Neda Bathaei

7-1 تفاوت بین UWB و طیف گسترده ................................ ....................................................................... 15
1-7-1 رشتهی پیوستهی طیف گسترده ................................................................................ (DSSS) 15
2-7-1 جهش فرکانسی طیف گسترده .................... ................................................................(FHSS) 15
3-7-1 تفاوتهای اساسی بین UWB و طیف گسترده ......................................................................... 15
8-1 روشهای پیاده سازی سیستم فراپهن باند ................................ ............................................................ 16
1-8-1 سیستم ............................................(Code Division Multiple Access) CDMA 16
2-8-1 سیستم .......... (Orthogonal Frequency Division Multiplexing) OFDM 18
.2 فصل دوم: مخلوطکنندههای فرکانسی ..........................................................MIXER 19
1-2 تاریخچه ................................................................ ...................................................................................... 20
2-2 انواع میکسر ................................................................ ................................................................................ 21

و
1-2-2 میکسرهای غیر فعال ................................................................................................ 22 .........................
2-2-2 میکسر گیلبرت ................................................................................................................................... 24
3-2 کاربرد میکسر ............................................................................................................................................. 28
4-2 عملکرد میکسر ........................................................................................................................................... 29
1-4-2 میکسر به عنوان یک ضرب کننده .................................................................................................. 29
2-4-2 عملکرد میکسر به کمک یک سوئیچ .............................................................................................. 30
.3 فصل سوم: بررسی میکسرهای توزیع شدهی فراپهن باند ............................................................ 32
1-3 مقدمه .......................................................................................................................................................... 33
2-3 مدارات توزیع شده ..................................................................................................................................... 34
3-3 بررسی عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی ............................... 35
4-3 میکسر سلول گیلبرت توزیع شده ........................................................................................................... 39
1-4-3 بهرهی تبدیل ...................................................................................................................................... 40
2-4-3 تکنیک تزریق جریان ......................................................................................................................... 40
3-4-3 تکنیک پیکینگ سلفی ...................................................................................................................... 42
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده ............................................................................... 44
1-5-3 ساختار میکسر .....................................................................................................................[18] 1 44
2-5-3 ساختار میکسر .....................................................................................................................[12] 2 45
3-5-3 ساختار میکسر .....................................................................................................................[19] 3 45
4-5-3 ساختار میکسر .....................................................................................................................[20] 4 46
5-5-3 ساختار میکسر .....................................................................................................................[21] 5 47
6-5-3 ساختار میکسر .....................................................................................................................[22] 6 48
7-5-3 ساختار میکسر .....................................................................................................................[23] 7 49
8-5-3 مقایسه ساختار های متفاوت میکسرهای فراپهن باند ................................................................ 51
.4 فصل چهارم: تحلیل اعوجاج و نویز در میکسر فراپهن باند .......................................................... 52
1-4 مقدمه .......................................................................................................................................................... 53
2-4 میکسر یک عنصر غیر خطی .................................................................................................................... 53
3-4 مدل غیر خطی گیرنده ............................................................................................................................. 54
4-4 اثرات اعوجاج در سیستمهای فراپهن باند ............................................................................................. 54
1-4-4 تولید هارمونیک .................................................................................................................................. 55
2-4-4 فشردگی بهره ...................................................................................................................................... 55
3-4-4 اینترمدولاسیون .................................................................................................................................. 56
4-4-4 اینترمدولاسیون مرتبهی دوم .......................................................................................................... 56
ز
5-4-4 اینترمدولاسیون مرتبهی سوم ......................................................................................................... 57
6-4-4 اعوجاج در سیستمهای متوالی ........................................................................................................ 59
7-4-4 مشخصات خطی گیرنده ................................................................................................................... 59
5-4 بررسی نویز میکسر به عنوان یک عنصر غیر خطی .............................................................................. 60
1-5-4 پردازش نویز متغیر با زمان .............................................................................................................. 60
2-5-4 نویز طبقهی راهانداز (طبقهی ................................................................................................(RF 61
3-5-4 نویز طبقهی سوئیچ (طبقهی ................................................................................................(LO 62
4-5-4 نویز طبقهی ..................................................................................................................................IF 63
.5 فصل پنجم: مدار پیشنهادی، طراحی مخلوط کنندهی فرکانسی فراپهن باند توزیع شده .......... 64
1-5 مقدمه .......................................................................................................................................................... 65
2-5 مدل المانهای مورد استفاده ................................................................................................................... 65
3-5 تحلیلگرهای استفاده شده در نرمافزار .....................................................................................ADS 67
1-3-5 تحلیلگر ..............................................................................HARMONIC BALANCE 68
2-3-5 تحلیلگر ............................................................................................................................... LSSP 68
4-5 طراحی میکسر توزیع شده با سلولهای میکسر تک بالانس .............................................................. 69
1-4-5 طراحی میکسر .................................................................................................................................... 69
2-4-5 بایاس مدار ........................................................................................................................................... 70
3-4-5 پارامترهای قابل تغییر و طراحی ..................................................................................................... 71
4-4-5 تحلیل و شبیهسازی .......................................................................................................................... 72
5-5 طراحی میکسر توزیع شده با سلولهای میکسر سلول گیلبرت ......................................................... 74
1-5-5 طراحی میکسر .................................................................................................................................... 74
2-5-5 بایاس مدار ........................................................................................................................................... 75
3-5-5 تحلیل و شبیهسازی .......................................................................................................................... 76
6-5 طراحی میکسر توزیع شده با سلولهای میکسر گیلبرت و با استفاده از تکنیک پیکینگ سلفی.. 78
1-6-5 تکنیک پیکینگ سلفی ...................................................................................................................... 78
2-6-5 بایاس مدار ........................................................................................................................................... 80
3-6-5 طراحی میکسر توزیع شدهی نهایی ................................................................................................ 80
4-6-5 مقادیر المانهای مدار میکسر پس از طراحی .............................................................................. 84
5-6-5 تحلیل و شبیه سازی ......................................................................................................................... 86
7-5 نتیجهگیری و مقایسه ............................................................................................................................... 90
.6 فصل ششم: نتیجهگیری و پیشنهادات ........................................................................................... 92
1-6 نتیجهگیری ................................................................................................................................................. 93
ح
2-6 پیشنهادات .................................................................................................................................................. 94
.7 فصل هفتم: منابع و ماخذ ................................................................................................................ 95
منابع لاتین ..................................................................................................................................................................... 96
چکیده انگلیسی: ................................................................................................................................................................ 98
ط
فهرست جدول ها:
عنوانشماره صفحه

جدول 1- 1 قابلیت UWB در مقایسه با سایر استانداردهای 14..[2] IEEE
جدول 1- 3 مقایسهی ساختارهای مختلف میکسرهای فراپهن باند51
جدول 1- 5 مقادیر سلفهای مدار نهایی85
جدول 2- 5 عرض ترانزیستورهای مدار نهایی85
جدول 3- 5 مقادیر پارامترهای DC ترانزیستورهای میکسر توزیع شده نهایی85
جدول 4-5 مقدار نشت پورت های مختلف میکسر پیشنهادی در یکدیگر بعد از مدل سازی اثر عدم تطبیـق ابعـاد
ترانزیستورها، روی ولتاژ آستانه88
جدول 5- 5 مقایسهی سه ساختار به دست آمده طول طراحی90
جدول 6- 5 مشخصات مدار میکسر توزیع شدهی پیشنهادی90
جدول 7- 5 مقایسه میکسر طراحی شده در این پایان نامه با کارهای انجام شدهی قبلی91
ی
فهرست شکلها:
عنوانشماره صفحه

شکل 1-1 تاریخچهی تکنولوژی فراپهن باند6
شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس 7[3]
شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس8
شکل 4-1 یک پالس با Duty Cycle کم8
شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس9
شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی 10RF
شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنال های بانـد باریـک
(c) اثر پدیدهی چند مسیره بر سیگنالهای باند فرا پهن11
شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک13
شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند14
شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و (c) فراپهن باند در حوزههای زمان و فرکانس .. 16
شکل 11-1 روش دسترسی 16TDMA
شکل 12-1 عملیات کد کردن در 17[5] DS-CDMA
شکل 13-1 نحوهی استفاده از پهنای باند در سیستم 17DS-CDMA
شکل 14-1 گروه بندی طیف فرکانسی 18MB-OFDM
شکل 15-1 طیف فرکانسی 18[7] MB-OFDM
شکل 1-2 ساختار گیرنده سوپر هترودین20
شکل 2-2 میکسر به عنوان یک عنصر سه دهانه21
شکل 3-2 میکسر غیرفعال با تعادل دوگانه با 22..CMOS
شکل 4-2 میکسر گیلبرت ساده24
شکل 5-2 میکسر گیلبرت با تعادل دوگانه25
شکل 6-2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه26
شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان 27DC
شکل 8-2 میکسر به عنوان یک ضرب کننده 29[3]
شکل 9-2 میکسر با ساختار تکی31
شکل 10-2 میکسر با ساختار متوازن تکی31
شکل 1-3 بلوک دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی33[11]
شکل 2-3 مدل خطوط انتقال مصنوعی34
شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال35
شکل 4-3 میکسر گیلبرت 36CMOS
شکل 5-3 یک میکسر فعال CMOS با تعادل تکی36
ک
شکل 6-3 شکل موجهای p0(t) و 38p1 (t)
شکل 7-3 مدار معادل خط انتقال40
شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان41
شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل41
شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری43
شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شـبکهی پسـیو اضـافه شـده بـرای ایزولـه کـردن
خازنهای پارازیتی (c) پیاده سازی این شبکه با سلف43
شکل 12-3 مدار میکسر ساختار 441
شکل 13-3 مدار میکسر ساختار 452
شکل 14-3 مدار میکسر ساختار 463
شکل 15-3 مدار میکسر ساختار 474
شکل 16-3 مدار تطبیق UWB برای سیگنال ورودی 47RF
شکل 17-3 مدار میکسر ساختار 485
شکل 18-3 مدار میکسر ساختار 496
شکل 19-3 مدار میکسر ساختار 507
شکل 1-4 طیف فرکانسی MB-OFDM به همراه سیستمهای تداخلی داخل و خارج باند 53[7]
شکل (a) 2-4 مدار سوئیچ ساده (b) سیستم غیر خطی متغیر با زمان (c) سیستم خطی متغیر با زمان54
شکل 3-4 طیف خروجی سیستم غیرخطی با درجهی دو و سه54
شکل 4-4 نقطه تراکم 561dB
شکل 5-4 مولفههای اینترمدولاسیون در خروجی یک سیستم غیرخطی درجهی 562
شکل 6-4 نحوهی تداخل اینترمدولاسیون مرتبهی 2 با سیگنال مطلوب 57[7]
شکل 7-4 مولفههای اینترمدولاسیون در خروجی یک سیستم با خاصیت غیرخطی مرتبهی سوم58
شکل 8-4 تداخل اینترمدولاسیون مرتبهی 3 با سیگنال مطلوب 58[7]
شکل (a) 9-4 دامنهی نقطه تقاطع مرتبهی سوم ورودی (b) نقطه تقاطع مرتبـهی سـوم ورودی و خروجـی بـه
صورت لگاریتمی 59[5] (IIP3,OIP3)
شکل 10-4 میکسر فعال تک بالانس 61CMOS
شکل 11-4 شکل موج 62p1 (t)
شکل 1-5 بلوک دیاگرام مدار توزیع شده (a)خطوط انتقال واقعی (b) پیاده سازی با مدارات LC (خـط انتقـال
مصنوعی)65
شکل 2-5 مدل ترانزیستور 66TSMC
شکل 3-5 مدل مدار معادل برای یک ترانزیستور 66[26] RF nMOS
شکل 4-5 مدل سلف 67TSMC
شکل 5-5 نمای Layout سلف در تراشه67
شکل 6-5 مدار معادل یک سلف استاندارد 67[26]
ل
شکل 7-5 تحلیلگر HARMONIC BALANCE در نرم افزار 68ADS
شکل 8-5 تحلیلگر LSSP در نرم افزار 68ADS
شکل 9-5 ساختار میکسر توزیع شدهی تک بالانس69
شکل 10-5 شماتیک میکسر توزیع شدهی تک بالانس در نرم افزار 70ADS
شکل 11-5 مدار بایاس طبقهی 70RF
شکل 12-5 مدار بایاس گیت ترانزیستورهای طبقهی 71LO
شکل 13-5 مدار بایاس درین ترانزیستورهای طبقهی 71LO
شکل 14-5 روابط به کار رفته در نرمافزار ADS برای محاسبهی 72IIP3
شکل 15-5 نمودار عدد نویز میکسر طراحی شده با سلول تک بالانس72
شکل 16-5 نمودار IIP3 میکسر طراحی شده با سلول تک بالانس73
شکل 17-5 نمودار IIP2 میکسر طراحی شده با سلول تک بالانس73
شکل 18-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول تک بالانس73
شکل 19-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول تک بالانس74
شکل 20-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول تک بالانس74
شکل 21-5 ساختار میکسر توزیع شدهی گیلبرت75
شکل 22-5 شماتیک میکسر توزیع شدهی گیلبرت در نرم افزار 75ADS
شکل 23-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول گیلبرت76
شکل 24-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول گیلبرت77
شکل 25-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول گیلبرت77
شکل 26-5 نمودار عدد نویز میکسر طراحی شده با سلول گیلبرت77
شکل 27-5 نمودار IIP3 میکسر طراحی شده با سلول گیلبرت78
شکل 28-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی79
شکل 29-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی در نرم افزار 79ADS
شکل 30-5 مدار بایاس درین ترانزیستورهای طبقهی 80LO
شکل 31-5 نمودار جریان مصرفی میکسر بر حسب تغییرات عرض ترانزیستورها81
شکل 32-5 نمودار تطبیق ورودی میکسر بر حسب تغییرات عرض ترانزیستورها در فرکانس 8210 GHz
شکل 33-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات عرض ترانزیستورها82
شکل 34-5 نمودار IIP3 میکسر بر حسب تغییرات عرض ترانزیستورها83
شکل 35-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس83
شکل 36-5 بهرهی تبدیل میکسر بر حسب فرکانس و مقادیر مختلف سلفهای پیکینگ84
شکل 37-5 نمودار IIP3 میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس84
شکل 38-5 نمودارضرایب انعکاس ورودی و خروجی میکسر توزیع شدهی پیشنهادی86
شکل 39-5 نمودار بهره میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی86
شکل 40-5 نمودار نشت پورت LO در 87RF
م
شکل 41-5 نمودار نشت پورت LO در 87IF
شکل 42-5 نمودار نشت پورت RF در 87LO
شکل 43-5 نمودار نشت پورت RF در 88IF
شکل 44-5 عدد نویز میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی88
شکل 45-5 نقطه تقاطع مرتبه سوم ورودی (IIP3) میکسر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
پیکینگ سلفی89
شکل 46-5 نقطه تقاطع مرتبه دوم ورودی (IIP2) میکسـر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
پیکینگ سلفی89
شکل 47-5 نمودار P1dB میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی90
ن
فهرست رابطهها:
عنوانشماره صفحه

رابطهی 81- 1
رابطهی 92- 1
رابطهی 103-1
رابطهی 114-1
رابطهی 125-1
رابطهی 221-2
رابطهی 232-2
رابطهی 233-2
رابطهی 234-2
رابطهی 235-2
رابطهی 256-2
رابطهی 267-2
رابطهی 268-2
رابطهی 279-2
رابطهی 2710-2
رابطهی 2811-2
رابطهی 2912-2
رابطهی 2913-2
رابطهی 2914-2
رابطهی 351-3
رابطهی 362-3
رابطهی 373-3
رابطهی 374-3
رابطهی 375-3
رابطهی 376-3
رابطهی 377-3
رابطهی 378-3
رابطهی 379-3
رابطهی 3710-3
رابطهی 3811-3
س
رابطهی 3812-3
رابطهی 3813-3
رابطهی 3814-3
رابطهی 3915-3
رابطهی 3916-3
رابطهی 4017-3
رابطهی 4018-3
رابطهی 4119-3
رابطهی 4120-3
رابطهی 4221-3
رابطهی 4222-3
رابطهی 4223-3
رابطهی 4224-3
رابطهی 4225-3
رابطهی 4226-3
رابطهی 4327-3
رابطهی 4428-3
رابطهی 541-4
رابطهی 552-4
رابطهی 563-4
رابطهی 564-4
رابطهی 575-4
رابطهی 576-4
رابطهی 577-4
رابطهی 588-4
رابطهی 599-4
رابطهی 5910-4
رابطهی 6011-4
رابطهی 6112-4
رابطهی 6113-4
رابطهی 6114-4
رابطهی 6115-4
رابطهی 6216-4
رابطهی 6217-4
ع
رابطهی 6218-4
رابطهی 6219-4
رابطهی 6220-4
رابطهی 6321-4
رابطهی 6322-4
رابطهی 6323-4
رابطهی 6324-4
رابطهی 6325-4
رابطهی 6326-4
رابطهی 691-5
رابطهی 812-5
رابطهی 853-5
رابطهی 854-5
رابطهی 865-5
ف
چکیده:
رشد سریع تکنولوژی و پیشرفت موفق تجاری مخابرات بی سیم روی زنـدگی روزمـره ی مـا تـاثیر قابل توجهی گذاشته است. امروزه بهکار بردن میکسرهای فرکانس بالا در سیستم های ارتباطاتی بیسـیم، دارای اهمیت خاصی میباشد. میکسرها یکی از اجزای اساسـی گیرنـده در مخـابرات بـیسـیم محسـوب میشوند. اجرای میکسرهای پایین آورنده1 در گیرنده ها به لحاظ وجود نویز و تضعیف در سیگنال دریافتی از اهمیت بیشتری برخوردار است.
هدف اصلی این پایان نامه، تحلیل و طراحـی میکسـر بـرای کـاربرد در بانـد فرکانسـی فـراپهن (UWB) و با استفاده از تکنولوژی CMOS می باشد. ابتدا عملکرد یک میکسر توزیع شده بررسی شده، سپس مدار میکسر پیشنهادی توزیع شده، ارایه می گردد. میکسر پیشنهادی دارای بهـره ی تبـدیل 3dB، IIP3 برابر 5/5dBm، عدد نویز 7dB، پهنـای بانـد 3 تـا 10 گیگـاهرتز و تـوان مصـرفی 52 میلـی وات میباشد. میکسر فراپهن باند توزیع شدهی پیشنهادی با استفاده از تکنولوژی CMOS 0/18μm با منبع تغذیه 1/8 ولت طراحی شده است.

1 down conversion
1
مقدمه:
رشد سریع تکنولوژی و گذار از مخابرات آنالوگ به دیجیتال، ترقی سیستم های رادیویی بـه نسـل سوم و چهارم و جانشینی سیستم های سیمی با Wi-Fi و Bluetooth مشـتریان را قـادر مـی سـازد بـه گستره ی عظیمی از اطلاعات از هرجا و هر زمان دسترسی داشته باشند. مخابرات UWB برای اولین بـار در دهــهی 1960 معرفــی شــد و در ســال 2002، FCC1 رنــج فرکانســی 3.1~10.6GHz را بــرای کاربردهای UWB معرفی و توان انتقال آنرا به -41.3dBm محدود کرد، بدین معنا کـه سیسـتمهـای
UWB روی فراهم کردن: توان کم، قیمت کم و عملکرد باند وسیع در مساحت کوتـاه تمرکـز کردنـد. در مقایسه با کاربردهای باند باریک طراحی المانها در سیستمهای UWB بسیار متفاوت و مشکل است.
یکی از بلوکهای مهم در گیرندههای UWB میکسرها هستند کـه بـرای تبـادل اطلاعـات بـین تعداد زیادی کانال مشابه UWB نقش کلیدی دارند. اهمیـت عملکـرد میکسـر بـه عنـوان یـک مبـدل فرکانس، در تامین فرکانسهای کاری مناسب با پایداری و نـویز مطلـوب اسـت. میکسـر مـیبایسـتی: (1
بهرهی تبدیل بالا، که اثرات نویز در طبقات بعدی را کاهش دهـد، (2 عـددنویز کوچـک، کـه LNA را از داشتن یک بهرهی بالا راحت کند و (3 خطی بودن بالا، که رنج دینامیک گیرنده را بهبود بخشد و سطوح اینترمدولاسیون2 را کاهش دهد. هر کارایی بایستی توسط مصالحه در طراحی میکسر بهدست آید. میکسر سلول گیلبرت با برخی تغییرات در ساختار آن نتایج قابل قبـولی بـرای کـاربرد در سیسـتمهـای UWB
بهدست میدهد.
دستیابی همزمان به بهره ی تبدیل و خطی بودن بـالا کـه افـزایش یکـی باعـث کـاهش دیگـری می گردد یکی از چالش های طراحی میکسر می باشد، در کارهایی کـه تـا کنـون انجـام شـده تمرکـز روی دستیابی یکی از این دو بوده به طوریکه یا میکسری غیر فعال با خطی بودن قابل قبـول و یـا میکسـری فعال با خطی بودن کم ارائه شده است. تطبیق امپدانس در کل رنج فرکانسی 7 گیگا هرتـزی و همچنـین عدد نویز پایین از دیگر پارامترهای مهم طراحی میکسر میباشد.
 اهداف پایان نامه
در این پایان نامه با بررسی میکسرهای فراپهن باند و مقایسهی آنها از نظر ساختار، بهرهی مدار، عدد نویز، تطبیق در ورودی و خروجی و خطی بودن، سـاختار مناسـب بـرای یـک میکسـر فـراپهن بانـد پیشنهاد شده و از لحاظ کارکرد در سیستمهای UWB بررسی گشته است.

Federal Communications Commission inter-modulation

1
2
2
بر خلاف کارهایی که تا کنون در این زمینه صورت گرفته که بر بهبود یکی از پارامترهای بهـره ی تبدیل یا خطی بودن میکسر تاکید شده، در اینجا سعی شـده اسـت تـا ضـمن دسـتیابی بـه هـر دو ایـن پارامترها در اندازههای قابل قبول برای گیرندهها، کل پهنای باند سیستمهای UWB پوشش داده شود.
بر این اساس در فصل اول سیستم های فراپهن باند بطور کامل معرفـی و بررسـی مـی گـردد، در فصل دوم به بررسی انواع میکسر، نحوهی عملکرد و کاربرد آنها پرداختـه شـده، در فصـل سـوم سـاختار میکسرهای توزیع شده، مشخصات و تکنیکهای بهبود کارایی آنها و در فصل چهارم اعوجـاج و نـویز در میکسر بررسی گردیدهاند. در فصل پنجم ساختار میکسر فراپهن باند طراحی شده بـه طـور مفصـل شـرح داده شده است. در فصل ششم نتیجهگیری و پیشنهادات و فصل هفتم نیز منابع و مأخذ مورد استفاده بـه تفکیک درج شدهاند.
3
.1 فصل اول: سیستمهای فراپهن باند (UWB)
4
1-1 تاریخچه تکنولوژی فراپهن باند UWB
در طول دهههای اخیر پیشرفت سریع ارتباطات باعث ایجاد تقاضا برای قطعات بهتـر و ارزانتـر و همچنین تکنولوژیهای پیشرفتهتر شده است. افزایش تقاضا برای انتقال سریع و افزایش نرخ اطلاعـات در عین مصرف کم توان تاثیرات شگرفی را بر تکنولوژی ارتباطات ایجاد کرده است. در هر دو بخش مخابرات بیسیم و سیمی این گرایش منجر به استفادهی هرچه بیشتر از مدولاسیونهایی با استفادهی بهینـهتـر از طیف فرکانسی و یا افزایش پهنای کانالها گشته است. این روشها به همـراه روشهـای مهندسـی بـرای کاهش توان، به منظور تولید تراشه های ارزان و با مصرف توان کم در صنعت استفاده میشود.
افزایش و گسترش استانداردها نه تنها باعث شده که سیستمها با طیفهای شلوغتری از لحاظ فرکانسی روبرو باشند بلکه باعث شده است تا سیستمها به سوی چند استاندارده بودن سوق داده شده و قابلیت انطباق با استانداردهای مختلف را داشته باشند. در حقیقت این پیشرفت تکنولوزی منجر به طراحی و تولید دستگاههایی شده است که قابلیت کارکرد در باندهای وسیعتری را داشته باشند، مانند تکنولوژی فرا پهن باند . (UWB)
تکنولوژی فراپهن باند (UWB) در دهه های اخیر بسیار مورد توجه قرار گرفتـه اسـت. مـیتـوان گفت که شروع استفاده از دانش UWB مربوط به انتهای قرن نوزدهم می باشد. اولین سیستم بی سیم که توسط گاگلیرمو مارکونی1 در سال 1987 نمایش داده شد، خصوصیات رادیوی فـراپهن بانـد را دارد. رادیـو ساخته شده توسط مارکونی از پهنای باند وسیعی برای انتقال اطلاعات بهره می گرفت. اولین فرستنده های جرقه ای مارکونی فضای زیادی از طیف (از فرکانس هـای بسـیار پـایین تـا فرکـانس هـای بـالا) را اشـغال می کردند. همچنین این سیستم ها به طور غیراتوماتیک از پردازش زمان اسـتفاده مـی نمودنـد. چـون کـد مورس توسط اپراتورهای انسانی ارسال و دریافت می شد. پس از آن مفهوم UWB مجدداً در دهـه 1960
برای ساخت رادارهای ایمن در برابر تداخل با مصرف توان کم مورد توجه قرار گرفت .[1]
در اوایل پیدایش ، UWB به نامهای Carrier free ، باند پایه یا ضربه رایج بود که در حقیقت متضمن این نکته بود که استراتژی تولید سیگنال نتیجه یک پالس با Rise time بسیار سریع و یـا یـک ضربه میباشد که یک آنتن باند پهن را تحریک میکند. در اوایل سال 2002 میلادی تکنولوژی باند بسیار پهن (UWB) برای کاربردهای تجاری تصویب شد. این تکنولوژی جدید شـیوه ی جدیـدی در ارتباطـات بدون سیم ابداع کرد:"استفاده از حوزه زمان به جای حوزه فرکانس".
تکنولوژی فرا پهن باند (UWB) به شیوهی کاملاً متفاوتی از سایر تکنولوژی ها از بانـد فرکانسـی استفاده میکند. این سیستمها از پالسهای باریک و پـردازش سـیگنال در حـوزهی زمـانی بـرای انتقـال

1 Guglielmo Marconi
5
اطلاعات استفاده میکنند، بدین صورت سیستمهـای فـرا پهـن بانـد (UWB) قادرنـد در بـازهی زمـانی مشخص اطلاعات بیشتری را نسبت به سیستمهای قدیمیتر منتقل کنند زیرا حجـم انتقـال اطلاعـات در سیســتمهــای مخــابراتی بــه صــورت مســتقیم بــا پهنــای بانــد تخصــیص یافتــه و لگــاریتم SNR (Signal to Noise Ratio) متناسب است. استفاده از یک پهنای بانـد خیلـی وسـیع چنـدین مزیـت دارد: ظرفیت بالا، مخفی بودن، مقاومت در برابر مسدود شدن و همزیستی با سایر سیستم های رادیویی.
پایه و اساس سیستم های نوین فراپهن باند در دهه 80 توسط راس و با کار انجـام شـده در مرکـز تحقیقاتی Sperry بنیان گذاشته شد. تأکید بر استفاده از UWB بـه عنـوان یـک ابـزار تحلیلـی بـرای کشف خصوصیات شبکه های مایکروویو و خصوصیات ذاتی مـواد بـود. ایـن تکنیـک هـا بـه طـور منطقـی گسترش یافتند تا تحلیل و تولید تجربی المان های آنتن را انجام دهند. موفقیـتهـای اولیـه باعـث تولیـد سیستمی خانگی شد تا خصوصیات پاسخ ضربه اهداف یا موانع را اندازهگیری کند.
با افزایش درخواست کاربران برای ظرفیت بالاتر، سرویس های سریعتر و مخابرات بی سیم امن تـر، تکنولوژی های جدید مجبورند جایگاه خود را در طیف فوق العاده شلوغ و امن رادیـویی بیابنـد. بـه دلیـل اینکه هر تکنولوژی رادیویی یک بخش خاص از طیف را اشغال میکند و با معرفی سـرویس هـای جدیـد رادیویی محدودیت دسترسی طیف RF سخت گیرانه تر شده است. در این شرایط تکنولـوژی UWB یـک راه حل نوید بخش برای محدودیت دسترسی به طیف RF با اجازه به سرویس های جدید برای هم زیستی با سیستمهای رادیویی جاری با تداخل حداقل یا بدون تداخل است.
در فوریه ی سال 2002، FCC اولین طراحی و استاندارد مربوط بـه بانـدها و تـوان مجـاز بـرای کاربران UWB را صادر کرد. بدین ترتیب باند فرکانسی 3.1GHz تا 10.6GHz به UWB اختصـاص یافت. در همین زمان FCC مجوزی صادر کرد که حدود و میزان تشعشع عمدی یا سهوی دسـتگاه هـای مخابراتی در باندهای مختلف را مشخص نمود. این تشعشع مجاز در باندهای مورد استفاده، مبنـایی بـرای طراحی دستگاه های UWB شد. با گسترش تحقیقات در این زمینه، IEEE کمیتـه ی مخصوصـی بـرای استاندارد سازی این سیسـتم هـا تحـت عنـوان 802.15.3.x تشـکیل داد. شـکل 1-1 تاریخچـه ی ایـن تکنولوژی را به اختصار نشان میدهد .[2]

شکل 1-1 تاریخچهی تکنولوژی فراپهن باند
6
در اولین گام FCC توان خروجی سیستم های UWB را به -41.3dBm/MHz محدود کرد، این محدودیت این امکان را برای سیستم های UWB ایجاد میکند که بدون اینکه توان سیگنال خروجی آنها توسط سیستمهای باند باریک مجاور احساس شود از پهنای باند وسیعی برای انتقال اطلاعات خود استفاده کنند. محدودیت هایی که برای توان انتشار این سیستم ها ایجاد شد ، عمدتاً محدودیتهایی بودند که برای حفاظت از سیستم GPS و سایر سیستم های دولتی که در باند فرکانسی 690MHZ~1610MHz کار میکنند مطرح شده بود. همانطور که در شکل 2-1 نشان داده شده است این ماسک توان همچنین برای سایر سیستمهای دولتی که عملکرد آنها در فاصلهی 3.1GHz~10.6GHz
یعنی باندی که برای کاربرد داخلی UWB تعریف شده است نیز کاربرد دارد.

شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس [3]
بنا به تعریف FCC پهنای باند -10dB یک سیگنال UWB بزرگتر از %25 فرکانس مرکزی یا بزرگتر از 1.5GHz میباشد. سیستمهای فرا پهـن بانـد بـا عـرض بانـد بـیش از 7GHz در بـازه فرکانسـی
3.1GHz~10.6GHz با سطح توان مجاز -41.3dBm/MHz فعالیت مـیکننـد. هـر کانـال رادیـویی در ایـن سیستمها بسته به فرکانس مرکزی خود میتواند عرض بانـدی بـیش از 500MHz داشـته باشـد. طـرح
انتقال OFDM1 به عنوان اولین کاندیـدا بـرای UWB در مـارچ 2003 در جلسـهی گروهـی IEEE 802.15.3a مطرح شد.

1 Orthogonal Frequency-Division Multiplexing
7
2-1 مفهوم UWB
سیستم های مخابراتی باند باریک متـداول سـیگنال هـای RF مـوج پیوسـته (CW)1 را بـا یـک فرکانس حامل خاص برای ارسال و دریافت اطلاعات مدوله می کنند. یک موج پیوسته یک انرژی سـیگنال تعریف شده در باند فرکانسی بانـد باریـک دارد کـه آن را بـرای آشکارسـازی و نفـوذ خیلـی آسـیب پـذیر میسازد. شکل 3-1 سیگنال باند باریک را در حوزههای زمان و فرکانس نشان میدهد.

شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس
سیستمهای UWB از پالسهای کوتاه بدون حامل (پیکو ثانیه تا نانو ثانیـه ) بـا Duty Cycle خیلی کم (کمتر از (%5 برای انتقال اطلاعات استفاده میکنـد. یـک تعریـف سـاده بـرای Duty Cycle
نسبت زمان حضور پالس به کل زمان انتقال است. (رابطهی (1-1

شکل 4-1 یک پالس با Duty Cycle کم رابطهی 1-1 T T Duty Cycle T Duty Cycle کم، متوسط توان انتقالی خیلی کمی در سیستمهـای UWB ایجـاب مـیکنـد.
متوسط توان انتقالی یک سیستم UWB در حد میکرو وات است، یعنی هزار بـار کمتـر از تـوان انتقـالی تلفن موبایل. به هر حال پیک یا توان لحظه ای پالس های UWB مستقل می تواند نسبتاً بزرگ باشـد، امـا چون آنها برای یک زمان خیلی کوتاه انتقال می یابند (Ton<1ns) توان متوسط به طـور قابـل ملاحظـه ای کم میشود، در نتیجه ادوات UWB به توان انتقال کم در اثر کنترل روی Duty Cycle نیاز دارند، کـه مستقیماً روی طول عمر باتری در تجهیزات قابل حمل تاثیر دارد.
از آنجایی که فرکانس با زمان نسبت عکس دارد پالس های UWB کوتاه مـدت، انـرژی را روی رنج عریضی از فرکانس ها، از نزدیک DC تا چندین گیگاهرتز با چگالی طیف توان (PSD)2 خیلـی کـم، پخش میکنند. شکل 5-1 پالس UWB را در حوزههای زمان و فرکانس نشان میدهد.

1 Continous Waveform 2 Power Spectral Density
8

شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس
3-1 تعریف سیستم فراپهن باند
به طور کلی به سیستمی فراپهن باند (UWB) اطلاق میگردد که پهنای بانـد مـورد اسـتفادهی آن برای انتقال اطلاعات بیشتر از 500MHz باشد و یا پهنای باند نسبی آن در تمام زمانها بیشـتر از %20
باشد. پهنای باند کسری معیاری برای طبقهبندی سیگنال ها به بانـد باریـک، بانـد پهـن و فـرا پهـن بانـد می باشد و به وسیله ی نسبت پهنای باند در نقاط -10dB به فرکانس مرکزی توسط رابطهی 2-1 تعریـف میشود .[4]
رابطهی 2-1 100% f L fH 100% BW fL 2 fH fC با استفاده از این پهنای باند وسیع، چگالی طیف توان ارسالی این سیستم بسیار پایین اسـت و در نتیجه در مقابل شنود دارای مصونیت بالایی می باشـد. بـه منظـور جلـوگیری از تـاثیر نـامطلوب سیسـتم
UWB بر سیستم هایی که قبلاً در این باند وجود داشته اند، همان طور که قبلاً عنوان شـد FCC ماسـک مربوط به چگالی طیف توان این سیستمها را با سطح توان مجاز -41.3dBm/MHz مشخص نمود.
4-1 مزایای تکنولوژی فراپهن باند UWB
1-4-1 توانایی اشتراک طیف توانی
FCC سطح توان مجاز سیستم هـای UWB را -41.3dBm/MHz برابـر بـا 75nWatt/MHz تعریـف کرده و آنها را در ردهی تشعشعات غیر عمدی گذاشته است، چنین محـدودیت تـوانی بـه سیسـتم هـای
UWB اجازه می دهد که زیر سطح نویز یک گیرنده ی باند باریک نوعی قرار گیرند و سـیگنال UWB را قادر می سازد که با سرویس های رادیویی کنونی بدون تداخل و یا با تداخل حداقل همزیستی داشته باشد.
شکل 6-1 سطح توان مجاز تکنولوژیهای مختلف روی طیف فرکانسیRF را نشان میدهد .[2]
9

شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی RF
2-4-1 ظرفیت بالای کانال
ظرفیت کانال یا میزان تغییرات داده ها، به صورت مینیمم میزان داده هایی که مـی تواننـد در هـر ثانیه روی یک کانال مخابراتی انتقال یابند تعریف می شود. فرمول هارتلی-شنون)1رابطـهی (3-1 ظرفیـت بالای کانال برای سیستم UWB را نشان میدهد .[2]
رابطهی 3-1 1 log C بیشترین ظرفیت کانال می باشد و به صورت خطی با پهنای باند (B) افـزایش مـی یابـد. پـس داشتن چندین گیگا هرتز پهنای باند برای سیگنال های UWB، نرخ انتقال داده ها در حد چند گیگا بیت بر ثانیه می تواند مورد انتظار باشد. در نتیجه ی محدودیت توان اعمال شـده از طـرف FCC بـرای انتقـال داده های UWB، این نرخ بالای انتقال داده فقط در فواصل کوتاه (تا 10 متر) در دسـترس اسـت، و ایـن باعث می شود سیستم های UWB کاندید مناسبی برای کاربردهای بی سـیم فواصـل کوتـاه و نـرخ بـالای اطلاعات مانند شبکه های WPAN باشند.
3-4-1 توانایی کار با SNR پایین
فرمول هارتلی-شنون برای ظرفیت حداکثر همچنین نشان میدهد که ظرفیت کانـال بـه صـورت لگاریتمی به SNR وابسته است، پس سیستم های مخابراتی UWB قابلیت کار در کانال هـای مخـابراتی خشن با SNR پایین را دارند و هنوز ظرفیت کانال بالایی در نتیجه پهنای باند بزرگ خود ارایه میدهند.
4-4-1 احتمال تشخیص و آشکارسازی کم
به دلیل میانگین توان انتقال پایین سیستم های UWB، این سیستم ها مصونیت ذاتی نسبت بـه تشخیص دارند. پالس های UWB در زمان با کدهای منحصر به فرد بـرای هـر جفـت فرسـتنده-گیرنـده

1 Hartley-Shannon
10
مدوله شدهاند. زمان مدولاسـیون پـالس هـای خیلـی باریـک بـه امنیـت انتقـال UWB مـی افزایـد زیـرا آشکارسازی پالسهای پیکو ثانیهای بدون دانستن اینکه چه زمانی میرسند غیر ممکن است.
5-4-1 مقاومت در برابر مسدود شدن
برخلاف طیف فرکانسی باند باریک شناخته شده، طیـف UWB رنـج وسـیعی از فرکـانس هـا از نزدیک DC تا چند گیگا هرتز را پوشش می دهد و بهره ی پردازش بالا برای سـیگنال هـای UWB ارایـه می کند. بهره ی پردازش (PG) یک معیار مقاومت سیستم ها در برابـر مسـدود شـدهگـی اسـت و توسـط رابطهی 4-1 تعریف میشود.
رابطهی 4-1

6-4-1 کارایی بالا در کانالهای چند مسیره
پدیده ی چند مسیره در کانال های مخابرات بی سیم اجتناب ناپذیر است و به علـت انعکـاس هـای چندگانه ی سیگنال انتقالی از سطوح متفاوت مانند ساختمان ها، درخـت هـا و غیـره روی مـی دهـد. خـط مستقیم بین فرستنده و گیرنده LOS و سیگنال های انعکاسی از سطوح NLOS هسـتند (شـکل (7-1،
اثر چند مسیره بر روی سیگنال های باند باریک نسبتاً شدید است که باعث تخریب سـیگنال تـا 40dB بـه خاطر ناهمفازی شکل موج های LOS و NLOS می شود. اما پالس های UWB خیلی کوتاه مدت کمتـر به اثر چند مسیره حساسند زیرا طول پالس های UWB کمتر از نانو ثانیه است و سیگنال بازتابی شـانس خیلی کمی برای برخورد با سیگنال LOS و تخریب آن دارد .[2]

شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنالهای باند باریک (c) اثر
پدیدهی چند مسیره بر سیگنالهای باند فرا پهن
11
5-1 چالشهای تکنولوژی فراپهن باند UWB
1-5-1 انحراف شکل پالس
پالس های UWB ضعیف و کم توان با انتقال می تواننـد بـه طـور قابـل تـوجهی تخریـب شـوند، میتوانیم این مطلب را با فرمول انتقال فریس1 (رابطهی (5-1 نشان دهیم.
رابطهی P PG G 4πdf5-1

که Pt و Pr به ترتیب توان های ارسالی و دریافتی، Gt و Gr به ترتیب بهرهی آنتنهای فرستنده و گیرنده، C سرعت نور و f فرکانس است. ملاحظه می شود که تـوان سـیگنال دریـافتی بـا مربـع فرکـانس کاهش می یابد. در سیستم های باند باریک که تغییر در فرکانس کم است، تغییـرات تـوان دریـافتی قابـل صرفه نظر است. اما به دلیل طیف فرکانسی وسیع سیستم های UWB تغییرات توان شدید بـوده و شـکل پالس را خراب می کند، که این امر کارایی گیرنده های UWB، که با پالس های دریافتی بـا یـک قالـب از پیش تعریف شده مثل فیلترهای تطبیق کلاسیک همبستگی دارد را محدود میکند.
2-5-1 تخمین کانال
تخمین کانال یک مبحث اساسی برای طراحی سیستم های مخابرات بی سیم اسـت. انـدازه گیـری همه ی مشخصات کانال مانند تضعیف و تاخیر مسیر انتشار، در میدان غیر ممکن است. اکثر گیرنـده هـای
UWB سیگنال دریافتی را با یک قالب سیگنال از پیش تعریف شده مرتبط میکننـد. اطلاعـات قبلـی از پارامترهای کانال بی سیم برای پیشگویی شکل قالب سیگنال، که سیگنال دریافتی را تطبیق میدهـد لازم است. به هرحال به خاطر پهنای باند زیاد و کاهش انرژی سیگنال، پالس های UWB دسـتخوش اعوجـاج شده، پس تخمین کانال در سیستمهای مخابرات UWB پیچیده است .[2]
3-5-1 تطبیق2 فرکانس بالا
انطباق زمانی یکی از چالش های اساسی در سیستم های مخابرات UWB است. نمونـه بـرداری و انطباق پالس های نانو ثانیه ای یک محدودیت اساسی در طراحی سیستم های UWB اسـت. بـرای نمونـه برداری این پالسهای باریک ADC(Analog-to-Digital converter) خیلـی سـریع در حـد گیگـا هرتز لازم است، به علاوه محدودیت های توان شدید و طول پالس کوتاه کارایی سیستم های UWB را بـه شدت به خطاهای زمانی حساس میکند.

1 Friis 2 Synchronization
12
4-5-1 تداخل دستیابی چندگانه1
در سیستم مخابره ی چند کـاربره یـا دسـتیابی چندگانـه، چنـدین کـاربر اطلاعـات را مسـتقل و همزمان روی یک خط واسط انتقال اشتراکی (مثل هوا در مخابرات بی سیم) می فرستند. در انتهـا یـک یـا چند گیرنده بایستی قادر به جداکردن و آشکارسازی اطلاعـات کاربرهـا از هـم باشـند. تـداخلات از سـایر کاربران با کاربر مورد علاقه تداخل دستیابی چندگانه (MAI) نامیده می شـود کـه یـک فـاکتور محـدود کننده ی ظرفیت کانال و کارایی گیرنده است، به علاوه MAI به همراه نویز غیر قابل پیشـگیری کانـال و تداخل باند باریک می تواند به طور موثری پالسهای کم توان UWB را تنزل دهد و مراحل آشکار سـازی را خیلی سخت کند.
UWB 6-1 در مقایسه با سایر استانداردهای IEEE
شکل 8-1 مقایسه ای بین مخابرات فراپهن باند و باند باریـک در حـوزه هـای زمـان و فرکـانس را نشان می دهد. همان طور که ملاحظه می شود سیستم های UWB مبتنی بر مدولاسیون پالسـی در زمـان دارای پالس های بسیار باریک می باشـد کـه در حـوزه ی فرکـانس، بانـد فرکانسـی 3-10GHz را اشـغال می کنند در حالیکه سیستم های باند باریک که در زمان دارای شکل موج پیوسته مـی باشـند در حـوزه ی فرکانس، باند فرکانسی بسیار کوچکتری را به خود اختصاص میدهند.

شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک
در جدول 1-1 مقایسه ای بین مخابرات UWB و سایر اسـتانداردهای IEEE از نظـر بیشـترین نرخ داده ها، فاصله ی عملکرد و فرکانس کاری را نشان می دهد. می توان دید که UWB بـه دلیـل پهنـای

1 Multiple-Access Interference
13
باند وسیعی که دارد قابلیت انتقال نرخ بالایی از اطلاعات را در هر ثانیه در مقایسه با سـایر اسـتانداردهای
این جدول دارا میباشد.
جدول 1-1 قابلیت UWB در مقایسه با سایر استانداردهای [2] IEEE
استاندارد IEEE WLAN Bluetooth WPAN UWB
802.11a 802.11b 802.11g 802.15.1 802.15.3 802.15.3a
فرکانس کاری 5GHz 2.4GHz 2.4GHz 2.4GHz 2.4GHz 3.1-10.6GHz
بیشترین نرخ داده 54Mbps 11Mbps 54Mbps 1Mbps 55Mbps >100Mbps
حداکثر فاصله 100m 100m 100m 10m 10m 10m
به دلیل پهنای باند وسیع سیستم فراپهن باند، گیرنده های این سیسـتم بایسـتی قابلیـت کـار در محیط های پر تداخل را دارا باشند. در یک محیط کار معمولی سیستم های بی سیم مختلفی در حـال کـار هستند. گیرنده ی فراپهن باند همواره در معرض تـداخل و مسـدود شـده گـی توسـط سـایر سیسـتمهـای مخابراتی بی سیم که در باند فرکانسی 3-10GHz و یـا نزدیـک بـه آن قـرار دارنـد ماننـد Bluetooth، WLAN و غیره همانطور که در شکل 9-1 ملاحظه میشود قرار دارد.

شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند
14
7-1 تفاوت بین UWB و طیف گسترده1
تعداد زیادی از افراد، مخابرات UWB را بـا تکنیـک هـای طیـف گسـترده ی پهـن بانـد اشـتباه می گیرند، هرچند هر دو خاستگاه مخابرات امن نظامی دارند لازم است تا یک تفاوت اساسـی میـان آن دو را روشن کنیم. برای این منظور لازم است تا دو روش متداول تکنیک طیف گسترده را معرفی کنیم.
1-7-1 رشتهی پیوستهی طیف گسترده(DSSS) 2
در DSSS یک کد شبه تصادفی برای گسترده کردن هر بیت از اطلاعـات بـا اسـتفاده از تعـداد زیادی از بیت ها که به مراتب کوچکتر از بیت اصـلی هسـتند اسـتفاده مـی شـود ایـن کـدها پهنـای بانـد اطلاعات را به پهنای باند بزرگتری گسترش میدهند.
2-7-1 جهش فرکانسی طیف گسترده(FHSS) 3
تکنیک FHSS در مفهوم شبیه DSSS است ولی در این روش گسترده کردن انـرژی سـیگنال در حوزهی فرکانس صورت میگیرد و مزایایی از مخابرات پهن باند را ارایه میدهد. به هر حال پهنای بانـد زیاد نتیجهی گسترده کردن اطلاعات مانند تکنیک DSSS نیست.
3-7-1 تفاوتهای اساسی بین UWB و طیف گسترده
هر دو تکنیک DSSS و FHSS منجر به وسیع شدن طیف فرکانس میگردند و مزایایی نسـبت به مخابرات باند باریک مانند چگالی طیف توان کمتر، ناهمپوشانی، تنوع فرکانسی بـرای کـارایی بهتـر در کانال های چند مسیره و مقاومت در برابر مسدود شده گی عمـدی و غیـر عمـدی دارنـد. امـا تفـاوت بـین
UWB و طیف گسترده چیست؟ هرچند هر دو تکنیک UWB و طیف گسترده همان مزایـای گسـترده کردن پهنای باند را دارند، روش دستیابی به پهنای باند بزرگ تفاوت اصلی بین این دو تکنیک است.
در تکنیک های متداول طیف گسترده سیگنال ها موج های سینوسی پیوسته اند که بایک فرکـانس حامل ثابت مدوله شده اند. در مخابرات UWB فرکانس حاملی وجـود نـدارد، پـالس هـای UWB کوتـاه مستقیماً پهنای باند گسترده تولید می کنند. فاکتور اختصاصی دیگر در UWB پهنای باند خیلـی بـزرگ است. در حالیکه تکنیک های طیف گسترده پهنای باند مگاهرتزی عرضه می کنند، UWB چندین گیگـا هرتز پهنای باند دارد. شکل 10-1سیگنال های باند باریک، پهن بانـد و UWB را در حـوزه هـای زمـان و فرکانس نشان میدهد .[2]

1 Spread Spectrum 2 Direct-Sequence Spread Spectrum 3 Frequency-Hopping Spread Spectrum
15

شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و (c) فراپهن باند در حوزههای زمان و فرکانس
8-1 روشهای پیاده سازی سیستم فراپهن باند
در حال حاضر دو روش برای پیاده سازی سیستم های فراپهن باند در باندهای اختصاص داده شده توسط FCC وجود دارد که در ادامه پس از معرفـی آنهـا بـه بررسـی نحـوهی بـه کـار گیـری آنهـا در سیستمهای فراپهن باند میپردازیم.
1-8-1 سیستم (Code Division Multiple Access) CDMA
در روش های قبلی مانند FDMA باند فرکانسی موجود به تعداد زیادی کانال تقسیم و هر کـدام به یک کاربر اختصاص می یافت. در روش TDMA همان مقدار باند فرکانسی برای هر کـاربر وجـود دارد ولی در زمان های متفاوت TDMA به تناوب یکی از فرستنده-گیرنـده هـا را بـه مـدت TSL ثانیـه فعـال می کند. کل پریود شامل تمام مقطع های زمانی را قاب (فریم) TF میگویند. در هر TF ثانیه هر کـاربر بـه اندازهی TSL ثانیه به کانال دسترسی دارد. شکل 11-1 این مطلب را نشان میدهد.

شکل 11-1 روش دسترسی TDMA
16
ولی در روش CDMA که برای استفاده ی بهینه تر از باند فرکانسی به کار می رود، سیگنال ها هم می توانند در فرکانس و هم در زمان با هم همپوشانی داشته باشند ولی با استفاده از پیـام هـای متعامـد از تداخل جلوگیری می شود. در شروع ارتباط به هر زوج فرستنده- گیرنـده یـک کـد معـین اختصـاص داده می شود و هر بیت اطلاعات باند پایه قبل از مدولاسیون با آن کد تغییر می کند (شـکل .(12-1 عمـل کـد کردن پهنای باند طیف داده را به اندازه ی تعداد پالس های موجود در کد افزایش می دهد ولی از آنجـا کـه
CDMA امکان می دهد طیف گسترده کاربران روی یک باند فرکانسی بیفتنـد، پـس CDMA ظرفیـت بالقوهی بیشتری نسبت به دو روش قبل دارد.

شکل 12-1 عملیات کد کردن در [5] DS-CDMA1
شکل 13-1 شیوه ی استفاده از باند فرکانسی UWB را توسط سیستم DS-CDMA که یکـی از پرکاربردترین انواع CDMA می باشد و بر مبنای انتشار سیگنال ها از- به کاربران مختلف بـا کـدهـای متفاوت می باشد را نشان می دهد. همان طور که ملاحظه می شود از دو باند فرکانسی بالا و پـایین اسـتفاده می کند. باند پایین از 3/1GHz تا 5/15GHz را می پوشاند و باند بـالا از 5/825GHz تـا 10/6GHz را در برمی گیرد. به دلیل تداخل با سیسـتم 802.11a از فاصـله ی فرکانسـی 5/15GHz تـا 5/825GHz
استفاده نمیشود.

شکل 13-1 نحوهی استفاده از پهنای باند در سیستم DS-CDMA

1 Direct -Sequence Code Division Multiple Access
17
2-8-1 سیستم (Orthogonal Frequency Division Multiplexing) OFDM
در سیستمهای چند حاملی قدیمی، پهنای باند به N زیر کانـال نـاهم پوشـان تقسـیم مـیشـد و اطلاعات باند پایه روی هر حامل مدوله می گردید. فاصله ی فرکانسی بین حامل ها کـه بـرای جلـوگیری از تداخل در نظر گرفته می شود سبب از بین رفتن مقداری از پهنای بانـد مـی شـود. در OFDM اطلاعـات ارسالی به تعدادی زیر باند تقسیم شده و پس از محاسبهی عکس تبدیل فوریه اطلاعات روی مجموعـه ای از زیر حامل ها ارسال می گردد و از آنجایی که این حامل ها بر هم عمودند به فاصله ی فرکانسی کمـی نیـاز دارند. خرد کردن سیگنال در زیر باندها مقاومت سیستم در برابر محو سیگنال و از بین رفتن اطلاعـات را افزایش میدهد. در گیرنده با تبدیل فوریه بیتهای هر زیر باند استخراج میگردد.
سیسـتم MB-OFDM1 کـل بانـد فرکانسـی UWB را بـه 4 گـروه و 14 بخـش 528MHz
تقسیم میکند .[6] شکل 14-1 این تقسیم بندی فرکانسی را نشان میدهد.

شکل 14-1 گروه بندی طیف فرکانسی MB-OFDM
همان طور که در شکل 15-1مشاهده می شود هر باند 528MHz از 128 زیر حامل بـا فاصـله ی فرکانسی 4/125MHz تشکیل میشود.

شکل 15-1 طیف فرکانسی [7] MB-OFDM

1 Multiband OFDM
18
.2 فصل دوم: مخلوطکنندههای فرکانسی
Mixer
19
1-2 تاریخچه
مبدع مخلوط کنندهی فرکانسـی (Frequency Mixer) دانشـمند بـزرگ مخـابرات رادیـویی ادوین آرمسترانگ1 میباشد. قبل از او تلاشهایی برای انتقال مستقیم فرکانس به باند پایه2 صورت گرفتـه بود، اما چون نوسان کنندههای محلی از پایداری (Stability) کافی برخوردار نبودند موفقیت چندانی در برنداشت. ایدهی آرمسـترانگ در اسـتفاده از فرکـانس واسـطه( IF) 3 کـه منجـر بـه طـرح گیرنـده هـای سوپرهترودین شکل 1-2 گردید امروزه در بسیاری از گیرندههای رادیویی مورد استفاده است.

شکل 1- 2 ساختار گیرنده سوپر هترودین
آرمسترانگ با استفاده از واسطهی لامپ خلاء (Vacuum Tube) مخلوطکنندهای سـاخت کـه فرکانس رادیویی RF را به یک فرکانس واسطه IF انتقال مـی داد در ایـن فرکـانس واسـطه، سـیگنال بـا کیفیت خوب، بهرهی زیاد و نویز کم، تقویت شده و در نهایت دمودله میگردید.
تا قبل از سال 1940 کارهای تئوری اندکی بر روی میکسـرها (کـه تـا آن زمـان از نـوع دیـودی بودند) انجام گرفته بود. دیودهای به کار رفته در این میکسرها از کیفیت و دقت پـایینی برخـوردار بودنـد.
در مدت کمتر از ده سال پیشرفت های زیادی در طراحی میکسرها و افزایش کیفیت دیودهـای مـایکروویو انجام گرفته به طوریکه افت تبدیل4 در میکسرهای مایکروویو از 20dB در 1940 بـه 10dB در 1945 بهبود یافت و در 1950 به حول و حوش 6dB رسید. امروزه با پیشرفت هایی که در ایـن زمینـه صـورت گرفته علاوه بر بهبود در افت تبدیل میتوان از بهرهی تبدیل5 میکسرها بهرهمند شد .[8]
امروزه بهکار بردن میکسرهای فرکانس بالا در سیسـتمهـای ارتباطـاتی بـدون سـیم، از اهمیـت خاصی برخورداراست. طراحی، ساخت و اندازهگیری مشخصات میکسرهای فرکانس بالا، باند مـایکروویو و باند میلیمتری، جزء تجربه های جدید مدارات مایکروویو بهشمار میآید.

1 Major Edwin Armstrong 2 Base Band 3 Intermediate Frequency 4 Conversion Loss 5 Conversion Gain
20
2-2 انواع میکسر
میکسرهای مایکروویو غیرفعال1 به طور معمول با دیودهای شاتکی صورت می پـذیرد. اسـتفاده از عناصر فعال نظیر ترانزیستورهای اثر میدانی برای ساخت میکسرها می توانـد سـبب بهبـود افـت تبـدیل و حتی ایجاد بهره ی تبدیل گردد. چنین میکسرهایی در مقایسه بـا میکسـرهای غیرفعـال سـاخته شـده بـا دیودهای شاتکی دارای معایبی نیز می باشند از جمله: احتمال ناپایداری و پیچیدگی مـدار میکسـر اشـاره کرد. چنانچه از ناحیه ی مقاومتی ترانزیستور اثر میدانی برای ساخت میکسر استفاده شود علاوه بر اینکـه مدارهای بایاس ساده تر شده احتمال ناپایداری نیز بسیار کاهش می یابد، از طرف دیگر به علت اسـتفاده از خاصیت غیرخطی ضعیف مقاومت کانال ترانزیستور، چنـین میکسـرهایی از مولفـه هـای اینترمدولاسـیون ضعیف توان اشباع 1dB بالا و درنتیجه محدودهی دینامیکی وسیعی برخوردار میباشند .[9]
میکسر، در واقع یک مبدل فرکانس است که در مدارات مخابراتی وظیفهی تبدیل (و یا ترکیـب)
سیگنال از یک فرکانس به فرکانس (های) دیگر را به عهده دارد. اهمیت ایـن عملکـرد در تهیـه و تـامین فرکانسهای کاری مناسب با پایداری و نویز مطلوب است. بنابراین باید تلف تبدیل کم و سطح نویز پایین سیگنال تولید شده را از مشخصات مطلوب و مورد نظر در طراحی دانست (هرچند تحقق همزمان ایـن دو مهم در طراحی و ساخت میکسر عملاً کار چندان سادهای نمی باشد.) میکسر را می توان یک مـدار سـه دهانه شامل دهانهی پمپ2 و یا همـان نوسـان کننـدهی محلـی (LO)، دهانـهی سـیگنال ورودی RF و
دهانهی سیگنال IF دانست. (شکل (2-2

شکل 2- 2 میکسر به عنوان یک عنصر سه دهانه
عمل ترکیب سیگنالها را عنصر غیر خطی (مانند دیود ویا ترانزیستور) انجام میدهد. بر همـین اساس میکسرها به دوگروه میکسرهای غیرفعال و فعال تقسیم مـیشـوند. تفـاوت مشخصـات میکسـرها بهطور عمده وابسته به عملکرد عنصر غیرخطی آنهاست. وظیفـه سـیگنال LO کـه معمـولاًدارای تـوان بالاتری نسبت به سیگنال RF است راهاندازی3 عنصر غیرخطی مدار میکسر است تا عملکـرد متغییـر بـا

1 Pasive 2 Pump 3 Driving
21
زمان میکسر را تامین کند. فرکانس سیگنال خروجی IF ترکیبی از هارمونیکهـای سـیگنالهـای RF و LO است که میتوان آنرا بهصورت mfRF+nfLO=fIF نوشت که m و n اعداد صحیح هستند.
1-2-2 میکسرهای غیر فعال
میکسرهای پسیو ساده ترین، شناخته شده ترین و اولین مدارات میکسر هستند. یک ترانسفورماتور و دو دیود، ساده ترین میکسرهای غیر فعال را تشکیل می دهند. ایـن نـوع از میکسـرها دارای ایزولاسـیون خوب بین LO و RF و نیز بین LO و IF می باشند اما سیگنال RF را مستقیماً به خروجی IF می برند. چون سوییچ می تواند با یک MOSFET ساده تحقق یابد میکسر غیر فعال می تواند با مـدارات CMOS
اجرا شود. (شکل ( 3- 2

شکل 3-2 میکسر غیرفعال با تعادل دوگانه1 با CMOS
با توجه به دامنهی مثبت و منفی LO سیگنال RF از مسیرهای مختلف بـه پـورت خروجـی IF
می رسد. با تولید سیگنال مخلوط شده ی IF هارمونیک های دیگری نیز در خروجی ظاهر می شوند. در یک طراحی متعادل تمامی هارمونیکهای زوج حذف میشوند.
بهرهی تبدیل
به صورت توان یا ولتاژ خروجی IF تقسیم بر توان یا ولتاژ ورودی RF تعریف میشود.
رابطهی ,1-2یا , AP

,,
خروجی این میکسر پایین آورندهی غیرفعال میتواند توسط رابطهی 2-2 بهدست آید.

1 Double Balanced
22
رابطهی 2-2 . . . رابطهی 3-2

که در روابط بالا gT(t) رسانایی معادل تونن متغییر با زمان دیده شده از سر خروجـی IF ، m(t)
تابع میکس (رابطهی (3-2 و TLO دوره تناوب سیگنال LO است .[10]
در این میکسر درایو بزرگ LO لازم است تـا ترانزیسـتورهای پسـیو بتواننـد متناوبـاً خـاموش و روشن شوند. توان DC بالایی مصرف می کند که این توان در خود میکسر مصرف نمیشـود ولـی مـدارات درایو LO مقدار زیادی توان برای فراهم کردن سویینگ کافی LO مصرف میکنند.
نویز:
چون قبل از میکسر LNA قرار دارد پس عدد نویز (NF) مـورد نیـاز میکسـر خیلـی بیشـتر از
LNA است زیرا عدد نویز LNA با NF کل مستقیماً جمع میشود ولی NF میکسر بـر بهـرهی LNA
تقسیم میشود. (رابطهی ( 4- 2
رابطهی 4-2 1 NFM 1 NFLNA 1 ALNA در یک قطعهی غیر فعال NF به افت توان نزدیک است.
خطی بودن:
خطی بودن یکی از مشخصات اصلی میکسر پایین آورنده است، سیگنال اصـلی و تـداخل هـردو قبل از ورود به میکسر توسط LNA تقویت می شوند. خیلی از تداخل ها بیش از اندازه به سـیگنال اصـلی نزدیک هستند که توسط فیلتر داخل چیپ فیلتر شوند و این تداخل ها می توانند خیلی قوی تر از سـیگنال مطلوب باشند، بنابراین میکسر به خطی بودن خیلی بیشتری از LNA نیاز دارد. همانطور که در رابطهی
5-2 دیده می شود اعوجاج سهیم شده توسط میکسر به انـدازه ی بهـره ی LNA از اعوجـاج سـهیم شـده توسط LNA بزرگتر است.
رابطهی 5-2 ALNA 1 1 IIP3M IIP3LNA IIP3 اگر سوئیچ های میکسر ایده آل باشند هیچ اعوجاجی توسط میکسر تولید نمی شود. به هر حال بـه خاطر مقاومت سوئیچ ها که نه تنها به ولتاژ درایو LO بلکه به ولتاژ ورودی نیز وابستهاند، سـیگنال توسـط سوئیچها دچار اعوجاج میشود.
23
2-2-2 میکسر گیلبرت
این میکسر به جای تبدیل سیگنال RF به ولتاژ، سیگنال RF را به جریان تبدیل می کنـد. یـک ترانزیستور وظیفه ی تبدیل سیگنال RF را به جریان را به عهـده دارد و سـپس یـک جفـت دیفرانسـیلی جریان را به خروجی های IF متمم در هر دوره ی تناوب LO تبدیل مـی کنـد. در ایـن میکسـر چـون بـه سوئینگ بزرگ بین گیت های جفت دیفرانسیلی برای تبدیل جریـان نیـاز نیسـت درایـو LO مـورد نیـاز کاهش قابل ملاحظهای مییابد.
میکسـر گیلبـرت سـاده (شـکل (4-2 نسـبت بـه میکسـر غیـر فعـال ایزولاسـیون بهتـری بـین سیگنال های RF و LO دارد، زیرا هیچ مسیر مستقیمی بین RF و LO وجود ندارد، اما هنوز نشت LO
به پورت IF از طریق خازنهای پارازیتی بین گیت و درین سوئیچها هست.

شکل 4-2 میکسر گیلبرت ساده
شکل 5-2 یک میکسر با تعادل دوگانه در تکنولوژی CMOS را نشان می دهـد. ایـن میکسـر از سه بخش زیر تشکیل شده است:
مبدل ولتاژ به جریان (ترارسانا)
ترانزیستورهای ضرب کننده (سوئیچها)
مبدل جریان به ولتاژ (بار)
این میکسر مشکل فوق را با اتصال سیگنال هـای LO دیفرانسـیلی بـه همـان خروجـی IF حـل کرده است، هر طرف خروجی IF به دو سوئیچ با سیگنالهای LO با 180˚ اختلاف فاز متصل اسـت پـس
24
نشت LO از دو سوئیچ یکدیگر را خنثی می کنند پس تنها میکس سیگنال هـای RF و LO در خروجـی
IF ظاهر میشود.

شکل 5-2 میکسر گیلبرت با تعادل دوگانه
بهرهی تبدیل:
بهره ی تبدیل میکسر گیلبرت شامل سه جزء )Asw (2 gm,rf (1بهره یا افـت سـوئیچ هـا) RO (3
(امپدانس خروجی)
رابطهی 6-2 , که در رابطهی Asw 6-2 تـابع شـیب و دامنـهی ولتـاژ درایـو LO و ولتـاژ over drive جفـت
سوئیچ هاست . (Vod,sw ) اگر سیگنال LO موج مربعی باشد و دامنهی آن بیشـتر از Vod,sw باشـد، آنگـاه -3.9dB یا Asw=2/π است، اگر سیگنال LO سینوسی باشد و دامنه ی آن به اندازه ی کـافی بزرگتـر از
Vod,sw باشد آنگاه Asw نزدیک به مقدار آن در مورد موج مربعی اسـت. شـکل 6-2 بهـره ی سـوئیچینگ میکسر گیلبرت با تعادل دوگانه ی نوعی را نمایش می دهد. Asw تابع دامنه ی ولتاژ LO اسـت وقتـی کـه دامنهی ولتاژ LO کوچکتر از ولتاژ over drive است، و مقدار ثابتی کمـی کـوچکتر از 2/π (بـه خـاطر افت پارازیتیک) دارد وقتی که دامنهی ولتاژ LO به اندازهی کافی بزرگ است.
25

شکل 6- 2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه
ولتـاژ over drive ترانزیسـتورهای سـوئیچ بـه جریـان دریـن ترانزیسـتور ورودی RF و ابعـاد ترانزیستورهای سوئیچ وابسته است. Vod,sw می تواند با رابطه ی I-V یک قطعه ی کانال بلند تخمـین زده شود. (رابطهی (7-2
,

رابطهی ,7-2

وقتی کانال ترانزیستورهای سوئیچ به اندازه ی کـافی کوتـاه باشـد معادلـه ی کانـال کوتـاه اعمـال میگردد. (رابطهی (8-2
2 1 2 V , ,
رابطهی 8-2 ρ ρ که در رابطهی 8-2، ρ0 برابر است با:
ρ V ,

به هر حال درایو LO بزرگ می تواند بهره ی سوئیچ Asw بزرگتری فراهم کند. درایو LO خیلـی بزرگ بهره ی تبدیل را کاهش میدهد. هارمونیک بزرگ LO میتوانـد ولتـاژ دریـن ترانزیسـتور ورودی را کاهش دهد و نهایتاً به ناحیهی ترایود هدایت کند.
به جای افزایش درایو LO، کاهش ولتاژ over drive جفت دیفرانسیلی میتواند بهرهی تبـدیل را افزایش دهد. برای این منظور از یک منبع جریان DC که به سورس مشـترک ترانزیسـتورهای سـوئیچ وصل می شود تا بخشی از جریان DC از درین ترانزیستور ورودی را بکشد، استفاده مـی شـود و درنتیجـه
26
ولتاژ over drive کاهش مییابد. تکنیک تزریق جریـان DC در شـکل 7-2 بـا دوایـری بـه دور منـابع جریان مشخص شده است .[10]

شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان DC
نویز:
سه منبع اساسی نویز در میکسر پایین آورنده داریم: (1 نویز تولید شده در ترانزیستور ورودی RF
(2 نویز سوئیچینگ
(3 نویز بارهای خروجی
نویز ترانزیستور ورودی RF شامل دو بخش است: (1 نویز گرمایی درین
رابطهی 9-2 , 8 , i و (2 نویز القایی گیت که تا حدودی به نویز گرمایی درین وابسته است. kTg 3 رابطهی 10-2 4 i , جفت دیفرانسیلی جریان RF را بین دو ترانزیستور با فرکانس LO سوئیچ می کنـد، کـه نـویز را نیز در مسیر سیگنال شرکت می دهد. یکی از سـهم هـای نـویز از افـت سـوئیچ هـا و دیگـری از نـویز روی سیگنال های LO است. نویز در گیت جفت دیفرانسیلی شامل نویز فاز و نویز حرارتـی روی سـیگنالهـای LO و نویز القایی گیت است. وقتی دامنهی LO خیلی بزرگتر از ولتاژ over drive جفـت دیفرانسـیلی باشد ( به این مفهوم که فاصله ای که هر دو ترانزیستور جفت دیفرانسیلی روشنند خیلی کـوچکتر از دوره تناوب LO باشد) هر دو نویز حرارتی LO و نویز القایی گیت شدت خیلی کمتری از نویز فاز LO دارند.
27
خطی بودن
خطی بودن میکسر گیلبرت با gm ترانزیستورهای ورودی RF محدود می شـود. یکـی از راه هـای افزایش خطی بودن میکسر گیلبرت بدون کاهش بهره ی تبدیل آن، افزایش جریان دریـن ترانزیسـتورهای ورودی RF و سپس ربودن جریان DC غیر ضروری از مسیر سیگنال است. (شکل (7-2
ادوات سوئیچ کننده خیلی در اعوجاج خروجی شرکت نمی کنند. میکسر گیلبرت بـه جـای ولتـاژ جریان را سوئیچ میکند، هنگامیکه ولتاژ درایو LO خیلـی بزرگتـر از ولتـاژ over drive باشـد، جفـت دیفرانسیلی جریان را به طور کامل سوئیچ میکند و در نتیجـه بهـرهی تبـدیل روی جریـان ورودی ثابـت است. به هر حال با چنین هدایت ناگهانی جریان، سیگنالهای RF با هارمونیکهای مراتب بلاتـر LO در خروجی میکسر تولید میشوند. فرکانسهای سیگنال خروجی میتواند توسط رابطهی 11-2 بیان گردد.
رابطهی 11-2 : , | | یک فیلتر پایین گذر بعد از میکسـر فرکـانس هـای تولیـد شـده ی بـالاتر از ǀfRF±fLOǀ را حـذف می کند. در یک میکسر گیلبرت با تعدل دوگانه همه ی هارمونیـک هـای زوج هـر دو سـیگنال RF و LO
حذف میشوند.
3-2 کاربرد میکسر
همانطور که گفته شد از میکسرها جهت انتقال فرکانس موج حامل به پایین یعنی از RF به IF
در گیرنده ها استفاده می شود، تا سیگنال حاصله با کیفیت خوب و نویز کم قابل پردازش و تقویـت باشـد.
در این انتقال فرکانسی هیچ تغییری در نوع مدولاسیون موج حامل ایجاد نمی شود، به ایـن معنـی کـه در دامنه، فاز یا انحراف فرکانس لحظه ای موج نباید تغییـری بـه وجـود آیـد. عـلاوه بـر ایـن از میکسـرها در فرستنده ها جهت انتقال فرکانس موج حامل به بالا یعنی از IF به RF استفاده می شـود. بـر ایـن اسـاس میکسرهایی که عمل انتقال فرکانس از بالا به پایین را انجام میدهند (پـایین برنـده(1 و میکسـرهایی کـه فرکانس پایین را به بالا انتقال میدهند (بالا برنده(2 نامیده میشوند.
غیر از پارامترهای تلف (و یا گین) و سطح نویز، حداکثر ایزولاسیون بین دهانههـا و فیلترکـردن مناسب برای انتخاب هارمونیک مـورد نظـر (از بـین هارمونیـکهـای تولیـد شـده) در خروجـی، حـذف سیگنالهای ناخواسته، حذف فرکانس تصویر و تطبیق امپدانسی دهانهها (بهویژه در میکسرهای فعال) از سایر مشخصاتی است که در طراحی میکسر مورد نظر است. نخستین گـام در طراحـی میکسـر، انتخـاب مناسب عنصر غیرخطی برای داشتن عملکرد مناسب در باند فرکانسی مورد نظر است.

1 Down Convert 2 Up Convert
28
بر همین اساس برای طراحی و ساخت میکسر در باند فرکانسی خـاص و بـا مشخصـات مطلـوب، ملاحظات تئوری و عملی زیادی باید در نظرگرفته شوند.
4-2 عملکرد میکسر
هرگاه یک سیگنال سینوسی به ورودی یک مدار خطی اعمال شـود شـکل مـوج خروجـی شـبیه شکل مـوج ورودی خواهـد بـود، ولـی اگـر سـیگنال سینوسـی بـه یـک مـدار غیـر خطـی اعمـال شـود هارمونیک های ورودی در خروجی ظاهر می شوند. حال اگر دو سیگنال بـا فرکـانس هـای f1,f2 بـه ورودی یک مدار غیر خطی اعمال شوند نه تنها هارمونیک های هریک از فرکانس های بلکه هارمونیک های دیگـری به شکل m) mf1+nf2وn اعداد صحیح هستند) در خروجی خواهیم داشت.
مشخصه ی یک مدار غیر خطی را با اسـتفاده از تـوان سـری بـه صـورت رابطـهی 12-2 در نظـر میگیریم:
رابطهی 12-2
با فرض ورودی V=V1+V2 خواهیم داشت:
رابطهی 13-2
از بسط رابطهی 13-2 میتوان نوشت:
رابطهی
14-2 3 3 2 در رابطـهی 14-2، V1m تولیـد کننـدهی فرکـانس mf1 و V2n تولیدکننـدهی فرکـانس nf2 و V1mV2n تولیدکنندهی فرکانسهای mf1+nf2 هستند. با توجـه بـه روابـط بـالا معلـوم اسـت کـه یـک مشخصهی غیرخطی میتواند فرکانس های خیلی زیادی تولید کند، که در تحلیل کلی دو دسـته فرکـانس خواهیم داشت، یکی از هارمونیکهای دو فرکانس اعمال شـده و دیگـری یـک دسـته مجمـوع و تفاضـل هارمونیکهای فرکانسهای اعمال شده است.
1-4-2 میکسر به عنوان یک ضرب کننده
به طور کلی میتوان یک میکسر را به عنوان یک ضربکننده در نظرگرفت. (شکل (8-2

شکل 8-2 میکسر به عنوان یک ضرب کننده [3]
29
در این شکل یک ضربکنندهی ایدهآل با دو ورودی RF و LO دیده میشود شامل یـک Tone
حامل در فرکانس ωRF و یک شکل موج مدوله شدهARF 1 میباشد، ورودی دیگری که بـه دهانـهی LO
اعمال میشود یک سینوسی خالص در فرکانس ωLO است.
با ضرب دو سیگنال سینوسی و تبدیل آن به مجموع دو سینوسی که یکی حاصل جمع و دیگری تفاضل دو فرکانس را میدهد، فرکانس مجموع را فیلتر کرده و فقط سیگنال تفاضـل بـاقی مـیمانـد کـه حاصل مخلوط کردن دو فرکانس میباشد، در واقع سیگنال خارج شده از فیلتر شکل موج ARF است کـه اکنون بر Tone حاصل دو فرکانس ωRF-ωLO سوار میباشد.
اگرچه ضربکنندهی ایدهآل دردسترس نیست اما هر عنصـر غیـر خطـی دارای خاصـیت ضـرب کنندهگی است. عملکرد عناصر غیرخطی از آن جهت با ضربکنندهی ایدهآل متفاوت است که این عناصر هارمونیکهای مختلف RF و LO و ترکیب آنها را تولید کرده و خروجیهایی با این هارمونیکها ایجـاد میکنند، حال اگر ورودی مدوله شده ی RF از ورودی غیر مدوله شدهی LO خیلی کوچکتـر باشـد کـه در عمل چنین نیز هست خروجی میکسر شامل ترم های فرکانسی زیر است:
ωn =ωRF+nωLO
پس در خروجی IF فرکانس ωRF به علاوه ی هارمونیکهای مختلف LO را خواهیم داشـت کـه خروجی دلخواه بهوسیلهی فیلتر در دسترس خواهد بود.
2-4-2 عملکرد میکسر به کمک یک سوئیچ
میکسر را میتوان به عنوان یک سوییچ نیز مطرح نمود که با فرکانس LO قطع و وصل میگردد.
شکل 9-2 یک میکسر با ساختار تکی2 را نشان میدهد که به صورت یک سوئیچ مدل شده است.
سیگنال IF حاصلضرب سیگنال RF در شکل موج سوئیچ شدهی S(t) میباشد. در برخی مـوارد ممکـن است شکل موج سوئیچ شده دارای زمان قطع و وصل% 50 3 نباشـد، بـه هرحـال همـهی هارمونیـکهـای فرکانس اصلی به علاوهی یک جـزء DC حاصـل مـیشـود. بنـابراین سـیگنال IF شـامل تعـداد زیـادی هارمونیکهای ناخواسته میباشد که با فیلتر کردن میتوان آنها را جدا ساخت.

1 Modulation Waveform 2 Single ended 3 Duty Cycle
30

شکل 9- 2 میکسر با ساختار تکی
شکل 10-2 نشان دهندهی نوع دیگری از ساختار میکسر است که به آن سـاختار متـوازن تکـی1 گفته میشود، که با استفاده از شکل موج دیگری برای S(t) مدل شدهاست.
در اینجا بهجای قطع و وصل سادهی سیگنال RF قطبهای مثبت و منفی سیگنال بـا فرکـانس سوئیچینگ LO عوض میشوند. مزیت اصلی این حالت حذف ترم DC در شکل موج S(t) اسـت (البتـه به شرط آنکه Duty Cycle، %50 داشته باشیم) و به تبع آن، دیگـر در طیـف خروجـی IF از فرکـانس
RF اثری نخواهد بود، در نتیجه یک ایزولاسیون ذاتی بین دریچههای RF و LO وجـود خواهـد داشـت
.[8]

شکل 10-2 میکسر با ساختار متوازن تکی

1 Single Balanced
31
.3 فصل سوم: بررسی میکسرهای توزیع شدهی
فراپهن باند
32
1-3 مقدمه
توپولوژی توزیع شده در ترکیب خطوط انتقال1 در ابتدا توسط گینزتون2 پیشنهاد شد.[11] به علـت عـدم پیشرفت تکنولوژی در طراحی و ساخت مدارت توزیع شده، اسـتفاده از ایـن مـدارات بـرای مـدت زیـادی متوقف شد. این مدارات دوباره در سال 1980 با پروسههای مختلفی شروع شد که از جمله آنها GsAs و
اخیراً تکنولوژی CMOS را میتوان نام برد. شروع دوباره به کارگیری مدارات توزیع شده اساساً ناشـی از قابلیت طراحی خطوط انتقال روی تراشه3 و سلفهای high-Q بود.
شکل 1-3 بلوک دیاگرام کلی شامل خطوط انتقال و طبقات بهره که روی خطوط انتقال توزیـع شـدهانـد، میباشد که هر طبقه میتواند یک ساختار مشخص میکسر در تکنولوژی دوقطبی4 باشـد. خطـوط انتقـال نیز میتوانند مطابق شکل (a)1-3 توسط موجبرهای هم محور یا مطابق شـکل (b) 1-3 توسـط مـدارات
LC تحقق یابند. در این شکل Ci خازنهای پارازیتی ورودی طبقه به اضـافهی همـه خـازنهـای خـارجی میباشد. همچنین Co خازنهای پارازیتی خروجی طبقات به اضافهی همه خازنهای خارجی میباشد.

شکل 1-3 بلوک دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی[11]
یکی از مشخصات بارز مدارات مجتمع این است که خطوط انتقـال روی تراشـه را بـرای افـزایش پهنای باند به کار میگیرند. در حوزهی فرکانس، خازنهای پارازیتی ترانزیستورها که در شـکل 1-3 دیـده می شود، جذب ثابتهای خطوط انتقال میشوند. بنابراین پهنای باند مدار توسـط فرکـانس قطـع خطـوط انتقال تعیین میشود.

1 Transmission Line 2 Ginzton 3 On chip 4 bipolar
33
نکتهی مهم در خصوص توپولوژی توزیع شده در مقایسه با سایر توپولوژیها، توان مصرفی بـالا و سطح اشغالی زیاد آنها است. توان مصرفی و سطح اشغالی با افزایش تعداد طبقات زیاد میشوند. بهتـرین راه، ایجاد مصالحه بین توان مصرفی و حاصلضرب بهره در پهنای باند یعنی 1GBW میباشد.
توان مصرفی مدارات توزیع شده با n طبقه، n برابر توان مصـرفی یـک مـدار یـک طبقـه اسـت.
مدرارت توزیع شده نسبت به مدارات فشرده مصـالحه ی بهتـری بـین تـوان مصـرفی و عـدد نـویز برقـرار میکنند.
2-3 مدارات توزیع شده
در ساختارهای توزیع شده که اخیراً استفاده از آنها در طراحی سیستمهای فـرا پهـن بانـد رشـد چشمگیری داشته است، معمولاً از چند سلول یکسان که بصورت موازی بین دو خط انتقال (بـا امپـدانس ذاتی معادل 50 اهم) ورودی و خروجی قرار گرفتهاند، استفاده می گردد. این خطوط انتقال مجازی کـه در شکل 2-3 ملاحظه می شوند، از مدل T معادل خط انتقال ناشی شده و اساساً دربرگیرندهی تعدادی سلف میباشند که در کنار خازنهای پارازیتیک ترانزیسـتور، تشـکیل خـط انتقـال بـا امپـدانس مـورد نظـر را میدهند .[12]

شکل 2-3 مدل خطوط انتقال مصنوعی
یکی از نکات مهم در استفاده از ساختار توزیع شده، در نظر گرفتن اختلاف فاز بین سیگنالهـای رسیده از هر کدام از سلولها با یکدیگر در خروجی میباشد. بدین معنی که اگر سـاختار توزیـع شـده بـا چهار سلول را به صورت شکل 3-3 در نظر بگیریم، آنگـاه مـثلاً سـیگنال ورودی A1 پـس از طـی مسـیر مشترک L1 به ورودی اولین سـلول رسـیده، سـپس بـا طـی مسـیرهای L4, L3, L2 و L5 بـه خروجـی میرسد. از طرف دیگر سیگنال A2 از مسیر دیگر بـا طـی مسـیر L1 وL2 بـه ورودی سـلول 2 رسـیده و سپس با طی مسیرهای L3 ، L4 و L5 به خروجی میرسد که این مساله به همین نحو برای سایر سلولها نیز ادامه دارد. با توجه به این که سلولها کاملاً یکسان میباشند، بنـابراین بایـد اخـتلاف فـاز طـی شـده

1 gain-bandwidth
34
توسط سیگنال عبوری از هر یک سلولها از ورودی تا خروجی تا حد ممکن یکسان باشد که در غیـر ایـن صورت باعث تاثیر منفی سیگنالهای سلولها بر یکدیگر و کاهش بازدهی از مقدار ایدهآل میشود. به این منظور باید مقادیر سلف های موجود در خط انتقال ورودی و خروجی و خـازنهـای پارازیتیـک بـه نحـوی انتخاب شوند که علاوه بر تامین امپدانس 50 اهم برای رسیدن به ضریب انعکاس قابل قبـول در ورودی و خروجی، بتوانند این هماهنگی در اختلاف فاز را نیز میسر سازند .[11]

شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال
3-3 بررسی عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی
در شکل 4-3 یک سلول گیبرت که به طور گسترده به عنوان میکسر مورد استفاده قرار می گیـرد و یک میکسر با تعادل دوگانه1 است مشاهده می شود. تعادل دوگانه به این مفهـوم کـه اگـر فقـط یکـی از سیگنال های ورودی یا LO اعمال شود، خروجی به طور ایـده آل صـفر مـی گـردد. در ایـن تحلیـل فـرض می کنیم که سیگنال خروجی به طور ایده آل هیچ جزئی در فرکانس LO و هارمونیـک هـایش نـدارد، کـه وجود ایزولاسیون بالای پورت به پوررت بین پایانه های ورودی، LO و خروجـی ایـن خواسـته را بـرآورده می کند. سلول گیلبرت شامل طبقهی ترارسانایی یا راهانداز، که یک جفت دیفرانسـیلی اسـت کـه در یـک نقطه کار ثابت بایاس شده است، دو جفت سوئیچ که با سیگنال قوی LO راه می افتند و بارهای مقـاومتی یا مدارات تانک در خروجی است.
رابطهی 1- 3 I I I I IO IO
1 Double Balanced
35

شکل 4-3 میکسر گیلبرت CMOS
نصف سلول گیلبرت خودش یک میکسر تک بالانس است که در شکل 5-3 نمـایش داده شـده و بدین گونه درنظر گرفتن آن، به تحلیل مدار کمک میکند.

شکل 5-3 یک میکسر فعال CMOS با تعادل تکی
هنگامی که ولتاژ ac سیگنال بزرگ به سوئیچ ها اعمال می شـود، بایـاس M1 و M2 ثابـت نیسـت ولی به صورت متناوب با زمان تغییر می کند. وقتی ولتاژ دیفرانسیلی بزرگتر از مقدار مطمـئن Vx، کـه در شکل 6-3 آمده، بین گیت های ترانزیستورها اعمال می شود یکی از آن ها خـاموش مـی شـود، ولـی وقتـی مقدار مطلق ولتاژ لحظه ای VLO کمتر از Vx باشد، جریان طبقه ی راه انداز بین دو قطعه تقسیم می شـود.
میخواهیم جریان درین هر ترانزیستور را برای یک مقدار VLO و جریان بایاس طبقهی راهانداز بدانیم.
رابطهی 2- 3 V k VG V 36 ID 1 θ VGS
در رابطــهی 2-3 کــه رابطــهی جریــان-ولتــاژ ترانزیســتور MOS کانــال کوتــاه مــیباشــد،
θ فــــــــاکتور تنــــــــزل1 قابلیــــــــت حرکــــــــت میــــــــدان نرمــــــــال و k برابــــــــر است .[13]
ترانزیستور M3 را با یک منبع جریان ایده آل مدل می کنیم و فرض می کنیم ترانزیستورهای M1
و M2 در ناحیه ی اشباع باقی مـی ماننـد. در قسـمتی از دوره تنـاوب LO کـه ایـن ترانزیسـتورها روشـن هستند، رفتار سیگنال بزرگ جفت سوئیچها با روابط زیر مدل بیان میشود.
رابطهی 3- 3 I V VGS k V V VGS k و V 1 θ VGS 1 θ VGS IB رابطهی 4- 3 - نرمال میکنیم. GS که جریان و ولتاژ VLO را به صورت رابطهی 5 3 VLO VGS رابطهی -5-3 - θVLO - ULO IB- θ JB و در نتیجه رابطهی 3 3 و رابطهی 4 3 به صورت رابطهی 6 3 و رابطهی 7 3 درkمیآیند. و رابطهی 6- 3 JB U U 1 U U 1 رابطهی 7- 3
هنگامیکه همهی جریان بایاس از M1 میگذرد داریم:
JB 4 2 θ
رابطهی 8- 3 JB JB
gm ترانزیستورها نیاز می شود و می تواند از مشتق I نسبت به V یا در فرم نرمال شده می تواند از مشتق J نسبت به U محاسبه شود. رفتار جفت سوئیچ ها از Vt مستقل است و این به ما اجازه میدهد که gmbs را حذف کنیم. اگر از اثر خازنی صرفه نظر شود جریان خروجی میکسـر تـک بـالانس (شـکل (5-3
تابعی از ولتاژ پیوستهی LO و جریان طبقهی راهانداز است.
رابطهی 9- 3 , I I IO بسط اول تیلور رابطهی 9-3، رابطهی 10-3 را نتیجه میدهد:
رابطهی 10-3 . , , IO که میتوان آنرا به صورت زیر نوشت:

1 Degeneration
37
رابطهی 11-3 . در رابطهی p0(t) 11-3 و p1(t) توابع پریودیک هستند که در شکل 6-3 ملاحظه میشوند.

شکل 6-3 شکل موجهای p0(t) و p1(t)
در ساختار دوبل بالانس با تطبیق خوب تابع p0(t) حذف میشود.
در فاصله زمانی که -Vx<VLO<Vx است هر دو ترانزیستور سوئیچ روشن هسـتند و p0(t) و p1(t) به VLO و IB و مشخصات I-V ترانزیستورها وابستهاند. جریان سیگنال کوچـک در هـر شـاخه بـه وسیلهی تقسیم جریان تعیین میشود و به صورت رابطهی 12-3 دیده میشود .[14]
رابطهی 12-3

مطابق رابطهی 11-3 یک جزء سیگنال is(t) که آن را با x(t) نشان مـی دهـیم، در شـکل مـوج
p1(t) ضرب میشود پس طیف فرکانسی خروجی به صورت رابطهی 13-3 در میآید.
رابطهی 13-3 , که fLO فرکانس LO، p1,n سری فوریه ی p1(t) و X(f) طیف فرکانسی x(t) است. p1(t) فقط مولفههای فرکانسی فرد را دارا میباشد. (p1(t)= -p1(t+TLO/2)) توجه کنیم که ترمهای شـامل n=1
یا n=-1 بهره را معرفی می کنند و در این صورت رابطهی 14-3 بهره ی تبدیل جفت سوئیچ ها به تنهـایی را نشان میدهد.
رابطهی 14-3 , | . | 38
از آنجاییکه x(t)=gm3vin(t) که در آن vin(t) سیگنال ولتاژ ورودی در گیت ترانزیستور M3 و
gm3 ترارسانایی ترانزیستور M3 است، بهره ی تبدیل میکسر تک بالانس در فرم ترارسانایی رابطهی 15-3
است.
رابطهی g .15-3
برای دامنه های بزرگ LO، p1(t) به صورت مـوج مربعـی درمـی آیـد و c بـه 2/π مـیرسـد. در
شرایطی که VO>Vx است یعنی حالتی که برای کارکرد میکسر لازم است و بـا فـرض p1(t) یـک خـط مستقیم رابطهی 16-3 به عنوان تقریب خوبی برای c حاصل میشود .[14]
2 sin ∆
رابطهی 16-3


و برای LO سینوسی داریم: πΔfLO=arcsin(Vx/VO)
4-3 میکسر سلول گیلبرت توزیع شده
میکسر سلول گیلبرت توزیع شده تعداد یکسانی از ایـن میکسـرها مـی باشـد، کـه ترمینـالهـای ورودی و خروجی هر میکسر به نقاط اتصال وسط1 خطوط انتقال مصنوعی وصل شده است. اگر ثابت فـاز خطوط انتقال مصنوعی به درستی طراحی شده باشد خروجی IF هر سلول با سایر اجزاء IF کـه از سـایر سلولها میآیند هم فاز2 خواهد بود. این میکسر به یک بهرهی تبدیل بهتر در طول رنج فرکانسی پهـن در مقایسه با میکسر گیلبرت متداول دست مییابد.
مدارات با خطوط انتقال تاخیر انتشار را فدای پهنای باند سیگنال می کنند، در سیستم هـای بانـد وسیع تاخیر از پهنای باند محدود قابل تحمل تر است زیرا می تواند توسط مدارات پیشبینی تاخیر کالیبره گردد، که استفاده از مدارات توزیع شده در این کاربرد را توجیح مـی کنـد. پهنـای بانـد ایـن مـدارات بـه خصوص در پورت های RF و LO توسط ثابت زمانی RC محدود می شود. در حوزه ی فرکانس، یک منبع محدودیت پهنای باند در مدارات آنالوگ متداول، هنگامیکه فرکانس افزایش مـییابـد افـت در امپـدانس ورودی مدار است. در یک مدار توزیع شده که از شبکهی نردبانی LC بـرای بهبـود پهنـای بانـد اسـتفاده می شود، خازن ورودی ترانزیستور در داخل خطوط انتقال جذب (کشیده) میشود، از اینرو تـا زمـانیکـه فرکانس قطع خطوط انتقال نزدیک شود امپدانس ورودی و پهنای باند تا یک درجهی مطمئن ثابت بـاقی میمانند.
در اثر استفاده از خطوط انتقال مصنوعی بهبود تخت بودن بهره به دست میآید، هرچند طبیعـت مکانیسم اضافه کردن سلف در توپولوژی توزیع شده بهرهی تبدیل میکسر فعال را کاهش میدهد.

tap point in-phase

1
2
39
1-4-3 بهرهی تبدیل
با فرض رفتار سوئیچ جریان ایده آل برای طبقه ی سوئیچ جریان تفاضـلی خروجـی مـی توانـد بـه عنوان نتیجه ی ضرب جریان درین M1 با یک موج مربعی با دامنه ی واحد در نظر گرفته شود. هنگامی که دامنه ی جزء اصلی موج مربعی 4/π برابر دامنه ی موج مربعی است، ترارسـانایی کـل بـه صـورت رابطـهی
17-3 بیان میشود. در این رابطه 2/π به جای 4/π آمـده اسـت زیـرا سـیگنال IF بـین اجـزا مجمـوع و
تفاضل به طور مساوی تقسیم میشود .[15]
2
رابطهی G πg17-3
حال برای میکسر توزیع شده با n سلول بیشترین بهره ی تبدیل به صورت رابطهی 18-3 تعریـف
میشود.
رابطهی 18-3

برای افزایش بهره ی تبدیل می توان تعداد طبقات n، یا ترارسانایی gmRF را افزایش داد که هر دو موجب مصرف توان اضافی می شوند. راه دیگر افزایش ZIF است هنگامی که فرکانس قطع خـط انتقـال IF
) ) حفظ شود. شکل 7-3 مدار معادل خطوط انتقال IF را نشان می دهد که i2 تا
in مدل تاخیری i1 هستند .[11]

شکل 7-3 مدار معادل خط انتقال
2-4-3 تکنیک تزریق جریان
از رابطهی 18-3 نتیجه می شود که بهره ی تبدیل میکسر گیلبرت قویاً به بارهای مقاومتی وابسته است و برای بهره ی تبدیل بالا، مقاومت بار بزرگ نیاز است. با توجه به شکل 8-3، برای یـک جریـان ISS
مشخص خطی بودن میکسر ناشی از اضافه ولتاژ افت کرده روی RL رو به کاهش میگذارد. با ایجـاد یـک مسیر جریان بای پس IB جریان بایاس از مسیر RL به طور موثری کاهش می یابـد، هنگـامی کـه جریـان
DC کافی برای طبقهی ترارسانایی حفظ میشود.
40

شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان
تزریق جریان با یک مقاومت موازی یا منبع جریان فعال پیاده سازی میشود. برای تقویت بیشـتر ترارسانایی برای بهره ی تبدیل کمکی بدون مصرف جریان اضافی، یـک توپولـوژی تزریـق جریـان بـا یـک طبقه ی ترارسانایی مکمل که در شکل 9-3 ملاحظه می شود به کـار مـی بـریم. در ایـن توپولـوژی جفـت تفاضلی pMOS با ترارسانایی ورودی ترکیب شده اند. با انتخاب نسبت جریـان طبقـات مکمـل ماننـد α بهرهی تبدیل توسط رابطهی 19-3 داده میشود .[12]
αISS L µ C L I SS µ C CG 2 π RL
رابطهی 19-3 W W
شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل
می خواهیم خطی بودن مدار جدید را بررسی کنیم. معادله ی جریان سیگنال کوچک دریـن را بـه صورت رابطهی 20-3 مینویسیم:
رابطهی 20-3
41
و اگر -VOD VGS‐Vt باشد، آنگاه رابطهی 21-3 تا رابطهی 23-3را برای ضرایب g داریم. رابطهی 21 3 kVOD 2 θVOD ∂ID و θVOD 1 ∂VGS رابطهی 22-3 k 1 ∂ ID 1 و θVOD 2!∂VGS رابطهی 23-3 kθ 1 ∂ ID 1 θVOD 3!∂VGS بر اساس روابط بالا اینترمدولاسیونهای مرتبهی دوم و سوم به صورت زیر تعریف میشوند .[16]
رابطهی , ,24- 3

,,
رابطهی , ,25- 3

,,

4

3
از رابطهی 24-3 واضح است که با تکنیک تزریق جریان پیشنهادی بـرای میکسـر IIP2 بزرگتـر به دست می آید. هرچند به هرحال در نتیجه ی استفاده از طبقه ی ترارسانایی pMOS، IIP3 ممکن است کاهش یابد. بنابراین تعامل بین IIP3 و CG برای کارایی بهتر میکسر بایستی به دست آید.
3-4-3 تکنیک پیکینگ سلفی1
محدودیت دیگر پهنای باند کاری میکسر بانـد وسـیع خـازن هـای پـارازیتی در گـره ی خروجـی طبقه ی ترارسانایی هستند مخصوصاً وقتی که تکنیک تزریق جریان برای بالا بردن بهره استفاده می شـود.
یک مدل مدار ساده که در شکل (a)10-3 ملاحظه می شود برای تحلیل به کار رفته و تابع رابطهی 26-3
بهدست میآید.
رابطهی 26-3

1

1 Inductive Peaking
42

شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری
برای کم کردن تاثیر قطب فرکانس پایین اضافی در پهنای باند کـاری میکسـر تکنیـک پیکینـگ سری که در اصل برای تقویت کننده های باند وسیع ایجاد شده به کار می رود. شکل (b)10-3 یـک مـدل ساده ی پیکینگ سلفی سری را نشان می دهد. اعمال یک سلف سری Lm بین طبقات ترارسانایی و سوئیچ برای جداکردن خازن های پارازیتی، با وارد کردن یک شبکه ی غیر فعال بـا مشخصـات پهـن بانـد صـورت میگیرد.

شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شبکهی پسیو اضافه شده برای ایزوله کردن خازنهای
پارازیتی (c) پیاده سازی این شبکه با سلف
یک شبکه ی دو پورتی غیر فعال می تواند بین اجزاء ترانزیسـتور (R1,C1) و بـار (R2,C2) بـرای افزایش پهنای باند وارد شود(شکل .((b)11-3 اگر GBW1 شکل (a)11- 3 با رابطهی 27-3 بیان شود.
رابطهی 27-3

2

1 Gain-Bandwidth
43
GBW برای شکل (b)11-3 یا (c) که شبکه ی غیـر فعـال اعمـال شـده و در نتیجـه C1 تنهـا خازنی است که در پورت ورودی شبکه روی GBW اثر دارد، بنابراین برای این حالت GBW با رابطهی
28-3 محاسبه میشود .[17]
g
رابطهی GBW28-3
π
ملاحظه میشود که این تکنیک پهنای باند مدار را به طور قابل ملاحظهای افزایش میدهد.
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده
در این قسمت شماتیک مدار چندین ساختار میکسر پهن باند، که از بـه روزتـرین سـاختارها بـه شمار میروند، مرور شده است. در پایان بخش، این ساختارها از لحاظ فرکانس کار، بهـره ی تبـدیل، عـدد نویز و خطی بودن در یک جدول مقایسه شدهاند.
1-5-3 ساختار میکسر [18] 1
شماتیک مدار در شکل 12-3 دیده میشود. در طراحـی ایـن میکسـر از توپولـوژی توزیـع شـده استفاده شده و تعداد طبقات به طور دلخواه چهار انتخاب شده است. هر سلول یـک میکسـر تـک بـالانس است. ترانزیستورهای طبقه ی ترارسانایی (M31-M34) به طور یکسان تطبیق یافتـهانـد. در ایـن میکسـر خطوط انتقال مصنوعی در طول خطوط LO,RF وIF با شبکه ی نردبانی LC تحقق یافتهاند، که سلفها با استفاده از ماپیچهای داخل چیپ اجرا شدهاند و خازنها، خـازنهـای پـارازیتی ترانزیسـتورهای MOS
هستند که به خطوط تاخیر LC متصل شدهاند، امپدانس بار با امپدانس مشخصـه ی خطـوط تـاخیر LC
تطبیق یافتهاند.
پارامترهای بهره، عدد نویز، IIP3 این مدار در جدول 1-3 آمده است.

شکل 12-3 مدار میکسر ساختار 1
44
2-5-3 ساختار میکسر [12] 2
شماتیک مدار در شکل 13-3 دیده میشود. این میکسر با استفاده از توپولوژی توزیع شده ی غیر همسان طراحی شده، با ترکیب کردن طبقات سلف و خطوط انتقال مصنوعی با میکسـر گیلبـرت بهـره ی تبدیل بالا و تخت و نیز پهنای باند وسیع به دست می آید. در این سـاختار تزریـق جریـان بـرای افـزایش بهره ی تبدیل میکسر با تاثیر کمتر بـر خطـی بـودن آن بـه کـار رفتـه اسـت. همچنـین از تکنیـک هـای Degeneration خازنی و پیکینگ سلفی برای تقویت بهره و پهنای باند در فرکانس های بـالاتر اسـتفاده شده است.
پارامترهای بهره، عدد نویز، IIP3 این مدار در جدول 1-3 آمده است.

شکل 13-3 مدار میکسر ساختار 2
3-5-3 ساختار میکسر [19] 3
شماتیک مدار در شکل 14-3 دیده میشود. این میکسر با هسته ی سلول گیلبرت تحقـق یافتـه، سلول گیلبرت به دلیل داشتن ساختار دوبل بالانس که بهره ی تبـدیل بـالا و کـارایی مناسـب را در ابعـاد کوچک برای مجتمع سازی ارایه می دهد، انتخاب شده است. بـرای بهبـود پهنـای بانـد شـبکه ی تطبیـق امپدانس برای کاهش تلفات بازگشت سیگنال، با شبکه ی نردبانی LC که در مدارات توزیع شـده بـه کـار می رود در پورت های RF و LO به کار رفته است. این شبکه با خازن های Cgs ترانزیسـتورهای MOS و
سلف های مارپیچی، برای اجرای خطوط انتقال مصنوعی و دستیابی به پهنای باند بـالا اجـرا شـده و بـرای افزایش بهرهی تبدیل از روش تزریق جریان استفاده شده است.
پارامترهای بهره، عدد نویز، IIP3 این مدار در جدول 1-3 آمده است.
45

شکل 14-3 مدار میکسر ساختار 3
4-5-3 ساختار میکسر [20] 4
شماتیک مدار در شکل 15-3 دیده میشود. هستهی میکسر در ایـن سـاختار بـر اسـاس سـلول گیلبرت طراحی شدهاست. سیگنالهای RF و LO میتوانند بـین 3.1GHz تـا 10.6GHz متغیـر باشـند.

–272

ثابت جهانی گازها J/mol.K 8.314 R
مقاومت اهمیک.m ROhmic
مقاومت نفوذ اکسیژن از طریق فاز غشاء s/m
مقاومت نفوذ اکسیژن از طریق آبs/m
مختصات شعاعی m r
دما K T
حجم توده m Vagg
حجم مولار اکسیژن در نقطه جوش نرمال m/mol 25.6
کسر مولی اجزاء X
مختصه مکانی در دستگاه مختصات m Z
علائم یونانی نسبت شار مولی 
ضریب انتقال بار آند و کاتد c,a
ضخامت m 
تخلخل 
مدول تایلی 
افت ولتاژ v 
محتویات آب غشاء 
ویسکوزیته آب cP 
زاویه فاز هر جزء 
چگالی kg/m 
قابلیت هدایت الکترونی S/m 
پارامتر وابستگی 
ضریب استکیومتری 
زیرنویس‌ها و بالانویس‌ها مؤثر eff
تبادلی 0
بی‌بعد *
میانگین ¯
فعال‌سازی act
توده agg
کربن C
لایه کاتالیست CL
آیونومر i
آیونومر درون توده i,agg
محدود کننده L
جریان داخلی n
اکسیژن در سطح خارجی توده Ol
اکسیژن نفوذی در غشاء Oاکسیژن در سطح داخلی توده Osاکسیژن نفوذی در آب Ow
ذرات پلاتین – کربن Pt/C
واکنش‌دهنده R
مرجع ref
جامد s
اشباع sat
آب آند w,a
آب کاتد w,c
فصل اولمقدمه
23837903448685020000
مقدمهامروزه به دلیل بحران آلودگی‌هایزیستمحیطیناشی از مصرف سوخت‌هایفسیلیروش‌های پاک تولیدانرژی از اهمیتویژه‌ای برخوردار است. بشر به سبب افزایشآلودگی و کاهش منابع سوخت طبیعی مجبور به یافتن راه حلی شد که در اینفرآیند،تولیدانرژی از طریقهیدروژن کشف شد. در طی مطالعات و آزمایشاتی که برایتولیدانرژی از طریقهیدروژن انجام می‌گردیدوسیله‌ای که هیدروژن را به عنوان سوخت استفاده می‌کردپیلسوختینامیدند. سیستم‌هایپیل‌هایسوختی به عنوان یکی از گزینه‌هایتولیدانرژی پاک محسوب می‌شوند. توان تولید شده اینسیستم‌هایک گستره وسیعبین چند وات تا چند هزار کیلو وات را شامل می‌شود، به طوریکهاینسیستم‌هااز یک سوتامین کننده توان مورد نیازبراییکبیمارستان و یایک واحد ساختمانی به عنوان کاربرد ساکن، و از سویدیگرتامین کننده بخشی از توان مورد نیازیک فضا پیما، وسیلهنقلیه، لپ تاپ و یاحتی قلب مصنوعی به عنوان کاربردهای متحرک می‌باشند [REF _Ref333997665 h * MERGEFORMAT1]. دانشمندان معتقد بودند که هیدروژنمی‌تواند راه حلیکارآمدبرایتأمین بخشی ازنیازهایانرژیدنیا در آینده باشد. پیلسوختییکوسیله‌ای است که هیدروژن و اکسیژن را ترکیب کرده و آب و الکتریسیتهتولیدمی‌کند. انرژیتولید شده توسط پیلسوختیمی‌تواند در مصارف روزمره استفاده گردد.پیلسوختیمزایایبسیاری نسبت به وسایل مرسوم تولیدانرژی دارد از جمله این مزایا راندمان بالا،عدم ایجاد سر و صدا و آلودگیاست.
ساخت لایه‌های مختلف پیلسوختینظیرلایه‌های نفوذ گاز، صفحات دو قطبی، غشاء و لایهکاتالیستدشوار بوده و نیازمندفناوریپیشرفته‌ایمی‌باشد. چون در ساخت این لایهها از موادی نظیر فیبر بسیار نازک کربن، آیونومر، نفیون و ... استفاده میشود که فرآوری آنها نیازمند یک پروسه پیشرفته و دشوار میباشد و در انحصار کشورهای خاصی قرار دارد، همچنین مراحل ساخت برخی از این لایهها نظیر لایه کاتالیست که شامل فاز جامد، فاز غشاء و فضای خالی است بسیار پیچیده میباشد. بنابراین بدون انجام یکمدل‌سازی کامل از کل لایه‌هایپیلسوختی، ساخت یک تودهپیلسوختیکار دشواری خواهد بود.همچنین ممکن است پیل ساخته شده از نظر هزینه‌های تمام شده مقرون به صرفه نباشد. به منظور بررسیکارایی و عملکرد پیل‌هایسوختی،بایدلایههای مختلف یکپیلسوختی را مورد مطالعه قرار داده و شبیه‌سازی نمود. در اینپایان‌نامهمدل‌سازییکبعدی عملکرد یکپیلسوختی غشا پلیمری انجام می‌پذیرد، و تمامیلایه‌هایاینپیلسوختی تک سلولیشبیه‌سازیمی‌شوند. مدل ارائه شده برایلایهکاتالیست، مدل توده‌ایمی‌باشد. این مدل افت غلظت موجود در منحنیقطبیتپیل را که در چگالیجریان بالا اتفاق می‌افتد بدون اضافه کردن روابط نیمهتجربی مربوط به افت غلظت درستپیش‌بینیمی‌کندهمچنین در حالتی که اندازه تودهها به سمت صفر میرود(تودههای بسیار کوچک) این مدل به مدل همگن ساده میشود. لایه‌های نفوذ گاز نیزکه در دو طرف آند و کاتد پیل قرار دارند با استفاده از معادلات مربوط به نفوذ گازهای چند جزئی مدل شده‌اند. غشاء نیز با مدل کردن انواع مکانیزم‌های انتقال آب که در آن وجود دارد شبیه‌سازی شده است. عملکرد یکپیلسوختی توسط منحنی ولتاژ بر حسب چگالیجریانبیانمی‌شود. این عملکرد با کسر نمودن افت‌های مربوط به ولتاژ فعال‌سازی، اهمیک و غلظت از ولتاژ بازگشت‌پذیرپیل در یکچگالیجریان بدست می‌آید. سپس با تغییرچگالیجریان، منحنیجریان–ولتاژپیل بدست می‌آید. در اینپایان‌نامه معادلات حاکم بر عملکرد لایه‌های مختلف پیل (که ترکیبی از معادلات دیفرانسیل و معادلات جبریمی‌باشند) بدست آمده سپس این معادلات حل می‌گردد تا افت‌هایقید شده بدست آید. در انتها یکسری مطالعات پارامتری به منظور بررسیمیزانحساسیت تابع عملکرد به یکسریپارامترها انجام می‌پذیرد.
تاریخچهاگرچهپیلسوختیبهتازگیبهعنوانیکیازراهکارهایتولیدانرژیالکتریکیمطرحشدهاستولیتاریخچهآنبهقرننوزدهمو کاردانشمندانگلیسیویلیامگروبرمی‌گردد.اواولینپیلسوختیرادرسال۱۸۳۹باسرمشقگرفتنازواکنشالکترولیزآب،طیواکنشمعکوسودرحضورکاتالیستپلاتینساخت.
واژهپیلسوختیدرسال۱۸۸۹توسطلودویکمندوچارلزلنجربهکارگرفتهشد.آن‌هانوعیپیلسوختیکههواوسوختذغالسنگرامصرفمی‌کرد،ساختند.تلاش‌هایمتعددیدراوایلقرنبیستمدرجهتتوسعهپیلسوختیانجامشدکهبهدلیلعدمدرکعلمیمسئلههیچیکموفقیتآمیزنبود.علاقهبهاستفادهازپیلسوختیباکشفسوخت‌هایفسیلیارزانورواجموتورهایبخارکمرنگگردید.
فصلیدیگرازتاریخچهتحقیقاتپیلسوختیتوسطفرانسیسبیکنازدانشگاهکمبریجانجامشد.اودرسال۱۹۳۲بررویماشینساختهشدهتوسطمندولنجراصلاحاتبسیاریانجامداد.ایناصلاحاتشاملجایگزینیکاتالیستگرانقیمتپلاتینبانیکلوهمچنیناستفادهازهیدروکسیدپتاسیمقلیاییبهجایاسیدسولفوریکبهدلیلمزیتعدمخورندگیآنمی‌باشد.ایناختراعکهاولینپیلسوختیقلیاییبود، پیلبیکننامیدهشد.او۲۷سالتحقیقاتخودراادامهدادتاتوانستیکپیلسوختیکاملوکارا، ارائهنماید.بیکندرسال۱۹۵۹پیلسوختیباتوان۵کیلوواتراتولیدنمودکهمی‌توانستنیرویمحرکهیکدستگاهجوشکاریراتأمیننماید.
تحقیقاتجدیددراینعرصهازاوایلدهه۶۰میلادیبااوجگیریفعالیت‌هایمربوطبهتسخیرفضاتوسطانسانآغازشد.مرکزتحقیقاتناسادرپیتأمیننیروجهتپروازهایفضاییباسرنشینبود.ناساپسازردگزینههایموجودنظیرباتری(بهعلتسنگینی)،انرژیخورشیدی (بهعلتگرانبودن)وانرژیهسته ای (بهعلتریسکبالا)پیلسوختیراانتخابنمود.تحقیقاتدراینزمینهبهساختپیلسوختیپلیمریتوسطشرکتجنرالالکتریکمنجرشد.ایالاتمتحدهآمریکافناوریپیلسوختیرا در برنامه فضاییجمینیاستفادهنمودکهاولینکاربردتجاریپیلسوختیبود.پرتوویتنیدوسازندهموتورهواپیما،پیلسوختیقلیاییبیکنرابهمنظورکاهشوزنوافزایشطولعمراصلاحنمودهوآنرادربرنامهفضاییآپولوبهکاربردند.درهردوپروژهپیلسوختیبه عنوانمنبع برای تأمینانرژیالکتریکیبرایفضاپیمااستفادهشد[REF _Ref332024462 h * MERGEFORMAT2]. امادرپروژهآپولوپیلهایسوختیبرایفضانوردانآبآشامیدنینیزتولیدمی‌کرد. پسازکاربردپیلهایسوختیدراینپروژه‌ها،دولت‌هاوشرکت‌هابهاینفنآوریجدیدبهعنوانمنبعمناسبیبرایتولیدانرژیپاکدرآیندهتوجهروزافزونینشاندادند.
ازسال۱۹۷۰فنآوریپیلسوختیبرایسیستم‌هایزمینیتوسعهیافت. تحریمنفتیازسال1973-1979 موجبتشدیدتلاشدولتمردانآمریکاومحققیندرتوسعهاینفنآوریبهجهتقطعوابستگیبهوارداتنفتیگشت.
درطولدهه۸۰تلاشمحققین، در جهتتهیهموادموردنیاز، انتخابسوختمناسبوکاهشهزینهاستواربود.همچنیناولینمحصولتجاریجهتتأمیننیرویمحرکهخودرودرسال۱۹۹۳توسطشرکتبلاردارائهشد [REF _Ref332024462 h * MERGEFORMAT2].
تاریخچهپیلسوختیPEMفنآوریپیلسوختیپلیمریدرسال۱۹۶۰درشرکتجنرالالکتریکتوسط گروب و نیدرچابداعشد. اولینموفقیتجنرال الکتریکدرتولیدپیلسوختیپلیمریدراواسطدهه۱۹۶۰درپیهمکاریاینشرکتباکمیتهنیرویدریاییآمریکا و رسته مخابرات ارتش آمریکابهمنظورساختمولدهایکوچکبرقبود. اینمولدهاباسوختهیدروژنتولیدیازترکیبآبوهیدریدلیتیمتغذیهمی‌شدند. پیلسوختیتهیهشدهکوچکوقابلحملبودودرآنازکاتالیستگرانقیمتپلاتیناستفادهشدهبود[REF _Ref332024550 h * MERGEFORMAT4].
دربرنامههایفضاییمرکوریازباتریبهعنوانمنابعتأمینانرژیاستفادهشدولیبرایپروژهآپولونیازبهوسیلهایباطولعمربیشتربود. لذابرایاینمنظورپیلهایسوختیپلیمریساختشرکتجنرالالکتریکموردتستوآزمایشقرارگرفت.ناسادرپروازهایفضاییبعدیخودازپیلسوختیقلیاییاستفادهنمود.
شرکتجنرالالکتریکفعالیتخودرادردهه۱۹۷۰باتوسعهفناوریالکترولیزجهتتجهیزاتزیردریاییباحمایتواحدتولیداکسیژننیرویدریاییآمریکاآغازنمود. ناوگان سلطنتیانگلیسیدراوایلدهه۱۹۸۰اینفناوریرابرایناوگانزیردریاییخودپذیرفت. دراوایلدهه۱۹۹۰سایرگروه‌هانیزتحقیقاتدراینزمینهراآغازنمودند.آزمایشگاهملیلوسآلاموسودانشگاهتگزاسروش‌هاییراجهتکاهشمیزانکاتالیستموردنیازآزمایشنمودند [REF _Ref332024462 h * MERGEFORMAT2].
مزایا و معایبپیلسوختیعمدهترینمزایایپیل‌هایسوختی به شرح زیر هستند:
پیلسوختیآلودگیناشیازسوزاندنسوخت‌هایفسیلیراحذفنمودهوتنهامحصولجانبیآنآب و گرمامی‌باشد.
درصورتیکههیدروژنمصرفیحاصلازالکترولیزآبباشدنشرگازهایگلخانه‌ایبهصفرمی‌رسد.
به دلیلوابستهنبودنبهسوخت‌هایفسیلیمتداولنظیربنزینونفت،وابستگیاقتصادی،کشورهایجهان سومراحذفمی‌کند[REF _Ref332024462 h * MERGEFORMAT2].
بانصبپیلهایسوختینیروگاهیکوچک،شبکهغیرمتمرکزنیروگستردهمی‌گردد.
پیل‌هایسوختیراندمانبالاترینسبتبهدستگاه‌هایاحتراقی استفاده کننده از سوخت‌هایفسیلیمتداولدارند.
هیدروژندرهرمکانی که حیات باشد (آب باشد) طی پروسه الکترولیزازآبوبرقتولیدمی‌گردد. لذاپتانسیلتولیدسوخت،غیرمتمرکزخواهدشد [REF _Ref332024462 h * MERGEFORMAT2].
اکثرپیل‌هایسوختیدرمقایسهباموتورهایمتداولبسیاربیصداهستند.
انتقالگرماازپیل‌هایدماپایینبسیارکممی‌باشد،لذاآن‌هابرایکاربردهاینظامیمناسبخواهندبود.
زمانعملکردآن‌هاازباتری‌هایمتداولبسیارطولانی‌تراست، مثلاًفقطبادوبرابرنمودنسوختمصرفیمی‌توانزمانعملکردرادو برابرنمودونیازیبهدوبرابرکردن اندازهخودپیلنمی‌باشد.
به علتعدموجوداجزایمتحرکهزینهتعمیر و نگهداریازآن‌هابسیارکماست.
نصبوبهرهبرداریازپیل‌هایسوختیبسیارسادهومقرونبهصرفهمی‌باشد.
اینمولدهاقابلیتتولیدهمزمانبرقوحرارترادارند.
عمدهترینمعایبپیل‌هایسوختی:
تبدیلهیدروکربنبههیدروژنازطریقمبدلهنوزباچالش‌هاییروبروستوهنوزفنآوری کاملاًپاکنمی‌باشد.
پیل‌هایسوختیازباتری‌هایمتداولسنگین‌ترهستندومحققیندرپیکاهشوزنآن‌هامی‌باشند.
تولیدپیلسوختیبدلیلنداشتنخطتولیدهنوزگراناست.
برخیپیل‌هایسوختیازموادگرانقیمتاستفادهمی‌کنند.
اینفنآوریهنوزکاملاًتوسعهنیافتهومحصولاتکمیازآنموجوداست.
شناخت کلیپیلسوختیپیلسوختینوعیوسیلهالکتروشیمیاییاستکهانرژیشیمیاییحاصلازواکنشرامستقیماًبهانرژیالکتریکیتبدیلمی‌کند.سازهوبدنهاصلیپیلسوختیازالکترولیت،الکترودآندوالکترودکاتدتشکیلشدهاست. نمایکلییکپیلسوختیبههمراهگازهایواکنشدهندهوتولیدشدهومسیرحرکتیون‌ها و الکترون‌هادر REF _Ref331172597 h * MERGEFORMAT شکل‏11ارائهشدهاست.
پیلسوختییکدستگاهتبدیلانرژیاستکهبهلحاظنظریتازمانیکهمادهاکسیدکنندهوسوختدرالکترودهایآنتأمینشوندقابلیتتولیدانرژیالکتریکیرادارد.البتهدرعملاستهلاک،خوردگیوبدعملکردناجزایتشکیلدهنده،طولعمرپیلسوختیرا کاهشمی‌دهد.
دریکپیلسوختی،سوختبهطورپیوستهبهالکترودآندواکسیژنبهالکترودکاتدتزریقمی‌شودوواکنش‌هایالکتروشیمیاییدرالکترودهاانجامشدهوباایجادپتانسیلالکتریکیجریانالکتریکیبرقرارمی‌گردد. اگرچهپیلسوختیاجزاءوویژگی‌هایمشابهیکباتریرادارداماازبسیاریجهاتباآنمتفاوتاست. باترییکوسیلهذخیرهانرژیاستوبیشترینانرژیقابلاستحصالازآنبهوسیلهمیزانمادهشیمیاییواکنشدهندهکهدرخودباتریذخیرهشدهاست (عموماًدرالکترودها)تعیینمی‌شود. چنانچهمادهواکنشدهندهدرباتریکاملاًمصرفشود،تولیدانرژیالکتریکیمتوقفخواهدشد (باتریتخلیهمی‌شود).درباتری‌هاینسلدوممادهواکنشدهندهباشارژمجدد،دوبارهاحیامی‌شودکهاینعملمستلزمتأمینانرژیازیکمنبعخارجیاست. دراینحالتنیزانرژیالکتریکیذخیرهشدهدرباتری،محدودووابستهبهمیزانمادهواکنشدهندهدرآنخواهدبود.
گازاکسیدکنندهنظیرهوایااکسیژنخالصدرالکترودکاتدکهباصفحهالکترولیتدرتماساستجریانپیدامی‌کند.بااکسیداسیونالکتروشیمیاییسوختکهمعمولاًهیدروژناستوبااحیاءاکسیدکننده، انرژیشیمیاییگازهایواکنشگربهانرژیالکتریکیتبدیلمی‌شود.
ازنظرتئوری،هرمادهایکهبهصورتشیمیاییقابلاکسیدشدنباشدوبتوانآنرابهصورتپیوسته (بهصورتسیال) بهپیلسوختیتزریقکرد،می‌تواندبهعنوانسوختدرالکترودآندپیلسوختیمورداستفادهقرارگیرد.بهطورمشابهمادهاکسید کنندهسیالیاستکهبتواندبانرخمناسبیاحیاء شود.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 1:شماتیکطریقه عملکرد پیلسوختیPEM [REF _Ref334005828 h * MERGEFORMAT3].در پیل سوختی پلیمری گازهیدروژنبهعنوانسوختایدهآلمورداستفادهقرارمی‌گیرد.هیدروژنرا می‌توانازتبدیلهیدروکربن‌هاازطریقواکنشکاتالیستی،تولیدوبهصورت‌هایگوناگونذخیرهسازیکرد. اکسیژنموردنیازدرپیلسوختی را میتوانبهطورمستقیمازهواتهیهنمود.بررویسطحالکترودهایآندوکاتدپیلسوختیواکنشاکسیداسیونواحیاءدرناحیهسهفازی (ودرصورتجامدبودنالکترولیتدوفازی) نزدیکسطحمشترکواکنشدهنده‌ها (فاز گاز)،کاتالیست (فاز جامد)والکترولیت(در برخی از پیلها فاز مایع و در برخی دیگر نظیر PEM فاز جامد) صورتمی‌گیرد. اینناحیه دویا سهفازینقشمهمیدرعملکردالکتروشیمیاییپیلسوختیبهویژهپیل‌هایسوختیباالکترولیتجامددارد. دراینگونهپیل‌هایسوختی،گازهایواکنشدهندهازمیانیکلایهنازکازالکترولیتکهسطحالکترودهایمتخلخلراپوشاندهاستعبورکردهوواکنشالکتروشیمیاییمناسبرویسطحالکترودمربوطهانجاممی‌شود.
چنانچهالکترودمتخلخلحاویمقادیربیشازحدالکترولیتباشدالکتروددر اصطلاحغرقشدهوبه اینترتیبانتقالالکترونهابهمکان‌هایواکنشمحدودمی‌شود.درنتیجهعملکردالکتروشیمیاییالکترودمتخلخلتضعیفمی‌شودلذاضروریاستکهدرساختارالکترودهایمتخلخلیکتعادلمناسببینالکترود،الکترولیتوفازگازیایجادشود.
تلاش‌هایاخیربر بهبودعملکردواکنشالکتروشیمیایی،کاهشهزینه‌هایتولید،کاهشضخامتاجزایپیلسوختیودرعینحالاصلاحوبهبودساختارالکترودهاوالکترولیتمتمرکزشدهاست. الکترولیتباهدایتیون‌هابینالکترودهاسببتکمیلمدارالکتریکیپیلسوختیمی‌شود. الکترولیتیکمانعفیزیکیبینسوختوگازاکسیژنایجادمی‌کندومانعاختلاطمستقیمآن‌هامی‌شود. از جمله وظایف مهمصفحاتالکترودمتخلخلدرپیلسوختیعبارتاند از:
1- ایجادیکسطحفعال کافیومناسبکهواکنش‌هایالکتروشیمیاییرویاینسطوحانجاممی‌شود.
2- هدایتیون‌هایحاصلازواکنشبهداخلیاخارجازناحیهتبادلسهفازیوانتقالالکترون‌هایتولیدیبهمدارخارجی(الکترودهابایدهدایتالکتریکیخوبیداشتهباشند).
3- انتقال واکنش دهندهها به سطوح انجام واکنش.
4- انتقال گرمای تولید شده در لایه کاتالیست کاتد به سیستم خنککاری پیل، بویژه برای پیلهای دما بالا.
برایافزایشسطحتماسواکنشدهنده‌هاباکاتالیستلازماستکهساختارالکترود،متخلخلبودهومیزانسطحدردسترس، وپوششدادهشدهتوسطکاتالیستنسبتبهحجمالکترود (مساحت در واحد حجم سطح مؤثر پلاتین)(m/m)زیادباشد. ساختارمتخلخل،دسترسیراحتاجزاءواکنشدهندهبهمراکزفعالراتسهیلمینماید.
نرخواکنش‌هایالکتروشیمیباافزایشدماافزایشپیدامی‌کند،لذاخاصیتکاتالیزوریالکترودهادرپیلهایسوختیدماپایینازاهمیتبیشتریدرمقایسهباپیلسوختیدمابالابرخورداراست. الکترودهایمتخلخلبایددرهردوطرفتماسباالکترولیتوگازهایواکنشدهنده،نفوذپذیرباشندتاحدیکهتوسطالکترولیتاشباعنشدهوبوسیلهگازهایواکنشدهندهخشکنشوند [REF _Ref332024462 h * MERGEFORMAT2].

پیلسوختیPEMپیل‌هایسوختی غشاءمبادله‌گر پروتون (پلیمری) اولین بار در دهه 1960 برای برنامهجمینی ناسا استفاده شد. ایننوع پیل سوختی از نقطه نظر طراحی و کارکردیکی از جذاب‌ترین انواع پیلسوختی است. پیلسوختیپلیمریدارایالکترولیتپلیمری به شکلیک ورقه نازک منعطف است کههادییونهیدروژن(پروتون)می‌باشد و بین دو الکترود متخلخل قرار می‌گیرد. جهت کارایی مطلوب لازم است الکترولیت، از آب اشباع باشد. نفیونیکی از بهترینالکترولیت‌های مورد استفاده در این نوع پیل سوختی است. این غشاء کوچک و سبک است و در دمایپایین 80 درجه سانتی‌گراد(تقریباً 175 درجه فارنهایت) کارمی‌کند. در پیل سوختیپلیمریواکنشاحیاءاکسیژنواکنشکندتر است (اینواکنشپنج مرتبه کندتر از واکنشاکسید شدن هیدروژن است [REF _Ref332024550 h * MERGEFORMAT4]). کاتالیست مورد استفاده در اینپیل سوختی اغلب از جنس پلاتین بوده و میزانکاتالیستمصرفی در الکترودهایاین نوع پیل سوختیبیشتر از سایر انواع پیل سوختی است.
بازدهالکتریکیاین نوع پیل سوختی بر اساس ارزش حرارتی پایین در حدود 40% تا 50% است [REF _Ref332024550 h * MERGEFORMAT4]. سوخت مصرفی در پیل سوختیپلیمرینیازمندهیدروژنتقریباً خالص است لذا مبدل در خارج پیل سوختی جهت تبدیلسوخت‌های متانول و یابنزین به هیدروژننیاز است.گسترهتوان تولیدیاین نوع پیل سوختیبیشتر از انواع دیگرپیل سوختی است. محدوده توان در این نوع پیل سوختیبین(1W الی 100kW) است[REF _Ref332024550 h * MERGEFORMAT4]. طول عمر پیش‌بینی شده برایپیل سوختیپلیمریبیش از 20000 ساعت است [REF _Ref334011700 h * MERGEFORMAT5].
در پیل سوختیپلیمری سوخت مورد استفاده هیدروژنمی‌باشد. مولکولهایهیدروژن در آند به یون‌های پروتون و الکترونیونیزه شده، و الکترون‌هااز پروتونها جدا می‌شوند. یون‌هایهیدروژنکه شامل بار مثبت هستند (پروتون) به یک سطح غشاء متخلخل نفوذ می‌کنند و به سمت کاتدمی‌روند. الکترون‌هاینمی‌توانند از این غشاء عبور کنندبلکه از یک مدار خارجی عبور کرده و موجب تولید برق می‌شوند. در کاتدالکترون‌ها، پروتون‌های و اکسیژن موجود در هوا با هم ترکیبمی‌شوند و مطابق REF _Ref331172597 h * MERGEFORMATشکل‏11 آب را تشکیلمی‌دهند.واکنش‌ها در الکترودها به شرح ذیلمی‌باشند:
(1- SEQ 1- * ARABIC1) واکنش سمت آند:
(1- SEQ 1- * ARABIC2) واکنش سمتکاتد:
(1- SEQ 1- * ARABIC3) واکنشکلیپیل:
واکنش سمت آند به مقدار خیلی کمی گرماگیر است و واکنش سمت کاتداین نوع پیل سوختی به دلیلدمایپایین به زمان کمیبرایراه‌اندازینیاز دارد و همینخصوصیتآن را بهترینگزینه در کاربردهایوسایلنقلیهبه عنوانجایگزینبرای موتور احتراق داخلیدیزلی و بنزینیمعرفیمی‌نماید. همچنیناینسیستم‌هاکاربریمناسبی در زمینهمولدهایخانگی، نیروگاهیکوچک، صنعت حمل‌ونقل و نظامی دارند [REF _Ref332024462 h * MERGEFORMAT2].
لایههایتشکیل دهنده پیلسوختی غشاء پلیمریهر یک از سلول‌هاییکپیلسوختی غشاء پلیمری از یکسریلایهتشکیل شده است، که در هر یک از اینلایه‌هافرآیندهایخاصی انجام می‌شود. در این قسمت به اختصار هر یک از لایههایپیل را معرفیمی‌کنیم، سپس در فصول بعد به تفصیلبه معرفیاینلایه‌ها و مدل‌سازیآن‌هامی‌پردازیم.
لایه نفوذ گازلایه‌هاینفوذگازیبهطورعمومیساختارمتخلخلبرمبنایکربندولایهدارند،شماییازلایهنفوذگازیبین کانال جریانولایهکاتالیستیدر REF _Ref331328151 h * MERGEFORMAT شکل ‏12نشاندادهشدهاست.لایهاوللایهنفوذگازی،یکساختارکربنیماکرومتخلخلباپارچه‌هایکربنیویاورقه‌هایکربنیاست.ساختارماکرومتخلخلبهعنوانجمعکنندهجریانعملمی‌کند.دومینلایه،لایهمیکرومتخلخلنازکیاستکهشاملپودرکربنوبرخیعواملآبگریزاست. اینلایهدرتماسبالایهکاتالیستاست.اینمیکرولایهمتخلخلازبروزطغیاندرلایهنفوذگازیجلوگیریکردهوتماسالکتریکیبینسطحولایهکاتالیستراافزایشمی‌دهد [REF _Ref332025360 h * MERGEFORMAT6].

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 2: شمایی از یک لایه نفوذ گازی دو لایه.لایهکاتالیستبرایافزایشنرخواکنش‌هایشیمیاییبهیکلایهکاتالیستاحتیاجاست. لایهکاتالیستتنهاجاییاستکهدرآنواکنش‌هایالکتروشیمیاییداخلپیلسوختیاتفاقمی‌افتدودربقیهنواحیپیلمانندکانال‌ها،لایه‌هایپخشگازوغشاءهیچواکنشالکتروشیمیاییاتفاقنمی‌افتد. درپیلسوختیهیدروژنیهردولایهکاتالیستکاتدوآندعموماًیکسانهستندوشاملیکفازهدایت‌کنندهیونبراینمونهنفیون، یکفازهدایت‌کنندهالکترونمعمولاًذراتکربن،حفره‌ها (تخلخل‌ها)کهازآن‌هاگازهایواکنشگرانتقالپیدامی‌کندویکفلزنجیب(فلزی که واکنش شیمیایی را تسهیل میکند) کاتالیستعموماًپلاتینهستند،تاواکنش‌هایالکتروشیمیاییراتسهیلکنند. دلیلدیگراستفادهازکربنایناستکهمساحتسطحتماسکاتالیستزیادشود.گازهایواکنشگرازلایهپخشگازواردلایهکاتالیستمی‌شوندوازمیانحفره‌هایموجوددرلایهکاتالیستپخشمی‌شوند.برایرسیدنبهپلاتینیعنیمحلانجامواکنش،واکنشگرهابایدمحلولشوندواینباردرمیانپلیمری (آیونومر)کهدانه‌هایکربنرااحاطهکرده‌اندپخشمی‌شوند.ایندانه‌هایکربنباپلاتینپوششدادهشده‌اندوبارسیدنگازهایواکنشگربهاینکربن‌ها،واکنشالکتروشیمیاییشروعمی‌شود. درواقعداخللایهکاتالیستدومسیرپخش وجود دارد، یکی نفوذ درمیانحفره‌هاودیگری نفوذدرونپلیمرمی‌باشد. افزایشمقاومتدرمقابلنفوذدرطولهرکدامازایندومسیر،عملکردلایهکاتالیستراکاهشمی‌دهد. REF _Ref331417729 h * MERGEFORMAT شکل ‏13نماییازلایهکاتالیسترانشانمی‌دهد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 3: نماییازلایهکاتالیست.لایه کاتالیست یکی از پیچیده‌ترین اجزاء در پیل سوختیمی‌باشد، به همین دلیل در مدل‌سازی لایه کاتالیست، مدل‌های مختلفی در دهه‌های اخیر با درجات مختلفی از دقّت و جزئیات ارائه شده است. که از آن جمله می‌توان به روش‌های لایه نازک، همگن و توده‌ای اشاره کرد. در سال‌های اخیر دو روش همگن و توده‌ای بیشتر مورد توجّه بوده است.
در روش لایه نازک، لایه کاتالیست به صورت یک سطح مشترک بین لایه نفوذ گاز و غشاء مدل می‌شود. این روش در حقیقت ساختار درونی لایه کاتالیست را بررسی نمی‌کند، و تنها رابطه‌ای بین افت فعال‌سازیو چگالی جریان پیل (رابطه تافل) ارائه می‌دهد.در فصل سوم مفصل‌تر این رابطه ارائه می‌شود. به طور کلی این مدل هنگامی استفاده می‌شود که هدف مطالعه، بررسی رفتار لایه کاتالیست نمی‌باشد، بلکه بررسی رفتار لایه های دیگر پیل مدّ نظر است.
روش همگن یکی از روش‌های متداول بررسی لایه کاتالیست می‌باشد. در این روش فرض می‌شود که تمامی اجزاء تشکیل‌دهنده لایه کاتالیست به صورت کاملاً یکنواخت و همگن در سرتاسر لایه کاتالیست توزیع شده‌اند، این بر خلاف مدل توده‌ای است. در مدل توده ای ذرات پلاتین بر روی ذرات کربن پایه ریزی می‌شوند، سپس با تجمع تعدادی از این ذرات کربن کنار یکدیگر، یک توده کروی شکل ایجاد می‌شود که درون آن پر از آیونومر می‌باشد. تفاوت این دو مدل، در نحوه پیش‌بینی منحنی قطبیّت پیل است. دلیل این تفاوت در منحنی قطبیت،خصوصاً در چگالی جریان‌های بالا در فصل دوم شرح داده می‌شود.
غشاءغشاءها بایستی دارای قابلیت زیادی برای عبور یون پروتون از خود باشند. آن‌ها شرایطی فراهم می‌آورند که گازهای ورودی به پیل سوختی از دو طرف با هم مخلوط نشوند. از لحاظ شیمیایی (خوردگی) و مکانیکی (استحکام) بایستی سازگار با شرایط عملکرد پیل سوختی باشند [REF _Ref332024936 h * MERGEFORMAT7]. غشاءیکه در پیل سوختی پروتونی بکار می‌رود، از پلیمری بنام پرفلئورو کربن-سولفونیک اسید ساخته می‌شود. بهترین ماده‌ی غشاء موسوم به نفیونمی‌باشد که دارای شاخه‌ی پروفلئورو-سولفیلفلئوراید-اتیل-پروپیل-وینیلمی‌باشد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 4: شاخه پلیمری پرفلئوروسولفونیک اسید (Perfluorosulfonate). REF _Ref331339393 h * MERGEFORMAT شکل ‏14 زیر شاخه‌ی پلیمری پرفلئورو سولفونیت را برای نفیون نشان می‌دهد. انتهای شاخه، گروه اسید سولفونیک مشاهده می‌شود که شامل یون‌های پروتون H+ و می‌باشد. این ساختار شدیداً آب دوست است. این خاصیت در انتهای شاخه یعنی جاییکه اسید سولفونیک وجود دارد رخ می‌دهد. این خاصیت به غشاء اجازه می‌دهد که مقدار بسیار زیادی آب جذب نماید. یون پروتون از این ناحیه مرطوب عبور می‌کند و این کمیت را بهصورت قابلیت هدایت تعریف می‌کنند [REF _Ref332024550 h * MERGEFORMAT4].
انواع مختلف نفیون را با حرف N و با سه یا چهار رقم به فرمN---- نشان می‌دهند، دو رقم اوّل وزن معادل را تقسیم بر صد نشان می‌دهد و دو رقم بعدی ضخامت غشاء را بر حسب میل نشان می‌دهد [REF _Ref332025524 h * MERGEFORMAT8]. قابل ذکر است که: . نفیونهای موجود در بازار دارای ضخامتهای 2، 3.5، 5، 7 و 10 میل میباشند. به عنوان مثال N117 دارای وزن معادل 1100 g/eqو ضخامت 7 میل (0.178 mm) میباشد.وزن معادل هر ماده برابر است با جرمی از آن مادهکه یک مول پروتون (H+) را تامین میکند، یا با یک مول پروتون در یک واکنش پایه اسیدی واکنش میدهد.
عملکرد پیلسوختیعملکرد یکپیلسوختی را می‌توان از طریق نمودار ولتاژ–چگالی جریان آن بررسی و تحلیل کرد. این نمودار که منحنی ولتاژ-چگالیجریاننامیدهمی‌شود، خروجی ولتاژ یکپیلسوختی را در یک چگالیجریانورودی نشان می‌دهد.این نمودار، منحنیقطبیتنیز نامیدهمی‌شود که در REF _Ref331172664 h * MERGEFORMAT شکل ‏15آن را مشاهده می‌کنید. محور افقیچگالیجریان، یعنیجریان بر واحد سطح پیل را نشان می‌دهد. به کار بردن چگالیجریان به ایندلیل است که یکپیل با ابعاد بزرگ‌تر مقدار الکتریسیتهبیشتری از یکپیلکوچک‌ترتولیدمی‌کند در نتیجهمنحنی‌هایقطبیت با سطح پیلسوختی نرمال سازیمی‌شوند تا قابل مقایسه با یکدیگر باشند.
REF _Ref331172664 h * MERGEFORMAT شکل ‏15منحنیقطبیت را که دارای چهار ناحیهافتجریانداخلی، افتفعال‌سازی، افتاهمیک و افت انتقال جرم که توسط افت‌های موجود در پیلسوختی مورد تأثیر قرار گرفته‌اند را نشان می‌دهد. افتفعال‌سازی در ناحیه افتفعال‌سازیمنحنیقطبیت، غالب است. سینتیک الکترود،ناحیه مربوط به افتفعال‌سازی را کنترل می‌کند. افتناحیهاهمیک در منحنیقطبیت به سبب مقاومت‌هایپروتونیک و الکترونیک موجود در پیلسوختیمی‌باشد. افت غلظت بیشترین مقدار خود را در انتهایمنحنیقطبیت (یعنیناحیه‌ای که انتقال جرم واکنشگرها با مشکل مواجه است) دارد. در چگالیجریان‌های بالا، میزانواکنشگرهای مورد نیاز به مراتب افزایشمی‌یابد، این در حالی است که میزان آب تولیدینیززیادمی‌شود. اینمیزان آب مایعمی‌تواند سبب مسدود شدن مسیرهای عبور واکنشگرها شود (خصوصاً در پیلهای دما پایین)،این امر سبب افت غلظت واکنش‌دهنده‌هاشده و در پی آن افت ولتاژ را بوجود می‌آورد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 5:منحنیقطبیتیکپیلسوختی [REF _Ref334022735 h * MERGEFORMAT9].خروجیولتاژواقعییکپیلسوختی کمتر از ولتاژ ایده آل یا ولتاژ ترمودینامیکی است. ولتاژ خروجی از یکپیلسوختی بر روی توان کلیتولید شده تأثیرمی‌گذارد. چگالی توان تولید شده از پیلسوختی توسط حاصل ضرب ولتاژ در چگالی جریان (P=V.i) حاصل می‌شود. منحنیچگالی توان، چگالی توان خروجی را به صورت تابعی از چگالیجریانپیلسوختی نشان می‌دهد این منحنی در نتایج مدلسازی نظیر REF _Ref331174635 h * MERGEFORMATشکل ‏211 رسم شده است. چهار نوع اصلی افت در پیلسوختی (در نمودار قطبیتنیز نشان داده شده است) وجود دارند، که این چهار افت به این شرح هستند:
الف) افت فعال‌سازی
ب) افتجریانداخلی
ج) افتاهمیک
د) افت غلظت
افتفعال‌سازیعامل ایجاد افت فعال سازیکندیواکنش‌هایی است که روی سطوح الکترودها رخ می‌دهد. در نتیجهقسمتی از ولتاژ تولیدی صرف غلبه بر انرژیفعال‌سازی واکنش شیمیایی و به راه انداختن واکنش می‌شود. افت فعال‌سازی را با η نشان می‌دهند. در سال 1905 تافل مشاهده کرد که افت فعال‌سازی موجود در هر یک از الکترودها با لگاریتمچگالیجریانتقریباً رابطه خطی دارد، به طوریکه مقدار این افت تا یکچگالیجریان خاص که چگالیجریانتبادلیپیلنامیده شد صفر است، چگالیجریانتبادلی، i0، را می‌توانچگالیجریانی در نظر گرفت که افت ولتاژ فعال‌سازی از صفر شروع به تغییرمی‌کند. روند تغییراتاین افت بر حسب لگاریتمچگالیجریان عمدتاً به صورت خطی است که در REF _Ref331172831 h * MERGEFORMAT شکل ‏16برای دو نمونه نشان داده شده است.

شکل STYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 6: نمودار تافل برایواکنش‌هایالکتروشیمیاییسریع و کند [REF _Ref332024550 h * MERGEFORMAT4].تافل این نمودار را با معادله زیرتقریب زد:
(1- SEQ 1- * ARABIC4)
در معادله REF _Ref330209497 h * MERGEFORMAT (1- 4)، i0، چگالیجریانتبادلی و aشیب خط تافل هستند که به الکتروشیمی واکنش بستگی دارند [REF _Ref332025607 h * MERGEFORMAT11].همین‌طور که در REF _Ref331172831 h * MERGEFORMAT شکل ‏16مشاهدهمی‌شود هر چه واکنش سریع‌تر انجام شود شیبمنحنی تافل به مراتب کمتر می‌شود و با توجه به رابطه REF _Ref330209497 h * MERGEFORMAT (1- 4)میزان افت فعال‌سازی برای یک چگالی جریان ثابت کاهش می‌یابد.چگالیجریانتبادلی، i، نیز در واکنش‌هایی که سریع‌تر اتفاق می‌افتد، بزرگ‌تر است، بنابراینمیزان افت فعال‌سازی در محدوده وسیع‌تری صفر خواهد بود[REF _Ref332024550 h * MERGEFORMAT4]. درپیلسوختیغشاء پلیمری، افت فعال‌سازی به طور عمده در سمت کاتد رخ می‌دهدزیراiدر واکنش آند چندین مرتبه (چهار - پنج مرتبه) نسبت به واکنش کاتد بزرگتر است، به عبارت دیگر واکنش اکسایش هیدروژن در لایه کاتالیست آند بسیار سریع‌تر از واکنش کاهش اکسیژن در لایه کاتالیست کاتد است [REF _Ref332025607 h * MERGEFORMAT11]. به همین علت اغلب در بررسی افت فعال‌سازی از افت فعال‌سازی آند در مقابل کاتد صرف نظر می‌شود.
افتجریانداخلیغشاء پلیمری نسبت به گازهایواکنش‌دهنده (سوخت) نفوذ ناپذیر است اما همواره از یکسو مقدار کمی از سوخت و از سویدیگر تعداد اندکی الکترون به غشاء پلیمری نفوذ می‌کند. نفوذ سوخت در غشاء معادل از دست رفتن سوخت بدون تولیدجریان در مدار خارجی است. به عبارت دیگر به ازای عبور هر مولکول هیدروژن از درون غشاء قابلیت عبور دو الکترون از مدار خارجی از بینمی‌رود و در حقیقتیک مدار اتصال کوتاه در پیلایجادمی‌شود که جریانداخلینامیدهمی‌شود. این نوع افت ولتاژ در حالتی که پیلسوختی تحت بار نیست (حالت مدار باز، i=0) وجود دارد، چون حتی در این حالت نیز سوخت می‌تواند درون غشاء نشت کند. به همیندلیل ولتاژ مدار باز به طور محسوسی از ولتاژ تئوریبازگشت‌پذیر کمتر است، میزان این افت ولتاژ از ولتاژ تئوریبازگشت‌پذیر از همان ابتدای منحنی قطبیت(i=0) در REF _Ref331172664 hشکل‏15 نشان داده شده است. مقدار نشت هیدروژن از غشاء تابعی از نفوذ پذیری، ضخامت غشاء، شرایطعملکردیپیل و گرادیان فشار جزئیهیدروژناست [REF _Ref332025559 h * MERGEFORMAT10]. مقدار جریانداخلیتولید شده ناشی از عبور همزمان هیدروژن و الکترون از درون غشاء را با inنشان می‌دهند. برای محاسبه افت ناشی از جریان داخلی کافی است که مقدار in به مقدار چگالی جریان پیل اضافه کنیم:
(1- SEQ 1- * ARABIC5)
افتاهمیکافت‌هایاهمیکبه دلیلمقاومت‌هایی که در برابر جریانالکترون‌ها در الکترودها و اتصالات داخلی مختلف و همچنینمقاومت‌هایی که بر سر راه جریانیون‌های مثبت در الکترولیت وجود دارند، می‌باشند. این افت ولتاژ متناسب با چگالیجریان و خطی است [REF _Ref332024550 h * MERGEFORMAT4] و با ηOhmic نشان می‌دهند. از قانون اهم داریم:
(1- SEQ 1- * ARABIC6)
که iچگالی جریان پیل، RElectronic و RIonicمقاومت‌های ویژهالکترونیک و یونیک بر حسب m2 در پیلسوختی هستند. قسمت عمده افت اهمی، مقاومت یونی غشاء می‌باشدبطوریکهتقریباً کل افت اهمیک موجود در پیل را می‌توانبا مقاومت یونیک موجود در الکترولیت با دقت خوبیتخمین زد [REF _Ref332025559 h * MERGEFORMAT10]. افت اهمی وابسته به جنس قطعات به کار رفته در پیل است.

افت غلظتدر چگالیجریان‌های بالا بر اثر مصرف زیاد واکنش دهنده‌ها، غلظت واکنش دهنده‌هاروی سطح الکترودها کاهش می‌یابد و سبب افت ولتاژ می‌شود و با ηconcentration نشان می‌دهند [REF _Ref332024550 h * MERGEFORMAT4]. البته این رابطه، یک رابطه نیمه تجربی میباشد، که در برخی از روشهای شبیهسازی نظیر مدل همگن لایه کاتالیست از آن استفاده میشود:
(1- SEQ 1- * ARABIC7)
iLچگالیجریان محدود کننده است و زمانیایجادمی‌شود که غلظت واکنش دهنده روی سطح در محل واکنش به صفر برسد.
اگر CR غلظت واکنش دهندهها در ورودی لایه نفوذ گاز و CRS غلظت واکنش دهندهها در سطوح انجام واکنش باشد، آنگاه شار عبوری واکنش دهندهها برابر است با:
(1- SEQ 1- * ARABIC8)
که در آن Dضریب نفوذ پذیری واکنش دهنده‌ها[cm/s]،A سطح فعال الکترودو δ ضخامت لایه نفوذ گاز هستند.
از طرفی طبق قانون فارادی (پیوست 1)، نرخ مصرف واکنش دهندهها با نرخ جریان تولیدی به صورت زیر متناسب است:
(1- SEQ 1- * ARABIC9)
n تعداد الکترون‌های انتقال یافته به ازای یک مول سوختمیباشد. اکنون با ترکیب کردن معادلات (1-4) و (1-5) داریم:
(1- SEQ 1- * ARABIC10)
همانطور که میدانیم در چگالیجریان محدود کننده که غلظت واکنش دهنده روی سطح در محل واکنش به صفر میرسدCRS=0.بنابراین چگالی جریان محدود کننده برابر است با [REF _Ref332025777 h * MERGEFORMAT12]:
(1- SEQ 1- * ARABIC11)
Bدر معادله REF _Ref331420287 h * MERGEFORMAT (1- 7)عدد ثابت است و کاملاً وابسته به شرایطعملکردیپیلمی‌باشد.این عدد معمولاً به صورت تجربیبرایپیلهای مختلف گزارش می‌شود به طوریکه ابتدا منحنیتجربیقطبیتپیل با انجام تست در چگالیجریان‌های مختلف بدست می‌آید سپس اینمنحنی را با رابطه REF _Ref330220987 h * MERGEFORMAT (1- 12)که در حقیقت ولتاژ واقعیپیل در چگالیجریان‌های مختلف می‌باشد، و از کم کردن تمامیافت‌ها از ولتاژ بازگشت‌پذیرپیل بدست می‌آید، برازش می‌کنند تا ثوابتینظیرa،B بدست آیند [REF _Ref332024550 h * MERGEFORMAT4].
(1- SEQ 1- * ARABIC12)
افت غلظت با بهینهسازی انتقال جرم در الکترودها و ساختار جریانپیلسوختی قابل کم شدن است.
مروری بر پروژه - ریسرچ‌هافیزیک حاکم بر یکپیلسوختیبسیارپیچیده است. تعداد زیادیفرآیند که به طور هم زمان در پیلسوختی رخ می‌دهند، وجود دارند و مطالعه هر فرآیندی که در پیلسوختی انجام می‌گردد دشوار می‌باشد. تاکنون محققان مختلفی بر رویجنبه‌های متفاوت پیلسوختی تمرکز کرده‌اند. تحقیقاتتجربیپیلسوختیبسیار زمان بر و گران قیمتاست. محققان اولیه تنها بر رویجنبه‌هایخاصی از پیلسوختی مثل صفحات دو قطبی، لایهکاتالیست، لایه نفوذ گاز و غشاء تمرکز کرده‌اند. در این بخش ابتدا مروری بر رویانواع مدل‌سازی‌های انجام شده بر رویلایهکاتالیست انجام می‌دهیم و سپس برخی از مدل‌سازی‌های مربوط به غشاء و لایه نفوذ گاز ارائه می‌گردد:
لایهکاتالیستبه طور کلی سه روش مختلف به منظور مدل‌سازیلایهکاتالیست وجود دارد:
مدل لایه نازک
مدل همگن
مدل تودهای
در سال‌هایاولیه توان محاسباتی محدود بوده و در نتیجه تنها یک مدل عددییکبعدیپیلسوختی غشاء پلیمری توسط برناردی و همکارانش [REF _Ref332025833 h * MERGEFORMAT13] توسعه یافته بود و نتایج آن با مدل تجربیمقایسه شده بود.برناردی و همکارانش اولینمحققینی بودند که لایهکاتالیست کاتد را به روش همگن مدل‌سازی کردند. آن‌هارفتار لایهکاتالیست مسئله مدیریت آب در پیلسوختی و همچنین عملکرد پیل را مورد بررسی قرار دادند. نتایج کار آن‌هابیانگراینواقعیت بود که واکنش کاهش اکسیژندر یکلایهبسیارباریکی از لایهکاتالیست که نزدیک به لایه نفوذ گاز می‌باشد انجام می‌شود. بعدها خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14]نشان دادند که در یک ولتاژ عملکردیپیل (A m-5000) تنها 5% از لایهکاتالیست که در مجاورت سطح مشترک لایهکاتالیست با لایه نفوذ گازمی‌باشد در واکنش کاهش اکسیژنشرکت می‌کنند، اینیعنیاینکهاکسیژنمصرفی به محض ورود به قلمرو لایهکاتالیست مصرف می‌شود. بنابراینبراییکطراحیبهینه و مقرون به صرفه،تجمع بارگذاریپلاتین در مجاورت سطح مشترک لایهکاتالیست با لایه نفوذ گاز می‌تواند به عنوان یکگزینه مورد توجه باشد.
برناردی و وربروگ[REF _Ref332025833 h * MERGEFORMAT13] همچنینمعادلات استفان- بولتزمن را برای مدل کردن انتقال جرم در لایه نفوذ گاز، معادله باتلر- ولمر را برای سینتیک واکنش و معادله نرنست – پلانک را برای انتقال جرم در غشاء به کار بردند. یک سال بعد آن‌ها مدل خود را از بخش کاتد به دو بخش آند و کاتد پیل سوختی بسط دادند. اینبار افت اهمیک در اثر انتقال الکترون در لایه نفوذ گاز، افت فعال‌سازی و افت اهمیک در اثر عبور پروتون در غشاء را در مدل‌سازی خود مورد مطالعه قرار دادند.
برناردی و وربروگ در سال 1992 پیل سوختی غشاء پلیمری جامد را با استفاده از روش همگن مدل کردند [REF _Ref332025887 h * MERGEFORMAT15]. آن‌ها مکانیزم انتقال اجزاء در شبکه پیچیده پیل در فازهای مختلف گاز و مایع و فاکتورهای مؤثر بر کارایی پیل را در تحقیق خود مورد تحلیل و بررسی قرار دادند. در این بررسی رفتار قطبیت پیل با داده‌های آزمایشگاهی مقایسه شده است. استفاده از ضخامت‌های متفاوت الکترود در کار آن‌ها نشان می‌دهد که برای دوری جستن از اینکه چگالی جریان محدود کننده پیل، در جریانهای پایینتر اتفاق افتد، نسبت حجمی الکترود کاتد (تخلخل لایه نفوذ گاز سمت کاتد) برای انتقال گازها باید بیش از 20 درصد باشد. به عبارت دیگر آنها ثابت کردند که به ازای مقادیر بسیار اندک تخلخل الکترد کاتد(به عنوان مثال 11%) چگالی جریان محدود کنندهپیل به دلیل محدود شدن انتقال جرم به سرعت اتفاق میافتد. نتایج مدل آن‌ها همچنین نشان می‌دهد که در گستره وسیعی از چگالی‌های جریان، هیچ نیازی به آب خارجی وجود ندارد زیرا آب تولیدی در کاتد به منظور تأمین نیازمندی‌های آبی غشاء کافی است.
در سال 2002 جنویو همکارانش [REF _Ref332025901 h * MERGEFORMAT16]مدلسازی لایه کاتالیست را بر اساس روش همگن ارائه کردند. اثر انتقال جرم و حرارت در پیل سوختی غشاء پلیمری بر طبق الکتروشیمی لایه کاتالیست در مدل آن‌ها مورد بررسی قرار گرفته است. همچنین با استفاده از مدل خود نشان دادند، هنگامیکه غلظت اکسیژن در مرز لایه کاتالیست و غشاء به صفر می‌رسد، چگالی جریان محدود کننده حاصل می‌شود. آن‌ها با استفاده از فرض کاملاً توسعه یافته بودن سیال در کانال‌های انتقال گاز، یک بعدی و همگن بودن لایه کاتالیست، به مقدار بهینه استفاده از کاتالیست پلاتین در لایه کاتالیست رسیدند. همچنین از مدل‌سازی خود به این نتیجه رسیدند که افزایش دما بیش از حد معقول، باعث کم آب شدن آیونومر لایه کاتالیست شده و کارائی پیل را کاهش می‌دهد و نشان دادند که تخلخل و میزان بارگذاری پلاتین در لایه کاتالیست نقش بسیار مهمی را در کارائی پیل ایفا می‌کنند.
در سال 1999 سینگ و همکارانش [REF _Ref332025916 h * MERGEFORMAT17]لایهکاتالیستپیلسوختی غشاء پلیمری را به صورت دو بعدیمدل‌سازی کردند، آن‌هاهمچنینجریان‌های واکنش دهنده‌ها در آند و کاتد را به صورت همسو و غیر همسو مدل کرده و نتایج آن را با هم مقایسه کردند.آن‌هانتیجه گرفتند که مدل‌سازی دو بعدی نقش مهمی بر رویپیش‌بینیصحیح عملکرد پیلسوختیایفامی‌کند، این امر در چگالیجریان‌هایپایینشدیدتر است. مار و لی [REF _Ref332025950 h * MERGEFORMAT18] اثراتساختاریاجزایتشکیلدهنده‌ییکلایهکاتالیست همگن را بر روی عملکرد پیلسوختی غشاء پلیمری مورد بررسی قرار دادند. آن‌هانتیجه گرفتند که به منظور دستیابی به بالاترینمیزانکاراییپیلاز نقطه نظر ساختاریباید همواره 40% از لایهکاتالیست از ذرات پلاتین–کربن(Pt/C)ساخته شده باشد. در سال 2010 خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14]یک مطالعه جامع پارامتری را بر رویلایهکاتالیستی که به روش همگن مدل کرده بودند انجام دادند. در این مطالعه، اثر شش پارامتر ساختاری بر روی عملکرد پیلسوختی غشا پلیمری مورد بررسی قرار گرفت. آن‌ها نشان دادند که برخی از پارامتر هایساختارینظیر کسر حجمی فاز غشاء موجود در لایهکاتالیست، ضخامت لایهکاتالیست و بارگذاری کربن ازتأثیرگذارترینپارامترها بر رویمنحنیقطبیتپیل هستند.
علیرغمموفقیت‌های ذکر شده در مورد مدل همگن لایهکاتالیست،پیش‌بینی عملکرد سلول سوختی با استفاده از مدل همگن در چگالیجریان‌های بالا بسیارضعیف است و با نتایجتجربی اختلاف قابل ملاحظه‌ای دارد. این اختلاف به دلیل این است که افت غلظت در مدل همگن به خوبی و بدون استفاده از روابط تجربی قابل پیش‌بینینیست. اکنون مدل توده‌ای که کمی از مدل همگن نوین‌تر است می‌توانداین مشکل را مرتفع سازد.
گراف‌های میکرو الکترونی، بروکا و اکدونج[REF _Ref332026000 h * MERGEFORMAT19] نشان داد که ذرات Pt/Cموجود در لایه کاتالیست، نزدیک به یکدیگر و به شکل یک توده کروی انباشته شده‌اند، همچنیناین توده کروینیز با لایهنازکی از آیونومر احاطه شده است. آن‌هاهمچنینلایهکاتالیست کاتد را با استفاده از مدل همگن و توده‌ایشبیه‌سازی کرده و نتایجآن‌ها را با یکدیگرمقایسهکرده‌اند. سان و همکارانش [REF _Ref332026047 h * MERGEFORMAT20]در سال 2005 مدل تودهای را برایبررسیاثر بارگذاریآیونومرنفیون و پلاتین بر روی عملکرد پیل مورد بررسی قرار دادند. آن‌ها 36% را یک کسر وزنیبهینهبرایبارگذارینفیونبدست آوردند. در سال 2007 سیکنل و همکارانش [REF _Ref332026057 h * MERGEFORMAT21] الکترود کاتد یکپیلسوختی غشاء پلیمری را که بهروشتوده‌ای مدل شده بود با استفاده از روش بهینه‌سازی چند متغیرهبهینه کردند. آن‌هانتیجه گرفتند کههرچه شعاع ذرات توده ای موجود در لایهکاتالیست و همچنین ضخامتلایهآیونومر اطراف آن‌هاکوچک‌تر باشد، عملکرد پیلبهینه‌تر است. در واقع تا آنجایی که فرآیندهای ساخت اجازه می‌دهندباید شعاعذرات توده‌ای و ضخامت آیونومر دور آن‌ها کوچک باشد. آن‌ها کسر حجمیبهینه را برای فاز جامد و غشاء موجود در لایهکاتالیست به ترتیب 22.05% و 53.95% گزارش کردند. البته اینمقادیر در چگالیجریان‌های متوسط گزارش شده‌اند.
در سال 2012، کاماراجوگادا و مازومدر [REF _Ref332026073 h * MERGEFORMAT22]لایه کاتالیست را به روش توده‌ایمدل‌سازی کردند، البته یک فرق اساسی که مدلآن‌ها با سایر روش‌هایتوده‌ای داشت، این است که آن‌ها فرض کردند ذرات توده‌ای با شعاع‌های متفاوت با یکدیگر تداخل داشته باشند. نتایج کار آن‌ها نشان می‌دهد که تا هنگامی که اندازه ذرات توده‌ای کوچک (کوچکتر از nm 200) باشد، اثر آن‌ها بر روی منحنی قطبیت پیل اندک است. اما برای ذرات بزرگتر اثر آن‌هابر روی منحنی قطبیت قابل ملاحظه است. به ویژه در چگالی جریان بالا جایی که افت غلظت شدید بوده و مقاومت در برابر انتقال جرم به درون توده به شکل توده وابسته است، این اثر بحرانی‌تر خواهد بود. آن‌ها همچنین نتیجه گرفتند که کارایی پیل در این حالت نسبت به حالتی که توده‌ها به صورت کروی و جدا از هم هستند به ازای یک حجم یکسان به مراتب بیشتر است و به نتایج تجربی نیز نزدیکتر می‌باشد.
لایه نفوذ گاز و غشاءلایههای نفوذ گاز به دلیلیکنواخت کردن جریانگازهای واکنش دهنده بکار می‌روند. البته استفاده از اینلایه‌ها باعث کاهش فشار واکنش دهنده‌ها نیزمی‌گردد. غشاء نیزیکلایه مرطوب می‌باشد که پروتون‌ها از طریق آن از آند به سمت کاتد مهاجرت می‌کنند. در پیل‌هایسوختی غشاء پلیمری از انواع نفیون‌ها به عنوان غشاء استفادهمی‌شود. میزان آب موجود در غشاء ازاهمیتویژه‌ای برخوردار است. تمامی خواص غشاء اعم از میزاننفوذ آب، قابلیت هدایتپروتونی و مقاومت پروتونی به میزان آب موجود در غشاء بستگی دارد. اگر دمایپیل بالا باشد (oC100) ممکن است که رطوبت غشاء از دست برود و مقاومت پروتونیکافزایشیابد. از سویدیگرزیادی آب درون غشاء باعث ایجادپدیدهغرقابی شده و منافذ نفوذ گاز را مسدود می‌کند.
اثر دما و ضخامت غشاء بر بازده پیل سوختی و اثر انتقال آب در داخل لایه غشاء، مواردی هستند که اشپرینگر و همکارانش [REF _Ref332026117 h * MERGEFORMAT23]در مدل‌سازی پیل سوختی با استفاده از روش لایه نازک به بررسی آن‌ها پرداخته‌اند.اشپرینگر و همکارانش در سال 1991یکپیلسوختیپلیمری با نفیونN117 به عنوان غشاء مدل‌سازی کردند. آن‌ها هوا و هیدروژنورودی به کاتد و آند را کاملاً اشباع در نظر گرفتند. آن‌ها اثر برخی از پارامترهایساختاری و عملکردیپیل را بر رویکاراییپیل مورد بررسی قرار دادند، و به طور خاص اثر جزء آب موجود در غشاء و دما را بر روی مقاومت پروتونیک غشاء و در نتیجهکاراییپیل مورد بررسی قرار دادند. آن‌هانتیجه گرفتند که هر چه دمایپیلسوختی بالاتر باشد و همچنین هر چه ضخامت غشاء بیشتر باشد جزء آب موجود در غشاء کاهش و در پی آنمقاومت پروتونیک غشاء افزایشمی‌یابد.آن‌ها به این نتیجه رسیدند که با افزایش چگالی جریان پیل، مقاومت غشاء نیز افزایش مییابد، که برای کاهش این مقاومت میتوان از غشاء با ضخامت کمتر استفاده نمود، همچنین دریافتند که نسبت شارخالص آب عبوری به شار پروتون در داخل غشاء، از میزان پیش‌بینی شده توسط پدیده کشش الکترواسمزی بسیار کمتر است.
موتوپالی و همکارانش [REF _Ref332026155 h * MERGEFORMAT24] نفوذ آب درون نفیونN115 را مورد بررسی قرار دادند. آن‌ها شار نفوذ آب را در درون غشاء با استفاده از قانون فیک مدل کردند. نتایج کار آن‌ها نشان داد که گرادیانضریبفعالیت آب در داخل غشاء به فشار عملکرد پیلسوختیبستگی دارد. شان-های و بائو-لیان [REF _Ref332026180 h * MERGEFORMAT25]اثر نوع جریانواکنشگرها در کانال‌هایورودی (همسو و غیر همسو) را بر رویفرآیندهای انتقال درون غشاء (مهاجرت پروتون و انتقال آب)، مقاومت اهمیک و توزیع آب درون غشاء بررسی کردند. آن‌ها اثبات کردند که جریانغیر همسو می‌تواند باعث بهبود عملکرد پیلسوختی شود. جنگ و همکارانش [REF _Ref332026198 h * MERGEFORMAT26] نفوذ اکسیژن را در الکترود کاتد پیل سوختی با استفاده از یکضریبنفوذ معادل به صورت دو بعدی مدل کردند. آن‌ها اثر ضخامت لایه نفوذ گاز را بررسی کردند و اثبات کردند که هر چه ضخامت لایه نفوذ گاز کمتر باشد عملکرد پیلبهینه‌تر خواهد بود، البته این امر در مورد لایه‌های نفوذ گاز با تخلخل اندک می‌باشد.
اهداف پروژه و خلاصهای از کارهای صورت گرفتهبا توجه به مطالب ذکر شده در بخشهای قبلی میتوان نتیجه گرفت که به منظور طراحی صحیح و بهینه یک سیستم پیل سوختی نیازمند یک مدلسازی از عملکرد لایههای مختلف پیل سوختی نظیر مدلسازی لایه کاتالیست، لایه نفوذ گاز و غشاء هستیم. هدف اصلی از انجام این پایاننامه ارائه یک مدل کارآمد جهت پیشبینی عملکرد لایههای مختلف پیل و بررسی تاثیر پارامترهای مختلف (عملکردی و ساختاری) بر روی کارایی پیل میباشد. این مدل میتواند آغاز راه برای سازندههای پیل سوختی غشاء پلیمری باشد.
از اینرو در اینپایان‌نامهمدل‌سازییکبعدی عملکرد یکپیلسوختی غشا پلیمری انجام می‌پذیرد، و تمامیلایه‌هایاینپیلسوختی تک سلولیشبیه‌سازیمی‌شوند. مدل ارائه شده برایلایهکاتالیست، مدل توده‌ایمی‌باشد. این مدل افت غلظت موجود در منحنیقطبیتپیل را که در چگالیجریان بالا اتفاق می‌افتد بدون اضافه کردن روابط نیمهتجربی مربوط به افت غلظت درستپیش‌بینیمی‌کندهمچنین در حالتی که اندازه تودهها به سمت صفر میرود(تودههای بسیار کوچک) این مدل به مدل همگن ساده میشود. لایه‌های نفوذ گاز نیز که در دو طرف آند و کاتد پیل قرار دارند با استفاده از معادلات مربوط به نفوذ گازهای چند جزئی مدل شده‌اند. غشاء نیز با مدل کردن انواع مکانیزم‌های انتقال آب که در آن وجود دارد شبیه‌سازی شده است. عملکرد یکپیلسوختی توسط منحنی ولتاژ بر حسب چگالیجریانبیانمی‌شود. این عملکرد با کسر نمودن افت‌های مربوط به ولتاژ فعال‌سازی، اهمیک و غلظت از ولتاژ بازگشت‌پذیرپیل در یکچگالیجریان بدست می‌آید. سپس با تغییرچگالیجریان، منحنیجریان–ولتاژ پیل بدست می‌آید. در اینپایان‌نامه معادلات حاکم بر عملکرد لایه‌های مختلف پیل (که ترکیبی از معادلات دیفرانسیل و معادلات جبریمی‌باشند) بدست آمده سپس این معادلات حل می‌گردد تا افت‌هایقید شده بدست آید. در انتها یکسری مطالعات پارامتری به منظور بررسیمیزانحساسیت تابع عملکرد به یکسریپارامترها انجام می‌پذیرد.

فصل دوممدل‌سازی لایه کاتالیست به روش توده‌ای و نتایج آن25050754247515020000
معرفی لایه کاتالیستلایه کاتالیست لایه بسیار نازکی است که بین غشاء و الکترود (ناحیه‌ی متخلخل) فشرده شده است. در این ناحیه واکنش الکتروشیمیایی رخ می‌دهد و بهطوردقیق‌تر واکنش الکتروشیمیایی در سطح کاتالیست رخ می‌دهد. سهمؤلفه که شامل الکترون‌ها و پروتون‌ها و گازها هستند در واکنش شرکت می‌کنند بنابراین واکنش در ناحیه‌ای رخ می‌دهد که این سه ماده وجود داشته باشند. الکترون‌ها از جامدی که رسانای الکتریسیته است عبور می‌کند و خود را به سطح کاتالیست می‌رساند. پروتون‌ها نیز از فاز غشاء عبور می‌کنند و خود را به سطح کاتالیست می‌رساند و در نهایت گازهای واکنش‌دهنده از منافذ خالی عبور می‌کنند. بنابراین الکترود باید متخلخل باشد تا به گازها اجازه دهد به محل انجام واکنش برسند. آب تولید شده بایستی بهصورت موثر و بهینه خارج شود، در ضمن ممکن است که پدیده غرقابی رخ دهد، در این حالت آب مایع منافذ خالی الکترود را می‌پوشاند و مانع رسیدن گازها (اکسیژن) به لایه کاتالیست(کاتد) می‌شود.
همان‌طور که در REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (الف) مشاهده می‌شود واکنش در مرز سه فازی رخ می‌دهد که شامل فاز غشاء، فاز جامد و فضای خالی می‌باشد. البته اگر فاز غشاء جامد باشد این مرز دو فازی خواهد بود. این ناحیه گاهی تنها بهصورت یک سطح تداخلی در نظر گرفته می‌شود. در عمل چون ممکن است نفوذ گاز از غشاء صورت گیرد، ناحیه‌ی واکنش بزرگ‌تر از یک خط مرزی سه فازی است. محیط واکنش ممکن است با وجود نفوذ غشاء به قسمتی از کاتالیست بهصورت یک ناحیه در نظرگرفتهشود( REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (ب)). اما در اغلب موارد، تمام سطح کاتالیست با فاز غشاء پوشیده می‌شود( REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (پ)). مسلماًیک حالت بهینه برای کسر حجمیهریک از این‌ فازهای غشاء، جامد و فضای خالی به منظور بهترین کارکرد لایه‌ی کاتالیست قابل حصول است.
متداول‌ترین کاتالیستی که در پیل‌های سوختی پروتونی برای واکنش کاهش اکسیژن و اکسایش هیدروژن کاربرد دارد، پلاتین است. در پیل‌های قدیمی مقادیر زیادی پلاتین استفاده می‌شد(mg/cm2 28). در اواخر سال 1990 این مقدار به mg/cm20.3-0.4رسید. مسئله مهم در ساختمان کاتالیست‌ها سطح آن‌هاست نه وزنشان، زیرا هر چه که سطح کاتالیست بیشتر باشد، سطوح انجام واکنش افزایش مییابد، بنابراین ذرات پلاتین بایستی ریز باشند (کمتر از nm4) زیرا به ازای یک مقدار بارگذاری معین هر چه ذرات کاتالیست ریزتر باشند سطوح انجام واکنش افزایش مییابد.
(الف) (ب) (پ)

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 1: نمایش گرافیکی سطحی که در آن واکنش رخ می‌دهد[REF _Ref332025524 h8].برای به حداقل رساندن افت پتانسیل که ناشی از کاهش نرخ انتقال پروتون و نفوذ گازهای واکنش‌دهنده به عمق لایه‌ی کاتالیست می‌باشد، این ناحیه بایستی به اندازه‌ی کافی نازک باشد. همزمان بایستی مساحت سطح موثر پلاتین نیز ماکزیمم باشد و برای این منظور ذرات پلاتین نیز بایستی تا حدامکان کوچک باشد. بهخاطر دلیل اول بایستی ذرات پلاتین– کربن(Pt/C) هرچه زیادتر باشد (از لحاظ وزنی این کسر بالاتر از 40٪ باشد)، از طرفی ذرات پلاتین باید کوچک‌تر باشند، تا سطح موثر واکنش، با وجود درصد بارگذاری کمتر، افزایش یابد ( REF _Ref331265979 h * MERGEFORMAT جدول ‏21).
باربیر [REF _Ref332025524 h * MERGEFORMAT8] گزارش کرده است که عملکرد پیل وقتی که درصد ذرات پلاتین –کربن(Pt/C) بین 10٪ تا 40٪ با بارگذاری mg/cm20.4 می‌باشد، تغییری نمی‌کند. اما عملکرد پیل وقتی که درصد ذرات پلاتین – کربن(Pt/C) از 40٪ بیشتر می‌شود، کاهش می‌یابد. این مسئله بیانگر این واقعیت است که هنگامی که درصد ذرات پلاتین–کربن(Pt/C) در گستره‌ی 10 تا 40٪ باشدتغییر قابل چشم‌پوشی برای مساحت سطح موثر کاتالیست و در گستره بالاتر از 40٪کاهش قابل ملاحظه‌ای در سطح موثر لایه‌ی کاتالیست اتفاق میافتد.
REF _Ref331265979 h * MERGEFORMAT جدول ‏21[REF _Ref332025524 h * MERGEFORMAT8] مساحت موثر کاتالیست را برای درصدهای مختلف پلاتین – کربن (Pt/C) نشان می‌دهد.
در عمل بارگذاری بیشتر پلاتین، پتانسیل بیشتر و عملکرد بهتر را برای پیل به ارمغان می‌آورد (با فرض قابل استفاده بودن و ضخامت معقول برای لایه‌ی کاتالیست). نکته‌ی کلیدی برای بهبود عملکرد پیل‌های سوختی افزایش بارگذاری پلاتین نیست بلکه افزایش استفاده از کاتالیست (افزایش سطح موثر) است.
جدول STYLEREF 1 s‏2SEQ جدول_ * ARABIC s 1 1: مساحت موثر کاتالیست برای درصدهای مختلف پلاتین – کربن.Active Area, m2/gPt XRD Pt Crystallite Size, nm Wt. % Pt on Carbone
(Pt/C)
120 2.2 40
105 2.5 50
88 3.2 60
62 4.5 70
20-25 5.5-6 Pt Black
شرح پدیده‌هایی که در لایه کاتالیست رخ می‌دهدهمان‌طور که در بخش REF _Ref330375638 n h * MERGEFORMAT ‏1-8-1-اشاره شد، لایه کاتالیست را عموماً به سه روش زیر مدل‌سازیمی‌کنند:
مدل لایه نازک
مدل همگن
مدل توده ای
اختلاف اصلی بین این سه روش را می‌توان در مکانیزم انتقال اکسیژن جستجو کرد در حالی که مدل‌های نام برده در نحوه انتقال الکترون و پروتون به یکدیگر شباهت زیادی دارند.
از آنجایی که در دهه اخیر از مدل سوم یعنی توده‌ای بیشتر از دو مدل دیگر استفاده شده است، لذا فقط به معرفی ابتدایی دو مدل اوّل بسنده کرده‌ایم، و برای مدل‌سازی لایه کاتالیست از مدل توده‌ای که جامع‌تر از دو مدل قبلی است و نواقص آن دو مدل را پوشش می‌دهد استفاده شده است.
مدل لایه نازکدر مدل لایه نازک[REF _Ref332026335 h * MERGEFORMAT27] فرض بر این است که در لایه کاتالیست، ذرات پلاتین روی سطح کربن قرار داده شده و همان‌گونه که در REF _Ref331173016 h * MERGEFORMAT شکل ‏22نشان داده شده است این ذرات بوسیله الکترولیتی احاطه می‌شوند که با حفره گاز در تماس است. در اینمدل تقارن محوری وجود دارد که در REF _Ref331173016 h * MERGEFORMAT شکل ‏22با خط چین نشان داده شده است، بنابراین در فاصله‌یحفره‌ی گاز و الکترولیت، هیچ شاری از صفحات متقارن عبور نمی‌کند (شرط تقارن). در این مدل ضخامت الکترولیت و فاصله بین ذره‌ای، ثابت در نظر گرفته می‌شود، همچنین تخلخل لایه کاتالیست در این مدل صفر است. فرآیندهای انتشار، همدما بوده و سیستم نیز در شرایط حالت پایا فرض می‌شوند.
مدل لایه نازک معمولاً هنگامی استفاده می‌شود که هدف ما مطالعه اثرات ترکیب لایه کاتالیست نباشد [REF _Ref332025607 h * MERGEFORMAT11]. در این مدل لایه کاتالیست به صورت لایه بسیار نازکی فرض می‌شود و با فرض اینکه همه خواص در این لایه یکنواخت باشند، ترکیب و ساختار آن در نظر گرفته نمی‌شود. سپس این لایه به صورت فاصله‌ای مابین غشاء و لایه نفوذ گاز ملاحظه می‌شود.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 2: شماتیک مدل لایه نازک با تقارن محوری نشان داده شده بوسیله خط چین [REF _Ref332026373 h * MERGEFORMAT28].به منظور مدل کردن اثر لایه کاتالیست بر کارایی پیل در این مدل، تنها یک معادله مورد استفاده قرار می‌گیرد (معادله تافل) که در هنگام مدل سازی به صورت یک شرط مرزی بین لایه نفوذ گاز و غشاء مطرح می‌شود. همان‌گونه که اشاره شد، به نظر می‌رسد که این مدل زمانی کافی باشد که اثرات دیگر، نسبت به اثرات لایه کاتالیست دارای اهمیت بیشتری باشند.
مدل همگنمدل همگن را می‌توان شکل اصلاح شده مدل لایه نازک نامید. در این مدل، لایه کاتالیست به صورت یک ساختار متخلخل متشکل از: یک ماده هادی جامد (معمولاً کربن)، کاتالیست (معمولاً پلاتین) و یک الکترولیت (معمولاً نفیون) ساخته می‌شود، REF _Ref331173107 h * MERGEFORMAT شکل ‏23.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 3: تصویر شماتیک لایه کاتالیست سمت کاتد بر اساس مدل همگن[REF _Ref332025841 h * MERGEFORMAT14].مدل همگن فرض می‌کند که فضای حفره، ماده هادی جامد و الکترولیت بهطور یکنواخت در لایه کاتالیست توزیع شده‌اند، این واقعیت در REF _Ref331173169 h * MERGEFORMAT شکل ‏24به خوبی به تصویر کشیده شده است.
واکنش روی سطح ذرات کاتالیست نهاده شده روی ماده هادی جامد اتفاق می‌افتد. بنابراین پروتون‌ها، الکترون‌ها و اکسیژن باید از میان لایه کاتالیست عبور کنند تا به محل انجام واکنش برسند. در لایه کاتالیست کاتد، الکترون‌ها از طریق ماده هادی جامد، پروتون‌ها از طریق الکترولیت و اکسیژن از طریق فضای حفره انتقال داده می‌شوند. مسیر انتقال اکسیژن به دو صورت فرض می‌شود. برخی از محققین فرض می‌کنند که اکسیژن از طریق آب مایعی که فضاهای حفره را پر می‌کند انتقال داده می‌شود [REF _Ref332025887 h * MERGEFORMAT15]. برخی دیگر از محققین فرض می‌کنند که اکسیژن از طریق انتشار در فاز گاز در میان حفره‌های گازی انتقال داده می‌شود [REF _Ref332026434 h * MERGEFORMAT29-REF _Ref332026924 h * MERGEFORMAT33]. هر دو فرض مدلی را نتیجه می‌دهند که برخی از اثرات بسیار مهم که در لایه کاتالیست اتفاق می‌افتد را شرح می‌دهند. هر دو فرض، همچنین ترکیب لایه کاتالیست را از طریق ربط دادن خواص لایه کاتالیست به نسبت حجمی هر فاز نشان می‌دهند.

شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 4: نمایی از لایه کاتالیست همگن و تودهای و اجزاء تشکیل دهنده آنها.مدل توده‌ایدر سال 1980 ایزکوفسکی و کاتلیپ جزء اولین کسانی بودند که مدل توده‌ای را برای شبیه‌سازی لایه کاتالیست به کار بردند. آن‌ها از توده‌های استوانه‌ای برای شبیه‌سازی خود استفاده کردند و نشان دادند که لایه کاتالیست از توده‌های کربن تقویت شده توسط پلاتین ساخته شده است که بوسیله لایه‌ای نازک از نفیون احاطه شده و بوسیله حفره‌ها از هم جدا می‌شوند. این توده‌ها اگلومریتنامیده می‌شوند. توده‌ها، کره‌هایی از الکترولیت معمولاً نفیون، هستند که با کربن و ذرات پلاتین پر شده‌اند و دارای شعاع حدوداً یک میکرونهستند [REF _Ref332026047 h * MERGEFORMAT20].این مدل، از جدیدترین مدل‌هایی است که برای لایه کاتالیست پیل سوختی ارائه شده است، REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) یک نمای میکروسکوپیک از لایه کاتالیست که حاوی ذرات اگلومریت (توده) است را نشان می‌دهد.REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) نشان می‌دهد که ذرات تودهای از یک طرف با فیبرهای (رشته‌های) کربن موجود در لایه نفوذ گاز که در مرز مشترک لایه کاتالیست با لایه نفوذ گاز قرار دارد در تماس بوده، و از طرف دیگر نیز در تماس با آیونومر الکترولیت موجود در مرز مشترک لایه کاتالیست با غشاءمی‌باشند. در این بین، ذرات تودهای به صورت نامنظم در آیونومر موجود در لایه کاتالیست مستغرق می‌باشند. همان‌طور که در REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) دیده می‌شود یک سری فضای خالی ما بین این ذرات وجود دارد، معمولاً فرض می‌شود که این فضاهای خالی با آب مایع بوجود آمده ناشی از انجام واکنش کاملاً پر می‌شود. این فرض مخصوصاً در مورد پیل‌های دما پایین که در آن‌ها تمامی آب تولیدی به صورت آب مایع می‌باشدصحیح بهنظرمی‌رسد. به این حالت، حالت غرقابی کاملمی‌گویند. REF _Ref331173305 h * MERGEFORMAT شکل ‏25 (ب) نمای بزرگ شده یکی از هزاران توده‌یموجود در لایه کاتالیست را نشان می‌دهد. این ذرات با یک فیلم بسیار نازک از آیونومر احاطه شده‌اند. همان‌طور که در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) دیده می‌شود ذرات پلاتین که بروی ذرات کربن بار گذاری شده‌اند و بوسیله آن‌ها تقویت شده‌اند به صورت کاتوره‌ایدرون آیونومر موجود در توده پخش شده‌اند.
به صورت کلی نفوذ اکسیژن از مرز مشترک لایه نفوذ گاز با لایه کاتالیست تا درون هر توده‌ی موجود در لایه کاتالیست را می‌توان به ترتیبدر فرآیندهای زیر خلاصه نمود:
نفوذ اکسیژن به درون لایه کاتالیست با حل شدن در آب مایع موجود در مرز مشترک لایه کاتالیست با لایه نفوذ گاز،
حل شدن اکسیژن در فاز آیونومر و همچنین فضاهای خالی پر شده از آب مایع، به منظور رسیدن به سطح توده‌ها،
نفوذ اکسیژن به درون فیلم آیونومر اطراف هر اگلومریت،
حل شدن اکسیژن درون توده و واکنش کاهش اکسیژن درون سایت‌های انجام واکنش (پلاتین‌ها).
REF _Ref331173381 h * MERGEFORMAT شکل ‏26تصویر میکروالکترونی (SEM)از توده‌ها را نشان می‌دهد. در شکل ناحیه خاکستری روشن آیونومر است. انتقال گاز در کاتالیست توسط حفره‌های ماکرو در ابعاد m10-1آسان‌تر می‌شود. قطر ذراتکاتالیست پلاتین حدود3 nm است.همان‌طور که در REF _Ref331173381 h * MERGEFORMAT شکل ‏26مشاهدهمی‌شود مدل تودهای به تصاویر میکروالکترونیلایه کاتالیست بسیار شبیه تر ازمدل همگن است.
با توجه به مطالب گفته شده می‌توان گفت که روش همگن نسبت به روش توده‌ای از دقت کمتری برخوردار است. مطالعات بسیاری نشان داده‌اند که مدل انباشته پیشگویی‌های بهتری نسبت به نتایج آزمایشگاهی در اختیار قرار می‌دهد [REF _Ref332026000 h * MERGEFORMAT19]. مدل‌های انباشته نیازمند پارامترهایی هستند که به صورت تجربی تعیین شده‌اند و این امر می‌تواند دلیلی برای نزدیک‌تر بودن نتایج مدل نسبت به نتایج آزمایشگاهی باشد.
(الف)
(ب)
شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 5: (الف) نمای لایه کاتالیست به روش توده‌ای که بین لایه نفوذ گاز و غشاء فشرده شده است (ب) نمای بزرگ شده از یک عدد توده موجود در لایه کاتالیست.
شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 6: تصویر SEM لایه کاتالیست [REF _Ref332026000 h19].استخراج روابط حاکم بر مدل تودهایشبیهسازی انجام شده بر اساس مدل توده‌ای بوده و بر فرضیات زیر استوار می‌باشد:
الف) پیل سوختی غشاء پلیمری در حالت پایا کار می‌کند.
ب) تمامی واکنش‌ها در دما و فشار ثابت انجام می‌شوند.
پ) گازها ایده آل فرض می‌شوند.
ت) کاتد و آند پیل سوختی به ترتیببا اکسیژن و هیدروژن خالص تغذیه می‌شوند.
ث)حفرههای موجود در مرز مشترک لایه کاتالیست با لایه نفوذ گاز و همچنین فضای خالی بین ذرات توده‌ای پر از آب مایع در نظر گرفته شده است (شرایط کاملاً غرقابی).
ج) ذرات توده‌ای به صورت کروی و با شعاع یکسان در نظر گرفته می‌شوند.
چ) تمامی واکنش‌هایی که در لایه کاتالیست رخ می‌دهند مرتبه اوّل می‌باشند، این بدین معنی است که نرخ مصرف اکسیژن در لایه کاتالیست کاتد با غلظت آن متناسب است.
دراین بخش معادلات دیفرانسیل معمولی حاکم بر لایه کاتالیست کاتد شرح داده می‌شود:
نرخ واکنش الکتروشیمیایی در مدل توده‌ایاستخراج معادله نرخ واکنش الکتروشیمیایی مستلزم شبیه‌سازی کامل فرآیندها نفوذ اکسیژن در لایه کاتالیست می‌باشد (فرآیندهای بخش REF _Ref331683273 r h * MERGEFORMAT ‏2-2-3-). بنابراین این بخش به چهار زیر بخش تقسیم شده است و در هر زیر بخش قسمتی از نفوذ اکسیژن مدلسازی شده است.
واکنش کاهش اکسیژن درون تودهدر ابتدا مکانیزم نفوذ اکسیژن درون هر توده، یعنی فرآیند 4 بخش REF _Ref331683273 r h * MERGEFORMAT ‏2-2-3- مدل می‌شود.
قانون بقای مولی برای اکسیژن درون یک توده در حالت پایا به صورت زیر بیان می‌گردد:
(2- SEQ 2- * ARABIC1)که در آن(ترم چشمه) بیان کننده نرخ اکسیژن مصرفی ناشی از واکنش الکتروشیمیایی درون توده است. انتقال جرم اکسیژن درون تودهبا استفاده از قانون فیک به صورت زیر مدل می‌شود:
(2- SEQ 2- * ARABIC2)که در آن ضریب نفوذ مؤثر اکسیژن درون یک توده است. از آنجا که اکسیژن برای نفوذ در هر توده باید در آیونومر موجود در آن توده حل شود لذا این ضریب نفوذ مؤثر را می‌توان با استفاده از تصحیح برگمان در محیط متخلخل به صورت زیر گزارش کرد:
(2- SEQ 2- * ARABIC3)
که در آن Li,agg کسر حجمی فاز غشاء موجود در هر توده می‌باشد. نیز ضریب نفوذ اکسیژن درون آیونومر است که خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] از داده های تجربی فرمول زیر را با برازش منحنی پیشنهاد می‌کنند:
(2- SEQ 2- * ARABIC4)
اکنون با توجه به فرض آخر در بخش REF _Ref331435271 r h‏2-3-(فرض (چ))، نرخ حجمی مصرف اکسیژن به صورت زیر بیان می‌شود:
(2- SEQ 2- * ARABIC5)که در آن kCثابت نیمواکنش سمت کاتد می‌باشد. و علامت منفی در معادله REF _Ref330398231 h * MERGEFORMAT (2- 5) بیانگر مصرف اکسیژن می‌باشد.
با جایگذاری معادلات REF _Ref330398315 h * MERGEFORMAT (2- 2) و REF _Ref330398231 h * MERGEFORMAT (2- 5) در معادله REF _Ref330398327 h * MERGEFORMAT (2- 1)می‌توان نوشت:
(2- SEQ 2- * ARABIC6)اکنون اگر معادله REF _Ref330580384 h * MERGEFORMAT (2- 6) برای یک ذره توده‌ای کروی شکل در دستگاه مختصات کروی بسط داده شود، میتوان نوشت:
(2- SEQ 2- * ARABIC7)معادله REF _Ref330398567 h * MERGEFORMAT (2- 7) یک معادله دیفرانسیل معمولی مرتبه دوم می‌باشد، بنابراین دو شرط مرزی برای حل آن نیاز است این دو شرط در ادامه توضیح داده شده‌اند(برای جزئیات بیشتر به REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) رجوع شود):
شرط مرزی در سطح داخلی توده،r = ragg: غلظت اکسیژن در سطح داخلی توده برابر با در نظر گرفته شده است( REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب)):
(2- SEQ 2- * ARABIC8)شرط مرزی در مرکز توده،r =: در مرکز توده شرط تقارن وجود دارد:
(2- SEQ 2- * ARABIC9)اگر معادله دیفرانسیل REF _Ref330398567 h * MERGEFORMAT (2- 7) با شرایط مرزی معادلات REF _Ref330399466 h * MERGEFORMAT (2- 8) و REF _Ref330399471 h * MERGEFORMAT (2- 9) حل شود آنگاه جواب زیر حاصل می‌گردد:
where and (2- SEQ 2- * ARABIC10)گروه بی بعد  که در معادله REF _Ref330399611 h * MERGEFORMAT (2- 10) ظاهر شده است را عدد تایلی یا مدول تایلی می‌نامند که برابر است با [REF _Ref332026047 h * MERGEFORMAT20]:
(2- SEQ 2- * ARABIC11) REF _Ref331173594 h * MERGEFORMAT شکل ‏27نحوه تغییرات شعاعی غلظت بی بعد اکسیژن را درون یک توده به ازای مقادیر مختلف عدد تایلی نشان می‌دهد.
بر اساس معادله REF _Ref330399927 h * MERGEFORMAT (2- 11) حالت  حداقل با یکی از دو شرایط زیر متناظر است:
الف)ragg: ذرات تودهای بسیار ریز باشند،
ب)kC : ترم چشمه، به سمت صفر میل کند.
حالت (الف) متناظر است با حالتی که ذرات تودهای بسیار ریز باشند، در این حالت مدل توده‌ای به مدل همگن ساده می‌شود، به زبان دیگر این حالت بسیار به مدل همگن و مفروضات همگن پخش شدن اجزاءدر لایه کاتالیست نزدیک است. از طرف دیگر حالت (ب) متناظر با حالتی است که مصرف اکسیژن درون لایه کاتالیست به صفر رسیده است. در هر صورت همان‌طور که در REF _Ref331173594 h * MERGEFORMAT شکل ‏27 مشاهده می‌شود حالت حدی  ناشی از هر دو حالت (الف) یا (ب) که باشد، منجربه توزیع تقریباً یکنواخت غلظت اکسیژن درون کل توده است.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 7: تغییرات شعاعی غلظت بی بعد اکسیژن درون یک توده برای مدول تایلی مختلف.از طرف دیگر حالت حدی (مثل = 10در REF _Ref331173594 h * MERGEFORMAT شکل ‏27) متناظر با مصرف بسیار زیاد اکسیژن درون لایه کاتالیست است، به نحوی که نرخ نفوذ اکسیژن درون توده بسیار کمتر از نرخ مصرف اکسیژن است. این امر سبب می‌شود که اکسیژن توانایی نفوذ به اعماق توده را نداشته باشد و پس از کمی نفوذ درون توده به سرعت مصرف گردد در این حالت غلظت اکسیژن در r* = 1 به سرعت افت می‌کند که در REF _Ref331173594 h * MERGEFORMAT شکل ‏27مشخص است.
نرخ حجمی واکنش کاهش اکسیژن[mol m-3 s-1]، که همان میانگین نرخ حجمی مصرف اکسیژن درون توده می‌باشد با انتگرال گیری بر روی حجم کل توده به صورت زیر قابل محاسبه است:
(2- SEQ 2- * ARABIC12)در معادله REF _Ref330580866 h * MERGEFORMAT (2- 12)، Vagg حجم یک توده می‌باشد، که برابر است با:
(2- SEQ 2- * ARABIC13)
اکنون معادله REF _Ref330399611 h * MERGEFORMAT (2- 10) در معادله REF _Ref330398231 h * MERGEFORMAT (2- 5) جایگذاری شده، و سپس حاصل آن در معادله REF _Ref330580866 h * MERGEFORMAT (2- 12) جایگذاری می‌شود و انتگرال روی حجم توده محاسبه می‌شود، نرخ میانگین حجمی مصرف اکسیژن به صورت بی‌بعد و بر حسب عدد تایلی بدست می‌آید:
(2- SEQ 2- * ARABIC14)در فرمول REF _Ref330581539 h * MERGEFORMAT (2- 14)، مقدار نرمال شده (بی‌بعد) نرخ مصرف حجمی اکسیژن می‌باشد که برابر است با:
(2- SEQ 2- * ARABIC15)
طبق فرض (چ) در بخش REF _Ref331435271 r h‏2-3-، نرخ حجمی مصرف اکسیژن با غلظت آن متناسب است، بنابراین ماکزیمم نرخ حجمی مصرف اکسیژن درون توده که در r = ragg رخ می‌دهد برابر است با ( REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب)):
(2- SEQ 2- * ARABIC16)ضریب موثرEr، که نسبت میانگین نرخ حجمی مصرفی اکسیژن به ماکزیمم نرخ مصرف اکسیژن می‌باشد، به صورت زیر تعریف می‌شود:
(2- SEQ 2- * ARABIC17) در حالت حدی، معادله REF _Ref330583898 h * MERGEFORMAT (2- 17) مقدارErرا برابر با 1 پیش‌بینیمی‌کند. از این نکته در بخش بعد برای تطبیق دادن مدل همگن و توده‌ای در شرایط حدی فوق استفاده می‌شود. اکنون معادلات REF _Ref330584219 h * MERGEFORMAT (2- 16) و REF _Ref330583898 h * MERGEFORMAT (2- 17) برای بدست آوردن با هم ادغام می‌شود:
(2- SEQ 2- * ARABIC18)نفوذ اکسیژن درون فیلم آیونومر اطراف تودهاکسیژن از طریق نفوذ در لایه نازک اطراف توده به درون آن نفوذ می‌کند.وبهترتیب غلظت اکسیژن در سطحبیرونی و داخلی فیلم آیونومر میباشد، این موضوع در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) نشان داده شده است. اکنون شار مولی نفوذی اکسیژن به درون فیلم آیونومر اطراف هر توده را می‌توان با استفاده از مقاومت پخشی اکسیژن در مختصات کروی به صورت زیر بدست آورد:
(2- SEQ 2- * ARABIC19)agg، ضخامت مفروض لایه آیونومر اطراف توده است.
اگر aagg، سطح مؤثر (مساحت سطح مفید جهت نفوذ اکسیژن به درون تودهها نسبت به حجم لایه کاتالیست m/m) کل توده‌های موجود درون لایه کاتالیست باشد، اکنون نرخ کل اکسیژن مصرفی درون لایه کاتالیست برابر است با:
(2- SEQ 2- * ARABIC20)از سوی دیگر غلظت اکسیژن بر روی سطح بیرونی لایه آیونومر، ، با استفاده از قانون هانری قابل محاسبه است (قانون هانری در پیوست 2 توضیح داده شده است)، بطوریکه:
(2- SEQ 2- * ARABIC21)، ثابت هانری مربوط به انحلال اکسیژن درون آیونومر است. سان و همکارانش [REF _Ref332026047 h * MERGEFORMAT20]مقدار آن را 0.3125 [atm m3 mol-1] گزارش کرده‌اند.
اکنون مقدار غلظت اکسیژن در سطح داخلی فیلم آیونومر، ، با ادغام معادلات REF _Ref330627395 h * MERGEFORMAT (2- 18)، REF _Ref330627402 h * MERGEFORMAT (2- 19)، REF _Ref330627421 h * MERGEFORMAT (2- 21)و REF _Ref330627456 h * MERGEFORMAT (2- 20) بدست می‌آید:
(2- SEQ 2- * ARABIC22)نرخ واکنش الکتروشیمیایینرخ واکنش الکتروشیمیایی از ادغام قانون فارادی و معادله REF _Ref330398327 h * MERGEFORMAT (2- 1) به صورت زیر قابل محاسبه است(شرحی بر قانون فارادی در پیوست 1 آمده است):
(2- SEQ 2- * ARABIC23)CL تخلخل لایه کاتالیست است.
نهایتاً نرخ واکنش الکتروشیمیایی در مدل توده‌ای با جایگزین کردن معادله REF _Ref330628360 h * MERGEFORMAT (2- 22) در معادله REF _Ref330627395 h * MERGEFORMAT (2- 18) و جایگذاری معادله حاصله درون رابطه REF _Ref330628414 h * MERGEFORMAT (2- 23) بدست می‌آید:
مدل توده ای:(2- SEQ 2- * ARABIC24)معادله REF _Ref330628605 h * MERGEFORMAT (2- 24) از دو بخش تشکیل شده است:
and (2- SEQ 2- * ARABIC25)بعداً اثبات می‌شود که Term I در معادله REF _Ref330628753 h * MERGEFORMAT (2- 25) تنها بخشی از مدل توده‌ای است که در مدل همگن نیز وجود دارد، Term II یک بخش اضافی است که در مدل توده‌ای ظاهر شده است و مدل همگن فاقد آن است.Term II، ترمی است که شامل پارامترهای ساختاری و هندسی ذرات توده‌ای بوده و به صورت مستقیم به شرایط عملکردی و چگالی جریان پیل وابسته نیست، از طرف دیگر Term I ترمی است که کاملاً وابسته به شرایط عملکردی و چگالی جریان پیل می‌باشد. در بخش نتایج این دو ترم از نظر مرتبه بزرگی با یکدیگر مقایسه شده‌اند. به نظر می‌رسد که دلیل ایجاد افت غلظت در چگالی جریان بالا در منحنی قطبیت پیل در مدل توده‌ای، همین اختلاف بین دو مدل همگن و توده ای یعنی، Term IIباشد. در نبود این ترم، مدل توده‌ای به مدل همگن کاهش می‌یابد، که در این حالت مدل همگن قادر به پیش بینی افت غلظت در چگالی جریان‌های بالا نیست و این یکی از اصلی‌ترین معایب مدل همگن بشمار می‌رود.
در معادله REF _Ref330628605 h * MERGEFORMAT (2- 24) تنها ترم مجهول kCمی‌باشد. این پارامتر با استفاده از بررسی یک حالت حدی که در آن مدل توده‌ای به مدل همگن کاهش می‌یابد بدست می‌آید. مدل همگن تحت شرایط زیر از مدل توده‌ای قابل بازیافت است:
Er 1  Term II  (ragg, agg)مدل همگن:
(2- SEQ 2- * ARABIC26)از طرف دیگر نرخ واکنش الکتروشیمیایی در مدل همگن با استفاده از رابطه باتلر- ولمر به صورت زیر بدست می‌آید [REF _Ref332025841 h * MERGEFORMAT14]:
مدل همگن:
(2- SEQ 2- * ARABIC27)نهایتاً kC از تساوی دو رابطه REF _Ref330630372 h * MERGEFORMAT (2- 26) و REF _Ref330630376 h * MERGEFORMAT (2- 27) بدست می‌آید:
(2- SEQ 2- * ARABIC28)
aeff سطح موثر پلاتین بر واحد حجم لایه کاتالیست است ([m2 m-3]). aوcبه ترتیب ضرایب انتقال بار سمت آند و کاتد میباشد.چگالی جریان مرجع می‌باشد که پرتاساراتی و همکارانش [REF _Ref332026674 h * MERGEFORMAT34] فرمول زیر را از برازش داده های تجربی پیشنهاد داده‌اند:
(2- SEQ 2- * ARABIC29)
غلظت مرجع اکسیژن می‌باشد که خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] مقدار آن را 1.2mol m-3گزارش کرده‌اند.
انتقال جرم اکسیژنخواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] توزیع غلظت اکسیژن را بر حسب چگالی جریان محلی پیل (i) به صورت زیر بدست آورده‌اند:
(2- SEQ 2- * ARABIC30)که در آن Itotوبه ترتیب چگالی جریان پیل سوختی و ضریب نفوذ مؤثر کلی اکسیژن در کل لایه کاتالیست می‌باشد.
همان‌طور که قبلاً اشاره شد فرض بر این است که فضای خالی بین توده‌ها از آب مایع پر شده است، بنابراین همان‌طور که در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(الف) دیده می‌شود دو مسیر موازی برای رسیدن اکسیژن به محل‌های انجام واکنش وجود دارد:
مسیر اول:انتقال اکسیژن به وسیله حل شدن در فاز آیونومر موجود در لایه کاتالیست.
مسیردوم: انتقال اکسیژن از طریق حل شدن در آب مایع موجود در فضای خالی بین ذرات توده‌ای.
اکنون برای محاسبه ، هر یک از دو مسیر بالا با یک مقاومت نفوذ بر اساس کسر حجمی متناظر با هر بخشی که اکسیژن به درون آن نفوذ کرده مدلسازی میشود.بر این اساس با در نظر گرفتن یک حجم کنترل به صورت کروی به شعاع r حول یک توده به شعاع raggمی‌توانمقاومت نفوذ به درون تودهاز طریق هر یک از مسیرها را به صورت زیر محاسبه کرد:
(2- SEQ 2- * ARABIC31)مقاومت نفوذ مسیر اول:
مقاومت نفوذ مسیر دوم:
در اینجا NوWبه ترتیب نشان دهنده زاویه‌ای از فاز آیونومر و بخش حفره در حجم کنترل انتخاب شده می‌باشد، که با توجه به کسر حجمی فازهای غشاء (Li)، فاز جامد (LS) و فضای خالی (CL) برابرند با:
(2- SEQ 2- * ARABIC32)ونیز به ترتیب ضریب انتشار مؤثر اکسیژن در آیونومر و آب مایع می‌باشد که با استفاده از تصحیح برگمان به صورت زیر به دست می‌آید:
(2- SEQ 2- * ARABIC33)
(2- SEQ 2- * ARABIC34)


ضریب نفوذ اکسیژن در آب مایع می‌باشد که با استفاده از رابطه وایلک- چنگ بدست می‌آید [REF _Ref332027179 h * MERGEFORMAT35]:
(2- SEQ 2- * ARABIC35)
که در آن، وزن مولکولی آب بوده و برابر باg/mol 18 است.، حجم مولار اکسیژن در نقطه جوش نرمال است که برابر باcm3/mol 25.6است. پارامتر وابستگی است که برای آب مقدار آن 2.26می‌باشد.ویسکوزیته آب بر حسب سانتی پوآز [cP]می‌باشد، وایت[REF _Ref332027206 h * MERGEFORMAT36] مقدار آن را برای آب مایع به صورت زیر پیشنهاد کرده است:
(2- SEQ 2- * ARABIC36)
اکنون مقاومت معادل دو مقاومت موازی مسیرهای اول و دوم به صورت زیر قابل محاسبه می‌باشد:
(2- SEQ 2- * ARABIC37)
با جانشین کردن معادله REF _Ref330634607 h * MERGEFORMAT (2- 32) درمعادله REF _Ref330634616 h * MERGEFORMAT (2- 31) و استفاده از معادلههای حاصله در رابطه REF _Ref330634659 h * MERGEFORMAT (2- 37)مقدار بدست می‌آید:
(2- SEQ 2- * ARABIC38)
محاسبه افت فعال‌سازیمقاومت در برابر عبور جریان پروتونی و الکترونی در فازهای غشاء و جامد موجود در لایه کاتالیست مربوط به افت فعال‌سازیمی‌باشد و با استفاده از قانون اهم بدست می‌آید. مار و لی [REF _Ref332025950 h * MERGEFORMAT18] رابطه زیر را بدست آورده‌اند:
(2- SEQ 2- * ARABIC39)که در آن، keffوeffبه ترتیب قابلیت هدایت مؤثر پروتونی و الکترونی فازهای غشاء و جامد در لایه کاتالیست می‌باشد، با استفاده از تصحیح برگمان و کسر حجمی متناظر با هر فاز میتوان نوشت:
(2- SEQ 2- * ARABIC40)
مقادیر kو در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 آمده است.
شرایط مرزیمعادلات حاکم بر انتقال اجزاء یک دستگاه معادلات دیفرانسیل معمولی بوده که شامل معادلات REF _Ref330628605 h * MERGEFORMAT (2- 24)، REF _Ref330636162 h * MERGEFORMAT (2- 30) و REF _Ref330636169 h * MERGEFORMAT (2- 39)می‌باشد. این دستگاه معادلات مرتبه اول غیر خطی و کوپل است. برای حل این دستگاه سه شرط مرزی مستقل لازم است که در ادامه توضیح داده می‌شود:
شرایط مرزی در سطح مشترک لایه نفوذ گاز با لایه کاتالیست (z=0):حفره‌های موجود در سطح مشترک لایه نفوذ گاز با لایه کاتالیست پر از آب فرض شده‌اند(فرض (ث) در بخش REF _Ref331435271 r h ‏2-3-). بنابراین اکسیژن برای نفوذ به درون لایه کاتالیست باید در آب حل شود. از این‌رو غلظت اکسیژن در این مرز با استفاده از قانون هانری بدست می‌آید:
(2- SEQ 2- * ARABIC41)که در آن ، ثابت هانری برای انحلال اکسیژن در آب می‌باشد. برناردی و همکارانش [REF _Ref332025833 h * MERGEFORMAT13] این پارامتر را به صورت تابعی از دمای پیل بر حسب atm m3 mol-1 گزارش کرده‌اند، بطوریکه:
(2- SEQ 2- * ARABIC42)
فرض بر این است که تمامی پروتون‌هایی که از لایه کاتالیست آند به سمت کاتد از درون غشاء مهاجرت می‌کنندقبل از رسیدن به مرز مشترک لایه کاتالیست با لایه نفوذ گاز کاملاً مصرف می‌شوند، بنابراین در این مرز میزان چگالی جریان پروتونی محلی صفر خواهد بود.
(2- SEQ 2- * ARABIC43)این دومین شرط در این مرز می‌باشد.
شرط مرزی در سطح مشترک غشاء با لایه کاتالیست (z=LCL):چگالی جریان محلی در این مرز به بیشینه مقدار خود، یعنی چگالی جریان کلی پیل،Itot، می‌رسد:
(2- SEQ 2- * ARABIC44)جایگذاری معادله REF _Ref330637704 h * MERGEFORMAT (2- 44)در معادله REF _Ref330636162 h * MERGEFORMAT (2- 30) نتیجه می‌دهد که شار غلظت اکسیژن در این مرز برابر با صفر است، این یعنی اینکه اکسیژن موجود در لایه کاتالیست نمی‌تواند از طریق این مرز به داخل غشاء عبور کند (شار نفوذ اکسیژن در این مرز صفر است).
تمامی شروط مرزی را که در بخش‌های REF _Ref331452886 r h * MERGEFORMAT ‏2-7-1- و REF _Ref331452893 r h * MERGEFORMAT ‏2-7-2- توضیح داده شده است، به صورت شماتیکی در REF _Ref331453206 h * MERGEFORMAT شکل ‏28 نشان داده شده است.

شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 8: شماتیک شروط مرزی در دو طرف لایه کاتالیست.شرحی بر پارامترهای استفاده شده در مدل‌سازیمقدار برخی از پارامترهای ساختاری و عملکردی برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 گزارش شده است. باقیمانده پارامترها در ادامه توضیح داده می‌شوند.
مساحت سطح مؤثر پلاتیندر لایه‌های کاتالیست مدرن مساحت سطوح انجام واکنش بسیار بیشتر از مساحت اسمی لایه کاتالیست می‌باشد. این به دلیل زبری لایه کاتالیست است که مساحت واقعی واکنش را تا چندین هزار برابر افزایش می‌دهد[REF _Ref332024550 h * MERGEFORMAT4]. مساحت سطح مؤثر پلاتین،aeff، در حقیقت نسبت مساحت سطح واقعی انجام واکنش به حجم لایه کاتالیست است، بطوریکه:
(2- SEQ 2- * ARABIC45)در معادله REF _Ref330642170 h * MERGEFORMAT (2- 45)، l، نسبت سطح مؤثر پلاتین می‌باشد. As مساحت سطح واقعی واکنش بر واحد جرم پلاتین است. ایتک[REF _Ref332027291 h * MERGEFORMAT37] مقدار آن را به صورت تجربی بر حسب کسر جرمی پلاتین به فرم زیر بیان می‌کند:
(2- SEQ 2- * ARABIC46)
f نسبت بارگذاری جرمی پلاتین به بارگذاری جرمی کل فاز جامد (پلاتین + کربن) می‌باشد، یعنی:
(2- SEQ 2- * ARABIC47)
mPtوmCبه ترتیب بارگذاری جرمی پلاتین و کربن است که مقدار آن‌ها برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 گزارش شده است.
تخلخل لایه کاتالیستمساحت سطح مؤثر توده‌ها برابر با سطح تمامی توده‌ها (سطح در دسترس برای نفوذ اکسیژن به درون توده‌ها) بر واحد حجم لایه کاتالیست است، و به صورت زیر بدست می‌آید:
(2- SEQ 2- * ARABIC48)در رابطه REF _Ref330643201 h * MERGEFORMAT (2- 48)،CLبه منظور محاسبه سطح در دسترس برای نفوذ اکسیژن به درون توده‌ها بکار برده شده است. پارامتر n درمعادله REF _Ref330643201 h * MERGEFORMAT (2- 48)، تعداد توده‌ها بر واحد حجم لایه کاتالیست می‌باشد و به صورت زیر تعریف می‌گردد:
(2- SEQ 2- * ARABIC49)تعداد توده‌ها (#) از تقسیم زیر بدست می‌آید:
(2- SEQ 2- * ARABIC50)
بنابراین:
(2- SEQ 2- * ARABIC51)که در آن Ls نسبت حجم کل Pt/C های موجود در لایه کاتالیست به حجم کل لایه کاتالیست است، یعنی:
(2- SEQ 2- * ARABIC52)
و Li,agg کسر حجمی غشاء درون هر توده می‌باشد،یعنی:
(2- SEQ 2- * ARABIC53)
که مقدار آن برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 آمده است.
از آنجایی که درون توده‌ها فقط ذرات Pt/Cو فاز آیونومر است لذا می‌توان نوشت که:
(2- SEQ 2- * ARABIC54)
شایان ذکر است که حجم هر یک از توده‌ها برابر است با:
(2- SEQ 2- * ARABIC55)
کسر حجمی فاز جامد در لایه کاتالیست،Ls، به بارگذاری پلاتین و کربن وابسته است، بطوریکه:
(2- SEQ 2- * ARABIC56)PtوCبه ترتیب چگالی پلاتین و کربن می‌باشد.
فاز آیونومر درون لایه کاتالیست از دو قسمت تشکیل شده است: (الف) آیونومر درون ذرات توده‌ای (ب) فیلم نازک آیونومر اطراف ذرات. بنابراین کسر حجمی فاز غشاء در کل لایه کاتالیست برابر است با:
(2- SEQ 2- * ARABIC57)
نهایتاً تخلخل لایه کاتالیست از کم کردن کسر حجمی فازهای غشاء و جامد از عدد یک بدست می‌آید:

dad89

2-7 چالش ها74
3-7 سنجش میران تاثیر :75
4- 7وضعیت رقابت تکنولوژی ترموالکتریک76
5-7سوالات مورد نظر77
6-7 اهداف:77
7-7 پیشنهادات:78
8-8نتیجه گیری کلی: 82
فصل هشتم:83
موارد پیگیری برای انجام این طرح:
فصل نهم:89
چکیده مقالات مربوت به ترموالکتریک و فناوری نانو
فصل دهم:102
منابع ومأخذ
منابع103
پیوست ها103
مشخصات پژوهش وپژوهش گر105
اطلاعات مربوط به پژوهشگر سرپرست106
تشکر و قدر دانی
از همه کسانی که مرا در این راه یاری رساندند کمال تشکر را دارم.
حرفی با خوانندگان:
و این چنین است که تعداد اندکی انسان متفکر و دانشمند ، اندیشه دور پرداز خود را با زرادخانه علم ودانش مجهز میکنند. تا از یک طرف ، بکشف بسیار بزرگ کیهانی بپردازند و در این کاوش علمی ستارگانی را کشف کند. که بیست میلیارد سال نوری با کره زمین فاصله داشته باشد .واز طرفی دیگر به دنیای بی نهایت کوچک اتم حمله می کنند تا اسرار آنرا دریابند و انرژی عظیمی را که در دل آن نهفته است مهار کنند.
و که دانشمندان از زمزه قلیل رهروانند که صخره های بلند و صحراهای هموار روح و اندیشه را در نوردیدند. در این مقدمه ،مرا با ادبیات و شعر و اندیشه های سیاسی و غیره سیاسی کاری نیست. زیرا ،این پژوهش حاوی مطالب کاملا علمی و منعکس کننده پیشرفته ترین دانش و تکنیک بشر در زمان ماست.
وبا لااخص که:
اندیشه و مسلک های موجود ، آشفته بازاری را ماند که در آن ایدئولوژی ها ( از راستترین و چپ ترین و از تندرو ترینش و تا متعادل ترین آنها) بنحوه ناجور و نا مناسب و نا هماهنگی کنار هم چیده شده اند و به فراخان رنگ ظاهرین، ونه محتوی، ارباب رجوع و مشتری می تلبید.آشفتگی به حدی است که گاهی عرضه کننده کالا دارای دو جنس متناقض با هم،و یا کسی که هیچ صلاحیتی برای عرضه چنین جنسی را ندارد و سردر گمی کامل خریدار را سبب میگردد . مشتریان هم دلال و واسته مانند که چنین کالاهای نا هماهنگی وناجور وحتی در تضاد با واقعیت را به تنها مشتری ومصرف کننده یعنی ملت میرسانند.
مروری ،حتی مختصر، بر ویترین کتاب فروشی ها و فروشندگان دوره گرد حاشیه خیابان ، نمایان گر صحت این مدعا ست . و اما از نظر علمی که مورد نظر این مقدمه است ، نظری هرچند کوتاه،بر تاریخچه زندگی علمی ملت ها و فعالیت و کوشش آنان در رشته های خاص، یعنی انرژی های مختلف و کاربرد بهتر و ساده تر و ارزان تر، است، که خواننده گرامی می توانند بکتب مربوط مراجعه و کسب علم کنند.
بلااخص که در دوره رنسانس و جهش علمی کشور های غربی و به دنبال آن انقلاب اکتبر وکوشش خستگی نا پزیر شرق در پیشرفت علم و تکنولوژی ، و می تواند راه گشا و حاوی درس حتی عبرت برای کشور هایی باشد که خواهان استقلال واقعی و عدم وابستگی به شرق و غربند.
در این مقدمه به ذکر اساسی ترین مسایل مورد نیاز در بهره گیری از این پژوهش می پرداریم.
سیری مختصر در تاریخ علوم ، نشان می دهد که انسان ها از گذشته ای دور و حتی از دوران کهن و نا شناخته غارنشینی در جستجو و کشف اسرار طبیعت و استفاده بهتر از مواهب آن بوده است.
بین راهورد های مختلفی که طبیعت به انسان عرضه کرده است ، انرژی مقام اول را دارا است و بسیاری از شاخه های علم فیزیک مانند ترمودینامیک ، و مکانیک ، ئیدرولیک،...... و قسمتی از علم شیمی اختصاص به این رشته خواص و حیاتی دارد.
پس از کشف آتش ، مواد سوختنی از قبیل چوبی و فسیلی از نوع نفت و گاز و.... تنها منبع انرزی حرارتی (بغیر از انرژی خورشیدی ) در زندگی انسان بوده است . سپس با کشف نیروی برق و تولید آن به کمک انرژی حرارتی و نیروی حاصل از آب سد ها، انسان توانست حوزه فعالیت علمی خود را گسترده ترکرده وتصویر نمونه بسیاری کوچک از بازده این انرژی معجزه گر است.
تحولی که از دوران استفاده از گرمای چوب ، تا وسایل حرارتی مدرن امروز به وقوع پیوسته است که چون اهرمی سازنده در دست انسان در کاربرد بهتر انرژی و استفاده اصولی تر از انرژی های عظیمی که در اطراف ما نهفته است.
سخن از تکامل تسلیحات جنگی ، به کمک انرژی حرارتی ، که در همه زمان مورد نیاز انسان ستیز گر بوده است ، امری زائد و خارج از بحث ماست . زیرا مسیر تحول این بخش از تکنیک واز زمانی که بشر با تیر و کمان به قتل همنوعش پرداخت، تا کنون که موشکهای چند پیکانه حامل بمب ئیدروژنه و کباتریا، در زرادخانه خود آماده پرواز دارد، امری اجتناب ناپزیر و همیشه انسانهایی آگاه با تاثر تاظر کشتار ها و قتل عامهای دیگر بوده اند .
اکنون نیز انبار تسلیحات اتمی،نه تنها حیات بشر ، بلکه کره زمین و احیانامنظومه شمسی را تهدید می کند که خود محتاج بحث جدا گانه ایست که به ناچار اندیشه و سلیقه سیاسی و غیر سیاسی ملتها در تحلیل آن دخالتی تام دارد. ومن،همانطور که در ابتدای این پروژه - ریسرچمذکور افتاد، از تحلیل این مسئله اسف بار و درد ناک خود را معذورو معاف کردم.
و اما سهم ما در این کوشش عظیم علم و دانش بشری،متاسفانه هیچ و در اصطلاح علم ریاضی صفر بوده است. صفر غم انگیزی که پیامد های شوم فراوانی بدنبال داشته که مهم ترین آنها جهل علمی و پس از آن وابستگی علمی و فنی تا مرز دریوزه گی بوده است. صفریکه نمایانگر آنستکه ما فقط مصرف کننده کالا نبوده ایم،زیرا قدرت تولید آن را نداشته ایم . گاهی نیز برای تسلی خاطر و رفع ملال به صنایع مونتاژ رو کرده ایم ، که نه تنها درمان درد نبوده بلکه وابستگی اجتناب ناپذیر و چند جانبه دیگر ما را نیز بدنبال داشته است.
چرا چنین بوده است؟
محقق و پژوهشگر به هیچ کشور و مسلکی متعلق نیست ، زیرا علم و دانش نیز حد و مرز نمی شناسد. محقق در هر نقطه از کره زمین که زندگی کند،احتیاج بفضای کاملا باز و عاری از هر نوع قید وبند دارد،تا بتوان مرغ دور پرواز اندیشه علمی خود را در تمام جهات برای کشف مسائل ناشناخته به پرواز در آورد. نگهداری اجباری وی در قفس اندیشه های خاص ، مرگ علمی وی را به دنبال دارد که پی آوردش رکود و سپس محو و نابودی علم و دانش و تحقیق وبه دنبال آن تکنولوژی و صنعت است.
در گذشته ای دور، شاهد ظهور دانشمندان و محققین ، بنامی چون شیخ ابوعلی سینا، محمد زکریای رازی،... در این سرزمین بوده ایم که شناخت زندگی گالیله وار آنها بیانگر واقعیت تلخ بالاست. نتیجه که حتی بهترین شاگردان این استادان علم و دانش ، حوصله و جرأت آنکه زندگی علمی استادان را دنبال کنند، نداشته اند و اینگونه بود که زندگی علمی و تحقیقی ما از قرن پیش دچار رکود و افسردگی و دل مردگی خاصی شد.
در دورانی که غرب جهش علمی خود را در دوره رنسانس آغاز کرد و شرق ، پس از انقلاب اکتبر، به خانه تکانی لازم برای هموار کردن راه پیشرفت علم و دانش و تکنولوژی پرداخت. کشور ما اسیر سلاطین و وزیرانی آنچنانی بود که مواردی چون ساخت بدون کوچکترین تغییر 30 ساله پیکان در ایران و خروج 90% نخبگان و رتبه های اول کنکور از کشور و جذب شدن توست ابر قدرت های علمی دنیا و مثال های دیگری که داستان کشورداری آنها چون قصه های طنز آمیز ملا نصردین ، بظاهر خنده آور و به باطن کوله باری از غم را بر دل آگاهان می نهد.
و که در میان این مرداب وار در سکون مطلق شاهد و نظاره گر پیشرفت علمی دیگران و راویان قصه های رفته از یاد زندگی های رفته بر باد بودیم.
در این پژوهش که نتیجه جمع آوری چند ساله اینجانب می باشد سعی شده است که سیر تحول و شناخت فناوری ترموالکتریک و بهره برداری و کاربرد آن در زمینه های مختلف بررسی شود که علاوه بر اطلاعات لازم در این زمینه خواننده می تواند چگونگی روش تحقیق علمی را ، نه تنها در این زمینه بلکه در کلیه زمینه های علمی دیگر علم ها ،بشناسد و ارزیابی کند.مسائلی خاص که در این پژوهش بررسی شده دورنمایی از قسمتی از دانش بشریست که هم آینده بس امیدبخشی را نوید می دهد و هم بیانگر زوال هر نوع زندگی و تمدن موجود در کره زمین می باشد.
این پژوهش ریگی را ماند بر مرداب سکون و جمود علمی ما افکنده شود. امید است که ناظر افکندن ریگها و حتی سنگ های دیگر بر این مرداب باشیم تا به خروش آید و نهال خشکیده علم و تکنولوژی ما را در این زمینه سیراب و همتی که این خلاء عظیم را که میراث شوم گذشته است را پر کند.
مطالعه این مطالب نه تنها، اطلاعات لازم را در کوشش همه جانبه و ایثار بی پایان دانشمندان جهان در راه کشف مواد جدید و موارد استفاده فناوری ترموالکتریک و کاربرد های آن را می دهد، بلکه ارزیابی منصفانه آن می تواند روشنگر تاریکی های باشد که ما را از مسیر علم و دانش و تحقیق ، منحرف و دست نیاز مان را به سوی دیگران دراز کرده است.ترموالکتریک با بسیاری از فرایند های دیگر ارتباط دارد و همچنین درک این فناوری به صورت عمیق تر به حل یک سری مسائل و انتگرال های پیشرفته و آشنایی کامل با علم شیمی وریاضیات و همچبین متالوژی و الکتریسیته و مواد سرامیکی وخواص مواد سرامیکی از جمله فروالکتریک وخواص دیر گدازی وجدیدا لیتوگرافی و مواد پلیمری جدید با خواص مواد ترمو الکتریکی و همچنین فناوری نانو و برخی از نتایج کاربرد های خواص فناوری ترموالکتریک می باشد، که برای دست یابی به مطالب مطلوب در این زمینه به آزمایشگاه های پیشرفته و هزینه بالا و دورنگری می باشد که از دست شخص و یا حتی گروه های کوچک بر نمی آید و احتیاج به کمک، همه جانبه علمی و دولتی دارد. بخاطر بسپارید که این مطالب مقدمه ای خلاصه و به ناچار ناقص در باره ترموالکتریک میباشد برای آشنایی خوانندگان با این فناوری رو به پیشرفت ، موثرمی باشد. که به همراه این مطالب فایلی با فرمت فلش و همچنین فایل هایppt وpdfوword پیوست می شود برای خوانندگان علاقه مند و متخصص که باید زمینه علمی لازم را دارا باشند تا به درک بیشتری در باره این فناوری دست یابند و در پایان از دوستانی که این مطالب را مطالعه کرده اند وبه اهمیت این موضوع پی برده اند خواهشمندم در صورت امکان برای پیشرفت این علم در کشور راه ها و راهنمایی های لازم را در صورت امکان به ایمیل این جانب و شماره من که به هم راه پیشنهادیه در این فایل موجود میباشد ارسال نمایید.
کار یز درون جان تو می باید کز عار یه ها ترا دری نکشاید
یک کوزه آب در درون خانه به از رودی که کز برون می آید

( حکیم سنایی)
فصل اول:
معرفی پژوهش
عنوان:مواد پیشرفته ترموالکتریکی و تولید انرژی
استاد راهنما:مهندس میلاد اسئدی
تهیه کننده:مهدی باقری مهارلویی
مقدمه:
TEG طرح تولید انرژی از اختلاف دمای بین دو محیط ،
تحقیقات انجام شده در کشور های توسعه یافته بر روی این زمینه جدید این نتیجه را حصول میکند که کشور ایران با توجه به رویکرد های آینده نگر برای گسترش و بومی سازی علم وفناوری های نو از جمله دانش هسته ای،صنایع نظامی ، صنعت خودرو ، وموارد خاص دیگر نیاز مبرمی به ساخت وتعمیم این فناوری دارد.
چکیده:
افزایش راندمان مولد های ترمو الکتریکی TEG همواره به عنوان یکی از اهداف مهندسی مطرح بوده است و استفاده از اصل سیبک،اصل پیلیته واصل تامسون وMEMS ترموشیمی ونانو سیم های سیلیکونی و همچنین ساخت قطعات و وسایل الکتریکی که با ولتاژ کمتر از 200Mv کار کنند به عنوان چند راه برای برای رسیدن به این اهداف مطرح شوده است. از اهداف اصلی این پژوهش تولید مواد ترموالکتریکی پیشرفته و نیز بالا بردن راندمان و توسعه آن در کشور میباشد،همچنین اندازه گدری و نوصیف خواص اخنتصاصی موادTE ،نحوه اتصال ،قدرت خروجی و بررسی مواد ln4se3،in4Te3،مس-Se-Ge،skutterudites(شکل 1) وهزینه ها و اقتصادی بودن طرح است.

شکل 1
حداقل دو سوم انرژی تولید شده حاصل از احتراق سوخت های فسیلی مانند بنزین و گازوییل در خودرو ها و کامیون ها به هدر رفته و به عنوان ضایعات حرارتی از اگزوز خودرو خارج می شود. ترموالکتریک ها مواد نیمه هادی و نیمه رسانایی هستند که حرارت و گرما را به انرژی الکتریکی تبدیل می کنند، می توانند حرارت و گرمای هدر رفته را دریافت  و از آن مجددأ استفاده کرده و نیاز به سوخت در خودروها را تا حدودی کاهش دهند و به میزان 5 درصد باعث صرفه جویی در هزینه های سوخت خودرو می شوند. اما راندمان پایین در ازای هزینه های بالا و گران قیمت بودن، مواد ترموالکتریک موجود و متداول را از ورود عملی و کاربردی به دستگاه ها و وسایل دور نگه داشته است. Combustion30% EngineVehicle Operation100%40% Exhaust Gas30%Coolant5% Friction & Radiated25%Mobility & AccessoriesGasolineGasolinegasoline
اما حالا محققان در حال مونتاژ اولین نمونه اولیه از ژنراتورهای ترموالکتریک هستند که آن را در خودروهای تجاری و خودروهای شاسی بلند SUV بتوانند مورد آزمایش قرار دهند.این دستگاه ها اوج پیشرفت هایی هستند که مرکز ساخت تجهیزات ترموالکتریک شرکت BSST در آیرویندل کالیفرنیا و مرکز A&D کمپانی جنرال موتورز واقع در وارن میشیگان ساخته می شوند. هر دو شرکت قصد دارند نمونه های اولیه ساخته شده خود را در اواخر تابستان امسال برای آزمایش بر روی خودروها نصب و راه اندازی کنند. شرکت BSST این کار را بر روی خودروهای فورد و بی.ام.و و شرکت جنرال موتوز این سیستم را بر روی خودروهای SUV شورلت آزمایش می کنند.
1-1 تاریخچه:
کشف اساس اولیه فناوری ترموالکتریک را می توان به یک فیزیکدان آلمانی به نام توماس ج.سی بک نسبت داد. سی بک کشف کرد که اگر با اتصال دوفلز مختلف یک مدار الکتریکی ایجاد شود و یکی از اتصالات حرارت داده شود درمدار حاصله جریان الکتریکی تولید می شود(شکل 2). سی بک از این آزمایش خود به این نتیجه میرسید که با این کار جریان در مدار القا میشود ولی چون موضوع به این صورت مورد نظر وی قرار نگرفته بود . این کشف سال ها راکد ماند (1) Thomas j. seebeck

درسال 1834 ژان پلتیه (1) دریافت که اگرجریانی از محل اتصال دو فلز مخطلف عبور نماید محل اتصال گرم یا سرد می شود. شکل (3)پیلیته هم مانند سی بک از درک اهمیت این مطلب در مورد فناوری ترمو الکتریک عاجز ماند

شکل 2 شکل 3
در سال 1837امیل لنز بطور وضوح اهمیت کشف پلتیه وسی بک را با قراردادن قطره ای آب در محل اتصال دو فلز و کزراندن جریان مستقیم از مدار نشان داد. موقعی که جریان دریک جهت ادامه پیدا می کرد آب منجمد می گردید و در اثر معکوس کردن جریان یخ آب می شد با تمام این ها لنز نیز از درک اهمیت کشف خود غافل ماند و این دانش برای 100 سال دیگر بعلت عدم وجود نیمه هادی ها راکد ماند.فقط در دهه 1930 بود که مواد نیمه هادی توسه یافت وامکان کاربرد کشف سی بک و پلتیه در سرد کردن موضعی را ایجاد نمود درسال 1930و1960 پیشرفت ترموالکتریک به آزمایشگاههای علمی محدود می شد. در سالهای اول دهه 1960 بسیاری از کمپانی ها با تحرک شدیدی در راه ساخت وسایل سرد کننده ترموالکتریکی اقدام کردند.

فصل دوم
تعاریف
1-2 اجزاء یک اتم

شکل 4
مفهوم الکتریسیته با عناصر پایه ی سازنده مواد یعنی اتم اغاز می شود . هسته ی یک اتم از پروتون ها و نوترون ها تشکیل شده است . پروتون ها یک بار مثبت دارند و نوترون ها خنثی می باشند .الکترون ها با بار منفی به دور هسته در گردش ا ند .(فقط الکترون ها و پرتون ها در شکل(4) نشان داده شده ا ند .قسمت های آبی رنگ هسته ، نوترون ها را نشان میدهند .)
2-2 الکترون های آزاد

شکل 5
الکترون ها ی خارجی ترین لایه می توا نند بوسیله ی یک نیروی خارجی مثل میدان مغناطیسی ،اصطکاک و یا واکنش های شیمیایی از مدارشان خارج شوند .
در این صورت « الکترون های آزاد» نامیده می شوند . مبنای الکتریسیته حرکت این الکترون های آزاد است. در شکل (5) مشخص است.
3-2 هادی ها
شکل 6
جریان الکتریکی هنگامی ایجاد می شود که الکترون های آزاد از یک اتم به اتم دیگر منتقل شوند. شکل(6). ماده ای که به الکترون ها اجازه حرکت آزادانه را می دهد هادی (رسانا) نامیده می شود .
مس ،نقره ،الومینیوم ،روی ، آهن از جمله هادی های خوب می باشند .
4-2 نارساناها
موادی که به تعداد کمی از الکترون ها اجازه ی حرکت می دهند ، نارسانا (عایق) نامیده می شوند .شکل 7
پلاستیک ، لاستیک ، شیشه ، میکا و سرامیک نارسا نا می باشند

شکل 7
5-2 کاربرد هادی و عایق در کنار هم
بسیاری از قطعات الکتریکی مثل کابل ، ترکیبی از هادی ها و عایق ها هستند . عایق دور کابل رسانا ، به جریان اجازه میدهد که تنها در هادی جاری شود .شکل 8
شکل 8
6-2 جریان

جریان ، شارش الکترون های آزاد در یک ماده از یک اتم به اتم بعدی و در یک جهت مشخص می باشد( شکل 9)که آن را با نماد « I» نشان می دهند، و با واحد آمپر سنجیده می شود .

شکل 10
بعضی دانشمندان بین شارش الکترون و شارش جریان تمایز قائل می شوند .تئوری شارش جریان قرار دادی شارش الکترون را رد می کند و اظهار می دارد که جریان از مثبت به منفی شارش می یابد( شکل 10) برای جلوگیری از اشتباه ، این دوره نظریه ی شارش الکترون را به کار می برد که اظهار می دارد الکترون ها از منفی به مثبت شارش می یابند
7-2 جریان متناوب

در جریان متناوب الکترون ها ابتدا در یک جهت و سپس در جهت دیگر جاری می شود . جریان و ولتاژ هر دو به طور مداوم تغییر می کنند . شکل نمودار جریان متناوب (AC) ، به صورت موج سینوسی می باشد که جریان یا ولتاژ را نشان می دهد ..(شکل 11) دو محور برای موج سینوسی رسم می شود .محور عمودی دامنه و جهت جریان یا ولتاژ را نشان می دهد . محور افقی زمان یا زاویه چرخش را نشان می دهد . هنگامی که شکل موج بالای محور زمان است ، گوییم جریان در جهت مثبت جاری است ، وقتی شکل موج زیر محور زمان است گوییم جریان در جهت منفی جاری است .یک سیکل کامل در 360 درجه اتفاق می افتد که نیمی مثبت و نیمی منفی است .
7-2 ضریب توان

ضریب توان نسبت توان حقیقی به توان ظاهری می باشد که رابطه ای است برای اندازه گیری مقدار توانی که مصرف می شود و مقدار توانی که به منبع برگشت داده می شود . ضریب توان اهمیت زیادی دارد زیرا روی راندمان سیستم های توزیع توان اثر می گذارد .
ضریب توان توسط رابطه ی فازی بین ولتاژ و جریان تعیین می شود و در حقیقت ، کسینوس زاویه بین آنها می باشد. در یک مدار مقاومتی محض ، که جریان و ولتاژ هم فاز هستند اختلاف فاز صفر می باشد . کسینوس صفر درجه یک است . بنابر این ، ضریب توان یک می باشد و این بدان معنی است که همه انرژی تولیدی منبع ، توسط مدار مصرف می شود .
در مدار راکتیو همیشه مقداری اختلاف فاز بین ولتاژ و جریان وجود دارد . به عنوان مثال اگر این زاویه ˚45 باشد ، ضریب توان 0.707 خواهد بود که همان کسینوس ˚45 می باشد .
فصل سوم
تعاریف کاربردی
مقدمه:
برای آشنای و درک بهتر در مورد ترموالکتریک در ابتدا باید با موارد کلیدی و مربوطه آشنا شود. در این فصل سعی شده است که به صورت روان مواردی را معرفی کرد تا کمکی برای درک فصل های بعد باشد.
نیمه هادی ها
3-1 مقدمه ای درمورد نیمه هادی ها:
همانطور که هادی ها در صنعت امروزی به خصوص در زمینه های حرارتی و برودتی کاربردی ویژه یافته اند عناصر نیمه هادی نیز اهمیت زیادی در صنعت الکترونیک و ساخت قطعات پیدا کرده اند. هدف اصلی که در الکترونیک آنالوگ دنبال می شود تقویت سیگنالها بدون تغییر شکل آن سیگنال است. همین هدف بشر را به سمت استفاده از نیمه هادی ها در ساخت قطعات تقویت کننده پیش برده است. اما آن چیزی که عملکرد این قطعات را رقم می زند چگونگی حرکت الکترون ها و حفره ها در ساختار کریستالی این عناصر می باشد.و این مقدمه ای ست برای پیدایش قطعاتی نظیر ترانزیستور ها –دیود ها و... عامل موثر بر چگونگی حرکت الکترون ها و حفرها چیزی نیست جز درجه حرارت. به طوری که گفته شد درجه حرارت صفر مطلق ساختمان کریستالی نیمه هادی هایی نظیر ژرمانیوم و سیلسکن را تحت تاثیر خود قرار می دهد. یعنی در این درجه حرارت الکترون ها کاملا در باند ظرفیت قرار گرفته و نیمه هادی نظیر یک عایق عمل می کند.
اگر درجه حرارت افزایش یابد الکترون های لایه ظرفیت انرژی کافی کسب کرده و پیوند کو والانسی خود را شکسته وارد باند هدایت می شوند.به مراتب این جابه جایی باعث تولید حفره ناشی از عبور الکترونهای می گردد.
انرژی لازم برای شکستن چنین پیوندی در سیلسکن 1.1(الکترون ولت) و در ژرمانیوم 0.72 (الکترون ولت) می باشد. اهمیت حفره در این است که نظیر الکترون حامل جریان الکتریکی بوده و و نظیر الکترون آزاد عمل می نماید. حال آنکه تا چندی پیش دانشمندان حفره ها را حامل جریام نمی دانستند!
3-2نیمه هادی چیست.؟
در میان عناصر گروهی هستند که نه فلز کامل ونه غیر فلز کامل هستند به همین ترتیب این عناصر نه رسانای خوب ونه نارسانای خوب هسستند از اینرو به آنها نیمه رسانا یا نیمه هادی می گویند رسانائی این عناصر که در گروه چهارم جدول تناوبی قرار دارند با اندکی ناخالصی از عناصر گروه سوم و پنجم جدول تناوبی تقویت می شود.به علت اینکه سیلیسیم و ژرمانیوم در مدار آخر خود چهار الکترون دارند ، تمایل دارند که مدار آخر خود را کامل کرده و به حالت پایدار برسند . برای این منظور هر اتم با هر یک از چهار اتم مجاور خود یک الکترون به اشتراک می گذارد . این نوع پیوند بین اتم ها را پیوند اشتراکی یا کووالانسی می گویند . در شکل پیوندهای کووالانسی بین اتم های سیلیسیم نمایش داده شده است
به علت اینکه سیلیسیم و ژرمانیوم در مدار آخر خود چهار الکترون دارند ، تمایل دارند که مدار آخر خود را کامل کرده و به حالت پایدار برسند . برای این منظور هر اتم با هر یک از چهار اتم مجاور خود یک الکترون به اشتراک می گذارد . این نوع پیوند بین اتم ها را پیوند اشتراکی یا کووالانسی می گویند . در( شکل1) پیوندهای کووالانسی بین اتم های سیلیسیم نمایش داده شده است

شکل1
چون تعداد الکترونهای آزاد و حفره های ایجاد شده در کریستال های سیلیسیم و ژرمانیوم در اثر انرژی گرمایی به اندازه کافی زیاد نیست این کریستال ها قابلیت هدایت الکتریکی خوبی ندارند . برای افزایش قابلیت هدایت الکتریکی این نیمه هادی ها به آنها ناخالصی اضافه می کنند .اضافه کردن ناخالصی به نیمه هادی ها به دو شکل صورت می گیرد/
N نوعP نوع
3-3 نوع P
ناخالص کردن کریستال نیمه هادی با اتم پنج ظرفیتی : در این روش عناصر پنج ظرفیتی مانند آرسنیک (As) ، آنتیموان (Sb) و یا فسفر (P) را که در لایه ظرفیت خود پنج الکترون دارند به کریستال سیلیسیم یا ژرمانیوم اضافه می کنند . به عنوان مثال در شکل (2) عنصر پنج ظرفیتی آرسنیک به کریستال سیلیسیم اضافه شده است
شکل2
در یک بلور سیلیسیم یا ژرمانیوم ، در دمای صفر مطلق به علت اینکه تمامی پیوندهای کووالانسی بین اتم ها برقرار است و هیچ الکترون آزادی وجود ندارد بلور سیلیسیم یا ژرمانیوم یک عایق کامل می باشد . اما با افزایش دما جنبش الکترونهای والانس افزایش یافته و بعضی از پیوندهای کووالانسی بین اتم ها شکسته شده و الکترونهایی آزاد می شوند و به این ترتیب هدایت الکتریکی در کریستال های سیلیسیم و ژرمانیوم افزایش می یابد . هر چه دما بیشتر افزایش یابد پیوندهای کووالانسی بیشتری شکسته شده و تعداد الکترونهای آزاد بیشتر می شود و در نتیجه هدایت الکتریکی کریستال افزایش می یابد . به ازای جدا شدن هر الکترون از یک اتم ، یک جای خالی الکترون در آن اتم ایجاد می شود که به آن حفره می گویند . در شکل (3)نحوه ایجاد یک حفره نمایش داده شده است

شکل 3
4-3 نوع N
ناخالص کردن کریستال نیمه هادی با اتم سه ظرفیتی : هرگاه یک عنصر سه ظرفیتی مانند آلومینیوم (Al) ، گالیم (Ga) و یا ایندیم (In) را که در مدار ظرفیت خود سه الکترون دارند به کریستال سیلیسیم یا ژرمانیوم خالص اضافه کنیم الکترونهای مدار آخر عنصر ناخالصی مانند آلومینیوم با الکترونهای والانس اتم های مجاور خود تشکیل پیوند کووالانسی می دهند . به این ترتیب در مدار آخر اتم ناخالصی هفت الکترون در حال گردش هستند که در نتیجه یک جای خالی یا حفره ایجاد می شود.شکل 4

شکل 4
عنا صر چهارم (مانند سیلسیوم ویا یاژرمانیوم ) در لایه آخر خود 4الکترون دارند عناصر گروه پنجم (مانند آرسنیک ) وارد شود موجب تولید الکترونهای آزاد می شود به ماده حاصل نیمه هادی نوع N می گویند زیرا این الکترونها هستند که مسئولیت هادی بودن ماده را دارند اگر همین عمل با عناصر گروه 3مانند آلومینیوم یا گالیم تکرار شود حاصل یک نیمه هادی نوع Pاست که در این نوع مواد حفره ها الکترونی یا اصطلاحا بار مثبت مسئولیت هادی بودن ماده هستند
5-3 جدول تناوبی
periodgroupns2np6
فصل چهارم
تعاریف اصول اولیه فناوری ترموالکتریک
1-4 مقدمه ای (ترموالکتریک)برای درک مطلب ترموالکتریک لازم است که با مفهوم های زیر آشنا شویم
تعاریف
2-4قانون دوم ترمودینامیک:
مفهوم جامع قانون دوم ترمو دینامیک متضمن است که یک فرایند فقط در یک جهت معین پیش پیش میرود ولی در جهت خلاف،قابل قبول نیست.یک فنجان قهوه داغ با انتقال حرارت به محیط ،سرد می شود ولی حرارت نمی توان در جهت خلاف و از محیط سرد تر به فنجان قهوه ی داغ تر ، منتقل شود.در هنگام بالا رفتن خودرو از تپه،بنزیل مصرف می شود ولی پایین امدن آزادانه خودرو از تپه،موجب برگشتن بنزیل مصرف شده به به سطح اولیه نمی شود.این گونه مشاهدات نشان گره ارزش قانون دول نرمودینامیک است. شکل 1 قانون دوم را در پمپ گرمایی و یخچال ها نشان میدهد.

شکل 1


3-4یخچال ها و سیستم های تبرید:
پمپ گرمایی:با پمپ حرارتی میتوان سیستمی داشت که در یک سیکل کار می کند و مقدار خالص انتقال حرارت و کار آن مثبت است. در پمپ گرمایی سیستمی خواهیم داشت که در یک سیکل کار میکند و حرارت از یک جسم درج حرارت پایین به سیستم منتقل می شود و از سیستم به جسم با درجه حرارت بالا منتقل می شود و مقداری کار برای انجام این فرایند لازم است.در ادامه چند پمپ حرارتی و یخچال یا سیکل تبرید همراه با سیکل وشماتیک فرایند ها به صورت شکل نشان داده شده است که برای چون در این جا مطلب مورد نحث ترموالکتریک است برای اطلاعات بیشتر می توان به کتابهای ترمودینامیک مراجه کرد.
4-4یخچال:

امروزه دستگاههای ترموالکتریک در تکنولوژی مدرن فلزات و نیمه هادی ها و در کل مواد نیمه های جایگزین فلزات گوناگون شد و در آزمایشات ترموالکتریک مورد استفاده قرار می گیرند . «سیبک» ، «پولتیر» و «تامسون» با چندین وقایع ، شکل ابتدایی عملکرد نمونه های ترموالکتریک را ارائه کردند بدون اینکه به جزئیات اشاره شود . برخی از این اثرات بنیادی ترموالکتریک را بیان می کنیم .
5-4 اثر سیبک :پیوست
6-4 اثر «پلتیر» :پیوست
7-4 اثرتامسون :
وقتی جریان الکتریکی از رسانا می گذرد که دما افت حرارتی بیشتر از طولش داشته باشد و گرما از طریق رسانا جذب یا خارج شود و در اینجا این سوال پیش می آید که آیا گرمای جذب شده یا به بیرون انتقال داده شده بستگی به جریان الکتریکی و دمایی که افت حرارت در آن ایجاد شده است یا خیر ؟ این اتفاق توسط تامسون صورت گرفت که اصول کلی را در بر
می گیرد اما نقش چندان مهمی در عملکرد نمونه های عملی ترموکوپل ندارد به این دلیل به رسمیت شناخته نشده است .
8-4 اصول کلی نمونه های ترموالکتریک مواد :
مواد ترموالکتریکی :
اغلب مواد نیمه رسانای ترموالکتریک در دستگاههای خنک کننده TE امروزی آلیاژ بیسموت تلورید که به طور مناسب بخش های تک یا عناصری که خصوصیات جدا N و P را دارد بکار برده می شوند . اغلب مواد ترموالکتریک با متبلور کردن فلز یا فشار به پودر فلزکاری تشکیل شده اند . هر روش ساخت دارای مزایای خاص خودش است اما زمانی که تحت هدایت هستند این مواد رشد می کنند و به رشدی بیش از حد معمول می رسند . علاوه بر   ، مواد ترموالکتریکی دیگری موجود است مانند   ، سیلیکون ، ژرمانیوم   و (Bi-Sb )  آلیاژهایی که شاید در موقعیت های خاص بکار برده شده باشند .
حداکثر   در میان دمای محدود بسیار مناسب و بیشتر از عملکردهای خنک سازی است .
مواد    :
متبلور کردن مواد   دارای چندین ویژگی است که مزایای آن در اینجا بحث خواهد شد که ناشی از ساختار بلوری کردن   به مقدار خیلی زیاد است که در طبیعت سرد می شوند . این نتایج در مواد الکتریکی سبب ایجاد مقاومت ویژه ای که تقریباً بزرگتر از محور رشد بلور (C-axis) است به نسبت حالت عمودی است . علاوه بر این قابلیت رسانایی گرما حدوداً 2 برابر بزرگتر از محور C در جهت عمودی است از زمانی که مقاومت این حالت بیشتر از قابلیت رسانایی گرما است بیشترین کار در این حالت رخ می دهد به این دلیل عناصر ترموالکتریک در نمونه خنک سازی جمع می شوند ، بنابراین محور رشد بلور موازی طول یا بلندی هر ماده است . بنابراین محور عمودی  لایه سفال می باشد . یکی دیگر از ویژگی های جالب   این است که مربوط به ساختار بلوری مواد می شود . بلورهای   در لایه هایی که اتم مشابه دارد ، درست می شود . و زمانی که لایه های   با هم نگه داشته می شوند توسط قیدهم ظرفیت که مربوط به نزدیک بودن لایه ها است . در نتیجه با متبلور کردن   این لایه ها را جدا می کنند .    که رفتاری 0بسیار شبیه به ورقه های میکاست . خوشبختانه ورقه ورقه کردن صفحات بطور کلی موازی به محور C است و مواد کاملاً محکم هستند . زمانی که در نمونه خنک سازی ترموالکتریک به هم متصل می شود . مواد   توسط متبلورکردن فلز تولید می شوند  و به نوعی در قالب ساخته می شوند یا شکل می گیرند و سپس به ورقه هایی با ضخامت های گوناگون تقسیم می شوند . بعد از اینکه منابع به طور درست آماده شد آنگاه به قطعات کوچکتقسیم می شود که شاید نمونه هایی از خنکسازی ترموالکتریک باشند . بخش هایی از مواد   که معمولاً به آن عناصر یا قطعات کوچک بریده شده نیز می گویند . همچنین با فشردن پودر فلزکاری ساخته می شود .
9-4 نمونه های خنک سازی ترموالکتریک :
دستگاه خنک سازی ترموالکتریک دارای دو یا چند مواد نیمه رسانا که به طور الکتریکی به مجموعه ها و از نظر حرارتی با هم برابرند مربوط می شود . این عناصر ترموالکتریک و اتصالات داخلشان به نوعی میان دو ظرف سفالی است که این لایه ها سبب می شود که ساختار سرتاسری با هم از نظر مکانیکی نگه داشته شوند و اجزاء هر یک را به طور الکتریکی و از سطوح خارجی جدا شده ، از هم جدا می کنند . بعد از اینکه بخش ها و اجزاء گوناگون نمونه درست شد ، نمونه های دیگری از ترموالکتریک تقریباً   (  تا   اینچ ) اندازه شان و   (  تا   اینچ) بلند ساخته می شوند . هر دو نمونه N وP   مواد ترموالکتریک در دستگاه خنک سازی ترموالکتریک بکار برده می شوند . این قرارگیری سبب می شود گرما از دستگاه خنک کننده حرکت کند و زمانی که جریان الکتریکی بر می گردد و متناوباً میان لایه های بالا و پایین از میان عناصر N و P قرار می گیرد . از مواد  نوع N الکترون های زیادی عبور می کنند (بیشتر الکترون ها در ساختار مولکولی موجودند ) بطوریکه در مواد نوع N الکترون های کمتری عبور می کند (الکترون های کمتری در ساختار مشبک موجود است ) بیشتر الکترون ها در مواد N و حفره ها هستند که در نتیجه آن الکترون های کمتری در مواد P وجود دارد که انرژی گرمایی از میان مواد ترموالکتریک عبور می دهند .  دستگاه خنک کننده ترموالکتریک با گرما حرکت می کند و در نتیجه جریان الکتریکی را بیشتر از نمونه های خنک سازی ترموالکتریک ساخته شده با تعدادی از عوامل نوع P و N در جایی که N و P شکل گرفته اند جفت می کند  که دارای دو جفت P و N است و به اصطلاح به آن مدل به هم پیوسته نیز می گویند . شکل2

شکل2
تغییرات پی در پی گرما (گرمایی که فعالانه پمپ می شود از میان نمونه ترموالکتریک) به نسبت بزرگی در جریان الکتریکی DC بکار می روند . گوناگونی بازده از صفر به بیشترین حد می رسد و ممکن است باعث تعدیل آن شود که میزان جریان گرما و دما را کنترل می کند .
10-4 موارد مورد توجه
عملکرد در هر گرایشی :
TE ها در هر جهتی و در هر محیطی که جاذبه زمین صفر است بکار برده می شوند بنابراین در بسیاری از فضاهای ماوراء جو مورد استفاده قرار می گیرند .راه درست تهیه کردن نیرو :
مدل TE بطور مستقیم از منبع نیروی DC  کار می کند و این نمونه ها دارای ولتاژ زیاد و جریاناتی هستند که این نوسان وسیع جریان (PWM) در بسیاری از موارد مورد استفاده قرار می گیرند .
محل خنک سازی :
بادستگاه خنک کننده TE ممکن است بتوان یک منطقه یا ترکیب خاص را خنک کرد در نتیجه آن اغلب لازم به خنک کردن ، بسته بندی یا محدوده بندی نیست .
قابلیت تولید نیروی الکتریکی :
در عمل بصورت معکوس بکار برده می شود با بکار بردن دمای گوناگون برای دستگاه خنک کننده TE ممکن است که مقدار کمی نیروی DC  تولید کند .
شرایط مساعد از لحاظ محیطی :
سیستم های خنک سازی به طور قراردادی ساخته نمی شوند و بدون استفاده از کلروفلوروکاربن یا مواد شیمیایی دیگر که برای محیط زیست مضر است و در دیگر شیوه های ترموالکتریک بکار برده نمی شود یا ممکن است یک نوع گاز دیگر تولید شود .
دستگاه خنک کننده ترموالکتریک.
، گاهی اوقات به آن ترموالکتریک یا دستگاه خنک کننده «پلیتر» نیز می گویند . که نیمه رسانای است که دارای اجزا و ترکیبات الکترونیکی است که عملکردهایی مانند گرم کردن با پمپ را در بر می گیرد .منبع نیرو با ولتاژ پایین DC با مدل TE کار می کند . گرما از آن محدوده به طرف دیگر حرکت خواهد کرد ، بنابراین . یک طرف خنک می شود وقتی که هنوز طرف دیگر همزمان گرم است ، مهم است به خاطر داشته باشید زمانی که این اتفاق معکوس می شود که به موجب آن قطبش نیز تغییر
می کند. (مثبت و منفی) و ولتاژ DC سبب می شود که گرما به طرف دیگر برود، در نتیجه ، ترموالکتریک به کار برده می شود برای گرم سازی و خنک سازی در نتیجه بسیار مناسب است برای کنترل دقیق دمای مورد استفاده قرار می گیرد .
11-4 نظریه تبدیل حرارت اتلافی به نیروی محرکه در خودروها
در اواخر تابستان امسال یک ماده ترموالکتریک جدید برای گرفتن انرژی از حرارت و گرمای اتلافی در موتورها بر روی خودروهای بی.ام.و ، فورد و شورولت آزمایش خواهد شد.
حداقل دو سوم انرژی تولید شده حاصل از احتراق سوخت های فسیلی مانند بنزین و گازوییل در خودرو ها و کامیون ها به هدر رفته و به عنوان ضایعات حرارتی از اگزوز خودرو خارج می شود. ترموالکتریک ها مواد نیمه هادی و نیمه رسانایی هستند که حرارت و گرما را به انرژی الکتریکی تبدیل می کنند، می توانند حرارت و گرمای هدر رفته را دریافت  و از آن مجددأ استفاده کرده و نیاز به سوخت در خودروها را تا حدودی کاهش دهند و به میزان 5 درصد باعث صرفه جویی در هزینه های سوخت خودرو می شوند. اما راندمان پایین در ازای هزینه های بالا و گران قیمت بودن، مواد ترموالکتریک موجود و متداول را از ورود عملی و کاربردی به دستگاه ها و وسایل دور نگه داشته است.اما حالا محققان در حال مونتاژ اولین نمونه اولیه از ژنراتورهای ترموالکتریک هستند که آن را در خودروهای تجاری و خودروهای شاسی بلند SUV بتوانند مورد آزمایش قرار دهند.این دستگاه ها اوج پیشرفت هایی هستند که مرکز ساخت تجهیزات ترموالکتریک شرکت BSST در آیرویندل کالیفرنیا و مرکز A&D کمپانی جنرال موتورز واقع در وارن میشیگان ساخته می شوند. هر دو شرکت قصد دارند نمونه های اولیه ساخته شده خود را در اواخر تابستان امسال برای آزمایش بر روی خودروها نصب و راه اندازی کنند. شرکت BSST این کار را بر روی خودروهای فورد و بی.ام.و و شرکت جنرال موتوز این سیستم را بر روی خودروهای SUV شورلت آزمایش می کنند. شکل 3

شکل 3

شرکت BSST از مواد جدید تلورید بیسموت که یک ماده ترموالکتریک متداول است و دارای تلوریوم گران قیمت بوده و فقط در دماهایی بالاتر از 250 درجه سانتی گراد کار می کند به طور متداول استفاده می کند. این درحالیست که ژنراتورهای ترموالکتریک می توانند به دمای 500 درجه سانتی گراد برسند. بنابراین شرکت BSST از خانواده دیگری از ترکیبات ترموالکتریک که شامل هافنیوم و زیرکنیوم هستند و در دماهای بالا کارایی بهتری دارند برای این پروژه استفاده می کند که این مواد می توانند راندمان و کارایی ژنراتور را به میزان 40 درصد افزایش دهند.در شرکت جنرال موتور محققان در حال مونتاژ مراحل نهایی نمونه اولیه ژنراتور ترموالکتریک هستند اما با نوید یک کلاس و رده جدید از ترموالکتریک ها بنام اسکاترادیتس که نسبت به تلورید ها ارزانتر هستند و در دماهای بالا کارکرد بهتری دارند. مدلسازی های کامپیوتری شرکت نشان می دهد که در خودروی مورد آزمایش که یک دستگاه شورلت ساباربان SUV می باشد، این دستکاه می تواند 350 وات انرژی تولیدکرده و به میزان 3 درصد مصرف سوخت را بهبود ببخشد.جورجی میسنز یکی از دانشمندان و محققان جنرال موتورز می گوید ساخت و تولید اسکاترادیتس که شامل عناصر کمیاب و نادری مانند کبالت و آرسنید می باشد دارای پروسه و روند پیچیده ای است و ترکیب کردن آنها درون وسایل و دستگاه ها بسیار مشکل است و چالش بسیار مهم ایجاد تماس و ارتباط الکتریکی و گرمایی خوب و مناسب است چراکه تغییرات گرمایی بزرگ در طول دستگاه تنش ها و فشارهای مکانیکی بر روی محل های تماس ترموالکتریکی وارد می آورد که باعث تنزل عملکرد دستگاه می شود و ما با انتخاب مناسب مواد می توانیم مقاومت را تحت تاثیر قرار دهیم و به این مشکل فائق آییم. چالش کلیدی دیگر ادغام و یکپارچه کردن دستگاه درون خودرو ها و وسایل نقلیه است. محققان در حال حاضر یک ژنراتور تلورید بیسموت را در یک SUV آزمایش کرده اند.میسنز هم چنین اضافه می کند که در حقیقت دستگاه درون سیستم اگزوز خودرو جای می گیرد. یک مقطع از لوله اگزوز برش داده شده و دستگاه که شبیه به یک انباره یا صدا خفه کن است در آنجا قرار می گیرد. هدف از طراحی بهینه این است که بتوان طراحی را به سمتی پیش برد که سیستم های خودرو د هم ادغام شوند نه اینکه به عنوان یک سیسم جداگانه فضایی برای خود اشغال کنند و این نکته در طراحی این سیستم رعایت شده است.محققان دو شرکت جنرال موتورز و BSST هم چنین نیاز دارند راه هایی را برای ساخت و تولید حجم بالتری از مواد جدید و ارزان پیدا کنند. میسنز پیش بینی می کند که دست کم 4 سال دیگر ژنراتور های ترموالکتریک را می توان در تولید خودروها مورد استفاده قرار داد.
اساسی برای کاربران درباره تونایی دستگاه خنک کننده ترموالکتبیک داده شده است که با ارائه این نمونه ، مفید است . یک نوع مرحله ترموالکتریک در یک مخزن گرمایی است که دمای اتاق را نگه می دارد و سپس به یا باطری مناسب متصل می شود . یا به دیگر منابع نیروی DC متصل می گردد . طرف سرد نمونه تقریباً به دمای   می رسد . در این لحظه نمونه بدون گرما پمپ می شود و به بیشترین میزان ولتاژ T  می رسد . اگر گرما به تدریج به طرف سرد نمونه اضافه شود ، قسمت سرد دمایش بالا می رود و سرانجام برابر قسمت گرما می شود . در این هنگام دستگاه خنک کننده TE به بیشترین میزان گرما می رسد .دستگاههای خنک کننده ترموالکتریک به یخچالهای مکانیکی کنترل کنند با همان قوانین بنیادی ترمودینامیک و سیستم های سردسازی اگرچه به طور قابل ملاحظه ای در فرم متفاوت هستند عملکردشان به یک صورت می باشد . در سیستم های سردسازی مکانیکی دستگاه فشار برای فشردن هوا به مایع فشار می آورد در میان سیستم سرما راپخش می کند . فضای تبخیر کننده یا منجمد کننده که به نقطه جوش می رسد طی مراحل تدریجی مداوم تبخیر می شود . دستگاه سرد کننده گرما را می گیرد (جذب می کند) به همین علت است که دستگاه سرد
می شود . گرمای جذب شده توسط دستگاه سرد کننده به طرف دستگاه منقبض کننده حرکت می کند . در جایی که سردکننده تراکم را به محیط انتقال می دهد در سیستم سردسازی ترموالکتریک پیش بینی می شود که یک نوع نیمه هادی جای مایع سرد کننده را می گیرد و منقبض کننده جایگزین قسمت گرمایی می شود . دستگاه فشردن هوا جایگزین منبع نیروی DC می شود .
استفاده از نیروی DC  در ترموالکتریک به این علت است که الکترون ها به طرف مواد نیمه هادی حرکت می کنند . در انتهای قسمت سردکننده مواد نیمه هادی گرما را جذب می کنند توسط حرکت الکترون ها و از میان مواد حرکت می کنند و قسمت انتهایی گرم کننده از آن خارج می شود تا زمانی که قسمت انتهایی گرم کننده مواد بطور فیزیکی به مخزن گرما متصل شده است گرما از مواد به طرف مخزن می رود و سپس در عوض به محیط انتقال داده می شود . قائده کلی فیزیکی به روی دستگاههای خنک کننده سرماساز ترموالکتریک جدید نزدیک به سال 1800 بر می گردد . اگرچه نمونه های TE تجاری تا سال 1960 در دسترس نبوده اند اولین کشف مهم مربوط به ترموالکتریسیتی در سال 1821 رخ داد . زمانی که یک دانشمند آلمانی به نام توماس سیبک پی برد که جریان الکتریکی در مدار جریان دارد که از دو فلز مختلف درست شده است که نقطه اتصال فلزات در دو دمای گوناگون می باشد . سیبک واقعاً متوجه نشد هرچند که مقدمات علم برای کشفش کافی نبود و اشتباه فرض می کرد که جریان گرما همانند جریان الکتریکی اثر مشابه دارد . در سال 1834 یک ساعت ساز فرانسوی و یک فیزیک دان به نام جین پولتیر بعد از بررسی اثر تحقیقات سیبک پی بردند که برعکس این اتفاق رخ می دهد وقتی که انرژی گرمایی در نقطه اتصال دو فلز گوناگون جذب شده و در نقطه برخورد دیگر زمانی که جریان الکتریکی در میان محدوده بسته ای جریان دارد ، تخلیه می شود . 20 سال پیش ویلیام تامسون توضیحی برای درک بهتر سیبک و پولتیر و روابطشان داد . هرچند حالا این اتفاق تنها در آزمایشگاه از روی کنجکاوی صورت می گیرد و بدون اینکه کاربرد عملی داشته باشد . در سال 1930 که یک داشمند روسی مطالعاتش را درباره برخی از کاربردهای ترموالکتریک شروع کرده بود و تلاش کرد نیرویی در ژنراتورها ایجاد کند که در محل هایی خارج از زمین مورد استفاده قرار گیرند . سرانجام این دانشمند روسی به نمونه های عملی ترموالکتریک توسعه یافته پی برد .
فصل پنجم
مصارف فن آوری ترموالکترک

1-5 مصارف فن آوری ترموالکترک:
یخچال ترمو الکتریکی
مولد ترمو الکتریکی
2-5 فرایند های ترموالکتریکی:
مقدمه:
فرایند ترموالکتریکی یکی از آخرین پیشرفت های رشته تبرید است که در آن برای گرفتن حرارت از یک محل وجا گذاشتن آن در محل دیگر، بجای استفاده از ماده سرما زا از انرژی الکتریکی به عنوان حامل گرما استفاده می شود. و کاربرد عمده آن در زمینه سرد کننده های قابل حمل،آب سرد کن ها و سرد کن دستگاههای علمی مورد مصرف در تحقیقات فضای است.در شکل بعد نمای از یک سیستم ترموالکتریکی را مشاهده میکنید.شکل 1

شکل 1

سیستم پلیته از یک رشته نیمه هادی تشکیل گردیده است و به گونه ای تعبیه شده اند که یک نوع از حاملهای بار (مثبت یا منفی) بخش زیادی از جریان را حمل نمایند.زوجهای به گونه ای شکل داده شده اند که از نظر الکتریکی با هم سری ولی از نظر گرمای با هم موازی می باشند .(شکل 2).لایه های بیرونی سرامیکی آنها فلزی شده تا بتواند هم گرما وهم جریان الکتریکی را منتقل کنند0

شکل 2
وقتی ولتاژ به سیستم ترمو الکتریک اعمال می شود حامل های بار منفی و مثبت در رشته قرص ها انرژی گرمای را از یک سطح لایه خروجی دریافت و آن را در سطح طرف دیگر آزاد می کنند. سطحی که انرژی گرمای از آن جذب می شود سرد میگردد و سطح مخالف که انرژی گرمای را دریافت می کند گرم می شود. با استفاده از این روش ساده ” تلمبه گرمای “: فن آوری ترمو الکتریکی از قبیل خنک کننده های دیودی کوچک ،یخچال های قابل حمل ، سرد کننده های مایع و غیره استفاده می شود. بسیاری از این واحد ها همچنین می توانند برای تولید توان الکتریکی در شرایطی استفاده کرد.کاربرد های جدید و اغلب جالب ترمو الکتریکی هر روز در حال پیشرفت است.
3-5 نمای کسترده واحد ترمو الکتریکی . شکل 3

شکل 3
4-5 یخپال ترموالکتریکی
مقدمه
در (شکل4) بعد یک واحد ترمو الکتریکی ساده که یک قطب به طرز خاصی عمل آورده می شود که نسبت به قطب دیگرالکترون ها را با سرعت بیشتری از خود عبور دهد.نشان داده شده است.

شکل 4
5-5 طرز کار سیستم ترموالکنریکی شکل 4 قبل:

شکل 5
بخاطر تمرکز الکترونها در ساختمان ملکول(P مثبت وN منفی) جریان که از طریق P بهN میرود احتیاج به انرژی دارد بنابراین هنگام عبور انرژی لازم را از فلز رابط گرفته و آن را سرد میکند (گرمای آنرا می گیرد ).هنگامی که در یک مجموعه ترموالکتریکی این فعل وانفعال پیش میاید بخش سرد سیستم گرمای فزای را که باید سرد شود را به خود می گیرد و مطابق (شکل 4) انرا در بخش گرم رها می کند. اگر قطب منفی یک منبع الکتریکی جریان مستقیم به ماده نوع P وصل شود (جای که کمبود الکترون دارد) صفحه مسی رابط PوNسرد شده وگرمای محیط را میگیرد (مانند سیستم ابتدای تبرید ترموالکتریکی( شکل 5) جریان الکتریکی از باطری واز طریق Pگه کمبود الکترون داردصورت میگیرد وگرمای سطح سرد بالای را گرفته وانرا به سطح سرد زیرین انتقال میدهد.در شکل های بعد می توان اندازه و چگونگی محاسبه ولتاژ را مشاهده کرد.

6-5 مقایسه سیستم های مختلف تبرید:
انتقال گرما توسط حامل های بار در یک سیستم ترموالکتریک خیلی شبیه به روشی است که خنک کننده های کمپرسی،گرما را در یک سیستم مکانیکی انتقال می دهند.در سیستم خنک کننده کمپرسی،مایعات گردشی گرما را از بار گرمایی به تبخیر کننده ای که گرما در آن میتواند پخش شود منتقل می کند.
7-5 مزایای سیستم ترمو الکتریک:
انتخاب فناوری سرمایشی خنک کننده های ترموالکتریکی به نیاز های خاص هر کاربرد بستگی دارد،اما خنک کننده های ترمو الکتریکی مزایای متفاوتی در مقایسه با سایر فن آوریها دارند.
خنک کننده های ترموالکتریکیTE هیچ قسمت متحرکی ندارند و بنابراین مراقبت کمتری لازم دارد.
آزمایش طول عمر نشان داده که طول عمر وسایل ترموالکتریکی TEبیش از هزار ساعت در شرایط کار پایدار است.
خنک کننده های ترموالکتریکی TEمحتوی کلرو فلورواید کربن یا موارد دیگری نیستند که نیاز به پر کردن مداوم داشته باشد
کنترل دما تا جزیی ترین درجه به راحتی با سیستم ترموالکتریکی TEممکن است .
خنک کننده های ترموالکتریکیTE در محیط هایی که خیلی مهم وخیلی حساس یا بسیار کوچک قابل استفاده هستند.
عملکرد خنک کننده های TEبستگی به محل وموقعیت هندسی ندارد.
جهت تخلیه گرما در یک سیستم TE کاملا قابل برگشت است. تغیر پلاریته منبع DC باعث می شود که گرما در جهت دیگری تخلیه شود.به این ترتیب یک خنک کننده نیز میتواند ماننده یک گرما زا عمل کند.
خنک کننده های ترموالکتریکیTE در محیط هایی که خیلی مهم وخیلی حساس یا بسیار کوچک
8-5 مولد ترمو الکتریکی( شکل 6)

( شکل 6)

از طرف دیگر با استفاده از فناوری ترموالکتریکی جریان مستقیم گردشی،گرما را از بار گرمای به گرما گیرهایی که گرما را به محیط بیرون انتقال می هند حمل می کند.هر طرح سیستم ترموالکتریک به تنهایی ظرفیت منحصر به فردی برای انتقال گرما بر حسب وات یا بی تی یو بر ساعت دارد این ظرفیت می توان تحت تاثیر عوامل بسیاری قرار گیرد .مهمترین متغیر ها دماهای محدوده،و مشخصه های الکتریکی وفیزیکی طرح ترموالکتریک به کار برده شده و بازده سیستم پخش گرما هستند.از کاربرد های معمولی ترموالکتریکی پمپ بارهای گرمای در محدوده ای از چندین میلی ولت تا صدها وات می باشد.
فصل ششم
ترموالکتریک در صنعت خوردو و کاهش مصرف سوخت ترموالکتریک در صنعت خوردو و کاهش مصرف سوخت1-6 تاریخپه
دانشمندی به نام «سی بک» در سال ۱۸۲۳ دریافت اگر محل اتصال دو فلز ناهمانند دارای اختلاف دمایی باشد، افت ولتاژ ایجاد می شود. بعدها این پدیده به نام «پدیده سی بک» شناخته شد. حالت معکوس این پدیده آن است که اگر افت ولتاژی در محل اتصال این دو فلز حفظ شود، یکی از آنها گرم و دیگری سرد می شود که به آن «پدیده Peltier» می گویند. در سال های بعد دانشمندان دیگری نشان دادند وقتی قطره آبی در محل اتصال سیم های فلزی ساخته شده از آنتیموان و بیسموت ریخته و جریان الکتریسیته اعمال شود، این قطره آب یخ خواهد زد و زمانی که جریان معکوس می شود، یخ ذوب می شود. این موضوع از اصول سرمایش ترموالکتریکی به شمار می رود. علت این پدیده آن است که الکترون ها حامل انرژی گرمایی هستند و می توانند توسط اعمال ولتاژ از باتری، از انتهای سرد به انتهای گرم حرکت کنند. بر این اساس حدود دو دهه بعد موضوع ساخت یخچال های ترموالکتریکی برای خانه ها مطرح شد که در آنها از نیمه هادی ها بهره گرفته شد. بعدها این موضوع به علت محدودیت در سرمایش توسعه چندانی نیافت ولی مثلاً در خودرو برای خنک کردن نوشابه مورد استفاده قرار گرفت. امروزه با توجه به افزایش قیمت حامل های انرژی در سطح جهان، دانشمندان در پی آن هستند که با بهره گیری از مواد ترموالکتریک بتوانند حرارت های ناخواسته را به این مواد اعمال کرده و الکتریسیته تولید کنند. یکی از مشهورترین این حرارت های ناخواسته همانا حرارت خروجی از اگزوز خودرو است که گروه های زیادی از محققان سعی در بهره برداری از این حرارت دارند.
خودروی شما بین ۷۰- ۶۰ درصد از انرژی ورودی را به صورت گرما هدر می دهد. این در حالی است که با افزایش کارایی مواد ترموالکتریک می توان این شرایط را تغییر داده و این حرارت را به الکتریسیته تبدیل کرد. همان طور که می دانید در موتورهای بخار از حرارت برای تولید بخار جهت به حرکت درآوردن تجهیزات استفاده می شود. همان طور که بیان شد، در تجهیزات ترموالکتریکی نیز به طریق مشابه می توان از حرارت برای حرکت الکترون ها در مسیر مورد نیاز بهره جست. از آنجایی که در اکثر تجهیزات مکانیکی و الکتریکی حرارت غیرمفید تولید می شود، می توان با بهره گیری از مواد ترموالکتریک از این حرارت مقادیر زیادی انرژی مفید به دست آورد. مطالب فوق بدان معنی است که با قرار دادن قطعات کوچکی از مواد ترموالکتریک در سطوح گرم یا داغ(مثل اگزوز خودروها یا پروسسور کامپیوترها)، می توان انرژی تولید کرد. البته مشکل اینجا است که مواد ترموالکتریک کنونی دارای راندمان پایینی هستند. این راندمان توسط عدد ZT (ZT figure) تعریف می شود. باید گفت به رغم چندین دهه پژوهش هنوز بهترین مواد ترموالکتریک دارای عدد ZT نزدیک به یک هستند و فقط زمانی که بتوان این عدد را به حدود ۳ تا ۴ رساند، می توان این روش را با دیگر روش های تولید برق مقایسه کرد. (پیوست 1)
Combustion30% EngineVehicle Operation100%40% Exhaust Gas30%Coolant5% Friction & Radiated25%Mobility & AccessoriesGasolineGasolinegasoline
2-6 بهبود راندمان
یکی از متغیرهای عدد ZT، مقدار حرارتی است که یک قطعه مشخص از مواد ترموالکتریک می تواند در یک لحظه به برق تبدیل کند. امروز به اثبات رسیده است که می توان این خاصیت را بهبود بخشید. جوزف هرمانس و ولادیمیر یوویچ از دانشگاه ایالتی اهایو روشی را برای تغییر این خاصیت در ماده تلورید سرب(مرسوم ترین ماده ترموالکتریک) یافته اند. اساساً درون ماده تلورید سرب تعداد معدودی الکترون با امکان دارا بودن انرژی کافی برای تبدیل حرارت به الکتریسیته وجود دارد. اصطلاحاً به این انرژی، انرژی یا سطح فرمی گفته می شود. افراد فوق الذکر در آزمایش های خود دریافتند با افزودن مقادیر کمی تالیم به ترکیب تلورید سرب می توان الکترون های بیشتری را به این سطح از انرژی رساند. این موضوع به دلیل رزونانس(تشدید) مناسب بین الکترون های موجود در تالیم با ماده تلورید سرب است.شکل 1

شکل 1
آزمایش ها نشان می دهد بهترین کارایی معجون تالیم با تلورید سرب، در دمای ۵۱۰-۲۳۰ درجه سانتیگراد حاصل شده است که این معادل دمای موتور خودروها است. ضمناً در دمای ۵۱۰ درجه سانتیگراد عدد ZT به ۵/۱ می رسد.(پیوست 2)
3-6 تلفیق دو راهکار
هرمانس می گوید؛«در سال ۲۰۰۶ پروفسور ماهانتی از دانشگاه ایالتی میشیگان موفق به محاسبه رزونانس خاص بین الکترون های تالیم و الکترون های اتم تلوریم شد.» شکل 2البته اوایل این سال ژیفنگ رن و گروه همکارش از کالج بوستون در ماساچوست توانسته بودند ماده ترموالکتریکی با عدد ZT معادل ۴/۱ را از روش دیگری تولید کنند. آنها به روش فیزیکی ساختمان کریستالی تلورید بیسموت، آنتیموان را به نحوی تغییر دادند تا حرارت عبوری از این ماده کاهش یابد و بدین طریق نسبت حرارت تبدیل شده به الکتریسیته افزایش یابد که این به معنی افزایش راندمان است. در این باره رن متذکر شده است؛«پس از دستاوردهای ما در زمینه بهبود عدد ZT اکنون زمان مناسبی برای مشاهده نتایج به دست آمده توسط هرمانس ویوویچ است.» یوویچ نیز می گوید؛«نکته جالب آن است که حالا ما می توانیم دیدگاه جدید خود را با دیدگاه جدید گروه رن در هم بیامیزیم. هر چند تخمین محدوده ZT حاصل از این تلفیق کار سختی است ولی واضح است که به عدد ZT بالاتر از ۵/۱ خواهیم رسید. »

شکل 2

6-4 تئوری در مرحله اجرا
همان طور که ذکر شد، با استفاده از گازهای بدبوی خروجی از اگزوز خودروها می توان مصرف سوخت خودرو را کاهش داد. اخیراً وزارت انرژی امریکا از خودروسازان خواسته است با به خدمت گرفتن انرژی اتلافی در اگزوز خودروها، مصرف سوخت را به میزان ۱۰ درصد کاهش دهند و محققان نیز درتلاشند به این هدف تعیین شده، دست یابند. شرکت جنرال موتورز در حال رسیدن به این هدف است ولی باید اذعان کرد این شرکت در این مسیر تنها نیست و یکی از زیرمجموعه های خودروسازی BMW به همراه دانشگاه ایالتی اهایو توجه خود را روی این موضوع معطوف کرده اند. نهایتاً این موضوع به بحث «مواد ترموالکتریک» مربوط شد. نباید فراموش کرد این بحث دربرگیرنده دانشی است که طی آن سعی می شود از اختلاف دما برای تولید الکتریسیته و برق استفاده کرد و برای رشد این دانش نیز هیچ زمانی بهتر از دوره کنونی نیست که قیمت سوخت افزایش یافته است و همه از راهکارهای صرفه جویی در مصرف سوخت حمایت می کنند. شکل 4

–29

واژه‌های کلیدی:
توپولوژی ،پلاسما ، قابلیت اطمینان و راندمان ،منبع توان پالسی، مبدل باک- بوست مثبت .
فهرست مطالب
عنوان صفحه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما 1
1.1مقدمه
2.1 آشنایی با پلاسما
1.2.1 منحنی دشارژ گازی ولتاژ – جریان پلاسما
3.1 جنبه های کاربردی منابع توان پالسی در پلاسما
4.1 مبانی عملکرد منابع توان پالسی پلاسما
1.4.1مشخصات پالس های قدرت بالا در منابع توان پالسی
2.4.1ذخیره سازی انرژی الکتریکی
1.2.4.1 بانک خازنی
2.2.4.1 مولد مارکس
3.4.1 اصول کلید زنی در پلاسما
4.4.1 شبکه های شکل دهی پالس (PEN)
5.4.1 خط انتقال بلوملین (BLUMLEIN)
5.1 اهداف مورد بررسی در این پژوهش
6.1 نتیجه گیری
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده درپلاسما
1.2 مقدمه
2.2 توپولوژی های موجود برای منابع توان پالسی پلاسما
1.2.2 توپولوژی مبتنی بر مولد مارکس
2.2.2 توپولوژی مبتنی بر مبدل های dc - dc
1.2.2.2 مبدل باک (Buck)
2.2.2.2 مبدل بوست (Boost)
فهرست مطالب
عنوان 3.2.2.2 مبدل باک - بوست (Boost -Buck)
4.2.2.2 مبدل کاک (Cuk)
5.2.2.2 مبدل های تشدیدی با کلیدزنی نرم
3.2.2 توپولوژی مبتنی بر تقویت کننده های ولتاژ
4.2.2 توپولوژی مولدهای پالس مبتنی بر اینورترها
3.2 روش های کنترلی مورد استفاده در منابع توان پالسی مورد استفاده در پلاسما
1.3.2روش کنترلی منبع ولتاژ
2.3.2روش کنترلی منبع جریان
4.3.2 روش کنترلی پسماند
4.2 نتیجه گیری
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
1.3 مقدمه
2.3 طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت
1.2.3 آرایش مداری توپولوژی پیشنهادی
2.2.3 حالت های کلید زنی توپولوژی پیشنهادی
3.2.3 تحلیل مداری توپولوژی پیشنهادی
4.2.3 محاسبه مقدارdv/dt تولید شده ناشی از کلیدزنی گذرای توپولوژی پیشنهادی
3.3 محاسبه انرژی ذخیره شده منابع توان پالسی مورد استفاده در پلاسما مبتنی بر توپولوژی پیشنهادی
3.1.3 محاسبه مقادیر المان های منابع توان پالسی پلاسما
2.3.3 محاسبه انرژی ذخیره شده منابع توان پالسی پلاسما
3.3.3 محاسبه انرژی ذخیره شده در حالت استفاده از خازن اضافی در منابع توان پالسی پلاسما
فهرست مطالب
عنوان 4.3 طراحی استراتژی کنترلی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
1.4.3 تحلیل روش کنترلی منبع ولتاژ برای توپولوژی پیشنهادی در حالت یک طبقه
2.4.3 طراحی و تحلیل روش کنترلی منبع ولتاژ برای توپولوژی پیشنهادی در حالت دو طبقه
5.3 نتیجه گیری
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
1.4 مقدمه
2.4 روند شبیه سازی توپولوژی پیشنهادی برای منبع توان پالسی پلاسما
1.2.4 تعیین مقادیر المان و مولفه های اصلی منابع توان پالسی پلاسما
2.2.4 روش مدل سازی بار در توپولوژی پیشنهادی
3.2.4 شبیه سازی توپولوژی پیشنهادی در حالت یک طبقه
4.2.4 شبیه سازی توپولوژی پیشنهادی در حالت دو طبقه
3.4 تخمین انرژی ذخیره شده در منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
4.4 شبیه سازی dv/dt تولید شده ناشی از کلیدزنی گذرای توپولوژی پیشنهادی
5.4 نتیجه گیری
فصل پنجم - بحث و نتیجه گیری
- نتیجه گیری
- مراجع
فهرست شکل ها
عنوان صفحه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما
شکل(1-1) نمایی از الکترودهای بکار رفته در پلاسما
شکل(1-2) منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
شکل (1-3) نمای کلی از ساختار منابع توان پالسی
شکل (1-4) منحنی مشخصات یک پالس تولید شده در منابع توان پالسی
شکل(1-5) نمونه ای از کمپرسور پالس مغناطیسی
شکل (1-6) نمونه ای از بانک خازنی بکار رفته در منابع توان پالسی
شکل(1-7) نمونه ای از مولد مارکس مورد استفاده در منابع توان پالسی
شکل (1-8) مدارهای اصلی مورد استفاده در منابع توان پالسی با المان های ذخیره ساز انرژی
شکل(1-9) نمونه ای از بانک خازنی با کلیدهای چندکاناله
شکل (1-10) آرایش مختلفی از شبکه نردبانی مورد استفاده در شبکه های شکل دهی پالس
شکل (1-11) آرایش خط انتقال بلوملین
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
شکل (2-1) الف) نمونه ای از توپولوژی مبتنی بر مولد مارکس، ب) حالت شارژ مولد ، ج) حالت دشارژ شکل(2-2)مبدل باک (Buck) شکل(2-3)شکل موج های ولتاژ – جریان و مدارمعادل مبدل باک : (الف) کلید وصل (ب) کلید قطع
شکل(2-4)مبدل بوست (Boost)
شکل(2-5)شکل موج های ولتاژ – جریان و مدارمعادل مبدل بوست : (الف) کلید وصل (ب) کلید قطع
شکل(2-6)مبدل باک - بوست (Boost -Buck)
شکل(2-7) شکل موج های ولتاژ - جریان و مدارمعادل مبدل باک - بوست : (الف) کلید وصل (ب) کلید قطع
شکل(2-8) مبدل باک – بوست مثبت ( Positive Buck-Boost )
فهرست شکل ها
عنوان صفحه
شکل (2-9) مبدل کاک (Cuk)
شکل (2-10)مدار معادل مبدل کاک در حالت های کلید زنی : الف) حالت وصل کلید ب) حالت قطع کلید
شکل (2-11) شکل موج های جریان و ولتاژ مبدل کاک در حالت های کلید زنی
شکل (2-12) مبدل تشدید با کلیدزنی نرم
شکل (2-13)تقویت کننده ولتاژ N طبقه کوک کرافت – والتون
شکل (2-14) توپولوژی های کنترلی مورد استفاده در یک منبع توان پالسی پلاسما
شکل (2-15)روش کنترلی منبع ولتاژ در منابع توان پالسی پلاسما
شکل(2-16)روش کنترلی منبع جریان مورد استفاده در منابع توان پالسی پلاسما
شکل(2-17)روش کنترلی حلقه جریان پسماند برای کنترل جریان سلفی در منابع توان پالسی پلاسما
شکل (2-18) روش کنترلی پسماند برای منابع توان پالسی پلاسما
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
شکل(3-1) شمای کلی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت منبع توان پالسی
شکل (3-2) منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی با یک مجموعه کلید- دیود- خازن
شکل (3-3) منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی با دو مجموعه کلید- دیود- خازن
شکل (3-4) مدل سازی توپولوژی پیشنهادی جهت تحلیل حالات کلیدزنی در منبع توان پالسی
شکل(3-5) حالت کلیدزنی شارژ شدن سلف در توپولوژی پیشنهادی
شکل(3-6) حالت کلیدزنی عبور جریان سلفی در توپولوژی پیشنهادی
شکل(3-7) حالت کلیدزنی شارژ همزمان خازن ها در توپولوژی پیشنهادی
شکل(3-8) حالت تامین بار در توپولوژی پیشنهادی
شکل(3-9) حالت کلید زنی شارژ جداگانه خازن ها در توپولوژی پیشنهادی
شکل (3-10) فلوچارت کنترلی پیشنهادی
فهرست شکل ها
عنوان صفحه
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع
توان پالسی مورد استفاده در پلاسما
شکل (4-1) شبیه سازی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی – یک طبقه
شکل(4-2) شبیه سازی روش کنترلی منبع ولتاژ در توپولوژی پیشنهادی
شکل(4-3) مولفه ولتاژ توپولوژی پیشنهادی در حالت یک طبقه: (الف) کلید Ss (ب) کلید S1
شکل(4-4) مولفه جریان کلید بارSL توپولوژی پیشنهادی در حالت یک طبقه
شکل (4-5) شبیه سازی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی – دو طبقه
شکل(4-6) مولفه ولتاژ توپولوژی پیشنهادی - دو طبقه درحالت کلید زنی همزمان: (الف) خازنC1 یا کلید S1 (ب) خازنC2 یا کلید S2 (ج) کلید SL
شکل(4-7) مولفه های اصلی توپولوژی پیشنهادی - دو طبقه درحالت کلید زنی جداگانه: (الف) ولتاژ خروجی (ب) جریان سلفی (ج) جریان خروجی(بار) IL (د) ولتاژ ورودی
شکل (4-8) شبیه سازی پیشنهادی جهت تخمین میزان انرژی ذخیره شده
شکل(4-9) تخمین انرژی ذخیره شده در توپولوژی پیشنهادی: (الف)انرژی ذخیره شده در سلف (ب) انرژی ذخیره شده درخازن (ج) انرژی ذخیره شده در بار
شکل(4-10) جریان خازنی در حالت کلیدزنی گذرای توپولوژی پیشنهادی
فهرست جدول ها
عنوان صفحه ه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما
جدول(1-1) شرح نواحی منحنی دشارژ گازی ولتاژ - جریان حالت dc پلاسما
جدول (1-2) خلاصه ای از مشخصات منابع توان پالسی برای کاربردهای مختلف
جدول(1-3) دامنه پالس های تولید شده در منابع توان پالسی
جدول (1-4)مشخصات دو مدل از مولد مارکس نواری
جدول (1-5)مشخصات مولد مارکس قطعه ای مدلA 43733
جدول(1-6) کلیدهای نیمه هادی گازی در منابع توان پالسی مورد استفاده در پلاسما
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
جدول(2-1) شاخص های کلیدی مبدل های dc - dc
جدول(2-2) شاخص های کلیدی مبدل های تشدید با کلید زنی نرم
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
جدول( 3-1) شاخص های کلیدی توپولوژی های مورد استفاه در منایع توان پالسی پلاسما
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
جدول (4-1) مقادیرمولفه و المان های اصلی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
جدول(4-2) مقادیر dv/dt تولید شده در حالت کلیدزنی گذرای توپولوژی پیشنهادی
جدول(4-3) خلاصه ای از مقایسه بین دو آرایش مختلف توپولوژی پیشنهادی منبع توان پالسی پلاسما
2
2
3
5
5
6
8
10
11
14
15
17
18
18
19
20
20
20
22
22
23
25
صفحه
26
28
30
32
34
35
35
36
37
39
40
41
42
42
44
48
51
51
52
53
54
صفحه
55
55
56
58
59
60
61
61
62
62
63
65
67
69
70
72
73
76
3
4
6
8
8
9
9
10
11
16
17
22
23
24
25
26
27
28
28
29
29
30
31
34
35
36
37
38
38
42
43
43
44
45
46
47
47
48
57
63
64
64
65
65
66
67
68
69
70
4
6
7
13
13
15
32
32
41
62
70
71
لیست علایم و اختصارات
AC ) Alternating Current جریان متناوب (
BJT ) Bipolar Junction Transistorترانزیستور پیوند دو قطبی (
CCM ) Continuous-Conduction-Modeحالت هدایت پیوسته (
CDVM ( Capacitor-Diode Voltage Multiplier)تقویت کننده ولتاژ دیود و خازن
CSR ) Converter Series Resonanمبدل تشدید سری (
DC ) Direct Currentجریان مستقیم (
EMI ) Electromagnetic Interferenceتداخلات الکترومغناطیسی (
EMC ) Electromagnetic Compatibilityسازگاری الکترومغناطیسی (
HV ) High Voltageولتاژ بالا (
IGBT ) Insulated Gate Bipolar Transistorترانزیستور دوقطبی گیت عایق شده (
MBL )Multistage Blumlein Linesخطوط بلوملین چند طبقه ای (
MFC ) Magnetic Flux Compressorکمپرسور شار مغناطیسی (
MG ) Marx Generatorمولد مارکس (
MOSEFET ) Metal-Oxide Semiconductor Field-Effect Transistorترانزیستورنیمه هادی اکسید فلزی با اثر میدان(
MPC )Magnetic Pulse Compressorکمپرسور پالس مغناطیسی (
MVM ) Multilevel Voltage تقویت کننده ولتاژ چند سطحی (
PEF ( Pulsed Electric Fieldمیدان الکتریکی پالسی (
PFC ) Power Factor Correctorsتنظیم کننده های ضریب قدرت (
PFN ) Pulse Forming Networkشبکه شکل دهی پالس (
SMPS (Switched-Mode Power Supply)روش کلید زنی منابع توان پالسی
ZCS )Zero Current Switchingکلید زنی جریان صفر (
ZVS ) Zero Voltage Switchingکلید زنی ولتاژ صفر (
فصل اول

آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما

1.1مقدمه
اساس فناوری سیستم توان پالسی بر پایه ذخیره انرژی زیاد در زمان نسبتا طولانی و آزاد کردن خیلی سریع آن می باشد که هدف از فرآیند آزاد سازی انرژی، افزایش توان لحظه ای آن است. از مشخصه های کلیدی منابع توان پالسی می توان به سطح ولتاژ و مدت زمان افزایش آن که بر مبنای مشخصات بار مورد نیاز تعیین می شود، اشاره کرد]1[. روش های سازگاری منابع توان پالسی با بارهای متفاوت توسط تکنولوژی موجود، یکی از بحث های کلیدی فناوری سیستم توان پالسی مورد استفاده در پلاسما می باشد. استفاده از دانش پیشرفته و رویکردهای اخیر در الکترونیک قدرت و نیمه هادی ها به حساب سطح نیازمندی صنعتی و علمی آن است که باعث پیشرفت سریع منابع توان پالسی در دهه اخیر شده است.از ویژگی های بارز منابع توان پالسی جهت افزایش راندمان و قابلیت اطمینان آن، پیچیدگی ها و ریزه کاری آن است]2[. کنترل بهینه روند تولید توان در منابع تولید توان پالسی یک روش مهم و حیاتی برای افزایش راندمان می باشد. از سوی دیگر استفاده از منابع توان پالسی با ولتاژ بالا نیازمند کلیدهای قدرت بالا می باشد که ولتاژ شکست و زمان کلید زنی آن محدودی است.
2.1 آشنایی با پلاسما
واژه "پلاسما" برای اولین بار در سال 1927 توسط ایروین لانگمویر برای یک توده خنثی از ذرات باردار به کار رفت]3[. پلاسما را می توان با ایجاد یک اختلاف پتانسیل بین دو الکترود در یک محیط گازی بوجود آورد. میدان الکتریکی ایجاد شده بین دو الکترودهای آند و کاتد، باعث یونیزاسیون ذرات گاز خنثی و ایجاد مسیر هدایت می شود. در شکل(1-1) نمونه ای از الکترودها را نشان داده شده است. ساده ترین حالت، خطوط میدان الکتریکی بین آند و کاتد که در آن میدان الکتریکی تقریبا یکنواخت است، به اندازه و شکل الکترودها(دو الکترود مسطح با یک شکاف کوچک در میان شان است) بستگی دارد]4[.

شکل(1-1) نمایی از الکترودهای بکار رفته در پلاسما
1.2.1 منحنی دشارژ گازی ولتاژ – جریان پلاسما
شکل (1-2) منحنی دشارژ گازی ولتاژ – جریان الکترودها را در حالت dc نشان می دهد]5[. این منحنی دارای چند ناحیه می باشد که نام نواحی در جدول (1-1) به صورت خلاصه بیان شده است. ناحیه دشارژ تاریک پلاسما، که در آن دشارژ شروع می شود. هر چند که برای ایجاد حالت شکست، این دشارژ به صورت کافی ذرات را تحریک نمی کند. به این دشارژ تاریک می گویند زیرا که در این حالت دشارژ هیچ گونه انتقال انرژی به الکترون ها صورت نمی گیرد تا منجر به انتشار نور مرئی شود. در دشارژ تاریک با یونیزاسیون، یون ها والکترون ها به تنهایی اشعه های کیهانی و اشکال دیگری از آن (مانند اشعه یونیزه کننده طبیعی) که با افزایش ولتاژ همراه است، تولید می کند. در حالت اشباع با یونیزاسیون، تمام ذرات باردار حذف و الکترون ها به علت یونیزاسیون انرژی کافی ندارند. در حالت تاونزند با شروع یونیزاسیون، میدان الکتریکی ایجاد و جریان و ولتاژ به صورت نمایی افزایش می یابد]6[. بین حالت تاونزند و شکست در پلاسما، ممکن است تخلیه کرونا صورت گیرد که در نتیجه میدان الکتریکی بر روی لبه های تیز الکترود متمرکز می شود. تخلیه کرونا می تواند به صورت مرئی یا تیره باشد که به میزان جریان عبوری از آن بستگی دارد. ناحیه دشارژ تابشی با حالت شکست شروع می شود و با تشکیل قوس الکتریکی به پایان می رسد. به طور عمده فرآیندهایی که منجر به شکل گیری حالت شکست و دشارژ تابشی می شود را می توان به دو گروه اصلی تقسیم کرد: (الف) فرآیندهای گازی پلاسما، که در آن یونیزاسیون از برخورد الکترون و یون صورت می گیرد. (ب) فرآیندهای کاتدی پلاسما، که در آن الکترون ها از کاتد آزاد می شوند. به این فرآیند، به علت ایجاد الکترون در آن، فرآیند ثانویه نیز می گویند]7[. با مطالعه مقالات منتشر شده در این مورد می توان دریافت که جنس کاتد تاثیر زیادی درایجاد حالت شکست دارد. توسط فرآیند ثانویه می توان انواع انرژی تابشی را بصورت فتوالکتریک که در آن انرژی نوری باعث آزاد شدن الکترون ها می شود انتشار داد. در این مورد می توان به حالت گرما یونی در پلاسما نیز اشاره کرد، که در آن انرژی حرارتی باعث ایجاد الکترون و منجر به تولید میدان الکتریکی می شود. جرقه های ناشی از دشارژ در این حالت بسیار شدید است و دارای درخشندگی و چگالی جریان زیادی می باشد. قوس های ناشی از دشارژ را می توان معادل چگالی جریان زیاد در حد کیلو آمپر در سانتیمتر مربع در نظر گرفت. هرچند که شدت طبیعی قوس می تواند عامل فرسایش سریع تر الکترودها شود]9،8[.

شکل(1-2)منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
جدول(1-1) شرح نواحی منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
شماره 1 2 3 4 5 6 7 8 9
نواحی دشارژ تاریک دشارژ تابشی حالت جرقه ای حالت یونیزاسیون حالت اشباع حالت کرونا حالت تاونزند حالت شکست حالت تابشی
شماره 10 11 12 13
نواحی حالت تابشی غیر عادی حالت انتقالی از تابشی به جرقه حالت حرارتی حالت حرارتی با جرقه
3.1 جنبه های کاربردی منابع توان پالسی در پلاسما
اولین کاربرد منابع توان پالسی در دهه 1960 در نیرو گاه های هسته ای و تسلیحات هسته ای برای تولید پالس های با ولتاژ مگاولت و توان های تراوات (1 تراوات، 1000 گیگاوات است) و عرض پالس های چند ده نانو ثانیه تا چند صد نانو ثانیه برای تحریک شتاب دهنده های الکترونی پلاسما بوده است]10[. محدودیت عناصر ذخیره کننده انرژی و نبود تکنولوژی کلیدزنی پالس قدرت، مانع از گسترش آن در حوزه های عمومی تر شده بود. اما هم اکنون با توسعه این منابع و بهبود تکنولوژی ساخت خازن ها، اندوکتانس ها و کلیدها، بسیاری از مشکلات در تولید پالس های قدرت، با انرژی بالا و قیمت مناسب برطرف شده است. اخیرا یکی از اهداف اصلی و کلیدی جهت افزایش راندمان و قابلیت اطمینان سیستم های توان پالسی ،استفاده مکرر از مولدهای توان پالسی باحداکثر توان در صنایع از جمله : صنعت مواد غذایی، معالجات پزشکی، آب و فاضلاب (تصفیه آب و...)، تولیدگازهای ازن ،بازیافت بتن ، سیستم احتراق ماشین بخار و کاشت یون در پلاسما می باشد]11[. رایج ترین موارد استفاده از منابع توان پالسی می توان به : مولد مارکس ، کمپرسورهای پالسی الکترومغناطیسی ، عایق کاری ، خطوط انتقال و شکل دهی پالس اشاره کرد. هر چندکه مولدهای توان پالسی نیز با حداکثر توان به صورت وسیعی در مصارف نظامی و گداخت هسته ای مورد بهره برداری قرار می گیرد. هم چنین میدان های الکتریکی پالسی کاربردهای مستقیم و غیر مستقیم بسیاری در صنعت دارند و اخیرا کاربرد این میدان ها در استریلیزه کردن مواد غذایی مورد توجه بسیاری قرار گرفته است]12[. خلاصه ای از مشخصات منابع توان پالسی مورد نیاز برای کاربردهای متفاوت در جدول(1-2) شرح داده است.
4.1مبانی عملکرد منابع توان پالسی مورد استفاده در پلاسما
اصول فناوری توان پالسی، از ذخیره سازی انرژی بیش از یک مدت زمان طولانی (معمولا ثانیه یا دقیقه) و سپس فرآیند تخلیه انرژی الکتریکی را در طول کوتاه تر از زمان ذخیره انرژی (معمولا میکروثانیه یا نانوثانیه)انجام پذیرد.
جدول (1-2) خلاصه ای از مشخصات منابع توان پالسی برای کاربردهای مختلف
ردیف کاربردها انرژی الکتریکی طول پالس حداکثرتوان پالس توان متوسط
1 فیزیک پلاسما با چگالی انرژی بالا 20 مگا ژول 10 نانو ثانیه کمتر از ده ترا وات 5 گیگا وات
2 رادیو گرافی با پرتو الکترونی قوی 200 کیلو ژول 70 نانو ثانیه بیشتر از یک ترا وات 10 گیگا وات
3 مایکروویو توان بالا (باندباریک) 10 کیلو ژول 100 نانو ثانیه 100 گیگا وات 100 کیلو وات
4 مایکروویو توان بالا (باندخیلی پهن) 10 ژول 1 نانو ثانیه 10 گیگا وات 10 کیلو وات
5 تبدیل مواد با پرتو الکترونی 10 کیلو ژول 100 نانو ثانیه 30 گیگا وات اندک
6 بیو الکتریک 1 میلی ژول 100 نانو ثانیه 10 کیلو وات تا 100 مگا وات چند میلی وات تا چند وات

ساده ترین شکل سیستم های توان پالسی با توجه به شکل(1-3) شامل: یک منبع انرژی الکتریکی، ذخیره ساز میانی انرژی و بار است که مرحله تشکیل پالس بین آنها قرار دارد. سیستم توان پالسی در مرحله تشکیل پالس دارای یک کلید قدرت بالا است که می تواند انرژی ذخیره شده را به بار یا یک سیستم پیچیده تر (شامل شبکه ای از کلید های قدرت بالا) انتقال دهد.
بار
شکل دهنده پالس
ذخیره ساز میانی
منبع انرژی
کلیدکلید

شکل (1-3)نمای کلی از ساختار منابع توان پالسی
با بررسی مطالعاتی درباره تکنولوژی های به کار رفته در منابع توان پالسی پلاسما، می توان با توجه به عملکرد و کارایی، آنها را در 5 بخش اصلی خلاصه کرد که به شرح ذیل می باشد:
1.4.1مشخصات پالس های قدرت بالا در منابع توان پالسی
همان طور که می دانید هر سیستم توان پالسی متشکل از یک منبع، شبکه ذخیره کننده انرژی، تجهیزات شکل دهنده پالس، کلید و بار الکتریکی است. منبع انرژی را در برخی از کاربردها می توان باتری در نظر گرفت که به شبکه ذخیره کننده انرژی متصل و سپس در ارتباط با تجهیزات شکل دهنده پالس قرار می گیرد و پس از کلید زنی به صورت پالس ولتاژ بالا بر روی بار تخلیه می گردد]13[. با توجه به سطوح مختلف توان الکتریکی مورد نیاز، فناوری تولید توان پالسی به دو شاخه پالس های کم قدرت و قدرت بالا تقسیم می شود. پالس های قدرت بالا مرتبط با پالس هایی است که توانی در حد چند مگاوات یا بیشتر دارند که محدوده کمیت های فیزیکی این گونه پالس ها در جدول (1-3) به اختصار بیان شده است. تولید و کنترل پالس های قدرت بالا، نوعی فناوری پیشرفته و پیچیده به شمار می رود و به ابزارها و تکنیک های خاصی جهت انجام آزمایش ها نیازمند است. در سیستم های توان پالسی انرژی به صورت الکتریکی ذخیره و به بار درطی یک پالس و یا پالس های کوتاه با نرخ تکرار کنترل شده ای تخلیه می گردد. مقدار قدرت میدان الکتریکی، شکل پالس، مدت پالس و تعداد پالس ها و... بیشترین تاثیر را بر راندمان و قابلیت اطمینان منابع توان پالسی دارد.
جدول(1- 3) دامنه پالس های تولید شده در منابع توان پالسی
ردیف کمیت فیزیکی محدوده کمیت فیزیکی
1 انرژی (ژول) 101 -107
2 توان (وات) 106 -1014
3 ولتاژ(ولت) 103 -107
4 جریان (آمپر) 103 -107
5 چگالی جریان (آمپر برمترمربع) 106 -1011
6 عرض پالس(ثانیه) 5-10 -10-10
با بالا و پایین رفتن شکل موج ولتاژ، طول مدت پالس بین چند نانوثانیه و یا چند میکرو ثانیه اندازه گرفته می شود. به عنوان نمونه در شکل (1-4) منحنی یک پالس قدرت بالا را نشان داده شده است. زمان صعودی پالس، مدت زمان لازم برای رسیدن ولتاژ از10% به 90% ( مقدار ماکزیمم) تعریف می شود و می توان زمان نزولی را به روشی مشابه تعریف کرد.که هر دو زمان (صعودی و نزولی) یک پالس قدرت بالا به امپدانس بار بستگی دارد]14[.
در چند دهه اخیر فناوری تولید پالس های ولتاژ بالا توسط کمپرسورهای پالس مغناطیسی با توجه به کاربردهای گوناگون آن در حوزه منابع توان پالسی بسیار حائز اهمیت است . شکل (1-5) یک نمونه رایج از این نوع کمپرسورها را نشان می دهد.

شکل (1-4) منحنی مشخصات یک پالس تولید شده در منابع توان پالسی
توپولوژی های مختلفی می توان برای منابع توان پالسی با توجه به ادوات الکترونیک قدرت، مولدهای پالسی و کمپرسورهای پالس مغناطیسی در نظر گرفت . که از جمله می توان به طراحی یک منبع توان پالسی مبتنی بر کمپرسور جریان مغناطیسی خطی و شبکه شکل دهی پالس بلوملین برای ادوات الکتریکی نظامی (از جمله : شوک دهنده ها) اشاره کرد]15[.

شکل(1-5) نمونه ای از کمپرسور پالس مغناطیسی
2.4.1ذخیره سازی انرژی الکتریکی
انرژی مورد نیاز منابع توان پالسی عموما از منابع انرژی کم توان جمع آوری و به مرور ذخیره می شود. متناسب با کاربردها و احتیاجات، ذخیره انرژی به شکل خازنی ، سلفی یا ترکیبی از این دو است. ذخیره سازی انرژی خازنی، معمولا توسط تعدادی از خازن های ولتاژ بالا که اتصال آنها به صورت موازی یا سری است ، تشکیل می شود. حالت اول را بانک خازنی که در شکل (1-6) و حالت بعدی را مولد مارکس می نامند.که در شکل (1-7) نمونه ای از مولد مارکس را نشان داده است]16[.

شکل (1-6) نمونه ای از بانک خازنی بکار رفته در منابع توان پالسی
در هر دو حالت، خازن ها به صورت موازی شارژ می شوند و معمولا به عنوان منبع جریان استفاده می شوند. مولدهای مارکس، ولتاژ و جریان بالا را فراهم می سازند بنابراین در منابع توان بالای پالسی پلاسما به صورت گسترده ای مورد استفاده قرار می گیرند.

شکل(1-7) نمونه ای از مولد مارکس مورد استفاده در منابع توان پالسی
برای ذخیره سازی اندوکتیو انرژی از القاگرهای مغناطیسی استفاده می شود. بر خلاف حالت ذخیره سازی خازنی که انرژی مستقیما با بستن کلید به بار منتقل می شود در این حالت نخست انرژی از ذخیره ساز القایی (که در این حالت می تواند یک سیم پیچ باشد) عبور کرده و سپس به بار منتقل می شود. برای تحویل انرژی ذخیره شده سلفی به بار، با باز کردن یک کلید قدرت بالا که جریان مدار نیز از آن عبور می کند و با بار اتصال موازی دارد ، نیاز است. برای تحویل انرژی ذخیره شده خازنی به بار، با بستن یک کلید قدرت بالا که جریان مدار نیز از آن عبور می کند و اتصال سری با بار دارد ، نیاز است . شکل (1-8) مدارهای اصلی این دو حالت را نشان می دهد. برای بهبود پالس تولید شده می توان از این دو حالت به صورت ترکیبی در شرایط گوناگون با توجه به مشخصات بار مورد نیاز استفاده کرد.

شکل (1-8) مدارهای اصلی مورد استفاده در منابع توان پالسی با المان های ذخیره ساز انرژی
1.2.4.1 بانک خازنی
در بانک های خازنی برای تولید پالس های سریع، مطلوب است که میزان اندوکتانس مدار در وضعیت حداقل قرار گیرد. چندین راه برای کاهش اندوکتانس سیستم توان پالسی وجود دارد: برای مثال، می توان به استفاده از خازن های با ظرفیت کم، انتخاب ابعاد مناسب برای خطوط انتقال و سیم های رابط، استفاده از کلیدهای موازی چند کاناله و... اشاره کرد. مزیت استفاده از کلید چند کاناله این است که جریان عبوری از هر کلید به طور قابل ملاحظه ای کاهش می یابد و در نتیجه طول عمر کلید افزایش خواهد یافت لیکن هزینه ها افزایش می یابد. در این حالت، عملکرد هم زمان کلیدهای قدرت بالا سیستم توان پالسی پلاسما که به صورت موازی با هم اتصال دارند، ضروری است و در غیر این صورت ، سیستم به خوبی کار نخواهد کرد.برای حل این مشکل می توان از مدارکنترلی خارجی استفاده کرد به گونه ای که هریک از کلیدها از خارج سیستم فعال شوند که در شکل (1-9) نشان داده است.
به منظور دست یابی به ولتاژهای خروجی بالاتردر سیستم های توان پالسی پلاسما، بانک های خازنی اغلب به صورت دوقطبی شارژ می شوند که در آن نصف خازن ها به طور مثبت و نصف دیگر به صورت منفی شارژ و سپس به صورت متوالی دشارژ می شوند. در نتیجه ولتاژی بدست می آید که دو برابر ولتاژ ورودی سیستم است. در حالت شارژ دو قطبی، می توان از آرایش تک کلیدی یا چند کلیدی استفاده نمود. اما استفاده از آرایش چند کلیدی در شرایطی که عملکرد مکرر سیستم توان پالسی به صورت پیوسته مورد نیاز است، مفیدتر است.زیرا که در عملکرد مکرر سیستم اگر تمام جریان از یک کلید عبور کند ، خرابی الکترودهای آن مشکل آفرین خواهد بود]17[.

شکل(1-9) نمونه ای از بانک خازنی با کلیدهای چندکاناله
2.2.4.1 مولد مارکس
در حوزه پالس های قدرت بالا، تقاضا برای مولدهای مارکس زیاد است. این نوع ژنراتورها باید قادر به تامین ولتاژهای بالا و جریان های زیاد باشند. هم چنین شاخصه های کلیدی اجزای آن دارای قابلیت اطمینان و طول عمر بالا و در عین حال به صورت فشرده می باشد به گونه ای که بتوان مجموعه ای از مولدهای مارکس را بدون استفاده از فضای زیاد مورد استفاده قرار داد. در مولد مارکس مانند بانک های خازنی از خازن ها برای ذخیره سازی انرژی استفاده می گردد، اما در این حالت تمام خازن ها هنگام دشارژ به طور لحظه ای اتصال سری پیدا می کنند. بنابراین از مولد مارکس نه فقط به عنوان یک ذخیره ساز انرژی ، بلکه به صورت یک تقویت کننده ولتاژ نیز مورد استفاده قرار می گیرد]18[. اگر مولد مارکس متشکل از N طبقه باشد در این حالت ولتاژ خروجی N برابر ولتاژ ورودی می گردد. حال اگر تعداد زیادی طبقات برای افزایش ولتاژ استفاده شود، قابلیت اطمینان سیستم توان پالسی کاهش می یابد. هم چنین برای افزایش جریان ، از خازن های بزرگ نیز استفاده می شود، با توجه به فشردگی سیستم و طول عمر کلیدها با مشکلاتی در این زمینه روبرو خواهیم شد. تکنیک شارژ دوقطبی یک روش عملی است که امکان استفاده از طبقات زیاد را در شرایط کم حجم بودن سیستم فراهم می سازد. یک راه حلی که می توان برای افزایش قابلیت اطمینان مولد مارکس توان پالسی با توجه به تعداد زیاد طبقات آن ارائه داد، عبارت است از انتخاب α و β با توجه به رابطه (1-1)، به گونه ای که هر دو مقدار افزایش یابند و هم چنین استفاده از پالس کنترلی قدرتمند برای راه اندازی مدارات کنترلی هر یک از کلیدهای سیستم توان پالسی نیز موثر است.
(1-1)
*که در رابطه فوق ، Vsb : ولتاژشکست ، Vch : ولتاژشارژ، Vtr : ولتاژپالس کنترلی است.
انواع متفاوتی از مولدهای مارکس برای کاربردهای خاصی طراحی می شوند. یکی از آنها، مولدمارکس نواری است که برای ایجاد پالس های ولتاژ پایین طراحی می شود. در این نوع مولدهای مارکس، از خطوط انتقال نواری شکل به جای خازن های ذخیره ساز انرژی استفاده می گردد. یعنی خطوط انتقال نواری به صورت موازی شارژ و به صورت متوالی دشارژ می شوند. بنابراین هر خط انتقال برای تولید پالس های ولتاژی پله ای شکل می باشد و از این رو اتصال سری آنها به عنوان یک مولد پالس سریع عمل می کند. قابلیت تولید پالس سریع ، یکی از مزیت های اصلی این نوع مولدها به شمار می رود. اشکال عمده مولدهای مارکس نواری، ابعاد نسبتا بزرگ آنها است و به دلیل ساختار هندسی خاص، امکان فشرده سازی برای این نوع مولدها امکان پذیر نیست. در جدول (1-4) مشخصات دو مدل از مولد مارکس نواری به اختصار بیان شده است]19[.
نوع دیگری از مولد مارکس که قادر به تولید پالس سریع است، مولد مارکس قطعه ای نامیده می شود. که از تعدادی قطعات یکسان تشکیل گردیده است که به راحتی به یکدیگر متصل یا از هم جدا می شوند.
جدول (1-4)مشخصات دو مدل از مولد مارکس نواری
ردیف مشخصات مدلI مدلII
1 تعداد طبقات 50 100
2 ولتاژ پیک پالس(کیلوولت) 400 1000
3 جریان پیک پالس (کیلو آمپر) 4 4
4 پهنای پالس (نانو ثانیه) 40 40
5 امپدانس منبع(اهم) 125 250
این ویژگی امکان تنظیم تعداد طبقات مورد نیاز را برای کاربر فراهم می سازد. هر طبقه متشکل از تعدادی خازن سرامیکی است که به صورت موازی با یکدیگر اتصال پیدا می کنند تا اندوکتانس سیستم توان پالسی کاهش یابد. با توجه به ظرفیت کم خازن های سرامیکی، معمولا چنین مولدهایی به عنوان منابع جریان زیاد در سیستم توان پالسی عمل می کنند، اما امکان تنظیم ولتاژ خروجی را نیز فراهم می سازند. جدول (1-5) مشخصات مولد مارکس قطعه ای مدلA 43733 نشان داده است. ویژگی های اصلی مولد مارکس قطعه ای عبارت است از:
الف ) خازن ها در مرحله ذخیره سازی همگی به صورت موازی اتصال دارند به گونه ای که اندوکتانس در به حداقل می رسد.
ب) یک کلید خلا قدرت بالا با زمان کلیدزنی سریع برای کنترل پهنای پالس مورد استفاده قرار می گیرد ]20[.
جدول (1-5)مشخصات مولد مارکس قطعه ای مدلA 43733
ردیف مشخصات مدل A 43733
1 تعداد طبقات مستقل 12
2 ولتاژ شارژ(کیلوولت) 25
3 ولتاژ خروجی(کیلوولت) 300
4 جریان خروجی (کیلو آمپر) 5
5 پهنای پالس (نانو ثانیه) 30
6 راندمان ولتاژ (درصد) %50
3.4.1 اصول کلید زنی در پلاسما
در کاربردهای توان پالسی قدرت بالا به کلیدهایی نیاز است که توانایی تحمل توان تا حد تراوات و زمان شکست الکتریکی آن در گستره نانو ثانیه واقع شود. کلیدهای معمولی از قبیل نمونه هایی که در کاربردهای عادی ولتاژ بالا مورد استفاده قرار می گیرند جهت برآورده کردن این نیازها مناسب نیستند. بنابراین توسعه انواع جدید کلیدها بر مبنای تکنولوژی انتقال انرژی در پلاسما اجتناب ناپذیر است. کلیدهای قدرت بالا به دو گروه کلیدهای باز و بسته تقسیم می شوند.
همان طور که در مقدمه ذکر شد، در سیستم های توان پالسی پلاسما مهم ترین المان در قسمت شکل گیری پالس، کلید قدرت بالا هستند. هم چنین برای انتقال مقادیر زیادی از انرژی ذخیره شده با دامنه بالا و طول پالس کوتاه به سر بار نیز استفاده می شود، بنابراین با توجه به مشخصات بار، این کلیدها باید دارای ویژگی کار با ولتاژ وجریان زیاد (با سطح ولتاژی بین 10 کیلوولت تا چند مگاولت) و دامنه زمان صعودی کوتاه( درحد نانو ثانیه تا چند میکرو ثانیه) را داشته باشند. برای چندین دهه است که کلیدهای پلاسمایی را با مشخصه انتقال انرژی خوب و قابلیت تحمل بالای ولتاژ آن می شناسند. از کلیدهای پلاسمایی نوع بسته را می توان به اسپارک گپ های گازی، ایگنترون ها،تایترون ها و... اشاره کرد که برای بررسی جزئیات بیشتر می توان به منابع مراجعه کرد]21,22[
استفاده از کلیدهای حالت جامد پلاسمایی به صورت کمپکت با تجهیزات جانبی(مدارات کنترلی و ...) با توجه به کارایی مطلوب آن در بازه زمانی طولانی ، دامنه کاری وسیع آن و عمر مفید بالای کلیدها با توجه به نرخ خرابی کم در این کلیدها که منجر به افزایش قابلیت اطمینان و راندمان سیستم های توان پالسی می شود، روبه افزایش است. با این حال قابلیت های فعلی این کلیدها از جمله : ولتاژ شکست و حداکثر جریان عبوری، هنوز هم قادر به تحمل پارامترهای کلیدی سیستم های توان پالسی بزرگ و پیچیده مورد استفاده در پلاسما نمی باشند. جدول (1-6) به طور خلاصه به برخی از پارامتر های اصلی کلیدهای گازی نوع بسته پلاسمایی مانند اسپارک گپ ها و ... هم چنین برای کلیدهای حالت جامد مانند تریستور، IGBT و ماسفت اشاره می شود.
ردیف
نوع کلید حداکثر جریان (کیلو آمپر) ولتاژ شکست
(کیلو ولت) افت ولتاژ مجاز
(ولت)
1 اسپارک گپ 1000-10 100 20
2 ایگنترون 10-1 30 150
3 تایترون 100-5 35 200
4 تریستور 50-1 5-1 2
5 IGBT 1 1 3
6 ماسفت 0.1 1 1
جدول(1-6) کلیدهای نیمه هادی با حالت گازی در منابع توان پالسی مورد استفاده در پلاسما
در سیستم های توان پالسی بستن کلیدهای پلاسمایی که در حالت عادی باز هستند، برای تحریک مدار به کار می رود. شکل کلی این نوع کلیدها به صورت دو الکترود با یک عایق در میان آن می باشد. به طور کلی تحریک کلیدها با افزایش بار حامل عایق های میانی آن به نوع کلید و ساختار گوناگون آن بستگی دارد. با توجه عملکرد بار حامل در این کلیدها، حالت شکست یا عمل بسته شدن کلید انجام می پذیرد.
4.4.1 شبکه های شکل دهی پالس
در سیستم توان پالسی پلاسما دو هادی الکتریکی که بین آنها ولتاژ اعمال شود و بتواند جریان الکتریکی را انتقال دهد، به عنوان خط انتقال در نظر گرفته می شود. در بسیاری موارد هیچ تمایز مشخصی بین خط انتقال و یک مدار الکتریکی عادی وجود ندارد. که در این حالت دو عامل طول هادی ها و طول موج ولتاژ اعمالی تعیین کننده است. اگر طول موج ولتاژ اعمال شده در مقایسه با طول هادی ها بسیار بلند باشد می توان دو هادی را به عنوان یک مدار الکتریکی در نظر گرفت در غیر این صورت باید آنها را در قالب خط انتقال مورد تحلیل قرار داد. خطوط استاندارد انتقال در سیستم های توان پالسی، که به صورت تجاری تولید می شوند و معمولا از نوع هم محور هستند، دارای امپدانس 50 اهم هستند. البته دست یابی به دیگر امپدانس ها با ایجاد خطوط شکل دهی پالس نواری امکان پذیر است. اگر این خطوط در ولتاژ های بالایی قرارگیرند این روش، هزینه بر و مشکل است. مشکل دیگر مربوط به سرعت انتشار امواج الکترومغناطیسی در خطوط انتقال است. می دانیم که سرعت انتشار متناسب با نفوذپذیری نسبی یا ثابت دی الکتریک ماده ای است که برای عایق کاری بین دو رسانای سازنده خط به کار برده می شود. ماده ای که به طور متداول مورد استفاده قرار می گیرد، نوعی پلاستیک پلیمر مانند پلی پروپیلن است که ثابت دی الکتریک آن تقریبا کوچک است. از این رو سرعت انتشار موج بر روی این خط در حدود 108*2 متر در ثانیه و معادل 20 سانتیمتر در هر نانو ثانیه است. بنابراین برای ایجاد یک پالس به طول یک میکرو ثانیه با استفاده از یک خط شکل دهنده پالس، به خط انتقالی معادل 100 متر نیاز خواهد بود. برای تولید پالس های طولانی استفاده از این روش امکان پذیر نیست مگر آن که از خط های نواری که با موادی با ثابت دی الکتریک بالا عایق بندی شده اند، استفاده گردد.
یکی از روش های تحلیل و بررسی شبکه های شکل دهی پالس، شبیه سازی خط با استفاده از شبکه نردبانی متشکل از سلف و خازن ها است که در شکل (1-10) نشان داده است. انرژی آزاد شده از این خط که ناشی از پالس های مربعی است معمولا در خازن های شبکه نردبانی ذخیره می شوند.این شبکه به عنوان یک شبکه تغذیه کننده ولتاژ نیز شناخته می شود. با توجه به امکان ذخیره سازی مغناطیسی انرژی در القاگر های شبکه، در این حالت به آن شبکه تغذیه کننده جریان نیز می گویند. اطلاعات بیشتر در مورد مشخصات امپدانسی، معادلات تبدیل و ویژگی های انتشار و... در یک شبکه نردبانی LC را می توان درمرجع ]23[ مشاهده کرد.

شکل (1-10)آرایش مختلفی از شبکه نردبانی مورد استفاده در شبکه های شکل دهی پالس
5.4.1 خط انتقال بلوملین
یک ایراد مهم شبکه های شکل دهی پالس در سیستم توان پالسی پلاسما آن است که در شرایط تطبیق امپدانس ، دامنه پالس روی بار الکتریکی برابر با نصف دامنه ولتاژ شارژ کننده است. این مشکل را می توان با استفاده از خط شکل دهنده پالس بلوملین برطرف کرد. یک خط انتقال بلوملین از دو خط انتقال ساده که به یکدیگر متصل شده اند، تشکیل می گردد. این دو خط به صورت موازی باردار و به صورت سری تخلیه می شوند. در صورت صحت اتصالات در ورودی و بار ، دامنه ولتاژ خروجی در آنها تا دو برابر سطح ولتاژ خروجی یک خط انتقال خواهد رسید. خط بلوملین را می توان به صورت استوانه ای یا به شکل صحفه ای موازی ساخت. در بیشتر کاربردهای پالس های قدرت بالا، فضای بین استوانه ها با نوعی دی الکتریک مایع ، نظیر روغن یا آب پر می شود. یک کلید در بین استوانه های میانی و داخلی برای کنترل ولتاژ خط وجود داردکه در شکل(1-11) نشان داده شده است. شعاع استوانه ها را به گونه ای انتخاب می شوند که امپدانس مشخصه در تمام طول خط یکنواخت باشد و ولتاژ مورد نیاز تامین گردد. معمولا بار الکتریکی بین استوانه های داخلی و خارجی متصل می شود و تغذیه ولتاژ ورودی از طریق استوانه میانی صورت می گیرد. به طور ایده آل خط بلوملین را به گونه ای طراحی می کنیم که دارای ولتاژ و جریان خروجی زیاد ،با راندمان انتقال انرژی وتوان نزدیک به یک باشدکه در نتیجه باعث افزایش قابلیت اطمینان و کاهش ابعاد آن می شود.

شکل (1-11) آرایش خط انتقال بلوملین
5.1 اهداف مورد بررسی در این پژوهش
بهبود قابلیت اطمینان و راندمان در منابع توان پالسی با توجه به کاربرد آن در پلاسما ارتباط اساسی با مشخصات سیستم های توان پالسی دارد. اخیرا با توجه به استفاده متعدد از منابع توان پالسی در حوزه های صنعتی و هسته ای ، تحقیقات و بررسی زیادی در مورد استفاده بهینه فناوری توان پالسی صورت گرفته است. با توجه به مطالعات صورت گرفته در این زمینه ، این پایان نامه، یک توپولوژی جدید مبتنی بر مبدل باک – بوست مثبت را پیشنهاد می کند که می توان با مدل کردن یک منبع جریان در منابع توان پالسی، امکان کنترل شدت جریان را در حالت تغذیه بارداشته باشیم. بخش اصلی در این آرایش استفاده از کلید های نیمه هادی با ولتاژ کاری مناسب برای تولید ولتاژ های بالا می باشد. در خروجی این توپولوژی تعداد مشخصی از کلید – دیود – خازن به منظور تبادل انرژی منبع جریان با توجه به نوع ولتاژ و تولید توان پالسی کافی با مقدار ولتاژی مناسب طراحی شده است. با شبیه سازی در محیط نرم افزاری MATLAB/SIMULINK، کارایی و قابلیت اجرا بودن این توپولوژی به اثبات رسیده است که بهبود راندمان و قابلیت اطمینان منبع توان پالسی از مزایای کاربردی و مهم آن است
6.1 نتیجه گیری
در این فصل ابتدا به بررسی فناوری سیستم های توان پالسی و حوزه های کابردی آن پرداخته شد و سپس جهت آشنایی با محیط پلاسما منحنی ولتاژ- جریان مورد تحلیل قرار گرفت و در انتها تکنولوژی های به کار رفته در منابع توان پالسی پلاسما با توجه به آرایش ساختاری شان ارائه شد. با توجه به اهمیت بهبود راندمان و قابلیت اطمینان منابع توان پالسی ، در فصل بعدی توپولوژی های موجود برای منابع توان پالسی پلاسما مورد بررسی و تحلیل قرار می گیرد و توپولوژی پیشنهادی با توجه به تاثیر آن در افزایش قابلیت اطمینان و راندمان انتخاب می شود.

فصل دوم

بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما

1.2 مقدمه
استفاده از منابع توان پالسی در فرآیندهای مختلف پلاسما با توجه به ارتباط برقرار شده بین آنها رو به افزایش است. با توجه به تحقیقات به عمل آمده در این مورد، طراحی منابع توان پالسی با هدف کاهش تلفات و افزایش راندمان می تواند تاثیرات کلیدی درکاربردهای پلاسما (از جمله تصفیه سازی مایعات و...) بگذارد. برای درک بهتر از ماهیت منابع توان پالسی و اثرات متقابل آن برحوزه های توسعه یافته پلاسما، با طراحی یک منبع توان پالسی که متشکل از المان های الکترونیک قدرت می باشد می توان روند استفاده از منابع توان پالسی در پلاسما را ارتقا داد.
2.2 توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
تکنولوژی کلیدهای قدرت بالا با توجه به نوع کاربرد آن در منابع توان پالسی پلاسما و نسبت به تغییر و تحولات صورت گرفته در عرصه فناوری قطعات نیمه هادی الکترونیک قدرت، متفاوت و گوناگون هستند. تریستور IGBT,،ماسفت و ... نمونه ای از کلیدهای قدرتی هستند که به عنوان کلیدهای نیمه هادی حالت جامد شناخته می شوند. در منابع توان پالسی پلاسما برای داشتن dv/dt بالا، نیاز به کلید زنی سریع (کلیدزنی آن حالت گذرای کوچکی داشته باشد) است و این مشخصه ، نقش کلیدی در شکل گیری توپولوژی منابع توان پالسی پلاسما دارد. درکلیدهای قدرت بالا مورد استفاده در سیستم های توان پالسی، بازه زمانی کلید زنی با حالت گذرا و روند جابجایی و انتقال سیگنال عبوری آن از نانو ثانیه تا میکرو ثانیه است. کلیدزنی گذرا مستقیما برروی کارایی و قابلیت اطمینان سیستم های توان پالسی تاثیر می گذارد و از هدایت الکتریکی ادوات نیمه رسانا سیستم جلوگیری می کند. اکثر منابع توان پالسی مورد استفاده در پلاسما مشخصات مقاومتی – خازنی دارند. بنابراین در توپولوژی پیشنهادی یک منبع جریان برای تامین بارها ضروری است. در این فصل به بررسی توپولوژی های موجود و روش های کنترلی آن می پردازیم :
1.2.2 توپولوژی مبتنی بر مولد مارکس
معمولا ازکلیدهای گازی اسپارک گپ مغناطیسی در کلید زنی منابع توان پالسی پلاسما مورد استفاده قرار می گرفت اما اخیرا با توجه به استفاده گسترده از تکنولوژی حالت جامد در مولدهای مارکس توان پالسی، عملکرد سیستم را از لحاظ راندمان و قابلیت اطمینان بهبود بخشیده است. شکل (2-1) نمونه ای از مولد مارکس را در در حالت شارژ و دشارژ نشان داده است. برای آشنایی با کارایی این توپولوژی در پلاسما به چند مورد از کاربردهای آن با شرح توضیحات اشاره می شود. از مولد مارکس در این توپولوژی می توان به عنوان منبع تحریک در پلاسما استفاده کرد. مدار ارائه شده در این حالت از دو مولد مارکس حالت جامد با اتصال موازی با استفاده از ترانزیستورهای دوقطبی به عنوان کلید بسته استفاده می شود. در این توپولوژی زمان بازدهی ترانزیستورهای دوقطبی در حالت شکست بهمنی به صورت سریع افزایش می یابد. در این طراحی با توجه به پلارتیه مثبت و منفی پالس ها به راحتی می توان تغییراتی از جمله : افزایش مقدار بازدهی یا کاهش مقدار ولتاژ خروجی را داشته باشیم. در مطالعه دیگری، توپولوژی مبتنی بر مولد مارکس، شامل یک مدولاتور مارکس متشکل از IGBT های مجزا و مدار تشدید پالس مغناطیسی است که برای فشرده سازی پالس خروجی مارکس و کاهش تاثیر نسبتا تدریجی فعالیت IGBT در مدولاتور مارکس است. استفاده از این توپولوژی درسطح ولتاژی مختلف برای منابع توان پالسی پلاسما دارای شاخصه های کلیدی است که به طور خلاصه می توان به آن اشاره کرد: در ولتاژ 1.3 کیلوولت، استفاده از یک تقویت کننده ولتاژ بالا به همراه مولد مارکس متشکل ازکلیدهای ماسفت الزامی است. در ولتاژ 2000 ولت، نیاز به مولد مارکس 20 طبقه است که در هر طبقه آن شامل مجموعه ای از IGBT و دیود و خازن است.
فناوری مولدهای مارکس را می توان با جایگزین کردن کلیدهای حالت جامد مانند IGBT ها و مجموعه های دیود و خازن متصل به آن ، به جای کلید های گازی اسپارک گپ در سیستم های توان پالسی پلاسما ارتقا بخشید که در نتیجه سیستم های توان پالسی ارائه شده دارای ویژگی هایی از قبیل سادگی و فشردگی ابعاد، قابلیت اطمینان بالا و عمر مفید طولانی می باشد. با توجه به مزایای زیاد استفاده از توپولوژی مبتنی بر مولد مارکس ، می توان بسیاری از کاربردهای ولتاژ بالای پلاسما را به این توپولوژی اختصاص داده شود]24[.

شکل (2-1) الف) نمونه ای از توپولوژی مبتنی بر مولد مارکس ،ب) حالت شارژ مولد ، ج) حالت دشارژ
2.2.2 توپولوژی مبتنی بر مبدل های Dc - Dc
در میان تمام توپولوژی های مورد استفاده در سیستم های توان پالسی پلاسما توسط ادوات الکترونیک قدرت، توپولوژی مبتنی بر مبدل هایdc-dc از اهمیت ویژه ای برخوردار است. تغییرات سطح ولتاژی مناسب یکی از نیازهای اساسی در بسیاری از کاربردهای منابع توان پالسی پلاسما می باشد. برای بسیاری از دستگاه ها و مدارات کنترلی سیستم توان پالسی پلاسما یک ترانسفورماتور که عهده دار تبدیل ولتاژ سیستم می باشد، مورد نیاز است. استفاده از ترانسفورماتورها به همراه مبدل های dc-dc را می توان به عنوان یک روش عملی و موثر برای افزایش قابلیت اطمینان و راندمان سیستم های توان پالسی پلاسما ارائه کرد. حالت های کلید زنی منابع توان پالسی به عنوان یک روش کاربردی برای بارهای غیر خطی پلاسما شناخته شده است. از مبدل های dc-dc نیز می توان به عنوان رگولاتور در حالت کلیدزنی منابع توان پالسی استفاده کرد تا یک ولتاژ dc که معمولا به صورت تنظیم نشده است را به یک ولتاژ خروجیdc تنظیم شده تبدیل کند. عمل رگولاتوری درحالت کلیدزنی، توسط فناوری مدولاسیون پهنای پالس(PWM) در یک فرکانس ثابت انجام می شود و المان های کلیدزنی معمولا یک ترانزیستور دو قطبی یا ماسفت است. حالت کلیدزنی گذرا، اثرات زیان باری بر کیفیت توان و راندمان منابع توان پالسی دارد. برای سنجش کیفیت توان منابع توان پالسی که به یک شبکه توزیع شده پلاسما متصل است باید هارمونیک تزریقی جریان و توان راکتیو سیستم را درنظر گرفت. برای افزایش کیفیت توان و کاهش اثرات هارمونیک های جریان سیستم توان پالسی، می توان از تنظیم کننده های ضریب قدرت در انواع مختلف (اکتیو و راکتیو) استفاده نمود.
توپولوژی مبتنی بر مبدل هایdc-dc در منابع توان پالسی پلاسما، شامل مبدل های: باک، بوست، باک- بوست و کاک است که می تواند به صورت تک کاناله یا چند کاناله مورد استفاده قرار گیرد]25[. مشخصات این مبدل ها به صورت خلاصه به شرح ذیل می باشد:
1.2.2.2 مبدل باک
در یک مبدل باک، ولتاژ خروجی کمتر از ولتاژ ورودی است. شکل(2-2) مدار معادل آن را نشان می دهد. عمل مداری مبدل باک در دو مرحله کلیدزنی طراحی و بررسی می شود.

شکل(2-2)مبدل باک
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان ورودی که در حال افزایش است از داخل سلف (L) و خازن(C) و مقاومت بار (R) به جریان می افتد.
مرحله دوم: هنگامی آغاز می شود که ترانزیستور SW در t=t1 قطع می شود. دیود هرزگرد(D) به دلیل انرژی ذخیره شده در سلف همچنان هدایت می کند و جریان سلفی از سلف، خازن، بار و دیود هرزگرد(D) می گذرد. با کاهش جریان سلفی، ترانزیستور SW مجددا در سیکل بعدی وصل می شود.
مبدل باک ساده بوده زیرا فقط به یک ترانزیستور احتیاج دارد و راندمان بالایی دارد. مقدار di/dt جریان بار توسط سلف (L) محدود می شود. اما جریان ورودی متغیر بوده و معمولا به یک فیلتر ورودی بالانس کننده احتیاج است. این فیلتر یک پلارتیه برای ولتاژ خروجی و جریان خروجی یکسو شده فراهم می کند. در وضعیتی که احتمال اتصال کوتاه شدن مسیر دیود وجود داشته باشد مدار حفاظت نیز لازم است. مدار معادل وضعیت مبدل باک در دو مرحله کلیدزنی مذکور و شکل موج های جریان – ولتاژ آن در شکل (2-3) نشان داده شده است

شکل(2-3)شکل موج های ولتاژ – جریان و مدارمعادل مبدل باک : (الف) کلید وصل (ب) کلید قطع
2.2.2.2 مبدل بوست
در یک مبدل بوست، ولتاژ خروجی از ولتاژ ورودی بیشتر است. شکل(2-4) مدار معادل آن را نشان می دهد.عمل مداری این مبدل در دو مرحله قابل بیان است.

شکل(2-4)مبدل بوست
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان ورودی شروع به زیاد شدن کرده و از سلف (L) و ترانزیستور SW می گذرد.
مرحله دوم: هنگامی آغاز می شودکه ترانزیستور SW درt=t1 قطع می شود. جریانی که تاکنون از ترانزیستور SW عبور می کرد، حال از سلف (L)، خازن (C)، دیود هرزگرد(D) و بار می گذرد. با کاهش جریان سلفی در سیکل بعدی ترانزیستور SW مجددا وصل می شود و انرژی ذخیره شده در سلف (L)، به بار منتقل می شود. مدار معادل وضعیت مبدل افزاینده در دو مرحله کلیدزنی مذکور و شکل موج های جریان – ولتاژ آن در شکل (2-5) نشان داده شده است.
مبدل بوست می تواند ولتاژ خروجی را بدون کمک ترانسفورماتور افزایش دهد و چون در آن فقط یک ترانزیستور وجود دارد، راندمان بالایی دارد. جریان ورودی ، پیوسته است اما پیک جریان گذرنده از ترانزیستور قدرت، مقدار بزرگی دارد. ولتاژ خروجی نیز حساسیت زیادی نسبت به تغییرات سیکل کاری مبدل دارد و از این رو ممکن است پایدار ساختن مبدل، دشوار باشد. هم چنین ترانزیستور با بار موازی شده است ، حفاظت کردن از آن در هنگام اتصال کوتاه مشکلاتی دارد.
در حالت کلیدزنی منابع توان پالسی پلاسما، می توان از یک مبدل بوست بین پل یکسوساز و خازن های ورودی مدار استفاده کرد. این مبدل سعی می کند تا ولتاژ خروجیdc سیستم ثابت باشد، تا زمانی که فرکانس با ولتاژ خط متناسب است، جریان عبوری نیز پیوسته است.

شکل(2-5)شکل موج های ولتاژ – جریان و مدارمعادل مبدل بوست : (الف) کلید وصل (ب) کلید قطع
در حالت دیگر، ارایه ولتاژ خروجی مطلوب با توجه به ولتاژ dc سیستم می باشد که این روش نیاز به افزودن کلیدهای نیمه هادی با روش های کنترلی مطلوب است که المان های آن در ابعاد کوچکتر و کمپکت ارائه می شود.
3.2.2.2 مبدل باک - بوست
مبدل باک – بوست، ولتاژ خروجی تولید می کند که می تواند کوچکتر یا بزرگتر از ولتاژ ورودی باشد. پلارتیه ولتاژ خروجی، مخالف پلارتیه ولتاژ ورودی می باشد. هم چنین این مبدل، به مبدل وارون ساز یا تغذیه معکوسنیز معروف است]26[.که شکل (2-6) مدار معادل آن را نشان می دهد. عمل مداری این مبدل در دو مرحله قابل بیان است:

شکل(2-6)مبدل باک - بوست
مرحله اول : هنگامی آغاز می شود که ترانزیستور SW وصل بوده و دیود هرزگرد(D) بایاس معکوس است. جریان ورودی که در حال افزایش است از سلف (L) و ترانزیستور SW می گذرد.
مرحله دوم : هنگامی آغاز می شود که ترانزیستور SW قطع است. جریانی که از ترانزیستورSWعبور می کرد، اکنون از سلف (L)، خازن (C)، دیود هرزگرد(D) و بار می گذرد. اکنون انرژی ذخیره شده در سلف (L)، به بار منتقل می شود و جریان سلف کاهش می یابد تا این که ترانزیستور SWدر سیکل بعد مجددا وصل شود. مدار معادل وضعیت مبدل باک - بوست در دو مرحله کلیدزنی مذکور و شکل موج های جریان - ولتاژ آن در شکل (2-7) نشان داده شده است.
مبدل باک – بوست این امکان را می دهد که بدون در اختیار داشتن ترانسفورماتور، پلارتیه ولتاژخروجی معکوس شود، راندمان بالایی دارد و حفاظت خروجی در مقابل اتصال کوتاه نیز به سادگی امکان پذیر است اما جریان ورودی متغیر بوده و مقدار جریان عبوری از ترانزیستور مدار نیز مقدار بزرگی است. بر خلاف مبدل های باک و بوست ، این مبدل هنگامی که بدون ایزولاسیون مورد استفاده قرار گیرد در خروجی مبدل ولتاژی با پلارتیه منفی قرار می گیرد.
البته می توان یک توپولوژی جدید بر اساس مبدل باک – بوست با پلارتیه ولتاژی مثبت در خروجی را مطرح کرد. در شکل (2-8) مدار معادل مبدل باک – بوست مثبت نشان داده است. یک مبدل باک - بوست مثبت می تواند به صورت تک خروجی یا چند خروجی باشد که آرایش آن شامل مبدل های باک و بوست با اتصال طبقاتی است.

شکل(2-7)شکل موج های ولتاژ - جریان و مدارمعادل مبدل باک - بوست : (الف) کلید وصل (ب) کلید کلیدقطع

شکل(2-8) مبدل باک – بوست مثبت
4.2.2.2 مبدل کاک
آرایشی که شامل ترکیب مبدل باک– بوست با اتصال سری، که ولتاژ خروجی بزرگتر یا کوچکتر از ولتاژ ورودی است و پلارتیه ولتاژ خروجی مخالف ولتاژ ورودی است، به نام مبدل کاک شناخته می شود. که به نام مخترع خود از انیستیتوی تکنولوژی کالیفرنیا نام گذاری شده است]27[. شکل (2-9) مدار معادل آن را نشان داده است. عمل مداری این مبدل در دو مرحله قابل بیان است:

شکل (2-9)مبدل کاک (Cuk)
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان عبوری از سلف (L1) افزایش می یابد در همان موقع ولتاژ خازن (C1)، دیود هرزگرد(D) را در حالت بایاس معکوس قرار داده و آن را قطع می کند. بنابراین انرژی خازن(C1) به مداری که توسط خازن (C2)، سلف (L2) و بار تشکیل شده تحویل داده می شود.
مرحله دوم : هنگامی آغاز می شود که ترانزیستور SW در t=t1 قطع می شود. خازن (C1) از منبع ورودی شارژ شده و انرژی ذخیره شده در سلف (L2)، به بار منتقل می شود. دیود هرزگرد(D) در حالت بایاس مستقیم قرار می گیرد و همزمان با ترانزیستور SW در آن کلید زنی صورت می گیرد. شکل (2-10)مدار معادل حالت کلید زنی مبدل کاک را نشان داده است.

شکل (2-10)مدار معادل مبدل کاک در حالت های کلید زنی : الف) حالت وصل کلید ب) حالت قطع کلید
مبدل کاک بر اساس خاصیت انتقال انرژی خازنی ساخته شده، درنتیجه جریان ورودی پیوسته می باشد. تلفات کلیدزنی کم و راندمان زیادی دارد. درحالتی که کلید وصل است جریان هر دو سلف از آن عبور می کند که پیک جریان کلید را افزایش می دهد. شکل (2-11)، شکل موج های جریان – ولتاژ مبدل کاک را نشان داده است.

شکل (2-11) شکل موج های جریان و ولتاژ مبدل کاک در حالت های کلید زنی
5.2.2.2 مبدل های تشدیدی با کلیدزنی نرم
یک دسته جدید از مبدل های dc-dc درحوزه الکترونیک قدرت با نام مبدل های تشدیدی با کلیدزنی نرم شناخته شده اند. کلیدزنی نرم بدین معنی است که در یک یا چند کلید به کار رفته در مبدلdc-dc، تلفات کلیدزنی در حالت قطع و وصل شدن کلید حذف شده است. نوع دیگری از کلیدزنی که مطرح می شود، کلیدزنی سخت است که در آن هم حالت قطع و وصل کلیدهای قدرت در سطوح ولتاژ و جریان بالا انجام می شود. بسیاری از تکنیک های کلیدزنی نرم برای اصلاح رفتار کلیدزنی مبدل های تشدیدی dc-dc وجود دارد. دو تکنیک مهم برای رسیدن به کلیدزنی نرم وجود دارد: کلید زنی جریان صفر و کلید زنی ولتاژ صفر.
در ساختار مبدل تشدیدی با کلید زنی نرم، یک شبکه تشدیدLC اضافه می گردد تا شکل موج جریان یا ولتاژ ادوات کلیدزنی را به صورت یک موج نیمه سینوسی شکل دهد تا یک شرط ولتاژ صفر یا جریان صفر را در مدار ایجاد کند. یک روش ایجاد نمودن یک پدیده تشدید کامل در این مبدل ها، استفاده از ترکیبات سری یا موازی عناصر تشدید می باشدکه برای dc-dc کردن آن از طریق یک طبقه اضافی یعنی طبقه تشدید، که در آن سیگنال dc به سیگنال ac فرکانس بالا تبدیل می گردد، انجام می گیرد. از نظر مداری، یک مبدل تشدید dc-dc را می توان با سه بلوک مداری شرح داد.که شکل(2-12) نشان داده است.
ولتاژ خروجی dc
ولتاژ ورودی dc
یکسوساز ac-dc
حالت تشدید
وارون ساز dc-ac

شکل (2-12) مبدل تشدید با کلیدزنی نرم
نوع وارون ساز در مبدل های تشدیدی با کلید زنی نرم، از انواع مختلف ساختار های شبکه کلیدزنی به دست می آید. حالت تشدید،که به عنوان یک بلوک میانی بین ورودی و خروجی مبدل به کار گرفته می شود، معمولا با یک شبکه دارای فیلتر فرکانس، ترکیب می گردد. علت استفاده از این شبکه، تنظیم نمودن جریان شبکه از منبع به بار است. از مبدل های تشدید با کلیدزنی نرم می توان در مشعل های پلاسما با سطح توانی بالاتر از 30 کیلووات، استفاده کرد. از مبدل های تشدید سری با کلیدزنی ولتاژ صفر نیز می توان در منابع توان پالسی ولتاژ بالا استفاده کرد. مزیت توپولوژی مبتنی بر مبدل های تشدیدی با کلیدزنی نرم ، شامل کموتاسیون طبیعی کلیدهای قدرت پلاسمایی می باشد که منجر به کاهش تلفات قدرت کلیدزنی، افزایش راندمان و فرکانس کلیدزنی سیستم های توان پالسی می شود و در نتیجه کاهش اندازه ، وزن سیستم و کاهش احتمالی تداخلات الکترومغناطیسی را به دنبال دارد. عیب مهم تکنیک های کلید زنی ولتاژ یا جریان صفر در مبدل های تشدید آن است که برای تنظیم خروجی، نیاز به کنترل فرکانس متغیر است. که به واسطه آن مدار کنترلی پیچیده تر می شود و هارمونیک های ناشی از تداخلات الکترومغناطیسی ناخواسته که در تغییرات زیاد بار تولید می شود بسیار نامطلوب است.
با بررسی مقالات منتشر شده در مورد توپولوژی مبتنی بر مبدل های dc-dc توسط ادوات الکترونیک قدرت با توجه به انواع مبدل ها، در کاربردهای مختلف منابع توان پالسی پلاسما، می توان به نتایج جامعی در این باره دست یافت که چکیده آن در جدول های مقایسه ای (2-1) و (2-2) آمده است]28[.
جدول(2-1) شاخص های کلیدی مبدل های dc - dc
ردیف نوع مبدل
مبدل
باک
مبدل بوست
مبدل
باک- بوست
مبدل
باک- بوست مثبت مبدل
کاک
شاخصه ها 1 سطح ولتاژ خروجی کمتر از ولتاژ ورودی بیشتر از ولتاژ ورودی هر دو حالت
هردو حالت هر دو حالت
2 پلارتیه خروجی موافق ورودی موافق ورودی مخالف ورودی مخالف ورودی مخالف ورودی
3 سطح عایقی کم کم زیاد زیاد کم
5 کنترل اضافه جریان وجود ندارد وجود ندارد وجود دارد وجود دارد وجود دارد
6 قابلیت اطمینان کم متوسط متوسط بالا متوسط
7 راندمان متوسط متوسط بالا بالا متوسط
جدول(2-2) شاخص های کلیدی مبدل های تشدید با کلید زنی نرم
ردیف شاخصه ها حالت کلیدزنی اولیه حالت کلیدزنی ثانویه سطح ولتاژ خروجی راندمان
نوع مبدل وصل قطع وصل قطع کم زیاد کم باری بار کامل
1 مبدل تشدید NV ZVS ZVS ZVS di/dt- زیاد ___ * کم بالا
2 مبدل تشدید نیم پل ZVS ZVS ZVS ZCS ___ * متوسط بالا
3 مبدل تشدید دو برابر کننده جریان نیم پل سخت
ZCS ZVS ZVS زیاد
di/dt * __ متوسط بالا
4
مبدل تشدید دو برابر کننده جریان تمام پل ZVS
سخت
ZVS ZVS زیاد
di/dt * __ کم بالا
5 مبدل تشدیدی ترکیبی ZVZC با ترانسفورماتور پالسی ZVS


ZVS/ZCS ZVS ZCS __ * کم بالا
6 مبدل تشدید ZCS ZCS ZVS ZVS ZCS ___ * بالا کم
7 مبدل شبه تشدید ZCS ZVS ZVS ZCS ___ * کم بالا
3.2.2 توپولوژی مبتنی بر تقویت کننده های ولتاژ
اجزای اصلی توپولوژی مبتنی بر تقویت کننده های ولتاژ، خازن و دیود هستند. این توپولوژی با

Text of Final Project -فایل پروژه - ریسرچ-.Pdf)

فصل دوم: مدلسازی ماشینهای سنکرون21
-1-2 پیشگفتار22
-2-2 ساختار فیزیکی ماشین سنکرون22
-1-2-2 ساختار روتور و استاتور22
-2-2-2 سیم بندی های ماشین سنکرون 23..............
-3-2 توصیف ریاضی ماشین سنکرون 23..............................
-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون 23...............
-2-3-2 معادلات حرکت 28...................................................................................................
-4-2 پارامترهای ماشین سنکرون 29....................................................................
-1-4-2 پارامترهای اساسی29
-2-4-2 پارامترهای عملیاتی 30........................................
-3-4-2 پارامترهای دینامیکی31
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای اساسی
ماشین31
-1-5-2 محاسبه راکتانسهای ماشین 33..................................................................................
-2-5-2 محاسبه ثابت زمانی های ماشین35
5
-6-2 مراتب مختلف مدلهای ماشین سنکرون بر اساس مدل دو محوری پارک37
فصل سوم: بررسی روشهای شناسایی پارامترهای دینامیکی ژنراتور سنکرون..39
-1-3 مروری بر پیشینه شناسایی پارامترهای ژنراتورهای سنکرون 40..............................
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون 42................................
-1-2-3 روشهای کلاسیک اندازه گیری پارامترهای دینامیکی ژنراتورهای شبکه42
-2-2-3 روشهای جدید تعیین پارامترهای دینامیکی ژنراتورهای سنکرون43
فصل چهارم: شناسایی بلادرنگ پارامترهای ژنراتور سنکرون با استفاده از شبکه عصبی
مصنوعی ....45
-1-4 کلیات و اصول کارشبکه های عصبی 46....................................
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها46
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی.48
-2-2-4 تست شبکه عصبی تخمینگر50
-3-4 نتایج 51...................................................................
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر53
-2-3-4 بررسی تحلیلی نتایج .89
فصل پنجم: نتیجهگیری و پیشنهادات ...97
ضمیمهها100
ضمیمهالف- طرحهای بکار گرفته شده برای شبیهسازی ژنراتور سنکرون101
ضمیمهب- نمودار پارامترهای بکار گرفته شده در شبیهسازی ژنراتور سنکرون..105
منابع و ماخذ.110
6
فهرست جدول ها
عنوان شماره صفحه
1-2 : مراتب مختلف مدلهای ژنراتور سنکرون 24
1-4 : فهرست پارامترهای دینامیکی ژنراتورهای سنکرون 38
2-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه فراوانی خطا 81
3-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه دامنه خطا 82

7
فهرست شکلها
عنوان شماره صفحه
: 1-1 نمای کلی فرایند ارزیابی و بهبود سیستمهای قدرت 3
: 1-2 مدارهای استاتور و روتور ماشین سنکرون 9
:2-2 مدار معادل ماشین بر اساس تئوری پارک 13
:3-2 توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار 18
:4-2 مدار معادل ژنراتور سنکرون در حالت ماندگار 19
:5-2 مدار معادل ماشین سنکرون در دوره گذرا 20
:6-2 مدار معادل ماشین سنکرون طی دوره زیر گذرا 20
:7-2 مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز 21
: 8-2 مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز 22
: :1-4 طرح کلی سلول عصبی انسان 32
:2-4 شکل کلی سلول عصبی مصنوعی 33
:3-4 ساختار شبکه عصبی توسعه یافته 33
:4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون 35
:5-4 آلگوریتم آموزش شبکه عصبی 36
:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی 37
:7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd" 39
:8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 39
:9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 40
:10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 40
:11-4 هیستوگرام خطای شبکه عصبی در مرحله تست 41
:12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 41
:13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 42

8
:14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 42
:15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 43
:16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 43
:17-4 هیستوگرام خطای شبکه عصبی در مرحله تست 44
:18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 44
:19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 45
:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 45
:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 46
:22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 46
:23-4 هیستوگرام خطای شبکه عصبی در مرحله تست 47
:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 47
:25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq" 48
:26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 48
:27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 49
:28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 49
:29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 50
:30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 50
:31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 51
:32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 51
:33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 52
:34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq" 52
:35-4 هیستوگرام خطای شبکه عصبی در مرحله تست 53
:36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 53
:37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 54
:38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 54
:39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 55
9
:40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 55
:41-4 هیستوگرام خطای شبکه عصبی در مرحله تست 56
:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 56
:43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td" 57
:44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 57
:45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 58
:46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 58
:47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 59
:48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 59
:49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 60
:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 60
:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 61
:52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 61
:53-4 هیستوگرام خطای شبکه عصبی در مرحله تست 62
:54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 62
:55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 63
:56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 63
:57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 64
:58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 64
:59-4 هیستوگرام خطای شبکه عصبی در مرحله تست 65
:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 65
:61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq" 66
:62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 66
:63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 67
:64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 67
:65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 68
10
:66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 68 :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 69 :68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 69 :69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 70 :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq" 70 :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست 71 :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 71 :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 72 :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 72 :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 73 :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 73 :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست 74 :78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 74 ض-:1 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 88 ناگهانی تحریک ض-:2 طرح شبیه سازی ژنراتور سنکرون متـصل بـه شـین بینهایـت بـا اغنـشاش 89 اتصالکوتاه درترمینال ژنراتور ض-:3 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 90 ناگهانی توان ورودی ض-:4 تغییرات مقادیر Xd بکار گرفته شده 92 ض-:5 تغییرات مقادیر Xd' بکار گرفته شده 92 ض-:6 تغییرات مقادیر Xd" بکار گرفته شده 92 ض-:7 تغییرات مقادیر Xq بکار گرفته شده 93 ض-:8 تغییرات مقادیر Xq" بکار گرفته شده 93 ض-:9 تغییرات مقادیر Xl بکار گرفته شده 93 ض-:10 تغییرات مقادیر Td' بکار گرفته شده 94 ض-:11 تغییرات مقادیر Td" بکار گرفته شده 94 11
ض-:12 تغییرات مقادیر Tq" بکار گرفته شده 94
ض-:13 تغییرات مقادیر Rs بکار گرفته شده 95
ض-:14 تغییرات مقادیر WR بکار گرفته شده 95
ض-:15 تغییرات مقادیر H بکار گرفته شده 95
12
چکیده پایاننامه:
این پروژه روشی نو را برای بکارگیری رؤیتگرهای شبکه عـصبی در جهـت شناسـایی و تعیـین پارامترهـای دینامیکی ژنراتورهای سنکرون با استفاده از اطلاعات بهرهبرداری ارائه کرده است. اطلاعات بهـرهبـرداری از طریق اندازهگیریهای بلادرنگ بعمل آمده در قبال اغتشاشات حوزه بهرهبرداری فراهم مـیشـود. دادههـای آموزشی مورد نیاز شبکه عصبی از طریق شبیهسازیهای غیرهمزمـان بهـرهبـرداری از ژنراتـور سـنکرون در محیط یک ماشین متصل به شین بینهایت فراهم شده است. مقـادیر نمونـه ژنراتورهـای سـنکرون در مـدل مذکور بکار گرفته شدهاند. شبکه آموزش دیده در قبال اندازهگیریهای بلادرنگ شبیهسازی شـده در جهـت تخمین پارامترهای دینامیکی ژنراتورهای سنکرون تست شده است. مجموعه نتایج بدست آمده نشان دهنـده قابلیتهای نوید بخش شبکه عصبی مصنوعی در حوزه تخمین پارامترهای دینامیکی ژنراتورهـای سـنکرون، بصورت بلادرنگ و با استفاده از اطلاعات بهرهبرداری میباشد. اگرچه برای دست یـابی بـه خطـای تخمـین قابل قبول در مسیر شناسایی کلیه پارامترهای دینامیکی ژنراتورهای سنکرون، پارهای اصلاحات ضروری بـه نظر میرسد. در نگاه کلّی این اقدامات تکامل بخش را میتوان به دو مجموعه: پیشنهادات مربوط به اصـلاح شبکه عصبی رؤیتگر در حوزه شبیهسازی و آموزش و بخش دیگر را به عنوان گامهای تکاملی تلقی نمود، که سازماندهی این گامها در مبادی ورودی و خروجی شبکه عصبی، زمینه مناسبتـری را بـرای بهـرهگیـری از قابلیتهای آن فراهم خواهد کرد.
کلید واژه:
ژنراتور سـنکرون، پارامترهـای دینـامیکی، شناسـایی بلادرنـگ، شـبکههـای عـصبی مـصنوعی، اطلاعـات بهرهبرداری
13
14
مقدمه:
در سالهای اخیر با پیشرفت سیستمهای کامپیوتری, سیستمهای هوش مصنوعی نیز متولد شده و رشد کرده است. یکی از سیستمهای هوش مصنوعی, شبکه های عصبی مصنوعی هستند. این شبکه ها به علت عواملی چون قطعیت در پاسخ, سادگی در اجرا, قابلیت انعطاف بالا و .... جایگاه ویژه ای را به خود اختصاص داده اند. با توجه به ساختار و کارکرد شبکه های عصبی مصنوعی و اهمیت تعیین پارامترهای دینامیکی اجزاء سیستمهای قدرت از جمله ژنراتورهای سنکرون, بهره گیری از شبکه های عصبی مصنوعی در این حوزه قابل طرح است. از طرف دیگی نتایج ارائه شده از بکار گیری این شبکه ها در حوزه های مشابه, کارکردهای نوید بخشی را نشان می دهد. با توجه به مراتب فوق این پروژه بر آنست تا با طراحی و اجرای طرح شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون با استفاده از شیکه عصبی مصنوعی, قابلیت های این سیستم را در حوزه شناسایی بلادرنگ پارامترهای دینامیکی ژنراتورهای سنکرون نیز بیازماید.
15
فصلاول:

کلیات
16
سیستم های قدرت متشکلند از مجموعه ای از مراکز تولید(نیروگاهها) که توسط شبکه های انتقال و توزیع و تجهیزات حفاظتی و کنترل آن به مراکز مصرف متصل می گردند. وظیفه اصلی یک سیستم قـدرت تولیـد و تامین انرژی الکتریکی مورد نیاز مصرف کنندگان با حفظ شرایط سه گانه:
-1 ارزانی قیمت انرژی
-2 کیفیت بالا
-3 امنیت تامین انرژی میباشد. مراد از امنیت، پیوستگی و تداوم در تولید و تامین انرژی می باشد. عوامل مؤثر در امنیـت عبارتنـد از:
-1 سرمایه گذاری اولیه (تجهیزات سیستم ) -2 روشها و امکانات نگهداری و تعمیرات سیستم قدرت.
همانگونه که در کلیه وسایل و سیستم های غیرالکتریکی همواره دو ویژگی ارزانـی و بـالا بـودن کیفیـت-
امنیت با یکدیگر متعارض و متقابل می باشند در مقوله انرژی الکتریکی و سیستم هـای قـدرت نیـز بهمـان گونه خواهد بود. امنیت یک سیستم قدرت در حقیقت درجه و میدان توانایی آن سیستم در مواجهه با حـوادث
اغتشاشات می باشد . امنیت کلی یک سیستم به دو زیر شاخه:
امنیت دینامیکی
امنیت استاتیکی
قابل تقسیم است. از توانایی سیستم قدرت برای حفظ و نگهداری خود در دوره وقوع اختلال (که خود از سـه دامنه فوق گذرا-گذرا-دینامیک تشکیل شده است) با عنوان امنیت دینامیکی تعبیر مـی گـردد. بـا توجـه بـه اهمیت بسیار زیاد امنیت سیستمهای قدرت، فرایند ارزیابی وبهبود آن همواره مورد توجه مهندسـین طـراح و بهرهبردار بوده، به قسمی که عملیات ارزیابی و بهبود امنیت سیستم های قدرت یکی از وظایف بسیار مهـم و اساسی مراکز کنترل و بهره برداری شبکه های قدرت می باشد. شکل کلی فرایند ارزیـابی و بهبـود سیـستم های قدرت در شکل1-1 بیان شده است. باتوجه به اهمیت امنیت در سیستم های قدرت و همچنین تغییرات مستمری که در حین عملیات بهره برداری 24 ساعته در شبکه اتفاق می افتد ضرورت دارد که دائماً از طرف بهره بردار، عملیات بهره برداری به شکلهای مختلف بر روی سیستم های قدرت اعمال گردد،اما با توجه بـه ویژگی بالا بودن امنیت نباید این عملیات بگونه ای باشدکه سبب بروز اغتشاش در رفتار سیستم و در نتیجـه نقض غرض گردد. از طرفی سیستم قدرت هر کشور منحصر بفرد بوده به قسمی که نمونه دومی نمی تـوان برای آن ایجاد نمود. بنابر این با توجه به ویژگی منحصر بفرد بودن سیستمهای قدرت و ضـرورت اجتنـاب از عملیات بهره برداری بررسی نشده، برای ارزیابی اولیه از نتایج عملیات بهره برداری و یا طراحی ضرورتاً مـی باید از یک نمونه مشابه سیستم قدرت استفاده نمود تا بتوان ابتداً نتایج مانورهای طراحی یا بهـره بـرداری را برآن آزمایش و در صورت اطمینان از بی خطر بودن، نتایج آن مانورها را بر شبکه واقعی اعمال نمود.
17

نمونه مشابه سیستم قدرت را شبیه ساز1 و عملیات آزمایشی بـرروی نمونـه مـشابه را محاسـبات و مطالعـات شبیه سازی2 گویند. فرایند شبیه سازی سیستمهای قدرت فارغ از اینکه دیجیتال باشد یـا آنـالوگ از مراحلـی بدین ترتیب تشکیل شده است:
_1 شناسایی اجزاء سیستم قدرت
_2 ساخت و یا استخراج معادلات حاکم بر اجزاء
_3 ترکیب اجزاء و یا معادلات آنها
_4 حل معادلات با روشهای ریاضی بوسیلهکامپیوتر
_5 استخراج نتایج که در این میان مدلسازی اجزاء سیستم قدرت که همان شناسایی و استخراج معـادلات حـاکم بـر اجـزاء آن
است یکی از قدم های اصلی این فرایند بشمار میرود. به بیان دیگر یک متخـصص شـبکه در روش کـاری خود اولویت بندی هایی دارد که اولین آنها رساندن انرژی الکتریکی تولیدی به مصرف کننده است، در مرحله
دوم به تامین امنیت شبکه اهتمام می ورزد. و نهایتاً تلاش خویش را در جهت بهبود هر چـه بیـشتر کیفیـت انرژی که به مصرف کننده تحویل داده می شود مصروف می دارد. اگر چه بسیاری از اقداماتی که در جهـت امنیت سیستم های قدرت انجام می شود کیفیت توان را نیز ارتقاء می دهد. تامین امنیت سیستم خود شـامل مراحل و اولویتهایی است که اولین گام آن را مقاوم سازی و پایدار سازی شبکه در حالت های گذرا می باشد

1-simulator 2-simulation
18
و دومین گام شامل پایدار سازی دینامیکی شبکه می شود. از دیدگاه فرکانسی می توان حالت هـای گـذرا در شبکه را با نوسانات فرکانس بالا و حالت های دینامیکی آن را با نوسانات فرکانس پایین معرفی کرد. در اکثر شبکه های دنیا خاصه با پیچیده شدن شبکه ها پدیده نوسانات فرکانس پایین مشاهده شده است. ژنراتورهـا به عنوان تولید کننده نقش اصلی در ارتباط با این نوسانات دارند. اینها از نوع نوسان در پارامترها هستند و با اغتشاشات حالتهای گذرا متفاوتند. گاه این اغتشاشات بدون رخ دادن هیچ واقعهای در طی کار معمول شـبکه بوجود می آیند مثلاً با تغییر تپ ترانس درکم باری و مواردی از این قبیل. اگرچه در مرحله بعد از حالت هـای گذرای شبکه (از دیدگاه زمانی) نیز چنین بحثی مطرح می شود. بایـد توجـه داشـت کـه ایـن نوسـانات را در مقایسه با فرکانس شبکه، فرکانس پایین نام نهاده اند. دامنه فرکانسی مطرح از کسر یک تا چند هرتـز اسـت که بطور معمول بازه 0.5-2.5HZ را در بر می گیرند و در موارد حدی 0.1-4HZ می باشد. این نوسانات را به انواع :
-1 محلی
-2 بین ناحیه ای تقسیم کرده اند. که نوسانات یک ماشین نسبت به شبکه بزرگ یا شین بی نهایت متّصل به آن را محلّی نـام
نهاده اند. نوسانات بین ناحیه ای نمونه هایی مانند دو ژنراتور که با خطوطی به هم متصل هستند یا مجموعه دو ناحیه با یکدیگر را در برمی گیرد. از دیدگاه فرکانسی نیز این دو نوع نوسانات دینامیکی باهم تفاوت دارند.
ثابت می شود عامل این نوسانات، مد مکانیکی توربوژنراتور است. همانگونه کـه پـیشتـر توضـیح داده شـد تامین امنیت سیستم های قدرت در برابر نوسانات دینامیکی مانند سایر شاخه ها نیازمند شبیه سازی شبکه از این زاویه دید میباشد. مقادیر پارامترهای دینامیکی اجزاء در این شبیه سازی دارای نقش کلیدی هـستند. بـا توجه به نقش ژنراتور در میان اجزاء شبکه از دیدگاه نوسانات دینامیکی تعیین پارامترهـای آن بـسیار مهـم و تعیین کننده خواهد بود. صحت و دقّت تعیین این پارامترها وابسته است به روش بکار گرفته شده برای بـرای تعیین آنها . این مطالب موجب پیدایش روشهای گوناگون برای تعیین این پارامترها شده است. از طرف دیگـر این پارامترها برای هر ژنراتور مقدار ثابتی نیستند و بخـاطر عـواملی چـون پیرشـدن ژنراتـور، ایجـاد بعـضی خطاهای داخلی و ..... تغییر می کنند. این شرایط موجـب طـرح روشـهای بلادرنـگ1 در تعیـین پارامترهـای دینامیکی ژنراتور سنکرون شده است. از جهت دیگر روش بکارگیری و تبعات عملی یک تکنیک شناسـایی و ملزومات آن نیز حائز اهمیت است. گروهی از این روشها اگر چه نتایج نسبتاً دقیق و قابل اعتمادی نیز فراهم می آورند لیکن به علت خطر های ناشـی از تـست هـای مطـرح در آنهـا (ماننـد آزمـایش اتـصال کوتـاه2 و
باربرداری( 3 و یا ملزوماتشان چون جداسازی ژنراتور از شبکه چندان مطلـوب نیـستند. بعـضی از اجـزاء ایـن گروه روشها به مرور مطرود شده اند. مقالات جدید ارائه شده در سایر اجزاء این گروه با هـدف بهبـود آنهـا و حذف مشکلات مذکور شکل گرفتهاند. دسته دیگر این روشها نمونههـایی هـستند کـه بـا چنـین مـشکلاتی

3-On-Line 4-Short Circuit 5-Load Rejection
19
مواجه نیستند(مانند استفاده از تخمینگر شبکه عصبی مصنوعی.(1 کارهای انجام شده درباره ایـن روشـها در راستای بهبود هرچه بیشتر آنها و یا اطمینان از نتایج حاصله توسط آنها شکل گرفته اند. با توجه بـه مقدمـه ذکر شده ابتداً لازم است کلیات روشهای مدل سازی ژنراتور سنکرون مورد بررسی قرارگیـرد تـا درگـام بعـد نسبت به بررسی روشهای شناسایی پارامترهای آن اقدام شود.

6- Artificial-Neural Network
20
فصل دوم:

مدل سازی ماشین سنکرون
21
-1-2 پیشگفتار:
شبیه سازی رفتار ژنراتورهای سنکرون برای انجام مطالعات گوناگون دینامیکی در سیستمهای قدرت، مستلزم انتخاب یک مدل مناسب جهت مدلسازی ماشین میباشد. مدل ارائه شده برای هر سیستم شامل یک ساختار و تعدادی پارامتر میباشد که جهت پیشگویی رفتار آن سیستم در حالتهای مورد نظر بکار گرفته میشود. مدل مورد استفاده برای یک سیستم باید به سادگی قابل فهم بوده، بکارگیری آن سهل باشد و در عین حال بتواند رفتار سیستم را با دقت و صحت قابل قبولی برای یک محدوده مشخص پیشگویی نماید.
بعبارت بهتر رفتار پیشبینی شده سیستم بواسطه شبیهسازی براساس مدل ارائه شده تا حد قابل قبولی به رفتار واقعی سیستم نزدیک باشد. هر چند این دو خاصیت از مدل یعنی سادگی و واقعی بودن همواره در تضاد با یکدیگر هستند، (یعنی مدلهای واقعی به ندرت ساده هستند و مدلهای ساده به ندرت میتوانند واقعی باشند)، اما میتوان جهت رسیدن به پاسخ دلخواه مصالحهای منطقی مابین این دو خاصیت برقرار کرد. مدل دو محوری پارک از معمولترین و پذیرفتهترین مدلهای ماشین سنکرون میباشد. در این فصل ابتدا اصول مدلسازی ماشین سنکرون براساس تئوری دو محوری پارک به اختصار بررسی میشود، سپس پارامترهای ماشین سنکرون معرفی شده و نحوه محاسبه پارامترها براساس مدل دو محوری پارک و همچنین نحوه مدلسازی ماشین با داشتن پارامترهای آن بررسی میگردد. همچنین در این فصل ارتباط میان مرتبههای مختلف مدل پارک با نوع ژنراتور و نوع مطالعه مورد نظر تشریح میشود.
-2-2 ساختار فیزیکی ماشین سنکرون:
-1-2-2 ساختار روتور و استاتور:
بزرگترین و شاید متداولترین ماشین های الکتریکی که با سرعت سنکرون می چرخند، ماشین های سنکرون سه فاز میباشند. اگرچه ساخت ماشین های سنکرون سه فاز پر هزینه میباشد، اما بازده بالای این ماشینها در قدرتهای بالا بزرگترین مزیت آنها میباشد.
استاتور ماشینهای سنکرون معمولاً متشکل از یک هسته مورق فرومغناطیس با شیارهایی جهت قرار گیری سیم پیچیهای سه فاز گسترده میباشد. روتور ماشین نیز میتواند بصورت قطب برجسته یا قطب صاف ساخته شود. ماشینهای قطب برجسته اغلب به عنوان ژنراتورهای آبی جهت تطبیق سرعت پائین توربین-
های آبی با سرعت سنکرون استفاده میشوند. قطبهای روتور این نوع ماشین به صورت جداگانه ساخته شده و سپس بر روی یک استوانه سوار میشوند. ساختار روتور گرد یا قطب صاف نیز برای کاربردهای سرعت بالا مناسب است. ماشینهای سنکرون با روتور گرد با دو یا چهار قطب به عنوان ژنراتورهای واحدهای بخاری جهت تطابق با سرعت بالای توربین به کار میروند. همچنین در این ماشینها میتوان نسبت قطر به طول روتور را به منظور محدود کردن تنش های مکانیکی ناشی از نیروهای گریز از مرکز کوچک گرفت.
22
-2-2-2 سیمبندیهای ماشین
ماشین سنکرون سه فاز معمولاً متشکل از یک سیم پیچی سه فاز به عنوان آرمیچر و یک سیم پیچی تحریک میباشد که بنام سیم پیچی میدان نیز نامیده میشود. سیمپیچی آرمیچر معمولاً در ولتاژی بسیار بالاتر از ولتاژ تحریک کار میکند و از این رو نیازمند فضایی بیشتر برای عایقبندی مناسب میباشد.
همچنین با توجه به اینکه جریانهای گذرای شدیدی از این سیمپیچیها عبور می کند، باید قدرت مکانیکی کافی داشته باشند. از این رو معمول است که سیمپیچی آرمیچر را بر روی استاتور ماشین قرار دهند. از نظر فضایی سیمپیچیهای سه فاز آرمیچر، 120º با یکدیگر اختلاف مکان دارند و این موضوع سبب میشود که با چرخش یکنواخت روتور و به تبع آن چرخش یکنواخت میدان تحریک، در این سیمپیچیها ولتاژهایی القا شود که از نظر زمانی 120º با یکدیگر اختلاف فاز دارند. سیم پیچی تحریک یا میدان معمولاً بر روی روتور قرار داده میشود. در ماشینهای قطب برجسته معمولاً میله های مسی یا برنجی در سطح قطب جای می-
گیرند که عموماً این میلهها در دوانتها به وسیله حلقههایی به یکدیگر متصل میشوند تا یک قفس سنجابی شبیه آنچه در یک موتور القایی وجود دارد، ساخته شود. مجموعه این میلهها و حلقهها به عنوان سیم پیچی میراکننده میباشند.
روتور ژنراتورهای قطب صاف بصورت استوانهای است که از فولاد یکپارچه ساخته میشود. سیم پیچیهای میدان در این گونه روتورها بصورت یکنواخت در شکافهای بدنه روتور توزیع شدهاند که معمولاً به کمک گوههایی در جای خود محکم میشوند. اغلب در چنین ماشینهایی سیم پیچی میراکننده وجود ندارد، زیرا که روتور یکپارچه فلزی اجازه عبور جریانهای گردابی را فراهم می آورد که تاثیری مشابه جریانهای سیمپیچی-
های میراکننده دارد. برخی از سازندگان تاثیر میرایی بیشتر و قابلیت عبور جریان مولفه منفی را با استفاده از گوههای فلزی مستقر در شکافهای سیمپیچی تحریک (که در انتها به یکدیگر متصل شدهاند) یا با استفاده از میلههای مسی مستقل زیر گوههای نگه دارنده، فراهم میآورند.
-3-2 توصیف ریاضی ماشین سنکرون
-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون
در این قسمت مدل ریاضی ماشین سنکرون بر اساس تئوری دو محوری بصورت خلاصه پارک تشریح می-
شود. شکل (1-2) مدارهای در نظر گرفته شده برای استاتور و روتور ماشین را نشان میدهد. مدار استاتور شامل یک سیم پیچی سه فاز است و روتور نیز یک سیم پیچی تحریک و یک سیمپیچی میراکننده بر روی محور d و دو سیم پیچی میراکننده بر روی محور q دارد. تعداد سیم پیچیهای میراکننده در نظرگرفته شده به عوامل متعددی از جمله نوع ژنراتور بستگی دارد که در قسمتهای بعدی به آن اشاره خواهد شد. مدل نشان داده شده در شکل (1-2) مدل 2-2 براساس استاندارد IEEE Std 1110 میباشد.
23
i fd d ωr a e fd q ib i1d ikq Ψb Ψa θ eb i1q b a ia ea ec
c

Ψc
ic

شکل :(1-2) مدارهای استاتور و روتور ماشین سنکرون
:c , b, a سیم پیچی های سه فاز استاتور : fd سیم پیچی تحریک

: 1d سیم پیچی میرا کننده محور d

1q و : 2q سیم پیچی های میراکننده محور q : ωr سرعت زاویه ای روتور برحسب رادیان بر ثانیه
: θ زاویه مابین محور مغناطیسی روتور و محور مرجع (محور مغناطیسی فاز (a
در بدست آوردن معادلات ماشین سنکرون برای ساده سازی فرضیات زیر درنظر گرفته میشود:
الف ) شکافهای موجود بر روی سطح داخلی استاتور تاثیر قابل توجهی بر اندوکتانسهای روتور درحال حرکت ندارند.
) پسماند مغناطیسی آهن استاتور و روتور قابل صرف نظر کردن است.
) از نظر تاثیر متقابل استاتور و روتور، سیم پیچیهای استاتور بصورت سینوسی در امتداد فاصله هوایی
توزیع شدهاند.
هر چند در مدل ارائه شده اثر اشباع مستقیماً منظور نشدهاست، اما با تصحیح راکتانسهای دو محور با استفاده از ضرایب اشباع و یا با داخل کردن مولفههای جبرانکننده درتحریک میدان اصلی، پدیده اشباع نیز لحاظ میشود.
با فرض حالت ژنراتوری معادلات ولتاژ مربوط به سیم بندی های استاتور و روتور را میتوان به شکل روابط
(1-2) و (2-2) نوشت.
Ψs d vs  −is Rs  dt (1-2) d vr  −ir Rr  Ψr dt که در آن :
24
vs  v a vb vc t vr  v f v1d v1q v2q t is  i a ib ic t ir  i f i1d i1q i2q t Ys  Ya Yb Yc t Yr  Y f Y1d Y1q Y2q t Ra 0 0 0 Rb Rs  0 0 0 Rc Rf 0 0 0 R1d Rr  0 0 0 0 0 R1q 0 0 0 0 R2q :درک نایب ریز لکش هب ناوت یم ار روتور و روتاتسا یاهرودراش تلاداعم Ψs  Lssis  Lsrir (2-2) Ψ  Lt .i  L i r sr srr r : نآ رد هک
Lss  − −

Lls  L0 − Lms cos 2θr 1 L0 − Lms cos 2(θr − π 1 L0 − Lms cos 2(θr  π − 3 ) − 3 ) 2 2 1 π 2π 1 2 L0 − Lms cos 2(θr − 3 ) Lls  L0 − Lms cos 2(θr − 3 ) − 2 L0 − Lms cos 2(θr −π) 1 L0 − Lms cos 2(θr  π 1 L0 − Lms cos 2(θr  π) Lls  L0 − Lms cos 2(θr  2π ) − ) 2 3 2 3 25
0 0 L f 1d Llf  L f 0 0 L L L  L 1d l1d 1df L1q 2q Ll1q  L1q 0 0 rr Ll 2q  L2q L2q1q 0 0 Ls 2q cosθr Ls1q cosθr 2π Ls 2q cos(θr − 2π ) ( cos(θr − 3 3 2π Ls 2q cos(θr  2π ) 3 ( 3 cos(θr 
s1q
s1q


L L

Ls1d sin θr
Ls1d sin(θr − 23π )

Ls1d sin(θr  23π )

Lsf sin θr 2π t ( − r sin(θ sf L  rs L sr L 3 ( 2π sin(θr  Lsf 3 با استفاده از دسته معادلات (2-1) و((2-2 میتوان بطور کامل ماشین سنکرون را بررسی نمود. اما همچنانکه در این معادلات نیز دیده میشود، معادلات دارای عباراتی هستند که با θ تغییر میکنند. با توجه به اینکه θ نیز تابعی از زمان میباشد، این موضوع سبب پیچیدهتر شدن تحلیل ماشینهای سنکرون می-
شود. میتوان با تبدیل مناسبی متغیرهای استاتور را به شکل سادهتری درآورد. این تبدیل به نام تبدیل پارک معروف است. تبدیل پارک به صورت رابطه (3-2) میباشد.
2π cos(θ  Sa ) 3 (3-2) Sb ) 2π −sin(θ  3 1 Sc 2
( 2π − cos(θ cosθ 3 2 2π 3 ) −sin(θ − 3 −sinθ 1 1 2 2
Sd
Sq S0
که S میتواند هر کدام از متغیرهای ولتاژ، جریان یا شاردور ماشین باشد. عکس تبدیل پارک نیز بصورت رابطه (4-2) بیان میشود.
1 −sinθ Sd 2 (4-2) Sq 1 ( 2π −sin(θ − 2 3 S0 1 ( 2π −sin(θ  2 3
cosθ 2π 2 ( cos(θ − 3 3 ( 2π cos(θ  3
Sa
Sb Sc
با اعمال تبدیل، معادلات حاکم بر ماشین و متغیرهای متناظر بسیار ساده میشوند. این ساده شدن در دو مفهوم کلیدی زیر ریشه دارد:
الف: با اعمال این تبدیل در شرایط بهرهبرداری عادی و حالت ماندگار تمامی جریانها و شارهای سیم-
پیچیهای استاتور و روتور دارای مقدار ثابتی خواهند بود.
26
ب: با انتخاب دو محور d و q که 90درجه اختلاف فاز دارند، شارهای تولید شده توسط جریانها بر روی یک محور هیچ پیوندی با شارهای محور دیگر نخواهند داشت. بنابراین دو دسته متغیر متعامد بدست خواهد آمد که این موضوع باعث ساده سازی بسیاری خواهد شد، زیرا هم باعث ساده سازی مقادیر راکتانسها میشود و هم می توان مدار معادل ماشین را بصورت دو مدار مستقل از هم در نظر گرفت.
معادلات نهایی پریونیت شده در دستگاه مرجع روتور به شکل روابط (5-2) و (6-2) میباشند. جزئیات بدست آوردن این معادلات در مراجع مختلف تشریح شدهاست و در اینجا از تکرار مجدد آن خودداری می-
شود. باداشتن روابط فوق، رفتار الکتریکی ماشین شبیه سازی می شود.
(5-2)
(6-2)

Yd 1 d Yq + wr V d = - i d Ra - w0 dt w0 Y d 1 Y + wr + a R q = - i q V q w0 dt d w0 Yfd 1 d efd = i fd Rfd + w0 dt Y d 1 + 1d R 1d 0 = i 1d w0 dt Y d 1 + 1q R 1q 0 = i 1q w0 dt Y2q d 1 0 = i 2q R 2q + w0 dt id Xad Xad Xl  Xad 1 Yd i fd Xad Xlf  Xad Xad  Yfd Xad Xad W0 Xl1q  Xad i1d Y1d i Xaq Xaq Xl  Xaq Yq i q Xaq Xl1q  Xaq Xaq 1  Y1q W 1q Xaq Xaq 0 Xl2q  Xaq i2q Y 2q x 0i 0 1 Y0 = - w0 براساس روابط ولتاژ و شار ارائه شده میتوان مدار معادل ماشین سنکرون را بدست آورد. این مدار درشکل
(2-2) نشان داده شده است.
27

الف: محور طولی،

ب: محور عرضی، q
xl i 0 R0
+
V 0
ج: محور صفر

-
شکل :(2-2) مدار معادل ماشین بر اساس تئوری پارک
-2-3-2 معادلات حرکت
معادلات حرکت معادلاتی هستند که اهمیت اساسی در مطالعات پایداری سیستمهای قدرت دارند. این معادلات که بعنوان معادلات لختی چرخشی نیز نامیده میشوند، تاثیر عدم تعادل بین گشتاور الکترومغناطیسی و گشتاور مکانیکی ماشین سنکرون را بیان مینمایند. در این بخش نیز معادلات حاکم بدون ذکر جزئیات بیان میشوند که برای دسترسی به جزئیات کامل میتوان به مراجع مختلف موجود مراجعه نمود.
زمانی که عدم تعادل بین گشتاورهای اعمال شده بر روی روتور وجود داشته باشد، گشتاور خالص اعمال شده، باعث شتاب گرفتن (یا کندشدن حرکت) روتور میشود. این گشتاور برابر است با:
Ta  Tm −Te(5-2)
: Ta گشتاور شتاب دهنده برحسب N.m
28
: Tm گشتاور شتاب مکانیکی برحسبN.m : Te گشتاور الکترومغناطیسی برحسب N.m معادله حرکت نیز به صورت رابطه (6 - 2) میباشد: (6-2) TaTm−Te dωr J dt در شبیه سازیهای ماشین سنکرون معمولاً شارها به عنوان متغیرهای حالت فرض میشوند. در این صورت توان الکتریکی ماشین در مبنای واحد به شکل رابطه (7-2) خواهد بود.
Pe ωr (ψd iq −ψqid )(7-2)
با تقسیم رابطه توان الکتریکی بر سرعت مکانیکی روتور، رابطه گشتاور الکترومغناطیسی به شکل رابطه -2) (7 در میآید :
Te ψd iq −ψqid(8-2)
-4-2 پارامترهای ماشین سنکرون
در معادلات حاکم بر ماشین سنکرون که در قسمت 3-2 ارائه شد، اندوکتانسها و مقاومتهای مدارهای استاتور و روتور به صورت پارامتر ظاهر شدند. این پارامترها موسوم به پارامترهای اصلی یا اساسی ماشین هستند و بصورت اجزای مدارهای معادل دو محور d و q در شکل (2-2) قابل تشخیص هستند. هر چند این پارامترها بطور کامل مشخصههای الکتریکی ماشین را بیان میکنند، اما آنها را نمیتوان از عکسالعملهای قابل اندازهگیری ماشین مستقیماً بدست آورد. از اینرو، روش مرسوم در تعیین اطلاعات ماشین این است که آنها را برحسب پارامترهایی بیان میکنند که از رفتار قابل مشاهده ماشین در پایانههای آن قابل تشخیص بوده و تحت آزمایشهای مناسب، قابل اندازهگیری هستند. در این قسمت انواع پارامترهای ماشین و ارتباط آن با پارامترهای اساسی مورد بررسی قرار میگیرد.
-1-4-2 پارامترهای اساسی ماشین
پارامترهای اساسی ماشین یا پارامترهای مدار معادل، از اعمال تبدیل پارک بر روی معادلات حوزه زمان ماشین سنکرون بدست میآیند و مشخص کننده عناصر مدارهای معادل محورهای طولی و عرضی ماشین هستند. تعداد این پارامترها با مرتبه مدل تغییر میکنند. از مشکلات عمده کار با این پارامترها، مشخص نبودن دقیق مقدار همگی آنها است. بعبارت دیگر روشی برای تعیین مقادیر دقیق این پارامترها بصورت یک-
جا وجود ندارد و روشهای موجود همگی مقادیر تقریبی مربوط به این پارامترها را بدست می دهند.
29
بعنوان نمونه اگر مدل 2-2 استاندارد IEEE Std1110 که در شکل (1-2) نشان داده شدهاست را درنظر بگیریم، کلیه عناصر مداری که در شکل نشان داده شدهاند، پارامترهای مدار معادل بوده و به راحتی قابل محاسبه و اندازهگیری نمیباشند. حتی بعضی از آنها مخصوصاً بعضی از پارامترهای برخی از شاخههای مدار محور q وجود فیزیکی خارجی نداشته و صرفاً جهت مدل سازی رفتار ماشین در نظر گرفته میشوند.
-2-4-2 پارامترهای عملیاتی
همانگونه که از نام این پارامترها پیداست، پارامترهای عملیاتی، ماشین سنکرون را از دید سیستمی بیان می-
کنند و معین کننده رابطه ورودی و خروجی ماشین سنکرون هستند. در این حالت تغییرات شار محور طولی و عرضی، تغییرات جریان محورهای طولی و عرضی و تغییرات ولتاژ سیستم تحریک بعنوان ورودی یا خروجیهای سیستم در نظرگرفته شده و با استفاده از پارامترهای عملیاتی این ورودیها و خروجیها به یکدیگر مرتبط میشوند.
در شکل عملیاتی, معادلات روتور را میتوان به صورت سیستمی با پارامترهای گسترده محسوب کرد. این پارامترها را می توان از طریق محاسبات طراحی و یا آسانتر از طریق آزمایش پاسخ فرکانسی بدست آورد.
زمانیکه تعداد محدودی مدار برای روتور در نظر گرفته شود، می توان این پارامترها را بصورت نسبت دو چند جملهای برحسب S (عملگر لاپلاس) بیان نمود. درجه چند جملهای مخرج حداکثر برابر تعداد مدارهای فرض شده بر روی روتور است. پارامترهای عملیاتی نسبت به پارامترهای مدار معادل کاربرد بیشتری داشته و به ماشین وجهه سیستمی میدهند. این پارامترها درحقیقت مشخصههای فرکانسی ماشین سنکرون هستند و عبارتند از یک دسته منحنیهای مشخصه یا روابط تحلیلی که رابطه بین امپدانس مختلط (یا عکس آن) را نسبت به لغزش در فرکانس نامی مشخص مینمایند. در زیر سه مشخصه فرکانسی مهم ماشین معرفی می شوند .
الف ) امپدانس عملیاتی محور طولی ( ( Zd(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی و ماندگار ولتاژ آرمیچر (ناشی از مولفه محور طولی جریان آرمیچر) به دامنه مولفه اصلی و مختلط این جریان که بصورت تابعی از فرکانس بیان میشود، تعریف شده و آن را Zd(s) مینامند. این مشخصه را در حالتی که سیم بندی میدان اتصال کوتاه گردیده است، برای فرکانسهای مختلف اندازهگیری مینمایند.
ب) امپدانس عملیاتی محور عرضی ( ( Zq(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر تولید شده توسط شار مغناطیسی محور عرضی ناشی از مولفه جریان آرمیچر در جهت محور عرضی به دامنه مولفه اصلی این جریان تعریف شده و بر حسب تابعی از فرکانس(لغزش) بیان میگردد.
ج) مشخصه فرکانسی G(s) بین سیم بندی میدان و آرمیچر
30
این مشخصه به صورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر ناشی از جریان سیمبندی میدان در فرکانسهای مختلف به دامنه مولفه اصلی ولتاژ اعمالی در سیم بندی میدان تعریف میگردد.
-3-4-2 پارامترهای دینامیکی
این پارامترها به لحاظ سابقه، اهمیت و کاربرد فراوان آنها پارامترهای استاندارد ماشین نامیده میشوند، اما از آنجائیکه بیشتر حالتهای گذرا و دینامیکی ژنراتور را مدنظر دارند، به آنها پارامترهای دینامیکی نیز اطلاق می شود. یکی از دلایل اهمیت این پارامترها، قابلیت تشخیص و اندازهگیری آنها میباشد. این پارامترها را میتوان با استفاده از آزمایشهای خاصی که بعضی استانداردها نیز به آن اشاره دارند، مستقیماً بدست آورد. با استفاده از این پارامترها میتوان ژنراتور سنکرون را بویژه در حالات گذرا و دینامیکی تحلیل نمود. آزمایشات مربوط به استخراج این پارامترها سابقه نسبتاً زیادی دارد. تقسیم بندی این پارامترها که شامل اندوکتانسها و ثابت زمانیها هستند، به صورت پارامترهای دینامیکی محور طولی،محور عرضی همچنین پارامترهای
تندگذر و کندگذر میباشند که بسته به نوع تحلیل، جهت بررسی یک پدیده، پارامترهای مورد نیاز متفاوت
خواهد بود. این پارامترها بطور خلاصه شامل راکتانسهای سنکرون ( X q , X d )، راکتانسهای تندگذر و کندگذر محورهای طولی و عرضی( ( X ′q′, X ′d′, X ′q , X ′d ثابت زمانیهای کندگذر و تندگذر مدار باز محورهای طولی و عرضی ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do و ثابت زمانیهای کندگذر و تندگذر اتصال کوتاه محورهای طولی و عرضی ( ( Tq′′,Td′′,Tq′,Td′ می باشند.
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای
اساسی ماشین
در محاسبه مقادیر اولیه شارهای گذرا در مدارهای تزویج شده از تئوری ثابت بودن شار دور استفاده میشود.
این تئوری بطور خلاصه عبارتست از اینکه شاردور مدار القائی با مقاومت و emf کوچک نمیتواند بطور لحظهای تغییر یابد. در حقیقت اگر emf یا مقاومتی در مدار موجود نباشد، شاردور آن ثابت خواهد ماند. این تئوری را میتوان در محاسبه جریانها بلافاصله بعد از تغییر شرایط مدار برحسب جریانهای قبل از تغییر استفاده کرد. هنگامی که یک اغتشاش همانند اتصال کوتاه در سمت استاتور ماشین اتفاق میافتد، شار استاتور تغییر میکند. پاسخ ماشین به اغتشاش براساس نحوه تغییرات جریانها و شارها عموماً به سه دوره زیرگذرا، دوره گذرا و ماندگار تقسیم میشود. در دوره زیرگذرا تغییر در جریان سیمپیچیهای میراکننده مانع از نفوذ شار ایجاد شده توسط استاتور به روتور میگردد. با کاهش جریان سیم پیچیهای میراکننده، دوره گذرا آغاز میشود که در آن تغییر جریانهای سیمپیچی میدان همان اثر را، اما ضعیفتر خواهد داشت. در نهایت در حالت ماندگار شار ایجاد شده استاتور به داخل روتور نفوذ خواهد کرد. شکل (3-2) توزیع شار در دورههای زیر گذرا، گذرا و ماندگار ماشین پس از وقوع یک اغتشاش سمت استاتور را نشان میدهد که بر اساس مسیر شار در هر یک از این حالتها میتوان راکتانسهای سنکرون، گذرا و زیرگذرای ماشین را تعریف کرد.
31

دوره زیرگذرا

دوره گذرا

حالت ماندگار

25%

25%

90 9090

90 9090

25%
25%
شکل (3-2) توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار
در این قسمت نحوه محاسبه پارامترهای دینامیکی ماشین سنکرون برحسب پارامترهای اساسی یا همان پارامترهای مدار معادل ماشین تشریح میشود. همچنین مدار معادل ماشین برای هر یک حالتهای ماندگار، گذرا و زیرگذرا ارائه میشود. مدل در نظر گرفته شده برای ژنراتور بر اساس استاندارد IEEE Std1110،
32
مدل 2-2 میباشد. در صورت استفاده از مدلهایی با مرتبه متفاوت، رابطه پارامترهای دینامیکی تغییر یافته اما نحوه محاسبه آنها بصورت مشابه میباشد.
-1-5-2 محاسبه راکتانسهای ماشین
الف – راکتانسهای سنکرون
معمولاً اندوکتانس را به عنوان نسبت شاردور به جریان تعریف می کنند. وقتی که قله mmf گردان در امتداد محور d قرار گرفت، نسبت شاردور استاتور به جریان استاتور اندوکتانس محور (Ld) d نامیده میشود.
با بدست آمدن اندوکتانسها بدیهی است که راکتانسهای متناظر نیز به سادگی قابل محاسبه هستند.
همچنین وقتی قله mmf گردان در امتداد محور q قرار بگیرد، نسبت شاردور استاتور به جریان آن، اندوکتانس سنکرون محور (Lq) q خواهد بود. شکل (4-2) مدار معادل ماشین در شرایط حالت ماندگار را نشان می دهد.
x fd xl x1q xl i fd i1q  0 x1d X d → x2q X q → xad xaq 0 i i2q  0 1d الف-مدار معادل محور d ب-مدار معادل محورq شکل :(4-2) مدار معادل ژنراتور سنکرون در حالت ماندگار
در حالت ماندگار، راکتانسهای سنکرون محور d و q به ترتیب با توجه به شکل (4-2) محاسبه می شوند.
مقادیر این راکتانس ها در روابط (9-2) و (10-2) ارائه شده است.
(9-2) X d  xl  xad
(10-2) X q  xl  xaq
ب- راکتانسهای گذرا
برای محور مستقیم، با توجه به اینکه مقاومت سیمپیچیهای میراکننده معمولاً بزرگتر از مقاومت سیم بندی میدان میباشد، جریان القایی در این سیم پیچیها بسیار سریعتر از جریانهای القایی در سیم بندی میدان میرا میشود. برای دوره گذرا فرض میشود که حالت گذرای میراکننده با میرایی فوقالعاده زیاد تمام شده است، در حالیکه جریانهای القایی در سیم بندی میدان هنوز برای مخالفت با تغییر شاردور ناشی از جریان-

های استاتور تغییر میکنند. مدارهای معادل ماشین در دوره گذرا مطابق شکل (5-2) می باشد. مدار معادل محور q نیز به طریق مشابه قابل توجیه است.

33
x fd xl Vfd x1d X ′d → xad i1d  0 الف-مدار معادل محور d ب-مدار معادل محورq
شکل :(5-2) مدار معادل ماشین سنکرون در دوره گذرا
براساس مدارهای معادل بدست آمده، راکتانس های گذرای محورهای d و q به شکل روابط (11-2) و(-2 (12 محاسبه می گردند.
(11-2) xad x fd x fd xl  X ′d  xl  xad xad  x fd (12-2) xaq x1q x1q xl  X ′q  xl  xaq x aq x 1q ج-راکتانس های زیر گذرا
در دوره زیرگذرا، جریانهای گذرای القا شده در سیم بندیهای روتور سعی دارند تا شاردور هر یک از مدارهای روتور را در ابتدا ثابت نگه دارند. براین اساس مدارهای معادل محورهای d و q ماشین سنکرون در این حالت مطابق شکل (6-2) میباشد.

الف-مدار معادل محور dب-مدار معادل محورq
شکل :(6-2) مدار معادل ماشین سنکرون طی دوره زیر گذرا
در این حالت برای محور d راکتانس دیده شده معادل سه راکتانس موازی xad ، x fd و x1d میباشد که با xl سری شده است. راکتانس زیر گذرای مدار باز محور q نیز مشابه محور d محاسبه میشود. براساس مدار معادل های ارائه شده، این راکتانس ها طبق روابط (13-2) و (14-2) محاسبه میشوند.
(13-2) xad x fd x1d xl x fd  x1d X ′d′  xl  xad xad x fd  xad x1d  x fd x1d 34
(14-2) xad x fd x1d xl x1d x fd  X ′d′  xl  xad x x x ad x fd x ad x fd 1d 1d -2-5-2 محاسبه ثابت های زمانی ماشین
حضور دو مجموعه سیم بندی برروی روتور، دو مجموعه ثابت زمانی مختلف را سبب شدهاست. مجموعه با مقادیر بزرگتر مربوط به ثابت زمانیهای گذرا و مجموعه با مقادیر کوچکتر مربوط به ثابت زمانیهای زیرگذرا هستند. معمولاً سیم بندیهای میراکننده که مقاومت بیشتری نسبت به سیم بندیهای میدان دارند، با ثابت زمانیهای زیرگذرا متناظرند.
ثابت زمانیهای گذرا و زیرگذرا بر روی محورهای d و q معمولاً در دو حالت تعریف میشوند. در یک حالت که استاتور مدار باز است و ثابت زمانیهای مدار باز تعریف میشود، ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do، و درحالت دیگرسیم پیچی استارتور بصورت اتصال کوتاه فرض می شود( .( Tq′′,Td′′,Tq′,Td′ میتوان نشان داد که نسبت ثابت زمانی گذرای محور d با استاتور اتصال کوتاه به ثابت زمانی گذرای محور d با استاتور مدار باز برابر است با نسبت راکتانس ظاهری که جریان استاتور با سیم بندی میدان اتصال کوتاه شده می بیند، به راکتانسی که جریان استاتور با سیم بندی میدان مدار باز میبیند.
الف -ثابت زمانی های گذرا
مدار معادل ماشین جهت استخراج ثابت زمانیهای گذرای مدار باز محور d و q در شکل (7-2) نمایش داده شدهاست.

Rfd
′ T do ← R1d
i1q=0
xfd
Rsxl
x1d
xad
الف :
محور dب: محورq
شکل :(7-2) مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز
براساس فرضیات فوق و مدارمعادل شکل (7-2) ثابت زمانیهای مدارباز ماشین بصورت روابط (15-2) و
(16-2) بدست می آیند. (15-2) xfdxad 1 T ′do  ω0 R fd (16-2) x1qxaq 1 T ′qo  R ω 0 1q 35
همچنین مقادیر ثابت زمانیهای گذرا با استاتور اتصال کوتاه شده بر اساس روابط (17-2) و (18-2) محاسبه میشوند.
(17-2) x′d  Td′ xd T ′do (18-2) x′q  Tq′ xq T ′qo ب- ثابت زمانیهای زیر گذرا
ثابت زمانی زیرگذرای مدار باز محور d عبارتست از زمان لازم برای کاهش مولفه d جریان به مقدار 1e ام مقدار اولیه خود، هنگامی که در ترمینال ماشینی که با سرعت نامی می چرخد، بطور ناگهانی اتصال کوتاهی رخ دهد. بعبارت دیگر این ثابت زمانی عبارتست از ثابت زمانی جریان سیمبندی میراکننده d وقتی سیمبندی میدان اتصال کوتاه شده و سیمبندیهای استاتور مدار باز باشند. از مقاومت سیم بندی میدان در این دوره کاهش ولتاژ صرف نظر میشود. ثابت زمانی های زیر گذرای مدار باز محور q نیز به طریق مشابه تعریف میشوند. مدار معادل ماشین جهت استخراج ثابت زمانیهای زیرگذرای مدار باز مطابق شکل (8-2) میباشد.

براساس فرضیات فوق و مدار معادلهای ماشین در دوره زیرگذرا و ثابت زمانیهای زیرگذرای مدار باز ماشین بر اساس روابط (19-2) و (20-2) محاسبه میگردند.

الف : محورdب:محورq
شکل :(8-2) مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز
(19-2)
(20-2)

 x fd xad x fd  xad x1q xaq  aq x x 1q
1 1 ′′ xad  ω x1dxfd x1d R R 0 Tdo  ω 1d 0 1d 1 1 ′′ xaq  ω x2qx1q x2q 2q R 0 R 0 Tqo  ω 2q 36
-6-2 مراتب مختلف مدلهای ژنراتور سنکرون براساس مدل دو محوری پارک
روابط ارائه شده در قسمت (3-2) تا حدود قابل قبولی عملکرد الکتریکی دینامیکی یک ماشین سنکرون را بیان می کنند. اما گاهی این روابط را نمی توان بطور مستقیم برای مطالعات سیستمهای قدرت بزرگ بکار برد. از طرفی برخی از اوقات نیز لازم است رفتار ماشین سنکرون با جزئیات بیشتری مدل شود. در مدل دو محوری پارک همانگونه که قبلاً هم تشریح شد، مقادیر استاتور به دو سری مقادیر در دو جهت تبدیل می-
شوند که یکی در راستای محور مغناطیسی سیم پیچی میدان بوده (محور (d و دیگری با 90 درجه اختلاف با محور d عمود بر محور مغناطیسی سیم پیچی میدان میباشد (محور .(q محور d روتور شامل سیم پیچی میدان و سیم پیچیهای میراکننده میباشد. محور q نیز شامل سیم پیچیهای میراکننده این محور است.
باتوجه به تعداد سیم پیچیهای درنظر گرفته شده برای محور d و q روتور، مراتب مختلفی برای مدل ژنراتور سنکرون متصور است. براساس استاندارد IEEE Std 1110، مدل ژنراتور بایک شماره دورقمی Model AB مشخص میشود که A تعداد سیم پیچیهای درنظر گرفته شده برای محور d روتور و B

تعداد سیمپیچیهای منظور شده برای محور q روتور میباشد. جدول (1-2) مراتب مختلف ژنراتور سنکرون را نشان میدهد. نوع مدل انتخاب شده برای ژنراتور سنکرون وابسته به پارامترهای مختلفی از جمله نوع ژنراتور و ساختار فیزیکی روتور و انواع مطالعه مورد نظر است که در قسمتهای بعدی تشریح میشود.
37
جدول :(1-2) مراتب مختلف مدلهای ژنراتور سنکرون

فصل سوم:

بررسی روشهای شناسایی پارامترهای
دینامیکی ژنراتورهای سنکرون
39
-1-3 مروری بر پیشینه شناسایی پارامترهای دینامیکی ژنراتور سنکرون:
بحث پارامترهای دینامیکی ماشین سنکرون و یا به عبارت دیگر این مطلب کـه بـرای بیـان رفتـار ماشـین سنکرون در حالتهای گذرا از راکتانسهای مربوط به حالت دائم نمیتوان استفاده کرد، برای اولین بار در سـال
1920 با طرح مفهوم راکتانس اتصال کوتاه مطرح گردید. بعدها این ایده بعنوان پایه و اسـاس اولیـه تئـوری
"ثابت بودن شاردور در برگیرنده" قرار گرفت و در مقالاتی توسط دوهرتی1 درسال 1923 و بیـولی2 در سـال
1929 دوباره عنوان گردید.
آقای کری3 این مطلب را به این صورت طرح کرد که در هر مدار بسته بلافاصله بعد از هر تغییر بوجود آمـده در جریان، ولتاژ ویا موقعیت فیزیکی این مدار نسبت به موقعیت مدارات دیگـر کـه بـا آن بطـور مغناطیـسی درگیر میباشند، شار دور در برگیرنده ثابت باقی خواهد ماند . با توجه به مقاومت موجود در سیم پیچی میدان و دیگر سیم پیچیهای روتور (دمپرها) و در نتیجه تغییرات حاصله در شاردور در بر گیرنده در طی مدت زمان بعد از وقوع تغییرات ناگهانی، لزوم معرفی ثابت زمانیهای گوناگون ماشین نیز بعدها بـرای تحلیـل دقیـق تـر مورد ملاحظه قرار گرفت.
بر این اساس پارک4 و روبیرتسون5 در سال 1928 راکتانسهای دیگری از قبیل راکتانسها و ثابـت زمانیهـای محور عرضی و محور طولی را برای رژیم های تندگذر و کندگذر و به همین صورت مفاهیم دیگری همچون حالات کندگذر و تندگذر را در شارها، ولتاژها و جریانها نیز مطرح نمودند. گام بعدی در همین رونـد معرفـی مدار معادل ماشین بود. بسط منطقی این طریقه تحلیـل رفتـار ماشـین (بعـد از هـر تغییـر ناگهـانی) معرفـی مدارهای مربوط به محورهای طولی و عرضی ماشین با این فرض بود که بتوان یک اندوکتانس متقابل بـین سیم بندیهای موجود در روتور و استاتور تعریف نمود. بدین ترتیب و با در نظر گرفتن یک اندوکتانس متقابـل برای کوپلاژ بین سیم بندیهای روتور و استاتور و همچنین انتساب یک اندوکتانس پراکندگی به هـر کـدام از سیم بندیها (استاتور، میدان وبدنه روتور) مدار معادل مربوط به محور طولی ماشین. در سال 1931،کیلگوری6
در طی یک پروژه - ریسرچفاکتورهای مؤثر در محاسبات مربوط به بدست آوردن راکتانسهای ماشین سـنکرون را کـه مبنای خواص فیزیکی و ابعاد هندسی ماشین(استاتور، روتور و سیم پیچی میدان) میباشند بیان نمود. در ایـن مسیر در سال 1929، پارک نیز ایده محورهای طولی و عرضی برای ماشین را که قبلا توسط خـود او مطـرح شده بود به تبدیلات d-q که طی آن کمیات مربوط به سه فاز به متغیرهای q-d مرتبط می گردیـد بـسط داده و به این ترتیب پایه معادلات ماشین بر مبنای تئوری دو محوری بنا نهاده شد.

1-Doherty 2- Biowly 3- Cary 4- Park 5- Robertson 6- Kilgore
40
در سال 1931، شروین1 روابط لازم جهت بدست آوردن پارامترهای ماشین سنکرون را بـرای حالـت دائـم و گذرا، از طریق نتایج آزمایش ارائه نمود و این در حقیقت اولین روش پذیرفته شده بطور عام برای آزمایشهای ماشین سنکرون بود.که در سال 1945 میلادی توسط کمیته مربوط به ماشین سنکرون AIEE چاپ گردید.
از لحاظ تاریخی کمیته ماشینهای الکتریکی و استاندارد شماره 115 مربوط به IEEE ماحصل همان کمیتـه و همان روش آزمایشی ارائه شده در طی سالهای بعدی می باشد.
در طی اوائل دهه 60 میلادی به همان صورت که ابزار و تکنیکهای محاسباتی کـه در تحلیـل سیـستمهای قدرت بکار می رفت از لحاظ ابعاد و سرعت با روند رو به رشدی روبرو بود نیاز به مـدلهای دقیـقتـر ماشـین سنکرون جهت مطالعات پایداری نیز محسوس شده و بـرای ایـن خـاطر روشـهای کلاسـیک بدسـت آوردن پارامترهای ماشین سنکرون نیز دوباره مورد توجه بیشتر و دقیقتر قرار گرفت. در طی ایـن سـالها عـلاوه بـر مقالات متعددی که در این رابطه به چاپ رسید، استانداردهایی نظیر اسـتانداردBS, IEC, IEEE مربـوط به بخش ماشین نیز به دفعات متعدد چاپ و مورد تجدید نظر قـرار گرفتنـد. ایـن اسـتانداردها از میـان انـواع روشهای متفاوت و گوناگونی که ارائه میگردیدند و با توجه به رعایت نکات عملی و تکنیکهای انـدازهگیـری در طی جلسات متعدد کمیتههای ماشینهای الکتریکی، آنهایی را که تا حدی قابل قبول تشخیص مـی دادنـد انتخاب کرده و در استانداردها به عنوان روشهای کلاسیک مطرح و مورد تایید قرار می دادنـد. از مشخـصات مهم آزمایشات کلاسیک مربوط به قبل از دهه 80 تاکید روی آزمایش اتصال کوتاه سه فاز ناگهـانی و سـعی در بدست آوردن پارامترهای ماشین بـا اسـتفاده از چنـین آزمایـشی بـود کـه در حـال حاضـر هنـوز هـم در مشخصات ارائه شده در نیروگاهها نتایج حاصل از آزمایش اتصال کوتاه ناگهانی ارائه می گردد.
از جمله نکات محدودکننده اینگونه آزمایشها عدم دسترسی به پارامترهای مربـوط بـه محـور عرضـی، عـدم صرفه اقتصادی و قابلیت انجام آن در محل نیروگاهها و در تحت ولتاژ نامی بود. در حقیقت تـا قبـل از سـال
1983 روشهای دسترسی به پارامترهای مربوط به محور q در استانداردها مسکوت گذارده شده بود.
در طی سالهای 1960 الـی 1980 آزمایـشات گونـاگونی جهـت پاسـخگویی بـه سـؤالاتی از قبیـل اهمیـت پارامترهای مربوط به محور عرضی و همچنین درجه دقّت مورد لزوم برای پارامترهای ماشین و یا درجه مدل بکار رفته برای ماشین مطرح شده است. آزمایشات نیروگاه نورث فلیت2 در سال 1969 و تحقیقات انجام شده مؤسساتی چون EPRI, NPCC & Ontario-Hydro از این دسـتهانـد. ایـن مجموعـه فعالیـتهـا نتایجی از این قبیل را به همراه داشت:
در شبیه سازی دینامیکی رفتار ماشینهای الکتریکی، اطلاع دقیـق از پارامترهـای ماشـین بـه انـدازه درجه مدل انتخابی اهمیت دارد. این اهمیت در باب پارامترهای محور عرضی بارزتر است.
در تعیین پارامترهای ماشین همواره آزمایشاتی که منجر به تغییرات کوچک(بزرگ) در مقادیر ولتاژ و جریانهای ماشین گردند، اطلاعات مناسبی از پارامترها برای مطالعات مربوط بـه اغتـشاشات بـزرگ (کوچک) را در اختیار قرار نمیدهد.

7- Shervin 8- North Fleet
41
با توجه به این نکته پارامترها باید بسته به نوع مطالعه تصحیح و بهینه سازی شوند.
ارزش پارامترهای محور عرضی در شبیه سازی رفتار توربوژنراتورهای با روتـور یکپارچـه بـه حـدی است که انجام آزمایشهای جداگانه در این جهت راتوجیه میکند.
بدین ترتیب در سالهای بعد از 1980 آزمایشهای جدیدتری چون میرائی شار1 جایگاه ویژهای در حوزه تعیـین پارامترهای دینامیکی ماشینهای سنکرون پیدا کردند.
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون:
به طور کلی آزمایشهای موجود در حوزه تعیین پارامترهای دینامیکی ژنراتور سنکرون را می توان به دو دسته :
روشهای کلاسیک
روشهای جدید
تقسیم بندی کرد. روشهای کلاسیک، آزمایشهایی محدود را تشکیل میدهند که عموماَ از نظر زمانی نیز، بـر روشهای جدید تقدم دارند. مهمترین معیارهای مطرح در انتخاب روشهای مورد استفاده عبارتنداز:
انجام آزمایش در آن کشور ممکن باشد و به ابزار پیچیده نیاز نداشته باشد.
استانداردهای معتبر آن را تایید کند.
با بکارگیری آن تعداد بیشتری از کمیتها را بتوان شناسایی کرد.
آن روش قادر به اندازهگیری پارامترهای محور عرضی نیز باشد.
-1-2-3 روشهای کلاسیک اندازهگیری پارامترهای دینامیکی ژنراتور سنکرون:
روشهای کلاسیک روشهایی محدود هستند که عموما قبل از دهه 80 میلادی ابداع شدهاند و بـا انجـام آنهـا تنها یک یا چند پارامتر شناسایی میشود. این روشها برروی هر ژنراتـوری قابـل اجـرا بـوده و بـه تجهیـزات پیشرفته و پیچیده نیاز ندارد. تغییرات این روشها در خلال این سالها عموما از جنس اصلاح روابط محاسـباتی میباشد. اغلب آنها استاندارد شدهاند، ولی متاسفانه با انجام هر یک از این آزمایشها تنهـا تعـداد محـدودی از پارامترها بدست میآیند. از نقاط ضعف این روشها مساله تعیین پارامترهای محور q اسـت. از معایـب عمـده دیگر بعضی از این روشها مخرب بودن آنهاست. با این شرایط مجوز استفاده از این روشها علیرغم اسـتاندارد بودن آنها صادر نمیگردد.
به عنوان نمونه آزمایش اتصال کوتاه سهفاز اگر چه نتایج خوبی را از جهت تعیین پارامترها در بر داشته باشد، به علت آثار مخرب الکتریکی و مکانیکی جبران ناپذیر آن چندان مورد توجـه نیـست. اغلـب کمیتهـایی کـه توسط آزمایشهای کلاسیک تعیین میشود بر پایه مدل استاندارد IEEE تبیین شـدهانـد بـا یـک سـیمپـیچ میرایی محور طولی و عرضی. بسیاری از این روشها در تعیین پارامترها برای مدلهایی از مرتبـه بـالاتر ناکـام خواهند بود.

9- dc decay
42
-2-2-3 روشهای جدید در تعیین پارامترهای دینامیکی ژنراتورهای سنکرون:
همگام با رشد سیستمهای کـامپیوتری، توسـعه تجهیـزات انـدارهگیـری و پدیـد آمـدن سیـستمهای هـوش مصنوعی، مجموعه جدیدی از روشها برای شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون پدیـد آمدنـد.
بطور کلی در این روشها با اعمال ورودیهای مناسب در وضعیتهای متفاوت روتور(ایـستا یـا متحـرک) و ثبـت خروجیها، توابع انتقال ماشین شناسایی شده است. سپس با فرض یک مدل خاص بـرای ماشـین مـیتـوان پارامترهای ماشین را با روشهای مناسبی تخمین زد. اخیرا مدلهایی با مرتبه بالاتر نیز در اسـتانداردها مطـرح شدهاند. شناسایی پارامترهای دیگری که همگام با رشد درجه مدل مطرح شدهاند را صرفا میتوان با اسـتفاده از روشهای جدید تعیین پارامترهای دینامیکی ژنراتور سنکرون شناسایی کرد، اگر چه توانایی روشهای مذکور در تعیین این پارامترها متفاوت است. در مجموع روشهای جدید را میتوان تلاشـهایی بـرای دسـتیـابی بـه اهداف زیر دانست:
أ- دستیابی به روشهای بلادرنگ در تخمین پارامترها ب- استفاده از اطلاعات بهره برداری برای شناسایی پارامترها ت- شناسایی پارامترها با دقت هرچه بیشتر ث- تلاش در سادهسازی مکانیزم تخمین
به عنوان نمونه از مهمترین روشهای مطرح در این دسته به موارد زیر میتوان اشاره کرد: (1 روشهای بنا شده برپایه سیستمهای هوش مصنوعی:
(a تخمین پارامترهای دینامیکی با استفاده از شبکه عصبی (b تخمین پارامترهای دینامیکی با استفاده از الگوریتم ژنتیک
(2 روشهای بنا شده بر پایه تکنیکهای معادلات معادلات جزئی: (a تعیین پارامترها با استفاده از تکنیک اجزاء محدود
(3 شناسایی پارامترها ماشین سنکرون با استفاده از تست پاسخ فرکانسی
(4 شناسایی پارامترها با استفاده از دامنه وسیع تحریک
(5 شناسایی پارامترها با استفاده از اطلاعات تست باربرداری
(6 شناسایی پارامترها با استفاده از اطلاعات میرایی شار
(7 شناسایی پارامترها با اطلاعات بدست آمده از اغتشاشات بهره برداری (a تخمین پارامترها با استفاده از اغتشاشات بزرگ بهره برداری (b تخمین پارامترها با استفاده از اغتشاشات کوچک بهره برداری
عموم این روشها غیر مخرب بوده و نتایج خوبی را در تخمین پارامترها نشان داده اند. از نکات قابـل توجـه در این روشها توانایی آنها در تعیین پارامترهای محور عرضی علاوه بر محور طولی و همچنـین امکـان تخمـین پارامترها، متناظر مدلهایی با درجههای مختلف است. البته این به معنی توانایی برابر این روشها برای تخمین
43
و شناسایی پارامترها در جهات مختلف نیست. البته همه این روشـها در حـال تکامـل و بهبـود مـیباشـند و
بسیاری از آنها هنوز استاندارد نشدهاند.
44
فصل چهارم:

شناسایی بلادرنگ پارامترهای
دینامیکی ژنراتورهای سنکرون با
استفاده از رویتگر شبکه عصبی
45
-1-4 اصول کار شبکه های عصبی:
یکی از روشهای مشهور در حوزه هوش مصنوعی شبکه عصبی مصنوعی است. شبکههای عصبی مـصنوعی الهام گرفته از شبکه عصبی انسان هستند که توانایی بالایی در تقلید رفتار توابـع غیـر خطـی از خـود نـشان دادهاند. انسان با استفاده از تجربیاتی که از وقایع پیرامون خود دارد و ارتباطی که بین آن وقایع و عوامل مؤثر بر آنها برقرار میکند، نسبت به تخمین وقایع آتی بر پایه وضـعیت عوامـل مـؤثر اقـدام مـینمایـد. براسـاس تحلیلهای موجود شبکه عصبی مغز انسان از لایههای مختلفی تشکیل شده که لایه خـارجی آن(کـورتکس)
متصل به مجاری ورودی است. این ورودیها در انسان حواس او هستند. تجربیات ما به صورت تفاوت قوت و ضعف نقاط اتصال سلولهای عصبی به یکدیگر(سیناپسها) بروز مـیکنـد. هـر یـک از نـرونهـا پیونـدهای متعددی با سلولهای لایه بعد دارند.

شکل:1-4 طرح کلی سلول عصبی انسان
مسلم است که هرچه تعداد پیوندهای عرضی بیشتر باشد شبکه توانایی بیشتری در آموزش رفتـار توابـع غیـر خطی خواهد داشت.
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها:
با درنظر گرفتن مبادی ذکر شده، مراحل شبیهسازی شبکههای عصبی بدین صورت خواهد بود:
ساخت نرون مصنوعی
ساختاربندی آن در قالب لایههای مختلف
تهیه بانک اطلاعات لازم برای آموزش شبکه عصبی
آموزش شبکه عصبی
تست شبکه
46

شکل :2-4 شکل کلی سلول عصبی مصنوعی
لایههای شبکه عصبی را به سه دسته لایه ورودی، لایه خروجی، و لایه (لایههای) مخفی تقسیم مـیکننـد.
تعداد عناصر لایه ورودی و خروجی باید برابر تعداد ورودی، خروجیهای در نظـر گرفتـه شـده بـرای شـبکه باشند. افزایش تعداد لایههای مخفی در شبکه عصبی دو اثر متضاد را به همراه دارد. از یک طرف تقلیـد هـر چه بهتر رفتار هر تابع غیر خطی را امکان پذیر می سـازد و از طـرف دیگـر مـشکلات شـبیه سـازی و مـدت آموزش را افزایش میدهد. در عمل باید بسته به شرایط، بین این دو عامل بهینهسازی شود. در عمل در طـی تحقیقات متعدد انجام شده شبکه عصبی با یک لایه مخفی به عنوان حالت بهینه مطرح شده است.

شکل:3-4 ساختار شبکه عصبی توسعه یافته
همانگونه که پیشتر مطرح شد تعداد نرونهای لایه خروجی شبکه عصبی برابـر تعـداد خروجـیهـای در نظـر گرفته شده برای آن شبکه است. در این طرح، شبکه عصبی با یک خروجی در نظر گرفته شده است. بنابراین برای تخمین هر یک از پارامترهای مورد نظر باید یک شبکه مستقل تـشکیل شـده، آمـوزش دیـده و مـورد استفاده قرار گیرد. این روش اگرچه مشکلاتی را در تشکیل و آموزش شبکههای متعدد به همـراه دارد لـیکن گامی در جهت دستیابی به حداکثر قابلیت شبکههای عصبی در تخمین پارامترهـای دینـامیکی ژنراتورهـای سنکرون بر اساس دادههای بهرهبرداری است. همانگونه که همواره بهینهسازیهای تک هدفه نتایج بهتـری از جهت دستیابی به نتیجه مورد نظر دارند، با توجه به تشابه ساختاری این معنی در باب شـبکههـای عـصبی نیز صادق است. تعداد نرونهای لایه ورودی نیز برابر تعداد ورودیهای در نظر گرفته شده برای شبکه عـصبی
47
است. تعداد شش ورودی برای شبکه مورد نظر در نظر گرفته شده است. تعداد ورودیها در این طرح با توجه به مجموعه پارامترهای قابل اندازهگیری در خروجی ژنراتورهای سنکرون انتخاب شده است. البته انتخـاب و ترتیب آرایش این پارامترها برپایه رؤیت پذیری پارامترهای دینامیکی ژنراتور سنکرون در رفتار دینـامیکی آن شکل گرفته است. این بحث در طی مطالعات پیشین انجام شـده در مرکـز مطالعـات دینامیـک ایـران مـورد بررسی قرار گرفته است.
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی تخمینگر:
از نکات بسیار مهم در تشکیل شبکه عصبی مـصنوعی، بانـک اطلاعـات آموزشـی مـورد اسـتفاده اسـت. در تجربیات گذشته که در حوزه استفاده از شبکههای عصبی مصنوعی مطرح است، گاه اصلاح مکانیزم تهیـه و تغییر دامنه دادههای آموزشی، یک شبکه عصبی با نتایج ضعیف را به شبکهای بـا نتـایج قابـل قبـول تبـدیل کرده است. شاید بتوان مهمترین نکته در گردآوری اطلاعات آموزشـی را شـمول و فراگیـری آن نـسبت بـه حالتهای مختلف رفتاری مطرح در حوزه مورد نظر دانست. اگرچه این شمول را نباید با بزرگی ابعـاد اشـتباه گرفت. عامل مهم نگاه ریشهای و بنیادین به حالات مطرح در آن حوزه است. از آنجا که این شبکه بر آنـست تا بر پایه اطلاعات بهرهبرداری نسبت به تخمین پارامترهای دینامیکی ژنراتور سنکرون اقدام نماید، لـذا بایـد بانک اطلاعات لازم برای آموزش شبکه عصبی در این حوزه فراهم شود. مجموعه اغتـشاشاتی کـه در طـی بهرهبرداری از ژنراتورها رخ میدهد را میتوان به سه دسته عمده تقسیم کرد:
اغتشاشاتی که در حوزه تحریک رخ می دهند
اغتشاشاتی که در حوزه توان ورودی رخ میدهند
اغتشاشاتی که در شبکه تحت تغذیه رخ میدهند
بدین ترتیب از هر یک از این حوزههای سهگانه یک نمونه شایع به عنوان نماینده آن گروه بـدین ترتیـب در
نظر گرفته شده است:
تغییر ناگهانی %10 در تحریک ژنراتور
تغییر ناگهانی %10 در توان ورودی ژنراتور
وقوع اتصال کوتاه سهفاز 10-5)میلی ثانیه) در خروجی ژنراتور
48

شکل :4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون
(برای آموزش و تست شبکه عصبی)
60 مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون به عنوان مقـادیر پایـه در تـشکیل بانـک اطلاعات آموزشی شبکه عصبی در نظر گرفته شده است. این مجموعه از دادههایی مربوط به:
واحدهای بخاری- فسیلی
واحدهای بخاری-فسیلی با پیوند عرضی
واحدهای بخاری- هستهای
واحدهای آبی
واحدهای با توربین احتراقی
تشکیل شده است. برای هر مجموعه از این پارامترها دو گام افزایشی و دو مرحله کاهش در نظر گرفته شده
است. هر یک از این مراحل تغییرات %10 پارامترها را بهمراه خواهد داشت. مجموعه نهایی دربرگیرنـده 225
مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون میباشد. مجموعه یک ژنراتور متصل به شین
بینهایت برای شبیه سازی رفتار ژنراتور سنکرون در نظر گرفته شده است. برای این که آثـار تفـاوت سـاختار
شبکه در رفتار ژنراتور نیز لحاظ شده باشد در هر مرحله از شبیهسازی بصورت همگام با تغییرات پارامترهـای
ژنراتور، تغییراتی در حوزه پارامترهای شبکه نیز در نظر گرفته شده است. در هر دوره شبیه سازی از خروجـی
ژنراتور 1000 نمونهگیری با فاصله زمانیهایی برابر0,01 ثانیه بعمل آمده است. 20 نمونه از اندازهگیری های
انجام شده و پارامترهای متناظر با آن به عنـوان مجموعـه اطلاعـات آموزشـی در نظـر گرفتـه شـده اسـت.
نمونههای منتخب از میان اندازهگیریهای انجام شده با گامهای متغیر و قابل کنترل گزینش شـدهانـد، ایـن
رویکرد امکان تهیه تصویری بهتر از رفتار دینامیکی ژنراتور سنکرون در قبال یک اغتـشاش را بـا رعایـت دو
مشخصه حداقل حجم اطلاعات و حفظ حداکثر مشخصات رفتاری فراهم میآورد.
49

شکل:5-4 آلگوریتم آموزش شبکه عصبی
آموزش شبکه بر پایه الگوریتم پسانتشار و با استفاده از راهبرد مارکوئیس_لونبرگ انجام شده است. برای هر یک از انواع سهگانه اغتشاشات ذکر شده بانک اطلاعات آموزشی مستقلی در نظـر گرفتـه شـده اسـت. ایـن روش امکان مقایسه بین نتایج اخذ شده در قبال هر یک از انواع اغتشاشات را فـراهم مـیآورد. ایـن راهبـرد امکان مقایسه درجه قابلیت اطمینان نتایج حاصل از تخمین پارامترهای گوناگون در قبال اغتشاشات مختلـف را نیز فراهم میĤورد.
-2-2-4 تست شبکه عصبی تخمینگر:
تست شبکه عصبی با استفاده از اطلاعات بهره برداری که در مجموعه آموزشی لحـاظ نـشده، شـکل گرفتـه است. بدین ترتیب تصویر واقعگرایانهتری از قابلیتهای شبکه مذکور خواهیم داشت. برای تحقق این معنـی اطلاعات مربوط به 75 ژنراتور سنکرون متفاوت با نمونه های مطـرح شـده در مجموعـه آموزشـی، دادههـای حاصل از اندازهگیریهای بعمل آمده در قبال رفتار دینامیکی آنهـا و مقـادیر حقیقـی پارامترهـای دینـامیکی متناظر با آن به عنوان مجموعه دادههای تست شبکه عصبی در نظر گرفته شده است. طرح کلی روش تست و بهرهبرداری شبکه عصبی مذکور در شکل4-6 بیان شده است. هریک از مراحـل آمـوزش و تـست شـبکه عصبی تخمینگر با مشخصات ذکر شده در قبال سه اغتشاش نمونه مطرح در نظر گرفته شده است.
50

شکل:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی
-3-4 نتایج:
مجموعه نتایج در سه بخش سازماندهی شده است. هربخش در برگیرنده نتایج آموزش و تست شبکه عصبی بر پایه یکی از انواع سهگانه اغتشاش میباشد. این طریقه بررسی امکان مقایسه بهتر نتایج را فراهم سـاخته، شاهدی بر رؤیت پذیری پارامترهای دینامیکی ژنراتورهای سنکرون در ازای اغتشاشات مختلف مـیباشـد. از طرف دیگر بررسی مقایسهای نتایج درجه دقـت شـبکه عـصبی در تخمـین پارامترهـای دینـامیکی بـر پایـه اطلاعات مختلف بهرهبرداری را نیز بیان میکند. برداشتهای مقایسهای امکان تعیین بهتر قابلیتهای شبکه عصبی را بدور از آثار ناشی از الگوی آموزشی فراهم میآورد، زیرا ابعاد و مکانیزم تشکیل مجموعـه آموزشـی در تخمین همه این پارامترها مشابه بوده است.
برای بررسی رفتار هر شبکه عصبی دو معیار اصلی دامنه و توزیع فراوانی خطا در نظر گرفتـه شـده اسـت. در تحلیل بر اساس توزیع فراوانی خطا، درصد فراوانی غالب و دامنه خطای متناظر با آن بیان شدهاند. با توجه به حجم زیاد مجموعه نتایج، چند نمونه از شبکههای تخمینگر و دادههای بدست آمده از طریق آنها در مرحلـه آموزش و تست ارائه شده است. این مجموعه به سه حوزه آموزش و تست بر اساس اطلاعـات بهـرهبـرداری شکل گرفته برپایه تغییر ناگهانی تحریک، تغییر ناگهانی تـوان ورودی و اغتـشاش حـوزه شـبکه متـصل بـه ژنراتور تقسیم شده است. برای فراهم سازی امکان مقایسه بیشتر، نتایج متناظر هر پارامترکه با استفاده از هر یک از بانکهای اطلاعاتی سهگانه مذکور بدست آمده اسـت در اختیـار خواننـده محتـرم قـرار گرفتـه اسـت.
پارامترهای دینامیکی مطرح برای ژنراتورهای سنکرون _در نگاه اشتراکی بین انواع مختلف آن _کـه مـا بـه تخمین آنها همت گماشته ایم مجموعهای بدین صورت را تشکیل خواهد داد:
51
جدول( (1-4 ردیف نام پارامتر مشخصه واحد
1 راکتانس سنکرون محور d Xd pu
2 راکتانس حالت گذرا محور d Xd' Pu
3 راکتانس فوق گذرا محور d Xd" Pu
4 راکتانس سنکرون محور q Xq pu
5 راکتانس فوق گذرا محور q Xq" Pu
6 راکتانس پوتیه Xl pu
7 ثابت زمانی محور d در دوره گذرا Td' s
8 ثابت زمانی محور d در دوره فوق گذرا Td" s
9 ثابت زمانی محور q در دوره فوق گذرا Tq" s
10 ثابت اینرسی H s
52
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر:
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd"

شکل :8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
53

شکل :9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
54

شکل :11-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
55
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل :14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
56

شکل :15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
57

شکل :17-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
58
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
59

شکل:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
60

شکل :23-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
61
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq"

شکل :26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
62

شکل :27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
63

شکل :29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
64
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
65

شکل :33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq"
66

شکل :35-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
67
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
68

شکل :39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
69

شکل :41-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
70
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td"

شکل :44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
71

شکل :45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
72

شکل :47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
73
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
74

شکل:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
75

شکل :53-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
76
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل :56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
77

شکل :57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
78

شکل :59-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
79
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq"

شکل :62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
80

شکل :63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
81

شکل :65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
82
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

.
شکل:68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
83

شکل:69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq"
84

شکل :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
85
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

شکل :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
86

شکل :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
87

شکل :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
88
-2-3-4 بررسی تحلیلی نتایج:
در طی این پروژه، شبیه سازیهای مربوطه در جهت تخمین کلیه پارامترهای مذکور انجام شده و بـر اسـاس اغتشاش بکار گرفته شده در تهیه دادههای بهرهبرداری تقسیم بندی و مقایسه شـده اسـت. بررسـی تحلیلـی نتایج در قالب شاخصبندیهای زیر ارائه شده است:
.1 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره آموزش:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحلـه آمـوزش، شـکل گرفتـه است. در مسیر تخمین هر یک از پارامترها نتایج سهگانه بدست آمده به ترتیب بر اساس برازندگی از دیدگاه حداقل خطا مرتب شده است. این نتایج برپایه اغتشاش متناظر با آنها نام گذاری و در جـدول
2-4 جای گرفتهاند.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شـاخص حـداکثر خطـا ارزیـابی و اولویت بندی شدهاند. نتایج این تحلیل به ترتیب بیان شده در گام قبل نامگذاری و در قالـب جـدول
3-4 در اختیار قرار گرفته است.
.2 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره تست:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحله تست، شکل گرفته است.
در مسیر تخمین هر یک از پارامترها، نتایج سهگانه بدست آمده بر اساس برازندگی از دیدگاه حداقل خطا ترتیب یافته است. این نتایج برپایه اغتشاش متناظر با آنها نام گـذاری و در جـدول 2-4 جـای گرفتهاند. به علّت اهمیت خاص نتایج حاصل در این بخش، علاوه بر تحلیلهای فوق شاخص خطای متناظر با فراوانی غالب و درصد فراوانی مربوطه در بهترین حالت نیز ارزیابی و در جدول 2-4 ارائـه شده است.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
89
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شاخص حداکثر خطا ارزیابی و بـر اساس برازندگی مرتب شده است. نتایج این تحلیل به همان صورت نامگذاری و در جدول 3-4 ارائه شده است.
درباب عملکرد شبکه عصبی در تخمین :Xd
با مقایسه نتایج بدست آمده با استفاده اغتشاشات مختلف هیستوگرام خطای شبکه در مرحله آموزش بهتـرین توزیع فراوانی را در وقوع قبال اتصال کوتاه در ترمینال ژنراتور نشان میدهـد نتـایج حاصـله بـر پایـه تغییـر ناگهانی تحریک و تغییر توان ورودی در مراتب بعدی قرار میگیرند.
از نظر دامنه خطا نیز در این مرحله بهترین نتایج به ترتیب در قبال نتایج حاصله از وقوع اتصال کوتاه, تغییـر توان ورودی و تغییر ناگهانی تحریک شکل گرفته اند.
در مرحله تست بهترین توزیع فراوانی در مرحله اول مربوط به نتـایج حاصـل از تغییـر ناگهـانی تحریـک، در مرحله دوم مربوط به نتایج حاصله بر پایه وقوع اتصال کوتاه و نهایتًا از تغییر توان ورودی بدست میآید.
کمترین دامنه خطا به ترتیب متعلق به تخمین برپایه نتایج حاصل از وقوع اتصال کوتاه، تغییر تـوان ورودی و نهایتًا تغییر تحریک میباشد.
در مرحله تست محدودترین دامنه خطا مربوط به وقوع اتصال کوتاه است. نتایج حاصل از تغییر تـوان ورودی و تغییر ناگهانی تحریک در مراتب بعدی قرار دارند.
%73,3 از نتایج دارای خطای کمتر از %9,2 دامنه تغییرات Xd هستند.
درباب عملکرد شبکه عصبی در تخمین :X'd
هیستوگرام خطای شبکه در مرحله آموزش نتایجی بدین ترتیب را در بر داشته است: در مرحلـه اول بهتـرین نتایج همراستا با تغییر ناگهانی تحریک شکل گرفته است، در مرحله دوم با تغییـر تـوان ورودی و در مرحلـه سوم با استفاده از وقوع اتصال کوتاه در خروجی ژنراتور.
کمتریم دامنه خطا در مرحله آموزش مربوط به وقوع اتصال کوتاه در ترمینال ژنراتور و در مرحله دوم و سـوم
مربوط به تغییر ناگهانی تحریک و توان ورودی ژنراتور میباشد.
در مرحله تست نمودار خطای شبکه نتایج مشابهی را در قبال اغتشاشهای سهگانه بجای گذاشته است و بـه سختی میتوان بین آنها تمایز قائل شد. شاید بتوان نتایج مربوط به تغییر توان ورودی، و در گامهـای بعـدی مربوط به تغییر ناگهانی تحریک و وقوع اتصال کوتاه در خروجی ژنراتور دانست.
90
کمترین دامنه خطا در این مرحله بترتیب مربوط به تغییر ناگهانی تحریک، وقوع اتصال کوتـاه و تغییـر تـوان ورودی میباشد.
%70 نتایج دارای خطای کمتر از %8,9 دامنه تغییرات X'd میباشند.
درباب عملکرد شبکه عصبی در تخمین :X"d
نمودارهای بدست آمده در مرحله آموزش از دیدگاه توزیع فراوانی خطا بهترین نتایج را متناظر با وقوع اتصال کوتاه در ترمینال ژنراتور و در مراحل بعدی همراستا با تغییر توان ورودی و تغییر تحریک، نـشان مـیدهنـد.
اگرچه دو مورد اخیر نتایج مشابهی را نشان میدهند و به سختی میتوان بین آنها تفاوت قائل شد.
در این مرحله از نظر دامنه خطا، کوچکترین محدوده مربوط به نتایج حاصل از وقوع اتصال کوتاه و در مرحله
دوم و سوم مربوط به تغییر در تحریک و توان ورودی است.
در مرحله تست، هیستوگرام خطا بهترین نتایج را در قبال وقوع اتصال کوتاه نشان میدهد. همچنین اولویـت
دوم و سوم به نتایج حاصل از تغییر توان ورودی و تغییر تحریک تعلق می گیرد.

projct-fi

( 1 - 1 هدف 6
( 2 - 1 پیشینه تحقیق 7
( 3 - 1 روش کار و تحقیق 11
فصل دوم : رابطه تلفات و افت ولتاژ در تجهیزات با ولتاژکاری و ارائه تابع هزینه 13
.1-2 مقدمه 14
.2-2 تعاریف و ضرایب کاربردی 15
.3-2 اجزاء تلفات و رابطه آنها با سطح ولتاژ 16
.4-2 اجزاء موثر درافت ولتاژ و رابطه آنها با ولتاژ کاری 26
2ـ.5 ارائه توابع هزینه با در نظر گرفتن ضوابط اقتصادی 30
2ـ.6 نتیجه گیری 33
فصل سوم : شبکه های توزیع برق با ولتاژمیانی 34
.1-3 مقدمه 35
.2-3 شبکه نوع اول 36
.1-2-3 بررسی تلفات شبکه نوع اول 37
.2-2-3 بررسی افت ولتاژ شبکه نوع اول 43
.3-3 شبکه نوع دوم 48
.1-3-3 بررسی تلفات شبکه نوع دوم 49
.2-3-3 بررسی افت ولتاژ شبکه نوع دوم 52
.4-3 شبکه نوع سوم 56
.1-4-3 بررسی افت ولتاژ شبکه نوع سوم 58
.2-4-3 بررسی تلفات شبکه نوع سوم 59
.5-3 شبکه نوع چهارم 62
.1-5-3 بررسی افت ولتاژ شبکه نوع چهارم 63
.2-5-3 بررسی تلفات شبکه نوع چهارم 66
.6-3 مقایسه شبکه نوع دوم و سوم 68
.7-3 نتیجه گیری 69
فصل چهارم : تجهیزات سیستم توزیع با ولتاژمیانی 71
.1-4 مقدمه 72
.2-4 تجهیزات سیستم توزیع مرسوم 73
۵
فهرست مطالب عنوان مطالب شماره صفحه
.3-4 تجهیزات سیستم توزیع با ولتاژ میانی 78
.4-4 جداول هزینه سیستم توزیع با ولتاژ میانی و فشار ضعیف 86
.5-4 نتیجه گیری 88
فصل پنجم : انتخاب سطح ولتاژمیانی بهینه 89
5ـ.1 مقدمه 90
5ـ.2 تعریف سطح ولتاژ میانی و بررسی استانداردهای مختلف 91
5ـ.3 بررسی هزینه تجهیزات متأثراز سطح ولتاژ و ارائه جداول و توابع 93
5ـ.4 بررسی تلفات تجهیزات خط متأثر از سطح ولتاژ میانی 100
5ـ.5 انتخاب سطح ولتاژ میانی مناسب برای شبکههای نوع اول ، دوم ، سوم 102
5ـ.6 انتخاب سطح ولتاژ میانی برای شبکه نوع چهارم 106
.7-5 نتیجه گیری 109
فصل ششم : حریم خطوط هوایی شبکه های توزیع با ولتاژ میانی 110
6ـ.1 مقدمه 111
6ـ.2 طبقه بندی سطوح ولتاژ میانی جهت تعیین حریم 112
6ـ.3 تعاریف 112
6ـ.4 حریم خط هوایی از ریل راهآهن 114
6ـ. 5 حریم راهها 114
6ـ.6 حریم خطوط مخابرات و تلفن 115
6ـ.7 حریم خطوط نفت و گاز 116
6ـ. 8 حریم دو خط انتقال با ولتاژ مختلف 116
6ـ.9 فاصله آزاد سیمها از ساختمان و ابنیه 117
.10-6 فواصل مجاز هادیها از یکدیگر 118
.11-6 نتیجه گیری 119
فصل هفتم : انتخاب شبکه نمونه واقعی و پیاده سازی شبکه ولتاژ میانی 120
.1-7 مقدمه 121
.2-7 پیادهسازی شبکه ولتاژ میانی نوع اول روی شبکه نمونه واقعی 122
7ـ.3 شبکه نمونه واقعی برای شبکه ولتاژ میانی نوع دوم 130
7ـ.4 شبکه نمونه واقعی برای شبکه ولتاژ میانی نوع چهارم 133
7ـ. 5 بررسی افت ولتاژروی شبکه های نمونه 136
۶
فهرست مطالب عنوان مطالب شماره صفحه
فصل هشتم : نتیجهگیری و پیشنهادات 139
نتیجهگیری 140
پیشنهادات 142
منابع ومĤخذ 143
فهرست منابع فارسی 144
فهرست منابع لاتین 145
سایتهای اطلاع رسانی 146
چکیده انگلیسی 147
٧
فهرست جدول ها عنوان شماره صفحه
: 1-1 ولتاژهای میانی و فرکانس تغذیه در تعدادی از کشورها 7
: 1-4 لیست تجهیزات سیستم توزیع مرسوم 86
: 2-4 لیست تجهیزات سیستم توزیع با ولتاژمیانی نوع اول 87
: 3-4 لیست تجهیزات شبکه نوع چهارم 88
: 1-5 ولتاژهای نامی سیستم در استانداردIEEE std 141 91
: 2-5 سطوح ولتاژ در رده زیر1kVدر استانداردIEC 38 92
: 3-5 سطوح ولتاژ بین35 kV تا 1kVدر استانداردIEC 38 92
: 4-5 سطوح ولتاژ در استاندارد کانادا 92
: 5-5 تجهیزات خط ولتاژ میانی متأثر از ولتاژ خط باسیم هوایی یا کابل خودنگهدار 99
: 6-5 لیست تجهیزات مربوط به ترانس سه فاز و تکفاز مشترک بین مصرفکنندگان 100
: 7-5 لیست تجهیزات مربوط به ترانس تکفاز نصب در محل مشترکین 100
: 8-5 تلفات مربوط به المانهای متأثرازولتاژ شبکه 101
: 9-5 تلفات وافت ولتاژ درخط با سیم هوایی به طول 1 کیلومتر 103
: 10-5 تلفات وافت ولتاژ درخط با کابل خودنگهدار به طول 1 کیلومتر 104
: 11-5 تلفات وافت ولتاژ در کابل زمینی از پست تا خط به طول 70 متر 104
: 12-5 هزینه احداث خط با سیم هوایی به طول 1 کیلومتربرحسب 104
: 13-5 هزینه احداث خط با کابل خود نگهدار به طول 1 کیلومتر بر حسب 104
: 14-5 هزینه کل ناشی از تلفات و احداث خط با سیم هوایی 105
: 15-5 هزینه کل ناشی از تلفات و احداث خط با کابل خودنگهدار 105
: 16-5 فاصله بین هر هادی با بدنه تیر و اتریه 106
: 17-5 فاصله مجاز عایقی بین هادیهای خط 107
: 1-6 حریم خطوط توزیع وزارت نیرو 113
: 2-6 حریم مربوط به جاده ها وراهها 114
: 3-6 حداقل ارتفاع سیم ( فاصله مجاز قائم هادیها ) از سطح جاده 115
: 4-6 فاصله عمودی دو خط انتقال با ولتاژ مختلف 116
: 5-6 فاصله مجازبین هادیهای خط برای سطوح ولتاژمیانی 118
: 6-6 فاصله مجازهر هادی خط ازبدنه برای سطوح ولتاژمیانی 119
: 1-7 جدول تلفات توان درخط برای نقاط مختلف نصب ترانس در شبکه نوع اول 126
: 2-7 جدول مقایسه تلفات وهزینه برای مکان وظرفیت نهایی ترانسها 127
: 3-7 لیست تجهیزات محذوف از شبکه توزیع فشار ضعیف و هزینه مربوطه 128
: 4-7 لیست تجهیزات و هزینه شبکه ولتاژ میانی 127
: 5-7 هزینه احداث خط برای ولتاژ میانی6/6 kV 130
٨
فهرست جدول ها عنوان شماره صفحه
6-7 : هزینه احداث خط فشار متوسط20kV 131
7-7 : تلفات توان خط, برای نقاط مختلف نصب ترانس شبکه نوع چهارم 135
: 8-7 ارزش آتی هزینه تلفات و احداث برای هر یک از حالات ترانس گذاریC 135
: 9-7 مقایسه درصد افت ولتاژ برای شبکه ولتاژ میانی وفشارضعیف 136
: 10-7 مقایسه درصد افت ولتاژدر شبکه نوع دوم وفشار متوسط20 کیلوولت 137
: 11-7 مقایسه درصد افت ولتاژدرشبکه نوع چهارم برای نصب ترانس تکفازدرمحل مشترکین 137
: 12-7 مقایسه درصدافت ولتاژدرشبکه نوع چهارم برای انشعاب ترانس سه فاز 138
٩
فهرست شکل ها عنوان شماره صفحه
: 1-1 سیستم تکفاز تک سیمه استرالیا 8
: 2-1 سیستم تکفاز تک سیمه برزیلی 9
: 3-1 سیستم توزیع1 kV در نپال 10
: 1-2 انشعاب ترانس سه فاز از خط 23
: 2-2 انشعاب ترانس تکفاز از خط 24
: 3-2 فیدر شعاعی ساده 29
: 1-3 دیاگرام تک خطی شبکه نوع اول 36
: 2-3 دیاگرام تک خطی شبکه نوع اول جهت محاسبه تلفات کل شبکه 37
: 3-3 دیاگرام تک خطی جهت مقایسه تلفات خط فشار میانی وفشارضعیف 38
: 4-3 دیاگرام تک خطی جهت محاسبه افت ولتاژ 44
: 5-3 دیاگرام تک خطی جهت مقایسه افت ولتاژ شبکه ولتاژمیانی و فشارمتوسط 46
: 6-3 دیاگرام تک خطی شبکه نوع دوم 48
: 7-3 دیاگرام تک خطی جهت بررسی تلفات شبکه نوع دوم 49
: 8-3 دیاگرام تک خطی شبکه نوع دوم جهت بررسی افت ولتاژ 52
: 9-3 دیاگرام تک خطی جهت مقایسه شبکه ولتاژمیانی وفشارضعیف 55
: 10-3 شبکه ولتاژ میانی نوع سوم 56
: 11-3 امپدانس از دید اولیه ترانس 58
: 12-3 دیاگرام تک خطی شبکه نوع چهارم 63
: 1-6 فاصله آزاد سیمها از ساختمان و ابنیه 117
: 1-7 شبکه توزیع فشار ضعیف شهرک کشت وصنعت مغان 123
: 2-7 محل اولیه نصب ترانسها در شبکه نمونه برای شبکه نوع اول 125
: 3-7 فیدر خروجی پست20 کیلوولت طاووسیه غرب تهران 132
: 4-7 شبکه نمونه برای شبکه نوع چهارم 133
١٠
چکیده :
در سیستم توزیع ایران ازدو سطح ولتاژ400V و 20kV جهت توزیع انرژی بـرق بـین مـشترکین اسـتفاده می شود. استفاده ازاین دوسطح ولتاژ به تنهایی, باعث گسترش بیشترشبکه 20kV شده وهزینـه احـداث زیادی را تحمیل می کند. از طرفی گسترش شبکه 400V نیزباعث تلفات وافت ولتاژ بیـشتر در سیـستم توزیع معمول می شود.
دراین پروژه سطوح ولتاژاستاندارد مورد تأیید وزارت نیرو بین دوسطح ولتاژ مذکور انتخـاب و سـطوح ولتاژ استاندارد انتخابی به دو رده فشار ضعیف وفشار میانی تقسیم شده اند. با توجـه بـه دو رده ولتـاژی,
برای هرکدام شبکه توزیع متناسب با سطح ولتاژ آن ارائه شده اسـت. کـه شـبکه هـای نـوع اول , دوم و سوم برای رده فشارمیانی وشبکه نوع چهارم برای رده فشار ضعیف درنظرگرفته شده است. که هرکـدام از نظرتلفات وافت ولتاژ با سیستم توزیع معمول مقایسه شـده وروابـط لازم جهـت طراحـی بهینـه شـبکه ولتاژ میانی ارائه شده است. ازبین سطوح ولتاژ استاندارد انتخابی برای هر رده وبرای هرنوع شـبکه ارائـه شده , سطح ولتاژمیانی بهینه ازنظر کمترین مجمـوع ارزش آتـی هزینـه تلفـات واحـداث انتخـاب شـده است. استفاده از سطح ولتاژمیـانی درشـبکه توزیـع فعلـی باعـث کـاهش طـول شـبکه 20kV ونیزتعـداد پستهای زمینی فشارمتوسط خواهد شد. ازطرفی هزینه ناشی ازتلفات نیز بدلیل کاهش طول شـبکه فـشار ضعیف , کاهش می یابد. باتوجه به بررسیهای انجام شده سطح ولتاژ 6/6 kV به عنوان سطح ولتاژ بهینـه برای شبکه های نوع اول , دوم وسوم و سطح ولتاژ 1 kV برای شبکه نوع چهارم انتخاب شده انـد. پـس ازانتخاب این دوسطح ولتاژ, انواع شبکه ولتاژمیانی روی شبکه نمونه واقعـی, پیـاده سـازی شـده ونتـایج لازم بدست آمده است.
١
مقدمه :
در سیستم توزیع معمول , پستهای فوق توزیع از طریق شبکه فشار متوسط20kV پستهای فشار متوسط واقع در سطح منطقه را تغذیه میکنند. این پستهابا تبدیل سـطح ولتـاژ فـشار متوسـط بـه فـشار ضـعیف ، انرژی بـرق را بـا سـطح ولتـاژ قابـل اسـتفاده در اختیـار مـصرفکننـدههـا قـرار مـیدهنـد. در برخـی از مناطق, اغلب در حواشی شهرها و مناطق روستایی مستقیماً از سطح ولتاژ فشار متوسط استفاده شده و در نقاط بار ترانسهای 20 / 0/4 kV تعبیه و مصرفکنندگان تغذیه میشوند.
انتخاب سطح ولتاژ برای یک خط به پارامترهای مختلفی وابسته است که از جمله آنها میتوان بـه طـول فیدر ، قدرت انتقالی ، هزینه احداث ، تلفات ، حریم و غیره اشاره نمود. در صورتی کـه از سـطح ولتـاژ بالاتری استفاده شود ظرفیت آزاد اضافی در خطوط ایجاد خواهد شد. که در اینـصورت هزینـه اضـافی برای احداث ظرفیت آزاد خط پرداخت می شود. از طرفی اگر این سطح ولتاژ نـسبت بـه طـول فیـدر و قدرت انتقالی آن پایین تر از حد استاندارد انتخاب شودتلفات و افـت ولتـاژ بیـشتر و حتـی بـیش از حـد مجاز خواهد بود. که ارزشآتی تلفات احتمالاً بیشتر از هزینه احداث اضافی خواهد بود که باید صـرف احداث خط با سطح ولتاژ بالاتر میشد.
در طراحی سیستم توزیع پس از برآورد بار و تعیین مراکز چگـالی بـار ، عمـل جایـابی پـستهای 20kV
صورت میگیرد. پس از آن از طریق کابل زمینی یا خط هوایی فشارمتوسط این پستها تغذیه می شـوند.
که پس ازتبدیل یکباره سطح ولتاژ فشار متوسط به فشارضعیف انرژی برق دراختیار مصرف کننده گان قرار میگیرد.اما سوالی که اینجا مطرح میشود این است که اگرازیک سطح ولتاژ بین400V و 20 kV
استفاده شودچه اتفاقی میافتد. به عبارتی دیگر بـه جـای اینکـه از فیـدرهای 20kV بـا طـول نـسبتاً زیـاد استفاده شود از یک سطح ولتاژمیانی بین 400V و 20kV اسـتفاده کـرده و بـدین ترتیـب هزینـه شـبکه
20kV و همچنین طول آنرا کاهش داده و این سطح ولتاژ میانی تا نزدیکتـرین نقطـه بـه بارهـای انتهـایی منتقــل شــود در ایــن صــورت منــافع احتمــالی زیــادی خواهــد داشــت. زیــرا پــستهای زمینــی حــذف خواهندشدویاحداقل تعدادآن به نصف کاهش پیدا میکند. ازطرفی طول فیدرهای20kV نیـز کوتـاهتـر خواهندشد. از سوی دیگر چون ازشبکه هوایی فشارضعیف اغلب بـرای توزیـع اسـتفاده مـیشـود وایـن شبکه باشبکه توزیع فشارمیانی بطورمشترک برروی یک تیر احـداث خواهندشـد هزینـه احـداث شـبکه ولتاژمیانی کاهش می یابد. در مناطق خارج شهر یا مناطق روستایی و ویلایی که بارها در فواصـل نـسبتاً طولانی از یکدیگر قرار دارند. در سیستم توزیع فعلی همـانطور کـه در بـالا ذکـر شـد از خطـوط فـشار متوسط 20kV برای توزیع انرژی استفاده میشود.
٢
هزینه احداث خط وپستهای 20kV زیاد وقابل توجه اسـت. مخصوصاًدرپـستهای هـوایی هزینـه تـرانس پست وابسته به سطح ولتاژ آن میباشد. درصورتیکه ازیک سطح ولتاژمیانی مناسب جهت توزیع انـرژی برق استفاده شودقطعاً هزینه احداث کاهش پیدا خواهدکردبا این فرض که خروجی پستهای فوق توزیع دارای چنین سطح ولتاژ میانی باشند. ازطرفی تلفات درخط, درصورتیکه ظرفیـت یاقـدرت توزیـع شـده بزرگ ویا فیدرطولانی باشد نسبت به شبکه فشار متوسط بیشترخواهد بود. در موارد خاص هزینه خط با سطح ولتاژ میانی علاوه بر تلفات بدلیل افزایش سطح مقطع هادی جهت داشتن ولتاژ مجاز دربارانتهـایی وهمچنین قدرت کششی قابل تحمل توسط تیرها وکنسولها هزینـه احـداث آن بیـشتراز هزینـه احـداث شبکـه فشارمتوسط می باشد. بنابراین لـزوم بررسی حالتهای مختلف ضـروریست. در سیستمهای توزیـع انرژی برق ایران مناطق توزیع انرژی را میتوان به دوقسمت تقسیم نمودکه عبارتند از :
مناطق شهری
مناطق روستایی و حومه
با توجه به دو طبقهبندی فوق ، محل و چگالی بارها , هر یک از شبکه های ولتاژ میانی باید برای هـر دو مورد متناسب با آن طراحی شود. که این کار به طور کامل و با جزئیات صورت گرفته و تلفـات و افـت ولتاژ وروابط مربوط به هر کدام جهت طراحی بهینه ارائه شدهانـد. در اسـتفاده از شـبکه ولتـاژ میـانی در مناطق شهری نکته بسیار مهم و اساسی وجود دارد که باید به آن پرداخته شود و آن نحـوه تبـدیل ولتـاژ فشار متوسط20kV به فشار میانی میباشد. در صورتیکه خروجی پستهای فوق توزیع دارای فیـدر ولتـاژ میانی باشد مشکل احداث پست زمینی و هوایی فشار متوسـط بـه فـشارمیانی بـرای فیـدرهای بـا طـول و قدرت انتقالی پایین حل خواهد شد. درصورتیکه طول فیدر طولانی و بارسنگین باشد. طوری که انتقـال آن با سطح ولتاژ میانی مقدور نباشد از سطح ولتاژ فشار متوسط استفاده می شود ودرنقـاط مختلـف نیـاز به پستهای هوایی فشار متوسط به میانی خواهد بود. در احداث پستهای هـوایی محـدودیتهـایی وجـود دارد ازجمله برای پستهای تا 400kVA میتوان به راحتی پست هوایی احداث و بهرهبـرداری نمـود.امـا برای ظرفیتهای500kVA و 630 kVA نیاز به مجوز بوده و احداث این پستها بـا مـشکل اجرایـی همـراه است.[2] این محدودیت در اجرای پـستهای هـوایی باعـث محـدود شـدن طـول فیـدرهای ولتـاژ میـانی خواهد شد. بنابراین در صورتی که ظرفیـت پـست بـالاتر از ایـن مقـدار باشـد یـا بایـد دو پـست هـوایی احداث یا اینکه پست زمینی بررسی شود. اما آنچه بدیهی به نظـر مـیرسـد احـداث پـست زمینـی فـشار متوسط به فشارمیانی و در ادامه احداث پستهای هوایی فشارمیانی به فشار ضـعیف, هزینـه بـیش از پـیش افزایش یافته و ارزش آتی هزینه اضافی را که برای احداث پستها پرداخت می شود بـیش ازارزش آتـی تلفات کاهش یافته خواهد بود. در این پروژهبا توجه به توضیحات ارائه شده در فوق آرایشهای مناسـب
٣
برای خطوط ولتاژ میانی ارائه و همچنین سطح ولتاژ میانی مناسب با در نظـر گـرفتن نـوع منطقـه اعـم از شهری یا روستائی بودن آن انتخاب و روی یک شبکه نمونه واقعی پیادهسازی خواهد شد.
مسئله مهم دیگرحریم خطوط میباشد. شبکه ولتاژ میانی زمانی اقتصادیتر خواهد بود که از خط با سیم هوایی استفاده شود. زیرا در غیر اینصورت باید از کابل خود نگهدار و یا کابل زمینـی اسـتفاده شـودکه این خود در مواردی باعث غیر اقتصادی شدن طرح خواهد شد. بنابراین بررسی حریم خطـوط یکـی از مباحث این پروژه را تشکیل میدهد.
در این پروژه ابتدا به بررسی تلفات و افت ولتاژ در تجهیزات سیستم توزیع و رابطه افـت ولتـاژ و تلفـات آنها با سطح ولتاژکاری و همچنین مقایسه تلفات ترانس سه فاز و تکفاز برای قدرتهای مساوی پرداختـه شده است. سپس در ادامه تابع هزینه و روابط مربوطه جهت محاسبه ارزش آتی هزینـه تلفـات وسـرمایه گذاری ارائه می شوند. درفصل بعد انواع آرایشهای شبکه توزیع با ولتاژ میـانی ارائـه و از نظـر تلفـات و افت ولتاژ مورد بررسی قرار میگیرند. در فصل چهارم تجهیزات مربوط به شبکه ولتاژ میانی بحث شـده و درفصل پنجم انواع استانداردهای بینالمللی در مورد سطوح ولتاژ بررسی و با توجه به انوع آرایشهای خط, سطح ولتاژ میانی مناسب انتخاب شده است. در فصل ششم حریم خطوط برای شـبکه ولتـاژ میـانی تعریف و فواصل هادیها برای خطوط ولتاژمیانی ازیکدیگروتأسیـسات اطـراف آن بررسـی شـده اسـت.
در فصل هفتم شبکه نمونه با توجه به نوع شبکه ولتاژ میانی انتخاب و روی آن پیاده سازی شده و نتـایج بدست آمده بررسی و پیشنهادات لازم ارائه شده است.
۴

فصل اول
کلیات
۵
.1-1 هدف :
همانطوریکه در مقدمه ذکر شد درایـن پـروژه یـک سـطح ولتـاژ میـانی بهینـه انتخـاب و از نظـر فنـی و اقتصادی تأثیر این سطح ولتاژ در سیستم توزیع ارزیابی می شود. بررسی فنی شامل :
تلفات
افت ولتاژ
بررسی اقتصادی شـامل بدسـت آوردن ارزش آتـی تلفـات کـاهش یافتـه احتمـالی و همچنـین هزینـه احداث اضافی برای پیادهسازی شبکه ولتاژ میانی و در نهایت بدست آوردن هزینه فایده میباشد. قبل از انجام پروژه قطعاً نمیتوان اظهار نظرکردکه افت ولتاژ و تلفات کاهش مییابند یا خیر و یا اینکـه هزینـه احداث افزایش خواهد یافت و یا بالعکس. زیرا با اعمال شبکه ولتاژ میانی پستهای زمینـی20kV حـذف خواهند شد. همچنین طول خط فشار متوسط نیز کاهش خواهد یافت. از طرفی یک هزینه اضافی جهت احداث خطوط فشار میانی صرف خواهدشد. بنابراین اظهار نظر در مورد کاهش یا افزایش هزینه قبل از انجام پروژه خالی از اشکال نمیباشد.
در مورد کاهش یا افزایش تلفات و افت ولتاژ در خط نیز همین وضعیت حاکم است. تـرانس بـه عنـوان وسیلهای که تقریباً تلفات قابل توجهی را در سیستم توزیع داشته و افزایش تعداد این دستگاه در سیـستم توزیع نشانه افزایش تلفات می باشد. بنابراین انتخاب محل , ظرفیت و تعـداد تـرانس چـه از نظـر هزینـه وتلفات تعیین کننده خواهد بود. همچنین ترانس بدلیل امپدانس سیمپیچی اولیه و ثانویه آن اگر ظرفیـت و محل آن بطور صحیح انتخاب نشودباعث افت ولتاژ بیش ازحد مجازدرثانویه آن خواهد شد چه برسد به اینکه سطح ولتاژ از طریق خط فشارضعیف و کابل سرویس بدست مشترکین برسد. بنابراین بـا توجـه به مطالب فوق هدف ازانجام این پروژه درگام اول انتخاب مناسبترین و بهینهترین سطح ولتاژ میانی بـا توجه به سیستم توزیع ایران و در گام بعدی بررسی تـأثیر اسـتفاده از ایـن سـطح ولتـاژ میـانی درتلفـات، افت ولتاژ و همچنین ارزش آتی هزینه کاهش یا افزایش یافته تلفات واحداث خط فشار میانی می باشد.
۶
.2-1 پیشینه تحقیق :
سطح ولتاژمیانی درشبکه توزیع برق درکشورهای مختلف ازسالها قبل مورد استفاده قـرار گرفتـه اسـت.
جدول( 1 ـ ( 1 بطور خلاصه سطوح ولتاژ زیر22 kV جهت تغذیه بارها و همچنین فرکانس نامی شـبکه رادرکشورهای مختلف نشان می دهد.[15] در کشور ما نیز این تحقیقات بطـور محـدود و در برخـی از برق منطقهایها انجام شده و مقالاتی نیز در این زمینه ارائه شده است. در ادامه این بخش بـه تعـدادی از تجربیات و تحقیقات کشورها در جهت تغییر سطح ولتاژ موجـود و اسـتفاده از یـک سـطح ولتـاژ میـانی دیگر و همچنین تجربیاتی در جهت تغییر ساختار سیستم توزیع و آرایش جدید شبکه پرداخته میشود.
جدول ( 1 ـ : ( 1 ولتاژهای میانی و فرکانس تغذیه در تعدادی از کشورها
ولتاژتغذیه ( ( kV فرکانس ( ( HZ کشور
13/2 و 6/88 50 آرژانتین
11 و 6/6 و 19/1 50 استرالیا
12/5 و 7/2 و 0/6 60 کانادا
11/2 و 13/8 50 و60 برزیل
10 و 6 و 0/66 50 آلمان
6/6 50 و60 ژاپن
3 و 1 و 11 50 نپال
.1-2-1 تغییر سطح ولتاژ از 10 kV به 17/3 kV در ایرلند[16]
پروژه فوق در جهت تغییر سطح ولتاژ10kV شبکه روستایی به 17/3 kV انجام شده که ظرفیـت سیـستم را بدون هیچگونه تغییری در شبکه 1/73 برابر افزایش میدهد. مناطق روسـتایی در جمهـوری ایرلنـد بـا مساحت70000 کیلومترمربع توسط66000 کیلومترخطـوط هـوایی 10kV تغذیـه مـیشـوند. ایـن شـبکه بصورت سه فاز سه سیمه بوده وتغذیه تکفاز آن دو سیمه (فاز به فـاز) مـیباشـد. سیـستم فـوق از لحـاظ اقتصادی جهت تغذیه مناطق روستایی پراکنده و با بار کم طراحی شده و به مدت 30 سال بدون اشـکال کارکرده است. با افزایش بار مصرفی و تغذیه مصارف بین ( 500 kVA تا ( 1000kVA شـبکه فـوق بـا مشکلاتی چون افت ولتاژ و افزایش تلفـات مواجـه گردیـد. از جملـه راهحلهـایی کـه بـرای ایـن شـبکه پیشنهادگردید تغییر سطح ولتاژ از10kV به17/3 kV بود. بدین ترتیب با افزودن زمین به سیستم سـه فـاز
(چهار سیمه) و با توجه به طراحی شبکه موجود ، تغییری در سطح عایقی ایجاد نخواهدشـد. در سیـستم تکفاز نیز آرایش فاز به فاز بصورت فاز زمین تغییر کـرده تـا هیچگونـه تغییـری در شـبکه تکفـاز ایجـاد
٧
نشود. پس از پیادهسازی این روش, از لحاظ اقتصادی طرح فوق با توجه به افزایش ظرفیت ایجـاد شـده
(1/73) برابر, دارای هزینهای معادل نصف هزینه احداث یک خط10 kVجدید میباشد.
.2-2-1 استفاده از سیستم تکفاز تک سیمه در آفریقای جنوبی[18]
به دلایل زیر برقرسانی با روش تکفاز( تک سیمه )با استفاده ازولتاژمیانی به مناطق با بـارکم و روسـتایی درآفریقای جنوبی مورد توجه و بررسی بوده است :
ضریب استفاده از شبکههای روستایی بین 10% تا 30% میباشد.
مشتریان قادر به بازپرداخت هزینههای توسعه و سرمایهگذاری نیستند.
بدین لحاظ بررسیهای مختلفی درجهت کاهش هزینهها و اسـتفاده مناسـبتـر از شـبکه صـورت گرفتـه است. که ازآن جمله استفاده از سیستم تکفاز و تک سیمه با استفاده ازولتاژمیانی میباشد. ایـن روش بـا توجه به تجربیات کشورهای مختلف ازجمله استرالیا و برزیل دراین زمینه به دو شکل انجام میشود.
الف) سیستم استرالیایی :
در این روش توسط ترانس، شبکه تکفاز تک سیمه از شبکه فشارمتوسط مجزا میگردد. شکل 1) ـ ( 1
نمایـی از سیستم فوق را نشان میدهد.

ترانس مجزاکننده
22kV

220V
ترانس توزیع
شکل ( 1 ـ : ( 1 سیستم تکفازوتک سیمه استرالیایی
از مزایای این سیستم عدم تأثیرشبکه تکفاز روی حفاظت اتصال کوتاه شبکه فشارمتوسط مـیباشـد و از معایب این سیستم میتوان به هزینه ترانس مجزا کننده اشاره نمود.
ب) سیستم برزیلی :
دراین روش که درشکل ( 1 ـ ( 2 نشان داده شـده اسـت ، شـبکه تکفازمـستقیماً بـه شـبکه فـشارمتوسط متصل میشود.
٨

12/7kV

220V
ترانس توزیع
شکل ( 1 ـ : ( 2 سیستم تکفازوتک سیمه برزیلی
عمده مزیت این روش اتصال کم هزینه آن به شبکه سنتی میباشد و عیب عمده آن تأثیر روی حفاظـت اتصال کوتاه زمین و انتقال جریان نامتعادلی بارها به شبکه اصلی میباشد. در منـاطقی کـه از تـراکم بـار بالاتری برخوردار هستند به دلیل اینکه امکـان متعـادلسـازی بـار وجـود دارد از روش برزیلـی اسـتفاده مــیشــود. پــروژههــای ابتــدایی در ســطح ولتــاژ 1kV تکفــاز بــا ( بــار ( 16 kVA و 1/73 kV ســه فــاز با (بار ( 25 kVA با سیستم تک فاز تک سیمه به مرحله اجرا گذاشـته شـد. مطالعـات انجـام شـده نـشان میدهد که استفاده ازاین سیستم در فیدرهای با طول بسیارکم با صرفه اقتصادی همـراه اسـت و سیـستم تکفاز تک سیمه با روش استرالیایی نیز در مسافتهای بیش از 8/5 کیلومتر مناسب است.
.3-2-1 سیستم توزیع ولتاژمیانی در نپال[19]
سیستم توزیع درنپال باسطح ولتاژ میانی1 kV و هادیها ACSR وافت ولتـاژ % 5 طراحـی شـده اسـت.
شکل ( 1 ـ ( 3 نمایی از سیستم توزیع 1kV در نپال را نـشان مـیدهـد. در ایـن سیـستم در بخـشهایی از کابل هوایی ( خودنگهدار ) علیرغم اینکه گران تـر ازهادیهـای هـوایی اسـت اسـتفاده شـده اسـت. از جمله دلایل اینکار میتوان به موارد زیر اشاره نمود :
فاصله عایقی کمتر
دکلهای کوچکتر ( یا حتی استفاده از درختان به جای دکل )
عدم نیاز به مقره
بالا رفتن ایمنی
طراحی و ساخت لوازم جانبی سیستم فوق توسط صنایع محلی
چشم انداز بهتر از دیدگاه توریستی
کاهش دزدی برق از سیستم توزیع
٩

33kV
33 / 1kV
1kV / 220V
1kV / 400V
شکل ( 1 ـ : ( 3 سیستم توزیع 1kV در نپال
با توجه به اینکه در مناطق روستایی میزان بار بسیار کم در حدود 100W برای هر مشترک , بدلیل اینکه عمده مصرف برق جهت روشنایی استفاده میشـود. اسـتفاده از ولتـاژ فـشار ضـعیف حـداکثر تـا شـعاع
2کیلومتر را میتواند تغذیه نماید و لیکن استفاده از سطح ولتاژ میانی 1kV این امکان را میدهد که این محدوده تا شعاع 5کیلومتر افزایش یابد.
مزایای استفاده از این سیستم که قبلاً در نروژ پیاده شده است عبارتست از :
افت ولتاژ پایینتر
استفاده از سیستم سه سیمه به جای چهار سیمه
خریداری اقتصادی ترانسهای ولتاژ بالاتر از لحاظ انـدازه و سـاخت داخلـی تـرانسهـای ولتـاژ میـانی
( این ترانسها با قدرت1kVA ، 2kVA و5 kVA برای تکفاز و10kVA و25kVA برای سه فاز بصورت خشک ساخته میشوند )
کاهش خطرات اتصال کوتاه با کاهش سطح ولتاژ
کاهش دزدی برق از سیستم توزیع
١٠
.3-1 روش کار و تحقیق :
در این پروژه که هدف انتخاب سطح ولتاژمیانی بهینه برای شبکه توزیع ایران وپیاده سازی آن می باشد.
روشی که دراین پروژه برای انجام آن انتخاب شده روش علمی مبتنی بـر واقعیتهـای عملـی موجـود در شبکه توزیع ایران است. به عبارتی ضمن انجام محاسبات علمی شرایط عملـی واجرایـی نیزدرنظرگرفتـه می شود. زیرا زمانی طـرح علمـی قابـل اجـرا مـی باشـد کـه محـدودیتها و شـرایط عملـی واجرایـی در نظرگرفته شود. با توجه به اهداف پروژه مبنی برانتخاب سطح ولتاژ میانی بهینه و همچنین بررسی فنـی و اقتصادی استفاده از ولتاژمیانی , پروژه در چهار مرحله جهت انجام قالب بندی شده است.
در مرحله اول المانها وتجهیزات مختلف سیستم توزیع که در افت ولتاژوتلفـات موثرانـد مـورد بررسـی قرارمی گیرند. اهمیت این مرحله بخاطر استفاده از نتایج حاصـله ازآن بـرای انتخـاب سـطح ولتاژمیـانی بهینه درمرحله سوم وبررسی تلفات وافت ولتاژدر مرحله دوم است. درایـن مرحلـه المانهـایی کـه نقـش اصلی در تلفات و افت ولتاژدرسیستم توزیع دارند مورد بررسی قرار می گیرند که ازآن جمله می تـوان به ترانس اشاره نمود. تلفات خود ترانس واینکه ازترانس سه فـاز ویـا تکفـاز بـا قـدرت معـادل بـاآن در پست استفاده شود و رابطه افت ولتاژ ترانس با سطح ولتاژکاری آن بررسی می شود. درادامه این مرحلـه ارزش آتــی تلفــات وهزینــه احــداث مــورد بررســی قــرار گرفتــه وروابــط مربوطــه ارائــه شــده انــد. ایــن بخش, نقش تعیین کننده ای را درانتخاب سطح ولتاژمیانی وهمچنـین مقایـسه سیـستم توزیـع معمـول بـا سیستم توزیع با استفاده از ولتاژمیانی دارد. دراین مرحله تابع هزینه ای معرفی شده که ازدو مولفه هزینـه تلفات و هزینه احداث تشکیل شده است.
( 1 – 1 )ارزش آتی هزینه تلفات + ارزش آتی هزینه سرمایه گذاری F =
مجموع این دو مولفه در مقایسه دو سیـستم توزیـع مـذکور و انتخـاب سـطح ولتـاژ میـانی تعیـین کننـده خواهد بود. وکمترین مقدار برای تابع فوق , بهینه ترین حالت می باشد. تفاضل تابع هزینه بـرای سیـستم توزیع با ولتاژ میانی و سیستم توزیع مرسوم مقدار هزینه فایده را خواهدداد.
در مرحله دوم بادرنظرگرفتن شرایط فیزیکی مناطق مختلف درایران شبکه های ولتاژمیانی متناسب با آن ارائه می شوند. درادامه, بررسی تلفات و افت ولتاژ برای این شبکه ها انجام شده وبا شبکه توزیع معمول مقایسه و روابط لازم جهت طراحی بهینه شبکه ولتاژ میانی ارائه می شوند.
در مرحله سوم با توجه به نوع شبکه ارائه شده درمرحله دوم, تجهیزات سیستم توزیع با ولتاژمیانی تعیـین می شود. سپس سطح ولتاژمیانی درگام اول از بین سطوح ولتاژ استاندارد ودرگام دوم بـا در نظرگـرفتن چند ظرفیت انتقالی با توجه به شبکه توزیع ایران وطول فیدر1کیلومتری وبااسـتفاده از تـابع هزینـه ارائـه شده درمرحله دوم ونتایج بدست آمده ازمرحله اول انتخاب می شود. در این مرحله با توجـه بـه طـول و
١١
قدرتهای مختلف که بطور مفصل علت انتخاب آنها بحث خواهد شد و با استفاده از تابع هزینـه , سـطح ولتاژی که کمترین هزینه را از نظر مجموع ارزش آتی تلفات وسرمایه گذاری دارد انتخاب می شود.
در مرحله چهارم با توجه به انواع شبکه های ولتاژمیانی ارائـه شـده درمرحلـه دوم , شـبکه نمونـه واقعـی متناسب با آن انتخاب و شبکه ولتاژمیـانی روی آن پیـاده سـازی مـی شـود. درنهایـت شـبکه ولتاژمیـانی طراحی شده با شبکه توزیع مرسوم مقایسه و نتایج حاصله ارائه خواهد شد.
١٢

فصل دوم
رابطه تلفات وافت ولتاژدرتجهیزات سیستم
توزیع باولتاژکاری و ارائه تابع هزینه
١٣
.1-2 مقدمه :
در این فصل ابتدا ضرایب و تعاریف مهم ارائه سپس به بررسی اجزاء مهم تلفات ازقبیل ترانس ، خطوط و ... پرداخته می شود. هدف اصلی از این فصل بررسی تلفات اجزائی که نقش مهمی در تلفـات شـبکه توزیع دارند و اینکه تلفات در آنها تابعی از سطح ولتاژ خط می باشد. چون در فصول آینده نیاز بـه ایـن است که تلفات چه تجهیزاتی با سطح ولتاژ آن رابطه دارد. به همین دلیل نیاز به بررسی آن در این فصل ضروری به نظر می رسد. همچنین با توجه به نیاز برای مقایـسه تلفـات در تـرانس سـه فـاز و تکفـاز ایـن مقایسه انجام می شود. در بخشهای بعدی این فصل افت ولتاژ در ترانس ، خط و اجزائی که افـت ولتـاژ درآنها با سطح ولتاژ کاری متناسـب اسـت بررسـی مـی شـود. ایـن بـه خـاطر وجـود تجهیـزات اضـافی درسیستم توزیع با ولتاژمیانی است. که مهمترین آنها ترانس می باشدکه نقش عمده ای را درافـت ولتـاژ شبکه دارد. درانتهای فصل تابع هزینه با توجه به تلفات و هزینه سرمایه گذاری ارائه شده است. این تـابع جهت انتخاب سطح ولتاژمیانی و همچنین مقایسه شبکه توزیع مرسوم با شـبکه ولتاژمیـانی و نیـز بدسـت آوردن هزینه فایده بکارمی رود.
١۴
.2-2 تعاریف و ضرایب کاربردی :
تعریف تلفات :
آن بخش از انرژی الکتریکی که به کار مفید تبدیل نشود، تلفات نام دارد.
تلفات انرژی :
مقدار متوسط تلفات توان در دوره مورد مطالعه می باشد. که از رابطه زیر به دست می آید :
 T  PLossmax  FLS( 1 - 2) تلفات انرژی
که :
: PLossmax تلفات توان ماکزیمم ( ( kW
: FLs ضریب تلفات
: T دوره زمانی ( ساعت )
ضریب بار :
ضریب بار شاخص دیگری است که بـرای بررسـی مـصارف مـی توانـد مـورد اسـتفاده قـرار گیـرد. در حقیقت این ضریب تابعی است از انرژی و توان انتقالی ،که مقدار آن درهر مصرف کننده ازرابطـه زیـر به دست می آید: [7]
( 2 - 2 ) انرژی در دوره T  ضریب بار (پیک بار) T  رابطه ( 2 - 2) را می توان بصورت رابطه زیر نوشت : ( 3 - 2 ) Pav  ضریب بار P max ضریب تلفات :
شاخص دیگری که در مطالعات بار مورد اسـتفاده قـرار مـی گیـرد ، ضـریب تلفـات مـی باشـد. کـه در حقیقت از نسبت تلفات انرژی دردوره مورد مطالعه به حداکثر تلفات توان ( یا تلفات در بار ماکزیمم )
به دست می آید .[7] این تعریف را می توان بـه صـورت نـسبت تلفـات تـوان متوسـط بـه تلفـات تـوان ماکزیمم بصورت زیر نشان داد :
( 4 - 2 ) av ( P Loss ضریب تلفات max P Loss رابطه ضریب بار و ضریب تلفات :
در حالت کلی همواره برای ضریب تلفات و توان رابطه زیرصدق می کند.[7]
F 2Ld  FLs  FLd( 5 - 2 )
١۵
که :
: FLd ضریب بار
: FLs ضریب تلفات
بر اساس برخی مطالعات تجربی رابطه زیر برای این دو ضریب ارائه شده است .[7]
FLs 0 .3 FLd 0.7F 2Ld( 6 - 2 )
.3-2 اجزاء تلفات و رابطه آنها با سطح ولتاژ :
در این بخش تلفات تجهیزاتی از سیستم توزیع بررسی می شود که نقش عمـده ای را در تلفـات دارنـد.
همچنین رابطه تلفات این تجهیزات با افت ولتاژ مورد بررسی قرار می گیرد.
.1-3-2 تلفات ترانس
تلفات درترانس توزیع شامل دو مؤلفه است :
الف) تلفات مسی :
تلفات مسی یا تلفات ژول که در سیم پیچیهای ترانسفورماتورها ایجاد میگردد ، یکـی از عوامـل اصـلی تلفات در ترانسفورماتورها می باشد. و عملاً درصد عمده ای را به خود اختصاص می دهد. بـا توجـه بـه اینکه این بخش ازتلفات مستقیماً به جریان عبوری از ترانس بستگی دارد. در بی باری مقـدار آن تقریبـاً معادل صفر و در حالتیکه توان عبوری ازآن برابر توان اسمی باشـد مقـدار تلفـات بـارداری نیـز بـه حـد اسمی خود می رسد. در حالت کلی تلفات بارداری در بار دلخـواه S را مـی تـوان بـه صـورت تـابعی از مقادیر اسمی و مطابق رابطه زیر نشان داد.[5]
LL  LL n ( SS ) 2( 7 – 2 )

n
که :
: Sn قدرت اسمی ترانس ( ( kVA
: LL تلفات بارداری ترانس در بار دلخواه ( ( kW
S: بار انتقالی از ترانس ( ( kVA
: LLn تلفات بارداری ترانس در بار نامی ( ( kW
ب) تلفات بی باری :
تلفات بی باری ترانس ناشی از دو مولفه می باشدکه عبارتند از :
جریان مربوط به تلفات هسته
جریان مغناطیس کننده
برآیند این دو جریان, تلفاتی را در ترانس ایجاد می کند که به تلفات بی باری موسوم است. لازم به
١۶
ذکر است که جریان مغناطیس کننده فقط باعث تلفات مسی می شودکه از آن صرفنظر می شود.
تلفات توان درآهن از رابطه زیر به دست می آید: [1]
PFe  K e B 2m f 2  K h Bm 2 fW Kg( 8 - 2 )
که :
: Bm چگالی شار هسته ترانس ( Wb ) m 2 f : فرکانس شبکه ( ( Hz : K e ضریب تلفات فوکو : K h ضریب تلفات هیسترزیس عبارت اول سمت راست رابطه ( ( 8 - 2 مربوط به تلفـات فوکـو و عبـارت دوم آن مربـوط بـه تلفـات هیسترزیس است. این تلفات برای هرترانس چه در طول بی باری و بارداری تـرانس مقـدارثابتی بـوده و در هنگام محاسبه با ضریب تلفات FLS = 1 لحاظ خواهند شد.
ج) مجموع تلفات انرژی در ترانس :
کل تلفات انرژی در ترانس ها در اثر دو عامل تلفات بارداری و بی باری به وجود می آید ، کـه مقـدار آنرا درحالت کلی به صورت زیر می توان نشان داد :
( 9 - 2 ) W Loss  T [ PNL  PFL . K 2 . F Ls ] 2 ) ( 10 - S K  Sn که : : FLs ضریب تلفات
: PFL تلفات مسی ترانس در بار نامی ( ( kW
T: تعداد ساعات مؤثر سالیانه که ترانس تحت اعمال ولتاژ است ( ساعت )
: PNL تلفات بی باری ترانس ( ( kW
: K نسبت بار کشیده شده از ترانس به ظرفیت نامی آن
.2-3-2 رابطه تلفات ترانس با سطح ولتاژ کاری
دراین بخش رابطه تلفات ترانس برای قدرت ثابت با سطح ولتاژ آن بررسی مـی شـود. نتیجـه ای کـه از این بخش حاصل می شود. درانتخاب سطح ولتاژ میانی مورد استفاده قرارمی گیرد.
.1-2-3-2 رابطه تلفات مسی ترانس با سطح ولتاژ
تعداد دورسیم پیچی های اولیه و یـا ثانویـه تـرانس از رابطـه زیرکـه نـسبت ولتاژفـاز بـه ولتـاژ روی هـر حلقه است محاسبه می شود.[1]
( 11 - 2 ) VS TS  Et ١٧
که :
: VS ولتاژ فاز ( ( kV
: Et ولت بر دور هر فاز ( ( kV
: TS تعداد دور فاز
ولت دور یا Et از رابطه ( ( 12 - 2 به دست می آید.[1]
Q( 12 - 2 ) Et  K

که :
: Q قدرت ظاهری ترانس( ( kVA
: K ضریب ثابت
بــا جایگــذاری رابطــه ( ( 12 – 2 در رابطــه ( ( 11 - 2 و همچنــین جــایگزینی ولتــاژ VS فــاز بــا ولتــاژ خط Vm رابطه زیر بدست می آید :
( 13 - 2 ) Vm TS  K 3 Q جریان هر فاز ترانس با رابطه ( ( 14 - 2 معادل است : IS  Q ( 14 - 2 ) 3
3Vm

که :
: Q قدرت ظاهری سه فاز ترانس( ( kVA : Vm ولتاژ خط میانی( ( kV
سطح مقطع سیم پیچی از رابطه نسبت جریان فاز به چگالی جریان سیم بدست می آید.
( 15 - 2 ) IS aS  δ : a S سطح مقطع سیم پیچی(( mm2 : δ چگالی جریان هادی ( A ) mm 2 با جایگذاری رابطه ( ( 14 - 2 در رابطه ( ( 15 - 2 رابطه زیر بدست می آید : ( 16 - 2 ) Q a S  3Vm δ
مقاومت اسمی سیم پیچی ازرابطه زیربدست می آید :
( 17 - 2 ) T S L mts ρ R S a S که : : ρ مقاومت ویژه سیم ( ( Ω mm 2 m ١٨
: TS تعداد دور سیم پیچی
: a S سطح مقطع سیم پیچی ( mm2) : Lmts طول حلقه سیم پیچی ( m)
تلفات مسی سیم پیچی از رابطه ( ( 18 - 2 به دست می آید :
PLoss  3 RS I 2S( 18 -2 )
بــا جایگــذاری روابــط ( ( 17 - 2 و ( ( 14 - 2 در رابطــه ( ( 18 - 2 و پــس از ســاده ســازی رابطــه زیــر بدست می آید :
( 19 - 2 ) Q δLmts PLoss  ρ K همانطوری که از رابطه ( ( 19 - 2 مشاهده می شود تلفات مسی مستقل از سطح ولتاژ خط بوده و تـابعی از ظرفیت آن است.
.2-2-3-2 رابطه تلفات آهن با سطح ولتاژ
تلفات توان آهن ترانس از رابطه زیر به دست می آید :
PFe  Kh fB2m  Ke f 2 B 2mW Kg( 20 - 2 )

رابطه ( ( 20 - 2 تلفات توان درآهن ترانس را نشان می دهد که تابعی از چگالی شـار، فرکـانس و وزن آهن می باشد. از طرفی ولت بر دور هر فاز نیز رابطه ای با فرکانس , چگالی شـار و سـطح مقطـع هـسته داردکه با ثابت فرض کردن E t ولتاژ روی هردور فاز, رابطه زیر برای E t بصورت زیرمی باشد.[1]
( 21 - 2) Et  4.44 fBm A با جایگذاری E t با رابطه ( ( 12 - 2 برای سطح مقطع آهن رابطه زیر بدست می آید : ( 22 - 2 ) K Q A  4.44* f * Bm با بررسی رابطه ( ( 20 - 2 استنباط می شود که تلفات آهن تابعی از فرکانس شـبکه وچگـالی شـار آن است. با فرض فرکانس ثابت شبکه واینکه چگالی شار تابعی از ظرفیت ترانس است سطح مقطـع هـسته نیز تابعی ازظرفیت آن بوده و هیچ وابستگی به سـطح ولتـاژ آن نـدارد. بنـابراین تلفـات آهـن تـرانس بـا ظرفیت ثابت هیچ رابطه ای با سطح ولتاژکـاری آن نـدارد. بـا توجـه بـه مباحـث صـورت گرفتـه معلـوم می شودکه تلفات ترانس فقط تابعی از ظرفیت آن بوده وهیچ رابطه ای با سطح ولتاژ آن ندارد.
.3-3-2 مقایسه تلفات ترانس سه فاز با ترانس تکفاز با قدرت مساوی
با توجه به دو مؤلفه تلفات مسی و آهنی ترانس دراین بخـش نیـز هـر دو مـورد بـرای هـر دو تـرانس بـا ظرفیت مساوی مقایسه و نتیجه گیری خواهد شد.
١٩
.1-3-3-2 مقایسه تلفات مسی برای ترانس سه فاز و تکفاز با قدرت مساوی
تلفات مسی کل سیم پیچ ترانس سه فاز از رابطه زیر به دست می آید :
( 23 - 2 ) 2 2 n1 RS )I P ( 3(RP  ( PCu3ϕ  n2 که : IP : جریان فاز بر حسب ( ( A : RS مقاومت اهمی سیم پیچی ثانویه( ( Ω : RP مقاومت اهمی سیم پیچی اولیه ( ( Ω n1 : نسبت تبدیل ترانس n 2 جریان فاز اولیه ترانس از رابطه زیر بدست می آید ( اتصال ترانس ستاره - ستاره می باشد ) : ( 24 - 2 ) ( Q I P  ( 3Vm : Q قدرت ظاهری ترانس ( ( kVA : Vm ولتاژ خط ( ( kV IP : جریان فاز ترانس ( ( A سطح مقطع سیم پیچی اولیه از رابطه زیر بدست می آید : ( 25 – 2 ) I P aP  δ که : ( A mm 2 : δ چگالی جریان سیم پیچی ( : I P جریان فاز اولیه بر حسب ( ( A مقاومت سیم پیچی فاز از رابطه زیربدست می آید.[1] ρL T ( 26 - 2 ) Pmtp RP  aP بـا جایگــذاری روابــط ( ( 25 - 2 و ( ( 24 - 2 ورابطــه ( ( 11 - 2 در رابطــه( ( 26 - 2 و پــس از ســاده سازی رابطه زیر بدست خواهد آمد :
( 27 - 2 ) V m 3ϕ L mtp ρδ  R P Q 3 K 3ϕ I P : RP مقاومت اهمی سیم پیچی فاز اولیه ( ( Ω ρ : مقاومت ویژه هادی سیم پیچی ( ( Ω mm 2 A m 3ϕ : δ چگالی جریان ( ) mm 2
٢٠
: IP جریان اولیه فاز ( ( A
Q: قدرت سه فاز ( ( kVA
: Lmtp طول حلقه متوسط فاز اولیه ( m) : Vm ولتاژ خط ( kV )
: K3 φ ضریب ثابت ترانس سه فاز
از رابطه ( ( 27 - 2 برای سیم پیچی ثانویه رابطه زیر بدست می آید : ( 28 - 2 )

VLV 3ϕ Lmts ρδ RS Q 3K 3ϕ I S
با جایگذاری روابط ( ( 28 - 2 و ( ( 27 - 2 و ( ( 24 - 2 در رابطـه ( ( 23 - 2 و پـس از سـاده سـازی رابطه زیر بدست می آید :
( 29 - 2 ) ) Q Lmtp3φ L mts3φ ρδ3ϕ( PCu3ϕ K 3ϕ : PCu3 ϕ تلفات مسی ترانس ( ( kW
اگر محاسبات مشابه برای ترانس تکفاز نیز انجام شود تلفات کل مس برای ترانس تکفاز برابر است با :
( 30 - 2 ) ) Q 1φ Lmts 1φ Lmtp ρδ PCu 1ϕ  1ϕ ( K 1ϕ اگر نسبت رابطه( ( 29 - 2 به ( 30 - 2 )محاسبه شود با فرض قدرت یکـسان بـرای هردوتـرانس رابطـه زیر بدست می آید :
( 31 - 2 ) ( 3 ϕ L mts  3 ϕ L mtp )  3 ϕ δ  1 ϕ K  3 ϕ PCu 1 ϕ L mts  1 ϕ L mtp 1 ϕ δ 3 ϕ K 1 ϕ PCu با دقت در رابطه ( ( 31 - 2 با مساوی در نظر گرفتن چگالی جریان سیم پیچـی هـای سـه فـاز و تکفـاز رابطه ( ( 31 - 2 تابعی از نسبت ضریب ثابت ترانس تکفاز به ترانس سه فاز کـه بـستگی بـه سـتونی یـا زرهی بودن ترانس ها داشته و ایـن نـسبت بـرای تـرانس زرهـی کوچکترازیـک وبـرای تـرانس سـتونی بزرگتر یا مساوی یک می باشد. با توجه به اینکه اکثر ترانسفورماتورهای توزیع از نوع ستونی می باشـند بنابراین نسبت ضریب ثابت ترانس تکفاز به ترانس سه فازبزرگتر یا مساوی یک خواهـد بـود. در مـورد نسبت طول متوسط حلقه ها نیز بستگی به نوع سیم پیچی های آن دارد. اما در مجموع حاصلـضرب ایـن دو مقادیرنزدیک عدد 1 بوده و نشان دهنده تساوی تلفات مسی ترانس سه فاز و تکفاز است. با مراجعـه به جداول اطلاعات مربـوط بـه مشخـصات ترانـسهای تکفـاز و سـه فازسـاخت شـرکت ایـران ترانـسفو,
مشاهده می شودکه این تلفات برای هر دو ترانس برای اکثر ظرفیتها با سطح ولتـاژ برابـر، مـساوی بـوده وفقط برای برخی از ظرفیتها تلفات مسی ترانس سه فازبزرگتر از تلفات مسی ترانس تکفاز می باشد.
بنابراین می توان نتیجه گرفت که :
PLoss cu 3 φ ≥ PLoss cu 1φ( 32 - 2 )
٢١
رابطه ( ( 32 - 2 نشان می دهدکه تلفات مس ترانس سه فاز بزرگتر یا مساوی تلفات مس ترانس تکفاز
با ظرفیت مساوی با آن است.
.2-3-3-2 مقایسه تلفات آهن ترانس سه فاز با تلفات آهن ترانس تکفـاز بـا
قدرت مساوی
با مراجعه به رابطه ( ( 20 - 2 این فصل تلفات آهن در تـرانس بـا فرکـانس، چگـالی شـار و وزن هـسته متناسب است. اگر فرکانس برای هر دو ترانس یکسان در نظرگرفته شود و چگـالی شـارنیز متناسـب بـا ظرفیت ترانس انتخاب شود تنها متغیرها سطح مقطع هسته و طول آهـن تـرانس مـی باشـند. بـا توجـه بـه رابطه ( ( 22 - 2 اگر نسبت سطح مقطع هسته ترانس سه فاز به ترانس تکفاز نوشته شود :
( 33 -2 ) 3ϕ K  A 3 ϕ K 1ϕ A 1ϕ با دقت در رابطه ( ( 33 - 2 نسبت ضریب ثابت ترانس سه فاز به ترانس تکفاز بـا توجـه بـه نـوع تـرانس تعیین می شود. این نسبت برای ترانس ستونی, کوچکتر یا مساوی عدد 1 و برای ترانس زرهـی بزرگتـر ازعدد 1است. با توجه به اینکه اکثرترانسفورماتورهای توزیـع ازنـوع سـتونی مـی باشـند بنـابراین سـطح مقطع ترانس سه فاز بایدکوچکتر یا مساوی ترانس تکفاز باشـد. درحالیکـه ایـن نـسبت, بـسته بـه طـراح ترانس دارد و با توجه به بازه موجود برای انتخاب این ضـریب بـرای تـرانس تکفـاز, هـر دو ضـریب را می توان مساوی در نظر گرفته و بیان کرد که سطح مقطع هسته برای ترانس سه فـاز وتکفـاز بـا ظرفیـت مساوی معادل هم اند. با در نظرگرفتن حجم آهن, با توجه به طول آهن بزرگترترانس سـه فازنـسبت بـه تکفاز, حجم آهن در ترانس سه فاز بزرگتر بوده و تلفات آهن ترانس سه فاز بزرگتـر از تـرانس تکفـاز خواهد بود. بنابراین تلفات آهن ترانس سه فاز بزرگتر یا مساوی ترانس تکفاز است.
PLoss Fe 3 φ ≥ PLoss Fe 1φ( 34 - 2 )
با مراجعه به جدول مربوط به مشخصات ترانس سه فـاز و تکفـاز سـاخت شـرکت ایـران ترانـسفو بـرای سطوح ولتاژ مساوی, تلفات آهن برای ظرفیتهای 100 kVA و 10kVAبرای ترانس سـه فـاز بزرگتـر از ترانس تکفاز است. بنابراین تلفات ترانس تکفاز کوچکتر و یا مساوی ترانس سه فـاز هـم قـدرت بـا آن است. اما اختلاف تلفات ترانس سه فاز و تکفاز تقریباً کم بوده و می شـود تلفـات آن دو را یکـسان در نظر گرفت.
.4-3-2 مقایسه تلفات ترانس سه فاز با n ترانس با مجموع ظرفیت معادل آن
بهترین روش برای انجام این مقایسه, از روی جدول مربوط به تلفات ترانس است. با مراجعه بـه جـدول مشخصات ترانس سه فاز وتکفاز ساخت شرکت ایران ترانسفو مشاهده می شودکه تلفات ترانس سه فاز کمتر از تلفات n ترانس تکفاز با مجموع ظرفیت معادل با ظرفیت ترانس سه فازاست.
٢٢
.5-3-2 مقایسه تلفات خط ناشی از بکارگیری ترانس سه فاز و ترانس تکفاز
تلفات درکابل وخط عکس مجذورولتاژخط است. یعنی باافزایش ولتاژ خط به اندازه دوبرابر برای یک
قدرت وطول فیدر ثابت, تلفات آن 1 حالت قبلی خواهد شد. درانشعاب ترانس سه فاز از خط با فـرض
4
متعادل بودن بارهای انشعابی درفازهای ترانس, تلفات خطی با توجه به شکل( 1 - 2 )بدست میآید.

R
S
T
∆/Y

T
Load 3phas
شکل ( : ( 1 - 2 انشعاب ترانس سه فاز از خط
اگر مقاومت هر فازخط معادل و برابر با r باشد، جریان خط با توجه به بار سه فاز برابر با :
( 35 - 2 ) S3φ I L  3Vm که: : S3φ قدرت مصرفی بار سه فاز ( ( kVA : Vm اندازه ولتاژ خط ( ( kV : IL اندازه جریان خط ( ( A
رابطه تلفات برای خط سه فاز برابر است با : ( 36 - 2 )
با جایگذاری رابطه ( ( 35 - 2 در ( ( 36 - 2 رابطه زیر بدست میآید :

2
L

PLoss 3 φ  3 rI
( 37 - 2 ) 2 ( S 3 φ r ( PLoss 3 φ  V m در انشعاب ترانس تکفاز از خط بین فاز و نول تلفات خط با توجه به شکل ( ( 2 - 2 بدست می آید.
٢٣

R

S
T
N
∆/Y

T
Load 1phas
شکل ( : ( 2 - 2 انشعاب ترانس تکفاز از خط
اگر مقاومت سیم نول معادل باسیم فاز وبرابر r باشد. جریان خط با توجه به بارتکفاز, درسـیم فـاز برابـر خواهد بود با :
I L  S( 38 - 2 )
VP
رابطه ( ( 38 - 2 معادل با جریان خط در سیم فاز است که :
: S قدرت مصرفی بار ( ( kVA
: VP ولتاژ فازسمت اولیه ترانس ( ( kV
: IL جریان خط بر حسب ( ( A
جریان سیم نول معادل با مجموع جریان عبوری سایر فازها ازاین سیم است.
( 39 - 2 ) S * ( n ... * V P : Si قدرت مصرفی بار تکفاز ( ( kVA n : VPi ولتاژ فازاولیه ترانس ( ( kV
* S * S I n 2  1 ( * V * V P P 2 1 تلفات در خط شامل تلفات سیم فاز ونول است که بـا اسـتفاده ازروابـط ( ( 38 - 2 و ( ( 39 - 2 رابطـه زیر بدست میآید :
2 n S *K 2 S ( 40 - 2 ) ( K ∑1  PLoss1φ  r( VK* VP رابطه ( ( 40 - 2 تلفات در خط ناشی از انشعاب ترانس تکفاز را نشان می دهد.
: r مقاومت اهمی سیم فاز و نول ( ( Ω
: S قدرت ظاهری هر ترانس ( ( kVA
: VP ولتاژ فازسر ترانس بر حسب ( kV )
: Vk ولتاژ فاز سراولیه ترانس های منشعب ازخط ( kV )
٢۴
با بدست آوردن نسبت رابطه ( ( 37 - 2 به ( ( 40 - 2 رابطه زیر بدست می آید :
2 ( S r ( PLoss 3φ ( 41 - 2 ) Vm  2 * n 2 S PLoss 1φ ( S K ∑  r ( * VP VK K 1 با فرض اینکه VP ولتاژ فاز با فرض عدم تعادل خط باز با V m برابر خط معـادل باشـد. بـا سـاده سـازی رابطه ( ( 41 - 2 رابطه زیر بدست می آید : 3 2 * S k n 3S ∑ r ) 2 r ( PLoss 1φ * ( 42 - 2 ) k V k 1  Vm  2 S r 2 S r PLoss 3φ Vm Vm 2 * S n k k ∑1 PLoss 1φ ( 43 - 2 ) * k V 3 2 S PLoss 3φ Vm
با دقت در رابطه ( ( 43 - 2 مشاهده می شود که تلفات در خط بـا انـشعاب تـرانس تکفـاز, حـداقل سـه
برابرآن در استفاده از ترانس سه فاز است. در صورتیکه ترانس تکفاز بین دو فازخط قرارگیرد با توجـه
به رابطه ( ( 42 - 2 تلفات خط در این حالت برای استفاده از ترانس تکفاز معادل یـا بزرگتـر از تلفـات خط در حالت استفاده از ترانس سه فاز خواهد بود.
P Loss Line 1 φ ≥ PLoss Line 3 φ( 44 - 2 )
.6-3-2 سایر اجزاء تلفات
همانطوریکه دربخشهای قبلی بحث شد اجزائی که بیشترین تلفات رابه خوداختصاص می دهنـداز قبیـل ترانس وخط مورد بررسی قرارگرفتند. دراین بخش سایراجزاء تلفات نیزموردبررسی قرار می گیرند.
- 1 کلیدها :
این نوع تجهیزات جهت قطع و وصل و حفاظت در سیستم توزیع مورد استفاده قرارمی گیرنـد. باتوجـه به اینکه کنتاکت کلیدها ازموادی ساخته می شوندکه قابلیت هدایت بالایی داشته باشـند، بنـابراین افـت ولتاژ و تلفات ناچیزی داشته و می توان ازآنها صرفنظر کرد.
- 2 فیوز :
این المان جهت حفاظت دربرابراتصال کوتاه مورداسـتفاده قرارمـی گیردوباتوجـه بـه تعدادانـدک آنهـا درسیستم توزیع می توان ازتلفات آنهاصرفنظرکرد. تلفات این وسیله برای قدرتهای بـسیاربالازیر100W
می باشد.[3]
٢۵
- 3 ترانسفورماتورهای اندازه گیری :
این تجهیزات در داخل پستهای اصلی و زمینی جهت اندازه گیری بکـار مـی رونـد. بـا توجـه بـه تعـداد اندک آن و همچنین ظرفیت نامی آنهـا کـه در حـدود 60VA اسـت، مـی تـوان از تلفـات آن کـه زیـر
100W می باشد صرفنظر نمود.[3]
- 4 مقره ها و برقگیر :
این تجهیزات جهت نگه داشتن هادیهای خطوط و ایزولاسیون آنهـا از یکـدیگر و یـا حفاظـت خـط در برابر صاعقه به کار می روند. با توجه بـه اینکـه تلفـات در ایـن نـوع تجهیـزات از نـوع خزشـی و نـشتی می باشد، می توان از تلفات مقره و برقگیرها صرفنظر نمود.
- 5 کات اوت :
این وسیله جهت قطع و وصل اولیه ترانس در پستهای هـوایی مـورد اسـتفاده قرارمـی گیـرد. باتوجـه بـه خاصیت هدایت خوب کنتاکتهای آن می توان ازتلفات این وسیله نیزصرفنظر نمود.
.4-2 اجزاء موثر درافت ولتاژ و رابطه آنها با ولتاژ کاری :
.1-4-2 ترانس و رابطه افت ولتاژ آن با ولتاژ کاری
در شبکه های ولتاژ میانی که در فصول آینده مورد بررسی قرار می گیرند، نقش این وسیله درافت ولتاژ قابل توجه است و بخش عمـده ای از افـت ولتـاژ رابـه خوداختـصاص مـی دهـد. درشـبکه بااسـتفاده از ولتاژمیانی, دوترانس، یکی جهـت تبـدیل سـطح ولتـاژ فـشارمتوسط بـه فـشارمیانی و دیگـری درسـمت مشترکین جهت تبدیل ولتاژ میانی به فشار ضعیف بکارمی روند. افت ولتاژ شامل دو مؤلفه است :
افت ولتاژ روی مقاومت سیم پیچی
افت ولتاژ روی راکتانس سیم پیچی
با توجه به اینکه هر کدام از این دو مؤلفه در سـیم پیچـی اولیـه و ثانویـه آن وجـود دارد. بنـابراین بـرای هرسیم پیچی بایدروابط افت ولتاژناشی ازهردومولفه محاسبه شود.
- 1 افت ولتاژ روی مقاومت سیم پیچی :
VR افت ولتاژکل روی مقاومت سیم پیچیهای اولیه و ثانویه ترانس می باشد :
VR  VR p  VRs( 45 - 2 )
: VR P افت ولتاژ روی مقاومت سیم پیچی اولیه ( V )
: VR S افت و لتاژ روی مقاومت سیم پیچی ثانویه ( V )
اگر مقاومت اولیه rP و مقاومت ثانویه آن rS باشد و مقاومت ثانویه با نسبت تبدیل ترانس به اولیه منتقل
شود رابطه ( ( 46 - 2 را می توان نوشت.
٢۶
( 46 - 2 )
که :
: r P مقاومت اولیه ترانس ( ( Ω
: rS مقاومت ثانویه ترانس ( ( Ω
: RP مقاومت کل از دید اولیه ترانس ( ( Ω
: T P نسبت تبدیل ترانس
TS
افت ولتاژ روی مقاومت ترانس برابر با رابطه زیر است : ( 47 - 2 )
مقادیر rP و rS سیم پیچها برابرند با :
( 48 - 2 )
( 49 - 2 )
که :
: δ چگالی جریان هادی سیم پیچی ( A )
2mm

2 p T * rs rp R P Ts VR  RP IP
T P L mtp ρδ  rP I P ρδ T S L mts  rS I S : ρ مقاومت ویژه هادی سیم پیچی ( ( Ωmm2
m
: I P جریان فاز ( A )
: TP تعداد دور اولیه ترانس
: Lmtp طول حلقه متوسط سیم پیچی ( ( m
با جایگذاری روابط ( 48 - 2 )، ( ( 49 - 2 و ( ( 46 - 2 در ( ( 47 - 2 رابطه زیر بدست می آید :
( 50 - 2 ) ( ρδ T P L mtp 2 P T L S ρδ T I P   mtS  V R I p I S T S باساده سازی رابطه ( 50 - 2 ) و جایگذاری مقدار IS با IP و با در نظر گرفتن ضریب تبدیل ( TP ) : T ( 51 - 2 ) Lmts T P L mtp S ρδ V R که مقدار TP یا تعداد دور برابر با رابطه زیر می باشد : V ( 52 - 2 ) p T P  Q K با جایگذاری رابطه ( 52 - 2 ) در ( ( 51 - 2 رابطه زیر بدست می آید : ( 53 - 2 ) ( ( Lmtp ρδ  L mts V R  V P  Q k
٢٧
با دقت در رابطه ( 53 - 2 )استنباط می شود که افت ولتاژ روی مقاومت اهمی ترانس تـابعی از عکـس ظرفیت ترانس است. یعنی با افزایش ظرفیت, افت ولتاژ اهمی کاهش می یابد و تابعی از سطح ولتاژ نیـز می باشد. به این دلیل که با افزایش سطح ولتاژ برای یک قدرت ثابت تعداد دور سـیم پیچـی افـزایش و سطح مقطع آن به خاطر کاهش جریان کاهش می یابد، بنابراین مقاومت افزایش خواهد یافت. افـزایش مقاومت باعث افت ولتاژ بیشتر می شود. تغییرات افت ولتاژ بستگی به پارامترهای اجرایی از جمله طـول متوسط حلقه سیم پیچیهای اولیه و ثانویه نیز دارد.
-2 افت ولتاژ روی راکتانس سیم پیچی :
افت ولتاژ در راکتانس نیز از دو مؤلفه تشکیل شده که عبارتند از :
افت ولتاژ روی راکتانس سیم پیچی اولیه VX P
افت ولتاژ روی راکتانس سیم پیچی ثانویه VXS
VX افت ولتاژ روی راکتانس کل ترانس می باشد :
VX  V x p  Vx s( 54 - 2 )
راکتانس اولیه و ثانویه ترانس از دو رابطه زیر به دست می آید: [1]
p b 55 - 2 ) ) 3 s b 56 - 2 ) ) 3
a L mt  * 2 L c a mt L  2 * L c
* 2 2πfμ  X P 0 T p * 2 2 πfμ  X s 0 T s راکتانس ترانس از دید اولیه آن معادل است با :
p b b L 2 T s a  * * T 2 2πfμ x x X ( 57 - 2 ) mt P 3 L T 0 p s p P c s افت ولتاژ نسبی روی راکتانس کل ترانس برابر با : ( 58 - 2 ) VX  IP X P از طرفی تعداد دور TP سیم پیچی اولیه ترانس برابر است با : VP ( 59 - 2 ) TP  Q K با جایگذاری روابط ( ( 57 - 2 و ( ( 59 - 2 در ( ( 58 - 2 رابطه زیر به دست می آید : b s  b p mt L 2 V p ( 60 - 2 ) a  * * 2πfμ 0 p I V x  3 L Q k c
٢٨
با جایگذاری جریان فاز در رابطه ( ( 60 - 2 رابطه زیر به دست می آید :
bs  b p mt L 2 V p Q ( 61 - 2 ) a  * * 2πfμ  V 3 3V c L 0 k Q p x با ساده سازی رابطه ( ( 61 - 2 رابطه نهایی زیر به دست می آید :
bs  bp mt L 2 ( 62 - 2 ) πfμ0 * Vx  2 *V p 3 a  * Lc 3k با دقت در رابطه ( ( 62 - 2 استنباط می شود که افت ولتاژ روی راکتانس سیم پیچـی تـرانس وابـسته بـه سطح ولتاژ و پارامترهای طراحی ترانس بوده و مستقل از ظرفیت ترانس می باشد.

project

٢-٩-مبدل C-Dump٠۵
٢-١٠-مبدل C-Dump با قابلیت جریان هرزگرد٢۵
٢-١١-مبدل با یک ترانزیستور مشﱰک۵۵
٢-١٢-مبدل با حداقل تعداد سوئیچ و تغذیه ورودی متغیر ۶۵
٢-١٣-مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost ٧۵
٢-۴١-مبدل با (1 .5 q) سوئیچ و دیود٩۵
۵
٢-۵١-مبدل دو مرحلهای ٠۶
فصل٣ : طراحی مدار راهانداز (DRIVER) به
روش مستقیم ٣-١-مقدمه ٣۶
٣-٢-سوئیچ و اﳌاای قدرت ۴۶
٣-٣-سنسور تعیین موقعیت و سرعت موتور ۶۶
٣-۴-آنﱰل دور و حلقه فیدبک ٧۶
فصل۴ : روش های عملی کاهش ریپل گشتاور
۴-١-بدست آوردن رابطه گشتاور از مدار معادل SRM ٧٢
۴-٢-بررسی رابطه L با موقعیت روتور θ ٧٣
۴-٣-بررسی تاثیر جریان بر L ۵٧
۴-۴-اثر ثابت گشتاور dL(θ,i)/dθ بر روی گشتاور ٧٧
۴-۵-اثر i 2 بر روی گشتاور ٧٨
۴-۶-ﲨع بندی در مورد کاهش ریپل گشتاور ٨٠
فصل۵ : طراحی مدار راهانداز (DRIVER) به روش غیرمستقیم
۵-١-مقدمه ٨٢ ۵-٢-تشخیص موقعیت روتور بدون استفاده از سنسور ٨٣ ۵-٣-آنﱰل جهت چرخش ۶٩ فصل۶ : نتیجه گیری و پیشنهادات ٩٩ نتیجه گیری پیشنهادات ١٠٢ پیوست نقشه های ﴰاتیکی سخت افزار دستگاه ١٠٣ پیوست اطلاعات نرم افزاری سیستم ١١٠ فصل٧ : مـراجـع ١٣٩ ۶
فهرست شکل ها صفحه عنوان ١-١.a-شکل :دو ﳕونه موتور رلوآتانسی با یک دندانه در هر قطب. ١٧ ١-١.b-شکل :ﳕونهای دیگر با دو دندانه در هر قطب . ١٧ ١-٢.شکل : ﳓوه عملکرد موتور رلوآتانس. ١٩ ١-٣-الف.شکل :ﴰای موتور رلوآتانس با برجستگی دوگانه. ٢٠ ١-٣-ب.شکل :ﴰای موتور رلوآتانس با برجستگی واحد. ٢٠ ١-۴-١.شکل :موتور رلوآتانس از نوع روتور صفحهای. ٢٢ ١-۴-٢.شکل :موتور رلوآتانس سوئیچی چند لایه. ٢٣ ١-۵-.aشکل :روتور با فاصله x از استاتور. ۶٢ ١-۵-.bشکل :منحنی شار برحسب mmf برای x1 و x2 آه x1>x2 ۶٢ ١-۶-.aشکل :یک قطب از موتور رلوآتانس. ٢٨ ١-۶-.bشکل :منحنی اندوآتانس برحسب موقعیت روتور. ٢٨ ١-٧-١.شکل :مدار معادل موتور رلوآتانسی. ٣١ ١-٧-٢.شکل :منحنی گشتاور ـ سرعت یک موتور رلوآتانسی ﳕونه. ٣٢ ٢-١.شکل :دستهبندی مدارات مبدل. ۴٣ ٢-٢.a-شکل :مبدل پل نامتقارن. ۵٣ ٢-٢.b-شکل :شکل موجهای مبدل پل نامتقارن ـ روش اول. ۶٣ ٢-٢.c-شکل :شکل موجهای مبدل پل نامتقارن ـ روش دوم. ٣٨ ٢-٢.d-شکل :استفاده از SCR و آاهش تعداد ترانزیستورهادرمبدل پل نامتقارن. ٣٩ ٢-۴-.aشکل :توپولوژی R-Dump ١۴ ٢-۴-.bشکل :شکل موجهای توپولوژی R-Dump ١۴ ٢-۵-.aشکل :مبدل Bifilar ٢۴ ٢-۵-.bشکل :شکل موجهای مبدل Bifilar ٣۴ ٢-۶-.aشکل :مبدل، منبع تغذیه dc دو نیمهای. ۴۴ ٢-۶-.bشکل :شکل موجهای مبدل با منبع تغذیه دو نیمهای. ۵۴ ٢-٧.a-شکل :مبدل با q ترانزیستور و 2q دیود. ۶۴ ٧
٢-٧.b-شکل :شکل موجهای مدار فوق با روش اول.٧۴
٢-٧.c-شکل :شکل موجهای مدار فوق با روش دوم.٨۴
٢-٨-١.شکل :مبدل با (١(q+ سوئیچ در هر فاز.٩۴
٢-٨-٢.شکل :ﲠبود یافته مدار(١(q+ ترانزیستوری.٠۵
٢-٩.a-شکل :مدار مبدل C-Dump١۵
٢-٩.b-شکل :شکل موجهای مبدل C-Dump٢۵
٢-١٠-١.شکل :مبدل C-Dump با قابلیت جریان هرزگرد.۴۵
٢-١٠-٢.شکل :عملکرد مدار بدون ﳘپوشانی جریان فازها.۴۵
٢-١١.a-شکل :مبدل با یک ترانزیستور مشﱰک.۵۵
٢-١١.b-شکل :عملکرد مدار.۵۵


٢-١٢.شکل :مبدل با حداقل تعداد ترانزیستورو تغذیه ورودی متغیر. ٧۵
٢-١٣.شکل :مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost ٨۵
٢-۴١.a-شکل :مبدل با (1.5q) سوئیچ.٩۵
٢-۴١.b-شکل :عملکرد مدار.٩۵
٢-۵١.شکل :مبدل دو مرحلهای.١۶
٣-١.شکل :بلوک دیاگرام مدار آنﱰل موتور.٣۶
٣-٢-١.شکل :مدار ساده هر فاز.۴۶
٣-٢-٢.شکل :مدار درایو ترانزیستورهای قدرت.۵۶
٣-٣-١.شکل :مدار معادل فتواینﱰاپﱰ.۶۶
٣-٣-٢.شکل :مدار آامل سنسورها.۶۶
٣-٣-٣.شکل :شکل موجهای ناشی از سنسورها.٧۶
٣-۴-١.شکل :پالسهای PWM٨۶
٣-۴-٢.شکل :مدار سرعت موتور.٨۶
٣-۴-٣.شکل :مدار آنﱰل PI٩۶
٣-۴-۴.شکل IC-TL494:٧٠
۴-١.شکل :مدار معادل موتور رلوآتانسی.٧٢
۴-٢-١.شکل :تغییرات اندوکتانس با موقعیت روتور.۴٧
۴-٢-٢.شکل :پایین شکل،روتوراصلاح شده درمقایسه باروتور معمولی. ۵٧
٨
۴-٣.شکل :تغییرات اندوکتانس با جریان بر حسب زاویه. ۶٧ ۴-۴.شکل :استفاده از دیودهای هرزگرد برای ﲣلیه سریع تر جریان ٧٨ سیم پیچ. ۴-۵.شکل :کنﱰل جریان برای کاهش ریپل گشتاور. ٨٠ ۵-١-١.شکل :شفت انکدر و سه عدد سنسور برای تشخیص موقعیت روتور ٨٢ دریک موتور سه فاز ۴/۶. ۵-٢-١.شکل :شکل جریان سیمپیچ در استاتور. ۵٨ ۵-٢-٢.شکل :مدار مبدل ۶ سوئیچه با سه عدد مقاومت sense جریان. ۶٨ ۵-٢-٣.شکل :مقطع عرضی یک موتور رلوکتانس. ٨٧ ۵-٢-۴.شکل :پالسهای اعمال شده به یک فازﳕونه و جریان حاصله ٨٨ در ﳘان فاز. ۵-٢-۵.شکل :پالسهای اعمال شده به سه فاز و جریان حاصله در ٨٩ فازها. ۵-٢-۶.شکل :فاز A در حالت ﳘپوشانی کامل. ٩٢ ۵-٢-٧.شکل :فاز A در حالت عدم ﳘپوشانی کامل. ٩٢ ۵-٢-٨.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۴٩ جریاای حاصله. ۵-٢-٩.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۵٩ جریاای حاصله بعد از تقویت. ۵-٢-١٠.شکل :جریاای حاصل از پالسهای تشخیص هرسه فاز به ۵٩ صورت مالتی پلکس شده. ۵-٢-١١.شکل :پالسهای تشخیص وفرمان دو فاز متوالی. ۶٩ ۵-٣-١.شکل :ترتیب فرمان ها برای حرکت راست گرد یا چپ گرد. ٩٧ ۶-١.a-شکل :منحنی جریان فازها. ٩٩ ۶-١.b-شکل :منحنی گشتاور قبل از آنﱰل جریان. ٩٩ ۶-١.c-شکل :منحنی گشتاور باآنﱰل جریان. ٩٩ ۶-٢.شکل :منحنی گشتاور برحسب سرعت موتور. ١٠٠ ۶-٣.شکل :ارتباط میکرو با A/D و آنالوگ سوئیچ. ١٠٣ ۶-۴.شکل :مدار تغذیه رگوله شده برای درایور. ۴١٠ ٩
۶-۵.شکل :مدار تولید کننده PWM بر اساس سرعت.۵١٠
۶-۶.شکل :مدار مبدل۶ سوئیچه به ﳘراه مدار ﳏدود کننده جریان. ۶١٠
۶-٧.شکل :یک فاز از مدار مبدل به ﳘراه درایور MOSFET ها . ١٠٧
۶-٨.شکل :مدار راه انداز و مدار مبدل به ﳘراه موتور. ١٠٨
۶-٩.شکل :استاتور موتور ماشین لباسشویی.١٠٩
۶-١٠.شکل :روتور موتور ماشین لباسشویی.١٠٩
١٠
چکیده
ویژگیهای جذاب و مفید موتورهای رلوکتانس سوئیچی باعث افزایش میزان کاربرد آا در صنعت شده است که می توان به مواردی از قبیل هزینه پایین تولید، قابلیت کار در سرعت های ﳐتلف، راندمان بالا و دوام زیاد اشاره کرد. پیشرفت الکﱰونیک قدرت و رشد چشمگیر صنعت نیمه هادی تأثیر فراوانی بر طراحی و ساخت راه اندازهای موتورهای رلوکتانسی بر جای اده است. به این
صورت که با در دسﱰس قرار گرفﱳ مدارهای ﳎتمع ﳐتلف و کاهش
قیمت آا، این ادوات در ساخت راه اندازهای موتورهای رلوکتانسی مورد استفاده قرار گرفته و روز به روز باعث هوﴰندترشدن این راه اندازها گردیده اند.
به طورکلی دو روش برای راه اندازی موتورهای رلوکتانسی وجود
دارد :
١- روشهای مبتنی بر داشﱳ سنسور ٢- روشهای بدون سنسور روشهای بدون سنسور به علت حذف سنسورها و ﳘچنین اتصالات
مربوطه در صنعت دارای طرفداران بیشﱰی می باشد که از عمده ترین دلایل آن می توان به خراب شدن سنسورها به مرور زمان و نیاز به تنظیم سنسورها اشاره کرد. روشهای بدون سنسور به علت پیشرفت روزافزون علم الکﱰونیک و کنﱰل رشد چشمگیری پیدا کرده اند و با استفاده از مفاهیم ﳐتلف تنوع زیادی یافته اند. در فصل یک، ساختار موتورهای رلوکتانسی مورد بررسی قرار گرفته
است و در فصل دوم انواع مدارات مبدل ارائه شده و در فصل سوم راه اندازی با استفاده از سنسور گفته شده است و در فصل
چهارم رابطه ریاضی گشتاور مورد بررسی واقع شده و روش های عملی جهت کاهش ریپل گشتاور ارائه شده است و در فصل پنجم جزئیات روشی نوین در راه اندازی بدون سنسور موتورهای رلوکتانس سوئیچ شونده را بیان می کنیم.
١١
ﳘچنین در ضمائم، نقشه های ﴰاتیک سخت افزار و اطلاعات نرم افزاری مدار راه انداز آمده است.
١٢
مقدمه
با توجه به پیشرفت روز افزون صنایع نیمه هادی، موتورهای رلوکتانسی جایگاه ویژه ای در عرصه های ﳐتلف صنعت پیدا کرده اند. از ﲨله دلایل این امر می توان به مواردی از قبیل سادگی ساختمان این نوع موتورها، راندمان بالای آا نسبت به سایر موتورها و عدم نیاز به نگهداری اشاره کرد.
موتورهای رلوکتانسی بر خلاف اغلب موتورهای الکﱰیکی نیاز به یک سیستم راه انداز دارند، این سیستم راه- انداز به طور کلی به دو روش زیر قابل طراحی می باشد :
با استفاده از سنسور
بدون استفاده از سنسور
روشهای بدون سنسور به علت نداشﱳ سنسور و ﳘچنین اتصالات مربوطه در صنعت دارای طرفداران بیشﱰی می باشد که از عمده ترین دلایل آن می توان به توانایی کارکرد موتور در شرایط نامناسب ( از قبیل ﳏیطهای بسیار گرم و پر گرد و غبار ) و
عدم نیاز به تنظیم و نگهداری مداوم سنسور اشاره کرد.
روش ارائه شده مبتنی بر اعمال پالسهای شناسایی به موتور هم در مرحله ایستا و هم در مرحله چرخش می- باشد. عمده ترین مزایای این روش را نسبت به سایر روشهای مرسوم می توان در
موارد زیر ذکر کرد:
١- توانایی راه اندازی موتورهایی در گسﱰه توان چند ده وات
تا چندین کیلو وات.
٢- توانایی راه اندازی موتور با سطح ولتاژ ﳐتلف.
٣- این روش علاوه بر اینکه توانایی راه اندازی از حالت
ایستا با گشتاور زیاد را داراست، قادر است عملیات کنﱰل موتور را در سرعتهای ﳐتلف طبق تنظیمات اﳒام دهد.
۴- ریپل گشتاور به میزان قابل توجهی کاهش یافته است.
١٣
عملکرد موتور را طبق این روش می توان به مراحل زیر تقسیم
ﳕود :
١- مرحله تشخیص فاز مناسب در حالت ایستا.
در این مرحله با اعمال پالس شناسایی به هریک از فازها و ثبت نتایج حاصله و ﲢلیل آا مناسبﱰین فاز جهت دریافت اولین فرمان انتخاب می شود.
٢- مرحله اول چرخش با داشﱳ قابلیت تنظیم سرعت توسط PWM
در این مرحله الگوریتمی به صورت پیاپی و حلقه وار تکرار می شود تا موتور به میزان تعیین شده که می بایست در ابتدای کار تنظیم شود برسد.
١۴
فصل اول:
ساختمان موتورهای رلوآتانسی
١۵
١-١- مقدمه
راهاندازهای موتورهای رلوآتانسی سوئچ شونده، (SRM) برای آاربردهای صنعتی خواستگاه جدیدی میباشند. آلید فهمیدن هرماشینی فهمیدن گشتاور آن میباشد آه از اصول اولیه منتج میشود. عملکرد ماشین و خصوصیات برجسته آن از روابط گشتاور بدست می آیند. در این فصل ساختمان موتورهای رلوآتانسی را از نظر میگذرانیم، در دهه اخیر ﲢقیقات و مطالعات بر روی این دسته از موتورها بسیار افزایش یافته و به نتایج ارزندهای هم رسیده است بطور آه امروزه آا جزء ماشینهای الکﱰیکی مطرح در سطح جهان میباشند. از سال ١٩۶٩ یک موتور با رلوآتانس متغیر برای آاربردهای با سرعت متغیر ارائه شد آه منشأ آن به سال ١٨۴٢ برمیگردد، گرچه این ماشین جزء ماشینهای سنکرون میباشد اما خصوصیات جدیدی را دارد. ﳘانند موتورهای DC سیمپیچهایی بر روی استاتور این موتورها وجود دارد اما روتور آا هیچ مگنت یا سیمپیچ ندارد. روتور و استاتور قطبهای برجستهای دارند، این ماشین در شکل a)١-١) نشان داده شده است. و یک مدل تغییر یافته با دو دندانه در هر قطب نیز در شکل b)١-١)
آورده شده.
١۶

شکل (١-١) : (a) دو ﳕونه موتور رلوآتانسی با یک دندانه در هر قطب.
(b) ﳕونهای دیگر با دو دندانه در هر قطب
هرگاه قطبهای مقابل هم در استاتور ﲢریک شوند روتور (align)
ﳘردیف با آن میشود. در یک مدار مغناطیسی، عضو چرخشی (روتور)
میخواهد به موقعیتی برود آه آمﱰین رلوآتانس یا بیشﱰین اندوآتانس حاصل گردد.[16] وقتی دو قطب روتور ﳘراستا با دو قطب ﲢریک شده استاتور میشوند دو دسته دیگر از قطبهای روتور نسبت به دسته دیگری از قطبهای استاتور غیرهمراستا هستند، پس
١٧
این دو قطب استاتور ﲢریک میشوند تا قطبهای روتور را ﳘراستا
آنند، بهﳘین ترتیب با سوئیچ آردن متوالی جریان به داخل
سیمپیچهای قطبهای استاتور، روتور میچرخد، با حرآت روتور، توان و گشتاور ایجاد میشود.
این شامل سوئیچ آردن جریان در داخل سیمپیچهای استاتور است آه موجب رلوآتانس متغیر میشود، بنابراین یک چنین راهانداز موتور با سرعت متغیر بهعنوان راهانداز موتور رلوآتانسی سوئیچ شونده نامیده میشود.
١-٢- عملکرد اولیه موتور رلوآتانس
توجه آنید آه قطبهای r1 و r′1 از روتور و قطبهای C و C′ از استاتور با هم ﳘراستا هستند. اعمال یک جریان به فاز a با جهت نشان داده شده در شکل -a)٢-١) باعث ایجاد یک شار در قطبهای a و a′ از استاتور و قطبهای r2 و r′2 از روتور میگردد آه باعث آشیدن قطبهای r2 و r′2 از روتور به ﲰت قطبهای a و a′
از استاتور میشود. بهترتیب وقتی آه آا ﳘراستا هستند جریان فاز a قطع م یشود و موقعیت متناظر در شکل -b)٢-١) نشان داده شده است. حال فاز b ﲢریک میشود تا r1 و r′1 را در جهت عقربههای ساعت به ﲰت b و b′ بکشد، بطور مشابه ﲢریک فازC باعث ﳘراستا شدن C و C′ با r2 و r′2 میگردد، بنابر این با سه بار ﲢریک متوالی روتور °٩٠ میچرخد.[8]
١٨

شکل(٢-١) : ﳓوه عملکرد موتور رلوآتانس
١-٣- انواع موتورهای رلوآتانس متغیر
موتورهای رلوآتانس متغیر به دو دسته تقسیم میشوند:
الف) موتورهای رلوآتانس متغیر با برجستگی دوگانه ب) موتورهای رلوآتانس متغیر با برجستگی واحد[38]
در روتور هر دو نوع از موتورهای مذآور هیچگونه سیمپیچ یا مغناطیس دائم وجود ندارد و تنها منبع ﲢریک سیمپیچ استاتور میباشد. استاتور و روتور از مواد مغناطیسی با قابلیت نفوذپذیری مغناطیسی بالا ساخته میشوند در شکل (٣-١) (الف) و (ب) به ترتیب ﴰاهایی از یک موتور رلوآتانس با برجستگی دو گانه و دیگری با برجستگی واحد نشان داده شده است.[17]
١٩

شکل(٣-١) : (الف) ﴰای موتور رلوآتانس با برجستگی دوگانه
(ب) ﴰای موتور رلوآتانس با برجستگی واحد
١-۴- دسته بندی موتورهای رلوآتانسی از ﳊاظ ساختار
موتورهای رلوآتانس متغیر با برجستگی دوگانه از ﳊاظ ساختاری
به سه دسته آلی تقسیم میشوند آه عبارتند از : ١- موتورهای استوانهای با قطب برجسته مضاعف ٢- موتورهای صفحهای ٣- موتورهای چند لایهای آه این تقسیمبندی بنا به شکل ظاهری موتورها صورت گرفته
است.[37] - موتورهای رلوآتانس سوئیچی استوانهای با قطب برجسته
مضاعف : این موتورها دارای قطبهای برجسته بر روی استاتور و روتور
میباشند و از اینرو به آن قطب برجسته مضاعف میگویند. ﳕای
ظاهری دو مدل از آا در شکل (١-١) آمده است. سیمپیچهای آن
بر روی استاتور بسته شده و هیچگونه سیمپیچی روی روتور آن
وجود ندارد، بسته به جایگاه و موقعیت روتور جریان را در
٢٠
سیمپیچهای استاتور وصل میﳕاییم. حال ﲤایل به فراهم آوردن مسیری آم رلوآتانس در مدار مغناطیسی روتور باعث ایجاد گشتاور میشود.
- موتورهای رلوآتانس سوئیچی صفحهای :
آاربرد موتورهای صفحهای آه با جریان مستقیم آار میآنند از
نوع دیگر آا بیشﱰ است. برای چنین موتورهایی روتورهای
صفحهای بکار گرفته شده آه در آا اندازه فیزیکی از عوامل اصلی ﳏسوب میشود. لفظ »روتور صفحهای« ﲞاطر شکل فیزیکی ساختار روتور آن میباشد. چنین موتورهایی میتوانند دارای قطر بسیار بزرگ ولی طول آوچک یا بالعکس باشند و در ﳏدوده ما بین آا نیز ساخته میشوند و لذا چنین سیستمی دارای تنوع بسیار گسﱰدهای در اندازه و شکل ظاهری میباشد و حتی میتوان آن را در مکانهایی آه از ﳊاظ فضا بسیار ﳏدود میباشند بکار برد .[13]
یک مدل بسیار ساده از این موتور در شکل (١-۴-١) آمده است. در این شکل یک روتور ضخیم آه در داخل قطبهای استاتور؛ جهت ایجاد
گشتاور بیشﱰ در حرآت است را ملاحظه میآنید. چنانچه ملاحظه میگردد ساختار این سیستم بسیار ساده است.[5]
٢١

شکل(١-۴-١) : موتور رلوآتانس از نوع روتور صفحهای
- موتورهای رلوآتانس سوئیچی چند لایه :
ﳕای ظاهری این موتور در شکل (٢-۴-١) نشان داده شده است.
ﳘانطور آه در شکل نشان داده شده است این موتور از چند لایه ﳎزای مستقل تشکیل شده است آه هرقسمت میتواند معرف یک فاز موتور بوده و القای متقابل بین سیمپیچ فازها به حداقل ﳑکن رسیده است. در این ساختار ﳏدودیت افزایش قطبهای استاتور به سبب آمبود فضای سیمبندی مرتفع گشته و امکان دسﱰسی به قطبهای بیشﱰ و به تبع آن گشتاور بالاتر در موتورهای با ابعاد آوچک میسر میگردد .[11]
از آﳒا آه مسیر شارهای هر فاز ﳎزا بوده، میتوان از روی شار جاری در هر فاز به موقعیت روتور آن نسبت به استاتور پی برد و به سهولت در حذف سنسورهای موقعیت گام برداشت.[33]
٢٢

شکل(٢-۴-١) : موتور رلوآتانس سوئیچی چند لایه
- موتورهای رلوآتانس متغیر با برجستگی واحد :
ﴰای آلی این موتورها در شکل (ب ٣-١) نشان داده شده است.
استاتور اینگونه موتورها مشابه موتورهای AC میباشد ولی روتور آا طوری ساخته شده آه گشتاور تولید شده از تغییرات رلوآتانس بوجود میآید.
١-۵- ایجاد گشتاور در یک موتور رلوآتانس سوئیچی (روابط و
نتایج)
آلید فهمیدن هر ماشینی فهمیدن گشتاور آن میباشد آه از
اصول اولیه منتج میشود. روابط گشتاور نیاز به یک رابطه بین شار یا اندوآتانس با موقعیت روتور دارد، به منظور اختصار
٢٣
برای بیان تئوری پایه فقط عملکرد غیراشباع مورد بررسی قرار میگیرد.
ﳘانطور آه در شکل (۵-١) نشان داده شده سیمپیچ دارای N دور میباشد و وقتی آه با یک جریان i ﲢریک میشود سیمپیچ شار φ را ایجاد میآند. با افزایش جریان ﲢریک آرمیچر به ﲰت یوک آه ثابت است حرآت میآند. برای دو مقدار فاصله هوایی x1 و x2 شار برحسب mmf رسم شده است بهطوری آه x1>x2 میباشد. منحنی شار برحسب mmf برای x1 خطی میباشد بهخاطر اینکه رلوآتانس فاصله هوایی غالب میباشد. این امر باعث آاهش شار در مدار مغناطیسی میشود، انرژی الکﱰیکی ورودی بهصورت زیر نوشته میشود.
we  ∫eidt ∫idt ddNtφ  ∫Nidφ ∫Fdφ

در اینجا e، emf القایی بوده و F ، mmf میباشد، این انرژی الکﱰیکی ورودی، we، مساوی با ﳎموع انرژی ذخیره شده در سیم پیچ، wf، و انرژی تبدیل شده به آار مکانیکی، wm، میباشد.
we = wf + wm
وقتی آار مکانیکیای اﳒام ﳕیشود، مانند ﳊظهای آه آرمیچر از موقعیت x1 شروع میآند، انرژی ذخیره شده در میدان مغناطیسی، برابر انرژی الکﱰیکی ورودی میباشد، این منطق با مساحت OBEO
در شکل (۵-١) میباشد متمم این انرژی ذخیره شده در میدان
مغناطیسی، coenergy نامیده میشود، با مساحت OBAO در شکل (۵-٢
) داده میشود، و بهصورت ریاضی با رابطه ∫φdF داده میشود،
بطور مشابه در موقعیت x2 برای آرمیچر، اثری ذخیره شده در
میدان مغناطیسی منطبق با مساحت OCDO بوده و coenergy با
مساحت OCAO داده میشود برای تغییرات افزایش داریم dwe = dwf + dwm
٢۴
برای یک ﲢریک ثابت F1 آه با نقطه آار A در شکل (۵-١) داده میشود، انرژیهای ﳐتلف بهصورت زیر بدست میآیند :
(BCDEB) مساحت dwe  ∫φφ12 F1dφ  F1 φ2 −φ1 =
(OBEO) مساحت- (OCDO) مساحت x  x = − dw f 2 x  x dw f  dw f 1 با استفاده از معادلات فوق، انرژی مکانیکی بهصورت زیر بدست میآید :
(OBCO) مساحت dwm =dwe = dwf =
آه این مساحت بین دو منحنی برای یک mmf داده شده میباشد، در مورد یک ماشین با حرآت دوار انرژی مکانیکی افزایشی برحسب گشتاور الکﱰومغناطیسی و تغییرات در موقیعت روتور بهصورت زیر نوشته میشود.
dwe = Tedθ
بنابراین گشتاور الکﱰومغناطیسی بهصورت زیر بدست میآید :
T  dwm
edθ

برای حالتی آه ﲢریک ثابت است (وقتی آه mmf ثابت میباشد)
آار مکانیکی اﳒام شده برابر نرخ تغییرات coenergy میباشد، w′f،
آه فقط متمم انرژی ذخیره شده در میدان میباشد، بنابراین آار
مکانیکی اﳒام شده بهصورت زیر نوشته میشود :
dwm = dw′f
بهطوری آه :
we′  ∫φdF  ∫φd (Ni)  ∫Nφdi ∫λ(θ,i)di ∫L(θ,i)idi
در اینجا، اندوآتانس، L، و اتصال شار، λ ، توابعی از
موقعیت روتور و جریان میباشند، این تغییرات در coenergy بین
دو موقعیت θ1 و θ2 روتور اتفاق میافتند.
٢۵
dw′f (i,θ)  dw′f  dw T  m i  cons tan t dθ dθ dθ e اگر اندوآتانس بهصورت خطی با موقعیت روتور تغییر آند آه
در عمل عموماً این گونه نیست[6]، گشتاور بهصورت زیر میتواند نوشته شود :
i2 . dL(θ,i)  T 2 dθ e در رابطه اخیر dL(θ,i) ثابت گشتاور نامیده شده و واحد آن dθ N.m
A2 میباشد، باید تأآید شود آه این یک ثابت نیست و مرتباً

تغییر میآند و این بیان میآند آه SRM یک مدار معادل برای شرایط آار دائمی ندارد.

شکل(۵-١) : (a) روتور با فاصله x از استاتور (b) منحنی شار برحسب mmf برای x1 و x2 آه x1>x2
٢۶
- از رابطهگشتاور میتوان نتایج زیر را بدست آورد
١- گشتاور با توان دوم جریان متناسب است، بنابراین جریان میتواند در یک جهت برقرار شود تا گشتاور در یک جهت ایجاد
شود. بنابراین فقط با یک سوئیچ میتوان جریان را در سیمپیچ برقرار ﳕود، این سبب آاهش تعداد سوئیچهای قدرت و آاهش هزینه میشود.
٢- ثابت گشتاور با شیب اندوآتانس برحسب موقعیت روتور داده میشود. اینطور فهمیدهاند آه اندوآتانس سیمپیچ استاتور تابعی
از موقعیت روتور و جریان میباشد و بنابراین آن را غیرخطی میسازد.
٣- بهخاطر تناسب گشتاور با توان دوم جریان، این خصوصیت شبیه موتورهای DC سری میباشد، بنابراین SRM دارای گشتاور
راهاندازی خوب میباشد.
۴- عملکرد ژنراتوری با برقراری جریان در یک جهت هنگامیآه
شیب اندوآتانس منفی است، امکانپذیر میباشد.
۵- تغییر جهت چرخش با تغییر ترتیب فرمان سیمپیچهای استاتور امکانپذیر میباشد آه این یک عمل ساده است.
۶- گشتاور و سرعت هر دو به وسیله مدار مبدل (Converter) آنﱰل میشوند.
٧- این ماشین یک مدار مبدل آنﱰل شونده نیاز دارد و با تغذیه سهفاز برقشهر بهطور مستقیم ﳕ یتواند آار آند.
٨- تزویج در بین سیمپیچهای استاتور بسیار آم بوده و در بسیاری از آاربردها قابل صرفنظر میباشد. بنابراین هر فاز از این موتور میتواند بطور مستقل از فازهای دیگر عمل آند.
٩- بهخاطر اینکه جریان فقط لازم است در یک جهت در سیمپیچها جاری شود، ﲤام مبدﳍای قدرت دارای یک سوئیچ بصورت سری با سیم پیچ هستند بنابراین هیچگاه خطای shoot-through رخ ﳕیدهد.
٢٧
١-۶- رابطه بین موقعیت روتور و اندوآتانس سیمپیچ استاتور
برای یک جریان ثابت، اندوآتانس برحسب موقعیت روتور در شکل (۶-١) نشان داده شده است. این منحنی با صرفنظر از اثرات لبهای و اشباع سیمپیچ ترسیم شده است.

شکل(۶-١) : (a) یک قطب از موتور رلوآتانس (b) منحنی اندوآتانس برحسب
موقعیت روتور
نواحی ﳐتلف بر روی شکل (۶-١) را بهصورت زیر میتوان ﲢلیل آرد.
١ - φ1 - و φ4 - φ5 فازهای استاتور و روتور هیچگونه ﳘپوشانی با ﳘدیگر ندارند و شار عبوری به وسیله مسیر فاصله هوایی تعیین میشود، بنابراین اندوآتانس مینیمم شده و مقداری
٢٨
تقریباً ثابت باقی میماند بنابراین، این ناحیه باعث ایجاد گشتاور ﳕیشود، اندوآتانس در این ناحیه، اندوآتانس غیرﳘراستا
Lu(unaligned) نامیده میشود.
٢φ1- φ2 - در این ناحیه قطبها با هم ﳘپوشانی پیدا آردهاند بنابراین شار بطور عمده از ﳌینیتهای استاتور و روتور عبور
میآند، با تغییر موقعیت روتور اندوآتانس افزایش مییابد و به آن یک شیب مثبت میدهد، جریان تزریق شده به داخل سیمپیچ در این ناحیه باعث ایجاد یک گشتاور مثبت میشود، این ناحیه با ﳘپوشانی آامل قطبهای استاتور و روتور خاﲤه پیدا میآند.
٣φ2- φ3 - در این ناحیه حرآت روتور باعث تغییر ﳘپوشانی آامل فاز استاتور و روتور ﳕیشود و بنابراین تغییری در مسیر شار آه اآنون از طریق ﳌینیتها میباشد ایجاد ﳕیشود و اندوآتانس در مقدار حداآثر خود ثابت باقی میماند. این
اندوآتانس، اندوآتانس حالت ﳘپوشانی آامل La(aligned) نامیده میشود، از آﳒا آه تغییری در اندوآتانس ایجاد ﳕیشود بنابراین گشتاور تولید شده در این ناحیه صفر میباشد، هر چند جریان جاری در سیمپیچ غیرصفر باشد با دانسﱳ این حقیقت، این زمان ﲠﱰین زمان برای خاموش آردن فاز میباشد زیرا جریان برگشتی ناشی از انرژی ذخیره شده در فاز استاتور باعث ایجاد گشتاور منفی ﳔواهد شد.
۴φ3- φ4 - در این ناحیه قطب روتور در حال دور شدن از موقعیت ﳘپوشانی آامل فاز استاتور و روتور میباشد. این ناحیه خیلی شبیه ناحیه φ1- φ2 میباشد اما در این ناحیه با افزایش موقیت روتور، اندوآتانس آاهش مییابد و باعث تولید یک شیب منفی میگردد، عملکرد موتور در این ناحیه باعث ایجاد گشتاور
منفی میگردد. به خاطر اشباع جریان عبوری از سیمپیچ، رسیدن به منحنی
ایدهآل شکل فوق امکانپذیر ﳕیباشد، اشباع جریان باعث ﲬیده
٢٩ شدن منحنی به ﲰت بالا میشود و شیب را آاهش میدهد، بنابراین ثابت گشتاور آاهش مییابد. پس اشباع جریان باعث آاهش یافﱳ گشتاور و توان خروجی میشود.[14]
١-٧- مدار معادل موتور رلوآتانسی
مدار معادل اولیه یک موتور رلوآتانسی با صرفنظر آردن از اثر تزویج بین سیمپیچها بصورت زیر خواهد بود. ولتاژ اعمال شده به سیمپیچی فاز برابر با ﳎموع افت ولتاژ مقاومتی و نرخ تغییرات شار عبوری میباشد.
dλ(θ,i) V  Rs i  dt RS مقاومت بر هر فاز بوده و λ شار عبوری میباشد.
λ = L(θ,i) i
dL(θ,i)  dθ i di RSiL(θ,i) dL(θ , i )i V  RS i  dθ dt dt dt dL(θ,i) iw  di i  L(θ,i) V  R dθ m dt S در رابطه اخیر میتوان بهجای dL(θ,i) iwm ، e ، یعنی emf القا dθ شده را جایگذاری آرد. dL(θ,i) و dL(θ,i) Kb  Kbwmi e  iwm dθ dθ V  RS i  L(θ,i) dtdi  e

٣٠

شکل(١-٧-١) : مدار معادل موتور رلوآتانسی
با فرض ثابت بودن جریان در یک پریود داریم :
dL V  R i iw m dθ S V i  dL ( w (R m dθ S معادله اخیر بیانگر آن است آه جریان با سرعت نسبت عکس دارد و چون گشتاور با ﳎذور جریان نسبت دارد بنابراین گشتاور با ﳎذور سرعت نسبت عکس خواهد داشت.
Tα 1

w2m
این مطلب رفتار گشتاور سرعت یک موتور DC سری را تداعی میآند.[10]
٣١

شکل(٢-٧-١) : منحنی گشتاور ـ سرعت یک موتور رلوآتانسی ﳕونه
در موتورهای رلوآتانسی آه حرآت ابتدایی را خود آغاز
میآنند، تیغههای روتور باید با تیغههای استاتور مربوط به خودش ﳘپوشانی داشته باشد. تا در هر موقعیتی بر روی روتور آن گشتاور وجود داشته باشد.
ترآیبات ﳐتلف از تعداد قطبها (Nr , Ns) آه بهترتیب قطبهای
استاتور و روتور میباشند. ذیلا آورده شده است. 4 Nr = 6 Ns = برای موتور 3 فازه
6 = Nr 8 Ns = برای موتور 4 فازه
4 = Nr Ns = 10 برای موتور 5 فازه
البته ترآیبات دیگری نیز وجود دارد و تفاوت آا در این
است آه در برخی از جایگاههای روتور ﳑکن است گشتاوری تولید نگردد.[9]
٣٢
فصل دوم:
مدارات راه انداز (DRIVER)
٣٣
٢-١- پیکربندی مدارات مبدل
در موتورهای رلوآتانسی، تزویج بسیار ناچیز است، این امر سبب عدم وابستگی به دیگر فازها در آنﱰل هر فاز و تولید گشتاور میشود. درحالیآه این خصوصیت یک برتری ﳏسوب میشود، نداشﱳ تزویچ نیاز به عملکرد درست با انرژی مغناطیسی ذخیره شده دارد. در هنگام خاموش شدن فاز باید مسیری برای ﲣلیه انرژی ذخیره شده بوجود آورد، در غیراینصورت این انرژی سبب ایجاد ولتاژ بیش از حد خواهد شد و به سوئیچهای نیمه هادی صدمه خواهد رساند. این انرژی میتواند بهصورت آزاد بهحرآت درآید، ﲞشی از آن به انرژی الکﱰیکی/ مکانیکی تبدیل شده و ﲞشی دیگر از آن در سیمپیچهای ماشین تلف میشود[15]، روش دیگر بازگرداندن آن بر روی منبع ولتاژ DC میباشد.
دستهبندی مدارات مبدل بهصورت q ، q+1 ، 1. 5 q و 2 q سوئیچ در هر فاز و مبدل قدرت دو مرحلهای است آه q تعداد فازهای ماشین میباشد.[20]
این دستهبندی در شکل (١-٢) نشان داده شده است.

شکل(١-٢) : دستهبندی مدارات مبدل
٣۴
٢-٢- مبدل پل نامتقارن شکل -a)٢-٢) مبدل پل نامتقارن را با درنظر گرفﱳ یک فاز
SRM نشان میدهد.[3] بقیه فازها نیز بهطور مشابه متصل
میشوند. با روشن شدن ترانزیستورهای T1و T2 جریان در فاز A
برقرار میشود، اگر جریان بالاتر از حد تعیین شده برسد، T1و T2
خاموش میشوند. انرژی ذخیره شده در سیمپیچ فاز A موتور جریان را در ﳘان جهت حفظ میآند تا اینکه ﲣلیه شود، بنابراین دیودهای D1و D2 بهصورت مستقیک بایاس شده و باعث شارژ شدن دوباره منبع میشوند، این امر سبب آاهش سریع جریان و رسیدن
آن به زیر حد تعیین شده میشود این عملکرد با شکل موجهای شکل
-b)٢-٢) تشریح شده است. باید توجه داشت آه یک جریان با اندازه IP در هنگام عملکرد موتوری آه شیب اندوآتانس مثبت است مورد نیاز میباشد. در اینجا جریان فاز A ، ia، بهوسیله یک فیدبک جریان و مقایسه با ia ، در حدود ia حفظ میشود، ∆i
میزان اختلاف با جریان تعیین شده میباشد.

شکل(-a٢-٢) : مبدل پل نامتقارن
٣۵

شکل(-b٢-٢) : شکل موجهای مبدل پل نامتقارن ـ روش اول
وقتی اختلاف جریان ia و ia به اندازه -∆i شود، ترانزیستورهای
T1 و T2 بطور ﳘزمان خاموش میشوند در این هنگام دیودهای D1 و
D2 باعث هدایت جریان به منبع ولتاژ DC میشوند، توجه آنید آه
ولتاژ فاز A در این ﳊظه منفی و به اندازه منبع ، Vdc،
میباشد، روش آنﱰلی فوق (روش١) از آﳒا آه ریپلهای بیشﱰی به خازن تغذیه اعمال میآند باعث آوتاه شدن عمر این خازن و
افزایش تلفات سوئیچینگ در ترانزیستورهای قدرت میشود. برای
ﲠﱰ شدن این مسأله میتوان از روش سوئیچینگ متناوب استفاده
آرد.[4] انرژی ذخیره شده در فاز A میتواند بهطور مؤثر در داخل
خودش استفاده شود، این آار با خاموش آردن T2 به تنهایی (روش
٣۶
دوم) امکانپذیر است. در این مورد جریان در داخل T1 و فاز A
و D1 جاری میشود، اگر از افت ولتاژ بر روی ترانزیستورو دیود صرفنظر آنیم، ولتاژ بر روی فاز A صفر خواهد شد. شکل ( -C٢-٢ ) در این روش (روش دوم) نسبت به روش اول زمان بیشﱰی طول میآشد تا جریان از IP + ∆I به IP-∆I برسد. این امر سبب آاهش فرآانس سوئیچینگ و بنابراین آاهش تلفات سوئیچینگ خواهد شد.
در روش دوم وقتی فاز میخواهد آاملا خاموش شود یعنی وقتی ia
صفر است، آنگاه T1 و T2 ﳘزمان خاموش میشوند در این فاصله ولتاژ دو سر سیمپیچ -Vdc خواهد شد و ﳘچنین D1 و D2 هدایت میآنند تا اینکه ia صفر شود، ولتاژ روی T2 در حین خاموشی و هنگامیآه T1 روشن است، مساوی ولتاژ منبع، Vdc ، میباشد بنابراین ولتاژ ترانزیستورها و دیودها باید در حدود ولتاژ منبع تغذیه باشد. در روش دوم جریان برگشتی فازها دیرتر از روش اول صفر میشود ﳘچنین در روش دوم انرژی ذخیره شده به انرژی مکانیکی مفید تبدیل میشود، این روش برای آنﱰل جریان استفاده میشود ولی هنگامی آه جریان باید سریعاً خاموش شود، دشارژ در داخل منبع مفید خواهد بود، یعنی زمانی آه شیب اندوآتانس صفر میشود و بعد از آن منفی خواهد شد، در این زمان دیرتر خاموش شدن فاز باعث ایجاد گشتاور منفی و از دست رفﱳ انرژی خواهد شد.
توجه آنید آه این مدار مبدل به ازای هر فاز دو ترانزیستور و دو دیود نیاز دارد.
٣٧

شکل(-c٢-٢) : شکل موجهای مبدل پل نامتقارن ـ روش دوم
ﲠرهبرداری از ادوات قدرت در مبدل نامتقارن ضعیف میباشد.
میتوان زماای سوئیچ آا را افزایش داد. این آار با آاهش
تعداد ترانزیستورهای قدرت و استفاده از SCR ﳑکن خواهد شد.[7]
ﳘانطور آه در شکل -d)٢-٢) دیده میشود تعداد فازها باید
زوج باشد. SCR ها برای هدایت جریان به فاز مناسب استفاده
میشوند و برای آنﱰل استفاده ﳕیشوند. با این وجود استفاده از
SCR نیاز به مدارات جانبی داشته آه باعث افزایش تعداد
قطعات، هزینه و ابعاد مدار راهانداز خواهد شد.
تعداد دیودها به یکعدد در هر فاز تقلیل یافته است. باید توجه داشت آه فازهای غیرمتوالی در یک گروه با هم قرار میگیرند و با یک دسته از ترانزیستورها ﲢریک میشوند. این آار
٣٨
سبب میشود آه یک فاز بتواند در موقع لزوم به سرعت خاموش شود و جریانش به صفر برسد. برای ﲢریک فاز A، ترانزیستورهای T1 و
T2 و تریستور S1 روشن میشوند، اگر جریان به مقدار تعیین شده برسد T1 خاموش میشود و جریان از طریق فاز A و ترانزیستور T2
S1 و D2 برقرار میشود، در این هنگام ولتاژ دو سر فاز A در
صورت ایدهآل در نظر گرفﱳ قطعات صفر خواهد بود در این روش انرژی ذخیره شده در اندوآتانس ماشین به انرژی مکانیکی تبدیل شده و جریان فاز آاهش مییابد، هنگامیآه جریان فاز باید آاملا خاموش شود. T1 و T2 ﳘزمان خاموش میشوند آه باعث روشن شدن D1
D2 میشود، در این هنگام ولتاژ در دو سر سیمپیچ فاز -Vdc
خواهد شد. ﲞشی از انرژی به منبع بازگشته و ﲞشی دیگر از آن
به انرژی مکانیکی تبدیل خواهد شد به این ترتیب جریان فاز به
سرعت به صفر میرسد. تریستور S2 مانع از گردش جریان فاز A از طریق فاز C میشود.

شکل(-d٢-٢) : استفاده از SCR و آاهش تعداد ترانزیستورهادرمبدل پل
نامتقارن
٣٩
٢-٣- مبدﳍای یک سوئیچ در هر فاز
مبدﳍای یک سوئیچ در هر فاز بهخاطر آوچک بودن ابعاد مبدل و ﳘچنین آاهش قیمت ساخت آا جذاب هستند این مبدﳍا دارای اشکال عدم توانایی اعمال ولتاژ صفر در دو سر سیمپیچ هستند، این ﳏدودیت سبب افزایش مبادله انرژی بین ماشین و منبع ولتاژ dc
میشود آه خود موجب تلفات بیشﱰ و آاهش بازده میشود ﳘچنین نویز صوتی افزایش مییابد.[35]
٢-۴- مبدل R-Dump
شکل (۴-٢) یک مبدل با یک سوئیچ و یک دیود در هر فاز را
نشان میدهد، وقتی T1 خاموش میشود جریان آزادانه از طریق
دیود D2 عبور میآند و خازن CS را شارژ میآند پس از مقاومت
خارجی R عبور میآند. این مقاومت مقداری از انرژی ذخیره شده
در فاز A را مصرف میآند آه باعث مشکل دیر ﲣلیه شدن سیمپیچ
میشود. علاوه براین اتلاف انرژی در مقاومت باعث آاهش بازده
میشود. ولتاژ بر روی T1 در هنگامیآه خاموش میشود برابر Vdc +
IaR میباشد. مقدار R هم میزان تلفات را تعیین میآند هم میزان ولتاژ حداآثر را آه ترانزیستور باید ﲢمل آند. اگر R آوچک باشد جریان فاز دیرتر خاموش شده و ﳑکن است در ناحیهای آه اندوآتانس دارای شیب منفی است سیمپیچ ﳘچنان جریان داشته و هنوز ﲣلیه نشده باشد. این امر سبب ایجاد گشتاور منفی و آاهش گشتاور موتوری میشود. اگر R بزرگ باشد آنگاه افت ولتاژ روی ترانزیستورها بزرگ بوده و ترانزیستوری آه ﲢمل ولتاژ بالاتری داشته باشد نیاز است.[18]
۴٠

شکل(۴-٢) : (a) توپولوژی R-Dump
(b) شکل موجهای توپولوژی R-Dump
٢-۵- مبدل Bifilar
در شکل (۵-٢) یک مبدل با یک ترانزیستور فاز دیده میشود اما انرژی ذخیره شده در برمیگردد. اینآار با استفاده از یک سیمپیچ

ویک دیود در هر فاز به منبع dc bifilar (دو رشتهای)
۴١
با پلاریته نشان داده شده در شکل امکانپذیر میباشد. وقتی ترانزیستور T1 خاموش میشود emf القا شده در سیمپیچ دارای
پلاریتهای است آه دیود D1 را روشن میآند. این باعث ﲣلیه
جریان از طریق D1 میشود و انرژی به منبع باز میگردد.
هنگامیآه ترانزیستور خاموش میشود ولتاژ بر روی سیمپیچ bifilar
ثانویه برابر ولتاژ منبع dc میباشد ولتاژ بر روی سیمپیچ
اصلی بستگی به نسبت دور سیمپیچها دارد. با در نظر گرفﱳ نسبت دور a بین سیمپیچ اصلی سری با ترانزیستور و سیمپیچ bifilar
ثانویه، ولتاژ بر روی ترانزیستور برابر خواهد بود با:
vT1 = vdc + avdc = (1+a) vdc
این نشان میدهد آه ولتاژ بر روی T1 میتواند خیلی بزرگﱰ از ولتاژ منبع باشد. ﳘچنین نیاز به یک سیمپیچ ثانویه باعث ایجاد ﳏدودیت در فضای سیمبندی برای سیمپیچ اصلی شده و اقتصادی ﳕیباشد.[19]

شکل(-a۵-٢) : مبدل Bifilar
۴٢

شکل -b)۵-٢) : شکل موجهای مبدل Bifilar
٢-۶- مبدل با منبع تغذیه dc دو نیمهای
مبدل با منبع تغذیه dc دو نیمهای برای هر فاز یک سوئیچ
داشته و به این صورت آار میآند آه فاز A با روشن شدن T1
ﲢریک میشود. جریان در ترانزیستور T1، فاز A و خازن C1
برقرار میشود. وقتی ترانزیستور T1 خاموش میشود جریان با
حرآت از مسیر فاز A و خازن C2 و دیود D2 ادامه مییابد. در
این عمل خازن C2 شارژ شده و بنابراین انرژی ذخیره در فاز A
بهسرعت ﲣلیه میشود مشابه این عمل برای فاز B اتفاق میافتد،
۴٣
است و 0.5 vdc
عملکرد این مدار برای فاز A در شکل -b)۶-٢) نشان داده شده
است. وقتی T1 روشن است ولتاژ در دو سر فاز A برابر vdc 2
خواهد بود و وقتی T1 خاموش میشود ولتاژ دو سرفاز A برابر
−vdc 2 خواهد شد.[24] ولتاژ بر روی ترانزیستور T1 وقتی آه روشن
است قابل صرفنظر میباشد و وقتی خاموش میشود برابرvdc
وقتی آه جریان سیمپیچ به صفر میرسد ولتاژ T1 برابر
خواهد شد. برخی از اشکالات این درایو این است آه فقط نصف
ولتاژ تغذیه برای ﲢریک فاز استفاده میشود. برای تعادل بار
بر روی خازای تغذیه باید تعداد فازهای ماشین زوج باشد.
شکل(-a۶-٢) : مبدل، منبع تغذیه dc دو نیمهای
۴۴

شکل(-b ۶-٢) : شکل موجهای مبدل با منبع تغذیه دو نیمهای
٢-٧- مبدل با q ترانزیستور و 2q دیود
در شکل -a)٧-٢) یک مبدل با یک سوئیچ در هر فاز نشان داده شده است، توجه آنید آه دیودهای هرزگرد D1 و D2 و D3 و D4
دیودهای سریع هستند و دیودهایD5 و D6 و D7 و D8 دیودهای با سرعت روشن شدن پایین هستند. با روشن شدن ترانزیستورهای T1 و
T4 فاز A ﲢریک میشود وقتی جریان به میزان تعیین شده رسید ترانزیستورهای T1 و T2 خاموش میشوند. این آار سبب روشن شدن دیودهای D1 و D4 شده تا جریان را برقرار سازند، در این حین ولتاژ بر روی فاز A برابر -vdc خواهد شد آه نشان دهنده
۴۵
انتقال انرژی از سیمپیچ به منبع ولتاژ DC میباشد. ﳘانطور آه در شکل -b)٧-٢) دیده میشود این آار سبب صفر شدن سریع جریان
فاز A میشود (روش اول) در روش دوم آه سوئیچها ﳘزمان خاموش
ﳕیشوند. در این حالت T4 روشن بوده و T1 خاموش میشود و برای
سیکل بعدی T1 روشن بوده و T4 خاموش میشود تا جریان rms
سوئیچها آاهش یابد. این عملکرد در شکل -c)٧-٢) نشان داده
شده است برای ﲢریک فاز B باید ترانزیستورهای T1 و T2 با هم عمل آنند.[27]

شکل(-a٧-٢) : مبدل با q ترانزیستور و 2q دیود
۴۶

شکل(-b٧-٢) : شکل موجهای مدار فوق با روش اول
۴٧

شکل(-c٧-٢) : شکل موجهای مدار فوق با روش دوم
٢-٨- مبدل با (١(q+ سوئیچ و دیود
یک آرایش (١(q+ سوئیچ در شکل (١-٨-٢) نشان داده شده است، برای اینکه فاز A ﲢریک شود، T1 و T2 باید روشن شوند آه باعث اعمال ولتاژ منبع به دو سر سیم پیچ میشود. وقتی جریان ia به حد تعیین شده میرسد یک روش این است آه T1 یا T2 خاموش شوند، در این صورت جریان از طریق T1 و D2 یا T2 و D1 برقرار شده و ولتاژ در دو سر فاز صفر میشود، روش دیگر این است آه T1 و T2
ﳘزمان خاموش بشوند و ولتاژ دو سر سیمپیچ -vdc شود و جریان آاهش یابد، برای خاموش آردن فاز A و آاهش سریع جریان در آن
۴٨
روش دوم انتخاب میشود. بطور مشابه برای فاز B،
ترانزیستورهای T2و T3 و دیودهای D2 و D3 استفاده میشوند و برای فاز C ترانزیستورهای T3 و T4 و دیودهای D3 و D4 استفاده
میشوند، ترانزیستورهای T2 و T3 و دیودهای D2و D3 بهصورت مشﱰ
ک استفاده میشوند این امر نهتنها باعث افزایش جریان عبوری
از آا میشود بلکه در آنﱰل مستقل فازها نیز ﳏدودیت ایجاد
میآند. بهعنوان مثال اجازه دهید فاز A خاموش شده و فاز B
ﲢریک شود، در این حال T1 باید خاموش شود و T2 و T3 روشن شوند، این امر سبب میشود آه ولتاژ روی فاز A صفر شود، در صورتی آه مطلوب ما -vdc میباشد. این امر سبب دیرتر خاموش شدن فاز A
شده و حتی ﳑکن است باعث ایجاد گشتاور منفی و آاهش گشتاور موتوری شود.[21]

شکل (١-٨-٢) : مبدل با (١(q+ سوئیچ در هر فاز
ﲠبود یافته مدار فوق با دیودهای اضافه و q
شکل (٢-٨-٢) نشان داده شده است. این مدار میباشد، نیمی از آا (دیودهای Da و Db و Dc

ترانزیستور در دارای 2q دیود و (Dd جریان را
۴٩
به فاز مناسب هدایت میآنند و بنابراین میتوانند دیودهای با سرعت آم باشند. فقط ماشینهایی با تعداد فاز زوج میتوانند از فواید این درایو ﲠرهمند شوند. [25]

شکل(٢-٨-٢) : ﲠبود یافته مدار(١(q+ ترانزیستوری
٢-٩- مبدل C-Dump مبدل C-Dump با مدار بازیافت انرژی در شکل (٩-٢) نشان
داده شده است. ﲞشی از انرژی مغاطیسی ذخیره شده در فاز به
خازن Cd منتقل شده و از آن از طریق Tr و Lr و Dr بازیابی شده
به منبع ولتاژ DC ورودی منتقل میشود. فرض آنید آه
ترانزیستور T1 روشن شود تا فاز A ﲢریک گردد و هنگامیآه
جریان فاز A به میزان تعیین شده میرسد، T1 خاموش میشود،
اینآار باعث روشن شدن دیود D1 میشود و جریان از طریق خازن
Cd بسته میشود آه باعث افزایش ولتاژ روی آن میشود. در نتیجه جریان فاز A آاهش مییابد، وقتی آه جریان به اندازه ∆i از
میزان تعیین شده آمﱰ شد، T1 روشن میشود تا جریان به مقدار
تعیین شده نزدیک شود. وقتیآه جریان باید آاملا در فاز A
۵٠
خاموش شود، T1 خاموش میشود و مقداری از انرژی ذخیره شده در فاز A در خازن Cd ذخیره میشود و ﲞشی از آن به انرژی مکانیکی
تبدیل میشود. این مبدل حداقل تعداد سوئیچ را داشته و ﳘچنین
جریان در آن بطور مستقل از فازهای دیگر آنﱰل میشود. اشکال
اصلی این مبدل این است آه سرعت خاموش شدن فاز به اختلاف
ولتاژ تغذیه ورودی، vdc، و ولتاژ vo روی Cd بستگی دارد، سریعﱰ خاموش شدن جریان نیازمند vo بزرگﱰ است آه باعث افزایش میزان ولتاژی خواهد شد آه ادوات قدرت باید ﲢمل آنند. ﳘچنین تبادل انرژی بین Cd و منبع تغذیه dc ورودی باعث تلفات اضافی شده و بازده ماشین را پایین میآورد. مدار باز یافت انرژی فقط هنگامیعمل میآند آه یکی از ترانزیستورهای T1، T2 ، T3 یا T4
روشن باشند تا از جریان هرز گرد فازها جلوگیری شود. Tr
زمانیآه ترانزیستورهای T1 تا T4 ﳘگی خاموش هستند خاموش می شود.[2]

۵١

شکل(٩-٢) : (a) مدار مبدل C-Dump
(b) شکل موجهای مبدل C-Dump
٢-١٠- مبدل C-Dump با قابلیت جریان هرزگرد
مبدل SRM به روش C-Dump توانایی ایجاد ولتاژ صفر ولت را
بر روی فازها نداشت، این امر سبب افزایش نویز صوتی در این
موتورها میشود. ﳘچنین فازهای ماشین هم با ولتاژ منبع dc و
هم با اختلاف ولتاژ بین منبع dc و خازن C-dump مواجه میشدند یعنی یک ولتاژ با تغییرات بسیار زیاد، تقریباً دو برابر ولتاژ منبع dc، این موضع باعث تلفات بیشﱰ میشود، ﳘه این مسائل با اضافه آردن یک ترانزیستور و ایجاد جریان هرزگرد به ﳘراه دیود DS برای بازیافت انرژی ذخیره شده در خازن C-Dump
۵٢
برطرف می شوند. شکل (١-١٠-٢) در این آرایش Lr حذف شده است.
برای ﲢریک فاز A، ترانزیستور T1 روشن می شود. مرحله ١، وقتی جریان فاز به میزان تعیین شده میرسد T1 خاموش شده و Tf روشن میشود، مرحله ٢، زمانی شروع میشود آه ولتاژ Cd به ولتاژ منبع dc میرسد، در این هنگام Tf روشن شده و جریان در فاز
ترانزیستور Tf و دیود D1 برقرار میشود (در این هنگام ولتاژ
دو سر سیمپیچ صفر است). وقتی جریان فاز باید خاموش شود T1
خاموش شده و Tf روشن ﳕیشود، در نتیجه ﲞشی از انرژی به خازن
Cd منتقل میشود و ﲞشی دیگر به انرژی مکانیکی تبدیل میشود، این مرحله ٣ است، و در این مرحله ولتاژ دو سر فاز ماشین برابر (vd-vo) خواهد شد.
مرحله ۴ زمانی آغاز میشود آه فاز آاملا خاموش شده است و انرژی داخل Cd میتواند برای ﲢریک فاز B یا فاز C استفاده شود، در این مرحله دیود DS خاموش شده و اجازه میدهد آه ولتاژ Cd به فاز دارای جریان منتقل شود در ﲤامی این مراحل آنﱰل مستقل جریان فازها امکانپذیر میباشد. فقط هنگامیآه جریان فازها با هم ﳘپوشانی دارند روشن آردن Tf باعث دیرتر خاموش شدن فاز درحال خاموش شدن خواهد شد. شکل موج عملکرد مدار بدون ﳘپوشانی جریان فازها در شکل (٢-١٠-٢) نشان داده شده است.[34]
۵٣

شکل (١-١٠-٢) : مبدل C-Dump با قابلیت جریان هرزگرد

شکل (٢-١٠-٢) : عملکرد مدار بدون ﳘپوشانی جریان فازها
۵۴
٢-١١- مبدل با یک ترانزیستور مشﱰک
شکل (١١-٢) یک مبدل با یک ترانزیستور مشﱰک برای فازها را نشان میدهد، T1 قسمت بالای فازها را از منبع dc جدا میآند تا انرژی بتواند به خازن C1 منتقل شود، در غیر اینصورت جریان بهصورت هرزگرد در داخل فاز و دیود جاری خواهد شد، وقتی ﲞواهیم فاز A ﲢریک شود، ترانزیستورهای T1 و T3 روشن میشوند، هنگامیآه جریان به میزان تعیین شده رسید ترانزیستور T1 و T2
ﳘزمان یا به تنهایی خاموش خواهند شد. اشکال این مبدل عدم توانایی آنﱰل جریان بهصورت مستقل در هنگامیآه جریاا با هم ﳘپوشانی دارند میباشد، هنگامیآه فاز A در حال خاموش شدن است اگر فاز B یا C روشن شود جریان در فاز A بهصورت هرزگرد خواهد شد و ﲣلیه آن طولانیتر میشود.[39]

شکل (١١-٢) : (a) مبدل با یک ترانزیستور مشﱰک
(b) عملکرد مدار
۵۵
٢-١٢- مبدل با حداقل تعداد سوئیچ و تغذیه ورودی متغیر
دو ﳕونه مبدل با (١(q+ ترانزیستور بررسی شدند، با وجود
ﳏدودیتهایی آه داشتند بهخاطر سادگی توپولوژی و خصوصیات
آنﱰلی جالب از آا استفاده میشود. این نوع مبدﳍا ﳘان ولتاژ منبع را به ادوات نیمه هادی اعمال میآنند اما توانایی آنﱰل جریان فازها را هنگامیآه جریاا با هم ﳘپوشانی دارند (وقتی یک فاز در حال خاموش شدن است فاز دیگر ﲞواهد روشن شود)
ندارند. نوع C-dump مشکل آنﱰل جریان بهصورت مستقل را حل
آرده اما ادوات نیمههادی باید ولتاژ بزرگﱰی را ﲢمل آنند،
ﳘچنین در مبدل C-dump گردش انرژی بیشﱰ است و تلفات بالاتر
میباشد. اشکالات فوق استفاده از این مبدﳍا را در عمل ﳏدود آرده است.
مبدل نشان داده شده در شکل (١٢-٢) با ﳘان تعداد ترانزیستور دیگر مشکل آنﱰل مستقل جریان فازها را ندارد.
ترانزیستور TC، دیود DC، سلف LC و خازن CC مدار آاهنده ولتاژ
DC ورودی را تشکیل میدهند. این مدار ولتاژ vdc ورودی را به vi
آاهش میدهد تا اینکه ولتاژ مورد نظر به سیمپیچ ماشین اعمل شود. با آاهش ولتاژ vi دیگر نیاز به سوئیچینگ ترانزیستورهای قدرت فازها ﳕیباشد و فقط یک بار برای اعمال ولتاژ به فاز روشن شده و یک بار هم برای خاموش شدن جریان، خاموش میشوند.
در نتیجه تلفات ناشی از سوئیچینگ ترانزیستورهای فازها و تلفات هسته به حداقل میرسد. ﳘچنین این مبدل خاموش شدن سریع فازها را درحالیآه حداآثر ولتاژ روی ادوات نیمههادی برابر ولتاژ DC تغذیه است فراهم میآند، درست برخلاف مبدل [28]C-dump
.
۵۶

شکل (١٢-٢) : مبدل با حداقل تعداد ترانزیستور و تغذیه ورودی متغیر
٢-١٣- مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost
در شکل(١٣-٢) یک مبدل با ولتاژ DC ورودی متغیر و با چهار عدد ترانزیستور و دیود نشان داده شده است. به ازای هر فاز ماشین فقط یک عدد ترانزیستور وجود دارد، این ترانزیستور با سیمپیچ فاز بصورت سری قرار گرفته و از خطای shoot-through
جلوگیری میآند. ترانزیستور TC، دیود DC، سلفL و خازن خروجی
C طبقه خروجی مبدل Buck-Boost را تشکیل میدهند. ولتاژ DC
ورودی به ماشین، Vi، میتواند از صفر تا دو برابر ولتاژvdc
تغییر آند تا ولتاژ مورد نظر را به سیمپیچهای ماشین اعمال
آند. بنابراین خاموش شدن سریع فازها با ولتاژ vdc ثابت امکانپذیر است، با روشن شدن ترانزیستور v1 ولتاژ vi به فاز A
اعمال شده و باعث ﲢریک این فاز میشود. وقتی T1 خاموش میشود صرفنظر از خاموش یا روشن بودن ترانزیستور TC، جریان از مسیر
D1 و منبع ولتاژ vdc و سیمپیچ فاز A جاری میشود، انرژی
ذخیره شده در خازن C در زمانی آه ترانزیستور TC خاموش است
میتواند به فازی آه قرار است روشن شود انتقال یابد، به ﳘین
۵٧
دلیل آنﱰل مستقل فازها در این توپولوژی امکانپذیر است.
برتری این مبدل نسبت به مبدلی آه طبقه خروجی آن بصورت Buck
آار میآند این است آه ولتاژ خروجی آه به فازها اعمال میشود میتواند بیشﱰ از vdc شود تا افزایش جریان در سیمپیچ در حال
روشن شدن سریعﱰ صورت پذیرد، این برتریها در این مدار مبدل
بهﳘراه افزایش ولتاژی است آه سوئیچ مدار مبدل ولتاژ باید
ﲢمل آند، این ولتاژ برابر ولتاژ dc ورودی به اضافه ولتاژ
خروجی مدار مبدل dc به dc میباشد و با فرض اینکه ولتاژ خروجی مبدل dc به dc دو برابر ولتاژ dc ورودی است. ولتاژی آه این ترانزیستور باید ﲢمل آند سه برابر ولتاژ dc ورودی میباشد، حتی برای حالتی آه ولتاژ خروجی مدار مبدل آوچکﱰ از ولتاژ ورودی است، میزان ولتاژی آه این ترانزیستور باید ﲢمل آند نسبت به مبدل Buck بیشﱰ میباشد.[39]

شکل (١٣-٢) : مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost
۵٨
٢-۴١- مبدل با (1. 5 q) سوئیچ و دیود
این مبدل در شکل (١۴-٢) نشان داده شده، آه آمﱰ از دو
سوئیچ برای هر فاز نیاز دارد و به ازای دو فاز سه عدد سوئیچ دارد، علاوه بر این در صورتی آه تعداد فازهای ماشین زوج باشد و بصورت غیرمتوالی در یک گروه قرار گرفته باشند امکان آنﱰل مستقل جریان فازها وجود دارد. در این مبدل سوئیچهای T5 و T6
هریک باید جریان دو فاز را از خود عبور بدهند بنابراین
میزان جریانی آه باید ﲢمل آنند نسبت به ترانزیستورهای T1 و
T2 و T3 و T4 بیشﱰ است، شکل موجهای مربوط به این مبدل در
هنگام آار در شکل -b)١۴-٢) نشان داده شده.[39]

شکل (١۴-٢) : (a) مبدل با (1.5q) سوئیچ
(b) عملکرد مدار
۵٩
٢-۵١- مبدل دو مرحلهای
آرایشی آه توانایی انتقال انرژی را بهصورت مستقیم از
سیمپیچهای فاز به منبع ولتاژ ac داشته باشد در شکل (١۵-٢)
نشان داده شده آه دو مرحله تبدیل ولتاژ در آن صورت میگیرد،
طبقه اول شامل یک مبدل آنﱰل شونده با شش عدد ترانزیستور و
شش عدد دیود است آه ورودی سه فاز 60 HZ را به خروجی ac تکفاز
و با فرآانس متغیر ارتباط میدهد، طبقه بعدی یک طبقه قدرت
بوده آه به وسیله آن هر فاز ﲢریک میشود بیشﱰ مدارات
راهانداز موتور رلوآتانس سوئیچ شونده به جز آا آه تغذیه
ورودیشان را باطری تشکیل میدهد ﳕیتوانند انرژی را مستقیماً
از ماشین به منبع ورودی منتقل آنند، این امر بهخاطر وجود یکسوسازهای دیودی و ﳏدودیت جریانی در خازای الکﱰولیتی میباشد. بنابراین فقط ﲞش آوچکی از انرژی به خازن برگشته و دوباره استفاده میشود. در نتیجه یک مقاومت باید موازی خازن واقع شود تا مانع از افزایش ولتاژ dc در آن شود، آه این خود باعث آاهش بازده میشود، در این موارد شارژ و دشارژ متناوب خازن باعث آاهش عمر آن میشود، مبدل مطرح در این قسمت فاقد خازن بوده و میتواند انرژی را مستقیماً از ماشین به منبع منتقل آند. اشکال این مبدل این است آه تعداد ترانزیستورها و دیودها در آن زیاد است و هزینه ساخت آن نسبت به سایر مبدﳍا بیشﱰ میباشد. و درجاهایی آه انرژی بازیافتی مورد توجه نباشد اقتصادی نیست. آاربردی آه میتواند مناسب باشد آنﱰل متغیر سرعت و تولید فرآانس ثابت از انرژی باد است.[22]
۶٠

شکل (١۵-٢) : مبدل دو مرحلهای
۶١
فصل سوم:
طراحی مدار راهانداز (DRIVER)
به روش مستقیم
۶٢
٣-١- مقدمه
موتورهای رلوآتانس به یک مدار راهانداز برای چرخش نیاز دارند. مدار راهانداز بستگی به مورد استفاده میتواند، بسیار ساده باشد. در عین حال آنﱰل سرعت موتور در یک حلقه بسته، حذف سنسورهای تعیین موقعیت روتور، آاهش ریپل گشتاور و ...
میتوانند بر پیچیدگی، حجم و قسمت مدار طراحی شده تأثیر بگذارند.
شکل (١-٣)، بلوک دیاگرام مدار آنﱰل یک موتور رلوآتانس را نشان میدهد.

شکل (١-٣) : بلوک دیاگرام مدار آنﱰل موتور
۶٣
٣-٢- سوئیچ و اﳌاای قدرت
روش متداول برای سوئیچ آردن سیمپیچهای موتور رلوآتانس استفاده از دو سوئیچ برای هر فاز میباشد و چون موتور طراحی شده سه فاز میباشد، ﲨعاً ۶ سوئیچ ترانزیستوری مورد نیاز میباشد. شکل (١-٢-٣) مدارد ساده هر فاز را مشان میدهد.
هنگامی آه سوئیچها روشن باشند ولتاژ تغذیه بر روی سیمپیچ فاز موجب عبور جریان از آن میشود. پس از خاموش شدن سوئیچها جریان سیمپیچ از طریق دیودها عبور میﳕاید و این جریان پس از مدت زمانی آه بستگی به L و R سیم پیچ دارد به ﲰت صفر میل میآند و سپس دیودها نیز خاموش میشوند.

شکل (١-٢-٣) : مدار ساده هر فاز
دیودها از نوع سریع میباشند. ترانزیستورهای سوئیچ میتوانند MOSFET یا IGBT باشند آهIGBT دارای خازن ورودی
آمﱰی است، در عین حال حداآثر ولتاژ شکست آا بالاتر از
MOSFET ها میباشند. افت ولتاژ بر روی IGBT برابر VCesat میباشد آه در حد 1.5 تا 2.5 ولت است در حالیکه افت ولتاژ بر روی MOSFET وابستگی به مقاومت درین وسورس دارد آه این مقاومت نیز وابستگی شدیدی به حرارت دارد. مدار ﲢریک گیت
۶۴
برای ترانزیستورهای MOSFET و IGBT یکسان میباشد. بنابراین میتوان این مدار را برای هر دو بکار برد.
با توجه به اینکه بیشﱰین تلفات در مدارهای سوئیچینگ در زمان روشن و خاموش شدن سوئیچ صورت میگیرد، بایستی زمان روشن و خاموش شدن ترانزیستورها را به حداقل رساند. از آﳒایی آه
ورودی این ترانزیستورها دارای یک خازن است، برای شارژ آردن
و دشارژ آردن آن نیاز به یک منبع با امپدانس خروجی آم
میباشد، برای این منظور از ترآیب دو ترانزیستور npn و pnp
استفاده میشود آه یک امیﱰ فالوور دو جهته میباشد، هم جریان دهی و هم جریان آشی مناسب دارد، با توجه به β بالاتر از 100
برای این ترانزیستورها در صورتی آه جریان بیس در حد 10mA در نظر گرفته شود، جریان خروجی این ترانزیستورها 1A خواهد بود.
در این صورت زمان روشن و خاموش شدن ترانزیستورهای قدرت در این مدار آمﱰ از 500ns میباشد. شکل (٢-٢-٣) مدار درایو ترانزیستورهای قدرت را نشان میدهد.

شکل (٢-٢-٣) : مدار درایو ترانزیستورهای قدرت
۶۵
٣-٣- سنسور تعیین موقعیت و سرعت موتور برای چرخش موتورهای رلوآتانس، بایستی هر آدام از فازهای
سه گانه با ترتیب و زاویه مشخص روشن شوند، این ترتیب و
زاویه بستگی به تعداد قطبهای روتور و استاتور و ﳏل قرار
گیری آا نسبت بههم دارد. به ﳘین منظور بایستی از یک ﳎموعه سنسور برای مشخص آردن این وضعیت استفاده ﳕود. یکی از روشهای متداول، استفاده از یک پره شکافدار به ﳘراه سه عدد فتواینﱰاپﱰ (Photo Interrupter) میباشد. فتواینﱰاپﱰ قطعهای است آه در آن یک فرستنده و یک گیرنده مادون قرمز وجود دارد. شکل (١ -٣-٣) مدار معادل یک مدل از آن را نشان میدهد.

شکل (١-٣-٣) : مدار معادل فتواینﱰاپﱰ
سه عدد از این قطعات الکﱰونیکی در زاویه 30° نسبت به هم
قرار میگیرند و یک پره شکافدار آه به ﳏور روتور متصل شده
است از میان آا میگذرد. شکافهای پره شکافدار بگونهای تنظیم شده است آه ﳘواره یک شکاف در مقابل یکی از سه فتو اینﱰاپﱰ
قرار میگیرد. بنابراین ﳘواره یکی از این سه سنسور، نور را
از خود عبور میدهد و از دو سنسور دیگر نور عبور ﳕیآند،
طراحی پره شکافدار بستگی به تعداد قطب روتور دارد. شکل (٢-٣ -٣) مدار آامل سنسورها را نشان میدهد.

شکل (٢-٣-٣) : مدار آامل سنسورها
۶۶
شکل موجهای ناشی از سنسورها برای سه فاز در شکل (٣-٣-٣)
مشاهده میشود.

شکل (٣-٣-٣) : شکل موجهای ناشی از سنسورها
از پالسهای ایجاد شده برای روشن آردن ترانزیستورهای هر
فاز استفاده میشود. ترتیب فازها بگونهایست آه موتور تنها در جهت راست میچرخد. برای چرخش در جهت چپ یک ﳎموعه ٣ تائی فتواینﱰاپﱰ دیگر نصب میشود. انتخاب جهت چرخش و ﳎموعه فتواینﱰاپﱰها توسط میکروآنﱰلر صورت میگیرد.
٣-۴- آنﱰل دور و حلقه فیدبک برای آنﱰل دور موتور بایستی جریان سیمپیچها را آنﱰل ﳕود،
برای این منظور از روش PWM استفاده میشود. در این حالت هر
آدام از پالسهای خروجی از فتواینﱰاپﱰها با یک موج پالسی
PWM آمیخته میشود و بدینترتیب زمان عبور جریان از یک
سیمپیچ و در نتیجه میزان جریان آن آنﱰل میگردد. هر چه نای
روشن ]یا یک بودنPWM [ بیشﱰ باشد جریان عبوری بیشﱰ است و
در نتیجه دور و گشتاور موتور بیشﱰ میشود. شکل (١-۴-٣) سه
شکل موج را نشان میدهد، اولی پالسهای سنسور موقعیت، دومی پالسهای PWM میباشد. سومین شکل موج در نتیجه AND آردن آن دو پالس میباشد آه به ترانزیستورهای یکی از فازها اعمال میگردد.
۶٧

شکل (١-۴-٣) : پالسهای PWM
فرآانس پالسهای ,PWM ثابت است و تغییرات نای پالس میتواند در یک حلقه فیدبک آنﱰل شود تا سرعت موتور ﳘواره با تغییر بار ثابت ﲟاند.[1] سرعت موتور از روی تعداد پالسهای موقعیت در ثانیه اندازهگیری میشود، برای این آار از مدار شکل (٢-۴-٣) استفاده میشود.

شکل (٢-۴-٣) : مدار سرعت موتور
ولتاژ VP متناسب با سرعت موتور است، مقاومتهای R1 و R2 و
مقدار خازن C بستگی به میزان تغییرات سرعت و مقدار سرعت و تعداد پالسهای فازها در ثانیه دارد. بدیهی است هرچه سرعت بالاتر باشد، تعداد پالسهای فازها در ثانیه بیشﱰ است و مقدار
R1 و R2 و C آوچکﱰ میشود. برای آنﱰل PI روی موتور از آنﱰل
۶٨
آننده شکل ٣-۴-٣ استفاده میشود. VP ولتاژ متناظر با سرعت میباشد و Vref ولتاژ مرجع متناسب با سرعت مرجع میباشد. Ve
ولتاژ خطا متناسب با اختلاف دو سرعت است.[29]

شکل (٣-۴-٣) : مدار آنﱰل PI برای پالسهای PWM از TL494 استفاده میشود. این IC دارای
یک مولد PWM است آه نای پالسهای آن توسط چند ورودی قابل
آنﱰل میباشد. شکل (۴-۴-٣) قسمتهای ﳐتلف این IC را نشان
میدهد. توسط پایههای ١ و ٢ و ١۵ و ١۶ و از طریق دو op-amp
داخلی میتوان ولتاژی را در پایه ٣ ایجاد آرد آه سطح این ولتاژ بین 0 تا ٣.٣ ولت تغییر میآند و تغییرات آن موجب تغییر
در نای پالس خروجی میگردد. op-amp، را میتوان در حلقه بسته و یا بهعنوان مقایسه آننده بکار برد. مدار حلقه فیدبک شکل ۴
-١٠ با استفاده از پایههای ١ و ٢ و یکی از op-amp ساخته میشود. از op-amp دوم برای ﳏدد آردن جریان موتور استفاده میشود. هنگامی آه جریان موتور از یک حد مشخص مثلا ١٠ آمپر بیشﱰ شود، ولتاژ در پایه ١۶ بیشﱰ از ولتاژ پایه ١۵ میشود و
۶٩
ولتاژ پایه ٣ تغییر می آند. بطوریکه موجب بسته شدن PWM در خروجی میگردد و بدینترتیب جریان ﳏدود میگردد.[26]

شکل (۴-۴-٣) : IC-TL494
پایه ۴ این IC برای Soft Start میباشد، اگر این پایه به آرامی
از ولتاژ +5v به ﲰت 0 ولت برسد. PWM نیز با ﳘان سرعت از %0
به %100 میرسد. از این پایه در زمان روشن آردن موتور در
ابتدای آار استفاده میشود.
٧٠
فصل چهارم:
روش های عملی کاهش
ریپل گشتاور
٧١
۴-١- بدست آوردن رابطه گشتاور از مدار معادل : SRM
با توجه به شکل (١-۴) ولتاژ اعمال شده به یک فاز برابر است با ﳎموع افت ولتاژ مقاومتی و میران شار پیوندی که با رابطه زیر داده می شود.
V R s i  d (dtNφ)

Nφ  L(θ,i)i

شکل (١-۴) : مدار معادل موتور رلوآتانسی
در این رابطه، L اندوکتانس بوده که تابعی از جریان سیم پیچ وموقعیت روتور می باشد
dL(θ,i) i di RsiL(θ,i) d{L(θ,i) i} V R s i  dt dt dt توان ورودی با رابطه زیر داده می شود :
pi Vi  Rs i 2 i 2 dL(dtθ,i)  L(θ,i)i dtdi

و می توان نوشت :
dL(θ,i) i 2 1  di L(θ,i)i2 )  L(θ,i)i 1 ) d 2 2 dt dt dt با استفاده از رابطه اخیر در رابطه pi خواهیم داشت :
٧٢
dL(θ,i) i 2 1 ,i)i 2 )  L(θ 1 ) d pi  Rs i 2  2 dt dt 2 رابطه فوق نشان می دهد که توان ورودی برابر است با ﳎموع تلفات مقاومتی که با Rsi2 داده می شود و انرژی ذخیره شده در داخل سیم پیچ که با رابطه 12 L(θ,i)i2 داده می شود ونیز توان فاصله هوایی , Pa که با رابطه زیر داده می شود :
dθ dL(θ,i) i 2 1  dL(θ,i) i2 1 P  dt dθ 2 dt 2 a wm  ddtθ

Pa  1 i2 dL(θθ,i) wm 2 d

توان فاصله هوایی، حاصلضرب گشتاور الکﱰو مغناطیسی و سرعت روتور می باشد که با رابطه زیر داده می شود
Pa  wmTe
با توجه به دو رابطه اخیر، گشتاور الکﱰومغناطیسی بدست خواهد آمد
dL(θ,i) i2 1  T dθ 2 e در رابطه فوق، dL(θ,i) ثابت گشتاور نامیده می شود و به خاطر dθ رابطه ای که اندوکتانس، L ،با موقعیت روتور و جریان سیم پیچ دارد ، یک کمیت غیر خطی می باشد.
۴-٢- بررسی رابطه L با موقعیت روتور : θ
با توجه به شکل (١-٢-۴) در مکان هایی که روتور واستاتور کاملا ﳘراستا هستند، ( (θ2 −θ3 و مکان هایی که روتور و استاتور کاملا غیر ﳘراستا هستند، ( (0 −θ1 و ( (θ4 −θ5 تغییر در اندوکتانس
٧٣
ﳔواهیم داشت. یعنی dL(θ,i) صفر می باشد، در نتیجه گشتاور در dθ
این نقاط صفر خواهد شد، حتی اگر سیم پیچ دارای جریان باشد.

شکل (١-٢-۴) : تغییرات اندوکتانس با موقعیت روتور
راه حل مساله فوق تغییر شکل مکانیکی روتور به ﳓوی است که در شکل (٢-٢-۴) نشان داده شده است. با این کار هیچ گاه اندوکتانس هنگام چرخش روتور مقداری ثابت ﳔواهد داشت، در نتیجه گشتاور صفر ﳔواهد شد.
٧۴

شکل (٢-٢-۴) : پایین شکل، روتور اصلاح شده
در مقایسه با روتور معمولی
۴-٣- بررسی تاثیر جریان بر : L
در جریاای که هسته موتور هنوز اشباع تغریبا شبیه ﳕودار (٣-۴) است. افزایش رفﱳ هسته موتور می شود، این امر در استاتور ﳘراستا هستند به خاطر کاهش gap

نشده، رابطه L و θ جریان سبب به اشباع جاهایی که روتور و مشهودتر است. با به
اشباع رفﱳ هسته، dθdL کاهش می یابد و این امر سبب افت گشتاور می شود.[36]

٧۵

شکل (٣-۴) : تغییرات اندوکتانس با جریان بر حسب زاویه
راه حل مساله فوق کنﱰل جریان می باشد، به این ترتیب که قبل از ﳘراستا شدن روتور و استاتور هنگامی که dθdL در حال کاهش است جریان را افزایش می دهیم تا کاهش L جﱪان شود. افزایش

٧۶
جریان نیز به این صورت اﳒام می شود که فرمان فاز جدید با فرمان فاز قبلی بایدکمی ﳘپوشانی داشته باشد.
۴-۴- اثر ثابت گشتاور dL(θ,i) بر روی گشتاور :

اگر زمانی که dθdL برای یک فار کمیتی مثبت است به آن فاز فرمان داده شود، باعث ایجاد گشتاور در جهت مورد نظر می شود.

ولی هنگامی که dθdL منفی است اگر فاز ذکر شده دارای جریان

باشد، گشتاوری در جهت عکس ایجاد خواهد کرد. این امر سبب ریپل گشتاور و افزایش جریان موتور خواهد شد. بنابر این مهم است که هنگام خاموش شدن یک فاز، جریان آن به سرعت ﲣلیه شود.
برای این کار دو عدد سوئیچ در بالا و پایین هر سیم پیچ قرار می دهیم و دو سر سیم پیچ را با دیودهای هرز گرد به ولتاژ منبع وصل می کنیم با این کار هنگامی که هر دو سوئیچ خاموش
شوند جریان در مسیر دیودهای هرزگرد و ولتاژ تغذیه VdC حرکت
خواهدکرد، در نتیجه هر گاه ولتاژ برگشتی سیم پیچ کمﱰ از VdC

MS Thesis

-3-3-3 مزایا و معایب روش جاروی فرکانسی و ولتاژ ضربه31
-4-3 انواع روشها برای مقایسه نتایج حاصل از اندازه گیریها32
-5-3 مراحل پیشرفت روش تابع تبدیل برای پایش ترانسفورماتورها36
-1-5-3 تابع تبدیل برای آزمایش ترانسفورماتورهای بزرگ36
-2-5-3 تابع تبدیل برای پایش38
-1-2-5-3 تابع تبدیل برای پایش به صورت همزمان با بهرهبرداری و در حالت خروج از مدار39
-2-2-5-3 تابع تبدیل به عنوان یک روش تشخیص عیب مقایسهای39
-6-3 عوامل کلیذی موثر بر اندازه گیری های 41FRA
فهرست مطالب

عنوان مطالبشماره صفحه
-1-6-3 تاثیر مقدار امپدانس موازی 41................................
-2-6-3 تاثیر بو شینگهای فشار قوی 43................................
-3-6-3 تاثیر اتصال نقطه خنثی سیم پیچ فشار قوی 44................................
-4-6-3 تاثیر سیمهای رابط اندازه گیری 45................................
-7-3 دقت پردازش سیگنال در روش زمانی 47................................
-1-7-3 فرکانس نمونه برداری 47................................
-2-7-3 مدت زمان نمونه برداری 48................................
-3-7-3 تبدیل آنالوگ به دیجیتال 50................................
-4 انواع روشهای مدلسازی ترانسفورماتورها51
-1-4 روشهای مدلسازی جعبه سیاه52
-2-4 بررسی روشهای مدلسازی فیزیکی53
-1-2-4 مدل خط انتقال چند فازه54
-2-2-4 مدل مشروح 55................................
-1-2-2-4 مدلسازی براساس اندوکتانسهای خودی و متقابل 56................................
-3-4 مدل هایبرید 62................................
-4-4 انتخاب مدل مناسب برای مانیتورینگ63
-5 مدل فرکانس بالای سیم پیچ ترانسفور ماتور65
-1-5 مدل ترانسفور ماتوربر پایه ساختار فیزیکی سیم پیچ 66................................
-2-5 مدل مشروح ترانسفور ماتور68
-1-2-5 محاسبه ظرفیتهای الکتریکی 69................................
-1-1-2-5 تخمین ظرفیت طولی یک سیمپیچ بشقابی واژگون71
-2-1-2-5 تخمین ظرفیت الکتریکی بین دو سیمپیچ و یا بین یک سیمپیچ و زمین 74................................
-2-2-5 محاسبه اندوکتانسهای خودی و متقابل75
-1-2-2-5 محاسبه اندوکتانس متقابل 76................................
-2-2-2-5 محاسبه اندوکتانس خودی77
-3-2-5 محاسبه مقاومتهای عایقی موازی78
-4-2-5 محاسبه مقاومتهای اهمی سری79
فهرست مطالب

عنوان مطالبشماره صفحه
-6 نتایج شبیه سازی انواع عیوب ترانسفور ماتور81
-1-6 بررسی جابجائی محوری سیم پیچها نسبت بهم83
-2-6 نتایج آنالیز حساسیت توابع تبدیل نسبت به تغییر شکل شعاعی 88..................................
-3-6 تاثیر اتصال کوتاه بین حلقه ها روی پارمترهای مدل مشروح92
-7 تشخیص نوع عیوب ترانسفورماتوربه کمک شبکه عصبی95
-1-7 استخراج ویژگیها97
-2-7 شبکه های عصبی مصنوعی98
-1-2-7 ساختار شبکه های عصبی 99................................
-2-2-7 شبکه های عصبی پرسپترون چند لایه100
-3-7 بکار گیری شبکه عصبی جهت شناسائی نوع عیب ترانسفور ماتور102
-8 نتیجهگیری و پیشنهادات108
منابع111
چکیده انگلیسی116
فهرست جداول

عنوانشماره صفحه
جدول -1-3 فرکانس fmax که در آن طیف یک ولتاژ ضربه صاعقه استاندارد در نویز لبریز میشود، به
صورت تابعی از تفکیکپذیری مبدل 50(A/D)
جدول -1-6 تغییرات فرکانسهای تشدید در اثر جابجائی محوری سیمپیچ87
جدول -2-6 تغییرات فرکانسهای تشدید در اثر تغییر شکل شعاعی سیمپیچ91
جدول -1-7 انواع حالتهای خطا و کد خروجی شبکه برای آن نوع خطا 103................................
جدول -2-7 بردار ورودی متناسب با نوع خطای مربوطه جهت آزمایش103
جدول -3-7 داده های خروجی شبکه و کد خطای مربوطه103
جدول 4-7 بردار ورودی 3 ×16 متناظر بانوع خطای مربوطه جهت آزمایش 105.................................
جدول -5-7 بردار خروجی شبکه ونوع خطای مربوطه 106................................
فهرست شکلها

عنوانشماره صفحه
شکل -1-2 ارتباط بخشهای مختلف یک سیستم پایش18
شکل -2-2 ساختار مدیریت بهربرداری19
شکل -3-2 نتایج آماری از انواع عیبهای مرسوم در ترانسفورماتور23
شکل -1-3 ترانسفورماتور بصورت شبکه دو قطبی خطی27
شکل -2-3 اندازه گیری تابع انتقال در حوزه فرکانس29
شکل -3-3 اندازه گیری تابع انتقال در حوزه زمان29
شکل -4-3 مدار اندازه گیری تابع انتقال در روش جاروی فرکانس30
شکل -5-3 روشهای مختلف مقایسه توابع انتقال33
شکل -6-3 مقایسه بین فازها برای ترانسفورماتور34
شکل -7-3 مقایسه بین فازها برای ترانسفورماتور با ثانویه زیگزاگ35
شکل -8-3 اثر مقاومت شنت روی پاسخ فرکانسی تا 4210MHZ
شکل -9-3 اندازه گیریهای FRAدر بالا وپایین بوشینگ44
شکل -10-3 اثر وضعیت نقطه خنثی در اندازه گیریها( دردو حالت شناور و زمین شده).45
شکل -11-3 مقایسه اثرسیمهای رابط کوتاه و بلند در اندازه گیریها تا 4610MHZ
شکل -1-4 نمایش ترانسفورماتور به صورت یک چهار قطبی52
شکل -2-4 مدل یک ترانسفورماتور تشکیل شده از یک سیمپیچ بشقابی و یک سیمپیچ لایهای
براساس اندوکتانسهای خودی و متقابل58
شکل -1-5 ساختار فیزیکی سیم پیچی دیسکی ترانسفورماتور ومدل هر دیسک از آن67
شکل -2-5 مدل مداری معادل هر دیسک RLC) معادل).. 68
شکل (a -3-5 زوج دیسک واژگون، (b زوج دیسک درهم70
شکل -4-5 نمایش ظرفیتهای بین بشقابها و پتانسیل زمین و یا سیمپیچ مجاور71
شکل -5-5 توزیع ظرفیتهای الکتریکی در یک سیمپیچ بشقابی واژگون71
شکل -6-5 لایه های مختلف عایقی بین دو سیمپیچ75
شکل -7-5 دو حلقه موازی76
شکل -8-5 تعریف پارامترهای یک حلقه77
فهرست شکلها

عنوانشماره صفحه
شکل -1-6 مدار بررسی شده با شرایط پایانههای سیمپیچ فشارقوی و سیمپیچ فشارضعیف84
شکل -2-6 تأثیرات تغییرات جابجائی محوری سیمپیچها روی پارامترهای مدل مشروح84
شکل -3-6 مقایسه نتایج شبیه سازی حالت سالم و معیوب توابع تبدیل ولتاژ خروجی نسبت به ولتاژ
ورودی در حوزه زمان ، به منظور بررسی توابع تبدیل نسبت به جابجائی محوری85
شکل -4-6 مقایسه نتایج شبیه سازی حالت سالم و معیوب توابع تبدیل ولتاژخروجی نسبت به ولتاژ
ورودی در حوزه فرکانس ، به منظور بررسی حساسیت نسبت به جابجائی محوری86
شکل -5-6 نما از بالای سیمپیچ فشارقوی (HV) تغییر شکل یافته و سیمپیچ فشارضعیف((LV در اثر
نیروی مکانیکی شعاعی در چهار جهت88
شکل -6-6 تأثیرات تغییرات مکانیکی سیمپیچها روی پارامترهای مدل مشروح دررابطه با تغییر شکل
مکانیکی89
شکل -7-6 اثر ماتریس اندوکتانس روی توابع تبدیل جریان زمین نسبت به ولتاژ ورودی در خصوص
تغییر شکل شعاعی89
شکل -8-6 مقایسه نتایج محاسبات توابع تبدیل ولتاژ خروجی به ولتاژ ورودی در حوزه زمان، به
منظور بررسی حساسیت توابع تبدیل نسبت به تغییر شکل مکانیکی شعاعی سیم پیچ90
شکل -9-6 مقایسه نتایج محاسبات توابع تبدیل ولتاژ انتقالی حوزه فرکانس در ، به منظور بررسی
حساسیت توابع تبدیل نسبت به تغییر شکل مکانیکی شعاعی سیم پیچ90
شکل -10-6 درنظرگرفتن اتصال کوتاه بین حلقهها در مدل مشروح93
شکل -11-6 تابع تبدیل ولتاژ انتقالی برای یک اتصال کوتاه بین انشعابهای 22و9323
شکل -12-6 تأثیر اتصال کوتاه بین حلقههای73 و 74 سیمپیچ روی تابع تبدیل ولتاژ انتقالی94
شکل -1-7 مراحل عیب یابی ترانسفورماتور96
شکل -2-7 مراحل محاسبه ویژگی زمانی98
شکل -3-7 ساختار و ارتباطات نرون99
شکل -4-7 فرم ساده شبکه پرسپترون با دو لایه میانی 101................................
شکل -5-7 نمودار دو بعدی کلاسهای تشخیص داده شده توسط شبکه 104................................
شکل -6-7 متوسط مجذور خطا برای داده های آموزشی106
چکیده
ترانسفورماتورها به تعداد زیاد در شبکههـای بـرق بـرای انتقـال و توزیـع انـرژی الکتریکـی در
مسافتهای طولانی مورد استفادهقرارمیگیرند.قابلیت اطمینان ترانسفوماتورها در این میان نقشی اساسی
در تغذیه مطمئن انرژی برق بازی میکند. بنابراین شناسائی هر چه سریعترعیبهای رخ داده در داخـل
یک ترانسفورماتورضروری به نظر می رسد.یکیازچنین عیبهائی که به سختی قابـل تـشخیص اسـت،
تغییرات مکانیکی در ساختار سیمپیچهای ترانسفورماتور است. اندازهگیـری تـابع تبـدیل تنهـا روش
کارامدی است که در حال حاضـر بـرای شناسـائی ایـن عیـب معرفـی شـده و بحـث روز محققـین
میباشد.استفاده روش مذکور با محدودیتها و مشکلاتی روبرو می باشـد کـه تـشخیص انـواع عیـوب
مختلف را به روشهای متداول و مرسوم محدود ساخته اسـت.از ایـن رو امـروزه تحقیقـات بـر روی
استفاده از الگوریتمها و روشهای هوشمندی متمرکز شده است که بتواند یـک تفکیـک پـذیری نـسبتا
خوبی بین انـواع عیـوب و صـدمات وارده بـه ترانـسفورماتور را فـراهم سـازد. در ایـن پایـان نامـه
سیمپیچهای ترانسفورماتور به منظورپایش با روش تابع تبدیل مطالعه و شبیهسازی شدهاند. برای ایـن
کار مدل مشروح سیمپیچها مورد استفاده قرار گرفته و نشان داده شده که این مدل قادر به شبیهسـازی
عیبهائی (اتصال کوتاه بین حلقهها، جابجائی محوری وتغییر شکل شعاعی) است که توسط روش تابع
تبدیل قابل شناسائی میباشند. شبیهسازیهای مربوطه توسط مدل مشروح نشان میدهند که بـه کمـک
این مدل میتوان به طور رضایتبخش توابع تبدیل محاسبه شده در محدوده از چند کیلـوهرتز تـا یـک
١
مگاهرتز را ارائه نمود. این مدل مشخصههای اساسی توابع تبدیل (فرکانسهای تـشدید و دامنـههـا در
فرکانسهای تشدید) را به طور صحیح نتیجه میدهد. مقادیر عناصر مدار معادل از روی ابعـاد هندسـی
سیمپیچها و ساختار عایقی مجموعه محاسبه میشوند. با محاسبه و تخمین این مقادیر در حالتهائی که
تغییراتی در ساختار سیمپیچ بوجود آمده اند، اثرات عیبهای مکانیکی در مـدل درنظرگرفتـه شـدهانـد.
دقت مدل مشروح علاوه بر تعداد عناصر آن به دقت محاسبات پارامترهای آن نیز بستگی دارد. ارتباط
بین عیبهای بررسی شده (اتصال کوتاه بین حلقـههـا، جابجـائی محـوری و تغییـر شـکل شـعاعی) و
تغییرات ناشی از آنها در توابع تبدیل به خوبی توسـط مـدل نتیجـه مـیشـوند. تغییـر نـسبی مقـادیر
فرکانسهای تشدید در حوزه فرکانس وزمان فرونشست1 درحوزه زمان در یک تابع تبـدیل بـه عنـوان
معیار تغییرات در تابع تبدیل در اثر یک عیب مورد اسـتفاده قـرار گرفتـهانـد. ارزیـابی توابـع تبـدیل


محاسبه شده برای شناسایی عیب، به کمک توابع تبدیل گوناگون تعریف شـده درمقـالات مختلـف ،
منجر به حصول نتایج زیر شدهاند:
•نتایج محاسبات تغییرات یکسانی را در توابع تبدیل در اثر هر کدام از عیبهای فوقالذکر نشان
میدهند.
•نتایج محاسبات در خصوص آنالیز حساسیت جابجائی محوری نشان میدهد که اثـر جابجـائی
محوری روی تابع تبدیل در محدوده فرکانسی بالاتر از 100 کیلوهرتز به طورواضح بیشتر ازمحـدوده
کمتر از 100 کیلوهرتز میباشد.

1 Setteling Time
٢
نتایج محاسبات برای آنالیز تغییر شکل شعاعی سیم پیچ نشان می دهد که تغییر شکل شعاعی روی کل محدوده فرکانسی تابع تبدیل تأثیر تقریباً یکسانی می گذارد.
بعضی از فرکانسهای تشدید در یک تابع تبدیل درمقایسه با سایر فرکانـسهای تـشدید در اثـر
بروز یک عیب حساستر میباشند.
برای بدست آوردن نتایج بیشتر در مورد وابستگیهای بین مدل مشروح و تغییرات محاسـبه شـده
در توابع در اثریک عیب، اثرات پارامترهای مدل روی توابع تبدیل بـه طـور مجـزا بررسـی و تحلیـل
شدهاند. این تحلیلها نشان میدهند که:
تغییرات ظرفیتهای خازنی بـین دو سـیمپـیچ در اثـر جابجـائی محـوری قابـل چـشم پوشـی میباشند.
تغییرات توابع تبدیل در اثر تغییر شکل شعاعی عمدتاً از تغییرات ظرفیتهـا ناشـی مـیشـوند. درنظرگرفتن تغییرات اندوکتانسها در اینحالت ضروری نمیباشند.
چشم پوشیهای فوق باعث کاهش قابل ملاحظهای در زمان محاسـباتی مـیشـوند و اعمـال آنهـا
درپایش ترانسفورماتورها مفید است.
٣
مقدمه
از آنجائیکه قدرت شبکههای برق همواره در حال افزایش بوده و بایـستی تاحـد ممکـن تغذیـه
انرژی برق مطمئن انجام شود، بالا بودن قابلیت اطمینان، طول عمروکیفیت تکتک عناصر وتجهیزات
موجود در شبکه ضروری است. ترانسفورماتورهای مـرتبط کننـده سـطوح ولتـاژمختلف درشـبکه از
مهمترین عناصر شبکهاند که خروج از مدار آنها به قابلیت اطمینان توزیـع انـرژی آسـیب جـدی وارد
کردهو باعثهدررفتن هزینه زیادی میشود. برای افزایش قابلیت اطمینان تغذیه انرژی برق، شناسـایی
سریع عیبهای رخ داده در ترانسفورماتورها الزامی میباشد. بر این اساس در پا یان نامـه مـذکور ابتـدا
مقدمه ای بر روشهای مختلف عیب یابی وپایش ترانسفورماتورهای قدرت بیان شده است.در ادامه در
فصل سوم،روش آنالیز پاسخ فرکانسی به عنوان روش جدید در عیبیابی ترانسفورماتورهـا معرفـی و
اصول و مبانی آن تشریح میگردد.به منظور تحلیل انواع عیوب متداول وارده به ترانسفور مـاتور (کـه
معمولا در حالت کار عادی برای ترانسفور ماتور قدرت اتفاق می افتد)سـیم پـیچترانـسفور مـاتور بـا
روش تابع تبدیل مطالعه و شبیه سـازی شـده اسـت.ایـن مطالعـه بـا تمرکـز بـر روی مـدل مـشروح
ترانسفورماتور انجام پذیرفته است که جزئیات آن در فصول چهارو پنج ارائـه شـده انـد.فـصل شـش
نتایج حاصل از شبیه سازی یک ترانسفورماتور قدرت30MVA, 63/20 kV را نشان مـی دهـد و
حالتهای مختلف صدمات فیزیکی ترانسفورماتور و اثرات آن بر روی تابع انتقال را مورد بررسی قـرار
میدهد. نتایج حاصل از شبیه سازیها ، این امکان را فراهم ساخته است تا الگوهای مناسبی متنـاظر بـا
۴
خطاها و عیوب مختلف ترانسفورماتور استخراج گـردد. نهایتـا در فـصل هفـت یـک شـبکه عـصبی
هوشمند ارائه شده است که می تواند با استفاده از الگوهـای اسـتخراج شـده مـذکور ، یـک راهکـار
مناسب برای تشخیص دقیق و مطمئن از خطای وارد شده بدست دهد.
۵
فصل 1
کلیات
۶
-1-1 پیشینه موضوع
وظیفه یک سیستم تشخیص عیب مدرن این است کـه بـا تعیـین وضـعیت کـار ترانـسفورماتور،
استفاده بهینه آنرا با درنظرگرفتن قدرت انتقالی و مدت کارکرد تضمین کند، بدون آنکه قابلیت اطمینان
ترانسفورماتور تحت تأثیر قرار گیرد. برای انجام این کـار روشـهای مختلفـی همچونپـایش حرارتـی،
تجزیه و تحلیل گازهای حل شده در روغن، اندازهگیریهای تخلیه جزئی (الکتریکی، صـوتی)، تحلیـل
تابع تبدیل، اندازهگیری ولتاژ بازگشتی و غیره مورد بررسی و تحقیق قرار گرفتهاند. هـر کـدام از ایـن
روشها دارای خواص خصوص به خود بوده و قادر به شناسائی نوع به خصوصی از عیب مـیباشـند.
روش تابع تبدیل امروزه برای تشخیص تغییرات مکانیکی در سیمپیچ مورد بحث میباشد. تحقیقـات
عملی نشان میدهند که جابجائی محوری و تغییر شکل شعاعی سیمپیچها روی توابع تبدیل تأثیر مـی
گذارند .[4] بایستی با انجام تحقیقات بیشتر مشخص کرد که تا چه اندازهای میتوان چنین عیبهائی را
تشخیص داده و محل بروز آنهارا تخمین زد. روش تابع تبـدیل یـک روش مقایـسهای اسـت، یعنـی
اندازهگیریهای جدید را باید با اندازهگیریهای مرجعی در کنار هم قرار داد. کنتـرل مـنظم تـابع تبـدیل
پایش2 پیوستهای را امکان پذیر میسازد که میتوان به تغییرات بوجود آمده در کارکرد ترانـسفورماتور
به موقع پی برد. اگر انحرافات قابل ملاحظهای در نتایج اندازهگیریها مشاهده شد، باید این انحرافـات
را مورد بررسی و تحلیل قرار داد که آیا ممکن است عیبی رخ داده باشد. همچنین اگر عیبی روی داده
است، آیا میتوان نوع و محل آنرا برآورد کرد.

2 Monitoring
٧
-2-1 وضعیت کنونی موضوع
تا به امروز روش تابع تبدیل برای ترانسفورماتورها در حالت کلی به کمـک نتـایج انـدازهگیـری
انجام شده است. به منظور تقویت روشهای اندازهگیری توصیف شده و تحقیق نظـری رفتارفرکانـسی
ترانسفوماتورها، شبیهسازی سیمپیچهای ترانسفورماتور ضروری است.
مدلسازی ساختار پیچیدهای مثل قسمت فعال ترانسفورماتورها یک مصالحه بین هزینه محاسبات
و دقت آنها را میطلبد. تعداد عناصر قابل تعریف در مدل و لذا دقت مدلسازی محدود است. درمیان
روشهای زیاد مدلسازی، مدلهای زیر بیشتر مطرح میباشند:
مدلهای جعبه سیاه (Black-Box)
مدلهای فیزیکی:
(1 مدل خط انتقال n فازه
(2 مدل مشروح:
الف) مدلسازی بر پایه اندوکتانسهای خودی و متقابل
ب) مدلسازی بر اساس اندوکتانسهای نشتی
ج) مدلسازی به کمک اصل دوگانی
د) مدلسازی با استفاده از تحلیل میدانهای الکترومغناطیسی
- مدل هایبرید:
٨
ترکیبی از مدلهای فیزیکی و جعبه سیاه
برای مدلسازی تغییرات بوجود آمده در سیمپیچها، مدلهای جعبه سیاه مناسـب نمـیباشـند. زیـرا
برای چنین مدلسازی بایستی وابستگی بین قطبها و صفرهای سیستم و ساختار سیمپیچ ترانسفورماتور
معلوم باشد. در حالی که مدل جعبه سیاه از روی نتایج اندازهگیری شده در پایانههای ترانـسفورماتور
ساخته میشود.
در مدلسازی فیزیکی، ابعاد هندسی سیمپیچهـا بـرای توصـیف محاسـباتی ترانـسفورماتور مـورد
استفاده قرارمیگیرند. مدلهای فیزیکی که به صورت مدار معادل میباشـند، در محـدوده مشخـصی از
حوزه فرکانسی معتبر میباشند .[5]
با مدلسازی سیمپیچها به صورت یک مدار RLCM (مدل مشروح) مـیتـوان مقـادیر جریانهـا و
ولتاژها را توسط نرم افزارهای مرسوم برای حل مدارهای الکتریکی (به عنوان مثـال 3ATP، Pspice،
...) محاسبه کرد. بر خلاف مدل خط انتقال چند فازه، میتوان توسط مدل مـشروح پدیـدههـای غیـر
خطی (هیسترزیس، اشباع) و وابسته به فرکـانس (تلفـات جریانهـای فوکـو، تلفـات عـایقی) را وارد
محاسبه کرد. علاوه بر این بهکارگیری مدل مشروح نـشان داده اسـت کـه سـاختارهای سـیمپیچهـای
پیچیدهتر با تعداد سیمپیچهای بیشتر را میتوان تا حد قابل قبولی شبیهسازی نمود.
با توجه به مطالعات انجام شده در [6] دیده میشود که از میان مدلهای مشروح ذکر شـده، مـدل
متکی براندوکتانسهای خودی و متقابل سادهتر و مفیدتر میباشد. گرچه ممکن است نتوان عناصر مدار

3 Alternative Transients Program
٩
معادل را کاملاً دقیـق تعیـین کـرد، بیـشتر شـبیهسـازیهای انجـام شـده توسـط ایـن مـدل محاسـبات
رضایتبخشی را نتیجه دادهاند. بنابراین مدل مشروح متکی براندوکتانـسهای خـودی و متقابـل در ایـن
پایان نامه مورد توجه قرار گرفته است.
-3-1 هدف پروژه
نیاز روز افزون به انرژی برق ساخت ترانسفورماتورهای با قدرت و ولتاژ بالاتر را ایجاب میکند.
مسائل مربوط به چنـین ترانـسفورماتورهائی همچـون اطمینـان کـارکرد، وزن بـالای حمـل ونقـل و
نیازمنـدی بـه مـواد بیـشتر یکپـایش کامـل از ترانـسفوماتورها را ضـروری مـیکنـد تـا بتـوان ایـن
ترانسفورماتورهای گران قیمت را از بروز صدمات شدید محافظت کرده و هزینههای ناشی از آنهـا را
تاحد ممکن پائین نگاه داشت. به ویژه اینکه میتوان صدمات وارد برسـیمپیچهـای ترانـسفورماتور را
بوسیله روش تابع تبدیل شناسائی کرد. برای اینکه از آزمایشهای عملی پرهزینه اجتناب شود میتـوان
از نتایج شبیهسازیهای کامپیوتری برای بدسـت آوردن اطلاعـات مـوردنظر لازم اسـتفاده نمـود. ایـن
اطلاعات را میتوان برای هر کدام از اهداف زیر مورد استفاده قرار داد:
• اگر هیچگونه نتیجه اندازهگیری از ترانسفورماتور در حالت سالم موجـود نباشـد، مـیتـوان
نتایج محاسباتی را به عنوان مرجع برای مقایسه با نتایج اندازهگیری جدید مورد اسـتفاده قـرار
داد.
١٠
• میتوان اثرات عیبهای شناخته شده روی توابـع تبـدیل را بـه کمـک شـبیهسـازیها بررسـی
وتحلیل کرد.
• با استفاده از آموزش شبکه عصبی هوشمند میتوان نوع عیب را در یک ترانسفورماتور
معیوب تعیین کرد.
برای حصول این اهداف، کارهای زیر به ترتیب انجام داده شدهاند:
شبیهسازی سیمپیچهای ترانسفورماتور درحالت سالم برای ارزیابی دقت مدل.
مدلسازی یک سیمپیچ که بین چند حلقه آن اتصال کوتاه شده، به منظـور تعیـین تغییـرات ناشی از اتصال کوتاه.
محاسبه توابع تبدیل یک ترانسفورماتور که دو سیمپیچ آن را مـیتـوان نـسبت بـه هـم در جهت محوری جابجا کرد. بوسیله این محاسبات حساسیت اثر جابجائی محوری روی توابـع تبدیل مورد تحلیل قرار گرفته و همچنین تغییرات توابع تبدیل و پارامترهـای مـدل مطالعـه و بررسی شدهاند.
تعیین اثرات تغییر شکل شعاعی روی توابـع تبـدیل و پارامترهـای مـدل بـه کمـک نتـایج شبیهسازیها.
استخراج ویژگیها و پارامترهای مناسب و مرتبط با عیوب مختلف به منظور آمـوزش شـبکه عصبی هوشمند
١١
فصل 2
مفاهیم کلی عیب یابی و حفاظت
ترانسفورماتور
١٢
ترانسفورماتورهای بزرگ به عنوان عناصر ارتباطی بین نیروگاهها وشبکههای توزیع انرژی یا بین
شبکهها با سطوح ولتاژمختلف مورد استفاده قرارمیگیرند تا انرژی الکتریکی به طور اقتصادی توزیـع
شود. لذا همواره در دسترس و سالم بودن آنها پایه و اساس یک توزیع انرژی مطمئن میباشد.
با افزایش تواناییهای سیستمهای اندازهگیری و کامپیوترها و پیـشرفت نـرم افزارهـای کـامپیوتری
بهبود روشهای تشخیص عیب نیز امکان پذیر میشود. به عنوان نمونهای از آن میتوان بـه محاسـبه و
تحلیل تابع تبدیل از روی سیگنالهای گذرائی کـه در طـول بهـرهبـرداری و عملکـرد ترانـسفورماتور
اندازهگیری میشوند اشاره کرد. این تابع تبدیل دربرگیرنده اطلاعاتی از وضعیت داخل ترانسفورماتور
میباشد. وجود اختلاف بین توابع تبدیل اندازهگیری شده در زمانهـای مختلـف نـشان دهنـده وجـود
تغییراتی در ساختار ترانسفورماتور میباشد که میتوانند باعث عملکرد نامطلوب ترانسفورماتورشوند.
در حال حاضر روش قابل اطمینانی وجود ندارد که بتوان توسط آن خطاهای مکانیکی و تغییـرات در
ساختار سیمپیچهای ترانسفورماتور را تشخیص داد. چنین خطاهایی میتوانند بـه عنـوان مثـال تغییـر
شکل مکانیکی و جابجائی سیمپیچها باشند کـه در اثـر نیروهـای وارده بـر سـیمپـیچ در اثـر اتـصال
کوتاههای رخ داده در نزدیکی ترانسفورماتور ایجاد میشوند. تغییر شکل و یـا جابجـائی سـیمپیچهـا
باعث تغییر در ظرفیتها واندوکتانسهای ترانسفورماتور میشود. بنابراین محاسبات تـابع تبـدیل روش
مناسبی برای شناسایی چنین عیبهایی میباشد. با ترکیب نتـایج حاصـل از روشـهای تـشخیص عیـب
١٣
گوناگون میتوان قابلیت اطمینان سیستمهای پایش1 ترانسفورماتورها(عیـب یـابی) را بـه میـزان قابـل
توجهی افزایش داد.
-1-2 اهداف کلی پایش ترانسفورماتورها
پایش ترانسفورماتورها با گذشت زمان تکامل یافته و با پیشرفت صنعت وتکنولوژی انتظارات از
سیستمهای پایش نیز افزایش یافتهاند. با مطالعات انجام یافته میتوان اهداف زیر را برای یک سیـستم
تشخیص عیب نتیجه گیری کرد :[7]
اهداف اجتماعی:
کاهش خطرات و صدمات در محیط زیست با شناخت به موقع عیبهایی که خود به خود به وجود آمده اند،
بدست آوردن اطلاعات فنی با انجام عملیات آگاهانه برای پیشگیری ازافزایش عیب،
افزایش ایمنی کارکنان سیستم،
کاهش اضطراب ونگرانی کارکنان سیستم.
اهداف اقتصادی:
کاهش هزینههای کارکرد توسط مراقبت منظم و دقیق،
کاهش تعداد کارکنان مراقبت،

1 Monitoring
١۴
کاهش هزینههای خروج از مدار با برنامهریزی بهتر قطع مدار برای مراقبت،
برنامهریزی صحیح برای جایگزینی عنصر نو با توجه به شناخت وضعیت عنصر موجود در شبکه (تخمین میزان عمر باقیمانده عنصر موجود).
اهداف فنی:
بهینهسازی عملکرد عنصر و سیستم با توجه به شناخت بارگذاریهای موجود روی عنـصر و شبکه،
بدست آوردن رفتار عیبهای مختلف به طور مجزا از طریق سیستم تشخیص عیب پیوسته،
بدست آوردن اطلاعات کمی در مورد نحوه تغییر ورفتار کمیتهای قابل اندازهگیری مشخص
مشخص کردن وابستگیهای بین کمیات قابل انـدازهگیـری و فواصـل زمـانی مناسـب بـین اندازهگیریها.
در حقیقت وظیفه اصلی سیستم پایش ترانسفورماتور ها،آشکار سـازی علائـم اولیـه یـک عیـب
جدید به وجود آمده در ترانسفورماتور می باشد. لذا چنین سیستمی مانع توسـعه عیبهـای کوچـک و
ایجاد عیبهای بزرگ شده و به افزایش عمر ترانسفورماتور کمک می نماید. یک خطا یـا عیـب بـزرگ
ممکن است باعث انفجار یا آتش سوزی شده و منجر به صدمات جانی و مالی جبران ناپذیری گردد.
همچنین با بکارگیری یک سیستم تشخیص عیب،خروج از مدارهای مربوط به حفاظت ،غیر ضروری
شده و لذا دسترس پذیری ترانسفورماتور افزایش می یابد. گذشته از اینها تشخیص عمـر باقیمانـده و
برنامه ریزی مناسب بارگذاری ونیز امکان اضافه بارگذاری ترانسفورماتور میسر می شود.
١۵
یک سیستم تشخیص عیب و پایش ترانسفورماتورها باید بتواند پارامترهای مهم و مشخص برای
توصیف رفتار حرارتی، الکتریکی و مکانیکی را ثبت کرده و با دادههای معمولی همچون مـدت زمـان
عملکرد، منحنی بار بر حسب زمان، وضعیت تپ چنجر، دامنههای جریانهـای اتـصال کوتـاه و غیـره
ارتباط دهد. علاوه بر این انتظار می رود که توسط یک سیستم پایش بتوان عملکـرد ترانـسفورماتوررا
از نظر اقتصادی بهبود داد. برای تحلیل اقتـصادی بایـستی هزینـه کـل طـول عمـر ترانـسفورماتور را
درنظرگرفت. هزینه کل طول عمر ترانسفورماتور مجموعی از هزینههای زیر میباشد :[2]
هزینههای تهیه و نصب
هزینههای مراقبتهای برنامهریزی شده
هزینههای تعمیر
هزینههای معمولی بهرهبرداری
هزینههای خروج از مدار
هزینههای مربوط به دور انداختن ترانسفورماتور از کارافتاده در محیط زیست
با تدابیر مختلفی تلاش میشود که این هزینهها بهینه شود. به خصوص در ارتباط با تجهیزاتی که
روی آنها سرمایه گذاری زیاد انجام میشود، پایش و ارزیابی عایقی میتواند بیشتر مثمر ثمر باشد.
– 2-2 ساختار کلی سیستم پایش
همانطور که ذکر شد با سیستم تشخیص وضعیت داخلی ترانسفورماتور مـی تـوان دسـترس پـذیری و عمـر
ترانسفورماتور را افزایش داد، خروج از مدار آن را کاهش داد، از تعمیر های گران قیمت پرهیز کرد و ایمنـی
١۶
کارکنان را افزایش داد. جمع آوری و ثبت پیوسته کمیات و سیگنالهای مهم می تواند به دو صـورت همزمـان
با بهره برداری و یا موقع خروج از مدار انجام شود. در روش همزمان بـا بهـره بـرداری، ترانـسفورماتور در
حین بهره برداری در پست و نیروگاه مورد آزمایش قرار می گیرد و با دسترسی به اطلاعات لازم بـه بررسـی
وضعیت ترانسفورماتور بدون اختلال در انتقال انرژی صورت می گیرد، ایـن روش در حـال حاضـر جایگـاه
ویژه ای پیدا کرده است. در حالیکه منظور از روش پایش موقـع خـروج از مـدار، انـدازه گیـری و آزمـایش
ترانسفورماتور و اجزاء آن در هنگام عدم اتصال آن به شبکه از نظر الکتریکی است. این نوع آزمـایش ممکـن
است در آزمایشگاه یا در سایت به هنگام خارج بودن ترانسفورماتور از سرویس انجام شود. بـا توجـه بـه در
دسترس بودن کلیه پایانه های ترانسفورماتور و عدم بروز خطرات فشار قوی پیاده سازی این روش ساده تـر
است. از مرحله جمع آوری و ثبت کمیات تا مرحله ارزیابی و تخمین وضعیت داخلـی ترانـسفورماتور و در
نهایت تصمیم گیری برای انجام عملیات مناسب، ممکن است مراحل میانی مختلفی لازم شود. جزئیات کلیـه
این مراحل ونیز جوانب و روشهای تشخیص عیب امروزه با علاقه زیادی از طرف محققین مطالعه و بررسـی
می شوند.[8] در بیشتر قسمتهای یک سیستم عیب یابی تجربه نقش بسیار مهمی را بـازی مـی کنـد. تحلیـل
داده های ثبت شده و حصول یک تصمیم مناسب نیازمند یک سری داده های تجربی از عملیات پیشین است.
شکل( (1-2 قسمتهای مختلف یک سیستم پایش را نشان میدهد. ابتدا بایستی کلیه داده ها و سیگنالهای قابل
اندازه گیری و دسترس پذیر جمع آوری شوند. این داده ها عمدتا توسـط مـدلهای مناسـب بـه پارامترهـایی
تبدیل می شوند که تحلیل آنها و ابراز نظر در خصوص آنها راحتترمی باشد. این پارامترها بـه همـراه مقـادیر
مرزی و آستانه ای کمیاب و نیز اطلاعات جمع آوری شده از شرایط کار عادی ترانسفورماتور در طول بهـره
برداری، برای تجزیه و تحلیل وضعیت داخلی ترانسفورماتور لازم می باشند. بعـد از تکمیـل کلیـه اطلاعـات
١٧
ممکن قابل حصول، ارزیابی حالت و وضعیت کیفی دستگاه به کمک روشهای هوشمند همچون شبکه عصبی
و بررسی تغییرات به وجود آمده در کمیات انجام می شود. سپس بـا لحـاظ کـردن اولویـت هـای مـد نظـر
اپراتور، محدودیت های موجود در شبکه قدرت و پیش آمد خطرات محتمل سعی می شود که یـک تـصمیم
نهایی اتخاذ گردد.

شکل (1-2) ارتباط بخشهای مختلف یک سیستم پایش [9]
از آنجاییکه همواره داده های زیادی جمع آوری میشوند، به عنوان مثال حتی وضعیت موجودی انبار، ذخیره
کردن همه داده های مربوط به یک عنصر در یک بانک داده در فواصل زمانی مـشخص ضـروری مـیباشـد.
شکل((2-2 طرحی از مدیریت بهره برداری را نشان میدهد. همانگونه که از این شکل بر میآیـد، داده هـای
حاصل از پایش به صورت همزمان با بهره برداری مهم میباشند، در مدیریت بهـرهبـرداری نقـش بـازی مـی
کنند. بسته به میزان اهمیت یک کمیت یا سیگنال بخصوص در تـشخیص وضـعیت ترانـسفورماتور و هزینـه
١٨
های مربوط به پایش به صورت همزمان با بهره برداری و موقع خروج از مدار مـی تـوان در خـصوص نـوع
جمعآوری داده ها تصمیم گرفت. به عنوان مثال امروزه پایش حرارتی، به صورت همزمان با بهـره بـرداری و
تـشخیص عیـب سـیمپـیچ هـا بـا اسـتفاده از تـابع تبـدیل، موقـع خـروج از مـدار تـرجیح داده مـیشـوند.

شکل (2-2) ساختار مدیریت بهرهبرداری
لازم به ذکر است که علاوه بر تقسیم بندی سیستم پایش به دو نوع به صورت همزمان با بهره برداری و موقع
خروج از مدار، محققین یک نوع تقسیم بندی دیگر را نیز برای سیستم تشخیص عیب عنـوان مـیکننـد. ایـن
نوع تقسیمبندی در حقیقت به اجزاء مختلف سیستم پایش ارتباط داشته و بـر اسـاس ماهیـت سـیگنال و یـا
کمیت اندازه گیری تنظیم میگردد.
١٩
3-2 روشهای مختلف تشخیص عیب
از آنجاییکه داخل یک ترانسفورماتور قدرت مواد مختلف با خواص کاملا متفـاوتی همچـون آهـن، روغـن،
کاغذ، مس و ... وجود داشته و متعلقات گوناگونی مثل تپ چنجر، بوشـینگ و ... بـه آن اضـافه مـیشـوند،
پدیده های مختلفی از جمله مکانیکی، الکتریکی،شیمیایی، حرارتی و مغناطیسی در عملکرد آن نقش داشته و
در نتیجه امکان وقوع انواع مختلفی از عیوب در ترانسفورماتور وجود دارد. یـک سیـستم پـایش جـامع بایـد
بتواند این عیوب با ماهیت های مختلف را جداگانه تشخیص داده و حتـی میـزان عیـب را مـشخص نمایـد.
روش تشخیص هر نوع عیب به ماهیت آن عیب بستگی داشته و لذا روشهای مختلفی در سیستم پایش وجود
دارندکه از ترکیب آنها یک سیستم جامع تشخیص عیب حاصـل مـی شـود. گرچـه ایـن روشـها کـه توسـط
محققین توسعه یافتهاند، کاملا متنوع میباشند[10]،ولی آنها را می توان به صورت زیر در شش روش جا داد:
-1 اندازه گیری و آنالیز پاسخ فرکانسی2
-2 اندازه گیری و آنالیز تخلیه جزئی3
-3 تجزیهو تحلیل گازهای حل شده در روغن4
-4 اندازهگیری حرارتی5
-5 تحلیل پاسخ دی الکتریک6
-6 پایش متعلقات ترانسفورماتور7

2 . Frequency response analysis 3 . Partial discharge analysis 4 . Dissolved gas in oil analysis 5 .Thermal measuring 6 .Dielectric response analysis 7 .Accessories monitoring
٢٠
در هر کدام از این روشها، جهت حصول نتایج مناسب، ابزار نظری و عملی مختلفـی همچـون سیـستم هـای
خبره، شبکه های عصبی و مدلسازی مورد استفاده قرار گرفته اند. در حقیقت روشهای هوشمند نقش مـوثری
در تکمیل سیستم پایش داشته و روز به روز بر اهمیت آنها در سیستم تشخیص عیب افزوده میشود.
لازم به ذکر است که بعضی از روشهای تشخیص وضعیت ترانسفورماتور میتوانند هم بـه طـور همزمـان بـا
بهره برداری و هم موقع خروج از مدار انجام شوند. در این صورت هـر چنـد مـدار آزمـایش در دو حالـت
متفاوت است اما اصول اندازه گیری مشترک است. با رشد و پیشرفت تکنولـوژی بـالاخص در زمینـه پـایش
کامپیوتری پارامترهای زیادی از ترانسفورماتور، امکانپذیر است. ولی هزینه بالای چنین پایشی را باید در نظر
گرفت. لذا انجام یک مصالحه و تعادل بین عملیات مورد نظر سیستم پایش و هزینه ومیزان قابلیـت اطمینـان
آن ضروری میباشد. انجام چنین مصالحهای بایستی بـر اسـاس آمـار عیبهـای روی داده و ترانـسفورماتورها
ونتیجه نهایی این عیوب باشد.
4-2 عیوب مرسوم در ترانسفورماتورها
اگر بخواهیم یک تقسیم بندی ساده از عیوب ممکن ترانسفورماتورها داشته باشیم، می توانیم آنهـا را بـا سـه
نوع زیر ذکر کنیم: [9]
-1 عیوبی کهدر اثر هر نوع شکست الکتریکی بین قسمتهای مختلف داخلترانسفورماتور نتیجه میشوند.
-2 عیوبی که در اثر هر گونه افزایش دمای داخلی بوجود میایند.
-3 عیوبی که در اثر هر نوع تنش مکانیکی روی میدهند.
در واقع میتوان گفت که امکان ممانعت از رشد عیب برای دو نوع اول عیـوب فـوق الـذکر همـواره وجـود
داشتهوباپایش صحیح می توان از گسترش عیب جلوگیری کرد. در حالیکه وجود عیب نوع سوم ممکن است
٢١
پایان عمرترانسفورماتور تلقی شود.تقسیم بندی ظریفتر عیوب توسط محققین مختلف انجام شده اسـت.از آن
جمله میتوان به تقسیم بندی زیر اشاره کرد: [10]
-1 عیب هسته
-2 عیب سیم پیچها
-3 نقص در عملکرد تپ چنجر
-4 اشکال در مخزن و روغن
-5 عیب در پایانه ها
-6 نقص در متعلقات
برای حصول یک سیستم تشخیص عیب با هزینه کم درنظرگرفتن نتایج آماری عیبهای مرسوم در
ترانسفورماتورها مفید خواهد بود. شکل (3-2) یکی از چنین نتایجی را در مورد میزان انواع عیبها در
ترانسفورماتور نشان میدهد. دیده میشودکه در حدود %41 عیبها در تپ چنجر ترانـسفورماتور روی
میدهند. درصورتیکه تپ چنجر جزءمتعلقات ترانسفورماتور محـسوب مـیشـود، عیـب مربـوط بـه
متعلقات %53 خواهـد شـد.در حالیکـه عیبهـایی کـه در سـیمپیچهـا روی مـیدهنـد در حـدود %19
میباشند.بر اساس این نتایج آماری می توان عنوان کرد که مهمترین قسمتهای که باید مـانیتور شـوند،
سیمپیچ ها، عایقاصلی و تپچنجر میباشند. این نتایج در انتخاب پارامترهای مؤثر در سیـستم پـایش
قابل استفاده می باشند.
٢٢
نصب وراهاندازی
%12

تجهیزات جانبی
%12
تپ چنجر
%41
تانک و روغن
%13
هسته
%3

پیچها
%19
شکل -3-2 نتیجه آماری از انواع عیبهای مرسوم درترانسفورماتور[10]
در یک کار تحقیقاتی دیگر [12] چند نوع عیب در ترانسفورماتورهایی کـه ولتاژشـان بـین 88 و
765 کیلوولت و قدرتشان بین 20 و 800 مگاولـت آمپـر قـرار دارنـد مـورد بررسـی و مطالعـه قـرار
گرفتهاند. تحلیل نتایج نشان میدهد که عیبهای رخ داده در ترانـسفورماتورهای کوچـک بـا پیرشـدن
ترانسفورماتور در ارتباط میباشند. در ترانسفورماتورهای متوسط اغلـب عیبهـا در تـپ چنجـر روی
میدهند. در ترانسفورماتورهای بزرگ ناهماهنگی عایقی دلیل اصلی عیبهایی است که در اولـین سـال
کارکرد ترانسفورماتور رخ میدهند.تقسیم بندی عیوب به همراه میزان بروز آنهـا ،در ایـن مرجـع بـه
صورت زیر می باشد:
-1 خطاهای حاصله در اثر ولتاژهای صاعقه وکلید زنی،%12
-2 عیوب مربوط به هسته،%16
-3 نقص تپ چنجر،%23
٢٣
-4 خطاهای حاصله در اثر اتصال کوتاه های مختلف،%8
-5 عیوب ناشی از پیری ترانسفورماتور،%30
-6 سایر عیوب،%11
بر اساس این نتایج، پیری ترانسفورماتورو تپ چنجر مهمتـرین عیـوب بـوده و خطـای هـسته و
عیوب ناشی از ولتاژهای بالا در رده دوم قرار دارند.
٢۴
فصل 3
اصول ومبانی روش آنالیز پاسخ فرکانسی
25
از یک ترانسفورماتور ممکن است در طول بهره برداری جریان های اتصال کوتاه شدیدی ناشی از خطا هـای
مختلف شبکه قدرت عبور نماید. نیروهای ناشی از این جریان ها بسته به شدت خطا قادر به جابجـایی و یـا
تغییرشکل مکانیکی سیمپیچها میباشند.درعمل استحکام مکانیکی عایق هـا افـزایش مـییابـد. حمـل و نقـل
ترانسفورماتور نیز عامل دیگر ایجاد خطاهای مکانیکی در داخل آن می باشد.[13]با این وجود در بیشتر حالت
ها جابجایی و یا تغییـر شـکل مکـانیکی سـیم پیچهـا مـانع انتقـال انـرژی نـشده و باعـث خـروج از مـدار
ترانسفورماتور نمیشود. اما این خطر وجود خواهد داشت که ضربه مکانیکی وارده به عایق سیم پـیچ باعـث
فشردگی یا سـاییدگی آن شـده و در نهایـت باعـث یـک شکـست عـایقی در اثـر اضـافه ولتاژهـای بعـدی
گردد.بنابراین شناسایی جابجاییو خطاهای مختلف سیم پیچها به کمک آزمایـشهای مناسـب اهمیـت زیـادی
دارد. با انجام چنین آزمایشهایی نیاز به باز کردن ترانسفورماتور و بازرسی داخل آن (که پر هزینه و زمـان بـر
است) نمیباشد. معروفترین این آزمایشها روش اندازهگیـری و تحلیـل پاسـخ فرکانـسی (FRA) کـه روش
اندازه گیری تابع تبدیل (TF) نیز نامیده می شود، میباشد. جزئیات کامل این روش در این فصل مورد بحث
و بررسی قرار میگیرد.
1-3 روشهای مختلف شناسایی عیبهای مکانیکی
همانگونه که ذکر شد، استحکام مکانیکی ترانسفورماتورها مخصوصا موقع حمل و نقل و یا به وقوع پیوستن
اتصال کوتاه کاهش مییابد.برای تشخیص عیب تغییر شکل و یا جابجایی سیمپیچها ونیز اتـصال کوتـاه بـین
حلقه ها در سیم پیچها ، به صورت همزمان با بهرهبرداری و یا موقع خروج از مدار ترانسفورماتور روشـهای
مختلفی مورد استفاده قرار میگیرند. از مهمترین این روشها میتوان به موارد زیر اشاره کرد:
26
-1 اندازه گیری تغییرات امپدانس در فرکانس قدرت
-2 اندازه گیری نسبت تبدیل
-3 آزمایش ضربه فشار ضعیف((LVI
-4 اندازهگیری و ارزیابی تابع تبدیل
کار تحقیقاتی مرجع [14] نشان می دهد کـه روش تـابع تبـدیل حـساسترین روش بـرای تـشخیص عیبهـای
مکانیکی در سیمپیچ بوده و روشهای اندازه گیری دیگر حـساسیت کـافی بـرای آشـکارسـازی جابجاییهـای
کوچک سیمپیچرا ندارد.از اینرو تابع تبدیل از میان روشهای فوق جایگاه ویـژه ای در سیـستم پـایش جهـت
تشخیص عیوب مکانیکی پیدا کرده است.
-2-3 تئوری روش آنالیز پاسخ فرکانسی[15]
اساس روش transfer function، تئوری شبکه دو قطبی میباشد.

شکل(.(1-3ترانسفور ماتور بصورت شبکه دو قطبی خطی
دراین مدل، ترانسفورماتورها بصورت یک شبکه خطی، مختلط وپسیو میباشند. این تئوری، امکان
اعمال یک ورودی و بدست آوردن خروجیهای متفاوت را میدهد. (شکل(.((1-3هرسیگنال خروجی تعریف
شده (ولتاژهای خروجی UAV وجریانهای خروجی IAV و(V=1..n یک تابع بصورت زیر تولید میکند:
27
(1-3) A,u ( f ) U : توابع انتقال ولتاژ Au,V ( f )  TF E ( f ) U (2-3) A,u ( f ) I Ai,V ( f )  TF :توابع ادمیتانس E ( f ) U FFT1ولتاژهای خروجی : UAV(f) FFT جریانهای خروجی : IA,v(f) FFT ولتاژ ورودی : UE (f) نکته قابل توجه آن است که حساسیت توابع تبدیل بـه تغییـرات وعیـوب واقـع شـده در ترانـسفورماتورهـا
متفاوت می باشد و برخی از آنها نسبت به دیگری قابلیتهای آشکار سازی بیشتری دارند.
3-3 روش اندازهگیری تابع انتقال درترانسفورماتورها [15]
بدست آوردن تابع انتقال ترانسفورماتور هم با اعمال پالس ضربه وانـدازه گیـری خروجـی وهـم بـا اعمـال
ورودیهای سینوسی با فرکانسهای مختلف، امکانپذیر است. تعیین تابع انتقال با اعمـال سینوسـی هـای تـک
فرکانس، بصورتی که در شکل (2-3) مشاهده میشـود، انجـام مـیگیـرد. فرکـانس ولتـاژ ورودی سینوسـی
میتواند در یک رنج وسیع فرکانسی تغییرکند. با اندازهگیری خروجی میتوان تابع انتقـال مخـتلط را بدسـت
آورد. (بصورت دامنه و فاز). این روش، "روش جاروی فرکانسی" نامیده می شود.
بااعمال یک تک پالس واندازه گیری خروجی هم میتوان تابع انتقال را مطابق آنچـه در شـکل (3-3) نـشان
داده شده است، بدست آورد. بدین صورت که ترانسفورماتور بوسیله یک ولتاژ ضربه (معمـولا بـین 100 تـا
2000 ولت) تحریک میشود. سپس ورودیهاوخروجیهای گذرا اندازهگیری شده و آنالیز میشوند. طیف

1 .Fast Fourier Transform
28

شکل((2-3اندازه گیری تابع انتقال در حوزه فرکانس
فرکانسی سیگنالهای اندازهگیری شده درحوزه زمـان، بوسـیله FFT محاسـبه شـده و از تقـسیم خروجـی بـر
ورودی، تابع انتقال درحوزه فرکانس بدست میآید. معمولاً ایـن روش،"ولتاژضـربه پـایین" نـام دارد.شـرح
کاملتر روشهای فوق در اندازه گیری تابع انتقال ، در ادامه بیان شده است.

شکل((3-3اندازه گیری تابع انتقال در حوزه زمان
29
-1-3-3 روش جاروی فرکانسی( SFM) 2
دراین روش که به آن روش جاروی فرکانسی نیز گفته میشود، یک موج سینوسی با فرکانس مشخص در
رنج وسیعی از فرکانس که قبلا تنظیم شده، توسط دستگاهی به نامNetwork Analyzer به سیمپیچ اعمـال و
خروجی حاصل از آن اندازه گیری میشود.به علت ساختار دستگاه، در هر بار اندازهگیری فقط یک تابع انتقال
قابل محاسبه میباشد. مدار اندازهگیری دراین روش، درشکل((4-3 نشان داده شده اسـت.S سـیگنال ترزیـق
شده ،R وT به ترتیب اندازهگیریهای مرجع و تست میباشند. Zs امپدانس منبع و ZT امپدانس سیمپیچ تحـت
تست است که امپدانس منبع Network Analyzer معمولاً 50Ω می باشد. مدت زمانی کـه Analyzer بـرای
جاروی فرکانس در رنج فرکانسی مورد نظر نیاز دارد، به میزان فیلترینگ اعمال شده بستگی دارد. معمولاً این
زمان ازکمی کمتر از یک دقیقه تا حدود چند دقیقه متغیراست. در این حالت، نتیجـه انـدازهگیـری بـصورت
دامنه یا فاز قابل بیان میباشد. باتوجه به شکل (4-3) دامنه و فاز بصورت زیر بیان میگردند.

شکل((4-3مدار اندازه گیری تابع انتقال در روش جاروی فرکانس (3-3) K  20log10 (T / R) ϕ  tan−1(T R)
2 .Sweep Frequency Method
30
در رابطه (3-3) ، K و ϕ بترتیب معرف دامنه و فاز تابع تبدیل می باشند.همچنین T وR نیز بترتیـب بیـانگر
سیگنال اندازه گیری شده و سیگنال ورودی اعمال شده می باشند.[4]
-2-3-3 روش ولتاژ ضربه(LVI) 3
در این روش یک ولتاژ ضربه با مشخصات مناسب، بطوریکه بتواند در یـک محـدوده وسـیع فرکـانس،
قطبهای سیستم را به نوسان وادارد، به یکی از ترمینالهای ترانسفورماتور اعمـال مـیگـردد. همزمـان، جریـان
عبوری از این ترمینال یا ولتاژ ترمینال دیگر و یا جریان هر سیمپیچدیگری بـه عنـوان خروجـی انـدازهگیـری
میشود. در اندازهگیریهای ولتاژ کم، دامنه ضربه معمولاً بین 100-2000 ولت میباشد. پهنای باند ورودی هم
تا حد ممکن باید بزرگ باشد. مقادیر متداول برای ضربه ورودی، زمان پیـشانی 200ns تـا 1μs و نـیم زمـان
پشت 40μs تا 200μs میباشند.[16] سیگنالهای اندازهگیری شده در حوزه زمـان، بعـداز فیلترشـدن ونمونـه
برداری به صورت دادههایی در حوزه زمان ذخیره میشوند. سپس به حوزه فرکانس منتقل شده ،تـابع انتقـال
ترانسفورماتور محاسبه میگردد.
-3-3-3 مزایا و معایب روشهای LVI وSFM
روش LVI دارای معایب زیر میباشد[17]
دقت فرکانسی ثابت.این امر موجب مشکل شدن آشکارسازی خطاها در فرکانسهای پایین میشود.
فیلتر کردن نویز سفید مشکل است.
تجهیزات اندازهگیری متعدد موردنیاز است (فانکشن ژنراتور،اسکوپ دیجیتال).

3 . Low Voltage Impulse
31
روش LVI دارای مزایای مهمی میباشد.
توابع انتقال مختلف (تابع ادمیتانس،تابع ولتاژ و... )میتوانند بطور همزمان اندازهگیری شوند.
زمان مورد نیاز برای هر بار اندازهگیری حدود یک دقیقه میباشد.
روش SFM دارای معایب اساسی زیر است
در هر بار اندازهگیری، فقط یک تابع انتقال قابل اندازهگیری است.
زمان موردنیاز برای هر بار اندازهگیری معمولاً چند دقیقه به طول می انجامد.
روش SFM دارای مزایای زیر میباشد.
نسبت سیگنال به نویز بالا( بخاطر فیلترینگ نویز سفید بوسیله .(Network Analyzer
یک محدوده وسیع فرکانسی میتواند اسکن شود.
دقت فرکانسی خوب در فرکانسهای پایین. همچنین دقت فرکانس میتواند متناسب با محدوده فرکانس
اندازهگیری تغییر کند.
+ فقط یک دستگاه اندازهگیری مورد نیاز است(.(Network Analyzer
-4-3 انـــواع روشـــها بـــرای مقایـــسه نتـــایج حاصـــل از
اندازهگیریها[18]
پس از اندازهگیری و انجام محاسبات، نهایتا تابع انتقال بصورت دامنه یا فاز بـر حـسب فرکـانس نمـایش
داده میشود. از آنجا که فاز تابع انتقال هیچگونه اطلاعات اضافیتـری نـسبت بـه دامنـه تـابع انتقـال نـدارد،
استفاده از دامنه تابع انتقال، معمولا برحسب لگاریتم ، مرسوم می باشد. اساس روش تابع انتقال، مقایسه تـابع
32
انتقال اندازهگیری شده فعلی با یک تابع انتقال مبنا می باشد. بر این اسـاس سـه روش شـناخته شـده، بـرای
مقایسه بین نتایج حاصل ازاندازه گیری توابع انتقال وجود دارد.
-1 مقایسه مبتنی بر زمان4
-2 مقایسه مبتنی بر ساختارترانسفورماتور5
-3 مقایسه مبتنی بر نوع ترانسفورماتور6
شکل((5-3 اساس این مقایسهها را نشان میدهد. روش time based از بهترین دقت برخوردار اسـت. در
این روش، اطلاعات اندازهگیری شده بـا اطلاعـات قبلـی کـه درمـورد ترانـسفورماتور وجـود دارد، مقایـسه
میگردد. (البته در شرایط تست کاملاً یکسان). این روش در مورد انواع ترانسفورماتورها کاربرد دارد. معمولاً
این اطلاعات قبلی، هنگام ساخت ترانسفورماتور و در شرایط مـشخص بدسـت مـیآیـد. هرگونـه تغییـر در
مقایسه نتایج، دال بروجود مشکلی در ترانسفورماتور میباشد. اما ازآنجا که اطلاعات مربوط به اندازهگیریهای
قبلی، برای بسیاری از ترانسفورماتورهای درحال کار وجود ندارد، باید روش مناسب دیگـری بـرای مقایـسه
بکارگرفته شود.

شکل(.(5-3 روشهای مختلف مقایسه توابع انتقال

4. Time Based 5 . Construction Based 6 . Type Based
33
یکی از این روشها، استفاده از خاصیت تقارن بکار رفته در طراحی وساخت ترانسفورماتور میباشد. این
روش Construction based نام دارد.

شکل(.(6-3 مقایسه بین فازها یا construction based برای ترانسفورماتور . (150MVA ,220/110/10 kv)
a )دامنه تابع انتقال ادمیتانسb )دامنه تابع انتقال ولتاژ
این روش وسیلهای برای مقایسه توابع انتقال بدست آمده در فازهای مختلف ترانسفورماتور میباشـد. بـرای
هر سه فاز، یک رفتار انتقالی شبیه به هم وجود دارد. تست جداگانه فازها نشان میدهد که برای فرکانـسهای
34
تقریباً بالاتر از 10KHZ ، مشخصات فرکانسی فازهای ترانسفورماتور کاملاً یکسان است. یک نمونه مقایـسه
انجام شده در فازهای ترانسفورماتور در شکل((6-3 نشان داده شده است.[18]

شکل .(7-3) مقایسه بین فازها یا construction based برای ترانس با ثانویه زیگزاگی . (150KVA ,10kv/ 400V)
a )دامنه تابع انتقال ادمیتانسb )دامنه تابع انتقال ولتاژ
دو محدودیت در استفاده از این روش مقایسه وجود دارد. یکی اینکه این روش فقط برای ترانسفورماتورهای
سه فاز ویا بانک ترانسفورماتوری کاربرد دارد. دیگری آنکه، نتایج اندازهگیریهای متعـدد نـشان مـیدهـد کـه
استفاده از این روش درفازهای با سیمپیچیزیگزاگی، برای انجام مقایسه به منظور تـشخیص عیـب ، مناسـب
35
نیست. یک نمونه از این اندازهگیریها در شکل (7-3) نشان داده شده است. روش سوم بـرای مقایـسه type
based نام دارد. در این روش نتایج بدست آمده از ترانسفورماتورهای با ساختار یکسان(معمولاً محصول یک
سازنده هستند)، مبنای مقایسه مـی باشـد. اصـطلاحاً بـه ایـن ترانـسفورماتورها، ترانـسفورماتورهای خـواهر
میگویند. تابع انتقال برای این ترانسفورماتورها، دارای تغییرات خیلی کمـی نـسبت بـه یکـدیگر مـیباشـند.
بنابراین میتواند به عنوان مبنا، برای اندازهگیریهای انجام شده، در نظر گرفته شود.البته با توجه به اینکه هـیچ
دو ترانسفورماتوری ازنظر جزئیات ساخت کاملا یکسان نیستند، این روش ممکن است عیـب یـابی را دچـار
اشکال کند.
-5-3 مراحل پیشرفت روش تابع تبدیل برای پایش
ترانسفورماتورها
تبدیل فوریه پاسخ ضربه یک سیستم خطی نامتغیر با زمان تابع تبدیل یا پاسخ فرکانـسی سیـستم
نامیده میشود. با استفاده از سیگنال تحریک و یا به عبارت دیگـر سـیگنال ورودی و سـیگنال پاسـخ
مربوط به آن میتوان تابع تبدیل را محاسبه کرد. تابع تبـدیل همـراه بـا آزمـایش ترانـسفورماتورهای
بزرگ و نیز به عنوان روشی برای پایش ترانسفورماتورها مورد استفاده قرار میگیرد.
-1-5-3 تابع تبدیل برای آزمایش ترانسفورماتورهای بزرگ
سالهای زیادی است که توابع تبدیل همراه با صنعت آزمـایش ترانـسفورماتورها مـورد اسـتفاده قـرار
میگیرند و با روشهای آزمایش مختلف از نتایج اندازهگیریها تعیین شده و به عنوان وسیلهای برای
36
کنترل کیفیت و نیز تعیین مشخصههای مهم ترانسفورماتور به کار گرفته میشوند.
برای نشان دادن استحکام مکانیکی سـاختار سـیمپیچهـای ترانـسفورماتور مـیتـوان آزمایـشهای
ضربهای را روی آنها انجام داد. به خاطر هزینههای بالای چنین آزمایشهایی تنهـا در برخـی حالتهـای
نادر و یا درصورت درخواست مشتری این گونه آزمایشها انجام داده میشوند. برای تعیین تغییر شکل
مکانیکی سیمپیچها مشخصههای نوسانی بین اندازهگیریهـای قبـل و بعـد از آزمایـشهای ضـربهای بـا
همدیگر مقایسه میشوند. یکی از چنین روشهایی که مدتهای طولانی است مـورد اسـتفاده قـرار مـی
گیرد روش آزمایش ضربه فشارضعیف (LVI) میباشد .[19] در این روش ترانسفورماتور قبل و بعـد
از آزمایش توسط یک ضربه ولتاژ پایین تحریک میشود. مقایسه سیگنال پاسخ ثبت شده قبل و بعد از
آزمایش تغییرات مکانیکی احتمالی در ساختار سیمپیچ را مشخص میکند. یـک روش دیگـر تحلیـل
پاسخ فرکانسی( FRA) 7 میباشد. در اینحالت پاسخ فرکانسی قبل و بعـد از آزمـایش تعیـین میـشود.
پاسخ فرکانسی را میتوان توسط یک آنالایزر شبکه8 مستقیماً در حوزه فرکانس اندازهگیری کرد و یـا
به کمک تبدیل فوریه سریع( FFT) 9 از نتایج اندازهگیریها در حوزه زمان محاسبه کرد (جزئیات مربوط
به روشهای بدست آوردن پاسخ فرکانسی در بخش (2-3) داده شدهاند).
تابع تبدیل یک مدار الکتریکی خطی تغییر ناپذیر با زمان ، یک توصیف کـاملی از مـدار را ارائـه
کرده و به طور نظری مستقل از سیگنال تحریک میباشد. برای حالتهای گذرای ناشی از ضربه صاعقه

7 Frequency Response Analyse 8 Network Analyser 9 Fast Fourier Transformation
37
میتوان ترانسفورماتورها را خطی درنظرگرفت. بنابراین تغییر شکل ولتاژ ضربه تحریـک، حـداقل بـه
طور نظری، تأثیری روی تابع تبدیل نـدارد. بنـابراین بایـستی مقایـسه توابـع تبـدیل بدسـت آمـده از
ولتاژهای ضربه کامل و بریده به عنوان تحریک امکان پذیر باشد .[20]
-2-5-3 تابع تبدیل برای پایش
برای سازندههای ترانسفورماتورها شناخت شکستها و عیبهای عایقی کـه در ترانـسفورماتورها در
اثر ولتاژهای گذرا روی میدهند دارای اهمیت میباشد، چرا که این شناخت برای تعیین ابعاد عـایقی
سیمپیچها لازم است. به همین دلیل در گذشته همواره ولتاژهای کلیـد زنـی در شـبکه انتقـال انـرژی
اندازهگیری شدهاند .[21]
میتوان سیگنالهای گذرایی را که در اثر کلید زنی ترانسفورماتورها و کلیدزنیها در جاهای دیگری
از شبکه ایجاد شده و بر روی ولتاژها و جریانهای کار عادی ترانـسفورماتور سـوار مـیشـوند، بـرای
محاسبه یک تابع تبدیل مورد استفاده قرار داد. با مقایسه توابع تبدیل انـدازهگیـری شـده در زمانهـای
مختلف میتوان وجود تغییر احتمالی در وضعیت عایقی ترانسفورماتور را تشخیص داد. اگر تغییراتـی
در تابع تبدیل مشاهده شوند میتوان وجود یک تغییر ولذا یک عیب را در ترانـسفورماتوراحتمال داد.
اگر توابع تبدیل اندازهگیری شده در زمانهای مختلف یکسان باشند، میتوان نتیجه گرفت که وضعیت
و حالت ترانسفورماتور در فاصله زمانی بین دواندازهگیری هیچگونه تغییری نداشته است.
38
-1-2-5-3 تابع تبدیل برای پایش به صورت همزمان با
بهرهبرداری و در حالت خروج از مدار
پایش وضعیت عایقی ترانسفورماتورها در محل نصب را میتوان اساساً در وضعیت خارج بـودن
از مدار و یا به صورت همزمان با بهرهبرداری انجام داد .[22] برای پایش در وضعیت خارج بـودن از
مدار، طرف ولتاژ بالای ترانسفورماتور از شبکه جدا میشـود تـا انـدازهگیریهـای لازم انجـام شـوند.
درحالیکه در پایش به صورت همزمان با بهرهبرداری، سیگنالهای گذرایی مورد استفاده قرار میگیرنـد
که در طول عملکرد ترانسفورماتور در اثرکلیـدزنیهای ضـروری درشـبکه بـرق ایجـاد مـیشـوند. بـا
اندازهگیریهای در وضعیت خارج بودن از مدار همواره میتوان براحتی آزمایشها را تکرار کرد، چونکه
کلید قدرت تکتک فازها همزمان قطع و وصل نمیشود و شرایط حاکم بعد از کلید زنی کاملاً پایدار
است. با پایش به صورت همزمان با بهرهبرداری، ترانسفورماتور در ارتباط با سایر تجهیزات شـبکه در
حال کار میباشد و به دلیل تزویج الکترومغناطیسی در سیستم سهفاز، یک تحریک گـذرا همـواره بـه
صورت همزمان به تمام پایانههای یک مجموعه از سیمپیچها اعمال میشود.
-2-2-5-3 تـابع تبـدیل بـه عنـوان یـک روش تـشخیص عیـب
مقایسهای
39
در دیدگاه اولیه، روش تابع تبدیل برای پایش ترانسفورماتور یک روش مقایسهای میباشـد. اگـر
اندازهگیریهایی روی یک ترانسفورماتور انجام میگیرند، بایستی نتایج این اندازهگیریها با نتایج مرجعی
مقایسه شوند. برای مقایسه نتایج اندازهگیریها در مرجع [23] سه روش پیشنهاد شده اند:
نتایج اندازهگیریها در زمانهای مختلف، مشخصههای متـشابه سـاقههـای ترانـسفورماتور و نتـایج
اندازهگیریهای ترانسفورماتورهای یکسان طرح شده.
در روش مقایسه نتایج اندازهگیریها در زمانهای مختلف، نتایج جدید با نتایج حاصله در زمانهـای
قبل مقایسه میشوند .[24] چنین نتایج ثبت شده در زمانهای پـیش اغلـب موجـود نمـیباشـند و یـا
نمیتوان شرایط و یا نحوه آزمایش زمانهای قبل را مجدداً تکرار کرد. لذا این روش را میتوان تنها در
مورد ترانسفورماتورهای محدودی بکار برد. تغییرات مکانیکی قاعدتاً همزمان و به یک میزان در تمام
سـتونهای ترانـسفورماتور روی نمـیدهنـد. لـذا مـیتـوان بـه طـور متـوالی فازهـای T, S, R یـک
ترانسفورماتور سهفازه را مورد اندازهگیری قرار داده و نتایج حاصله از فازهای مختلف را با همـدیگر
مقایسه نمود. بسته به ساختمان قسمت فعال ترانسفورماتور، تشابه بین توابع تبدیل اندازهگیری شده از
سه ستون ترانسفورماتور متفاوت میباشد. لذا آشکارسازی تغییر مکانیکی احتمالی همیـشه نمـیتوانـد
حاصل شود. روش مقایسهای سوم که امکان پذیر است مرجـع قـرار دادن نتـایج انـدازهگیـری یـک
ترانسفورماتور هم نوع و هم طرح میباشد. این روش مقایـسهای نـشان مـیدهـد کـه توابـع تبـدیل
ترانسفورماتورهای یکسان در اغلب موارد مشابه میباشند. این مطلب بـه خـصوص در مـواردی کـه
سازنده و سال ساخت یکسان میباشند کاملاً معتبر است.[25]
40
-6-3 عوامل کلیدی موثر بر اندازه گیریهای [17] FRA
نتایج تست FRA فقط به شرایط سیمپیچ ترانسفورماتور بستگی ندارد و از سیستمهای اندازهگیری نیـز بـه
شدت تاثیر میپذیرد. عواملی نظیرمقدارامپدانس موازی، ترکیب سیمهای رابط(طول ونحـوه اتـصال) وغیـره
میتواند اندازهگیریها را تحت تاثیر قرار دهد که در ادامه مورد بحث قرار میگیرد.
1-6-3 تاثیر مقدار امپدانس موازی
در اندازه گیریهـای FRA ، بـرای انـدازهگیـری جریـان پاسـخ از یـک مقاومـت شـنت اسـتفاده میـشود.
اندازهگیریها در یک رنج وسیع فرکانسی انجام میشود که در آن اندازهگیریهای مرتبط با جابجاییهای خیلـی
کوچک سیمپیچ ،که در فرکانسهای بـالاتر((>1MHz آشـکار مـیگـردد، اهمیـت خاصـی پیـدا مـیکنـد. در
فرکانسهای کمتر امپدانس موازی (معمولاً 50 اهم) در مقایسه با امپدانس ترانسفورماتور چندان مهـم نیـست.
اما در فرکانسهای خیلی بالاتر، امپدانس موازی نسبت به امپدانس ترانسفورماتور قابل ملاحظه خواهد بود. در
FRA-S امپدانس موازی معمولاً 50 Ω میباشد که امپدانس ورودی اسپکتروم آنالایزر می باشد. برای ارزیابی
اثر امپدانس شنت روی اندازهگیری های FRA تحقیقات روی یـک ترانـسفورماتور توزیـع و بـا سـه مقـدار
مقاومت موازی 50و10و1 اهم انجام شده است. دو مقدار اول، مقادیر معمول برای تستهایFRA مـیباشـند.
شکل (8-3) اثرات مقاومت موازی را در محدوده فرکانسی 1-10MHz نشان میدهد. واضح است که بـرای
جابجاییهای کوچکتر در سیمپیچ، منحنیهای تابع ادمیتانس با مقاومت موازی کوچکتر، بیشتر تغییر میکنـد.
البته حساسیت نسبی آشکارسازی به اندازه و نوع ترانسفورماتور نیز بـستگی دارد. باتوجـه بـه شـکل (8-3)،
تابع ادمیتانس ورودی در محدوده 2-10MHz فرکانسهای رزونانس مختلفی دارد که این با برخی از مدلهای
41

شکل(.(8-3 اثر مقاومت شنت روی پاسخ فرکانسی تا [17]10MHZ
فرکانس بالای ترانسفورماتور که بصورت خالص خازنی است ، درتعارض میباشد. دریک اندازهگیری عملی
FRA ، تابع انتقال اندازهگیری شده، نه تنها شامل تابع شبکه ترانسفورماتور بلکـه شـامل مقاومـت مـوازی و
امپدانسهای سیمها نیز میباشد. به عبارتی مقاومت موازی علاوه بر اینکه حـساسیت انـدازهگیـری را کـاهش
میدهد، رزونانسهای مدار را نیز فرو مینشاند. این اثر میتواند خیلی مهـم باشـد. ایـن تـاثیر همچنـین بـه
)Qضریب کیفیت) مدار بستگی دارد. شبکهای با Q بالاتر، حساسیت بیشتری نسبت به تغییرات سیمپیچ دارد.
هنگامیکه جریان مقاومت موازی کوچک است، مقدار Q مدار نسبتاً بالاست کـه ایـن مـورد در شـکل (8-3)
دیده میشود. بنابراین، میتوان نتیجه گرفت که حساسیت آشکارسـازی FRA، بـا افـزایش مقاومـت مـوازی
بطور قابل ملاحظهای کاهش مییابد و ماکزیمم محدوده فرکانسی که به تغییرات سیم پیچ حـساس اسـت بـا
کاهش مقاومت موازی افزایش مییابد.
42
-2-6-3 تاثیر بوشینگ فشار قوی
یک ترانسفورماتور توزیع،که بوشینگ اصلی آن با یک بوشینگ از نوع کاغذ روغنـی 27 KV جـایگزین
شده است، برای مطالعه اثر بوشینگ روی نتایج تستهای FRA بکارگرفته شده است. انـدازهگیـری در بـالای
بوشینگ (top) به مفهوم اندازهگیریهای FRA در ترمینال ورودی بوشینگ میباشـد. در انـدازهگیـری پـایین
(Bottom) ، اندازهگیریهای FRA مستقیماً در سرسیمپیچ فشار قوی درون ترانسفورماتور انجام مـیشـود. در
هر دوحالت پالس ورودی به بالای بوشینگ فشار قوی اعمال میشود. جریان کوپل شده به سیمپیچ ثانویه نیز
بوسیله یک مقاومت شنت اندازهگیری میشود. تنها تفاوت در نقطه اندازهگیری ولتاژ است که یکی در بـالای
بوشینگ ودیگری در پایین بوشینگ انجام میشود. تابع تبدیل ادمیتانس در دو حالـت در شـکل (9-3) آمـده
است. نتایج نشان میدهد که ادمیتانس اندازهگیری شده در سرسـیمپـیچ فـشار قـوی((Bottom ، کـوچکتر از
اندازهگیری در ترمینال بالای بوشینگ (top) است. در فرکانسهای بالاتر از 3MHz اندوکتانس سیم بوشـینگ،
ولتاژ خازن معادل سیمپیچ را کاهش میدهد. بنابراین ادمیتانس اندازهگیری شده در بـالای بوشـینگ بزرگتـر
میشود.
I/V(top)>I/V(Bottom):V(top)<3MHz<9MHz
ادمیتانـسهای انـدازهگیـری شـده تـا فرکـانس 3MHz ، تقریبـاً یکـسان هـستند. بـرای بـالاتر از 3MHz
اندازهگیریهای top با Bottom بطور قابل ملاحظهای تفاوت مییابند. این امر نشان میدهد که نتایج به شرایط
تست از قبیل مکان اندازهگیری و ترکیب سیمهای رابط بستگی دارد. نکته بسیار مهم اینجاست که همـه ایـن
اندازهگیریها با سیمهای رابط خیلی کوتاه انجام شدهاند. درحالیکه در یک اندازه گیری on site مخـصوصاً در
ترانسفورماتورهای قدرت بزرگ، ابعاد فیزیکی مساله ساز میگردد. برای یک بوشینگ فشار قوی که
43

شکل(.(9-3اندازه گیریهای FRAدر بالا وپایین بوشینگ[17]
5 متر طول دارد سیگنالهای اعمالی باید این طول سیمرا طی کرده تا به بوشـینگ و سـپس بـه سـیمپـیچ
اعمال شوند. مولفههای فرکانس بالای سیگنال منبع بوسـیله خازنهـای بوشـینگ زمـین مـیشـوند. همچنـین
اندوکتانسهای سیم و بوشینگ درمقایسه با امپـدانس ترانـسفورماتور در فرکانـسهای بـالا قابـل ملاحظـه مـی
گردند. این بدان معناست که امپدانس سیمو بوشینگ میتواند تغییرات مورد انتظار در امپدانس ترانسفورماتور
را بپوشاند.بنابراین میتوان نتیجه گرفت که اندازهگیریهـای FRA تـا حـدود فرکـانس 3 MHz تحـت تـاثیر
بوشینگ فشار قوی و سیمرابط نیست اما در فرکانسهای بالاتر از 3 MHz این امپدانسها شروع به اثر گـذاری
کرده و در فرکانسهای بالای 4 MHz این اثرات قابل ملاحظه می گردند.
-3-6-3 تاثیر اتصال نقطه خنثای سیمپیچ فشار قوی
44
چگونگی اتصال نقطه خنثای ترانسفورماتور فشار قـوی، مـیتوانـد روی نتـایج انـدازهگیریهـای FRA تـاثیر
بگذارد. نتیجه تست انجام شده روی یک ترانسفورماتور توزیـع در دو حالـت در شـکل (11-3) نـشان داده
شده است. دریک حالت نقطه نوترال سیمپیچ فشار قوی معلق میباشد. درحالت دیگرنیـز بـه تانـک تـرانس
متصل شده است (زمین شده است). ولتاژ ورودی به یک سربوشینگ اعمـال شـده و جریـان کوپـل شـده از
طریق یک مقاومت شنت 1Ω که بین سیم پیچ فشار ضعیف و تانک قرار دارد، انـدازهگیـری شـده اسـت. بـا
توجه به شکل((10-3، می توان گفت که نتایج از نوع اتصال نوترال تاثیرپذیر است. برای فرکانسهای کمتر از
1/5 MHz این تاثیر اصلاًمهم نیست ونتایج در دو حالت کـاملاً یکـسان اسـت. امـا در فرکانـسهای بـالاتر از
2 MHz ، مقداری تفاوت وجوددارد. بنابراین در تست برای آشکارسازی تغییرات کوچک در سـیمپـیچ ایـن
نکته حائز اهمیت است که در مقایسه منحنیهای تابع انتقال ، شرایط اتصال زمین باید کاملاً یکسان باشد.
-4-6-3 تاثیر سیمهای رابط اندازهگیری

شکل(.(10-3 اثر وضعیت نقطه خنثی در اندازه گیریها( دردو حالت شناور و زمین شده) .[17]
45
اثرات سیمهای رابط فشار قوی و زمین با استفاده از دو سری از کابلهای کواکسیال مختلف بررسی
مـیگــردد. یکـی ســیمهای رابـط اسـتاندارد بــا طولهـای مناســب کـه بـرای انــدازهگیریهــای FRA در
ترانسفورماتورهای قدرت میباشد. و دیگری سیمهای رابـط خیلـی کوتـاه کـه در مـورد ترانـسفورماتورهای
توزیع به کار میرود. درشکل (11-3) تابع انتقال ادمیتانس یک ترانسفورماتور توزیع برای دو نوع سیم رابـط
کوتاه واستاندارد نشان داده است. این سیمها شامل سیمهای زمین پروب وسیگنال ژنراتـور و سـیمهای رابـط
بین بوشینگ و وسیله اندازهگیری بودهاند. این نکته قابل توجه است که دوتابع ادمیتـانس در رنـج فرکانـسی
0- 0/4MHz تقریباً یکسان هستند. بین 0/4MHzتا 2MHz ادمیتانـسها کمـی اخـتلاف دارنـد. ولـی بـرای
فرکانسهای بالای 2MHz اختلاف زیاد میگردد. این امر بیانگر آن است که پیکربندی بـا سـیمهای کوتـاه، در
مقایسه با سیمهای استاندارد امپدانس خیلی کوچکتری(درفرکانسهای بالاتر از (2MHz از خود نشان میدهد.
بنابراین پیکربندی با سیمهای کوتاه ،حساسیت خیلی بیشتری نسبت به تغییرات فرکـانس بـالای سـیم پیچـی
ترانسفورماتور از خودنشان میدهد. همچنین هنگام استفاده از سیمهای بلند برای فرکانسهای بالاتر از

شکل(.(11-3 مقایسه اثرسیمهای رابط کوتاه و بلند در اندازه گیریها تا 10MHZ
46
0/5MHz ادمیتانس اندازهگیری شده قابل مقایسه با ادمیتانس سیمرابط است. لـذا حـساسیت نـسبت بـه
تغییرات در سیمپیچ ترانسفورماتور به شدت کاهش مییابد.
بنابرایندر یک دستهبندی میتوان گفت که اندازهگیریهای با سیمهای بلند تـا فرکـانس 0/5MHz وانـدازه
گیریهای با سیمهای استاندارد تا فرکانس 2/3MHz تا حدود زیادی معتبرند.[26]عوامل متعدد دیگـری ماننـد
موقعیــت تــپ چنجر،دمــا، الگــوریتم نــرم افــزاری بکــار گرفتــه شــده، پیــری عــایق و... روی نتــایج اثــر
گذارند.توضیحات بیشتر در این زمینه در مرجع[27]آمده است.
-7-3 دقت پردازش سیگنال در روش زمانی
برای یک سیستم اندازهگیری دیجیتال ، فرکانس نمونهبرداری، مدت زمان نمونهبرداری وتفکیـک پـذیری10
مبـدل آنـالوگ بـه دیجیتـال، پارامترهـای بـسیار مهـم و تعیـین کننـدهای بـرای بدسـت آوردن تـابع تبـدیل
ترانسفورماتور میباشند.
-1-7-3 فرکانس نمونهبرداری
هیچکدام از طیفهای فرکانسی سیگنال نمونـهبـرداری شـده نبایـد در اثـر نمونـهبـرداری، در آن محـدوده
فرکانسی که مورد استفاده قرار میگیرند روی هـم بیفتنـد. بنـابراین طبـق تئـوری نایکوئیـست11 ، مـاکزیمم
فرکانس معتبری از اطلاعات که میتواند ذخیره شود، برابراست با fNyquist که:
(4-3) f sample f Nyquist  2 فرکانسهای بالاتر از fNyquist ، در هنگام باز تولید سیگنال، دارای مولفههای کذایی خواهند بود.

Resolution ١٠ 11 .Nyquist Theory
47
معمولا در اندازهگیریها به منظور حذف اثر نویزها و مولفه های فرکـانس بـالای غیرضـروری، سـیگنال از
یک فیلتر پایین گذر عبور داده می شود.حداقل فرکانس نمونه برداری لازم fmin را میتـوان بـا توجـه بـه بـه
کمک فرکانسهایf0 وfD به صورت زیر محاسبه کرد:
fmin= fD+ f0( 5-3)
که f0 فرکانسی است که طیف مورد نظر تا آن فرکانس محاسـبه مـی گـردد و fD فرکـانس قطـع فیلتـر
پائینگذر میباشد. با اینحال برای تضمین اجتناب از تداخل فرکانسی بایـستی فرکـانس نمونـهبـرداری از دو
برابر فرکانسfD بیشتر باشد.
fmin ≥ 2 fD(6-3)
با انتخاب یک فرکانس نمونهبرداری بالاتر (f2) از فرکانس نمونهبرداری لازمی که شرط رابطـه (6-3)
را برآورده میکند، (f1)، میتوان نویز کوانتیزهکردن12 را کاهش داد. انتخـاب چنـین فرکـانس نمونـهبـرداری
بالاتر، باعث بهبود در نسبت سیگنال به نویز به میزان زیر میشود.[16]
(7-3)

SNR 10 log f2 f1

-2-7-3مدت زمان نمونهبرداری
مدت زمان نمونهبرداری از سیگنالهای اندازه گیری شونده باید بگونـه ای باشـد کـه تفکیـکپـذیری
فرکانسی طیف محاسبه شده توسط FFT مناسب بوده وافزایش انرژی نویز کوانتیزه نیز در نظر گرفته شود که
در ادامه به آنها اشاره می شود.

12 .Quantization
48
با انتقال سیگنالهای اندازه گیری شده به حوزه فرکانس، تفکیکپذیری فرکانس از رابطـه زیـر و بوسـیله
مدت زمان نمونهبرداری T تعیین میشود.
(8-3) 1 f  T برای اینکه بتوان فرکانسهای تشدید و دامنهها در فرکانسهای تشدید یک تابع تبـدیل را تـا حـد ممکـن
صحیح محاسبه کرد، بایستی تفکیکپذیری فرکانس بهتر از ده کیلوهرتز باشد. درنتیجه حـداقل مـدت زمـان
نمونهبرداری باید 100 μs باشد. همچنین با توجه به سیگنالهای میـرا شـوندهای کـه از ضـربه ورودی ظـاهر
میشوند، میتوان یک انرژی سیگنال تعریف و محاسـبه کـرد. متوسـط انـرژی نـویز بـا ضـرب پـراش نـویز
کوانتیزهکننده که مقداری ثابت میباشد در مدت زمان نمونهبرداری حاصل میشود. بنـابراین متوسـط انـرژی
نویز، هم با افزایش مدت زمان نمونهبرداری و هم با افزایش سطح کوانتیزهکردن q مطابق رابطه زیـر افـزایش
می یابد.
(9-3) 2 q Eqf 12 T انتخاب یک مدت زمان نمونهبرداری بیشتر T2 درمقایسه با T1 نیز موجب کاهش نـسبت سـیگنال بـه
نویز با رابطه زیر میشود:
(10-3) T1 SNR 10 log T2 برای اینکه بتوان اثر نویز کوانتیزهکردن را تا حد ممکن کوچک نگه داشت، بایستی وقتی که سـیگنالها
تا اندازه کافی تضعیف شدند ثبت سیگنالها متوقف شود. از طرف دیگر اگر محاسبه صحیح دامنه فرکانـسهای
مشخصی، حتی آنهایی که در محدوده چند کیلوهرتز قرار دارند، مد نظر میباشـد، بایـستی ثبـت سـیگنال تـا
49
میرائی کامل این فرکانسها ادامه یابد. به عنوان یک مصالحه خوب مقدار مدت زمان نمونـهبـرداری برابـر μs
200 انتخاب میشود.[28]
-3-7-3 تبدیل آنالوگ به دیجیتال
تبدیل یک سیگنال زمان پیوسته به صورت دنبالهای از کلمات باینری رمزشده عـددی بـا اسـتفاده از
مبدل آنالوگ به دیجیتال صورت میپذیرد. فرآیند نمـایش یـک متغیـر بـا دسـتهای از مقـادیر متمـایز را نیـز
کوانتیزهکردن مینامند. به دلیل محدود بودن مقادیر کوانتیزهشده خطایی تحت عنوان خطای کوانتیزهکردن رخ
میدهد. این خطا خـود را تحـت عنـوان نـویز کـوانتیزهکـردن در حـوزه فرکـانس نـشان مـیدهـد. خطـای
کوانتیزهکردن به ظرافت سطح کوانتیزهکردن، یعنی به تفکیکپذیری مبـدل A/D بـستگی دارد. اگـر k تعـداد
بیتهای ADC13 باشد ، دقت دامنه سیگنال بصورت زیر تعریف میشود.
a  2−k 1(11-3)
با افزایش تعداد بیتهای ADC نسبت سیگنال به نویز افزایش پیدا کرده و ماکزیمم فرکانسی که به ازای آن
طیف سیگنال در نویزوارد می شود ، افزایش می یابد.جدول((1-3 مقایسه بین دو مبدل 8 و 10 بیتی را برای
ولتاژ ضربه صاعقه استاندارد نشان میدهد.[28]
جدول(fmax.(1-3 که در آن طیف یک ولتاژ ضربه صاعقه استاندارد در نویز لبریز میشود، به صورت تابعی از تفکیکپذیری مبدل (A/D)

13 .Analog to Digital Convertor
50
فصل 4
انــــــواع روشــــــهای مدلــــــسازی
ترانسفورماتورها
51
یـک ترانـسفورماتور را مـیتـوان بـه صـورت چهـار قطبـی نـشان داده شـده در شـکل (1-4)
درنظرگرفت. برای این چهار قطبی باید مدار معادلی بدست آورد که به عنوان مثال رفتار فرکانسی آن
براساس نتایج اندازهگیری شده باشد. پارامترهای چنین مدار معادلی را میتوان به طرق مختلف تعیین
کرد. یک روش ممکن محاسبه پارامترها، بر پایه ابعاد هندسی ساختمان ترانسفورماتور میباشد. روش
ممکن دیگر روش تحلیلمـدال اسـت کـه در آن پارامترهـای تعریـف شـده در مـدل از روی نتـایج
اندازهگیریهای انجام شده روی ترانسفورماتور محاسبه میشوند.
I2(t)

U2(t) ترانسفورماتور

I1( t)
(U1(t
شکل-1-4 نمایش ترانسفورماتور به صورت یک چهار قطبی
بنابراین میتوان یک ترانسفورماتور را بـسته بـه اینکـه رفتـار ترانـسفورماتور در پایانـههـای آن
موردنظر باشد و یا توزیع ولتاژ و رفتار فرکانسی داخلی آن مورد علاقه باشد مدلسازی کرد. روشهای
مدلسازی را میتوان در سه گروه عمده تقسیم بندی کرد که در زیر توضیح داده میشوند.
-1-4 روشهای مدلسازی جعبه سیاه
اگر تأثیرات متقابل ترانسفورماتور و شبکه تغذیه کننـده مـورد علاقـه باشـد، ترانـسفورماتور بـه
صورت یک جعبه سیاه درنظرگرفته میشود. این مدل وقتی مورد استفاده قرار میگیـرد کـه حالتهـای
گذرا و اضافه ولتاژها در شبکه قدرت مطالعه و تحقیق میشوند.
52
هدف مدلسازی جعبه سیاه این است کـه از مـدل غیرپـارامتری ترانـسفورماتور، بـه فـرم پاسـخ
فرکانسی آن، به یک مدل پارامتری به شکل یک تابع تبدیل و یا به شکل یک مدار معادل [29] برسد.
با توجه به رفتار خطی ترانسفورماتور برای فرکانسهای بزرگتر از 10 kHz میتوان آن را یـک سیـستم
خطی نامتغیر با زمان( LTI) 1 دانست و روند مذکور برآن اعمال نمود. این روش میتواند هم بر مبنای
اندازهگیریهای حوزه فرکانس باشد و هم بر مبنای اندازهگیریهای حوزه زمـان . پاسـخ پلـه یـا ضـربه
اندازهگیری شده و همچنین تحریک ورودی در حوزه زمان به کمک FFT بـه حـوزه فرکـانس منتقـل
میگردند و نهایتاً از آنها تابع تبدیل سیستم مشتق میگردد. تابع تبدیل حاصله مـیتوانـد بـه صـورت
قسمتهای حقیقی و موهومی و یا به صورت تابع دامنه و تابع فاز بیان شود.
تعداد فرکانسهای تشدید در مورد ترانسفورماتورها بسیار متغیر است و میتواند بیش از 20 عـدد
نیز گردد. درنتیجه، روشهای مدلسازی با ساختار ثابت به عنوان یـک مـدل جعبـه سـیاه، آنچنـان در
مدلسازی در حوزه فرکانسی گسترده موفق نخواهند بود. بنابراین بیشتر باید روشهایی موردنظر باشـند
که دارای ساختار متغیراند.
-2-4 بررسی روشهای مدلسازی فیزیکی
در این دیدگاه، موضوع اصلی، رفتار نوسانی ترانسفورماتور و تنشهای الکتریکی بوجود آمـده در
داخل سیمپیچهاست. این روش مشاهده مربوط به مهندس طراح ترانسفورماتور است. مهندس طراح

1 Linear Time-Invariant Sys--
53
باید در مرحله طراحی در مورد عایق بندی سیمپیچها تصمیم بگیرد .[30] این تصمیمگیری بر مبنـای
شبیهسازیهای انجام شده برروی مدلهای فیزیکی است. ساختاراین مدل به صورت یک مدار است کـه
حتی الامکان باید مفاهیم فیزیکی اساسی ترانسفورماتور را دربربگیرد.
در داخل سیمپیچ امکان بروز حالتهای گذرای سریع و خیلی سریع همیشه مطرح است. علت این
پدیده میتواند برخورد صاعقه به خطوط انتقال، کلیدزنی و اغتشاشات دیگر در شـبکه ماننـد اتـصال
کوتاه یا اتصال ترانسفورماتورهای بیبار باشد . در صورت تطابق یکی از فرکانسهای تحریک با یکـی
ازفرکانسهای طبیعی ترانسفورماتور امکان بروز پدیده تشدید در داخل سیمپیچ فراهم مـیگـردد. ایـن
پدیده میتواند عایق سیمپیچ را به طور موضعی تحت تنش الکتریکی قرار دهـد و باعـث خرابـی آن
گردد. البته حفاظتهای معمول ترانسفورماتور مانند برقگیر در جلوگیری از بروز ایـن پدیـده بـیتـأثیر
نیستند. برای اینکه بتوان اضافه ولتاژهای داخلی سیمپـیچ را مطالعـه کـرده و براسـاس آن همـاهنگی
عایقی داخل ترانسفورماتور را درست طراحی کرد بایستی سیمپیچ را به کمک یک مدل پـارامتری بـه
صورت فیزیکی مورد تحلیل و ارزیابی قرار داد. در رابطه با این موضوع دو روش جهت مدلـسازی و
بررسی وجود دارد که در زیر مورد بحث قرار خواهند گرفت.
-1-2-4 مدل خط انتقال چند فازه
درنظرگیری سیمپیچ به عنوان یک خط انتقـال همگـن بـا پارامترهـای گـسترده مـیتوانـد نتـایج
ارضاکنندهای را در مورد سیمپیچ لایهای وهمگن ارائه دهد. مدلسازی سـیمپـیچ بـه صـورت خطـوط
54
انتقال سری شده که از لحاظ مکانی با یکدیگر موازی هستند بر اساس تئوری خط انتقـال چنـد فـازه
n)فازه) است. این تئوری بر ماشینهای الکتریکی و ترانسفورماتورها اعمال شده است. در این روش
پارامترهای سیمپیچ بصورت گسترده درنظرگرفته میشوند و رفتار سیمپیچ توسط معادلات خط انتقال
توصیف میگردد.
-2-2-4 مدل مشروح
مدل مشروح یک مدل RLC برای مطالعه و تحقیق رفتار فرکانسی یک سیمپـیچ ترانـسفورماتور
بنا میشود. در روش مدلسازی مشروح کوچکترین عنصر فضایی در سیمپیچ یک حلقه و یا گروهـی
از حلقهها (مثلاً یک بشقاب یا یک جفت بشقاب) میباشد. هر جزء در این مدل معمولاً با یک مـدار
RLC مدل میشود. مدل نتیجه شده را که از چندین جزء مختلف تشکیل شده است میتوان در حوزه
زمان و یا در حوزه فرکانس حل کرد. بسته بـه هـدف مدلـسازی و بـه دلیـل اینکـه رفتـار شـارهای
مغناطیسی درهسته ترانـسفورماتورهای فـشارقوی در فرکانـسهای مختلـف متفـاوت اسـت، مـدلهای
مشروح گوناگونی مورد استفاده قرار میگیرند. محققان رفتار هسته را در سه حـوزه فرکانـسی دسـته
بندی نموده اند:
- حوزه فرکانسی f < 2 kHz :1
خطوط میدان مغناطیسی به طور عمودی وارد ستونهای هسته میشوند. ظهور جریانهای گردابـی
در هسته به نسبت ضعیف است، به طوریکه شار مغناطیسی مسیر خود را از هسته میبندد. رفتار هسته
55
مشابه رفتار آن در شرایط نامی میباشد. در این حوزه فرکانسی پدیدههای غیرخطی زیر روی میدهد

endNajafi

در دو دههی اخیر روند احداث و بهرهبرداری از منابع تولید انرژی تجدیدپذیر به دلیل نگرش جدی به حفظ محیط زیست رو به افزایش بوده و همچنین با توجه به کاهش هزینههای تولید انرژی از این منابع نسبت به سایر منابع انرژی سنتی، پیشبینی میشود در آینده نیز سهم قابل توجهی از تولید، به این نوع منابع اختصاص یابد.
به طور کلی برآورد دقیق میزان تأمین انرژی ایران از منابع تجدیدپذیر، نشان دهنده این امر است که کل ظرفیت نصب شده تولید انرژی از منابع تجدیدپذیر تاکنون به بیش از ١١٠ مگاوات رسیده است. در سال ١٣٩١ بالغ بر 2/9859 مگاوات نیروگاه تجدیدپذیر اعم از آبی، بادی، خورشیدی و بیوگاز در حال بهرهبرداری بوده است. علاوه بر این ظرفیت نیروگاهی، حدود 1/32 مگاوات نیز سیستمهای کوچک فتوولتائیک جهت روشنایی معابر و جادهها، چراغهای راهنمایی، سیستمهای مخابراتی و برق رسانی روستایی به کار گرفته شده است. در ادامه به معرفی چند ورد از انرژیهای تجدیدپذیر پرداخته خواهد شد]27[.
2-2-1- انرژی برق آبی
انرژی برق آبی به عنوان سومین منبع تولیدکننده برق و همچنین مهمترین انرژی تجدیدپذیر مولد برق در جهان محسوب میشود. براساس آخرین دادهها، حدود ١٧ درصد برق تولیدی جهان از انرژی برق آبی تأمین شده است. از آنجا که ایران از لحاظ جغرافیایی، کشوری خشک و نیمه خشک به شمار میآید، دارای رتبه ٣٨ در بین کشورهای مختلف جهان از لحاظ تولید برق آبی است. وقوع خشکسالی و کاهش شدید بارندگیها از سال ١٣٨۶، کاهش حجم ذخیره آب پشت سدها، ایران را با مشکلات جدی، چه از لحاظ تأمین آب شرب و چه از لحاظ انرژی تولیدی مورد نیاز نیروگاههای برق آبی مواجه کرده است. همچنین احداث سدهای بیش از حد در پشت رودخانهها در ایران منجر به مشکلاتی مانند خشک شدن دریاچه ارومیه شده که نشان میدهد بیش از ظرفیت به منابع آبی کشور فشار وارد شده است .در سال ١٣٩١، با بهره برداری از نیروگاه ١٠٠٠ مگاواتی گتوند، ظرفیت نیروگاههای آبی در حال بهرهبرداری کشور به 1/9746 مگاوات رسیده است]28[.
2-2-2- انرژی بادی
انرژی باد یکی از صورتهای منابع انرژی تجدید پذیر است که با توجه به ویژگی مشترک انرژیهای تجدیپذیر به صورت گسترده با تمرکز کم( چگالی کم) در اختیار بشر قرار گرفته است. تبدیل انرژی باد به انرژی مکانیکی و سپس انرژی الکتریکی در توربینهای بادی انجام میشود. توربینهای بادی در اندازههای مختلف با اجزای مختلف و ویژگیهای متفاوت با توجه به شرایط محیط و میزان نیاز تولید توان الکتریکی ساخته میشوند، این توربینها از پرهها با قطر چند متر تا حدود 100 متر برای تولید توانهای چندین کیلووات تا 2000 کیلووات مورد استفاده قرار میگیرند. سیستمهای توربین بادی بسته به میزان کنترل پذیری آنها به دو دستهی توربین بادی با سرعت ثابت و توربین باد با سرعت متغیر طبقهبندی میگردند]29[.
در ایران، انرژی بادی دومین منبع تولید برق از منابع انرژی تجدیدپذیر محسوب میشود. بر اساس پروژه پتانسیل سنجی بادی در ایران، پتانسیل بادی قابل استحصال در کشور حدود ١٠٠ گیگاوات است.
2-2-3- انرژی زمینگرمایی
تولید برق با استفاده از منابع انرژی زمین گرمایی با درجه حرارت بالا طی ده سال اخیر رشد قابل ملاحظه‌ای داشته است. در این روش از گرمای پوسته زمین برای تولید برق استفاده می‌شود. این انرژی یا به صورت گرمای مستقیم استفاده می‌شود یا به توان مکانیکی تبدیل شده، سپس به انرژی الکتریکی تبدیل می‌شود. نخستین تلاش‌ها در لاردرلو (ایتالیا) در سال 1904 برای تولید برق با استفاده از انرژی زمین گرمایی صورت گرفت و از آن زمان تا کنون فعالیت‌های زیادی در سراسر دنیا صورت گرفته است.
ساخت نیروگاه‌های دو مداری باعث پیشرفت‌های چشمگیری در تولید برق با استفاده از انرژی زمین گرمایی شده است و در حال حاضر با به تکامل رسیدن این تکنولوژی به طور تجاری از آب‌های گرم زیرزمینی با درجه حرارت معمولی (بیشتر از 100 درجه سانتیگراد) برق تولید می‌شود .
ایران در شمار کشورهایی است که دارای ذخایر قابل توجه برای تولید برق از انرژی زمین گرمایی با استفاده از سیکلهای تبخیر لحظهای و باینری (دوگانه) است و قابلیت تولید برق زمین گرمایی با ظرفیت بیش از ٢٠٠ مگاوات را دارد. بر اساس آخرین مطالعات بیش از ١٠ منطقه مستعد در این خصوص شناسایی شده است.
2-2-4- انرژی خورشیدی
به پدیدهای که در اثر تابش نور بدون استفاده از مکانیزم های محرک، الکتریسیته تولید کند، پدیده فتوولتائیک گویند. پدیده فتوولتائیک تکنولوژی است که در اثر آن انرژی خورشیدی تابشی مستقیماً و بدون ایجاد هر گونه آلودگی به انرژی الکتریکی تبدیل می شود. این رویداد به علت جا به جایی الکترون ها در طول پیوند دو لایه نیمه رسانا بر اثر انرژی ناشی از فوتون های نور می باشد. به هر سیستمی که از این خاصیت استفاده نماید سیستم فتوولتائیک گویند. سیستم های فتوولتائیک مطابق شکل 2-1 از بخش های پنل خورشیدی، کنترل توان و مصرف کننده ها تشکیل شده اند]30[.
3911600274955DC Load
00DC Load
2122170274955Charge Controller
00Charge Controller
761365274955PV Array
00PV Array

2884169281940003679825355590018510253555900
3911600122555Inverter
00Inverter
2384425122555Battery
00Battery
347408533718400
3911600256540AC Load
00AC Load
4411344254000
شکل2-1 ساختار بلوکی سیستم فتوولتائیک
این پدیده انرژی پــاک و غیرآالاینده را با توان نسبتاً خوب ارائه می دهد. یکی از ویژگیهای مناسب سیستم های فتوولتائیک تقسیم بندی این منابع از نظر کاربردشان با توجه به نیاز میکروگرید می باشد. این سیستم ها بنا بر نوع کاربردشان به دو گروه سیستم فتوولتائیک مستقل از شبکه و سیستم فتوولتائیک متصل به شبکه سراسری تقسیم می شوند. بدیهی است استفاده از تکنولوژی فتوولتائیک نیازمند شرایط ویژه تابش نور خورشید می باشد. کشور ایران از تابش خورشیدی به میزان مناسبی برخوردار است و به لحاظ دریافت انرژی خورشیدی در بین مناطق مختلف جهان در بالاترین رده ها قرار گرفته است.


کشورهای ژاپن، چین، آلمان، تایوان و آمریکا رتبههای یکم تا پنجم تولید برق خورشیدی دنیا را در اختیار دارند . این کشورها با سیاستگذاریها و مکانیسمهای حمایتی مناسب توانستهاند ظرفیتهای برق خورشیدی خود را در طول زمان افزایش دهند. 
ایران یکی از کشورهای مناسب در جهت تابش خورشید، روزهای آفتابی، درجه حرارت مناسب در نقاط مختلف با تابش خوب و شبکههای گسترده برق برای جابجایی تولید انرژی الکتریکی از خورشید است، زیرا در بین مدارهای ٢۵ تا ۴٠ درجه عرض شمالی قرار گرفته و میزان تابش خورشیدی آن بین ١٨٠٠ تا ٢٢٠٠ کیلووات ساعت بر مترمربع در سال تخمین زده شده است که بالاتر از میزان متوسط جهانی است.
2-3-تاریخچه سیستمهای فتوولتائیک
عبارت فتوولتاییک تـرکـیـبی از کلمه یونانـی "Photos" به معـنی نـور با "Volt" به معنای تولید الکتریسیته از نور است. انرژی فتوولتائیک تبدیل نور خورشید به الکتریسیته از میان یک سلول فتوولتائیک(PVS) می باشد، که بطور معمول یک سلول خورشیدی نامیده میشود. سلول خورشیدی یک ابزار غیر مکانیکی است که معمولاً از آلیاژ سیلیکون ساخته شده است.
شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جامهای بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدانهای محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد. مهم‌ترین روایتی که درباره استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید. گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته است اشعه خورشید را از راه دور روی کشتیهای رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده است.
در سال 1839 فیزیکدان فرانسوی Edmond Becquerel پروژه - ریسرچ‌ای از مطالعات خود در زمینه فتوولتائیک را با باتری‌تر (Wet Cell) ارائه نمود. او مشاهده نمود ولتاژ باتری وقتی که صفحات نقره‌ای آن تحت تابش نور خورشید قرار می‌گیرند، افزایش می‌یابد.
در سـال ۱۸۸۳ Charles Edgar Fritts که یک مهندس برق اهل نیویورک بود، یک سلول خـورشـیدی سلنیومی ساخت که از برخـی جهات شـبـیه به سـلـولـهای خورشـیـدی سیلیکونی امروزی بود. این ســلـول از یک ویـفـر نازک سـلنیوم تشـکیـل شده بـود که با یک تـوری از سـیـمهـای خیـلی نازک طـلا و یک ورق حفاظـتی از شـیشه پوشانده شده بود. اما سـلول سـاخت او خـیلی کم راندمان بود. راندمان یک سـلول خورشیدی عبارت از درصدی از انرژی خورشیدی تابیده به سطح آن می‌باشد که به انرژی الکتریکی تبدیل شده باشد. کمتر از 1% انرژی خورشیدی تابیده شده به سطح این سلول ابتدایی به الکتریسیته تبدیل می‌شد. با وجود این، سلول‌های سلنیومی سرانجام در نورسنج‌های عکاسی به طور وسیعی بکار گرفته شد.
در سال 1887، هنرین هرتز در طی مطالعات خود متوجه شد که نور ماوراء بنفش حداقل ولتاژ لازم برای ایجاد جرقه برای پرش بین دو الکترود فلزی را تغییر می دهد. فهم کامل و مفصلتر از قوانین اساسی سلولهای خورشیدی در سال 1905 توسط Einstein و در سال 1930 توسط Schottky بوجود آمد. سلولهای خورشیدی از اواسط 1950 موجود بود. اولین سلول خورشیدی سیلیکونی با راندمان حدود 6% با نور مستقیم توسط Daryl Chapin،Gerald Pearson و Calvin Fuller در سال 1954 بوجود آمد که ابتدا برای کاربردهای ماهوارههای فضایی مورد استفاده قرار گرفت. البته برخی اختراع سلول خورشیدی سیلیکونی با راندمان زیر 1% را اولین بار در سال 1941 به Russell Ohl نسبت می دهند. سیر پیشرفت تحقیقات انجام شده بر روی سلولهای خورشیدی بعد از پروژه - ریسرچEinstein در زمینه اثر فتوالکتریک به طور مختصر در جدول ذیل آمده است: 31
جدول2-1: سیر پیرفت تحقیقات در زمینه سلولهای خورشیدی
سال 1916 اثر فتوالکتریک توسط نتایج تجربی Millikan اثبات شد.
سال 1918 دانشمند لهستانی Czochralski راهی برای رشد سیلیکون تک کریستالی ارائه کرد.
سال 1923 Einstein به خاطر تثوری هایش برای توضیح اثر فتوالکتریک جایزه نوبل را کسب کرد.
سال 1951 یک سلول تک کریستالی از ژرمانیوم به صورت یک پیوند p – n رشد داده شد.
سال 1954 اثر فتوولتائیک در کادمیوم گزارش شد. کار اولیه توسط Rappaport ، Loferski و Jenny انجام گرفت. Daryl Chapin ، Gerald Pearson و Calvin Fuller محققان آزمایشگاه بل سلول خورشیدی سیلیکونی با 5/4 % راندمان را گزارش کردند که به فاصله چند ماه با کار یک تیم تحقیقاتی به 6% رسید. آنها نتایج خودرا به Journal of Applied Physics ارسال کردند.
سال 1958 Hoffman Electronics به سلول های با راندمان 9% رسید. اولین ماهواره با انرژی خورشیدی به نام Vanguard I پیاده شد به طوری که سیستم توان ماهواره به مدت 8 سال کار کرد.
سال 1960 Hoffman Electronics به سلول های با راندمان 14% رسید.
سال 1961 اولین کنفرانس متخصصین PV در واشنگتن برگزار شد.
سال 1964 فضاپیمای Nimbus با یک آرایه سلول خورشیدی 470-W راه اندازی شد.
سال 1968 ماهواره OVI-13 با دو پنل CdS راه اندازی شد.
سال 1984 جایزه IEEE Morris N. Liebmann در هفدهمین کنفرانس متخصصین فتوولتائیک به خاطر تلاش تعیین کننده برای استفاده از سیلیکون آمورف در سلول های خورشیدی کم هزینه با قابلیت بالا به David Carlson و Christopher Wronski اعطا شد.
سال 2000 یک خانواده در کلرادو یک سیستم الکتریکی خورشیدی 12 کیلوواتی روی خانه خود راه اندازی کردند.
2-4-ساختار سیستمهای فتوولتائیک
سیستم های فتوولتائیک از سه بخش اصلی تشکیل شدهاند:
ماژول یا پنلهای خورشیدی که مبدل انرژی تابشی خورشید به انرژی الکتریکی میباشد.
قسمت واسطه یا بخش توان مطلوب که انرژی الکتریکی حاصل از سیستمهای فتوولتائیک را بر اساس طراحی انجام شده، متناسب با نیاز مصرف کننده، مدیریت و القاء مینماید.
مصرفکننده یا بار الکتریکی که کلیه مصرف کنندگان الکتریکی اعم از مستقیم و متناوب را متناسب با میزان مصرف شامل می گردد.
همانطوری که در شکلهای2-2 مشاهده میشود، دو ساختار اصلی در سیستم فتوولتائیک وجود دارد که شامل سیستم مستقل(شکلa) و سیستم متصل به شبکه(شکلb) میباشند. همانطوری که از نام سیستم مستقل بر میآید، این سیستم به صورت غیر وابسته به هر منبع قدرت دیگری عمل میکند. سیستم مستقل از شبکه معمولاً الکتریسیته بارهای اختصاصی را تأمین میکند. این سیستم که شامل تاسیسات ذخیرهسازی مثل باتری میباشد امکان برق رسانی در شب و یا در مواقعی که تابش آفتاب ضعیف است را فراهم میکند. در مقابل سیستم موازی با شبکه به صورت موازی با شبکه توزیع برق عمل میکند. این سیستم میتواند انرژی الکتریکی را به شبکه تزریق و یا بارهایی که به شبکه متصل هستند را تغذیه کند.

شکل 2-2- a)دیاگرام سیستم فتوولتائیک مستقل از شبکه. b) دیاگرام سیستم فتوولتائیک متصل به شبکه
همچنین میتوان برای بالا بردن قابلیت اطمینان شبکه از دیزل ژنراتور به عنوان سیستم پشتیبان و یا از ژنراتور بادی استفاده نمود. این سیستمها به سیستمهای هیبرید معروفند (شکل 2-3). سیستمهای هیبریدی میتوانند در هر دو حالت مستقل و متصل به شبکه عمل کنند. اما در حالت اول رایج تر میباشد.

شکل 2-3- دیاگرام سیستم هیبرید فتوولتائیک و ژنراتور پشتیبان
2-5- مدل الکتریکی سلول فتوولتائیک
برای پیدا کردن مدل سلول فتوولتائیک، ابتدا باید مدار معادل این منبع را پیدا کنیم. مدل های ریاضی مختلفی بهبود یافتهاند تا رفتار غیرخطی که ناشی از پیوندهای نیمه هادی است را بیان کنند. در منابع مختلف مدلهای مختلفی از سلول فتوولتائیک از پروسه ساخت و پارامترهای دخیل در محاسبه ولتاژ و جریان ژنراتور فتوولتائیک دیده میشود.
شکل2-4 مدلسازی یک سلول خورشیدی ایدهآل بوسیله یک منبع جریان (تولیدی از نور) موازی با یک دیود معکوس را نشان میدهد. ولی در عمل نتایج حاصل از آزمایش با این مدل به طور کامل مطابقت نمیکند. در نتیجه با تغییراتی در مدل واقعی از مدلهای ریاضی استفاده میکنیم.

شکل 2-4- مدل ایدهآل سلول خورشیدی
مدل های ریاضی زیادی برای توصیف منحنی غیر خطیI-V سلول خورشیدی ارائه شدهاند. که میتوان آنها را در دو مدل رایج یک دیودی و دو دیودی سلول خورشیدی محدود کرد. این دو مدل به علت سادگی و دقت بالا، نظر خیلی از محققان را جلب کردهاند و رایجترین مدلهای سلول خورشیدی هستند. در این پایان نامه نیز از این دو مدل استفاده شده است که در ادامه به معرفی هر کدام از مدلها پرداخته خواهد شد.
2-5-1 مدل دو دیودی
مدل مورد بررسی را با دو دیود در نظر میگیریم که در واقع این مدل همان طوری که در شکل 2-5 نشان داده شده است، مقاومتهای مختلف داخلی سلول فتوولتائیک را در بر میگیرد. این مدل شامل منبع جریان Iph میباشد که تبدیل انرژی تابشی را به جریان الکتریکی مدل میکند. مقاومت موازی Rsh بیانگر نشتی حاصل از اثرات جانبی روی سلول فتوولتائیک، مقاومت سری Rs مقاومتهای متفاوت اتصالات و دیودهای موازی D1 و D2 بیانگر مدل پیوند PN است21.

شکل 2-5- مدل سلول فتوولتائیک با دو دیود
جریان تولید شده توسط ماژول به صورت معادله زیر است:
It=Iph-Id1-Id2-Ish (1-2)
Id1=Isd1expq(Vt+RsItn1kT-1 (2-2) Id2=Isd2expq(Vt+RsItn2kT-1 (3-2) Ish=Vt+RsItRsh (4-2) Vt وIt ولتاژ و جریان خروجی فتوولتائیک میباشد. q بار الکتریکی، Iph جریان تولید شده آرایه خورشیدی، Is1,2 جریان اشباع دیودها، n1,2 ضریب ایدهآل پیوند دیودهای D1 و D2، K ثابت بولتزمن، T دمای سلول میباشند.
با توجه به روابط فوق جریان خروجی ماژول فتوولتائیک وابسته به جریان تابشی است که خود وابسته به تابش خورشید و دمای پیوند سلولهای ماژول میباشد. به همین ترتیب توانی که یک ماژول میتواند منتقل کند، وابسته به تابش خورشید و دمای پیوند نیمه هادی است22-25.
در اینجا Isd1 و Isd2 جریانهای تخلیه و اشباع دیودهای اول و دوم هستند، Vt ولتاژ دو سر ترمینال، Rs و Rsh نیز مقاومت سری و موازی هستند. ضریب q شارژ الکتریکی، K نشان دهنده ثابت بولتزمن ، n1 و n2 ضریب ایده آل بودن دیود ها و T دمایی است که آزمایش در آن دما انجام گرفته است و واحد آن (ok) است.
با داشتن دمای آزمایش و اندازه گیری ولتاژ و جریان خروجی ترمینال، 7 پارامتر دیگر مجهول میماند. میتوان با استفاده از یک تکنیک بهینهسازی و با کمک دادههای بدست آمده از آزمایش پارامترهای مجهول را بدست آورد.
x=Rs Rsh Iph Isd1 Isd2 n1 n2 Double Diode Model (5-2)
2-5-2- مدل تک دیودی
همانطور که در شکل 2-6 نشان داده شده است مدل تک دیودی به خاطر پیچیدگی کمتر و نزدیک تر بودن به مدل ایدهآل نسبت به مدلهای دیگر رایج تر است. در این مدل جریان دو دیود با یکدیگر ترکیب شده اند. هر چند به نظر می رسد که این مدل نسبت به مدل دو دیودی دارای دقت کمتری باشد ولی در عمل مینیمم که به خاطر سادگی و سرعت بیشتر برای رسیدن به جواب نهایی این مدل بیشتر مورد توجه است و سعی می شود داده های آزمایش را با منحنی I-V سلول خورشیدی براساس این مدل بررسی نمایند]32[.

شکل 2-6- مدل تک دیودی سلول خورشیدی
رابطه جریان ترمینال مدل تک دیوده به صورت زیر ارائه میباشد.
It=Iph-Isdexpq(Vt-RsItnkT-1-Vt-RsItRsh (6-2) همچنین پارامترهای مجهولی که میبایست بدست آید به 5 پارامتر Rs ، Rsh ، Iph ، Isd و n کاهش یافتهاند.
x=Rs Rsh Iph Isd n Single Diode Model (7-2)
2-6- مشخصه ماژولهای سیستم فتوولتائیک
مشخصه سلول فتوولتائیک تحت تأثیر تابش نور خورشید و همچنین دمای کاری آن است. شکلهای 2-7 و 2-8 مشخصههای خروجی ماژول یک سیستم فتوولتائیک را نشان می دهند. در دمای ثابت با افزایش میزان تابش، توان خروجی افزایش مییابد. از طرف دیگر اگر میزان تابش ثابت باشد و دما کاهش یابد توان خروجی زیاد میشود.

شکل 2-7- مشخصه ماژول فتوولتائیک (تغییرات توان خروجی نسبت به تغییرات بار و تغییرات دما)]33[
با توجه به شکل 2-8 با تغییر بار سلول خورشیدی، مشخصه نیز تغییر میکند که ناشی از اثر مقاومت سری است.

شکل 2-8- مشخصه ماژول فتوولتائیک (تغییرات توان خروجی نسبت به تغییرات بار)
2-7- نقطه بیشینه توان سلول خورشیدی
بشر از ابتدا تاکنون به دنبال این بوده است که از ابزار و وسایلی که در اختیار دارد حداکثر استفاده را ببرد. استفاده از سلول خورشیدی نیز از این قاعده مستثنا نیست و همواره به دنبال راهی بوده که توان خروجی سلول خورشیدی را به حداکثر مقدار خود برساند و در واقع بیشترین کارایی را از سلول خورشیدی ببرد.
به مقدار توان بیشینهای که یک سلول خورشیدی در یک دمای معین میتواند ارائه دهد، نقطه بیشینه توان سلول خورشیدی (MPP) میگویند. در واقع در این نقطه، سلول خورشیدی دارای بیشترین راندمان میباشد. نقطه بیشینه توان سلول خورشیدی زمانی اهمیت خود را نشان میدهد که بخواهیم در یک سایت خورشیدی حداکثر استفاده از سلول خورشیدی را بدست آوریم و به عبارتی توان خروجی سایت را به حداکثر برسانیم. در شکل 2-9 منحنی توان- ولتاژ و جریان- ولتاژ یک سلول خورشیدی رسم شده است.

شکل 2-9- نقطه بیشینه توان سلول خورشیدی]33[
حداکثر ولتاژ و جریان قابل حصول از یک سلول خورشیدی Voc و Isc است. با توجه به شکل 2-10 مشاهده میشود که ولتاژ نقطه بیشینه توان کمتر از ولتاژ مدار باز سلول خورشیدی است و همچنین جریان نقطه بیشینه توان نیز کمتر از جریان اتصال کوتاه سلول خورشیدی است.

شکل 2-10- نقطه بیشینه توان یک سلول خورشیدی در تابش های متفاوت
2-7-1 روش های یافتن MPP
مختصات نقطه بیشینه توان که در آن ولتاژ و جریان سلول خورشیدی بیشترین توان خروجی را به بار انتقال میدهد، دارای اهمیت خاصی است. از آنجایی که در شرایط کاری متفاوت، مختصات نقطه بیشینه توان تغییر میکند، لذا داشتن نقطه بیشینه توان در شرایط کاری مختلف مهم است. روش مستقیم برای یافتن نقطه بیشینه توان مناسبتر از سایر روشهای موجود است. در روش مستقیم، میبایست رابطه بین ولتاژ و جریان سلول خورشیدی را بدست آورد و با مشتقگیری از توان نسبت به ولتاژ ترمینال، نقطه بیشینه توان را پیدا کرد. دقت روش مستقیم مستلزم دقت شناسایی پارامترهای سیستم میباشد.
در روش مستقیم، ابتدا مدل دقیقی از سلول خورشیدی تهیه میشود و با توجه به دما و شدت تابش، از معادله توان سلول خورشیدی که به صورت زیر است، مشتق گرفته و نقطه اکسترمم آن پیدا میشود. و یا به جای مشتق گرفتن، از روش نیوتن برای یافتن نقطه بیشینه توان سلول خورشیدی استفاده میشود. توان خروجی از رابطه2-8 محاسبه میشود که در آن It برای مدل دو دیود و تک دیود به ترتیب از روابط 2-1 و 2-6 بدست میآیند. در این پایان نامه شدت تابش به صورت عاملی که در ولتاژ و جریان ترمینال سلول خورشیدی اثر میگذارد، لحاظ شده است.
Pout=Vt.It (8-2)فصل سوم
معرفی الگوریتم رقابت استعماری
2015490448945
3-1-مروری تاریخی بر پدیده استعمار
استعمار در لغت به سیاست توسعه قدرت و نفوذ یک کشور در حوزه خارج از 1 امپریالیزم قلمرو شناخته شده ، اطلاق میشود. استعمار در مراحل ابتدایی، به صورت نفوذ سیاسی-نظامی در کشورها و به صورت صرف استفاده از منابع زمینی، انسانی و سیاسی بوده است. بعضی مواقع نیز استعمار، به صرف جلوگیری از نفوذ کشور استعمارگر رقیب انجام میشد. به هر حال کشورهای استعمارگر رقابت شدیدی را برای به استعمار کشیدن مستعمرات همدیگر نشان میدادند. این رقابت به نوبه خود باعث رشد و توسعه کشورهای استعمارگر از لحاظ سیاسی، نظامی و اقتصادی گردید. زیرا کشورها برای داشتن امکان رقابت، مجبور به توسعه بودند. در حالتهای قدیمیتر، استعمارگران با بهرهگیری از منابع زمینی، انسانی و غیره کشور مستعمره، در صدد افزایش قدرت خود بودند و پیشرفت مستعمرات اهمیت نداشت. اما بعدها با افزایش ارتباط میان ملل و رشد انسانی، استعمارگران برای ادامه نفوذ خود، به نوعی از اقبال عمومی (حمایت مردمی) نیز احتیاج پیدا کردند. بدین ترتیب کشورهای استعمارگر شروع به ایجاد عمران و آبادی (هر چند ظاهری) در مستعمراتشان نمودند. بدین ترتیب مستعمرات، شاهد پیشرفت در زمینههای اقتصادی، اجتماعی و انسانی شدند که عامل این پیشرفت به اجبار، کشور استعمارگر بود. دلیل نامگذاری این فرایند با نام "استعمار" که ریشه در کلمه عمران و آبادی دارد، نیز، همین مسئله میباشد. البته دریافت اقبال عمومی تنها دلیل ایجاد عمران توسط استعمارگران در مستعمرات نبود. یک دلیل دیگر ایجاد سلطه فرهنگی بر مستعمرات در راستای اجرای سیاست همگونسازی بود. به عنوان مثال کشورهایی نظیر فرانسه و انگلیس به ایجاد مدارس انگلیسی زبان و فرانسوی زبان در مستعمرات خود پرداختند. این اقدام به دلایل مختلفی صورت میگرفت که در رأس این دلایل افزایش نفوذ فرهنگی در مستعمرات بوده است. ناگفته نماند که فرآیند استعمار (حداقل بعد فرهنگی آن) با همه تبعات منفی آن در بعضی از کشورهای امپریالیست به چشم یک جهاد فکری برای نجات بشر نیز نگریسته میشد.
از دید بهینهسازی، استعمار بعضی از کشورها را از یک دوره معمولی تمدن خارج کرده و آنها را به یک حوزه مینیمم دیگر میبرد که در بعضی موارد وضعیت این حوزه مینیمم بهتر از موقعیت قبلی کشور مستعمره است. اما به هر حال این حرکت مستلزم پیشروی مستعمره در راستای محورهای مختلف اقتصادی و فرهنگی به سمت یک امپریالیست قویتر میباشد. یعنی از میان رفتن بعضی از ساختارهای فرهنگی و اجتماعی. در شکل 3-1، مستعمره در نتیجه سیاست همگونسازی از یک ناحیه مینیمم خارج شده و وارد یک ناحیه مینیمم دیگر میشود که در آن وضعیت بهتری را دارا میباشد. ادامه این حرکت میتواند به جذب کامل کشور مستعمره در کشور استعمارگر بیانجامد.

شکل3-1: اعمال سیاست جذب از طرف استعمار گران بر مستعمرات
3-4-الگوریتم پیشنهادی
همانند دیگر الگوریتمهای تکاملی، این الگوریتم نیز با ایجاد تعدادی جمعیت اولیه تصادفی شروع میشودکه هر کدام از آنها یک "کشور" میباشند. تعدادی از بهترین عناصر جمعیت نیز به عنوان مستعمره، در نظر گرفته میشوند. استعمارگران بسته به قدرتشان، مستعمرات را با یک روند خاص که در ادامه تشریح شده است به سمت خود میکشند. قدرت کل هر امپراطوری، به هر دو بخش تشکیل دهنده آن یعنی کشور امپریالیست (به عنوان هسته مرکزی) و مستعمرات آن، بستگی دارد. در حالت ریاضی، این وابستگی با تعریف قدرت امپراطوری به صورت مجموع قدرت کشور امپریالیست، به اضافه درصدی از میانگین قدرت مستعمرات آن، مدل شده است.
با شکلگیری امپراطوریهای اولیه، رقابت امپریالیستی میان آنها شروع میشود. هر امپراطوری که نتواند در رقابت استعماری، موفق عمل کند و بر قدرت خود بیفزاید (و یا حداقل از کاهش نفوذش جلوگیری کند)، از صحنه رقابت استعماری، حذف خواهد شد. بنابراین بقای یک امپراطوری، وابسته به قدرت آن در جذب مستعمرات امپراطوریهای رقیب، و به سیطره در آوردن آنها خواهد بود. در نتیجه، در جریان رقابتهای امپریالیستی، به تدریج بر قدرت امپراطوریهای بزرگتر افزوده شده و امپراطوریهای ضعیفتر، حذف خواهند شد. امپراطوریها برای افزایش قدرت خود، مجبور خواهند شد تا مستعمرات خود را نیز پیشرفت دهند. در ادامه مباحث این فصل، بخشهای مختلف الگوریتم، مورد بررسی قرار میگیرند.

27622560712340031369003402329005443854225425000481584022542490012331701903095اگر مستعمره ای در یک امپراطوری وجود داشته باشد که هزینه ای کمتر از امپریالیست داشته باشد
00اگر مستعمره ای در یک امپراطوری وجود داشته باشد که هزینه ای کمتر از امپریالیست داشته باشد
25717506497955پایان
00پایان
318198462642750017646655857875اگر تنها یک امپراطوری باقی مانده باشد
00اگر تنها یک امپراطوری باقی مانده باشد
318134956153050018497555188585امپراطوری ضعیف را حذف کن
00امپراطوری ضعیف را حذف کن
318198449568100031603944149090008718553572510هزینه کل یک امپراطوری را حساب کن با در نظر گرفتن هزینه امپریالیست و مستعمراتشان
00هزینه کل یک امپراطوری را حساب کن با در نظر گرفتن هزینه امپریالیست و مستعمراتشان
313880433197800017640302869565جای مستعمره و امپریالیست را با هم عوض کن
00جای مستعمره و امپریالیست را با هم عوض کن
31394392638425003149599167195500
-شکل دهی امپراطوریهای اولیه
در بهینهسازی، هدف یافتن یک جواب بهینه بر حسب متغیرهای مسئله، است. ما یک آرایه از متغیرهای مسئله را که باید بهینه شوند، ایجاد میکنیم(مشابه الگوریتم ژنتیک). در یک آرایه، کروکوزوم مسئلهی بهینه سازی N × var است. این آرایه به var بعدی، یک کشور، یک آرایهی 1 N صورت زیر تعریف میشود:
Country=p1,p2,p3,…,pNvar (1-3)مقادیر متغیرها در یک کشور، به صورت اعداد اعشاری نمایش داده میشوند. از دیدگاه تاریخی فرهنگی، اجزای تشکیل دهنده یک کشور را میتوان ویژگیهای اجتماعی– سیاسی آن کشور، همچون فرهنگ، زبان، ساختار اقتصادی و سایر ویژگیها در نظر گرفت.

شکل 3-3: اجزای سیاسی اجتماعی تشکیل دهنده یک کشور
شکل 3 -3 این مسئله را به خوبی نشان میدهد. مطابق این شکل متغیرهای مجهول تابع هزینه که در طی فرآیند بهینهسازی جستجو میشوند، در نگاه اجتماعی ـ سیاسی ویژگیهای تاریخی و فرهنگی هستند که یک کشور را به نقطه مینیمم تابع هزینه رهنمون میسازند. در حقیقت الگوریتم پیشنهادی در حل یک مسئله بهینهسازی به دنبال بهترین کشور (کشوری با بهترین ویژگیهای اجتماعی -سیاسی) میباشد. یافتن این کشور در حقیقت معادل یافتن بهترین پارامترهای مسئله است که کمترین مقدار تابع هزینه را تولید میکنند. به عنوان یک مثال فرض میشود یک کنترل کننده PID برای یک سیستم کنترلی طراحی شده است که مثلاً دارای کمترین میزان مجموع فراجهش و انتگرال قدر مطلق خطا باشد. در یک حالت نوعی، جوابهای ممکنه میتوانند به صورت جوابهایی که به یک خروجی پایدار منجر میشوند، تعریف شوند. برای این مسئله دستههایی از جوابهای ممکنه به صورت اولیه ایجاد شده است. در این مسئله کشور iام به صورت زیر تعریف میشود.
countryi=KPi,KIi,KDi (2-3) برای شروع الگوریتم باید تعدادی از این کشورها (به تعداد کشورهای اولیه الگوریتم) ایجاد شوند. بنابراین ماتریس کل کشورها به صورت تصادفی اولیه تشکیل میشوند.

(3-3)
هزینه ی یک کشور با ارزیابی تابع f توسط متغیرها ایجاد میشود.
(3-4)
در مسئله طراحی کنترل کننده، با هدف در نظر گرفته شده، این تابع به صورت زیر خواهد بود:
(5-3)که در آن MaxOvershoot ماکزیمم فراجهش و IAE انتگرال قدر مطلق خطا را ارائه میدهند. و w1 و w2 ضرایب وزنی هستند که میزان اهمیت هر یک از اهداف را نشان میدهد. بنابراین کاری که برای بدست آوردن هزینه یک کشور (دسته پارامترهای کنترل کننده PID) باید انجام شود، این است که هر دسته از این ضرایب به عنوان کنترلکننده در نظر گرفته شده و پاسخ پله سیستم برای این کنترلر بدست میآید. در نهایت با محاسبه ماکزیمم فراجهش و انتگرال قدر مطلق خطا، مجموع آنها به عنوان هزینه این کشور (ضرایب کنترلکننده) محاسبه میشود. هدف یافتن بهترین کشور (بهترین دسته ضرایب کنترلکننده) است. الگوریتم معرفی شده در این نوشتار، با تولید یک دسته اولیه از این ضرایب و دستهبندی آنها در قالب امپراطوریها و اعمال سیاست جذب از طرف استعمارگران به روی مستعمرات و همچنین با ایجاد رقابت استعماری میان امپراطوریها به جستجوی بهترین کشور میپردازد.
برای شروع الگوریتم تعداد n کشور اولیه ایجاد میشود ، تعداد اعضای این جمعیت (کشورهای دارای کمترین مقدار تابع هزینه) به عنوان امپریالیست تا از کشورها، مستعمراتی را میدهندکه هرکدام Ncol است. باقیمانده به یک امپراطوری تعلق دارند. برای تقسیم مستعمرات اولیه بین امپریالستها، به هر امپریالیست، تعدادی از مستعمرات را که این تعداد، متناسب با قدرت آن است، میدهیم. برای انجام این کار، با داشتن هزینه همه امپریالیستها، هزینه نرمالیزه آنها به صورت زیر در نظر گرفته میشود:
(6-3)
که در آن بیشترین هزینه میان امپریالیستها و هزینه نرمالیزه شده این امپریالیست میباشد. هر امپریالیستی که دارای هزینه بیشتری Cn میباشد (امپریالیست ضعیفتری باشد)، دارای هزینه نرمالیزه کمتری خواهد بود. با داشتن هزینه نرمالیزه، قدرت نسبی نرمالیزهی هر امپریالیست، به صورت زیر محاسبه شده و بر مبنای آن، کشورهای مستعمره، بین امپریالسیتها تقسیم میشوند:
(7-3)از یک دید دیگر، قدرت نرمالیزه شده یک امپریالیست، نسبت مستعمراتی است که توسط آن امپریالیست اداره میشود. بنابراین تعداد اولیهی مستعمرات یک امپریالیست برابر خواهد بود با:
(8-3)در رابطه فوق Ncol تعداد کل، N. C n تعداد اولیه مستعمرات یک امپراطوری و در آن کشورهای مستعمره موجود در جمعیت کشورهای اولیه است. round تابعی است که نزدیکترین عدد صحیح به یک عدد اعشاری را میدهد. با در نظر گرفتن.N C برای هر امپراطوری، به این تعداد از کشورهای مستعمره اولیه را به صورت تصادفی انتخاب کرده و به امپریالیست nام داده میشود. با داشتن حالت اولیه تمام امپراطوریها، الگوریتم رقابت استعماری شروع میشود. روند تکامل در یک حلقه قرار دارد که تا برآورده شدن یک شرط توقف، ادامه مییابد.
شکل 3 -4 چگونگی شکلگیری امپراطوریهای اولیه را نشان میدهد. همانگونه که در این شکل نشان داده شده است امپراطوریهای بزرگتر، تعداد بیشتری مستعمره دارند. در این شکل، امپریالست شماره 1 قویترین امپراطوری را ایجاد کرده است و بیشترین تعداد مستعمرات را دارد.

شکل3-4: چگونگی شکل گیری امپراطوری های اولیه]34[
3-4-2-مدلسازی سیاست جذب: حرکت مستعمره ها به سمت امپریالیست
جذب با هدف تحلیل فرهنگ و ساختار اجتماعی سیاست همگونسازی مستعمرات در فرهنگ حکومت مرکزی انجام میگرفت. همانگونه که قبلاً نیز بیان شد، کشورهای استعمارگر، برای افزایش نفوذ خود، شروع به ایجاد عمران زیرساختهای حمل و نقل، تاسیس دانشگاه و ... کردند. به عنوان مثال کشورهایی نظیر انگلیس و فرانسه با تعقیب سیاست همگونسازی در مستعمرات خود در فکر ایجاد و فرانسه نو انگلیس نو در مستعمرات خویش بودند. با در نظر گرفتن شیوه نمایش یک کشور در حل مسلئه بهینهسازی، در حقیقت این حکومت مرکزی با اعمال سیاست جذب سعی داشت تا کشور مستعمره را در راستای ابعاد مختلف اجتماعی سیاسی به خود نزدیک کند. این بخش از فرآیند استعمار در الگوریتم بهینهسازی، به صورت حرکت مستعمرات به سمت کشور امپریالیست، مدل شده است. شکل 5-3، شمای کلی این حرکت را نشان میدهد.

شکل3-5: شمای کلی حرکت مستعمرات به سمت امپریالیست.
مطابق این شکل کشور امپریالیست، کشور مستعمره را در راستای محورهای فرهنگ و زبان به سمت خود جذب میکند. همانگونه که در این شکل نشان داده شده است، کشور مستعمره (Colony)، به اندازه x واحد در جهت خط واصل مستعمره به استعمارگر (Imperialist)، حرکت کرده و به موقعیت جدید New Position of Colony)) ، کشانده میشود. در این شکل، فاصله میان استعمارگر و مستعمره با d نشان داده شده است. x نیز عددی تصادفی با توزیع یکنواخت (و یا هر توزیع مناسب دیگر) میباشد. یعنی برای x داریم:
(9-3)بررسی تاریخی پدیده همگونسازی، یک حقیقت آشکار در این زمینه این است که علی رغم اینکه کشورهای استعمارگر بطور جدی پیگیر سیاست جذب بودند، اما وقایع بطور کامل مطابق سیاست اعمال شده آنها پیش نمیرفت و انحرافاتی در نتیجه کار وجود داشت. در الگوریتم معرفی شده، این انحراف احتمالی با افزودن یک زاویه تصادفی به مسیر جذب مستعمرات، انجام میگیرد. بدین منظور، در حرکت مستعمرات به سمت استعمارگر، کمی زاویه تصادفی نیز به جهت حرکت مستعمره، اضافه میکنیم. شکل 4 -5 این حالت را نشان میدهد. بدین منظور اینبار به جای حرکت به اندازه x ، به سمت کشور استعمارگر و در جهت بردار واصل مستعمره به استعمارگر، به همان میزان، ولی با انحراف θ در مسیر، به حرکت خود ادامه میدهیم. θ را به صورت تصادفی و با توزیع یکنواخت در نظر میگیریم (اما هر توزیع دلخواه و مناسب دیگر نیز میتواند استفاده شود). پس:
(10-3)در این رابطه، γ پارامتری دلخواه میباشد که افزایش آن باعث افزایش جستجوی اطراف امپریالیست شده و کاهش آن نیز باعث میشود تا مستعمرات تا حد ممکن، به بردار واصل مستعمره به استعمارگر، نزدیک حرکت کنند. با در نظر گرفتن واحد رادیان برای θ، عددی نزدیک به π/4، در اکثر پیادهسازیها، انتخاب مناسبی بوده است.
3-4-3-جابجایی موقعیت مستعمره و امپریالیست
سیاست جذب در عین نابودی ساختارهای اجتماعی سیاسی کشور مستعمره در بعضی موارد نتایج مثبتی را نیز برای آنها در پیداشت. بعضی از کشورها در نتیجه اعمال این سیاست به نوعی از خودباوری عمومی دست یافتند و پس از مدتی همان تحصیل کردهگان (به عبارت دیگر جذب شدگان فرهنگ استعماری) بودند که به رهبری ملت خود برای رهایی از چنگال استعمار پرداختند. نمونههای فراوانی از این موارد را میتوان در مستعمرات انگلیس و فرانسه یافت. از سوی دیگر نگاهی به فراز و نشیب چرخش قدرت در کشورها به خوبی نشان میدهد که کشورهایی که زمانی در اوج قدرت سیاسی – نظامی بودند، پس از مدتی سقوط کردند و در مقابل کشورهایی سکان قدرت را در دست گرفتند که زمانی هیچ قدرتی در دست نداشنتد. در مدلسازی این واقعه تاریخی در الگوریتم معرفی شده به این صورت عمل شده است که در حین حرکت مستعمرات به سمت کشور استعمارگر، ممکن است بعضی از این مستعمرات به موقعیتی بهتر از امپریالیست برسند (به نقاطی در تابع هزینه برسند که هزینه کمتری را نسبت به مقدار تابع هزینه در موقعیت امپریالیست، تولید میکنند.) در این حالت، کشور استعمارگر و کشور مستعمره، جای خود را با همدیگر عوض کرده و الگوریتم با کشور استعمارگر در موقعیت جدید ادامه یافته و این بار کشور امپریالیست جدید است که شروع به اعمال سیاست همگونسازی بر مستعمرات خود میکند. تغییر جای استعمارگر و مستعمره، در شکل 3-7 نشان داده شده است. در این شکل، بهترین مستعمرهی امپراطوری، که هزینهای کمتر از خود امپریالیست دارد، به رنگ تیرهتر، نشان داده شده است. شکل 3-6 کل امپراطوری را پس از تغییر موقعیتها، نشان میدهد.

شکل 3-6: تغییر جای استعمارگر و مستمره شکل3-7: کل امپراطوری، پس از تغییر موقعیت ها
3-4-4-قدرت کل یک امپراطوری
قدرت یک امپراطوری برابر است با قدرت کشور استعمارگر، به اضافه درصدی از قدرت کل مستعمرات آن. بدین ترتیب برای هزینه کل یک امپراطوری داریم:
(11-3)که در آن T C هزینه کل امپراطوری nام و ξ عددی مثبت است که معمولاً بین صفر و یک و نزدیک به صفر در نظر گرفته میشود. کوچک در نظر گرفتن ξ، باعث میشود که هزینه کل یک امپراطوری، تقریباً برابر با هزینه حکومت مرکزی آن (کشورامپریالیست)، شود و افزایش ξ نیز باعث افزایش تأثیر میزان هزینه مستعمرات یک امپراطوری در تعیین هزینه کل آن میشود. در حالت نوعی در اکثر پیادهسازی به جوابهای مطلوبی منجر شده است.
3-4-5-رقابت استعماری
همانگونه که قبلاً نیز بیان شد، هر امپراطوری که نتواند بر قدرت خود بیفزاید و قدرت رقابت خود را از دست بدهد، در جریان رقابتهای امپریالیستی، حذف خواهد شد. این حذف شدن، به صورت تدریجی صورت میپذیرد. بدین معنی که به مرور زمان، امپراطوریهای ضعیف، مستعمرات خود را از دست داده و امپراطوریهای قویتر، این مستعمرات را تصاحب کرده و بر قدرت خویش میافزایند. برای مدل کردن این واقعیت، فرض میکنیم که امپراطوری در حال حذف، ضعیفترین امپراطوری موجود است. بدین ترتیب، در تکرار الگوریتم، یکی یا چند تا از ضعیفترین مستعمرات امپراطوری را برداشته و برای تصاحب این مستعمرات، رقابتی را میان کلیه امپراطوریها ایجاد میکنیم. مستعمرات مذکور، لزوماً توسط قویترین امپراطوری، تصاحب نخواهند شد، بلکه امپراطوریهای قویتر، احتمال تصاحب بیشتری دارند. شکل 4-8 شمای کلی این بخش از الگوریتم را نشان میدهد:

شکل3-8: شمای کلی رقابت استعماری: امپراطوری های بزرگتر، با احتمال بیشتری،مستعمرات امپراطوری های دیگر را تصاحب می کنند.]35[
در این شکل امپراطوری شماره 1 به عنوان ضعیفترین امپراطوری در نظر گرفته شده و یکی از مستعمرات آن در معرض رقابت امپریالیستی قرار گرفته است و امپراطوریهای 2 تا N برای تصاحب آان با هم رقابت میکنند. برای مدلسازی رقابت میان امپراطوریها برای تصاحب این مستعمرات، ابتدا احتمال تصاحب هر امپراطوری (که متناسب با قدرت آن امپراطوری میباشد)، را با در نظر گرفتن هزینه کل امپراطوری، به ترتیب زیر محاسبه میکنیم. ابتدا از روی هزینه کل امپراطوری، هزینه کل نرمالیزه شده آن را تعیین میکنیم:
(12-3)در این رابطه T.Cn هزینه کل امپراطوری nام وn.t.cn نیز، هزینه کل نرمالیزه شده آن امپراطوری میباشد. هر امپراطوری که T.Cn کمتری داشته باشد n.t.cnبیشتری خواهد داشت در حقیقت T.Cn معادل هزینه کل یک امپراطوری و n.t.cn معادل قدرت کل آن میباشد. امپراطوری با کمترین هزینه، دارای بیشترین قدرت است. با داشتن هزینه کل نرمالیزه شده، احتمال (قدرت) تصاحب مستعمره رقابت، توسط هر امپراطوری، به صورت زیر محاسبه میشود:
(13-3)با داشتن احتمال تصاحب هر امپراطوری، مکانیزمی همانند چرخه رولت در الگوریتم ژنتیک مورد نیاز است تا مستعمره مورد رقابت را با احتمال متناسب با قدرت امپراطوریها در اختیار یکی از آنها قرار دهد. در کنار امکان استفاده از چرخ رولت موجود، در این نوشتار مکانیزم جدیدی برای پیادهسازی این فرآیند معرفی شده است که نسبت به چرخه رولت دارای هزینه محاسباتی بسیار کمتری میباشد. زیرا عملیات نسبتاً را که در چرخه رولت مورد نیاز است 2 زیاد مربوط به محاسبه تابع توزیع جمعی احتمال نیاز دارد. در ادامه مکانیزم مطرح 3 را حذف میکند و فقط به داشتن تابع چگالی احتمال شده برای اختصاص متناسب با احتمال مستعمره مورد رقابت به امپراطوری های رقیب توضیح داده میشود.
با داشتن احتمال تصاحب هر امپراطوری، برای اینکه مستعمرات مذکور را به صورت تصادفی، ولی با احتمال وابسته به احتمال تصاحب هر امپراطوری، بین امپراطوریها تقسیم کنیم؛ بردار P را از روی مقادیر احتمال فوق، به صورت زیر تشکیل میدهیم:
(14-3)بردار P دارای سایز 1*Nimp می باشد و از مقادیر احتمال تصاحب امپراطوری ها تشکیل شده است. سپس بردار تصادفی R، همسایز با بردار P را تشکیل می دهیم. آرایه های این بردار، اعداد تصادفی R، همسایز با بردار P را تشکیل می دهیم. آرایه های این بردار، اعداد تصادفی با توزیع یکنواخت در بازه [0,1] می باشند.
(15-3) (16-3)سپس بردار D را به صورت زیر تشکیل می دهیم:
(17-3)با داشتن بردار D ، مستعمرات مذکور را به امپراطوریی میدهیم که اندیس مربوط به آن در بردار D بزرگتر از بقیه میباشد. امپراطوریای که بیشترین احتمال تصاحب راداشته باشد، با احتمال بیشتری اندیس مربوط به آن در بردار D ، بیشترین مقدار را خواهد داشت. عدم نیاز به محاسبه CDF باعث میشود که این مکانیزم نسبت به چرخه رولت با سرعت به مراتببیشتریعملکند. مکانیزم جدید مطرح شده نه تنها میتواند دراختصاص مستعمره به امپراطوری بر حسب احتمال تصاحب آنها مفید باشد، بلکه بهعنوان یک مکانیزم انتخاب بر حسب احتمال میتواند جایگزین چرخه رولت درالگوریتم ژنتیک برای انتخاب والدین شود و سرعت اجرای عملیات در آن را تا حد زیادی افزایش دهد. با تصاحب مستعمره توسط یکی از امپراطوری ها، عملیات این مرحله از الگوریتم نیز به پایان میرسد.
3-4-6-سقوط امپراطوریهای ضعیف
الگوریتم مورد نظر تا برآورده شدن یک شرط همگرایی، و یا تا اتمام تعداد کل تکرارها، ادامه مییابد. پس از مدتی، همه امپراطوریها، سقوط کرده و تنها یک امپراطوری خواهیم داشت و بقیه کشورها تحت کنترل این امپراطوری واحد، قرار میگیرند. در این دنیای ایدهآل جدید، همهی مستعمرات، توسط یک امپراطوری واحد اداره میشوند و موقعیتها و هزینههای مستعمرات، برابر با موقعیت و هزینه کشور امپریالیست است. در این دنیای جدید، تفاوتی، نه تنها، میان مستعمرات، بلکه میان مستعمرات و کشور امپریالیست، وجود ندارد. به عبارت دیگر، همهی کشورها، در عین حال، هم مستعمره و هم استعمارگرند. در چنین موقعیتی رقابت امپریالیستی به پایان رسیده و به عنوان یکی از شروط توقف الگوریتم متوقف میشود. شبه کد مربوط به الگوریتم پیشنهادی در شکل 3 -9، نشان داده شده است.

شکل3-9: سقوط امپراطوری شماره 4، به علت از دست دادن کلیه مستعمراتش، دیگر قدرتی برای رقابت ندارد و باید از میان بقیه امپراطوری ها حذف شود.
3-4-7-شبه کد مربوط به الگوریتم رقابت استعماری
1.چند نقطه تصادفی روی تابع انتخاب کرده و امپراطوری های اولیه را تشکیل دهید.
2.مستعمرات به سمت کشور امپریالیست حرکت دهید ( همسان سازی مستعمرات).
3.اگر مستعمره ای در امپراطوری وجود داشته باشد که هزینه ی کمتر از امپریالیست داشته باشد، جای مستعمره و امپریالیست را با هم عوض کنید.
4.هزینه ی کل یک امپراتوری را حساب کنید.(با در نظر گرفتن هزینه ی امپریالیست و مستعمراتشان)
5. یک مستعمره از ضعیف ترین امپراطوری انتخاب کرده و آن را به امپراطوری ای که بیشترین احتمال تصاحب را دارد، بدهید.

dad105

ارزیابی‌های فنی-اقتصادی و نیز آنالیز‌های هزینه سرمایه گذاری تجهیزات و هزینه بهره‌برداری برای حالت‌های مختلف برای نصب واحد‌های پراکنده معمولا برای شبکه‌های توزیع پسیو مطالعه و مقایسه شده‌اند.[] در طراحی یک شبکه توزیع پسیو معمولا منابع تولید پراکنده با یک ضریب توان ثابت کار می‌کنند و در شبکه از تپ جنجر استفاده نمی‌شود و در صورت امکان تپ جنجر تنها در پست فوق توزیع وجود دارد. بهره‌بردار شبکه انتقال (TSO) و بهره‌بردار شبکه توزیع (DSO) بطور معمول منابع پراکنده را بصورت شراکتی نصب می‌کنند. در حالی که برای حالتی که خروجی این منابع دارای انقطاع باشد منابع تولید پراکنده بصورت غیر مشارکتی مورد بهره‌برداری قرار می‌گیرند. [] در سال‌های اخیر با بوجود امدن شبکه‌های اکتیو طرح‌هایی برنامه ریزی شده است که برای بهره‌بردار شبکه توزیع و انتقال در مقایسه با شبکه‌های پسیو موجود به صرفه تر باشد. بهره‌برداری اکتیو از شبکه توزیع باعث می‌شود که بتوان بصورت بهینه و ماکزیمم بهره‌وری از تجهیزات شبکه را جهت تطبیق دادن ظرفیت بیشتر برای نصب منابع تولید پراکنده با ساختار فعلی شبکه توزیع را داشته باشیم و از سرمایه گذاری‌های زیاد در شبکه جلو‌گیری شود. تحقیقات زیادی نیز برای نشان دادن مزایای بهره‌برداری اکتیو، از شبکه‌ی توزیع صورت گرفته است. امروزه با افزایش گرایش برای مجتمع کردن تعداد بیشتر منابع پراکنده در شبکه انتقال و توزیع، برنامه‌ریزی برای ماکزیمم کردن ضریب نفوذ منابع تولید پراکنده در شبکه از اولویت‌های بهره‌بردار‌های شبکه ‌در اکثر کشور‌ها می‌باشد. در عین حال افزایش ولتاژ باس‌های شبکه یکی از قیود شبکه می‌باشد که افزایش ظرفیت شبکه را محدود می‌کند. در مرجع [] برنامه ریزی برای نصب نوع و اندازه واحد تولید پراکنده با در نظر گرفتن قیود مربوط به ولتاژ با نصب تصادفی این منابع در سطح ولتاژ ضعیف شبکه توزیع بررسی کرده است.
طرح موضوع تحقیق
سؤالات تحقیقدر مجموع در این پایان‌نامه تلاش می‌شود به این سؤالات پاسخ داده شود.
اثر تولیدات پراکنده بر روی قابلیت بهره‌برداری، پروفیل ولتاژ شبکه توزیع چگونه در تعیین ظرفیت گره‌ای لحاظ خواهد شد؟
ظرفیت واحد‌های تولید پراکنده با توجه به اثر آنها بر پروفیل ولتاژ شبکه چگونه بین ظرفیت اختصاص یافته بین واحد‌ها اثر می‌گذارد؟
تفاوت تعیین ظرفیت بهینه‌ی در دو حالت بهره‌برداری شبکه در شرایط عادی و پیکربند‌ی‌های مختلف در شبکه چیست و در هر حالت ظرفیت بهینه چگونه تعیین خواهد شد؟
روش تعیین ظرفیت در شبکه‌های اکتیو چگونه خواهد بود؟
اثر پیکر‌بندی‌های مختلف بر ظرفیت تولید منابع تولید پراکنده چگونه است و در محاسبات چگونه لحاظ می‌شود؟
پیش‌فرض‌ها
مطالعات مورد‌نظر برای فیدر 33 کیلو‌ولت در نظر گرفته می‌شود؛ محاسبات بر روی فیدر 33 کیلو‌ولت نمونه‌ی شبکه‌ی توزیع انگلستان صورت خواهد گرفت.
اطلاعات بار فیدر 33 کیلو ولت در دوره زمانی مطالعه مشخص است.
اطلاعات مربوط به بار هر کدام از باس‌های شبکه معلوم می‌باشد و در مطالعات چند پریودی میزان مصرف به صورت درصدی از بار پیک بیان می‌شود.
شرکت توزیع بهره‌بردار و صاحب سیستم توزیع می‌باشد، و واحد تولید پراکنده دارای مالکیت خصوصی می‌باشند. که هدف تعیین ظرفیت بهینه‌ی نصب برای هر یک از مالک‌ها می‌باشد
در این پایان‌نامه، واحد‌‎های تولید پراکنده کوچک در شرایط بهره‌برداری یا ضریب قدرت ثابت مدل‌سازی گردیده‌اند.
ممکن است هر یک از واحد‌‎های تولید پراکنده در یک دوره‌ی زمانی خاصی به شبکه توزیع متصل نباشند.
ساختار گزارشاین پایان‌نامه شامل 5 فصل به شرح زیر است.
در فصل 1، مقدمه کلی موضوع تحقیقاتی پایا‌ن‌نامه، اهداف تحقیق و ساختار آن ارائه شده است.
در فصل 2، پس از مرور اجمالی تولید پراکنده، اثرات آن بر سیستم‌های توزیع انرژی الکتریکی تشریح و بررسی شده است. پس از آن مساله بهره‌برداری در شبکه توزیع در حضور واحد‌های تولید پراکنده مورد بررسی قرار گرفته است.
در فصل 3، به بررسی تاثیرات نصب تولیدات پراکنده بر شبکه‌ی توزیع پرداخته شده است و همچنین برخی شاخص‌های مرتبط با موضوع شرح داده شده اند
در فصل 4 شبکه‌های توزیع فعال معرفی شده و مروری بر مقالات انجام گرفته در زمینه‌ی مدیریت اکتیو شبکه به منظور تعیین ضریب نفوذ تولیدات پراکنده در شبکه پرداخته شده است سپس شبکه نمونه معرفی شده و مطالعات عددی جهت تعیین ظرفیت نصب واحد‌های تولید پراکنده در شبکه توزیع انجام شده است. در این فصل نتایج عددی برای چندین سناریو ارائه شده است و این نتایج مورد تحلیل قرار گرفته است.
در فصل 5، نتیجه‌گیری کلی حاصل از تحقیقات پایان‌نامه و پیشنهادهایی برای تحقیقات آتی آمده است.
بررسی انواع تولیدات پراکندهمقدمه
کشورهای بزرگ سرمایه‌گذاری‌های وسیعی در بخش تولیدات پراکنده انجام داده‌اند که علت اصلی آن به خاطر دلایلی چون رهایی از ساخت سیستم‌های جدید انتقال، کاهش مؤثر تلفات و افزایش قابلیت اطمینان سیستم می‌باشد. توسعه فناوری‌های هوشمند و پیشرفت‌های اخیر در زمینه اتوماسیون شبکه‌های توزیع و مخابره سریع اطلاعات، شبکه‌های الکتریکی را به شبکه‌های هوشمند تبدیل خواهد نمود و تولیدات پراکنده به عنوان واحدهای اصلی تولید توان در شبکه‌های هوشمند نقش بارزی در توسعه این شبکه‌ها خواهند داشت []. از طرفی، با توجه به آثار این واحدها بر شبکه توزیع، شرکت‌های توزیع با ایجاد مشوّق‌هایی سعی در جلب مشارکت سرمایه‌گذار جهت نصب واحدهای تولید پراکنده در شبکه توزیع دارند. یکی از راه‌های اعطای مشوق به سرمایه‌گذار، تشویق از طریق اطمینان سرمایه گذار برای بهره‌برداری سود حداکثری از سرمایه‌گذاری در شبکه می‌باشد.
امروزه با توجه به کارآمدی زیاد منابع تولید پراکنده در شبکه‌های توزیع، لزوم تحقیقات وسیع در این زمینه احساس می‌شود. با توجه به اهمیت فراوان سیستم توزیع، جنبه‌های متنوع و گسترده آن در زمینه‌های طراحی و بهره‌برداری از آن‌ها شامل منابع تولید‌پراکنده، نظر بسیاری از محققین را به خود جلب کرده است. به همین منظور در ادامه به اجمال مطالبی در مورد شبکه‌های توزیع شامل منابع تولید آورده شده است.
معرفی سیستم توزیع
در این قسمت ساختار یک سیستم توزیع و اجزای عمده مربوط به آن تشریح می گردد. این ساختار عموماً شعاعی می باشد که به ترتیب از بالا دست به پایین دست عبارت است از : مدارهای فوق توزیع، پست های فوق توزیع، فیدر های فشار ضعیف و سر انجام اتصالات مشترکین.
ساختار سیستم توزیع
سیستم توزیع به بخشی از سیستم قدرت اطلاق می شود که میان منابع قدرت و اتصالات مصرف کننده قرار دارد. این منابع ممکن است نیروگاه های تولید برق و یا پست های بزرگ باشند که از خطوط انتقال تغذیه می شوند. مدارهای فوق توزیع از منابع قدرت به چندین پست فوق توزیع که در ناحیه بار قرار دارند، امتداد یافته اند. این مدارها ممکن است به صورت شعاعی یا حلقوی باشد که به یک یا چند منبع قدرت از هر دو طرف اتصال پیدا کرده است.
پست‌های توزیع به طور معمول در سمت فشار متوسط خود به فیدر های فشار متوسط متصل می‌شوند و ولتاژ دریافتی از این فیدرها را به ولتاژ مصرف کاهش می‌دهند. هر ترانسفورماتور و یا مجموعه‌ای از آنها یک یا چند گروه از مصرف کنندگان را از طریق خطوط فشار ضعیف سرویس می‌دهند. خطوط فشار متوسط و نیز اتصالات سرویس مصرف کنندگان ممکن است از کابل زمینی یا سیم هوایی تشکیل شده باشد.
سیستم توزیع شعاعیسیستم شعاعی به علت ساختار ساده ای که دارد، متداول ترین نوع شبکه توزیع محسوب می شود. در این ساختار فیدرها به صورت شعاعی از پست ها به سمت فیدرهای فرعی که به همه جای ناحیه سرویس دهی کشیده شده اند، امتداد یافته اند. اصولاً مزایای سیستم های شعاعی در سادگی و ارزانی آن خلاصه می شود. با چنین آرایشی تعداد تجهیزات قطع و وصل اندک و رله گذاری آسان می شود. در حقیقت یک سیستم شعاعی به نوعی از سیستم اطلاق می شود که دارای یک مسیر واحد جهت انتقال توان از پست فوق توزیع به سمت پست های توزیع، از طریق خطوط فشار متوسط باشد.
فیدر های فشار متوسطدر اکثر آرایش‌های سیستم‌های شعاعی فیدرهای فشار متوسط پست‌های فوق توزیع تا پست‌های توزیع به صورت شعاعی به کار می‌روند. اساساً فیدر‌های فشار متوسط به خاطر عدم تداوم سرویس دهی سوال برانگیزند و بروز یک خطا روی هر یک از قسمت های فیدر به قطع کلید قدرت ابتدای فیدر و خاموشی تعداد زیادی از مصرف کنندگان می‌انجامد.
همان طوری که ذکر شد، فیدرهای فشار متوسط به صورت زمینی یا هوایی احداث می‌شوند. در فیدرهای هوایی از کلیدهایی به نام سکسیونر جهت تقسیم فیدر به چند بخش استفاده می‌شود که در حالت عادی بسته می‌باشند، علت اصلی استفاده از این کلیدها این است که در هنگام وقوع خطا روی قسمتی از فیدر، بتوان قسمت آسیب دیده را از دیگر بخش ها جدا نمود. فیدرهای زمینی از نظر کلیدهای فوق الذکر با فیدرهای هوایی متفاوتند چرا که در دو سوی هر سکشن ( فاصله بین هر دو پست ) دارای سکسیونر می باشند.
پست‌های توزیع و شبکه های فشار ضعیف
پست های توزیع ولتاژ را از سطح ولتاژ شبکه فشار متوسط به ولتاژ مصرف کاهش می دهند. با توجه به تفاوت زیاد در چگالی بار مناطق مختلف، این پست ها به دو صورت به کار می روند.
الف ) پست های زمینی : در مناطق شهری با چگالی بار بالا از ترانسفورماتورهای بزرگ استفاده می شود و این پست ها از طریق کابل های زمینی مصرف کنندگان را تغذیه می نمایند.
ب) پست های هوایی : این گونه پست ها بیشتر در مناطق روستایی یا شهری با چگالی بار سبک استفاده می شوند و به وسیله فیدرهای فشار متوسط هوایی تغذیه می شوند.
مدارهای فشار ضعیف و به دنبال آن اتصالات سرویس مصرف کننده آخرین بخش از شبکه های توزیع را تشکیل می دهند و مستقیماً با مصرف کنندگان در ارتباط هستند. این فیدرها از لحاظ چگونگی سرویس‌دهی اساساً با فیدرهای فشار متوسط یکسانند عملاً شبکه های فشار ضعیف به همراه ترانسفورماتورهای توزیع در یک حوزه قرار می گیرند که میان آنها ارتباط تنگاتنگی برقرار است. در بسیاری از محاسبات مانند پخش بار برای شبکه های توزیع فشار متوسط، پست توزیع و شبکه فشار ضعیف متصل به آن به عنوان یک بار نقطه ای برای شبکه فشار متوسط در نظر گرفته می شود.
تولیدات پراکنده
صنعت برق نیز مانند سایر تکنولوژی ها مرتباً در حال تحول است، بخصوص این که زیربنای این صنعت انرژی است و منابع انرژی در حال تغییر هستند. امروزه با تغییر ساختار سیستم های قدرت به منظور پهنه سازی آنها و تغییر در ساختار آنها از شکل سنتی به ساختار جدید، استفاده از منابع تولید پراکنده اهمیت انکار ناپذیر می دارد.
با بکارگیری مولدهای تولید پراکنده در سیستم توزیع، امکان تولید بهینه برق در محل مصرف ایجاد شده و نیاز ارسال برق توسط خطوط انتقال طولانی کاهش می یابد. استفاده بهینه از تولیدات پراکنده و بکارگیری آنها در اندازه و مکان مناسب مزایای بسیاری همچون افزایش قابلیت اطمینان، بهبود پروفیل ولتاژ، کاهش تلفات خط و کیفیت توان بالاتر و هزینه تولید کمتر و ... را برای سیستم توزیع و انتقال بدنبال خواهد داشت. بطوریکه بر اساس تحقیقات انجام شده توسط مراکز پژوهشی معتبر همچون EPRI، تا پایان سال 2010 میلادی، تولید بیش از 25 درصد ظرفیت نصب شده در جهان، مربوط به واحدهای تولید پراکنده می‌باشد. این رقم طبق تحقیقات NGF به مقدار 30 درصد خواهد رسید [1] .
بحث استفاده از مولدهای تولید پراکنده(DG) یکی از مباحث عمده‌ای است که امروزه در مجامع علمی از آن بسیار یاد می‌شود. با وجود اینکه امروزه بیش از یک دهه از پیدایش جدی تولید پراکنده در سیستم‌های قدرت می‌گذرد، هنوز یک اتفاق نظر در خصوص تعریف تولید پراکنده که تمام جوانب آن را به طور کامل در برگیرد وجود ندارد. تعاریفی که امروزه برای تولید پراکنده ارائه می‌شود بازه وسیعی از تکنولوژی‌های نوین تولید انرژی الکتریکی از واحدهای کوچک یک کیلوواتی و ژنراتورهای یک مگاواتی گرفته تا مزارع بادی چند مگاواتی را در بر می‌گیرد. فناوری‌های مختلفی در زمره تولید پراکنده جای می‌گیرند که عبارتند از توربین‌های احتراقی کوچک، ژنراتورهای مبتنی بر زیست توده، سیستم‌های فتوولتائیک، پیل‌های سوختی، توربین‌های بادی، میکروتوربین‌ها، مجموعه‌های موتور ژنراتور و واحدهای آبی کوچک []. علاوه بر فناوری به کار رفته، جوانب دیگری نیز در تعریف تولید پراکنده مطرح می‌شود که در ادامه آمده است.


تولید پراکنده در حقیقت به معنی تولید توان الکتریکی با استفاده از ژنراتورهای کوچک محلی می‌باشد. استفاده از شبکه‌های تولید پراکنده مزیت‌های زیادی دارد این منابع قابلیت اتصال به شبکه توزیع را دارند و در مقایسه با ژنراتورهای بزرگ و نیروگاهها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین‌تری راه‌اندازی می‌شوند. همچنین اتصال آنها به شبکه‌های توزیع منافع و سودمندی‌های زیادی به دنبال دارد. از جمله مواردی که استفاده از واحدهای تولید پراکنده را توجیه پذیر می‌کند می‌توان به مسائلی نظیر مسائل اقتصادی در توسعه تولید، کاهش آلودگی محیط زیست، بالا بودن بازدهی این منابع در تولید برق، بالا بردن کیفیت برق‌رسانی به مشتریان، کاهش تلفات در شبکه‌های توزیع، بهبود پروفیل ولتاژ، آزاد‌سازی ظرفیت شبکه و بسیاری از موارد دیگر اشاره نمود . تجربه نشان داده است که در کشورهای مختلف کمپانی‌های بزرگ انعطاف کمی نسبت به شبکه‌های تولید پراکنده کوچک نشان می‌دهند و اجازه بهره‌برداری از واحدهای تولید پراکنده را در شبکه‌های خود نمی‌دهند.
برخی نظریه‌ها براین اساس است که نفوذ حوزه تولید پراکنده می‌تواند موجب تمرکززدایی توان گردد بنحوی که نیازی به شبکه‌های انتقال یا مولدهای بزرگ متمرکز نباشد.
اما برخی دیگر معتقدند که تولید پراکنده فقط می‌تواند به عنوان یک مکمل در کنار مولدهای متمرکز بزرگ مورد استفاده قرار گیرد و از آن برای جبران کمبودهای انرژی استفاده شود.
به هر حال در بررسی‌ صورت گرفته توسط EPRI پیش بینی شده که تا سال 2010 میلادی حدود 20% از تولید برق جهان به صورت تولید پراکنده باشد و این نشان می‌دهد که در واقع تولید انرژی الکتریکی با استفاده از واحدهای تولید پراکنده نقشی اساسی را در تهیه نیازهای انرژی الکتریکی آینده جهان ایفا خواهد کرد. []
تا سال 1970 شبکه های الکتریکی نیاز به خرید توان از سایر تولید کنندگان فرعی نداشتند. اما بعد از تحریم نفتی نزدیک سال 1970 دولتهای زیادی نظیر ایالات متحده آمریکا تصمیم گرفتند که از منابع متعارف انرژی مثل نفت و گاز محافظت کنند تا از وابستگی آنها به سایر کشورها کاسته شود. بهمین دلیل تولید برق از منابع تجدید پذیر بوسیله تولیدکنندگان فرعی بعنوان راه حل ارایه شد که در نهایت منجر به تصویب PURPA در سال 1978 شد. در واقع PURPA برای شبکه هایی که برای اولین بار به این سیستمها ی 2 IPPs متصل می شوند و توان ا لکتریکی را با هزینه ای که بازتابی از هزینه ذخیره شده در صورت عدم نیاز به تولید توان توسط خود سیستم الکتریکی (Utility) تعریف می شود.
PURPA در وهله اول برای نگهداری از منابع نفت و گاز بعنوان سوخت اولیه ایجاد شده و در وهله دوم نوع دومی از تولید پراکنده را که فقط برای فروش توان به شبکه ایجاد شده اند را معرفی می کند. بین سالهای 1980 تا 1990 در آمریکا رشد سریع بار و کاهش توان رزرو تولید شده باعث شد که شبکه ها از تسهیلات تولید پراکنده جهت فروش توان به شبکه دعوت کنند که جهت جلوگیری از سرمایه گذاری های کلان برای ساخت نیروگاههای سوخت فسیلی بود. بخاطر پایین بودن قیمت گاز طبیعی ، میکرو توربینها بعنوان علاقه جدید مطرح شدند که کاربرد نظامی هم داشتند که در حال حاضر در رنج 20 تا 85 کیلو ولت آمپر جهت پیک زدایی در مصارف تجاری معرفی می شوند.
برخی از متخصصین صنعت برق بر این باورند که تولید پراکنده نقش مهمی را در تولید توان در هزاره حاضر بازی خواهد کرد . با توجه به اینکه شبکه های الکتریکی برای تغذیه از یکسو طراحی شده اند وصل این نوع تولید کننده ها به شبکه مسایل و مشکلات مربوط به خود را داشته که مسایلی از قبیل حفاظت ، قابلیت اطمینان و کیفیت توان را شامل می شود و در نهایت منجر به تدوین استانداردهایی برای اتصال واحدهای تولید پراکنده به شبکه شده است.
نیازمندیهای اتصال واحدهای تولید پراکنده از مدتها قبل بررسی شده اند . در سال 1980 ، IEEE توصیه و دستور العملهایی برای اتصال ژنراتورهای IPP منتشر کرد . استاندارد ANSI/IEEE 1001 در سال 1988 دستور العمل پایه سازگار با شبکه‌های زیادی را تهیه کرد. در سال 1990 شبکه آمریکا این دستور العمل را برای ژنراتورهای تولید پراکنده کوچک (کمتر از 5 مگا‌وات ) برای سیستم خودش تهیه کرد. که با استفاده از رله‌های فرکانسی و ولتاژ خاص بر اساس استاندارد IEEE/ANSI C37.90 طراحی شده بودند. بعد از سال‌ها که رله‌های الکترو مکانیکی به رله‌های استاتیک تبدیل شدند و نهایتا هم به رله‌های دیجیتال تبدیل شدند، حفاظت تولید پراکنده نیز دستخوش این تغییرات شد که در این مبحث نیز به آن پرداخته خواهد شد.
به‌ طور خلاصه‌ منابع‌ تولید پراکنده‌ (Dispersed Generation) را می‌توان‌ به‌ عنوان‌منابع‌ تولید توان‌ الکتریکی‌ که‌ به‌ شبکه‌های‌ فوق‌ توزیع‌ یا توزیع‌ و یا به‌ مصرف‌کننده‌های‌محلی‌ متصل‌ می‌شوند، تعریف‌ کرد. ظرفیت‌ تولید این‌ منابع‌ در مقایسه‌ با سایر منابع‌متداول‌ تولید انرژی‌ الکتریکی‌، بسیار کوچکتر و فن‌آوری‌ بکار رفته‌ در تولید توان‌ در آنهانیز متفاوت‌ و بسیار متنوع‌ است‌. تولیدات‌ پراکنده‌ در سالهای‌ اخیر، گسترش‌ روزافزونی‌در سراسر جهان‌ یافته‌اند. تعاریف مختلفی برای تولید پراکنده وجود دارد که البته مشترکات زیادی با هم دارند که بعد از تعریف تک تک آنها این تشابهات قابل تشخیص است.
منابع‌ تولید پراکنده‌ در مراجع‌، گزارشها،نشریات‌ و مقالات‌ مختلف‌ با اصطلاح‌های‌گوناگونی‌ معرفی‌ شده‌ است‌، که‌ از جمله‌ آن‌می‌توان‌ به‌ این‌ موارد اشاره‌ کرد: -Distributed Generation، EmbeddedGeneration، Dispersed Generation،Power Distribution، DistributedUtility and Distributed Resources. ولی‌ تاکنون‌ تعریف‌ جامع‌ و کاملی‌ برای‌تولیدات‌ پراکنده‌ ارایه‌ نشده‌ است‌ و اگر هدف‌،یافتن‌ تعریف‌ جامعی‌ از این‌ تولیدات‌ باشد،باید عوامل‌ و معیارهایی‌ همچون‌ هدف‌ ومکان‌ استفاده‌، مقادیر نامی‌، ناحیه‌ تحویل‌توان‌، فن‌آوری‌، اثرات‌ محیطی‌، روش‌بهره‌برداری‌، مالکیت‌ و... منابع‌ تولید پراکنده‌،مشخص‌ شود. با این‌ حال‌، به‌ طور کلی‌ منابع‌تولید پراکنده‌ را می‌توان‌ به‌ عنوان‌ منابع‌ تولیدتوان‌ الکتریکی‌ با ظرفیتهای‌ نامی‌ محدود(نوع کوچکتر از 10 تا 30 مگاوات‌)، که‌ درمجاورت‌ مصرف‌کننده‌ها نصب‌ می‌شوند و به‌صورت‌ مجزا یا موازی‌ با شبکه‌های‌ الکتریکی‌مورد استفاده‌ قرار می‌گیرند، تعریف‌ کرد. فن‌آوری‌های‌ مورد استفاده‌ در منابع ‌تولید پراکنده‌ فن‌آوری‌های‌ مورد استفاده‌ در منابع‌ تولیدپراکنده‌، گستره‌ وسیعی‌ را به‌ خود اختصاص ‌داده‌اند. فن‌آوری‌های‌ تجاری‌ همچون‌موتورهای‌ دیزل‌، توربین‌های‌ گازی‌، آبی‌ وبادی‌ کوچک‌ از دیرباز تاکنون‌ به‌ طرق‌مختلفی‌ مورد استفاده‌ قرار گرفته‌اند. علاوه‌ بر این‌ فن‌آوری‌ها طیف‌ وسیع‌ دیگری‌ ازفن‌آوری‌های‌ جدید با پیشرفت‌ علوم‌ و دانش‌بشری به‌ صورت‌ تجاری‌ وارد عرصه‌ صنعت ‌برق‌ شده‌اند. فن‌آوری‌هایی‌ همچون ‌موتورهای‌ گازی‌، پیلهای‌ سوختی‌، میکروتوربین‌ها و فتوولتاییک‌ها نمونه‌هایی‌از این‌ قبیل‌ فن‌آوری‌های‌ جدید است‌ که‌امروزه‌ به‌ طور وسیعی‌ در ساخت‌ منابع‌ تولیدپراکنده استفاده می شوند.
پس با جمع بندی تعریفات عبارات زیر را خواهیم داشت.
تولید غیر متمرکز(Decentralized Gen.)
تمام واحدهای تولیدی به شبکه توزیع یا در سمت مصرف کننده متصل می شوند و اصولا بر اساس استفاده از منابع و تکنولوژی انرژی تجدید پذیر هستند مثل CHP (Combined Heat and Power) تولید مرکب از توان و گرما بطوریکه میزان تولید از حد تقریبا 10 MW افزایش نیابد.
- تعریف دیگری در مورد DG وجود دارد به‌طوریکه اکثر آنها در گزینه های ذیل مشترک هستند.
انرژی که در سمت مصرف کننده یا نزدیک آن تولید می شوند.
وقتی که سیستم را تغذیه می کنند بیشتر به سیستمهای توزیع متصلند تا سیستمهای انتقال ولتاژ بالا.
واحدهای انرژی تجدید پذیر و CHP جزو منابع DG هستند ( بعضی وقت‌ها نیز توربین گازی راندمان بالا)
جدول زیر تعاریف مختلف DG را که در انتشارات مختلف مثل آژانس بین المللی انرژی و سایر موسسات مرتبط جهان در سالهای مختلف به‌چاپ رسیده اند را نشان می دهد که تفاوت آنها را به ترتیب در عبارات استفاده شده ، نحوه اتصال به شبکه های توزیع ، لحاظ کردن انرژی بادی در این تعریف ، محدودیت اندازه در تولید و نهایتا در نظر گیری توان و گرمای ترکیبی به عنوان DG در این تعاریف نمایش داده شده است.

جدول 2-1 تعریفات تولید پراکنده در مراجع مختلفراندمان CHP محدودیت اندازه باد اتصال به شبکه عبارت استفاده شده منبع
Generally excluded Not connected or providing support to a distribution network Distributed generation IEA .Distributed Generation. Book (IEA 2002)
YES connected to a distribution network or completely independent of the grid Dispersed generation YES Connected Distributed generation، embedded generation UK Office of Gas and Electricity Markets factsheet (Ofgem 2002)
More than 70% 10MW YES Not always connected or on the consumer side of the meter Decentralised generation UK Office of Gas and Electricity Markets factsheet (Ofgem 2002)
50-100 MW YES Usually connected Decentralised generation Report for CIRED workshop (Jenkins et al. 1999)
Highly efficient Irrespective of size (for CHP 1kW- 400MW) Only onsite wind Not specified Near the point of use Decentralised generation WADE Survey of DG (WADE 2004)
تعریف تولید پراکنده
در طی سالیان گذشته تعاریف متنوعی از واحدهای تولید پراکنده توسط موسسات معتبر ارائه شده است که در زیر به چند مورد بیان می شود.
موسسه مهندسان برق و الکترونیک (IEEE)
از نظر IEEE تولیدات پراکنده منابع تولید برقی هستند که بطور مستقیم به سیستم انتقال سراسری متصل نیستند و شامل ژنراتور و تکنولوژیهای ذخیره انرژی می باشند. (استاندارد IEEE)
موسسه تحقیقات برق (EPRI)
این موسسه اعتقاد دارد که تولیدات پراکنده نیروگاههای کوچکی هستند که از چند کیلووات تا حدود 50 مگاوات می باشند و در محل مصرف قرار می گیرند. [1] (آکمان، 2001).
ائتلاف تولیدات پراکنده امریکا (DPCA)تولید پراکنده به هر تکنولوژی در مقیاس کوچکی که برق را در نزدیکی محل مصرف مشتری در قیاس با نیروگاههای بزرگ تولید کند،‌ اطلاق می شود واحدهای تولید پراکنده میتواند به طور مستقیم به مصرف کننده و یا سیستم انتقال یا توزیع متصل شود. []
آژانس بین المللی انرژی (IEA)تولیدات پراکنده نیروگاههایی هستند که مشتری را در محل مصرف تغذیه می کند و یا بعنوان پشتیبانی برای شبکه سراسری در سطوح توزیع می باشند از دید این موسسه تکنولوژی تولید پراکنده شامل موتورهای کوچک، پیل سوختی و فتو و ستائیک می شود و توربین های بادی را در بر نمی گیرد به این دلیل که بخش عظیمی از برق تولید توربین های بادی در مزارع بادی تولید می شوند و در محل مصرف به وجود نمی آید. [] (فلقی و حقی فام، 2004)
دپارتمان انرژی ایالات متحده آمریکا DOE) US)تولید پراکنده در نزدیکی محل مصرف قرار می گیرد و تأسیسات برقی را قادر می سازد تا هزینه ها را در بهبود سیستم های توزیع و انتقال کاهش دهند و انرژی را با قابلیت اطمینان بالاتر به مشتریان ارائه دهد [1] (آکمان، 2001).
تعریف دیگر DOE از تولید پراکنده گویای این مطلب است که این تولیدات طیف وسیعی از تکنولوژیها را شامل میشود و از نظر اندازه و ظرفیت بین چند کیلووات تا 50 مگاوات باشند و میتوانند در نزدیکی محل مصرف و یا در محل مصرف قرار گیرند. []
تعریف پیشنهادی برای DG
تعاریف مختلفی برای DG وجود و این گوناگونی تعریف ممکن است که سبب بروز اختلافاتی ببین موسسات و محققین شود بنابراین با توجه به تعریفهای فوق یک تعریف کلی که بتوان برای DG بکار برد بصورت زیر است. DGیک منبع الکتریکی است که بطور مستقیم و یا در چند متری بخش مصرف کننده به شبکه توزیع متصل می شود. [،] (کاری، 2006؛ پوپوویک و همکاران، 2005) و شامل انرژیهای تجدیدپذیر و تجدیدناپذیر میشوند که بسته به نیاز مشتری و شرایط جغرافیایی محل مورد استفاده قرار می‌گیرند.
دسته بندی تولید پراکنده (DG)
معمولا DG ها با توجه به انواع مختلف تکنولوژیهای خود و عملکردشان تقسیم بندی می شوند ولی برای بررسی اثر DG روی سیستم الکتریکی آن را از دید الکتریکی طبقه بندی می کنند. این تقسیم بندی با توجه به تفاوت بین انواع متناسب با کاربرد الکتریکی آن ها ظرفیت، مدت زمان تغذیه، نوع برق تولیدی، تجدیدناپذیر یا تجدیدپذیر بودن تکنولوژی بدست می آید.
تقسیم بندی بر اساس ظرفیت
بر اساس تعاریف صورت گرفته برای منابع تولید پراکنده ،به ظرفیت تولید آنها از چند ده کیلووات تا چند ده مگاوات تغییر می کند در جدول زیر یک تقسیم بندی از واحدهای تولید پراکنده بر اساس ظرفیت تولیدی آنها ارائه شده است. [] (کیهانی)
جدول2-2 تقسیم بندی تولید پراکنده بر اساس ظرفیت تولیدمحدوده تولید نوع تولید پراکنده
W1- kW 5 میکرو
KW 5 –MW 5 کوچک
MW 5- MW50 متوسط
MW 50- MW300 بزرگ
تقسیم بندی بر اساس نوع و مدت زمان تغذیه
مدت زمان تغذیه DG با توجه به کاربرد و نوع و اندازه آن متغیر است. این مدت زمان می تواند کوتاه در موقعی که شبکه نیاز به حمایت دارد باشد و یا مدت زمان طولانی برای کاربرد در بار پایه و یا بصورت مدت زمان ناپایدار با توجه به استفاده از منابع طبیعی و تجدیدپذیر می‌باشند. در جدول زیر نوع تکنولوژی DG و مدت زمان تغذیه را نشان می دهد. [] (عسگریان؛ 1386)

جدول 2-3 مقایسه انواع تکنولوژیهای تولید پراکنده از لحاظ مدت زمان تغذیهمدت زمان تغذیه نوع DG توضیحات
تغذیه طولانی توربین گازی، سلولهای سوختی بجز fuel cell که در حالت بار پایه توان اکتیو تولید می کند، دار بقیه موارد توان راکتیو تولید می کند.
تغذیه ناپایدار توربین بادی (WT) انرژی خورشیدی (PV) به شرایط آب و هوایی بستگی دارد فقط توان اکتیو تولید می کنمد و نیاز به منبع راکتیو در شبکه دارد
تغذیه کوتاه مدت سلوهای سوختی ، pv ، باطری، واحدهای ذخیره کننده انرژی برای تغذیه پیوسته استفاده می شود
تقسیم بندی بر اساس نوع برق تولیدی
جریان برق خروجی DG با توجه تکنولوژی مورد استفاده می تواند DG یا AC باشد. PV و FC و باطری، تولید جریان DG می کند و برای بار DG مناسب هستند. و در نهایت با استفاده از ادوات الکترونیک قدرت و کنورترها این جریان DG را می توان به جریان AC برای وصل شدن به شبکه قدرت تبدیل واز آنها استفاده کرد.
انواع دیگری DG ها مانند میکروتوربین، توربین بادی تولید جریان AC می کنند که در بعضی از کاربردها برای داشتن تنظیم ولتاژ و وصل به شبکه از تجهیزات الکترونیک قدرت استفاده کرد.
تقسیم بندی بر اساس نوع سوخت مصرفی
این تقسیم بندی دارای دو دسته تکنولوژی، با سوخت فسیلی و غیرفسیلی می باشد. تکنولوژی سوخت فسیلی (تجدید ناپذیر) شامل میکروتوربین ها، ماشین احتراق و پیلهای سوختی می باشند و تکنولوژی های سوخت غیرفسیلی شامل دو دسته منابع تجدیدپذیر مثل باد، خورشید و منابع ذخیره کننده انرژی مثل باطری و چرخ طیار خازنها، ذخیره سازهای انرژی با فشرده سازی هوا CAES می باشند . [] (شورای جهانی انرژی، 1375؛ عباسی، 1383)
اهمیت تنوع بخشیدن به منابع انرژی، بهبود امنیت سیستمبدون شک یکی از مهمترین عوامل امنیت ملی کشورها تامین انرژی مورد نیاز است. در غیر این صورت آسیب‌های جدی و اجتناب ناپذیری پیش روی کشور‌ها و دولت های مربوطه و همچنین مردم خواهد بود. به همین دلیل دولت‌ها تمام تلاش خود را می‌کنند که از اتکا بر روی یک یا چند انرژی خارج شوند تا بتوانند به سیستم تامین و عرضه انرژی خود تنوع بخشند. خروج از این وابستگی احتمال خطر و ریسک پذیری را تا حد زیادی کاهش خواهد داد. تجربه و شواهد پیشین گواهی بر اثبات این مسئله هستند. گل و همکاران(2005) [] مثلا کشور عزیزمان ایران زمستان سختی را در سال 86 و همچنین تابستان طاقت فرسایی را در سال 87 تجربه کرده است که نتیجه‌ی آن چندین ساعت خاموشی در طول دوره بوده است. در صورتی که اگر کشور ظرفیت مناسبی از توربین‌های بادی و یا بیو‌مس تدارک دیده بود مطمئنا این خاموشی تا حد زیادی صورت نمی‌گرفت. لازم به ذکر است که هزینه وقوع خاموشی برق صدها برابر بیشتر از هزینه‌ی تولید برق مورد نیاز است.به عنوان مثال یک کیلو وات ساعت خاموشی 10 دلار به اقصاد ملی صدمه وارد می کند درحالی که هزینه ی تولید این مقدار انرژی از 10 سنت نیز کمتر است.
کاهش وابستگی به شبکه سراسری برقاصولا در هر کشوری جاده‌های سراسری، شبکه های گسترده‌ی برق ملی،خطوط انتقال گاز و نفت از مهمترین سرمایه‌های ملی هر کشور به حساب می‌آیند و همچنین میزان رفاه مردمی و ملی به فاکتورهایی که در بالا ذکر شد وابستگی مستقیم دارند. این شبکه‌ها با توجه به گستردگی مکانی فراوانی که دارند، بسیار آسیب پذیر هستند. تحت تاثیر بلایای طبیعی مثل وقوع سیل، زلزله، گردباد، بارش برف سنگین و طوفانهای شدید و همچنین عوامل غیر طبیعی مثل جنگ، عملیات‌های خرابکارانه و تروریستی و مشکلات فنی، سیستم ها ممکن است دچار نقص شده و قادر به ادامه فعالیت بدون تعمیر نباشند. لازم به ذکر است که این حالت فقط مختص ایران نیست و بسیاری از کشورهای صنعتی و پیشرفته هم از این آسیب ها مستثنی نیستند و خاموشی‌هایی طولانی در دهه اخیر در آمریکا و اروپا و کشورهای همسایه مشاهده شده که همگی گواهی بر این ادعا می‌باشد. با توجه به شرایطی که ذکرگردید، یکی از راه کارهای مفیدی که میزان اتکا و وابستگی را به شبکه‌های طولانی و سراسری برق کاهش می‌دهد استفاده از تولیدات پراکنده می‌باشد.
تولید پراکنده به این دلیل که تلفات خطوط انتقال و توزیع را تا حد زیادی کاهش می‌دهد، هزینه‌ی تمام شده برق مصرفی را تا حد زیادی کم می‌کند. تولیدات پراکنده از گوناگونی و تنوع بسیار زیادی برخوردارند و از بهترین آنها می‌توان نیروگاه‌های بادی، آبی، زیست توده، زمین گرمایی و خورشیدی را نام برد که علاوه بر پراکندگی مکانی از لحاظ منابع اولیه هم کاملا پراکنده هستند و نیازی به شبکه‌های سراسری نفت و گاز برای تغذیه ندارند.
با توجه به ناامنیهای منطقه و شرایط بین المللی پیش آمده کشورمان و خطرات احتمالی پیشرو، استفاده از تولیدات پراکنده به عنوان بخش مهمی از منابع تولید انرژی، در صورت بروز مشکلاتی می تواند در مواردی خاص تولید را به منابع و امکانات محلی بسپارد.
استفاده از منابع محلی و منطقه‌ای و بهره‌مندی از پتانسیل عظیم انرژی تجدید‌پذیر کشورکشور ما ایران به خاطر موقعیت جغرافیایی و پراکندگی ارزی پهناور خود یکی ازغنی‌ترین کشور‌های جهان از نقطه نظر داشتن منابع مختلف محسوب میشود. چون از یک طرف دارای منابع فسیلی و تجدیدناپذیر مانند گاز، نفت و ذغال سنگ و از طرف دیگر دارای پتانسیل فراوان انرژیهای تجدیدپذیر مانند باد، زیست توده، آب، خورشید و زمین گرمایی است. پتانسیل بالای انرژی باد (حد اقل 15 هزار مگاوات)، انرژی خورشید (متوسط تابش 5 کیلو وات ساعت بر متر مربع در سال) و همچنین انرژی زیست توده (حدود 2250 مگاوات پتانسیل تولید برق) گواهی بر این مدعاست.
استفاده از تولیدات پراکنده تجدیدپذیر و عدم تولید گازهای گلخانه‌اییکی از بزرگترین و مهمترین عوامل تولید گازهای گلخانه ای و همچنین آلودگی هوا، آب و خاک نیروگاه های بزرگ فسیلی هستند. ولی استفاده از تولیدات پراکنده تجدید پذیر تا حد بسیار زیادی این پارامترها را کاهش می دهد و به عنوان مثال یک توربین با هر مگاوات ظرفیت خود می تواند درسال 1491 تن co2 ، 7 .6 تن so2 و 56 تن NOx را کاهش دهد.
با توجه به رشد کشورهای دیگر در زمینهی زیست محیطی کشور ما نیز باید تدابیر و قوانین بیشتری را در رابطه با رشد این علم اتخاذ کند. حفظ منابع سوخت های فسیلی با این دید که استفاده از این منابع محدودیت دارد.یکی از مزیت های استفاده از تولیدات پراکنده تجدید پذیر صرفه جویی درمنابع سوخت های فسیلی است، که این امر باعث نگهداری بهینه از این تعمات برای نسل های آینده و همچنین امکان صادرات آن به کشورهای دیگر خواهد شد با توجه به این که تولید توسط نیروگاههای تولید پراکنده گوناگون متفاوت است ولی با تقریب قابل قبولی می توان محاسبه کرد که درطول عمر بیست ساله 1000 مگا وات نیروگاه تجدید پذیر درحدود 75 تا 90 میلیون بشکه می توان صرفه جویی کرد.