Neda Bathaei


و
1-2-2 میکسرهای غیر فعال ................................................................................................ 22 .........................
2-2-2 میکسر گیلبرت ................................................................................................................................... 24
3-2 کاربرد میکسر ............................................................................................................................................. 28
4-2 عملکرد میکسر ........................................................................................................................................... 29
1-4-2 میکسر به عنوان یک ضرب کننده .................................................................................................. 29
2-4-2 عملکرد میکسر به کمک یک سوئیچ .............................................................................................. 30
.3 فصل سوم: بررسی میکسرهای توزیع شدهی فراپهن باند ............................................................ 32
1-3 مقدمه .......................................................................................................................................................... 33
2-3 مدارات توزیع شده ..................................................................................................................................... 34
3-3 بررسی عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی ............................... 35
4-3 میکسر سلول گیلبرت توزیع شده ........................................................................................................... 39
1-4-3 بهرهی تبدیل ...................................................................................................................................... 40
2-4-3 تکنیک تزریق جریان ......................................................................................................................... 40
3-4-3 تکنیک پیکینگ سلفی ...................................................................................................................... 42
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده ............................................................................... 44
1-5-3 ساختار میکسر .....................................................................................................................[18] 1 44
2-5-3 ساختار میکسر .....................................................................................................................[12] 2 45
3-5-3 ساختار میکسر .....................................................................................................................[19] 3 45
4-5-3 ساختار میکسر .....................................................................................................................[20] 4 46
5-5-3 ساختار میکسر .....................................................................................................................[21] 5 47
6-5-3 ساختار میکسر .....................................................................................................................[22] 6 48
7-5-3 ساختار میکسر .....................................................................................................................[23] 7 49
8-5-3 مقایسه ساختار های متفاوت میکسرهای فراپهن باند ................................................................ 51
.4 فصل چهارم: تحلیل اعوجاج و نویز در میکسر فراپهن باند .......................................................... 52
1-4 مقدمه .......................................................................................................................................................... 53
2-4 میکسر یک عنصر غیر خطی .................................................................................................................... 53
3-4 مدل غیر خطی گیرنده ............................................................................................................................. 54
4-4 اثرات اعوجاج در سیستمهای فراپهن باند ............................................................................................. 54
1-4-4 تولید هارمونیک .................................................................................................................................. 55
2-4-4 فشردگی بهره ...................................................................................................................................... 55
3-4-4 اینترمدولاسیون .................................................................................................................................. 56
4-4-4 اینترمدولاسیون مرتبهی دوم .......................................................................................................... 56
ز
5-4-4 اینترمدولاسیون مرتبهی سوم ......................................................................................................... 57
6-4-4 اعوجاج در سیستمهای متوالی ........................................................................................................ 59
7-4-4 مشخصات خطی گیرنده ................................................................................................................... 59
5-4 بررسی نویز میکسر به عنوان یک عنصر غیر خطی .............................................................................. 60
1-5-4 پردازش نویز متغیر با زمان .............................................................................................................. 60
2-5-4 نویز طبقهی راهانداز (طبقهی ................................................................................................(RF 61
3-5-4 نویز طبقهی سوئیچ (طبقهی ................................................................................................(LO 62
4-5-4 نویز طبقهی ..................................................................................................................................IF 63
.5 فصل پنجم: مدار پیشنهادی، طراحی مخلوط کنندهی فرکانسی فراپهن باند توزیع شده .......... 64
1-5 مقدمه .......................................................................................................................................................... 65
2-5 مدل المانهای مورد استفاده ................................................................................................................... 65
3-5 تحلیلگرهای استفاده شده در نرمافزار .....................................................................................ADS 67
1-3-5 تحلیلگر ..............................................................................HARMONIC BALANCE 68
2-3-5 تحلیلگر ............................................................................................................................... LSSP 68
4-5 طراحی میکسر توزیع شده با سلولهای میکسر تک بالانس .............................................................. 69
1-4-5 طراحی میکسر .................................................................................................................................... 69
2-4-5 بایاس مدار ........................................................................................................................................... 70
3-4-5 پارامترهای قابل تغییر و طراحی ..................................................................................................... 71
4-4-5 تحلیل و شبیهسازی .......................................................................................................................... 72
5-5 طراحی میکسر توزیع شده با سلولهای میکسر سلول گیلبرت ......................................................... 74
1-5-5 طراحی میکسر .................................................................................................................................... 74
2-5-5 بایاس مدار ........................................................................................................................................... 75
3-5-5 تحلیل و شبیهسازی .......................................................................................................................... 76
6-5 طراحی میکسر توزیع شده با سلولهای میکسر گیلبرت و با استفاده از تکنیک پیکینگ سلفی.. 78
1-6-5 تکنیک پیکینگ سلفی ...................................................................................................................... 78
2-6-5 بایاس مدار ........................................................................................................................................... 80
3-6-5 طراحی میکسر توزیع شدهی نهایی ................................................................................................ 80
4-6-5 مقادیر المانهای مدار میکسر پس از طراحی .............................................................................. 84
5-6-5 تحلیل و شبیه سازی ......................................................................................................................... 86
7-5 نتیجهگیری و مقایسه ............................................................................................................................... 90
.6 فصل ششم: نتیجهگیری و پیشنهادات ........................................................................................... 92
1-6 نتیجهگیری ................................................................................................................................................. 93
ح
2-6 پیشنهادات .................................................................................................................................................. 94
.7 فصل هفتم: منابع و ماخذ ................................................................................................................ 95
منابع لاتین ..................................................................................................................................................................... 96
چکیده انگلیسی: ................................................................................................................................................................ 98
ط
فهرست جدول ها:
عنوانشماره صفحه

جدول 1- 1 قابلیت UWB در مقایسه با سایر استانداردهای 14..[2] IEEE
جدول 1- 3 مقایسهی ساختارهای مختلف میکسرهای فراپهن باند51
جدول 1- 5 مقادیر سلفهای مدار نهایی85
جدول 2- 5 عرض ترانزیستورهای مدار نهایی85
جدول 3- 5 مقادیر پارامترهای DC ترانزیستورهای میکسر توزیع شده نهایی85
جدول 4-5 مقدار نشت پورت های مختلف میکسر پیشنهادی در یکدیگر بعد از مدل سازی اثر عدم تطبیـق ابعـاد
ترانزیستورها، روی ولتاژ آستانه88
جدول 5- 5 مقایسهی سه ساختار به دست آمده طول طراحی90
جدول 6- 5 مشخصات مدار میکسر توزیع شدهی پیشنهادی90
جدول 7- 5 مقایسه میکسر طراحی شده در این پایان نامه با کارهای انجام شدهی قبلی91
ی
فهرست شکلها:
عنوانشماره صفحه

شکل 1-1 تاریخچهی تکنولوژی فراپهن باند6
شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس 7[3]
شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس8
شکل 4-1 یک پالس با Duty Cycle کم8
شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس9
شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی 10RF
شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنال های بانـد باریـک
(c) اثر پدیدهی چند مسیره بر سیگنالهای باند فرا پهن11
شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک13
شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند14
شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و (c) فراپهن باند در حوزههای زمان و فرکانس .. 16
شکل 11-1 روش دسترسی 16TDMA
شکل 12-1 عملیات کد کردن در 17[5] DS-CDMA
شکل 13-1 نحوهی استفاده از پهنای باند در سیستم 17DS-CDMA
شکل 14-1 گروه بندی طیف فرکانسی 18MB-OFDM
شکل 15-1 طیف فرکانسی 18[7] MB-OFDM
شکل 1-2 ساختار گیرنده سوپر هترودین20
شکل 2-2 میکسر به عنوان یک عنصر سه دهانه21
شکل 3-2 میکسر غیرفعال با تعادل دوگانه با 22..CMOS
شکل 4-2 میکسر گیلبرت ساده24
شکل 5-2 میکسر گیلبرت با تعادل دوگانه25
شکل 6-2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه26
شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان 27DC
شکل 8-2 میکسر به عنوان یک ضرب کننده 29[3]
شکل 9-2 میکسر با ساختار تکی31
شکل 10-2 میکسر با ساختار متوازن تکی31
شکل 1-3 بلوک دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی33[11]
شکل 2-3 مدل خطوط انتقال مصنوعی34
شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال35
شکل 4-3 میکسر گیلبرت 36CMOS
شکل 5-3 یک میکسر فعال CMOS با تعادل تکی36
ک
شکل 6-3 شکل موجهای p0(t) و 38p1 (t)
شکل 7-3 مدار معادل خط انتقال40
شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان41
شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل41
شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری43
شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شـبکهی پسـیو اضـافه شـده بـرای ایزولـه کـردن
خازنهای پارازیتی (c) پیاده سازی این شبکه با سلف43
شکل 12-3 مدار میکسر ساختار 441
شکل 13-3 مدار میکسر ساختار 452
شکل 14-3 مدار میکسر ساختار 463
شکل 15-3 مدار میکسر ساختار 474
شکل 16-3 مدار تطبیق UWB برای سیگنال ورودی 47RF
شکل 17-3 مدار میکسر ساختار 485
شکل 18-3 مدار میکسر ساختار 496
شکل 19-3 مدار میکسر ساختار 507
شکل 1-4 طیف فرکانسی MB-OFDM به همراه سیستمهای تداخلی داخل و خارج باند 53[7]
شکل (a) 2-4 مدار سوئیچ ساده (b) سیستم غیر خطی متغیر با زمان (c) سیستم خطی متغیر با زمان54
شکل 3-4 طیف خروجی سیستم غیرخطی با درجهی دو و سه54
شکل 4-4 نقطه تراکم 561dB
شکل 5-4 مولفههای اینترمدولاسیون در خروجی یک سیستم غیرخطی درجهی 562
شکل 6-4 نحوهی تداخل اینترمدولاسیون مرتبهی 2 با سیگنال مطلوب 57[7]
شکل 7-4 مولفههای اینترمدولاسیون در خروجی یک سیستم با خاصیت غیرخطی مرتبهی سوم58
شکل 8-4 تداخل اینترمدولاسیون مرتبهی 3 با سیگنال مطلوب 58[7]
شکل (a) 9-4 دامنهی نقطه تقاطع مرتبهی سوم ورودی (b) نقطه تقاطع مرتبـهی سـوم ورودی و خروجـی بـه
صورت لگاریتمی 59[5] (IIP3,OIP3)
شکل 10-4 میکسر فعال تک بالانس 61CMOS
شکل 11-4 شکل موج 62p1 (t)
شکل 1-5 بلوک دیاگرام مدار توزیع شده (a)خطوط انتقال واقعی (b) پیاده سازی با مدارات LC (خـط انتقـال
مصنوعی)65
شکل 2-5 مدل ترانزیستور 66TSMC
شکل 3-5 مدل مدار معادل برای یک ترانزیستور 66[26] RF nMOS
شکل 4-5 مدل سلف 67TSMC
شکل 5-5 نمای Layout سلف در تراشه67
شکل 6-5 مدار معادل یک سلف استاندارد 67[26]
ل
شکل 7-5 تحلیلگر HARMONIC BALANCE در نرم افزار 68ADS
شکل 8-5 تحلیلگر LSSP در نرم افزار 68ADS
شکل 9-5 ساختار میکسر توزیع شدهی تک بالانس69
شکل 10-5 شماتیک میکسر توزیع شدهی تک بالانس در نرم افزار 70ADS
شکل 11-5 مدار بایاس طبقهی 70RF
شکل 12-5 مدار بایاس گیت ترانزیستورهای طبقهی 71LO
شکل 13-5 مدار بایاس درین ترانزیستورهای طبقهی 71LO
شکل 14-5 روابط به کار رفته در نرمافزار ADS برای محاسبهی 72IIP3
شکل 15-5 نمودار عدد نویز میکسر طراحی شده با سلول تک بالانس72
شکل 16-5 نمودار IIP3 میکسر طراحی شده با سلول تک بالانس73
شکل 17-5 نمودار IIP2 میکسر طراحی شده با سلول تک بالانس73
شکل 18-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول تک بالانس73
شکل 19-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول تک بالانس74
شکل 20-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول تک بالانس74
شکل 21-5 ساختار میکسر توزیع شدهی گیلبرت75
شکل 22-5 شماتیک میکسر توزیع شدهی گیلبرت در نرم افزار 75ADS
شکل 23-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول گیلبرت76
شکل 24-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول گیلبرت77
شکل 25-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول گیلبرت77
شکل 26-5 نمودار عدد نویز میکسر طراحی شده با سلول گیلبرت77
شکل 27-5 نمودار IIP3 میکسر طراحی شده با سلول گیلبرت78
شکل 28-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی79
شکل 29-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی در نرم افزار 79ADS
شکل 30-5 مدار بایاس درین ترانزیستورهای طبقهی 80LO
شکل 31-5 نمودار جریان مصرفی میکسر بر حسب تغییرات عرض ترانزیستورها81
شکل 32-5 نمودار تطبیق ورودی میکسر بر حسب تغییرات عرض ترانزیستورها در فرکانس 8210 GHz
شکل 33-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات عرض ترانزیستورها82
شکل 34-5 نمودار IIP3 میکسر بر حسب تغییرات عرض ترانزیستورها83
شکل 35-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس83
شکل 36-5 بهرهی تبدیل میکسر بر حسب فرکانس و مقادیر مختلف سلفهای پیکینگ84
شکل 37-5 نمودار IIP3 میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس84
شکل 38-5 نمودارضرایب انعکاس ورودی و خروجی میکسر توزیع شدهی پیشنهادی86
شکل 39-5 نمودار بهره میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی86
شکل 40-5 نمودار نشت پورت LO در 87RF
م
شکل 41-5 نمودار نشت پورت LO در 87IF
شکل 42-5 نمودار نشت پورت RF در 87LO
شکل 43-5 نمودار نشت پورت RF در 88IF
شکل 44-5 عدد نویز میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی88
شکل 45-5 نقطه تقاطع مرتبه سوم ورودی (IIP3) میکسر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
پیکینگ سلفی89
شکل 46-5 نقطه تقاطع مرتبه دوم ورودی (IIP2) میکسـر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
پیکینگ سلفی89
شکل 47-5 نمودار P1dB میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی90
ن
فهرست رابطهها:
عنوانشماره صفحه

رابطهی 81- 1
رابطهی 92- 1
رابطهی 103-1
رابطهی 114-1
رابطهی 125-1
رابطهی 221-2
رابطهی 232-2
رابطهی 233-2
رابطهی 234-2
رابطهی 235-2
رابطهی 256-2
رابطهی 267-2
رابطهی 268-2
رابطهی 279-2
رابطهی 2710-2
رابطهی 2811-2
رابطهی 2912-2
رابطهی 2913-2
رابطهی 2914-2
رابطهی 351-3
رابطهی 362-3
رابطهی 373-3
رابطهی 374-3
رابطهی 375-3
رابطهی 376-3
رابطهی 377-3
رابطهی 378-3
رابطهی 379-3
رابطهی 3710-3
رابطهی 3811-3
س
رابطهی 3812-3
رابطهی 3813-3
رابطهی 3814-3
رابطهی 3915-3
رابطهی 3916-3
رابطهی 4017-3
رابطهی 4018-3
رابطهی 4119-3
رابطهی 4120-3
رابطهی 4221-3
رابطهی 4222-3
رابطهی 4223-3
رابطهی 4224-3
رابطهی 4225-3
رابطهی 4226-3
رابطهی 4327-3
رابطهی 4428-3
رابطهی 541-4
رابطهی 552-4
رابطهی 563-4
رابطهی 564-4
رابطهی 575-4
رابطهی 576-4
رابطهی 577-4
رابطهی 588-4
رابطهی 599-4
رابطهی 5910-4
رابطهی 6011-4
رابطهی 6112-4
رابطهی 6113-4
رابطهی 6114-4
رابطهی 6115-4
رابطهی 6216-4
رابطهی 6217-4
ع
رابطهی 6218-4
رابطهی 6219-4
رابطهی 6220-4
رابطهی 6321-4
رابطهی 6322-4
رابطهی 6323-4
رابطهی 6324-4
رابطهی 6325-4
رابطهی 6326-4
رابطهی 691-5
رابطهی 812-5
رابطهی 853-5
رابطهی 854-5
رابطهی 865-5
ف
چکیده:
رشد سریع تکنولوژی و پیشرفت موفق تجاری مخابرات بی سیم روی زنـدگی روزمـره ی مـا تـاثیر قابل توجهی گذاشته است. امروزه بهکار بردن میکسرهای فرکانس بالا در سیستم های ارتباطاتی بیسـیم، دارای اهمیت خاصی میباشد. میکسرها یکی از اجزای اساسـی گیرنـده در مخـابرات بـیسـیم محسـوب میشوند. اجرای میکسرهای پایین آورنده1 در گیرنده ها به لحاظ وجود نویز و تضعیف در سیگنال دریافتی از اهمیت بیشتری برخوردار است.
هدف اصلی این پایان نامه، تحلیل و طراحـی میکسـر بـرای کـاربرد در بانـد فرکانسـی فـراپهن (UWB) و با استفاده از تکنولوژی CMOS می باشد. ابتدا عملکرد یک میکسر توزیع شده بررسی شده، سپس مدار میکسر پیشنهادی توزیع شده، ارایه می گردد. میکسر پیشنهادی دارای بهـره ی تبـدیل 3dB، IIP3 برابر 5/5dBm، عدد نویز 7dB، پهنـای بانـد 3 تـا 10 گیگـاهرتز و تـوان مصـرفی 52 میلـی وات میباشد. میکسر فراپهن باند توزیع شدهی پیشنهادی با استفاده از تکنولوژی CMOS 0/18μm با منبع تغذیه 1/8 ولت طراحی شده است.

1 down conversion
1
مقدمه:
رشد سریع تکنولوژی و گذار از مخابرات آنالوگ به دیجیتال، ترقی سیستم های رادیویی بـه نسـل سوم و چهارم و جانشینی سیستم های سیمی با Wi-Fi و Bluetooth مشـتریان را قـادر مـی سـازد بـه گستره ی عظیمی از اطلاعات از هرجا و هر زمان دسترسی داشته باشند. مخابرات UWB برای اولین بـار در دهــهی 1960 معرفــی شــد و در ســال 2002، FCC1 رنــج فرکانســی 3.1~10.6GHz را بــرای کاربردهای UWB معرفی و توان انتقال آنرا به -41.3dBm محدود کرد، بدین معنا کـه سیسـتمهـای
UWB روی فراهم کردن: توان کم، قیمت کم و عملکرد باند وسیع در مساحت کوتـاه تمرکـز کردنـد. در مقایسه با کاربردهای باند باریک طراحی المانها در سیستمهای UWB بسیار متفاوت و مشکل است.
یکی از بلوکهای مهم در گیرندههای UWB میکسرها هستند کـه بـرای تبـادل اطلاعـات بـین تعداد زیادی کانال مشابه UWB نقش کلیدی دارند. اهمیـت عملکـرد میکسـر بـه عنـوان یـک مبـدل فرکانس، در تامین فرکانسهای کاری مناسب با پایداری و نـویز مطلـوب اسـت. میکسـر مـیبایسـتی: (1
بهرهی تبدیل بالا، که اثرات نویز در طبقات بعدی را کاهش دهـد، (2 عـددنویز کوچـک، کـه LNA را از داشتن یک بهرهی بالا راحت کند و (3 خطی بودن بالا، که رنج دینامیک گیرنده را بهبود بخشد و سطوح اینترمدولاسیون2 را کاهش دهد. هر کارایی بایستی توسط مصالحه در طراحی میکسر بهدست آید. میکسر سلول گیلبرت با برخی تغییرات در ساختار آن نتایج قابل قبـولی بـرای کـاربرد در سیسـتمهـای UWB
بهدست میدهد.
دستیابی همزمان به بهره ی تبدیل و خطی بودن بـالا کـه افـزایش یکـی باعـث کـاهش دیگـری می گردد یکی از چالش های طراحی میکسر می باشد، در کارهایی کـه تـا کنـون انجـام شـده تمرکـز روی دستیابی یکی از این دو بوده به طوریکه یا میکسری غیر فعال با خطی بودن قابل قبـول و یـا میکسـری فعال با خطی بودن کم ارائه شده است. تطبیق امپدانس در کل رنج فرکانسی 7 گیگا هرتـزی و همچنـین عدد نویز پایین از دیگر پارامترهای مهم طراحی میکسر میباشد.
 اهداف پایان نامه
در این پایان نامه با بررسی میکسرهای فراپهن باند و مقایسهی آنها از نظر ساختار، بهرهی مدار، عدد نویز، تطبیق در ورودی و خروجی و خطی بودن، سـاختار مناسـب بـرای یـک میکسـر فـراپهن بانـد پیشنهاد شده و از لحاظ کارکرد در سیستمهای UWB بررسی گشته است.

Federal Communications Commission inter-modulation

1
2
2
بر خلاف کارهایی که تا کنون در این زمینه صورت گرفته که بر بهبود یکی از پارامترهای بهـره ی تبدیل یا خطی بودن میکسر تاکید شده، در اینجا سعی شـده اسـت تـا ضـمن دسـتیابی بـه هـر دو ایـن پارامترها در اندازههای قابل قبول برای گیرندهها، کل پهنای باند سیستمهای UWB پوشش داده شود.
بر این اساس در فصل اول سیستم های فراپهن باند بطور کامل معرفـی و بررسـی مـی گـردد، در فصل دوم به بررسی انواع میکسر، نحوهی عملکرد و کاربرد آنها پرداختـه شـده، در فصـل سـوم سـاختار میکسرهای توزیع شده، مشخصات و تکنیکهای بهبود کارایی آنها و در فصل چهارم اعوجـاج و نـویز در میکسر بررسی گردیدهاند. در فصل پنجم ساختار میکسر فراپهن باند طراحی شده بـه طـور مفصـل شـرح داده شده است. در فصل ششم نتیجهگیری و پیشنهادات و فصل هفتم نیز منابع و مأخذ مورد استفاده بـه تفکیک درج شدهاند.
3
.1 فصل اول: سیستمهای فراپهن باند (UWB)
4
1-1 تاریخچه تکنولوژی فراپهن باند UWB
در طول دهههای اخیر پیشرفت سریع ارتباطات باعث ایجاد تقاضا برای قطعات بهتـر و ارزانتـر و همچنین تکنولوژیهای پیشرفتهتر شده است. افزایش تقاضا برای انتقال سریع و افزایش نرخ اطلاعـات در عین مصرف کم توان تاثیرات شگرفی را بر تکنولوژی ارتباطات ایجاد کرده است. در هر دو بخش مخابرات بیسیم و سیمی این گرایش منجر به استفادهی هرچه بیشتر از مدولاسیونهایی با استفادهی بهینـهتـر از طیف فرکانسی و یا افزایش پهنای کانالها گشته است. این روشها به همـراه روشهـای مهندسـی بـرای کاهش توان، به منظور تولید تراشه های ارزان و با مصرف توان کم در صنعت استفاده میشود.
افزایش و گسترش استانداردها نه تنها باعث شده که سیستمها با طیفهای شلوغتری از لحاظ فرکانسی روبرو باشند بلکه باعث شده است تا سیستمها به سوی چند استاندارده بودن سوق داده شده و قابلیت انطباق با استانداردهای مختلف را داشته باشند. در حقیقت این پیشرفت تکنولوزی منجر به طراحی و تولید دستگاههایی شده است که قابلیت کارکرد در باندهای وسیعتری را داشته باشند، مانند تکنولوژی فرا پهن باند . (UWB)
تکنولوژی فراپهن باند (UWB) در دهه های اخیر بسیار مورد توجه قرار گرفتـه اسـت. مـیتـوان گفت که شروع استفاده از دانش UWB مربوط به انتهای قرن نوزدهم می باشد. اولین سیستم بی سیم که توسط گاگلیرمو مارکونی1 در سال 1987 نمایش داده شد، خصوصیات رادیوی فـراپهن بانـد را دارد. رادیـو ساخته شده توسط مارکونی از پهنای باند وسیعی برای انتقال اطلاعات بهره می گرفت. اولین فرستنده های جرقه ای مارکونی فضای زیادی از طیف (از فرکانس هـای بسـیار پـایین تـا فرکـانس هـای بـالا) را اشـغال می کردند. همچنین این سیستم ها به طور غیراتوماتیک از پردازش زمان اسـتفاده مـی نمودنـد. چـون کـد مورس توسط اپراتورهای انسانی ارسال و دریافت می شد. پس از آن مفهوم UWB مجدداً در دهـه 1960
برای ساخت رادارهای ایمن در برابر تداخل با مصرف توان کم مورد توجه قرار گرفت .[1]
در اوایل پیدایش ، UWB به نامهای Carrier free ، باند پایه یا ضربه رایج بود که در حقیقت متضمن این نکته بود که استراتژی تولید سیگنال نتیجه یک پالس با Rise time بسیار سریع و یـا یـک ضربه میباشد که یک آنتن باند پهن را تحریک میکند. در اوایل سال 2002 میلادی تکنولوژی باند بسیار پهن (UWB) برای کاربردهای تجاری تصویب شد. این تکنولوژی جدید شـیوه ی جدیـدی در ارتباطـات بدون سیم ابداع کرد:"استفاده از حوزه زمان به جای حوزه فرکانس".
تکنولوژی فرا پهن باند (UWB) به شیوهی کاملاً متفاوتی از سایر تکنولوژی ها از بانـد فرکانسـی استفاده میکند. این سیستمها از پالسهای باریک و پـردازش سـیگنال در حـوزهی زمـانی بـرای انتقـال

1 Guglielmo Marconi
5
اطلاعات استفاده میکنند، بدین صورت سیستمهـای فـرا پهـن بانـد (UWB) قادرنـد در بـازهی زمـانی مشخص اطلاعات بیشتری را نسبت به سیستمهای قدیمیتر منتقل کنند زیرا حجـم انتقـال اطلاعـات در سیســتمهــای مخــابراتی بــه صــورت مســتقیم بــا پهنــای بانــد تخصــیص یافتــه و لگــاریتم SNR (Signal to Noise Ratio) متناسب است. استفاده از یک پهنای بانـد خیلـی وسـیع چنـدین مزیـت دارد: ظرفیت بالا، مخفی بودن، مقاومت در برابر مسدود شدن و همزیستی با سایر سیستم های رادیویی.
پایه و اساس سیستم های نوین فراپهن باند در دهه 80 توسط راس و با کار انجـام شـده در مرکـز تحقیقاتی Sperry بنیان گذاشته شد. تأکید بر استفاده از UWB بـه عنـوان یـک ابـزار تحلیلـی بـرای کشف خصوصیات شبکه های مایکروویو و خصوصیات ذاتی مـواد بـود. ایـن تکنیـک هـا بـه طـور منطقـی گسترش یافتند تا تحلیل و تولید تجربی المان های آنتن را انجام دهند. موفقیـتهـای اولیـه باعـث تولیـد سیستمی خانگی شد تا خصوصیات پاسخ ضربه اهداف یا موانع را اندازهگیری کند.
با افزایش درخواست کاربران برای ظرفیت بالاتر، سرویس های سریعتر و مخابرات بی سیم امن تـر، تکنولوژی های جدید مجبورند جایگاه خود را در طیف فوق العاده شلوغ و امن رادیـویی بیابنـد. بـه دلیـل اینکه هر تکنولوژی رادیویی یک بخش خاص از طیف را اشغال میکند و با معرفی سـرویس هـای جدیـد رادیویی محدودیت دسترسی طیف RF سخت گیرانه تر شده است. در این شرایط تکنولـوژی UWB یـک راه حل نوید بخش برای محدودیت دسترسی به طیف RF با اجازه به سرویس های جدید برای هم زیستی با سیستمهای رادیویی جاری با تداخل حداقل یا بدون تداخل است.
در فوریه ی سال 2002، FCC اولین طراحی و استاندارد مربوط بـه بانـدها و تـوان مجـاز بـرای کاربران UWB را صادر کرد. بدین ترتیب باند فرکانسی 3.1GHz تا 10.6GHz به UWB اختصـاص یافت. در همین زمان FCC مجوزی صادر کرد که حدود و میزان تشعشع عمدی یا سهوی دسـتگاه هـای مخابراتی در باندهای مختلف را مشخص نمود. این تشعشع مجاز در باندهای مورد استفاده، مبنـایی بـرای طراحی دستگاه های UWB شد. با گسترش تحقیقات در این زمینه، IEEE کمیتـه ی مخصوصـی بـرای استاندارد سازی این سیسـتم هـا تحـت عنـوان 802.15.3.x تشـکیل داد. شـکل 1-1 تاریخچـه ی ایـن تکنولوژی را به اختصار نشان میدهد .[2]

شکل 1-1 تاریخچهی تکنولوژی فراپهن باند
6
در اولین گام FCC توان خروجی سیستم های UWB را به -41.3dBm/MHz محدود کرد، این محدودیت این امکان را برای سیستم های UWB ایجاد میکند که بدون اینکه توان سیگنال خروجی آنها توسط سیستمهای باند باریک مجاور احساس شود از پهنای باند وسیعی برای انتقال اطلاعات خود استفاده کنند. محدودیت هایی که برای توان انتشار این سیستم ها ایجاد شد ، عمدتاً محدودیتهایی بودند که برای حفاظت از سیستم GPS و سایر سیستم های دولتی که در باند فرکانسی 690MHZ~1610MHz کار میکنند مطرح شده بود. همانطور که در شکل 2-1 نشان داده شده است این ماسک توان همچنین برای سایر سیستمهای دولتی که عملکرد آنها در فاصلهی 3.1GHz~10.6GHz
یعنی باندی که برای کاربرد داخلی UWB تعریف شده است نیز کاربرد دارد.

شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس [3]
بنا به تعریف FCC پهنای باند -10dB یک سیگنال UWB بزرگتر از %25 فرکانس مرکزی یا بزرگتر از 1.5GHz میباشد. سیستمهای فرا پهـن بانـد بـا عـرض بانـد بـیش از 7GHz در بـازه فرکانسـی
3.1GHz~10.6GHz با سطح توان مجاز -41.3dBm/MHz فعالیت مـیکننـد. هـر کانـال رادیـویی در ایـن سیستمها بسته به فرکانس مرکزی خود میتواند عرض بانـدی بـیش از 500MHz داشـته باشـد. طـرح
انتقال OFDM1 به عنوان اولین کاندیـدا بـرای UWB در مـارچ 2003 در جلسـهی گروهـی IEEE 802.15.3a مطرح شد.

1 Orthogonal Frequency-Division Multiplexing
7
2-1 مفهوم UWB
سیستم های مخابراتی باند باریک متـداول سـیگنال هـای RF مـوج پیوسـته (CW)1 را بـا یـک فرکانس حامل خاص برای ارسال و دریافت اطلاعات مدوله می کنند. یک موج پیوسته یک انرژی سـیگنال تعریف شده در باند فرکانسی بانـد باریـک دارد کـه آن را بـرای آشکارسـازی و نفـوذ خیلـی آسـیب پـذیر میسازد. شکل 3-1 سیگنال باند باریک را در حوزههای زمان و فرکانس نشان میدهد.

شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس
سیستمهای UWB از پالسهای کوتاه بدون حامل (پیکو ثانیه تا نانو ثانیـه ) بـا Duty Cycle خیلی کم (کمتر از (%5 برای انتقال اطلاعات استفاده میکنـد. یـک تعریـف سـاده بـرای Duty Cycle
نسبت زمان حضور پالس به کل زمان انتقال است. (رابطهی (1-1

شکل 4-1 یک پالس با Duty Cycle کم رابطهی 1-1 T T Duty Cycle T Duty Cycle کم، متوسط توان انتقالی خیلی کمی در سیستمهـای UWB ایجـاب مـیکنـد.
متوسط توان انتقالی یک سیستم UWB در حد میکرو وات است، یعنی هزار بـار کمتـر از تـوان انتقـالی تلفن موبایل. به هر حال پیک یا توان لحظه ای پالس های UWB مستقل می تواند نسبتاً بزرگ باشـد، امـا چون آنها برای یک زمان خیلی کوتاه انتقال می یابند (Ton<1ns) توان متوسط به طـور قابـل ملاحظـه ای کم میشود، در نتیجه ادوات UWB به توان انتقال کم در اثر کنترل روی Duty Cycle نیاز دارند، کـه مستقیماً روی طول عمر باتری در تجهیزات قابل حمل تاثیر دارد.
از آنجایی که فرکانس با زمان نسبت عکس دارد پالس های UWB کوتاه مـدت، انـرژی را روی رنج عریضی از فرکانس ها، از نزدیک DC تا چندین گیگاهرتز با چگالی طیف توان (PSD)2 خیلـی کـم، پخش میکنند. شکل 5-1 پالس UWB را در حوزههای زمان و فرکانس نشان میدهد.

1 Continous Waveform 2 Power Spectral Density
8

شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس
3-1 تعریف سیستم فراپهن باند
به طور کلی به سیستمی فراپهن باند (UWB) اطلاق میگردد که پهنای بانـد مـورد اسـتفادهی آن برای انتقال اطلاعات بیشتر از 500MHz باشد و یا پهنای باند نسبی آن در تمام زمانها بیشـتر از %20
باشد. پهنای باند کسری معیاری برای طبقهبندی سیگنال ها به بانـد باریـک، بانـد پهـن و فـرا پهـن بانـد می باشد و به وسیله ی نسبت پهنای باند در نقاط -10dB به فرکانس مرکزی توسط رابطهی 2-1 تعریـف میشود .[4]
رابطهی 2-1 100% f L fH 100% BW fL 2 fH fC با استفاده از این پهنای باند وسیع، چگالی طیف توان ارسالی این سیستم بسیار پایین اسـت و در نتیجه در مقابل شنود دارای مصونیت بالایی می باشـد. بـه منظـور جلـوگیری از تـاثیر نـامطلوب سیسـتم
UWB بر سیستم هایی که قبلاً در این باند وجود داشته اند، همان طور که قبلاً عنوان شـد FCC ماسـک مربوط به چگالی طیف توان این سیستمها را با سطح توان مجاز -41.3dBm/MHz مشخص نمود.
4-1 مزایای تکنولوژی فراپهن باند UWB
1-4-1 توانایی اشتراک طیف توانی
FCC سطح توان مجاز سیستم هـای UWB را -41.3dBm/MHz برابـر بـا 75nWatt/MHz تعریـف کرده و آنها را در ردهی تشعشعات غیر عمدی گذاشته است، چنین محـدودیت تـوانی بـه سیسـتم هـای
UWB اجازه می دهد که زیر سطح نویز یک گیرنده ی باند باریک نوعی قرار گیرند و سـیگنال UWB را قادر می سازد که با سرویس های رادیویی کنونی بدون تداخل و یا با تداخل حداقل همزیستی داشته باشد.
شکل 6-1 سطح توان مجاز تکنولوژیهای مختلف روی طیف فرکانسیRF را نشان میدهد .[2]
9

شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی RF
2-4-1 ظرفیت بالای کانال
ظرفیت کانال یا میزان تغییرات داده ها، به صورت مینیمم میزان داده هایی که مـی تواننـد در هـر ثانیه روی یک کانال مخابراتی انتقال یابند تعریف می شود. فرمول هارتلی-شنون)1رابطـهی (3-1 ظرفیـت بالای کانال برای سیستم UWB را نشان میدهد .[2]
رابطهی 3-1 1 log C بیشترین ظرفیت کانال می باشد و به صورت خطی با پهنای باند (B) افـزایش مـی یابـد. پـس داشتن چندین گیگا هرتز پهنای باند برای سیگنال های UWB، نرخ انتقال داده ها در حد چند گیگا بیت بر ثانیه می تواند مورد انتظار باشد. در نتیجه ی محدودیت توان اعمال شـده از طـرف FCC بـرای انتقـال داده های UWB، این نرخ بالای انتقال داده فقط در فواصل کوتاه (تا 10 متر) در دسـترس اسـت، و ایـن باعث می شود سیستم های UWB کاندید مناسبی برای کاربردهای بی سـیم فواصـل کوتـاه و نـرخ بـالای اطلاعات مانند شبکه های WPAN باشند.
3-4-1 توانایی کار با SNR پایین
فرمول هارتلی-شنون برای ظرفیت حداکثر همچنین نشان میدهد که ظرفیت کانـال بـه صـورت لگاریتمی به SNR وابسته است، پس سیستم های مخابراتی UWB قابلیت کار در کانال هـای مخـابراتی خشن با SNR پایین را دارند و هنوز ظرفیت کانال بالایی در نتیجه پهنای باند بزرگ خود ارایه میدهند.
4-4-1 احتمال تشخیص و آشکارسازی کم
به دلیل میانگین توان انتقال پایین سیستم های UWB، این سیستم ها مصونیت ذاتی نسبت بـه تشخیص دارند. پالس های UWB در زمان با کدهای منحصر به فرد بـرای هـر جفـت فرسـتنده-گیرنـده

1 Hartley-Shannon
10
مدوله شدهاند. زمان مدولاسـیون پـالس هـای خیلـی باریـک بـه امنیـت انتقـال UWB مـی افزایـد زیـرا آشکارسازی پالسهای پیکو ثانیهای بدون دانستن اینکه چه زمانی میرسند غیر ممکن است.
5-4-1 مقاومت در برابر مسدود شدن
برخلاف طیف فرکانسی باند باریک شناخته شده، طیـف UWB رنـج وسـیعی از فرکـانس هـا از نزدیک DC تا چند گیگا هرتز را پوشش می دهد و بهره ی پردازش بالا برای سـیگنال هـای UWB ارایـه می کند. بهره ی پردازش (PG) یک معیار مقاومت سیستم ها در برابـر مسـدود شـدهگـی اسـت و توسـط رابطهی 4-1 تعریف میشود.
رابطهی 4-1

6-4-1 کارایی بالا در کانالهای چند مسیره
پدیده ی چند مسیره در کانال های مخابرات بی سیم اجتناب ناپذیر است و به علـت انعکـاس هـای چندگانه ی سیگنال انتقالی از سطوح متفاوت مانند ساختمان ها، درخـت هـا و غیـره روی مـی دهـد. خـط مستقیم بین فرستنده و گیرنده LOS و سیگنال های انعکاسی از سطوح NLOS هسـتند (شـکل (7-1،
اثر چند مسیره بر روی سیگنال های باند باریک نسبتاً شدید است که باعث تخریب سـیگنال تـا 40dB بـه خاطر ناهمفازی شکل موج های LOS و NLOS می شود. اما پالس های UWB خیلی کوتاه مدت کمتـر به اثر چند مسیره حساسند زیرا طول پالس های UWB کمتر از نانو ثانیه است و سیگنال بازتابی شـانس خیلی کمی برای برخورد با سیگنال LOS و تخریب آن دارد .[2]

شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنالهای باند باریک (c) اثر
پدیدهی چند مسیره بر سیگنالهای باند فرا پهن
11
5-1 چالشهای تکنولوژی فراپهن باند UWB
1-5-1 انحراف شکل پالس
پالس های UWB ضعیف و کم توان با انتقال می تواننـد بـه طـور قابـل تـوجهی تخریـب شـوند، میتوانیم این مطلب را با فرمول انتقال فریس1 (رابطهی (5-1 نشان دهیم.
رابطهی P PG G 4πdf5-1

که Pt و Pr به ترتیب توان های ارسالی و دریافتی، Gt و Gr به ترتیب بهرهی آنتنهای فرستنده و گیرنده، C سرعت نور و f فرکانس است. ملاحظه می شود که تـوان سـیگنال دریـافتی بـا مربـع فرکـانس کاهش می یابد. در سیستم های باند باریک که تغییر در فرکانس کم است، تغییـرات تـوان دریـافتی قابـل صرفه نظر است. اما به دلیل طیف فرکانسی وسیع سیستم های UWB تغییرات توان شدید بـوده و شـکل پالس را خراب می کند، که این امر کارایی گیرنده های UWB، که با پالس های دریافتی بـا یـک قالـب از پیش تعریف شده مثل فیلترهای تطبیق کلاسیک همبستگی دارد را محدود میکند.
2-5-1 تخمین کانال
تخمین کانال یک مبحث اساسی برای طراحی سیستم های مخابرات بی سیم اسـت. انـدازه گیـری همه ی مشخصات کانال مانند تضعیف و تاخیر مسیر انتشار، در میدان غیر ممکن است. اکثر گیرنـده هـای
UWB سیگنال دریافتی را با یک قالب سیگنال از پیش تعریف شده مرتبط میکننـد. اطلاعـات قبلـی از پارامترهای کانال بی سیم برای پیشگویی شکل قالب سیگنال، که سیگنال دریافتی را تطبیق میدهـد لازم است. به هرحال به خاطر پهنای باند زیاد و کاهش انرژی سیگنال، پالس های UWB دسـتخوش اعوجـاج شده، پس تخمین کانال در سیستمهای مخابرات UWB پیچیده است .[2]
3-5-1 تطبیق2 فرکانس بالا
انطباق زمانی یکی از چالش های اساسی در سیستم های مخابرات UWB است. نمونـه بـرداری و انطباق پالس های نانو ثانیه ای یک محدودیت اساسی در طراحی سیستم های UWB اسـت. بـرای نمونـه برداری این پالسهای باریک ADC(Analog-to-Digital converter) خیلـی سـریع در حـد گیگـا هرتز لازم است، به علاوه محدودیت های توان شدید و طول پالس کوتاه کارایی سیستم های UWB را بـه شدت به خطاهای زمانی حساس میکند.

1 Friis 2 Synchronization
12
4-5-1 تداخل دستیابی چندگانه1
در سیستم مخابره ی چند کـاربره یـا دسـتیابی چندگانـه، چنـدین کـاربر اطلاعـات را مسـتقل و همزمان روی یک خط واسط انتقال اشتراکی (مثل هوا در مخابرات بی سیم) می فرستند. در انتهـا یـک یـا چند گیرنده بایستی قادر به جداکردن و آشکارسازی اطلاعـات کاربرهـا از هـم باشـند. تـداخلات از سـایر کاربران با کاربر مورد علاقه تداخل دستیابی چندگانه (MAI) نامیده می شـود کـه یـک فـاکتور محـدود کننده ی ظرفیت کانال و کارایی گیرنده است، به علاوه MAI به همراه نویز غیر قابل پیشـگیری کانـال و تداخل باند باریک می تواند به طور موثری پالسهای کم توان UWB را تنزل دهد و مراحل آشکار سـازی را خیلی سخت کند.
UWB 6-1 در مقایسه با سایر استانداردهای IEEE
شکل 8-1 مقایسه ای بین مخابرات فراپهن باند و باند باریـک در حـوزه هـای زمـان و فرکـانس را نشان می دهد. همان طور که ملاحظه می شود سیستم های UWB مبتنی بر مدولاسیون پالسـی در زمـان دارای پالس های بسیار باریک می باشـد کـه در حـوزه ی فرکـانس، بانـد فرکانسـی 3-10GHz را اشـغال می کنند در حالیکه سیستم های باند باریک که در زمان دارای شکل موج پیوسته مـی باشـند در حـوزه ی فرکانس، باند فرکانسی بسیار کوچکتری را به خود اختصاص میدهند.

شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک
در جدول 1-1 مقایسه ای بین مخابرات UWB و سایر اسـتانداردهای IEEE از نظـر بیشـترین نرخ داده ها، فاصله ی عملکرد و فرکانس کاری را نشان می دهد. می توان دید که UWB بـه دلیـل پهنـای

1 Multiple-Access Interference
13
باند وسیعی که دارد قابلیت انتقال نرخ بالایی از اطلاعات را در هر ثانیه در مقایسه با سـایر اسـتانداردهای
این جدول دارا میباشد.
جدول 1-1 قابلیت UWB در مقایسه با سایر استانداردهای [2] IEEE
استاندارد IEEE WLAN Bluetooth WPAN UWB
802.11a 802.11b 802.11g 802.15.1 802.15.3 802.15.3a
فرکانس کاری 5GHz 2.4GHz 2.4GHz 2.4GHz 2.4GHz 3.1-10.6GHz
بیشترین نرخ داده 54Mbps 11Mbps 54Mbps 1Mbps 55Mbps >100Mbps
حداکثر فاصله 100m 100m 100m 10m 10m 10m
به دلیل پهنای باند وسیع سیستم فراپهن باند، گیرنده های این سیسـتم بایسـتی قابلیـت کـار در محیط های پر تداخل را دارا باشند. در یک محیط کار معمولی سیستم های بی سیم مختلفی در حـال کـار هستند. گیرنده ی فراپهن باند همواره در معرض تـداخل و مسـدود شـده گـی توسـط سـایر سیسـتمهـای مخابراتی بی سیم که در باند فرکانسی 3-10GHz و یـا نزدیـک بـه آن قـرار دارنـد ماننـد Bluetooth، WLAN و غیره همانطور که در شکل 9-1 ملاحظه میشود قرار دارد.

شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند
14
7-1 تفاوت بین UWB و طیف گسترده1
تعداد زیادی از افراد، مخابرات UWB را بـا تکنیـک هـای طیـف گسـترده ی پهـن بانـد اشـتباه می گیرند، هرچند هر دو خاستگاه مخابرات امن نظامی دارند لازم است تا یک تفاوت اساسـی میـان آن دو را روشن کنیم. برای این منظور لازم است تا دو روش متداول تکنیک طیف گسترده را معرفی کنیم.
1-7-1 رشتهی پیوستهی طیف گسترده(DSSS) 2
در DSSS یک کد شبه تصادفی برای گسترده کردن هر بیت از اطلاعـات بـا اسـتفاده از تعـداد زیادی از بیت ها که به مراتب کوچکتر از بیت اصـلی هسـتند اسـتفاده مـی شـود ایـن کـدها پهنـای بانـد اطلاعات را به پهنای باند بزرگتری گسترش میدهند.
2-7-1 جهش فرکانسی طیف گسترده(FHSS) 3
تکنیک FHSS در مفهوم شبیه DSSS است ولی در این روش گسترده کردن انـرژی سـیگنال در حوزهی فرکانس صورت میگیرد و مزایایی از مخابرات پهن باند را ارایه میدهد. به هر حال پهنای بانـد زیاد نتیجهی گسترده کردن اطلاعات مانند تکنیک DSSS نیست.
3-7-1 تفاوتهای اساسی بین UWB و طیف گسترده
هر دو تکنیک DSSS و FHSS منجر به وسیع شدن طیف فرکانس میگردند و مزایایی نسـبت به مخابرات باند باریک مانند چگالی طیف توان کمتر، ناهمپوشانی، تنوع فرکانسی بـرای کـارایی بهتـر در کانال های چند مسیره و مقاومت در برابر مسدود شده گی عمـدی و غیـر عمـدی دارنـد. امـا تفـاوت بـین
UWB و طیف گسترده چیست؟ هرچند هر دو تکنیک UWB و طیف گسترده همان مزایـای گسـترده کردن پهنای باند را دارند، روش دستیابی به پهنای باند بزرگ تفاوت اصلی بین این دو تکنیک است.
در تکنیک های متداول طیف گسترده سیگنال ها موج های سینوسی پیوسته اند که بایک فرکـانس حامل ثابت مدوله شده اند. در مخابرات UWB فرکانس حاملی وجـود نـدارد، پـالس هـای UWB کوتـاه مستقیماً پهنای باند گسترده تولید می کنند. فاکتور اختصاصی دیگر در UWB پهنای باند خیلـی بـزرگ است. در حالیکه تکنیک های طیف گسترده پهنای باند مگاهرتزی عرضه می کنند، UWB چندین گیگـا هرتز پهنای باند دارد. شکل 10-1سیگنال های باند باریک، پهن بانـد و UWB را در حـوزه هـای زمـان و فرکانس نشان میدهد .[2]

1 Spread Spectrum 2 Direct-Sequence Spread Spectrum 3 Frequency-Hopping Spread Spectrum
15

شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و (c) فراپهن باند در حوزههای زمان و فرکانس
8-1 روشهای پیاده سازی سیستم فراپهن باند
در حال حاضر دو روش برای پیاده سازی سیستم های فراپهن باند در باندهای اختصاص داده شده توسط FCC وجود دارد که در ادامه پس از معرفـی آنهـا بـه بررسـی نحـوهی بـه کـار گیـری آنهـا در سیستمهای فراپهن باند میپردازیم.
1-8-1 سیستم (Code Division Multiple Access) CDMA
در روش های قبلی مانند FDMA باند فرکانسی موجود به تعداد زیادی کانال تقسیم و هر کـدام به یک کاربر اختصاص می یافت. در روش TDMA همان مقدار باند فرکانسی برای هر کـاربر وجـود دارد ولی در زمان های متفاوت TDMA به تناوب یکی از فرستنده-گیرنـده هـا را بـه مـدت TSL ثانیـه فعـال می کند. کل پریود شامل تمام مقطع های زمانی را قاب (فریم) TF میگویند. در هر TF ثانیه هر کـاربر بـه اندازهی TSL ثانیه به کانال دسترسی دارد. شکل 11-1 این مطلب را نشان میدهد.

شکل 11-1 روش دسترسی TDMA
16
ولی در روش CDMA که برای استفاده ی بهینه تر از باند فرکانسی به کار می رود، سیگنال ها هم می توانند در فرکانس و هم در زمان با هم همپوشانی داشته باشند ولی با استفاده از پیـام هـای متعامـد از تداخل جلوگیری می شود. در شروع ارتباط به هر زوج فرستنده- گیرنـده یـک کـد معـین اختصـاص داده می شود و هر بیت اطلاعات باند پایه قبل از مدولاسیون با آن کد تغییر می کند (شـکل .(12-1 عمـل کـد کردن پهنای باند طیف داده را به اندازه ی تعداد پالس های موجود در کد افزایش می دهد ولی از آنجـا کـه
CDMA امکان می دهد طیف گسترده کاربران روی یک باند فرکانسی بیفتنـد، پـس CDMA ظرفیـت بالقوهی بیشتری نسبت به دو روش قبل دارد.

شکل 12-1 عملیات کد کردن در [5] DS-CDMA1
شکل 13-1 شیوه ی استفاده از باند فرکانسی UWB را توسط سیستم DS-CDMA که یکـی از پرکاربردترین انواع CDMA می باشد و بر مبنای انتشار سیگنال ها از- به کاربران مختلف بـا کـدهـای متفاوت می باشد را نشان می دهد. همان طور که ملاحظه می شود از دو باند فرکانسی بالا و پـایین اسـتفاده می کند. باند پایین از 3/1GHz تا 5/15GHz را می پوشاند و باند بـالا از 5/825GHz تـا 10/6GHz را در برمی گیرد. به دلیل تداخل با سیسـتم 802.11a از فاصـله ی فرکانسـی 5/15GHz تـا 5/825GHz
استفاده نمیشود.

شکل 13-1 نحوهی استفاده از پهنای باند در سیستم DS-CDMA

1 Direct -Sequence Code Division Multiple Access
17
2-8-1 سیستم (Orthogonal Frequency Division Multiplexing) OFDM
در سیستمهای چند حاملی قدیمی، پهنای باند به N زیر کانـال نـاهم پوشـان تقسـیم مـیشـد و اطلاعات باند پایه روی هر حامل مدوله می گردید. فاصله ی فرکانسی بین حامل ها کـه بـرای جلـوگیری از تداخل در نظر گرفته می شود سبب از بین رفتن مقداری از پهنای بانـد مـی شـود. در OFDM اطلاعـات ارسالی به تعدادی زیر باند تقسیم شده و پس از محاسبهی عکس تبدیل فوریه اطلاعات روی مجموعـه ای از زیر حامل ها ارسال می گردد و از آنجایی که این حامل ها بر هم عمودند به فاصله ی فرکانسی کمـی نیـاز دارند. خرد کردن سیگنال در زیر باندها مقاومت سیستم در برابر محو سیگنال و از بین رفتن اطلاعـات را افزایش میدهد. در گیرنده با تبدیل فوریه بیتهای هر زیر باند استخراج میگردد.
سیسـتم MB-OFDM1 کـل بانـد فرکانسـی UWB را بـه 4 گـروه و 14 بخـش 528MHz
تقسیم میکند .[6] شکل 14-1 این تقسیم بندی فرکانسی را نشان میدهد.

شکل 14-1 گروه بندی طیف فرکانسی MB-OFDM
همان طور که در شکل 15-1مشاهده می شود هر باند 528MHz از 128 زیر حامل بـا فاصـله ی فرکانسی 4/125MHz تشکیل میشود.

شکل 15-1 طیف فرکانسی [7] MB-OFDM

1 Multiband OFDM
18
.2 فصل دوم: مخلوطکنندههای فرکانسی
Mixer
19
1-2 تاریخچه
مبدع مخلوط کنندهی فرکانسـی (Frequency Mixer) دانشـمند بـزرگ مخـابرات رادیـویی ادوین آرمسترانگ1 میباشد. قبل از او تلاشهایی برای انتقال مستقیم فرکانس به باند پایه2 صورت گرفتـه بود، اما چون نوسان کنندههای محلی از پایداری (Stability) کافی برخوردار نبودند موفقیت چندانی در برنداشت. ایدهی آرمسـترانگ در اسـتفاده از فرکـانس واسـطه( IF) 3 کـه منجـر بـه طـرح گیرنـده هـای سوپرهترودین شکل 1-2 گردید امروزه در بسیاری از گیرندههای رادیویی مورد استفاده است.

شکل 1- 2 ساختار گیرنده سوپر هترودین
آرمسترانگ با استفاده از واسطهی لامپ خلاء (Vacuum Tube) مخلوطکنندهای سـاخت کـه فرکانس رادیویی RF را به یک فرکانس واسطه IF انتقال مـی داد در ایـن فرکـانس واسـطه، سـیگنال بـا کیفیت خوب، بهرهی زیاد و نویز کم، تقویت شده و در نهایت دمودله میگردید.
تا قبل از سال 1940 کارهای تئوری اندکی بر روی میکسـرها (کـه تـا آن زمـان از نـوع دیـودی بودند) انجام گرفته بود. دیودهای به کار رفته در این میکسرها از کیفیت و دقت پـایینی برخـوردار بودنـد.
در مدت کمتر از ده سال پیشرفت های زیادی در طراحی میکسرها و افزایش کیفیت دیودهـای مـایکروویو انجام گرفته به طوریکه افت تبدیل4 در میکسرهای مایکروویو از 20dB در 1940 بـه 10dB در 1945 بهبود یافت و در 1950 به حول و حوش 6dB رسید. امروزه با پیشرفت هایی که در ایـن زمینـه صـورت گرفته علاوه بر بهبود در افت تبدیل میتوان از بهرهی تبدیل5 میکسرها بهرهمند شد .[8]
امروزه بهکار بردن میکسرهای فرکانس بالا در سیسـتمهـای ارتباطـاتی بـدون سـیم، از اهمیـت خاصی برخورداراست. طراحی، ساخت و اندازهگیری مشخصات میکسرهای فرکانس بالا، باند مـایکروویو و باند میلیمتری، جزء تجربه های جدید مدارات مایکروویو بهشمار میآید.

1 Major Edwin Armstrong 2 Base Band 3 Intermediate Frequency 4 Conversion Loss 5 Conversion Gain
20
2-2 انواع میکسر
میکسرهای مایکروویو غیرفعال1 به طور معمول با دیودهای شاتکی صورت می پـذیرد. اسـتفاده از عناصر فعال نظیر ترانزیستورهای اثر میدانی برای ساخت میکسرها می توانـد سـبب بهبـود افـت تبـدیل و حتی ایجاد بهره ی تبدیل گردد. چنین میکسرهایی در مقایسه بـا میکسـرهای غیرفعـال سـاخته شـده بـا دیودهای شاتکی دارای معایبی نیز می باشند از جمله: احتمال ناپایداری و پیچیدگی مـدار میکسـر اشـاره کرد. چنانچه از ناحیه ی مقاومتی ترانزیستور اثر میدانی برای ساخت میکسر استفاده شود علاوه بر اینکـه مدارهای بایاس ساده تر شده احتمال ناپایداری نیز بسیار کاهش می یابد، از طرف دیگر به علت اسـتفاده از خاصیت غیرخطی ضعیف مقاومت کانال ترانزیستور، چنـین میکسـرهایی از مولفـه هـای اینترمدولاسـیون ضعیف توان اشباع 1dB بالا و درنتیجه محدودهی دینامیکی وسیعی برخوردار میباشند .[9]
میکسر، در واقع یک مبدل فرکانس است که در مدارات مخابراتی وظیفهی تبدیل (و یا ترکیـب)
سیگنال از یک فرکانس به فرکانس (های) دیگر را به عهده دارد. اهمیت ایـن عملکـرد در تهیـه و تـامین فرکانسهای کاری مناسب با پایداری و نویز مطلوب است. بنابراین باید تلف تبدیل کم و سطح نویز پایین سیگنال تولید شده را از مشخصات مطلوب و مورد نظر در طراحی دانست (هرچند تحقق همزمان ایـن دو مهم در طراحی و ساخت میکسر عملاً کار چندان سادهای نمی باشد.) میکسر را می توان یک مـدار سـه دهانه شامل دهانهی پمپ2 و یا همـان نوسـان کننـدهی محلـی (LO)، دهانـهی سـیگنال ورودی RF و
دهانهی سیگنال IF دانست. (شکل (2-2

شکل 2- 2 میکسر به عنوان یک عنصر سه دهانه
عمل ترکیب سیگنالها را عنصر غیر خطی (مانند دیود ویا ترانزیستور) انجام میدهد. بر همـین اساس میکسرها به دوگروه میکسرهای غیرفعال و فعال تقسیم مـیشـوند. تفـاوت مشخصـات میکسـرها بهطور عمده وابسته به عملکرد عنصر غیرخطی آنهاست. وظیفـه سـیگنال LO کـه معمـولاًدارای تـوان بالاتری نسبت به سیگنال RF است راهاندازی3 عنصر غیرخطی مدار میکسر است تا عملکـرد متغییـر بـا

1 Pasive 2 Pump 3 Driving
21
زمان میکسر را تامین کند. فرکانس سیگنال خروجی IF ترکیبی از هارمونیکهـای سـیگنالهـای RF و LO است که میتوان آنرا بهصورت mfRF+nfLO=fIF نوشت که m و n اعداد صحیح هستند.
1-2-2 میکسرهای غیر فعال
میکسرهای پسیو ساده ترین، شناخته شده ترین و اولین مدارات میکسر هستند. یک ترانسفورماتور و دو دیود، ساده ترین میکسرهای غیر فعال را تشکیل می دهند. ایـن نـوع از میکسـرها دارای ایزولاسـیون خوب بین LO و RF و نیز بین LO و IF می باشند اما سیگنال RF را مستقیماً به خروجی IF می برند. چون سوییچ می تواند با یک MOSFET ساده تحقق یابد میکسر غیر فعال می تواند با مـدارات CMOS
اجرا شود. (شکل ( 3- 2

شکل 3-2 میکسر غیرفعال با تعادل دوگانه1 با CMOS
با توجه به دامنهی مثبت و منفی LO سیگنال RF از مسیرهای مختلف بـه پـورت خروجـی IF
می رسد. با تولید سیگنال مخلوط شده ی IF هارمونیک های دیگری نیز در خروجی ظاهر می شوند. در یک طراحی متعادل تمامی هارمونیکهای زوج حذف میشوند.
بهرهی تبدیل
به صورت توان یا ولتاژ خروجی IF تقسیم بر توان یا ولتاژ ورودی RF تعریف میشود.
رابطهی ,1-2یا , AP

,,
خروجی این میکسر پایین آورندهی غیرفعال میتواند توسط رابطهی 2-2 بهدست آید.

1 Double Balanced
22
رابطهی 2-2 . . . رابطهی 3-2

که در روابط بالا gT(t) رسانایی معادل تونن متغییر با زمان دیده شده از سر خروجـی IF ، m(t)
تابع میکس (رابطهی (3-2 و TLO دوره تناوب سیگنال LO است .[10]
در این میکسر درایو بزرگ LO لازم است تـا ترانزیسـتورهای پسـیو بتواننـد متناوبـاً خـاموش و روشن شوند. توان DC بالایی مصرف می کند که این توان در خود میکسر مصرف نمیشـود ولـی مـدارات درایو LO مقدار زیادی توان برای فراهم کردن سویینگ کافی LO مصرف میکنند.
نویز:
چون قبل از میکسر LNA قرار دارد پس عدد نویز (NF) مـورد نیـاز میکسـر خیلـی بیشـتر از
LNA است زیرا عدد نویز LNA با NF کل مستقیماً جمع میشود ولی NF میکسر بـر بهـرهی LNA
تقسیم میشود. (رابطهی ( 4- 2
رابطهی 4-2 1 NFM 1 NFLNA 1 ALNA در یک قطعهی غیر فعال NF به افت توان نزدیک است.
خطی بودن:
خطی بودن یکی از مشخصات اصلی میکسر پایین آورنده است، سیگنال اصـلی و تـداخل هـردو قبل از ورود به میکسر توسط LNA تقویت می شوند. خیلی از تداخل ها بیش از اندازه به سـیگنال اصـلی نزدیک هستند که توسط فیلتر داخل چیپ فیلتر شوند و این تداخل ها می توانند خیلی قوی تر از سـیگنال مطلوب باشند، بنابراین میکسر به خطی بودن خیلی بیشتری از LNA نیاز دارد. همانطور که در رابطهی
5-2 دیده می شود اعوجاج سهیم شده توسط میکسر به انـدازه ی بهـره ی LNA از اعوجـاج سـهیم شـده توسط LNA بزرگتر است.
رابطهی 5-2 ALNA 1 1 IIP3M IIP3LNA IIP3 اگر سوئیچ های میکسر ایده آل باشند هیچ اعوجاجی توسط میکسر تولید نمی شود. به هر حال بـه خاطر مقاومت سوئیچ ها که نه تنها به ولتاژ درایو LO بلکه به ولتاژ ورودی نیز وابستهاند، سـیگنال توسـط سوئیچها دچار اعوجاج میشود.
23
2-2-2 میکسر گیلبرت
این میکسر به جای تبدیل سیگنال RF به ولتاژ، سیگنال RF را به جریان تبدیل می کنـد. یـک ترانزیستور وظیفه ی تبدیل سیگنال RF را به جریان را به عهـده دارد و سـپس یـک جفـت دیفرانسـیلی جریان را به خروجی های IF متمم در هر دوره ی تناوب LO تبدیل مـی کنـد. در ایـن میکسـر چـون بـه سوئینگ بزرگ بین گیت های جفت دیفرانسیلی برای تبدیل جریـان نیـاز نیسـت درایـو LO مـورد نیـاز کاهش قابل ملاحظهای مییابد.
میکسـر گیلبـرت سـاده (شـکل (4-2 نسـبت بـه میکسـر غیـر فعـال ایزولاسـیون بهتـری بـین سیگنال های RF و LO دارد، زیرا هیچ مسیر مستقیمی بین RF و LO وجود ندارد، اما هنوز نشت LO
به پورت IF از طریق خازنهای پارازیتی بین گیت و درین سوئیچها هست.

شکل 4-2 میکسر گیلبرت ساده
شکل 5-2 یک میکسر با تعادل دوگانه در تکنولوژی CMOS را نشان می دهـد. ایـن میکسـر از سه بخش زیر تشکیل شده است:
مبدل ولتاژ به جریان (ترارسانا)
ترانزیستورهای ضرب کننده (سوئیچها)
مبدل جریان به ولتاژ (بار)
این میکسر مشکل فوق را با اتصال سیگنال هـای LO دیفرانسـیلی بـه همـان خروجـی IF حـل کرده است، هر طرف خروجی IF به دو سوئیچ با سیگنالهای LO با 180˚ اختلاف فاز متصل اسـت پـس
24
نشت LO از دو سوئیچ یکدیگر را خنثی می کنند پس تنها میکس سیگنال هـای RF و LO در خروجـی
IF ظاهر میشود.

شکل 5-2 میکسر گیلبرت با تعادل دوگانه
بهرهی تبدیل:
بهره ی تبدیل میکسر گیلبرت شامل سه جزء )Asw (2 gm,rf (1بهره یا افـت سـوئیچ هـا) RO (3
(امپدانس خروجی)
رابطهی 6-2 , که در رابطهی Asw 6-2 تـابع شـیب و دامنـهی ولتـاژ درایـو LO و ولتـاژ over drive جفـت
سوئیچ هاست . (Vod,sw ) اگر سیگنال LO موج مربعی باشد و دامنهی آن بیشـتر از Vod,sw باشـد، آنگـاه -3.9dB یا Asw=2/π است، اگر سیگنال LO سینوسی باشد و دامنه ی آن به اندازه ی کـافی بزرگتـر از
Vod,sw باشد آنگاه Asw نزدیک به مقدار آن در مورد موج مربعی اسـت. شـکل 6-2 بهـره ی سـوئیچینگ میکسر گیلبرت با تعادل دوگانه ی نوعی را نمایش می دهد. Asw تابع دامنه ی ولتاژ LO اسـت وقتـی کـه دامنهی ولتاژ LO کوچکتر از ولتاژ over drive است، و مقدار ثابتی کمـی کـوچکتر از 2/π (بـه خـاطر افت پارازیتیک) دارد وقتی که دامنهی ولتاژ LO به اندازهی کافی بزرگ است.
25

شکل 6- 2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه
ولتـاژ over drive ترانزیسـتورهای سـوئیچ بـه جریـان دریـن ترانزیسـتور ورودی RF و ابعـاد ترانزیستورهای سوئیچ وابسته است. Vod,sw می تواند با رابطه ی I-V یک قطعه ی کانال بلند تخمـین زده شود. (رابطهی (7-2
,

رابطهی ,7-2

وقتی کانال ترانزیستورهای سوئیچ به اندازه ی کـافی کوتـاه باشـد معادلـه ی کانـال کوتـاه اعمـال میگردد. (رابطهی (8-2
2 1 2 V , ,
رابطهی 8-2 ρ ρ که در رابطهی 8-2، ρ0 برابر است با:
ρ V ,

به هر حال درایو LO بزرگ می تواند بهره ی سوئیچ Asw بزرگتری فراهم کند. درایو LO خیلـی بزرگ بهره ی تبدیل را کاهش میدهد. هارمونیک بزرگ LO میتوانـد ولتـاژ دریـن ترانزیسـتور ورودی را کاهش دهد و نهایتاً به ناحیهی ترایود هدایت کند.
به جای افزایش درایو LO، کاهش ولتاژ over drive جفت دیفرانسیلی میتواند بهرهی تبـدیل را افزایش دهد. برای این منظور از یک منبع جریان DC که به سورس مشـترک ترانزیسـتورهای سـوئیچ وصل می شود تا بخشی از جریان DC از درین ترانزیستور ورودی را بکشد، استفاده مـی شـود و درنتیجـه
26
ولتاژ over drive کاهش مییابد. تکنیک تزریق جریـان DC در شـکل 7-2 بـا دوایـری بـه دور منـابع جریان مشخص شده است .[10]

شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان DC
نویز:
سه منبع اساسی نویز در میکسر پایین آورنده داریم: (1 نویز تولید شده در ترانزیستور ورودی RF
(2 نویز سوئیچینگ
(3 نویز بارهای خروجی
نویز ترانزیستور ورودی RF شامل دو بخش است: (1 نویز گرمایی درین
رابطهی 9-2 , 8 , i و (2 نویز القایی گیت که تا حدودی به نویز گرمایی درین وابسته است. kTg 3 رابطهی 10-2 4 i , جفت دیفرانسیلی جریان RF را بین دو ترانزیستور با فرکانس LO سوئیچ می کنـد، کـه نـویز را نیز در مسیر سیگنال شرکت می دهد. یکی از سـهم هـای نـویز از افـت سـوئیچ هـا و دیگـری از نـویز روی سیگنال های LO است. نویز در گیت جفت دیفرانسیلی شامل نویز فاز و نویز حرارتـی روی سـیگنالهـای LO و نویز القایی گیت است. وقتی دامنهی LO خیلی بزرگتر از ولتاژ over drive جفـت دیفرانسـیلی باشد ( به این مفهوم که فاصله ای که هر دو ترانزیستور جفت دیفرانسیلی روشنند خیلی کـوچکتر از دوره تناوب LO باشد) هر دو نویز حرارتی LO و نویز القایی گیت شدت خیلی کمتری از نویز فاز LO دارند.
27
خطی بودن
خطی بودن میکسر گیلبرت با gm ترانزیستورهای ورودی RF محدود می شـود. یکـی از راه هـای افزایش خطی بودن میکسر گیلبرت بدون کاهش بهره ی تبدیل آن، افزایش جریان دریـن ترانزیسـتورهای ورودی RF و سپس ربودن جریان DC غیر ضروری از مسیر سیگنال است. (شکل (7-2
ادوات سوئیچ کننده خیلی در اعوجاج خروجی شرکت نمی کنند. میکسر گیلبرت بـه جـای ولتـاژ جریان را سوئیچ میکند، هنگامیکه ولتاژ درایو LO خیلـی بزرگتـر از ولتـاژ over drive باشـد، جفـت دیفرانسیلی جریان را به طور کامل سوئیچ میکند و در نتیجـه بهـرهی تبـدیل روی جریـان ورودی ثابـت است. به هر حال با چنین هدایت ناگهانی جریان، سیگنالهای RF با هارمونیکهای مراتب بلاتـر LO در خروجی میکسر تولید میشوند. فرکانسهای سیگنال خروجی میتواند توسط رابطهی 11-2 بیان گردد.
رابطهی 11-2 : , | | یک فیلتر پایین گذر بعد از میکسـر فرکـانس هـای تولیـد شـده ی بـالاتر از ǀfRF±fLOǀ را حـذف می کند. در یک میکسر گیلبرت با تعدل دوگانه همه ی هارمونیـک هـای زوج هـر دو سـیگنال RF و LO
حذف میشوند.
3-2 کاربرد میکسر
همانطور که گفته شد از میکسرها جهت انتقال فرکانس موج حامل به پایین یعنی از RF به IF
در گیرنده ها استفاده می شود، تا سیگنال حاصله با کیفیت خوب و نویز کم قابل پردازش و تقویـت باشـد.
در این انتقال فرکانسی هیچ تغییری در نوع مدولاسیون موج حامل ایجاد نمی شود، به ایـن معنـی کـه در دامنه، فاز یا انحراف فرکانس لحظه ای موج نباید تغییـری بـه وجـود آیـد. عـلاوه بـر ایـن از میکسـرها در فرستنده ها جهت انتقال فرکانس موج حامل به بالا یعنی از IF به RF استفاده می شـود. بـر ایـن اسـاس میکسرهایی که عمل انتقال فرکانس از بالا به پایین را انجام میدهند (پـایین برنـده(1 و میکسـرهایی کـه فرکانس پایین را به بالا انتقال میدهند (بالا برنده(2 نامیده میشوند.
غیر از پارامترهای تلف (و یا گین) و سطح نویز، حداکثر ایزولاسیون بین دهانههـا و فیلترکـردن مناسب برای انتخاب هارمونیک مـورد نظـر (از بـین هارمونیـکهـای تولیـد شـده) در خروجـی، حـذف سیگنالهای ناخواسته، حذف فرکانس تصویر و تطبیق امپدانسی دهانهها (بهویژه در میکسرهای فعال) از سایر مشخصاتی است که در طراحی میکسر مورد نظر است. نخستین گـام در طراحـی میکسـر، انتخـاب مناسب عنصر غیرخطی برای داشتن عملکرد مناسب در باند فرکانسی مورد نظر است.

1 Down Convert 2 Up Convert
28
بر همین اساس برای طراحی و ساخت میکسر در باند فرکانسی خـاص و بـا مشخصـات مطلـوب، ملاحظات تئوری و عملی زیادی باید در نظرگرفته شوند.
4-2 عملکرد میکسر
هرگاه یک سیگنال سینوسی به ورودی یک مدار خطی اعمال شـود شـکل مـوج خروجـی شـبیه شکل مـوج ورودی خواهـد بـود، ولـی اگـر سـیگنال سینوسـی بـه یـک مـدار غیـر خطـی اعمـال شـود هارمونیک های ورودی در خروجی ظاهر می شوند. حال اگر دو سیگنال بـا فرکـانس هـای f1,f2 بـه ورودی یک مدار غیر خطی اعمال شوند نه تنها هارمونیک های هریک از فرکانس های بلکه هارمونیک های دیگـری به شکل m) mf1+nf2وn اعداد صحیح هستند) در خروجی خواهیم داشت.
مشخصه ی یک مدار غیر خطی را با اسـتفاده از تـوان سـری بـه صـورت رابطـهی 12-2 در نظـر میگیریم:
رابطهی 12-2
با فرض ورودی V=V1+V2 خواهیم داشت:
رابطهی 13-2
از بسط رابطهی 13-2 میتوان نوشت:
رابطهی
14-2 3 3 2 در رابطـهی 14-2، V1m تولیـد کننـدهی فرکـانس mf1 و V2n تولیدکننـدهی فرکـانس nf2 و V1mV2n تولیدکنندهی فرکانسهای mf1+nf2 هستند. با توجـه بـه روابـط بـالا معلـوم اسـت کـه یـک مشخصهی غیرخطی میتواند فرکانس های خیلی زیادی تولید کند، که در تحلیل کلی دو دسـته فرکـانس خواهیم داشت، یکی از هارمونیکهای دو فرکانس اعمال شـده و دیگـری یـک دسـته مجمـوع و تفاضـل هارمونیکهای فرکانسهای اعمال شده است.
1-4-2 میکسر به عنوان یک ضرب کننده
به طور کلی میتوان یک میکسر را به عنوان یک ضربکننده در نظرگرفت. (شکل (8-2

شکل 8-2 میکسر به عنوان یک ضرب کننده [3]
29
در این شکل یک ضربکنندهی ایدهآل با دو ورودی RF و LO دیده میشود شامل یـک Tone
حامل در فرکانس ωRF و یک شکل موج مدوله شدهARF 1 میباشد، ورودی دیگری که بـه دهانـهی LO
اعمال میشود یک سینوسی خالص در فرکانس ωLO است.
با ضرب دو سیگنال سینوسی و تبدیل آن به مجموع دو سینوسی که یکی حاصل جمع و دیگری تفاضل دو فرکانس را میدهد، فرکانس مجموع را فیلتر کرده و فقط سیگنال تفاضـل بـاقی مـیمانـد کـه حاصل مخلوط کردن دو فرکانس میباشد، در واقع سیگنال خارج شده از فیلتر شکل موج ARF است کـه اکنون بر Tone حاصل دو فرکانس ωRF-ωLO سوار میباشد.
اگرچه ضربکنندهی ایدهآل دردسترس نیست اما هر عنصـر غیـر خطـی دارای خاصـیت ضـرب کنندهگی است. عملکرد عناصر غیرخطی از آن جهت با ضربکنندهی ایدهآل متفاوت است که این عناصر هارمونیکهای مختلف RF و LO و ترکیب آنها را تولید کرده و خروجیهایی با این هارمونیکها ایجـاد میکنند، حال اگر ورودی مدوله شده ی RF از ورودی غیر مدوله شدهی LO خیلی کوچکتـر باشـد کـه در عمل چنین نیز هست خروجی میکسر شامل ترم های فرکانسی زیر است:
ωn =ωRF+nωLO
پس در خروجی IF فرکانس ωRF به علاوه ی هارمونیکهای مختلف LO را خواهیم داشـت کـه خروجی دلخواه بهوسیلهی فیلتر در دسترس خواهد بود.
2-4-2 عملکرد میکسر به کمک یک سوئیچ
میکسر را میتوان به عنوان یک سوییچ نیز مطرح نمود که با فرکانس LO قطع و وصل میگردد.
شکل 9-2 یک میکسر با ساختار تکی2 را نشان میدهد که به صورت یک سوئیچ مدل شده است.
سیگنال IF حاصلضرب سیگنال RF در شکل موج سوئیچ شدهی S(t) میباشد. در برخی مـوارد ممکـن است شکل موج سوئیچ شده دارای زمان قطع و وصل% 50 3 نباشـد، بـه هرحـال همـهی هارمونیـکهـای فرکانس اصلی به علاوهی یک جـزء DC حاصـل مـیشـود. بنـابراین سـیگنال IF شـامل تعـداد زیـادی هارمونیکهای ناخواسته میباشد که با فیلتر کردن میتوان آنها را جدا ساخت.

1 Modulation Waveform 2 Single ended 3 Duty Cycle
30

شکل 9- 2 میکسر با ساختار تکی
شکل 10-2 نشان دهندهی نوع دیگری از ساختار میکسر است که به آن سـاختار متـوازن تکـی1 گفته میشود، که با استفاده از شکل موج دیگری برای S(t) مدل شدهاست.
در اینجا بهجای قطع و وصل سادهی سیگنال RF قطبهای مثبت و منفی سیگنال بـا فرکـانس سوئیچینگ LO عوض میشوند. مزیت اصلی این حالت حذف ترم DC در شکل موج S(t) اسـت (البتـه به شرط آنکه Duty Cycle، %50 داشته باشیم) و به تبع آن، دیگـر در طیـف خروجـی IF از فرکـانس
RF اثری نخواهد بود، در نتیجه یک ایزولاسیون ذاتی بین دریچههای RF و LO وجـود خواهـد داشـت
.[8]

شکل 10-2 میکسر با ساختار متوازن تکی

1 Single Balanced
31
.3 فصل سوم: بررسی میکسرهای توزیع شدهی
فراپهن باند
32
1-3 مقدمه
توپولوژی توزیع شده در ترکیب خطوط انتقال1 در ابتدا توسط گینزتون2 پیشنهاد شد.[11] به علـت عـدم پیشرفت تکنولوژی در طراحی و ساخت مدارت توزیع شده، اسـتفاده از ایـن مـدارات بـرای مـدت زیـادی متوقف شد. این مدارات دوباره در سال 1980 با پروسههای مختلفی شروع شد که از جمله آنها GsAs و
اخیراً تکنولوژی CMOS را میتوان نام برد. شروع دوباره به کارگیری مدارات توزیع شده اساساً ناشـی از قابلیت طراحی خطوط انتقال روی تراشه3 و سلفهای high-Q بود.
شکل 1-3 بلوک دیاگرام کلی شامل خطوط انتقال و طبقات بهره که روی خطوط انتقال توزیـع شـدهانـد، میباشد که هر طبقه میتواند یک ساختار مشخص میکسر در تکنولوژی دوقطبی4 باشـد. خطـوط انتقـال نیز میتوانند مطابق شکل (a)1-3 توسط موجبرهای هم محور یا مطابق شـکل (b) 1-3 توسـط مـدارات
LC تحقق یابند. در این شکل Ci خازنهای پارازیتی ورودی طبقه به اضـافهی همـه خـازنهـای خـارجی میباشد. همچنین Co خازنهای پارازیتی خروجی طبقات به اضافهی همه خازنهای خارجی میباشد.

شکل 1-3 بلوک دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی[11]
یکی از مشخصات بارز مدارات مجتمع این است که خطوط انتقـال روی تراشـه را بـرای افـزایش پهنای باند به کار میگیرند. در حوزهی فرکانس، خازنهای پارازیتی ترانزیستورها که در شـکل 1-3 دیـده می شود، جذب ثابتهای خطوط انتقال میشوند. بنابراین پهنای باند مدار توسـط فرکـانس قطـع خطـوط انتقال تعیین میشود.

1 Transmission Line 2 Ginzton 3 On chip 4 bipolar
33
نکتهی مهم در خصوص توپولوژی توزیع شده در مقایسه با سایر توپولوژیها، توان مصرفی بـالا و سطح اشغالی زیاد آنها است. توان مصرفی و سطح اشغالی با افزایش تعداد طبقات زیاد میشوند. بهتـرین راه، ایجاد مصالحه بین توان مصرفی و حاصلضرب بهره در پهنای باند یعنی 1GBW میباشد.
توان مصرفی مدارات توزیع شده با n طبقه، n برابر توان مصـرفی یـک مـدار یـک طبقـه اسـت.
مدرارت توزیع شده نسبت به مدارات فشرده مصـالحه ی بهتـری بـین تـوان مصـرفی و عـدد نـویز برقـرار میکنند.
2-3 مدارات توزیع شده
در ساختارهای توزیع شده که اخیراً استفاده از آنها در طراحی سیستمهای فـرا پهـن بانـد رشـد چشمگیری داشته است، معمولاً از چند سلول یکسان که بصورت موازی بین دو خط انتقال (بـا امپـدانس ذاتی معادل 50 اهم) ورودی و خروجی قرار گرفتهاند، استفاده می گردد. این خطوط انتقال مجازی کـه در شکل 2-3 ملاحظه می شوند، از مدل T معادل خط انتقال ناشی شده و اساساً دربرگیرندهی تعدادی سلف میباشند که در کنار خازنهای پارازیتیک ترانزیسـتور، تشـکیل خـط انتقـال بـا امپـدانس مـورد نظـر را میدهند .[12]

شکل 2-3 مدل خطوط انتقال مصنوعی
یکی از نکات مهم در استفاده از ساختار توزیع شده، در نظر گرفتن اختلاف فاز بین سیگنالهـای رسیده از هر کدام از سلولها با یکدیگر در خروجی میباشد. بدین معنی که اگر سـاختار توزیـع شـده بـا چهار سلول را به صورت شکل 3-3 در نظر بگیریم، آنگـاه مـثلاً سـیگنال ورودی A1 پـس از طـی مسـیر مشترک L1 به ورودی اولین سـلول رسـیده، سـپس بـا طـی مسـیرهای L4, L3, L2 و L5 بـه خروجـی میرسد. از طرف دیگر سیگنال A2 از مسیر دیگر بـا طـی مسـیر L1 وL2 بـه ورودی سـلول 2 رسـیده و سپس با طی مسیرهای L3 ، L4 و L5 به خروجی میرسد که این مساله به همین نحو برای سایر سلولها نیز ادامه دارد. با توجه به این که سلولها کاملاً یکسان میباشند، بنـابراین بایـد اخـتلاف فـاز طـی شـده

1 gain-bandwidth
34
توسط سیگنال عبوری از هر یک سلولها از ورودی تا خروجی تا حد ممکن یکسان باشد که در غیـر ایـن صورت باعث تاثیر منفی سیگنالهای سلولها بر یکدیگر و کاهش بازدهی از مقدار ایدهآل میشود. به این منظور باید مقادیر سلف های موجود در خط انتقال ورودی و خروجی و خـازنهـای پارازیتیـک بـه نحـوی انتخاب شوند که علاوه بر تامین امپدانس 50 اهم برای رسیدن به ضریب انعکاس قابل قبـول در ورودی و خروجی، بتوانند این هماهنگی در اختلاف فاز را نیز میسر سازند .[11]

شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال
3-3 بررسی عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی
در شکل 4-3 یک سلول گیبرت که به طور گسترده به عنوان میکسر مورد استفاده قرار می گیـرد و یک میکسر با تعادل دوگانه1 است مشاهده می شود. تعادل دوگانه به این مفهـوم کـه اگـر فقـط یکـی از سیگنال های ورودی یا LO اعمال شود، خروجی به طور ایـده آل صـفر مـی گـردد. در ایـن تحلیـل فـرض می کنیم که سیگنال خروجی به طور ایده آل هیچ جزئی در فرکانس LO و هارمونیـک هـایش نـدارد، کـه وجود ایزولاسیون بالای پورت به پوررت بین پایانه های ورودی، LO و خروجـی ایـن خواسـته را بـرآورده می کند. سلول گیلبرت شامل طبقهی ترارسانایی یا راهانداز، که یک جفت دیفرانسـیلی اسـت کـه در یـک نقطه کار ثابت بایاس شده است، دو جفت سوئیچ که با سیگنال قوی LO راه می افتند و بارهای مقـاومتی یا مدارات تانک در خروجی است.
رابطهی 1- 3 I I I I IO IO
1 Double Balanced
35

شکل 4-3 میکسر گیلبرت CMOS
نصف سلول گیلبرت خودش یک میکسر تک بالانس است که در شکل 5-3 نمـایش داده شـده و بدین گونه درنظر گرفتن آن، به تحلیل مدار کمک میکند.

شکل 5-3 یک میکسر فعال CMOS با تعادل تکی
هنگامی که ولتاژ ac سیگنال بزرگ به سوئیچ ها اعمال می شـود، بایـاس M1 و M2 ثابـت نیسـت ولی به صورت متناوب با زمان تغییر می کند. وقتی ولتاژ دیفرانسیلی بزرگتر از مقدار مطمـئن Vx، کـه در شکل 6-3 آمده، بین گیت های ترانزیستورها اعمال می شود یکی از آن ها خـاموش مـی شـود، ولـی وقتـی مقدار مطلق ولتاژ لحظه ای VLO کمتر از Vx باشد، جریان طبقه ی راه انداز بین دو قطعه تقسیم می شـود.
میخواهیم جریان درین هر ترانزیستور را برای یک مقدار VLO و جریان بایاس طبقهی راهانداز بدانیم.
رابطهی 2- 3 V k VG V 36 ID 1 θ VGS
در رابطــهی 2-3 کــه رابطــهی جریــان-ولتــاژ ترانزیســتور MOS کانــال کوتــاه مــیباشــد،
θ فــــــــاکتور تنــــــــزل1 قابلیــــــــت حرکــــــــت میــــــــدان نرمــــــــال و k برابــــــــر است .[13]
ترانزیستور M3 را با یک منبع جریان ایده آل مدل می کنیم و فرض می کنیم ترانزیستورهای M1
و M2 در ناحیه ی اشباع باقی مـی ماننـد. در قسـمتی از دوره تنـاوب LO کـه ایـن ترانزیسـتورها روشـن هستند، رفتار سیگنال بزرگ جفت سوئیچها با روابط زیر مدل بیان میشود.
رابطهی 3- 3 I V VGS k V V VGS k و V 1 θ VGS 1 θ VGS IB رابطهی 4- 3 - نرمال میکنیم. GS که جریان و ولتاژ VLO را به صورت رابطهی 5 3 VLO VGS رابطهی -5-3 - θVLO - ULO IB- θ JB و در نتیجه رابطهی 3 3 و رابطهی 4 3 به صورت رابطهی 6 3 و رابطهی 7 3 درkمیآیند. و رابطهی 6- 3 JB U U 1 U U 1 رابطهی 7- 3
هنگامیکه همهی جریان بایاس از M1 میگذرد داریم:
JB 4 2 θ
رابطهی 8- 3 JB JB
gm ترانزیستورها نیاز می شود و می تواند از مشتق I نسبت به V یا در فرم نرمال شده می تواند از مشتق J نسبت به U محاسبه شود. رفتار جفت سوئیچ ها از Vt مستقل است و این به ما اجازه میدهد که gmbs را حذف کنیم. اگر از اثر خازنی صرفه نظر شود جریان خروجی میکسـر تـک بـالانس (شـکل (5-3
تابعی از ولتاژ پیوستهی LO و جریان طبقهی راهانداز است.
رابطهی 9- 3 , I I IO بسط اول تیلور رابطهی 9-3، رابطهی 10-3 را نتیجه میدهد:
رابطهی 10-3 . , , IO که میتوان آنرا به صورت زیر نوشت:

1 Degeneration
37
رابطهی 11-3 . در رابطهی p0(t) 11-3 و p1(t) توابع پریودیک هستند که در شکل 6-3 ملاحظه میشوند.

شکل 6-3 شکل موجهای p0(t) و p1(t)
در ساختار دوبل بالانس با تطبیق خوب تابع p0(t) حذف میشود.
در فاصله زمانی که -Vx<VLO<Vx است هر دو ترانزیستور سوئیچ روشن هسـتند و p0(t) و p1(t) به VLO و IB و مشخصات I-V ترانزیستورها وابستهاند. جریان سیگنال کوچـک در هـر شـاخه بـه وسیلهی تقسیم جریان تعیین میشود و به صورت رابطهی 12-3 دیده میشود .[14]
رابطهی 12-3

مطابق رابطهی 11-3 یک جزء سیگنال is(t) که آن را با x(t) نشان مـی دهـیم، در شـکل مـوج
p1(t) ضرب میشود پس طیف فرکانسی خروجی به صورت رابطهی 13-3 در میآید.
رابطهی 13-3 , که fLO فرکانس LO، p1,n سری فوریه ی p1(t) و X(f) طیف فرکانسی x(t) است. p1(t) فقط مولفههای فرکانسی فرد را دارا میباشد. (p1(t)= -p1(t+TLO/2)) توجه کنیم که ترمهای شـامل n=1
یا n=-1 بهره را معرفی می کنند و در این صورت رابطهی 14-3 بهره ی تبدیل جفت سوئیچ ها به تنهـایی را نشان میدهد.
رابطهی 14-3 , | . | 38
از آنجاییکه x(t)=gm3vin(t) که در آن vin(t) سیگنال ولتاژ ورودی در گیت ترانزیستور M3 و
gm3 ترارسانایی ترانزیستور M3 است، بهره ی تبدیل میکسر تک بالانس در فرم ترارسانایی رابطهی 15-3
است.
رابطهی g .15-3
برای دامنه های بزرگ LO، p1(t) به صورت مـوج مربعـی درمـی آیـد و c بـه 2/π مـیرسـد. در
شرایطی که VO>Vx است یعنی حالتی که برای کارکرد میکسر لازم است و بـا فـرض p1(t) یـک خـط مستقیم رابطهی 16-3 به عنوان تقریب خوبی برای c حاصل میشود .[14]
2 sin ∆
رابطهی 16-3


و برای LO سینوسی داریم: πΔfLO=arcsin(Vx/VO)
4-3 میکسر سلول گیلبرت توزیع شده
میکسر سلول گیلبرت توزیع شده تعداد یکسانی از ایـن میکسـرها مـی باشـد، کـه ترمینـالهـای ورودی و خروجی هر میکسر به نقاط اتصال وسط1 خطوط انتقال مصنوعی وصل شده است. اگر ثابت فـاز خطوط انتقال مصنوعی به درستی طراحی شده باشد خروجی IF هر سلول با سایر اجزاء IF کـه از سـایر سلولها میآیند هم فاز2 خواهد بود. این میکسر به یک بهرهی تبدیل بهتر در طول رنج فرکانسی پهـن در مقایسه با میکسر گیلبرت متداول دست مییابد.
مدارات با خطوط انتقال تاخیر انتشار را فدای پهنای باند سیگنال می کنند، در سیستم هـای بانـد وسیع تاخیر از پهنای باند محدود قابل تحمل تر است زیرا می تواند توسط مدارات پیشبینی تاخیر کالیبره گردد، که استفاده از مدارات توزیع شده در این کاربرد را توجیح مـی کنـد. پهنـای بانـد ایـن مـدارات بـه خصوص در پورت های RF و LO توسط ثابت زمانی RC محدود می شود. در حوزه ی فرکانس، یک منبع محدودیت پهنای باند در مدارات آنالوگ متداول، هنگامیکه فرکانس افزایش مـییابـد افـت در امپـدانس ورودی مدار است. در یک مدار توزیع شده که از شبکهی نردبانی LC بـرای بهبـود پهنـای بانـد اسـتفاده می شود، خازن ورودی ترانزیستور در داخل خطوط انتقال جذب (کشیده) میشود، از اینرو تـا زمـانیکـه فرکانس قطع خطوط انتقال نزدیک شود امپدانس ورودی و پهنای باند تا یک درجهی مطمئن ثابت بـاقی میمانند.
در اثر استفاده از خطوط انتقال مصنوعی بهبود تخت بودن بهره به دست میآید، هرچند طبیعـت مکانیسم اضافه کردن سلف در توپولوژی توزیع شده بهرهی تبدیل میکسر فعال را کاهش میدهد.

tap point in-phase

1
2
39
1-4-3 بهرهی تبدیل
با فرض رفتار سوئیچ جریان ایده آل برای طبقه ی سوئیچ جریان تفاضـلی خروجـی مـی توانـد بـه عنوان نتیجه ی ضرب جریان درین M1 با یک موج مربعی با دامنه ی واحد در نظر گرفته شود. هنگامی که دامنه ی جزء اصلی موج مربعی 4/π برابر دامنه ی موج مربعی است، ترارسـانایی کـل بـه صـورت رابطـهی
17-3 بیان میشود. در این رابطه 2/π به جای 4/π آمـده اسـت زیـرا سـیگنال IF بـین اجـزا مجمـوع و
تفاضل به طور مساوی تقسیم میشود .[15]
2
رابطهی G πg17-3
حال برای میکسر توزیع شده با n سلول بیشترین بهره ی تبدیل به صورت رابطهی 18-3 تعریـف
میشود.
رابطهی 18-3

برای افزایش بهره ی تبدیل می توان تعداد طبقات n، یا ترارسانایی gmRF را افزایش داد که هر دو موجب مصرف توان اضافی می شوند. راه دیگر افزایش ZIF است هنگامی که فرکانس قطع خـط انتقـال IF
) ) حفظ شود. شکل 7-3 مدار معادل خطوط انتقال IF را نشان می دهد که i2 تا
in مدل تاخیری i1 هستند .[11]

شکل 7-3 مدار معادل خط انتقال
2-4-3 تکنیک تزریق جریان
از رابطهی 18-3 نتیجه می شود که بهره ی تبدیل میکسر گیلبرت قویاً به بارهای مقاومتی وابسته است و برای بهره ی تبدیل بالا، مقاومت بار بزرگ نیاز است. با توجه به شکل 8-3، برای یـک جریـان ISS
مشخص خطی بودن میکسر ناشی از اضافه ولتاژ افت کرده روی RL رو به کاهش میگذارد. با ایجـاد یـک مسیر جریان بای پس IB جریان بایاس از مسیر RL به طور موثری کاهش می یابـد، هنگـامی کـه جریـان
DC کافی برای طبقهی ترارسانایی حفظ میشود.
40

شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان
تزریق جریان با یک مقاومت موازی یا منبع جریان فعال پیاده سازی میشود. برای تقویت بیشـتر ترارسانایی برای بهره ی تبدیل کمکی بدون مصرف جریان اضافی، یـک توپولـوژی تزریـق جریـان بـا یـک طبقه ی ترارسانایی مکمل که در شکل 9-3 ملاحظه می شود به کـار مـی بـریم. در ایـن توپولـوژی جفـت تفاضلی pMOS با ترارسانایی ورودی ترکیب شده اند. با انتخاب نسبت جریـان طبقـات مکمـل ماننـد α بهرهی تبدیل توسط رابطهی 19-3 داده میشود .[12]
αISS L µ C L I SS µ C CG 2 π RL
رابطهی 19-3 W W
شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل
می خواهیم خطی بودن مدار جدید را بررسی کنیم. معادله ی جریان سیگنال کوچک دریـن را بـه صورت رابطهی 20-3 مینویسیم:
رابطهی 20-3
41
و اگر -VOD VGS‐Vt باشد، آنگاه رابطهی 21-3 تا رابطهی 23-3را برای ضرایب g داریم. رابطهی 21 3 kVOD 2 θVOD ∂ID و θVOD 1 ∂VGS رابطهی 22-3 k 1 ∂ ID 1 و θVOD 2!∂VGS رابطهی 23-3 kθ 1 ∂ ID 1 θVOD 3!∂VGS بر اساس روابط بالا اینترمدولاسیونهای مرتبهی دوم و سوم به صورت زیر تعریف میشوند .[16]
رابطهی , ,24- 3

,,
رابطهی , ,25- 3

,,

4

3
از رابطهی 24-3 واضح است که با تکنیک تزریق جریان پیشنهادی بـرای میکسـر IIP2 بزرگتـر به دست می آید. هرچند به هرحال در نتیجه ی استفاده از طبقه ی ترارسانایی pMOS، IIP3 ممکن است کاهش یابد. بنابراین تعامل بین IIP3 و CG برای کارایی بهتر میکسر بایستی به دست آید.
3-4-3 تکنیک پیکینگ سلفی1
محدودیت دیگر پهنای باند کاری میکسر بانـد وسـیع خـازن هـای پـارازیتی در گـره ی خروجـی طبقه ی ترارسانایی هستند مخصوصاً وقتی که تکنیک تزریق جریان برای بالا بردن بهره استفاده می شـود.
یک مدل مدار ساده که در شکل (a)10-3 ملاحظه می شود برای تحلیل به کار رفته و تابع رابطهی 26-3
بهدست میآید.
رابطهی 26-3

1

1 Inductive Peaking
42

شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری
برای کم کردن تاثیر قطب فرکانس پایین اضافی در پهنای باند کـاری میکسـر تکنیـک پیکینـگ سری که در اصل برای تقویت کننده های باند وسیع ایجاد شده به کار می رود. شکل (b)10-3 یـک مـدل ساده ی پیکینگ سلفی سری را نشان می دهد. اعمال یک سلف سری Lm بین طبقات ترارسانایی و سوئیچ برای جداکردن خازن های پارازیتی، با وارد کردن یک شبکه ی غیر فعال بـا مشخصـات پهـن بانـد صـورت میگیرد.

شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شبکهی پسیو اضافه شده برای ایزوله کردن خازنهای
پارازیتی (c) پیاده سازی این شبکه با سلف
یک شبکه ی دو پورتی غیر فعال می تواند بین اجزاء ترانزیسـتور (R1,C1) و بـار (R2,C2) بـرای افزایش پهنای باند وارد شود(شکل .((b)11-3 اگر GBW1 شکل (a)11- 3 با رابطهی 27-3 بیان شود.
رابطهی 27-3

2

1 Gain-Bandwidth
43
GBW برای شکل (b)11-3 یا (c) که شبکه ی غیـر فعـال اعمـال شـده و در نتیجـه C1 تنهـا خازنی است که در پورت ورودی شبکه روی GBW اثر دارد، بنابراین برای این حالت GBW با رابطهی
28-3 محاسبه میشود .[17]
g
رابطهی GBW28-3
π
ملاحظه میشود که این تکنیک پهنای باند مدار را به طور قابل ملاحظهای افزایش میدهد.
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده
در این قسمت شماتیک مدار چندین ساختار میکسر پهن باند، که از بـه روزتـرین سـاختارها بـه شمار میروند، مرور شده است. در پایان بخش، این ساختارها از لحاظ فرکانس کار، بهـره ی تبـدیل، عـدد نویز و خطی بودن در یک جدول مقایسه شدهاند.
1-5-3 ساختار میکسر [18] 1
شماتیک مدار در شکل 12-3 دیده میشود. در طراحـی ایـن میکسـر از توپولـوژی توزیـع شـده استفاده شده و تعداد طبقات به طور دلخواه چهار انتخاب شده است. هر سلول یـک میکسـر تـک بـالانس است. ترانزیستورهای طبقه ی ترارسانایی (M31-M34) به طور یکسان تطبیق یافتـهانـد. در ایـن میکسـر خطوط انتقال مصنوعی در طول خطوط LO,RF وIF با شبکه ی نردبانی LC تحقق یافتهاند، که سلفها با استفاده از ماپیچهای داخل چیپ اجرا شدهاند و خازنها، خـازنهـای پـارازیتی ترانزیسـتورهای MOS
هستند که به خطوط تاخیر LC متصل شدهاند، امپدانس بار با امپدانس مشخصـه ی خطـوط تـاخیر LC
تطبیق یافتهاند.
پارامترهای بهره، عدد نویز، IIP3 این مدار در جدول 1-3 آمده است.

aslinezhad project

(7-2 آنالیز(تحلیل) مدار π شکل خط شاخهای دوبانده و مشاهده نتایج شبیهسازی46
فصل سوم: طراحی مدار میکرواستریپ فشردهT شکل دوبانده با
اندازه کاهش یافته.50
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه به روند ارائه شده در
دو بانده کردن کوپلرπ شکل ( 900MHz و 51(2400MHz
(2-3 استفاده از برنامه کامپیوتری ساده جهت بدست آوردن پارامترهای مدار دو بانده52
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محیط ( نرم افزار) مختلف و مشاهده
نتایج53
فصل چهارم: بررسی انواع مختلف DGS و اثرات آن بر روی
خطوط میکرواستریپ59
DGS (1-4 چیست60
( 2 – 4 مشخصات کلی 60 .DGS
( 3 – 4 کاربردهای 61DGS
٧
( 4 – 4 ویژگیهای 61DGS
( 5 – 4 اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ....61
( 1 – 5 – 4 الگوی .DGSدمبلی شکل و ویژگی شکاف باند63
DGS ( 2 – 5 – 4 دمبلی پریودیک قویتر64
( 3 – 5 – 4 اندازهگیریهای مربوط به DGS دمبلی شکل..66
( 6 – 4 بررسی اثرات DGSهای هلزونی در تقسیم کننده توان بر روی هارمونیکها68
-7-4مدل مداری و هندسه DGS هلزونی غیرمتقارن70
( 8 – 4 حذفهارمونیکهادر مدار مقسم توان73
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی78
( 10 – 4 مشاهده اثرات DGS برروی مدار دو بانده طراحی شده80
فصل پنجم:چگونگی استفاده از کوپلر بدست آمده در طراحی
سیرکولاتور82
(1-5طراحی سیرکولاتور83
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر83
فصل ششم:نتیجه گیری وپیشنهادات86
(1-6نتیجه گیری87
(2-6پیشنهادات88
٨
پیوست ها................................................................................................................................... 89
٩
فهرست مطالب
عنوان مطالبشماره صفحه

منابع و ماخذ. 93
سایتهای اطلاع رسانی97.
چکیده انگلیسی98
١٠
فهرست جدول ها
عنوانشماره صفحه

:(1-2)مشخصات الکتریکی وفیزیکی مدار در دو باند..47
(1-3) دو بازه فرکانسی و دو هدف مورد نظر پروژه..55
(2-3.) بازه بالا و پایین جهت optimom هدف.56
(1–4)مقایسه اثر DGSهای واحد و پریودیک با توزیع نمایی..66
١١
فهرست شکل ها
عنوانشماره صفحه

(a) ( 1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و
استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع23
(a) ( 2 – 1) سرس خطوط انتقال کوچک شده با چندین استاب
باز (b) بزرگی پاسخ.25
( 3 – 1) نمایی از نرم افزار Serenade. RTL جهت بدست آورن طول
فیزیکی و پنهای خطوط.26
( 1-2 ) ساختار T شکل خط انتقال ربع طول موج30
( 2-2 ) منحنی رسم شده حاصل از برنامه کامپیوتری θ1)بر حسب32.(θ3
( 3-2 ) مدار چاپی خط شانهای T شکل34
S11 (a) ( 4-2)،S12،S13،(b) S14 پاسخ فازی مدار Tخط شاخهای35
(5-2) ساختار کوپلر خط شاخه ای یک بانده مرسوم.38
(a) ( 6 – 2) ساختار معادل پیشنهادی (b) خط شاخهای 38. λ4

S11 ( 7-2 )،S12،S13وS14 از کوپلر بدون استاب42
( 8-2 ) پاسخ زاویهS12وS14 برای مدار بدون استاب42
( 9-2 ) ساختار کوپلر پیشنهادی با استاب مدار باز44
١٢
( 10-2 ) ساختار کوپلر پشنهادی با استاب اتصال کوتاه ........................................................ 45
11-2 ) ) نتایج شبیه سازی .................................................................................. ...(S11) 47
12-2 ) ) نتایج شبیه سازی(S12و............................................................................ .(S13 48
( ( 13-2 نتایج شبیه سازی .................................................................................... .(S14) 48
14-2 ) )نتایج شبیه سازی (پاسخ فاز مدار با استاب باز) ................................................... 49
( (a) ( 1-3 شماتیک (b) مدار چاپی ................................ (designer, hfss) ansoft 55
( S11(a) ( 2-3،S12،S13وS14 مدار شبیه سازی شده در .....................................................................ADS (c) serenade (b) ansoft (a) 57
( 3-3 ) پاسخ فازی مدار دو بانده. ....................................................................................... 58
1-4 ) ) شمای مختلف H (a) DGS شکل T ( b)شکل (c)هلزونی شکل (d) دمبلی شکل. ......................................................................................................... 60
( 2-4 ) خط میکرواستریپ با εr = 15 و ................... ................................ h = 1/575 62
( 3-4 ) پارامترهای S مدار دوپورته.. ................................................................................ 62
( 4-4 ) مدار با DGS دمبلی شکل .. ............................................................................... 63
( 5-4 ) پارامترهای S مدار با DGS دمبلی شکل ............................................................ 63
( 6-4 (a) ( نوع (b) 1 نوع (c) 24 نوع DGS 3 دمبلی شکل ...................................... 65
( 7-4 ) پارامترهای S برای DGS دمبلی با انواع مختلف سایز. ....................................... 66
( 8-4 ) مقایسه پارامترهای S مدارهای (a) DGS نوع (b) نوع (c) 2 نوع 67 ............. ..3
١٣
( 9-4 ) خط میکرواستریپ با DGS هلزونی نامتقارن برروی زمین. ............................... 70
( 10-4 ) پارامترهای انتقال خط با DGS متقارن ( A = A' = B' = 3mm و نامتقارن A = 3/4m) و ............................................................................(B = 2/6 mm 71
11-4 ) ) فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از ...................................................................................................................... .B/A 71
12-4 ) ) مدار معادل بخش DGS هلزونی نامتقارن ........................................................ 73
13-4 ) DGS (a) ( هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این ......................................................................................DGS 74
( 14-4 ) پارامترهای S مدار با DGS هلزونی بصورت EM و شبیه سازی شماتیک ........ 75
15-4 ) ) هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن....................................................................................................................... 76
( 16-4 ) نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با ....................................................................................................................... ..DGS 77
17-4 ) ) مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار...................................................................................................................... 77
( 18-4 ) نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(.......... S12 ( b) S11 (a 78
( 19-4 ) مدار T شکل با استفاده از DGS هلزونی (a) یک بعدی (b) سه بعدی.......... 79
20-4 ) (a) ( نتیجه پاسخ شبیه سازی کوپلر با استفاده از اعمال (b) DGS بدون ١۴
استفاده از 80DGS
( 21-4 ) مدار چهار پورتی T شکل دوبانده با اعمال DGS دمبلی شکل در
شاخه خطوط..81
( 22-4) پارامترهای S حاصل از بکار بستن 81DGS
(1-5)نماد ژیراتور83
( 2-5)سیرکولاتور 4 پورته متشکل از دو مدار هیبریدی و زیراتور83
(3-5) سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور84
(a)(4-5)،((b،((cو(:(dنتایج شبیه سازی سیرکولاتور85
(1-6)شبکه دو قطبی خطی. 91
١۵
چکیده:
در این پروژه سیرکولاتور دو بانده با ابعاد کوچک ارائه شـده اسـت. در طراحـی سـیرکولاتور مـورد نظـر از
کوپلر شاخه ای (BLC)1 میکرواستریپی دو بانده کوچک شده استفاده شده است . لذا در این پـروژه بیـشتر
بر روی چگونگی کوچک سازی و دو بانده کردن کوپلر شاخه ای میکرواستریپی با اسـتفاده از مـدارات T و
همچنین DGS2 متمرکز شده ایم . در کوپلر شاخه ای پیشنهادی از مدارات T در هر شاخه که دارای طـول
الکتریکی ±90 درجه در دو بانده می باشند ، استفاده شده است. از طرفی در صفحه زمـین در زیـر خطـوط
این کوپلر DGS هایی قرار دارند که با استفاده از این DGSها ، طول الکتریکی خطوط کاهش یافته و ابعاد
کوچکتر می گردند. کوپلر دو بانده کوچک شده توسط نرم افزارهایSerenadeوADS3وAnsoft تحلیـل
شده و نتایج شبیه سازی در این پروژه آورده شده اند. سپس با استفاده از کوپلرهای دو بانده کوچک شـده ،
سیرکولاتور مورد نظر طراحی گردیده است.

Branch line coupler١ Defected ground structure٢ Advance designe sys--٣
١۶
مقدمه:
امروزه تقاضا برای استفاده از عناصر دو بانده در صنعت مخابرات رو به افزایش است . سیستمهای مخابرات
با آنتن های دو بانده کاربرد زیادی دارند. سیرکولاتور یکی از عناصر اصلی در چنین سیستم هایی اسـت. بـا
استفاده از سیرکولاتور دو بانده می توان از یک تغذیه بین آنتن و سیستم مخـابراتی اسـتفاده نمـود. یکـی از
اجزای اصلی در ساخت سیرکولاتورهای چهار پورتی ، کوپلرهای هایبریدی و کوپلرهای شاخه ای((BLC
می باشند.
(BLC) از چهار خط انتقال به طول ربع طول موج مؤثر در فرکانس اصلی و هارمونیک هایی کار می کنـد.
.[1] ,[2]
معمولا این کوپلرها بزرگ هستند و سطح و فضای اشغال شده توسط آن ها زیاد است. در اکثـر کاربردهـای
امروز به خصوص در بردهای صفحه ای و میکرواستریپی ، این عیب محسوب می شود. لذا ، امـروزه روش
های مختلفی برای کوچک سازی و افزایش پهنای باند]٣[7- این کوپلرها ارائه شده است.
در مخابرات مدرن امروزی نیاز به اجزاء دو بانده بالاخص کوپلر BLC دو بانده ، می باشد تا مقدار عناصـر
مورد استفاده ،کاهش یابد.
] Hsiang٨[ از خطوط چپگرد برای دو بانده کردن کوپلر استفاده کرده است.BLC شامل خطـوط متـصل
شده به یک جفت المان موازی]١١[ گزارش شده است.
در این پروژه با استفاده از روشـهای کوچـک سـازیBLC و ترکیـب آن هـا بـا روشـهای دو بانـده سـازی
ابتداBLC با ابعاد کوچک در دو بانده 900Mhzو2400Mhz طراحی شده است سپس برای کاهش بیـشتر
سطحBLCصفحه ای ازDGS ها استفاده شده است.
١٧
گزارش ارائه شده از نمونه طراحی سیرکولاتور مورد نظر شامل قسمت های زیر می باشد:
در فصل اول کلیاتی در مورد مراحل انجام پروژه ،هدف از انجام مراحل کار ، پیشینه تحقیقهای انجـام شـده
در مورد مدارمورد نظر و روش کمی کار مورد بررسی قرار گرفته است.
در فصل دوم ابتدا نحوه افزایش پهنای باند کوپلرها ، کوچک سازی با استفاده از مدارT و استفاده از مـدارπ
بــرای دو بانــده کــردن کوپلربررســی شــده اســت. ســپس بــا اســتفاده از نــرم افزارهــای تخصــصی
مانندSerenadeوAnsoft مدارات ذکر شده تحلیل گشته و نتایج شبیه سازی آورده شده اند.
در ادامه کوپلر کوچک شده با استفاده از مدارT ، با توجه به روند ارائـه شـده در دو بانـده کـردن کـوپلر بـا
مدارπ ، در فصل سوم دو بانده شده و روابط حاصل برای دو بانده کردن آن به دست آمده است.
کوپلر به دست آمده با استفاده از نـرم افـزار ADSوSerenadeوAnsoft تحلیـل و بهینـه گـشته اسـت و
منحنی های مربوط به آن در این فصل آورده شده اند.
در فصل چهارم DGS به عنوان ابزاری برای کوچک سازی مدارات صفحه ای شرح داده شده و از آن برای
کوچکتر کردن ابعاد کوپلر دو بانده استفاده شده است . نتایج شبیه سـازی کـوپلر حاصـل ، نـشان داده شـده
است. چگونگی استفاده از کوپلر به دست آمده در طراحی سیرکولاتور در فصل پنجم شرح داده شده اسـت
و در آخر در فصل ششم نتیجه گیری و پیشنهاداتی برای ادامه کار آورده شده است.
١٨
فصل اول:
کلیات
١٩
(1-1 هدف
کوپلرهای شاخهای با بکار بستن استابها ( مدارباز – مدار کوتاه) نیزو با Cascade شدن یک سـری شـاخه
برکاستن حجم و بالا رفتن پهنای باند نقش بسازیی را دارند. همچنین المانهای فشرده به ما امکـان کـوچکتر
کردن مدار را میدهند و با عث افزایش باند میگردند منتهی برای ساخت مدار نهایی با کـاهش سـایز کلـی و
افزایش پهنای باند و بکار بردن کوپلینگ مناسب در سرهای مدار و ایزوله کردن پورتها از همدیگر مـیتـوان
از روش مناسب بکار بردن DGS و نتیجتاً افزایش اندوکتانس خطوط و در نتیجه اهداف مطلوب دسترسـی
پیدا کرد.
در این پروژه هدف کلی رسیدن به ساختار فشرده و نیز استفاده از مدار میکرواستریپی در دو بانـد فرکانـسی
دلخواه و نیز افزایش هر یک از باندهای فرکانسی می باشد. و عـلاوه بـر ایـن بـا بکـار بـستن ( defected
ground structure) DGS بر روی زمین مدار شاهد اثرات مثبت آن برروی دستیابی باند فرکانسی مورد
نظر و نتیجتاً کاهش سایز مدار و خواهیم بود.
(2-1 پیشینه تحقیق
با توجه به ساختار مدار این پروژه و هدف مورد نظـر تحقیقهـایی مـورد نظـر بـودهانـد کـه بیـشتر در بـاره
Compact و فشرده سازی المانها، افزایش پهنـای بانـد، از بـین بـردن هارمونیکهـای اضـافی و اسـتفاده از
DGS میباشد.
در[1] افزایش پهنای باند مدارهای هایبرید با استفاده از اتصال خطوط شاخهای و استفاده از اسـتابهای مـدار
λ
باز در دو انتهای خط میکرواستریپ و معادل قرار داده خط با خط انتقال 4 جهت کاهش ابعاد مورد بررسی

قرار گرفته است.
٢٠
فعالیتهای گستردهای در جهت طراحی و بکاربردن کوپلرها و سـیرکولاتورهای صـفحهای فـشرده دردو بانـد
مورد دلخواه بعنوان مثال در پروژه - ریسرچ[2]انجام گردیده است که در فصل دوم نتایج حاصل از شـبیه سـازی ایـن
گونه کوپلرها و استفاده از ماترسیهای انتقال و نوشتن برنامه کامپیوتری جهت استفاده در دو فرکانس دلخـواه
مورد بررسی خواهند گرفت.
در مورد کاهش بیشتر سایز کوپلرها در حدود 45% مقدار کوپلرهـای مرسـوم خـط شـاخه ای و بـا مـدل T
شکل فعالیتهایی در مقالات گوناگون [3] تنها در یک باند فرکانسی مطرح گردیده است که در فصل بعدی
نیز این پروژه - ریسرچو نتایج شبیه سازی آن با نرمافزارهای گوناگون مورد بررسی قرار می گیرند.
یکی از مسائل مهم در چند قطبیهای میکرواستریپ مسئله کاهش اندازه بـوده کـه بـا توجـه بـه اسـتفاده از
المانهای باند و کاهش حجم مدار نیز استفاده از (defected ground structure) DGS مـیباشـد. ایـن
کار باعث از بین بردن هارمونیکهای اضافی و نتیجتاً کاهش اندوکتانس مدار و بالا بردن پهنای باند و کاهش
سایز مدار با کم کردن المانهـای مـوازی مـیگـردد. در ایـن زمینـه نیـز فعالیـتهـای گـسترده و اسـتفاده از
DGSهای مختلف صورت گرفته است [2]و[4]و[21]و .[22]
که اثرات تک DGS و نیـز DGS دمبلـی پریـود یـک را بـر روی پارامترهـای اسـکترینگ یـک خـط
میکرواستریپ دو پورتی ،بررسی شده است.
همچنین در[21] کاربرد DGS برروی خطوط یک کوپلر و تأثیر آن برروی پاسخ شبیه سـازی بـرروی ایـن
مدار در نرمافزار Ansoft بررسی گردیده است.
علاوه[23] نیز اثرات DGS هلزونی برروی حذف هارمونیکها و پهنای باند در یک تقسیم کننده توان ویـل
کینسن را مورد بررسی قرار داده است که در این پروژه در انتهای از این نوع DGS در زیـر خطـوط کـوپلر
خط شاخه ای تک بانده استفاده گردیده و نتایج آن آورده شده است.
٢١
و اثرات شکلهای گوناگون [21]DGSو[22]و[23]و مدل کردن مداری آنها بـرروی کـوپلر، سـیرکولاتور و
تقسیم کنندههای توان و به طور کلی خطوط میکرواستریپ را بررسی میکنند که در فصلهای بعـدی در ایـن
مورد به طور مفصل توضیح داده شده و نتایج حاصل از شبیه سازی نیز آورده شده است.
( 3 – 1 روش کار و تحقیق
در این پروژه روش کار و تحقیقهای انجام شده جهت رسیدن به هدف مورد نظر یعنـی اسـتفاده از دو بانـد
فرکانسی دلخواه کاهش حجم مدار بالابردن ضریب کوپلینگ نیز بـه صـورت اسـتفاده از مراجـع و منـابع و
مشاهده نتایج حاصله از این کارها بوده و بعد از برقراری لینک مورد نظر این منبع مـورد بررسـی بـا هـدف
نهایی به آیتم بعدی پروژه - ریسرچمربوط به مرجعهای اولیه پرداخته شده است. در بخشهای بعدی این مراحل عنوان
میگردند.
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن:
در این مرحله نیز خط میکرواسـتریپ Zc4 بـا طـول الکتریکـی θ نیـز کـه در شـکل (1 – 1) (a) مـشاهده
میگردد به صورت یک خط انتقال مرسوم با المانهای توزیع شده فشرده معادل آن نیز مدل گردیده است[9]
و با بکار بردن فرمول ماتریس ABCD5 مدار معادل مشاهده شده در شکل (1 – 1) ( b) میتوانـد اسـتنباط
گردد. با معادلات ماتریس ABCD در شکل (1 – 1) به نتایج زیر دسترسی پیدا میکنیم.
(1 – 1)
JB01  J tan θ01 / Z 01

امپدانس خط معادل
ماتریس انتقال خط
٢٢
که B01 امپدانس ورودی استاب مدار باز است و٠١θ طول الکتریکی استاب مدار باز است.
و با در دست داشتن ادمیتانس ورودی استاب مدار باز شکل (b ) ( 1 – 1) به معادلات زیر میرسیم
(2 – 1) cosθs −cosθ B01  Z c sin θ (3 – 1) Zc sinθ Zs  sinθs که ≤θs≤θ≤1٠ می باشد و همانطوری که در شکل((1-1 دیـده میـشود θs طـول خـط بـین دو اسـتاب در
مدارπ است.

شکل (a ) (1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع
٢٣
ما همچنین میتوانیم فرکانس قطع برای ساختار فیلتر مانند شکل (b ) ( 1 – 1) و مـدار معـادل آن در شـکل
(c) (1-1) به صورت زیر بدست آوریم:
(4 – 1)
1 Wc  Leq Ceq
(5 – 1)
1  Wc )ZsSinθs tan(θs / 2)  Cosθs − Cosθ 2( W0 Zs Zc Sinθ
که در Wc فرکانس قطع مدار معادل نشان داده شده شکل (b ) ( 1 – 1) و Wo فرکانس کار مرکـزی مـدار
مورد نظر با المانهای فشرده معادل 7Ceq, Leq6 میباشند.
حال در اینجا برای بالا رفتن پهنای باند و عریض کردن باند فرکانسی دلخواه، با استاب مدار بـاز بـه خـوبی
طول واحد خطوط سری با یکدیگر بوده و مدل کردن خط میکرواستریپ با خطوط معـادل بـا اسـتابهـای
مدار باز سری همانطور که در شکل (2 – 1) نشان داده شده باعث کم شدن امپدانس استاب بـاز و افـزایش
فرکانس قطع (fc) میگردد.

۶ سلف ٧خازن معادل
٢۴

شکل((a) ( 2 – 1 سری خطوط انتقال کوچک شده با چندین استاب باز (b) بزرگی پاسخ
با مشاهده پارامترهای S این مدار در شکل (b ) (2 – 1) از این مدارات میتوان جهت بالا بردن باند فرکانس
و نیز استفاده مدار دو باند فرکانسی دلخواه،اسنفاده گردد.
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(:(2000/900
در اینجا نیز با ایده گرفتن از کار قبلی و استفاده از ماتریسهای ABCD که در فصل بعدی آورده شده زمینه
جهت استفاده از کوپلر خط شاخهای Tشکل با حجم کم و باند فرکانسی دو بانده کـه در فـصل سـوم آمـده
فراهم میگردد.
٢۵
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخهای T شکل
در این قسمت با ایده گرفتن از روشهای قبلـی کـه در فـصلهای بعـد توضـیح داده مـیشـود از ماتریـسهای
ABCD استفاده شده و بعد از نوشتن برنامه کامپیوتری زمینه جهت استفاده از المانهای فـشرده در دو بانـد


فرکانسی دلخواه فراهم گردیده است. از بدست آوردن مقادیر Z و θ که امپدانس مشخصه خطـوط و طـول
الکتریکی آنها هستند با استفاده از فرمولهای موجود در بازههای مختلف که در منابع مختلـف هـم آمـدهانـد
طول و پنهای خطوط چند پورتی مورد نظر بدست میآید که در این پروژه از serenade استفاده شده است
و این مقادیر با دادن فرکانس کار، مشخصه دی الکتریک مورد نظر و امپدانس و طول الکتریکی خط نیـز بـه
سادگی بدست میآیند. در شکل (3 – 1) شمای کلی این نرم افزار آمده است.

شکل :(3 – 1) شمایی از نرمافزار serenade جهت بدست آوردن طول و پنهای خطوط
٢۶
با بستن مدار فوق در نرم افزارهای مختلف نتـایج شـبیهسـازی را مـشاده و در صـورت عـدم نتیجـهگیـری
همانطور که در فصل سوم آمده آنرا optimum میکنیم. در نهایت با ایده گرفتن از کارهای انجـام شـده در
مقالات مختلف DGS های گوناگون را بکار گرفته و نتایج حاصل از آن را آوردهایم.
٢٧
فصل دوم:
تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده وTشکل
٢٨
(1-2 مدار خط شاخهای اندازه فشردهT شکل
دراینجا هدف طراحی کوپلر و در نهایت سیرکولاتور خط شاخهای بهم پیوسـته بـدون اسـتفاده از المانهـای
توده میباشد. اندازه کـوپلر پیـشنهادی تنهـا 45درصـد کوپلرهـای خـط شـاخهای مرسـوم در فرکـانس 2/4
گیگاهرتز میباشد.
اندازه المانهای این نوع کوپلر میتوانند به راحتی با استفاده از عمل قلم زنـی بـرد مـدار چـاپی بـه صـورت
واقعی کشیده شده و برای سیستمهای ارتباطی بیسیم بسیار مفید و پرکاربردند. چرا که اخیراً سیستم ارتبـاط
بیسیم در جهت اهداف کوچک کردن و پائین آوردن هزینه بـه قطعـات کـوچکتری نیـاز دارنـد. از ایـن رو
کاهش اندازه از اهداف قابل توجه در بکاربستن این طراحی میباشد. در پایینترین باند فرکانس مایکروویو،
اندازه کوپلر خط شاخهای مرسوم جهت استفاده عملی بسیار پیچیده و بزرگ است. تکنیکهای زیادی جهـت
کاهش سایز این گونه کوپلرها گزارش شده است. ترکیب خط انتقال با امپدانس بالا و خازنهای فشرده شنت
شده به آنها نیز مورد بررسی قرار گرفته اند.در این موارد خازنها با عایقهایی خاص، مورد نیاز مدارهای شنت
میباشند که در بحث بعدی جهت دو بانده کردن کوپلرهای خط شاخهای πشکل توضیح داده میشود.
مرجع[11] کوپلر خط شاخهای درخطوط میکرو استریپ تک لایه از فلز بدون هیچ گونه المان فـشرده شـده
واضافی ̦ سیمهای اتصال را پیشنهاد می کند.اندازه این گونه کوپلرها حدود 63درصـدطراحی هـای مرسـوم
میباشد. هرچند که قسمتهایی که ناپیوستگی در داخل کوپلر بوجود میآورند نیز همان ناپیوستگیهای ناشی
از اتصال مدارهای استاب شنت مدار باز یا کوتاه میباشند کـه باعـث بوجـود آمـدن مـشکل (over lap)8
میگردند. بنابراین ما در فصل بعدی روی طراحی یک کوپلر خط شـاخهای T شـکل جمـع و جـور جدیـد

٨هم پوشانی
٢٩
متمرکز خواهیم شد و در قسمت بعدی آنها را در کوپلرهای واقعی بکار برده و به تحلیـل و بهینـهسـازی آن
میپردازیم.
این نوع کوپلرها بدون استفاده از هیچ گونه المان فشرده، سـیم و قطعـه ای، مـیتواننـد بـه سـادگی بـرروی
سابستریتها ساخته شوند و در مقایسه با مدارات مرسوم طراحی شده اطلاعات را بخـوبی آشـکار مـیکننـد،
همچنین هماهنگی نزدیک و خوبی ما بین نتایج شبیهسازی و اندازه گیری شده مشاهده می گردد.
روش مرسوم ومعمولی جهت آنالیز کوپلر T شکل خط شاخهای بر روی استفاده از آنالیز مد نرمال است کـه
در اینجا ما از آن استفاده کردیم و این بدلیل ساختار هندسی آن نیز میباشد.
هر چند که خط با سایز کاهش یافته با طولی کمتر از λ / 4 اندوکتانس و ظرفیت پائینتـری را دارد، منتهـی
جبران اندوکتانس بوسیله افزایش امپدانس مشخصه خط و جبران ظرفیت نیـز بوسـیله اضـافه کـردن خـازن
شنت متصل شده [15] C میباشد. در این پـروژه خـازن C نیـز بوسـیله یـک خـط اسـتاب مـدار بـاز [9]
جایگزین گردیدهاست و معادل آنرا در مدار T شکل قرار دادهایم.

شکل(:(1-2ساختار T شکل خط انتقال ربع طول موج
ساختار T شکل معادل معمولی از یک خط کاهش یافته در شکل (1-2)نـشان داده شـده اسـت کـه در ایـن
شکل Z1،Z2،Z3وθ1،θ2وθ3 امپدانس مشخصه خطوط و همچنین طول الکتریکی آنها را نـشان مـیدهنـد.
لزومی ندارد که جایگاه خط با طول الکتریکـی((θ2 مـدارباز در وسـط خـط کـاهش انـدازه یافتـه مـا بـین
٣٠
Z1وZ2قرار داشته باشد. روابط ما بین این عناصر یعنی امپدانس مشخصه و طولهای الکتریکی را مـیتـوانیم
بوسیله ماتریس ABCD آنها تخمین بزنیم.
با استفاده از روابط قبلی برای طراحی یک کوپلر خط شاخهای πشکل مرسوم در اینجا با معـادل قـرار دادن
ماتریس آن با امپدانس مشخصه خط با طول θ = ±90° و ±ZT داریم:
3 Sinθ 3 JZ 3 Cosθ 1 0 Sinθ JZ Cosθ A B (1-2) j 1 1 1 j Cosθ3 Sinθ3 1 JB Cosθ1 Sinθ1 D  C Z3 2 Z1 (1-2) jB2  jTanθ2 / Z 2 (3-2) N Z1 Z3 (4-2) K Z1 Z 2 (5-2) M Z1 ZT از طرفی با معادل قرار دادن ماتریس فوق با ماتریس خط 90° داریم.
JZT
0(6-2)

0 JZT Sinθ j  Cosθ Z T
Cosθ B A Sinθ j  D C T Z و پس ساده سازی چهار معادله به صورت زیر خواهیم داشت:
(7-2) Cosθ1Cosθ3 − KTanθ2 Sinθ1Cosθ3 − NSinθ1 Sinθ3  0 (8-2) N Cosθ1Sinθ3 − KTanθ2Sinθ1Sinθ3  NSinθ1Cosθ3  M ٣١
(9-2) Tanθ2Cosθ1Sinθ3  Cosθ1Cosθ3  0 K Sinθ1Sinθ3 − 1 − N N (10-2) Sinθ1Cosθ3  KTanθ2Cosθ1Cosθ3  NCosθ1Sinθ3  M با ساده سازی روابط فوق دو معادله زیر را خواهیم داشت:
N 2 M 2 2 − N M 3  Tanθ Tanθ Tanθ N) ,Cotθ ) Tanθ Cotθ 2(11-2) M N N 1 3 1 3 1 (12-2) ( 2 − N 2 M 3 ( Tanθ 2  ) Tanθ 2 − N 2 M 3 ( 3  Sinθ Tanθ2Cosθ K KN MN M معادلات (11-2) و (12-2) نیز مقادیر θ1 و θ2 وθ3 را تحت شرایطی که M و N را داشـته باشـیم بـه مـا
میدهند. برای سادگی کار در اینجا Z1 را برابر Z3 در نظر میگیریم. طـول الکتریکـی θ1 بـر حـسب طـول
الکتریکی θ3 برحسب مقادیر مختلف M رسم گردیده است که در شکل (2-3) نیز آمـده اسـت. در اینجـا
نیز برنامه سادهای با نرم افزار مطلب نوشـته شـده(پیوسـت الـف-(1 و بـه ازای مقـادیر مختلـف N و M
میتوان به ازای θ1 های مختلف مقادیر θ2 و θ3 را بدست آورد.
١θ

٣θ
شکل θ1:(2-2) بر حسبθ3
٣٢
واضح است که طول الکتریکی کل خط کوچک شده( (θ= θ1 + θ3 با افزایش مقدار M نیز کاهش مییابد.
جایگاه خط استاب مدار باز شده در داخل کوپلر خط شاخهای تحـت شـرایط خـاص نیـز تحمیـل گردیـده
است. مقدار طول الکتریکی (θ2) ما بین مقادیر θ2 و θ میباشد. جهت جلـوگیری از مـشکل هـم پوشـانی

(Over lab) خط استاب باز را به انتهای خط اتصال کوتاه وصل میکنیم. θ1 و θ3 به ازای مقادیر شناخته
شده M به یکدیگر تبدیل شده در حالیکه حالت معادله (12-2) تحت N = 1 بدون نغییر باقی میماند. ایـن
نتایج به توانایی دو رابطه بدست آمده اشاره دارد. با بدست آوردن مقـادیر θ1 و θ3 و بـا داشـتن معادلـه
(12-2) مقادیر θ2 وZ2 محاسبه میگردند.
(2-2 طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن
با روشی که در بالا توضیح داده شد به سادگی میتوان انـدازه کـوپلر خـط شـاخهای مرسـوم را کـاهش داد
سابستریت مدار فوق دارای ویژگیهای زیر میباشند:
metal thickness =0 .02mm و h = 0.8mm و Tanδ  0.022 و εr  4.7
امپدانس مشخصه کوپلر خط شاخهای مرسوم 35 اهم در خط اصلی و در شاخه عمودی 50 اهم میباشند.
جهت کاهش دادن اثر افت هادی، افت تشعـشعی و جلـوگیری از مـدهای مـزاحم انتـشار نیـز پهنـای خـط
میکرواستریپ محدود شده و این امر با محدود کردن مقدار امپدانس مشخصه موثر واقع میگردد.
در ابتدا پارامترهای خط کوتاه شده اصلی ( افقی) را بـرای M=1/7 و بـا درنظـر گـرفتنθm1=17° بدسـت
میآوریم که از شکل θm3 = 48 °(2-2) حاصل میگردد. با قراردادن اطلاعات فـوق در رابطـه (12-2) و
٣٣
در نظر گرفتن k=2/6 مقدار θm2=39° (طول الکتریکی استاب باز خط اصـلی) بدسـت مـیآیـد. بـه طـور
مشابه پارامترهای خط شاخهای کاهش یافته را هم بدست میآوریم.
θb2=31 ْ θb3=58 ْ M=1/5 k=3/3 θb1=16
با در دست داشتن مقادیر فوق از نرمافزار Serenade جهت بدست آوردن ابعـاد مـدار چـاپی ) W پهنـای
خطوط) و ) L طول خطوط) اسـتفاده مـیکنـیم. بعـد از بدسـت آوردن ابعـاد فـوق، مـدار را بـا نـرمافـزار
Ansoft designer ترسیم نموده و بعد از تحلیل مدار فوق نیز نتایج اندازهگیری شده را بدست میآوریـم.
مدار چاپی آن در شکل (3-2) نشان داده شده است. و نتایج شبیهسازی در شکلهای (a) (4-2) و (b) نشان
داده شده است.

شکل :(3-2)مدار چاپی خط شانهای T شکل
٣۴

(a)

(b)
شکل S11:(a)(4-2)،S12،S13وS14 و(:(bپاسخ فازی کوپلر خط شاخه ای
مشاهده می شود S11 وS14 در فرکانس مرکزی کمتر از -20dB وS12 وS13 حدود -3dB میباشند.
حال با توجه به نتایج شبیه سازی اندازه گیری شده مستقیم و توان کوپل، افت بـالا بوسـیله سـاختار فلـزی و
افت تشعشعی دیده نمیشود . حوزه مدار کاهش یافته در مقایسه با کوپلر خط شاخهای مرسوم بـشتر از 55
درصد میباشد.
٣۵
مادر بخشهای بعدی مدار فوق را با اسـتفاده از بکـار بـستن (Defected ground structure)
DGS نیز مورد بررسی قرار خواهیم داد و اثرات DGS بر روی نتایج شبیهسازی مورد بررسی قرار خواهند
گرفت.
٢( 3 – کوپلر خط شاخهای π شکل
طراحی یک کوپلر خط شاخهای جدیدی که میتواند در دو فرکانس دلخـواه کـار کنـد از ویژگیهـای مـدار
پیشنهادی اندازه فشرده و ساختار شاخهای میباشد. فرمولهای طراحی روشن و واضـحی از ایـن مـدار بیـان
گردیده، چرا که موضوع مجهولات آن از قیبل امپدانس شاخههای خط مشخص گردیده اند.
فعالیتهایی جهت بررسی و رسیدگی نتایج شبیهسـازی شـده و انـدازه گیـری شـده از عملکـرد کـوپلر خـط
شاخهای میکرواستریپ در فرکانسهای 0/9 الی 2 گیگا هرتز انجام شده است.
کوپلرهای خط شاخهای از معروفترین مدارات پسیو استفاده شده در کاربردهای موج میلیمتری و میکرویـو
میباشند.
هایبریدهای λ / 4 طول موج [10] ,[9] مثالهای خوبی هستند که در باند فرکانسی مناسب دامنـه مـساوی و
فاز 90° در خروجی ایجادی میکنند. آنها عموماً در تقویت کنندههای بالانس شده و میکسرها برای بدسـت
آوردن یک افت برگشتی خوب استفاده شده و در جهت حذف سیگنالهای ناخواسته بوده، اگرچه بـه خـاطر
طبیعت ذاتی باند باریک ، طرح مرسوم بر روی خط انتقال λ / 4 بنا نهـاده شـده، کـاربردش در سیـستمهای
چند بانده و باند وسیع محدود گردیده است.
در سالهای اخیر، گزارشهای متفاوتی در رابطه با افزایش و بالا بردن پهنـای بانـد[11] و تکنیکهـای مـوثر در
کاهش سایز [14] ,[12] در مقالات مختلف عنوان گردیده اسـت. طراحـی کـوپلر خـط شـاخهای بـر روی
٣۶
المانهای توزیع شده فشرده بنا گردیده و همچنین برای کاربردهایی در دو باندفرکانسی نیز پیـشنهاد گردیـده
است. در [16] مولف یک ساختار صفحهای جدید را برای طراحی کوپلرهای خط شـاخهای دو بانـد عنـوان
کرده است هرچند مدار پیشنهاد شده از اشکالات زیر برخوردار می باشد:
-1 پهنای باند محدود ( کمتر از (10MHz
-2 افت داخلی و برگشتی بهینه نشده
-3 فضای اشغالی سابستریت آن خیلی بیشتر از کوپلرهای مرسوم بوده ( برخی از خطوط شاخهای، طولی به
اندازه 0/5λ را دارند)
درطرح پیشنهادی، تمام خطوط شاخهای تنها دارای طول λ / 4 بوده ( اندازه فشرده) و در فرکانس میـانی دو
تا باند فرکانسی بکار بسته شده، همچنین در مقایسه با طرح ذکر شده قبلی پهنای باند عملکرد وسیعتـری را
( > 100MHz ) ایجاد میکند، همچنین ایزولاسیون بین پورتهای بهتر و افت داخلی و برگشتی بهینـه تـری
را دارد ( بخش بعدی).
در قسمت بعد جهت آنالیزکردن، فرمولهای یک کوپلر خط شاخهای با فرمولهای واضح و روشـن نـشان داده
شده، در نهایت جهت رسیدگی و تحقیق، نتایج اندازهگیری و شبیهسازی شده ساختار کوپلر خـط شـاخهای
درباند فرکانسی (900/2000)Mhzکه با تکنولوژی میکرواستریپ ساخته شده آورده شده است.
( 4 – 2 فرموله کردن با استفاده از ماتریس خطوط انتقال
٣٧
شکل (5-2) طرح یک کوپلر خط شاخهای تک باند مرسوم توسط بخشهای خطوط انتقال بـا طـول λ / 4 را
نشان میدهد. در شکل (6-2) مدار معادل برای یـک خـط انتقـال λ / 4 پیـشنهاد شـده کـه شـامل خطـوط
شاخهای به طول الکتریکی θ و امپدانس مشخصه ZA بوده و به جفت المان موازی (jY)9 متصل گردیده.

شکل(:(5-2ساختار کوپلر خط شاخه ای یک بانده مرسوم

(a)

(b)
شکل((a):(6-2ساختار معادل پیشنهادی (b).خط شاخه ای λ / 4

٩ مقدار ادمیتانس خط
٣٨
حال جهت تحلیل ساختار پیشنهادی با در نظر گرفتن عدم افت و بکار بردن فرمـول ماتریـسها، پارامترهـای
ABCD ساختار پیشنهادی نشان داده شده در شکل((a)(6-2 بصورت زیر بیان میگردد.
(13-2) 0 jZ A Sinθ 1 0 Cosθ 1 Cosθ 1 jY 1 jYA Sinθ jY که این ماتریس در نتیجه به ذیل منتج می گردد.
jZASinθ Cosθ −ZAYSinθ (14-2) Cosθ −ZAYSinθ 2ZAYCotθ) 2 2 (1−ZA Y jYASinθ و نیز ماتریس بالا به صورت زیر خلاصه میگردد.
±jZT 0 jZASinθ 0 (15-2) 0 ±j  1 0 j Z T A Z Sinθ با معادل قرار دادن ماتریسهای بالا داریم:
Z A Sinθ ±ZT(16-2)
Cotθ
Y(17-2)
Z A
معادله (15-2) نشان میدهد که ساختار پیشنهاد شده معادل با بخشی از خط انتقـال بـا امپـدانس مشخـصه
ZT± و طول الکتریکی θ = ± 90° میباشد. مطابق با عملکرد یک مدار دو بانده (Dual – band) شـرایط
لازم ممکن است به صورت زیر داده شود.
٣٩
(18-2) Z A Sinθ1 ±ZT
(19-2) Z ASinθ2 ±ZT
کهθ1 و θ2 طولهای الکتریکی معادل شده خط شاخهای در باند فرکانسی مرکزی f1 و f2 میباشد.
روش معمولی حل معادلات (18-2) و (19-2) به صورت زیر میباشد:
3.......و2وn=1
(20-2) θ2  nπ −θ1 (21-2) f1  θ1 f2 θ2 (22-2) (1 −δ) nπ θ1  2 (23-2) (1 δ) nπ θ2  2 (24-2) f2 − f1 δ  f 2 f 1 در نتیجه طول الکتریکی خط شاخهای معادل شده در فرکانس مرکزی (θo)به صورت زیر تعیین میگردد
(θ0 ) = θ1 2θ2  n2π(25-2)

با قرار دادن معادلات (22-2) و (23-2) در معادلات (16-2) و (17-2) خواهیم داشت:
(26-2) ZT Z A  ( nδπ Cos( 2 ۴٠
nδπ ( tan( 2 f1 , f  Z A (27-2) y  nπδ ( − tan( 2 f2  , f Z A برای مقادیر 5.....و3وn=1 (28-2) ZT Z A  ( nδπ Sin( 2 nδπ ( −Cot( 2 f1  , f ZA (29-2) y  nπδ ( Cot( 2 f2 , f  ZA برای مقادیر..... 6و4وn=2 در معادلات بالا مقادیر مدار معادل داده شده بـرای دو بانـد فرکانـسی دلخـواه f1 وf2 کـه همـان y و ZA
هستند به دست میآیند.
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب
با در نظر گرفتن امپدانس خطوط عمودی zo=50Ω وخطوط افقی35 و طول الکتریکی 90درجه و نیـز قـرار
دادن آنها در serenade مقادیر طول(( L و پهنای خطوط (w) را بدست آورده و بادر نظـر گـرفتنf=1/45
و بستن مدار در قسمت شماتیک نتایج حاصل را می بینـیم.در شـکلهای((7-2 الـی (8-2) نتـایج حاصـل از
شبیه سازی کوپلر بدون استفاده از المانهای شنت در فرکانس مرکزی نشان داده شده است.
۴١

شکل(S13 ̦S12 ̦ S11:(7-2 وS 14 کوپلر بدون استاب
مشاهده می کنیم مادیرS11و S12 در فرکانس مرکزی کمتر از -20dB بوده یعنی پورت 1 از 4 ایزوله است
وS13وS12 حدوداً dB٣- می باشد .

شکل(:(8-2زاویهS 12 و S14 برای مدار بدون استاب
۴٢
(6-2 تحقق جهت دوبانده کردن مدار
دربخش قبل روش مشخصی برای طراحی یک کوپلر دو بانده (dual – band) به صورت فرمـولی تحلیـل
و تجزیه گردید. نتایج نشان میدهند روشهایی جهت انتخاب مقدار n و همچنین راههای مختلف در بدسـت
آوردن مقادیر المان شنت با ادمتیانس ورودی (Y) که در معادلات (27-2) و (29-2) توضیح داده شده بودند
وجود دارد.جهت معادل سـازی و نـشان داد ن توپولـوژی دو تـا مـدار در اینجـا مقـدار n را یـک در نظـر
میگیریم.
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)
با استفاده از معادلات (22-2) و (23-2) ادمیتانس ورودی یک استاب مدار باز بـه صـورت زیـر مـیتوانـد
باشد.
δπ ( Cot( f1 , f  2 ZΒ (30-2) yoc  ( δπ −Cot( f2 , f 2 ZΒ که در اینجا ZB نیز امپدانس مشخصه استاب مدار باز میباشد . از ایـن رو بـا ترکیـب معـادلات (27-2) و
(30-2) مقدار ZB به صورت زیر بدست میآید: (31-2) Z T ZB  δπ δπ ( )Tan( Sin( 2 2 ۴٣

شکل (9-2) ساختار کوپلر پیشنهادی با استاب مدار باز
در شکل (9-2) ساختار نهایی ( با ساده سازی بوسیله ادغام استابهای شنت موازی شده ) از یـک کـوپلر دو
بانده (dual – band) با تمام خطوط شاخهای جایگزین شده بوسیله مدار پیشنهاد شده شکل (6-2) نـشان
داده شده است و نتیجتاً مقادیر Z3, Z2, Z1 بوسیله معادلات زیر تعیین میگردند.
(32-2) 1 . Z0 Z1  ( δπ Cos( 2 2 (33-2) 1 Z2  Z0. ( δπ Cos( 2 (34-2) 1 . 0 Z Z3  δπ δπ 2 1  ( )Tan( Sin( 2 2
(2-6-2 استفاده از مدار اتصال کوتاه ( طول ( λ2

به طور مشابه ادمیتانس ورودی یک استاب اتصال کوتاه میتواند به صورت زیر بیان گردد:
۴۴
f1 , f Cotδπ Z B (35-2) ysc  Cotδπ − f2  , f Z B شکل (10-2) (مدار چاپی) Layout یک کوپلر اصلاح شده با اتصالات شنت کوتاه شده نشان میدهد کـه
امپدانس مشخصه استاب شنت به صورت زیر محاسبه میگردد.
(36-2) 1 . 0 Z Z3  δπ 2 1  )Tanδπ Sin( 2
شکل (10-2) ساختار کوپلر پیشنهادی با استاب اتصال کوتاه
در تئوری نیز کوپلر پیشنهاد شده میتواند در هر دو باند فرکانسی دلخواه عمل کرده، اما در عمل تعیین رنـج
امپدانسی ساختار کوپلر میتواند مقداری حقیقی پاشد.
۴۵
واضح است که با انتخاب مناسبی از شکل مدار برای رنجهای متفاوتی از کـسر پنهـای بانـد ( 0/2 تـا 0/3 و
همچنین 0/3 تا ( 0/5 کوپلر پیشنهاد شده ممکن است امپدانس خطوط که تنها 30 الی 90 اهم تغییر میکنـد
در آنها بکار برده شود.
( 7- 2 آنالیز(تحلیل) مدار π شکل خط شاخهای دو باند و مشاهده نتایج شبیهسازی :
جهت اثبات و تأیید عملکرد، یک کـوپلر خـط شـاخهای میکرواسـتریپ دو بانـده در فرکانـسهای 0/9 و 2
گیگاهرتز طراحی و شبیهسازی شده و روی کسری از پهنای باند محاسبه شده((δ= 0/38 بنا نهاده شدهاست.
ساختار فشرده یک استاب مدار باز با طول λ / 4 جهت بکار بستن نیز مورد استفاده قـرار گرفتـه اسـت . از
معادلات (32-2) الی (35-2) مقادیر Z3, Z2, Z1 حدود 42/7 و 60/6 و 54/4 اهم نیز بدست آمـده اسـت.
جهت بهتر کردن دقت کار، پاسخ فرکانسی ساختار کامل شـامل ناپیوسـتگی و اثـر زیـر لایـه (Substrate)
بهینه شده با استفاده از یک مدار شبیه سازی شده اشکال (11-2) الی (14-2) پاسـخ فرکانـسی شـبیهسـازی
شده مدار نهایی از یک کوپلر دو بانده را نشان میدهند. مطابق با اثر یـک اسـتاب شـنت تلفـات داخلـی در
فرکانس مرکزی (1.45GHz) صفر گردیده که به حذف هر سیگنال مداخله کننده کمک میکند. کوپلر فوق
سابستریتی با ثابت اللکتریک εr = 3/38 و ضخامت h = 0/81mm میباشد. حال با اسـتفاده از نـرم افـزار
Serenade ابتـدا مقـادیر خطـوط یعنـی پهنـای خطـوط W1 ،W2،W3و طـول آنهـا L1،L2،L 3 را در
فرکــانس مرکــز 1/45 بدســت مــیآوریــم و بــا بــستن مــدار در ایــن فــرمافــزار مقــادیر پارامترهــای
S11،S12،S13وS14را برای باند فرکانسی دوبل شبیهسازی کردهایم.
۴۶
جدول(:(1-2مشخصات الکتریکی وفیزیکی مدار در دو باند امپدانس طول الکتریکی پهنای خط طول خط Z1=42.7 θ1=90 W1=2.38mm L1=31.25mm Z2=60.4 θ2=90 W2=1.36mm L2=31.95mm Z3=54.4 θ3=90 W3=1.63mm L3=31.73mm
شکل(:(11-2نتایج شبیه سازی(افت برگشتی(S11
۴٧

شکل(:(12-2نتایج شبیه سازی(S12و(S13

شکل(:(13-2نتایج شبیه سازی((S14
پارامترهای تشعشتی در این شبکه آنالایزر روی رنج فرکانسی از 0/1 الی 4 گیگاهرتز انجام میگردد.
۴٨

شکل(:(14-2نتایج شبیه سازی(پاسخ فازمدار با استاب)
شکلهای (11-2) الی (14-2) پاسخ اندازهگیری شده کوپلر در فرکانـسهای مرکـز دو تـا بانـد عملکـرد کـه
0/9GHz و 2GHz میباشد نشان میدهند..افت برگشتی و ایزولاسیون پورت بهتر از -20dB در فرکانسی
مرکزی دو باند بدست آمده است هر چنـد تـضعیف سـیگنال بـالا تـر از 50dB جـذب شـده در فرکـانس
1/41GHz نیز میباشد.
درمقایسه با طراحی یک کوپلر تک بانده، افت داخلی اندازهگیری شده دردو پـورت خروجـی تنهـا 0/4dB
بالاتر از مقدار واقعی آن((-3db میباشدو این بـاور وجـود دارد کـه ایـن اخـتلاف اساسـاً ناشـی از وجـود
ناپیوستگیهای اتصالات و اثر انتهای باز نشان داده شده در شبیه سازی میباشد.
طراحی و بکار بستن کوپلر خط شاخهای فشرده صفحهای بالا نیز درطراحی کـوپلری بـا دو بانـد فرکانـسی
کوچک و بزرگ بکار میرود.
۴٩
فصل سوم:
طراحی مدار میکرواستریپ فشردهT شکل با اندازه کاهش
یافته در دو باند فرکانسی
۵٠
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه بـه رونـد
ارائه شده در دو بانده کردن کوپلرπ شکل ( 900MHz و (2400MHz
در این بخش ابتدا با روش دستی و استفاده از ماتریسهای ABCD کوپلرخط شاخهای و معـادل قـرار دادن
آن با ماتریس ABCD یک خط ±90°، طول الکتریکی و امپدانس مشخصه کوپلر خط شـاخهای بـا تبـدیل
θ به ' θ θ) f 2  ' (θ بوده را در حالت دو بانده معادل ساخته و در نهایت بوسیله برنامه ساده کامپیوتر که f1 بر اساس اطلاعات موجود نوشته شده، خطای موجود را در بدست آوردن θ و امپدانس مشخصههـایی کـه
برای هـر دو فرکـانس دلخـواه بـالا و پـائین 0/9GHz)و(2/4GHzصـدق کنـد بـا کمتـرین درصـد خطـا
0/4)درصد) درنظر میگیریم و با شرایط در نظر گرفته شده مقادیر θ و Z را بدست میآرویم.
همانطور که در بخش قبل نیز گفتیم با معادل سازی مدل T شکل خطوط استاب شنت متـصل شـده از نـوع
مدار باز بوده و این استاب خود باعث کاهش طول خط می گردد.
3 Sinθ' 3 jZ 3 Cosθ' 0 1 Sinθ' jZ Cosθ' A B (1-3) j − 1 1 1 j 3 Cosθ' 3 Sinθ' 1 jβ'2 Cosθ' Sinθ'  Z3 1 1 Z1 C D در بخش قبل مقادیر β2 و Z1 و Z1 ، Z1 بـا مقـادیر معـادل آن آورده شـده انـد و در اینجـا θ f2 θ' Z Z Z f 3 2 T 1 میباشد.
با معدل قرار دادن ماتریس فوق با خط -90 درجه داریم:
− jZ 0 Sinθ' jZ Cosθ' B A (2-3) T − j  T j 0 Cosθ' Sinθ'  ZT ZT C D ۵١
وبا ساده سازی روابط فوق داریم:
(3-3) Cosθ'1Cosθ'3 −kTanθ'2 Sinθ'1 Cosθ'3 −NSinθ'1 Sinθ'3  0 (4-3) N Cosθ'1 Sinθ'3 −kTanθ'2 Sinθ'1 Sinθ'3 NSinθ'1 Cosθ'3  − M (5-3) K 1 Cosθ'1 Sinθ'3 Cosθ'1 Cosθ'3  0 Tanθ'2 Sinθ'1 Sinθ'3 − − N N (6-3) Sinθ'1 Cosθ'3 KTanθ'2 Cosθ'1 Cosθ'3 NCosθ'1 Sinθ'3  −M در روابط بالا f2  θ'3 f2  θ'2 f2  θ'1 f 3 θ f 2 θ f θ 1 1 1 1 مقادیرf1 =900MHz و f2 =2400MHz می باشند. با ساده سازی روابط (3-3) و (4-3) به معادلا ت زیر میرسیم. (7-3) Cosθ'3 '1  − Sinθ M (8-3) Sinθ'3 − M Cosθ'1  N (2-3 استفاده از برنامه کامپیوتری ساده جهت بدسـت آوردن پارامترهـای مـدار دو
بانده
حال نیز برنامه ای با نرم افزار مطلب نوشتهایم و میخواهیم طولهـای الکتریکـی و امپـدانس مشخـصههـای
کوپلر و درنهایت سیرکولاتور موردنظر را در شرایطی بدست آوریم که خطاهای زیر حـاکم باشـند یعنـی در
آن واحد شرایط برای فرکانسهای بالا و همچنین پائین (استفاده از دو باند فرکانسی) موجود باشد.
۵٢
(9-3) N f 2 θ1 )Tan( f 2 Tan( 0.4 θ3 ) − M 2 f1 f1 (10-3) 0.4 θ3 ) f2 Tan( 2 − N 2 M θ2 ) − f2 Tan( f1 kN f1 (11-3) 0.4 θ3 ) f 2 Sin( M θ1 )  f 2 Cos( f1 N f1 برنامه نوشته شده در نرم افزار مطلب در پیوست الف ارئه شده است.
طول الکتریکی و امپدانس مشخصههایی که در شرایط خطای بالا بر قرار باشند جوابها میباشند کـه شـرایط
برای استفاده درحالت دو باند فرکانسی را دارند. θ1و θ2 وθ3 وZ1وZ2وZ3 در شرایط فـوق را مطـابق بـا
برنامهای که آورده شده بدست میآیند.
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محـیط ( نـرم افـزار) مختلـف و
مشاهده نتایج حاصل
با قرار دادن مقادیر بدست آمده از برنامه نوشته شده که برای استفاده در دو باند فرکانـسی دلخـواه در نظـر
گرفته شده در روابط زیر و یا با استفاده از محیط serenade طولهای Lm1و)Wm1پهنا وطول خط شاخه
اصلی)Lm3و)Wm3پهنا وطول خط متصل به Zm1 در خط اصلی)Lm2و)Wm2پهنا وطول استاب مـدار
بــاز در خــط اصــلی)Lb1 و )Wb1پهنــا وطــول خــط متــصل بــهZm2در خــط عمــودی)وLb1
،Wb1،Lb2وWb2را بدست میآوریم.
۵٣
(12-3) 4 π εr −1 1 Z 0 2(εr 1) 1 (1/ εr )Ln π )  2 (εr 1)(Ln 2  119.9  H (13-3) −1 1 1 exp H W ( − ( 4 exp H 1 8 h (14-3) −2 4 Ln 1  π )(Ln 1 εr − 1 − 1 εr  ε eff  ) ) 1 π εr 2 1 εr  2H ' 2
با در دست داشتن مقادیر فوق مدار را در نرم افزارهـای Serenade و Advance designer (ADS)
sys-- ترسیم و نتایج شبیهسازی راعلاوه در ansoft مشاهده میکنیم منتهی در نهایت مقدار پهنـای بانـد
را حدوداً در Optimom 10% کرده و نتایج حاصل در زیر آورده شده اند.
h = 0/762mmεr =3/55 Tanδ  0. 022
در شکلهای((1-3و((2-3و((3-3 شماتیک ومدارچاپی و پاسخ مـدار شـبیه سـازی شـده در نـرم افزارهـای
مختلفی نشان داده شده است.

(a)
۵۴

(b)
شکل((a ) 🙁 1-3شماتیک (b)مدارچاپی (designer,hfss)ansoft
در جدول((1-3و(2-3 )با در دست داشتن مقادیر ابتدایی از المانهای مدار که توسط روابـط((12-3 الـی(-3
(14بدست آمده اند بازهای جهت حد بالا وپایین المان ها در نظر گرفته شده است و به سمت اهدافی که در
جدول((2-3 امده optimom انجام می گردد
.جدول(:(1-3دو بازه فرکانسی ودو هدف مورد نظر پروژه 905mhz 895mhz Frange1 باند فرکانس اول
2.45ghz 2.35ghz Frange2 باند فرکانس دوم
-20db lt ms12=-3.5db w=3 ms13=-3.5db w=3 ms14 -20db lt ms11 Goals1 هدف اول
-20db lt ms12=-3.7db w=3 ms13=-3.7db w=3 ms14 -20db lt ms11 Goals2 هدف اول
۵۵
جدول(:(2-3بازه بالا وپایین جهت optimom هدف بازه بالا مقدار اپتیمم شده بازه پایین نام المان
7MM? 5.69180mm ?5mm lb1
12.5MM? 11.35000mm ?10mm lb2
41MM? 39.57900mm ?37mm lb3
11.5MM? 10.77600mm ?9.5mm lm1
16.5MM? 15.36700mm ?14.5mm lm2
40MM? 38.67200mm ?37mm lm3
0.8MM? 0.16152mm ?.08mm wb1
1.2MM? 0.95112mm ?0.6mm wb2
2.5mm? 1.45870mm ?0.8mm wb3
2.1MM? 1.65260mm ?1mm wm1
0.5MM? 0.20507mm ?0.1mm wm2
3.5MM? 2.70090mm ?2mm wm3
2.5MM? 0.20010MM ?0.1mm wp

(a)
۵۶

(b)

(c)
شکل(S 11 :(2-3، S12،S13و S14 مدار شبیه سازی شده در ADS(c) SERANADE(b) ANSOFT(a)
۵٧

شکل(:(3-3پاسخ فازی مدار 2بانده
مشاهده میگردد که مقدار پارامترهای تضعیف در 0/9 و 2/4 گیگاهرتز -3dBو -20dbمیباشند.
در بخش بعدی در مورد اثرات DGS و مشاهده تاثیرات آن بروی این کوپلر بحث میکنیم.
۵٨
فصل چهارم:
بررسی انواع مختلف DGS و اثرات آن بر روی خطوط
میکرواستریپ
۵٩
DGS (1-4 چیست؟
DGS نیز شبکهبندی قلم زده شده ای است با شکل اختیاری که بر روی صفحه زمین قـرار مـیگیـرد و در
شکلهای T ، H ،دمبلی و حلزونی و...بکار میروند.
در شکل (1-4) انواع مختلف DGS نشان داده شده است.

شکل(H(a) :(1-4 شکل T(b) شکل (c) هلزونی شکل (d) دمبلی شکل
(2-4مشخصات کلی DGS
در ساختار DGS مشخصه های زیر رامی توان عنوان کرد:
-1 تغییر اندازه شکاف باند نوری . (PBG)10
-2 دارا بودن ساختارهای پریودیک وغیر پریودیک.
-3 به سادگی نیز مدار معادل LC را میسازد.

10 Photonic band gap
۶٠
(3-4 کاربردهای DGS
-1 در تشدید کنندههای صفحهای
-2 بالا بردن امپدانس مشخصهخط انتقال
-3 استفاده در فیلتر ،کوپلر و سیرکولاتور، اسیلاتور، آنتن و تقویت کنندهها
(4-4 ویژگیهای DGS
-1 پوشش میدان روی صفحه زمین را مختل میکند.
-2 بالا بردن ضریب گذردهی موثر.
-3 بالابردن ظرفیت موثر و اندوکتانس خط انتقال
-4 از بین بردن هارمونیکهای اضافی با تک قطب کردن ویژگی ) LPF11 فرکانس قطع و تشدید)
(5-4اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ
DGS نیز بوسیله الگوی کـم کـردن قلـم زنـی، در صـفحه زمـین مـدار ایجـاد مـی گـردد.. در ابتـدا خـط
میکرواستریپی با الگوی DGS از نوع دمبلی شکل نشان داده شده است و تـأثیر شـکاف بانـد خـوبی را در
بعضی ار فرکانسهای معین نیز ایجاد می کند .[21]
DGS در طراحی مدارات امواج میلیمتری و مایکرویو خیلی زیاد بکار میرود . اخیراً DGSهای متوالی بـا
کاستن الگوهای مربعی از مدارات صفحهای کـه ویژگیهـای Slow wave و stop band بـسیار خـوبی را

11 Low pass filter
۶١
تولید میکنند مورد بررسی قرار گرفته که در تقویت کنندهها و اسیلاتورها بیشتر مورد استفاده قرار گرفتهانـد
.[23] [ ,22]
در مقایسه با DGS پریودیک قبلی [21] و [22] یک نـوع DGS پریودیـک بهتـر و قـویتـر نیـز پیـشنهاد
1
گردیده که ابعاد مربعات کاسته شده متناسب با توزیع دامنه تابع نمـایی ) e n کـه n عـدد صـحیح اسـت)

میباشد.
در شکل((2-4مدار دو پورتی بدون DGS نشان داده و پارامترهـایS حاصـل از آن بـا ansoft در شـکل
(3-4) آمده است.

شکل(:(2-4خط میکرواستریپ دو پورته باεr=10 وh=1.575

شکل(:(3-4پارامترهایSمدار شکل((2-4
۶٢
به منظور بررسی این اثرات توسط DGS پریودیک نیز یک عدد مدار DGS پریودیک متحدالـشکل و دو
تا مدار DGS پریودیک قوی شده نیز در اینجا طراحی و اندازهگیری شدهاند. اندازهها نـشان مـیدهنـد کـه
نمایشهای اخیر اجرای نقش دقیقی توسط متوقف شدن رپیل و بزرگ کردن پهنـای بانـد را ایفـا مـیکنـد.در
شکل((4-4 دو پورتی با DGS دمبلی شکل نشان داده شده و نتیجه شبیه سازی شده این خـط بـا ansoft
در شکل((5-4رسم گردیده است.

شکل(:(4-4مدا با DGS دمبلی شکل

شکل(:(5-4پارامترهایS مدار باDGS دمبلی شکل
در بالا می بینیم فرکانس قطع ومقدار تضعیف کاهش می یابند.
( 1 – 5 – 4 الگویDGSدمبلی شکل و ویژگی شکاف باند
۶٣
نمای شماتیک مدار دمبل شکی DGS در شکل (4-4) نشان داده شده است .خـط میکرواسـتریپ رو قـرار
گرفته و DGS نیز در زیر صفحه فلزی زمین قلم زده شده است. طرح DGS توسط خطوط دش مـشخص
شدهاند. پهنای خط نیز برای امپدانس مشخصه 50 اهم تعیین گردیده است. ضـخامت سابـستریت زیـر لایـه
1/575 میلیمتر و ثابت دی الکتریک εr = 10 میباشد. در [20] آمده که شـکاف قلـم زده شـده و کاسـتن
مربعی قلم زده شده با ظرفیت موثر خط و اندوکتانس خط نیز متناسب میباشد و وقتی ناحیه قلـم زده شـده
کاسته شده مربع شکل کاهش می یابد و فاصله شکاف نیز 0/6 میلیمتر نـشان داده شـده اسـت، انـدوکتانس
موثر کاهش یافته و این کاهش اندوکتانس نیز فرکانس قطع (fc) را بالا میبرد که این قضیه در شکل (7-4)
نشان داده شده است. در اینجا ما نیز این کار را با Ansoft انجام دادهایم.
( 2 – 5 – 4 ایجاد DGS دمبلی پریودیک قویتر
نمایش شماتیک DGS پریودیک با الگوهای مربعـی واحـد بـرای مـدارات صـفحهای [21] نـوع 1 نامیـده
میشود که در شکل (6-4)(a) آمده است.مدار ما در اینجا نیز خـط میکرواسـتریپ 50 اهمـی و نیـز5 عـدد
الگوهای مربع متحدالشکل با دوره یکسان d = 5mm میباشند.پهنای طرفین مربعها و فاصله شکاف هـوایی
ما بین آنها 4/5 (g) میلیمتر و 0/6 میلیمتر میباشند.
براساس نوع 1 ، متحدالشکل بودن توزیع پنج عدد الگوی مربعی توسط یک شکل غیر واحد توزیع میگردد.
حوزه المانهای مربعی نیز متناسب با توزیع دامنه تابع نمایی e1/ n میباشد.در اینجا دامنه سـوم از پـنج المـان
مربعی شکل نیز 4/5mm میباشد.پس نوع دوم بوده و دامنه المـان توزیـع شـده بـر اسـاس زیـر مـشخص
میگردند.
2/3mm2/7mm4/5mm(1-4)
۶۴

شکل (a) :(6-4) نوع1 ، (b) نوع2، (c) نوع3
استفاده از توزیع ارتفاع غیر واحد DGSهای پریودیک، نوع دوم را تشکیل می دهند که در شکل (6-4)(b)
نشان داده شده است. براساس نوع دوم، دیگر مدار DGS پریودیک قوی شـده، یـک خـط میکرواسـتریپ
جبرانی را دارد که نوع سوم نامیده میشود. در شکل (6-4)(c) آمده است.خط میکرواستریپ جبرانی شـامل
۶۵
یک خط 50 اهمی و یک خط عریض میباشد. همچنین بزرگی المانهای DGS توسط رابطه سوم مشخص
گردیده است. المانهای الگوی مربعی غیر هم شکل نیز دارای دوره مساوی d=5mm بوده و فاصـله هـوایی
ثابت d = 0/6mm دارند که در شکل (6-4) نوع دوم و سوم خطوط میکرواستریپ رو قـرار دارد و DGS
ها نیز در صفحه زمین فلزی کنده شده و توسط خطوط دش مشخص شدهاند.
(3-5-4اندازهگیریهای مربوط به DGS دمبلی شکل
سه نوع مدار DGS پریودیک که ذکر شدند مورد بررسی و اندازهگیری قرار گرفتهاند، نتایج اندازهگیری نیـز
در شکل (8-4)((a)-(c)) نشان داده شده هستند . این نتایج به طور خلاصه در جدول (1-4) آمده است.
جدول(:(1-4مقایسه DGS های واحد وپریودیک وتوزیع نمایی

شکل(:(7-4پارامترهایS برای DGS دمبلی شکل
۶۶

(a)

(b)

(c)
شکل(:(8-4 مقایسه پارامترهای S مدارهای (a) DGSنوع(b) 1نوع(c) 2 نوع3
۶٧
سابستریت این مدارات دارای h = 1/575 و εr = 10 هستند. این اندازه گیـریهـا توسـط Ansoft انجـام
شده و نشان داده شدهاند.
همان طوری که در جدول آمده، 20dB ایزولاسیون پهنای باند برای انواع 1و 2و 3 نیز در فرکانسهای 3/05
و 4/18 و 4/26 گیگاهرتز میّاشند.
مدارهای DGS پریودیک پیشنهاد شده نوع 2و 3 پهنـای بانـد ایزولاسـیون 20dB را بهتـر 37% و (39/7%
میکند.در ناحیه پائین گذر، اولین افت برگـشتی و پیـک افـت برگـشتی بـرای نـوع 3، مقـادیر -46/7dB و
-30/9dB بوده و در صورتیکه این مقادیر در نوع 1 نیز -10/8dB و -4/9dB هستند.اولین افت برگشتی و
ماکزیمم افت برگشتی نیز در 4 بار (لحظه) بهتر شده و بنابراین ر پیلها به صورت موثری از بـین رفتـهانـد و
پهنای باند موثر برای نوع سوم افزایش و فرکانس قطع 3dB به صورت مختصر و کم تغییر پیدا میکند.
(6 – 4بررسی اثرات DGS های هلزونی بر روی هارمونیکهای تقسیم کننده توان
در اینجا نشان خواهیم داد تکنیکهای موثری از حذف هارمونیک دوم و سوم برای یـک تقـسیم کننـده تـوان
ویل کینسون (WILLKINSON)با استفاده از DGS هلزونی شکل را، که ما در مدار کـوپلر از ایـن نـوع
DGS استفاده کردهایم.
شکاف باند الکترومغناطیسی و برهم زدن ساختار زمین اخیـراً نیـز کـار بردهـای متفـاوتی را در مـایکرویوو
فرکانس موج میلیمتری با شکلهای مختلف دارند [22] و [24] و DGS خط میکرواستریپ نیـز بـا بـر هـم
زدن مصنوعی صفحهای زمین در ویژگی رزونانس مشخـصه انتقـال تغیراتـی ایجـاد مـیکنـد. در یـک خـط
میکرواستریپ مطابق با اندازه DGS یا بر هم زدگی که روی صفحه زمین ایجاد میگردد، حذف باند بیـشتر
۶٨
در فرکانس رزونانس صورت میگیرد. همچنین DGS باعث بوجود آمدن اندوکتانس موثر اضـافی در خـط
انتقال میگردد. افزایش اندوکتانس موثر از ایجاد DGS باعث افزایش طول الکتریکی خط انتقال نـسبت بـه
یک خط متداول میگردد که خود نیز باعث کاهش اندازه مدارات موج میلی متر و مایکرویو میگـردد. [21]
، در طراحی فیلترها ،تقسیم کنندههای توان و تقویت کنندهها، ویژگی حذف باند و اثر موج آهـسته (Slow
wave) توسط DGS نیز بسیار مورد نظر می باشد [22]و [23]
هارمونیک های ناخواسته تولید شده با ویژگی غیر خطی مدارات اکتیو نیاز به حذف کردن دارند. در مدارات
مایکرویو و فرکانس بالا ویژگی حذف باند توسط DGS میتوانـد در متوقـف کـردن هارمونیکهـای مـورد
استفاده قرار گیرد [22] و .[23] با یـک DGS هلزونـی شـکل متقـارن، (یـک تـک ( DGS حـذف تـک
هارمونیک را خواهیم داشت، وDGS پریودیک در جهت حـذف هارمونیـک دوم و سـوم بکـار مـی رونـد.
DGS های آبشاری و پشت سرهم باعث افزایش افت داخلـی شـده و بهمـین دلیـل در مـدارات بـا انـدازه
کوچک نیز استفاده از ان محدود گردیده است. در اینجا ساختار DGS هلزونی شکل غیر متقارن نیز جهـت
حذف هارمونیکهای دوم و سوم بطور همزمان پیشنهاد گردیدهاند. به طور مـوثر یـک تـک DGS هلزونـی
غیرمتقارن باعث از بین بردن باند فرکانس دوم میگردد و نیاز به ناحیه کوچکی هم جهت نقش بـستن دارد.
تقسیم کننده توان ویل کینسن با بکار بستن یک DGS هلزونی غیـر متقـارن در خطـوط λ4 باعـث حـذف

هارمونیک دوم شده و اندازه آن نیز با اثر موج آهسته کاهش مییابد. مشاهده میگردد به دلیل ذکـر شـده در
این پروژه ما از این گونه DGS استفاده ننمودهایم. تقسیم کننده Willkinson پیشنهاد شده به خـوبی یـک
تقیسم کننده توان مرسوم، در فرکانس کار خواهد بود.
۶٩
(7-4مدل مداری و هندسه DGS هلزونی نا متقارن
در شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ که ابعـاد کنـده شـده هلزونـی
شکل در سمت راست و چپ متفاوت از یکدیگر هستند آمده است. برای هندسه این DGS نامتقارن مطابق
با کنده شدهگی سمت چپ و کندهشدگی سمت راست دوتا فرکانس عملکرد متفاوت وجود دارد. مشخـصه
انتقال خط میکرواستریپ با هندسه DGS نامتقارن ویژگی حذف باند در فرکانس تشدید را دارد.

شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ
فرکانس تشدید ممکن است با تغییر کردن ابعاد DGS عوض گردد. مقایسه مشخصه انتقال DGS هلزونـی
با ابعاد مختلف متقارن و غیرمتقارن در شکل (10-4) آمدهاست. امپدانس مشخصه خط 50 اهـم مـیباشـد.
برای هندسه هلزونی متقارون ( A=A'= 3mm و (B=B' = 3mm تنها یـک فرکـانس تـشدید (
(f=2/93GHz وجود دارد در صورتی که در یک DGS غیر متقارن فرکانس تشدید به دو فرکانس مختلـف
تبدیل میگردد. برای یک DGS نامتقارن با A = A' = 3/5mm و B = B' = 2/6mm همان طوری که در
شکل (10-4) مشاهده میگردد دو فرکانس تشدید مختلف دیده میشـودf=2/56GHz وf=4/22GHz کـه
این نتایج نشان میدهند DGS هلزونی نا متقارن با اندازههای متفاوت روی صفحه زمین در دو طرف خـط،
٧٠
فرکانسهای رزونانس مختلف را میتوانند ایجاد کنند.در هندسه نا متقارن DGS نیز میخواهیم بدانیم که بـه
چه صورتی فرکانس تشدید مطابق با بر هم زدگی چپ و راست خط با تغییـر انـدازه بـر هـم زدگـی رفتـار
میکند.

شکل(:(10-4پارامترهای انتقال خط با DGS متقارن( ( A = A' = B' = 3mm ونامتقارن A = 3/4m) و (B = 2/6 mm

شکل(:( 11-4 فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از B/A
٧١
فرکانس تشدید ناشی از بر هم زدگی سمت چپ خط و سمت راست خط در شکل (11-4) بعنوان تابعی از
اندازه بر هم زدگی سمت راست وقتی که اندازه سمت چپ ثابت باشد (A = A' = 2mm) رسم گردیـده
است. اندازه این آشفتگی هلزونی به صورت یک مربع در نظر گرفته شده (B = B' , A = A') .وقتـی کـه
اندازه برهم زدگی سمت راست از مقدار سـمت چـپ کـوچکتر اسـت (B/A<1)، فرکـانس رزونـانس در
سمت راست نیز بزرگتر از مقدار سمت چپ خواهد بود. هنگامیکه مقدار A با B برابر گردد دو تا فرکـانس
رزونانس ازهم پاشیده شده و به یک فرکانس تبدیل میگردد DGS) متقارن). باز وقتی کـه بـر هـم زدگـی
سمت راست افزایش پیدا کند B/A) زیاد شود)، فرکانس تشدید ناشی از بر هم زدگـی سـمت راسـت نیـز
کاهش مییابد. از این رو اندازه سمت چپ ثابت شده و مشاهده میگردد که فرکانس رزونانس ناشـی از بـر
هم زدگی سمت چپ تغییرات آهستهای خواهد داشت تا وقتی که B/A مقدار واحد شود.
مشخصه فرکانسی یک DGS متقارن با مدار رزوناتور RLC موازی میتواند مدل گردد. پارامترهای مـداری
معادل نیز از مشخصه انتقال شبیهسازی شده میتواند گرفته شود.
DGS نا متقارن نیز میتواند با دو تا رزوناتور RLC موازی که به صورت سدی متصل شدهاند مدل گـردد.
شکل((12-4، به همین جهـت مشخـصه انتقـال آن دو تـا فرکـانس تـشدید متفـاوت دارد. در مـدار معـادل
پارامترهای مدار اولین رزوناتور از مشخصه فرکانسی رزونانس بر هم زدگی سمت چپ گرفتـه مـیشـود در
حالیکه رزوناتور دوم بوسیله مشخصه رزونانس بر هم زدگی سمت راست مشخص می گردد. از نتـایج شـبیه
سازی پارامترهای اسکترینگ، پارامترهای مدار رزوناتور برای بر هم زدگی سمت چپ و راست بـه صـورت
زیر مشخص میگردند.
(۴-٢) C L,R W CL,R  ( 2 −W 2 (W 0 2Z C L,R 0 L,R ٧٢
(۴-٣) 1 LL,R  4π2 f02 L,R CL,R (۴-۴) 2zo RL,R  1 1 ))2 −1 − (2Z0 (W0 L,R CL,R − W0 L,R LL,R S11 (W0 L,R )2
شکل( 🙁 12-4 مدار معادل بخش DGS هلزونی نامتقارن
در اینجا اندیس R, L نیز پارامترهای برهم زدگی سمت چپ و راست را بیان می کنند. W0 فرکانس تشدید
و WC فرکانس قطع -3db را مشخص میکنند. Z0 امپدانس مشخصه خط انتقال می باشد.
(8-4حذف هارمونیکها در مدار مقسم توان
مقسم توان کاربردهای گوناگونی از قبیل توزیع توان سیگنال ورودی از آنتن و تقویت کنندههای توان بـالای
مایکرویو دارد. با قرار دادن فیلتر حذف هارمونیک در داخل مقسم توان ناحیه خروجـی فیلتـر کـاهش پیـدا
میکند .[23] جهت حذف هارمونیک نیز میتوان از استاب مدار باز در مرکز شاخههای بـا طـول λ4 مقـسم

توان استفاده نمود.
اگر DGS را بعنوان فیلتر هارمونیک اضافی استفاده کنیم میتوانیم با در نظر گرفتن کاهش سایز مقسم تـوان
که منجر به اثر (Slow – wave) میگردد نیز هارمونیک را حـذف نمـود. از ایـن رو یـک DGS متقـارن
٧٣
میتواند تنها یک سیگنال هارمونیک را حذف کند. ما نیاز به قرار دادن دو تا DGS به صـورت آبـشاری در
λ
هر شاخه ( ( 4 داریم تا هارمونیک دوم و سوم را حذف کنیم. هر چند ناحیه مقسم توان جهت گذشتن دو تا

DGS به صورت پریودیک در هر شاخه مقسم توان نیز محدود میگردد. DGS غیر متقارن هم، سـاختاری
موثر در جهت حذف هارمونیک دوم و سوم به صورت همزمان می باشد. [22]
شکل (13-4) (a) هندسه یک DGS هنرونی نامتقارن جهت حذف هارمونیـکهـای سـوم و دوم را نـشان
میدهد. در اینجا فرکانس عملکرد مقسم توان نیز 1/5 گیگاهرتز میباشد.

شکل(DGS (a): (13-4 هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این DGS
ناحیه بر هم زده شـده سـمت چـپ و راسـت رزونـانس هارمونیـک دوم و سـوم طراحـی شـدهانـد. 3) و
4.5گیگاهرتز). ابعاد طراحی شده این سـاختار D=2/4mm و A = 3 mm D' = S = G = 0/2mm و
A' = 3/2 mm، B = 2/4 mm و B' = 2/6 mm و امپدانس مشخصه خـط نیـز 70/7 Ω مـیباشـد.
٧۴
شکل (13-4) (b) مدار معادل DGS نامتقارن در شکل (13-4) (a) را نشان مـیدهـد. پارامترهـای مـدار
بوسیله پارامترهای اسکترینگ سیموله شده بوسیله روابط (2-4) تا (4-4) محاسبه میگردند.
شکل (14-4) نیز پارامترهای S محاسبه شده بوسیله شبیه سازی (EM) بـرای DGS نامتقـارن شـکل (a)
.(13-4) و محاسبه شده مدار معادل شکل (13-4)(b) را نشان میدهند. در هر دو تا شـبیه سـازی مـشاهده
میگردد که بوسیله DGS نامتقارن واحد، هارمونیکهای دوم و سـوم در فرکانـسهای 4. 5 , 3 گیگـا هرتـز
حذف میگردند.

شکل( ( 14- 4 پارامترهای S مدار با DGS هلزونی به صورت EM و شبیه سازی شماتیک
مشاهده میگردد که S12 موافق رنج فرکانسی پهن و S11 نیز در جهت حذف هارمونیک مقسم تـوان اصـلی
بکار میرود. یک مقسم توان معمولی در شکل (15-4)(a) مشاهده میگردد و نیز مقسم توان پیـشنهاد شـده
با DGS غیر متقارن در شکل (15-4)(b) آمده است. در اثر موج آهـسته (slow – wave) بـودن DGS
نیز اندازه مقسم توان پیشنهادی کاهش یافته است. اندازه L' = 17/3 mm در مقایسه L = 19mm حـدود
9/1 % کاهش یافته است.
٧۵
پارامترهای S شبیه سازی شده مقسم توان معمولی و پیشنهادی در شکل (16-4) آمده است.

شکل( ( 15- 4 هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن
در (16-4) (b)، فرو نشاندن حدود18 dB برای هارمونیک دوم و سـوم بـا وارد کـردن DGS نامتقـارن در
خط انتقال ( ( λ4 مقسم توان مشاهده میگردد. افـت برگـشتی بـرای فرکـانس 1/5 GHZ در هـر دو مـشابه

یکدیگر می باشند، حتی با وارد کردن DGS نامتقارن در مدار.
شکل (17-4) نیز قسمت رو و زیر از یک مقسم توان ویل کینسن با وارد DGS هلزونی نامتقـارن را نـشان
میدهد. در شکل (a) (18-4)، S11 اندازهگیری شـده را نـشان مـیدهـد. افـت برگـشتی در فرکـانس 1/5
گیگاهرتز – 40dB بوده. S21 نیـز در شـکل (18-4)(b) بعنـوان تـابعی از فرکـانس آمـده اسـت. توقیـف
هارمونیک دوم (3 GHZ) نیز 18dB و هارمونیک سوم در فرکانس (4/5 GH) نیز 15dB میباشد.
٧۶

شکل ( ( 16- 4 نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با DGS

شکل( ( 17-4 مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار
٧٧

شکل( ( 18- 4 نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(S12(b)S11(a
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی
ابتدا مدار شکل (3-2) را با اسـتفاده از DGS هلزونـی شـکل نیـز آنـالیز و نتـایج آن را در شـکل((19-4
مشاهده میکنیم
٧٨

شکل(:(19-4مدار بااستفاده از (a) DGSیک بعدی((bدو بعدی
در شکل (a)(20-4)و((b نتایج شبیه سازی حاصل از مدار قلم زده شده DGS و بدون استفاده از آن را
نشان میدهند.
٧٩

شکل((a):(20-4نتیجه شبیه سازی کوپلر با استفاده ار (b) DGSبدون استفاده از ((a)(3-2)) DGS
با مشاهده نتایج بالا به پایین آمدن فرکانس قطع و slow wave شدن پاسخ نیز پی می بریم.
(10-4مشاهده اثرات DGS روی مدار طراحی شده در این پروژه
در شکل (21-4) نوع DGS استفاده شده در این کوپلر آورده شده است.ونتیجـه ansoft در شـکل((22-4
مشاهده میگردد.
٨٠

شکل(:(21-4کوپلر باH DGS شکل در شاخه خطوط

شکل(:(22-4پارامتهای Sحاصل از به کار بستن DGS
٨١
فصل پنجم
چگونگی استفاده از کوپلر بدست آمده در طراحی سیرکولاتور
٨٢
(1-5 طراحی سیرکولاتور
یک سیرکولاتور 4 پورته فشرده نیز می تواند به وسیله یک کوپلر خط شاخه ای و شیفت دهنده فاز( پیوست
پ) نیز ساخته شود.این شیفت دهنده فازی همراه با ورودی و خروجی خط همواره مچینگ امپدانسی داشته
و دارای تضعیف صفر می باشد.در اینجا ما از زیراتور به عنوان شیفت دهنده فازی استفاده کرده ایمر .[26]
یکی از ترکیبات نا متقابل استاندارد ژیراتورها هستند که دارای 2 پورت بوده وشیفت فاز تفاضلی 180 درجه
ایجاد می کنند.نماد شماتیک برای یک ژیراتور در شکل (1-5)آمده است و ماتریس اسکترینگ برای یک
ژیراتور واقعی در زیر آمده است.
(1-5)

π
شکل(:(1-5نماد ژیراتور
که این ماتریس نشانه عدم افت ،مچ شده ونا متقابل بودن آن است.

s−0 11 0
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر

۴ ١
٢ π ٣
شکل(:(2-5سیرکولاتور 4پورته متشکل از دو مدار هایبریدی و ژیراتور
٨٣
استفاده ژیراتور به عنوان بنا ساخت در ترکیب با مقسم دو طرفه و کوپلرها میتواند منجر به ایجاد مدارات
مفید همچون سیرکولاتور گردد .در شکل (2-5) مدار معادل سیرکولاتور 4 پورته متشکل از دو مدار
هایبریدی و درشکل (4-5) سیرکولاتور ساخته شده با استفاده از یک ژیراتور ودو کوپلر را نشان میدهد.

شکل(-5٣):سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور
مدار پیشنهادی با ایجاد شیفت فاز 180 درجه باعث عبور از پورت 1به2،2 به3،3به4و4به1 می گردد. در
شکل (4-5) نتایج شبیه سازی مدار طراحی شده آمده است.

(a)
٨۴

(b)

(c)