user8342

Ns تعداد سنسورها
n بردار عمود بر سطح
q شار حرارتی W/m2q'''m نرخ تولید گرمای متابولیک W/m3R شعاع سر m
S تابع هدف
Tدما KTa0 دمای مرکزی بدن Kt زمان sWb نرخ خون تزیق وریدی kg/(mas)Y دمای مورد نظر(اندازهگیری شده)
Greek letters a نفوذپذیری گرمایی m2/sβ اندازه گام حل
γ ضریب الحاقی
ε پارامتر توقف
θ زمان بیبعد
λ متغیر مسئله حساسیت
ρ چگالی بافت زنده kg/m3b خون
r* مشتق نسبت به r*
z* مشتق نسبت به z*η مشتق نسبت به ηξ مشتق نسبت به ξSuperscripts k تعداد تکرارها

فهرست مطالب
عنوانشماره صفحه
TOC o h z u فصل اول: مقدمه PAGEREF _Toc418272714 h 11-1 مقدمه: PAGEREF _Toc418272715 h 21-2- تاریخچه: PAGEREF _Toc418272716 h 7فصل دوم: بررسی روش‌های بهینه‌سازی توابع PAGEREF _Toc418272717 h 152-1 مسائل بهینه‌سازی PAGEREF _Toc418272718 h 162-2 دسته‌بندی روش‌های بهینه‌سازی PAGEREF _Toc418272719 h 172-3 راه‌حل کلی PAGEREF _Toc418272720 h 182-4 نرخ هم‌گرائی PAGEREF _Toc418272721 h 192-5-1 محاسبه گرادیان PAGEREF _Toc418272722 h 222-5-2 تعیین طول گام بهینه در جهت کاهش تابع PAGEREF _Toc418272723 h 232-6 معیار هم‌گرائی PAGEREF _Toc418272724 h 242-7 روش کاهش سریع PAGEREF _Toc418272725 h 252-8 مقدمه ای بر روش انتقال حرارت معکوس PAGEREF _Toc418272726 h 252-8-1 مقدمه PAGEREF _Toc418272727 h 252-8-2 مشکلات حل مسائل انتقال حرارت معکوس PAGEREF _Toc418272728 h 272-8-3 ارزیابی روش‌های مسائل معکوس حرارتی PAGEREF _Toc418272729 h 312-8-4 تکنیک‌های حل مسائل انتقال حرارت معکوس PAGEREF _Toc418272730 h 322-8-5 تکنیک I PAGEREF _Toc418272731 h 342-8-5-1 شرح تکنیک PAGEREF _Toc418272732 h 342-8-5-2 روش‌های محاسبه ضرایب حساسیت PAGEREF _Toc418272733 h 372-8-6 تکنیک II PAGEREF _Toc418272734 h 382-8-6-1 متد گرادیان مزدوج PAGEREF _Toc418272735 h 382-8-6-2 الگوریتم محاسباتی تکنیک دوم PAGEREF _Toc418272736 h 442-8-6-3 اندازه‌گیری پیوسته PAGEREF _Toc418272737 h 452-8-7 تکنیک III PAGEREF _Toc418272738 h 462-8-7-1 روش گرادیان مزدوج با مسئله اضافی جهت تخمین پارامترها PAGEREF _Toc418272739 h 462-8-7-2 الگوریتم محاسباتی تکنیک سوم PAGEREF _Toc418272740 h 492-8-8 تکنیک IV PAGEREF _Toc418272741 h 502-8-8-1 گرادیان مزدوج با مسئله الحاقی برای تخمین توابع PAGEREF _Toc418272742 h 502-8-8-2 الگوریتم محاسباتی تکنیک چهارم PAGEREF _Toc418272743 h 52فصل سوم: مدل ریاضی PAGEREF _Toc418272744 h 543-1 مقدمه PAGEREF _Toc418272745 h 553-2 مدل‌های هدایت گرمایی PAGEREF _Toc418272746 h 553-2-1 مدل پنز PAGEREF _Toc418272747 h 553-2-2 مدل چن هلمز [26] PAGEREF _Toc418272748 h 60فصل چهارم: تخمین شار حرارتی گذرا در حالت متقارن محوری PAGEREF _Toc418272749 h 614-1- فیزیک مسئله PAGEREF _Toc418272750 h 624-2- محاسبه توزیع دما در حالت گذرا PAGEREF _Toc418272751 h 63در این بخش به بررسی روش حل معادلات انتقال حرارت متقارن محوری در حالت گذرا پرداخته میشود. PAGEREF _Toc418272752 h 634-2-1 معادله حاکم PAGEREF _Toc418272753 h 634-2-2- معادلات حاکم در دستگاه مختصات عمومی PAGEREF _Toc418272754 h 644-2-3- متریک ها و ژاکوبین های تبدیل PAGEREF _Toc418272755 h 654-2-4 تبدیل معادلات از صفحه فیزیکی به صفحه محاسباتی PAGEREF _Toc418272756 h 674-2-5- گسسته سازی معادلات PAGEREF _Toc418272757 h 694-2-6 شرایط مرزی مسئله PAGEREF _Toc418272758 h 714-3 مسئله معکوس PAGEREF _Toc418272759 h 744-3-1 مسئله حساسیت PAGEREF _Toc418272760 h 754-3-2 مسئله الحاقی PAGEREF _Toc418272761 h 764-3-3 معادله گرادیان PAGEREF _Toc418272762 h 764-3-4 روش تکرار PAGEREF _Toc418272763 h 774-5: تخمین شار حرارتی مجهول در مدل سه لایه PAGEREF _Toc418272764 h 774-5-1 معادله حاکم PAGEREF _Toc418272765 h 784-5-2 شرایط مرزی مساله PAGEREF _Toc418272766 h 784-5-3 مسئله معکوس PAGEREF _Toc418272767 h 804-5-3-1 مسئله حساسیت PAGEREF _Toc418272768 h 804-5-3-2 مسئله الحاقی PAGEREF _Toc418272769 h 81فصل پنجم: نتایج PAGEREF _Toc418272770 h 82نتیجه گیری: PAGEREF _Toc418272771 h 94پیوست الف PAGEREF _Toc418272772 h 95پیوست ب PAGEREF _Toc418272773 h 96اعتبارسنجی حل مستقیم PAGEREF _Toc418272774 h 96مراجع: PAGEREF _Toc418272775 h 115
فهرست جداول
جدول2-1- دسته‌بندی روش‌های بهینه‌سازی18
جدول 4-1. خواص لایه های استفاده شده79
جدول5-1. خطایRMS برای توابع مختلف در نظر گرفته شده برای شار حرارتی88

فهرست اشکال
شکل 2-1- نمودار روند بهینه‌سازی تابع هدف19
شکل 2-2- جهت‌های سریع‌ترین افزایش21
شکل3-1. المان در نظر گرفته‌شده برای به دست آوردن معادله انتقال حرارت زیستی پنز56
شکل 4-1 نمایش فیزیک مسئله62
شکل 4-2 - نمایش صفحه مختصات فیزیکی و محاسباتی64
شکل 4-3-نمایش گره مرکزی و هشت گره همسایه آن70
شکل 4-4- نمایش صفحه محاسباتی71
شکل 4-5- نمایش شرایط مرزی در صفحه فیزیکی71
شکل 4-6- نمایش مساله سه لایه در صفحه محاسباتی78
شکل 4-7- نمایش هندسه مساله متشکل از سه لایه مختلف بافت مغز، استخوان و پوست سر80
شکل5-1 شبکه مورد استفاده در حل مسئله و موقعت سنسورها83
شکل 5-2. مقایسه شار حرارتی محاسبه شده با شار حرارتی دقیق که بهصورت تابع خطی میباشد85
شکل 5-3. مقایسه شار حرارتی محاسبه شده با شار حرارتی دقیق که بهصورت تابع پله میباشد85
شکل 5-4. مقایسه شار حرارتی محاسبه شده با شار حرارتی دقیق که بهصورت تابعی ترکیبی از sin و cos میباشد86
شکل5-5. مقایسه شار حرارتی محاسبه شده با استفاده از داده های نویزدار با شار حرارتی دقیق که بهصورت تابع خطی میباشد86
شکل 5-6. مقایسه شار حرارتی محاسبه شده با استفاده از داده های نویزدار با شار حرارتی دقیق که بهصورت تابع پلهای میباشد87
شکل5-7. مقایسه شار حرارتی محاسبه شده با استفاده از داده های نویزدار با شار حرارتی دقیق که بهصورت تابعی ترکیبی از sin و cos میباشد87
شکل 5-8. مقایسه شار حرارتی محاسبه شده با شار حرارتی دقیق که بهصورت تابع خطی میباشد89
شکل 5-9. مقایسه شار حرارتی محاسبه شده با شار حرارتی دقیق که بهصورت تابع پله میباشد89
شکل 5-10. مقایسه شار حرارتی محاسبه شده با شار حرارتی دقیق که بهصورت تابع سینوس و کسینوس میباشد90
شکل 5-11. مقایسه شار حرارتی محاسبه شده با استفاده از داده های نویزدار با شار حرارتی دقیق که بهصورت تابع خطی میباشد90
شکل 5-12. مقایسه شار حرارتی محاسبه شده با استفاده از داده های نویزدار با شار حرارتی دقیق که بهصورت تابع پله میباشد91
شکل 5-13. مقایسه شار حرارتی محاسبه شده با استفاده از داده های نویزدار با شار حرارتی دقیق که بهصورت تابع سینوس-کسینوس میباشد91
شکل 5-14. مقایسه دمای محاسبه شده و دمای دقیق.92
شکل 5-15. شار محاسبه شده92
ضمائم:
شکل1- هندسه مستطیلی با شرایط مرزی دما ، عایق و شار حرارت96
شکل2- مقایسه منحنی‌های توزیع دمای گره 1 پس از 12 ثانیه97
شکل3- مقایسه منحنی‌های توزیع دمای گره 2 پس از 12 ثانیه98
شکل4- مقایسه منحنی‌های توزیع دمای گره 4 پس از 12 ثانیه98
شکل5- مقایسه منحنی‌های توزیع دمای گره 5 پس از 12 ثانیه99
شکل6- مقایسه منحنی‌های توزیع دمای گره7 پس از 12 ثانیه99
شکل7- مقایسه منحنی‌های توزیع دمای گره 8 پس از 12 ثانیه100
شکل8- هندسه منحنی با شرایط مرزی عایق و شار حرارتی101
شکل9- مقایسه منحنی توزیع دما برای گره میانی پس از 60 ثانیه101
شکل 10- نمایش هندسه منحنی متشکل از سه لایه مختلف آزبست ، فولاد و آلومینیم102
شکل 11- نمایش کانتورهای توزیع دمای کد حاضر برای مسئله چندلایه103
شکل 12- نمایش کانتورهای توزیع دمای FLUENT برای مسئله چندلایه103
شکل 13- نمایش شبکه 30*30104
شکل 14- نمایش شبکه 40*40105
شکل 15- نمایش شبکه 50*50105
شکل 16- نمایش کانتورهای توزیع دما برای شبکه 30*30 در مسئله یک‌لایه106
شکل 17- نمایش کانتورهای توزیع دما برای شبکه 30*30 در مسئله دولایه106
شکل 18- نمایش کانتورهای توزیع دما برای شبکه 30*30 در مسئله سه لایه107
شکل 19- نمایش کانتورهای توزیع دما برای شبکه 40*40 در مسئله یک‌لایه107
شکل 20- نمایش کانتورهای توزیع دما برای شبکه 40*40 در مسئله دولایه108
شکل 21- نمایش کانتورهای توزیع دما برای شبکه 40*40 در مسئله سه لایه108
شکل 22- نمایش منحنیهای توزیع دمای گره میانی در مسئله یک‌لایه109
شکل 23- نمایش منحنیهای توزیع دمای گره میانی در مسئله دولایه110
شکل 24- نمایش منحنیهای توزیع دمای گره میانی در مسئله سه لایه110
شکل 25- نمایش کانتورهای توزیع دمای کد حاضر برای هندسه نامنظم با تقارن محوری111
شکل 26- نمایش کانتورهای توزیع دمای FLUENT برای هندسه نامنظم با تقارن محوری112
شکل 27- نمایش کانتورهای توزیع دمای کد حاضر113
شکل 28- نمایش منحنیهای توزیع دمای مرکز کره113
شکل 29- نمایش منحنیهای توزیع دمای نقطهای که در موقعیت r=5 cm قرارگرفته114
شکل 30- نمایش منحنیهای توزیع دمای نقطهای که بر روی سطح کره قرارگرفته است114
فصل اول: مقدمه1-1 مقدمه: توسعه کامپیوتر و ابزار محاسباتی، رشد روش‌های عددی را برای مدل‌سازی پدیده‌های فیزیکی تسریع کرده است. برای مدل‌سازی یک پدیده فیزیکی به یک مدل ریاضی و یک روش حل نیاز است. مدل‌سازی مسائل هدایت حرارتی نیز بهمانند دیگر پدیده‌های فیزیکی با حل معادلات حاکم امکان‌پذیر است. برای حل مسائل هدایت حرارتی به اطلاعات زیر نیاز داریم:
هندسه ناحیه حل
شرایط اولیه
شرایط مرزی (دما یا شار حرارتی سطحی)
خواص ترموفیزیکی
محل و قدرت منبع حرارتی درصورتی‌که وجود داشته باشند.
پس از حل معادلات حاکم توزیع دما در داخل ناحیه حل به دست میآید. این نوع مسائل را مسائل مستقیم حرارتی می‌گوییم. روش‌های حل مسائل مستقیم از سال‌ها پیش توسعه‌یافته‌اند. این روش‌ها شامل حل مسائلی با هندسه پیچیده و مسائل غیرخطی نیز میگردند. علاوه بر این پایداری و یکتایی این روش‌ها نیز بررسی‌شده است. روش‌های اولیه عمدتاً بر مبنای حل‌های تحلیلی بودهاند.
این روش‌ها بیشتر برای مسائل خطی و با هندسه‌های ساده قابل‌استفاده هستند. برعکس، روش‌های عددی دارای این محدودیت نبوده و برای کاربردهای مهندسی بیشتر موردتوجه هستند.
دسته دیگر از این مسائل که در دهه‌های اخیر موردتوجه قرارگرفته‌اند، مسائل معکوس حرارتی هستند. در این نوع از مسائل یک یا تعدادی از اطلاعات موردنیاز برای حل مستقیم، دارای مقدار معلومی نمی‌باشند و ما قصد داریم از طریق اندازه‌گیری دما در یک یا چند نقطه از ناحیه موردنظر، به تخمین مقادیر مجهول بپردازیم.
به‌طورکلی می‌توان گفت که در مسائل مستقیم حرارتی، علت(شار حرارتی، هندسه و...) معلوم، و هدف یافتن معلول(میدان دما) است. اما در مسائل معکوس حرارتی، معلول(دما در بخش‌ها و یا تمام میدان)، معلوم است، و هدف یافتن علت (شار حرارتی، هندسه و...) است.
مسائل انتقال حرارت معکوس که IHTP نیز نامیده می‌شوند با استناد بر اندازه‌گیری‌های دما و یا شار حرارتی، کمیت‌های مجهولی را که در آنالیز مسائل فیزیکی در مهندسی گرمایی ظاهر می‌شوند، تخمین می‌زنند. به‌عنوان‌مثال، در مسائل معکوسی که با هدایت حرارت مرتبط می‌باشند، با استفاده از اندازه‌گیری دما در جسم می‌توان شار حرارتی مرز را اندازه‌گیری نمود. این در حالی است که در مسائل هدایت حرارت مستقیم با داشتن شار حرارتی، میدان دمای جسم مشخص می‌شود. یکی از مهم‌ترین مزایای IHTP همکاری بسیار نزدیک میان تحقیقات آزمایشگاهی و تئوری است. به‌عنوان‌مثال در تحقیقات آزمایشگاهی با استفاده از حس‌گر می‌توان دمای جسم را تعیین نمود. این دما به‌عنوان داده‌های ورودی معادلات تئوری برای اندازه‌گیری شار حرارتی مورداستفاده قرار می‌گیرد. درنتیجه جواب‌های به‌دست‌آمده از روابط تئوری تطابق بسیار خوبی با جواب‌های حقیقی خواهند داشت.
هنگام حل IHTP همواره مشکلاتی وجود دارد که باید تشخیص داده شوند. به علت ناپایداری جواب‌های IHTP، این مسائل ازلحاظ ریاضی در گروه مسائل بدخیم دسته‌بندی می‌شوند. به‌عبارت‌دیگر، به‌واسطه وجود خطاهای اندازه‌گیری در آزمایش‌ها، ممکن است جواب کاملاً متفاوتی به دست آید. برای غلبه بر این مشکلات روش‌هایی پیشنهاد داده‌شده‌اند که حساسیت جواب مسئله به خطای موجود در داده‌های ورودی را کمتر می‌کند. ازجمله این روش‌ها می‌توان به استفاده از دماهای زمانه‌ای بعدی، فیلترهای هموارسازی دیجیتالی اشاره نمود.
در سالهای اخیر تمایل به استفاده از تئوری و کاربرد IHTP رو به افزایش است. IHTP ارتباط بسیار نزدیکی با بسیاری از شاخه‌های علوم و مهندسی دارد. مهندسان مکانیک، هوافضا، شیمی و هسته‌ای، ریاضی‌دانان، متخصصان فیزیک نجومی، فیزیکدانان و آماردانان همگی با کاربردهای متفاوتی که از IHTP در ذهن دارند، به این موضوع علاقه‌مند می‌باشند.
مغز در داخل استخوان جمجمه و نخاع در داخل ستون فقرات جای گرفته است. سه پرده که درمجموع منژ نامیده میشوند، مغز و نخاع را از اطراف محافظت می‌کنند. مغز بیشترین انرژی بدن را مصرف میکند و منطقهی گرمی از بدن است. وزن مغز زن و مرد باهم متفاوت است. خوب است بدانیم که هنگام سکته مغزی فشار داخل جمجمه بالا می‌رود و داخل مغز به‌شدت گرم می‌شود پس باید به‌سرعت از فشار داخل جمجمه کاست تا بیمار دچار آسیب بیشتر نشود. همچنین، تخمین زده می‌شود در مغز انسان حدود یک‌صد میلیارد سلول عصبی یا نرون فعالیت می‌کنند . نرون یا سلول عصبی بر اساس مکانیسم الکتروشیمیایی فعالیت می‌کند ، اختلاف‌پتانسیل ناشی از افزایش و کاهش بار الکتریکی در یک نرون که از منفی 70 میلی ولت تا مثبت 70 میلی ولت در نوسان است باعث رها شدن یا ریلیز مواد مخدر طبیعی یا همان ناقل‌های عصبی از انتهای سلول عصبی یا آکسون می‌شود. فعالیت الکتریکی یک‌صد میلیارد سلول عصبی ، حرارت بسیار زیادی تولید می‌کند.
مغز برای خنک کردن خود نیاز به یک سیستم خنک‌کننده قوی دارد. در مغز انسان حدود 16 هزار کیلومتر رگ و مویرگ خونی وجود دارد. یکی از وظایف اصلی این سیستم علاوه بر تأمین سوخت میلیاردها سلول ،خنک کردن مغز است. به عبارتی حرارت مغز توسط این سیستم جذب می‌شود و با گردش خود درجاهایی مثل پیشانی، صورت و گوش‌ها آزاد می‌شود و خنک می‌شود. مصرف سیگار با افزایش غلظت خون باعث می‌شود تا حرکت خون در این مویرگ‌ها سخت شود و عملیات سوخت‌رسانی و خنک کردن مغز به‌درستی انجام نشود. به عبارتی افراد سیگاری مغزشان داغ‌تر از افراد غیر سیگاری است و سوخت کمتری به مغزشان می‌رسد. ریزش مو و دیرخواب رفتن یکی از نتایج بالا بودن دمای مغز است. اختلال در عملکرد سلول‌های عصبی و به دنبال آن اختلال در آزادسازی ناقل‌های عصبی و کنترل سیستم هورمونی از دیگر نتایج این وضعیت است.
از سوی دیگر، چندی پیش پزشکان برای نجات نوزادی از روش خنک کردن مغز استفاده  کردند که در نوع خودش بی‌نظیر و شگفت‌انگیز بود. نوزاد انگلیسی که هنگام تولد بند ناف به دور گردنش پیچیده شده بود و نفس نمی‌کشید، (اکسیژن کافی به مغزش نمی‌رسید) با فن خنک کردن مغز (به مدت 3روز) به زندگی بازگشت. پزشکان برای کم کردن نیاز مغز این نوزاد به اکسیژن، با استفاده از گاز زنون مغز او را سرد کرند. برای این کار از دستگاه جدیدی استفاده شد. آنان با جای دادن آلتی در مغز نوزاد، سر نوزاد را خنک نگه داشتند.نوزاد که مغزش به مدت 3 روز با این تکنیک خنک نگه‌داشته شد؛ در حال حاضر، در آغوش مادرش به زندگی لبخند میزند.
ممکن است که تقلا برای خوابیدن، بعد از یک روز خسته‌کننده با سرشماری گوسفندان یا خوردن قرصهای خواب هم چندان مؤثر نباشد، اما پژوهشگران دانشکده پزشکی پتینزبورگ در آخرین اجلاس «خواب» سال 2011 روش جالبی را برای درمان بیخوابی پیشنهاد کردند: خنک کردن مغز!
آن‌ها یک کلاه پلاستیکی خنک‌کننده ابداع کردند که قسمت‌های پیشانی را میپوشاند و با پایین آوردن دمای مغز می‌تواند به خواب سریع فرد کمک کند. پزشکان در تحقیقی که روی افراد عادی و بیمارانی که از بیخوابی رنج میبردند انجام دادند، افراد بیخواب بعد از پوشیدن این کلاه خاص، به‌طور میانگین در زمان 13 دقیقه به خواب رفتند، یعنی زمانی برابر افراد  سالم. دانشمندان فکر می‌کنند که این کلاه با پایین آوردن دمای مغز  سبب کاهش سوخت‌وساز آن (به‌ویژه در ناحیه پیشانی مغز) میشود و به خواب سریعتر و راحتتر فرد کمک میکند. هنوز این کلاهها به‌صورت تجاری وارد بازار نشده‌اند. همچنین عوارض احتمالی استفاده از آن‌ها مشخص نشده‌اند؛ مثلاً معلوم نیست که استفاده از این کلاه‌ها سبب تشدید علائم افراد مبتلابه سینوزیت خواهد شد یا نه؟ محققان دانشگاه نیویورک در پژوهش‌های مختلف خود دریافتند، خمیازه کشیدن نقش مهمی در تنظیم درجه حرارت مغز به عهده دارد. درصورتی‌که ناحیه سر «گرم» باشد، خمیازه با تحریک جریان خون و ضربان قلب گرمای بالای آن را کاهش میدهد. چرخه خواب و استرس، تابع نوسان درجه حرارت مغز است و کار خمیازه آن‌که این دمای پیوسته در حال تغییر را تنظیم و متوازن ‌کند. توضیح ساده محققان دانشگاه وین این است که ما با خمیازه کشیدن، دمای اطراف را دست‌کاری می‌کنیم. به تعبیر دیگر، دهن‌دره همانند ترموستات مغز عمل می‌کند. گروه تحقیقاتی دانشگاه وین برای بررسی این فرضیه، تناوب خمیازه کشیدن شهروندان در ماه‌های تابستانی و زمستانی را زیر نظر گرفت. مشابه همین بررسی در هوای خشک و ۳۷ درجه آریزونا انجام شد.
پژوهش‌ها نشان داد که مردم وین در تابستان بیشتر از زمستان خمیازه می‌کشند اما در آمریکا نتیجه کاملاً برعکس بود. علت روشن بود: متوسط دمای وین در تابستان ۲۰ درجه است و این متوسط حرارت زمستانی در آریزونا است. محققان آمریکایی و اتریشی بر این اساس فرضیه‌‌ای را طرح کردند: تعداد خمیازه‌ها به فصل سال یا بلندی و کوتاهی روز یا روشنایی و تاریکی محیط ربط ندارد بلکه موضوع به درجه حرارت ۲۰ درجه برمی‌گردد.
یک افشانه بینی که می‌تواند جان هزاران مبتلابه بیماری قلبی را نجات دهد توسط محققان انگلیسی مورد کار آزمایی قرارگرفته است. یک دستگاه ویژه برای پمپاژ سرد‌کننده پزشکی در بینی بیمار در حال انتقال به بیمارستان مورداستفاده قرار می‌گیرد. کارشناسان بر این باورند که این درمان می‌تواند جان افراد زیادی را نجات داده و از ابتلای تعداد زیادی از بیماران به آسیب‌های مغزی شدید و دائمی جلوگیری کند.
خدمات اورژانس ساحل جنوب شرفی بنیاد بهداشت انگلیس اولین سرویس آمبولانسی است که از این ابداع سوئیسی به‌عنوان بخشی از کار آزمایی پزشکان بیمارستان رویال ساسکس کانتی استفاده می‌کند. ماده سردکننده که توسط یک ماسک صورت منتقل می‌شود، جریان مداومی از مایع در حال تبخیر را به حفره بینی بیمار می‌فرستد. محققان توانسته‌اند پیشرفت‌های بزرگی را در نجات زندگی بیماران قلبی به دست آورند اما بسیاری با آسیب‌های چشمگیری در سلول‌های مغزی روبرو شده و در اثر کمبود اکسیژن ناشی از توقف عملکرد قلب می‌میرند. 
ایده افشانه بینی، خنک‌سازی هر چه سریع‌تر مغز در محل تماس پایه مغز با مدخل بینی است. گفته می‌شود خنک کردن مغز می‌تواند از سلول‌های مغزی در زمان نبود اکسیژن در خون محافظت کند. اگر این درمان زودهنگام ارائه شود، بیمار شانس بهبود بیشتری داشته و این فناوری جدید به پیراپزشکان اجازه خواهد داد پیش از رسیدن بیمار به بیمارستان عملیات خنک‌سازی را آغاز کنند. در حال حاضر برخی از خدمات اورژانس انگلیس از شیوه‌های مختلف فرآیند خنک‌سازی مانند قطره نمکی سرد و پدهای خنک‌کننده پیش از رسیدن بیمار به بیمارستان استفاده می‌کنند. اما این روش‌ها به‌طور مستقیم مغز را هدف قرار نداده و به‌جای آن بر خنک‌سازی کل بدن و خون برای دستیابی به تأثیر مشابه تکیه‌دارند.
1-2- تاریخچه:مطالعات آسیب‌شناسی مغزی به‌طور تجربی نشان می‌دهد که سرد کردن مغز پس از یک ایشکمی مغزی میتواند میزان صدمات وارده بر مغز را کاهش دهد. آسیب تراماتیک مغز(TBI) که معمولاً براثر آسیب‌های خارجی در تصادفات و ... اتفاق میافتد و آسیب ایشکمیک مغز که در اثر سکته مغزی ایجاد می‌شود، سبب آسیب‌های فراوانی بر مغز میشود. آزمایش‌ها و بررسی‌های مختلف نشان داده‌اند که کاهش دمای مغز حتی در حد 1 الی 2 درجه سانتی‌گراد فواید بسیاری از قبیل: محافظت در مقابل سکته, کاهش ورم و آماس و کاهش فشار داخلی مغز (ICP) دارد. سادگی و راندمان بالای سرمادرمانی مغز باعث شده است تا پزشکان از آن به‌عنوان یک‌راه حل کلینیکی جهت درمان نوزادانی که از عارضه خفگی (نرسیدن اکسیژن) در زمان تولد رنج می‌برند، استفاده کنند. همچنین سرد کردن فوری مغز درست در دقایق اولیه پس از حمله ایشکمی، امری مهم و ضروری در کاهش پیامدها و صدمات وارده بر مغز و نجات بیمار است. این عمل (سرد کردن فوری مغز) موجب افت متابولیسم مغز شده و درنتیجه نیاز آن را به دریافت اکسیژن و دفع دی‌اکسید کربن و بالطبع خون‌رسانی کاهش میدهد. گزارش‌های منتشرشده نشان دادهاند که کمخونی اثر مخرب کمتری روی مغز بجای خواهد گذاشت. علی‌رغم اینکه هنوز به‌طور کامل مشخص نشده است که عمل خنک کردن چطور به محافظت از مغز کمک میکند، آزمایش‌های بسیاری نشان دادهاند که کاهش دما در بافت مغز از عملکرد مغز در مقابل آسیب‌های ایشکمیک محافظت می‌کند. همچنین این کار سبب کاهش التهاب و تثبیت فشار داخلی مغز می‌شود[1-3]. همچنین، در اکثر بررسی‌های بیمارستانی که روی گروه‌های کوچک که از TBI رنج میبردند، انجام‌شده است، نتایج این حقیقت که خنک کردن مغز آثار خوبی هم در کوتاهمدت و هم در بلندمدت دارد را تأیید میکند[4-7]. اخیراً یتینگ و همکاران[8] در تحقیق خود گزارش کردند که با خنک کاری مغز از طریق صورت می‌توان به بهبود عملکرد عصبی کمک کرد. آن‌ها در نتایج خود نشان دادند که با استفاده از روش خنک کاری مغز از طریق صورت می‌توان از مغز در مقابل آسیب ایشکمیک محافظت کرد. همچنین نشان دادند که مشکلات مغزی ناشی از آن قابل‌درمان است.
ملاحظات انتقال حرارت مغز در حیات کسانی که در آب‌های سرد غرق میشوند، نیز مؤثر است. به‌طوری‌که در اثر این پدیده بازگشت به زندگی افرادی که در آب‌های سرد غرق‌شده‌اند، حتی تا پس از 66 دقیقه نیز گزارش‌شده است. این مسئله عموماً به خاطر قطع فعالیت متابولیکی مغز و اثرات محافظتی این سردشدگی است. موارد ذکرشده لزوم و اهمیت بررسی انتقال حرارت از مغز را با سیال اطراف نمایان می‌سازند.
اساساً انتقال حرارت در مغز در قالب تبادل حرارت خارجی (انتقال حرارت از سر)، تبادل حرارت داخل و تولید حرارت متابولیکی است. این اثرات با شرایط مرزی، سیرکولاسیون خون، نرخ متابولیسم مغز و ابعاد سر تغییر می‌کنند. بررسی تأثیر عوامل مختلف در پدیده انتقال حرارت از مغز با دشواری روبروست. بخصوص که امکان انجام آزمایش‌های تجربی در این زمینه به دلیل خطرات موجود و محدودیت‌های ابزاری ممکن نیست. لذا این بررسی‌ها نیازمند یک مدل مطمئن با خصوصیات فیزیکی و شرایط محیطی واقعی می‌باشند.
مطالعه و بررسی عکس‌العمل خنک شدن سر در مقابل مکانیسم‌های مختلف خنک کاری، می‌تواند ابزاری در جهت طراحی و ساخت تجهیزات قابل‌حمل جهت خنک کاری‌های اورژانس در وسایل نقلیه پزشکی باشد که با آنها دمای مغز در 30 دقیقه از Cº37 به Cº34 رسیده و لذا متابولیسم آن تا 30% کاهش مییابد. این مطالعات در طراحی سیستم‌های تهویه مطبوع و ایجاد محیط‌های ارگونومیک جهت راحتی افراد نیز می‌تواند موردتوجه قرار گیرد. در یک سری مدل‌سازی‌های کامپیوتری انجام‌شده[9-11] نشان داده است که دمای مغز انسان در نقاط مرکزی و داخلی بسیار متفاوت‌اند از نقاطی که نزدیکی سطح قرار دارند. گرادیان دمای بسیار بزرگی در نزدیکی سطح مغز اتفاق می‌افتد که به‌صورت آزمایشگاهی با افزایش فاصله از سر کاهش مییابد[12,13].
هدف کلی رسیدن به دمای میانگین 33 در مغز در مدت‌زمان 30 دقیقه است[14]. البته باید خاطرنشان کرد که خنک کردن مغز تا دماهای پایین‌تر سبب افزایش ریسک ابتلا به لرزشهای غیرقابل‌کنترل و کاردیاک ارست میشود.
یکی از سؤالهای مهم برای انتخاب روش مناسب برای خنک کردن مغز این است که بفهمیم هر یک از این روشها چطور دمای مغز را کاهش میدهند. ازآنجاکه اندازهگیری نتایج حاصل از خنک کردن مغز در بافت زنده فراتر از فنّاوری حاضر است، ارائه و بهبود مدلهایی که به‌طور دقیق تغییرات دما و همچنین محدودیتها را نشان میدهد، میتواند موفقیت بزرگی باشد.
مسئله مهم دیگر تبادل گرمایی بین پوست سر و محیط اطراف است که به کمک ضریب انتقال حرارت توصیف می‌شود. برای رسیدن هدف که خنک کردن مغز در نقاط مرکزی است، نیاز به استفاده از دستگاهی است که ضریب انتقال حرارت بزرگی ایجاد کند. در حالت ایدئال، دستگاهی با این مشخصات قادر خواهد بود دمای پوست سر را همدما با دمای دستگاه ثابت نگه دارد.
عموماً گزارش‌های انتقال حرارت از مغز تاکنون به دو صورت بوده است. یک دسته از این مطالعات شبیه‌سازی را تنها از جنبه انتقال حرارت در داخل بافت‌ها مدنظر قرار داده و در بهترین حالت انتقال حرارت جابجایی را با ضریب انتقال حرارت جابجایی در مدل خود بکار گرفته‌اند[11,15-17]. دسته دیگر بدون مدل نمودن انتقال حرارت درون بافت، تنها به بررسی الگوی جریان خارج از بدن (به‌صورت تجربی) پرداخته‌اند.
همچنین مدل‌سازی از توزیع دما در سر یک انسان بالغ تحت سرما درمانی با گذاشتن یخ روی سر توسط دنیس و همکارانش[16] صورت گرفته است. گزارش زو و همکارانش[17] نیز شامل مدل‌سازی ریاضی سرد شدن مغز با شرایط مرزی دما ثابت است. سوکستانسکی و همکارش[12] با استفاده از روش تحلیلی اثر عوامل مختلف را بر دمای مغز بررسی کرده و دبی و دمای جریان خون ورودی به بافت را تنها عامل مؤثر بر دمای مغز دانسته‌اند. این مدل‌سازی‌ها با فرض ثابت بودن دمای سطح پوست همراه بوده و در آن‌ها هوای اطراف و جنبه انتقال حرارت جابجایی در سال اطراف سر در نظر گرفته نشده است.
از طرف دیگر، از جنبه خارجی کلارک و همکارانش[18] مطالعه‌ای برای تعیین جابجایی آزاد در اطراف سر را انجام داده و منتشر کرده‌اند که در این تحقیق تأثیر حالت‌های مختلف بدن (خوابیده و ایستاده) بر الگوی جریان هوای اطراف سر به‌صورت تجربی مطالعه شده و ضخامت تقریبی لایه‌مرزی حرارتی و میزان انتقال حرارت در نقاط مختلف سر به کمک سیستم نوری شلیرن و کالریمتر سطحی در آن سالها اندازه‌گیری شده است.
بسیاری از کارهای انجام‌شده در این زمینه اثرات مثبتی برای محافظت از مغز داشته‌اند و توانسته دما را تا 7 درجه سانتی‌گراد در مدت‌زمان 1 ساعت کاهش بدهد، بااین‌حال متدهایی که به کاهش دمای بیشتر کمک می‌کنند تهاجمی هستند که منجر به عوارض بعدی روی بیمار میشود. لازم به ذکر است، در حالت کلی دو روش برای اعمال خنک کاری به‌صورت غیرتهاجمی وجود دارد: خنک کردن سر به کمک دستگاه‌های خنک‌کن و خنک کردن کل بدن.
سرد کردن تمام بدن یک نوزاد تازه متولدشده در ۶ ساعت نخست تولد می‌تواند از آسیب‌های مغزی ناشی از فقدان اکسیژن در جریان زایمان‌های دشوار جلوگیری کند و یا از شدت آن به میزان قابل‌توجهی بکاهد. به گزارش فرانس پرس هزاران کودک سالانه در سطح دنیا متولد شوند که به دلیل برخی مشکلات در بدو تولد مانند نرسیدن اکسیژن به آن‌ها و یا نرسیدن خون به مغزشان در معرض خطر مرگ یا معلولیت قرار می‌گیرند. خنک کردن بدن به‌اندازه چند درجه یعنی اعمال نوعی هایپوترمی خفیف نیاز مغز به اکسیژن را کاهش داده و دیگر پروسه‌هایی را که می‌توانند به آسیب مغزی دچار شوند، کند می‌کند. این شیوه درمان به افراد بالغ نیز در بهبودی پس از تجربه ایست قلبی کمک می‌کند.
در قالب تکنیک هایپوترمی یا همان خنک کردن مغز، نوزاد درون یک پتوی خاص حاوی آب سرد قرار داده می‌شود. این پتو دمای بدن نوزاد را برای مدت ٣ روز تا سطح ٣/٩٢ درجه فارنهایت (۵/٣٣ درجه سانتی‌گراد) پایین آورده و سپس به‌تدریج بدن را دوباره گرم کرده و درجه حرارت را به وضعیت نرمال حدود ۶/٩٨ درجه فارنهایت برمی‌گرداند. این نوزادان ١٨ تا ٢٢ ماه بعد مورد معاینه قرار گرفتند که نتایج یافته‌ها نشان داد مرگ یا معلولیت‌های قابل‌توجه همچون فلج مغزی تنها در ۴۴ درصد نوزادانی که بدنشان خنک شده بود، رخ داد رقمی که در نوزادان تحت درمان‌های معمول به ۶۴ رسید و هیچ‌گونه عوارض جانبی همچون مشکلات در ریتم قلب درنتیجه این شیوه درمان رخ نداد. طبق این یافته‌ها، خنک کردن مغز نوزادان به میزان ٢ تا ۵ درجه سانتی‌گراد می‌تواند احتمال معلولیت و مرگ آن‌ها در اثر کمبود اکسیژن درنتیجه کنده شدن جفت از دیواره رحم پیش از تولد و فشردگی بند ناف را به میزان قابل‌توجهی کاهش دهد.
آزوپاردی و همکاران[19] بررسی روی گروهی از بچهها در سن 6 و 7 سالگی که به‌منظور تعیین اینکه آیا خنک کردن مغز بعد از خفگی حین زایمان یا پس از زایمان در بلندمدت اثری دارد یا خیر، انجام دادند. نتایج اولیه آنها نشانگر این بود که اثرات خوبی در افراد با IQ بالاتر از 85 دیده میشد.
ژو و همکاران[20] اثربخشی و امنیت خنک کردن ملایم سر را در انسفالوپاتی هیپوکسیک-ایشکمیک در نوزادان تازه متولدشده موردبررسی قراردادند. در تحقیق آنها نوزادان مبتلابه HIE به‌صورت تصادفی انتخاب‌شده بودند.عمل خنک کردن از 6 ساعت بعد از تولد، درحالی‌که دما در قسمت حلق و بینی حدود Cº 34 و در قسمت تحتانی حدود Cº 4.5 بود، شروع شد و 72 ساعت طول کشید. متأسفانه نتایج اولیه منجر به مرگ و ناتوانیهای شدید شده بود. ویلرم و همکارانش[15] با مدل‌سازی سرد کردن مغز نوزاد به این نتیجه رسیدند که با قرار دادن سر در محیط با دمای پایین (10 درجه سانتی‌گراد) تنها مناطق سطحی مغز تا حدود Cº33-34 سرد می‌شود و تغییر دمای محسوسی در مناطق عمقی آن به وجود نخواهد آمد.
دنیس و همکاران[16] هندسه واقعی سر انسان را در نظر گرفتند و خنک کردن سر و گردن انسان را با روش المان محدود موردبررسی قراردادند. آنها در کار خود همزمان علاوه بر استفاده از یک کلاهک خنک‌کن، پکهایی از یخ روی سر و گردن قراردادند. بر اساس نتایجشان، وسیلهی دیگری نیز برای خنک کاری موردنیاز است که دمای قسمتهای مرتبط دیگر نیز کاهش یابد و درنتیجه به هدف موردنظر که در قبل ذکرشده بود، برسند. مسئله را در چهار حالت مختلف که موقعیت مکانی خنک کاری متفاوت بوده بررسی کرده‌اند، که متأسفانه به دمای 33 درجه سانتی‌گراد در مدت 30 دقیقه نرسیده‌اند.
گلوکمن و همکاران[21] از یک کلاه خنک‌کن روی سر استفاده کردند و دمای قسمت تحتانی بدن را نیز در 34-35 ثابت نگه داشتند. نتایج آنها نشان می‌دهد بااینکه این کار اثر قابل قبولی روی نوزادانی که موردبررسی قرارگرفته بودند، نداشته است. اما در کل به زنده ماندن بیماران بدون اثرات شدید عصبی کمک میکند.
اسپوزیتو و همکاران[22] در تحقیق خود، محدودیتها و اثرات جانبی روشهای کنونی خنککاری مغز را بررسی کردهاند. همچنین در مورد مزایا و معایب تزریق مایع خنک در رگهای خونی بحث کرده‌اند. همچنین پلی و همکاران[23] ارتباط بین دمای مغز و خنک کردن سطح سر و گردن را موردتحقیق قراردادند و در کار دیگر، ناکامورا و همکاران[24] تأثیر خنک کاری سر و گردن را بر دمای کلی بدن بررسی کردهاند.
ازآنجاکه در هیچ‌یک از بررسیهای انجام‌شده به دمای ۳۳ درجه در مدت‌زمان ۳۰ دقیقه که مطلوب پزشکان است، نرسیده‌اند برای اولین بار با استفاده از روش انتقال حرارت معکوس شار حرارتی و شرایط مرزی مناسب مدنظر است. در این روش با معلوم بودن جواب هدف که کاهش دما تا ۳۳ درجه و زمان ۳۰ دقیقه است، بهترین شرایط برای رسیدن به آن محاسبه می‌شوند. همچنین معادلات موردنظر معادلات انتقال حرارت در بافت زنده پنز که غیر فوریه‌ای بوده می‌باشند. هندسه مغز به‌صورت یک نیمکره در نظر گرفته‌شده است. مسئله با استفاده از روش مختصات عمومی و در حالت متقارن محوری حل‌شده است. علت استفاده از این روش این است که قادر به اعمال روی هر هندسه پیچیده دیگر خواهد بود که در کارهای آینده قطعاً موردنیاز خواهد بود. در این روش، صفحه فیزیکی نامنظم مسئله به صفحه محاسباتی مستطیل شکل تبدیل می‌شود.
فصل دوم: بررسی روش‌های بهینه‌سازی توابع
در این فصل به معرفی و بررسی روش‌هایی که برای بهینه‌سازی توابع استفاده می‌شوند، می‌پردازیم. ابتدا به تعریف مسئله بهینه‌سازی پرداخته و در ادامه مفاهیم مربوط به روند انجام فرایند بهینه‌سازی در یک مسئله معرفی می‌شوند. انواع روش‌های مستقیم و غیرمستقیم بهینه‌سازی معرفی می‌شوند. ازآنجاکه در این پایان‌نامه از روش غیرمستقیم برای بهینه‌سازی استفاده کرده‌ایم، بنابراین بیشتر به این روش‌ها پرداخته‌ایم. در تمامی این روش‌ها محاسبه گرادیان تابع الزامی است، بنابراین بررسی خواص و نحوه محاسبه آن آورده شده است. در ادامه شرح مختصری از انواع روش‌های غیرمستقیم به همراه الگوریتم محاسباتی آن‌ها آورده شده است.
2-1 مسائل بهینه‌سازییک مسئله بهینه‌سازی می‌تواند به‌صورت زیر بیان شود:
تعیین بردار به‌گونه‌ای که تابع تحت شرایط زیر مینیمم شود.
(2-1)
که در آن یک بردار n بعدی به نام بردار طراحی، تابع هدف و و به ترتیب قیدهای برابری و نابرابری نامیده می‌شوند. در حالت کلی تعداد متغیرها و تعداد قیود یا رابطه‌ای باهم ندارند. مسئله فوق یک مسئله بهینه‌سازی مقید نامیده می‌شود. در مسائلی که قیودی وجود ندارند با یک مسئله بهینه‌سازی نامقید روبرو هستیم.
نقطه را مینیمم یا نقطه سکون تابع هدف مینامیم اگر داشته باشیم:
(2-2)
شرط بالا یک شرط لازم است درصورتی‌که ماتریس هسین معین مثبت باشد آنگاه حتماً نقطه مینیمم نسبی خواهد بود. یعنی اگر داشته باشیم:
(2-3)
البته شرط بالا در صورتی صادق است که تابع مشتق‌پذیر باشد.
2-2 دسته‌بندی روش‌های بهینه‌سازیروش‌های حل مسائل مینیمم سازی به دودسته روش‌های جستجوی مستقیم و روش‌های کاهشی تقسیم‌بندی می‌شوند.
برای استفاده از روش‌های جستجوی مستقیم در محاسبه نقطه مینیمم، تنها به مقدار تابع هدف نیاز است و نیازی به مشتقات جزئی تابع نیست. بنابراین اغلب، روش‌های غیرگرادیانی یا روش‌های مرتبه صفر نامیده می‌شوند زیرا از مشتقات مرتبه صفر تابع استفاده می‌کنند. این روش‌ها بیشتر برای مسائلی کاربرد دارند که تعداد متغیرها کم و یا محاسبه مشتقات تابع مشکل می‌باشند و به‌طورکلی کارایی کمتری نسبت به روش‌های کاهشی دارند.
روش‌های کاهشی علاوه بر مقدار تابع به مشتقات اول و در برخی موارد به مشتقات مرتبه دوم تابع هدف نیز نیاز دارند. ازآنجاکه در روش‌های کاهشی، اطلاعات بیشتری از تابع هدفی که (از طریق مشتقات آن) مینیمم می‌شود، مورداستفاده قرار می‌گیرد، این روش‌ها کارایی بیشتری نسبت به روش‌های جستجوی مستقیم دارند.
روش‌های کاهشی همچنین روش‌های گرادیانی نیز نامیده می‌شوند. دراین‌بین روش‌هایی که فقط به مشتق اول تابع هدف نیاز دارند، روش‌های مرتبه اول و آن‌هایی که به مشتق اول و دوم هر دو نیاز دارند، روش‌های مرتبه دوم نامیده می‌شوند. در جدول(2-1) روش‌هایی از هر دودسته آمده است.
جدول2-1- دسته‌بندی روش‌های بهینه‌سازی
روش‌های کاهشی روش‌های جستجوی مستقیم
بیشترین کاهش
گرادیان مزدوج
روش نیوتن
روش لونبرگ- مارکورات
میزان متغیر روش جستجوی تصادفی
جستجوی شبکه
روش تک متغیر
جستجوی الگو
2-3 راه‌حل کلیتمام روش‌های مینیمم سازی نامقید اساساً تکراری هستند و ازاین‌رو از یک حدس اولیه شروع می‌کنند و به شکل ترتیبی به سمت نقطه مینیمم پیش می‌روند. طرح کلی این روش‌ها در شکل2-1 نشان داده‌شده است.
باید توجه شود تمام روش‌های مینیمم سازی نامقید:
1. نیاز به نقطه اولیه برای شروع تکرار دارند.
2. با یکدیگر تنها در نحوه تولید نقطه بعدی از تفاوت دارند.
-76200-5219700با نقطه اولیه شروع کنید
شرط همگرایی برقرار است؟
خیر
قرار دهید
قرار دهید
را بیابید
نقطه جدید را تولید کنید
را بیابید
بله
قرار دهید و توقف کنید
00با نقطه اولیه شروع کنید
شرط همگرایی برقرار است؟
خیر
قرار دهید
قرار دهید
را بیابید
نقطه جدید را تولید کنید
را بیابید
بله
قرار دهید و توقف کنید

شکل 2-1- نمودار روند بهینه‌سازی تابع هدف
2-4 نرخ هم‌گرائیروش‌های مختلف بهینه‌سازی، نرخ همگرایی مختلف دارند. به‌طورکلی یک روش، همگرایی از مرتبه دارد اگر داشته باشیم:
(2-4)
که و نقاط محاسبه‌شده در پایان تکرارهای و هستند. نقطه بهینه و نشان‌دهنده طول یا نرم بردار است که از رابطه زیر به دست میآید:
(2-5)
اگر و باشد، روش همگرای خطی (متناظر باهمگرایی آهسته) و اگر باشد، روش همگرای مرتبه دوم (متناظر باهمگرایی سریع) نامیده می‌شود. یک روش بهینه‌سازی، همگرای فوق خطی است اگر:
(2-6)
تعریف دیگری برای روش همگرایی مرتبه دوم وجود دارد: اگر یک روش مینیمم سازی با استفاده از روند دقیق ریاضی بتواند نقطه مینیمم یک تابع درجه دوم متغیره را در تکرار پیدا کند. روش همگرای مرتبه دوم نامیده می‌شود.
2-5 گرادیان تابع
گرادیان تابع، یک بردار n مؤلفه ایست که با رابطه زیر داده می‌شود:
(2-7)
اگر از یک نقطه در فضای n بعدی در راستای گرادیان حرکت کنیم، مقدار تابع با سریع‌ترین نرخ افزایش می‌یابد. بنابراین جهت گرادیان، جهت بیشترین افزایش نیز نامیده می‌شود.
4768851778003′
1
2
1′
2′
3
4
4′
X
Y
003′
1
2
1′
2′
3
4
4′
X
Y

شکل 2-2- جهت‌های سریع‌ترین افزایش
اما جهت بیشترین افزایش یک خاصیت محلی است و نه سراسری. این مطلب در شکل2-2 نشان داده‌شده است. در این شکل، بردار گرادیان محاسبه‌شده در نقاط 1، 2 ، 3، 4 به ترتیب در جهت‌های ٰ11 ، ٰ22 ، ٰ33، ٰ44 قرار دارد. بنابراین در نقطه 1 مقدار تابع در جهت ٰ11 با سریع‌ترین نرخ افزایش می‌یابد و به همین ترتیب اگر به تعداد بی‌نهایت مسیر کوچک در جهت‌های سریع‌ترین افزایش حرکت کنیم، مسیر حرکت یک منحنی شبیه به منحنی 4-3-2-1 خواهد بود.
ازآنجاکه بردار گرادیان جهت بیشترین افزایش مقدار تابع را نشان می‌دهد، منفی بردار گرادیان جهت سریع‌ترین کاهش را نشان می‌دهد. بنابراین انتظار داریم روش‌هایی که از بردار گرادیان برای بهینه‌سازی استفاده می‌کنند نسبت به روش‌های دیگر سریع‌تر به نقطه مینیمم برسند. بنابراین دو قضیه زیر را بدون اثبات می‌آوریم.
1.بردار گرادیان جهت سریع‌ترین افزایش را نشان می‌دهد.
2. بیشترین نرخ تغییر تابع در هر نقطه ، برابر اندازه بردار گرادیان در آن نقطه است.
2-5-1 محاسبه گرادیانمحاسبه گرادیان نیاز به محاسبه مشتقات جزئی دارد. سه حالت وجود دارد که محاسبه گرادیان را مشکل می‌کند:
1. تابع در تمامی نقاط مشتق‌پذیر است، اما محاسبه مؤلفه‌های بردار گرادیان غیرعملی است.
2. رابطه‌ای برای مشتقات جزئی می‌توان به دست آورد، اما محاسبه آن نیازمند زمان محاسباتی زیادی است.
3. گرادیان تابع در تمامی نقاط تعریف‌نشده باشد.
در مورد اول می‌توان از فرمول تفاضل محدود پیشرو برای تخمین مشتق جزئی استفاده کرد:
(2-8)
برای یافتن نتیجه بهتر می‌توان از فرمول اختلاف مرکزی محدود زیر استفاده کرد:
(2-9)
در روابط بالا یک کمیت اسکالر کوچک و برداری n بعدی است که مؤلفه ام آن یک، و مابقی صفر هستند. در محاسبات، مقدار را می‌بایست با دقت انتخاب نمود، زیرا کوچک بودن بیش‌ازحد آن ممکن است اختلاف میان مقادیر محاسبه‌شده تابع در و را بسیار کوچک کرده، و موجب افزایش خطای گرد کردن شود و نتایج را با خطا همراه سازد. به همین ترتیب بزرگ بودن بیش‌ازاندازه نیز خطای برشی را در محاسبه گرادیان ایجاد می‌کند. در حالت دوم استفاده از فرمول‌های تفاضل محدود پیشنهاد میشود. برای حالت سوم با توجه به این نکته که گرادیان در تمام نقاط تعریف‌شده نیست، نمی‌توان از فرمول‌های تفاضل محدود استفاده کرد. بنابراین در این موارد مینیمم کردن فقط با استفاده از روش‌های مستقیم امکان‌پذیر است.
2-5-2 تعیین طول گام بهینه در جهت کاهش تابعدر بیشتر روش‌های بهینه‌سازی، نیاز است که نقطه مینیمم در یک راستای مشخص را تعیین نمود. بنابراین لازم است نرخ تغییر تابع هدف از یک نقطه مانند ، درراستای مشخصی مانند ، نسبت به پارامتری چون محاسبه شود. باید در نظر داشت که موقعیت هر نقطه در این راستا را می‌توان با توجه به نقطه ، به‌صورت نشان داد. بنابراین نرخ تغییر تابع نسبت به این متغیر در راستای را می‌توان به‌صورت زیر نشان داد:
(2-10)
که در رابطه فوق مؤلفه -ام است. از طرفی داریم:
(2-11)
که و مؤلفه‌های -ام و هستند. بنابراین نرخ تغییر تابع در راستای برابر است با:
(2-12)
درصورتی‌که تابع را در راستای مینیمم کند، در نقطه می‌توان نوشت:
(2-13)
بنابراین مینیمم تابع، در راستای ، در نقطه می‌باشد.
2-6 معیار هم‌گرائیمعیارهای زیر می‌توانند برای بررسی هم‌گرائی در محاسبات تکراری به کار روند:
درصورتی‌که تغییرات تابع در دو تکرار متوالی از مقدار معینی کوچک‌تر شود:
(2-14)
زمانی که مشتقات جزئی (گرادیان مؤلفه‌ها) به‌اندازه کافی کوچک شود:
(2-15)
زمانی که تغییرات بردار موردنظر در دو تکرار متوالی کوچک شود:
(2-16)
که ، و مقادیر معین کوچکی در نظر گرفته می‌شوند.
2-7 روش کاهش سریعاستفاده از قرینه بردار گرادیان به‌عنوان جهت مینیمم سازی اولین بار توسط کوشی انجام گرفت. در این روش محاسبات از نقطه‌ای مانند شروع‌شده و طی فرآیندهای تکراری با حرکت در جهت سریع‌ترین نرخ کاهش، نهایتاً به نقطه مینیمم می‌رسد. مراحل مختلف این روش را می‌توان به‌صورت زیر در نظر گرفت:
1. شروع محاسبات از یک نقطه دلخواه به‌عنوان اولین تکرار
2. یافتن جهت به‌صورت
3. محاسبه طول گام بهینه در جهت و قرار دادن و یا .
4.بررسی بهینه بودن نقطه و پایان محاسبات در صورت مینیمم بودن این نقطه، در غیر این صورت قرار دادن و ادامه محاسبات از مرحله 2.
2-8 مقدمه ای بر روش انتقال حرارت معکوس2-8-1 مقدمه
با ظهور مواد مخلوط مدرن و وابستگی شدید خواص ترموفیزیکی آن‌ها به دما و مکان، روش‌های معمولی برای محاسبه آن‌ها راضی‌کننده نیستند. همچنین انتظارات عملیاتی صنعتی مدرن هر چه بیشتر و بیشتر پیچیده شده‌اند و یک محاسبه دقیق در محل از خواص ترموفیزیکی تحت شرایط واقعی عملیات ضرورت پیدا کرد. شیوه انتقال حرارت معکوس(IHTP) می‌تواند جواب‌های رضایت بخشی برای این‌گونه حالات و مسائل به دست دهد.
سود عمده IHTP این است که شرایط آزمایش را تا حد امکان به شرایط واقعی نزدیک می‌سازد.
کاربرد عمده تکنیک IHTP شامل محدوده‌های خاص زیر می‌باشند (در میان سایرین)
محاسبه خواص ترموفیزیکی مواد به‌عنوان‌مثال؛ خواص ماده سپر حرارتی در طی ورودش به اتمسفر زمین و برآورد وابستگی دمایی ضریب هدایت قالب سرد در طی باز پخت استیل
برآورد خواص تشعشعی بالک و شرایط مرزی در جذب، نشر و بازپخش مواد نیمه‌رسانا
کنترل حرکت سطح مشترک جامد - مایع در طی جامدسازی
برآورد شرایط ورود و شار حرارتی مرزی در جابجایی اجباری درون کانال‌ها
برآورد همرفت سطح مشترک بین سطوح متناوباً در تماس
نظارت خواص تشعشعی سطوح بازتاب‌کننده گرم‌کننده‌ها و پنلهای برودتی
برآورد وابستگی دمایی ناشناخته ضریب هدایت سطوح مشترک بین ذوب و انجماد فلزات در طی ریخته‌گری
برآورد توابع واکنشی
کنترل و بهینه‌سازی عملیات پروراندن لاستیک
برآورد شکل مرزی اجسام
برآورد این‌گونه خواص از طریق تکنیک‌های رایج کاری به‌شدت دشوار یا حتی غیرممکن است. اگرچه با اعمال آنالیز انتقال حرارت معکوس، این‌گونه مسائل نه‌تنها می‌توانند حل شوند، بلکه ارزش اطلاعات مطالعات افزوده‌شده و کارهای تجربی سرعت می‌گیرند.
2-8-2 مشکلات حل مسائل انتقال حرارت معکوسبرای تشریح مشکلات اصلی حل مسائل انتقال حرارت معکوس، جامد نیمه بینهایت () در دمای اولیه صفر در نظر می‌گیریم. برای زمان‌های سطح مرزی در تحت یک شار گرمایی متناوب به فرم قرارگرفته است. جایی که و ω به ترتیب دامنه و فرکانس نوسان شار گرمایی هستند و t متغیر زمان است. بعد از گذشت حالت متغیر، توزیع دمایی شبه - ثابت در جامد با توزیع دمایی زیر به دست می‌آید:
(2-17)
جایی که پخشندگی حرارتی و k ضریب رسانایی حرارتی جامد هستند.
معادله بالا نشان می‌دهد که پاسخ دمایی دارای یک تأخیر فاز نسبت به شار اعمالی سطحی می‌باشد و این تأخیر برای مکان‌های عمیق‌تر درون جسم واضح‌تر می‌باشد. درصورتی‌که این شار بتواند برآورد شود، این تأخیر دمایی نیاز به برداشت اطلاعات پس از اعمال شار حرارتی را آشکار می‌کند.
دامنه نوسان دما در هر مکانی، ، با قرار دادن در معادله به دست می‌آید. لذا:
(2-18)
این معادله نشان می‌دهد که به‌صورت توانی با افزایش عمق و با افزایش فرکانس تغییر می‌کند.
اگر دامنه شار حرارتی سطحی (q) به‌وسیله بکار بردن اندازه‌گیری مستقیم دما در نقاط داخلی اندازه‌گیری گردد آنگاه هرگونه خطای اندازه‌گیری با عمق x و فرکانس ω به‌صورت توانی بزرگنمایی می‌شود، که به‌صورت معادله زیر نشان داده می‌شود:
(2-19)
برای تخمین شار حرارتی مرزی جانمایی یک حس‌گر در عمق x از سطح، جایی که دامنه نوسانات دما بسیار بزرگ‌تر از خطاهای اندازه‌گیری‌اند، ضروری می‌باشد. در غیر اینصوررت تشخیص اینکه نوسانات دمایی در اثر شار حرارتی یا خطای اندازه‌گیری بوده غیرممکن خواهد بود، که منجر به عدم یگانگی جواب معادله خواهد شد.
ازآنجاکه خطاها در دقت روش‌های معکوس بسیار مؤثرند، بک ([26-28]) توصیفات این‌گونه خطاها را به‌صورت 8 نکته بیان نموده است.
خطاها به مقدار اصلی اضافه می‌شوند که مقدار اندازه‌گیری شده، مقدار واقعی و یک خطای رندوم می‌باشد.
خطای دمایی دارای میانگین صفر می‌باشد. یعنی . جایی که یک عملگر اندازه است، آنگاه گفته می‌شود که خطا بدون پیش مقدار است.
خطا دارای انحراف ثابت است، که عبارت است از
(2-20)
که به معنای استقلال انحراف از اندازه‌گیری است.
خطاهای مرتبط با اندازه‌گیری‌های مختلف ناهمبسته هستند. دو خطای اندازه‌گیری و (که ) ناهمبسته هستند اگر کوواریانس و صفر باشد. یعنی
(2-21)
در این حالت خطاهای و هیچ تأثیری یا رابطه‌ای بر هم ندارند.
خطاهای اندازه‌گیری دارای یک توزیع نرمال (گوسی) است. با توجه به فرضیات 2، 3 و 4 بالا توزیع احتمال به‌وسیله معادله زیر داده می‌شود
(2-22)
پارامترهای معرفی کننده خطا مثل معلوم هستند.
تنها متغیری که دارای خطاهای رندوم می‌باشد دمای اندازه‌گیری شده است. پارامترهای اندازه‌گیری شده مکان‌های اندازه‌گیری شده، ابعاد جسم گرم شونده و تمامی کمیت‌هایی که در فرمول نویسی ظاهرشده‌اند به‌دقت مشخص هستند.
اطلاعات پیشین کمیت‌ها جهت تخمین موجود نیست (می‌تواند پارامتر یا تابع باشند) اگر این اطلاعات موجود می‌بود می‌توانست جهت بهبود تخمین مقادیر بکار رود.
در ادامه چندین تکنیک مختلف برای حل مسائل IHTP را معرفی می‌نماییم. این‌گونه تکنیک‌ها معمولاً نیازمند حل مستقیم مربوطه می‌باشد. البته ارائه روش‌هایی که مسائل معکوس را بدون ارتباط با مسائل مستقیم حل کنند بسیار دشوار است.
تکنیک‌های حل مسائل می‌توانند به‌صورت زیر طبقه‌بندی شوند:
روش‌های معادلات انتگرالی
روش‌های تبدیل انتگرال
روش‌های حل سری
روش‌های چندجمله‌ای
بزرگنمایی معادلات هدایت گرمایی
روش‌های عددی مثل تفاضل محدود، المان محدود و المان مرزی
تکنیک‌های فضایی با اعمال فیلترینگ نویز اضافی مثل روش نرم کردن
تکنیک فیلترینگ تکرارشونده [29]
تکنیک حالت پایدار
روش تابع مشخصه متوالی بک
روش لوبنرگ - مارگارت برای مینیمم کردن نرم کوچک‌ترین مربعات
روش منظم سازی تیخونوف
روش منظم سازی تکراری برآورد توابع و پارامترها
الگوریتم ژنتیک [30]
2-8-3 ارزیابی روش‌های مسائل معکوس حرارتیاگر مسائل معکوس شامل تعداد زیادی پارامتر مانند برآورد شار حرارتی گذرا در زمان‌های مختلف باشند، ممکن است نوساناتی در حل رخ دهد. یک روش برای کاهش این ناپایداری‌ها استفاده از منظم سازی تیخونوف می‌باشد.
2-8-4 تکنیک‌های حل مسائل انتقال حرارت معکوسهدف اصلی این بخش معرفی تکنیک‌هایی جهت حل مسائل انتقال حرارت معکوس و روابط ریاضی موردنیاز می‌باشد.
گر چه تکنیک‌های زیادی موجود هستند، اما در اینجا به ذکر 4 تکنیک قدرتمند بسنده می‌کنیم.
لونبرگ - مارکوت برای تخمین پارامترها
گرادیان مزدوج برای تخمین پارامترها
گرادیان مزدوج با مسئله اضافی برای تخمین پارامترها
گرادیان مزدوج با مسئله اضافی برای تخمین توابع
این روش‌ها معمولاً کافی، تطبیق‌پذیر، مستقیم و قدرتمند جهت غلبه بر مشکلات موجود در حل معادلات انتقال حرارت معکوس می‌باشند.
تکنیک I: این تکنیک یک روش تکراری برای حل مسائل کوچک‌ترین مربعات تخمین پارامترهاست. این روش اولین بار در سال 1966 توسط لونبرگ [31] ایجاد شد، سپس در سال 1963 مارکوارت [32] همان تکنیک را با استفاده از روشی دیگر به دست آورد. حل مسائل معکوس به این روش، نیازمند محاسبه ماتریس حساسیت J می‌باشد. ماتریس حساسیت به‌صورت زیر تعریف می‌گردد:
(2-23)
جایی که:

تعداد اندازه‌گیری I =
تعداد پارامترهای نامعلوم N =
دمای iام تخمین زده‌شده
پارامتر jام نامعلوم
این ضریب حساسیت نقش مهمی را در تکنیک‌های I تا III ایفا می‌کند و در ادامه روش‌های متفاوت حل بیان خواهد شد.
این روش برای حل معادلات خطی و غیرخطی بسیار مؤثر است. گر چه در مسائل غیرخطی با افزایش پارامترهای نامعلوم ممکن است حل ماتریس حساسیت به درازا بکشد.
تکنیک II روش گرادیان مزدوج در بهینه‌سازی را جهت تخمین پارامترها بکار می‌برد، که همانند تکنیک I نیازمند حل ماتریس حساسیت بوده که مخصوصاً در حالت غیرخطی وقتی تعداد پارامترها زیاد شوند کاری زمان‌بر است.
تکنیک‌های III و IV: روش گرادیان مزدوج در کوچک‌سازی را با مسئله اضافی بکار می‌برد[33-36]
روش III مخصوصاً برای مسائلی که جهت تخمین ضریب آزمایشی در تخمین توابع بکار برده می‌شوند مناسب است. مسئله اضافی در جهت کاهش نیاز به حل ماتریس حساسیت استفاده می‌شود.
تکنیک IV روشی برای تخمین توابع می‌باشد مخصوصاً وقتی‌که اطلاعات مقیاسی درباره فرم تابع کمیت نامعلوم در دسترس نباشد.
تکنیک‌های اول، سوم و چهارم به همراه شرط توقف مناسب جهت تکرارهایشان؛ جزء دسته تکنیک‌های خطی سازی تکراری هستند.
در ادامه به بررسی و معرفی گام‌های اولیه و الگوریتم حل این روش‌ها با استفاده از روش تمام دامنه می‌پردازیم.
2-8-5 تکنیک I2-8-5-1 شرح تکنیک
این روش برای حل مسائل غیرخطی ابداع شد گر چه می‌توان آن را در مسائل خطی بسیار ناهنجار که از طریق مرسوم قابل‌حل نمی‌باشند نیز اعمال کرد. گام‌های اصلی روش به‌صورت زیر است:
مسئله مستقیم
مسئله معکوس
پروسه تکرار
شرط توقف
حل الگوریتم
این روش یک متد کاهشی شدید می‌باشد. در حل مسئله مستقیم، هدف یافتن دمای گذرا می‌باشد. در حل مسئله غیرمستقیم، هدف یافتن پارامتر نامعلوم با استفاده از دمای گذرای اندازه‌گیری شده در نقاط مختلف می‌باشد.
ماتریس حساسیت یا ماتریس ژاکوبین به‌صورت زیر تعریف می‌شود:
(2-24)
N: تعداد کل پارامترهای نامعلوم
I: تعداد کل اندازه‌گیری
المان‌های ماتریس حساسیت ضریب حساسیت نامیده شده و با نشان داده می‌شود. برای معادلات خطی این ماتریس تابع پارامترهای مجهول نیست اما در حالت غیرخطی ماتریس دارای پارامتری وابسته به p (مجهول) می‌باشد.
ذکر این نکته ضروری است که ماتریس که شرط شناسایی نامیده می‌شود نبایستی برابر صفر باشد زیرا اگر این مقدار برابر صفر با حتی مقداری بسیار کوچک باشد، پارامتر مجهول را نمی‌توان از پروسه معادلات تکراری به دست آورد.
مسائلی که شرط شناسایی تقریباً صفر داشته باشند مسائل ناهنجار نامیده می‌شوند. مسائل انتقال حرارت معکوس عموماً از این دسته‌اند؛ مخصوصاً در نزدیکی حدس اولیه‌ای که برای پارامترهای نامعلوم بکار می‌بریم.
ضریب حساسیت ، میدان حساسیت دمای اندازه‌گیری شده با توجه به تغییرات پارامتر مجهول p می‌باشد. میزان اندک نشان‌دهنده این است که تغییرات زیاد باعث تغییرات اندکی در می‌شوند به‌آسانی قابل‌فهم است که در این‌گونه موارد تخمین کاری دشوار می‌باشد زیرا عملاً هر مقدار گستره بزرگی از ها را در برمی‌گیرد. در حقیقت وقتی ضریب حساسیت کوچک استJTJ≃0 بوده و مسئله ما ناهنجار می‌باشد. به همین علت داشتن ضرایب حساسیت غیر وابسته خطی با اندازه بزرگ مطلوب می‌باشد، تا مسئله معکوس به خطاهای اندازه‌گیری حساس نبوده و پارامترها به‌صورت دقیق تخمین زده شوند. لازم است که تغییرات ضریب حساسیت قبل از حل مسئله آزمایش شود. این‌گونه آزمایش‌ها بهترین مکان حس‌گر و زمان اندازه‌گیری در طی حل را به دست می‌دهد.
لونبرگ - مارکارت برای کاستن از این وابستگی، از دو پارامتر (عامل استهلاک) و (ماتریس قطری) استفاده کردند. هدف از اعمال ترم کاهش نوسانات و ناپایداری‌ها در طی شرایط ناهنجار؛ از طریق بزرگ کردن مؤلفه‌هایش در مقایسه با در شرایط موردنیاز، می‌باشد.
عامل استهلاک در ابتدای پروسه تکرار بزرگ در نظر گرفته می‌شود تا در ناحیه اطراف حدس اولیه بکار رود. با کمک این روش دیگر لازم نیست ماتریس در ابتدای پروسه نامساوی صفر باشد. چون در ابتدا ضریب بزرگ است. روش لونبرگ یک به سمت متد کاهشی شدید گرایش دارد، اما با ادامه پروسه تکرار و کوچک‌تر شدن ضریب در طی این پروسه، روش به سمت روش گوس گرایش پیدا می‌کند. شرط توقف پیشنهادی توسط دنیس و شنابل کوچک بودن فرم کوچک‌ترین مربعات، گرادیان تابع مجهول و همگرایی پارامترها را چک می‌کند.
الگوریتم محاسباتی لونبرگ - مارکارت را می‌توان در موارد استفاده از چندین حس‌گر ارتقا بخشید.
2-8-5-2 روش‌های محاسبه ضرایب حساسیت
روش‌های متعددی جهت محاسبه ضرایب حساسیت موجود است که در ادامه سه نمونه از آن‌ها ذکرشده است.
تحلیل مستقیم
مسائل مقدار مرزی
تقریب تفاضل محدود
روش تحلیل مستقیم: اگر مسئله مستقیم هدایت خطی بوده و حل تحلیل برای حوزه دمایی موجود باشد، ضریب حساسیت با تفاضل گیری جواب در جهت (پارامتر نامعلوم) به دست می‌آید.
اگر غیر وابسته به باشد، آنگاه مسئله معکوس جهت محاسبه خطی خواهد بود.
در مسائلی که چندین درجه بزرگی موجود باشد، ضریب حساسیت نسبت به هرکدام از پارامترها باید چندین مرتبه بزرگ‌تر باشد که این موضوع خود باعث ایجاد مشکلات و سختی‌هایی در مقایسه و شناسایی وابستگی خطی بودن شود. این سختی‌ها را می‌توان با آنالیز ابعادی ضرایب حساسیت یا با استفاده از فرمول زیر کاهش داد:
(2-25)
با توجه به اینکه ضریب حساسیت ذکرشده در بالا هم واحد با درجه حرارت است، مقایسه مرتبه بزرگی آن راحت‌تر است.
مسائل مقدار مرزی: یک مسئله مقدار مرزی می‌تواند با تفاضل گیری از مسئله مستقیم اصلی نسبت به ضرایب مجهول جهت به دست آوردن ضرایب حساسیت بکار رود. اگر مسئله هدایت مستقیم خطی باشد، ساختار مسئله حساسیت مربوطه ساده و مستقیم است. در حالت‌های پیشرفته حل ضرایب حساسیت می‌تواند بسیار زمان‌بر باشد و بایستی از روش‌های عددی مثل تفاضل محدود بهره گرفت.
تقریب تفاضل محدود: می‌توان تفاضل اول ظاهرشده در تعریف را از طریق تفاضل پیشرو یا تفاضل مرکزی حل کرد اما برای حل به این روش لازم است N مجهول اضافی در حالت اول و N2 مجهول اضافی در حالت دوم محاسبه شود که خود بسیار زمان‌بر خواهد بود.
2-8-6 تکنیک II 2-8-6-1 متد گرادیان مزدوجروش گرادیان مزدوج روش تکرار مستقیم و قدرتمندی درزمینه حل مسائل خطی و غیرخطی معکوس می‌باشد. در پروسه تکرار، در هر تکرار یک گام مناسب در جهت ترولی انتخاب می‌شود تا تابع موردنظر را کاهش دهد.
جهت نزولی از ترکیب خطی جهت منفی گرادیان در گام تکرار حاضر با جهت نزولی تکرار پیشین به دست می‌آید. این ترکیب خطی به‌گونه‌ای است که زاویه جهت نزولی و جهت منفی گرادیان کمتر از ۹۰° باشد تا مینیمم شدن تابع موردنظر حتمی گردد[34,37-39]. روش گرادیان مزدوج با شرط توقف مناسب به‌دست‌آمده از تکنیک تنظیم تکرارها، که در آن مقدار تکرارها به‌گونه‌ای انتخاب می‌شود که جواب پایدار به دست دهد، در حل مسائل معکوس بکار می‌رود.
الگوریتم روش به‌صورت گام‌های زیر است:
مسئله مستقیم
مسئله معکوس
پروسه تکرار
شرط توقف
الگوریتم محاسباتی
در ادامه به بررسی گام‌های فوق پرداخته خواهد شد.
در حل مسئله معکوس شار حرارتی مجهول را به‌صورت تابعی خطی به فرم زیر در نظر می‌گیریم:
(2-26)
که در آن تابع تست معلوم و پارامترهای مجهول می‌باشند.
بدین ترتیب تخمین تابع مجهول به تخمین پارامترهای مجهول ، تقلیل می‌یابد. این‌گونه پارامترها را می‌توان با روش تفاضل مربعات مجهولی حل کرد.
(2-27)
S: مجموع مربعات خطاها یا تابع موردنظر
p: بردار پارامترهای مجهول
: دمای تخمین زده‌شده در زمان
: دمای اندازه‌گیری شده در زمان
: تعداد کل پارامترهای مجهول
I: تعداد کل اندازه‌گیری‌ها، به‌طوری‌که
ذکر دو نکته در اینجا ضروری می‌نماید:
بردار گرادیان جهت سریع‌ترین افزایش را نشان می‌دهد، لذا قرینه بردار جهت سریع‌ترین کاهش را نشان می‌دهد. بنابراین روش‌هایی که از بردار گرادیان جهت بهینه‌سازی استفاده می‌کنند نسبت به روش‌های دیگر سریع‌تر به نقطه مینیمم می‌رسند.
بیشترین نرخ تغییر تابع f در هر نقطه ، برابر اندازه بردار گرادیان در آن نقطه است. در بیشتر روش‌های بهینه‌سازی نیاز است که نقطه مینیمم در یک راستای مشخص تعیین گردد. یعنی لازم است نرخ تغییر تابع هدف از یک نقطه مانند در راستای مشخصی مانند نسبت به پارامتری چون محاسبه شود.
لذا اگر نرخ تغییر تابع در راستای برابر باشد با
(2-28)
و درصورتی‌که تابع f را در جهت مینمم کند؛ مینمم تابع در نقطه خواهد بود زیرا
(2-29)
پروسه تکرار در روش گرادیان مزدوج جهت کمینه‌سازی نرم داده‌شده به‌صورت زیر می‌باشد
(2-30)
جایی که جستجوگر سایز گام، جهت نزول و بالانویس k نمایانگر تعداد تکرار است.
جهت نزولی به‌صورت پیوستگی جهت گرادیان و و جهت نزولی تکرار قبلی می‌باشد که فرم ریاضی آن به‌صورت زیر است:
(2-31)
تعاریف گوناگونی برای ضریب همبستگی موجود است. به‌عنوان‌مثال بسط پولاک - ریبیر (معادله 2-32) در مراجع[37,40,41] و بسط فلچر - ریوز (معادله 2-33) در مراجع[37,38,40] آمده است.
(2-32) γk=j=1N∇S(pk)j∇Spk-∇S(pk-1)jj=1N∇S(pk-1)2j k=1,2,…
وقتی‌که برای k=0 شرط مرزی γ0=0 برقرار باشد.
(2-33) γk=j=1N∇S(pk)2jj=1N∇S(pk-1)2j k=1,2,…
بسط جهت گرادیان نسبت به پارامتر مجهول p به‌صورت
(2-34)
می‌باشد. جایی که ماتریس حساسیت می‌باشد. به‌عبارت‌دیگر درایه jام جهت گرادیان را می‌توان از فرم صریح
(2-35)
به دست آورد.
هرکدام از بسط‌های ذکرشده در مراجع جهت باعث ایجاد زاویه کمتر از بین جهت نزول و جهت منفی گرادیان شده، درنتیجه تابع بهینه می‌گردد.[36]
این بسط‌ها در مسائل خطی هم‌ارز بوده اما در مسائل غیرخطی، بر طبق برخی مشاهدات، بسط پولاک - ریبیر باعث بهبود همگرایی می‌شود. باید دانست که اگر باشد، در تمامی تکرارها جهت نزول همان جهت گرادیان می‌باشد و طول گام بهینه کاهشی به دست خواهد آمد گر چه روش گام بهینه کاهشی به‌سرعت روش گرادیان مزدوج همگرا نمی‌شود. گام جستجو از کمینه ساختن تابع نسبت به به دست می‌آید.
(2-36)
با جایگذاری از معادله (2-30) در معادله بالا و همچنین خطی سازی بردار دمای با بسط سری تیلور گام جستجو به‌صورت ماتریس زیر به دست خواهد آمد:
(2-37)
پس از محاسبه ماتریس حساسیت به یکی از روش‌های گفته‌شده در قبل، جهت گرادیان ، ضریب همبستگی و گام جستجو پروسه تکرار تا رسیدن به‌شرط توقف که طبق قانون اختلاف می‌باشد ادامه پیدا می‌کند.
(2-38) : شرط توقف
(2-39) Yti-T(xmeas,ti≈σi
σ: انحراف معیار استاندارد
(2-40) Ԑ=i=1Iσi2=Iσ2
اگرچه استفاده از این فرضیه جهت تکنیک I لازم نیست؛ زیرا تکنیک اول به‌صورت اتوماتیک با کنترل پارامتر استهلاک و کاهش شدید صعود بردار پارامترها در پروسه تکرار از ناپایداری جواب‌ها جلوگیری می‌کند. استفاده از قانون اختلاف نیازمند اطلاعات اولیه از انحراف استاندارد خطای اندازه‌گیری می‌باشد. یک روش جایگزین می‌تواند استفاده از اندازه‌گیری‌های اضافی باشد.
2-8-6-2 الگوریتم محاسباتی تکنیک دومبا فرض آنکه دماهای اندازه‌گیری شده در زمان‌های بوده و حدس اولیه برای بردار مجهول p باشد. ابتدا قرار داده و سپس:
گام 1: حل معادله مستقیم حرارت با استفاده از و به دست آوردن بردار دمای اندازه‌گیری
گام 2: ارائه حل اگر شرط توقف (2-38) ارضا نشده باشد.
گام 3: حل ماتریس حساسیت از معادله (2-35) به یکی از روش‌های گفته‌شده
گام 4: با دانستن Y، و جهت گرادیان از معادله (2-34) به‌دست‌آمده سپس از معادلات (2-32) یا (2-33) محاسبه می‌گردد.
گام 5: جهت نزول از معادله (2-31) محاسبه می‌آید.
گام 6: با دانستن ، Y، و گام جستجو از معادله (2-37) به دست می‌آید.
گام 7: با دانستن و و حدس جدید از معادله (2-30) به دست می‌آید.
گام 8: بجای k، 1+k را جایگزین کرده به گام 1 بازمی‌گردد.
2-8-6-3 اندازه‌گیری پیوستهتا اینجا فرض بر گسسته بودن دامنه زمانی و دماهای اندازه‌گیری شده بوده است. در حالتی که تعداد داده‌ها به‌اندازه‌ای باشد که بتوان آن‌ها را تقریباً پیوسته در نظر گرفت نیازمند برخی اصلاحات در فرم اولیه، بردار گرادیان(معادله 4-18)، گام جستجو(معادله 4-21) و تلورانس (معادله 4-24) مورداستفاده در قانون اختلاف می‌باشد.
با فرض پیوستگی اطلاعات اندازه‌گیری شده انتگرال تابع در بازه زمان 0≤t≤tf به‌صورت:
(2-41)
نوشته‌شده که تابع گرادیان معادله بالا نیز به‌صورت
(2-42)
نوشته می‌گردد. به‌عبارت‌دیگر هر جزء بردار گرادیان به فرم
(2-43)
خواهد بود. در ادامه گام جستجو نیز باید به فرم پیوسته برای دامنه زمان بازنویسی گردد.
که این مهم با بهینه‌سازی تابع برحسب در دامنه محقق می‌گردد. لذا
(2-44)
که این معادله بسیار شبیه به فرم گسسته می‌باشد.
تلورانس نیز به‌صورت نوشته می‌گردد و الگوریتم حل همچنان دست‌نخورده باقی خواهد ماند.
در مسائلی که هدف تعیین ضرایب پارامتری شده تابع مجهول باشد تکنیک III راه‌حلی جایگزین جهت پرهیز از حل چندباره ماتریس حساسیت در به دست آوردن جهت گرادیان و گام جستجو می‌باشد.
2-8-7 تکنیک III 2-8-7-1 روش گرادیان مزدوج با مسئله اضافی جهت تخمین پارامترهادر این بخش به تشریح روشی دیگر از متد گرادیان مزدوج پرداخته می‌شود که با کمک حل دو مسئله کمکی، مسئله حساسیت و مسئله اضافی، به حل گام جستجو و معادله گرادیان می‌پردازد. این روش مخصوصاً در مسائلی که هدف یافتن ضرایب توابع امتحانی بکار رفته در فرم تابع مجهول می‌باشد کاربرد دارد.
جهت راحتی مراحل بعدی آنالیز، مقادیر اندازه‌گیری شده پیوسته فرض می‌گردد.
فرم معادله تفاضل مربعات به‌صورت
(2-45)
است. مطابق قبل دمای اندازه‌گیری شده و دمای تخمین زده‌شده در نقطه در بازه زمانی می‌باشد.
گام‌های اصلی حل به شرح زیر بوده که در ادامه به شرح بیشتر هرکدام پرداخته می‌شود.
مسئله مستقیم
مسئله معکوس
مسئله حساسیت
مسئله اضافی الحاقی
معادله گرادیان
پروسه تکرار
شرط توقف
الگوریتم محاسباتی
گام‌های اول و دوم همانند سابق بوده لذا از شرح مجدد خودداری می‌گردد. در گام سوم تابع حساسیت حاصل حل مسئله حساسیت به‌صورت مشتق وابسته دما در جهت آشفتگی تابع مجهول تعریف می‌شود.
این مسئله می‌تواند با فرض اینکه دما با مقدار دچار آشفتگی شده وقتی‌که چشمه حرارتی با میزان دچار انحراف گردیده به دست آید. که انحراف از مجموع انحراف هر یک از پارامترهایش حاصل‌شده است.
(2-46)
اکنون اگر در معادله مستقیم با و با جایگزین گردد، معادله حساسیت به دست خواهد آمد.
عامل لاگرانژ جهت بهینه‌سازی تابع استفاده می‌گردد. این عامل جهت محاسبه تابع گرادیان با کمک حل مسئله الحاقی در مسئله حساسیت لازم می‌باشد. در این راستا با ضرب معادله مشتق جزئی مسئله مستقیم در ضریب لاگرانژ و انتگرال‌گیری آن در حوزه زمان و جمع معادله حاصل بافرم اولیه تابع ، جایگزین به دست می‌آید.
مشتق وابسته در جهت آشفتگی از جایگزینی ، و بجای ، و در معادله به‌دست‌آمده و صرف‌نظر کردن از ترم‌های درجه دوم حاصل می‌شود. می‌توان با حل جزءبه‌جزء طرف راست مسئله و صرف‌نظر کردن از انتگرال‌های شامل به فرم ساده‌شده معادله الحاقی دست‌یافت.
بنا بر تعریف، مشتق وابسته در جهت بردار به‌صورت
(2-47)
نوشته می‌شود. استفاده از معادله الحاقی برای آن دسته از مسائلی که حل تحلیل نداشته و نیاز به استفاده از روش‌های تفاضل محدود است، مناسب می‌باشد. با این روش، گرادیان با حل تنها یک معادله الحاقی به دست می‌آید. درحالی‌که روش دوم نیازمند حل N باره مسئله مستقیم جهت به دست آمدن ضرایب حساسیت می‌باشد.
گام جستجو که جهت بهینه‌سازی تابع در هر تکرار بکار می‌رود از خطی سازی دمای تخمین زده‌شده در فرم بهینه تابع با کمک بسط سری تیلور به دست می‌آید.
(2-48)
که حل مسئله حساسیت حاصل از قرار دادن در محاسبه معادله (2-46) می‌باشد.
باید توجه داشت که در هر گام تکرار لازم است یک مسئله حساسیت جهت محاسبه حل گردد.
شرط توقف نیز همانند تکنیک به‌صورت می‌باشد.
2-8-7-2 الگوریتم محاسباتی تکنیک سومبه‌صورت خلاصه الگوریتم حل به‌صورت زیر می‌باشد. با قرار دادن ، فرضیات و مطابق تکنیک II می‌باشد.
مرحله 1: محاسبه از معادله و آنگاه حل معادله مستقیم جهت به دست آوردن
مرحله 2: بررسی شرط توقف و ارائه حل در صورت ارضاء نشدن آن
مرحله 3: حل معادله الحاقی جهت محاسبه با دانستن و
مرحله 4: با دانستن ، به دست آوردن پارامترهای بردار گرادیان
مرحله 5: با دانستن ، محاسبه و آنگاه جهت نزول
مرحله 6: با قرار دادن ، محاسبه و سپس حل مسئله حساسیت برای به دست آوردن
مرحله 7: با دانستن ، به دست آوردن گام جستجو
مرحله 8: با دانستن و، محاسبه تخمین جدید و جایگزینی k با 1+k و آنگاه بازگشت به مرحله 1
2-8-8 تکنیک IV2-8-8-1 گرادیان مزدوج با مسئله الحاقی برای تخمین توابعدر این روش هیچ اطلاعات اولیه از فرم تابع مجهول به‌جز فضای تابع موجود نیست. در اینجا تابع به‌صورت زیر تعریف می‌گردد.
(2-49)
و گام‌های حل نیز مانند تکنیک III می‌باشد.
تفاوت این روش با دو تکنیک قبل در این است که دیگر به‌صورت ساده پارامتری نوشته نمی‌شود. حل مسائل الحاقی و حساسیت در حالت کلی بسیار شبیه حالت تکنیک III می‌باشد. اما جهت محاسبه معادله گرادیان دیگر نمی‌توان مانند گذشته عمل نمود.
از مقایسه مسئله الحاقی و می‌توان معادله گرادیان را به دست آورد.
(2-50)
تابع مجهول از بهینه‌سازی به دست خواهد آمد. لذا پروسه تکرار به‌صورت
(2-51)
خواهد بود. که در آن ، جهت نزول، به‌صورت زیر می‌باشد.
(2-52)
همچنین ضریب نیز می‌تواند از هرکدام از بسط‌های پولاک - ریبیر و یا فلچر - ریوز به دست آید.
در انتها نیز از بهینه‌سازی نسبت به و پس از ساده‌سازی با اعمال بسط سری تیلور، مشتق‌گیری نسبت به و مساوی صفر قرار دادن آن، به دست می‌آید.
(2-53)
که در آن جواب مسئله حساسیت با جایگزینی می‌باشد.
ازآنجاکه معادله گرادیان در زمان نهایی همواره صفر می‌باشد لذا حدس اولیه هرگز تحت پروسه تکرار تغییر نمی‌کند. لذا تابع تخمین زده‌شده می‌تواند از جواب دقیق منحرف گردد که جهت غلبه بر این موضوع می‌توان از بازه زمانی بزرگ‌تر از بازه موردنیاز استفاده نمود. همچنین می‌توان با تکرار حل معکوس و استفاده از جواب تکرار قبل جهت حدس اولیه نیز اثر این مشکل را کاهش داد.
شرط توقف نیز مانند تکنیک پیشین می‌باشد که در موارد بدون خطا می‌تواند مقداری بسیار کوچک یا حتی صفر داشته باشد.
2-8-8-2 الگوریتم محاسباتی تکنیک چهارمبه‌صورت خلاصه الگوریتم محاسباتی این تکنیک به شرح زیر می‌باشد:
مرحله 1: حل معادله مستقیم و محاسبه بر اساس
مرحله 2: بررسی شرط توقف و ادامه حل در صورت ارضا نشدن آن
مرحله 3: با دانستن و ، حل معادله الحاقی و به دست آوردن
مرحله 4: حل با دانستن
مرحله 5: با دانستن گرادیان ، محاسبه از هرکدام از بسط‌های ذکرشده و نیز جهت نزول


مرحله 6: با قرار دادن و حل معادله حساسیت، به دست آوردن
مرحله 7: با دانستن ، به دست آوردن گام جستجو
مرحله 8: با دانستن گام جستجو و جهت نزول، محاسبه مقدار جدیدو بازگشت به مرحله 1
حل معادله مستقیم جواب‌های دقیق را به دست می‌دهد.
برای محاسبه داده‌های دارای خطا می‌توان از راه‌حل زیر استفاده نمود:
(2-54)
که در آن ω متغیر رندوم با پراکندگی نرمال که دارای هسته اصلی صفر و انحراف معیار استاندارد می‌باشد. با اطمینان 99% به‌صورت -2.576<ω<2.576 بوده که می‌تواند از زیر برنامه IMSL یا DRRNOR به دست آید [31]. این مقادیر می‌تواند بجای داده‌های آزمایشگاهی اندازه‌گیری شده جهت حل معکوس استفاده شود.
فصل سوم: مدل ریاضی
3-1 مقدمهطبیعت پیچیده انتقال حرارت در بافتهای زنده مانع مدل‌سازی ریاضی دقیقی شده است. فرضیات و ساده‌سازی‌هایی باید انجام شود. در ادامه مروری مختصر بر معادلات و توزیع دما دربافت‌های زنده خواهیم داشت.
3-2 مدل‌های هدایت گرماییاز معادله انتقال حرارت زیستی پنز [25]شروع می‌کنیم که در سال 1948 ارائه‌شده است. ویژگی این معادله ساده بودن آن و کاربردی بودنش در شرایط خاص است.مدل‌هایی که در این بخش ارائه گردیده مدل‌های ماکروسکوپیکی است که بیشتر از سایر مدل‌ها در توصیف انتقال گرما مورداستفاده قرار می‌گیرند.
3-2-1 مدل پنزمعادله پنزبر اساس فرض‌های ساده کننده‌ای طبق فاکتور زیر است:
تعادل گرمایی: انتقال حرارت بین خون و بافت در بسترهای کپیلاری و همچنین رگ‌ها انجام می‌شود. ازاین‌رو از انتقال حرارت بین خون و بافت قبل و بعد از ورود به بافت صرف‌نظرمی‌شود.
2) تزریق وریدی خون: جریان خون در مویرگ‌های کوچک، ایزوتروپیک فرض می‌شود. این فرض باعث می‌شود جهت جریان کم‌اهمیت شود.
3)آرایش رگ‌ها:
رگ‌های خونی بزرگ‌تر در همسایگی بستر مویرگ‌های کپیلاری هیچ نقشی در تبادل حرارت بین بافت و خون مویرگ ایفا نمی‌کند. بنابراین، مدل پنزهندسهی رگ‌های اطراف را در نظر نمی‌گیرد.
4) دمای خون:
فرض می‌شود که خون با همان دمای هسته بدن Ta0 به مویرگها میرسد که به‌طور مداوم با بافت‌ها که در دمای T قرار دارند، تبادل گرمایی می‌کنند. بر اساس این فرضیات معادله پنز اثر خون را به‌عنوان یک منبع حرارتی ایزوتروپیک (یا چاه گرمایی) مدل کرده است که با نرخ جریان خون و اختلاف دمای بینTa0و T متناسب است.در این مدل، خونی که مسیر خود را آغاز می‌کند، تا زمانی که به مویرگ‌هاورگه‌ای درون بافت‌ها برسد در نظر گرفته می‌شود (المان بافتی که خون در آن واردشده است را در شکل 3-1.درنظر بگیرید). المان به‌اندازه کافی بزرگ است که رگ‌ها و مویرگ‌ها را در برداشته باشد، امّا در مقایسه با ابعادی که ما موردبررسی قرار می‌دهیم کوچک است.
1311275299085
شکل3-1. المان در نظر گرفته‌شده برای به دست آوردن معادله انتقال حرارت زیستی پنز
با نوشتن معادله انرژی به‌صورت زیر داریم:
(3-1) Ein+Eg-Eout=E
در اینجا از اثر جابجایی صرف‌نظر شده و به‌جای آن ترم مربوط به تزریق وریدی خون اضافه‌شده است. ساده‌ترین راه برای بررسی این ترم این است که آن را به‌صورت ترم تولید انرژی در نظر بگیریم.
اگرنرخ انرژی اضافه‌شده توسط خون در واحد حجم بافت:q''bانرژی متابولیک تولیدشده در واحد حجم بافت:q''mبا درنظر گرفتن المان موجود در شکل 1 خون با دمای مرکزی بدن به آن وارد می‌شودTa0 و در داخل المان به دمای تعادل المان بافت که T است، می‌رسد.
(3-2) q'''b=ρbCbWbTa0-T
که در معادله فوق، Cb گرمای ویژه خون، Wb نرخ خون تزریق وریدی بر واحد حجم بافت و ρb چگالی خون هست.
با استفاده از معادله انرژی و حذف کردن ترم جابجایی و استفاده از موارد فوق داریم:
(3-3) ∇.k∇T+ρbCbWbTa0-T+q'''m=ρC∂T∂t
که Cگرمای ویژه بافت، k هدایت گرمایی و ρ چگالی بافت است.
در معادله فوق اولین‌ترم مربوط به هدایت در 3 جهت است. با توجه به سیستم مختصات موردنظر ما به سه حالت زیر تبدیل می‌شود:
مختصات کارتزین،
(3-4) ∇.k∇T=∂∂xk∂T∂x+∂∂yk∂T∂y
مختصات استوانه‌ای،
(3-5) ∇.k∇T=1r∂∂rkr∂T∂r+1r2∂∂θk∂T∂θ+∂∂zk∂T∂z
مختصات کروی،
(3-6) ∇.k∇T=1r2∂∂rkr2∂T∂r+1r2sin∅∂∂∅ksin∅∂T∂∅+1r2sinθ∂∂θk∂T∂θ
قابل‌توجه است که نقش ریاضیات ترم تزریق وریدی در معادله پنز را می‌توان مانند اثر جابجایی در سطح پرهها در نظر گرفت.

user8310

م
ر
مقدمه 1
فصل اول-مقدمه و مرور بر تحقیقات انجام شده در گذشته 3
1-1- تاریخچه 4
1-2- تجربیات انجام شده در زمینه موتور گازسوز 5
1-3-اقدامات انجام شده برای نصب توربوشارژر 7
1-4-معرفی پروژه حاضر 10
فصل دوم- توربوشارژ کردن موتورهای احتراق داخلی 11
2-1- هدف توربوشارینگ 12
2-2- روشهای پرخورانی 12
2-3- مقایسه موتورهای توربوشارژ شده و تنفس طبیعی 15
2-3-1- انواع سیستمهای توربوشارژری 16
2-3-2- توربوشارژر فشار ثابت 16
2-4 توربوشارژینگ با سیستم ضربانی 17
2-5- سیستم‌های تک توربوشارژری 19
2-5-1- سیستم‌های ترتیبی 21
2-5-2- سیستم‌های دومرحله‌ای 21
فصل سوم-تغییرات موتور برای تجهیز به توربوشارژر 23
3-1- استفاده از توربوشارژر برای موتور گازسوز 24
3-2- تغییرات موتور برای تجهیز به توربوشارژر 24
3-3- کاهش مشکلات توربوشارژینگ 25
3-3-1- جلوگیری از تولید کوبش 25
3-3-1-1- روش های جلوگیری از تولید کوبش 26
3-3-2- کنترل افزایش فشار در توربوشارژر 28
3-3-3- زمانبندی سوپاپ های ورودی و خروجی 30
3-3-6- تأثیر توربوشارژر بر آلودگی خروجی 30
فصل چهارم- انطباق توربوشارژر 31
4-1- انطباق موتور و توربوشارژر 32
4-2- تعیین پارامترهای توربین و کمپرسور 32
4-3- انتخاب توربوشارژر 34
4-4 نواحی کاری کمپرسور 35
4-5- دریچه کنترل توربین 37
4-6- تاخیر در عملکرد توربوشارژر 37
4-7 تغییر در شرایط ورودی 38
4-8- فصل پنجم-مدلسازی موتور 40
5-1- مقدمه 41
5-2- تحلیل جریان در راهگاههای موتور با استفاده از رفتار موج فشاری 41
5--3 محاسبه پارامترهای عملکردی موتور 43
5-3- 1- فشار موثر متوسط اندیکاتوری و ترمزی 43
5-3-2- توان و مصرف سوخت ویژه 44
5-4- مدلسازی بازده حجمی 44
5-5- مدلسازی اصطکاک موتور 45
5-6- مدل اصطکاک جریان سیال 46
5-7-محاسبه ضریب جریان 47
5-8- محاسبه دبی جریان عبوری از سوپاپ 48
5-9-مدل انتقال حرارت بین سیال و راهگاههای جریان 49
5-10-مدلسازی انتقال حرارت در داخل سیلندر 49
5-11- مدلسازی پرخورانی موتور با استفاده از عملکرد پرخوران
5-11-1- انتخاب کمپرسور
5-11-2-انتخاب توربین 51
51
52
فصل شش - مدلسازی موتور EF7 با استفاده از نرم افزار GT-POWER 54
6-1- مدلسازی پورت های ورودی و خروجی 55
6-2- مدلسازی منیفولد و دریچه گاز 55
6-3- مدلسازی انژکتور 58
6-4- مشخصات سیلندر 59
6-5- مدلسازی توربوشارژر 60
6-6- مدلسازی خنک کن میانی 60
6-7- مدلسازی کاتالیست 61
6-8- مدلسازی احتراق 61
فصل هفت- نتایج توربوشارژ کردن موتور EF7 63
7-1- تغییرات اعمال شده به موتور تنفس طبیعی 64
7-2- تعیین هدف 66
7-3- نکاتی در مورد انتخاب توربوشارژر 67
7-4- مشخصات توربوشارژرهای انتخابی 68
7-5- اصطکاک موتورEF7 69
7-6- انتقال حرارت در داخل سیلندر 70
7-7- کالیبراسیون مدل موتور پرخورانی شده 70
7-8- پارامترهای عملکردی موتورEF7 در حالت بار کامل 84
7-9- مقایسه عملکرد دو توربوشارژر با استفاده از نتایج مدل 80
7-10- تعیین بهینه پارامترهای طراحی موتور پرخوران شده با استفاده از مدل 85
(فصل)هشتم-آنالیز حساسیت موتور EF7 95
8-1- آنالیز حساسیت 96
8-1-1- فشار موثر متوسط ترمزی 98
8-1-2-مصرف مخصوص ترمزی سوخت 99
8-1-3- راندمان حجمی 101
8-1-4-سرعت توربین 102
8-1-5- راندمان کمپرسور 104
8-1-6- فشار در پائین دست کمپرسور 105
8-1-7-جریان هوا 107
8-1-8- جریان سوخت 108
8-1-9- گشتاور ترمزی موتور 110
8-1-10- دمای پائین دست کمپرسور 111
8-1-11- دمای پائین دست خنک کن 113
8-1-12- دمای منیفولد 114
8-1-13- فشار منیفولد 116
8-1-14- فشار ورودی توربین 117
8-1-15- فشار خروجی توربین 119
8-1-16- دمای ورودی توربین 120
8-1-17- دمای خروجی از توربین 122
8-1-18- راندمان توربین 123
8-1-19- راندمان اندیکاتوری موتور 125
8-1-20- توان مصرفی کمپرسور 126
8-1-21- فشار موثر متوسط اندیکاتوری 128
8-1-22- ماکزیمم فشار سیلندر 129
8-1-23- درجه ماکزیمم فشار سیلندر 130
8-1-24- ماکزیمم دمای سیلندر 132
8-1-25- فشار ورودی به سیلندر 134
8-1-26- دمای ورودی به سیلندر 135
8-1-27- فشار خروجی از سیلندر 137
8-1-28- دمای خروجی از سیلندر 138
فصل نهم-سوپرشارژ کردن موتور توربوشارژ شده 140
9-1- هدف از سوپرتوربوشارژ کردن 141
9-2- سوپرشارژر روتز
9-3- مدلسلزی و نتایج سوپر شارژینگ 142
143
پیشنهادات
لیست مقالات ارائه شده 151
151
نتایج 152
ضمیمه 156
مراجع 161
چکیده انگلیسی 166
فهرست جداول
جدول(2-1) مقایسه یک موتور توربوشارژری و تنفس طبیعی با گشتاور و توان حداکثر برابر
جدول (5-1) توضیح پارامترهای معادله (5-18)
جدول (6-1) مشخصات هندسی سیلندر موتور تنفس طبیعی
جدول (7-1) مشخصات هندسی سیلندر موتور پرخوران شده
جدول (7-2) مقادیر ثابت فشار موثر متوسط اصطکاکی در دورهای مختلف
جدول(8-1) جدول تعریف متغیرها و مقدار آنها
جدول (8-2) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار موثر متوسط ترمزی
جدول (8-3) دسته بندی متغیرها بر حسب میزان تاثیر روی مصرف مخصوص ترمزی سوخت
جدول (8-4) دسته بندی متغیرها بر حسب میزان تاثیر روی راندمان حجمی
جدول (8-5) دسته بندی متغیرها بر حسب میزان تاثیر روی سرعت توربین
جدول (8-6) دسته بندی متغیرها بر حسب میزان تاثیر روی راندمان کمپرسور
جدول (8-7) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار در پائین دست کمپرسور
جدول (8-8) دسته بندی متغیرها بر حسب میزان تاثیر روی جریان هوا
جدول (8-9) دسته بندی متغیرها بر حسب میزان تاثیر روی جریان سوخت
جدول (8-10) دسته بندی متغیرها بر حسب میزان تاثیر روی گشتاور موتور
جدول (8-11) دسته بندی متغیرها بر حسب میزان تاثیر روی دمای پائین دست کمپرسور
جدول (8-12) دسته بندی متغیرها بر حسب میزان تاثیر روی دمای پائین دست خنک کن
جدول (8-13) دسته بندی متغیرها بر حسب میزان تاثیر روی دمای منیفولد
جدول (8-14) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار منیفولد
جدول (8-15) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار ورودی توربین
جدول (8-16) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار خروجی توربین
جدول (8-17) دسته بندی متغیرها بر حسب میزان تاثیر روی دمای ورودی توربین
جدول (8-18) دسته بندی متغیرها بر حسب میزان تاثیر روی دمای خروجی از توربین
جدول (8-19) دسته بندی متغیرها بر حسب میزان تاثیر روی راندمان توربین
جدول (8-20) دسته بندی متغیرها بر حسب میزان تاثیر روی راندمان اندیکاتوری موتور
جدول (8-21) دسته بندی متغیرها بر حسب میزان تاثیر روی راندمان توربین
جدول (8-22) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار موثر متوسط اندیکاتوری
جدول (8-23) دسته بندی متغیرها بر حسب میزان تاثیر روی ماکزیمم فشار سیلندر
جدول (8-24) دسته بندی متغیرها بر حسب میزان تاثیر روی درجه مربوط به ماکزیمم فشار
جدول (8-25) دسته بندی متغیرها بر حسب میزان تاثیر روی ماکزیمم دمای سیلندر
جدول (8-26) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار ورودی به سیلندر
جدول (8-27) دسته بندی متغیرها بر حسب میزان تاثیر روی دمای ورودی به سیلندر
جدول (8-28) دسته بندی متغیرها بر حسب میزان تاثیر روی فشار خروجی از سیلندر
جدول (8-29) دسته بندی متغیرها بر حسب میزان تاثیر روی دمای خروجی از سیلندر
جدولA-1 نام های توربین و کمپرسور دو توربوشارژر
جدول A-2 مشخصات عملکرد کمپرسور توربوشارژر1
جدول A-3 مشخصات عملکرد کمپرسور توربوشارژر 2
جدول(A-4 ) مشخصات عملکردی توربین
فهرست اشکال
شکل (2-1) یک نمونه سوپرشارژ
شکل(2-2) طرز کار توربوشارژر به صورت شماتیک
شکل (2-4) نحوه ارتباط توربوشارژ فشار ثابت با موتور به صورت طرحواره
شکل(3-1) رابطه بین نسبت تراکم و افزایش فشار ورودی موتور
شکل (4-1) نقشه عملکرد یک کمپرسور
شکل (4-2) مشخصه یک توربین جریان محوری
شکل(5-1) المان در نظر گرفته شده
شکل (6-1) طرحواره پورت های ورودی و خروجی
شکل (6-2) مدل سازی منیفولد توسط چند انشعاب
شکل (6-3) قرار دادن دستگاه مختصات در مرکز انشعاب
شکل (6-4) دریچه گاز
شکل (6-5) مشخصات هندسی سیلندر
شکل(6-6) زمانبندی جرقه در دورهای مختلف(TDC=0)
شکل (7-1) منحنی لیفت و زمانبندی سوپاپ های ورودی و خروجی برای دو موتور تنفس طبیعی و پرخوران شده EF7
شکل (7-2 ) مقدار افزایش مورد نظر درگشتاور موتور در حالت تمام بار
شکل (7-3) مقادیر بیشینیه فشار سیلندر در دورهای مختلف برای یک موتور پرخورانی شده مشابه با موتورEF7 در حالت تمام بار
شکل (7-4) فشار موثر متوسط اصطکاک در دورهای مختلف در حالت بار کامل
شکل (7-5) بازده اندیکه در دورهای مختلف در حالت بار کامل
شکل(7-6) منحنی فشار لحظه ای داخل سیلندر در حالت بار کامل در دور rpm 1500
شکل(7-7) منحنی فشار لحظه ای داخل سیلندر در حالت بار کامل در دور rpm 2000
شکل(7-8) منحنی فشار لحظه ای داخل سیلندر در حالت بار کامل در دور rpm 2500
شکل(7-9) منحنی فشار لحظه ای داخل سیلندر در حالت بار کامل در دور rpm 3500
شکل(7-10) منحنی فشار لحظه ای داخل سیلندر در حالت بار کامل در دور rpm 4800
شکل(7-11) منحنی فشار لحظه ای داخل سیلندر در حالت بار کامل در دور rpm 5000
شکل(7-12) نتایج کالیبراسیون فشار بعد از کمپرسور برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-13) نتایج کالیبراسیون دبی هوا در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-14) نتایج کالیبراسیون بازده حجمی در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-15) نتایج کالیبراسیون گشتاور موتور پورخوران شده در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-16) نتایج کالیبراسیون فشار موثر متوسط ترمزی موتور پورخوران شده در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-17) نتایج کالیبراسیون جریان سوخت موتور پورخوران شده در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-18) نتایج کالیبراسیون فشار بعد از خنک کن موتور پورخوران شده در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-19) نتایج کالیبراسیون فشار گازهای خروجی قبل از توربین موتور پورخوران شده در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-20) نتایج کالیبراسیون فشار گازهای خروجی بعد از توربین موتور پورخوران شده در دورهای مختلف برای دو حالت بار کامل و بار جزیی در زمانی که درصد فشردگی پدال گاز 25 درصد می باشد
شکل(7-21) بازده ترمزی در دورهای مختلف
شکل(7-22) گشتاور اندیکه در دورهای مختلف
شکل(7-23) گشتاور ترمزی در دورهای مختلف
شکل(7-24) مصرف سوخت ویژه ترمزی در دورهای مختلف
شکل(7-25) فشار مؤثر متوسط پمپاژ در دورهای مختلف
شکل(7-26) دمای خروجی از خنک کن میانی در دورهای مختلف
شکل(7-27) مقادیر گشتاور موتور EF7 TC که از توربوشارژر (1)برای پرخورانی استفاده شده است و گشتاور مورد نظر در حالت تمام بار
شکل(7-28) مقادیر گشتاور موتور EF7 TC که از توربوشارژر (2)برای پرخورانی استفاده شده است و گشتاور مورد نظر در حالت تمام بار
شکل(7-29) مقایسه بازده کمپرسور دو توربوشارژر در دورهای مختلف و در حالت تمام بار
شکل(7-30) مقادیر گشتاور خروجی موتور حاصل از مدل در ارتفاع ۲۰۰۰ متر از سطح دریا
شکل(7-31) بازده کمپرسور دو توربوشارژر در دورهای مختلف موتور در حالت بار کامل
شکل(7-32) دور توربوشارژر در مقابل دور موتور در حالت بار کامل
شکل(7-33) مقادیر فشار بیشینه داخل سیلندر در مقابل دور موتور قبل از اصلاح در پارامترهای طراحی
شکل(7-34) زمانبندی جرقه موتور در دورهای مختلف برای دو حالت تنفس طبیعی( (NAو پرخوران شده) (TC
شکل(7-35) دمای گازهای ورودی به توربین در دورهای مختلف برای زمانبندی جرقه جدید برای موتور TC
شکل(7-36) فشار بیشینه داخل سیلندر در دورهای مختلف برای زمانبندی جرقه جدید برای موتور TC
شکل(7-37) فشار بیشینه داخل سیلندر موتور پورخوران شده در مقابل دور با زمانبندی جرقه جدید و نسبت تراکم 9.8
شکل(7-38) تعیین بهترین زمان باز شدن سوپاپ ورودی در دورrpm1500
شکل(7-39) شکل(7-43) منحنی سوپاپ ورودی و خروجی موتور برای دو حالت تنفس طبیعی و پرخوران شده
شکل(7-40) مقادیر بازده حجمی موتور پرخوران شده با دو منحنی سوپاپ مختلف در مقابل دور موتور
شکل(7-41) نقاط کارکردی موتور بر روی منحنی عملکردی کمپرسور در حالت بار کامل
شکل(7-42) نقاط کارکردی موتور بر روی منحنی عملکردی توربین در حالت بار کامل
شکل(7-43) مقدار دبی جرمی عبوری از دریچه کنترل توربین در دورهای مختلف
شکل(7-44) بازده حجمی موتور EF7 در مقابل دور موتور برای دو حالت تنفس طبیعی و پرخورانی شده
شکل(7-45) مقادیر گشتاور ترمزی در مقابل دور موتور برای موتور EF7 در حالت تنفس طبیعی و پرخورانی شده
شکل(7-46) مقادیر فشار بیشینه سیلندر در دورهای مختلف موتور برای دو حالت تنفس طبیعی و پرخورانی شده
شکل(7-47) دمای گازهای حاصل از احتراق در خروجی منیفولد خروجی در موتورEF7 برای دو حالت تنفس طبیعی و پرخورانی شده
شکل(7-48) ماکزیمم فشار سیلندر
شکل(7-49) سرعت گردشی کمپرسور
شکل(7-50) شکل BMEP موتور EF7 مدل شده
نمودار (8-1) آنالیز حساسیت فشار موثر متوسط ترمزی
نمودار (8-2) متوسط مقادیر مطلق فشار موثر متوسط ترمزی در سرعت های مختلف
نمودار (8-3) نتایج آنالیز حساسیت برای مصرف مخصوص ترمزی سوخت
نمودار (8-4) متوسط مقادیر مصرف مخصوص ترمزی سوخت در سرعت های مختلف
نمودار (8-5) نتایج آنالیز حساسیت برای راندمان حجمی
نمودار (8-6) متوسط مقادیر راندمان حجمی در سرعت های مختلف
نمودار (8-7) نتایج آنالیز حساسیت برای سرعت توربین
نمودار (8-8) متوسط مقادیر سرعت توربین در سرعت های مختلف موتور
نمودار (8-9) نتایج آنالیز حساسیت برای راندمان کمپرسور
نمودار (8-10) متوسط مقادیر راندمان کمپرسور در سرعت های مختلف
نمودار (8-11) نتایج آنالیز حساسیت برای فشار در پائین دست کمپرسور
نمودار (8-12) متوسط مقادیر فشار در پائین دست کمپرسور در سرعت های مختلف
نمودار (8-13) نتایج آنالیز حساسیت برای جریان هوا
نمودار (8-14) متوسط مقادیر جریان هوا در سرعت های مختلف
نمودار (8-15) نتایج آنالیز حساسیت برای جریان سوخت
نمودار (8-16) متوسط مقادیر جریان سوخت در سرعت های مختلف
نمودار (8-17) نتایج آنالیز حساسیت برای گشتاور ترمزی موتور
نمودار (8-18) متوسط مقادیر گشتاور موتور در سرعت های مختلف
نمودار (8-19) نتایج آنالیز حساسیت برای دمای پائین دست کمپرسور
نمودار (8-20) متوسط مقادیر دمای پائین دست کمپرسور در سرعت های مختلف
نمودار (8-21) نتایج آنالیز حساسیت برای دمای پائین دست خنک کن
نمودار (8-22) متوسط مقادیر دمای پائین دست خنک کن در سرعت های مختلف
نمودار (8-23) نتایج آنالیز حساسیت برای دمای منیفولد
نمودار (8-24) متوسط مقادیر دمای منیفولد در سرعت های مختلف
نمودار (8-25) نتایج آنالیز حساسیت برای فشار منیفولد
نمودار (8-26) متوسط مقادیر فشار منیفولد در سرعت های مختلف
نمودار (8-27) نتایج آنالیز حساسیت برای فشار ورودی توربین
نمودار (8-28) متوسط مقادیر فشار ورودی توربین در سرعت های مختلف
نمودار (8-29) نتایج آنالیز حساسیت برای فشار خروجی توربین
نمودار (8-30) متوسط مقادیر فشار خروجی توربین در سرعت های مختلف
نمودار (8-31) نتایج آنالیز حساسیت برای دمای ورودی توربین
نمودار (8-32) متوسط مقادیر دمای ورودی توربین در سرعت های مختلف
نمودار (8-33) نتایج آنالیز حساسیت برای دمای خروجی از توربین
نمودار (8-34) متوسط مقادیر دمای خروجی از توربین در سرعت های مختلف
نمودار (8-35) نتایج آنالیز حساسیت برای راندمان توربین
نمودار (8-36) متوسط مقادیر راندمان توربین در سرعت های مختلف
نمودار (8-37) نتایج آنالیز حساسیت برای راندمان اندیکاتوری موتور
نمودار (8-38) متوسط مقادیر راندمان اندیکاتوری موتور در سرعت های مختلف
نمودار (8-39) نتایج آنالیز حساسیت برای توان مصرفی کمپرسور
نمودار (8-40) متوسط مقادیر راندمان توربین در سرعت های مختلف
نمودار (8-41) نتایج آنالیز حساسیت برای فشار موثر متوسط اندیکاتوری
نمودار (8-42) متوسط مقادیر فشار موثر متوسط اندیکاتوری در سرعت های مختلف
نمودار (8-43) نتایج آنالیز حساسیت برای ماکزیمم فشار سیلندر
نمودار (8-44) متوسط مقادیر ماکزیمم فشار سیلندر در سرعت های مختلف
نمودار (8-45) نتایج آنالیز حساسیت برای درجه ماکزیمم فشار سیلندر
نمودار (8-46) متوسط مقادیر درجه مربوط به ماکزیمم فشار در سرعت های مختلف
نمودار (8-47) نتایج آنالیز حساسیت برای ماکزیمم دمای سیلندر
نمودار (8-48) متوسط مقادیر ماکزیمم دمای سیلندر در سرعت های مختلف
نمودار (8-49) نتایج آنالیز حساسیت برای فشار ورودی به سیلندر
نمودار (8-50) متوسط مقادیر فشار ورودی به سیلندر در سرعت های مختلف
نمودار (8-51) نتایج آنالیز حساسیت برای دمای ورودی به سیلندر
نمودار (8-52) متوسط مقادیر دمای ورودی به سیلندر در سرعت های مختلف
نمودار (8-53) نتایج آنالیز حساسیت برای فشار خروجی از سیلندر
نمودار (8-54) متوسط مقادیر فشار خروجی از سیلندر در سرعت های مختلف
نمودار (8-55) نتایج آنالیز حساسیت برای دمای خروجی از سیلندر
نمودار (8-56) متوسط مقادیر دمای خروجی از سیلندر در سرعت های مختلف
شکل(9-1) منحنی عملکرد موتور توربوشارژ شده و تنفس طبیعی در حالت بار کامل
شکل(9-2) مسیر جریان هوا در کمپرسور روتز
شکل(9-3) طریقه اتصال توربوشارژ و سوپرشارژ به موتور
شکل(9-4) نحوه قرار گیری سوپرشارژ و توربوشارژ در مدل
شکل(9-5) انطباق ناصحیح موتور و یک سوپرشارژ روتز
شکل(9-6) نقشه عملکرد کمپرسور همراه نقاط عملکردی موتور در حالت بار کامل
شکل(9-7) فشار داخل سیلندر با نسبت دنده5.1 در حالت بار کامل
شکل(9-8) دمای گازهای ورودی به توربین در حالت بار کامل
شکل(9-9) مقایسه توان ترمزی دو موتور توربوشارژ شده و سوپرتوربوشارژ شده
شکل(9-10) مقایسه گشتاور ترمزی دو موتور توربوشارژ شده و سوپرتوربوشارژ شده
شکل(9-11) مقایسه راندمان حجمی دو موتور توربوشارژ شده و سوپرتوربوشارژ شده
شکل(9-12) میزان گشودگی دریچه میان گذر
شکل(9-13) میزان افزایش گشتاور توسط سوپرشارژ بعد از رعایت حد کوبش
شکل(9-14) میزان افزایش راندمان حجمی توسط سوپرشارژ بعد از رعایت حد کوبش
فهرست علائم
دما
فشار
دور N
قطر D
شعاع R
دبی جرمی
ظرفیت گرمایی ویژه گاز
حجم جاروب شده
فشار منیفولد
دمای منیفولد
سطح
سرعت صوت
سرعت صوت بی بعد
طول
ضریب تخلیه جریان
سطح موثر
عدد پرانتل
نرخ جریان سوخت انژکتور(g/s)
سرعت موتور(rpm)
حجم جابجایی(liter)
نسبت سوخت به هوا
تعداد سیلندرها
مدت تزریق(بر حسب زاویه لنگ)
مقدمه
متوسط غلظت آلاینده هائی مانند منواکسیدکربن، هیدروکربنهای نسوخته و اکسیدهای نیتروژن در بسیاری از نقاط شهر تهران بیشتر از حد مجاز توصیه شده توسط سازمان بهداشت جهانی می‌باشد. با توجه به رشد سریع ترافیک، وضعیت در آینده بدتر خواهد شد.
با توجه به اینکه 89 درصد از منابع آلوده کننده هوای تهران مربوط به خودروها است جایگزینی سوختهای پاکتر که هم از نظر اقتصادی با صرفه تر و هم از لحاظ اثرات زیست محیطی آلودگی کمتری داشته باشند مورد توجه قرار گرفته و بصورت یک ضرورت اجتماعی مطرح گردیده است[1].
گاز سوختی ارزان با آلودگی کمتر است و در صورت فراهم شدن امکان دسترسی بیشتر، یکی از بهترین سوختهای جایگزین بنزین و گازوئیل می‌باشد. با گازسوز کردن خودروها، منواکسیدکربن، هیدروکربنهای نسوخته، دی اکسید گوگرد و ذرات معلق حاصل از احتراق به میزان قابل ملاحظه ای کاهش می‌یابند. علاوه براین سرب بعنوان یکی از زیانبارترین آلوده کننده ها به کلی حذف می‌شود و همچنین از سروصدای موتور نیز کاسته می‌شود.
در مقایسه موتورهای گازسوز با موتورهای بنزینی، توان حدود ۱۰ تا ۱۵ درصد کاسته می‌شود. دو علت عمده این کاهش یکی حالت گازی سوخت CNGدر هنگام تزریق به موتور می‌باشد که مقداری از فضای هوای ورودی به موتور را اشغال می‌نماید و باعث افت راندمان حجمی می‌گردد، دلیل دیگر بالابودن نسبت هوا به سوخت در شرایط استوکیومتری گاز نسبت به بنزین می‌باشد که برای گاز این رقم در حدود 17.2 به یک می‌باشد و برای بنزین 14.7 به یک می‌باشد. این عامل نیاز بیشتر موتور گازسوز به هوا را نسبت به موتور بنزینی معلوم می سازد یعنی به زبان دیگر اگر بتوان آن مقدار گازی را وارد موتور نماییم که مقدار انرژی آزاد شده آن معادل مقدار بنزین وارد شده به موتور باشد، می‌بایست هوای بیشتری نسبت به حالت بنزینی وارد موتور گردد.
چون مقدار هوای ورودی به موتور در حالت گازی حتی کمتر از مقدار آن درحالت بنزینی می‌باشد بنابراین در موتورهای گازسوز برای بهبود عملکرد نیاز به هوای بیشتری می‌باشد. با توجه به مقاومت گاز طبیعی در مقابل خوداشتعالی می‌توان توان کاسته شده را توسط روشهای مختلفی جبران کرد. اگر خواستار تشویق مردم برای استفاده از گاز طبیعی هستیم کاهش توان در زمان استفاده از گاز طبیعی قابل قبول نیست. روشی که در این نوشتار برای بدست آوردن قدرت بیشتر ارائه می‌شود، عبارت است از بکارگیری توربوشارژر به منظور افزایش دبی جرمی هوا و متعاقب آن افزایش راندمان حجمی و قدرت موتور. همچنین با استفاده از پرخورانی می‌توان برخی از آلاینده های موتور را با هوادهی بیشتر یا اصطلاحا فقیرسوز کردن موتور درحد پائین تری نگه داشت.
فصل اول
مقدمه و مرور بر تحقیقات انجام شده در گذشته
1-1- تاریخچه
توربوشارژینگ موتورهای احتراق داخلی ایده ای بود که به فاصله کمی از اختراع موتورهای احتراق داخلی مطرح گردید. در سال 1885 دایملر پروژه - ریسرچای درباره استفاده از یک فن یا کمپرسور برای اضافه کردن هوای ورودی به موتور دریافت کرد. در سال 1902 لوییس رنو برای اولین بار توربوشارژری از نوع سانتریفیوژ ساخت و بر روی موتور نمونه ای نصب کرد. این توربوشارژر توسط تسمه به میل لنگ متصل می‌گشت و با پنج برابر سرعت آن دوران می‌کرد. اولین سوپرشارژ متحرک با دود اگزوز (توربوشارژ) بین سال های 1909 و 1912 توسط دکتر آلفرد بوچی سوئیسی ساخته شد. اولین نمونه موتور دیزل مجهز به توربوشاژر را او در سال 1915 ارائه کرد[2]. در توربوشارژر ساخت بوچی توربین و کمپرسور هر دو از نوع جریان محوری بودند که توسط اتصال مکانیکی به میل لنگ موتور متصل می شدند. امروزه به این نوع موتور، موتور مرکب اتلاق می‌شود. بعد از چند سال بوچی مدل اصلاح شده ای را مطرح کرد که در آن اتصال مکانیکی بین موتور و توربوشارژر برداشته شده بود، ولی اتصال مکانیکی بین توربین و کمپرسور کماکان پابرجا بود. اولین توربوشارژر ساخت بوچی از نوع جریان یکنواخت بود که با موفقیت و اقبال روبرو نگردید. در سال 1925 بوچی سیستم موفق توربوشارژ ضربه ای ارائه کرد، که به مدل بوچی معروف می‌باشد. رونق بیشتر توربوشارژینگ زمانی آغاز شد که توربوشارژرها بر روی موتورهای سیلندر و پیستونی هواپیماها نصب گردید و میزان سقف پرواز را افزایش داد. زیرا در این هواپیما این مشکل وجود داشت که با اوج گرفتن هواپیما به علت کاهش فشار، قدرت خروجی موتور شدیدا کاهش می‌یافت و این امر سقف پرواز را محدود می‌کرد. با بکارگیری توربوشارژرها و افزایش فشار ورودی کمک زیادی به افزایش ارتفاع پرواز شد. تا زمان جنگ جهانی دوم صنعت توربوشارژر توسعه زیادی یافت. بکارگیری توربوشارژر بر روی موتور دیزلی بهترین روش برای کاهش هزینه های مصرف سوخت، کاهش جای مورد نیاز برای موتور و کاهش وزن موتور، افزایش راندمان و کاهش صدا بود. در دهه هفتاد میلادی استفاده از توربوشارژر برای موتورهای بنزینی بسیار رواج پیدا کرد و کمپانیها خودروهای اسپرتی خود را با موتورهای توربوشارژری ارائه کردند ولی به دلیل تاخیر عملکرد توربوشارژر این موتورها با استقبال مصرف کنندگان روبرو نشدند. توفیق توربوشارژینگ در صنعت خودروهای سواری از زمان ارائه توربو دیزل هایی بود که می‌توانستند با حجم مساوی با موتورهای بنزینی برابری کنند و از لحاظ آلودگی در سطح پائین تری نسبت به موتورهای بنزینی قرار بگیرند[3].1-2- تجربیات انجام شده در زمینه موتور گازسوز
فعالیت های انجام شده را می‌توان به دو دسته کلی مدل سازی موتورها و انطباق تقسیم بندی نمود. تا به امروز، بیشتر تلاشها به مدل سازی موتورهای احتراق داخلی محدود بوده است. از اینرو در ابتدا به تاریخچه مدل سازی موتور می پردازیم.
نخستین قدم جدی در این راه توسط بنسون و آناند برداشته شد[4]. این دو دانشمند مدل شبیه سازی تحلیلی موتور را پایه گذاری کردند. در این مدل هر فرآیند به چند مدل ساده ریاضی تبدیل می شد که برای هر یک از این مدل ها فرم های خاصی از معادلات بقا صادق بود. این زیر مجموعه ها در نهایت به یکدیگر مرتبط می شدند. این مدل سازی علیرغم محدودیت زیاد به علت سادگی و دقت مناسب هنوز از روش های متداول و معتبر به حساب می‌آید.
چند سال بعد این روش بهبود یافت. بنسون و بورا[5] با در نظر گرفتن مدل احتراق دو ناحیه ای با کمک روش عددی رانگ کوتا توانستند به نتایجی بسیار نزدیک به اندازه گیری های تجربی دست یابند. امروزه این روش به دلیل سادگی و جامع بودن یکی از معتبرترین روش های تحلیلی برای آنالیز موتور به حساب می‌آید.
با افزایش بهای بنزین و بحران جهانی سوخت در دهه 1970 مطالعات بنیادی روی سوخت های جایگزین از جمله گاز طبیعی رونق یافت. این روند بار دیگر در دهه 1990 و به منظور غلبه بر مشکل آلودگی محیط زیست احیا گردید. برای شناخت بیشتر و بهتر خواص موتورهای گاز طبیعی ویکس وموسکوا[6] به روش تجربی و با کمک یک دستگاه اندازه گیری فشار غیرخطی، نرخ گذرای هوای عبوری از موتور را در حالات مختلف کاری اندازه گیری کردند.
ویزینسکی و واگنر[7] از دانشگاه بیرمنگام تحقیقات مفصلی بر روی نوع خاصی از سیستم EGR انجام دادند. با استفاده از گازهای خروجی از موتور که سرشار از هیدروژن می‌باشد، توانستند راندمان احتراق را به نحو قابل توجهی افزایش دهند.
در کنار این تحلیل ها تلاش های زیادی برای تعیین استانداردها و دسته بندی مزایا و معایب این موتورها به عمل آمد. از آن جمله وگزین و گوروویچ [8] مزایا و معایب گاز طبیعی مایع شده را برای اتوبوسها و کامیونها بررسی نمودند.
همزمان با تحقیقات انجام شده در زمینه های احتراق داخلی و انتقال حرارت، سیستم های کنترلی مورد استفاده نیز تحت بررسی قرار گرفتند تا با بهینه سازی آن ها آلودگی محیط کاهش و راندمان موتورها افزایش یابد. از جمله این فعالیتها و تحقیقات می‌توان به تلاش مالم و کیست [9] اشاره کرد. آنها با اندازه گیری بار و دور موتور در محدوده وسیع دما و ترکیب آن ها با اندازه گیری دینامیکی فشار و ارتعاش سیلندر سیستم های کنترلی را تحت بررسی قراردادند.
در همین زمان تحقیقات مفصلی نیز بر روی انطباق موتور و توربوشارژر انجام شد. پنج دانشمند ژاپنی به نامهای فوکوزاوا، شیمادو، کاکوهوما، اندو و تاناکا تغییرات راندمان حرارتی موتور گازسوز شش سیلندر را نسبت به پارامترهای نسبت تراکم، شکل محفظه احتراق، اثر سوپاپها و خود توربوشارژر مورد برسی قراردادند[10].
در لابراتوار ملی ماشین های گازی NGML یک سری آزمایش توسط چپمن از دانشگاه کانزاس برای تطابق توربوشارژر و موتور گاز طبیعی دو زمانه صورت گرفت[11] تا اثر این تطابق روی راندمان این مجموعه و میزان تولید NOx مورد بررسی قرارگیرد.
پلکمنس، دوکوکلیر، و لنارس اتوبوسها و کامیونهای با سوخت دیزل را با گاز طبیعی از لحاظ میزان سوخت توان و میزان ایجاد آلاینده ها مورد مقایسه قرار دادند[12].
همچنین با استفاده از مدلسازی یکبعدی بسیاری از مهندسان فعالیت هایی در زمینه بهینه سازی عملکرد موتور انجام داده اند که از آن جمله می‌توان به انتخاب توربوشارژر متناسب با یک موتور مشخص اشاره نمود.[13]
در کشور ما در سال های اخیر چند پروژه تحقیقاتی نیز به ثبت رسیده است که در آنها با مدلسازی یک موتور تغذیه طبیعی، رفتار کاری موتور توربوشارژری را پیش بینی می‌نماید[14].
1-3- اقدامات انجام شده برای نصب توربوشارژر
اقدامات فراوانی برای نصب توربوشارژر بر روی خودروها و بهینه سازی آن صورت گرفته است. در یک تحقیق تاثیر تغییرات زمان بندی سوپاپ ها بر روی قدرت و کاهش مصرف سوخت موتورهای توربوشارژری بررسی شده است[15]. در این پروژه - ریسرچبیان شده است که برای کاهش مصرف سوخت احتیاج به افزایش نسبت تراکم می‌باشد و برای جلوگیری از تولید کوبش، بازخوراند گاز اگزوز در حالت بار کامل راهکار مناسبی است. در عین حال بیان می‌دارد چهار سوپاپه بودن این موتور قدرت آن را تا 20% افزایش می‌دهد.
در تحقیق دیگر موتور 6 سیلندر جگوار با حجم 4 لیتر به سوپرشارژر و خنک کن هوا مجهز گردیده است[16]. هدف اصلی این پروژه افزایش گشتاور این موتور در دورهای پائین و کاهش آلایندگی بوده است. پس از انجام تمامی تغییرات و نصب سوپرشارژر این نتیجه حاصل شد که در حالت دریچه کاملا باز خروجی موتور بسیار مطلوب است و از قدرت خروجی موتور 12 سیلندر جگوار پیشی می‌گیرد و افزایش قدرتی بین 35 تا 50% با موتور 6 سیلندر اولیه حاصل می‌شود. در نهایت جگوار توانسته است با انتخاب مناسب سوپرشارژر میزان قدرت موتور چهار لیتری خود را به موتور 6 لیتری تنفس طبیعی برساند، در حالیکه مصرف سوخت آن در حد موتور چهار لیتری تنفس طبیعی می‌باشد.
طی یک تحقیق توسط اسپیندلر، اقدام به نصب توربوشارژر بر روی یک موتور بنزینی(با حداکثر قدرت 70 کیلو وات) با هدف افزایش قدرت، کاهش مصرف ویژه سوخت و کاهش آلودگی، شده است[17]. بعد از آزمایش تعداد زیادی توربوشارژر با سطح مقطع های مختلف، این نتیجه حاصل شد که هر چه سطح مقطع کوچک تر باشد، میزان گشتاور در سرعت های پائینتر افزایش می‌یابد ولی میزان فشار خروجی موتور در سرعت های بالاتر زیاد خواهد بود. لذا لازم است شرایط بهینه ای بین این دو مسئله انتخاب گردد. آزمایشها نشان داده است استفاده از توربین هایی با دو ورودی حائز ارجحیت می‌باشد[17]. در نهایت روش بهینه ای که انتخاب گردیده است روش ضربانی به همراه توربینی با دو ورودی می‌باشد. نتیجه این تغییرات افزایش قدرت موتور تا 120 اسب بخار با منحنی گشتاوری مشابه موتور تنفس طبیعی با همان قدرت با مزیت کوچکی ابعاد و کمی وزن (150 کیلوگرم در مقابل 185 کیلوگرم) و نیز کم بودن آلاینده های گاز اگزوز می‌باشد.
در تحقیق دیگر موتورهای هینو که بر روی کامیون ها کاربرد دارد با هدف بهینه سازی مصرف سوخت و کاهش آلودگی ها بخصوص اکسیدهای نیتروژن به توربوشارژر مجهز گردیده است[18]. در نتیجه بهبود مصرف سوخت، افزایش گشتاور در سرعت های بالا و ثابت ماندن میزان تولید NOx حاصل شده است. به عنوان یک نتیجه گیری در این پروژه - ریسرچذکر شده است که در انتخاب توربوشارژر اگر هدف افزایش شتاب اولیه و قدرت در سرعت پائین باشد، استفاده از یک توربوشارژر با اندازه کوچک و دریچه فرار مناسب می‌باشد. در صورتیکه هدف کاهش مصرف سوخت در سرعت های بالای موتور باشد، استفاده از یک توربوشارژر با اندازه بزرگ توصیه می‌گردد.
فیلیپی در سال 1994 انطباق توربوشارژر با موتور را به صورت میانیابی در نقشه عملکرد توربوشارژر انجام داد9]1 .[در این تحقیق سه مدل برای سطح سوپاپ در نظر گرفته شد و سعی شده است تا برای به دست آوردن راندمان بیشتر، بهترین مدل سوپاپ به دست آید. در این تحقیق از فناوری سطح متغیر سوپاپ و از مدل صفر بعدی (مدل ترمودینامیکی) برای موتور استفاده شد. برای احتراق مدل شعله دو ناحیه‌ای در نظر گرفته شد که بدین ترتیب شکل محفظه احتراق در محاسبات تأثیر خواهد داشت.
واتسون در بررسی انطباق موتور به توربوشارژر به انطباق موتور لیلاند با چند توربوشارژر متفاوت پرداخت[20]، او عملیات انطباق را توافقی بین گشتاور، توان خروجی موتور، محدوده سرعت موتور، محدودیت دما ، فشار و آلودگی موتور دانست. وی استفاده از توربوشارژرهای هندسه متغیر را بهترین راه توربوشارژرینگ دانست اما در عین حال این نوع توربوشارژرها را از نظر قیمت و قابلیت اطمینان مناسب نمی‌دانست.
اینوال و یوهانسون در سال 1997 روی موتور گاز طبیعی سوز توربورشارژر شده Volvo TD 102 شش نوع پیستون مختلف با محفظه احتراق متفاوت را آزمایش کردند و سرعت متوسط و توربولانس را با سرعت‌سنج لیزری اندازه‌گیری نمودند[21]. آنها علاوه بر موارد فوق، انتقال حرارت، فشار، بازده و آلودگی را اندازه‌گیری کردند. بیشترین توربولانس در محفظه کوارتت در نزدیکی نقطه مرگ بالا مشاهده شد. اندازه‌گیری فشار و انتقال حرارت نیز نشان می‌دهد که این محفظه احتراق سریعی دارد. در عین حال، این محفظه احتراق بیشترین محدوده لاندا را بین کوبش و عدم اشتعال دارد. همچنین کمترین میزان NOx و HCرا دارا می‌باشد و بهترین حالت پایداری احتراق را دارا می‌باشد. دو محفظه احتراق توربین و نبولا نسبت به حالت قبل احتراق نامناسب‌تری دارند. محفظه‌های احتراق دیگر شرایط بدتری را نشان می‌دهد.
گوارنی و سندال[22] در سال 2002 موتور احتراق جرقه‌ای را به صورت یک بعدی مدل کردند و نتایج آن را با نتایج تجربی مقایسه کردند و مدل خود را برای پیش‌بینی راندمان منیفولد و طراحی آن و زمان‌بندی سوپاپ‌ها بسیار کاربردی دانستند و دقت مدل خود را با بررسی تجربی روی موتور نشان دادند.
1-4- معرفی پروژه حاضر
در بخش اول این پروژه تاریخچه ابداع و اقدامات انجام شده برای نصب توربوشارژر مرور می‌شود. در بخش دوم هدف استفاده از توربوشارژینگ و روش های آن توضیح داده می‌شود. بخش سوم تغییرات موتور برای تجهیز به توربوشارژر، مشکلات توربوشارژینگ و روش های کاهش آن را بیان می‌کند. در بخش چهارم به معادلات حاکم بر توربوشارژر، انتخاب و انطباق توربوشارژر مناسب پرداخته می‌شود. بخش پنجم معادلات و روش مدلسازی موتور و توربوشارژر در نرم افزار GT POWER توضیح داده می‌شود. بخش هفتم مدلسازی موتورEF7 توربوشارژ شده گاز سوز ارائه می‌شود، سپس برای اطمینان از صحت عملکرد این مدل نتایج بدست آمده از مدلسازی در حالت تمام بار و بار جزیی در زمانی که میزان فشردگی دریچه گاز 25 درصد است، روش کالیبراسیون و مقایسه نتایج آن با نتایج تست های تجربی آورده می‌شود. در بخش هشتم آنالیز حساسیت موتور توربوشارژ شده برای بسیاری از پارامترهای عملکردی موتور و توربوشارژر و دما و فشار اکثر نقاط نسبت به شرایط هوای ورودی، تایمینگ سوپاپ ها، زمان جرقه، نسبت تراکم و تغییر هندسه سیستم مکش و تخلیه انجام می‌شود. در بخش نهم سوپرشارژ کردن موتور توربوشارژ شده به منظور افزایش فشار تقویتی در دورهای پائین موتور که توربوشارژ قادر به تامین آن به دلیل سرعت پائین خود، نمی‌باشد توضیح داده می‌شود و به دنبال آن نتایج سوپرتوربوشارژ کردن موتور EF7 گازسوز نشان داده می‌شود. در آخر نتایج به دست آمده از انجام پژوهش بیان شده است.

فصل دوم
توربوشارژ کردن موتورهای احتراق داخلی
2-1- هدف توربوشارژینگ
بطور کلی توربوشارژرها را به دو منظور عمده در موتورهای احتراق داخلی مورد استفاده قرار می دهند.
استفاده از توربوشارژر به جهت بالا بردن توان و عملکرد بهتر موتور، دراین حالت می‌توان با افزایش فشار و چگالی هوای ورودی و اضافه کردن مقدار پاشش سوخت توان یک موتور را تا دو برابر افزایش داد. بنابراین با طراحی مناسب قطعاتی مانند پیستونها، شاتونها، یاتاقانها و سایر اجزا موتور برای شرایط توربوشارژرینگ می‌توان مقدار قدرت به وزن موتور را بالا برد و بجای استفاده از موتورهایی با حجم بالا و قدرت بالا، موتورهای کم حجم تر و مجهز به توربوشارژر با راندمان و قدرت بالا استفاده نمود.
استفاده از توربوشارژر جهت کاهش آلایندگی موتور، هرگاه با ثابت نگه داشتن مقدار سوخت وارد شده به موتور مقدار هوای ورودی را افزایش دهیم می‌توانیم مقدار آلایندگی موتور را کاهش دهیم این روش عمدتًا در موتورهای دیزلی که مخلوط شدن سوخت و هوا بسیار مهم و کیفیت احتراق بسته به این موضوع می‌باشد بسیار حائز اهمیت می‌باشد. واردکردن هوای فشرده با ثابت نگه داشتن سوخت باعث بهبود احتراق و کاهش آلایندگی بدلیل بالا رفتن میزان نسبت هوا به سوخت در موتور می‌گردد.
در بعضی موارد هر دو روش را در یک موتور انجام می‌دهند یعنی با بالا بردن نسبتًا زیاد فشار هوای ورودی و افزایش کم سوخت نسبت به موتور معمولی می‌توان هم توان یک موتور را بالا برد هم مقدار آلایندگی موتور را کاهش داد .[23]
2-2- روشهای پرخورانی
دو روش کلی برای پرخورانی در موتورهای احتراق داخلی وجود دارد:
پرخورانی توسط سوپرشارژها
سوپرشارژها پرخورانهایی می‌باشند که تنها از یک کمپرسور تشکیل شده اند. این کمپرسور توسط تسمه یا چرخ دنده از میل لنگ موتور نیرو گرفته و باعث افزایش فشار هوای ورودی به موتور می‌گردد. از مزایای سوپرشارژها، می‌توان به عکس العمل سریع پرخوران در دورهای پائین موتور اشاره نمود که بدلیل متصل بودن سوپرشارژها توسط تسمه یا چرخ دنده به میل لنگ موتور، این امکان فراهم می‌گردد. بنابراین با افزایش سریع دور موتور، پرخوران به سرعت فعال می‌گردد. از معایب سوپرشارژها توان گرفته شده از میل لنگ موتور است که در حدود ۳۰ درصد از توان افزایش یافته توسط سوپرشارژر است که می‌بایست صرف خود سوپرشارژر گردد. در شکل (2-1) یک نمونه سوپرشارژ نشان داده شده است.

شکل(2-1) یک نمونه سوپرشارژر
پرخورانی توسط توربوشارژرها
توربوشارژرها، پرخورانهایی هستند که از یک توربین و یک کمپرسور با شافت مشترک تشکیل شده اند. در این پرخورانها قسمت ورودی توربین به فلانچ خروجی چند راهه دود متصل می‌گردد و قسمت خروجی توربین به مسیر اگزوز متصل می‌شود. در هنگام خروج محصولات احتراق از چندراهه خروجی، گازهای گرم با سرعت بالا به پره های توربین نیرو وارد می‌نماید و باعث چرخش آن می‌شود و پس از انتقال انرژی خود به پره ها از توربین خارج می گردد. شفت متصل به این چرخ توربین از سمت دیگر به چرخ پره کمپرسور متصل می‌باشد که با چرخش و سرعت بالای خود سیال ورودی(هوا) را از ورودی کمپرسور که به مسیر صافی هوا متصل می‌باشد به داخل کمپرسور شعاعی یا گریز از مرکز کشیده و با عبور از صدا خفه کن وارد چرخ‌گردان کمپرسور می‌شود و پس از انتقال انرژی از پره‌های چرخ‌گردان به این هوا، موجب شتاب گرفتن و به تبع افزایش سرعت آن می‌شود، سپس به درون دیفیوزر هدایت می‌شود. در درون دیفیوزر انرژی جنبشی هوا به انرژی فشاری تبدیل شده و با فشار زیاد وارد خروجی کمپرسور که به مسیر چند راهه ورودی متصل می‌باشد می‌گردد. از طرفی دیگر بالا رفتن فشار هوا منجر به گرم شدن آن می‌گردد. افزایش دما در شروع تراکم موجب مشکلات خود اشتعالی و کوبش در قسمت انتهای مرحله تراکم و یا در طی احتراق می‌گردد. به این دلیل کمپرسورها می‌توانند به یک پس‌خنک‌کن مجهز گردند تا دمای هوای متراکم شده ورودی را کاهش دهند. پس‌خنک‌کن، مبدل های گرما هستند که اغلب از هوای بیرون به عنوان سیال خنک کننده استفاده می‌کنند. همچنین بسیاری از توربوشارژرها دارای یک میان‌بر هستند که در صورت عدم نیاز به افزایش فشار هوای ورودی، گازهای خروجی می‌توانند توربوشارژر را دور بزنند. توربین‌های پیشرفته امروزی دارای هندسه تغییر سطح مقطع ورودی از طریق پره های راهنمای ورودی توربین می‌باشند، به طوریکه با نقاط عملیاتی مختلف موتور، حداکثر بازده حاصل گردد. برای مثال هنگامی که موتور با سرعت پائین در حال فعالیت است، جریان سطح مقطع با بسته شدن این پره‌های راهنما کاهش می‌یابد. توربوشارژرها ممکن است به یک تانک روغن اضطراری نیز مجهز باشند که اگر سیستم روغن‌کاری اصلی موتور از کار افتاد، این سیستم رزرو بتواند روغن‌کاری روتورهای دوار در میان دو یاتاقان صفحه‌ای شعاعی را انجام دهد. توربوشارژرها را وسیعتر ازسوپرشارژرها مورد استفاده قرار می‌دهند. توربوشارژرها بخشی از انرژی جنبشی گازهای خروجی اگزوز را که در موتورهای معمولی تلف می‌گردد را به کار تبدیل کرده و به موتور باز می گرداند، همچنین بالا بودن فشار هوای ورودی و مخلوط شدن بهتر سوخت و هوا باعث بهتر شدن کیفیت احتراق می‌گردد. بنابراین راندمان حرارتی در موتورهای توربوشارژ شده نسبت به موتورهای معمولی بالاتر می‌باشد. در شکل(2-2) طرز کار توربوشارژر نشان داده شده است.

شکل(2-2) طرز کار توربوشارژر به صورت شماتیک
2-3- مقایسه موتورهای توربوشارژ شده و تنفس طبیعی
یکی از اهدافی که در استفاده از توربوشارژر مطرح است، جایگزین کردن یک موتور تنفس طبیعی با یک موتور توربوشارژ شده کوچکتر که مصرف سوخت آن کمتر است می‌باشد. در این جایگزینی نباید تغییرات منفی در مشخصات رفتاری موتور نظیر قدرت، گشتاور و آلاینده‌ها بوجود آید. همچنین با توجه به اینکه موتور توربوشارژ شده گرانتر از موتور تنفس طبیعی است باید کاهش مصرف سوخت موتور توربوشارژ شده این اختلاف قیمت را جبران ‌نماید. جدول(2-1) به مقایسه موتور توربوشارژ شده و تنفس طبیعی در حالتی که حداکثر گشتاور و قدرت یکسانی دارد می‌پردازد.
جدول(2-1) مقایسه یک موتور توربوشارژری و تنفس طبیعی با گشتاور و توان حداکثر برابر
مزایا معایب
کاهش تلفات سوخت کاهش نسبت تراکم
کاهش افت اصطکاکی عمل بد دریچه کنترل سوخت در حالت گذرا
کاهش افت پمپاژ در دورهای پائین افزایش تنشهای حرارتی
کاهش آلودگیهای HC,CO افزایش آلودگیهای ناشی از NOx *
کاهش وزن موتور ( افزایش توان ویژه) نیاز به روانکاری پیشرفته‌
کاهش اثرات تغییر شرایط محیط بر موتور افزایش هزینه تولید
کاهش ابعاد موتور نیاز به خنک کن میانی
افزایش بازده گشتاور نامناسب در دور پائین **
* با اضافه نمودن خنک کن میانی NOX از حالت تنفس طبیعی هم کمتر می‌گردد.
** با توربوشارژر هندسه متغیر این اشکال رفع می‌شود.
2-5- انواع سیستمهای توربوشارژری
براساس نحوه ورود گازهای اگزوز به توربین توربوشارژر و ثبات یا نوسان جریان ورودی به توربین از دو نوع سیستم مختلف توربوشارژ کردن استفاده می‌شود.
2-5-1- توربوشارژر فشار ثابت
یک موتور رفت و برگشتی ذاتاً یک وسیله با جریان غیردائم است. گازهای خروجی از سیلندر یک جریان غیر‌دائمی را به وجود می‌آورد. از طرفی، توربو ماشینها برای جریان دائمی طراحی و ساخته می‌شوند. البته توربینها می‌توانند تحت شرایط غیر دائم کار کنند ولی بازده شان در مقایسه با شرایط دائم بطور قابل ملاحظه‌ای کاهش خواهد یافت. بنابراین ترکیب موتور و توربین عمل مشکلی خواهد بود. بوچی (مبتکر سوئیسی توربوشارژر) از یک محفظه با حجم مناسب برای کنترل و ثابت کردن جریان گاز غیردائمی خروجی از سیلندر استفاده کرد. بنابراین بدین گونه جریان ورودی به توربین یکنواخت و فشار ثابت گردید. حجم منیفولد دود یا حجم مخزن، وابسته به فرکانس ضربان گازهای خروجی است که به تناوب از هر سیلندر خارج می‌شود. شدت ضربان گازهای خروجی تابعی از بار موتور، زمانبندی سوپاپ دود، سطح ورودی توربین و حجم منیفولد است. معمولا نسبت حجم منیفولد دود به حجم موتور برای تبدیل نوسانات به فشار ثابت بزرگتر از یک می‌باشد. این نسبت برای موتورهای با تعداد سیلندر بیشتر، در مقایسه با موتورها با تعداد سیلندر کمتر، کوچکتر است. قاعده خاصی را نمی‌توان برای این امر بیان نمود ولی بازه آن ما بین 4/1 تا 6 در تغییر است. یکی از مشکلات ایجاد فشار ثابت در ورودی توربین این است که در صورت تغییر ناگهانی بار یا دور موتور، فشار در مخزن بصورت آرام تغییر کرده و بنابراین انرژی گازهای ورودی به توربین بتدریج زیاد می‌شود که این امر باعث ایجاد تأخیر در پاسخ موتور است. بنابراین اگر تغییر سریع دور یا بار موتور مورد نظر باشد، سیستم فشار ثابت مناسب نخواهد بود. شکل (2-4) نحوه ارتباط توربوشارژ فشار ثابت با موتور را نشان می‌دهد.

شکل (2-4) نحوه ارتباط توربوشارژ فشار ثابت با موتور به صورت طرحواره
حجم بزرگ چندراهه ورودی ما را از ثابت ماندن فشار در ورودی توربوشارژ مطمئن می سازد .برای دستیابی به نسبت فشارهای بالاتر از یک، توربوشارژ باید دارای راندمان بالای 45 درصد باشد،پس با داشتن یک توربوشارژر با راندمان بالای 45 درصد فشار ورودی از فشار خروجی بیشتر می‌شود. بنابراین هنگامی که سوپاپ های ورودی و خروجی با هم باز باشند(قیچی سوپاپ ها در زمان تخلیه) مقداری هوای تازه وارد سیلندر می‌شود که باعث تخلیه کامل گازهای سوخته از داخل سیلندر خواهد شد.
2-5-2- توربوشارژینگ با سیستم ضربانی
نقطه ضعف سیستم فشار ثابت این است که بطور کامل از انرژی جنبشی گازهائی خروجی استفاده نمی‌کند. زمانی که گاز با فشار زیاد از سطح نیمه باز سوپاپ تخلیه عبور می‌کند سرعتش به طور محسوس افزایش می‌یابد ولی این گازهای سرعت بالا بطور ناگهانی وارد محفظه تخلیه با حجم وسیع می‌شود و با گاز سرعت پائین برخورد می‌کند و بدلیل پدیده مخلوط شدن اتلافات اصطکاکی بوجود می‌آید و تمام انرژی جنبشی گاز به انرژی فشاری تبدیل نمی‌شود و بخشی از آن به هدر می‌رود. با استفاده از توربوشارژینگ ضربانی می‌توان بخش عمده ای از انرژی گازهای خروجی را به توربین منتقل نمود. برای رسیدن به این منظور بهتر است تلفات ناشی از خفانش جریان در هنگام عبور از سوپاپ خروجی را کاهش داد. بنابراین هر چقدر سوپاپ دود سریعتر باز شود، این تلفات کمتر می‌شود. تلفات ناشی از خفانش وقتی اتفاق می‌افتد که مدت زمان اندکی از باز شدن سوپاپ دود گذشته و سطح جریان گذرنده از اطراف سوپاپ بسیار کم است. در این حالت سرعت سیال به سرعت صوت می‌رسد و هنگامی که سیال به پورت خروجی می‌رسد ناگهان بدلیل افزایش سطح مقطع منبسط می‌شود که این امر باعث تلفات خفانشی می‌گردد. بنابراین هر چه سوپاپ خروجی سریعتر باز شود و همچنین هرچه نسبت سطح گلوگاه سوپاپ به سطح پورت خروجی به مقدار ۱ میل کند تلفات خفانشی کمتر می‌شود.
از مزیت های پرخورانی ضربانی این است که می‌توان با طراحی مناسب، فشار را در پائین دست سوپاپ خروجی به نحو مطلوبی کمتر از فشار سیلندر و فشار منیفولد ورودی(در لحظه ای که سوپاپ ورودی و خروجی هر دو باز است) رساند. اما در پرخورانی با فشار ثابت فشار در مخزن و رانرهای خروجی برابر است. بنابراین نمی‌توان فشار را در پائین دست سوپاپ خروجی کاهش داد. در طراحی منیفولد خروجی یک موتور پرخورانی شده طول رانرهای خروجی را باید نسبتًا طولانی در نظر گرفت تا امواج فشاری منعکس شده از توربین به سوپاپ خروجی در حالیکه باز می‌باشد نرسد. ولی معمولا طول رانرهای خروجی را کوتاه تر در نظر می‌گیرند تا انرژی گازهای خروجی از سیلندر کاهش نیابد در عوض همان طور که بیان شد زمان باز ماندن سوپاپ خروجی را کاهش می‌دهند تا امواج فشاری منعکس شده به داخل سیلندر راه نیابند[24]. همچنین انتخاب منیفولد خروجی کوچک باعث خواهد شد که فشار در منیفولد خروجی در لحظه ای که سوپاپ دود باز می‌شود سریعتر افزایش یابد و در نتیجه سرعت پاسخ نیز بیشتر شود.
یکی از بزرگترین مزایای پرخورانی ضربانی نسبت به پرخورانی فشار ثابت این است که می‌توان انرژی بیشتری از گازهای خروجی را که قابلیت تبدیل شدن به کار مفید را دارند در اختیار توربین قرار داد. اما نکته ای که باید به آن توجه کرد این است که ناپایا بودن جریان باعث می‌شود که توربین در ناحیه ای با بازده پائین کار کند. زیرا در پورخورانی ضربانی وقتی که فشار گازهای خروجی بالا می‌رود، این امر باعث شتاب گرفتن پره های توربین می‌شود و وقتی که فشار پائین می‌آید حرکت پره های توربین نیز کند می‌شود. بنابراین مقداری از انرژی همیشه صرف شتاب دهی به پره های توربین می‌شود و این امر باعث کاهش کارایی توربین می‌گردد[24].
اگر در این سیستم از توربین با کارایی بالا استفاده نشود تمام انرژی هایی که از سیستم فشار ثابت، بیشتر جذب می‌شود از بین می‌رود و این سیستم دیگر مزیتی نسبت به سیستم فشار ثابت ندارد چون راندمان توربین مستقیما بر راندمان موتور تاثیر می‌گذارد[17]. برای بالا بردن راندمان توربین باید فواصل بین گازرسانی به توربین را کاهش داد و در ضمن از قیچی سوپاپ ها استفاده کنیم، با این حال راندمان توربین از حالتی که جریان پایا داریم کمتر است. اگر دو سیلندر به ورودی توربین متصل باشد، بازدهی توربین به دلیل فاصله هوایی ایجاد شده، کاهش می‌یابد. به همین دلیل سیستم ضربه ای هنگامی مناسب می‌باشد که تعداد سیلندرهای ورودی به توربین حداقل سه عدد باشند.
2-6- سیستم‌های تک توربوشارژری
رفتار یک سیستم تک توربوشارژری همگام با پیشرفت توربوشارژرها بهبود می‌یابد که این توسعه برای کامل شدن نیازمند زمان است. توربین های در دسترس با یا بدون دریچه فرار، بازده کافی برای تأمین توان مورد نیاز کمپرسور جهت تولید فشار کافی در سرعت‌های پائین و در حالت گذرا را ندارند. علاوه براین، تغییرات دبی در یک کمپرسور جریان شعاعی یک پارامتر محدودکننده دیگر است[25]. محدوده جریان با افزایش نسبت فشار کاهش می‌یابد، اگر توان کافی برای رساندن کمپرسور به حالت خفگی یا سرج در جریان موجود باشد، این موضوع می‌تواند مشکل ایجاد کند. همچنین در نسبت فشارهای بالاتر دستیابی به محدوده قابل استفاده بسیار سخت تر می‌شود.
در سال 1990، محققان پورشه طی یک بررسی موتور مدل 944 چهار سیلندر پورشه را با چهار سیستم مختلف توربو را مورد آزمایش قرار دادند. آنها سیستم استاندارد را که حجم منیفولد زیادی داشت به یک سیستم کوچکتر شده تغییر دادند و به این منیفولد کوچک شده یک توربوشارژر تک ورودی با دریچه فرار، یک توربوشارژر با ورودی دوگانه (ولی با یک دریچه فرار) و یک توربوشارژر با هندسه متغیر(VTG) متصل کردند و برای به دست آوردن رفتار حالت گذرا آزمایشاتی انجام دادند. شبیه‌سازی وسیله نقلیه را روی دنده دوم و با 2000rpm و فشار متوسط مؤثر ترمزی bar2 آغاز کردند و حالت گذرا را با تغییر دور تا فشار متوسط مؤثر ترمزی bar15 مورد بررسی قرار دادند[33].
با توربورشارژرVTG عکس‌العمل توربوشارژر حدود60% بهبودی داشت برای ورودی دوگانه 24% و برای حالت تک ورودی با کاهش اندازه منیفولد این بهبودی حدود 22% بود. بهبود زیاد در حالت هندسه متغیر، نه فقط به خاطر تغییرات رفتار جریان در توربین بلکه به خاطر کاهش شصت درصدی در اینرسی روتور بود. قابلیت تغییر هندسه در این توربوشارژر اجازه انتخاب پره توربینی که 18% کوچکتر باشد، را می‌دهد. در نهایت آنها به این نتیجه رسیدند که بازده کلی یک توربوشارژر با ممان اینرسی روتور آن متناسب است. در این زمینه مقالات متعددی به چاپ رسیده است. مؤثرترین تکنولوژی موجود (VGT) است که به خاطر دمای بالای موتورهای احتراق جرقه‌ای نیازمند طراحی پیشرفته است[25]. تکنولوژی دیگر که در آن عرض نازل توربین تغییر می‌کند (VNT) است[26].
ویلاند تحقیقاتی را برای کاهش زمان عکس‌العمل توربورشارژر انجام داد. با استفاده از پره توربین از جنس SiN (نیترید سیلیسم) اینرسی (فقط اینرسی پره توربین) 64% کاهش داشت و با جنسTiAl این کاهش به 50% نسبت به حالت استاندارد رسید[27]. راه‌حل دیگر برای بهبود عکس‌العمل توربوشارژر کاهش اصطکاک در یاتاقان‌هاست. ویلاند نشان داد که در سرعت‌های پائین توانی که صرف مقابله با اصطکاک می‌شود یک سوم کل توان توربین است. با تغییر در بلبرینگ، توان لازم برای مقابله با اصطکاک به 50% کاهش می‌یابد. در شرایطی که توان توربین در سرعت‌های پائین و به تبع آن در دبی جرمی پائین، بالا می‌رود کمپرسور می‌تواند به حالت سرج برسد. برای جلوگیری از سرج، کمپرسور باید محدوده وسیع‌تری را تحت پوشش قرار دهد[28].


2-7- سیستم‌های ترتیبی
نوع دیگر مورد استفاده در توربوشارژرهای با هندسه متغیر استفاده از سیستم‌های ترتیبی است. به این صورت که به جای تغییر در هندسه یک توربوشارژر تعداد توربوشارژرها افزایش یابد. دلیل استفاده از این سیستم ازدیاد دامنه تغییرات جریان برای تأمین فشار مورد نیاز است.
محققین ولوو آزمایش‌هایی در زمینه سیستم‌های ترتیبی در سال 1991 انجام دادند]39[. آنها روی موتور 6 سیلندر با فشار نهایی کمی کمتر از 2barتحقیقات خود را انجام دادند. آنها به این نتیجه رسیدند که اینرسی یک سیستم توربوشارژری موازی30% پائین‌تر از یک سیستم تک توربوشارژری با همان مشخصات نهایی است و به علت کمی اینرسی، عکس‌العمل بهتری نشان خواهد داد. آنها به این نتیجه رسیدند که سیستم ترتیبی سری مزایای بیشتری از سیستم ترتیبی موازی دارد. دلیل آن این است که رسیدن به حالت گذرای یکنواخت برای حالت موازی مشکل‌تر است. سیستم سری محدوده جریان را باریکتر می‌سازد، زیرا جریان باید از دو کمپرسور عبور کند بنابراین اجازه رسیدن به فشارهای بالاتر را می‌دهد. این سیستم شامل یک توربوشارژر فشار پائین و یک توربوشارژر فشار بالا است که توربین فشار پائین می‌تواند با یک شیر پروانه‌ای از مسیر خارج شود. شیر دیگر می‌تواند کمپرسور را از حالت سری به موازی تبدیل کند. کارخانه‌های پورشه و مزدا از این سیستم‌های برای موتورهای خود استفاده می‌کنند. در این سیستم از توربوشارژرهای یکسان استفاده می‌شود.
2-8- سیستم‌های دومرحله‌ای
معمولاً این سیستم برای فشارهای بالای 2bar است. محققین کارخانه kkk سیستم دو مرحله‌ای را برای فشار مطلق 3bar برای موتور دیزل در نظر گرفتند. این سیستم شامل دو توربوشارژر با سایزهای متفاوت به همراه دریچه فرار در قسمت فشار بالا و نیز خنک‌کن میانی برای هر مرحله است. این سیستم برای یک موتور 12 لیتری دیزلی استفاده شد. مقدار افزایش در قسمت فشار بالا و پائین نسبت به حالت استاندارد تک توربوشارژری 85% و 112% گردید[30].
فصل سوم
تغییرات موتور برای تجهیز به توربوشارژر
3-1- استفاده از توربوشارژر برای موتور گازسوز
معمولا موتورهایی که تبدیل به گازسوز می‌شوند از ابتدا برای سوخت بنزین و بدون استفاده از پرخوران طراحی شده اند لذا در هنگام استفاده از پرخوران برای این موتورها می‌بایست به این نکته توجه نمود که فشارهای دینامیکی، ارتعاشات و نیروهای وارده به قطعات موتور نباید بیش از آنچه که در موتور معمولی است باشد. بنابراین دراستفاده از پرخوران برای یک موتور گازسوز باید سعی نمود تا با در نظر گرفتن محدودیت های تعیین شده برای موتور بنزینی بدون پرخوران نسبت به بهبود عملکرد آن اقدام گردد. اضافه کردن توان در این موتورها می‌بایست با بررسی بیشتر قطعات و مشخص نمودن حد دوام آن ها صورت پذیرد.
3-2- تغییرات موتور برای تجهیز به توربوشارژر
از آنجاییکه هدف از نصب توربوشارژر علاوه بر افزایش قدرت، افزایش بازده موتور و نیز احتمالا کاهش آلودگی می‌باشد، بر روی قسمت های دیگر موتور نیز لازم است تغییراتی انجام گیرد. برای مثال سیستم پاشش سوخت باید طوری تغییر کند که میزان افزایش سوخت مورد نیاز موتور را با توجه به جرم افزوده هوا تامین کند. همینطور در منیفولدها باید تغییراتی داده شود تا هم امکان نصب توربوشارژر میسر گردد و هم امکان حداکثر استفاده از انرژی ضربه ای موجود در منیفولد میسر گردد. از سوی دیگر با توجه به ایجاد اختلاف فشار مثبت فشار بین منیفولد ورودی و خروجی احتیاج به تغییر زمان بندی سوپاپ ها و همچنین میزان همپوشانی سوپاپ ها می‌باشد. علاوه بر این تغییر زمانبندی سیستم جرقه احتمال دارد موجب بهبود عملکرد موتور گردد که تغییرات احتمالی آن از طریق انجام مدلسازی و نیز از طریق انجام آزمون قابل بررسی می‌باشد.
مباحثی که در زمینه تغییرات لازم موتور ذکر گردید مطالب مربوطه به تصحیح عملکرد موتور از لحاظ بازده و توان خروجی می‌باشد. لازم به ذکر است که تغییراتی نیز در مورد سیستم های جانبی موتور لازم الاجرا هستند. از قبیل تغییر در سیستم های خنک کاری و روغن کاری. با توجه به افزوده شدن دما و فشار در موتور توربوشارژری میزان حرارت تحویلی به بدنه موتور نیز افزایش می‌یابد. اگر سیستم خنک کاری جوابگوی این مازاد حرارت نباشد دمای سطح داخلی موتور افزایش می‌یابد، که این امر موجب اختلال در کیفیت روغن و کاهش گرانروی و عملکرد نامناسب آن می‌گردد. لذا عملکرد سیستم خنک کاری باید مورد بررسی قرار گیرد. در مورد سیستم روغن کاری نیز افزایش روغن مصرفی توربوشارژر برای روغن کاری یاتاقان ها موجب بازنگری بر روی سیستم روغنکاری می‌گردد که در صورت کافی نبودن ظرفیت سیستم پمپاژ روغن موتور باید تمهیداتی برای رفع این نقیصه به کار گرفته شود.
نوع دیگر از ملاحظات در نصب توربوشارژر بر روی موتورهای تنفس طبیعی تحلیل مقاومت بدنه موتور در برابر تنش های مکانیکی و حرارتی القا شده در اثر افزایش فشار و دما توسط توربوشارژر می‌باشد. بنابر ادعای واتسون[24] اگر میزان افزایش قدرت موتور تا حدود 50 درصد قدرت موتور تنفس طبیعی باشد موتور قابلیت تحمل تنش های ناشی از نصب توربوشارژر را خواهد داشت، ولی اگر افزایش قدرت خروجی مورد نظر بیش از این مقدار باشد، طراحی مجدد بعضی از قطعات موتور لازم می‌باشد.
3-3- کاهش مشکلات توربوشارژینگ
3-3-1- جلوگیری از تولید کوبش
در مرحله احتراق پس از جرقه زدن شمع شعله اولیه تشکیل می‌شود که به آن شعله جلویی گفته می‌شود. این شعله شروع به پیشروی در میان مخلوط نسوخته می‌کند و با گذشت زمان در مرحله احتراق حجم گازهای نسوخته کمتر و کمتر می‌شود و این موجب می‌گردد تا دمای مخلوط انتهایی افزایش یابد تا حدی که ممکن است مخلوط به دمای اشتعال برسد. یعنی قبل از رسیدن شعله جلویی مخلوط یا گازهای انتهایی خودبخود مشتعل می‌شوند. این اشتعال خودبخودی بسیار سریع و لحظه ای می‌باشد و موجب ایجاد موج های فشاری در داخل محفظه احتراق می‌شود. از این پدیده بنام پدیده ناک یا کوبش تعبیر می‌شود. کوبش موجب خرابی در سر سیلندر و پیستون و نیز باعث کاهش بازده و افزایش آلاینده هایی نظیر منوکسید کربن می‌شود.
3-3-1-1- روش های جلوگیری از تولید کوبش
کاهش نسبت تراکم. کاهش نسبت تراکم باعث کاهش فشار و دما در انتهای مرحله تراکم می‌شود و این کاهش احتمال خود اشتعالی را کمتر می‌کند. اکثر موتورهای اشتعال جرقه ای توربوشارژ شده در مقایسه با موتورهای تنفس طبیعی نسبت تراکم کمتری دارند. به عنوان مثال طبق شکل(3-1) برای یک موتور تنفس طبیعی با نسبت تراکم 9 اگر بخواهیم فشار تقویتی را 0.5 بار اضافه کنیم باید برای جلوگیری از کوبش، نسبت تراکم را به 6.7 برسانیم[24].

شکل(3-1) رابطه بین نسبت تراکم و افزایش فشار ورودی موتور [24]
البته کاهش نسبت تراکم باعث کاهش راندمان موتور می‌شود ولی این کاهش در راندمان در مقایسه با افزایش بر اثر توربوشارژ کردن چندان زیاد نیست. کاهش در نسبت تراکم باید تا حدامکان کم باشد تا هم راندمان کاهش زیادی نداشته باشد و هم از محدوده خود اشتعالی فاصله گرفته شود. به طور کلی نسبت افزایش فشار در توربوشارژر مناسب با افزایش قدرت مورد نظر انجام می‌گیرد و سپس میزان نسبت تراکم برای حصول حاشیه امنیتی نسبت به تولید کوبش به طور تجربی بدست می‌آید. متاسفانه روش کلی برای انتخاب نسبت تراکم قابل ارائه نمی‌باشد زیرا شروع کوبش شدیدا وابسته به اندازه های موتور، کنترل فشار توربوشارژر و خواص سوخت می‌باشد. اگر روشی برای تعیین میزان کاهش نسبت تراکم موجود نباشد، کاهش دو واحدی نسبت تراکم میانگین مناسبی می‌باشد[24]. مهمترین نکته برای جلوگیری از کوبش پائین نگه داشتن دمای هوای ورودی به موتور می‌باشد.
ریتارد کردن جرقه. به تاخیر انداختن جرقه باعث کاهش دمای احتراق می‌شود. ریتارد جرقه باعث کاهش دما و فشار مخلوط هوا و سوختی که در دورترین فاصله به شعله واقع هستند شده و این امر باعث کاهش احتمال بروز کوبش یا خودسوزی و یا شدت آن می‌شود. ریتاردکردن زاویه جرقه با توجه به اینکه باعث کاهش فشار در مرحله انبساط می‌شود در نتیجه موجب کاهش بازده موتور نیز می‌شود ولی تاثیر آن کمتر از کاهش بازده موتور به دلیل کاهش نسبت تراکم است .[24]البته به تاخیر انداختن زاویه جرقه در حالت بار کامل کاربرد دارد و در حالت بار جزئی نیاز به ریتاردکردن زاویه جرقه نداریم و زاویه جرقه در همان حالت آوانس باقی می ماند. زیرا درحالت بار جزئی مسئله ناک نداریم و به تاخیر انداختن زاویه جرقه که منجر به کاهش بازده می‌شود مناسب نیست. به دلیل اینکه تغییر نسبت تراکم موتور جهت کنترل ناک و فشار و دمای بیشینه سیلندر بسیار سخت و مقرون به صرفه نمی‌باشد، معمولا نسبت تراکم موتور را تا حد ممکن بالا در نظر می‌گیرند و یا ثابت نگه می دارند و با استفاده از تنظیم زاویه جرقه کوبش و دما و فشار بیشینه داخل سیلندر را کنترل می‌کنند. تغییر و تنظیم زمانبندی جرقه به مراتب راحتتر و آسانتر از تغییر نسبت تراکم در موتور می‌باشد. از نکات منفی به تاخیر انداختن زاویه جرقه به هدر رفتن مقدار بیشتری از انرژی در مرحله تخلیه و افزایش دمای گازهای خروجی است که ممکن است به توربین آسیب برساند و این یک مشکل جدی برای سازندگان توربوشارژر می‌باشد.
کاهش حداکثر فاصله مخلوط سوخت و هوا از شمع. برای دستیابی به این امر محفظه احتراق باید طوری طراحی گردد که دورترین نقطه از شمع در فاصله قابل قبولی باشد و جبهه احتراق به سرعت و قبل از جذب حرارت اضافی به این منطقه برسد.
خنک کاری هوای ورودی به موتور. افزایش دمای هوا در کمپرسور و تأثیر آن بر ضربه را می‌توان با استفاده از خنک میانی کاهش داد. با استفاده از خنک کن میانی و کاهش دمای محیط امکان کوبش کاهش می‌یابد و نیاز به تاخیر در زمان جرقه کم می‌شود و می‌توانیم از نسبت تراکم بالاتری نسبت به موتورهای پرخورانی شده بدون خنک کن میانی استفاده کنیم. همچنین خنک کن میانی باعث افزایش بازده حجمی می‌شود زیرا با کاهش دمای هوای ورودی چگالی هوا نیز افزایش می‌یابد و باعث می‌شود که جرم بیشتری از مخلوط هوا و سوخت وارد سیلندر شود. نقاط ضعف این سیستم افزایش حجم منیفولد ورودی و به تبع آن کاهش سرعت پاسخگویی موتور و قیمت بالای آن می‌باشد. چون این خنک‌کن بین کمپرسور و موتور قرار دارد به آن خنک میانی نیز می‌گویند. عبور از خنک‌کن میانی مقداری افت فشار را برای گاز در پی دارد، ولی به علت افزایش چگالی گاز پس از خنک کاری و افزایش قدرت به دنبال آن، این افت فشار قابل اغماض است.
در موتور دارای خنک‌کن میانی، به دلیل افزایش جریان هوا، نسبت سوخت به هوا ضعیف می‌شود و در پی آن دمای ورودی به توربین کم می‌شود در نتیجه انرژی قابل دستیابی در توربین کم می‌شود و در نهایت فشار در سیلندر کاهش پیدا می‌کند ولی اثر افزایش چگالی از اثر کاهش فشار بیشتر است. استفاده از خنک‌کن میانی باعث افزایش قدرت خروجی موتور بدون افزایش یافتن بار حرارتی خواهد شد، مصرف سوخت کم شده و به دلیل مخلوط سوخت به هوای ضعیف، تولید دود نیز کم خواهد شد. مزایای استفاده از خنک‌کن میانی بر همگان روشن است ولی شرایط استفاده از آن بستگی به وجود مایع خنک‌کننده با دمای مناسب و ملاحظات اقتصادی دارد.
با توجه به اینکه سازندگان موتور برای موتورهایشان نسبت به کوبش حاشیه امنیتی در نظر می‌گیرند، می‌توان موتورها را به ملایمت توربوشارژ کرد بدون اینکه کوبش اتفاق بیفتد.
3-3-2- کنترل افزایش فشار در توربوشارژر
کنترل فشار در توربوشارژر شامل کنترل افزایش فشار در کمپرسور می‌باشد. این کنترل می‌تواند به چند طریق صورت پذیرد. اول آنکه در انتخاب توربوشارژر تا حد امکان باید تلاش شود که توربوشارژری که برای موتور انتخاب می‌شود افزایش فشار هوای ورودی موردنظر را تامین نماید. یعنی توان موتور با انتخاب توربوشارژر مناسب تا حد موردنظر افزایش یابد و کمتر و یا بیش از توان موردنظر نشود. اگر از توربین بزرگتر استفاده شود مقدار افزایش فشار هوا و درنهایت توان موتور در دورهای پائین کمتر از حد موردنظر و در دورهای بالا بیش از حد موردنظر خواهد بود. همچنین موجب کاهش در سرعت پاسخ توربوشارژر می‌شود. اگر توربین یک توربوشارژر کوچکتر از حد ایده آل انتخاب شود آنگاه افزایش فشار ورودی هوا و درنهایت توان موتور در دورهای پائین بیش از حد مجاز و در دورهای بالا کمتر از حد مجاز خواهد بود. بنابراین انتخاب توربوشارژر مناسب برای موتور جهت دسترسی به توان و افزایش فشار هوای ورودی خود عاملی مهم در کنترل افزایش فشار خواهد بود.
یک روش دیگر برای کنترل فشار هوای ورودی به داخل موتور استفاده از یک شیر در منیفولد ورودی می‌باشد ولی این روش مناسب نیست زیرا این عمل باعث می‌شود که مقداری از کار تولیدی در توربین به هدر رود و همچنین باعث افزایش تلفات پمپاژ می‌شود. روش دیگری که اکثرا برای کنترل افزایش فشار در توربوشارژر استفاده می‌شود، استفاده از یک شیر در ورودی توربین می‌باشد، که به دریچه کنترل توربین معروف است. اگر فشار گازهای حاصل از احتراق از حد مجاز بالا رود این شیر باز شده و مقداری از گازهای ورودی به توربین را منحرف کرده و به خروجی توربین منتقل می‌کند. در حقیقت این عمل دور زدن گازهای ورودی به توربین است.
با بازشدن این شیر از ورود قسمتی از گازهای حاصل از احتراق به داخل توربین جلوگیری می‌شود. در نتیجه انرژی وارد شده به توربین کاهش می‌یابد و موجب می‌گردد که کار تولیدی توربین و کار منتقل شده به کمپرسور کاهش یابد. پس در نتیجه افزایش فشار در کمپرسور نیز کاهش یافته و به این ترتیب فشار هوای ورودی به داخل موتور کاهش می‌یابد و در نتیجه فشار و دمای بیشینه سیلندر کنترل می‌شود.
یکی دیگر از راههای کنترل افزایش فشار در توربوشارژر استفاده از یک نازل در ورودی توربین می‌باشد که سطح مقطع آن متغیر است. در دورهای پائین سطح مقطع نازل کوچکتر و در دورهای بالا سطح مقطع آن بزرگتر می‌شود تا انرژی مورد نیاز برای توربین مهیا شود. با کنترل انرژی ورودی به داخل توربین با استفاده از این روش می‌توان افزایش فشار در توربوشارژر را کنترل نمود. روش دیگر برای کنترل توربوشارژر استفاده از یک نازل در خروجی توربین است و این نازل باعث افزایش افت فشار در حالتی که دبی گازهای ورودی به توربین بیشتر از حد مجاز باشد می‌شود. بنابراین این عمل باعث می‌شود که در توربین فشار پائین دست ایجاد شود و نسبت فشار در توربین کاهش یابد.
3-3-3- زمانبندی سوپاپ های ورودی و خروجی
در دورهای پائین و به بخصوص در دورهای کمتر از 2000rpm انرژی گازهای خروجی کم است و بنابراین برای افزایش توان در این دورها توسط توربوشارژر با مشکل مواجه می شویم. چون در دورهای بالا مشکل افزایش توان نداریم طراحی زمانبندی و منحنی لیفت سوپاپ ها به گونه ای است که بهترین بازده حجمی را در دورهای پائین و بخصوص کمتر از2000rpm داشته باشیم.
به طور کلی کمترکردن مقدار برخاستگی سوپاپ ورودی و کاهش دادن مدت زمان باز بودن آن در دورهای کمتر از 2400rpm نسبت به دورهای بالا، موجب افزایش بازده حجمی می‌شود. تغییر دیگری نیز در طراحی سوپاپ موتور پرخورانی شده انجام می‌پذیرد و آن کاهش زمانی است که هر ۲ سوپاپ ورودی و خروجی باز هستند. زیرا وقتی در پورت ورودی به دلیل افزایش نسبت فشاری که در کمپرسور صورت می‌گیرد فشار بالا می‌رود، مقداری از مخلوط به راهگاه خروجی راه می‌یابد. در این صورت با افزایش آلاینده ها نظیر هیدروکربن های نسوخته و همچنین کاهش بازده موتور روبرو می شویم. یا ممکن است بدلیل ایجاد فشار پائین دست توسط توربین مقداری از گازهای حاصل از احتراق به داخل راهگاه ورودی وارد شود که این امر نیز خطرناک است زیرا دمای گازهای حاصل از احتراق بالا می‌باشد و ممکن است که مخلوط هوا و سوخت داخل منیفولد مشتعل شود.[24]
3-4- تأثیر توربوشارژر بر آلودگی خروجی
موتور توربوشارژ شده به علت اینکه مقدار و دمای هوای ورودی آن نسبت به موتور تنفس طبیعی بیشتر است آلودگی مونواکسیدکربن و هیدروکربن نسوخته آن کمتر می‌شود. اما به علت دمای بالا و افزایش فشار متوسط ترمزی میزان اکسیدهای نیتروژن آن افزایش می‌یابد[31]. البته باید تأثیر خنک‌کن میانی بر آلودگی اکسیدهای نیتروژن مورد توجه قرار گیرد.
فصل چهارم
انطباق توربوشارژر
4-1- انطباق موتور و توربوشارژر
هدف کلی از انطباق توربوشارژر به موتور احتراق داخلی این است که توربوشارژری با حداکثر پارامترهای مناسب را به یک موتور به منظور بدست آوردن بهترین کارائی وصل کنیم. از طرفی، توربوشارژر در تمام محدوده کارکرد موتور در راندمان بالا کار نخواهد کرد. در اصل توربوشارژر را به طور دقیق می‌توان فقط برای یک نقطه کارکرد موتور طراحی کرد. اگر قرار است که موتور در محدوده وسیعی از بار و سرعت کار کند، آنگاه یک محدوده قابل قبول برای اتصال توربوشارژر باید رعایت شود[24]. در انتخاب توربوشارژر انتخاب مناسب کمپرسور اهمیت بیشتری نسبت به توربین دارد زیرا توربین ها قادرند در محدوده وسیع تری نسبت به کمپرسورها کار کنند[34].

4-2- تعیین پارامترهای توربین و کمپرسور
رفتار یک توربوشارژر را می‌توان بصورت پارامترهایی که شامل متغیرهای مربوط به توربوشارژر می‌باشد نشان داد[32].
با ترسیمP02P01 در مقابل پارامتر دبی جرمیmT01P01 به اندازه مقادیر NT01 (خطوط سرعت ثابت) مشخصات کامل نقشه کمپرسور بدست می‌آید که به آن نقشه می گویند که نمونه ای از آن در شکل(4-1) نشان داده شده است[24].

شکل (4-1)نقشه عملکرد یک کمپرسور] 15 [
به همین ترتیب نقشه توربین جریان محوری بصورت شکل(4-2) نمایش داده می‌شود.

Text of Final Project -فایل پروژه - ریسرچ-.Pdf)

-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون 42................................
-1-2-3 روشهای کلاسیک اندازه گیری پارامترهای دینامیکی ژنراتورهای شبکه42
-2-2-3 روشهای جدید تعیین پارامترهای دینامیکی ژنراتورهای سنکرون43
فصل چهارم: شناسایی بلادرنگ پارامترهای ژنراتور سنکرون با استفاده از شبکه عصبی
مصنوعی ....45
-1-4 کلیات و اصول کارشبکه های عصبی 46....................................
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها46
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی.48
-2-2-4 تست شبکه عصبی تخمینگر50
-3-4 نتایج 51...................................................................
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر53
-2-3-4 بررسی تحلیلی نتایج .89
فصل پنجم: نتیجهگیری و پیشنهادات ...97
ضمیمهها100
ضمیمهالف- طرحهای بکار گرفته شده برای شبیهسازی ژنراتور سنکرون101
ضمیمهب- نمودار پارامترهای بکار گرفته شده در شبیهسازی ژنراتور سنکرون..105
منابع و ماخذ.110
6
فهرست جدول ها
عنوان شماره صفحه
1-2 : مراتب مختلف مدلهای ژنراتور سنکرون 24
1-4 : فهرست پارامترهای دینامیکی ژنراتورهای سنکرون 38
2-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه فراوانی خطا 81
3-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه دامنه خطا 82

7
فهرست شکلها
عنوان شماره صفحه
: 1-1 نمای کلی فرایند ارزیابی و بهبود سیستمهای قدرت 3
: 1-2 مدارهای استاتور و روتور ماشین سنکرون 9
:2-2 مدار معادل ماشین بر اساس تئوری پارک 13
:3-2 توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار 18
:4-2 مدار معادل ژنراتور سنکرون در حالت ماندگار 19
:5-2 مدار معادل ماشین سنکرون در دوره گذرا 20
:6-2 مدار معادل ماشین سنکرون طی دوره زیر گذرا 20
:7-2 مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز 21
: 8-2 مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز 22
: :1-4 طرح کلی سلول عصبی انسان 32
:2-4 شکل کلی سلول عصبی مصنوعی 33
:3-4 ساختار شبکه عصبی توسعه یافته 33
:4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون 35
:5-4 آلگوریتم آموزش شبکه عصبی 36
:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی 37
:7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd" 39
:8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 39
:9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 40
:10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 40
:11-4 هیستوگرام خطای شبکه عصبی در مرحله تست 41
:12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 41
:13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 42

8
:14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 42
:15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 43
:16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 43
:17-4 هیستوگرام خطای شبکه عصبی در مرحله تست 44
:18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 44
:19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 45
:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 45
:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 46
:22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 46
:23-4 هیستوگرام خطای شبکه عصبی در مرحله تست 47
:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 47
:25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq" 48
:26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 48
:27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 49
:28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 49
:29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 50
:30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 50
:31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 51
:32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 51
:33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 52
:34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq" 52
:35-4 هیستوگرام خطای شبکه عصبی در مرحله تست 53
:36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 53
:37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 54
:38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 54
:39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 55
9
:40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 55
:41-4 هیستوگرام خطای شبکه عصبی در مرحله تست 56
:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 56
:43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td" 57
:44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 57
:45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 58
:46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 58
:47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 59
:48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 59
:49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 60
:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 60
:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 61
:52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 61
:53-4 هیستوگرام خطای شبکه عصبی در مرحله تست 62
:54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 62
:55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 63
:56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 63
:57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 64
:58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 64
:59-4 هیستوگرام خطای شبکه عصبی در مرحله تست 65
:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 65
:61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq" 66
:62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 66
:63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 67
:64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 67
:65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 68
10
:66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 68 :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 69 :68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 69 :69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 70 :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq" 70 :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست 71 :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 71 :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 72 :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 72 :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 73 :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 73 :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست 74 :78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 74 ض-:1 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 88 ناگهانی تحریک ض-:2 طرح شبیه سازی ژنراتور سنکرون متـصل بـه شـین بینهایـت بـا اغنـشاش 89 اتصالکوتاه درترمینال ژنراتور ض-:3 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 90 ناگهانی توان ورودی ض-:4 تغییرات مقادیر Xd بکار گرفته شده 92 ض-:5 تغییرات مقادیر Xd' بکار گرفته شده 92 ض-:6 تغییرات مقادیر Xd" بکار گرفته شده 92 ض-:7 تغییرات مقادیر Xq بکار گرفته شده 93 ض-:8 تغییرات مقادیر Xq" بکار گرفته شده 93 ض-:9 تغییرات مقادیر Xl بکار گرفته شده 93 ض-:10 تغییرات مقادیر Td' بکار گرفته شده 94 ض-:11 تغییرات مقادیر Td" بکار گرفته شده 94 11
ض-:12 تغییرات مقادیر Tq" بکار گرفته شده 94
ض-:13 تغییرات مقادیر Rs بکار گرفته شده 95
ض-:14 تغییرات مقادیر WR بکار گرفته شده 95
ض-:15 تغییرات مقادیر H بکار گرفته شده 95
12
چکیده پایاننامه:
این پروژه روشی نو را برای بکارگیری رؤیتگرهای شبکه عـصبی در جهـت شناسـایی و تعیـین پارامترهـای دینامیکی ژنراتورهای سنکرون با استفاده از اطلاعات بهرهبرداری ارائه کرده است. اطلاعات بهـرهبـرداری از طریق اندازهگیریهای بلادرنگ بعمل آمده در قبال اغتشاشات حوزه بهرهبرداری فراهم مـیشـود. دادههـای آموزشی مورد نیاز شبکه عصبی از طریق شبیهسازیهای غیرهمزمـان بهـرهبـرداری از ژنراتـور سـنکرون در محیط یک ماشین متصل به شین بینهایت فراهم شده است. مقـادیر نمونـه ژنراتورهـای سـنکرون در مـدل مذکور بکار گرفته شدهاند. شبکه آموزش دیده در قبال اندازهگیریهای بلادرنگ شبیهسازی شـده در جهـت تخمین پارامترهای دینامیکی ژنراتورهای سنکرون تست شده است. مجموعه نتایج بدست آمده نشان دهنـده قابلیتهای نوید بخش شبکه عصبی مصنوعی در حوزه تخمین پارامترهای دینامیکی ژنراتورهـای سـنکرون، بصورت بلادرنگ و با استفاده از اطلاعات بهرهبرداری میباشد. اگرچه برای دست یـابی بـه خطـای تخمـین قابل قبول در مسیر شناسایی کلیه پارامترهای دینامیکی ژنراتورهای سنکرون، پارهای اصلاحات ضروری بـه نظر میرسد. در نگاه کلّی این اقدامات تکامل بخش را میتوان به دو مجموعه: پیشنهادات مربوط به اصـلاح شبکه عصبی رؤیتگر در حوزه شبیهسازی و آموزش و بخش دیگر را به عنوان گامهای تکاملی تلقی نمود، که سازماندهی این گامها در مبادی ورودی و خروجی شبکه عصبی، زمینه مناسبتـری را بـرای بهـرهگیـری از قابلیتهای آن فراهم خواهد کرد.
کلید واژه:
ژنراتور سـنکرون، پارامترهـای دینـامیکی، شناسـایی بلادرنـگ، شـبکههـای عـصبی مـصنوعی، اطلاعـات بهرهبرداری
13
14
مقدمه:
در سالهای اخیر با پیشرفت سیستمهای کامپیوتری, سیستمهای هوش مصنوعی نیز متولد شده و رشد کرده است. یکی از سیستمهای هوش مصنوعی, شبکه های عصبی مصنوعی هستند. این شبکه ها به علت عواملی چون قطعیت در پاسخ, سادگی در اجرا, قابلیت انعطاف بالا و .... جایگاه ویژه ای را به خود اختصاص داده اند. با توجه به ساختار و کارکرد شبکه های عصبی مصنوعی و اهمیت تعیین پارامترهای دینامیکی اجزاء سیستمهای قدرت از جمله ژنراتورهای سنکرون, بهره گیری از شبکه های عصبی مصنوعی در این حوزه قابل طرح است. از طرف دیگی نتایج ارائه شده از بکار گیری این شبکه ها در حوزه های مشابه, کارکردهای نوید بخشی را نشان می دهد. با توجه به مراتب فوق این پروژه بر آنست تا با طراحی و اجرای طرح شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون با استفاده از شیکه عصبی مصنوعی, قابلیت های این سیستم را در حوزه شناسایی بلادرنگ پارامترهای دینامیکی ژنراتورهای سنکرون نیز بیازماید.
15
فصلاول:

کلیات
16
سیستم های قدرت متشکلند از مجموعه ای از مراکز تولید(نیروگاهها) که توسط شبکه های انتقال و توزیع و تجهیزات حفاظتی و کنترل آن به مراکز مصرف متصل می گردند. وظیفه اصلی یک سیستم قـدرت تولیـد و تامین انرژی الکتریکی مورد نیاز مصرف کنندگان با حفظ شرایط سه گانه:
-1 ارزانی قیمت انرژی
-2 کیفیت بالا
-3 امنیت تامین انرژی میباشد. مراد از امنیت، پیوستگی و تداوم در تولید و تامین انرژی می باشد. عوامل مؤثر در امنیـت عبارتنـد از:
-1 سرمایه گذاری اولیه (تجهیزات سیستم ) -2 روشها و امکانات نگهداری و تعمیرات سیستم قدرت.
همانگونه که در کلیه وسایل و سیستم های غیرالکتریکی همواره دو ویژگی ارزانـی و بـالا بـودن کیفیـت-
امنیت با یکدیگر متعارض و متقابل می باشند در مقوله انرژی الکتریکی و سیستم هـای قـدرت نیـز بهمـان گونه خواهد بود. امنیت یک سیستم قدرت در حقیقت درجه و میدان توانایی آن سیستم در مواجهه با حـوادث
اغتشاشات می باشد . امنیت کلی یک سیستم به دو زیر شاخه:
امنیت دینامیکی
امنیت استاتیکی
قابل تقسیم است. از توانایی سیستم قدرت برای حفظ و نگهداری خود در دوره وقوع اختلال (که خود از سـه دامنه فوق گذرا-گذرا-دینامیک تشکیل شده است) با عنوان امنیت دینامیکی تعبیر مـی گـردد. بـا توجـه بـه اهمیت بسیار زیاد امنیت سیستمهای قدرت، فرایند ارزیابی وبهبود آن همواره مورد توجه مهندسـین طـراح و بهرهبردار بوده، به قسمی که عملیات ارزیابی و بهبود امنیت سیستم های قدرت یکی از وظایف بسیار مهـم و اساسی مراکز کنترل و بهره برداری شبکه های قدرت می باشد. شکل کلی فرایند ارزیـابی و بهبـود سیـستم های قدرت در شکل1-1 بیان شده است. باتوجه به اهمیت امنیت در سیستم های قدرت و همچنین تغییرات مستمری که در حین عملیات بهره برداری 24 ساعته در شبکه اتفاق می افتد ضرورت دارد که دائماً از طرف بهره بردار، عملیات بهره برداری به شکلهای مختلف بر روی سیستم های قدرت اعمال گردد،اما با توجه بـه ویژگی بالا بودن امنیت نباید این عملیات بگونه ای باشدکه سبب بروز اغتشاش در رفتار سیستم و در نتیجـه نقض غرض گردد. از طرفی سیستم قدرت هر کشور منحصر بفرد بوده به قسمی که نمونه دومی نمی تـوان برای آن ایجاد نمود. بنابر این با توجه به ویژگی منحصر بفرد بودن سیستمهای قدرت و ضـرورت اجتنـاب از عملیات بهره برداری بررسی نشده، برای ارزیابی اولیه از نتایج عملیات بهره برداری و یا طراحی ضرورتاً مـی باید از یک نمونه مشابه سیستم قدرت استفاده نمود تا بتوان ابتداً نتایج مانورهای طراحی یا بهـره بـرداری را برآن آزمایش و در صورت اطمینان از بی خطر بودن، نتایج آن مانورها را بر شبکه واقعی اعمال نمود.
17

نمونه مشابه سیستم قدرت را شبیه ساز1 و عملیات آزمایشی بـرروی نمونـه مـشابه را محاسـبات و مطالعـات شبیه سازی2 گویند. فرایند شبیه سازی سیستمهای قدرت فارغ از اینکه دیجیتال باشد یـا آنـالوگ از مراحلـی بدین ترتیب تشکیل شده است:
_1 شناسایی اجزاء سیستم قدرت
_2 ساخت و یا استخراج معادلات حاکم بر اجزاء
_3 ترکیب اجزاء و یا معادلات آنها
_4 حل معادلات با روشهای ریاضی بوسیلهکامپیوتر
_5 استخراج نتایج که در این میان مدلسازی اجزاء سیستم قدرت که همان شناسایی و استخراج معـادلات حـاکم بـر اجـزاء آن
است یکی از قدم های اصلی این فرایند بشمار میرود. به بیان دیگر یک متخـصص شـبکه در روش کـاری خود اولویت بندی هایی دارد که اولین آنها رساندن انرژی الکتریکی تولیدی به مصرف کننده است، در مرحله
دوم به تامین امنیت شبکه اهتمام می ورزد. و نهایتاً تلاش خویش را در جهت بهبود هر چـه بیـشتر کیفیـت انرژی که به مصرف کننده تحویل داده می شود مصروف می دارد. اگر چه بسیاری از اقداماتی که در جهـت امنیت سیستم های قدرت انجام می شود کیفیت توان را نیز ارتقاء می دهد. تامین امنیت سیستم خود شـامل مراحل و اولویتهایی است که اولین گام آن را مقاوم سازی و پایدار سازی شبکه در حالت های گذرا می باشد

1-simulator 2-simulation
18
و دومین گام شامل پایدار سازی دینامیکی شبکه می شود. از دیدگاه فرکانسی می توان حالت هـای گـذرا در شبکه را با نوسانات فرکانس بالا و حالت های دینامیکی آن را با نوسانات فرکانس پایین معرفی کرد. در اکثر شبکه های دنیا خاصه با پیچیده شدن شبکه ها پدیده نوسانات فرکانس پایین مشاهده شده است. ژنراتورهـا به عنوان تولید کننده نقش اصلی در ارتباط با این نوسانات دارند. اینها از نوع نوسان در پارامترها هستند و با اغتشاشات حالتهای گذرا متفاوتند. گاه این اغتشاشات بدون رخ دادن هیچ واقعهای در طی کار معمول شـبکه بوجود می آیند مثلاً با تغییر تپ ترانس درکم باری و مواردی از این قبیل. اگرچه در مرحله بعد از حالت هـای گذرای شبکه (از دیدگاه زمانی) نیز چنین بحثی مطرح می شود. بایـد توجـه داشـت کـه ایـن نوسـانات را در مقایسه با فرکانس شبکه، فرکانس پایین نام نهاده اند. دامنه فرکانسی مطرح از کسر یک تا چند هرتـز اسـت که بطور معمول بازه 0.5-2.5HZ را در بر می گیرند و در موارد حدی 0.1-4HZ می باشد. این نوسانات را به انواع :
-1 محلی
-2 بین ناحیه ای تقسیم کرده اند. که نوسانات یک ماشین نسبت به شبکه بزرگ یا شین بی نهایت متّصل به آن را محلّی نـام
نهاده اند. نوسانات بین ناحیه ای نمونه هایی مانند دو ژنراتور که با خطوطی به هم متصل هستند یا مجموعه دو ناحیه با یکدیگر را در برمی گیرد. از دیدگاه فرکانسی نیز این دو نوع نوسانات دینامیکی باهم تفاوت دارند.
ثابت می شود عامل این نوسانات، مد مکانیکی توربوژنراتور است. همانگونه کـه پـیشتـر توضـیح داده شـد تامین امنیت سیستم های قدرت در برابر نوسانات دینامیکی مانند سایر شاخه ها نیازمند شبیه سازی شبکه از این زاویه دید میباشد. مقادیر پارامترهای دینامیکی اجزاء در این شبیه سازی دارای نقش کلیدی هـستند. بـا توجه به نقش ژنراتور در میان اجزاء شبکه از دیدگاه نوسانات دینامیکی تعیین پارامترهـای آن بـسیار مهـم و تعیین کننده خواهد بود. صحت و دقّت تعیین این پارامترها وابسته است به روش بکار گرفته شده برای بـرای تعیین آنها . این مطالب موجب پیدایش روشهای گوناگون برای تعیین این پارامترها شده است. از طرف دیگـر این پارامترها برای هر ژنراتور مقدار ثابتی نیستند و بخـاطر عـواملی چـون پیرشـدن ژنراتـور، ایجـاد بعـضی خطاهای داخلی و ..... تغییر می کنند. این شرایط موجـب طـرح روشـهای بلادرنـگ1 در تعیـین پارامترهـای دینامیکی ژنراتور سنکرون شده است. از جهت دیگر روش بکارگیری و تبعات عملی یک تکنیک شناسـایی و ملزومات آن نیز حائز اهمیت است. گروهی از این روشها اگر چه نتایج نسبتاً دقیق و قابل اعتمادی نیز فراهم می آورند لیکن به علت خطر های ناشـی از تـست هـای مطـرح در آنهـا (ماننـد آزمـایش اتـصال کوتـاه2 و
باربرداری( 3 و یا ملزوماتشان چون جداسازی ژنراتور از شبکه چندان مطلـوب نیـستند. بعـضی از اجـزاء ایـن گروه روشها به مرور مطرود شده اند. مقالات جدید ارائه شده در سایر اجزاء این گروه با هـدف بهبـود آنهـا و حذف مشکلات مذکور شکل گرفتهاند. دسته دیگر این روشها نمونههـایی هـستند کـه بـا چنـین مـشکلاتی

3-On-Line 4-Short Circuit 5-Load Rejection
19
مواجه نیستند(مانند استفاده از تخمینگر شبکه عصبی مصنوعی.(1 کارهای انجام شده درباره ایـن روشـها در راستای بهبود هرچه بیشتر آنها و یا اطمینان از نتایج حاصله توسط آنها شکل گرفته اند. با توجه بـه مقدمـه ذکر شده ابتداً لازم است کلیات روشهای مدل سازی ژنراتور سنکرون مورد بررسی قرارگیـرد تـا درگـام بعـد نسبت به بررسی روشهای شناسایی پارامترهای آن اقدام شود.

6- Artificial-Neural Network
20
فصل دوم:

مدل سازی ماشین سنکرون
21
-1-2 پیشگفتار:
شبیه سازی رفتار ژنراتورهای سنکرون برای انجام مطالعات گوناگون دینامیکی در سیستمهای قدرت، مستلزم انتخاب یک مدل مناسب جهت مدلسازی ماشین میباشد. مدل ارائه شده برای هر سیستم شامل یک ساختار و تعدادی پارامتر میباشد که جهت پیشگویی رفتار آن سیستم در حالتهای مورد نظر بکار گرفته میشود. مدل مورد استفاده برای یک سیستم باید به سادگی قابل فهم بوده، بکارگیری آن سهل باشد و در عین حال بتواند رفتار سیستم را با دقت و صحت قابل قبولی برای یک محدوده مشخص پیشگویی نماید.
بعبارت بهتر رفتار پیشبینی شده سیستم بواسطه شبیهسازی براساس مدل ارائه شده تا حد قابل قبولی به رفتار واقعی سیستم نزدیک باشد. هر چند این دو خاصیت از مدل یعنی سادگی و واقعی بودن همواره در تضاد با یکدیگر هستند، (یعنی مدلهای واقعی به ندرت ساده هستند و مدلهای ساده به ندرت میتوانند واقعی باشند)، اما میتوان جهت رسیدن به پاسخ دلخواه مصالحهای منطقی مابین این دو خاصیت برقرار کرد. مدل دو محوری پارک از معمولترین و پذیرفتهترین مدلهای ماشین سنکرون میباشد. در این فصل ابتدا اصول مدلسازی ماشین سنکرون براساس تئوری دو محوری پارک به اختصار بررسی میشود، سپس پارامترهای ماشین سنکرون معرفی شده و نحوه محاسبه پارامترها براساس مدل دو محوری پارک و همچنین نحوه مدلسازی ماشین با داشتن پارامترهای آن بررسی میگردد. همچنین در این فصل ارتباط میان مرتبههای مختلف مدل پارک با نوع ژنراتور و نوع مطالعه مورد نظر تشریح میشود.
-2-2 ساختار فیزیکی ماشین سنکرون:
-1-2-2 ساختار روتور و استاتور:
بزرگترین و شاید متداولترین ماشین های الکتریکی که با سرعت سنکرون می چرخند، ماشین های سنکرون سه فاز میباشند. اگرچه ساخت ماشین های سنکرون سه فاز پر هزینه میباشد، اما بازده بالای این ماشینها در قدرتهای بالا بزرگترین مزیت آنها میباشد.
استاتور ماشینهای سنکرون معمولاً متشکل از یک هسته مورق فرومغناطیس با شیارهایی جهت قرار گیری سیم پیچیهای سه فاز گسترده میباشد. روتور ماشین نیز میتواند بصورت قطب برجسته یا قطب صاف ساخته شود. ماشینهای قطب برجسته اغلب به عنوان ژنراتورهای آبی جهت تطبیق سرعت پائین توربین-
های آبی با سرعت سنکرون استفاده میشوند. قطبهای روتور این نوع ماشین به صورت جداگانه ساخته شده و سپس بر روی یک استوانه سوار میشوند. ساختار روتور گرد یا قطب صاف نیز برای کاربردهای سرعت بالا مناسب است. ماشینهای سنکرون با روتور گرد با دو یا چهار قطب به عنوان ژنراتورهای واحدهای بخاری جهت تطابق با سرعت بالای توربین به کار میروند. همچنین در این ماشینها میتوان نسبت قطر به طول روتور را به منظور محدود کردن تنش های مکانیکی ناشی از نیروهای گریز از مرکز کوچک گرفت.
22
-2-2-2 سیمبندیهای ماشین
ماشین سنکرون سه فاز معمولاً متشکل از یک سیم پیچی سه فاز به عنوان آرمیچر و یک سیم پیچی تحریک میباشد که بنام سیم پیچی میدان نیز نامیده میشود. سیمپیچی آرمیچر معمولاً در ولتاژی بسیار بالاتر از ولتاژ تحریک کار میکند و از این رو نیازمند فضایی بیشتر برای عایقبندی مناسب میباشد.
همچنین با توجه به اینکه جریانهای گذرای شدیدی از این سیمپیچیها عبور می کند، باید قدرت مکانیکی کافی داشته باشند. از این رو معمول است که سیمپیچی آرمیچر را بر روی استاتور ماشین قرار دهند. از نظر فضایی سیمپیچیهای سه فاز آرمیچر، 120º با یکدیگر اختلاف مکان دارند و این موضوع سبب میشود که با چرخش یکنواخت روتور و به تبع آن چرخش یکنواخت میدان تحریک، در این سیمپیچیها ولتاژهایی القا شود که از نظر زمانی 120º با یکدیگر اختلاف فاز دارند. سیم پیچی تحریک یا میدان معمولاً بر روی روتور قرار داده میشود. در ماشینهای قطب برجسته معمولاً میله های مسی یا برنجی در سطح قطب جای می-
گیرند که عموماً این میلهها در دوانتها به وسیله حلقههایی به یکدیگر متصل میشوند تا یک قفس سنجابی شبیه آنچه در یک موتور القایی وجود دارد، ساخته شود. مجموعه این میلهها و حلقهها به عنوان سیم پیچی میراکننده میباشند.
روتور ژنراتورهای قطب صاف بصورت استوانهای است که از فولاد یکپارچه ساخته میشود. سیم پیچیهای میدان در این گونه روتورها بصورت یکنواخت در شکافهای بدنه روتور توزیع شدهاند که معمولاً به کمک گوههایی در جای خود محکم میشوند. اغلب در چنین ماشینهایی سیم پیچی میراکننده وجود ندارد، زیرا که روتور یکپارچه فلزی اجازه عبور جریانهای گردابی را فراهم می آورد که تاثیری مشابه جریانهای سیمپیچی-
های میراکننده دارد. برخی از سازندگان تاثیر میرایی بیشتر و قابلیت عبور جریان مولفه منفی را با استفاده از گوههای فلزی مستقر در شکافهای سیمپیچی تحریک (که در انتها به یکدیگر متصل شدهاند) یا با استفاده از میلههای مسی مستقل زیر گوههای نگه دارنده، فراهم میآورند.
-3-2 توصیف ریاضی ماشین سنکرون
-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون
در این قسمت مدل ریاضی ماشین سنکرون بر اساس تئوری دو محوری بصورت خلاصه پارک تشریح می-
شود. شکل (1-2) مدارهای در نظر گرفته شده برای استاتور و روتور ماشین را نشان میدهد. مدار استاتور شامل یک سیم پیچی سه فاز است و روتور نیز یک سیم پیچی تحریک و یک سیمپیچی میراکننده بر روی محور d و دو سیم پیچی میراکننده بر روی محور q دارد. تعداد سیم پیچیهای میراکننده در نظرگرفته شده به عوامل متعددی از جمله نوع ژنراتور بستگی دارد که در قسمتهای بعدی به آن اشاره خواهد شد. مدل نشان داده شده در شکل (1-2) مدل 2-2 براساس استاندارد IEEE Std 1110 میباشد.
23
i fd d ωr a e fd q ib i1d ikq Ψb Ψa θ eb i1q b a ia ea ec
c

Ψc
ic

شکل :(1-2) مدارهای استاتور و روتور ماشین سنکرون
:c , b, a سیم پیچی های سه فاز استاتور : fd سیم پیچی تحریک

: 1d سیم پیچی میرا کننده محور d

1q و : 2q سیم پیچی های میراکننده محور q : ωr سرعت زاویه ای روتور برحسب رادیان بر ثانیه
: θ زاویه مابین محور مغناطیسی روتور و محور مرجع (محور مغناطیسی فاز (a
در بدست آوردن معادلات ماشین سنکرون برای ساده سازی فرضیات زیر درنظر گرفته میشود:
الف ) شکافهای موجود بر روی سطح داخلی استاتور تاثیر قابل توجهی بر اندوکتانسهای روتور درحال حرکت ندارند.
) پسماند مغناطیسی آهن استاتور و روتور قابل صرف نظر کردن است.
) از نظر تاثیر متقابل استاتور و روتور، سیم پیچیهای استاتور بصورت سینوسی در امتداد فاصله هوایی
توزیع شدهاند.
هر چند در مدل ارائه شده اثر اشباع مستقیماً منظور نشدهاست، اما با تصحیح راکتانسهای دو محور با استفاده از ضرایب اشباع و یا با داخل کردن مولفههای جبرانکننده درتحریک میدان اصلی، پدیده اشباع نیز لحاظ میشود.
با فرض حالت ژنراتوری معادلات ولتاژ مربوط به سیم بندی های استاتور و روتور را میتوان به شکل روابط
(1-2) و (2-2) نوشت.
Ψs d vs  −is Rs  dt (1-2) d vr  −ir Rr  Ψr dt که در آن :
24
vs  v a vb vc t vr  v f v1d v1q v2q t is  i a ib ic t ir  i f i1d i1q i2q t Ys  Ya Yb Yc t Yr  Y f Y1d Y1q Y2q t Ra 0 0 0 Rb Rs  0 0 0 Rc Rf 0 0 0 R1d Rr  0 0 0 0 0 R1q 0 0 0 0 R2q :درک نایب ریز لکش هب ناوت یم ار روتور و روتاتسا یاهرودراش تلاداعم Ψs  Lssis  Lsrir (2-2) Ψ  Lt .i  L i r sr srr r : نآ رد هک
Lss  − −

Lls  L0 − Lms cos 2θr 1 L0 − Lms cos 2(θr − π 1 L0 − Lms cos 2(θr  π − 3 ) − 3 ) 2 2 1 π 2π 1 2 L0 − Lms cos 2(θr − 3 ) Lls  L0 − Lms cos 2(θr − 3 ) − 2 L0 − Lms cos 2(θr −π) 1 L0 − Lms cos 2(θr  π 1 L0 − Lms cos 2(θr  π) Lls  L0 − Lms cos 2(θr  2π ) − ) 2 3 2 3 25
0 0 L f 1d Llf  L f 0 0 L L L  L 1d l1d 1df L1q 2q Ll1q  L1q 0 0 rr Ll 2q  L2q L2q1q 0 0 Ls 2q cosθr Ls1q cosθr 2π Ls 2q cos(θr − 2π ) ( cos(θr − 3 3 2π Ls 2q cos(θr  2π ) 3 ( 3 cos(θr 
s1q
s1q

L L

Ls1d sin θr
Ls1d sin(θr − 23π )

Ls1d sin(θr  23π )

Lsf sin θr 2π t ( − r sin(θ sf L  rs L sr L 3 ( 2π sin(θr  Lsf 3 با استفاده از دسته معادلات (2-1) و((2-2 میتوان بطور کامل ماشین سنکرون را بررسی نمود. اما همچنانکه در این معادلات نیز دیده میشود، معادلات دارای عباراتی هستند که با θ تغییر میکنند. با توجه به اینکه θ نیز تابعی از زمان میباشد، این موضوع سبب پیچیدهتر شدن تحلیل ماشینهای سنکرون می-
شود. میتوان با تبدیل مناسبی متغیرهای استاتور را به شکل سادهتری درآورد. این تبدیل به نام تبدیل پارک معروف است. تبدیل پارک به صورت رابطه (3-2) میباشد.
2π cos(θ  Sa ) 3 (3-2) Sb ) 2π −sin(θ  3 1 Sc 2
( 2π − cos(θ cosθ 3 2 2π 3 ) −sin(θ − 3 −sinθ 1 1 2 2
Sd
Sq S0
که S میتواند هر کدام از متغیرهای ولتاژ، جریان یا شاردور ماشین باشد. عکس تبدیل پارک نیز بصورت رابطه (4-2) بیان میشود.
1 −sinθ Sd 2 (4-2) Sq 1 ( 2π −sin(θ − 2 3 S0 1 ( 2π −sin(θ  2 3
cosθ 2π 2 ( cos(θ − 3 3 ( 2π cos(θ  3
Sa
Sb Sc
با اعمال تبدیل، معادلات حاکم بر ماشین و متغیرهای متناظر بسیار ساده میشوند. این ساده شدن در دو مفهوم کلیدی زیر ریشه دارد:
الف: با اعمال این تبدیل در شرایط بهرهبرداری عادی و حالت ماندگار تمامی جریانها و شارهای سیم-
پیچیهای استاتور و روتور دارای مقدار ثابتی خواهند بود.
26
ب: با انتخاب دو محور d و q که 90درجه اختلاف فاز دارند، شارهای تولید شده توسط جریانها بر روی یک محور هیچ پیوندی با شارهای محور دیگر نخواهند داشت. بنابراین دو دسته متغیر متعامد بدست خواهد آمد که این موضوع باعث ساده سازی بسیاری خواهد شد، زیرا هم باعث ساده سازی مقادیر راکتانسها میشود و هم می توان مدار معادل ماشین را بصورت دو مدار مستقل از هم در نظر گرفت.
معادلات نهایی پریونیت شده در دستگاه مرجع روتور به شکل روابط (5-2) و (6-2) میباشند. جزئیات بدست آوردن این معادلات در مراجع مختلف تشریح شدهاست و در اینجا از تکرار مجدد آن خودداری می-
شود. باداشتن روابط فوق، رفتار الکتریکی ماشین شبیه سازی می شود.
(5-2)
(6-2)

Yd 1 d Yq + wr V d = - i d Ra - w0 dt w0 Y d 1 Y + wr + a R q = - i q V q w0 dt d w0 Yfd 1 d efd = i fd Rfd + w0 dt Y d 1 + 1d R 1d 0 = i 1d w0 dt Y d 1 + 1q R 1q 0 = i 1q w0 dt Y2q d 1 0 = i 2q R 2q + w0 dt id Xad Xad Xl  Xad 1 Yd i fd Xad Xlf  Xad Xad  Yfd Xad Xad W0 Xl1q  Xad i1d Y1d i Xaq Xaq Xl  Xaq Yq i q Xaq Xl1q  Xaq Xaq 1  Y1q W 1q Xaq Xaq 0 Xl2q  Xaq i2q Y 2q x 0i 0 1 Y0 = - w0 براساس روابط ولتاژ و شار ارائه شده میتوان مدار معادل ماشین سنکرون را بدست آورد. این مدار درشکل
(2-2) نشان داده شده است.
27

الف: محور طولی،

ب: محور عرضی، q
xl i 0 R0
+
V 0
ج: محور صفر

-
شکل :(2-2) مدار معادل ماشین بر اساس تئوری پارک
-2-3-2 معادلات حرکت
معادلات حرکت معادلاتی هستند که اهمیت اساسی در مطالعات پایداری سیستمهای قدرت دارند. این معادلات که بعنوان معادلات لختی چرخشی نیز نامیده میشوند، تاثیر عدم تعادل بین گشتاور الکترومغناطیسی و گشتاور مکانیکی ماشین سنکرون را بیان مینمایند. در این بخش نیز معادلات حاکم بدون ذکر جزئیات بیان میشوند که برای دسترسی به جزئیات کامل میتوان به مراجع مختلف موجود مراجعه نمود.
زمانی که عدم تعادل بین گشتاورهای اعمال شده بر روی روتور وجود داشته باشد، گشتاور خالص اعمال شده، باعث شتاب گرفتن (یا کندشدن حرکت) روتور میشود. این گشتاور برابر است با:
Ta  Tm −Te(5-2)
: Ta گشتاور شتاب دهنده برحسب N.m
28
: Tm گشتاور شتاب مکانیکی برحسبN.m : Te گشتاور الکترومغناطیسی برحسب N.m معادله حرکت نیز به صورت رابطه (6 - 2) میباشد: (6-2) TaTm−Te dωr J dt در شبیه سازیهای ماشین سنکرون معمولاً شارها به عنوان متغیرهای حالت فرض میشوند. در این صورت توان الکتریکی ماشین در مبنای واحد به شکل رابطه (7-2) خواهد بود.
Pe ωr (ψd iq −ψqid )(7-2)
با تقسیم رابطه توان الکتریکی بر سرعت مکانیکی روتور، رابطه گشتاور الکترومغناطیسی به شکل رابطه -2) (7 در میآید :
Te ψd iq −ψqid(8-2)
-4-2 پارامترهای ماشین سنکرون
در معادلات حاکم بر ماشین سنکرون که در قسمت 3-2 ارائه شد، اندوکتانسها و مقاومتهای مدارهای استاتور و روتور به صورت پارامتر ظاهر شدند. این پارامترها موسوم به پارامترهای اصلی یا اساسی ماشین هستند و بصورت اجزای مدارهای معادل دو محور d و q در شکل (2-2) قابل تشخیص هستند. هر چند این پارامترها بطور کامل مشخصههای الکتریکی ماشین را بیان میکنند، اما آنها را نمیتوان از عکسالعملهای قابل اندازهگیری ماشین مستقیماً بدست آورد. از اینرو، روش مرسوم در تعیین اطلاعات ماشین این است که آنها را برحسب پارامترهایی بیان میکنند که از رفتار قابل مشاهده ماشین در پایانههای آن قابل تشخیص بوده و تحت آزمایشهای مناسب، قابل اندازهگیری هستند. در این قسمت انواع پارامترهای ماشین و ارتباط آن با پارامترهای اساسی مورد بررسی قرار میگیرد.
-1-4-2 پارامترهای اساسی ماشین
پارامترهای اساسی ماشین یا پارامترهای مدار معادل، از اعمال تبدیل پارک بر روی معادلات حوزه زمان ماشین سنکرون بدست میآیند و مشخص کننده عناصر مدارهای معادل محورهای طولی و عرضی ماشین هستند. تعداد این پارامترها با مرتبه مدل تغییر میکنند. از مشکلات عمده کار با این پارامترها، مشخص نبودن دقیق مقدار همگی آنها است. بعبارت دیگر روشی برای تعیین مقادیر دقیق این پارامترها بصورت یک-
جا وجود ندارد و روشهای موجود همگی مقادیر تقریبی مربوط به این پارامترها را بدست می دهند.
29
بعنوان نمونه اگر مدل 2-2 استاندارد IEEE Std1110 که در شکل (1-2) نشان داده شدهاست را درنظر بگیریم، کلیه عناصر مداری که در شکل نشان داده شدهاند، پارامترهای مدار معادل بوده و به راحتی قابل محاسبه و اندازهگیری نمیباشند. حتی بعضی از آنها مخصوصاً بعضی از پارامترهای برخی از شاخههای مدار محور q وجود فیزیکی خارجی نداشته و صرفاً جهت مدل سازی رفتار ماشین در نظر گرفته میشوند.
-2-4-2 پارامترهای عملیاتی
همانگونه که از نام این پارامترها پیداست، پارامترهای عملیاتی، ماشین سنکرون را از دید سیستمی بیان می-
کنند و معین کننده رابطه ورودی و خروجی ماشین سنکرون هستند. در این حالت تغییرات شار محور طولی و عرضی، تغییرات جریان محورهای طولی و عرضی و تغییرات ولتاژ سیستم تحریک بعنوان ورودی یا خروجیهای سیستم در نظرگرفته شده و با استفاده از پارامترهای عملیاتی این ورودیها و خروجیها به یکدیگر مرتبط میشوند.
در شکل عملیاتی, معادلات روتور را میتوان به صورت سیستمی با پارامترهای گسترده محسوب کرد. این پارامترها را می توان از طریق محاسبات طراحی و یا آسانتر از طریق آزمایش پاسخ فرکانسی بدست آورد.
زمانیکه تعداد محدودی مدار برای روتور در نظر گرفته شود، می توان این پارامترها را بصورت نسبت دو چند جملهای برحسب S (عملگر لاپلاس) بیان نمود. درجه چند جملهای مخرج حداکثر برابر تعداد مدارهای فرض شده بر روی روتور است. پارامترهای عملیاتی نسبت به پارامترهای مدار معادل کاربرد بیشتری داشته و به ماشین وجهه سیستمی میدهند. این پارامترها درحقیقت مشخصههای فرکانسی ماشین سنکرون هستند و عبارتند از یک دسته منحنیهای مشخصه یا روابط تحلیلی که رابطه بین امپدانس مختلط (یا عکس آن) را نسبت به لغزش در فرکانس نامی مشخص مینمایند. در زیر سه مشخصه فرکانسی مهم ماشین معرفی می شوند .
الف ) امپدانس عملیاتی محور طولی ( ( Zd(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی و ماندگار ولتاژ آرمیچر (ناشی از مولفه محور طولی جریان آرمیچر) به دامنه مولفه اصلی و مختلط این جریان که بصورت تابعی از فرکانس بیان میشود، تعریف شده و آن را Zd(s) مینامند. این مشخصه را در حالتی که سیم بندی میدان اتصال کوتاه گردیده است، برای فرکانسهای مختلف اندازهگیری مینمایند.
ب) امپدانس عملیاتی محور عرضی ( ( Zq(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر تولید شده توسط شار مغناطیسی محور عرضی ناشی از مولفه جریان آرمیچر در جهت محور عرضی به دامنه مولفه اصلی این جریان تعریف شده و بر حسب تابعی از فرکانس(لغزش) بیان میگردد.
ج) مشخصه فرکانسی G(s) بین سیم بندی میدان و آرمیچر
30
این مشخصه به صورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر ناشی از جریان سیمبندی میدان در فرکانسهای مختلف به دامنه مولفه اصلی ولتاژ اعمالی در سیم بندی میدان تعریف میگردد.
-3-4-2 پارامترهای دینامیکی
این پارامترها به لحاظ سابقه، اهمیت و کاربرد فراوان آنها پارامترهای استاندارد ماشین نامیده میشوند، اما از آنجائیکه بیشتر حالتهای گذرا و دینامیکی ژنراتور را مدنظر دارند، به آنها پارامترهای دینامیکی نیز اطلاق می شود. یکی از دلایل اهمیت این پارامترها، قابلیت تشخیص و اندازهگیری آنها میباشد. این پارامترها را میتوان با استفاده از آزمایشهای خاصی که بعضی استانداردها نیز به آن اشاره دارند، مستقیماً بدست آورد. با استفاده از این پارامترها میتوان ژنراتور سنکرون را بویژه در حالات گذرا و دینامیکی تحلیل نمود. آزمایشات مربوط به استخراج این پارامترها سابقه نسبتاً زیادی دارد. تقسیم بندی این پارامترها که شامل اندوکتانسها و ثابت زمانیها هستند، به صورت پارامترهای دینامیکی محور طولی،محور عرضی همچنین پارامترهای
تندگذر و کندگذر میباشند که بسته به نوع تحلیل، جهت بررسی یک پدیده، پارامترهای مورد نیاز متفاوت
خواهد بود. این پارامترها بطور خلاصه شامل راکتانسهای سنکرون ( X q , X d )، راکتانسهای تندگذر و کندگذر محورهای طولی و عرضی( ( X ′q′, X ′d′, X ′q , X ′d ثابت زمانیهای کندگذر و تندگذر مدار باز محورهای طولی و عرضی ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do و ثابت زمانیهای کندگذر و تندگذر اتصال کوتاه محورهای طولی و عرضی ( ( Tq′′,Td′′,Tq′,Td′ می باشند.
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای
اساسی ماشین
در محاسبه مقادیر اولیه شارهای گذرا در مدارهای تزویج شده از تئوری ثابت بودن شار دور استفاده میشود.
این تئوری بطور خلاصه عبارتست از اینکه شاردور مدار القائی با مقاومت و emf کوچک نمیتواند بطور لحظهای تغییر یابد. در حقیقت اگر emf یا مقاومتی در مدار موجود نباشد، شاردور آن ثابت خواهد ماند. این تئوری را میتوان در محاسبه جریانها بلافاصله بعد از تغییر شرایط مدار برحسب جریانهای قبل از تغییر استفاده کرد. هنگامی که یک اغتشاش همانند اتصال کوتاه در سمت استاتور ماشین اتفاق میافتد، شار استاتور تغییر میکند. پاسخ ماشین به اغتشاش براساس نحوه تغییرات جریانها و شارها عموماً به سه دوره زیرگذرا، دوره گذرا و ماندگار تقسیم میشود. در دوره زیرگذرا تغییر در جریان سیمپیچیهای میراکننده مانع از نفوذ شار ایجاد شده توسط استاتور به روتور میگردد. با کاهش جریان سیم پیچیهای میراکننده، دوره گذرا آغاز میشود که در آن تغییر جریانهای سیمپیچی میدان همان اثر را، اما ضعیفتر خواهد داشت. در نهایت در حالت ماندگار شار ایجاد شده استاتور به داخل روتور نفوذ خواهد کرد. شکل (3-2) توزیع شار در دورههای زیر گذرا، گذرا و ماندگار ماشین پس از وقوع یک اغتشاش سمت استاتور را نشان میدهد که بر اساس مسیر شار در هر یک از این حالتها میتوان راکتانسهای سنکرون، گذرا و زیرگذرای ماشین را تعریف کرد.
31

دوره زیرگذرا

دوره گذرا

حالت ماندگار

25%

25%

90 9090

90 9090

25%
25%
شکل (3-2) توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار
در این قسمت نحوه محاسبه پارامترهای دینامیکی ماشین سنکرون برحسب پارامترهای اساسی یا همان پارامترهای مدار معادل ماشین تشریح میشود. همچنین مدار معادل ماشین برای هر یک حالتهای ماندگار، گذرا و زیرگذرا ارائه میشود. مدل در نظر گرفته شده برای ژنراتور بر اساس استاندارد IEEE Std1110،
32
مدل 2-2 میباشد. در صورت استفاده از مدلهایی با مرتبه متفاوت، رابطه پارامترهای دینامیکی تغییر یافته اما نحوه محاسبه آنها بصورت مشابه میباشد.
-1-5-2 محاسبه راکتانسهای ماشین
الف – راکتانسهای سنکرون
معمولاً اندوکتانس را به عنوان نسبت شاردور به جریان تعریف می کنند. وقتی که قله mmf گردان در امتداد محور d قرار گرفت، نسبت شاردور استاتور به جریان استاتور اندوکتانس محور (Ld) d نامیده میشود.
با بدست آمدن اندوکتانسها بدیهی است که راکتانسهای متناظر نیز به سادگی قابل محاسبه هستند.
همچنین وقتی قله mmf گردان در امتداد محور q قرار بگیرد، نسبت شاردور استاتور به جریان آن، اندوکتانس سنکرون محور (Lq) q خواهد بود. شکل (4-2) مدار معادل ماشین در شرایط حالت ماندگار را نشان می دهد.
x fd xl x1q xl i fd i1q  0 x1d X d → x2q X q → xad xaq 0 i i2q  0 1d الف-مدار معادل محور d ب-مدار معادل محورq شکل :(4-2) مدار معادل ژنراتور سنکرون در حالت ماندگار
در حالت ماندگار، راکتانسهای سنکرون محور d و q به ترتیب با توجه به شکل (4-2) محاسبه می شوند.
مقادیر این راکتانس ها در روابط (9-2) و (10-2) ارائه شده است.
(9-2) X d  xl  xad
(10-2) X q  xl  xaq
ب- راکتانسهای گذرا
برای محور مستقیم، با توجه به اینکه مقاومت سیمپیچیهای میراکننده معمولاً بزرگتر از مقاومت سیم بندی میدان میباشد، جریان القایی در این سیم پیچیها بسیار سریعتر از جریانهای القایی در سیم بندی میدان میرا میشود. برای دوره گذرا فرض میشود که حالت گذرای میراکننده با میرایی فوقالعاده زیاد تمام شده است، در حالیکه جریانهای القایی در سیم بندی میدان هنوز برای مخالفت با تغییر شاردور ناشی از جریان-

های استاتور تغییر میکنند. مدارهای معادل ماشین در دوره گذرا مطابق شکل (5-2) می باشد. مدار معادل محور q نیز به طریق مشابه قابل توجیه است.

33
x fd xl Vfd x1d X ′d → xad i1d  0 الف-مدار معادل محور d ب-مدار معادل محورq
شکل :(5-2) مدار معادل ماشین سنکرون در دوره گذرا
براساس مدارهای معادل بدست آمده، راکتانس های گذرای محورهای d و q به شکل روابط (11-2) و(-2 (12 محاسبه می گردند.
(11-2) xad x fd x fd xl  X ′d  xl  xad xad  x fd (12-2) xaq x1q x1q xl  X ′q  xl  xaq x aq x 1q ج-راکتانس های زیر گذرا
در دوره زیرگذرا، جریانهای گذرای القا شده در سیم بندیهای روتور سعی دارند تا شاردور هر یک از مدارهای روتور را در ابتدا ثابت نگه دارند. براین اساس مدارهای معادل محورهای d و q ماشین سنکرون در این حالت مطابق شکل (6-2) میباشد.

الف-مدار معادل محور dب-مدار معادل محورq
شکل :(6-2) مدار معادل ماشین سنکرون طی دوره زیر گذرا
در این حالت برای محور d راکتانس دیده شده معادل سه راکتانس موازی xad ، x fd و x1d میباشد که با xl سری شده است. راکتانس زیر گذرای مدار باز محور q نیز مشابه محور d محاسبه میشود. براساس مدار معادل های ارائه شده، این راکتانس ها طبق روابط (13-2) و (14-2) محاسبه میشوند.
(13-2) xad x fd x1d xl x fd  x1d X ′d′  xl  xad xad x fd  xad x1d  x fd x1d 34
(14-2) xad x fd x1d xl x1d x fd  X ′d′  xl  xad x x x ad x fd x ad x fd 1d 1d -2-5-2 محاسبه ثابت های زمانی ماشین
حضور دو مجموعه سیم بندی برروی روتور، دو مجموعه ثابت زمانی مختلف را سبب شدهاست. مجموعه با مقادیر بزرگتر مربوط به ثابت زمانیهای گذرا و مجموعه با مقادیر کوچکتر مربوط به ثابت زمانیهای زیرگذرا هستند. معمولاً سیم بندیهای میراکننده که مقاومت بیشتری نسبت به سیم بندیهای میدان دارند، با ثابت زمانیهای زیرگذرا متناظرند.
ثابت زمانیهای گذرا و زیرگذرا بر روی محورهای d و q معمولاً در دو حالت تعریف میشوند. در یک حالت که استاتور مدار باز است و ثابت زمانیهای مدار باز تعریف میشود، ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do، و درحالت دیگرسیم پیچی استارتور بصورت اتصال کوتاه فرض می شود( .( Tq′′,Td′′,Tq′,Td′ میتوان نشان داد که نسبت ثابت زمانی گذرای محور d با استاتور اتصال کوتاه به ثابت زمانی گذرای محور d با استاتور مدار باز برابر است با نسبت راکتانس ظاهری که جریان استاتور با سیم بندی میدان اتصال کوتاه شده می بیند، به راکتانسی که جریان استاتور با سیم بندی میدان مدار باز میبیند.
الف -ثابت زمانی های گذرا
مدار معادل ماشین جهت استخراج ثابت زمانیهای گذرای مدار باز محور d و q در شکل (7-2) نمایش داده شدهاست.

Rfd
′ T do ← R1d
i1q=0
xfd
Rsxl
x1d
xad
الف :
محور dب: محورq
شکل :(7-2) مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز
براساس فرضیات فوق و مدارمعادل شکل (7-2) ثابت زمانیهای مدارباز ماشین بصورت روابط (15-2) و
(16-2) بدست می آیند. (15-2) xfdxad 1 T ′do  ω0 R fd (16-2) x1qxaq 1 T ′qo  R ω 0 1q 35
همچنین مقادیر ثابت زمانیهای گذرا با استاتور اتصال کوتاه شده بر اساس روابط (17-2) و (18-2) محاسبه میشوند.
(17-2) x′d  Td′ xd T ′do (18-2) x′q  Tq′ xq T ′qo ب- ثابت زمانیهای زیر گذرا
ثابت زمانی زیرگذرای مدار باز محور d عبارتست از زمان لازم برای کاهش مولفه d جریان به مقدار 1e ام مقدار اولیه خود، هنگامی که در ترمینال ماشینی که با سرعت نامی می چرخد، بطور ناگهانی اتصال کوتاهی رخ دهد. بعبارت دیگر این ثابت زمانی عبارتست از ثابت زمانی جریان سیمبندی میراکننده d وقتی سیمبندی میدان اتصال کوتاه شده و سیمبندیهای استاتور مدار باز باشند. از مقاومت سیم بندی میدان در این دوره کاهش ولتاژ صرف نظر میشود. ثابت زمانی های زیر گذرای مدار باز محور q نیز به طریق مشابه تعریف میشوند. مدار معادل ماشین جهت استخراج ثابت زمانیهای زیرگذرای مدار باز مطابق شکل (8-2) میباشد.

براساس فرضیات فوق و مدار معادلهای ماشین در دوره زیرگذرا و ثابت زمانیهای زیرگذرای مدار باز ماشین بر اساس روابط (19-2) و (20-2) محاسبه میگردند.

الف : محورdب:محورq
شکل :(8-2) مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز
(19-2)
(20-2)

 x fd xad x fd  xad x1q xaq  aq x x 1q
1 1 ′′ xad  ω x1dxfd x1d R R 0 Tdo  ω 1d 0 1d 1 1 ′′ xaq  ω x2qx1q x2q 2q R 0 R 0 Tqo  ω 2q 36
-6-2 مراتب مختلف مدلهای ژنراتور سنکرون براساس مدل دو محوری پارک
روابط ارائه شده در قسمت (3-2) تا حدود قابل قبولی عملکرد الکتریکی دینامیکی یک ماشین سنکرون را بیان می کنند. اما گاهی این روابط را نمی توان بطور مستقیم برای مطالعات سیستمهای قدرت بزرگ بکار برد. از طرفی برخی از اوقات نیز لازم است رفتار ماشین سنکرون با جزئیات بیشتری مدل شود. در مدل دو محوری پارک همانگونه که قبلاً هم تشریح شد، مقادیر استاتور به دو سری مقادیر در دو جهت تبدیل می-
شوند که یکی در راستای محور مغناطیسی سیم پیچی میدان بوده (محور (d و دیگری با 90 درجه اختلاف با محور d عمود بر محور مغناطیسی سیم پیچی میدان میباشد (محور .(q محور d روتور شامل سیم پیچی میدان و سیم پیچیهای میراکننده میباشد. محور q نیز شامل سیم پیچیهای میراکننده این محور است.
باتوجه به تعداد سیم پیچیهای درنظر گرفته شده برای محور d و q روتور، مراتب مختلفی برای مدل ژنراتور سنکرون متصور است. براساس استاندارد IEEE Std 1110، مدل ژنراتور بایک شماره دورقمی Model AB مشخص میشود که A تعداد سیم پیچیهای درنظر گرفته شده برای محور d روتور و B

تعداد سیمپیچیهای منظور شده برای محور q روتور میباشد. جدول (1-2) مراتب مختلف ژنراتور سنکرون را نشان میدهد. نوع مدل انتخاب شده برای ژنراتور سنکرون وابسته به پارامترهای مختلفی از جمله نوع ژنراتور و ساختار فیزیکی روتور و انواع مطالعه مورد نظر است که در قسمتهای بعدی تشریح میشود.
37
جدول :(1-2) مراتب مختلف مدلهای ژنراتور سنکرون

فصل سوم:

بررسی روشهای شناسایی پارامترهای
دینامیکی ژنراتورهای سنکرون
39
-1-3 مروری بر پیشینه شناسایی پارامترهای دینامیکی ژنراتور سنکرون:
بحث پارامترهای دینامیکی ماشین سنکرون و یا به عبارت دیگر این مطلب کـه بـرای بیـان رفتـار ماشـین سنکرون در حالتهای گذرا از راکتانسهای مربوط به حالت دائم نمیتوان استفاده کرد، برای اولین بار در سـال
1920 با طرح مفهوم راکتانس اتصال کوتاه مطرح گردید. بعدها این ایده بعنوان پایه و اسـاس اولیـه تئـوری
"ثابت بودن شاردور در برگیرنده" قرار گرفت و در مقالاتی توسط دوهرتی1 درسال 1923 و بیـولی2 در سـال
1929 دوباره عنوان گردید.
آقای کری3 این مطلب را به این صورت طرح کرد که در هر مدار بسته بلافاصله بعد از هر تغییر بوجود آمـده در جریان، ولتاژ ویا موقعیت فیزیکی این مدار نسبت به موقعیت مدارات دیگـر کـه بـا آن بطـور مغناطیـسی درگیر میباشند، شار دور در برگیرنده ثابت باقی خواهد ماند . با توجه به مقاومت موجود در سیم پیچی میدان و دیگر سیم پیچیهای روتور (دمپرها) و در نتیجه تغییرات حاصله در شاردور در بر گیرنده در طی مدت زمان بعد از وقوع تغییرات ناگهانی، لزوم معرفی ثابت زمانیهای گوناگون ماشین نیز بعدها بـرای تحلیـل دقیـق تـر مورد ملاحظه قرار گرفت.
بر این اساس پارک4 و روبیرتسون5 در سال 1928 راکتانسهای دیگری از قبیل راکتانسها و ثابـت زمانیهـای محور عرضی و محور طولی را برای رژیم های تندگذر و کندگذر و به همین صورت مفاهیم دیگری همچون حالات کندگذر و تندگذر را در شارها، ولتاژها و جریانها نیز مطرح نمودند. گام بعدی در همین رونـد معرفـی مدار معادل ماشین بود. بسط منطقی این طریقه تحلیـل رفتـار ماشـین (بعـد از هـر تغییـر ناگهـانی) معرفـی مدارهای مربوط به محورهای طولی و عرضی ماشین با این فرض بود که بتوان یک اندوکتانس متقابل بـین سیم بندیهای موجود در روتور و استاتور تعریف نمود. بدین ترتیب و با در نظر گرفتن یک اندوکتانس متقابـل برای کوپلاژ بین سیم بندیهای روتور و استاتور و همچنین انتساب یک اندوکتانس پراکندگی به هـر کـدام از سیم بندیها (استاتور، میدان وبدنه روتور) مدار معادل مربوط به محور طولی ماشین. در سال 1931،کیلگوری6
در طی یک پروژه - ریسرچفاکتورهای مؤثر در محاسبات مربوط به بدست آوردن راکتانسهای ماشین سـنکرون را کـه مبنای خواص فیزیکی و ابعاد هندسی ماشین(استاتور، روتور و سیم پیچی میدان) میباشند بیان نمود. در ایـن مسیر در سال 1929، پارک نیز ایده محورهای طولی و عرضی برای ماشین را که قبلا توسط خـود او مطـرح شده بود به تبدیلات d-q که طی آن کمیات مربوط به سه فاز به متغیرهای q-d مرتبط می گردیـد بـسط داده و به این ترتیب پایه معادلات ماشین بر مبنای تئوری دو محوری بنا نهاده شد.

1-Doherty 2- Biowly 3- Cary 4- Park 5- Robertson 6- Kilgore
40
در سال 1931، شروین1 روابط لازم جهت بدست آوردن پارامترهای ماشین سنکرون را بـرای حالـت دائـم و گذرا، از طریق نتایج آزمایش ارائه نمود و این در حقیقت اولین روش پذیرفته شده بطور عام برای آزمایشهای ماشین سنکرون بود.که در سال 1945 میلادی توسط کمیته مربوط به ماشین سنکرون AIEE چاپ گردید.
از لحاظ تاریخی کمیته ماشینهای الکتریکی و استاندارد شماره 115 مربوط به IEEE ماحصل همان کمیتـه و همان روش آزمایشی ارائه شده در طی سالهای بعدی می باشد.
در طی اوائل دهه 60 میلادی به همان صورت که ابزار و تکنیکهای محاسباتی کـه در تحلیـل سیـستمهای قدرت بکار می رفت از لحاظ ابعاد و سرعت با روند رو به رشدی روبرو بود نیاز به مـدلهای دقیـقتـر ماشـین سنکرون جهت مطالعات پایداری نیز محسوس شده و بـرای ایـن خـاطر روشـهای کلاسـیک بدسـت آوردن پارامترهای ماشین سنکرون نیز دوباره مورد توجه بیشتر و دقیقتر قرار گرفت. در طی ایـن سـالها عـلاوه بـر مقالات متعددی که در این رابطه به چاپ رسید، استانداردهایی نظیر اسـتانداردBS, IEC, IEEE مربـوط به بخش ماشین نیز به دفعات متعدد چاپ و مورد تجدید نظر قـرار گرفتنـد. ایـن اسـتانداردها از میـان انـواع روشهای متفاوت و گوناگونی که ارائه میگردیدند و با توجه به رعایت نکات عملی و تکنیکهای انـدازهگیـری در طی جلسات متعدد کمیتههای ماشینهای الکتریکی، آنهایی را که تا حدی قابل قبول تشخیص مـی دادنـد انتخاب کرده و در استانداردها به عنوان روشهای کلاسیک مطرح و مورد تایید قرار می دادنـد. از مشخـصات مهم آزمایشات کلاسیک مربوط به قبل از دهه 80 تاکید روی آزمایش اتصال کوتاه سه فاز ناگهـانی و سـعی در بدست آوردن پارامترهای ماشین بـا اسـتفاده از چنـین آزمایـشی بـود کـه در حـال حاضـر هنـوز هـم در مشخصات ارائه شده در نیروگاهها نتایج حاصل از آزمایش اتصال کوتاه ناگهانی ارائه می گردد.
از جمله نکات محدودکننده اینگونه آزمایشها عدم دسترسی به پارامترهای مربـوط بـه محـور عرضـی، عـدم صرفه اقتصادی و قابلیت انجام آن در محل نیروگاهها و در تحت ولتاژ نامی بود. در حقیقت تـا قبـل از سـال
1983 روشهای دسترسی به پارامترهای مربوط به محور q در استانداردها مسکوت گذارده شده بود.
در طی سالهای 1960 الـی 1980 آزمایـشات گونـاگونی جهـت پاسـخگویی بـه سـؤالاتی از قبیـل اهمیـت پارامترهای مربوط به محور عرضی و همچنین درجه دقّت مورد لزوم برای پارامترهای ماشین و یا درجه مدل بکار رفته برای ماشین مطرح شده است. آزمایشات نیروگاه نورث فلیت2 در سال 1969 و تحقیقات انجام شده مؤسساتی چون EPRI, NPCC & Ontario-Hydro از این دسـتهانـد. ایـن مجموعـه فعالیـتهـا نتایجی از این قبیل را به همراه داشت:
در شبیه سازی دینامیکی رفتار ماشینهای الکتریکی، اطلاع دقیـق از پارامترهـای ماشـین بـه انـدازه درجه مدل انتخابی اهمیت دارد. این اهمیت در باب پارامترهای محور عرضی بارزتر است.
در تعیین پارامترهای ماشین همواره آزمایشاتی که منجر به تغییرات کوچک(بزرگ) در مقادیر ولتاژ و جریانهای ماشین گردند، اطلاعات مناسبی از پارامترها برای مطالعات مربوط بـه اغتـشاشات بـزرگ (کوچک) را در اختیار قرار نمیدهد.

7- Shervin 8- North Fleet
41
با توجه به این نکته پارامترها باید بسته به نوع مطالعه تصحیح و بهینه سازی شوند.
ارزش پارامترهای محور عرضی در شبیه سازی رفتار توربوژنراتورهای با روتـور یکپارچـه بـه حـدی است که انجام آزمایشهای جداگانه در این جهت راتوجیه میکند.
بدین ترتیب در سالهای بعد از 1980 آزمایشهای جدیدتری چون میرائی شار1 جایگاه ویژهای در حوزه تعیـین پارامترهای دینامیکی ماشینهای سنکرون پیدا کردند.
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون:
به طور کلی آزمایشهای موجود در حوزه تعیین پارامترهای دینامیکی ژنراتور سنکرون را می توان به دو دسته :
روشهای کلاسیک
روشهای جدید
تقسیم بندی کرد. روشهای کلاسیک، آزمایشهایی محدود را تشکیل میدهند که عموماَ از نظر زمانی نیز، بـر روشهای جدید تقدم دارند. مهمترین معیارهای مطرح در انتخاب روشهای مورد استفاده عبارتنداز:
انجام آزمایش در آن کشور ممکن باشد و به ابزار پیچیده نیاز نداشته باشد.
استانداردهای معتبر آن را تایید کند.
با بکارگیری آن تعداد بیشتری از کمیتها را بتوان شناسایی کرد.
آن روش قادر به اندازهگیری پارامترهای محور عرضی نیز باشد.
-1-2-3 روشهای کلاسیک اندازهگیری پارامترهای دینامیکی ژنراتور سنکرون:
روشهای کلاسیک روشهایی محدود هستند که عموما قبل از دهه 80 میلادی ابداع شدهاند و بـا انجـام آنهـا تنها یک یا چند پارامتر شناسایی میشود. این روشها برروی هر ژنراتـوری قابـل اجـرا بـوده و بـه تجهیـزات پیشرفته و پیچیده نیاز ندارد. تغییرات این روشها در خلال این سالها عموما از جنس اصلاح روابط محاسـباتی میباشد. اغلب آنها استاندارد شدهاند، ولی متاسفانه با انجام هر یک از این آزمایشها تنهـا تعـداد محـدودی از پارامترها بدست میآیند. از نقاط ضعف این روشها مساله تعیین پارامترهای محور q اسـت. از معایـب عمـده دیگر بعضی از این روشها مخرب بودن آنهاست. با این شرایط مجوز استفاده از این روشها علیرغم اسـتاندارد بودن آنها صادر نمیگردد.
به عنوان نمونه آزمایش اتصال کوتاه سهفاز اگر چه نتایج خوبی را از جهت تعیین پارامترها در بر داشته باشد، به علت آثار مخرب الکتریکی و مکانیکی جبران ناپذیر آن چندان مورد توجـه نیـست. اغلـب کمیتهـایی کـه توسط آزمایشهای کلاسیک تعیین میشود بر پایه مدل استاندارد IEEE تبیین شـدهانـد بـا یـک سـیمپـیچ میرایی محور طولی و عرضی. بسیاری از این روشها در تعیین پارامترها برای مدلهایی از مرتبـه بـالاتر ناکـام خواهند بود.

9- dc decay
42
-2-2-3 روشهای جدید در تعیین پارامترهای دینامیکی ژنراتورهای سنکرون:
همگام با رشد سیستمهای کـامپیوتری، توسـعه تجهیـزات انـدارهگیـری و پدیـد آمـدن سیـستمهای هـوش مصنوعی، مجموعه جدیدی از روشها برای شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون پدیـد آمدنـد.
بطور کلی در این روشها با اعمال ورودیهای مناسب در وضعیتهای متفاوت روتور(ایـستا یـا متحـرک) و ثبـت خروجیها، توابع انتقال ماشین شناسایی شده است. سپس با فرض یک مدل خاص بـرای ماشـین مـیتـوان پارامترهای ماشین را با روشهای مناسبی تخمین زد. اخیرا مدلهایی با مرتبه بالاتر نیز در اسـتانداردها مطـرح شدهاند. شناسایی پارامترهای دیگری که همگام با رشد درجه مدل مطرح شدهاند را صرفا میتوان با اسـتفاده از روشهای جدید تعیین پارامترهای دینامیکی ژنراتور سنکرون شناسایی کرد، اگر چه توانایی روشهای مذکور در تعیین این پارامترها متفاوت است. در مجموع روشهای جدید را میتوان تلاشـهایی بـرای دسـتیـابی بـه اهداف زیر دانست:
أ- دستیابی به روشهای بلادرنگ در تخمین پارامترها ب- استفاده از اطلاعات بهره برداری برای شناسایی پارامترها ت- شناسایی پارامترها با دقت هرچه بیشتر ث- تلاش در سادهسازی مکانیزم تخمین
به عنوان نمونه از مهمترین روشهای مطرح در این دسته به موارد زیر میتوان اشاره کرد: (1 روشهای بنا شده برپایه سیستمهای هوش مصنوعی:
(a تخمین پارامترهای دینامیکی با استفاده از شبکه عصبی (b تخمین پارامترهای دینامیکی با استفاده از الگوریتم ژنتیک
(2 روشهای بنا شده بر پایه تکنیکهای معادلات معادلات جزئی: (a تعیین پارامترها با استفاده از تکنیک اجزاء محدود
(3 شناسایی پارامترها ماشین سنکرون با استفاده از تست پاسخ فرکانسی
(4 شناسایی پارامترها با استفاده از دامنه وسیع تحریک
(5 شناسایی پارامترها با استفاده از اطلاعات تست باربرداری
(6 شناسایی پارامترها با استفاده از اطلاعات میرایی شار
(7 شناسایی پارامترها با اطلاعات بدست آمده از اغتشاشات بهره برداری (a تخمین پارامترها با استفاده از اغتشاشات بزرگ بهره برداری (b تخمین پارامترها با استفاده از اغتشاشات کوچک بهره برداری
عموم این روشها غیر مخرب بوده و نتایج خوبی را در تخمین پارامترها نشان داده اند. از نکات قابـل توجـه در این روشها توانایی آنها در تعیین پارامترهای محور عرضی علاوه بر محور طولی و همچنـین امکـان تخمـین پارامترها، متناظر مدلهایی با درجههای مختلف است. البته این به معنی توانایی برابر این روشها برای تخمین
43
و شناسایی پارامترها در جهات مختلف نیست. البته همه این روشـها در حـال تکامـل و بهبـود مـیباشـند و
بسیاری از آنها هنوز استاندارد نشدهاند.
44
فصل چهارم:

شناسایی بلادرنگ پارامترهای
دینامیکی ژنراتورهای سنکرون با
استفاده از رویتگر شبکه عصبی
45
-1-4 اصول کار شبکه های عصبی:
یکی از روشهای مشهور در حوزه هوش مصنوعی شبکه عصبی مصنوعی است. شبکههای عصبی مـصنوعی الهام گرفته از شبکه عصبی انسان هستند که توانایی بالایی در تقلید رفتار توابـع غیـر خطـی از خـود نـشان دادهاند. انسان با استفاده از تجربیاتی که از وقایع پیرامون خود دارد و ارتباطی که بین آن وقایع و عوامل مؤثر بر آنها برقرار میکند، نسبت به تخمین وقایع آتی بر پایه وضـعیت عوامـل مـؤثر اقـدام مـینمایـد. براسـاس تحلیلهای موجود شبکه عصبی مغز انسان از لایههای مختلفی تشکیل شده که لایه خـارجی آن(کـورتکس)
متصل به مجاری ورودی است. این ورودیها در انسان حواس او هستند. تجربیات ما به صورت تفاوت قوت و ضعف نقاط اتصال سلولهای عصبی به یکدیگر(سیناپسها) بروز مـیکنـد. هـر یـک از نـرونهـا پیونـدهای متعددی با سلولهای لایه بعد دارند.

شکل:1-4 طرح کلی سلول عصبی انسان
مسلم است که هرچه تعداد پیوندهای عرضی بیشتر باشد شبکه توانایی بیشتری در آموزش رفتـار توابـع غیـر خطی خواهد داشت.
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها:
با درنظر گرفتن مبادی ذکر شده، مراحل شبیهسازی شبکههای عصبی بدین صورت خواهد بود:
ساخت نرون مصنوعی
ساختاربندی آن در قالب لایههای مختلف
تهیه بانک اطلاعات لازم برای آموزش شبکه عصبی
آموزش شبکه عصبی
تست شبکه
46

شکل :2-4 شکل کلی سلول عصبی مصنوعی
لایههای شبکه عصبی را به سه دسته لایه ورودی، لایه خروجی، و لایه (لایههای) مخفی تقسیم مـیکننـد.
تعداد عناصر لایه ورودی و خروجی باید برابر تعداد ورودی، خروجیهای در نظـر گرفتـه شـده بـرای شـبکه باشند. افزایش تعداد لایههای مخفی در شبکه عصبی دو اثر متضاد را به همراه دارد. از یک طرف تقلیـد هـر چه بهتر رفتار هر تابع غیر خطی را امکان پذیر می سـازد و از طـرف دیگـر مـشکلات شـبیه سـازی و مـدت آموزش را افزایش میدهد. در عمل باید بسته به شرایط، بین این دو عامل بهینهسازی شود. در عمل در طـی تحقیقات متعدد انجام شده شبکه عصبی با یک لایه مخفی به عنوان حالت بهینه مطرح شده است.

شکل:3-4 ساختار شبکه عصبی توسعه یافته
همانگونه که پیشتر مطرح شد تعداد نرونهای لایه خروجی شبکه عصبی برابـر تعـداد خروجـیهـای در نظـر گرفته شده برای آن شبکه است. در این طرح، شبکه عصبی با یک خروجی در نظر گرفته شده است. بنابراین برای تخمین هر یک از پارامترهای مورد نظر باید یک شبکه مستقل تـشکیل شـده، آمـوزش دیـده و مـورد استفاده قرار گیرد. این روش اگرچه مشکلاتی را در تشکیل و آموزش شبکههای متعدد به همـراه دارد لـیکن گامی در جهت دستیابی به حداکثر قابلیت شبکههای عصبی در تخمین پارامترهـای دینـامیکی ژنراتورهـای سنکرون بر اساس دادههای بهرهبرداری است. همانگونه که همواره بهینهسازیهای تک هدفه نتایج بهتـری از جهت دستیابی به نتیجه مورد نظر دارند، با توجه به تشابه ساختاری این معنی در باب شـبکههـای عـصبی نیز صادق است. تعداد نرونهای لایه ورودی نیز برابر تعداد ورودیهای در نظر گرفته شده برای شبکه عـصبی
47
است. تعداد شش ورودی برای شبکه مورد نظر در نظر گرفته شده است. تعداد ورودیها در این طرح با توجه به مجموعه پارامترهای قابل اندازهگیری در خروجی ژنراتورهای سنکرون انتخاب شده است. البته انتخـاب و ترتیب آرایش این پارامترها برپایه رؤیت پذیری پارامترهای دینامیکی ژنراتور سنکرون در رفتار دینـامیکی آن شکل گرفته است. این بحث در طی مطالعات پیشین انجام شـده در مرکـز مطالعـات دینامیـک ایـران مـورد بررسی قرار گرفته است.
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی تخمینگر:
از نکات بسیار مهم در تشکیل شبکه عصبی مـصنوعی، بانـک اطلاعـات آموزشـی مـورد اسـتفاده اسـت. در تجربیات گذشته که در حوزه استفاده از شبکههای عصبی مصنوعی مطرح است، گاه اصلاح مکانیزم تهیـه و تغییر دامنه دادههای آموزشی، یک شبکه عصبی با نتایج ضعیف را به شبکهای بـا نتـایج قابـل قبـول تبـدیل کرده است. شاید بتوان مهمترین نکته در گردآوری اطلاعات آموزشـی را شـمول و فراگیـری آن نـسبت بـه حالتهای مختلف رفتاری مطرح در حوزه مورد نظر دانست. اگرچه این شمول را نباید با بزرگی ابعـاد اشـتباه گرفت. عامل مهم نگاه ریشهای و بنیادین به حالات مطرح در آن حوزه است. از آنجا که این شبکه بر آنـست تا بر پایه اطلاعات بهرهبرداری نسبت به تخمین پارامترهای دینامیکی ژنراتور سنکرون اقدام نماید، لـذا بایـد بانک اطلاعات لازم برای آموزش شبکه عصبی در این حوزه فراهم شود. مجموعه اغتـشاشاتی کـه در طـی بهرهبرداری از ژنراتورها رخ میدهد را میتوان به سه دسته عمده تقسیم کرد:
اغتشاشاتی که در حوزه تحریک رخ می دهند
اغتشاشاتی که در حوزه توان ورودی رخ میدهند
اغتشاشاتی که در شبکه تحت تغذیه رخ میدهند
بدین ترتیب از هر یک از این حوزههای سهگانه یک نمونه شایع به عنوان نماینده آن گروه بـدین ترتیـب در
نظر گرفته شده است:
تغییر ناگهانی %10 در تحریک ژنراتور
تغییر ناگهانی %10 در توان ورودی ژنراتور
وقوع اتصال کوتاه سهفاز 10-5)میلی ثانیه) در خروجی ژنراتور
48

شکل :4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون
(برای آموزش و تست شبکه عصبی)
60 مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون به عنوان مقـادیر پایـه در تـشکیل بانـک اطلاعات آموزشی شبکه عصبی در نظر گرفته شده است. این مجموعه از دادههایی مربوط به:
واحدهای بخاری- فسیلی
واحدهای بخاری-فسیلی با پیوند عرضی
واحدهای بخاری- هستهای
واحدهای آبی
واحدهای با توربین احتراقی
تشکیل شده است. برای هر مجموعه از این پارامترها دو گام افزایشی و دو مرحله کاهش در نظر گرفته شده
است. هر یک از این مراحل تغییرات %10 پارامترها را بهمراه خواهد داشت. مجموعه نهایی دربرگیرنـده 225
مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون میباشد. مجموعه یک ژنراتور متصل به شین
بینهایت برای شبیه سازی رفتار ژنراتور سنکرون در نظر گرفته شده است. برای این که آثـار تفـاوت سـاختار
شبکه در رفتار ژنراتور نیز لحاظ شده باشد در هر مرحله از شبیهسازی بصورت همگام با تغییرات پارامترهـای
ژنراتور، تغییراتی در حوزه پارامترهای شبکه نیز در نظر گرفته شده است. در هر دوره شبیه سازی از خروجـی
ژنراتور 1000 نمونهگیری با فاصله زمانیهایی برابر0,01 ثانیه بعمل آمده است. 20 نمونه از اندازهگیری های
انجام شده و پارامترهای متناظر با آن به عنـوان مجموعـه اطلاعـات آموزشـی در نظـر گرفتـه شـده اسـت.
نمونههای منتخب از میان اندازهگیریهای انجام شده با گامهای متغیر و قابل کنترل گزینش شـدهانـد، ایـن
رویکرد امکان تهیه تصویری بهتر از رفتار دینامیکی ژنراتور سنکرون در قبال یک اغتـشاش را بـا رعایـت دو
مشخصه حداقل حجم اطلاعات و حفظ حداکثر مشخصات رفتاری فراهم میآورد.
49

شکل:5-4 آلگوریتم آموزش شبکه عصبی
آموزش شبکه بر پایه الگوریتم پسانتشار و با استفاده از راهبرد مارکوئیس_لونبرگ انجام شده است. برای هر یک از انواع سهگانه اغتشاشات ذکر شده بانک اطلاعات آموزشی مستقلی در نظـر گرفتـه شـده اسـت. ایـن روش امکان مقایسه بین نتایج اخذ شده در قبال هر یک از انواع اغتشاشات را فـراهم مـیآورد. ایـن راهبـرد امکان مقایسه درجه قابلیت اطمینان نتایج حاصل از تخمین پارامترهای گوناگون در قبال اغتشاشات مختلـف را نیز فراهم میĤورد.
-2-2-4 تست شبکه عصبی تخمینگر:
تست شبکه عصبی با استفاده از اطلاعات بهره برداری که در مجموعه آموزشی لحـاظ نـشده، شـکل گرفتـه است. بدین ترتیب تصویر واقعگرایانهتری از قابلیتهای شبکه مذکور خواهیم داشت. برای تحقق این معنـی اطلاعات مربوط به 75 ژنراتور سنکرون متفاوت با نمونه های مطـرح شـده در مجموعـه آموزشـی، دادههـای حاصل از اندازهگیریهای بعمل آمده در قبال رفتار دینامیکی آنهـا و مقـادیر حقیقـی پارامترهـای دینـامیکی متناظر با آن به عنوان مجموعه دادههای تست شبکه عصبی در نظر گرفته شده است. طرح کلی روش تست و بهرهبرداری شبکه عصبی مذکور در شکل4-6 بیان شده است. هریک از مراحـل آمـوزش و تـست شـبکه عصبی تخمینگر با مشخصات ذکر شده در قبال سه اغتشاش نمونه مطرح در نظر گرفته شده است.
50

شکل:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی
-3-4 نتایج:
مجموعه نتایج در سه بخش سازماندهی شده است. هربخش در برگیرنده نتایج آموزش و تست شبکه عصبی بر پایه یکی از انواع سهگانه اغتشاش میباشد. این طریقه بررسی امکان مقایسه بهتر نتایج را فراهم سـاخته، شاهدی بر رؤیت پذیری پارامترهای دینامیکی ژنراتورهای سنکرون در ازای اغتشاشات مختلف مـیباشـد. از طرف دیگر بررسی مقایسهای نتایج درجه دقـت شـبکه عـصبی در تخمـین پارامترهـای دینـامیکی بـر پایـه اطلاعات مختلف بهرهبرداری را نیز بیان میکند. برداشتهای مقایسهای امکان تعیین بهتر قابلیتهای شبکه عصبی را بدور از آثار ناشی از الگوی آموزشی فراهم میآورد، زیرا ابعاد و مکانیزم تشکیل مجموعـه آموزشـی در تخمین همه این پارامترها مشابه بوده است.
برای بررسی رفتار هر شبکه عصبی دو معیار اصلی دامنه و توزیع فراوانی خطا در نظر گرفتـه شـده اسـت. در تحلیل بر اساس توزیع فراوانی خطا، درصد فراوانی غالب و دامنه خطای متناظر با آن بیان شدهاند. با توجه به حجم زیاد مجموعه نتایج، چند نمونه از شبکههای تخمینگر و دادههای بدست آمده از طریق آنها در مرحلـه آموزش و تست ارائه شده است. این مجموعه به سه حوزه آموزش و تست بر اساس اطلاعـات بهـرهبـرداری شکل گرفته برپایه تغییر ناگهانی تحریک، تغییر ناگهانی تـوان ورودی و اغتـشاش حـوزه شـبکه متـصل بـه ژنراتور تقسیم شده است. برای فراهم سازی امکان مقایسه بیشتر، نتایج متناظر هر پارامترکه با استفاده از هر یک از بانکهای اطلاعاتی سهگانه مذکور بدست آمده اسـت در اختیـار خواننـده محتـرم قـرار گرفتـه اسـت.
پارامترهای دینامیکی مطرح برای ژنراتورهای سنکرون _در نگاه اشتراکی بین انواع مختلف آن _کـه مـا بـه تخمین آنها همت گماشته ایم مجموعهای بدین صورت را تشکیل خواهد داد:
51
جدول( (1-4 ردیف نام پارامتر مشخصه واحد
1 راکتانس سنکرون محور d Xd pu
2 راکتانس حالت گذرا محور d Xd' Pu
3 راکتانس فوق گذرا محور d Xd" Pu
4 راکتانس سنکرون محور q Xq pu
5 راکتانس فوق گذرا محور q Xq" Pu
6 راکتانس پوتیه Xl pu
7 ثابت زمانی محور d در دوره گذرا Td' s
8 ثابت زمانی محور d در دوره فوق گذرا Td" s
9 ثابت زمانی محور q در دوره فوق گذرا Tq" s
10 ثابت اینرسی H s
52
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر:
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd"

شکل :8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
53

شکل :9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش


شکل :10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
54

شکل :11-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
55
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل :14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
56

شکل :15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
57

شکل :17-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
58
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
59

شکل:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
60

شکل :23-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
61
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq"

شکل :26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
62

شکل :27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
63

شکل :29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
64
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
65

شکل :33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq"
66

شکل :35-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
67
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
68

شکل :39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
69

شکل :41-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
70
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td"

شکل :44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
71

شکل :45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
72

شکل :47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
73
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
74

شکل:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
75

شکل :53-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
76
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل :56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
77

شکل :57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
78

شکل :59-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
79
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq"

شکل :62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
80

شکل :63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
81

شکل :65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
82
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

.
شکل:68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
83

شکل:69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq"
84

شکل :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
85
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

شکل :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
86

شکل :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
87

شکل :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
88
-2-3-4 بررسی تحلیلی نتایج:
در طی این پروژه، شبیه سازیهای مربوطه در جهت تخمین کلیه پارامترهای مذکور انجام شده و بـر اسـاس اغتشاش بکار گرفته شده در تهیه دادههای بهرهبرداری تقسیم بندی و مقایسه شـده اسـت. بررسـی تحلیلـی نتایج در قالب شاخصبندیهای زیر ارائه شده است:
.1 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره آموزش:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحلـه آمـوزش، شـکل گرفتـه است. در مسیر تخمین هر یک از پارامترها نتایج سهگانه بدست آمده به ترتیب بر اساس برازندگی از دیدگاه حداقل خطا مرتب شده است. این نتایج برپایه اغتشاش متناظر با آنها نام گذاری و در جـدول
2-4 جای گرفتهاند.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شـاخص حـداکثر خطـا ارزیـابی و اولویت بندی شدهاند. نتایج این تحلیل به ترتیب بیان شده در گام قبل نامگذاری و در قالـب جـدول
3-4 در اختیار قرار گرفته است.
.2 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره تست:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحله تست، شکل گرفته است.
در مسیر تخمین هر یک از پارامترها، نتایج سهگانه بدست آمده بر اساس برازندگی از دیدگاه حداقل خطا ترتیب یافته است. این نتایج برپایه اغتشاش متناظر با آنها نام گـذاری و در جـدول 2-4 جـای گرفتهاند. به علّت اهمیت خاص نتایج حاصل در این بخش، علاوه بر تحلیلهای فوق شاخص خطای متناظر با فراوانی غالب و درصد فراوانی مربوطه در بهترین حالت نیز ارزیابی و در جدول 2-4 ارائـه شده است.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
89
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شاخص حداکثر خطا ارزیابی و بـر اساس برازندگی مرتب شده است. نتایج این تحلیل به همان صورت نامگذاری و در جدول 3-4 ارائه شده است.
درباب عملکرد شبکه عصبی در تخمین :Xd
با مقایسه نتایج بدست آمده با استفاده اغتشاشات مختلف هیستوگرام خطای شبکه در مرحله آموزش بهتـرین توزیع فراوانی را در وقوع قبال اتصال کوتاه در ترمینال ژنراتور نشان میدهـد نتـایج حاصـله بـر پایـه تغییـر ناگهانی تحریک و تغییر توان ورودی در مراتب بعدی قرار میگیرند.
از نظر دامنه خطا نیز در این مرحله بهترین نتایج به ترتیب در قبال نتایج حاصله از وقوع اتصال کوتاه, تغییـر توان ورودی و تغییر ناگهانی تحریک شکل گرفته اند.
در مرحله تست بهترین توزیع فراوانی در مرحله اول مربوط به نتـایج حاصـل از تغییـر ناگهـانی تحریـک، در مرحله دوم مربوط به نتایج حاصله بر پایه وقوع اتصال کوتاه و نهایتًا از تغییر توان ورودی بدست میآید.
کمترین دامنه خطا به ترتیب متعلق به تخمین برپایه نتایج حاصل از وقوع اتصال کوتاه، تغییر تـوان ورودی و نهایتًا تغییر تحریک میباشد.
در مرحله تست محدودترین دامنه خطا مربوط به وقوع اتصال کوتاه است. نتایج حاصل از تغییر تـوان ورودی و تغییر ناگهانی تحریک در مراتب بعدی قرار دارند.
%73,3 از نتایج دارای خطای کمتر از %9,2 دامنه تغییرات Xd هستند.
درباب عملکرد شبکه عصبی در تخمین :X'd
هیستوگرام خطای شبکه در مرحله آموزش نتایجی بدین ترتیب را در بر داشته است: در مرحلـه اول بهتـرین نتایج همراستا با تغییر ناگهانی تحریک شکل گرفته است، در مرحله دوم با تغییـر تـوان ورودی و در مرحلـه سوم با استفاده از وقوع اتصال کوتاه در خروجی ژنراتور.
کمتریم دامنه خطا در مرحله آموزش مربوط به وقوع اتصال کوتاه در ترمینال ژنراتور و در مرحله دوم و سـوم

aslinezhad project

(4-2 فرموله کردن با استفاده از ماتریس خطوط انتقال37
۶
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب41
(6-2 تحقق جهت دو بانده کردن مدار43
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)43
λ
(2-6-2 استفاده از مدار اتصال کوتاه ( طول 44( 2

(7-2 آنالیز(تحلیل) مدار π شکل خط شاخهای دوبانده و مشاهده نتایج شبیهسازی46
فصل سوم: طراحی مدار میکرواستریپ فشردهT شکل دوبانده با
اندازه کاهش یافته.50
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه به روند ارائه شده در
دو بانده کردن کوپلرπ شکل ( 900MHz و 51(2400MHz
(2-3 استفاده از برنامه کامپیوتری ساده جهت بدست آوردن پارامترهای مدار دو بانده52
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محیط ( نرم افزار) مختلف و مشاهده
نتایج53
فصل چهارم: بررسی انواع مختلف DGS و اثرات آن بر روی
خطوط میکرواستریپ59
DGS (1-4 چیست60
( 2 – 4 مشخصات کلی 60 .DGS
( 3 – 4 کاربردهای 61DGS
٧
( 4 – 4 ویژگیهای 61DGS
( 5 – 4 اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ....61
( 1 – 5 – 4 الگوی .DGSدمبلی شکل و ویژگی شکاف باند63
DGS ( 2 – 5 – 4 دمبلی پریودیک قویتر64
( 3 – 5 – 4 اندازهگیریهای مربوط به DGS دمبلی شکل..66
( 6 – 4 بررسی اثرات DGSهای هلزونی در تقسیم کننده توان بر روی هارمونیکها68
-7-4مدل مداری و هندسه DGS هلزونی غیرمتقارن70
( 8 – 4 حذفهارمونیکهادر مدار مقسم توان73
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی78
( 10 – 4 مشاهده اثرات DGS برروی مدار دو بانده طراحی شده80
فصل پنجم:چگونگی استفاده از کوپلر بدست آمده در طراحی
سیرکولاتور82
(1-5طراحی سیرکولاتور83
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر83
فصل ششم:نتیجه گیری وپیشنهادات86
(1-6نتیجه گیری87
(2-6پیشنهادات88
٨
پیوست ها................................................................................................................................... 89
٩
فهرست مطالب
عنوان مطالبشماره صفحه

منابع و ماخذ. 93
سایتهای اطلاع رسانی97.
چکیده انگلیسی98
١٠
فهرست جدول ها
عنوانشماره صفحه

:(1-2)مشخصات الکتریکی وفیزیکی مدار در دو باند..47
(1-3) دو بازه فرکانسی و دو هدف مورد نظر پروژه..55
(2-3.) بازه بالا و پایین جهت optimom هدف.56
(1–4)مقایسه اثر DGSهای واحد و پریودیک با توزیع نمایی..66
١١
فهرست شکل ها
عنوانشماره صفحه

(a) ( 1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و
استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع23
(a) ( 2 – 1) سرس خطوط انتقال کوچک شده با چندین استاب
باز (b) بزرگی پاسخ.25
( 3 – 1) نمایی از نرم افزار Serenade. RTL جهت بدست آورن طول
فیزیکی و پنهای خطوط.26
( 1-2 ) ساختار T شکل خط انتقال ربع طول موج30
( 2-2 ) منحنی رسم شده حاصل از برنامه کامپیوتری θ1)بر حسب32.(θ3
( 3-2 ) مدار چاپی خط شانهای T شکل34
S11 (a) ( 4-2)،S12،S13،(b) S14 پاسخ فازی مدار Tخط شاخهای35
(5-2) ساختار کوپلر خط شاخه ای یک بانده مرسوم.38
(a) ( 6 – 2) ساختار معادل پیشنهادی (b) خط شاخهای 38. λ4

S11 ( 7-2 )،S12،S13وS14 از کوپلر بدون استاب42
( 8-2 ) پاسخ زاویهS12وS14 برای مدار بدون استاب42
( 9-2 ) ساختار کوپلر پیشنهادی با استاب مدار باز44
١٢
( 10-2 ) ساختار کوپلر پشنهادی با استاب اتصال کوتاه ........................................................ 45
11-2 ) ) نتایج شبیه سازی .................................................................................. ...(S11) 47
12-2 ) ) نتایج شبیه سازی(S12و............................................................................ .(S13 48
( ( 13-2 نتایج شبیه سازی .................................................................................... .(S14) 48
14-2 ) )نتایج شبیه سازی (پاسخ فاز مدار با استاب باز) ................................................... 49
( (a) ( 1-3 شماتیک (b) مدار چاپی ................................ (designer, hfss) ansoft 55
( S11(a) ( 2-3،S12،S13وS14 مدار شبیه سازی شده در .....................................................................ADS (c) serenade (b) ansoft (a) 57
( 3-3 ) پاسخ فازی مدار دو بانده. ....................................................................................... 58
1-4 ) ) شمای مختلف H (a) DGS شکل T ( b)شکل (c)هلزونی شکل (d) دمبلی شکل. ......................................................................................................... 60
( 2-4 ) خط میکرواستریپ با εr = 15 و ................... ................................ h = 1/575 62
( 3-4 ) پارامترهای S مدار دوپورته.. ................................................................................ 62
( 4-4 ) مدار با DGS دمبلی شکل .. ............................................................................... 63
( 5-4 ) پارامترهای S مدار با DGS دمبلی شکل ............................................................ 63
( 6-4 (a) ( نوع (b) 1 نوع (c) 24 نوع DGS 3 دمبلی شکل ...................................... 65
( 7-4 ) پارامترهای S برای DGS دمبلی با انواع مختلف سایز. ....................................... 66
( 8-4 ) مقایسه پارامترهای S مدارهای (a) DGS نوع (b) نوع (c) 2 نوع 67 ............. ..3
١٣
( 9-4 ) خط میکرواستریپ با DGS هلزونی نامتقارن برروی زمین. ............................... 70
( 10-4 ) پارامترهای انتقال خط با DGS متقارن ( A = A' = B' = 3mm و نامتقارن A = 3/4m) و ............................................................................(B = 2/6 mm 71
11-4 ) ) فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از ...................................................................................................................... .B/A 71
12-4 ) ) مدار معادل بخش DGS هلزونی نامتقارن ........................................................ 73
13-4 ) DGS (a) ( هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این ......................................................................................DGS 74
( 14-4 ) پارامترهای S مدار با DGS هلزونی بصورت EM و شبیه سازی شماتیک ........ 75
15-4 ) ) هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن....................................................................................................................... 76
( 16-4 ) نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با ....................................................................................................................... ..DGS 77
17-4 ) ) مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار...................................................................................................................... 77
( 18-4 ) نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(.......... S12 ( b) S11 (a 78
( 19-4 ) مدار T شکل با استفاده از DGS هلزونی (a) یک بعدی (b) سه بعدی.......... 79
20-4 ) (a) ( نتیجه پاسخ شبیه سازی کوپلر با استفاده از اعمال (b) DGS بدون ١۴
استفاده از 80DGS
( 21-4 ) مدار چهار پورتی T شکل دوبانده با اعمال DGS دمبلی شکل در
شاخه خطوط..81
( 22-4) پارامترهای S حاصل از بکار بستن 81DGS
(1-5)نماد ژیراتور83
( 2-5)سیرکولاتور 4 پورته متشکل از دو مدار هیبریدی و زیراتور83
(3-5) سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور84
(a)(4-5)،((b،((cو(:(dنتایج شبیه سازی سیرکولاتور85
(1-6)شبکه دو قطبی خطی. 91
١۵
چکیده:
در این پروژه سیرکولاتور دو بانده با ابعاد کوچک ارائه شـده اسـت. در طراحـی سـیرکولاتور مـورد نظـر از
کوپلر شاخه ای (BLC)1 میکرواستریپی دو بانده کوچک شده استفاده شده است . لذا در این پـروژه بیـشتر
بر روی چگونگی کوچک سازی و دو بانده کردن کوپلر شاخه ای میکرواستریپی با اسـتفاده از مـدارات T و
همچنین DGS2 متمرکز شده ایم . در کوپلر شاخه ای پیشنهادی از مدارات T در هر شاخه که دارای طـول
الکتریکی ±90 درجه در دو بانده می باشند ، استفاده شده است. از طرفی در صفحه زمـین در زیـر خطـوط
این کوپلر DGS هایی قرار دارند که با استفاده از این DGSها ، طول الکتریکی خطوط کاهش یافته و ابعاد
کوچکتر می گردند. کوپلر دو بانده کوچک شده توسط نرم افزارهایSerenadeوADS3وAnsoft تحلیـل
شده و نتایج شبیه سازی در این پروژه آورده شده اند. سپس با استفاده از کوپلرهای دو بانده کوچک شـده ،
سیرکولاتور مورد نظر طراحی گردیده است.

Branch line coupler١ Defected ground structure٢ Advance designe sys--٣
١۶
مقدمه:
امروزه تقاضا برای استفاده از عناصر دو بانده در صنعت مخابرات رو به افزایش است . سیستمهای مخابرات
با آنتن های دو بانده کاربرد زیادی دارند. سیرکولاتور یکی از عناصر اصلی در چنین سیستم هایی اسـت. بـا
استفاده از سیرکولاتور دو بانده می توان از یک تغذیه بین آنتن و سیستم مخـابراتی اسـتفاده نمـود. یکـی از
اجزای اصلی در ساخت سیرکولاتورهای چهار پورتی ، کوپلرهای هایبریدی و کوپلرهای شاخه ای((BLC
می باشند.
(BLC) از چهار خط انتقال به طول ربع طول موج مؤثر در فرکانس اصلی و هارمونیک هایی کار می کنـد.
.[1] ,[2]
معمولا این کوپلرها بزرگ هستند و سطح و فضای اشغال شده توسط آن ها زیاد است. در اکثـر کاربردهـای
امروز به خصوص در بردهای صفحه ای و میکرواستریپی ، این عیب محسوب می شود. لذا ، امـروزه روش
های مختلفی برای کوچک سازی و افزایش پهنای باند]٣[7- این کوپلرها ارائه شده است.
در مخابرات مدرن امروزی نیاز به اجزاء دو بانده بالاخص کوپلر BLC دو بانده ، می باشد تا مقدار عناصـر
مورد استفاده ،کاهش یابد.
] Hsiang٨[ از خطوط چپگرد برای دو بانده کردن کوپلر استفاده کرده است.BLC شامل خطـوط متـصل
شده به یک جفت المان موازی]١١[ گزارش شده است.
در این پروژه با استفاده از روشـهای کوچـک سـازیBLC و ترکیـب آن هـا بـا روشـهای دو بانـده سـازی
ابتداBLC با ابعاد کوچک در دو بانده 900Mhzو2400Mhz طراحی شده است سپس برای کاهش بیـشتر
سطحBLCصفحه ای ازDGS ها استفاده شده است.
١٧
گزارش ارائه شده از نمونه طراحی سیرکولاتور مورد نظر شامل قسمت های زیر می باشد:
در فصل اول کلیاتی در مورد مراحل انجام پروژه ،هدف از انجام مراحل کار ، پیشینه تحقیقهای انجـام شـده
در مورد مدارمورد نظر و روش کمی کار مورد بررسی قرار گرفته است.
در فصل دوم ابتدا نحوه افزایش پهنای باند کوپلرها ، کوچک سازی با استفاده از مدارT و استفاده از مـدارπ
بــرای دو بانــده کــردن کوپلربررســی شــده اســت. ســپس بــا اســتفاده از نــرم افزارهــای تخصــصی
مانندSerenadeوAnsoft مدارات ذکر شده تحلیل گشته و نتایج شبیه سازی آورده شده اند.
در ادامه کوپلر کوچک شده با استفاده از مدارT ، با توجه به روند ارائـه شـده در دو بانـده کـردن کـوپلر بـا
مدارπ ، در فصل سوم دو بانده شده و روابط حاصل برای دو بانده کردن آن به دست آمده است.
کوپلر به دست آمده با استفاده از نـرم افـزار ADSوSerenadeوAnsoft تحلیـل و بهینـه گـشته اسـت و
منحنی های مربوط به آن در این فصل آورده شده اند.
در فصل چهارم DGS به عنوان ابزاری برای کوچک سازی مدارات صفحه ای شرح داده شده و از آن برای
کوچکتر کردن ابعاد کوپلر دو بانده استفاده شده است . نتایج شبیه سـازی کـوپلر حاصـل ، نـشان داده شـده
است. چگونگی استفاده از کوپلر به دست آمده در طراحی سیرکولاتور در فصل پنجم شرح داده شده اسـت
و در آخر در فصل ششم نتیجه گیری و پیشنهاداتی برای ادامه کار آورده شده است.
١٨
فصل اول:
کلیات
١٩
(1-1 هدف
کوپلرهای شاخهای با بکار بستن استابها ( مدارباز – مدار کوتاه) نیزو با Cascade شدن یک سـری شـاخه
برکاستن حجم و بالا رفتن پهنای باند نقش بسازیی را دارند. همچنین المانهای فشرده به ما امکـان کـوچکتر
کردن مدار را میدهند و با عث افزایش باند میگردند منتهی برای ساخت مدار نهایی با کـاهش سـایز کلـی و
افزایش پهنای باند و بکار بردن کوپلینگ مناسب در سرهای مدار و ایزوله کردن پورتها از همدیگر مـیتـوان
از روش مناسب بکار بردن DGS و نتیجتاً افزایش اندوکتانس خطوط و در نتیجه اهداف مطلوب دسترسـی
پیدا کرد.
در این پروژه هدف کلی رسیدن به ساختار فشرده و نیز استفاده از مدار میکرواستریپی در دو بانـد فرکانـسی
دلخواه و نیز افزایش هر یک از باندهای فرکانسی می باشد. و عـلاوه بـر ایـن بـا بکـار بـستن ( defected
ground structure) DGS بر روی زمین مدار شاهد اثرات مثبت آن برروی دستیابی باند فرکانسی مورد
نظر و نتیجتاً کاهش سایز مدار و خواهیم بود.
(2-1 پیشینه تحقیق
با توجه به ساختار مدار این پروژه و هدف مورد نظـر تحقیقهـایی مـورد نظـر بـودهانـد کـه بیـشتر در بـاره
Compact و فشرده سازی المانها، افزایش پهنـای بانـد، از بـین بـردن هارمونیکهـای اضـافی و اسـتفاده از
DGS میباشد.
در[1] افزایش پهنای باند مدارهای هایبرید با استفاده از اتصال خطوط شاخهای و استفاده از اسـتابهای مـدار
λ
باز در دو انتهای خط میکرواستریپ و معادل قرار داده خط با خط انتقال 4 جهت کاهش ابعاد مورد بررسی

قرار گرفته است.
٢٠
فعالیتهای گستردهای در جهت طراحی و بکاربردن کوپلرها و سـیرکولاتورهای صـفحهای فـشرده دردو بانـد
مورد دلخواه بعنوان مثال در پروژه - ریسرچ[2]انجام گردیده است که در فصل دوم نتایج حاصل از شـبیه سـازی ایـن
گونه کوپلرها و استفاده از ماترسیهای انتقال و نوشتن برنامه کامپیوتری جهت استفاده در دو فرکانس دلخـواه
مورد بررسی خواهند گرفت.
در مورد کاهش بیشتر سایز کوپلرها در حدود 45% مقدار کوپلرهـای مرسـوم خـط شـاخه ای و بـا مـدل T
شکل فعالیتهایی در مقالات گوناگون [3] تنها در یک باند فرکانسی مطرح گردیده است که در فصل بعدی
نیز این پروژه - ریسرچو نتایج شبیه سازی آن با نرمافزارهای گوناگون مورد بررسی قرار می گیرند.
یکی از مسائل مهم در چند قطبیهای میکرواستریپ مسئله کاهش اندازه بـوده کـه بـا توجـه بـه اسـتفاده از
المانهای باند و کاهش حجم مدار نیز استفاده از (defected ground structure) DGS مـیباشـد. ایـن
کار باعث از بین بردن هارمونیکهای اضافی و نتیجتاً کاهش اندوکتانس مدار و بالا بردن پهنای باند و کاهش
سایز مدار با کم کردن المانهـای مـوازی مـیگـردد. در ایـن زمینـه نیـز فعالیـتهـای گـسترده و اسـتفاده از
DGSهای مختلف صورت گرفته است [2]و[4]و[21]و .[22]
که اثرات تک DGS و نیـز DGS دمبلـی پریـود یـک را بـر روی پارامترهـای اسـکترینگ یـک خـط
میکرواستریپ دو پورتی ،بررسی شده است.
همچنین در[21] کاربرد DGS برروی خطوط یک کوپلر و تأثیر آن برروی پاسخ شبیه سـازی بـرروی ایـن
مدار در نرمافزار Ansoft بررسی گردیده است.
علاوه[23] نیز اثرات DGS هلزونی برروی حذف هارمونیکها و پهنای باند در یک تقسیم کننده توان ویـل
کینسن را مورد بررسی قرار داده است که در این پروژه در انتهای از این نوع DGS در زیـر خطـوط کـوپلر
خط شاخه ای تک بانده استفاده گردیده و نتایج آن آورده شده است.
٢١
و اثرات شکلهای گوناگون [21]DGSو[22]و[23]و مدل کردن مداری آنها بـرروی کـوپلر، سـیرکولاتور و
تقسیم کنندههای توان و به طور کلی خطوط میکرواستریپ را بررسی میکنند که در فصلهای بعـدی در ایـن
مورد به طور مفصل توضیح داده شده و نتایج حاصل از شبیه سازی نیز آورده شده است.
( 3 – 1 روش کار و تحقیق
در این پروژه روش کار و تحقیقهای انجام شده جهت رسیدن به هدف مورد نظر یعنـی اسـتفاده از دو بانـد
فرکانسی دلخواه کاهش حجم مدار بالابردن ضریب کوپلینگ نیز بـه صـورت اسـتفاده از مراجـع و منـابع و
مشاهده نتایج حاصله از این کارها بوده و بعد از برقراری لینک مورد نظر این منبع مـورد بررسـی بـا هـدف
نهایی به آیتم بعدی پروژه - ریسرچمربوط به مرجعهای اولیه پرداخته شده است. در بخشهای بعدی این مراحل عنوان
میگردند.
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن:
در این مرحله نیز خط میکرواسـتریپ Zc4 بـا طـول الکتریکـی θ نیـز کـه در شـکل (1 – 1) (a) مـشاهده
میگردد به صورت یک خط انتقال مرسوم با المانهای توزیع شده فشرده معادل آن نیز مدل گردیده است[9]
و با بکار بردن فرمول ماتریس ABCD5 مدار معادل مشاهده شده در شکل (1 – 1) ( b) میتوانـد اسـتنباط
گردد. با معادلات ماتریس ABCD در شکل (1 – 1) به نتایج زیر دسترسی پیدا میکنیم.
(1 – 1)
JB01  J tan θ01 / Z 01

امپدانس خط معادل
ماتریس انتقال خط
٢٢
که B01 امپدانس ورودی استاب مدار باز است و٠١θ طول الکتریکی استاب مدار باز است.
و با در دست داشتن ادمیتانس ورودی استاب مدار باز شکل (b ) ( 1 – 1) به معادلات زیر میرسیم
(2 – 1) cosθs −cosθ B01  Z c sin θ (3 – 1) Zc sinθ Zs  sinθs که ≤θs≤θ≤1٠ می باشد و همانطوری که در شکل((1-1 دیـده میـشود θs طـول خـط بـین دو اسـتاب در
مدارπ است.

شکل (a ) (1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع
٢٣
ما همچنین میتوانیم فرکانس قطع برای ساختار فیلتر مانند شکل (b ) ( 1 – 1) و مـدار معـادل آن در شـکل
(c) (1-1) به صورت زیر بدست آوریم:
(4 – 1)
1 Wc  Leq Ceq
(5 – 1)
1  Wc )ZsSinθs tan(θs / 2)  Cosθs − Cosθ 2( W0 Zs Zc Sinθ
که در Wc فرکانس قطع مدار معادل نشان داده شده شکل (b ) ( 1 – 1) و Wo فرکانس کار مرکـزی مـدار
مورد نظر با المانهای فشرده معادل 7Ceq, Leq6 میباشند.
حال در اینجا برای بالا رفتن پهنای باند و عریض کردن باند فرکانسی دلخواه، با استاب مدار بـاز بـه خـوبی
طول واحد خطوط سری با یکدیگر بوده و مدل کردن خط میکرواستریپ با خطوط معـادل بـا اسـتابهـای
مدار باز سری همانطور که در شکل (2 – 1) نشان داده شده باعث کم شدن امپدانس استاب بـاز و افـزایش
فرکانس قطع (fc) میگردد.

۶ سلف ٧خازن معادل
٢۴

شکل((a) ( 2 – 1 سری خطوط انتقال کوچک شده با چندین استاب باز (b) بزرگی پاسخ
با مشاهده پارامترهای S این مدار در شکل (b ) (2 – 1) از این مدارات میتوان جهت بالا بردن باند فرکانس
و نیز استفاده مدار دو باند فرکانسی دلخواه،اسنفاده گردد.
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(:(2000/900
در اینجا نیز با ایده گرفتن از کار قبلی و استفاده از ماتریسهای ABCD که در فصل بعدی آورده شده زمینه
جهت استفاده از کوپلر خط شاخهای Tشکل با حجم کم و باند فرکانسی دو بانده کـه در فـصل سـوم آمـده
فراهم میگردد.
٢۵
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخهای T شکل
در این قسمت با ایده گرفتن از روشهای قبلـی کـه در فـصلهای بعـد توضـیح داده مـیشـود از ماتریـسهای
ABCD استفاده شده و بعد از نوشتن برنامه کامپیوتری زمینه جهت استفاده از المانهای فـشرده در دو بانـد
فرکانسی دلخواه فراهم گردیده است. از بدست آوردن مقادیر Z و θ که امپدانس مشخصه خطـوط و طـول
الکتریکی آنها هستند با استفاده از فرمولهای موجود در بازههای مختلف که در منابع مختلـف هـم آمـدهانـد
طول و پنهای خطوط چند پورتی مورد نظر بدست میآید که در این پروژه از serenade استفاده شده است
و این مقادیر با دادن فرکانس کار، مشخصه دی الکتریک مورد نظر و امپدانس و طول الکتریکی خط نیـز بـه
سادگی بدست میآیند. در شکل (3 – 1) شمای کلی این نرم افزار آمده است.

شکل :(3 – 1) شمایی از نرمافزار serenade جهت بدست آوردن طول و پنهای خطوط
٢۶
با بستن مدار فوق در نرم افزارهای مختلف نتـایج شـبیهسـازی را مـشاده و در صـورت عـدم نتیجـهگیـری
همانطور که در فصل سوم آمده آنرا optimum میکنیم. در نهایت با ایده گرفتن از کارهای انجـام شـده در
مقالات مختلف DGS های گوناگون را بکار گرفته و نتایج حاصل از آن را آوردهایم.
٢٧
فصل دوم:
تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده وTشکل
٢٨
(1-2 مدار خط شاخهای اندازه فشردهT شکل
دراینجا هدف طراحی کوپلر و در نهایت سیرکولاتور خط شاخهای بهم پیوسـته بـدون اسـتفاده از المانهـای
توده میباشد. اندازه کـوپلر پیـشنهادی تنهـا 45درصـد کوپلرهـای خـط شـاخهای مرسـوم در فرکـانس 2/4
گیگاهرتز میباشد.
اندازه المانهای این نوع کوپلر میتوانند به راحتی با استفاده از عمل قلم زنـی بـرد مـدار چـاپی بـه صـورت
واقعی کشیده شده و برای سیستمهای ارتباطی بیسیم بسیار مفید و پرکاربردند. چرا که اخیراً سیستم ارتبـاط
بیسیم در جهت اهداف کوچک کردن و پائین آوردن هزینه بـه قطعـات کـوچکتری نیـاز دارنـد. از ایـن رو
کاهش اندازه از اهداف قابل توجه در بکاربستن این طراحی میباشد. در پایینترین باند فرکانس مایکروویو،
اندازه کوپلر خط شاخهای مرسوم جهت استفاده عملی بسیار پیچیده و بزرگ است. تکنیکهای زیادی جهـت
کاهش سایز این گونه کوپلرها گزارش شده است. ترکیب خط انتقال با امپدانس بالا و خازنهای فشرده شنت
شده به آنها نیز مورد بررسی قرار گرفته اند.در این موارد خازنها با عایقهایی خاص، مورد نیاز مدارهای شنت
میباشند که در بحث بعدی جهت دو بانده کردن کوپلرهای خط شاخهای πشکل توضیح داده میشود.
مرجع[11] کوپلر خط شاخهای درخطوط میکرو استریپ تک لایه از فلز بدون هیچ گونه المان فـشرده شـده
واضافی ̦ سیمهای اتصال را پیشنهاد می کند.اندازه این گونه کوپلرها حدود 63درصـدطراحی هـای مرسـوم
میباشد. هرچند که قسمتهایی که ناپیوستگی در داخل کوپلر بوجود میآورند نیز همان ناپیوستگیهای ناشی
از اتصال مدارهای استاب شنت مدار باز یا کوتاه میباشند کـه باعـث بوجـود آمـدن مـشکل (over lap)8
میگردند. بنابراین ما در فصل بعدی روی طراحی یک کوپلر خط شـاخهای T شـکل جمـع و جـور جدیـد

٨هم پوشانی
٢٩
متمرکز خواهیم شد و در قسمت بعدی آنها را در کوپلرهای واقعی بکار برده و به تحلیـل و بهینـهسـازی آن
میپردازیم.
این نوع کوپلرها بدون استفاده از هیچ گونه المان فشرده، سـیم و قطعـه ای، مـیتواننـد بـه سـادگی بـرروی
سابستریتها ساخته شوند و در مقایسه با مدارات مرسوم طراحی شده اطلاعات را بخـوبی آشـکار مـیکننـد،
همچنین هماهنگی نزدیک و خوبی ما بین نتایج شبیهسازی و اندازه گیری شده مشاهده می گردد.
روش مرسوم ومعمولی جهت آنالیز کوپلر T شکل خط شاخهای بر روی استفاده از آنالیز مد نرمال است کـه
در اینجا ما از آن استفاده کردیم و این بدلیل ساختار هندسی آن نیز میباشد.
هر چند که خط با سایز کاهش یافته با طولی کمتر از λ / 4 اندوکتانس و ظرفیت پائینتـری را دارد، منتهـی
جبران اندوکتانس بوسیله افزایش امپدانس مشخصه خط و جبران ظرفیت نیـز بوسـیله اضـافه کـردن خـازن
شنت متصل شده [15] C میباشد. در این پـروژه خـازن C نیـز بوسـیله یـک خـط اسـتاب مـدار بـاز [9]
جایگزین گردیدهاست و معادل آنرا در مدار T شکل قرار دادهایم.

شکل(:(1-2ساختار T شکل خط انتقال ربع طول موج
ساختار T شکل معادل معمولی از یک خط کاهش یافته در شکل (1-2)نـشان داده شـده اسـت کـه در ایـن
شکل Z1،Z2،Z3وθ1،θ2وθ3 امپدانس مشخصه خطوط و همچنین طول الکتریکی آنها را نـشان مـیدهنـد.
لزومی ندارد که جایگاه خط با طول الکتریکـی((θ2 مـدارباز در وسـط خـط کـاهش انـدازه یافتـه مـا بـین
٣٠
Z1وZ2قرار داشته باشد. روابط ما بین این عناصر یعنی امپدانس مشخصه و طولهای الکتریکی را مـیتـوانیم
بوسیله ماتریس ABCD آنها تخمین بزنیم.
با استفاده از روابط قبلی برای طراحی یک کوپلر خط شاخهای πشکل مرسوم در اینجا با معـادل قـرار دادن
ماتریس آن با امپدانس مشخصه خط با طول θ = ±90° و ±ZT داریم:
3 Sinθ 3 JZ 3 Cosθ 1 0 Sinθ JZ Cosθ A B (1-2) j 1 1 1 j Cosθ3 Sinθ3 1 JB Cosθ1 Sinθ1 D  C Z3 2 Z1 (1-2) jB2  jTanθ2 / Z 2 (3-2) N Z1 Z3 (4-2) K Z1 Z 2 (5-2) M Z1 ZT از طرفی با معادل قرار دادن ماتریس فوق با ماتریس خط 90° داریم.
JZT
0(6-2)

0 JZT Sinθ j  Cosθ Z T
Cosθ B A Sinθ j  D C T Z و پس ساده سازی چهار معادله به صورت زیر خواهیم داشت:
(7-2) Cosθ1Cosθ3 − KTanθ2 Sinθ1Cosθ3 − NSinθ1 Sinθ3  0 (8-2) N Cosθ1Sinθ3 − KTanθ2Sinθ1Sinθ3  NSinθ1Cosθ3  M ٣١
(9-2) Tanθ2Cosθ1Sinθ3  Cosθ1Cosθ3  0 K Sinθ1Sinθ3 − 1 − N N (10-2) Sinθ1Cosθ3  KTanθ2Cosθ1Cosθ3  NCosθ1Sinθ3  M با ساده سازی روابط فوق دو معادله زیر را خواهیم داشت:
N 2 M 2 2 − N M 3  Tanθ Tanθ Tanθ N) ,Cotθ ) Tanθ Cotθ 2(11-2) M N N 1 3 1 3 1 (12-2) ( 2 − N 2 M 3 ( Tanθ 2  ) Tanθ 2 − N 2 M 3 ( 3  Sinθ Tanθ2Cosθ K KN MN M معادلات (11-2) و (12-2) نیز مقادیر θ1 و θ2 وθ3 را تحت شرایطی که M و N را داشـته باشـیم بـه مـا
میدهند. برای سادگی کار در اینجا Z1 را برابر Z3 در نظر میگیریم. طـول الکتریکـی θ1 بـر حـسب طـول
الکتریکی θ3 برحسب مقادیر مختلف M رسم گردیده است که در شکل (2-3) نیز آمـده اسـت. در اینجـا
نیز برنامه سادهای با نرم افزار مطلب نوشـته شـده(پیوسـت الـف-(1 و بـه ازای مقـادیر مختلـف N و M
میتوان به ازای θ1 های مختلف مقادیر θ2 و θ3 را بدست آورد.
١θ

٣θ
شکل θ1:(2-2) بر حسبθ3
٣٢
واضح است که طول الکتریکی کل خط کوچک شده( (θ= θ1 + θ3 با افزایش مقدار M نیز کاهش مییابد.
جایگاه خط استاب مدار باز شده در داخل کوپلر خط شاخهای تحـت شـرایط خـاص نیـز تحمیـل گردیـده
است. مقدار طول الکتریکی (θ2) ما بین مقادیر θ2 و θ میباشد. جهت جلـوگیری از مـشکل هـم پوشـانی

(Over lab) خط استاب باز را به انتهای خط اتصال کوتاه وصل میکنیم. θ1 و θ3 به ازای مقادیر شناخته
شده M به یکدیگر تبدیل شده در حالیکه حالت معادله (12-2) تحت N = 1 بدون نغییر باقی میماند. ایـن
نتایج به توانایی دو رابطه بدست آمده اشاره دارد. با بدست آوردن مقـادیر θ1 و θ3 و بـا داشـتن معادلـه
(12-2) مقادیر θ2 وZ2 محاسبه میگردند.
(2-2 طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن
با روشی که در بالا توضیح داده شد به سادگی میتوان انـدازه کـوپلر خـط شـاخهای مرسـوم را کـاهش داد
سابستریت مدار فوق دارای ویژگیهای زیر میباشند:
metal thickness =0 .02mm و h = 0.8mm و Tanδ  0.022 و εr  4.7
امپدانس مشخصه کوپلر خط شاخهای مرسوم 35 اهم در خط اصلی و در شاخه عمودی 50 اهم میباشند.
جهت کاهش دادن اثر افت هادی، افت تشعـشعی و جلـوگیری از مـدهای مـزاحم انتـشار نیـز پهنـای خـط
میکرواستریپ محدود شده و این امر با محدود کردن مقدار امپدانس مشخصه موثر واقع میگردد.
در ابتدا پارامترهای خط کوتاه شده اصلی ( افقی) را بـرای M=1/7 و بـا درنظـر گـرفتنθm1=17° بدسـت
میآوریم که از شکل θm3 = 48 °(2-2) حاصل میگردد. با قراردادن اطلاعات فـوق در رابطـه (12-2) و
٣٣
در نظر گرفتن k=2/6 مقدار θm2=39° (طول الکتریکی استاب باز خط اصـلی) بدسـت مـیآیـد. بـه طـور
مشابه پارامترهای خط شاخهای کاهش یافته را هم بدست میآوریم.
θb2=31 ْ θb3=58 ْ M=1/5 k=3/3 θb1=16
با در دست داشتن مقادیر فوق از نرمافزار Serenade جهت بدست آوردن ابعـاد مـدار چـاپی ) W پهنـای
خطوط) و ) L طول خطوط) اسـتفاده مـیکنـیم. بعـد از بدسـت آوردن ابعـاد فـوق، مـدار را بـا نـرمافـزار
Ansoft designer ترسیم نموده و بعد از تحلیل مدار فوق نیز نتایج اندازهگیری شده را بدست میآوریـم.
مدار چاپی آن در شکل (3-2) نشان داده شده است. و نتایج شبیهسازی در شکلهای (a) (4-2) و (b) نشان
داده شده است.

شکل :(3-2)مدار چاپی خط شانهای T شکل
٣۴

(a)

(b)
شکل S11:(a)(4-2)،S12،S13وS14 و(:(bپاسخ فازی کوپلر خط شاخه ای
مشاهده می شود S11 وS14 در فرکانس مرکزی کمتر از -20dB وS12 وS13 حدود -3dB میباشند.
حال با توجه به نتایج شبیه سازی اندازه گیری شده مستقیم و توان کوپل، افت بـالا بوسـیله سـاختار فلـزی و
افت تشعشعی دیده نمیشود . حوزه مدار کاهش یافته در مقایسه با کوپلر خط شاخهای مرسوم بـشتر از 55
درصد میباشد.
٣۵
مادر بخشهای بعدی مدار فوق را با اسـتفاده از بکـار بـستن (Defected ground structure)
DGS نیز مورد بررسی قرار خواهیم داد و اثرات DGS بر روی نتایج شبیهسازی مورد بررسی قرار خواهند
گرفت.
٢( 3 – کوپلر خط شاخهای π شکل
طراحی یک کوپلر خط شاخهای جدیدی که میتواند در دو فرکانس دلخـواه کـار کنـد از ویژگیهـای مـدار
پیشنهادی اندازه فشرده و ساختار شاخهای میباشد. فرمولهای طراحی روشن و واضـحی از ایـن مـدار بیـان
گردیده، چرا که موضوع مجهولات آن از قیبل امپدانس شاخههای خط مشخص گردیده اند.
فعالیتهایی جهت بررسی و رسیدگی نتایج شبیهسـازی شـده و انـدازه گیـری شـده از عملکـرد کـوپلر خـط
شاخهای میکرواستریپ در فرکانسهای 0/9 الی 2 گیگا هرتز انجام شده است.
کوپلرهای خط شاخهای از معروفترین مدارات پسیو استفاده شده در کاربردهای موج میلیمتری و میکرویـو
میباشند.
هایبریدهای λ / 4 طول موج [10] ,[9] مثالهای خوبی هستند که در باند فرکانسی مناسب دامنـه مـساوی و
فاز 90° در خروجی ایجادی میکنند. آنها عموماً در تقویت کنندههای بالانس شده و میکسرها برای بدسـت
آوردن یک افت برگشتی خوب استفاده شده و در جهت حذف سیگنالهای ناخواسته بوده، اگرچه بـه خـاطر
طبیعت ذاتی باند باریک ، طرح مرسوم بر روی خط انتقال λ / 4 بنا نهـاده شـده، کـاربردش در سیـستمهای
چند بانده و باند وسیع محدود گردیده است.
در سالهای اخیر، گزارشهای متفاوتی در رابطه با افزایش و بالا بردن پهنـای بانـد[11] و تکنیکهـای مـوثر در
کاهش سایز [14] ,[12] در مقالات مختلف عنوان گردیده اسـت. طراحـی کـوپلر خـط شـاخهای بـر روی
٣۶
المانهای توزیع شده فشرده بنا گردیده و همچنین برای کاربردهایی در دو باندفرکانسی نیز پیـشنهاد گردیـده
است. در [16] مولف یک ساختار صفحهای جدید را برای طراحی کوپلرهای خط شـاخهای دو بانـد عنـوان
کرده است هرچند مدار پیشنهاد شده از اشکالات زیر برخوردار می باشد:
-1 پهنای باند محدود ( کمتر از (10MHz
-2 افت داخلی و برگشتی بهینه نشده
-3 فضای اشغالی سابستریت آن خیلی بیشتر از کوپلرهای مرسوم بوده ( برخی از خطوط شاخهای، طولی به
اندازه 0/5λ را دارند)
درطرح پیشنهادی، تمام خطوط شاخهای تنها دارای طول λ / 4 بوده ( اندازه فشرده) و در فرکانس میـانی دو
تا باند فرکانسی بکار بسته شده، همچنین در مقایسه با طرح ذکر شده قبلی پهنای باند عملکرد وسیعتـری را
( > 100MHz ) ایجاد میکند، همچنین ایزولاسیون بین پورتهای بهتر و افت داخلی و برگشتی بهینـه تـری
را دارد ( بخش بعدی).
در قسمت بعد جهت آنالیزکردن، فرمولهای یک کوپلر خط شاخهای با فرمولهای واضح و روشـن نـشان داده
شده، در نهایت جهت رسیدگی و تحقیق، نتایج اندازهگیری و شبیهسازی شده ساختار کوپلر خـط شـاخهای
درباند فرکانسی (900/2000)Mhzکه با تکنولوژی میکرواستریپ ساخته شده آورده شده است.
( 4 – 2 فرموله کردن با استفاده از ماتریس خطوط انتقال
٣٧
شکل (5-2) طرح یک کوپلر خط شاخهای تک باند مرسوم توسط بخشهای خطوط انتقال بـا طـول λ / 4 را
نشان میدهد. در شکل (6-2) مدار معادل برای یـک خـط انتقـال λ / 4 پیـشنهاد شـده کـه شـامل خطـوط
شاخهای به طول الکتریکی θ و امپدانس مشخصه ZA بوده و به جفت المان موازی (jY)9 متصل گردیده.

شکل(:(5-2ساختار کوپلر خط شاخه ای یک بانده مرسوم

(a)

(b)
شکل((a):(6-2ساختار معادل پیشنهادی (b).خط شاخه ای λ / 4

٩ مقدار ادمیتانس خط
٣٨
حال جهت تحلیل ساختار پیشنهادی با در نظر گرفتن عدم افت و بکار بردن فرمـول ماتریـسها، پارامترهـای
ABCD ساختار پیشنهادی نشان داده شده در شکل((a)(6-2 بصورت زیر بیان میگردد.
(13-2) 0 jZ A Sinθ 1 0 Cosθ 1 Cosθ 1 jY 1 jYA Sinθ jY که این ماتریس در نتیجه به ذیل منتج می گردد.
jZASinθ Cosθ −ZAYSinθ (14-2) Cosθ −ZAYSinθ 2ZAYCotθ) 2 2 (1−ZA Y jYASinθ و نیز ماتریس بالا به صورت زیر خلاصه میگردد.
±jZT 0 jZASinθ 0 (15-2) 0 ±j  1 0 j Z T A Z Sinθ با معادل قرار دادن ماتریسهای بالا داریم:
Z A Sinθ ±ZT(16-2)
Cotθ
Y(17-2)
Z A
معادله (15-2) نشان میدهد که ساختار پیشنهاد شده معادل با بخشی از خط انتقـال بـا امپـدانس مشخـصه
ZT± و طول الکتریکی θ = ± 90° میباشد. مطابق با عملکرد یک مدار دو بانده (Dual – band) شـرایط
لازم ممکن است به صورت زیر داده شود.
٣٩
(18-2) Z A Sinθ1 ±ZT
(19-2) Z ASinθ2 ±ZT
کهθ1 و θ2 طولهای الکتریکی معادل شده خط شاخهای در باند فرکانسی مرکزی f1 و f2 میباشد.
روش معمولی حل معادلات (18-2) و (19-2) به صورت زیر میباشد:
3.......و2وn=1
(20-2) θ2  nπ −θ1 (21-2) f1  θ1 f2 θ2 (22-2) (1 −δ) nπ θ1  2 (23-2) (1 δ) nπ θ2  2 (24-2) f2 − f1 δ  f 2 f 1 در نتیجه طول الکتریکی خط شاخهای معادل شده در فرکانس مرکزی (θo)به صورت زیر تعیین میگردد
(θ0 ) = θ1 2θ2  n2π(25-2)

با قرار دادن معادلات (22-2) و (23-2) در معادلات (16-2) و (17-2) خواهیم داشت:
(26-2) ZT Z A  ( nδπ Cos( 2 ۴٠
nδπ ( tan( 2 f1 , f  Z A (27-2) y  nπδ ( − tan( 2 f2  , f Z A برای مقادیر 5.....و3وn=1 (28-2) ZT Z A  ( nδπ Sin( 2 nδπ ( −Cot( 2 f1  , f ZA (29-2) y  nπδ ( Cot( 2 f2 , f  ZA برای مقادیر..... 6و4وn=2 در معادلات بالا مقادیر مدار معادل داده شده بـرای دو بانـد فرکانـسی دلخـواه f1 وf2 کـه همـان y و ZA
هستند به دست میآیند.
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب
با در نظر گرفتن امپدانس خطوط عمودی zo=50Ω وخطوط افقی35 و طول الکتریکی 90درجه و نیـز قـرار
دادن آنها در serenade مقادیر طول(( L و پهنای خطوط (w) را بدست آورده و بادر نظـر گـرفتنf=1/45
و بستن مدار در قسمت شماتیک نتایج حاصل را می بینـیم.در شـکلهای((7-2 الـی (8-2) نتـایج حاصـل از
شبیه سازی کوپلر بدون استفاده از المانهای شنت در فرکانس مرکزی نشان داده شده است.
۴١

شکل(S13 ̦S12 ̦ S11:(7-2 وS 14 کوپلر بدون استاب
مشاهده می کنیم مادیرS11و S12 در فرکانس مرکزی کمتر از -20dB بوده یعنی پورت 1 از 4 ایزوله است
وS13وS12 حدوداً dB٣- می باشد .

شکل(:(8-2زاویهS 12 و S14 برای مدار بدون استاب
۴٢
(6-2 تحقق جهت دوبانده کردن مدار
دربخش قبل روش مشخصی برای طراحی یک کوپلر دو بانده (dual – band) به صورت فرمـولی تحلیـل
و تجزیه گردید. نتایج نشان میدهند روشهایی جهت انتخاب مقدار n و همچنین راههای مختلف در بدسـت
آوردن مقادیر المان شنت با ادمتیانس ورودی (Y) که در معادلات (27-2) و (29-2) توضیح داده شده بودند
وجود دارد.جهت معادل سـازی و نـشان داد ن توپولـوژی دو تـا مـدار در اینجـا مقـدار n را یـک در نظـر
میگیریم.
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)
با استفاده از معادلات (22-2) و (23-2) ادمیتانس ورودی یک استاب مدار باز بـه صـورت زیـر مـیتوانـد
باشد.
δπ ( Cot( f1 , f  2 ZΒ (30-2) yoc  ( δπ −Cot( f2 , f 2 ZΒ که در اینجا ZB نیز امپدانس مشخصه استاب مدار باز میباشد . از ایـن رو بـا ترکیـب معـادلات (27-2) و
(30-2) مقدار ZB به صورت زیر بدست میآید: (31-2) Z T ZB  δπ δπ ( )Tan( Sin( 2 2 ۴٣

شکل (9-2) ساختار کوپلر پیشنهادی با استاب مدار باز
در شکل (9-2) ساختار نهایی ( با ساده سازی بوسیله ادغام استابهای شنت موازی شده ) از یـک کـوپلر دو
بانده (dual – band) با تمام خطوط شاخهای جایگزین شده بوسیله مدار پیشنهاد شده شکل (6-2) نـشان
داده شده است و نتیجتاً مقادیر Z3, Z2, Z1 بوسیله معادلات زیر تعیین میگردند.
(32-2) 1 . Z0 Z1  ( δπ Cos( 2 2 (33-2) 1 Z2  Z0. ( δπ Cos( 2 (34-2) 1 . 0 Z Z3  δπ δπ 2 1  ( )Tan( Sin( 2 2
(2-6-2 استفاده از مدار اتصال کوتاه ( طول ( λ2

به طور مشابه ادمیتانس ورودی یک استاب اتصال کوتاه میتواند به صورت زیر بیان گردد:
۴۴
f1 , f Cotδπ Z B (35-2) ysc  Cotδπ − f2  , f Z B شکل (10-2) (مدار چاپی) Layout یک کوپلر اصلاح شده با اتصالات شنت کوتاه شده نشان میدهد کـه
امپدانس مشخصه استاب شنت به صورت زیر محاسبه میگردد.
(36-2) 1 . 0 Z Z3  δπ 2 1  )Tanδπ Sin( 2
شکل (10-2) ساختار کوپلر پیشنهادی با استاب اتصال کوتاه
در تئوری نیز کوپلر پیشنهاد شده میتواند در هر دو باند فرکانسی دلخواه عمل کرده، اما در عمل تعیین رنـج
امپدانسی ساختار کوپلر میتواند مقداری حقیقی پاشد.
۴۵
واضح است که با انتخاب مناسبی از شکل مدار برای رنجهای متفاوتی از کـسر پنهـای بانـد ( 0/2 تـا 0/3 و
همچنین 0/3 تا ( 0/5 کوپلر پیشنهاد شده ممکن است امپدانس خطوط که تنها 30 الی 90 اهم تغییر میکنـد
در آنها بکار برده شود.
( 7- 2 آنالیز(تحلیل) مدار π شکل خط شاخهای دو باند و مشاهده نتایج شبیهسازی :
جهت اثبات و تأیید عملکرد، یک کـوپلر خـط شـاخهای میکرواسـتریپ دو بانـده در فرکانـسهای 0/9 و 2
گیگاهرتز طراحی و شبیهسازی شده و روی کسری از پهنای باند محاسبه شده((δ= 0/38 بنا نهاده شدهاست.
ساختار فشرده یک استاب مدار باز با طول λ / 4 جهت بکار بستن نیز مورد استفاده قـرار گرفتـه اسـت . از
معادلات (32-2) الی (35-2) مقادیر Z3, Z2, Z1 حدود 42/7 و 60/6 و 54/4 اهم نیز بدست آمـده اسـت.
جهت بهتر کردن دقت کار، پاسخ فرکانسی ساختار کامل شـامل ناپیوسـتگی و اثـر زیـر لایـه (Substrate)
بهینه شده با استفاده از یک مدار شبیه سازی شده اشکال (11-2) الی (14-2) پاسـخ فرکانـسی شـبیهسـازی
شده مدار نهایی از یک کوپلر دو بانده را نشان میدهند. مطابق با اثر یـک اسـتاب شـنت تلفـات داخلـی در
فرکانس مرکزی (1.45GHz) صفر گردیده که به حذف هر سیگنال مداخله کننده کمک میکند. کوپلر فوق
سابستریتی با ثابت اللکتریک εr = 3/38 و ضخامت h = 0/81mm میباشد. حال با اسـتفاده از نـرم افـزار
Serenade ابتـدا مقـادیر خطـوط یعنـی پهنـای خطـوط W1 ،W2،W3و طـول آنهـا L1،L2،L 3 را در
فرکــانس مرکــز 1/45 بدســت مــیآوریــم و بــا بــستن مــدار در ایــن فــرمافــزار مقــادیر پارامترهــای
S11،S12،S13وS14را برای باند فرکانسی دوبل شبیهسازی کردهایم.
۴۶
جدول(:(1-2مشخصات الکتریکی وفیزیکی مدار در دو باند امپدانس طول الکتریکی پهنای خط طول خط Z1=42.7 θ1=90 W1=2.38mm L1=31.25mm Z2=60.4 θ2=90 W2=1.36mm L2=31.95mm Z3=54.4 θ3=90 W3=1.63mm L3=31.73mm
شکل(:(11-2نتایج شبیه سازی(افت برگشتی(S11
۴٧

شکل(:(12-2نتایج شبیه سازی(S12و(S13

شکل(:(13-2نتایج شبیه سازی((S14
پارامترهای تشعشتی در این شبکه آنالایزر روی رنج فرکانسی از 0/1 الی 4 گیگاهرتز انجام میگردد.
۴٨

شکل(:(14-2نتایج شبیه سازی(پاسخ فازمدار با استاب)
شکلهای (11-2) الی (14-2) پاسخ اندازهگیری شده کوپلر در فرکانـسهای مرکـز دو تـا بانـد عملکـرد کـه
0/9GHz و 2GHz میباشد نشان میدهند..افت برگشتی و ایزولاسیون پورت بهتر از -20dB در فرکانسی
مرکزی دو باند بدست آمده است هر چنـد تـضعیف سـیگنال بـالا تـر از 50dB جـذب شـده در فرکـانس
1/41GHz نیز میباشد.
درمقایسه با طراحی یک کوپلر تک بانده، افت داخلی اندازهگیری شده دردو پـورت خروجـی تنهـا 0/4dB
بالاتر از مقدار واقعی آن((-3db میباشدو این بـاور وجـود دارد کـه ایـن اخـتلاف اساسـاً ناشـی از وجـود
ناپیوستگیهای اتصالات و اثر انتهای باز نشان داده شده در شبیه سازی میباشد.
طراحی و بکار بستن کوپلر خط شاخهای فشرده صفحهای بالا نیز درطراحی کـوپلری بـا دو بانـد فرکانـسی
کوچک و بزرگ بکار میرود.
۴٩
فصل سوم:
طراحی مدار میکرواستریپ فشردهT شکل با اندازه کاهش
یافته در دو باند فرکانسی
۵٠
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه بـه رونـد
ارائه شده در دو بانده کردن کوپلرπ شکل ( 900MHz و (2400MHz
در این بخش ابتدا با روش دستی و استفاده از ماتریسهای ABCD کوپلرخط شاخهای و معـادل قـرار دادن
آن با ماتریس ABCD یک خط ±90°، طول الکتریکی و امپدانس مشخصه کوپلر خط شـاخهای بـا تبـدیل
θ به ' θ θ) f 2  ' (θ بوده را در حالت دو بانده معادل ساخته و در نهایت بوسیله برنامه ساده کامپیوتر که f1 بر اساس اطلاعات موجود نوشته شده، خطای موجود را در بدست آوردن θ و امپدانس مشخصههـایی کـه
برای هـر دو فرکـانس دلخـواه بـالا و پـائین 0/9GHz)و(2/4GHzصـدق کنـد بـا کمتـرین درصـد خطـا
0/4)درصد) درنظر میگیریم و با شرایط در نظر گرفته شده مقادیر θ و Z را بدست میآرویم.
همانطور که در بخش قبل نیز گفتیم با معادل سازی مدل T شکل خطوط استاب شنت متـصل شـده از نـوع
مدار باز بوده و این استاب خود باعث کاهش طول خط می گردد.
3 Sinθ' 3 jZ 3 Cosθ' 0 1 Sinθ' jZ Cosθ' A B (1-3) j − 1 1 1 j 3 Cosθ' 3 Sinθ' 1 jβ'2 Cosθ' Sinθ'  Z3 1 1 Z1 C D در بخش قبل مقادیر β2 و Z1 و Z1 ، Z1 بـا مقـادیر معـادل آن آورده شـده انـد و در اینجـا θ f2 θ' Z Z Z f 3 2 T 1 میباشد.
با معدل قرار دادن ماتریس فوق با خط -90 درجه داریم:
− jZ 0 Sinθ' jZ Cosθ' B A (2-3) T − j  T j 0 Cosθ' Sinθ'  ZT ZT C D ۵١
وبا ساده سازی روابط فوق داریم:
(3-3) Cosθ'1Cosθ'3 −kTanθ'2 Sinθ'1 Cosθ'3 −NSinθ'1 Sinθ'3  0 (4-3) N Cosθ'1 Sinθ'3 −kTanθ'2 Sinθ'1 Sinθ'3 NSinθ'1 Cosθ'3  − M (5-3) K 1 Cosθ'1 Sinθ'3 Cosθ'1 Cosθ'3  0 Tanθ'2 Sinθ'1 Sinθ'3 − − N N (6-3) Sinθ'1 Cosθ'3 KTanθ'2 Cosθ'1 Cosθ'3 NCosθ'1 Sinθ'3  −M در روابط بالا f2  θ'3 f2  θ'2 f2  θ'1 f 3 θ f 2 θ f θ 1 1 1 1 مقادیرf1 =900MHz و f2 =2400MHz می باشند. با ساده سازی روابط (3-3) و (4-3) به معادلا ت زیر میرسیم. (7-3) Cosθ'3 '1  − Sinθ M (8-3) Sinθ'3 − M Cosθ'1  N (2-3 استفاده از برنامه کامپیوتری ساده جهت بدسـت آوردن پارامترهـای مـدار دو
بانده
حال نیز برنامه ای با نرم افزار مطلب نوشتهایم و میخواهیم طولهـای الکتریکـی و امپـدانس مشخـصههـای
کوپلر و درنهایت سیرکولاتور موردنظر را در شرایطی بدست آوریم که خطاهای زیر حـاکم باشـند یعنـی در
آن واحد شرایط برای فرکانسهای بالا و همچنین پائین (استفاده از دو باند فرکانسی) موجود باشد.
۵٢
(9-3) N f 2 θ1 )Tan( f 2 Tan( 0.4 θ3 ) − M 2 f1 f1 (10-3) 0.4 θ3 ) f2 Tan( 2 − N 2 M θ2 ) − f2 Tan( f1 kN f1 (11-3) 0.4 θ3 ) f 2 Sin( M θ1 )  f 2 Cos( f1 N f1 برنامه نوشته شده در نرم افزار مطلب در پیوست الف ارئه شده است.
طول الکتریکی و امپدانس مشخصههایی که در شرایط خطای بالا بر قرار باشند جوابها میباشند کـه شـرایط
برای استفاده درحالت دو باند فرکانسی را دارند. θ1و θ2 وθ3 وZ1وZ2وZ3 در شرایط فـوق را مطـابق بـا
برنامهای که آورده شده بدست میآیند.
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محـیط ( نـرم افـزار) مختلـف و
مشاهده نتایج حاصل
با قرار دادن مقادیر بدست آمده از برنامه نوشته شده که برای استفاده در دو باند فرکانـسی دلخـواه در نظـر
گرفته شده در روابط زیر و یا با استفاده از محیط serenade طولهای Lm1و)Wm1پهنا وطول خط شاخه
اصلی)Lm3و)Wm3پهنا وطول خط متصل به Zm1 در خط اصلی)Lm2و)Wm2پهنا وطول استاب مـدار
بــاز در خــط اصــلی)Lb1 و )Wb1پهنــا وطــول خــط متــصل بــهZm2در خــط عمــودی)وLb1
،Wb1،Lb2وWb2را بدست میآوریم.
۵٣
(12-3) 4 π εr −1 1 Z 0 2(εr 1) 1 (1/ εr )Ln π )  2 (εr 1)(Ln 2  119.9  H (13-3) −1 1 1 exp H W ( − ( 4 exp H 1 8 h (14-3) −2 4 Ln 1  π )(Ln 1 εr − 1 − 1 εr  ε eff  ) ) 1 π εr 2 1 εr  2H ' 2
با در دست داشتن مقادیر فوق مدار را در نرم افزارهـای Serenade و Advance designer (ADS)
sys-- ترسیم و نتایج شبیهسازی راعلاوه در ansoft مشاهده میکنیم منتهی در نهایت مقدار پهنـای بانـد
را حدوداً در Optimom 10% کرده و نتایج حاصل در زیر آورده شده اند.
h = 0/762mmεr =3/55 Tanδ  0. 022
در شکلهای((1-3و((2-3و((3-3 شماتیک ومدارچاپی و پاسخ مـدار شـبیه سـازی شـده در نـرم افزارهـای
مختلفی نشان داده شده است.

(a)
۵۴

(b)
شکل((a ) 🙁 1-3شماتیک (b)مدارچاپی (designer,hfss)ansoft
در جدول((1-3و(2-3 )با در دست داشتن مقادیر ابتدایی از المانهای مدار که توسط روابـط((12-3 الـی(-3
(14بدست آمده اند بازهای جهت حد بالا وپایین المان ها در نظر گرفته شده است و به سمت اهدافی که در
جدول((2-3 امده optimom انجام می گردد
.جدول(:(1-3دو بازه فرکانسی ودو هدف مورد نظر پروژه 905mhz 895mhz Frange1 باند فرکانس اول
2.45ghz 2.35ghz Frange2 باند فرکانس دوم
-20db lt ms12=-3.5db w=3 ms13=-3.5db w=3 ms14 -20db lt ms11 Goals1 هدف اول
-20db lt ms12=-3.7db w=3 ms13=-3.7db w=3 ms14 -20db lt ms11 Goals2 هدف اول
۵۵
جدول(:(2-3بازه بالا وپایین جهت optimom هدف بازه بالا مقدار اپتیمم شده بازه پایین نام المان
7MM? 5.69180mm ?5mm lb1
12.5MM? 11.35000mm ?10mm lb2
41MM? 39.57900mm ?37mm lb3
11.5MM? 10.77600mm ?9.5mm lm1
16.5MM? 15.36700mm ?14.5mm lm2
40MM? 38.67200mm ?37mm lm3
0.8MM? 0.16152mm ?.08mm wb1
1.2MM? 0.95112mm ?0.6mm wb2
2.5mm? 1.45870mm ?0.8mm wb3
2.1MM? 1.65260mm ?1mm wm1
0.5MM? 0.20507mm ?0.1mm wm2
3.5MM? 2.70090mm ?2mm wm3
2.5MM? 0.20010MM ?0.1mm wp

(a)
۵۶

(b)

(c)
شکل(S 11 :(2-3، S12،S13و S14 مدار شبیه سازی شده در ADS(c) SERANADE(b) ANSOFT(a)
۵٧

شکل(:(3-3پاسخ فازی مدار 2بانده
مشاهده میگردد که مقدار پارامترهای تضعیف در 0/9 و 2/4 گیگاهرتز -3dBو -20dbمیباشند.
در بخش بعدی در مورد اثرات DGS و مشاهده تاثیرات آن بروی این کوپلر بحث میکنیم.
۵٨
فصل چهارم:
بررسی انواع مختلف DGS و اثرات آن بر روی خطوط
میکرواستریپ
۵٩
DGS (1-4 چیست؟
DGS نیز شبکهبندی قلم زده شده ای است با شکل اختیاری که بر روی صفحه زمین قـرار مـیگیـرد و در
شکلهای T ، H ،دمبلی و حلزونی و...بکار میروند.
در شکل (1-4) انواع مختلف DGS نشان داده شده است.

شکل(H(a) :(1-4 شکل T(b) شکل (c) هلزونی شکل (d) دمبلی شکل
(2-4مشخصات کلی DGS
در ساختار DGS مشخصه های زیر رامی توان عنوان کرد:
-1 تغییر اندازه شکاف باند نوری . (PBG)10
-2 دارا بودن ساختارهای پریودیک وغیر پریودیک.
-3 به سادگی نیز مدار معادل LC را میسازد.

10 Photonic band gap
۶٠
(3-4 کاربردهای DGS
-1 در تشدید کنندههای صفحهای
-2 بالا بردن امپدانس مشخصهخط انتقال
-3 استفاده در فیلتر ،کوپلر و سیرکولاتور، اسیلاتور، آنتن و تقویت کنندهها
(4-4 ویژگیهای DGS
-1 پوشش میدان روی صفحه زمین را مختل میکند.
-2 بالا بردن ضریب گذردهی موثر.
-3 بالابردن ظرفیت موثر و اندوکتانس خط انتقال
-4 از بین بردن هارمونیکهای اضافی با تک قطب کردن ویژگی ) LPF11 فرکانس قطع و تشدید)
(5-4اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ
DGS نیز بوسیله الگوی کـم کـردن قلـم زنـی، در صـفحه زمـین مـدار ایجـاد مـی گـردد.. در ابتـدا خـط
میکرواستریپی با الگوی DGS از نوع دمبلی شکل نشان داده شده است و تـأثیر شـکاف بانـد خـوبی را در
بعضی ار فرکانسهای معین نیز ایجاد می کند .[21]
DGS در طراحی مدارات امواج میلیمتری و مایکرویو خیلی زیاد بکار میرود . اخیراً DGSهای متوالی بـا
کاستن الگوهای مربعی از مدارات صفحهای کـه ویژگیهـای Slow wave و stop band بـسیار خـوبی را

11 Low pass filter
۶١
تولید میکنند مورد بررسی قرار گرفته که در تقویت کنندهها و اسیلاتورها بیشتر مورد استفاده قرار گرفتهانـد
.[23] [ ,22]
در مقایسه با DGS پریودیک قبلی [21] و [22] یک نـوع DGS پریودیـک بهتـر و قـویتـر نیـز پیـشنهاد
1
گردیده که ابعاد مربعات کاسته شده متناسب با توزیع دامنه تابع نمـایی ) e n کـه n عـدد صـحیح اسـت)

میباشد.
در شکل((2-4مدار دو پورتی بدون DGS نشان داده و پارامترهـایS حاصـل از آن بـا ansoft در شـکل
(3-4) آمده است.

شکل(:(2-4خط میکرواستریپ دو پورته باεr=10 وh=1.575

شکل(:(3-4پارامترهایSمدار شکل((2-4
۶٢
به منظور بررسی این اثرات توسط DGS پریودیک نیز یک عدد مدار DGS پریودیک متحدالـشکل و دو
تا مدار DGS پریودیک قوی شده نیز در اینجا طراحی و اندازهگیری شدهاند. اندازهها نـشان مـیدهنـد کـه
نمایشهای اخیر اجرای نقش دقیقی توسط متوقف شدن رپیل و بزرگ کردن پهنـای بانـد را ایفـا مـیکنـد.در
شکل((4-4 دو پورتی با DGS دمبلی شکل نشان داده شده و نتیجه شبیه سازی شده این خـط بـا ansoft
در شکل((5-4رسم گردیده است.

شکل(:(4-4مدا با DGS دمبلی شکل

شکل(:(5-4پارامترهایS مدار باDGS دمبلی شکل
در بالا می بینیم فرکانس قطع ومقدار تضعیف کاهش می یابند.
( 1 – 5 – 4 الگویDGSدمبلی شکل و ویژگی شکاف باند
۶٣
نمای شماتیک مدار دمبل شکی DGS در شکل (4-4) نشان داده شده است .خـط میکرواسـتریپ رو قـرار
گرفته و DGS نیز در زیر صفحه فلزی زمین قلم زده شده است. طرح DGS توسط خطوط دش مـشخص
شدهاند. پهنای خط نیز برای امپدانس مشخصه 50 اهم تعیین گردیده است. ضـخامت سابـستریت زیـر لایـه
1/575 میلیمتر و ثابت دی الکتریک εr = 10 میباشد. در [20] آمده که شـکاف قلـم زده شـده و کاسـتن
مربعی قلم زده شده با ظرفیت موثر خط و اندوکتانس خط نیز متناسب میباشد و وقتی ناحیه قلـم زده شـده
کاسته شده مربع شکل کاهش می یابد و فاصله شکاف نیز 0/6 میلیمتر نـشان داده شـده اسـت، انـدوکتانس
موثر کاهش یافته و این کاهش اندوکتانس نیز فرکانس قطع (fc) را بالا میبرد که این قضیه در شکل (7-4)
نشان داده شده است. در اینجا ما نیز این کار را با Ansoft انجام دادهایم.
( 2 – 5 – 4 ایجاد DGS دمبلی پریودیک قویتر
نمایش شماتیک DGS پریودیک با الگوهای مربعـی واحـد بـرای مـدارات صـفحهای [21] نـوع 1 نامیـده
میشود که در شکل (6-4)(a) آمده است.مدار ما در اینجا نیز خـط میکرواسـتریپ 50 اهمـی و نیـز5 عـدد
الگوهای مربع متحدالشکل با دوره یکسان d = 5mm میباشند.پهنای طرفین مربعها و فاصله شکاف هـوایی
ما بین آنها 4/5 (g) میلیمتر و 0/6 میلیمتر میباشند.
براساس نوع 1 ، متحدالشکل بودن توزیع پنج عدد الگوی مربعی توسط یک شکل غیر واحد توزیع میگردد.
حوزه المانهای مربعی نیز متناسب با توزیع دامنه تابع نمایی e1/ n میباشد.در اینجا دامنه سـوم از پـنج المـان
مربعی شکل نیز 4/5mm میباشد.پس نوع دوم بوده و دامنه المـان توزیـع شـده بـر اسـاس زیـر مـشخص
میگردند.
2/3mm2/7mm4/5mm(1-4)
۶۴

شکل (a) :(6-4) نوع1 ، (b) نوع2، (c) نوع3
استفاده از توزیع ارتفاع غیر واحد DGSهای پریودیک، نوع دوم را تشکیل می دهند که در شکل (6-4)(b)
نشان داده شده است. براساس نوع دوم، دیگر مدار DGS پریودیک قوی شـده، یـک خـط میکرواسـتریپ
جبرانی را دارد که نوع سوم نامیده میشود. در شکل (6-4)(c) آمده است.خط میکرواستریپ جبرانی شـامل
۶۵
یک خط 50 اهمی و یک خط عریض میباشد. همچنین بزرگی المانهای DGS توسط رابطه سوم مشخص
گردیده است. المانهای الگوی مربعی غیر هم شکل نیز دارای دوره مساوی d=5mm بوده و فاصـله هـوایی
ثابت d = 0/6mm دارند که در شکل (6-4) نوع دوم و سوم خطوط میکرواستریپ رو قـرار دارد و DGS
ها نیز در صفحه زمین فلزی کنده شده و توسط خطوط دش مشخص شدهاند.
(3-5-4اندازهگیریهای مربوط به DGS دمبلی شکل
سه نوع مدار DGS پریودیک که ذکر شدند مورد بررسی و اندازهگیری قرار گرفتهاند، نتایج اندازهگیری نیـز
در شکل (8-4)((a)-(c)) نشان داده شده هستند . این نتایج به طور خلاصه در جدول (1-4) آمده است.
جدول(:(1-4مقایسه DGS های واحد وپریودیک وتوزیع نمایی

شکل(:(7-4پارامترهایS برای DGS دمبلی شکل
۶۶

(a)

(b)

(c)
شکل(:(8-4 مقایسه پارامترهای S مدارهای (a) DGSنوع(b) 1نوع(c) 2 نوع3
۶٧
سابستریت این مدارات دارای h = 1/575 و εr = 10 هستند. این اندازه گیـریهـا توسـط Ansoft انجـام
شده و نشان داده شدهاند.
همان طوری که در جدول آمده، 20dB ایزولاسیون پهنای باند برای انواع 1و 2و 3 نیز در فرکانسهای 3/05
و 4/18 و 4/26 گیگاهرتز میّاشند.
مدارهای DGS پریودیک پیشنهاد شده نوع 2و 3 پهنـای بانـد ایزولاسـیون 20dB را بهتـر 37% و (39/7%
میکند.در ناحیه پائین گذر، اولین افت برگـشتی و پیـک افـت برگـشتی بـرای نـوع 3، مقـادیر -46/7dB و
-30/9dB بوده و در صورتیکه این مقادیر در نوع 1 نیز -10/8dB و -4/9dB هستند.اولین افت برگشتی و
ماکزیمم افت برگشتی نیز در 4 بار (لحظه) بهتر شده و بنابراین ر پیلها به صورت موثری از بـین رفتـهانـد و
پهنای باند موثر برای نوع سوم افزایش و فرکانس قطع 3dB به صورت مختصر و کم تغییر پیدا میکند.
(6 – 4بررسی اثرات DGS های هلزونی بر روی هارمونیکهای تقسیم کننده توان
در اینجا نشان خواهیم داد تکنیکهای موثری از حذف هارمونیک دوم و سوم برای یـک تقـسیم کننـده تـوان
ویل کینسون (WILLKINSON)با استفاده از DGS هلزونی شکل را، که ما در مدار کـوپلر از ایـن نـوع
DGS استفاده کردهایم.
شکاف باند الکترومغناطیسی و برهم زدن ساختار زمین اخیـراً نیـز کـار بردهـای متفـاوتی را در مـایکرویوو
فرکانس موج میلیمتری با شکلهای مختلف دارند [22] و [24] و DGS خط میکرواستریپ نیـز بـا بـر هـم
زدن مصنوعی صفحهای زمین در ویژگی رزونانس مشخـصه انتقـال تغیراتـی ایجـاد مـیکنـد. در یـک خـط
میکرواستریپ مطابق با اندازه DGS یا بر هم زدگی که روی صفحه زمین ایجاد میگردد، حذف باند بیـشتر
۶٨
در فرکانس رزونانس صورت میگیرد. همچنین DGS باعث بوجود آمدن اندوکتانس موثر اضـافی در خـط
انتقال میگردد. افزایش اندوکتانس موثر از ایجاد DGS باعث افزایش طول الکتریکی خط انتقال نـسبت بـه
یک خط متداول میگردد که خود نیز باعث کاهش اندازه مدارات موج میلی متر و مایکرویو میگـردد. [21]
، در طراحی فیلترها ،تقسیم کنندههای توان و تقویت کنندهها، ویژگی حذف باند و اثر موج آهـسته (Slow
wave) توسط DGS نیز بسیار مورد نظر می باشد [22]و [23]
هارمونیک های ناخواسته تولید شده با ویژگی غیر خطی مدارات اکتیو نیاز به حذف کردن دارند. در مدارات
مایکرویو و فرکانس بالا ویژگی حذف باند توسط DGS میتوانـد در متوقـف کـردن هارمونیکهـای مـورد
استفاده قرار گیرد [22] و .[23] با یـک DGS هلزونـی شـکل متقـارن، (یـک تـک ( DGS حـذف تـک
هارمونیک را خواهیم داشت، وDGS پریودیک در جهت حـذف هارمونیـک دوم و سـوم بکـار مـی رونـد.
DGS های آبشاری و پشت سرهم باعث افزایش افت داخلـی شـده و بهمـین دلیـل در مـدارات بـا انـدازه
کوچک نیز استفاده از ان محدود گردیده است. در اینجا ساختار DGS هلزونی شکل غیر متقارن نیز جهـت
حذف هارمونیکهای دوم و سوم بطور همزمان پیشنهاد گردیدهاند. به طور مـوثر یـک تـک DGS هلزونـی
غیرمتقارن باعث از بین بردن باند فرکانس دوم میگردد و نیاز به ناحیه کوچکی هم جهت نقش بـستن دارد.
تقسیم کننده توان ویل کینسن با بکار بستن یک DGS هلزونی غیـر متقـارن در خطـوط λ4 باعـث حـذف

هارمونیک دوم شده و اندازه آن نیز با اثر موج آهسته کاهش مییابد. مشاهده میگردد به دلیل ذکـر شـده در
این پروژه ما از این گونه DGS استفاده ننمودهایم. تقسیم کننده Willkinson پیشنهاد شده به خـوبی یـک
تقیسم کننده توان مرسوم، در فرکانس کار خواهد بود.
۶٩
(7-4مدل مداری و هندسه DGS هلزونی نا متقارن
در شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ که ابعـاد کنـده شـده هلزونـی
شکل در سمت راست و چپ متفاوت از یکدیگر هستند آمده است. برای هندسه این DGS نامتقارن مطابق
با کنده شدهگی سمت چپ و کندهشدگی سمت راست دوتا فرکانس عملکرد متفاوت وجود دارد. مشخـصه
انتقال خط میکرواستریپ با هندسه DGS نامتقارن ویژگی حذف باند در فرکانس تشدید را دارد.

شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ
فرکانس تشدید ممکن است با تغییر کردن ابعاد DGS عوض گردد. مقایسه مشخصه انتقال DGS هلزونـی
با ابعاد مختلف متقارن و غیرمتقارن در شکل (10-4) آمدهاست. امپدانس مشخصه خط 50 اهـم مـیباشـد.
برای هندسه هلزونی متقارون ( A=A'= 3mm و (B=B' = 3mm تنها یـک فرکـانس تـشدید (
(f=2/93GHz وجود دارد در صورتی که در یک DGS غیر متقارن فرکانس تشدید به دو فرکانس مختلـف
تبدیل میگردد. برای یک DGS نامتقارن با A = A' = 3/5mm و B = B' = 2/6mm همان طوری که در
شکل (10-4) مشاهده میگردد دو فرکانس تشدید مختلف دیده میشـودf=2/56GHz وf=4/22GHz کـه
این نتایج نشان میدهند DGS هلزونی نا متقارن با اندازههای متفاوت روی صفحه زمین در دو طرف خـط،
٧٠
فرکانسهای رزونانس مختلف را میتوانند ایجاد کنند.در هندسه نا متقارن DGS نیز میخواهیم بدانیم که بـه
چه صورتی فرکانس تشدید مطابق با بر هم زدگی چپ و راست خط با تغییـر انـدازه بـر هـم زدگـی رفتـار
میکند.

شکل(:(10-4پارامترهای انتقال خط با DGS متقارن( ( A = A' = B' = 3mm ونامتقارن A = 3/4m) و (B = 2/6 mm

شکل(:( 11-4 فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از B/A
٧١
فرکانس تشدید ناشی از بر هم زدگی سمت چپ خط و سمت راست خط در شکل (11-4) بعنوان تابعی از
اندازه بر هم زدگی سمت راست وقتی که اندازه سمت چپ ثابت باشد (A = A' = 2mm) رسم گردیـده
است. اندازه این آشفتگی هلزونی به صورت یک مربع در نظر گرفته شده (B = B' , A = A') .وقتـی کـه
اندازه برهم زدگی سمت راست از مقدار سـمت چـپ کـوچکتر اسـت (B/A<1)، فرکـانس رزونـانس در
سمت راست نیز بزرگتر از مقدار سمت چپ خواهد بود. هنگامیکه مقدار A با B برابر گردد دو تا فرکـانس
رزونانس ازهم پاشیده شده و به یک فرکانس تبدیل میگردد DGS) متقارن). باز وقتی کـه بـر هـم زدگـی
سمت راست افزایش پیدا کند B/A) زیاد شود)، فرکانس تشدید ناشی از بر هم زدگـی سـمت راسـت نیـز
کاهش مییابد. از این رو اندازه سمت چپ ثابت شده و مشاهده میگردد که فرکانس رزونانس ناشـی از بـر
هم زدگی سمت چپ تغییرات آهستهای خواهد داشت تا وقتی که B/A مقدار واحد شود.
مشخصه فرکانسی یک DGS متقارن با مدار رزوناتور RLC موازی میتواند مدل گردد. پارامترهای مـداری
معادل نیز از مشخصه انتقال شبیهسازی شده میتواند گرفته شود.
DGS نا متقارن نیز میتواند با دو تا رزوناتور RLC موازی که به صورت سدی متصل شدهاند مدل گـردد.
شکل((12-4، به همین جهـت مشخـصه انتقـال آن دو تـا فرکـانس تـشدید متفـاوت دارد. در مـدار معـادل
پارامترهای مدار اولین رزوناتور از مشخصه فرکانسی رزونانس بر هم زدگی سمت چپ گرفتـه مـیشـود در
حالیکه رزوناتور دوم بوسیله مشخصه رزونانس بر هم زدگی سمت راست مشخص می گردد. از نتـایج شـبیه
سازی پارامترهای اسکترینگ، پارامترهای مدار رزوناتور برای بر هم زدگی سمت چپ و راست بـه صـورت
زیر مشخص میگردند.
(۴-٢) C L,R W CL,R  ( 2 −W 2 (W 0 2Z C L,R 0 L,R ٧٢
(۴-٣) 1 LL,R  4π2 f02 L,R CL,R (۴-۴) 2zo RL,R  1 1 ))2 −1 − (2Z0 (W0 L,R CL,R − W0 L,R LL,R S11 (W0 L,R )2
شکل( 🙁 12-4 مدار معادل بخش DGS هلزونی نامتقارن
در اینجا اندیس R, L نیز پارامترهای برهم زدگی سمت چپ و راست را بیان می کنند. W0 فرکانس تشدید
و WC فرکانس قطع -3db را مشخص میکنند. Z0 امپدانس مشخصه خط انتقال می باشد.
(8-4حذف هارمونیکها در مدار مقسم توان
مقسم توان کاربردهای گوناگونی از قبیل توزیع توان سیگنال ورودی از آنتن و تقویت کنندههای توان بـالای
مایکرویو دارد. با قرار دادن فیلتر حذف هارمونیک در داخل مقسم توان ناحیه خروجـی فیلتـر کـاهش پیـدا
میکند .[23] جهت حذف هارمونیک نیز میتوان از استاب مدار باز در مرکز شاخههای بـا طـول λ4 مقـسم

توان استفاده نمود.
اگر DGS را بعنوان فیلتر هارمونیک اضافی استفاده کنیم میتوانیم با در نظر گرفتن کاهش سایز مقسم تـوان
که منجر به اثر (Slow – wave) میگردد نیز هارمونیک را حـذف نمـود. از ایـن رو یـک DGS متقـارن
٧٣
میتواند تنها یک سیگنال هارمونیک را حذف کند. ما نیاز به قرار دادن دو تا DGS به صـورت آبـشاری در
λ
هر شاخه ( ( 4 داریم تا هارمونیک دوم و سوم را حذف کنیم. هر چند ناحیه مقسم توان جهت گذشتن دو تا

DGS به صورت پریودیک در هر شاخه مقسم توان نیز محدود میگردد. DGS غیر متقارن هم، سـاختاری
موثر در جهت حذف هارمونیک دوم و سوم به صورت همزمان می باشد. [22]
شکل (13-4) (a) هندسه یک DGS هنرونی نامتقارن جهت حذف هارمونیـکهـای سـوم و دوم را نـشان
میدهد. در اینجا فرکانس عملکرد مقسم توان نیز 1/5 گیگاهرتز میباشد.

شکل(DGS (a): (13-4 هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این DGS
ناحیه بر هم زده شـده سـمت چـپ و راسـت رزونـانس هارمونیـک دوم و سـوم طراحـی شـدهانـد. 3) و
4.5گیگاهرتز). ابعاد طراحی شده این سـاختار D=2/4mm و A = 3 mm D' = S = G = 0/2mm و
A' = 3/2 mm، B = 2/4 mm و B' = 2/6 mm و امپدانس مشخصه خـط نیـز 70/7 Ω مـیباشـد.
٧۴
شکل (13-4) (b) مدار معادل DGS نامتقارن در شکل (13-4) (a) را نشان مـیدهـد. پارامترهـای مـدار
بوسیله پارامترهای اسکترینگ سیموله شده بوسیله روابط (2-4) تا (4-4) محاسبه میگردند.
شکل (14-4) نیز پارامترهای S محاسبه شده بوسیله شبیه سازی (EM) بـرای DGS نامتقـارن شـکل (a)
.(13-4) و محاسبه شده مدار معادل شکل (13-4)(b) را نشان میدهند. در هر دو تا شـبیه سـازی مـشاهده
میگردد که بوسیله DGS نامتقارن واحد، هارمونیکهای دوم و سـوم در فرکانـسهای 4. 5 , 3 گیگـا هرتـز
حذف میگردند.

شکل( ( 14- 4 پارامترهای S مدار با DGS هلزونی به صورت EM و شبیه سازی شماتیک
مشاهده میگردد که S12 موافق رنج فرکانسی پهن و S11 نیز در جهت حذف هارمونیک مقسم تـوان اصـلی
بکار میرود. یک مقسم توان معمولی در شکل (15-4)(a) مشاهده میگردد و نیز مقسم توان پیـشنهاد شـده
با DGS غیر متقارن در شکل (15-4)(b) آمده است. در اثر موج آهـسته (slow – wave) بـودن DGS
نیز اندازه مقسم توان پیشنهادی کاهش یافته است. اندازه L' = 17/3 mm در مقایسه L = 19mm حـدود
9/1 % کاهش یافته است.
٧۵
پارامترهای S شبیه سازی شده مقسم توان معمولی و پیشنهادی در شکل (16-4) آمده است.

شکل( ( 15- 4 هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن
در (16-4) (b)، فرو نشاندن حدود18 dB برای هارمونیک دوم و سـوم بـا وارد کـردن DGS نامتقـارن در
خط انتقال ( ( λ4 مقسم توان مشاهده میگردد. افـت برگـشتی بـرای فرکـانس 1/5 GHZ در هـر دو مـشابه

یکدیگر می باشند، حتی با وارد کردن DGS نامتقارن در مدار.
شکل (17-4) نیز قسمت رو و زیر از یک مقسم توان ویل کینسن با وارد DGS هلزونی نامتقـارن را نـشان
میدهد. در شکل (a) (18-4)، S11 اندازهگیری شـده را نـشان مـیدهـد. افـت برگـشتی در فرکـانس 1/5
گیگاهرتز – 40dB بوده. S21 نیـز در شـکل (18-4)(b) بعنـوان تـابعی از فرکـانس آمـده اسـت. توقیـف
هارمونیک دوم (3 GHZ) نیز 18dB و هارمونیک سوم در فرکانس (4/5 GH) نیز 15dB میباشد.
٧۶

شکل ( ( 16- 4 نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با DGS

شکل( ( 17-4 مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار
٧٧

شکل( ( 18- 4 نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(S12(b)S11(a
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی
ابتدا مدار شکل (3-2) را با اسـتفاده از DGS هلزونـی شـکل نیـز آنـالیز و نتـایج آن را در شـکل((19-4
مشاهده میکنیم
٧٨

شکل(:(19-4مدار بااستفاده از (a) DGSیک بعدی((bدو بعدی
در شکل (a)(20-4)و((b نتایج شبیه سازی حاصل از مدار قلم زده شده DGS و بدون استفاده از آن را
نشان میدهند.
٧٩

شکل((a):(20-4نتیجه شبیه سازی کوپلر با استفاده ار (b) DGSبدون استفاده از ((a)(3-2)) DGS
با مشاهده نتایج بالا به پایین آمدن فرکانس قطع و slow wave شدن پاسخ نیز پی می بریم.
(10-4مشاهده اثرات DGS روی مدار طراحی شده در این پروژه
در شکل (21-4) نوع DGS استفاده شده در این کوپلر آورده شده است.ونتیجـه ansoft در شـکل((22-4
مشاهده میگردد.
٨٠

شکل(:(21-4کوپلر باH DGS شکل در شاخه خطوط

شکل(:(22-4پارامتهای Sحاصل از به کار بستن DGS
٨١
فصل پنجم
چگونگی استفاده از کوپلر بدست آمده در طراحی سیرکولاتور
٨٢
(1-5 طراحی سیرکولاتور
یک سیرکولاتور 4 پورته فشرده نیز می تواند به وسیله یک کوپلر خط شاخه ای و شیفت دهنده فاز( پیوست
پ) نیز ساخته شود.این شیفت دهنده فازی همراه با ورودی و خروجی خط همواره مچینگ امپدانسی داشته
و دارای تضعیف صفر می باشد.در اینجا ما از زیراتور به عنوان شیفت دهنده فازی استفاده کرده ایمر .[26]
یکی از ترکیبات نا متقابل استاندارد ژیراتورها هستند که دارای 2 پورت بوده وشیفت فاز تفاضلی 180 درجه
ایجاد می کنند.نماد شماتیک برای یک ژیراتور در شکل (1-5)آمده است و ماتریس اسکترینگ برای یک
ژیراتور واقعی در زیر آمده است.
(1-5)

π
شکل(:(1-5نماد ژیراتور
که این ماتریس نشانه عدم افت ،مچ شده ونا متقابل بودن آن است.


s−0 11 0
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر

۴ ١
٢ π ٣
شکل(:(2-5سیرکولاتور 4پورته متشکل از دو مدار هایبریدی و ژیراتور
٨٣
استفاده ژیراتور به عنوان بنا ساخت در ترکیب با مقسم دو طرفه و کوپلرها میتواند منجر به ایجاد مدارات
مفید همچون سیرکولاتور گردد .در شکل (2-5) مدار معادل سیرکولاتور 4 پورته متشکل از دو مدار
هایبریدی و درشکل (4-5) سیرکولاتور ساخته شده با استفاده از یک ژیراتور ودو کوپلر را نشان میدهد.

شکل(-5٣):سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور
مدار پیشنهادی با ایجاد شیفت فاز 180 درجه باعث عبور از پورت 1به2،2 به3،3به4و4به1 می گردد. در
شکل (4-5) نتایج شبیه سازی مدار طراحی شده آمده است.