است. جفت شدگی ‏تبادلی و بنابراین انرژی تبادلی هیسنبرگ مستقیماً با دمای کوری ‏‎(Tc)‎‏ مواد فرو و فریمغناطیس در ‏ارتباط است. در کمتر از دمای ‏Tc، ممان مغناطیسی همان جهت بلوروگرافی ویژه‌ی محور صفر این ‏مواد است. این محور در ‏نتیجه‌ی جفت‌شدگی این اسپین الکترون و ممنتوم زاویهای اوربیتال الکترون ایجاد می‌شود.
‏از آنجایی که مواد فرومغناطیسی مواد جالبی بر حسب کاربردهایشان هستند، خواص آن‌ها باید به ‏طور کمی اندازه‌گیری شود و حلقهی پسماند خواص مغناطیسی جالبی را در این مواد آشکار ‏می‌کند. یک حلقه‌ی پسماند را می‌توان با قراردادن نمونه در یک مغناطیس‌سنج و پاسخ ماده ‏‎(M,)‎‏ ‏به میدان مغناطیسی اعمالی ‏‎(H)‎‏ اندازه‌گیری کرد. چندین کمیت ممکن است از روی حلقه‌ی پسماند ‏به‌دست آید. ‏
اشباع مغناطیسی ‏‎(Ms)‎‏ یا اشباع مغناطیسی ویژه (‏s‏) مواردی‌اند که مقدار مغناطیسشدگی را وقتی ‏که همه دوقطبی‌ها در جهت میدان مغناطیسی اعمالی مرتب شده‌اند نشان می‌دهد.‏
مغناطیس باقیمانده ‏‎(Mr)‎‏ مغناطیسشدگی نمونه در میدان مغناطیسی صفر است و نیروی ‏بازدارندگی ‏‎(Hc)‎، نیرویی از میدان مغناطیسی است که برای تغییر مغناطیسشدگی باقیمانده نیاز است. ‏تغییر بایاس میدان ‏‎(HE)‎، مقدار جابجایی از مرکز حلقهی پسماند را نشان می‌دهد.‏
2-4-5 حلقه پسماندوقتی به یک ماده مغناطیسی، میدان مغناطیسی اعمال شود، مغناطش محیط سریع افزایش می‌یابد، با افزایش مقدار میدان اعمالی، شتاب افزایش و مغناطش کاهش می‌یابد، این کاهش شتاب ادامه می‌یابد تا مغناطش به مقدار اشباع خود Ms برسد [25].
تغییرات مغناطش مواد مغناطیسی در هنگام کاهش میدان، از رفتار قبلی خود تبعیت نمی‌کند، بلکه به خاطر ناهمسانگردی مغناطیسی در محیط، مقداری انرژی را در خود ذخیره می‌کنند. بنابراین وقتی میدان اعمالی در محیط صفر شود، مغناطش در ماده صفر نشده و دارای مقدار خاصی است که به آن مغناطش پسماند Mr گفته می‌شود. با کاهش بیشتر میدان به سمت مقادیر منفی، خاصیت مغناطیسی القا شده به تدریج کاهش می‌یابد و با رسیدن شدت میدان به یک مقدار منفی خواص مغناطیسی ماده کاملا از بین می‌رود. این میدان مغناطیس‌زدا را با Hc نشان می‌دهند و به نیروی ضد پسماند یا وادارندگی مغناطیسی معروف است. پسماند یا نیروی وادارنده عبارتست از میدان معکوسی که برای کاهش مغناطش به صفر نیاز است. با کاهش بیشتر شدت میدان، القای مغناطیسی منفی می‌شود و در نهایت به مقادیر اشباع منفی خود می‌تواند برسد. افزایش مجدد شدت میدان به سمت مقادیر مثبت، حلقه پسماند را مطابق شکل 2-3 کامل می‌کند. مغناطیس‌های دائمی غالبا در ربع دوم حلقه پسماند خود، مورد استفاده قرار می‌گیرند [26].

شکل 23 حلقه پسماند ماده فرو مغناطیس [26].
مواد مغناطیسی از نظر رفتار آن‌ها در میدان مغناطیس دو گروه تقسیم می‌شوند:
الف) مواد مغناطیس نرم
مواد مغناطیسی نرم با اعمال میدان مغناطیسی کوچک به راحتی مغناطیده می‌شود و با قطع میدان سریعاً گشتاور مغناطیسی خود را از دست می‌دهند. به عبارتی این مواد دارای نیروی وادارندگی پایین، اشباع مغناطیسی بالا و گشتاور پسماند پایین هستند.
مواد مغناطیس نرم در جاهایی که به تغییر سریع گشتاور مغناطیسی با اعمال میدان مغناطیسی کوچک نیاز است مانند موتورها، حسگرها، القاگرها و فیلترهای صوتی مورد استفاده قرار می‌گیرد.
ب) مواد مغناطیس سخت
مواد مغناطیس سخت موادی‌اند که به راحتی مواد مغناطیس نرم، مغناطیده نمی‌شوند و به میدان مغناطیسی اعمالی بزرگ‌تری جهت مغناطیده کردن آن‌ها نیاز است. این مواد گشتاور مغناطیسی را تا مدت‌ها پس از قطع میدان حفظ می‌کنند. همچنین دارای اشباع مغناطیسی، گشتاور پسماند و نیروی وادارندگی بالایی هستند. ساخت یا پخت این مواد در میدان مغناطیسی، ناهمسانگردی مغناطیسی را در این مواد افزایش می‌دهد که حرکت دیواره حوزه‌ها را سخت‌تر می‌کند و نیروی وادارندگی را افزایش می‌دهد. این امر می‌تواند تولید مادهی سخت مغناطیسی بهتری را تضمین کند. کاربرد این مواد در آهن‌رباهای دائمی و حافظه‌های مغناطیسی است [26].

شکل 24 حلقه پسماند در مواد فرومغناطیس نرم و سخت[26].
2-5 فریتفریت به آن دسته از مواد مغناطیسی اطلاق می‌شود که جزء اصلی تشکیل دهندهی آن‌ها اکسید آهن است و دارای خاصیت فریمغناطیس می باشند (آرایشی از فرومغناطیس) و پارامترهای مغناطیسی مطلوبی نظیر ضریب نفوذپذیری مغناطیسی بالا از جمله اصلی‌ترین خصیصه‌های آن‌ها به شمار می‌رود. بدین جهت کاربردهای بسیار وسیعی را در زمینه صنایع برق، الکترونیک، مخابرات، کامپیوتر و… به خود اختصاص داده‌اند.
یکی از انواع فریت‌ها نوع اسپینلی آن است، فریت‌های اسپینلی با فرمول عمومی 2-o2+A3+B که در آن 2+A و 3+B به ترتیب کاتیون‌های دو و سه ظرفیتی می‌یاشند.
فریت‌ها دارای خاصیت فریمغناطیس می‌باشند نظم مغناطیسی موجود در فریمغناطیس‌ها ناشی از برهم‌کنش‌های دو قطبی‌های مغناطیسی نیست بلکه ناشی از برهم‌کنش تبادلی است در برهمکنش تبادلی هم‌پوشانی اوربیتال‌های اتمی مد نظر می‌باشد در فریت‌ها برهم‌کنش تبادلی ناشی از هم‌پوشانی الکترون‌های اوربیتال d3 یون‌های A و B و الکترون‌های اوربیتالP 2 یون‌‎های اکسیژن است. و قدرت این بر‌هم‌کنش تبادلی است که خاصیت مغناطیسی نمونه را رقم می‌زند.
2-6 خلاصهدر این فصل به شیمی آئروژل و دو روش بالا به پایین و پایین به بالای تولید نانوذرات اشاره شد. سپس خاصیت مغناطیسی مواد و فاز‌های مغناطیسی ممکن برای مواد مغناطیسی بررسی شد. پس از آن توضیح کوتاهی در مورد حلقهی پسماند و موارد قابل اندازه‌گیری از آن گفته شد و در نهایت مختصری از مواد فریتی بیان گردید.
فصل سومساخت آئروژل و کاربردهای آن19509215088990
مقدمهسیلیکا آئروژل‌ها به دلیل ویژگی‌های منحصر به فرد، هم در علم و هم در تکنولوژی توجه زیادی را به خود اختصاص داده‌اند. آئروژل‌ها از پیشماده مولکولی با روش‌های مختلف و تکنیک‌های خشک کردن متفاوت برای جایگزینی منافذ مایع با گاز همراه با حفظ شبکهی جامد، تهیه می‌شوند. [27]
علی‌رغم تمامی تلاش‌های قابل توجهی که در این زمینه صورت گرفته است، چالش‌های اصلی تحت کنترل عوامل یکنواختی(همگنی)، بارگذاری، اندازه و توزیع نانوذرات در شبکه‌ی میزبان آلی باقی ماندهاست، در عوض این شبکه‌ی میزبان به طور مستقیم ویژگی‌های الکتریکی، نوری، مغناطیسی و کاتالیزوری مواد نانوکامپوزیت را حفظ می‌کند.
3-1 سنتز آئروژل با فرآیند سل-ژلتفاوت در ویژگی‌های شیمیایی پیش‌ماده‌ها برای فاز نانو (معمولاً نمک فلزی) و برای ماتریس آلی (عموماً الکوکسید‌ها) موضوع مهمی هستند، چرا که پارامترهای فرآیند سل-ژل بر روی هیدرولیز و چگالش هر کدام از این پیشماده‌ها تأثیر متفاوتی دارد [28]. هر چند این موضوع مساله‌ی مهمی در طراحی هر نانوکامپوزیت سل-ژل است اما در رابطه با آئروژل‌ها حیاتی‌تر می‌باشد، زیرا نیازمند جایگزین شدن حلال موجود در ژل (معمولاً اتانول یا متانول در الکوژل و آب در آکوژل) با تغییر حلال و در نهایت حذف کردن به وسیلهی استخراج حلال فوق بحرانی است. مرحله خشک کردن فوق بحرانی، بسته به این که الکل یا کربن دی اکسید به صورت فوق بحرانی تخلیه شود (به ترتیب نیازمند حرارتی در حدود 350 و 40 درجهی سانتیگراد است). این مرحله مسائل دیگری درباره حلالیت پیشماده‌ها و پایداری حرارتی در شرایط خشک کردن فوق بحرانی را مطرح می‌کند [29]. استراتژی‌های مختلف اتخاذ شده برای سنتر نانوکامپوزیت‌های آئروژل، بسته به اینکه فاز نانو (یا پیش‌مادهی آن) در حین یا بعد از فرآیند سل-ژل اضافه شود، دو رویکرد کلی دارند.
روش اول شامل هیدرولیز و ژل شدن نانوذرات و ماتریس پیشماده و ژل شدن ماتریس پیش‌ماده به همراه شکل‌گیری نانوذرات است. مزیت این روش تولید موادی با بارگذاری نانوذرات قابل کنترل است. از طرفی، چندین اشکال در مورد آن مطرح است. برای بهدست آوردن ژل دارای چند ترکیب همگن شرایط سنتز باید به صورت دقیق انتخاب شود و پیشماده‌های نانوذرات و همچنین عوامل پوشش دهی موردنیاز در شکل‌گیری نانوذرات کلوئیدی ممکن است بر سنتز سل-ژل ماتریس تأثیر بگذارد.
روش دوم شامل روش‌های مبتنی بر اضافه کردن فاز نانو بعد از فرآیند سل-ژل است و باید ساختار متخلخل و مورفولوژی ماتریس را حفظ کند. این روش‌ها شامل تلقیح فاز نانو با اشباع، ته‌نشینی و روش رسوبگذاری بخار شیمیایی می‌باشد. طرح‌واره روش‌های مختلف برای شیمی سنتز نانوکامپوزیت آئروژل در شکل 3-1 نشان داده شده است.
هرچند این روشها نیز دارای دو اشکال عمده هستند: یکی همگنی ضعیف ترکیب نانوکامپوزیت تولیدشده، دیگری ترد و شکننده بودن آئروژل‌ها. اتصال فلز در یک ماتریس با گروه‌های هماهنگ اصلاح شده است و غوطه‌ور کردن الکوژل و آکوژل در محلول قبل از خشک کردن فوق بحرانی، به ترتیب به عنوان راهحلهایی برای غلبه بر کاستی‌های گفته شده است. رسوب نانوذرات از فاز بخار، بر خلاف روش‌های تلقیح مرطوب، ماتریس متخلخل را تغییر نمیدهد و تضمین میکند که فاز مهمان در سراسر ماتریس توزیع خواهد شد [30].

شکل 3-1 طرح‌واره‌ای از روش‌های مختلف برای شیمی سنتز نانوکامپوزیت [33].
3-2 شکل‌گیری ژل خیسژل‌های سیلیکا به طور عمومی با هیدرولیز و واکنش چگالش پیشماده سیلیکا به‌دست می‌آیند. ماتریس سیلیکای نهایی متخلخل است و حفره‌های ژل با حلال جانبی هیدرولیز و واکنش پلیمریزه شدن پر شده است. اگر ترکیب محلول بهتواند از ژل خیس بدون سقوط قابل ملاحظه ساختار خارج شود، آئروژل شکل می‌گیرد [31].
روش سل-ژل شامل یک یا چند پیشماده سیلیکون است که متداول‌ترین آن‌ها TEOS و TMOS می‌باشند و داراری چهار گروه الکوکسید شناخته شده در آرایش چهار وجهی در اطراف اتم سیلیکون مرکزی است. واکنش هیدرولیز در چهار جهت اتفاق می‌افتد و منجر به پیوند Si-O-Si می‌شود و یک مادهی کپهای که ترکیبی از 2SiO را می‌دهد. اگر یکی از شاخه‌های الکوکسید اتم سیلیکون توسط گروه عاملی مختلفی که قادر نیست تحت واکنش چگالش قرار گیرد، جایگزین شود گروه عاملی با پیوند کووالانسی به اتم سیلیکون درون ماتریس ژل باقی خواهد ماند. الکوکسیدهای فلزی به راحتی با آب واکنش می‌دهد و بر حسب میزان آب و حضور کاتالیست، عمل هیدرولیز ممکن است کامل انجام شود.
ملکول‌های شکلگرفته آلی-فلزی به مرور زمان بزرگ می‌شوند و به صورت یک ساختار پیوسته در داخل مایع در می‌آیند. این ساختار پیوسته که حالت الاستیک دارد، ژل گفته می‌شود [32].
به طور کلی شکل‌گیری محلول پایدار الکوکسید یا پیشماده‌های فلزی حل شده مرحله اول فرآیند تهیه آئروژل است. این محلول همگن به‌دست آمده در مرحله دوم به علت وجود آب هیدرولیز شده و سل یکنواختی را ایجاد می‌کند. در مرحله سوم واکنش بسپارش ادامه پیدا می‌کند تا سل به ژل تبدیل شود. این مرحله، پیرسازی نیز گفته می‌شود. پس از آن مرحلهی نهایی که خشک کردن است باقی می‌ماند.
3-3 خشک کردن آلکوژلبعد از شکل‌گیری ژل توسط هیدرولیز و واکنش چگالش، شبکه Si-O-Si شکل می‌گیرد. بخش پیرسازی به تشدید شبکه ژل اشاره دارد؛ ممکن است چگالش بیشتر، تجزیه، و ته‌نشینی ذرات سل یا تبدیل فاز داخل فاز جامد یا مایع صورت گیرد. این نتایج در یک جامد متخلخل که حلال در آن گیر افتاده است اتفاق می‌افتد. فرآیند حذف حلال اصلی از ژل (که معمولاً آب و الکل است) را خشککردن می‌گویند. در طول فرآیند خشککردن، ترکخوردگی اتفاق می‌افتد به این دلیل که نیروی مویینگی در گذار مایع-گاز در داخل منافذ ریز وجود دارد. معادله لاپلاس در اینجا به کار می‌رود، هر چه شعاع مویینگی کوچک‌تر باشد، ارتفاع مایع بیشتر و فشار هیدروستاتیک بالاتر خواهد بود. هنگامی که انرژی سطح باعث بالا رفتن ستون مایع داخل مویرگ‌ها می‌شود، مقدار فشار سطحی داخل مویرگ قابل محاسبه است.
قطر حفره در ژل از مرتبهی نانومتر است، به طوری که مایع ژل فشار هیدروستاتیک بالایی را باید اعمال کند. هلال داخل حفره‌ها و نیروهای کشش سطحی سعی می‌کند تا ذرات را به عنوان مایع در حفره‌ها تبخیر کند. این نیروها می‌توانند به گونه‌ای عمل کنند که باعث سقوط حفره و ساختار شوند. بنابراین ژل‌ها با حفره‌های ریز زیاد تمایل به انقباض و ترک خوردن دارند [33]. سل ژلهایی که شیمی سطح آن‌ها اصلاح نشده (شکل3-2) و در شرایط محیط خشک شدند به علت این فروپاشی منافذ تا حدود یک هشتم حجم اولیهی خود کوچک میشوند؛ ماده حاصل زیروژل نامیده میشود. اگر این فرآیند خشککردن به آرامی رخ دهد، زیروژل یکپارچه سالم میتواند تولید شود. اما برای تولید یک آئروژل، باید از عبور از مرز فاز بخار-مایع اجتناب کرد.

شکل 3-2 اصلاح شیمی سطح ژل [34].
روشهای کنونی برای پرهیز از فروپاشی منافذ درساخت آئروژل را میتوان در سه تکنیک کلی دستهبندی کرد. هرکدام از این تکنیکها طراحی شدهاند تا نیروهای مویینگی ناشی از اثرات کشش سطحی را کاسته و یا حذف نمایند. این تکنیکها الف) خشک کردن در شرایط محیط پس از اصلاح سطح، ب) خشک کردن انجمادی و ج) خشک کردن فوق بحرانی است [34]. توضیح کلی درباره هرکدام از این تکنیکها در ادامه آمده است.
3-3-1 فرآیند‌های خشککردن در شرایط محیطاین تکنیکهای خشک کردن طراحی شدهاند تا ژل خیس را در فشار محیط خشک کنند. این روشها نیازمند فرآیندهای شیمیایی با تعویض طولانی مدت حلال برای کاهش نیروهای مویینگی وارد بر نانوساختار یا برای افزایش توانایی نانوساختار در تحمل این نیروهاست (یا با قویتر کردن ساختار و یا با منعطف‌تر ساختن آن). تغییر شیمی سطح ژل خیس بر پایه TEOS برای ارتقاع انقباض قابل برگشت با استفاده از تبادل حلال با هگزان به وسیله اصلاح سطح با فرآیند کاهش گروه سیلانولی با TMCS [35و36]. همچنین استفاده از پیری ژل در محلول الکل یا الکوکسید برای سفت شدن میکرو ساختار به منظور جلوگیری از فروپاشی منافذ است [37]. به علاوه ترکیبکردن شاخه‌های متقاطع سیلیکا آئروژل است که می‌تواند نیروهای مویینگی در حین خشک کردن تحت فشار محیط را تحمل نماید [38].
3-3-2 خشککردن انجمادیخشککردن انجمادی یک ژل خیس منجر به تولید کریوژل میشود. خشککردن انجمادی باعث تولید پودر آئروژل کدر می‌شود [39]. این تکنیک حلال اضافی را با تصعید حذف میکند. ژل خیس منجمد میشود و سپس حلال در فشار پایین تصعید میشود [40]. میکروبلور‌های منجمد که حین فرآیند خشککردن انجمادی شکل می‌گیرند منجر به آئروژل‌های ماکروحفره‌تری در مقایسه با روش استخراج فوق بحرانی میشوند [41].
3-3-3 خشک کردن فوق بحرانیروشهای استخراج فوق بحرانی از مرز بین مایع و بخار با بردن حلال به بالاتر از نقطه فوق بحرانی آن اجتناب می‌کند و سپس از ماتریس سل-ژل به عنوان یک مایع فوق بحرانی حذف می‌شود. در این حالت هیچ مرز مایع-بخاری وجود ندارد، بنابراین هیچ فشار مویینگی دیده نمی‌شود. شکل 3-3 چرخه فشار-دما در طول فرآیند فوق بحرانی را نشان می‌دهد. در عمل انواع متعددی از روشهای استخراج فوق بحرانی وجود دارد که شامل تکنیک‌هایی با دمای بالا، دمای پایین و سریع است.

شکل 3-3 چرخه فشار-دما در حین فرآیند خشک کردن فوق بحرانی [42].
تکنیک‌های استخراج فوق بحرانی الکل دمای بالا، ژل خیس را به حالت فوق بحرانی حلال (معمولاً متانول یا اتانول) در یک اتوکلاو و یا هر مخزن فشار دیگری می‌برد. این مستلزم فشارهای بالا حدود Mpa 8 و دماهای بالا حدود 260 درجهی سانتیگراد می‌باشد [42]. شکل 3-4 شماتیکی از دستگاه خشککن فوق بحرانی اتوکلاو را نشان می‌دهد.

شکل 3-4 شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو [42].
تکنیکهای استخراج فوق بحرانی دمای پایین بر اساس استخراج 2CO است که دمای نقطه بحرانی پایین‌تری نسبت به مخلوط الکل باقیمانده در منافذ سل-ژل بعد از پلیمریزاسیون دارد. این روش به تبادل حلال به طور سری نیازمند است، ابتدا حلال غیرقطبی و سپس با کربن دیاکسید مایع پیش از استخراج فوق بحرانی که می‌تواند در نقطه فوق بحرانی 2CO اتفاق بیافتد [43]. مزایای این تکنیک دمای بحرانی پایین‌تر و حلال پایدارتر است؛ هرچند مراحل اضافه شده به فرآیند سبب طولانی‌تر شدن زمان آمادهسازی آئروژل می‌شود. از آنجائیکه فشار بحرانی مورد نیاز نسبت به روشهای فوق بحرانی دما بالا تغییری چندانی ندارد (فشار بحرانی 2CO مشابه متانول و اتانول است)، این فرآیند نیز نیاز به استفاده از مخازن فشار دارد. به علاوه روند انتشار تبادل حلال وابسته به اندازهی ژل است.
تکنیکهای استخراج فوق بحرانی سریع از یک قالب محدود استفاده می‌کند، چه در مخزن فشار و چه در یک فشار داغ هیدرولیک قرار بگیرند. این تکنیکها فرآیندهای تک مرحله‌ای پیش‌ماده به آئروژل هستند و آئروژل را در کمتر از 3 ساعت بهدست می‌آورند. در این روش پیشماده‌های شیمیایی مایع و کاتالیست در یک قالب دو قسمتی ریخته می‌شوند سپس به سرعت گرم می‌شوند [44]. در ابتدا فشار با بستن دو بخش قالب با هم یا با اعمال فشار هیدروستاتیکی خارجی به جای مخازن فشار بزرگ‌تر یا با ترکیبی از این دو تنظیم می‌شود. زمانیکه نقطه فوق بحرانی الکل فرارسید، اجازه داده میشود تا مایع فوق بحرانی خارج شود [45]. برای مثال گوتیه و همکارانش [46] در روند انجام این فرآیند از یک فشار داغ هیدرولیکی برای مهروموم کردن و گرم کردن قالب حاوی مخلوط پیشماده آئروژل استفاده کردند. مخلوط مایع از پیشماده‌های آئروژل در یک قالب فلزی ریخته شد و سپس در فشار داغ قرار گرفت. در طول اجرا، فشار داغ برای مهروموم کردن ترکیب به جای قالب استفاده شد و یک نیروی باز دارندهی فشاری را فراهم کرد. سپس قالب و مخلوط به بالای دما و فشار فوق بحرانی متانول برده شد. در مدت زمان این فرآیند گرم کردن، پیشمادههای آئروژل واکنش نشان داده و یک ژل خیس نانوساختاری متخلخل را تشکیل داد. زمانیکه به حالت بحرانی رسید، فشار کاهش داده شد و مایع فوق بحرانی رها شد.
3-3-4 مقایسه روش‌هاهر یک از روش‌های ساخت آئروژل شرح داده شده در بالا، نقاط قوت و محدودیت‌هایی دارند. مقایسه مستقیم تکنیک‌های مختلف خشک کردن به علت دستورالعمل‌های پیشماده متفاوت، شرایط ژل شدن مختلف، و زمان پیر سازی، به خوبی روش‌های استخراج متفاوت هستند. برای مثال خشککردن فوق بحرانی دما پایین نیاز به زمان پیرسازی کافی دارد، به طوری که ژل‌ها می‌توانند از ظرف اولیه برای استخراج و تبادل حلال خارج شوند.
در فرآیند خشککردن سریع، عموما زمان پیرسازی کوتاه است؛ گرچه، دمای بالا در این فرآیند اثر مشخصی را روی روند واکنش چگالش دارد.
مزیت اصلی تکنیک‌های خشک کردن در فشار محیط، عدم نیاز به تجهیزات فشار بالا می باشد که گران قیمت و به طور بالقوه خطرناک است؛ اگرچه به مراحل پردازش چندگانه با تبادل حلال نیاز دارند. تا به حال مطالعات اندکی در رابطه با استفاده از روش‌های خشککردن انجمادی شده است. این تکنیک‌ها نیاز به تجهیزات خاصی برای رسیدن به دمای پایین لازم برای تصعید حلال و منجر شدن به پودر آئروژل، دارند.
محدودیت اصلی تکنیکهای فوق بحرانی دما بالا، رسیدن به دماهای بالای مورد نیاز برای دست یافتن به نقطه بحرانی حلال الکل و نیز ملاحظات ایمنی در بکار بردن مخزن فشار در این شرایط است.
روش استخراج دما پایین به طور گسترده در تولید آئروژل‌های یکپارچه کوچک تا بسیار بزرگ استفاده شده است، اگرچه می‌تواند روزها تا هفته‌ها تولید آن طول بکشد و مراحل چندگانه تبادل حلال مورد نیاز، آن را تبدیل به فرآیندی پیچیده کند و اتلاف قابل ملاحظه‌ای از حلال و 2CO ایجاد می‌کند. تکنیک‌های خشککردن سریع ساده‌تر و سریع‌تر است. تمامی فرآیند، بر خلاف مراحل چندگانه و مقیاس‌های زمانی در ابعاد روزها و ماهها در سایر روش‌ها، در یک مرحله انجام شده و می‌تواند در چند ساعت تکمیل شود. همچنین این روش‌ها اتلاف کمتری را به وجود می‌آورند. یک ایراد روش‌های خشککردن سریع، نیاز به دما و فشار بالاست [47].
3-4 مروری بر کارهای انجام شدهاگرچه میدانیم که این گزارش‌های جامعی از مقالات مرتبط با نانوکامپوزیت‌های آئروژل نیست، اما تأکید بر این مطلب است که چگونه ترکیب نانوذرات ممکن است احتمال استفاده از آئروژل‌ها را به عنوان مواد جدید افزایش دهد و چگونه مسیر آماده سازی مورد اطمینان برای به‌دست آوردن نانوکامپوزیت‌های آئروژل برای کاربرد خاص را انتخاب نماییم.
پس از آنکه کیستلر در سال 1931 برای اولین بار بدون درهم شکستن ساختار ژل، فاز مایع را از آن جدا کرد، در سال 1938 به مطالعه روی رسانایی گرمایی آئروژل و در سال 1943 درباره سطح ویژه آن‌ها به مطالعه پرداخت [48]. بعد از آن حدود نیمقرن دانشمندان علاقه‌ای به آئروژل‌ها نشان ندادند تا در اویل 1980 آئروژل به عرصه پژوهش بازگشت.
در سال 1992تیلسون و هاربش از TEOS به عنوان پیشمادهی سیلیکا ژل استفاده کردند و از میکروسکوپ الکترونی روبشی برای مشخصه‌یابی آن‌ها استفاده نمودند [49] و سپس هر ساله تحقیقات زیادی روی آئروژل‌ها صورت می‌گیرد.
در سال 2001 کاساس و همکارانش نانوکامپوزیت مغناطیسی را با ورود ذرات اکسید آهن در سیلیکا آئروژل میزبان سنتز کردند. این سنتز که به روش سل-ژل و با خشککردن فوق بحرانی متانول انجام شد، دو نمک آهن استفاده شد: O2H9.(3ON)Fe و O2H2.(EDTA)FeNa. در این پژوهش ارتباط واضحی بین پیشماده، آب و تخلخل و سطح ویژه آئروژل حاصل وجود داشت. استفاده از ترکیب EDTA به عنوان پیش‌مادهی نانوذرات، قطر میانگین حفره‌ها را افزایش داد، گرچه قابلیت حل پایین نمک EDTA در محلول یک مانع بزرگ برای رسیدن به آهن در این روش بود. مساحت سطح ویژه‌ی نمونه‌های کاساس بین /g2m 200 و /g2m 619 بهدست آمد و برخی نمونه‌ها رفتار پارامغناطیس و برخی دیگر رفتار مغناطیس نرم از خود نشان دادند [50].
در سال 2002 واگنر و همکارانش ذرات سیلیکا با هستهی مغناطیسی را با روش ته‌نشینی به‌دست آوردند [51]. و چند سال بعد در سال 2006 ژانگ و همکارانش ذرات پوسته‌ای هسته‌دار را با روش سل-ژل تهیه کردند. این ذرات شامل هستهی مغناطیسی فریت کبالت و پوستهی سیلیکا بودند که از TEOS به عنوان پیشمادهی سیلیکا استفاده کردند. پس از آنکه ژل‌ها به‌دست آمدند، در 110 درجهی سانتیگراد برای 4 ساعت در خلاء خشک شدند زیرا اگر در هوا خشک شوند احتمال ته‌نشینی بلور‌های اکسید وجود داشت. سپس به مدت 2 ساعت در دماهای مختلف برای به‌دست آوردن نانو بلور پراکنده در ماتریس سیلیکا حرارت داده شد. برای نمونه‌ی آن‌ها شکل‌گیری فاز فریت کبالت در دمای 800 درجهی سانتیگرادکامل شد و خوشه‌های فریت کبالت به سمت نانو بلوری شدن پیش رفتند، زمانی که برهم‌کنش بین خوشه‌های فریت کبالت با ماتریس سیلیکا شکسته شد پیوندهای Si-O-Fe ناپدید شدند. بر طبق گزارش آن‌ها اشباع مغناطیسی نانوکامپوزیت‌ها با افزایش غلظت بیشتر فریت در ماتریس افزایش یافت تا مقدار بیشینه emu/g 98/66 برای نمونه با نسبت مولی 1:1 (wt% 80 فریت کبالت) به‌دست آمد [52].
سیلوا و همکارانش در سال 2007 کامپوزیت ذرات فریت کبالت پخش شده در ماتریس سیلیکا را به روش سل-ژل تهیه کردند. آن‌ها از TEOS به عنوان پیشماده سیلیکا و از نیترات به عنوان پیش‌ماده فریت استفاده کردند. پس از گذشت زمان پیرسازی، نمونه برای 12 ساعت در 110 درجهی سانتیگراد خشک شدند و ذرات فریت کبالت در ماتریس سیلیکا شکل گرفتند. پس از آن عملیات حرارتی برای 2 ساعت در دماهای 300، 500، 700 و 900 درجهی سانتیگراد انجام شد که باعث افزایش در اندازهی ذرات شد. رسوب ذرات خوشه‌ای فریت در دیواره‌های منافذ زیروژل با افزایش دما بیشتر شد و در دماهای بالاتر از 700 درجهی سانتیگراد بلورهای بزرگ‌تر کبالت داخل منافذ ماتریس شکل گرفتند و افزایش در مغناطش اشباع و پسماند مغناطیسی را باعث شدند [53].
در همان سال فرناندز و همکارانش نانو کامپوزیت سیلیکا آئروژل/ آهن اکسید را با فرآیند سل-ژل و تبخیر فوق بحرانی حلال سنتز کردند. آن‌ها نمونه‌ها با پیشماده‌های TEOS و TMOS را با تبخیر فوق بحرانی اتانول و متانول خشک کردند. ذرات مغناطیسی با اندازهی متوسط nm 6 با TEOS و متانول سنتز شدند در حالی که فری‌هیدرات‌ها از TMOS و اتانول به‌دست آمدند. بعضی نمونه‌های آن‌ها رفتار ابر پارامغناطیس از خود نشان دادند [54].
دو سال بعد ژنفا زی و همکارانش نانوذرات فریت کبالت را به روش هم‌نهشت شیمیایی و خشک شدن در هوا در دمای80 درجهی سانتیگراد تهیه کردند. اندازهی قطر نانوذرات سنتز شده nm 20 تا nm 30 بود و دمای کوری در فرآیند افزایش دما کمتر از فرآیند کاهش دما بود. مقدار اشباع مغناطیسی این ذرات emu/g 77/61 بهدست آمد که نسبت که مقدار کپه آن کوچک‌تر بود. در این پژوهش مقدار پایین نیروی وادارندگی به دو دلیل اتفاق می‌افتد: ذرات فریت ممکن است ساختار چند دامنه داشته باشند. شکل‌گیری چند دامنه‌ها و حرکت دیوارهای دامنه می‌تواند کاهش دامنه را نتیجه دهد. همچنین اگر اندازهی بحرانی ذرات [55] بهدست آمده بزرگ‌تر از قطر میانگین ذرات باشد، رفتار تک دامنه را از خود نشان می‌دهند. آن‌ها گزارش کردند که کاهش وادارندگی نمونه‌ها به رفتار وابسته به اندازهی ذرات بستگی دارد [56].
بلازینسکی و همکارانش در پژوهشی که در سال 2013 انجام دادند، سیلیکا آئروژل را با روش سل-ژل و فرآیند فوق بحرانی تهیه کردند. آن‌ها دریافتند که روش خشک کردن فوق بحرانی مؤثرترین روش برای بهدست آوردن بهترین ویژگی این محصولات است. بدین منظور آن‌ها دستگاه خشک کن فوق بحرانی را برای خود ساختند که فشار و دما به طور دستی تنظیم می‌شد و مرحله مهم در آمادهسازی سیلیکا آئروژل‌ها بود. به این ترتیب آن‌ها سیلیکا آئروژل‌های شفاف با مساحت سطح ویژه بالا به‌دست آوردند [57].
در گزارشی دیگر در سال 2014 ساجیا و همکارانش پودر آمورف فریت کبالت را به روش سل-ژل تهیه کردند و این روش را بهترین روش تهیه نانوذرات عنوان کردند. آن‌ها دریافتند که عملیات حرارتی برای تجزیه کامل مقدار مواد آلی و نیترات حاضر در پودر آمورف لازم است. در این فرآیند برای جلوگیری از ته‌نشینی یا رسوبگذاری این واکنش اسید سیتریک به آن اضافه کردند و سپس مراحل خشک کردن و عملیات حرارتی انجام شد. پارامترهای عملیات حرارتی، مرحله نهایی در آماده‌سازی نانوذرات فریت کبالت بودند که بررسی شدند. ساختار اسپینل در همهی نمونه‌های آن‌ها شکل گرفته بود و هنگامی که ذرات شروع به رشد کردند ناخالصی‌ها حذف شد. ویژگی مغناطیسی مرتبط با رفتار فریمغناطیس این نمونه‌ها مقدار emu/g 62 برای اشباع مغناطیسی را نشان می‌دهد [58].
در جدیدترین پژوهشی که دربارهی آمادهسازی و ارزیابی نانوکامپوزیت سیلیکا آئروژل/فریت در سال 2014 صورت گرفته است، کاتاگر و همکارانش نانوذرات فریت را به روش ته‌نشینی آماده کردند و سپس TMOS را به آن اضافه نمودند. برای این کار آن‌ها O2H6. 2NiCl، O2H6. 3FeCl و 2ZnCl را با اضافه کردن آب مقطر حل کردند. PH محلول در رفلاکس 110 درجهی سانتیگراد به مدت 24 ساعت 13 تنظیم شده بود. با حذف NaOH که برای PH اضافه شده بود، و شستن مکرر با آب مقطر و اتانول نانوذرات نتیجه شدند. بعد از بهدست آمدن نانوذرات به طور مستقیم به TMOS اضافه شدند و 3NH و آب دیونیزه به عنوان کاتالیست برای تهیه سل همگن اضافه گردیدند. برای مرحله پیر سازی قالب‌های حاوی سل را در اتانول به مدت 2 ساعت و دمای 50 درجهی سانتیگراد پیرسازی کردند و در نهایت ژل خیس را با خشک کردن فوق بحرانی کربن دی اکسید بهدست آوردند. تحقیقات آن‌ها نشان داد که زمان ژل شدن با افزایش نسبت مولی اتانول/TMOS افزایش یافت. همچنین به دلیل کشش سطحی اتانول، نمونه‌ها منقبض می‌شوند یا ترک می‌خورند. نانوکامپوزیت به‌دست آمده ساختار اسکلت شبکه‌ی سه بعدی را حفظ کرد. مساحت سطح ویژه با افزایش مقدار فریت از /g2m 700 تا /g2m 300 تغییر کرد. به علاوه ویژگی مغناطیسی فریت در ساختار نانو کامپوزیت تغییر نکرد [59].
3-5 برخی از کاربردهای آئروژل3-5-1 آئروژل‌ها به عنوان کامپوزیتهمانطور که پیشمادهی الکوکسید سیلیکون برای شکل‌گیری شبکه‌ی ژل با اکسیدهای فلزی دیگر به اندازه‌ی کافی واکنشی است، مطالعات زیادی در زمینه سنتز سیلیکا آئروژل برای کاربردهای مختلف صورت گرفته است [1].
3-5-2 آئروژل‌ها به عنوان جاذبآئروژل‌های فوق آبگریز و انعطافپذیر برای در جذب حلال‌های معدنی و روغن‌ها سنتز شدند. ونکاتشوارا رائو و همکارانش چگالی جذب و واجذب سیلیکا آئروژل‌های فوق آبگریز را با استفاده از یازده حلال و سه روغن بررسی کردند [60].
3-5-3 آئروژل‌ها به عنوان حسگرآئروژل‌ها تخلخل بالا، حفره‌های در دسترس، و سطح در معرض بالا دارند. از این رو کاندیداهای خوبی برای استفاده به عنوان حسگر هستند.بر اساس مطالعه وانگ و همکارانش روی آئروژل لایه‌ی نازک نانوذرات سیلیکا آئروژل نشان داد که مقاومت الکتریکی به طور قابل ملاحظه‌ای با افزایش رطوبت کاهش یافت. زیروژل همان مواد حساسیت کم‌تری را نشان داد. آئروژل‌هایی که اصلاح سطح شدند در مقایسه با آئروژل‌های آب‌گریز کمتر تحت تأثیر رطوبت قرار گرفتند و می‌توانند به عنوان ضد زنگ و عوامل آب‌گریز مورد استفاده قرار بگیرند [61].
چن و همکارش آئروژل‌هایی را برای کاربرد حسگرهای زیستی مطالعه کردند. در مطالعه آن‌ها، آئروژل‌های مزوحفره به وسیله پلیمریزاسیون سل-ژل با یک مایع یونی به عنوان حلال تهیه کردند. نتایج نشان می‌دهدکه آئروژل آماده شده می‌تواند به عنوان یک بسترشناسایی برای اسید نوکلوئیدها به کار رود [62].
3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایینلایه نازک‌های آئروژل 2SiO توجه خاصی را به خود اختصاص داد، به دلیل ثابت دی الکتریک خیلی پایین، تخلخل و پایداری حرارتی بالا. پارک و همکارانش لایه نازک سیلیکا آئروژل را برای لایهی داخلی دی الکتریک مورد بررسی قرار دادند و ثابت دی الکتریک را تقریبا 9/1 اندازه‌گیری کردند. آن‌ها ثابت دی الکتریک بسیار پایین فیلم‌های آئروژل را برای لایهی داخلی مواد دی الکتریک تولید کردند. فیلم های سیلیکا آئروژل به ضخامت Å 9500، % 5/79 تخلخل، و ثابت دی الکتریک پایین 2 با روش فرآیند خشک کردن محیط با استفاده از n-هپتان به عنوان حلال خشک کن به‌دست آوردند [63].
3-5-5 آئروژل به عنوان کاتالیزورمساحت سطح ویژه‌ی بالای آئروژل‌ها منجر به کاربردهای زیادی می‌شود، از جمله جاذب شیمیایی برای پاکسازی نشتی. این ویژگی کاربرد زیادی را به عنوان کاتالیزور یا حامل کاتالیزور به همراه دارد. آئروژل‌ها در کاتالیست‌های همگن مناسب هستند، زمانی که واکنش‌دهنده‌ها هم در فاز مایع و هم در فاز گاز هستند [27].
3-5-6 آئروژل به عنوان ذخیره سازیتخلخل بالا و مساحت سطح زیاد سیلیکا آئروژل‌ها می‌تواند برای کاربردهایی مثل فیلترهای گازی، جذب رسانهای برای کنترل اتلاف، محصور سازی، ذخیره سوخت هیدروژن به کار رود. آئروژل‌ها می‌توانند در مقابل تنش گذار مایع/گاز مقاومت کنند زیرا بافت آنها در طول پخت تقویت شد به عنوان مثال در ذخیره سازی، انتقال مایعات چون سوخت موشک‌ها کار برد دارد. به علاوه وزن پایین آئروژل‌ها بزرگ‌ترین مزیت است که در سیستم حمل دارو به دلیل ویژگی زیست سازگار آن‌ها مورد استفاده است [64]. کربن آئروژل‌ها در ساخت الکتروشیمی ابر خازن دو لایه کوچک استفاده شد. ابر خازن‌های آئروژل مقاومت ظاهری پایینی در مقایسه با ابر خازن‌های معمولی دارد و می‌تواند جریان بالا را تولید یا جذب کند.
3-5-7 آئروژل‌ها به عنوان قالبفیلم‌های سیلیکا آئروژل برای سلول‌های خورشیدی رنگ حساس استفاده شدند. مساحت سطح ویژه‌ی فیلم‌های آئروژل روی فیلم‌های شیشه‌ای رسانا تهیه شدند. نشست لایه اتمی برای پوشش قالب آئروژل با ضخامت‌های مختلف 2TiO با دقت کمتر از نانومتر انجام شد. غشاء آئروژل پوشش داده شده با 2TiO در سلول خورشیدی رنگ حساس گنجانیده شد. طول نفوذ شارژ با افزایش ضخامت 2TiO افزایش یافت که منجر به افزایش جریان شد [65].
3-5-8 آئروژل به عنوان عایق گرماجدای از تخلخل بالا و چگالی پایین یکی از جذاب‌ترین ویژگی‌های آئروژل رسانندگی گرمایی پایین آن‌ها است، علاوه بر این، از یک شبکه‌ی سه بعدی با ذرات ریز متصل شده تشکیل شده‌اند. بنابراین انتقال گرما از میان بخش جامد آئروژل‌ها از طریق مسیر پر پیچ و خمی است. فضای اشغال نشده در یک جامد توسط آئروژل به طور معمول با هوا پر شده مگر آن که تحت خلاء مهروموم شده باشد. این گازها می‌توانند انرژی حرارتی را از طریق آئروژل انتقال دهند. حفره‌های آئروژل باز هستند و اجازه عبور گاز از میان مواد را می‌دهند [27].
3-5-9 آئروژل‌ها در کاربرد فضاییناسا از آئروژل‌ها برای به دام انداختن ذرات گرد و غبار روی فضاپیما استفاده کرد. ذرات در برخورد با جامد اسیر شده، گازها تبخیر می‌شوند و ذرات در آئروژل به دام می‌افتند [27].
جدول 3-1 کاربردهای مختلف آئروژل‌ها را به طور مختصر نشان می‌دهد.
3-6 خلاصهدر این فصل پس از مقدمه‌ی کوتاه، اندکی در مورد سنتز آئروژل با روش سل-ژل گفته شد. پس از آن فرآیند‌های لازم برای شکل‌گیری ژل بیان شد و سپس تکنیک‌های مختلف خشک کردن و شرایط لازم برای این کار با مختصری توضیح نوشته شد. بعد مروری کوتاه به برخی از تلاش‌های انجام شده در این زمینه داشتیم و در آخر برخی از کاربردهای مختلف آئروژل‌ها را با ذکر مثال درج شد.
جدول 3-1 کاربردهای مختلف آئروژل‌ها [27].
خاصیت ویژگی کاربرد
رسانایی الکتریکی بهترین جامد عایق
شفاف
مقاومت در برابر درجه حرارت بالا
سبک ساخت و ساز ساختمآن‌ها و عایقبندی لوازم خانگی
ذخیره سازی
ماشین، وسیله نقلیه فضایی
دستگاه‌های خورشیدی
چگالی/تخلخل سبک‌ترین جامد مصنوعی
سطح ویژه_ی بالا
کامپوزیت‌های چندگانه کاتالیزور
حسگر
ذخیرهی سوخت
تبادل یون
فیلترهای آلاینده‌های گازی
اهداف ICF
حامل رنگ‌دانه
قالب
اپتیکی شفافیت
شاخص بازتاب پایین
کامپوزیت‌های چندگانه اپتیک سبک وزن
آشکارسازهای چرنکوف
راهنماهای نوری
عایق صوتی سرعت صوت پایین اتاق‌های ضد صدا
تطبیق مقاومت ظاهری صوتی در التراسونیک
مکانیکی الاستیک
سبک جاذب انرژی
تله برای ذرات سرعت بالا
الکتریکی ثابت دی الکتریک پایین
قدرت دی الکتریک بالا

—199

شکل1-1-نمودار مصرف پلیمرهای پتروشیمیایی از سال 1950 تا 2010 (David teegarden، 2004).
این افزایش مصرف پلیمرهای مصنوعی (بر پایه نفت) به دلیل محدود بودن منابع نفتی ، تخریب پذیر نبودن در محیط زیست و آلودگی آن نگرانی های زیادی را بوجود آورده و باعث جلب نظر دانشمندان به سمت بررسی پلیمرهای طبیعی ( زیست تخریب پذیر) شده است.
پلیمرهای طبیعی در طبیعت توسط فعالیت طیف وسیعی از موجودات زنده مثل گیاهان ، جانوران و باکتری ها تولید می شوند. این مواد به سادگی توسط فعالیت موجودات زنده به ریز واحد های سازنده خود تجزیه شده و در محیط زیست باقی نمیمانند. تولید و استفاده این پلیمرها در صنعت برای این منظور و با هدف داشتن صنعتی در خدمت توسعه پایدار و حفظ زیست بوم های طبیعی در دستور کار بسیاری از کشورهای پیشرفته قرار گرفته است. چند نوع عمده از پلیمر های طبیعی را در جدول زیر می توانید ملاحظه کنید(David teegarden، 2004).
پلیمرهای زیست تخریب پذیر براساس اجزای تشکیل دهنده آن از نظر خاستگاه به دو دسته طبیعی و غیر طبیعی تقسیم میگردد.
1-1-1-پلیمرهای زیست تخریب پذیر با خاستگاه طبیعیپلیمرهای زیست تخریب پذیر با خاستگاه طبیعی به شش گروه تقسیم میشوند؛ پلیساکاریدها، مانند: نشاسته سلولز و پروتئینها، پلیاترهای تولید شده از میکروارگانیسمها یا گیاهان، مانند: پلیهیدروکسیالکانوآتها یا پلیهیدروکسیبوتیرات، پلیاسترهای ساخته شده بر پایه منومر طبیعی نظیر پلیلاکتیکاسید.
1-1-2-پلیمرهای زیست تخریب پذیر سنتزی
پلیمرهای زیست تخریب پذیر زیادی وجود دارد که از مواد اولیه پتروشیمی تولید میشوند که میتوان از جمله آنها به پلیاسترهای آلیفاتیک زیر را نام برد:
پلیگلایکولیکاسید
پلیاسترهایآروماتیک یا ترکیب با پلیاسترهایآلیفاتیک
پلیوینیلالکلها
پلیالفینهای اصلاح شده
جدول 1- 1-لیست چند نوع عمده پلیمرهای طبیعی(David teegarden، 2004).
نوع مثال منشا
پلی ساکارید سلولز ، آمیلوز، نشاسته گیاهی
پروتیئن کلاژن، الاستین، ژلاتین حیوانی
پلینکلویتید DNA, RNA حیوانی
پلیاستر پلیهیدروکسیآلکانوات میکروارگانیسم
لیگنین - گیاهی
پلیایزوپرنس - 1-1-3- پلی وینیل الکلپلی(وینیل الکل) بزرگ ترین پلیمر سنتزی قطبی تولید شده در دنیا از نظر فراوانی است که زیست تخریب پذیری در محیط زیست مهم ترین ویژگی آن است. پلی(وینیل الکل) پلیمری نیمه بلوری و محلول در آب با خواص فیزیکی و شیمیایی ویژه است. با توجه به ناپایداری مونومر وینیل الکل و تبدیل ناخواسته آن به آلدهید، این مونومر قابلیت پلیمر شدن و تبدیل به پلی(وینیل الکل) را ندارد. از این رو، معمولا این پلیمر از واکنش صابونی کردن پلی(وینیل استات) به دست میآید. (Kokabi و همکاران، 2007)،. پلی(وینیل الکل) به دلیل خواص ویژه، نظیر سازگاری با محیط زیست، انحلال پذیری در آب، مقاومت کششی زیاد، مقاومت زیاد در برابر خوردگی در محیطهای قلیایی، نفوذ پذیری کم در برابر گازها و خواص نوری مطلوب در صنایع نساجی، کاغذ سازی، بسته بندی و پزشکی کاربردهای گستردهای دارد (Lyoo و همکاران، 2000). در بسیاری از کاربردهای پلی (وینیل الکل) از جمله در تولید الیاف مصنوعی و همچنین به عنوان پوشش ئر صنایع کاغذسازی، وزن ملکولی آن اهمیت بسیاری دارد. در سایر کاربردها نیز وزن ملکولی به دلیل اثر مستقیم بر خواص فیزیکی و مکانیکی پلیمر مورد توجه قرار میگیرد. (Navarchian و Mousazadeh، 2010)
خصوصیت شیمیایی این پلیمرها، یعنی واکنش پذیری گروههای هیدروکسیل فراوان آنها به شدت به مقدار
گروههای استیل باقی مانده یا درجه هیدرولیز آنها بستگی دارد. به لحاظ تئوری گریدهای به صورت جزیی هیدرولیز شده را میتوان به عنوان مخلوطی از پلیمرهای وینیلالکل و وینیلاستات در نظرگرفت. رابطه بین درجه هیدرولیز و خواص پلیمر منجر به تولید انواع (گریدهای)مختلفی از پلی(وینیل الکل) با خصوصیات متنوع میشود. این تنوع در خواص امکان استفاده از پلی(وینیل الکل) کاربردهای مختلفی را پدید میآورد. یکی از مهمترین کاربردهای این پلیمرها ، استفاده از آنها به عنوان ماتریس در نانوکامپوزیتهای زیست تجزیهپذیر میباشد.
1-2-نانو کامپوزیتجامد چند فازی است که یک یا چند فاز آن ابعادی در اندازه نانو متر دارد. این امر موجب به منجر به خواص منحصر به فردی در مقایسه به کامپوزیت های مرسوم میشود. خواص بهبود یافته نانو کامپوزیت ها شامل خواص مکانیکی بهتر ، مقاومت شیمیایی بالاتر، کاهش نفوذ گازی، هدایت الکتریکی بالا در میزان کمتری از پر کننده ها در مقایسه با پر کننده های مرسوم و همچنین فرایند پذیری بهتر است. خواص نانوکامپوزیتها به طور قابل ملاحظهای به پرکنندهها بستگی دارد. امروزه نانو کامپوزیتها کاربردهای زیادی مانند کاربرد در مواد الکتریکی، صنعت خودرو، هواپیمایی، بسته بندی، حسگرها، محرکها، رهایی دارو و پوششها و رنگریزهها دارند. برخی نانو کامپوزیت ها که تخریب بیولوژیکی نمیشوند تهدیدی برای طبیعت به شمار میروند. در سالهای اخیر تحقیقات بر روی نانوکامپوزیتهای پلیمری بیولوژیکی که در محیط تجزیه میشوند گسترش یافته است، زیرا آنها ما را از سوختهای فسیلی بینیاز میکنند. در مقابل خواص منحصر به فرد نانوکامپوزیتها ، در ساخت آنها مشکلات فرایندی قابل توجهی وجود دارد که نقش تعیین کنندهای دارند. مهمترین مشکل فرایندی تهیه نانو کامپوزیتها عدم توزیع یکنواخت ذرات نانو در فاز زمینهای و کاهش خواص مکانیکی آن است. یکی از مهمترین روشهای پراکنش ذرات نانو در ماتریس پلیمری قالب ریزی محلول با استفاده از تبخیر حلال آلی یا آبی که به شرح زیر میباشد( Gilberto Siqueiraو همکاران، 2010).
تولید نانوکامپوزیت ها راه کار دیگری برای بهبود خواص کاربردی فیلم های زیست پلیمری است. نانوکامپوزیت ها به کامپوزیت های حاوی پرکننده های تقویت کننده گفته می شود که یکی از ذرات پرکننده آن دارای ابعاد نانومتر باشد. بر اساس شکل هندسی نانوپرکننده، نانوکامپوزیت ها را می توان به سه گروه زیر دسته بندی کرد :
1- کامپوزیت های تقویت شده با ورقه هایی با ضخامت در حد نانومتر مانند نانوخاک های رس
2- کامپوزیت های تقویت شده با لوله ها یا رشته ها ( Whiskers) با قطری در ابعاد نانومتر مانند نانولوله های کربنی، نانوبلور های سلولز و نانوبلور کیتین .
3- نانوکامپوزیت های تقویت شده با ذرات کروی در ابعاد نانومتر که در این گروه به اکسیدهای فلزات در اندازه نانومتر، سیلیکا و کربن می توان اشاره کرد.
1-2-1 قالب ریزی محلول با استفاده از تبخیر حلال آلی یا آبی
این روش متداولتر است و تشکیل شبکه بین ذرات نانو و پلیمر بهتر صورت میگیرد.
بر اساس پلیمر و حلال سه فرایند مختلف در این روش وجود دارد :
استفاده از حلالهای آبی
استفاده از روش امولیسیون
استفاده از حلالهای غیر آبی

شکل1-2 فرایند های پراکنش نانو سلولز در ماتریس پلیمری به روش قالب ریزی محلول Gilberto)و همکاران، 2010)استفاده از حلالهای آبی:
در این روش حلال واسطه استفاده میشود و پلیمر زمینهای و نانو ذرات در آب حل شده و بعد از تبخیر آب فیلم بدست آمده نانو کامپوزیت سلولزی است.
این روش دو محدودیت دارد: 1- پلیمرهایی که در این روش استفاده میشوند محدود به پلیمرهای آب دوست میشوند. 2- بدلیل اینکه پلیمر آب دوست است ، خارج کردن آب از آن مشکل است که معمولا اینکار تحت شرایط آون خلا باید انجام شود (Gilberto و همکاران، 2010).
استفاده از روش امولسیون:
این روش برای پلیمرهای غیر قطبی مورد توجه است. در این روش نیز از آب به عنوان حلال واسطه استفاده می شود پلیمرهای غیر قطبی در این محیط آبی به صورت امولسیون در میآیند و نانو سلولز به صورت همگن در آب پخش میشود . بعد از تبخیر نانوسلولز میتواند در پلیمر پخش شود که پراکندگی در این روش به خوبی انجام نمیشود و در این روش بیشتر از پلیمرهای نیمه قطبی استفاده میشود (Favier و همکاران ، 1995).
استفاده از حلال های غیر آبی :
در این روش از حلال های آلی استفاده میشود، به همین دلیل پلیمر غیر قطبی پراکندگی بهتری دارند ولی نانو سلولز که ساختار آب دوست دارد نمیتواند براحتی در این محیط پخش شود. برای حل این مشکل اصلاح شیمیایی سطح نانو سلولز را برای کاهش انرژی سطحی و پراکنندگی بهتر پیشنهاد کردند. یکی از ویژیگیهای نانو بلورسلولز که به روش هیدرولیز اسیدی با استفاده از اسید سولفوریک بدست میآید، نشستن گروههای منفی سولفات بر روی گروههای هیدروکسیل نانو بلورسلولز است که باعث پراکندگی بهتر این ذرات میشود نیاز به اصلاح سطحی را کاهش میدهد (Oksman و همکاران، 2006).
1-3-فناوری نانو چیست ؟فناوری نانو عبارت است از روش ها، سیستم ها، ابزارها، مواد و فرایندهایی که در مقیاس نانو(10-9 متر) باشند.هدف علم و فناوری نانو دستیابی به توانایی کنترل ماده در ابعاد نانومتری و بهره برداری از خواص و پدیده های حاصل از این بعد در مواد به وسیله ابزارها و سیستم های نوین است, به عبارت دیگر فناوری نانو مطالعه ذرات در مقیاس نانو برای کنترل خواص آن هاست.
از نظر مقیاس، یک نانو متر برابر قطر 10 اتم هیدروژن و یا 5 اتم سیلسیم می باشد. در مقالات و نوشته های عمومی واژه فناوری نانو گاهی به هر فرایند کوچک تر از اندازه های میکرون اطلاق میگردد. تفاوت اصلی فناوری نانو با فناوری های دیگر در مقیاس مواد و ساختار هایی است که مورد استفاده قرار میگیرند. البته تنها کوچک بودن اندازه مد نظر نیست؛ بلکه زمانی که اندازه مواد در این مقیاس قرار میگیرد، خواص مکانیکی، نوری, الکتریکی و مغناطیسی مواد کاملا متفاوت خواهد بود. (Havancsak و همکاران ،2003)
امروزه فناوری نانو یکی از راههای پیشرفت تکنولوژی و عاملی موثر در رشد اقتصادی کشورها شده است. با بهره گیری از این تکنیک و از طریق کنترل ذرات در حد ابعاد نانو متر می توان ذراتی با خواص شیمیایی, مکانیکی،
نوری، الکتریکی و مغناطیسی بهتر تولید کرد. به طور خلاصه, فناوری نانو به عنوان علوم و مهندسی مواد شامل
طراحی, ساخت و کاربرد مواد و وسایلی که حداقل یک بعد از آنها در حد نانو است, تعریف شده است. فعالیت و
عملکرد فناوری نانو به زمینه, فعالیت و یا سیستم خاصی محدود نمیشود و می توان این فناوری را در تمام
علوم از جمله پزشکی, کشاورزی, علوم پایه, ژنتیک, هوافضا, الکترونیک, مواد و ... به کار برد
1-1-3-استفاده از مواد لیگنوسلولزی در علوم و فناوری نانواساسا بسته به قابلیت دسترسی به علم و فناوری مورد نظر، هر ماده ای قابل تهیه در ابعاد نانو است. اما بعضی از
مواد به طور طبیعی دارای ریز ساختاری در حد ابعاد نانو هستند که یکی از این مواد که توسط طبیعت تولید میشود، سلولز است. امروزه فناوری نانو فرصتی مناسب برای استفاده از مواد لیگنوسلولزی جهت تولید محصولات جدید است. طی چند سال اخیر مطالعات و تحقیقات به منظور استفاده از منابع لیگنوسلولزی تجدیدشونده به منظور تولید نانوسلولز به دلایل زیر به شدت مورد توجه قرار گرفته است :
1- دارای مصارف غیر غذایی هستند
2- به طور گسترده قابل دسترس هستند
3- دارای قیمت پایین هستند
4- دارای سطوح واکنش فعال برای اتصال گروههای خاص هستند
5- به علت تخریب پذیر بودن در طبیعت باعث کاهش بار آلودگی می شوند (Favier و همکاران، 1995؛Dufresne و همکاران، 1999 ؛ Moon و همکاران ، 2006)
بر اساس نظر (Wegner و همکاران ، 2006) ، سلولز به دلایل زیر دارای پتانسیل مناسبی جهت تهیه مواد نانو می باشد:
1- دارای ساختار میکروفیبریلی در حد ابعاد نانو است
2- در طبیعت به طور گسترده یافت می شود
3- بر خلاف مواد غیر آلی مثل (فلزات) تجدید شونده است
4- عمل آوری و استفاده ازآن به دلیل نرم و غیر ساینده بودن راحت است
5- مصرف انرژی در فرایند تولیدآن پایین است
6- دارای مقاومت و مدول کششی بالایی است
از موارد کاربرد نانوسلولز می توان به استفاده در پوشش دهی کاغذ و تولید کاغذهای با کیفیت بالا، در صنایع بسته بندی , تولید انواع نانو کامپوزیت ها (پلیمرهای تقویت شده با ذرات نانو)، در تولید مواد غذایی،آرایشی، لوازم پزشکی و کاربردهای الکترونیکی نام برد .(Leino،2008)
1-4- سلولزسلولز فراوانترین بسپار طبیعی و قابل تجدید در طبیعت است. برآورد می شود که سالیانه در حدود 100 بیلیون تن سلولز در طبیعت تولید می شود . این بسپار در دامنه وسیعی از گونه های موجودات زنده از قبیل گیاهان, جانوران, باکتری ها و برخی آمیبها دیده میشود. در اغلب این موجودات سلولز نقش استحکامی ایفا می کند. سلولز به دلیل خصوصیات فیزیکی و شیمیایی جالب توجه , قابلیت دسترسی و قیمت پایین آن, به طور وسیعی هم در حالت طبیعی آن و هم به عنوان ماده اولیه برای تولید کاغذ, صنایع غذایی و به عنوان افزودنی در داروسازی مورد استفاده قرار می گیرد. میزان سلولز در بافت های مختلف گیاهی از حدود 98 درصد در پنبه تا 40-50 درصد در چوب متفاوت است(Osullivan، 1997).
1-4-1-ساختار و مرفولوژی سلولز
سلولز یک بسپار همگن خطی است که تکپار تشکیل دهنده آن 1-4-D-β گلوکوپیرانوز می باشد (شکل 1-1) ملکولهای β گلوکز نسبت به یکدیگر چرخش 180 درجه ای دارند. در حین برقراری اتصال بین دو مولکول β گلوکز ازOH متصل به کربن شماره 4 یک مولکول و OH کربن شماره 1 مولکول بعدی یک مولکول آب جدا می شود و پل اکسیژنی بین آنها برقرار می شود. پیوستن دو مولکول β - گلوکز موجب تشکیل یک مولکول سلوبیوز می شود. هر 5 مولکول سلوبیوز با آرایش فضایی مکعبی شکل، بلور سلولز را بوجود م یآورند و از مجموعه بلورهای سلولز, رشته ابتدایی یا میسل سلولز تشکیل می شود.(Takashi،2007).
این زنجیر ها در طول سنتز به صورت میکروفیبریل سازماندهی می شوند. تعداد تکپار در هر زنجیر یا درجه پلیمریزاسیون (DP) بسته به گونه متفاوت است. در طبیعت زنجیرهای سلولزی بسته به منشاء دارای درجه پلیمریزاسیون گسترده ای در حد 1000 تا 30000 می باشند که طول زنجیره ای در حد 500 تا 1500 نانومتر را تشکیل می دهند (Ioelovich ، 2008). به عنوان مثال درجه پلیمرازسیون در سلولز چوب در حدود 6 تا 10هزار واحدگلوکوپیرانوز و در سلولز پنبه حدود 10 تا 15 هزار می باشد. در مولکول سلولز امکان برقراری پیوندهای هیدروژنی نیز وجود دارد. سلولز دارای پیوندهای هیدروژنی درون و بین ملکولی است که این پیوند ها از چرخش آزاد زنجیر های سلولزی جلوگیری می کنند. به همین دلیل بیشتر فیبرهای سلولزی دارای مدول کششی بالایی هستند, به طوری که میکروفیبریل سلولز دارای مقاومت بیشتر از فولاد و سختی بیشتر از آلومنیوم می باشد. مدول الاستیسیته و مقاومت کششی میکروفیبریل سلولز به ترتیب 145 و 7500 مگاپاسکال گزارش شده است (Eichhorn و همکاران،2001)

شکل 1-4- ساختار ملکولی زنجیره سلولز(1) ، ساختار شماتیک سلولز در سلول چوبی (2)
همان گونه که ذکر شد سلولز به دلیل داشتن ساختارمیکروفیبریلی در حد ابعاد نانو گزینه ای مناسب برای تولید همان گونه که ذکر شد سلولز به دلیل داشتن ساختارمیکروفیبریلی در حد ابعاد نانو گزینه ای مناسب برای تولید 1-2 آورده شده است. هر فیبر سلولزی متشکل از دستجات فیبری است که در این دستجات فیبرها قطری حدود 35-25 میکرون دارند. هر یک از این دستجات نیز از میکروفیبرهایی با قطر 1-1/0 میکرون ساخته شده اند. هر میکروفیبر نیز به نوبه خود از دستجات میکروفیبریلی یا نانوفیبر ساخته شده است که قطری حدود 70-10 10 نانومتر دارند. میکروفیبریل ها از زنجیرهای سلولزی (میسل) ساخته شده اند که این زنجیر ها با پیوند هیدروژنی به هم متصل هستند. در نهایت فیبریل ها کوچکترین جزء ساختاری دیواره سلولی هستند که در ساختار آنها مناطق کریستالین (منظم) و آمورف (نامنظم) تکرارشده اند. هر فیبریل از حدود 100 زنجیر گلوکان تشکیل شده است. همانطوریکه در شکل 3-1 نشان داده شده است میکروفیبریل های دیواره سلولی در قالبی از همی سلولز و لیگنین قرار دارند ( Wang و Sain ، 2007).
شکل 1-5- اجزا و ابعاد تقریبی ریزساختار الیاف سلولزی ساقه گیاهیشکل 1-6- میکروفیبریل های سلولزی احاطه شده در قالب لیگنین و همی سلولز1-4-2- نانو ذرات سلولز و خواص آنهاذراتی که از سلولز در حد ابعاد نانو استخراج می شوند می توانند شامل نانوکریستال سلولز(NCC) و یا نانوفیبر (میکروفیبریل سلولز) باشند. تفاوت نانو فیبر و نانوکریستال ناشی از وجود مناطق کریستالین و آمورف آنها است. نانوکریستال سلولز ذراتی در حد ابعاد نانو هستند که مناطق آمورف آنها طی تیمار شیمیایی حذف شده و منحصرا دارای مناطق کریستالین هستند, در حالی که نانوفیبرها در ساختار خود علاوه بر مناطق کریستالین دارای مناطق آمورف نیز هستند و معمولأ توسط تیمارهای شیمیایی و مکانیکی تهیه می شوند .
1-4-2-1- نانو فیبرنانوفیبر ها به ذراتی در حد ابعاد نانو که از سلولز مشتق شده و دارای مناطق کریستالین و آمورف هستند, اطلاق میشود. تاکنون مطالعات زیادی بر روی استخراج آن ها از منابع مختلف سلولزی انجام شده است. فرایند جداسازی نانوفیبرها ممکن است شامل تیمار مکانیکی, مکانیکی- شیمیایی و آنزیمی باشد. تیمار مکانیکی باعث جداسازی نانوفیبرها از دیواره سلولی می شود ولی این روش باعث تخریب سلولز و کاهش بازده می گردد. در مقابل روش شیمیایی- مکانیکی باعث استخراج نانوفیبرها از دیواره اولیه و ثانویه بدون تخریب سلولز می شود نانوفیبرها به دلیل داشتن ساختار کریستالی سلولز و پیوند هیدروژنی زنجیرها, خواص مکانیکی فوق العادهای از قبیل مدول الاستیسیته در حدود Gpa 138 و مقاومت خمشی در حدود Gpa 3 3 دارند. این مواد به دلیل خواص مقاومتی بالا و فراوانی به عنوان تقویت کننده در ترکیبات مختلف پلیمری مورد استفاده قرار می گیرند (Zuluaga و همکاران ، 2009)
1-4-2-2- نانوکریستال سلولز
تاکنون از مواد لیگنوسلولزی متفاوتی به عنوان ماده اولیه برای تولید نانوکریستال سلولز استفاده شده است. بدین منظور اولین مرحله در تولید نانو کریستال سلولز حذف همی سلولز, لیگنین و ترکیبات اضافی دیواره سلولی است. با توجه به اینکه سلولز در ساختار خود دارای مناطق کریستالین (منظم) و آمورف (نامنظم) است, بنابر این تیمار شیمیایی هیدرولیز اسیدی روشی قابل قبول برای تولید نانوکریستال سلولز است که برای اولین بار توسط Ranby در سال (1994) گزارش شد.
حالت بلوری نانو سلولز توسط هیدرولیز اسیدی (Acidic Hydrolysis) فیبرهای سلولزی طبیعی با استفاده از محلول های غلیظ نمک معدنی و اسید سولفوریک و اسید هیدروکلریک بدست می آید. به دلیل خارج شدن بخشهای آمورف توسط هیدرولیز اسیدی نانو کریستال سلولز خواص خوبی (خواص مکانیکی بالا، سطح ویژه بالا، کریستالیته بالا و...) دارا میباشد، این ویژگیها نانو کریستال سلولز را مادهای جالب برای بسیاری از برنامه های کاربردی می سازد. در صنایع کاغذ و مقوا از نانوسلولز به دلیل اثر تقویتی قوی بر روی مواد کاغذ بهره می برند. در صنایع غذایی، پزشکی، آرایشی و دارویی این مواد به دلیل مصرف در ابرجاذبهای آب و فیلم های ضد باکتری کاربرد دارند، از جمله دیگر کاربرد های این مواد می توان به ساخت کامپوزیت ها، تجهیزات الکترونیکی، صنایع چوب و مواد ساختمانی، بازیافت نفت (در شکست زنجیرههای هیدروکربنی) وخودروسازی اشاره کرد(Xhanari و همکاران،2011).
جدول1-1 انواع نانو سلولز (Klemm و همکاران، 2011)
نانوسلولز مشابه منابع روش تولید
میکروفیبریل سلولز (MFC) نانو/ میکروفیبریل و نانوسلولزفیبریل شده چوب، چغندرقند، سیب زمینی، کنف و کتان لایه لایه شدگی خمیر چوب با فشار مکانیکی قبل و/یا بعد از فراوری شیمیایی یا آنزیمی
قطر: 60-5 نانومتر و طول چند میکرومتر
نانوکریستال سلولز
(NCC) میکروسلولزهای سلولز میله مانند، کریستال منفرد کوچک چوب، پنبه، کتان، کاه گندم، پوست درخت توت، سلولز جلبک و باکتریها هیدرولیز اسیدی از منابع بسیاری
قطر: 70-5 نانومتروطول:250-100 نانومتر(سلولزگیاهی) و 100 نانومترتاچندمیکرومتر(سلولزجلبک و باکتری)
باکتریال نانوسلولز
(BNC) سلولز میکروبی و بیوسلولز قندها و الکلهای با وزن مولکولی پایین سنتز باکتریایی
قطر: 100-20 نانومترو با انواع شبکه‌هایمختلف نانوالیاف
اهمیت نانوکریستال سلولز از دیدگاه علمی به دلیل کاربرد مواد خام تجدید پذیر و دوستدار محیط زیست است که باعث حرکت حیاتی توسعه نانوسلولزها در صنایع غذایی، نانوکامپوزیت ها و تجهیزات پزشکی شده است.
1-5 اهداف و ضرورت تحقیقدر سالهای اخیر، نگرانی عمومی در مورد افزایش پسماندهای پلاستیکی با منشا نفتی در محیط زیست افزایش یافته است. طبیعت نمیتواند این آلایندهها را تجزیه کند، این امر موجب شده بسیاری از کشورها اقدام به تولید پلاستیکهای قابل تجزیه (زیستی) کنند. بر اساس یک تخمین بیش از 100 میلیون تن پلاستیک هر ساله تولید میشود، که40 درصد از این مقدار به محلهای دفن زباله منتقل میشوند و چند صد هزار تن نیز به محیطهای دریایی ریخته میشوند (Kalia و همکاران، 2000). علاوه بر موارد فوق، تحقیقات نشان میدهدکه سالانه 270 میلیون تن نفت خام صرف تولید مواد پلاستیکی میگردد. با توجه به افزایش قیمت نفت و غیر قابل تجدید بودن این منبع، نیاز روز افزون به تولید پلاستیکهایی قابل تجزیه از منابع غیر نفتی و بدون زیان برای محیط زیست احساس میشود ( Sharmaو همکاران، 2007). از این رو امروزه تقاضا برای پلاستیکهای قابل تجزیه یکی از مهمترین اهداف برای تحقیقات پایه و کاربردی میباشد. پلی(وینیل الکل) بزرگ ترین پلیمر سنتزی قطبی تولید شده در دنیا از نظر فراوانی است که زیست تخریب پذیری در محیط زیست مهم ترین ویژگی آن است و پتانسیل بالایی برای جایگزینی پلیمرهای زیست تخریب ناپذیر( پلیپروپیلن و پلیاتیلن) و کاربرد قابل توجهی در صنعت بسته بندی، داروسازی و پزشکی دارد. استفاده از مواد در مقیاس نانو در ترکیب پلیمرهای مختلف با هدف بهبود ویژگیهای آنها موضوع تحقیقاتی جذابی است که در دهههای اخیر توجه بسیاری به خود جلب کرده است. نانوفیبر سلولز به دلیل دارا بودن خواص ویژه ای نظیر خواص مقاومتی بالا، تجدیدپذیری، زیستسازگاری و ... مورد توجه محققان قرار گرفته است و دارای پتانسیل زیادی برای تقویت بایو کامپوزیت پلی(وینیل الکل) / نانو فیبر سلولز میباشد. این تحقیق با هدف بررسی ویژگیهای مکانیکی و ریختشناسی فیلم پلی(وینیل الکل) / نانو فیبر سلولز میباشد.
سوال تحقیق:
استفاده از درصدهای مختلف نانو فیبر سلولز چه تاثیری بر ویژگیهای مکانیکی و ریختشناسی پلیونیلالکل با درجه هیدرولیز 98 درصد دارد؟

فصل دومسابقه تحقیق

فصل2
مروری بر مطالعات انجام شدهمدائنی و همکاران، (1382)؛ مطالعه ای بر روی خواص ریخت شناسی و مکانیکی پلیوینیل الکل، اسید استیک و پلی-اتیلنگلیکول به روش رسوبگیری در اثر غوطهوری داشتهاند و گزارش کردهاند، اسید استیک در محلول پلیمر باعث بهبود قابل ملاحظه عملکرد غشا شده و کاهش ناخالصیها شده است. با افزایش غلظت اسید استیک در محلول پلیمر، میزان کاهش ناخالصیها و به عبارت دیگر نفوذپذیری غشا افزایش یافته است. از نظر خواص مکانیکی، وجود PEG باعث افزایش مقاومت مکانیکی غشا در برابر اعمال نیروهای پارگی و کششی شده است.
لیونبرگ و همکاران (2005) با ساختن نانوکامپوزیت‌های جدید حاصل از اختلاط نانوکریستال‌های سلولز و پلی‌پروپیلن‌اتکتیک، تاثیر سطح و خصوصیات پخش شدن را بررسی کردند. در این پژوهش، آن‌ها از سه نوع نانوکریستال سلولز با خصوصیات سطح مختلف؛ کلوخه‌شده بدون اصلاح سطح، کلوخه‌شده و پیوند زده‌شده با مالئیک پروپیلن و تیمار‌شده با سورفاکتانت، به‌عنوان فاز تقویت کننده در پلی‌پروپیلن‌اتکتیک استفاده کردند. فیلم قالب‌گیری شده در محلول تولوئن، بوسیله SEM ، DMAو آزمون کشش مورد بررسی قرارگرفت. مشخص شد که خصوصیات مکانیکی در دامنه خطی، در بالای Tg برای نانوکامپوزیت‌ها در مقایسه با پلی‌پروپیلن خالص افزایش چشمگیری داشت. این اثرات به تشکیل شبکه محکم با برهمکنش پرکننده/ پرکننده نسبت داده شد. بعلاوه مشخص شد که بر همکنش‌های بین پرکننده و ماتریس و کیفیت پخش نقش اصلی را در مورد خصوصیات مکانیکی دامنه غیر خطی بازی می کنند.
اکسمن و همکاران (2006) فرآیند ساخت نانوکامپوزیت‌های سلولز/ پلی لاکتیک اسید را مورد بررسی قراردادند. این پژوهشگران نانوکریستال‌های سلولز را با ماتریس پلی‌لاکتیک اسید مخلوط کردند. آن‌ها ابتدا MCC را با N،-N دی‌متیل‌استامید (DMAc) دارای کلرید لیتیم تیمار کردند تا ذرات میکروکریستالین سلولز واکشیده شده و تا حدودی پخش شوند. سپس سوسپانسیون حاصل را به داخل پلیمر مذاب در طی فرایند اکستروژن پمپ کردند. برای مطالعه خصوصیات نانوکامپوزیت حاصل، از تکنیک های مختلف میکروسکپی، آنالیز ترموگراویمتریک، تفرق اشعه X و تست‌های مکانیکی استفاده شد. نتایج نشان دادند که DMAc/LiCl می‌تواند به‌عنوان عامل واکشیده‌کننده/ جداسازنده برای MCC استفاده شود اما به نظر می رسد که باعث تخریب نانوکامپوزیت در دمای بالای فرآوری می‌شود. هنگامی‌که PEG به‌عنوان ماده افزودنی در فرآوری استفاده شد ساختار نانوکامپوزیت از نانوکریستال‌های تا حدودی پخش شده شکل گرفت. خصوصیات مکانیکی نانوکامپوزیت‌ها بهبود پیدا کرد و ازدیاد طول در مرحله شکست در مقایسه با مواد مرجع 0800/0 کاهش نشان داد.
Liu و Tang، (2007)؛ اقدام به ساخت فیلم با استفاده از PVA واستات سلولز نمودند. در این پژوهش فیلم با نسبتهای PVA خالص، AC خالص و فیلم ساخته شده PVAAC با درصد اختلاطهای مختلف تا 60 درصد AC ساخته شد. گزارش مقاومت مکانیکی نشان میدهد، با افزودن استات سلولز با درصدهای بیش از 40% مقاومت مکانیکی 50% و مدول یانگ بیش از 600% افزایش نموده است.
Roohani و همکاران، (2008)؛ خواص مکانیکی پلی وینیل الکل تقویت شده با نانو سلولز در پنج غلظت 0، 3،6،9و 12 درصد و چهار رطوبت 0، 35، 75و 98 درصد به روش ریختهگری قالبی را مورد مطالعه قرار دادند و گزارش کردند، افزایش رطوبت نسبی منجر به کاهش مدول کششی میشود در مقایسه با پلیونیلالکل خالص افزودن نانوکریستالسلولز موجب افزایش مدولکششی و تنشحدتسلیم شد. این افزایش در محدوده 0 تا 3% نانوکریستال بسیار چشمگیر است. همزمان با این افزایشها تغییرطولدرمرحله شکست نمونه ها از 5/29% برای پلیونیلالکل خالص به1/9% برای نانوکامپوزیت حاوی 12% نانوکریستال کاهش پیدا کرد .
Lu و همکاران، (2008)؛ خواص مکانیکی فیلم ساخته شده از نانو فیبر سلولز و پلیوینیل الکل به روش قالبگیری آنها به فیلم پلیوینیل الکل مقادیر 1، 5، 10، 15 درصد MFC اضافه کردند و گزارش کردند که مدول یانگ و مقاومت کششی فیلمهای ساخته شده با افزایش MFC به صورت قابل توجهی تا 10 درصد افزایش مییابد و با افزایش بیش از این مقدار مقاومتها تغییرات ناچیز دارند.
Majdzadeh و همکاران، (2010)؛ خواص مکانیکی فیلم حاصل از نشاسته و پلی وینیل الکل و نانو رس را مورد بررسی قرار دادند وبه این نتیجه رسیدند که خواص مکانیکی فیلم حاصل شده شامل مدول الاستیسیته و استحکام کششی با افزایش مقدار نانو رس از صفر درصد تا 40% همواره رو به افزایش است .
Hassan و همکاران(2010)، از درصد های مختلف (0-12) نانو سلولز برای تقویت لاستیک طبیعی استفاده کردند. نانو کامپوزیت تهیه شده مقاومت کششی و تغییر طول تا شکست را نسبت به پلیمر خالص افزایش داد. البته با افزایش درصد نانو سلولز تا 10 درصد مقاومت کششی افزایش و بعد از آن کاهش مقاومت کششی گزارش شد.
نانو سلولز از هیدرولیز اسیدی سلولز بدست می آید و بدلیل خارج شدن بخش های آمورف دارای سطح ویژه ، ضریب لاغری و مقاومت ویژه بالا است. همچنین قابلیت تجدید شوندگی، زیست تخریب پذیری، در دسترس بودن و فراوانی در طبیعت این نانو ذره را به عنوان گزینه مناسبی برای تقویت پلیمرهای مختلف مطرح کرده است (Rahimi و Behroz،2011).
Kazi و همکاران (2011)، نانو کامپوزیتی با استفاده از نانو سلولز / پلی لاکتیک اسید با روش قالبریزی محلول تهیه کردند. آزمون کشش انجام شده بروی این نانو کامپوزیت افزایش مقاومت کششی و مدول الاستیسته را نسبت به پلیمر خالص پلی لاکتیک اسید نشان داد و بیشترین مقدار مقاومت کششی این نانو کامپوزیت در اختلاط 1 درصد نانو سلولز گزارش شد که 34 درصد بیشتر از پلیمر خالص بود.
قنبر زاده و همکاران، (1391)؛ به منظور بهبود خواص فیزیکی کامپوزیت حاصل از نشاسته و پلی وینیل الکل مقادیر 1، 3، 5و 7 درصد نانو رس به فیلم اضافه کردند و گزارش کردند، در اندازهگیری مقدار حلالیت با توجه به کاهش مقدار کاهش درصد حلالیت از فیلم حاوی 1% نانو رس به 7% نانو رس تفاوت معنی داری مشاهده نشد، اما نفوذپذیری نسبت به بخار آب (WVP) این افزایش درصد نانو معنی دار بوده و در فیلم حاوی 5% نانو رس کمترین مقدار نفوذپذیزی مشاهده شده است.
قنبرزاده و همکاران، (1392)؛ به منظور بهبود خواص مکانیکی فیلم حاصل از پلیلاکتیک اسید، نانو فیبر سلولز به میزان 0،4 ،8و 12 درصد به پلی لاکتیک اسد اضافه کردند و خواص مکانیکی فیلم حاصل را اندازهگیری کردند. استحکام کششی نانوکامپوزیت ها با افزایش میزان نانو فیبر سلولز افزایش یافت و فیلم دارای 12% نانو افزایش 27/131 درصدی داشت.مقدار مدول یانگ نیز افزایش یافت و نانوکامپوزیت حاوی 12% دارای حداکثر مقدار مدول یانگ بود، (Mpa 51/1019). که حدود دو برابر بیشتر از مدول یانگ فیلم PLA خالص (Mpa 3/566) بود.
Ghanbarzadeh و همکاران، (2012)؛ به منظور بهبود خواص مکانیکی فیلم حاصل از نشاسته و پلی وینیل الکل مقادیر 1، 3، 5و 7 درصد نانو رس به فیلم اضافه کردند و گزارش کردند، استحکام کششی نهایی (UTS) در یک درصد نانو رس کاهش و بعد از آن استحکام کششی نهایی افزایش مییابد البته نانو رس در ازدیاد طول تا نقطه پارگی (SB) عکس عمل میکند و با افزایش نانو رس (SB) کاهش مییابد.
Zhang و همکاران (2012)، نانو کامپوزیتی با استفاده از پلی ونیل فلوراید و نانوکریستال سلولز تهیه کردند و ویژگی های مکانیکی آن را مورد بررسی قرار دادند، نتایج حاصل از این بررسی افزایش مقاومت کششی و تغییر طول تا شکست را با افزایش درصد نانو سلولز تا 1/0 درصد و سپس کاهش را نشان داد.
قنبرزاده و همکاران، (1391)؛ به منظور بهبود خواص و مکانیکی کامپوزیت حاصل پلی وینیل الکل مقادیر 3، 5، 7، 10، 15و 20 درصد نانو کریستال سلولز به پلیونیلالکل اضافه کردند و خواص و مکانیکی فیلم حاصل را اندازهگیری کردند. آنها به این نتیجه رسدند که: با افزودن پلی ونیل الکل و نانو کریستال سلولز مقاومت مکانیکی فیلم ها نسبت به نمونه شاهد(پلیونیل الکل خالص) افزایش یافته و در نتیجه، منحنی تنش کرنش به تنش های بالاتر منتقل می شود. با افزایش مقدار نانو کریستال سلولز از 3 تا 10 درصد مقادیر UTS افزایش یافته است و بیشترین مقدار آن در 10 درصد نانوکریستال مشاهده شده است. با افزایش غلظت نانو کریستال سلولز از 3% به 10%، مقادیر UTS به ترتیب از 89/2 تا59/4 مگاپاسکال افزایش یافته است. این روند بهبود روی نقاط SB در غلظتهای 3 تا 7 درصد مشاهده شد ولی در غلظتهای 7 تا 20 درصد این مقدار نزولی و از کرنش از 1/71 به 67/40 کاهش یافته است.
قنبرزاده و همکاران، (1391)؛ به منظور بهبود خواص فیزیکی فیلم حاصل از کربوکسی متیل سلولز و پلی وینیل الکل مقادیر 0، 3، 5، 7و 10 درصد نانو رس به فیلم اضافه کردند آنها زاویه تماس را در زمان های 0 و 60 ثانیه اندازهگیری کردند و گزارش کردند، زاویه تماس اولیه فیلمهای بیوکامپوزیت به طور معنی داری با افزایش درصد نانو کاهش یافته است. به علاوه در صد کاهش زاویه تماس پس از60 ثانیه نیز با افزودن نانورس و افزایش مقدار نانورس در نانوکامپوزیتها، کاهش نشان داده است.
Chen و همکاران (2013)، نانو کامپوزیت جدیدی با استفاده از نانو سلولز و لاستیک نیتریلی تهیه کردند و ویژگی های مکانیکی را در این نانو کامپوزیت بررسی کردند. نتایج کار آنها افزایش مقاومت کششی و تغییر طول تا شکست این نانو کامپوزیت با افزایش درصد نانو سلولز نسبت به رزین خالص نشان داد. البته مقاومت کششی تا استفاده از 10 درصد نانو سلولز افزایش و بعد از آن کاهش داشت.
Zhang و همکاران، (2013)؛ با استفاده از پلیمر پلیونیلالکل و نانو کریستال سلولز اقدام به ساخت کامپوزیت به روش قالبگیری تزریقی نمودهاند. گزارش نشان میدهد درصد استفاده از نانو کریستال 0، 1، 3، 5، 7و 10 درصد بوده است. مقاومت کششی چند سازهها با افزودن 7% نانو کریستال سلولز از 32 به 58 مگاپاسکال و مدول یانگ از 175 به 1252 مگاپاسکال افزایش داشته است.
Abdulkhani و همکاران، (2013)؛ با استفاده از روش ریختهگری قالبی اقدام به ساخت فیلم آلفا سلولز و پلیونیلالکل با حلال یونی کردهاند. با توجه به نتایج افزودن آلفا سلولز به پلیمر پلیونیلالکل موجب افزایش ویژگیهای مکانیکی فیلم ساخته شده گردیده است.
Liu و همکاران، (2013)؛ اقدام به ساخت فیلم با استفاده از PVA و نانو سلولز تهیه شده از روش سوپر آسیاب به درصدهای 0، 3، 5، 8، 10، 15، 40و 60 درصد نمودند و گزارش کردند PVA خالص با 164 درصد تغییر شکل (کرنش) بیشترین میزان کرنش را نشان میدهد در حالی که با افزودن 3% نانو تمامی ویژگیها 20 درصد نسبت به PVA خالص بهبود پیدا میکند. مقاومت کششی و مدول فیلمها با افزودن نانو تا میزان 60% از Mpa 7/55 به Mpa 6/1105 افزایش پیدا مینماید که نشان دهنده افزایش 2/6 برابر نسبت به PVA خالص است. این نشان دهنده مقاومت کششی و مدول یانگ بالاتر نانو کامپوزیت ساخته شده نسبت به PVA خالص است.
Peng و همکاران، (2014)؛ اقدام به ساخت فیلم با استفاده از PVA و نانو فیبریل کوتاه کردند به این منظور نانو سلولز با درصد 1، 2، 3و 6 درصد به PVA اضافه گردید. اضافه نمودن SCNF به PVA تدریجا موجب افزایش مقاومتسفتی و حتی سختی فیبریلها میگردد و مقاومت نهایی فیلم به جهت گیری کریستال PVA و میزان استفاده از SCNF دارد هر چند تاثیر نانوسلولز بیشتر است. با اضافه نمودن SCNF به PVA مقاومت کششی به طرز قابل ملاحظهای اقزایش یافته، گرچه بیشترین مقاومتها در نانو سلولز 3% مشاهده میگردد.
فصل سوممواد و روشها

3- مواد و روشها:3-1-مواد شیمیایی مورد استفاده3-1-1-پلی ونیل الکل
پلی ونیل الکل مورد استفاده از شرکت Merck آلمان تهیه شد. مشخصات پلیمر در جدول 1-3 آورده شده است.
جدول1-1 انواع نانو سلولز (Klemm و همکاران، 2011)
[C2H4O]n فرمول شیمیایی
centercenter تصویر شیمیایی
پودر بی رنگ شکل ظاهری
g/mol72000 وزن ملکولی
gCm3 26/1 وزن مخصوص
≥98% درجه آبکافت
°c200 نقطه ذوب
c°<113 نقطه اشتعال
c°228 نقطه جوش
آب بهترین حلال
3-1-2- نانو فیبر سلولزنانو فیبر سلولز در شرکت دانش بنیان نانو نوین پلیمر و به روش مکانیکی و با کمک دستگاه سوپر آسیاب مدل MKCA6-2(ساخت شرکت Masaku ژاپن) تهیه گردید. نانو فیبر سلولز با متوسط قطری 10±32 نانو متر از الیاف مخلوط سوزنی برگان تهیه گردید.
3-1-2-1-فرآیند ساخت نانو فیبر سلولز
خمیر آلفا سلولز سوزنی برگان(آلفا سلولز 99%) ابتدا با آب چند باری شسته شده و سپس در محلول هیدروکسید پتاسیم با غلظت 5 درصد و دمای 80 درجه سانتی گراد به مدت 1 ساعت تیمار شد. بعد از تیمار قلیایی، سوسپانسیون با غلظت 1 درصد آلفا سلولز تهیه شده و از دستگاه آسیاب عبور داده شد. این عمل چندین بار تکرار شد و هر بار سنگها به یکدیگر نزدیکتر شد تا دو سنگ به هم چسبیده شدند تا نانوفیبر تهیه گردد. با هر بار تکرار و عبور سوسپانسیون از بین دو سنگ میکروفیبرهای سلولز به نانو فیبرهای سلولز تبدیل میشود. دستگاه آسیاب دارای دو سنگ آسیاب بوده که یکی ثابت و دیگری چرخان می باشد. در هنگام عبور الیاف از بین دو سنگ در اثر نیروهای برشی و فشاری نانوفیبرهای سلولزی تولید شدند. سوسپانسیون میکروفیبرها و نانوفیبرها در فرآیند فیلتراسیون خلاء و با فیلتر غشا تا غلظت 3%آب گیری شد. مقایسه متوسط قطری میکروفیبرها (10±33 میکرومتر) و نانوفیبرها (10±32 نانومتر) نشان داد که فرآیند آسیاب با کاهش 1200 برابر قطر، در تولید نانوفیبرها کاملاً کارآمد بوده است (یوسفی و همکاران، 1392).

شکل 1-3-دستگاه سوپر آسیاب MKCA6-2 ساخت ژاپن و سنگ مخصوص آن ساخته شده از کربید سیلیسیم(یوسفی و همکاران، 1391)
شکل 2-3- آلفا سلولز 99 درصد
شکل 3-3- نانو سلولز تشکیل شده بعد از آبگیری به وسیله فیلتر غشا
شکل 4-3-اثر فزآیند سوپر آسیاب بر کاهش ابعاد و توزیع و متوسط قطری فیبرهای سلولزی(یوسفی و همکاران، و کاتالوگ شرکت دانشبنیان نانونوین پلیمر 1391)3-2-فرآیند ساخت فیلمبه منظور تهیه محلول پلیمر، پلیمرهای PVA در آب مقطر حل گردیدند. با توجه به نسبت وزنی نانوفیبرهای سلولز و ماتریس PVA مقدار معین از پلیمرها (حدود 25/1 گرم) در 20 گرم آب مقطر در 90 درجه سانتیگراد به مدت 60 دقیقه ، تحت همزنی مکانیکی قرارگرفتند. پس از حل شدن کامل پلیمرها محلولهای حاصل تا رسیدن به دمای اتاق تحت شرایط همزنی باقیماندند. برای تهیه نانوکامپوزیتها با نسبتهای مختلف نانوفیبرسلولز، محلولهای پلیمر حاصل با مقادیر معینی از سوسپانسیون نانوفیبرسلولز مخلوط شده و در دمای اتاق به مدت 30 دقیقه همزنی شدند. برای پراکنده شدن هرچه بهتر ذرات نانو در سطح پلیمر سوسپانسیون نانوفیبرسلولز مخلوط شده با پلیمر تحت تیمار اولترسونیک قرار سونیک قرار گرفتند و مقدار انرژی مصرف شده برای هر تیمار به طور میانگین در جدول 1-3 آورده شده است. زمان تیمار اولتراسونیک 20 دقیقه و به صورت 5 زمان 4 دقیقهای و بین هر دو زمان 1 دقیقه توقف انجام گردید. مخلوط حاصل در داخل قالب مخصوص ریخته شده و در داخل انکوباتور با دمای 3±35 درجه سانتیگراد قرارداده شدند. نانوکامپوزیت ها پس از 120 ساعت از قالب خارج گردیدند و ضخامت آنها اندازه گیری شد. نسبت اختلاط در نانوکامپوزیتهای نهایی 0 ، 5% ، 10% ، 15% ، 20% وزنی بود. (روحانی و همکاران، 2008) نمونه ها به نامهای PVA/NFC 0%، PVA/NFC 5%، PVA/NFC 10%، PVA/NFC 15%و PVA/NFC 20% نام گذاری شدند.

شکل 5-3- دستگاه اولتراسونیک3-3-آزمونها3-3-1- اندازه گیری ضخامت فیلمبرای تعیین ضخامت فیلمها از ریز سنج دیجیتالی(Digimaticindicato) مدل Mitutoyo ID-F 125E ساخت کشور ژاپن با دقت 001/0 استفاده شد .. اندازهگیری در 5 نقطه مختلف فیلم به صورت یکی در مرکز و چهار اندازهگیری در طرف فیلم انجام گرفت و سپس از آنها میانگین گرفته شد.
3-3-2- اندازه گیری خواص مکانیکیاستحکام کششی (δt)، ازدیاد طول (tε)و مدول یانگ (E) فیلم ها طبق استاندارد ASTM D882-91 و با دستگاه TVT-300XP ساخته شده در کشور سوئد اندازه گیری شد. ابتدا نمونه ها به مدت 24 ساعت در رطوبت نسبی 55 % واجد شرایط شدند و سپس سه نمونه از هر کدام از فیلمها به شکل دمبلی با ابعاد Cm 5/0×8 بریده شد و در بین دو فک دستگاه قرار گرفت. فاصله اولیه بین دو mm50 و mm/min 5 تعیین و داده ها توسط یک رایانه ثبت گردید.

شکل 6-3- دستگاه تست مکانیکی مدل TVT-300XP ساخته شده در TEXVOl سوئد3-3-3- میکروسکوپ الکترونی روبشی گسیل میدان FE-SEMبرای مطالعه سطح شکست فیلم های PLA ، از میکروسکوپ FE-SEM استفاده گردید. ابتدا نمونهها به وسیله نیتروژن مایع شکسته شدندو سپس سطح شکست آنها به وسیله ذرات پلاتینوم/ پالادیوم اندود شدند پس و در ولتاژ kV 5 تصاویری عمود بر سطح شکست نمونه ها تهیه گردید. عکسهای گرفته شده با بزرگنمایی 10000 تا 100000 برابر گرفته شد. میکروسکوپ مورد نظر مدلMira 3-XMU ساخت کشور جمهوری چک است.

شکل 3-7 میکروسکوپ الکترونی روبشی گسیل میدان FE-SEM3-3-4-رنگ سنجیبرای اندازه‌گیری فاکتور‌های رنگ نمونه‌ها از دستگاه اسپکتروفوتومتر Sheen ساخت کشور آمریکا مجهز به منبع نوری D65 و مشاهده کننده استاندارد 10 درجه استفاده شد. طیف‌های ساطع شده از این دستگاه در محدوده 700 – 400 نانومتر (نورمرئی) می‌باشد. داده‌های این دستگاه براساس استاندارد ]7[ ASTM 2244و درغالب سیستم CIE L* a* b* ارائه می‌شود. سیستم CIELAB یک فضای رنگی سه بعدی است که در آن فاکتور L* براقیت نمونه‌ها را نشان می‌دهد و از 0 تا 100 متغیر است. حداکثر براقیت در این سیستم 100 می‌باشد که نشان دهنده رنگ سفید است و حداقل براقیت صفر است که بیانگر تیرگی نمونه‌ها می‌باشد. فاکتورهای بعدی a*و b*هستند که هر کدام به ترتیب در امتداد محور X ها از قرمزی (+a) تا سبزی (-a) و در امتداد محور Y ها از زردی (+b) تا آبی بودن (-b) را نشان می‌دهند.
اختلاف رنگ کلی L*Δ، فاکتور زردی (Yellow index, YI)و فاکتور سفیدی (White index, WI) نیز به فرمول زیر محاسبه شدند: (Abolghasemi Fakhri و همکاران ، 2012)
ΔE*=( L*Standard-L*Sample)2+( a*Standard-a*Sample)2+( b*Standard-b*Sample)2WI=100-100-L*2+a*2+b*2 YI*= 42.86bL3-3-5- زاویه تماس
برای اندازهگیری زاویه تماس از روش قطره چسبنده که یک روش رایج در تعیین ویژگی ترشوندگی سطوح جامد میباشد استفاده شد. 5/2 میکرولیتر آب مقطر به صورت یک قطره بر روی سطح نمونه ها قرار داده شد. زاویه تماس قطره آب با سطح نمونهها توسط دستگاه زاویه سنج مدل PG-X ساخت کشور سوئیس اندازهگیری شد. در این تحقیق نیز زاویه تماس دینامیک قطره آب با سطح فیلم در مدت 12 ثانیه و با 3 تکرار در هر تیمار محاسبه گردید.
3-3-6-تحلیل آماریتجزیه و تحلیل دادههای مکانیکی با استفاده از نرم افزار آماریSPSS در قالب آنالیز واریانس یک طرفه انجام شد و در نهایت مقایسه و گروهبندی میانگینها به کمک آزمون دانکن در سطح اطمینان 95% انجام گرفت.

فصل چهارنتایج

فصل چهارم
4- نتایج1-4- اندازهگیری ضخامتضخامت نمونه های ساخته شده از 5 نقطه فیلم ساخته شده گرفته شد و از آنها میانگین گرفته شد . میانگین ضخامت نمونهها در جدول 1-4 آورده شده است.
جدول 1-4- میانگین ضخامت نمونهها
کد نمونه ضخامت ( Cm)
PVA/NFC 0% 006/0 ± 150/0
PVA/NFC 5% 014/0 ± 158/0
PVA/NFC 10% 006/0 ± 155/0
PVA/NFC 15% 009/0 ± 150/0
PVA/NFC 20% 005/0 ± 158/0
2-4- زاویه تماسزاویه تماس یکی از ویژگیهای پایه برای فیلمهای بسته بندی است، که نشان دهنده خواص آبگریزی با آب دوستی و تعیین مقاومت در برابرآب میباشد.
برای بررسی بهتر زاویه تماس بین تیمارهای مختلف، به بررسی زاویه تماس نمونهها در مدت 10 ثانیه میپردازیم. جداول 4-2 و 4-3 و 4-4 نتایج حاصل از تجزیه واریانس زاویه تماس در ثانیه اول، پنجم و دهم را نشان میدهد. همانطور که مشاهده میشود اثر نانو فیبرسلولز در سطح آماری بیش از 95 درصد روی زاویه تماس در ثانیه اول، پنجم و دهم معنی دار نیست.

جدول 2-4 تجزیه واریانس مقدار نانو سلولز بر زاویه تماس فیلمهای ساخته شده در ثانیه 0
منابع تغییرات جمع مربعات درجه آزادی میانگین مربعات عدد جدول معنی داری
بین گروه ها 14/27 4 78/6 18/0 941/0
درون گروهها 13/366 10 61/36 مجموع 27/393 14 جدول 3-4 تجزیه واریانس مقدار نانو سلولز بر زاویه تماس فیلمهای ساخته شده در ثانیه 5
منابع تغییرات جمع مربعات درجه آزادی میانگین مربعات عدد جدول معنی داری
بین گروه ها 18/227 4 79/56 35/1 315/0
درون گروهها 20/418 10 82/41 مجموع 39/645 14 جدول 4-4 تجزیه واریانس مقدار نانو سلولز بر زاویه تماس فیلمهای ساخته شده در ثانیه 10
منابع تغییرات جمع مربعات درجه آزادی میانگین مربعات عدد جدول معنی داری
بین گروه ها 75/272 4 19/68 30/1 33/0
درون گروهها 28/524 10 42/52 مجموع 04/797 14 در شکل 4-1 تاثیر مقدار نانو سلولز بر زاویه تماس فیلمهای ساخته شده در زمانهای مختلف نشان و در شکل 4-2 روند کاهش زاویه تماس قطره در کامپوزیتهای ساخته شده نشان داده شده است. با توجه به نتایج به دست آمده در این پژوهش، زاویه تماس قطره آب با سطح چند سازه با افزایش میزان استفاده از نانو سلولز تا 15 درصد افزایش پیدا می‌کند و برای 20 درصد مجدداً کاهش پیدا می‌نماید.

شکل 4-1 تاثیر مقدار نانو سلولز بر زاویه تماس فیلمهای ساخته شده در زمانهای مختلف
شکل 4-2 زاویه تماس فیلمهای ساخته شده در زمانهای مختلف4-4- ویژگیهای مکانیکی فیلمویژگیهای مکانیکی، پارامترهای بسیار مهمی از محصول میباشد که ارتباط زیادی با مواد تشکیل دهنده و ساختار فیزیکی ماده دارد. جدول 4-5 میانگین استحکام کششی، ازدیاد طول و مدول یانگ فیلمهای حاصل از پلیوینیل الکل با درصدهای مختلف نانوفیبر سلولز را نشان میدهد.
جدول 4-5 میانگین خواص کششی انواع فیلم پلیوینیل الکل ساخته شده
نوع فیلم استحکام کششی (MPa) ازدیاد طول (%) مدول یانگ(MPa)
PVA/NFC 5% 55/23 55/211 63/115
PVA/NFC 10% 66/28 86/196 142
PVA/NFC 15% 8/34 4/122 8/170
PVA/NFC 20% 32/42 19/98 228.1

4-4-1- استحکام کششی
در جدول 4-6 نتایج حاصل از تجزیه واریانس استحکام کششی نانوکامپوزیت نشان داده شده است. همانطور که مشاهده میشود اثر نانوفیبرسلولز بر استحکام کششی پلیمر پلیوینیلالکل سطح آماری بیش از 95 درصد معنیدار است.
جدول 4-6 تجزیه واریانس مقدار نانوفیبر سلولز بر استحکام کششی فیلمهای ساخته شده
معنی داری عدد جدول میانگین مربعات درجه آزادی جمع مربعات منابع تغییرات
000/0 2/170 6/169 3 8/589 بین گروه
1/1 8 2/9 درون گروهها
11 1/599 مجموع
نتایج حاصل از آزمون دانکن نانوکامپوزیت در شکل 4-3 نشان داده شده است. بیشترین میزان استحکام کششی مربوط به افزودن 20 درصد نانوفیبر سلولز به پلیمر پلیوینیلالکل که باعث افزایش حدود 80 درصدی استحکام کششی در مقایسه با نانوکامپوزیت حاوی 5 درصد نانوفیبرسلولز است. همچنین بر اساس گروه بندی دانکن همه تیمارها در گروههای جداگانه قرار گرفتند.

شکل 4-3 تاثیر مقدار نانو سلولز بر استحکام کششی فیلمهای ساخته شده4-4-2- ازدیاد طولدر جدول 4-7 نتایج حاصل از تجزیه واریانس ازدیاد طول نانوکامپوزیت نشان داده شده است. همانطور که مشاهده میشود اثر نانوفیبرسلولز بر ازدیاد طول پلیمر پلیوینیلالکل سطح آماری بیش از 95 درصد معنیدار است.
جدول 4-7 تجزیه واریانس مقدار نانوفیبر سلولز بر ازدیاد طول فیلمهای ساخته شده
معنی داری عدد جدول میانگین مربعات درجه آزادی جمع مربعات منابع تغییرات


000/0 9/676 9/9219 3 8/27659 بین گروه
6/13 8 9/108 درون گروهها
11 8/27768 مجموع
نتایج حاصل از آزمون دانکن نانوکامپوزیت در شکل 4-4 نشان داده شده است. بیشترین میزان ازدیاد طول مربوط به افزودن 5 درصد نانوفیبر سلولز به پلیمر پلیوینیلالکل و کمترین میزان ازدیاد طول مربوط به افزودن 20 درصد نانوفیبر سلولز به پلیمر پلیوینیلالکل است. در گروه بندی دانکن همه تیمارها در گروههای جداگانه قرار گرفتند.

شکل 4-4 تاثیر مقدار نانو بر ازدیاد طول فیلمهای ساخته شده
4-4-3- مدول یانگدر جدول 4-8 نتایج حاصل از تجزیه واریانس مدول یانگ نانوکامپوزیت نشان داده شده است. همانطور که مشاهده میشود اثر نانوفیبرسلولز بر مدول یانگ پلیمر پلیوینیلالکل سطح آماری بیش از 95 درصد معنیدار است.
جدول 4-8 تجزیه واریانس مقدار نانوفیبر سلولز بر مدول یانگ فیلمهای ساخته شده
معنی داری عدد جدول میانگین مربعات درجه آزادی جمع مربعات منابع تغییرات
000/0 9/58 3/6987 3 9/20943 بین گروه
4/118 8 2/947 درون گروهها
11 2/21882 مجموع
نتایج حاصل از آزمون دانکن نانوکامپوزیت در شکل 4-5 نشان داده شده است. بیشترین میزان مدول یانگ مربوط به افزودن 20 درصد نانوفیبر سلولز به پلیمر پلیوینیلالکل که باعث افزایش حدود 97 درصدی مدول یانگ در مقایسه با نانوکامپوزیت حاوی 5 درصد نانوفیبرسلولز است. همچنین بر اساس گروه بندی دانکن همه تیمارها در گروههای جداگانه قرار گرفتند.

شکل 4-5 تاثیر مقدار نانوسلولز بر مدول یانگ فیلمهای ساخته شده
4-5- ویژگیهای نوری فیلم
رنگ و شفافیت فیلمها، نقش مهمی در ظاهرو مقبولیت آنها دارد. به طور کلی هرچه شفافیت و بیرنگ بودن فیلمهای بیوپلیمری بیشتر باشد وبه پلاستیکهای حاصل از پلیمر سنتزی نزدیکتر باشد، پذیرش و استفاده از این نوع مواد در بسته بندی افزایش خواهد یافت. معمولا در بسته بندی اکثر مواد ترجیح داده میشود که پلیمر مورد استفاده برای بسته بندی، بیرنگ و کاملا شفاف باشد تا تأثیری بر روی ظاهر محصول نداشته و بتواند به طور کامل، ویژگیهای ظاهری محصول بسته بندی شده را نمایان سازد.جدول 4-9 فاکتورهای رنگ فیلمهای پلیوینیلالکل تولیدی
نوع فیلم L*
(0:روشنی؛ 100: تیرگی) a*
(-:سبزی؛ +:قرمزی) b*
(- :آبی؛ + : زردی) ΔL
(اختلاف رنگ کلی) WI*
(فاکتور سفیدی) YI*
(فاکتور زردی)
PVA/NFC 0% a27/0± 38/64 b 20/.±31/3- a 05/0±73/0 a 27/0±79/0 a28/0±22/64 a03/0±48/0
PVA/NFC 5% b 83/0±64/72 a 53/1±05/4- b 27/0±74/1 b 9/0±22/9 b78/0±24/72 b16/0±02/1
PVA/NFC 10% c 59/0±52/77 c 08/0±99/1- b 04/0±90/1 c 59/0±14 c59/0±35/77 b02/0±05/1
PVA/NFC 15% d 82/0±29/79 b23/3±71/3- c 22/0±83/2 d 69/0±05/16 d86/0±14/78 c15/0±57/1
PVA/NFC 20% e 45/0±78/80 c14/0±18/2- d 54/0±12/3 e 42/0±37/17 e47/0±4/80 c29/0±65/1
a، b، c، dو e نشان دهنده گروه بندی دانکن در سطح اعتماد 95 درصد میباشد.
4-5-1- فاکتور L* (0:روشنی؛ 100: تیرگی)در جدول 4-10 نتایج حاصل از تجزیه واریانس فاکتور L* نانوکامپوزیت نشان داده شده است. همانطور که مشاهده میشود اثر نانوفیبرسلولز بر فاکتور L* پلیمر پلیوینیلالکل سطح آماری بیش از 95 درصد معنیدار است.
جدول 4-10 تجزیه واریانس مقدار نانو سلولز بر فاکتور روشنی، تیرگی (L*)
منابع تغییرات جمع مربعات درجه آزادی میانگین مربعات عدد جدول معنی داری
بین گروه ها 38/1588 4 09/397 91/977 000/0
درون گروهها 24/16 40 4/0 مجموع 63/1604 44 نتایج حاصل از آزمون دانکن نانوکامپوزیت در شکل 4-6 نشان داده شده است. بیشترین میزان فاکتور L* مربوط به افزودن 20 درصد نانوفیبر سلولز به پلیمر پلیوینیلالکل که باعث افزایش حدود 25 درصدی فاکنور L* در مقایسه با نانوکامپوزیت حاوی 0 درصد نانوفیبرسلولز (شاهد) است. این موضوع نشان دهنده تیرهتر شدن فیلمهای حاصل با افزایش درصد نانوفیبر سلولز است. همچنین بر اساس گروه بندی دانکن همه تیمارها در گروههای جداگانه قرار گرفتند.

شکل 4-6 تاثیر مقدار نانو سلولز بر فاکتور L* فیلمهای ساخته شده
4-5-2- فاکتور a* (-:سبزی؛ +: قرمزی)در جدول 4-11 نتایج حاصل از تجزیه واریانس فاکتورa* نانوکامپوزیت نشان داده شده است. همانطور که مشاهده میشود اثر نانوفیبرسلولز بر فاکتورa* پلیمر پلیوینیلالکل سطح آماری بیش از 95 درصد معنیدار است.
جدول 4-11 تجزیه واریانس مقدار نانو سلولز سبزی، قرمزی (a*)
منابع تغییرات جمع مربعات درجه آزادی میانگین مربعات عدد جدول معنی داری