dad100

4-2- دندوگرام حاصل از تجزیه کلاستر صفات مورد بررسی گلرنگ تحت شرایط دیم...........................................................86
چکیدهآگاهی از تنوع ژنتیکی و مدیریت منابع ژنتیکی به عنوان گام مهم برنامه‌های به‌نژادی تلقی می‌شوند. در این تحقیق به منظور بررسی تنوع ژنتیکی 19 صفت زراعی و مورفولوژیک ، شامل 14 صفت کمی و 5 صفت کیفی، تعداد 100 نمونه گلرنگ زراعی((Carthamus tinctorius L. در مزرعه تحقیقاتی مؤسسه تحقیقات کشاورزی دیم- سرارود در سال زراعی 91-90 مورد ارزیابی قرارگرفت. آزمایش در قالب طرح لاتیس ساده 10×10 در کشت پاییزه تحت شرایط دیم انجام یافت. صفات کیفی طول شاخه‌های جانبی، وسعت خاربرگ، حاشیه برگ، شکل قوزه، اندازه بذر و صفات کمی تعداد روز تا شروع و پایان گلدهی و رسیدگی، ارتفاع نهایی گیاه، تعداد شاخه جانبی، تعداد قوزه در بوته، قطر قوزه ، طول و عرض براکته، تعداد دانه در قوزه، وزن هزار دانه، محتوی روغن دانه و عملکرد دانه و روغن ارزیابی شد. نتایج نشان داد که بین تیمارهای تصحیح شده اختلاف معنی‌داری از نظر همه صفات کمی تحت بررسی بجز تعداد روز تا رسیدن و تعداد دانه در قوزه وجود داشت. نتایج آمار توصیفی صفات نشان داد که در صفات کمی تعداد شاخه جانبی ، تعداد قوزه و عملکرد دانه و روغن با بالاترین ضریب تغییرات فنوتیپی و ژنوتیپی و در صفات کیفی طول شاخه‌های جانبی و وسعت خار برگ با بالاترین شاخص شانون ، بیشترین تنوع را دارند. محتوی روغن دانه ژنوتیپ‌ها بین 7/37 - 6/26 درصد با متوسط 9/32 متغیر بود. و متوسط عملکرد دانه ژنوتیپ‌ها 7/593 و دامنه تغییرات 0/980 - 8/296 کیلوگرم در هکتار داشت. وراثتپذیریعمومی نسبتاً بالایی در صفات روز تا شروع گلدهی ، طول و عرض براکته، قطر قوزه و محتوی روغن دانه مشاهده شد. بر اساس این نتایج می‌توان گفت که اصلاح به روش گزینش برای این صفات تا حدود زیادی مؤثر است. رابطه خاصی بین محتوی روغن دانه و عملکرد دانه وجود نداشت و گزینش همزمان برای محتوی روغن و عملکرد دانه بالا مناسب‎تر بود. تجزیه‌عاملی با دوران وریماکس 6 عامل را استخراج نمود که حدود 68 درصد تغییرات میان صفات را توجیه نمود. تجزیه‌کلاستر ژنوتیپ‌های گلرنگ به روش وارد و با استفاده از کلیه صفات ژنوتیپ‌ها را در 4 گروه قرار داد به طوریکه بهترین ژنوتیپها از نظر عملکرد دانه و روغن در گروه 2 و 4 قرار داشتند. همچنین گروه‌بندی صفات ، همه صفات کمی اندازه‌گیری شده را در 6 کلاستر قرار داد. کلاستر دوم شامل صفات قطر قوزه، وزن هزار دانه و عملکرد دانه بود. به منظور گزینش ژنوتیپ‌های برتر گلرنگ از نظر سه صفت اقتصادی مهم شامل عملکرد دانه، عملکرد روغن و میزان روغن دانه اقدام به رسم نمودار پراکنش ژنوتیپ‌ها از نظر صفات مورد نظر گردید. نتایج نشان داد که ژنوتیپ‌های شماره 5، 41، 56 و 82 به ترتیب ژنوتیپ‌های محلی عجبشیر، باباریز درشت، لگزی درشت و 377 / S6 / 697 دارای عملکرد دانه و روغن بالا و نیز میزان روغن دانه بالا بودند.
واژههای کلیدی : گلرنگ زراعی، تنوع ژنتیکی، شرایط دیم، تجزیه و تحلیل چند متغیره
فصل اولمقدمه و کلّیاتمقدمه
1-1- تنوع ژنتیکی
اصلاح‌نباتات بر پایه اصول ژنتیکی یکی از فنون موفق در قرن بیستم به شمار می‌رود. افزایش میزان تولید محصولات کشاورزی، ‌همچنین تغذیه جهانی به طور عمده مرهون روش‌های به نژادی یا اصلاح‌نباتات و معرفی واریته‌های پرمحصول اصلاح شده می‌باشد (عبدمیشانی وهمکاران،‌1387). منابع ژنتیکی گیاهی در علم کشاورزی و تولید غذا، ‌اساس امنیت جهانی غذا هستند. آنها تنوع ژنتیکی موجود در ارقام سنتی، ارقام جدید، خویشاوند و حتی گیاهان زراعی و گونه‌های وحشی دیگر را در بر می‌گیرند. پیش‌بینی می‌شود که جمعیت جهان در سال 2020 میلادی به 8 میلیارد نفر برسد و برای تامین نیاز غذایی روزافزون، استفاده از دامنه وسیع تنوع ژنتیکی موجود در گیاهان دنیا ضروری است (کامسوارا و رائو 2004، سینگ، 1990، جین و همکاران، 1975). افزایش تولید با کیفیت مطلوب مستلزم فعالیت‌های به نژادی بر پایه تنوع وسیع ژرم‌پلاسم است. لذا ژرم‌پلاسم گیاهی پایه و اساس تمامی تحقیقات ژنتیکی و به‌نژادی به منزله خونی است که در کالبد برنامه‌های اصلاح نباتاتی جریان دارد (دانایی و همکاران،‌ 1380). تنوع ژنتیکی یا به علت جدایی جغرافیایی یا به علت موانع ژنتیکی تلاقی‌پذیری است شایان ذکر است که بین مفهوم تغییرپذیری، ‌مفهوم تنوع، تفاوت وجود دارد. بدین معنی که تغییرپذیری دارای تفاوت‌های قابل مشاهده فنوتیپی است اما چنین تفاوت‌های قابل مشاهده‌ای ممکن است در مفهوم تنوع باشد و یا نباشد (فرشادفر، 1376). یعنی ممکن است تنوع‌ژنتیکی، ‌بروز ظاهری و فنوتیپی قابل مشاهده نداشته باشد (باقری و همکاران، 1380). آگاهی دقیق از تنوع ژنتیکی مجموعه‌های ژنتیکی گیاهی،‌ ضمن حفظ ذخایر ژنتیکی گیاهی باعث استفاده از آنها در برنامه‌های اصلاحی می‌شود )ویرک و همکاران، 1995). یکی از اولین قدم‌ها در یک برنامه موفق به‌نژادی، ‌تشخیص صحیح ژنوتیپ‌های مطلوب است (صالحی ‌جوزانی و همکاران، 1382 و شعبانی، 1378). ابتدا تنوع توده‌های بومی و موجود مورد انتخاب قرار می‌گیرد و در صورت پیشرفت و رسیدن به یکنواختی تا ایجاد تنوع مصنوعی، این انتخاب گسترش می‌یابد (سرخی هه لو، 1374).
والدینی که از لحاظ ژنتیکی متفاوت هستند هیبریدهایی با هتروزیس بیشتر تولید می‌کنند که احتمال بدست آوردن نتایج تفرق یافته برتر از والدین را افزیش می‌دهند (کرافت و همکاران، 1997 و بیر و همکاران، 1993). بسیاری از ژن‌های مفید در ارقام محلی و جوامع گیاهی پراکنده بوده و در طول هزاران سال توسط کشاورزان، طبیعت به دلیل سازگاری، مقاومت یا تولید محصول بیشتر گزینش شده‌اند (چارکوست و ایسو، ‌1994). تنوع ژنتیکی در جمعیت‌های گیاهی بر اثر مجموعه‌ای از مکانیسم‌ها شامل جهش، نوترکیبی، مهاجرت، جریان ژن، رانده‌شدن ژنتیکی و انتخاب طبیعی یا مصنوعی به وجود آمده و حفظ می‌گردد. استفاده موثر از منابع ژنتیک و ذخایر توارثی گیاهان زراعی نیازمند اطلاع از تنوع، به عنوان یکی از گام‌های پایه‌ای و اساسی در نگهداری و حفاظت مواد ژنتیکی در بانک ژن و اجرای برنامه‌های به نژادی است (قهرمانزاده و همکاران، 1384). علاوه بر این اطلاع از سطح تنوع موجود در ژرم‌پلاسم‌ها خزانه ژنی برای تشخیص تکرار‌ها در بانک‌های ژنی، ‌غنی‌سازی ذخایر ژنتیکی از طریق اینتروگروسیون ژن‌های مطلوب و شناسایی ژن‌های مناسب ضروری به نظر می‌رسد (محمدی، 1385).
گزینش بر پایه اطلاعات ژنتیکی سبب افزایش عملکرد در هکتار به میزان 50% ظرف مدت 30 تا 40 سال اخیر شده است (ولیزاده، 1372). از این رو ارزیابی تنوع‌ژنتیکی در گیاهان زراعی برای برنامه‌های اصلاح‌نباتات و حفاظت از ذخایر توارث از اهمیت زیادی برخوردار است (فراهانی و همکاران، 1385). یعنی بدون تنوع، ‌هیچ برنامه اصلاحی قابل اجرا نیست. (عبدمیشانی وهمکاران،‌1387).
1-2- روش های شناسایی و بررسی تنوع ژنتیکیفنوتیپ یک گیاه توسط ترکیب ژنتیکی آن و عوامل محیطی تعیین می‌گردد. صفات مختلف گیاهی را می‌توان از نظر تعداد ژن‌های کنترل کننده و چگونگی تاثیر عوامل محیطی به دو دسته عمده تقسیم‌بندی نمود. صفات کیفی که در کنترل آنها تعداد بسیار کمی ژن دخالت داشته و عوامل محیطی در بروز آنها تأثیر چندانی ندارند. و صفات کمّی که تعداد زیادی ژن و عوامل بی‌شماری در بروز آنها دخالت دارند. صفات کیفی توارث‌پذیری بالایی داشته و در نتیجه انتخاب و اصلاح‌نژاد برای آنها نسبتاً آسان بوده و نیازی به انتخاب غیرمستقیم نیست. بر عکس صفات کمّی توارث پذیری پایینی داشته و انتخاب مستقیم و اصلاح نژاد برای آنها با مشکل روبرو است. از سال‌های دور محققین اصلاح نباتات در پی یافتن نشانگرهای ژنتیکی که با صفات کمّی پیوستگی نشان می‌دهند، بوده‌اند. از این نشانگرها می‌توان به عنوان معیار غیر مستقیم انتخاب استفاده نمود (فولاد و جونز، 1375). هر شاخص قابل ارزیابی فنوتیپی یا ژنوتیپی را می‌توان نشانگر نامید. رنگ گل، رنگ بذر، یک ترکیب شیمیایی خاص، بو، طعم خاص، فرم‌های مختلف یک آنزیم، پروتئین‌های ذخیره‌ای بذر، تفاوت طولی قطعات برشی دی. ان. ای و غیره را می‌توان به عنوان نشانگر در نظر گرفت (سادات نوری و نجف‌آبادی، 1385). در این روش ژن مورد نظر بر اساس پیوستگی که با یک نشانگر ژنتیکی دارد، تشخیص داده و انتخاب ‌شود یعنی نشانگرهای پیوسته با ژن‌های مورد نظر شناسایی شوند. یکی از پایه‌های اساسی اصلاح نباتات دسترسی و آگاهی از میزان تنوع در مراحل مختلف پروژه‌های اصلاحی است. به همین جهت نشانگرها برآورد مناسبی از فواصل ژنتیکی بین واریته‌های مختلف را نشان می‌دهند (نقوی و همکاران، 1386). مهمترین داده‌هایی که از طریق این گونه بررسی‌ها و مطالعات به دست می‌آیند عبارتند از اطلاعات شجره‌ای، داده‌های مورفولوژیک، ‌داده‌های بیوشیمیایی حاصل از تجزیه و تحلیل ایزوزایم‌ها و پروتئین‌های ذخیره‌ای و اخیراً داده‌های مبتنی بر نشانگرهای دی. ان. ای تمایز و طبقه‌بندی ژنوتیپ‌ها و ارقام گیاهی را با اطمینان بیشتری امکان‌پذیر ساخته‌اند (فاضلی، 1387).
نشانگرهایی که در مطالعات ژنتیکی مورد استفاده قرار می‌گیرند عبارتند از:
نشانگرهای مورفولوژیکی و زراعی
نشانگرها هر کدام دارای معایب و مزایایی هستند مشکل عمده نشانگرهای مورفولوژیکی این است که ممکن است آنها فنوتیپ تغییر یافته‌ای را که با نیازهای زارع منطبق نیست شناسایی نماید، دلایل آن می‌تواند یکی از عوامل زیر باشد: غالبیت،‌ عدم تظاهر در مراحل نمو، اثرات مضر محیطی، پلیوتروپی، اپیستازی، ‌تغییرات در نفوذ ژن و کم بودن چندشکلی (اروس، 1993).
نشانگرهای بیوشیمیایی مانند پروتئین و آیزوزایم
در دهه 1950، نشانگرهای مولکولی قابل مشاهده توسط الکتروفورز پروتئین‌ها تحول شگرفی را ایجاد نمودند. آیزوزایم‌ها به طور گسترده در بررسی تنوع‌ژنتیکی و طبقه‌بندی گیاهان زراعی به کار گرفته شدند. هر چند در دهه اخیر فناوری‌های مرتبط با دی. ان. ای در این زمینه پیشی گرفته‌اند. تا اواخر دهه 1970 نقشه‌های ژنتیکی تلفیقی (آیزوزایم‌ها و نشانگرهای مورفولوژیکی) بسیاری از گونه‌های مهم تهیه شدند. نشانگرهای پروتئینی نیز معایب ویژه خود را دارند. از معایب این نشانگرها محدود بودن آنهاست. همچنین تظاهر برخی از آنزیم‌ها و پروتئین‌ها تحت تأثیر مرحله رشد گیاه قرار می‌گیرد (نقوی و همکاران، 1386).
نشانگرهای DNA
مارکرهای مولکولی و نشانگرهای DNAابزار مناسبی هستند که بر اساس آن می‌توان جایگاه ژنی و کروموزمی عوامل تعیین کننده صفات مطلوب را شناسایی کرد. با دانستن جایگاه یک ژن روی کروموزوم می‌توان از نشانگرهای مجاور آن برای تأیید وجود صفت در نسلهای تحت گزینش استفاده نمود. با در دست داشتن تعداد زیادتر نشانگر می‌توان نقشه‌های ژنتیکی کاملتری را تهیه نمود که پوشش کاملی را در تمام کروموزم‌های گیاهان به وجود می‌آورد. استفاده از نشانگرها موجب افزایش اطلاعات مفید و مناسب از جنبه‌های پایه و کاربردی در اصلاح نباتات خواهد گردید.
انتخاب به کمک نشانگرهای مولکولی راه حلی است که دست‌آورد زیست‌شناسان مولکولی برای متخصصان اصلاح نباتات می‌باشد. در این روش ژن مورد نظر بر اساس پیوستگی که با یک نشانگر ژنتیکی دارد، تشخیص داده و انتخاب می‌شود. بنابراین به عنوان قدم اول در روش انتخاب به کمک نشانگر باید نشانگرهای پیوسته با ژن‌های مورد نظر شناسایی شوند. یکی از پایه‌های اساسی اصلاح نباتات دسترسی و آگاهی از میزان تنوع در مراحل مختلف پروژه‌های اصلاحی است. به همین جهت نشانگرها برآورد مناسبی از فواصل ژنتیکی بین واریته‌های مختلف را نشان می‌دهند (نقوی و همکاران، 1386).
اگر مطالعات مورفولوژیکی، بیوشیمیایی و مولکولی به صورت توأم انجام شوند و از تجزیه‌چند متغیره مناسب استفاده شود تنوع ژنتیکی بهتر برآورد می‌گردد (محمدی و پراسانا، 2003 و ولمن و همکاران، 2005).
 1-3- اهمیت تولید دانه های روغنی
با توجه به نیاز فزاینده کشور به روغنهای خوراکی، توسعه کشت دانه‌های روغنی از اهمیت زیادی برخوردار است. افزایش تقاضا برای روغن در بازارهای جهانی و بالطبع افزایش قیمت و واردات در کشورهای مصرف کننده و روند افزایش مصرف سرانه روغن نباتی از جمله عواملی هستند که اهمیت توسعه کشت دانه‌های روغنی و گسترش برنامه‌های علمی-تحقیقاتی را بیش از پیش روشن می‌سازد. تنوع ژنتیکی برای عملکرد دانه، میزان روغن و ترکیب اسیدهای چرب برای اصلاح دانه و کیفیت روغن و توسعه رقم‌ها ضروری است (اهلروگو 1994). برنامه‌های اصلاحی فعلی و آینده نه تنها نیازمند دسترسی به این تنوع‌ها می‌باشد بلکه وابسته به نگهداری و مدیریت صحیح حفظ و استفاده از آنها نیز هست (ویلیام و همکاران، 1990). تشکیل روغن و چربی در درجه نخست تابع ژن‌های کنترل کننده و در درجه دوم تحت تأثیر عوامل محیطی قرار می‌گیرد (آلیاری و شکاری، 1379).
گلرنگ یکی از قدیمی‌ترین دانه‌های روغنی دنیا می‌باشد که خاستگاه و تنوع آن خاورمیانه است (داجو و همکاران، 1993). برنامه‌های مهم اولیه برای توسعه گیاه گلرنگ بعنوان یک محصول تجاری با افزایش محتوی روغن دانه و شناسایی ژنهای مقاومت به چند بیماری مهم گلرنگ (نظیر زنگ، پژمردگی فوزاریومی، سوختگی برگ آلترناریا، پژمردگی ریشه فیتوفترایی) آغاز گردید (نولز، 1989). گلرنگ از حیث خصوصیات مختلف کمی و کیفی، سازگاری با عوامل محیطی و انواع مقاومت‌ها دارای تنوع ژنتیکی وسیعی می‌باشد.
گلرنگ گیاهی است که انواع تیپ‌های وحشی و توده‌های محلی آن در سراسر ایران وجود دارد و سازگاری زیادی با شرایط خشکی، کویری، شوری و گرما دارد. این سازگاری را در طی سالیان متمادی در طبیعت کسب کرده و می‌توان بسیاری از زمین‌های کم‌بهره را به زیر کشت این گیاه برد. موفقیت تولید گلرنگ به عنوان یک گیاه اقتصادی و رقابت آن با سایر گیاهان روغنی وابسته به معرفی، توسعه و ایجاد رقم‌هایی با عملکرد دانه و میزان روغن بالاست. کارایی برنامه گزینش برای اصلاح صفات کمی از جمله عملکرد دانه و میزان روغن بطور عمده وابسته به تنوع ژنتیکی این صفات و همبستگی آنها با سایر صفات است (فالکونر و مکای، 1996 و گوان و همکاران، 2008(.
گلرنگ از حیث خصوصیات مختلف کمی و کیفی، سازگاری با عوامل محیطی و انواع مقاومت‌ها دارای تنوع ژنتیکی وسیعی می‌باشد. تصور می‌شود که در کل 25179 نمونه از ژرم‌پلاسم گلرنگ در 22 بانک ژن از 15 کشور ذخیره شده باشد (زانگ، 2001).
مقدار روغن دانه گلرنگ مهم بوده و دانه‌هایی با بیش از 38 درصد روغن به صورت دانه‌های روغنی به فروش می‌رسند. فاکتورهایی چون پیری زودرس و کوتاه بودن دوره پر‌شدن دانه‌ها می‌تواند باعث کاهش میزان روغن آنها شود (پاسبان اسلام، 1383).
1-4- خصوصیات مهم گیاه شناسی گلرنگ
گلرنگ زراعی جز خانواده کمپوزیته یا آستراسه بوده و گیاهی است علفی و خاردار، یکساله یا یکساله زمستانه، پرشاخه با تعداد زیادی خار روی برگ‌ها و براکته‌ها و بذور سفید رنگ که به طور متوسط 03/0 تا 04/0 گرم وزن داشته و دارای سطح صاف و چهار وجهی با پریکارب ضخیم بوده و در برخی ارقام دارای اندازه‌های مختلف پرز هستند بعد از جوانه‌زنی، ‌رشد آرام مرحله روزت آغاز می‌شود که در طی آن بوته دارای تعداد زیادی برگ نزدیک سطح زمین می‌شود،‌ ریشه‌های اصلی توسعه یافته و شروع به نفوذ به عمق خاک می‌کنند اما ساقه ایجاد نمی‌شود. در مرحله روزت گیاهان به سرما و یخبندان مقاوم بوده ولی نسبت به علف‌های‌‌هرز سریع‌الرشد بسیار آسیب‌پذیرند. متعاقباً (بعد از مرحله روزت) ساقه‌ها به سرعت طویل شده و شاخه‌زایی می‌کنند. زاویه بین شاخه و ساقه بین 30 تا 70 درجه متغیر بوده و میزان شاخه‌زایی بطور ژنتیکی و محیطی کنترل می‌شود. هر شاخه به یک قوزه گل که به وسیله براکته‌ها احاطه شده و عموماً خاردارند، منتهی می‌شود. برگهای تحتانی معمولاً دارای دندانه‌های عمیق و برگهای نزدیک قوزه،‌ جایی که براکته‌های گریبانک را تشکیل می‌دهند، ‌به شکل تخم مرغی تا تخم مرغی واژگون هستند. خارهای ساقه در مرحله غنچه‌دهی بوجود آمده و تا مرحله گلدهی سخت و محکم می‌شوند. ارقامی که تقریباً عاری از خار هستند برای برداشت دستی گل و دانه در برخی مناطق جغرافیایی توسعه یافته‌اند.
1-5- نحوه گرده افشانی گرده افشانی زمانی انجام می‌شود که خامه و کلاله از درون ستون بساک برروی جام گل رشد کنند. کلاله رشد یافته (طویل شده) که هنوز تلقیح نشده ممکن است قدرت دریافت دانه گرده را تا چندین روز داشته باشد. زنبور عسل، زنبور معمولی و سایر حشرات گلهای گلرنگ را برای دانه گرده و شهد گل جستجو کرده و باعث افزایش میزان دگرگشنی می‌شوند. گرده افشانی به وسیله باد بر روی دانه‌بندی گلرنگ تاثیری ندارد. قوزه‌های کامل دارای 30-15 و یا بیشتر بذر بوده که 4 تا 5 هفته بعد از گلدهی به مرحله رسیدن فیزیولوژیک می‌رسند.
1-6- بذردانه رسیده ارقام معمولی دارای 33 تا 60 درصد پوسته و 40 تا 67 درصد مغز دانه است. میزان روغن دانه 20 تا 45 درصد کل دانه است. گزینش برای میزان بالای روغن در ارقام جدید باعث کاهش ضخامت فرابر شده است و میزان بذردهی طی 15 روز بعد از گلدهی 5 تا 10 برابر افزایش یافت. (هیل و نولز، 1968).
1-7- منشاء جغرافیاییواویلو در سال 1951 سه ناحیه را به عنوان منشأ جغرافیایی گونه زراعی گلرنگ معرفی نموده است:
هندوستان (مرکز 2 واویلوف): بر اساس تنوع و کشت سنتی آن.
افغانستان (مرکز 3 واویلوف): بر اساس تنوع و مجاورت با گونه‌های وحشی.
اتیوپی (مرکز 4 واویلوف): بر اساس وجود گونه‌های وحشی گلرنگ.
نولز (1969) با اشاره به چندین مرکز کشت و مصرف گلرنگ در دنیای قدیم فرضیه مراکز تشابه را ارائه نمود. مراکز تشابه شامل هفت منطقه ذیل است:
خاور دور (مرکز 1 واویلوف - چین): چین، ژاپن، کره.
هندوستان - پاکستان (مرکز 2 واویلوف، هندوستان): هندوستان، غرب و شرق پاکستان.
خاورمیانه (مرکز 3 و4 واویلوف، آسیای مرکزی و خاور نزدیک): افغانستان تا ترکیه .جنوب شوروی سابق تا اقیانوس هند.
4- مصر (مرکز 5 واویلوف، مدیترانه ای): حاشیه رود نیل در شمال آسوان.
5ـ سودان (تا جنوب مرکز 5 واویلوف): حاشیه رود نیل در شمال سودان و جنوب مصر.
6ـ اتیوپی (مرکز 4 واویلوف، اتیوپی).
7ـ اروپا (بخش غربی مرکز 5 واویلوف): اسپانیا، پرتغال، فرانسه، ایتالیا، رومانی، مراکش و الجزایر.
1-8- تاریخچه کشت گلرنگسابقه کشت گلرنگ در کشور مصر به 4000 سال قبل می‌رسد و به احتمال قوی در شمال شرقی هندوستان، ایران یا ترکیه اهلی گردیده است. در بین گیاهان متداول روغنی، گلرنگ بومی کشور بوده و ایران به عنوان یکی از مراکز تنوع آن شناخته شده است. سازگاری وسیع این دانه روغنی به شرایط مختلف آب و هوایی به اثبات رسیده و گونه‌های وحشی آن در سراسر کشور مشاهده می‌شود. در گذشته سطح زیر کشت گلرنگ در هند قابل توجه بوده و روغن گلرنگ حدود 4 درصد کل روغن نباتی خوراکی هند را تشکیل می‌داد، ولی عملاً به دلیل اعمال مدیریت ضعیف مزرعه، عملکرد حاصله رضایت‌بخش نبوده است. در کشور ژاپن بیش از 40 درصد روغن مصرفی متعلق به گلرنگ بوده که عمدتاً از کالیفرنیا خریداری می‌شود، زیرا در کالیفرنیا به کیفیت روغن تولید شده، توجه زیادی می‌شود (پاسبان اسلام، 1383). توده‌های بومی گلرنگ زراعی در اکثر مناطق ایران وجود دارند. در گذشته از گلچه‌های این گیاه به عنوان رنگ خوراکی و صنعتی استفاده می‌شد و دانه آن نیز به مصرف ماکیان می‌رسید، اما با وارد شدن رنگ‌های شیمیایی ارزان قیمت به بازار، کشت آن محدود شد و تنها به عنوان یک گیاه روغنی مورد توجه قرار گرفت. خوشبختانه در سال‌های اخیر مضرات متعدد رنگ‌های خوراکی شیمیایی آشکار شده و گرایش به سمت استفاده از رنگ‌های طبیعی بیشتر شده است (پورداد و همکاران، 1385).
1-9- پراکنش و تولید جهانی گلرنگ
در حال حاضر گلرنگ در 60 کشور جهان کشت می‌شود (بولز و همکاران، 2008) هندوستان هر ساله تقریباً نیمی از گلرنگ جهان را تولید می‌کند و عمده آن در داخل همان کشور مصرف می‌شود. پس از هندوستان، ایالات متحده‌آمریکا در رتبه بعدی قرار دارد. ایالت کالیفرنیای آمریکا دومین تولید کننده بزرگ گلرنگ در دنیاست. مکزیک، آرژانتین، استرالیا و چین از کشورهای مهم تولید کننده گلرنگ در جهان هستند (گیلبرت، 2008).
وضعیت زراعت گلرنگ طی ده سال اخیر نشان می‌دهد که سطح زیر کشت این محصول متغیر بوده و در نتیجه میزان تولید دانه نیز متغیر بوده است (جدول1-1).
جدول 1-1- وضعیت سطح زیر کشت، تولید و عملکرد دانه گلرنگ در جهان طی 10 سال (2011-2002)
سال سطح برداشت شده
(هکتار) تولید دانه (تن ) عملکرد دانه
(کیلوگرم در هکتار)
2002 722160 560499 1/776
2003 877744 703884 9/801
2004 949675 654010 6/688
2005 819756 582039 710
2006 687719 528602 6/768
2007 737818 622048 6/842
2008 691436 615214 7/889
2009 788744 648560 3/822
2010 794944 645178 6/811
2011 600440 591997 9/985
1-10- مصارف گلرنگاستفاده از گلرنگ به عنوان یک دانه روغنی تجاری سابقه طولانی ندارد و در قدیم بیشتر از گل آن استفاده می‌شد. امروزه گلرنگ به عنوان یک دانه روغنی که روغن آن مورد مصرف تغذیه‌ای و صنعتی دارد، کشت می‌گردد (خواجه پور، 1383). روغن گلرنگ، به دلیل بالا بودن نسبت اسیدهای چرب غیراشباع، مشابه روغن زیتون بوده و ضمن دارا بودن مقادیر بالای اسید لینولئیک یا اسید اولئیک قیمت کمتری نیز دارد. روغن گلرنگ قابلیت پایداری بیشتری در برابر حرارت داشته و به عنوان روغنی با کیفیت بالا برای سرخ کردن خصوصاً تهیه چیپس استفاده می‌شود. علاوه بر این در تولید روغن‌های آرایشی نیز کاربرد دارد. در کشور چین گلبرگ‌های خشک گلرنگ در تهیه داروهای گیاهی و تقویت کننده سیستم گردش خون به کار می‌رود. آمار و ارقام نشان می‌دهند که سالانه تقریباً 1700 تن از گل‌های گلرنگ در تهیه داروهای گیاهی استفاده می‌شود. چای گلرنگ موقعیت خاصی در زندگی امروزه چینی‌ها کسب کرده است. ماده مؤثره گل‌ها، التهاب را تسکین می‌دهد. برگ‌های گلرنگ از نظر کاروتن و ریبوفلاوین غنی هستند. در اتیوپی دانه‌های پوست‌گیری شده گلرنگ، بعد از خرد کردن کامل با آب مخلوط نموده و در تهیه نوعی غذا که اصطلاحاً «فیت فیت» نامیده می‌شود (یک نوع حلیم که مخلوطی از تف، تکه‌های نان و روغن است و در روزهای روزه‌داری مصرف می‌شود) استفاده می‌کنند. کنجاله به جا مانده بعد از استخراج روغن تا اندازه ای تلخ مزه است ولی با مخلوط نمودن آن با کنجاله چغندرقند و یا کنجاله ساقه نیشکر، به عنوان غذای دام مصرف می‌شود (آلیاری و شکاری، 1379). کنجاله از نظر اسید‌آمینه لیزین (5/0 درصد) فقیر می‌باشد و به علت دارا بودن مقادیر بالای فیبر (حدود 30 درصد)، از ارزش غذایی پایینی برخوردار است (خواجه‌پور، 1383). سالیان متمادی است که کنجاله حاصل از دانه‌ی گلرنگ پس از استخراج روغن به مصرف تغذیه‌ی حیوانات می‌رسد. وجود فیبر زیاد در دانه، آن را از نظر تغذیه‌ی دام نامطلوب می‌سازد. این ماده می تواند برای تغذیه‌ی طیور، گاو، گوسفند و غیره به کار رود.کنجاله حاصله از دانه‌ی گلرنگ نسبت به کنجاله حاصله از دانه‌ی سویا به دلیل اثری که بر افزایش وزن دام دارد، از برتری خاصی برخوردار می‌باشد. پروتئین گلرنگ به عنوان یک منبع پروتئین گیاهی می‌تواند جهت تغذیه‌ی طیور به کار رود.
ترکیبات مختلف دانه گلرنگ به عنوان یک گیاه روغنی شامل 50-35 درصد روغن، 20-15 درصد پروتئین و 45-35 درصد پوسته می‌باشد. روغن گلرنگ به دلیل بالا بودن اسیدهای چرب غیراشباع برای مداوای گرفتگی رگ‌ها و جلوگیری از لخته شدن خون، کاهش کلسترول بد و افزایش کلسترول خوب، درمان رماتیسم و تسکین دهنده درد استفاده می‌شود (فرناندز و همکاران، 1993).
بین مقدار پوست دانه و درصد روغن یک همبستگی منفی وجود دارد. همچنین این همبستگی بین پوست و مقدار مغز دانه هم صدق می‌کند. هر چه میزان پوست دانه کم باشد (به اصطلاح پوست کاغذی باشد) درصد مغز یا روغن بیشتر خواهد بود. بنابراین صفت فوق مطلوب تلقی می‌گردد. نازکی پوست دانه توسط ژنی به نامth کنترل شده و باعث افزایش روغن در بذر به مقدار 6 تا 7 درصد می‌گردد (آلیاری و شکاری، 1379).
1-11- روش‌های اصلاحی گلرنگاصلاحگران گلرنگ عمدتاً از روشهای مختلف شجره‌ای برای اداره نسلهای در حال تفکیک استفاده کرده‌اند (نولز،‌ 1989). گزینش برای خصوصیاتی با توارث‌پذیری بالا (مانند زودرسی، ‌مقاومت به بیماری‌ها) از تک بوته‌های F2 شروع می‌شود. می‌توان لاین‌های یکنواخت F3 یا F4 که دارای خصوصیات مطلوب هستند را در آزمایشات مقایسه عملکرد اولیه قرار داد. روش تلاقی برگشتی به منظور انتقال صفات ویژه مخصوصاً مقاومت به بیماری‌ها به ارقام تجاری خوب، مورد استفاده قرار گرفته است.
برنامه‌های گزینش دوره‌ای نیز در گلرنگ مورد ‌‌استفاده قرار گرفته است. در پروژه‌ای که در سال 1970 در آریزونای آمریکا آغاز شد روبیس (1981) از نوعی نرعقیمی ساختاری که با ژن نازکی پوسته بذر (th/th) همبستگی داشت، ‌استفاده نمود تا لاین‌هایی با مقاومت بالا به بیماری پوسیدگی ریشه (phytophorta spp.) ایجاد نماید.
کاراپتیان (1994) سه ژن غیر مشابه دارای اثرات متقابل را شناسایی نمود که توارث نر- ماده عقیمی را در گلرنگ کنترل می‌کند. تلاقی مورد استفاده شامل واریته S1,S1s2s2s3s3 US-10 و یک لاین هندی با فاصله جغرافیایی دور به نام s1,s1S2S2S3S3 147-54 بود.
برنامه اصلاحی دورگ گلرنگ در سال 1974 به وسیله هیل با استفاده از سیستم نرعقیمی سیتوپلاسمی آغاز شد (هیل، ‌1996). میانگین افزایش عملکرد هیبریدها نسبت به والدین برتر در مناطق کالیفرنیا، آریزونا، داکوتای شمالی،‌ کانادا،‌ پاکستان، مکزیک و اسپانیا، 127% بود. میزان روغن هیبریدها که در سال 1983 دارای میانگین 34% بود، به 40% و 42% در سال 1994 افزایش یافت و اکنون هیبریدهای با بیش از 45% روغن در حال توسعه‌اند.
1-12- نقاط ضعف گلرنگ
عملکرد پایین در واحد سطح همراه با شاخص برداشت کم و میزان کم روغن بذر، حساسیت زیاد ارقام تجاری موجود به بیماری‌های برگی (آلتراناریا، رامولاریا، پوکسینیا) پوسیدگی ریشه (ماکروفامیا)، ‌پژمردگی (فوزاریوم، ورتیسیلیوم)، ‌شته‌ها و تنش‌های غیرزنده (خشکی، شوری و ‌خاک قلیایی) و غیره را می‌توان نام برد.
با توجه به این که کشور ما یکی از مراکز منشأ گیاه گلرنگ می‌باشد، امید است بتوان با شناخت پتانسیل موجود در منابع ژنتیکی داخلی و بدست آوردن اطلاعات در رابطه با ساختار ژرم‌پلاسم این گیاه، مواد ژنتیکی مناسب را برای اهداف اصلاحی آن انتخاب کرد.
وجود خار در حاشیه برگ‌ها و دیگر بخش‌های گلرنگ در زراعت، صفتی منفی به شمار می‌رود، زیرا پس از استقرار بوته امکان هر گونه عملیات داشت و برداشت را با مشکل مواجه می‌سازد. از این رو دستیابی به ارقامی از گلرنگ که ضمن نداشتن خار از پتانسیل تولید بالاتری نسبت به ارقام خاردار برخوردار باشد از جمله اهداف مهم اصلاحی است.
عدم وجود تکنولوژی تولید منطقه‌ای (مثلاً در کشورهای آفریقایی) برای بهره برداری از پتانسیل کامل گلرنگ، عدم وجود اطلاعات در زمینه رسیدن به حداکثر پتانسیل تولید در مناطق مختلف. عدم وجود بازار مطمئن و قیمت تضمینی برای خرید گلرنگ،‌ عدم وجود امکانات فرآوری در نزدیکی مراکز تولید گلرنگ از دیگر مشکلات و نقاط ضعف این گیاه هستند.
1-13- اهداف اصلاحی گلرنگ
توسعه تحقیقات برای تعیین منابع مقاومت به تنش‌های محیطی زنده وغیر زنده.
ایجاد ارقام پرمحصول و هیبریدهای دارای میزان روغن بالا و متحمل به آفات و بیماری‌ها.
اصلاح گلرنگ برای حساسیت کمتر به درجه حرارت و طول روز و تولید ارقام پرمحصول زودرس.
بهبود تکنولوژی تولید و حفظ نباتات در گلرنگ به منظور افزایش عملکرد در شرایط آگرواکولوژیک مختلف.
اصلاح ارقام پرمحصول بی خار برای مناطقی که کشت گلرنگ در آنها مرسوم نیست.
توسعه تحقیقات به منظور شناسایی جنبه‌های مختلف در کشت گلرنگ.
ایجاد تکنولوژی فرآوری بذر مناسب.
یافتن سیستم‌های پویایی نرعقیمی سیتوپلاسمی برای تولید هیبریدها و آموزش کادر تحقیقاتی در زمینه روش‌های اصلاحی، تشخیص و مدیریت بیماری‌ها.
توسعه تیپ گیاهی دارای شاخه دهی کمتر و ارقام بدون خار.
1-14- اهداف مطالعهاین تحقیق به منظور ارزیابی ژرم‌پلاسم موجود گلرنگ در شرایط دیم و به‌گزینی بر اساس صفات مورد مطالعه و در مراحل مختلف رشد گیاه ‌صورت گرفت.
بررسی ارتباط بین صفات مورد مطالعه با همدیگر و تعیین صفات مؤثر بر عملکرد دانه.
شناسایی سهم هر یک از صفات تنوع کلی جمعیت مورد مطالعه با استفاده از برخی روش‌های چند‌‌‌‌‌متغیره.
بررسی تنوع ژنتیکی کلکسیون گلرنگ از لحاظ برخی صفات کیفی.
شناسایی ژنوتیپ‌های برتر به منظور استفاده به عنوان والدین در پروژه های اصلاحی گلرنگ.
فصل دوّمبررسی منابع
2-1- بررسی تحقیقات مرتبط با تنوع ژنتیکی گلرنگ
یزدی صمدی (1979) در بررسی کلکسیون بزرگی از گلرنگ شامل ژنوتیپ‌هایی از ایران و آمریکا، تنوع ژنتیکی گسترده‌ای را برای هفت صفت زراعی مختلف شامل تعداد روز تا گل‌دهی، ارتفاع بوته، تعداد قوزه در بوته، تعداد دانه در قوزه، وزن هزار دانه، عملکرد دانه و درصد روغن مشاهده کرد. در این مطالعه، ژنوتیپ‌های ایرانی دارای بیشترین تنوع از لحاظ ارتفاع بوته، تعداد قوزه در بوته و تعداد دانه در قوزه بودند.
نای و همکاران (1992) بررسی‌هایی را بر روی وراثت‌پذیری مربوط به 7 جزء صفت که بر روی عملکرد تأثیر دارد انجام دادند که در نهایت نتیجه گرفتند بیشترین وراثت‌‌پذیری برای ارتفاع گیاه و طول شاخه است.
قنواتی و نولز (1977) ذکر نمودند، که گیاهانی با یک مرحله روزت طولانی در یکی از جمعیت‌های محلی از شمال غرب ایران تحت عنوان لاینهای LRV موجود هستند و بیش از 50 لاین از این توده محلی با تنوع قابل ملاحظه‌ای در تحمل به سرمای زمستانه معرفی گردیدند.
باقری و همکاران (1380) به منظور بررسی تنوع ژنتیکی برای عملکرد و اجزای آن و برخی از صفات فنولوژیکی، ارزش غذایی و نیز برخی صفات کیفی در جمعیت های بومی گلرنگ ایران، آزمایشی با 121 ژنوتیپ در قالب طرح لاتیس ساده انجام دادند. 12 رقم خارجی نیز جهت مقایسه با ژرم‌پلاسم داخلی در آزمایش گنجانده شد. در این طرح، 14 صفت کمی و 6 صفت کیفی ارزیابی شد. نتایج نشان داد که در تمامی صفات ارزیابی شده به جز محتوای روغن، ژنوتیپ‌های ایرانی دارای بالاترین مقادیر بودند. در این مطالعه بیشترین ضریب تغییرات را صفت تعداد دانه در قوزه و کمترین آن را صفت محتوای پروتئین داشت.
بردلی و جانسون (1997) بر روی 2300 اکسشن گلرنگ بررسی را انجام دادند که در این آزمایش گسترده 7 صفت ارتفاع گیاه، وزن هزار دانه، عملکرد بوته، طول و عرض براکته‌ها، قطره قوزه اولیه و تاریخی که 50% گیاهان به گل رفته‌اند، مورد بررسی قرار گرفت. با تجزیه داده‌ها همبستگی زیادی بین ارتفاع و گلدهی و طول و عرض براکته‌ها مشاهده شد و در این آزمایش ارقامی را که از آسیای جنوب غربی جمع آوری کرده بودند فاصله زیادی از لحاظ صفات و برتری نسبت به سایر ارقام داشتند و در نهایت مشخص شد که تنوع زیادی بین ژنوتیپ‌های گلرنگ وجود دارد.
صمدانی و دانشور (1373) در مطالعه ارقام محلی ایرانی اعلام کردند که زمان کاشت پاییزه نسبت به بهاره برتری کامل‌تری از نظر عملکرد دارد و ضرائب همبستگی بین عملکرد و سایر صفات مثل تعداد شاخه جانبی، تعداد قوزه و ارتفاع مثبت و معنی‌دار است.
سروانتس مارتینز و ری پونس (2001) به منظور بررسی آلترناریای نقطه‌ای برگ و بررسی درصد روغن، 421 ژنوتیپ گلرنگ را از کل جهان جمع‌آوری کرده و مورد ارزیابی قرار‌ دادند. در نهایت 84ژنوتیپ به آلترناریا مقاومت نشان داده و 377 ژنوتیپ درصد روغن بین 7/12 تا 42 درصد و 37 اکسشن درصد روغن بالای 8/32% را نشان دادند. در انتها به این نتیجه دست یافتند که بعضی ارقام را می توان به عنوان منبع ژرم‌پلاسمی برای بعضی صفات بکار برد.
گروپادا و همکاران (1993) به منظور بررسی تنوع‌پذیری صفات اگرومورفولوژیکی گلرنگ، پزوهشی را با استفاده از 103 نمونه مختلف از ژرم پلاسم گلرنگ انجام دادند. آن‌ها در صفات عملکرد بوته، تعداد انشعابات اولیه وثانویه و تعداد قوزه مؤثر در بوته تنوع بالایی مشاهده کردند و تعداد 30 رگه امید بخش برای استفاده در برنامه های به نژادی انتخاب نمودند.
زبرجدی (1381) طی آزمایشی برروی28 رقم گلرنگ پاییزه در شرایط دیم در منطقه سرارود کرمانشاه نتیجه گرفت در نهایت از لحاظ میزان عملکرد، رقم شماره 27 (199877pI-( بیشترین عملکرد با میزان 25/968کیلو گرم و رقم شماره21(697) با عملکرد 3/360 کمترین عملکرد را نشان دادند. در ادامه بررسی اجزاءعملکرد نشان داد ارقام در سطح 1% اختلاف معنی‌داری با هم دارند و می‌‌توان گفت که افزایش عملکرد تنها از طریق یکی از اجزاء امکان‌پذیر نمی‌باشد.
اشری و همکاران (1974) در مطالعه 903 ‍ژنوتیپ گلرنگ برای متوسط عملکرد تک بوته و 3 جزء عملکرد به این نتیجه رسیدند که عملکرد تک بوته با طول فصل رشد تا گلدهی، ارتفاع بوته و میزان روغن دانه همبستگی نشان نداد. بنابراین امکان اصلاح واریته‌های زودرس با محتوای روغن بالا امکان‌پذیر است و میزان روغن با تعداد دانه در لاین‌های ایرانی و مصری همبستگی معنی‌داری دارد ولی این همبستگی در لاین‌های هندی مشاهده نشده است و نیز تجزیه رگرسیون نشان داد که 3 جزء عملکرد سهم بیشتری از واریانس عملکرد تک بوته را توجیه می‌کند. همچنین اصلاح برای عملکرد‌های بالا از طریق افزایش تعداد قوزه در بوته در جایی که مزرعه حاصلخیز است و رطوبت خاک فراوان است مهم می‌باشد. قابلیت تولید زیاد قوزه در جایی که آب آن قدر محدود است که گیاهان صرفاً چند شاخه جانبی تولید می‌کند و تنها چند قوزه می‌تواند پر شود بی‌اهمیت است.
سالیرا (1996) در آزمایشی گزارش نمود بالاترین درصد روغن در بذرهای برهنه در بالاترین تراکم مشاهده شد که احتمالاً بدلیل وزن کم بذر و درصد پوسته بذر می‌باشد.
اکبری و همکاران (1386) در آزمایشی بر روی ژنوتیپ‌های گلرنگ دریافتند که صفات تحت بررسی در سطح 1% تفاوت معنی‌دار داشته و خصوصیاتی مانند عملکرد روغن، تعداد قوزه در بوته، وزن هزار دانه، تعداد شاخه فرعی، عملکرد بیولوژیک و شاخص برداشت، همبستگی مثبت و معنی‌داری با عملکرد دانه از خود نشان دادند.
احمد زاده و همکاران (1389) در آزمایشی بر روی 30 ژنوتیپ گلرنگ نتیجه گرفتند که صفات ارتفاع بوته‌ و وزن 100 دانه بیشترین اثر مستقیم را بر عملکرد دانه داشته است. بنابراین بهتر است ژنوتیپ‌هایی انتخاب شوند که از نظر صفات مذکور دارای مقادیر بیشتری باشند.
پاتیل و همکاران (1989) در بررسی 60 ژنوتیپ گلرنگ اعلام کردند که ارتفاع گیاه، عملکرد دانه، ارتفاع شاخه‌دهی و وزن هزار دانه، 80 درصد تنوع موجود را توجیه می‌کنند.
یزدی صمدی و عبدمیشانی (1991) با ارزیابی 7 صفت کمی بر روی 1618 واریته و لاین ایرانی و آمریکایی، آنها را در 5 کلاستر گروه‌بندی کردند. آنها اعلام داشتند، گروه‌بندی دلالت بر شباهت بین لاین‌های اخذ شده از نواحی دارای شرایط اکولوژیک متضاد داشت و احتمالاً در اثر وجود مبنای ژنتیکی یکسان در آنها بوده است.
اشری و همکاران (1975) در یک پژوهش دیگر که بر روی ژنوتیپ‌های گلرنگ جمع آوری شده از مناطق مختلف دنیا انجام دادند تنوع زیادی برای صفات تحت بررسی بین ژنوتیپ‌ها مشاهده کردند به طوری که لاین های جمع‌آوری شده از کشور هند کمترین ارتفاع بوته و لاین‌های ایرانی بالاترین ارتفاع بوته را دارا بودند.
ماتور و همکاران) 1976) در کشور هند بررسی‌هایی را بر روی ارقام گلرنگ و همبستگی بین عملکرد و سایر صفات آنها انجام دادند که در نهایت بعد از تجزیه داده‌ها عملکرد هر گیاه همبستگی مثبتی با قطره قوزه و تعداد بذر در قوزه داشت و در مقابل، همبستگی منفی با تعداد شاخه‌های اولیه از خود نشان داد.
پورداد (1378) با بررسی مقدماتی ژرم‌پلاسم گلرنگ شامل 171 ژنوتیپ در کشت پاییزه دریافت که تنها 2 نمونه از ژنوتیپ‌های تحت بررسی در اثر سرما از بین رفتند و نتیجه گرفت که گلرنگ مقاومت خوبی به سرما داشته و دامنه عملکرد در متر مربع از 18 تا 468 گرم به ترتیب متعلق به Dincer 118 و لاین 81-79 بود. بیشترین تعداد قوزه در بوته مربوط به لاین 79-79 با 34 قوزه و بیشترین تعداد دانه در قوزه متعلق به رقم Dincer 118 و بیشترین وزن 100 دانه متعلق بهSyrian و PI-537631 بوده است.
بردلی و جانسون) 1997) برروی 13 رقم گلرنگ صفاتی کمی مانند اندازه قوزه و ارتفاع گیاه را مورد بررسی قرار دادند. از نظر ارتفاع کمترین میزان مربوط بهPI-314650 با 77 سانتی‌متر و بیشترین میزان مربوط به PI-304439 و PI-304442 که همه از ایران جمع آوری شده بودند بود که بر حسب سانتی‌متر ثبت گردید و از لحاظ قطر قوزه PI-560197 با 5/3 سانتی‌متر بزرگترین اندازه را به خود اختصاص داده بود.
نژاد شاملو و همکاران (1375) با بررسی ارقام گلرنگ بهاره سهم اجزاء عملکرد و سایر صفات در عملکرد را با استفاده از روش رگرسیون گام به گام بدست آوردند. در این تحقیق اختلاف اساسی عملکرد دانه ارقام گلرنگ بهاره به تعداد دانه در قوزه بستگی داشت و این جزء از عملکرد به تنهایی 3/87 درصد از تغییرات آن را توجیه کرد.
روژاس و همکاران) 1992) در بررسی 200 نمونه از کلکسیون جهانی گلرنگ به این نتایج دست یافتند که همبستگی بین محتوای روغن و پروتئین دانه معنی‌دار اما ضعیف بود و همبستگی درصد پوسته با محتوای روغن دانه و پروتئین منفی و معنی دار گردید و نیز محتوای روغن و پروتئین با وزن 100 دانه همبستگی مثبت و معنی‌دار نشان داد.
پورداد و همکاران (1378) در بررسی خود بر روی ارقام گلرنگ در 3 منطقه اسلام آباد، بیلوار و بیستون در استان کرمانشاه نتیجه گرفتند که درصد روغن از 04/25 تا 15/31 متغیر بوده و رقم شاهد در هر 3 منطقه دارای کمترین درصد روغن بود و در مجموع رقم سینا عملکرد روغن و دانه بالایی داشت و به عنوان رقم برتر معرفی گردید.
لینگر و یوری (1964) در بررسی برروی مراحل رشد دانه گلرنگ از نظر روند تغییرات درصد روغن و درصد پوسته دانه به این نتیجه رسیدند که با بلوغ بذر درصد پوسته دانه کاهش یافته و درصد روغن افزایش یافته و حداکثر میزان روغن پس از بلوغ کامل حاصل می‌گردد.
پورداد (1383) تعداد 933 رقم، رگه و توده گلرنگ جمع‌آوری شده از مناطق مختلف کشور و نیز ارقام و رگه‌های خارجی را در دو تاریخ کاشت بهاره و پاییزه و در شرایط دیم ایستگاه، تحقیقات کشاورزی سرارود مورد ارزیابی قرار داد. نتایج حاکی از تنوع ژنتیکی قابل ملاحظه‌ای در هر دو کشت بهاره و پاییزه در ژرم‌پلاسم مورد مطالعه از نظر تمامی صفات تحت بررسی بود.
جمشیدمقدم و همکاران (1385) به منظور بررسی صفات زراعی و مورفولوژیک و کاربرد آنها در برنامه‌های به نژادی گلرنگ، آزمایشی با 270 ژنوتیپ گلرنگ انجام دادند. صفات مختلف کمّی و کیفی شامل رنگ گل، وضعیت خار، تعداد روز تا شروع و پایان گلدهی، طول دوره گل‌دهی، تعداد روز تا رسیدگی، طول دوره پر‌شدن دانه، ارتفاع بوته، تعداد شاخه فرعی در بوته، قطر قوزه اصلی و فرعی، متوسط تعداد قوزه در بوته، تعداد دانه در قوزه، وزن هزار دانه، محتوای روغن دانه و عملکرد دانه و روغن در واحد سطح ارزیابی شد. نتایج حاکی از تنوع ژنتیکی قابل ملاحظه‌ای در ژرم‌پلاسم مورد مطالعه از نظر اکثر صفات فوق بود.
عباسعلی و همکاران (2006) 81 نمونه گلرنگ دریافتی خارج از کشور را بررسی کردند. 35 صفت کمی و کیفی مورد ارزیابی قرار گرفت. این آزمایش نشان داد که در بین ارقام تنوع مطلوبی وجود داشته به طوری که می‌توان از این تنوع برای اهداف مختلف اصلاحی سود جست.
امیدی‌تبریزی و همکاران (1379) بین ارقام و لاین‌های گلرنگ پاییزه از نظر عملکرد دانه و روغن اختلاف معنی‌داری گزارش کردند. ژنوتیپ‌های مورد بررسی آنها ارقامی پاییزه همچون ورامین-295، زرقان 279 و 51/51R.V .L تشکیل داده بودند.
منصوری‌فر (1373) طی آزمایشی که برروی 10 رقم گلرنگ انجام داد به این نتیجه رسید که رقم (60-55-7LR) A2 با 4130 کیلوگرم در هکتار بالاترین و رقم (295) A8با 2250 کیلوگرم در هکتار پایین‌ترین عملکرد را داشتند. همین طور A2 از نظر تعداد قوزه در بوته و وزن هزار دانه و رقم (51-51-7)A4 از نظر تعداد دانه در قوزه برتر از سایرین بودند.
کومار (1991) بین تعداد دانه در قوزه و وزن صد دانه همبستگی قوی مشاهده نمود. همچنین بین عملکرد دانه و تعداد دانه در قوزه و همچنین عملکرد دانه و تعداد قوزه در بوته همبستگی مشاهده نمودند و نتیجه گرفت که در کلکسیون مورد نظر با انتخاب بوته‌های دارای تعداد قوزه بیشتر و نیز دانه‌های درشت‌تر می‌توان در جهت افزایش عملکرد اقدام کرد.
ساری و همکاران (1988) در آزمایشی نتیجه گرفتند که با بالا رفتن تراکم، میزان روغن و پروتئین دانه افزایش یافت.
یزدی صمدی و عبدمیشانی (1989) با مطالعه 1858 لاین‌ ایرانی و خارجی تحت شرایط بدون آبیاری در کرج اعلام نمودند که ارتفاع گیاه بسیار متغیر بوده و محدوده تغییرات آن بین 20-90 سانتی‌متر می‌باشد. همچنین دریافتند که لاین‌های ایرانی جز کوتاه‌ترین نمونه‌ها هستند.
براتولون (1993) در مطالعه خود در کشور رومانی اعلام نمود که برترین ژنوتیپ عملکردی در حدود 5 تن در هکتار داشته است که نتجه فوق بیانگر پتانسیل بالای گلرنگ در تولید دانه می‌باشد.
پورداد (1376) در بررسی‌هایی بر روی ارقـام اصلاح شده گلرنگ پائـیزه در شرایط دیم در منطقه سرارود بیشترین میزان همبستگی منفی بین تعداد دانـه در قوزه با تعداد قوزه در بوته بوده که در سطح احتمال 1 درصد معنی‌دار بود و همین طور یک همبستگی منفی بین تـعداد قوزه در بوتـه و وزن دانه مشاهده گردید. این همبستگی منـفی بـین اجزاء عـملـکرد به این دلیل بود که با افزایش میزان تعداد قوزه، وزن دانه بدلیل وجود شرایط دیم و تنش رطوبتی کاهش یافـت.
کانگ دیمینگ (1993) با اجرای روش‌های آماری چند متغیره برروی 30 رقم گلرنگ را مشخص نمود که 6 مؤلفه اصلی که به ترتیب شامل صفاتی چون اولین شاخه موثر، قطر ساقه اصلی، اندازه دانه، وزن هزار دانه، میزان روغن دانه و زاویه شاخه از ساقه اصلی بودند که حدود 78 درصد واریانس کل را توجیه نمودند.
هایرمت و منسینکایس (1971) پس از مطالعه6 صفت کمی در 50 رقم گلرنگ به این نتیجه رسیدند که ارتفاع گیاه و عملکرد تک بوته به سبب وراثت‌پذیری بالا تاثیر چندانی از محیط نمی‌پذیرد
اکبارین (1992) با استفاده از روش تجزیه کلاستر، گونه‌های مختلف گلرنگ در چهار گروه مربوط به فلاونس و یک گروه متعلق به گلاکوس و یک گروه متعلق به دناتوس را طبقه‌بندی کرد.
پولینگناتو والبا (1995) با بهره جستن از روش‌های آماری تجزیه کلاستر و تابع تشخیص کانونی، ارقام مختلف گلرنگ مورد بررسی خود را به 5 گروه که هر گروه شامل کشور‌های مختلفی بودند، تقسیم نمودند، اساس تغییرات در این طبقه‌بندی مربوط به صفات ارتفاع بوته، روز تا گلدهی و وزن هزار دانه ذکر گردید.
یزدی صمدی و عبد میشانی (1989) در بررسی لاین‌ها و ارقام گلرنگ داخلی و خارجی و انجام تجزیه کلاستر بر روی آنها مشخص نمودند که ارقام مورد بررسی در 5 گروه اصلی آمریکایی، ایرانشهری، مرندی، ارومیه‌ای، مغانی، فارس، اصفهان و جیرفت قرار گرفتند و همچنین نتیجه‌گیری شد که شباهت در میان توده‌های فوق با توجه به شرایط اکولوژیک احتمالاً به دلیل پایه ژنتیکی یکسان (منشأ آمریکایی، ایرانی و کشورهای شرق آسیا) می‌باشد.
جمشید‌مقدم و همکاران (1385) در بررسی تنوع ژنتیکی گلرنگ در شرایط دیم از طریق تجزیه به عامل‌هانشان دادند که شش عامل اصلی و مستقل در مجموع 04/80 درصد از کل تغییرات را توجیه کرد. عوامل اول، دوم، پنجم، به عنوان عوامل فنولوژیک و مورفولوژیک 05/47 درصد عامل‌های سوم و چهارم به عنوان عامل‌های عملکرد و اجزای آن 56/25 درصد و عامل ششم به عنوان عامل کیفی با 13/7 درصد نامگذاری شدند.
سینگ و همکاران (1981) بیش از 50 ژنوتیپ بومی هند را از نظر 9 صفت زراعی در شرایط دیم مورد بررسی قرار دادند. آن‌ها تنوع زیادی را در بین ژنوتیپ‌ها از نظر صفات زراعی گزارش و ارقامی زودرس با طول دوره رویش 164 روز را گزینش کردند.
عباسعلی و همکاران (2006) نشان دادند بین ژنوتیپ‌های گلرنگ برای صفات مختلف تنوع کافی وجود دارد. همچنین همبستگی تعداد قوزه در بوته با عملکرد دانه در واحد تک بوته مثبت و با شاخص برداشت منفی بود و نیز بین درصد روغن با تعداد روز تا 50 درصد گلدهی همبستگی مثبت دیده شد.
اشری و همکاران (1974) در پژوهش دیگری نیز که برروی تعداد زیادی از ژنوتیپ‌های جمع‌آوری شده گلرنگ از کشور‌های مختلف از جمله ایران انجام دادند اعلام نمودند که تنوع زیادی از لحاظ عملکرد دانه و اجزای عملکرد و درصد روغن وجود داشته است.
باقری و همکاران (1380) در یک پژوهش دیگر نیز با استفاده از تجزیه کلاستر به روش وارد و مربع فاصله اقلیدسی 121 ژنوتیپ گلرنگ را در 9 کلاستر گروه‌بندی نمودند.
مکن و همکاران (1979) در یک مرکز تحقیقاتی در ماراس وادا هند آزمایشی را بروی 71 رقم گلرنگ که در مورد عملکرد و 7 صفت مربوط به آن بود انجام دادند. در این آزمایش همبستگی مثبتی بین عملکرد با ارتفاع گیاه و تعداد قوزه در بوته و تعداد دانه در قوزه و وزن 100 دانه وجود داشت و وراثت‌پذیری بالایی برای ارتفاع، وزن 100 دانه و تعداد دانه مشاهده شد.
زند و کوچکی (1375) پس از مطالعه 9 ژنوتیپ گلرنگ به این نتیجه رسیدند که خصوصیاتی مانند بیوماس کل، تعداد قوزه، تداوم شاخص سطح برگ، ارتفاع، شاخه‌دهی و طول دوره موثر پر‌شدن‌دانه بیشترین همبستگی را با عملکرد داشتند. طبق نتایج تجزیه علیت بیشترین اثرات مستقیم بر عملکرد دانه مربوط به بیوماس (65 %) و تداوم شاخص سطح برگ (39 %) و تعداد قوزه در بوته (12 %) بود.
صفوی (1389) نیز آزمایشی با 121 ژنوتیپ در ایستگاه تحقیقات کشاورزی دیم سرارود انجام داد. نتایج ضرایب مسیر نشان داد که صفت تعداد قوزه در بوته بیشترین اثر مستقیم را بر روی عملکرد تک بوته داشته است. تجزیه به عامل‌ها، چهار عامل را مشخص نمود که در مجموع 8/78 درصد از تغییرات کل را توجیه نمود. تجزیه خوشه‌ای به روش وارد و مقیاس مربع فاصله اقلیدسی ژنوتیپ‌ها را به 6 گروه تفکیک کرد.
شهبازی دورباش و همکاران (1390) با بررسی تنوع ژنتیکی 74 لاین ایرانی و 6 لاین خارجی گلرنگ دریافتند که این لاین‌ها در اکثر صفات زارعی تفاوت معنی‌داری داشتند. صفات ارتفاع بوته، تعداد قوزه در بوته و درصد سبز شدن بیشترین همبستگی مثبت را با عملکرد دانه داشتند.
گوپتا و سینگ (1997) در انستیتو تحقیقات کشاورزی در هند به بررسی تنوع و وراثت‌پذیری و ضریب همبستگی و عملکرد دانه و اجزاء آن بر روی 45 هیبرید F1 گلرنگ و 10 ژنوتیپ از گیاهان F2 پرداختند. در این آزمایش وراثت‌پذیری برای تمام صفات بالا بود. این بررسی نشان داد که عملکرد دانه با شاخه‌های اولیه، تعداد قوزه در گیاه، ارتفاع و وزن صد دانه همبستگی دارد. و در مقابل عملکرد روغن یک ارتباط منفی با عملکرد دانه و وزن صد دانه دارد.
سعیدی و همکاران (1383) در آزمایشی بر روی هفت توده بومی گلرنگ دریافتند که از لحاظ صفات تعداد روز تا گلدهی و رسیدگی، ارتفاع بوته، تعداد شاخه در بوته، متوسط وزن قوزه، تعداد دانه در قوزه، وزن‌صد‌دانه، عملکرد دانه در واحد سطح، درصد پوسته دانه تفاوت معنی‌داری بین توده‌ها، وجود دارد. نتایج تجزیه مسیر نیز نشان داد که از بین اجزای عملکرد دانه، تعداد دانه در قوزه و تعداد قوزه در بوته بیشترین اثرات ژنتیکی مستقیم و مثبت را بر عملکرد دانه در واحد سطح و عملکرد دانه در بوته داشتند.
گلکاری (1390) در آزمایشی شامل 89 ژنوتیپ گلرنگ دریافت که بر اساس تجزیه به عامل‌ها صفات عملکرد بیولوژیکی، عملکرد روغن، درصد سبز شدن و شاخص برداشت در عامل اصلی قرار گرفتند و عامل بهورزی نامگذاری شد. کلاستر بندی به روش UPGMA و فاصله مربع اقلیدس برای کلیه صفات مورد ارزیابی، ژنوتیپ‌ها را در 5 خوشه گروه‌بندی کرد که لاین‌های موجود در کلاستر اول و سوم از نظر صفات عملکرد دانه از ارزش بالاتری نسبت به میانگین کلیه ژنوتیپ‌ها برخوردار بودند.
بهدانی و جامی الاحمدی (1387) در آزمایشی به منظور بررسی تغییرات رشد و عملکرد سه رقم گلرنگ بهاره نتیجه گرفتند از بین ویژگی‌های مورفولوژیک، ارتفاع گیاه، قطر ساقه، تعداد شاخه‌های جانبی، بیشترین رابطه را با عملکرد نشان دادند و نیز قوزه اصلی همبستگی بالایی را با عملکرد داشت و در نتیجه کاشت رقم محلی اصفهان به دلیل بومی بودن و تطابق‌پذیری بیشتر به شرایط ایران، در مقایسه با ارقام دیگر عملکرد بیشتری را داشت.
درشولی ترک (1383) آزمایشی روی 240 ژنوتیپ گلرنگ انجام داد که در بررسی همبستگی بین صفات به نتایجی از قبیل عدم وجود رابطه بین درصد روغن و تعداد روز تا رسیدگی رسید. و ژنوتیپ ها در 12 کلاستر گروه‌بندی کرد.
امیدی تبریزی و همکاران (1378) در آزمایشی شامل 25 ژنوتیپ گلرنگ بهاره شامل ژنوتیپ‌های بومی ایران و ارقام خارجی نتیجه گرفتند که عملکرد دانه و روغن، با تعداد دانه یا تعداد قوره در بوته، شاخه‌های فرعی، روز تا گلدهی همبستگی مثبت و معنی‌داری داشت. تجزیه کلاستر به روش وارد و فاصله اقلیدسی، 25 ژنوتیپ را در سه کلاستر گروه‌بندی کرد.
در بررسی که هواگ (1978) انجام داد به این نتیجه رسید که با افزایش تراکم، وزن صد دانه گیاه کاهش و درصد روغن افزایش پیدا می‌کند.
فولز (1990) در دانشگاه کالیفرنیا تحقیقاتی را برروی عملکرد و کیفیت روغن انجام داد که ژرم‌پلاسم‌های جمع‌آوری‌شده از منطقه شمال آسیا، خاورمیانه و آفریقای شمالی انتخاب شده بودند که در نهایت ژرم‌پلاسم CU-1 انتخاب شد که پایه کارهای اصلاحی شد.
برگمن (1997) در آخرین تحقیقات خود به دو رقم گلرنگ به نامهای مونتالا با 81 درصد اسید اولئیک و مورلین با 83 درصد اسید لینولئیک اشاره نموده است.
داجو و گریف (2001) یک آزمایش بین المللی را در کشورهای آسیایی تایلند، هند و چین انجام دادند که در آن 9 رقم به همراه یک رقم محلی مورد ارزیابی قرار گرفتند. در نهایت آزمایش نشان داد که اگر گلرنگ به منظور روغن کشت شود ارقام GW-9024 و KU-4038و GW-9023 در هند و ارقام GW-9023 ACC407, GW-9024, GW-9025GW-9023 ACC407, در تایلند و ارقام GW-9025و KU-4038 در شمال چین درصد مناسبی از روغن نشان می‌دهند که می‌تواند مورد استفاده قرار بگیرد.
تحقیقات انجام شده توسط یوان (1983)، پارمسوارپا (1984)، پاتیل و دشماخ (1997)، و کازاتو و همکاران (1997) مشخص نموده است که همبستگی منفی و معنی‌داری بین پوسته دانه و درصد روغن در گلرنگ وجود دارد.
فصل سوّممواد و روش ها3-1- محل اجرای آزمایشاین آزمایش در مزرعه تحقیقاتی معاونت موسسه تحقیقات کشاورزی دیم سرارود واقع در 15 کیلومتری شهر کرمانشاه در سال زراعی 91-90 اجرا گردید. مشخصات اقلیمی و جغرافیایی محل اجرای آزمایش در جدول 3-1 آورده شده است.
جدول 3-1 برخی مشخصات جغرافیایی و اقلیمی محل اجرای آزمایش
حداقل و حداکثر
دما (سانتیگراد) حداقل و حداکثر بارندگی
سالیانه (میلیمتر) ارتفاع از
سطح دریا (متر) عرض جغرافیایی طول جغرافیایی موقعیت مکانی وضعیت آب و هوایی
24- و 44+ 241 و 783 6/1351 '20 و °34 '19 و °47 رشته کوه های
زاگرس شمالی نیمه خشک
معتدل سرد

وضعیت بارندگی و دما
میزان بارندگی سال زراعی 91-90 در ایستگاه سرارود 7/302 میلی‌متر بوده که در مقایسه با میانگین بلند مدت 2/111 میلی‌متر و نسبت به سال زراعی گذشته 6/11 درصد کاهش داشته است (جدول 3-2). پراکنش بارندگی در پاییز 1/127 در زمستان 2/104 و در بهار 4/71 میلی‌متر بوده است. به عبارت دیگر، 98/41 درصد بارش‌ها در پاییز 42/34 درصد در زمستان و58/23 درصد در بهار بوقوع پیوسته‌اند. داده‌های درجه حرارت نشان می‌دهند که متوسط دمای سال زراعی اخیر 6/10 درجه سانتی‌گراد بوده که در مقایسه با میانگین بلند مدت85/0 درجه سانتی‌گراد و نسبت به سال زراعی گذشته 97/0 درجه ‌سانتی‌گراد کاهش داشته است. مجموع روزهای زیر صفر 99 روز بوده که نسبت به میانگین بلند مدت 18 روز و نسبت به سال زراعی گذشته 22 روز افزایش داشته است. ‍‍جدول3-2- آمار هواشناسی سال زراعی91-90 ایستگاه تحقیقات کشاورزی دیم سرارودماه
بارندگی
میلیمترحداقل دمای مطلق حداکثر دمای مطلق متوسط
دما
تعداد روز زیر صفر % رطوبت نسبی تبخیر
میلیمتر متوسط دمای حداقل متوسط دمای حداکثر
مهر 0 2/1 8/31 6/17 0 4/27 6/182 3/8 27
آبان 2/126 4/2- 2/23 4/10 2 7/60 3/55 8/4 16
آذر 9/0 6/7- 6/15 4 27 4/52 0 4/3- 4/11
دی 3/14 8/8- 6/15 3/4 22 58 0 2- 6/10
بهمن 1/77 13- 2/14 7/2 18 60 0 7/2- 3/8
اسفند 8/12 12- 6/22 1/4 22 50 0 3/2- 5/10
فروردین 8/59 6/3- 6/25 5/11 8 53 8/62 1/4 9/18
اردیبهشت 4/11 3 2/33 7/17 0 37 3/227 9 5/26
خرداد 2/0 4/6 8/37 5/23 0 26 8/386 2/14 7/32

نمودار3-1- بارندگی، تبخیر و متوسط دمای حداقل و حداکثر مطلق در سال زراعی 2012-2011 ایستگاه سرارود3-2- طرح آزمایشی و عملیات زراعی در این بررسی 100 ژنوتیپ گلرنگ (جدول3-3) در قالب طرح لاتیس ساده 10×10 با 2 تکرار در کشت پاییزه و در شرایط دیم مورد ارزیابی قرار گرفتند. هر کرت آزمایشی شامل سه ردیف 4 متری با فاصله بین ردیف ها 30 سانتی‌متر، فاصله بوته‌های روی ردیف 10 سانتی‌متر و فاصله بین دو کرت 60 سانتی‌متر و فاصله بین دو بلوک 250 سانتی‌متر در نظر گرفته شد.
عملیات تهیه زمین در شهریور ماه شامل شخم، دیسک، ماله، مصرف علف‌کش و مصرف کود بوده و از خطی کار جهت ایجاد ردیف‌های کشت در مزرعه استفاده شد. کشت به صورت دستی و در تاریخ 28/7/90 انجام شد. میزان کود مصرفی برابر فرمول کودی N80 P60 بوده که کود فسفات و اوره در زمان کاشت مصرف گردید. در زمان داشت نیز دو نوبت وجین دستی صورت گرفت.
در طول دوره رشد گیاه همچنین از علف کش سیستمیک هالوکسی فوپ پی متیل 8/10% ای سی (گالانت سوپر) بر علیه باریک برگهای گرامینه موجود در مزرعه گلرنگ استفاده گردید. این سم علف کشی است که پس از رویش علف‌های هرز یکساله (مرحله 2-4 برگی) و چندساله (ارتفاع 10-30 سانتیمتر) بکار می‌رود. میزان مصرف آن 75/0- 1 لیتر در هکتار است.
جدول 3-3- اسامی 100 ژنوتیپ گلرنگ تحت بررسی در شرایط دیم
شماره ژنوتیپ شماره ژنوتیپ شماره ژنوتیپ
1 Isfahan Todeh 35 LRV 55 - 296 69 246 - LR 51- 83 / 697
2 PI - 198844 36 LSP 70 P559909/ACSTIRLING
3 697 37 Legzi Rez 71 8 - S6 / 60
4 LRV 51 / 5 38 Marageh 27 72 3147
5 Ajabshir Local 39 Varamin 295 73 PI - 250840
6 Isfahan10 40 Isfahan12 74 279
7 S6 / 7 /46 41 Babarez Dorosht 75 VARIETY FIRO- 44
8 Pacific - 3164 42 11 - V - 51 - 21 76 2 - 8 - S6 - 51
9 10 - 94 / SV /760/13 43 3150 77 SNC - 531
10 SnC - ABS 44 S - V - 60 78 PI - 258417
11 S6 / V / 46 - 9 45 30 / 324 - SV 76 / 697 79 2 / S6 / 697
12 29 46 250 - S6 / 91 80 PI 603207/LESAF 494
13 171 / LR - 55 - 697 47 508 81 13
14 472 48 LRV 51 / 20 82 377 / S6 / 697
15 Darab 4 49 196 - S6 - 58 - 41 83 25
16 Isfahan 14 50 185S6 - 58 84 183 - S6 - 58 / 41
17 Darab11 51 Isfahan37 85 2
18 Unknown 52 SNC - 456 86 357 - S6 / 697
19 Almaneh Rez 53 267 - S6 / 20 87 Syrian
20 12 54 PI - 307014 88 47 - S6 / 58 11
21 Dadaneh Dorosht 55 55 - 56 89 Zarghan 279
22 12D - 51 / 530 56 Legzy Dorosht 90 Almaneh Rez
23 Kerjo Rez 57 176 91 6 / 5 - S6 -58 / 11
24 Dincer 58 825 / 59 92 6 (Fall)
25 LRV 55 / 292 59 LRV-51 / 13 93 Zanjan Local
26 PI- 537636 60 LRV- 55 / 56 94 Darab 9
27 357 / S6 / 697 61 Isfahan28 95 3150
28 3 - LR55 / 292 62 S6/1151 96 1
29 24 - LR S3 - 11 63 LRV 55/296 97 S / 11 - 81
30 Goshtkani Dorosht 64 317 - S6 - 697 98 Sina
31 13 65 27258 -SV / V /60 /207 99 Galehkohneh Dorosht
32 PI - 251988 66 PI-258409 100 Goshkhani Dorosht
33 SNC . 1 67 268 / S6 - 20 34 180 68 Zard Gol 3-3- روش‌های نمونه برداری
3-3-1- تاریخ گلدهی (شروع و پایان) و دوره گلدهی
در این صفات به منظور تعیین شروع گلدهی هنگامی که حدود 10 درصد گیاهان وارد گلدهی شدند، زمان شروع گلدهی ثبت می‌شود. در ادامه به منظور مشخص کردن زمان پایان گلدهی وقتی تقریباً تمام گیاهان موجود در هر کرت گلهای خود را نشان دادند، پایان گلدهی یادداشت شد. از تفاضل این دو صفت طول دوره گلدهی به دست آمد. با تعیین تاریخ‌های فوق و استفاده از تاریخ سبز شدن به عنوان مبدأ محاسبات به ترتیب تعداد روز تا شروع و پایان گلدهی محاسبه گردید.
3-3-2- تاریخ رسیدگی
ثبت این تاریخ در مشخص کردن ارقام زودرس بسیار مؤثر می‌باشد. برای ثبت این صفت با بررسی قوزه‌های هر کرت، قوزه‌هایی که بذور آنها مراحل خمیری را طی کرده و رطوبت دانه‌ها به حدود 20 درصد رسیده باشند به طوری که با وارد کردن فشار به بذر در بین دو انگشت نباید له شود، بلکه باید براحتی خرد شود که در این صورت وارد مرحله رسیدن فیزیولوژیک شده است. در این مرحله کل بوته خشک بوده و پشت قوزه‌ها کاملاً زرد شده است. با تعیین تاریخ فوق و استفاده از تاریخ سبز‌شدن به عنوان مبدأ تعداد روز تا رسیدن محاسبه گردید.
3-3-3- ارتفاع گیاهدر این نمونه برداری ارتفاع از سطح زمین تا بلندترین قوزه فرعی ثبت شد و در جدول داده‌ها میانگین 5 گیاه از هر ژنوتیپ قرار داده شد.
3-3-4- تعداد شاخه‌جانبیبا شمارش و بر اساس میانگین شاخه فرعی 5 بوته به صورت تصادفی اندازه‌گیری شد.
3-3-5- طول شاخه‌های جانبیتعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بدون شاخه کد 0، شاخه کوتاه کد3، شاخه متوسط 5، شاخه بلند 7 داده شد.
3-3-6- وسعت خار برگ تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بدون خار کد 0، کم خار کد 3، متوسط کد 5، پرخار کد 7 داده شد.
3-3-7- حاشیه برگ تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بدون دندانه کد 1، دندانه دندانه کد 2، دندانه دار عمیق کد 3 داده شد.
3-3-8- تعداد قوزه در بوته
از طریق شمارش و بر اساس میانگین تعداد قوزه در 5 بوته در زمان رسیدگی محاسبه شد.
3-3-9- شکل قوزه تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور العمل IBPGR به قوزه مخروطی کد 1، بیضی کد 2، پهن کد 3 داده شد.
3-3-10- قطر قوزه
در مرحله رسیدگی تعداد 5 قوزه به صورت تصادفی از هر کرت انتخاب و بر حسب میلی‌متر به وسیله کولیس اندازه‌گیری شد.
3-3-11- طول و عرض براکتهبا استفاده از خط‌کش و بر اساس میانگین 5 بوته اندازه‌گیری شد.
3-3-12- تعداد دانه در قوزه
در زمان رسیدگی بر مبنای شمارش دانه‌های 5 قوزه در هر ژنوتیپ، میانگین تعداد دانه در قوزه شمارش گردید.
3-3-13- وزن هزار دانه پس از برداشت کرت‌ها، تعداد 500 دانه از هر ژنوتیپ شمارش و به وسیله ترازوی حساس و بر حسب گرم اندازه گیری گردید. سپس با دو برابر کردن وزن هزار دانه محاسبه گردید.
3-3-14- اندازه بذر تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بذر کوچک کد 3، بذر متوسط کد 5، بذر بزرگ کد 7 داده شد
3-3-15- عملکرد دانه در هکتاردانه جمع‌آوری شده بر اساس مساحت تخصیص داده شده به هر ژنوتیپ به صورت گرم در متر مربع یادداشت شده و در ادامه با تبدیل عملکرد به کیلوگرم در هکتار داده‌های آماری ثبت شد.
3-3-16- درصد روغن در اندازه‌گیری برای درصد روغن 20 گرم به همراه 2 گرم بذر اضافی به منظور از بین بردن خطا توزین و پوکی بذر و ناخالصی‌های فیزیکی دیگر، وزن گردید. سپس توسط دستگاه NMR در آزمایشگاه بخش دانه‌های روغنی معاونت مؤسسه تحقیقات دیم (سرارود) مورد تجزیه قرار گرفتند و درصد روغن آنها ثبت گردید.
3-3-17- عملکرد روغن
عملکرد روغن هر ژنوتیپ بعد از بدست آوردن درصد روغن و عملکرد دانه بر حسب واحد کیلوگرم در هکتار از طریق فرمول زیر محاسبه گردید.
عملکرد روغن = درصد روغن × عملکردانه
3-4- روش‌های آماری
نقش روش‌های آماری و بیومتری در جهت روشن شدن نتایج آزمایش قابل توجه می‌باشد. در این آزمایش سعی شده با استفاده از تجزیه و تحلیل داده‌ها به همراه مواردی مثل تشکیل جداول تجزیه و رسم نمودارها مفاهیم مربوط به آزمایش قابل درک شود. از روش‌های آماری استفاده شده به منظور تجزیه تنوع ژنتیکی گلرنگ می‌توان به موارد زیر اشاره نمود:
3-4-1- تجزیه واریانس و مقایسه میانگین صفات کمی
تجزیه واریانس بر اساس طرح لاتیس ساده برای همه صفات ذکر شده انجام ‌پذیرفت (جدول 3-4). مقایسه میانگین صفات با استفاده از آزمون SNKدر سطح احتمال 5 درصد انجام گرفت. محاسبات این آزمون مشابه با آزمون دانکن است، با این تفاوت که در اینجا از جدول توکی استفاده می شود. برآورد واریانس‌ها و امید‌ریاضی میانگین مربعات صفاتی که مزیت نسبی تجزیه واریانس آنها بر اساس طرح لاتیس ساده کمتر از 100 می‌باشد بر اساس طرح بلوک‌های کامل تصادفی انجام پذیرفت(کمپتورن 1969).
جدول 3-4- امید ریاضی میانگین مربعات تجزیه واریانس لاتیس مربع ساده در مدل تصادفی
امید ریاضی میانگین مربعات درجه آزادی منابع تغییر
σ2 + kσb2 + vσr2 MSR m-1 تکرار
σ2 + (k/k+1) + mσt2 MST (Adj) v-1 تیمار تصحیح شده
σ2 + (m-1/m) kσb2 MSB/R (Adj) m(k-1) بلوکهای درون تکرار
(تصحیح شده)
σ2 MSe (k-1)(mk-k-1) اشتباه
که در معادله فوق:
واریانس ژنتیکی
تعداد بلوک های ناقص
MST(Adj) = میانگین مربعات تیمار تصحیح شده
MSe = میانگین مربعات اشتباه
m = تعداد تکرار
3-4-2- استفاده از آمار توصیفی به منظور درک کلی از صفاتبه منظور ارزیابی تنوع ژنتیکی بین ژنوتیپ‌های مورد بررسی از لحاظ صفات اندازه‌گیری شده، پارامترهای آماری شامل میانگین، دامنه تغییرات، انحراف معیار، ضرایب تنوع‌ژنتیکیو فنوتیپیو وراثت‌پذیری هر صفت محاسبه شد. این ضرایب از تجزیه واریانس ژنوتیپ‎ها حاصل گردید.
به منظور محاسبه واریانس ژنتیکی از امید ریاضی جدول تجزیه واریانس طرح لاتیس ساده (جدول3-4) استفاده شد. برای برآورد واریانس ژنتیکی از معادله ذیل استفاده گردید (ویانا و رگازی 1999).

سپس ضرایب تنوع ژنتیکی و فنوتیپی و وراثت‌پذیری عمومی هر صفت از روابط زیر محاسبه شد:
ضریب تغییرات ژنوتیپی

ضریب تغییرات فنوتیپی

وراثت‌پذیری عمومی

در این فرمول‌ها میانگین صفت مورد مطالعه، واریانس ژنتیکی ، واریانس فنوتیپی و وراثت پذیری عمومی صفت می‌باشد.
نحوه ارزیابی و امتیازدهی صفات کیفی طول شاخه‌های جانبی، وسعت خار برگ، حاشیه برگ، شکل قوزه و اندازه بذر مطابق دستورالعمل IBPGR انجام شد. همچنین به منظور تعیین تنوع صفات کیفی، از شاخص شانون (H´) طبق فرمول زیر استفاده شد:
H´=-i=1sPi ln(Pi)در این فرمول Pi نشان دهنده فراونی نسبی هر گروه فنوتیپی، در صفت مربوطه، و s تعداد گروه های فنوتیپی هر صفت می‌باشد. هر چه مقدار این شاخص برای صفتی بیشتر باشد، نشان دهنده تنوع بیشتر آن صفت خواهد ‌‌بود (چاودری و همکاران 2004).
3-4-3- همبستگی ساده بین صفاتیکی از معیارهای اندازه گیری همبستگی بین دو متغیر تصادفی ضریب همبستگی یا کورولاسیون می‌باشد و مقدار عددی حاصل از آن بین 1 و 1- می باشد که در صورت نزدیکی به 1 نشان دهنده همبستگی شدید بین دو متغیر می‌باشد.
r=cov xy/δx. δy
3-4-4- گروه‌بندی جمعیت‌ها
پس از برآورد روابط ژنتیکی افراد و یا جمعیت‌ها، گام بعدی گروه‌بندی بر اساس درجه شباهت یا تفاوت آنهاست. در این راستا روش‌های آماری چند متغیره از قبیل تجزیه کلاستر، تجزیه به مؤلفه‌های اصلی و تجزیه به مختصات اصلی از متداول‌ترین روش‌های آماری مورد استفاده هستند (محمدی، 1381).
3-4-4-1 تجزیه کلاسترتجزیه کلاستر یکی از روش‌های آماری چند متغیره و غیر پارامتری است که در آن با در دست داشتن نمونه‌ای از n فرد و اندازه‌گیری p متغیر بر روی هر فرد، می توان افراد را در کلاسهایی گروه‌بندی نمود که افراد مشابه در داخل یک کلاس قرار می‌گیرند. از تجزیه کلاسترها هنگامیکه در بین افراد هیچ گروه‌بندی واضحی وجود ندارد استفاده می‌شود روش‌های زیادی در انجام تجزیه کلاستر وجود دارد اما این کار عمدتاً به دو روش طبقاتی و غیر‌طبقاتی صورت می‌گیرد. روش طبقاتی نیز خود به دو صورت طبقاتی تجمعی و طبقاتی تقسیم کننده انجام می‌شود (رومسبرگ، 1990). روش طبقاتی با محاسبه فاصله هر فرد از سایر افراد شروع می‌شود. در روش تجمعی هر فرد در ابتدا یک گروه مجزا را تشکیل می‌دهد سپس گروه‌های نزدیک به هم بتدریج ترکیب شده تا در نهایت کلیه افراد در یک گروه قرار گیرند (بودلندر و همکاران، 1964). با این روش می توان جهت بررسی دوری یا نزدیکی و خویشاوندی مواد گیاهی (گیاهان خودگشن) مورد مطالعه، استفاده نمود. این روش آماری به محققین کمک خواهد کرد که مقدار آمیزشهای مطلوب را افزایش دهند. چون با این روش هر چه فاصله اقلیدسی بین دو نمونه از کلاسترها بیشتر باشد، آن زوج از هم دورتر قرار دارند (فرشادفر، 1379).
مراحل تجزیه کلاستر
انجام تجزیه کلاستر شامل 6 مرحله زیر است:
تشکیل ماتریس داده‌های خام p ×n .
استاندارد کردن ماتریس داده‌ها.
محاسبه ماتریس تشابه یا ماتریس فاصله.
برای محاسبه ضرایب تشابه و یا فاصله باید عمل محاسبه در بین افراد بصورت دو به دو صورت گیرد. سپس برای n فرد باید ضریب تشابه یا فاصله محاسبه گردد. روش‌های مختلفی برای محاسبه ضرایب فاصله وجود دارد که در ارتباط با داده‌های کمّی اسامی برخی از این روشها عبارتند از ضریب فاصله اقلیدسی، ضریب فاصله اقلیدسی میانگین، ضریب اختلاف در شکل ضریب کسینوس، ضریب همبستگی، ضریب متریک کنبرا، ضریب بری کورتیکس، ضریب بری کورتیکس تغییر یافته، ضریب پنروز و ضریب ماهالانوبیس. متداولترین روش محاسبه فاصله برای داده‌های کمی استفاده از ضریب اقلیدسی است که در زیر توضیح داده می‌شود.
به منظور تفهیم بهتر، حالت ساده‌ای را در نظر می‌گیریم که بر روی n فرد تعداد p متغیر اندازه‌گیری شده باشد. ارزشهای فرد i عبارتست از و ارزشهای فرد j برابر است. فاصله بین فردi j مدنظر است اگر تنها دو متغیر وجود داشته باشد (p=2) بنابر قضیه فیثاغورث طول خط که از اتصال نقاط مربوط به فرد j i بدست می آید بصورت زیر خواهد آمد:

و اگر تعداد متغیرها بیشتر باشد رسم نمودار ممکن است اما می‌توان از فرمول کلی زیر که فاصله اقلیدسی نامیده می‌شود استفاده کرد:

نیاز به استاندارد کردن داده‌ها نیز در این مرحله آشکار می‌شود، زیرا در صورت بکار بردن داده‌های غیر‌استاندارد، اگر یکی از متغیرهای مورد اندازه‌گیری تغییرات بیشتری نسبت به سایر متغیرها داشته باشد، آنگاه سهم بیشتری در محاسبه فاصله‌ها خواهد داشت و انجام گروه‌بندی بر اساس فاصله‌ها گمراه کننده خواهد بود، در صفاتی که بصورت کیفی هستند، محاسبه ماتریس تشابه از طریق ضرایب خاص صورت می‌گیرد.

—d1143

فهرست جداول
فصل سوم
جدول3-1. نگاشت لغات لاتین در خوشه‌بندی ترکیبی به نظریه خرد جمعی .......................................................... 93
جدول3-2. یک نمونه از جدول نگاشت استاندارد کد .............................................................................................. 98
فصل چهارم
جدول4-1. مجموعه داده ........................................................................................................................................ 117
جدول4-2. لیست مجموعه الگوریتم‌های پایه ........................................................................................................ 119
جدول4-3. جدول نگاشت استاندارد کد ................................................................................................................ 120
جدول4-4. دقت نتایج این الگوریتم‌های خوشه‌بندی را نسبت به کلاس‌های واقعی داده ...................................... 130
جدول4-5. جدول مقایسه معیار اطلاعات متقابل نرمال‌ شده (NMI) نتایج آزمایش .............................................. 132

فهرست تصاویر و نمودار
فصل دوم
شکل 2-1. یک خوشه‌بندی سلسله مراتبی و درخت متناظر ..................................................................................... 10
شکل 2-2. ماتریس مجاورت .................................................................................................................................... 11
شکل 2-3. رابطه دودویی و گراف آستانه ................................................................................................................. 12
شکل 2-4. گراف‌های آستانه برای ماتریس ........................................................................................................ 12
شکل 2-5. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی منفرد ..................................................................... 13
شکل 2-6. دندوگرام پیوندی منفرد برای ماتریس............................................................................................... 13
شکل 2-7. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی کامل ...................................................................... 14
شکل 2-8. دندوگرام پیوندی کامل برای ماتریس ............................................................................................... 14
شکل 2-9. الگوریتم خوشه‌بندی افرازبندی...................................................................................... 16
شکل 2-10. الگوریتم فازی خوشه‌بندی ...................................................................................................... 18
شکل 2-11. خوشه‌بندی کاهشی .............................................................................................................................. 23
شکل 2-12. شبه‌کد الگوریتم MKF ........................................................................................................................ 26
شکل2-13. (الف) مجموعه داده با تعداد 10 خوشه واقعی. (ب) منحنی ........................................................ 29
شکل2-1۴. (الف) مجموعه داده (ب) منحنی مربوطه ..................................................................................... 29
شکل2-15. دو افراز اولیه با تعداد سه خوشه ........................................................................................................... 31
شکل2-16. نمونه‌های اولیه در نتایج الگوریتم ................................................................................ 36
شکل 2-17. زیر شبه کد الگوریتم خوشه‌بندی ترکیبی توسط مدل مخلوط .............................................................. 43
شکل 2-18. خوشه‌بندی ترکیبی ............................................................................................................................... 44
شکل 2-19. نمونه ماتریس، جهت تبدیل خوشه‌بندی به ابر گراف ................................................................. 45
شکل 2-20. ماتریس شباهت بر اساس خوشه برای مثال شکل (3-5) .................................................................... 46
شکل 2-21. الگوریتم افرازبندی ابر گراف ............................................................................................................... 47
شکل 2-22. الگوریتم فرا خوشه‌بندی ..................................................................................................................... 49
شکل2-23. الگوریتم خوشه‌بندی ترکیبی مبتنی بر ماتریس همبستگی ...................................................................... 50
شکل2-24. الگوریتم افرازبندی با تکرار ................................................................................................................... 53
شکل2-25. نمایش گراف مجاورت در مراحل کاهش درجه ماتریس و شمارش آن ................................................ 54
شکل2-26. مثال روند تغییر توزیع تعداد خوشه ....................................................................................................... 55
شکل2-27. جریان کار عمومی برای پیاده‌سازی الگوریتم افرازبندی گراف .............................................................. 55
شکل 2-28. گراف تابع در بازه بین صفر و یک ............................................................................................. 62
شکل 2-29. الگوریتم خوشه‌بندی ترکیبی طیفی مبتنی بر انتخاب بر اساس شباهت ................................................ 63
شکل 2-30. مثالی از ماتریس اتصال ........................................................................................................................ 66
شکل 2-31. شبه کد خوشه‌بندی ترکیبی انتخابی لی‌مین .......................................................................................... 68
شکل 2-32. روش ارزیابی خوشهی یک افراز در روش MAX ............................................................................... 69
شکل 2-33. چهارچوب خوشهبندی ترکیبی مبتنی بر انتخاب با استفاده از مجموعه‌ای از خوشه‌های یک افراز ...... 71
شکل 2-34. چهارچوب روش بهترین افراز توافقی اعتبارسنجی شده ...................................................................... 72
فصل سوم
شکل3-1. چهارچوب الگوریتم خوشه‌بندی خردمند با استفاده از آستانه‌گیری ......................................................... 82
شکل3-۲. محاسبه درجه استقلال دو خوشه‌بندی ..................................................................................................... 86
شکل3-3. تأثیر عدم تمرکز بر روی پیچیدگی داده ................................................................................................... 89
شکل3-3. تأثیر انتخاب افرازها در خوشه‌بندی ترکیبی مبتنی بر انتخاب بر مقدار NMI ارزیابی‌شده ........................ 91
شکل3-4. شبه کد خوشه‌بندی خردمند با استفاده از آستانه‌گیری .............................................................................. 92
شکل3-5. دسته‌بندی الگوریتم‌های خوشه‌بندی ........................................................................................................ 94
شکل3-6. کد الگوریتم K-means به زبان استقلال الگوریتم‌ خوشه‌بندی ................................................................. 98
شکل3-7. تبدیل کد‌های شروع و پایان به گراف .................................................................................................... 100
شکل3-8. تبدیل عملگر شرط ساده به گراف ......................................................................................................... 100
شکل3-9. تبدیل عملگر شرط کامل به گراف ......................................................................................................... 101
شکل3-10. تبدیل عملگر شرط تو در تو به گراف ................................................................................................. 101
شکل3-11. تبدیل عملگر حلقه ساده به گراف ....................................................................................................... 102
شکل3-12. تبدیل عملگر حلقه با پرش به گراف ................................................................................................... 102
شکل3-13. پیاده‌سازی شرط ساده بدون هیچ کد اضافی ........................................................................................ 103
شکل3-14. پیاده‌سازی شرط ساده با کدهای قبل و بعد آن .................................................................................... 103
شکل3-15. پیاده‌سازی شرط کامل ......................................................................................................................... 104
شکل3-16. پیاده‌سازی شرط‌ تو در تو .................................................................................................................... 104
شکل3-17. پیاده‌سازی یک شرط کامل در یک شرط ساده .................................................................................... 105
شکل3-18. پیاده‌سازی یک شرط کامل در یک شرط کامل دیگر ........................................................................... 105
شکل3-19. پیاده‌سازی حلقه ساده .......................................................................................................................... 106
شکل3-20. پیاده‌سازی یک حلقه ساده داخل حلقه‌ای دیگر ................................................................................... 106
شکل3-21. پیاده‌سازی یک حلقه داخل یک شرط کامل ........................................................................................ 106
شکل3-22. پیاده‌سازی یک شرط کامل داخل یک حلقه ساده ................................................................................ 107
شکل3-23. ماتریس درجه وابستگی‌ کد ................................................................................................................. 108
شکل3-24. شبه کد مقایسه محتوای دو خانه از آرایه‌های استقلال الگوریتم .......................................................... 108
شکل3-25. چهارچوب خوشه‌بندی خردمند مبتنی بر گراف استقلال الگوریتم ...................................................... 110
شکل3-26. شبه کد خوشه‌بندی خردمند مبتنی بر گراف استقلال الگوریتم ............................................................ 113
فصل چهارم
شکل۴-۱. مجموعه داده Halfring .......................................................................................................................... 118
شکل4-2. الگوریتم K-means ................................................................................................................................ 121
شکل4-3. الگوریتم FCM ...................................................................................................................................... 121
شکل4-4. الگوریتم Median K-Flats .................................................................................................................... 122
شکل4-5. الگوریتم Gaussian Mixture ................................................................................................................ 122
شکل4-6. الگوریتم خوشه‌بندی Subtractive ......................................................................................................... 122
شکل4-7. الگوریتم پیوندی منفرد با استفاده از معیار فاصله اقلیدسی ..................................................................... 123
شکل4-8. الگوریتم پیوندی منفرد با استفاده از معیار فاصله Hamming ................................................................ 123
شکل4-9. الگوریتم پیوندی منفرد با استفاده از معیار فاصله Cosine ..................................................................... 123
شکل4-10. الگوریتم پیوندی کامل با استفاده از معیار فاصله اقلیدسی ................................................................... 124
شکل4-1۱. الگوریتم پیوندی کامل با استفاده از معیار فاصله Hamming .............................................................. 124
شکل4-1۲. الگوریتم پیوندی کامل با استفاده از معیار فاصله Cosine .................................................................... 124
شکل4-1۳. الگوریتم پیوندی میانگین با استفاده از معیار فاصله اقلیدسی ............................................................... 124
شکل4-14. الگوریتم پیوندی میانگین با استفاده از معیار فاصله Hamming .......................................................... 125
شکل4-15. الگوریتم پیوندی میانگین با استفاده از معیار فاصله Cosine ............................................................... 125
شکل4-16. الگوریتم پیوندی بخشی با استفاده از معیار فاصله اقلیدسی ................................................................ 125
شکل4-17. الگوریتم پیوندی بخشی با استفاده از معیار فاصله Hamming ............................................................ 125
شکل4-18. الگوریتم پیوندی بخشی با استفاده از معیار فاصله Cosine ................................................................. 126
شکل4-19. طیفـی با استفاده از ماتریس شباهت نامتراکم ...................................................................................... 126
شکل4-20. طیفـی با استفاده از روش نیستروم با متعادل ساز .............................................................................. 127
شکل4-21. طیفـی با استفاده از روش نیستروم بدون متعادل ساز ......................................................................... 127
شکل4-22. نرم‌افزار تحلیل‌گر کد استقلال الگوریتم ............................................................................................... 128
شکل4-23. ماتریس AIDM ................................................................................................................................... 129
شکل4-24. میانگین دقت الگوریتم‌های خوشه‌بندی ............................................................................................... 131
شکل4-25. رابطه میان آستانه استقلال و زمان اجرای الگوریتم در روش پیشنهادی اول ........................................ 133
شکل4-26. رابطه میان آستانه پراکندگی و زمان اجرای الگوریتم در روش پیشنهادی اول ..................................... 133
شکل4-27. رابطه میان آستانه استقلال و دقت نتیجه نهایی در روش پیشنهادی اول .............................................. 134
شکل4-28. رابطه میان آستانه پراکندگی و دقت نتیجه نهایی در روش پیشنهادی اول ............................................ 134
شکل4-29. رابطه میان آستانه عدم تمرکز و دقت نتیجه نهایی در روش پیشنهادی اول ......................................... 135
شکل4-30. رابطه میان آستانه پراکندگی و زمان اجرای الگوریتم در روش پیشنهادی دوم ..................................... 135
شکل4-31. رابطه میان آستانه پراکندگی و دقت نتایج نهایی در روش پیشنهادی دوم ............................................ 136
شکل4-32. رابطه میان آستانه عدم تمرکز و دقت نتایج نهایی در روش پیشنهادی دوم ......................................... 137
شکل4-33. مقایسه زمان اجرای الگوریتم‌ ............................................................................................................... 138
فصل اول
مقدمه
center3187700
1. مقدمه1-1. خوشه‌بندیبه عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آن‌ها رایانه‌ها و سامانه‌های اطلاعاتی توانایی تعلم و یادگیری پیدا می‌کنند. طیف پژوهش‌هایی که در مورد یادگیری ماشینی صورت می‌گیرد گسترده ‌است. در سوی نظر‌ی آن پژوهش‌گران بر آن‌اند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌هایشان مطالعه کنند و در سوی دیگر عده‌ای از پژوهش‌گران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسائل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مؤلفه‌هایی از هر دو رو‌یکرد هستند. امروزه، داده‌کاوی به عنوان یک ابزار قوی برای تولید اطلاعات و دانش از داده‌های خام، در یادگیری ماشین شناخته‌شده و همچنان با سرعت در حال رشد و تکامل است. به طور کلی می‌توان تکنیک‌های داده‌کاوی را به دو دسته بانظارت و بدون نظارت تقسیم کرد [29, 46].
در روش بانظارت ما ورودی (داده یادگیری) و خروجی (کلاس داده) یک مجموعه داده را به الگوریتم هوشمند می‌دهیم تا آن الگوی بین ورودی و خروجی را تشخیص دهد در این روش خروجی کار ما مدلی است که می‌تواند برای ورودی‌های جدید خروجی درست را پیش‌بینی کند. روش‌های طبقه‌بندی و قوانین انجمنی از این جمله تکنیک‌ها می‌باشد. روش‌های با نظارت کاربرد فراوانی دارند اما مشکل عمده این روش‌ها این است که همواره باید داده‌ای برای یادگیری وجود داشته باشد که در آن به ازای ورودی مشخص خروجی درست آن مشخص شده باشد. حال آنکه اگر در زمینه‌ای خاص داده‌ای با این فرمت وجود نداشته باشد این روش‌ها قادر به حل این‌گونه مسائل نخواهند بود [29, 68]. در روش بدون نظارت برخلاف یادگیری بانظارت هدف ارتباط ورودی و خروجی نیست، بلکه تنها دسته‌بندی ورودی‌ها است. این نوع یادگیری بسیار مهم است چون خیلی از مسائل (همانند دنیای ربات‌ها) پر از ورودی‌هایی است که هیچ برچسبی (کلاس) به آن‌ها اختصاص داده نشده است اما به وضوح جزئی از یک دسته هستند [46, 68]. خوشه‌بندی شاخص‌ترین روش در داده‌کاوی جهت حل مسائل به صورت بدون ناظر است. ایده اصلی خوشه‌بندی اطلاعات، جدا کردن نمونه‌ها از یکدیگر و قرار دادن آن‌ها در گروه‌های شبیه به هم می‌باشد. به این معنی که نمونه‌های شبیه به هم باید در یک گروه قرار بگیرند و با نمونه‌های گروه‌های دیگر حداکثر متفاوت را دارا باشند [20, 26]. دلایل اصلی برای اهمیت خوشه‌بندی عبارت‌اند از:
اول، جمع‌آوری و برچسب‌گذاری یک مجموعه بزرگ از الگوهای نمونه می‌تواند بسیار پرکاربرد و باارزش باشد.
دوم، می‌توانیم از روش‌های خوشه‌بندی برای پیدا کردن و استخراج ویژگی‌ها و الگوهای جدید استفاده کنیم. این کار می‌تواند کمک به سزایی در کشف دانش ضمنی داده‌ها انجام دهد.
سوم، با خوشه‌بندی می‌توانیم یک دید و بینشی از طبیعت و ساختار داده به دست آوریم که این می‌تواند برای ما باارزش باشد.
چهارم، خوشه‌بندی می‌تواند منجر به کشف زیر رده‌های مجزا یا شباهت‌های بین الگوها ممکن شود که به طور چشمگیری در روش طراحی طبقه‌بندی قابل استفاده باشد.
1-2. خوشه‌بندی ترکیبیهر یک از الگوریتم‌های خوشه‌بندی، با توجه به اینکه بر روی جنبه‌های متفاوتی از داده‌ها تاکید می‌کند، داده‌ها را به صورت‌های متفاوتی خوشه‌بندی می‌نماید. به همین دلیل، نیازمند روش‌هایی هستیم که بتواند با استفاده از ترکیب این الگوریتم‌ها و گرفتن نقاط قوت هر یک، نتایج بهینه‌تری را تولید کند. در واقع هدف اصلی خوشه‌بندی ترکیبی جستجوی بهترین خوشه‌ها با استفاده از ترکیب نتایج الگوریتم‌های دیگر است [1, 8, 9, 54, 56]. به روشی از خوشه‌بندی ترکیبی که زیرمجموعه‌ی منتخب از نتایج اولیه برای ترکیب و ساخت نتایج نهایی استفاده می‌شود خوشه‌بندی ترکیبی مبتنی بر انتخاب زیرمجموعه نتایج اولیه می‌گویند. در این روش‌ها بر اساس معیاری توافقی مجموعه‌ای از مطلوب‌ترین نتایج اولیه را انتخاب کرده و فقط توسط آن‌ها نتیجه نهایی را ایجاد می‌کنیم [21]. معیارهای مختلفی جهت انتخاب مطلوب‌ترین روش پیشنهاد شده است که معیار اطلاعات متقابل نرمال شده، روش ماکزیموم و APMM برخی از آن‌ها می‌باشند [8, 9, 21, 67]. دو مرحله مهم در خوشه‌بندی ترکیبی عبارت‌اند از:
اول، الگوریتم‌های ابتدایی خوشه‌بندی که خوشه‌بندی اولیه را انجام می‌دهد.
دوم، جمع‌بندی نتایج این الگوریتم‌های اولیه (پایه) برای به دست آوردن نتیجه نهایی.
1-3. خرد جمعینظریه خرد جمعی که اولین بار توسط سورویکی در سال 2004 در کتابی با همان عنوان منتشر شد، استنباطی از مسائل مطرح‌شده توسط گالتون و کندورست می‌باشد، و نشان می‌دهد که قضاوت‌های جمعی و دموکراتیک از اعتبار بیشتری نسبت به آنچه که ما انتظار داشتیم برخوردار است، ما تأثیرات این ایده را در حل مسائل سیاسی، اجتماعی در طی سال‌های اخیر شاهد هستیم. در ادبیات خرد جمعی هر جامعه‌ای را خردمند نمی‌گویند. از دیدگاه سورویکی خردمند بودن جامعه در شرایط چهارگانه پراکندگی، استقلال، عدم تمرکز و روش ترکیب مناسب است [55].
1-4. خوشه‌بندی مبتنی بر انتخاب بر اساس نظریه خرد جمعیهدف از این تحقیق استفاده از نظریه خرد جمعی برای انتخاب زیرمجموعه‌ی مناسب در خوشه‌بندی ترکیبی می‌باشد. تعاریف سورویکی از خرد جمعی مطابق با مسائل اجتماعی است و در تعاریف آن عناصر سازنده تصمیمات رأی افراد می‌باشد. در این تحقیق ابتدا مبتنی بر تعاریف پایه سورویکی از خرد جمعی و ادبیات مطرح در خوشه‌بندی ترکیبی، تعریف پایه‌ای از ادبیات خرد جمعی در خوشه‌بندی ترکیبی ارائه می‌دهیم و بر اساس آن الگوریتم پیشنهادی خود را در جهت پیاده‌سازی خوشه‌بندی ترکیبی ارائه می‌دهیم [55]. شرایط چهارگانه خوشه‌بندی خردمند که متناسب با تعاریف سورویکی باز تعریف شده است به شرح زیر می‌باشد:
پراکندگی نتایج اولیه، هر الگوریتم خوشه‌بندی پایه باید به طور جداگانه و بدون واسطه به داده‌های مسئله دسترسی داشته و آن را تحلیل و خوشه‌بندی کند حتی اگر نتایج آن غلط باشد.
استقلال الگوریتم، روش تحلیل هر یک از خوشه‌بندی‌های پایه نباید تحت تأثیر روش‌های سایر خوشه‌بندی‌های پایه تعیین شود، این تأثیر می‌تواند در سطح نوع الگوریتم (گروه) یا پارامترهای اساسی یک الگوریتم خاص (افراد) باشد.
عدم تمرکز، ارتباط بین بخش‌های مختلف خوشه‌بندی خرد جمعی باید به گونه‌ای باشد تا بر روی عملکرد خوشه‌بندی پایه تأثیری ایجاد نکند تا از این طریق هر خوشه‌بندی پایه شانس این را داشته باشد تا با شخصی سازی و بر اساس دانش محلی خود بهترین نتیجه ممکن را آشکار سازد.
مکانیزم ترکیب مناسب، باید مکانیزمی وجود داشته باشد که بتوان توسط آن نتایج اولیه الگوریتم‌های پایه را با یکدیگر ترکیب کرده و به یک نتیجه نهایی (نظر جمعی) رسید.
در این تحقیق دو روش برای ترکیب خوشه‌بندی ترکیبی و خرد جمعی پیشنهاد شده است. با استفاده از تعاریف بالا الگوریتم روش اول مطرح خواهد شد که در آن، جهت رسیدن به نتیجه نهایی از آستانه‌گیری استفاده می‌شود. در این روش الگوریتم‌های خوشه‌بندی اولیه غیر هم نام کاملاً مستقل فرض خواهند شد و برای ارزیابی استقلال الگوریتم‌های هم نام نیاز به آستانه‌گیری می‌باشد. در روش دوم، سعی شده است تا دو بخش از روش اول بهبود یابد. از این روی جهت مدل‌سازی الگوریتم‌ها و ارزیابی استقلال آن‌ها نسبت به هم یک روش مبتنی بر گراف شبه کد ارائه می‌شود و میزان استقلال به دست آمده در این روش به عنوان وزنی برای ارزیابی پراکندگی در تشکیل جواب نهایی مورد استفاده قرار می‌گیرد. جهت ارزیابی، روش‌های پیشنهادی با روش‌های پایه، روش‌ ترکیب کامل و چند روش معروف ترکیب مبتنی بر انتخاب مقایسه خواهد شد. از این روی از چهارده داده استاندارد و یا مصنوعی که عموماً از سایت UCI [76] جمع‌آوری شده‌اند استفاده شده است. در انتخاب این داده‌ها سعی شده، داده‌هایی با مقیاس‌ کوچک، متوسط و بزرگ انتخاب شوند تا کارایی روش بدون در نظر گرفتن مقیاس داده ارزیابی شود. همچنین جهت اطمینان از صحت نتایج تمامی آزمایش‌های تجربی گزارش‌شده حداقل ده بار تکرار شده است.
1-4-1- فرضیات تحقیقاین تحقیق بر اساس فرضیات زیر اقدام به ارائه روشی جدید در خوشه‌بندی ترکیبی مبتنی بر انتخاب بر اساس نظریه خرد جمعی می‌کند.
۱ ) در این تحقیق تمامی آستانه‌گیری‌ها بر اساس میزان صحت نتایج نهایی و مدت زمان اجرای الگوریتم به صورت تجربی انتخاب می‌شوند.
۲ ) در این تحقیق جهت ارزیابی عملکرد یک الگوریتم، نتایج اجرای آن را بر روی‌داده‌های استاندارد UCI در محیطی با شرایط و پارامترهای مشابه نسبت به سایر الگوریتم‌ها ارزیابی می‌کنیم که این داده‌ها الزاماً حجیم یا خیلی کوچک نیستند.
۳ ) جهت اطمینان از صحت نتایج آزمایش‌ها ارائه‌شده در این تحقیق، حداقل اجرای هر الگوریتم بر روی هر داده ده بار تکرار شده و نتیجه‌ی نهایی میانگین نتایج به دست آمده می‌باشد.
4 ) از آنجایی که روش مطرح‌شده در این تحقیق یک روش مکاشفه‌ای است سعی خواهد شد بیشتر با روش‌های مکاشفه‌ای مطرح در خوشه‌بندی ترکیبی مقایسه و نتایج آن مورد بررسی قرار گیرد.
در این فصل اهداف، مفاهیم و چالش‌های این تحقیق به صورت خلاصه ارائه شد. در ادامه این تحقیق، در فصل دوم، الگوریتم‌های خوشه‌بندی پایه و روش‌های خوشه‌بندی‌ ترکیبی مورد بررسی قرار می‌گیرد. همچنین به مرور روش‌های انتخاب خوشه و یا افراز در خوشه‌بندی ترکیبی مبتنی بر انتخاب خواهیم پرداخت. در فصل سوم، نظریه خرد جمعی و دو روش پیشنهادی خوشه‌بندی خردمند ارائه می‌شود. در فصل چهارم، به ارائه نتایج آزمایش‌های تجربی این تحقیق و ارزیابی آن‌ها می‌پردازیم و در فصل پنجم، به ارائه‌ی نتایج و کار‌های آتی خواهیم پرداخت.

فصل دوم
مروری بر ادبیات تحقیق
center2132965
2. مروری بر ادبیات تحقیق2-1. مقدمهدر این بخش، کارهای انجام‌شده در خوشه‌بندی و خوشه‌بندی ترکیبی را مورد مطالعه قرار می‌دهیم. ابتدا چند الگوریتم‌ پایه خوشه‌بندی معروف را معرفی خواهیم کرد. سپس چند روش کاربردی جهت ارزیابی خوشه، خوشه‌بندی و افرازبندی را مورد مطالعه قرار می‌دهیم. در ادامه به بررسی ادبیات خوشه‌بندی ترکیبی خواهیم پرداخت و روش‌های ترکیب متداول را بررسی خواهیم کرد. از روش‌های خوشه‌بندی ترکیبی، روش ترکیب کامل و چند روش معروف مبتنی بر انتخاب را به صورت مفصل شرح خواهیم داد.
2-2. خوشه‌بندیدر این بخش ابتدا انواع الگوریتم‌های خوشه‌بندی پایه را معرفی می‌کنیم و سپس برخی از آن‌ها را مورد مطالعه قرار می‌دهیم سپس برای ارزیابی نتایج به دست آمده چند متریک معرفی خواهیم کرد.
2-2-1. الگوریتم‌های خوشه‌بندی پایهبه طور کلی، الگوریتم‌های خوشه‌بندی را می‌توان به دو دسته کلی تقسیم کرد:
1- الگوریتم‌های سلسله مراتبی
2- الگوریتم‌های افرازبندی
الگوریتم‌های سلسله مراتبی، یک روال برای تبدیل یک ماتریس مجاورت به یک دنباله از افرازهای تو در تو، به صورت یک درخت است. در این روش‌ها، مستقیماً با داده‌ها سروکار داریم و از روابط بین آن‌ها برای به دست آوردن خوشه‌ها استفاده می‌کنیم. یکی از ویژگی‌های این روش قابلیت تعیین تعداد خوشه‌ها به صورت بهینه می‌باشد. در نقطه مقابل الگوریتم‌های سلسله مراتبی، الگوریتم‌های افرازبندی قرار دارند. هدف این الگوریتم‌ها، تقسیم داده‌ها در خوشه‌ها، به گونه‌ای است که داده‌های درون یک خوشه بیش‌ترین شباهت را به همدیگر داشته باشند؛ و درعین‌حال، بیش‌ترین فاصله و اختلاف را با داده‌های خوشه‌های دیگر داشته باشند. در این فصل تعدادی از متداول‌ترین الگوریتم‌های خوشه‌بندی، در دو دسته سلسله مراتبی و افرازبندی، مورد بررسی قرار می‌گیرند. از روش سلسله‌ مراتبی چهار الگوریتم‌ از سری الگوریتم‌های پیوندی را مورد بررسی قرار می‌دهیم. و از الگوریتم‌های افرازبندی K-means، FCM و الگوریتم طیفی را مورد بررسی خواهیم داد.
2-2-1-1. الگوریتم‌های سلسله مراتبیهمان‌گونه که در شکل 2-1 مشاهده می‌شود، روال الگوریتم‌های خوشه‌بندی سلسله مراتبی را می‌تواند به صورت یک دندوگرام نمایش داد. این نوع نمایش تصویری از خوشه‌بندی سلسله مراتبی، برای انسان، بیشتر از یک لیست از نمادها قابل‌درک است. در واقع دندوگرام، یک نوع خاص از ساختار درخت است که یک تصویر قابل‌فهم از خوشه‌بندی سلسله مراتبی را ارائه می‌کند. هر دندوگرام شامل چند لایه از گره‌هاست، به طوری که هر لایه یک خوشه را نمایش می‌دهد. خطوط متصل‌کننده گره‌ها، بیانگر خوشه‌هایی هستند که به صورت آشیانه‌ای داخل یکدیگر قرار دارند. برش افقی یک دندوگرام، یک خوشه‌بندی را تولید می‌کند [33]. شکل 2-1 یک مثال ساده از خوشه‌بندی و دندوگرام مربوطه را نشان می‌دهد.

شکل 2-1. یک خوشه‌بندی سلسله مراتبی و درخت متناظر
اگر الگوریتم‌های خوشه‌بندی سلسله مراتبی، دندوگرام را به صورت پایین به بالا بسازند، الگوریتم‌های خوشه‌بندی سلسله مراتبی تراکمی نامیده می‌شوند. همچنین، اگر آن‌ها دندوگرام را به صورت بالا به پایین بسازند، الگوریتم‌های خوشه‌بندی سلسله مراتبی تقسیم‌کننده نامیده می‌شوند [26]. مهم‌ترین روش‌های خوشه‌بندی سلسله مراتبی الگوریتم‌های سری پیوندی می‌باشد که در این بخش تعدادی از کاراترین آن‌ها مورد بررسی قرار خواهند گرفت که عبارت‌اند از:
الگوریتم پیوندی منفرد
الگوریتم پیوندی کامل
الگوریتم پیوندی میانگین
الگوریتم پیوندی بخشی
2-2-1-1-1. تعاریف و نماد‌ها
شکل 2-2. ماتریس مجاورت
قبل از معرفی این الگوریتم‌ها، در ابتدا نمادها و نحوه نمایش مسئله نمایش داده خواهد شد. فرض کنید که یک ماتریس مجاورت متقارن داریم. وارده در هر سمت قطر اصلی قرار دارد که شامل یک جای گشت اعداد صحیح بین 1 تا است. ما مجاورت‌ها را عدم شباهت در نظر می‌گیریم. به این معنی است که اشیاء 1 و 3 بیشتر از اشیاء 1 و 2 به هم شبیه‌اند. یک مثال از ماتریس مجاورت معمول برای است که در شکل 2-2 نشان داده شده است. یک گراف آستانه، یک گراف غیر جهت‌دار و غیر وزن‌دار، روی گره، بدون حلقه بازگشت به خود یا چند لبه است. هر نود یک شیء را نمایش می‌دهد. یک گراف آستانه برای هر سطح عدم شباهت به این صورت تعریف می‌شود: اگر عدم شباهت اشیاء و از حد آستانه کوچک‌تر باشد، با واردکردن یک لبه بین نودهای ویک گراف آستانه تعریف می‌کنیم.
(2-1)if and only if
شکل 2-3 یک رابطه دودویی به دست آمده از ماتریس مربوط به شکل 2-2 را برای مقدار آستانه 5 نشان می‌دهد. نماد "*" در موقعیت ماتریس، نشان می‌دهد که جفت متعلق به رابطه دودویی می‌باشد. شکل 2-4، گراف‌های آستانه برای ماتریس را نمایش می‌دهد.

شکل 2-3. رابطه دودویی و گراف آستانه برای مقدار آستانه 5.

شکل 2-4. گراف‌های آستانه برای ماتریس
2-2-1-1-2. الگوریتم پیوندی منفرداین الگوریتم روش کمینه و روش نزدیک‌ترین همسایه نیز نامیده می‌شود [26]. اگر و خوشه‌ها باشند، در روش پیوندی منفرد، فاصله آن‌ها برابر خواهد بود با:
(2-2)
که نشان‌دهنده فاصله (عدم شباهت) بین نقاط a و b در ماتریس مجاورت است. شکل 2-5 این الگوریتم را نمایش می‌دهد. شکل 2-6 دندوگرام حاصل از روش پیوندی منفرد را برای ماتریس ، را نشان می‌دهد.
Step 1. Begin with the disjoint clustering implied by threshold graph, which contains no edges and which places every object in a unique cluster, as the current clustering. Set.
Step 2. From threshold graph.
If the number of comonents (maximally connected subgraphs) in, is less than the number of clusters in the current clustering, redefiene the current clustering by naming each component of as a cluster.
Step 3. If consists of a single connected graph, stop. Else, setand go to step 2.
شکل 2-5. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی منفرد

شکل 2-6. دندوگرام پیوندی منفرد برای ماتریس
2-2-1-1-3. الگوریتم پیوندی کاملاین الگوریتم روش بیشینه یا روش دورترین همسایه نیز نامیده می‌شود. الگوریتم پیوندی کامل می‌گوید که وقتی دو خوشه و شبیه به هم هستند که بیشینه روی تمام ها در و کوچک باشد. به عبارت دیگر، در این الگوریتم، برای یکی کردن دو خوشه، همه جفت‌ها در دو خوشه باید شبیه به هم باشند [26]. اگر و خوشه‌ها باشند، در روش پیوندی کامل، فاصله آن‌ها برابر خواهد بود با:
(2-3)
که نشان‌دهنده فاصله(عدم شباهت) بین نقاط a و در ماتریس مجاورت است. شکل 2-7 این الگوریتم و شکل 2-8 دندوگرام حاصل از این روش را برای ماتریس ، را نشان می‌دهد.
Step 1. Begin with the disjoint clustering implied by threshold graph, which contains no edges and which places every object in a unique cluster, as the current clustering. Set.
Step 2. From threshold graph.
If two of the current clusters from a clique (maximally complete sub graph) in, redefine the current clustering by merging these two clusters into a single cluster.
Step 3. If, so that is the complete graph on the nodes, stop. Else, set and go to step 2.
شکل 2-7. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی کامل

شکل 2-8. دندوگرام پیوندی کامل برای ماتریس
2-2-1-1-4. الگوریتم پیوندی میانگینالگوریتم پیوندی منفرد اجازه می‌دهد تا خوشه‌ها به صورت دراز و نازک رشد کنند. این در شرایطی است که الگوریتم پیوندی کامل خوشه‌های فشرده‌تری تولید می‌کند. هر دو الگوریتم مستعد خطا با داده‌های خارج از محدوده هستند. الگوریتم خوشه‌بندی پیوندی میانگین، یک تعادلی بین مقادیر حدی الگوریتم‌های پیوندی منفرد و کامل است. الگوریتم پیوندی میانگین همچنین، روش جفت-گروه بدون وزن با استفاده از میانگین حسابی نامیده می‌شود. این الگوریتم، یکی از پرکاربردترین الگوریتم‌های خوشه‌بندی سلسله مراتبی می‌باشد [26]. اگر یک خوشه با تعداد تا عضو، و یک خوشه دیگر با تعداد تا عضو باشند، در روش پیوندی میانگین، فاصله آن‌ها برابر خواهد بود با:
(2-4)
که نشان‌دهنده فاصله(عدم شباهت) بین نقاط a و در ماتریس مجاورت است.
2-2-1-1-5. الگوریتم پیوندی بخشیروش پیوندی بخشی که از مربع مجموع خطا‌های (SSE) خوشه‌های یک افراز برای ارزیابی استفاده می‌کند، یکی دیگر از روش‌های سلسله مراتبی می‌باشد [60]. اگر یک خوشه با تعداد تا عضو، و یک خوشه دیگر با تعداد تا عضو باشند و نماد به معنای فاصله اقلیدسی و و مراکز خوشه‌های و باشد آنگاه در روش پیوندی بخشی، فاصله آن‌ها برابر خواهد بود با:
(2-5)
2-2-1-2. الگوریتم‌های افرازبندییک خاصیت مهم روش‌های خوشه‌بندی سلسله مراتبی، قابلیت نمایش دندوگرام است که تحلیل‌گر را قادر می‌سازد تا ببیند که چگونه اشیاء در سطوح متوالی مجاورت، در خوشه‌ها به هم پیوند می‌خورند یا تفکیک می‌شوند. همان طور که اشاره شد، هدف الگوریتم‌های افرازبندی، تقسیم داده‌ها در خوشه‌ها، به گونه‌ای است که داده‌های درون یک خوشه بیش‌ترین شباهت را به همدیگر داشته باشند؛ و درعین‌حال، بیش‌ترین فاصله و اختلاف را با داده‌های خوشه‌های دیگر داشته باشند. آن‌ها یک افراز منفرد از داده را تولید می‌کنند و سعی می‌کنند تا گروه‌های طبیعی حاضر در داده را کشف کنند. هر دو رویکرد خوشه‌بندی، دامنه‌های مناسب کاربرد خودشان را دارند. معمولاً روش‌های خوشه‌بندی سلسله مراتبی، نیاز به ماتریس مجاورت بین اشیاء دارند؛ درحالی‌که روش‌های افرازبندی، به داده‌ها در قالب ماتریس الگو نیاز دارند. نمایش رسمی مسئله خوشه‌بندی افرازبندی می‌تواند به صورت زیر باشد:
تعیین یک افراز از الگوها در گروه، یا خوشه، با داشتن الگو در یک فضای d-بعدی؛ به طوری که الگوها در یک خوشه بیش‌ترین شباهت را به هم داشته و با الگوهای خوشه‌های دیگر بیش‌ترین، تفاوت را داشته باشند. تعداد خوشه‌ها،، ممکن است که از قبل مشخص‌شده نباشد، اما در بسیاری از الگوریتم‌های خوشه‌بندی افرازبندی، تعداد خوشه‌ها باید از قبل معلوم باشند. در ادامه برخی از معروف‌ترین و پرکاربردترین الگوریتم‌های افرازبندی مورد بررسی قرار خواهند گرفت.
2-2-1-2-1. الگوریتم K-meansدر الگوریتم مراکز خوشه‌ها بلافاصله بعد از اینکه یک نمونه به یک خوشه می‌پیوندد محاسبه می‌شوند. به طور معمول بیشتر روش‌های خوشه‌بندی ترکیبی از الگوریتم جهت خوشه‌بندی اولیه خود استفاده می‌کنند [37, 47, 57]. اما مطالعات اخیر نشان داده‌اند که با توجه به رفتار هر مجموعه داده، گاهی اوقات یک روش خوشه‌بندی خاص پیدا می‌شود که دقت بهتری از برای بعضی از مجموعه داده‌ها می‌دهد [1, 54]. اما الگوریتم به دلیل سادگی و توانایی مناسب در خوشه‌بندی همواره به عنوان انتخاب اول مطالعات خوشه‌بندی ترکیبی مورد مطالعه قرار گرفته است. در شکل 2-10 شبه کد الگوریتم را مشاهده می‌کنید:
1. Place K points into the space represented by the objects that are being clustered.
These points represent initial group centroids.
2. Assign each object to the group that has the closest centroid.
3. When all objects have been assigned, recalculate the positions of the K centroids.
4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation
of the objects into groups from which the metric to be minimized can be calculated
شکل 2-9. الگوریتم خوشه‌بندی افرازبندی
مقادیر مراکز اولیه‌ی‌ متفاوت برای الگوریتم می‌تواند منجر به خوشه‌بندی‌های مختلفی شود. به خاطر اینکه این الگوریتم مبتنی بر مربع خطا است، می‌تواند به کمینه محلی همگرا شود، مخصوصاً برای خوشه‌هایی که به طور خیلی خوبی از هم تفکیک نمی‌شوند، این امر صادق است. نشان داده شده است که هیچ تضمینی برای همگرایی یک الگوریتم تکراری به یک بهینه سراسری نیست [33]. به طور خلاصه می‌توان ویژگی‌های الگوریتم را به صورت زیر برشمرد:
1- بر اساس فاصله اقلیدسی تمامی ویژگی‌ها می‌باشد.
2- منجر به تولید خوشه‌هایی به صورت دایره، کره و یا ابر کره می‌شود.
3- نسبت به روش‌های دیگر خوشه‌بندی، ساده و سریع است.
4- همگرایی آن به یک بهینه محلی اثبات شده است، اما تضمینی برای همگرایی به بهینه سراسری وجود ندارد.
5- نسبت به مقداردهی اولیه مراکز خوشه‌ها خیلی حساس است.
2-2-1-2-2. الگوریتم FCMالگوریتم FCM اولین بار توسط دون [13] ارائه شد. سپس توسط بزدک [66] بهبود یافت. این متد دیدگاه جدیدی را در خوشه‌بندی بر اساس منطق فازی [62] ارائه می‌دهد. در این دیدگاه جدید، به جای اینکه داده‌ها در یک خوشه عضو باشند، در تمامی خوشه‌ها با یک ضریب عضویت که بین صفر و یک است، عضو هستند و ما در این نوع خوشه‌بندی، دنبال این ضرایب هستیم. در روش‌های معمول در جایی که ما داده داشته باشیم، جواب نهایی ماتریس خواهد بود که هر خانه شامل برچسب خوشه‌ی داده‌ی نظیر آن می‌باشد. ولی در این روش در صورت داشتن خوشه، جواب نهایی یک ماتریس خواهد بود که در آن هر ردیف شامل ضرایب عضویت داده‌ی نظیر به آن خوشه است. بدیهی است که جمع افقی هر ردیف (ضرایب عضویت یک داده خاص) برابر با یک خواهد بود. یک روش معمول جهت رسیدن به جواب‌هایی غیر فازی بر اساس نتایج نهایی الگوریتم فازی، برچسب‌زنی داده بر اساس آن ضریبی که مقدار حداکثر را در این داده دارد، می‌باشد. رابطه 2-6 معادله پایه در روش فازی است: [66]
(2-6) ,
در رابطه 2-6 متغیرm یک عدد حقیقی بزرگ‌تر از یک و درجه عضویت داده در خوشه j-ام می‌باشد، که خود ، i-امین داده d-بُعدی از داده‌ی مورد مطالعه می‌باشد و مرکز d-بعدی خوشه j-ام‌ است و هر روش معمول جهت اندازه‌گیری شباهت میان داده و مرکز خوشه می‌باشد. در روش خوشه‌بندی فازی مراکز خوشه () و درجه عضویت () با تکرار مکرر به ترتیب بر اساس رابطه‌های 2-7 و 2-8 به‌روزرسانی می‌شوند، تا زمانی که شرط توقف درست در آید. در این شرط مقدار یک مقدار توافقی بسیار کوچک‌تر از یک می‌باشد که مطابق با نوع داده و دقت خوشه‌بندی قابل جایگذاری خواهد بود. بدیهی است که هر چقدر این مقدار به سمت صفر میل کند درجه عضویت دقیق‌تر و مقدار زمان اجرا بیشتر خواهد بود [66].
(2-7)
(2-8)
مراحل اجرای الگوریتم در شبه کد شکل 2-11 شرح داده شده است:
1.Initialize matrix,
2.At k-step: calculate the centers vectors with


3.Update ,

4. If then STOP; otherwice returen to step 2.
شکل 2-10. الگوریتم فازی خوشه‌بندی
2-2-1-2-3. الگوریتم طیفیروش خوشه‌بندی طیفی که بر اساس مفهوم گراف طیفی [11] مطرح شده است، از ماتریس شباهت برای کاهش بعد داده‌ها در خوشه‌بندی استفاده می‌کند. در این روش یک گراف وزن‌دار بدون جهت به نحوی تولید می‌شود که رئوس گراف نشان‌دهنده‌ی مجموعه نقاط و هر یال وزن‌دار نشان‌دهنده‌ی میزان شباهت جفت داده‌های متناظر باشد. بر خلاف روش‌های کلاسیک، این روش، روی‌ داده‌ای پراکنده‌ در فضایی با شکل‌ هندسی غیر محدب، نتایج مطلوبی تولید می‌کند [63]. کاربرد این روش در محاسبات موازی [69, 70]، تنظیم بار [15]، طراحی VLSI [28]، طبقه‌بندی تصاویر [35] و بیوانفورماتیک [31, 59] می‌باشد.
در خوشه‌بندی طیفی از بردارهای ویژگی در ماتریس شباهت برای افراز مجموعه‌ داده استفاده می‌شود. در اغلب این روش‌ها، مقدار ویژه اولویت بردارها را تعیین می‌کند. ولی این نحوه‌ی انتخاب، انتخاب بهترین بردارها را تضمین نمی‌دهد. در اولین تحقیقی که در این زمینه توسط ژیانگ و گنگ [61] انجام شد، مسئله‌ی انتخاب بردارهای ویژگی مناسب جهت بهبود نتایج خوشه‌بندی پیشنهاد گردید. در روش پیشنهادی آن‌ها شایستگی هر یک از بردارهای با استفاده از تابع چگالی احتمال هر بردار تخمین زده می‌شود. وزنی به بردارهایی که امتیاز لازم را به دست آورندگ، اختصاص یافته و برای خوشه‌بندی از آن‌ها استفاده می‌شود. در کاری دیگر که توسط ژائو [64] انجام شده است، هر یک از بردارهای ویژه به ترتیب حذف می‌شوند و مقدار آنتروپی مجموعه بردارهای باقی‌مانده محاسبه می‌شود. برداری که حذف آن منجر به افزایش آنتروپی و ایجاد بی‌نظمی بیشتر در مجموعه داده شود، اهمیت بیشتری داشته و در رتبه بالاتری قرار می‌گیرد. سپس زیرمجموعه‌ای از مناسب‌ترین بردارها برای خوشه‌بندی مورد استفاده قرار می‌گیرند. الگوریتم خوشه‌بندی طیفی دارای متدهای متفاوتی جهت پیاده‌سازی است، که الگوریتم‌های برش نرمال، NJW، SLH وPF از آن جمله می‌باشد. در تمامی این روش‌ها، بخش اول، یعنی تولید گراف، مشترک می‌باشد. ما در ادامه ابتدا به بررسی بخش مشترک این روش‌ها می‌پردازیم. سپس به تشریح دو روش پر کاربرد برش نرمال و NJW می‌پردازیم.
در الگوریتم خوشه‌بندی طیفی، افراز داده‌ها بر اساس تجزیه‌ی ماتریس شباهت و به دست آوردن بردارها و مقادیر ویژه‌ی آن صورت می‌گیرد. مجموعه‌ی با داده‌یبعدی را در نظر بگیرید، می‌توان برای این مجموعه گراف وزن‌دار و بدون جهت را ساخت به صورتی که رئوس گراف نشان‌دهنده داده و یال‌ها که ماتریس شباهت را تشکیل می‌دهند بیانگر میزان شباهت بین هر جفت داده متناظر باشند. ماتریس شباهت به صورت رابطه 2-9 تعریف می‌شود:
(2-9)
تابع میزان شباهت بین دو داده را اندازه می‌گیرد. می‌تواند یک تابع گوسی به صورت باشد. که در آن فاصله‌ی بین دو نمونه را نشان می‌دهد و پارامتر مقیاس سرعت کاهش تابع با افزایش فاصله بین دو نمونه را مشخص می‌کند. در ادامه به بررسی دو الگوریتم خوشه‌بندی طیفی برش نرمال و NJW می‌پردازیم.
2-2-1-2-3-1. الگوریتم برش نرمالالگوریتم برش نرمال توسط شی و ملیک [35] برای قطعه‌بندی تصاویر ارائه شده است. در این روش، میزان تفاوت بین خوشه‌های مختلف و شباهت بین اعضا یک خوشه، بر اساس فاصله‌ی داده‌ها محاسبه می‌کند. رابطه 2-10 اشاره به مفهوم شباهت داده دارد که با استفاده از آن اقدام به ساخت گراف وزن‌دار می‌نماییم:
(2-10)
موقعیت i-امین داده (پیکسل در تصاویر) و بردار ویژگی از صفات داده (مانند روشنایی در تصاویر) می‌باشد. با کمک حد آستانه می‌توان میزان تنکی ماتریس شباهت را با توجه به تعداد اثرگذار داده‌های همسایه تعیین کرد. گام‌های این الگوریتم به صورت زیر می‌باشد:
محاسبه ماتریس درجه.
محاسبه ماتریس لاپلاسین.
محاسبه دومین بردار ویژگی متناظر با دومین کوچک‌ترین مقدار ویژه.
استفاده از برای خوشه‌بندی (قطعه‌بندی در تصاویر) گراف.
روش برش نرمال بیشتر در قطعه‌بندی تصاویر کاربرد دارد و معمولاً در خوشه‌بندی داده از سایر الگوریتم‌های خوشه‌بندی طیفی استفاده می‌کنند.
2-2-1-2-3-2. الگوریتم NJWایده الگوریتم استفاده از اولین بردار ویژه متناظر با بزرگ‌ترین مقدار ویژه ماتریس لاپلاسین است. مراحل این الگوریتم به صورت زیر می‌باشد: [51]
ساخت ماتریس شباهت با استفاده از رابطه 2-9.
محاسبه ماتریس درجه، و ماتریس لاپلاسین.
به دست آوردن اولین بردار ویژه متناظر با اولین بزرگ‌ترین مقدار ماتریسو تشکیل ماتریس ستونی.
نرمال سازی مجدد و تشکیل به طوری که همه سطرهای آن طول واحد داشته باشد.
خوشه‌بندی مجموعه داده بازنمایی شده با استفاده از.

2-2-1-2-4. الگوریتم خوشه‌بندی کاهشیالگوریتم خوشه‌بندی کاهشی یکی از سریع‌ترین الگوریتم‌های تک گذر، برای تخمین تعداد خوشه و مراکز آن‌ها در مجموعه‌ی داده می‌باشد. این مفهوم یعنی به جای تحت تأثیر قرار گرفتن محاسبات از ابعاد مسئله، متناسب با اندازه مسئله آن را انجام دهیم. با این وجود، مراکز واقعی خوشه الزاماً یکی از نقاط داده موجود در مجموعه داده نیست ولی در بیشتر موارد این انتخاب تخمین خوبی است که به صورت ویژه از این رویکرد در محاسبات کاهشی استفاده می‌شود. اگر هر نقطه از مجموعه داده به عنوان گزینه‌ای برای مرکز خوشه در نظر گرفته شود، معیار تراکم هر نقطه به صورت زیر تعریف می‌شود [79].
(2-11)
در رابطه بالا یک ثابت مثبت است، که نشان‌دهنده‌ی شعاع همسایگی (سایر نقاط داده که نزدیک‌ترین نقاط به این داده خاص هستند) می‌باشد، و نشان‌دهنده‌ی سایر داده‌های مجموعه، و نشان‌دهنده‌ی تعداد این داده‌ها است. از این روی، داده‌ای دارای بیش‌ترین مقدار تراکم می‌باشد که بیش‌ترین نقاط داده در همسایگی آن است. اولین مرکز خوشه بر اساس بزرگ‌ترین مقدار تراکم انتخاب می‌شود. بعد از این انتخاب میزان تراکم هر یک از نقاط داده به صورت زیر به‌روز می‌شود [79].
(2-12)
در رابطه بالا ثابت مثبت همسایگی را تعریف می‌کند که میزان کاهش تراکم قابل اندازه‌گیری را نشان می‌دهد. از آنجایی که نقاط داده در نزدیکی مرکز خوشه اول به طور قابل‌توجهی مقادیر چگالی را کاهش می‌دهند بعد از به‌روز کردن مقادیر تابع چگالی توسط رابطه بالا مرکز خوشه بعدی بر اساس داده‌ای که بزرگ‌ترین مقدار چگالی را دارد انتخاب می‌شود. این فرآیند آن قدر تکرار می‌شود تا به تعداد کافی مرکز خوشه ایجاد شود. پس از اتمام این فرآیند می‌توان توسط الگوریتم که مراکز داده در آن توسط فرآیند بالا به صورت دستی داده شده است (نه به صورت تصادفی)، داده‌ها را خوشه‌بندی کرد. شبه کد شکل زیر روند فرآیند بالا را نشان می‌دهد که در آن ابتدا مقادیر ثابت‌ها () و مجموعه داده به عنوان ورودی گرفته می‌شود و پس از ساخت مراکز داده مطابق با تعاریف بالا، این مراکز برای خوشه‌بندی در الگوریتم استفاده می‌شود [79].
Inputs Dataset, Constants
Output Clusters
Steps
1. Initialize constants and density values
2. Make a new cluster center.
3. Update density values
4. If the sufficient number of clusters are not obtained, go to 2.
3. Clustering the dataset by k-means, using fix centers.
شکل 2-11. خوشه‌بندی کاهشی
2-2-1-2-5. الگوریتم خوشه‌بندی Median K-Flatالگوریتم Median K-Flat یا به اختصار MKF مجموعه داده‌یرا به K خوشه‌ی افراز می‌کند که هر خوشه یک شبه فضای d-بُعدی تقریباً خطی می‌باشد. پارامتر‌ با فرض ماتریسی با ابعاد می‌باشد، که هر یک از خانه‌های آن تخمین شبه فضای خطی متعامد می‌باشد. قابل به ذکر است که می‌باشد. در این جا تخمین شبه فضای خوشه‌های را نام‌گذاری می‌کنیم. مطابق تعاریف بالا تابع انرژی برای افرازهای ‌ بر اساس شبه فضای به شکل زیر تعریف می‌شود [77].
(2-13)
این الگوریتم سعی می‌کند تا مجموعه داده را به خوشه‌های ‌تبدیل کند به نحوی که تابع انرژی کمینه باشد. تا وقتی که سطوح تخت اساسی به شکل شبه فضای خطی هستند ما می‌توانیم به صورت فرضی المان‌های X را در یک حوضه واحد نرمال کنیم به طوری که برای و تابع انرژی را به شکل زیر بیان کنیم: [77]
(2-14)
این الگوریتم برای کمینه‌سازی تابع انرژی الگوریتمMKF از روش کاهش گرادیان تصادفی استفاده می‌کند. مشتق تابع انرژی بر اساس ماتریس به شرح زیر است:
(2-15)
این الگوریتم نیاز به تطبیق بر اساس مؤلفه‌ی متعامد مشتق دارد. بخشی از مشتق که با شبه فضای موازی است به شرح زیر می‌باشد.
(2-16)
از این روی مؤلفه متعامد برابر است با رابطه 2-17 می‌باشد.
(2-17)
در رابطه بالا برابر با رابطه 2-18 است.
(2-18)
با در نظر گرفتن محاسبات بالا، الگوریتم MKF تصمیم می‌گیرد که داده تصادفی از مجموعه داده، عضو کدام باشد، و از این طریق شروع به چیدن داده‌ها می‌کند. آن گاه، الگوریتم تابع را به‌روز کند که در آن (مرحله زمانی) پارامتری است که توسط کاربر تعیین می‌شود. این فرآیند آن قدر تکرار می‌شود تا ضابطه همگرایی دیده شود. آنگاه هر نقطه از مجموعه داده به نزدیک‌ترین شبه فضای که تعیین‌کننده خوشه‌هاست اختصاص داده می‌شود. شبه کد زیر فرآیند الگوریتم MKF را نشان می‌دهد [77].
Input:
: Data, normalized onto the unit sphere, d: dimension of subspaces K: number of subspaces, the initialized subspaces. : step parameter.
Output: A partition of X into K disjoint clusters
Steps:
1. Pick a random point in X
2. Find its closest subspace , where
3. Compute by
4. Update
5. Orthogonalize
6. Repeat steps 1-5 until convergence
7. Assign each xi to the nearest subspace
شکل 2-12. شبه‌کد الگوریتم MKF [77]
2-2-1-2-6. الگوریتم خوشه‌بندی مخلوط گوسییک مخلوط گوسی یا همان را می‌توان ترکیب محدبی از چگالی‌های گوسی دانست. یک چگالی گوسی در فضای d-بُعدی به ازای میانگین، توسط ماتریس هم‌وردایی با ابعاد به صورت زیر تعریف می‌شود: [83]
(2-19)
در رابطه بالا پارامتر‌های و را تعریف می‌کند. از این روی مؤلفه به صورت زیر تعریف می‌شود:
(2-20)
در رابطه (2-20) پارامتر وزن مخلوط کردن و مؤلفه مخلوط می‌باشد. از آنجا که در مقایسه با تخمین چگالی غیر پارامتری، تعداد کمتری از توابع چگالی در تخمین چگالی مخلوط باید ارزیابی شود، از این روی ارزیابی چگالی کارآمدتر خواهد بود. علاوه بر آن، استفاده از اجرای محدودیت هموار کردن بر روی برخی از مؤلفه‌های مخلوط در نتیجه‌ی چگالی به ما اجازه می‌دهد تا چگالی مستحکم‌تری را تخمین بزنیم. الگوریتم حداکثر-انتظار یا همان به ما اجازه به‌روز کردن پارامتر‌های مؤلفه‌ی مخلوط را مطابق با مجموعه داده به ازای هر می‌دهد، به طوری که احتمال هرگز کوچک‌تر از مخلوط جدید نشود. به‌روز کردن الگوریتم می‌تواند در یک فرآیند تکراری برای تمامی مؤلفه‌های مطابق با رابطه‌های زیر انجام شود: [83]
(2-21)
(2-22)
(2-23)
(2-24)
در این تحقیق از روش پیشنهادی بومن و همکاران برای پیاده‌سازی الگوریتم مخلوط گوسی استفاده شده است. از آنجایی که روش پیاده‌سازی و توضیحات مربوط به الگوریتم مخلوط گوسی در روش ترکیب مبتنی بر مخلوط استفاده می‌شود از این روی در بخش روش‌های ترکیب نتایج با تابع توافقی آن را بررسی خواهیم کرد.
2-2-2. معیارهای ارزیابیدر یادگیری با ناظر ارزیابی راحت تر از یادگیری بدون ناظر است. برای مثال آن چیز که ما در رده‌بندی باید ارزیابی کنیم مدلی است که ما توسط داده‌های یادگیری به الگوریتم هوش مصنوعی آموزش داده‌ایم. در روش‌های با ناظر ورودی و خروجی داده معلوم است و ما بخشی از کل داده را برای آزمون جدا کرده و بخش دیگر را به عنوان داده یادگیری استفاده می‌کنیم و پس از تولید مدل مطلوب ورودی داده آزمون را در مدل وارد کرده و خروجی مدل را با خروجی واقعی می‌سنجیم. از این روی معیارهای بسیاری برای ارزیابی روش‌های با ناظر ارائه‌شده‌اند.
در یادگیری بدون ناظر روش متفاوت است. در این روش هیچ شاخص معینی در داده جهت ارزیابی وجود ندارد و ما به دنبال دسته‌بندی کردن داده‌ها بر اساس شباهت‌ها و تفاوت‌ها هستیم. از این روی برخلاف تلاش‌های خیلی از محققان، ارزیابی خوشه‌بندی خیلی توسعه داده نشده است و به عنوان بخشی از تحلیل خوشه‌بندی رایج نشده است. در واقع، ارزیابی خوشه‌بندی یکی از سخت‌ترین بخش‌های تحلیل خوشه‌بندی است [33]. معیارهای عددی، یا شاخص‌هایی که برای قضاوت جنبه‌های مختلف اعتبار یک خوشه به کار می روند، به سه دسته کلی تقسیم می‌شوند:
1- شاخص خارجی که مشخص می‌کند که کدام خوشه‌های پیداشده به وسیله الگوریتم خوشه‌بندی با ساختارهای خارجی تطبیق دارند. در این روش نیاز به اطلاعات اضافی مثل برچسب نقاط داده، داریم. آنتروپی یک مثالی از شاخص خارجی است.
2- شاخص داخلی که برای اندازه‌گیری میزان خوبی یک ساختار خوشه‌بندی بدون توجه به اطلاعات خارجی به کار می‌‌رود. یک نمونه از شاخص داخلی است.
3- شاخص نسبی که برای مقایسه دو خوشه‌بندی مختلف یا دو خوشه مختلف به کار می‌رود. اغلب یک شاخص خارجی یا داخلی برای این تابع استفاده می‌شود. برای مثال، دو خوشه‌بندی می‌توانند با مقایسه یا آنتروپی‌شان مقایسه شوند.
این فصل تعدادی از مهم‌ترین و رایج‌ترین روش‌های به‌کاررفته برای ارزیابی خوشه‌بندی را مرور خواهد کرد.
2-2-2-1. معیار SSEیک معیار داخلی ارزیابی خوشه‌بندی، مثل، می‌تواند برای ارزیابی یک خوشه‌بندی نسبت به خوشه‌بندی دیگر به کار رود. به علاوه، یک معیار داخلی اغلب می‌تواند برای ارزیابی یک خوشه‌بندی کامل یا یک خوشه تنها به استفاده شود. این اغلب به خاطر این است که این روش، سعی می‌کند تا میزان خوبی کلی خوشه‌بندی را به عنوان یک جمع وزن‌دار از خوبی‌های هر خوشه در نظر می‌گیرد. با استفاده از رابطه 2-25 محاسبه می‌شود [68].
(2-25)
کهیک نقطه داده در خوشه است و، j-امین ویژگی از داده X است. ، j-امین ویژگی از مرکز خوشه می‌باشد. برای مقایسه دو خوشه‌بندی مختلف روی یک داده با یک تعداد مشابه، تنها مقایسه مقدارهای متناظر آن‌ها کافی است. هر چه مقدار کمتر باشد، آن خوشه‌بندی بهتر خواهد بود. البته، وقتی تعداد نقاط داده در دو خوشه متفاوت باشند، مقایسه مستقیم از روی مقدار خوب نخواهد بود. بنابراین، یک خوشه معیار مناسب تری برای مقایسه است. رابطه 2-26 این معیار را نشان می‌دهد که در آن مقدار تعداد کل نمونه‌هاست [68].
(2-26)
تعداد درست خوشه‌ها در الگوریتم ، اغلب می‌تواند با استفاده از نگاه کردن به منحنی مشخص شود. این منحنی با رسم مقادیر به ازایهای مختلف به دست می‌آید. تعداد خوشه‌های بهینه با توجه به منحنی، ای است که به ازای آن نرخ کاهش مقدار، قابل چشم‌پوشی شود. شکل 2-13-ب منحنی را برای داده‌های شکل 2-13-الف، نشان می‌دهد.

(الف)
(ب)
شکل2-13. (الف) مجموعه داده با تعداد 10 خوشه واقعی. (ب) منحنی مربوطه [68]
همان طور که از شکل 2-13-ب برمی‌آید، برای مقادیرهای از صفر تا 10 شیب منحنی نسبت به بقیه مقادیر، تندتر می‌باشد. این امر نشان‌دهنده آن است که مقدار یک مقدار بهینه برای تعداد خوشه‌ها می‌باشد.

(الف)
(ب)
شکل2-14. (الف) مجموعه داده (ب) منحنی مربوطه [2]
شکل 2-14-ب نیز منحنی را برای داده‌های شکل 2-14-الف، نشان می‌دهد. مشاهده می‌شود که در این داده‌ها، چون تعداد خوشه‌ها نسبت به شکل 2-14-الف کاملاً گویا نیست، بنابراین، منحنی آن نیز نرم تر خواهد بود . اما با توجه به شکل 2-14-ب، می‌توان گفت که تعداد نسبتاً خوب باشد. چون منحنی برای های بعد از 8، دارای شیب کندتری خواهد شد. با توجه به نتایج فوق می‌توان گفت که اگرچه منحنی برای همه مسایل نمی‌تواند جواب بهینه برای تعداد بدهد، اما می‌تواند به عنوان یک معیار خوب برای این امر مطرح باشد.
2-2-2-2. معیار اطلاعات متقابل نرمال شدهمعیار اطلاعات متقابل () توسط کاور و توماس [71] معرفی شد که یک روش جهت اندازه‌گیری کیفیت اطلاعات آماری مشترک بین دو توزیع است. از آنجایی که این معیار وابسته به اندازه خوشه‌ها است در [54] روشی جهت نرمال سازی آن ارائه شده است. فرد و جین [19] روش نرمال سازی اطلاعات متقابل را اصلاح کردند و آن را تحت عنوان اطلاعات متقابل نرمال () ارائه داده‌اند. رابطه 2-27 اطلاعات متقابل نرمال شده را نشان می‌دهد[1, 2, 19] .
(2-27)
در رابطه 2-27 پارامتر کل نمونه‌ها است و یعنی افرازهایی که اندیس آن‌ها شامل i با تمام مقادیر j می‌باشد و یعنی افرازهایی که تمام مقادیر i با و اندیس j را شامل شود. از رابطه 2-28 محاسبه می‌شود [1, 2, 19].
(2-28)
, ,
در صورتی که دو افراز به صورت و که در آن کل داده و خوشه اول و خوشه دوم هر یک از افرازها باشد آنگاه نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد، نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد، نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد و نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد. در واقع و به ترتیب بیانگر کل نمونه‌های موجود در و می‌باشد [1].
شکل 2-15 دو افراز اولیه را نشان می‌دهد که میزان پایداری برای هر کدام از خوشه‌های به دست آمده هم محاسبه شده است. در این مثال الگوریتم به عنوان الگوریتم خوشه‌بندی اولیه انتخاب شده است و تعداد خوشه‌های اولیه برابر با سه نیز به عنوان پارامتر آن از قبل مشخص شده است. همچنین، در این مثال تعداد افرازهای موجود در مجموعه مرجع برابر با ۴۰ می‌باشد. در ۳۶ افراز نتایجی مشابه با شکل 2-15 (a) و در 4 حالت باقیمانده نیز نتایجی مشابه با شکل 2-15 (a) حاصل شده است [1].

شکل2-15. دو افراز اولیه با تعداد سه خوشه. (a) خوشه‌بندی درست (b) خوشه‌بندی نادرست [1]
از آن جایی که در مجموعه مرجع در ۹۰ % مواقع، داده‌های متراکم گوشه بالا‐چپ از شکل 2-15 در یک خوشه مجزا گروه‌بندی شده‌اند، بنابراین این خوشه باید مقدار پایداری بالایی را به خود اختصاص دهد. اگرچه این مقدار نباید دقیقاً برابر با یک باشد (چون در همه موارد این خوشه درست تشخیص داده نشده است)، مقدار پایداری با روش متداول اطلاعات متقابل نرمال شده مقدار یک را بر می‌گرداند. از آن جایی که ادغام دو خوشه سمت راست تنها در ۱۰ % موارد مانند شکل 2-15 (b) اتفاق افتاده است، خوشه حاصل باید مقدار پایداری کمی به دست آورد. اگر چه خوشه حاصل از ادغام دو خوشه سمت راستی، به ندرت ( ۱۰ % موارد) در مجموعه مرجع دیده شده است، مقدار پایداری برای این خوشه نیز برابر با یک به دست می‌آید. در اینجا مشکل روش متداول محاسبه پایداری با استفاده از اطلاعات متقابل نرمال شده ظاهر می‌شود. از آنجایی که معیار اطلاعات متقابل نرمال شده یک معیار متقارن است، مقدار پایداری خوشه بزرگ ادغامی سمت راست (با ۱۰ % تکرار) دقیقاً برابر با میزان پایداری خوشه متراکم گوشه بالا‐چپ (با ۹۰ % تکرار) به دست می‌آید. به عبارت دیگر در مواردی که داده‌های دو خوشه مکمل یکدیگر باشند، یعنی اجتماع داده‌های آن‌ها شامل کل مجموعه داده شود و اشتراک داده‌های آن‌ها نیز تهی باشد، مقدار پایداری برای هر دو به یک اندازه برابر به دست می‌آید. از دیدگاه دیگر، این اتفاق زمانی رخ می‌دهد که تعداد خوشه‌های تشکیل‌دهنده مجموعه در خوشه‌بندی مرجع عددی بیشتر از یک باشد. هر زمان که با ادغام دو یا بیشتر از خوشه‌ها به دست آید، منجر به نتایج نادرست در مقدار پایداری می‌شود. ما این مشکل را تحت عنوان مشکل تقارن در اطلاعات متقابل نرمال شده می‌شناسیم. در سال‌های اخیر روش‌هایی جهت حل این مشکل ارائه‌شده‌اند که یکی از آن‌ها را علیزاده و همکاران در [1, 9]ارائه داده‌اند که در‌ آن بزرگ‌ترین خوشه از بین مجموعه مرجع (که بیش از نصف نمونه‌هایش در خوشه مورد مقایسه وجود دارد) جایگزین اجتماع همه خوشه‌ها می‌شود که ما آن را با عنوان روش Max می‌شناسیم. روش دیگر جهت رفع این مشکل معیار APMM می‌باشد. در ادامه به بررسی این معیار می‌پردازیم [1, 8, 67].
2-2-2-3. معیار APMMبر خلاف معیارکه برای اندازه‌گیری شباهت دو افراز طراحی شده است معیار روشی برای اندازه‌گیری میزان شباهت یک خوشه در یک افراز است که توسط عـلیزاده و همکاران [8, 67] معرفی شده است رابطه 2-29 این معیار را معرفی می‌کند.
(2-29)
در رابطه 2-29 پارامتر خوشه i-ام در افراز می‌باشد و افراز متناظر با خوشه در خوشه‌بندی است. پارامتر تعداد کل نمونه‌های مجموعه داده و تعداد نمونه‌های مشترک بین خوشه‌های و می‌باشد. همچنین، تعداد خوشه‌های موجود در افراز می‌باشد. در این روش برای محاسبه پایداری خوشه از رابطه 2-30 استفاده می‌کنیم [8, 67].
(2-30)
در رابطه 2-30 پارامتر نشان‌دهنده j-امین افراز از مجموعه مرجع است و تعداد کل افرازها است [8, 67]. از آنجایی که این معیار برای ارزیابی شباهت یک خوشه است می‌توان هم برای ارزیابی خوشه و هم برای ارزیابی افراز استفاده کرد. جهت استفاده از این معیار برای ارزیابی یک افراز کافی است آن را برای تک‌تک خوشه‌های آن افراز استفاده کنیم و در نهایت از کل مقادیر میانگین بگیریم.
2-۳. خوشه‌بندی ترکیبیکلمه’Ensemble‘ ریشه فرانسوی دارد و به معنی باهم بودن یا در یک زمان می‌باشد و معمولاً اشاره به واحدها و یا گروه‌های مکملی دارد که باهم در اجرای یک کار واحد همکاری می‌کنند. ترکیب تاریخ طولانی در دنیای واقعی دارد، نظریه هیئت‌منصفه ی کندورست که در سال 1785 میلادی مطرح شده است و این ایده را مطرح می‌کند که، احتمال نسبی درستی نظر گروهی از افراد (رأی اکثریت) بیشتر از نظر هر یک از افراد به تنهایی می‌باشد را می‌توان دلیلی برای ترکیب نتایج در دنیای واقعی دانست [10, 27]. خوشه‌بندی ترکیبی روشی جدید در خوشه‌بندی می‌باشد که از ترکیب نتایج روش‌های خوشه‌بندی متفاوت به دست می‌آید از آنجایی که اکثر روش‌های خوشه‌بندی پایه روی جنبه‌های خاصی از داده‌ها تاکید می‌کنند، در نتیجه روی مجموعه داده‌های خاصی کارآمد می‌باشند. به همین دلیل، نیازمند روش‌هایی هستیم که بتواند با استفاده از ترکیب این الگوریتم‌ها و گرفتن نقاط قوت هر یک، نتایج بهینه‌تری را تولید کند. هدف اصلی خوشه‌بندی ترکیبی جستجوی نتایج بهتر و مستحکم‌تر، با استفاده از ترکیب اطلاعات و نتایج حاصل از چندین خوشه‌بندی اولیه است [18, 54]. خوشه‌بندی ترکیبی می‌تواند جواب‌های بهتری از نظر استحکام، نو بودن، پایداری و انعطاف‌پذیری نسبت به روش‌های پایه ارائه دهد [3, 21, 54, 57]. به طور خلاصه خوشه‌بندی ترکیبی شامل دو مرحله اصلی زیر می‌باشد : [34, 54]
1- تولید نتایج متفاوت از خوشه‌بندی‌ها، به عنوان نتایج خوشه‌بندی اولیه بر اساس اعمال روش‌های مختلف که این مرحله را، مرحله ایجاد تنوع یا پراکندگی می‌نامند.

user8336

B. رنگ آمیزی بافت زنده با استفاده از تولوئیدین بلو:
این روش برای کمک به تعیین نواحی نیازمند بیوپسی مفید است(1). تولوئیدین بلو به DNA یا RNA غیرطبیعی باند شده و نواحی با ریسک بالای پیشرفت به سمت سرطان را مشخص می کند(2). اتصال مثبت تولوئیدین بلو (به ویژه در نواحی لکوپلاکیا، اریتروپلاکیا و جذب محیطی آن در یک زخم) ممکن است نیاز به انجام بیوپسی را ثابت کند. اتصال مثبت کاذب رنگ می تواند ناشی از ضایعات زخمی یا وجود التهاب باشد، اما پاسخ منفی کاذب، شایع نمی باشد(1). حساسیت این روش برای ضایعات بدخیم 100% و برای ضایعات دیسپلاستیک 5/79 % و اختصاصیت آن در حد 62% عنوان شده است(2). البته همواره باید تأکید نمود که این روش هرگز جایگزین بیوپسی نبوده و تست قطعی تشخیص تغییرات بدخیمی، همچنان، بیوپسی است(1).
Brush Biopsy . C :
آنالیز کامپیوتری نمونه های Brush Biopsy بر روی سلول های متفلس رنگ آمیزی شده با روش پاپا نیکولائو، نتایج نسبتأ موفقی را نشان داده است(1). در این روش از یک برس استفاده می شود که توانایی نفوذ در ضخامت مخاط را داشته و می تواند نمونه ای را که معرف همه سلول های ضایعه باشد. تهیه کند. با استفاده از این تکنیک سلول های لایه بازال و مجاور بازال جمعآوری شده و با کمک کامپیوتر آنالیز می شوند. حساسیت این روش نسبتأ بالا و در برخی مقالات تا حد 100% هم گزارش شده است(2).
در روش جدیدی به نام Modified Brush Biopsy که نخستین بار در سال 2010 توسط متخصصین گروه بیماری های دهان دانشکده دندانپزشکی مشهد معرفی شد، از ترکیب Brush Biopsy و سیتولوژی بر پایه مایع (LBC) برای تعیین ارزش تشخیصی این روش در شناسایی ضایعات دهانی بدخیم و پیش بدخیم استفاده شد. در این مطالعه، از 26 بیمار مبتلا به ضایعات دهانی بدخیم یا پیش بدخیم، Brush Biopsy تهیه و در فرمول ساده LBC قرار گرفت و با استفاده از سانتریفیوژ، نمونه ای که معرف همه سلولهای ضایعه باشد، در دسترس قرار گرفت. سپس همه بیماران تحت بیوپسی روتین و بررسی هیستوپاتولوژی هم قرار گرفتند. این روش حساسیت 9/88% و اختصاصیت 100% نشان داد. بنابراین پیشنهاد شد می تواند به عنوان ابزار مؤثری برای غربالگری ضایعات دهانی بدخیم و پیش بدخیم مورد استفاده قرار گیرد(15).
گر چه در حال حاضر استاندارد طلایی تشخیص ضایعات دهانی بدخیم و پیش بدخیم تهیه بیوپسی بافتی و بررسی هیستوپاتولوژی است، اما به هر حال این روش نگرانی هایی از جهت خطاهای نمونه برداری و خطاهای تفسیر هیستوپاتولوژی و فقدان حساسیت کافی برای تعیین پیشرفت ضایعه را به همراه دارد. بنابراین نیاز به سیستم های دقیق تر برای پیش بینی پیشرفت ضایعات در مراحل اولیه، کاملأ منطقی به نظر می رسد (2).
بررسی مارکرهای سرمی در سرطان دهان
در حال حاضر تعدادی از مارکرهای سلولی و مولکولی برای کمک به شناسایی تغییرات اولیه در جهت کمک به شناسایی ضایعات دارای پتانسیل بدخیمی در مخاط دهان در حال بررسی هستند (2).
با پیشرفت دانش بشر از درک ژنتیک، تغییرات ژنتیکی ممکن است به عنوان چنین مارکری در نظر گرفته شود. به علاوه شواهدی وجود دارد که نشان می دهد مقادیر سیتوکین های بزاقی می تواند اطلاعات مفیدی از رفتار اپی تلیوم دهان و کارسینوژنر فراهم کرده و توانایی این مارکرها می تواند در آینده ای نزدیک، آنها را تبدیل به ابزاری برای غربالگری سرطان دهان نماید(2). ماتریکس متالوپروتئیناز و مهار کننده بافتی آن نقش مهمی در شروع و پیشرفت سرطان دهان ایفا می کنند(1). آغاز یا پیشرفت سرطان دهان می تواند با پلی مرفیسم ژن فاکتور رشد عروقی اندوتلیال (VEGF) مرتبط باشد(1). افزایش CDK2 و CDK4 در مدل های حیوانی، مرتبط با افزایش خطر ابتلا به SCC دهان و پوست عنوان شده است(9). آنتی بادی بر علیه پروتئین P53 ( یک پروتئین سرکوبگر تومور) در سرم بیماران مبتلا به SCC دهانی شناسایی شده است(16). بنابراین مطالعه بیشتر روی بافت های دهانی همچنین سلولها یا مایعات بدن از جمله سرم و بزاق به منظور کمک به درک بهتر پاتوژنز سرطان دهان و یافتن ابزاری مفید برای غربالگری سرطان دهان در مراحل اولیه، ادامه خواهد یافت (2).
جستجو برای یافتن روش هایی که امکان شناسایی سرطان دهان را در مراحل اولیه امکان پذیر نماید، محققان را به سوی تحقیقات جدی در این زمینه سوق داده است(16). در سالهای اخیر، توجه به بیومارکرهای موجود در سرم برای تشخیص زود هنگام سرطانهای مختلف از جمله سرطان دهان(به ویژه SCC) مورد علاقه بیشتر پژوهشگران قرار گرفته است(17). تغییرات ژنتیکی که در سلولهای سرطانی رخ می دهد، منجر به تغییر پاسخ سلول به محیط اطراف خود می شود که به صورت تغییر در بیان پروتئین های مسیرهای سیگنال دهنده سلولی تظاهر می کند و با مطالعات بررسی پروتئین ها در سرم، قابل ردیابی خواهد بود(17).
گلوتاتیون
یکی از بیومارکرهای قابل اندازه گیری در سرم مبتلایان به SCC گلوتاتیون است که پپتیدی داخل سلولی با اعمال متفاوتی از جمله سم زدایی، دفاع آنتی اکسیدانی و تعدیل نمودن پرولیفراسیون سلولی می باشد(18). فرمول شیمیایی این مولکول عبارتست از: C10H17N3O6S و تری پپتیدی با اتصال پپتیدی گاما بین گروه آمین سیستئین و گروه کربوکسیل گلوتامات است. دریافت گلوتاتیون به عنوان یک ریزمغذی در رژیم غذایی ضروری نیست، زیرا بدن می تواند از آمینواسیدهای سیستئین، گلوتامیک اسید و گلایسین، آن را تولید کند(19). گلوتاتیون در یک فرآیند دو مرحله ای وابسته به آدنوزین تری فسفات (ATP) ساخته می شود: - نخست گاماگلوماتیل سیستئین از گلوتامات و سیستئین با واسطه آنزیم گاماگلوتامیل سیستئین سنتتاز تولید می شود.
سپس، گلایسین به انتهای C - ترمینال گاماگلوتامیل سیستئین از طریق آنزیم گلوتاتیون سنتتاز، اضافه می شود(19).
برخی از ویژگی های مهم گلوتاتیون عبارتند از:
یک آنتی اکسیدان اندوژن(درون زاد) مهم است که توسط سلولها تولید می شود و در خنثی کردن مستقیم رادیکالهای آزاد و ترکیبات واکنشی اکسیژن شرکت می کند. همانگونه که آنتی اکسیدان های اگزوژن( برون زاد) مثل ویتامین C و E در فرم احیاء(که همان فرم فعال آنهاست)، عمل می کنند(20).
چرخه نیتریک اکساید را تنظیم می کند که برای حیات نقش بحرانی( Critical) دارد و در صورت عدم تنظیم، مشکل جدی ایجاد می کند(21).
در واکنش های متابولیک و بیوشیمیایی مثل سنتز و ترمیم DNA ، سنتز پروتئین، سنتز پروستاگلاندین، انتقال آمینو اسید و فعالیت آنزیمی، نیاز به گلوتاتیون وجود دارد. بنابراین هر سیستمی در بدن می تواند تحت تأثیر گلوتاتیون قرار گیرد، به ویژه سیستم ایمنی، سیستم عصبی، سیستم گوارشی و ریه ها (22).
گلوتاتیون نقشی حیاتی در متابولیسم آهن دارد. به طوریکه نشان داده شده سلول های yeast ( مخمر) عاری از آهن یا حاوی مقادیر اندک گلوتاتیون احیا (GSH)، دچار نقص آنزیمهای خارج میتوکندریایی و به دنبال آن مرگ می شود(21).
گلوتاتیون دارای دو فرم احیا یا همان GSH و اکسید یا همان GSSG می باشد. پدیده اکسیداسیون – احیا از خصائص ذاتی سلول بوده و گلوتاتیون در این امر نقش اساسی دارد(23). گلوتاتیون که بیشتر به فرم احیا شده وجود دارد، در واکنش با رادیکالهای آزاد و سموم به فرم اکسید خود یعنی GSSG تبدیل شده با حضور آنزیم گلوتاتیون رودکتاز فاکتور NADPH مجددأ به فرم احیاء خود بازمی گردد. کسر GSH /GSSG از فاکتورهای مهم در رابطه با تغییرات دائم رادیکال های آزاد اکسیژن می باشد. میزان این کسر در سلول های مختلف، متفاوت بوده، نشان دهنده موقعیت محیط سلول متناسب با فعالیت آن می باشد(23). در حالت عادی نسبت GSH /GSSG برابر 1/3 می باشد. استرس شدید اکسیداتیو سبب انباشتگی GSSG شده و مقدار کسر کاهش می یابد که کاهش مقاومت بدن برای مقابله با رادیکالهای آزاد را در پی دارد(23). منظور از استرس اکسیداتیو زمانی است که تعادل بین تولید مواد اکسیدان و آنتی اکسیدان در بدن به نفع اکسیدان ها دچار اختلال شود(24).

استرس اکسیداتیو
استرس اکسیداتیو منعکس کننده عدم تعادل بین تظاهرات سیستمیک گونه های اکسیژن واکنشی و توانایی سیستم یبولوژیک برای خنثی کردن واسطه های واکنشی یا ترمیم آسیب حاصله است. اختلال در حالت نرمال Redox (Reduction / Oxidation)، می تواند از طریق تولید پراکسیدها و رادیکالهای آزاد – که به اجزای سلولی از قبیل پروتئین ها، لیپیدها و DNA صدمه می زنند- اثرات سمی به دنبال داشته باشد(24). بنابراین استرس اکسیداتیو می تواند باعث قطع مکانیسم های نرمال انتقال پیام سلولی (cellular signaling) شود(24).
منظور از واکنش Redox (Reduction / Oxidation) تمام واکنش های شیمیایی است که شامل تغییر وضعیت اتم های بین حالت اکسیداسیون و احیاء می باشد. تعریف اکسیداسیون و احیاء به این شرح است:
اکسید (Oxidation): فقدان الکترون یا افزایش اکسیداسیون توسط یک مولکول، اتم یا یون.
احیا ( Reduction): به دست آوردن الکترون یا افزایش اکسیداسیون توسط یک مولکول، اتم یا یون(25).
به نظر می رسد استرس اکسیداتیو در انسان در پیشرفت بسیاری از بیماری ها یا تشدید علائم آنها نقش داشته باشد. این بیماریها شامل: سرطان(24)، پارکینسون و آلزایمر(26)، آترواسکلروز و نارسایی قلبی(27)، انفارکتوس میوکارد(28)،اسکیزوفرنی(29)، اختلال شخصیت دوقطبی(30)، بیماری سلولی داسی(31)، لیکن پلان(32) و ویتیلیگو(33) می باشد.
احتمال دخیل بودن استرس اکسیداتیو در پیشرفت وابسته به سن در سرطان وجود دارد. گونه های واکنشی تولید شده در استرس اکسیداتیو می توانند باعث آسیب مستقیم DNA و بنابراین اثرات موتاژنیک (جهش زایی) شوند. این فرآیند ممکن است آپوپتوز( مرگ برنامه ریزی شده سلولی) را سرکوب کرده و تکثیر و تهاجم و متاستاز تومور را پیش ببرد(24).

درمان
درمان سرطان دهان نیازمند همکاری یک تیم پزشکی است. هدف اولیه درمان، ریشه کنی سرطان، پیشگیری از عود و تا حد امکان بازیابی شکل و عملکرد نواحی تحت تأثیر قرار گرفته می باشد(34).
انتخاب روش درمان، بستگی به عوامل متعددی دارد از جمله: نوع سلول تومورال و میزان تمایز آن، محل و اندازه ضایعه، وضعیت درگیری استخوان و گره های لنفاوی، حضور یا عدم حضور متاستاز و شرایط کلی بیمار از قبیل: سن، وضعیت سلامت عمومی، وجود تاریخچه ای از SCC دهانی قبلی و عادات پر خطر(35).
روشهای درمانی متعددی برای درمان سرطان دهان وجود دارد که شامل: جراحی، رادیوتراپی، شیمی درمانی سیستمیک و مهار EGFR می باشند و می توانند هر یک به تنهایی یا به صورت ترکیبی به کار روند(36). جراحی درمان انتخابی ضایعات کوچک و قابل دسترسی است، اگر چه مراحل پیشرفته SCC معمولأ با ترکیب جراحی، رادیوتراپی و شیمی درمانی درمان می شوند(37).
در موارد عود SCC مهار کننده های EGFR در ترکیب با رادیوتراپی و شیمی درمانی، خط اول درمان خواهند بود(34).
درمان انتخابی درگیری گره های لنفاوی، جراحی است(1).
جراحی برداشت SCC دهان با حاشیه های ناکافی در حد کمتر از 5 میلی متر در 30 – 20 % موارد ممکن است عود و متاستاز دور دست را به همراه داشته باشد و در این شرایط معمولأ تجویز رادیوتراپی و شیمی درمانی بعد از جراحی، ضروری خواهد بود(38). توضیح احتمالی این است که برخی کراتینوسیتهای بدخیم ممکن است در حاشیه های زخم جراحی شده باقی مانده باشند اما به دلیل تعداد بسیار اندک، توسط آزمایشات هیستوپاتولوژی قابل شناسایی نباشند(3).
رادیوتراپی از طریق ایجاد رادیکال های آزاد و آسیب به DNA سلول، اثرات مخرب خود را اعمال می کند. سلول های تحت تابش ممکن است تخریب شوند یا قدرت تقسیم خود را از دست بدهند(1).
انواع SCC به اشعه حساس بوده و ضایعات اولیه به میزان زیادی با رادیوتراپی قابل درمان می باشند. به طور کلی هر چه تمایز تومور بیشتر باشد ( G--e هیستوپاتولوژی پایین تر )، سرعت پاسخ به رادیوتراپی کمتر خواهد بود. تومورهای اگزوفیتیک که اکسیژن رسانی کافی دارند، حساسیت بیشتری به اشعه دارند، در حالیکه تومورهای مهاجم بزرگ کمتر به اشعه پاسخ می دهند. SCC محدود به مخاط دهان با رادیوتراپی تا حد زیادی بهبود پذیرفته است، در حالیکه انتشار تومور به استخوان، احتمال موفقیت رادیوتراپی به تنهایی را کاهش می دهد و در این شرایط نیاز به ترکیب جراحی و رادیوتراپی وجود دارد(1).
شیمی درمانی به سه شکل در درمان سرطان به کار می رود:
به صورت القایی قبل از درمانهای موضعی با هدف تسریع در کاهش اولیه حجم تومور و درمان زود هنگام میکرومتاستازها.
به صورت استفاده همزمان با رادیوتراپی، این روش در حال حاضر برای مراحل پیشرفته بیماری ( مراحل 3 و 4 )
مورد استفاده قرار می گیرد.
شیمی درمانی کمکی ( adjuvant ) پس از درمان موضعی.(1).

پیش آگهی
مهمترین عامل در بقاء بیماران مبتلا به سرطان دهان، مرحله بیماری در هنگام تشخیص می باشد. متأسفانه بیشتر سرطان های دهان در مراحل پیشرفته، پس از علامت دار شدن تشخیص داده می شوند(1). در ایالات متحده میزان بقای 5 ساله در آمریکایی های آفریقایی تبار فقط یک، سوم بقای 5 ساله سفید پوستان که حدود 53% می باشد، گزارش شده است(1). این میزان بقا تحت تأثیر محیط فیزیکی و اجتماعی، کمبود اطلاعات بهداشتی، روش زندگی پر خطر و دسترسی محدود به مراقبت های بهداشتی می باشد(1).
کمیته مشارکتی سرطان آمریکا سیستم تومور، گره لنفاوی و متاستاز(TNM) را برای طبقه بندی سرطان ارائه داده است. T اندازه تومور اولیه، N درگیری گره های لنفاوی و M متاستاز دوردست را بیان می کند. انتشار موضعی یا ناحیه ای SCC دهانی شایع است و بر انتخاب درمان و پیش آگهی تاثیر می گذارد. متاستاز به گره های لنفاوی گردنی نیز شایع بوده ولی متاستاز دوردست به ناحیه زیر ترقوه نادر است. سرطان دهان در بخش خلفی حفره دهان، ناحیه حلق دهانی و کف دهان با پیش آگهی ضعیف تری همراه است، این امر با تشخیص بیماری در مرحله پیشرفته و میزان بیشتر انتشار آن به گره های لنفاوی در زمان تشخیص قابل توجیه می- باشد(1). عوامل موثر عمده ای که اثر منفی بر پیش آگهی سرطان دهان اعمال می کنند عبارتند از: درگیری دو یا تعداد بیشتری لنف نود ناحیه ای، گسترش درگیری لنف نود به خارج از کپسول و اعلام درگیر بودن مارژین های برداشته شده در جراحی تومور(2). معیارهای بافت شناسی مهم مرتبط با پروگنوز ضعیف شامل: افزایش ضخامت تومور و وجود تهاجم عروقی می باشد(2).
از آنجا که ضایعات اولیه اغلب بدون علامت بوده و بیماران در مراحل انتهایی شناسایی می شوند، تشخیص این سرطان در مراحل اولیه، تأثیر قابل توجهی در بهبود پیش آگهی آن دارد(2). جستجو برای یافتن روش هایی که امکان شناسایی سرطان دهان را در مراحل اولیه امکان پذیر نماید، محققان را به سوی تحقیقات جدی در این زمینه سوق داده است(16). در همین راستا، توجه به بیومارکرهای موجود در سرم برای تشخیص زود هنگام سرطان دهان در حال افزایش است.(17).

مروری بر متون
در این قسمت به مرور مطالعات مرتبط با موضوع تحقیق می پردازیم که به ترتیب اهمیت و سال انتشار آورده شده اند.
Sobhakamuri A. و همکاران در سال 2012 در مطالعه ای با عنوان « استعداد سلول های سرطانی سر و گردن در انسان به مهار ترکیبی متابولیسم گلوتاتیون و تیوردوکسین » با بیان این مطلب که افزایش متابولیسم گلوتاتیون (GSH) و تیوردوکسین (Trx) در مقاومت سلول های سرطانی به شیمی درمانی نقش گسترده ای دارد، به بررسی تأثیر همزمان مهار GSH و Trx در مرگ سلول های سرطانی سر و گردن با مکانیسم استرس اکسیداتیو پرداختند. نتایج حاکی از این بود که مهار همزمان GSH و Trx با القای استرس اکسیداتیو، در مرگ سلول های SCC سر و گردن نقش دارد و این استراتژی ممکن است در حساس کردن SCC سر و گردن به مهار کننده های EGFR به عنوان گامی در درمان SCCمفید باشد(39).
Dzian A . و همکاران در سال 2012 در مطالعه ای با عنوان « آدنوکارسینوما و SCC ریه و ارتباط آن با پلی مرفیسم ژنتیکی گلوتاتیون S – ترانسفراز در جمعیت اسلوونی» با توجه به اینکه اسنیدانس سرطان ریه در جمعیت اسلوونی بالاست، پلی مرفیسم ژنهای گلوتاتیون S – ترانسفراز شامل: GSTT1 و GSTM1 و GST_ P1 را با تکنیک PCR بررسی کرده و نتیجه گرفتند فقدان ژنوتیپ GSTT1 مرتبط با افزایش ریسک آدنوکارسینومای ریه است. در حالیکه پلی مرفیسم این ژنها با SCC ریه، ارتباط معنی داری ندارد(40).
در مطالعه FU TY . و همکاران در سال 2011 با عنوان « منگناز سوپر اکسید دسموتاز و گلوتاتیون پراکسیداز به عنوان مارکرهای پیش آگهی SCC مخاط باکال » مشاهده شد که بروز بیشتر این مارکرها با بقای بهتر بیماران در ارتباط بوده و در نتیجه حضور این مارکرها بیانگر بقای بهتر SCC مخاط باکال می باشد(41).
Karaman E. و همکاران در سال 2010 در مطالعه ای با عنوان« فعالیت پارا اکسوناز سرم و آسیب اکسیداتیو DNA در بیماران مبتلا به SCC حنجره» با استفاده از روشهای اندازه گیری کالری متریک والایزا بر روی نمونه های سرمی بیماران و مقایسه آنها با گروه کنترل دریافتند تعادل اکسیدان – آنتی اکسیدان در بیماران مبتلا به SCC حنجره به نفع اکسیداسیون لیپید و آسیب DNA مختل می شود(42).
Allameh A. و همکاران در سال 2009 در مطالعه ای با عنوان « آنالیز هیستوشیمی مارکرهای مولکولی خاص در ضایعات پیش سرطانی، آدنوکارسینوما و SCC مری در افراد ایرانی» با هدف بررسی تغییرات عوامل مؤثر در پیشرفت سرطان مری در جمعیت در معرض خطر در ایران انجام دادند. آنها نمونه های بیوپسی مری 87 بیمار مبتلا به متاپلازی بارت در مری، آدنوکارسینوما و SCC مری را با روش ایمنوهیستوشیمی از نظر بیان P53 و P21 و نیتروتیروزین و سیکلواکسیژناز 2 و گلوتاتیون S – ترانسفراز بررسی کردند. تغییرات پاتولوژیک در نمونه های آدنوکارسینوما و SCC مری به صورت افزایش نیتروتیروزین و سیکلواکسیژناز 2 بود که شاهدی بر درگیری این فاکتورهای اکتسابی در پیشرفت سرطان مری است. اما در مورد سایر فاکتورها، تغییر معنی داری
مشاهده نشد(43).
Looi ML. و همکاران در سال 2008 در مطالعه ای با عنوان « آسیب اکسیداتیو و وضعیت آنتی اکسیدان در بیماران مبتلا به نئوپلازی داخل اپی تلیالی سرویکال و کارسینوم سرویکس» انجام دادند. آنها برای بررسی وضعیت آسیب اکسیداتیو، مالون دی آلدهید (MDA) پلاسما و 8- هیدروکسی داکسی گوانوزین(HdG) ادرار و برای بررسی وضعیت آنتی اکسیدان مقادیر آنزیم های سوپر اکسید دسموتاز، گلوتاتیون پراکسیداز و کاتالاز را در 80 بیمار مبتلا به نئوپلازی سرویکال و کاسینوم سرویکس بررسی و با گروه کنترل مقایسه کردند. نتایج نشان داد مقادیر HdG تغییر معنی داری در هیچکدام از بیماری های مورد مطالعه نسبت به گروه کنترل ندارد. MDA پلاسما و گلوتاتیون پراکسیداز در بیماران، نسبت به گروه کنترل افزایش داشتند، در حالیکه سوپر اکسید دسموتاز و کاتالاز در بیماران نسبت به گروه کنترل کاهش داشتند(44).
مطالعه Giannini P. و همکاران در سال 2008 با عنوان « فعالیت فانکشنال و توزیع ایمنوهیستو شیمیایی سلولی گلوتاتیون S – ترانسفراز در بافت دهانی سالم، دیسپلاستیک و SCC »، فعالیت بیشتر گلوتاتیون S – ترانسفراز در بافت SCC را در مقایسه با مخاط نرمال نشان داد و پیشنهاد شد uperegulation گلوتاتیون S – ترانسفراز حداقل در تعدادی از ضایعات دهانی پیش بدخیم و بدخیم رخ می دهد(45).
در مطالعه Richie JP. و همکاران در سال 2008 با عنوان « مقادیر گلوتاتیون، آهن و ریزمغذی ها و ریسک سرطان دهان» ارتباط ریسک سرطان دهان با مقادیر سرمی آهن، ویتامین های E و C و B2 و A و روی، تیامین و گلوتاتیون (GSH) تعیین شد. محققان با توجه به نتایج این مطالعه پیشنهاد کردند کمبود ضعیف آهن و مقادیر کم GSH که هر دو مرتبط با استرس اکسیداتیو افزایش یافته هستند، ریسک سرطان در حفره دهان را افزایش می دهند(46).
Sharifi R. و همکاران در سال 2008 در مطالعه ای با عنوان « ارتباط پلی مرفیسم ژنتیکی گلوتاتیون S – ترانسفراز P1 و تجمع پروتئین P53 در بیماران ایرانی مبتلا به SCC مری » هیچ ارتباطی بین پلی مرفیسم گلوتاتیون S – ترانسفراز P1 و تجمع پروتئین P53 در سلول های اپی تلیوم مری پیدا نکردند(47).
Prabhu K. و همکاران در سال 2007 با طراحی مطالعه ای با عنوان « مقادیر گلوتاتیون S – ترانسفراز تام سرم در سرطان دهان » دریافتند که مقدار این مارکر در مبتلایان به stage چهار سرطان دهان افزایش قابل توجهی نسبت به stage دو و سه داشته و این امر نشان می دهد تغییر مقادیر گلوتاتیون S – ترانسفراز تام سرم ممکن است با پیشرفت سرطان دهان ارتباط داشته باشد(48).
Walshe g . و همکاران در سال 2007 در مطالعه ای با عنوان « غیر فعال شدن گلوتاتیون پراکسیداز به عنوان عامل کمک کننده در ایجاد SCC القا شده توسط U.V » بیان کردند SCC مرتبط با اختلال در فعالیت گلوتاتیون پراکسیداز و مقادیر پراکسید است. بطوریکه مشاهده کردند چهار، پنجم SCC های پوستی مرتبط با کاهش فعالیت گلوتاتیون پراکسیداز و افزایش بار پراکسید است. گلوتاتیون پراکسیداز توسط یک مکانیسم پس از ترجمه غیرفعال می شود و افزایش مقادیر پراکسید داخل سلولی می تواند گلوتاتیون پراکسیداز را غیرفعال کند. نتایج این مطالعه پیشنهاد می کند غیرفعال شدن گلوتاتیون پراکسیداز در پوست انسان ممکن است یک رویداد اولیه در ایجاد SCC القا شده توسط نور UV باشد(49).
Rasmi y. و همکاران در سال 2006 مطالعه ای با عنوان « مقایسه بیان گلوتاتیون S – ترانسفراز pi در سطح mRNA در مخاط مری با استفاده از RT_ PCR_ ELISA در افراد مبتلا به بیماری رفلاکس آدنوکارسینوما و SCC مری » طراحی کردند. آنها از 66 بیوپسی بافت مری که به عنوان بیماری رفلاکس غیر اروزیو (NERD)، بیماری رفلاکس معده ای – مری (GERD)، آدنوکارسینوما و SCC تشخیص داده شده بود، استفاده کردند. نتایج کاربرد تکنیک RT_ PCR_ ELISA نشان داد هیچ تفاوت معنی داری در بیان گلوتاتیون S – ترانسفراز pi (GST- pi) در نمونه های نرمال، NERD و GERD وجود ندارد. بیان بیش از حد GST- pi در بافت های بدخیم (آدنوکارسینوما و SCC ) قابل تشخیص بود. بنابراین محققان اعلام کردند بیان GST- pi در مری مبتلا به GERD و NERD تغییر نمی کند، در حالیکه در آدنوکارسینوما و SCC به شدت بیشتر از بافت نرمال و ملتهب است(50).
Fiaschi Al . و همکاران در سال 2005 در مطالعه ای با عنوان « گلوتاتیون ، آسکوربیک اسید و آنزیم های آنتی اکسیدانت در خون و بافت تومور بیماران SCC » تغییرات آنتی اکسیدانت ها را در این بیماران بررسی کردند. نتایج حاکی از افزایش قابل توجه مقادیر گلوتاتیون و آسکوربیک اسید و در مقابل کاهش قابل توجه فعالیت آنزیم های آنتی اکسیدانت در بیماران SCC در مقایسه با افراد سالم بود(51).
مطالعه GUO GF . و همکاران در سال 2005 که « ارتباط بروز گلوتاتیون S – ترانسفراز (GST- pi) و آنتی ژن هسته ای تکثیر سلول (PCNA) در پیش آگهی SCC پیشرفته سینوس ماگزیلا به روش ایمنوهیستوشیمی » را می سنجید، نشان داد افزایش بروز GST- pi یک فاکتور پیش آگهی مستقل در SCC پیشرفته سینوس ماگزیلاست. اما PCNA خیر، به طوریکه افزایش بروز GST- pi مشاهده شده در این بیماران کاملأ مرتبط با بهبود میزان بقای 5 ساله بود(52).
Geisler SA . و همکاران در سال 2005 در مطالعه ای با عنوان « پلی مرفیسم گلوتاتیون S – ترانسفراز و بقای سرطان سر و گردن » با هدف ارزیابی توانایی پروگنوستیک پلی مرفیسم سه ژن درگیر در مکانیسم کارسینوژنز تنباکو در 190 بیمار مبتلا به SCC سر و گردن، مشاهده کردند افرادی که ژنوتیپ فانکشنال GSTT1 داشتند، احتمال مرگ 3 برابر بیشتر ناشی از SCC نسبت به افراد مبتلا به SCC که فاقد این ژنوتیپ بودند، داشتند. آنها پیشنهاد کردند مارکرهای ژنومیک مکانیسم کارسینوژنز و ترمیم DNA می تواند به عنوان یک شاخص پروگنوستیک در عود بیماری و مرگ ناشی از آن باشد(53).
Rawal RM . و همکاران در سال 1999 در مطالعه ای با عنوان « ارزیابی گلوتاتیون S – ترانسفراز و گلوتاتیون رودکتاز در بیماران مبتلا به SCC با مخاط باکال » با اندازه گیری میزان فعالیت گلوتاتیون S – ترانسفراز (GST) و گلوتاتیون رودکتاز (GR) به روش اسپکتروفتومتری به این نتیجه رسیدند مقادیر GST سرم در بیماران کاهش قابل توجهی در مقایسه با گروه کنترل دارد و در مقابل مقادیر سرمی GR در بیماران افزایش قابل توجهی در مقایسه با گروه کنترل نشان می دهد. کاهش مقادیر GST سرم ممکن است با افزایش استعداد به آسیب ناشی از کارسینوژن ها در ارتباط باشد(54).
Mulder TP. و همکاران در سال 1998 در مطالعه ای با عنوان « مقادیر گلوتاتیون S – ترانسفراز از پلاسما در بیماران مبتلا به SCCسر و گردن » مقادیر گلوتاتیون S – ترانسفراز (GST) را در پلاسمای 230 بیمار با روش الایزا اندازه گیری کردند. نتایج افزایش GST پلاسما را فقط در 14% این بیماران نشان داد و پیشنهاد شد احتمالأ ارتباط معنی داری بین مقادیر GST پلاسما و مرحله بالینی تومور وجود ندارد(55).
بیان مسئله و ضرورت انجام تحقیق
SCC شایعترین بدخیمی حفره دهان است، به طوریکه 95 – 90 % همه بدخیمی های دهان را SCC تشکیل می دهد(56)، میزان وقوع آن به خصوص در افراد جوان رو به افزایش است و علی رغم تحقیقات فراوان، میزان مرگ و میر آن تغییر چندانی نکرده است(57). زیرا ضایعات اولیه اغلب بدون علامت بوده و بیماران در مراحل انتهایی شناسایی می شوند. لذا تشخیص این سرطان در مراحل اولیه، تأثیر قابل توجهی در بهبود پیش آگهی آن دارد(2). تا کنون تحقیقاتی بر روی بیومارکرهای مؤثر در پروگنوز SCC صورت گرفته است. سرم بیماران از جمله محیط های بیولوژیکی است که تغییرات میزان بیومارکرها را در خود منعکس می کند(58).یکی از بیومارکرهای قابل اندازه گیری در سرم مبتلایان به SCC ، گلوتاتیون است که پپتیدی داخل سلولی با اعمال متفاوتی از جمله: سم زدایی، دفاع آنتی اکسیدانی و تعدیل نمودن پرولیفراسیون سلولی می باشد(18). گلوتاتیون دارای دو فرم احیا یا همان GSHو اکسید یا همان GSSG می باشد. پدیده اکسیداسیون – احیا از خصائص ذاتی سلول بوده و گلوتاتیون در این امر نقش اساسی دارد(23). گلوتاتیون که خود یک ترکیب احیا شده است، در واکنش با رادیکال های آزاد و سموم به فرم اکسید خود (GSSG) تبدیل شده با حضور آنزیم گلوتاتیون ردوکتاز و کوفاکتور NADPH مجددأ به فرم احیاء خود باز می گردد. کسر GSH /GSSG از فاکتورهای مهم در ارتباط با تغییرات دائم رادیکال های آزاد اکسیژن می باشد. میزان این کسر در سلول های مختلف، متفاوت بوده، نشان دهنده موقعیت محیط سلول متناسب با فعالیت آن می باشد(23). در حالت عادی نسبت GSH /GSSG در سرم برابر 1/3 می باشد(23). البته این میزان در داخل سلول می تواند تا 1/100 باشد(23). استرس شدید اکسیداتیو سبب انباشتگی GSSG شده و مقدار کسر کاهش می یابد که کاهش مقاومت بدن برای مقابله با رادیکال های آزاد را در پی دارد(23). منظور از استرس اکسیداتیو زمانی است که تعادل بین تولید مواد اکسیدان و آنتی اکسیدان در بدن به نفع اکسیدان ها دچار اختلال شود(24). اختلال در سنتز گلوتاتیون در آسیب شناسی بسیاری از بیماری ها از جمله سرطان نقش دارد. زیرا گلوتاتیون با اثر بر فاکتور نکروز دهنده تومور (TNF – α) در کاهش مرگ ومیر سلولی مؤثر می باشد، به طوریکه کاهش میزان گلوتاتیون در سلول های سرطانی دلیلی بر این ادعاست(59). در مطالعات مختلف نتایجی در مورد رابطه میزان گلوتاتیون سرم و گسترش SCC به دست آمده است. پیش از این افزایش مقادیر گلوتاتیون سرم در Stage سه و چهار نسبت به Stage یک و دو یافت شده است(48). همچنین در مطالعات ایمنوهیستوشیمی بر روی نمونه های بیوپسی SCC دهانی، میزان گلوتاتیون در بافت SCC اندازه گیری شده است(41). در مطالعه دیگری کاهش میزان گلوتاتیون سرم مرتبط با افزایش ریسک سرطان دهان عنوان شده است(46).
هیچ مطالعه ای که نسبت GSH /GSSG و تعادل اکسیدان – آنتی اکسیدان را در سرم بیماران مبتلا به SCC سر و گردن با افراد سالم مقایسه کرده باشد، وجود ندارد. در این مطالعه قصد داریم سطح سرمی گلوتاتیون اکسیده و احیا و نسبت GSH /GSSG و همچنین تعادل اکسیدان – آنتی اکسیدان را در سرم بیماران مبتلا به SCC سر و گردن اندازه گیری و با افراد سالم مقایسه نموده و ارتباط آن را با مرحله بالینی و درجه هیستوپاتولوژی تومور تعیین کنیم. مزیت این مطالعه بر مطالعات قبلی در بررسی نسبت GSH /GSSG می باشد که منعکس کننده برهم کنش سیستم اکسیدان و آنتی اکسیدان بوده و قدرت نظر دادن در مورد استرس اکسیداتیو را دارد نه اینکه صرفأ فعالیت یک آنزیم درگیر در این پروسه را نشان دهد. در صورت وجود ارتباط بین این موارد با مرحله بالینی و درجه هیستوپاتولوژی تومور و تفاوت معنی دار با افراد سالم، می توان پیشنهاد کرد در مطالعات بعدی از اندازه گیری نسبت GSH /GSSG و تعادل اکسیدان – آنتی اکسیدان در تشخیص زود هنگام SCC سر و گردن و کنترل بیماران در جلسات فالوآپ جهت بررسی عود بیماری استفاده شود.
اهداف و فرضیات
هدف کلی: تعیین میزان سرمی گلوتاتیون اکسیده و احیا و تعادل اکسیدان – آنتی اکسیدان در مبتلایان به کارسینوم سلول سنگفرشی سر و گردن و مقایسه آن با افراد سالم
اهداف اختصاصی:
تعیین میزان گلوتاتیون اکسیده و احیاء در سرم مبتلایان به SCC سرو گردن
تعیین تعادل اکسیدان – آنتی اکسیدان در سرم مبتلایان به SCC سرو گردن
تعیین میزان گلوتاتیون اکسیده و احیاء و تعادل اکسیدان – آنتی اکسیدان در سرم افراد سالم
مقایسه میزان گلوتاتیون اکسیده و احیاء و تعادل اکسیدان – آنتی اکسیدان در سرم مبتلایان به SCC سرو گردن با افراد سالم
تعیین رابطه بین میزان گلوتاتیون اکسیده و احیاء سرم و Stage کلینیکی تومور در مبتلایان به SCC سرو گردن


تعیین رابطه بین میزان گلوتاتیون اکسیده و احیاء سرم وG--e هیستوپاتولوژی تومور در مبتلایان به SCC سرو گردن
اهداف کاربردی:
در صورت وجود ارتباط بین نسبت سرمی گلوتاتیون اکسیده و احیاء و تعادل اکسیدان – آنتی اکسیدان در مبتلایان به کارسینوم سلول سنگفرشی سر و گردن با Stage و G--e بیماری، می توان پیشنهاد کرد در مطالعات بعدی از اندازه گیری نسبت GSH /GSSG و تعادل اکسیدان – آنتی اکسیدان در تشخیص زود هنگام SCC سر و گردن و کنترل بیماران در جلسات فلوآپ جهت بررسی عود بیماری استفاده شود.
فرضیات تحقیق:
میزان گلوتاتیون اکسیده و احیاء در سرم مبتلایان به SCC سرو گردن با افراد سالم تفاوت دارد.
تعادل اکسیدان – آنتی اکسیدان در سرم مبتلایان به SCC سرو گردن با افراد سالم تفاوت دارد.
بین میزان گلوتاتیون اکسیده و احیاء سرم و Stage کلینیکی تومور در مبتلایان به SCC سر و گردن، ارتباط وجود دارد.
بین میزان گلوتاتیون اکسیده و احیاء سرم وG--e هیستوپاتولوژی تومور در مبتلایان به SCC سرو گردن ارتباط وجود دارد.
نوع مطالعه
این مطالعه از نوع بررسی مقطعی (Cross Sectional) بود.
محل اجرای طرح
این تحقیق در دانشکده دندانپزشکی مشهد، دانشکده پزشکی مشهد و بیمارستان امید مشهد انجام شد.
جمعیت مورد مطالعه
بیماران مبتلا به کارسینوم سلول سنگفرشی سر و گردن مراجعه کننده به بیمارستان امید مشهد از آبان ماه 1391 تا اردیبهشت ماه 1392 که بیماری آنها از طریق هستیوپاتولوژی ثابت شده و هنوز هیچ درمانی دریافت نکرده بودند و گروه کنترل از افراد سالم داوطلب مراجعه کننده به سازمان انتقال خون مشهد در اردیبهشت ماه 1392 انتخاب شدند.
روش نمونه گیری
نمونه ها به روش غیر احتمالی از نوع مبتنی بر هدف انتخاب شدند.
حجم نمونه
با توجه به اینکه مطالعه مشابه به این طرح تاکنون انجام نشده است، مطالعه حاضر به صورت پایلوت و با وارد کردن 20 نفر مبتلا به کارسینوم سلول سنگفرشی سر و گردن مراجعه کننده به بیمارستان امید مشهد و 20 نفر سالم داوطلب انجام شد.
روش اجرای طرح
برای انجام این طرح که بصورت پایلوت انجام شد، 20 نفر مبتلا به کارسینوم سلول سنگفرشی سر و گردن مراجعه کننده به بیمارستان امید مشهد از آبان ماه 1391 تا اردیبهشت ماه 1392 که بیماری آنها از طریق هیستوپاتولوژی ثابت شده و هنوز هیچ درمانی دریافت نکرده بودند و 20 نفر سالم داوطلب مراجعه کننده به سازمان انتقال خون مشهد در اردیبهشت ماه 1392که آگاهانه حاضر به شرکت در مطالعه بوده و فرم رضایت نامه را امضا کرده بودند( هر دو گروه بیمار و سالم)، انتخاب شدند. همکار متخصص گوش و حلق و بینی، از انجام رضایت مندانه نمونه گیری بیماران قبل از شروع درمان( جراحی یا رادیوتراپی یا شیمی درمانی) اطمینان حاصل نمودند. سپس 5 میلی لیتر خون از هر شخص گرفته شد. برای جمع آوری نمونه سرم، به خون جمع آوری شده در لوله ها، هیچ ماده ضدانعقادی مثل هپارین یا سیترات اضافه نکرده و اجازه داده می شد خون طی مدت 30 دقیقه در دمای 25 درجه سانتی گراد بماند تا لخته تشکیل دهد. سپس خون با دور 2000 به مدت 15 دقیقه در دمای 4 درجه سانتی گراد سانتریفوژ می شد و روی یخ قرار می گرفت و در این مرحله دپروتئینه می شد. با توجه به اینکه اندازه گیری در همان روز نمونه گیری انجام نمی شد( زیرا همه نمونه ها جمع آوری شده و سپس، کیت برای آزمایش مورد استفاده قرار می گرفت) باید سرم دپروتئینه شده در دمای منفی80 درجه سانتی گراد نگهداری می شد. در این صورت نمونه برای حداقل 6 ماه ثابت می ماند. برای اندازه گیری گلوتاتیون، نمونه های سرمی قبل از آزمایش نیازمند دپروتئینه شدن و به غلظت رسیدن هستند. در این آزمایش از سه ماده شیمیایی متافسفریک و تری اتانول آمین( برای دپروتئینه کردن سرم) و وینیل پیریدین( برای به غلظت رساندن گلوتاتیون) استفاده شد.
دپروتئینه شدن:
تقریبأ تمام نمونه های بیولوژیک مورد استفاده برای اندازه گیری GSH ، حاوی مقادیر زیادی پروتئین هستند. لازم است تا آنجا که امکان دارد مقادیر بیشتری پروتئین از نمونه برداشته شود تا از تداخلات ذرات ریز و گروه های سولفیدریل در آزمایش اجتناب شود.
نمونه هایی که کمتر از mg/ml 1 (یک میلی گرم در میلی لیتر) پروتئین داشته و عاری از ذرات ریز هستند، می توانند بی درنگ تحت آزمایش قرار گیرند. به منظور دپروتئینه کردن نمونه های سرم در این طرح به روش زیر عمل می شد:
5 گرم از متافسفریک اسید در 50 میلی لیتر آب حل می شود. این محلول در دمای 25 درجه سانتی گراد برای چهار ساعت با ثبات باقی می ماند.
حجم مساوی با حجم سرم از محلول بالا، به لوله حاوی سرم اضافه می شود.
ورتکس کردن لوله [ ورتکس: ناحیه ای در مایع که بیشترین چرخش و حرکت در آن قسمت وجود داشته و جزء مهمی از جریان گردبادی مایع می باشد.]
لوله حاوی نمونه در دمای اتاق به مدت 5 دقیقه نگهداری می شود.
لوله در دستگاه سانتریفوژ با دور 3000 برای 5 دقیقه قرار می گیرد.
سوپرناتانت( ماده شناور ) حاصله با دقت جدا و به میکروتیوب های 5/1 میلی لیتری انتقال می یابد.
در این مرحله سرم های دپروتئینه با محلول تری اتانول آمین مخلوط می شوند.
ماده حاصله در دمای منفی 80 درجه سانتی گراد فریز می شود.
نمونه ها درست قبل از انجام آزمایش توسط کیت مربوطه، طی فرآیند لیوفیلیزه شدن و با استفاده از وینیل پیریدین به غلظت می رسند.
لیوفیلیزه شدن (Lyophilization):
فرآیند خشک کردن یک نمونه ی در معرض نابودی به منظور ایجاد شرایط مناسب برای انتقال آن. در این فرآیند ماده، منجمد شده و سپس فشار احاطه کننده کاهش می یابد تا به آب منجمد موجود در ماده، اجازه تصعید مستقیم از حالت جامد به حالت گاز داده شود(60).
برای انجام آزمایشات این طرح، طبق پروتکل شرکت سازنده کیت آزمایش گلوتاتیون ( (Cayman Chemical Company به روش اسپکتروفتومتری عمل شد(61). در این آزمایش از گلوتاتیون ردوکتاز برای تعیین GSH (فرم احیاء گلوتاتیون) استفاده می شد. گروه سولفیدریل GSH با 5 و 5- دی تیو- بیس-2- نیتروبنزوئیک اسید (DTNB) واکنش داده و ماده زرد رنگ 5- تیو- 2- نیتروبنزوئیک اسید (TNB) را تولید می کند. دی سولفید مخلوط GSTNB (بین GSH و TNB) که به صورت همزمان تولید می شود، به وسیله گلوتاتیون روکتاز احیا شده تا چرخه مجدد GSH را برقرار نموده و TNB بیشتری تولید کند. میزان تولید TNB مستقیمأ به این واکنش چرخه مجدد بستگی دارد که در واقع باید گفت به غلظت GSH در نمونه بستگی دارد. اندازه گیری میزان جذب TNB در طول موج 405 تا 414 نانومتر، تخمین دقیق GSH در نمونه را فراهم می کند. GSH به آسانی به دایمر دی سولفید GSSG (فرم اکسید گلوتاتیون) اکسیده می شود. GSSG طی احیای هیدروپراکسیدها توسط گلوتاتیون پراکسیداز تولید می شود. GSSG توسط گلوتاتیون رودکتاز به GSH احیا می شود، یعنی همان فرمی که عمدتأ در سیستم های بیولوژیک وجود دارد. از آنجایی که گلوتاتیون رودکتاز در آزمایش Cayman Chemical Company مورد استفاده قرار می گیرد، هم GSH و هم GSSG اندازه گیری می شود.
چرخه ی GSH:

برای اندازه گیری تعادل اکسیدان – آنتی اکسیدان، باید مراحل زیر طبق پروتکل شرکت سازنده کیت آزمایش آنتی اکسیدان (Cayman Chemical Company) روی سرم های دپروتئینه و لیوفیلیزه شده انجام می شد:
1) درون هر چاهک ( محل نمونه ) 10 میکرولیتر از ماده مت میوگلوبین و 150 میکرولیتر ماده رنگزا (کروموژن) ریخته شود.
2) برای شروع واکنش میکرولیتر هیدروژن پراکساید به تمام چاهک ها اضافه شود.
3) پلیت با برچسب پوشیده شده و به مدت 5 دقیقه در دمای اتاق انکوبه شود.
برچسب برداشته شده و میزان جذب نوری نمونه ها در طول موج 450 نانومتر در دستگاه plate reader خوانده شود.

تصویر 2-1: کیت گلوتاتیونGlutathione Assay Kit (Cayman Chemical Company)

تصویر 2-2: کیت آنتی اکسیدان (Antioxidant Assay Kit (Cayman Chemical Company

تصویر 2-3: پلیت آماده شده قبل از قرار گرفتن در دستگاه plate reader

تصویر 2-4: پلیت آماده شده در دستگاه plate reader

تصویر 2-5: نمونه ای از قرائت جذب نوری توسط دستگاه plate reader
اطلاعات پس از جمع آوری وارد نرم افزار SPSS نسخه 16 شده و آنالیز توصیفی با استفاده از جداول و نمودارها و آنالیز تحلیلی با استفاده از تست مقایسه دو میانگین مناسب انجام گرفت.
معیارهای ورود
بیماران مبتلا به کارسینوم سلول سنگفرشی سر و گردن مراجعه کننده به بیمارستان امید مشهد از آبان ماه 1391 تا اردیبهشت ماه 1392 که بیماری آنها از طریق هستیوپاتولوژی ثابت شده و هنوز هیچ درمانی دریافت نکرده بودند و گروه کنترل از افراد سالم داوطلب مراجعه کننده به سازمان انتقال خون مشهد در اردیبهشت ماه 1392 که آگاهانه حاضر به شرکت در مطالعه بودند( هر دو گروه سالم و بیمار) انتخاب شدند.
معیارهای خروج
سوء مصرف روزانه الکل در زمان انجام مطالعه(62)
عملکرد کبدی یا کلیوی مختل( در صورت وجود علائم یا سابقه مشکوک بیماری کبدی یا کلیوی در تاریخچه، از مطالعه خارج می شوند) (62).
عدم رضایت از شرکت در مطالعه(62)
وجو هر گونه ضایعه دهانی در گروه کنترل در زمان انجام مطالعه(62)
شیوه گردآوری اطلاعات
اطلاعات به روش میدانی و آزمایشگاهی گردآوری شدند.
ابزار گردآوری اطلاعات
اطلاعات با استفاده از ابزارهای مشاهده و چک لیست گردآوری شدند.

جدول متغیرها
نام متغیر نقش نوع مقیاس تعریف کاربردی واحد اندازه گیری
گلوتاتیون احیا سرم
وابسته کمی پیوسته نسبتی تری پپتیدی با خواص آنتی اکسیدانی که در سرم قابل اندازه گیری است میکرومولار
گلوتاتیون اکسید سرم وابسته کمی پیوسته نسبتی فرمی از گلوتاتیون که در واکنش با اکسیدان ها تولید می شود و در سرم قابل اندازه گیری است میکرومولار
نسبت گلوتاتیون احیا به اکسید در سرم
وابسته کمی پیوسته نسبتی کسری که نشان دهنده موقعیت محیط سلول متناسب با محیط اطراف آن می باشد تعادل اکسیدان- آنتی اکسیدان در سرم وابسته کمی پیوسته نسبتی به وسیله کاتیون دار نمودن محلول تترا متیل بنزیدین توسط آنزیم پراکسیداز در سرم قابل اندازه گیری است ابتلا به SCC مستقل کیفی اسمی براساس تشخیص بافت شناسی Stage بیماری

وابسته کیفی گسسته رتبه ای I, II, III,IV G--e بیماری وابسته کیفی گسسته رتبه ای I, II, III سن زمینه ای کمی پیوسته نسبتی بر اساس سال شمسی
جنس زمینه ای کیفی اسمی زن/ مرد روش تجزیه و تحلیل داده ها و بررسی آماری
اطلاعات پس از جمع آوری وارد نرم افزار SPSS نسخه 16 شد و آنالیز توصیفی با استفاده از جداول و نمودارها و آنالیز تحلیلی با استفاده از تست مقایسه دو میانگین مناسب ( بر اساس چگونگی توزیع داده ها که نرمال یا غیرنرمال باشند از تست T-test یا من ویتنی) و تست همبستگی اسپیرمن انجام گرفت که سطح معنی داری در تمام آزمون ها 05/0 بود.

ملاحظات اخلاقی
کلیه بیماران برای شرکت در این طرح به صورت آگاهانه فرم رضایت نامه ( ضمیمه1) را مطالعه و در صورت رضایت شخصی آن را امضا کردند.
کلیه اطلاعات پرونده بیماران محرمانه و گزارش آن به صورت کلی بود.
در این مطالعه هیچگونه مداخله درمانی انجام نگرفته و صرفأ یک مطالعه مقطعی بود. با توجه به اینکه افراد سالم داوطلب مراجعه کننده به سازمان انتقال خون450 میلی لیتر خون اهدا می کنند، با کسب اجازه از بیماران 5میلی لیتر از خون آنها برای انجام آزمایشات به کار رفت. در مورد بیماران نیز 5میلی لیتر خون در صورت رضایت گرفته شد.
از میان کدهای 26 گانه اخلاقی، کد شماره 2 مرتبط با موضوع این پژوهش است.
الف. اطلاعات دموگرافیک و بالینی افراد مورد مطالعه
در این مطالعه 40 نفر شرکت داشته اند که 20 نفر آنها مبتلا به کارسینوم سلول سنگفرشی سر و گردن و 20 نفر افراد سالم می باشند.
جنس: در کل افراد مورد مطالعه، 28 نفر مذکر و 12 نفر مونث بودند. در گروه سالم 19 نفر مذکر و 1 نفر مونث بودند. در گروه بیمار 9 نفر مذکر و 11 نفر مونث بودند (جدول3-1).
سن: میانگین سنی بیماران 5/60 سال و میانگین سنی افراد سالم 25/49 سال بود. حداقل و حداکثر سن 35 و 85 سال بود. میانگین سنی کل افراد مورد مطالعه44/11 ± 87/54 سال بود (نمودار3-1) .
محل ضایعه: در بیماران مورد مطالعه محل تومور در 2 نفر کف دهان، 6 نفر زبان، 6 نفر حنجره و 6 نفر سایر نواحی مخاط دهان بود.
مرحله بالینی تومور((stage : 5 نفر از این بیماران در مرحله I ، 7 نفر در مرحله II و 8 نفر در مرحله III بیماری بودند.
درجه هیستوپاتولوژی تومور(g--e) : 2 نفر از این بیماران درجه I ، 16 نفر درجه II و 2 نفردرجه III داشتند.
جدول3-1: توزیع فراوانی جنسیت در گروه های مورد مطالعه
جنسیت گروه های مورد مطالعه نتیجه آزمون
کای دو
سالم بیمار تعداد درصد تعداد درصد مذکر 19 0/95 9 0/45 001/0
مونث 1 0/5 11 0/55 کل 20 0/100 20 0/100 نتیجه آزمون کای دو نشان میدهد که ارتباط معنی داری بین جنسیت و گروه های مورد مطالعه وجود دارد
(001/0=P) و در گروه سالم 0/95 درصد مذکر بوده اند در حالی که این میزان در گروه بیمار 0/45 درصد بوده
است.

نمودار3-1: توزیع سن در گروه های مورد مطالعه
نتیجه آزمون t ی مستقل نشان میدهد که توزیع سن در گروه های بیمار و سالم تفاوت معنی داری دارند (001/0=P).
ب. نتایج آنالیز متغیرهای مورد مطالعه به تفکیک گروه های بیمار و سالم
نتایج مطالعه نشان داد:
میزان گلوتاتیون توتال در گروه های بیمار(51/1 ± 75/6) و سالم(02/2 ± 92/8) تفاوت معنی داری دارد(001/0> P) (نمودار 3-2).

نمودار 3-2: میزان گلوتاتیون توتال در گروه های بیمار و سالم
.B میزان GSSG در گروه های بیمار(65/0 ± 10/5) و سالم(92/1 ± 22/5) تفاوت معنی داری ندارد
(796/0=P) (نمودار 3-3).

نمودار 3-3: میزان GSSG در گروه های بیمار و سالم
. C میزان GSH در گروه های بیمار(29/1 ± 064/1) و سالم(34/2 ± 069/3) تفاوت معنی داری دارد
(002/0=P) (نمودار 3-4).

نمودار 3-4: میزان GSH در گروه های بیمار و سالم
D . نسبت GSH/GSSG در گروه های بیمار(24/0 ± 322/0) و سالم(94/0 ± 920/0) تفاوت معنی داری
دارد (011/0=P) (نمودار 3-5).

نمودار 3-5: نسبت GSH/GSSG در گروه های بیمار و سالم
.E تعادل اکسیدان – آنتی اکسیدان در گروه های بیمار(12/0 ± 11/1) و سالم(07/0 ± 07/1)
تفاوت معنی داری ندارد (266/0=P) (نمودار3-6).

نمودار 3-6: میزان تعادل اکسیدان-آنتی اکسیدان در گروه های بیمار و سالم
جدول3-2: توزیع متغیرهای مورد مطالعه به تفکیک گروههای بیمار و سالم
متغیر ها
گروه های مورد مطالعه نتیجه آزمون
بیمار سالم میانگین ± انحراف استاندارد میانگین±انحراف استاندارد Total Glutathion 51/1 ± 75/6 02/2 ± 92/8 001/0> P
GSSG 65/0 ± 10/5 92/1 ± 22/5 796/0= P
GSH 29/1 ± 64/1 34/2 ± 69/3 002/0= P
GSH/GSSG 24/0 ± 322/0 94/0 ± 92/0 011/0= P
تعادل اکسیدان-آنتی اکسیدان 12/0 ± 11/1 07/0 ± 07/1 266/0= P
نتیجه آزمون t ی مستقل نشان میدهد که سطح GSSG و تعادل اکسیدان-آنتی اکسیدان در گروه های بیمار و سالم تفاوت معنی داری ندارند(796/0=P و 266/0=P). اما سطح Total Glutathion ، GSH و GSH/GSSG در گروه های بیمار و سالم تفاوت معنی داری دارند (001/0> P ، 002/0= P و 011/0=P ).
ج. نتایج آنالیز متغیرهای مورد مطالعه در ارتباط با مرحله بالینی و درجه تومور
ارتباط متغیرهای مورد مطالعه و مرحله بالینی تومور(جدول 3-3)
نتیجه آزمون آنالیز واریانس نشان داد:
در بیماران بین میزان گلوتاتیون توتال با مرحله بالینی تومور ارتباط معنی داری وجود ندارد
(415/0=P).
در بیماران بین میزان GSSGو مرحله بالینی تومور ارتباط معنی داری وجود ندارد(077/0=P).
در بیماران بین میزان GSHو مرحله بالینی تومور ارتباط معنی داری وجود ندارد(907/0=P).
در بیماران بین نسبت GSH/GSSG و مرحله بالینی تومور ارتباط معنی داری وجود ندارد(994/0=P).
در بیماران بین تعادل اکسیدان-آنتی اکسیدان و مرحله بالینی تومور ارتباط معنی داری وجود ندارد(907/0=P).
جدول 3-3: بررسی ارتباط بین متغیرهای مورد مطالعه و مرحله بالینی تومور
متغیرهای مورد مطالعه مرحله بالینی سطح معنی داری
I II III میانگین ± انحراف استاندارد میانگین ± انحراف استاندارد میانگین ± انحراف استاندارد Total Glutathion 98/1 ± 44/7 88/0 ± 23/6 63/1 ± 77/6 415/0= P
GSSG 60/0 ± 58/5 28/0 ± 73/4 77/0 ± 13/5 077/0= P
GSH 85/1 ± 85/1 97/0 ± 50/1 31/1 ± 63/1 907/0= P
GSH/GSSG 32/0 ± 33/0 21/0 ± 32/0 25/0 ± 31/0 994/0= P
تعادل اکسیدان-آنتی اکسیدان 08/0 ± 12/1 14/0 ± 14/1 13/0 ± 07/1 593/0= P
ارتباط متغیرهای مورد مطالعه و درجه هیستوپاتولوژی تومور(جدول 3-4)
نتیجه آزمون آنالیز واریانس نشان داد:
در بیماران بین میزان گلوتاتیون توتال با درجه تومور ارتباط معنی داری وجود ندارد(431/0=P).
در بیماران بین میزان GSSG با درجه تومور ارتباط معنی داری وجود ندارد(374/0=P).
در بیماران بین میزان GSH با درجه تومور ارتباط معنی داری وجود ندارد(302/0=P).
در بیماران بین نسبت GSH/GSSG با درجه تومور ارتباط معنی داری وجود ندارد(233/0=P).
در بیماران بین تعادل اکسیدان-آنتی اکسیدان با درجه تومور ارتباط معنی داری وجود ندارد(558/0=P).
23812573660جدول 3-4: بررسی ارتباط بین متغیرهای مورد مطالعه و درجه تومور
00جدول 3-4: بررسی ارتباط بین متغیرهای مورد مطالعه و درجه تومور

متغیرهای مورد مطالعه درجه سطح معنی داری
I II III میانگین ± انحراف استاندارد میانگین ± انحراف استاندارد میانگین ± انحراف استاندارد Total Glutathion 09/1 ± 33/6 56/1 ± 63/6 11/1 ± 08/8 431/0= P
GSSG 18/0 ± 47/4 67/0 ± 18/5 76/0 ± 11/5 374/0= P
GSH 27/1 ± 85/1 31/1 ± 45/1 34/0 ± 96/2 302/0= P
GSH/GSSG 301/0 ± 42/0 24/0 ± 27/0 01/0 ± 58/0 233/0= P
تعادل اکسیدان-آنتی اکسیدان 04/0 ± 08/1 12/0 ± 10/1 19/0 ± 20/1 558/0= P
به جهت تایید نتایج آزمون آنالیز واریانس، آنالیز متغیرهای مورد مطالعه در ارتباط با مرحله بالینی و درجه تومور علاوه بر آنالیز واریانس توسط ضریب همبستگی اسپیرمن نیز انجام شد. نتیجه ضریب همبستگی اسپیرمن نشان می دهد که در گروه بیماران بین سطح Total Glutathion ، GSSG، GSH ، GSH/GSSG و تعادل اکسیدان-آنتی اکسیدان با مرحله بالینی و درجه تومور رابطه معنی داری وجود ندارد (جدول 3-5).
جدول 3-5: بررسی ارتباط بین متغیرهای مورد مطالعه با مرحله بالینی و درجه تومور
متغیرهای مورد مطالعه مرحله بالینی درجه
ضریب همبستگی سطح معنی داری ضریب همبستگی سطح معنی داری
Total Glutathion 067/0- 778/0 291/0 213/0= P
GSSG 143/0- 547/0 272/0 247/0= P
GSH 070/0- 770/0 155/0 514/ 0= P
GSH/GSSG 019/0- 936/0 116/0 625/0= P
تعادل اکسیدان-آنتی اکسیدان 200/0- 398/0 165/0 487/0= P
در نمودار های 3-7 تا 3-16 سطح Total Glutathion ، GSSG، GSH ، GSH/GSSG و تعادل اکسیدان-آنتی اکسیدان در مقابل مرحله بالینی و درجه تومور رسم شده است که نمودارهای ذیل نیز نشان دهنده عدم وجود ارتباط بین سطح Total Glutathion ، GSSG، GSH ، GSH/GSSG و تعادل اکسیدان-آنتی اکسیدان با مرحله بالینی و درجه تومور میباشند.

نمودار3-7: توزیع سطح Total Glutathion بر حسب Stage

نمودار3-8: توزیع GSSG بر حسب Stage

نمودار3-9: توزیع GSH بر حسب Stage

نمودار3-10: توزیع GSH/GSSGبر حسب Stage

نمودار3-11: توزیع سطح تعادل اکسیدان-آنتی اکسیدان بر حسب Stage

نمودار3-12: توزیع سطح Total Glutathion بر حسب G--e

نمودار3-13: توزیع GSSG بر حسب G--e

نمودار3-14: توزیع GSH بر حسب G--e

نمودار3-15: توزیع GSH/GSSG بر حسب G--e

نمودار3-16: توزیع تعادل اکسیدان-آنتی اکسیدان بر حسب G--e
د. نتایج آنالیز متغیرهای مورد مطالعه بر حسب محل تومور
در بیماران بین متغیرهای مورد مطالعه با محل تومور ارتباط معنی داری وجود نداشت (جدول 3-6).
جدول 3-6: توزیع متغیرهای مورد مطالعه بر حسب محل تومور
متغیرهای مورد مطالعه محل تومور نتیجه آزمون
کف دهان زبان حنجره مخاط سایر نواحی دهان میانگین ± انحراف استاندارد میانگین ± انحراف استاندارد میانگین ± انحراف استاندارد میانگین ± انحراف استاندارد Total Glutathion 31/1 ± 15/6 12/2 ± 85/6 36/1 ± 15/6 907/0 ± 43/7 503/0= P
GSSG 815/0 ± 68/5 76/0 ± 05/5 45/0 ± 00/5 75/0 ± 07/5 669/0= P
GSH 50/0 ± 47/0 66/1 ± 80/1 13/1 ± 14/1 88/0 ± 36/2 220/0= P
GSH/GSSG 07/0 ± 077/0 28/0 ± 34/0 20/0 ± 22/0 19/0 ± 48/0 133/0= P
تعادل اکسیدان-آنتی اکسیدان 054/0 ± 26/1 07/0 ± 08/1 18/0 ± 15/1 057/0 ± 05/1 142/0= P
نتیجه آزمون آنالیز واریانس نشان میدهد که بین سطح Total Glutathion ، GSSG، GSH ، GSH/GSSG و تعادل اکسیدان-آنتی اکسیدان با محل تومور ارتباط معنی داری وجود ندارد (503/0=P و 669/0= P ،220/0=P ،133/0=P و 142/0=P).
ه. تعدیل اثر سن و جنس بر متغیرهای مورد مطالعه
با توجه به اینکه سن و جنس در دو گروه تفاوت معنی داری با یکدیگر دارند به منظور تعدیل اثر این متغیرها در بررسی ارتباط بین SCC و سطح اکسیدان-آنتی اکسیدان، GSSG، GSH و GSH/GSSG از مدلهای خطی عمومی استفاده کرده (جدول 3-7) و نتیجه آن نشان میدهد که با تعدیل اثر سن و جنس، ارتباط معنی داری بین SCC با سطح اکسیدان-آنتی اکسیدان، GSSG و GSH وجود ندارد(224/0= P و 084/0= P ،296/0=P). اما بین SCC و GSH/GSSG ارتباط معنی داری وجود دارد (042/0=P).
جدول 3-7: نتیجه مدلهای خطی عمومی به منظور تعدیل اثر متغیرهای سن و جنس در بررسی ارتباط بین SCC و سطح Total Glutathion ، GSSG، GSH ، GSH/GSSG و تعادل اکسیدان – آنتی اکسیدان
متغیر وابسته متغیرهای مستقل ضریب مدل فاصله اطمینان 95% سطح معنی داری
Total Glutathion گروه(مورد) 49/2- (037/0-، 140/4- ) 004/0= P
گروه(شاهد) 0 - -
جنسیت(مذکر) 033/1- (53/0، 59/2- ) 188/0= P
جنسیت(مونث) 0 - -
سن 017/0- (044/0، 079/0- ) 566/0= P
GSSG گروه(مورد) 411/0- (958/0، 779/1- ) 546/0= P
گروه(شاهد) 0 - -
جنسیت(مذکر) 453/0- (843/0، 749/1- ) 483/0= P
جنسیت(مونث) 0 - -
سن 006/0 (057/0، 045/0- ) 816/0= P
GSH گروه(مورد) 079/2- (295/0-، 863/3- ) 024/0= P
گروه(شاهد) 0 - -
جنسیت(مذکر) 58/0- (109/1، 270/2- ) 491/0= P
جنسیت(مونث) 0 - -
سن 023/0- (043/0، 090/0- ) 478/0= P
GSH/GSSG گروه(مورد) 553/0- (104/0، 209/1-) 097/0= P
گروه(شاهد) 0 - -

user8286

فهرست تصاویر و نمودار
فصل دوم
شکل 2-1. یک خوشه‌بندی سلسله مراتبی و درخت متناظر ..................................................................................... 10
شکل 2-2. ماتریس مجاورت .................................................................................................................................... 11
شکل 2-3. رابطه دودویی و گراف آستانه ................................................................................................................. 12
شکل 2-4. گراف‌های آستانه برای ماتریس ........................................................................................................ 12
شکل 2-5. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی منفرد ..................................................................... 13
شکل 2-6. دندوگرام پیوندی منفرد برای ماتریس............................................................................................... 13
شکل 2-7. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی کامل ...................................................................... 14
شکل 2-8. دندوگرام پیوندی کامل برای ماتریس ............................................................................................... 14
شکل 2-9. الگوریتم خوشه‌بندی افرازبندی...................................................................................... 16
شکل 2-10. الگوریتم فازی خوشه‌بندی ...................................................................................................... 18
شکل 2-11. خوشه‌بندی کاهشی .............................................................................................................................. 23
شکل 2-12. شبه‌کد الگوریتم MKF ........................................................................................................................ 26
شکل2-13. (الف) مجموعه داده با تعداد 10 خوشه واقعی. (ب) منحنی ........................................................ 29
شکل2-1۴. (الف) مجموعه داده (ب) منحنی مربوطه ..................................................................................... 29
شکل2-15. دو افراز اولیه با تعداد سه خوشه ........................................................................................................... 31
شکل2-16. نمونه‌های اولیه در نتایج الگوریتم ................................................................................ 36
شکل 2-17. زیر شبه کد الگوریتم خوشه‌بندی ترکیبی توسط مدل مخلوط .............................................................. 43
شکل 2-18. خوشه‌بندی ترکیبی ............................................................................................................................... 44
شکل 2-19. نمونه ماتریس، جهت تبدیل خوشه‌بندی به ابر گراف ................................................................. 45
شکل 2-20. ماتریس شباهت بر اساس خوشه برای مثال شکل (3-5) .................................................................... 46
شکل 2-21. الگوریتم افرازبندی ابر گراف ............................................................................................................... 47
شکل 2-22. الگوریتم فرا خوشه‌بندی ..................................................................................................................... 49
شکل2-23. الگوریتم خوشه‌بندی ترکیبی مبتنی بر ماتریس همبستگی ...................................................................... 50
شکل2-24. الگوریتم افرازبندی با تکرار ................................................................................................................... 53
شکل2-25. نمایش گراف مجاورت در مراحل کاهش درجه ماتریس و شمارش آن ................................................ 54
شکل2-26. مثال روند تغییر توزیع تعداد خوشه ....................................................................................................... 55
شکل2-27. جریان کار عمومی برای پیاده‌سازی الگوریتم افرازبندی گراف .............................................................. 55
شکل 2-28. گراف تابع در بازه بین صفر و یک ............................................................................................. 62
شکل 2-29. الگوریتم خوشه‌بندی ترکیبی طیفی مبتنی بر انتخاب بر اساس شباهت ................................................ 63
شکل 2-30. مثالی از ماتریس اتصال ........................................................................................................................ 66
شکل 2-31. شبه کد خوشه‌بندی ترکیبی انتخابی لی‌مین .......................................................................................... 68
شکل 2-32. روش ارزیابی خوشهی یک افراز در روش MAX ............................................................................... 69
شکل 2-33. چهارچوب خوشهبندی ترکیبی مبتنی بر انتخاب با استفاده از مجموعه‌ای از خوشه‌های یک افراز ...... 71
شکل 2-34. چهارچوب روش بهترین افراز توافقی اعتبارسنجی شده ...................................................................... 72
فصل سوم
شکل3-1. چهارچوب الگوریتم خوشه‌بندی خردمند با استفاده از آستانه‌گیری ......................................................... 82
شکل3-۲. محاسبه درجه استقلال دو خوشه‌بندی ..................................................................................................... 86
شکل3-3. تأثیر عدم تمرکز بر روی پیچیدگی داده ................................................................................................... 89
شکل3-3. تأثیر انتخاب افرازها در خوشه‌بندی ترکیبی مبتنی بر انتخاب بر مقدار NMI ارزیابی‌شده ........................ 91
شکل3-4. شبه کد خوشه‌بندی خردمند با استفاده از آستانه‌گیری .............................................................................. 92
شکل3-5. دسته‌بندی الگوریتم‌های خوشه‌بندی ........................................................................................................ 94
شکل3-6. کد الگوریتم K-means به زبان استقلال الگوریتم‌ خوشه‌بندی ................................................................. 98
شکل3-7. تبدیل کد‌های شروع و پایان به گراف .................................................................................................... 100
شکل3-8. تبدیل عملگر شرط ساده به گراف ......................................................................................................... 100
شکل3-9. تبدیل عملگر شرط کامل به گراف ......................................................................................................... 101
شکل3-10. تبدیل عملگر شرط تو در تو به گراف ................................................................................................. 101
شکل3-11. تبدیل عملگر حلقه ساده به گراف ....................................................................................................... 102
شکل3-12. تبدیل عملگر حلقه با پرش به گراف ................................................................................................... 102
شکل3-13. پیاده‌سازی شرط ساده بدون هیچ کد اضافی ........................................................................................ 103
شکل3-14. پیاده‌سازی شرط ساده با کدهای قبل و بعد آن .................................................................................... 103
شکل3-15. پیاده‌سازی شرط کامل ......................................................................................................................... 104
شکل3-16. پیاده‌سازی شرط‌ تو در تو .................................................................................................................... 104
شکل3-17. پیاده‌سازی یک شرط کامل در یک شرط ساده .................................................................................... 105
شکل3-18. پیاده‌سازی یک شرط کامل در یک شرط کامل دیگر ........................................................................... 105
شکل3-19. پیاده‌سازی حلقه ساده .......................................................................................................................... 106
شکل3-20. پیاده‌سازی یک حلقه ساده داخل حلقه‌ای دیگر ................................................................................... 106
شکل3-21. پیاده‌سازی یک حلقه داخل یک شرط کامل ........................................................................................ 106
شکل3-22. پیاده‌سازی یک شرط کامل داخل یک حلقه ساده ................................................................................ 107
شکل3-23. ماتریس درجه وابستگی‌ کد ................................................................................................................. 108
شکل3-24. شبه کد مقایسه محتوای دو خانه از آرایه‌های استقلال الگوریتم .......................................................... 108
شکل3-25. چهارچوب خوشه‌بندی خردمند مبتنی بر گراف استقلال الگوریتم ...................................................... 110
شکل3-26. شبه کد خوشه‌بندی خردمند مبتنی بر گراف استقلال الگوریتم ............................................................ 113
فصل چهارم
شکل۴-۱. مجموعه داده Halfring .......................................................................................................................... 118
شکل4-2. الگوریتم K-means ................................................................................................................................ 121
شکل4-3. الگوریتم FCM ...................................................................................................................................... 121
شکل4-4. الگوریتم Median K-Flats .................................................................................................................... 122
شکل4-5. الگوریتم Gaussian Mixture ................................................................................................................ 122
شکل4-6. الگوریتم خوشه‌بندی Subtractive ......................................................................................................... 122
شکل4-7. الگوریتم پیوندی منفرد با استفاده از معیار فاصله اقلیدسی ..................................................................... 123
شکل4-8. الگوریتم پیوندی منفرد با استفاده از معیار فاصله Hamming ................................................................ 123
شکل4-9. الگوریتم پیوندی منفرد با استفاده از معیار فاصله Cosine ..................................................................... 123
شکل4-10. الگوریتم پیوندی کامل با استفاده از معیار فاصله اقلیدسی ................................................................... 124
شکل4-1۱. الگوریتم پیوندی کامل با استفاده از معیار فاصله Hamming .............................................................. 124
شکل4-1۲. الگوریتم پیوندی کامل با استفاده از معیار فاصله Cosine .................................................................... 124
شکل4-1۳. الگوریتم پیوندی میانگین با استفاده از معیار فاصله اقلیدسی ............................................................... 124
شکل4-14. الگوریتم پیوندی میانگین با استفاده از معیار فاصله Hamming .......................................................... 125
شکل4-15. الگوریتم پیوندی میانگین با استفاده از معیار فاصله Cosine ............................................................... 125
شکل4-16. الگوریتم پیوندی بخشی با استفاده از معیار فاصله اقلیدسی ................................................................ 125
شکل4-17. الگوریتم پیوندی بخشی با استفاده از معیار فاصله Hamming ............................................................ 125
شکل4-18. الگوریتم پیوندی بخشی با استفاده از معیار فاصله Cosine ................................................................. 126
شکل4-19. طیفـی با استفاده از ماتریس شباهت نامتراکم ...................................................................................... 126
شکل4-20. طیفـی با استفاده از روش نیستروم با متعادل ساز .............................................................................. 127
شکل4-21. طیفـی با استفاده از روش نیستروم بدون متعادل ساز ......................................................................... 127
شکل4-22. نرم‌افزار تحلیل‌گر کد استقلال الگوریتم ............................................................................................... 128
شکل4-23. ماتریس AIDM ................................................................................................................................... 129
شکل4-24. میانگین دقت الگوریتم‌های خوشه‌بندی ............................................................................................... 131
شکل4-25. رابطه میان آستانه استقلال و زمان اجرای الگوریتم در روش پیشنهادی اول ........................................ 133
شکل4-26. رابطه میان آستانه پراکندگی و زمان اجرای الگوریتم در روش پیشنهادی اول ..................................... 133
شکل4-27. رابطه میان آستانه استقلال و دقت نتیجه نهایی در روش پیشنهادی اول .............................................. 134
شکل4-28. رابطه میان آستانه پراکندگی و دقت نتیجه نهایی در روش پیشنهادی اول ............................................ 134
شکل4-29. رابطه میان آستانه عدم تمرکز و دقت نتیجه نهایی در روش پیشنهادی اول ......................................... 135
شکل4-30. رابطه میان آستانه پراکندگی و زمان اجرای الگوریتم در روش پیشنهادی دوم ..................................... 135
شکل4-31. رابطه میان آستانه پراکندگی و دقت نتایج نهایی در روش پیشنهادی دوم ............................................ 136
شکل4-32. رابطه میان آستانه عدم تمرکز و دقت نتایج نهایی در روش پیشنهادی دوم ......................................... 137
شکل4-33. مقایسه زمان اجرای الگوریتم‌ ............................................................................................................... 138
فصل اول
مقدمه
center3187700
1. مقدمه1-1. خوشه‌بندیبه عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آن‌ها رایانه‌ها و سامانه‌های اطلاعاتی توانایی تعلم و یادگیری پیدا می‌کنند. طیف پژوهش‌هایی که در مورد یادگیری ماشینی صورت می‌گیرد گسترده ‌است. در سوی نظر‌ی آن پژوهش‌گران بر آن‌اند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌هایشان مطالعه کنند و در سوی دیگر عده‌ای از پژوهش‌گران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسائل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مؤلفه‌هایی از هر دو رو‌یکرد هستند. امروزه، داده‌کاوی به عنوان یک ابزار قوی برای تولید اطلاعات و دانش از داده‌های خام، در یادگیری ماشین شناخته‌شده و همچنان با سرعت در حال رشد و تکامل است. به طور کلی می‌توان تکنیک‌های داده‌کاوی را به دو دسته بانظارت و بدون نظارت تقسیم کرد [29, 46].
در روش بانظارت ما ورودی (داده یادگیری) و خروجی (کلاس داده) یک مجموعه داده را به الگوریتم هوشمند می‌دهیم تا آن الگوی بین ورودی و خروجی را تشخیص دهد در این روش خروجی کار ما مدلی است که می‌تواند برای ورودی‌های جدید خروجی درست را پیش‌بینی کند. روش‌های طبقه‌بندی و قوانین انجمنی از این جمله تکنیک‌ها می‌باشد. روش‌های با نظارت کاربرد فراوانی دارند اما مشکل عمده این روش‌ها این است که همواره باید داده‌ای برای یادگیری وجود داشته باشد که در آن به ازای ورودی مشخص خروجی درست آن مشخص شده باشد. حال آنکه اگر در زمینه‌ای خاص داده‌ای با این فرمت وجود نداشته باشد این روش‌ها قادر به حل این‌گونه مسائل نخواهند بود [29, 68]. در روش بدون نظارت برخلاف یادگیری بانظارت هدف ارتباط ورودی و خروجی نیست، بلکه تنها دسته‌بندی ورودی‌ها است. این نوع یادگیری بسیار مهم است چون خیلی از مسائل (همانند دنیای ربات‌ها) پر از ورودی‌هایی است که هیچ برچسبی (کلاس) به آن‌ها اختصاص داده نشده است اما به وضوح جزئی از یک دسته هستند [46, 68]. خوشه‌بندی شاخص‌ترین روش در داده‌کاوی جهت حل مسائل به صورت بدون ناظر است. ایده اصلی خوشه‌بندی اطلاعات، جدا کردن نمونه‌ها از یکدیگر و قرار دادن آن‌ها در گروه‌های شبیه به هم می‌باشد. به این معنی که نمونه‌های شبیه به هم باید در یک گروه قرار بگیرند و با نمونه‌های گروه‌های دیگر حداکثر متفاوت را دارا باشند [20, 26]. دلایل اصلی برای اهمیت خوشه‌بندی عبارت‌اند از:
اول، جمع‌آوری و برچسب‌گذاری یک مجموعه بزرگ از الگوهای نمونه می‌تواند بسیار پرکاربرد و باارزش باشد.
دوم، می‌توانیم از روش‌های خوشه‌بندی برای پیدا کردن و استخراج ویژگی‌ها و الگوهای جدید استفاده کنیم. این کار می‌تواند کمک به سزایی در کشف دانش ضمنی داده‌ها انجام دهد.
سوم، با خوشه‌بندی می‌توانیم یک دید و بینشی از طبیعت و ساختار داده به دست آوریم که این می‌تواند برای ما باارزش باشد.
چهارم، خوشه‌بندی می‌تواند منجر به کشف زیر رده‌های مجزا یا شباهت‌های بین الگوها ممکن شود که به طور چشمگیری در روش طراحی طبقه‌بندی قابل استفاده باشد.
1-2. خوشه‌بندی ترکیبیهر یک از الگوریتم‌های خوشه‌بندی، با توجه به اینکه بر روی جنبه‌های متفاوتی از داده‌ها تاکید می‌کند، داده‌ها را به صورت‌های متفاوتی خوشه‌بندی می‌نماید. به همین دلیل، نیازمند روش‌هایی هستیم که بتواند با استفاده از ترکیب این الگوریتم‌ها و گرفتن نقاط قوت هر یک، نتایج بهینه‌تری را تولید کند. در واقع هدف اصلی خوشه‌بندی ترکیبی جستجوی بهترین خوشه‌ها با استفاده از ترکیب نتایج الگوریتم‌های دیگر است [1, 8, 9, 54, 56]. به روشی از خوشه‌بندی ترکیبی که زیرمجموعه‌ی منتخب از نتایج اولیه برای ترکیب و ساخت نتایج نهایی استفاده می‌شود خوشه‌بندی ترکیبی مبتنی بر انتخاب زیرمجموعه نتایج اولیه می‌گویند. در این روش‌ها بر اساس معیاری توافقی مجموعه‌ای از مطلوب‌ترین نتایج اولیه را انتخاب کرده و فقط توسط آن‌ها نتیجه نهایی را ایجاد می‌کنیم [21]. معیارهای مختلفی جهت انتخاب مطلوب‌ترین روش پیشنهاد شده است که معیار اطلاعات متقابل نرمال شده، روش ماکزیموم و APMM برخی از آن‌ها می‌باشند [8, 9, 21, 67]. دو مرحله مهم در خوشه‌بندی ترکیبی عبارت‌اند از:
اول، الگوریتم‌های ابتدایی خوشه‌بندی که خوشه‌بندی اولیه را انجام می‌دهد.
دوم، جمع‌بندی نتایج این الگوریتم‌های اولیه (پایه) برای به دست آوردن نتیجه نهایی.
1-3. خرد جمعینظریه خرد جمعی که اولین بار توسط سورویکی در سال 2004 در کتابی با همان عنوان منتشر شد، استنباطی از مسائل مطرح‌شده توسط گالتون و کندورست می‌باشد، و نشان می‌دهد که قضاوت‌های جمعی و دموکراتیک از اعتبار بیشتری نسبت به آنچه که ما انتظار داشتیم برخوردار است، ما تأثیرات این ایده را در حل مسائل سیاسی، اجتماعی در طی سال‌های اخیر شاهد هستیم. در ادبیات خرد جمعی هر جامعه‌ای را خردمند نمی‌گویند. از دیدگاه سورویکی خردمند بودن جامعه در شرایط چهارگانه پراکندگی، استقلال، عدم تمرکز و روش ترکیب مناسب است [55].
1-4. خوشه‌بندی مبتنی بر انتخاب بر اساس نظریه خرد جمعیهدف از این تحقیق استفاده از نظریه خرد جمعی برای انتخاب زیرمجموعه‌ی مناسب در خوشه‌بندی ترکیبی می‌باشد. تعاریف سورویکی از خرد جمعی مطابق با مسائل اجتماعی است و در تعاریف آن عناصر سازنده تصمیمات رأی افراد می‌باشد. در این تحقیق ابتدا مبتنی بر تعاریف پایه سورویکی از خرد جمعی و ادبیات مطرح در خوشه‌بندی ترکیبی، تعریف پایه‌ای از ادبیات خرد جمعی در خوشه‌بندی ترکیبی ارائه می‌دهیم و بر اساس آن الگوریتم پیشنهادی خود را در جهت پیاده‌سازی خوشه‌بندی ترکیبی ارائه می‌دهیم [55]. شرایط چهارگانه خوشه‌بندی خردمند که متناسب با تعاریف سورویکی باز تعریف شده است به شرح زیر می‌باشد:
پراکندگی نتایج اولیه، هر الگوریتم خوشه‌بندی پایه باید به طور جداگانه و بدون واسطه به داده‌های مسئله دسترسی داشته و آن را تحلیل و خوشه‌بندی کند حتی اگر نتایج آن غلط باشد.
استقلال الگوریتم، روش تحلیل هر یک از خوشه‌بندی‌های پایه نباید تحت تأثیر روش‌های سایر خوشه‌بندی‌های پایه تعیین شود، این تأثیر می‌تواند در سطح نوع الگوریتم (گروه) یا پارامترهای اساسی یک الگوریتم خاص (افراد) باشد.
عدم تمرکز، ارتباط بین بخش‌های مختلف خوشه‌بندی خرد جمعی باید به گونه‌ای باشد تا بر روی عملکرد خوشه‌بندی پایه تأثیری ایجاد نکند تا از این طریق هر خوشه‌بندی پایه شانس این را داشته باشد تا با شخصی سازی و بر اساس دانش محلی خود بهترین نتیجه ممکن را آشکار سازد.
مکانیزم ترکیب مناسب، باید مکانیزمی وجود داشته باشد که بتوان توسط آن نتایج اولیه الگوریتم‌های پایه را با یکدیگر ترکیب کرده و به یک نتیجه نهایی (نظر جمعی) رسید.
در این تحقیق دو روش برای ترکیب خوشه‌بندی ترکیبی و خرد جمعی پیشنهاد شده است. با استفاده از تعاریف بالا الگوریتم روش اول مطرح خواهد شد که در آن، جهت رسیدن به نتیجه نهایی از آستانه‌گیری استفاده می‌شود. در این روش الگوریتم‌های خوشه‌بندی اولیه غیر هم نام کاملاً مستقل فرض خواهند شد و برای ارزیابی استقلال الگوریتم‌های هم نام نیاز به آستانه‌گیری می‌باشد. در روش دوم، سعی شده است تا دو بخش از روش اول بهبود یابد. از این روی جهت مدل‌سازی الگوریتم‌ها و ارزیابی استقلال آن‌ها نسبت به هم یک روش مبتنی بر گراف شبه کد ارائه می‌شود و میزان استقلال به دست آمده در این روش به عنوان وزنی برای ارزیابی پراکندگی در تشکیل جواب نهایی مورد استفاده قرار می‌گیرد. جهت ارزیابی، روش‌های پیشنهادی با روش‌های پایه، روش‌ ترکیب کامل و چند روش معروف ترکیب مبتنی بر انتخاب مقایسه خواهد شد. از این روی از چهارده داده استاندارد و یا مصنوعی که عموماً از سایت UCI [76] جمع‌آوری شده‌اند استفاده شده است. در انتخاب این داده‌ها سعی شده، داده‌هایی با مقیاس‌ کوچک، متوسط و بزرگ انتخاب شوند تا کارایی روش بدون در نظر گرفتن مقیاس داده ارزیابی شود. همچنین جهت اطمینان از صحت نتایج تمامی آزمایش‌های تجربی گزارش‌شده حداقل ده بار تکرار شده است.
1-4-1- فرضیات تحقیقاین تحقیق بر اساس فرضیات زیر اقدام به ارائه روشی جدید در خوشه‌بندی ترکیبی مبتنی بر انتخاب بر اساس نظریه خرد جمعی می‌کند.
۱ ) در این تحقیق تمامی آستانه‌گیری‌ها بر اساس میزان صحت نتایج نهایی و مدت زمان اجرای الگوریتم به صورت تجربی انتخاب می‌شوند.
۲ ) در این تحقیق جهت ارزیابی عملکرد یک الگوریتم، نتایج اجرای آن را بر روی‌داده‌های استاندارد UCI در محیطی با شرایط و پارامترهای مشابه نسبت به سایر الگوریتم‌ها ارزیابی می‌کنیم که این داده‌ها الزاماً حجیم یا خیلی کوچک نیستند.
۳ ) جهت اطمینان از صحت نتایج آزمایش‌ها ارائه‌شده در این تحقیق، حداقل اجرای هر الگوریتم بر روی هر داده ده بار تکرار شده و نتیجه‌ی نهایی میانگین نتایج به دست آمده می‌باشد.
4 ) از آنجایی که روش مطرح‌شده در این تحقیق یک روش مکاشفه‌ای است سعی خواهد شد بیشتر با روش‌های مکاشفه‌ای مطرح در خوشه‌بندی ترکیبی مقایسه و نتایج آن مورد بررسی قرار گیرد.
در این فصل اهداف، مفاهیم و چالش‌های این تحقیق به صورت خلاصه ارائه شد. در ادامه این تحقیق، در فصل دوم، الگوریتم‌های خوشه‌بندی پایه و روش‌های خوشه‌بندی‌ ترکیبی مورد بررسی قرار می‌گیرد. همچنین به مرور روش‌های انتخاب خوشه و یا افراز در خوشه‌بندی ترکیبی مبتنی بر انتخاب خواهیم پرداخت. در فصل سوم، نظریه خرد جمعی و دو روش پیشنهادی خوشه‌بندی خردمند ارائه می‌شود. در فصل چهارم، به ارائه نتایج آزمایش‌های تجربی این تحقیق و ارزیابی آن‌ها می‌پردازیم و در فصل پنجم، به ارائه‌ی نتایج و کار‌های آتی خواهیم پرداخت.

فصل دوم
مروری بر ادبیات تحقیق
center2132965
2. مروری بر ادبیات تحقیق2-1. مقدمهدر این بخش، کارهای انجام‌شده در خوشه‌بندی و خوشه‌بندی ترکیبی را مورد مطالعه قرار می‌دهیم. ابتدا چند الگوریتم‌ پایه خوشه‌بندی معروف را معرفی خواهیم کرد. سپس چند روش کاربردی جهت ارزیابی خوشه، خوشه‌بندی و افرازبندی را مورد مطالعه قرار می‌دهیم. در ادامه به بررسی ادبیات خوشه‌بندی ترکیبی خواهیم پرداخت و روش‌های ترکیب متداول را بررسی خواهیم کرد. از روش‌های خوشه‌بندی ترکیبی، روش ترکیب کامل و چند روش معروف مبتنی بر انتخاب را به صورت مفصل شرح خواهیم داد.
2-2. خوشه‌بندیدر این بخش ابتدا انواع الگوریتم‌های خوشه‌بندی پایه را معرفی می‌کنیم و سپس برخی از آن‌ها را مورد مطالعه قرار می‌دهیم سپس برای ارزیابی نتایج به دست آمده چند متریک معرفی خواهیم کرد.
2-2-1. الگوریتم‌های خوشه‌بندی پایهبه طور کلی، الگوریتم‌های خوشه‌بندی را می‌توان به دو دسته کلی تقسیم کرد:
1- الگوریتم‌های سلسله مراتبی
2- الگوریتم‌های افرازبندی
الگوریتم‌های سلسله مراتبی، یک روال برای تبدیل یک ماتریس مجاورت به یک دنباله از افرازهای تو در تو، به صورت یک درخت است. در این روش‌ها، مستقیماً با داده‌ها سروکار داریم و از روابط بین آن‌ها برای به دست آوردن خوشه‌ها استفاده می‌کنیم. یکی از ویژگی‌های این روش قابلیت تعیین تعداد خوشه‌ها به صورت بهینه می‌باشد. در نقطه مقابل الگوریتم‌های سلسله مراتبی، الگوریتم‌های افرازبندی قرار دارند. هدف این الگوریتم‌ها، تقسیم داده‌ها در خوشه‌ها، به گونه‌ای است که داده‌های درون یک خوشه بیش‌ترین شباهت را به همدیگر داشته باشند؛ و درعین‌حال، بیش‌ترین فاصله و اختلاف را با داده‌های خوشه‌های دیگر داشته باشند. در این فصل تعدادی از متداول‌ترین الگوریتم‌های خوشه‌بندی، در دو دسته سلسله مراتبی و افرازبندی، مورد بررسی قرار می‌گیرند. از روش سلسله‌ مراتبی چهار الگوریتم‌ از سری الگوریتم‌های پیوندی را مورد بررسی قرار می‌دهیم. و از الگوریتم‌های افرازبندی K-means، FCM و الگوریتم طیفی را مورد بررسی خواهیم داد.
2-2-1-1. الگوریتم‌های سلسله مراتبیهمان‌گونه که در شکل 2-1 مشاهده می‌شود، روال الگوریتم‌های خوشه‌بندی سلسله مراتبی را می‌تواند به صورت یک دندوگرام نمایش داد. این نوع نمایش تصویری از خوشه‌بندی سلسله مراتبی، برای انسان، بیشتر از یک لیست از نمادها قابل‌درک است. در واقع دندوگرام، یک نوع خاص از ساختار درخت است که یک تصویر قابل‌فهم از خوشه‌بندی سلسله مراتبی را ارائه می‌کند. هر دندوگرام شامل چند لایه از گره‌هاست، به طوری که هر لایه یک خوشه را نمایش می‌دهد. خطوط متصل‌کننده گره‌ها، بیانگر خوشه‌هایی هستند که به صورت آشیانه‌ای داخل یکدیگر قرار دارند. برش افقی یک دندوگرام، یک خوشه‌بندی را تولید می‌کند [33]. شکل 2-1 یک مثال ساده از خوشه‌بندی و دندوگرام مربوطه را نشان می‌دهد.

شکل 2-1. یک خوشه‌بندی سلسله مراتبی و درخت متناظر
اگر الگوریتم‌های خوشه‌بندی سلسله مراتبی، دندوگرام را به صورت پایین به بالا بسازند، الگوریتم‌های خوشه‌بندی سلسله مراتبی تراکمی نامیده می‌شوند. همچنین، اگر آن‌ها دندوگرام را به صورت بالا به پایین بسازند، الگوریتم‌های خوشه‌بندی سلسله مراتبی تقسیم‌کننده نامیده می‌شوند [26]. مهم‌ترین روش‌های خوشه‌بندی سلسله مراتبی الگوریتم‌های سری پیوندی می‌باشد که در این بخش تعدادی از کاراترین آن‌ها مورد بررسی قرار خواهند گرفت که عبارت‌اند از:
الگوریتم پیوندی منفرد
الگوریتم پیوندی کامل
الگوریتم پیوندی میانگین
الگوریتم پیوندی بخشی
2-2-1-1-1. تعاریف و نماد‌ها
شکل 2-2. ماتریس مجاورت
قبل از معرفی این الگوریتم‌ها، در ابتدا نمادها و نحوه نمایش مسئله نمایش داده خواهد شد. فرض کنید که یک ماتریس مجاورت متقارن داریم. وارده در هر سمت قطر اصلی قرار دارد که شامل یک جای گشت اعداد صحیح بین 1 تا است. ما مجاورت‌ها را عدم شباهت در نظر می‌گیریم. به این معنی است که اشیاء 1 و 3 بیشتر از اشیاء 1 و 2 به هم شبیه‌اند. یک مثال از ماتریس مجاورت معمول برای است که در شکل 2-2 نشان داده شده است. یک گراف آستانه، یک گراف غیر جهت‌دار و غیر وزن‌دار، روی گره، بدون حلقه بازگشت به خود یا چند لبه است. هر نود یک شیء را نمایش می‌دهد. یک گراف آستانه برای هر سطح عدم شباهت به این صورت تعریف می‌شود: اگر عدم شباهت اشیاء و از حد آستانه کوچک‌تر باشد، با واردکردن یک لبه بین نودهای ویک گراف آستانه تعریف می‌کنیم.
(2-1)if and only if
شکل 2-3 یک رابطه دودویی به دست آمده از ماتریس مربوط به شکل 2-2 را برای مقدار آستانه 5 نشان می‌دهد. نماد "*" در موقعیت ماتریس، نشان می‌دهد که جفت متعلق به رابطه دودویی می‌باشد. شکل 2-4، گراف‌های آستانه برای ماتریس را نمایش می‌دهد.

شکل 2-3. رابطه دودویی و گراف آستانه برای مقدار آستانه 5.

شکل 2-4. گراف‌های آستانه برای ماتریس
2-2-1-1-2. الگوریتم پیوندی منفرداین الگوریتم روش کمینه و روش نزدیک‌ترین همسایه نیز نامیده می‌شود [26]. اگر و خوشه‌ها باشند، در روش پیوندی منفرد، فاصله آن‌ها برابر خواهد بود با:
(2-2)
که نشان‌دهنده فاصله (عدم شباهت) بین نقاط a و b در ماتریس مجاورت است. شکل 2-5 این الگوریتم را نمایش می‌دهد. شکل 2-6 دندوگرام حاصل از روش پیوندی منفرد را برای ماتریس ، را نشان می‌دهد.
Step 1. Begin with the disjoint clustering implied by threshold graph, which contains no edges and which places every object in a unique cluster, as the current clustering. Set.
Step 2. From threshold graph.
If the number of comonents (maximally connected subgraphs) in, is less than the number of clusters in the current clustering, redefiene the current clustering by naming each component of as a cluster.
Step 3. If consists of a single connected graph, stop. Else, setand go to step 2.
شکل 2-5. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی منفرد

شکل 2-6. دندوگرام پیوندی منفرد برای ماتریس


2-2-1-1-3. الگوریتم پیوندی کاملاین الگوریتم روش بیشینه یا روش دورترین همسایه نیز نامیده می‌شود. الگوریتم پیوندی کامل می‌گوید که وقتی دو خوشه و شبیه به هم هستند که بیشینه روی تمام ها در و کوچک باشد. به عبارت دیگر، در این الگوریتم، برای یکی کردن دو خوشه، همه جفت‌ها در دو خوشه باید شبیه به هم باشند [26]. اگر و خوشه‌ها باشند، در روش پیوندی کامل، فاصله آن‌ها برابر خواهد بود با:
(2-3)
که نشان‌دهنده فاصله(عدم شباهت) بین نقاط a و در ماتریس مجاورت است. شکل 2-7 این الگوریتم و شکل 2-8 دندوگرام حاصل از این روش را برای ماتریس ، را نشان می‌دهد.
Step 1. Begin with the disjoint clustering implied by threshold graph, which contains no edges and which places every object in a unique cluster, as the current clustering. Set.
Step 2. From threshold graph.
If two of the current clusters from a clique (maximally complete sub graph) in, redefine the current clustering by merging these two clusters into a single cluster.
Step 3. If, so that is the complete graph on the nodes, stop. Else, set and go to step 2.
شکل 2-7. الگوریتم خوشه‌بندی سلسله مراتبی تراکمی پیوندی کامل

شکل 2-8. دندوگرام پیوندی کامل برای ماتریس
2-2-1-1-4. الگوریتم پیوندی میانگینالگوریتم پیوندی منفرد اجازه می‌دهد تا خوشه‌ها به صورت دراز و نازک رشد کنند. این در شرایطی است که الگوریتم پیوندی کامل خوشه‌های فشرده‌تری تولید می‌کند. هر دو الگوریتم مستعد خطا با داده‌های خارج از محدوده هستند. الگوریتم خوشه‌بندی پیوندی میانگین، یک تعادلی بین مقادیر حدی الگوریتم‌های پیوندی منفرد و کامل است. الگوریتم پیوندی میانگین همچنین، روش جفت-گروه بدون وزن با استفاده از میانگین حسابی نامیده می‌شود. این الگوریتم، یکی از پرکاربردترین الگوریتم‌های خوشه‌بندی سلسله مراتبی می‌باشد [26]. اگر یک خوشه با تعداد تا عضو، و یک خوشه دیگر با تعداد تا عضو باشند، در روش پیوندی میانگین، فاصله آن‌ها برابر خواهد بود با:
(2-4)
که نشان‌دهنده فاصله(عدم شباهت) بین نقاط a و در ماتریس مجاورت است.
2-2-1-1-5. الگوریتم پیوندی بخشیروش پیوندی بخشی که از مربع مجموع خطا‌های (SSE) خوشه‌های یک افراز برای ارزیابی استفاده می‌کند، یکی دیگر از روش‌های سلسله مراتبی می‌باشد [60]. اگر یک خوشه با تعداد تا عضو، و یک خوشه دیگر با تعداد تا عضو باشند و نماد به معنای فاصله اقلیدسی و و مراکز خوشه‌های و باشد آنگاه در روش پیوندی بخشی، فاصله آن‌ها برابر خواهد بود با:
(2-5)
2-2-1-2. الگوریتم‌های افرازبندییک خاصیت مهم روش‌های خوشه‌بندی سلسله مراتبی، قابلیت نمایش دندوگرام است که تحلیل‌گر را قادر می‌سازد تا ببیند که چگونه اشیاء در سطوح متوالی مجاورت، در خوشه‌ها به هم پیوند می‌خورند یا تفکیک می‌شوند. همان طور که اشاره شد، هدف الگوریتم‌های افرازبندی، تقسیم داده‌ها در خوشه‌ها، به گونه‌ای است که داده‌های درون یک خوشه بیش‌ترین شباهت را به همدیگر داشته باشند؛ و درعین‌حال، بیش‌ترین فاصله و اختلاف را با داده‌های خوشه‌های دیگر داشته باشند. آن‌ها یک افراز منفرد از داده را تولید می‌کنند و سعی می‌کنند تا گروه‌های طبیعی حاضر در داده را کشف کنند. هر دو رویکرد خوشه‌بندی، دامنه‌های مناسب کاربرد خودشان را دارند. معمولاً روش‌های خوشه‌بندی سلسله مراتبی، نیاز به ماتریس مجاورت بین اشیاء دارند؛ درحالی‌که روش‌های افرازبندی، به داده‌ها در قالب ماتریس الگو نیاز دارند. نمایش رسمی مسئله خوشه‌بندی افرازبندی می‌تواند به صورت زیر باشد:
تعیین یک افراز از الگوها در گروه، یا خوشه، با داشتن الگو در یک فضای d-بعدی؛ به طوری که الگوها در یک خوشه بیش‌ترین شباهت را به هم داشته و با الگوهای خوشه‌های دیگر بیش‌ترین، تفاوت را داشته باشند. تعداد خوشه‌ها،، ممکن است که از قبل مشخص‌شده نباشد، اما در بسیاری از الگوریتم‌های خوشه‌بندی افرازبندی، تعداد خوشه‌ها باید از قبل معلوم باشند. در ادامه برخی از معروف‌ترین و پرکاربردترین الگوریتم‌های افرازبندی مورد بررسی قرار خواهند گرفت.
2-2-1-2-1. الگوریتم K-meansدر الگوریتم مراکز خوشه‌ها بلافاصله بعد از اینکه یک نمونه به یک خوشه می‌پیوندد محاسبه می‌شوند. به طور معمول بیشتر روش‌های خوشه‌بندی ترکیبی از الگوریتم جهت خوشه‌بندی اولیه خود استفاده می‌کنند [37, 47, 57]. اما مطالعات اخیر نشان داده‌اند که با توجه به رفتار هر مجموعه داده، گاهی اوقات یک روش خوشه‌بندی خاص پیدا می‌شود که دقت بهتری از برای بعضی از مجموعه داده‌ها می‌دهد [1, 54]. اما الگوریتم به دلیل سادگی و توانایی مناسب در خوشه‌بندی همواره به عنوان انتخاب اول مطالعات خوشه‌بندی ترکیبی مورد مطالعه قرار گرفته است. در شکل 2-10 شبه کد الگوریتم را مشاهده می‌کنید:
1. Place K points into the space represented by the objects that are being clustered.
These points represent initial group centroids.
2. Assign each object to the group that has the closest centroid.
3. When all objects have been assigned, recalculate the positions of the K centroids.
4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation
of the objects into groups from which the metric to be minimized can be calculated
شکل 2-9. الگوریتم خوشه‌بندی افرازبندی
مقادیر مراکز اولیه‌ی‌ متفاوت برای الگوریتم می‌تواند منجر به خوشه‌بندی‌های مختلفی شود. به خاطر اینکه این الگوریتم مبتنی بر مربع خطا است، می‌تواند به کمینه محلی همگرا شود، مخصوصاً برای خوشه‌هایی که به طور خیلی خوبی از هم تفکیک نمی‌شوند، این امر صادق است. نشان داده شده است که هیچ تضمینی برای همگرایی یک الگوریتم تکراری به یک بهینه سراسری نیست [33]. به طور خلاصه می‌توان ویژگی‌های الگوریتم را به صورت زیر برشمرد:
1- بر اساس فاصله اقلیدسی تمامی ویژگی‌ها می‌باشد.
2- منجر به تولید خوشه‌هایی به صورت دایره، کره و یا ابر کره می‌شود.
3- نسبت به روش‌های دیگر خوشه‌بندی، ساده و سریع است.
4- همگرایی آن به یک بهینه محلی اثبات شده است، اما تضمینی برای همگرایی به بهینه سراسری وجود ندارد.
5- نسبت به مقداردهی اولیه مراکز خوشه‌ها خیلی حساس است.
2-2-1-2-2. الگوریتم FCMالگوریتم FCM اولین بار توسط دون [13] ارائه شد. سپس توسط بزدک [66] بهبود یافت. این متد دیدگاه جدیدی را در خوشه‌بندی بر اساس منطق فازی [62] ارائه می‌دهد. در این دیدگاه جدید، به جای اینکه داده‌ها در یک خوشه عضو باشند، در تمامی خوشه‌ها با یک ضریب عضویت که بین صفر و یک است، عضو هستند و ما در این نوع خوشه‌بندی، دنبال این ضرایب هستیم. در روش‌های معمول در جایی که ما داده داشته باشیم، جواب نهایی ماتریس خواهد بود که هر خانه شامل برچسب خوشه‌ی داده‌ی نظیر آن می‌باشد. ولی در این روش در صورت داشتن خوشه، جواب نهایی یک ماتریس خواهد بود که در آن هر ردیف شامل ضرایب عضویت داده‌ی نظیر به آن خوشه است. بدیهی است که جمع افقی هر ردیف (ضرایب عضویت یک داده خاص) برابر با یک خواهد بود. یک روش معمول جهت رسیدن به جواب‌هایی غیر فازی بر اساس نتایج نهایی الگوریتم فازی، برچسب‌زنی داده بر اساس آن ضریبی که مقدار حداکثر را در این داده دارد، می‌باشد. رابطه 2-6 معادله پایه در روش فازی است: [66]
(2-6) ,
در رابطه 2-6 متغیرm یک عدد حقیقی بزرگ‌تر از یک و درجه عضویت داده در خوشه j-ام می‌باشد، که خود ، i-امین داده d-بُعدی از داده‌ی مورد مطالعه می‌باشد و مرکز d-بعدی خوشه j-ام‌ است و هر روش معمول جهت اندازه‌گیری شباهت میان داده و مرکز خوشه می‌باشد. در روش خوشه‌بندی فازی مراکز خوشه () و درجه عضویت () با تکرار مکرر به ترتیب بر اساس رابطه‌های 2-7 و 2-8 به‌روزرسانی می‌شوند، تا زمانی که شرط توقف درست در آید. در این شرط مقدار یک مقدار توافقی بسیار کوچک‌تر از یک می‌باشد که مطابق با نوع داده و دقت خوشه‌بندی قابل جایگذاری خواهد بود. بدیهی است که هر چقدر این مقدار به سمت صفر میل کند درجه عضویت دقیق‌تر و مقدار زمان اجرا بیشتر خواهد بود [66].
(2-7)
(2-8)
مراحل اجرای الگوریتم در شبه کد شکل 2-11 شرح داده شده است:
1.Initialize matrix,
2.At k-step: calculate the centers vectors with

3.Update ,

4. If then STOP; otherwice returen to step 2.
شکل 2-10. الگوریتم فازی خوشه‌بندی
2-2-1-2-3. الگوریتم طیفیروش خوشه‌بندی طیفی که بر اساس مفهوم گراف طیفی [11] مطرح شده است، از ماتریس شباهت برای کاهش بعد داده‌ها در خوشه‌بندی استفاده می‌کند. در این روش یک گراف وزن‌دار بدون جهت به نحوی تولید می‌شود که رئوس گراف نشان‌دهنده‌ی مجموعه نقاط و هر یال وزن‌دار نشان‌دهنده‌ی میزان شباهت جفت داده‌های متناظر باشد. بر خلاف روش‌های کلاسیک، این روش، روی‌ داده‌ای پراکنده‌ در فضایی با شکل‌ هندسی غیر محدب، نتایج مطلوبی تولید می‌کند [63]. کاربرد این روش در محاسبات موازی [69, 70]، تنظیم بار [15]، طراحی VLSI [28]، طبقه‌بندی تصاویر [35] و بیوانفورماتیک [31, 59] می‌باشد.
در خوشه‌بندی طیفی از بردارهای ویژگی در ماتریس شباهت برای افراز مجموعه‌ داده استفاده می‌شود. در اغلب این روش‌ها، مقدار ویژه اولویت بردارها را تعیین می‌کند. ولی این نحوه‌ی انتخاب، انتخاب بهترین بردارها را تضمین نمی‌دهد. در اولین تحقیقی که در این زمینه توسط ژیانگ و گنگ [61] انجام شد، مسئله‌ی انتخاب بردارهای ویژگی مناسب جهت بهبود نتایج خوشه‌بندی پیشنهاد گردید. در روش پیشنهادی آن‌ها شایستگی هر یک از بردارهای با استفاده از تابع چگالی احتمال هر بردار تخمین زده می‌شود. وزنی به بردارهایی که امتیاز لازم را به دست آورندگ، اختصاص یافته و برای خوشه‌بندی از آن‌ها استفاده می‌شود. در کاری دیگر که توسط ژائو [64] انجام شده است، هر یک از بردارهای ویژه به ترتیب حذف می‌شوند و مقدار آنتروپی مجموعه بردارهای باقی‌مانده محاسبه می‌شود. برداری که حذف آن منجر به افزایش آنتروپی و ایجاد بی‌نظمی بیشتر در مجموعه داده شود، اهمیت بیشتری داشته و در رتبه بالاتری قرار می‌گیرد. سپس زیرمجموعه‌ای از مناسب‌ترین بردارها برای خوشه‌بندی مورد استفاده قرار می‌گیرند. الگوریتم خوشه‌بندی طیفی دارای متدهای متفاوتی جهت پیاده‌سازی است، که الگوریتم‌های برش نرمال، NJW، SLH وPF از آن جمله می‌باشد. در تمامی این روش‌ها، بخش اول، یعنی تولید گراف، مشترک می‌باشد. ما در ادامه ابتدا به بررسی بخش مشترک این روش‌ها می‌پردازیم. سپس به تشریح دو روش پر کاربرد برش نرمال و NJW می‌پردازیم.
در الگوریتم خوشه‌بندی طیفی، افراز داده‌ها بر اساس تجزیه‌ی ماتریس شباهت و به دست آوردن بردارها و مقادیر ویژه‌ی آن صورت می‌گیرد. مجموعه‌ی با داده‌یبعدی را در نظر بگیرید، می‌توان برای این مجموعه گراف وزن‌دار و بدون جهت را ساخت به صورتی که رئوس گراف نشان‌دهنده داده و یال‌ها که ماتریس شباهت را تشکیل می‌دهند بیانگر میزان شباهت بین هر جفت داده متناظر باشند. ماتریس شباهت به صورت رابطه 2-9 تعریف می‌شود:
(2-9)
تابع میزان شباهت بین دو داده را اندازه می‌گیرد. می‌تواند یک تابع گوسی به صورت باشد. که در آن فاصله‌ی بین دو نمونه را نشان می‌دهد و پارامتر مقیاس سرعت کاهش تابع با افزایش فاصله بین دو نمونه را مشخص می‌کند. در ادامه به بررسی دو الگوریتم خوشه‌بندی طیفی برش نرمال و NJW می‌پردازیم.
2-2-1-2-3-1. الگوریتم برش نرمالالگوریتم برش نرمال توسط شی و ملیک [35] برای قطعه‌بندی تصاویر ارائه شده است. در این روش، میزان تفاوت بین خوشه‌های مختلف و شباهت بین اعضا یک خوشه، بر اساس فاصله‌ی داده‌ها محاسبه می‌کند. رابطه 2-10 اشاره به مفهوم شباهت داده دارد که با استفاده از آن اقدام به ساخت گراف وزن‌دار می‌نماییم:
(2-10)
موقعیت i-امین داده (پیکسل در تصاویر) و بردار ویژگی از صفات داده (مانند روشنایی در تصاویر) می‌باشد. با کمک حد آستانه می‌توان میزان تنکی ماتریس شباهت را با توجه به تعداد اثرگذار داده‌های همسایه تعیین کرد. گام‌های این الگوریتم به صورت زیر می‌باشد:
محاسبه ماتریس درجه.
محاسبه ماتریس لاپلاسین.
محاسبه دومین بردار ویژگی متناظر با دومین کوچک‌ترین مقدار ویژه.
استفاده از برای خوشه‌بندی (قطعه‌بندی در تصاویر) گراف.
روش برش نرمال بیشتر در قطعه‌بندی تصاویر کاربرد دارد و معمولاً در خوشه‌بندی داده از سایر الگوریتم‌های خوشه‌بندی طیفی استفاده می‌کنند.
2-2-1-2-3-2. الگوریتم NJWایده الگوریتم استفاده از اولین بردار ویژه متناظر با بزرگ‌ترین مقدار ویژه ماتریس لاپلاسین است. مراحل این الگوریتم به صورت زیر می‌باشد: [51]
ساخت ماتریس شباهت با استفاده از رابطه 2-9.
محاسبه ماتریس درجه، و ماتریس لاپلاسین.
به دست آوردن اولین بردار ویژه متناظر با اولین بزرگ‌ترین مقدار ماتریسو تشکیل ماتریس ستونی.
نرمال سازی مجدد و تشکیل به طوری که همه سطرهای آن طول واحد داشته باشد.
خوشه‌بندی مجموعه داده بازنمایی شده با استفاده از.

2-2-1-2-4. الگوریتم خوشه‌بندی کاهشیالگوریتم خوشه‌بندی کاهشی یکی از سریع‌ترین الگوریتم‌های تک گذر، برای تخمین تعداد خوشه و مراکز آن‌ها در مجموعه‌ی داده می‌باشد. این مفهوم یعنی به جای تحت تأثیر قرار گرفتن محاسبات از ابعاد مسئله، متناسب با اندازه مسئله آن را انجام دهیم. با این وجود، مراکز واقعی خوشه الزاماً یکی از نقاط داده موجود در مجموعه داده نیست ولی در بیشتر موارد این انتخاب تخمین خوبی است که به صورت ویژه از این رویکرد در محاسبات کاهشی استفاده می‌شود. اگر هر نقطه از مجموعه داده به عنوان گزینه‌ای برای مرکز خوشه در نظر گرفته شود، معیار تراکم هر نقطه به صورت زیر تعریف می‌شود [79].
(2-11)
در رابطه بالا یک ثابت مثبت است، که نشان‌دهنده‌ی شعاع همسایگی (سایر نقاط داده که نزدیک‌ترین نقاط به این داده خاص هستند) می‌باشد، و نشان‌دهنده‌ی سایر داده‌های مجموعه، و نشان‌دهنده‌ی تعداد این داده‌ها است. از این روی، داده‌ای دارای بیش‌ترین مقدار تراکم می‌باشد که بیش‌ترین نقاط داده در همسایگی آن است. اولین مرکز خوشه بر اساس بزرگ‌ترین مقدار تراکم انتخاب می‌شود. بعد از این انتخاب میزان تراکم هر یک از نقاط داده به صورت زیر به‌روز می‌شود [79].
(2-12)
در رابطه بالا ثابت مثبت همسایگی را تعریف می‌کند که میزان کاهش تراکم قابل اندازه‌گیری را نشان می‌دهد. از آنجایی که نقاط داده در نزدیکی مرکز خوشه اول به طور قابل‌توجهی مقادیر چگالی را کاهش می‌دهند بعد از به‌روز کردن مقادیر تابع چگالی توسط رابطه بالا مرکز خوشه بعدی بر اساس داده‌ای که بزرگ‌ترین مقدار چگالی را دارد انتخاب می‌شود. این فرآیند آن قدر تکرار می‌شود تا به تعداد کافی مرکز خوشه ایجاد شود. پس از اتمام این فرآیند می‌توان توسط الگوریتم که مراکز داده در آن توسط فرآیند بالا به صورت دستی داده شده است (نه به صورت تصادفی)، داده‌ها را خوشه‌بندی کرد. شبه کد شکل زیر روند فرآیند بالا را نشان می‌دهد که در آن ابتدا مقادیر ثابت‌ها () و مجموعه داده به عنوان ورودی گرفته می‌شود و پس از ساخت مراکز داده مطابق با تعاریف بالا، این مراکز برای خوشه‌بندی در الگوریتم استفاده می‌شود [79].
Inputs Dataset, Constants
Output Clusters
Steps
1. Initialize constants and density values
2. Make a new cluster center.
3. Update density values
4. If the sufficient number of clusters are not obtained, go to 2.
3. Clustering the dataset by k-means, using fix centers.
شکل 2-11. خوشه‌بندی کاهشی
2-2-1-2-5. الگوریتم خوشه‌بندی Median K-Flatالگوریتم Median K-Flat یا به اختصار MKF مجموعه داده‌یرا به K خوشه‌ی افراز می‌کند که هر خوشه یک شبه فضای d-بُعدی تقریباً خطی می‌باشد. پارامتر‌ با فرض ماتریسی با ابعاد می‌باشد، که هر یک از خانه‌های آن تخمین شبه فضای خطی متعامد می‌باشد. قابل به ذکر است که می‌باشد. در این جا تخمین شبه فضای خوشه‌های را نام‌گذاری می‌کنیم. مطابق تعاریف بالا تابع انرژی برای افرازهای ‌ بر اساس شبه فضای به شکل زیر تعریف می‌شود [77].
(2-13)
این الگوریتم سعی می‌کند تا مجموعه داده را به خوشه‌های ‌تبدیل کند به نحوی که تابع انرژی کمینه باشد. تا وقتی که سطوح تخت اساسی به شکل شبه فضای خطی هستند ما می‌توانیم به صورت فرضی المان‌های X را در یک حوضه واحد نرمال کنیم به طوری که برای و تابع انرژی را به شکل زیر بیان کنیم: [77]
(2-14)
این الگوریتم برای کمینه‌سازی تابع انرژی الگوریتمMKF از روش کاهش گرادیان تصادفی استفاده می‌کند. مشتق تابع انرژی بر اساس ماتریس به شرح زیر است:
(2-15)
این الگوریتم نیاز به تطبیق بر اساس مؤلفه‌ی متعامد مشتق دارد. بخشی از مشتق که با شبه فضای موازی است به شرح زیر می‌باشد.
(2-16)
از این روی مؤلفه متعامد برابر است با رابطه 2-17 می‌باشد.
(2-17)
در رابطه بالا برابر با رابطه 2-18 است.
(2-18)
با در نظر گرفتن محاسبات بالا، الگوریتم MKF تصمیم می‌گیرد که داده تصادفی از مجموعه داده، عضو کدام باشد، و از این طریق شروع به چیدن داده‌ها می‌کند. آن گاه، الگوریتم تابع را به‌روز کند که در آن (مرحله زمانی) پارامتری است که توسط کاربر تعیین می‌شود. این فرآیند آن قدر تکرار می‌شود تا ضابطه همگرایی دیده شود. آنگاه هر نقطه از مجموعه داده به نزدیک‌ترین شبه فضای که تعیین‌کننده خوشه‌هاست اختصاص داده می‌شود. شبه کد زیر فرآیند الگوریتم MKF را نشان می‌دهد [77].
Input:
: Data, normalized onto the unit sphere, d: dimension of subspaces K: number of subspaces, the initialized subspaces. : step parameter.
Output: A partition of X into K disjoint clusters
Steps:
1. Pick a random point in X
2. Find its closest subspace , where
3. Compute by
4. Update
5. Orthogonalize
6. Repeat steps 1-5 until convergence
7. Assign each xi to the nearest subspace
شکل 2-12. شبه‌کد الگوریتم MKF [77]
2-2-1-2-6. الگوریتم خوشه‌بندی مخلوط گوسییک مخلوط گوسی یا همان را می‌توان ترکیب محدبی از چگالی‌های گوسی دانست. یک چگالی گوسی در فضای d-بُعدی به ازای میانگین، توسط ماتریس هم‌وردایی با ابعاد به صورت زیر تعریف می‌شود: [83]
(2-19)
در رابطه بالا پارامتر‌های و را تعریف می‌کند. از این روی مؤلفه به صورت زیر تعریف می‌شود:
(2-20)
در رابطه (2-20) پارامتر وزن مخلوط کردن و مؤلفه مخلوط می‌باشد. از آنجا که در مقایسه با تخمین چگالی غیر پارامتری، تعداد کمتری از توابع چگالی در تخمین چگالی مخلوط باید ارزیابی شود، از این روی ارزیابی چگالی کارآمدتر خواهد بود. علاوه بر آن، استفاده از اجرای محدودیت هموار کردن بر روی برخی از مؤلفه‌های مخلوط در نتیجه‌ی چگالی به ما اجازه می‌دهد تا چگالی مستحکم‌تری را تخمین بزنیم. الگوریتم حداکثر-انتظار یا همان به ما اجازه به‌روز کردن پارامتر‌های مؤلفه‌ی مخلوط را مطابق با مجموعه داده به ازای هر می‌دهد، به طوری که احتمال هرگز کوچک‌تر از مخلوط جدید نشود. به‌روز کردن الگوریتم می‌تواند در یک فرآیند تکراری برای تمامی مؤلفه‌های مطابق با رابطه‌های زیر انجام شود: [83]
(2-21)
(2-22)
(2-23)
(2-24)
در این تحقیق از روش پیشنهادی بومن و همکاران برای پیاده‌سازی الگوریتم مخلوط گوسی استفاده شده است. از آنجایی که روش پیاده‌سازی و توضیحات مربوط به الگوریتم مخلوط گوسی در روش ترکیب مبتنی بر مخلوط استفاده می‌شود از این روی در بخش روش‌های ترکیب نتایج با تابع توافقی آن را بررسی خواهیم کرد.
2-2-2. معیارهای ارزیابیدر یادگیری با ناظر ارزیابی راحت تر از یادگیری بدون ناظر است. برای مثال آن چیز که ما در رده‌بندی باید ارزیابی کنیم مدلی است که ما توسط داده‌های یادگیری به الگوریتم هوش مصنوعی آموزش داده‌ایم. در روش‌های با ناظر ورودی و خروجی داده معلوم است و ما بخشی از کل داده را برای آزمون جدا کرده و بخش دیگر را به عنوان داده یادگیری استفاده می‌کنیم و پس از تولید مدل مطلوب ورودی داده آزمون را در مدل وارد کرده و خروجی مدل را با خروجی واقعی می‌سنجیم. از این روی معیارهای بسیاری برای ارزیابی روش‌های با ناظر ارائه‌شده‌اند.
در یادگیری بدون ناظر روش متفاوت است. در این روش هیچ شاخص معینی در داده جهت ارزیابی وجود ندارد و ما به دنبال دسته‌بندی کردن داده‌ها بر اساس شباهت‌ها و تفاوت‌ها هستیم. از این روی برخلاف تلاش‌های خیلی از محققان، ارزیابی خوشه‌بندی خیلی توسعه داده نشده است و به عنوان بخشی از تحلیل خوشه‌بندی رایج نشده است. در واقع، ارزیابی خوشه‌بندی یکی از سخت‌ترین بخش‌های تحلیل خوشه‌بندی است [33]. معیارهای عددی، یا شاخص‌هایی که برای قضاوت جنبه‌های مختلف اعتبار یک خوشه به کار می روند، به سه دسته کلی تقسیم می‌شوند:
1- شاخص خارجی که مشخص می‌کند که کدام خوشه‌های پیداشده به وسیله الگوریتم خوشه‌بندی با ساختارهای خارجی تطبیق دارند. در این روش نیاز به اطلاعات اضافی مثل برچسب نقاط داده، داریم. آنتروپی یک مثالی از شاخص خارجی است.
2- شاخص داخلی که برای اندازه‌گیری میزان خوبی یک ساختار خوشه‌بندی بدون توجه به اطلاعات خارجی به کار می‌‌رود. یک نمونه از شاخص داخلی است.
3- شاخص نسبی که برای مقایسه دو خوشه‌بندی مختلف یا دو خوشه مختلف به کار می‌رود. اغلب یک شاخص خارجی یا داخلی برای این تابع استفاده می‌شود. برای مثال، دو خوشه‌بندی می‌توانند با مقایسه یا آنتروپی‌شان مقایسه شوند.
این فصل تعدادی از مهم‌ترین و رایج‌ترین روش‌های به‌کاررفته برای ارزیابی خوشه‌بندی را مرور خواهد کرد.
2-2-2-1. معیار SSEیک معیار داخلی ارزیابی خوشه‌بندی، مثل، می‌تواند برای ارزیابی یک خوشه‌بندی نسبت به خوشه‌بندی دیگر به کار رود. به علاوه، یک معیار داخلی اغلب می‌تواند برای ارزیابی یک خوشه‌بندی کامل یا یک خوشه تنها به استفاده شود. این اغلب به خاطر این است که این روش، سعی می‌کند تا میزان خوبی کلی خوشه‌بندی را به عنوان یک جمع وزن‌دار از خوبی‌های هر خوشه در نظر می‌گیرد. با استفاده از رابطه 2-25 محاسبه می‌شود [68].
(2-25)
کهیک نقطه داده در خوشه است و، j-امین ویژگی از داده X است. ، j-امین ویژگی از مرکز خوشه می‌باشد. برای مقایسه دو خوشه‌بندی مختلف روی یک داده با یک تعداد مشابه، تنها مقایسه مقدارهای متناظر آن‌ها کافی است. هر چه مقدار کمتر باشد، آن خوشه‌بندی بهتر خواهد بود. البته، وقتی تعداد نقاط داده در دو خوشه متفاوت باشند، مقایسه مستقیم از روی مقدار خوب نخواهد بود. بنابراین، یک خوشه معیار مناسب تری برای مقایسه است. رابطه 2-26 این معیار را نشان می‌دهد که در آن مقدار تعداد کل نمونه‌هاست [68].
(2-26)
تعداد درست خوشه‌ها در الگوریتم ، اغلب می‌تواند با استفاده از نگاه کردن به منحنی مشخص شود. این منحنی با رسم مقادیر به ازایهای مختلف به دست می‌آید. تعداد خوشه‌های بهینه با توجه به منحنی، ای است که به ازای آن نرخ کاهش مقدار، قابل چشم‌پوشی شود. شکل 2-13-ب منحنی را برای داده‌های شکل 2-13-الف، نشان می‌دهد.

(الف)
(ب)
شکل2-13. (الف) مجموعه داده با تعداد 10 خوشه واقعی. (ب) منحنی مربوطه [68]
همان طور که از شکل 2-13-ب برمی‌آید، برای مقادیرهای از صفر تا 10 شیب منحنی نسبت به بقیه مقادیر، تندتر می‌باشد. این امر نشان‌دهنده آن است که مقدار یک مقدار بهینه برای تعداد خوشه‌ها می‌باشد.

(الف)
(ب)
شکل2-14. (الف) مجموعه داده (ب) منحنی مربوطه [2]
شکل 2-14-ب نیز منحنی را برای داده‌های شکل 2-14-الف، نشان می‌دهد. مشاهده می‌شود که در این داده‌ها، چون تعداد خوشه‌ها نسبت به شکل 2-14-الف کاملاً گویا نیست، بنابراین، منحنی آن نیز نرم تر خواهد بود . اما با توجه به شکل 2-14-ب، می‌توان گفت که تعداد نسبتاً خوب باشد. چون منحنی برای های بعد از 8، دارای شیب کندتری خواهد شد. با توجه به نتایج فوق می‌توان گفت که اگرچه منحنی برای همه مسایل نمی‌تواند جواب بهینه برای تعداد بدهد، اما می‌تواند به عنوان یک معیار خوب برای این امر مطرح باشد.
2-2-2-2. معیار اطلاعات متقابل نرمال شدهمعیار اطلاعات متقابل () توسط کاور و توماس [71] معرفی شد که یک روش جهت اندازه‌گیری کیفیت اطلاعات آماری مشترک بین دو توزیع است. از آنجایی که این معیار وابسته به اندازه خوشه‌ها است در [54] روشی جهت نرمال سازی آن ارائه شده است. فرد و جین [19] روش نرمال سازی اطلاعات متقابل را اصلاح کردند و آن را تحت عنوان اطلاعات متقابل نرمال () ارائه داده‌اند. رابطه 2-27 اطلاعات متقابل نرمال شده را نشان می‌دهد[1, 2, 19] .
(2-27)
در رابطه 2-27 پارامتر کل نمونه‌ها است و یعنی افرازهایی که اندیس آن‌ها شامل i با تمام مقادیر j می‌باشد و یعنی افرازهایی که تمام مقادیر i با و اندیس j را شامل شود. از رابطه 2-28 محاسبه می‌شود [1, 2, 19].
(2-28)
, ,
در صورتی که دو افراز به صورت و که در آن کل داده و خوشه اول و خوشه دوم هر یک از افرازها باشد آنگاه نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد، نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد، نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد و نشان‌دهنده تعداد نمونه‌های مشترک موجود در و می‌باشد. در واقع و به ترتیب بیانگر کل نمونه‌های موجود در و می‌باشد [1].
شکل 2-15 دو افراز اولیه را نشان می‌دهد که میزان پایداری برای هر کدام از خوشه‌های به دست آمده هم محاسبه شده است. در این مثال الگوریتم به عنوان الگوریتم خوشه‌بندی اولیه انتخاب شده است و تعداد خوشه‌های اولیه برابر با سه نیز به عنوان پارامتر آن از قبل مشخص شده است. همچنین، در این مثال تعداد افرازهای موجود در مجموعه مرجع برابر با ۴۰ می‌باشد. در ۳۶ افراز نتایجی مشابه با شکل 2-15 (a) و در 4 حالت باقیمانده نیز نتایجی مشابه با شکل 2-15 (a) حاصل شده است [1].

شکل2-15. دو افراز اولیه با تعداد سه خوشه. (a) خوشه‌بندی درست (b) خوشه‌بندی نادرست [1]
از آن جایی که در مجموعه مرجع در ۹۰ % مواقع، داده‌های متراکم گوشه بالا‐چپ از شکل 2-15 در یک خوشه مجزا گروه‌بندی شده‌اند، بنابراین این خوشه باید مقدار پایداری بالایی را به خود اختصاص دهد. اگرچه این مقدار نباید دقیقاً برابر با یک باشد (چون در همه موارد این خوشه درست تشخیص داده نشده است)، مقدار پایداری با روش متداول اطلاعات متقابل نرمال شده مقدار یک را بر می‌گرداند. از آن جایی که ادغام دو خوشه سمت راست تنها در ۱۰ % موارد مانند شکل 2-15 (b) اتفاق افتاده است، خوشه حاصل باید مقدار پایداری کمی به دست آورد. اگر چه خوشه حاصل از ادغام دو خوشه سمت راستی، به ندرت ( ۱۰ % موارد) در مجموعه مرجع دیده شده است، مقدار پایداری برای این خوشه نیز برابر با یک به دست می‌آید. در اینجا مشکل روش متداول محاسبه پایداری با استفاده از اطلاعات متقابل نرمال شده ظاهر می‌شود. از آنجایی که معیار اطلاعات متقابل نرمال شده یک معیار متقارن است، مقدار پایداری خوشه بزرگ ادغامی سمت راست (با ۱۰ % تکرار) دقیقاً برابر با میزان پایداری خوشه متراکم گوشه بالا‐چپ (با ۹۰ % تکرار) به دست می‌آید. به عبارت دیگر در مواردی که داده‌های دو خوشه مکمل یکدیگر باشند، یعنی اجتماع داده‌های آن‌ها شامل کل مجموعه داده شود و اشتراک داده‌های آن‌ها نیز تهی باشد، مقدار پایداری برای هر دو به یک اندازه برابر به دست می‌آید. از دیدگاه دیگر، این اتفاق زمانی رخ می‌دهد که تعداد خوشه‌های تشکیل‌دهنده مجموعه در خوشه‌بندی مرجع عددی بیشتر از یک باشد. هر زمان که با ادغام دو یا بیشتر از خوشه‌ها به دست آید، منجر به نتایج نادرست در مقدار پایداری می‌شود. ما این مشکل را تحت عنوان مشکل تقارن در اطلاعات متقابل نرمال شده می‌شناسیم. در سال‌های اخیر روش‌هایی جهت حل این مشکل ارائه‌شده‌اند که یکی از آن‌ها را علیزاده و همکاران در [1, 9]ارائه داده‌اند که در‌ آن بزرگ‌ترین خوشه از بین مجموعه مرجع (که بیش از نصف نمونه‌هایش در خوشه مورد مقایسه وجود دارد) جایگزین اجتماع همه خوشه‌ها می‌شود که ما آن را با عنوان روش Max می‌شناسیم. روش دیگر جهت رفع این مشکل معیار APMM می‌باشد. در ادامه به بررسی این معیار می‌پردازیم [1, 8, 67].
2-2-2-3. معیار APMMبر خلاف معیارکه برای اندازه‌گیری شباهت دو افراز طراحی شده است معیار روشی برای اندازه‌گیری میزان شباهت یک خوشه در یک افراز است که توسط عـلیزاده و همکاران [8, 67] معرفی شده است رابطه 2-29 این معیار را معرفی می‌کند.
(2-29)
در رابطه 2-29 پارامتر خوشه i-ام در افراز می‌باشد و افراز متناظر با خوشه در خوشه‌بندی است. پارامتر تعداد کل نمونه‌های مجموعه داده و تعداد نمونه‌های مشترک بین خوشه‌های و می‌باشد. همچنین، تعداد خوشه‌های موجود در افراز می‌باشد. در این روش برای محاسبه پایداری خوشه از رابطه 2-30 استفاده می‌کنیم [8, 67].
(2-30)
در رابطه 2-30 پارامتر نشان‌دهنده j-امین افراز از مجموعه مرجع است و تعداد کل افرازها است [8, 67]. از آنجایی که این معیار برای ارزیابی شباهت یک خوشه است می‌توان هم برای ارزیابی خوشه و هم برای ارزیابی افراز استفاده کرد. جهت استفاده از این معیار برای ارزیابی یک افراز کافی است آن را برای تک‌تک خوشه‌های آن افراز استفاده کنیم و در نهایت از کل مقادیر میانگین بگیریم.
2-۳. خوشه‌بندی ترکیبیکلمه’Ensemble‘ ریشه فرانسوی دارد و به معنی باهم بودن یا در یک زمان می‌باشد و معمولاً اشاره به واحدها و یا گروه‌های مکملی دارد که باهم در اجرای یک کار واحد همکاری می‌کنند. ترکیب تاریخ طولانی در دنیای واقعی دارد، نظریه هیئت‌منصفه ی کندورست که در سال 1785 میلادی مطرح شده است و این ایده را مطرح می‌کند که، احتمال نسبی درستی نظر گروهی از افراد (رأی اکثریت) بیشتر از نظر هر یک از افراد به تنهایی می‌باشد را می‌توان دلیلی برای ترکیب نتایج در دنیای واقعی دانست [10, 27]. خوشه‌بندی ترکیبی روشی جدید در خوشه‌بندی می‌باشد که از ترکیب نتایج روش‌های خوشه‌بندی متفاوت به دست می‌آید از آنجایی که اکثر روش‌های خوشه‌بندی پایه روی جنبه‌های خاصی از داده‌ها تاکید می‌کنند، در نتیجه روی مجموعه داده‌های خاصی کارآمد می‌باشند. به همین دلیل، نیازمند روش‌هایی هستیم که بتواند با استفاده از ترکیب این الگوریتم‌ها و گرفتن نقاط قوت هر یک، نتایج بهینه‌تری را تولید کند. هدف اصلی خوشه‌بندی ترکیبی جستجوی نتایج بهتر و مستحکم‌تر، با استفاده از ترکیب اطلاعات و نتایج حاصل از چندین خوشه‌بندی اولیه است [18, 54]. خوشه‌بندی ترکیبی می‌تواند جواب‌های بهتری از نظر استحکام، نو بودن، پایداری و انعطاف‌پذیری نسبت به روش‌های پایه ارائه دهد [3, 21, 54, 57]. به طور خلاصه خوشه‌بندی ترکیبی شامل دو مرحله اصلی زیر می‌باشد : [34, 54]
1- تولید نتایج متفاوت از خوشه‌بندی‌ها، به عنوان نتایج خوشه‌بندی اولیه بر اساس اعمال روش‌های مختلف که این مرحله را، مرحله ایجاد تنوع یا پراکندگی می‌نامند.
2- ترکیب نتایج به دست آمده از خوشه‌بندی‌های متفاوت اولیه برای تولید خوشه نهایی؛ که این کار توسط تابع توافقی (الگوریتم ترکیب‌کننده) انجام می‌شود.
2-۳-1. ایجاد تنوع در خوشه‌بندی ترکیبیدر خوشه‌بندی ترکیبی، هرچه خوشه‌بندی‌های اولیه نتایج متفاوت تری ارائه دهند نتیجه نهایی بهتری حاصل می‌شود. در واقع هرچه داده‌ها از جنبه‌های متفاوت‌تری مطالعه و بررسی شوند (تشخیص الگوهای پنهان داده) نتیجه نهایی که از ترکیب این نتایج حاصل می‌شود متعاقباً دارای دقت بالاتری خواهد بود که این امر منجر به کشف دانش ضمنی پنهان در داده نیز خواهد شد. تنوع در این بخش به این معنا می‌باشد که با استفاده از روش‌های متفاوت مجموعه داده را از دیدگاه‌های گوناگونی مورد بررسی قرار دهیم. در این فصل برای ایجاد پراکندگی در بین نتایج حاصل چند راه‌کار مختلف پیشنهاد می‌کنیم و به بررسی مطالعات انجام‌شده در هر یک از آن‌ها می‌پردازیم. راه‌های مختلفی برای ایجاد پراکندگی در خوشه‌بندی ترکیبی وجود دارد که عبارت‌اند از:
استفاده از الگوریتم‌های متفاوت خوشه‌بندی.
تغییر مقادیر اولیه و یا سایر پارامترهای الگوریتم خوشه‌بندی انتخاب‌شده.
انتخاب بعضی از ویژگی داده‌ها یا ایجاد ویژگی‌های جدید.
تقسیم‌بندی داده‌های اصلی به زیرمجموعه‌هایی متفاوت و مجزا.

–409

آیا تراکم درختچه‌های بادام کوهی در یال‌ها بیش‌تر از درهها است؟
1-4- اهداف بررسی شرایط رویشگاهی گونه بادام کوهی در ذخیرهگاه جنگلی کلم شهرستان بدره
تعیین مشخصه‌های کمی و کیفی درختچه بادام کوهی ذخیرهگاه جنگلی کلم شهرستان بدره
1-5- تعاریف و کلیات1- پوشش گیاهی
پوشش گیاهی عبارت از انواع درختان، بوته‌ها و علوفه و چمن و سبزی که در سطح زمین استقرار می‌یابد به عبارتی هرگونه سرسبزی در سطح زمین را سطح پوشش گیاهی نامند (‌جنگل، مرتع، زراعت) فقدان پوشش گیاهی در سطح زمین از عوامل عمده تخریب سطح خاک توسط باران می‌باشد. پوشش گیاهی مانعی است در مقابل باران که به سطح خاک برخورد می‌نماید. برخورد باران به سطح خاک باعث جابجایی خاکدانه‌ها و فرسایش خاک می‌شود. فرسایش خاک حاصلخیز فقر پوشش و نابودی آن‌را در پی دارد‌. عدم وجود پوشش گیاهی نیز نابودی خاک را در پی دارد. به عبارتی پوشش گیاهی و خاک برای حفظ خود مکمل یکدیگرند‌. عدم وجود یکی باعث نابودی دیگری می‌شود. این ارتباط حیاتی به حیات بشر و موجودات زنده ارتباط دارد.
2- اُت اکولوژی
الف) مطالعه و شناخت روابط و چگونگی رفتار جمعیت یک گونه در رویشگاه و تعامل با اجزاء آن است، که در مدیریت علمی رویشگاه‌‌های یک گونه به منظور حفظ، احیاء و اصلاح آنها حائز اهمیت می‌باشد (مهاجر 1385).
ب) شاخه‌ای از علم اکولوژی که روابط بین یک ارگانیسم یا گونه را با محیط زنده و غیر زنده (رویشگاه آن) مورد مطالعه قرار میدهد.
3- رویشگاه
مجموعه عوامل اقلیمی، خاکی و پستی بلندی که در یک محل وجود دارد و شرایط لازم و کافی را برای استقرار و رشد و توسعه درختان بوجود میآورد. رویشگاه مترادف پایگاه به کار برده میشود (مهاجر 1385).
4- شرایط اکولوژیکی
دامنه پراکنش گونه‌‌های درختی در جنگل‌‌های زاگرس متفاوت بوده و هر گونه دارای نیاز رویشگاهی خاصی می‌باشد. در منطقه اکولوژیک زاگرس گونه‌‌های مختلفی انتشار دارند که در فرم‌‌های مختلف زمین، در جهت‌‌های جغرافیایی مختلف، در ارتفاعات مختلف از سطح دریا، بر روی خاک‌‌های مختلف با خصوصیات فیزیکی و شیمیایی مختلف دارای گسترش‌گاه ویژه‌ای هستند (زهره‌وندی و همکاران 1390).
5- ذخیرهگاه جنگلی
ذخیره‌گاه جنگلی عرصه‌ای جنگلی است که به دلایل اکولوژیک و یا دخالت‌‌های انسانی دچار آسیب شده و با خطر انقراض یک یا چند گونه جنگلی روبه رو است. با توجه به این که چنین پدید‌های نابودی تنوع زیستی را در زیست کره به دنبال خواهد داشت لازم است با هدف جلوگیری از چنین اتفاقی، برنام‌های را برای حفاظت از این مناطق و به منظور استمرار زادآوری اجرا کرد.
6- بادام کوهی
پراکنش جنس بادام از نظر تقسیم بندی‌های جغرافیای گیاهی در منطقه ایرانوـ تورانی است و از حوزه دریای مدیترانه تا آسیا گسترش دارد. پراکنش اصلی آن در جنوب غرب آسیا و خاورمیانه است؛ اما تعداد بسیار کمی از گونه‌ها در چین و مغولستان وهمین طور جنوب شرق اروپا رویش دارند. بررسی‌های تکاملی نشان داده است که تکامل بادام در مناطق استپی خشک، بیابان‌ها و مناطق کوهستانی تحت شرایط سخت صورت پذیرفته و این جنس با زیسگاه‌های خشک و نیمه خشک سازگار شده است. بادام در ارتفاعات و بر روی دامنه‌‌های صخره ای، سنگی، سنگریزه‌ای و یا بستر‌های شنی یا رسی رشد می‌کند. این جنس نیازمند مناطق نورگیر باز است و هم چنین در استپ‌ها و استپ ـ جنگل‌ها می‌روید.
جنس Amygdalus به خانواده Rosaceae گل سرخیان تعلق دارد. در حال حاضر این تیره تقریباً دارای 90 جنس و 3000 گونه می‌باشد و در ایران دارای 4 زیرتیره، 30 جنس و تقریباً 27 گونه و 7 طایفه است. بادام کوهی درختچه‌ای است خاردار شاخه‌‌های آن در ابتدا صاف و قهوه‌ای روشن است پس از چندی رنگ آن به خاکستری روشن یا تیره تبدیل می‌شود. گل بادام روی شاخه‌‌های یکساله به صورت جانبی و انفرادی پدیدار می‌شود. گسترش اصلی جنس بادام در منطقه ایرانی- تورانی است و معمولاً در نواحی جنوب غربی آسیا پراکنده اند. گونه‌‌های بادام در شرایط متفاوتی از جمله در شیب جنوبی رشته کوه‌‌های البرز تا شیب شمالی کوه‌های مکران در جنوب ایران گسترش دارد و رشد می‌کند (وفادار و دیگران 2008). گونه A. arabica در غرب ایران پراکنده است که دارای شاخه‌های شیاردار و دمبرگ 7 میلی‌متری است. این گونه به دلیل اهمیت اقتصادی، دارویی و کشاورزی از زمان‌‌های بسیار دور مورد توجه بوده و در برابر فرسایش از خاک نگهداری می‌کنند و به دلیل وجود اسید‌های چرب غیراشباع و آمیگدالین مصارف دارویی بالایی دارد (شنگ مین 2003).
بلندی درخت بادام به 6 ‌تا10 متر می‌رسد. ریشه آن قوی است و به طور عمودی تا 3 متر در زمین فرو می‌رود و به همین دلیل نسبت به خشکی و کم‌آبی مقاوم است. تنه درختان بادام در جوانی به رنگ خاکستری شفاف و صاف که به‌ تدریج رنگ آن تیره‌تر می‌شود. برگ بادام کشیده و نوک‌تیز و چرمی و کلفت است و بنابراین در هوای گرم و خشک مقاوم است.
از نظر اکولوژیکی، دما مهم‌ترین فاکتور اقلیمی برای گونه بادام است. بادام برای جوانه زنی یکنواخت در بهار، به سرمای زمستانه متوسطی نیاز دارد. درخت بادام سرمای زمستان را در حد متوسطی تحمل می‌کند ولی به علت زود باز شدن گل‌‌های آن تحمل این درخت نسبت به سرمای بهاره کمتر است. نیاز سرمایی برای باز شدن عادی جوانه‌ها بسته به نوع دما متفاوت بوده و از 100 تا 700 ساعت پائین‌تر از 2/7 درجه سانتی‌گراد متغیر است. خواب جوانه‌ها به علت وجود غلظت زیاد قند در آنها می‌باشد. درخت بادام سرمای زمستانه را تا 20- درجه سانتی گراد تحمل می‌کند. در صورتی که سرما بیش از این حد باشد و سرد شدن هوا نیز به تدریج صورت گرفته باشد، درخت بادام مقاومت بیش‌تری به سرما خواهد داشت. عامل محدود کننده کاشت بادام سرمای بهاره بخصوص در زمان گل یا بلافاصله پس از تشکیل میوه است. شیب‌های جنوبی برای کاشت بادام خیلی مطلوب است و زمین‌های هموار نیز در صورتی که دارای هوای ملایمی باشند می‌توانند مورد استفاده قرار گیرد. در مناطقی که سرمای بهاره متداول است باید از ارقام دیر گلده استفاده شود. بنابراین نسبت به سرمای دیررس بهاره بسیار حساس هستند بادام برای رساندن میوه خود نیاز به 8-6 ماه فصل رشد دارد و در تابستان خواهان هوای گرم و خشک می‌باشد و در مناطقی که متوسط بارندگی کمتر از 250 میلی‌لیتر در سال دارد، به خوبی رشد می‌کند (خاتم‌ساز 1371).
مناسب‌‌ترین خاک برای بادام خاک‌‌های لومی می‌باشند، اما با توجه به این‌که درختان بادام اغلب در خاک‌‌های غیر حاصلخیز کاشته می‌شوند، بنابراین قبل از کاشت برای تعیین میزان کمبود مواد غذایی باید تجزیه خاک صورت گیرد. تجزیه برگی نیز برای تشخیص مقدار و نوع عناصر غذایی خاک مفید است.
درخت بادام بی برگ در جنگل‌‌های زاگرسی به عنوان گونه پرستار و پیش‌آهنگ شناخته شده و یکی از مقاوم‌‌ترین درختان به خشکی و گرما در میان درختان و درختچه‌‌های جنگلی شناخته می‌شود. با توجه به اینکه کشور ما یکی از کشور‌های دارای آب و هوای خشک بوده و کمبود آب در کشاورزی و باغبانی مطرح می‌باشد توسعه‌ی کشت و کار گونه‌‌های مختلف بادام در مناطق مناسب ضروری می‌نماید (شکل 1-1).

شکل 1-1- نمایی از درختچه بادام کوهی در منطقه مورد مطالعه (ذخیره‌گاه بادام کلم بدره)7- تیپ‌های گیاهی منطقه
الف) تیپ Amygdalus arabica- Annual grasses
این تیپ در شیب شمالی منطقه در محدوده طول شرقی 25. 1 54 46 تا 22. 2 59 46 و عرض شمالی 6. 5 2233 تا 15. 2 24 33 واقع شده است. به علت شرایط اکولوژیکی و فشار چرای دام، گرایش پوشش گیاهی منطقه منفی است. گونه‌های علفی منطقه مورد مطالعه نیز شامل گراس و فورب یکساله می‌باشند و گیاهان بوته‌ای به صورت محدود وجود دارند. خاک این تیپ عمیق و دارای املاح گچ و آهک و مارن می‌باشد. بافت خاک متوسط تا سنگین دارای ساختمان توده‌ای، مقدار خلل و فرج متوسط با تعداد زیاد و ریشه‌های ریز با تعداد متوسط واکنش در برابر HCL زیاد، هدایت الکتریکی 74/0 دسی‌زیمنس بر متر و اسیدیته آن برابر 78/7 می‌باشد. از نظر پایداری خاکدانه‌ها بسیار سخت و درصد اشباع آن برابر 48 درصد و مقدار کربنات کلسیم در این افق 48 درصد است. میزان لاشبرگ 5 درصد می‌باشد و در این تیپ 29 درصد سنگریزه دیده می‌شود میزان خاک لخت 1/31 درصد می‌باشد. پوشش گیاهی در این تیپ دارای 5/9 درصد تاج پوشش می‌باشد. لیست گیاهان موجود در این تیپ در جدول1-1 ارائه شده است.
جدول 1-1- لیست گیاهان شناسایی شده در تیپ Amygdalusarabica- Annual grassesردیف نام فارسی نام علمی خانواده شکل زیستی
1 گاوزبان خارک‌دار Anchusa strigosa Labill Boraginaceae He
2 گون Astragalu neomozafarina ina Papilionaceae Ch
3 بارهنگ Plantago psylium Plantaginaceae He
4 دانه تسبیح Aegilo pscrassa Gramineae Th
5 جو هرز (قلطاس) Hordeum glaucum Gramineae Th
6 بادامک Amygdalus lycioides Rosaceae Ph
7 گلرنگ زرد Carthamus oxycanthalis Compositae Th
8 شکر تیغال مشهدی Echinops ritroides Bunge Compositae He
9 دگر گل گندمی Hetheranthelium piliferum Gramineae Th
10 زنگوله ای شرقی Onosma heliotropium Boraginaceae He
11 سدابی زگیل دار Haplophylumtuberculatum Rutaceae He
12 طوسک ایتالیایی Scabiosa rotate Dipsacaceae Th
13 ترشک Rumexephedroides Polygonaceae Th
14 بهمن Stipa capensis Thunb Gramineae Th
15 ختمی Alceaaucheri Malvaceae He
16 سوزن چوپان Erodium ciconium Geraniceae Th
17 بادام کوهی Amygdalus Arabica olive Rosaceae Ph
18 خنجوک Pistachia khinjuk Anacardiaceae Ph
19 چچم شکننده Loliumrigidum Gramineae Th
20 شبدر Trifolium campester Papilionaceae Th
21 شکر تیغال Echinopsritroides Compositae He
22 گوش بره Phlomis persica Bioss Labiatae He
23 کنگر Gundelia tournefortii Compositae He
24 علف جارو Bromus danthonia Gramineae Th
25 جارو علفی بامی Bromus tectorum Gramineae Th
26 مریم گلی Salvia bracteata Labiatae He
27 گچ دوست Gypsophila pallida Caryophyllaceae He
28 بله جی جی Astragalus fasciculifolius Papilionaceae Ch
شکل زیستی: تروفیت :Th، همیکریپتوفیت :He، کامفیت :Ch، فانروفیتPh
ب) تیپ Quercus brantii- Amygdalus arabica
این تیپ در قسمت شمال غربی منطقه قرار گرفته است و در بین طول شرقی 2. 2 53 46 تا 28. 6 57 46 و عرض شمالی 16. 9 21 33 تا 36 23 33 واقع شده است. این تیپ دارای شیب زیاد و عمق خاک کم تا متوسط بوده و سنگ بستر در بعضی قسمت‌‌های آن نمایان شده است. پوشش گیاهی درختی بیش‌تر از نوع بلوط ایرانی همراه با پایه‌‌های پراکند‌های از بنه است. بافت خاک متوسط تا سنگین دارای ساختمان توده‌ای، مقدار خلل و فرج زیاد با اندازه متوسط و بدون ریشه و واکنش در برابر HCL زیاد، هدایت الکتریکی 76/0 دسی‌زیمنس بر متر و اسیدیته آن برابر 65/7 می‌باشد. از نظر پایداری خاکدانه‌ها سخت و درصد اشباع آن برابر 2/32 درصد و مقدار کربنات کلسیم در این افق 5/68 درصد است. میزان لاشبرگ 5 درصد می‌باشد و در این افق 7/26 درصد سنگریزه دیده می‌شود و خاک لخت 35 درصدد می‌باشد. درصد پوشش گیاهی این تیپ 49/20 درصد می‌باشد.
جدول 1-2 لیست گیاهان شناسایی شده در AmygdalusarabicQuercusbrantii-ردیف نام فارسی نام علمی خانواده شکل زیستی
1 جارو علفی هرز Bromus danthonia Gramineae Th
2 گلرنگ زرد Carthamu soxycanthalis Compositae Th
3 جاشیر Ferulago macrocarpa Umbelliferae He
4 بابونه Anthemis altissima Compositae Th
5 کنگر Gundeliatournefortii Compositae He
6 دانه گنجشکی Helianthemum salisifolim Cistaceae Th
7 شیرپنیر موئین Galium setaceum Rosaceae Th
8 دم روباهک Lophocloaphleoides Gramineae Th
9 خشخاش هرز Papaverdubium Papaveraceae Th
10 لعل کوهستان Olivier adecombens Umbelliferae Th
11 بادام کوهی Amygdalus arabica Rosaceae Ph
12 دانه تسبیح Aegilopscrassa Gramineae Th
13 جو وحشی Hordeum glaucum Gramineae Th
14 طوسک ایتالیایی Scabiosa rotate Dipsacaceae Th
15 بارهنگ کتانی Plantago psyllium Plantaginaceae He
16 بلوط ایرانی Quercus brantii Fagaceae Ph
17 شکر تیغال Echinopsritroides Compositae He
18 بله جی جی Astragalus fasciculifolius Papilionaceae Ch
19 زوال Eryngium billardieri Umbelliferae He
20 شبدر Trifolium campester Papilionaceae Th
شکل زیستی: تروفیت :Th، ژئوفیت :GE، همیکریپتوفیت :He، کامفیت :Ch، فانروفیتPh
8- خواص دارویی
بادام ملین بوده و روغن بادام ضد یبوست است مخصوصاً می‌توان از روغن بادام رفع یبوست بچه‌ها استفاده کرد.
بادام برای درمان زخم روده‌ها و مثانه و اسهال مفید است.
بادام تقویت کننده نیروی جنسی است و تولید اسپرم را زیاد می‌کند، بادام آسیاب شده و با عسل مخلوط شده، برای درد کبد و سرفه مفید است.
شکوفه بادام را دم نموده و به عنوان مسهل برای اطفال می‌توان استفاده کرد.
دم کرده پوست قهوه‌ای رنگ مغز بادام بهترین دارو برای تسکین درد و التهاب مجاری تنفسی است.
روغن بادام خواب آور است و بی خوابی را از بین می برد.
مالیدن روغن بادام برروی پوست التهاب را رفع کرده و سوختگی را درمان می‌کند.
ریشه درخت بادام برای درمان انواع دردها مفید است و برای پاک کردن طحال، کلیه و دفع کرم رود به کار می رود.
1-6- جمع بندی و جنبه جدید بودن و نوآوری در تحقیقبا توجه به گسترش رویشگاهی وسیع گونه بادام کوهی در کشور متاسفانه در ارتباط با بررسی رویشگاهی این گونه تحقیقات در داخل کشور اندک می‌باشد و بجز چند توده بادام کوهی در استان‌های کرمان و چهارمحال بختیاری در دیگر مناطق مطالعه جامعی صورت نگرفته است. در استان ایلام گونه درختچه‌ای بادام کوهی منطقه کلم شهرستان بدره به عنوان ذخیره‌گاه از سوی سازمان جنگل‌ها، مرتع و آبخیزداری کشور معرفی شده است که تاکنون هیچگونه مطالعه‌ای در مورد بررسی خصوصیات رویشگاهی آن صورت نگرفته است. به همین دلیل و به منظور شناخت و کسب اطلاعات و نیز به دلیل اینکه این گونه از گونه‌هایی با ارزش ژنتیکی و اقتصادی بالاست و رویشگاه آن در استان به عنوان ذخیرهگاه معرفی شده است، مطالعات در خصوص این گونه ضروری احساس شده و هدف این مطالعه نیز بررسی شرایط رویشگاهی گونه بادام کوهی ذخیرهگاه جنگلی کلم بدره می‌باشد.

فصل دوممروری بر ادبیات و پیشینه تحقیق1903095284480000
2-1- مرور منابع2-1-1- بررسی پژوهش‌های انجام شده در داخل کشورپیری (1391)، مطالعه شرایط رویشگاهی لرگ در دره لارت شهرستان بدره استان ایلام پرداخت عرصه تحت پوشش توده لرگ پس از ثبت موقعیت تمام پایه های لرگ در، آماربرداری صدرصد از مشخصه های کمی و کیفی انجام شد خاک منطقه دارای بافت رسی – لومی تا شنی – رسی – لومی با میانگین اسیدیته برابر 34/7 بوده است نتایج نشان داد که حداقل و حداکثر قطر پایه ها به ترتیب 7 و 91 سانتی متر بوده حداقل و حداکثر ارتفاع درختان بترتیب5/0 و20 متر می باشد میانگین ارتفاع درختان به روش لوری 34/14 متر محاسبه گردید تجدید حیات درختان به طور متوسط برابر 5/770 اصله در هکتار و جنگل ناهمسال و نامنظم می باشد.
قربانی (1391)، بررسی برخی از خصوصیات اکولوژی گونه مورد را در سه ذخیره گاه جنگلی تنوره آبدانان، زرآب زرین آباد، و روستای مورد از توابع بخش چوار در استان ایلام پرداخت نتایج نشان داد که محدوده ارتفاعی مورد بین 826 تا 1100 متر ارتفاع از سطح دریا بوده و بیشترین پارامتر ارتفاع و قطر به ترتیب 02/3، 88/3 مربوط به ذخیره گاه زرین آباد از نظر پارامتر شادابی و تعداد زادآوری ذخیرگاه چوار اختلاف معنی داری نسبت به دو ذخیرگاه دیگر می باشد . خاک رویشگاه چوار سیلتی – لومی و دو رویشگاه دیگر رسی – لومی بوده . نتایج همبستگی بین متغیرها نشان داد که در هر سه رویشگاه بین قطر تاج و ارتفاع پایه ها همبستگی مثبت وجود دارد . در رویشگاه چوار زاداوری درختان با میزان کربن آلی و پتاسیم خاک دارای همبستگی مثبت و دررویشگاه آبدانان بین ارتفاع پایه ها و میزان اسیدیته خاک همبستگی منفی بسیار قوی وجود دارد .
گودرزی و همکاران (1391)، در تحقیقی تأثیر فیزیوگرافی و برخی خصوصیات فیزیکی و شیمیایی خاک را بر روی پراکنش گونه بادامک در چهار منطقه از استان مرکزی مورد مطالعه قرار دادند. در این پژوهش پس از جنگل گردشی و بررسی مقدماتی منطقه و با توجه به متغیر‌هایی مانند جهت جغرافیایی، ارتفاع از سطح دریا و شیب اقدام به پیاده نمودن 61 قطعه با استفاده از دستگاه GPS در چهار منطقه جلایر ساوه، نیمور محلات، جفتان تفرش و سرآبادان تفرش گردید. نتایج به دست آمده از آزمون تجزیه واریانس یک طرفه نشان داد که بیش‌‌ترین ارتفاع از سطح دریا، شیب، آهک، هدایت الکتریکی و فسفر در منطقه نیمور محلات، بیش‌‌ترین مقدار درصد شن و سطح مقطع تاج در هکتار در مناطق جلایر ساوه و سرآبادان تفرش، بیش‌‌ترین تعداد درخت در هکتار در منطقه سرآبادان تفرش و کم ‌ترین ارتفاع از سطح دریا و سیلت در منطقه جلایر ساوه وجود دارد. همچنین تحلیل مولفه‌‌های اصلی بیانگر آن است که همه مشخصه‌‌های رویشی در جهت مثبت محور اول پراکنده شدهاند. منطقه جلایر ساوه بیش ‌ترین همبستگی مثبت را با محور اول و نیمور محلات با محور دوم نشان می‌دهد. در ربع اول و در مناطق سرآبادان و جلایر ساوه درصد شن و ازت کل و در ربع دوم و در منطقه نیمور محلات ارتفاع از سطح دریا، شیب و فسفر و در ربع چهارم و در منطقه جفتان تفرش کربن آلی از مهم ‌ترین عوامل تأثیرگذار بر پراکنش بادامک میباشند.
صیادی و همکاران (1391)، در مطالعه خود به بررسی اثر توپوگرافی و خصوصیات خاک بر خصوصیات کمی و کیفی بادام کوهی در ذخیرهگاه رحمت آباد شهرستان آبیک استان قزوین پرداختند. آماربرداری از پایه‌‌های بادام کوهی و ثبت مشخصات کمی و کیفی به صورت صد در صد انجام گرفت. مشخصه‌های مورد نظر از لحاظ جنگل‌شناسی شامل تعداد درختان، ارتفاع کامل، قطر متوسط تاج، قطر یقه (مجموع جست‌‌های تشکیل دهنده تنه) و مشخصه‌های کیفی شامل فرم تنه، وضعیت شادابی و سلامت تاج، سلامت تنه، انحنا و پیچیدگی تنه مورد سنجش قرار گرفت. برداشت نمونه‌های خاک از عمق 20-0 سانتیمتری به صورت انتخابی، در نقاطی که وضعیت پوشش گیاهی و توپوگرافی به طور واضحی تغییر می‌کرد با در نظر گرفتن قطعه نمونه‌‌هایی صورت گرفت. نتایج تحقیق نشان داد که بین تعداد پایه در هکتار بادام و ارتفاع از سطح دریا، شیب و جهت اختلاف معنیداری وجود دارد. همچنین در این تحقیق معلوم شد که از بین خصوصیات فیزیکی خاک تنها درصد سنگریزه و درصد تخلخل با برخی از خصوصیات کمی بادام کوهی همبستگی دارد.
میرآزادی و همکاران (1391)، تحقیقی را در ارتباط با بررسی وضعیت رویشگاه‌‌های طبیعی درختچه مورد در استان لرستان و چگونگی حفاظت از آنها انجام دادند. هدف از پژوهش آنها بررسی رویشگاه‌‌های درختچه مورد در استان لرستان و بررسی میزان تخریب این رویشگاه‌ها بود، به این منظور 31 رویشگاه عمده این درختچه در استان لرستان شناسایی گردید و پس از مراجعه به این مناطق ویژگی‌های رویشگاهی و خاکی آنها مورد اندازهگیری قرار گرفت، نتایج این تحقیق نشان داد که رویشگاه‌‌های مورد در استان لرستان به شدت تخریب یافته بوده و روند نزولی و قهقرایی طی میکنند، با توجه به نتایج به دست آمده این محققان آنچه بیش از هر عامل دیگری امروزه در زمینه حفظ منابع طبیعی به ویژه در سطح ملی می‌تواند تأثیرات مثبت داشته باشد، افزایش معرفت و آگاهی جامعه در زمینه منابع طبیعی و شناخت مسایل و مشکلات زیست محیطی است.
فیروزبخت و همکاران (1391)، مطالعه‌ای را تحت عنوان ارزیابی و تعیین شرایط رویشگاهی بنه atlantica Pistacia در جنگل‌‌های زاگرس مرکزی انجام دادند. در این تحقیق خصوصیات گیاه شناسی، اقلیمی، رویشگاهی، خاک شناسی، زمین شناسی، مورفولوژیک، فیزیولوژیک، جنگل‌شناسی و پوشش‌های همراه بنه در زاگرس مرکزی و ایران مورد بررسی و مطالعه قرارگرفت. همچنین اهمیت جنگل‌‌های بنه در اکوسیستم زاگرس مورد نقد قرارگرفته و یکسری پیشنهادها برای حفظ جنگل‌‌های بنه ارائه گردیده است.
توکلی نکو و همکاران (1390)، در بررسی رویشگاه‌‌های بادامک در استان قم دریافتند که تراکم درختچه‌‌های بادامک در دامنه‌ها بیش‌تر است. از نظر ارتفاع، قطر تاج، مساحت تاج پوشش و مساحت تاج پوشش در واحد سطح، درختچه‌های موجود در درهها وضعیت بهتری داشتند و مقادیر آن برای دامنه بیش‌تر از یال‌ها بود. از نظر رشد سالانه درختچه‌ها، با اندازه‌گیری فاصله میان گره‌ها و محاسبه رشد طولی شاخه در سال جاری، بیش‌‌ترین مقادیر در دره‌ها و پس از آن در دامنه‌ها و یال‌ها مشاهده شد. همچنین جهت جغرافیایی نقش مهمی در پراکنش بادامک نشان داد، به طوری که بیش‌‌ترین تراکم درختچه‌ها در شیب‌‌های جنوبی و شرقی و کم‌ترین مقدار آن در شیب‌‌های شمالی و غربی مشاهده گردید. همچنین از دیگر عوامل موثر بر پراکنش بادامک شرایط خاک و به ویژه بافت خاک بود که در مواردی که خاک با بافت متوسط تا سبک همراه با سنگریزه وجود داشت، تراکم درختچه‌‌های بادامک بیش‌‌ترین مقدار بود.
رجبی نوفاب (1390)، در پایاننامه کارشناسی ارشد خود به برآورد ترسیب کربن در دو گیاه بادام کوهی و مو و بررسی امکان واسنجی مدل‌های ترسیب کربن (مطالعه موردی ایستگاه حسین آباد استان فارس) پرداخت و نتایج وی نشان داد که مقدار کربن آلی ترسیب شده در خاک تحت درختچه‌های بادامکوهی و مو به ترتیب 1/354 و 4/227 تن در هکتار است. هدایت الکتریکی از مهم‌ترین عوامل خاکی تأثیرگذار بر میزان کربن آلی خاک در درختچه بادام است در حالی که در گونه مو اسیدیته از جمله فاکتور‌های مهم تأثیرگذار بر میزان ترسیب کربن است. همچنین بیان کردند که با توجه به نتایج این تحقیق، ضروری به نظر میرسد اقدامات لازم در جهت افزایش پتانسیل ترسیب کربن در عرصه‌های مختلف کشور انجام گیرد تا قدمی در راستای کاهش غلظت کربن در جو به منظور کاهش تغییر اقلیم برداشته شود.
روانبخش و همکاران (1389)، در مطالعه خود تحت عنوان بررسی کمی و کیفی ذخیرهگاه جنگلی ارس- شیرخشت اوشان در البرز مرکزی، نشان دادند که این توده دو تیپ جنگلی اصلی شیرخشت- ارس و شیر خشت – راناس دارد. گونه‌های این توده در اشکوب درختی شامل ارس، بنه، پلاخور و تا بوده و در اشکوب درختچه‌ای، شیرخشت، راناس، تنگرس، نسترن و زرشک دیده میشوند. توده دارای ساختار ناهمسال نامنظم بوده است. همچنین تجدید حیات توده در بخش انبوه 7 برابر بیش از بخش تنک است. شادابی و سلامت توده با رتبه دهی به 7 گونه اصلی، مورد بررسی قرار گرفت.
الوانینژاد (1387)، در مطالعه خود جهت بررسی عوامل مؤثر بر پراکنش گونه بادام کوهی در دو منطقه مختلف استان فارس دریافت که عامل جهت جغرافیایی نقش مهمی در پراکنش گونه بادام کوهی ایفا میکند به طوریکه این گونه بیش‌تر در جهت‌های جنوبی، شرقی و جنوب شرقی که آفتابگیر هستند ظاهر میشود. در منطقه دشت موک بیش‌‌ترین پراکنش مربوط به ارتفاع 2150-1900 متر و در منطقه دربک 1870-1600 می‌باشد. همچنین ایشان بیان کردند که از لحاظ آب و هوایی رویشگاه‌‌های بادام اغلب در مناطق نیمه خشک، مدیترانه ای گرم و خشک حتی مناطق مرطوب و خشک میتوانند مشاهده شوند.
سالاریان و همکاران (1387)، در بررسی نیاز رویشگاهی گونه بادامک در جنگل‌‌های زاگرس (استان چهارمحال و بختیاری) به این نتیجه رسیدند که جهت جغرافیایی عامل بسیار مهمی در پراکنش بادامک می‌باشد، به طوری که میانگین ارتفاع، تعداد جست، قطر یقه، قطر تاج و درصد تاج پوشش این گونه در جهت جنوبی بیش‌تر از جهت شمالی بوده است. همچنین طبقه ارتفاعی 1800 تا 1900 متر از سطح دریا بهترینمحدوده رویشی برای گونه بادامک در منطقه مورد مطالعه در استان چهارمحال و بختیاری است.
سهرابی و همکاران (1387) مطالعه‌ای تحت عنوان بررسی خصوصیات رویشگاهی و جنگل‌شناسی توده لرگ در استان لرستان انجام دادند. در بررسی به‌عمل آمده مشخص شد که شرایط اقلیمی رویشگاه لرگ در شول‌آباد نیمه‌مرطوب سرد و محل استقرار این توده تراس کوچک رودخانه‌ای با بافت خاک لومی رسی می‌باشد که به مرور زمان در اثر ته‌نشینی رسوبات آن به ‌وجود آمده است. درختان در حاشیه رودخانه دائمی مستقر شده‌اند و سنگ بستر آن دارای سازند آهکی است. حداقل و حداکثر قطر درختان لرگ به ‌ترتیب 2 و 128 سانتی‌متر، میانگین رویش قطری سالانه‌ درختان این توده برابر با 8/3 میلی‌متر و موجودی سرپا در توده مورد مطالعه برابر 5/389 سیلو در هکتار تعیین شد. حداکثر و حداقل ارتفاع درختان لرگ در رویشگاه به ترتیب 28 و 3/2 متر برآورد شد.
مهدی‌فر و ثاقب طالبی (1385)، مطالعه‌ای با عنوان بررسی مشخصات کمی کیفی و خصوصیات رویشگاهی دارمازو به منظور شناخت خصوصیات رویشگاهی گونه دارمازو انجام دادند. نتایج حاصل نشان می‌دهد که مساحت رویشگاه این گونه در منطقه 5751 هکتار بوده. پراکنش آن از ارتفاع 1200 تا 2400 متر از سطح دریا می‌باشد که در محدوده ارتفاعی 1200 تا 2000 متر از سطح دریا منطقه مورد مطالعه تشکیل تیپ داده و از 2000 تا 2400 متر به صورت پراکنده در منطقه حضور دارد. بافت خاک رویشگاه مورد مطالعه متوسط (لومی)، نسبتاً سنگین (لومی رسی) تا سنگین (رسی) می‌باشد و اسیدیته آنها از 4/7 تا 8 متغیر است که نشان دهنده‌ی آهکی بودن این خاک‌هامی‌باشد. ماده آلی در خاک نسبتاً خوب است. در مجموع جهت‌های شمالی و فرم‌های دره و دامنه در محدوده ارتفاعی 1200 تا 1600 متر بالاتر از سطح دریا رویشگاه‌‌های مناسبی از نظر خصوصیات کمی و کیفی درختان دارمازو هستند. از نظر خصوصیات کیفی نیز مشخص شد که بهترینوضعیت شاخه دهی (درختان بدون شاخه) در فرم دامنه (6/74 %) و در طبقه ارتفاعی 1200تا 1600 متر (7/73 %) قرار دارند.
رحمانی و همکاران (1382)، اثر تنش شوری بر رشد دو گونه وحشی و دو ژنوتیپ از گونه اهلی بادام را مورد مطالعه قرار دادند و دریافتند که طول و قطر نهال‌ها، وزن خشک برگ، ساقه و ریشه با افزایش شوری کاهش پیدا نمود. اثر شوری با سوختگی حاشیه برگ آغاز شده، بعد به داخل برگ توسعه یافته و در نهایت خشکی برگ و ریزش آنها را به دنبال داشت. غلظت بیش از 1200 میلیگرم در لیتر نمک در ابتدای رشد، سبب آسیب جدی و کاهش شدید رشد شده و در نهایت خشکی تمام ژنوتیپها را به دنبال داشت. در غلظت پایین نمک، بادام‌های اهلی رشد بیش‌تری نسبت به ژنوتیپ‌های وحشی داشته، ولی در غلظت 1200 میلیگرم در لیتر نمک، بادام لیسیوئیدس نسبت به ژنوتیپ‌های اهلی بادام رشد بیش‌تری نشان داد.
ایران نژاد پاریزی (1374)، در بررسی اکولوژیکی جوامع گیاهی گونه‌‌های طبیعی بادام در استان کرمان، مشخص کرد که گونه بادام کوهی بیش‌‌ترین پراکنش را در استان کرمان داشته است. این گونه در اغلب مناطق کوهستانی و تپه ماهوری این استان، با درجات انبوهی و فرم حیاتی مختلف دیده میشود.
2-1-2- بررسی پژوهش‌های انجام شده در خارج از کشوررئوستا و دیگران (2013) در برآورد میزان ترسیب کربن گونه بادامک (Amygdalus scoparia) به این نتیجه رسیدند که ارزش اقتصادی ترسیب کربن این گونه در هر هکتار 871/12 دلار امریکا می‌باشد و با توجه به ارزش اقتصادی این گونه از لحاظ حفاظت آب و خاک آن را برای پروژه‌های جنگل‌کاری در مناطق خشک و نیمه خشک پیشنهاد کردند.
دوگان و دیگران (2011) طی تحقیقی به مطالعه‌ تعیین بعضی از خصوصیات اکولوژیکی و اهمیت اقتصادی گونه پنج انگشت با نام علمی Vitex agnus-castus که یک گونه مدیترانه‌ای است و از گونه‌های همراه درختچه مورد می‌باشد، پرداختند. نتایج آنها نشان داد که این گونه در منطقه مورد مطالعه (ترکیه) در خاک‌های با بافت لومی و کمی قلیایی رشد میکند و مناطق با درصد کربنات کلسیم پائین، میزان مواد آلی بالا و خاک‌های غنی از نیتروژن و فسفات را ترجیح میدهد.
آرخی و دیگران (2010) در مطالعه خود گزارش کردند که ارتفاع از سطح دریا بر پراکنش گونه Amygdalus orientalis تأثیر گذار است.
گورتاپه و دیگران (2006) گسترشگاه و مناطق اکولوژیک 11 گونه بادام را مورد مطالعه قرار دادند و نشان دادند که جنس بادام در مناطق بین 7/39 و 36 درجه عرض جغرافیایی و بیش‌تر در دامنه‌های ارتفاعی 1100 تا 2300 متر از سطح دریا با خاک با بافت سبک و متوسط رشد میکند و بر اثر بهرهبرداری غیر اصولی، این جنس در معرض خطر قرار گرفته است.
خِرسات و دیگران (2006) بیان کردند که مقدار شوری بر مشخصه‌های کمی و کیفی بادامک تأثیر منفی داشته است که احتمالاً افزایش آن موجب افزایش خشکی محیط، افزایش فشار اسمزی محلول خاک، سمیت یونها، عدم امکان جذب آب از سوی ریشه‌ی گیاه و اختلال در جذب برخی از عناصر غذایی می‌شود.
بادانو و دیگران (2005) در تحقیق خود در ارتباط با بررسی تأثیر جهت دامنه بر روی الگوی پراکنش گونه بادام، نتیجه گرفتند که عوامل رویشی این گونه در جهت جنوبی وضعیت مناسب‌تری نسبت به جهت شمالی دارد.
فلامینی و دیگران (2004) طی مطالعه‌ای بیان کردند که رشد و عملکرد درختچه‌های مورد در اکوسیستمها تحت تأثیر عوامل مختلفی نظیر نوع گونه، اقلیم منطقه، نوع خاک، ارتفاع از سطح دریا و موقعیت جغرافیایی می‌باشد. ویژگی‌های مختلف خاک بر چگونگی رشد و نمو و نیز بر میزان مواد مؤثره این گونه تأثیر دارند. هر یک از این عوامل میتوانند تأثیر به سزایی بر کمیت و کیفیت محصول گیاهان داشته باشند.
اسمیت (1996) در پژوهش خود بیان میکند هر رویشگاهی که تنوع زیستی بیش‌تری داشته باشد، پایداری اکولوژیکی و حاصلخیزی بیش‌تری را خواهد داشت و یک اکوسیستم پایدار و پویا خواهد بود. و از بین مهم‌ترین عوامل تأثیرگذار بر تنوع یک رویشگاه می‌توان به عوامل مختلف خاکی و فیزیوگرافی اشاره کرد.
بروایس و زوهاری (1995) در تحقیقی بر روی 26 گونه مختلف بادام، ارتفاع از سطح دریا را به عنوان عامل محدودکننده پراکنش گونه‌های بادام معرفی کردند.
دنیسوف (1982) در بررسی پراکنش و تغییر پذیری بادام‌های وحشی در کشور آذربایجان بیان کرد که ارتفاع از سطح دریا به عنوان عامل محدود کننده در پراکنش این گونهها میتواند مد نظر قرار گیرد و دو فرم بوته‌ای در دامنه زانگ زوار در آذربایجان گزارش شده است که برای برنامه‌های اصلاح نژاد میتوان از آنها استفاده کرد.
آلبرجینا (1978) در مطالعه‌ای که در قسمت جنوب غربی سیسیل ایتالیا بر روی گونه بادام Amygdalus Webbii داشت، بیان میکند که این گونه بر روی انواع خاک‌های آهکی تا آتشفشانی رشد نموده و از نظر ارتفاعی در ارتفاع 900 متر از سطح دریا پراکنش دارد.

فصل سوممواد و روش‌ها1865630194246500
3-1- مواد و روش‌ها3-1-1- مواد3-1-1-1- رویشگاه زاگرسرویشگاه زاگرس بخش وسیعی از رشته کوه زاگرس را شامل می‌شود که از شمال‌غربی کشور یعنی شهرستان پیرانشهر در آذربایجان غربی شروع و تا حوالی شهرستان فیروزآباد در فارس امتداد می‌یابد و محدوده ای به طول 1300 و عرض متوسط 200 کیلومتر را می‌پوشاند. جنگل‌‌های زاگرس که تحت عنوان جنگل‌‌های نیمه خشک طبقه‌بندی شدند، با وسعت 5 میلیون هکتار، 40% کل جنگل‌‌های ایران را به خود اختصاص داده‌اند. این منطقه بیش‌‌ترین تأثیر را در تامین آب، حفظ خاک، تعدیل آب و هوا و تعدیل اقتصادی و اجتماعی در کل کشور دارد. از مهم‌‌ترین گونه‌‌های درختی و درختچه‌ای حوزه زاگرس می‌توان به گونه‌‌هایی از قبیل بلوط ایرانی، مازودار، ویول، کیکم، بنه، کلخونک، بادامک، داغداغان، دافنه، ارس و گلابی اشاره نمود.
3-1-1-2- زیست بوم استان ایلاماستان ایلام با حوضه جغرافیایی و سیاسی به ابعاد 20150 کیلومتر مربع، حدود 2/1 درصد از مساحت کشور را تشکیل داده است (شکل 3-1). این استان در غرب رشته کوه‌‌های زاگرس بین 4540 تا 4803 طول شرقی و 3203 تا 3402 عرض شمالی قرار گرفته است. شهر ایلام (مرکز استان) در قسمت شمالی استان و در فاصله 745 کیلومتری جنوب غربی تهران واقع شده است. این استان از جنوب به استان خوزستان و کشور عراق، از شرق با استان لرستان، از شمال و شمال غرب با استان کرمانشاه همسایه بوده و از سمت غرب دارای 425 کیلومتر مرز مشترک با کشور عراق است. حدود طبیعی این استان 220 کیلومتر طول و حدود 100 کیلومتر عرض دارد و از شمال به کوه قلاجه تا رود سیمره در شرق و از جنوب به رودخانه دویرج و از غرب به کشور عراق توسط سلسه جبال حمرین محدود شده است (سازمان جغرافیایی نیرو‌های مسلح 1386).
3-1-1-3- منطقه مورد مطالعهمنطقه مورد مطالعه بنام ذخیرهگاه بادام کلم در شهرستان بدره و در استان ایلام واقع شده و در تقسیم بندی کلی هیدرولوژی استان جزء حوزه آبریز سیمره می‌باشد. عرصه طرح ذخیره‌گاه بادام کلم به مساحت 64/63 هکتار در استان ایلام، شهرستان دره شهر، بخش بدره، دهستان دوستان و در غرب روستای کلم قرار گرفته و در محدوده جغرافیایی 33 درجه، 22 دقیقه و 41 ثانیه تا 33 درجه، 23دقیقه و 33 ثانیه عرض شمالی و 46 درجه، 53 دقیقه و4 ثانیه تا 46درجه، 55 دقیقه و 11ثانیه شرقی در استان ایلام واقع شده است (شکل 3-1). نوع گونه‌‌های جنگلی همراه در این رویشگاه شامل بادامک، زالزالک، بنه، بلوط ایرانی و انواع گونه‌‌های علفی یکساله و چند ساله شامل: انواع گون، جو دوسر – گلرنگ زرد- گوش بره – مریم نخودی-چچم – هندوانه ابوجهل و ... می‌باشد.
گونه اصلی و حفاظتی در این ذخیره‌گاه بادام کوهی (Amygdalus arabica) می‌باشد که دارای وضعیت ساختاری نسبتاٌ ناهمسال می‌باشد و زادآوری در این گونه به خوبی مشاهده میشود. حداقل و حداکثر ارتفاع از سطح دریا به ترتیب 900 و 1200 متر می‌باشد. در حاشیه ذخیره‌گاه دو روستای کلم بالا و پایین وجود دارد که سامان عرفی دامداران این دو روستا می‌باشد. با توجه به مشکلات اجتماعی و تقسیمات عرفی برخی تخلفات و تجاوز به عرصه در سال‌های ابتدایی وجود داشت که به مرور مرتفع گردید.

شکل 3-1- موقعیت منطقه مورد مطالعه در کشور، استان و شهرستان
3-1-1-4- اقلیمایستگاه هواشناسی ایلام طی دوره‌ی آماری (1392-1370) که متوسط بارندگی سالیانه در این منطقه 6/667 میلی‌متر بوده که از این میزان 1/20 درصد در فصل بهار، 1/0 درصد در فصل تابستان، 9/31 درصد در فصل پاییز و 9/47 درصد در فصل زمستان می‌باشد. بارندگی‌ها عمدتاً در فصل زمستان و بعد از آن در فصل پاییز و سپس بهار ‌تداوم دارند تابستان فصل خشک منطقه می‌باشد و از خرداد تا اواسط آبان‌ماه اوقات خشک سال هستند. بعلت ورود سامانه‌‌های بارش‌زا و ویژگی فصل بهار‌، عمدتاً بارش‌ها در این فصل رگباری بوده و به دلیل عدم پوشش‌گیاهی مناسب اکثراً سیلابی هستند‌. حداکثر مطلق دما که تا کنون در این ایستگاه به ثبت رسیده است 4/41 درجه سانتی‌گراد بوده است. میانگین دمای سالانه در ایستگاه فوق الذکر 8/16 درجه سانتیگراد می‌باشد. حداقل مطلق دمای ثبت شده در طول دوره آماری 6/13- درجه سانتی‌گراد بوده است. پایین‌‌ترین دما‌های ثبت شده در این ایستگاه مربوط به بهمن ماه می‌باشد یعنی بهمن ماه سرد‌ترین ماه سال است. اما گرم‌‌ترین ماه سال مرداد ماه بوده که حداکثر مطلق دما‌های ثبت شده مربوط به اواخر تیر ماه و مرداد ماه می‌باشد. این ایستگاه دارای 11روز یخبندان می‌باشد. روز یخبندان از نظر هواشناسی به روزی اطلاق می‌شود که حداقل دما صفر و کمتر از آن است. براین اساس در دوره آماری دما‌های صفر و زیر صفر استخراج و پس از بررسی ‌نهایی مشخص گردید، ایستگاه فوق‌الذکر به طور متوسط دارای 35 روز یخبندان است‌. یکی دیگر از پارامتر‌های اقلیمی میزان ساعات آفتابی در سال است. که میانگین آن در سال 2857 ساعت می‌باشد ابرناکی آسمان از دیگر پارامتر‌های اقلیمی است که مشخص کننده دمای زمین و انرژی رسیده به زمین می‌باشد و رابطه مستقیمی با میزان بارندگی دارد‌. به طور متوسط ایستگاه دارای 42 روز در سال ابرناکی است. از دیگر پارامتر‌های مورد بررسی رطوبت هوا است. رطوبت نسبی تأثیر بسزایی در اقلیم، پوشش گیاهی و غیره دارد‌. متوسط رطوبت در این ایستگاه 40 درصد بوده که متوسط حداکثر 55 و متوسط حداقل 25 درصد است. بیش‌‌ترین میزان رطوبت نسبی ماهانه در بهمن ماه با 62 درصد و کم‌ترین میزان رطوبت نسبی در مرداد ماه 19 درصد است. تبخیر از مهم‌ترین پارامتر‌های اقلیمی مخصوصاًدر مناطق خشک است. میزان متوسط تبخیر سالانه 2/1892 میلی متر است. بیش‌‌ترین مقدار تبخیر در تیرماه به میزان 5/367 میلی متر و کم‌ترین میزان 0 میلی متر در زمستان است. باد غالب در منطقه غربی و باد نایب غالب جنوب‌شرقی است. بررسی گلباد سالانه نشان می‌دهد که وزش‌‌های باد، بالای 2 متر بر ثانیه هستند. حداکثر بادی که تاکنون در منطقه به ثبت رسیده است 25 متر بر ثانیه بوده که از جنوب‌غرب به سمت شمال شرق وزش داشته است. جدول فراوانی باد سالانه نشان می‌دهد که بیش‌‌ترین بادها، بین 2 تا 4 متر بر ثانیه سرعت داشته است‌. در گلباد فروردین ماه مشاهده می‌شود که در این ماه باد غالب جنوبی و نایب غالب غربی است. در اردیبهشت ماه نیز باد غالب غربی و باد نایب غالب جنوب‌شرق است‌. در خردادماه‌ تا مهر‌ماه غالب غربی و نایب غالب شمال‌غربی است. اما در آبانماه باد غالب غربی و نایب غالب جنوب‌شرقی است. در آذرماه تا اسفند ماه باد غالب جنوب‌شرقی و باد نایب غالب شرقی است‌. محاسبه فرمول‌‌های مربوط به تعیین اقلیم نشان می‌دهد در روش آمبرژه نوع اقلیم مرطوب معتدل و در روش دومارتن نوع اقلیم نیمه مرطوب است. در روش گوسن (آمبروترمیک) فصل خشک منطقه از اواسط اردیبهشت ماه آغاز و تا اواسط مهر‌ماه ادامه دارد (شکل 3-2). یعنی تقریباً 5 ماه از سال منحنی درجه حرارت در بالای منحنی بارندگی قرار دارد و فقط 5 ماه از سال فصل مرطوب منطقه محسوب می‌شود.
شکل 3-2- آمبروترمیک حوزه کلم (ایستگاه هواشناسی ایلام طی دوره‌ی آماری 1392-1370)3-1-1-5- زمین‌شناسیذخیرهگاه کلم شهرستان بدره در زون ساختاری زاگرس چین خورده قرار می‌گیرد. عمده سنگ‌‌های منطقه را، واحدهای آهکی و شیلی مربوط به مزوزوییک و سنوزوییک تشکیل داده‌اند. سازند گچساران با لیتولوژی انیدریت و مارن و میان لایه آهکی بیش‌ترین وسعت را در منطقه دارد. سایر واحدهای سنگی موجود در حوزه عبارتند از سازند آهکی سروک سازند ایلام با لیتولوژی سنگ آهک و میان لایه شیل، سازند پابده با تناوب شیل و آهک و مارن، سازند شیلی گورپی، سازند آسماری، بخش آهکی امام حسن و سازند انیدریتی گچساران. از نظر ساختاری مهم‌ترین ساختار موجود در حوزه چین‌ها هستند (مطالعات تفصیلی- اجرایی حوزه آبخیز کلم دره‌شهر، 1390). در حوزه کلم با توجه به لیتولوژی واحدهای سنگی، پوشش گیاهی خوب و شرایط آب و هوایی، هوازدگی فیزیکی، زیستی و شیمیایی قابل مشاهده است. همچنین با استناد بر آمار و اطلاعات هواشناسی، تعیین اقلیم ذخیرهگاه بادام منطقه نشان داد که در روش آمبرژه نوع اقلیم مرطوب معتدل و در روش دومارتن نوع اقلیم نیمه مرطوب است. این گونه اغلب در اقلیمهای نیمهمرطوب با زمستانهای نسبتاً سرد مستقر میشود. سالاریان و همکاران (1387) نیز اذغان نمودند که گونه بادام کوهی اغلب در اقلیم‌های نیمهمرطوب مستقر میشوند.
3-2- روش انجام تحقیقاین مطالعه از نوع مطالعات تحلیلی بوده و برای جمعآوری اطلاعات از سه روش کتابخانه‌ای، میدانی و آزمایشگاهی استفاده شده است. در این تحقیق ابتدا برای تعیین مبانی نظری و پیشینه‌ی تحقیق از شیوه کتابخانه‌ای اقدام گردیده و پس از مطالعه کتابخانه‌ای و جستجوی الکترونیکی و به موازات مطالعات مستمر نظری بخشی از اطلاعات مورد نیاز نیز با استفاده از فرم‌‌های آماربرداری در منطقه تهیه و جمع آوری گردید.
ابتدا در منطقه، محدوده ذخیرهگاه بادامک، شناسایی و پلیگون آن به‌صورت رقومی (به ‌وسیله دستگاه GPS در سیستم مختصات UTM با بیضوی WGS84) بسته شد. در داخل محدوده‌‌های مشخص شده شبکه آماربرداری به ابعاد 200×200 متر به‌ صورت منظم- تصادفی (سیستماتیک) طراحی و برای اندازه‌گیری درختچهها و آماربرداری از قطعات نمونه دایره‌ای شکل با مساحتی که به روش حداقل سطح به دست آمده و با توجه به تراکم درختچه‌‌های بادامک حداقل 10 تا 15 پایه در هر قطعه نمونه قرار گیرد، استفاده گردید.
در این قطعات نمونه مشخصه‌های کمی و کیفی همچون تعداد درختچه، ارتفاع و دو قطر عمود بر هم تاج درختچهها، تعداد جست، درجه شادابی درختچهها، میزان ابتلا به آفت و بیماری آنها و زادآوری اندازهگیری گردید. همچنین در هر قطعه نمونه با توجه به طول و عرض جغرافیایی، وضعیت فیزیوگرافی و توپوگرافی (ارتفاع منطقه و میزان و جهت شیب دامنه نیز ثبت میشود) نیز ثبت گردید.
ابزار‌های اندازهگیری مشخصات کمی و کیفی درختچه‌های بادامک شامل موارد ذیل است: دستگاه GPS برای تعیین مرکز قطعه نمونه و یافتن موقعیت، شاخص (ژالن) درجهبندی شده یا دستگاه سونتو برای اندازه گیری گردید. ارتفاع درختچهها، متر نواری برای اندازه گیری قطر تاج درختان و ارتفاع تاج.
3-2-1- تهیه نقشه‌های عوامل فیزیوگرافیپس از مشخص شدن محدوده رویشگاه بر روی نقشه توپوگرافی 1:25000، بمنظور کنترل و نحوه قرار گیری قطعات نمونه در ارتباط با مشخصه‌‌های فیزیوگرافی، توسط نرم افزار Arc GIS 10 نقشه منطقه رقومی شده و از ابزار Topo to Raster برای تهیه نقشه‌های DEM و پس از آن نقشه‌‌های ارتفاع از سطح دریا، شیب و جهت دامنه استفاده شد. سه طبقه ارتفاع از سطح دریا ( 900-1000، 1000 تا 1100 و 1100 تا 1200 متر)، پنج طبقه شیب (0-20، 20-40، 40-60، 60-80 و بیش‌تر از 80 درصد) و پنج جهت جغرافیای (شمال، جنوب، شرق، غرب و بدون جهت) در محدوده مورد مطالعه مشخص شد.
3-2-2- نمونهبردای خاکبرای بررسی وضعیت خاک رویشگاه مورد مطالعه، برخی مشخصه‌‌های فیزیکی و شیمیایی خاک از قبیل بافت خاک، ماده آلی، کربن آلی، اسیدیته (pH)، نیتروژن کل، وزن مخصوص ظاهری و هدایت الکتریکی (Ec) در مرکز هر قطعه نمونه مورد اندازهگیری و مطالعه قرار گرفت. برای این منظور در مرکز هر قطعه نمونه با حفر پروفیل خاک تا عمق ممکنه که با توجه به صخر‌های بودن منطقه کمتر از 20 سانتیمتر بود، نمونه‌های خاک برداشت شد (شکل 3-3). نمونه‌های خاک پس از طی مراحل اولیه آماده سازی برای انجام مطالعات خاکشناسی به آزمایشگاه منتقل شدند.
شکل 3-3- نمایی از نمونهبرداری خاک در رویشگاه مورد مطالعه3-2-2-1- آزمایشات خاکدر محیط آزمایشگاه نمونهها در هوای آزاد خشک گردید و بعد از خرد نمودن کلوخهها، جدا کردن ریشه‌ها، سنگ و سایر ناخالصیها، از الک 2 میلی‌متری عبور داده شدند (هرناندز و همکاران 2004).
بافت خاک با استفاده از روش دانسیمتری بایکاس (زرین کفش 1371) و وزن مخصوص ظاهری به روش کلوخه بر حسب گرم بر سانتیمتر مکعب مطالعه شد (بلیک و‌ هارتج 1986). ماده آلی و کربن آلی با استفاده از روش سرد بر مبنای اکسیداسیون کربن آلی به کمک بیکرمات پتاسیم (K2Cr2O) در محیط کاملاً اسیدی H2SO4)) اندازگیری گردید (آلیسون 1975).
خصوصیات اندازه‌گیری شده خاک در این مطالعه شامل PH خاک، EC خاک، وزن مخصوص ظاهری، مقدار ماده آلی و نیتروژن بود. در این مطالعه از روش مبتنی بر برآورد درصد کربن آلی خاک استفاده شد. کربن آلی به طور متوسط 58% ماده آلی را تشکیل میدهد و درصد ماده آلی را می‌توان با ضرب کردن کربن آلی در عامل وان-بنون لن یا 724/1 به دست آورد.
3-2-3- جامعه آماری، روش نمونه‏گیری و حجم نمونهجامعه آماری مورد مطالعه در این تحقیق ذخیرهگاه گونه بادام کوهی واقع در منطقه کلم شهرستان بدره می‌باشد که آماربرداری از درختچه‌های بادام کوهی به صورت نمونه‌ای بوده و حجم نمونه بستگی به تعداد قطعات نمونه و تعداد درختان قرار گرفته در هر قطعه نمونه دارد.
3-2-4- متغیر‌های مورد بررسی
در این مطالعه اطلاعات کمی و کیفی درختچه‌های بادام کوهی شامل قطر تاج، ارتفاع، تعداد درختچه، تعداد جست گروه و مشخصه کیفی شامل شادابی در رویشگاه کلم بدره برداشت شد. برای تعیین شادابی چهار طبقه سرسبزی تاج درختچه‌ها در نظر گرفته شد (پاور و دیگران 1995) که شامل درجه 1: بیش از 75، درجه 2: بین 50 تا 75، درجه 3: بین 25 تا 50 و درجه 4: کمتر از 25 درصد تاج سرسبز بودند.
سطح تاج با اندازه‌گیری سطح سایه انداز تاج درختان (منظور سطحی است که تصویر تاج درختان به هنگامی که نور خورشید عمود میتابد بر روی سطح زمین ایجاد می‌کند که با اندازه گیری قطر بزرگ و کوچک تاج درخت تعیین میگردد).
برای برداشت متغیر‌های مورد بررسی از ابزار و لوازم فنی کار مانند متر نواری، GPS و اسپری رنگی جهت نشانهگذاری استفاده شد. همچنین در این ذخیرهگاه در مراکز قطعه نمونهها، نمونه‌های خاک از عمق 0 تا 20 سانتیمتری جهت آزمایش‌های فیزیک و شیمی خاک برداشت شد.
3-2-5- روش‌ها و ابزار تجزیه و تحلیل داده‏هابه منظور تجزیه تحلیل دادهها ابتدا پس از تعیین نرمال بودن دادهها به وسیله آزمون کای اسکور و همگن بودن دادهها بوسیله آزمون لون برای مشخصه‌های کمی مانند قطر تاج، از آزمون تجزیه واریانس و برای مقایسه میانگین‌ها از آزمون دانکن استفاده شد. برای داده‌های کیفی مانند شادابی که به صورت رتبه‌ای بودند از آزمون‌های ناپارامتری، برای مقایسه‌‌های کلی از آزمون کروسکال -والیس و برای مقایسه میانگین‌ها از آزمون من ویتنی استفاده گردید. برای تجزیه و تحلیل دادهها از نرم افزار‌های آماری همچون Excel و SPSS استفاده شد.

فصل چهارمنتایج1739265290957000
4-1- نتایج4-1-1- تهیه نقشه عوامل فیزیوگرافیبرای بررسی تأثیر عوامل فیزیوگرافی بر مشخصات کمی و کیفی درختچه‌‌های بادام کوهی در منطقه مورد مطالعه، نقشه‌‌های مشخصه‌‌های شیب، جهت و ارتفاع از سطح دریا در محیط GIS تهیه شد.
برای تهیه نقشه‌های فیزیوگرافی ابتدا مدل رقومی ارتفاع با استفاده از خطوط توپوگرافی با منحنی میزان‌‌ 20 متری تهیه گردید (4-1) و سپس نقشه‌های شیب، جهت دامنه و ارتفاع از سطح دریا تهیه و کلاسهبندی شدند. اشکال 4-2، 4-3 و 4-4 نقشه‌های فیزیوگرافی مورد استفاده در این تحقیق را نشان می‌دهند.

شکل 4-1- نقشه مدل رقومی ارتفاعی (DEM) منطقه مورد مطالعهشکل 4-2- نقشه طبقات ارتفاع از سطح دریا در منطقه مورد مطالعه

شکل 4-3- نقشه کلاسه‌های شیب در منطقه مورد مطالعه
شکل 4-4- نقشه جهات جغرافیایی در منطقه مورد مطالعه4-2- تهیه نقشه شبکه آماربرداریهمان طور که در فصل مواد و روش‌ها توضیح داده شد پس از تهیه نقشه محدوده مورد مطالعه و بازدید میدانی از منطقه مورد مطالعه و با توجه به تراکم مناسب گونه بادام کوهی در سطح منطقه تصمیم به طراحی شبکه آماربرداری 200 * 200 گرفته شد و برای طراحی و پیاده کردن پلات‌ها در روی نقشه از نرم افزار GIS 10 و اکستنشن ET Geo Wizards استفاده شد. پس از طراحی شبکه و پیاده کردن آن بر روی نقشه محدوده مورد مطالعه مشخص شد که تعداد 19 پلات دایره‌ای در منطقه قرار گرفته است (شکل 4-5 و 4-6). برای انجام مراحل بعدی کار مختصات جغرافیایی (UTM) این نقاط و محدوده وارد دستگاه GPS شد.

شکل 4-5- شبکه آماربرداری 200×200 متر و نحوه قرارگیری پلاتها
شکل 4-6- جانمایی قطعات نمونه آماربرداری بر روی تصاویر ماهوار‌ه‌ای Google Earth4-3- پوشش گیاهیپس از آن لیست فلورستیک گیاهان منطقه مطالعاتی بر حسب خانواده، جنس، گونه، شکل رویشی و دیرزیستی تهیه گردید. در ذخیره‌گاه بادام کلم شهرستان بدره گونه غالب، درختچه بادام کوهی می‌باشد. لیست فلورستیک گیاهان شناسایی شده در کل سطح ذخیره‌گاه در جدول (4-1) ارائه شده است.
جدول 4-1- لیست فلورستیک گونه‌های گیاهی منطقه مطالعاتیردیف نام فارسی نام علمی خانواده شکل رویشی دیرزیستی موارد استفاده
1 ون Pistacia Atlantica Anacardiaceae درخت چندساله حفاظت خاک- صنعتی
2 گل گاوزبان Anchusa Italica Boraginaceae فورب چند‌ساله دارویی‌- مرتعی
3 آفتاب پرست Heliotropium Dolosum Boraginaceae فورب یکساله مرتعی
4 زنگوله ای Onosma Asperrimum Boraginaceae فورب چند ساله مرتعی
5 گچ دوست Gypsophila Pilosa Caryophyllaceae فورب چند ساله مرتعی
6 خارکو Noaea Mucronata Chenopodiaceae فورب چند ساله مرتعی
7 دانه گنجشکی Helianthemum Salicifolium Cistaceae فورب یکساله مرتعی
8 بابونه Anthemis SP Compositae فورب یکساله مرتعی
9 همیشه بهار Calendula Persica Compositae فورب یکساله مرتعی
10 گلرنگ وحشی Carthomus Oxycantha Compositae فورب یکساله مرتعی
11 گل گندم Centurea Bruguieriana Compositae فورب یکساله مرتعی
12 ریش گوشی Crepis Kotschyana Compositae فورب یکساله مرتعی
13 شکر تیغال Echinops Ritroides Compositae فورب یکساله مرتعی
14 کنگر Gundelia Tournefortii Compositae فورب چند ساله مرتعی
15 ماهوی وحشی Lactca Orientalis Compositae فورب چند ساله مرتعی
16 پیچک Convolvulus Chondrilloides Convolvulaceae فورب چندساله مرتعی
17 کیسه کشیش Capsella Bur*astoris Cruciferae فورب یکساله مرتعی
18 منداب Eruca Sativa Cruciferae فورب یکساله مرتعی
19 موچه Lepidium Latifolium Cruciferae فورب یکساله مرتعی
20 شب بو Longipetalo Matthiola Cruciferae فورب یکساله مرتعی
21 آجیل مزرعه Neslia Apiculata Cruciferae فورب یکساله مرتعی
22 رعنا زیبا Scobiosa Rotata Dipsaceae فورب یکساله مرتعی
23 شیر شگ Euphorbia Denticulata Euphorbiaceae فورب چندساله حفاظت خاک
24 سوزن چوپان (نوک‌لک‌لکی) Erodium Ciconium Geraniaceae فورب یکساله مرتعی
4-4- مشخصات رویشی توده مورد مطالعهدر این مطالعه رویشگاه هدف به صورت تصادفی سیستماتیک آماربرداری شد و مشخصه‌‌های تراکم تعداد، قطر تاج، ارتفاع، شادابی و تعداد جست اندازه‌گیری شدند. میانگین تعداد درختچهها در هکتار 240 اصله به دست آمد. بر این اساس بیش‌‌ترین تعداد در هکتار 298 اصله بوده و کم‌ترین تعداد نیز 130 اصله بوده است. با توجه به اندازهگیری‌های به عمل آمده، قطر تاج بادام در منطقه مورد مطالعه از 25/0 تا 85/5 متر متغیر است و میانگین آن 61/1 متر می‌باشد. از نظر ارتفاع، داده‌های اندازهگیری شده بین 3/0 تا 2/4 در نوسان بوده و میانگین آن 77/1 متر بدست آمد. از نظر میزان شادابی درختان بادام، میانگین شادابی توده 69/1 بدست آمد. نتایج این مطالعه نشان داد که به‌طور میانگین هر درخت بادام دارای 77/7 جست بوده که نتایج نشان داد که بیش‌‌ترین تعداد جست 40 عدد و کم‌ترین مقدار آن 1 عدد می‌باشد. (جدول 4-2).
جدول 4-2- نتایج اندازه‌گیری مشخصه‌‌های رویشی توده بادام کوهیمیانگین انحراف معیار بیشنه کمینه
تعداد در هکتار 240 32/10 298 130
قطر تاج 61/1 35/1 85/5 25/0
ارتفاع 77/1 02/1 2/4 3/0
تعداد جست 77/7 65/8 40 1
شادابی 69/1 75/0 1 3
به منظور شناخت بهتر ساختمان توده‌های جنگلی آگاهی از ساختمان افقی و عمودی جنگل بسیار ضروری می‌باشد. در جنگل‌‌های بادام منطقه، ساختار جنگل به دلیل استفاده و وابستگی جنگل نشینان تحت تأثیر قرار گرفته است. برای مدیریت این منابع جنگلی کسب اطلاعات ساختار افقی و عمودی توده بادام منطقه امری ضروری به نظر میرسد که مورد بررسی قرار گرفته است. به منظور بررسی ساختار افقی و ساختار توده از لحاظ همسال، ناهمسالی، مسن و جوانی ساختار میتوان از نمودار اشکوب بندی جنگل و پراکنش درختان در طبقات قطری استفاده کرد.
نتایج نمودار تعداد در هکتار، تعداد در طبقات ارتفاعی و تعداد در طبقات قطری تاج توده بادام کوهی در منطقه مورد مطالعه نشان میدهد که توده مورد نظر تقریباً یک توده همسال منظم می‌باشد. در کل میتوان نتیجه گیری کرد که جنگل فوق دارای ساختار همسال و جوان می‌باشد (اشکال 4-7 تا 4-9).

شکل4-7- تعداد در هکتار گونه بادام کوهی در قطعات نمونه منطقه مورد مطالعه
شکل4-8- تعداد در طبقات قطری تاج گونه بادام کوهی در منطقه مورد مطالعه
شکل 4-9- تعداد در طبقات ارتفاعی گونه بادام کوهی در منطقه مورد مطالعه4-4-1- آنالیز همبستگی میان خصوصیات رویشینتایج نشان داد که در ذخیره‌گاه بادام کوهی بین قطر تاج با ارتفاع درختان و تعداد جست با ارتفاع با قطر تاج همبستگی وجود دارد و بین شادابی و سایر خصوصیات رویشی همبستگی قابل قبولی دیده نشد. در جدول 4-3 آنالیز همبستگی میان عناصر رویشی گونه بادام کوهی با هم آمده است. براساس نتایج حاصله در رویشگاه بین قطر تاج و ارتفاع در سطح 99 درصد و نیز بین تعداد جست و قطر تاج و ارتفاع در سطح 95 درصد همبستگی وجود دارد (جدول 4-3). بر این اساس رابطه رگرسیونی بین قطر تاج و ارتفاع درختچه‌‌های بادام کوهی رسم شد (شکل 4-10).جدول 4-3- آنالیز همبستگی میان پارامتر‌های رویشی بادام کوهی منطقه مورد مطالعهپارامتر قطر ارتفاع شادابی تعداد جست
قطر 1 . 67** -. 18 . 42*
ارتفاع . 67** 1 -. 05 . 35*
شادابی -. 18 -. 05 1 -. 19
تعداد جست . 42* . 35* -. 19 1
**. معنی‌داری در سطح 01/0
*. معنی‌داری در سطح 05/0

شکل 4-10- رابطه رگرسیونی بین قطر تاج و ارتفاع درختچه‌های بادام کوهی در منطقه مورد مطالعه4-5- بررسی مشخصه‌های کمی و کیفی بادام کوهی تحت تأثیر عوامل فیزیوگرافی:4-5-1- ارتفاع از سطح دریانتایج تجزیه واریانس اثر فاکتور‌های فیزیوگرافی بر مشخصه‌های کمی گونه بادام کوهی در رویشگاه مورد مطالعه نشان میدهد که در ارتباط با عامل ارتفاع از سطح دریا، تعداد درختچهها و شادابی با افزایش ارتفاع از سطح دریا کاهش یافته به طوریکه درختچه‌های نزدیک به داخل دره که ارتفاع از سطح دریای کمتری داشتند از وضعیت شادابی بهتر و تعداد در هکتار بیش‌تری برخوردار بودند و این وضعیت در مقایسه با طبقات ارتفاعی بالاتر دارای اختلاف معنیدار و قابل مشاهد‌ه‌ای در سطح احتمال 95 درصد بود (جدول 4-2). در مورد مشخصه‌های کمی ارتفاع درختچهها و قطر تاج درختچهها نیز اختلاف معنیدار بین ارتفاعات مختلف دیده شده، اما این اختلاف در جهت عکس و منفی بود، بعبارتی با کاهش ارتفاع از سطح دریا در منطقه مورد مطالعه از ارتفاع درختچهها و قطر تاج آنها به طور معنیداری کاسته میشود. در مورد مشخصه تعداد جست گروه هیچ‌گونه اختلاف معنیدار و قابل توجهی در ارتفاعات مختلف منطقه دیده نشد (جدول 4-4).
جدول 4-4- نتایج تجزیه و تحلیل مشخصه‌های رویشی بادام کوهی در ارتباط با طبقات مختلف ارتفاعیردیف مشخصه‌‌های کمی و کیفی بادام کوهی نتایج تجزیه واریانس
df F p
1 تعداد در هکتار 2 *42/4 018/0
2 ارتفاع درختچه 2 *03/1 02/0-
3 قطر تاج 2 *362/3 026/0-
4 تعداد جست گروه 2 ns39/0 68/0
5 وضعیت شادابی 2 *18/3 031/0
نتایج مقایسه میانگین‌ها در ارتباط با مشخصه ارتفاع از سطح دریا نشان داد که در ارتفاعات پائین منطقه مورد مطالعه که اکثراً در داخل دره واقع شده بودند (طبقه ارتفاعی 1000 -900 متر)، تعداد درختچهها، تعداد جستها و وضعیت شادابی دارای میانگین بیش‌تری بوده و برعکس در ارتفاعات بالاتر (طبقه ارتفاعی 1200 - 1100 متر) میانگین ارتفاع درختچهها و قطر تاج بیش‌تر بوده است (جدول 4-5).
جدول 4-5- مقایسه‌ی میانگین تأثیر عامل ارتفاع از سطح دریا بر مشخصه‌های کمی بادام کوهی
متغیر مشخصه


کلاسه تعداد ارتفاع (m) قطر تاج (m2) تعداد جست شادابی
ارتفاع از سطح دریا 1000-900 a25 b62/1 b52/1 a9 a95/1
1100-1000 b23 b68/1 b5/1 a8 b7/1
1200-1100 b15 a95/1 a7/1 a8 b6/1

نمودار 4-1- مقایسه‌ی میانگین تأثیر عامل ارتفاع از سطح دریا بر مشخصه‌های کمی بادام کوهی4-5-2- جهت‌های جغرافیایینتایج تجزیه واریانس در ارتباط با مشخصه جهت دامنه نشان دهنده اختلاف معنی دار آماره‌های تعداد در هکتار درختچهها، تعداد جست گروهها، ارتفاع درختچهها و وضعیت شادابی می‌باشد، به طوریکه در جهت‌‌های شرقی تراکم بادام کوهی، ارتفاع آنها و تعداد جست گروه‌ها بیش‌تر از سایر جهتها بود که این اختلاف از لحاظ آماری نیز معنی دار بوده است. در مورد تأثیر جهت دامنه بر وضعیت شادابی تاج نیز اختلاف معنی دار دیده شد، اما در مورد قطر تاج درختچه‌های بادام اختلاف معنی دار از لحاظ آماری دیده نشد (جدول 4-6).
جدول 4-6- نتایج تجزیه و تحلیل مشخصه‌های رویشی بادام کوهی در ارتباط با جهت‌های جغرافیاییردیف مشخصه‌‌های کمی و کیفی بادام کوهی نتایج تجزیه واریانس
df F p
1 تعداد در هکتار 4 *42/3 018/0
2 ارتفاع درختچه 4 *08/3 02/0
3 قطر تاج 4 ns59/0 66/0
4 تعداد جست گروه 4 *162/4 12/0
5 وضعیت شادابی 4 *28/4 081/0
نتایج مقایسه میانگین‌ها در ارتباط با عامل فیزیوگرافی جهت دامنه نشان داد که در جهت‌های شرقی منطقه مورد مطالعه، تعداد درختچهها، تعداد جستها و ارتفاع و قطر تاج آنها دارای میانگین بیش‌تری بوده و در جهت‌های شمالی وضعیت شادابی درختچهها نسبت به دیگر جهت‌ها بهتر بوده است (جدول 4-7).
جدول 4-7- مقایسه‌ی میانگین تأثیر عامل جهت دامنه بر مشخصه‌های کمی بادام کوهیمتغیر مشخصه
کلاسه تعداد ارتفاع (m) قطر تاج (m2) تعداد جست شادابی
جهت جغرافیایی شمال b14/17 b72/1 a58/1 b4/7 a85/1
جنوب b85/21 b75/1 a61/1 b71/7 b67/1
شرق a25/23 a89/1 a66/1 a55/8 b79/1
غرب b14/15 b65/1 a63/1 b51/7 b63/1

نمودار 4-2- مقایسه‌ی میانگین تأثیر عامل جهت دامنه بر مشخصه‌های کمی بادام کوهی4-5-3- شیب دامنهاز نظر مشخصه درصد شیب تنها تعداد درختچهها و تعداد جست گروها از نظر آماری اختلاف معنیدار را در سطح احتمال 95 درصد نشان دادند، به طوریکه با افزایش درصد شیب در منطقه مورد مطالعه تعداد درختچه‌ها و جست گروها به طور قابل توجهی افزایش مییابد (جدول 4-8).
جدول 4-8- نتایج تجزیه و تحلیل مشخصه‌های رویشی بادام کوهی در ارتباط با درصد شیبردیف مشخصه‌‌های کمی و کیفی بادام کوهی نتایج تجزیه واریانس
df F p
1 تعداد در هکتار 4 *37/8 018/0
2 ارتفاع درختچه 4 ns33/1 02/0
3 قطر تاج 4 ns29/1 66/0
4 تعداد جست گروه 4 *03/7 12/0
5 وضعیت شادابی 4 ns53/0 081/0
نتایج بررسی خصوصیات کمی و کیفی بادام کوهی در شیب‌های مختلف نشان داد که در طبقات شیب 45-60 درصد بیش‌‌ترین تعداد درختچه و تعداد جست گروه دیده میشود و در مناطق کم شیب از تعداد درختچه کاسته میشود. در کلاسه‌‌های شیب 30-45 ارتفاع، قطر تاج و وضعیت شادابی درختچه‌های بادام کوهی از میانگین بالاتری برخوردار است (جدول 4-9).
جدول 4-9- مقایسه‌ی میانگین تأثیر عامل شیب بر مشخصه‌های کمی بادام کوهیمتغیر مشخصه کلاسه تعداد ارتفاع (m) قطر تاج (m2) تعداد جست شادابی
درصد شیب 15-0 b5/15 a67/1 a51/1 b8 a6/1
30-15 b4/23 a9/1 a71/1 b31/7 a7/1
45-30 b25/31 a9/1 a76/1 b6/7 a2
60-45 a38 a53/1 a5/1 a25/8 a93/1
حروف نامشابه در هر ردیف نشان دهنده اختلاف معنی داری در سطح 5 در صد است.

نمودار 4-3- مقایسه‌ی میانگین تأثیر عامل شیب بر مشخصه‌های کمی بادام کوهی4-6- وضعیت خاک منطقه مورد مطالعه4-6-1- بررسی وضعیت خاک در طبقات مختلف ارتفاعیمقایسه مشخصه‌‌های خاک در طبقات مختلف ارتفاعی در جدول 4-11 ارائه شده است. همانگونه که ملاحظه می‌گردد هدایت الکتریکی خاک (EC)، کربن (C)، نیتروﮊن کل (N) و ماده آلی (OM) در طبقه ارتفاعی 1100 تا 1200 متر از سطح دریا بیش‌تر از سایر طبقات می‌باشد. pH خاک در کلیه طبقات ارتفاعی تقریباً مشابه (بیش از 7) بوده است. مقایسه آماری مشخصه‌های خاک در ارتباط با ارتفاع از سطح دریا نشان داد که اختلاف معنیداری بین کربن و ماده آلی در سطح پنج درصد و نیتروﮊن کل در سطح یک درصد با ارتفاع از سطح دریا وجود دارد. در مورد سایر مشخصه‌های خاک اختلاف معنی دار از لحاظ آماری مشاهده نشد (جدول 4-10).
جدول 4-10- مقایسه مشخصه‌های خاک در طبقات مختلف ارتفاعی طبقه ارتفاعی
مشخصه 1000-900 1100-1000 1200-1100
pH 12/7 16/7 13/7
EC 51/1 64/1 93/1
C *24/1 *30/1 *56/1
N **10/0 **11/0 **13/0
ماده آلی (OM) *13/2 *25/1 *69/2
** معنی داری در سطح 1 درصد، * معنی داری در سطح 5 درصد، ns عدم معنی داری

–415

212852054165500این تعهد می بایست در حضور نماینده پژوهش امضاء و اثر انگشت شود.
2334260-30988000
معاونت پژوهش و فناوری
به نام خدا
منشور اخلاق پژوهش
با یاری از خداوند سبحان و اعتقاد به این که عالم محضر خداست و همواره ناظر بر اعمال انسان و به منظور پاس داشت مقام بلند دانش و پژوهش و نظر به اهمیت جایگاه دانشگاه در اعتلای فرهنگ و تمدن بشری، ما دانشجویان و اعضاء هیئت علمی واحدهای دانشگاه آزاد اسلامی متعهد می گردیم اصول زیر را در انجام فعالیت های پژوهشی مد نظر قرار داده و از آن تخطی نکنیم:
1. اصل برائت: التزام به برائت جویی از هرگونه رفتار غیرحرفه ای و اعلام موضع نسبت به کسانی که حوزه علم و پژوهش را به شائبه های غیرعلمی می آلایند.
2. اصل رعایت انصاف و امانت: تعهد به اجتناب از هرگونه جانب داری غیر علمی و حفاظت از اموال، تجهیزات و منابع در اختیار.
3. اصل ترویج: تعهد به رواج دانش و اشاعه نتایج تحقیقات و انتقال آن به همکاران علمی و دانشجویان به غیر از مواردی که منع قانونی دارد.
4. اصل احترام: تعهد به رعایت حریم ها و حرمت ها در انجام تحقیقات و رعایت جانب نقد و خودداری از هرگونه حرمت شکنی.
5. اصل رعایت حقوق: التزام به رعایت کامل حقوق پژوهشگران و پژوهیدگان (انسان،حیوان ونبات) و سایر صاحبان حق.
6. اصل رازداری: تعهد به صیانت از اسرار و اطلاعات محرمانه افراد، سازمان ها و کشور و کلیه افراد و نهادهای مرتبط با تحقیق.
7. اصل حقیقت جویی: تلاش در راستای پی جویی حقیقت و وفاداری به آن و دوری از هرگونه پنهان سازی حقیقت.
8. اصل مالکیت مادی و معنوی: تعهد به رعایت کامل حقوق مادی و معنوی دانشگاه و کلیه همکاران پژوهش.
2270125630555009. اصل منافع ملی: تعهد به رعایت مصالح ملی و در نظر داشتن پیشبرد و توسعه کشور در کلیه مراحل پژوهش.


-15430530543500تقدیم به :
پدر و مادر عزیزم
و
همسر مهربانم

-55816537782500سپاسگزاری
سپاس فراوان از همسر صبورم که همواره در لحظات دشوار این مسیر دلگرمی را به من هدیه داد.
از برادر عزیزم که در تمام این راه همراهی خود را از من دریغ ننمود، نهایت تشکر را دارم.
سپاس فراوان از جناب آقای دکتر ابراهیم امیدوار که روشنا بخش این راه پر فراز و نشیب بودند.

فهرست مطالب
عنوان صفحه
چکیده.................................................................................................................................................................................1
فصل اول: کلیات
مقدمه..................................................................................................................................................................3
2-1- فرضیات تحقیق.....................................................................................................................................................5
3-1- اهداف تحقیق........................................................................................................................................................6
1-3-1- اهداف علمی.....................................................................................................................................................6
2-3-1- اهداف کاربردی................................................................................................................................................6
4-1-تعاریف......................................................................................................................................................................6
1-4-1- زمین لغزش......................................................................................................................................................6
1-4-1-1-پیکر شناسی زمین لغزش..........................................................................................................................7
1-4-2-1- ابعاد زمین لغزش.....................................................................................................................................10
1-4-3-1- علل وقوع زمین لغزش ها......................................................................................................................11
1-4-3-1-1- عوامل زمین شناسی..........................................................................................................................12
1-4-3-2-1- عوامل ریخت شناسی........................................................................................................................12
1-4-3-3-1- عوامل انسانی.......................................................................................................................................13
1-4-4-1- خسارات زمین لغزش..............................................................................................................................16
5-1- زمین آمار (ژئواستاتیستیک)...........................................................................................................................18
1-5-1- متغیر ناحیه‌ای...............................................................................................................................................19
2-5-1- تغییر نما ....................................................................................................................................................19
1-2-5-1- اجزای تغییر نمای ایده‌آل.....................................................................................................................20
1-2-5-1-1- دامنه تاثیر...........................................................................................................................................20
1-2-5-2-1- سقف واریوگرام..................................................................................................................................21
1-2-5-3-1- اثر قطعه‌ای .......................................................................................................................................22
6-1- روش کریجینگ..................................................................................................................................................22
6-1-1- معادلات کریجینگ ...................................................................................................................................22
6-2-1- ویژگی‌های کریجینگ.................................................................................................................................23
7-1- بررسی روش‌های میانیا‌بی و انتخاب مناسب‌ترین روش............................................................................24
1-7-1- روش تیسن...................................................................................................................................................26
2-7-1- روش عکس فاصله........................................................................................................................................26
3-7-1- روش‌های زمین آمار.....................................................................................................................................26
فصل دوم: پیشینه تحقیق
بررسی سوابق پژوهشی در داخل کشور....................................................................................................29
2-2- بررسی سوابق پژوهشی در خارج از کشور....................................................................................................34
فصل سوم: مواد و روش‌ها
3-1- منطقه مورد مطالعه...........................................................................................................................................40
3-2- زمین‌شناسی استان مازندران..........................................................................................................................41
3-3- آب و هوای استان مازندران.............................................................................................................................45
3-4- اقلیم استان مازندران........................................................................................................................................45
3-4-1- ناهمواری‌های استان مازندران.................................................................................................................46
3-5-کوه‌های استان مازندران....................................................................................................................................48
3-6-پوشش گیاهی استان مازندران.........................................................................................................................48
3-7- باد ........................................................................................................................................................................49
3-8- بارش ...................................................................................................................................................................50
3-9- داده‌های مورد استفاده......................................................................................................................................51
3-9-1- داده‌های بارش...............................................................................................................................................51
3-9-2- مشخصات ایستگاه‌های مورد مطالعه........................................................................................................51
3-9-3- داده‌های زمین لغزش..................................................................................................................................53
3-10 - روش انجام پژوهش......................................................................................................................................54
3-10 -1- کنترل صحت و همگنی داده‌ها.............................................................................................................54
3-10-2- انتخاب پایه زمانی مشترک ....................................................................................................................55
3-10-3- بازسازی و تطویل آمار..............................................................................................................................55
3-10 - 4- بررسی مشخصات آماری داده‌ها..........................................................................................................56
3-10 -5- تهیه نقشه پارامترهای مختلف بارش...................................................................................................57
3-10 -6- تهیه نقشه پراکنش نقاط زمین لغزش.................................................................................................57
3-10 -7- محاسبه پارامترهای مختلف بارش در نقاط زمین‌لغزش‌ها..............................................................57
3-10 -8- محاسبه پارامترهای مورفومتریک زمین لغزش..................................................................................58
3-10 -9- بررسی ارتباط بین پارامترهای مورفومتری زمین‌لغزش‌ها و خصوصیات بارش...........................58
3-10-9-1 - آزمون همبستگی................................................................................................................................58
3-10-9-2- تحلیل آماری.........................................................................................................................................59
فصل چهارم: نتایج
4-1- بررسی پارامترهای مختلف بارندگی...............................................................................................................61
4-2- محاسبه پارامترهای مختلف بارش.................................................................................................................62
4-2-تهیه نقشه پارامترهای مختلف بارش..............................................................................................................74
4-3- نقشه پراکنش زمین‌لغزش‌ها...........................................................................................................................84
4-4- بررسی آماری ارتباط بین خصوصیات لغزش و بارندگی............................................................................85
4-4-1- آزمون همبستگی..........................................................................................................................................85
4-4-2- تحلیل آماری.................................................................................................................................................87
فصل پنجم: نتیجه گیری و پیشنهادات
اثبات فرضیات.............................................................................................................................................................102
پیشنهادات...................................................................................................................................................................103
منابع
منابع فارسی................................................................................................................................................................105
منابع انگلیسی.............................................................................................................................................................110
چکیده انگلیسی .........................................................................................................................................................112

فهرست جداول
عنوان صفحه
جدول 3-1- طبقه‌بندی اقلیم ایستگاه‌های موجوددراستان مازندران به روش‌های دکترکریمی و دومارتن (کتاب جغرافیای تاریخی مازندران)..........................................................................................................................47
جدول 3-2- مشخصات ایستگاه‌های مورد مطالعه در استان مازندران..............................................................52
جدول4- 1- میانگین ماهانه در ایستگاه‌های مختلف استان مازندران.............................................................61
جدول4- 2-میانگین بارش دوره‌ی 35 ساله آماری در ایستگاه‌های مورد مطالعه..........................................62
جدول4- 3- نسبت درصد بیشترین میزان بارندگی در ایستگاه های مختلف.................................................73
جدول4- 4- مشخصات مناسب‌ترین مدل‌های واریوگرام به دست آمده برای پارامترهای مختلف بارش..74
جدول 4- 5- نتایج آزمون همبستگی پیرسون بین مقادیر پارامترهای بارندگی و مورفومتری...................86

فهرست شکلها
عنوان صفحه
شکل1- 1- اجزای مختلف زمین لغزش..................................................................................................................10
شکل1-2نمونه ای از زمین لغزش در استان مازندران در روستای گرمستان از توابع شهرستان ساری.....18
شکل1- 3- اجزای تغییر نمای ایده آل....................................................................................................................21
شکل3-1- نقشه موقعیت استان مازندران در ایران...............................................................................................41
شکل4- 1- میانگین بارش سالانه در ایستگاه‌های مختلف استان مازندران.....................................................63
شکل4- 2- میانگین بارش روزانه در ایستگاه‌های مختلف استان مازندران......................................................63
شکل4- 3- میانگین حداکثر کل بارش در ایستگاه‌های مختلف استان مازندران..........................................64
شکل4- 4- میانگین بارش در فصل بهار در ایستگاه‌های مختلف استان مازندران.........................................64
شکل4- 5- میانگین بارش در فصل تابستان در ایستگاه‌های مختلف استان مازندران..................................65
شکل4- 6- میانگین بارش در فصل پاییز در ایستگاه‌های مختلف استان مازندران........................................65
شکل4- 7- میانگین بارش فصل زمستان در ایستگاه‌های مختلف استان مازندران.......................................66
شکل4- 8- میانگین بارش فروردین ماه در ایستگاه‌های مختلف استان مازندران..........................................66
شکل4- 9- میانگین بارش اردیبهشت ماه در ایستگاه های مختلف استان مازندران.....................................67
شکل4- 10- میانگین بارش خرداد ماه در ایستگاه‌های مختلف استان مازندران...........................................67
شکل4- 11- میانگین بارش تیر ماه در ایستگاه‌های مختلف استان مازندران.................................................68
شکل4- 12- میانگین بارش مرداد ماه در ایستگاه‌های مختلف استان مازندران............................................68
شکل4- 13- میانگین بارش شهریور ماه درایستگاه‌های مختلف استان مازندران..........................................69
شکل4- 14- میانگین بارش مهر ماه در ایستگاه‌های مختلف استان مازندران................................................69
شکل4- 15- میانگین بارش آبان ماه در ایستگاه‌های مختلف استان مازندران...............................................70
شکل4- 16- میانگین بارش آذرماه در ایستگاه‌های مختلف استان مازندران..................................................70
شکل4- 17- میانگین بارش دی ماه در ایستگاه‌های مختلف استان مازندران................................................71
شکل4- 18- میانگین بارش بهمن ماه در ایستگاه‌های مختلف استان مازندران............................................71
شکل4- 19- میانگین بارش اسفند ماه در ایستگاه‌های مختلف استان مازندران...........................................72
شکل4- 20- پراکنش باران در نقاط مختلف استان مازندران در فصل بهار..................................................75
شکل4- 21- پراکنش باران در نقاط مختلف استان مازندران در فصل تابستان.............................................75
شکل4- 22- پراکنش باران در نقاط مختلف استان مازندران در فصل پاییز..................................................76
شکل4- 23- پراکنش باران در نقاط مختلف استان مازندران در فصل زمستان............................................76
شکل4- 24- پراکنش باران در نقاط مختلف استان مازندران در فروردین ماه...............................................77
شکل4- 25- پراکنش باران در نقاط مختلف استان مازندران در اردیبهشت ماه...........................................77
شکل4- 26- پراکنش باران در نقاط مختلف استان مازندران در خرداد ماه...................................................78
شکل4- 27- پراکنش باران درنقاط مختلف استان مازندران در تیر ماه..........................................................78
شکل4- 28- پراکنش باران در نقاط مختلف استان مازندران در مرداد ماه....................................................79
شکل4- 29- پراکنش باران در نقاط مختلف استان مازندران در شهریور ماه.................................................79
شکل4- 30- پراکنش باران در نقاط مختلف استان مازندران در مهر ماه........................................................80
شکل4- 31- پراکنش باران در نقاط مختلف استان مازندران در آبان ماه.......................................................80
شکل4- 32- پراکنش باران در نقاط مختلف استان مازندران در آذر ماه.........................................................81
شکل4- 33- پراکنش باران در نقاط مختلف استان مازندران در دی ماه.......................................................81
شکل4- 34- پراکنش باران در نقاط مختلف استان مازندران در بهمن ماه....................................................82
شکل4- 35- پراکنش باران در نقاط مختلف استان مازندران در اسفند ماه...................................................82
شکل4- 36- پراکنش روزانه باران در نقاط مختلف استان مازندران.................................................................83
شکل4- 37- پراکنش سالانه باران در نقاط مختلف استان مازندران................................................................83
شکل4-38- پراکنش کل باران در نقاط مختلف استان مازندران.....................................................................84
شکل4-39- موقعیت زمین لغزش‌های موجود روی نقشه استان مازندران......................................................85
شکل 4- 40- نمودار طبقات بارش متوسط فروردین ماه..................................................................................87
شکل 4- 41- نمودار طبقات بارش متوسط اردیبهشت ماه...............................................................................88
شکل 4- 42- نمودار طبقات بارش متوسط خرداد ماه.....................................................................................88
شکل 4- 43- نمودار طبقات بارش متوسط تیر ماه............................................................................................89
شکل 4- 44- نمودار طبقات بارش متوسط مرداد ماه........................................................................................90
شکل 4- 45- نمودار طبقات بارش متوسط شهریور ماه....................................................................................90
شکل 4- 46- نمودار طبقات بارش متوسط مهر ماه..........................................................................................91
شکل 4- 47- نمودار طبقات بارش متوسط آبان ماه..........................................................................................92
شکل 4- 48- نمودار طبقات بارش متوسط آذر ماه............................................................................................92
شکل 4- 49- نمودار طبقات بارش متوسط دی ماه...........................................................................................93
شکل 4- 50- نمودار طبقات بارش متوسط بهمن ماه........................................................................................94
شکل 4- 51- نمودار طبقات بارش متوسط اسفند ماه.......................................................................................94
شکل 4- 52- نمودار طبقات بارش متوسط فصل بهار.......................................................................................95
شکل 4- 53- نمودار طبقات بارش متوسط فصل تابستان................................................................................95
شکل 4- 54- نمودار طبقات بارش متوسط فصل پاییز......................................................................................96
شکل 4- 55- نمودار طبقات بارش متوسط فصل زمستان................................................................................96
شکل 4- 56- نمودار طبقات بارش متوسط حداکثر روزانه................................................................................97
شکل 4- 57- نمودار طبقات بارش متوسط حداکثر کل....................................................................................97
شکل 4- 58- نمودار طبقات بارش متوسط سالانه.............................................................................................98
تأثیر مؤلفه‏های مختلف بارندگی بر خصوصیات مورفومتری زمین لغزش‌های استان مازندران
به وسیله: سارا محمدنژاد اردشیری
چکیده
زمین لغزش یکی از فرایندهای اصلی زمین ریختی است که تکامل چشمانداز مناطق کوهستانی را تحت تاثیر قرار داده و سبب ایجاد حوادث فاجعه برانگیزی میشود، زمینلغزشها در ایران بهخصوص در حوضههای شمال کشور، یکی از مهمترین بلایای طبیعی هستند که همه ساله نقش بسزایی در تخریب جادههای ارتباطی تخریب مراتع، باغها و مناطق مسکونی و همچنین ایجاد فرسایش و انتقال حجم بالای رسوب به حوضههای آبخیز کشورمان دارند. بارندگی از عوامل اصلی وقوع زمینلغزشها به شمار میرود. شدت بارش و دوام آن نقش عمدهای در وقوع زمین لغزش به عهده دارد، که البته به عوامل چندی از قبیل شرایط اقلیمی، توپوگرافی و ساختمان زمینشناسی شیبها و نفوذپذیری دامنه نیز وابسته است.با توجه به اینکه خصوصیات مختلف ب بارندگی در مناطق مختلف تغییر مینمایند و از آنجایی که خصوصیات زمینلغزشها نیز در اثر تغییرات مکانی دارای تغییراتی هستند بنابراین شاید بتوان این تغییرات را به تغییر در خصوصیات مختلف بارندگی نسبت داد. در این تحقیق سعی بر این خواهد بود که ارتباط بین تغییرات مکانی خصوصیات بارش و تغییرات خصوصیات مورفومتریک زمینلغزشهای استان مازندران بررسی گردیده و در صورت معنیداری این ارتباط به روابطی آماری دست پیدا نماییم. خصوصیات ریختشناسی زمینلغزشها که در این تحقیق مورد بررسی قرار میگیرند شامل مساحت، حجم، عمق، ضریب معادل اصطکاک )نسبت ارتفاع به طول لغزش) و ... میباشد. همچنین خصوصیات بارندگی نیز شامل متوسط بارندگی سالانه، متوسط بارندگی ماهانه در ماههای پرباران سال، متوسط بارندگی ماهانه در فصل پرباران سال، حداکثر شدت 24 ساعته و ... میباشند. نکتهای که در این مورد قابل پرداختن میباشد این است که وقتی پارامترهای مختلف بارش به صورت طبقات مختلف دستهبندی گردید، شاخصهای مورفومتریک دارای تغییراتی در هر طبقه بود. شاخص ضریب تغییر شکل طولی در همهی طبقات مختلف بارش دارای روند افزایشی و شاخص ضریب تغییر شکل دارای روند کاهشی بوده است.
کلمات کلیدی: زمین لغزش، خصوصیات مورفومتریک، خصوصیات بارش، استان مازندران
فصل اول
کلیات
2245995379984000
1-1- مقدمه
زمین لغزش یکی از فرایندهای اصلی زمین ریختی است که تکامل چشماندازمناطق کوهستانی را تحت تاثیر قرار داده و سبب ایجاد حوادث فاجعه برانگیزی میشود،زمینلغزشها از جمله ویرانگرترین حوادث طبیعی در مناطق شیبدار به حساب میآیند(کانانگو و همکاران،2006). زمین لغزش یک معضل جهانی بوده و متداولترین نوع از پدیده های طبیعی شکل دهنده سطح زمین میباشد که در تمامی دورانهای زمینشناسی به وقوع پیوسته است(ثروتی، 1381). خسارات وارد به مناطق مسکونی و زیر بنای اقتصادی و همچنین تلفات انسانی ناشی از زمینلغزشها در سراسر جهان در حال افزایش است. طی دهه 1990 زمین‌لغزشها تقریبا %9 بلایای طبیعی که در سراسر جهان اتفاق افتادهاند را به خود اختصاص دادهاند. سالانه در جهان 1000 کشته و 4 میلیون دلار خسارت مالی در اثر وقوع زمینلغزشها ایجاد میشوند. عوامل متعددی مانند شرایط زمینشناسی، شرایط هیدرولوژی و هیدروژئولوژی، وضعیت توپوگرافی و مورفولوژی، آب و هوا و هوازدگی بر پایداری یک شیب تاثیر گذاشته و میتوانند سبب ایجاد زمینلغزش شوند(گارفی و همکاران، 2007). زمینلغزشها در اثر بسیاری عوامل محرک از قبیل زلزله، بارندگی و ذوب سریع برف ایجاد شده و تحت تاثیر عواملی مثل توپوگرافی، نوع سنگ و خاک، شکستگیها و سطوح بستر و میزان رطوبت قرار میگیرند )ترنر و اسکات، 1996). زمینلغزشها در ایران بهخصوص در حوضههای شمال کشور، یکی از مهمترین بلایای طبیعی هستند که همه ساله نقش بسزایی در تخریب جادههای ارتباطی تخریب مراتع، باغها و مناطق مسکونی و همچنین ایجاد فرسایش و انتقال حجم بالای رسوب به حوضههای آبخیز کشورمان دارند (کلارستاقی وهمکاران، 2007). بارندگی از عوامل اصلی وقوع زمینلغزشها به شمار میرود. شدت بارش و دوام آن نقش عمدهای در وقوع زمینلغزش به عهده دارد، که البته به عوامل چندی از قبیل شرایط اقلیمی، توپوگرافی و ساختمان زمینشناسی شیبها و نفوذپذیری دامنه نیز وابسته است(اسپیزوآ،2002). بیشترین تعداد گسیختگی دامنهها بعد از بارندگیهای سنگین یا ذوب برف در بهار و به علت نفوذ آب در شکافها صورت میگیرد. شدت تأثیر عامل بارش در ناپایداری دامنهها به شرایط آب و هوایی، توپوگرافی منطقه، ساختارهای زمین شناسی دامنهها، نفوذ پذیری و سایرخواص تودههای سنگی و خاکی بستگی دارد(زندی، 1378). با توجه به اینکه خصوصیات مختلف بارندگی در مناطق مختلف تغییر مینمایند و از آنجایی که خصوصیات زمینلغزشها نیز در اثر تغییرات مکانی دارای تغییراتی هستند(موسوی خطیر و همکاران، 1388). بنابراین شاید بتوان این تغییرات را به تغییر در خصوصیات مختلف بارندگی نسبت داد. در این تحقیق سعی بر این خواهد بود که ارتباط بین تغییرات مکانی خصوصیات بارش و تغییرات خصوصیات ریختشناسی زمینلغزشها بررسی گردیده و در صورت معنیداری این ارتباط به روابطی آماری دست پیدا نماییم. خصوصیات ریختشناسی زمینلغزشها که در این تحقیق مورد بررسی قرار میگیرند شامل مساحت، حجم، عمق، ضریب معادل اصطکاک (نسبت ارتفاع به طول لغزش) و ... می‌باشد. همچنین خصوصیات بارندگی نیز شامل متوسط بارندگی سالانه، متوسط بارندگی ماهانه در ماههای پرباران سال، متوسط بارندگی ماهانه در فصل پرباران سال، حداکثر شدت 24 ساعته و ... میباشند.
بروز پدیدهی زمینلغزش میتواند ناشی از عوامل متعدد زمینشناسی، ژئومورفولوژیکی، هیدرولوژیکی، بیولوژیکی و انسانی باشد، ولی معمولا در شروع زمین لغزش تنها یک محرک خارجی یا عامل ماشهای یک نقش محوری دارد. بارندگی شدید، ذوب سریع برف، تغییرات ناگهانی در سطح آب زیرزمینی، زلزله و فرسایش با سرعت زیاد از مهمترین عوامل ماشهای زمین لغزشها برشمرده می شوند(سیدل و اوچیای،2006). کانن و الن در سال 1958 و کروزیر در سال 1999 و ژیکوب و ویترلی5در سال 2003، بارندگی را به عنوان متداولترین عامل ماشهای وقوع زمین لغزشها بر شمردهاند.
مفهوم آستانه بارندگی برای وقوع زمین لغزش را نخستین بار کمبل در سال 1975 بیان کرد. سپس استارکل در سال 1979 موفق شد آن را در قالب روابط شدت و مدت بارندگی تئوریزه کند. سطح حداقل یا حداکثر کمیت مورد نیاز برای رخ دادن یک فرایند یا قرار گرفتن در وضعیت تغییر را میتوان آستانه برشمرد. این نکته که بعضی رخدادهای بارندگی سبب لغزش میشوند و بعضی دیگر چنین اثری ندارند، می تواند مبنایی برای پژوهش علمی در مورد آنالیز رابطهی بین مقادیر بارندگی و شروع لغزش باشد. به دست آوردن چنین رابطهای با شناسایی آستانههای بارندگی میتواند با استفاده از مبانی تجربی آستانههای بارندگی حاصل میشود(کروزیر،1986).
2-1- فرضیات تحقیق
1- خصوصیات مورفومتریک زمینلغزشها و مولفههای بارندگیدراستان مازندران دارای تغییرپذیری مکانی است.
2- تغییرات بارندگی میتواند بر روی خصوصیات مورفومتریک زمینلغزشها در استان مازندران تاثیرگذار باشد.
3-1- اهداف تحقیق
1-3-1- اهداف علمی
تاثیرمولفه‏های مختلف بارندگی برخصوصیات مورفومتری زمینلغزشهای استان مازندران
بررسی پراکنش مکانی خصوصیات بارش دراستان مازندران
بررسی پراکنش مکانی خصوصیات زمین لغزشها در استان مازندران
بررسی ارتباط بین خصوصیات بارش و خصوصیات زمینلغزشها در استان مازندران
2-3-1- اهداف کاربردی
تعیین موثرترین پارامترهای مرتبط با بارندگی به منظور کاهش تاثیر عامل بارش در وقوع زمینلغزشهای استان مازندران
4-1-تعاریف
1-4-1- زمینلغزش
اصـطلاح زمین لغزش توسط بسیاری از دانشمندان تعریف شده است.گاهی این اصطلاح برای هر نوع توده خاکی که به سمت پایین دامنه حرکت کند، به کار میرود. و در برخی موارد، اشاره به تیپ خاصی از حرکات تودهای دارد.
زمینلغزشها دستهاى از حرکات تودهاى مىباشند که جابهجایى مواد سنگى یا خاکى دامنه تحت تاثیر قوه ثقل را در بر مىگیرد. این حرکت در سطح گسیختگى مشخص صورت مىگیرد و براساس معیارهایى چون سطح گسیختگى، مواد لغزشى، عوامل لغزش و.... به انواع مختلفى تقسیم مىشوند.
1-1-4-1-پیکر شناسی زمین لغزش
انجمن بین المللی زمینشناسی مهندسی وابسته به سازمان یونسکو در راستای طرح تهیه بانک اطلاعات زمین لغزشها، در سال 1990 در قالب انتشار پروژه - ریسرچای اقدام به انتشار فهرست اصطلاحات پیشنهادی برای توصیف یک زمین لغزش شاخص نمود. این اصطلاحات به معرفی ابعاد و اجزا مختلف یک زمین لغزش می‌پردازد. در شکل 1- 1 اجزای مختلف زمینلغزش نشان داده شده است.
تاج
در عمل، مواد جابجا نشده در یک زمین لغزش که در مجاورت بالاترین بخش پرتگاه اصلی لغزش قرار دارند.
افتگاه اصلی
سطحی با شیب تند، واقع در لبه بالایی لغزش که در اثر جدایش قطعه جابجا شده از زمین، حاصل شده است. پرتگاه گسلی بخش قابل مشاهده سطح گسیختگی می باشد.
توده اصلی
بخشی از توده جابجا شده زمین لغزش، که سطح گسیختگی را در بین افتگاه اصلی و پنجه لغزش پوشانده است.
پای لغزش
آن بخش از زمین لغزش است که از محدوده پنجه سطح گسیختگی فراتر رفته و سطح اولیه زمین را می‌پوشاند.
نوک لغزش
دورترین و جلوترین نقطه مواد جابجا شده از قله یک زمین لغزش، نوک لغزش نامیده میشود.
پنجه
انحنای لبه توده جابجا شده مواد، در پایین ترین سطح را، پنجه زمین لغزش نامند.
سطح گسیختگی
سطحی در زیر توده جابجا شده که حرکت توده مواد در راستای آن صورت میپذیرد. همچنین سطح لغزش و سطح برش نیز گفته می شود. در صورت صفحهای بودن آن صفحه لغزش و صفحه برش گفته میشود.
پنجه سطح گسیختگی
محل تلاقی ییلاقی پایینترین سطح صفحه گسیختگی با سطح اولیه زمین است.
سطح جدایش6
بخشی از سطح کنونی زمین که توسط پای لغزش پوشیده شده است.
توده جابجا شده
تودهای از مواد تشکیل دهنده زمین که در اثر لغزش از جای اصلی خود در دامنه جابجا شدهاند.
پهنه تهی شدگی
پهنهای از لغزش در توده جابجا شده که در قبل رخ داد، در زیر سطح اولیه زمین واقع بوده است.
پهنه تجمع3
پهنهای از لغزش که پیش از رخ داد، در بالای سطح اولیه زمین قرارداشته است.
توده تهی شده4
حجمی از مواد جابجا شده که سطح گسیختگی را می پوشاند و زیر سطح اولیه زمین بوده است.
قله5
بالاترین نقطه تماس بین توده جابجا شده و افتگاه اصلی لغزش است.
پهلوی لغزش6
مواد جابجا نشده مجاور پهلوهای سطح گسیختگی که در صورت نگاه از تاج لغزش به سمت جلو، با پهلو راست و پهلو چپ معرفی میشوند و در غیر این صورت توسط کمپاس با استفاده از جهات جغرافیایی معرفی میشوند.
1-4-2-1- ابعاد زمین لغزش
طول صفحه گسیختگی Lr
این طول شامل مسافت بین پنجه صفحه گسیختگی تا تاج لغزش است.
طول توده جابجا شده Ld
فاصله بین قله تا نوک لغزش را نامند.
طول کلی لغزش L
فاصله بین تاج لغزش تا نوک لغزش میباشد.

شکل1- SEQ شکل1- * ARABIC 1- اجزای مختلف زمین لغزش
پهنای توده جابجا شده Wd1
بیشینه پهنای توده جابجا شده که بر Ld عمود باشد.
عمق صفحه گسیختگی Dr2
بیشینه مقدار عمق گسیختگی که بر سطح اولیه زمین عمود است.
عمق توده جابجا شدهDd
بیشینه عمق توده جابجا شده که به سطح توده جابجا شده عمود است.
 1-4-3-1- علل وقوع زمین لغزشها
لغزش عبارت است از پایین افتادن و یا حرکت یکپارچه و اغلب سریع حجمی از مواد رسوبی در امتداد دامنه ها . این پدیده بیشتر در سنگهای منفصل دانه دانه عمل میکند و حضور آب در پیدایش آن الزامی است چنانچه سنگها از طبقات سخت و سست تشکیل شده باشند نفوذ آب در لایهی سست حجم عظیمی از سنگ های سخت و یکپارچه فوقانی آنها را جا به جا می نماید (محمودی، 1374). در طـبیعت نمونههای فراوانی از لغزش وجود دارد و در ابعاد بسیار متفاوت کوچک یا بزرگ عمل میکنند .همانند تمام حرکات یکپارچه، جابجایی مواد و در امتداد سطح لغزش، به علت وجود آب دخالت نیروی جاذبه را آسان میسازد. گاهی در رسوبهای منفصل دانهریز این پدیدهها آنچنان آرام و غیر قابل پیشبینی عمل میکنند که عوارض انسانی داخل محدوده آن بدون آسیب چندانی پا برجای میمانند. نمونهی مشخص آن در غرب ایران در جنوب غربی کامیاران است. تودهی لغزشی اغلب خشک است اما سطح لغزش همیشه مرطوب و حالت کلی دارد. بنابراین متناسب با لایههای تشکیل دهنده سنگها، آبهای نفوذی میتوانند یکی از عوامل مهم در پیدایش آن باشند در این حالت غالبا سطح لغزش نیمرخ کاو و خمیده دارد. این خمیدگی اغلب حرکتی چرخشی به توده لغزنده تحمیل می کند. به طور کلی دلایل وقوع زمین لغزش را میتوان به سه دسته کـلی عوامل زمین شناسی ، عوامل ریخت شناسی و عوامل انسانی دسته بندی نمود. که در زیر تقسیم بندی مربوط به هر دسته ذکر شده است .
1-4-3-1-1- عوامل زمین شناسی
الف) وجود موادحساس یا ضعیف
ب) وجود مواد هوا زده
ج) حضور مواد برش یافته، درز دار یا ترک خورده
د) ناپیوستگی با جهت یافتگی مخالف) لایه بندی، شیستوزیته، گسل، سطوح تماس ( و...
ه) تفاوت در نفوذ پذیری و یا سختی مواد
1-4-3-2-1- عوامل ریخت شناسی
الف) بالا آمدگی ناشی از فعالیت های تکنوتیکی یا آتشفشانی
ب) حذف فشار سر بار ناشی از ذوب یخچال ها
ج) فرسایش رودخانه ای، موجی یا یخچال در پنجه دامنه یا حاشیه کناری آن
د) فرسایش زیر زمینی(انحلال، جوشش)
ه) بارگذاری رسوبی بر روی دامنه یا بالای آن
و) حذف پوشش گیاهی و آتش سوزی، خشکسالی
ز) ذوب شدن برفها
ح) هوازدگی ناشی از یخ زدن– ذوب شدن
ط) هوازدگی ناشی از انقباض – انبساط
1-4-3-3-1- عوامل انسانی
الف) حفاری بر روی دامنه یا پنجه آن
ب) بارگذاری بر روی دامنه یا پنجه آن
ج) افت سطح آب زیر زمینی
د) قطع درختان جنگلی
ه) آبیاری
و) معدن کاری
ز) نوسانات لرزهای مصنوعی
ه) نشت آب از تاسیسات
بارش باران به صورت مداوم و طولانی یا کوتاه مدت و شدید، مهمترین عامل اقلیمی ایجاد کننده زمین لغزش‌هاست. تاثیر این عامل را میتوان در مناطق و موقعیتهای مختلف به شکلهای زیر در نظر گرفت:
1- زمینلغزشهای ناشی از بارندگیهای شدید در مناطق مرطوب؛ مثل زمین لغزشهای ناشی از بارندگی‌های شدید در منطقه زاگرس.
2- زمینلغزشهای ناشی از بارندگیهای شدید درمناطق خشک؛ وقوع این زمینلغزش‌ها هنگام بارندگی‌های استثنایی قابل انتظار است.
3- زمینلغزشهای ناشی از بارندگیهای مداوم در مناطق مرطوب، مثل زمینلغزشهای سال 72 در نقاط مختلف گیلان و مازندران.
4- در بعضی مناطق با بارندگی کم، وجود جریان آب زیرزمینی در مناطق دور دست از طریق درزهها، گسل‌ها و سطوح لایه‌بندی و جذب آنها در لایههای بالای جریان آب زیرزمینی، ایجاد ناپایداری میکند. نمونههای این نوع گسیختگی در مجاورت چشمههای کارستیک در زاگرس وجود دارند.
5- عمل رودخانهها در مواقع سیلابی که از طریق فرسایش پیچه شیبها موجب ناپایداری کنارههای خود میشوند(معماریان، 1377).
در این زمینه، بررسیها نشان میدهد که قریب 80 درصد زمینلغزشها به دنبال بارندگی های اواخر زمستان و اوایل بهار به وقوع میپیوندند و نزدیک به 60 درصد در کنار جریانهای آبی رخ دادهاند که می توانند بار رسوبی رودخانهها را افز ایش داده، در نهایت موجب بروز سیلاب های گل آلوده شوند که علاوه بر وارد نمودن خسارات مالی و جانی از عمر مفید سازههای آبی مستقر بر روی رودخانهها نیز کاسته شود(زمردیان، 1373).
مطالعات گستردهای نیز در زمینهی علل وقوع زمینلغزش صورت گرفته که از جملهی آنها میتوان به نکته‌های زیر اشاره کرد:
کلارستاقی(1381) عواملی مانند دامنه و فاصله از گسل و فاصله ازشبکه هیدروگرافی را دارای تاثیر کم در زمین لغزشها عنوان نمود .
دومهری(1382) شرایط زمینشناسی و وضعیت توپوگرافی و آب و هوا و جهت دامنه را ازعوامل مهم لغزش دانسته است .
گرائی(1385) عوامل موثر در لغزش را شیب و جهت دامنه و فاصله از گسل و کاربری اراضی و بارندگی بیان نموده است .
زیزیر(1999) مهمترین عوامل موثر در لغزش را ساختار زمینشناسی و سنگشناسی کاربری زمین و وجود لغزشهای قدیمی و فعالیتهای انسانی عنوان نموده است .
ود و همکاران(2001) بافت سنگین خاک و شیب بالای دامنهها را از عوامل اصلی زمینلغزشها بیان نموده است .
کوماک و همکاران(2006) شیب، سنگشناسی و نوع پوشش را عامل مهم زمینلغزشها عنوان نموده است.
حسنی(1373) عوامل موثر در ناپایداری دامنه، بافت و رطوبت خاک و شیب دامنهها را عنوان نمود .
فیض نیا(1380) جاده سازی غیر اصولی و وجود خاکهای ریزدانه را از عوامل مهم لغزش میداند .
شایان ذکر است که نقش عوامل انسانی در وقوع زمین لغزشها نیز درخور توجه است، حدود 35 درصد از زمینلغزشهای موجود در بانک اطلاعاتی در اثر دخالتها و فعالیتهای بیرویه انسان چون راهسازی غلط، تخریب پوشش گیاهی و تبدیل آنها به دیمزارهای کم بازده، بارگذاری از طریق ایجاد سکونتگاهها و … تحریک و تشدید گردیدهاند.
زمینلغزش یکی از خطرات طبیعی به شمار میرود که هر ساله خسارات جانی و مالی فراوانی را به همراه دارد. وقوع زمینلغزش در مناطق شمالی کشور و به دلیل تبدیل اراضی جنگلی به زمینهای زراعی و جادهها در حال افزایش است و یکی از راهکارهای مهم برای کاهش خسارات ناشی از وقوع زمین لغزشها دوری جستن از این مناطق است.
1-4-4-1- خسارات زمین لغزش
زمین لغزش عبارت است ازحرکات کلی و عمقی تمام قشر خاک برروی سطح زمین مادری که هر ساله موجب خسارتهای سنگینی می گردد که گاهی جبران این خسارتها ممکن نیست و نیازمند صرف وقت و هزینهی بسیاری است(خسروزاده،1387). سرعت عملکرد و وسعت آنها غالبا پدیدههای دیدنی و گاهی فاجعه بار به وجود می آورد و ممکن است دهها و یا صدها هزار متر مکعب سنگ و خاک را یک جا تحت تاثیر قرار دهند این پدیده بیشتر در سنگهای منفصل دانه دانه عمل می کند. کشور ما با توپوگرافی عمدتا کوهستانی، فعالیت زمین ساختی و لرزه خیزی زیاد، شرایط متنوع زمین شناسی و اقلیمی، عمده شرایط طبیعی را برای ایجاد طیف وسیعی از زمین لغزشها داراست( نیک اندیش،1376). بلایای طبیعی به عنوان بزرگترین دشمن انسان باعث کشته شدن و مجروح شدن سالانه صدها هزار نفر و بیخانمان شدن میلیونها نفر در سراسر جهان میشود. از این رهگذر زمینلغزش یکی از معضلات جهانی پیش روی انسان دارای اهمیت خاص میباشد با توجه به این که زمینلغزشها نسبت به سایر بلایای طبیعی مدیریت پذیرتر می باشند لذا شناخت این پدیده در جهت جلوگیری از خسارات ناشی از آن از اهمیت زیادی برخوردار است (گرایی 1385).
ایران نیز به دلیل مساعد بودن شرایط جغرافیایی و فقدان مدیریت جامع محیطی و عدم رعایت آستانههای محیطی به عنوان یک کشور پرخطر به شمار میآید به طوری که جزء 10 کشور بلاخیز جهان قرار گرفته است و هر ساله پدیده ی زمین لغزش در مناطق کوهستانی و مرتفع کشور خسارات وصدمات قابل توجه ای به بار میآورد (کرم1380). زمینلغزشها از نظر تخریب و یا تهدید منابع ارضی به ویژه در دهههای اخیر سبب شده است که این پدیده از جنبههای مختلف مورد کنکاش قرار گیرد. بر اساس برآوردهای اولیه، سالانه حدود 500 میلیارد ریال خسارات مالی از طریق زمینلغزشها بر کشور وارد میشود (ایزانلو،1376). همچنین براساس آمار اولیه، بانک اطلاعاتی زمین لغزشهای کشور خسارات ناشی از 2548 زمین لغزش بالغ بر 107 کشته و 386 میلیارد ریال است (وزارت جهاد کشاورزی،1383).
خساراتی که لغزش وارد میکند به صورت زیر است:
1- تخریب جنگلها و مراتع2- تخریب راههای ارتباطی3- تخریب منازل مسکونی وتجاری4- تخریب پلها5- رسوبزایی و بر هم زدن سیستم آب وخاک6- از بین بردن ابنیه تاریخی7- تخریب باغات و اراضی کشاورزی8- خسارات جانی و مالی زیاد9- خسارت به سازهها، تاسیسات ومنابع طبیعی10- خسارت به نیروگاهها، راه آهن، شبکه آبرسانی وخطوط آب و برق
 میزان خسارات اقتصادی ناشی از زمین لغزش در کشورهای پیشرفته بیشتر است ولی طبق مطالعات انجام شده توسط مرکز مطالعات بلایای طبیعی سازمان ملل متحد برای بسیاری از کشورهای درحال توسعه این خسارات یک و دو درصد تولید ناخالص ملی آنها است (مهدوی فر، 1376). شکل 1-2، نمونه ای از خسارت وارده به یکی از راههای روستایی در اثر زمین لغزش در استان مازندران را نشان میدهد.

شکل1- - SEQ شکل1- * ARABIC 2نمونه ای از زمینلغزش در استان مازندران در روستای گرمستان از توابع شهرستان ساری
5-1- زمین آمار(ژئواستاتیستیک)
شاخصهای زیادی برای کمی کردن نحوه پراکنش متغیرهای محیطی با در نظر گرفتن تغییرات مکانی آنها وجود دارد که از بارزترین آنها میتوان به روشهای زمین آمار اشاره کرد (تورنر،2001 ). زمین آمار شاخه‌ای از آمار که در آن مختصات دادههای مربوط به جامعه تحت بررسی، و به تبع آن ساختار فضایی دادههای مربوط مورد مطالعه قرار میگیرد. از دیدگاه زمین آمار هر نمونه تا یک حداکثر فاصلهای معین با نمونههای اطراف خود ارتباط فضایی دارد، این فاصله حداکثر، دامنه تاثیر نامیده میشود که دارای اهمیت فراوانی است. امروزه روشهای زمین آماری علیرغم پیچیدگی آنها به دلیل کاربرد نرم افزاری کامپیوتری در شاخههای مختلف علوم خصوصا علوم محیطی و منابع طبیعی کاربرد فراوانی دارد (حسنی پاک،1386).
1-5-1- متغیر ناحیهای
اختلاف مقادیر یک متغیر ناحیهای از دو مولفه تصادفی و جزمی تشکیل میشود، بنابراین ساختار متغیر ناحیهای نیز شامل دو بخش ساختار مولفه جزمی و ساختار مولفه تصادفی است. ساختار مولفه تصادفی چیزی است که اصطلاحا ساختار فضایی نامیده میشود و تابعی است از فاصله ولی مستقل از مختصات. از خواص متغیرهای ناحیهای این است که بزرگی اختلاف مقادیر آنها در زمان یا مکان متناسب با فاصله زمانی یا مکانی آنها است. به عبارت دیگر در فواصل زمانی و یا مکانی نزدیک به هم احتمال اختلاف بین مقدار مولفههای تصادفی کمتر و در فواصل زمانی و یا مکانی دور از هم احتمال اختلاف بین مولفه تصادفی بیشتر میگردد (محمدی،1377).
2-5-1- تغییر نما
تابع واریوگرام، ابزار کلیدی در نظریهی متغیرهای ناحیهای است. واریوگرام تجربی، عبارت از متوسط مجذور اختلافات بین دو مشاهده ((x+h )Z ,(x)Z) در دو موقعیت مکانی واقع در فضای نمونهبرداری است که توسط آرایه از هم جدا شدهاند:
yh=1.12N(h)i=1N(h)(z(xi+h ))^2 () N، عبارت از جفت نمونههای جدا شده توسط h است. هم چنین واریوگرام تجربی را میتوان برای جهات مختلف جغرافیایی و همچنین، شبکههای نمونهبرداری منظم و غیرمنظم نیز محاسبه کرد (محمدی،1377).
1-2-5-1- اجزای تغییر نمای ایدهآل
1-2-5-1-1- دامنه تاثیر
برای یک متغیر ناحیهای با ساختار فضایی، توزیع طوری است که تشابه مقدار متغیر ناحیهای برای نقاط نزدیک به هم نسبت به نقاط دور ازهم بیشتر است. لذا با افزایش فاصله زمانی یا مکانی بین نمونهها به حدی میرسیم که از آن به بعد مقدار متغیر ناحیهای در نقاط اطراف یکدیگر بر هم تاثیر چندانی ندارند و با افزایش فاصله مقدار واریوگرام تغییر معنیداری نمیکند. به این فاصله دامنه یا شعاع تاثیر میگویند (محمدی،1385). در شکل 1-3 اجزای تغییر نمای ایده آل نشان داده شده است.

شکل1- SEQ شکل1- * ARABIC 3- اجزای تغییر نمای ایده آل
1-2-5-2-1- سقف واریوگرام
همچنان که افزایش مییابد مقدار هر واریوگرام از مقادیر کم شروع شده و پس از فراز و نشیبهایی که ممکن است به سمت حد ثابتی میل کند. بنابراین بعضی از واریوگرامها به مقدار نسبتا ثابتی میرسند که بعد از آن هر چه فاصله بیشتر شود مقدار واریوگرام تغییر معنیداری نمیکند. به این مقدار نسبتا ثابت که تغییرات آن فقط تصادفی است سیل یا سقف گفته میشود (محمدی،1385).
1-2-5-3-1- اثر قطعهای
از نظر تئوری مقدار واریوگرام به ازاء =0 باید به حداقل مقدار خود یعنی به صفر تنزل کند. ولی در عمل واریوگرامهای واقعی که محصول تجربه میباشند، معمولا از چنین شرایطی تبعیت نمیکنند. به مقدار واریوگرام به ازاء =0 اثر قطعهای گفته میشود (محمدی،1385).
6-1- روش کریجینگ
در زمین آمار، روشهای مختلفی برای تخمین وجود دارد که در زیر به شرح یک روش عمده از آن می‌پردازیم. به طور کلی تخمین زمین آماری فرایندی است که طی آن میتوان مقدار یک کمیت در نقاطی با مختصات معلوم را با استفاده از مقدار همان کمیت در نقاط دیگری با مختصات معلوم به دست آورد. از مهمترین ویژگیهای کریجینگ آن است که به ازای هر تخمینی خطای مرتبط با آن را میتوان محاسبه کرد. بنابراین برای هر مقدار تخمین زده شده میتوان دامنه اطمینان آن تخمین را محاسبه کرد.
6-1-1- معادلات کریجینگ
از آن جایی که کریجینگ یک میانگین متحرک وزندار است، این تخمینگر به صورت زیر تعریف می‌شود:
zv=i=1nzizviکه در آن zv عیار تخمینی λi وزن یا اهمیت کمیت وابسته به نمونه iام وzvi عیار نمونه iام است. این نوع کریجینگ را کریجینگ خطی مینامند زیرا ترکیب خطی از n داده است. شرط استفاده از این تخمین‌گر آن است که متغیر z توزیع نرمال داشته باشد. در صورتی که متغیر مورد نظر توزیع نرمال نداشته باشد، باید از کریجینگ غیرخطی استفاده کرد و یا میتوان ابتدا تبدیلی پیدا کرد که توزیع متغیر مورد نظر را به نرمال تبدیل کند و آنگاه روی دادههای تبدیل یافته کریجینگ خطی انجام داد. تخمینگر کریجینگ بهترین تخمینگر نااریب است. لذا باید اول عاری از خطای سیستماتیک باشد و ثانیا واریانس تخمین آن حداقل باشد (محمدی،1377).
6-2-1- ویژگیهای کریجینگ
کریجینگ یک تخمینگر نااریب با کمترین واریانس تخمین است. شرط نااریب بودن در دیگر روشهای تخمین مانند روش چند ضلعی، عکس فاصله و عکس مجذور فاصله نیز اعمال میشود ولی ویژگیهای کریجینگ در آن است که ضرایب λi را به گونهای تعیین میکند که در عین نااریب بودن، واریانس تخمین نیز حداقل باشد. بنابراین کریجینگ، همراه هر تخمین، مقدار خطای آن را نیز میدهد و به این ترتیب نه فقط میتوان مقدار متوسط خطاها را محاسبه کرد بلکه میتوان توزیع خطاها را در کل محدوده مورد بررسی بهدست آورد. با استفاده از این ویژگی منحصر به فرد کریجینگ، میتوان قسمتهایی که در آنجا خطا بالاست و برای کاهش آن به دادههای بیشتری نیاز است را مشخص کرد و تحت پوشش لازم قرار داد. از طرفی میتوان میزان کاهش واریانس تخمین به ازاء هر نمونه را قبل از اقدام به نمونهبرداری آن تعیین کرد. بنابراین با استفاده از واریانس تخمین میتوان بهترین نقاط نمونهبرداری را پیشنهاد کرد. از ویژگیهای دیگر کریجینگ آن است که در صورت تخمین مقدار کمیت در نقاط نمونهبرداری مقدار تخمینی با مقدار اندازهگیری شده باید برابر باشد و واریانس این تخمین صفر گردد. ویژگی دیگر کریجینگ آن است که موجب نرم شدن تغییرات میشود. از ویژگیهای دیگر کریجینگ که باید به آن اشاره شود خاصیت جمعپذیری آن است. این خاصیت باعث میشود که اگر در مورد مجموعهای از بلوکهای کوچک کریجینگ صورت گیرد میانگین مقادیر تخمینی این بلوکها برابر است با مقدارهای تخمینی بلوک بزرگتری که حاوی تمام بلوکهای کوچکتر است. البته در هر در حالت، تخمین بلوکهای کوچکتر و بزرگتر باید از یک سری نقاط یکسان استفاده شده باشد (محمدی،1377).
7-1- بررسی روشهای میانیابی و انتخاب مناسبترین روش
نهاییترین مرحله پایش ارائه نقشههای بارندگی میباشد. در این مرحله است که اطلاعات نقطهای حاصل از پردازش دادههای ایستگاهها در سطح تعمیم یافته و این نقشهها تهیه میگردند. از جمله مهمترین مراحل انجام تحقیق حاضر، تعیین مناسبترین روش میانیابی شاخص بارندگی در سطح منطقه و تبیین چگونگی توزیع فضایی و مکانی این شاخص طی ماههای مختلف دوره مورد نظر میباشد. روشهای مختلفی برای برآورد و تخمین متغیرهایی از این دست وجود دارد که به عنوان نمونه میتوان به روشهای کلاسیک، نظیر تیسن و میانگین حسابی اشاره کرد. این روشها گرچه همگی از نظر محاسبات سریع و آسان میباشند، ولی به دلایلی از جمله در نظر نگرفتن موقعیت و آرایش دادهها و همبستگی بین آنها، از دقت خوبی برخوردار نمیباشند. روشهای زمین آمار به دلیل در نظر گرفتن همبستگی و ساختار مکانی دادهها از اهمیت زیادی برخوردار هستند.
در بررسیهای آمار کلاسیک نمونههایی که از کل جامعه به منظور شناخت آن برداشت میشوند، فاقد اطلاعات مکانی در فضا بوده و در نتیجه مقدار اندازهگیری شده یک کمیت معین در یک نمونه، هیچگونه اطلاعاتی در مورد مقدار همان کمیت در نمونه دیگر به فاصله معین و معلوم در بر نخواهد داشت. در حالی که در زمین آمار علاوه بر مقدار یک کمیت معین در یک نمونه، موقعیت مکانی نمونه نیز مورد توجه قرار میگیرد. بدین لحاظ میتوان موقعیت مکانی نمونهها را همراه با مقدار کمیت مورد نظر یکجا مورد تحلیل قرار داد. به عبارت دیگر باید بتوان بین مقادیر مختلف یک کمیت در جامعه نمونهها و فاصله نمونهها و جهت قرارگیری آنها نسبت به هم ارتباطی برقرار کرد. این ارتباط مکانی( فاصلهای و جهتی) بین مقدار یک کمیت در جامعه نمونههای برداشت شده، ممکن است در قالبهای ریاضی قابل بیان باشد. به این قالبهای ریاضی ساختار مکانی گفته میشود.
بنابراین در زمین آمار ابتدا به بررسی وجود یا عدم وجود ساختار مکانی بین دادهها پرداخته میشود و سپس در صورت وجود ساختار مکانی، تحلیل دادهها انجام میگیرد. البته ممکن است نمونههای مجاور با فاصلهی معینی در قالب ساختار مکانی به هم وابسته باشند، در این حالت بدیهی است که میزان تشابه بین مقادیر مربوط به نمونههای نزدیکتر احتمالا بیشتر است، زیرا در صورت وجود ساختار مکانی، تغییرات ایجاد شده در یک فضای معین شانس بیشتری برای تاثیرگذاری روی فضاهای نزدیک به خود را نسبت به فضاهای دورتر از خود دارند. بدین ترتیب ازدیدگاه زمین آماری هر نمونه با یک حداکثر فاصله معین با نمونههای اطراف خود ارتباط دارد. این فاصله حداکثر که دامنه تاثیر نامیده میشود. دارای اهمیت فراوانی است و در حقیقت نشان دهنده فاصلهای است که در آن میتوان از تخمینگرهای زمین آماری استفاده کرد.
با توجه به توضیحات بالا معلوم میشود که با استفاده از روشهای زمین آمار میتوان ازدادههای یک کمیت در مختصات معلوم، مقدار همان کمیت در نقطهای با مختصات معلوم دیگر (در واقع در درون دامنهای که ساختار مکانی حاکم است) را تخمین زد.
گفتنی است که روشهای مختلف آمار بسته به نوع متغیر، دقت متفاوتی را ارائه میکنند و متاسفانه اغلب کاربران یک روش را به صورت تصادفی انتخاب کرده و برآورد مورد نظرشان را انجام میدهند که در این صورت دقت تخمین جای تامل دارد (حسنی پاک،1377).
1-7-1- روش تیسن
روش تیسن با تقسیم بندی منطقه مورد نظر براساس عمود منصفها و بدون توجه به آرایش دادهها برای هر ایستگاه، محدودهای تعیین مینماید که اطلاعات ایستگاه واقع در آن، برای کل این محدوده تعمیم داده می‌شود.
2-7-1- روش عکس فاصله
از روشهای مرسوم میانیابی، روش عکس فاصله می باشد. در این روش مقدار متغیر مکانی مورد بررسی بر اساس مشاهدات محدوده آن و مطابق رابطه زیر تعیین میگردد:
که در آن di فاصله نقطه مجهول تا نقطه مشاهده شده و a توان معادله میباشد. پارامتر a مقدار وزنی است که تعیین کننده اهمیت نقاط نزدیکتر افزوده میگردد.
این روش در مواقعی که دادهها از یک ساختار مکانی خوبی برخوردار نباشند، میتواند نسبت به روشهای زمین آماری مانند کریجینگ یا TPSS نتایج بهتری را به همراه داشته باشد (مهدیان و همکاران، 1382).
3-7-1- روشهای زمین آمار
در آمار کلاسیک نمونههایی که از جامعه به منظور شناخت آن برداشت میشوند، فاقد اطلاعات مکانی(فاصله و جهت) بوده و نتایج به دست آمده از اندازهگیری آنها مستقل از موقعیت مکانی نمونه مورد تجزیه و تحلیل قرار میگیرد. در حالیکه در زمین آمار علاوه بر مقدار یک کمیت معین در یک نمونه، موقعیت مکانی آن نیز مورد توجه قرار میگیرد. این ارتباط مکانی بین مقادیر کمیت مورد بررسی ممکن است در قالبهای ریاضی قابل بیان باشد به این قالبهای ریاضی ساختار مکانی گفته میشود. روشها و ابزارهایی برای بررسی این ساختار ارائه شده که نیم تغییر نما (واریوگرام) از مهمترین آنهاست (حسنی پاک،1377).
به طور کلی در زمین آمار، تخمین شامل فرایندی میشود که طی آن میتوان مقدار یک کمیت را در نقطه‌ای با مختصات معلوم با استفاده از مقدار همان کمیت، در نقاط دیگر که دارای مختصات معلوم می‌باشند به دست آورد. روشهای مختلفی در این راستا وجود دارد از قبیل کریجینگ، کوکریجینگ، TPSS (با متغیر کمی و بدون آن) و WMA که در این تحقیق از روش کریجینگ استفاده شده که در ادامه شرح مختصری از آن ارائه شده است.

فصل دوم
پیشینه تحقیق
2153865390696200
در قرن حاضر و با توسعه و پیشرفت سریع دانش بشری و نزدیکی علوم و تخصصها به یکدیگر، مساله ناپایداری دامنهها و زمین لغزشها به یکی از کانونهای اصلی مورد توجه دانشمندان علوم ژئومورفولوژی، مهندسی زمین شناسی و ژئوتکنیک و رشته های مرتبط دیگر همچون آبخیزداری و منابع طبیعی، برنامه ریزی محیط و آمایش سرزمین، تبدیل شده است. محققان و دانشمندانی چون هاو در سال 1909، لد در سال 1935، شارپ و وارنز در سال 1958، زارویا و منکل در سال 1982، ساوارنسکی در سال 1939 پوپوف در سال 1958 و ...... از کشور های مختلف دنیا نظیر آمریکا، انگلستان، روسیه، چک و اسلواکی در زمینه های مربوط به زمین لغزش، طبقه بندی، مطالعات و پژوهشهای با ارزشی را انجام دادهاند (قنواتی، 1390). در این فصل به بررسی پژوهشهای انجام شده در زمینه زمین لغزش در داخل و خارج از کشور میپردازیم.
1-2- بررسی سوابق پژوهشی در داخل کشور
نیک اندیش(1378)، نقش عوامل هیدرواقلیم در وقوع حرکات تودهای حوضه کارون میانی را با استفاده از سیستم اطلاعات جغرافیایی و براساس تحلیلهای آماری مورد بررسی قرار داد. یافتههای تحقیق وی نشان میدهد که تنوع توزیع مکانی و زمانی بارش، زمینلغزشها را کنترل میکنند. همچنین در سالهایی که بارش بیشتری در بهمن نازل میگردد، به دلیل تاثیر قاطع در رفتار دامنه، زمینلغزشهای زیادی رخ میدهد. بدین صورت که انباشت بیشتر برف در بهمن و ذوب سریع آن در اسفند و فروردین عامل مهمی در وقوع زمینلغزشهای این حوضه میباشد.
طلایی دولق و غیومیان (1380)، در شناخت و بررسی عوامل موثر در لغزش خیزی روستاهای جنوب غرب خلخال به این نتیجه دست یافتند که، حضور رس در سازندهای حساس منطقه با جذب آب و بر اثر خاصیت تورم و خمیری به عنوان یکی از عوامل اصلی حرکات دامنهای است.
مسگریوش و همکاران (1380)، در بررسی عوامل موثر در وقوع زمین لغزش محمود آباد مسکون، دریافتند که تراکم زمینلغزشها در سنگهای تکتونیزه و به شدت هوازده با کانیهای سولفیدی بوده و بدین لحاظ نقش اساسی در رویکرد زمینلغزش ایفا نموده است. همچنین تغییرات ساختاری نظیر احداث ترانشه جاده کرمان - جیرفت، خاکریزی مصنوعی، احداث کانال آبیاری در دامنه، آبهای نفوذی جوی و ناشی از کانال آب و ایجاد لرزههای طبیعی و مصنوعی مانند زمین لرزه و ارتعاشات ناشی از ترافیک ماشینهای سنگین، به عنوان عوامل ماشهای در وقوع زمینلغزش عمل کردهاند.
روستایی (1383)، به بررسی علل ایجاد زمینلغزش در روستای نصیرآباد ورزقان آذربایجان شرقی پرداخت، وی دریافت که بارشهای ناگهانی و شدید در منطقه و نفوذ آبهای سطحی در بالادست دامنه به داخل مواد نهشتهای از قبیل مارن، توف، رس ماسهدار و ضخامت زیاد نهشتههای سطحی در روی دامنههای با شیب متوسط، علت اصلی وقوع زمینلغزش بوده است. در ادامه به بررسی تاثیر پراکنش ارتفاعی در ویژگیهای مورفولوژیکی زمینلغزشها پرداخت، وی با تحلیلهای آماری مختلف به رابطههایی بین طول زمینلغزش و پراکنش ارتفاعی دست یافت که این رابطه بیانگر آن است که اندازهی تودهی لغزش در کل، تحت تاثیر پراکنش ارتفاعی است و رابطهی مستقیم بین آنها برقرار است و این رابطه نشان میدهد که وقوع لغزش به وسیلهی ویژگیهای بزرگ مقیاس مکانی کنترل میشود.
شادفر و همکاران (1384)، زمین لغزش در حوضه لاکتراشان تنکابن را با استفاده از مدل LNRF مورد پهنهبندی قرار دادند. نتایج تحقیق ایشان نشان داد که مدل LNRF کارایی بسیار خوبی برای پهنهبندی زمینلغزش به ویژه در نواحی مرطوب تا نیمه مرطوب را دارد. در این تحقیق عـوامل لیتولوژی (رس، سیلت با لایه هایی از ماسه سنگ زغالدار)، ( شیب40 -30 درجه ( و جهت شیب شمال غربی به دلیل دریافت رطوبت زیادتر از دریای خزر بیشترین تاثیر را در وقوع زمینلغزشهای حوضـه داشتهاند.
لطفی و همکاران (1386)، به بررسی پدیدهی زمینلغزش در اطراف جادههای جنگلی بر اساس مشارکت در تولید رسوب پرداختند. آنها به بررسی حوضه تجن در حومهی کارخانهی صنایع چوب و کاغذ مازندران پرداختند، وی با تهیهی نقشه توپوگرافی منطقهی مورد مطالعه و انجام مطالعات عمومی بر روی آن به بررسی نقاط لغزشی در دو طرف جاده به شعاع 100 تا حداکثر 200 متر، انجام و حجم لغزش محاسبه گردید. نتایج بدست آمده نشان داد که از سطح کل خاک جابجا شده در منطقه مورد مطالعه، تأثیر پدیده زمین لغزش بر اساس مشارکت در تولید رسوب حدود 35 درصد می باشد. بنابراین در جادههای جنگلی باید با رعایت دستورالعملهای حفاظتی، فاکتورهای مؤثر در تولید رسوب تحت کنترل قرار گیرند.
حسینی1و حجتی(1386)، به بررسی پیامدهای زمینلغزش در جادههای جنگلی پرداختند، نتایج بدست آمده نشان داد به هم خوردن جریان زهکشی آب بر اثر عملیات خاکی در جادهسازی موجب ناپایداری و لغزش شیروانی میشود.
حسینیولطفی(1386)، به بررسی پدیدهی زمینلغزش از لحاظ فیزیوگرافی پرداختند. وی به مطالعهی موردی حوضهی تالار صنایع چوب و کاغذ استان مازندران پرداختند، نتایج بدست آمده نشان میدهد که در جهت شمالی بیشترین مساحت لغزش با ابعاد بزرگتر و در جهت جنوبی کمترین مساحت لغزش و همچنین ابعاد کمتری وجود دارد. لذا در انجام عملیات عمرانی و ایجاد هرگونه تاسیسات فنی در جبهههای شمالی جنگلهای شمال ایران باید با دقت و صرف هزینه مناسب اقدام به برنامه ریزی نمود.
مردانیان و محمدکریمی(1386)، به بررسی اثرات فاکتورهای اقلیمی و زمین شناسی بر ایجاد زمین لغزش از طریق آنالیز در 400 مورد زمین لغزش در استان چهارمحال و بختیاری پرداختند. نتایج نشان داد که بیش از %45 زمین لغزشهای استان در حاشیه جادهها و در اثر ترانشه زنی کنار جاده است. از نظر شیب دامنه کلیه رانشهای ایجاد شده در شیبهای بالای 11 درجه اتفاق افتاده است. و نیز، رابطه مشخصی بین وضعیت سازندهای حساس زمین شناسی منطقه با وضعیت بارندگی محل رانش، شیب توده لغزشی و جهت و بافت خاک منطقه ارائه گردید.
حیدری بنی و همکاران(1386)، به ارزیابی روشهای زمینآماری در برآورد فاکتورهای اقلیمی دما و بارندگی در استان چهارمحال و بختیاری به عنوان پیش نیازی در آمایش سرزمین پرداختند. با توجه به نقش میدانهای عددی تهیه شده از پارامترهای هواشناسی در آمایش سرزمین موضوع انتخاب برترین روش زمین آماری در برآورد مقادیر می تواند نقش مهمی در نتیجه گیری صحیح و کاهش خطا داشته باشد. در این مطالعه میزان دقت روش های زمین آماری و میانیابی شامل روشهای کریجینگ، عکس مجذورفاصله، نزدیکترین همسایه، مثلث بندی و شپرت جهت برآورد پارامترهای بارندگی – دما و رطوبت نسبی به طور نمونه در استان چهارمحال و بختیاری را مورد بررسی قرار دادند.
ایلدرمی(1386)، به تحلیل مورفومتری زمین لغزشهای آبخیز سد اکباتان و برآورد رسوب آن‌ها  پرداخت. بررسیها نشان میدهد که بیشتر لغزشها از نوع سطحی و کم عمق می باشد. فرآیند فیزیک و شیمیایی بر روی تشکیلات گرانیتی در منطقه که بیش از 80% را شامل می شوند موجب افزایش میزان گسیختگی و لغزش ها از طریق شاخصها مورفومتری مانند شاخص عمق، انبساط ، نازک شدگی، جابجایی و ... بیانگر لغزشهای از نوع a یا سطحی است تقریبا 78% لغزشهای منطقه در حد تعادل بوده که نشان میدهد قسمت اعظم مواد لغزش یافته از مکان اولیه خود جابجا شدهاند مقدار ازدیاد نسبت D/L بیانگر گسترش جانبی و تغییر شکل عرضی مواد و برآورد نسبتهای L/D , W/D , L/W نشاندهنده تاثیر مستقیم و فراوان شیب در بروز لغزشهاست.
کلارستاقی و همکاران (1388)، میزان تأثیر عوامل مؤثر طبیعی و انسانی، بر وقوع، خصوصیات و ویژگیهای زمین لغزشها را بررسی نمودند. در این بین، نقش عامل طبیعی نزدیکی به شبکه زهکشی، به دلیل ایجاد لغزشهای حاشیه رودخانهای و حمل و انتقال حجم عظیم رسوبات لغزش یافته به خارج از حوضه مورد توجه بوده است.
موسوی خطیر و همکاران (1388)، در بررسی عوامل موثر بر وقوع زمین لغزشها در حوضه آبخیز سجارود یافتند که با کاهش ارتفاع از سطح دریا و افزایش بارندگی میانگین سالانه، زمینلغزشهای عمیقتر و با گسترش عرضی بیشتر مشاهده میگردند، درحالیکه گسترش طولی لغزشها کاهش مییابد.
احمدیان و همکاران(1388)، به بررسی علل وکنترل زمینلغزش روستای ارزفون پرداختند، روستای ارزفون (واقع در جنوب ساری) از جمله مناطقی است که به دلیل تغییر کاربری زمین بدون انجام مطالعات دقیق زمینشناسی مهندسی یک زمینلغزش بزرگ در آن به وقوع پیوست. با انجام مطالعات زمین شناسی مهندسی و ژئوتکنیکی و تحلیلهای صورت گرفته در این منطقه و دامنه لغزشی اقدام به تثبیت دامنه با روشهای زهکشی و تغییر شیب دامنه کردند. این سازند به دلیل فرسایشپذیری بالایی که داشت دارای ارتفاع کم و شیب ملایمی بود و ضخامت خاک در آن بالا بود. با توجه به بررسی لغزشهای زیادی که در این سازند رخ داد، مهمترین عامل استعداد لغزشی این سازند را به حضور مارن و کانیهای رسی موجود در آن مربوط دانستند. آنها نیز یافتند تغییر غیر اصولی کاربری زمین بر منطقهای با سابقه لغزشی و متشکل از مجموعه عوامل موثر در وقوع زمینلغزش (لیتولوژی حساس، تراکم گسلها، بالا بودن تراز آب زیرزمینی و ... ) از مهمترین دلایل وقوع این زمین لغزش میباشند.
طالبی و همکاران(1388)، بر روی مدلهای تجربی و فیزیکی زمینلغزشهای ناشی از بارندگی تحقیقاتی انجام دادند. با ایجاد مدلهای مختلف به بررسی تاثیر عوامل محیطی بر زمین لغزش پرداختند، آنها به این نتیجه رسیدندکه، نقش عوامل هیدرولوژیکی (بارندگی، رطوبت خاک، جریان زیرسطحی و عمق آب زیرزمینی) در پایداری یا ناپایداری انواع دامنههای طبیعی و مصنوعی بسیار اساسی است، به طوری که هیچ مدل زمین لغزشی را نمیتوان یافت که عوامل هیدرولوژیکی را در نظر نگرفته باشد. تغییرات اقلیمی مانند افزایش بارندگیهای شدید و کوتاه مدت نسبت به بارندگیهای ملایم و بلند مدت، و همچنین افزایش جاده ها و راههای ارتباطی کوهستانی، افزایش زمین لغزشها و خسارات ناشی از آنها مشاهده شد. بنابراین شناخت ساز و کار زمین لغزشها، عوامل اصلی مؤثر در آنها، استفاده از انواع مدلهای توسعه یافته برای بررسی آنها و طراحی سامانههای پیش بینی و هشدار زمین لغزش باید جز اولویتهای اجرایی کشورهای در خطر، مانند ایران، قرار بگیرد .
امیدوار وکاویان (1389)، در یک مطالعه مقایسهای، مدل آماری برآورد حجم زمین لغزشها بر پایه مساحت را برای زمین لغزش های استان مازندران توسعه دادند. بدین منظور آنها ابتدا لیستی از داده‌های مربوط به تعداد 442 زمینلغزش در استان مازندران شامل مساحت، حجم و عمق تهیه نمودند. سپس یک رابطه تجربی جهت برآورد حجم ارائه و این رابطه را مورد ارزیابی قرار دادند. نتایج آنها نشان داد که مقادیر حجم برآورد شده توسط رابطه ارائه شده برای استان مازندران، همخوانی بسیار خوبی با دادههای مشاهدهای و برخی روابط موجود دارد که نشان دهندهی کارایی رابطه ارائه شده میباشد.
حسینی(1391)، به پهنهبندی خطر زمین لغزش در گرگان با استفاده از GIS پرداخت، وی با ترکیب اطلاعاتی نظیر نقشههای توپوگرافی، نقشههای زمینشناسی و پوشش گیاهی، نقشههای زیرساخت و با کمک مدلهای ریاضی و آماری خطر زمین لغزش را در گرگان مورد ارزیابی قرار داد.
2-2- بررسی سوابق پژوهشی در خارج از کشور
آنبالاگان1(1992)، به شناسایی عوامل موثر در وقوع زمین لغزش در ناحیه کوهستانی کاتگودام- ناینیتال در کومان هیمالایا و پهنهبندی آن با استفاده از فاکتور ارزیابی خطر زمینلغزش(LHEF) پرداخت. نتایج تحقیقات وی نشان داد که پارامترهای لیتو لوژی، سازند زمین شناسی، شیب و پوشش و کاربری اراضی با 2 امتیاز، بیشترین نقش را در وقوع زمینلغزشهای این ناحیه کسب کردهاند.
اوکاک اوغلو و همکاران2(2001)، در ناحیه داگوی ترکیه در غرب دریای سیاه، به مطالعه دینامیک حرکات تودهای پیچیده ناشی از بارش سنگین پرداختند. تحلیل دادههای بارش برای دورههای طولانی و کوتاه روزانه و ساعتی توسط آنها به وضوح دلالت بر این داشت که بارش سنگین در زمین لغزش به عنوان یک عامل محرک نقش داشته و پس از آن توپوگرافی، شیب لایه بندی مارن، تراکم زیاد درختان و افق خاک ضخیم روی زمین مارنی، نقش موثری در وقوع انواع زمین لغزشها داشتهاند.
اسپیزوآ و بنگوچهآ(2002)، خطر زمینلغزش در حوضه ریوگرانده آندهای مرکزی آرژانتین را پهنه بندی کردند. آنها ضمن مطالعات خود به ارتباط نزدیک بین سنگشناسی با مقاومت زیاد و لایهبندی ضخیم در بخش فوقانی، جهت شیب غالب جنوبی و غربی، ذوب برفها، بارشهای رگباری و وقوع زمینلغزشها دسـت یافتند. به علاوه با بررسی تصاویر ماهوارهایی به فعالیت مجدد یک زمینلغزش قدیمی بر اثر تشکیل یک سد و فشار آب متخلخل ناشی از آن پی بردند.
جرارد و گـراندر1( 2002 )، به بررسی ارتباط بین زمین لغزش و تغییر کاربـری اراضی در حوضه آبخیز لیخوکولا، در تپه ماهورهای میانی نپال در شمال کاتماندو پرداختند. نتایـج تحقیقات سه سـاله آنها (1991-1993) در روی چهار زیر حوضه از حوضه نام برده، 381 مورد زمین لغزش ثبت شد که غالبا به شکل گسیختگی در خیز تراسهای آبیاری شده بود. نتایج تحقیقات آنها نشان داد که بیشترین معنی داری بین گسیختگیهای بزرگ روی تراسهای رها شده و جنگلهای تخریب یافته وجود داشته است. برآورد آنها نشان داد که بیشترین میزان فرسایش خاک ناشی از لغزش مربوط به جنگل های تخریب شده و زمینهای رها شده، بوده است (95/23 تن در هکتار). درنهایت آنها به این نتیجه دست یافتند که صرفا جنگلزدایی منجر به فرسایش شدید خاک بر اثر زمینلغزشها نشده، بلکه نحوه مدیریت بعد از آن که منجر به فرسایـش شدید خاک بر اثر زمین لغزشها گردیده است.
گابت و همکاران2 (2004)، با استفاده از دادههای بارش و بار رسوبی روزانه حوضه آناپورنای هیمالایای نپال، به اثرات بارش و ویژگیهای شیب دامنه درشروع زمین لغزشها در دوره بارشهای موسمی این حوضه پی بردند. آنها دریافتند که هر زمان طی دوره بارشهای موسمی آستانه بارش به بیش از mm860 برسد حرکات لغزشی به وقوع خواهد پیوست.
آوانزی و همکاران3(2004 )، طی بررسی تاثیر عوامل زمینشناسی بر وقوع زمینلغزشهای کم عمق منطقه کوهستانی آپونا (شمال غرب توسکانی-ایتالیا) بیان نمودند که سنگشناسی سنگ بستر و نفوذ پذیری، فاکتورهای مهمی در تعیین محل وقوع زمین لغزشها بودهاند.
گارلند و همکاران(2005)، به بررسی توانایی پیشبینی زمینلغزش در مناطق گرم و مرطوب پرداختند. آنها در مورد میانگین رواناب سالانه مشخص شده برای دو حالت کمیت و مدت زمان زمینلغزش پیشنهاد دادند که حالت تعادل برای دو رابطهی رواناب و جابجایی بزرگ می باشد که توسط میانگین رطوبت فصلی رواناب کنترل میگردد که باعث بهتر شدن پیشبینی زمینلغزش میگردد.
کاردینالی وهمکاران (2006)، به بررسی تاثیر رواناب در زمینلغزش رخ داده در جنوب غربی ایتالیا که در سال 2004 رخ داده بود پرداختند، ایشان به بررسی شرایط رواناب در زمین لغزش اولیه شامل زمان شکست زمین لغزش در شیب پرداختند آنها یافتند که ویژگیهای مواد آتشفشانی در خاک تاثیر بسزایی در میزان زمینلغزش داشته است.
کواستا و همکاران (2007)، در مطالعهای به بررسی حساسیت به وقوع زمین لغزش در حوضه رودخانه نالون درکوههای سانتابریان آمریکا پرداختند. نتایج حاصل از پژوهش آنها نشان داد بیشتر ناپایداریها مربوط به شیب های جهت جنوب غربی- شمال شرقی، انحنای شیب بین 6- و7/0-درجه شیب 16 تا 30 درجه می باشد.
کومار و همکاران (2008)، در تحلیل نقش زمین لغزش در نپال به این نتیجه دست پیدا کردند که نقش اصلی ایجاد زمین لغزشها در هیمالیا، رواناب اولیه بوده است. تحقیقات آنها با ملاحظهی رواناب روزانه و رواناب تجمعی در پیدا کردن نقش رواناب اولیه در پروسهی زمینلغزش در هیمالیا صورت گرفت. در زمانی که میزان بارش به 144 میلیمتر میرسد خطر ایجاد زمینلغزش بالا میرود. ارتباط آستانهی زمین لغزشها نشان داد که بیشتر از 3 بار لازم است رواناب رخ دهد تا زمین تحریک لازم را برای لغزش پیدا کند. مقایسه‌ی بین شدت و مدت در آستانهی رواناب تغییرات زیادی را نشان نداد. آستانهی رواناب در بالای 400 ساعت نشان داده نمیشد و در حالتی در حدود 10 ساعت بارش قابل نمایش بوده است. که شدت رواناب استانداردسازی شده در حدود 0.28 در ساعت ( MAP)بوده است.
گازتی وهمکاران(2008)، به بررسی کنترل شدت و مدت زمان بارش درکنترل زمین لغزش پرداختند، آنها نمودار لگاریتمی شدت – مدت رواناب را ترسیم کرده و به این نتیجه دست یافتند که میانگین کمترین شدت عمق رها شدهی شیب به صورت خطی کاهش مییابد. بازهی زمانی که در نظر گرفتند ما بین 10 دقیقه الی 35 روز بوده است که کمترین مقدار نمودار شدت – مدت برای زمین لغزش اولیه مشخص شد. آنها یافتند که تفاوت شدت و مدت زمان رواناب، مشابه نتایج شکست شیب کم در اثر تغییر اقلیم میباشد.
لپور و همکاران (2011)، به بررسی تاثیر حساسیت عامل بارش در کاهش زمینلغزش در مناطق جغرافیایی پورتوریکو پرداختند. آنها به روش(LSZ)3 پهنهبندی استعداد زمین لغزش در مناطق مختلف پرداختند. آنها به مقایسهی دو روش پرداختند که روش اول (FR) یا نرخ تناوب و روش دوم(LR) یا منطق رگرسیونی می‌باشد. در این روشها شیب زمین، ارتفاع زمین و ژئولوژی خاک به میزان قابل توجهی تاثیرگذاری خود را نشان دادند. آنها یافتند که روش رگرسیونی به راحتی روش نرخ تناوب نمی‌تواند منطقهی پورتوریکو را از لحاظ تاثیر بارندگی در زمینلغزش تحت تاثیر قرار دهد.
لی وهمکاران (2011)، به بررسی زمینلغزش و سیل رخداده در کرهی جنوبی پرداختند. آنها به بررسی علل زمینلغزش در مناطق شهری سئول پرداختند و از لحاظ ژئوتکنیکی و هیدرولوژیکی مسئله را مورد بررسی قرار دادند، آنها به این نتیجه رسیدند که، مدت زمان بارش باران در منطقه تاثیر بسزایی در میزان زمین لغزش داشته است.
مروری بر سوابق تحقیق بیانگر آن است که کلیهی حرکات دامنهای اعم از لغزش، خزش، سولیفلوکسیون و ریزش تحت تاثیر عواملی از قبیل شیب، باران، لیتولوژی، فاصله از گسل، جاده و رودخانه و عامل انسانی قرار دارند. ضعف و قوت هر کدام از این عوامل نسبت به هم میتواند در تعیین نوع این حرکات نقش تعیین کنندهای داشته باشد.

فصل سوم
مواد و روش‌ها
2265045397319500
3-1- منطقه مورد مطالعه
استان مازندران که عرصه این پژوهش میباشد، با مساحت 3/24091 کیلومترمربع و با موقعیت جغرافیایی ´27 °35 تا ´35 °36 عرض شمالی34 °50 تا ´10 °54 طول شرقی (شکل1-3)، از بخشهای جلگهای و کوهستانی تشکیل یافته که از سمت شمال دریای خزر، از شرق استان گلستان، از غرب استان گیلان و از جنوب، ارتفاعات البرز در امتداد غربی - شرقی آن را محدود میکنند. بیشتر تشکیلات زمینشناسی ارتفاعات البرز مربوط به دوران مزوزوئیک میباشد(درویشزاده،2006). به لحاظ آب و هوایی با توجه به مجاورت استان مازندران به دریا، میزان بارندگی زیاد و دارای رودخانههای متعدد میباشد. بخش بسیار بزرگی از استان مازندران در زون کوههای البرز قرار میگیرد. از مشخصات زون مذکور پیوستگی رسوبگذاری از ژوراسیک تا میوسن بوده که جنس آنها از سنگ مارن و سنگ آهک میباشد. لایه روباره این تشکیلات از جنس رس سیلتی و ماسه ریزدانه که در هر لحظه در معرض خطر زمینلغزش قرار دارد. این زون بصورت تاقدیس و ناودیسهای دارای شیب ملایم بوده و فاقد هرگونه فعالیت ماگمایی میباشد. تکتونیک و فرایندهای کوهزایی  زون البرز توسط دوگسل شمالی و جنوبی که امتداد آنها شرقی- غربی میباشد، از دریای خزر و ناحیه شمال گرگان و از زون ایران مرکزی جدا شده است (احمدی وفیضنیا،2006).
شکل3-1- نقشه موقعیت استان مازندران در ایران
3-2- زمینشناسی استان مازندران
استان مازندران در بخش مرکزی زون ساختاری البرز قرار دارد. یافتههای دیرینه ‎شناختی امروز مازندران، گویای آن است که کهن‎ترین سنگ‎های منطقه سازند کهر است که حاوی آکریتارکهای نوپروتروزوییک پسین است. با تکیه بر سنگ رخسارهها به ویژه نقش زمین ‎ساخت بر حوضهی رسوبی البرز، همهی سنگهای منطقه را به چند واحد زمین‎ساختی- چینه ‎نگاشتی بزرگ و به شرح زیر تقسیم می کند:
   - توالی سکوی پرکامبرین پسین- اردویسین.   - سنگ‎های ماگمایی (درونی و بیرونی) اردویسین میانی- دونین.
   - توالی فلات قارهی دونین- تریاس میانی.   - نهشته‎های پیش‎خشکی تریاس بالایی- ژوراسیک میانی.   - توالی فلات قارهی ژوراسیک میانی- کرتاسه، با دو رخسارهی ناهمسان در البرز جنوبی و شمالی.- مجموعهی ماگمایی البرز به سن سنوزوییک، با ترکیب شیمیایی کلسیمی- قلیایی در البرز غربی- مرکزی و قلیایی در البرز شرقی.- رسوبات همزمان با کوهزایی سنوزوییک، با دو رخسارهی ناهمسان در البرز جنوبی و شمالی، گفتنی است که:
    هر یک از واحدهای یاد شده در بالا شامل چند یا چندین سازند است که همگی در شرایط زمین‎‌ساختی خاص، با شرایط رسوبی- زمین‎ساختی مشابه، انباشته شده‎اند. در حد فاصل پرکامبرین پسین تا اردویسین، پوستهی قاره‎ای البرز جایگاه تکاملی دریای بَر قاره‎ای کم عمق بوده است. بررسی دیرینه جغرافیای البرز نشان میدهد که رسوبات پالئوزوییک دامنهی شمالی ستبرتراند و در پاره‎ای نقاط همچون آمل وکندوان، ناپیوستگی رسوبی میان سنگ‎های پرمین و تریاس در کمترین اندازه است. در ضمن، ستبرای رسوبات زغالدار تریاس بالا، ژوراسیک میانی در دامنه شمالی، چندین برابر دامنه جنوبی است و یا سنگهای کرتاسه‌ی بالایی حجم قابل توجهی سنگهای آتشفشانی دارند. این نکته‎ها نشان میدهند که در زمانهای پالئوزوییک، مزوزوییک حوضه رسوبی دامنه شمالی البرز عمیق‎تر از دامنه جنوبی بوده است در حالی که از سنوزوییک به بعد شرایط دیرینه جغرافیا تغییر عمده کرده و در حالی که در دامنهی شمالی گسلش راندگی و فراخاست روی داده، در دامنهی جنوبی البرز، دریای پسرونده، کم ژرفا و در حال فرو نشستی وجود داشته است که در آن چند هزار متر انباشته ‎های آذر آواری تخریبی همزمان با کوهزایی بر جای نهاده شده است. هم شیبی نسبی و حتی تدریجی بودن احتمالی گذر سازند کهر به ردیفهای جوانتر نئوپروتروزوییک (سازند سلطانیه) نشان میدهد که شواهدی روشن از عملکرد رویداد کاتانگایی در کوه‎های البرز دیده نشده است. در بیشتر نواحی البرز، رسوبهای پالئوزوییک، تریاس میانی، به رغم نبودهای چینه‎ای فراوان، هم‎ شیب‎اند که نشانگر حرکتهای زمین‎ساختی از نوع زمینزا است. در تریاس پسین، همزمان با رویداد کوه‌زایی سیمرین پیشین، اگرچه رویدادهای ناشی از برخورد حاشیهی قاره‎ای فعال و پویای توران با حاشیه‌ی قاره‎ای ناپویای البرز موجب شکل‎گیری گسلهای راندگی و فرا رانش مجموعه‎های اقیانوسی تتیس کهن بر روی لبهی شمالی البرز شده ولی، نخستین کوه‌زایی آلپی واقعی در پالئوسن، همزمان با رویداد لارامید، رخ داده که با گسلش راندگی، چین‎خوردگی و فراخاست، پیدایش حوضه‎ های رسوبی میان کوهی، انباشت آوار‎های همزمان با کوهزایی و مهاجرت پیش‎ خشکی به سمت جنوب همراه بوده است. کوهزایی بعدی در آغاز الیگوسن بوده که ماگماتیسم درونی، از آب خارج شدن گستردهی زمین و گسترش حوضه‎های میان کوهی از پیامدهای آن است. باز پسین فاز کوهزایی آلپی در اواخر پلیوسن یا اوایل پلیستوسن صورت گرفته که حاصل آن، گسلش، راندگی، مرتفع شدن و سیمای امروزی البرز است. ساختارهای زمین‎شناختی مازندران به تبعیت از البرز بیشتر از نوع چین‎های ملایم و ناهماهنگ با روند همگانی خاوری باختری است. در بخش باختری البرز، ساختارها روند شمال باختری، جنوب خاوری دارند ولی در بخش خاوری، روند ساختارها شمال خاوری، جنوب باختری است. این دو روند ناهمسان در البرز مرکزی به یکدیگر میرسند. گفتنی است که در شکل‎گیری ساختارهای چین‎ خوردهی البرز عواملی مانند برخورد صفحهی ایران و توران، عملکرد گسل‎های راندگی و سرانجام عملکرد گسل‎های امتداد لغز شمال باختری، جنوب خاوری در البرز باختری، و شمال خاوری، جنوب باختری در البرز خاوری، نقش دارند.
جدا از چین‎خوردگی، گسلش‎های راندگی همچنان در ساختار البرز اثر بسیار سازنده داشته‎اند. در گزارش‎‌هایی مانند اشتوکلین (1968)، بربریان (1983)، شنگور(1990) آمده که در پهلوی شمالی البرز راندگی‌ها به سمت جنوب شیب دارند و حرکت فرا دیواره به سمت شمال است در حالی که در دامنهی جنوبی، شیب راندگی ها به سمت شمال و حرکت فرا دیواره رو به جنوب است. ولی بررسیهای اخیر علوی (1991) در نواحی بینالود، جنوب گرگان، منطقهی کیاسر، شمال تهران، ناحیهی تالش حقایقی روشن‎تری از ساز وکار و نقش راندگیها در ساختار البرز را نشان دادند. این بررسیها نشان دادند که، الگوی ساختاری چیرهی البرز از نوع گسلش راندگی است که سبب شده تا ورقههای ساختاری به مقدار زیاد حمل و سیستم های دو پلکس از نوع گُرده‎ای مرکب 2 به وجود آید. ساختار های گُرده‎ای مرکب، حاصل دو نسل گسلش راندگی هستند. نسل یکم راندگی ها به سن پیش از ژوراسیک میانی و در ارتباط با حوادث برخوردی، سیمرین پیشین ا‎ست. نسل دوم راندگی‎ها به سن سنوزوییک و در ارتباط با کوهزایی آلپی است.
راندگیهای سیمرین ویژگی شکل پذیر دارند ولی راندگی‎های آلپی ویژگی شکننده دارند. هر دو نسل یاد شده، شیبی به سمت شمال خاوری دارند و روند عمومی آنها، NW – SE موازی روند البرز است.در اثر این راندگیها، به طور عموم سنگ‎های کهن‎تر بر روی واحدهای جوانتر حمل شده‎اند ولی گاهی، نیز واحدهای جوانتر، بر روی سنگهای کهن‎تر، برده شده‎اند.گذر چندین گسل طولی، موازی با روند ساختاری کوه‎های البرز، سبب شده تا با دیدگاههای متفاوت (اشتوکلین، 1974، دلنباخ، 1964، انگالن، 1968) البرز به چند واحد ساختاری متفاوت تقسیم شود. تقسیمات پیشنهادی اشتوکلین 1974 که پر استفاده‎ ترین آنهاست به شرح زیر است:
زون برآمدهی گرگان5: ناحیهی به نسبت مقاومی از سنگهای دگرگونی است که با رسوبات کم ضخامت500-300متر، مزوزوییک پوشیده شده است. برآمدگی و به عبارتی پیشامدگی گرگان دارای روند خاوری، باختری است و محور آن به سوی باختر نشست دارد و به نظر می رسد بخشی از منشور های فزایندهی تتیس کهن باشد.
زون نئوژن شمالی : شامل کمربندی چین‎ خورده از سنگهای مزوزوییک و مولاس‎های نئوژن است. مرز جنوبی آن منطبق بر یک گسل راندگی است. سنگهای نئوژن این زون، رخسارهی خزر جنوبی، یعنی پاراتتیس، دارند.
زون شمالی- مرکزی : مشخصهی این زون رسوبات پایابی است که به تقریب از پرکامبرین پسین تا کرتاسهی بالایی در آن انباشته شده‎اند. افزون بر آن کمی رویدادهای آتشفشانی صورت گرفته دیگر شکلی ساختاری عمدهی این زون در دورهی ترشیاری انجام گرفته است.
زون جنوبی- مرکزی : در این زون، رسوبات کم عمق پیش از ترشیاری، به وسیلهی حجم زیادی از آتشفشانیهای ائوسن پوشیده شده‎اند. از ویژگی آن، راندگی‎های پس از ائوسن است.
زون ترشیاری جنوبی : دارای آتشفشانیهای بسیار ضخیم ائوسن و رسوبات خشکی نئوژن است. این زون با،راندگیهای ملایم به سمت جنوب مشخص است (مهجوری،1380).
3-3- آب و هوای استان مازندران
به طور کلی جلگه مازندران دارای آب و هوای معتدل و مرطوب است که معروف به آب و هوای معتدل خزری است. عوامل موثر در آب و هوای این استان عبارتند از وجود کوههای البرز، جهت قرار گرفتن آن‌ها، ارتفاع مکان، نزدیکی به دریا، پوشش گیاهی، بادهای محلی، عرض جغرافیایی و پیش آمدن توده هوای شمالی و غربی که در بین عوامل فوق نقش کوهها و دریای خزر و بادها بیش از سایر عوامل است (عضدی،1386).
3-4- اقلیم استان مازندران
ناحیه جنوبی دریای خزر، به خصوص استان مازندران به دلیل موقعیت خاص خود که در مجاورت یک دریای بسته قرار دارد و جدا افتادگی آن از باقی فلات ایران از آب و هوای ویژه ای برخوردار است. عوامل مؤثر در آب و هوای این منطقه را میتوان به وجود کوه های البرز، جهت قرار گرفتن آنها، ارتفاع مکان، نزدیکی به دریا، پوشش گیاهی، بادهای محلی، عرض جغرافیایی متوسط و پیش آمدن توده هوای شمالی و غربی بسط داد . قابل ذکر است که در میان عوامل ذکر شده نقش کوهها و دریای مازندران و بادها بیش از سایر عوامل درآب و هوای مازندران تأثیر دارد.
این استان بر اساس نظرات گوناگون دارای چهار نوع اقلیم است :
بر اساس طبقه بندی هانسن، این استان در مدار معتدل گرم قرار گرفته است .
به روش ضریب اعتدال، این استان بسیار معتدل و فوق معتدل است . منظور دکتر کریمی از نوع اقلیم آنها مشخص شده که به صورت جدولی در زیر آمده است.
بر اساس طبقه بندی دومارتن نواحی غربی استان مازندران بسیار مرطوب، نواحی مرکزی آن مرطوب و نواحی شرقی آن مدیترانهای و نواحی کوهستانی مازندران نیمه مرطوب میباشد.
بر اساس طبقهبندی دکتر کریمی، نواحی غربی و مرکزی دارای اقلیمی مرطوب با تابستان گرم و زمستان کمی سرد، نواحی شرقی، نیمه مرطوب با تابستان گرم و زمستان نسبتا سرد و نواحی کوهستان مازندران دارای اقلیم مرطوب با تابستان معتدل و زمستان بسیار سرد میباشدکه شرح آن در جدول 1-3 آمده است (مهجوری،1380).
3-4-1- ناهمواریهای استان مازندران
استان مازندران از نظر ناهمواریها به دو قسمت جلگهای و کوهستانی تقسیم میشود. جلگه: در دوران کواترنری به علت تغییر شرایط آب و هوایی، نوسانات محسوسی در سطح دریای خزر به وقوع پیوسته است. به همین دلیل وسعت این جلگه متغیر بوده است به طور کلی به وسعت این جلگه از غرب به شرق افزوده میشود. به علت فراوانی نسبی آب، فرسایش در کوهها برتری داشته و آبرفتهای ناشی از آن در کنار دریا ته نشین شده و جلگه مازندران را تشکیل دادهاند. در ایجاد و میزان گسترش جلگهی مازندران عوامل میزان آب رودها، وسعت حوضه آبریز رودها، مقاومت سنگها، عمق دریا، اختلاف زیاد بین سطح پایه و ارتفاعات شمالی البرز دخا لت دارند (عضدی،1386).
جدول 3-1- طبقهبندی اقلیم ایستگاههای موجوددراستان مازندران به روشهای دکترکریمی و دومارتن
(کتاب جغرافیای تاریخی مازندران)
طبقه بندی اقلیمی شهرهای روش دمارتن روش دکتر کریمی
رامسر بسیار مرطوب مرطوب با تابستان گرم و زمستان کمی سرد
نوشهر بسیار مرطوب مرطوب با تابستان گرم و زمستان کمی سرد
بابلسر بسیار مرطوب مرطوب با تابستان گرم و زمستان کمی سرد
قراخیل قائمشهر نیمه مرطوب نیمه مرطوب با تابستان گرم و زمستان نسبتا سرد
طاهرآباد ساری مدیترانه ای نیمه مرطوب با تابستان گرم و زمستان کمی سرد

–105

استفاده از اطلاعات و نتایج این گزارش نهایی بدون ذکر مرجع مجاز نیست.

معاونت پژوهش و فن آوری
به نام خدا
منشور اخلاق پژوهش
با یاری از خداوند سبحان و اعتقاد به این که عالم محضر خداست و همواره ناظر بر اعمال انسان و به منظور پاس داشت مقام بلند دانش و پژوهش و نظر به اهمیت جایگاه دانشگاه در اعتلای فرهنگ و تمدن بشری، ما دانشجویان و اعضاء هیات علمی واحدهای دانشگاه آزاد اسلامی متعهد می‌گردیم اصول زیر را در انجام فعالیت های پژوهشی مد نظر قرار داده و از آن تخطی نکنیم:
1- اصل حقیقت جویی: تلاش در راستای پی جویی حقیقت و وفاداری به آن و دوری از هرگونه پنهان سازی حقیقت.
2- اصل رعایت حقوق: التزام به رعایت کامل حقوق پژوهشگران و پژوهیدگان (انسان، حیوان و نبات) و سایر صاحبان حق
3- اصل مالکیت مادی و معنوی: تعهد به رعایت کامل حقوق مادی و معنوی دانشگاه و کلیه همکاران پژوهش
4- اصل منافع ملی: تعهد به رعایت مصالح ملی و در نظر داشتن پیشبرد و توسعه کشور در کلیه مراحل پژوهش
5- اصل رعایت انصاف و امانت: تعهد به اجتناب از هرگونه جانب داری غیر علمی و حفاظت از اموال، تجهیزات و منابع در اختیار
6- اصل رازداری: تعهد به صیانت از اسرار و اطلاعات محرمانه افراد، سازمان‌ها و کشور و کلیه افراد و نهادهای مرتبط با تحقیق
7- اصل احترام: تعهد به رعایت حریم‌ها و حرمت‌ها در انجام تحقیقات و رعایت جانب نقد و خودداری از هرگونه حرمت شکنی
8- اصل ترویج : تعهد به رواج دانش و اشاعه نتایج تحقیقات و انتقال آن به همکاران علمی و دانشجویان به غیر از مواردی که منع قانونی دارد.
9- اصل برائت: التزام به برائت جویی از هرگونه رفتار غیرحرفه‌ای و اعلام موضع نسبت به کسانی که حوزه علم و پژوهش را به شائبه‌های غیرعلمی می‌آلایند.

تقدیم به
همسرم، ستاره پر فروغ آسمان قلبم و دو گل زندگیم علی و امیر حسین
که در روزگار قحطی انگیزه ، باران شدند تا کشتزار تعلیم و بذرستان اندیشه ام از خشکسالی
در امان بماند و زنگ زنگار گرفته ی کاروان دانش مرا دوباره به صدا در آورند .

بسمه تعالی
سپاس خدای که مرا معاصراستاد ارجمندمدکتر محمد تقی محمودی آفرید تا در تابستان آموختن ، باغبان اندیشه ام باشد و مسیرم رابا مشعل دانش چراغانی کند و به راهنمایی ایشان از کوتاه ترین مسیر به مقصد برسم .
ستایشگر خداوندی هستم که مرا مشاوره وهم اندیشی دکتر فردوس منتظر الظهور بهره مند ساخت تا انوار جامع اندیشه وتجربیات ارزشمندشان ، در هنگامه های تردید در اتخاذ بهترین روش و شیوه ی عبور به یاریم بشتابند .
نظارت دکتراسفندیار آهنجیده اطمینانم را افزوده و نگاه دقیق و تیز بین ایشان ضریب انحراف از مسیر و هدفی که انتخاب کرده بودم را به حداقل رسانید ولذا شایسته بهترین سپاس وتقدیر هاست .
صمیمانه ترین سپاسم را تقدیم محضر دوست دانشمند و فرهیخته ام استاد گرامی قدرت اللّه علیزاده می کنم که صبورانه مرا همراهی کردند و در چشم انداز اضطرابم آرامشی برانگیختند و سرعت مرا در هجرت از تاریکی به سر زمین نور افزودند

سر انجام از خواهران و برادران فاضله و اندیشمندم زهره وشهره ، کورش ، کامران ، محمّد جواد حبیب پور که کهکشان محبت شان را در آسمان زندگی ام آویختند و راه عبور از روزگاران را به من آموختند و همچنین از همراهی تمام وکامل خانواده عزیزم که در روزگار قحطی انگیزه ، باران شدند تا کشتزار تعلیم و بذرستان اندیشه ام از خشکسالی در امان بماند و رنگ زنگار گرفته ی کاروان دانش مرا دباره به صدا در آوردند صمیمانه سپاسگزارم .

با درود فراوان به روح پر فتوح پدربزرگوارم حبیب الله حبیب پور
گرچه درقید حیات نیست ، امّا هنوز گرمای وجودش را احساس می کنم .
و سپاس بیکران بر همدلی و همراهی و همگامی مادر دلسوز و مهربانم که سجده ی ایثارش گل محبت را در وجودم پروراند و دامان گهربارش لحظه های مهربانی را به من آموخت .
فهرست مطالب
عنوان صفحه
چکیده1
فصل اول« کلیات تحقیق »
1-1 مقدمه3
1-2 بیان مسأله4
1-3 اهمیت و ضر ورت پژوهش 9
1-4 اهداف پژوهش 14
1-4-1 اهداف اصلی 14
1-4-2 اهداف اختصاصی15
1-5 سؤال‌های تحقیق 15
1-6 تعاریف واژه‌ها16
1-6-1 تعاریف مفهومی 16
1-6-2 تعاریف عملیاتی 19
فصل دوم« ادبیات تحقیق »
2-1 مقدمه23
2-2 هوش 24
2-3 ماهیت هوش انسانی، از گذشـته تا حال 26
2-4 سا بقـه تاریخی 27
2-5 نظریه هوش چندگانه 28
2-6 دلالت‌های نظریه هوش چند گانه برای برنامه‌های درسی و آموزش 32
2-7 فرهنگ34
2-7-1 فرهنگ ملی35
2-7-2 فرهنگ عمومی35
2-7-3 فرهنگ تخصصی36
2-7-4 فرهنگ سازمانی36
2-8 فرهنگ سازمانی38
2-9 هوش فرهنگی 41
2-10 اجزای هوش فرهنگی44
2-10-1 دانش فرهنگی 45
2-10-2 مراقبتهای فرهنگی46
2-10-3 مهارت‌های فرهنگی 46
2-11 توسعه هوش فرهنگی 47
2- 12 ابعاد هوش فرهنگی 47
2- 13 انواع شخصیتها در هوش فرهنگی 52
2-14 تقویت هوش فرهنگی 53
2-15 عناصر هوش فرهنگی 54
2-16 استفاده از هوش فرهنگی 56
2- 17 مؤلفه‌های هوش فرهنگی 57
2-18 آموزش هوش فرهنگی 61
2-19 هوش فرهنگی از دیدگاه اسلام 63
2-20 اصول هوش فرهنگی از نظر اسلام 64
2-21 ویژگی‌های مهم هوش فرهنگی از نظر اسلام 67
2-22 راهبردهای اسلام در حوزۀ فرهنگ ملی و فرا ملی 69
2-23 مؤلفه‌های هوش فرهنگی از نظر اسلام 72
2-24 راه‌های تقویت مهارت‌های هوش فرهنگی ازنظر اسلام80
2- 25 ارتباط 81
2-26 ارتباطات چیست؟82
2-27 نظریه ارتباطات 85
2-28 پشینه نظریه ارتباطات 86
2-29 چارچوب نظریه ارتباطات 86
2-30 ارتباطات اثر بخش 88
2-31 اثر بخشی در ارتباطات میان فردی89
2- 32 ویژگیهای اثر بخشی 90
2-33 موانع مو جود بر سر راه ارتباطات اثر بخش 95
2-34 روشهای بهبود ارتباطات 97
2-35 تحقیقات در رابطه پژوهش98
2-35-1 پیشینه درداخل کشور98
2-35-2 پیشنه درخارج از کشور100
2-36 خلاصه فصل دوم102
فصل سوم« روش تحقیق »
3-1 مقدمه105
3-2 روش پژوهش106
3-3 جامعه آماری106
3-4 حجم نمونه 107
3-5 روش نمونه گیری108
3-6 ابزار جمع آوری اطّلاعات 109
3-8 پرسشنامه ارتباطات اثربخش109
3-7 پرسشنامه هوش فرهنگی 110
3-9 روایی پرسشنامه هوش فرهنگی 111
3-10 روایی پرسشنامه ارتباطات اثر بخش111
3-11 پایایی پرسشنامه هوش فرهنگی 112
3-12 پایایی پرسشنامه ارتباطات اثربخش112
3-13 روش جمع آوری داده‌ها 113
3-14 روش تجزیه و تحلیل داده‌ها 113
فصل چهارم« تجزیه و تحلیل داده‌ها »
4-1 مقدمه115
4-2 الف) بررسی توصیفی گروه نمونه اعضای هیات علمی116
4-3 ب) بررسی توصیفی پاسخ‌های گروه نمونه اعضاء هیأت علمی 120
4-4 ج) بررسی توصیفی پاسخ‌های نمونه اعضاء هیأت علمی به مؤلفه‌های هوش فرهنگی وارتباطات اثربخش124
4-5 چ) یافته‌های پژوهش125
فصل پنجم« بحث و نتیجه گیری »
5-1 مقدمه143
5-2 خلاصه‌ای از پژوهش143
5-3 بیان یافته‌ها و بحث پیرامون آن145
5-4 پیشنهادات153
5-4-1 پیشنهادات کاربردی مبتنی برنتایج تحقیق153
5-4-2 پیشنهادات برای محققان و پژوهشگران 154
5-5 محدودیت‌های پژوهش155
5-5-1 محدودیت‌های در اختیار پژوهشگر155
5-5-2 محدودیت‌های خارج از کنترل پژوهشگر156
منابع157

فهرست جداول
عنوان صفحه
جدول (3-1) توزیع فراوانی جامعه برحسب تفکیک جنسیت و دانشگاه107
جدول 3-2) توزیع فراوانی جامعه و حجم نمونه109
جدول 3-3) انطباق مؤلفه‌های هوش فرهنگی با سؤالات پژوهش110
جدول 3-4) مقیاس هفت درجه لیکرت110
جدول 4-1) توزیع فراوانی گروه نمونه اعضاء هیأت علمی براساس جنسیت116
جدول 4-2) توزیع فراوانی گروه نمونه اعضاء هیأت علمی براساس سن117
جدول 4-3) توزیع فراوانی گروه نمونه اعضاء هیأت علمی براساس سابقه خدمت118
جدول 4-4) توزیع فراوانی گروه نمونه اعضاء هیأت علمی براساس رتبه علمی119
جدول 4-5) نتایج فراوانی و درصد پاسخ‌های اعضاء هیأت علمی به گزینه‌های سئوالات مربوط به عامل راهبردی، فرا شناختی120
جدول 4-6) نتایج فراوانی و درصد پاسخ‌های اعضاء هیأت علمی به گزینه‌های سئوالات مربوط به عامل دانش، شناختی121
جدول 4-7) نتایج فراوانی و درصد پاسخ‌های اعضاء هیأت علمی به گزینه‌های سئوالات مربوط به عامل انگیزشی122
جدول 4-8) نتایج فراوانی و درصد پاسخ‌های اعضاء هیأت علمی به گزینه‌های سؤالات مربوط به عامل رفتاری123
جدول 4-9) میانگین و انحراف معیار مؤلفه‌های مربوط به متغیر هوش فرهنگی از دیدگاه اعضاء هیأت علمی 124
جدول 4-10) میانگین و انحراف معیار مربوط به متغیر هوش فرهنگی از دیدگاه اعضاء هیأت علمی 124
جدول 4-11) میانگین و انحراف معیار مؤلفه‌های مربوط به متغیر ارتباطات اثربخش از دیدگاه اعضاء هیأت علمی 125
جدول 4-12) میانگین و انحراف معیار مربوط به متغیر ارتباطات اثربخش از دیدگاه اعضاء هیأت علمی 125
جدول (4-13) ضریب همبستگی بین مؤلفه استراتژی هوش فرهنگی با ارتباطات اثربخش 125
جدول (4-14) ضریب همبستگی بین مؤلفه دانش هوش فرهنگی واثر بخشی ارتباطات اعضاء هیأت علمی126
جدول (4-15) ضریب همبستگی بین مؤلفه انگیزش هوش فرهنگی واثر بخشی ارتباطات اعضاء هیأت 126
جدول (4-16) ضریب همبستگی بین مؤلفه رفتار هوش فرهنگی واثر بخشی ارتباطات اعضاء هیأت علمی127
جدول (4-17) ضریب همبستگی چند گانه بین ابعاد هوش فرهنگی با ارتباطات اثربخش127
جدول (4-18) نتایج آزمون لوین فرض همگنی واریانس‌های مؤلفه‌های هوش فرهنگی از نظر جنسیت128
جدول (4-19) آزمون تفاوت معناداری بین میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به جنسیت128
جدول (4-20) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به جنسیت129
جدول (4-21) نتایج آزمون لوین فرض همگنی واریانس‌های مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به سوابق خدمت130
جدول (4-22) آزمون تفاوت معناداری بین میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به سوابق خدمت130
جدول (4-23) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی باتوجه به سوابق خدمت131
جدول (4-24) نتایج آزمون لوین فرض همگنی واریانس‌های مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به رتبه علمی132
جدول (4-25) آزمون تفاوت معناداری بین میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به رتبه علمی132
جدول (4-26) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به رتبه علمی133
جدول (4-27) نتایج آزمون لوین فرض همگنی واریانس‌های مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه 134
جدول (4-28) آزمون تفاوت معناداری بین میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه134
جدول (4-29) مقایسه زوجی اختلاف میانگین نمره عامل انگیزشی از نظر اعضاء هیأت علمی باتوجه به نوع دانشگاه134
جدول (4-30) مقایسه زوجی اختلاف میانگین نمره عامل رفتاری از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه135
جدول (4-31) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه135
جدول (4-32) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به جنسیت136
جدول (4-33) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه137
جدول (4-34) مقایسه تفاوت میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه138
جدول (4-35) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به سن138
جدول (4-36) مقایسه تفاوت میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به سن139
جدول (4-37) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به رتبه علمی140
جدول (38-4) مقایسه تفاوت میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به رتبه علمی140

فهرست نمودارها
عنوان صفحه
نمودار (4-1) توزیع درصدی گروه نمونه اعضاء هیأت علمی براساس جنسیت116
نمودار (4-2) توزیع درصدی گروه نمونه اعضاء هیأت علمی براساس سن 117
نمودار (4-3) توزیع درصدی گروه نمونه اعضاء هیأت علمی براساس سابقه خدمت118
نمودار (4-4) توزیع درصدی گروه نمونه اعضاء هیأت علمی براساس رتبه علمی119
نمودار (4-5) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به جنسیت129
نمودار (4-6) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به سوابق خدمت131
نمودار (4-7) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به رتبه 133
نمودار (4-8) مقایسه میانگین نمرات مؤلفه‌های هوش فرهنگی از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه135
نمودار (4-9) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به جنسیت136
نمودار (4-10) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به نوع دانشگاه137
نمودار (4-11) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به سن139
نمودار (4-12) مقایسه میانگین نمره ارتباطات اثربخش از نظر اعضاء هیأت علمی با توجه به رتبه علمی141

فهرست شکل ها
عنوان صفحه
شکل 2-135
شکل 2-245
شکل 2-347
شکل 2-4) چهارچوب هوش فرهنگی‌ (ارلی و انگ)48
شکل 2-5) ابعاد هوش فرهنگی50
چکیده
هدف کلی پژوهش حاضر بررسی رابطۀ میان هوش فرهنگی و اثربخشی ارتباطات انسانی در بین اعضاء هیأت علمی دانشگاه‌های دولتی، پیام نور و آزاد اسلامی شهرکرد می‌باشد. تحقیق توصیفی از نوع همبستگی بوده است. جامعۀ آماری این پژوهش اعضاء هیأت علمی دانشگاه‌های دولتی، پیام نور و آزاداسلامی شهرکرد در سال تحصیلی 92- 1391 می‌باشد. حجم جامعه در سه دانشگاه بالغ بر 498 نفر بوده، که از این تعداد طبق فرمول کوکران، با استفاده از روش نمونه گیری تصادفی طبقه‌ای متناسب با حجم جامعۀ آماری 158 نفر به عنوان نمونه انتخاب گردید. ابزار پژوهش شامل پرسشنامۀ استاندارد هوش فرهنگی « ارلی و انگ 2003 » و پرسشنامۀ ارتباطات اثر بخش « سوسمان وکرینوس 1979 » می‌باشد. روایی محتوا پرسشنامه توسط چند تن از اساتید رشتۀ علوم تربیتی مورد تأیید قرار گرفت. پایایی پرسشنامه از طریق آلفای کرونباخ برای پرسش نامه هوش فرهنگی 85/. و همچنین پایایی ارتباطات اثر بخش 87/0بدست آمده است. در نتیجه هردو پرسش نامه مناسب می‌باشند. تجزیه تحلیل در سطح آمار توصیفی و آمار استنباطی انجام شد. درسطح آمار توصیفی شامل: میانگین، انحراف معیار، درصد، فراوانی و... می‌باشد. در سطح آمار استنباطی بیان فرضیه کلی و فرضیه‌های ویژه (که آیا معنی دار بوده اند یا نه... ). نتایج تحلیل رگرسیون دو متغیره و گام به گام نشان داد ، که به طور کلی بین هوش فرهنگی با ارتباطات اثربخش رابطه معناداری وجود دارد . از بین مؤلفه‌های هوش فرهنگی، « مؤلفه‌های استراتژی و دانش هوش فرهنگی با اثر بخشی ارتباطات درسطح (P ≤ 0/01) رابطۀ معنادار وجــود دارد »، « بیـن مؤلفـۀ انگیزش هـوش فرهنگـی با اثر بخشـی ارتبـاطات در سطــح‌ (P ≤ 0/01)رابطۀ معنادار مشاهده نگردیده »، « بین مؤلفه رفتار هوش فرهنگی با اثر بخشی ارتباطات درسطح(P ≤ 0/05)رابطۀ معنادار وجود دارد. بین هوش فرهنگی اعضاء هیأت علمی بر اساس ویژگی‌های دموگرافیک « جنس، سن، سنوات خدمت، نوع دانشگاه، رتبه علمی » در سطح‌ (α ≤ 0/05) تفاوت معناداری مشاهده نگردید . همچنین بین ارتباطات اثر بخش بر اساس ویژگی‌های دموگرافیک «جنس، سن، سنوات خدمت، نوع دانشگاه، رتبه علمی» در سطح (P ≤ 0/05)تفاوت معناداری مشاهده نگردید.
کلید واژه‌ها:هوش فرهنگی، ارتباطات اثر بخش، اعضاء هیأت علمی
فصل اول
« کلیات تحقیق »
1-1 مقدمه
سالهای پایانی سده بیستم و سالهای آغازین هزاره سوم میلادی با بحثهای داغ و مناقشه بر انگیزجهانی شدن همراه بوده است.
آنچه مسلم است آن است که جهانی سازی پدیده‌ای تک بعدی نبوده و فرایندی اقتصادی، سیاسی، فرهنگی... می‌باشد. هر چه جهان به سوی انسجام پیش می‌رود اهمیت و درک صحیح تفاوتهای فرهنگی افزایش می‌یابد. توجه به فرهنگهای مختلف و توصیه به شناخت نظامهای فرهنگی و چارچوب‌های ادراکی مختلف در این فرهنگها صرفاً در تحقیقات آکادمیک مورد توجه قرار نگرفته است.
اعضاء هیأت علمی دانشگاه‌های امروزی اساتیدی خواهند بود که علاوه بر، برخوردار بودن از مهارتهای فردی و تکنیکی و علمی بالا باید از هوش فرهنگی و عاطفی مناسبی نیز برخوردار باشند. ازطرفی از احساسات، عواطـف و علائـم و نشانه‌های شفاهی و غیرشفاهی در فرهنگ‌های مختلف تفاوتهای قابل ملاحظه ایی با هم دارند.
به عبارت بهتر برای کسب توانایی درک بالای احساسی مؤثر بر خورداری از هوش فرهنگی مناسب از ضروریات است. این هوش قابلیت مهمی برای کارکنان، اساتید و مدیران سازمانها و دانشگاه‌ها محسوب می‌شود. هوش فرهنگی در راستای هوش عاطفی و اجتماعی است. هوش عاطفی فرض می‌کند که افراد با فرهنگ خود آشنا هستند، بنابراین برای تعا مل و ارتباط با دیگران از روشهای فرهنگی خود استفاده می‌کنند، هوش فرهنگی جایی خود را نشان می‌دهد که هوش عاطفی ناتوان است. یعنی در جای که با افراد در محیط‌های ناآشنا سر و کار داریم.
اهمیت توانایی و برقراری ارتباط و تعامل در تجارب انسانی تا حدی است که می‌توان آن را شاخص تمام چیزهایی دانست که انسان را از سایر مخلوقات متمایز می‌کند. توانایی فرد برای برقـراری ارتباط متقابل با دیگری ازطریق تبادل افکار و عقاید، اولین گام در تمایز بیـن بشر و دیگرآفریده‌ها ست. همچنین قدرت انسان در ثبت افکـار و اطلاعات برای استفاده دیر یا زود دیگران و قدرت در یافت پاسخ آنان مبنای نیروی روز افزون تجارب و علوم است. به همین منوال قابلیت و توانایی یک فرد یا یک گروه برای اختلاط با گـروه‌های دیگر از طریق فرایند‌های ارتباطی، ریشه تمـامی ماهیت‌های اجتمـاعی نـژاد انسانی است . بنابـراین به سختـی می‌تـوان گفت که چیزی بنیادی تر از ارتباطات و درک تفاوتهای فرهنگی و اعمال فرایند‌های انسانی و پیشبرد تلاش‌های بشری وجود داشته باشد . با این حال تا این اواخر هیچ فعالیتی که نشان دهنده تحقیق و بررسی علمی در این زمینه باشد وجـود نداشته اسـت و تعریف اصـول اولیه این علم هنوز مراحل اولیه را طی می‌کند. اما شناخت قدرت ارتبـاطات اثربخش به دوران و روزگار باستان باز می‌گردد. بطوری که در زمان « افلاطون » نیز اهمیت این امر به خوبی تعریف شده بود او در خطابه‌های خود می‌نویسد، « چه چیزی والاتر و با ارزش تر از « کلمه » است که می‌تواند، قضـات را در محاکم، سناتورها را درمجلس و یا شهرونـدان را در اجتماعات و یا در گردهمایهای سیاسـی دیگر مجاب کند؟».
1-2بیان مسأله
فرهنگ، ارزشها، ایده‌ها، نگرش‌ها و نمادهای آگاهانه و ناآگاهانه‌ای است که رفتار انسان را شکل می‌دهد و از نسلی به نسل دیگر منتقل می‌شود. فرهنگ قوانین نانوشته‌ای است که در بیشتر مواقع به راحتی قابل مشاهده نیست و همین امر کارمدیران، صاحب نظران، اساتید و معلمان را در برقراری ارتباط مؤثر مشکل می‌کند.
و از طرف دیگر رشد و توسعه همه جانبه آموزش عالی کشور و پذیرش گستردۀ دانشجو با تنوع فرهنگی، قومی و نژادی و با عنایت به اینکه محیط دانشگاه باید یک محیط فرهنگی پویا و فعال باشد انجام فعالیت‌های آموزشی و تربیتی را دشوارتر می‌نماید. و این درحالی است که وجود هوش هیجانی برای محیط‌های ایستایی فرهنگی کفایت می‌کند . و در صورت افزایش تنوع فرهنگی، هوش هیجانی به تنهایی پاسخگوی پویایی‌های حوزه فرهنگ نیست.
امروز به جرأت می‌توان بیان کرد که فرهنگ به عنوان جزء نامرئی ولی اساسی در تعاملات اجتماعی بیش از پیش خودنمایی می‌کند و به عنوان یک پیش شرط موفقیت برای هر کسی و در هر کجا مطرح است. و از طرفی بسیاری از احساسات، عواطف، علائم و نشانه‌های شفاهی و غیرشفاهی در فرهنگ‌های مختلف تفاوتهای قابل ملاحظه‌ای با هم دارند.
به عبارت بهتر برای کسب توانایی درک بالای احساسی مؤثر برخورداری از هوش فرهنگی مناسب از ضروریات است .
پس می‌توان چنین بیان کرد شرط لازم و کافی برای برقراری ارتباط مناسب و اثر بخشی برخورداری از هوش فرهنگی بالا می‌باشد و با عنایت به فلسفه کاری اعضاء هیأت علمی دانشگاهها این اصل که ارتباط اثربخش شرط موفقیت کاری خواهد بود.
هوش فرهنگی به عنوان دامنه جدیدی از هوش، ارتباط بسیار زیادی با محیطهای کاری متنوع دارد به افراد اجازه می‌دهد تا تشخیص دهند دیگران چگونه فکر کرده و چگونه به الگوهای رفتاری پاسخ می‌دهند در نتیجه موانع ارتباطی بین فرهنگی کاهش یافته و افراد مهارت‌های مدیریت تنوع فرهنگی را کسب می‌کنند .
هوش فرهنگی لازمه رقابت در دنیای فراپیچیده هزاره سوم است افرادی که هوش فرهنگی پایینی دارند قادر به برقراری ارتباط اثر بخش با همکارانشان از همان فرهنگ یا فرهنگهای دیگر نبوده و در نتیجه در انجام امور ارتباطی و مدیریتی خود موفق نیستند.
برخی از افراد‌ (اساتید دانشگاهها، مدیران و....) علی رغم برخورداری از ضریب هوشی بالا در محیط کاری خود شکستهای فاحشی را تجربه می‌کنند.
چگونه است که برخی از افراد در محیطهای بیگانه خوب عمل می‌کنند و برخی دیگر می‌لغزند؟ آیا بجز ضریب هوشی عوامل دیگری در موفقیت افراد در سازمانها تاثیر دارد.
گلمن (Goleman) در مورد تأثیر ضریب هوشی معتقد است که بهره هوشی تعیین کننده پیشرفتهای علمی و موفقیت‌های حرفه‌ای است ولی سهم آن در موفقیت تنها حدود 20 درصد است. تلاش برای شناسایی سایر عوامل موثر بر موفقیت حرفه‌ای موجب ورود واژه‌های هوش عاطفی و هوش فرهنگی به ادبیات مدیریت شد هر چند هنوز کسی بطور دقیق نمی‌تواند بگوید سهم هوش فرهنگی در پیشرفت او چقدر است.
مفهوم هوش عاطفی در برگیرنده مجموعه گسترده‌ای از مهارتها و استعدادهای فردی است که معمولاً به مهارتهای درون فردی و بین فردی اشاره دارد و بطور کلی توانایی درک و فهم چگونگی بروز یا کنترل عواطف و احساسات است هوش عاطفی عاملی است که موجب می‌شود تا خلاقانه فکر کنیم و عواطف و احساسات خود را برای حل مسائل به کار گیریم بر این اساس شخصی که دارای هوش عاطفی بالا است در چها ر زمینه شناسایی، به کار گیری، درک و کنترل احساسات خود را برای حل مسائل بکار می‌گیرد بر این اساس شخصی که دارای هوش عاطفی بالا است در چهار زمینه شناسایی، بکارگیری، درک و کنترل احساسات و استعداد مهارت دارد.
هوش فرهنگی دامنه جدیدی از هوش است که ارتباط بسیار زیادی با محیطهای کاری متنوع دارد برخی از جنبه‌های فرهنگ را می‌توان دید عوامل آشکاری مثل هنر، موسیقی و کسب رفتاری از این جمله اند اما بیشتر بخشهای چالش برانگیز فرهنگ پنهان است . عقاید، ارزشها، انتظارات نگرشها و مفروضات عناصری از فرهنگ هستند که دیده نمی‌شوند اما بر رفتار افراد مؤثرند.
هوش فرهنگی به افراد اجازه می‌د هد تا تشخیص دهند دیگران چگونه فکر می‌کنند و چگونه به الگوهای رفتاری پاسخ می‌دهند در نتیجه موانع ارتباطی بین فرهنگی را کاهش و به افراد قدرت مدیریت متنوع فرهنگی می‌دهد.
در محیطهای کاری متنوع قرن حاضر لازم است استرس‌های ناشی از شوک فرهنگی و اختلالات و پیامدهای ناشی از تعارضات فرهنگی به نحو مطلوب اداره شود برای این منظور به سازگاری و تعدیل مؤثر فر هنگها نیاز است.
مطرح شدن هوش فرهنگی به عنوان یک مفهوم کلیدی در میان اعضاء هیأت علمی دانشگاهها به دلیل پاسخگویی به سوالات زیر می‌باشد.
چگونه اعضاء هیأت علمی می‌توانند توانائیهای خود را در تطبیق با فرهنگ‌های مختلف بهبود بخشند ؟
چرا برخی از افراد دارای توان بالقوه‌ای برای رویارویی با چالشهای کاری در محیطهای با فرهنگ متفاوت هستند ؟
دانشگاهها چگونه می‌توانند عملکردهای اعضاء هیأت علمی خود را در محیطی با تنوع فرهنگی بهینه سازند ؟
در حال حاضر در دنیایی که عبور از مرزها کاری عادی و ساده شده است داشتن هوش فرهنگی یک نیاز حیاتی برای همه افراد است .
اعضا ء هیأت علمی موفق رمز برخورد با فرهنگ های گوناگون علمی، فرا علمی و سازمانی را به خوبی می آموزند و از آموزه‌های خود نهایت استفاده را می‌برند.
هوش فرهنـگی از دید گـاه( ارلی و انگ‌ ،2003) عبار ت است از: توا نایی که یک فرد در راستای سـازگاری موفقیـت آمیـز با محیطهـای فرهنگی جدیـد که معمولاً با بافت فرهنگی خـود فـرد ناآشناست.
(پیتر سون ،2004) هوش فرهنگی را استعداد بکارگیری مهارتها و تواناییها در محیطهای مختلف تعریف کرد.
هوش فرهنگی متفـاوت از هوش اجتماعی و عاطفی است. افراد زیادی با داشتن‌ (I Q)بالا مهارتهای اجتماعی مناسب در تعاملات بین المللی شکست می‌خورند.که علت اصلی آن پایین بودن هوش فرهنگی می‌باشد، در محیطهای فرهنگی جدید، علائم و نشانه‌های آشنا عمدتاً دیده نمی‌شود.
توماس (2005) هوش فرهنگی را در قالب سه متغیر، دانش فرهنگی، مهارتهای فرهنگی، و مراقبتهای فرهنگی مورد مطالعه قرار می‌دهد.
هوش فرهنگی یک الگوی چهار بعدی می‌باشد که عبارتند از: هوش فرهنگی شناختی، هوش فرهنگی انگیزشی، هوش فرهنگی فرا شناختی، هوش فرهنگی رفتاری.
1- هوش فرهنگی شناختی: بیانگر درک فرد از شباهتها و تفاوتهای فرهنگی است و دانش عمومی و نقشه‌های ذهنی و شناختی فرد از فرهنگ‌های دیگر را نشان می‌دهد.
2- هوش فرهنگی انگیزشی: نشان دهنده علاقۀ فرد آزمودن فرهنگ‌های دیگر و تعامل با افرادی از فرهنگ‌های مختلف است.
3- هوش فرهنـگی فرا شناختی: بدین معناست که فـرد چگونه تجربه‌های میان فرهنگی را درک می‌کند.
4- هوش فرهنگی رفتاری: این رفتار قابلیت فرد برای سازگاری با آن دسته از رفتارهای کلا می و غیرکلامی را در بر می‌گیرد که برای بر خورد با فرهنگ‌های مختلف مناسـب هستند.
ارتباطات در معنای عام (فن انتقال اطلاعات، افکار و رفتار انسانی از یک شخص به شخص دیگر)، ارتباطات زمانی اثر بخش است که محرکی را به عنوان آغازگر مورد نظر فرستنده با محرک مشهودگیرنده که از خود بروز می‌دهد و آن دو را به گونه‌ای نزدیک به هم مورد توجه قرار دهد.
از ارتباطات اغلب به عنوان‌ (جریان خون) دانشگاهها و سازمانها یاد می‌شود و آن را به عنوان وسیله‌ای مهم که از طریق آن امور در دانشگاهها و سازمانها انجام می‌شود می‌شناسند. هر انسانی دارای هدفی است که رسیدن به آن مستلزم همکاری افراد و بخشهای مختلف است که این همکاری بدون وجود ارتباط و تماسهای مکرر غیرممکن خواهد بود.
ارتباطات اثر بخش زمانی رخ می‌دهد که دریافت کننده پیام، آن را همان گونه تفسیر نمایدکه مورد نظر فرستنده باشدبه عبارت دیگر همانطور که (فلـد برگ‌ ،1975) بیان می‌کند. توافق در ارتباط زمانی رخ می‌دهد که انتظار یک فرستنده با واکنش یک گیرنده منطبق باشد.
به طور کلی می‌توان گفت هدف هر ارتباطی اطمینان یافتن از این امر است که انتظار فرستنده و واکنش گیرنده بر یکدیگر منطبق شده و در یک راستا قرار گیرند. آنچه یک استاد دانشگاه قصد دارد به آن برسد برقراری ارتباطی اثر بخش درکارآمد ترین شیوه آن است. ارتباطات کار آمد به زمان و منابع کمتری نیاز دارد....
اثربخشی دارای پنج ویژگی می‌باشد" گشودگی، همدلی، حمایت گری، مثبت‌گرایی و تساوی".
این پژوهش به دنبال آن است که به بررسی رابطه هوش فرهنگی و اثر بخشی ارتباطات انسانی در بین اعضا ء هیات علمی دانشگاههای دولتی و آزاد اسلامی شهرکرد را بررسی نماید.
1-3 اهمیت و ضر ورت پژوهش
فرهنگ ارزشها، باورها و آداب و رسوم، مراسم مذهبی، ارزشهای اخلاقی، هنر، ادبیات، ایده‌ها، نگرش‌ها و نمادهای آگاهانه و ناآگاهانه ایی است که رفتار انسان را شکل می‌دهد و زمینه‌های ارتباطات انسانی را بیش از پیش فراهم می‌نماید و از نسلی به نسل دیگر منتقل می‌شود.
واژه فرهنگ همواره منبع سوء تعبیر و اختلاف بوده است.مردم شناسان، فرهنگ را شیوه‌های زندگی توسط گروهی از مردم ایجاد می‌شود و از نسلی به نسل دیگرمنتقل می‌شود می‌دانند. آنچه درتمام تعریف فرهنگ مشترک می‌باشد آن است که فرهنگ قوانین نانوشته ایی است که در بیشتر مواقع به راحتی قابل مشاهده نیست و همین امر کار مدیران را در برقراری ارتباط مؤثر مشکل می‌کند.
با وجود اینکه افزایش ارتباطات تعدادی از گرایشات ملی مانند، رنگ لباس، موسیقی و حتی غذا و نوشیدنی‌ها را تا حد زیادی مشابه کرده است.
حتی عده ایی معتقدندکه جهان به سمت نوعی همگون سازی پیش می‌رود ؛ در سمت دیگر گروهی معتقدندکه جهـان نه تنها به سنت همگون سازی پیش نمی رود بلکه به سمتی حرکت می‌کنیم که تضاد، تنوع و گونه‌های مختلف در آن وجود خواهد داشت.
تنوع در این مقوله عبارت است از جذب افرادی با سوابق و زمینه‌های مختلف، دارای توقعات و انتظارات گوناگون و بهره گیری از توانایی‌ها و استعداد‌های آنها برای افزایش کارایی و بهروری، تنوع حیطه‌های مختلف را در بر می‌گیرد: نژاد،قومیت، جنسیت،رنگ پوست، مذهب و فرهنگ. ویژگیهای فرهنگ (CULTURE) را بر اساس حروف تشکیل دهنده آن به صورت زیر تعریف کرده اند.
C: فرهنگ فراگیر است. هر شخص،سازمان، سرزمین و کشوری یک فرهنگ دارد.
U: شناخت عقاید، ارزشها و ادراکات فرهنگ دیگران برای موفقیت الزامی است.
L: یاد گیری میراثهای فرهنگی گوناگون، الهام بخش و توانمند کننده است.
T: کارهای تیمی در سطح جهان بدون توجه به فرهنگ اعضاء غیرممکن است.
U: برنامه ریزی فرهنگی از طریق شناخت عقاید یکدیگر آسانتر می‌شود.
R: تفاهم و سازگاری با شناخت فرهنگ خود و پذیرش نقطه نظرات و سبک و روش دیگران شروع می‌شود.
E: به منظور رشد و نوآوری، استفاده از تنوع فرهنگی لازم است.
تنوع فرهنگی از جمله مسائل عمده ایی است که سازما‌نها (آموزش عالی) حاضر با آن مواجه هستند.
با این توصیف‌ها که تفاوت فرهنگی مساله مهمی نیست، ما همگی انسـان هستیم و تنها عامل سـوء تفـاهم میان ما اختلاف فرهنگ است. اگر براین تفاوتها تمرکز کنیم از هدف دور می مانیم.
عملکرد هر سازمان (آموزش عالی) تابع عملکرد ریاست دانشگاه، اعضا ء هیات علمی و کارکنان، فرصت‌ها و امکانات و نیز متأثر ازسیستم‌های محیطی و سازمان‌های دیگر است. عملکرد اعضاء هیأت علمی تابع متغیرهای فردی‌ (تواناییها و مهارت‌های ذهنی و روانی وپیشینه زندگی) متغیرهای روان شناختی‌ (ادراک، نگرش، شخصیت، یاد گیری، انگیزه) و متغیرهای سازما‌نی (منابع، رهبری، پر داخت‌ها، ساخـتارطرح شغلی است. (دولان و شولر ،1381) و از طرفی نیز بزرگترین درما‌ندگی انسـان، ناتوانی در دستیابی به همکاری و تفاهم با دیگران است (هرسـی و بلانچـا رد،1382).
هوش فرهنگی یکی از کاراترین ابزارها برای انجام اثر بخشی وظایف در محو طه‌های دارای تنوع و ناهمگونی نیروی کاری می‌باشد، این نوع هوش توانایی و مهارت ویژه‌ای است که به این فرد این امکان را می‌دهد تا در موقعیتهای چند فرهنگی بتواند بطور اثر بخشی به انجام وظیفه بپردازد و با دیگران به نحو مطلوب ارتباط بر قرار نمایند.
مفهوم ارتباط در معنای عام عبارت است از « فن انتقال اطلاعات، افکار و رفتار انسانی از یک شخص به شخص دیگر است ».
دنیای بدون ارتباط و اطلاعات، دنیایی ترس آور و حزن انگیزی است. انسان وقتی نداند که در اطراف او چه می‌گذرد و احتمالاً چه اتفاقاتی در شرف تکوین است ، به همه چیز بد بین شده و اعتماد به نفس خود را از دست می‌دهد. در بسیاری از مواقع، از ارتباط به عنوان وسیله ایی برای آرامش روانی و تخلیه آلام و دردهای انسانی استفاده می‌شود. پس ارتباط به عنوان اساسی ترین کارکرد آموزش عالی اهداف گوناگونی دارد.که در همه جنبه‌های فردی، گروهی و سازمانی و اجتماعی قابل مشاهده است.
اسکات و میشل ، چهار هدف برای ارتباط میان اشخاص تعیین نموده اند:
تاثیر گذاری بر دیگران
بیان احسا سات
دریافت و مبادله اطلاعات
تقویت ساختار رسمی سازمان به عبارت دیگر، ارتباطات میان فردی به کارکنان تمامـی سطوح در سازمان اجازه می‌دهـد که با دیگـر تعامل داشته، به اهداف مطلوب نائل شده، حمایت شوند و از ساختار رسمی سازمان بهره گیرند.
این اهداف در خدمت تک تک افراد قرار می‌گیرد و هدف بزرگتر آن نیز اصلاح کیفیت حیاتی و اثر بخشی سازما‌نی است‌ (محمدزاده و مهروژان، 1375 ).
پس بنابراین هوش فرهنگی قابلیت فردی برای درک، تفسیر و اقدام اثر بخشی در موقعیت‌هایی ا ست که از تنوع فرهنگی برخوردارند‌ (پیترسون، 2004).
در فرهنگ‌های مختلف وقتی در خرد فرهنگ‌ها در درون یک فرهنگ ملی طیف وسیعی از احساسات و عواطف وجود دارد. به نحوی که تفاوت در زبان، قومیت، سیاست‌ها و بسیاری خصوصیات دیگر می‌تواند به عنوان منابع تعارض بالقوه ظهور کند و در صورت نبودن درک صحیح، توسعه روابط کاری مناسب را با مشکل مواجه سازد(ترایندیس2006). بنابراین اثرات تفاوت‌های فرهنگی این گونه تنوعات از مقوله‌های پیچیده می‌باشد(هریس و مورن،2004) و همچنین تحقیقات نشان می‌دهد که تفاوت بین فرهنگ‌های مختلف یکی از عوامل مهم تعیین کننده نوع رفتار می‌باشد.
(رحیم نیا، مرتضوی، دلارام، در سال 1389) در تحقیقی تحت عنوان « بررسی میزان تأثیر هوش فرهنگی بر عملکرد وظیفه‌ای مدیران » انجام دادند. به این نتیجه رسیدند که با تایید فرضیات تحقیق در زمینه تاثیرات دو بعد دانش هوش فرهنگی و رفتار هوش فرهنگی بر عملکرد وظیفه ایی مدیران، می‌توان گفت که هوش فرهنگی یکی از عوامل تاثیرگذار بر عملکرد وظیفه ایی می‌باشد در نتیجه از این معیار، می‌توان برای تصمیم گیری در مورد انتخاب و انتصاب مدیران با توجه به نوع فعالیت آنها، تعیین نوع آموزشهای لازم برای مدیران و نیز انتخاب معیارهای مناسب برای ارزیابی عملکرد وظیفه ایی مدیران بهره مند گردید که نهایتاً در جهت ارتقاء کارایی و اثر بخشی سازمان مؤثر خواهد بود.
(قاسمی، وحیدا، یزد خواستی،1389)در تحقیقی تحت عنوان « تحلیلی بر هوش فرهنگی و الگوی تقویت آن » به این نتیجه رسیدند که: چنین به نظر می‌رسد که برخی افراد یا گروههای اجتماعی بجای بهره گیری از هوش فرهنگی و تقویت آن در تعامل با افراد و گروههای اجتماعی از فرهنگ‌های متفاوت بشری تمایل دارند تا بر مبنای عقاید قالبی خود عمل کنند. در حالی که عقـاید یا قضاوت‌های قالبـی نوعی سـوگیری یا جهت گیری ارزشی منفی یا مثبت به گروههای اجتماعی و فرهنگ‌های دیگر است بهره گیری از هوش فرهنگی به دنبال آن است تا با خنثی کردن چنین قضاوت‌های ارزشی(که اغلب تخریب کردند تا یاری کننده) به گونه ایی هدفمند و باشناختی عینی به تعامل سازنده و اثر بخشی با افراد و گروههایی با زمینه‌های فرهنگی متفاوت دست یافتند.
در چنین فضای تعا ملی چند فرهنگی برخی از افراد و گروهها، از خود توانمندی بالاتری برای دست یابی به هدف‌های مختلف فرهنگی، اجتماعی، اقتصادی یا سیاسی در ارتباط با افراد و گروههایی با سبقه فرهنگی متفاوت نشان داده اند و به عبارتی می‌توان تعاملهای آنان را اثربخش تر ارزیابی کرد.این در حالی است که فضای تعاملی میان فرهنگی پدید آمده برای برخی افراد وگروههای اجتماعی با افزایش منازعات و درگیری‌ها و رقابت‌های منفی به جای مشارکت و همیاری نوع اول‌ (دارای تعامل‌های اثر بخش )را دارای هوش فرهنگی بالا و افراد و گروههایی از نوع دوم(در گیر در منازعات) را دارای هوش فرهنگی پایین دانست. بهره گیری از روشهای مختلف برای تقویت هوش فرهنگی در مجموع یکی از ضرورت‌های دنیای کنونی در جوامع مختلف از جمله ایران است.
پس می‌توان گفت که: هدف اصلی هوش فرهنگی و اثر بخشی ارتباطات آشنا کردن اعضا ء هیأت علمی دانشگاه آزاد اسلا می و دانشگاههای دولتی با ماهیت روش علمی از قبیل مشاهده، جمع آوری، و سازمان دهی اطلاعات و نتیجه گیری منطقی از آن‌هاست بنابراین پژوهش حاظر این امکان را می‌دهد که:
1- رابطه هوش فرهنگی واثربخشی ارتباطات انسانی در بین اعضا ء هیأت علمی دانشگاههای دولتی و آزاداسلامی شهرکرد مورد بررسی قرار گیرد.
2- دیدگاههای بین "استراتژی "هوش فرهنگی و اثربخشی ارتباطات اعضاء هیأت علمی را مورد بررسی قرار گیرد.
3- دیدگاههای بین "دانش" هوش فرهنگی و اثربخشی ارتباطات اعضاءهیأت علمی را مورد بررسی قرار گیرد.
4- دیدگاههای بین "رفتار" هوش فرهنگی و اثربخشی ارتباطات اعضاء هیأت علمی را مورد بررسی قرار گیرد.
5- دیدگاههای بین "انگیزش" هوش فرهنگی و اثربخشی ارتباطات اعضاء هیأت علمی را مورد بررسی قرار گیرد.
6- دیدگاههای بین هوش فرهنگی و ارتباطات اثربخش در بین اعضاء هیأت علمی دانشگاههای (آزاد اسلامی و دانشگاههای دولتی شهرکرد) براساس عوامل دموگرافیک (جنس، سن، مدرک تحصیلی، رتبه علمی، نوع دانشگاه) مورد بررسی قرار گیرد.
1-4 اهداف پژوهش
1-4-1 اهداف اصلی
باتوجه به نتایج فوق هدف اصلی این تحقیق عبارت است از:
« بررسی رابطه میان هوش فرهنگی و اثربخشی ارتباطات انسانی در بین اعضاء هیأت علمی دانشگاه‌های دولتی، پیام نور و آزاد اسلامی شهرکرد ».

1-4-2 اهداف اختصاصی
1. تعیین رابطه بین « استراتژی هوش فرهنگی » و اثر بخشی ارتباطات اعضای هیأت علمی.
2. تعیین رابطه بین « دانش هوش فرهنگی » و اثر بخشی ارتباطات اعضای هیأت علمی.
3. تعیین رابطه بین « انگیزش هوش فرهنگی » و اثر بخشی ارتباطات اعضای هیأت علمی.
4. تعیین رابطه بین « رفتار هوش فرهنگی » و اثر بخشی ارتباطات اعضای هیأت علمی.
5. تعیین تفاوت بین هوش فرهنگی اعضاء هیأت علمی براساس ویژگیهای دموگرافیک (جنسیت، سن، مدرک تحصیلی، نوع دانشگاه، رتبه علمی).
6. تعیین تفاوت بین ارتباطات اثربخش اعضاء هیأت علمی براساس ویژگیهای دموگرافیک (جنسیت، سـن، مدرک تحصیلـی، نوع دانشگـاه، رتـبه علمی ).
1-5 سؤال‌های تحقیق
1. آیا بین استراتژی هوش فرهنگی و اثربخشی ارتباطات اعضاء هیأت علمی رابطه وجوددارد ؟
2. آیا بین دانش هوش فرهنگی و اثربخشی ارتباطات اعضاء هیأت علمی رابطه وجوددارد ؟
3. آیا بین انگیزش هوش فرهنگی و اثربخشی ارتباطات اعضاء هیأت علمی رابطه وجوددارد ؟
4. آیا بین رفتار هوش فرهنگی و اثربخشی ارتباطات اعضاء هیأت علمی رابطه وجوددارد ؟
5. آیا بین هوش فرهنگی اعضاء هیأت علمی براساس ویژگیهای دموگرافیک (جنسیت، سـن، مدرک تحصیلی، نوع دانشگاه، رتبه علمی) تفاوت وجود دارد .
6. آیا بین ارتباطات اثر بخش اعضاء هیأت علمی براساس ویژگیهای دموگرافیک (جنسیت، سـن، مدرک تحصیلی، نوع دانشگاه، رتبه علمی) تفاوت وجود دارد.

1-6 تعاریف واژه‌ها
1-6-1 تعاریف مفهومی
هوش
1. هوش عبارت است: از ظرفیت توانایی و یادگیری.
2. هوش عبارت است: از دانش پذیری و ظرفیت کسب آن.
3. هوش عبارت است: از توانایی تفکر برحسب ایده‌های انتزاعی.
4. علم روان شناسی هوش را به طور کلی نوعی ویژگی شخصیتی متفاوت از، خلاقیت، شخصیت و یا عقل می‌داند‌ (گارد نر 1995)
5. هوش عبارت است از توانایی فرد برای اینکه بطور هدفمند عمل کند. بطور منطقی بیندیشد و به طور مؤثر با محیط مبادله کند.
6. توانایی درک اشخاص وایجاد رابطه با آنها‌ (هوش اجتماعی )، توانایی درک اشیاء وکار کردن با آنها (هوش عملی) وتوانایی درک نشانه‌های کلامی –ریاضی وکار با آنها (هوش ).
7. پیاژه هوش را عبارت از حالت تعادلی می‌داند که کلیه استعدادهای سازشی از نوع حسی وحرکتی و نیروهای شناختی و اکتسابی و همچنین کلیه تبادلات جذبی و انطباقی که بین جسم و محیط صورت می‌گیرد بدان گرایش پیدا می کنند‌ (پیاژه،1357، ص 37).
8. اگر انسانها، با هوش و خلاق به دنیا می‌آیند. بخش اعظم این هوش و خلاقیت زمانی که به مدرسه می‌رویم از دست می‌رود. اما ممکن است این خلاقیت در دوره‌های بعدی زندگی شکوفا شود. در زندگی روزمره افراد با هوش را طبق شیوه صحبت و عملکردشان تشخیص می‌دهیم (غفاری،1389).
فرهنگ
1-فرهنگ ارزشها، ایده‌ها، نگرشها و نمادهای آگاهانه و نا آگاهانه‌ای است که رفتار انسان را شکل می‌دهد و از نسلی به نسل دیگر منتقل می‌شود‌ (هافستد،1991، ص 38).
2-واژه فرهنگ برای نامگذاری بسیاری از مفاهیم از جمله آداب و رسوم، مراسم مذهبی، ارزشهای اخلاقی، هنر و ادبیات و موضوعاتی از این دست به کار می‌رود (کوپر، 1995).
3-فرهنگ یعنی: 1) معرفت مشترک وهنجار شده، 2) با قابلیت یادگیری، انتقال پذیری وتحول پذیری، 3) شامل مؤلفه‌های مهمی همچون باورها، ایدئولوژی، ارزش‌ها، هنجارها، نمادها، فناوری مادی واجتماعی، هویت بخشی، ماندگارسازی جامعه وتأمین نیازهای زیستی انسان‌ (اسدی،1389، ص41 ).
هوش فرهنگی
هوش فرهنگی در بر گیرنده مجموعه گسترده‌ای از مهارتها و استعدادهای فردی است که معمولاً با مهارتهای درون فردی و بین فردی اشاره دارد و بطور کلی توانایی درک و فهم و چگونگی بروز یا کنترل عواطف و احساسات است.
هوش فرهنگی عبارت است از: توانایی یک فرد در راستای ساگاری موفقیت آمیز با محیطهای فرهنگی جدید که معمولاً با بافت فرهنگ خود نا آشنا است (ارلی وانگ،2003).
(آفرمن،2004)ا شاره می‌کند که هوش فرهنگی یک فراهوش است که شامل شکل‌های مختلفی از هوش است و‌ (IQ) تنهایکی ازآنها است.
هوش فرهنگی قابلیت فرد برای درک، تفسیر واقدام اثربخش در موقعیت‌هایی است که ازتنوع فرهنگی برخوردارند‌ (پیترسون،2004 ).
هوش فرهنگی را استعداد بکارگیری مهارتها و توانائیها در محیط‌های مختلف تعریف کرده است‌ (پیترسون،2004 ).
هوش فرهنگی عبارت است از: توانایی افراد برای رشد شخصی از طریق تداوم یادگیری وشناخت بهتر میراثهای فرهنگی، آداب و رسوم و ارزشهای گوناگون و رفتار مؤثر با افرادی با پیشینه فرهنگی و ادراک متفاوت. ارلی وانگ، هم چنین، هوش فرهنگی را به عنوان قابلیت فرد برای سازگاری مؤثر با قالبهای نوین فرهنگی تعریف کرده است و ساختار این مفهوم را به انواع دیگر هوش، از جمله هوش عاطفی و اجتماعی مربوط می‌دانند و (هریس ولی یونس، 2004).
هوش فرهنگی شناختی
بیانگر درک فرد از شباهت‌ها و تفاوتهای فرهنگی است و دانش عمومی و نقشه‌های ذهنی و شناختی فرد از فرهنگ‌های دیگر را نشان می‌دهد‌ (ارلی و موساکوفسکی 2004 ).
هوش فرهنگی انگیزشی
نشان دهنده علاقه فرد به آزمودن فرهنگ‌های دیگر و تعامل با افرادی از فرهنگ‌های مختلف است ( ارلی و موساکوفسکی 2004 ).
هوش فرهنگی فرا شناختی
بدین معناست که فرد چگونه تجربه‌های میان فرهنگی را درک می‌کند (ارلی و موساکوفسکی 2004).
هوش فرهنگی رفتاری
قابلیت فرد برای نمایش عمل کلامی و غیرکلامی مناسب در تعامل با افردی از فرهنگهای مختلف را نشان می‌دهد‌ (ارلی و موساکوفسکی2004).
ارتباطات
ادوین امری ارتباطات در معنای عام: « فن انتقال اطلاعات و افکار و رفتار انسانی ازیک شخص به شخص دیگر ».
ارتباطات اثر بخش
فرهنگی (1384) ارتباطات زمانی اثر بخش است که محرکی را به عنوان آ غازگر مورد نظر فرستنده با محرک مشهود گیرنده که از خود بروز می‌دهد و آن دو را بگونه‌ای نزدیک به هم مورد توجه قرار می‌دهد.
فلدبرگ (1975)توافق در ارتباط زمانی رخ می‌دهد که انتظار یک فرستنده با واکنش گیرنده بر یکدیگر منطبق باشد.
1-6-2 تعاریف عملیاتی
هوش فرهنگی
- منظور از هوش فرهنگی در این پژوهش « توانایی افرادی برای رشد شخصی از طریق تداوم یادگیری وشناخت بهتر میراثهای فرهنگی، آداب و رسوم و ارزشهای گوناگون و رفتار مؤثر با افرادی با پیشینه فرهنگی و ادراک متفاوت » در این پژوهش از پرسشنامه هوش فرهنگی که توسط ارلی وانگ در سال2003 تدوین شده و در سال 1389کارهنجاریابی آن درایران انجام گرفت استفاده گردید. با 20پرسش که‌ (از سؤال 1تا20) هوش فرهنگی اعضاء هیأت علمی دانشگاه‌های آزاداسلامی شهرکرد، پیام نور، دانشگاه شهرکرد، مورد ارزیابی قرار گرفت.
ارتباطات اثر بخش
منظور از ارتباطات اثر بخش در این پژوهش« فن انتقال اطلاعات و افکار و رفتار انسانی از یک شخص به شخص دیگر می‌باشد و ارتباطات اثر بخش زمانی رخ می‌دهدکه دریافت کننده پیام، آن را همان گونه تفسیر نماید که مورد نظر فرستنده باشد . به عبارت دیگر توافق در ارتباط زمانی رخ می‌دهد که انتظار یک فرستنده با واکنش یک گیرنده منطبق باشد و در یک راستا قرار گیرد ». در این پژوهش از مدل ارتباطات اثر بخش رابینز استفاده شده که ارتباطات اثر بخش با توجه به 6 فاکتور « 1- استفاده از مجرا‌های ارتباطی چند گانه2- ساده سازی3- گوش دادن فعال4- کنترل هیجانات5- استفاده از شبکه ارتباطات خوشه‌ای 6- استفاده از باز خورد » می‌باشد. در این پژوهش از پرسشنامه ارتباطات اثر بخش که توسط سوسمان وکرینوس (1979) ابداع گردیده که شامل 3دسته سؤال که هر سؤال شامل 15پرسش می‌باشد استفاده شده تا ارتباطات اثر بخش بین اعضا ء هیأت علمی دانشگاه‌های آزاداسلامی شهرکرد،، پیام نور و دانشگاه شهرکرد، مورد ارزیابی قرار گرفت.
عامل راهبردی / فراشناختی‌ (هوش فرهنگی )
منظور از عامل راهبردی / فراشناختی بدین معناست که فرد چگونه تجربیات میان فرهنگی را درک می‌کند. این استراتژی بیانگر فرایندهایی است که افراد برای کسب ودرک دانش فرهنـگی به کار می‌برند. این امر زمانی اتّفاق می افتد که افراد در مورد فرایندهای فکری خود ودیگران قضاوت می‌کنند. استراتژی هوش فرهنگی شامل تدوین استراتژی پیش از برخورد میان فرهنگی، بررسی مفروضات در حین برخورد و تعدیل نقشه‌های ذهنی در صورت متفاوت بودن تجارب واقعی از انتظارات پیشین است. که از سؤال (1تا 4) پرسشنامه هوش فرهنگی مؤلفه فراشناختی در بین اعضاء هیأت علمی مورد ارزیابی قرار گرفت.
عامل دانش /شناختی‌ (هوش فرهنگی )
این دانش بیانگر درک فرد از تشابهات و تفاوت‌های فرهنگی است و دانش عمومی و نقشه‌های ذهنی و شناختی فرد از فرهنگ‌های دیگر را نشان می‌دهد. جنبه دانشی هوش فرهنگی مشتمل برشناخت سیستم‌های اقتصادی و قانونی، هنجارهای تعامل اجتماعی، عقاید مذهبی، ارزش‌های زیبای شناختی و زبان دیگر است. که از سؤال (5 تا10) پرسشنامه هوش فرهنگی مؤلفه شناختی در بین اعضاء هیأت علمی مورد ارزیابی قرار گرفت.
عامل انگیزشی‌ (هوش فرهنگی )
بیانگر علاقه فرد به آزمودن فرهنگ‌های دیگر و تعامل با افرادی از فرهنگ‌های مختلف است. این انگیزه شامل ارزش درونی افراد برای تعاملات چند فرهنگی و اعتماد به نفسی است که به فرد اجازه می‌دهد. در موقعیت‌های فرهنگی مختلف به صورتی اثر بخش عمل کند. که از سؤال (11تا 14) پرسشنامه هوش فرهنگی مؤلفه انگیزشی در بین اعضاء هیأت علمی مورد ارزیابی قرار گرفت.
عامل رفتاری‌ (هوش فرهنگی )
بیانگر قابلیت فرد برای سازگاری با آن دسته از رفتار‌های کلامی و غیرکلامی را در بر می‌گیرد که برای برخورد با فرهنگ‌های مختلف مناسب هستند. رفتار هوش فرهنگی مجموعه‌ای از پاسخ‌های رفتاری منطقی را شامل می‌شود که در موقعیت‌های مختلف به کار می آیند و متناسب با یک تعامل خاص یا موقعیت ویژه از قابلیت اصلاح و تعدیل برخور دارند. که از سؤال‌ (15 تا20) پرسشنامه هوش فرهنگی مؤلفه رفتاری در بین اعضاء هیأت علمی مورد ارزیابی قرارگرفت.
فصل دوم
« ادبیات تحقیق »
2-1 مقدمه
نظریه‌های جدید درباره هوش انسانی به انواع مختلفی از هوش اشاره کرده اند.که هر چند برخی از آنها دارای همبستگی ضعیف یا متوسطی با یکدیگرند، اما برخی از انواع را نیز باید غیرهمبسته یا مستقل از یکدیگر دانست. در این میان به انواعی از هوش شامل، هوش اجتماعی، هوش فرهنگی، هوش عاطفی یا هیجانی، هوش بدنی، هوش موسیقیایی و هوش زبانی اشاره کرد.
اگر چه پژوهش‌های اولیه تمایل دارند به اینکه هوش را به گونه‌ای محدود، توان درک مفاهیم و حل مسائل در مجموعه‌های علمی تعریف کنند، اما در حال حاضر توافـق فزاینده ایی وجود دارد. در این باره که هوش می‌تواند از مکانهایی غیراز کلاس درس ظهور یابد علاقه فزاینده به موضوع هوش در جهان واقعی، و نه فقط محیطهای کلاس درس، انواع نوینی از هوش از جمله هوش فرهنگی را طرح کرده است.
چنین نکته ایی حائز اهمیت است که پیشرفتهای فردی و اجتماعی را محدود به مفاهیم پیوند خورده با هوش منطقی و ریاضی نداشته و با دقت بیشتری به افراد و جوامع موفق دستیابی به اهداف فردی وگروهی مشاهده کنیم که آنها را می‌توان به لحاظ هوش ریاضی و منطقی در سطوح متفاوتی طبقه بندی کرد.
بسیاری از سازمانهای قرن بیست و یکم چند فرهنگی هستند. این واقعیت سبب پویایی فراوان و روابط در محیطهای چند فرهنگی شده است، به نحوی که تفاوت در زبان، قومیت، سیاستها و بسیاری خصوصیات دیگر می‌تواند به عنوان منابع تعارض بالقوه ظهور کند، و در صورت نبود درک صحیح، توسعه روابط کاری مناسب را با مشکل مواجه سازد. (2006Triandis,).
این دشواریهای ادراکی سبب ارائه مفهومی نوین در مباحث شناختی شده است که با نام « هوش فرهنگی » شناخته می‌شود.
در شرایط کاری کنونی که تنوع و جهانی سازی به صورت فزاینده ایی رشد کرده است،این هوش قابلیت مهمی برای مراکز آموزش عالی « دانشگاهها، سازمانها، مدیران، اعضاء هیأت علمی دانشگاهها و کارکنان محسوب می‌شود.
2-2 هوش
هوش از جمله مفاهیمی است که درحوزه روانشناسی تعاریف متعددی از آن ارائه شده است. با وجود تعدد تعریفی که از هوش ارائه شده است و یا ویژگی‌های متعددی که برای افراد با هوش مورد شناسایی قرار گرفته است، اما می‌توان جهت گیری‌های واحد در آنها یافت.
احمدی و ماهر‌ (1385، ص181) مجموعه ایی از تعاریف طرح شده به ویژه توسط دانشمندان مختلف از نیمه اول قرن بیستم را گردآوری کرده اند. این تعاریف به شرح زیر هستند:
(1) هوش عبارت است از ظرفیت و توانایی یادگیری.
(2) هوش عبارت است از دانش پذیری و ظرفیت کسب آن.
(3) هوش عبارت است سازگاری فرد با محیط.
(4) هوش توانایی تفکر بر حسب ایده‌های انتزاعی است.
(5) هوش توانایی درک اشخاص و ایجاد رابطه با آنها (هوش اجتماعی)، توانایی درک اشیاء وکار کردن با آنها (هوش عملی) و توانایی درک نشانه‌های کلامی –ریاضی وکار با آنهاست.
(6) هوش عبارت است ازتوانایی فرد برای اینکه به طور هدفمند عمل کند، به طور منطقی بیندیشد و به طور مؤثر با محیط مبادله نماید...
پرسش اساسی که نظام‌های تعلیم و تربیت با آن روبه رو هستند این است که کدام تصور یا برداشت از هوش انسانی باید راهنما و هادی برنامه‌های درسی و جریان آموزش باشد. پاسخ به این پرسش را می‌توان از متن و بطن جهت گیری‌های آموزشی استخراج و درباره آن قضاوت کرد. بدین ترتیب و از دیدگاه نظریه هوش چندگانه باید گفت که متأسفانه برداشتی ناقص و محدوداز مفهوم، ماهیت وگستره ی هوش انسانی ‌هادی و الهام بخش اکثر برنامه‌های آموزشی در غالب نظام‌های آموزش وپرورش است.
هاروارد و گاردنـر،روان شناس معـاصر، برای نخستین بار در سال 1983، با انـتشار کتابـی با عنوان چارچوب‌های ذهن، نظریه هوش چندگانه، تلقی سنتی از هوش را به چالش کشیدند. این نظریه با تأخیری قابل توجه تنها در چند سال اخیر در کانون توجه دست اند کاران تعلیم و تربیت کشور قرار گرفته است، از این رو متأسفانه، منابع علمی موجود به زبان فارسی بسیار اندک و ناکافی است.
به اعتقـاد وی، تلقـی سنتی بـرای هـوش انسـانی ماهیتی سـاده، یکپارچه وتـک عاملی قائـل است و ریشـه در کوشش‌های ناظر به شناسایی عامل اصلی موفقیت تحصیلی دانش آموزان در اوائل قرن بیستم دارد (گاردنر،1990). این کوشش‌ها منجر به طراحی ابزاری موسوم به هوشبهر (IQ) شدکه به طرزی گسترده در نظام‌های آموزشی مورد استفاده قرار می‌گیرد. گاردنر با طرح این معنا که هوش دارای انواع، اشکال و مظاهر گوناگون است و تأکید براین واقعیت که آحاد انسان دارای نیمرخ‌های هوشی متفاوت هستند، مبداء تحرکات فکری‌ (نظری) و عملی گسترده‌ای در پاره‌ای از نظام‌های آموزش و پرورش در جهان شد که با تکیه بر مفهوم هوش چندگانه در جهت ایجاد تنوع و گونه گونی برنامـه‌های آموزشـی خود گـام برداشتـه اند.
2-3 ماهیت هوش انسانی، از گذشـته تا حال
گاردنر با نام بردن از افرادی همچون آلبرت انیشتین (فیزیکدان)، ویرجینیاولف (رمان نویس)، ایگوراستراوینسکی‌ (موسیقی دان وآهنگ ساز )، پابلو پیکاسو (نقاش)، ماراثا گراهام (متخصص کوریوگرافی )، ماهاتما گاندی‌ (سیاستمدار و مصلح اجتماعی )، زیگموند فروید‌ (روان شناس) این پرسش را مطرح می‌کند که از این میان آنها کدام یک با اهمیت تر و با هوش تر هستند ؟ (گاردنر،1990).
بر این اساس، می‌توان نام افراد متعدد دیگر همچون بتهوون، شکسپیر، داوینچی، میکل آنژ، باخ وعدهی کثیری از بر جستگان مشرق زمین مانند حافظ، مولانا، خوارزمی، ابوریحان، بوعلی سینا و... را با آن نام ها افزود. ویژگی مشترکین شخصیتها در ایفا کردن نقشی خطیر در تحول و پیشرفت تمدن انسانی است.
به عقیده گاردنر، هیچکدام از این افراد را نمی توان با دیگری مقایسه کرد. این مقایسه از آنجا که مستلزم پذیرش دیدگاه با تعریفی خاص از هوش است، البه عاقلانه نیست، چرا که با تغییر دیدگاه و تعریف طبیعتاً گزینش نیز تغییر خواهد کرد.
این پرسش مقدماتی اما اساسی مدخلی مناسب برای ورود به بخش هوش چندگانه بشمار می‌رود و اجمالاً نشان می‌دهد که تلقی و تعریف سنتی از هوش که برای آن ماهیتی ساده، یکپارچه و تک عاملی (موسوم به عامل G) قائل است تا چه اندازه می‌تواند به پاسخ‌های نا مناسب و حتی گمراه کنند بینجامد. همچنین کافی است لحظه ایی بیندیشم تا دریابیم فقدان هر یک از این افراد چه ضایعه و خسرانی جبران ناپذیر برای فرهنگ وتمدن بشری به بار آورده و ضربه‌ای کارساز به غنا و بالندگی آن وارد می سازد.
2-4 سا بقـه تاریخی
مسؤولان آموزش وپرورش شهر پاریس برای دست یابی به ابزاری که با بهره گیری ازآن بتوان موفقیت یا عدم موفقیت تحصیلی دانش آموزان را پیش بینی کرد و آنها را از یکدیگر تمیز داد، روان شناسی جوان به نام آلفرد بینه را به خدمت گرفتند. این اتفاق مربوط به سال‌های آغازین سده بیستم بود و این روان شناس جوان را به تکاپویی گسترده برای تحقق بخشیدن به این فهم وا داشت. وی پرسشهای فراوانی را به عدۀ بسیاری از کودکان داد و براساس پاسخ‌های درست و نادرست آنها توانست ابزاری را فراهم آورد که قدرت پیش بینی موفقیت و شکست تحصیلی دانش آموزان رادر تحصیلات مدرسه‌ای داشته باشد. بین ترتیب نخستین تست( IQ) در سال1905ساخته شد.که ناگزیر تعریفی خاص از موفقیت تحصیلی در آن نهفته است و تعریف مستتر در آن بر جهت گیری‌های نظام‌های آموزشی سایه افکند. بینه و سیمون تست کامل تر(IQ) را در سال 1908تولید کردند.
لوییزین ترمن درسال 1916، نخستین آزمون هنجاریابی شده (IQ) را در ایالات متحده آمریکا ساخت که از آن با عنوان آزمون استانفورد- بینه مقیاس‌های نام برده می‌شود. این آزمون ازمقیاس‌های هنجاریابی شده سنجش بهره هوش در طول سالهای جنگ جهانی اول در ارتش آمریکا بوده است که به شکل گسترده برای استخدام افراد از آن استفاده می‌شد. پیروزی آمریکا در این جنگ را یکی از عوامل تأثیر گذار بر پذیرش آزمون‌های سنجش و تبدیل شدن آن به بخش جدایی ناپذیر از زندگی و تفکر آمریکایی می‌توان به شمار آورد (گاردنر،1990، ص13).
گر چه بهره گیری از آزمون‌های سنجش هوشبهر‌ IQممکن است درحال حاضر به اندازه گذشته نباشد، اما به زعم گاردنر، تفکر به سبب‌IQ به طرز گسترده‌ای در نظام‌های آموزش و پرورش رواج دارد و این تفکر مبداء شکل گیری مدارس یکنواخت شده است. مداس یکنواخت، مدارسی هستند که جهت گیری‌های آموزشی و برنامه‌های درسی آنها مبتنی بر تعریفی خاص و البته محدود از موفقیت تحصیلی است. همان تعریفی که از متن آزمون‌های سنجش بهره هوشی‌ IQقابل استخراج و استنتاج واستخراج است. تفکر به سبک‌ IQو تعریف موفقیت تحصیلی متناظر با آن سبب می‌شود که در این مدارس ریاضیات از درجه اول اهمیت برخوردار شود و علوم تجربی نیز در درجه بعد قرار گیرد.
بدین سبب دانش آموزان مستمراً با بهره گیری از آزمون‌های استاندارد‌ (چند گزینه‌ای )در این زمینه‌های خاص مورد سنجش قرار می‌گیرند. کسب موفقیت در این آزمون‌ها عموماً به معنای برخورداری از هوش سرشار و عدم موفقیت در آنها به معنای فقدان زمینه لازم برای کسب موفقیت در مدرسه و تحصیل است. این ویژگی‌ها معرف روح کلی حاکم بر مدارسی است که گاردنر آنها را مدارس یکنواخت می‌نامد. پیاژه نیز که باید او را شاخص ترین چهره حوزۀ روان شناسی رشد دانست، متأسفانه دارای تلقی مشابهی از ماهیت هوش است. او در جریان ساخت آزمون سنجش هوش با بینه همکاری داشت. پیاژه، ضمن فعالیت خود علاقه مند شد تا دلیل پاسخ‌های نادرست کودکان به پرسش‌های مطرح شده را دریابد و پیگیری این نکته در طول سالیان متمادی منجر به ارائه نظریه مشهور به مراحل تحول شناخت شد. بنیاد نظریه پیاژه نیز که از جانب طرفداران هوش چند گانه مورد نقد واقع شده، آن است که قابلیت‌های شناختی یا قدرت استدلال فرد در هر یک از مراحل رشد عمومیت دارد و وابسته به مضمون و محتوایی خاص نیست، یا به سخن دیگر تک وضعیتی است (گاردنر،1990،ص14).
بنابراین گرچه پیاژه از لفظ (IQ) استفاده نکرده است و درباره چنین مفهومی سخن نگفته است، اما در بطن نظریه او نگاه به هوش انسانی به عنوان مقوله‌ای تک ساحتی و تک عاملی است.
2-5 نظریه هوش چندگانه
گاردنر درجریان دست یابی به نظریه هوش چندگانه، با وسواس علمی فراوان کوشیده است تا با ارجاع نظریه خود به منابع و شواهد گوناگون، نظریه را از گزند آسیب‌های روان شناختی مصون بدارد .پیش از معرفی نظریه گاردنر، اشاره به فهرستی از منابع و شواهد مورد استفاده واستناد گاردنر در شناسایی انواع هوش، مفید به نظر می‌رسد (کیل و پلگر ینو، 1985،ص 171-170) .
1- شواهد ناظر به استقلال قابلیت‌های هوشی بر مبنای صدمات مغزی.
2- شواهد ناظر به وجود افرادی که دارای استعدادهای ویژه در حوزه‌های خاص هستند
3- شواهد ناظر به وجود مسیر یا فرایند رشد و تحول قوای هوشی مستقل.


4-شواهد ناظر به وجود یک فرآیند تحول در نوع انسان یا شکل گیری یک قابلیت در جریان تحول نوع انسان.
5-شواهد ناظر به وجود عملیات ذهنی مستقل برای هریک از انواع هوش که هسته مرکزی آن نوع هوش را تشکیل می‌دهد.
6-شواهد آزمایشی که نشان می‌دهد افراد برای انجام تکالیف یا عملیات گوناگون به طور همزمان مشکل خاصی ندارد. نتیجه اینکه انجام دادن این تکالیف نیاز به مهارت‌ها وقابلیت‌های مشترک ندارد در غیراین صورت انجام دادن همزمان آنها امکان پذیر نبود.
همچنین شواهد تجربی دیگر نشان می‌دهد که میان قابلیت‌ها و انجام دادن تکالیف همبستگی وجود ندارد.
7-شواهد مربوط به وجود نظام‌های نمادین نظام‌های متفاوت برای برقراری ارتباط با دیگران.
تعریف هوش، از نظر گاردنر، که مبنای به رسمیت شناختن اشکال گوناگون هوش می‌باشد عبارت است از: قابلیت حل مسأله یا تولید (خلق) یک محصول، ساخت چیزی که دست کم در یک فرهنگ ارزشمند تلقی می‌شود (گاردنر،1990، ص16).
در نهایت گاردنر هفت نوع هوش رادر قالب نخستین پردازش از نظریه هوش چند گانه به شرح زیر ارائه کرد:
1.هوش زبانی:این نوع هوش از جمله در شاعران، وکلا، روزنامه نگاران، ورمان نویسان از برجستگی خاص برخوردار است.
2.هوش منطقی – ریاضی: این نوع هوش از جمله در علمای منطق، دانشمندان علوم تجربی و ریاضیدانان از برجستگی خاص برخوردار است.
3.هوش موسیقیایی یا ریتمیک : این نوع هوش از جمله در موسیقیدانان و نوازندگان برجستگی خاصی دارد.
4. هوش فضایی:این هوش از جمله در نقاشان، معماران، شطرنج بازان، خلبانان، دریا نوردان و جراحان از برجستگی خاص برخوردار است.
5.هوش حرکتی –جنبشی: این هوش از جمله در ورزشکاران، رقاصان، هنرپیشگان و جراحان از بر جستگی خاص برخوردار است.
6.هوش میان فردی: این نوع هوش از جمله در معلمان، درمانگران، فروشندگان و سیاستمداران از برجستگی خاص برخوردار است.
7.هوش درون فردی: که ناظر بر شناخت دقیق فرد از خویشتن‌ (علائق، تمایلات، ضعف‌ها، قوت‌ها و دل مشغولی‌ها) است. و فرد برخوردار از این نوع هوش اصطلاحاً دارای قدرت برقراری ارتباط با خویشتن است.
گاردنر از آغاز تصریح کرده است که فهرست مشتمل بر هفت نوع هوش تنها مدخلی برای نگاه کثرت گرایانه به مقوله هوش است و در بردارنده انواع ممکن هوش انسانی نیست، ولی بر اثر مطالعات بعدی و دست یابی به شواهد جدید موفق به شناسایی انواعی دیگر از هوش شده است، که فهرست هفتگانه به فهرستی مشتمل بر 10 نوع هوش افزایش یافته است. انواع سه گانه جدیدتر هوش که البته هنوز از قطعیت هفت نوع هوش قبلی برخودار نیست به قرار زیر است:
1.هوش معنوی
2.هوش طبیعت گرایانه