–476

این تعهد می بایست در حضور نماینده پژوهش امضاء و اثر انگشت شود.
220980078232000
معاونت پژوهش و فناوری
به نام خدا


منشور اخلاق پژوهش
با یاری از خداوند سبحان و اعتقاد به این که عالم محضر خداست و همواره ناظر بر اعمال انسان و به منظور پاس داشت مقام بلند دانش و پژوهش و نظر به اهمیت جایگاه دانشگاه در اعتلای فرهنگ و تمدن بشری، ما دانشجویان و اعضاء هیئت علمی واحدهای دانشگاه آزاد اسلامی متعهد می گردیم اصول زیر را در انجام فعالیت های پژوهشی مد نظر قرار داده و از آن تخطی نکنیم:
1. اصل برائت: التزام به برائت جویی از هرگونه رفتار غیرحرفه ای و اعلام موضع نسبت به کسانی که حوزه علم و پژوهش را به شائبه های غیرعلمی می آلایند.
2. اصل رعایت انصاف و امانت: تعهد به اجتناب از هرگونه جانب داری غیر علمی و حفاظت از اموال، تجهیزات و منابع در اختیار.
3. اصل ترویج: تعهد به رواج دانش و اشاعه نتایج تحقیقات و انتقال آن به همکاران علمی و دانشجویان به غیر از مواردی که منع قانونی دارد.
4. اصل احترام: تعهد به رعایت حریم ها و حرمت ها در انجام تحقیقات و رعایت جانب نقد و خودداری از هرگونه حرمت شکنی.
5. اصل رعایت حقوق: التزام به رعایت کامل حقوق پژوهشگران و پژوهیدگان (انسان،حیوان ونبات) و سایر صاحبان حق.
6. اصل رازداری: تعهد به صیانت از اسرار و اطلاعات محرمانه افراد، سازمان ها و کشور و کلیه افراد و نهادهای مرتبط با تحقیق.
7. اصل حقیقت جویی: تلاش در راستای پی جویی حقیقت و وفاداری به آن و دوری از هرگونه پنهان سازی حقیقت.
8. اصل مالکیت مادی و معنوی: تعهد به رعایت کامل حقوق مادی و معنوی دانشگاه و کلیه همکاران پژوهش.
225298014351000023666452006600009. اصل منافع ملی: تعهد به رعایت مصالح ملی و در نظر داشتن پیشبرد و توسعه کشور در کلیه مراحل پژوهش.
تقدیم به:
پدر گرانقدر، مادر والامقام، خواهر و برادر مهربانم تکیه‌گاهان زندگی، سایبانان آرامش، به زیباترین آفرینش‌های خالق، به رشته های محبت که پرستش را از آنان آموختم، به آنان که یاریم کردند تا بیاموزم.

سپاسگزاری
با سپاس از خدای رحمان که اراده کرد تا بیاموزم و. به گونه ای زیبا زندگی کنم و اکنون با دستانی پر تلاش و آکنده از مهر دوست یکی دیگر از مراحل علمی را با موفقیت پشت سر بگذارم. از استاد راهنمای عزیز و بزرگوارم جناب آقای دکتر حسن حق شناس که رساله حاضر با راهنمایی ها، نظرات ارزنده، پیگیری های مستمر و مساعدت های ایشان به انجام رسید کمال سپاس و قدردانی را دارم. و همچنین از استاد مشاور محترم جناب آقای دکتر مجتبی نقش واریان که همواره کارگشای بسیاری از مسائل من بود بی نهایت سپاسگزارم. در پایان از پرسنل محترم بیمارستان اعصاب و روان دکتر محرری و همچنین از تمام عزیزانی که به نحوی در انجام این امر مرا یاری نمودند تشکر می نمایم. باشد روزی که بتوانم قدری از محبت های این عزیزان را جبران نمایم.

فهرست مطالب
عنوان صفحه
فصل اول: کلیات پژوهش
1-1مقدمه1
1-2بیان مسئله3
1-3تعریف مفاهیم4
1-3-1اسکیزوفرنی4
1-3-2افسردگی اساسی4
1-3-3علایم روان پریشی4
1-3-4عملکرد اجرایی4
1-4تعریف عملیاتی5
1-5 اهمیت تحقیق5
1-6 اهداف تحقیق6
1-6-1اهداف عملی6
1-6-2 اهداف کاربردی6
فصل دوم: پیشینه پژوهش
2تاریخچه8
2-1اسکیزوفرنیا8
2-2افسردگی اساسیMDD9
2-3عملکرد اجرایی10
2-4 آزمون جور کردن کارتها ویسکانسین WCST 12
2-5 آزمون رنگ وکلمه استروپ14
2-6 نتایجی از عوامل مؤثر بر آزمونهای ویسکانسین و استروپ15
2-6-1جنس15
2-6-2 سن و تحصیلات15
2-6-3 هوش16
2-7 پیشینه تحقیقات آزمون ویسکانسین در اسکیزوفرنیا و افسردگی اساسی16
2-8 پیشینه تحقیقات آزمون کلمه و رنگ استروپ در اسکیزوفرنیا و افسردگی اساسی19
2-9- جمع بندی کلی از یافته های پژوهش انجام شده21
3-9 فرضیه تحقیق......................................................................................................................................................23
فصل سوم: روش تحقیق
3 چارچوب روش تحقیق25
3-1مقدمه25
3-2 نوع روش تحقیق25
3-3 جامعه آماری25
3-4 گروه نمونه و روش نمونه گیری25
3-5 ابزار پژوهش25
3-5-1پرسشنامه سلامت عمومی گلدبرگ (GHQ) : 26
3-5-2 آزمون مهک27
3-5-3 آزمون جور کردن کارتها ویسکانسین WCST : 28
3-5-4 آزمون رنگ و کلمه استروپ29
3-6 روش اجرا30
3-7 روش تجزیه و تحلیل اطلاعات30
فصل چهارم: یافته های پژوهش
4-1مقدمه32
4-2 توصیف داده ها32
4-2-1 توصیف متغیرهای جمعیت شناختی32
4-2-2 توصیف متغیر هوش پیش مرضی35
4-2-3 توصیف متغیر سلامت عمومی37
4-3 تحلیل یافته های تأییدی و استنباطی39
4-3-1 فرضیه اول پژوهش43
4-3-2 فرضیه دوم پژوهش43
4-3-3 فرضیه سوم پژوهش43
4-3-4 فرضیه چهارم پژوهش43
4-3-5 فرضیه پنجم پژوهش45
4-3-6 فرضیه ششم پژوهش45
4-3-7 فرضیه هفتم پژوهش45
4-3-8 فرضیه هشتم پژوهش45
یافته های اضافی46
بررسی همبستگی بین متغیرها46
فصل پنجم: نتیجه گیری
مقدمه50
5-1 بحث و نتیجه گیری52
5-2 محدودیتهای پژوهش58
5-3پیشنهادهای برای پژوهش های بعدی58
5-3-1 پیشنهادهای اجرایی58
5-3-2 پیشنهادهای کاربردی58
منابع فارسی ولاتین61
فهرست جداول
عنوان صفحه
جدول4-1. فراوانی و درصد توزیع سن در سه گروه بیمار ان اسکیزوفرن، افسردگی اساسی و بهنجار33
جدول 4-2. آزمون تحلیل واریانس یک راهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر سن33
جدول 4-3. آزمون تعقیبی جهت سن34
جدول4-4. فراوانی و درصد توزیع تحصیلات در سه گروه بیماران اسکیزوفرن، افسردگی اساسی و بهنجار34
جدول4-5. آزمون تحلیل واریانس یک راهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر تحصیلات35
جدول 4-6. آزمون تعقیبی جهت تحصیلات35
جدول4-7. فراوانی و درصد توزیع هوش پیش مرضی در سه گروه بیماران اسکیزوفرن، افسردگی اساسی و بهنجار36
جدول 4-8. آزمون تحلیل واریانس یک راهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر هوش پیش مرضی36
جدول 4-9. آزمون تعقیبی جهت هوش پیش مرضی37
جدول4-10. آمارههای توصیفی متغیر سلامت عمومی37
جدول 4-11. آزمون تحلیل واریانس یک راهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر سلامت عمومی38
جدول 4-12. آزمون تعقیبی جهت سلامت عمومی38
جدول4-13. آمارهای توصیفی متغیرهای علائم بدنی، اضطرابی، اختلال در کارکردهای اجتماعی و افسردگی39
4-14. میانگین و انحراف استاندارد گروهای بیمار و افراد بهنجار در زیر مقیاسهای متغیر عملکرداجرایی40
4-15. میانگین و انحراف استاندارد گروهها به تفکیک زنان و مردان در زیر مقیاسهای متغیر عملکرد اجرایی40
4-16. میانگین و انحراف استاندارد دو گروه زنان و مردان در زیر مقیاسهای متغیر عملکرد اجرایی41
جدول 4-17. جدول نتایج تحلیل واریانس چند متغیره42
جدول 4-18. نتایج تحلیل واریانس و سطح معناداری بررسی متغیرهای مورد مطالعه در گروه های بیمار و افراد بهنجار42
جدول 4-19. نتایج تحلیل و اریانس و سطح معناداری بررسی متغیرهای مورد مطالعه در دو گروه زنان و مردان44
جدول 4-20. آزمون تعقیبی جهت آزمون کلمه و رنگ استروب (اثراستروپ؛ هزارم ثانیه)44
جدول 4-21. ضرایب همبستگی بین متـــغیرهای عملکرد اجرایی، سلامت عمومی، هوش پیشمرضی و داده های جمعیت شناختی در گروه اسکیزوفرن46
جدول4-22.ضرایب همبستگی بین متـــغیرهای عملکرد اجرایی، سلامت عمومی، هوش پیشمرضی و داده های جمعیت شناختی درگروه افسردگی اساسی47
جدول4-23. ضرایب همبستگی بین متـــغیرهای عملکرد اجرایی، سلامت عمومی، هوش پیشمرضی و داده های جمعیت شناختی در گروه بهنجار48
فهرست شکل
عنوان صفحه
شکل 2-1 تصویر لوب پیشانی جایگاه ضروری در عملکرد اجرایی11

مقایسه عملکردهای اجرایی در بیماران مبتلا به اسکیزوفرنیا بدون علایم روانپریشی، افسردگی اساسی بدون علایم روانپریشی و افراد بهنجار در شیراز (1391)
به وسیله: فاطمه رضایی
چکیده
تحقیقات مختلف، نقایص شناختی را به عنوان یکی از جنبه های مهم اسکیزوفرنیا مطرح کرده اند. علاوه بر این وجود روانپریشی در این بیماران می تواند بر میزان نقص در عملکردهای اجرایی تاثیرگذار باشد. هدف از پژوهش حاضر مقایسه عملکردهای اجرایی در بیماران اسکیزوفرنیا بدون علائم روانپریشی و افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار است. این پژوهش از نوع علی- مقایسه ای می باشد. بدین منظور از روش نمونه گیری در دسترس که شامل 30 بیمار اسکیزوفرنیا بدون علائم روانپریش (15 زن ، 15 مرد) و 30 بیمار افسرده اساسی بدون علائم روانپریشی (15 زن، 15 مرد) و 40 نفر آزمودنی بهنجار (20 زن، 20 مرد) از بیمارستان اعصاب و روان دکتر محرری شهر شیراز انتخاب شدند و بر اساس متغیرهای سن و جنس و تحصیلات همسان سازی شدند. عملکردهای اجرایی آزمودنی ها به وسیله آزمون های دسته بندی ویسکانسین، آزمون کلمه و رنگ استروپ، پرسشنامه سلامت عمومی و آزمون مهک مورد ارزیابی قرار گرفت. داده ها با استفاده از تحلیل واریانس چند متغیره، آزمون F یک طرفه و آزمون تعقیبی بن فرونی تحلیل شد. نتایج نشان داد در آزمون ویسکانسین بین بیماران اسکیزوفرنیا علائم روانپریشی و افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار تفاوت معنی داری وجود ندارد ولی در آزمون کلمه و رنگ استروب بین عملکرد بیماران اسکیزوفرنیا بدون علائم روان پریشی و افسردگی اساسی بدون علائم روان پریشی و افراد بهنجار در زمان واکنش تفاوت وجود داشت همچنین بین آزمودنیهای زن و مرد در آزمونهای استروپ و وسیکانسین تفاوت معناداری وجود نداشت و نیز نتایج حاصل از تحلیل واریانس چند متغیره نشان داد که عامل تحصیلات و سن تاثیری درمقیاس عملکرد اجرایی نداشتند ولی نتایج نشان داد عامل تغییرات هوش مرضی بر روی عملکرد گروه ها تاثیر دارد ولی به تنهایی نمی تواند پیش بینی کننده باشد.
نتیجه گیری: به طور کلی آسیب بیشتر عملکردهای اجرایی در آزمون جور کردن کارتهای ویسکانسین و آزمون کلمه و رنگ استروپ با استعداد روان پریشی مرتبط می باشد و همچنین جنسیت تاَثیری در عملکرد اجرایی بیماران اسکیزوفرنیا بدون علائم روان پریشی و افسردگی اساسی بدون علائم روان پریشی و افراد بهنجار ندارد.
کلید واژه ها : عملکردهای اجرایی ،اسکیزوفرن بدون علائم روانپریشی ،افسردگی بدون علائم روانپریشی،آزمون جورکردن کارتهای ویسکانسین،ازمون کلمه و رنگ استروپ

فصل اول
کلیات پژوهش
10140958953500

221170538290500
1-1 مقدمه
«شواهد قابل ملاحظه ای از مطالعات پسامرگی مغز بیماران وجود دارد که مؤیّد نا هنجاری ای اناتومیک قشر جلوی پیشانی در اسکیزو فرنی است. روشهای تصویر برداری کارکردی مغز نیزنقایص کارکردی را در ناحیه جلوی پیشانی نشان داده اند.از مدتها پیش مشخص شده است که چنین علا مت اسکیزوفرنی شبیه علایمی است که در مورد لوبوتومی پره فرونتال یا سندرم های لوب پیشانی دیده می شود.»(رضاعی،1385،ص19).
ناحیه ارتباطی پره فرونتال قادر به فراخوانی اطلاعات از نواحی گسترده ای از مغز و سپس استفاده از آن در الگو های عمیق تفکر برای دست یابی به الگو های مورد نظر است . نقص در ناحیه پره فرونتال باعث اختلال دراعمال اجرایی یعنی فرایند های عصب- روانشناختی که برای تطابق با محیط ضروری است، می گردد . اعمال اجرایی شامل توانایی هایی نظیر طرح ریزی ، ابتکار عمل ، انعطاف پذیری ، حفظ انگیزش ، توانایی شناخت وتغییر توالی ها، توانایی استفاده از سر نخ ها و باز خوردهابرای انجام رفتار هدف دار ، توانایی تفکر انتزاعی (افزایش عمق و ارتباط افکار)، و حفظ همزمان تعداد زیادی واحد اطلا عاتی وسپس فراخوانی این اطلاعات برای انجام اعمال بعدی می باشد (کلان،کنن، 2000).
مطالعات مربوط به جریان خون منطقه ای مغز (RCBF) با استفاده از ترمو گرافی گسیل پوزیترون (SPEST_PET) نشان داده است که اختلال در پاسخگویی آزمون ویسکانسین بااختلال عملکرد لوب فرونتال مشاهده شده است (استراتا و دانیلو،2000).
تحقیقات نشان داده اند که بیماران مبتلا به اسکیزو فرنیا در مقایسه باافراد بهنجار نقایص شناختی بیشتری دارند.از جمله نقایص موجود می توان به نقص عملکرد اجرایی اشاره کرد . در تعریف عملکرد اجرایی ،لزاک، 1995گفته است:عملکرد اجرایی مستلزم توانایی شخص در نظم دهی وهدایت رفتار خود است .این کار کردهارا می توان به بخش های فرعی شامل نیت و اراده، برنامه ریزی، اقدام هدفمند و عملکرد موثر تقسیم کرد (به نقل پاشا شریفی، 1386).
بر خلاف اهمیت توانایی های اجرایی، در موقعیت سنجش روانی این امر نادیده گرفته می شود. یکی از دلایل این کار ان است که عملکرد اجرایی دچار اختلال شود، در صورتی که سایر کارکرد های شناختی سالم بنظر می رسند. گراث- مارنات (2003، ترجمه پاشا شریفی و نیکو، 1386 ). برخی شواهد وجود دارند که نشان می دهند، هوش بیمار پس از ضایعه قطعه پیشانی در واقع افزایش نشان می دهد اما از نظر توانایی های اجرایی دچار اختلال هستند (همان منبع).
عملکردهای اجرایی به عنوان فرایند های پیچیده ای تعریف می شوند .که در حل مسائل جدید به کار می روند .این فرایند شامل آگاهی از مسائل موجود وارزیابی آن ،تحلیل شرایط مساله وفرمول بندی هدف های خاص ، ایجاد مجموعه ای از طرحها ونقشه ها به منظور مشخص کردن اعمال مورد نیاز برای حل مسئله ، وتغییر طرح های غیر موثر وتغییردر جهت اجرای طرح های موثر تر ، مقایسه نتایج بدست آمده با نتایج قبلی (در صورتی که از طرح جدیدی متناسب با موقعیت مساله استفاده شده باشد )، اتمام طرح هنگامی که نتایج رضایت بخش است ودر نهایت حفظ طرح وبازیابی آن برای مواجعه با مساله یا مساله مشابه در آینده می باشد گراث-مارنات(2003،ترجمه پاشا شریفی و نیکخو ،1386).
به طور معمول عملکرد اجرایی با آزمون کلمه و رنگ استروپ (گلدن،1987) و آزمون جور کردن کارت های ویسکانسین (گرانت وبرگ،1993 )موردسنجش قرار می گیرند هبن، میلبرگ (2002، ترجمه حق شناس، 1387).
در واقع هدف از تحقیق ، بررسی عملکرد اجرایی بیماران مبتلا به اسکیزوفرنیا بدون علائم روانپریشی، افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار به وسیله دو آزمون رنگ وکلمه استروپ وآزمون جور کردن کارت های ویسکانسین می باشد.
1-2- بیان مسئله
اسکیزوفرنی(روانگسیختگی) سندرمی بالینی شامل اسیب شناسی روانی متغییر اما عمیقاً ویرانگر است که شناخت، هیجان، ادراک و سایر جنبه های رفتار را دربرمی گیرد. شیوع مادام العمر اسکیزو فرنی در ایالات متحده 1 درصد است، به این معنا که از هر 100 نفر، تقریباً یک نفر به اسکیزوفرن مبتلا خواهد شدو همچنین شواهد قابل ملاحظه ای از مطالعات پسامرگی مغز بیماران وجود دارد که مؤید نابهنجارهای آناتومیک قشر جلوی پیشانی در بیماران اسکیزوفرنی است و تخمین زده می شود که عوامل فرهنگی و اقتصادی اجتماعی زیان های مالی ناشی از اسکیزوفرنی در ایالات متحده، از مجموع خسارات ناشی از تمام سرطان ها نیز بیشتر است کاپلان وسادوک (2007،ترجمه رضاعی،1390)
طبق متن بازبینی شده چاپ چهارم (DSM-IV-TR)، اختلال افسردگی اساسی بدون سابقه ای از اختلال مانیا، مختلط، یا هیپومانیا رخ می دهد. دوره ی افسردگی اساسی باید حداقل دو هفته طول بکشد و همچنین دارای چهار علامت از فهرستی شامل تغییرات اشتها و وزن، تغییرات خواب و فعالیت، فقدان انرژی، احساس گناه، مشکل در تفکر و تصمیم گیری، و افکار عود کننده مرگ یا خود کشی را هم داشته باشد. اختلال افسردگی در بین اختلالات روان پزشکی بالاترین شیوع (17درصد) را داشته است (همان منبع).
باتوجه به شیوع بالای افسردگی اساسی و همچنین مشکلات و زیانهای مالی اسکیزوفرنی این تحقیق مفید می باشد، همچنین تحقیق در زمینه ی مقایسه عملکرد های اجرایی در بیماران مبتلا به اسکیزو فرنیا، افسردگی اساسی بدون روان پریشی و افراد بهنجار به وسیله کارتهای ویسکانسین تاکنون صورت گرفته است اما تحقیقی که عملکرد های اجرایی این گروها را با آزمون کلمه و رنگ استروپ بسنجد تا کنون صورت نگرفته است از این رو تحقیق حاضر در همین راستا تحت عنوان مقایسه عملکرد های اجرایی بیماران مبتلا به اسکیزوفرنیا بدون علائم روان پریشی، افسردگی اساسی بدون علائم روان پریشی و افراد بهنجار می باشد.
1-3- تعریف مفاهیم
1-3-1 اسکیزوفرنی
اسکیزوفرنی (روانگسیختگی) سندرمی بالینی شامل اسیب شناسی روانی متغیر اما عمیقا ویرانگر است که شناخت، هیجان، ادراک و سایر جنبه هایی رفتار را درگیر میکند بروز این تظاهرات در افراد مختلف و در طول زمان متفاوت است اما تاثیر بیماری همواره شدید ومعمولا دیرپا است.
کاپلان و سادوک (2007،ترجمه رضاعی،1390).
1-3-2 افسردگی اساسی
افسردگی در اصطلاح بسیار وسیع و تا حدودی مبهم است. برای فرد عادی حالتی مشخص با غمگینی گرفتگی و بی حوصلگی ، وبرای پزشک گروه وسیعی از اختلالات خلقی با زیر شاخه های متعدد را تداعی می کند (پورافکاری، 1386 ).
1-3-3علایم روانپریشی
روانپریش اصطلاحی پوششی برای تعدادی از اختلالات روانی شدید چه با منبع عضوی وچه هیجانی. در روانپزشکی معاصر ویژگی تعیین کننده این گروه از اختلالات در واقعیت سنجی است یعنی بیمار از واقعیات برونی استنباط های نادرست به عمل می آورد و در افکار وادراکات واحساسات خود علیرغم وجود قرائن مخالف دچار اختلال می گردد .علائم کلاسیک این اختلال شامل توهمات، هذیان ها، رفتار قهقرایی بارز، خلق نامتناسب وتکلم بی ربط می باشد (پورافکاری، 1386).
1-3-4 عملکرد اجرایی
لزاک ( 1995) در تعریف عملکرد اجرایی گفته است : عملکرد اجرایی مستلزم توانایی شخص در نظم دهی و هدایت رفتار خود است .این کارکردها را می توان به بخش های فرعی شامل نیت و اراده، برنامه ریزی، اقدام هدفمند و عملکرد موثر تقسیم کرد (به نقل پاشا شریفی، 1378).
1-4- تعریف عملیاتی
در پژوهش حاضر داده های اندازه گیری از انعطاف پذیری شناختی،، مقاومت در برابر تداخل محرکهای بیرونی، و توانایی باز داری کردن یک پاسخ کلامی غالب یا مسلط بیماران اسکیزو فرنی وافسردگی اساسی و همچنین افراد بهنجار به وسیله آزمون رنگ و کلمه استروپ بدست می آید و همچنین داده های اندازه گیری شده از استدلال انتزاعی، مفهوم سازی، و پاسخ دهی تکراری از طریق آزمون جور کردن کارتها ویسکانسین بدست میآید.
1-5-اهمیت تحقیق:
همانگونه که ذکر شد با توجه به شیوع بالای افسردگی و زیانهای مالی بیماری اسکیزوفرنیا و همچنین وجود مشکلات زیادی در زندگی این بیماران و خانواده های آنها کاپلان و سادوک (2007، ترجمه رضاعی،1387) این تحقیق می تواند کمکی ناچیز در جهت شناخت این بیماریها و رفع مشکلات بوجود آمده باشد. تحقیقات حاکی از نقایص در عملکردهای اجرایی بیماران اسکیزوفرن بوده است (هیرش-استون، واینبرگر، 1997،کلان و کنن 2000 و استراتا و دانیلو، 2000).
عملکردهای اجرایی به عنوان فرآیندهای پیچیده ای تعریف میشود که در حل مسایل جدید به کار می رود(گراث-مارنات،2000). با توجه به نقش مهم عملکردهای اجرایی لذا بررسی این موضوع ضروری به نظر می رسد که می تواند شواهدی از مشکلات و تفاوت های این بیماران را با افراد عادی و همچنین تفاوت بیماران اسکیزوفرن با افسرده اساسی بیان کند.
1-6- اهداف تحقیق:
1-6-1- اهداف علمی
هدف از پژوهش حاضر مقایسه عملکردهای اجرایی بیماران اسکیزوفرنیا بدون علائم روانپزشکی، افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار می باشد.
1-6-2- اهداف کاربردی:
از جنبه کاربردهای عملی یافته های این پژوهش، می توان به اطلاعات مهمی که برای خانواده ها، روانشناسان، مشاوران ومراجعه قانونی در جهت شناسایی علل و رشد ناسازگاری بیماران اسکیزوفرن و افسردگی اساسی فراهم می سازد، اشاره کرد. به این صورت که خانواده با تجدید نظر کردن در رفتارهای ناسازگارانه این بیماران و شناخت بیشتر مشکلاتشان و همچنین با پذیرفتن آنها در جهت درک افکار، عقاید و احساسات این بیماران باعث فراهم ساختن محیطی حمایت کننده که منجر می شود به سلامت جسمی، روانی، اجتماعی این بیماران شوند، همچنین نتایج این پژوهش برای روانشناسان و مشاوران می تواند سودمند واقع شود به این صورت که با بهره گیری از نتایج چنین پژوهش های در زمینه مشاوره و درمان مشکلات خانواده ها که بدلیل مشکلات سازگاری بیماران خود مراجعه می کند و همچنین با در نظرگرفتن پیامدهای نقایص این بیماران به مراجعان خود چه در زمینه مشاوره ازدواج و چه در زمینه مشاوره خانواده جهت پذیرش مشکلات شناختی و حمایت کردن بیشتر این افراد و معرفی راه حل هایی مفید جهت برخورد با این بیماران توجه بیشتری نمایند. و در نهایت یافته های تحقیق حاضر می تواند در مراجع قانونی باارزش باشد از آن جهت که این بیماران به دلیل نقیصه های شناختی مورد سوء استفاده اطرافیان قرار می گیرند.

فصل دوم
پیشینه پژوهش
2087880197866000
2-1 اسکیزو فرنیا
اختلال اسکیزوفرنیا اختلالی است که حداقل شش ماه به طول می انجامد و شامل یک ماه علائم مرحله فعال یعنی دو یا چند مورد از علائم هذیان ها، توهمات، تکلمم آشفته، رفتار کاتاتونیک یا آشفته آشکار یا علائم منفی می باشد. شیوع این اختلال یک درصد جمعیت عمومی و احتمال بروز آن بیش از همه در سنین 16 الی 25 سالگی وجود دارد. شیوع این اختلال در مرد و زن برابر است، هر چند که سیر بیماری در مردان و زنان تفاوت دارد. این اختلال در همه فرهنگها و طبقات مشاهده می شود، هر چند بنا بر نظر بعضی محققان در طبقه اجتماعی- اقتصادی پایین از فراوانی بیشتری برخوردار است (کاپلان، 2002).
نشانه های شاخص اسکیزو فرینا در برگیرنده گسترده ای ازکژ کاری های شناختی و هیجانی است که شامل کژکاری ادراکی، تفکر استنتاجی، زبان و ارتباطات، بازنگر رفتاری، عاطفه، سیالی و بارآوری تفکر و گفتار، قابلیت لذت بردن، اراده و انگیزه، و توجه است. در اسکیز و فرینا یک نشانه تنها که شاخص این بیماری باشد وجود ندارد، بلکه این تشخیص مستلزم شناسایی مجموعه ای از علائم و نشانه هایی است که با اختلال در کارکردهای شغلی یا اجتماعی همراه باشد (انجمن روانپزشکی امریکا، 2000).
از نظر DSM-IV-TR ملاکهای تشخیصی برای اسکیزوفرنی به شرح زیر می باشد:
الف) حداقل دوتا ازعلائم زیر در طی یک دوره یک ماه وجود داشته باشد (یا در صورت درمان موفق کمتر)
1) هذیان
2) توهم
3) تکلم نابسامان
4) علائم منفی یعنی تخت شدگی حالات عاطفی ،ناگویی،یا بی ارادگی .
ب) کژکاری شغلی واجتماعی: از زمان شروع اختلال به مدت قابل توجهی ،حداقل یکی از حوزه های اصلی کارکرد از قبیل شغل، روابط بین فردی، یا مراقبت از خود کاهش یابد.
پ) مدت : نشانه اختلال به مدت حداقل شش ماه ادامه داشته باشد
ت) رد کردن اختلال اسکیزو افکتیو و اختلال خلقی
ث) رد کردن سوء مصرف مواد و بیماری طبی عمومی
ج) ارتباط با اختلال نافذ رشد : در صورتی که حداقل یک ماه هذیان و توهم برجسته وجود داشته باشد کاپلان و سادوک (2007، ترجمه رضاعی،1390).
2-2- افسردگی اساسی MDD
اختلال افسردگی اساسی (که افسردگی یک قطبی نیز نامیده می شود.) بدون سابقه ای از دوره های مانیا، مختلط، یا هیپومانی رخ می دهد. دوره افسردگی اساسی باید حداقل دو هفته طول بکشد و بیماری که دچار دورۀ افسردگی اساسی تشخیص داده می شود. باید لااقل چهار علامت از فهرستی شامل تغییر اشتها و وزن، تغییرات خواب و فعالیت، فقدان انرژی، احساس گناه، مشکل در تفکر و تصمیم گیری، و افکار محدود کنندۀ مرگ یا خودکشی هم داشته باشد. این اختلال بالاترین شیوع طول عمر (حدود17 درصد) را داشته است. میزان بروز سالیانه افسردگی اساسی 59/1 درصد (زنان 89/1 درصد)و مردان 1/1 درصد است کاپلان و سادوک (2007 ، ترجمه رضاعی، 1387).
تقریباً در سراسر جهان و در همه کشورها و فرهنگها دیده شده که شیوع این اختلال در زنان دو برابر مردان است. طبق فرضیات دلایل این تفاوت عبارت است از تفاوتهای هورمونی، اثرات زایمان، تفاوت فشار روانی- اجتماعی زنان و مردان، الگوهای رفتاری مربوط درماندگی آموخته شده.
متوسط سن شروع اختلال افسردگی اساسی حدود چهل سالگی است و حدود 50 درصد از کل این افراد بیماریشان در سنین بیست تا پنجاه سالگی شروع می شود. این اختلال نیز ممکن است در کودکی یا پیری شروع شود. اختلال افسردگی اساسی بیشتر در افرادی پیدا می شود که هیچ ارتباط بین فردی نزدیکی ندارند و یا طلاق گرفته یا متارکه کرده اند (همان منبع).
همچنین هیچ ارتباطی بین وضعیت اجتماعی- اقتصادی افراد و اختلال افسردگی اساسی پیدا نشده است (همان منبع).
از نظر DSM-IV-TR ملاکهای تشخیصی برای افسردگی اساسی به شرح زیر می باشد:
حداقل پنچ تا از علائم زیر همزمان در یک دوره دو هفته ای وجود داشته باشد و نشانه تغییر در کار کرد قبلی باشد:
1) خلق افسرده در اکثر اوقات روز و تقریبا همه روزها
2) کاهش علاقمندی ولذت بردن از همه یا تقریبا همه فعالیت ها
3) کاهش وزن (بدون اجرای رژیم خاصی)
4) کم خوابی یا پر خوابی به طور تقریبا همه روزه
5) سراسیمگی یا کندی روانی حرکتی در تقریبا همه روز ها
6) احساس خستگی یا از دست دادن انرژی تقریبا همه روز ها
7) احساس بی ارزشی با احساس گناه مفرط یا نامتناسب (حتی ممکن است هذیانی باشد)
8) کاهش قدرت تفکر یا تمرکز ،یا احساس بلاتصمیمی ،تقریبا همه روزها
9) افکار عود کننده ای درباره مرگ (نه فقط ترس از مردن ) کاپلان وسادوک(2007، ترجمه رضاعی،1390).
2-3 عملکرد اجرایی
عملکرد اجرایی اصطلاحی کلی است که به تمام فرایندهای شناختی سطح بالا که در هدایت و کنترل رفتار نقش ایفا می کنند، اطلاق می شود (هیوز، گراهام، 2000). هرچند در میان پژوهشگران تعرف یکسانی از عملکرد اجرایی وجود ندارد و در تعاریف ارائه شده هر پژوهشگری بر برخی از جنبه های این عملکرد تاکید کرده است (سوچی، 2009).
به طور کلی عملکرد اجرایی به عنوان فرآیندهای پیچیده ای تعریف می شود که در حل مسائل جدید به کار می روند. این فرآیند شامل آگاهی از مسأله موجود و ارزیابی آن، تحلیل شرایط مسأله و فرمول بندی هدف های خاص، ایجاد مجموعه ای از طرح ها و نقشه ها به منظور مشخص کردن اعمال مورد نیاز برای مسأله، ارزیابی میزان تأثیر بالقوه نتایج بدست آمده، انتخاب و شروع طرح مورد نیاز برای حل مسأله، ارزیابی پیشرفت در جریان حل مسأله و تغییر طرح در صورت مؤثر نبودن، عدم توجه به طرح های غیر مؤثر و تغییر در جهت اجرایی طرح های مؤثرتر، مقایسه نتایج بدست آمده با نتایج قبلی (در صورتی که از طرح جدیدی متناسب با موقعیت مسأله استفاده شده باشد).
اتمام طرح هنگامی که نتایج حاصل رضایت بخش است و در نهایت حفظ طرح و بازیابی آن برای مواجهه با همان مسأله یا مسأله ای مشابه در آینده می باشد گراث- هارنات (2003 ، ترجمه پاشا شریفی و نیکخو،1386).
و همچنین لزاک، مفهوم عملکردهای اجرایی را در چهار مؤلفه اراده، طراحی رفتار، اعمال هدف مدار و عملکرد مؤثر بیان کرده است (لزاک، 1995).
عملکردهای اجرایی به عنوان واسطه میان مدارهای پیچیده عصبی شناخته شدند که ارتباط میان مناطق لب پیشانی را با سایر نواحی مغزی برقرار می کنند (باکستر، ساکسن، بردی، اکرمن، اسشوارز و همکاران، 1997؛ لومباردی، اندرسون، سروکو، ریو، 1999؛ ماهن و کوتچ، 2001؛ کولت و وندرلیندن، 2002؛ میلر و کامینگز، 2007؛ بوکرا، کلادیک، جراک، هالامک، رکتور، 2007؛ سوچی، 2009).
تمام لوب پیشانی و به طور اختصاصی ناحیه پیش پیشانی پشتی- جانبی و کورتکس کمربندی قدامی برای تکالیف اجرایی از قبیل انتزاع و حل مسأله، راهبردهای جابه جایی، بازداری پاسخ ناکارآمد و انعطاف پذیری تفکرضروری هستند (کاوالارو، کاوادینا، میسترتو، باسی، 2003 و پالمر و هتون، 2000) به شکل 2-1 توجه کنید.

شکل 2-1تصویر لوب پیشانی جایگاه ضروری در عملکرد اجرایی
نقیصه های اجرایی در بیشتر موارد با آسیب منطقه پیشانی رابطه دارد، ضایعه کرتکس زیرقشری به ویژه ناحیه تالاموس یا ضایعه پراکنده ناشی از فقدان اکسیژن یا اثر حلالی های آلی نیز ممکن است اختلال اجرایی را سبب شود گراث- هارنات (2003 ، ترجمه پاشا شریفی و نیکخو، 1386).
راهبردهای سنجش کارکردهای اجرایی از راه ترکیب های مختلفی از مصاحبه، مشاهده رفتار و آزمون بالینی کوتاه و غیررسمی انجام می گیرد (همان منبع).
گلدبرگ (به نقل از گرانت، 1998) نارساییهایی حافظه و عملکردهای اجرایی در فرونتال را بارزتر از سایر نارسایی شناختی دانست. سایکین و همگان (به نقل از لیبرمن، موری 2001) یک مجموعه از آزمون شناختی را بر روی 37 بیمار مبتلا به نخستین حمله اسکیز و فرنیا، 65 بیمار مبتلا به اسکیزو فرنیا مزمن و 131 فرد عادی اجرا کردند و دریافتند در هر دو گروه بیمار مبتلا به اسکیز و فرینا عملکرد اجرایی به طور برجسته ضعیف تر از افراد مبتلا به نخستین حمله اسکیز و فرینا بود (هیرش- استون، و اینبرگر، 1997).
از آنجا که دامنه عملکردهای اجرایی وسیع بود امکان ایجاد آزمون واحدی برای اندازه گیری همه آنها وجود نداشت و از این رو برای بررسی آنها آزمون های مختلفی طراحی شد، از متداول ترین آزمون عصب روانشناختی مورد استفاده برای سنجش عملکردهای اجرایی می توان آزمون کلمه و رنگ استروپ (کافمن، کوپل استاتر، دلازر، سایس دنتاپ و همکاران، 2005) و آزمون ویسکانسین (کاتافا، پارلاد، لومنا، برناردو، و همکاران، 1998؛ نگهاما، اکادا، کاتسومی، یاموچی و همکاران، 2001؛ پرنیز، مائستو، بارسلو، فرنانز و همکاران، 2004) اشاره کرد.
2-4- آزمون جور کردن کارتهای ویسکا نسین WCST
(گرانت و برگ، 1993) برای اندازه گیری استدلال انتزاعی، مفهوم سازی، و پاسخ دهی تکراری در افراد سنین 5/6 تا 89 ساله به کار می رود. در این تکلیف از بیمار خواسته می شود که کارت های که به او ارائه می شود بر اساس یکی از سه اصل مربوط به عضویت، دسته بندی کند. مقیاس های بدست آمده از این آزمون به قرار زیر می باشد: طبقه بندی های انجام شده، پاسخ های تکراری، خطاهای تکراری، خطاهای غیرتکراری، ناکامی در نگهداری آمایه و کفایت یادگیری هبن، میلبرگ (2002، ترجمه حق شناس، 1385).
عملکرد اجرایی را می توان به وسیله آزمون جور کردن کارت های ویسکانسین سنجید. این آزمون شامل دو بعد تغییرپذیری است: تغییر بعد درونی که شامل تغییر پاسخ به بعد مشابه محرک است (برای مثال، انتخاب دایره به جای مربع) و تغییر بعد بیرونی، که در این صورت آزمودنی باید در جهت بعد متفاوت محرک ارایه شده تغییر کند. (برای مثال، انتخاب بر مبنای رنگ وقتی که ملاک طبقه بندی قبلی شکل بوده). در اصل، تغییر بعد بیرونی مؤلفه هسته ای آزمون جور کردن کارت های ویسکانسین است و با توانایی آزمودنی در مورد آگاهی از مفهوم طبقه بندی در هر مرحله مرتبط است. تغییر موفقیت آمیز بعد درونی، به تصمیم یادگیری یا توانایی یادگیری مجموعه نیاز دارد. شکل دیگری از این آزمون بعد درونی- بیرونی است که به بررسی این موضوع می پردازد که عملکرد ضعیف به ایجاد خطای در جا ماندگی منجر می شود (یعنی امتداد پاسخ نامناسب در بعد تقویت شده قبلی) یا به یادگیری نامتناسب (یعنی نادیده گرفتن پاسخ غلط قبلی). مطالعات نشان داده اند که این آزمون ها بیماران مبتلا به آسیب کانونی در لوب پیشیانی و هسته های قاعده ای، نقایصی را نشان می دهند. به علاوه، در حالی که بیماران مبتلا به آسیب موضعی پیشانی خطای درجاماندگی نشان می دهند، افراد مبتلا به بیماری پارکینسون یادگیری مناسب ندارند و قادر به یادگیری اساس طبقه بندی ها نیستند. (اوون، روبینز، هادگز، سامرز، 1993).
مطالعات مربوط به جریان خون منطقه ای مغز (RCBF) با استفاده از توموگرافی گسیل پوزیترون (Spect-PET) نشان داده است که اختلال در پاسخگویی به آزمون ویسکانسین با اختلال عملکرد لوب فرونتال رابطه دارد. در تعدادی از بیماران اسکیز و فرن اختلال عملکرد لوب فرونتال مشاهده شده است. (استراتا و دانیلو، 2000).
در این بیماران ضمن اجرای آزمون ویسکانسین افزایش جریان خون در ناحیه دورسوترال پروفرونتال مشاهده نشد (گرین و ساترز، 1992).
2-5- آزمون کلمه و رنگ استروپ
آزمون کلمه و رنگ استروپ به عنوان یکی از قدیمی ترین و کارآمدترین ابزارها به مطالعه فشار روانی می پردازد. این آزمون به نام روانشناسی که این تست را به صورت استروپ رنگی آن ابداع کرد یعنی جان راندلی استروپ نام گذاری شد (کلین مک لاروو پنی مک دونالدT 2000).
در سال 1935 جان رایدلی استروپ تز دکتری خویش را به این پدیده اختصاص داد و به دنبال پژوهشهای جالب توجه او، موضوع فوق به نام وی به «پدیده استروپ» معروف شد (لف را نکویس، 1980).
به طور کلی پدیده استروپ تأثیر محرکهای گوناگون و ابعاد مختلف آنها بر روان انسان مورد توجه قرار داده است هر شی ابعاد مختلف دارد. چنانچه از فردی خواسته شود تا به این ابعاد توجه کند، هم مدت زمان توجه به هر بعد و هم پاسخ وی نسبت به هر یک از ابعاد متفاوت خواهد بود. به هنگام توجه به یک بعد، به نظر می رسد پاره ای از ابعاد دیگر نامربوط پنداشته شده و پاسخی بر نمی انگیزد. به عبارت دیگر در توجه به ابعادگوناگون محرکها، تمایز و تفکیکی به عمل میآید. استروپ برای ایجاد استرس در افراد از این خصوصیت ذهن انسان استفاده کرد و این فرض را مورد آزمون قرار داد که اگر فرد به ابعاد مربوط به اشیاء پاسخ دهد، احتمالاً زمان کمتری صرف پاسخدهی خواهد کرد تا هنگامی که به ابعاد نامربوط پاسخ می دهد. استروپ از آزمودنی ها خواست تا به ابعاد طبیعی پدیده ها توجه نکنند و به ابعاد غیر طبیعی آنها پاسخ دهند و از آنجا که گرایش ذهنی و روانی انسان در درجه نخست متوجه ابعاد طبیعی و مربوط پدیده هاست. لذا تلاش آزمودنی ها توجه به ابعاد غیر طبیعی و نامربوط اشیاء در آنها تعارض و استرس ایجاد می کند (پاپالیا و اولدز ، 1985).
آزمون کلمه و رنگ استروپ در سال 1935 توسط رایدلی استروپ برای ارزیابی توجه اختصاصی و انعطاف پذیری شناختی ابداع شد که یکی از یافته های مشهور در روانشناسی شناختی می باشد که به صورت گسترده ای استفاده می شود. از آن زمان به بعد انواع متفاوتی از این آزمون ساخته شده است. از جمله آزمون دودریل در سال 1978، آزمون گلدن در سال 1978 و نوع گراف در سال 1995. تعداد کارتهای مورد استفاده در هر یک از این آزمونها با هم فرق میکند (نریمانی، 1390).
در واقع آزمون کلمه و رنگ استروپ یک آزمون واحد نیست بلکه تاکنون شکلهای مختلفی از آن جهت اهداف پژوهشی تهیه شده است (مشهدی، 1390) از جمله فرآیندهای شناختی که بیشتر در اجرای آزمون کلمه و رنگ استروپ مورد توجه می باشد، توجه انتخابی و بازداری می باشد (کاپولا، بونت، بورتیر، دمول، فاول، 2010).
2-6 نتایجی از عوامل مؤثر بر آزمونهای جور کردن کارت های ویسکانسین و کلمه و رنگ استروپ
2-6-1- جنس
مطالعاتی نشان داده است که احتمالاً عملکرد دختران در آزمون کلمه و رنگ استروب بهتر از پسران است. دختران در اجرای آزمون کلمه و رنگ استروب خطای کمتر و سرعت بیشتری دارند (داش و داش، 1982). این دو محقق تفاوت را توجه و علاقه بیشتر دختران به رنگها و « بعد رنگی» پدیده ها می دانند.
البته برخی از محققان معتقدند که بین عملکرد زنان و مردان در آزمون کلمه و رنگ استروپ تفاوت معنی داری مشهود نیست (کانور، فراتزن، مایکل، شارپ، 1988).
در پژوهشی توسط طوفانی و بهدانی در سال 1381 که به مقایسه نتایج آزمون ویسکانسین در بیماران اسکیزوفرن مبتلا و غیر مبتلا به حرکت پریشی دیررس انجام دادن به نتیجه رسیدن که جنس بیماران اسکیزوفرن مبتلا و غیرمبتلا به دیسکنزی دیررس تأثیری بر معیارهای مورد ارزیابی نداشت.
2-6-2- سن و تحصیلات
داش و داش (1982) بیان کردن که ظاهراً پدیده استروپ از سن 8 سالگی به بعد روی می دهد، زیرا این مقطع سنی است که گرایش به خواندن کلمه (اسم رنگ) به عادتی قوی تر از « نام بردن رنگ، نگارش کلمه » تبدیل می شود.
مک لیوود (1991) اعتقاد دارند که به موازات رشد و پیشرفت مهارت خوانده، زمان واکنش به مرور زمان کاهش یافته و سرانجام در سن 60 سالگی مجدداً رو به افزایش می گذارد.
همچنین تحقیقات گوناگون نشان داده است که افراد بیسواد در اجرای آزمون کلمه و رنگ استروب کمتر دچارخطا میشوند زیرا آنها کلماتی (اسامی رنگها) را نمیخوانند و لذا از نظر مفهوم دچار مشکل نمی‌شوند (کاستلو،1970؛ آبرامسکی، جردن و هگل، 1983). در تحقیقی که طوفانی و بهدانی (1381) نیز سن بیماران اسکیزوفرن مبتلا و غیرمبتلا به ردیسکنزی دیررس تأثیری بر معیارهای گروه مورد مطالعه با افزایش سطح سواد نمونه ها، تعداد طبقات تکمیل شده افزایش می یابد. ولی سطح سواد تأثیری بر خطای درجاماندگی مجموع خطاها نداشت.

2-6-3- هوش
در تحقیقی که توسط پورآقاروده برده و همکاران در سال 1391 انجام شد به بررسی مقایسه درجاماندگی عملکردی و انعطاف پذیری ذهنی در کودکان مبتلا به اختلال طیف اوتیسم و کم توان ذهنی و عادی پرداختند که از هر گروه 15 نفر به صورت نمونه گیری در دسترس بین سن 7 تا 15 سال انتخاب شدند و با آزمون ویسکانسین ارزیابی شدند نتایج نشان داد که این فرضیه که عامل هوشبهر نقش مؤثری در کنش اجرایی دارد را قوی تر می کند.
در تحقیقی توسط رحیمی در سال 2011 بر روی بیماران اسکیزوفرنیا با علائم مثبت و علائم منفی، افسرده اساسی و افراد عادی از طریق آزمون ویسکانسین و آزمون هوش کلامی پرداختند. نتایج نشان داد عملکرد پایین تر WCST به خاطر پایین بودن IQ در گروه بیماران نبود زیرا اختلاف بین گروه های بیمار و سوژه های سالم معنی دار نبود.
2-7- پیشینه تحقیقات آزمون جور کردن کارتهای ویسکانسین دراسکیزوفرنیا و افسردگی اساسی
همانگونه که ذکر شد عملکرد در آزمون ویسکانسین با عملکرد لوب پیشانی مرتبط است، نابهنجاری در این آزمون می تواند نشان دهند آسیب لوب پیشانی در بیماران اسکیزوفرنیا باشد (گراث، 2000). مطالعات متعددی بدکاری عصب – روانشناختی را در بیماران اسکیزوفرنیا به اثبات رسانده اند که شامل نقایص در انتزاع، کارکرد اجرایی، حافظ کلامی و پژوهش دیگری نشان داد که توانایی های شناختی نظیر انعطاف پذیری شناختی ، حل مسأله، برنامه ریزی و حافظه فعال در بیماران اسکیزو فرنیک در مقایسه با همتایان بهنجار مختل می باشد و آن را به بدکاری قشر پیش پیشانی نسبت می دهند (موریس، 1996).
بیماران مبتلا به اسکیزوفرنی در مقایسه با افراد بهنجار در مجموعه ای از تست های نورو پسکیولوژی و به ویژه آزمون جور کردن کارتها ویسکانسین، عملکرد پایین تری دارند و خطای درجاماندگی بیشتری نشان داده اند. این امر نشان دهنده یک نقص عمومی در پردازش اطلاعات و عملکرد شناختی بیماران اسکیزوفرنیا می باشد. (لونن، 1996 و جاسمن، 2006).
از سوی دیگر عملکرد نابهنجار در این آزمون با استعداد روانپریشی، وجود توهم و هذیان به عنوان علایم مثبت در اختلال اسکیزوفرنیا (کاپلان، 2000) رابطه دارد و بیماران اسکیزوفرنیا در مقایسه با دیگر اختلالات روانی بدون سایکوز عملکرد ضعیف تری دارند (نلسون، سَکس، استراکویسکی، 1998).
در پژوهشی توسط مورتیز و همکاران به بررسی این نکته پرداختند که آیا بیماران افسرده اسکیزوفرینا و وسواسی-جبری نیمرخ های مشخصی را در آزمون های که به علمکرد لوب پیشانی حساس هستند نشان می دهند یا خیر، چند نتایج نشان داده که بین سه گروه در عملکردشان تفاوت وجود دارد و بیماران اسکیزوفرنیا نسبت به دو گروه دیگر نابهنجاری های بیشتری نشان داده اند. آنها در آزمون دسته بندی کارت های ویسکانسین خطاهای درجا ماندگی بیشتری نسبت به دو گروه دیگر داشتند (موریتز، بیرکنر، کلوس، جان، هند، 2002).
داودی و همکاران پژوهشی در سال 1390 انجام دادن جهت مقایسه عملکرد اجرای بیماران مبتلا به اسکیزوفرنیا و افسردگی اساسی بدون رانپریشی و افراد بهنجار در شهر تهران. در این پژوهش 28 بیمار اسکیزوفرنیک (16مرد، 12زن) و 28 بیمار افسرده بدون روانپریشی (16مرد، 12زن) و 28 آزمودنی بهنجار (16مرد، 12زن) به روش نمونه گیری در دسترس انتخاب شدند با دامنه سنی 19 تا 50 سال که از لحاظ مدت زمان بستری تطابق داده شده بودند ملاک انتخاب بیماران در دو گروه به تشخیص روانپزشک و انجام مصاحبه بالینی ساختار یافته بر اساس معیار DSM-TV (SCID-I) توسط روانشناس بالینی بود، علاوه بر این معیار دیگری مانند نداشتن تشخیص همزمان اختلال مصرف مواد، الکل، نداشتن صرع، اختلال بیش فعالی و نقص توجه، آسیب مغزی، عقب ماندگی ذهنی، دمانس و در نهایت حداکثر مدت بستری دو سال نیز در انتخاب آزمودنی ها مورد نظر قرار گرفت. برای اندازه گیری عملکرد اجرایی، از آزمون دسته بندی کارت های ویسکانسین استفاده شد و نتایج نشان داد که میانگین خطای درجا ماندگی و خطای خاص در دو گروه بالینی (افسردگی اساسی بدون روانپریشی و اسکیزوفرنیا) به مراتب بیشتر از گروه بهنجار بوده است. عملکرد اجرای بیماران اسکیزوفرینا نسبت به افراد بهنجار در این آزمون به طور معنی داری ضعیف تر می باشد به این صورت که خطاهای درجاماندگی بیشتری را مرتکب شدند و به تعداد طبقات صحیح کمتری دست یافتند. آسیب عملکرد شناختی در اختلال اسکیزوفرینا به ویژه در کارکردهای اجرایی در تحقیقات بسیاری تأیید شده است (لونن 2000، مورتیز، 2002).
همچنین در این تحقیق نتایج نشان داد که بیماران افسرده اساسی بدون روانپریشی به طور معنی داری خطای درجاماندگی بیشتری نسبت به افراد بهنجار دارند ولی در متغیر تعداد طبقات بین دو گروه تفاوت معنی دار وجود نداشت که این تحقیق با تحقیقات (مورتیز، 2002 و فوستایی، 1999) همخوانی داشته است.
رحیمی و همکاران در پژوهشی که در سال 2011 انجام دادن فواید آزمون جور کردن کارتهای ویسکانسین در تشخیص افتراقی اختلالات ادراکی در بیماران روانی و افراد سالم در ایران پرداختند. جهت بررسی این موضوع 25 بیمار اسکیزو فرنی با علائم مثبت، 25 اسکیز و فرنی با علائم منفی، 25 افسرده اساسی و 25 فرد بهنجار به شیوه نمونه گیری در دسترس انتخاب شدند و همه گروه ها به طور جداگانه با آزمون ویسکانسین مورد آزمون قرار گرفتند. نتایج نشان داد که تمام گروههای بیمار در این آزمون عملکرد برتری از افراد سالم داشتند اگرچه اختلاف بین گروههای بیمار معنیدار نبود. آنها به این نتیجه رسیدندکه آزمون ویسکانسین میتواند بیماران روانی با اختلاف ادراکی را از افراد سالم تشخیص دهد اما نمیتواند به روشنی بیماران اسکیزوفرنی با علائم منفی را از بیماران با علائم مثبت و افسرده بازشناسی کند و همچنین این ایده را تأیید کردند که نواحی مختلف لب پیشانی می تواند در افراد مبتلا به اسکیزوفرنی و افسردگی اساسی تحت تأثیر قرار گیرد و شدت علائم بالینی می تواند نتیجه آزمون را تغییر دهد.
در تحقیقی که توسط برکوسکا، دروزد، جرکویسکی، ریباکسکی در سال 2009 انجام شد به بررسی عملکرد شناختی بیماران غیر افسرده با مشکلات شناختی خفیف (MCI)، بیماران افسرده شدید و افراد بهنجار پرداختند که از هر گروه 30 نفر انتخاب شد و مورد ارزیابی با تست ویسکانسین قرار گرفتند. نتایج نشان داد که بیماران MCI نتایج بدتری نسبت به بیماران افسرده شدید داشتند و نیز بیماران افسرده شدید نتایج بدتری نسبت به افراد سالم نشان دادند.
2-8- پیشینه تحقیقات آزمون کلمه و رنگ استروپ در اسکیزوفرنیا و افسردگی اساسی
مشاهدات بالینی نشان دادند که افراد اسکیزو فرن به دلیل عدم توانایی در تمیز بین واقعیت خارجی و جنبه های درون ذهنی خویش، در این آزمون دچار اشتباهات عدیده ای می شوند. همچنین افراد افسرده به دلیل طولانی بودن زمان واکنش آنان در اجرای آزمون کلمه و رنگ استروپ با مشکلاتی مواجه می شوند. در مورد افسرده ها، مشکل بویژه زمانی افزایش می یابد که به جای اسامی رنگها، از واژه هایی استفاده می شود که دارای بار عاطفی مرتبط به غم و غصه باشند (نجاریان، براتی سده، 1372).
پژوهشی توسط منوچهر قرائی پور و همکاران در سال 1385 انجام شد در این تحقیق کارکردهای عصب- روانشناختی در اقدام کنندگان به خودکشی قبلاً به اختلال افسردگی اساسی غیرسایکوتیک دارای اقدام به خودکشی و پانزده آزمودنی بهنجار به شیوه نمونه گیری در دسترس انتخاب شدند و از نظر کارکرد عصب-روانشناختی مورد مقایسه قرار گرفتند و به این نتیجه رسیدند که تمامی بیماران افسرده در کارکرد عصب روانشناختی مورد سنجش نسبت به آزمودنی های سالم به طور معنی داری ضعیف تر عمل کردند که این یافته با یافته های (لاندرو، استیلز و اسلتولد، 2001) همسو می باشد.
در پژوهشی دیگر توسط سلیمانی که در سال 1387 انجام شد به مقایسه بیماران اسکیزفرینا و افسردگی دو قطبی و گروه بهنجار از طریق آزمون کلمه و رنگ استروپ پرداختند و به این نتیجه رسیدند که آنها در هر سه حالت هماهنگ، ناهماهنگ، خنثی، عملکرد هر دو گروه از بیماران با افراد عادی تفاوت وجود دارد.
بارچ، کوهن و کتر پژوهشی در سال 2004 انجام دادن و به بررسی عوامل مؤثر بر عملکرد استروپ در اسکیزو فرنی پرداختند جهت بررسی این موضوع 29 شخص مبتلا به اسکیزوفرنی و 29 شخص غیر بیمار انتخاب شدند و به وسیلۀ آزمون کلمه و رنگ استروپ به بررسی رابطه بین خطاها و زمان واکنش (RT) روی فعالیت استروپ بین افراد مبتلا به اسکیزوفرنی پرداختند. نتایج نشان داد که افزایش نیافتن RT بین بیماران (در مقایسه با افراد غیربیمار) ناشی از افزایش تعداد خطاهایی که آنها در شرایط ناهمسان ایجاد می کنند نیست بلکه از تأثیر بیشتر کلمه خنثی در شرایط خنثی نیز اثر می پذیرند.
هامر، دیدگارد، سورنسن، آردال و همکاران در سال 2010 به بررسی اختلال مداوم عملکرد شناختی در بیماران افسرده اساسی به وسیله آزمون کلمه و رنگ استروپ پرداختند.گروه های شامل 19 بیمار افسرده اساسی با نمره بیش از 18 در تست همیلتون و گروه شاهد که از نظر سن،جنس و میزان تحصیلات با گروه قبلی همتا سازی شدند، بود. این آزمون در دو مرحله صورت گرفت و آزمودنی ها در هنگام ورود به تحقیق با تست افسردگی همیلتون با نمره بیش از 18 ملاک گذاری شدند بعد از 6 ماه وقتی علایم کاهش یافت با آزمون رنگ و کلمه استروپ مورد آزمون قرار گرفتند نتایج نشان داد که بیماران در مقایسه با گروه شاهد در رابطه با فعالیت کارت کلمه رنگی در هر دو مورد آزمون اختلال نشان می دادند بنابراین در بیماران افسرده هیچگونه بهبودی در عملکرد اجرایی و توجه به صورت تابعی از کاهش علایم دیده نشد و اختلال پس از 6 ماه با وجود بهبود قابل توجه در افسردگی هنوز ادامه داشت.
2-9-جمع بندی کلی از یافته های پژوهش های انجام شده
مطالعات انجام شده توسط دو آزمون حساس به لوب فرونتال از جمله آزمون کلمه ورنگ استروپ و آزمون جور کردن کارتهای ویسکانسین پرداختیم در این قسمت به جمع بندی یافته های پژهش های انجام شده خواهیم پرداخت.
به طور کلی پژوهش ها نشان دادن که در آزمون جورکردن کارتهای ویسکانسین بیماران اسکیزوفرن و افسردگی اساسی عملکرد ضعیف تری نسبت به افراد بهنجار داشته اند (موتیز و همکاران،2002، داودی و همکاران، 1390، رحیمی و همکاران، 2011، برکوسکا و همکاران، 2009).
موتیز و همکاران در سال 2002 به این نتیجه رسیدن که عملکرد بیماران اسکیزوفرن در آزمون جور کردن کارتهای ویسکانسین عملکرد ضعیفی نسبت به افراد وسواس و افراد بهنجار دارند. همینطور رحیمی وهمکاران در سال2011 به این نتیجه رسیدن که بیماران روانی با اختلالات ادراکی از جمله افسرده اساسی و اسکیزوفرن را می توان با آزمون جور کردن کارتهای ویسکانسین از افراد سالم تشخیص داد اما نمی توان به روشنی بیماران اسکیزوفرنی با علائم مثبت را از بیماران اسکیزوفرن با علائم منفی و افسرده بازشناسی کرد وهمچنین این ایده را تایید کردند که نواحی مختلف لوب پیشانی می تواند در افراد مبتلا به اسکیزوفرنی وافسردگی اساسی تحت تاثیر قرار گیرد و شدت علائم بالینی می تواند نتیجه آزمون را تغییر دهد .داودی و همکاران در سال1390 نیز به این یافته رسیدند که بیماران اسکیزوفرن در مقایسه با افراد افسرده اساسی بدون روانپریشی و آزمودنی های بهنجار در همه متغییرهای آزمون جور کردن ویسکانسین عملکرد ضعیف تری داشتند و به این نتیجه رسیدند که آسیب بیشتر درعملکرد های اجرایی در آزمون جور کردن کارت هایویسکانسینبه طور کلی با روان پریشی مرتبط است.برکوسکا و همکاران در سال 2009 نیز به این یافته رسیدند که افراد غیر افسرده با مشکلات شناختی عملکرد ضعیف تری نسبت به بیماران افسرده شدید و بیماران افسرده شدید عملکرد ضعیف تری نسبت به افراد بهنجار داشتند.
در پژوهشهای که از طریق آزمون کلمه و رنگ استروپ انجام شده به این یافته رسیدند افراد مبتلا به اسکیزوفرن و افسردگی اساسی در عملکردهای اجرایی نسبت به افراد بهنجار اختلال نشان دادند (قرائیپور و همکاران، 1385، سلیمانی، 1387، بارچ و همکاران، 2004، هامر و همکاران،2010). همچنین تحقیقاتی صورت گرفته است که بر عواملی پرداخته شده است که می تواند بر آزمون کلمه و رنگ استروپ و آزمون جور کردن کارت های ویسکانسین موثر باشد، از جمله جنسیت ، سن ، تحصیلات و هوش .که در این پژوهش های ی انجام شده ،یافته های ضد و نقیضی بدست آمده است بنابراین، این تحقیقات با توجه به این بیانیات که عملکرد نابهنجار در آزمون جورکردن کارتهای ویسکانسین با استعداد روانپریشی، وجود توهم و هذیان به عنوان علایم مثبت در اختلال اسکیزوفرنیا (کاپلان، 2000) رابطه دارد و بیماران اسکیزوفرنیا در مقایسه با دیگر اختلالات روانی بدون سایکوز عملکرد ضعیف تری دارند (نلسون و همکاران 1998) و همچنین با توجه به یافتههای داودی و همکاران که به این نتیجه رسیدند که آسیب بیشتر درعملکردهای اجرایی در آزمون جور کردن کارتهای ویسکانسین به طورکلی با روانپریشی مرتبط است، سعی دارد مشخص کندکه عملکرد اجرایی در بیماران بدون علائم روانپریشی چگونه است و از آنجا که تاکنون تحقیقی در زمینه بررسی عملکرد اجرایی بیماران مبتلا به اسکیزوفرنیا بدون علائم روانپریشی، افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار به وسیله دو آزمون رنگ و کلمه استروپ و آزمون دستهبندی کارتهای ویسکانسین صورت نگرفته است بر اساس پیشینه پژوهش و اهداف مذکور فرضیه های زیر تدوین گردیده است.
3-9- فرضیه های تحقیق
1-در جور کردن کارت های ویسکانسین (خطای تداوم) بین عملکرد اجرای بیماران مبتلا به اسکیزوفرنیا بدون علائم روانپریشی، افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار تفاوت معنی داری وجود دارد.
2- در جورکردن کارت های ویسکانسین (خطای کل) بین عملکرد اجرایی بیماران مبتلا به اسکیزوفرنیا بدون علائم روانپریشی، افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار تفاوت معنی داری وجود دارد.
3- در آزمون کلمه و رنگ استروپ (تعداد خطا در فرم ناهمجور) بین عملکرد اجرایی بیماران مبتلا به اسکیزوفرنیا بدون علائم روانپریشی، افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار تفاوت معنی داری وجود دارد.
4- در آزمون کلمه و رنگ استروپ (اثر استروپ ؛ هزارم ثانیه) بین عملکرد اجرایی بیماران مبتلا به اسکیزوفرنیا بدون علائم روانپریشی، افسردگی اساسی بدون علائم روانپریشی و افراد بهنجار تفاوت معناداری وجود دارد.
5- در جور کردن کارت های ویسکانسین (خطای تداوم) بین عملکرد اجرایی زنان و مردان تفاوت معناداری وجود ندارد.
6- در جور کردن کارت های ویسکانسین (خطای کل) بین عملکرد اجرایی زنان و مردان تفاوت معناداری وجود ندارد.
7- در آزمون کلمه و رنگ استروپ (تعداد خطا در فرم ناهمجور) بین عملکرد اجرای زنان و مردان تفاوت معناداری وجود ندارد.
8- در آزمون کلمه و رنگ استروپ (اثر استروپ؛ هزارم ثانیه) بین عملکرد اجرایی زنان و مردان تفاوت معناداری وجود ندارد.
فصل سوم
روش تحقیق
21951953873500
3-1 مقدمه
در این فصل به بررسی چارچوب تحقیق می پردازیم. بدین منظور ابتدا به جامعۀ آماری، گروه نمونه و شیوه نمونه گیری پرداخته می شود و سپس ، ابزارهای مورد استفاده در این پژوهش و شیوه کاربرد آنها به تفصیل توضیح داده می شود. در انتها نیز، به طرح پژوهشی و روش آماری به کار رفته شده در این تحقیق پرداخته می شود.
3-2- نوع روش تحقیق:
پژوهش حاضر از نوع علی- مقایسه ای است و هدف تحقیق مقایسه متغیرها می باشد.
3-3 جامعه آماری
جامعۀ آماری در پژوهش حاضر شامل تمامی بیماران مبتلا به اسکیزوفرنی و افسردگی اساسی و تمامی افراد بهنجار می باشد.
3-4- گروه نمونه و روش نمونه گیری
در این پژوهش گروه نمونه شامل 30 فرد مبتلا به اسکیزوفرن (15 زن، 15 مرد) 30 فرد مبتلا به افسردگی اساسی (15 زن، 15 مرد) و 40 نفر از افراد بهنجار بودند که به شیوه نمونه گیری در دسترس انتخاب شدند. . آزمودنی ها نباید عقب ماندگی ذهنی، بیماری صرع، ضایع مغزی، بیش فعالی و اختلال توجه و سوء مصرف مواد داشته باشند و نیز دارای توانایی حداقل خواندن و نوشتن باشند. همچنین آزمودنیها از نظر جنس با یکدیگر همتاسازی شدند. ولی متاسفانه با تمام تلاشی که صورت گرفت این تحقیق موفق به همتاسازی گروها از نظر جنس نشد .بنابراین در تحلیل واریانس چند متغییره با استفاده از کواریانس یا متغییر همپراش در نظر گرفته شد. همچنین گروه بهنجار از بین پرسنل بیمارستان و همراهان به شرطی که از وابستگان نزدیک بیمار نباشند انتخاب شدند.
3-5- ابزار پژوهش
در تحقیق حاضر از پرسشنامه سلامت عمومی گلدبرگ (GHQ)، آزمون هوش مهک، آزمون جور کردن کارت های ویسکانسین و آزمون کلمه و رنگ استروپ استفاده شده که در زیر به آنها خواهیم پرداخت.
3-5-1- پرسشنامه سلامت عمومی گلدبرگ (GHQ):
این آزمون توسط گلدبرگ (1972) ابداع شد. یکی از معروف ترین آزمون های مورد استفاده برای پی بردن به اختلاف روانی نهفته است (حسنی، 1386).
پرسشنامه سلامت عمومی یک «پرسشنامه سرندی» مبتنی بر روش خود گزارش دهی است که در مجموعه بالینی با هدف ردیابی کسانی که دارای یک اختلال روانی هستند، مورد استفاده قرار می گیرد (گلدبرگ، 1972).
فرم 28 ماده ای پرسشنامه عمومی دارای این مزیت است که برای تمام افراد جامعه طراحی شده است. این پرسشنامه به عنوان یک ابزار سرندی می تواند احتمال وجود یک اختلال روانی را در فرد تعیین کند (فتحی آشتیانی، 1391). این پرسشنامه دارای چهار زیر مقیاس است: خرده مقیاس های نشانه های جسمانی، اضطراب و بی خوابی، نارساکنش وری اجتماعی و افسردگی. که مدت زمان اجرای آزمون به طور متوسط حدود 10 تا 12 دقیقه است. از 28 ماده پرسشنامه موارد 1 الی 7 مربوط به مقیاس جسمانی است. موارد 8 الی 14 علائم اضطرابی و بی خوابی، موارد 15 الی 21 مربوط به علائم اجتماعی و موارد 22 الی 28 علائم افسردگی را می سنجد (فتحی آشتیانی، 1391).
روش نمره گزاری پرسشنامه سلامت عمومی بدین ترتیب است که از گزینه الف تا د، نمره صفر، یک، دو، و سه تعلق می گیرد. در نتیجه نمره فرد در هر یک از خرده مقیاس ها از صفر تا 21 و در کل پرسشنامه از صفر تا 84 خواهد بود. نمرات هر آزمودنی در هر مقیاس بطور جداگانه محاسبه می شود و پس از آن نمرات 4 زیر مقیاس را جمع و نمره کلی را بدست می آوریم در هر مقیاس کسب نمره 6 به بالا نشانه وجود اختلال و در مجموع کل مقیاس ها اخذ شده نمره 22 به بالا بیانگر علائم مرضی می باشد (فتحی آشتیانی، 1391).
تقوی(1380) به منظور تعیین اعتبار این پرسشنامه از سه روش بازآزمایی، دو نیمه سازی و ثبات درونی استفاده نمود. نتایج به دست آمده با روش بازآزمایی برای کل پرسشنامه 72/0 و برای خرده آزمونهای علایم جسمانی، اضطراب و بی خوابی، نارسایی درعملکرد اجتماعی و افسردگی به ترتیب 60/0 ، 68/0،57/0و 58/0 بود. به علاوه نتایج به دست آمده، با روش تنصیفی برای کل پرسشنامه 93/0 و برای خرده آزمونهای علائم جسمانی ، اضطراب و بی خوابی، نارسایی در عملکرد اجتماعی و افسردگی به ترتیب 86/0، 84/0 ، 68/0 و 77/0 بود همچنین نتایج به دست آمده جهت سنجش ثبات درونی با استفاده از روش آلفای کرونباخ برای کل پرسشنامه 90/0 و برای خرده آزمونهای علایم جسمانی، اضطراب و بی خوابی، نارسایی در عملکرد اجتماعی و افسردگی به ترتیب 76/0، 84/0، 61/0 و 88/0 بود. همچنین گلدبرگ و ویلیامز (1998)، اعتبار تنصیفی برای کل پرسشنامه را 95/0 گزارش کردند. ثبات درونی را با روش آلفای کرونباخ در مطالعه چان (1985) ، و کی یس (1984) ، 93/0 گزارش کردند (همان منبع).
3-5-2- آزمون مهک
مهک یک آزمون جدید خواندن لغات فارسی است که به ویژه برای استفاده بزرگسالان فارسی زبان طراحی شده است، و برای برآورد هوش پیش مرضی بکار می رود. این آزمون شامل 50 لغت کوتاه و نامنظم می باشد که شیوه ی نگارش آنها سرنخ روشنی از شیوه ی درست خواندن آنها ارائه نمی دهد و برای هر لغت حدس هوشی به تنهائی موجب پاسخ صحیح نخواهد شد (حق شناس و همکاران، 2000).
این مقیاس توسط حق شناس (1379) بر روی 154 نفر از جمعیت شهر شیراز (76 زن ، 78 مرد) هنجاریابی گردید و آزمون هوشی ریون به عنوان ملاک خارجی برای تعیین رابطه نمره های آزمون خواندن واژه ها و هوشبهر عمومی به کار برده شد. همچنین در این پژوهش، آزمون پیشرونده ریاضی نیز به کار گرفته شد و افزون بر به دست آوردن هنجای این آزمون بر روی نمونه مورد بررسی ، ضریب های همبستگی این آزمون با آزمون های یاد شده نیز بدست آمد. سال های تحصیلات گذشته فرد نیز مورد بررسی قرار گرفت. نتایج نشان داد که همبستگی مثبت و معناداری بین مهک و ریون (36/0 = r برای نمونه کلی، 46/0 = r برای مردان، 35/0 r = برای زنان)، و مهک و آزمون پیشرونده ی ریاضی (36/0 = r برای نمونه کلی، 44/0 = r برای مردان، 33/0 = rبرای زنان) وجود دارد. در اینجا در نمره های مهک، تفاوت معناداری بین سالمندان مشکوک به دمانس و آنهایی که بدون نقص حافظه بودند مشاهده نشد، در حالی که دو گروه در نمره های ریون تفاوت معناداری داشتند (حق شناس و همکاران، 2001) .
محاسبه ی ضریب پایانی آزمون دو نیمه ی مهک (مقایسه ی یک در میان، هر کلمه با کلمه ی بعدی خود ) 82/0 و برای نیمه ی اول و دوم (25 کلمه ی اول و 25 کلمه ی بعدی) 74/0 بدست آمد (133=n). ثبات درونی به کمک ضریب آلفای کرونباخ برای این تعداد 79/0 بود حق شناس ، 1379). نتایج نشان داد که اعتبار همگرای بالایی بین نمره های خواندن و سال های تحصیل 61/0 = r و نمره خوانده و آزمون ریون (RSPM ) 41= r /0 (به عنوان ابزاری از ضریب هوشی) وجود دارد. پایائی بازآزمائی نمره های مهک در حدود 2 ماه و نیم (73 روز) رضایت بخش بود (حق شناس و همکاران، 2001). بنابراین با توجه مطالب ذکر شده، آزمون مهک از سه ملاک ذکر شده بالا برخوردار است.
نحوه ی اجرای آزمون به ترتیبی است که از آزمودنی تقاضا می شود که 50 لغت را بخواند و سپس با تلفظ صحیح هر یک از لغات یک نمره دریافت می کند (همان منبع).
3-5-3- آزمون جور کردن کارتهای ویسکانسین WCST :
آزمون جور کردن کارتهای ویسکانسین WSCT (گرانت و برگ، 1993) برای اندازه گیری استدلال انتزاعی، مفهوم سازی، و پاسخ دهی تکراری در افراد سنین 5/6 تا 89 ساله به کار می رود در این تکلیف از بیمار خواسته می شود که کارت های که به او ارائه می شود بر اساس یکی از سه اصل مربوط به عضویت طبقه، دسته بندی کند. مقیاس های بدست آمده از این آزمون به قرار زیر می باشد : طبقه بندی های انجام شده ، پاسخ های تکراری، خطاهای تکرای، خطاهای غیر تکراری، ناکامی در نگهداری آمایه و کفایت یادگیری هبن، میلبرگ (2002، ترجمه حق شناس، 1385).
این آزمون به عنوان یکی از حساس ترین آزمونهای مربوط به قشر جلوی پیشانی و پشتی جانبی در نظر گرفته می شود. (گلدبرگ و وین برگر، 1998).
لزاک (1995) میزان روایی این آزمون را برای سنجش نقایص شناختی به دنبال آسیب های مغزی بالای 86/0 ذکر کرده است.
پایایی این آزمون نیز بر اساس ضریب توافق ارزیابی کنندگان در مطالعه اسپرین و استراوس (1991) معادل 83/0 گزارش گردیده است. نادری (1373) این آزمون را در جمعیت ایران با روش بازآمایی 85/0 ذکر کرده است.
این آزمون شامل 64 کارت است که بر روی آن ها یکی الی چهار نماد به صورت مثلث قرمز، ستاره سبز، صلیب زرد و دایره آبی نقش بسته است و هیچ دوکارتی شبیه به هم یا تکراری نبودند. وظیفه آزمودنی این است که بر اساس استنباط از الگوی مورد استفاده آزماینده نسبت به جای گذاری کارت ها اقدام نماید این الگو عبارت است از یک مثلث قرمز، دو ستاره سبز، سه صلیب زرد و چهار دایره آبی. اصل دسته بندی و جای گذاری کارت ها به ترتیب رنگ، شکل و تعداد نمادها می باشد که آزمون گر بدون اطلاع آزمودنی در نظر می گیرد. وقتی آزمودنی بتواند ده کارت را به طور متوالی بر اساس رنگ دسته بندی کند، آزمون گر ملاک را تغییر می دهد و آزمودنی باید این تغییر را با توجه به گفته «درست است» و «درست نیست» آزماینده متوجه شود و اصل جدید را پیدا کند. آزمون تا آنجا ادامه می یابد که آزمودنی جایگزینی ده کارت را برای شش مرتبه انجام دهد یا به طور خود به خودی اصل زیربنای مذکور را گزارش دهد مثلاً بگوید «شما مرتباً اصل را تغییر می دهید». به طور معمول بعد از این که 30 الی 40 کارت به طور اشتباه جای گذاری شده باشد و به نظر برسد که آزمودنی رغبتی در درک و فهمیدن تکلیف ندارد، آزمون را متوقف می نمایم (لزاک، 1995).
این آزمون را می توان چندین روش نمره داد. رایج ترین شیوه نمره گذاری، ثبت تعداد طبقات به دست آمده و خطاهای در جاماندگی می باشد. طبقات به دست آمده به تعداد دوره های صحیح یا به عبارت دیگر ده جای گذاری صحیح متوالی اطلاق می شود که این تعداد در دامنه ای از صفر تا شش که در این حالت آزمون طبیعتاً متوقف می شود، قرار می گیرد. مواقعی که آزمودنی بر طبق اصل موفقیت آمیز قبلی دسته بندی را ادامه می دهد و همچنین زمانی که در اولین سری، در دسته بندی بر اساس یک حدس غلط اولیه پافشاری می کند، خطای درجاماندگی وجود دارد. خطای درجاماندگی برای مستند کردن در زمینه شکل گیری مفاهیم، سود بردن از تصحیح و انعطاف پذیری ادارکی مفید و قابل استفاده است. خطاهای خاص شامل خطاهای دیگر غیر از خطاهای درجاماندگی می باشد. (لزاک، 1996).
3-5-4 آزمون کلمه و رنگ استروپ
آزمون کلمه و رنگ استروپ (گلدن ، 1987) برای سنجش انعطاف پذیری شناختی، مقاومت در برابر تداخل محرکهای بیرونی، و توانایی بازداری کردن یک پاسخ کلامی غالب یا مسلط به کار می رود. عملکرد آزمودنی در سه تکلیف مورد مقایسه قرار می گیرد : خواندکلمات، نامیدن رنگها، و نامیدن کلمات رنگی، در تکلیف آخر، بیمار باید بجای خواندن کلمه رنگ جوهری را که کلمه با آن نوشته شده است(و با لغت مربوط به آن رنگ ناهماهنگ است) با حداکثر سرعت بگوید. در حال حاضر داده های هنجاری این آزمون برای سنین 7 تا 80 ساله موجود است هبن، میلبرگ (2002، ترجمه حق شناس، 1385).
در این پژوهش از آزمون کلاسیک استروپ استفاده شده. این آزمون سه مرحله دارد. مرحلۀ اول به صورت تصادفی اسم تعدادی رنگ می آید و آزمودنی باید با سرعت هر چه تمام تر و بدون اشتباه کلمات را بخواند.
در مرحله دوم همان رنگها نقاشی می شوند و آزمودنی می بایست آنها را نام ببرد و در مرحلۀ سوم نام رنگهای آمده ولی کلمه رنگی که نوشته شده با خود رنگ فرق دارد (مثلاً آبی به رنگ سبز نوشته می شود).
آزمودنی باید کلمات را نادیده گرفته و فقط رنگ را نام ببرد. (استروپ ، 1935).
فاطمه قدیری و همکاران در سال 1385 ضریب بازآمایی برای زمان واکنش مرحله اول 6/0 و برای تعداد خطاهای همین مرحله 55/0 بدست آورند و در مرحله دوم آزمایش برای زمان واکنش ضریب پایایی 83/0 و برای تعداد خطاها ضریب 78/0 محاسبه گردید و در مرحله سوم ضریب پایایی برای زمان واکنش 97/0 و برای تعداد خطاها 79/0 بود.
3-6-روش اجرا
در این پژوهش آزمودنی ها از بین بیماران اعصاب و روان دکتر محرری بر اساس ملک تشخیصی DSM-IV و تشخیص روانپزشک و مصاحبه بالینی روانشناس بیمارستان انتخاب شدند. بدین طریق آزمون بر روی بیمارانی که به درمانگاه جهت پیگیری درمان نزد روانپزشک آمدند و همچنین افراد بستری که طول درمان را طی کرده و در سدد ترخیص بودند انجام شد.
برای اطمینان از اینکه بیماران بدون علائم روانپریشی هستند از آنان خواسته شد که پرسشنامه GHQ را انجام دهند، و افرادی که نمرات بالاتر از 22 داشتند از این آزمون حذف شدند (فتحی آشتیانی، 1391). بعد از انتخاب آزمودنی ها با آزمون GHQ با سه آزمون، هوش مهک، آزمون کلمه و رنگ استروپ ، آزمون جور کردن کارتها ویسکانسین مورد ارزیابی قرار گرفتند.
3-7- روش تجزیه و تحلیل اطلاعات :
با توجه به هدف تحقیق و همچنین فرضیه های مطرح شده در پژوهش حاضر از روش آمار توصیفی از قبیل فراوانی، درصد، میانگین، انحراف معیار و آمار استنباطی از قبیل : روش تحلیل واریانس چند متغیره و آزمون بن فرونی و آزمون f یک طرفه به وسیله نرم افزار SPSS انجام شد.

فصل چهارم
یافته های پژوهش

2263775201739500
4-1 مقدمه
در این فصل یافتههای پژوهش در دو بخش آمار توصیفی و جمعیتشناختی، و پاسخ به فرضیههای پژوهش ارائه میگردد. در بخش توصیفی به ارائهی نتایج توصیفی مربوط به متغیرهای پژوهش، اعم از میانگین، انحراف استاندارد ، حداقل و حداکثر نمرات، پرداخته میشود. و در بخـش دوم از طریق تحلیل واریانس چند متغیره به تأیید فرضیههای پژوهش پرداخته میشود.
4-2 توصیف دادهها
در این بخش، یافتههای توصیفی شامل میانگین، انحراف معیار و حداقل و حداکثر نمرههای متغیرهای مورد مطالعهی پژوهش حاضر بررسی میگردد، که به ترتیبی که در پی میآید، ارائه میگردد:
4-2-1 توصیف متغیرهای جمعیت شناختی
نسبت مردان به زنان در گروه بیماران مبتلا به اسکیزوفرنی یکسان (15 به 15) ، در گروه بیماران مبتلا به افسردگی اساسی یکسان(15 به 15) ، و در گروه بهنجار یکسان (20 به 20) میباشد.
همانگونه که دادههای مربوط به توزیع میزان سن در جدول 4-1، نشان میدهد، میانگین متغیر سن در بین بیماران مبتلا به اسکیزوفرنی (93/38) بالاتر از میانگین سنی بیماران مبتلا به افسردگی اساسی (6/35) و گروه نرمال (5/29) میباشد. اما بررسی انحراف استانداردهای سه گروه نشان دهندهی انسجام بیشتر در گروه بیماران مبتلا به افسردگی اساسی نسبت به بیماران مبتلا به اسکیزوفرنی و افراد بهنجار میباشد. بررسی معناداری تفاوتهای میانگینها با استفاده از آزمونf، نشانگر تفاوت معنادار سه گروه بیماران مبتلا به اسکیزوفرن، افسردگی اساسی و افراد بهنجار در متغیر سن میباشد.

جدول4-1. فراوانی و درصد میانگین سن به سال در سه گروه بیماران اسکیزوفرن، افسردگی اساسی و بهنجار
گروه میانگین انحرافاستاندارد حداقل حداکثر تعداد
اسکیزوفرن 93/38 46/9 19 53 30
افسردگی اساسی 6/35 93/7 19 54 30
بهنجار 5/29 44/8 21 65 40
جدول 4-2. آزمون تحلیل واریانس یکراهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر سن
منابع تغییر مجموع مجذورات درجه آزادی میانگین مجذورات F درجه معناداری
بین گروهها 373/1614 2 187/807 87/10 001/0
درون گروهها 067/7205 97 279/74 همانطور که در جدول 4-2 مشاهده میگردد، مقایسه میانگین سن در بین گروهها تفاوت معناداری را نشان داد. که با توجه به میزان f که برابر است با 87/10 و درجهی آزادی (2 و 97) درجه معناداری (001/0)، با 99 درصد اطمینان میتوان گفت بین گروهها در متغیر سن تفاوت وجود دارد.
به منظور تعیین مکان معناداری از آزمون تعقیبی بنفرونی استفاده شد، نتایج در جدول 4-3 بیان شده است. جدول حاکی از آن است میزان سن گروههای بیماران مبتلا به اسکیزوفرنی و افسردگی اساسی نسبت به گروه بهنجار به صورت معناداری بالاتر است، ولی پایینتر بودن میزان سن گروه بیماران افسردگی اساسی نسبت به گروه بیماران اسکیزوفرن معنادار نمیباشد.
جدول 4-3. آزمون تعقیبی جهت سن
سن
اسکیزوفرن افسردگی اساسی بهنجار
اسکیزوفرن *
افسردگی اساسی *
بهنجار * * همانگونه که دادههای مربوط به توزیع سالهای تحصیلات رسمی در جدول 4-4، نشان میدهند، میانگین متغیر تحصیلات رسمی در افراد بهنجار (55/15) بالاتر از میانگین تحصیلات رسمی بیماران اسکیزوفرن (76/10) و بیماران افسردگی اساسی (43/10) میباشد. بررسی انحراف استانداردهای سه گروه نیز نشان دهندهی انسجام بیشتر در گروه بهنجار نسبت به بیماران اسکیزوفرن و افسردگی اساسی میباشد. بررسی معناداری تفاوتهای میانگینها با استفاده از آزمونf، نشانگر تفاوت معنادار سه گروه بیماران مبتلا به اسکیزوفرن، افسردگی اساسی و افراد بهنجار در متغیر تحصیلات میباشد.

جدول4-4. فراوانی و درصد توزیع تحصیلات رسمی (تعداد کلاسهای (سالهای تحصیلی ) در سه گروه بیماران اسکیزوفرن، افسردگی اساسی و بهنجار
گروه میانگین انحرافاستاندارد حداقل حداکثر تعداد
اسکیزوفرن 76/10 35/2 6 16 30
افسردگی اساسی 43/10 59/2 5 14 30
بهنجار 55/15 05/2 12 18 40

جدول 4-5. آزمون تحلیل واریانس یکراهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر تحصیلات
منابع تغییر مجموع مجذورات درجه آزادی میانگین مجذورات F درجه معناداری
بین گروهها 727/589 2 863/294 94/54 001/0
درون گروهها 633/520 97 267/5 همانطور که در جدول 4-5 مشاهده میگردد، مقایسه میانگین سالهای تحصیلات رسمی در بین گروهها تفاوت معناداری را نشان داد. که با توجه به میزان f که برابر است با 94/54 و درجهی آزادی (2 و 97) درجه معناداری (001/0)، با 99 درصد اطمینان میتوان گفت بین گروهها در متغیرسالهای تحصیلات رسمی تفاوت وجود دارد.
به منظور تعیین مکان معناداری از آزمون تعقیبی بنفرونی استفاده شد، نتایج در جدول 4-6 بیان شده است. جدول حاکی از آن است میزان تحصیلات گروههای بیماران مبتلا به اسکیزوفرنی و افسردگی اساسی نسبت به گروه بهنجار به صورت معناداری پایینتر است، ولی پایینتر بودن میزان تحصیلات گروه بیماران افسردگی اساسی نسبت به گروه بیماران اسکیزوفرن معنادار نمیباشد.
جدول 4-6. آزمون تعقیبی جهت تحصیلات
تحصیلات
اسکیزوفرن افسردگی اساسی بهنجار
اسکیزوفرن *
افسردگی اساسی *
بهنجار * * 4-2-2 توصیف متغیرهوش پیشمرضی:
همانگونه که دادههای توصیفی مربوط به هوش پیشمرضی در جدول 4-7، نشان میدهند، میانگین متغیر هوش پیشمرضی در افراد نرمال (60/39) بالاتر از میانگین هوش پیشمرضی بیماران مبتلا به افسردگی اساسی (40/33) و اسکیزوفرن (06/33) میباشد. بررسی انحراف استانداردهای سه گروه نیز نشان دهندهی انسجام بیشتر در گروه بهنجار نسبت به بیماران اسکیزوفرن و افسردگی اساسی میباشد. بررسی معناداری تفاوتهای میانگینها با استفاده از آزمونf ، نشانگر تفاوت معنادار سه گروه بیماران مبتلا به اسکیزوفرنی، افسردگی اساسی و افراد بهنجار در متغیر هوش پیشمرضی میباشد. که یافتههای آن در جدول 4-8 قابل مشاهده است.
جدول4-7. فراوانی و درصد توزیع نمرات خام هوش پیشمرضی در آزمون مهک در سه گروه بیماران اسکیزوفرن، افسردگی اساسی و بهنجار
گروه میانگین انحرافاستاندارد حداقل حداکثر تعداد
اسکیزوفرن 06/33 25/5 22 42 30
افسردگی اساسی 40/33 27/6 18 42 30
بهنجار 60/39 34/4 29 47 40
جدول 4-8. آزمون تحلیل واریانس یکراهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر هوش پیشمرضی
منابع تغییر مجموع مجذورات درجه آزادی میانگین مجذورات F درجه معناداری
بین گروهها 493/974 2 247/487 61/17 001/0
درون گروهها 667/2682 97 656/27 همانطور که در جدول 4-8 مشاهده میگردد، مقایسه میانگین هوش پیشمرضی در بین گروهها تفاوت معناداری را نشان داد. که با توجه به میزان f که برابر است با 61/17 و درجهی آزادی (2 و 97) درجه معناداری (001/0)، با 99 درصد اطمینان میتوان گفت بین گروهها در هوش پیشمرضی تفاوت وجود دارد.
به منظور تعیین مکان معناداری از آزمون تعقیبی بنفرونی استفاده شد، نتایج در جدول 4-9 بیان شده است. جدول حاکی از آن است که گروههای بیماران مبتلا به اسکیزوفرنی و افسردگی اساسی نسبت به گروه بهنجار در سطح معناداری در آزمون هوش پیشمرضی افت را نشان دادهاند، ولی پایینتر بودن نمره گروه بیماران اسکیزوفرن نسبت به گروه بیماران افسردگی اساسی معنادار نمیباشد.
جدول 4-9. آزمون تعقیبی جهت هوش پیشمرضی
هوش پیشمرضی
اسکیزوفرن افسردگی اساسی بهنجار
اسکیزوفرن *
افسردگی اساسی *
بهنجار * * 4-2-3 توصیف متغیر سلامت عمومی:
اطلاعات حاصل از پرسشنامه سلامت عمومی در دو بخش سلامت عمومی کلی و زیرمقیاسهای آن (علائم بدنی، اضطرابی، اختلال در کارکردهای اجتماعی، و افسردگی) توصیف میگردد.
جدول 4-10 یافتههای توصیفی متغیر سلامت عمومی کلی را در بین سه گروه بیماران مبتلا به اسکیزوفرنی، افسردگی اساسی و افراد بهنجار نشان میدهد. با توجه به جدول مشخص است که میانگین نمرهی گروه بیماران مبتلا به افسردگی اساسی نسبت به گروههای بیماران اسکیزوفرن و افراد بهنجار بالاتر است. که همانگونه گفته شد نمرهی بالا در این مقیاس نشاندهندهی سلامت عمومی پایینتر است. بررسی معناداری تفاوتهای میانگینها با استفاده از آزمونf ، نشانگر تفاوت معنادار سه گروه بیماران مبتلا به اسکیزوفرنی، افسردگی اساسی و افراد بهنجار در متغیر سلامت عمومی میباشد. که یافتههای آن در جدول 4-11 قابل مشاهده است.
جدول4-10. آمارههای توصیفی متغیر سلامت عمومی
متغیر گروه میانگین انحراف استاندارد حداقل حداکثر تعداد
سلامت عمومی اسکیزوفرن 13/19 47/3 8 22 30
افسردگی اساسی 7/20 13/2 16 24 30
پرسنل 45/16 18/5 6 22 40
جدول 4-11.آزمون تحلیل واریانس یکراهه جهت بررسی تفاوت میانگین آزمودنیها در متغیر سلامت عمومی
منابع تغییر مجموع مجذورات درجه آزادی میانگین مجذورات F درجه معناداری
بین گروهها 243/325 2 622/162 31/10 001/0
درون گروهها 667/1529 97 770/15
همان طور که در جدول مشاهده میگردد، مقایسه میانگین سلامت عمومی در بین گروهها تفاوت معناداری را نشان داد. که با توجه به میزان f که برابر است با 31/10 و درجهی آزادی (2 و 97) درجه معناداری (001/0)، با 99 درصد اطمینان میتوان گفت بین گروهها در سلامت عمومی تفاوت وجود دارد.
به منظور تعیین مکان معناداری از آزمون تعقیبی بنفرونی استفاده شد، نتایج در جدول 4-12 بیان شده است. جدول حاکی از آن است که گروههای بیماران مبتلا به اسکیزوفرنی و افسردگی اساسی نسبت به گروه بهنجار در سطح معناداری در آزمون سلامت عمومی نمرههای بالاتری را نشان دادهاند، ولی بالابودن نمره گروه بیماران افسردگی اساسی نسبت به گروه بیماران اسکیزوفرن معنادار نمیباشد.
جدول 4-12. آزمون تعقیبی جهت سلامت عمومی
سلامت عمومی
اسکیزوفرن افسردگی اساسی بهنجار
اسکیزوفرن *
افسردگی اساسی *
بهنجار * * جدول 4-13 یافتههای توصیفی زیرمقیاسهای سلامت عمومی (علائم بدنی، اضطرابی، اختلال در کارکردهای اجتماعی، و افسردگی) را در بین سه گروه بیماران اسکیزوفرنی، افسردگی اساسی و افراد بهنجار نشان میدهد. با توجه به جدول مشخص است که میانگین نمرههای زیرمقیاسهای علائم بدنی و افسردگی در گروه بیماران مبتلا به افسردگی اساسی نسبت به گروههای بیماران مبتلا به اسکیزوفرنی و افراد بهنجار بالاتر است. اما در زیرمقیاسهای اضطرابی و اختلال در عملکرد اجتماعی، میانگین نمرههای بیماران مبتلا به اسکیزوفرنی نسبت به گروههای بیماران مبتلا به افسردگی اساسی و افراد بهنجار بالاتر است.
جدول4-13. آمارههای توصیفی متغیرهای علائم بدنی، اضطرابی، اختلال در کارکردهای اجتماعی و افسردگی
متغیر گروه میانگین انحراف استاندارد حداقل حداکثر تعداد
علائم بدنی اسکیزوفرن 90/4 90/1 2 9 30

NFR2

2-2-6 سازمان بزرگ مقیاس13
2-3 تعریف معماری سرویس گرا13
2-4 تعریف سرویس 15
2-5 سرویس های وب 16
2-6 مفاهیم مهم سرویس گرایی17
2-6-1چگونه سرویسها منطق را محصور میکنند18
2-6-2 چگونه سرویس ها از وجود یکدیگر مطلع می شوند19
2-6-3 چگونه سرویس ها با هم ارتباط برقرار می کنند19
2-6-4 چگونه سرویسها طراحی می شوند19
2-6-5 توصیفات سرویسها 20
2-7 ویژگی های معماری سرویس گرا 20
2-8 تعریف گذرگاه سرویس 22
2-8-1 مسیریابی و مقیاس پذیری23
2-8-2 تبدیل پروتکل انتقال24
2-8-3 تبدیل پیام25
2-8-4 ویژگی ها و مزایای گذرگاه سرویس26
2-8-5 اجزای گذرگاه سرویس27
2-9 انگیزه ی حرکت سیستم های تولیدی به سمت معماری سرویس گرا29
2 -10 تعریف برون سپاری 31
2-10-1 عوامل تاثیر گذار بر برون سپاری 32
2-10-2 دلایل عمده برون سپاری34
2-10-3 معایب برون‌سپاری35
2-10-4 تعریف برون سپاری استراتژیک 36
2-10- 5 کارهای انجام شده در ارتباط با برون سپاری 36
2-11 سیستم اطلاعاتی40
2-12 کارهای انجام شده د ر ارتباط با به کارگیری سیستم اطلاعاتی در یکپارچگی واحد های مختلف تولید41
2-13 نتیجه گیری45
فصل سوم: روش تحقیق46
3-1 مقدمه47
3-2 نگاه کلی و هدف از ارائه مدل پیشنهادی47
3-3 رویکرد کنترلی برای تعامل سرویس های استخراج شده در سیستم اطلاعاتی پیشنهادی49
3 -4 متدولوژی SOMA در طراحی سیستم اطلاعاتی سرویس گرا53
3-4-1 فاز شناسایی سرویس ها در متدولوژی SOMA53
3-4-1-1 تکنیک سرویس – هدف 54
3–4- 1-2 تکنیک تجزیه دامنه55
3–4- 1-3 تجزیه و تحلیل دارایی های موجود 55
3-5 راهکارپیشنهادی: طراحی سیستم اطلاعاتی سرویس گرا56
3-5-1 شناسایی سرویس های سیستم اطلاعاتی با استفاده ازمتدولوژیSOMA56
3-5-2روند جریان اطلاعات در سیستم اطلاعاتی سرویس گرا60
3-6 مدلسازی سیستم اطلاعاتی سرویس گرا با استفاده از زبان UML74
3 -7 الگوی راه حل پیشنهادی متدولوژی SOMAبرای استفاده در سیستم های اطلاعاتی81
3-8 برنامه ریزی استراتژیک سیستم اطلاعاتی85
3-9 نتیجه گیری 88
فصل چهارم: محاسبات و یافته های تحقیق89
4-1 مقدمه90
4-2 مطالعه موردی – شرکت ایران خودرو90
4-3 طراحی سیستم اطلاعاتی سرویس گرا برای شرکت ایران خودرو93
4 - 3- 1 مدل فرایند ورود کاربران ایران خودرو به سیستم اطلاعاتی خودرو94
4 -3- 2مدل فرایند نظارت واحد تدارکات ایران خودرو بر موجودی انبار (مواد اولیه).96
4 -3- 3 مدل فرایند درخواست قطعه از انبار ایران خودرو97
4 -3- 4 مدل فرایند اجرای محصول درخواستی مشتری ایران خودرو99


4 -3- 5 مدل فرایند پرداخت مشتری 101
4 -3- 6 مدل فرایند تحویل محصولات به مشتریان ایران خودرو 102
4 -3-7 مدل فرایند خدمات پس از فروش مشتریان ایران خودرو 102
4 - 4 مشخصه سرویس ها در سیستم اطلاعاتی سرویس گرا 104
4 - 5 تدوین راهبردها در راستای سیستم اطلاعاتی، با استفاده از ماتریس SWOT 105
4 - 6 تحلیل استراتژیک سیستم اطلاعاتی سرویس گرا برای شرکت ایران خودرو107
4-7 فرآیند تحلیل سلسه مراتبی AHP113
4-8 نتیجه گیری116
فصل پنجم: نتیجه گیری و پیشنهادات117
5-1 خلاصه تحقیق118
5-2 بررسی مزایای رهیافت پیشنهادی118
5-3 محدودیت ها و زوایای پوشش داده نشده119
5-4 اقدامات آتی120
ضمائم و پیوست ها 121
ضمیمه 1- کدهایWSDL مربوط به مشخصه سرویس احراز هویت 122
ضمیمه 2- کدهای WSDL مربوط به مشخصه سرویس پرداخت آنلاین 126
ضمیمه 3- کدهای WSDL مربوط به مشخصه سرویس صدور فاکتور129
ضمیمه 4- کدهای WSDL مربوط به مشخصه سرویس رفع مشکل فراموش کردن رمز عبور 134
ضمیمه 5- کدهای WSDL مربوط به مشخصه سرویس بررسی وضعیت پرداخت صورتحساب.. 138
منابع و مآخذ142
Abstract 146
فهرست جداول
جدول 2-1 محرکهای چندگانه برون سپاری 33
جدول 3-1 اهداف– زیر اهداف 57
جدول 3-2 تجزیه دامنه سیستم اطلاعاتی 59
جدول4-1عملیات مربوط با هرسرویس کاری سیستم اطلاعاتی سرویس گرابرای شرکت ایران خودرو 104 HYPERLINK l "_Toc177949492"
جدول 4-2 ماتریس SWOT مطالعه موردی 109 HYPERLINK l "_Toc177949492"
جدول 4-3 مقایسه زوجی بین سرویس های دانه ریز مربوط به سرویس دانه درشت نظارت واحد تدارکات بر موجودی انبار 114 HYPERLINK l "_Toc177949492"
جدول4-4 وزن دهی سرویس های مربوط به سرویس دانه درشت نظارت واحد تدارکات بر موجودی انبار 115 HYPERLINK l "_Toc177949492"
جدول4-5 لیست اولویت بندی سرویس های دانه درشت 115
فهرست تصاویر و نمودار HYPERLINK l "_Toc177949492"
شکل 1-1 مراحل انجام تحقیق 5 HYPERLINK l "_Toc177949492"
شکل 2-1 مدل انجام پیمانکاری فرعی صنعتی بین صنایع کوچک و بزرگ 10
شکل 2-2 محصورسازی اندازه های مختلفی از منطق توسط سرویس 18
شکل 2-3 ارتباط بین برنامه های کاربردی مختلف در ESB 23
شکل 2-4 ارتباط غیر مستقیم بین برنامه های کاربردی با استفاده از قابلیت مسیریابی پیام ESB 24
شکل 2-5 برقراری ارتباط بین برنامه های کاربردی با پروتکل های انتقال مختلف با استفاده از پیاده سازی گذرگاه سرویس سازمانESB 25
شکل 2-6 با استفاده ازESB برنامه های کاربردی می توانند حتی زمانی که فرمت پیام ها و پروتکل های ارتباطی متفاوت دارند، با یکدیگر تعامل داشته باشند26
شکل 2-7 اجزای منطقی تشکیل دهنده ESB 28
شکل 3-1 روند انجام کار 49
شکل 3-2 ارکسترازیسیون سرویس های سیستم اطلاعاتی سرویس گرا 51
شکل 3-3 فلوچارت روند جریان اطلاعات ورود کاربر به سیستم اطلاعاتی و ثبت اطلاعات کاربر 62 شکل 3-4 فلوچارت روند جریان اطلاعات نظارت واحد تدارکات بر موجودی انبار 63
شکل 3-5 فلوچارت روند جریان اطلاعات درخواست قطعه از انبار 65
شکل 3-6 فلوچارت روند جریان اطلاعات اجرای محصول درخواستی 67
شکل 3-7 فلوچارت روند جریان اطلاعات پرداخت مشتری 69
شکل 3-8 فلوچارت روند جریان اطلاعات تحویل محصول به مشتری 71 HYPERLINK l "_Toc177949492"
شکل 3-9 فلوچارت روند جریان اطلاعات پشتیبانی مشتری 73 HYPERLINK l "_Toc177949492"
شکل 3-10 نمودار use case احراز هویت و مدیریت ورود کاربران به سیستم اطلاعاتی 75
شکل 3-11 نمودار use case نظارت واحد تدارکات بر موجودی انبار 76
شکل 3-12 نمودار use case درخواست قطعات مورد نیاز واحد تولید از انبار (مواد اولیه)77
شکل 3-13 نمودار use case اجرای محصول درخواستی مشتری 78
شکل 3-14 نمودار use case مدیریت هزینه ی سفارشات اجرا شده79
شکل 3-15 نمودار use case تحویل محصول به مشتری80
شکل 3-16 نمودار use case پشتیبانی مشتری81
شکل 3-17 سرویس های سیستم اطلاعاتی سرویس گرای spx 83
شکل 3-18 الگوی راه حل ESB برای استفاده از سرویس های سیستم اطلاعاتی در سازمان 85
شکل4-1 حوزه ی فعالیت های برون سپاری شرکت ایران خودرو92
شکل 4-2 فلوچارت ورود و ثبت اطلاعات کاربران ایران خودرو در سیستم اطلاعاتی 95
شکل 4-3 فلوچارت نظارت واحد تدارکات ایران خودرو بر موجودی انبار(مواد اولیه)96
شکل 4-4 فلوچارت درخواست قطعه از انبار 98
شکل 4-5 فلوچارت اجرای محصول درخواستی مشتری ایران خودرو 100
شکل 4-6 فلوچارت پرداخت مشتریان ایران خودرو 101
شکل 4-7 فلوچارت تحویل سفارش به مشتریان ایران خودرو 102
شکل 4-8 فلوچارت پشتیبانی مشتریان ایران خودرو 103
شکل 4-9 نمودار سلسله مراتب سرویس ها 114
فصل اول
مقدمه و کلیات تحقیق
1–1 مقدمهسازمان بزرگ مقیاس از واحدها، محصولات و سرویس های متنوع زیادی تشکیل شده است. این واحدها زیر ساخت مختلف دارند که دارای سرویس های مختلفی هستند. به منظور ارتقای کیفیت کالاها و افزایش میزان تنوع کالا و نو آوری سازمان های بزرگ مقیاس می توانند از پیمانکاری فرعی صنعتی، به عنوان یکی از روشهای تامین سفارشهای تولیدی از بیرون، استفاده کنند. هدایت و کنترل سازمان بزرگ مقیاس و پیچیده نیاز به پیروی از یک چارچوب و برنامه منسجم دارد. امروزه سیستم های سرویس گرا با توجه به امکان استفاده در محیط های مختلف و عدم وابستگی به فناوری خاص، وجود سیستم های بزرگ مقیاس پویا با نیازهای متغیر، بسیار مورد توجه قرار گرفته اند. معماری سرویس گرا به دلیل سرعت در پیاده سازی برنامه کاربردی سازمان را به سمت توزیع شدگی و مدیریت صحیح منابع پیش می برد. معماری سرویس گرا امکان ایجاد یکپارچگی بین برنامه واحدها بدون وابستگی به سکو و فناوری پیاده سازی را فراهم می کند. ایجاد زیرساخت های مورد نیاز برای این رویکرد به دلیل نیاز به زمان و هزینه زیاد، برای سازمان هایی مناسب است که ناهمگن بوده و دارای توزیع شدگی زیاد هستند. معماری سازمانی مجموعه ای ازفراورده ها است که عناصر زیرساختی سازمان و روابط این عناصر با هم را معرفی می کند و سازمان را از ابعاد مختلف مورد بررسی قرار میدهد.
1– 2 طرح مسئلهسازمان بزرگ مقیاس به دلیل داشتن واحدهای گوناگون، تعداد و تنوع زیاد محصول و سرویس ها و ارتباط پیچیده و محیط پویا و رقابتی نیاز به برنامه ریزی استراتژیک دارد زیرا برنامه ریزی استراتژیک یکی از عوامل اصلی یکپارچگی کسب و کار و فناوری اطلاعات وحصول مزیت رقابتی می باشد تا براساس برنامه تهیه شده بسوی اهداف مورد نظر به پیش رود وهمواره ناظر برحرکت خودباشد تا انحرافات احتمالی راشناسایی وتعدیل کند. مدل عملی برنامه ریزی استراتژیک برای سازمانهایی است که ارتباط واحدها از طریق سرویس گرایی می باشد. سازمانها به منظور حفظ خود در بازارهای رقابتی همواره در حال رشد و تغییر کسب و کار خود هستند. بنابراین بایستی سیستم های اطلاعاتی خود را به گونه ای انتقال و ارتقا دهند تا بتوانند پاسخگوی نیازهای بازار و تغییرات زیاد فناوری باشند. این مدل دو دیدگاه فنی و استراتژیک را در خود هماهنگ و یکپارچه می سازد. استفاده از چارچوب و معماری سازمانی راهکار مفیدی برای برنامه ریزی، مدیریت و یکپارچگی واحدها می باشد. برنامه ریزی استراتژیک موجب می شود تا کار واحدها و سازمان سریع تر انجام شود و پیش برود. این برنامه باید آینده نگر و محیط گرا باشد بطوری که ضمن شناسایی عوامل وتحولات محیطی، در یک افق زمانی بلند مدت تأثیرآنها بر سازمان ونحوه تعامل سازمان باآنها را مشخص کند. چارچوب استراتژیک موجب تسهیل فرایند برنامه ریزی استراتژیک و شناسایی رقبا، مشتریان، تأمین کنندگان، محصولات و موجب شناسایی سطوح کیفی و رقابتی رقبا و بهبود عملکرد می شود.
در این تحقیق، یک چارچوب استراتژیک برای نظام مبادلات پیمانکاری فرعی (spx) در سازمان بزرگ مقیاس سرویس گرا که ارتباط واحدها از طریق سرویس می باشد ارائه شده است تا برنامه ریزی و مدیریت واحدها تسهیل یابد و بدین ترتیب کار سازمان سریع تر و دقیق تر انجام شود.
1-3 مفروضات

سیستم اطلاعاتی، یک سیستم برای جمع آوری، سازماندهی و ذخیره کردن اطلاعات در یک سازمان است.
سیستم اطلاعاتی از طریق تعریف فرایندها و رویه ها، انجام عملیات سازمان را به عهده می گیرند.
معماری سرویس گرا هم راستای فرایندهای کسب و کار است.
برنامه ریزی استراتژیک گونه ایی از برنامه ریزی است که در آن هدف تدوین استراتژی هاست.
1 - 4 اهداف تحقیق
پیمانکاری فرعی صنعتی، یکی از راه های مدرن و مؤثر سازمانی برای تولید محصولات صنعتی از راه همکاری واحدهای تولیدی مکمل است.در سازمان بزرگ مقیاس که از واحدهای مختلف تشکیل شده است می توان از نظام مبادلات پیمانکاری فرعی استفاده نمود.در سیستم های مقیاس وسیع به دلیل گستردگی حیطه مسئله، با موجودیتها و ارتباطات بسیار زیادی مواجهه هستیم، در صورتی که در توسعه این سیستم ها از روش سنتی استفاده کنیم به علت مواجه با حجم زیاد موجودیت ها و ارتباطات دچار سردرگمی خواهیم شد.به همین دلیل برای کاهش پیچیدگی در این سیستم ها از موجودیتی به نام سرویس به منظور بالا بردن سطح تجرید و در نتیجه کاهش پیچیدگی استفاده می شود. برای نظام مبادلات پیمانکاری فرعی در سازمان بزرگ مقیاس سرویس گرا یک چارچوب استراتژیک ارائه شده است که درنهایت منجر به افزایش میزان بهره وری سازمانی، بهبودخدمات سازمان، تسهیل روابط سازمانی، افزایش میزان تعامل پذیری دربین سیستم های اطلاعاتی،افزایش میزان یکپارچگی اطلاعات، افزایش سطح امنیت اطلاعات وغیره خواهد بود.
با توجه به ویژگی های معماری سرویس گرا و نقش آن در آن در یکپارچه سازی برنامه کاربردی سازمان ها و پیشرفت چشمگیر سرویس گرایی در دنیا و حرکت اکثر کشورها و سازمان ها به سمت موضوع سرویس گرایی می توان نتیجه گرفت که معماری سرویس گرا گزینه ی مناسبی برای حل بسیاری از چالش های یکپارچه سازی در سازمان است. اما به دلیل وجود برخی مشکلات و نواقص که در بخش قبل به پاره ای از آن ها اشاره شد، همچنان تحقیق در این زمینه با هدف چالش های موجود ادامه دارد.
1 –5 محدوده پایان نامه
همانطور که در قسمت پیش اشاره شد، سازمان بزرگ مقیاس به گروهی از واحدها اطلاق می شود که برای تولید کالا با هم در ارتباط بوده و همدیگر را تکمیل می کنند و بر مبنای یک توافق یا پیمانکاری با هم فعالیت می کنند. در سازمان بزرگ مقیاس با به کارگیری نظام مبادلات پیمانکاری فرعی کارها را به واحدهای کوچک ومتوسط (SMEs) برون سپاری می کنند. در این تحقیق هدف، ارائه یک چارچوب استراتژیک است.
1 –6 مراحل انجام تحقیق
در این تحقیق برای پاسخگویی به مسائل مطرح شده از مطالعات کتابخانه ای جهت شناسایی مفاهیم مورد نیاز تحقیق استفاده شده است. ابتدا، مطالعاتی درباره سرویس گرایی مطرح شد و در ادامه به بررسی سازمان بزرگ مقیاس و نظام مبادلات پیمانکاری فرعی (SPX)، برنامه ریزی استراتژیک پرداخته شد. مختصری مطالعه در مورد SOMA صورت گرفت، و سپس سرویس های سیستم اطلاعاتی توسط این روش شناسایی شدند. برای اطمینان از مناسب بودن سرویس های شناسایی شده به ارزیابی سرویس پرداخته شد. رویکرد پیشنهاد شده با استفاده از یک مطالعه موردی مورد ارزیابی قرار گرفت. در نهایت به جمع بندی و نتیجه گیری تحقیق پرداخته شد.
در شکل 1-1 این مراحل نشان داده شده اند.
شکل 1 – 1 . مراحل انجام تحقیق
1 – 7 ساختار پایان نامه
این پایان نامه در فصل های بعد به شرح زیر است:
در فصل دوم به بررسی مفاهیم بنیادی و ادبیات موضوع پرداخته شده است و همچنین کارهای انجام شده در زمینه معماری سرویس گرا، سازمان بزرگ مقیاس و نظام مبادلات پیمانکاری فرعی (spx) سیستم اطلاعاتی تولید و کارهای انجام شده در این زمینه می پردازیم.
در فصل سوم با بررسی و استخراج فرآیندها و سرویس ها، به طراحی سیستم اطلاعاتی سرویس گرا و ایجاد ارتباط داده های آن ها می پردازیم، و توضیحاتی را راجع به برنامه ریزی استراتژیک، به عنوان ابزار تدوین راهبردها بیان می کنیم. در فصل چهارم یک مطالعه موردی در راستای کار انجام شده مورد بحث قرار گرفته و مدل تطبیق داده شده را با استفاده از برنامه ریزی استراتژیک مورد ارزیابی قرار می دهیم. در نهایت در فصل پنجم جمع بندی و نتیجه گیری کارهای انجام شده و کارهای آینده بیان شده است.
فصل دوم
ادبیات و پیشینه تحقیق
2- 1مقدمه
در فصل پیش مسئله مورد اشاره در ا ین تحقیق معرفی شد و محدوده آن تعیین گردید. هدف از این فصل آشنایی با مفاهیم کلیدی به کاربرده شده در این تحقیق است. سرویس گرایی سبک و روشی برای طراحی، پیاده سازی، استقرار و مدیریت سیستم های اطلاعاتی است. این سیستم ها از مولفه هایی تشکیل شده اند که منطق سازمان و واحدهای کاری آن را پیاده سازی می کنند که این مولفه ها سرویس نام دارد. نقش سرویس در معماری سرویس گرا، خودکار سازی واحدهای کاری و دانه بندی آنها در واحدهای مجزاست، بطوریکه بتوان سازمان و منطق کسب و کار آن، همچنین روندهای کاری موجود را با تغییرات قوانین و فناوری ها، بروزرسانی و هماهنگ نمود. سرویس گرایی، علاوه بر مزایایی از قبیل حذف سیلوهای اطلاعاتی و سرعت در پیاده سازی برنامه های کاربردی، سازمان را به سمت توزیع شدگی ومدیریت صحیح منابع پیش می برد ]10 [. لازم به ذکر است که ایجاد زیرساخت های مورد نیاز برای این رویکرد به دلیل نیاز به زمان و هزینه زیاد، برای سازمان هایی مناسب است که ناهمگن بوده و دارای توزیع شدگی زیاد هستند. دراین فصل معماری سرویس گرا، سازمان بزرگ مقیاس و نظام مبادلات پیمانکاری فرعی (spx)را مطرح می کنیم. همچنین در این فصل مروری بر پیشینه ی کارهای انجام شده در هر یک از این زمینه ها خواهیم داشت.
2-2 نظام مبادلات پیمانکاری فرعی
در این بخش به ارائه مفاهیم نظام مبادلات پیمانکاری فرعی می پردازیم.
2-2–1 تعریف نظام مبادلات پیمانکاری فرعی
در پیمانکاری فرعی صنعتی یک پیمانکار اصلی، عرضه کننده های مختلف و پیمانکار های فرعی وجود دارد که شامل یک قرارداد بین طرفین پیمانکار اصلی و پیمانکار فرعی است پیمانکار اصلی یک یا چند اقدام مهم تولیدی بخش ها را به زیر مجموعه ها و یا تهیه کنندگان خدمات ضروری صنعتی برای تولید محصول نهایی واگذار می نماید . پیمانکار فرعی نیز کارها را بر اساس مشخصات تهیه شده توسط پیمانکار اصلی اجرا می نماید. بنابراین یک تقسیم کار در سیستم تولیدی در بخش صنعت و پیمانکاری های فرعی در یک یا چند فرایند تکنولوژیکی افزایش چشمگیری می یابد] 1 [.
نظام مبادلات پیمانکاری فرعی(SPX)، یکی از روش های عمده توسعه صنایع کوچک و متوسط(SMEs)به ویژه در حوزه پیمانکاری صنعتی (شرکت ها، کارگاه ها و کارخانجاتی که بنا به سفارش اقدام به تولید نموده و تولیدات خود را در اختیار کارفرمایان قرار می دهند) است که ایده ی اولیه ایجاد آن از سال 1970 در سازمان توسعه ی صنعتی ملل متحد  (یونیدو) شکل گرفت و تا سال 1985 به شکل امروزی خود درآمد. اثر بخشی این مراکز در توسعه صنایع پیمانکاری به گونه ایی بوده که تا پایان سال 2012 ، تعداد 59 مرکز مبادلات پیمانکاری فرعی(SPX) در سطح دنیا ایجاد شده است.
نکته کلیدی اینکه پیمانکاری فرعی به دو عامل توانایی تولید و تخصص بستگی دارد. زمانیکه ظرفیت تولید موجود توسط پیمانکار اصلی از عهده میزان تولید مورد نیاز ( سفارش) برنیاید و فروش (سفارش) از ظرفیت تولید داخلی بیشتر باشد، در این صورت وضعیت مطلوب ممکن نخواهد بود مگر اینکه پیمانکار اصلی به یک پیمانکار فرعی تکیه نماید. این مطلب زمانی تحقق می یابد که سفارش رسیده به پیمانکار اصلی درنوسان و عدم تعادل باشد. در مورد نکته دوم پیمانکارهای اصلی خدمتی را از پیمانکار فرعی می خواهد کسب کند که دارای تجهیزات تخصصی و یا ترکیبی از ماشین آلات و نیروی کار ماهر و یادقت خاصی باشد. همچنین پیمانکارهای فرعی نیز دارای مهارت فنی ویژه برای اقلام فرآیندهای تولیدی خاص هستند که پیمانکار اصلی ترجیح می دهد از خدمات آنها استفاده نماید. این نوع ارتباط با نوسان سفارش و یا بصورت طولانی مدت یا اساسی مشارکت نمی یابد. از نظر اطلاعات تخصصی شده خط تولید، بعضی وقتها پیمانکاری های فرعی ممکن است بعنوان یک کنترل کننده باشند. پیمانکارهای اصلی بطور کلی لازم الوجود نیستند، صنایع بزرگ، تولید صنعتی که به مقدار زیاد و به عنوان لوازم ترکیبی برای نصب نهایی در محصول مورد نیاز است را سفارش می دهند. و همه این لوازم و اجزاء به خاطر هر یک از دلایل اقتصادی یا ویژه بودن عموماً در داخل بطور ثابت تولید نمی شوند. پیمانکار های فرعی بطور کلی گرچه ضروری نیستند، صنایع کوچک و متوسط تخصصی در عملیات و فرآیند های مشخص، قابلیت تولید کالاهای با کیفیت همانند و منطبق با مشخصات پیمانکار اصلی و در عین حال با شرایط اقتصادی برتر را فراهم می نمایند. بعضی وقت ها نیز صنایع بزرگ ظرفیت قابل دسترس شان افزایش می یابد و امکان فعالیت بعنوان یک پیمانکار فرعی را نیز پیدا می کنند. آنها همچنین ممکن است دارای موقعیتی باشند که صنایع کوچک و متوسط به خدمات اقتصادی آنها برای تولید قطعات و اجزاء تکمیل کننده سفارش های بزرگ به آن نیازمند باشند. که در این صورت بعنوان پیمانکارهای اصلی فعالیت می نمایند. بهر حال ارتباط پیمانکاری فرعی می تواند در بخش های مختلف فعالیت تولیدی وجود داشته باشد. که در این صورت بعنوان برجسته ترین مقام در زمینه فنی مهندسی در صنایع مانند خودرو، راه آهن، علوم هوایی، لوازم الکترونیکی، وسایل الکتریکی داخلی، ظرافت تجهیزات، پلاستیک کاری، فلز کاری صنایع مانند ریخته گری، آهنگری تلقی می شود.
مهمترین ماموریت های این مرکز عبارت است از :
    شناسایی، ایجاد و توسعه بازار
تسهیل ارتباط کارفرمایان و پیمانکاران
    ارتقاء و توانمند سازی پیمانکاران
شکل زیر مدل پیمانکاری فرعی صنعتی بین صنایع کوچک و بزرگ نشان می دهد.

شکل 2-1. مدل انجام پیمانکاری فرعی صنعتی بین صنایع کوچک و بزرگ]2[
2-2-2 شرایط تاسیس یکSPX 
SPXدر مرحله اول سازمانی مستقل و غیر انتفعی متعلق به تولید کنندگان است،اما از سوی مراجع مسئول دولتی و سازمانهای حرفه ای حمایت و پشتیبانی میشود.تجربه حاکی از آن است کهSPX هایی که در وزارتخانه صنایع و سازمانهای عمومی ایجاد شده اند توسط دولت یک قطبی شده،از خاستگاه صنعتی خویش جدا افتاده و محکوم به نابودی اند.روش میزبانی SPXدر یک وزارتخانه و یا سازمان عمومی می بایستی صرفاً به عنوان یک وضعیت گذرا در حالت نوپا و قبل از آنکه به بخش خصوصی انتقال یابد تلقی شده و ترجیحاً بر مبنای خودگردانی باشد] 3[.
2-2-3 خدماتSPX ها
اطلاع رسانی: به طور مثال اطلاعرسانی فنی مرتبط با صنایع کوچک و متوسطی که توانمندی کارکردی بعنوان پیمانکاران فرعی،تامین کنندگان یا شرکای پیمانی اصلی داخلی و خارجی را دارند.
واسطه گری تبادل اطلاعات: مربوط به عرضه و یا تقاضای محصولات یا ملزومات حاصل از پیمانکاری فرعی،اطلاعات مربوط به دانش کار،حق امتیازها،تشریک مساعی فنی،فرصتها و رویه های برقراری پیمانهای مشارکتی.
خدمات تبلیغی و ترویجی: به طور مثال سازماندهی گردهمایی کسب و کار،مدیران تدارکات از گروهها صنعتی،داخلی و خارجی،سازماندهی حضور دسته جمعی در نمایشگاه صنعتی بخش های مرتبط، تهیه و توزیع اقلام تبلیغی از جمله سایتهای اینترنتی
2-2-4 مزایای پیمانکاری فرعی صنعتی
پیمانکاری فرعی صنعتی دارای مزایای زیادی برای صنایع کوچک و بزرگ است:
الف)مزایای پیمانکاری فرعی صنعتی برای صنایع کوچک:
حداکثر بهره برداری از امکانات آزمایشگاهی وسیستم کنترل موجودی در صنایع طرف قرارداد.
بهره مندی از تجربه فنی تخصصی کارشناسان طرف قرار داد و درنتیجه ارتقای توان علمی تخصصی و بهره وری واحدهای صنعتی کوچک.
استفاده از توان بالقوه تولیدی و رفع مشکل کمبود تقاضا در واحدهای تولیدی مورد نظر به لحاظ تولید انبوه، قیمت تمام شده کالا درحداقل قرار می گیرد.
توزیع درآمد بهتر و افزایش درآمد کارکنان و در نهایت اجتماع.
تولیدات به صورت تخصصی وحرفه ای شکل می گیرد وباعث دستیابی سریع تربه نوآوریها وخلاقیّت درتولید می شوند ودرنتیجه تنوّع درتولیدات افزایش می یابد.
ب ( مزایای پیمانکاری فرعی برای صنایع بزرگ:
صنایع بزرگ با کاهش هزینه های سرمایه گذاری وجلوگیری از گسترش بی رویه واحدها وبعضا باتعطیل کردن پاره ای ازبخشهای خط تولیدوسپردن کار تولیدقطعه هاوکالاهای صنعتی وحتی بخش طراحی ومونتاژ کالابه واحدهای کوچک طراحی ومهندسی ومونتاژ،نه تنها از کاهش حجم تولید واحد صنعتی خودجلوگیری می کند،بلکه برعکس حجم تولید وبهره وری را تا چند برابر افزایش می دهند.
صنایع بزرگ بابهره گیری از پیشنهادها و اندیشه خلاّق واحدهای کوچک پیمانکاری ضمن رفع مشکلات وضعفهایاحتمالی و ارتقای کیفیت کالاهای تولیدی،توانسته اند بیشترین نوآوری وتنوّع رابه تولیدات خودبدهند.
صنایع بزرگ با انجام پیمانکاری های فرعی قادر هستند قیمت تمام شده کالارا به میزان قابل توجهی کاهش دهند و برای مدت زمانی طولانی میتوانند قطعه ها و لوازم مورد نیاز خود را به گونه سفارشی تأمین کنند.
2-2-5 خدمات مورد انتظار از یک مرکز اطلاعاتی SPX
خدمات اطلاع رسانی (آگاهی) شامل اطلاعات فنی در خصوص صنایع کوچک و متوسط که مستعد کارکردن بعنوان پیمانکاری فرعی هستند و تهیه کنندگان یا شرکاء برای پیمانکاری های اصلی داخلی و خارجی، دلالی گزارشات اطلاعات عرضه و تقاضا برای دانش فنی، حق امتیاز، همکاری فنی، فرصتها و روشهای استفاده برای تنظیم موافقتنامه های مشارکتی.
خدمات فنی به سازمانهای تجاری، مدیران خرید یا فروش از گروههای صنعتی داخلی و خارجی، سازمان های گروه سهامی در نمایشگاه های صنعتی در بخش های تهیه و توزیع مواد متشکله صنایع مرتبط شان.
خدمات مشاوره ای عملیات پیمانکاری فرعی، تولید، کنترل کیفیت، گواهی استاندارد سازی، بازاریابی.
2-2-6 سازمان بزرگ مقیاس
سازمان های بزرگ مقیاس به گروهی از واحدها اطلاق می شود که برای تولید یک کالا یا انجام پروژه خاص با هم (معمولا با هدف هزینه کمتر) در ارتباط بوده، همدیگر را تکمیل می کنند و بر مبنای یک توافق یا پیمانکاری با هم فعالیت می کنند و برای مواجهه با مسئله ای واحد تخصص می یابند، و تقاضایی را با تکیه بر توانایی های خود پوشش می دهند. همکاری پایه فعالیت این سازمان ها است و دارای یک هدف تجاری یا فعالیت واحدی هستند. در سیستم های بزرگ مقیاس به دلیل گستردگی حیطه مسئله، با موجودیتها و ارتباطات بسیار زیادی مواجهه هستیم. سازمان های بزرگ مقیاس بر اساس مزیت رقابتی شرکت های رقیب تشکیل شده اند. چگونگی پشتیبانی همکاری و مشارکت درون سازمانی یک موضوع اصلی از یک سازمان بزرگ مقیاس است. چنین سیستمی کارکردهای بیشتری نسبت به مجموع کارکردهای سیستم های عضو در آن ارائه می‌کند.
2-3 تعریف معماری سرویس گرا
تعاریف بسیاری برای معماری سرویس گرا وجود دارد، اما یک تعریف رسمی واحد برای آن موجود نیست. به همین دلیل بسیاری از سازمان ها که سعی در استفاده و بهره برداری از این مفهوم را دارند، برای تعریف آن حرکتی کرده اند. در تعاریف متعددی که از معماری سرویس گرا ارائه شده است، عمدتا از دو دیدگاه فنی و غیر فنی این واژه تعریف شده است. از جمله تعاریفی که به رویکرد غیر فنی معماری سرویس گرا اشاره دارند می توان به موارد زیر را نام برد :
معماری سرویس گرا یک محصول نیست بلکه پلی است بین کسب و کار و فناوری به کمک مجموعه ای از سرویس ها متکی بر فناوری که دارای قوانین، استانداردها و اصول طراحی مشخص هستند]6 1[.
چارچوبی برای یکپارچه سازی فرایندهای کسب و کار و پشتیبانی آن ها توسط فناوری اطلاعات با کمک مولفه های استاندارد و امن تحت عنوان سرویس که قابلیت استفاده مجدد و الحاق به یکدیگر جهت پوشش تغییرات حرفه را دارا می باشند] 17 [.
SOAیک رهیافت است، یک شیوه ی فکر کردن یک سیستم ارزشی است که منجر به تصمیمات به هم پیوسته کامل در زمان طراحی یک معماری نرم افزار به هم پیوسته می شود]18 [.
معماری سرویس گرا پیکره ی فرایند های استاندارد طراحی و مهندسی، ابزارها و بهترین تجاربی است که با استفاده از سرویس ها و بهره گیری از خاصیت پیمانه ای بودن و قابلیت ترکیب آن ها، زمینه ی تحقیق اهداف کسب و کار را فراهم می آورد] 19[.
سبکی از معماری که از اتصال سست سرویس ها جهت انعطاف پذیری و تعامل پذیری کسب و کار، و به صورت مستقل از فناوری پشتیبانی می کند و از ترکیب مجموعه سرویس ها مبتنی بر کسب و کار تشکیل شده که این سرویس ها انعطاف پذیری و پیکربندی پویا را برای فرایندها محقق می کنند]20 [ .
روشی برای طراحی و پیاده سازی نرم افزارهای گسترده سازمانی به وسیله ی ارتباط بین سرویس هایی که دارای خواص اتصال سست، دانه درشتی و قابل استفاده مجدد هستند]21 [ .
معماری سرویس گرا سبکی از توسعه و یکپارچه سازی نرم افزار است. که با شکستن یک برنامه ی کاربردی به سرویس هایی که می توانند هم در داخل و هم در خارج از سازمان مورد استفاده قرار بگیرند، سر و کار دارد ]24 [ .
با وجود تفاوت دیدگاه ها در تعاریف فوق، همه ی آنها بر این اصل توافق دارند که معماری سرویس گرا باعث افزایش انعطاف پذیری سازمان ها می شود. همچنین بر اساس تعاریف ارائه شده می توان استنباط کرد که معماری سرویس گرا قابلیت تاثیر گذاری در همه ی سطوح فناوری اطلاعات از بالاترین سطح معماری سازمانی تا پیاده سازی سرویس ها دارد.
2-4 تعریف سرویس
از آن جا که مفهوم سرویس در صنعت IT به روش های بسیار مختلفی به کار برده شده است، لازم است آن را به دقت تعریف کنیم. با این وجود، قبل از ارائه یک تعریف رسمی و مبتنی بر تکنولوژی، به تعریف کلی تر خواهیم پرداخت تا درک بهتری از سرویس ایجاد شود. ضمنا برای سادگی و یکنواختی برای مفهوم متقاضی سرویس، مصرف کننده ی سرویس، مشتری یا مصرف کننده ی سرویس، عبارت سرویس گیرنده، و برای مفهوم ارائه دهنده ی سرویس یا فراهم کننده ی سرویس از عبارت سرویس دهنده استفاده خواهیم کرد.
آن چه در این مبحث از سرویس مورد نظر است، معنای خود را به نحوی از این تعاریف می گیرد. و به معنی فعالیت با معنایی است که یک سرویس دهنده (احتمالا بر اساس درخواست یک سرویس گیرنده)، انجام می دهد. سرویس دهنده و سرویس گیرنده ممکن است افرادی در یک سازمان یا قطعه برنامه های نرم افزاری باشند و سرویس ممکن است دستی یا مکانیزه، نرم افزاری یا غیر آن باشد.
در اصطلاح فنی و نرم افزاری می توان گفت به طور کلی سرویس، یک پیمانه ی قابل دسترس از راه دور و مستقل است. برنامه های کاربردی این سرویس ها را در دسترس کاربران قرار می دهند. با این تفاسیر مشاهده می کنیم که مفهوم سرویس در هر دو حوزه ی کسب و کار و فناوری مطرح است و کاربرد دارد. تعاریف متعددی برای مفهوم سرویس ارائه شده است از جمله :
" سرویس، کاری است که توسط یک سرویس دهنده ارائه و انجام می شود و ممکن است انجام یک درخواست کوچک مانند دریافت یا ذخیره ی اطلاعات، و یا مربوط به انجام کاری پیچیده تر مانند چاپ یک تصویر باشد" ]28 [.
" از دیدگاه کاری سرویس ها دارایی های ITهستند که به فعالیت های کاری یا عملکردهای کاری قابل بازشناسی در دنیای واقعی مرتبط بوده، و می توانند با توجه به خط مشی های سرویس مورد دسترسی قرار بگیرند. از دیدگاه فنی سرویس ها، دارایی های دانه درشت و قابل استفاده ی مجدد ITهستند که دارای واسط های خوش تعریفی (قراردادهای سرویس) هستند که واسط های قابل دسترس از خارج سرویس را، از پیاده سازی فنی سرویس مجزا می کنند" ]24 [ .
" سرویس تحقق کاری یک عملکرد مستقل است. از دیدگاه فنی، سرویس توصیفی است از یک یا چند عملیات که از (چندین) پیام برای تبادل داده ها میان یک سرویس دهنده و یک سرویس گیرنده استفاده می کند. اثر فراخوانی سرویس آن است که سرویس گیرنده اطلاعاتی به دست می آورد، یا حالت مولفه یا سرویس دهنده را تغییر می دهد" ]26 [ .
" سرویس یکمولفه از یک برنامه کاربردی است که روی سکویی که از طریق شبکه قابل دسترس است مستقر شده، و توسط یک سرویس دهنده ارائه می شود. واسط های سرویس جهت فراخوانده شدن توسط سرویس گیرنده یا تعامل با آن، با استفاده از یک توصیف سرویس، توصیف می شوند" ]26 [ .
بر اساس این تعاریف گزاره های زیر در مورد سرویس برقرار است:
یک عملکرد یا وظیفه مندی را ارائه می کند که ممکن است کاری یا فنی باشد.
قابل استفاده ی مجدد، و از سایر سرویس ها مستقل است.
دارای توصیف، واسط یا قرار داد خوش تعریف است، و جزئیات آن از دید سرویس گیرندگان مخفی است.
دارای یک یا چند عملیات است، و ارتباط سرویس ها توسط تبادل پیام میان این عملیات صورت می گیرد.
2- 5 سرویس های وب
معمولا واژه های معماری سرویس گرا و سرویس های وب اشتباها به جای هم، و به صورت معادل استفاده می شوند. لذا لازم است این دو مفهوم، به صورت دقیق تر بررسی شوند. سرویس های وب را باید عینیت بخش معماری سرویس گرا دانست] 6[.
تعریف W3C از سرویس های وب عبارت است از : یک سرویس وب، نوعی سیستم نرم افزاری است که جهت تعامل ماشین با ماشین در سطح شبکه طراحی شده است، و دارای یک توصیف قابل پردازش توسط ماشین با نام، WSDL است. دیگر سیستم ها بر طبق این توصیف از قبل مهیا شده با سرویس دهنده تعامل خواهند داشت، پیام ها توسط پروتکلSOAP و یا سایر پروتکل های مربوطه منتقل می شوند] 22 [.
از جمله ویژگی هایی که برای سرویس های وب مطرح هستند عبارتند از :
نرم افزارهای کاربردی که تحت وب منتشر شده، شناسایی و مورد فراخوانی قرار می گیرند.
مستقل از سکو و زبان هستند.
نوعی از پیاده سازی معماری سرویس گرا می باشند.
با منطق حرفه در تماس هستند، ولی هیچ شخصی مستقیم با آن ها ارتباط ندارد.
یک رهیافت کلیدی برای عینیت بخشیدن به معماری سرویس گرا هستند.
سرویس های وب دارای شرایطی از قبیل : دسترسی در سطح وب، استفاده از استانداردXMLجهت تبادل اطلاعات، عدم وابستگی به هیچ سکو و سیستم عاملی، تعامل با سرویس های تحت وب و با قابلیت شناسایی و خود توصیفی می باشند. این ویژگی ها در مقابل خصوصیاتی از قبیل استفاده از استاندارد HTML برای تبادل اطلاعات، وابستگی به سکو و فناوری و استفاده توسط اشخاص یا مرورگر وب که برای نرم افزارهای تحت وب می باشند از سرویس های وب متمایز می شوند] 6 [.
2-6 مفاهیم مهم سرویس گرایی
در این بخش به ارائه مفاهیم مهم درارتباط باساختارسرویس وکلیات مطالب مربوط به آن می پردازیم.
2-6-1چگونه سرویسها منطق را محصور میکنند
برای حفظ استقلال، سرویس ها منطق متن خاصی را محصور می کنند. آنچه در سرویس محصور می شود ممکن است کوچک یابزرگ باشد .بنابراین اندازه وحوزه منطقی که توسط سرویس محصورمی شود میتواند متنوع باشد. برای مثال آنچه توسط راه حل هایاتوماسیون ارائه میشود، معمولاًپیاده سازی یک فرآیند عمده کاری است.این فرآیندازمنطقی تشکیل شده است که بارعایت ترتیب وتوالی یا توازی خاص عمل موردنظررا انجام می دهد. این منطق به مجموعه ای از مراحل شکسته می شودکه باتوجه به قواعد،باترتیب ازپیش تعریف شده ای اجرا می شوند. همانطورکه درشکل2-5مشاهده میشود درساختن راه حل متشکل ازسرویسها، هرسرویس میتواند وظیفه ای را که درهرمرحله اجرا می شودیایک زیرفرآیندرا محصور کند. سرویس حتی میتواندکل فرآیندی راکه توسط سرویسهای دیگر محصورشده است، محصورکند.

شکل 2-2. محصورسازی اندازه های مختلفی ازمنطق توسط سرویس] 23[
2-6-2 چگونه سرویس ها از وجود یکدیگر مطلع میشوند.
درSOA، سرویس ها می توانند توسط سرویس های دیگر، یابرنامه های دیگر مورد استفاده قرارگیرند .حال، استفاده کننده ازسرویس هرکه باشد،ارتباط میان سرویسهادرصورتی روی خواهددادکه سرویسها از وجودیکدیگرمطلع باشند. این امر با بهره گیری ازتوصیف سرویس ممکن است.
توصیف سرویس درپایه ای ترین حالت خود، نام سرویس و داده هایی راکه درحین ارتباط مورد نیازند یا بدست می آیند مشخص میکند. روشی که درآن سرویسها از توصیف سرویس استفاده میکنند، موجب می شود که ارتباط درطبقه اتصال سست قرارگیرد. برای تعامل سرویسها و معنی دار بودن آن، آنهاباید اطلاعاتی را مبادله کنند.بنابراین یک چارچوب ارتباطاتی که دارای قابلیت ایجاد ارتباط دارای اتصال سست باشد موردنیازاست. یک چارچوب برای این منظور، پیام رسانی است.
2-6-3 چگونه سرویس ها با هم ارتباط برقرار می کنند.
پس ازآنکه سرویسی پیامی را میفرستد، دیگرکنترل آن رادراختیار ندارد. به همین دلیل است که سرویس هابه پیام ها نیاز دارند تا بعنوان واحد مستقل ارتباطی باقی بمانند. این به معنای آن است که پیام ها نیز مانند سرویس ها باید خود مختار باشند. به همین دلیل میزانی از هوشمندی را دارا هستند تا بتوانند در بخشهای مختلف پردازش خود را مدیریت کنند.
2-6-4چگونه سرویس ها طراحی می شوند.
اصول سرویس گرایی مسائل مرتبط بامواردزیرراتحت پوشش قرارمی دهد(این اصول درادامه معرفی خواهند شد).
الف- چگونه سرویس هاطراحی میشوند؟
ب- ارتباط بین سرویسهاچگونه بایدتعریف شود؟ (شامل تعیین چگونگی تبادل پیامها یاهمان الگوی تبادل پیام MEP)
پ- چگونه باید پیامهاراطراحی کرد؟
ت–چگونه توصیف سرویس ها طراحی می شوند؟
2-6-5 توصیفات سرویسها
هرسرویسی که می خواهد نقش دریافت کننده پیام را داشته باشد باید توصیف سرویس را به همراه داشته باشد. هرتوصیف پیام نقطه اتصالی ازفراهم کننده سرویس رادراختیارقرارمی دهد و دارای تعریفی رسمی از واسط این نقطه اتصال است (تا درخواست کنندگان بتوانند ازساختار پیامی که می بایست برای دریافت خدمات به سرویس دهنده ارسال کنند،آگاه شوند) وهمچنین محل سرویس را (که برای استفاده کنندگان شفاف خواهد بود) معین می کنند.
2-7 ویژگی های معماری سرویس گرا
از آنجایی که تعریف رسمی واحدی برای معماری سرویس گرا وجود ندارد، هیچ مجموعه رسمی واحدی از اصول طراحی بر مبنای سرویس گرایی وجود ندارد. با این حال، مجموعه ای از اصول طراحی در سطح سرویس توسط افرادی نظیر Erl و Mcgovern معرفی شده اند که بر سرویس گرایی انطباق مناسبی دارند و عبارتند از] 29[ :
سرویس ها معمولا یک دامنه یا وظیفه کاری را نمایش می دهند.
سرویس ها دارای طراحی ماژولار (پیمانه ای) هستند.
سرویس ها دارای وابستگی ضعیف اند.
سرویس ها قابل کشف اند.
محل سرویس ها برای سرویس گیرندگان شفاف است.
سرویس ها مست
سرویس ها دارای استقلال داخلی اند.
قل از روش انتقال هستند.
سرویس ها مستقل از پلت فرم هستند.
سرویس ها قابل استفاده ی مجدد هستند.
سرویس ها قابل ترکیب اند.
در معماری سرویس گرا منظور از اتصال سست، قابلیت تعامل بین سرویس ها به صورت مستقل از کد نویسی و مکان سرویس هاست. به گونه ای که سرویس ها در زمان اجرا می توانند تغییر مکان داده و روال های داخلی خود را تغییر دهند. سرویس ها ماژول هایی از کسب و کار هستند که می توانند توسط پیام هایی درخواست شوند و در نرم افزارهای مختلف مورد استفاده قرار بگیرند. یک نمونه از سرویس می تواند انجام یک درخواست روی داده مانند دریافت یا ذخیره ی اطلاعات باشد. سرویس ها در یک زبان استاندارد توصیف می شوند و فعالیت ها و فرایندهای کسب و کار را پشتیبانی می کنند. سرویس هایی که از استانداردهایی مثل یو دی دی آی، دبلیو اس دی ال، سواپ استفاده می کنند، عمومی ترین نوع سرویس هایی هستند که امروزه در دسترس می باشند. این سرویس ها به راحتی می توانند ترکیب شوند تا مجموعه ای از فرآیندهای کسب و کار مستقل را شکل دهند. ویژگی مستقل از سکو بودن معماری سرویس گرا این امکان را فراهم کرده است تا هر کاربر، از هر سیستمی و یا هر نوع سیستم عامل و زبان برنامه نویسی می تواند به سرویس ها دسترسی پیدا کند] 29 [.
سازمان های مختلف در بخش های گوناگون، معماری سرویس گرا را به دلیل قابلیت آن در بهبود فرآیندهای کسب و کار سریع، و انعطاف پذیری را ایجاد کنند.
به طور کلی برخی از مزایای به کارگیری معماری سرویس گرا عبارتند از:
یکپارچه سازی برنامه های موجود
بهبود یکپارچه سازی داده ها
سرعت بخشیدن به توسعه ی برنامه های کاربردی سفارشی
سهولت برون سپاری جهانی
تسریع در انجام فرآیندهای سیستم اطلاعاتی و ...]30[.
2-8 تعریف گذرگاه سرویس
تعاریف متفاوتی در منابع گوناگون برای گذرگاه سرویس سازمانی ارائه گردیده است که تعدادی از آنها به شرح زیر می باشد:
ESB به عنوان یک لایه هوشمند، توزیع شده، تعاملی و پیام رسان برای اتصال برنامه های کاربردی و سرویس هایی که معمولا به صورت توزیع شده از طریق زیرساخت های ارتباطی سازمان ها با هم ارتباط دارند، عمل می کند]31[.
مجموعه ای از استاندارها جهت ارائه یک زیرساخت عملیاتی و قدرتمند برای پشتیبانی عملیات یکپارچه سازی برنامه های کاربردی توزیع شده]32[.
ESB به عنوان یک معماری است که از ترکیب وب سرویس، پیام رسانی میان افزار، مسیریابی هوشمند و تبدیل اطلاعات بدست می آید]33[.
ESB به عنوان متصدی و مسئول مسیریابی، تبدیل و کنترل ارتباطات بین ارائه کننده و مصرف کننده خدمات می باشد]34 [.
ESB یک الگوی معماری و یک کلید مهم واساسی در اجرای زیرساخت های معماری سرویس گرا می باشد، در واقع ESBشرایطی برای تعامل بین سرویس های ناهمگن و رابط های کاربری که دارای عدم تطابق هستند فراهم می نماید]35[.
ESB یک سیستم مبتنی بر استانداردهای توزیع شده پیام رسانی همزمان و یا غیرهمزمان توسط میان افزارها می باشد که قابلیت همکاری و تعامل امن بین برنامه کاربردی سازمان ها را با استفاده از XML، وب سرویس، رابط های کاربری و مسیریابی مبتنی بر قوانی فراهم نموده و به یکپارچه سازی سرویس ها در میان چندین برنامه کاربردی در داخل و خارج سازمان کمک می کند. این امر از طریق ایجاد گذرگاهی استاندارد و ارائه تطبیق دهنده هایی برای تبادل اطلاعات بین برنامه ها صورت می گیرد.

شکل 2-3. ارتباط بین برنامه های کاربردی مختلف در ] ESB 36[
2-8-1 مسیریابی و مقیاس پذیری
از ویژگی های مهم استفاده از ESB حل مشکل توسعه سیستم در روش ارتباط نقطه به نقطه است. همان گونه در بخش هایی فبلی هم مطرح گردید جهت برقراری ارتباط به صورت نقطه به نقطه برای N برنامه کاربردی نیاز به N(N-1)/2 ارتباط می باشد که این روش در سازمان های نسبتا بزرگ و بزرگ اصلا مناسب نبوده و قابل اجرا نمی باشد. نکته مهم در برقراری ارتباطات بین برنامه های کاربردی کاربردی در روش ESB این است که برای ارتباط از یک گرگاه مشترک استفاده می گردد و برنامه ها به صورت مستقیم با هم ارتباط ندارند. در واقع تعداد ارتباطات مورد نیاز برای برقراری تعامل بین برنامه برای N برنامه برابر با تعداد آنها، یعنی N می باشد که نسبت به روش نقطه به نقطه بسیار ساده تر و بهینه تر می باشد.

شکل 2-4. ارتباط غیر مستقیم بین برنامه های کاربردی با استفاده از قابلیت مسیریابی پیام در ] ESB 37 [
برای ارتباط غیر مستقیم بین برنامه های کاربردی از طریق یک گرگاه مشترک در ESB علاوه بر کاهش تعداد ارتباطات موردنیاز برای تعامل برنامه ها مزایای دیگری نیز دارد که از جمله می توان به مواردی از قبیل نگهداری و بروزرسانی ساده تر سیستم یکپارچه و همچنین افزایش چابکی در پیاده سازی ساختار یکپارچه سازی برنامه های کاربردی سازمان اشاره نمود.
2-8-2 تبدیل پروتکل انتقال
عدم تطابق پروتکل های ارتباطی در برنامه های کاربردی سازمان، یکی دیگر از مشکلات موجود در یکپارچه سازی برنامه های کاربردی در سازمان ها می باشد و دلیل آن توسعه برنامه ها در سازمان ها و عدم استفاده از پروتکل های یکسان در پیاده سازی آن ها می باشد به نحوی که ممکن است در برخی موارد عدم تطبیق پروتکل های ارتباطی در نرم افزار ارائه دهنده سرویس و نرم افزار مصرف کننده سرویس رخ دهد. استفاده از پروتکل یکسان توسط کلیه برنامه های کاربردی سازمان در عمل دارای محدودیت های فراوان بوده و غیر قابل اجرا می باشد.

شکل 2-5. برقراری ارتباط بین برنامه های کاربردی با پروتکل های انتقال مختلف با استفاده از پیاده سازی گرگاه سرویس سازمان ] ESB 37 [
2-8-3 تبدیل پیام
موارد دیگری که در پیاده سازی ESB مدنظر قرار گرفته و برای آن راه حل ارائه گردیده است، تبدیل پیام ها و حل مشکل عدم تطبیق فرمت پیام ها و داده ها می باشد. یکی از مشکلاتی که در یکپارچه سازی برنامه های کاربردی در سازمان ها وجود دارد این است که فرمت داده ها و پیام ها در مصرف کننده سرویس و فرمت مورد نیاز برای تامین کننده سرویس با یکدیگر تفاوت دارد و در نتیجه این امر مانع برقراری یا ارتباط و تبادل داده ها بین برنامه ها می گردد.
بنابراین یکی دیگر از کارکردهای اصلی که باید توسط ESB ارائه گردد، تبدیل پیام ها و یا داده ها می باشد. هنگامی که این قابلیت با دو قابلیت اصلی دیگر یعنی مسیریابی و تبدیل پروتکل های ارتباطی ترکیب شود، در نتیجه برنامه های کاربردی می توانند به راحتی و بدون نیاز به تطابق پروتکل ها و فرمت پیام ها و داده ها با یکدیگر ارتباط برقرار کنند.

شکل 2-6. با استفاده از ESB برنامه های کاربردی می توانند حتی زمانی که فرمت پیام ها و پروتکل های ارتباطی متفاوت دارند، با یکدیگر تعامل داشته باشند] 37 [
2-8-4 ویژگی ها و مزایای گذرگاه سرویس
با توجه به مطالب مطرح شده در قسمت قبلی، ESBویژگی های کلیدی ذیل را ارائه می دهد ] 37 [:
مسیریابی مبتنی بر محتوا و متن
تبدیل پروتکل های انتقال
تبدیل پیام ها و داده ها
سرویس و امکاناتی که با استفاده ازESBفراهم می گیرد فراتر از برقراری اتصال و تعامل بین برنامه های کاربردی می باشد و با استفاده ازESBسرویس های ارزش افزوده ای نیز حاصل می گردد که تعدادی از آن ها در ادامه بیان می گردد] 38[:
فراهم کردن امکان اتصال
مسیریابی هوشمند
تامین امنیت و قابلیت اطمینان تعامل
مدیریت سرویس
نظارت و ثبت رخدادها
2-8-5 اجزای گذرگاه سرویس
به منظور اجرای ویژگی ها و وظایف مطرح شده برای ESBتعدادی از مولفه ها و اجزا در ساختار تشکیل دهنده آن مورد نیاز می باشد که ضمن نمایش آن ها در شکل شماره 3-19 تعدادی از آن ها در ادامه بیان می گردد] 39 [:
سازگارکننده ها: از اجزای اصلی ESBهستند وشرایطی را فراهم می آورند تا ESBبتواند با ورودی/ خروجی متفاوت تعامل داشته باشد.به ازای هر مصرف کننده و یا ارائه دهنده سرویس، یک سازگارکننده خاص وجود دارد که تنها ترکیب خاصی از پروتکل های و فرمت های پیام را تشخیص می دهد.به عنوان مثال می توان سازگارکننده ای را نام برد که کلیه درخواست های ورودی بر مبنای SOAP را روی HTTP ارائه می دهد.
توزیع کننده: به عنوان یک نقطه ورود مرکزی عمل می کند و وظیفه آن دریافت اطلاعات از سازگار کننده ها و ارسال به قسمت مربوطه برای مسیریابی، تبدیل، غنی سازی، و غیره می باشد. توزیع کننده درخواست ها را به سمت اداره کننده درخواست ها ارسال می کند و همراه با آن قابلیت مسیریابی مبتنی بر محتوا را در ESB فراهم می نمایند.

شکل 2-7. اجزای منطقی تشکیل دهنده ] ESB 39 [
اداره کننده درخواست ها: هر سرویس اداره کننده درخواست مخصوص به خود دارد و وظیفه آن انتقال پارامترهای خاص مربوط به سرویس به موتور مسیریابی برای اجرای مناسب سرویس می باشد.
موتور قوانین و مسیریابی: وظیفه این مولفه، اجرای تبدیل و غنی سازی وظایف و مسیریابی آنها برای تحویل به نمایندگان سرویس خاص می باشد.
نماینده های سرویس: به عنوان نقطه انتهایی برای دسترسی به سرویس خاص هستند و با استفاده از سازگارکننده ها با ارائه دهندگان سرویس ارتباط برقرار می کنند.
موتور تبدیل: این جزء ازESB کلیه پیام ها و یا داده های ورودی را به فرمت مناسب برای ارائه کننده سرویس تبدیل می کند.
اجزاء غنی سازی : این مولفه به ESB اجازه می دهد تا محتویات پیام را مطابق با نیاز ارائه دهنده سرویس و از طریق یک منبع خارجی (مانند: پایگاه داده) تقویت نماید.
اجزاءثبت عملیات: این جزء ازESB، پشتیبانی از ثبت عملیات مورد نیاز برای سایر بخش ها را فراهم می نماید.
اجزاء مدیریت استثناءها: وظیفه این بخشازESB مدیریت استثنائات تولید شده توسط سایر بخش ها و اجزاء می باشد.
2-9 انگیزه ی حرکت سیستم های تولید ی به سمت معماری سرویس گرا
درسیستم های تولیدی فعالیتهای گوناگونی انجام می شود، پیشرفت‌های اخیر در زمینه تولید و تکنولوژی اطلاعات، جایگزین‌های استراتژیکی را برای طراحی سیستم‌های اطلاعاتی محیط‌های تولیدی مهیا و معرفی کرده است. بیشتر شرکت‌ها، استفاده استراتژیک از سیستم‌های اطلاعاتی را به منظور فراهم‌سازی مزیت رقابتی بالا، شروع کرده‌اند. آنها، عملیات تولید و استراتژی کسب و کار خود را با استفاده از سیستم‌های اطلاعاتی، یکپارچه ساخته و توانسته‌اند توازنی مطلوب بین یکنواختی و قابلیت انطعاف در تولید را با استفاده از توسعه مفاهیم سیستم‌های یکپارچه (در مقابل روش‌های معمول تولید) برقرار سازند.
به همین دلیل سازمان ها امروزه به سمت معماری سرویس گرا روی آورده اند که رویکردی برای سرعت بخشیدن در انجام فرآیندهای سیستم اطلاعاتی می باشد.
در واقع انگیزه اصلی سیستم spx به سمت معماری سرویس گرا، بهبود انعطاف پذیری و کارایی این سیستم ها در تغییرات نیازمندی ها است. یکی از علل شکست سیستم های تولیدی، ضعف آن در تطبیق و یکپارچگی با سیستم های درونی و بیرونی است. این سرویس ها می توانند به راحتی پیکربندی شده، و بدین ترتیب مطابق با خواسته های سازمان عمل کند.
همچنین مبنی بر استانداردهای باز، سرویس ها این امکان را می دهند که هر بخش از نرم افزار ها از طریق انتقال پیام با یکدیگر ارتباط برقرار کنند. معماری سرویس گرا این کار را نیز آسان تر کرده است. از دیگر مزایای معماری سرویس گرا می توان به این نکته اشاره کرد که هزینه تغییرات تا حد بسیار زیادی کاهش پیدا می کند، چرا که نیاز به تغییر کل سیستم نبوده، و سرویسی که مورد نیاز می توان اضافه کرده و یا آن را تغییر داد. سرویس ها از طریق کانال های متنوع و به کمک فناوری های مختلفی لرائه می شوند و باید به نحوی باشند که بتوانند با تغییر فناوری ها همچنان قابل استفاده باشند. با استفادع از رهیافت معماری سرویس گرا مشکلاتی که برای نگهداری و بروز کردن برنامه های کاربردی قدیمی وجود داشت، تا حد زیادی برطرف شده اند.
راه حل معماری سرویس گرا برای واحدهای مختلف سازمان، استفاده از وب سرویس های استاندارد است. تاکنون بحث های زیادی پیرامون موضوع معماری سرویس گرا و اینکه سرویس ها در این معماری فرآیندهای کسب و کار سریع و انعطاف پذیر را ایجاد می کنند، شده است.
توصیه کرده است که توسعه ی برنامه های کاربردی سرویس گرا در مقایسه با متدهای توسعه ی قدیمی، هزینه ی فناوری اطلاعات سازمان را در حدود 20 در صد کاهش داده است] 30[.
2-10 تعریف برون سپاری
برون سپاری دارای تاریخچه ای طولانی است. وجود ضرب المثل هایی نظیر "کار را به کاردان بسپارید" و یا آیاتی از قرآن مجید مبنی بر گرفتن دایه برای فرزندان مصداقی از برون سپاری است]10[. در دنیای کنونی سرعت تغییر دانش و اطلاعات به قدری است که سازمانهای بزرگ به سرعت از گردونه رقابت خارج میشوند و این امر باعث چاره اندیشی شرکت های بزرگ شده است. یکی از راههای نجات این شرکتها برون سپاری فعالیتها و کوچک سازی سازمانها است تا جایی که بتوانند به سرعت تغییر کنند]10[.
تعاریف متفاوتی برای برون سپاری ذکر شده که می توان به موارد زیر اشاره کرد:
واگذاری تمام یا بخشی از مسئولیت یکی از واحدهای سازمان به یک عرضه کننده بیرون از سازمان
خریدن بخشی از منابع یا امکانات یک شرکت یا سازمان
نوعی مقاطعه کاری که در همه ی زمینه ها قابل استفاده باشد
ارایه خدمات و ابزار برای یک سازمان
تصمیم اتخاذ شده توسط یک سازمان جهت ارایه و یا فروش داراییها نیروی انسانی و خدمات به شخص ثالث، که طرف قرارداد متعهد میگردد در قبال درآمد مشخص و در یک زمان معین، دارایی ها و خدمات قید شده در قرارداد را ارایه و مدیریت نماید.
(Ferry D. Kraker) برون سپاری عبارتست از پیدا کردن ارائه دهندگان خدمت جدید و روشهای جدیدی که بتوان با اطمینان تهیه مواد، کالاها، اجزاء و خدمات را به آنها واگذار نمود.
در حقیقت در واگذاری یا برون سپاری، سازمان از دانش و تجربه و خلاقیت ارائه دهندگان خدمت جدیدی که قبلاً استفاده نکرده است، بهره مند می شود.
2-10-1 عوامل تاثیر گذار بر برون سپاری
عوامل مختلفی در امر برون سپاری فعالیتهای سازمانی دخیل هستند و محققین مختلف عوامل گوناگونی را مطرح نموده اند. در مطالعه ای که توسط یانگ صورت گرفت، پنج عامل استراتژی، کیفیت، مدیریت، اقتصاد و فناوری بعنوان عوامل تأثیرگذار در موفقیت برون سپاری معرفی شده اند
]44[.در مطالعه دیگری شش دلیل عمده برای استفاده از استراتژی برونسپاری توسط سازمانهای مختلف بیان شده که عبارتند از: صرفه - جوییهای مالی، تمرکز راهبردی، دسترسی به تکنولوژیهای پیشرفته، ارائه خدمات پیشرفته، دستیابی به مهارتها و تخصصهای جدید و خط مشیهای سازمانی ]45[.در مطالعه دیگری تمایل به کاهش هزینه ها و افزایش کارایی، تمرکز بر قابلیتهای کلیدی سازمان، شناخت و معرفی نیروی کاری منعطف، بهبود مدیریت روابط صنعتی، ارضای اهداف شخصی تصمیم گیرندگان و تابعیت از قوانین حکومتی به عنوان دلایل عمده برونسپاری نام برده شده اند] 46 [. آرنولد در مطالعه ای که بر روی عوامل تأثیرگذار بر برونسپاری انجام داده است، سه عامل صرفه جویی در هزینه ها، تمرکز بر قابلیتهای کلیدی و انعطاف پذیری در برابر تغییرات محیطی را به عنوان عوامل موثر در استراتژی برونسپاری معرفی می نماید]30[. از مهمترین دلایل برونسپاری میتوان به کاهش کنترل مدیریت، بهبود کیفیت خدمات، تمرکز بر قابلیتهای کلیدی، دستیابی به تکنولوژیهای جدید، کاهش هزینه های سربار، افزایش خبرگی در داخل سازمان، کاهش هزینه های داد و ستد، کاهش هزینه های تولید، سرمایه گذاری در فناوری، افزایش ظرفیت و بهبود موقعیت در زنجیره تأمین وافزایش ظرفیت تغییر در سازمان اشاره نمود] 47[. بطور خلاصه محرک های برون سپاری را میتوان در قالب جدول 2- 1 مشاهده نمود.
جدول 2- 1 محرکهای چندگانه برون سپاری ]50[
محرکهای برون سپاری پیامدها و نتایج محرکهای برون سپاری تحقیقات صورت گرفته
محرکهای اقتصادی 1-کاهش هزینه و صرفه جویی سودآوری بیشتر بهبود اثربخشی عملیات Trunick (2010),
Richardson (2012),
Gonzalez et al. (2013)
2-کاهش نیاز به سرمایه گذاری تمرکز بیشتر سرمایه ها بر روی بخشهای کلیدی بهبود نرخ بازگشت دارائی Corbett (2008),
Razzaque and Sheng (2011), Trunick (2012)
Lynch (2013),
Embleton and Wright (2008),
Claver et al. (2011)
محرکهای استراتژیک -1 برنامه ریزی استراتژیک برای تمرکز بر نقاط کلیدی کسب مزیت رقابتی بهبود عملکرد،
رضایت ارباب رجوع/ مشتریان،
ارتقاء مهارت منابع انسانی، افزایش رقابت Corbett (2009),
Embleton and Wright (2010),
lott (2013),
Prahalad and Hamel (2000),
Quinn and Hilmer (2003),
Weerakkody et al. (2012)
-2 افزایش انعطاف پذیری توان ارائه محصولات و خدمات
مختلف، افزایش توان مسئولیت پذیری، کاهش ریسک Quinn and Hilmer (2003),
Corbett (2007), Embleton and Wright (2007), Razzaque and Sheng (2007), Kakabadse and Kakabadse (2009), Jennings (2011), Lynch (2013)
محرکهای محیطی -1 توسعه IT تشویق سازمانها برای بکارگیری
سیستمهای اطلاعاتی پیشرفته به
منظور ارتقاء اثربخشی و مقرون به
صرفه بودن Lynch (2013)
-2 جهانی شدن بدست آوردن مزیت رقابتی Clott ( 2013)
-3 فشارهای جامعه ارائه محصولات و خدمات با قیمت پائین تر و کیفیت بهتر Jennings (2011)
2-10-2 دلایل عمده برون سپاری
از نقطه نظر دلایل سازمانی
افزایش اثربخشی از طریق تمرکز بر روی کاری که سازمان در انجام آن بهترین است.
افزایش انعطاف پذیری برای مقابله با شرایط کسب و کار، تقاضا برای محصولات و خدمات و تکنولوژی
تغییر سازمان
افزایش ارزش محصولات و خدمات، رضایت مشتریان و ارزش سهام
از نقطه نظر دلایل بهبود
بهبود عملکرد عملیات
بدست آوردن تخصص ها، مهارت ها و تکنولوژی هایی که قبلاً قابل دستیابی نبوده است.
بهبود مدیریت و کنترل
بهبود مدیریت ریسک
بدست آوردن ایده های نوآورانه
بهبود اعتبار و تصویر سازمان به وسیله مشارکت با ارائه دهندگان خدمت برتر
از نقطه نظر دلایل مالی
ایجاد نقدینگی از طریق انتقال داراییها به ارائه دهندگان خدمت
کاهش سرمایه گذاری روی دارائیها و آزادسازی آنها برای سایر اهداف
از نقطه نظر دلایل درآمدی
بدست آوردن سهم بازار و فرصتهای کسب و کار از طریق شبکه ارائه دهندگان
تسریع در رشد و توسعه ظرفیت، از طریق قرارگرفتن در جریان فرایندها و سیستم های ارائه دهنده
رشد فروش و ظرفیت تولید در بازه زمانی، وقتی که امکان تامین مالی چنین رشدی در سازمان وجود نداشته باشد
گسترش تجاری مهارت های موجود
از نقطه نظر دلایل هزینه ای
کاهش هزینه ها از طریق عملکرد برتر و ساختار هزینه ای پایین تر ارائه دهندگان خدمت
تغییر هزینه های ثابت به متغیر
2-10-3 معایب برون ‌سپاری
تبعات برون سپاری شامل امکان از دست رفتن کنترل بر فرایندها، مشکل در مدیریت روابط با تأمین کننده، تغییرات عرصه کسب و کار در بلند مدت، مشکل لغو قرارداد، ایجاد تعارض سازمانی در روابط با تأمین کننده، از دست رفتن مشاغل در سازمان، کاهش کیفیت و افزایش هزینه به دلیل انتخاب نامناسب تأمین کننده می‌شود.نشریه فوربس در دسامبر ۲۰۱۲ با انتشار پروژه - ریسرچمفصلی به تحلیل روند بازگشت خطوط تولید تعدادی از معتبرترین برندهای آمریکایی نظیر اپل، GE و... به آمریکا پرداخت و نتیجه گرفت که مهمترین عیب «برون سپاری» فاصله افتادن بین سازمان طراحی و سازمان تولید یک شرکت است که در نتیجه آن بازخوردهای لازم در مورد سختی و آسانی و هزینه‌های فرایند تولید محصول به موقع برای بهبود طرح به بخش طراحی نمی‌رسد.
2-10-4 تعریف برون سپاری استراتژیک
برون سپاری استراتژیک عبارتست از: یک نگاه استراتژیک به برون سپاری که بتواند فرایندهای مسئله دار، وضع بد بهره وری ، مشکلات ترک کارکنان و امثال آن را در یک نگاه بلند مدت حل کند. بر این اساس اقدام برون سپاری زمانی استراتژیک خواهد شد ، که با استراتژی های بلندمدت سازمان همراستا شود ، منافع برون سپاری بعد از گذشت چندین سال پدیدار گردد و نتایج مثبت یا منفی آن برای سازمان از اهمیت ویژه ای برخوردار باشد برون سپاری استراتژیک با پرسیدن سوالات اساسی درباره رابطه برون سپاری با سازمان و موضوعات سازمانی زیر ، برون سپاری را در سطح بالاتری قرار می دهد.
چشم انداز آینده
قابلیت های کلیدی فعلی و آینده
ساختار فعلی و آینده
هزینه های فعلی و آینده
عملکرد فعلی و آینده
مزیت رقابتی فعلی و آینده
2-10-5 کارهای انجام شده در ارتباط با برون سپاری
در گذشته به دلیل هزینه های زیادی که فرایند برون‌سپاری داشته پیمانکاران توان ارائه خدمات به کسب و کارهای کوچک و متوسط را نداشتند. و همچنین کسب و کارهای کوچک و متوسط نیز تمایل به برون‌سپاری نداشتند زیرا بر این عقیده بودند که پیمانکاران نمی توانند پروژه را به طور کامل درک کنند و نمی خواستند کنترل فرایند های داخلی را به خارجی ها بدهند. کسب و کار های کوچک برای آنکه بیشتر مورد دسترس باشند به برون‌سپاری روی آورده اند. از طرف دیگر این نوع فعالیت ها به آنها اجازه می دهد تا بتوانند با توان کمتر با شرکت های بزرگتر که خدمات با کیفیتی را ارائه می دهند نیز رقابت کنند.
امروزه برونسپاری به عنوان یکی از استراتژیهای موثر در دنیای کسب و کار شناخته شده است. در این راستا برونسپاری فرایندهای کسب و کار به عنوان یکی از متداولترین اشکال برونسپاری به شمار می آید. در سالهای اخیر بسیاری از سازمانها برای حفظ مزیت رقابتی خود در بازارهای منطقهای و جهانی برونسپاری فعالیتهای سازمانی را شروع کرده و همچنین امروزه بسیاری از سازمانها اقدام به برونسپاری برخی از فعالیتهای خود به عنوان یک رویکرد راهبردی نمودهاند. فرایند برون سپاری برخی از فعالیتهای سازمان بواسطه پیچیدگی و عدم قطعیت موجود در این فرایند، نیازمند صرف زمان و دقت کافی برای جلوگیری از شکست این فرایند در سازمان است. این مسئله خود نیازمند مدیریت قوی در حوزه برونسپاری در سازمان است. در واقع برای جلوگیری از ایجاد هرگونه مشکلی در فرایند برونسپاری بایستی اقدام به تصمیمات راهبردی در این حوزه و در نتیجه انتخاب استراتژیهای مناسب سازمان در امر برونسپاری نمود. برون‌سپاری باعث کاهش هزینه های اجرایی و بالا بردن بهره وری در کسب و کار های کوچک و بالا بردن توان رقابتی آنها می شود. امروزه پیچیدگی فضای کسب و کار، افزایش رقابت میان تولید کنندگان، محدودیت منابع و بسیاری عوامل دیگر، سبب شده که سازمان های تولیدی به سمت بکارگیری فرآیندها و تصمیمات بهینه در حرکت باشند تا از این رهگذر، امکان بقای بالنده سازمان را تضمین نمایند. بدیهی است که تخصصی شدن و در نتیجه محدود کردن حیطه فعالیتها، در صورتی مقدور خواهد بود که بخشی از وظایف به خارج از سیستم برون سپاری گردد. در واقع برون سپاری عبارت است از واگذاری بخشی از فعالیتهای محوری یا غیر محوری سازمان بر مبنای تصمیمات اخذ شده، که منجر به کاهش نرخ یکپارچه سازی عمودی میشود ] 12 [ .
برخی از محققان، بیشتر در حوزه تولید و مدیریت زنجیره تأمین، برون سپاری را چیزی بیش از تکامل مطالعات در حوزه ساخت یا خرید نمی دانند.
در گذشته، برون سپاری زمانی مورد استفاده قرار می گرفت که سازمانها نمی توانستند خوب عمل کنند. در رقابت ضعیف بودند، کاهش ظرفیت داشتند، با مشکل مالی روبرو بودند و یا از نظر فن آوری عقب و شکست خورده بودند. امروزه سازمانهایی که کاملا موفق هستند نیز از این ابزار برای تجدید ساختار سازمانهایشان استفاده می کنند و مدیران این سازمانها به عنوان یک موضوع حیاتی این موضوع را درک کرده اند که ایجاد قابلیت های کلیدی برای برآورده نمودن نیازهای مشتری ضروری است و باید در این راه تلاش نمایند.
دیگر محققان، عموما در حوزه مدیریت عملیات خدمات، آن را یک روند انقلابی و جهشی که در چند سال گذشته آغاز گشته است می دانند. یکی از تئوری هایی که در اکثر منابع به آن در مورد منشأ برون سپاری اشاره می شود، تئوری هزینه مبادله می باشد و از این رو سرچشمه دانش برون سپاری به حدود هفتاد سال قبل بر می گردد.
در طول این هفتاد سال چندین تئوری در رشته های مختلف توسعه یافته اند که به طور مکرر در مطالعاتی که امروزه در مورد برون سپاری وجود دارد، به طور خلاصه به آنها اشاره می شود. 10 تئوری که از آنها بیشتر در مقالات و منابع علمی به عنوان ریشه های برون سپاری یاد می شود به شرح زیر می باشند:
1. تئوری هزینه مبادله
2. دیدگاه بر اساس منابع
3. تئوری عامل اصلی
4. تئوری ادغام عمودی
5. مدیریت استراتژیک
6. اقتصاد تکاملی
7. دیدگاه ارتباط
8. اقتصاد صنعتی
9. تئوری هم ترازی استراتژیک
10. تئوری شایستگی اصلی
عموما در تحقیقات مربوط به برون سپاری چهار پرسش متداول مد نظر قرار می گیرد که عبارتند از:
1. چرا باید برون سپاری کنیم؟
2. کدام فعالیت ها و فرآیند ها باید برون سپاری شوند؟
3. عوامل اصلی موفقیت در ارتباط با برون سپاری کدامند؟
4. چگونه باید این برون سپاری را هدایت کنیم؟
برون‌سپاری باعث کاهش هزینه های اجرایی و بالا بردن بهره وری در کسب و کار های کوچک و بالا بردن توان رقابتی آنها می شود.
با توجه به گزارش گارتنر بازار برون‌سپاری در سال 2003، در کشور آمریکا معادل 15 میلیارد دلار بوده است.
مراحل 10 گانه گارتنر جهت موفقیت در برون سپاری
جا انداختن تفکر برون‌سپاری به عنوان یک روش عملی
همراستا کردن تمام فعالیتهای مرتبط با برون‌سپاریبا راهبردهای کسب و کار
داشتن توقعات واقع بینانه از کسب سود قبل از اقدام به برون سپاری
بالا بردن ارزش خدمات منعطف در مقابل خدمات ثابت
انتخاب روشهای تحویل سازگار با اهداف تجاری و کسب وکار سازمان
تعریف محرکها و روش ارتباطی به جهت حصول سود دو جانبه
مذاکرات پی در پی جهت اتخاذ معامله برنده-برنده
ارائه راه حلهای تجاری بر مبنای شبکه تولیدکنندگان
توسعه و پیاده سازی روشهای مدیریت توزیع متمرکز
ایجاد تعادل میان نظارت و اعتماد در روابط برون سپاری
2-11 سیستم اطلاعاتی
همان طور که می دانیم همزمان با ظهور فن آوری، و حضور آن در سازمان ها، توسعه ی سیستم های اطلاعاتی نیز روز به روز افزایش یافت. دیوید و السون، یک سیستم اطلاعاتی را به عنوان یک سیستم یکپارچه به منظور ارائه ی اطلاعات برای پشتیبانی عملیات، مدیریت، و تصمیم گیری در یک سازمان تعریف کرده اند. به عبارتی دیگر می توان گفت که یک سیستم اطلاعاتی، عبارت است از یک سیستم کامل طراحی شده برای تولید، جمع آوری، سازماندهی، ذخیره و توزیع اطلاعات در یک سازمان. این اطلاعات بسته به نوع سیستم اطلاعاتی برای تصمیم گیری، کنترل، ساخت محصولات جدید و ... مورئ استفاده قرار می گیرند. داده های جمع آوری شده از سازمان یا محیط خارج از آن، به عنوان ورودی یک سیستم اطلاعاتی به شکلی با معنا پردازش شده، و خروجی به افراد یا فعالیت هایی که از آنها استفاده می کنند منتقل می شود. برخی از سیستم های اطلاعاتی عبارتند از سیستم پردازش تراکنش، سیستم اطلاعاتی مدیریت، سیستم تصمیم یار، سیستم اطلاعاتی اجرایی و ...]41[.
توسعه ی سیستم اطلاعاتی به طور عمده بر روی کارایی فرایندهای کسب و کار و به صورت غیر مستقیم، بر روی برآورده کردن نیازمندی های مورد تقاضای سازمان تمرکز می کند.
امروزه تمامی سیستم‌های تولیدی به روشنی بیانگر این نکته‌اند که مفاهیم و ساختار کار آنها، از ایده «آدام اسمیت» مبنی بر تخصصی شدن کار و شکسته شدن یک کار به کارهای کوچک‌تر، گرفته شده است. تخصصی شدن کارها، تولید انبوه محصولات استاندارد شده را امکان‌پذیر می‌سازد.
مفهوم سیستم تولید یکپارچه، تنها شامل عناصر درون سازمان نبوده و از عناصری متعدد تشکیل شده است که در یک سوی آن تامین‌کنندگان مواد و قطعات و در سوی دیگر، مشتریان قرار دارند.برای عملکرد موثر این سیستم‌ها، در طراحی آنها باید یکپارچه‌سازی بیشتر فعالیت با هم و کاهش لایه‌های سلسله مراتبی را مدنظر قرار داد. کندی جریان اطلاعات و یا ناکافی بودن آن بین واحد تولید و دیگر واحدها نظیر بازاریابی یا تحقیق و توسعه، مسئله‌ای رایج در شرکت‌های تولیدی است. برای بیشینه کردن کارایی سازمان، تمامی کارکردها به جای این‌که به تنهایی بهینه‌سازی شوند باید به صورت یکپارچه‌ با هم در تعامل باشند.
بیشتر سیستم‌های اطلاعات در محیط‌های تولیدی، برنامه‌های کاربردی تخصصی هستند که سعی دارند تکنولوژی‌های پیشرفته تولید را با استفاده از رایانه، قابل استفاده و کنترل کنند.سیستم اطلاعات جامع تولید در پی آن است که این برنامه‌های کاربری تخصصی و جزیره‌ای مهندسی، تولیدی و تجاری را در قالب یک سیستم اطلاعاتی جامع یکپارچه ترکیب کند.
در این راستا با شناخت تهدیدات و فرصت‌های محیطی، قابلیت‌ها ی این‌گونه سیستم‌ها، استراتژی طراحی و توسعه آنهاست. همچنین خواهیم دید که چگونه این سیستم‌ها به عنوان سلاحی رقابتی به‌کار گرفته می‌شوند.
2-12 کارهای انجام شده د ر ارتباط با به کارگیری سیستم اطلاعاتی در یکپارچگی واحد های مختلف تولید
سیستم اطلاعات جامع تولید، جایگزینی قدرتمند برای کسب مزیت رقابتی بوده و وضعیت جاری و تکنولوژی اطلاعات را با هم درمی‌آمیزد. این سیستم، حرکت به سوی یکپارچگی کامل تکنولوژی تولید و استراتژی کسب و کار را در یک سیستم اطلاعاتی نشان می‌دهد و شامل تمامی کارکردهایی است که یک شرکت تولیدی باید دارای آنها باشند.
نمونه این کارکردها، ماجول‌های تحلیل بازار، کنترل کیفیت، مدیریت کیفیت و پشتیبانی از تصمیم‌گیری است. سیستم اطلاعات جامع تولید، قابلیت پاسخگویی سریع به تغییرات را فراهم ساخته و انعطاف‌پذیری در تولید محصولات را تسهیل می‌بخشند.با استفاده از این سیستم‌ها، طراحی و حمایت از استراتژی‌های رقابتی در یک سازمان، قابل دستیابی بوده و می‌توان از عهده تغییرات در تکنولوژی، منابع و مسئولیت‌ها برآمد.
امروزه تمامی سیستم‌های تولیدی به روشنی بیانگر این نکته‌اند که مفاهیم و ساختار کار آنها، از ایده «آدام اسمیت» مبنی بر تخصصی شدن کار و شکسته شدن یک کار به کارهای کوچک‌تر، گرفته شده است. تخصصی شدن کارها، تولید انبوه محصولات استاندارد شده را امکان‌پذیر می‌سازد.
مفهوم سیستم تولید یکپارچه، تنها شامل عناصر درون سازمان نبوده و از عناصری متعدد تشکیل شده است که در یک سوی آن تامین‌کنندگان مواد و قطعات و در سوی دیگر، مشتریان قرار دارند.برای عملکرد موثر این سیستم‌ها، در طراحی آنها باید یکپارچه‌سازی بیشتر فعالیت با هم و کاهش لایه‌های سلسله مراتبی را مدنظر قرار داد. کندی جریان اطلاعات و یا ناکافی بودن آن بین واحد تولید و دیگر واحدها نظیر بازاریابی یا تحقیق و توسعه، مسئله‌ای رایج در شرکت‌های تولیدی است. برای بیشینه کردن کارایی سازمان، تمامی کارکردها به جای این‌که به تنهایی بهینه‌سازی شوند باید به صورت یکپارچه‌ با هم در تعامل باشند.
بیشتر سیستم‌های اطلاعات در محیط‌های تولیدی، برنامه‌های کاربردی تخصصی هستند که سعی دارند تکنولوژی ‌های پیشرفته تولید را با استفاده از رایانه، قابل استفاده و کنترل کنند.سیستم اطلاعات جامع تولید در پی آن است که این برنامه‌های کاربری تخصصی و جزیره‌ای مهندسی، تولیدی و تجاری را در قالب یک سیستم اطلاعاتی جامع یکپارچه ترکیب کند.
به کارگیری موفق یک IS مستلزم درک کامل کسب و کار و محیط تحت حمایت سیستم اطلاعات است. لازمه ی چنین موفقیتی، برخورداری مدیران از دانش و تخص صهای لازم برای حمایت از سیستم ها و نیز جریان اطلاعات در درون و بیرون سازمان برای غنی سازی سیستم ها است.
تا کنون مطالعات بسیاری در زمینه سیستم های اطلاعاتی واحد های تولید سازمان صورت گرفته است. در یکی از تحقیقات یک مجموعه ای از روش ها برای استفاده سیستم اطلاعاتی در واحد های مختلف تولید در نظر گرفته شده است که منجر به رقابت پایدار می شود. به کارگیری سیستم اطلاعاتی ممکن است یک نقش مهم در هر گام از فرایند تولید و برون سپاری بازی کند
Stevens معتقد است که میزان پیشرفت به به کارگیری IS در هر گام توسعه ای بستگی دارد. علاوه بر این، او ادعا می کند که یک رویکرد یکپارچگی واحدهای مختلف تولید، می تواند موانع موجود بین عملیات و سازمان ها را حذف کند. و به کارگیری IS می تواند ارتباط بین توابع و سازمان ها را تقویت کند.
Bowersoxبیان می کنند که فرایند یکپارچگی واحدهای مختلف تولید، باید از یکپارچگی داخلی به یکپارچگی خارجی با تامین کنندگان و مشتریان پیش برود، چنین یکپارچگی داخلی و خارجی می تواند توسط اتوماسیون پیوسته و استاندارد سازی از هر تابع لجستیک خارجی و توسط اشتراک گذاری اطلاعات کارآمد و ارتباط استراتژیک با تامین کنندگان و مشتریان تکمیل شود.
بهبود هر یک از عملیات داخلی، در یکپارچگی واحدهای مختلف تولید، باید پیش از اتصال خارجی، با تامین کنندگان و مشتریان در گام یکپارچگی خارجی و به کارگیری IS ممکن است یک فاکتور بسیار مهم باشد.
Earl اظهار می کند که IS باید بالقوه به یک سلاح استراتژیک در حداقل یکی از موارد زیر باشد:
به دست آوردن مزیت رقابتی
بهبود بهره وری و عملکرد
فعال کردن روش های جدید مدیریت و سازماندهی
توسعه کسب و کارهای جدید

payanneme

٢‐١‐ مقدمه ............................................................................................................................................ ۵
٢‐٢‐ مروری بر روشهای شناسایی اغتشاشات کیفیت توان ................................................................... ۵
٢‐٣‐ مروری بر روشهای شناسایی خطای امپدانس بالا......................................................................... ٩
فصل سوم: پدیده فرورزونانس.................................................................................................... ١۵
٣‐١‐ مقدمه ............................................................................................................................................ ١۶
٣‐٢‐ تاریخچه فرورزونانس................................................................................................................... ١٧
٣‐٣‐ موارد وقوع فرورزونانس در سیستم های قدرت ......................................................................... ۷۱
٣‐۴ ‐ شروع فرورزونانس...................................................................................................................... ١٨
٣‐۴‐١‐ شرایط ادامه یافتن فرورزونانس ......................................................................................... ١٨
٣‐۵‐ اثرات نامطلوب فرورزونانس ........................................................................................................ ١٩
٣‐۶‐ مبانی پدیده فرورزونانس ............................................................................................................. ٢٠
٣‐٧‐فرورزونانس در ترانسفورماتورهای توزیع ..................................................................................... ٢٢
٣‐٧‐١‐ فرورزونانس پایدار .............................................................................................................. ٢٣
٣‐٧‐٢‐ فرورزونانس ناپایدار............................................................................................................ ٢٣
٣‐٨‐ تاثیر نوع سیم بندی ترانسفورماتورها............................................................................................ ٢۴
٣‐٩‐ تاثیر بار بر اضافه ولتاﮊهای فرورزونانس....................................................................................... ٢۴
٣‐١٠‐ طبقه بندی مدلهای فرورزونانس ................................................................................................ ٢۵
٣‐١١‐ شناسایی فرورزونانس................................................................................................................. ٢۵
فصل چهارم: مبانی علمی روشهای پیشنهادی...............................................................................٢٧
۴‐١‐ از تبدیل فوریه تا تبدیل موجک.................................................................................................... ٢٨
۴‐٢‐ سه نوع تبدیل موجک................................................................................................................... ٣٣
۴‐٢‐١‐تبدیل موجک پیوسته............................................................................................................ ٣٣
۴‐٢‐٢‐ تبدیل موجک نیمه گسسته.................................................................................................. ٣۵
۴‐٣‐ انتخاب نوع تبدیل موجک......................................................................................................... ۷۳
۴‐۴‐ آنالیز مالتی رزولوشن و الگریتم DWT سریع ........................................................................... ۷۳
۴‐۴‐١‐ آنالیز مالتی رزولوشن ....................................................................................................... ٣٧
۴‐۵‐ زبان پردازش سیگنالی ............................................................................................................... ۴٠
۴‐۶‐ شبکه عصبی .............................................................................................................................. ۴۵
۴‐۶‐١‐ مقدمه .................................................................................................................................. ۴۵
۴‐۶‐٢‐ یادگیری رقابتی................................................................................................................. ۴۶
۴‐۶‐٢‐١‐روش یادگیری کوهنن ................................................................................................. ۴٧
۴‐۶‐٢‐٢‐ روش یادگیری بایاس .................................................................................................. ۴٨
۴‐٧‐ نگاشت های خود سازمانده ..................................................................................................... ۵٠
۴‐٨‐ شبکه یادگیری کوانتیزه کننده برداری ...................................................................................... ۵٢
۴‐٨‐١‐ روش یادگیری ................................................................................................... LVQ1 ۵٣
۴‐٨‐٢‐ روش یادگیری تکمیلی..................................................................................................... ۵۵
۴‐٩‐ مقایسه شبکه های رقابتی ........................................................................................................ ۵۵
فصل پنجم: جمعآوری اطلاعات ................................................................................................ ۵٧
۵‐١‐ نحوه بدست آوردن سیگنالها......................................................................................................... ۵٨
۵ ‐١‐١‐ بدست آوردن سیگنالهای فرورزونانس................................................................................. ۵٨
۵‐١‐٢‐ انواع کلیدزنیها و انواع سیم بندی در ترانسفورماتورها............................................................. ۵٩
۵ ‐١‐٣‐ اثر بار بر فرورزونانس .......................................................................................................... ۶۴
۵ ‐١‐۴‐ اثر طول خط......................................................................................................................... ۶۵
۵‐١‐۵‐ بدست آوردن سیگنالهای سایر حالات گذرا............................................................................. ۶۶
فصل ششم: پیاده سازی الگوریتم و نتایج شبیه سازی .............................................................. ٧۴
۶‐١‐ مقدمه ........................................................................................................................................ ٧۵
۶‐٢‐ تعیین کلاسها و تعداد الگوهای هر کلاس ................................................................................ ٧۵
۶‐٣‐ اعمال تبدیل موجک و استخراج ویژگیها ................................................................................. ٧۵
۶‐۴‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی ................................................................LVQ ٨١
۶‐۵‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی رقابتی.............................................................. ٨٨
فصل هفتم: نتیجه گیری و پیشنهادات........................................................................................ ٩۵
٧‐١‐ نتیجه گیری................................................................................................................................ ٩۶
٧‐٢‐ پیشنهادات ................................................................................................................................. ٩٨
فهرست منابع........................................................................................................................... ١٠٠
فهرست جدولها عنوان صفحه
جدول ۵‐۲. اطلاعات بارها ................................................................................................ ........................ ۹۵
جدول۵‐۳.مشخصات ترانسفورماتورها ....................................................................................................... ۹۵
جدول۶‐۱ در صد تشخیص شبکه LVQ با موجک ............................................................................ Db ۴۸
جدول ۶‐۲ در صد تشخیص شبکه LVQ با موجک ....................................................................... dmey ۴۸
جدول ۶‐۳ در صد تشخیص شبکه LVQ با موجک ....................................................................... haar ۵۸
جدول۶‐۴ در صد تشخیص شبکه رقابتی با موجک ............................................................................ Db ۱۹
جدول ۶‐۵ در صد تشخیص شبکه رقابتی با موجک ..................................................................... dmey ۱۹
جدول ۶‐۶ در صد تشخیص شبکه رقابتی با موجک ....................................................................... haar ۲۹
فهرست شکلها عنوان صفحه
۱‐۳. مدار معادل پدیده فرورزونانس............................................................................................................ ۰۲
۲‐۳ حل ترسیمی مدار LC غیر خطی.......................................................................................................... ۱۲
۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس............................................................................. ۹۲
۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. ................................................................................................ ۱۳
۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس زمان....................... ۳۳
۴‐۴‐ تشریح CWT طبق معادله۴ ................................................................................................................ ۴۳
۴‐۵ مثالی از آنالیزموجک پیوسته. در بالا سیگنال مورد نظر نمایش داده شده است. ............................... ۵۳
۴‐۶ طرح الگوریتم کد کردن زیر باند ......................................................................................................... ۱۴
۴‐۷ نمایش تجزیه توسط موجک................................................................................................................. ۳۴
۴‐۸ مثالیاز تجزیه .DWT سیگنال اصلی، سیگنال تقریب (AP) وسیگنالهای جزئیات CD1) تا ..................................................................................................................................................... (CD6 ۴۴
۴‐۹ معماری شبکه رقابتی............................................................................................................................ ۶۴
۴‐ ۰۱نمایش همسایگی................................................................................................................................ ۱۵
۴‐۱۱ معماری شبکه ......................................................................................................................... LVQ ۲۵
۵‐۱. فیدر .......................................................................................................................................... 20kV ۸۵
۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۹۵
۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۹۵
۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۱۶
۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۱۶
۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۱۶
۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۱۶
۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۲۶
۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز ................................................................................... ۲۶
۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۳۶
۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۳۶
۵‐۸۱ ولتاﮊ ثانویه فاز a در اثر افزایش بار................................................................................................ ...۴۶
۵‐۹۱ ولتاﮊ ثانویه فاز a در اثر قطع تعدادی از بارها ................................ ...................................................۶۴
۵‐۰۲ ولتاﮊ فاز a ثانویه ترانس با کاهش طول خط................................ ......................................................۶۵
۵‐۱۲.ولتاﮊ فاز a ثانویه ترانس با افزایش طول خط................................ .....................................................۵۶
۵‐۲۲.پیکربندی فازها و اطلاعات مکانیکی................................................................ .................................۷۶
۵‐٢٣مدل فرکانسی بار CIGRE در ................................................................ EMTP ...............................۷۶
۵‐٢۴یک نمونه از منحنی مغناطیس شوندگی ترانسفورماتورها................................ ....................................٧٠
۵‐۵۲ . سه نمونه از سیگنالهای کلیدزنی خازنی................................................................ ...........................۰۷
۵‐۶۲. سه نمونه از سیگنالهای کلیدزنی بار ................................................................ ..................................۱۷
۵‐۷۲. سه نمونه از سیگنالهای کلیدزنی ترانسفورماتور ................................ ...............................................۱۷
۶ ‐۸ یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1 تا (CD6 با
استفاده از تبدیل موجک ................................................................ Daubechies ....................................۸۷
۶‐۹. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Daubechies .................................۸۷
۶‐۰۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................Daubechies .................................................۸۷
۶‐۱۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا
(CD6 با استفاده از تبدیل موجک ................................................................ Daubechies .....................۸۷
۶‐۲۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................ Haar .............................۹۷
۶‐۳۱. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ Haar .................................................۹۷
۶‐۴۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با استفاده از
تبدیل موجک ................................................................................................ Haar .................................۹۷
۶‐۵۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Haar .............................................۹۷
۶‐۶۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۷۱یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ DMeyer ...........................................۰۸
۶‐۸۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۹۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ DMeyer ........................................۰۸
۶‐۰۲ الگوریتم ارائه شده ................................................................................................ ............................۱۸
۶‐۱۲‐ انرﮊی لحظه ای یک نمونه از جریان فاز دوم سیگنالها......................................................................۶۸
۶‐۲۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها........................................................................۶۸
۶‐۳۲ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies1 بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده...........................................۷۸
۶‐۴۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده..............................................۷۸
۶‐۵۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک 1
Daubechies بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده. ............................................۲۹
۶‐۶۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2 بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده ............................................۳۹
۶‐۷۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها ......................................................................۳۹
۶‐۸۲‐ انرﮊی لحظه ای یک نمونه از جریان فازدوم سیگنالها ......................................................................۴۹
چکیده
یکــی از عوامــل ســوختن و خرابــی ترانــسفورماتورها در سیــستم هــای قــدرت، وقــوع پدیــده
فرورزونانس است. با توجه به اثرات مخرب این پدیده، تشخیص آن از سایر پدیده هـای گـذرا از
اهمیت ویژه ای برخوردار است که در این پایان نامه کارکرد دو شـبکه عـصبی یـادگیری کـوانتیزه
کننده برداری((LVQ١ و شبکه عصبی رقابتی در دسته بندی دو دسته سیگنال کـه دسـته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشد، با استفاده از ویژگیهای استخراج شده توسط تبدیل موجک٢ خانواده Daubechies تا شش
سطح مورد بررسی قرار گرفته است. نقش شبکه های عصبی مذکور بعنـوان طبقـه بنـدی کننـده،
جدا سازی پدیده فرورزونانس از سایر پدیده های گذرا است. سیگنالهای مذکور بـا شـبیه سـازی
توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی بدست آمده اند. بـرای اسـتخراج ویژگیهـا،
کلیه موجکهای موجود در جعبه ابزار Wavelet نرم افزار MATLAB بررسی شده اسـت کـه تبـدیل
موجک خانواده Daubechies بعنوان مناسبترین موجک تشخیص داده شد. به منظـور اسـتخراج هـر
چه بهتر ویژگیها سیگنالها، الگوها نرمالیزه (مقیاسبنـدی) شـدهانـد سـپس انـرﮊی شـش سـیگنال
جزئیات حاصل از اعمال تبدیل موجک به عنوان ویژگیهای استخراج شده از الگوها، برای آموزش
و امتحان دو شبکه عصبی مذکور بکار رفتهاست. به کمک این الگوریتم تفسیر برخـی از رخـدادها
که احتمال بروز پدیده فرورزونانس در آنها وجود دارد قابل انجام بوده، همچنین میتوان نسبت بـه
ساخت رله هایی برای مقابله با پدیده فرورزونانس کمک نماید. عناوین روشهای ارایه شده در این
پایان نامه به شرح زیر میباشند:

1 -Learning Vector Quantizer (LVQ)
2- Wavelet Transform
١) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی LVQ
٢) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی رقابتی
نتایج حاصل از این روشها بیانگر موفقیت بسیار هر دو روش در شناسـایی فرورزونـانس از سـایر
پدیده های گذرا می باشد.
کلید واﮊه: شبکه عصبی LVQ، شبکه عصبی رقابتی، تبدیل موجک، پدیده فرورزونانس, نـرم
افزار EMTP ، نرم افزار MATLAB

١
مقدمه
امروزه انرﮊی الکتریکی نقش عمدهای در زمینههای مختلف جوامـع بـشری ایفـا مـیکنـد و جـزﺀ
لاینفک زندگی است. بدیهی است که مانند سایر خـدمات اندیـسها و معیارهـایی جهـت ارزیـابی
کیفیت برق تولید شده مورد توجه قرار گیرد. اما ارزیابی میزان کیفیت برق از دید افراد مختلـف و
در سطوح مختلف سیستم قدرت بکلی متفاوت است. به عنوان مثال شرکتهای توزیع، کیفیت بـرق
مناسب را به قابلیت اطمینان سیستم برقرسانی نسبت میدهنـد و بـا ارائـه آمـار و ارقـام قابلیـت
اطمینان یک فیدر را مثلاﹰ ٩٩% ارزیابی میکنند سازندگان تجهیـزات الکتریکـی بـرق بـا کیفیـت را
ولتاﮊی میدانند که در آن تجهیزات الکتریکی به درسـتی و بـا رانـدمان مطلـوب کـار مـیکننـد و
بنابراین از دید سازندگان آن تجهیزات، مشخصات مطلوب ولتاﮊ شبکه بکلی متفاوت خواهد بـود.
اما آنچه که مسلم است آنست که موضوع کیفیت برق، نهایتـاﹰ بـه مـشترکین و مـصرف کننـدگان
مربوط میشود و بنابراین، تعریف مصرفکنندگان اهمیت بیشتری دارد.
بروز هر گونه اشکال یا اغتشاش در ولتاﮊ، جریان یا فرکانس سیستم قدرت کـه باعـث خرابـی یـا
عدم عملکرد صحیح تجهیزات الکتریکی مشترکین گردد به عنوان یک مشکل در کیفیت برق، تلقی
میگردد.
واضح است که این تعریف نیز از دید مشترکین مختلـف، معـانی متفـاوتی خواهـد داشـت. بـرای
مشترکی که از برق برای گرم کردن بخاری استفاده میکند، وجود هارمونیکها در ولتاﮊ یا انحراف
فرکانس از مقدار نامی هیچ اهمیتی ندارد، در حـالی کـه تغییـر انـدکی در فرکـانس شـبکه، بـرای
مشترکی که فرکانس برق شهر را به عنوان مبنای زمانبندی تجهیزات کنترلی یک سیـستم بـه کـار
گرفته است،میتواند به طور کلی مخرب باشد.
٢
یکی از مواردی که بعنوان یک مشکل در کیفیت برق تلقی می گردد، پدیده فرورزونانس است. در
اثر وقوع این پدیده و اضافه ولتاﮊ و جریان ناشی از آن، موجب داغ شدن و خرابی
ترانسفورماتورهای اندازه گیری و ترانسفورماتور های قدرت می گردد که میتوانند بر حسب
شرایط اولیه، ولتاﮊ و فرکانس تحریک و مقادیر مختلف پارامترهای مدار (کاپاسیتانس وشکل
منحنی مغناطیسی)، مقادیر متفاوتی پیدا کنند، بنابراین بایستی محدودیت هایی بر پارامترهای
سیستم اعمال کرد تا از وقوع چنین پدیده ناخواسته جلوگیری نمود.
با توجه به اهمیت شناسایی پدیده فرورزونانس از سایر حالتهای گذرا دراین پایان نامه تلاش شد
تا سیستمی هوشمند جهت تشخیص این پدیده از سایر حالتهای گذرای کلیدزنی ارائه گردد. در
طراحی این سیستم هوشمند اولاﹰ از جدیدترین روش های تجزیه و تحلیل و پردازش سیگنالهای
الکتریکی برای پردازش دادهها استفاده گردید. ثانیاﹰ از طبقهبندی کنندههای پیشرفته با توانایی بالا
در دستهبندی دادهها بهره گرفته شد. به منظور مقایسه نتایج حاصل از فرورزونانس با سایر
سیگنالهای گذرای شبکه توزیع، تعدادی از حالتهای گذرا نظیر کلیدزنی بار، کلیدزنی خازنی و
کلید زنی ترانسفورماتور توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی شبیه سازی شد.
در فصل دوم به مروری بر کارهای انجام شده در زمینه پـردازش سـیگنال در سیـستمهای قـدرت
پرداخته، در فصل سوم به معرفی پدیده فرورزونانس خـواهیم پرداخـت. در فـصل چهـارم مبـانی
علمی روشهای پیشنهادی، در فصل پنجم نحوه جمع آوری اطلاعات و سیگنالها بررسی مـی شـود
و درفصل ششم نحوه پیاده سازی روشهای پیشنهادی بررسی مـی شـود و نهایتـا نتیجـه گیـری و
پیشنهادات پایان بخش مطالب خواهند بود.
٣

۴
۲‐۱‐ مقدمه
با دستهبندی دقیق مسائل، همچنین میتوان منابع تولید هر دسته از مشکلات را نیز شناسـایی و در
دستهبندی فوق جـای داد. بـه ایـن ترتیـب پـس از شناسـایی نـوع اغتـشاش از روی پارامترهـای
اندازهگیری شده اقدام برای بهبود کیفیت برق نیز تا حدودی آسانتر خواهد شد. در ضمن میتـوان
اغتشاشهای بوجود آمده در هر دسته را با اندیسها و مشخصههای مربوط به خودش تعریف کرد و
بنابراین توصیف کاملی از انحرافات بوجود آمده در شکل مـوج ولتـاﮊ نـسبت بـه حالـت ایـدهآل
بدست آورد.
به منظور تشخیص پدیده های تصادفی در سیستم های قدرت, سـیگنالهای مختلفـی مـورد توجـه
قرار گرفته اند. از این سیگنالها می توان به سیگنالهای کیفیت توان و سـیگنالهای خطـای امپـدانس
بالا و سیگنالهای فرورزونانس اشاره کرد که در ادامه مـروری بـر روشـهای شناسـایی سـیگنالهای
کیفیت توان و سیگنالهای خطای امپدانس بالا شده است. لازم به ذکر است با توجـه بـه اینکـه در
زمینه شناسایی سیگنالهای فرورزونانس از سایر سیگنالهای گذرا، مقالـه یـا کـار تحقیقـاتی وجـود
ندارد در این پایان نامه روشهای شناسایی این پدیده بررسی شده است.
٢‐٢‐ مروری بر روشهای شناسایی اغتشاشات کیفیت توان
در این بخش قبل از بررسی کامل روشهای گوناگون شناسایی اغتشاشات کیفیت توان لازم دیـدیم
که با توجه به کاربرد وسیع روشهای پردازش سیگنال در بحث کیفیت توان نکات چندی را خـاطر
نشان سازیم. در وهله اول، با توجه به توضیحات قسمت قبل، لزوم جداسازی اغتشاشات و تعیـین
نوع آنها هرچه بیشتر اهمیت مییابد. در ضمن با مرور کارهـای گذشـته و انجـام شـده در بحـث
کیفیت توان روشهای مختلف پردازش سیگنال به صورت عمده در سه بخش زیـر مـورد اسـتفاده
۵
قرار گرفتهاند:
١‐ کاربرد پردازش سیگنال و تکنیکهای آن در فشردهسازی اطلاعات و شکل موجهـا و کـاربرد
آن در کیفیت توان
٢‐ استفاده از تکنیکهای مختلف پردازش سیگنال و سیستمهای خبره در جداسازی اغتشاشات
٣‐ استفاده از تکنیکهای مختلف پردازش سیگنال در تشخیص نوع اغتشاش بوجود آمده
١. سیستمهای هوشمند در طبقهبندی اغتشاشات
در این قسمت تشخیص دو موضوع عمده ضروری است. اول آنکه کدام یک از روشهای پردازش
سیگنال اعم از تبدیل فوریه، موجک و … جهت تجزیه و تحلیل و استخراج ویژگیهای مربوط بـه
هر یک از اغتشاشات به کار گرفته شدهاند و در مرحله دوم دستهبندی کننده موردنظر جـزﺀ کـدام
یک از سیستمهای هوشمند مانند شبکههای عصبی، فازی و … بوده است.
الف) تکنیک مورد استفاده در پردازش شکل موجهای مربوط به اغتشاشات
تکنیکهای مورد استفاده در طبقهبندی اغتشاشات کیفیت توان در چهار دسته زیر قرار می گیرند:
۱. تکنیکهای مطرح شده با استفاده از تبدیل فوریه (FFT, STFT)
٢. تکنیکهای مطرح شده با استفاده از تبدیل موجک (DWT, CWT)
۳. تکنیکهای ترکیبی
۴. تکنیکهای نوین مطرح شده در حوزه پردازش سیگنال
اگر قرار باشد به سراغ کارهای قدیمی در حوزه پردازش سیگنال بـرویم آنگـاه تبـدیل فوریـه بـه
عنوان یک ابزار قوی در این زمینه مطرح میگردد. تبدیل فوریه سریع و تبدیل فوریه زمان کوتاه از
جمله تکنیکهایی هستند که در این قسمت مورد استفاده قرار گرفتهاند] ۱.[
ابزار جدید مطرح شده در حوزه پردازش سـیگنال تبـدیل موجـک مـیباشـد. بـا توجـه بـه آنکـه
۶
تکنیکهای گسسته پردازش سیگنال امروزه فراگیر شدهاند، اکثریت قریب به اتفـاق کارهـای انجـام
شده با استفاده از تبدیل موجک به DWT یا همان تبدیل موجک گسسته برمیگـردد. نمونـه هـای
فراوانی از کاربردهای این تبدیل را در کارهای قبلی می توان مشاهده کرد]۲.[
عدهای از محققان روشهای ترکیبی را جهت استخراج ویژگیهایی اغتـشاشات بـه کـار بـردهانـد. از
جمله این روشها میتوان به ترکیب تبدیل فوریه و تبدیل والش در ]۳[ و ترکیب تبـدیل فوریـه و
موجک در ]۴[ اشاره کرد. از طرفی با پیشرفتهای بدست آمده در حوزه پردازش سـیگنال مـیتـوان
نمونههایی از به کارگیری تبدیلهای جدید مانند S Transform را در بحث طبقهبنـدی اغتـشاشات
درمراجع یافت] ۵.[
آنچه که در تمامی این تحقیقات بیش از همه به چشم می آید عدم وجود یک شـبکه واقعـی اسـت
که نتایج این روشها را همچنان در هالهای از ابهام نگه میدارد.
ب) سیستمهای خبره به کار گرفته شده
تحت عنوان طبقهبندی کننده اغتشاشات کیفیت توان قبل از بـه کـارگیری یـک سیـستم هوشـمند
جهت تشخیص اغتشاشات موردنظر در یک بازه زمانی خاص لازم است ویژگیهایی جهت هر یک
از اغتشاشات استخراج شود. این ویژگیها میتوانند مجموع ضرایب، مجمـوع قـدرمطلق ضـرایب،
ماکزیمم ضرایب، انحراف معیار ضرایب یا هرچیز دیگـر باشـند. در ادامـه ضـمن معرفـی سیـستم
هوشمند در هر تحقیق ویژگیهای استفاده شده در آن تحقیق را بررسی می کنیم.
شبکه های موجک: شبکههای موجک نوع خاصی از شبکههای عصبی مـیباشـند کـه در آنهـا توابع متداول شبکه های عصبی با توابع موجک مادر جایگزین مـیشـوند. ایـن شـبکههـا بـه خصوص در سالهای اخیر توانایی خاصی از خود در تقریب توابع نشان دادهاند. این شـبکههـا به همراه دوره اغتشاشی سیگنال جهت طبقـهبنـدی اغتـشاشات کیفیـت تـوان بـه کـار گرفتـه
٧
شدهاند]۶.[
شبکه های عصبی: شبکههای عصبی مورد اسـتفاده در طبقـهبنـدی اغتـشاشات بیـشتر از نـوع شبکههای عصبی چند لایه پرسپترون یا همان MLP بوده، البته کارهایی از شبکههـای عـصبی احتمالی (PNN) و شبکههای عصبی خودسازمانده تطبیقی را در این بحث مـیتـوان مـشاهده کرد. ویژگیهای موردنظر جهت آموزش این شبکهها مشتمل بر انحراف معیار ضـرایب، انـرﮊی سیگنال در سطوح مختلف فرکانسی، ماکزیمم ضرایب سیگنالها در سطوح مختلف فرکانسی، متوسط و واریانس آنها و مینیمم آنها بوده اند]۷.[
منطق فازی: در استفاده از منطق فازی، تحقیقات انجام شده براساس قوانین – مبتنی بر ویژگیهای استخراج شده استوار بوده است. به عنوان مثال انرﮊی سیگنال در سطوح مختلف فرکانسی یک بردار ویژگی میسازد که مولفههای این بردار بسته به نوع اغتشاش دارای شدت یا ضعف خواهند بود. این شدت یا ضعف انرﮊی سـیگنال در سـطوح مختلـف فرکانـسی بـه همراه استنتاج فازی سیستم هوشمندی را میسازد که توانایی آن در دستهبندی اغتشاشات قابل ملاحظه است]۸.[
مدل مخفی مارکوف: این مدل که براساس نظریه مارکوف و نظریه احتمالات بنا نهـاده شـده است و در سالهای اخیر با منطق فازی نیز ترکیب شده علـیرغـم داشـتن توانـایی مناسـب در بحث طبقهبندی از پیچیدگیهای خاصی برخوردار است]۹.[
درخت تصمیمگیری: درخت تصمیمگیری از مباحـث مطـرح شـده در Machine Learning میباشد. این دستهبندی کننده به همراه ویژگیهای استخراج شده از تبـدیل موجـک بـه عنـوان یک دستهبندی کننده توانمند در حوزه کیفیت توان مطرح شده است]۰۱.[
٨
فیلتر کالمن: فیلتر کالمن بویژه فیلتر کالمن غیرخطی در سالهای اخیر به عنوان یک ابزار قـوی جهت تجزیه و تحلیل سیگنالهای مختلف به کار گرفته شده است. اگر شکل موج اغتشاشی به عنوان ورودی این فیلتر به کار رود. خروجی فیلتر مـیتوانـد نـوع اغتـشاش بوجـود آمـده را شناسایی کند]۱۱.[
٢‐٣‐ مروری بر روشهای شناسایی خطای امپدانس بالا
این روشها مبتنی بر تجزیه و تحلیل ولتاﮊها و جریانهای ابتدای فیـدر مـی باشـند و در یـک طبقـه
بندی کلی به چهار گروه تقسیم می شوند.
١. روشهای ارائه شده در حوزه زمان
٢. روشهای ارائه شده در حوزه فرکانس
٣. روشهای ارائه شده در حوزه زمان‐ فرکانس
١. روشهای ارائه شده در حوزه زمان:
این روشها بر اساس اطلاعات زمانی سیگنالها اقدام به شناسایی خطاهای امپدانس بالا مـی نماینـد
تعدادی از آنها عبارتند از:
الف) الگوریتم رله تناسبی
برای سیستمهایی که در چند نقطه زمین شده اند زاویه و دامنه جریان عدم تعـادل بـار( ( IO ثابـت
نیستند و جریان خطا نیز متغیر است. در نتیجه رله های اضافه جریان را نمی توان حساس ساخت.
٩
اگر رله ای بتواند فقط جریان خطا را حس کند، حساسیت آن بالا مـی رود. در رلـه پیـشنهادی بـا
توجه به سهولت اندازه گیری جریان عـدم تعـادل بـار( IO )، جریـان سیـستم نـول( I N )، جریـان
خطا( ( It طبق رابطه ١‐٢ محاسبه و موجب عملکرد رله می گـردد]۲۱.[
(۱‐۲)
It  K1 IO  K2 I N
که در آن IO و I N به ترتیب جریان عدم تعادل بار و جریان سیم نـول و K1 و K2 ثابـت مـی
باشند.
ب) الگوریتم رله نسبت به زمین
این رله به خاطر غلبه بر اثر تغییرات بار بر روی حساسیت رله هـای اضـافه جریـان سـاخته شـده
است و گشتاور عملکرد آن بطور اتوماتیک بار تغییر می کند] ۳۱.[
ج) استفاده از رله های الکترومکانیکی
در این رابطه برای شناسایی خطاهای امپدانس بالا بر روی شبکه های چهـار سـیمه شـرکت بـرق
پنسیلوانیا با همکاری شرکت وستینگهاوس اقدام به ساخت رلـه ای نمـوده انـد کـه بـا اسـتفاده از
نسبت جریان باقیمانده( (3 IO به جریان مولفه مثبت( ( I1 عمل می کند. اگر نسبت 3 IO از مقـدار
تنظیم شده رله فراتر رفت رله عمل خواهد کرد.] ۴۱.[
د) الگوریتم تغییرات جریان
در یکی از روشهای ارائه شده با توجه به تغییرات ملایم جریان به هنگام کلیـدزنی بـار از سـرعت
١٠
تغییرات جریان برای شناسایی خطاهای امپدانس بالا استفاده شـده اسـت]۵۱.[ ایـن روش کـارایی
خود را هنگامیکه جریانهای خطا دارای تغییرات اولیـه سـریع نیـستند از دسـت میدهـد. در روش
دیگر از تغییرات لحظه ای دامنه جریان برای آشکارسازی خطا استفاده شده اسـت]۶۱.[ هـر چنـد
خطاهای امپدانس بالا رفتار تصادفی دارند ولی سطح جریان همه آنها برای چند سـیکل زیـاد مـی
شود(لحظه وقوع جرقه) و بعد به میزان جریان بار می رسد. با توجه به این تغییـرات کـه در سـایر
کلیدزنیها وجود ندارد اقدام به شناسایی آنها گردیده اسـت. در روش دیگـری از تغییـرات بوحـود
آمده در نیم سیکل مثبت و منفی شکل موج جریان برای آشکارسازی استفاده شده است]۷۱.[
برای فیدرهایی که از طریق ترانسهای ∆ − ∆ تغذیه می شوند افزایش دامنـه جریـان و پـیش فـاز
شدن آن برای شناسایی خطای امپدانس بالا استفاده شده است] ۸۱.[
٢. روشهای ارائه شده در حوزه فرکانس:
این روشها بر اساس اطلاعات حوزه فرکانس سیگنالها عمل می کننـد و در آنهـا عمـدتا از تبـدیل
فوریه برای نگاشت سیگنالهای حوزه زمان به حوزه فرکانس استفاده می شود که در ادامه تعـدادی
از روشهای حوزه فرکانس ارائه می گردند
الف) استفاده از هارمونیک دوم و سوم جریان برای شناسایی خطاهای امپدانس بالا
برخورد هادی انرﮊی دار با زمین باعث ایجاد جرقه می گردد. این جرقه ها باعث ایجاد ناهماهنگی
و عدم تقارن شکل موج جریان می شوند که این عدم تقارن تولید هارمونیک های دوم و سـوم در
جریان خطا می کند و تعدادی از روشهای آشکارسازی بر این اساس ارائـه شـده انـد. در یکـی از
روشها نسبت دامنه مولفه دوم جریان به مولفه اصلی آن برای هـر سـه فـاز بعنـوان معیـاری بـرای
١١
شناسایی معرفی شده اند] ۹۱ .[ در روش دیگری از نسبت دامنه هارمونیک سوم جریان بـه مولفـه
اصلی برای شناسایی استفاده شده است] ۰۲.[
در روش دیگر با استفاده از مولفه هـای صـفر و منفـی هارمونیکهـای دوم، سـوم و پـنجم بعنـوان
ویژگیهای مناسب و روشی درست اقدام به جداسازی خطای امپدانس بالا از سایر حالتهـای گـذرا
همچون کلیدزنی بار، کلیدزنی خازنها و جریان هجـومی ترانـسها گردیـده اسـت] ۱۲ .[ همچنـین
انرﮊی سیگنال در یک فرکانس یـا محـدوده فرکانـسی بعنـوان ویژگیهـای مناسـبی بـرای ارزیـابی
خطاهای امپدانس بالا در نظر گرفته شده اند]۲۲.[
ب) استفاده از مولفه های فرکانس بالا جهت شناسایی خطاهای امپدانس بالا
٩۵% خطاهای امپدانس بالا با جرقه توام هستند و این جرقه ها ایجـاد نوسـانات فرکـانس بـالا در
محدوده kHz١٠‐ ٢ می نمایند. حد پایین به منظور عدم تداخل با فرکانسهای پایین که در شـرایط
معمولی وجود دارند، تعیین گ
ردیده و حد بالا به علت کاهش انرﮊی سیگنال در فرکانسهای بسیار بالا انتخاب شـده انـد. نتـایج
عملی نشان می دهند که این مولفه ها برای شناسایی مناسب هستند. هر چند اگر دامنه جریان کـم
و یا بانکهای خازنی بزرگ در شبکه وجود داشته باشند موجب حذف این مولفه ها مـی گردنـد و
عمل آشکارسازی را با مشکل مواجه می سازد] ۳۲ .[
ج) شناسایی خطاهای امپدانس بالا به کمک مولفه های بین هارمونیکی
علاوه بر هارمونیک های فرکانس پایین و فرکانس بالا مولفه های بین هـارمونیکی بـرای فرکـانس
پایه ۵٠ هرتز عبارتند از:٢۵،٧۵ و ١٢۵ هرتز و بـرای فرکـانس پایـه ۶٠ هرتـز، ٣٠،٩٠، ١۵٠، ٢١٠
١٢
هرتز می باشند] ۴۲،۵۲.[ این فرکانـسها تغییـرات دامنـه و زاویـه زیـادی در هنگـام وقـوع خطـای
امپدانس بالا از خود نشان می دهند و با حذف فرکانسهای پایه و بعضی از هارمونیک ها به کمـک
فیلتر کردن جریان می توان به آنها دست یافت و برای آشکار سازی از آنها اسـتفاده کـرد. مـشکل
عمده این روشها ساخت فیلتر هایی است که مولفه های بین هارمونیک را از خود عبور دهند] ۴۲
.[استفاده از انرﮊی این مولفه ها نیز بعنوان روشی برای جداسازی خطاهای امپـدانس بـالا از سـایر
حالات مطرح شده است] ۵۲ .[
د) آشکارسازی به کمک فیلتر کالمن
تبدیل فوریه برای سیگنالهای ایستان که دامنه آنهـا بـا زمـان تغییـر نمـی کنـد مناسـب هـستند در
صورتیکه خطاهای امپدانس بالا دارای ماهیت غیر ایستان می باشند و استفاده از تبدیل فوریه برای
تجزیه و تحلیل آنها روش بهینه ای نیست. یکی از روشـهایی کـه بـرای بررسـی سـیگنالهای غیـر
ایستان بکار می رود فیلتر کالمن است، در این روش هم مولفه اصلی و هم هارمونیک هـا بررسـی
می شوند. فیلتر کالمن برآورد مناسبی برای تغییرات زمانی فرکانس اصلی و هارمونیک ها ارائه می
کند و خطاهای مربوط به فیلترهای کلاسیک و فوریه را ندارد] ۶۲ .[
٣.روشهای ارائه شده در حوزه زمان‐ فرکانس
در این روشها از تبدیل موجک برای تجزیه و تحلیل سیگنالها استفاده می شود. با توجه به مزیـت
این تبدیل نسبت به تبدیل فوریه اخیرا در پردازش سیگنالها از جمله سیگنالهای ناشی از خطاهـای
امپدانس بالا تبدیل موجک بعنوان تبدیلی کارآمد مورد توجه قرار گرفته است. مقالاتی که در ایـن
ارتباط ارائه شده اند عبارتند از:
١٣
الف) اولین کاربرد موجک برای شناسایی خطاهای امپدانس بالا مربوط به خطاهایی اسـت کـه در
آنها از یک مقاومت زیاد بعنوان مدل خطا استفاده شده است. شبکه بررسی شـده یـک شـبکه سـه
شینه، kV۴٠٠ بوده و با استفاده از برنامه EMTP شـبیه سـازی شـده و اطلاعـات مـورد نیـاز بـا
فرکانس نمونه برداری kHZ ۴ ثبت گردیده و سه سیکل از شکل موج ولتاﮊ برای پردازش اسـتفاده
شده است. کاهش دامنه ضرایب بعنوان معیاری برای شناسایی خطا استفاده گردیده است] ۷۲ .[
ب) کاربرد دیگر تبدیل موجـک اسـتفاده از موجـک Spline و قـدر مطلـق ضـرایب سـطوح ۱و۲
سیگنالهای جریان تجزیه شده برای شناسایی خطاهای امپدانس بـالا مـی باشـد. اطلاعـات لازم بـا
شبیه سازی یک فیدر kV۱۱ با استفاده از برنامه EMTP ثبت شده اند و سه سیکل از سـیگنالهای
جریان پردازش شده اند] ۸۲. [
١۴

١۵
۳‐۱‐ مقدمه
فرورزونانس اصطلاحی است که بمنظور توصیف پدیده رزونانس در مداری که حداقل دارای یک
عنصر غیر خطی اندوکتیو است، بکار برده می شود. مداری که شامل ترکیب سری یک اندوکتانس
قابل اشباع و مقاومت خطی وخازن است، مدار فرورزونانس نامیده می شود.
رزونانسی که در مدار شامل راکتور خطی رخ می دهد به رزونانس خطی سری و رزونانسی که در
مدار شامل راکتور قابل اشباع رخ می دهد به فرورزونانس یا رزونانس جهشی موسوم است.
بواسطه مشخصه غیر خطی راکتور، مقدار اندوکتانس در ناحیه اشباع تابعی از درجه اشباع هسته
مغناطیسی که خود وابسته به ولتاﮊ دو سر راکتور است، می باشد و از این رو در ناحیه اشباع
اندوکتانس می تواند مقادیر متعددی را به خود اختصاص دهد که ممکن است در هر یک از این
مقادیر تحت شرایط خاصی پدیده فرورزونانس تحقق یابد.
در حقیقت پدیده فرورزونانس مورد خاصی از رزونانس جهشی است که در آن غیر خطی بودن،
مربوط به هسته مغناطیسی راکتور است. رزونانس جهشی به این معناست که هر گاه در سیستمی
که توسط منبع سینوسی تحریک می شود، در اثر افزایش مقدار یا فرکانس ورودی و یا مقدار یکی
از پارامترهای سیستم، یک جهش ناگهانی در مقدار یکی از سیگنالهای دیگر سیستم پیش آید. این
جهش می تواند در ولتاﮊ یا جریان و یا فلوی مغناطیسی یا در تمامی آنها ایجاد گردد.
هنگامیکه در اثر اشباع هسته مغناطیسی و تحت شرایط خاصی چنین پدیده ای رخ می دهد ولتاﮊ
زیادی در دو سر راکتور ظاهر شده و جریان مغناطیس کننده در نقاطی که ولتاﮊ تغییر جهت می
دهد به شکل پالس به مقدار زیادی افزایش می یابد.
١۶
۳‐۲‐ تاریخچه فرورزونانس
تحقیقات در مورد پدیده فرورزونانس سابقه هشتاد ساله دارد. کلمه فرورزونانس در مقالات علمی
دهه ١٩٢٠ دیده شد. علایق عملی در سال ١٩٣٠ زمانی به وجود آمد که استفاده از خازنهای سـری
برای تنظیم ولتاﮊ در سیستمهای توزیع آن زمان، باعث بروز اضافه ولتاﮊ در شبکه توزیع می گـردد
]۹۲.[ از آن زمان تاکنون بیشتر تحقیقات در این زمینه بر مـدل سـازی دقیـق تـر ترانـسفورماتور و
مطالعه پدیده فرورزونانس در سطح سیستم متمرکـز بـوده اسـت. اصـولا فرورزونـانس پدیـده ای
غیرخطی است. بنابراین بسیاری از روشهای بکار برده شده جهت بررسـی ایـن پدیـده مبتنـی بـر
حوزه زمان و با بکار بردن نرم افزار EMTP می باشد
٣‐٣‐ موارد وقوع فرورزونانس در سیستم های قدرت
در سیستم های قدرت الکتریکی مواردی که در آنها احتمال وقوع فرورزونانس وجود دارد عبارتند
از :
الف‐ ترانسفورماتورهای ولتاﮊ (CVT, VT)
ب‐ خطوط انتقال موازی EHV جابجا نشده
ج‐ سیستم توزیع انرﮊی
این پدیده معمول بواسطه اثر متقابل ترانسفورماتور (بدون بار یا بار کم) با کاپاسیتانس سیستم
بوجود می آید.
مثلا اگر ولتاﮊی در نقطه صفر شکل موج آن به ترانسفورماتور بدون بار اعمال شود، یک جریان
زیادی از مقدار عبور می کند زیرا، فلوی مغناطیسی تمایل دارد که در سیکل اول مقدارش را دو
١٧
برابر نماید و در نتیجه هسته به میزان زیادی اشباع می گردد، این جریان زیاد تا چند سیکل ادامه
می یابد و در شرایط ماندگار جریان تحریک به مقدار معمولش تنزل می یابد.
اما اگر چنانچه ترانسفورماتور از طریق یک خازن سری انرﮊی دار گردد این جریان غیرعادی
درشرایط ماندگار نیز ادامه می یابد، این جریان حتی از جریان بار نیز بزرگتر است و در این حالت
شکل موج جریان و ولتاﮊ دو سر ترانسفورماتور اعوجاج یافته اند و پدیده فرورزونانس تحقق
یافته است.
٣‐۴‐ شروع فرورزونانس
پدیده فرورزونانس همواره پس از وقوع یک اغتشاش فاحش، رخ میدهد. اغتشاش وارده به
سیستم ممکن است منجر به تغییر افزایشی در مقدار فرکانس ورودی سیستم یا مقادیر پارامترهای
سیستم گردد.در سیستم های قدرت، معمولا اغتشاش ناشی از قطع خط ترانسفورماتور بدون بار و
شرایط سوئیچینگ نامطلوب، احتمال وقوع فرورزونانس را افزایش می دهد. اغلب این پدیده در
سیستم قدرتی که دارای تلفات کم است آغاز می گردد.
٣‐۴‐١ شرایط ادامه یافتن فرورزونانس
وقوع فرورزونانس در سیستم های قدرت به شرایط اولیه مخصوصا به انرﮊی اولیه ذخیره شده
سیستم در زمان پس از اغتشاش وابسته است اگر این انرﮊی کافی باشد اندوکتانس با هسته آهنی
را به اشباع می برد.
اگر برای تغذیه تلفات سیستم بقدر کافی انرﮊی از منبع تغذیه انتقال یابد پدیده فرورزونانس ادامه
می یابد، البته مکانیزم انتقال انرﮊی در موارد مختلف، متفاوت خواهد بود.
١٨
مثلا در خطوط دوبل EHV وقتی یک از مدارها قطع می شود و خط دیگر انرﮊی دار می گردد،
انتقال توان از طریق کاپاسیتانس کوپلاﮊ بین دو خط از خط انرﮊی دار صورت می گیرد.
نتایج نشان می دهد که با وارد کردن مقاومت بزرگ در مدار امکان وقوع فروزونانس کاهش
مییابد که از آن می توان برای جلوگیری فروزونانس درترانسفورماتور ولتاﮊ استفاده نمود.
داغ شدن ترانسفورماتور قدرت عایقی آن را تضعیف کرده و منجر به شکست عایق تحت تنشهای
الکتریکی می شود. در صورت عدم توقف این پدیده ترانسفورماتور شدیدا آسیب دیده و ممکن
است باعث اتصال کوتاه و با انفجار و یا حتی آتش سوزی شود.
اضافه ولتاﮊهای ناشی از پدیده فرورزونانس می تواند تا حدود ۵ پریونیت افزایش یابد. بدیهی
است چنین اضافه ولتاﮊهایی به راحتی می توانند به سیم پیچی ترانسفورماتور آسیب برسانند. با
توجه به مسائل و مشکلات فوق شبیه سازی و تفهیم پدیده فرورزونانس موضوع بسیاری از
مقالات بوده است.
۳‐۵‐ اثرات نامطلوب فرورزونانس] ۰۳[
به وجود آمدن ولتاﮊها و جریانهای بزرگ ماندگار یا موقت در سیستم
ایجاد اعوجاج در شکل موجهای ولتاﮊ جریان
تولید صداهای گوش خراش پیوسته در ترانسفورماتورها و راکتورها
تخریب تجهیزات الکتریکی به علت گرمای زیاد یا شکست الکتریکی
عملکرد ناخواسته رله ها
گرم شدن ترانسفورماتور (در حالت بی باری)
١٩
به علت اشباع هسته ترانسفورماتور و عبور جریانهای لحظه ای بزرگ در سیم پیچهای
ترانسفورماتور در زمان وقوع این پدیده، ترانسفورماتور داغ می شود.
٣‐۶‐ مبانی پدیده فرورزونانس
به منظور تفهیم هر چه بهتر پدیده فرورزونانس مدار شکل (١‐٣) را در نظر بگیرید که در آن
سلف دارای مشخصه غیر خطی است. هر گاه منبع ولتاﮊ سینوسی باشد، می توان KVL را طبق
رابطه (١‐٣) نوشت :
L

C
R
E
شکل ۱‐۳. مدار معادل پدیده فرورزونانس
R ≈ 0 (١‐٣) jI ) V  E  − j E  I ( jwL  wC wC با توجه به شکل (٢‐٣) مشخص است که به تناسب مقدار ظرفیت خازنی، یک یا سه نقطه تقاطع
بین منحنی سلف غیرخطی و راکتانس خازنی وجود دارد. نقطه تقاطع (٢) ناپایدار می باشد. و
فقط در حالتهای گذرا چنین نقطه ای به وجود می آید. همچنین واضح است که اگر نقطه
تقاطع(۳) نقطه کار باشد در آن صورت ولتاﮊ و جریانهای بسیار بزرگی به وجود می آیند.
در مقادیر کم ظرفیت خازنی، نقطه کار فقط، نقطه سوم بوده و چون در این حالت راکتانس
خازنی بزرگ است، موجب جریان پیشفاز در سیستم و ولتاﮊ بزرگتر روی سلف می شود. با
٢٠
افزایش مقدار ظرفیت خازنی نقطه تقاطع دیگری به وجود می آید که تمایل سیستم به نقطه تقاطع
که دارای حالت سلفی با جریان پسفاز است. بیشتر می باشد.
هر گاه مقدار ولتاﮊ اعمالی به اندازه کمی تغییر نماید آنگاه نقطه کار (١) حذف و نقطه کار به نقطه

(٣) پرش خواهدکرد.
voltage
2
1
current
3
شکل۲‐۳ حل ترسیمی مدار LC غیر خطی
در این حالت جریان بسیار زیادی از سلف می گذرد و طبیعی است که با عبور این جریان بزرگ،
ولتاﮊ دوباره کاهش یافته و دبواره نقطه کار (١) به وجود می آید. و بدین ترتیب نقطه کار بین (١)
و (٣) پرش خواهد کرد. در این صورت ولتاﮊ و جریانهای به وجود آمده کاملا تصادفی و غیر


قابل پیش بینی می باشند.
در سیستمهای توزیع، پدیده فرورزونانس زمانی اتفاق می افتد که بانک خازنی و یا طولی از کابل
با مشخصه مغناطیسی ترانسفورماتور و یک منبع ولتاﮊ بطور سری قرار بگیرد. برای کابلهای با
طول کم فقط یک نقطه کار در ناحیه سوم وجود دارد و بنابراین شکل موج ولتاﮊ و جریان ناشی
از فرورزونانس دارای پریودی برابر پریود شبکه میباشد. با افزایش ظرفیت خازنی قله این اضافه
٢١
ولتاﮊها روی منحنی اشباع مدام بالا می رود تا جائیکه اندازه ولتاﮊ بسیار بیشتر از حالت عادی می
شود. با افزایش بیشتر ظرفیت خازنی نقطه کار (١) نیز فعال می شود و به تناسب نوع حالت
گذاری پیش آمده، اضافه ولتاﮊهای به وجود آمده در دو سر اندوکتانس غیرخطی، ممکن است
دارای پریود پایدار و یا شکل موج آشفته باشند.
با افزایش دوباره ظرفیت خازنی زمانی فرا می رسد که نقطه تقاطع سوم حذف می شود و در
حالت عادی در ناحیه فرورزونانس نخواهیم بود. اما حالتهای گذرا نظیر کلید زنی می توانند باعث
به وجود آوردن چنین نقطه کاری در ناحیه سوم شوند.
٣‐٧‐ فرورزونانس در ترانسفورماتورهای توزیع] ۱۳[
با گسترش خطوط کابلی زیر زمینی و همچنین تمایل روزافزون استفاده از ترانسفورماتورهای با
تلفات کم، مخصوصا ترانسفورماتور های ساخته شده از ورقه های فولاد حاوی سیلیکان، احتمال
وقوع فرورزونانس در این ترانسفورماتورها بیشتر شده است. این مشکل زمانی رخ می دهد که
ترانسفورماتور بی بار تغذیه شده از طریق خط کابلی (و یا متصل شده به بانک خازنی) تحت کلید
زنی تک فاز و یا دو فاز قرار می گیرد. همچنین در خطوط انتقال توزیع طولانی نیز، این مشکل
می تواند اتفاق بیافتد.
البته در رده توزیع خوشبختانه تمامی کلیدهای قدرت دارای قطع سه فاز بوده و این مسئله زیاد
جدی نمی باشد. اما در حالتهایی که از وسایل قطع تک فاز مانند کات آوت فیوزاستفاده می شود
امکان وقوع چنین شرایطی بسیار مهیا است. در این حالت مدار فرورزونانس شامل ولتاﮊ القایی
(ولتاﮊ القا شده از فازهای دیگر ترانسفورماتور به فاز قطع شده) و مشخصه مغناطیسی هسته
ترانسفورماتور و ظرفیت خازنی بین کابل (یا خط انتقال) و زمین می باشد. در این حالت ولتاﮊ
٢٢
ظاهر شده در فاز قطع شده ترانسفورماتور به تناسب مقدار ظرفیت خازنی کابل متصل به آن و
سایر پارامترها می تواند از چند پریونیت تجاوز نماید. شکل هسته ترانسفورماتور و منحنی
مشخصه آن در رفتار ترانسفورماتور بسیار با اهمیت می باشد.
فرورزونانس زمانی اتفاق می افتد که در هنگام بی باری و یا کم باری ترانسفورماتور در نقطه ای
دور از آن قطع تک فاز و یا دو فاز انجام شود. به تناسب پارامترهای مقدار امکان دارد که
فرورزونانس دارای دو حالت مختلف به شرح زیر میباشد:
٣‐٧‐١‐ فرورزونانس پایدار
در این حالت اضافه ولتاﮊهای فرورزونانس تا زمانی که فاز قطع شده بی برق بماند، پایدار می
باشند. این اضافه ولتاﮊها ممکن است که دارای قله بسیار بزرگی نباشند ولی به دلیل پایدار بودن
می توانند باعث صدمات جدی به برقگیرها و حتی انفجار آنها در عرض چند دقیقه شوند.
٣‐٧‐٢‐ فرورزونانس ناپایدار
در این حالت نقاط کار سیستم در حالت پایدار در محدوده فرورزونانس نمی باشند، اما حالتهای
گذرا نظیر کلید زنی می توانند نقاط کار سیستم را برای مدت کوتاهی به این محدوده وارد نمایند.
در این حالت اضافه ولتاﮊهای فرورزونانس برای مدت کوتاهی بعد از کلید زنی پدیدار شده ولی
به زودی میرا می شوند.
٢٣
٣‐٨‐ تاثیر نوع سیم بندی ترانسفورماتور
یکی از مزیتهای مدلسازی دوگانی ترانسفورماتورهای قدرت که در این مطالعه استفاده شده است،
این است که بدون تغییر در مدل هسته ترانسفورماتور، می توان سیم بندی ترانسفورماتور را
تعویض نمود] ۲۳.[
در ظرفیتهای خازنی مساوی، اضافه ولتاﮊهای فرورزونانس در ترانسفورماتور مورد نظر در حالت
اتصال ستاره با نوترال زمین شده بسیار کمتر است. با قطع نوترال ترانسفورماتور مورد نظر و قطع
تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتری حاصل می شوند که حتی از حالت اتصال
مثلث‐ ستاره بزرگتر می باشند
۳‐۹‐ تاثیر بار بر اضافه ولتاﮊهای فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم باری ترانسفورماتور
به وجود می آید. شبیه سازیها نشان می دهد که در مقادیر پایین ظرفیت خازنی مقدار بار لازم
برای حذف پدیده فرورزونانس بسیار کم است ولی با اضافه شدن ظرفیت خازنی مقدار بار لازم
برای قطع تک فاز و دو فاز بیشتر می شود. اضافه ولتاﮊهای فرورزونانس در ترانسفورماتورهای با
اولیه زمین شده کمتر هستند.
فازهای مختلف ترانسفورماتور دارای رفتار مساوی درمقابل اضافه ولتاﮊهای فرورزونانس نیستند.
با افزایش ظرفیت خازنی، میزان بارلازم برای حذف اضافه ولتاﮊهای فرورزونانس افزایش می یابد.
باری در حدود ۵ % بار نامی ترانسفورماتور در بیشتر حالات، قادر به حذف اضافه ولتاﮊهای
فرورزونانس می باشد.
٢۴
٣‐١٠‐ طبقه بندی مدلهای فرورزونانس
مدل پایه
در این حالت ولتاﮊ و جریان پریودیک می باشند و پریود آنها با پریود سیستم برابر است.
مدل زیر هارمونیک
در این حالت ولتاﮊ و جریان با پریودی نوسان می کنند که ضریبی از پریود منبع می باشند. این
حالت به زیر هارمونیک n ام معروف است که حالت فرورزونانس زیر هارمونیک فرد می باشد.
مدل شبه پریودیک
در این نوع فرورزونانس نوسانات کاملا اتفاقی و غیر پریودیک می باشند
٣‐١١‐ شناسایی فرورزونانس
بروز فرورزونانس با اثرات وعلایمی به شرح زیر همراه است:
اضافه ولتاﮊهای با دامنه زیاد و دائمی بصورت فاز به فاز و فاز به زمین اضافه جریانها با دامنه زیاد و دائمی اعوجاجها با دامنه زیاد و دائمی در شکل موج ولتاﮊ و جریان جابجایی ولتاﮊ نقطه صفر افزایش دمای ترانس در حالت بی باری
افزایش بلندی نویز ترانسها و راکتورها تریپ بی موقع تجهیزات حفاظتی
البته بعضی از این علایم مختص این پدیده نیست بطور مثال جابجایی نقطه صفر در شبکه هایی
که نقطه صفر آنها زمین نشده است می تواند بدلیل وقوع اتصال فاز به زمین رخ دهد.
٢۵
٣‐١١‐١ شرایط لازم برای بروز پدیده فرورزونانس
۱‐ حضور همزمان خازن با راکتور غیر خطی در سیستم
۲‐ وجود حداقل یک نقطه از سیستم که دارای ولتاﮊ ثابت نباشد
۳‐ وجود اجزا سیستم با بار کم مانند ترانسهای قدرت یا ترانسهای ولتاﮊ بدون بار یا منابع انرﮊی
با اتصال کوتاه پایین مانند ﮊنراتورهای اضطراری
در صورتیکه هر کدام از این سه شرط برقرار نباشد احتمال وقوع فرورزونانس بسیار ضعیف است
در غیر این صورت باید تحقیقات گسترده ای به عمل آورد.
٢۶

٢٧
۴‐۱‐ از تبدیل فوریه٣ تا تبدیل موجک ]۳۳[
در قرن نوزدهم، ﮊان پاپتیست فوریه، ریاضی دان فرانسوی، نشان داد که هر تابع متناوب را میتـوان
به صورت حاصل جمعی نامحدود از توابع نمایی مختلط متناوب نمایش داد. سالها بعـد از عنـوان
شدن این خاصیت مهم، ایده او به نمایش سیگنالهای نامتناوب و سپس سیگنالهای گسسته متناوب
و نامتناوب گسترش یافت. بعد از این عمومیت بـه حـوزه گسـسته، تبـدیل فوریـه در محاسـبات
کامپیوتری بسیار موثر واقع گردید. در سال ۵۶۹۱، الگوریتم جدیدی به نـام تبـدیل فوریـه سـریع۴
عنوان شد، که نسبت به الگوریتم های قبلی تبدیل فوریه بیشتر به کار گرفته شد.
FFT چنین تعریف میشود
(۴‐ ۱) ∞∫ f (t )e − jwt dt F (w)  − ∞ (۴‐ ۲) f (t)  ∞∫F(w)e jwt dw −∞ اطلاعات حاصل از انتگرال، مربوط به تمام زمانها میباشد، چرا کـه انتگـرال گیـری از زمـان منفـی
بینهایت تا مثبت بینهایت انجام میشود. به همین علت، اگر سیگنال شامل فرکانسهای متغییر با زمان
باشد، یعنی سیگنال ثابت نباشد، تبدیل فوریه مناسب نخواهد بود. این بـدان معناسـت کـه تبـدیل
فوریه تنها مشخص میکند که آیا یک مولفه فرکانسی بخصوص در یک سیگنال وجود دارد یـا نـه،
و اطلاعاتی در مورد زمان ظاهر شدن این فرکانس به ما نمی دهد.

3-Fourier Transform 4-Fast Fourier Transform
٢٨
به همین دلیل، یک نمایش فرکانسی‐ زمانی به نام تبدیل فوریه زمان کوتاه۵ معرفی شد. در STFT،
سیگنال به قطعات زمانی به اندازه کافی کوتاه تقسیم میسود، بطوری که میتوان این قسمتهای کوتاه
را سیگنال ثابت فرض کرد. برای رسیدن به این هدف، یک تابع پنجره انتخاب میشود. پهنـای ایـن
پنجره باید با طولی از سیگنال که میتوان آنرا فرایند ثابت در نظر گرفت، برابر باشد. نمـایش STFT
به شکل زیر تمام مطالب ذکر شده در این مورد را خلاصه میکند:

(۴‐۳)
که w تابع پنجره میباشد.
نکته مهم در STFT پهنای پنجره بکار رفته میباشد. این پهنا را تکیه گاه پنجره نیز مینامند. هر چقدر
پهنای پنجره را کاهش دهیم، رزولوشن زمانی بهتر، و فرض فراینـد ثابـت محکمتـر میـشود ولـی
رزولوشن فرکانسی ضعیفتر خواهد شد، و بر عکس‐ شکل۴‐۱ راببینید.

شکل۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس

5-Short Time Fourier Transform
٢٩
مشکل STFT را میتوان به وسیله اصل عدم قطعیت هایزنبرگ۶ مطرح کرد. ایـن اصـل معمـولاﹲبرای
مقدار جنبش و موقعیت مکانی ذرات در حال حرکت به کار میرود، با این حال میتوان آنـرا بـرای
اطلاعات حوزه زمانی‐فرکانسی بکار ببریم. بطور مختصر، ایـن اصـل مـیگویـد کـه نمـیتـوانیم
تشخیص دهیم که در هر لحظه زمانی کدام فرکانس وجود دارد. آنچه که ما میتـوانیم بفمـیم ایـن
است که در هر بازه زمانی کدام باندهای فرکانسی وجود دارند.
بنابراین، مساله انتخاب یک تابع پنجره، واستفاده از آن در تمام آنالیز میباشد. جـواب ایـن مـساله
بستگی به کاربرد دارد. اگر اجزاﺀ فرکانسی در سیگنال اصلی به خوبی از هم تفکیک شـده باشـند،
میتوانیم رزولوشن فرکانسی را در یک انـدازه مناسـب در نظـر بگیـریم و آنگـاه بـه طراحـی یـک
رزولوشن زمانی خوب بپردازیم، چرا که مولفههای طیفی قبلاﹲ از هم تفکیک شدهاند. در غیـر ایـن
صورت، پیدا کردن یک تابع پنجره مناسب بسیار مشکل خواهد بود.
اگر چه مشکل رزولوشن فرکانسی و زمانی از یک پدیده فیزیکی (اصل عـدم قطعیـت هـایزنبرگ)
ناشی میشود، و همواره برای هر تبدیل بکار رفته وجود دارد، میتوان سـیگنال را بـا یـک تبـدیل
دیگر بنام تبدیل موجک (WT) آنالیز کنیم
تبدیل موجک سیگنال را در فرکانسهای مختلف با رزولوشنهای مختلف آنالیز میکنـد. و بـا
تمام اجزاﺀ فرکانسی به صورت یکسان، آنطور که در STFT عمل میشد، برخورد نمیشود.
تبدیل موجک طوری طراحی شده است که در فرکانسهای بالا رزولوشن زمانی خوب و رزولوشن
فرکانسی ضعیف، و در فرکانسهای پایین، رزولوشن فرکانسی خوب و رزولوشـن زمـانی ضـعیف
داشته باشد. این خاصیت هنگامی که سیگنال تحت بررسـی دارای فرکانـسهای بـالا در بـازههـای

6-Heisenberg 's Uncertainty Principle
٣٠
زمانی کوتاه و فرکانسهای پایین برای زمانهای طولانی میباشد. دو تفاوت عمده بین STFT و CWT
عبارتند از
۱_ تبدیل فوریه سیگنال حاصل از اعمال تابع پنجره، گرفته نمیشود.
۲_ هنگامی که تبدیل برای یک جزﺀ طیفی محاسبه میشود، طول پنجره تغییر میکند. احتمالاﹲ ایـن
مهمترین مشخصه تبدیل موجک میباشد.
تبدیل موجک پیوسته (CWT) بصورت زیر تعریف میشود(:(Daubechies92
(۴‐۴)

که

(۴‐۵)
یک تابع پنجره است که موجک مادر٧ نامیده میشود، a یک مقیاس و b یک انتقال است.

شکل۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. عدد بعد از نام موجک معرف تعداد لحظات محو شدن
است

7-Mother Wavelet
٣١
اصطلاح موجک به معنی موج کوچک میباشد. کوچکی برای شرایطی تعریف شده است که تـابع
پنجره طول محدود داشته باشد. موج هم برای شرایطی تعریف شده است کـه ایـن تـابع نوسـانی
باشد. اصطلاح مادر بر این نکته دلالت دارد که توابع بـا نـواحی مختلـف کـارایی، کـه در تبـدیل
استفاده میشوند، از یک تابع اصلی یا تابع مادر یک نمونه اصلی بـرای تولیـد سـایر توابـع پنجـره
میباشد. یک نمونه ازموجک مادر را در شکل۴‐۲ مشاهده میکنیم
اصطلاح انتقال به همان نحو که برای STFT بکار میرفت، در اینجا استفاده میشود. این اصـطلاح
به مکان پنجره، هنگامی که در امتداد سیگنال شیفت مییابد، دلالت میکند. واضح اسـت کـه ایـن
اصطلاح به اطلاعات زمانی در حوزه تبدیل مربوط میشود. با ایـن وجـود، مـا پـارامتر فرکانـسی،
آنطور که برایSTFT داشتیم، برای تبدیل موجک نداریم. در عوض در اینجا یـک مقیـاس موجـود
میباشد. مقیاس دهی همانند یک تبدیل ریاضی، به معنی گسترده یا فشرده کردن سیگنال میباشد.
مقیاسهای کوچکتر به معنی سیگنالهای گستردهتر و مقیاسهای بزرگتر به معنی سیگنالهای فشردهتـر
میباشد. از آنجا که در مبحث موجک پارامتر مقیاس دهی در مخرج بکار میرود، عکـس عبـارت
فوق در اینجا صادق خواهد بود.
رابطه بین مقیاس و فرکانس این است که مقیاسهای پایین مربوط به فرکانـسهای بـالا و مقاسـهای
بالا مربوط به فرکانسهای پایین میباشد. با توجه به بحث ذکر شده، ما تا بحال طرح زمـان‐مقیـاس
داریم. توصیف شکل۴‐۳ معمولاﹲ در توضیح اینکه چگونه رزولوشنهای زمانی و فرکانسی تفسیر
شوند، بکار میرود.
٣٢

شکل۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس‐ زمان
هر مستطیل در شکل۴‐۳ مربوط به یک مقدار تبدیل موجک در صفحه زمـان‐مقیـاس مـیباشـد.
توجه کنید که مستطیلها یک مساحت غیر صفر مشخص دارند، که این بدان معناسـت کـه مقـدار
یک نقطه بخصوص در طرح زمان‐مقیاس قابل تشخیص نیـست. اگـر ابعـاد جعبـههـا را در نظـر
نگیریم، مساحت جعبهها، در STFT و WTبـا هـم برابـر هـستند و بـا نامـساوی هـایزنبرگ تعیـین
میشوند. خلاصه، مساحت مستطیلها برای تابع پنجره (STFT) و (WT) ثابت است. همچنین، تمام
مساحتها دارای حد پایین محدود شده به ۴π/ هستند. یعنی، طبـق اصـل عـدم قطعیـت هـایزنبرگ
نمیتوانیم مساحت جعبهها را هر اندازه که بخواهیم، کاهش دهیم.
۴‐۲‐سه نوع تبدیل موجک ]۳۳[
ما سه نوع تبدیل در اختیار داریم: پیوسته، نیمه گسسته٨ و گسسته در زمان. اختلاف انـواع مختلـف
تبدیل موجک مربوط به روشی است که مقیاس وشیفت را پیاده سازی میکند. در این بخـش ایـن
سه نوع مختلف را ریزتر بررسی خواهیم کرد.

8-Semidiscrete
٣٣
۴‐۲‐۱‐ تبدیل موجک پیوسته
برای CWT پارامترها به صورت پیوسته تغییر میکنند. این موضـوع باعـث حـداکثر آزادی در
انتخاب موجک مناسب برای آنالیز خواهد شد. تنها لازم است که تبدیل موجـک شـرط (۴‐۷)، و
مخصوصاﹲ مقدار متوسط صفر را داشته باشد. این شرط برای اینکه CWT معکـوس پـذیر باشـد،
لازم است. تبدیل عکس به صورت زیر تعریف میشود:
(۴‐۶)

که Ψ شرط لازم زیر را باید ارضا کند

(۴‐۷)
که Λψ تبدیل فوریه Ψ است.
بطور شهودی واضح است که CWT بر محاسبه "ضریب همبـستگی" بـین سـیگنال وموجـک
اصرار دارد. شکل۴ را ببینید

شکل۴‐۴‐ تشریح CWT طبق معادله۴
الگوریتم CWT را میتوان به شکل زیر توصیف کرد‐شکل۴‐۴ را ببینید.
۱_ یک موجک در نظر بگیرید و آنرا با با قسمتی از ابتدای سیگنال اصلی مقایسه کنید.
٣۴
۲_ ضریب c(a,b) که نمایانگر میزان ارتباط موجک با این قـسمت از سـیگنال اسـت را محاسـبه
کنید. هر چقدر c بیشتر باشد، شباهت بیشتر است. توجه کنید که نتیجه به شکل موجک انتخـاب
شده دارد.
۳_موجک را به سمت راست شیفت دهید و مراحل ۱و ۲ را تا رسیدن بـه انتهـای سـیگنال تکـرار
کنید.
۴_موجک را به سمت راست شیفت دهید و مراحل ۱ تا ۳ را تکرار کنید.
یک مثال از ضرایب CWT مربوط به سیگنال استاندارد در شکل۴‐۵ نشان داده شده است.

شکل۴‐۵ مثالی از آنالیزموجک پیوسته. در شکل بالا سیگنال مورد نظر نمایش داده شده است.
شکل پایین ضرایب موجک مربوطه را نشان میدهد.
٣۵
۴‐۲‐۲ تبدیل موجک نیمهگسسته
در عمل، محاسبه تبدیل موجک برای بعضی مقادیر گسسته a و b بسیار متداولتر است. برای مثـال، بکارگیری مقیاسهای a 2j dyadic و شـیفتهای صـحیح b  2j k بـا (j, k) z2 راتبـدیل
موجک نیمه گسسته (SWT) مینامیم.
در صورتی که مجموعه متناظر با الگوها، یک قالب موجـک را تعریـف کنـد، تبـدیل عکـسپـذیر
خواهد بود. به عبارت دیگر، موجک باید طوری طراحی شود که

(۴‐۸)
در اینجا A و B دو ثابت مثبت، ملقب به حدود قالب هستند. که ما باید برای بدستآوردن ضرایب
موجک انتگرالگیری انجام دهیم، چرا که f(t) هنوز یک تابع پیوسته است.
۴‐۲‐۳ ‐ تابع موجک گسسته
در اینجا، تابع گسسته f(n) و تعریف موجک (DWT) داده شده بـه صـورت زیـر را در اختیـار
داریم:
(۴‐۹)

که ψj,x یک موجک گسسته تعریف شده به شکل زیر میباشد:

(۴‐۰۱)
پارامترهای a و b به شکل a2j و b  2jkتعریف میشوند. عکس تبدیل به شـکلی مـشابه،
چنین تعریف میشود:
٣۶

(۴‐۱۱)
اگر حدود قالب در معادله۴‐٨ A=B=1 باشد، آنگـاه تبـدیل عمـودی خواهـد بـود. ایـن تبـدیلهـا
میتوانند با یک آنالیز چند بعدی، که در بخش بعد بحث خواهد شد، شروع شوند.
۴‐۳‐ انتخاب نوع تبدیل موجک
چه موقع آنالیز پیوسته از آنالیز گسسته مناسبتر است؟ هنگامی که انرﮊی سیگنال محدود است، اگر
از یک تبدیل موجک مناسب استفاده کنیم، تمام مقادیر یک تجزیه برای بازسازی شکل موج اصلی
لازم نخواهد بود. در این شرایط، یک سیگنال پیوسته را میتوان بوسیله تبـدیل گسـسته آن کـاملاﹰ
مشخص کرد. بنابراین آنالیز گسسته کافی است و آنالیز پیوسته اضافی خواهـد بـود. هنگـامی کـه
سیگنال بصورت پیوسته یا یک شبکه زمانی ریز ثبت میشود، هر دو نوع آنالیز، امکانپذیر خواهـد
بود. کدامیک باید استفاده شود؟ جواب این است: هر یک مزایای مربوط به خود را دارد.
آنالیز پیوسته معمولاﹰ برای تفسیر آسانتر اسـت، چـرا کـه اضـافات آن، تمایـل بـه تقویـت ویژگیها دارد و و اطلاعات را بسیار واضحتر خواهد کرد. این موضوع بـرای بـسیاری از ویژگیهای مفید درست است. آنالیز پیوسته تفسیر را راحتر، و خوانایی را بیشتر مـی کنـد، در عوض حجم بیشتری برای زخیره لازم دارد.
آنالیز گسسته حجم ذخیره سازی را کاهش میدهد و برای بازسازی کافی است.
٣٧
۴‐۴‐ آنالیز مالتی رزولوشن٩ و الگوریتم DWT سریع
برای اینکه تبدیل موجک مفید باشد، باید آنرا با الگوریتمهای سریع به منظور استفاده در ماشینهای
محاسباتی، پیادهسازی کنیم. یعنی روشی مثل FFT که هم ضرایب تبدیل wavwlet را بدست آورد و
هم بازسازی تابعی را که نمایش میدهد، انجام دهد.
۴‐۴‐۱‐آنالیز مالتی رزولوشن (MRA)
آنالیز مالتیرزولوشن Mallat را که خیلی عمومیت دارد، توضیح میدهیم. با فضایl2 که شامل تمام
توابع جمعپذیر مربعی است، شروع میکنیم، یعنی: f در فضای l2 (s) است، اگرMRA . ∫f 2  ∞
s
یک سری افزایشی از زیر فضای بسته {vj}jzاسـت، کـه l2 (R)را تخمـین میزنـد. شـروع کـار،
انتخاب یک تابع مقیاسدهی مناسـبΦ اسـت. تـابع مقیـاسدهـی بـه منظـور ارضـاﺀ پیوسـتگی،
یکنواختی و بعضی شرایط لازم بعدی انتخاب شده است. اما نکته مهمتر این اسـت کـه، مجموعـه
{φ(x − k), k z} یک اساس درست برای فضای مرجع v0 ایجاد میکند. رابطههای زیر آنالیز را
توصیف میکنند:
(۴‐۲۱)...v-1 v0 v1
فضاهایvj به صورت تودرتو قرار گرفتهاند. فضای l2 (R) اشتراک تمامvj را شامل مـیشـود. بـه
عبارت دیگر j z vj در(l2 (R متراکم شده است. اشتراک همهvj ها تهی است.
(۴‐۳۱)

9-Multiresolution
٣٨
فضاهای vj وvj1 مشابه هستند. اگر فضایvj دارای فاصـلههـای خـالی(φ1,k (x ، k z باشـد،
آنگـــاه فـــضایij1 دارای فاصـــلههـــای(φ1,k (x ، k z اســـت. فاصـــلهvj1 بوســـیله تـــابع
، که تولید میشود.
حالا شکلگیری موجک را توضـیح مـیدهـیم. چـون v0 v1 ، هـر تـابعی در v0 را مـیتـوانیم
بصورت ترکیبی از توابع پایه 2φ(x − k) ازv1 بنویسیم. مخصوصاﹰΦ باید معادلات دو بعـدی ۴۱

و ۵۱ را برآورده کند:
(۴‐۴۱)2φ (x − k) (φ (x)  ∑h(k

k
ضرایب h(k) بصورت((2Φ(x − k h(k)  (Φ(x), تعریف شـدهانـد. حـال بـه عـضو عمـودی

wj از vj برvj1 ،vj1  vj wj را در نظر بگیرید. این بدان معناست که تمام اعضایvj بـر
اعضای wj عمود هستند. ما لازم داریم که

تعریف زیر را ارائه میدهیم:
(۴‐۵۱)2∑(−1)k h(−k  1)φ (x − k) ψ (x) 

k
ما میتوانیم نشان دهیم کـه2{ψ(x − k), k z} یـک اسـاس درسـت بـرایw1 اسـت. دوبـاره، خاصیت تشابه MRI عنوان میکند که2j{ψ( 2jx − k), k z} یک اساس بـرایwj اسـت. از

آنجــــا کــــه v  wدر l2 (R) متمرکــــز اســــت، خــــانواده داده شــــده
jj z jj z
2j{ψ( 2jx − k), k z} یک اساس بـرای l2 (R) اسـت. بـرای یـک تـابع داده شـده f l2 (R)

٣٩
میتوان N را طوری بیابیم که f N vj ، f را بالاتر از دقت تعیین شده، تقریب بزند. اگـرgi wi
و f i vi آنگاه

(۴‐١۶)
معادله (۴‐١۶) تجزیه موجک تابع f است.
۴‐۵ ‐ زبان پردازش سیگنالی]۳۳و۴۳[
ما مراحل آنالیز مالتیرزولوشنی را با زبان پردازش سیگنالی تکرار میکنیم. آنالیز مالتی رزولوشـن
waveletبا الگوریتم کد کردن زیرباند یا محوطهای در پردازش سیگنال در ارتباط اسـت. همچنـین،
فیلترهای آینهای مربعی هم در الگوریتم مالتی رزولوشـن Mallat قابـل تـشخیص اسـت. در نتیجـه
نمایش زمان‐ مقیاس یک سیگنال دیجیتال با اسـتفاده از روشـهای فیلتـر کـردن دیجیتـال حاصـل
میشود.
معادلات۴‐۴۱ و۴‐۵۱ را از بخش قبل به خاطر بیاورید. سـریهای{h(k), k z} و {g(k), k z}
در اصطلاح پردازش سیگنال، فیلترهای آیینهای مربعی هستند. ارتباط بین h و g چنین است:
(۴‐۷۱)g(k)  (−1)n h(1 − n)
h(k) فیلتر پایین گذر و g(k) فیلتر بالا گذر است. این فیلتر با خانواده فیلترهای بـا پاسـخ ضـزبه
محدود (FIR) تعلق دارند. خواص زیر را میتوان با استفاده از تبدیل فوریه و عمـود بـودن اثبـات
کرد:
(۴‐۸۱) ∑g(k)  0 ∑h(k)  2
k k

۴٠
عملیات تجزیه با عبور سیگنال (دنباله) از یک فیلتر پایین گذر نیم باند دیجیتال با پاسخ ضربه h(n)
شروع میشود. فیلتر کردن یک سیگنال معادل با عملیات ریاضی کانولوشن سیگنال با پاسخ ضـربه
فیلتر میباشد. یک فیلتر پایین گذر نـیم بانـد تمـام فرکانـسهایی را کـه بـالاتر از نـصف بیـشترین
فرکانس سیگنال قرار دارند را حذف میکند
اگر سیگنال با نرخ نایکویست (که دو برابر بیشترین فرکانس در سیگنال است) نمونهبرداری شـده
باشد، بالاترین فرکانس که در سیگنال وجود داردπرادیان است. یعنـی، فرکـانس نایکویـست در
حوزه فرکانسی گسسته مطابق با π(--/s) میباشد. بعد از عبور سیگنال از یک فیلتر پایین گذر نـیم
باند، طبق روش نایکویست میتوان نصف نمونهها را حذف کـرد، چـرا کـه حـال سـیگنال دارای
حداکثر فرکانس(π/2(--/s میباشد. به این ترتیب سیگنال حاصل دارای طـولی بـه انـدازه نـصف
طول سیگنال اولیه میباشد.

شکل۴‐۶ طرح الگوریتم کد کردن زیر باند(قسمت بالا تجزیه و قسمت پایین ترکیب را نمایش میدهد)
۴١
حال مقیاس سیگنال دو برابر شده است. توجه کنید فیلتـر پـایینگـذر، اطلاعـات فرکـانس بـالای
سیگنال را حذف کرده است، اما مقیاس را بدون تغییر گذاشته است. این تنها کاهش تعداد نمونهها
است که مقیاس را تغییر میدهد. از طرف دیگر رزولوشن که به میزان اطلاعلت موجود در سیگنال
ارتباط دارد، توسط فیلتر کردن تغییر کرده است. فیلتر پـایین گـذر نـیم بانـد نـصف، فرکانـسها را
حذف کرده است، که میتوان این عمل را به نصف شدن اطلاعات تفـسیر کـرد. توجـه کنیـد کـه
کاهش نمونهها بعد از فیلتر کردن تاثیری در میزان رزولوشن ندارد، چرا کـه بعـد از فیلتـر کـردن
نصف نمونهها اضافی خواهد بود. پس نصف کردن نمونههـا باعـث حـذف هیچگونـه اطلاعـاتی
نمیشود. خلاصه، فیلتر کردن اطلاعات را نصف میکند، ولی مقیـاس را تغییـر نمـیدهـد. سـپس
سیگنال با نرخ دو نمونه برداری میشود، چرا که حال نصف نمونهها اضـافی اسـت. ایـن عمـل ،
مقیاس را دو برابر میکند. عملیات توصیف شده در شکل۴‐۶ نشان داده شده است.
یک روش بسیار مختصر برای توصیف این عملیات و همچنین عملیات موثر برای تعیین ضـرایب
موجک نمایش عملکرد فیلترها است. برای یک دنبالـه، f  {f n} نمایـانگر سـیگنال گسـستهای
است که باید تجزیه شود و G وH بوسیله روابط هممرتبه زیر تعریف می شوند:
(۴‐۹۱)

(۴‐۰۲)
معادلات ۴‐۹۱و ۴‐۰۲ فیلتر کردن سیگنال با فیلترهای دیجیتال h(k) و g(k) که معـادل عملگـر
ریاضی کانولوشن با پاسخ ضربه فیلترها میباشد، را نمایش میدهد. فاکتور 2k کاهش نمونههـا را
نمایش میدهد.
۴٢
عملگرهای G و H مربوط به گام اول در تجزیه موجک میباشند. تنها تفاوت این است که روابط با
از ضریب 2 معادلات ۴‐١٣و۴‐١۴ چشمپوشی کرده است. بنابراین تبـدیل موجـک گسـسته را

میتوان در یک خط خلاصه کرد‐ شکل ۴‐۷ را ببینید:

(۴‐۱۲)
(0)0(j 1)(j 2)(1)
که ما میتوانیم d  ,d  ,..., d ,d را جزئیات ضرایب و cرا تقریب ضرایب بنامیم.
جزئیات و ضرایب با روش تکرار حاصل می شوند:

شکل۴‐۷ نمایش تجزیه توسط موجک
برای مقایسه این روش با SWT، بیایید دنباله x(k) حاصـل از ضـرب داخلـی سـیبگنال پیوسـته
u(t) با انتقالهای صحیح تابع مقیاس دهی را تعریف کنیم

(۴‐۲۲)
حال، ما میتوانیم SWT را با استفاده از DWT طبق رابطه زیر بدست آوریم
(۴‐۳۲)

که برای هر عدد صحیح j ≥ 0 و هر عدد صحیح k درست است.
۴٣
عملیات بازسازی مشابه عملیات تجزیه است. تعداد نمونههای سـیگنال در هـر سـطحی دو برابـر
− −− −
میشود، از فیلترهای ترکیب کننده نشان داده شده بـا H و G عبـو داده مـیشـود، و سـپس جمـع
− −− −
H و G را طبق روابط زیر تعریف میکنیم

(۴‐۴۲)
(۴‐۵۲)
AP Signal 4 10 x 10 2 5 0 15 10 5 00 0.4 0.3 0.2 0.1 0 -2 CD5 5 CD6 0.5 0 0 30 20 CD3 10 -50 15 10 CD4 5 0 -0.5 0.5 1 0 0 80 60 40 20 -0.50 40 30 20 10 0 -1 CD1 0.2 CD2 0.5 0 0 400 300 200 100 -0.20 200 150 100 50 0 -0.5
شکل۴‐۸ مثالی از تجزیه .DWT سیگنال اصلی، سیگنال تقریب((AP
و سیگنالهای جزئیات(CD1تا (CD6
با استفاده مکرر از روابط بالا داریم

(۴‐۶۲)
۴۴
که در حوزه زمانی
(۴‐۷۲)

Dj و cجزئیات و تقریب نامیده میشوند. یک مثـال از تجزیـه در شـکل۸ ، همـراه بـا تقریـب و
جزئیات و سیگنال اصلی نشان داده شده است.
۴‐۶‐ شبکه عصبی
۴‐۶‐۱ مقدمه]۵۳[
خودسازماندهی١٠ شبکهها یکی از موضوعات بـسیار جالـب در شـبکههـای عـصبی میباشـد. ایـن
شبکهها میتوانند انتظام و ارتباط موجود در ورودی خود را تشخیص و به ورودیهـای دیگـر طبـق
این انتظام پاسخ دهند. نرونهای شبکه های عـصبی رقـابتی طـرز تـشخیص گـروه هـای مـشابه از
بردارهای ورودی را یاد میگیرند. نگاشـتهای خـود سـازمانده طـرز تـشخیص گـروه هـای مـشابه
بردارهای ورودی را به این شکل یاد میگیرند که نرونهـای مجـاور هـم از لحـاظ مکـانی در لایـه
نرونی، به بردارهای ورودی مشابه پاسخ می دهند.
یادگیری کوانتیزه نمودن برداری (LVQ) روشی است که از ناظر برای یادگیری شبکه هـای رقـابتی
استفاده میکند. یک لایه رقابتی خود به خود طبقه بندی بردارهای ورودی را یـاد میگیـرد. بـا ایـن
وجود، کلاسهایی که لایه رقابتی پیدا می کند، تنها به فاصله بردارهای ورودی ارتباط دارد. اگـر دو
بردار ورودی خیلی به هم شبیه باشند، احتمالآ لایه رقابتی آن دو را در یک کلاس قرار مـی دهـد.
در شبکه های عصبی رقابتی، روشی یرای تشخیص اینکه آیا دو نمونه بردار ورودی در یک طبقـه

10-Self Organizing
۴۵
قرار می گیرند یا نه، وجود ندارد. با این وجود، شبکه های طبقـه بنـدی بردارهـای ورودی را در
طبقه هایی که توسط خود کاربر تعیین می شوند، انجام می دهد.
۴‐۶‐۲‐ یادگیری رقابتی١١
نرونها در یک لایه رقابتی طوری توزیع می شوند که بتوانند بردارهای ورودی را تـشخیص دهنـد.
معماری یک شبکه رقابتی در شکل(۴‐۹) نشان داده شده است.
جعبه ||dist|| بردار ورودی p و ماتریس وزن ورودی IW1,1 را بـه عنـوان ورودی دریافـت مـی
کند، و برداری شامل s1 عنصر تولید می کنـد. ایـن عناصـر، منفـی فاصـله بـین بـردار ورودی و
بردارهای j IW1,1 تشکیل شده از سطر های ماتریس وزن ورودی، می باشند.

شکل۴‐۹معماری شبکه رقابتی
ورودی خالص١٢ n1 یک لایه رقابتی، با جمع کردن بایاس b با فاصله هـای بردارهـای ورودی از
سطرهای ماتریس وزن، محاسبه میشوند. اگر بایاسها صفر باشند، بیشترین مقداری که یـک ورودی
خالص میتواند داشته باشد، صفر خواهد بود. این هنگامی اتفاق می افتد که بردار ورودی p برابر با
یکی از بردارهای وزن شبکه باشد.

-Competitive Learning -Net Weight

11
12
۴۶
تابع تبدیل رقابتی یک بردار وزن خالص را دریافت می کند، و خروجی صفر را برای همه نرونهـا،
به غیر از نرون برنده (نرون دارای کمترین فاصله)، که همـان نـرون مربـوط بـه بزرگتـرین عنـصر
ورودی خالصn1 میباشد، تولید می کند، و نـرون برنـده دارای خروجـی ۱ خواهـد بـود. فوائـد
استفاده از جمله بایاس در هنگام بحث از آموزش شبکه روشن خواهد شد.
۴‐۶‐۲‐۱ روش یادگیری کوهنن١٣ (learnk)
وزنهای نرون برنده (یک سطر در ماتریس وزن ورودی) با روش یادگیری کوهنن تنظیم می شـود.
فرض کنید که i امین نرون برنده شـود، آنگـاه عناصـر i امـین سـطر از مـاتریس وزن ورودی بـه
صورت زیر تنظیم میشود.
(۴‐۸۲)j IW1,1 (q) j IW1,1 (q − 1)  α ( p(q)− jIW1,1(q−1))
روش یادگیری کوهنن باعث میشود که وزنهای نرون یک بردار ورودی را یـاد بگیرنـد، و بـه ایـن
دلیل در کاربردهای تشخیص الگو مفید می باشد.
به این ترتیب نرونی که بردار وزن آن از همه نرونهای دیگـر بـه ورودی نزدیکتـر اسـت، طـوری
تغییر میکند که بیشتر به ورودی نزدیکتر شود. نتیجه این تغییـر ایـن خواهـد بـود کـه در صـورت
عرضه کردن ورودی مشابه ورودی قبلی بـه شـبکه، نـرون برنـده در رقابـت قبلـی، دارای شـانس
بیشتری برای برنده شدن مجدد خواهد داشت.
هر چقدر ورودیهای بیشتری به شبکه عرضه شود، هر نرونی که بـه ایـن ورودیهـا نزدیکتـر باشـد
بردار وزن آن طوری تنظیم میشود که به این ورودیها نزدیک ونزدیکتر شود. در نتیجه، اگـر تعـداد
نرونها به اندازه کافی باشد، هر خوشه از ورودیهای مشابه، یک نرون خواهد داشـت کـه خروجـی

13-Kohonen Learning Rule
۴٧
آن با عرضه کردن یک بردار از این خوشه یک و در غیر این صورت صـفر خواهـد بـود. بـه ایـن
ترتیب شبکه یاد گرفته است که بردارهای ورودی عرضه شده را طبقه بندی کند.
۴‐۶‐۲‐۲ روش یادگیری بایاس١۴ (learncon)
یکی از محدودیتهای شبکه های رقابتی این است که یک نرون ممکن است هرگز تنظیم نشود. بـه
عبارت دیگر، بعضی از بردارهای وزن نرونی ممکن است در آغاز از هر بردار ورودی دور باشـند،
و هر چند آموزش را ادامه دهیم هرگز در رقابت پیروز نشوند. نتیجـه ایـن اسـت وزن هـای آنهـا
تنظیم نمیشود و هرگز در رقابت پیروز نمی شوند. این نرون های نا مطلـوب، کـه بـه نـرون هـای
مرده اطلاق می شوند، هرگز عمل مفیدی انجام نمی دهند.
برای جلوگیری از روی دادن این مورد، بایاسهایی اعمال میشود تا اینکه نرونهـایی کـه بـه نـدرت
برنده میشوند، احتمال برنده شدن را دررقابتهای بعدی داشته باشند. یک با یـاس مثبـت بـه منفـی
فاصله اضافه می شود، به این ترتیب احتمال برنده شدن نرون دورتر بیشتر می شود.
به این منظور، یک متوسط از خروجی نرونها نگهداری میشود. این مقادیر نمایانگر درصـد برنـده
شدن نرونها در رقابتهای قبلی می باشد. و از آنها برای تنظیم با یاس های نرونها استفاده می شوند
به این ترتیب که با یاس نرونهای غالبا برنده کاهش و بر عکس با یاس نرونهایی که بندرت برنـده
می شود، افزایش می یابد.
برای اطمینان از درستی متوسطهای خروجی، نرخ یادگیری learncon بسیار کمتر از learnk انتخـاب
می شود. نتیجه این است که بایاس نرونهایی که اغلب بازنده اند در مقابل نرون هـای غالبـا برنـده
افزایش مییابد. هنگامی که بایاس نرونهای غالباﹰ بازنده افزایش می یابد، فضای ورودی که نرون بـه

14-Bias Learning Rule
۴٨
آن پاسخ می دهد نیز گسترش می یابد. هر چقـدر فـضای ورودی افـزایش بیابـد، نرونهـای غالبـاﹰ
بازنده، به ورودیهای بیشتری پاسخ میدهند. سرانجام این نرون نـسبت بـه سـایر نرونهـا بـه تعـداد
برابری از ورودیها پاسخ خواهد داد
این امر، دو نتیجه خوب دارد. اول اینکـه، اگـر یـک نـرون بـه علـت دوری وزنهـای آن از همـه
ورودیها هرگز برنده نشود، بایاس آن عاقبت به حدی بزرگ خواهد شد که این نرون بتواند برنـده
شود. وقتی که این اتفاق ( برنده شدن نرون ) روی داد، این نرون به سمت دسته هـایی از ورودی
حرکت خواهد کرد. هنگامی که وزن یک نرون در بازه یک دسته از ورودیها قـرار گرفـت، بایـاس
آن به سمت صفر کاهش خواهد یافت به این ترتیب مشکل نرون بازنده حل خواهد شد.
فایده دوم استفاده از بایاس این است که آنها نرونها را وادار می کننـد کـه هـر کـدام درصـدهای
یکسانی از ورودیها را طبقه بندی کنند. بنابراین، اگـر یـک ناحیـه از فـضای ورودی دارای تعـداد
بیشتری از بردارهای ورودی نسبت به سـایر مکانهـا باشـد، ناحیـه بـا چگـالی بیـشتر در ورودی،
نرونهای بیشتری جذب خواهد کرد. و در نتیجه این ناحیه بـه زیـر گروههـای کـوچکتری تقـسیم
خواهد شد.
۴‐۷‐ نگاشت های خود سازمانده١۵ (SOM)
نگاشت های خود سازمانده یاد می گیرند کـه بردارهـای ورودی را آنطـور کـه در فـضای ورودی
طبقه بندی شده اند، طبقه بندی کنند. تفاوت آنها با لایه های رقابتی این است که نرونهای مجـاور
نگاشت خود سازمانده، قسمتهای مجاور از فضای ورودی را تشخیص می دهند.

15-Self Organizing Maps
۴٩
بنابراین، نگاشتهای خود سازمانده هم توزیع( مثل لایه ها رقابتی) و هم موقعیت مکانی بردارهای
ورودی آموزشی را یاد می گیرند. در اینجا یک شبکه نگاشت خود سازمانده نرون برنـده i* را بـه
روشی مشابه لایه رقابتی تعیین می کند. اما به جای اینکه تنها نرون برنده تنظیم شود، تمام نرونهـا
در یک همسایگی مشخص N (d) از نرون برنده با استفاده از قانون کوهنن تنظیم می شوند. یعنی،
i*
ما تمام نرونهای i Ni* (d) را طبق رابطه زیر تنظیم می کنیم
(۴‐۹۲)i W (q)i W (q − 1)  α ( p(q)−i IW (q−1))
یا
(۴‐٣٠i W (q) (1−α) i W (q − 1)  αp(q)(
در اینجا همسایگی N (d) شامل آندیس تمام نرونهایی است کـه در شـعاع d بـه مرکزیـت نـرون
i*
برنده i* قرار دارند.
(۴‐۱۳)Ni* (d)  {j,dij≤d}
بنابراین، هنگامی که بردار p به شبکه عرضه میشود، وزنهای نرون برنده و همسایه های نزدیک آن
به سمت p حرکت خواهد کرد. در نتیجه، بعد از آزمونهای پی در پی فـراوان، نرونهـای همـسایه،
نمایانگر بردارهای مشابه هم خواهند بود.
برای توضیح مفهوم همسایگی، شکل ۴‐۰۱ را در نظر بگیرید. شکل سمت چـپ یـک همـسایگی
دو بعدی به شعاع d=1 را حول نرون 13 نشان میدهد. دیاگرام سمت راست یـک همـسایگی بـه
شعاع d=2 را نشان میدهد. این همسایگی ها را میتوان به صورت زیر نوشت:
N13 (1)  {8,12,13,14,18}
و
۵٠
N13 (2)  {3,7,8,9,11,12,13,14,15,17,18,19,23}

شکل۴‐۰۱نمایش همسایگی
میتوان نرونها را در یک فضای یک بعدی، دو بعدی، سه بعدی یا حتـی بـا ابعـاد بیـشتر نیـز قـرار
دهیم. برای یک شبکه SOM یک بعدی ، یک نرون تنها دو همسایه (یا اگر نرونها در انتها باشـند
یک همسایه) در شعاع یک خواهد داشت.
۴‐۸‐ شبکه یادگیری کوانتیزه کننده برداری١۶]۵۳[
معماری شبکه عصبی LVQ در شکل۴‐۱۱ نشان داده شده است. یـک شـبکه LVQ در لایـه اول از
یک شبکه رقابتی و در لایه دوم از یک شبکه خطی تـشکیل شـده اسـت. لایـه رقـابتی بردارهـای
ورودی را به همان روش لایه های رقابتی ذکر شده، طبقه بندی میکند. لایه خطـی نیـز کلاسـهای
لایه رقابتی را بصورت کلاسهای مورد نظر کاربر طبقه بندی میکند. ما کلاسهایی کـه لایـه رقـابتی
جدا کرده است را زیر کلاس و کلاسهایی را که لایـه خطـی مـشخص میکنـد، کلاسـهای هـدف
مینامیم.

16-Learning Vector Quantization Networks
۵١

شکل۴‐۱۱ معماری شبکه LVQ
هر دوی لایه های رقابتی و خطی دارای تنها یک نرون بـرای هـر زیـر کـلاس یـا کـلاس هـدف
هستند. به همین دلیل لایه رقابتی میتواند S1 کلاس را یاد بگیرد. در مرحله بعد این S1 کـلاس در
S2 کلاس توسط لایه خطی طبقه بندی خواهد شد.( S1 همیشه از S2 بزرگتر است.)
برای مثال فرض کنید که نرونهای ١،٢و٣ در لایهرقابتی، زیر کلاسهایی از ورودی را یـاد میگیرنـد
که به کلاس هدف شماره ٢ لایه خطی تعلق دارند. آنگـاه نرونهـای رقـابتی ١،٢و٣ دارای وزنهـای
Lw2,1 برابر یک در نرون n2 لایهخطی، و وزنهای صفر برای بقیه نرونهای لایه خطی خواهند بود.
بنابراین این نرون لایه خطی ( ( n2 در صورت برنده شدن هر یک از نرونهای ١،٢و٣ لایـه رقـابتی،
یک ١ در خروجی ایجاد خواهد کرد. به این ترتیب زیر کلاسهای لایه رقابتی بـصورت کلاسـهای
هدف ترکیب خواهند شد.
خلاصه، یک ١ در iامین ردیف از a1 (بقیه عناصر a1 صفر خواهد بود)، iامـین ردیـف از Lw2,1
را به عنوان خروجی شبکه انتخاب میکند. این ستون شامل یک ١ که نمایانگر یـک کـلاس هـدف
است، خواهد بود را تعیین کنیم. اما ما باید با استفاده از یک عملیات آموزشی به لایه اول بفهمانیم،
که هر ورودی را در زیر کلاس مورد نظر طبقه بندی کند.
۵٢
۴‐٨‐١ روش یاد گیری (learnlv1) LVQ1
یادگیری LVQ در لایه رقابتی بر اساس یک دسته از جفتهای ورودی/ هدف میباشد.
(۴‐۲۳){ p1 ,t1},{ p2 ,t2},...,{ pQ ,tQ}
هر بردار هدف شامل یک ١ میباشد. بقیه عناصر صفر هستند. عدد ١ نمایانگر طبقه بردار ورودی
میباشد. برای نمونه، جفت آموزشی زیر را در نظر بگیرید.
0 2 (۴‐٣٣) 0 − 1 ,  t1 p1 1 0 0 در اینجا ما بردارهای ورودی سه عنصری داریم، و هر بردار ورودی باید به یکی از چهـار کـلاس
تعلق گیرد. شبکه باید طوری آموزش یابد که این بردار ورودی را در سومین کـلاس طبقـه بنـدی
کند.
به منظور آموزش شبکه، یک بردار ورودی p ارائه میشود، و فاصله از p بـرای هـر ردیـف بـردار
وزن ورودی Iw1,1 محاسبه میشود. نرونهای مخفی لایه اول به رقابت می پردازند. فرض کنیـد کـه
iامین عنصر از n1 مثبت ترین است، و نرون i* رقابت را می برد. آنگاه تابع تبدیل رقابتی یک ۱ را
به عنوان i* عنصر از a1 تولید می کند. تمام عناصر دیگرa1 صفر هستند. هنگـامی کـهa1 در وزنهـای
لایه دوم یعنیLw2,1 ضرب میشود، یک موجود در a1 کلاس k* مربوطه راانتخاب میکنـد. بـه ایـن
ترتیب، شبکه بردار ورودی p را در کلاس k* قرار داده و a2 یک شـده اسـت. البتـه ایـن تعیـین
k*
کلاس بردار p توسط شبکه بسته به اینکه آیا ورودی در کلاس k* است یا نه، میتواند درسـت یـا
غلط باشد.
۵٣
اگر تشخیص شبکه درست باشد سطر i* ام ازIw1,1 را طوری تصحیح میکنیم کـه ایـن سـطر بـه
بردار ورودی نزدیکتر شود، وبرعکس، در صورت غلـط بـودن تـشخیص ، تـصحیح بـه گونـه ای
صورت میگیرد که این سطر ماتریس وزن Iw1,1 از ورودی دورتر میشود. بنابراین اگـر p درسـت
طبقه بندی شود، یعنی
(۴‐٣۴( a2k*  tk*  1)(
ما مقدار جدید i* امین ردیف ازIw1,1 را چنین تنظیم میکنیم:
(۴‐٣۵) IW1,1 (q)i*IW1,1α(p(q)−i*IW1,1(q−1))
از طرفی، اگر طبقه بندی اشتباه باشد،
(۴‐٣۶) a2k*  1 ≠ tk*  0
مقدار جدیدi* امین ردیف را Iw1,1 را طبق رابطه زیر تغییر میدهیم
(۴‐۷۳) IW1,1 (q)i*IW1,1−α(p(q)−i*IW1,1(q−1))
این تصحیحات موجب میشود که نرون مخفی به سوی برداری کـه در کـلاس مربوطـه قـرار دارد
حرکت کند و از طرفی از سایر بردارها فاصله بگیرد.
۴‐۸‐۲ روش یادگیری تکمیلی١٧ LVQ21
روش یادگیری که در اینجا توضیح میدهیم را میتوانیم بعد از استفاده از 1 بکار ببریم. بکـارگیری
این روش ممکن است نتایج یادگیری اولیه را بهبود بخشد.
اگر نرون برنده در لایه میانی، بردار ورودی را به درستی طبقه بندی ننمود، بردار وزن آن نـرون را
طوری تنظیم میکنیم که از بردار ورودی فاصله بگیرد و به طور همزمان بردار وزن متناظر با نرونی

17-Supplemental Learning Rule
۵۴
را که بیشترین نزدیکی را به بردار ورودی دارد، طوری تنظیم میکنیم کـه بـه سـمت بـردار ورودی
حرکت نماید(به بردار ورودی نزدیکتر گردد).
زمانی که شبکه بردار ورودی را به درستی طبقه بندی نمود، تنها بردار وزن یـک نـرون بـه سـمت
بردار ورودی نزدیک میشود. اما اگر بردار ورودی بطور صحیح طبقـه بنـدی نـشد، بـردار وزن دو
نرون تنظیم میشود، یکی به سمت بـردار ورودی نزدیـک میـشود و دیگـری از بـردار ورودی دور
میشود.
۴‐۹‐ مقایسه شبکههای رقابتی
یک شبکه رقابتی طرز طبقه بندی بردار ورودی را یاد میگیرد. اگر تنها هدف ایـن باشـد کـه یـک
شبکه عصبی طبقه بندی بردارهای ورودی را یاد بگیرد، آنگاه یک شـبکه رقـابتی مناسـب خواهـد
بود. شبکه های عصبی رقابتی همچنین توزیع ورودیها را نیز با اعطای نرونهای بیشتر بـرای طبقـه
بندی قسمتهایی از فضای ورودی دارای چگالی بیشتر، یاد میگیرنـد. یـک نگاشـت خودسـازمانده
طبقه بندی بردارهای ورودی را یاد میگیرد. همچنین توضیع بردارهای ورودی را نیـز یـاد میگیـرد.
این نگاشت نرونهای بیشتری را برای قسمتهایی از فضای ورودی که بردارهای بیشتری را به شبکه
اعمال میکند، در نظر میگیرد.
نگاشت خودسازمانده، همچنین توپولوﮊی بردارهای ورودی را نیز یـاد خواهـد گرفـت. نرونهـای
همسایه در شبکه به بردارهای مشابه جواب میدهنـد. لایـه نرونهـا را میتـوان بـه فـرم یـک شـبکه
لاستیکی کشیده شده در نواحی از فضای ورودی که بردارها را به شبکه اعمال کرده است، تـصور
کرد.
۵۵
در نگاشت خودسازمانده تغییرات بردارهای خروجی نسبت به شبکه های رقابتی بسیار ملایـم تـر
خواهد بود.
شبکه عصبی LVQ بردارهای ورودی را در کلاسهای هدف به وسیله یک لایـه رقـابتی بـرای پیـدا
کردن زیر کلاسهای ورودی، و سپس با ترکیب آنها در کلاسهای هدف، طبقه بندی میکنند.
بر خلاف شبکه های پرسپترون که تنها بردارهای مجزا شده خطی را طبقه بنـدی میکننـد، شـبکه
های LVQ میتواند هر دسته از بردارهای ورودی را طبقه بندی کند. تنها لازم است که لایـه رقـابتی
به اندازه کافی نرون داشته باشد، تا به هر طبقه تعداد کافی نرون تعلق بگیرد.
۵۶

۵٧
۵‐۱‐ نحوه بدست آوردن سیگنالها
در این پایان نامه ۴ نوع سیگنال داریم که عبارتند از سـیگنالهای فرورزونـانس، کلیـدزنی خـازنی،
کلیدزنی بار، کلیدزنی ترانسفورماتور. سیگنالها را به دو دسته تقسیم می کنیم که دسته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشند. سیگنالها، با شبیه سازی بر روی فیدر توزیع واقعی توسط نرم افزار EMTP بدست آمـده
است که نحوه بدست آوردن سیگنالها در زیر توضیح داده شده است.
۵‐۱‐۱‐ سیگنالهای فرورزونانس
از آنجائیکه در وقوع پدیده فرورزونانس پارامترهای مختلف از جمله انواع کلید زنیها، نوع اتـصال
ترانسفورماتور، پدیده هیسترزیس، خاصیت خازنی خـط، طـول خـط و بـار مـوثر هـستند، انـواع
سیگنالهای فرورزونانس با بررسی اثرات هر یک از خواص بر روی شبکه واقعی بدست آمده انـد.
برای بدست آوردن این سیگنالها، بخشی از یک فیدر 20kV جزیره قشم کـه در شـکل ۵‐۱ نـشان
داده شده است انتخاب شده است] ۶۳.[

U

315 500 315 250 315 100 800 250
1250

315 315 500 315 1250 630 500 315 500 800 630 800 100 630 250
شکل۵‐۱. فیدر 20kV
۵٨
۵‐١‐٢‐ انواع کلید زنیها و انواع سیم بندی درترانسفورماتورها
عملکرد غیر همزمان کلیدهای قدرت و تغذیه ترانسفورماتور بی بار یا کم بار توسط یک فاز یا دو
فاز خط انتقال، شرایط بسیار مساعدی برای تحقق فرورزونانس مهیا می کند. عملکرد غیر همزمان
کلیدهای قدرت که در اثر قطع فاز یا گیر کردن کنتاکتهای بریکر در شبکه اتفاق می افتد را میتـوان
به دو نوع کلیدزنی تکفاز و دوفاز تقسیم بندی کرد. در این قسمت تاثیر انواع سیم بندیهای ترانس
20/0.4kv ابتدای فیدر را در اثر کلیدزنی تکفاز و دوفاز بررسی می کنیم.
الف)ترانس Yزمین شده ∆ /

شکل۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۵٩
ب)ترانس Yزمین نشدهY/ زمین شده

شکل۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ﭖ)ترانس Yزمین شدهY/ زمین شده

شکل۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٠
ت)ترانس ∆/∆

شکل۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ث)ترانس Y/∆ زمین شده:

شکل۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

۶١
شکل۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ج)ترانس Yزمین نشدهY/ زمین نشده

شکل۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
چ )ترانس Yزمین نشده ∆ /

شکل۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٢
ح )ترانسفورماتور Y/∆ زمین نشده:

شکل۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
همانطور که ملاحظه می شود سوئیچینگ تکفاز که بدترین حالت کلیدزنی است باعـث بـه اشـباع
رفتن سریع هسته می شود. در این نوع کلیدزنی اضافه ولتاﮊهایی بصورت دائم و با دامنـه بـیش از
۲ برابر ولتاﮊ سیستم خواهد بود. در کلید زنی دوفاز نوسانات پایه یا زیر هارمونیک دائـم بـا دامنـه
۵,۱ تا ۷,۱ برابر خواهد بود. زمین کردن نقطه ستاره ترانس اگرچه احتمال فرورزونـانس را از بـین
نمی برد ولی احتمال آن را کمتر و دامنه اضافه ولتاﮊهای ناشی از این پدیده را کمتـر مـی کنـد. در
حالت کلید زنی دوفاز این احتمال بسیار پایین می آید و وقوع آن به شرایط دیگر سیـستم بـستگی
دارد و در صورت وقوع، سیستم دارای هـر چـه مقاومـت نـوترال یـا زمـین کمتـر باشـد احتمـال
۶٣
فرورزونــانس کمتــر اســت. در ظرفیتهــای خــازنی مــساوی، اضــافه ولتاﮊهــای فرورزونــانس
درترانسفورماتور مورد نظر در حالت اتصال ستاره با نوترال زمین شده بسیار کمتر اسـت. بـا قطـع
نوترال ترانسفورماتور مورد نظر و قطع تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتـری حاصـل
می شوند که حتی از حالت اتصال مثلث‐ ستاره بزرگتر می باشـند. همچنـین بـا توجـه بـه شـبیه
سازیهای انجام شده، فازهای مختلف ترانسفورماتور دارای رفتار مساوی در مقابل اضافه ولتاﮊهای
فرورزونانس نیسستند.
۵‐۱‐۳‐ اثر بار بر فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم بـاری ترانـسفورماتور
به وجود می آید. با افزایش بار اضافه ولتاﮊهای ناشی از فرورزونـانس بـسیار کـم اسـت ولـی بـا

–24

اندازه گیری کارایی دارای سابقه تاریخی در تحلیلهای اقتصادی می باشد ، بخصوص در دنیای رقابت آمیز امروز ، به عنوان یک فلسفه و یک دیدگاه مبتنی بر استراتژی بهبود ، نه تنها حرف اول را می زند بلکه همچون زنجیری آحاد جامعه را به هم مرتبط نموده و منافع آنها را به هم گره می زند . همچنین انجام تحلیلهای مقایسه ای در مورد کارایی واحدهای مختلف یکی از مهمترین راههای شناخت نقاط قوت و ضعف واحدهای مورد نظر می باشد که حاصل آن می تواند اتخاذ یک استراتژی مناسب جهت تحولات بنیادی و همه جانبه در ساختار واحد مورد نظر بوده که نهایتا نفع همگان را در بر داشته باشد.( محمودی خوشرو وهمکار،1389).
در واقع سنجش کارایی از آنجا ضرورت می یابد که در شرایط کنونی با کمبود منابع و امکانات مواجه هستیم و این منابع را باید به گونه ای تخصیص داد که سازمان یا نهاد مورد نظر بتواند حداکثر تولید کالا یا خدمات را از طریق آنها عرضه نماید.(محمودی خوشرو وهمکار،1389).
بدون شک بشر در تمامی دوران حیات خود همواره با محدودبودن عوامل تولید و به تبع آن کالاها و خدمات مواجه بوده و هست. بشر به منظور به دست آوردن شرایط زندگی بهتر چاره ای جز استفاده بهینه از امکانات موجود و دسترسی به تولید بیشتر و با کیفیت بالاتر ندارد. در حال حاضر آنچه که به روشنی پاسخگوی این نیاز می باشد به دست آوردن حداکثر نتیجه از امکانات و عوامل محدود تولید ودر یک کلمه " کارایی" می باشد.(موحدی و همکار 1389).
به طور کلی بحث ارزیابی عملکرد چه در سطح واحد وچه در سطح کارکنان و مدیران و کیفیت خدمات یکی از مباحث عمده در مدیریت می باشد. هر مدیر مسئول سازمانی یا ذی نفع می خواهد که اطلاعاتی در ارتباط با نحوه عملکرد ها وکیفیت سازمان مطبوع خود در مقایسه با سایر واحدهای مشابه وبا سایر رقبا در آن صنعت به دست آورد استفاده از این اطلاعات می تواند به شناسایی نقاط قوت و ضعف سازمان یا واحد کمک نماید.
عموما روشهای مختلفی جهت سنجش کارایی بانکها مورد استفاده قرار می گیرد. بانک سپرده را با نیروی کار و سرمایه خود ترکیب می کند تا بتواند به خلق وام و سرمایه گذاری بپردازد. از این رو متغیرهای مورد استفاده جهت محاسبه کارایی نیز با توجه به مطالعه وب (2003)، دریک (2003) و رجبی (1389) روش واسطه گری مالی خواهد بود. که از طریق تحلیل پوششی داده ها که یکی از شاخصهای ارزیابی کارایی سیستمهاست مورد ارزیابی قرار خواهد گرفت. تکنیک تحلیل پوششی داده ها یکی از رویکردهای علمی است که با بکارگیری مبنای ریاضی قوی به محاسبه کارایی می پردازد (صارمی و شهریاری، 1382). مزیت عمده این روش در سنجش کارایی آن است که پس از اندازه گیری کارایی نواحی مختلف می تواند مدیران را در تصمیم گیری و برنامه ریزی برای استفاده از منابع به منظور حصول حداکثر خروجی یاری کند (موحدی و همکار 1389). بر اساس تکنیک تحلیل پوششی داده ها ورودی ها (نهاده ها) در این پژوهش شامل تعداد پرسنل، هزینه های اداری، هزینه پرسنل بوده و خرو جی ها (ستاده ها) شامل انواع سپرده ها، تسهیلات و مطالبات می باشند.
90297060960متغیرهای ورودی
متغیرهای خروجی
تعداد پرسنل
هزینه های اداری
هزینه های پرسنل
سپرده ها
تسهیلات و مطالبات
00متغیرهای ورودی
متغیرهای خروجی
تعداد پرسنل
هزینه های اداری
هزینه های پرسنل
سپرده ها
تسهیلات و مطالبات

مدل مفهومی پژوهش
1-3- اهمیت و ضرورت پژوهشبانک کشورهای جهان در نظام اقتصادی آنها نقش بسیار پر اهمیتی را ایفا می کنند، بانکها علاوه بر واسطه‎گری وجوه در بازار پول، به دلیل عدم توسعه کافی بازار سرمایه، فعالیتهای مؤثری را برای تأمین مالی بنگاه ها و برنامه های توسعه اقتصادی کشور نیز انجام می دهد بنابراین فعالیتها و عملکرد آن هم مانند سایر بانک ها و مؤسسات مالی و پولی کشور نیازمند ارزیابی و پژوهش های اقتصادی می باشد، براین اساس و با توجه به ضرورت بالا بردن استانداردهای مالی و اهمیت واحدهای مستقل استانی در شعب بانک رفاه استان گیلان به کارگیری معیارهای دقیق تر برای ارزیابی این بانک الزامی به نظر می رسد. یکی از این معیارها، «کارایی» می باشد که توانمندی شعب بانک هر شهرستان را در تبدیل عوامل و نهاده های تولید به خدمات بانکی در مقایسه با استانداردهای مشخص تعیین می کند.
1-4- اهداف پژوهشمحاسبه مقدار کمی کارایی شعب بانک رفاه استان گیلان.
مشخص کردن شعب بانک رفاه کارا و ناکارا.
شناسایی علل کارآمدی شعب کارآمد
شناسایی علل ناکارآمدی شعب ناکارآمد
1-5- فرضیه و سئوال های پژوهش به جهت ماهیت پژوهش بجای فرضیه از سوالات پژوهش بهره گرفته خواهد شد :
کارایی شعب بانک رفاه استان گیلان با استفاده از تکنیک تحلیل پوششی دادهها چگونه است؟
شعب کارا و ناکارای نسبی بانک رفاه کارگران با استفاده از مدل پنجره ای کدامند؟
شعب کارا و ناکارای نسبی بانک رفاه کارگران با استفاده از مدل سلسله مراتبی کدامند؟
منشا ناکارامدی هر یک از شعب ناکارا چیست؟
1-6- روش گردآوری اطلاعاتاطلاعات آماری مورد نیاز به طور کامل از مراجع اصلی یعنی مرکز آمار و بودجه و تشکیلات و دیگر ادارات ذیربط ستادی و ترازنامه های بانک رفاه استان گیلان گردآوری می گردد.
1-7- جامعه آماری و حجم نمونهدر این پژوهش کارایی شعب بانک رفاه استان گیلان طی دوره زمانی سه سال گذشته 1391-1389 بررسی می شود.
1-8- روش تجزیه و تحلیل اطلاعاتدر این مطالعه جهت تجزیه و تحلیل داده ها و انجام محاسبات و حل الگوی مورد استفاده برای اندازه گیری کارایی از دو روش آمار توصیفی و استنباطی و نرم افزار Excelو DEA Solver Pro استفاده خواهد شد.
1-9- تعریف مفاهیم واژگان اختصاصیکارایی : تخصیص بهینه منابع توسط بنگاه است.
کارایی فنی (TE) : توانایی بنگاه در بدست آوردن حداکثر محصول از مقدار معینی عوامل تولید را نشان می دهد.
کارایی تخصیصی (AE) : توانایی یک بنگاه در بکارگیری ترکیب بهینه نهاده ها با توجه به قیمت های نهاده را نشان می دهد.
کارایی اقتصادی (EE) : کارایی اقتصادی حاصل ضرب کارایی فنی در کارایی تخصیصی تعریف می شود. (فارل 1957).
تحلیل پنجره ای : روش تحلیل پنجره با امکانپذیر ساختن ترکیب مشاهدات در سریهای زمانی و مقطعی تا حدودی مشکل ناکافی بودن مشاهدات را در ارزیابیهای زمانی برطرف میکند. این تکنیک بر اساس میانگین متحرک عمل میکند و برای یافتن روندهای عملکرد یک واحد در طول زمان مفید میباشد. با هر واحد در یک دوره متفاوت، مانند یک واحد مستقل رفتار میشود. در این صورت، عملکرد یک واحد در یک دوره خاص در مقابل عملکرد خود آن واحد در سایر دورهها، علاوه بر عملکرد سایر واحدها مورد ارزیابی قرار میگیرد (Tulkens and Eeckaut,1995).
1-10- فصول پژوهش
پژوهش حاضر در پنج فصل به شرح زیر تنظیم شده است.
فصل حاضر به کلیات پژوهش اختصاص یافته است.
در فصل دوم تاریخچه شکل گیری بانک و سیر تحول آن بررسی شده است و تعریف مدلهای مورد بررسی این پژوهش و در ادامه خلاصه چند پژوهش در زمینه کارایی بانک ها در داخل و خارج از کشور ارائه می‎شود.
در فصل سوم به تشریح روش اجرای مورد بررسی خواهیم پرداخت و مفهوم کارایی، مدل های مرزی، توابع مرزی تصادفی، مدل های مورد استفاده از قبیل مدل پنجره ای و سلسله مراتبی نحوه تخمین کارایی، نرم افزار مورد استفاده و خصوصیات آن به تفضیل تشریح می شود و به مطالعات انجام شده اختصاص دارد.
فصل چهارم الگوی مناسب برای برآورد کارایی شعب بانک رفاه گیلان ارایه می شود و کارایی این بانک برآورد می شود.
در فصل پنجم خلاصه از پژوهش و نتیجه گیری وارائه پیشنهادات و محدودیتهای آن می پردازیم، ضمن اینکه پیشنهادهایی به منظور بهبود کارایی شعب بانک رفاه گیلان ارائه می شود.

514350162623500
فصل دوم
24125774205182ادبیات تحقیق/پیشینه تحقیق
2-1- مقدمهکارایی یکی از مفاهیم اقتصادی می باشد که افزایش آن به منظور ارتقای سطح زندگی ،رفاه ، آرامش و آسایش انسانها همواره مد نظر دست اندر کاران سیاست و اقتصاد بوده است. به گونه ای که در تمام مکاتب و جوامع اقتصادی نیز به نحوی بر این مفهوم تاکید شده و در راستای افزایش کارایی عوامل مختلف توصیه های سیاسی مناسبی نیز ارائه شده است.مدیران و سیاستگذاران بخشهای تولیدی و خدماتی همواره در برابر این سوال که مجموعه تحت نظارت آنها با چه سطحی از کارایی فعالیت می کند و تولید بالقوه مجموعه امکانات و تجهیزات آنها چه مقدار است حساس هستند. پاسخهای معتبر به این مسائل می تواند در نوع نگرش و برنامه ریزی آنها تاثیر قابل توجهی داشته باشد. یکی از شاخصهای ارزیابی کارایی هر سیستمی روش تحلیل پوششی داده ها می باشد. مزیت عمده این روش در سنجش کارایی سیستم هایی است که ورودی ها و خروجی های چند گانه دارند. پس از اندازه گیری کارایی نواحی مختلف می توان مدیران را در تصمیم گیری و برنامه ریزی برای استفاده از منابع به منظور حصول حداکثر خروجی یاری کرد ( حقیقت و همکار، 1383، 135).
در پژوهش حاضر نیز به اندازه گیری کارایی شعب بانک رفاه استان مورد نظر با استفاده از روش تحلیل پوششی دادهها(DEA) طی دوره زمانی مشخصی پرداخته است.
2-2- مفهوم بانک
بانک ها مؤسساتی هستند که از محل سپرده های مردم می توانند سرمایه لازم را در اختیار صاحبان واحدهای صنعتی، کشاورزی و بازرگانی و اشخاص قرار دهند. تکامل بانکداری به زمانی خیلی قبل برمیگردد و اکنون به عنوان یک مؤسسه مالی که به ارائه خدمات مالی می پردازد همچنان رو به تکامل است.
در حال حاضر واژه بانک به مؤسسه ای گفته میشود که دارای مجوز بانکداری باشد. این مجوز توسط دستگاه‎های نظارت مالی اعطا می شود و به موجب آن حق ارائه اغلب خدمات مهم بانکی از قبیل پذیرش انواع سپرده ها و اعطای وام برای بانک میسر می شود. مؤسسات مالی دیگری هم وجود دارند که تعریف حقوقی بانک را ندارند و در اصطلاح مؤسسه اعتباری غیر بانک نامیده می شوند (طبیبیان، 1382،23) .
2-2-1- تاریخچه بانک و بانکداری در ایران
اولین بانک در سال ١٢۶۶ بدون اجازۀ رسمی از دولت ایران اقدام به گشودن شعبه و انجام عملیات بانک ???? کرد. اما اولین تأسیس اسمی بانک با قرارداد ننگین از طرف ناصرالدین شاه به فردی به نام بارون دورویتر کلید خورد. این بانک، بانک شاهی ایران نام گرفت. در قبال این امتیازنامه، روس ها در سال ١٢٨۵ شمسی مجوز بانک استقراض ایران را به مدت ٧۵ سال از ناصرالدین شاه گرفتند اولین بانک ایران (بانک سپه) در سال ١٣٠۴ تأسیس شد. بعد از انقلاب همه بانک های موجود در کشور با مصوبه شورای انقلاب، ملی شدند که عبارتند از: بانک ملی ، سپه، رفاه کارگران، صادرات ایران، بانک استان، صنعت و معدن، مسکن کشاورزی ، تجارت و ملت (درویشی، 1390، 22).
2-2-2- انواع بانکبانک های جدید را می توان بر حسب نوع فعالیت آنها به هفت گروه تقسیم کرد:
بانک تجاری
بانک سرمایه گذاری
بانک پس انداز
شرکت های سرمایه گذاری امان
بانک رهنی
بانک صنعتی
بانک مرکزی که به عنوان مادر همه بانک ها تنظیم کننده تمامی بانک های یک کشور یا یک منطقه می‎باشد.( توتونچیان، 1391، 100-99).
2-2-3- حوزه فعالیت بانک ها
از اعمالی که بانک ها عمدتاً در حیطه کاری خود، حسب تعریف انجام می دهند می توان به موارد زیر اشاره کرد:
قبول سپرده های پس انداز مدت دار و پرداخت بهره وری مانده این نوع حساب ها با توجه به مدت سپرده
قبول سپرده دیداری )حساب جاری ( و پرداخت به مشتریان
تنزیل اوراق و اسناد بهادار، سفته و برات پذیرفته شده. مثلا یک چک به تاریخ یک ماه دیگر را بانک با کسر ١٠ % از کل مبلغ، الان پرداخت می کند و در سر رسید خود از حساب مورد نظر دریافت می کند.
انتقال پول از یک نفر به نفر دیگر در داخل یا خارج کشور
ایجاد تسهیلات تبدیل و ترتیبات وصول
عرضه اعتبار از طریق اعطای اجازه حق برداشت و یا اعتبار از حساب جاری بدون وثیقه و با استفاده از م کانیسم اعتبار اسنادی
چاپ اسکناس که در انحصار بانک مرکزی است
صدور برات، چک بانکی و حواله و تأیید امضای چک
ارائه صندوق امانات
عهده دار شدن حفاظت از اوراق بهادار و سایر اموال با ارزش
ایفای نقش امین برای شرکت ها
سرمایه گذاری در اوراق بهادار دولتی و غیردولتی
خرید و فروش شمش طلا
انجام معاملات ارزی
هر بانک به دلیل ماهیت خاص خود بخشی از فعالیت های فوق را انجام می دهد( توتونچیان، 1391،118-111).
2-3- تعاریف و مفاهیم کاراییتعاریف متعددی برای کارایی ارائه شده است که در زیر به بعضی از آنان اشاره می شود.
کارایی عبارت از انجام امری به بهترین طریق، بوسیله فرد حایز شرایط در بهترین محل و مناسب ترین وقت است.( 19، Harington,1912)
به نظر سامانث دیوید کارایی عبارت است از نسبت ستانده واقعی به ستانده استاندارد یا ستانده مورد انتظار. (6 Sumanth ,1985,)
کارایی ناظر است بر اینکه نهاده های مختلف چگونه با هم ترکیب می شوند، یا اینکه کار چگونه پیش می رود.( شکری،1374، 30)
کارایی در اقتصاد به مفهوم تخصیص بهینه منابع است و در مجموعه ای از فعالیت ها هنگامی یک فعالیت کاراست که مقدار تولید آن قابل افزایش نباشد مگر تولید سایر فعالیت ها کاهش یابد( Walter, 1972, 412 ).
کارایی توانایی بدست آوردن حداکثر محصول یا ستانده از حداقل نهاده است ( ژوزف،1371، 27 ).
به نظر مولینس کارایی درست انجام دادن فعالیت هاست و با داده ها و آنچه مدیریت انجام می دهد مرتبط است (Mullins, 1993, 686 ).
کارایی معرف نسبت ستانده ها به نهاده ها در مقایسه با یک استاندارد مشخص است و هر چه این نسبت بالاتر باشد آن واحد کاراتر خواهد بود (برهانی، 1377، 25).
کارایی سازمانی عبارت از میزان منابع استفاده شده در تولید یک واحد ستانده می باشد اگر یک سازمان بتواند با صرف منابع کمتر در مقایسه با سازمان دیگر به سطح تولید مشابه دست یابد می توان آن را کاراتر توصیف کرد (Daft, 1989, 90).
کارایی صرفاً یک مفهوم به معنای نسبت بین نتیجه و داده های به کار رفته است(Dimock, 1931,96).
در فرهنگ لغات آکسفورد، کارایی به موقعیت و یا کیفیتی که بیانگر کارا بودن باشد تعریف شده و متعاقب آن اشاره شده است که در فیزیک کارایی نسبتی از انرژی یا کار تولید شده به میزان مورد انتظار می‎باشد.
در دایره المعارف آمریکانا کارایی به عنوان نسبتی از ستاده مفید – داده ها تعریف شده است.
2-4- مفهوم کارایی و انواع آنبه طور کلی کارایی مفهومی نسبی است و مقایسه بین عملکرد واقعی و عملکرد ایده آل را نشان می‎دهد. کارایی عمدتاً در سه حوزه مهندسی، مدیرت و اقتصاد مطرح است. در اقتصاد مفهوم کارایی همان تخصیص بهینه منابع است. هر سازمانی مجموعه ای از ورودی ها را برای تولید تعدادی خروجی اعم از کالا یا خدمات استفاده می کند. برای مثال شعب بانک ها به عنوان واحدهای مشابه ورودی هایی همچون نیروی انسانی، امکانات، فضا و... را به کار می گیرند تا خروجی هایی نظیر میزان جذب سپرده ها، میزان اعطای تسهیلات و میزان ارائه خدمات را تولید کنند(فقیه نصیری وهمکاران، 1389، 174).
2-5- تاریخچه تحلیل پوششی داده هادر اندازه گیری کارایی مستلزم، مقایسه ی ستاده ها و داده های آن واحد است. در ساده ترین حالت که تنها یک داده و یک ستاده وجود دارد کار ایی را م ی توان از تقسیم ستاده به داده به دست آورد.
داده / ستانده = کارایی
به عنوان مثال کار ایی یک کامپیوتر از تقسیم تعداد محاسبات به مقدار زمان به دست می آید که حاصل تعداد محاسبات در واحد زمان را نشان می دهد . اگر واحد تصمیم گیری دار ای داده ها و ستاده های چندگانه باشد و ارزش)قیمت( هر یک از داده هاو ستاده ها معلوم باشد،می توان از تقسیم مجموع حاصل ضرب مقدار ستاده ها دروزن های) قیمت یا ارزش( مربوطه به مجموع حاصل ضرب مقدار داده ها در وزن های مربوطه میزان کارایی را محاسبه کرد.
) مجموع وزنی مقدار داده‎ها) / (مجموع وزنی مقدار ستاده ها = ( کارایی
در سال 1975 فارل از یک روش ناپار امتریک بر ای تعیین میزان کار ایی استفاده کرد. وی به جای تخمین تابع تولید با مشاهده ی مقاد یر داده و ستاده واحدها ی تصمیم گیری یک تابع مرز ی که به شکل یک تابع خطی با قطعات غیرخطی بود، به عنوان مرز کار ایی تعریف کرد و این مرز را به عنوان معیار و ملاک کارایی واحده ای تصمیم گیری قرار داد .
مفهوم کار ایی که در DEA مورد استفاده قرار می گیرد همان حاصل تقسیم مجموع وزنی مقدار ستاده ها به مجموع وزنی مقدار داده ها است . در غالب موارد ی که قیمت یاارزش (وزن های) داده ها و ستاده ها مشخص نیست و یا داده ها و ستاده ها مقیاس های متفاوتی دارند از DEA بر ای تعیین میزان کار ایی استفاده می شود. در وزن های DEA اختصاص داده شده به هر یک از داده ها و ستاده ها از طر یق حل یک مدل برنامه ریزی خطی به دست می آید. DEA این وزن ها را طوری تعیین می کند که کار ایی واحد نسبت به سایر واحدها حداکثر شود.
چارنز و کوپر و رودز (1978 ) یک روش کاربرد ی را برا ی تعیین میزان کار ایی یک مجموعه از واحدهای تصمیم گیری که دارای داده و ستاده چندگانه بودند، ارائه کردند که به تحلیل پوششی داده ها DEA معروف است) (Charnes et al, 1978 این مدل که به نام معرفی کنندگان آن (CCR) نامگذاری شد فرض بازده به مقیاس ثابت روش سنجش کار ایی فارل را به حالت چند داده و چند ستاده تعمیم داد.
بنکر، چارنز و کوپر (1984) مفاهیم و مدل های DEA را توسعه دادند و مدل (BCC) رابرای تعیین میزان کارایی بدون فرض ثابت بودن بازده به مقیاس ارائه کردن 1984 Banker et al1984 ) ) چارنز و همکاران (1985) مدل جمعی را به عنوان یکی د یگر از مدل های DEA معرفی کرد ند که همزمان کاهش ورودی و افزا یش خروجیها را مد نظر قرار می دهد.
تحلیل پوششی داده ها با معرفی گروه مرجع یا الگو برای هریک از مشاهدات غیرکارا ، تحلیل منابع غیرکارای این واحدهای تصمیم گیری را ممکن می سازد .محدودیت در رتبه بندی واحدهای کارا حوزه ی دیگری از مباحث اندیشمندان در تحلیل پوششی داده ها را به خود اختصاص داده است که سه راهکار عمده ی ارائه شده برای رتبه بندی واحد های کارا با عناوین اندرسون و پیترسون، ماتریس کارایی متقاطع و مدل تحلیل سلسله مراتبی داده ها کاربرد بیشتری را داشته اند .
2-5-1- مدل اندرسون و پیترسون (A&P)پس از مشخص شدن واحدها ی کاراو ناکارا ، ا ین بار برا ی هر یک از واحد ها ی کارا مدل P&A را حل می کنیم با ا ین تفاوت که واحد کا را تنها در تابع هدف آمده و از بین محدود یت ها ی ساختاری ، محدود یت واحد کارا را حذف می کنیم (مهرگان ،1383، 73).
2-5-2- مدل ماتریس کارایی متقاطع (CEM)از جمله روشهایی است که می توان بر ای شناسایی عملکردهای خوب و رتبه بندی مؤثر واحده ای تصمیم گیرنده DMU ها از آن ا ستفاده کرد . روش کار ایی متقاطع عملکرد یک DMU را با توجه به وزن‎های بهینه سایر DMU ها مقایسه می کند که نتیجه ی این ارز یابی ها در ماتر یس کارایی متقاطع نشان داده می شود (مهرگان ،1383، 74).
2-5-3- مدل تحلیل سلسله مراتبی داده ها (DEA /AHP)با استفاده از نتایج به دست آمده از حل مدل های DEA می توان یک ماتر یس مقایسات زوجی تشکیل داد و با استفاده از روش رتبه بندی ( DEA /AHP) واحد های کارا را رتبه بندی کرد. ظهور مدل‎های بس یار گسترده و متنوع از زمان معرف ی مدل های CCR تا کنون و رشد سریع و مقبولیت گسترده ی این مدل ها در سطح سازمان ها، خود گواه روشنی از توانایی و قابلیت کاربرد بالا ی این روش در اندازه گیری کارا یی سازمان ها است ( مهرگان ،1383، 76).

2-6- پیشینه تحقیقبرای ارزیابی کارایی واحدهای بانکی با توجه به توانایی های روش DEA مطالعات فراوانی در سطح بانک ها و شعبات بانکی است که متأسفانه بیشتر این مطالعات در خارج از کشور بوده و به جز چند مورد استثنایی هیچ مطالعه جامعی در کشور انجام نشده است بیشترین کاربرد روش DEA در مطالعات داخلی در مورد نیروگاههای تولید برق و واحدهای دانشگاهی بوده و چند مطالعه دیگر نیز در مورد شرکتهای بیمه و واحدهای پرورش طیور انجام شده است که همین امر، لزوم توجه بیشتر در این زمینه را نشان می دهد. شرمن گلد(1985)، اولین مطالعه واحدهای بانکی به روش DEA را مورد 14 شعبه از بانکهای پس انداز آمریکا انجام دادند که به یک ابزار خوش آتیه برای محاسبه کارایی واحدهای بانکی به حساب آمد.نتایج تحقیق کارایی تولید به بنیانگر آن است که فقط 6 شعبه کارایی 100درجه داشته اند(یعنی 42درصد نمونه) و علل ناکارایی شعب دیگر ضعف مدیریت، اندازه شعبه، تعداد کارکنان و هزینه های عملیاتی بوده است.
2-6-1- پژوهشهای انجام شده خارجیفوکویاما و ماتوسک(2011)، در تحلیل سیستماتیک کاراییهای تخصصی، تکنیکی و هزینه سیستم بانکی ترکیه با روش سیستم بانکی دو مرحله ای تحت فرض بازده نسبت به مقیاس متغییر برای 25 بانک تجاری فعال در ترکیه از سال 1991-2007 پرداختند. روش تخمین بر پایه مدل شبکه ای دو مرحله ای که توسط فوکویاما و وبر در سال 2010 معرفی شده ، می باشد . طبق این مدل، در مرحله اول از تولید، بانکها نهادهها را برای تولید یک ستانده میانه مانند سپرده ها به کار می گیرند که این ستانده میانه نهاده ای می شود برای مرحله دوم و در نهایت ستانده نهایی تولید می گردد (Hirofumi et al, 2011,75) نتایج نشان داد تفاوت معناداری بین نتایج این دو مرحله وجود ندارد.
ایزیدرو و نارسیزو (2008)، در تحقیقی با عنوان "سودمندی اطلاعات حسابداری در ارزیابی کارایی فنی در شرکتهای تعاونی کشاورزی" در صدد جستجوی دو هدف برآمدند. نخست استفاده از تکنیک تحلیل پوششی داده ها به منظور ارزیابی کارآیی شرکتهای تعاونی کشاورزی بوده و هدف دوم بررسی قابلیت این تکنیک به عنوان مکمل تجزیه و تحلیل نسبت مالی و اقتصادی سنتی است. به منظور دستیابی به این اهداف، مطالعه موردی با استفاده از اطلاعات 274 شرکت تعاونی در طول سه سال مالی (2001-2003) صورت گرفته است. نتایج نشان میدهد که معیارهای کارایی بدست آمده از تکنیک DEA مکمل مناسب برای تجزیه و تحلیل اقتصادی شرکتهای تعاونی کشاورزی محسوب میشود.
بونین حسن و واچتل(2004)، برای دوره زمانی 2002-1994 بر مبنای اطلاعات 10 بانک از 6 کشور بلغارستان، جمهوری چک، کرواسی، مجارستان، لهستان و رومانی و با روش پارامتری آماری و با استفاده از تابع هزینه ترانسلوگ پژوهش خود را انجام داده اند. در تابع هزینه مورد تخمین هزینه کل متغییر وابسته، وامهای کل، سپرده های کل، دارایی های جاری کل و سرمایه گذاری جاری کل به عنوان ستانده مخارج غیر بهره ای به دارایی های ثابت کل و مخارج بهره ای به سپرده های کل به عنوان نماینده قیمت نهاده ها، هستند، نتایج مطالعه بیانگر این بود که میانگین کارایی بانک ها 78/0 است اشاره کرد.
آتاناسوپولوس(1998)، با مقیاسی گسترده و با استفاده از دو مدل متفاوت، کارایی هزینه و کارایی بازار 580 شعبه از بانکهای تجاری انگلستان ارزیابی شده است. در این تحقیق با تقسیم بندی شعب به طبقات مختلف از نظر ویژگیهای خاص خود جایگاه ویژه هر شعبه از لحاظ کارایی هزینه و کارایی بازار در بین گروه خود و سایر شعب مشخص شده است. متوسط کارایی هزینه و کارایی بازار شعب مورد بررسی به ترتیب برابر58/0 و 85/0 درصد بوده است. دلایل عدم کارایی به مواردی نظیر اندازه شعب، میزان رقابت موقعیت مکانی و اندازه حسابها نسبت داده شده است.
زینوزوسوتیرو(1997)، 144 شعبه بانک تجاری قبرس که حدود 45درصد از سپرده های محلی را به خود اختصاص داده است، مطالعه کردند. شعب مورد بررسی با توجه به موقعیت مکانی به سه دسته، شعب شهری(83شعبه)، شعب روستایی (41شعبه) و شعب توریستی(20شعبه) تقسیم وبا توجه به اندازه آنها به دسته های بزرگ، متوسط و کوچک طبقه بندی شدند. محققان با به کارگیری سه مدل متفاوت به ارزیابی کارایی کیفیت خدمات بانکی کارایی سودآوری و کارایی تولید واحدهای مورد بررسی پرداختند. نتایج این تحقیق بیانگر آن است که متوسط کارایی در شعب شهری، روستایی و توریستی به ترتیب برابر 4/92، 6/87 و 5/88 درصد می باشد.
دیتچ و ویواس (1996) ، برای دوره زمانی 1988 -1992 از اطلاعات 223 بانک فرانسه و 101 بانک اسپانیا با نگرش واسطه ای و روش پارامتری آماری با استفاده از تابع هزینه ترانسلوگ برای برآورد کارایی صنعت بانکداری فرانسه و اسپانیا استفاده کردند. در تابع هزینه مورد تخمین هزینه کل متغیر وابسته، وام ها به عنوان ستانده، سپرده ها و دارایی ها به عنوان نهاده، سرانه هزینه پرسنلی، تعداد شعب قیمت نهاده هستند، نتایج این مطالعاه بیانگر این بود که متوسط کارایی بانک های فرانسه 88/0 و بانک های اسپانیا 74/0 می باشند.
کاپاراکیس و میلر و نولاس (1994) ، برای سال 1986 و باتعداد مشاهدات بالغ بر 5548 که مربوط به بانک هایی از آمریکا می شده که مجموع دارایی های آنها بیش از 50 میلیون دلار بوده است. این پژوهش از نگرش واسطه ای، روش پارامتری آماری و با استفاده از تابع هزینه ترانسلوگ بود. در تابع هزینه مورد تخمین هزینه کل متغیر وابسته، سپرده های بهره دار، تعداد کارکنان، اموال و دارایی های ثابت، دستمزد متوسط سالانه و هزینه متوسط دارایی های ثابت و املاک نهاده و وام های خصوصی، وام های وثیقه ملک، وام های تجاری و صنعتی، دارایی ها و اوراق بهادار ستانده ها می باشند. نتایج این مطالعه نشان داد که متوسط ناکارایی بانک ها 17/0 است و ناکارایی با افزایش اندازه بانک ها کاهش می یابد.
عالی، گرابوسکی، پاسورکا و رنگان(1990) ، با استفاده از اطلاعات آماری سال 1986 مربوط به 322 بانک آمریکا و با نگرش واسطه ای و روش ناپارامتری، ناکارایی بانکها را مورد بررسی قرار دادند. نهادههای این مطالعه شامل تعداد پرسنل، ارزش داراییهای ثابت و کل سپرده های مشتریان و ستاندهها، وامهای ساختمانی، وامهای تجاری و صنعتی، وامهای مصرفی و سایر وامها و سپرده های دیداری می‎باشند. آنها نشان دادند که متوسط ناکارایی بانک ها 19/0 است و اختلاف با اهمیتی بین کارایی بانک های دارای شعبه و تک واحدی (بدون شعبه) وجود ندارد.
تاکنون مطالعات زیادی در خصوص کارایی صنعت بانکداری از جمله مطالعات انجام شده می‎توان به فریز و تاکی(2004)، برای دوره زمانی 2000-1993 با استفاده از دو روش ناپارامتری و پارامتری صورت گرفته است، برمبنای اطلاعات 289 بانک از 15 کشور اروپای شرقی و با روش پارامتری آماری و با استفاده از تابع هزینه ترانسلوگ پژوهش خود را انجام داده اند. در تابع هزینه مورد تخمین هزینه کل متغیر وابسته ، وام ها به عنوان ستانده ، سپرده ها به عنوان نهاده ، سرانه هزینه پرسنلی قیمت نهاده هستند، نتایج مطالعه بیانگر این بود که استونی، قزاقستان، لیتوانی، لتونی، اسلواکی و اسلونی کشورهای با میانگین کارایی بالا (86/0-75/0)، کرواسی، مجارستان و لهستان کشورهای با میانگین کارایی متوسط (68/0-62/0)و بلغارستان، مقدونیه، رومانی، روسیه، جمهوری چک و اکراین کشورهایبا میانگین کارایی پایین (59/0-42/0) می باشد.
نتایج بدست آمده از روشهای ناپارامتری و پارامتری با یکدیگر یکسان نمی باشد. در این زمینه مطالعاتی با استفاده از هر دو روش فوق و در نظر گرفتن تصریح یکسانی برای نهاده ها، قیمت نهاده ها و ستانده ها به مقایسه تطبیقی کارایی دو روش پرداخته اند. از آن جمله می توان به مطالعه فریر و لاول (1990)،در آمریکا سال 1984 بادر اختیار داشتن 575 نمونه مورد بررسی (تعداد بانک) با استفاده از دو روش پارامتری (هزینه / ترانسلوگ)و ناپارامتری(DEA) ونتایج آن کارایی 80% و74% را نشان داد و بیان کرد تفاوت معناداری میان نتایج وجود نداردوهچنین می توان از شلدن (1994)، با میزان کارایی56% و 39% و نیز رستی(1997)،با کارایی 81% و 90% باورتال (1998)، با میزان کارایی83%و 30% و بکالی (2004)، با میزان کارایی83 %و 85% اشاره کرد. نکته جالب توجه این است که نتایج بدست آمده از این روشها با یکدیگر بسیار متفاوت است؛ به طوری که برخی کارایی محاسبه شده در هر دو روش را یکسان دانسته و برخی معتقدند تفاوت معناداری میان نتایج وجود دارد. در این زمینه از جمله پژوهشهای انجام شده در ایران می‎توان به مطالعه سوری، گرشاسبی و عریانی در سال(1386)، تحت عنوان «مقایسهی تطبیقی کارایی بانکهای تجاری ایران با استفاده از دو روش DEA و SFA » اشاره کرد. نتایج این مطالعه نشان داد که تفاوت معناداری میان نتایج وجود دارد.
2-6-2- پژوهشهای انجام شده داخلینصیریان (1391)، کارایی و تعیین عوامل مؤثر بر آن در شعب پست بانک(تهران) در سال 1388مورد ارزیابی قرار گرفت. بدین منظور یکی از روشهای ناپارامتری تحت پوشش داده ها و یکی از روشهای ابتکاری تحت عنوان شبکه عصبی استفاده شده است. در این تحقیق از دو شبکه عصبی احتمالی و شبکه پرسپترون چند لایه استفاده شده و نتایج با نتایج حاصل از DEA مقایسه شده است. نتایج حاصل از این بررسی نشان می دهد که هر دو شبکه کارایی شعبه ها را با تقریب خوبی تخمین می زند و شبکه عصبی احتمال به علت سرعت و دقت بیشتر نسبت به شبکه عصبی پرسپترون ارجح می باشد.
همچنین فقیه نصیری و همکاران (1389)، مقایسه کارایی دو روش ناپارامتری (DEA) وپارامتری (SFA) با استفاده از اطلاعات پست بانک ایران را ارزیابی نمودند. در این تحقیق برای 28 استان مستقل کارایی پست بانک ایران در دوره زمانی 1378-1384 مورد بررسی قرار گرفتند. نتایج نشان داد که تفاوت معنی داری بین این دو روش در اندازه گیری کارایی پست بانک ایران وجود دارد. نتایج حاصل از مدل کارایی نشان میدهد که متوسط کارایی پست بانک در دوره مورد بررسی 55% است. علاوه براین نتایج مدل شناسایی عوامل موثر بر کارایی نشان داد که کارایی سرپرستیها با اندازه پست بانک، تعداد پرسنل و تعداد شعب رابطه منفی و با درآمد کل پست بانک و زمان رابطه مثبت دارد.
حسینی و همکاران (1388)، نیز با بررسی کارایی و عوامل مؤثر بر آن برای 28 استان (سرپرستی) مستقل پست بانک ایران در دوره زمانی 1378-1384 با استفاده از روش پارامتری آماری SFA و فرم خطی لگاریتمی تابع هزینه مرزی تصادفی برآورد شده است. نتایج این مطالعه براساس مدل برآورد کارایی نشان می دهد که کارایی پست بانک ایران 60 % است، همچنین استان تهران کمترین کارایی و استان چهارمحال بختیاری بیشترین کارایی را داشتند، در حالی که در نتایج مدل برآورد عوامل مؤثر بر کارایی سرپرستی ها، با اندازه پست بانک (دارایی کل)، تعداد پرسنل، تعداد شعب و زمان رابطه منفی و با درآمد کل پست بانک رابطه مثبت داشت.
از طرفی دادگر و نیکی نعمت (1386)، در کاربرد مدل DEA در ارزیابی کارایی واحدهای اقتصادی، به بررسی کارایی 38 سرپرستی بانک تجارت در کل کشور طی دوره زمانی (1380-1382) پرداختهاند. فرضیه اصلی این پژوهش این است که وضعیت نهادهها و ستاندههای سرپرستیهای بانک تجارت بهینه نیست و با اصلاح عوامل، کارایی آنها قابل افزایش است. در این تحقیق کارایی 38 سرپرستی بانک تجارت در کل کشور با استفاده از دو مدل CCR و BCCمحاسبه و رتبه بندی واحدهای کارا شده است. نتایج نشان میدهد که سرپرستیهای قم، زنجان، آذربایجان غربی و شرقی ناکارا میباشند. میانگین کارایی سه سال به ترتیب 7/79، 79، 2/47 درصد است.
همچنین سوری در سال 1384 برای دوره زمانی 1374-1381 و بر اساس اطلاعات مربوط به 10 بانک کشور (6 بانک تجاری و 4 بانک تخصصی) و روش پارامتری آماری و با استفاده از تابع هزینه ترانسلوگ مطالعه خود را انجام داده است. در تابع هزینه مورد تخمین هزینه کل متغیر وابسته، میزان تسهیلات اعطایی به عنوان ستانده، حجم سپرده بانکی و تعداد شعب نهاده ها، سرانه هزینه پرسنلی و نسبت هزینه اداری به سطح سپرده گذاری به عنوان قیمت نهاده ها و زمان بیانگر تغییرات تکنیکی است. نتایج این مطالعه نشان داد که کارایی صنعت بانکداری ایران 76/87% و کارایی بانک های تجاری و تخصصی به ترتیب 58/87% و 95/87% است و بانک ملت در بین بانک های تجاری و بانک توسعه صادرات در بین بانک های تخصصی از بیشترین کارایی برخوردار هستند و با کاهش اندازه بانک و افزایش تعداد شعب کارایی افزایش می یابد.
حقیقت و همکار (1383)، نیز در مطالعهای با عنوان بررسی کارایی سیستم بانکی با کاربرد DEA (مطالعه موردی بانک کشاورزی) بیان میدارند که میانگین کارایی فنی شعب بانک کشاورزی در منطقه 4 تحت شرایط بازده ثابت و متغییر نسبت به مقیاس به ترتیب برابر81/0 و 94/0 درصد و میانگین کارایی نیز 86/0 بوده است.
کریمی در سال 1381 برای سال های 1377- 1379 اطلاعات مربوط به 17 شعبه از شعب، بانک های کشاورزی استان همدان را با نگرش واسطه ای و روش پارامتری آماری و با استفاده از تابع هزینه ترانسلوگ مورد بررسی قرار داده است. در این پژوهش نهاده ها شامل، سرانه هزینه پرسنلی شعب، نرخ سود پر داخلی به انواع سپرده ها، متوسط هزینه های استهلاک دارایی های ثابت شعب و نسبت هزینه های اداری به حجم تسهیلات اعطایی است و ستانده بانک، حجم تسهیلات اعطایی غیر تکلیفی می باشد. نتایج این پژوهش، متوسط ناکارایی شعب را 25/0 نشان داد و ناکارایی، رابطه مثبتی با اندازه شعب و رابطه منفی با تحصیلات کارکنان شعب و درجه مکانیزاسیون شعب ( تعداد رایانه موجود در شعب) دارد.
نفر در سال 1380 برای دوره زمانی 1376-1367 اطلاعات مربوط به بانک کشور (6 بانک تجاری و 3 بانک تخصصی) را با نگرش واسطه ای و روش پارامتری آماری و با استفاده از تابع هزینه کاب-داگلاس برای محاسبه کارایی نیروی کار صنعت بانکداری ایران مورد استفاده قرار داده است. نهاده های بانک شامل، نیروی کار، اجاره به شرط تملیک، فروش اقساطی، مشارکت مدنی، جعاله، معاملات سلف، سرمایه دفتری، سپرده های قرض الحسنه جاری و پس انداز، سپرده های کوتاه مدت و بلند مدت و متغیر زمانی است و تسهیلات اعطایی(معاملات عقود + معاملات قدیم + سرمایه گذاری مستقیم + مشارکت حقوقی) ستانده بانک می باشند. نتایج این مطالعات نشان داد که متوسط ناکارایی نیروی کار 25/0 است و صنعت بانکداری در ایران قابلیت افزایش خدمات بانکی با همین تعداد نیروی کار را دارد .

centercenter00
فصل سوم
روش اجرای تحقیق
26242434070350 مواد و روشها
3-1- روش اجرای تحقیقضرورت رشد و توسعه و حل مشکلات اقتصادی، انسان را با حقیقتی به نام کمیابی مواجه ساخته است. بدون شک هدف از رشد و توسعه اقتصادی در جامعه بشری، افزایش رفاه مردم است. یکی از عوامل تعیین کننده میزان رفاه جوامع، میزان برخورداری افراد از امکانات موجود در جامعه (کالاها و خدمات) می‎باشد. این میزان را به اصلاح اقتصادی سطح زندگی می نامند. بدون افزایش کارایی و بهره وری، هیچ اقتصادی نمی تواند انتظار اعتلای سطح زندگی مردم خود را داشته باشد. سطح زندگی بالای مردم کشورهای صنعتی، اساساً ناشی از بهبود بهره وری در این جوامع و اقتصاد کارآی آنها می باشد. به اقتصادی کارآ گفته می شود که از منابع خود آنقدر کالا و خدمات تولید کند که در شرایط موجود، تولید بیش از آن سطح ممکن نباشد و این حاکی از وضعیت تولید با حداقل هزینه نیز می باشد. آگاهی نسبت به میزان کارایی و بهره وری و چگونگی روند تغییرات آن ها در طی زمان در تحقق اهداف رشد اقتصادی و تأمین رفاه جامعه کمک شایان توجهی خواهد کرد.
در این فصل در نظر داریم مهمترین معیار ارزیابی عملکرد بنگاه را معرفی کنیم که با استفاده از عوامل مختلف تولید، به امر تولید کالاها و خدمات اشتغال دارند. به عنوان مثال یک کارگاه تولیدی لباس را در نظر بگیرید که با استفاده از سرمایه، مواد اولیه و نیروی کار (عوامل تولید)، پیراهن (محصول) تولید می‎نماید. عملکرد این بنگاه تولیدی می تواند با روش های متعددی مورد ارزیابی قرار گیرد. یکی از رایج‎ترین روش های ارزیابی نحوه تولید و میزان اتلاف منابع در واحدها و مؤسسات، کارایی می باشد که به کمک روش های جدید قابل اندازه گیری می باشد. با اندازه گیری می توان از میزان کارایی کلیه بنگاه ها، از بنگاه های تولید کننده کالا تا شرکت های خدماتی (شبیه رستوران ها و شرکت های حمل ونقل) آگاه شد. همچنین این روش برای یررسی عملکرد شعبه های یک بانک و یا فروشگاه زنجیره ای و یا بنگاه های غیر انتفاعی (مدارس و بیمارستان ها) قابل استفاده خواهد بود.
این مثال ها در سطح خرد ارائه شد، البته این روش ها برای محاسبه کارایی در سطوح کلان هم مورد استفاده قرار می گیرند. برای مثال می توان عملکرد یک صنعت را در طول زمان و یا در حوزه های مختلف جغرافیایی (شهر، استان، کشور و یا در کل جهان )، بررسی و با گذشته مقایسه کرد و واحدهای کارا و ناکارا را شناسایی کرد و علل افزایش یا کاهش کارایی را مورد مطالعه قرار داد و تمهیدات لازم برای افزایش کارایی را اندیشید (عین علیان، 1387، 64).
در این فصل به بیان مفهوم کارایی و مقایسه آن با بهره وری و اثربخشی، توضیح انواع کارایی و همچنین سنجش کارایی از روش های ناپارامتری و بیان می شود. در روش های ناپارامتری به روش فارل و روش تحلیل فراگیر داده ها (DEA) و مدل پنجره ای و سلسله مراتبی برای سنجش کارایی خواهیم پرداخت.
معرفی انواع روشهای اندازه گیری عملی کارایی از سوی فارل ١٩۵٧صورت گرفته است. وی پیشنهاد کرد که برای اندازه گیری کارایی یک بنگاه، باید عملکرد آن با عملکرد بهترین بنگاههای موجود در آن صنعت مقایسه شود. طبق شکل (3-1) فارل سه نوع کارایی برای بنگاه مطرح کرد. وی نظر خود را با مثال ساده ای از بنگاهی که با استفاده از دو عامل تولید X1 و X2 به تولید یک ستاندهY با فرض بازده به مقیاس ثابت (که در ادامه بحث خواهد شد) و بر مبنای حداقل نهاده می پردازد، بیان کرد. در زیر هر یک از انواع کارایی مورد بررسی قرار می گیرند:

نمودار (3-1) انواع کارایی از دیدگاه فارلکارایی فنی: کارایی فنی منعکس کننده ی توانایی بنگاه در کسب حداکثر محصول از مقدار معین نهادهها و یا استفاده از حداقل نهاده‎ها برای دستیابی به میزان معین ستانده است کارایی فنی معادل TE =ON/OS خواهد بود.
کارایی تخصیصی: توانایی بنگاه برای استفاده از ترکیب بهینه ی عوامل تولید با توجه به قیمت آنها. چنان چه قیمت عوامل تولید با خط هزینه یکسانA A نشان داده شود، آنگاه کارایی بنگاه S عبارت است از:
ALE = OM/ON
کارایی اقتصادی: از حاصل ضرب دو کارایی فنی و کارایی تخصیصی به دست می آید .حداکثر کارایی اقتصادی جایی محقق می شود که منحنی q بر خط هزینه یکسان مماس شود. مقدار کارایی اقتصادی از رابطه زیر به دست می آید.
ECE= TE× ALE
3-2- کارایی مفهومی پویاگفته می شود که کارایی مفهومی پویاست. براین اساس در هر واحد زمان برخی بنگاه ها دارای کارایی بیشتر و برخی دارای کارایی کمتر هستند به طوریکه این رتبه بندی در طول زمان تغییر می کند. در تشریح این مفهوم بیان می شود که کارایی به عنوان مفهومی پویا بیانگر سرعت تعدیلات خواهد بود و فقط در یک نقطه قابل اندازه گیری نیست، بلکه در طول یک دوره زمانی باید آن را مد نظر قرار داد و آنگاه ثبات کارایی را تخمین زد.
3-3- کارایی مفهومی نسبیگروهی معتقدند کارایی مفهومی نسبی است. بدین معنا که کارایی یک بنگاه در مقایسه با بنگاهی دیگر که عملکرد بهتری دارد بررسی می شود و بررسی کارایی برای یک بنگاه منفرد درست نیست. در صنعتی که درجه همگنی بنگاه ها کم باشد مفهوم نسبی کارایی واضح تر می نماید. از طرفی در صنعتی با درجه همگنی بالا تفاوت کارایی بنگاه ها را تنها می توان با اختلال ناشی از پدیده های تصادفی خارج از کنترل بنگاه ها مانند تغییرات آب و هوا توضیح داد. روش معمول اندازه گیری کارایی تعریف حد استاندارد عملکرد برای واحدهای اقتصادی قابل مقایسه است. این حد می تواند بهترین عملکرد واقعی صنعت یا بهترین عملکرد بالقوه نظری باشد.
اما کارایی در بیشتر مطالعات و پژوهشهای تجربی مفهومی ایستا دارد. بدین ترتیب که تصویری لحظه ای از آن صنعت در نظر گرفته می شود و آن تصویر به عنوان وضعیتی از کارایی صنعت لحاظ می‌گردد ( Farrell, 1957, 30).
3-4- کارایی در مقایسه با بهره وری و اثربخشیدر امر تولید، همواره بشر به دنبال روش هایی بوده است که با حداقل استفاده از منابع فیزیکی، انسانی و مالی حداکثر بازده را بدست آورد و در این رابطه مفاهیمی مانند کارایی، بهره وری و اثربخشی در ادبیات مدیریت و سایر علوم کم و بیش، بکار گرفته شده است. این مفاهیم همگی به دنبال بهره برداری مطلوب منابع در راستای اهداف مؤسسه می باشند و اگر چه تعاریف آنها مختلف می باشند لیکن گاه به اشتباه در بعضی کتب و مقالات جایگزین یکدیگر شده اند. شاید به طور رسمی و جدی نخستین بار لغت بهره وری در پروژه - ریسرچای توسط فردی به نام کوئیزنی در سال 1766 میلادی ارائه شد و بعد از گذشت بیش از یک قرن در سال 1883، فردی به نام لیتر بهره وری را به صورت، قدرت و توانایی تولید کردن تعریف کرد.
از اوایل قرن بیستم، این واژه مفهوم دقیقتری یافت و به معنای رابطه ای بین ستاده (محصول) و عوامل بکار رفته برای تولید آن محصول معرفی شد، که البته این تعریف توسط فردی به نام ارلی در سال 1900 ارائه گردید. در سال 1950 سازمان همکاری و توسعه اقتصادی OECD تعریف کاملتری از بهره‎وری را بدین صورت ارائه کرد که در واقع بهره وری، تولید متوسط یک عامل تولیدی است (امامی، 1375،25).
بهره وری را طبق تعریف های ارائه شده، نسبت ستاده (محصول) به نهاده گویند. بهره وری مقدار تولید شده یا ستاده نیست، بلکه معیاری است که نحوه ترکیب و بکارگیری منابع مصرفی با یکدیگر برای دستیابی به یک نتیجه مورد انتظار خاص و یا تعادل بین تمام عوامل تولید به نحوی که بیشترین نتایج با کمترین تلاش حاصل شود، را بیان می کند. بهره وری به صورت نسبت ستاده به نهاده است و نهاده های زیادی را می تواند شامل شود. این متغییرهای متعدد و مؤثر در هر کدام از این نسبت ها می توانند متضمن کیفیت، گستردگی عملیات، میزان حجم مصرف، موجودی و ظرفیت تولید تجهیزات سرمایه ای، سطح مهارت نیروی کار و ... باشد. اما کارایی انجام بهتر آنچه صورت گرفته می باشد، یعنی تمرکز بر هزینه ها می باشد و دنبال راهکارهایی برای کاهش اتلاف منابع است. کارایی سعی در ارتقای بنگاه ها، ادارات، مؤسسات و بطور کلی واحدهای تصمیم ساز دارد و بهره وری به مقایسه کارایی یک بنگاه (سازمان) طی دو زمان متفاوت و یا مقایسه کارایی دو بنگاه (سازمان) نسبت به یکدیگر در یک زمان می باشد و به عبارت دیگر، بهره وری مقایسه کارایی است و افزایش بهره وری به عوامل تولید وابسته است(ابطحی و همکار، 1375،9).
اثر بخشی دنبال بهینه کردن می باشد و به فرصت های ایجاد درآمد، از طریق تغییرات خصوصیات اقتصادی محصولات موجود می نگرد. اثربخشی دنبال این نیست که کار را چگونه انجام بدهد، بلکه تعیین کردن محصولاتی است که بهترین نتایج اقتصادی را دارند و یا قادر به نتایج اقتصادی فوق العاده تری هستند اگر چه ممکن است مؤسسه ای کالا و خدمات را بطور کارا تولید کند، اما ممکن است اثربخش نباشد و همچنین کارآمدترین مؤسسه می تواند به بقا خود ادامه دهد حتی اگر اثربخش نباشد. بنیاد و اساس موفقیت، اثربخشی است. اثربخشی از درجه و میزان نیل به اهداف تعیین شده به دست می آید و نشان می دهد که تا چه میزان از تلاش های انجام شده، نتایج مورد نظر حاصل شده است. در واقع اثربخشی مرتبط با عملکرد و فراهم آمدن رضایت انسان از تلاش های انجام شده است و کارایی مرتبط با بهره برداری صحیح از منابع است. بهره وری ترکیبی از کارایی و اثربخشی است و هر دو معقوله را در بر دارد.
بر این اساس، مفهوم بهره وری سنجش و ارزیابی بازده و نتایج فعالیت های یک سازمان نسبت به حجم منابع مصروفه را در پی خواهد داشت.
اثربخشی + کارایی = بهره وری
اثربخشی = اجرای کارهای درست
کارایی = اجرای درست کارها
در مباحث تولید در سطح اقتصاد خرد یک بنگاه را در نظر بگیرید، بنگاه در صدد این است که نهاده‎هایش (سرمایه، نیروی انسانی، سوخت و ...) را به محصول تبدیل کند، بررسی عملکرد بنگاه راه های مختلفی دارد که یک معیار مرسوم بهره وری، یعنی نسبت محصول به نهاده است که هرچه این نسبت بزرگتر باشد، بیانگر بهره وری بالاتر بنگاه است. این یک معیار نسبی است، به عنوان مثال در بهره وری، عملکرد دو بنگاه را در یک سال و یا عملکرد یک بنگاه را در دو زمان (دو سال) مورد بررسی قرار می‎دهیم. در زمانی که یک محصول و یک نهاده وجود داشته باشد، محاسبه نسبت بهره وری کار آسانی است، اما اگر چند نهاده و چند محصول داشته باشیم، می باید از شاخص بهره وری کل عوامل استفاده کنیم. همچنین نسبت های سنتی شاخص بهره وری همچون بهره وری نیروی کار، بهره وری سوخت در نیروگاه ها، بهره‎وری در زمین کشاورزی مطرح هستند که به عنوان معیار جزیی بهره وری شناخته شده اند و چون فقط یک نهاده را در نظر می گیرند، از توانایی بالایی برخوردار نیستند (عین علیان، 1387،67).
برای روشن ساختن تفاوت بین کارایی و بهره وری، یک فرایند ساده با یک عامل تولید (x) و یک محصول تولیدی (y) را در نظر می گیریم. در نمودار (3-2)، منحنی of نشان دهنده تابع تولید مرزی می‎باشد که نشان دهنده ارتباط میان محصول و عامل تولید است. این تابع مرزی، حداکثر تولید قابل حصول از سطوح مختلف عامل تولید را در تکنولوژی معین نشان می دهد. (عین علیان، 1387، 70)

1736090125730نمودار (3-2) تابع تولید مرزی و کارایی فنی00نمودار (3-2) تابع تولید مرزی و کارایی فنی
بنگاه هایی که بر روی این تابع تولید مرزی قرار دارند کارا (فنی) می باشند، یعنی این که این بنگاه‎ها با استفاده از نهاده های موجود بیشترین محصول را تولید کرده اند ولی بنگاه هایی که در زیر این تابع قرار دارند، با عدم کارایی مواجه می باشند. در این نمودار، A نشان دهنده نقطه غیر کارا ولی B و C معرف نقاط کارا هستند. بنگاهی که در نقطه A فعالیت می کند با مشکل عدم کارایی مواجه می باشد، چون با تکنولوژی موجود، می تواند تولید خود را بدون نیاز به افزایش عامل تولید، تا سطح B افزایش دهد. با استفاده از نمودار (3-2) می توان مجموعه تولید قابل دسترس را نیز مشخص کرد، که شامل تمام نقاط روی منحنی تابع مرزی (of) و زیر آن تا محور افقی می باشند. نقاط روی تابع مرزی، مجموعه ای از نقاط کارا را نمایندگی می کنند.
برای توضیح اختلاف بین کارایی و بهره وری از شکل (3-3) استفاده می کنیم. در این شکل، تمام نقاط روی منحنی of به مبدأ مختصات، برابر y/x یا همان نسبت ستاده به نهاده و به عبارتی بهره وری است.
حرکت از A به B نشانگر، حرکت از یک نقطه ناکارا به یک نقطه کاراست. حرکت از نقطه B به نقطه C حرکت از یک نقطه کارا به یک نقطه کارای دیگر است، با این نکته، که در نقطه C، بهره وری شیب خط واصل از منحنی of به مبدأ مختصات (بهره وری) بالاتر است، که همراه با صرفه جویی مقیاس می‎باشد.


پس نتیجه می گیریم که بنگاهی ممکن است به لحاظ فنی کارا باشد B، ولی ممکن است بتواند با استفاده از صرفه جویی های ناشی از مقیاس، بهره وری خود را بهبود بخشدC.

126365070485نمودار (3-3) بهره وری، کارایی فنی و مقیاس اقتصادی00نمودار (3-3) بهره وری، کارایی فنی و مقیاس اقتصادی
3-5- توصیف انواع کارایی به روش فارلمعرفی انواع کارایی از طریق عملی، براساس روش فارل (1957) صورت می گیرد. فارل برای توضیح کارایی فرض می کند که بازدهی ثابت نسبت به مقیاس(CRS) وجود دارد و از منحنی تولید یکسان کمک می گیرد. بنابراین ضمن بیان روش فارل به انواع بازدهی نسبت به مقیاس و تعریف منحنی تولید یکسان و خصوصیات آن می پردازیم سپس انواع کارایی توضیح داده می شود.
فارل ایده اش را با بهره گیری از یک مثال ساده برای بنگاه هایی که تنها از دو عامل تولید (x1,x2) برای تولید یک محصول (Y)، استفاده می کنند ارائه کرد، البته با فرض اینکه بازدهی ثابت نسبت به مقیاس (CRS) وجود دارد.
در ادبیات اقتصادی سه مفهوم بازده ثابت، صعودی و نزولی نسبت به مقیاس تولید مورد بحث قرار می گیرد.
بازدهی ثابت نسبت به مقیاس (CRS) F(ax1,ax2)= aF(x1,x2)
بازدهی صعودی نسبت به مقیاس (IRS) F(ax1,ax2)> aF(x1,x2)
بازدهی نزولی نسبت به مقیاس (DRS) F(ax1,ax2)< aF(x1,x2)
بازدهی ثابت نسبت به مقیاس تولید (CRS) هنگامی رخ می دهد که افزایشی متناسب در تمامی عوامل تولید، منجر به افزایش در مقدار تولید به همان تناسب شود.
در این جا به تعریف منحنی های تولید یکسان و بیان خصوصیات آن می پردازیم.
منحنی های تولید یکسان یا منحنی هم مقداری تولید، ترکیب های مختلف از نهاده های x1 و x2 را برای تولید مقدار مشخصی از محصول (y=y0) نشان می دهد شیب منحنی تولید یکسان به لحاظ جبری مشتق تابع تولید با در نظر گرفتن) =y0 (y است.
2239645971550039503359715500Y=F(x1,x2) 0= Fَ1dx1+ Fَ2dx2MRTS= dx2dx1 =- F1F2F 1ََََ و F2، تولید نهایی عامل تولید 1X و عامل تولید 2X هستند.
منحنی های هم مقداری تولید دارای خصوصیات زیر می باشند.
الف) در مرحله کارایی تولید (مرحله دوم) دارای شیب منفی می باشند.
ب)یکدیگر را قطع نمی نمایند.
ج) نسبت به مبداً مختصات محدب می باشند.
1) وجود شیب منفی در مرحله دوم تولید (تولید کارا). طبق مباحث تئوریک، تولید کننده هیچگاه نباید در مرحله اول و سوم تولید فعالیت کند و منطقی است که در مرحله دوم تولید فعال باشد.
طبق نمودار (3-4) دامنه ًAA مرحله سوم برای نهاده X2 و دامنه BBَ مرحله سوم برای نهاده1 X می باشد و تولید کننده عقلایی در این دو دامنه فعالیت نمی کند زیرا به رغم افزایش هر دو نهاده، تولید افزایش نمی یابد و در این دو دامنه تولید نهایی منفی است. همچنین شیب منفی تابع تولید یکسان به نرخ نهایی جانشینی فنی (MRTS) بستگی دارد، که نرخ جانشینی نهاده1 X با نهاده X2 در حالی که محصول ثابت نگاه داشته شده است را انعکاس می دهد.
2) منحنی های هم مقداری تولید یکدیگر را قطع نمی کنند. زیرا اگر دو منحنی همدیگر را قطع کنند.

598170102870نمودار (3-4) نمایش تراکم عوامل تولید با استفاده از منحنی هم مقداری تولید00نمودار (3-4) نمایش تراکم عوامل تولید با استفاده از منحنی هم مقداری تولید
از طرفی دیگر طبق نمودار ( 3-5) با تعریف ارائه شده در مورد منحنی های هم مقدار تولید تناقض دارد چرا که، نشان می دهد که ترکیب واحدی از نهاده ها (X1,X2) دو سطح متفاوت تولید را ارائه می دهد. یا به عبارتی اگر دو منحنی هم مقداری تولید یکدیگر را قطع کنند، بدین معنی است که یک ترکیب به خصوص از عوامل تولید در شرایط کارا، می تواند دو سطح متفاوت محصول را تولید کند.
3) ویژگی سوم منحنی های هم مقدار تولید این است که این منحنی نسبت به مبدأ مختصات محدب است و این نتیجه بازدهی نزولی در مرحله دوم است، زیرا حرکت روی منحنی هم مقداری تولید و جانشین کردن X1 به جای X2 باعث کاهش MRTS می شود (فرگوسن، 1370، 170).

94234089535نمودار (3-5) منحنی های هم مقداری تولید یکدیگر را قطع نمی کنند.00نمودار (3-5) منحنی های هم مقداری تولید یکدیگر را قطع نمی کنند.
طبق مثال فارل در شکل (3-6) منحنی هم مقداری تولید بنگاه های کاملاً کارا مکان هندسی کاراترین ترکیبات مختلف از عوامل تولید در سطح معینی از تولید است.

1604645128270نمودار (3-6) توصیف انواع کارایی به روش فارل00نمودار (3-6) توصیف انواع کارایی به روش فارل
اگر نقطه P نمایانگر تولید یکی از بنگاه ها باشد، کارایی فنی این بنگاه به صورت زیر تعریف می شود:
کارایی فنی = OROPبه طور کلی کارایی فنی توانایی یک بنگاه را در بدست آوردن حداکثر محصول از مقدار معینی نهاده نشان می دهد. در نقطه P، نسبت نهاده ها به محصول، بالاتر از نقطه R است، لذا نسبت OR به OP می تواند بیانگر کارایی باشد.
کارایی فنی مفهومی نسبی است زیرا مقایسه بین بنگاه ها در نوع و نحوه استفاده از تکنولوژی است، لذا بنگاهی دارای کارایی فنی بالاتر است که بتواند با مجموعه داده های مفروض و ثابت (یعنی تکنولوژی و بکارگیری عامل کار و سرمایه که قبلاً تعیین شده است) محصول بیشتری را نسبت به سایر بنگاه ها تولید کند. از طرف دیگر بنگاهی ممکن است در مقایسه با استاندارد یک منطقه یا کشور دارای کارایی فنی بالا باشد ولی در مقایسه با استاندارد جهانی و یا استاندارد کشور دیگر کارآمد نباشد. یک تولید کننده به لحاظ فنی کاملاً کاراست اگر تولید او بر روی منحنی هم مقداری تولید (AÁ) انجام شود این امر توانایی بنگاه را برای بدست آوردن حداکثر محصول از مجموعه عوامل تولید مشخص را منعکس می کند. اگر تولید بنگاه در سمت راست منحنی AÁ انجام شود، این بنگاه با عدم کارایی مواجه خواهد بود. عدم کارایی تمام مواردی است که باعث می شود عملکرد واقعی بنگاه در سطحی کمتر از مقدار قابل حصول (با توجه به عوامل تولید مشخص) باشد. بر این اساس عدم کارایی مدیریتی نیز یکی از اجزای عدم کارایی فارل می باشد همچنین عدم کارایی با آنچه که بعضی از اقتصاددانان اتلاف منابع نامیده اند، مطابقت دارد. اتلاف منابع بدین معناست که تولید مورد نظر می توانست با هزینه های کمتر از آنچه که صورت گرفته، حاصل شود. در یک بنگاه کاملاً کارا OP=OR است، به عبارتی کارایی فنی مساوی یک خواهد بود، هرچه فاصله بین OR وOP افزایش یابد، کارایی فنی به سمت صفر میل می کند (عدم کارایی افزایش می یابد). بنابراین امکان بالقوه برای بهبود و افزایش کارایی هر بنگاه که با کارایی کمتر از یک مواجه باشد، وجود خواهد داشت. همچنین فارل با در نظر گرفتن قیمت عوامل تولید، تعریف کارایی تخصیصی را ارائه کرد.
کارایی تخصیصی مفهومی است که به تخصیص بهینه عوامل تولید با توجه به قیمت آنها مربوط است و علت تغییر ترکیب استفاده از عوامل تولید به تغییر قیمت عوامل تولید برمی گردد تا از این طریق هزینه تولید حداقل شود و یا سود بنگاه حداکثر شود.
در شکل (3-7) قیمت عوامل تولید بوسیله خط هزینه یکسان (BB́) نشان داده شده است.
کارایی تخصیصی (کارایی قیمت) بنگاهی که در P تولید می کند به صورت زیر تعریف می شود:
کارایی تخصیصی=OSORکارایی تخصیصی توانایی یک بنگاه در استفاده از نهاده ها با نسبت های بهینه با توجه به قیمت های عوامل تولید را نشان می دهد . در اندازه گیری کارایی بر مبنای حداکثر سازی محصول، کارایی تخصیصی توضیح داده می شود. یک بنگاه کاملاً کارا از نظر فنی، ترکیبات مختلفی از عوامل تولید را برای سطح معینی از تولید می تواند داشته باشد که آن ترکیبات دارای کارایی فنی یکسان هستند اما هزینه تولید آنها متفاوت است.تفاوت های موجود ناشی از قیمت عوامل تولید می باشد. همچنین از حاصل ضرب کارایی فنی و کارایی تخصیصی می توان کارایی اقتصادی را بر حسب تعریف فارل بدست آورد (امامی، 1379،38).
کارایی اقتصادی= OSOPکارایی اقتصادی= کارایی فنی × کارایی تخصیصی
OSOP = OROP × OSORافزایش کارایی را می توان با حداقل سازی میزان استفاده از عوامل تولید در سطح معینی از محصول و یا با حداکثر سازی محصول در سطح معینی از عوامل تولید، بدست آورد که در ادامه شرح داده می شود.

—d1965

3-1 مقدمه22
3-2 نحوه انجام آزمایشات22
3-2-1 مخزن23
3-2-2 پمپ23
3-2-3 کانال آزمایشگاهی23
3-2-4 مخزن آرام کننده جریان24
فهرست مطالب
عنوان صفحه
3-2-5 مدل سازه ترکیبی سرریز - دریچه24
3-3 آنالیز ابعادی25
3-4 شبیهسازی عددی27
3-4-1 معرفی نرمافزار Flow3D28
3-4-2 معادلات حاکم32
3-4-3 مدلهای آشفتگی33
3-4-3-1 مدلهای صفر معادلهای35
3 -4-3-2 مدلهای یک معادلهای35
3-4-3-3 مدلهای دو معادلهای36
3-4-3-4 مدلهای دارای معادله تنش36
3-4-4 شبیهسازی عددی مدل37
3-4-4-1 ترسیم هندسه مدل38
3-4-4-2 شبکه بندی حل معادلات جریان38
3-4-4-3 شرایط مرزی کانال40
3-4-4-4 خصوصیات فیزیکی مدل41
3-4-4- 5 شرایط اولیه جریان43
3-4-4-6 زمان اجرای مدل43
فصل چهارم: نتایج و بحث
4-1 مقدمه46
4-2 شبیهسازی هیدرولیک جریان در حالت کف صلب46
4-2-1 واسنجی نرمافزار46
4-2-1-1 ارزیابی نرمافزارپ48
4-2-1-2 بررسی تأثیر انقباض جانبی سازه ترکیبی سرریز - دریچه بر هیدرولیک جریان54
فهرست مطالب
عنوان صفحه
4-3 شبیهسازی آبشستگی پاییندست جریان59
4-3-1 واسنجی نرمافزار59
4-3-1-1 ارزیابی نتایج نرمافزار61
فصل پنجم: پیشنهادها
5-1 مقدمه70
5-2 نتیجهگیری70
5-3 پیشنهادها71
منابع74

فهرست جدول‌ها
عنوان صفحه
جدول 3- 1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریان25
جدول 3- 2 معرفی نرمافزار Flow3D28
ادامه جدول 3-229
جدول 3- 3 محدوده دادههای به کار رفته جهت شبیهسازی آبشستگی38
جدول 3- 4 شرایط مرزی اعمال شده در نرمافزار40
جدول 3- 5 شرایط مرزی اعمال شده در نرمافزار41
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوب42
جدول 4- 1 نتایج آمارهای خطا مربوط به فرمول (4-1)51
جدول 4- 2 نتایج حاصل از مدلسازی سازه ترکیبی همراه با انقباض جانبی برای نسبت دبیها55
جدول 4- 3 تأثیر پارامتر عدد شیلدز بحرانی بر حداکثر عمق آبشستگی60
جدول 4- 4 تأثیر پارامتر ضریب دراگ بر حداکثر عمق آبشستگی60
جدول 4- 5 تأثیر زاویه ایستایی بر حداکثر عمق آبشستگی61
جدول 4-6 تأثیر پارامتر حداکثر ضریب تراکم مواد بستر بر حداکثر عمق آبشستگی61
جدول 4- 7 بهترین مقادیر برای پارامترهای مؤثر در شبیهسازی حفره آبشستگی61
جدول 4- 8 نتایج آمارهای خطا مربوط به فرمول (4-4)65
فهرست شکل‌ها
عنوان صفحه
TOC h z t "fig,1,table,1" شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه5
HYPERLINK l "_Toc366000088" شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی8
HYPERLINK l "_Toc366000089" شکل 2- 1 جریان عبوری از سازه ترکیبی سرریز - دریچه مستطیل شکل با فشردگی جانبی12
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی12
شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)14
شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)14
شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی درحین برخی از آزمایشات (دهقانی و بشیری، 2010) 15
شکل 3- 1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک23
شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک24
شکل 3- 3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریان25
شکل 3- 4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب26
شکل 3- 5 مدلسازی پرش هیدرولیکی30
شکل 3- 6 مدلسازی جریان در قوس رودخانه30
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه30
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض31
شکل 3- 9 مدلسازی آبشستگی پاییندست سازه31
شکل 3- 10 مشبندی یکنواخت در کانال با مقیاس کوچک39
شکل 3- 11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ40
شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلب40
شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوب41
شکل 3- 14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان43
شکل 3- 15 نمودار تغییرات زمانی حجم سیال در مدلسازی حفره آبشستگی43
شکل 4- 1 مقایسه نتایج پروفیل سطح آب برای شبکهبندیهای مختلف میدان جریان با داده آزمایشگاهی46
شکل 4- 2 مقایسه پروفیل سطح آب در دو مدل تلاطمی k-ε RNG و k-ε و دادههای آزمایشگاهی47
شکل 4- 3 مقایسه پروفیل سطح آب در مدل تلاطمی k-ε RNG با دادههای آزمایشگاهی49
فهرست شکل‌ها
عنوان صفحه
شکل 4-4 ارزیابی دقت مدل RNG k-ε برای عمق جریان در بالادست و روی سازه ترکیبی سرریز- دریچه49
شکل 4- 5 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs / Qg)51
شکل 4- 6 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی52
شکل 4- 7 مقایسه رابطه نسبت دبیها درسازه ترکیبی سرریز- دریچه با روابط تجربی برای تخمین دبی در سرریز و ریچه52
شکل 4- 8 توزیع مؤلفه طولی سرعت جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 9 توزیع فشار جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 10 الگوی جریان اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 11 توزیع تنش برشی کف در اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 12 شماتیکی از جریان عبوری از سازه ترکیبی دارای انقباض جانبی54
شکل 4-13 توزیع تنش برشی کف در اطراف سازه ترکیبی با انقباض جانبی55
شکل 4-14 مقایسه عمق جریان درعرض کانال دربلافاصله قبل از سازه برای میزان انقباضهای جانبی مختلف سازه رکیبی56
شکل 4-15 مقایسه عمق جریان در طول کانال برای میزان انقباضهای جانبی مختلف سازه ترکیبی56
شکل 4-16 توزیع مؤلفه طولی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-17 توزیع مؤلفه طولی سرعت روی سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-18 توزیع مؤلفه عرضی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض58
شکل 4-19 توزیع مؤلفه عرضی سرعت روی سازه در دو حالت با انقباض و بدون انقباض58
شکل 4- 20 مقایسه دقت شبیهسازی حفره آبشستگی با استفاده از مدلهای مختلف آشفتگی59
شکل 4- 21 ارزیابی دقت نرمافزار برای عمق جریان در بالادست و روی سازه ترکیبی62
شکل 4- 22 ارزیابی دقت نرمافزار برای حداکثر عمق آبشستگی62
شکل 4- 23 شماتیکی از جریان ترکیبی عبوری از روی سرریز و زیر دریچه در بستر متحرک63
فهرست شکل‌ها
عنوان صفحه
شکل 4- 24 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب64
شکل 4- 25 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی65
شکل 4-26 توزیع مؤلفه طولی سرعت جریان در اطراف سازه ترکیبی66
شکل 4-27 الگوی جریان اطراف سازه ترکیبی سرریز – دریچه (الف. بردارهای سرعت ب. خطوط جریان)66
شکل 4-28 توزیع تنش برشی در اطراف حفره آبشستگی پاییندست سازه ترکیبی سرریز- دریچه در ابتدای اجرای برنامه67
شکل 4- 29 مقایسه رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب و بستر صلب67
شکل 4-30 نمودار رابطه حداکثر عمق آبشستگی با نسبت دبیهای عبوری از رو و زیر سازه ترکیبی68

18849116456969
فصل اول
مقدمه
1-1- مقدمه
یکی از عمده‌ترین مشکلات سازه‌هایی از قبیل سرریزها، دریچه‌ها و حوضچه‌های آرامش که در بالادست بسترهای فرسایش‌پذیر قرار دارند، آبشستگی در مجاورت سازه است که علاوه‌بر تأثیر مستقیم بر پایداری سازه، ممکن است باعث تغییر مشخصات جریان و در نتیجه تغییر در پارامترهای طراحی سازه شود. به دلیل پیچیدگی موضوع، اکثر محققین آن را به صورت آزمایشگاهی بررسی کردهاند که با وجود تمام دستآوردهای مهمی که تاکنون در زمینه آبشستگی موضعی حاصل گردیده است، هنوز هم شواهد زیادی از آبشستگی گسترده در پایاب دریچه‌ها، سرریزها، شیب‌شکن‌ها، کالورت‌ها و مجاورت پایه‌های پل دیده می‌شود که می‌تواند پایداری این سازهها را با خطرات جدی مواجه کند.
پدیده آبشستگی زمانی اتفاق می‌افتد که تنش برشی جریان آب عبوری از آبراهه، از میزان بحرانی شروع حرکت ذرات بستر بیشتر شود. تحقیقات نشان داده است که عوامل بسیار زیادی بر آبشستگی در پایین‌دست سازه تأثیرگذار هستند که از جمله آنها می‌توان به اندازه و دانه‌بندی رسوبات، عمق پایاب، عدد فرود ذره، هندسه سازه و ... اشاره کرد (کوتی و ین (1976)، بالاچاندار و همکاران (2000)، کلز و همکاران (2001)، لیم و یو (2002)، فروک و همکاران (2006)، دی و سارکار (2006) و ساراتی و همکاران (2008)).
دریچهها و سرریزها به طور گسترده به منظور کنترل، تنظیم جریان و تثبیت کف، در کانالهای باز مورد استفاده قرار میگیرند. بر اثر جریان ناشی از جت عبوری از رو یا زیر سازهها، امکان ایجاد حفره آبشستگی در پاییندست سازهها وجود دارد که ممکن است پایداری سازه را به خطر اندازد؛ بنابراین تعیین مشخصات حفره آبشستگی مورد توجه محققین هیدرولیک جریان قرار گرفته است.
به منظور افزایش بهره‌وری از سازههای پرکاربرد سرریزها و دریچهها، می‌توان آنها را با هم ترکیب نمود به‌طوری‌که در یک زمان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. با ترکیب سرریز و دریچه می‌توان دو مشکل عمده و اساسی رسوب‌گذاری در پشت سرریزها و تجمع رسوب و مواد زائد در پشت دریچه‌ها را رفع نمود. در سازه ترکیبی سرریز- دریچه، شرایط هیدرولیکی جدیدی حاکم خواهد شد که با شرایط هیدرولیکی هر کدام از این دو سازه به‌تنهایی متفاوت است.
1-2 تعاریف1-2-1 سرریزها
یکی از سازههای مهم هر سد را سرریزها تشکیل میدهند که برای عبور آب اضافی و سیلاب از سراب به پایاب سدها، کنترل سطح آب، توزیع آب و اندازهگیری دبی جریان در کانالها مورداستفاده قرار میگیرد. با توجه به حساس بودن کاری که سرریزها انجام میدهند، باید سازهای قوی، مطمئن و با راندمان بالا انتخاب شود که هر لحظه بتواند برای بهرهبرداری آمادگی داشته باشد.
معمولاً سرریزها را بر حسب مهمترین مشخصه آنها تقسیمبندی میکنند. این مشخصه میتواند در رابطه با سازه کنترل و کانال تخلیه باشد. بر حسب اینکه سرریز مجهز به دریچه و یا فاقد آن باشد به ترتیب با نام سرریزهای کنترلدار و یا سرریزهای بدون کنترل شناخته میشوند.
1-2-2 دریچهها
دریچهها سازههایی هستند که از فلزات، مواد پلاستیکی و شیمیایی و یا از چوب ساخته میشوند. از دریچهها به منظور قطع و وصل و یا کنترل جریان در مجاری عبور آب استفاده میشود و از لحاظ ساختمان به گونهای میباشند که در حالت بازشدگی کامل عضو مسدود کننده کاملاً از مسیر جریان خارج میگردد.
دریچهها در سدهای انحرافی و شبکههای آبیاری و زهکشی کاربرد فراوان دارند. همچنین برای تخلیه آب مازاد کانالها، مخازن و پشت سدها به کار میروند (نواک و همکاران، 2004).


دریچهها به صورت زیر دستهبندی میشوند:
بر اساس محل قرارگیری: دریچههای سطحی و دریچههای تحتانی. دریچه سطحی تحت فشار کم و دریچه تحتانی تحت فشار زیاد قرار میگیرند.
بر اساس کاری که انجام میدهند: دریچههای اصلی، تعمیراتی و اضطراری. دریچه اصلی به طور دائم مورد بهرهبرداری قرار میگیرند. برای تعمیرات از دریچه تعمیراتی و در زمان حوادث از دریچه اضطراری استفاده میشود.
بر اساس مصالح بدنه: دریچههای فولادی، آلومینیومی، بتنی مسلح، چوبی و پلاستیکی. دریچه فولادی به خاطر استقامت زیاد به صورت وسیع مورد استفاده قرار میگیرد.
بر اساس نوع بهرهبرداری: دریچههای تنظیم کننده دبی و دریچههای کنترلکننده سطح آب
بر اساس مکانیزم حرکت: دریچههای خودکار، هیدرولیکی، مکانیکی، برقی و دستی. دریچه خودکار بر اساس نیروی شناوری و وزن دریچه و بدون دخالت انسان کار میکند. دریچه هیدرولیکی بر اساس قانون پاسکال عمل مینماید. دریچه برقی از دستگاههای برقی، دریچه مکانیکی با استفاده از قانون نیرو و بازو و بالاخره دریچه دستی به صورت ساده با دست جابهجا میشوند.
بر اساس نوع حرکت: دریچههای چرخشی، غلطان، شناور و دریچههایی که در امتداد یا در جهت عمود بر جریان حرکت مینمایند.
بر اساس انتقال فشار آب: دریچهها ممکن است فشار را به طرفین یعنی به پایههای پل یا به تکیهگاهها منتقل نمایند و یا ممکن است نیروی فشار آب بر کف منتقل شود و یا ممکن است نیروی فشار آب به هر دو یعنی هم تکیهگاهها و هم بر کف منتقل شود.
1-2-3 سازه ترکیبی سریز – دریچهترکیب سرریز - دریچه یکی از انواع سازههای هیدرولیکی میباشد که در سالهای اخیر عمدتاً برای عبور سیال در مواردی که سیال حاوی سرباره و رسوب به صورت همزمان میباشد (مانند کانال عبور فاضلاب) بکار رفته است. سازه ترکیبی سرریز - دریچه با تقسیم دبی عبوری از بالا و پایین خود از انباشت سرباره و رسوب در پشت سازه جلوگیری میکند. از دیگر کاربردهای عملی این ترکیب، میتوان انواع سدهای تأخیری را نام برد. در سدهای تأخیری برای جلوگیری از انباشت رسوب در پشت سد که منجر به کاهش حجم مفید مخزن میگردد اقدام به تعبیه تخلیهکنندههای تحتانی میگردد. از طرف دیگر این نوع سدها به علت برآورد اهداف طراحی و عبور سیلابهای محتمل به صورت روگذر نیز عمل میکنند که از این دو جهت، مدل ترکیبی سرریز - دریچه ایده مناسبی برای تحلیل این نوع سدها میباشد. اگرچه این نوع سازه دارای کاربرد فراوانی در سازههای هیدرولیکی میباشد.
جهت به حداقل رساندن مشکلات در سرریزها و دریچه‌ها و همچنین جهت بالا بردن مزایای آنها می‌توان از سازه ترکیبی سرریز - دریچه استفاده کرد به طوری که در یک زمان، جریان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. این وسیله ترکیبی می‌تواند مشکلات ناشی از فرسایش و رسوبگذاری را مرتفع نماید (دهقانی و همکاران، 2010).
همچنین با این روش، رسوبات و مواد زائد در پشت سرریزها انباشته نمی‌‌‌شوند (ماخرک، 1985).
مشکلاتی را که در اثر وجود مواد رسوبی یا شناور در آب انتقالی برای آبیاری حاصل می‌شود، می‌توان با استفاده از سازه ترکیبی سرریز - دریچه به مقدار زیادی کاهش داده که امکان اندازه‌گیری دقیق‌تر و ساده‌تر را به همراه دارد ( اسماعیلی و همکاران، 1385).
سیستم سرریز - دریچه امکان عبور جریان را از پایین و بالای یک مانع افقی در قسمت میانی مجرا به طور همزمان فراهم نموده، بدین صورت که مواد قابل رسوب را در پشت دریچه به صورت زیرگذر و مواد شناور را به صورت روگذر سرریز عبور میدهد (شکل 1- 1).
331470506095جریان عبوری از زیر دریچه
00جریان عبوری از زیر دریچه
267970163195جریان عبوری از روی سرریز
00جریان عبوری از روی سرریز
138620527622500143446560769500
شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچهاز اینرو تعیین شکل و حداکثر عمق آبشستگی در پاییندست سرریز و دریچه ترکیبی به منظور تثبیت وضعیت بستر میتواند مفید واقع شود.
1-2-4 آبشستگیآبشستگی یکی از موضوعات مهم و قابل توجه در مهندسی رودخانه و هیدرولیک جریان در بسترهای آبرفتی میباشد. چنانچه در یک بازه مورد بررسی، مقدار رسوب وارد شده کمتر از مقدار رسوب خارج شده باشد، عمل فرسایش کف رودخانه و یا بدنه آن رخ میدهد و کف رودخانه بتدریج عمیق میشود. از جمله اثرات منفی گود شدن بستر رودخانه، میتوان به شکست برشی و لغزش در بستر و نیز گرادیان هیدرولیکی خروجی اشاره کرد که در نهایت، افزایش فشار بالابرنده و ایجاد پدیده تراوش را در پی دارد.
به فرسایش بستر و کناره آبراهه در اثر عبور جریان آب، به فرسایش بستر در پاییندست سازههای هیدرولیکی به علت شدت جریان زیاد و یا به فرسایش بستر در اثر بوجود آمدن جریانهای متلاطم موضعی، آبشستگی گویند. عمق ناشی از فرسایش بستر اولیه را عمق آبشستگی مینامند. (کتاب هیدرولیک کانالهای روباز، دکتر ابریشمی)
از آنجا که مکانیزم عمل آبشستگی در مکانهای مختلف متفاوت میباشد، از این رو آبشستگی را به دو نوع تقسیمبندی میکنند:
نوع اول آبشستگی تنگشدگی میباشد. این نوع آبشستگی در دو حالت اتفاق می‌افتد:
الف) در جایی که رودخانه هنوز به حالت تعادل نرسیده و پتانسیل حمل رسوب در بازه‌ای از رودخانه بیش از میزان رسوب ورودی به این بازه باشد.
ب) در جایی که سرعت جریان به دلایلی مانند کاهش مقطع رودخانه در محل پل‌ها، افزایش پیدا می‌کند که در مقطع تنگ شده آبشستگی اتفاق می‌افتد.
در محل احداث پل، آبشکن و یا دیواره ساحلی معمولاً عرض رودخانه را کاهش می‌دهند. این عمل باعث می‌شود که سرعت جریان در این محدوده افزایش یابد. در نتیجه به ظرفیت حمل رسوب افزوده شده و سبب خواهد شد تا بستر رودخانه در این محل فرسایش یابد. عمل فرسایش آنقدر ادامه می‌یابد تا ظرفیت حمل رسوب کاهش یافته و برابر با ظرفیت حمل رسوب در مقطع بالادست گردد. در این حالت، نرخ فرسایش در این محل کمتر می‌شود. هر چند این فرسایش موجب می‌شود که تأثیر پسزدگی آب در بالادست کاهش یابد ولی به خاطر این مسئله نباید اجازه داده شود تا فرسایش صورت گیرد زیرا آبشستگی باعث خطرات جدی مثل واژگونی پل می‌گردد.
نوع دیگر آبشستگی، آبشستگی موضعی است. این نوع آبشستگی در پاییندست سازههای هیدرولیکی، در محل پایههای پل و به طور کلی هر مکانی که شدت جریانهای درهم به طور موضعی افزایش یابد، بوجود میآیند.
آبشستگی موضعی پاییندست سازههای هیدرولیکی نظیر سدها، سرریزها، شوتها، سازههای پلکانی و ... پدیده طبیعی است که به‌دلیل وجود سرعت محلی بیش از سرعت بحرانی بوجود میآید و دلایل آن را میتوان به صورت زیر بیان کرد:
ناکافی بودن مقدار استهلاک انرژی
تشکیل پرش هیدرولیکی ناپایدار و یا انتقال پرش خارج از کف حوضچه آرامش
بوجود آمدن جریانهای گردابی در پاییندست سازههای هیدرولیکی
شکل (1- 2) چند نوع سازه هیدرولیکی و آبشستگی پاییندست آنها را نشان میدهد.

شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی (استاندارد آب و آبفا، 1389)
میزان عمق آبشستگی برای هر یک از سازهها بستگی به شرایط هیدرولیکی جریان و مشخصات رسوب و شرایط هندسی سازه دارد. تخمین میزان عمق آبشستگی از اینرو اهمیت دارد که ممکن است باعث تخریب سازه گردد.
به طور کلی آبشستگی در اثر اندرکنش نیروهای زیر حاصل میشود:
1- نیروی محرک ناشی از جریان که در راستای جدا کردن ذره از بستر عمل میکند.
2- نیروی مقاوم ناشی از اصطکاک ذرات و وزن ذره که در برابر حرکت ذره مقاومت کرده و مانع جدایی ذره از بستر میشود.
جریانها در محل وقوع آبشستگی، یک فرآیند دوفازی (آب و رسوب) است. بنابراین آبشستگی متأثر از متغیرهای بسیاری از قبیل پارامترهای جریان، مشخصات بستر آبرفتی، زمان و هندسه آبراهه میباشد. به همین دلیل، محققین هر یک به مطالعه بخشی از این وقایع پرداخته و آن را به صورت آزمایشگاهی و تجربی بررسی کردهاند.
1-3 ضرورت انجام تحقیقاز آنجایی که در سازه‌های ترکیبی سرریز - دریچه، تداخل جریان از زیر دریچه و روی سرریز باعث اختلاط شدید در جریان، تغییرات در توزیع تنش‌های برشی کف و از این‌رو افزایش پیچیدگی محاسبات می‌شود، بنابراین شبیه‌سازی الگوی جریان، سطح آزاد آب و آبشستگی مورد توجه محققین قرار دارد و لذا در این تحقیق، علاوه بر بررسی آزمایشگاهی الگوی جریان در بستر صلب، توانایی نرمافزار Flow3D در شبیه‌سازی عددی الگوی جریان و آبشستگی مورد ارزیابی قرار خواهد گرفت‌.
1-4 اهداف تحقیقتحقیق انجام شده به منظور پاسخگویی به اهداف زیر صورت گرفته است:
1- بررسی آزمایشگاهی الگوی جریان عبوری از سازه ترکیبی سرریز- دریچه در بستر صلب و مدلسازی عددی آن با نرمافزار Flow3D و مقایسه نتایج حاصل از آن دو
2- مدلسازی عددی آبشستگی در پاییندست سازه ترکیبی با نرمافزار Flow3D و مقایسه نتایج حاصل از آن با نتایج بدست آمده از بررسیهای آزمایشگاهی توسط محققین دیگر
3- ارزیابی دقت مدلهای تلاطمی نرمافزار Flow3D در شبیهسازیهای عددی الگوی جریان و آبشستگی پاییندست سازه ترکیبی سرریز – دریچه در مقایسه با نتایج آزمایشگاهی
4- محاسبه نسبت دبی عبوری از بالای سرریز به زیر دریچه با استفاده از مدل Flow3D
1- 5 ساختار کلی پایاننامهاین تحقیق در پنج فصل به شرح زیر تدوین شده است:
فصل اول- کلیات: که شامل مقدمهای بر سرریزها، دریچهها و مبانی ترکیب این دو سازه بوده و همچنین در رابطه با هیدرولیک جریان و آبشستگی در پای هر کدام از سازههای سرریز یا دریچه و یا سازه ترکیبی سرریز - دریچه کلیاتی ارائه گردیده است.
فصل دوم- بررسی منابع: در این فصل، پیشینه تحقیقها در زمینه هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه، آبشستگی پاییندست سازه ترکیبی و همچنین مطالعات انجام شده توسط نرم‌‌افزار Flow3D بررسی خواهد شد.
فصل سوم- مواد و روشها: این فصل شامل معرفی مواد و روشهای تحقیق، آشنایی با نرمافزار Flow3D و مراحل مدلسازی است.
فصل چهارم- نتایج و بحث: در این فصل، نتایج ارائه شده شامل دو بخش است. بخش اول مربوط به نتایج آزمایشات انجام شده در بستر صلب مربوط به جریان عبوری از سازه ترکیبی سرریز – دریچه و بخش دوم مربوط به نتایج شبیهسازی عددی الگوی جریان، پروفیل و آبشستگی در پاییندست سازه ترکیبی است.
فصل پنجم- نتیجهگیری و پیشنهادها: این فصل دربرگیرنده نتایج بدست آمده از تحلیلها به همراه پیشنهادهایی برای تحقیقات بعدی است.
فصل دوم
مروری بر منابع
2-1 مرور منابع
در این فصل، بررسی منابع و سوابق تحقیق در دو بخش مطالعات آزمایشگاهی و مطالعات عددی توسط نرمافزار Flow3D ارائه میشود که ابتدا مطالعات آزمایشگاهی در دو حالت بستر صلب و متحرک ارائه شده و سپس مطالعات عددی با نرمافزار Flow3D نام برده میشود. چون در مورد جریان عبوری از سازه ترکیبی سرریز‌– دریچه، مدلسازی با نرمافزار Flow3D تاکنون انجام نگرفته است مطالعات عددی نرمافزار Flow3D در همه زمینهها اشاره شده است.
2-2 مطالعات آزمایشگاهی جریان
از جمله مطالعات آزمایشگاهی هیدرولیک جریان در سازه ترکیبی سرریز‌- دریچه، میتوان به مطالعات نجم و همکاران (1994) اشاره کرد. ایشان پارامترهای هندسی و هیدرولیکی مؤثر بر روی جریان ترکیبی را مورد بررسی قرار داده و برای جریان سرریز مثلثی روی دریچه مستطیلی، سرریز و دریچه مستطیلی با ابعاد تنگشدگیهای مختلف به طور جداگانه معادلاتی استخراج کردند. همچنین حالتی را که تنگشدگی دریچه و سرریز یکسان یا متفاوت باشد نیز به طور جداگانه مورد بررسی قرار دادند. این محققین همچنین برای شرایط مختلف مانند استفاده از سرریز مثلثی با زاویههای مختلف و یا سرریز مستطیلی با فشردگی جانبی (شکل 2-1) و بدون فشردگی جانبی (شکل 2-2) روابط جداگانهای به صورت رابطههای (2-1) تا (2-4) ارائه دادند.

شکل 2-‌1 جریان عبوری از سازه ترکیبی سرریز‌- دریچه مستطیل شکل با فشردگی جانبی
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی41052753175(2- 1)
00(2- 1)
Cd=Qc(b1d2gd+y+h-hd+232gb-0.2hh1.5)4274820140335(2- 2)
00(2- 2)
Qu=23Cu2g(b-0.2h)h1.54105275112395(2- 3)
00(2- 3)
Ql=Clb1d2g(d+y+h-hd)429387059690(2- 4)
00(2- 4)
Qc2gb(d1.5 )=Cl1+yd+hd+hdd+23Cu(hd)32شیواپور و پراکاش (2004)، به بررسی دبی جریان از روی سرریز مستطیلی و از زیر دریچه V شکل پرداختند. طبق نتایجی که ایشان گرفتند زمانی که از دریچه V شکل و کج استفاده میشود دبی کانالهای مستطیلی با بستر ثابت با دقت بالاتری قابل تخمین است.
اسماعیلی و فتحیمقدم (1385)، به بررسی آزمایشگاهی هیدرولیک جریان و تعیین ضریب دبی مدل سرریز‌- دریچه در کانالهای دایروی و جریانهای زیرگذر و روگذر با نصب مانع با عرضهای مختلف پرداختند.
سامانی و مظاهری (1386)، به بررسی تخمین رابطه دبی جریان عبوری از روی سرریز و زیر دریچه در حالتهای مستغرق و نیمهمستغرق پرداختند. نتایج بررسی هیدرولیک جریان ایشان نشان میدهد که سیستم سرریز- دریچه، موجب اصلاح خطوط جریان شده، شرایط جریان را به حالت تئوریک نزدیکتر و در نتیجه، واسنجی ضریب شدت جریان سیستم سرریز - دریچه و تخمین دبی جریان با دقت بیشتری نسبت به سرریزهای معمولی انجام میشود.

شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)

رضویان و حیدرپور (1386)، با بررسی خطوط جریان ترکیبی از روی سرریز مستطیلی با فشردگی جانبی و زیر دریچه مستطیلی بدون فشردگی جانبی در حالت لبهتیز، معادلهای برای ضریب شدت جریان پیشنهاد کردند.
تاکنون پژوهشهایی در زمینه آبشستگی پاییندست سازه ترکیبی سرریز - دریچه انجام شده است. اولین بار در سال 1987 یک سری آزمایش توسط آقای اویماز در آزمایشگاه سازههای هیدرولیکی استانبول بر روی آبشستگی پای سازه ترکیبی سرریز- دریچه صورت گرفته است. شکل (2-4) نمایی از مدل شبیهسازی جریان کار ایشان را نمایش میدهد.

شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)
ایشان برای 2 نوع دانهبندی و رسوب غیرچسبنده آزمایشات خود را اجرا نمودند. همچنین تمامی آزمایشات یک بار برای دریچه تنها و یک بار در حالت ترکیب دریچه و سرریز انجام دادند. پس از انجام آزمایشات، دادههای بدست آمده را تجزیه و تحلیل نموده تا به یک رابطه رگرسیونی خطی لگاریتمی بین پارامترهای عمق آبشستگی با قطر رسوبات و ارتفاع آب پاییندست برسند. نتایج تحقیق ایشان نشان می‌دهد که آبشستگی در پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که تنها جریان از زیر دریچه را داریم. همچنین عمق آبشستگی بستگی زیادی به مقدار دبی جریان دارد.
دهقانی و همکاران (2009) به بررسی آزمایشگاهی حداکثر عمق آبشستگی پاییندست سرریز تنها، دریچه تنها و سازه ترکیبی سرریز - دریچه بدون انقباض پرداختند. نکته جالبی که در کار آزمایشگاهی ایشان دیده شده است رفتار نوسانی روند فرسایش و رسوبگذاری به صورت پر و خالی شدن حفره آبشستگی است. حفره آبشستگی ابتدا عمیق میشود، سپس با وجود جریانهای برگشتی کمی رسوبات فرسایش یافته به درون حفره برمیگردد و حفره کمی پر میشود. سپس دوباره حفره توسط گردابههای زیر دریچه عمیق میشود و روند پر و خالی شدن ادامه مییابد (شکل 2- 5). البته این روند با گذشت زمان کندتر شده و شکل حفره در حوالی زمان تعادل تقریباً ثابت میشود (دهقانی و همکاران، 2010).
همچنین بررسیهای ایشان نشان داد که حداکثر عمق آبشستگی پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که جریان تنها از روی سرریز عبور میکند و این نتیجه با نتایج کار آقای اویماز (1985) تطابق دارد.

شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی در حین برخی از آزمایشات (دهقانی و بشیری، 2010) شهابی و همکاران (1389) به بررسی آزمایشگاهی مشخصات حفره آبشستگی در پاییندست سرریز و دریچه ترکیبی پرداختند. نتایج این بررسی آزمایشگاهی نشان داد که عمق آبشستگی پایین‌دست سازه ترکیبی سرریز - دریچه کمتر از عمق آبشستگی پاییندست سرریز میباشد. همچنین مشخصههای حفره آبشستگی، با افزایش عدد فرود (Fr)، افزایش مییابد و در ارتفاع ریزش ثابت برای جت عبوری از روی آن، با افزایش بازشدگی دریچه، حداکثر عمق آبشستگی کاهش مییابد. نتایج انجام آزمایشات در حالت وجود انقباض نشان می‌دهد که با ایجاد انقباض در دریچه یا سرریز به دلیل تمرکز بیشتر جت، حداکثر عمق آبشستگی، طول حفره آبشستگی و طول رسوبگذاری به ترتیب افزایش، افزایش و کاهش مییابد. همچنین نتایج آزمایش بر روی کفبند پاییندست سازه ترکیبی نشان داد که چنانچه طول کفبند از فاصله برخورد جت بالادست به کف کانال بیشتر در نظر گرفته شود، میتواند میزان آبشستگی را تا حد قابل توجهی کاهش دهد.
2-2 مطالعات عددی با نرمافزار Flow3Dنرمافزار Flow3Dتوانایی شبیه‌سازی عددی الگوی جریان و رسوب در اطراف سازه‌های هیدرولیکی مختلف را دارا می‌باشد. در ادامه برخی کارهای انجام شده با این نرمافزار بیان میشود:
موسته و اتما (2004)، تأثیر طول آبشکن بر منطقه چرخشی پشت آبشکن را با در نظر گرفتن تأثیر مقیاس با نرم‌افزار Flow3D مورد بررسی قرار دادند.
گونزالز و بومباردلی (2005)،‌ در یک شبیهسازی عددی با استفاده از Flow3D به بررسی مشخصات پرش هیدرولیکی بر روی سطح صاف در دو حالت شبکهبندی ریز و شبکهبندی درشت به صورت دوبعدی و سهبعدی پرداختند.
صباغ یزدی و همکارانش (2007)، در یک مدل سهبعدی به ارزیابی مدلهای تلاطمی k-ε و RNGk-ε بر روی میزان ورود هوا در پرش هیدرولیکی با استفاده از روش حجم محدود پرداختند و اثر آن را بر روی دقت تخمین سرعت متوسط جریان با استفاده از مدل در مقایسه با نتایج آزمایشگاهی موجود از پرش هیدرولیکی مورد بررسی قرار دادند. مقایسه نتایج نشان داد که نرمافزار قادر به پیش‌بینی توزیع عمقی سرعت در پرش هیدرولیکی است و همچنین در این آزمون مدل آشفتگی RNG در مقایسه با k-ɛ نتایج مناسبتری را ارائه کرده است.
امیراصلانی و همکارانش (1387)، به شبیه‌سازی سه‌بعدی آبشستگی در پایین‌دست یک جت‌ ریزشی آزاد با استفاده از مدل k-ε نرم‌افزار Flow3D جهت بررسی اثر زاویه اصطکاک داخلی رسوبات بر روی چاله آبشستگی پرداختند. نتایج این پژوهش نشان میدهد هر چقدر زاویه اصطکاک داخلی ذرات رسوب بیشتر باشد میتوان انتظار داشت حفره آبشستگی، ابعاد (طول، عرض و عمق) کوچکتری داشته باشد و ارتفاع برآمدگی رسوبات در پاییندست حفره بیشتر باشد. شیب دیوارهها تندتر بوده و مانعی برای خروج ذرات رسوب از حفره به حساب میآید.
شاهرخی (1387)، با استفاده از نرم‌افزارFlow3D‌ ، مدل عددی الگوی جریان اطراف یک آبشکن را تهیه و با اعمال مدل‌های مختلف آشفتگی، به تأثیر این مدل‌ها بر طول منطقه جداشدگی جریان در پشت یک آبشکن پرداخت‌‌. مهمترین نتیجه حاصل از این تحقیق، نشان میدهد که مدل آشفتگی LES بهترین تطابق را با نتایج آزمایشگاهی داشته و این مدل، پیشبینی بهتری از طول منطقه جداشدگی در پشت آبشکن ارائه میکند. سرانجام پیشنهاد شد مدل در دامنه وسیعتری از تغییرات پارامترهای جریان، طول و زاویه نصب آبشکن اجرا گردد.
شاملو و جعفری (1387)، به بررسی اثر وجود زبری کف بر روی تغییرات میدان سرعت و فشار جریان در اطراف پایه استوانه‌ای شکل در یک کانال مستطیلی توسط نرمافزارFlow3D و با استفاده از مدل آشفتگی k-ε به صورت سهبعدی پرداختند. در این شبیهسازی مقاطعی در سه راستای X , Y , Z نزدیکی پایه با نتایج آزمایشگاهی احمد (1994) مورد مقایسه قرار گرفت. نتایج حاکی از آن است که پروفیلهای سرعت در عمقهای مختلف و در راستای X , Y و میدان فشار در پاییندست پایه روند تغییرات قابل قبولی را با توجه به نتایج آزمایشگاه نشان میدهد. همچنین نتیجه شد نرمافزار با در نظر گرفتن زبری کف نتایج بهتری را ارائه میکنند.
باباعلی و همکاران (1387)، توسط نرمافزار Flow3D یک پارشال فلوم به طول یک فوت را که جریان درون آن شامل دو حالت آزاد و مستغرق بود، با استفاده از مدل آشفتگی LES مدل کردند. ایشان دادههای مدل خود را از جدول استاندارد WMM اقتباس کرده و نتایج محاسبه شده را با نتایج این جدول مقایسه نمودند. آنها نشان دادند که Flow3D میتواند به آسانی محاسبات پارشال فلوم را تحت هر دو جریان آزاد و مستغرق انجام دهد. نتایج محاسبه شده به خوبی با دبیهای منتشر شده مطابقت داشته و نیاز به زمان زیاد و استفاده از ابر رایانهها ندارد.
والش و همکاران (2009)، به شبیهسازی آبشستگی موضعی پایهها در جریان جزر و مدی پرداختند. نتایج نشان داد که نتایج مدلسازی عددی با اندازهگیریهای انجام شده تطابق خوبی داشته و همچنین نشان داد که مدل عددی Flow3D ابزاری مناسب در طراحی جریان در اطراف پایهها در شرایط مختلف جریان است.
شکری و همکاران (1389)، به بررسی عددی هیدرولیک جریان و انتقال رسوب اطراف پایه پل دایروی با نرمافزار Flow3D پرداختند. نتایج بررسی عددی با بررسی آزمایشگاهی انجام شده توسط آنگر و هگر (2006) مقایسه شد و با مقایسه نتایج شبیهسازی عددی و اندازهگیریهای آزمایشگاهی الگوی جریان و تغییر شکل بستر، نتیجه شد که مدل Flow3D نتایج قابل قبولی ارائه داده است.
حسینی و عبدی‌پور (1389)، با استفاده از نرم‌افزار Flow3D به مدل‌سازی عددی پروفیل سرعت در جریانهای گل‌آلود پیوسته پرداختند و تأثیر شیب، غلظت و دبی جریان بر آن را مورد مطالعه قرار دادند. برای صحتسنجی نرمافزار در تعیین پارامترهای هیدرولیکی جریانهای گلآلود (پروفیل سرعت)، از یک نمونه آزمایشگاهی استفاده شد و نتایج حاصل از شبیهسازی با اندازهگیریهای آزمایشگاهی مربوطه مقایسه شد. برای مقایسه نتایج از آزمایشات انجام گرفته توسط حسینی و همکاران استفاده گردید. نتایج حاصل از مدل عددی پروفیل سرعت در بدنه با نتایج آزمایشگاهی تطابق نسبتاً خوبی داشت. نتایج مدل عددی مربوط به پروفیل سرعت با برخی از نتایج آزمایشگاهی مطابقت کمتری داشت که بخش عمدهای از خطاها مربوط به عدم امکان مدلسازی جریان در بخش پایینی در مشبندی به علت کمبود حافظه کامپیوتری و بخشی از خطاها نیز به نحوه مدلسازی جریان گلآلود بود.
برتور و بورنهم (2010)، به مدل‌سازی فرسایش رسوب در پاییندست سد با نرم‌افزار Flow3D پرداختند‌. در بررسی ایشان، برای محاسبه هر یک از ضرایب مشخصه رسوب در نرمافزار Flow3D، فرمولی ارائه و برای هر ضریب محدودهای تعیین شد.
کاهه و همکاران (2010)، مدل‌های آشفتگی k-εو RNG k-ε را جهت تخمین پروفیل‌های سرعت در پرش هیدرولیکی بر روی سطوح موج‌دار مورد بررسی و مقایسه قرار دادند. نتایج، توانایی مدل RNG k-ε در تخمین عمق ثانویه، طول پرش و توزیع سرعت را به خوبی نشان داد. ضریب تنش برشی برآورد شده توسط مدل عددی به نتایج بدست آمده از بررسی‌های آزمایشگاهی بسیار نزدیک بوده و به طور متوسط 8 برابر مقدار آن در پرش هیدرولیکی بر روی سطوح صاف برآورد شد. با توجه به نتایج بدست آمده، مدل آشفتگی RNG k-ε در مقایسه با مدل k-ε در مدلسازی پرش هیدرولیکی بر روی سطوح موجدار از دقت بالایی برخوردار است.
آخریا و همکاران (2011)، به شبیهسازی عددی هیدرولیک جریان و انتقال رسوب اطراف انواع آبشکنها پرداختند. نتایج مدلسازی نشان داد که از بین مدلهای آشفتگی، مدلهای RNG k-ɛ و k-ɛ به دادههای آزمایشگاهی نزدیکتر بوده ولی مدل آشفتگی RNG k-ɛ بهترین نتایج را برای شبیه‌سازی میدان جریان اطراف آبشکن نشان داد.
الیاسی و همکاران (1390)، با بهرهگیری از نرمافزار Flow3D و با اعمال مدل آشفتگی RNG k-ɛ، الگوی جریان اطراف تک آبشکن مستغرق در کانال مستقیم شیبدار را بدون در نظر گرفتن سطح آزاد شبیهسازی نمودند و به مقایسه نتایج مدل عددی با دادههای آزمایشگاهی پرداختند. نتایج این شبیهسازی بدون در نظر گرفتن سطح آزاد، با دادههای آزمایشگاهی تطابق خوبی را نشان داد. مقایسه پروفیلهای سرعت در مدل عددی و نتایج آزمایشگاهی بیانگر مطابقت این دادهها با هم میباشد.
عباسی چناری و همکاران (1390)، الگوی جریان اطراف آبشکنهای L شکل عمود بر ساحل را توسط نرمافزار Flow3D و با مدل آشفتگی k-ɛ شبیهسازی نمودند. در این بررسی، آبشکن L شکل نفوذناپذیر بوده که به صورت غیرمستغرق در 5 زاویه مختلف از قوس رودخانه قرار داده شده است. نتایج حاکی از آن است که تلاطم جریان، محدوده سرعتهای ماکزیمم و در نهایت بیشترین آبشستگی بستر، در دماغه آبشکن اتفاق میافتد. همچنین با افزایش دبی و عدد فرود جریان، محدوده سرعت ماکزیمم جریان در نزدیکی دماغه آبشکن افزایش مییابد و شکل آن در جهت جریان کشیده میشود. در نهایت نتیجه شد که مدل آشفتگی k-ɛ در شبیهسازی نواحی جریان برگشتی در پاییندست آبشکن و محل ایجاد گردابه و آشفتگی جریان در اطراف آبشکن، دقت خوبی دارد.
قنادان و همکاران (1391)، با نرمافزار Flow3D، به شبیهسازی عددی جریان از روی سرریز جانبی لبهپهن پرداخته و نتایج حاصل از این نرمافزار را با دادههای آزمایشگاهی مقایسه کردند. نتایج نشان داد که از میان مدلهای تلاطمی موجود در نرمافزار، مدل تلاطمی RNG k–ε از دقت بالاتری برای شبیهسازی جریان از سرریز جانبی برخوردار است. همچنین با استفاده از مدل واسنجی شده، اثر تغییر ارتفاع و پهنای تاج سرریز بر دبی عبوری از سرریز مورد بررسی قرار گرفت. بر این اساس نتیجه شد که ارتفاع تاج سرریز جانبی لبهپهن بر مقدار دبی خروجی از سرریز نسبت به پهنای تاج مؤثرتر است.
فصل سوم
مواد و روش‌ها
3-1 مقدمه
در این بخش، علاوه بر بررسی آزمایشگاهی الگوی جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه در بستر صلب و شبیهسازی عددی هیدرولیک آن با نرمافزار Flow3D، توانایی مدل عددی Flow3D در شبیهسازی آبشستگی در پاییندست سازه ترکیبی ارزیابی میشود. بنابراین در این بخش، علاوه بر بررسی نحوه انجام آزمایشات، به معرفی مدل Flow3D پرداخته و مراحل مدل‌سازی هیدرولیک جریان و آبشستگی در پاییندست سازه ترکیبی سرریز و دریچه با نرمافزار Flow3D بیان میشود.
3-2 نحوه انجام آزمایشاتدر این بخش، به ارائه نحوه انجام آزمایشات هیدرولیک جریان عبوری از سازه ترکیبی سرریز- دریچه پرداخته میشود. در این تحقیق به منظور کالیبراسیون نرمافزار در حالت کف صلب، آزمایشاتی در کانال با طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر انجام شده و عمق جریان در طول کانال قرائت شد. همچنین جهت ارزیابی دقت نرمافزار در حالت کف متحرک از نتایج آزمایشگاهی شهابی(1389) در کانال با طول 12 متر، عرض و ارتفاع 60 سانتیمتر استفاده شده است.
کانال آزمایشگاهی مورد استفاده در کف صلب شامل قسمتهای زیر است (شکل 3-1):
1- مخزن
2- پمپ که شامل بخشهای تأمین برق، الکتروپمپ، شیر تنظیم دبی و مخزن تعیین دبی است.
3- مخزن آرام کننده جریان
4- کانال آزمایشگاهی
5- مدل سازه ترکیبی
شکل زیر نمای کلی مدل فیزیکی را نشان میدهد.

شکل 3-‌1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک
بخشهای اصلی کانال آزمایشگاهی با مقیاس کوچک، به صورت زیر تعریف میشوند:
3-2-1 مخزنبه منظور تأمین آب مورد نیاز جهت انجام آزمایش، از یک مخزن در قسمت پایین فلوم استفاده شده است. به هنگام آزمایش، آب به صورت رفت و برگشتی از مخزن به فلوم و بالعکس در جریان خواهد بود.
3-2-2 پمپجهت پمپاژ و جریان آب در فلوم، از پمپی با ظرفیت دبی 7 لیتر بر ثانیه استفاده شده است که با یک شیرفلکه معمولی، دبی پمپاژ تغییر داده میشود. به منظور قرائت دبی، از یک مخزن دبیسنج استفاده گردیده است.
3-2-3 کانال آزمایشگاهیکانال آزمایشگاهی دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر میباشد. جنس دیواره و کف کانال از پلکسی گلاس بوده تا امکان مشاهده جریان در کانال در حین آزمایش وجود داشته باشد.
3-2-4 مخزن آرامکننده جریاناین مخزن، آشفتگی جریانی که از پمپ سانتریفوژ وارد کانال خواهد شد را گرفته و جریان را به آرامی وارد کانال آزمایشگاهی میکند.

شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک3-2-5 مدل سازه ترکیبی سرریز- دریچهسازه ترکیبی سرریز- دریچه مورد استفاده در آزمایشات، در فاصله 2 متری از ابتدای کانال و با ضخامت 3 میلیمتر تعبیه شده که با ابعاد هندسی متفاوت ساخته شده است.

شکل 3-3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریانمشخصات آزمایشات انجام شده در کانال آزمایشگاهی با مقیاس کوچک، در جدول زیر شرح داده شده است:
جدول 3-1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریانپارامتر دفعات تغییر واحد محدوده تغییرات
دبی ورودی (Q) 7 Lit/s 64/2 – 39/1
بازشدگی دریچه (W) 5 Cm 5/1 – 5/0
ارتفاع سازه (T) 5 Cm 5/5 – 5/3
3-3 آنالیز ابعادیاولین گام در شبیهسازی و مدلسازی، شناخت متغیرهای اثرگذار بر پدیده فیزیکی است. تعداد متغیرهای اثرگذار با توجه به پیچیدگی رفتار پدیده موردنظر، میتواند افزایش یابد.
با توجه به اینکه هر کمیت فیزیکی در قالب ابعاد بیان میشود، استفاده از روشی که بتواند با ترکیب متغیرهای اثرگذار، متغیرهای بیبعد را که مفهوم فیزیکی دارند ایجاد کند، میتواند در کاهش تعداد متغیرها بسیار مفید باشد.
آنالیز ابعادی روشی است که در آن با استفاده از مفهوم همگنی ابعاد، متغیرهای اثرگذار بر پدیده فیزیکی مورد نظر در قالب متغیرهای بیبعد بیان میشوند. سپس بر اساس این متغیرها و انجام مطالعات آزمایشگاهی، رابطههای تجربی بدست میآورند.
برای انجام آنالیز ابعادی، روشهای مختلفی ازجمله روش فهرستنویسی، نظریه پیباکینگهام، روش گامبهگام و روش هانسیکر و رایت مایر وجود دارد.
در این تحقیق، روش پیباکینگهام که کاربرد وسیعتری دارد مورد بحث و استفاده قرار گرفت. این روش، یکی از روشهای معروف است که به طور وسیع در آنالیز ابعادی استفاده میشود.
در جریان عبوری از سازه ترکیبی سرریز - دریچه در حالت جریان آزاد، متغیرهای مؤثر عبارتند از:
1- دبی عبوری از روی سرریز، Qs
2- دبی عبوری از زیر دریچه، Qg
3- عمق بالادست سازه ترکیبی، H1
4- هد آب روی سرریز، Hd
5- طول سازه، T
6- بازشدگی دریچه، W
7- شتاب ثقل (g)، ρ و μ سیال
شکل (3-4) متغیرهای مؤثر در جریان عبوری از سازه ترکیبی سرریز- دریچه را در حالت جریان آزاد نشان می‌دهد.

شکل 3-4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب
با انجام آنالیز ابعادی به روش پیباکینگهام رابطه (3-1) بدست میآید. از آنجاییکه جریان آشفته است لذا از اثرات Re (رینولدز) صرف نظر شده و نهایتاً رابطه (3-2) بدست میآید.
430191950165(3- 1)
00(3- 1)
F(Qs , Qg , H1 , Hd , T , W , g , ρ , μ) = 0 → QsQg=f( Fr , Re , H1W , HdT )43584345080(3- 2)
00(3- 2)
QsQg=f( Fr , H1W , HdT )3-4 شبیهسازی عددیبه منظور مطالعه و تحلیل جریان در سازههای مختلف، مدلهای فیزیکی و ریاضی مختلف بکار گرفته میشود. با توجه به توسعه سیستمهای کامپیوتری و محاسباتی و همچنین وجود پیچیدگی‌های غیر قابل اندازه‌گیری در جریان عبوری از یک سازه ترکیبی سرریز - دریچه در مدل‌های آزمایشگاهی، استفاده از شبیهسازی عددی می‌تواند در بررسی هیدرولیکی چنین جریانهایی بسیار مؤثر و قابل توجه باشد.
در سالهای اخیر، بدلیل ابداع روشهای پیشرفته و دقیق حل عددی معادلات و بوجود آمدن رایانههای قوی برای انجام محاسبات، میتوان در طراحی این سازههای پیچیده از روشهای حل عددی نیز بهره گرفت. دینامیک سیالات محاسباتی، از روشهای محاسبه و شبیهسازی میدان جریان سیال میباشد که در قرن اخیر مورد توجه خاص مهندسین و طراحان قرار گرفته است.
استفاده از دینامیک سیالات محاسباتی حاکی از مزایای زیر است:
1- کاهش در زمان و هزینه در طراحیها
2- توانایی مطالعه سیستمهایی که انجام آزمایشات کنترل شده روی آنها دشوار و یا غیر ممکن است مانند تأسیسات بزرگ
3- توانایی مطالعه سیستمها تحت شرایط تصادفی و بالاتر از حدود معمول آنها
از جمله نرمافزارهای موجود در زمینه CFD میتوان به موارد زیر اشاره کرد:
CFX, Phonix, Telemac, FIDAP, Flow3D, Fluent
در این تحقیق، به ارزیابی مدل عددی Flow3D جهت شبیهسازی هیدرولیک جریان ترکیبی عبوری از روی سرریز و زیر دریچه و همچنین آبشستگی در پاییندست سازه ترکیبی پرداخته می‌شود.
3-4-1 معرفی نرمافزار Flow3Dنرمافزار Flow3D یک نرمافزار قوی در زمینه CFD میباشد که تولید، توسعه و پشتیبانی آن توسط Flow Science, Inc است و یک مدل مناسب برای حل مسائل پیچیده دینامیک سیالات بوده و قادر است دامنه وسیعی از جریان سیالات را مدل کند. این مدل برای شبیهسازی جریانهای سطح آزاد سهبعدی غیرماندگار با هندسه پیچیده کاربرد فراوانی دارد. نرمافزار Flow3D، برای مسائل یک‌بعدی، دوبعدی و سهبعدی طراحی شده است. در حالت ماندگار، نتایج در زمان بسیار کمی حاصل میشود زیرا برنامه بر روی قوانین بنیادی جرم، مومنتوم و بقاء انرژی پایهگذاری شده است تا این موارد برای مراحل مختلف جریان در هر زمینهای بکار برده شوند. این نرمافزار یک شبکه آسان از اجزاء مستطیلی را استفاده میکند.
نرمافزار Flow3D شامل مدلهای فیزیکی مختلف میباشد که عبارتند از: آبهای کمعمق، کاویتاسیون، آشفتگی، آبشستگی، کشش سطحی، پوشش متخلخل ذرات و ... . از این مدلها در زمینه‌های ریختهگری مواد، مهندسی فرآیند، طراحی تزریقهای مرکب، تولیدات مصرفی، هیدرولیک مهندسی محیط زیست، هوافضا، علوم دریایی، نفت، گاز و ... استفاده میشود.
در جدول (3-2)، ویژگیهای نرمافزار به اختصار نمایش داده شده است.
جدول 3- 2 معرفی نرمافزار Flow3Dنام نرمافزار Flow3D
زمینه کاری یک نرمافزار قوی در زمینه CFD میباشد. این نرمافزار برای کمک به تحقیق در زمینه رفتار دینامیکی مایعات و گازها در موارد کاربردی وسیع طراحی شده است.
قوانین بنیادی جرم، مومنتوم و بقاء انرژی
کاربردهای Flow3D در زمینه مهندسی آب پایههای پل- هوادهی در پرش هیدرولیکی- سرریز دایرهای- هوادهی در سرریزها- شکست سد- پارشال فلوم- آبشستگی- جریان بر روی یک پلکان- جریانهای با عمق کم- جریان در کانالهای کنترل پرش هیدرولیکی- موجهای کمارتفاع- دریچههای کشویی- جریان سرریز
سطح آزاد حد فاصل بین گاز و مایع همان سطح آزاد است. در Flow3D سطح آزاد با تکنیک حجم سیال مدل میشود. روش حجم سیال شامل سه جزء است: نمایش موقعیت سطح – شبکهبندی– شرایط مرزی سطح
تکنیک محاسبات Finite Difference - FiniteVolume
سیستمهای مختصات معادلات دیفرانسیلی که باید حل شود در قالب مختصات کارتزین (x,y,z) نوشته میشود. برای مختصات استوانهای (z,Ɵ,r) مختصات x به صورت شعاعی و مختصات y به صورت مختصات زاویهای
ادامه جدول 3- 2مدلهای آشفتگی در Flow3D پنج مدل آشفتگی ارائه شده است: طول اختلاط پرانتل، یک معادله، دو معادله k-ɛ، مدل‌های k-ɛ RNG و مدل شبیهسازی بزرگ
مدلسازی 1-General 2-Physics 3-Fluids 4- Meshing & Geometry
5-Boundaries 6-Initial 7-Output 8-Numerics
General زمان اتمام - تعداد سیالات – حالت جریان (که شامل حالت تراکمپذیر یا تراکمناپذیر است.)
Physics شامل بخشهایی نظیر ویسکوزیته که شامل حالتهای سیال ویسکوز و غیرویسکوز است، شتاب ثقل زمین، که در جهت قائم مختصات برابر 81/9- وارد میشود، کشش سطحی، حفرهزدایی، آبشستگی رسوب و ...
Fluids ویسکوزیته، جرم حجمی، تراکمپذیری، مشخصات گرمایی و آحاد
Meshing & Geometry برای مشخص کردن حدود مشبندی، بلوکهایی تعیین میشود که کلیه اندازه سازههای مورد نظر و فضای آزاد در داخل آن تعریف میشود. میتوان همه جزئیات سازه مورد نظر را در یک بلوک هم در نظر گرفت. سیستم مختصاتی میتواند از نوع کارتزین یا استوانهای باشد.
Boundaries در مختصات کارتزین برای تعریف شرایط مرزی،6 درجه مشخص داریم که با توجه به جهت مثبت x, y, z شامل Xmax ,Xmin, Ymax, Ymin, Zmax, Zmin میباشد.
Initial در این قسمت، با توجه به ویژگیهای مسئله شرایط اولیه اعمال میگردد.
Output در این بخش، ویژگیها و امکاناتی برای داشتن مشخصات خاصی از نتایج ارائه میشود.
Numerics در قسمت گزینههای ضمنی برای تنش ویسکوز، هدایت گرمایی و ... امکان انتخاب بین حل صریح یا ضمنی وجود دارد.
برخی از تواناییهای مدل Flow3D جهت شبیهسازی با نمایش شکل مدل عبارتند از:

شکل 3- 5 مدلسازی پرش هیدرولیکی
شکل 3- 6 مدلسازی جریان در قوس رودخانه
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض
شکل 3- 9 مدلسازی آبشستگی پاییندست سازهاین نرمافزار معادلههای حاکم بر حرکت سیال را با استفاده از تقریب احجام محدود حل میکند. محیط جریان به شبکهای با سلولهای مستطیلی ثابت تقسیمبندی میشود که برای هر سلول مقدارهای میانگین کمیتهای وابسته وجود دارد یعنی همه متغیرها در مرکز سلول محاسبه میشوند بجز سرعت که در مرکز وجوه سلول حساب میشود.
در این نرمافزار از دو تکنیک عددی جهت شبیهسازی هندسی استفاده شده است:
1- روش حجم سیال (VOF): این روش برای نشان دادن رفتار سیال در سطح آزاد مورد استفاده قرار میگیرد. این روش بر مبنای تقریبهای سلول دهنده - پذیرنده است که اولین بار توسط Hirt و Nichols در سال 1981 بیان شد.
2- روش کسر مساحت – حجم مانع (FAVOR): از این روش جهت شبیهسازی سطوح و احجام صلب مثل مرزهای هندسی استفاده میشود. هندسه مسئله با محاسبه کسر مساحت وجوه و کسر حجم هر المان برای شبکه که توسط موانعی محصور شدهاند تعریف میشود. همان طور که کسر حجم سیال موجود در هر المان شبکه برای برقراری سطوح سیال مورد استفاده قرار میگرفت، کمیت کسر حجم دیگری برای تعیین سطوح صلب مورد استفاده قرار میگیرد.
فلسفه روش FAVOR بر این مبناست که الگوریتمهای عددی بر مبنای اطلاعاتی شامل فقط یک فشار، یک سرعت، یک دما و ... برای هر حجم کنترل است، که این با استفاده از مقدارهای زیادی از اطلاعات برای تعریف هندسه متناقض است. بنابراین روش FAVOR، المانهای ساده مستطیلی را حفظ میکند، در صورتی که میتواند اشکالی با هندسه پیچیده در حد سازگاری با مقادیر جریان میان‌گیری شده را برای هر المان نشان دهد.
3-4-2 معادلات حاکمدینامیک سیالات محاسباتی، روشی برای شبیهسازی جریان است که در آن معادلات استاندارد جریان از قبیل معادلات ناویر استوکس و معادله پیوستگی قابل حل برای تمام فضای محاسبات می‌باشد. فرم کلی معادله پیوستگی به صورت شکل زیر بیان می‌شود:
416382464733(3-3)
00(3-3)
که درآن VF ضریب حجم آزاد به سمت جریان و مقدار R در معادله فوق، ضریب مربوط به مختصات به صورت کارتزین و یا استوانه‌ای می‌باشد. اولین عبارت در سمت راست معادله پیوستگی مربوط به انتشار تلاطم بوده و به صورت زیر قابل تعریف می باشد:
424413450800(3-4)
00(3-4)
عبارت دوم در سمت راست معادله (3-3) بیانگر منشأ دانسیته است که برای مدلسازی تزریق توده مواد اهمیت دارد:
428985427305(3-5)
00(3-5)
همچنین فرم کلی معادلات حرکت (مومنتم) در حالت سه بعدی به صورت زیر می‌باشد:
4361180396875(3-6)
00(3-6)

که در معادلات فوق Gx , Gy , Gz مربوط به شتاب حجمی می‌باشند. پارامترهای fx ,fy ,fz شتابهای ناشی از جریان‌های لزج بوده و bx , by , bz نیز شامل روابط مربوط به افت در محیطهای متخلخل هستند.
3-4-3 مدلهای آشفتگیاکثر جریانهای موجود در طبیعت به صورت آشفته میباشند. در اعداد رینولدز پایین، جریان آرام بوده ولی در اعداد رینولدز بالا جریان آشفته میشود، به طوری که یک حالت تصادفی از حرکت در جایی که سرعت و فشار بطور پیوسته درون بخشهای مهمی از جریان نسبت به زمان تغییر میکند، گسترش مییابد. این جریانها بوسیله خصوصیاتی که در ادامه ارائه شدهاند شناسایی میگردند:
1- جریانهای آشفته به شدت غیر یکنواخت هستند. در این جریانها اگر تابع سرعت در برابر زمان ترسیم شود، بیشتر شبیه به یک تابع تصادفی خواهد بود.
2- این جریانها معمولاً سهبعدی هستند. پارامتر سرعت میانگین گاهی اوقات ممکن است تنها تابع دو بعد باشد، اما در هر لحظه ممکن است سهبعدی باشد.
3- در این نوع جریانها، گردابهای کوچک بسیار زیادی وجود دارند. شکل کشیده یا عدم تقارن گردابها، یکی از خصوصیات اصلی این جریانها است که این امر با افزایش شدت آشفتگی، افزایش مییابد.
4- آشفتگی، شدت جریانهای چرخشی در جریان را افزایش میدهد که این عمل میتواند باعث اختلاط شود. فرآیند چرخش در سیالاتی رخ میدهد که حداقل، میزان یکی از مشخصههای پایستار آنها متغیر باشد. در عمل، اختلاط بوسیله فرآیند پخش انجام میشود، به این نوع جریانها غالباً جریانهای پخششی نیز میگویند.
5- آشفتگی جریان باعث میشود جریانهایی با مقادیر متفاوت اندازه حرکت با یکدیگر برخورد کنند. گرادیانهای سرعت بر اثر ویسکوزیته سیال کاهش مییابند و این امر باعث کاهش انرژی جنبشی سیال میشود. به بیان دیگر میتوان گفت که اختلاط یک پدیده، مستهلک کننده انرژی است. انرژی تلف شده نیز طی فرآیندی یکطرفه به انرژی داخلی (حرارتی) سیال تبدیل میشود.
تمام مشخصاتی که به آنها اشاره شد برای بررسی یک جریان آشفته مهم هستند. تأثیراتی که توسط آشفتگی ایجاد میشود بسته به نوع کاربری ممکن است ظاهر نشود و به همین دلیل باید این جریانها را با توجه به نوع و کاربری آن مورد بررسی قرار داد. برای بررسی جریانهای آشفته، روش‌های مختلفی وجود دارد که در ادامه به تعدادی از آنها اشاره خواهد شد.
مدلهای آشفتگی، ویسکوزیته گردابهای (vt) و یا تنش رینولدز (-Uij) را تعیین میکند و فرضیات زیادی برای همه آنها حاکم است که عبارتند از:
معادلات ناویر استوکس میانگینگیری شده زمانی، میتواند بیانگر حرکت متوسط جریان آشفته باشد.
پخش آشفتگی متناسب با گرادیان ویژگیهای آشفتگی است.
گردابهها میتوانند ایزوتروپیک و یا غیر ایزوتروپیک باشند.
همه مقادیر انتقال آشفته توابع موضعی از جریان هستند.
در مدلهای آشفته باید همسازی وجود داشته باشد.
این مدلها میتوانند یک مقیاسی و یا چند مقیاسی باشند.
همه مدلها در نهایت به کالیبراسیون به صورت تجربی نیاز دارند.
بسیاری از مدلهای آشفتگی بر پایه فرضیه بوزینسک استوار هستند. مدلهای آشفتگی به پنج دسته تقسیم میشوند:
1- مدلهای صفرمعادلهای
2- مدلهای تکمعادلهای
3- مدلهای دومعادلهای
4- مدلهای جبری
5- مدلهای شبیهسازی گردابهای بزرگ
3-4-3-1 مدلهای صفر معادلهایدر این مدلها هیچگونه معادله دیفرانسیلی برای کمیتهای آشفتگی ارائه نمیشود. این مدلها نسبتاً ساده بوده و دادههای تجربی و آزمایشگاهی در آنها نقش اساسی دارد و تنشهای آشفتگی در هر جهت متناسب با گرادیان سرعت میباشد. نمونهای از این مدلها عبارتند از:
1- مدل لزجت گردابهای ثابت
2- مدل طول اختلاط پرانتل
3- مدل لایه برش آزاد پرانتل
3-4-3-2 مدلهای یک معادلهایاین مدلها بر خلاف مدلهای صفر معادلهای، از یک معادله برای انتقال کمیت آشفتگی استفاده میکنند. این معادله ارتباط بین مقیاس سرعت نوسانی و کمیت آشفتگی میباشد که جذر انرژی جنبشی آشفتگی به‌عنوان مقیاس سرعت در حرکت آشفته مد نظر میباشد و مقدار آن توسط معادله انتقال محاسبه میگردد.
3-4-3-3 مدلهای دومعادلهایمدلهای دو معادلهای سادهترین مدلها هستند که قادرند نتایج بهتری در جریانهایی که مدل طول اختلاط نمیتواند به صورت تجربی در یک روش ساده مورد استفاده قرار بگیرد، ارائه دهند. به طور مثال جریانهای چرخشی از این نمونهاند. تقسیمبندی این مدلها بر اساس محاسبه تنش رینولدز و یا ویسکوزیته گردابهای به صورت زیر است:
ویسکوزیته گردابهای
جبری
تنش رینولدز غیرخطی
این مدلها، دو معادله دیفرانسیلی را حل میکنند. به معادله k که از قبل بوده، معادله ɛ هم اضافه میشود. معادله انرژی جنبشی، k، بیانکننده مقیاس سرعت است، بدین صورت که اگر قرار باشد سرعتهای نوسانی مورد بررسی قرار بگیرند، میتوان جذر انرژی جنبشی حاصل از آشفتگی در واحد جرم را به عنوان مقیاس در نظر گرفت، معادله نرخ میرایی انرژی جنبشی، ɛ، نیز مقیاس طول است. در حقیقت مقیاس طول، اندازه گردابههای بزرگ دارای انرژی جنبشی را میدهد که باعث انتقال آشفتگی در توده سیال میشود.
3-4-3-4 مدلهای دارای معادله تنشنرمافزار Flow3D مدل آشفتگی جدیدتری بر مبنای گروههای نرمال شده رینولدز پیادهسازی کرده است. این دیدگاه شامل روشهای آماری برای استحصال یک معادله متوسطگیری شده برای کمیت‌های آشفتگی است. مدلهای بر پایه RNG k-ɛ از معادلاتی استفاده میکند که شبیه معادلات مدل آشفتگی k-ɛ است اما مقادیر ثابت معادله که به صورت عملی در مدل استاندارد k-ɛ یافت شده‌اند، صریحاً از مدل RNG k-ɛ گرفته شدهاند. از این رو، مدل RNG k-ɛ قابلیت اجرایی گسترده‌تری نسبت به مدل استاندارد k-ɛ دارد. بویژه مدل RNG k-ɛ برای توصیف دقیقتر آشفتگی جریانهای با شدت کمتر و جریانهایی با مناطق دارای برش، قویتر شناخته شده است. در معادله RNG k-ɛ، فرمول تحلیلی برای محاسبه عدد پرانتل آشفته وجود دارد ولی در مدل k-ɛ، از یک مقدار ثابت که استفاده کننده مدل به آن معرفی میکند استفاده میگردد. در مدل RNG k-ɛ، تأثیر گرداب در آشفتگی لحاظ میگردد لذا دقت حل جریانهای چرخشی را بالا میبرد.
نرمافزار Flow3D از پنج مدل آشفتگی طول اختلاط پرانتل، مدل تک معادلهای، دومعادلهای k-ɛ، دومعادلهای RNG k-ɛ و روش گردابهای بزرگ (LES) بهره میبرد.
3-4-4 شبیهسازی عددی مدلدر این تحقیق، شبیهسازی عددی شامل دو قسمت میباشد:
1- قسمت اول مربوط به شبیهسازی هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه است که آزمایشات بکار رفته جهت واسنجی مدل، در کانال با مقیاس کوچک انجام شده است. کانال با مقیاس کوچک دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر بوده که سازه ترکیبی مورد نظر با ضخامت 3 میلیمتر و در فاصله 2 متری از ابتدای کانال تعبیه شده است.
همچنین با استفاده از مدل واسنجی شده با دادههای آزمایشگاهی مربوط به هیدرولیک جریان، مدلهایی مربوط به سازه ترکیبی همراه با انقباض جانبی مدل شده و تأثیر میزان انقباض سرریز- دریچه بر نسبت دبی عبوری از روی سرریز به دبی عبوری از زیر دریچه بررسی شد.
2- قسمت دوم مربوط به شبیهسازی حفره آبشستگی در پاییندست سازه ترکیبی سرریز- دریچه است که برای شبیهسازی عددی آبشستگی، از آزمایشات انجام شده توسط شهابی و همکاران (1389) در کانال با مقیاس بزرگ استفاده شده است. کانال با مقیاس بزرگ دارای طول 12 متر، عرض و ارتفاع 6/0 متر است. کف کانال به ارتفاع 25 سانتیمتر از رسوبات یکنواخت با D50= 1.5 mm و ضریب یکنواختی 18/1 پوشانده شده است. دریچه و سرریز ترکیبی با ضخامت 6 میلیمتر و در فاصله 4/6 متری از ابتدای کانال نصب شده است.
پس از واسنجی نرمافزار، مدل برای شرایط هندسی و هیدرولیکی مختلف اجرا شد و با انتگرال‌گیری پروفیل سرعت بالای سرریز و زیر دریچه، نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (QsQg) محاسبه شد. مشخصات مدلسازیهای انجام شده برای آبشستگی در جدول (3- 3) ارائه داده شده است.
جدول 3-3 محدوده دادههای بهکار رفته جهت شبیهسازی آبشستگیبازشدگی دریچه (cm) ارتفاع سازه (cm) مقادیر دبی (lit/s)
2 ، 1 8 34/11 66/10 98/9 68/8 52/7
2 ، 1 10 1/15 86/13 6/12 33/11 78/9
2 ، 1 12 26/16 14/15 4/14 88/13 3/11
3 ، 4 10 11/20 87/18 52/17 27/16 1/15
مراحل اصلی شبیهسازی عددی در نرمافزار Flow3D عبارتند از:
3-4-4-1 ترسیم هندسه مدلدر صورتی که هندسه مدل آزمایشگاهی به صورت منظم باشد میتوان شکل آن را در خود نرم‌افزار Flow3D ترسیم نمود اما در صورتی که مدل مورد نظر شکل نامنظم داشته باشد نرمافزار قادر خواهد بود فایلهای ایجاد شده در نرمافزارهایی نظیر اتوکد و همچنین فایلهای توپوگرافی به صورت X, Y, Z را مورد استفاده قرار دهد. در این تحقیق، مدلهای بکار رفته در خود نرمافزار ترسیم شده است.
3-4-4-2 شبکهبندی حل معادلات جریانیکی از مهمترین نکاتی که بایستی در شبیهسازی عددی مورد توجه قرار بگیرد، شبکهبندی مناسب برای حل دقیق معادلات حاکم است. ساختن شبکه مناسب برای میدان حل معادلات، دقت محاسبات، همگرایی و زمان محاسبات را تحت تأثیر قرار میدهد. در کلیه مدلهای عددی صورت گرفته، ابعاد شبکه طوری تعیین شد که پارامترهای کنترل شبکه از قبیل حداکثر نسبت ابعاد شبکه در راستای طولی و عمقی و ضریب نسبت ابعاد شبکه در راستاهای مختلف و در مجاورت یکدیگر مناسب انتخاب شده باشد. برای نتایج دقیق و مؤثر، مقدار هریک از دو پارامتر فوق باید به عدد 1 نزدیک بوده و مقدار نسبت ابعاد شبکه در مجاور یکدیگر از 25/1 و همچنین نسبت ابعاد شبکه در راستاهای مختلف از 3 نباید بیشتر باشد (فلوساینس، 2008).
در بخش شبیهسازی هیدرولیک جریان که در کانال با مقیاس کوچک صورت گرفت، مشبندی شبکه جریان، به صورت سهبعدی و ابعاد شبکه در هر سه بعد یکسان و برابر 5 میلیمتر در نظر گرفته شد. (در صورتی که مشبندی شبکه جریان، یکنواخت صورت گرفت نتایج حاصل از مدل به دادههای آزمایشگاهی نزدیکتر و دقت مدل عددی بیشتر میشد). برای این مدلسازی، زبری کف کانال و بدنه سازه برابر 5/1 میلیمتر انتخاب شد.
مشبندی در مقطع عرضی مشبندی در مقطع طولی

شکل 3-10 مشبندی یکنواخت در کانال با مقیاس کوچک
در بخش شبیهسازی آبشستگی در پاییندست سازه ترکیبی که در کانال با مقیاس بزرگ انجام شده است، جهت کاهش زمان تحلیل نرمافزار، شبکه جریان به صورت دوبعدی مشبندی شده و ابعاد شبکه در راستای Z به صورت یکنواخت و برابر 5 میلیمتر و در راستای X به صورت غیر یکنواخت و در نزدیکی سازه مورد نظر، تعداد مش بیشتر و اندازه آنها ریزتر در نظر گرفته شد به طوری که اندازه مش بین 6 تا 20 میلیمتر متغیر است. برای این مدلسازی، زبری کف کانال یکسان با قطر متوسط رسوبات و برابر با 5/1 میلیمتر انتخاب شد.
1501775101346000
شکل 3-11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ
3-4-4-3 شرایط مرزی کاناللایه مرزی ابتدا و انتهای مشها در کانال با مقیاس کوچک بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلبجدول 3-4 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
دبی ورودی جریان خروجی دیوار دیوار تقارن

لایه مرزی ابتدا و انتهای مشها در کانال با مقیاس بزرگ بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوبجدول 3- 5 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
فشار ثابت جریان خروجی دیوار دیوار تقارن
برای انتخاب فشار ثابت برای ورودی کانال، ارتفاع سیال در قسمت فشار ثابت برابر عمق ابتدایی جریان در حالت آزمایشگاهی انتخاب شد.
3-4-4-4 خصوصیات فیزیکی مدلبرای مدلسازی هیدرولیک جریان در بستر صلب، شرایط فیزیکی حاکم بر جریان، به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به‌دلیل آشفتگی جریان در آزمایشات، دو مدل آشفتگی k-ɛ و RNG k-ɛ در نرمافزار مورد ارزیابی قرار گرفت.
برای مدلسازی آبشستگی در پاییندست سازه ترکیبی، شرایط فیزیکی حاکم بر جریان به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به دلیل آشفتگی جریان، سه مدل آشفتگی k-ɛ ، RNG k-ɛ و LES در نرمافزار مورد ارزیابی قرار گرفت.
4- مشخصات رسوبی که در مدلسازیها جهت کالیبراسیون حداکثر عمق آبشستگی تعریف شد در جدول زیر ارائه داده شده است:
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوبپارامتر مورد نظر مقدارهای انتخاب شده
ضریب دراگ 5/1 2/1 1 5/0
عدد شیلدز بحرانی 15/0 1/0 05/0 035/0
زاویه ایستایی 40 35 30
حداکثر ضریب تراکم مواد بستر 8/0 74/0 7/0 6/0 4/0 38/0
ضریب تعلیق مواد بستر 026/0 018/0 01/0
ضریب بار بستر 16 8
عوامل مؤثر در کالیبراسیون حداکثر عمق آبشستگی در پاییندست سازه، پارامترهای حداکثر ضریب تراکم مواد بستر، عدد شیلدز بحرانی، ضریب دراگ، زاویه ایستایی و همچنین نوع مدل آشفتگی بودند.
3-4-4-5 شرایط اولیه جریانقبل از وارد کردن جریان در مدلسازی عددی، حالت اولیه کانال را انتخاب میکنند که در این تحقیق، قبل از ورود جریان، کانال تا قبل از سازه و تا لبه تاج سرریز از سیال مورد‌نظر در نظر گرفته شد.
3-4-4-6 زمان اجرای مدلنکته دیگری که در شبیهسازیهای عددی بسیار مهم است، زمان اجرای مدل تا رسیدن به یک مقدار مناسب از لحاظ پایداری و ماندگاری جریان است. بنابراین در کلیه آزمایشات شبیهسازی شده، زمان اجرای مدل برای شبیهسازی هیدرولیک جریان بین 30-15 ثانیه و برای شبیهسازی آبشستگی در پاییندست سازه ترکیبی بین 5000 - 4000 ثانیه در نظر گرفته شد، که با سپری شدن این مدت زمان، جریان در کانال به صورت یکنواخت میشود.

شکل 3-14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان

—d1147

2-4 تعریف سرویس 15
2-5 سرویس های وب 16
2-6 مفاهیم مهم سرویس گرایی17
2-6-1چگونه سرویسها منطق را محصور میکنند18
2-6-2 چگونه سرویس ها از وجود یکدیگر مطلع می شوند19
2-6-3 چگونه سرویس ها با هم ارتباط برقرار می کنند19
2-6-4 چگونه سرویسها طراحی می شوند19
2-6-5 توصیفات سرویسها 20
2-7 ویژگی های معماری سرویس گرا 20
2-8 تعریف گذرگاه سرویس 22
2-8-1 مسیریابی و مقیاس پذیری23
2-8-2 تبدیل پروتکل انتقال24
2-8-3 تبدیل پیام25
2-8-4 ویژگی ها و مزایای گذرگاه سرویس26
2-8-5 اجزای گذرگاه سرویس27
2-9 انگیزه ی حرکت سیستم های تولیدی به سمت معماری سرویس گرا29
2 -10 تعریف برون سپاری 31
2-10-1 عوامل تاثیر گذار بر برون سپاری 32
2-10-2 دلایل عمده برون سپاری34
2-10-3 معایب برون‌سپاری35
2-10-4 تعریف برون سپاری استراتژیک 36
2-10- 5 کارهای انجام شده در ارتباط با برون سپاری 36
2-11 سیستم اطلاعاتی40
2-12 کارهای انجام شده د ر ارتباط با به کارگیری سیستم اطلاعاتی در یکپارچگی واحد های مختلف تولید41
2-13 نتیجه گیری45
فصل سوم: روش تحقیق46
3-1 مقدمه47
3-2 نگاه کلی و هدف از ارائه مدل پیشنهادی47
3-3 رویکرد کنترلی برای تعامل سرویس های استخراج شده در سیستم اطلاعاتی پیشنهادی49
3 -4 متدولوژی SOMA در طراحی سیستم اطلاعاتی سرویس گرا53
3-4-1 فاز شناسایی سرویس ها در متدولوژی SOMA53
3-4-1-1 تکنیک سرویس – هدف 54
3–4- 1-2 تکنیک تجزیه دامنه55
3–4- 1-3 تجزیه و تحلیل دارایی های موجود 55
3-5 راهکارپیشنهادی: طراحی سیستم اطلاعاتی سرویس گرا56
3-5-1 شناسایی سرویس های سیستم اطلاعاتی با استفاده ازمتدولوژیSOMA56
3-5-2روند جریان اطلاعات در سیستم اطلاعاتی سرویس گرا60
3-6 مدلسازی سیستم اطلاعاتی سرویس گرا با استفاده از زبان UML74
3 -7 الگوی راه حل پیشنهادی متدولوژی SOMAبرای استفاده در سیستم های اطلاعاتی81
3-8 برنامه ریزی استراتژیک سیستم اطلاعاتی85
3-9 نتیجه گیری 88
فصل چهارم: محاسبات و یافته های تحقیق89
4-1 مقدمه90
4-2 مطالعه موردی – شرکت ایران خودرو90
4-3 طراحی سیستم اطلاعاتی سرویس گرا برای شرکت ایران خودرو93
4 - 3- 1 مدل فرایند ورود کاربران ایران خودرو به سیستم اطلاعاتی خودرو94
4 -3- 2مدل فرایند نظارت واحد تدارکات ایران خودرو بر موجودی انبار (مواد اولیه).96
4 -3- 3 مدل فرایند درخواست قطعه از انبار ایران خودرو97
4 -3- 4 مدل فرایند اجرای محصول درخواستی مشتری ایران خودرو99
4 -3- 5 مدل فرایند پرداخت مشتری 101
4 -3- 6 مدل فرایند تحویل محصولات به مشتریان ایران خودرو 102
4 -3-7 مدل فرایند خدمات پس از فروش مشتریان ایران خودرو 102
4 - 4 مشخصه سرویس ها در سیستم اطلاعاتی سرویس گرا 104
4 - 5 تدوین راهبردها در راستای سیستم اطلاعاتی، با استفاده از ماتریس SWOT 105
4 - 6 تحلیل استراتژیک سیستم اطلاعاتی سرویس گرا برای شرکت ایران خودرو107
4-7 فرآیند تحلیل سلسه مراتبی AHP113
4-8 نتیجه گیری116
فصل پنجم: نتیجه گیری و پیشنهادات117
5-1 خلاصه تحقیق118
5-2 بررسی مزایای رهیافت پیشنهادی118
5-3 محدودیت ها و زوایای پوشش داده نشده119
5-4 اقدامات آتی120
ضمائم و پیوست ها 121
ضمیمه 1- کدهایWSDL مربوط به مشخصه سرویس احراز هویت 122
ضمیمه 2- کدهای WSDL مربوط به مشخصه سرویس پرداخت آنلاین 126
ضمیمه 3- کدهای WSDL مربوط به مشخصه سرویس صدور فاکتور129
ضمیمه 4- کدهای WSDL مربوط به مشخصه سرویس رفع مشکل فراموش کردن رمز عبور 134
ضمیمه 5- کدهای WSDL مربوط به مشخصه سرویس بررسی وضعیت پرداخت صورتحساب.. 138
منابع و مآخذ142
Abstract 146
فهرست جداول
جدول 2-1 محرکهای چندگانه برون سپاری 33
جدول 3-1 اهداف– زیر اهداف 57
جدول 3-2 تجزیه دامنه سیستم اطلاعاتی 59
جدول4-1عملیات مربوط با هرسرویس کاری سیستم اطلاعاتی سرویس گرابرای شرکت ایران خودرو 104 HYPERLINK l "_Toc177949492"
جدول 4-2 ماتریس SWOT مطالعه موردی 109 HYPERLINK l "_Toc177949492"
جدول 4-3 مقایسه زوجی بین سرویس های دانه ریز مربوط به سرویس دانه درشت نظارت واحد تدارکات بر موجودی انبار 114 HYPERLINK l "_Toc177949492"
جدول4-4 وزن دهی سرویس های مربوط به سرویس دانه درشت نظارت واحد تدارکات بر موجودی انبار 115 HYPERLINK l "_Toc177949492"
جدول4-5 لیست اولویت بندی سرویس های دانه درشت 115
فهرست تصاویر و نمودار HYPERLINK l "_Toc177949492"
شکل 1-1 مراحل انجام تحقیق 5 HYPERLINK l "_Toc177949492"
شکل 2-1 مدل انجام پیمانکاری فرعی صنعتی بین صنایع کوچک و بزرگ 10
شکل 2-2 محصورسازی اندازه های مختلفی از منطق توسط سرویس 18
شکل 2-3 ارتباط بین برنامه های کاربردی مختلف در ESB 23
شکل 2-4 ارتباط غیر مستقیم بین برنامه های کاربردی با استفاده از قابلیت مسیریابی پیام ESB 24
شکل 2-5 برقراری ارتباط بین برنامه های کاربردی با پروتکل های انتقال مختلف با استفاده از پیاده سازی گذرگاه سرویس سازمانESB 25
شکل 2-6 با استفاده ازESB برنامه های کاربردی می توانند حتی زمانی که فرمت پیام ها و پروتکل های ارتباطی متفاوت دارند، با یکدیگر تعامل داشته باشند26
شکل 2-7 اجزای منطقی تشکیل دهنده ESB 28
شکل 3-1 روند انجام کار 49
شکل 3-2 ارکسترازیسیون سرویس های سیستم اطلاعاتی سرویس گرا 51
شکل 3-3 فلوچارت روند جریان اطلاعات ورود کاربر به سیستم اطلاعاتی و ثبت اطلاعات کاربر 62 شکل 3-4 فلوچارت روند جریان اطلاعات نظارت واحد تدارکات بر موجودی انبار 63
شکل 3-5 فلوچارت روند جریان اطلاعات درخواست قطعه از انبار 65
شکل 3-6 فلوچارت روند جریان اطلاعات اجرای محصول درخواستی 67
شکل 3-7 فلوچارت روند جریان اطلاعات پرداخت مشتری 69
شکل 3-8 فلوچارت روند جریان اطلاعات تحویل محصول به مشتری 71 HYPERLINK l "_Toc177949492"
شکل 3-9 فلوچارت روند جریان اطلاعات پشتیبانی مشتری 73 HYPERLINK l "_Toc177949492"
شکل 3-10 نمودار use case احراز هویت و مدیریت ورود کاربران به سیستم اطلاعاتی 75
شکل 3-11 نمودار use case نظارت واحد تدارکات بر موجودی انبار 76
شکل 3-12 نمودار use case درخواست قطعات مورد نیاز واحد تولید از انبار (مواد اولیه)77
شکل 3-13 نمودار use case اجرای محصول درخواستی مشتری 78
شکل 3-14 نمودار use case مدیریت هزینه ی سفارشات اجرا شده79
شکل 3-15 نمودار use case تحویل محصول به مشتری80
شکل 3-16 نمودار use case پشتیبانی مشتری81
شکل 3-17 سرویس های سیستم اطلاعاتی سرویس گرای spx 83
شکل 3-18 الگوی راه حل ESB برای استفاده از سرویس های سیستم اطلاعاتی در سازمان 85
شکل4-1 حوزه ی فعالیت های برون سپاری شرکت ایران خودرو92
شکل 4-2 فلوچارت ورود و ثبت اطلاعات کاربران ایران خودرو در سیستم اطلاعاتی 95
شکل 4-3 فلوچارت نظارت واحد تدارکات ایران خودرو بر موجودی انبار(مواد اولیه)96
شکل 4-4 فلوچارت درخواست قطعه از انبار 98
شکل 4-5 فلوچارت اجرای محصول درخواستی مشتری ایران خودرو 100
شکل 4-6 فلوچارت پرداخت مشتریان ایران خودرو 101
شکل 4-7 فلوچارت تحویل سفارش به مشتریان ایران خودرو 102
شکل 4-8 فلوچارت پشتیبانی مشتریان ایران خودرو 103
شکل 4-9 نمودار سلسله مراتب سرویس ها 114
فصل اول
مقدمه و کلیات تحقیق
1–1 مقدمهسازمان بزرگ مقیاس از واحدها، محصولات و سرویس های متنوع زیادی تشکیل شده است. این واحدها زیر ساخت مختلف دارند که دارای سرویس های مختلفی هستند. به منظور ارتقای کیفیت کالاها و افزایش میزان تنوع کالا و نو آوری سازمان های بزرگ مقیاس می توانند از پیمانکاری فرعی صنعتی، به عنوان یکی از روشهای تامین سفارشهای تولیدی از بیرون، استفاده کنند. هدایت و کنترل سازمان بزرگ مقیاس و پیچیده نیاز به پیروی از یک چارچوب و برنامه منسجم دارد. امروزه سیستم های سرویس گرا با توجه به امکان استفاده در محیط های مختلف و عدم وابستگی به فناوری خاص، وجود سیستم های بزرگ مقیاس پویا با نیازهای متغیر، بسیار مورد توجه قرار گرفته اند. معماری سرویس گرا به دلیل سرعت در پیاده سازی برنامه کاربردی سازمان را به سمت توزیع شدگی و مدیریت صحیح منابع پیش می برد. معماری سرویس گرا امکان ایجاد یکپارچگی بین برنامه واحدها بدون وابستگی به سکو و فناوری پیاده سازی را فراهم می کند. ایجاد زیرساخت های مورد نیاز برای این رویکرد به دلیل نیاز به زمان و هزینه زیاد، برای سازمان هایی مناسب است که ناهمگن بوده و دارای توزیع شدگی زیاد هستند. معماری سازمانی مجموعه ای ازفراورده ها است که عناصر زیرساختی سازمان و روابط این عناصر با هم را معرفی می کند و سازمان را از ابعاد مختلف مورد بررسی قرار میدهد.
1– 2 طرح مسئلهسازمان بزرگ مقیاس به دلیل داشتن واحدهای گوناگون، تعداد و تنوع زیاد محصول و سرویس ها و ارتباط پیچیده و محیط پویا و رقابتی نیاز به برنامه ریزی استراتژیک دارد زیرا برنامه ریزی استراتژیک یکی از عوامل اصلی یکپارچگی کسب و کار و فناوری اطلاعات وحصول مزیت رقابتی می باشد تا براساس برنامه تهیه شده بسوی اهداف مورد نظر به پیش رود وهمواره ناظر برحرکت خودباشد تا انحرافات احتمالی راشناسایی وتعدیل کند. مدل عملی برنامه ریزی استراتژیک برای سازمانهایی است که ارتباط واحدها از طریق سرویس گرایی می باشد. سازمانها به منظور حفظ خود در بازارهای رقابتی همواره در حال رشد و تغییر کسب و کار خود هستند. بنابراین بایستی سیستم های اطلاعاتی خود را به گونه ای انتقال و ارتقا دهند تا بتوانند پاسخگوی نیازهای بازار و تغییرات زیاد فناوری باشند. این مدل دو دیدگاه فنی و استراتژیک را در خود هماهنگ و یکپارچه می سازد. استفاده از چارچوب و معماری سازمانی راهکار مفیدی برای برنامه ریزی، مدیریت و یکپارچگی واحدها می باشد. برنامه ریزی استراتژیک موجب می شود تا کار واحدها و سازمان سریع تر انجام شود و پیش برود. این برنامه باید آینده نگر و محیط گرا باشد بطوری که ضمن شناسایی عوامل وتحولات محیطی، در یک افق زمانی بلند مدت تأثیرآنها بر سازمان ونحوه تعامل سازمان باآنها را مشخص کند. چارچوب استراتژیک موجب تسهیل فرایند برنامه ریزی استراتژیک و شناسایی رقبا، مشتریان، تأمین کنندگان، محصولات و موجب شناسایی سطوح کیفی و رقابتی رقبا و بهبود عملکرد می شود.
در این تحقیق، یک چارچوب استراتژیک برای نظام مبادلات پیمانکاری فرعی (spx) در سازمان بزرگ مقیاس سرویس گرا که ارتباط واحدها از طریق سرویس می باشد ارائه شده است تا برنامه ریزی و مدیریت واحدها تسهیل یابد و بدین ترتیب کار سازمان سریع تر و دقیق تر انجام شود.
1-3 مفروضات

سیستم اطلاعاتی، یک سیستم برای جمع آوری، سازماندهی و ذخیره کردن اطلاعات در یک سازمان است.
سیستم اطلاعاتی از طریق تعریف فرایندها و رویه ها، انجام عملیات سازمان را به عهده می گیرند.
معماری سرویس گرا هم راستای فرایندهای کسب و کار است.
برنامه ریزی استراتژیک گونه ایی از برنامه ریزی است که در آن هدف تدوین استراتژی هاست.
1 - 4 اهداف تحقیق
پیمانکاری فرعی صنعتی، یکی از راه های مدرن و مؤثر سازمانی برای تولید محصولات صنعتی از راه همکاری واحدهای تولیدی مکمل است.در سازمان بزرگ مقیاس که از واحدهای مختلف تشکیل شده است می توان از نظام مبادلات پیمانکاری فرعی استفاده نمود.در سیستم های مقیاس وسیع به دلیل گستردگی حیطه مسئله، با موجودیتها و ارتباطات بسیار زیادی مواجهه هستیم، در صورتی که در توسعه این سیستم ها از روش سنتی استفاده کنیم به علت مواجه با حجم زیاد موجودیت ها و ارتباطات دچار سردرگمی خواهیم شد.به همین دلیل برای کاهش پیچیدگی در این سیستم ها از موجودیتی به نام سرویس به منظور بالا بردن سطح تجرید و در نتیجه کاهش پیچیدگی استفاده می شود. برای نظام مبادلات پیمانکاری فرعی در سازمان بزرگ مقیاس سرویس گرا یک چارچوب استراتژیک ارائه شده است که درنهایت منجر به افزایش میزان بهره وری سازمانی، بهبودخدمات سازمان، تسهیل روابط سازمانی، افزایش میزان تعامل پذیری دربین سیستم های اطلاعاتی،افزایش میزان یکپارچگی اطلاعات، افزایش سطح امنیت اطلاعات وغیره خواهد بود.
با توجه به ویژگی های معماری سرویس گرا و نقش آن در آن در یکپارچه سازی برنامه کاربردی سازمان ها و پیشرفت چشمگیر سرویس گرایی در دنیا و حرکت اکثر کشورها و سازمان ها به سمت موضوع سرویس گرایی می توان نتیجه گرفت که معماری سرویس گرا گزینه ی مناسبی برای حل بسیاری از چالش های یکپارچه سازی در سازمان است. اما به دلیل وجود برخی مشکلات و نواقص که در بخش قبل به پاره ای از آن ها اشاره شد، همچنان تحقیق در این زمینه با هدف چالش های موجود ادامه دارد.
1 –5 محدوده پایان نامه
همانطور که در قسمت پیش اشاره شد، سازمان بزرگ مقیاس به گروهی از واحدها اطلاق می شود که برای تولید کالا با هم در ارتباط بوده و همدیگر را تکمیل می کنند و بر مبنای یک توافق یا پیمانکاری با هم فعالیت می کنند. در سازمان بزرگ مقیاس با به کارگیری نظام مبادلات پیمانکاری فرعی کارها را به واحدهای کوچک ومتوسط (SMEs) برون سپاری می کنند. در این تحقیق هدف، ارائه یک چارچوب استراتژیک است.
1 –6 مراحل انجام تحقیق
در این تحقیق برای پاسخگویی به مسائل مطرح شده از مطالعات کتابخانه ای جهت شناسایی مفاهیم مورد نیاز تحقیق استفاده شده است. ابتدا، مطالعاتی درباره سرویس گرایی مطرح شد و در ادامه به بررسی سازمان بزرگ مقیاس و نظام مبادلات پیمانکاری فرعی (SPX)، برنامه ریزی استراتژیک پرداخته شد. مختصری مطالعه در مورد SOMA صورت گرفت، و سپس سرویس های سیستم اطلاعاتی توسط این روش شناسایی شدند. برای اطمینان از مناسب بودن سرویس های شناسایی شده به ارزیابی سرویس پرداخته شد. رویکرد پیشنهاد شده با استفاده از یک مطالعه موردی مورد ارزیابی قرار گرفت. در نهایت به جمع بندی و نتیجه گیری تحقیق پرداخته شد.
در شکل 1-1 این مراحل نشان داده شده اند.
شکل 1 – 1 . مراحل انجام تحقیق
1 – 7 ساختار پایان نامه
این پایان نامه در فصل های بعد به شرح زیر است:
در فصل دوم به بررسی مفاهیم بنیادی و ادبیات موضوع پرداخته شده است و همچنین کارهای انجام شده در زمینه معماری سرویس گرا، سازمان بزرگ مقیاس و نظام مبادلات پیمانکاری فرعی (spx) سیستم اطلاعاتی تولید و کارهای انجام شده در این زمینه می پردازیم.
در فصل سوم با بررسی و استخراج فرآیندها و سرویس ها، به طراحی سیستم اطلاعاتی سرویس گرا و ایجاد ارتباط داده های آن ها می پردازیم، و توضیحاتی را راجع به برنامه ریزی استراتژیک، به عنوان ابزار تدوین راهبردها بیان می کنیم. در فصل چهارم یک مطالعه موردی در راستای کار انجام شده مورد بحث قرار گرفته و مدل تطبیق داده شده را با استفاده از برنامه ریزی استراتژیک مورد ارزیابی قرار می دهیم. در نهایت در فصل پنجم جمع بندی و نتیجه گیری کارهای انجام شده و کارهای آینده بیان شده است.
فصل دوم
ادبیات و پیشینه تحقیق
2- 1مقدمه
در فصل پیش مسئله مورد اشاره در ا ین تحقیق معرفی شد و محدوده آن تعیین گردید. هدف از این فصل آشنایی با مفاهیم کلیدی به کاربرده شده در این تحقیق است. سرویس گرایی سبک و روشی برای طراحی، پیاده سازی، استقرار و مدیریت سیستم های اطلاعاتی است. این سیستم ها از مولفه هایی تشکیل شده اند که منطق سازمان و واحدهای کاری آن را پیاده سازی می کنند که این مولفه ها سرویس نام دارد. نقش سرویس در معماری سرویس گرا، خودکار سازی واحدهای کاری و دانه بندی آنها در واحدهای مجزاست، بطوریکه بتوان سازمان و منطق کسب و کار آن، همچنین روندهای کاری موجود را با تغییرات قوانین و فناوری ها، بروزرسانی و هماهنگ نمود. سرویس گرایی، علاوه بر مزایایی از قبیل حذف سیلوهای اطلاعاتی و سرعت در پیاده سازی برنامه های کاربردی، سازمان را به سمت توزیع شدگی ومدیریت صحیح منابع پیش می برد ]10 [. لازم به ذکر است که ایجاد زیرساخت های مورد نیاز برای این رویکرد به دلیل نیاز به زمان و هزینه زیاد، برای سازمان هایی مناسب است که ناهمگن بوده و دارای توزیع شدگی زیاد هستند. دراین فصل معماری سرویس گرا، سازمان بزرگ مقیاس و نظام مبادلات پیمانکاری فرعی (spx)را مطرح می کنیم. همچنین در این فصل مروری بر پیشینه ی کارهای انجام شده در هر یک از این زمینه ها خواهیم داشت.
2-2 نظام مبادلات پیمانکاری فرعی
در این بخش به ارائه مفاهیم نظام مبادلات پیمانکاری فرعی می پردازیم.
2-2–1 تعریف نظام مبادلات پیمانکاری فرعی
در پیمانکاری فرعی صنعتی یک پیمانکار اصلی، عرضه کننده های مختلف و پیمانکار های فرعی وجود دارد که شامل یک قرارداد بین طرفین پیمانکار اصلی و پیمانکار فرعی است پیمانکار اصلی یک یا چند اقدام مهم تولیدی بخش ها را به زیر مجموعه ها و یا تهیه کنندگان خدمات ضروری صنعتی برای تولید محصول نهایی واگذار می نماید . پیمانکار فرعی نیز کارها را بر اساس مشخصات تهیه شده توسط پیمانکار اصلی اجرا می نماید. بنابراین یک تقسیم کار در سیستم تولیدی در بخش صنعت و پیمانکاری های فرعی در یک یا چند فرایند تکنولوژیکی افزایش چشمگیری می یابد] 1 [.
نظام مبادلات پیمانکاری فرعی(SPX)، یکی از روش های عمده توسعه صنایع کوچک و متوسط(SMEs)به ویژه در حوزه پیمانکاری صنعتی (شرکت ها، کارگاه ها و کارخانجاتی که بنا به سفارش اقدام به تولید نموده و تولیدات خود را در اختیار کارفرمایان قرار می دهند) است که ایده ی اولیه ایجاد آن از سال 1970 در سازمان توسعه ی صنعتی ملل متحد  (یونیدو) شکل گرفت و تا سال 1985 به شکل امروزی خود درآمد. اثر بخشی این مراکز در توسعه صنایع پیمانکاری به گونه ایی بوده که تا پایان سال 2012 ، تعداد 59 مرکز مبادلات پیمانکاری فرعی(SPX) در سطح دنیا ایجاد شده است.
نکته کلیدی اینکه پیمانکاری فرعی به دو عامل توانایی تولید و تخصص بستگی دارد. زمانیکه ظرفیت تولید موجود توسط پیمانکار اصلی از عهده میزان تولید مورد نیاز ( سفارش) برنیاید و فروش (سفارش) از ظرفیت تولید داخلی بیشتر باشد، در این صورت وضعیت مطلوب ممکن نخواهد بود مگر اینکه پیمانکار اصلی به یک پیمانکار فرعی تکیه نماید. این مطلب زمانی تحقق می یابد که سفارش رسیده به پیمانکار اصلی درنوسان و عدم تعادل باشد. در مورد نکته دوم پیمانکارهای اصلی خدمتی را از پیمانکار فرعی می خواهد کسب کند که دارای تجهیزات تخصصی و یا ترکیبی از ماشین آلات و نیروی کار ماهر و یادقت خاصی باشد. همچنین پیمانکارهای فرعی نیز دارای مهارت فنی ویژه برای اقلام فرآیندهای تولیدی خاص هستند که پیمانکار اصلی ترجیح می دهد از خدمات آنها استفاده نماید. این نوع ارتباط با نوسان سفارش و یا بصورت طولانی مدت یا اساسی مشارکت نمی یابد. از نظر اطلاعات تخصصی شده خط تولید، بعضی وقتها پیمانکاری های فرعی ممکن است بعنوان یک کنترل کننده باشند. پیمانکارهای اصلی بطور کلی لازم الوجود نیستند، صنایع بزرگ، تولید صنعتی که به مقدار زیاد و به عنوان لوازم ترکیبی برای نصب نهایی در محصول مورد نیاز است را سفارش می دهند. و همه این لوازم و اجزاء به خاطر هر یک از دلایل اقتصادی یا ویژه بودن عموماً در داخل بطور ثابت تولید نمی شوند. پیمانکار های فرعی بطور کلی گرچه ضروری نیستند، صنایع کوچک و متوسط تخصصی در عملیات و فرآیند های مشخص، قابلیت تولید کالاهای با کیفیت همانند و منطبق با مشخصات پیمانکار اصلی و در عین حال با شرایط اقتصادی برتر را فراهم می نمایند. بعضی وقت ها نیز صنایع بزرگ ظرفیت قابل دسترس شان افزایش می یابد و امکان فعالیت بعنوان یک پیمانکار فرعی را نیز پیدا می کنند. آنها همچنین ممکن است دارای موقعیتی باشند که صنایع کوچک و متوسط به خدمات اقتصادی آنها برای تولید قطعات و اجزاء تکمیل کننده سفارش های بزرگ به آن نیازمند باشند. که در این صورت بعنوان پیمانکارهای اصلی فعالیت می نمایند. بهر حال ارتباط پیمانکاری فرعی می تواند در بخش های مختلف فعالیت تولیدی وجود داشته باشد. که در این صورت بعنوان برجسته ترین مقام در زمینه فنی مهندسی در صنایع مانند خودرو، راه آهن، علوم هوایی، لوازم الکترونیکی، وسایل الکتریکی داخلی، ظرافت تجهیزات، پلاستیک کاری، فلز کاری صنایع مانند ریخته گری، آهنگری تلقی می شود.
مهمترین ماموریت های این مرکز عبارت است از :
    شناسایی، ایجاد و توسعه بازار
تسهیل ارتباط کارفرمایان و پیمانکاران
    ارتقاء و توانمند سازی پیمانکاران
شکل زیر مدل پیمانکاری فرعی صنعتی بین صنایع کوچک و بزرگ نشان می دهد.

شکل 2-1. مدل انجام پیمانکاری فرعی صنعتی بین صنایع کوچک و بزرگ]2[
2-2-2 شرایط تاسیس یکSPX 
SPXدر مرحله اول سازمانی مستقل و غیر انتفعی متعلق به تولید کنندگان است،اما از سوی مراجع مسئول دولتی و سازمانهای حرفه ای حمایت و پشتیبانی میشود.تجربه حاکی از آن است کهSPX هایی که در وزارتخانه صنایع و سازمانهای عمومی ایجاد شده اند توسط دولت یک قطبی شده،از خاستگاه صنعتی خویش جدا افتاده و محکوم به نابودی اند.روش میزبانی SPXدر یک وزارتخانه و یا سازمان عمومی می بایستی صرفاً به عنوان یک وضعیت گذرا در حالت نوپا و قبل از آنکه به بخش خصوصی انتقال یابد تلقی شده و ترجیحاً بر مبنای خودگردانی باشد] 3[.
2-2-3 خدماتSPX ها
اطلاع رسانی: به طور مثال اطلاعرسانی فنی مرتبط با صنایع کوچک و متوسطی که توانمندی کارکردی بعنوان پیمانکاران فرعی،تامین کنندگان یا شرکای پیمانی اصلی داخلی و خارجی را دارند.
واسطه گری تبادل اطلاعات: مربوط به عرضه و یا تقاضای محصولات یا ملزومات حاصل از پیمانکاری فرعی،اطلاعات مربوط به دانش کار،حق امتیازها،تشریک مساعی فنی،فرصتها و رویه های برقراری پیمانهای مشارکتی.
خدمات تبلیغی و ترویجی: به طور مثال سازماندهی گردهمایی کسب و کار،مدیران تدارکات از گروهها صنعتی،داخلی و خارجی،سازماندهی حضور دسته جمعی در نمایشگاه صنعتی بخش های مرتبط، تهیه و توزیع اقلام تبلیغی از جمله سایتهای اینترنتی
2-2-4 مزایای پیمانکاری فرعی صنعتی
پیمانکاری فرعی صنعتی دارای مزایای زیادی برای صنایع کوچک و بزرگ است:
الف)مزایای پیمانکاری فرعی صنعتی برای صنایع کوچک:
حداکثر بهره برداری از امکانات آزمایشگاهی وسیستم کنترل موجودی در صنایع طرف قرارداد.
بهره مندی از تجربه فنی تخصصی کارشناسان طرف قرار داد و درنتیجه ارتقای توان علمی تخصصی و بهره وری واحدهای صنعتی کوچک.
استفاده از توان بالقوه تولیدی و رفع مشکل کمبود تقاضا در واحدهای تولیدی مورد نظر به لحاظ تولید انبوه، قیمت تمام شده کالا درحداقل قرار می گیرد.
توزیع درآمد بهتر و افزایش درآمد کارکنان و در نهایت اجتماع.
تولیدات به صورت تخصصی وحرفه ای شکل می گیرد وباعث دستیابی سریع تربه نوآوریها وخلاقیّت درتولید می شوند ودرنتیجه تنوّع درتولیدات افزایش می یابد.
ب ( مزایای پیمانکاری فرعی برای صنایع بزرگ:
صنایع بزرگ با کاهش هزینه های سرمایه گذاری وجلوگیری از گسترش بی رویه واحدها وبعضا باتعطیل کردن پاره ای ازبخشهای خط تولیدوسپردن کار تولیدقطعه هاوکالاهای صنعتی وحتی بخش طراحی ومونتاژ کالابه واحدهای کوچک طراحی ومهندسی ومونتاژ،نه تنها از کاهش حجم تولید واحد صنعتی خودجلوگیری می کند،بلکه برعکس حجم تولید وبهره وری را تا چند برابر افزایش می دهند.
صنایع بزرگ بابهره گیری از پیشنهادها و اندیشه خلاّق واحدهای کوچک پیمانکاری ضمن رفع مشکلات وضعفهایاحتمالی و ارتقای کیفیت کالاهای تولیدی،توانسته اند بیشترین نوآوری وتنوّع رابه تولیدات خودبدهند.
صنایع بزرگ با انجام پیمانکاری های فرعی قادر هستند قیمت تمام شده کالارا به میزان قابل توجهی کاهش دهند و برای مدت زمانی طولانی میتوانند قطعه ها و لوازم مورد نیاز خود را به گونه سفارشی تأمین کنند.
2-2-5 خدمات مورد انتظار از یک مرکز اطلاعاتی SPX
خدمات اطلاع رسانی (آگاهی) شامل اطلاعات فنی در خصوص صنایع کوچک و متوسط که مستعد کارکردن بعنوان پیمانکاری فرعی هستند و تهیه کنندگان یا شرکاء برای پیمانکاری های اصلی داخلی و خارجی، دلالی گزارشات اطلاعات عرضه و تقاضا برای دانش فنی، حق امتیاز، همکاری فنی، فرصتها و روشهای استفاده برای تنظیم موافقتنامه های مشارکتی.
خدمات فنی به سازمانهای تجاری، مدیران خرید یا فروش از گروههای صنعتی داخلی و خارجی، سازمان های گروه سهامی در نمایشگاه های صنعتی در بخش های تهیه و توزیع مواد متشکله صنایع مرتبط شان.
خدمات مشاوره ای عملیات پیمانکاری فرعی، تولید، کنترل کیفیت، گواهی استاندارد سازی، بازاریابی.
2-2-6 سازمان بزرگ مقیاس
سازمان های بزرگ مقیاس به گروهی از واحدها اطلاق می شود که برای تولید یک کالا یا انجام پروژه خاص با هم (معمولا با هدف هزینه کمتر) در ارتباط بوده، همدیگر را تکمیل می کنند و بر مبنای یک توافق یا پیمانکاری با هم فعالیت می کنند و برای مواجهه با مسئله ای واحد تخصص می یابند، و تقاضایی را با تکیه بر توانایی های خود پوشش می دهند. همکاری پایه فعالیت این سازمان ها است و دارای یک هدف تجاری یا فعالیت واحدی هستند. در سیستم های بزرگ مقیاس به دلیل گستردگی حیطه مسئله، با موجودیتها و ارتباطات بسیار زیادی مواجهه هستیم. سازمان های بزرگ مقیاس بر اساس مزیت رقابتی شرکت های رقیب تشکیل شده اند. چگونگی پشتیبانی همکاری و مشارکت درون سازمانی یک موضوع اصلی از یک سازمان بزرگ مقیاس است. چنین سیستمی کارکردهای بیشتری نسبت به مجموع کارکردهای سیستم های عضو در آن ارائه می‌کند.
2-3 تعریف معماری سرویس گرا
تعاریف بسیاری برای معماری سرویس گرا وجود دارد، اما یک تعریف رسمی واحد برای آن موجود نیست. به همین دلیل بسیاری از سازمان ها که سعی در استفاده و بهره برداری از این مفهوم را دارند، برای تعریف آن حرکتی کرده اند. در تعاریف متعددی که از معماری سرویس گرا ارائه شده است، عمدتا از دو دیدگاه فنی و غیر فنی این واژه تعریف شده است. از جمله تعاریفی که به رویکرد غیر فنی معماری سرویس گرا اشاره دارند می توان به موارد زیر را نام برد :
معماری سرویس گرا یک محصول نیست بلکه پلی است بین کسب و کار و فناوری به کمک مجموعه ای از سرویس ها متکی بر فناوری که دارای قوانین، استانداردها و اصول طراحی مشخص هستند]6 1[.
چارچوبی برای یکپارچه سازی فرایندهای کسب و کار و پشتیبانی آن ها توسط فناوری اطلاعات با کمک مولفه های استاندارد و امن تحت عنوان سرویس که قابلیت استفاده مجدد و الحاق به یکدیگر جهت پوشش تغییرات حرفه را دارا می باشند] 17 [.
SOAیک رهیافت است، یک شیوه ی فکر کردن یک سیستم ارزشی است که منجر به تصمیمات به هم پیوسته کامل در زمان طراحی یک معماری نرم افزار به هم پیوسته می شود]18 [.
معماری سرویس گرا پیکره ی فرایند های استاندارد طراحی و مهندسی، ابزارها و بهترین تجاربی است که با استفاده از سرویس ها و بهره گیری از خاصیت پیمانه ای بودن و قابلیت ترکیب آن ها، زمینه ی تحقیق اهداف کسب و کار را فراهم می آورد] 19[.
سبکی از معماری که از اتصال سست سرویس ها جهت انعطاف پذیری و تعامل پذیری کسب و کار، و به صورت مستقل از فناوری پشتیبانی می کند و از ترکیب مجموعه سرویس ها مبتنی بر کسب و کار تشکیل شده که این سرویس ها انعطاف پذیری و پیکربندی پویا را برای فرایندها محقق می کنند]20 [ .
روشی برای طراحی و پیاده سازی نرم افزارهای گسترده سازمانی به وسیله ی ارتباط بین سرویس هایی که دارای خواص اتصال سست، دانه درشتی و قابل استفاده مجدد هستند]21 [ .
معماری سرویس گرا سبکی از توسعه و یکپارچه سازی نرم افزار است. که با شکستن یک برنامه ی کاربردی به سرویس هایی که می توانند هم در داخل و هم در خارج از سازمان مورد استفاده قرار بگیرند، سر و کار دارد ]24 [ .
با وجود تفاوت دیدگاه ها در تعاریف فوق، همه ی آنها بر این اصل توافق دارند که معماری سرویس گرا باعث افزایش انعطاف پذیری سازمان ها می شود. همچنین بر اساس تعاریف ارائه شده می توان استنباط کرد که معماری سرویس گرا قابلیت تاثیر گذاری در همه ی سطوح فناوری اطلاعات از بالاترین سطح معماری سازمانی تا پیاده سازی سرویس ها دارد.
2-4 تعریف سرویس
از آن جا که مفهوم سرویس در صنعت IT به روش های بسیار مختلفی به کار برده شده است، لازم است آن را به دقت تعریف کنیم. با این وجود، قبل از ارائه یک تعریف رسمی و مبتنی بر تکنولوژی، به تعریف کلی تر خواهیم پرداخت تا درک بهتری از سرویس ایجاد شود. ضمنا برای سادگی و یکنواختی برای مفهوم متقاضی سرویس، مصرف کننده ی سرویس، مشتری یا مصرف کننده ی سرویس، عبارت سرویس گیرنده، و برای مفهوم ارائه دهنده ی سرویس یا فراهم کننده ی سرویس از عبارت سرویس دهنده استفاده خواهیم کرد.
آن چه در این مبحث از سرویس مورد نظر است، معنای خود را به نحوی از این تعاریف می گیرد. و به معنی فعالیت با معنایی است که یک سرویس دهنده (احتمالا بر اساس درخواست یک سرویس گیرنده)، انجام می دهد. سرویس دهنده و سرویس گیرنده ممکن است افرادی در یک سازمان یا قطعه برنامه های نرم افزاری باشند و سرویس ممکن است دستی یا مکانیزه، نرم افزاری یا غیر آن باشد.
در اصطلاح فنی و نرم افزاری می توان گفت به طور کلی سرویس، یک پیمانه ی قابل دسترس از راه دور و مستقل است. برنامه های کاربردی این سرویس ها را در دسترس کاربران قرار می دهند. با این تفاسیر مشاهده می کنیم که مفهوم سرویس در هر دو حوزه ی کسب و کار و فناوری مطرح است و کاربرد دارد. تعاریف متعددی برای مفهوم سرویس ارائه شده است از جمله :
" سرویس، کاری است که توسط یک سرویس دهنده ارائه و انجام می شود و ممکن است انجام یک درخواست کوچک مانند دریافت یا ذخیره ی اطلاعات، و یا مربوط به انجام کاری پیچیده تر مانند چاپ یک تصویر باشد" ]28 [.
" از دیدگاه کاری سرویس ها دارایی های ITهستند که به فعالیت های کاری یا عملکردهای کاری قابل بازشناسی در دنیای واقعی مرتبط بوده، و می توانند با توجه به خط مشی های سرویس مورد دسترسی قرار بگیرند. از دیدگاه فنی سرویس ها، دارایی های دانه درشت و قابل استفاده ی مجدد ITهستند که دارای واسط های خوش تعریفی (قراردادهای سرویس) هستند که واسط های قابل دسترس از خارج سرویس را، از پیاده سازی فنی سرویس مجزا می کنند" ]24 [ .
" سرویس تحقق کاری یک عملکرد مستقل است. از دیدگاه فنی، سرویس توصیفی است از یک یا چند عملیات که از (چندین) پیام برای تبادل داده ها میان یک سرویس دهنده و یک سرویس گیرنده استفاده می کند. اثر فراخوانی سرویس آن است که سرویس گیرنده اطلاعاتی به دست می آورد، یا حالت مولفه یا سرویس دهنده را تغییر می دهد" ]26 [ .
" سرویس یکمولفه از یک برنامه کاربردی است که روی سکویی که از طریق شبکه قابل دسترس است مستقر شده، و توسط یک سرویس دهنده ارائه می شود. واسط های سرویس جهت فراخوانده شدن توسط سرویس گیرنده یا تعامل با آن، با استفاده از یک توصیف سرویس، توصیف می شوند" ]26 [ .
بر اساس این تعاریف گزاره های زیر در مورد سرویس برقرار است:
یک عملکرد یا وظیفه مندی را ارائه می کند که ممکن است کاری یا فنی باشد.
قابل استفاده ی مجدد، و از سایر سرویس ها مستقل است.
دارای توصیف، واسط یا قرار داد خوش تعریف است، و جزئیات آن از دید سرویس گیرندگان مخفی است.
دارای یک یا چند عملیات است، و ارتباط سرویس ها توسط تبادل پیام میان این عملیات صورت می گیرد.
2- 5 سرویس های وب
معمولا واژه های معماری سرویس گرا و سرویس های وب اشتباها به جای هم، و به صورت معادل استفاده می شوند. لذا لازم است این دو مفهوم، به صورت دقیق تر بررسی شوند. سرویس های وب را باید عینیت بخش معماری سرویس گرا دانست] 6[.
تعریف W3C از سرویس های وب عبارت است از : یک سرویس وب، نوعی سیستم نرم افزاری است که جهت تعامل ماشین با ماشین در سطح شبکه طراحی شده است، و دارای یک توصیف قابل پردازش توسط ماشین با نام، WSDL است. دیگر سیستم ها بر طبق این توصیف از قبل مهیا شده با سرویس دهنده تعامل خواهند داشت، پیام ها توسط پروتکلSOAP و یا سایر پروتکل های مربوطه منتقل می شوند] 22 [.
از جمله ویژگی هایی که برای سرویس های وب مطرح هستند عبارتند از :
نرم افزارهای کاربردی که تحت وب منتشر شده، شناسایی و مورد فراخوانی قرار می گیرند.
مستقل از سکو و زبان هستند.
نوعی از پیاده سازی معماری سرویس گرا می باشند.
با منطق حرفه در تماس هستند، ولی هیچ شخصی مستقیم با آن ها ارتباط ندارد.
یک رهیافت کلیدی برای عینیت بخشیدن به معماری سرویس گرا هستند.
سرویس های وب دارای شرایطی از قبیل : دسترسی در سطح وب، استفاده از استانداردXMLجهت تبادل اطلاعات، عدم وابستگی به هیچ سکو و سیستم عاملی، تعامل با سرویس های تحت وب و با قابلیت شناسایی و خود توصیفی می باشند. این ویژگی ها در مقابل خصوصیاتی از قبیل استفاده از استاندارد HTML برای تبادل اطلاعات، وابستگی به سکو و فناوری و استفاده توسط اشخاص یا مرورگر وب که برای نرم افزارهای تحت وب می باشند از سرویس های وب متمایز می شوند] 6 [.
2-6 مفاهیم مهم سرویس گرایی
در این بخش به ارائه مفاهیم مهم درارتباط باساختارسرویس وکلیات مطالب مربوط به آن می پردازیم.
2-6-1چگونه سرویسها منطق را محصور میکنند
برای حفظ استقلال، سرویس ها منطق متن خاصی را محصور می کنند. آنچه در سرویس محصور می شود ممکن است کوچک یابزرگ باشد .بنابراین اندازه وحوزه منطقی که توسط سرویس محصورمی شود میتواند متنوع باشد. برای مثال آنچه توسط راه حل هایاتوماسیون ارائه میشود، معمولاًپیاده سازی یک فرآیند عمده کاری است.این فرآیندازمنطقی تشکیل شده است که بارعایت ترتیب وتوالی یا توازی خاص عمل موردنظررا انجام می دهد. این منطق به مجموعه ای از مراحل شکسته می شودکه باتوجه به قواعد،باترتیب ازپیش تعریف شده ای اجرا می شوند. همانطورکه درشکل2-5مشاهده میشود درساختن راه حل متشکل ازسرویسها، هرسرویس میتواند وظیفه ای را که درهرمرحله اجرا می شودیایک زیرفرآیندرا محصور کند. سرویس حتی میتواندکل فرآیندی راکه توسط سرویسهای دیگر محصورشده است، محصورکند.

شکل 2-2. محصورسازی اندازه های مختلفی ازمنطق توسط سرویس] 23[
2-6-2 چگونه سرویس ها از وجود یکدیگر مطلع میشوند.
درSOA، سرویس ها می توانند توسط سرویس های دیگر، یابرنامه های دیگر مورد استفاده قرارگیرند .حال، استفاده کننده ازسرویس هرکه باشد،ارتباط میان سرویسهادرصورتی روی خواهددادکه سرویسها از وجودیکدیگرمطلع باشند. این امر با بهره گیری ازتوصیف سرویس ممکن است.
توصیف سرویس درپایه ای ترین حالت خود، نام سرویس و داده هایی راکه درحین ارتباط مورد نیازند یا بدست می آیند مشخص میکند. روشی که درآن سرویسها از توصیف سرویس استفاده میکنند، موجب می شود که ارتباط درطبقه اتصال سست قرارگیرد. برای تعامل سرویسها و معنی دار بودن آن، آنهاباید اطلاعاتی را مبادله کنند.بنابراین یک چارچوب ارتباطاتی که دارای قابلیت ایجاد ارتباط دارای اتصال سست باشد موردنیازاست. یک چارچوب برای این منظور، پیام رسانی است.
2-6-3 چگونه سرویس ها با هم ارتباط برقرار می کنند.
پس ازآنکه سرویسی پیامی را میفرستد، دیگرکنترل آن رادراختیار ندارد. به همین دلیل است که سرویس هابه پیام ها نیاز دارند تا بعنوان واحد مستقل ارتباطی باقی بمانند. این به معنای آن است که پیام ها نیز مانند سرویس ها باید خود مختار باشند. به همین دلیل میزانی از هوشمندی را دارا هستند تا بتوانند در بخشهای مختلف پردازش خود را مدیریت کنند.
2-6-4چگونه سرویس ها طراحی می شوند.
اصول سرویس گرایی مسائل مرتبط بامواردزیرراتحت پوشش قرارمی دهد(این اصول درادامه معرفی خواهند شد).
الف- چگونه سرویس هاطراحی میشوند؟
ب- ارتباط بین سرویسهاچگونه بایدتعریف شود؟ (شامل تعیین چگونگی تبادل پیامها یاهمان الگوی تبادل پیام MEP)
پ- چگونه باید پیامهاراطراحی کرد؟
ت–چگونه توصیف سرویس ها طراحی می شوند؟
2-6-5 توصیفات سرویسها
هرسرویسی که می خواهد نقش دریافت کننده پیام را داشته باشد باید توصیف سرویس را به همراه داشته باشد. هرتوصیف پیام نقطه اتصالی ازفراهم کننده سرویس رادراختیارقرارمی دهد و دارای تعریفی رسمی از واسط این نقطه اتصال است (تا درخواست کنندگان بتوانند ازساختار پیامی که می بایست برای دریافت خدمات به سرویس دهنده ارسال کنند،آگاه شوند) وهمچنین محل سرویس را (که برای استفاده کنندگان شفاف خواهد بود) معین می کنند.
2-7 ویژگی های معماری سرویس گرا
از آنجایی که تعریف رسمی واحدی برای معماری سرویس گرا وجود ندارد، هیچ مجموعه رسمی واحدی از اصول طراحی بر مبنای سرویس گرایی وجود ندارد. با این حال، مجموعه ای از اصول طراحی در سطح سرویس توسط افرادی نظیر Erl و Mcgovern معرفی شده اند که بر سرویس گرایی انطباق مناسبی دارند و عبارتند از] 29[ :
سرویس ها معمولا یک دامنه یا وظیفه کاری را نمایش می دهند.
سرویس ها دارای طراحی ماژولار (پیمانه ای) هستند.
سرویس ها دارای وابستگی ضعیف اند.
سرویس ها قابل کشف اند.
محل سرویس ها برای سرویس گیرندگان شفاف است.
سرویس ها مست
سرویس ها دارای استقلال داخلی اند.
قل از روش انتقال هستند.
سرویس ها مستقل از پلت فرم هستند.
سرویس ها قابل استفاده ی مجدد هستند.
سرویس ها قابل ترکیب اند.
در معماری سرویس گرا منظور از اتصال سست، قابلیت تعامل بین سرویس ها به صورت مستقل از کد نویسی و مکان سرویس هاست. به گونه ای که سرویس ها در زمان اجرا می توانند تغییر مکان داده و روال های داخلی خود را تغییر دهند. سرویس ها ماژول هایی از کسب و کار هستند که می توانند توسط پیام هایی درخواست شوند و در نرم افزارهای مختلف مورد استفاده قرار بگیرند. یک نمونه از سرویس می تواند انجام یک درخواست روی داده مانند دریافت یا ذخیره ی اطلاعات باشد. سرویس ها در یک زبان استاندارد توصیف می شوند و فعالیت ها و فرایندهای کسب و کار را پشتیبانی می کنند. سرویس هایی که از استانداردهایی مثل یو دی دی آی، دبلیو اس دی ال، سواپ استفاده می کنند، عمومی ترین نوع سرویس هایی هستند که امروزه در دسترس می باشند. این سرویس ها به راحتی می توانند ترکیب شوند تا مجموعه ای از فرآیندهای کسب و کار مستقل را شکل دهند. ویژگی مستقل از سکو بودن معماری سرویس گرا این امکان را فراهم کرده است تا هر کاربر، از هر سیستمی و یا هر نوع سیستم عامل و زبان برنامه نویسی می تواند به سرویس ها دسترسی پیدا کند] 29 [.
سازمان های مختلف در بخش های گوناگون، معماری سرویس گرا را به دلیل قابلیت آن در بهبود فرآیندهای کسب و کار سریع، و انعطاف پذیری را ایجاد کنند.
به طور کلی برخی از مزایای به کارگیری معماری سرویس گرا عبارتند از:
یکپارچه سازی برنامه های موجود
بهبود یکپارچه سازی داده ها
سرعت بخشیدن به توسعه ی برنامه های کاربردی سفارشی
سهولت برون سپاری جهانی
تسریع در انجام فرآیندهای سیستم اطلاعاتی و ...]30[.
2-8 تعریف گذرگاه سرویس
تعاریف متفاوتی در منابع گوناگون برای گذرگاه سرویس سازمانی ارائه گردیده است که تعدادی از آنها به شرح زیر می باشد:
ESB به عنوان یک لایه هوشمند، توزیع شده، تعاملی و پیام رسان برای اتصال برنامه های کاربردی و سرویس هایی که معمولا به صورت توزیع شده از طریق زیرساخت های ارتباطی سازمان ها با هم ارتباط دارند، عمل می کند]31[.
مجموعه ای از استاندارها جهت ارائه یک زیرساخت عملیاتی و قدرتمند برای پشتیبانی عملیات یکپارچه سازی برنامه های کاربردی توزیع شده]32[.
ESB به عنوان یک معماری است که از ترکیب وب سرویس، پیام رسانی میان افزار، مسیریابی هوشمند و تبدیل اطلاعات بدست می آید]33[.
ESB به عنوان متصدی و مسئول مسیریابی، تبدیل و کنترل ارتباطات بین ارائه کننده و مصرف کننده خدمات می باشد]34 [.
ESB یک الگوی معماری و یک کلید مهم واساسی در اجرای زیرساخت های معماری سرویس گرا می باشد، در واقع ESBشرایطی برای تعامل بین سرویس های ناهمگن و رابط های کاربری که دارای عدم تطابق هستند فراهم می نماید]35[.
ESB یک سیستم مبتنی بر استانداردهای توزیع شده پیام رسانی همزمان و یا غیرهمزمان توسط میان افزارها می باشد که قابلیت همکاری و تعامل امن بین برنامه کاربردی سازمان ها را با استفاده از XML، وب سرویس، رابط های کاربری و مسیریابی مبتنی بر قوانی فراهم نموده و به یکپارچه سازی سرویس ها در میان چندین برنامه کاربردی در داخل و خارج سازمان کمک می کند. این امر از طریق ایجاد گذرگاهی استاندارد و ارائه تطبیق دهنده هایی برای تبادل اطلاعات بین برنامه ها صورت می گیرد.

شکل 2-3. ارتباط بین برنامه های کاربردی مختلف در ] ESB 36[
2-8-1 مسیریابی و مقیاس پذیری
از ویژگی های مهم استفاده از ESB حل مشکل توسعه سیستم در روش ارتباط نقطه به نقطه است. همان گونه در بخش هایی فبلی هم مطرح گردید جهت برقراری ارتباط به صورت نقطه به نقطه برای N برنامه کاربردی نیاز به N(N-1)/2 ارتباط می باشد که این روش در سازمان های نسبتا بزرگ و بزرگ اصلا مناسب نبوده و قابل اجرا نمی باشد. نکته مهم در برقراری ارتباطات بین برنامه های کاربردی کاربردی در روش ESB این است که برای ارتباط از یک گرگاه مشترک استفاده می گردد و برنامه ها به صورت مستقیم با هم ارتباط ندارند. در واقع تعداد ارتباطات مورد نیاز برای برقراری تعامل بین برنامه برای N برنامه برابر با تعداد آنها، یعنی N می باشد که نسبت به روش نقطه به نقطه بسیار ساده تر و بهینه تر می باشد.

شکل 2-4. ارتباط غیر مستقیم بین برنامه های کاربردی با استفاده از قابلیت مسیریابی پیام در ] ESB 37 [
برای ارتباط غیر مستقیم بین برنامه های کاربردی از طریق یک گرگاه مشترک در ESB علاوه بر کاهش تعداد ارتباطات موردنیاز برای تعامل برنامه ها مزایای دیگری نیز دارد که از جمله می توان به مواردی از قبیل نگهداری و بروزرسانی ساده تر سیستم یکپارچه و همچنین افزایش چابکی در پیاده سازی ساختار یکپارچه سازی برنامه های کاربردی سازمان اشاره نمود.
2-8-2 تبدیل پروتکل انتقال
عدم تطابق پروتکل های ارتباطی در برنامه های کاربردی سازمان، یکی دیگر از مشکلات موجود در یکپارچه سازی برنامه های کاربردی در سازمان ها می باشد و دلیل آن توسعه برنامه ها در سازمان ها و عدم استفاده از پروتکل های یکسان در پیاده سازی آن ها می باشد به نحوی که ممکن است در برخی موارد عدم تطبیق پروتکل های ارتباطی در نرم افزار ارائه دهنده سرویس و نرم افزار مصرف کننده سرویس رخ دهد. استفاده از پروتکل یکسان توسط کلیه برنامه های کاربردی سازمان در عمل دارای محدودیت های فراوان بوده و غیر قابل اجرا می باشد.

شکل 2-5. برقراری ارتباط بین برنامه های کاربردی با پروتکل های انتقال مختلف با استفاده از پیاده سازی گرگاه سرویس سازمان ] ESB 37 [
2-8-3 تبدیل پیام
موارد دیگری که در پیاده سازی ESB مدنظر قرار گرفته و برای آن راه حل ارائه گردیده است، تبدیل پیام ها و حل مشکل عدم تطبیق فرمت پیام ها و داده ها می باشد. یکی از مشکلاتی که در یکپارچه سازی برنامه های کاربردی در سازمان ها وجود دارد این است که فرمت داده ها و پیام ها در مصرف کننده سرویس و فرمت مورد نیاز برای تامین کننده سرویس با یکدیگر تفاوت دارد و در نتیجه این امر مانع برقراری یا ارتباط و تبادل داده ها بین برنامه ها می گردد.
بنابراین یکی دیگر از کارکردهای اصلی که باید توسط ESB ارائه گردد، تبدیل پیام ها و یا داده ها می باشد. هنگامی که این قابلیت با دو قابلیت اصلی دیگر یعنی مسیریابی و تبدیل پروتکل های ارتباطی ترکیب شود، در نتیجه برنامه های کاربردی می توانند به راحتی و بدون نیاز به تطابق پروتکل ها و فرمت پیام ها و داده ها با یکدیگر ارتباط برقرار کنند.

شکل 2-6. با استفاده از ESB برنامه های کاربردی می توانند حتی زمانی که فرمت پیام ها و پروتکل های ارتباطی متفاوت دارند، با یکدیگر تعامل داشته باشند] 37 [
2-8-4 ویژگی ها و مزایای گذرگاه سرویس
با توجه به مطالب مطرح شده در قسمت قبلی، ESBویژگی های کلیدی ذیل را ارائه می دهد ] 37 [:
مسیریابی مبتنی بر محتوا و متن
تبدیل پروتکل های انتقال
تبدیل پیام ها و داده ها
سرویس و امکاناتی که با استفاده ازESBفراهم می گیرد فراتر از برقراری اتصال و تعامل بین برنامه های کاربردی می باشد و با استفاده ازESBسرویس های ارزش افزوده ای نیز حاصل می گردد که تعدادی از آن ها در ادامه بیان می گردد] 38[:
فراهم کردن امکان اتصال
مسیریابی هوشمند
تامین امنیت و قابلیت اطمینان تعامل
مدیریت سرویس
نظارت و ثبت رخدادها
2-8-5 اجزای گذرگاه سرویس
به منظور اجرای ویژگی ها و وظایف مطرح شده برای ESBتعدادی از مولفه ها و اجزا در ساختار تشکیل دهنده آن مورد نیاز می باشد که ضمن نمایش آن ها در شکل شماره 3-19 تعدادی از آن ها در ادامه بیان می گردد] 39 [:
سازگارکننده ها: از اجزای اصلی ESBهستند وشرایطی را فراهم می آورند تا ESBبتواند با ورودی/ خروجی متفاوت تعامل داشته باشد.به ازای هر مصرف کننده و یا ارائه دهنده سرویس، یک سازگارکننده خاص وجود دارد که تنها ترکیب خاصی از پروتکل های و فرمت های پیام را تشخیص می دهد.به عنوان مثال می توان سازگارکننده ای را نام برد که کلیه درخواست های ورودی بر مبنای SOAP را روی HTTP ارائه می دهد.
توزیع کننده: به عنوان یک نقطه ورود مرکزی عمل می کند و وظیفه آن دریافت اطلاعات از سازگار کننده ها و ارسال به قسمت مربوطه برای مسیریابی، تبدیل، غنی سازی، و غیره می باشد. توزیع کننده درخواست ها را به سمت اداره کننده درخواست ها ارسال می کند و همراه با آن قابلیت مسیریابی مبتنی بر محتوا را در ESB فراهم می نمایند.

شکل 2-7. اجزای منطقی تشکیل دهنده ] ESB 39 [
اداره کننده درخواست ها: هر سرویس اداره کننده درخواست مخصوص به خود دارد و وظیفه آن انتقال پارامترهای خاص مربوط به سرویس به موتور مسیریابی برای اجرای مناسب سرویس می باشد.
موتور قوانین و مسیریابی: وظیفه این مولفه، اجرای تبدیل و غنی سازی وظایف و مسیریابی آنها برای تحویل به نمایندگان سرویس خاص می باشد.
نماینده های سرویس: به عنوان نقطه انتهایی برای دسترسی به سرویس خاص هستند و با استفاده از سازگارکننده ها با ارائه دهندگان سرویس ارتباط برقرار می کنند.
موتور تبدیل: این جزء ازESB کلیه پیام ها و یا داده های ورودی را به فرمت مناسب برای ارائه کننده سرویس تبدیل می کند.
اجزاء غنی سازی : این مولفه به ESB اجازه می دهد تا محتویات پیام را مطابق با نیاز ارائه دهنده سرویس و از طریق یک منبع خارجی (مانند: پایگاه داده) تقویت نماید.
اجزاءثبت عملیات: این جزء ازESB، پشتیبانی از ثبت عملیات مورد نیاز برای سایر بخش ها را فراهم می نماید.
اجزاء مدیریت استثناءها: وظیفه این بخشازESB مدیریت استثنائات تولید شده توسط سایر بخش ها و اجزاء می باشد.
2-9 انگیزه ی حرکت سیستم های تولید ی به سمت معماری سرویس گرا
درسیستم های تولیدی فعالیتهای گوناگونی انجام می شود، پیشرفت‌های اخیر در زمینه تولید و تکنولوژی اطلاعات، جایگزین‌های استراتژیکی را برای طراحی سیستم‌های اطلاعاتی محیط‌های تولیدی مهیا و معرفی کرده است. بیشتر شرکت‌ها، استفاده استراتژیک از سیستم‌های اطلاعاتی را به منظور فراهم‌سازی مزیت رقابتی بالا، شروع کرده‌اند. آنها، عملیات تولید و استراتژی کسب و کار خود را با استفاده از سیستم‌های اطلاعاتی، یکپارچه ساخته و توانسته‌اند توازنی مطلوب بین یکنواختی و قابلیت انطعاف در تولید را با استفاده از توسعه مفاهیم سیستم‌های یکپارچه (در مقابل روش‌های معمول تولید) برقرار سازند.
به همین دلیل سازمان ها امروزه به سمت معماری سرویس گرا روی آورده اند که رویکردی برای سرعت بخشیدن در انجام فرآیندهای سیستم اطلاعاتی می باشد.
در واقع انگیزه اصلی سیستم spx به سمت معماری سرویس گرا، بهبود انعطاف پذیری و کارایی این سیستم ها در تغییرات نیازمندی ها است. یکی از علل شکست سیستم های تولیدی، ضعف آن در تطبیق و یکپارچگی با سیستم های درونی و بیرونی است. این سرویس ها می توانند به راحتی پیکربندی شده، و بدین ترتیب مطابق با خواسته های سازمان عمل کند.
همچنین مبنی بر استانداردهای باز، سرویس ها این امکان را می دهند که هر بخش از نرم افزار ها از طریق انتقال پیام با یکدیگر ارتباط برقرار کنند. معماری سرویس گرا این کار را نیز آسان تر کرده است. از دیگر مزایای معماری سرویس گرا می توان به این نکته اشاره کرد که هزینه تغییرات تا حد بسیار زیادی کاهش پیدا می کند، چرا که نیاز به تغییر کل سیستم نبوده، و سرویسی که مورد نیاز می توان اضافه کرده و یا آن را تغییر داد. سرویس ها از طریق کانال های متنوع و به کمک فناوری های مختلفی لرائه می شوند و باید به نحوی باشند که بتوانند با تغییر فناوری ها همچنان قابل استفاده باشند. با استفادع از رهیافت معماری سرویس گرا مشکلاتی که برای نگهداری و بروز کردن برنامه های کاربردی قدیمی وجود داشت، تا حد زیادی برطرف شده اند.
راه حل معماری سرویس گرا برای واحدهای مختلف سازمان، استفاده از وب سرویس های استاندارد است. تاکنون بحث های زیادی پیرامون موضوع معماری سرویس گرا و اینکه سرویس ها در این معماری فرآیندهای کسب و کار سریع و انعطاف پذیر را ایجاد می کنند، شده است.
توصیه کرده است که توسعه ی برنامه های کاربردی سرویس گرا در مقایسه با متدهای توسعه ی قدیمی، هزینه ی فناوری اطلاعات سازمان را در حدود 20 در صد کاهش داده است] 30[.
2-10 تعریف برون سپاری
برون سپاری دارای تاریخچه ای طولانی است. وجود ضرب المثل هایی نظیر "کار را به کاردان بسپارید" و یا آیاتی از قرآن مجید مبنی بر گرفتن دایه برای فرزندان مصداقی از برون سپاری است]10[. در دنیای کنونی سرعت تغییر دانش و اطلاعات به قدری است که سازمانهای بزرگ به سرعت از گردونه رقابت خارج میشوند و این امر باعث چاره اندیشی شرکت های بزرگ شده است. یکی از راههای نجات این شرکتها برون سپاری فعالیتها و کوچک سازی سازمانها است تا جایی که بتوانند به سرعت تغییر کنند]10[.
تعاریف متفاوتی برای برون سپاری ذکر شده که می توان به موارد زیر اشاره کرد:
واگذاری تمام یا بخشی از مسئولیت یکی از واحدهای سازمان به یک عرضه کننده بیرون از سازمان
خریدن بخشی از منابع یا امکانات یک شرکت یا سازمان
نوعی مقاطعه کاری که در همه ی زمینه ها قابل استفاده باشد
ارایه خدمات و ابزار برای یک سازمان
تصمیم اتخاذ شده توسط یک سازمان جهت ارایه و یا فروش داراییها نیروی انسانی و خدمات به شخص ثالث، که طرف قرارداد متعهد میگردد در قبال درآمد مشخص و در یک زمان معین، دارایی ها و خدمات قید شده در قرارداد را ارایه و مدیریت نماید.
(Ferry D. Kraker) برون سپاری عبارتست از پیدا کردن ارائه دهندگان خدمت جدید و روشهای جدیدی که بتوان با اطمینان تهیه مواد، کالاها، اجزاء و خدمات را به آنها واگذار نمود.
در حقیقت در واگذاری یا برون سپاری، سازمان از دانش و تجربه و خلاقیت ارائه دهندگان خدمت جدیدی که قبلاً استفاده نکرده است، بهره مند می شود.
2-10-1 عوامل تاثیر گذار بر برون سپاری
عوامل مختلفی در امر برون سپاری فعالیتهای سازمانی دخیل هستند و محققین مختلف عوامل گوناگونی را مطرح نموده اند. در مطالعه ای که توسط یانگ صورت گرفت، پنج عامل استراتژی، کیفیت، مدیریت، اقتصاد و فناوری بعنوان عوامل تأثیرگذار در موفقیت برون سپاری معرفی شده اند
]44[.در مطالعه دیگری شش دلیل عمده برای استفاده از استراتژی برونسپاری توسط سازمانهای مختلف بیان شده که عبارتند از: صرفه - جوییهای مالی، تمرکز راهبردی، دسترسی به تکنولوژیهای پیشرفته، ارائه خدمات پیشرفته، دستیابی به مهارتها و تخصصهای جدید و خط مشیهای سازمانی ]45[.در مطالعه دیگری تمایل به کاهش هزینه ها و افزایش کارایی، تمرکز بر قابلیتهای کلیدی سازمان، شناخت و معرفی نیروی کاری منعطف، بهبود مدیریت روابط صنعتی، ارضای اهداف شخصی تصمیم گیرندگان و تابعیت از قوانین حکومتی به عنوان دلایل عمده برونسپاری نام برده شده اند] 46 [. آرنولد در مطالعه ای که بر روی عوامل تأثیرگذار بر برونسپاری انجام داده است، سه عامل صرفه جویی در هزینه ها، تمرکز بر قابلیتهای کلیدی و انعطاف پذیری در برابر تغییرات محیطی را به عنوان عوامل موثر در استراتژی برونسپاری معرفی می نماید]30[. از مهمترین دلایل برونسپاری میتوان به کاهش کنترل مدیریت، بهبود کیفیت خدمات، تمرکز بر قابلیتهای کلیدی، دستیابی به تکنولوژیهای جدید، کاهش هزینه های سربار، افزایش خبرگی در داخل سازمان، کاهش هزینه های داد و ستد، کاهش هزینه های تولید، سرمایه گذاری در فناوری، افزایش ظرفیت و بهبود موقعیت در زنجیره تأمین وافزایش ظرفیت تغییر در سازمان اشاره نمود] 47[. بطور خلاصه محرک های برون سپاری را میتوان در قالب جدول 2- 1 مشاهده نمود.
جدول 2- 1 محرکهای چندگانه برون سپاری ]50[
محرکهای برون سپاری پیامدها و نتایج محرکهای برون سپاری تحقیقات صورت گرفته
محرکهای اقتصادی 1-کاهش هزینه و صرفه جویی سودآوری بیشتر بهبود اثربخشی عملیات Trunick (2010),
Richardson (2012),
Gonzalez et al. (2013)
2-کاهش نیاز به سرمایه گذاری تمرکز بیشتر سرمایه ها بر روی بخشهای کلیدی بهبود نرخ بازگشت دارائی Corbett (2008),
Razzaque and Sheng (2011), Trunick (2012)
Lynch (2013),
Embleton and Wright (2008),
Claver et al. (2011)
محرکهای استراتژیک -1 برنامه ریزی استراتژیک برای تمرکز بر نقاط کلیدی کسب مزیت رقابتی بهبود عملکرد،
رضایت ارباب رجوع/ مشتریان،
ارتقاء مهارت منابع انسانی، افزایش رقابت Corbett (2009),
Embleton and Wright (2010),
lott (2013),
Prahalad and Hamel (2000),
Quinn and Hilmer (2003),
Weerakkody et al. (2012)
-2 افزایش انعطاف پذیری توان ارائه محصولات و خدمات
مختلف، افزایش توان مسئولیت پذیری، کاهش ریسک Quinn and Hilmer (2003),
Corbett (2007), Embleton and Wright (2007), Razzaque and Sheng (2007), Kakabadse and Kakabadse (2009), Jennings (2011), Lynch (2013)
محرکهای محیطی -1 توسعه IT تشویق سازمانها برای بکارگیری
سیستمهای اطلاعاتی پیشرفته به
منظور ارتقاء اثربخشی و مقرون به
صرفه بودن Lynch (2013)
-2 جهانی شدن بدست آوردن مزیت رقابتی Clott ( 2013)
-3 فشارهای جامعه ارائه محصولات و خدمات با قیمت پائین تر و کیفیت بهتر Jennings (2011)
2-10-2 دلایل عمده برون سپاری
از نقطه نظر دلایل سازمانی
افزایش اثربخشی از طریق تمرکز بر روی کاری که سازمان در انجام آن بهترین است.
افزایش انعطاف پذیری برای مقابله با شرایط کسب و کار، تقاضا برای محصولات و خدمات و تکنولوژی
تغییر سازمان
افزایش ارزش محصولات و خدمات، رضایت مشتریان و ارزش سهام
از نقطه نظر دلایل بهبود
بهبود عملکرد عملیات
بدست آوردن تخصص ها، مهارت ها و تکنولوژی هایی که قبلاً قابل دستیابی نبوده است.
بهبود مدیریت و کنترل
بهبود مدیریت ریسک
بدست آوردن ایده های نوآورانه
بهبود اعتبار و تصویر سازمان به وسیله مشارکت با ارائه دهندگان خدمت برتر
از نقطه نظر دلایل مالی
ایجاد نقدینگی از طریق انتقال داراییها به ارائه دهندگان خدمت
کاهش سرمایه گذاری روی دارائیها و آزادسازی آنها برای سایر اهداف
از نقطه نظر دلایل درآمدی
بدست آوردن سهم بازار و فرصتهای کسب و کار از طریق شبکه ارائه دهندگان
تسریع در رشد و توسعه ظرفیت، از طریق قرارگرفتن در جریان فرایندها و سیستم های ارائه دهنده
رشد فروش و ظرفیت تولید در بازه زمانی، وقتی که امکان تامین مالی چنین رشدی در سازمان وجود نداشته باشد
گسترش تجاری مهارت های موجود
از نقطه نظر دلایل هزینه ای
کاهش هزینه ها از طریق عملکرد برتر و ساختار هزینه ای پایین تر ارائه دهندگان خدمت
تغییر هزینه های ثابت به متغیر
2-10-3 معایب برون ‌سپاری
تبعات برون سپاری شامل امکان از دست رفتن کنترل بر فرایندها، مشکل در مدیریت روابط با تأمین کننده، تغییرات عرصه کسب و کار در بلند مدت، مشکل لغو قرارداد، ایجاد تعارض سازمانی در روابط با تأمین کننده، از دست رفتن مشاغل در سازمان، کاهش کیفیت و افزایش هزینه به دلیل انتخاب نامناسب تأمین کننده می‌شود.نشریه فوربس در دسامبر ۲۰۱۲ با انتشار پروژه - ریسرچمفصلی به تحلیل روند بازگشت خطوط تولید تعدادی از معتبرترین برندهای آمریکایی نظیر اپل، GE و... به آمریکا پرداخت و نتیجه گرفت که مهمترین عیب «برون سپاری» فاصله افتادن بین سازمان طراحی و سازمان تولید یک شرکت است که در نتیجه آن بازخوردهای لازم در مورد سختی و آسانی و هزینه‌های فرایند تولید محصول به موقع برای بهبود طرح به بخش طراحی نمی‌رسد.
2-10-4 تعریف برون سپاری استراتژیک
برون سپاری استراتژیک عبارتست از: یک نگاه استراتژیک به برون سپاری که بتواند فرایندهای مسئله دار، وضع بد بهره وری ، مشکلات ترک کارکنان و امثال آن را در یک نگاه بلند مدت حل کند. بر این اساس اقدام برون سپاری زمانی استراتژیک خواهد شد ، که با استراتژی های بلندمدت سازمان همراستا شود ، منافع برون سپاری بعد از گذشت چندین سال پدیدار گردد و نتایج مثبت یا منفی آن برای سازمان از اهمیت ویژه ای برخوردار باشد برون سپاری استراتژیک با پرسیدن سوالات اساسی درباره رابطه برون سپاری با سازمان و موضوعات سازمانی زیر ، برون سپاری را در سطح بالاتری قرار می دهد.
چشم انداز آینده
قابلیت های کلیدی فعلی و آینده
ساختار فعلی و آینده
هزینه های فعلی و آینده
عملکرد فعلی و آینده
مزیت رقابتی فعلی و آینده
2-10-5 کارهای انجام شده در ارتباط با برون سپاری
در گذشته به دلیل هزینه های زیادی که فرایند برون‌سپاری داشته پیمانکاران توان ارائه خدمات به کسب و کارهای کوچک و متوسط را نداشتند. و همچنین کسب و کارهای کوچک و متوسط نیز تمایل به برون‌سپاری نداشتند زیرا بر این عقیده بودند که پیمانکاران نمی توانند پروژه را به طور کامل درک کنند و نمی خواستند کنترل فرایند های داخلی را به خارجی ها بدهند. کسب و کار های کوچک برای آنکه بیشتر مورد دسترس باشند به برون‌سپاری روی آورده اند. از طرف دیگر این نوع فعالیت ها به آنها اجازه می دهد تا بتوانند با توان کمتر با شرکت های بزرگتر که خدمات با کیفیتی را ارائه می دهند نیز رقابت کنند.
امروزه برونسپاری به عنوان یکی از استراتژیهای موثر در دنیای کسب و کار شناخته شده است. در این راستا برونسپاری فرایندهای کسب و کار به عنوان یکی از متداولترین اشکال برونسپاری به شمار می آید. در سالهای اخیر بسیاری از سازمانها برای حفظ مزیت رقابتی خود در بازارهای منطقهای و جهانی برونسپاری فعالیتهای سازمانی را شروع کرده و همچنین امروزه بسیاری از سازمانها اقدام به برونسپاری برخی از فعالیتهای خود به عنوان یک رویکرد راهبردی نمودهاند. فرایند برون سپاری برخی از فعالیتهای سازمان بواسطه پیچیدگی و عدم قطعیت موجود در این فرایند، نیازمند صرف زمان و دقت کافی برای جلوگیری از شکست این فرایند در سازمان است. این مسئله خود نیازمند مدیریت قوی در حوزه برونسپاری در سازمان است. در واقع برای جلوگیری از ایجاد هرگونه مشکلی در فرایند برونسپاری بایستی اقدام به تصمیمات راهبردی در این حوزه و در نتیجه انتخاب استراتژیهای مناسب سازمان در امر برونسپاری نمود. برون‌سپاری باعث کاهش هزینه های اجرایی و بالا بردن بهره وری در کسب و کار های کوچک و بالا بردن توان رقابتی آنها می شود. امروزه پیچیدگی فضای کسب و کار، افزایش رقابت میان تولید کنندگان، محدودیت منابع و بسیاری عوامل دیگر، سبب شده که سازمان های تولیدی به سمت بکارگیری فرآیندها و تصمیمات بهینه در حرکت باشند تا از این رهگذر، امکان بقای بالنده سازمان را تضمین نمایند. بدیهی است که تخصصی شدن و در نتیجه محدود کردن حیطه فعالیتها، در صورتی مقدور خواهد بود که بخشی از وظایف به خارج از سیستم برون سپاری گردد. در واقع برون سپاری عبارت است از واگذاری بخشی از فعالیتهای محوری یا غیر محوری سازمان بر مبنای تصمیمات اخذ شده، که منجر به کاهش نرخ یکپارچه سازی عمودی میشود ] 12 [ .
برخی از محققان، بیشتر در حوزه تولید و مدیریت زنجیره تأمین، برون سپاری را چیزی بیش از تکامل مطالعات در حوزه ساخت یا خرید نمی دانند.
در گذشته، برون سپاری زمانی مورد استفاده قرار می گرفت که سازمانها نمی توانستند خوب عمل کنند. در رقابت ضعیف بودند، کاهش ظرفیت داشتند، با مشکل مالی روبرو بودند و یا از نظر فن آوری عقب و شکست خورده بودند. امروزه سازمانهایی که کاملا موفق هستند نیز از این ابزار برای تجدید ساختار سازمانهایشان استفاده می کنند و مدیران این سازمانها به عنوان یک موضوع حیاتی این موضوع را درک کرده اند که ایجاد قابلیت های کلیدی برای برآورده نمودن نیازهای مشتری ضروری است و باید در این راه تلاش نمایند.
دیگر محققان، عموما در حوزه مدیریت عملیات خدمات، آن را یک روند انقلابی و جهشی که در چند سال گذشته آغاز گشته است می دانند. یکی از تئوری هایی که در اکثر منابع به آن در مورد منشأ برون سپاری اشاره می شود، تئوری هزینه مبادله می باشد و از این رو سرچشمه دانش برون سپاری به حدود هفتاد سال قبل بر می گردد.
در طول این هفتاد سال چندین تئوری در رشته های مختلف توسعه یافته اند که به طور مکرر در مطالعاتی که امروزه در مورد برون سپاری وجود دارد، به طور خلاصه به آنها اشاره می شود. 10 تئوری که از آنها بیشتر در مقالات و منابع علمی به عنوان ریشه های برون سپاری یاد می شود به شرح زیر می باشند:
1. تئوری هزینه مبادله
2. دیدگاه بر اساس منابع
3. تئوری عامل اصلی
4. تئوری ادغام عمودی
5. مدیریت استراتژیک
6. اقتصاد تکاملی
7. دیدگاه ارتباط
8. اقتصاد صنعتی
9. تئوری هم ترازی استراتژیک
10. تئوری شایستگی اصلی
عموما در تحقیقات مربوط به برون سپاری چهار پرسش متداول مد نظر قرار می گیرد که عبارتند از:
1. چرا باید برون سپاری کنیم؟
2. کدام فعالیت ها و فرآیند ها باید برون سپاری شوند؟
3. عوامل اصلی موفقیت در ارتباط با برون سپاری کدامند؟
4. چگونه باید این برون سپاری را هدایت کنیم؟
برون‌سپاری باعث کاهش هزینه های اجرایی و بالا بردن بهره وری در کسب و کار های کوچک و بالا بردن توان رقابتی آنها می شود.
با توجه به گزارش گارتنر بازار برون‌سپاری در سال 2003، در کشور آمریکا معادل 15 میلیارد دلار بوده است.
مراحل 10 گانه گارتنر جهت موفقیت در برون سپاری
جا انداختن تفکر برون‌سپاری به عنوان یک روش عملی
همراستا کردن تمام فعالیتهای مرتبط با برون‌سپاریبا راهبردهای کسب و کار
داشتن توقعات واقع بینانه از کسب سود قبل از اقدام به برون سپاری
بالا بردن ارزش خدمات منعطف در مقابل خدمات ثابت
انتخاب روشهای تحویل سازگار با اهداف تجاری و کسب وکار سازمان
تعریف محرکها و روش ارتباطی به جهت حصول سود دو جانبه
مذاکرات پی در پی جهت اتخاذ معامله برنده-برنده
ارائه راه حلهای تجاری بر مبنای شبکه تولیدکنندگان
توسعه و پیاده سازی روشهای مدیریت توزیع متمرکز
ایجاد تعادل میان نظارت و اعتماد در روابط برون سپاری
2-11 سیستم اطلاعاتی
همان طور که می دانیم همزمان با ظهور فن آوری، و حضور آن در سازمان ها، توسعه ی سیستم های اطلاعاتی نیز روز به روز افزایش یافت. دیوید و السون، یک سیستم اطلاعاتی را به عنوان یک سیستم یکپارچه به منظور ارائه ی اطلاعات برای پشتیبانی عملیات، مدیریت، و تصمیم گیری در یک سازمان تعریف کرده اند. به عبارتی دیگر می توان گفت که یک سیستم اطلاعاتی، عبارت است از یک سیستم کامل طراحی شده برای تولید، جمع آوری، سازماندهی، ذخیره و توزیع اطلاعات در یک سازمان. این اطلاعات بسته به نوع سیستم اطلاعاتی برای تصمیم گیری، کنترل، ساخت محصولات جدید و ... مورئ استفاده قرار می گیرند. داده های جمع آوری شده از سازمان یا محیط خارج از آن، به عنوان ورودی یک سیستم اطلاعاتی به شکلی با معنا پردازش شده، و خروجی به افراد یا فعالیت هایی که از آنها استفاده می کنند منتقل می شود. برخی از سیستم های اطلاعاتی عبارتند از سیستم پردازش تراکنش، سیستم اطلاعاتی مدیریت، سیستم تصمیم یار، سیستم اطلاعاتی اجرایی و ...]41[.
توسعه ی سیستم اطلاعاتی به طور عمده بر روی کارایی فرایندهای کسب و کار و به صورت غیر مستقیم، بر روی برآورده کردن نیازمندی های مورد تقاضای سازمان تمرکز می کند.
امروزه تمامی سیستم‌های تولیدی به روشنی بیانگر این نکته‌اند که مفاهیم و ساختار کار آنها، از ایده «آدام اسمیت» مبنی بر تخصصی شدن کار و شکسته شدن یک کار به کارهای کوچک‌تر، گرفته شده است. تخصصی شدن کارها، تولید انبوه محصولات استاندارد شده را امکان‌پذیر می‌سازد.
مفهوم سیستم تولید یکپارچه، تنها شامل عناصر درون سازمان نبوده و از عناصری متعدد تشکیل شده است که در یک سوی آن تامین‌کنندگان مواد و قطعات و در سوی دیگر، مشتریان قرار دارند.برای عملکرد موثر این سیستم‌ها، در طراحی آنها باید یکپارچه‌سازی بیشتر فعالیت با هم و کاهش لایه‌های سلسله مراتبی را مدنظر قرار داد. کندی جریان اطلاعات و یا ناکافی بودن آن بین واحد تولید و دیگر واحدها نظیر بازاریابی یا تحقیق و توسعه، مسئله‌ای رایج در شرکت‌های تولیدی است. برای بیشینه کردن کارایی سازمان، تمامی کارکردها به جای این‌که به تنهایی بهینه‌سازی شوند باید به صورت یکپارچه‌ با هم در تعامل باشند.
بیشتر سیستم‌های اطلاعات در محیط‌های تولیدی، برنامه‌های کاربردی تخصصی هستند که سعی دارند تکنولوژی‌های پیشرفته تولید را با استفاده از رایانه، قابل استفاده و کنترل کنند.سیستم اطلاعات جامع تولید در پی آن است که این برنامه‌های کاربری تخصصی و جزیره‌ای مهندسی، تولیدی و تجاری را در قالب یک سیستم اطلاعاتی جامع یکپارچه ترکیب کند.
در این راستا با شناخت تهدیدات و فرصت‌های محیطی، قابلیت‌ها ی این‌گونه سیستم‌ها، استراتژی طراحی و توسعه آنهاست. همچنین خواهیم دید که چگونه این سیستم‌ها به عنوان سلاحی رقابتی به‌کار گرفته می‌شوند.
2-12 کارهای انجام شده د ر ارتباط با به کارگیری سیستم اطلاعاتی در یکپارچگی واحد های مختلف تولید

—d1151

2-13-3 سیستم عامل توزیع شده 31
2-13-4 سیستم عامل بی درنگ 32
2-14 سیستم های توزیعی 32
2-14-1 شفافیت 33
2-14-2 قابلیت اطمینان 34
2-14-3 کارایی 34
2-14-4 مقیاس پذیری 35
2-15 سیستم عامل های توزیعی 35
2-15-1 الگوی مبتنی برپیام 36
2-15-2 الگوی مبتنی بر شیء 36
2-16 رویکرد سیستم عامل های ابری 36
2-17 الگوی سیستم عامل ابری 37
2-17-1 شیء ابری 37
2-17-2 نخ 39
2-17-3 تعامل میان شیء و نخ 39
2-18 برنامه نویسی در مدل شیء – نخ در ابرها 40
2-19 معماری سیستم عامل ابری 41
2-20 برخی سیستم عامل های ابری موجود 42
2-20-1 سیستم عامل iCloud 43
2-20-2 سیستم عامل GlideOS 44
2-20-3 سیستم عامل G.ho.st 45
2-20-4 سیستم عامل JoliCloud 46
2-20-5 سیستم عامل eyeOS 47
2-20-6 گوگل کروم، سیستم عامل اینترنت 47
2-21 مزایا و معایب سیستم عامل های ابری مبتنی بر وب 51
2-22 مطالعه مروری بر سایر پژوهش های مرتبط مهم 51
فصل سوم: روش تحقیق 54
3-1 چالش های رایج در زمینه سیستم عامل های ابری 55
3-1-1 مقیاس پذیری 55
3-1-1-1 تغییر مقیاس افقی و عمودی 56
3-1-1-2 مقیاس پذیری پایگاه داده ها 57
3-1-1-3 طراحی برای مقیاس پذیری 58
3-1-1-4 مقیاس پذیری در محاسبات ابری 59
3-1-1-5 تغییر مقیاس قوی و ضعیف 59
3-1-2 کشش تقاضا 60
3-1-3 خطاها 60
3-1-4 گره خوردن کاربران به یک سرویس دهنده خاص 61
3-1-5 وابستگی شدید بین مولفه ها 61
3-1-6 فقدان پشتیبانی چند مستاجری 62
3-1-7 فقدان پشتیبانی از SLA 62
3-1-7-1 تعریف توصیف SLA 62
3-1-7-2 فقدان SLA در ابرهای موجود 64
3-1-8 فقدان انعطاف پذیری لازم در واسط کاربری 64
3-2 ارائه راهکارها 64
فصل چهارم: محاسبات و یافته های تحقیق 68
4-1 پیاده سازی و شبیه سازی 69
4-2 شرایط محیط شبیه سازی 71
4-3 مقیاس پذیری با اندازه شبکه 72
فصل پنجم: نتیجه گیری و پیشنهادات 74
5-1 خلاصه و نتیجه گیری 75
5-2 مزایای تحقیق انجام شده 75
5-3 معایب تحقیق انجام شده 75
5-4 کارهای آتی 76
منابع و مآخذ 77
منابع فارسی 78
منابع غیرفارسی 79
فهرست جداول
عنوان صفحه
جدول 2-1 : سرویس دهندگان زیرساخت به عنوان سرویس 13
جدول2-2 : سرویس دهندگان سکو به عنوان سرویس 15
جدول 2-3 : سرویس دهندگان نرم افزار به عنوان سرویس 16
جدول 4-1 : شرایط محیط شبیه سازی 72
فهرست شکل ها
عنوان صفحه
شکل 2-1 : تصویری از محاسبات ابری 8
شکل2-2 : الگوی استقرار ابر 17
شکل 2-3 : مشخصات محاسبات ابری 19
شکل 2- 4: تمایل به سمت محاسبات ابری 24
شکل 2-5: بررسی وضعیت محاسبات ابری جهان 26
شکل 2-6: سیستم توزیع شده به عنوان میان افزار 33
شکل 2-7 : ساختمان یک شی ابری 38
شکل 2-8 : اجرای نخ ها در شیء ابری 39
شکل 2-9 : مدل منطقی از یک معماری سیستم عامل ابری 41
شکل 2-10 : سیستم عامل iCloud 43
شکل 2-11: تصویری از سیستم عامل GlideOS 44
شکل 2-12 : تصویری از سیستم عامل G.ho.st 45
شکل 2-13 : تصویری از سیستم عامل JoliCloud 46
شکل 2-14 : تصویری از سیستم عامل eyeOS 47
شکل 3-1 : بروز رسانی موقعیت گره در روش RNP 66
شکل 3-2 : درخواست موقعیت و ارسال بسته در روش RNP 66
شکل 3-3: شبه کد به روز رسانی موقعیت گره 67
شکل 3-4: شبه کد درخواست موقعیت 67
شکل 4-1: مقایسه سرعت اجرای برنامه با افزایش تعداد پردازنده 69
شکل 4-2: مقایسه سرعت اجرای برنامه با افزایش تعداد ماشین مجازی 70
شکل 4-3: مقایسه اجاره بها با افزایش تعداد پردازنده 70
شکل 4-4: مقایسه اجاره بها با افزایش تعداد ماشین مجازی 71
شکل 4-5: نرخ موفقیت درخواست با افزایش تعداد گره ها 72
شکل 4-6: افزایش درصد بسته های تحویل داده شده با افزایش گره ها 73
شکل 4-7: کاهش سربار داده با افزایش تعداد گره ها 73
فصل اول
مقدمه و کلیات تحقیق
مقدمه
در دهه های آینده ما شاهد رشد چشمگیر تکنولوژی در زمینه پردازنده ها خواهیم بود. ابرها که از پردازنده های چند هسته ای تشکیل شده اند منابع محاسباتی بی نظیری فراهم می سازند. باید توجه داشت که با افزایش وسعت دامنه های اطلاعاتی و محاسباتی نیاز به منابع این چنینی بیش از پیش احساس خواهد شد و با افزایش حجم منابع نیاز به مدیریتی کارا و شفاف الزام پیدا می کند. در اینجا ممکن است این سوال مطرح شود که: ابرها چه امکاناتی برای کاربران فراهم می آورند؟ ابرها در انجام محاسبات عظیم نقش مهمی را ایفا می کنند و به کاربران این امکان را می دهند که برنامه های خود را بر روی بستری قابل اطمینان و بسیار کارآمد که از اجزای صنعتی استاندارد تشکیل شده است اجرا کنند. همچنین ابرها مدل محاسباتی بسیار ساده ای را فراهم می آورند به این صورت که کاربران تنها خروجی مورد نظر را با کمترین هزینه برای کاربر تامین می نمایند. ابرها در کنار اینکه فرصت های فراوانی را برای کاربران فراهم می آورند، چالش هایی را نیز برای مدیریت این منابع پدید می آورند. برای مثال از این چالش ها می توان به نحوه هماهنگ ساختن میزان منابع با درخواست ها و یا وسعت زیاد منابع تحت مدیریت سیستم عامل اشاره نمود. در این تحقیق با چالش های موجود در این زمینه بیشتر آشنا می شویم و پیرامون هر کدام به تفضیل صحبت خواهیم کرد.
سوالات اصلی تحقیق
سیستم عامل های ابری که نوعی از سیستم عامل های توزیعی می باشند، می توانند مجموعه ای از گره ها را با هم یکپارچه ساخته و یک سیستم متمرکز را تولید کنند. با توجه به اینکه ابرها فرصت های فراوانی را برای کاربران فراهم می آورند، چالش هایی را نیز برای مدیریت این منابع پدید می آورند. به همین منظور سوالات زیر مطرح می شود:
چالش های موجود در سیستم عامل های ابری کدامند؟
آیا تا به حال این چالش ها مورد بررسی قرار گرفته اند؟
این چالش ها تا چه اندازه اهمیت دارند؟
آیا راهکاری برای این چالش ها در نظر گرفته شده است؟
هدف از اجراء
در دهه های اخیر شاهد رشد چشمگیر تکنولوژی در زمینه پردازنده ها بوده ایم و این تکنولوژی همچنان با سرعت قابل توجهی در حال پیشرفت است. دلیل این امر افزایش منابع اطلاعاتی و محاسباتی است که این نیاز را به وجود آورده است که با ساخت چنین تکنولوژی هایی به ویژه پردازنده های چند هسته ای، مدیریتی کارا و شفاف بر این اطلاعات حجیم و محاسبات عظیم صورت گیرد. مدیریت اطلاعات و محاسبات این چنینی در محیط هاو سیستم های توزیعی به مراتب آسان تر از محیط های دیگر است. یکی از سیستم های توزیعی ابرها می باشند که می توانند نقش مهمی را در محاسبات عظیم و ذخیره سازی اطلاعات حجیم، ایفا کنند. بنابراین لزوم بررسی چالش ها و موانع در این قبیل سیستم ها و رفع آنها می تواند گامی موثر در افزایش سرعت و کارایی این گونه سیستم ها داشته باشد.
توجیه ضرورت انجام طرح
همزمان با رشد چشمگیر تکنولوژی پردازنده ها، ابرها نیز گسترش روز افزونی پیدا کرده اند. به همین ترتیب تعداد کامپیوترهای افزوده شده به زیر ساخت ابرها نیز افزایش پیدا کرده است که البته قابل ذکر است این افزایش با توجه به تقاضای روزافزون کاربران برای میزبانی این منابع می باشد. منابع ابری برای کاربران نامحدود بوده و کاربران تنها محدودیت مالی برای خرید این منابع را پیش رو دارند. پس می توان نتیجه گرفت که یکی از مهم ترین چالش ها در این زمینه مقیاس پذیر بودن سیستم عامل های ابری می باشد. در ابرها پارامترهایی همچون تقاضا، حجم کار و منابع در دسترس در طول زمان پیوسته در حال تغییر می باشند. برای مثال هنگامی که کاربر محاسبات سنگین و پیچیده ای درخواست می کند منابع مورد نیاز وی افزایش پیدا می کند و در پایان منابع از کاربر تحویل گرفته می شوند، قابل ذکر است این افزایش و کاهش در منابع ممکن است از دید کاربر پنهان بماند. باید به این نکته توجه داشت که تقاضا هیچ گاه ثابت نمی ماند و میزان منابع مورد نیاز در گستره زیادی در حال تغییر می باشد. از طرفی برنامه های کاربردی مبتنی بر ابر معمولا منابع را بین کاربران و دیگر برنامه های کاربردی به اشتراک می گذارند. اگرچه برنامه کاربردی هر کاربر در لفاف مجازی جداگانه ای قرار گرفته است ولی کیفیت سرویسی که برای برنامه فراهم می شود را تحت تاثیر قرار می دهد. علاوه براین برنامه نویسی در این سیستم عامل نیز کاری مشکل و توام با خطا است. با توجه به مشکلات برنامه نویسی چند نخی و چند فرآیندی که در این نوع سیستم عامل ها استفاده می شود امکان وجود خطا افزایش می یابد. همچنین به دلیل کمبود ابزارهای اشکال زدایی و آنالیز سیستم های بزرگ فهمیدن خطاها سخت و برطرف سازی آنها چالش برانگیز است. برخی چالش های ذکر شده در این زمینه موجب به وجود آمدن مسیر تحقیقاتی گوناگون شده است که از آن جمله می توان به موارد زیر اشاره کرد که البته هر کدام از این مسیرها به بخش های دیگری می شکنند که زمینه جدیدی را فراهم می کند.
استفاده از اشیاء پایدار: یکی از زمینه های اصلی مدل ابری فراهم آوردن مخازن داده پایدار و قابل اشتراک می باشد. بنابراین محور اصلی برخی از تحقیقات در زمینه سیستم عامل های ابری، پشتیبانی کارامد و استفاده بهینه از حافظه پایدار می باشد. علاوه بر این عرصه دیگر تحت کنترل درآوردن منابع توزیع شده می باشد که منجر به افزایش سرعت برنامه های اجرایی بر روی ابرها می گردد.
اطمینان و امنیت در سیستم عامل های ابری: یکی از اهداف مهم این سیستم ها فراهم آوردن محیط محاسباتی امن برای کاربران است. این چالش از دو بخش اصلی تشکیل می شود: حفاظت از داده ها هنگام خرابی سیستم و تضمین انجام ادامه محاسبه از جایی که محاسبه قطع گردید. می توان به این نتیجه رسید یکی دیگر از زمینه های تحقیق پیرامون سیستم عامل های ابری افزایش اطمینان این سیستم عامل ها می باشد.
تحمل خطا: افزایش تحمل خطا زمینه ی تحقیقات دیگر حول این موضوع می باشد.
تعاریف واژه ها
سیستم های توزیعی
سیستم توزیعی در واقع مجموعه ای از کامپیوترهای مستقل است که برای کاربر خود مانند یک سیستم منسجم و منفرد به نظر می رسد[2].
سیستم عامل توزیع شده
این سیستم عامل ها خود را مانند سیستم عامل های تک پردازنده به کاربر معرفی می کنند اما در عمل از چندین پردازنده استفاده می کنند. این نوع سیستم عامل در یک محیط شبکه ای اجرا می شود و در حقیقت در این نوع سیستم جواب نهایی یک برنامه، پس از اجرا در کامپیوترهای مختلف به سیستم اصلی بر می گردد. سرعت پردازش در این نوع سیستم بسیار بالاست.
سیستم عامل ابری
سیستم عامل ابری نیز نوعی از سیستم عامل های توزیعی می باشند که مجموعه ای از گره ها را با هم یکپارچه می سازد و یک سیستم متمرکز تولید می کند.

فصل دوم
ادبیات و پیشینه تحقیق
در این فصل سعی شده قبل از آشنایی کامل با سیستم عامل های ابری در مورد محاسبات ابری، انواع سیستم عامل ها، سیستم های توزیعی و سیستم عامل های توزیعی آشنا شویم، سپس با برخی سیستم عامل های ابری موجود آشنا شده و در نهایت به تحقیقاتی که در این زمینه صورت گرفته می پردازیم.
محاسبات ابری
محاسبات ابری مدل محاسباتی بر پایه شبکه‌های بزرگ کامپیوتری مانند اینترنت است که الگویی تازه برای عرضه، مصرف و تحویل سرویس‌های فناوری اطلاعات (شامل سخت افزار، نرم افزار، اطلاعات، و سایر منابع اشتراکی محاسباتی) با به کارگیری اینترنت ارائه می‌کند. سیر تکاملی محاسبات به گونه ای است که می توان آن را پس از آب، برق، گاز و ‌تلفن به عنوان عنصر اساسی پنجم فرض نمود. در چنین حالتی، کاربران سعی می کنند بر اساس نیازهای خود و بدون توجه به اینکه یک سرویس در کجا قرار دارد و یا چگونه تحویل داده می شود، به آن دسترسی یابند. نمونه های متنوعی از سیستم های محاسباتی ارائه شده است که سعی دارند چنین خدماتی را به کاربران ارئه دهند. برخی از آنها عبارتند از: محاسبات کلاستری، محاسبات توری و اخیراً محاسبات ابری[15]. محاسبات ابری ساختاری شبیه یک توده ابر دارد که به واسطه آن کاربران می توانند به برنامه های کاربردی از هر جایی از دنیا دسترسی داشته باشند. بنابراین، محاسبات ابری می تواند با کمک ماشین های مجازی شبکه شده، بعنوان یک روش جدید برای ایجاد پویای نسل جدید مراکز داده مورد توجه قرار گیرد. بدین ترتیب، دنیای محاسبات به سرعت به سمت توسعه نرم‌افزارهایی پیش می رود که به جای اجرا بر روی کامپیوترهای منفرد، به عنوان یک سرویس در دسترس میلیون ها مصرف کننده قرار می گیرند.

شکل 2-1: تصویری از محاسبات ابری[33]
معرفی محاسبات ابری
دنیای فناوری اطلاعات و اینترنت که امروزه تبدیل به جزئی حیاتی از زندگی بشر شده، روز به روز در حال گسترش است. همسو با آن، نیازهای اعضای جوامع مانند امنیت اطلاعات، پردازش سریع، دسترسی پویا و آنی، قدرت تمرکز روی پروژه های سازمانی به جای اتلاف وقت برای نگه داری سرورها و از همه مهم تر، صرفه جویی در هزینه ها اهمیت زیادی یافته است. راه حلی که امروزه در عرصه فناوری برای چنین مشکلاتی پیشنهاد می شود تکنولوژی ای است که این روزها با نام محاسبات ابری شناخته می شود.
محاسبات ابری نمونه ای است که منابع بیرونی همه نیازهای IT را از قبیل ذخیره سازی، محاسبه و نرم افزارهایی مثل Office و ERP را در اینترنت تهیه می کند. محاسبات ابری همچنین، رشد و پیشرفت کاربرد های وسیع و تست برای شرکت های IT کوچکی را اجازه می دهد که نمی توانند سرمایه های بزرگ در سازمان داشته باشند. مهم ترین مزیت پیشنهاد شده توسط ابر در مفهوم اقتصاد مقیاس است و آن هنگامی است که هزاران کاربر، تسهیلات یکسان، هزینه یکسان برای هر کاربر و بهره برداری از سرور به اشتراک می گذارند. برای فعال سازی چنین تسهیلاتی، محاسبات ابری در برگیرنده تکنولوژی ها و مفاهیمی است مثل: مجازی سازی و محاسبات سودمند، پرداخت در ازای میزان استفاده، بدون سرمایه گذاری های کلان، انعطاف پذیری، مقیاس بندی، شرایط تقاضا و منابع بیرونی IT.
محاسبات ابری را ابر نیز می نامند چون یک سرور ابری دارای شکل بندی است که می تواند هر جایی در جهان قرار داشته باشد. ابر، تصویری است انتزاعی از شبکه‌ای عظیم؛ توده‌ای که حجم آن مشخص نیست، نمی‌دانیم از چه میزان منابع پردازشی تشکیل شده. ابعاد زمانی و مکانی یکایک اجزای آن نیز دانسته نیست، نمی‌دانیم سخت‌افزار‌ها و نرم‌افزارها کجای این توده قرار دارند، اما آن‌چه را که عرضه می‌کند، می‌شناسیم. درست مثل برق! شما برای اینکه از وسایل و تجهیزات برقی در خانه یا محل کارتان استفاده کنید لازم نیست یک ژنراتور یا کارخانه برق در خانه خود داشته باشید، بلکه به ازای هزینه مشخصی برق را اجاره می‌کنید. حالا اگر مصارف برقی شما بیشتر و متفاوت‌‌تر باشند مثلاً‌ می‌روید و از خدمات برق صنعتی استفاده می‌کنید. در محاسبات ابری هم شرکت‌ها و سازمان‌ها و افراد دیگر برای نرم‌افزار، سخت‌افزار یا شبکه پولی پرداخت نمی‌کنند، بلکه توان محاسباتی و سرویس‌های نرم‌افزاری مورد نیازشان را خریداری می‌کنند. این ایده در واقع صرفه‌جویی بزرگ و بهره‌وری زیادی در منابع IT را به همراه خواهد داشت. بدین ترتیب کافی است وسیله شما (پی‌سی، موبایل، تلویزیون، حتی یخچال!) یک رابط نرم‌افزاری (مرورگر) برای استفاده از سرویس‌های آنلاین و یک دسترسی به اینترنت داشته باشد،‌ خواهید دید که قادر هستید به راحتی از توان محاسباتی برای انجام کارهای دیجیتالی خود بهره بگیرید.
رشد و پیشرفت محاسبات ابری منجر به چندین تعریف پیشنهادی از خصوصیات آن می شود. برخی از این تعاریف توسط دانشمندان مشهور و سازمان ها ارائه شده است مثل:
الف) Buyya و همکارانش که محاسبات ابر را در مفهوم کاربری است برای کاربر نهایی بدین صورت تعریف می کنند: یک ابر سیستمی محاسباتی توزیع شده بازارگرا است که شامل جمع آوری کامپیوترهای مجازی و ارتباط داخلی هستند که از لحاظ دینامیکی به عنوان یک یا چند منبع محاسباتی متحد بر اساس توافق های سطح سرویس بین مصرف کنندگان و فراهم کنندگان خدمات مذاکره می کنند[14].
ب) موسسه ملی استانداردها و تکنولوژی محاسبات ابری را به صورت زیر تعریف می کند: محاسبه ابری، الگویی است برای اینکه شبکه های مبتنی بر تقاضا به منابع محاسباتی (مثل سرور، شبکه، ذخیره سازی، برنامه های کاربردی و خدمات) طوری دستیابی پیدا کنند که شامل حداقل تلاش مدیریت یا تعامل فراهم کننده سرویس است. این الگوی ابر، قابلیت دستیابی را ارتقا می دهد و شامل پنج تا از ویژگی های ضروری، سه تا از الگوهای سرویس و چهار تا الگوی استقرار است.
ویژگی های ابری شامل انتخاب سرویس مبتنی بر تقاضا، دسترسی وسیع به شبکه، ائتلاف منابع، انعطاف پذیری سریع و سرویس اندازه گیری شده است. الگوهای خدمات در دسترس به صورت نرم افزار به عنوان سرویس(SaaS)، سکو به عنوان سرویس (PaaS) و زیرساخت به عنوان سرویس (IaaS) تقسیم بندی می شوند. الگوی گسترش به ابرهای عمومی، خصوصی، اجتماعی و هیبرید تقسیم بندی می شود.
مشخصه اصلی محاسبات ابری
موسسه ملی استانداردها و فناوری، خصوصیات محاسبات ابری زیر را به صورت زیر تعریف می کند:
سرویس مبتنی بر تقاضا
مشتری می تواند به صورت یک طرفه امکانات و خدمات محاسباتی همچون سرور و فضای ذخیره سازی در شبکه را به هنگام نیاز از هر فراهم کننده ای به صورت خودکار و بدون نیاز به دخالت انسان به دست آورده و از آنها استفاده کند. به عبارت دیگر، برای مدیریت زیرساخت ابر نیازمند استخدام مدیران شبکه یا Admin به صورت تمام وقت نیستیم. بیشتر سرویس های ابر، پورتال های سلف سرویس دارند که به آسانی مدیریت می شوند.
دسترسی وسیع به شبکه
توانمندی های موجود بر روی شبکه، از طریق مکانیزم های استاندارد که استفاده از روش های ناهمگون پلتفرم های کلاینت، مانند تلفن های موبایل، لپ تاپ ها و PDA ها، را ترویج می کنند، قابل دسترسی هستند.
ائتلاف منابع
منابع محاسباتی فراهم کننده جمع آوری شده اند تا با به کارگیری مدل چند مشتری به چندین مشتری خدمت رسانی کنند. این کار به وسیله منابع فیزیکی یا مجازی مختلف که به شکلی پویا و بنابر درخواست مشتری واگذار و پس گرفته می شوند، صورت می گیرد. در اینجا حالتی از عدم وابستگی به مکان وجود دارد که در آن مشتری معمولاً کنترل یا دانشی درباره محل دقیق منابع فراهم شده ندارد ولی ممکن است در سطوح بالاتر انتزاعی بتواند محل را تعیین کند، مثل: کشور، استان یا مراکز داده. برای نمونه منابع شامل فضای ذخیره سازی، توان پردازشی، حافظه، پهنای باند شبکه و ماشین های مجازی می شود.
انعطاف پذیری سریع
می توان امکانات را به سرعت و با انعطاف، در بعضی موارد به صورت خودکار، به دست آورد تا به سرعت گسترش داده شده( از دید مقیاس) یا درجا آزاد شوند و خیلی سریع به مقیاس کوچکتری دست یابند. از دید مشتری امکاناتی که برای به دست آمدن در دسترس هستند اغلب نامحدود به نظر می آیند و می توانند به هر مقدار و در هر زمان خریداری شوند.
سرویس اندازه گیری شده
سیستم های ابری منابع را خودکار کنترل و بهینه می کنند. این کار با به کارگیری توانایی اندازه گیری در سطحی از تجرید که مناسب گونه آن خدمت ( مثل: فضای ذخیره سازی، توان پردازشی، پهنای باند و شمار کاربران فعال) است انجام می شود. میزان استفاده از منابع می تواند به شکلی شفاف هم برای مشتری و هم برای فراهم کننده زیر نظر گرفته، کنترل شده و گزارش داده شود.
معماری سرویس گرا
معماری مبتنی بر سرویس در واقع یک مجموعه ای از سرویس ها است که با یکدیگر ارتباط برقرار می کنند. حین این ارتباط ممکن است داده هایی را بین یکدیگر پاس کاری کنند و همچنین ترکیب دو یا چند سرویس با هم یک کار انجام دهد. در این جا چند مفهوم اتصال بین سرویس ها مورد نیاز است. برخلاف دهه های گذشته که نرم افزارها قائم به خود و انفرادی بودند، در حال حاضر روند تکامل نرم افزارها به سوی معماری مبتنی بر سرویس می رود. رشد انفجاری تکنولوژی های اینترنت و تعداد کاربران آن موجب شده که فروش نرم افزار جای خودش را به اجاره نرم افزار بدهد. شرکت های بزرگی مانند مایکروسافت، گوگل، سان و حتی آمازون به این سمت می روند که به جای فروش مستقیم نرم افزار به کاربر خدمات نرم افزاری را ارئه دهند. معماری مبتنی بر سرویس معماری نرم افزار یا سیستمی است که امکاناتی چون کامپوننت ها، استفاده مجدد، توسعه پذیری و راحتی را در اختیار ما قرار می دهد. این ویژگی ها برای شرکت هایی که به دنبال کاهش هزینه هستند و به جای فروش به اجاره سرویس های نرم افزار تاکید دارند، الزامی است[9].
مدلهای سرویس
در مدل سرویس، انواع گوناگون ابر بیانگر قالبی هستند که زیر ساختها در آن قرار میگیرد. اکنون محدوده شبکه، مدیریت و مسئولیتها به پایان میرسد و امور مربوط به بخش سرویسدهندهی ابر آغاز میشود. با پیشرفت محاسبات ابری فروشندگان، ابرهایی را با سرویس های مختلف مرتبط به کار خود عرضه مینمایند. با سرویسهایی که عرضه میشوند مجموعه دیگری از تعاریف به نام مدل سرویس در محاسبات ابری مطرح میشود. برای مدلهای سرویس، نامگذاریهای بسیاری صورت گرفته که همگی به فرم زیر تعریف شده اند:
XaaS,or "<something>as a Service"
در حال حاضر در جهان سه نوع سرویس به صورت متداول شناخته می شود:
زیر ساخت به عنوان سرویس
زیر ساخت به عنوان سرویس یا IaaS ماشینهای مجازی، فضای ذخیرهسازی مجازی، زیر ساخت های مجازی و سایر سخت افزارهای کاربردی را به عنوان منابع برای مشتریان فراهم میآورد. سرویسدهندهی IaaS تمامی زیر ساختها را مدیریت مینماید و در حالی که مشتریان مسئول باقی جنبههای استقرار میباشند. از جمله سیستم عامل، برنامهها و تعاملات سیستم با کاربر و غیره.
در جدول 2-1 تعدادی از سرویس دهندگان شناخته شده در حوزه IaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-1 : سرویس دهندگان زیر ساخت به عنوان سرویس
سازمان سرویس/ ابزار توصیف لایه-سطح
آمازون Elastic Compute Cloud سرور مجازی IaaS- سرویس منبع مجازی
Dynamo سیستم ذخیره سازی مبتنی بر کلید-ارزش IaaS- سرویس زیرساخت پیشرفته
Simple Storage Service سیستم ذخیره سازی دسته ای IaaS- سرویس زیر ساخت پایه
SimpleDB پایگاه داده به عنوان سرویس IaaS- سرویس زیر ساخت پیشرفته
CloudFront تحویل محتوا IaaS- سرویس زیر ساخت پیشرفته
SQS سرویس صف و زمانبندی IaaS- سرویس زیر ساخت پیشرفته
AppNexus AppNexus Cloud سرور مجازی IaaS- سرویس منبع مجازی
گوگل Google Big Table سیستم توزیع شده برای ذخیره سازی IaaS- سرویس زیر ساخت پیشرفته
Google File Sys-- سیستم- فایل توزیع شده IaaS- سرویس زیر ساخت پایه
اچ پی iLO مدیریت خاموشی سرور IaaS- سرویس منبع فیزیکی
Tycoon سیستم مدیریت منابع محاسباتی در کلاسترها IaaS- سرویس منبع مجازی
Joyent Accelerator سرور مجازی IaaS- سرویس منبع مجازی
Connector سرور مجازی از قبل تنظیم شده IaaS- سرویس زیر ساخت پیشرفته
BingoDisk دیسک ذخیره سازی IaaS- سرویس زیر ساخت پایه
Bluelock Bluelock Virtual Cloud Computing سرور مجازی IaaS- سرویس منبع مجازی
Bluelock Virtual Recovery بازیابی مصیبت و شکست IaaS- سرویس زیر ساخت پیشرفته
Emulab Emulab Network Testbed بستر آزمایش شبکه IaaS- سرویس منبع فیزیکی
ENKI ENKI Virtual Private Data Centers منابع دیتا سنتر مجازی بنابر تقاضا IaaS- سرویس منبع مجازی
EU Resevoir Project Open Nebula موتور مجازی زیرساخت(متن باز) IaaS- سرویس منبع مجازی
FlexiScale FlexiScale Cloud Computing سرور مجازی IaaS- سرویس منبع مجازی
GoGrid Cloud Hosting سرور مجازی IaaS- سرویس منبع مجازی
Cloud Storage فضای ذخیره سازی IaaS- سرویس زیر ساخت پایه
Nirvanix Nirvanix Storage Delivery Network دیسک ذخیره سازی IaaS- سرویس زیر ساخت پیشرفته
OpenFlow OpenFlow شبیه سازی شبکه IaaS- سرویس زیر ساخت پیشرفته
RackSpace Masso Cloud Sites سرور مجازی از پیش تنظیم شده IaaS- سرویس زیر ساخت
Masso Cloud Storage دیسک ذخیره سازی IaaS- سرویس زیر ساخت پایه
Masso Cloud Severs سرور مجازی IaaS- سرویس منبع مجازی
Skytap Skytap Virtual Lab محیط آزمایشگاه مجازی فناوری اطلاعات IaaS- سرویس زیر ساخت
Terremark Infinistructure سرور مجازی IaaS- سرویس منبع مجازی
UCSB Eucalyptus نسخه متن باز EC2 آمازون IaaS- سرویس منبع مجازی
10gen Mongo DB پایگاه داده برای ذخیره سازی ابری IaaS- سرویس زیر ساخت پیشرفته
Babble Application Server سرور برنامه های تحت وب برای استقرار ابری IaaS- سرویس زیر ساخت پیشرفته
سکو به عنوان سرویس
سکو به عنوان سرویس یاPaaS ، ماشینهای مجازی، سیستمهای عامل، برنامهها، سرویسها، چارچوبهای توسعه، تراکنشها و ساختارهای کنترلی را فراهم میآورد. مشتری میتواند برنامههای خود را بر روی زیر ساخت ابر قرار دهد و یا اینکه از برنامههایی استفاده کند که با استفاده از زبانها و ابزارها نوشته شدهاند و توسط سرویس دهندهیPaaS پشتیبانی می شوند. سرویسدهنده زیرساخت ابر، سیستمهای عامل و نرمافزارهای فعالسازی را فراهم میآورد. مشتری مسئول نصب و مدیریت برنامههایی که قرار داده است، میباشد.
در جدول 2-2 تعدادی از سرویس دهندگان شناخته شده در حوزه PaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-2 : سرویس دهندگان سکو به عنوان سرویس
سازمان سرویس/ابزار توصیف لایه-سطح
Akamai EdgePlatform تحویل برنامه کاربردی، محتوا و سایت PaaS
مایکروسافت Azure محیط توسعه و اجرا برای برنامه های کاربردی مایکروسافت PaaS
Live Mesh بستری برای به هنگام سازی، اشتراک و دسترسی به دامنه وسیعی از دستگاه هایی با سیستم عامل مایکروسافت PaaS
فیس بوک Facebook Platform بستر آزمایش شبکه PaaS
گوگل App Engine محیط اجرایی قابل گسترش برای برنامه های تحت وب نوشته شده در زبان پایتون PaaS
NetSuite SuiteFlex جعبه ابزاری برای سفارشی سازی برنامه های کاربردی کسب و کار آنلاین همین شرکت PaaS
Salesforce Force.com ساخت و تحویل برنامه های کاربردی در کلاس کسب و کار PaaS
Sun Caroline بستر قابل گسترش افقی برای توسعه و استقرار سرویس های تحت وب PaaS
Zoho Zoho Creator جعبه ابزاری برای ساخت و تحویل برنامه های کاربردی در کلاس کسب و کار و به شکل بنابر بر تقاضا PaaS
نرمافزار به عنوان سرویس
نرمافزار به عنوان سرویس یا SaaS یک محیط کاملاً عملیاتی برای مدیریت برنامهها و واسط کاربری است. در مدل SaaS برنامه از طریق یک برنامه واسط (معمولاً مرورگر) به مشتری سرویس میدهد و مسئولیت مشتری با ورود داده شروع و با مدیریت داده و تعاملات کاربری پایان مییابد. همه چیز مربوط به برنامه تا زیر ساخت در حوزهی مسئولیت فروشنده است.
در جدول 2-3 تعدادی از سرویس دهندگان شناخته شده در حوزه SaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-3 : سرویس دهندگان نرم افزار به عنوان سرویس
سازمان سرویس/ابزار توصیف لایه-سطح
گوگل Google Docs بسته نرم افزاری آفیس آنلاین SaaS
Google Maps API رابط برنامه نویس سرویس نقشه گوگل به توسعه دهندگان این امکان را می دهد تا نقشه گوگل را در سایت های خود جاسازی کنند SaaS- سرویس ساده
OpenID Foundation OpenSocial یک رابط برنامه نویسی کاربردی مشترک برای برنامه های شبکه های اجتماعی SaaS-سرویس مرکب
OpenID یک سیستم توزیع شده که به کاربران این اجازه را می دهد تا تنها با یک شناسه دیجیتال بتوانند از سایتها مختلف استفاده نمایند. SaaS- سرویس ساده
مایکروسافت Office Live بسته نرم افزاری آفیس آنلاین SaaS
Salesforce Salesforce.com بسته نرم افزاری مدیریت روابط مشتریان SaaS
این سه مدل متفاوت سرویس به نام مدل SPI محاسبات ابری شناخته میشوند. گرچه تاکنون از مدلهای سرویس بسیاری نام برده شد، staas فضای ذخیرهسازی به عنوان سرویس؛ idaas هویت به عنوان سرویس؛ cmaas توافق به عنوان سرویس؛ و غیره، با این وجود سرویس های SPI تمامی باقی سرویسهای ممکن را نیز در بر میگیرد. IaaS دارای حداقل سطوح عاملیت مجتمع شده و پایین ترین سطوح مجتمع سازی میباشد و SaaS دارای بیشترینها است. یک PaaS یا سکو به عنوان سرویس خصوصیات مجتمع سازی، میانافزارها و سایر سرویسهای هماهنگساز را به مدل IaaS یا زیر ساخت به عنوان سرویس میافزاید. هنگامی که که یک فروشندهی محاسبات ابری، نرمافزاری را بر روی ابر عرضه میکند، با استفاده از برنامه و پرداخت فوری، یک عملیات SaaS انجام می گیرد. با SaaS مشتری برنامه را در صورت نیاز استفاده میکند و مسئول نصب، نگهداری و تعمیر برنامه نیست.
مدل‌های پیاده‌سازی
در تعریف NIST (انستیتوی ملی استاندارد ها و فناوری ها) مدل های استقرار ابر به چهار صورت زیر است:

شکل 2-2 : الگوی استقرار ابر[29]
ابر عمومی
ابر عمومی یا ابر خارجی توصیف کننده محاسبات ابری در معنای اصلی و سنتی آن است. سرویس‌ها به صورت دینامیک و از طریق اینترنت و در واحدهای کوچک از یک عرضه کننده شخص ثالث تدارک داده می‌شوند و عرضه کننده منابع را به صورت اشتراکی به کاربران اجاره می‌دهد و بر اساس مدل محاسبات همگانی و مشابه صنعت برق و تلفن برای کاربران صورتحساب می‌فرستد. این ابر برای استفاده همگانی تعبیه شده و جایگزین یک گروه صنعتی بزرگ که مالک آن یک سازمان فروشنده ی سرویس های ابری می باشد.
ابر گروهی
ابر گروهی در جایی به وجود می‌آید که چندین سازمان نیازهای یکسان دارند و به دنبال این هستند که با به اشتراک گذاردن زیرساخت از مزایای محاسبات ابری بهره‌مند گردند. به دلیل اینکه هزینه‌ها بین کاربران کمتری نسبت به ابرهای عمومی تقسیم می‌شود، این گزینه گران‌تر از ابر عمومی است اما میزان بیشتری از محرمانگی، امنیت و سازگاری با سیاست‌ها را به همراه می‌آورد.
ابر ترکیبی
یک ابر ترکیبی متشکل از چندین ارائه دهنده داخلی و یا خارجی، گزینه مناسبی برای بیشتر مؤسسات تجاری می‌باشد. با ترکیب چند سرویس ابر کاربران این امکان را می‌یابند که انتقال به ابر عمومی را با دوری از مسائلی چون سازگاری با استانداردهای شورای استانداردهای امنیت داده‌های کارت های پرداخت آسان تر سازند.
ابر خصوصی
ابر خصوصی یک زیر ساخت محاسبات ابری است که توسط یک سازمان برای استفاده داخلی آن سازمان به وجود آمده‌است. عامل اصلی که ابرهای خصوصی را از ابرهای عمومی تجاری جدا می‌سازد، محل و شیوه نگهداری از سخت افزار زیرساختی ابر است. ابر خصوصی امکان کنترل بیشتر بر روی تمام سطوح پیاده سازی ابر (مانند سخت افزار، شبکه، سیستم عامل، نرم افزار) را فراهم می‌سازد. مزیت دیگر ابرهای خصوصی امنیت بیشتری است که ناشی از قرارگیری تجهیزات در درون مرزهای سازمان و عدم ارتباط با دنیای خارج ناشی می‌شود. اما بهره گیری از ابرهای خصوصی مشکلات ایجاد و نگهداری را به همراه دارد. یک راه حل میانه برای دوری از مشکلات ابرهای خصوصی و در عین حال بهره مند شدن از مزایای ابرهای خصوصی، استفاده از ابر خصوصی مجازی است. به عنوان نمونه می‌توان از ابر خصوصی مجازی آمازون نام برد.
مشخصات محاسبات ابری
مشخصات کلیدی توسط ابر در شکل 2-3 نشان داده شده است و در قسمت زیر مورد بحث و بررسی قرار گرفته است:

شکل 2-3 : مشخصات محاسبات ابری[28]
مجازی شده : منابع (یعنی محاسبه کردن، ذخیره سازی و ظرفیت شبکه) در ابرها تصور می شوند و این روش در سطوح مختلف مثل vm و سطوح بسته بدست می آید[9]. اصلی ترین آن در سطح ماشین مجازی است که در آن برنامه های کاربردی متفاوت در سیستم های عملکردی با همان ماشین فیزیکی اجرا می شوند. سطح سکو باعث نقشه برداری برنامه های کاربردی در یک یا چند منبع می شود که توسط فراهم آورندگان زیرساخت ابری پیشنهاد شده است.
سرویس گرا: ابر با استفاده از الگوی زیرساخت سرویس گرا به کار می رود که در آن همه اجزا در شبکه به عنوان یک سرویس در دسترس هستند، چه نرم افزار باشد، چه سکو یا هر زیرساختی که به عنوان سرویس پیشنهاد می کنند.
انعطاف پذیری : منابع (یعنی محاسبه کردن، ذخیره سازی و ظرفیت شبکه) برای برنامه های کاربردی ابر موردنیاز هستند که می توانند به صورت پویا و مختلف مقرر می شوند. یعنی افزایش یا کاهش در زمان اجرا بستگی به نیازهای QOS کاربر دارد. فراهم کنندگان ابر اصلی مثل آمازون حتی سرویس هایی را برای توسعه عمودی و توسعه افقی در براساس نیازهای برنامه های کاربردی میزبان دارد.
پویا و توزیع شده: گرچه منابع ابر، مجازی شده اند، آنها اغلب در عملکردهای بالا یا سرویس های ابر قابل اطمینان توزیع می شوند. این منابع انعطاف پذیر و می توانند بر طبق نیازهای مشتری سازگاری یابند مثل: نرم افزار، پیکربندی شبکه و غیره[10].
اشتراک (اقتصاد مقیاسی): زیرساخت ابرها هر جایی است که منابع های متعدد از خود کاربر بر طبق نیازهای برنامه کاربردی خود استفاده می کنند، مشترک می شوند. این الگوی اشتراکی به عنوان الگوی اجاره چندگانه نیز می باشد. به طور کلی، کاربران نه دارای کنترل مستقیم بر منابع فیزیکی هستند و نه از تخصیص منابع و اینکه با چه کسانی مشترک شده اند، خبر دارند.
بازارگرا (پرداخت - در ازای - میزان استفاده): در محاسبات ابری، کاربران براساس پرداخت - در ازای - میزان استفاده برای سرویس ها پرداخت می کنند. الگوی قیمت گذاری می تواند با توجه به انتظار برنامه های کاربردی در کیفیت سرویس متفاوت باشد. فراهم آورندگان ابر IaaS مثل منابع قیمت ها در آمازون از الگوهایی بازاری مثل الگوهای قیمت گذاری کالاها یا زمان پرداخت آنها استفاده می کنند. یک الگوی قیمت گذاری توسط Thualsiram و Allenofor برای منابع مجهز پیشنهاد شده است که می تواند به عنوان اساسی برای منابع ابر استفاده شوند. این خصوصیت، بعد بهره برداری از محاسبات ابری را بیان می کند. یعنی، سرویس های ابری به عنوان سرویس های سنجیده شده هستند که در آن فراهم کنندگان دارای الگوی محاسباتی برای اندازه گیری کاربردها از سرویس ها هستند که به توسعه برنامه های قیمت گذاری متفاوت کمک می کند. الگوی محاسباتی به کنترل و بهینه سازی از منابع کمک می کند.[16]
خودمختار : برای فراهم کردن سرویس های قابل اطمینان در حد بالا، ابرها رفتاری مستقل را با مدیریت خودشان در دگردیسی عملکرد یا شکست نشان می دهند.
مزایای محاسبات ابری
 
کارمان را با بیان مزایای متعددی که توسط محاسبات ابری ارائه می شود آغاز می کنیم. وقتی شما به سمت استفاده از ابر می روید، به چیزهای زیر دست پیدا می کنید:
 
هزینه های کامپیوتری کمتر: شما برای اجرای برنامه های کاربردی مبتنی بر وب، نیازی به استفاده از یک کامپیوتر قدرتمند و گران قیمت ندارید. از آن جائی که برنامه های کاربردی بر روی ابر اجرا می شوند، نه بر روی یک کامپیوتر رو میزی. کامپیوتر رومیزی شما نیازی به توان پردازشی زیاد یا فضای دیسک سخت که نرم افزارهای دسکتاپ محتاج آن هستند ندارد. وقتی شما یک برنامه کاربردی تحت وب را اجرا می کنید، کامپیوتر شما می تواند ارزان تر، با یک دیسک سخت کوچک تر، با حافظه کم تر و دارای پردازنده کارآمدتر باشد. در واقع، کامپیوتر شما در این سناریو حتی نیازی به یک درایو CD یا DVD هم ندارد زیرا هیچ نوع برنامه نرم افزاری بار نمی شود و هیچ سندی نیاز به ذخیره شدن بر روی کامپیوتر ندارد.
کارآیی توسعه یافته:  با وجود برنامه های کم تری که منابع کامپیوترشما، خصوصاً حافظه آن را به خود اختصاص می دهند، شما شاهد کارآیی بهتر کامپیوتر خود هستید. به عبارت دیگر کامپیوترهای یک سیستم محاسبات ابری، سریع تر بوت و راه اندازی می شوند زیرا آن ها دارای فرآیندها و برنامه های کم تری هستند که به حافظه بار می شود.
 
هزینه های نرم افزاری کم تر:  به جای خرید برنامه های نرم افزاری گران قیمت برای هر کامپیوتر، شما می توانید تمام نیازهای خود را به صورت رایگان برطرف کنید. بله درست است، اغلب برنامه های کامپیوتری محاسبات ابری که امروزه عرضه می شوند، نظیر Google Docs، کاملاً رایگان هستند. این، بسیار بهتر از پرداخت 200 دلار یا بیشتر برای خرید برنامه office مایکروسافت است که این موضوع به تنهایی می تواند یک دلیل قوی برای سوئیچ کردن به محاسبات ابری محسوب شود.
 
ارتقای نرم افزاری سریع و دائم:  یکی دیگر از مزایای مربوط به نرم افزار در  محاسبات ابری این است که شما دیگر نیازی به بروز کردن نرم افزارها و یا اجبار به استفاده از نرم افزارهای قدیمی، به دلیل هزینه زیاد ارتقای آن ها ندارید. وقتی برنامه های کاربردی، مبتنی بر وب باشند، ارتقاها به صورت اتوماتیک رخ می دهد و دفعه بعد که شما به ابر وارد شوید به نرم افزار اعمال می شوند. وقتی شما به یک برنامه کاربردی مبتنی بر وب دسترسی پیدا می کنید، بدون نیاز به پرداخت پول برای دانلود یا ارتقای نرم افزار، از آخرین نسخه آن بهره مند می شوید.
 
سازگاری بیشتر فرمت اسناد:  نیازی نیست که شما نگران مسئله سازگاری اسنادی که بر روی کامپیوتر خود ایجاد می کنید با سایر سیستم عامل ها یا سایر برنامه های کاربردی دیگران باشید. در دنیایی که اسناد 2007Word نمی تواند بر روی کامپیوتری که 2003Word را اجرا می کند باز شوند، تمام اسنادی که با استفاده از برنامه های کاربردی مبتنی بر وب ایجاد می شوند می تواند توسط سایر کاربرانی که به آن برنامه کاربردی دسترسی دارند خوانده شوند. وقتی همه کاربران اسناد و برنامه های کاربردی خود را بر روی ابر به اشتراک می گذارند، هیچ نوع ناسازگاری بین فرمت ها به وجود نخواهد آمد.
 
ظرفیت نامحدود ذخیره سازی:  محاسبات ابری ظرفیت نامحدودی برای ذخیره سازی در اختیار شما قرار می دهد. دیسک سخت 200 گیگابایتی فعلی کامپیوتر رومیزی شما در مقایسه با صدها پتابایت (یک میلیون گیگابایت) که از طریق ابر در دسترس شما قرار می گیرد اصلا چیزی به حساب نمی آید. شما هر چیزی را که نیاز به ذخیره کردن آن داشته باشید می توانید ذخیره کنید.
 
قابلیت اطمینان بیشتر به داده:  برخلاف محاسبات دسکتاپ، که در آن یک دیسک سخت می تواند تصادم کند و تمام داده های ارزشمند شما را از بین ببرد، کامپیوتری که بر روی ابر تصادم کند نمی تواند بر داده های شما تاثیر بگذارد. این همچنین بدان معنا است که اگر کامپیوترهای شخصی شما نیز تصادم کنند، تمام داده ها هنوز هم آن جا و برروی ابر وجود دارند و کماکان در دسترس شما هستند. در دنیایی که تنها تعداد اندکی از کاربران به طور مرتب و منظم از داده های مهم و حساس خود نسخه پشتیبان تهیه می کنند، محاسبات ابری حرف آخر در زمینه محافظت از داده ها به شمار می رود.
 
دسترسی جهانی به اسناد:  آیا تا به حال کارهای مهم خود را از محیط کار به منزل برده اید؟ و یا تاکنون به همراه بردن یک یا چند فایل مهم را فراموش کرده اید؟ این موضوع در محاسبات ابری رخ نمی دهد زیرا شما اسناد و فایل های مهم  خود را همراه خود حمل نمی کنید. در عوض، این اسناد و فایل ها بر روی ابر می مانند و شما می توانید از هرجایی که یک کامپیوتر و اتصال اینترنتی وجود داشته باشد به آن دسترسی پیدا کنید. شما در هر کجا که باشید به سرعت می توانید به اسناد خود دسترسی پیدا کنید و به همین دلیل، نیازی به همراه داشتن آن ها نخواهید داشت.
 
در اختیار داشتن آخرین و جدیدترین نسخه:  یکی دیگر از مزایای مرتبط با اسناد در محاسبات ابری این است که وقتی شما یک سند را در خانه ویرایش می کنید، این نسخه ویرایش شده همان چیزی است که وقتی در محل کار خود به آن دسترسی می یابید مشاهده می کنید. ابر همواره، آخرین نسخه از اسناد شما را میزبانی می کند و تا وقتی شما به اینترنت و ابر متصل باشید، هیچ گاه در معرض خطر استفاده از یک نسخه تاریخ گذشته نخواهید بود.
همکاری گروهی ساده تر:  به اشتراک گذاشتن اسناد، شما را مستقیماً به همکاری بر روی اسناد رهنمون می کند. برای بسیاری از کاربران، این یکی از مهم ترین مزایای استفاده از محاسبات ابری محسوب می شود زیرا چندین کاربر به طور همزمان می توانند برروی اسناد و پروژه ها کار کنند، به دلیل این که اسناد بر روی ابر میزبانی می شوند، نه بر روی کامپیوترهای منفرد، همه چیزی که شما نیاز دارید یک کامپیوتر با قابلیت دسترسی به اینترنت است.
 
مستقل از سخت افزار:  در نهایت، در این جا به آخرین و بهترین مزیت محاسبات ابری اشاره می کنیم. شما دیگر مجبور نیستید به یک شبکه یا یک کامپیوتر خاص محدود باشید. کافی است کامپیوتر خود را تغییر دهید تا ببینید برنامه های کاربردی و اسناد شما کماکان و به همان شکل قبلی، بر روی ابر در اختیار شما هستند. حتی اگر از ابزار پرتابل نیز استفاده کنید، باز هم اسناد به همان شکل در اختیار شما هستند. دیگر نیازی به خرید یک نسخه خاص از یک برنامه برای یک وسیله خاص، یا ذخیره کردن اسناد با یک فرمت مبتنی بر یک ابزار ویژه ندارید. فرقی نمی کند که شما از چه نوع سخت افزاری استفاده می کنید زیرا اسناد و برنامه های کاربردی شما در همه حال به یک شکل هستند.
محاسبات ابری که در اواخر سال 2007 پا به عرصه ظهور گذاشت، هم اکنون به دلیل توانایی اش در ارائه زیرساخت فن آوری پویا و بسیار منعطف، محیط های محاسباتی تضمین شده از نظر کیفیت و همچنین سرویس های نرم افزاری قابل پیکربندی به موضوع داغ مبدل شده است. در گزارش گوگل Trends و همانطور که در شکل 2-4 مشاهده می کنید، محاسبات ابری که از تکنولوژی مجازی سازی بهره می برد، محاسبات گریدی را پشت سر گذاشته است.

شکل2-4 : تمایل به سمت محاسبات ابری[35]
پروژه های متعددی در حوزه صنعت و دانشگاه بر روی محاسبات ابری آغاز شده است وشرکت های بسیار بزرگی با این موضوع درگیر شده اند و این نشان از توجه عمومی به سمت این پدیده نوین است.
نقاط ضعف محاسبات ابری
چند دلیل وجود دارد که ممکن است با استناد به آن ها شما نخواهید از محاسبات ابری استفاده کنید. در این جا به ریسک های مرتبط با استناد از محاسبات ابری اشاره می کنیم:
نیاز به اتصال دائمی به اینترنت دارد: در صورتی که شما نتوانید به اینترنت متصل شوید، محاسبات ابری غیر ممکن خواهد بود. از آن جائی که شما باید برای ارتباط با برنامه های کاربردی و اسناد خود به اینترنت متصل باشید، اگر یک ارتباط اینترنتی نداشته باشید نمی توانید به هیچ چیزی، حتی اسناد خودتان دسترسی پیدا کنید. نبود یک ارتباط اینترنتی، به معنای نبود کار است. وقتی شما آفلاین هستید، محاسبات ابری کار نمی کند.
با اتصال های اینترنتی کم سرعت کار نمی کند: به همان شکلی که در بالا اشاره شد، یک ارتباط اینترنتی کم سرعت نظیر نمونه ای که در سرویس های Dial-up دیده می شود، در بهترین حالت، استفاده از محاسبات ابری را با دردسرهای فوق العاده ای همراه می کند و اغلب اوقات، استفاده از آن را غیرممکن می سازد. برنامه های کاربردی تحت وب و همچنین اسنادی که بر روی ابر ذخیره شده اند برای دانلود شدن به پهنای باند بسیار زیادی نیاز دارند. اگر شما از یک اینترنت Dial-up استفاده می کنید، اعمال تغییر در یک سند یا رفتن از یک صفحه به صفحه دیگر همان سند ممکن است برای همیشه به طول بینجامد. و البته در مورد بار شدن یک سرویس غنی از امکانات حرفی نمی زنیم. به عبارت دیگر، محاسبات ابری برای افرادی که از اینترنت باند پهن استفاده نمی کنند، نیست.
می تواند کند باشد: حتی در یک ارتباط اینترنتی سریع نیز، برنامه های کاربردی تحت وب می توانند گاهی اوقات کندتر از دسترسی به همان برنامه نرم افزاری از طریق یک کامپیوتر رومیزی باشند. تمام جنبه های یک برنامه، از جمله اینترفیس و سند فعلی، باید بین کامپیوتر یا کامپیوترهای موجود بر روی ابر مبادله شود. اگر در آن لحظه، سرورهای ابر در معرض تهیه نسخه پشتیبان باشند یا اگر اینترنت یک روز کند را پشت سر بگذارد، شما نمی توانید به همان دسترسی سریعی که در یک برنامه دسک تاپ وجود دارد، برسید.
ویژگی ها ممکن است محدود باشند: این وضعیت در حال تغییر است اما بسیاری از برنامه های کاربردی مبتنی بر وب به اندازه همتای دسک تاپ خود دارای ویژگی ها و امکانات غنی نیستند. به عنوان مثال، شما می توانید کارهای بسیار زیاد با برنامه PowerPoint انجام دهید که امکان انجام همه آن ها توسط برنامه ارائه Google Docs وجود ندارد. اصول این برنامه ها یکسان هستند، اما برنامه کاربردی که بر روی ابر قرار دارد فاقد بسیاری از امکانات پیشرفته PowerPoint است. اگر شما یک کاربر با تجربه و حرفه ای هستید، ممکن است نخواهید از محاسبات ابری استفاده کنید.
داده های ذخیره شده ممکن است از امنیت کافی برخوردار نباشند: با استفاده از محاسبات ابری، تمام داده های شما بر روی ابر ذخیره می شوند. این داده ها تا چه حد ایمن هستند؟ آیا کاربران غیرمجاز می توانند به داده های مهم و محرمانه شما دسترسی پیدا کنند؟ کمپانی محاسبات ابری اظهار می کند که داده ها امن هستند اما هنوز برای اطمینان کامل از این موضوع خیلی زود است. از نظر تئوری، داده های ذخیره شده بر روی ابر ایمن هستند و بین چندین ماشین توزیع شده اند. اما در صورتی که داده های شما مفقود شوند، شما هیچ نسخه پشتیبان فیزیکی یا محلی در اختیار نخواهید داشت (مگر این تمام اسناد ذخیره شده بر روی ابر را بر روی دسک تاپ خود دانلود کنید که معمولاً کاربران کمی چنین کاری می کنند). به سادگی بگویم، اتکا به ابر، شما را در معرض خطر قرار می دهد.
بررسی وضعیت محاسبات ابری در جهان از نگاه آماری
وب سایت cloudehypermarket.com تصویری را منتشر کرده است که اطلاعات آماری جالبی را در مورد محاسبات ابری و اوضاع فعلی آن در جهان به تصویر می‌کشد.
1562101485900
شکل 2-5 : بررسی وضعیت محاسبات ابری در جهان[36]
برخی از مهمترین نکات موجود در شکل عبارتند از: (آمار مربوط به اواخر سال ۲۰۱۰ می‌باشد).
۱- در بخش اول تصویر میزان سرمایه‌گذاری جهانی در حوزه‌ی آی‌تی بررسی شده است. در سال ۲۰۰۸ مجموعاً ۳۶۷ میلیارد پوند صرف هزینه‌های معمول فناوری اطلاعات و ۱۶ میلیارد پوند صرف هزینه‌های مربوط به سرویس‌های محاسبات ابری شده است. پیش‌بینی می‌شود در سال ۲۰۱۲ مجموع سرمایه‌گذاری معمول در حوزه‌ی IT به رقم ۴۵۱ میلیارد پوند و سرمایه‌گذاری در حوزه‌ی محاسبات ابری به ۴۲ میلیارد پوند برسد. با این محاسبات، رشد سالانه‌ی سرمایه‌گذاری در حوزه‌ی محاسبات ابری از سال ۲۰۰۸ تا ۲۰۱۲ به عدد ۲۵ درصد نزدیک است.
۲- مؤسسه‌ی تحقیقات بازار IDC پیش‌بینی می کند که در چند سال آینده، علاوه بر رشد سرمایه گذاری در حوزه‌ی محاسبات ابری، شرکت‌ها نیز حوزه‌های فعالیت خود را تغییر خوهند داد و خدمات خود را به سمت محاسبات ابری سوق خواهند داد. پیش‌بینی می‌شود خدمات محاسبات ابری شرکت‌ها در سال ۲۰۱۲ اینگونه ارائه شود:
اپلیکیشن‌های تجاری: ۵۲ درصد
نرم افزارهای زیرساختی: ۱۸ درصد
خدمات ذخیره‌سازی اطلاعات: ۱۳ درصد
تولید و پیاده‌سازی نرم افزارها و اپلیکیشن‌ها: ۹ درصد
خدمات سرور: ۸ درصد
۳- آیا استفاده از محاسبات ابری فرآیند مدیریت فناوری اطلاعات را آسان تر کرده است؟
۷۰ درصد کارشناسان موافق این جمله هستند.
۲۰ درصد نظری در این باره نداشته اند.
۱۰ درصد مخالف این جمله هستند.
۴- آیا استفاده از محاسبات ابری، بهبودی در تجربه‌ی مصرف کننده‌ی نهایی ایجاد کرده است؟
۷۲ درصد کارشناسان موافق این جمله هستند.
۱۶ درصد نظری در این باره نداشته اند.
۱۲ درصد مخالف این جمله هستند.
۵- آیا استفاده از محاسبات ابری، چالش‌های مربوط به کارایی فناوری اطلاعات را کاهش داده است؟
۶۳ درصد کارشناسان موافق این جمله هستند.
۲۰ درصد نظری در این باره نداشته اند.
۱۷ درصد مخالف این جمله هستند.
۶- آیا استفاده از محاسبات ابری، هزینه‌های زیرساختی سازمان ها را کاهش داده است؟
۷۳ درصد کارشناسان موافق این جمله هستند.
۱۷ درصد نظری در این باره نداشته اند.
۱۰ درصد مخالف این جمله هستند.
۷- آیا استفاده از محاسبات ابری، فشارهای ناشی از تأمین منابع درون‌سازمانی بر روی سازمان را کاهش داده است؟
۷۴ درصد کارشناسان موافق این جمله هستند.
۱۸ درصد نظری در این باره نداشته اند.
۸ درصد مخالف این جمله هستند.
۸- امروزه ۵۰ میلیون سرور فیزیکی در سراسر جهان وجود دارد. ۲درصد از این تعداد سرور در اختیار گوگل است (یعنی ۱ میلیون سرور).
۹- امروزه ۳۳ هزار و ۱۵۷ مؤسسه‌ی خدمات مرکز داده در جهان وجود دارد که ایالات متحده‌ی امریکا به تنهایی ۲۳ هزار و ۶۵۶ عدد از این مراکز داده را در خود جای داده است. کانادا، انگلستان، آلمان و هلند با اختلاف فاحشی نسبت به آمریکا در جایگاه‌های بعدی این آمار هستند.
۱۰- پیش بینی می‌شود در سال ۲۰۱۳ حداقل ۱۰ درصد از این سرورهای فیزیکی فروخته شده بر روی سرورهای مجازی (Virtual Machine) مستقر باشند به طوری که بر روی هر سرور فیزیکی ۱۰ ماشین مجازی مشغول به کار است. این به معنای شکل گیری سالانه ۸۰ تا ۱۰۰ میلیون سرور مجازی در سراسر دنیاست.
۱۱- در سال ۲۰۱۳ تقریبا ۶۰ درصد از بار کاری سرورها به صورت مجازی خوهد بود.
۱۲- مالکین دنیای محاسبات ابری در حال حاضر ۴ شرکت (بدون در نظر گرفتن رشد ناگهانی آمازون در ۴ ماهه‌ی ابتدایی سال ۲۰۱۱) گوگل، مایکروسافت، زوهو (Zoho) و رک‌اسپیس (RackSpace) با در اختیار داشتن بازاری با مجموع ارزش بیش از ۱۰۰ میلیارد پوند هستند.
۱۳- این ۱۰۰ میلیارد پوند، درآمد ناشی از خدماتی به شرح زیر است:
۵۶ درصد از مردم از سرویس‌های پست الکترونیکی همانند Gmail، Ymail و Hotmail استفاده می‌کنند.
۳۴ درصد از مردم از خدمات ذخیره‌سازی تصاویر در وب استفاده می‌کنند.
۲۹ درصد از مردم از اپلیکیشن‌های آنلاین مثل Google Docs و Photoshop Express استفاده می‌کنند.
۷ درصد از مردم از سرویس‌های ذخیره‌سازی ویدئو در وب استفاده می‌کنند.
۵ درصد از مردم برای ذخیره‌سازی فایل های رایانه‌ای خود در وب پول پرداخت می‌کنند.
۵ درصد از مردم برای پشتیبان‌گیری از اطلاعات هارد دیسک خود بر روی وب‌سایت‌های اینترنتی هزینه می‌کنند.
یک نمونه قیمت در سیستم عامل Azure از شرکت مایکروسافت
هزینه های مربوط به پردازش:
معادل یک کامپیوتر شخصی ۱۲۰۰ ریال / ساعت
معادل یک سرویس دهنده ۳۰۰۰ ریال / ساعت
معادل یک ابر رایانه ۱۰۰۰۰ ریال / ساعت
هزینه های مربوط به فضای ذخیره سازی:
هر گیگابایت اجاره نگهداری ماهانه ۱۵۰۰ ریال
هر ده هزار تراکنش ذخیره سازی ۱۰ ریال
هزینه دریافت هر گیگابایت داده از ابر:
بسته به کشوری که در آن قرار دارید، از ۱۵۰ تا ۲۰۰ ریال
این سیستم عامل به نام Windows Azure درحال حاضر توسط شرکت مایکروسافت با قیمت هایی شبیه آنچه در بالا آمد، ارائه می گـردد. بـرای اجرای این سیستم عامل به رایانه ای با چند گیگابایت حافظه RAM و چندصد گیگابایت دیسک سخت نیاز نبوده و یک دستگاه نسبتاً قـدیـمی هم می تواند برای آن به کار رود.
بعد از اینکه با محاسبات ابری آشنا شدیم و آن را از نگاه آماری بررسی کردیم و به این نتیجه رسیدیم که محاسبات ابری می توانند نقش عمده ای در جهان امروزی داشته باشند به معرفی سیستم عامل های ابری که از پلتفرم های مربوط به محاسبات ابری هستند، می پردازیم. در ابتدا تعریفی از سیستم عامل.
تعریف سیستم عامل
سیستم عامل، نرم افزاری است که مدیریت منابع رایانه را به عهده گرفته، اجرای برنامه های کاربردی را کنترل نموده و به صورت رابط کاربر و سخت افزار عمل می نماید. سیستم عامل خدماتی به برنامه های کاربردی و کاربر ارائه می دهد. برنامه های کاربردی یا از طریق واسط های برنامه نویسی کاربردی و یا از طریق فراخوانی های سیستم به این خدمات دسترسی دارند. با فراخوانی این واسط ها، برنامه های کاربردی می توانند سرویسی را از سیستم عامل درخواست کنند، پارامترها را انتقال دهند، و پاسخ عملیات را دریافت کنند. ممکن است کاربران با بعضی انواع واسط کاربری نرم افزار مثل واسط خط فرمان یا یک واسط گرافیکی کاربر یا سیستم عامل تعامل کنند. برای کامپیوترهای دستی و رومیزی، عموماً واسط کاربری به عنوان بخشی از سیستم عامل در نظر گرفته می شود. در سیستم های بزرگ و چند کاربره مثل یونیکس، واسط کاربری معمولاً به عنوان یک برنامه کاربردی که خارج از سیستم عامل اجرا می شود پیاده سازی می شود (استالینگ، 1381).
انواع سیستم عامل
سیستم عامل تک پردازنده
این نوع سیستم عامل ها، سیستم عامل های نسل چهارم (نسل فعلی) هستند که بر روی یک پردازنده اجرا می شوند. از قبیل XP98، Me و Vista که بیشتر محصول شرکت مایکروسافت می باشند.
سیستم عامل شبکه ای
این نوع سیستم عامل ها، از کنترل کننده های واسط شبکه و نرم افزارهای سطح پایین به عنوان گرداننده استفاده می کنند و برنامه هایی برای ورود به سیستم های راه دور و دسترسی به فایل از راه دور در آنها به کار گرفته می شود[13].
سیستم عامل توزیع شده
این سیستم عامل ها خود را مانند سیستم عامل های تک پردازنده به کاربر معرفی می کنند اما در عمل از چندین پردازنده استفاده می کنند. این نوع سیستم عامل در یک محیط شبکه ای اجرا می شود و در حقیقت در این نوع سیستم جواب نهایی یک برنامه، پس از اجرا در کامپیوترهای مختلف به سیستم اصلی بر می گردد. سرعت پردازش در این نوع سیستم بسیار بالاست.
سیستم عامل بی درنگ
از این نوع سیستم عامل برای کنترل ماشین آلات صنعتی، تجهیزات علمی و سیستم های صنعتی استفاده می گردد. یک سیستم عامل بی درنگ دارای امکانات محدود در رابطه با بخش رابط کاربر و برنامه های کاربردی مختص کاربران می باشد. یکی از بخش های مهم این نوع سیستم های عامل، مدیریت منابع موجود کامپیوتری به گونه ای که عملیات خاصی در زمانی که بایستی اجرا شوند، اجرا گردند و مهم تر از همه اینکه مدیریت منابع به گونه ای است که این عملیات خاص در هر بار وقوع، مقدار زمان یکسانی بگیرد[1].
سیستم های توزیعی
در منابع مختلف تعاریف مختلفی برای سیستم های توزیعی ارائه شده است. اما هیچ یک نه کامل است و نه با دیگری همخوانی دارد. در این تحقیق تعریفی از این نوع سیستم ها که در کتاب سیستم های توزیعی آقای تانن باوم به آن اشاره شده را بیان می کنیم:
سیستم توزیعی در واقع مجموعه ای از کامپیوترهای مستقل است که برای کاربر خود مانند یک سیستم منسجم و منفرد به نظر می رسد[2].
از این تعریف می توان به این نتیجه رسید که اولاً یک سیستم توزیعی از کامپیوترهای خود مختار تشکیل شده است و ثانیاً کاربران تصور می کنند که با یک سیستم منفرد کار می کنند. پس با تعریفی که ذکر شد می توان یک سیستم توزیعی را اینگونه نیز تعریف کرد:
هر سیستمی که بر روی مجموعه ای از ماشین ها که دارای حافظه اشتراکی نیستند، اجرا شده و برای کاربران به گونه ای اجرا شود که گویا بر روی یک کامپیوتر می باشند ، یک سیستم توزیع شده است. اما نکته ای که در اینجا باید به آن توجه داشت این است که در سیستم های توزیعی تفاوت بین کامپیوترهای مختلف و نحوه ارتباط آنها با یکدیگر باید تا حدود زیادی از دید کاربران پنهان بماند. سیستم های توزیعی برای اینکه بتوانند از کامپیوترها و شبکه های ناهمگن پشتیبانی کنند و همگی سیستم ها را در غالب یک سیستم منفرد نمایش دهند، به عنوان یک لایه میانی به نام میان افزار بین یک لایه سطح بالایی شامل کاربران و برنامه های کاربردی و یک لایه پائینی شامل سیستم های عامل در نظر گرفته می شوند[12]. در شکل 2-6 لایه سیستم توزیعی یا به عبارتی میان افزاری را مشاهده می کنید که بین سیستم های عامل 1 تا 4 و چهار کامپیوتر شبکه که شامل سه برنامه کاربردی هستند قرار گرفته است. این لایه باعث می شود که تفاوت بین سخت افزار و سیستم های عامل از دید برنامه های کاربردی وکاربران مخفی بماند.

شکل 2-6 : سیستم توزیعی که به عنوان یک لایه میانی یا میان افزار بین برنامه های کاربردی و سیستم عامل ها قرار گرفته است[12].
و اما مواردی که باید در طراحی سیستم های توزیع شده در نظر گرفت و به نوعی اهداف سیستم های توزیع شده می باشند عبارتند از شفافیت، انعطاف پذیری، قابلیت اطمینان، کارآیی خوب و قابلیت گسترش.
شفافیت
یکی از اهداف مهم سیستم های توزیع شده این است که فرآیندها و منابعی که بین ماشین های متعدد توزیع شده اند، باید از دید کاربران مخفی بماند[17]. به سیستم توزیعی که از دید کاربران و برنامه های کاربردی خود به صورت یک سیستم کامپیوتری منفرد جلوه می کند را اصطلاحاً شفاف می گویند.
شفافیت انواع مختلفی دارد و در مورد هر یک طبق تعریفی که در کتاب سیستم های توزیعی آقای تانن باوم آمده توضیح می دهیم، شفافیت دسترسی که در مورد مخفی سازی تفاوت های ارائه داده و نحوه دسترسی به منابع به وسیله کاربران می باشد. شفافیت مکان یعنی اینکه کاربران نتوانند محل استقرار فیزیکی منبع در سیستم را شناسایی کنند. شفافیت مهاجرت یعنی اینکه بتوان منابع آنها را بدون تاثیرگذاری بر نحوه دسترسی به آنها انتقال داد. شفافیت مکان یابی مجدد هنگامی است که بتوان منابع را در حین دسترسی به آنها و بدون کوچکترین اطلاعی به کاربر یا برنامه کاربردی مجددا مکان یابی کرد. شفافیت تکثیر به مخفی سازی وجود چندین نسخه تکثیری از یک منبع می پردازد. شفافیت هم روندی زمانی است که مثلا دو کاربر مستقل فایل های خود را روی یک خدمتگذار فایل واحد ذخیره کرده و یا به جداول واحدی در پایگاه داده مشترک دسترسی داشته باشند. در این موارد هیچ یک از کاربران نباید کوچکترین اطلاعی از واقعیت استفاده کاربر دیگر از آن منبع داشته باشد. شفافیت خرابی به این معناست که کاربر متوجه خرابی و عملکرد نادرست یک منبع نشده و سپس سیستم اقدام به ترمیم آن خرابی کند[2].
قابلیت اطمینان
در دسترس بودن یک فاکتور مهم مرتبط با این سیستم ها است. طراحی نباید به گونه ای باشد که نیاز به اجرای همزمان کامپوننت های اساسی باشد. افزونگی بیشتر داده ها باعث افزایش در دسترس بودن شده اما ناسازگاری را بیشتر می کند. قدرت تحمل خطا باعث پوشاندن خطاهای ایجاد شده توسط کاربر می شود.
کارآیی
بدون کارآیی مناسب کلیه موارد استفاده نرم افزار بی فایده می باشد. اندازه گیری کارایی در سیستم های توزیع شده کار آسانی نیست. برای رسیدن به کارایی باید توازنی خاص در تعداد پیغام ها و اندازه کامپوننت های توزیع شده بر قرار باشد.
مقیاس پذیری
امروزه اتصال جهانی از طریق اینترنت، مانند امکان ارسال یک کارت پستال برای هر کسی در هر گوشه ای از جهان تبدیل به امر عادی شده است. به همین دلیل، مقیاس پذیری یکی از مهمترین اهداف طراحی برای سازندگان سیستم های توزیعی محسوب می شود. مقیاس پذیری یک سیستم را می توان حداقل در سه بعد مختلف اندازه گیری کرد(نیومان، 1994). اولاً، یک سیستم می تواند با توجه به اندازه خود مقیاس پذیر باشد. به این معنا که بتوان به راحتی کاربران و منابع دیگری را به سیستم اضافه نمود. ثانیاً، یک سیستم مقیاس پذیر جغرافیایی سیستمی است که ممکن است کاربران و منابع آن در فاصله های دوری از هم قرار گرفته باشند. ثالثا، یک سیستم ممکن است از نظر مدیریت اجرایی مقیاس پذیر باشد، به این معنا که حتی اگر سازمان هایی با مدیریت اجرایی مستقل را به هم پیوند دهد. باز به راحتی قابل مدیریت باشد. متاسفانه، اغلب سیستم هایی که از یک یا چند مقیاس پذیر هستند، با افزایش مقیاس پذیری سیستم، تاحدودی با افت عملکرد مواجه می شوند.
سیستم عامل های توزیعی
محیط های کامپیوتری تحت شبکه( شبکه های کامپیوتری) امروزه بسیار رایج شده اند و این محیط ها شامل مجموعه ای از ایستگاه های کاری و سرویس دهنده ها می باشند. واضح است که مدیریت این منابع کار آسانی نخواهد بود. استفاده از مجموعه ای از کامپیوترها که از طریق شبکه به هم متصل شده اند مشکلات بسیاری را در بر دارد، از جمله مشکلات تقسیم منابع و یکپارچه سازی محیط( که این مشکلات در سیستم های متمرکز وجود ندارد). علاوه بر این برای افزایش میزان کارآیی، توزیع بایستی از دید کاربر پنهان بماند. راه حل مناسب این است که سیستم عاملی طراحی شود که توزیعی بودن سخت افزار را در تمامی سطوح در نظر داشته باشد. به این صورت که سیستم عامل مجموعه را به صورت یک سیستم متمرکز نشان دهد و در کنار آن از مزیت های سیستم توزیعی استفاده کند. در ساختار سیستم عامل های توزیعی از دو الگوی مبتنی بر پیام و مبتنی بر شیء استفاده می شود[11].
الگوی مبتنی بر پیام
در این الگو سیستم عامل یک هسته مبتنی بر پیام در هر گره قرار می دهد و برای برقراری ارتباطات داخل فرآیند از ارسال پیام استفاده می کند. هسته از هر دو نوع ارتباط محلی( ارتباط بین فرآیندهای داخل هر گره) و غیر محلی(ارتباط از راه دور) پشتیبانی می کند. در یک سیستم عامل سنتی همانند یونیکس دسترسی به سرویس های سیستمی از طریق فراخوانی متدها صورت می پذیرفت در حالی که در سیستم عامل های مبتنی بر پیام، درخواست ها از طریق ارسال پیام مطرح می شوند. با این قرار می توان نتیجه گرفت سیستم عامل های مبتنی بر پیام ساخت جذاب تر و بهتری دارند، زیرا سیاست های موجود در فرآیند های سرویس دهنده از مکانیزم پیاده سازی هسته جدا می باشد.
الگوی مبتنی بر شیء
در این الگو سیستم عامل سرویس ها و منابع را به موجودیت هایی به نام شیء کپسوله می کند. این اشیاء همانند نمونه هایی از داده های انتزاعی می باشند و از ماژول های منحصر به فردی تشکیل شده اند. همچنین این ماژول ها نیز متشکل از متدهای به خصوصی می باشند که اینترفیس(واسط) ماژول را توصیف می کنند. عملکرد در این الگو این چنین است که کاربران درخواست سرویس را از طریق احضار شیء مورد نظر مطرح می سازند. این مکانیزم بسیار شبیه به فراخوانی پروسه ها در سیستم های معمولی می باشد. قابل ذکر است که اشیاء عملیات را کپسوله می کنند.
رویکرد سیستم عامل های ابری
سیستم عامل ابری نیز نوعی از سیستم عامل های توزیعی می باشند که مجموعه ای از گره ها را با هم یکپارچه می سازد و یک سیستم متمرکز تولید می کند. سیستم عامل ابری شامل سرویس دهنده های محاسباتی، سرویس دهنده های داده ای و ایستگاه های کاربر می باشد.
سرویس دهنده های محاسباتی: ماشینی است برای استفاده به عنوان موتور محاسباتی.
سرویس دهنده های داده ای: ماشینی است برای استفاده به عنوان مخرن داده های بلند مدت.


ایستگاه های کاربری: ماشینی است که محیطی برای توسعه دادن برنامه های کاربردی فراهم می کند و واسطی بین کاربر و سرویس دهنده های محاسباتی یا داده ای می باشد[3].
ساختار سیستم عامل های ابری بر پایه مدل شیء- نخ می باشد. این مدل از مدل برنامه نویسی معروف شیء گرا اقتباس شده است که نرم افزار سیستم را بر پایه مجموعه ای از اشیاء می سازد. هر شیء شامل تعدادی داده و عملیات بر روی آن داده ها می باشد. عملیات بر روی داده ها را متد می نامند و نوع شیء نیز با کلاس مشخص می گردد. هر کلاس می تواند صفر یا یک و یا چند نمونه داشته باشد ولی یک نمونه تنها از یک کلاس ناشی می شود. اشیاء به پیام ها پاسخ می دهند و ارسال پیام به یک شیء می تواند به داده های درون شیء دسترسی داشته باشد و آن ها را بروز رسانی کند و یا به اشیاء دیگر درون سیستم پیام ارسال کند. اشیاء ابر کپسولی از کد و داده می باشند که در یک فضای آدرس مجازی قرار دارند. هر شیء نمونه ای از یک کلاس است و هر کلاس ماژولی از برنامه. اشیاء ابرها به احضارها پاسخ می دهند و احضارها ( با استفاده از نخ ها) برای اجرای متد درون شیء ابر استفاده می گردند. ابرها از اشیاء برای تضمین انتزاع مخازن و از نخ ها برای اجرای متد درون شیء استفاده می نمایند. این موجب می شود که محاسبات و مخازن داده ای از یکدیگر تفکیک شوند. از دیگر ویژگی های مدل شیء- نخ می توان به این موارد اشاره کرد:
عملیات ورودی و خروجی
به اشتراک گذاری داده ها
ارتباط درون فرآیندها
ذخیره سازی بلند مدت داده ها در حافظه
الگوی سیستم عامل ابری
الگوی مورد استفاده در سیستم عامل های ابری همان الگوی شیء- نخ می باشد که در این بخش به توضیح اجزا و نحوه عملکرد این الگو می پردازیم.
شیء ابری
شیء ابری یک فضای آدرس مجازی پایدار می باشد. برخلاف فضاهای آدرس در سیستم های معمولی، محتویات اشیاء برای مدت طولانی باقی می مانند. به همین دلیل در هنگام خرابی سیستم از بین نمی روند، مگر اینکه عمدا از سیستم حذف شوند. همانطور که از تعریف برمی آید اشیاء ابری سنگین وزن هستند، به همین علت است که این اشیاء بهترین انتخاب برای مخازن داده ای و اجرای برنامه های بزرگ به حساب می آیند. داده های درون شیء فقط توسط خود شیء قابل دسترسی و بروزرسانی می باشند، زیرا محتویات یک فضای آدرس مجازی از بیرون از فضای مجازی قابل دست یابی نمی باشند.
یک شیء ابری شامل موارد زیر است:
کد مخصوص به خود ( متدهای اختصاصی )
داده های پایدار
حافظه ای زودگذر و سبک ( برای تخصیص حافظه موقت )
حافظه ای پایدار و دائمی ( برای تخصیص دادن حافظه ای که بخشی از ساختمان داده پایدار شیء می باشد )
داده با احضار متدها وارد شیء می شود و با پایان احضار از شیء خارج می گردد (شکل شماره 2-7 ). اشیاء ابری دارای یک نام در سطح سیستم می باشند که آن ها را از یکدیگر منحصر به فرد می سازد. این اشیاء درون سرویس دهنده های محاسباتی قابل استفاده می باشند که این کارآیی موجب می شود توزیعی بودن داده ها از دید کاربر مخفی باقی بماند.
4375151651000
شکل شماره 2-7 : ساختمان یک شیء ابری[5]
نخ
یک نخ عبارت است از مسیری اجرایی که وارد اشیاء شده و متدهای درون آن ها را اجرا می کند و محدود به یک فضای آدرس نمی شود. نخ ها توسط کاربران و یا برنامه های کاربردی ساخته می شوند. نخ ها با اجرای متدی از یک شیء می توانند به داده های درون شیء دسترسی یابند، آن ها را بروزرسانی کنند و یا اینکه متدهایی از شیء دیگر را احضار کنند. در این حالت، نخ به طور موقت شیء فعلی را رها می کند، از آن خارج شده و وارد شیء فراخوانی شده می گردد و متد مورد نظر آن را اجرا می کند، پس از پایان اجرای متد به شیء قبلی باز می گردد و نتیجه را برمی گرداند. نخ ها پس از پایان عملیات مورد نظر از بین می روند. علاوه بر این چند نخ می توانند به طور هم زمان وارد یک شیء شوند و به طور موازی به اجرا درآیند که در این صورت نخ ها محتویات فضای آدرس شیء را بین یکدیگر به اشتراک می گذارند. شکل شماره 2-8 نحوه اجرای نخ ها در اشیاء را نشان می دهد.

شکل شماره 2-8 : اجرای نخ ها در شیء ابری[5]
تعامل میان شیء و نخ ( مدل شیء- نخ )
ساختار یک سیستم عامل ابری متشکل از اشیاء و نخ ها می باشد. مکانیزم ذخیره سازی داده ها در سیستم عامل های ابری با سایر سیستم عامل های معمول تفاوت دارد. در سیستم عامل های معمولی از فایل ها برای ذخیره سازی داده ها استفاده می شود ولی در سیستم عامل های ابری اشیاء نقش مخازن داده را ایفا می کنند. برخی از سیستم ها برای برقراری ارتباط با داده های مشترک و هماهنگ سازی محاسبات از الگوی ارسال پیام استفاده می کنند. ابرها با قراردادن داده ها درون اشیاء آن ها را به اشتراک می گذارند. متدها در صورت نیاز به دسترسی داده ها شیء مورد نظر را که داده درون آن قرار دارد احضار می کنند. در یک سیستم مبتنی بر پیام، کاربر می بایست درجه هم زمانی را در هنگام نوشتن برنامه تعیین کند و برنامه را به تعدادی پروسه سیستمی بشکند. مدل شیء-نخ این احتیاجات را حذف می کند، به این صورت که در زمان اجرا درجه هم زمانی با ایجاد نخ های موازی مشخص می شود.
به طور خلاصه می توان گفت:
سیستم عامل ابری از فضاهای آدرس نام گذاری شده به نام شیء تشکیل شده است و این اشیاء قادرند:
مخازن داده پایدار فراهم کنند.
متدهایی برای دست یابی و دست کاری داده ها ایجاد نمایند.
داده ها را به اشتراک بگذارند.
هم زمانی را کنترل نمایند.
جریان کنترلی توسط نخ هایی که اشیاء را احضار می کنند انجام می شود.
جریان داده ای با ارسال پارامتر انجام می شود.
برنامه نویسی در مدل شیء- نخ در ابرها
مفاهیم مورد استفاده برنامه نویس در مدل شیء – نخ عبارتند از:
کلاس: ماژول های سیستم
نمونه: شیء ای از کلاس می باشد که می تواند توسط نخ ها احضار شود.
بنابراین برای نوشتن برنامه کاربردی در ابرها، برنامه نویس یک یا چند کلاس را تعریف می کند و داده ها و کدهای برنامه را درون این کلاس ها قرار می دهد. برنامه برای اجرا شدن نخی ایجاد می کند که متد اصلی شیء اجرا کننده برنامه را احضار می کند. اشیاء دارای نام هایی می باشند که برنامه نویس هنگام تعریف شیء برای آن ها مشخص کرده است و این نام ها بعدا به نام سیستمی شیء تبدیل می شوند.
معماری سیستم عامل ابری
دراین بخش معماری سیستم عامل های ابری را مورد بررسی قرار می دهیم. شکل شماره 2-9 مدلی منطقی از معماری یک سیستم عامل ابری را نمایش می دهد. یک پروسه ابری به مجموعه ای از اشیاء ابری اطلاق می شود که با هم یک برنامه کاربردی را تشکیل می دهند.

شکل شماره 2-9 : مدل منطقی از معماری یک سیستم عامل ابری[6]
فضای هسته ابر به تعدادی از پروسه های ابری که عملیات کنترل دسترسی ها، تخصیص حافظه و محاسبات مقدار منابع لازم را انجام می دهند گفته می شود. مابقی پروسه ها که مربوط به فضای هسته ابر نیستند، فضای کاربر را تشکیل می دهند. پروسه های ابری فضای کاربر که مستقیما توسط خود کاربر اجرا می شوند برنامه های کاربران نامیده می شوند و کتابخانه های ابری، پروسه های ابری می باشند که توسط برنامه های کاربران مورد استفاده قرار می گیرند. این برنامه ها از طریق مجموعه ای از واسط های استاندارد به نام فراخوانی های سیستمی ابر با کتابخانه ها و پروسه های هسته ارتباط برقرار می کنند. تمامی اشیاء موجود در فضای کاربر برای گرفتن دستورات از سیستم عامل از یک دستگیره فراخوانی استفاده می کنند، بدین معنی که برای مدیریت شدن از طریق یک واسط تحت شبکه قابل دسترسی می باشند که ارتباط میان اشیاء و آدرس آن ها در شبکه توسط پروسه های ابری «مدیریت پروژه» و «مدیریت ماشین مجازی» موجود در فضای هسته انجام می گیرند. اطلاعات نهایی نیز توسط پروسه ابری «کتابخانه نامگذاری» در دسترس قرار می گیرد. قابلیت دسترسی تمامی عملیات مدیریتی را پروسه ابری «اعتباردهی» مورد بررسی قرار می دهد و عملیات محاسبه میزان منابع مورد نیاز در هر لحظه نیز بر عهده پروسه ابری «اندازه گیری» می باشد. البته قابل ذکر است که مفروضات لحاظ شده در شکل شماره 2-4 تعداد اندکی از محدودیت های موجود در ابرها را در نظر گرفته است و کامل نمی باشد[6].
برخی سیستم عامل های ابری موجود(سیستم عامل های مبتنی بر وب)
سیستم عامل های وب روش بسیار مناسبی برای دستیابی به همه داده های شما در همه جای دنیا هستند (مشروط بر اینکه کامپیوتری با یک اتصال به اینترنت و یک مرورگر وب وجود داشته باشد). چنانچه تعدادی کامپیوتر داشته باشید، اما بخواهید همه اطلاعات را در یک جا نگهدارید و از برنامه های کاربردی مورد علاقه خود نیز استفاده کنید، این سیستم عامل ها بسیار سودمند هستند. اکنون در این مرحله ممکن است این سوال مطرح شود که چرا سیستم عامل وب؟. اساساً، یک سیستم عامل وب چیزی شبیه یک سیستم عامل روی اینترنت است. سیستم عامل وب، دسکتاپ مجازی شماست که به هیچ مکان فیزیکی متصل نیست و این امکان را به شما می دهد که در هر جایی از دنیا با کمک یک مرورگر به آن دستیابی داشته باشید. اجازه دهید تا از بین سیستم عامل های وبی که وجود دارد به بیان ویژگی های چند مورد از آنها بپردازیم.
سیستم عامل iCloud
سیستم عامل iCloud، مزایای بسیار زیادی دارد، علاوه بر اینکه هر برنامه ای که نیاز داریم در آن موجود است، 50 گیگابایت فضای ذخیره سازی آنلاین، به اشتراک گذاری آسان و ویژگی های افزایش برنامه های کاربردی را دارد. این سیستم عامل دارای ویژگی هایی مانند زیر است:
سیستم فایل آنلاین برای ذخیره سازی انواع فایل ها.
پشتیبان DAV وب از طریق ویندوز اکسپلورر امکان دستیابی مستقیم به انباره icloud شما را فراهم می کند.
برنامه های بهره وری- نوشتن، پست الکترونیکی ( که با همه حساب های پست الکترونیکی شما به اضافه یک حساب icloud رایگان هماهنگی دارد)، تماس ها، ToDo، ماشین حساب، دفترچه یادداشت، آنزیپ (فایل های حاوی داده های فشرده را از هم باز می کند).
عکس ساز با قابلیت به اشتراک گذاری، مدیا پلیر iplay، مووی پلیر، و حتی رادیو.
IM و یک مرورگر وب[8].
69850069596000تصویری از این سیستم عامل را در شکل 2-10 مشاهده می کنید.
شکل شماره 2-10: نمایی از سیستم عامل icloud
سیستم عامل GlideOS
سیستم عامل GlideOS، هم از طریق کامپیوتر و هم تلفن همراه قابل دسترسی می باشد. 10 گیگابایت فضای ذخیره سازی رایگان را در اختیار شما قرار می دهد، همچنین در این سیستم عامل می توانید شش حساب کاربری برای اعضاء خانواده ایجاد کنید( که می تواند شامل حساب کودک باشد). علاوه براین، این سیستم عامل دارای ویژگی هایی زیر می باشد که عبارتند از:
10 گیگابایت فضای دیسک مجازی
ابزار آفیس- شامل واژه پرداز، نمایش ساز، ماشین حساب، تقویم
ویرایشگر عکس

user8298

HYPERLINK l "_Toc365922956" 1-2-1 سرریزها3
HYPERLINK l "_Toc365922957" 1-2-2 دریچهها3
HYPERLINK l "_Toc365922958" 1-2-3 سازه ترکیبی سریز – دریچه4
HYPERLINK l "_Toc365922959" 1-2-4 آبشستگی6
HYPERLINK l "_Toc365922960" 1-3 ضرورت انجام تحقیق9
HYPERLINK l "_Toc365922961" 1-4 اهداف تحقیق9
HYPERLINK l "_Toc365922962" 1- 5 ساختار کلی پایاننامه10
فصل دوم: بررسی منابع
2-1 مقدمه12
2-2 مطالعات آزمایشگاهی جریان12
2-2 مطالعات عددی با نرمافزار Flow3D16
فصل سوم: مواد و روشها
3-1 مقدمه22
3-2 نحوه انجام آزمایشات22
3-2-1 مخزن23
3-2-2 پمپ23
3-2-3 کانال آزمایشگاهی23
3-2-4 مخزن آرام کننده جریان24
فهرست مطالب
عنوان صفحه
3-2-5 مدل سازه ترکیبی سرریز - دریچه24
3-3 آنالیز ابعادی25
3-4 شبیهسازی عددی27
3-4-1 معرفی نرمافزار Flow3D28
3-4-2 معادلات حاکم32
3-4-3 مدلهای آشفتگی33
3-4-3-1 مدلهای صفر معادلهای35
3 -4-3-2 مدلهای یک معادلهای35
3-4-3-3 مدلهای دو معادلهای36
3-4-3-4 مدلهای دارای معادله تنش36
3-4-4 شبیهسازی عددی مدل37
3-4-4-1 ترسیم هندسه مدل38
3-4-4-2 شبکه بندی حل معادلات جریان38
3-4-4-3 شرایط مرزی کانال40
3-4-4-4 خصوصیات فیزیکی مدل41
3-4-4- 5 شرایط اولیه جریان43
3-4-4-6 زمان اجرای مدل43
فصل چهارم: نتایج و بحث
4-1 مقدمه46
4-2 شبیهسازی هیدرولیک جریان در حالت کف صلب46
4-2-1 واسنجی نرمافزار46
4-2-1-1 ارزیابی نرمافزارپ48


4-2-1-2 بررسی تأثیر انقباض جانبی سازه ترکیبی سرریز - دریچه بر هیدرولیک جریان54
فهرست مطالب
عنوان صفحه
4-3 شبیهسازی آبشستگی پاییندست جریان59
4-3-1 واسنجی نرمافزار59
4-3-1-1 ارزیابی نتایج نرمافزار61
فصل پنجم: پیشنهادها
5-1 مقدمه70
5-2 نتیجهگیری70
5-3 پیشنهادها71
منابع74

فهرست جدول‌ها
عنوان صفحه
جدول 3- 1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریان25
جدول 3- 2 معرفی نرمافزار Flow3D28
ادامه جدول 3-229
جدول 3- 3 محدوده دادههای به کار رفته جهت شبیهسازی آبشستگی38
جدول 3- 4 شرایط مرزی اعمال شده در نرمافزار40
جدول 3- 5 شرایط مرزی اعمال شده در نرمافزار41
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوب42
جدول 4- 1 نتایج آمارهای خطا مربوط به فرمول (4-1)51
جدول 4- 2 نتایج حاصل از مدلسازی سازه ترکیبی همراه با انقباض جانبی برای نسبت دبیها55
جدول 4- 3 تأثیر پارامتر عدد شیلدز بحرانی بر حداکثر عمق آبشستگی60
جدول 4- 4 تأثیر پارامتر ضریب دراگ بر حداکثر عمق آبشستگی60
جدول 4- 5 تأثیر زاویه ایستایی بر حداکثر عمق آبشستگی61
جدول 4-6 تأثیر پارامتر حداکثر ضریب تراکم مواد بستر بر حداکثر عمق آبشستگی61
جدول 4- 7 بهترین مقادیر برای پارامترهای مؤثر در شبیهسازی حفره آبشستگی61
جدول 4- 8 نتایج آمارهای خطا مربوط به فرمول (4-4)65
فهرست شکل‌ها
عنوان صفحه
TOC h z t "fig,1,table,1" شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه5
HYPERLINK l "_Toc366000088" شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی8
HYPERLINK l "_Toc366000089" شکل 2- 1 جریان عبوری از سازه ترکیبی سرریز - دریچه مستطیل شکل با فشردگی جانبی12
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی12
شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)14
شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)14
شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی درحین برخی از آزمایشات (دهقانی و بشیری، 2010) 15
شکل 3- 1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک23
شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک24
شکل 3- 3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریان25
شکل 3- 4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب26
شکل 3- 5 مدلسازی پرش هیدرولیکی30
شکل 3- 6 مدلسازی جریان در قوس رودخانه30
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه30
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض31
شکل 3- 9 مدلسازی آبشستگی پاییندست سازه31
شکل 3- 10 مشبندی یکنواخت در کانال با مقیاس کوچک39
شکل 3- 11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ40
شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلب40
شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوب41
شکل 3- 14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان43
شکل 3- 15 نمودار تغییرات زمانی حجم سیال در مدلسازی حفره آبشستگی43
شکل 4- 1 مقایسه نتایج پروفیل سطح آب برای شبکهبندیهای مختلف میدان جریان با داده آزمایشگاهی46
شکل 4- 2 مقایسه پروفیل سطح آب در دو مدل تلاطمی k-ε RNG و k-ε و دادههای آزمایشگاهی47
شکل 4- 3 مقایسه پروفیل سطح آب در مدل تلاطمی k-ε RNG با دادههای آزمایشگاهی49
فهرست شکل‌ها
عنوان صفحه
شکل 4-4 ارزیابی دقت مدل RNG k-ε برای عمق جریان در بالادست و روی سازه ترکیبی سرریز- دریچه49
شکل 4- 5 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs / Qg)51
شکل 4- 6 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی52
شکل 4- 7 مقایسه رابطه نسبت دبیها درسازه ترکیبی سرریز- دریچه با روابط تجربی برای تخمین دبی در سرریز و ریچه52
شکل 4- 8 توزیع مؤلفه طولی سرعت جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 9 توزیع فشار جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 10 الگوی جریان اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 11 توزیع تنش برشی کف در اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 12 شماتیکی از جریان عبوری از سازه ترکیبی دارای انقباض جانبی54
شکل 4-13 توزیع تنش برشی کف در اطراف سازه ترکیبی با انقباض جانبی55
شکل 4-14 مقایسه عمق جریان درعرض کانال دربلافاصله قبل از سازه برای میزان انقباضهای جانبی مختلف سازه رکیبی56
شکل 4-15 مقایسه عمق جریان در طول کانال برای میزان انقباضهای جانبی مختلف سازه ترکیبی56
شکل 4-16 توزیع مؤلفه طولی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-17 توزیع مؤلفه طولی سرعت روی سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-18 توزیع مؤلفه عرضی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض58
شکل 4-19 توزیع مؤلفه عرضی سرعت روی سازه در دو حالت با انقباض و بدون انقباض58
شکل 4- 20 مقایسه دقت شبیهسازی حفره آبشستگی با استفاده از مدلهای مختلف آشفتگی59
شکل 4- 21 ارزیابی دقت نرمافزار برای عمق جریان در بالادست و روی سازه ترکیبی62
شکل 4- 22 ارزیابی دقت نرمافزار برای حداکثر عمق آبشستگی62
شکل 4- 23 شماتیکی از جریان ترکیبی عبوری از روی سرریز و زیر دریچه در بستر متحرک63
فهرست شکل‌ها
عنوان صفحه
شکل 4- 24 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب64
شکل 4- 25 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی65
شکل 4-26 توزیع مؤلفه طولی سرعت جریان در اطراف سازه ترکیبی66
شکل 4-27 الگوی جریان اطراف سازه ترکیبی سرریز – دریچه (الف. بردارهای سرعت ب. خطوط جریان)66
شکل 4-28 توزیع تنش برشی در اطراف حفره آبشستگی پاییندست سازه ترکیبی سرریز- دریچه در ابتدای اجرای برنامه67
شکل 4- 29 مقایسه رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب و بستر صلب67
شکل 4-30 نمودار رابطه حداکثر عمق آبشستگی با نسبت دبیهای عبوری از رو و زیر سازه ترکیبی68

18849116456969
فصل اول
مقدمه
1-1- مقدمه
یکی از عمده‌ترین مشکلات سازه‌هایی از قبیل سرریزها، دریچه‌ها و حوضچه‌های آرامش که در بالادست بسترهای فرسایش‌پذیر قرار دارند، آبشستگی در مجاورت سازه است که علاوه‌بر تأثیر مستقیم بر پایداری سازه، ممکن است باعث تغییر مشخصات جریان و در نتیجه تغییر در پارامترهای طراحی سازه شود. به دلیل پیچیدگی موضوع، اکثر محققین آن را به صورت آزمایشگاهی بررسی کردهاند که با وجود تمام دستآوردهای مهمی که تاکنون در زمینه آبشستگی موضعی حاصل گردیده است، هنوز هم شواهد زیادی از آبشستگی گسترده در پایاب دریچه‌ها، سرریزها، شیب‌شکن‌ها، کالورت‌ها و مجاورت پایه‌های پل دیده می‌شود که می‌تواند پایداری این سازهها را با خطرات جدی مواجه کند.
پدیده آبشستگی زمانی اتفاق می‌افتد که تنش برشی جریان آب عبوری از آبراهه، از میزان بحرانی شروع حرکت ذرات بستر بیشتر شود. تحقیقات نشان داده است که عوامل بسیار زیادی بر آبشستگی در پایین‌دست سازه تأثیرگذار هستند که از جمله آنها می‌توان به اندازه و دانه‌بندی رسوبات، عمق پایاب، عدد فرود ذره، هندسه سازه و ... اشاره کرد (کوتی و ین (1976)، بالاچاندار و همکاران (2000)، کلز و همکاران (2001)، لیم و یو (2002)، فروک و همکاران (2006)، دی و سارکار (2006) و ساراتی و همکاران (2008)).
دریچهها و سرریزها به طور گسترده به منظور کنترل، تنظیم جریان و تثبیت کف، در کانالهای باز مورد استفاده قرار میگیرند. بر اثر جریان ناشی از جت عبوری از رو یا زیر سازهها، امکان ایجاد حفره آبشستگی در پاییندست سازهها وجود دارد که ممکن است پایداری سازه را به خطر اندازد؛ بنابراین تعیین مشخصات حفره آبشستگی مورد توجه محققین هیدرولیک جریان قرار گرفته است.
به منظور افزایش بهره‌وری از سازههای پرکاربرد سرریزها و دریچهها، می‌توان آنها را با هم ترکیب نمود به‌طوری‌که در یک زمان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. با ترکیب سرریز و دریچه می‌توان دو مشکل عمده و اساسی رسوب‌گذاری در پشت سرریزها و تجمع رسوب و مواد زائد در پشت دریچه‌ها را رفع نمود. در سازه ترکیبی سرریز- دریچه، شرایط هیدرولیکی جدیدی حاکم خواهد شد که با شرایط هیدرولیکی هر کدام از این دو سازه به‌تنهایی متفاوت است.
1-2 تعاریف1-2-1 سرریزها
یکی از سازههای مهم هر سد را سرریزها تشکیل میدهند که برای عبور آب اضافی و سیلاب از سراب به پایاب سدها، کنترل سطح آب، توزیع آب و اندازهگیری دبی جریان در کانالها مورداستفاده قرار میگیرد. با توجه به حساس بودن کاری که سرریزها انجام میدهند، باید سازهای قوی، مطمئن و با راندمان بالا انتخاب شود که هر لحظه بتواند برای بهرهبرداری آمادگی داشته باشد.
معمولاً سرریزها را بر حسب مهمترین مشخصه آنها تقسیمبندی میکنند. این مشخصه میتواند در رابطه با سازه کنترل و کانال تخلیه باشد. بر حسب اینکه سرریز مجهز به دریچه و یا فاقد آن باشد به ترتیب با نام سرریزهای کنترلدار و یا سرریزهای بدون کنترل شناخته میشوند.
1-2-2 دریچهها
دریچهها سازههایی هستند که از فلزات، مواد پلاستیکی و شیمیایی و یا از چوب ساخته میشوند. از دریچهها به منظور قطع و وصل و یا کنترل جریان در مجاری عبور آب استفاده میشود و از لحاظ ساختمان به گونهای میباشند که در حالت بازشدگی کامل عضو مسدود کننده کاملاً از مسیر جریان خارج میگردد.
دریچهها در سدهای انحرافی و شبکههای آبیاری و زهکشی کاربرد فراوان دارند. همچنین برای تخلیه آب مازاد کانالها، مخازن و پشت سدها به کار میروند (نواک و همکاران، 2004).
دریچهها به صورت زیر دستهبندی میشوند:
بر اساس محل قرارگیری: دریچههای سطحی و دریچههای تحتانی. دریچه سطحی تحت فشار کم و دریچه تحتانی تحت فشار زیاد قرار میگیرند.
بر اساس کاری که انجام میدهند: دریچههای اصلی، تعمیراتی و اضطراری. دریچه اصلی به طور دائم مورد بهرهبرداری قرار میگیرند. برای تعمیرات از دریچه تعمیراتی و در زمان حوادث از دریچه اضطراری استفاده میشود.
بر اساس مصالح بدنه: دریچههای فولادی، آلومینیومی، بتنی مسلح، چوبی و پلاستیکی. دریچه فولادی به خاطر استقامت زیاد به صورت وسیع مورد استفاده قرار میگیرد.
بر اساس نوع بهرهبرداری: دریچههای تنظیم کننده دبی و دریچههای کنترلکننده سطح آب
بر اساس مکانیزم حرکت: دریچههای خودکار، هیدرولیکی، مکانیکی، برقی و دستی. دریچه خودکار بر اساس نیروی شناوری و وزن دریچه و بدون دخالت انسان کار میکند. دریچه هیدرولیکی بر اساس قانون پاسکال عمل مینماید. دریچه برقی از دستگاههای برقی، دریچه مکانیکی با استفاده از قانون نیرو و بازو و بالاخره دریچه دستی به صورت ساده با دست جابهجا میشوند.
بر اساس نوع حرکت: دریچههای چرخشی، غلطان، شناور و دریچههایی که در امتداد یا در جهت عمود بر جریان حرکت مینمایند.
بر اساس انتقال فشار آب: دریچهها ممکن است فشار را به طرفین یعنی به پایههای پل یا به تکیهگاهها منتقل نمایند و یا ممکن است نیروی فشار آب بر کف منتقل شود و یا ممکن است نیروی فشار آب به هر دو یعنی هم تکیهگاهها و هم بر کف منتقل شود.
1-2-3 سازه ترکیبی سریز – دریچهترکیب سرریز - دریچه یکی از انواع سازههای هیدرولیکی میباشد که در سالهای اخیر عمدتاً برای عبور سیال در مواردی که سیال حاوی سرباره و رسوب به صورت همزمان میباشد (مانند کانال عبور فاضلاب) بکار رفته است. سازه ترکیبی سرریز - دریچه با تقسیم دبی عبوری از بالا و پایین خود از انباشت سرباره و رسوب در پشت سازه جلوگیری میکند. از دیگر کاربردهای عملی این ترکیب، میتوان انواع سدهای تأخیری را نام برد. در سدهای تأخیری برای جلوگیری از انباشت رسوب در پشت سد که منجر به کاهش حجم مفید مخزن میگردد اقدام به تعبیه تخلیهکنندههای تحتانی میگردد. از طرف دیگر این نوع سدها به علت برآورد اهداف طراحی و عبور سیلابهای محتمل به صورت روگذر نیز عمل میکنند که از این دو جهت، مدل ترکیبی سرریز - دریچه ایده مناسبی برای تحلیل این نوع سدها میباشد. اگرچه این نوع سازه دارای کاربرد فراوانی در سازههای هیدرولیکی میباشد.
جهت به حداقل رساندن مشکلات در سرریزها و دریچه‌ها و همچنین جهت بالا بردن مزایای آنها می‌توان از سازه ترکیبی سرریز - دریچه استفاده کرد به طوری که در یک زمان، جریان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. این وسیله ترکیبی می‌تواند مشکلات ناشی از فرسایش و رسوبگذاری را مرتفع نماید (دهقانی و همکاران، 2010).
همچنین با این روش، رسوبات و مواد زائد در پشت سرریزها انباشته نمی‌‌‌شوند (ماخرک، 1985).
مشکلاتی را که در اثر وجود مواد رسوبی یا شناور در آب انتقالی برای آبیاری حاصل می‌شود، می‌توان با استفاده از سازه ترکیبی سرریز - دریچه به مقدار زیادی کاهش داده که امکان اندازه‌گیری دقیق‌تر و ساده‌تر را به همراه دارد ( اسماعیلی و همکاران، 1385).
سیستم سرریز - دریچه امکان عبور جریان را از پایین و بالای یک مانع افقی در قسمت میانی مجرا به طور همزمان فراهم نموده، بدین صورت که مواد قابل رسوب را در پشت دریچه به صورت زیرگذر و مواد شناور را به صورت روگذر سرریز عبور میدهد (شکل 1- 1).
331470506095جریان عبوری از زیر دریچه
00جریان عبوری از زیر دریچه
267970163195جریان عبوری از روی سرریز
00جریان عبوری از روی سرریز
138620527622500143446560769500
شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچهاز اینرو تعیین شکل و حداکثر عمق آبشستگی در پاییندست سرریز و دریچه ترکیبی به منظور تثبیت وضعیت بستر میتواند مفید واقع شود.
1-2-4 آبشستگیآبشستگی یکی از موضوعات مهم و قابل توجه در مهندسی رودخانه و هیدرولیک جریان در بسترهای آبرفتی میباشد. چنانچه در یک بازه مورد بررسی، مقدار رسوب وارد شده کمتر از مقدار رسوب خارج شده باشد، عمل فرسایش کف رودخانه و یا بدنه آن رخ میدهد و کف رودخانه بتدریج عمیق میشود. از جمله اثرات منفی گود شدن بستر رودخانه، میتوان به شکست برشی و لغزش در بستر و نیز گرادیان هیدرولیکی خروجی اشاره کرد که در نهایت، افزایش فشار بالابرنده و ایجاد پدیده تراوش را در پی دارد.
به فرسایش بستر و کناره آبراهه در اثر عبور جریان آب، به فرسایش بستر در پاییندست سازههای هیدرولیکی به علت شدت جریان زیاد و یا به فرسایش بستر در اثر بوجود آمدن جریانهای متلاطم موضعی، آبشستگی گویند. عمق ناشی از فرسایش بستر اولیه را عمق آبشستگی مینامند. (کتاب هیدرولیک کانالهای روباز، دکتر ابریشمی)
از آنجا که مکانیزم عمل آبشستگی در مکانهای مختلف متفاوت میباشد، از این رو آبشستگی را به دو نوع تقسیمبندی میکنند:
نوع اول آبشستگی تنگشدگی میباشد. این نوع آبشستگی در دو حالت اتفاق می‌افتد:
الف) در جایی که رودخانه هنوز به حالت تعادل نرسیده و پتانسیل حمل رسوب در بازه‌ای از رودخانه بیش از میزان رسوب ورودی به این بازه باشد.
ب) در جایی که سرعت جریان به دلایلی مانند کاهش مقطع رودخانه در محل پل‌ها، افزایش پیدا می‌کند که در مقطع تنگ شده آبشستگی اتفاق می‌افتد.
در محل احداث پل، آبشکن و یا دیواره ساحلی معمولاً عرض رودخانه را کاهش می‌دهند. این عمل باعث می‌شود که سرعت جریان در این محدوده افزایش یابد. در نتیجه به ظرفیت حمل رسوب افزوده شده و سبب خواهد شد تا بستر رودخانه در این محل فرسایش یابد. عمل فرسایش آنقدر ادامه می‌یابد تا ظرفیت حمل رسوب کاهش یافته و برابر با ظرفیت حمل رسوب در مقطع بالادست گردد. در این حالت، نرخ فرسایش در این محل کمتر می‌شود. هر چند این فرسایش موجب می‌شود که تأثیر پسزدگی آب در بالادست کاهش یابد ولی به خاطر این مسئله نباید اجازه داده شود تا فرسایش صورت گیرد زیرا آبشستگی باعث خطرات جدی مثل واژگونی پل می‌گردد.
نوع دیگر آبشستگی، آبشستگی موضعی است. این نوع آبشستگی در پاییندست سازههای هیدرولیکی، در محل پایههای پل و به طور کلی هر مکانی که شدت جریانهای درهم به طور موضعی افزایش یابد، بوجود میآیند.
آبشستگی موضعی پاییندست سازههای هیدرولیکی نظیر سدها، سرریزها، شوتها، سازههای پلکانی و ... پدیده طبیعی است که به‌دلیل وجود سرعت محلی بیش از سرعت بحرانی بوجود میآید و دلایل آن را میتوان به صورت زیر بیان کرد:
ناکافی بودن مقدار استهلاک انرژی
تشکیل پرش هیدرولیکی ناپایدار و یا انتقال پرش خارج از کف حوضچه آرامش
بوجود آمدن جریانهای گردابی در پاییندست سازههای هیدرولیکی
شکل (1- 2) چند نوع سازه هیدرولیکی و آبشستگی پاییندست آنها را نشان میدهد.

شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی (استاندارد آب و آبفا، 1389)
میزان عمق آبشستگی برای هر یک از سازهها بستگی به شرایط هیدرولیکی جریان و مشخصات رسوب و شرایط هندسی سازه دارد. تخمین میزان عمق آبشستگی از اینرو اهمیت دارد که ممکن است باعث تخریب سازه گردد.
به طور کلی آبشستگی در اثر اندرکنش نیروهای زیر حاصل میشود:
1- نیروی محرک ناشی از جریان که در راستای جدا کردن ذره از بستر عمل میکند.
2- نیروی مقاوم ناشی از اصطکاک ذرات و وزن ذره که در برابر حرکت ذره مقاومت کرده و مانع جدایی ذره از بستر میشود.
جریانها در محل وقوع آبشستگی، یک فرآیند دوفازی (آب و رسوب) است. بنابراین آبشستگی متأثر از متغیرهای بسیاری از قبیل پارامترهای جریان، مشخصات بستر آبرفتی، زمان و هندسه آبراهه میباشد. به همین دلیل، محققین هر یک به مطالعه بخشی از این وقایع پرداخته و آن را به صورت آزمایشگاهی و تجربی بررسی کردهاند.
1-3 ضرورت انجام تحقیقاز آنجایی که در سازه‌های ترکیبی سرریز - دریچه، تداخل جریان از زیر دریچه و روی سرریز باعث اختلاط شدید در جریان، تغییرات در توزیع تنش‌های برشی کف و از این‌رو افزایش پیچیدگی محاسبات می‌شود، بنابراین شبیه‌سازی الگوی جریان، سطح آزاد آب و آبشستگی مورد توجه محققین قرار دارد و لذا در این تحقیق، علاوه بر بررسی آزمایشگاهی الگوی جریان در بستر صلب، توانایی نرمافزار Flow3D در شبیه‌سازی عددی الگوی جریان و آبشستگی مورد ارزیابی قرار خواهد گرفت‌.
1-4 اهداف تحقیقتحقیق انجام شده به منظور پاسخگویی به اهداف زیر صورت گرفته است:
1- بررسی آزمایشگاهی الگوی جریان عبوری از سازه ترکیبی سرریز- دریچه در بستر صلب و مدلسازی عددی آن با نرمافزار Flow3D و مقایسه نتایج حاصل از آن دو
2- مدلسازی عددی آبشستگی در پاییندست سازه ترکیبی با نرمافزار Flow3D و مقایسه نتایج حاصل از آن با نتایج بدست آمده از بررسیهای آزمایشگاهی توسط محققین دیگر
3- ارزیابی دقت مدلهای تلاطمی نرمافزار Flow3D در شبیهسازیهای عددی الگوی جریان و آبشستگی پاییندست سازه ترکیبی سرریز – دریچه در مقایسه با نتایج آزمایشگاهی
4- محاسبه نسبت دبی عبوری از بالای سرریز به زیر دریچه با استفاده از مدل Flow3D
1- 5 ساختار کلی پایاننامهاین تحقیق در پنج فصل به شرح زیر تدوین شده است:
فصل اول- کلیات: که شامل مقدمهای بر سرریزها، دریچهها و مبانی ترکیب این دو سازه بوده و همچنین در رابطه با هیدرولیک جریان و آبشستگی در پای هر کدام از سازههای سرریز یا دریچه و یا سازه ترکیبی سرریز - دریچه کلیاتی ارائه گردیده است.
فصل دوم- بررسی منابع: در این فصل، پیشینه تحقیقها در زمینه هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه، آبشستگی پاییندست سازه ترکیبی و همچنین مطالعات انجام شده توسط نرم‌‌افزار Flow3D بررسی خواهد شد.
فصل سوم- مواد و روشها: این فصل شامل معرفی مواد و روشهای تحقیق، آشنایی با نرمافزار Flow3D و مراحل مدلسازی است.
فصل چهارم- نتایج و بحث: در این فصل، نتایج ارائه شده شامل دو بخش است. بخش اول مربوط به نتایج آزمایشات انجام شده در بستر صلب مربوط به جریان عبوری از سازه ترکیبی سرریز – دریچه و بخش دوم مربوط به نتایج شبیهسازی عددی الگوی جریان، پروفیل و آبشستگی در پاییندست سازه ترکیبی است.
فصل پنجم- نتیجهگیری و پیشنهادها: این فصل دربرگیرنده نتایج بدست آمده از تحلیلها به همراه پیشنهادهایی برای تحقیقات بعدی است.
فصل دوم
مروری بر منابع
2-1 مرور منابع
در این فصل، بررسی منابع و سوابق تحقیق در دو بخش مطالعات آزمایشگاهی و مطالعات عددی توسط نرمافزار Flow3D ارائه میشود که ابتدا مطالعات آزمایشگاهی در دو حالت بستر صلب و متحرک ارائه شده و سپس مطالعات عددی با نرمافزار Flow3D نام برده میشود. چون در مورد جریان عبوری از سازه ترکیبی سرریز‌– دریچه، مدلسازی با نرمافزار Flow3D تاکنون انجام نگرفته است مطالعات عددی نرمافزار Flow3D در همه زمینهها اشاره شده است.
2-2 مطالعات آزمایشگاهی جریان
از جمله مطالعات آزمایشگاهی هیدرولیک جریان در سازه ترکیبی سرریز‌- دریچه، میتوان به مطالعات نجم و همکاران (1994) اشاره کرد. ایشان پارامترهای هندسی و هیدرولیکی مؤثر بر روی جریان ترکیبی را مورد بررسی قرار داده و برای جریان سرریز مثلثی روی دریچه مستطیلی، سرریز و دریچه مستطیلی با ابعاد تنگشدگیهای مختلف به طور جداگانه معادلاتی استخراج کردند. همچنین حالتی را که تنگشدگی دریچه و سرریز یکسان یا متفاوت باشد نیز به طور جداگانه مورد بررسی قرار دادند. این محققین همچنین برای شرایط مختلف مانند استفاده از سرریز مثلثی با زاویههای مختلف و یا سرریز مستطیلی با فشردگی جانبی (شکل 2-1) و بدون فشردگی جانبی (شکل 2-2) روابط جداگانهای به صورت رابطههای (2-1) تا (2-4) ارائه دادند.

شکل 2-‌1 جریان عبوری از سازه ترکیبی سرریز‌- دریچه مستطیل شکل با فشردگی جانبی
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی41052753175(2- 1)
00(2- 1)
Cd=Qc(b1d2gd+y+h-hd+232gb-0.2hh1.5)4274820140335(2- 2)
00(2- 2)
Qu=23Cu2g(b-0.2h)h1.54105275112395(2- 3)
00(2- 3)
Ql=Clb1d2g(d+y+h-hd)429387059690(2- 4)
00(2- 4)
Qc2gb(d1.5 )=Cl1+yd+hd+hdd+23Cu(hd)32شیواپور و پراکاش (2004)، به بررسی دبی جریان از روی سرریز مستطیلی و از زیر دریچه V شکل پرداختند. طبق نتایجی که ایشان گرفتند زمانی که از دریچه V شکل و کج استفاده میشود دبی کانالهای مستطیلی با بستر ثابت با دقت بالاتری قابل تخمین است.
اسماعیلی و فتحیمقدم (1385)، به بررسی آزمایشگاهی هیدرولیک جریان و تعیین ضریب دبی مدل سرریز‌- دریچه در کانالهای دایروی و جریانهای زیرگذر و روگذر با نصب مانع با عرضهای مختلف پرداختند.
سامانی و مظاهری (1386)، به بررسی تخمین رابطه دبی جریان عبوری از روی سرریز و زیر دریچه در حالتهای مستغرق و نیمهمستغرق پرداختند. نتایج بررسی هیدرولیک جریان ایشان نشان میدهد که سیستم سرریز- دریچه، موجب اصلاح خطوط جریان شده، شرایط جریان را به حالت تئوریک نزدیکتر و در نتیجه، واسنجی ضریب شدت جریان سیستم سرریز - دریچه و تخمین دبی جریان با دقت بیشتری نسبت به سرریزهای معمولی انجام میشود.

شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)

رضویان و حیدرپور (1386)، با بررسی خطوط جریان ترکیبی از روی سرریز مستطیلی با فشردگی جانبی و زیر دریچه مستطیلی بدون فشردگی جانبی در حالت لبهتیز، معادلهای برای ضریب شدت جریان پیشنهاد کردند.
تاکنون پژوهشهایی در زمینه آبشستگی پاییندست سازه ترکیبی سرریز - دریچه انجام شده است. اولین بار در سال 1987 یک سری آزمایش توسط آقای اویماز در آزمایشگاه سازههای هیدرولیکی استانبول بر روی آبشستگی پای سازه ترکیبی سرریز- دریچه صورت گرفته است. شکل (2-4) نمایی از مدل شبیهسازی جریان کار ایشان را نمایش میدهد.

شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)
ایشان برای 2 نوع دانهبندی و رسوب غیرچسبنده آزمایشات خود را اجرا نمودند. همچنین تمامی آزمایشات یک بار برای دریچه تنها و یک بار در حالت ترکیب دریچه و سرریز انجام دادند. پس از انجام آزمایشات، دادههای بدست آمده را تجزیه و تحلیل نموده تا به یک رابطه رگرسیونی خطی لگاریتمی بین پارامترهای عمق آبشستگی با قطر رسوبات و ارتفاع آب پاییندست برسند. نتایج تحقیق ایشان نشان می‌دهد که آبشستگی در پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که تنها جریان از زیر دریچه را داریم. همچنین عمق آبشستگی بستگی زیادی به مقدار دبی جریان دارد.
دهقانی و همکاران (2009) به بررسی آزمایشگاهی حداکثر عمق آبشستگی پاییندست سرریز تنها، دریچه تنها و سازه ترکیبی سرریز - دریچه بدون انقباض پرداختند. نکته جالبی که در کار آزمایشگاهی ایشان دیده شده است رفتار نوسانی روند فرسایش و رسوبگذاری به صورت پر و خالی شدن حفره آبشستگی است. حفره آبشستگی ابتدا عمیق میشود، سپس با وجود جریانهای برگشتی کمی رسوبات فرسایش یافته به درون حفره برمیگردد و حفره کمی پر میشود. سپس دوباره حفره توسط گردابههای زیر دریچه عمیق میشود و روند پر و خالی شدن ادامه مییابد (شکل 2- 5). البته این روند با گذشت زمان کندتر شده و شکل حفره در حوالی زمان تعادل تقریباً ثابت میشود (دهقانی و همکاران، 2010).
همچنین بررسیهای ایشان نشان داد که حداکثر عمق آبشستگی پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که جریان تنها از روی سرریز عبور میکند و این نتیجه با نتایج کار آقای اویماز (1985) تطابق دارد.

شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی در حین برخی از آزمایشات (دهقانی و بشیری، 2010) شهابی و همکاران (1389) به بررسی آزمایشگاهی مشخصات حفره آبشستگی در پاییندست سرریز و دریچه ترکیبی پرداختند. نتایج این بررسی آزمایشگاهی نشان داد که عمق آبشستگی پایین‌دست سازه ترکیبی سرریز - دریچه کمتر از عمق آبشستگی پاییندست سرریز میباشد. همچنین مشخصههای حفره آبشستگی، با افزایش عدد فرود (Fr)، افزایش مییابد و در ارتفاع ریزش ثابت برای جت عبوری از روی آن، با افزایش بازشدگی دریچه، حداکثر عمق آبشستگی کاهش مییابد. نتایج انجام آزمایشات در حالت وجود انقباض نشان می‌دهد که با ایجاد انقباض در دریچه یا سرریز به دلیل تمرکز بیشتر جت، حداکثر عمق آبشستگی، طول حفره آبشستگی و طول رسوبگذاری به ترتیب افزایش، افزایش و کاهش مییابد. همچنین نتایج آزمایش بر روی کفبند پاییندست سازه ترکیبی نشان داد که چنانچه طول کفبند از فاصله برخورد جت بالادست به کف کانال بیشتر در نظر گرفته شود، میتواند میزان آبشستگی را تا حد قابل توجهی کاهش دهد.
2-2 مطالعات عددی با نرمافزار Flow3Dنرمافزار Flow3Dتوانایی شبیه‌سازی عددی الگوی جریان و رسوب در اطراف سازه‌های هیدرولیکی مختلف را دارا می‌باشد. در ادامه برخی کارهای انجام شده با این نرمافزار بیان میشود:
موسته و اتما (2004)، تأثیر طول آبشکن بر منطقه چرخشی پشت آبشکن را با در نظر گرفتن تأثیر مقیاس با نرم‌افزار Flow3D مورد بررسی قرار دادند.
گونزالز و بومباردلی (2005)،‌ در یک شبیهسازی عددی با استفاده از Flow3D به بررسی مشخصات پرش هیدرولیکی بر روی سطح صاف در دو حالت شبکهبندی ریز و شبکهبندی درشت به صورت دوبعدی و سهبعدی پرداختند.
صباغ یزدی و همکارانش (2007)، در یک مدل سهبعدی به ارزیابی مدلهای تلاطمی k-ε و RNGk-ε بر روی میزان ورود هوا در پرش هیدرولیکی با استفاده از روش حجم محدود پرداختند و اثر آن را بر روی دقت تخمین سرعت متوسط جریان با استفاده از مدل در مقایسه با نتایج آزمایشگاهی موجود از پرش هیدرولیکی مورد بررسی قرار دادند. مقایسه نتایج نشان داد که نرمافزار قادر به پیش‌بینی توزیع عمقی سرعت در پرش هیدرولیکی است و همچنین در این آزمون مدل آشفتگی RNG در مقایسه با k-ɛ نتایج مناسبتری را ارائه کرده است.
امیراصلانی و همکارانش (1387)، به شبیه‌سازی سه‌بعدی آبشستگی در پایین‌دست یک جت‌ ریزشی آزاد با استفاده از مدل k-ε نرم‌افزار Flow3D جهت بررسی اثر زاویه اصطکاک داخلی رسوبات بر روی چاله آبشستگی پرداختند. نتایج این پژوهش نشان میدهد هر چقدر زاویه اصطکاک داخلی ذرات رسوب بیشتر باشد میتوان انتظار داشت حفره آبشستگی، ابعاد (طول، عرض و عمق) کوچکتری داشته باشد و ارتفاع برآمدگی رسوبات در پاییندست حفره بیشتر باشد. شیب دیوارهها تندتر بوده و مانعی برای خروج ذرات رسوب از حفره به حساب میآید.
شاهرخی (1387)، با استفاده از نرم‌افزارFlow3D‌ ، مدل عددی الگوی جریان اطراف یک آبشکن را تهیه و با اعمال مدل‌های مختلف آشفتگی، به تأثیر این مدل‌ها بر طول منطقه جداشدگی جریان در پشت یک آبشکن پرداخت‌‌. مهمترین نتیجه حاصل از این تحقیق، نشان میدهد که مدل آشفتگی LES بهترین تطابق را با نتایج آزمایشگاهی داشته و این مدل، پیشبینی بهتری از طول منطقه جداشدگی در پشت آبشکن ارائه میکند. سرانجام پیشنهاد شد مدل در دامنه وسیعتری از تغییرات پارامترهای جریان، طول و زاویه نصب آبشکن اجرا گردد.
شاملو و جعفری (1387)، به بررسی اثر وجود زبری کف بر روی تغییرات میدان سرعت و فشار جریان در اطراف پایه استوانه‌ای شکل در یک کانال مستطیلی توسط نرمافزارFlow3D و با استفاده از مدل آشفتگی k-ε به صورت سهبعدی پرداختند. در این شبیهسازی مقاطعی در سه راستای X , Y , Z نزدیکی پایه با نتایج آزمایشگاهی احمد (1994) مورد مقایسه قرار گرفت. نتایج حاکی از آن است که پروفیلهای سرعت در عمقهای مختلف و در راستای X , Y و میدان فشار در پاییندست پایه روند تغییرات قابل قبولی را با توجه به نتایج آزمایشگاه نشان میدهد. همچنین نتیجه شد نرمافزار با در نظر گرفتن زبری کف نتایج بهتری را ارائه میکنند.
باباعلی و همکاران (1387)، توسط نرمافزار Flow3D یک پارشال فلوم به طول یک فوت را که جریان درون آن شامل دو حالت آزاد و مستغرق بود، با استفاده از مدل آشفتگی LES مدل کردند. ایشان دادههای مدل خود را از جدول استاندارد WMM اقتباس کرده و نتایج محاسبه شده را با نتایج این جدول مقایسه نمودند. آنها نشان دادند که Flow3D میتواند به آسانی محاسبات پارشال فلوم را تحت هر دو جریان آزاد و مستغرق انجام دهد. نتایج محاسبه شده به خوبی با دبیهای منتشر شده مطابقت داشته و نیاز به زمان زیاد و استفاده از ابر رایانهها ندارد.
والش و همکاران (2009)، به شبیهسازی آبشستگی موضعی پایهها در جریان جزر و مدی پرداختند. نتایج نشان داد که نتایج مدلسازی عددی با اندازهگیریهای انجام شده تطابق خوبی داشته و همچنین نشان داد که مدل عددی Flow3D ابزاری مناسب در طراحی جریان در اطراف پایهها در شرایط مختلف جریان است.
شکری و همکاران (1389)، به بررسی عددی هیدرولیک جریان و انتقال رسوب اطراف پایه پل دایروی با نرمافزار Flow3D پرداختند. نتایج بررسی عددی با بررسی آزمایشگاهی انجام شده توسط آنگر و هگر (2006) مقایسه شد و با مقایسه نتایج شبیهسازی عددی و اندازهگیریهای آزمایشگاهی الگوی جریان و تغییر شکل بستر، نتیجه شد که مدل Flow3D نتایج قابل قبولی ارائه داده است.
حسینی و عبدی‌پور (1389)، با استفاده از نرم‌افزار Flow3D به مدل‌سازی عددی پروفیل سرعت در جریانهای گل‌آلود پیوسته پرداختند و تأثیر شیب، غلظت و دبی جریان بر آن را مورد مطالعه قرار دادند. برای صحتسنجی نرمافزار در تعیین پارامترهای هیدرولیکی جریانهای گلآلود (پروفیل سرعت)، از یک نمونه آزمایشگاهی استفاده شد و نتایج حاصل از شبیهسازی با اندازهگیریهای آزمایشگاهی مربوطه مقایسه شد. برای مقایسه نتایج از آزمایشات انجام گرفته توسط حسینی و همکاران استفاده گردید. نتایج حاصل از مدل عددی پروفیل سرعت در بدنه با نتایج آزمایشگاهی تطابق نسبتاً خوبی داشت. نتایج مدل عددی مربوط به پروفیل سرعت با برخی از نتایج آزمایشگاهی مطابقت کمتری داشت که بخش عمدهای از خطاها مربوط به عدم امکان مدلسازی جریان در بخش پایینی در مشبندی به علت کمبود حافظه کامپیوتری و بخشی از خطاها نیز به نحوه مدلسازی جریان گلآلود بود.
برتور و بورنهم (2010)، به مدل‌سازی فرسایش رسوب در پاییندست سد با نرم‌افزار Flow3D پرداختند‌. در بررسی ایشان، برای محاسبه هر یک از ضرایب مشخصه رسوب در نرمافزار Flow3D، فرمولی ارائه و برای هر ضریب محدودهای تعیین شد.
کاهه و همکاران (2010)، مدل‌های آشفتگی k-εو RNG k-ε را جهت تخمین پروفیل‌های سرعت در پرش هیدرولیکی بر روی سطوح موج‌دار مورد بررسی و مقایسه قرار دادند. نتایج، توانایی مدل RNG k-ε در تخمین عمق ثانویه، طول پرش و توزیع سرعت را به خوبی نشان داد. ضریب تنش برشی برآورد شده توسط مدل عددی به نتایج بدست آمده از بررسی‌های آزمایشگاهی بسیار نزدیک بوده و به طور متوسط 8 برابر مقدار آن در پرش هیدرولیکی بر روی سطوح صاف برآورد شد. با توجه به نتایج بدست آمده، مدل آشفتگی RNG k-ε در مقایسه با مدل k-ε در مدلسازی پرش هیدرولیکی بر روی سطوح موجدار از دقت بالایی برخوردار است.
آخریا و همکاران (2011)، به شبیهسازی عددی هیدرولیک جریان و انتقال رسوب اطراف انواع آبشکنها پرداختند. نتایج مدلسازی نشان داد که از بین مدلهای آشفتگی، مدلهای RNG k-ɛ و k-ɛ به دادههای آزمایشگاهی نزدیکتر بوده ولی مدل آشفتگی RNG k-ɛ بهترین نتایج را برای شبیه‌سازی میدان جریان اطراف آبشکن نشان داد.
الیاسی و همکاران (1390)، با بهرهگیری از نرمافزار Flow3D و با اعمال مدل آشفتگی RNG k-ɛ، الگوی جریان اطراف تک آبشکن مستغرق در کانال مستقیم شیبدار را بدون در نظر گرفتن سطح آزاد شبیهسازی نمودند و به مقایسه نتایج مدل عددی با دادههای آزمایشگاهی پرداختند. نتایج این شبیهسازی بدون در نظر گرفتن سطح آزاد، با دادههای آزمایشگاهی تطابق خوبی را نشان داد. مقایسه پروفیلهای سرعت در مدل عددی و نتایج آزمایشگاهی بیانگر مطابقت این دادهها با هم میباشد.
عباسی چناری و همکاران (1390)، الگوی جریان اطراف آبشکنهای L شکل عمود بر ساحل را توسط نرمافزار Flow3D و با مدل آشفتگی k-ɛ شبیهسازی نمودند. در این بررسی، آبشکن L شکل نفوذناپذیر بوده که به صورت غیرمستغرق در 5 زاویه مختلف از قوس رودخانه قرار داده شده است. نتایج حاکی از آن است که تلاطم جریان، محدوده سرعتهای ماکزیمم و در نهایت بیشترین آبشستگی بستر، در دماغه آبشکن اتفاق میافتد. همچنین با افزایش دبی و عدد فرود جریان، محدوده سرعت ماکزیمم جریان در نزدیکی دماغه آبشکن افزایش مییابد و شکل آن در جهت جریان کشیده میشود. در نهایت نتیجه شد که مدل آشفتگی k-ɛ در شبیهسازی نواحی جریان برگشتی در پاییندست آبشکن و محل ایجاد گردابه و آشفتگی جریان در اطراف آبشکن، دقت خوبی دارد.
قنادان و همکاران (1391)، با نرمافزار Flow3D، به شبیهسازی عددی جریان از روی سرریز جانبی لبهپهن پرداخته و نتایج حاصل از این نرمافزار را با دادههای آزمایشگاهی مقایسه کردند. نتایج نشان داد که از میان مدلهای تلاطمی موجود در نرمافزار، مدل تلاطمی RNG k–ε از دقت بالاتری برای شبیهسازی جریان از سرریز جانبی برخوردار است. همچنین با استفاده از مدل واسنجی شده، اثر تغییر ارتفاع و پهنای تاج سرریز بر دبی عبوری از سرریز مورد بررسی قرار گرفت. بر این اساس نتیجه شد که ارتفاع تاج سرریز جانبی لبهپهن بر مقدار دبی خروجی از سرریز نسبت به پهنای تاج مؤثرتر است.
فصل سوم
مواد و روش‌ها
3-1 مقدمه
در این بخش، علاوه بر بررسی آزمایشگاهی الگوی جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه در بستر صلب و شبیهسازی عددی هیدرولیک آن با نرمافزار Flow3D، توانایی مدل عددی Flow3D در شبیهسازی آبشستگی در پاییندست سازه ترکیبی ارزیابی میشود. بنابراین در این بخش، علاوه بر بررسی نحوه انجام آزمایشات، به معرفی مدل Flow3D پرداخته و مراحل مدل‌سازی هیدرولیک جریان و آبشستگی در پاییندست سازه ترکیبی سرریز و دریچه با نرمافزار Flow3D بیان میشود.
3-2 نحوه انجام آزمایشاتدر این بخش، به ارائه نحوه انجام آزمایشات هیدرولیک جریان عبوری از سازه ترکیبی سرریز- دریچه پرداخته میشود. در این تحقیق به منظور کالیبراسیون نرمافزار در حالت کف صلب، آزمایشاتی در کانال با طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر انجام شده و عمق جریان در طول کانال قرائت شد. همچنین جهت ارزیابی دقت نرمافزار در حالت کف متحرک از نتایج آزمایشگاهی شهابی(1389) در کانال با طول 12 متر، عرض و ارتفاع 60 سانتیمتر استفاده شده است.
کانال آزمایشگاهی مورد استفاده در کف صلب شامل قسمتهای زیر است (شکل 3-1):
1- مخزن
2- پمپ که شامل بخشهای تأمین برق، الکتروپمپ، شیر تنظیم دبی و مخزن تعیین دبی است.
3- مخزن آرام کننده جریان
4- کانال آزمایشگاهی
5- مدل سازه ترکیبی
شکل زیر نمای کلی مدل فیزیکی را نشان میدهد.

شکل 3-‌1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک
بخشهای اصلی کانال آزمایشگاهی با مقیاس کوچک، به صورت زیر تعریف میشوند:
3-2-1 مخزنبه منظور تأمین آب مورد نیاز جهت انجام آزمایش، از یک مخزن در قسمت پایین فلوم استفاده شده است. به هنگام آزمایش، آب به صورت رفت و برگشتی از مخزن به فلوم و بالعکس در جریان خواهد بود.
3-2-2 پمپجهت پمپاژ و جریان آب در فلوم، از پمپی با ظرفیت دبی 7 لیتر بر ثانیه استفاده شده است که با یک شیرفلکه معمولی، دبی پمپاژ تغییر داده میشود. به منظور قرائت دبی، از یک مخزن دبیسنج استفاده گردیده است.
3-2-3 کانال آزمایشگاهیکانال آزمایشگاهی دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر میباشد. جنس دیواره و کف کانال از پلکسی گلاس بوده تا امکان مشاهده جریان در کانال در حین آزمایش وجود داشته باشد.
3-2-4 مخزن آرامکننده جریاناین مخزن، آشفتگی جریانی که از پمپ سانتریفوژ وارد کانال خواهد شد را گرفته و جریان را به آرامی وارد کانال آزمایشگاهی میکند.

شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک3-2-5 مدل سازه ترکیبی سرریز- دریچهسازه ترکیبی سرریز- دریچه مورد استفاده در آزمایشات، در فاصله 2 متری از ابتدای کانال و با ضخامت 3 میلیمتر تعبیه شده که با ابعاد هندسی متفاوت ساخته شده است.

شکل 3-3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریانمشخصات آزمایشات انجام شده در کانال آزمایشگاهی با مقیاس کوچک، در جدول زیر شرح داده شده است:
جدول 3-1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریانپارامتر دفعات تغییر واحد محدوده تغییرات
دبی ورودی (Q) 7 Lit/s 64/2 – 39/1
بازشدگی دریچه (W) 5 Cm 5/1 – 5/0
ارتفاع سازه (T) 5 Cm 5/5 – 5/3
3-3 آنالیز ابعادیاولین گام در شبیهسازی و مدلسازی، شناخت متغیرهای اثرگذار بر پدیده فیزیکی است. تعداد متغیرهای اثرگذار با توجه به پیچیدگی رفتار پدیده موردنظر، میتواند افزایش یابد.
با توجه به اینکه هر کمیت فیزیکی در قالب ابعاد بیان میشود، استفاده از روشی که بتواند با ترکیب متغیرهای اثرگذار، متغیرهای بیبعد را که مفهوم فیزیکی دارند ایجاد کند، میتواند در کاهش تعداد متغیرها بسیار مفید باشد.
آنالیز ابعادی روشی است که در آن با استفاده از مفهوم همگنی ابعاد، متغیرهای اثرگذار بر پدیده فیزیکی مورد نظر در قالب متغیرهای بیبعد بیان میشوند. سپس بر اساس این متغیرها و انجام مطالعات آزمایشگاهی، رابطههای تجربی بدست میآورند.
برای انجام آنالیز ابعادی، روشهای مختلفی ازجمله روش فهرستنویسی، نظریه پیباکینگهام، روش گامبهگام و روش هانسیکر و رایت مایر وجود دارد.
در این تحقیق، روش پیباکینگهام که کاربرد وسیعتری دارد مورد بحث و استفاده قرار گرفت. این روش، یکی از روشهای معروف است که به طور وسیع در آنالیز ابعادی استفاده میشود.
در جریان عبوری از سازه ترکیبی سرریز - دریچه در حالت جریان آزاد، متغیرهای مؤثر عبارتند از:
1- دبی عبوری از روی سرریز، Qs
2- دبی عبوری از زیر دریچه، Qg
3- عمق بالادست سازه ترکیبی، H1
4- هد آب روی سرریز، Hd
5- طول سازه، T
6- بازشدگی دریچه، W
7- شتاب ثقل (g)، ρ و μ سیال
شکل (3-4) متغیرهای مؤثر در جریان عبوری از سازه ترکیبی سرریز- دریچه را در حالت جریان آزاد نشان می‌دهد.

شکل 3-4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب
با انجام آنالیز ابعادی به روش پیباکینگهام رابطه (3-1) بدست میآید. از آنجاییکه جریان آشفته است لذا از اثرات Re (رینولدز) صرف نظر شده و نهایتاً رابطه (3-2) بدست میآید.
430191950165(3- 1)
00(3- 1)
F(Qs , Qg , H1 , Hd , T , W , g , ρ , μ) = 0 → QsQg=f( Fr , Re , H1W , HdT )43584345080(3- 2)
00(3- 2)
QsQg=f( Fr , H1W , HdT )3-4 شبیهسازی عددیبه منظور مطالعه و تحلیل جریان در سازههای مختلف، مدلهای فیزیکی و ریاضی مختلف بکار گرفته میشود. با توجه به توسعه سیستمهای کامپیوتری و محاسباتی و همچنین وجود پیچیدگی‌های غیر قابل اندازه‌گیری در جریان عبوری از یک سازه ترکیبی سرریز - دریچه در مدل‌های آزمایشگاهی، استفاده از شبیهسازی عددی می‌تواند در بررسی هیدرولیکی چنین جریانهایی بسیار مؤثر و قابل توجه باشد.
در سالهای اخیر، بدلیل ابداع روشهای پیشرفته و دقیق حل عددی معادلات و بوجود آمدن رایانههای قوی برای انجام محاسبات، میتوان در طراحی این سازههای پیچیده از روشهای حل عددی نیز بهره گرفت. دینامیک سیالات محاسباتی، از روشهای محاسبه و شبیهسازی میدان جریان سیال میباشد که در قرن اخیر مورد توجه خاص مهندسین و طراحان قرار گرفته است.
استفاده از دینامیک سیالات محاسباتی حاکی از مزایای زیر است:
1- کاهش در زمان و هزینه در طراحیها
2- توانایی مطالعه سیستمهایی که انجام آزمایشات کنترل شده روی آنها دشوار و یا غیر ممکن است مانند تأسیسات بزرگ
3- توانایی مطالعه سیستمها تحت شرایط تصادفی و بالاتر از حدود معمول آنها
از جمله نرمافزارهای موجود در زمینه CFD میتوان به موارد زیر اشاره کرد:
CFX, Phonix, Telemac, FIDAP, Flow3D, Fluent
در این تحقیق، به ارزیابی مدل عددی Flow3D جهت شبیهسازی هیدرولیک جریان ترکیبی عبوری از روی سرریز و زیر دریچه و همچنین آبشستگی در پاییندست سازه ترکیبی پرداخته می‌شود.
3-4-1 معرفی نرمافزار Flow3Dنرمافزار Flow3D یک نرمافزار قوی در زمینه CFD میباشد که تولید، توسعه و پشتیبانی آن توسط Flow Science, Inc است و یک مدل مناسب برای حل مسائل پیچیده دینامیک سیالات بوده و قادر است دامنه وسیعی از جریان سیالات را مدل کند. این مدل برای شبیهسازی جریانهای سطح آزاد سهبعدی غیرماندگار با هندسه پیچیده کاربرد فراوانی دارد. نرمافزار Flow3D، برای مسائل یک‌بعدی، دوبعدی و سهبعدی طراحی شده است. در حالت ماندگار، نتایج در زمان بسیار کمی حاصل میشود زیرا برنامه بر روی قوانین بنیادی جرم، مومنتوم و بقاء انرژی پایهگذاری شده است تا این موارد برای مراحل مختلف جریان در هر زمینهای بکار برده شوند. این نرمافزار یک شبکه آسان از اجزاء مستطیلی را استفاده میکند.
نرمافزار Flow3D شامل مدلهای فیزیکی مختلف میباشد که عبارتند از: آبهای کمعمق، کاویتاسیون، آشفتگی، آبشستگی، کشش سطحی، پوشش متخلخل ذرات و ... . از این مدلها در زمینه‌های ریختهگری مواد، مهندسی فرآیند، طراحی تزریقهای مرکب، تولیدات مصرفی، هیدرولیک مهندسی محیط زیست، هوافضا، علوم دریایی، نفت، گاز و ... استفاده میشود.
در جدول (3-2)، ویژگیهای نرمافزار به اختصار نمایش داده شده است.
جدول 3- 2 معرفی نرمافزار Flow3Dنام نرمافزار Flow3D
زمینه کاری یک نرمافزار قوی در زمینه CFD میباشد. این نرمافزار برای کمک به تحقیق در زمینه رفتار دینامیکی مایعات و گازها در موارد کاربردی وسیع طراحی شده است.
قوانین بنیادی جرم، مومنتوم و بقاء انرژی
کاربردهای Flow3D در زمینه مهندسی آب پایههای پل- هوادهی در پرش هیدرولیکی- سرریز دایرهای- هوادهی در سرریزها- شکست سد- پارشال فلوم- آبشستگی- جریان بر روی یک پلکان- جریانهای با عمق کم- جریان در کانالهای کنترل پرش هیدرولیکی- موجهای کمارتفاع- دریچههای کشویی- جریان سرریز
سطح آزاد حد فاصل بین گاز و مایع همان سطح آزاد است. در Flow3D سطح آزاد با تکنیک حجم سیال مدل میشود. روش حجم سیال شامل سه جزء است: نمایش موقعیت سطح – شبکهبندی– شرایط مرزی سطح
تکنیک محاسبات Finite Difference - FiniteVolume
سیستمهای مختصات معادلات دیفرانسیلی که باید حل شود در قالب مختصات کارتزین (x,y,z) نوشته میشود. برای مختصات استوانهای (z,Ɵ,r) مختصات x به صورت شعاعی و مختصات y به صورت مختصات زاویهای
ادامه جدول 3- 2مدلهای آشفتگی در Flow3D پنج مدل آشفتگی ارائه شده است: طول اختلاط پرانتل، یک معادله، دو معادله k-ɛ، مدل‌های k-ɛ RNG و مدل شبیهسازی بزرگ
مدلسازی 1-General 2-Physics 3-Fluids 4- Meshing & Geometry
5-Boundaries 6-Initial 7-Output 8-Numerics
General زمان اتمام - تعداد سیالات – حالت جریان (که شامل حالت تراکمپذیر یا تراکمناپذیر است.)
Physics شامل بخشهایی نظیر ویسکوزیته که شامل حالتهای سیال ویسکوز و غیرویسکوز است، شتاب ثقل زمین، که در جهت قائم مختصات برابر 81/9- وارد میشود، کشش سطحی، حفرهزدایی، آبشستگی رسوب و ...
Fluids ویسکوزیته، جرم حجمی، تراکمپذیری، مشخصات گرمایی و آحاد
Meshing & Geometry برای مشخص کردن حدود مشبندی، بلوکهایی تعیین میشود که کلیه اندازه سازههای مورد نظر و فضای آزاد در داخل آن تعریف میشود. میتوان همه جزئیات سازه مورد نظر را در یک بلوک هم در نظر گرفت. سیستم مختصاتی میتواند از نوع کارتزین یا استوانهای باشد.
Boundaries در مختصات کارتزین برای تعریف شرایط مرزی،6 درجه مشخص داریم که با توجه به جهت مثبت x, y, z شامل Xmax ,Xmin, Ymax, Ymin, Zmax, Zmin میباشد.
Initial در این قسمت، با توجه به ویژگیهای مسئله شرایط اولیه اعمال میگردد.
Output در این بخش، ویژگیها و امکاناتی برای داشتن مشخصات خاصی از نتایج ارائه میشود.
Numerics در قسمت گزینههای ضمنی برای تنش ویسکوز، هدایت گرمایی و ... امکان انتخاب بین حل صریح یا ضمنی وجود دارد.
برخی از تواناییهای مدل Flow3D جهت شبیهسازی با نمایش شکل مدل عبارتند از:

شکل 3- 5 مدلسازی پرش هیدرولیکی
شکل 3- 6 مدلسازی جریان در قوس رودخانه
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض
شکل 3- 9 مدلسازی آبشستگی پاییندست سازهاین نرمافزار معادلههای حاکم بر حرکت سیال را با استفاده از تقریب احجام محدود حل میکند. محیط جریان به شبکهای با سلولهای مستطیلی ثابت تقسیمبندی میشود که برای هر سلول مقدارهای میانگین کمیتهای وابسته وجود دارد یعنی همه متغیرها در مرکز سلول محاسبه میشوند بجز سرعت که در مرکز وجوه سلول حساب میشود.
در این نرمافزار از دو تکنیک عددی جهت شبیهسازی هندسی استفاده شده است:
1- روش حجم سیال (VOF): این روش برای نشان دادن رفتار سیال در سطح آزاد مورد استفاده قرار میگیرد. این روش بر مبنای تقریبهای سلول دهنده - پذیرنده است که اولین بار توسط Hirt و Nichols در سال 1981 بیان شد.
2- روش کسر مساحت – حجم مانع (FAVOR): از این روش جهت شبیهسازی سطوح و احجام صلب مثل مرزهای هندسی استفاده میشود. هندسه مسئله با محاسبه کسر مساحت وجوه و کسر حجم هر المان برای شبکه که توسط موانعی محصور شدهاند تعریف میشود. همان طور که کسر حجم سیال موجود در هر المان شبکه برای برقراری سطوح سیال مورد استفاده قرار میگرفت، کمیت کسر حجم دیگری برای تعیین سطوح صلب مورد استفاده قرار میگیرد.
فلسفه روش FAVOR بر این مبناست که الگوریتمهای عددی بر مبنای اطلاعاتی شامل فقط یک فشار، یک سرعت، یک دما و ... برای هر حجم کنترل است، که این با استفاده از مقدارهای زیادی از اطلاعات برای تعریف هندسه متناقض است. بنابراین روش FAVOR، المانهای ساده مستطیلی را حفظ میکند، در صورتی که میتواند اشکالی با هندسه پیچیده در حد سازگاری با مقادیر جریان میان‌گیری شده را برای هر المان نشان دهد.
3-4-2 معادلات حاکمدینامیک سیالات محاسباتی، روشی برای شبیهسازی جریان است که در آن معادلات استاندارد جریان از قبیل معادلات ناویر استوکس و معادله پیوستگی قابل حل برای تمام فضای محاسبات می‌باشد. فرم کلی معادله پیوستگی به صورت شکل زیر بیان می‌شود:
416382464733(3-3)
00(3-3)
که درآن VF ضریب حجم آزاد به سمت جریان و مقدار R در معادله فوق، ضریب مربوط به مختصات به صورت کارتزین و یا استوانه‌ای می‌باشد. اولین عبارت در سمت راست معادله پیوستگی مربوط به انتشار تلاطم بوده و به صورت زیر قابل تعریف می باشد:
424413450800(3-4)
00(3-4)
عبارت دوم در سمت راست معادله (3-3) بیانگر منشأ دانسیته است که برای مدلسازی تزریق توده مواد اهمیت دارد:
428985427305(3-5)
00(3-5)
همچنین فرم کلی معادلات حرکت (مومنتم) در حالت سه بعدی به صورت زیر می‌باشد:
4361180396875(3-6)
00(3-6)

که در معادلات فوق Gx , Gy , Gz مربوط به شتاب حجمی می‌باشند. پارامترهای fx ,fy ,fz شتابهای ناشی از جریان‌های لزج بوده و bx , by , bz نیز شامل روابط مربوط به افت در محیطهای متخلخل هستند.
3-4-3 مدلهای آشفتگیاکثر جریانهای موجود در طبیعت به صورت آشفته میباشند. در اعداد رینولدز پایین، جریان آرام بوده ولی در اعداد رینولدز بالا جریان آشفته میشود، به طوری که یک حالت تصادفی از حرکت در جایی که سرعت و فشار بطور پیوسته درون بخشهای مهمی از جریان نسبت به زمان تغییر میکند، گسترش مییابد. این جریانها بوسیله خصوصیاتی که در ادامه ارائه شدهاند شناسایی میگردند:
1- جریانهای آشفته به شدت غیر یکنواخت هستند. در این جریانها اگر تابع سرعت در برابر زمان ترسیم شود، بیشتر شبیه به یک تابع تصادفی خواهد بود.
2- این جریانها معمولاً سهبعدی هستند. پارامتر سرعت میانگین گاهی اوقات ممکن است تنها تابع دو بعد باشد، اما در هر لحظه ممکن است سهبعدی باشد.
3- در این نوع جریانها، گردابهای کوچک بسیار زیادی وجود دارند. شکل کشیده یا عدم تقارن گردابها، یکی از خصوصیات اصلی این جریانها است که این امر با افزایش شدت آشفتگی، افزایش مییابد.
4- آشفتگی، شدت جریانهای چرخشی در جریان را افزایش میدهد که این عمل میتواند باعث اختلاط شود. فرآیند چرخش در سیالاتی رخ میدهد که حداقل، میزان یکی از مشخصههای پایستار آنها متغیر باشد. در عمل، اختلاط بوسیله فرآیند پخش انجام میشود، به این نوع جریانها غالباً جریانهای پخششی نیز میگویند.
5- آشفتگی جریان باعث میشود جریانهایی با مقادیر متفاوت اندازه حرکت با یکدیگر برخورد کنند. گرادیانهای سرعت بر اثر ویسکوزیته سیال کاهش مییابند و این امر باعث کاهش انرژی جنبشی سیال میشود. به بیان دیگر میتوان گفت که اختلاط یک پدیده، مستهلک کننده انرژی است. انرژی تلف شده نیز طی فرآیندی یکطرفه به انرژی داخلی (حرارتی) سیال تبدیل میشود.
تمام مشخصاتی که به آنها اشاره شد برای بررسی یک جریان آشفته مهم هستند. تأثیراتی که توسط آشفتگی ایجاد میشود بسته به نوع کاربری ممکن است ظاهر نشود و به همین دلیل باید این جریانها را با توجه به نوع و کاربری آن مورد بررسی قرار داد. برای بررسی جریانهای آشفته، روش‌های مختلفی وجود دارد که در ادامه به تعدادی از آنها اشاره خواهد شد.
مدلهای آشفتگی، ویسکوزیته گردابهای (vt) و یا تنش رینولدز (-Uij) را تعیین میکند و فرضیات زیادی برای همه آنها حاکم است که عبارتند از:
معادلات ناویر استوکس میانگینگیری شده زمانی، میتواند بیانگر حرکت متوسط جریان آشفته باشد.
پخش آشفتگی متناسب با گرادیان ویژگیهای آشفتگی است.
گردابهها میتوانند ایزوتروپیک و یا غیر ایزوتروپیک باشند.
همه مقادیر انتقال آشفته توابع موضعی از جریان هستند.
در مدلهای آشفته باید همسازی وجود داشته باشد.
این مدلها میتوانند یک مقیاسی و یا چند مقیاسی باشند.
همه مدلها در نهایت به کالیبراسیون به صورت تجربی نیاز دارند.
بسیاری از مدلهای آشفتگی بر پایه فرضیه بوزینسک استوار هستند. مدلهای آشفتگی به پنج دسته تقسیم میشوند:
1- مدلهای صفرمعادلهای
2- مدلهای تکمعادلهای
3- مدلهای دومعادلهای
4- مدلهای جبری
5- مدلهای شبیهسازی گردابهای بزرگ
3-4-3-1 مدلهای صفر معادلهایدر این مدلها هیچگونه معادله دیفرانسیلی برای کمیتهای آشفتگی ارائه نمیشود. این مدلها نسبتاً ساده بوده و دادههای تجربی و آزمایشگاهی در آنها نقش اساسی دارد و تنشهای آشفتگی در هر جهت متناسب با گرادیان سرعت میباشد. نمونهای از این مدلها عبارتند از:
1- مدل لزجت گردابهای ثابت
2- مدل طول اختلاط پرانتل
3- مدل لایه برش آزاد پرانتل
3-4-3-2 مدلهای یک معادلهایاین مدلها بر خلاف مدلهای صفر معادلهای، از یک معادله برای انتقال کمیت آشفتگی استفاده میکنند. این معادله ارتباط بین مقیاس سرعت نوسانی و کمیت آشفتگی میباشد که جذر انرژی جنبشی آشفتگی به‌عنوان مقیاس سرعت در حرکت آشفته مد نظر میباشد و مقدار آن توسط معادله انتقال محاسبه میگردد.
3-4-3-3 مدلهای دومعادلهایمدلهای دو معادلهای سادهترین مدلها هستند که قادرند نتایج بهتری در جریانهایی که مدل طول اختلاط نمیتواند به صورت تجربی در یک روش ساده مورد استفاده قرار بگیرد، ارائه دهند. به طور مثال جریانهای چرخشی از این نمونهاند. تقسیمبندی این مدلها بر اساس محاسبه تنش رینولدز و یا ویسکوزیته گردابهای به صورت زیر است:
ویسکوزیته گردابهای
جبری
تنش رینولدز غیرخطی
این مدلها، دو معادله دیفرانسیلی را حل میکنند. به معادله k که از قبل بوده، معادله ɛ هم اضافه میشود. معادله انرژی جنبشی، k، بیانکننده مقیاس سرعت است، بدین صورت که اگر قرار باشد سرعتهای نوسانی مورد بررسی قرار بگیرند، میتوان جذر انرژی جنبشی حاصل از آشفتگی در واحد جرم را به عنوان مقیاس در نظر گرفت، معادله نرخ میرایی انرژی جنبشی، ɛ، نیز مقیاس طول است. در حقیقت مقیاس طول، اندازه گردابههای بزرگ دارای انرژی جنبشی را میدهد که باعث انتقال آشفتگی در توده سیال میشود.
3-4-3-4 مدلهای دارای معادله تنشنرمافزار Flow3D مدل آشفتگی جدیدتری بر مبنای گروههای نرمال شده رینولدز پیادهسازی کرده است. این دیدگاه شامل روشهای آماری برای استحصال یک معادله متوسطگیری شده برای کمیت‌های آشفتگی است. مدلهای بر پایه RNG k-ɛ از معادلاتی استفاده میکند که شبیه معادلات مدل آشفتگی k-ɛ است اما مقادیر ثابت معادله که به صورت عملی در مدل استاندارد k-ɛ یافت شده‌اند، صریحاً از مدل RNG k-ɛ گرفته شدهاند. از این رو، مدل RNG k-ɛ قابلیت اجرایی گسترده‌تری نسبت به مدل استاندارد k-ɛ دارد. بویژه مدل RNG k-ɛ برای توصیف دقیقتر آشفتگی جریانهای با شدت کمتر و جریانهایی با مناطق دارای برش، قویتر شناخته شده است. در معادله RNG k-ɛ، فرمول تحلیلی برای محاسبه عدد پرانتل آشفته وجود دارد ولی در مدل k-ɛ، از یک مقدار ثابت که استفاده کننده مدل به آن معرفی میکند استفاده میگردد. در مدل RNG k-ɛ، تأثیر گرداب در آشفتگی لحاظ میگردد لذا دقت حل جریانهای چرخشی را بالا میبرد.
نرمافزار Flow3D از پنج مدل آشفتگی طول اختلاط پرانتل، مدل تک معادلهای، دومعادلهای k-ɛ، دومعادلهای RNG k-ɛ و روش گردابهای بزرگ (LES) بهره میبرد.
3-4-4 شبیهسازی عددی مدلدر این تحقیق، شبیهسازی عددی شامل دو قسمت میباشد:
1- قسمت اول مربوط به شبیهسازی هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه است که آزمایشات بکار رفته جهت واسنجی مدل، در کانال با مقیاس کوچک انجام شده است. کانال با مقیاس کوچک دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر بوده که سازه ترکیبی مورد نظر با ضخامت 3 میلیمتر و در فاصله 2 متری از ابتدای کانال تعبیه شده است.
همچنین با استفاده از مدل واسنجی شده با دادههای آزمایشگاهی مربوط به هیدرولیک جریان، مدلهایی مربوط به سازه ترکیبی همراه با انقباض جانبی مدل شده و تأثیر میزان انقباض سرریز- دریچه بر نسبت دبی عبوری از روی سرریز به دبی عبوری از زیر دریچه بررسی شد.
2- قسمت دوم مربوط به شبیهسازی حفره آبشستگی در پاییندست سازه ترکیبی سرریز- دریچه است که برای شبیهسازی عددی آبشستگی، از آزمایشات انجام شده توسط شهابی و همکاران (1389) در کانال با مقیاس بزرگ استفاده شده است. کانال با مقیاس بزرگ دارای طول 12 متر، عرض و ارتفاع 6/0 متر است. کف کانال به ارتفاع 25 سانتیمتر از رسوبات یکنواخت با D50= 1.5 mm و ضریب یکنواختی 18/1 پوشانده شده است. دریچه و سرریز ترکیبی با ضخامت 6 میلیمتر و در فاصله 4/6 متری از ابتدای کانال نصب شده است.
پس از واسنجی نرمافزار، مدل برای شرایط هندسی و هیدرولیکی مختلف اجرا شد و با انتگرال‌گیری پروفیل سرعت بالای سرریز و زیر دریچه، نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (QsQg) محاسبه شد. مشخصات مدلسازیهای انجام شده برای آبشستگی در جدول (3- 3) ارائه داده شده است.
جدول 3-3 محدوده دادههای بهکار رفته جهت شبیهسازی آبشستگیبازشدگی دریچه (cm) ارتفاع سازه (cm) مقادیر دبی (lit/s)
2 ، 1 8 34/11 66/10 98/9 68/8 52/7
2 ، 1 10 1/15 86/13 6/12 33/11 78/9
2 ، 1 12 26/16 14/15 4/14 88/13 3/11
3 ، 4 10 11/20 87/18 52/17 27/16 1/15
مراحل اصلی شبیهسازی عددی در نرمافزار Flow3D عبارتند از:
3-4-4-1 ترسیم هندسه مدلدر صورتی که هندسه مدل آزمایشگاهی به صورت منظم باشد میتوان شکل آن را در خود نرم‌افزار Flow3D ترسیم نمود اما در صورتی که مدل مورد نظر شکل نامنظم داشته باشد نرمافزار قادر خواهد بود فایلهای ایجاد شده در نرمافزارهایی نظیر اتوکد و همچنین فایلهای توپوگرافی به صورت X, Y, Z را مورد استفاده قرار دهد. در این تحقیق، مدلهای بکار رفته در خود نرمافزار ترسیم شده است.
3-4-4-2 شبکهبندی حل معادلات جریانیکی از مهمترین نکاتی که بایستی در شبیهسازی عددی مورد توجه قرار بگیرد، شبکهبندی مناسب برای حل دقیق معادلات حاکم است. ساختن شبکه مناسب برای میدان حل معادلات، دقت محاسبات، همگرایی و زمان محاسبات را تحت تأثیر قرار میدهد. در کلیه مدلهای عددی صورت گرفته، ابعاد شبکه طوری تعیین شد که پارامترهای کنترل شبکه از قبیل حداکثر نسبت ابعاد شبکه در راستای طولی و عمقی و ضریب نسبت ابعاد شبکه در راستاهای مختلف و در مجاورت یکدیگر مناسب انتخاب شده باشد. برای نتایج دقیق و مؤثر، مقدار هریک از دو پارامتر فوق باید به عدد 1 نزدیک بوده و مقدار نسبت ابعاد شبکه در مجاور یکدیگر از 25/1 و همچنین نسبت ابعاد شبکه در راستاهای مختلف از 3 نباید بیشتر باشد (فلوساینس، 2008).
در بخش شبیهسازی هیدرولیک جریان که در کانال با مقیاس کوچک صورت گرفت، مشبندی شبکه جریان، به صورت سهبعدی و ابعاد شبکه در هر سه بعد یکسان و برابر 5 میلیمتر در نظر گرفته شد. (در صورتی که مشبندی شبکه جریان، یکنواخت صورت گرفت نتایج حاصل از مدل به دادههای آزمایشگاهی نزدیکتر و دقت مدل عددی بیشتر میشد). برای این مدلسازی، زبری کف کانال و بدنه سازه برابر 5/1 میلیمتر انتخاب شد.
مشبندی در مقطع عرضی مشبندی در مقطع طولی

شکل 3-10 مشبندی یکنواخت در کانال با مقیاس کوچک
در بخش شبیهسازی آبشستگی در پاییندست سازه ترکیبی که در کانال با مقیاس بزرگ انجام شده است، جهت کاهش زمان تحلیل نرمافزار، شبکه جریان به صورت دوبعدی مشبندی شده و ابعاد شبکه در راستای Z به صورت یکنواخت و برابر 5 میلیمتر و در راستای X به صورت غیر یکنواخت و در نزدیکی سازه مورد نظر، تعداد مش بیشتر و اندازه آنها ریزتر در نظر گرفته شد به طوری که اندازه مش بین 6 تا 20 میلیمتر متغیر است. برای این مدلسازی، زبری کف کانال یکسان با قطر متوسط رسوبات و برابر با 5/1 میلیمتر انتخاب شد.
1501775101346000
شکل 3-11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ
3-4-4-3 شرایط مرزی کاناللایه مرزی ابتدا و انتهای مشها در کانال با مقیاس کوچک بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلبجدول 3-4 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
دبی ورودی جریان خروجی دیوار دیوار تقارن

لایه مرزی ابتدا و انتهای مشها در کانال با مقیاس بزرگ بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوبجدول 3- 5 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
فشار ثابت جریان خروجی دیوار دیوار تقارن
برای انتخاب فشار ثابت برای ورودی کانال، ارتفاع سیال در قسمت فشار ثابت برابر عمق ابتدایی جریان در حالت آزمایشگاهی انتخاب شد.
3-4-4-4 خصوصیات فیزیکی مدلبرای مدلسازی هیدرولیک جریان در بستر صلب، شرایط فیزیکی حاکم بر جریان، به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به‌دلیل آشفتگی جریان در آزمایشات، دو مدل آشفتگی k-ɛ و RNG k-ɛ در نرمافزار مورد ارزیابی قرار گرفت.
برای مدلسازی آبشستگی در پاییندست سازه ترکیبی، شرایط فیزیکی حاکم بر جریان به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به دلیل آشفتگی جریان، سه مدل آشفتگی k-ɛ ، RNG k-ɛ و LES در نرمافزار مورد ارزیابی قرار گرفت.
4- مشخصات رسوبی که در مدلسازیها جهت کالیبراسیون حداکثر عمق آبشستگی تعریف شد در جدول زیر ارائه داده شده است:
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوبپارامتر مورد نظر مقدارهای انتخاب شده
ضریب دراگ 5/1 2/1 1 5/0
عدد شیلدز بحرانی 15/0 1/0 05/0 035/0
زاویه ایستایی 40 35 30
حداکثر ضریب تراکم مواد بستر 8/0 74/0 7/0 6/0 4/0 38/0
ضریب تعلیق مواد بستر 026/0 018/0 01/0
ضریب بار بستر 16 8
عوامل مؤثر در کالیبراسیون حداکثر عمق آبشستگی در پاییندست سازه، پارامترهای حداکثر ضریب تراکم مواد بستر، عدد شیلدز بحرانی، ضریب دراگ، زاویه ایستایی و همچنین نوع مدل آشفتگی بودند.
3-4-4-5 شرایط اولیه جریانقبل از وارد کردن جریان در مدلسازی عددی، حالت اولیه کانال را انتخاب میکنند که در این تحقیق، قبل از ورود جریان، کانال تا قبل از سازه و تا لبه تاج سرریز از سیال مورد‌نظر در نظر گرفته شد.
3-4-4-6 زمان اجرای مدلنکته دیگری که در شبیهسازیهای عددی بسیار مهم است، زمان اجرای مدل تا رسیدن به یک مقدار مناسب از لحاظ پایداری و ماندگاری جریان است. بنابراین در کلیه آزمایشات شبیهسازی شده، زمان اجرای مدل برای شبیهسازی هیدرولیک جریان بین 30-15 ثانیه و برای شبیهسازی آبشستگی در پاییندست سازه ترکیبی بین 5000 - 4000 ثانیه در نظر گرفته شد، که با سپری شدن این مدت زمان، جریان در کانال به صورت یکنواخت میشود.

شکل 3-14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان
شکل 3-15 نمودار تغییرات زمانی حجم سیال در مدلسازی حفره آبشستگی-420069-631311
فصل چهارم
نتایج و بحث
4-1 مقدمه
در این بخش، به مقایسه نتایج حاصل از شبیهسازی هیدرولیک جریان و آبشستگی در پاییندست سازه ترکیبی سرریز - دریچه با دادههای آزمایشگاهی مربوط به آن پرداخته شده و توانایی نرمافزار Flow3D در شبیهسازی هیدرولیک جریان و آبشستگی در پاییندست سازه ارزیابی میشود.
این فصل شامل دو بخش هیدرولیک جریان و آبشستگی میباشد که در هر بخش، ابتدا نتایج کالیبراسیون نرمافزار با دادههای آزمایشگاهی ارائه میشود و سپس نرمافزار برای شرایط هندسی و هیدرولیکی دیگر مورد ارزیابی و آزمون قرار می‌گیرد.
4-2 شبیهسازی هیدرولیک جریان در حالت کف صلب4-2-1 واسنجی نرمافزاردر مرحله اول شبیهسازی، واسنجی نرمافزار با استفاده از دادههای آزمایشگاهی انجام میشود. جهت واسنجی نرمافزار در شبیهسازی هیدرولیک جریان عبوری از سازه ترکیبی، از شبکه‌بندیهای مختلف و مدلهای مختلف آشفتگی استفاده شد. طی شبیهسازیهای انجام شده، نتیجه شد که هر چه شبکهبندی میدان حل یکنواختتر باشد، نتایج شبیهسازی عددی پروفیل سطح آب به دادههای آزمایشگاهی آن نزدیکتر است (شکل 4-1). به همین دلیل، شبکهبندی جریان جهت مدلسازی هیدرولیک جریان به صورت یکنواخت انجام شد. همچنین هر چه اندازه سلولهای شبکهبندی میدان حل ریزتر در نظر گرفته شد، تطابق نتایج نرمافزار با نتایج آزمایشگاهی بهتر شد. علاوه بر این، چون در آزمایشات انجام شده، بازشدگی دریچه مقدار کمی داشته و بایستی سلولی در شبکهبندی میدان جریان در راستای عمقی (Z) بازشدگی وجود داشته باشد، بنابراین شبکهبندی جریان با ابعاد ریز و برابر با 5×5×5 میلیمتر و تعداد کل مش برای هر مدلسازی تقریباً 162000 سلول در نظر گرفته شد. زمان اجرای مدل برای شبیهسازی هیدرولیک جریان، بین 30 – 15 ثانیه انتخاب شد.

user8253

2-6-4 ابر خصوصی 18
2-7 مشخصات محاسبات ابری 19
2-8 مزایای محاسبات ابری 21
2-9 نقاط ضعف محاسبات ابری 24
2-10 بررسی وضعیت محاسبات ابری درجهان از نگاه آماری 25
2-11 یک نمونه قیمت در سیستم عامل Azure 30
2-12 تعریف سیستم عامل 31
2-13 انواع سیستم عامل 31
2-13-1 سیستم عامل تک پردازنده 31
2-13-2 سیستم عامل شبکه ای 31
2-13-3 سیستم عامل توزیع شده 31
2-13-4 سیستم عامل بی درنگ 32
2-14 سیستم های توزیعی 32
2-14-1 شفافیت 33
2-14-2 قابلیت اطمینان 34
2-14-3 کارایی 34
2-14-4 مقیاس پذیری 35
2-15 سیستم عامل های توزیعی 35
2-15-1 الگوی مبتنی برپیام 36
2-15-2 الگوی مبتنی بر شیء 36
2-16 رویکرد سیستم عامل های ابری 36
2-17 الگوی سیستم عامل ابری 37
2-17-1 شیء ابری 37
2-17-2 نخ 39
2-17-3 تعامل میان شیء و نخ 39
2-18 برنامه نویسی در مدل شیء – نخ در ابرها 40
2-19 معماری سیستم عامل ابری 41
2-20 برخی سیستم عامل های ابری موجود 42
2-20-1 سیستم عامل iCloud 43
2-20-2 سیستم عامل GlideOS 44
2-20-3 سیستم عامل G.ho.st 45
2-20-4 سیستم عامل JoliCloud 46
2-20-5 سیستم عامل eyeOS 47
2-20-6 گوگل کروم، سیستم عامل اینترنت 47
2-21 مزایا و معایب سیستم عامل های ابری مبتنی بر وب 51
2-22 مطالعه مروری بر سایر پژوهش های مرتبط مهم 51
فصل سوم: روش تحقیق 54
3-1 چالش های رایج در زمینه سیستم عامل های ابری 55
3-1-1 مقیاس پذیری 55
3-1-1-1 تغییر مقیاس افقی و عمودی 56
3-1-1-2 مقیاس پذیری پایگاه داده ها 57
3-1-1-3 طراحی برای مقیاس پذیری 58
3-1-1-4 مقیاس پذیری در محاسبات ابری 59
3-1-1-5 تغییر مقیاس قوی و ضعیف 59
3-1-2 کشش تقاضا 60
3-1-3 خطاها 60
3-1-4 گره خوردن کاربران به یک سرویس دهنده خاص 61
3-1-5 وابستگی شدید بین مولفه ها 61
3-1-6 فقدان پشتیبانی چند مستاجری 62
3-1-7 فقدان پشتیبانی از SLA 62
3-1-7-1 تعریف توصیف SLA 62
3-1-7-2 فقدان SLA در ابرهای موجود 64
3-1-8 فقدان انعطاف پذیری لازم در واسط کاربری 64
3-2 ارائه راهکارها 64
فصل چهارم: محاسبات و یافته های تحقیق 68
4-1 پیاده سازی و شبیه سازی 69
4-2 شرایط محیط شبیه سازی 71
4-3 مقیاس پذیری با اندازه شبکه 72
فصل پنجم: نتیجه گیری و پیشنهادات 74
5-1 خلاصه و نتیجه گیری 75
5-2 مزایای تحقیق انجام شده 75
5-3 معایب تحقیق انجام شده 75
5-4 کارهای آتی 76
منابع و مآخذ 77
منابع فارسی 78
منابع غیرفارسی 79
فهرست جداول
عنوان صفحه
جدول 2-1 : سرویس دهندگان زیرساخت به عنوان سرویس 13
جدول2-2 : سرویس دهندگان سکو به عنوان سرویس 15
جدول 2-3 : سرویس دهندگان نرم افزار به عنوان سرویس 16
جدول 4-1 : شرایط محیط شبیه سازی 72
فهرست شکل ها
عنوان صفحه
شکل 2-1 : تصویری از محاسبات ابری 8
شکل2-2 : الگوی استقرار ابر 17
شکل 2-3 : مشخصات محاسبات ابری 19
شکل 2- 4: تمایل به سمت محاسبات ابری 24
شکل 2-5: بررسی وضعیت محاسبات ابری جهان 26
شکل 2-6: سیستم توزیع شده به عنوان میان افزار 33
شکل 2-7 : ساختمان یک شی ابری 38
شکل 2-8 : اجرای نخ ها در شیء ابری 39
شکل 2-9 : مدل منطقی از یک معماری سیستم عامل ابری 41
شکل 2-10 : سیستم عامل iCloud 43
شکل 2-11: تصویری از سیستم عامل GlideOS 44
شکل 2-12 : تصویری از سیستم عامل G.ho.st 45
شکل 2-13 : تصویری از سیستم عامل JoliCloud 46
شکل 2-14 : تصویری از سیستم عامل eyeOS 47
شکل 3-1 : بروز رسانی موقعیت گره در روش RNP 66
شکل 3-2 : درخواست موقعیت و ارسال بسته در روش RNP 66
شکل 3-3: شبه کد به روز رسانی موقعیت گره 67
شکل 3-4: شبه کد درخواست موقعیت 67
شکل 4-1: مقایسه سرعت اجرای برنامه با افزایش تعداد پردازنده 69
شکل 4-2: مقایسه سرعت اجرای برنامه با افزایش تعداد ماشین مجازی 70
شکل 4-3: مقایسه اجاره بها با افزایش تعداد پردازنده 70
شکل 4-4: مقایسه اجاره بها با افزایش تعداد ماشین مجازی 71
شکل 4-5: نرخ موفقیت درخواست با افزایش تعداد گره ها 72
شکل 4-6: افزایش درصد بسته های تحویل داده شده با افزایش گره ها 73
شکل 4-7: کاهش سربار داده با افزایش تعداد گره ها 73
فصل اول
مقدمه و کلیات تحقیق
مقدمه
در دهه های آینده ما شاهد رشد چشمگیر تکنولوژی در زمینه پردازنده ها خواهیم بود. ابرها که از پردازنده های چند هسته ای تشکیل شده اند منابع محاسباتی بی نظیری فراهم می سازند. باید توجه داشت که با افزایش وسعت دامنه های اطلاعاتی و محاسباتی نیاز به منابع این چنینی بیش از پیش احساس خواهد شد و با افزایش حجم منابع نیاز به مدیریتی کارا و شفاف الزام پیدا می کند. در اینجا ممکن است این سوال مطرح شود که: ابرها چه امکاناتی برای کاربران فراهم می آورند؟ ابرها در انجام محاسبات عظیم نقش مهمی را ایفا می کنند و به کاربران این امکان را می دهند که برنامه های خود را بر روی بستری قابل اطمینان و بسیار کارآمد که از اجزای صنعتی استاندارد تشکیل شده است اجرا کنند. همچنین ابرها مدل محاسباتی بسیار ساده ای را فراهم می آورند به این صورت که کاربران تنها خروجی مورد نظر را با کمترین هزینه برای کاربر تامین می نمایند. ابرها در کنار اینکه فرصت های فراوانی را برای کاربران فراهم می آورند، چالش هایی را نیز برای مدیریت این منابع پدید می آورند. برای مثال از این چالش ها می توان به نحوه هماهنگ ساختن میزان منابع با درخواست ها و یا وسعت زیاد منابع تحت مدیریت سیستم عامل اشاره نمود. در این تحقیق با چالش های موجود در این زمینه بیشتر آشنا می شویم و پیرامون هر کدام به تفضیل صحبت خواهیم کرد.
سوالات اصلی تحقیق
سیستم عامل های ابری که نوعی از سیستم عامل های توزیعی می باشند، می توانند مجموعه ای از گره ها را با هم یکپارچه ساخته و یک سیستم متمرکز را تولید کنند. با توجه به اینکه ابرها فرصت های فراوانی را برای کاربران فراهم می آورند، چالش هایی را نیز برای مدیریت این منابع پدید می آورند. به همین منظور سوالات زیر مطرح می شود:
چالش های موجود در سیستم عامل های ابری کدامند؟
آیا تا به حال این چالش ها مورد بررسی قرار گرفته اند؟
این چالش ها تا چه اندازه اهمیت دارند؟
آیا راهکاری برای این چالش ها در نظر گرفته شده است؟
هدف از اجراء
در دهه های اخیر شاهد رشد چشمگیر تکنولوژی در زمینه پردازنده ها بوده ایم و این تکنولوژی همچنان با سرعت قابل توجهی در حال پیشرفت است. دلیل این امر افزایش منابع اطلاعاتی و محاسباتی است که این نیاز را به وجود آورده است که با ساخت چنین تکنولوژی هایی به ویژه پردازنده های چند هسته ای، مدیریتی کارا و شفاف بر این اطلاعات حجیم و محاسبات عظیم صورت گیرد. مدیریت اطلاعات و محاسبات این چنینی در محیط هاو سیستم های توزیعی به مراتب آسان تر از محیط های دیگر است. یکی از سیستم های توزیعی ابرها می باشند که می توانند نقش مهمی را در محاسبات عظیم و ذخیره سازی اطلاعات حجیم، ایفا کنند. بنابراین لزوم بررسی چالش ها و موانع در این قبیل سیستم ها و رفع آنها می تواند گامی موثر در افزایش سرعت و کارایی این گونه سیستم ها داشته باشد.
توجیه ضرورت انجام طرح
همزمان با رشد چشمگیر تکنولوژی پردازنده ها، ابرها نیز گسترش روز افزونی پیدا کرده اند. به همین ترتیب تعداد کامپیوترهای افزوده شده به زیر ساخت ابرها نیز افزایش پیدا کرده است که البته قابل ذکر است این افزایش با توجه به تقاضای روزافزون کاربران برای میزبانی این منابع می باشد. منابع ابری برای کاربران نامحدود بوده و کاربران تنها محدودیت مالی برای خرید این منابع را پیش رو دارند. پس می توان نتیجه گرفت که یکی از مهم ترین چالش ها در این زمینه مقیاس پذیر بودن سیستم عامل های ابری می باشد. در ابرها پارامترهایی همچون تقاضا، حجم کار و منابع در دسترس در طول زمان پیوسته در حال تغییر می باشند. برای مثال هنگامی که کاربر محاسبات سنگین و پیچیده ای درخواست می کند منابع مورد نیاز وی افزایش پیدا می کند و در پایان منابع از کاربر تحویل گرفته می شوند، قابل ذکر است این افزایش و کاهش در منابع ممکن است از دید کاربر پنهان بماند. باید به این نکته توجه داشت که تقاضا هیچ گاه ثابت نمی ماند و میزان منابع مورد نیاز در گستره زیادی در حال تغییر می باشد. از طرفی برنامه های کاربردی مبتنی بر ابر معمولا منابع را بین کاربران و دیگر برنامه های کاربردی به اشتراک می گذارند. اگرچه برنامه کاربردی هر کاربر در لفاف مجازی جداگانه ای قرار گرفته است ولی کیفیت سرویسی که برای برنامه فراهم می شود را تحت تاثیر قرار می دهد. علاوه براین برنامه نویسی در این سیستم عامل نیز کاری مشکل و توام با خطا است. با توجه به مشکلات برنامه نویسی چند نخی و چند فرآیندی که در این نوع سیستم عامل ها استفاده می شود امکان وجود خطا افزایش می یابد. همچنین به دلیل کمبود ابزارهای اشکال زدایی و آنالیز سیستم های بزرگ فهمیدن خطاها سخت و برطرف سازی آنها چالش برانگیز است. برخی چالش های ذکر شده در این زمینه موجب به وجود آمدن مسیر تحقیقاتی گوناگون شده است که از آن جمله می توان به موارد زیر اشاره کرد که البته هر کدام از این مسیرها به بخش های دیگری می شکنند که زمینه جدیدی را فراهم می کند.
استفاده از اشیاء پایدار: یکی از زمینه های اصلی مدل ابری فراهم آوردن مخازن داده پایدار و قابل اشتراک می باشد. بنابراین محور اصلی برخی از تحقیقات در زمینه سیستم عامل های ابری، پشتیبانی کارامد و استفاده بهینه از حافظه پایدار می باشد. علاوه بر این عرصه دیگر تحت کنترل درآوردن منابع توزیع شده می باشد که منجر به افزایش سرعت برنامه های اجرایی بر روی ابرها می گردد.
اطمینان و امنیت در سیستم عامل های ابری: یکی از اهداف مهم این سیستم ها فراهم آوردن محیط محاسباتی امن برای کاربران است. این چالش از دو بخش اصلی تشکیل می شود: حفاظت از داده ها هنگام خرابی سیستم و تضمین انجام ادامه محاسبه از جایی که محاسبه قطع گردید. می توان به این نتیجه رسید یکی دیگر از زمینه های تحقیق پیرامون سیستم عامل های ابری افزایش اطمینان این سیستم عامل ها می باشد.
تحمل خطا: افزایش تحمل خطا زمینه ی تحقیقات دیگر حول این موضوع می باشد.
تعاریف واژه ها
سیستم های توزیعی
سیستم توزیعی در واقع مجموعه ای از کامپیوترهای مستقل است که برای کاربر خود مانند یک سیستم منسجم و منفرد به نظر می رسد[2].
سیستم عامل توزیع شده
این سیستم عامل ها خود را مانند سیستم عامل های تک پردازنده به کاربر معرفی می کنند اما در عمل از چندین پردازنده استفاده می کنند. این نوع سیستم عامل در یک محیط شبکه ای اجرا می شود و در حقیقت در این نوع سیستم جواب نهایی یک برنامه، پس از اجرا در کامپیوترهای مختلف به سیستم اصلی بر می گردد. سرعت پردازش در این نوع سیستم بسیار بالاست.
سیستم عامل ابری
سیستم عامل ابری نیز نوعی از سیستم عامل های توزیعی می باشند که مجموعه ای از گره ها را با هم یکپارچه می سازد و یک سیستم متمرکز تولید می کند.

فصل دوم
ادبیات و پیشینه تحقیق
در این فصل سعی شده قبل از آشنایی کامل با سیستم عامل های ابری در مورد محاسبات ابری، انواع سیستم عامل ها، سیستم های توزیعی و سیستم عامل های توزیعی آشنا شویم، سپس با برخی سیستم عامل های ابری موجود آشنا شده و در نهایت به تحقیقاتی که در این زمینه صورت گرفته می پردازیم.
محاسبات ابری
محاسبات ابری مدل محاسباتی بر پایه شبکه‌های بزرگ کامپیوتری مانند اینترنت است که الگویی تازه برای عرضه، مصرف و تحویل سرویس‌های فناوری اطلاعات (شامل سخت افزار، نرم افزار، اطلاعات، و سایر منابع اشتراکی محاسباتی) با به کارگیری اینترنت ارائه می‌کند. سیر تکاملی محاسبات به گونه ای است که می توان آن را پس از آب، برق، گاز و ‌تلفن به عنوان عنصر اساسی پنجم فرض نمود. در چنین حالتی، کاربران سعی می کنند بر اساس نیازهای خود و بدون توجه به اینکه یک سرویس در کجا قرار دارد و یا چگونه تحویل داده می شود، به آن دسترسی یابند. نمونه های متنوعی از سیستم های محاسباتی ارائه شده است که سعی دارند چنین خدماتی را به کاربران ارئه دهند. برخی از آنها عبارتند از: محاسبات کلاستری، محاسبات توری و اخیراً محاسبات ابری[15]. محاسبات ابری ساختاری شبیه یک توده ابر دارد که به واسطه آن کاربران می توانند به برنامه های کاربردی از هر جایی از دنیا دسترسی داشته باشند. بنابراین، محاسبات ابری می تواند با کمک ماشین های مجازی شبکه شده، بعنوان یک روش جدید برای ایجاد پویای نسل جدید مراکز داده مورد توجه قرار گیرد. بدین ترتیب، دنیای محاسبات به سرعت به سمت توسعه نرم‌افزارهایی پیش می رود که به جای اجرا بر روی کامپیوترهای منفرد، به عنوان یک سرویس در دسترس میلیون ها مصرف کننده قرار می گیرند.

شکل 2-1: تصویری از محاسبات ابری[33]
معرفی محاسبات ابری
دنیای فناوری اطلاعات و اینترنت که امروزه تبدیل به جزئی حیاتی از زندگی بشر شده، روز به روز در حال گسترش است. همسو با آن، نیازهای اعضای جوامع مانند امنیت اطلاعات، پردازش سریع، دسترسی پویا و آنی، قدرت تمرکز روی پروژه های سازمانی به جای اتلاف وقت برای نگه داری سرورها و از همه مهم تر، صرفه جویی در هزینه ها اهمیت زیادی یافته است. راه حلی که امروزه در عرصه فناوری برای چنین مشکلاتی پیشنهاد می شود تکنولوژی ای است که این روزها با نام محاسبات ابری شناخته می شود.
محاسبات ابری نمونه ای است که منابع بیرونی همه نیازهای IT را از قبیل ذخیره سازی، محاسبه و نرم افزارهایی مثل Office و ERP را در اینترنت تهیه می کند. محاسبات ابری همچنین، رشد و پیشرفت کاربرد های وسیع و تست برای شرکت های IT کوچکی را اجازه می دهد که نمی توانند سرمایه های بزرگ در سازمان داشته باشند. مهم ترین مزیت پیشنهاد شده توسط ابر در مفهوم اقتصاد مقیاس است و آن هنگامی است که هزاران کاربر، تسهیلات یکسان، هزینه یکسان برای هر کاربر و بهره برداری از سرور به اشتراک می گذارند. برای فعال سازی چنین تسهیلاتی، محاسبات ابری در برگیرنده تکنولوژی ها و مفاهیمی است مثل: مجازی سازی و محاسبات سودمند، پرداخت در ازای میزان استفاده، بدون سرمایه گذاری های کلان، انعطاف پذیری، مقیاس بندی، شرایط تقاضا و منابع بیرونی IT.
محاسبات ابری را ابر نیز می نامند چون یک سرور ابری دارای شکل بندی است که می تواند هر جایی در جهان قرار داشته باشد. ابر، تصویری است انتزاعی از شبکه‌ای عظیم؛ توده‌ای که حجم آن مشخص نیست، نمی‌دانیم از چه میزان منابع پردازشی تشکیل شده. ابعاد زمانی و مکانی یکایک اجزای آن نیز دانسته نیست، نمی‌دانیم سخت‌افزار‌ها و نرم‌افزارها کجای این توده قرار دارند، اما آن‌چه را که عرضه می‌کند، می‌شناسیم. درست مثل برق! شما برای اینکه از وسایل و تجهیزات برقی در خانه یا محل کارتان استفاده کنید لازم نیست یک ژنراتور یا کارخانه برق در خانه خود داشته باشید، بلکه به ازای هزینه مشخصی برق را اجاره می‌کنید. حالا اگر مصارف برقی شما بیشتر و متفاوت‌‌تر باشند مثلاً‌ می‌روید و از خدمات برق صنعتی استفاده می‌کنید. در محاسبات ابری هم شرکت‌ها و سازمان‌ها و افراد دیگر برای نرم‌افزار، سخت‌افزار یا شبکه پولی پرداخت نمی‌کنند، بلکه توان محاسباتی و سرویس‌های نرم‌افزاری مورد نیازشان را خریداری می‌کنند. این ایده در واقع صرفه‌جویی بزرگ و بهره‌وری زیادی در منابع IT را به همراه خواهد داشت. بدین ترتیب کافی است وسیله شما (پی‌سی، موبایل، تلویزیون، حتی یخچال!) یک رابط نرم‌افزاری (مرورگر) برای استفاده از سرویس‌های آنلاین و یک دسترسی به اینترنت داشته باشد،‌ خواهید دید که قادر هستید به راحتی از توان محاسباتی برای انجام کارهای دیجیتالی خود بهره بگیرید.
رشد و پیشرفت محاسبات ابری منجر به چندین تعریف پیشنهادی از خصوصیات آن می شود. برخی از این تعاریف توسط دانشمندان مشهور و سازمان ها ارائه شده است مثل:
الف) Buyya و همکارانش که محاسبات ابر را در مفهوم کاربری است برای کاربر نهایی بدین صورت تعریف می کنند: یک ابر سیستمی محاسباتی توزیع شده بازارگرا است که شامل جمع آوری کامپیوترهای مجازی و ارتباط داخلی هستند که از لحاظ دینامیکی به عنوان یک یا چند منبع محاسباتی متحد بر اساس توافق های سطح سرویس بین مصرف کنندگان و فراهم کنندگان خدمات مذاکره می کنند[14].
ب) موسسه ملی استانداردها و تکنولوژی محاسبات ابری را به صورت زیر تعریف می کند: محاسبه ابری، الگویی است برای اینکه شبکه های مبتنی بر تقاضا به منابع محاسباتی (مثل سرور، شبکه، ذخیره سازی، برنامه های کاربردی و خدمات) طوری دستیابی پیدا کنند که شامل حداقل تلاش مدیریت یا تعامل فراهم کننده سرویس است. این الگوی ابر، قابلیت دستیابی را ارتقا می دهد و شامل پنج تا از ویژگی های ضروری، سه تا از الگوهای سرویس و چهار تا الگوی استقرار است.
ویژگی های ابری شامل انتخاب سرویس مبتنی بر تقاضا، دسترسی وسیع به شبکه، ائتلاف منابع، انعطاف پذیری سریع و سرویس اندازه گیری شده است. الگوهای خدمات در دسترس به صورت نرم افزار به عنوان سرویس(SaaS)، سکو به عنوان سرویس (PaaS) و زیرساخت به عنوان سرویس (IaaS) تقسیم بندی می شوند. الگوی گسترش به ابرهای عمومی، خصوصی، اجتماعی و هیبرید تقسیم بندی می شود.
مشخصه اصلی محاسبات ابری
موسسه ملی استانداردها و فناوری، خصوصیات محاسبات ابری زیر را به صورت زیر تعریف می کند:
سرویس مبتنی بر تقاضا
مشتری می تواند به صورت یک طرفه امکانات و خدمات محاسباتی همچون سرور و فضای ذخیره سازی در شبکه را به هنگام نیاز از هر فراهم کننده ای به صورت خودکار و بدون نیاز به دخالت انسان به دست آورده و از آنها استفاده کند. به عبارت دیگر، برای مدیریت زیرساخت ابر نیازمند استخدام مدیران شبکه یا Admin به صورت تمام وقت نیستیم. بیشتر سرویس های ابر، پورتال های سلف سرویس دارند که به آسانی مدیریت می شوند.
دسترسی وسیع به شبکه
توانمندی های موجود بر روی شبکه، از طریق مکانیزم های استاندارد که استفاده از روش های ناهمگون پلتفرم های کلاینت، مانند تلفن های موبایل، لپ تاپ ها و PDA ها، را ترویج می کنند، قابل دسترسی هستند.
ائتلاف منابع
منابع محاسباتی فراهم کننده جمع آوری شده اند تا با به کارگیری مدل چند مشتری به چندین مشتری خدمت رسانی کنند. این کار به وسیله منابع فیزیکی یا مجازی مختلف که به شکلی پویا و بنابر درخواست مشتری واگذار و پس گرفته می شوند، صورت می گیرد. در اینجا حالتی از عدم وابستگی به مکان وجود دارد که در آن مشتری معمولاً کنترل یا دانشی درباره محل دقیق منابع فراهم شده ندارد ولی ممکن است در سطوح بالاتر انتزاعی بتواند محل را تعیین کند، مثل: کشور، استان یا مراکز داده. برای نمونه منابع شامل فضای ذخیره سازی، توان پردازشی، حافظه، پهنای باند شبکه و ماشین های مجازی می شود.
انعطاف پذیری سریع
می توان امکانات را به سرعت و با انعطاف، در بعضی موارد به صورت خودکار، به دست آورد تا به سرعت گسترش داده شده( از دید مقیاس) یا درجا آزاد شوند و خیلی سریع به مقیاس کوچکتری دست یابند. از دید مشتری امکاناتی که برای به دست آمدن در دسترس هستند اغلب نامحدود به نظر می آیند و می توانند به هر مقدار و در هر زمان خریداری شوند.
سرویس اندازه گیری شده
سیستم های ابری منابع را خودکار کنترل و بهینه می کنند. این کار با به کارگیری توانایی اندازه گیری در سطحی از تجرید که مناسب گونه آن خدمت ( مثل: فضای ذخیره سازی، توان پردازشی، پهنای باند و شمار کاربران فعال) است انجام می شود. میزان استفاده از منابع می تواند به شکلی شفاف هم برای مشتری و هم برای فراهم کننده زیر نظر گرفته، کنترل شده و گزارش داده شود.
معماری سرویس گرا
معماری مبتنی بر سرویس در واقع یک مجموعه ای از سرویس ها است که با یکدیگر ارتباط برقرار می کنند. حین این ارتباط ممکن است داده هایی را بین یکدیگر پاس کاری کنند و همچنین ترکیب دو یا چند سرویس با هم یک کار انجام دهد. در این جا چند مفهوم اتصال بین سرویس ها مورد نیاز است. برخلاف دهه های گذشته که نرم افزارها قائم به خود و انفرادی بودند، در حال حاضر روند تکامل نرم افزارها به سوی معماری مبتنی بر سرویس می رود. رشد انفجاری تکنولوژی های اینترنت و تعداد کاربران آن موجب شده که فروش نرم افزار جای خودش را به اجاره نرم افزار بدهد. شرکت های بزرگی مانند مایکروسافت، گوگل، سان و حتی آمازون به این سمت می روند که به جای فروش مستقیم نرم افزار به کاربر خدمات نرم افزاری را ارئه دهند. معماری مبتنی بر سرویس معماری نرم افزار یا سیستمی است که امکاناتی چون کامپوننت ها، استفاده مجدد، توسعه پذیری و راحتی را در اختیار ما قرار می دهد. این ویژگی ها برای شرکت هایی که به دنبال کاهش هزینه هستند و به جای فروش به اجاره سرویس های نرم افزار تاکید دارند، الزامی است[9].
مدلهای سرویس
در مدل سرویس، انواع گوناگون ابر بیانگر قالبی هستند که زیر ساختها در آن قرار میگیرد. اکنون محدوده شبکه، مدیریت و مسئولیتها به پایان میرسد و امور مربوط به بخش سرویسدهندهی ابر آغاز میشود. با پیشرفت محاسبات ابری فروشندگان، ابرهایی را با سرویس های مختلف مرتبط به کار خود عرضه مینمایند. با سرویسهایی که عرضه میشوند مجموعه دیگری از تعاریف به نام مدل سرویس در محاسبات ابری مطرح میشود. برای مدلهای سرویس، نامگذاریهای بسیاری صورت گرفته که همگی به فرم زیر تعریف شده اند:
XaaS,or "<something>as a Service"
در حال حاضر در جهان سه نوع سرویس به صورت متداول شناخته می شود:
زیر ساخت به عنوان سرویس
زیر ساخت به عنوان سرویس یا IaaS ماشینهای مجازی، فضای ذخیرهسازی مجازی، زیر ساخت های مجازی و سایر سخت افزارهای کاربردی را به عنوان منابع برای مشتریان فراهم میآورد. سرویسدهندهی IaaS تمامی زیر ساختها را مدیریت مینماید و در حالی که مشتریان مسئول باقی جنبههای استقرار میباشند. از جمله سیستم عامل، برنامهها و تعاملات سیستم با کاربر و غیره.
در جدول 2-1 تعدادی از سرویس دهندگان شناخته شده در حوزه IaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-1 : سرویس دهندگان زیر ساخت به عنوان سرویس
سازمان سرویس/ ابزار توصیف لایه-سطح
آمازون Elastic Compute Cloud سرور مجازی IaaS- سرویس منبع مجازی
Dynamo سیستم ذخیره سازی مبتنی بر کلید-ارزش IaaS- سرویس زیرساخت پیشرفته
Simple Storage Service سیستم ذخیره سازی دسته ای IaaS- سرویس زیر ساخت پایه
SimpleDB پایگاه داده به عنوان سرویس IaaS- سرویس زیر ساخت پیشرفته
CloudFront تحویل محتوا IaaS- سرویس زیر ساخت پیشرفته
SQS سرویس صف و زمانبندی IaaS- سرویس زیر ساخت پیشرفته
AppNexus AppNexus Cloud سرور مجازی IaaS- سرویس منبع مجازی
گوگل Google Big Table سیستم توزیع شده برای ذخیره سازی IaaS- سرویس زیر ساخت پیشرفته
Google File Sys-- سیستم- فایل توزیع شده IaaS- سرویس زیر ساخت پایه
اچ پی iLO مدیریت خاموشی سرور IaaS- سرویس منبع فیزیکی
Tycoon سیستم مدیریت منابع محاسباتی در کلاسترها IaaS- سرویس منبع مجازی
Joyent Accelerator سرور مجازی IaaS- سرویس منبع مجازی
Connector سرور مجازی از قبل تنظیم شده IaaS- سرویس زیر ساخت پیشرفته
BingoDisk دیسک ذخیره سازی IaaS- سرویس زیر ساخت پایه
Bluelock Bluelock Virtual Cloud Computing سرور مجازی IaaS- سرویس منبع مجازی
Bluelock Virtual Recovery بازیابی مصیبت و شکست IaaS- سرویس زیر ساخت پیشرفته
Emulab Emulab Network Testbed بستر آزمایش شبکه IaaS- سرویس منبع فیزیکی
ENKI ENKI Virtual Private Data Centers منابع دیتا سنتر مجازی بنابر تقاضا IaaS- سرویس منبع مجازی
EU Resevoir Project Open Nebula موتور مجازی زیرساخت(متن باز) IaaS- سرویس منبع مجازی
FlexiScale FlexiScale Cloud Computing سرور مجازی IaaS- سرویس منبع مجازی
GoGrid Cloud Hosting سرور مجازی IaaS- سرویس منبع مجازی
Cloud Storage فضای ذخیره سازی IaaS- سرویس زیر ساخت پایه
Nirvanix Nirvanix Storage Delivery Network دیسک ذخیره سازی IaaS- سرویس زیر ساخت پیشرفته
OpenFlow OpenFlow شبیه سازی شبکه IaaS- سرویس زیر ساخت پیشرفته
RackSpace Masso Cloud Sites سرور مجازی از پیش تنظیم شده IaaS- سرویس زیر ساخت
Masso Cloud Storage دیسک ذخیره سازی IaaS- سرویس زیر ساخت پایه
Masso Cloud Severs سرور مجازی IaaS- سرویس منبع مجازی
Skytap Skytap Virtual Lab محیط آزمایشگاه مجازی فناوری اطلاعات IaaS- سرویس زیر ساخت
Terremark Infinistructure سرور مجازی IaaS- سرویس منبع مجازی
UCSB Eucalyptus نسخه متن باز EC2 آمازون IaaS- سرویس منبع مجازی
10gen Mongo DB پایگاه داده برای ذخیره سازی ابری IaaS- سرویس زیر ساخت پیشرفته
Babble Application Server سرور برنامه های تحت وب برای استقرار ابری IaaS- سرویس زیر ساخت پیشرفته
سکو به عنوان سرویس
سکو به عنوان سرویس یاPaaS ، ماشینهای مجازی، سیستمهای عامل، برنامهها، سرویسها، چارچوبهای توسعه، تراکنشها و ساختارهای کنترلی را فراهم میآورد. مشتری میتواند برنامههای خود را بر روی زیر ساخت ابر قرار دهد و یا اینکه از برنامههایی استفاده کند که با استفاده از زبانها و ابزارها نوشته شدهاند و توسط سرویس دهندهیPaaS پشتیبانی می شوند. سرویسدهنده زیرساخت ابر، سیستمهای عامل و نرمافزارهای فعالسازی را فراهم میآورد. مشتری مسئول نصب و مدیریت برنامههایی که قرار داده است، میباشد.
در جدول 2-2 تعدادی از سرویس دهندگان شناخته شده در حوزه PaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-2 : سرویس دهندگان سکو به عنوان سرویس
سازمان سرویس/ابزار توصیف لایه-سطح
Akamai EdgePlatform تحویل برنامه کاربردی، محتوا و سایت PaaS
مایکروسافت Azure محیط توسعه و اجرا برای برنامه های کاربردی مایکروسافت PaaS
Live Mesh بستری برای به هنگام سازی، اشتراک و دسترسی به دامنه وسیعی از دستگاه هایی با سیستم عامل مایکروسافت PaaS
فیس بوک Facebook Platform بستر آزمایش شبکه PaaS
گوگل App Engine محیط اجرایی قابل گسترش برای برنامه های تحت وب نوشته شده در زبان پایتون PaaS
NetSuite SuiteFlex جعبه ابزاری برای سفارشی سازی برنامه های کاربردی کسب و کار آنلاین همین شرکت PaaS
Salesforce Force.com ساخت و تحویل برنامه های کاربردی در کلاس کسب و کار PaaS
Sun Caroline بستر قابل گسترش افقی برای توسعه و استقرار سرویس های تحت وب PaaS
Zoho Zoho Creator جعبه ابزاری برای ساخت و تحویل برنامه های کاربردی در کلاس کسب و کار و به شکل بنابر بر تقاضا PaaS
نرمافزار به عنوان سرویس
نرمافزار به عنوان سرویس یا SaaS یک محیط کاملاً عملیاتی برای مدیریت برنامهها و واسط کاربری است. در مدل SaaS برنامه از طریق یک برنامه واسط (معمولاً مرورگر) به مشتری سرویس میدهد و مسئولیت مشتری با ورود داده شروع و با مدیریت داده و تعاملات کاربری پایان مییابد. همه چیز مربوط به برنامه تا زیر ساخت در حوزهی مسئولیت فروشنده است.
در جدول 2-3 تعدادی از سرویس دهندگان شناخته شده در حوزه SaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-3 : سرویس دهندگان نرم افزار به عنوان سرویس
سازمان سرویس/ابزار توصیف لایه-سطح
گوگل Google Docs بسته نرم افزاری آفیس آنلاین SaaS
Google Maps API رابط برنامه نویس سرویس نقشه گوگل به توسعه دهندگان این امکان را می دهد تا نقشه گوگل را در سایت های خود جاسازی کنند SaaS- سرویس ساده
OpenID Foundation OpenSocial یک رابط برنامه نویسی کاربردی مشترک برای برنامه های شبکه های اجتماعی SaaS-سرویس مرکب
OpenID یک سیستم توزیع شده که به کاربران این اجازه را می دهد تا تنها با یک شناسه دیجیتال بتوانند از سایتها مختلف استفاده نمایند. SaaS- سرویس ساده
مایکروسافت Office Live بسته نرم افزاری آفیس آنلاین SaaS
Salesforce Salesforce.com بسته نرم افزاری مدیریت روابط مشتریان SaaS
این سه مدل متفاوت سرویس به نام مدل SPI محاسبات ابری شناخته میشوند. گرچه تاکنون از مدلهای سرویس بسیاری نام برده شد، staas فضای ذخیرهسازی به عنوان سرویس؛ idaas هویت به عنوان سرویس؛ cmaas توافق به عنوان سرویس؛ و غیره، با این وجود سرویس های SPI تمامی باقی سرویسهای ممکن را نیز در بر میگیرد. IaaS دارای حداقل سطوح عاملیت مجتمع شده و پایین ترین سطوح مجتمع سازی میباشد و SaaS دارای بیشترینها است. یک PaaS یا سکو به عنوان سرویس خصوصیات مجتمع سازی، میانافزارها و سایر سرویسهای هماهنگساز را به مدل IaaS یا زیر ساخت به عنوان سرویس میافزاید. هنگامی که که یک فروشندهی محاسبات ابری، نرمافزاری را بر روی ابر عرضه میکند، با استفاده از برنامه و پرداخت فوری، یک عملیات SaaS انجام می گیرد. با SaaS مشتری برنامه را در صورت نیاز استفاده میکند و مسئول نصب، نگهداری و تعمیر برنامه نیست.
مدل‌های پیاده‌سازی
در تعریف NIST (انستیتوی ملی استاندارد ها و فناوری ها) مدل های استقرار ابر به چهار صورت زیر است:

شکل 2-2 : الگوی استقرار ابر[29]
ابر عمومی
ابر عمومی یا ابر خارجی توصیف کننده محاسبات ابری در معنای اصلی و سنتی آن است. سرویس‌ها به صورت دینامیک و از طریق اینترنت و در واحدهای کوچک از یک عرضه کننده شخص ثالث تدارک داده می‌شوند و عرضه کننده منابع را به صورت اشتراکی به کاربران اجاره می‌دهد و بر اساس مدل محاسبات همگانی و مشابه صنعت برق و تلفن برای کاربران صورتحساب می‌فرستد. این ابر برای استفاده همگانی تعبیه شده و جایگزین یک گروه صنعتی بزرگ که مالک آن یک سازمان فروشنده ی سرویس های ابری می باشد.
ابر گروهی
ابر گروهی در جایی به وجود می‌آید که چندین سازمان نیازهای یکسان دارند و به دنبال این هستند که با به اشتراک گذاردن زیرساخت از مزایای محاسبات ابری بهره‌مند گردند. به دلیل اینکه هزینه‌ها بین کاربران کمتری نسبت به ابرهای عمومی تقسیم می‌شود، این گزینه گران‌تر از ابر عمومی است اما میزان بیشتری از محرمانگی، امنیت و سازگاری با سیاست‌ها را به همراه می‌آورد.
ابر ترکیبی
یک ابر ترکیبی متشکل از چندین ارائه دهنده داخلی و یا خارجی، گزینه مناسبی برای بیشتر مؤسسات تجاری می‌باشد. با ترکیب چند سرویس ابر کاربران این امکان را می‌یابند که انتقال به ابر عمومی را با دوری از مسائلی چون سازگاری با استانداردهای شورای استانداردهای امنیت داده‌های کارت های پرداخت آسان تر سازند.
ابر خصوصی
ابر خصوصی یک زیر ساخت محاسبات ابری است که توسط یک سازمان برای استفاده داخلی آن سازمان به وجود آمده‌است. عامل اصلی که ابرهای خصوصی را از ابرهای عمومی تجاری جدا می‌سازد، محل و شیوه نگهداری از سخت افزار زیرساختی ابر است. ابر خصوصی امکان کنترل بیشتر بر روی تمام سطوح پیاده سازی ابر (مانند سخت افزار، شبکه، سیستم عامل، نرم افزار) را فراهم می‌سازد. مزیت دیگر ابرهای خصوصی امنیت بیشتری است که ناشی از قرارگیری تجهیزات در درون مرزهای سازمان و عدم ارتباط با دنیای خارج ناشی می‌شود. اما بهره گیری از ابرهای خصوصی مشکلات ایجاد و نگهداری را به همراه دارد. یک راه حل میانه برای دوری از مشکلات ابرهای خصوصی و در عین حال بهره مند شدن از مزایای ابرهای خصوصی، استفاده از ابر خصوصی مجازی است. به عنوان نمونه می‌توان از ابر خصوصی مجازی آمازون نام برد.
مشخصات محاسبات ابری
مشخصات کلیدی توسط ابر در شکل 2-3 نشان داده شده است و در قسمت زیر مورد بحث و بررسی قرار گرفته است:

شکل 2-3 : مشخصات محاسبات ابری[28]
مجازی شده : منابع (یعنی محاسبه کردن، ذخیره سازی و ظرفیت شبکه) در ابرها تصور می شوند و این روش در سطوح مختلف مثل vm و سطوح بسته بدست می آید[9]. اصلی ترین آن در سطح ماشین مجازی است که در آن برنامه های کاربردی متفاوت در سیستم های عملکردی با همان ماشین فیزیکی اجرا می شوند. سطح سکو باعث نقشه برداری برنامه های کاربردی در یک یا چند منبع می شود که توسط فراهم آورندگان زیرساخت ابری پیشنهاد شده است.
سرویس گرا: ابر با استفاده از الگوی زیرساخت سرویس گرا به کار می رود که در آن همه اجزا در شبکه به عنوان یک سرویس در دسترس هستند، چه نرم افزار باشد، چه سکو یا هر زیرساختی که به عنوان سرویس پیشنهاد می کنند.
انعطاف پذیری : منابع (یعنی محاسبه کردن، ذخیره سازی و ظرفیت شبکه) برای برنامه های کاربردی ابر موردنیاز هستند که می توانند به صورت پویا و مختلف مقرر می شوند. یعنی افزایش یا کاهش در زمان اجرا بستگی به نیازهای QOS کاربر دارد. فراهم کنندگان ابر اصلی مثل آمازون حتی سرویس هایی را برای توسعه عمودی و توسعه افقی در براساس نیازهای برنامه های کاربردی میزبان دارد.
پویا و توزیع شده: گرچه منابع ابر، مجازی شده اند، آنها اغلب در عملکردهای بالا یا سرویس های ابر قابل اطمینان توزیع می شوند. این منابع انعطاف پذیر و می توانند بر طبق نیازهای مشتری سازگاری یابند مثل: نرم افزار، پیکربندی شبکه و غیره[10].
اشتراک (اقتصاد مقیاسی): زیرساخت ابرها هر جایی است که منابع های متعدد از خود کاربر بر طبق نیازهای برنامه کاربردی خود استفاده می کنند، مشترک می شوند. این الگوی اشتراکی به عنوان الگوی اجاره چندگانه نیز می باشد. به طور کلی، کاربران نه دارای کنترل مستقیم بر منابع فیزیکی هستند و نه از تخصیص منابع و اینکه با چه کسانی مشترک شده اند، خبر دارند.
بازارگرا (پرداخت - در ازای - میزان استفاده): در محاسبات ابری، کاربران براساس پرداخت - در ازای - میزان استفاده برای سرویس ها پرداخت می کنند. الگوی قیمت گذاری می تواند با توجه به انتظار برنامه های کاربردی در کیفیت سرویس متفاوت باشد. فراهم آورندگان ابر IaaS مثل منابع قیمت ها در آمازون از الگوهایی بازاری مثل الگوهای قیمت گذاری کالاها یا زمان پرداخت آنها استفاده می کنند. یک الگوی قیمت گذاری توسط Thualsiram و Allenofor برای منابع مجهز پیشنهاد شده است که می تواند به عنوان اساسی برای منابع ابر استفاده شوند. این خصوصیت، بعد بهره برداری از محاسبات ابری را بیان می کند. یعنی، سرویس های ابری به عنوان سرویس های سنجیده شده هستند که در آن فراهم کنندگان دارای الگوی محاسباتی برای اندازه گیری کاربردها از سرویس ها هستند که به توسعه برنامه های قیمت گذاری متفاوت کمک می کند. الگوی محاسباتی به کنترل و بهینه سازی از منابع کمک می کند.[16]
خودمختار : برای فراهم کردن سرویس های قابل اطمینان در حد بالا، ابرها رفتاری مستقل را با مدیریت خودشان در دگردیسی عملکرد یا شکست نشان می دهند.
مزایای محاسبات ابری
 
کارمان را با بیان مزایای متعددی که توسط محاسبات ابری ارائه می شود آغاز می کنیم. وقتی شما به سمت استفاده از ابر می روید، به چیزهای زیر دست پیدا می کنید:
 
هزینه های کامپیوتری کمتر: شما برای اجرای برنامه های کاربردی مبتنی بر وب، نیازی به استفاده از یک کامپیوتر قدرتمند و گران قیمت ندارید. از آن جائی که برنامه های کاربردی بر روی ابر اجرا می شوند، نه بر روی یک کامپیوتر رو میزی. کامپیوتر رومیزی شما نیازی به توان پردازشی زیاد یا فضای دیسک سخت که نرم افزارهای دسکتاپ محتاج آن هستند ندارد. وقتی شما یک برنامه کاربردی تحت وب را اجرا می کنید، کامپیوتر شما می تواند ارزان تر، با یک دیسک سخت کوچک تر، با حافظه کم تر و دارای پردازنده کارآمدتر باشد. در واقع، کامپیوتر شما در این سناریو حتی نیازی به یک درایو CD یا DVD هم ندارد زیرا هیچ نوع برنامه نرم افزاری بار نمی شود و هیچ سندی نیاز به ذخیره شدن بر روی کامپیوتر ندارد.
کارآیی توسعه یافته:  با وجود برنامه های کم تری که منابع کامپیوترشما، خصوصاً حافظه آن را به خود اختصاص می دهند، شما شاهد کارآیی بهتر کامپیوتر خود هستید. به عبارت دیگر کامپیوترهای یک سیستم محاسبات ابری، سریع تر بوت و راه اندازی می شوند زیرا آن ها دارای فرآیندها و برنامه های کم تری هستند که به حافظه بار می شود.
 
هزینه های نرم افزاری کم تر:  به جای خرید برنامه های نرم افزاری گران قیمت برای هر کامپیوتر، شما می توانید تمام نیازهای خود را به صورت رایگان برطرف کنید. بله درست است، اغلب برنامه های کامپیوتری محاسبات ابری که امروزه عرضه می شوند، نظیر Google Docs، کاملاً رایگان هستند. این، بسیار بهتر از پرداخت 200 دلار یا بیشتر برای خرید برنامه office مایکروسافت است که این موضوع به تنهایی می تواند یک دلیل قوی برای سوئیچ کردن به محاسبات ابری محسوب شود.
 
ارتقای نرم افزاری سریع و دائم:  یکی دیگر از مزایای مربوط به نرم افزار در  محاسبات ابری این است که شما دیگر نیازی به بروز کردن نرم افزارها و یا اجبار به استفاده از نرم افزارهای قدیمی، به دلیل هزینه زیاد ارتقای آن ها ندارید. وقتی برنامه های کاربردی، مبتنی بر وب باشند، ارتقاها به صورت اتوماتیک رخ می دهد و دفعه بعد که شما به ابر وارد شوید به نرم افزار اعمال می شوند. وقتی شما به یک برنامه کاربردی مبتنی بر وب دسترسی پیدا می کنید، بدون نیاز به پرداخت پول برای دانلود یا ارتقای نرم افزار، از آخرین نسخه آن بهره مند می شوید.
 
سازگاری بیشتر فرمت اسناد:  نیازی نیست که شما نگران مسئله سازگاری اسنادی که بر روی کامپیوتر خود ایجاد می کنید با سایر سیستم عامل ها یا سایر برنامه های کاربردی دیگران باشید. در دنیایی که اسناد 2007Word نمی تواند بر روی کامپیوتری که 2003Word را اجرا می کند باز شوند، تمام اسنادی که با استفاده از برنامه های کاربردی مبتنی بر وب ایجاد می شوند می تواند توسط سایر کاربرانی که به آن برنامه کاربردی دسترسی دارند خوانده شوند. وقتی همه کاربران اسناد و برنامه های کاربردی خود را بر روی ابر به اشتراک می گذارند، هیچ نوع ناسازگاری بین فرمت ها به وجود نخواهد آمد.
 
ظرفیت نامحدود ذخیره سازی:  محاسبات ابری ظرفیت نامحدودی برای ذخیره سازی در اختیار شما قرار می دهد. دیسک سخت 200 گیگابایتی فعلی کامپیوتر رومیزی شما در مقایسه با صدها پتابایت (یک میلیون گیگابایت) که از طریق ابر در دسترس شما قرار می گیرد اصلا چیزی به حساب نمی آید. شما هر چیزی را که نیاز به ذخیره کردن آن داشته باشید می توانید ذخیره کنید.
 
قابلیت اطمینان بیشتر به داده:  برخلاف محاسبات دسکتاپ، که در آن یک دیسک سخت می تواند تصادم کند و تمام داده های ارزشمند شما را از بین ببرد، کامپیوتری که بر روی ابر تصادم کند نمی تواند بر داده های شما تاثیر بگذارد. این همچنین بدان معنا است که اگر کامپیوترهای شخصی شما نیز تصادم کنند، تمام داده ها هنوز هم آن جا و برروی ابر وجود دارند و کماکان در دسترس شما هستند. در دنیایی که تنها تعداد اندکی از کاربران به طور مرتب و منظم از داده های مهم و حساس خود نسخه پشتیبان تهیه می کنند، محاسبات ابری حرف آخر در زمینه محافظت از داده ها به شمار می رود.
 
دسترسی جهانی به اسناد:  آیا تا به حال کارهای مهم خود را از محیط کار به منزل برده اید؟ و یا تاکنون به همراه بردن یک یا چند فایل مهم را فراموش کرده اید؟ این موضوع در محاسبات ابری رخ نمی دهد زیرا شما اسناد و فایل های مهم  خود را همراه خود حمل نمی کنید. در عوض، این اسناد و فایل ها بر روی ابر می مانند و شما می توانید از هرجایی که یک کامپیوتر و اتصال اینترنتی وجود داشته باشد به آن دسترسی پیدا کنید. شما در هر کجا که باشید به سرعت می توانید به اسناد خود دسترسی پیدا کنید و به همین دلیل، نیازی به همراه داشتن آن ها نخواهید داشت.
 
در اختیار داشتن آخرین و جدیدترین نسخه:  یکی دیگر از مزایای مرتبط با اسناد در محاسبات ابری این است که وقتی شما یک سند را در خانه ویرایش می کنید، این نسخه ویرایش شده همان چیزی است که وقتی در محل کار خود به آن دسترسی می یابید مشاهده می کنید. ابر همواره، آخرین نسخه از اسناد شما را میزبانی می کند و تا وقتی شما به اینترنت و ابر متصل باشید، هیچ گاه در معرض خطر استفاده از یک نسخه تاریخ گذشته نخواهید بود.
همکاری گروهی ساده تر:  به اشتراک گذاشتن اسناد، شما را مستقیماً به همکاری بر روی اسناد رهنمون می کند. برای بسیاری از کاربران، این یکی از مهم ترین مزایای استفاده از محاسبات ابری محسوب می شود زیرا چندین کاربر به طور همزمان می توانند برروی اسناد و پروژه ها کار کنند، به دلیل این که اسناد بر روی ابر میزبانی می شوند، نه بر روی کامپیوترهای منفرد، همه چیزی که شما نیاز دارید یک کامپیوتر با قابلیت دسترسی به اینترنت است.
 
مستقل از سخت افزار:  در نهایت، در این جا به آخرین و بهترین مزیت محاسبات ابری اشاره می کنیم. شما دیگر مجبور نیستید به یک شبکه یا یک کامپیوتر خاص محدود باشید. کافی است کامپیوتر خود را تغییر دهید تا ببینید برنامه های کاربردی و اسناد شما کماکان و به همان شکل قبلی، بر روی ابر در اختیار شما هستند. حتی اگر از ابزار پرتابل نیز استفاده کنید، باز هم اسناد به همان شکل در اختیار شما هستند. دیگر نیازی به خرید یک نسخه خاص از یک برنامه برای یک وسیله خاص، یا ذخیره کردن اسناد با یک فرمت مبتنی بر یک ابزار ویژه ندارید. فرقی نمی کند که شما از چه نوع سخت افزاری استفاده می کنید زیرا اسناد و برنامه های کاربردی شما در همه حال به یک شکل هستند.
محاسبات ابری که در اواخر سال 2007 پا به عرصه ظهور گذاشت، هم اکنون به دلیل توانایی اش در ارائه زیرساخت فن آوری پویا و بسیار منعطف، محیط های محاسباتی تضمین شده از نظر کیفیت و همچنین سرویس های نرم افزاری قابل پیکربندی به موضوع داغ مبدل شده است. در گزارش گوگل Trends و همانطور که در شکل 2-4 مشاهده می کنید، محاسبات ابری که از تکنولوژی مجازی سازی بهره می برد، محاسبات گریدی را پشت سر گذاشته است.

شکل2-4 : تمایل به سمت محاسبات ابری[35]
پروژه های متعددی در حوزه صنعت و دانشگاه بر روی محاسبات ابری آغاز شده است وشرکت های بسیار بزرگی با این موضوع درگیر شده اند و این نشان از توجه عمومی به سمت این پدیده نوین است.
نقاط ضعف محاسبات ابری
چند دلیل وجود دارد که ممکن است با استناد به آن ها شما نخواهید از محاسبات ابری استفاده کنید. در این جا به ریسک های مرتبط با استناد از محاسبات ابری اشاره می کنیم:
نیاز به اتصال دائمی به اینترنت دارد: در صورتی که شما نتوانید به اینترنت متصل شوید، محاسبات ابری غیر ممکن خواهد بود. از آن جائی که شما باید برای ارتباط با برنامه های کاربردی و اسناد خود به اینترنت متصل باشید، اگر یک ارتباط اینترنتی نداشته باشید نمی توانید به هیچ چیزی، حتی اسناد خودتان دسترسی پیدا کنید. نبود یک ارتباط اینترنتی، به معنای نبود کار است. وقتی شما آفلاین هستید، محاسبات ابری کار نمی کند.
با اتصال های اینترنتی کم سرعت کار نمی کند: به همان شکلی که در بالا اشاره شد، یک ارتباط اینترنتی کم سرعت نظیر نمونه ای که در سرویس های Dial-up دیده می شود، در بهترین حالت، استفاده از محاسبات ابری را با دردسرهای فوق العاده ای همراه می کند و اغلب اوقات، استفاده از آن را غیرممکن می سازد. برنامه های کاربردی تحت وب و همچنین اسنادی که بر روی ابر ذخیره شده اند برای دانلود شدن به پهنای باند بسیار زیادی نیاز دارند. اگر شما از یک اینترنت Dial-up استفاده می کنید، اعمال تغییر در یک سند یا رفتن از یک صفحه به صفحه دیگر همان سند ممکن است برای همیشه به طول بینجامد. و البته در مورد بار شدن یک سرویس غنی از امکانات حرفی نمی زنیم. به عبارت دیگر، محاسبات ابری برای افرادی که از اینترنت باند پهن استفاده نمی کنند، نیست.
می تواند کند باشد: حتی در یک ارتباط اینترنتی سریع نیز، برنامه های کاربردی تحت وب می توانند گاهی اوقات کندتر از دسترسی به همان برنامه نرم افزاری از طریق یک کامپیوتر رومیزی باشند. تمام جنبه های یک برنامه، از جمله اینترفیس و سند فعلی، باید بین کامپیوتر یا کامپیوترهای موجود بر روی ابر مبادله شود. اگر در آن لحظه، سرورهای ابر در معرض تهیه نسخه پشتیبان باشند یا اگر اینترنت یک روز کند را پشت سر بگذارد، شما نمی توانید به همان دسترسی سریعی که در یک برنامه دسک تاپ وجود دارد، برسید.
ویژگی ها ممکن است محدود باشند: این وضعیت در حال تغییر است اما بسیاری از برنامه های کاربردی مبتنی بر وب به اندازه همتای دسک تاپ خود دارای ویژگی ها و امکانات غنی نیستند. به عنوان مثال، شما می توانید کارهای بسیار زیاد با برنامه PowerPoint انجام دهید که امکان انجام همه آن ها توسط برنامه ارائه Google Docs وجود ندارد. اصول این برنامه ها یکسان هستند، اما برنامه کاربردی که بر روی ابر قرار دارد فاقد بسیاری از امکانات پیشرفته PowerPoint است. اگر شما یک کاربر با تجربه و حرفه ای هستید، ممکن است نخواهید از محاسبات ابری استفاده کنید.
داده های ذخیره شده ممکن است از امنیت کافی برخوردار نباشند: با استفاده از محاسبات ابری، تمام داده های شما بر روی ابر ذخیره می شوند. این داده ها تا چه حد ایمن هستند؟ آیا کاربران غیرمجاز می توانند به داده های مهم و محرمانه شما دسترسی پیدا کنند؟ کمپانی محاسبات ابری اظهار می کند که داده ها امن هستند اما هنوز برای اطمینان کامل از این موضوع خیلی زود است. از نظر تئوری، داده های ذخیره شده بر روی ابر ایمن هستند و بین چندین ماشین توزیع شده اند. اما در صورتی که داده های شما مفقود شوند، شما هیچ نسخه پشتیبان فیزیکی یا محلی در اختیار نخواهید داشت (مگر این تمام اسناد ذخیره شده بر روی ابر را بر روی دسک تاپ خود دانلود کنید که معمولاً کاربران کمی چنین کاری می کنند). به سادگی بگویم، اتکا به ابر، شما را در معرض خطر قرار می دهد.
بررسی وضعیت محاسبات ابری در جهان از نگاه آماری
وب سایت cloudehypermarket.com تصویری را منتشر کرده است که اطلاعات آماری جالبی را در مورد محاسبات ابری و اوضاع فعلی آن در جهان به تصویر می‌کشد.
1562101485900
شکل 2-5 : بررسی وضعیت محاسبات ابری در جهان[36]
برخی از مهمترین نکات موجود در شکل عبارتند از: (آمار مربوط به اواخر سال ۲۰۱۰ می‌باشد).
۱- در بخش اول تصویر میزان سرمایه‌گذاری جهانی در حوزه‌ی آی‌تی بررسی شده است. در سال ۲۰۰۸ مجموعاً ۳۶۷ میلیارد پوند صرف هزینه‌های معمول فناوری اطلاعات و ۱۶ میلیارد پوند صرف هزینه‌های مربوط به سرویس‌های محاسبات ابری شده است. پیش‌بینی می‌شود در سال ۲۰۱۲ مجموع سرمایه‌گذاری معمول در حوزه‌ی IT به رقم ۴۵۱ میلیارد پوند و سرمایه‌گذاری در حوزه‌ی محاسبات ابری به ۴۲ میلیارد پوند برسد. با این محاسبات، رشد سالانه‌ی سرمایه‌گذاری در حوزه‌ی محاسبات ابری از سال ۲۰۰۸ تا ۲۰۱۲ به عدد ۲۵ درصد نزدیک است.
۲- مؤسسه‌ی تحقیقات بازار IDC پیش‌بینی می کند که در چند سال آینده، علاوه بر رشد سرمایه گذاری در حوزه‌ی محاسبات ابری، شرکت‌ها نیز حوزه‌های فعالیت خود را تغییر خوهند داد و خدمات خود را به سمت محاسبات ابری سوق خواهند داد. پیش‌بینی می‌شود خدمات محاسبات ابری شرکت‌ها در سال ۲۰۱۲ اینگونه ارائه شود:
اپلیکیشن‌های تجاری: ۵۲ درصد
نرم افزارهای زیرساختی: ۱۸ درصد
خدمات ذخیره‌سازی اطلاعات: ۱۳ درصد
تولید و پیاده‌سازی نرم افزارها و اپلیکیشن‌ها: ۹ درصد
خدمات سرور: ۸ درصد
۳- آیا استفاده از محاسبات ابری فرآیند مدیریت فناوری اطلاعات را آسان تر کرده است؟
۷۰ درصد کارشناسان موافق این جمله هستند.
۲۰ درصد نظری در این باره نداشته اند.
۱۰ درصد مخالف این جمله هستند.
۴- آیا استفاده از محاسبات ابری، بهبودی در تجربه‌ی مصرف کننده‌ی نهایی ایجاد کرده است؟
۷۲ درصد کارشناسان موافق این جمله هستند.


۱۶ درصد نظری در این باره نداشته اند.
۱۲ درصد مخالف این جمله هستند.
۵- آیا استفاده از محاسبات ابری، چالش‌های مربوط به کارایی فناوری اطلاعات را کاهش داده است؟
۶۳ درصد کارشناسان موافق این جمله هستند.
۲۰ درصد نظری در این باره نداشته اند.
۱۷ درصد مخالف این جمله هستند.
۶- آیا استفاده از محاسبات ابری، هزینه‌های زیرساختی سازمان ها را کاهش داده است؟
۷۳ درصد کارشناسان موافق این جمله هستند.
۱۷ درصد نظری در این باره نداشته اند.
۱۰ درصد مخالف این جمله هستند.
۷- آیا استفاده از محاسبات ابری، فشارهای ناشی از تأمین منابع درون‌سازمانی بر روی سازمان را کاهش داده است؟
۷۴ درصد کارشناسان موافق این جمله هستند.
۱۸ درصد نظری در این باره نداشته اند.
۸ درصد مخالف این جمله هستند.
۸- امروزه ۵۰ میلیون سرور فیزیکی در سراسر جهان وجود دارد. ۲درصد از این تعداد سرور در اختیار گوگل است (یعنی ۱ میلیون سرور).
۹- امروزه ۳۳ هزار و ۱۵۷ مؤسسه‌ی خدمات مرکز داده در جهان وجود دارد که ایالات متحده‌ی امریکا به تنهایی ۲۳ هزار و ۶۵۶ عدد از این مراکز داده را در خود جای داده است. کانادا، انگلستان، آلمان و هلند با اختلاف فاحشی نسبت به آمریکا در جایگاه‌های بعدی این آمار هستند.
۱۰- پیش بینی می‌شود در سال ۲۰۱۳ حداقل ۱۰ درصد از این سرورهای فیزیکی فروخته شده بر روی سرورهای مجازی (Virtual Machine) مستقر باشند به طوری که بر روی هر سرور فیزیکی ۱۰ ماشین مجازی مشغول به کار است. این به معنای شکل گیری سالانه ۸۰ تا ۱۰۰ میلیون سرور مجازی در سراسر دنیاست.
۱۱- در سال ۲۰۱۳ تقریبا ۶۰ درصد از بار کاری سرورها به صورت مجازی خوهد بود.
۱۲- مالکین دنیای محاسبات ابری در حال حاضر ۴ شرکت (بدون در نظر گرفتن رشد ناگهانی آمازون در ۴ ماهه‌ی ابتدایی سال ۲۰۱۱) گوگل، مایکروسافت، زوهو (Zoho) و رک‌اسپیس (RackSpace) با در اختیار داشتن بازاری با مجموع ارزش بیش از ۱۰۰ میلیارد پوند هستند.
۱۳- این ۱۰۰ میلیارد پوند، درآمد ناشی از خدماتی به شرح زیر است:
۵۶ درصد از مردم از سرویس‌های پست الکترونیکی همانند Gmail، Ymail و Hotmail استفاده می‌کنند.
۳۴ درصد از مردم از خدمات ذخیره‌سازی تصاویر در وب استفاده می‌کنند.
۲۹ درصد از مردم از اپلیکیشن‌های آنلاین مثل Google Docs و Photoshop Express استفاده می‌کنند.
۷ درصد از مردم از سرویس‌های ذخیره‌سازی ویدئو در وب استفاده می‌کنند.
۵ درصد از مردم برای ذخیره‌سازی فایل های رایانه‌ای خود در وب پول پرداخت می‌کنند.
۵ درصد از مردم برای پشتیبان‌گیری از اطلاعات هارد دیسک خود بر روی وب‌سایت‌های اینترنتی هزینه می‌کنند.
یک نمونه قیمت در سیستم عامل Azure از شرکت مایکروسافت
هزینه های مربوط به پردازش:
معادل یک کامپیوتر شخصی ۱۲۰۰ ریال / ساعت
معادل یک سرویس دهنده ۳۰۰۰ ریال / ساعت
معادل یک ابر رایانه ۱۰۰۰۰ ریال / ساعت
هزینه های مربوط به فضای ذخیره سازی:
هر گیگابایت اجاره نگهداری ماهانه ۱۵۰۰ ریال
هر ده هزار تراکنش ذخیره سازی ۱۰ ریال
هزینه دریافت هر گیگابایت داده از ابر:
بسته به کشوری که در آن قرار دارید، از ۱۵۰ تا ۲۰۰ ریال
این سیستم عامل به نام Windows Azure درحال حاضر توسط شرکت مایکروسافت با قیمت هایی شبیه آنچه در بالا آمد، ارائه می گـردد. بـرای اجرای این سیستم عامل به رایانه ای با چند گیگابایت حافظه RAM و چندصد گیگابایت دیسک سخت نیاز نبوده و یک دستگاه نسبتاً قـدیـمی هم می تواند برای آن به کار رود.
بعد از اینکه با محاسبات ابری آشنا شدیم و آن را از نگاه آماری بررسی کردیم و به این نتیجه رسیدیم که محاسبات ابری می توانند نقش عمده ای در جهان امروزی داشته باشند به معرفی سیستم عامل های ابری که از پلتفرم های مربوط به محاسبات ابری هستند، می پردازیم. در ابتدا تعریفی از سیستم عامل.
تعریف سیستم عامل
سیستم عامل، نرم افزاری است که مدیریت منابع رایانه را به عهده گرفته، اجرای برنامه های کاربردی را کنترل نموده و به صورت رابط کاربر و سخت افزار عمل می نماید. سیستم عامل خدماتی به برنامه های کاربردی و کاربر ارائه می دهد. برنامه های کاربردی یا از طریق واسط های برنامه نویسی کاربردی و یا از طریق فراخوانی های سیستم به این خدمات دسترسی دارند. با فراخوانی این واسط ها، برنامه های کاربردی می توانند سرویسی را از سیستم عامل درخواست کنند، پارامترها را انتقال دهند، و پاسخ عملیات را دریافت کنند. ممکن است کاربران با بعضی انواع واسط کاربری نرم افزار مثل واسط خط فرمان یا یک واسط گرافیکی کاربر یا سیستم عامل تعامل کنند. برای کامپیوترهای دستی و رومیزی، عموماً واسط کاربری به عنوان بخشی از سیستم عامل در نظر گرفته می شود. در سیستم های بزرگ و چند کاربره مثل یونیکس، واسط کاربری معمولاً به عنوان یک برنامه کاربردی که خارج از سیستم عامل اجرا می شود پیاده سازی می شود (استالینگ، 1381).
انواع سیستم عامل
سیستم عامل تک پردازنده
این نوع سیستم عامل ها، سیستم عامل های نسل چهارم (نسل فعلی) هستند که بر روی یک پردازنده اجرا می شوند. از قبیل XP98، Me و Vista که بیشتر محصول شرکت مایکروسافت می باشند.
سیستم عامل شبکه ای
این نوع سیستم عامل ها، از کنترل کننده های واسط شبکه و نرم افزارهای سطح پایین به عنوان گرداننده استفاده می کنند و برنامه هایی برای ورود به سیستم های راه دور و دسترسی به فایل از راه دور در آنها به کار گرفته می شود[13].
سیستم عامل توزیع شده
این سیستم عامل ها خود را مانند سیستم عامل های تک پردازنده به کاربر معرفی می کنند اما در عمل از چندین پردازنده استفاده می کنند. این نوع سیستم عامل در یک محیط شبکه ای اجرا می شود و در حقیقت در این نوع سیستم جواب نهایی یک برنامه، پس از اجرا در کامپیوترهای مختلف به سیستم اصلی بر می گردد. سرعت پردازش در این نوع سیستم بسیار بالاست.
سیستم عامل بی درنگ
از این نوع سیستم عامل برای کنترل ماشین آلات صنعتی، تجهیزات علمی و سیستم های صنعتی استفاده می گردد. یک سیستم عامل بی درنگ دارای امکانات محدود در رابطه با بخش رابط کاربر و برنامه های کاربردی مختص کاربران می باشد. یکی از بخش های مهم این نوع سیستم های عامل، مدیریت منابع موجود کامپیوتری به گونه ای که عملیات خاصی در زمانی که بایستی اجرا شوند، اجرا گردند و مهم تر از همه اینکه مدیریت منابع به گونه ای است که این عملیات خاص در هر بار وقوع، مقدار زمان یکسانی بگیرد[1].
سیستم های توزیعی
در منابع مختلف تعاریف مختلفی برای سیستم های توزیعی ارائه شده است. اما هیچ یک نه کامل است و نه با دیگری همخوانی دارد. در این تحقیق تعریفی از این نوع سیستم ها که در کتاب سیستم های توزیعی آقای تانن باوم به آن اشاره شده را بیان می کنیم:
سیستم توزیعی در واقع مجموعه ای از کامپیوترهای مستقل است که برای کاربر خود مانند یک سیستم منسجم و منفرد به نظر می رسد[2].
از این تعریف می توان به این نتیجه رسید که اولاً یک سیستم توزیعی از کامپیوترهای خود مختار تشکیل شده است و ثانیاً کاربران تصور می کنند که با یک سیستم منفرد کار می کنند. پس با تعریفی که ذکر شد می توان یک سیستم توزیعی را اینگونه نیز تعریف کرد:
هر سیستمی که بر روی مجموعه ای از ماشین ها که دارای حافظه اشتراکی نیستند، اجرا شده و برای کاربران به گونه ای اجرا شود که گویا بر روی یک کامپیوتر می باشند ، یک سیستم توزیع شده است. اما نکته ای که در اینجا باید به آن توجه داشت این است که در سیستم های توزیعی تفاوت بین کامپیوترهای مختلف و نحوه ارتباط آنها با یکدیگر باید تا حدود زیادی از دید کاربران پنهان بماند. سیستم های توزیعی برای اینکه بتوانند از کامپیوترها و شبکه های ناهمگن پشتیبانی کنند و همگی سیستم ها را در غالب یک سیستم منفرد نمایش دهند، به عنوان یک لایه میانی به نام میان افزار بین یک لایه سطح بالایی شامل کاربران و برنامه های کاربردی و یک لایه پائینی شامل سیستم های عامل در نظر گرفته می شوند[12]. در شکل 2-6 لایه سیستم توزیعی یا به عبارتی میان افزاری را مشاهده می کنید که بین سیستم های عامل 1 تا 4 و چهار کامپیوتر شبکه که شامل سه برنامه کاربردی هستند قرار گرفته است. این لایه باعث می شود که تفاوت بین سخت افزار و سیستم های عامل از دید برنامه های کاربردی وکاربران مخفی بماند.

شکل 2-6 : سیستم توزیعی که به عنوان یک لایه میانی یا میان افزار بین برنامه های کاربردی و سیستم عامل ها قرار گرفته است[12].
و اما مواردی که باید در طراحی سیستم های توزیع شده در نظر گرفت و به نوعی اهداف سیستم های توزیع شده می باشند عبارتند از شفافیت، انعطاف پذیری، قابلیت اطمینان، کارآیی خوب و قابلیت گسترش.
شفافیت
یکی از اهداف مهم سیستم های توزیع شده این است که فرآیندها و منابعی که بین ماشین های متعدد توزیع شده اند، باید از دید کاربران مخفی بماند[17]. به سیستم توزیعی که از دید کاربران و برنامه های کاربردی خود به صورت یک سیستم کامپیوتری منفرد جلوه می کند را اصطلاحاً شفاف می گویند.
شفافیت انواع مختلفی دارد و در مورد هر یک طبق تعریفی که در کتاب سیستم های توزیعی آقای تانن باوم آمده توضیح می دهیم، شفافیت دسترسی که در مورد مخفی سازی تفاوت های ارائه داده و نحوه دسترسی به منابع به وسیله کاربران می باشد. شفافیت مکان یعنی اینکه کاربران نتوانند محل استقرار فیزیکی منبع در سیستم را شناسایی کنند. شفافیت مهاجرت یعنی اینکه بتوان منابع آنها را بدون تاثیرگذاری بر نحوه دسترسی به آنها انتقال داد. شفافیت مکان یابی مجدد هنگامی است که بتوان منابع را در حین دسترسی به آنها و بدون کوچکترین اطلاعی به کاربر یا برنامه کاربردی مجددا مکان یابی کرد. شفافیت تکثیر به مخفی سازی وجود چندین نسخه تکثیری از یک منبع می پردازد. شفافیت هم روندی زمانی است که مثلا دو کاربر مستقل فایل های خود را روی یک خدمتگذار فایل واحد ذخیره کرده و یا به جداول واحدی در پایگاه داده مشترک دسترسی داشته باشند. در این موارد هیچ یک از کاربران نباید کوچکترین اطلاعی از واقعیت استفاده کاربر دیگر از آن منبع داشته باشد. شفافیت خرابی به این معناست که کاربر متوجه خرابی و عملکرد نادرست یک منبع نشده و سپس سیستم اقدام به ترمیم آن خرابی کند[2].
قابلیت اطمینان
در دسترس بودن یک فاکتور مهم مرتبط با این سیستم ها است. طراحی نباید به گونه ای باشد که نیاز به اجرای همزمان کامپوننت های اساسی باشد. افزونگی بیشتر داده ها باعث افزایش در دسترس بودن شده اما ناسازگاری را بیشتر می کند. قدرت تحمل خطا باعث پوشاندن خطاهای ایجاد شده توسط کاربر می شود.
کارآیی
بدون کارآیی مناسب کلیه موارد استفاده نرم افزار بی فایده می باشد. اندازه گیری کارایی در سیستم های توزیع شده کار آسانی نیست. برای رسیدن به کارایی باید توازنی خاص در تعداد پیغام ها و اندازه کامپوننت های توزیع شده بر قرار باشد.
مقیاس پذیری
امروزه اتصال جهانی از طریق اینترنت، مانند امکان ارسال یک کارت پستال برای هر کسی در هر گوشه ای از جهان تبدیل به امر عادی شده است. به همین دلیل، مقیاس پذیری یکی از مهمترین اهداف طراحی برای سازندگان سیستم های توزیعی محسوب می شود. مقیاس پذیری یک سیستم را می توان حداقل در سه بعد مختلف اندازه گیری کرد(نیومان، 1994). اولاً، یک سیستم می تواند با توجه به اندازه خود مقیاس پذیر باشد. به این معنا که بتوان به راحتی کاربران و منابع دیگری را به سیستم اضافه نمود. ثانیاً، یک سیستم مقیاس پذیر جغرافیایی سیستمی است که ممکن است کاربران و منابع آن در فاصله های دوری از هم قرار گرفته باشند. ثالثا، یک سیستم ممکن است از نظر مدیریت اجرایی مقیاس پذیر باشد، به این معنا که حتی اگر سازمان هایی با مدیریت اجرایی مستقل را به هم پیوند دهد. باز به راحتی قابل مدیریت باشد. متاسفانه، اغلب سیستم هایی که از یک یا چند مقیاس پذیر هستند، با افزایش مقیاس پذیری سیستم، تاحدودی با افت عملکرد مواجه می شوند.
سیستم عامل های توزیعی
محیط های کامپیوتری تحت شبکه( شبکه های کامپیوتری) امروزه بسیار رایج شده اند و این محیط ها شامل مجموعه ای از ایستگاه های کاری و سرویس دهنده ها می باشند. واضح است که مدیریت این منابع کار آسانی نخواهد بود. استفاده از مجموعه ای از کامپیوترها که از طریق شبکه به هم متصل شده اند مشکلات بسیاری را در بر دارد، از جمله مشکلات تقسیم منابع و یکپارچه سازی محیط( که این مشکلات در سیستم های متمرکز وجود ندارد). علاوه بر این برای افزایش میزان کارآیی، توزیع بایستی از دید کاربر پنهان بماند. راه حل مناسب این است که سیستم عاملی طراحی شود که توزیعی بودن سخت افزار را در تمامی سطوح در نظر داشته باشد. به این صورت که سیستم عامل مجموعه را به صورت یک سیستم متمرکز نشان دهد و در کنار آن از مزیت های سیستم توزیعی استفاده کند. در ساختار سیستم عامل های توزیعی از دو الگوی مبتنی بر پیام و مبتنی بر شیء استفاده می شود[11].
الگوی مبتنی بر پیام
در این الگو سیستم عامل یک هسته مبتنی بر پیام در هر گره قرار می دهد و برای برقراری ارتباطات داخل فرآیند از ارسال پیام استفاده می کند. هسته از هر دو نوع ارتباط محلی( ارتباط بین فرآیندهای داخل هر گره) و غیر محلی(ارتباط از راه دور) پشتیبانی می کند. در یک سیستم عامل سنتی همانند یونیکس دسترسی به سرویس های سیستمی از طریق فراخوانی متدها صورت می پذیرفت در حالی که در سیستم عامل های مبتنی بر پیام، درخواست ها از طریق ارسال پیام مطرح می شوند. با این قرار می توان نتیجه گرفت سیستم عامل های مبتنی بر پیام ساخت جذاب تر و بهتری دارند، زیرا سیاست های موجود در فرآیند های سرویس دهنده از مکانیزم پیاده سازی هسته جدا می باشد.
الگوی مبتنی بر شیء
در این الگو سیستم عامل سرویس ها و منابع را به موجودیت هایی به نام شیء کپسوله می کند. این اشیاء همانند نمونه هایی از داده های انتزاعی می باشند و از ماژول های منحصر به فردی تشکیل شده اند. همچنین این ماژول ها نیز متشکل از متدهای به خصوصی می باشند که اینترفیس(واسط) ماژول را توصیف می کنند. عملکرد در این الگو این چنین است که کاربران درخواست سرویس را از طریق احضار شیء مورد نظر مطرح می سازند. این مکانیزم بسیار شبیه به فراخوانی پروسه ها در سیستم های معمولی می باشد. قابل ذکر است که اشیاء عملیات را کپسوله می کنند.
رویکرد سیستم عامل های ابری
سیستم عامل ابری نیز نوعی از سیستم عامل های توزیعی می باشند که مجموعه ای از گره ها را با هم یکپارچه می سازد و یک سیستم متمرکز تولید می کند. سیستم عامل ابری شامل سرویس دهنده های محاسباتی، سرویس دهنده های داده ای و ایستگاه های کاربر می باشد.
سرویس دهنده های محاسباتی: ماشینی است برای استفاده به عنوان موتور محاسباتی.
سرویس دهنده های داده ای: ماشینی است برای استفاده به عنوان مخرن داده های بلند مدت.
ایستگاه های کاربری: ماشینی است که محیطی برای توسعه دادن برنامه های کاربردی فراهم می کند و واسطی بین کاربر و سرویس دهنده های محاسباتی یا داده ای می باشد[3].
ساختار سیستم عامل های ابری بر پایه مدل شیء- نخ می باشد. این مدل از مدل برنامه نویسی معروف شیء گرا اقتباس شده است که نرم افزار سیستم را بر پایه مجموعه ای از اشیاء می سازد. هر شیء شامل تعدادی داده و عملیات بر روی آن داده ها می باشد. عملیات بر روی داده ها را متد می نامند و نوع شیء نیز با کلاس مشخص می گردد. هر کلاس می تواند صفر یا یک و یا چند نمونه داشته باشد ولی یک نمونه تنها از یک کلاس ناشی می شود. اشیاء به پیام ها پاسخ می دهند و ارسال پیام به یک شیء می تواند به داده های درون شیء دسترسی داشته باشد و آن ها را بروز رسانی کند و یا به اشیاء دیگر درون سیستم پیام ارسال کند. اشیاء ابر کپسولی از کد و داده می باشند که در یک فضای آدرس مجازی قرار دارند. هر شیء نمونه ای از یک کلاس است و هر کلاس ماژولی از برنامه. اشیاء ابرها به احضارها پاسخ می دهند و احضارها ( با استفاده از نخ ها) برای اجرای متد درون شیء ابر استفاده می گردند. ابرها از اشیاء برای تضمین انتزاع مخازن و از نخ ها برای اجرای متد درون شیء استفاده می نمایند. این موجب می شود که محاسبات و مخازن داده ای از یکدیگر تفکیک شوند. از دیگر ویژگی های مدل شیء- نخ می توان به این موارد اشاره کرد:
عملیات ورودی و خروجی
به اشتراک گذاری داده ها
ارتباط درون فرآیندها
ذخیره سازی بلند مدت داده ها در حافظه
الگوی سیستم عامل ابری
الگوی مورد استفاده در سیستم عامل های ابری همان الگوی شیء- نخ می باشد که در این بخش به توضیح اجزا و نحوه عملکرد این الگو می پردازیم.
شیء ابری
شیء ابری یک فضای آدرس مجازی پایدار می باشد. برخلاف فضاهای آدرس در سیستم های معمولی، محتویات اشیاء برای مدت طولانی باقی می مانند. به همین دلیل در هنگام خرابی سیستم از بین نمی روند، مگر اینکه عمدا از سیستم حذف شوند. همانطور که از تعریف برمی آید اشیاء ابری سنگین وزن هستند، به همین علت است که این اشیاء بهترین انتخاب برای مخازن داده ای و اجرای برنامه های بزرگ به حساب می آیند. داده های درون شیء فقط توسط خود شیء قابل دسترسی و بروزرسانی می باشند، زیرا محتویات یک فضای آدرس مجازی از بیرون از فضای مجازی قابل دست یابی نمی باشند.
یک شیء ابری شامل موارد زیر است:
کد مخصوص به خود ( متدهای اختصاصی )
داده های پایدار
حافظه ای زودگذر و سبک ( برای تخصیص حافظه موقت )
حافظه ای پایدار و دائمی ( برای تخصیص دادن حافظه ای که بخشی از ساختمان داده پایدار شیء می باشد )
داده با احضار متدها وارد شیء می شود و با پایان احضار از شیء خارج می گردد (شکل شماره 2-7 ). اشیاء ابری دارای یک نام در سطح سیستم می باشند که آن ها را از یکدیگر منحصر به فرد می سازد. این اشیاء درون سرویس دهنده های محاسباتی قابل استفاده می باشند که این کارآیی موجب می شود توزیعی بودن داده ها از دید کاربر مخفی باقی بماند.
4375151651000
شکل شماره 2-7 : ساختمان یک شیء ابری[5]
نخ
یک نخ عبارت است از مسیری اجرایی که وارد اشیاء شده و متدهای درون آن ها را اجرا می کند و محدود به یک فضای آدرس نمی شود. نخ ها توسط کاربران و یا برنامه های کاربردی ساخته می شوند. نخ ها با اجرای متدی از یک شیء می توانند به داده های درون شیء دسترسی یابند، آن ها را بروزرسانی کنند و یا اینکه متدهایی از شیء دیگر را احضار کنند. در این حالت، نخ به طور موقت شیء فعلی را رها می کند، از آن خارج شده و وارد شیء فراخوانی شده می گردد و متد مورد نظر آن را اجرا می کند، پس از پایان اجرای متد به شیء قبلی باز می گردد و نتیجه را برمی گرداند. نخ ها پس از پایان عملیات مورد نظر از بین می روند. علاوه بر این چند نخ می توانند به طور هم زمان وارد یک شیء شوند و به طور موازی به اجرا درآیند که در این صورت نخ ها محتویات فضای آدرس شیء را بین یکدیگر به اشتراک می گذارند. شکل شماره 2-8 نحوه اجرای نخ ها در اشیاء را نشان می دهد.

شکل شماره 2-8 : اجرای نخ ها در شیء ابری[5]
تعامل میان شیء و نخ ( مدل شیء- نخ )
ساختار یک سیستم عامل ابری متشکل از اشیاء و نخ ها می باشد. مکانیزم ذخیره سازی داده ها در سیستم عامل های ابری با سایر سیستم عامل های معمول تفاوت دارد. در سیستم عامل های معمولی از فایل ها برای ذخیره سازی داده ها استفاده می شود ولی در سیستم عامل های ابری اشیاء نقش مخازن داده را ایفا می کنند. برخی از سیستم ها برای برقراری ارتباط با داده های مشترک و هماهنگ سازی محاسبات از الگوی ارسال پیام استفاده می کنند. ابرها با قراردادن داده ها درون اشیاء آن ها را به اشتراک می گذارند. متدها در صورت نیاز به دسترسی داده ها شیء مورد نظر را که داده درون آن قرار دارد احضار می کنند. در یک سیستم مبتنی بر پیام، کاربر می بایست درجه هم زمانی را در هنگام نوشتن برنامه تعیین کند و برنامه را به تعدادی پروسه سیستمی بشکند. مدل شیء-نخ این احتیاجات را حذف می کند، به این صورت که در زمان اجرا درجه هم زمانی با ایجاد نخ های موازی مشخص می شود.
به طور خلاصه می توان گفت:
سیستم عامل ابری از فضاهای آدرس نام گذاری شده به نام شیء تشکیل شده است و این اشیاء قادرند:
مخازن داده پایدار فراهم کنند.
متدهایی برای دست یابی و دست کاری داده ها ایجاد نمایند.
داده ها را به اشتراک بگذارند.
هم زمانی را کنترل نمایند.
جریان کنترلی توسط نخ هایی که اشیاء را احضار می کنند انجام می شود.
جریان داده ای با ارسال پارامتر انجام می شود.
برنامه نویسی در مدل شیء- نخ در ابرها
مفاهیم مورد استفاده برنامه نویس در مدل شیء – نخ عبارتند از:
کلاس: ماژول های سیستم
نمونه: شیء ای از کلاس می باشد که می تواند توسط نخ ها احضار شود.
بنابراین برای نوشتن برنامه کاربردی در ابرها، برنامه نویس یک یا چند کلاس را تعریف می کند و داده ها و کدهای برنامه را درون این کلاس ها قرار می دهد. برنامه برای اجرا شدن نخی ایجاد می کند که متد اصلی شیء اجرا کننده برنامه را احضار می کند. اشیاء دارای نام هایی می باشند که برنامه نویس هنگام تعریف شیء برای آن ها مشخص کرده است و این نام ها بعدا به نام سیستمی شیء تبدیل می شوند.
معماری سیستم عامل ابری
دراین بخش معماری سیستم عامل های ابری را مورد بررسی قرار می دهیم. شکل شماره 2-9 مدلی منطقی از معماری یک سیستم عامل ابری را نمایش می دهد. یک پروسه ابری به مجموعه ای از اشیاء ابری اطلاق می شود که با هم یک برنامه کاربردی را تشکیل می دهند.

شکل شماره 2-9 : مدل منطقی از معماری یک سیستم عامل ابری[6]
فضای هسته ابر به تعدادی از پروسه های ابری که عملیات کنترل دسترسی ها، تخصیص حافظه و محاسبات مقدار منابع لازم را انجام می دهند گفته می شود. مابقی پروسه ها که مربوط به فضای هسته ابر نیستند، فضای کاربر را تشکیل می دهند. پروسه های ابری فضای کاربر که مستقیما توسط خود کاربر اجرا می شوند برنامه های کاربران نامیده می شوند و کتابخانه های ابری، پروسه های ابری می باشند که توسط برنامه های کاربران مورد استفاده قرار می گیرند. این برنامه ها از طریق مجموعه ای از واسط های استاندارد به نام فراخوانی های سیستمی ابر با کتابخانه ها و پروسه های هسته ارتباط برقرار می کنند. تمامی اشیاء موجود در فضای کاربر برای گرفتن دستورات از سیستم عامل از یک دستگیره فراخوانی استفاده می کنند، بدین معنی که برای مدیریت شدن از طریق یک واسط تحت شبکه قابل دسترسی می باشند که ارتباط میان اشیاء و آدرس آن ها در شبکه توسط پروسه های ابری «مدیریت پروژه» و «مدیریت ماشین مجازی» موجود در فضای هسته انجام می گیرند. اطلاعات نهایی نیز توسط پروسه ابری «کتابخانه نامگذاری» در دسترس قرار می گیرد. قابلیت دسترسی تمامی عملیات مدیریتی را پروسه ابری «اعتباردهی» مورد بررسی قرار می دهد و عملیات محاسبه میزان منابع مورد نیاز در هر لحظه نیز بر عهده پروسه ابری «اندازه گیری» می باشد. البته قابل ذکر است که مفروضات لحاظ شده در شکل شماره 2-4 تعداد اندکی از محدودیت های موجود در ابرها را در نظر گرفته است و کامل نمی باشد[6].
برخی سیستم عامل های ابری موجود(سیستم عامل های مبتنی بر وب)
سیستم عامل های وب روش بسیار مناسبی برای دستیابی به همه داده های شما در همه جای دنیا هستند (مشروط بر اینکه کامپیوتری با یک اتصال به اینترنت و یک مرورگر وب وجود داشته باشد). چنانچه تعدادی کامپیوتر داشته باشید، اما بخواهید همه اطلاعات را در یک جا نگهدارید و از برنامه های کاربردی مورد علاقه خود نیز استفاده کنید، این سیستم عامل ها بسیار سودمند هستند. اکنون در این مرحله ممکن است این سوال مطرح شود که چرا سیستم عامل وب؟. اساساً، یک سیستم عامل وب چیزی شبیه یک سیستم عامل روی اینترنت است. سیستم عامل وب، دسکتاپ مجازی شماست که به هیچ مکان فیزیکی متصل نیست و این امکان را به شما می دهد که در هر جایی از دنیا با کمک یک مرورگر به آن دستیابی داشته باشید. اجازه دهید تا از بین سیستم عامل های وبی که وجود دارد به بیان ویژگی های چند مورد از آنها بپردازیم.
سیستم عامل iCloud
سیستم عامل iCloud، مزایای بسیار زیادی دارد، علاوه بر اینکه هر برنامه ای که نیاز داریم در آن موجود است، 50 گیگابایت فضای ذخیره سازی آنلاین، به اشتراک گذاری آسان و ویژگی های افزایش برنامه های کاربردی را دارد. این سیستم عامل دارای ویژگی هایی مانند زیر است:
سیستم فایل آنلاین برای ذخیره سازی انواع فایل ها.
پشتیبان DAV وب از طریق ویندوز اکسپلورر امکان دستیابی مستقیم به انباره icloud شما را فراهم می کند.
برنامه های بهره وری- نوشتن، پست الکترونیکی ( که با همه حساب های پست الکترونیکی شما به اضافه یک حساب icloud رایگان هماهنگی دارد)، تماس ها، ToDo، ماشین حساب، دفترچه یادداشت، آنزیپ (فایل های حاوی داده های فشرده را از هم باز می کند).
عکس ساز با قابلیت به اشتراک گذاری، مدیا پلیر iplay، مووی پلیر، و حتی رادیو.
IM و یک مرورگر وب[8].
69850069596000تصویری از این سیستم عامل را در شکل 2-10 مشاهده می کنید.
شکل شماره 2-10: نمایی از سیستم عامل icloud
سیستم عامل GlideOS
سیستم عامل GlideOS، هم از طریق کامپیوتر و هم تلفن همراه قابل دسترسی می باشد. 10 گیگابایت فضای ذخیره سازی رایگان را در اختیار شما قرار می دهد، همچنین در این سیستم عامل می توانید شش حساب کاربری برای اعضاء خانواده ایجاد کنید( که می تواند شامل حساب کودک باشد). علاوه براین، این سیستم عامل دارای ویژگی هایی زیر می باشد که عبارتند از:
10 گیگابایت فضای دیسک مجازی