–29

عنوان صفحه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما 1
1.1مقدمه
2.1 آشنایی با پلاسما
1.2.1 منحنی دشارژ گازی ولتاژ – جریان پلاسما
3.1 جنبه های کاربردی منابع توان پالسی در پلاسما
4.1 مبانی عملکرد منابع توان پالسی پلاسما
1.4.1مشخصات پالس های قدرت بالا در منابع توان پالسی
2.4.1ذخیره سازی انرژی الکتریکی
1.2.4.1 بانک خازنی
2.2.4.1 مولد مارکس
3.4.1 اصول کلید زنی در پلاسما
4.4.1 شبکه های شکل دهی پالس (PEN)
5.4.1 خط انتقال بلوملین (BLUMLEIN)
5.1 اهداف مورد بررسی در این پژوهش
6.1 نتیجه گیری
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده درپلاسما
1.2 مقدمه
2.2 توپولوژی های موجود برای منابع توان پالسی پلاسما
1.2.2 توپولوژی مبتنی بر مولد مارکس
2.2.2 توپولوژی مبتنی بر مبدل های dc - dc
1.2.2.2 مبدل باک (Buck)
2.2.2.2 مبدل بوست (Boost)
فهرست مطالب
عنوان 3.2.2.2 مبدل باک - بوست (Boost -Buck)
4.2.2.2 مبدل کاک (Cuk)
5.2.2.2 مبدل های تشدیدی با کلیدزنی نرم
3.2.2 توپولوژی مبتنی بر تقویت کننده های ولتاژ
4.2.2 توپولوژی مولدهای پالس مبتنی بر اینورترها
3.2 روش های کنترلی مورد استفاده در منابع توان پالسی مورد استفاده در پلاسما
1.3.2روش کنترلی منبع ولتاژ
2.3.2روش کنترلی منبع جریان
4.3.2 روش کنترلی پسماند
4.2 نتیجه گیری
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
1.3 مقدمه
2.3 طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت
1.2.3 آرایش مداری توپولوژی پیشنهادی
2.2.3 حالت های کلید زنی توپولوژی پیشنهادی
3.2.3 تحلیل مداری توپولوژی پیشنهادی
4.2.3 محاسبه مقدارdv/dt تولید شده ناشی از کلیدزنی گذرای توپولوژی پیشنهادی
3.3 محاسبه انرژی ذخیره شده منابع توان پالسی مورد استفاده در پلاسما مبتنی بر توپولوژی پیشنهادی
3.1.3 محاسبه مقادیر المان های منابع توان پالسی پلاسما
2.3.3 محاسبه انرژی ذخیره شده منابع توان پالسی پلاسما
3.3.3 محاسبه انرژی ذخیره شده در حالت استفاده از خازن اضافی در منابع توان پالسی پلاسما
فهرست مطالب
عنوان 4.3 طراحی استراتژی کنترلی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
1.4.3 تحلیل روش کنترلی منبع ولتاژ برای توپولوژی پیشنهادی در حالت یک طبقه
2.4.3 طراحی و تحلیل روش کنترلی منبع ولتاژ برای توپولوژی پیشنهادی در حالت دو طبقه
5.3 نتیجه گیری
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
1.4 مقدمه
2.4 روند شبیه سازی توپولوژی پیشنهادی برای منبع توان پالسی پلاسما
1.2.4 تعیین مقادیر المان و مولفه های اصلی منابع توان پالسی پلاسما
2.2.4 روش مدل سازی بار در توپولوژی پیشنهادی
3.2.4 شبیه سازی توپولوژی پیشنهادی در حالت یک طبقه
4.2.4 شبیه سازی توپولوژی پیشنهادی در حالت دو طبقه
3.4 تخمین انرژی ذخیره شده در منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
4.4 شبیه سازی dv/dt تولید شده ناشی از کلیدزنی گذرای توپولوژی پیشنهادی
5.4 نتیجه گیری
فصل پنجم - بحث و نتیجه گیری
- نتیجه گیری
- مراجع
فهرست شکل ها
عنوان صفحه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما
شکل(1-1) نمایی از الکترودهای بکار رفته در پلاسما
شکل(1-2) منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
شکل (1-3) نمای کلی از ساختار منابع توان پالسی
شکل (1-4) منحنی مشخصات یک پالس تولید شده در منابع توان پالسی
شکل(1-5) نمونه ای از کمپرسور پالس مغناطیسی
شکل (1-6) نمونه ای از بانک خازنی بکار رفته در منابع توان پالسی
شکل(1-7) نمونه ای از مولد مارکس مورد استفاده در منابع توان پالسی
شکل (1-8) مدارهای اصلی مورد استفاده در منابع توان پالسی با المان های ذخیره ساز انرژی
شکل(1-9) نمونه ای از بانک خازنی با کلیدهای چندکاناله
شکل (1-10) آرایش مختلفی از شبکه نردبانی مورد استفاده در شبکه های شکل دهی پالس
شکل (1-11) آرایش خط انتقال بلوملین
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
شکل (2-1) الف) نمونه ای از توپولوژی مبتنی بر مولد مارکس، ب) حالت شارژ مولد ، ج) حالت دشارژ شکل(2-2)مبدل باک (Buck) شکل(2-3)شکل موج های ولتاژ – جریان و مدارمعادل مبدل باک : (الف) کلید وصل (ب) کلید قطع
شکل(2-4)مبدل بوست (Boost)
شکل(2-5)شکل موج های ولتاژ – جریان و مدارمعادل مبدل بوست : (الف) کلید وصل (ب) کلید قطع
شکل(2-6)مبدل باک - بوست (Boost -Buck)
شکل(2-7) شکل موج های ولتاژ - جریان و مدارمعادل مبدل باک - بوست : (الف) کلید وصل (ب) کلید قطع
شکل(2-8) مبدل باک – بوست مثبت ( Positive Buck-Boost )
فهرست شکل ها
عنوان صفحه
شکل (2-9) مبدل کاک (Cuk)
شکل (2-10)مدار معادل مبدل کاک در حالت های کلید زنی : الف) حالت وصل کلید ب) حالت قطع کلید
شکل (2-11) شکل موج های جریان و ولتاژ مبدل کاک در حالت های کلید زنی
شکل (2-12) مبدل تشدید با کلیدزنی نرم
شکل (2-13)تقویت کننده ولتاژ N طبقه کوک کرافت – والتون
شکل (2-14) توپولوژی های کنترلی مورد استفاده در یک منبع توان پالسی پلاسما
شکل (2-15)روش کنترلی منبع ولتاژ در منابع توان پالسی پلاسما
شکل(2-16)روش کنترلی منبع جریان مورد استفاده در منابع توان پالسی پلاسما
شکل(2-17)روش کنترلی حلقه جریان پسماند برای کنترل جریان سلفی در منابع توان پالسی پلاسما
شکل (2-18) روش کنترلی پسماند برای منابع توان پالسی پلاسما
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
شکل(3-1) شمای کلی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت منبع توان پالسی
شکل (3-2) منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی با یک مجموعه کلید- دیود- خازن
شکل (3-3) منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی با دو مجموعه کلید- دیود- خازن
شکل (3-4) مدل سازی توپولوژی پیشنهادی جهت تحلیل حالات کلیدزنی در منبع توان پالسی
شکل(3-5) حالت کلیدزنی شارژ شدن سلف در توپولوژی پیشنهادی
شکل(3-6) حالت کلیدزنی عبور جریان سلفی در توپولوژی پیشنهادی
شکل(3-7) حالت کلیدزنی شارژ همزمان خازن ها در توپولوژی پیشنهادی
شکل(3-8) حالت تامین بار در توپولوژی پیشنهادی
شکل(3-9) حالت کلید زنی شارژ جداگانه خازن ها در توپولوژی پیشنهادی
شکل (3-10) فلوچارت کنترلی پیشنهادی
فهرست شکل ها
عنوان صفحه
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع
توان پالسی مورد استفاده در پلاسما
شکل (4-1) شبیه سازی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی – یک طبقه
شکل(4-2) شبیه سازی روش کنترلی منبع ولتاژ در توپولوژی پیشنهادی
شکل(4-3) مولفه ولتاژ توپولوژی پیشنهادی در حالت یک طبقه: (الف) کلید Ss (ب) کلید S1
شکل(4-4) مولفه جریان کلید بارSL توپولوژی پیشنهادی در حالت یک طبقه
شکل (4-5) شبیه سازی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی – دو طبقه
شکل(4-6) مولفه ولتاژ توپولوژی پیشنهادی - دو طبقه درحالت کلید زنی همزمان: (الف) خازنC1 یا کلید S1 (ب) خازنC2 یا کلید S2 (ج) کلید SL
شکل(4-7) مولفه های اصلی توپولوژی پیشنهادی - دو طبقه درحالت کلید زنی جداگانه: (الف) ولتاژ خروجی (ب) جریان سلفی (ج) جریان خروجی(بار) IL (د) ولتاژ ورودی
شکل (4-8) شبیه سازی پیشنهادی جهت تخمین میزان انرژی ذخیره شده
شکل(4-9) تخمین انرژی ذخیره شده در توپولوژی پیشنهادی: (الف)انرژی ذخیره شده در سلف (ب) انرژی ذخیره شده درخازن (ج) انرژی ذخیره شده در بار
شکل(4-10) جریان خازنی در حالت کلیدزنی گذرای توپولوژی پیشنهادی
فهرست جدول ها
عنوان صفحه ه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما
جدول(1-1) شرح نواحی منحنی دشارژ گازی ولتاژ - جریان حالت dc پلاسما
جدول (1-2) خلاصه ای از مشخصات منابع توان پالسی برای کاربردهای مختلف
جدول(1-3) دامنه پالس های تولید شده در منابع توان پالسی
جدول (1-4)مشخصات دو مدل از مولد مارکس نواری
جدول (1-5)مشخصات مولد مارکس قطعه ای مدلA 43733
جدول(1-6) کلیدهای نیمه هادی گازی در منابع توان پالسی مورد استفاده در پلاسما
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
جدول(2-1) شاخص های کلیدی مبدل های dc - dc
جدول(2-2) شاخص های کلیدی مبدل های تشدید با کلید زنی نرم
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
جدول( 3-1) شاخص های کلیدی توپولوژی های مورد استفاه در منایع توان پالسی پلاسما
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
جدول (4-1) مقادیرمولفه و المان های اصلی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
جدول(4-2) مقادیر dv/dt تولید شده در حالت کلیدزنی گذرای توپولوژی پیشنهادی
جدول(4-3) خلاصه ای از مقایسه بین دو آرایش مختلف توپولوژی پیشنهادی منبع توان پالسی پلاسما
2
2
3
5
5
6
8
10
11
14
15
17
18
18
19
20
20
20
22
22
23
25
صفحه
26
28
30
32
34
35
35
36
37
39
40
41
42
42
44
48
51
51
52
53
54
صفحه
55
55
56
58
59
60
61
61
62
62
63
65
67
69
70
72
73
76
3
4
6
8
8
9
9
10
11
16
17
22
23
24
25
26
27
28
28
29
29
30
31
34
35
36
37
38
38
42
43
43
44
45
46
47
47
48
57
63
64
64
65
65
66
67
68
69
70
4
6
7
13
13
15
32
32
41
62
70
71
لیست علایم و اختصارات
AC ) Alternating Current جریان متناوب (
BJT ) Bipolar Junction Transistorترانزیستور پیوند دو قطبی (
CCM ) Continuous-Conduction-Modeحالت هدایت پیوسته (
CDVM ( Capacitor-Diode Voltage Multiplier)تقویت کننده ولتاژ دیود و خازن
CSR ) Converter Series Resonanمبدل تشدید سری (
DC ) Direct Currentجریان مستقیم (
EMI ) Electromagnetic Interferenceتداخلات الکترومغناطیسی (
EMC ) Electromagnetic Compatibilityسازگاری الکترومغناطیسی (
HV ) High Voltageولتاژ بالا (
IGBT ) Insulated Gate Bipolar Transistorترانزیستور دوقطبی گیت عایق شده (
MBL )Multistage Blumlein Linesخطوط بلوملین چند طبقه ای (
MFC ) Magnetic Flux Compressorکمپرسور شار مغناطیسی (
MG ) Marx Generatorمولد مارکس (
MOSEFET ) Metal-Oxide Semiconductor Field-Effect Transistorترانزیستورنیمه هادی اکسید فلزی با اثر میدان(
MPC )Magnetic Pulse Compressorکمپرسور پالس مغناطیسی (
MVM ) Multilevel Voltage تقویت کننده ولتاژ چند سطحی (
PEF ( Pulsed Electric Fieldمیدان الکتریکی پالسی (
PFC ) Power Factor Correctorsتنظیم کننده های ضریب قدرت (
PFN ) Pulse Forming Networkشبکه شکل دهی پالس (
SMPS (Switched-Mode Power Supply)روش کلید زنی منابع توان پالسی
ZCS )Zero Current Switchingکلید زنی جریان صفر (
ZVS ) Zero Voltage Switchingکلید زنی ولتاژ صفر (
فصل اول

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما

1.1مقدمه
اساس فناوری سیستم توان پالسی بر پایه ذخیره انرژی زیاد در زمان نسبتا طولانی و آزاد کردن خیلی سریع آن می باشد که هدف از فرآیند آزاد سازی انرژی، افزایش توان لحظه ای آن است. از مشخصه های کلیدی منابع توان پالسی می توان به سطح ولتاژ و مدت زمان افزایش آن که بر مبنای مشخصات بار مورد نیاز تعیین می شود، اشاره کرد]1[. روش های سازگاری منابع توان پالسی با بارهای متفاوت توسط تکنولوژی موجود، یکی از بحث های کلیدی فناوری سیستم توان پالسی مورد استفاده در پلاسما می باشد. استفاده از دانش پیشرفته و رویکردهای اخیر در الکترونیک قدرت و نیمه هادی ها به حساب سطح نیازمندی صنعتی و علمی آن است که باعث پیشرفت سریع منابع توان پالسی در دهه اخیر شده است.از ویژگی های بارز منابع توان پالسی جهت افزایش راندمان و قابلیت اطمینان آن، پیچیدگی ها و ریزه کاری آن است]2[. کنترل بهینه روند تولید توان در منابع تولید توان پالسی یک روش مهم و حیاتی برای افزایش راندمان می باشد. از سوی دیگر استفاده از منابع توان پالسی با ولتاژ بالا نیازمند کلیدهای قدرت بالا می باشد که ولتاژ شکست و زمان کلید زنی آن محدودی است.
2.1 آشنایی با پلاسما
واژه "پلاسما" برای اولین بار در سال 1927 توسط ایروین لانگمویر برای یک توده خنثی از ذرات باردار به کار رفت]3[. پلاسما را می توان با ایجاد یک اختلاف پتانسیل بین دو الکترود در یک محیط گازی بوجود آورد. میدان الکتریکی ایجاد شده بین دو الکترودهای آند و کاتد، باعث یونیزاسیون ذرات گاز خنثی و ایجاد مسیر هدایت می شود. در شکل(1-1) نمونه ای از الکترودها را نشان داده شده است. ساده ترین حالت، خطوط میدان الکتریکی بین آند و کاتد که در آن میدان الکتریکی تقریبا یکنواخت است، به اندازه و شکل الکترودها(دو الکترود مسطح با یک شکاف کوچک در میان شان است) بستگی دارد]4[.

شکل(1-1) نمایی از الکترودهای بکار رفته در پلاسما
1.2.1 منحنی دشارژ گازی ولتاژ – جریان پلاسما
شکل (1-2) منحنی دشارژ گازی ولتاژ – جریان الکترودها را در حالت dc نشان می دهد]5[. این منحنی دارای چند ناحیه می باشد که نام نواحی در جدول (1-1) به صورت خلاصه بیان شده است. ناحیه دشارژ تاریک پلاسما، که در آن دشارژ شروع می شود. هر چند که برای ایجاد حالت شکست، این دشارژ به صورت کافی ذرات را تحریک نمی کند. به این دشارژ تاریک می گویند زیرا که در این حالت دشارژ هیچ گونه انتقال انرژی به الکترون ها صورت نمی گیرد تا منجر به انتشار نور مرئی شود. در دشارژ تاریک با یونیزاسیون، یون ها والکترون ها به تنهایی اشعه های کیهانی و اشکال دیگری از آن (مانند اشعه یونیزه کننده طبیعی) که با افزایش ولتاژ همراه است، تولید می کند. در حالت اشباع با یونیزاسیون، تمام ذرات باردار حذف و الکترون ها به علت یونیزاسیون انرژی کافی ندارند. در حالت تاونزند با شروع یونیزاسیون، میدان الکتریکی ایجاد و جریان و ولتاژ به صورت نمایی افزایش می یابد]6[. بین حالت تاونزند و شکست در پلاسما، ممکن است تخلیه کرونا صورت گیرد که در نتیجه میدان الکتریکی بر روی لبه های تیز الکترود متمرکز می شود. تخلیه کرونا می تواند به صورت مرئی یا تیره باشد که به میزان جریان عبوری از آن بستگی دارد. ناحیه دشارژ تابشی با حالت شکست شروع می شود و با تشکیل قوس الکتریکی به پایان می رسد. به طور عمده فرآیندهایی که منجر به شکل گیری حالت شکست و دشارژ تابشی می شود را می توان به دو گروه اصلی تقسیم کرد: (الف) فرآیندهای گازی پلاسما، که در آن یونیزاسیون از برخورد الکترون و یون صورت می گیرد. (ب) فرآیندهای کاتدی پلاسما، که در آن الکترون ها از کاتد آزاد می شوند. به این فرآیند، به علت ایجاد الکترون در آن، فرآیند ثانویه نیز می گویند]7[. با مطالعه مقالات منتشر شده در این مورد می توان دریافت که جنس کاتد تاثیر زیادی درایجاد حالت شکست دارد. توسط فرآیند ثانویه می توان انواع انرژی تابشی را بصورت فتوالکتریک که در آن انرژی نوری باعث آزاد شدن الکترون ها می شود انتشار داد. در این مورد می توان به حالت گرما یونی در پلاسما نیز اشاره کرد، که در آن انرژی حرارتی باعث ایجاد الکترون و منجر به تولید میدان الکتریکی می شود. جرقه های ناشی از دشارژ در این حالت بسیار شدید است و دارای درخشندگی و چگالی جریان زیادی می باشد. قوس های ناشی از دشارژ را می توان معادل چگالی جریان زیاد در حد کیلو آمپر در سانتیمتر مربع در نظر گرفت. هرچند که شدت طبیعی قوس می تواند عامل فرسایش سریع تر الکترودها شود]9،8[.

شکل(1-2)منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
جدول(1-1) شرح نواحی منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
شماره 1 2 3 4 5 6 7 8 9
نواحی دشارژ تاریک دشارژ تابشی حالت جرقه ای حالت یونیزاسیون حالت اشباع حالت کرونا حالت تاونزند حالت شکست حالت تابشی
شماره 10 11 12 13
نواحی حالت تابشی غیر عادی حالت انتقالی از تابشی به جرقه حالت حرارتی حالت حرارتی با جرقه
3.1 جنبه های کاربردی منابع توان پالسی در پلاسما
اولین کاربرد منابع توان پالسی در دهه 1960 در نیرو گاه های هسته ای و تسلیحات هسته ای برای تولید پالس های با ولتاژ مگاولت و توان های تراوات (1 تراوات، 1000 گیگاوات است) و عرض پالس های چند ده نانو ثانیه تا چند صد نانو ثانیه برای تحریک شتاب دهنده های الکترونی پلاسما بوده است]10[. محدودیت عناصر ذخیره کننده انرژی و نبود تکنولوژی کلیدزنی پالس قدرت، مانع از گسترش آن در حوزه های عمومی تر شده بود. اما هم اکنون با توسعه این منابع و بهبود تکنولوژی ساخت خازن ها، اندوکتانس ها و کلیدها، بسیاری از مشکلات در تولید پالس های قدرت، با انرژی بالا و قیمت مناسب برطرف شده است. اخیرا یکی از اهداف اصلی و کلیدی جهت افزایش راندمان و قابلیت اطمینان سیستم های توان پالسی ،استفاده مکرر از مولدهای توان پالسی باحداکثر توان در صنایع از جمله : صنعت مواد غذایی، معالجات پزشکی، آب و فاضلاب (تصفیه آب و...)، تولیدگازهای ازن ،بازیافت بتن ، سیستم احتراق ماشین بخار و کاشت یون در پلاسما می باشد]11[. رایج ترین موارد استفاده از منابع توان پالسی می توان به : مولد مارکس ، کمپرسورهای پالسی الکترومغناطیسی ، عایق کاری ، خطوط انتقال و شکل دهی پالس اشاره کرد. هر چندکه مولدهای توان پالسی نیز با حداکثر توان به صورت وسیعی در مصارف نظامی و گداخت هسته ای مورد بهره برداری قرار می گیرد. هم چنین میدان های الکتریکی پالسی کاربردهای مستقیم و غیر مستقیم بسیاری در صنعت دارند و اخیرا کاربرد این میدان ها در استریلیزه کردن مواد غذایی مورد توجه بسیاری قرار گرفته است]12[. خلاصه ای از مشخصات منابع توان پالسی مورد نیاز برای کاربردهای متفاوت در جدول(1-2) شرح داده است.
4.1مبانی عملکرد منابع توان پالسی مورد استفاده در پلاسما
اصول فناوری توان پالسی، از ذخیره سازی انرژی بیش از یک مدت زمان طولانی (معمولا ثانیه یا دقیقه) و سپس فرآیند تخلیه انرژی الکتریکی را در طول کوتاه تر از زمان ذخیره انرژی (معمولا میکروثانیه یا نانوثانیه)انجام پذیرد.
جدول (1-2) خلاصه ای از مشخصات منابع توان پالسی برای کاربردهای مختلف
ردیف کاربردها انرژی الکتریکی طول پالس حداکثرتوان پالس توان متوسط
1 فیزیک پلاسما با چگالی انرژی بالا 20 مگا ژول 10 نانو ثانیه کمتر از ده ترا وات 5 گیگا وات
2 رادیو گرافی با پرتو الکترونی قوی 200 کیلو ژول 70 نانو ثانیه بیشتر از یک ترا وات 10 گیگا وات
3 مایکروویو توان بالا (باندباریک) 10 کیلو ژول 100 نانو ثانیه 100 گیگا وات 100 کیلو وات
4 مایکروویو توان بالا (باندخیلی پهن) 10 ژول 1 نانو ثانیه 10 گیگا وات 10 کیلو وات
5 تبدیل مواد با پرتو الکترونی 10 کیلو ژول 100 نانو ثانیه 30 گیگا وات اندک
6 بیو الکتریک 1 میلی ژول 100 نانو ثانیه 10 کیلو وات تا 100 مگا وات چند میلی وات تا چند وات

ساده ترین شکل سیستم های توان پالسی با توجه به شکل(1-3) شامل: یک منبع انرژی الکتریکی، ذخیره ساز میانی انرژی و بار است که مرحله تشکیل پالس بین آنها قرار دارد. سیستم توان پالسی در مرحله تشکیل پالس دارای یک کلید قدرت بالا است که می تواند انرژی ذخیره شده را به بار یا یک سیستم پیچیده تر (شامل شبکه ای از کلید های قدرت بالا) انتقال دهد.
بار
شکل دهنده پالس
ذخیره ساز میانی
منبع انرژی
کلیدکلید

شکل (1-3)نمای کلی از ساختار منابع توان پالسی
با بررسی مطالعاتی درباره تکنولوژی های به کار رفته در منابع توان پالسی پلاسما، می توان با توجه به عملکرد و کارایی، آنها را در 5 بخش اصلی خلاصه کرد که به شرح ذیل می باشد:
1.4.1مشخصات پالس های قدرت بالا در منابع توان پالسی
همان طور که می دانید هر سیستم توان پالسی متشکل از یک منبع، شبکه ذخیره کننده انرژی، تجهیزات شکل دهنده پالس، کلید و بار الکتریکی است. منبع انرژی را در برخی از کاربردها می توان باتری در نظر گرفت که به شبکه ذخیره کننده انرژی متصل و سپس در ارتباط با تجهیزات شکل دهنده پالس قرار می گیرد و پس از کلید زنی به صورت پالس ولتاژ بالا بر روی بار تخلیه می گردد]13[. با توجه به سطوح مختلف توان الکتریکی مورد نیاز، فناوری تولید توان پالسی به دو شاخه پالس های کم قدرت و قدرت بالا تقسیم می شود. پالس های قدرت بالا مرتبط با پالس هایی است که توانی در حد چند مگاوات یا بیشتر دارند که محدوده کمیت های فیزیکی این گونه پالس ها در جدول (1-3) به اختصار بیان شده است. تولید و کنترل پالس های قدرت بالا، نوعی فناوری پیشرفته و پیچیده به شمار می رود و به ابزارها و تکنیک های خاصی جهت انجام آزمایش ها نیازمند است. در سیستم های توان پالسی انرژی به صورت الکتریکی ذخیره و به بار درطی یک پالس و یا پالس های کوتاه با نرخ تکرار کنترل شده ای تخلیه می گردد. مقدار قدرت میدان الکتریکی، شکل پالس، مدت پالس و تعداد پالس ها و... بیشترین تاثیر را بر راندمان و قابلیت اطمینان منابع توان پالسی دارد.
جدول(1- 3) دامنه پالس های تولید شده در منابع توان پالسی
ردیف کمیت فیزیکی محدوده کمیت فیزیکی
1 انرژی (ژول) 101 -107
2 توان (وات) 106 -1014
3 ولتاژ(ولت) 103 -107
4 جریان (آمپر) 103 -107
5 چگالی جریان (آمپر برمترمربع) 106 -1011
6 عرض پالس(ثانیه) 5-10 -10-10
با بالا و پایین رفتن شکل موج ولتاژ، طول مدت پالس بین چند نانوثانیه و یا چند میکرو ثانیه اندازه گرفته می شود. به عنوان نمونه در شکل (1-4) منحنی یک پالس قدرت بالا را نشان داده شده است. زمان صعودی پالس، مدت زمان لازم برای رسیدن ولتاژ از10% به 90% ( مقدار ماکزیمم) تعریف می شود و می توان زمان نزولی را به روشی مشابه تعریف کرد.که هر دو زمان (صعودی و نزولی) یک پالس قدرت بالا به امپدانس بار بستگی دارد]14[.
در چند دهه اخیر فناوری تولید پالس های ولتاژ بالا توسط کمپرسورهای پالس مغناطیسی با توجه به کاربردهای گوناگون آن در حوزه منابع توان پالسی بسیار حائز اهمیت است . شکل (1-5) یک نمونه رایج از این نوع کمپرسورها را نشان می دهد.

شکل (1-4) منحنی مشخصات یک پالس تولید شده در منابع توان پالسی
توپولوژی های مختلفی می توان برای منابع توان پالسی با توجه به ادوات الکترونیک قدرت، مولدهای پالسی و کمپرسورهای پالس مغناطیسی در نظر گرفت . که از جمله می توان به طراحی یک منبع توان پالسی مبتنی بر کمپرسور جریان مغناطیسی خطی و شبکه شکل دهی پالس بلوملین برای ادوات الکتریکی نظامی (از جمله : شوک دهنده ها) اشاره کرد]15[.

شکل(1-5) نمونه ای از کمپرسور پالس مغناطیسی
2.4.1ذخیره سازی انرژی الکتریکی
انرژی مورد نیاز منابع توان پالسی عموما از منابع انرژی کم توان جمع آوری و به مرور ذخیره می شود. متناسب با کاربردها و احتیاجات، ذخیره انرژی به شکل خازنی ، سلفی یا ترکیبی از این دو است. ذخیره سازی انرژی خازنی، معمولا توسط تعدادی از خازن های ولتاژ بالا که اتصال آنها به صورت موازی یا سری است ، تشکیل می شود. حالت اول را بانک خازنی که در شکل (1-6) و حالت بعدی را مولد مارکس می نامند.که در شکل (1-7) نمونه ای از مولد مارکس را نشان داده است]16[.

شکل (1-6) نمونه ای از بانک خازنی بکار رفته در منابع توان پالسی
در هر دو حالت، خازن ها به صورت موازی شارژ می شوند و معمولا به عنوان منبع جریان استفاده می شوند. مولدهای مارکس، ولتاژ و جریان بالا را فراهم می سازند بنابراین در منابع توان بالای پالسی پلاسما به صورت گسترده ای مورد استفاده قرار می گیرند.

شکل(1-7) نمونه ای از مولد مارکس مورد استفاده در منابع توان پالسی
برای ذخیره سازی اندوکتیو انرژی از القاگرهای مغناطیسی استفاده می شود. بر خلاف حالت ذخیره سازی خازنی که انرژی مستقیما با بستن کلید به بار منتقل می شود در این حالت نخست انرژی از ذخیره ساز القایی (که در این حالت می تواند یک سیم پیچ باشد) عبور کرده و سپس به بار منتقل می شود. برای تحویل انرژی ذخیره شده سلفی به بار، با باز کردن یک کلید قدرت بالا که جریان مدار نیز از آن عبور می کند و با بار اتصال موازی دارد ، نیاز است. برای تحویل انرژی ذخیره شده خازنی به بار، با بستن یک کلید قدرت بالا که جریان مدار نیز از آن عبور می کند و اتصال سری با بار دارد ، نیاز است . شکل (1-8) مدارهای اصلی این دو حالت را نشان می دهد. برای بهبود پالس تولید شده می توان از این دو حالت به صورت ترکیبی در شرایط گوناگون با توجه به مشخصات بار مورد نیاز استفاده کرد.

شکل (1-8) مدارهای اصلی مورد استفاده در منابع توان پالسی با المان های ذخیره ساز انرژی
1.2.4.1 بانک خازنی
در بانک های خازنی برای تولید پالس های سریع، مطلوب است که میزان اندوکتانس مدار در وضعیت حداقل قرار گیرد. چندین راه برای کاهش اندوکتانس سیستم توان پالسی وجود دارد: برای مثال، می توان به استفاده از خازن های با ظرفیت کم، انتخاب ابعاد مناسب برای خطوط انتقال و سیم های رابط، استفاده از کلیدهای موازی چند کاناله و... اشاره کرد. مزیت استفاده از کلید چند کاناله این است که جریان عبوری از هر کلید به طور قابل ملاحظه ای کاهش می یابد و در نتیجه طول عمر کلید افزایش خواهد یافت لیکن هزینه ها افزایش می یابد. در این حالت، عملکرد هم زمان کلیدهای قدرت بالا سیستم توان پالسی پلاسما که به صورت موازی با هم اتصال دارند، ضروری است و در غیر این صورت ، سیستم به خوبی کار نخواهد کرد.برای حل این مشکل می توان از مدارکنترلی خارجی استفاده کرد به گونه ای که هریک از کلیدها از خارج سیستم فعال شوند که در شکل (1-9) نشان داده است.
به منظور دست یابی به ولتاژهای خروجی بالاتردر سیستم های توان پالسی پلاسما، بانک های خازنی اغلب به صورت دوقطبی شارژ می شوند که در آن نصف خازن ها به طور مثبت و نصف دیگر به صورت منفی شارژ و سپس به صورت متوالی دشارژ می شوند. در نتیجه ولتاژی بدست می آید که دو برابر ولتاژ ورودی سیستم است. در حالت شارژ دو قطبی، می توان از آرایش تک کلیدی یا چند کلیدی استفاده نمود. اما استفاده از آرایش چند کلیدی در شرایطی که عملکرد مکرر سیستم توان پالسی به صورت پیوسته مورد نیاز است، مفیدتر است.زیرا که در عملکرد مکرر سیستم اگر تمام جریان از یک کلید عبور کند ، خرابی الکترودهای آن مشکل آفرین خواهد بود]17[.

شکل(1-9) نمونه ای از بانک خازنی با کلیدهای چندکاناله
2.2.4.1 مولد مارکس
در حوزه پالس های قدرت بالا، تقاضا برای مولدهای مارکس زیاد است. این نوع ژنراتورها باید قادر به تامین ولتاژهای بالا و جریان های زیاد باشند. هم چنین شاخصه های کلیدی اجزای آن دارای قابلیت اطمینان و طول عمر بالا و در عین حال به صورت فشرده می باشد به گونه ای که بتوان مجموعه ای از مولدهای مارکس را بدون استفاده از فضای زیاد مورد استفاده قرار داد. در مولد مارکس مانند بانک های خازنی از خازن ها برای ذخیره سازی انرژی استفاده می گردد، اما در این حالت تمام خازن ها هنگام دشارژ به طور لحظه ای اتصال سری پیدا می کنند. بنابراین از مولد مارکس نه فقط به عنوان یک ذخیره ساز انرژی ، بلکه به صورت یک تقویت کننده ولتاژ نیز مورد استفاده قرار می گیرد]18[. اگر مولد مارکس متشکل از N طبقه باشد در این حالت ولتاژ خروجی N برابر ولتاژ ورودی می گردد. حال اگر تعداد زیادی طبقات برای افزایش ولتاژ استفاده شود، قابلیت اطمینان سیستم توان پالسی کاهش می یابد. هم چنین برای افزایش جریان ، از خازن های بزرگ نیز استفاده می شود، با توجه به فشردگی سیستم و طول عمر کلیدها با مشکلاتی در این زمینه روبرو خواهیم شد. تکنیک شارژ دوقطبی یک روش عملی است که امکان استفاده از طبقات زیاد را در شرایط کم حجم بودن سیستم فراهم می سازد. یک راه حلی که می توان برای افزایش قابلیت اطمینان مولد مارکس توان پالسی با توجه به تعداد زیاد طبقات آن ارائه داد، عبارت است از انتخاب α و β با توجه به رابطه (1-1)، به گونه ای که هر دو مقدار افزایش یابند و هم چنین استفاده از پالس کنترلی قدرتمند برای راه اندازی مدارات کنترلی هر یک از کلیدهای سیستم توان پالسی نیز موثر است.
(1-1)
*که در رابطه فوق ، Vsb : ولتاژشکست ، Vch : ولتاژشارژ، Vtr : ولتاژپالس کنترلی است.
انواع متفاوتی از مولدهای مارکس برای کاربردهای خاصی طراحی می شوند. یکی از آنها، مولدمارکس نواری است که برای ایجاد پالس های ولتاژ پایین طراحی می شود. در این نوع مولدهای مارکس، از خطوط انتقال نواری شکل به جای خازن های ذخیره ساز انرژی استفاده می گردد. یعنی خطوط انتقال نواری به صورت موازی شارژ و به صورت متوالی دشارژ می شوند. بنابراین هر خط انتقال برای تولید پالس های ولتاژی پله ای شکل می باشد و از این رو اتصال سری آنها به عنوان یک مولد پالس سریع عمل می کند. قابلیت تولید پالس سریع ، یکی از مزیت های اصلی این نوع مولدها به شمار می رود. اشکال عمده مولدهای مارکس نواری، ابعاد نسبتا بزرگ آنها است و به دلیل ساختار هندسی خاص، امکان فشرده سازی برای این نوع مولدها امکان پذیر نیست. در جدول (1-4) مشخصات دو مدل از مولد مارکس نواری به اختصار بیان شده است]19[.
نوع دیگری از مولد مارکس که قادر به تولید پالس سریع است، مولد مارکس قطعه ای نامیده می شود. که از تعدادی قطعات یکسان تشکیل گردیده است که به راحتی به یکدیگر متصل یا از هم جدا می شوند.
جدول (1-4)مشخصات دو مدل از مولد مارکس نواری
ردیف مشخصات مدلI مدلII
1 تعداد طبقات 50 100
2 ولتاژ پیک پالس(کیلوولت) 400 1000
3 جریان پیک پالس (کیلو آمپر) 4 4
4 پهنای پالس (نانو ثانیه) 40 40
5 امپدانس منبع(اهم) 125 250
این ویژگی امکان تنظیم تعداد طبقات مورد نیاز را برای کاربر فراهم می سازد. هر طبقه متشکل از تعدادی خازن سرامیکی است که به صورت موازی با یکدیگر اتصال پیدا می کنند تا اندوکتانس سیستم توان پالسی کاهش یابد. با توجه به ظرفیت کم خازن های سرامیکی، معمولا چنین مولدهایی به عنوان منابع جریان زیاد در سیستم توان پالسی عمل می کنند، اما امکان تنظیم ولتاژ خروجی را نیز فراهم می سازند. جدول (1-5) مشخصات مولد مارکس قطعه ای مدلA 43733 نشان داده است. ویژگی های اصلی مولد مارکس قطعه ای عبارت است از:
الف ) خازن ها در مرحله ذخیره سازی همگی به صورت موازی اتصال دارند به گونه ای که اندوکتانس در به حداقل می رسد.
ب) یک کلید خلا قدرت بالا با زمان کلیدزنی سریع برای کنترل پهنای پالس مورد استفاده قرار می گیرد ]20[.
جدول (1-5)مشخصات مولد مارکس قطعه ای مدلA 43733
ردیف مشخصات مدل A 43733
1 تعداد طبقات مستقل 12
2 ولتاژ شارژ(کیلوولت) 25
3 ولتاژ خروجی(کیلوولت) 300
4 جریان خروجی (کیلو آمپر) 5
5 پهنای پالس (نانو ثانیه) 30
6 راندمان ولتاژ (درصد) %50
3.4.1 اصول کلید زنی در پلاسما
در کاربردهای توان پالسی قدرت بالا به کلیدهایی نیاز است که توانایی تحمل توان تا حد تراوات و زمان شکست الکتریکی آن در گستره نانو ثانیه واقع شود. کلیدهای معمولی از قبیل نمونه هایی که در کاربردهای عادی ولتاژ بالا مورد استفاده قرار می گیرند جهت برآورده کردن این نیازها مناسب نیستند. بنابراین توسعه انواع جدید کلیدها بر مبنای تکنولوژی انتقال انرژی در پلاسما اجتناب ناپذیر است. کلیدهای قدرت بالا به دو گروه کلیدهای باز و بسته تقسیم می شوند.
همان طور که در مقدمه ذکر شد، در سیستم های توان پالسی پلاسما مهم ترین المان در قسمت شکل گیری پالس، کلید قدرت بالا هستند. هم چنین برای انتقال مقادیر زیادی از انرژی ذخیره شده با دامنه بالا و طول پالس کوتاه به سر بار نیز استفاده می شود، بنابراین با توجه به مشخصات بار، این کلیدها باید دارای ویژگی کار با ولتاژ وجریان زیاد (با سطح ولتاژی بین 10 کیلوولت تا چند مگاولت) و دامنه زمان صعودی کوتاه( درحد نانو ثانیه تا چند میکرو ثانیه) را داشته باشند. برای چندین دهه است که کلیدهای پلاسمایی را با مشخصه انتقال انرژی خوب و قابلیت تحمل بالای ولتاژ آن می شناسند. از کلیدهای پلاسمایی نوع بسته را می توان به اسپارک گپ های گازی، ایگنترون ها،تایترون ها و... اشاره کرد که برای بررسی جزئیات بیشتر می توان به منابع مراجعه کرد]21,22[
استفاده از کلیدهای حالت جامد پلاسمایی به صورت کمپکت با تجهیزات جانبی(مدارات کنترلی و ...) با توجه به کارایی مطلوب آن در بازه زمانی طولانی ، دامنه کاری وسیع آن و عمر مفید بالای کلیدها با توجه به نرخ خرابی کم در این کلیدها که منجر به افزایش قابلیت اطمینان و راندمان سیستم های توان پالسی می شود، روبه افزایش است. با این حال قابلیت های فعلی این کلیدها از جمله : ولتاژ شکست و حداکثر جریان عبوری، هنوز هم قادر به تحمل پارامترهای کلیدی سیستم های توان پالسی بزرگ و پیچیده مورد استفاده در پلاسما نمی باشند. جدول (1-6) به طور خلاصه به برخی از پارامتر های اصلی کلیدهای گازی نوع بسته پلاسمایی مانند اسپارک گپ ها و ... هم چنین برای کلیدهای حالت جامد مانند تریستور، IGBT و ماسفت اشاره می شود.
ردیف
نوع کلید حداکثر جریان (کیلو آمپر) ولتاژ شکست
(کیلو ولت) افت ولتاژ مجاز
(ولت)
1 اسپارک گپ 1000-10 100 20
2 ایگنترون 10-1 30 150
3 تایترون 100-5 35 200
4 تریستور 50-1 5-1 2
5 IGBT 1 1 3
6 ماسفت 0.1 1 1
جدول(1-6) کلیدهای نیمه هادی با حالت گازی در منابع توان پالسی مورد استفاده در پلاسما
در سیستم های توان پالسی بستن کلیدهای پلاسمایی که در حالت عادی باز هستند، برای تحریک مدار به کار می رود. شکل کلی این نوع کلیدها به صورت دو الکترود با یک عایق در میان آن می باشد. به طور کلی تحریک کلیدها با افزایش بار حامل عایق های میانی آن به نوع کلید و ساختار گوناگون آن بستگی دارد. با توجه عملکرد بار حامل در این کلیدها، حالت شکست یا عمل بسته شدن کلید انجام می پذیرد.
4.4.1 شبکه های شکل دهی پالس
در سیستم توان پالسی پلاسما دو هادی الکتریکی که بین آنها ولتاژ اعمال شود و بتواند جریان الکتریکی را انتقال دهد، به عنوان خط انتقال در نظر گرفته می شود. در بسیاری موارد هیچ تمایز مشخصی بین خط انتقال و یک مدار الکتریکی عادی وجود ندارد. که در این حالت دو عامل طول هادی ها و طول موج ولتاژ اعمالی تعیین کننده است. اگر طول موج ولتاژ اعمال شده در مقایسه با طول هادی ها بسیار بلند باشد می توان دو هادی را به عنوان یک مدار الکتریکی در نظر گرفت در غیر این صورت باید آنها را در قالب خط انتقال مورد تحلیل قرار داد. خطوط استاندارد انتقال در سیستم های توان پالسی، که به صورت تجاری تولید می شوند و معمولا از نوع هم محور هستند، دارای امپدانس 50 اهم هستند. البته دست یابی به دیگر امپدانس ها با ایجاد خطوط شکل دهی پالس نواری امکان پذیر است. اگر این خطوط در ولتاژ های بالایی قرارگیرند این روش، هزینه بر و مشکل است. مشکل دیگر مربوط به سرعت انتشار امواج الکترومغناطیسی در خطوط انتقال است. می دانیم که سرعت انتشار متناسب با نفوذپذیری نسبی یا ثابت دی الکتریک ماده ای است که برای عایق کاری بین دو رسانای سازنده خط به کار برده می شود. ماده ای که به طور متداول مورد استفاده قرار می گیرد، نوعی پلاستیک پلیمر مانند پلی پروپیلن است که ثابت دی الکتریک آن تقریبا کوچک است. از این رو سرعت انتشار موج بر روی این خط در حدود 108*2 متر در ثانیه و معادل 20 سانتیمتر در هر نانو ثانیه است. بنابراین برای ایجاد یک پالس به طول یک میکرو ثانیه با استفاده از یک خط شکل دهنده پالس، به خط انتقالی معادل 100 متر نیاز خواهد بود. برای تولید پالس های طولانی استفاده از این روش امکان پذیر نیست مگر آن که از خط های نواری که با موادی با ثابت دی الکتریک بالا عایق بندی شده اند، استفاده گردد.
یکی از روش های تحلیل و بررسی شبکه های شکل دهی پالس، شبیه سازی خط با استفاده از شبکه نردبانی متشکل از سلف و خازن ها است که در شکل (1-10) نشان داده است. انرژی آزاد شده از این خط که ناشی از پالس های مربعی است معمولا در خازن های شبکه نردبانی ذخیره می شوند.این شبکه به عنوان یک شبکه تغذیه کننده ولتاژ نیز شناخته می شود. با توجه به امکان ذخیره سازی مغناطیسی انرژی در القاگر های شبکه، در این حالت به آن شبکه تغذیه کننده جریان نیز می گویند. اطلاعات بیشتر در مورد مشخصات امپدانسی، معادلات تبدیل و ویژگی های انتشار و... در یک شبکه نردبانی LC را می توان درمرجع ]23[ مشاهده کرد.

شکل (1-10)آرایش مختلفی از شبکه نردبانی مورد استفاده در شبکه های شکل دهی پالس
5.4.1 خط انتقال بلوملین
یک ایراد مهم شبکه های شکل دهی پالس در سیستم توان پالسی پلاسما آن است که در شرایط تطبیق امپدانس ، دامنه پالس روی بار الکتریکی برابر با نصف دامنه ولتاژ شارژ کننده است. این مشکل را می توان با استفاده از خط شکل دهنده پالس بلوملین برطرف کرد. یک خط انتقال بلوملین از دو خط انتقال ساده که به یکدیگر متصل شده اند، تشکیل می گردد. این دو خط به صورت موازی باردار و به صورت سری تخلیه می شوند. در صورت صحت اتصالات در ورودی و بار ، دامنه ولتاژ خروجی در آنها تا دو برابر سطح ولتاژ خروجی یک خط انتقال خواهد رسید. خط بلوملین را می توان به صورت استوانه ای یا به شکل صحفه ای موازی ساخت. در بیشتر کاربردهای پالس های قدرت بالا، فضای بین استوانه ها با نوعی دی الکتریک مایع ، نظیر روغن یا آب پر می شود. یک کلید در بین استوانه های میانی و داخلی برای کنترل ولتاژ خط وجود داردکه در شکل(1-11) نشان داده شده است. شعاع استوانه ها را به گونه ای انتخاب می شوند که امپدانس مشخصه در تمام طول خط یکنواخت باشد و ولتاژ مورد نیاز تامین گردد. معمولا بار الکتریکی بین استوانه های داخلی و خارجی متصل می شود و تغذیه ولتاژ ورودی از طریق استوانه میانی صورت می گیرد. به طور ایده آل خط بلوملین را به گونه ای طراحی می کنیم که دارای ولتاژ و جریان خروجی زیاد ،با راندمان انتقال انرژی وتوان نزدیک به یک باشدکه در نتیجه باعث افزایش قابلیت اطمینان و کاهش ابعاد آن می شود.

شکل (1-11) آرایش خط انتقال بلوملین
5.1 اهداف مورد بررسی در این پژوهش
بهبود قابلیت اطمینان و راندمان در منابع توان پالسی با توجه به کاربرد آن در پلاسما ارتباط اساسی با مشخصات سیستم های توان پالسی دارد. اخیرا با توجه به استفاده متعدد از منابع توان پالسی در حوزه های صنعتی و هسته ای ، تحقیقات و بررسی زیادی در مورد استفاده بهینه فناوری توان پالسی صورت گرفته است. با توجه به مطالعات صورت گرفته در این زمینه ، این پایان نامه، یک توپولوژی جدید مبتنی بر مبدل باک – بوست مثبت را پیشنهاد می کند که می توان با مدل کردن یک منبع جریان در منابع توان پالسی، امکان کنترل شدت جریان را در حالت تغذیه بارداشته باشیم. بخش اصلی در این آرایش استفاده از کلید های نیمه هادی با ولتاژ کاری مناسب برای تولید ولتاژ های بالا می باشد. در خروجی این توپولوژی تعداد مشخصی از کلید – دیود – خازن به منظور تبادل انرژی منبع جریان با توجه به نوع ولتاژ و تولید توان پالسی کافی با مقدار ولتاژی مناسب طراحی شده است. با شبیه سازی در محیط نرم افزاری MATLAB/SIMULINK، کارایی و قابلیت اجرا بودن این توپولوژی به اثبات رسیده است که بهبود راندمان و قابلیت اطمینان منبع توان پالسی از مزایای کاربردی و مهم آن است
6.1 نتیجه گیری
در این فصل ابتدا به بررسی فناوری سیستم های توان پالسی و حوزه های کابردی آن پرداخته شد و سپس جهت آشنایی با محیط پلاسما منحنی ولتاژ- جریان مورد تحلیل قرار گرفت و در انتها تکنولوژی های به کار رفته در منابع توان پالسی پلاسما با توجه به آرایش ساختاری شان ارائه شد. با توجه به اهمیت بهبود راندمان و قابلیت اطمینان منابع توان پالسی ، در فصل بعدی توپولوژی های موجود برای منابع توان پالسی پلاسما مورد بررسی و تحلیل قرار می گیرد و توپولوژی پیشنهادی با توجه به تاثیر آن در افزایش قابلیت اطمینان و راندمان انتخاب می شود.

فصل دوم

بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما

1.2 مقدمه
استفاده از منابع توان پالسی در فرآیندهای مختلف پلاسما با توجه به ارتباط برقرار شده بین آنها رو به افزایش است. با توجه به تحقیقات به عمل آمده در این مورد، طراحی منابع توان پالسی با هدف کاهش تلفات و افزایش راندمان می تواند تاثیرات کلیدی درکاربردهای پلاسما (از جمله تصفیه سازی مایعات و...) بگذارد. برای درک بهتر از ماهیت منابع توان پالسی و اثرات متقابل آن برحوزه های توسعه یافته پلاسما، با طراحی یک منبع توان پالسی که متشکل از المان های الکترونیک قدرت می باشد می توان روند استفاده از منابع توان پالسی در پلاسما را ارتقا داد.
2.2 توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
تکنولوژی کلیدهای قدرت بالا با توجه به نوع کاربرد آن در منابع توان پالسی پلاسما و نسبت به تغییر و تحولات صورت گرفته در عرصه فناوری قطعات نیمه هادی الکترونیک قدرت، متفاوت و گوناگون هستند. تریستور IGBT,،ماسفت و ... نمونه ای از کلیدهای قدرتی هستند که به عنوان کلیدهای نیمه هادی حالت جامد شناخته می شوند. در منابع توان پالسی پلاسما برای داشتن dv/dt بالا، نیاز به کلید زنی سریع (کلیدزنی آن حالت گذرای کوچکی داشته باشد) است و این مشخصه ، نقش کلیدی در شکل گیری توپولوژی منابع توان پالسی پلاسما دارد. درکلیدهای قدرت بالا مورد استفاده در سیستم های توان پالسی، بازه زمانی کلید زنی با حالت گذرا و روند جابجایی و انتقال سیگنال عبوری آن از نانو ثانیه تا میکرو ثانیه است. کلیدزنی گذرا مستقیما برروی کارایی و قابلیت اطمینان سیستم های توان پالسی تاثیر می گذارد و از هدایت الکتریکی ادوات نیمه رسانا سیستم جلوگیری می کند. اکثر منابع توان پالسی مورد استفاده در پلاسما مشخصات مقاومتی – خازنی دارند. بنابراین در توپولوژی پیشنهادی یک منبع جریان برای تامین بارها ضروری است. در این فصل به بررسی توپولوژی های موجود و روش های کنترلی آن می پردازیم :
1.2.2 توپولوژی مبتنی بر مولد مارکس
معمولا ازکلیدهای گازی اسپارک گپ مغناطیسی در کلید زنی منابع توان پالسی پلاسما مورد استفاده قرار می گرفت اما اخیرا با توجه به استفاده گسترده از تکنولوژی حالت جامد در مولدهای مارکس توان پالسی، عملکرد سیستم را از لحاظ راندمان و قابلیت اطمینان بهبود بخشیده است. شکل (2-1) نمونه ای از مولد مارکس را در در حالت شارژ و دشارژ نشان داده است. برای آشنایی با کارایی این توپولوژی در پلاسما به چند مورد از کاربردهای آن با شرح توضیحات اشاره می شود. از مولد مارکس در این توپولوژی می توان به عنوان منبع تحریک در پلاسما استفاده کرد. مدار ارائه شده در این حالت از دو مولد مارکس حالت جامد با اتصال موازی با استفاده از ترانزیستورهای دوقطبی به عنوان کلید بسته استفاده می شود. در این توپولوژی زمان بازدهی ترانزیستورهای دوقطبی در حالت شکست بهمنی به صورت سریع افزایش می یابد. در این طراحی با توجه به پلارتیه مثبت و منفی پالس ها به راحتی می توان تغییراتی از جمله : افزایش مقدار بازدهی یا کاهش مقدار ولتاژ خروجی را داشته باشیم. در مطالعه دیگری، توپولوژی مبتنی بر مولد مارکس، شامل یک مدولاتور مارکس متشکل از IGBT های مجزا و مدار تشدید پالس مغناطیسی است که برای فشرده سازی پالس خروجی مارکس و کاهش تاثیر نسبتا تدریجی فعالیت IGBT در مدولاتور مارکس است. استفاده از این توپولوژی درسطح ولتاژی مختلف برای منابع توان پالسی پلاسما دارای شاخصه های کلیدی است که به طور خلاصه می توان به آن اشاره کرد: در ولتاژ 1.3 کیلوولت، استفاده از یک تقویت کننده ولتاژ بالا به همراه مولد مارکس متشکل ازکلیدهای ماسفت الزامی است. در ولتاژ 2000 ولت، نیاز به مولد مارکس 20 طبقه است که در هر طبقه آن شامل مجموعه ای از IGBT و دیود و خازن است.
فناوری مولدهای مارکس را می توان با جایگزین کردن کلیدهای حالت جامد مانند IGBT ها و مجموعه های دیود و خازن متصل به آن ، به جای کلید های گازی اسپارک گپ در سیستم های توان پالسی پلاسما ارتقا بخشید که در نتیجه سیستم های توان پالسی ارائه شده دارای ویژگی هایی از قبیل سادگی و فشردگی ابعاد، قابلیت اطمینان بالا و عمر مفید طولانی می باشد. با توجه به مزایای زیاد استفاده از توپولوژی مبتنی بر مولد مارکس ، می توان بسیاری از کاربردهای ولتاژ بالای پلاسما را به این توپولوژی اختصاص داده شود]24[.

شکل (2-1) الف) نمونه ای از توپولوژی مبتنی بر مولد مارکس ،ب) حالت شارژ مولد ، ج) حالت دشارژ
2.2.2 توپولوژی مبتنی بر مبدل های Dc - Dc
در میان تمام توپولوژی های مورد استفاده در سیستم های توان پالسی پلاسما توسط ادوات الکترونیک قدرت، توپولوژی مبتنی بر مبدل هایdc-dc از اهمیت ویژه ای برخوردار است. تغییرات سطح ولتاژی مناسب یکی از نیازهای اساسی در بسیاری از کاربردهای منابع توان پالسی پلاسما می باشد. برای بسیاری از دستگاه ها و مدارات کنترلی سیستم توان پالسی پلاسما یک ترانسفورماتور که عهده دار تبدیل ولتاژ سیستم می باشد، مورد نیاز است. استفاده از ترانسفورماتورها به همراه مبدل های dc-dc را می توان به عنوان یک روش عملی و موثر برای افزایش قابلیت اطمینان و راندمان سیستم های توان پالسی پلاسما ارائه کرد. حالت های کلید زنی منابع توان پالسی به عنوان یک روش کاربردی برای بارهای غیر خطی پلاسما شناخته شده است. از مبدل های dc-dc نیز می توان به عنوان رگولاتور در حالت کلیدزنی منابع توان پالسی استفاده کرد تا یک ولتاژ dc که معمولا به صورت تنظیم نشده است را به یک ولتاژ خروجیdc تنظیم شده تبدیل کند. عمل رگولاتوری درحالت کلیدزنی، توسط فناوری مدولاسیون پهنای پالس(PWM) در یک فرکانس ثابت انجام می شود و المان های کلیدزنی معمولا یک ترانزیستور دو قطبی یا ماسفت است. حالت کلیدزنی گذرا، اثرات زیان باری بر کیفیت توان و راندمان منابع توان پالسی دارد. برای سنجش کیفیت توان منابع توان پالسی که به یک شبکه توزیع شده پلاسما متصل است باید هارمونیک تزریقی جریان و توان راکتیو سیستم را درنظر گرفت. برای افزایش کیفیت توان و کاهش اثرات هارمونیک های جریان سیستم توان پالسی، می توان از تنظیم کننده های ضریب قدرت در انواع مختلف (اکتیو و راکتیو) استفاده نمود.
توپولوژی مبتنی بر مبدل هایdc-dc در منابع توان پالسی پلاسما، شامل مبدل های: باک، بوست، باک- بوست و کاک است که می تواند به صورت تک کاناله یا چند کاناله مورد استفاده قرار گیرد]25[. مشخصات این مبدل ها به صورت خلاصه به شرح ذیل می باشد:
1.2.2.2 مبدل باک
در یک مبدل باک، ولتاژ خروجی کمتر از ولتاژ ورودی است. شکل(2-2) مدار معادل آن را نشان می دهد. عمل مداری مبدل باک در دو مرحله کلیدزنی طراحی و بررسی می شود.

شکل(2-2)مبدل باک
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان ورودی که در حال افزایش است از داخل سلف (L) و خازن(C) و مقاومت بار (R) به جریان می افتد.
مرحله دوم: هنگامی آغاز می شود که ترانزیستور SW در t=t1 قطع می شود. دیود هرزگرد(D) به دلیل انرژی ذخیره شده در سلف همچنان هدایت می کند و جریان سلفی از سلف، خازن، بار و دیود هرزگرد(D) می گذرد. با کاهش جریان سلفی، ترانزیستور SW مجددا در سیکل بعدی وصل می شود.
مبدل باک ساده بوده زیرا فقط به یک ترانزیستور احتیاج دارد و راندمان بالایی دارد. مقدار di/dt جریان بار توسط سلف (L) محدود می شود. اما جریان ورودی متغیر بوده و معمولا به یک فیلتر ورودی بالانس کننده احتیاج است. این فیلتر یک پلارتیه برای ولتاژ خروجی و جریان خروجی یکسو شده فراهم می کند. در وضعیتی که احتمال اتصال کوتاه شدن مسیر دیود وجود داشته باشد مدار حفاظت نیز لازم است. مدار معادل وضعیت مبدل باک در دو مرحله کلیدزنی مذکور و شکل موج های جریان – ولتاژ آن در شکل (2-3) نشان داده شده است

شکل(2-3)شکل موج های ولتاژ – جریان و مدارمعادل مبدل باک : (الف) کلید وصل (ب) کلید قطع
2.2.2.2 مبدل بوست
در یک مبدل بوست، ولتاژ خروجی از ولتاژ ورودی بیشتر است. شکل(2-4) مدار معادل آن را نشان می دهد.عمل مداری این مبدل در دو مرحله قابل بیان است.

شکل(2-4)مبدل بوست
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان ورودی شروع به زیاد شدن کرده و از سلف (L) و ترانزیستور SW می گذرد.
مرحله دوم: هنگامی آغاز می شودکه ترانزیستور SW درt=t1 قطع می شود. جریانی که تاکنون از ترانزیستور SW عبور می کرد، حال از سلف (L)، خازن (C)، دیود هرزگرد(D) و بار می گذرد. با کاهش جریان سلفی در سیکل بعدی ترانزیستور SW مجددا وصل می شود و انرژی ذخیره شده در سلف (L)، به بار منتقل می شود. مدار معادل وضعیت مبدل افزاینده در دو مرحله کلیدزنی مذکور و شکل موج های جریان – ولتاژ آن در شکل (2-5) نشان داده شده است.
مبدل بوست می تواند ولتاژ خروجی را بدون کمک ترانسفورماتور افزایش دهد و چون در آن فقط یک ترانزیستور وجود دارد، راندمان بالایی دارد. جریان ورودی ، پیوسته است اما پیک جریان گذرنده از ترانزیستور قدرت، مقدار بزرگی دارد. ولتاژ خروجی نیز حساسیت زیادی نسبت به تغییرات سیکل کاری مبدل دارد و از این رو ممکن است پایدار ساختن مبدل، دشوار باشد. هم چنین ترانزیستور با بار موازی شده است ، حفاظت کردن از آن در هنگام اتصال کوتاه مشکلاتی دارد.
در حالت کلیدزنی منابع توان پالسی پلاسما، می توان از یک مبدل بوست بین پل یکسوساز و خازن های ورودی مدار استفاده کرد. این مبدل سعی می کند تا ولتاژ خروجیdc سیستم ثابت باشد، تا زمانی که فرکانس با ولتاژ خط متناسب است، جریان عبوری نیز پیوسته است.

شکل(2-5)شکل موج های ولتاژ – جریان و مدارمعادل مبدل بوست : (الف) کلید وصل (ب) کلید قطع
در حالت دیگر، ارایه ولتاژ خروجی مطلوب با توجه به ولتاژ dc سیستم می باشد که این روش نیاز به افزودن کلیدهای نیمه هادی با روش های کنترلی مطلوب است که المان های آن در ابعاد کوچکتر و کمپکت ارائه می شود.
3.2.2.2 مبدل باک - بوست
مبدل باک – بوست، ولتاژ خروجی تولید می کند که می تواند کوچکتر یا بزرگتر از ولتاژ ورودی باشد. پلارتیه ولتاژ خروجی، مخالف پلارتیه ولتاژ ورودی می باشد. هم چنین این مبدل، به مبدل وارون ساز یا تغذیه معکوسنیز معروف است]26[.که شکل (2-6) مدار معادل آن را نشان می دهد. عمل مداری این مبدل در دو مرحله قابل بیان است:

شکل(2-6)مبدل باک - بوست
مرحله اول : هنگامی آغاز می شود که ترانزیستور SW وصل بوده و دیود هرزگرد(D) بایاس معکوس است. جریان ورودی که در حال افزایش است از سلف (L) و ترانزیستور SW می گذرد.
مرحله دوم : هنگامی آغاز می شود که ترانزیستور SW قطع است. جریانی که از ترانزیستورSWعبور می کرد، اکنون از سلف (L)، خازن (C)، دیود هرزگرد(D) و بار می گذرد. اکنون انرژی ذخیره شده در سلف (L)، به بار منتقل می شود و جریان سلف کاهش می یابد تا این که ترانزیستور SWدر سیکل بعد مجددا وصل شود. مدار معادل وضعیت مبدل باک - بوست در دو مرحله کلیدزنی مذکور و شکل موج های جریان - ولتاژ آن در شکل (2-7) نشان داده شده است.
مبدل باک – بوست این امکان را می دهد که بدون در اختیار داشتن ترانسفورماتور، پلارتیه ولتاژخروجی معکوس شود، راندمان بالایی دارد و حفاظت خروجی در مقابل اتصال کوتاه نیز به سادگی امکان پذیر است اما جریان ورودی متغیر بوده و مقدار جریان عبوری از ترانزیستور مدار نیز مقدار بزرگی است. بر خلاف مبدل های باک و بوست ، این مبدل هنگامی که بدون ایزولاسیون مورد استفاده قرار گیرد در خروجی مبدل ولتاژی با پلارتیه منفی قرار می گیرد.
البته می توان یک توپولوژی جدید بر اساس مبدل باک – بوست با پلارتیه ولتاژی مثبت در خروجی را مطرح کرد. در شکل (2-8) مدار معادل مبدل باک – بوست مثبت نشان داده است. یک مبدل باک - بوست مثبت می تواند به صورت تک خروجی یا چند خروجی باشد که آرایش آن شامل مبدل های باک و بوست با اتصال طبقاتی است.

شکل(2-7)شکل موج های ولتاژ - جریان و مدارمعادل مبدل باک - بوست : (الف) کلید وصل (ب) کلید کلیدقطع

شکل(2-8) مبدل باک – بوست مثبت
4.2.2.2 مبدل کاک
آرایشی که شامل ترکیب مبدل باک– بوست با اتصال سری، که ولتاژ خروجی بزرگتر یا کوچکتر از ولتاژ ورودی است و پلارتیه ولتاژ خروجی مخالف ولتاژ ورودی است، به نام مبدل کاک شناخته می شود. که به نام مخترع خود از انیستیتوی تکنولوژی کالیفرنیا نام گذاری شده است]27[. شکل (2-9) مدار معادل آن را نشان داده است. عمل مداری این مبدل در دو مرحله قابل بیان است:

شکل (2-9)مبدل کاک (Cuk)
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان عبوری از سلف (L1) افزایش می یابد در همان موقع ولتاژ خازن (C1)، دیود هرزگرد(D) را در حالت بایاس معکوس قرار داده و آن را قطع می کند. بنابراین انرژی خازن(C1) به مداری که توسط خازن (C2)، سلف (L2) و بار تشکیل شده تحویل داده می شود.
مرحله دوم : هنگامی آغاز می شود که ترانزیستور SW در t=t1 قطع می شود. خازن (C1) از منبع ورودی شارژ شده و انرژی ذخیره شده در سلف (L2)، به بار منتقل می شود. دیود هرزگرد(D) در حالت بایاس مستقیم قرار می گیرد و همزمان با ترانزیستور SW در آن کلید زنی صورت می گیرد. شکل (2-10)مدار معادل حالت کلید زنی مبدل کاک را نشان داده است.

شکل (2-10)مدار معادل مبدل کاک در حالت های کلید زنی : الف) حالت وصل کلید ب) حالت قطع کلید
مبدل کاک بر اساس خاصیت انتقال انرژی خازنی ساخته شده، درنتیجه جریان ورودی پیوسته می باشد. تلفات کلیدزنی کم و راندمان زیادی دارد. درحالتی که کلید وصل است جریان هر دو سلف از آن عبور می کند که پیک جریان کلید را افزایش می دهد. شکل (2-11)، شکل موج های جریان – ولتاژ مبدل کاک را نشان داده است.

شکل (2-11) شکل موج های جریان و ولتاژ مبدل کاک در حالت های کلید زنی
5.2.2.2 مبدل های تشدیدی با کلیدزنی نرم
یک دسته جدید از مبدل های dc-dc درحوزه الکترونیک قدرت با نام مبدل های تشدیدی با کلیدزنی نرم شناخته شده اند. کلیدزنی نرم بدین معنی است که در یک یا چند کلید به کار رفته در مبدلdc-dc، تلفات کلیدزنی در حالت قطع و وصل شدن کلید حذف شده است. نوع دیگری از کلیدزنی که مطرح می شود، کلیدزنی سخت است که در آن هم حالت قطع و وصل کلیدهای قدرت در سطوح ولتاژ و جریان بالا انجام می شود. بسیاری از تکنیک های کلیدزنی نرم برای اصلاح رفتار کلیدزنی مبدل های تشدیدی dc-dc وجود دارد. دو تکنیک مهم برای رسیدن به کلیدزنی نرم وجود دارد: کلید زنی جریان صفر و کلید زنی ولتاژ صفر.
در ساختار مبدل تشدیدی با کلید زنی نرم، یک شبکه تشدیدLC اضافه می گردد تا شکل موج جریان یا ولتاژ ادوات کلیدزنی را به صورت یک موج نیمه سینوسی شکل دهد تا یک شرط ولتاژ صفر یا جریان صفر را در مدار ایجاد کند. یک روش ایجاد نمودن یک پدیده تشدید کامل در این مبدل ها، استفاده از ترکیبات سری یا موازی عناصر تشدید می باشدکه برای dc-dc کردن آن از طریق یک طبقه اضافی یعنی طبقه تشدید، که در آن سیگنال dc به سیگنال ac فرکانس بالا تبدیل می گردد، انجام می گیرد. از نظر مداری، یک مبدل تشدید dc-dc را می توان با سه بلوک مداری شرح داد.که شکل(2-12) نشان داده است.
ولتاژ خروجی dc
ولتاژ ورودی dc
یکسوساز ac-dc
حالت تشدید
وارون ساز dc-ac

شکل (2-12) مبدل تشدید با کلیدزنی نرم
نوع وارون ساز در مبدل های تشدیدی با کلید زنی نرم، از انواع مختلف ساختار های شبکه کلیدزنی به دست می آید. حالت تشدید،که به عنوان یک بلوک میانی بین ورودی و خروجی مبدل به کار گرفته می شود، معمولا با یک شبکه دارای فیلتر فرکانس، ترکیب می گردد. علت استفاده از این شبکه، تنظیم نمودن جریان شبکه از منبع به بار است. از مبدل های تشدید با کلیدزنی نرم می توان در مشعل های پلاسما با سطح توانی بالاتر از 30 کیلووات، استفاده کرد. از مبدل های تشدید سری با کلیدزنی ولتاژ صفر نیز می توان در منابع توان پالسی ولتاژ بالا استفاده کرد. مزیت توپولوژی مبتنی بر مبدل های تشدیدی با کلیدزنی نرم ، شامل کموتاسیون طبیعی کلیدهای قدرت پلاسمایی می باشد که منجر به کاهش تلفات قدرت کلیدزنی، افزایش راندمان و فرکانس کلیدزنی سیستم های توان پالسی می شود و در نتیجه کاهش اندازه ، وزن سیستم و کاهش احتمالی تداخلات الکترومغناطیسی را به دنبال دارد. عیب مهم تکنیک های کلید زنی ولتاژ یا جریان صفر در مبدل های تشدید آن است که برای تنظیم خروجی، نیاز به کنترل فرکانس متغیر است. که به واسطه آن مدار کنترلی پیچیده تر می شود و هارمونیک های ناشی از تداخلات الکترومغناطیسی ناخواسته که در تغییرات زیاد بار تولید می شود بسیار نامطلوب است.
با بررسی مقالات منتشر شده در مورد توپولوژی مبتنی بر مبدل های dc-dc توسط ادوات الکترونیک قدرت با توجه به انواع مبدل ها، در کاربردهای مختلف منابع توان پالسی پلاسما، می توان به نتایج جامعی در این باره دست یافت که چکیده آن در جدول های مقایسه ای (2-1) و (2-2) آمده است]28[.
جدول(2-1) شاخص های کلیدی مبدل های dc - dc
ردیف نوع مبدل
مبدل
باک
مبدل بوست
مبدل
باک- بوست
مبدل
باک- بوست مثبت مبدل
کاک
شاخصه ها 1 سطح ولتاژ خروجی کمتر از ولتاژ ورودی بیشتر از ولتاژ ورودی هر دو حالت
هردو حالت هر دو حالت
2 پلارتیه خروجی موافق ورودی موافق ورودی مخالف ورودی مخالف ورودی مخالف ورودی
3 سطح عایقی کم کم زیاد زیاد کم
5 کنترل اضافه جریان وجود ندارد وجود ندارد وجود دارد وجود دارد وجود دارد
6 قابلیت اطمینان کم متوسط متوسط بالا متوسط
7 راندمان متوسط متوسط بالا بالا متوسط
جدول(2-2) شاخص های کلیدی مبدل های تشدید با کلید زنی نرم
ردیف شاخصه ها حالت کلیدزنی اولیه حالت کلیدزنی ثانویه سطح ولتاژ خروجی راندمان
نوع مبدل وصل قطع وصل قطع کم زیاد کم باری بار کامل
1 مبدل تشدید NV ZVS ZVS ZVS di/dt- زیاد ___ * کم بالا
2 مبدل تشدید نیم پل ZVS ZVS ZVS ZCS ___ * متوسط بالا
3 مبدل تشدید دو برابر کننده جریان نیم پل سخت
ZCS ZVS ZVS زیاد
di/dt * __ متوسط بالا
4
مبدل تشدید دو برابر کننده جریان تمام پل ZVS
سخت
ZVS ZVS زیاد
di/dt * __ کم بالا
5 مبدل تشدیدی ترکیبی ZVZC با ترانسفورماتور پالسی ZVS
ZVS/ZCS ZVS ZCS __ * کم بالا
6 مبدل تشدید ZCS ZCS ZVS ZVS ZCS ___ * بالا کم
7 مبدل شبه تشدید ZCS ZVS ZVS ZCS ___ * کم بالا
3.2.2 توپولوژی مبتنی بر تقویت کننده های ولتاژ
اجزای اصلی توپولوژی مبتنی بر تقویت کننده های ولتاژ، خازن و دیود هستند. این توپولوژی با
کوک کرافت – والتون نقش قابل توجهی در افزایش ولتاژ درکاربردهای پلاسما و ارتباطات از قبیل: میکرو الکترونیک، دستگاه های گیرنده فرکانس های رادیویی و منابع توان پالسی و... دارد. شکل (2-13) نمونه ای از یک تقویت کننده ولتاژ N طبقه کوک کرافت – والتون را نشان داده است. از مشخصات مهم توپولوژی تقویت کننده ولتاژ که برای طراحی منابع توان پالسی پلاسما می توان در نظر گرفت، این است که سادگی وکاربردی بودن مدار تقویت کننده ولتاژ یکی از فاکتورهای کلیدی استفاده گسترده آن است. اجزای اصلی هر طبقه شامل تعدادی از خازن و دیود است که کوپل شده اند و این عمل باعث افزایش ولتاژ می شود. عملکرد هر طبقه از این تقویت کننده می تواند به عنوان روند تکمیلی و تحلیلی برای این توپولوژی باشد که افزایش ولتاژ خروجی را در پی دارد. بنابراین در این توپولوژی نیازی به استفاده از گیت قطع و وصل کلیدها و ترانزیستورها که همراه با مدارات کنترلی جانبی است، نمی باشد. روشن است این مدارات کنترلی، تنظیمات را سنگین تر، پیچیده تر و گران تر می کند و در نتیجه قابلیت اطمینان و راندمان سیستم کم می شود. از سوی دیگر، ورودی مدار توپولوژی قابلیت تغذیه از هر نوع شکل موج ورودی به جز شکل پالسی را دارد. بنابراین هیچ الزامی وجود ندارد که فقط شکل موج ورودی، سینوسی باشد. در این توپولوژی می توان ولتاژ را به مقدار زیادی با هرنوع شکل موج متناوبی از جمله سینوسی، ذوزنقه ای یا سینوسی هارمونیک دار که در ورودی داشته باشیم، افزایش داد. هم چنین شوک ولتاژی ناشی از dv/dt ایجاد شده که در ورودی این مدار وجود دارد را می توان با کنترل جریان نشتی عبوری از خازن ها کنترل کرد.
از مزایای عمده استفاده از تقویت کننده ولتاژ در پلاسما، دارای ابعاد کوچک و وزن کم هستند که راندمان وقابلیت اطمینان بالایی دارند. معایب اصلی آن نیز عبارتنداز: تاخیر زمانی بین ورودی و خروجی مدار، که مقدار آن بزرگ می باشد. بنابراین به ظرفیت مناسب خازنی نیاز است. این مقدار را می توان در محدوده قابل قبولی با افزایش فرکانس کاری تقویت کننده ها که از مبدل های AC-DC-AC در ورودی آن استفاده شود ، کاهش داد .

شکل (2-13)تقویت کننده ولتاژ N طبقه کوک کرافت – والتون
4.2.2 توپولوژی مولدهای پالس مبتنی بر اینورترها

—d1926

فهرست نمودار‌ها
TOC h z t "نمودار,6" نمودار3-1 پارامترهای ژنتیکی جمعیت استان کرمانشاه برحسب درصد PAGEREF _Toc409966026 h 60نمودار3-2 پارامترهای ژنتیک جمعیت استان یزد برحسب درصد PAGEREF _Toc409966027 h 64

چکیده
بررسی تنوع ژنتیکی اقوام ایرانی با استفاده از STR
مونا داودبیگی
بررسی تنوع ژنتیکی در جمعیت‏ها با استفاده ار تعیین فراوانی آللی و پارامترهای ژنتیکی روش نوینی است که در سال‏های گذشته در بسیاری از جمعیت‏های جهان صورت گرفته و با استفاده از آن شباهت بسیاری از جمعیت‏ها به یکدیگر مشخص گردیده. شباهت جمعیت‏ها نشان‌دهنده‏ی همسان‌بودن خزانه‏ی ژنتیکی آنها و احتمالا یکسان‌بودن آن جمعیت‏ها در گذشته است. پس این احتمال وجود دارد که این جمعیت‏ها در گذشته یک جمعیت بوده باشند و بعد‏ها به دلایل جغرافیایی و یا مهاجرت‏ها از یکدیگر جدا شده باشند. یکی از راه‏های بررسی تنوع‌ ژنتیکی در جمعیت‏ها استفاده از توالی‏های کوتاه تکراری می‏باشد .هدف این مطالعه بررسی تنوع ژنتیکی در دو قوم یزد و کرد (کرمانشاه) از ایران بود. بدین منظور پروفایل ژنتیکی پنجاه فرد غیر‌خویشاوند از هر یک از جمعیت‏های کرمانشاه و یزد با استفاده از کیت ABIتهیه شد. این کیت حاوی پانزده جایگاه D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOX و TH01 و ژن آمیلوژنین (برای تعیین جنسیت افراد) می‏باشد. نتایج نشان‌دادند که به جز دو جایگاه D7S820 وD19S433 در جمعیت کرمانشاه و سه جایگاه D21S11 ,D19S433 و VWA در یزد سایر جایگاه‏ها در تعادل هاردی‏واینبرگ بودند. همچنین پارامترهای پزشکی‌قانونی شامل PIC,PD,PE,MP در این مطالعه بررسی شدند. سپس دو جمعیت با جمعیت‏های کشورهای همسایه مقایسه شدند. این مطالعه نشان داد که این جایگاه‏ها، جایگاه‏های مناسب برای استفاده در تست‏های تعیین هویت و مطالعات جمعیتی می‏باشند. در نتیجه‏‏ی مقایسات هم دیده شد که هر دو جمعیت یزد و کرمانشاه شباهت زیادی به جمعیت کشور ترکیه داشتند ولی با سایر کشورها متفاوت بودند. از طرفی یزد نسبت به کرمانشاه دارای جمعیت همگن‌تری بود که این مسئله می‏تواند به‌علت بکر بودن این جمعیت در طول سالیان مختلف باشد.
کلمات کلیدی: توالیهای کوتاه تکراری، نشانگرهای مولکولی، ژنتیک جمعیت
Abstract
Genetic variation in two Iranian population with STR
Mona Davood Beigi
In recent years studying genetic variation among population by determination of allele frequencies and genetic parameters became a new method that it has been done in different population all around the world. By using this method lots of similarities has been founded among population around the world. These similarities represent the same genetic pool and also it may show the same population in the past as well. So it seems that different population were one at the first and geographical situations or migrations were the reasons that caused its separation.
Studying short tandem repeats (STR) in genome is the best way to founding genetic variation in population. The aim of this study was to investigate the genetic variation of two population of Iran, Yazd and Kermanshah people.
For this purpose the genetic profile of 50 unrelated individual from each population prepared by using ABI kit. This kit contains fifteen str loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) and also amylogenin gene for sex determination. The result showed all the loci were in Hardy Weinberg equilibrium except two loci(D19s433 , D2s820) in Kermanshah and three loci (D19s433, D21s11 and VWA) in Yazd population. More over forensic parameters including PIC, PD, PE and MP have been calculated. After all the results have been compared with other population in neighbor countries.
This study revealed that these loci were the suitable loci for identification people and studying genetic population variation. Also the comparison showed that both of Yazd and Kermanshah people were similar to Turkish genetically, but were different from other countries. In addition Yazd has more homogeneous population than Kermanshah, that it could be due to pristine gene pool of this population in the past centuries.
Keywords: Short tandem repeats; Microsatellite markers; Population genetic
فصل اول
مقدمه
1-1 مقدمهدرگذشته مطالعه‏ی تکامل و مهاجرت‏ها از طریق کشف و بررسی بقایای اسکلتی و فسیل‏ها انجام می‏شد. اما از حدود سه دهه‏ی پیش، باستان‏شناسان و زیست‏شناسان با به‌کار‏گیری آنالیز‏های DNA موفق به کشف‏های بسیار دقیقی شدند که کمک فراوانی به ردیابی تاریخ مهاجرت بشر و تکامل انسان‏ها نموده است. یکی از پر‏کاربرد‏ترین راه‏های آنالیز DNA، بررسی نشان‌گرهای ژنتیکی افراد است، که از مهم‌ترین آنها می‏توان به توالی‏های کوتاه تکراری موسوم به STR اشاره کرد. STR‏ها، توالی‏هایی به طول یک تا سیزده نوکلئوتید هستند که در ژنوم موجودات در نواحی غیر‌کد‏کننده موجود می‏باشند. هر فرد توالی‏های منحصر به فردی دارد و هیچ دو نفری در جهان نیستند که توالی‏های یکسانی داشته باشند. به همین دلیل ازSTR ‏ها می‏توان در مطالعات جمعیتی و بررسی تنوع ژنتیکی در جمعیت‏ها سود جست [1].
علاوه بر مطالعات جمعیتی ازSTR ‏ها می‏توان در موارد تعیین هویت‏، تعیین ابویت، تست‏های پزشکی‏قانونی و سایر موارد استفاده کرد. به طور معمول STRهایی که برای تعیین هویت و مطالعات ژنتیکی جمعیت به‌کار می‏روند، یکسان هستند و شامل پانزده جایگاه به نام‏های D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOXو TH01 می‏باشند [1].
هم‌چنین از روش مشترکی موسوم به تعیین الگوی DNA در این زمینه‏ها استفاده می‏شود. هر فرد دارای الگوی DNA منحصر به فرد است که تا پایان عمر تغییر نخواهد کرد. محققان دریافتند که افراد یک جمعیت در الگوهای ژنتیکی خود دارای تشابهاتی هستند که منحصر به همان جمعیت است و با الگوی افراد جمعیت‏های دیگر متفاوت است. از این تفاوت‏ها می‏توان برای ردیابی تاریخ مهاجرت و تکامل انسان‏ها استفاده نمود (1).
1-2 نشان‌گر چیست؟
صفاتی را که می‏توانند به عنوان نشانه‏ای برای شناسایی افراد حامل آن صفت مورد استفاده قرار گیرند، نشان‌گر می‏نامند. مندل نخستین کسی بود که از نشان‌گرهای ظاهری برای مطالعه چگونگی توارث صفات در نخود‌فرنگی استفاده کرد. اما گاهی صفات به سادگی و با چشم غیر مسلح قابل مشاهده نیستند، مانند گروه خونی. برای مشاهده چنین صفاتی باید آزمایش‏های خاصی صورت گیرد. به طور کلی هر صفتی که بین افراد متفاوت باشد، ناشی از تفاوت موجود میان محتوای ژنوم آنها می‏باشد. حتی بروز صفات به صورت متفاوت در میان افراد (در شرایط محیطی یکسان)، به علت تفاوت‏ در ژنوم آنها است. این تفاوت‏ها می‏توانند به عنوان نشانه یا نشان‌گر ژنتیک به کار گرفته شوند. به طور کلی برای آنکه صفتی به عنوان نشان‌گر ژنتیک مورد استفاده قرار گیرد، باید دست کم دو ویژگی داشته باشد‌:
1-در بین دو فرد متفاوت باشد (چند شکلی)
2-به توارث برسد (2).
1-3 انواع نشان‌گرهای ژنتیکینشان‌گرهای ژنتیکی عبارتند از:
1-نشان‌گرهای مورفولوژیک
2-نشان‌گرهای پروتئینی
3-نشان‌گرهای مولکولی در سطح DNA و RNA
1-3-1 نشان‌گرهای مورفولوژیک
کاربرد نشان‌گرهای مورفولوژیک به ده‏ها سال پیش از کشف DNA مربوط می‏شود. نشان‌گرهای مورفولوژیکی که پیامد جهش‏های قابل رویت در مورفولوژی هسته، از ابتدای این سده مورد استفاده قرار گرفتند. صفات مورفولوژیکی که عمدتا توسط یک ژن کنترل می‏شوند، می‏توانند به عنوان نشان‌گر مورد استفاده قرار گیرند. این نشان‌گرها شامل دامنه وسیعی از ژن‏های کنترل‌کننده صفات فنوتیپی هستند و جز نخستین نشان‌گرها به شمار می‌آیند و از زمان‏های بسیار دور یعنی از زمانی که محل ژن‏ها روی کروموزوم مشخص شد، مورد استفاده قرار می‏گرفتند (2).
معایب نشان‌گرهای مورفولوژیک
اغلب دارای توارث غالب و مغلوب بوده و اثرات اپیستازی و پلیوتروپی دارند.
تحت تاثیر شرایط محیطی و مرحله رشد موجود قرار می‏گیرند.
فراوانی و تنوع کمی دارند.
گاهی برای مشاهده و ثبت آنها باید منتظر ظهور آنها ماند.
اساس ژنتیک بسیاری از نشان‌گرهای مورفولوژیک هنوز مشخص نشده است‌(2).
1-3-2 نشان‌گرهای پروتئینی
در دهه‌ی 1950، نشان‌گرهای پروتئینی قابل مشاهده توسط الکتروفورز پروتئین‏ها تحول شگرفی را ایجاد نمودند. برخی از تفاوت‏های موجود در ردیفDNA بین دو موجود ممکن است به صورت پروتئین‏هایی با اندازه‏های مختلف تجلی کنند، که به روش‏های مختلف بیوشیمیایی قابل ثبت و مطالعه می‏گردند. این قبیل نشان‌گرها را نشان‌گرهای مولکولی در سطح پروتئین می‏نامند که از آن جمله می‏توان به سیستم آیزوزایم/آلوزایم اشاره کرد. معمول‏ترین نوع نشان‌گرهای پروتئینی آیزوزایم‏ها هستند که فرم‏های مختلف یک آنزیم را نشان می‏دهند. آیزوزایم‏ها به‏ طور گسترده در بررسی تنوع ژنتیکی به‌کار گرفته‌شدند. نشان‌گرهای پروتئینی تغییرات را در سطح ردیف و عمل ژن به صورت نشان‌گرهای هم‌بارز نشان می‏دهند. اما این دسته از نشان‌گرها هم دارای معایبی هستند. برخی از معایب آن‏ها عبارت‌اند از:
محدود بودن فراوانی این نوع نشان‌گرها؛
تعداد آیزوزایم‏های قابل ثبت و مشاهده که می‏توان از آنها به عنوان نشان‌گر استفاده کرد به یکصد عدد نمی‏رسد؛
محدود بودن تنوع ژنتیکی قابل ثبت در آیزوزایم‏ها‌(نداشتن چند شکلی)؛
پیچیدگی فنوتیپ‏های الکتروفورزی آیزوزایم‏ها به دلیل دخیل بودن آنزیم‏های مرکب از چند پلی‌پپتید مستقل در ترکیب برخی از آیزوزایم‏ها‌(3).
اما پیشرفت‏هایی که در زمینه‏ی الکتروفورز دو‏بعدی با قدرت تفکیک زیاد پدید آمده، تجزیه تحلیل هم‌زمان هزاران پروتئین را میسر ساخته و مجددا به‌عنوان فناوری پیشتاز در عرصه نشان‌گر‏های مولکولی مطرح شده‏اند. تاثیرپذیری نشان‌گرها از محیط که به‌طور معمول به‌عنوان یکی از محدودیت‏ها و نکات منفی نشان‌گرهای مولکولی یاد می‏شود، در مورد این نشان‌گر‏ها تبدیل به برتری شده و جایگاه متمایزی را در بین سایر نشان‌گرها به ارمغان آورده است. پروتئومیکس‌(مطالعه سراسری کل پروتئین‏های موجود در یک سلول یا یک ارگانیسم) می‏تواند به‌طور هم‌زمان برای مطالعه بیان ژن و هم‌چنین برای شناسایی پروتئین‏های واکنش دهنده به شرایط محیطی مورد استفاده قرار گیرد(3).
1-3-3 نشان‌گرهای مولکولیDNA وRNA
دسته‌ای دیگر از تفاوت‏های موجود در سطح DNA هیچ تظاهری ندارند. نه صفت خاصی را کنترل می‏کنند و نه در ردیف اسید‏های آمینه پروتئین‏ها تاثیری برجای می‌گذارند. این دسته از تفاوت‏ها را می‏توان با روش‏های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشان‌گر مورد استفاده قرار داد. این نشان‌گر‏ها که تعدادشان تقریبا نا‏محدود است، فقط از راه تجزیه و تحلیل مستقیم DNA قابل ثبت هستند. بنابراین به آنها نشان‌گرهای مولکولی در سطح DNA گفته می‏شود. نشان‌گرهای مولکولی فراوان و در هر موجود زنده‌ای می‌توانند مورد استفاده قرار گیرند. تاکنون تعداد زیادی از نشان‌گرهای DNA معرفی شده‌اند. این نشان‌گرها از نظر بسیاری از ویژگی‏ها مانند درجه‏ی چندشکلی، غالب یا هم‌بارز بودن، تعداد جایگاه‏های تجزیه شده در هر آزمایش DNA، توزیع در سطح کروموزوم، تکرار‌پذیری، نیاز یا عدم نیاز به توالی‏یابی DNA الگو و هزینه‏ی مورد نیاز با همدیگر متفاوت‌اند. انتخاب بهترین نشان‌گر به هدف مطالعه (انگشت نگاری، تهیه نقشه پیوستگی، ژنتیک جمعیت و روابط تکاملی) و سطح پلوئیدی موجود مورد مطالعه بستگی دارد‌(4).
مزایای کاربرد نشان‌گرهای مولکولی
عدم تاثیرپذیری آنها از شرایط محیطی خارجی و داخلی موجود؛
امکان به‌کارگیری آنها در مراحل نخستین رشد جنینی حیوانات و مراحل نخستین رشد موجودات؛
فراهم نمودن امکان مطالعه موجودات در خارج از فصل و محیط کشت؛
دقت و قابلیت مطلوب تفسیر نتایج؛
هم‌بارز بودن بسیاری از این نشان‌گرها؛
امکان استفاده از آنها در مورد گونه‏های منقرض شده؛
سهولت تشخیص افراد ناخالص از خالص؛
سهولت امتیازدهی و تجزیه و تحلیل نتایج؛
دسترسی به برنامه‏های رایانه‏ای قوی برای تجزیه و تحلیل و تفسیر سریع نتایج‌(4)
انواع نشان‌گرهای مولکولی
نشان‌گرهای DNA گروه بزرگی از نشان‌گرها را تشکیل می‏دهند. این نشان‌گرها سیر تحول و تکامل خود را به پایان نرسانده‏اند و ابداع و معرفی روش‏های متنوع و جدیدتر ثبت و مشاهده‏ی تفاوت‏های ژنتیک بین موجودات از طریق مطالعه‏ی مستقیم تفاوت‏های موجود در بین ردیف‏های DNA هم‌چنان ادامه دارد. نشان‌گر‏های DNA در مدت یک دهه تکاملی شگرف و تحسین‌برانگیز داشته‏اند‌(5).
ابداع و معرفی واکنش زنجیره‌ای پلی‌مراز یا PCR یک روش سریع تکثیر آزمایشگاهی قطعه یا قطعه‌های مورد نظر DNA است. در واقع PCR روشی بسیار قوی است که تکثیر ردیف منتخبی از مولکول یک ژنوم را تا چندین میلیون در کم‌تر از نیم‌روز امکان‌پذیر می‏سازد. اما این فرایند هنگامی امکان‌پذیر است که دست‌کم ردیف کوتاهی از دو انتهای قطعه DNA مورد نظر معلوم باشد. در این فرایند که تقلیدی از فرایند همانندسازی DNAدر طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده دو انتهای قطعه‏ی مورد‌نظرDNA هستند، به‌عنوان آغازگر مورد استفاده قرار می‏گیرند تا واکنش آنزیمی همانندسازی DNA درون لوله‌ی آزمایش امکان‌پذیر شود. این همانند‏سازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‏های پلی‌مراز صورت می‏گیرد. امروزه تعداد زیادی از این نوع آنزیم‏ها به صورت تجاری دردسترس هستند‌(6).
واکنش زنجیره‏ای پلی‌مراز (PCR) در سال 1983 توسط کری‌مولیس در حالیکه در یک نیمه شب تابستانی در حال رانندگی بود، ابداع گردید و سبب انقلاب عظیمی در زیست شناسی مولکولی شد(6).
همان‌گونه که در شکل 1-1 نشان داده شده است، نشان‌گرهای DNAبه دو دسته‏ی کلی طبقه‌بندی می‏شوند.
نشان‌گرهای DNAمبتنی بر PCR
نشان‌گرهای DNA غیر مبتنی PCR(6).

شکل 1-1 انواع نشان‌گرهای ژنتیکی‌(10)
1-3-3-1 نشان‌گرهای غیر مبتنی بر PCRاین دسته از نشان‌گرهای DNA بدون استفاده از روشPCR تولید می‌شوند و مورد استفاده قرار می‌گیرند.
انواع نشان‌گرهای غیر مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‏های محدودگر(RFLP)
پویش ژنومی نشانه‏های هضم (RLGS)
ماهوارک‏ها
1-3-3-1-1 تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‌های محدودگر( (RFLPسرگروه نشان‌گرهای غیر‌مبتنی برPCR ، همان تفاوت طول قطعه‏های حاصل از هضم DNA توسط آنزیم‏های محدودگر یا RFLP است. از بین نشان‌گرهای مولکولی DNA، RFLP ها اولین نشان‌گرهایی بودند که برای نقشه‌یابی ژنوم انسان توسط بوتستین و همکاران در سال 1980 و پس از آن برای نقشه‌یابی ژنوم گیاهان توسط بر و همکاران در سال 1983 مورد استفاده قرار گرفتند. در اوایل دهه 1980 بوتستین و همکاران استفاده از تفاوت طول قطعه‏های حاصل از هضم یا RFLP را برای مطالعه‏ی مستقیم DNA و یافتن نشان‌گر‏های ژنتیک جدید معرفی کردند. این تحول از پیامد‏های منطقی کشف آنزیم‏های محدودگر بود. این آنزیم‏ها که بسیار اختصاصی‏ هستند، ردیف‏های ویژه‏ای را روی مولکولDNA شناسایی کرده و آنها را از محل خاصی (نقطه‏ی برش) برش می‏دهند‌(7).
RFLP الزاما مختص ژن‏های خاص نیست، بلکه در کل ژنوم پراکنده است. ازاین رو، از نشان‌گرهای RFLP برای نقشه‌یابی تمام ژن‌ها در ژنوم انسان استفاده می‏شد(5). علاوه برRFLP که هنوز هم از قدرتمندترین و معتبرترین نشان‌گرهایDNA است، انواع مختلف نشان‌گرهایDNA با تفاوت‌های زیادی از نظر تکنیکی و روش تولید، نحوه‌ی کاربرد، امتیاز‌بندی، تجزیه و تحلیل و تفسیر نتایج به سرعت ابداع ومعرفی شده‌اند‌(7).
مهم‌ترین مزایای RFLP
تکرارپذریری، دقت و قابلیت اعتماد این نشان‌گر فوق‌العاده زیاد است؛
این نشان‌گر هم‌بارز است و امکان تشخیص افراد خالص را از افراد ناخالص فراهم می‏آورد؛
فراوانی این نشان‌گر در حد بالایی است؛
RFLP تحت تاثیر عوامل محیطی داخلی و خارجی نبوده و صد در صد ژنتیکی است(8).
برخی معایب RFLP
دشواری، پیچیدگی و وقت‌گیر بودن؛
RFLP ژنوم‌های بزرگ نیازمند کاربرد مواد پرتوزا یا روش‌های پیچیده‏تر و گران‏تر بیوشیمیایی است؛
RFLP نیازمند نگه‌داری میکروارگانیسم‌ها به‌منظور تهیه‏ی کاوشگر است که خود بر پیچیدگی این روش می‏افزاید؛
هزینه‏ی اولیه و نگه‏داری کاوشگر‏ها و کاربرد آنها بسیار زیاد است؛
نیازمندی به مقدار نسبتا زیاد DNA از محدودیت‏های دیگر روش RFLPاست به‌طوری که ده‏ها میکروگرم از DNAبرای هر فرد به منظور تجزیه‏ی ژنوم مورد نیاز است؛
از دیگر محدودیت‏های این نشان‌گر آن است که در گونه‏های بسیار نزدیک به یکدیگر این نوع نشان‌گر‏ها آلل‏های مشابهی را نشان می‏دهند(8).
1-3-3-1-2 پویش ژنومی نشانه‏های هضم (RLGS)در سال1991، هاتادا و همکاران روشی را برای شناسایی و انگشت‌نگاری موجودات عالی ابداع و معرفی کردند. پیش از ابداع این روش که بر مبنای نشان‌دار کردن هم‌زمان انتهای هضم شده‏ی هزاران قطعه‌ی DNA است، ردیابی و ثبت موجودات عالی با روش نشان‌دار کردن انتهای هضم شده غیر ممکن می‌نمود. دو دلیل اصلی برای این تصور ذکر شده است:
ژنوم موجودات عالی بسیار بزرگ و پیچیده است برای مثال ژنوم انسان 109×3 جفت باز دارد و در نتیجه‏ی هضم آن با آنزیمی مانند EcoRI بیش از یک میلیون قطعه‌ی DNA به وجود می‌آید. تفکیک این تعداد مولکولDNA حتی با الکتروفورز دو بعدی نیز غیر ممکن است.
معمولا DNA ژنومی در هنگام استخراج به صورت تصادفی و غیر‌اختصاصی شکسته می‌شود و ایجاد مولکول‏هایی با انتهای تصادفی می‏کند. این امر سبب ایجاد پس‌زمینه‌ی ناشی از نشان‌دار شدن این انتهاها طی فرایند نشان‌دارکردن می‏شود‌(9).
برای رفع این دو نقص تدابیری پیش‏بینی شد و روش RLGS ابداع گردید. این روش جدید که برای تجزیه و تحلیلDNA ژنومی به‌کار می‌رود، بر مبنای این فرضیه است که نقاط برش اختصاصی آنزیم‏های محدودگر می‌توانند به‌عنوان نشانه و وجهه تمایز ارقام و افراد به کار گرفته‌شوند.
در این روش انتهای آزاد مولکول‌های DNA که در اثر صدمات مکانیکی در طی استخراج به وجود آمده‏اند، مسدود می‏شود. سپس برای کاهش پیچیدگی، DNA ژنومی توسط آنزیم‏های محدودگر، با محل برش نادر، هضم و نقاط برش به‌طور مستقیم با فسفر پرتوزا نشان‌دار می‏شوند. آنزیم‏های با محل برش نادر معمولا هزاران قطعه DNA به وجود می‏آورند. سپس با الکتروفورز دو‌بعدی، قطعه‏های هضم‌شده‏یDNA از هم جدا شده و خودپرتونگاری صورت می‏گیرد. این روش یک الگوی دو بعدی با هزاران نقطه‏ی پراکنده (قطعه‏های نشان‌دارDNA) ایجاد می‏کند که هر یک می‏توانند به عنوان یک نشان‌گر به کار گرفته شوند(10)
برخی از مزایای روشRLGS
در هر آزمایش هزاران نشان‌گر به‌دست می‌آید؛
مقدار کمی DNAمورد نیاز است؛
در صورت استفاده از آنزیم‌های محدودگر متفاوت، تفاوت‏های بیشتری ظاهر و ثبت خواهند شد[10].
برخی از معایب روش RLGS
DNA مورد نیاز برای این روش باید از کیفیت مطلوبی برخوردار باشد؛
هضم ناقص DNA توسط آنزیم‏های محدودگر نتایج تکرار ناپذیر و گمراه کننده‏ای خواهد داشت؛
این روش پیچیدگی فوق العاده‏ای داشته و تفسیر نتایج حاصل از آن دشوار است(10).
1-3-3-1-3 ماهوارک‏ها
ماهوارک‏ها نخستین بار در سال 1985 توسط جفری و همکاران گزارش شدند. پس از آن در سال 1988 تکثیر جایگاه‏های ژنی خاص نواحی تکرارشونده، روی ماهوارک‏ها در ژنوم انسان انجام شد.
این دسته از نشان‌گرها از نظر تکنیکی مبتنی بر استفاده از کاوشگرهای مصنوعی و کاربرد مواد پرتوزا و روش ساترن هستند.
ماهوارک‌ها واحدهایی 10 تا 100 جفت بازی هستند که ممکن است صدها بار تکرار شده باشند. آنها معمولا یک هسته مشترک 10 تا 15 جفت بازی دارند که احتمالا در تنوع‌پذیری ماهوارک‌ها موثرند. ماهوارک‌ها بیش‌تر در نواحی یوکروماتین ژنوم پستانداران، قارچ‌ها و گیاهان متمرکز‌ند. تنوع‌پذیری ماهوارک‌ها در حدی است که گاهی در انگشت‌نگاریDNA انسان مورد استفاده قرار می‏گیرند. از جمله‌ی ماهوارک‌ها می‏توان به تکرارهای پشت سر هم با فراوانی بالا (VNTR) اشاره کرد[11]. VNTR ها به دو دسته‌ی کلی تقسیم می‌شوند: VNTR تک مکانی و VNTR چند مکانی.
دسته‏ی نخست، تعداد متفاوت ردیف‌های تکراری در یک جایگاه ژنی و دسته‏ی دوم تعداد متفاوت ردیف‌های تکرار‌شونده در چندین جایگاه ژنی را نشان می‌دهند. الگوی بانددهی به‌دست آمده با استفاده از کاوشگر‌های VNTR تک مکانی ساده‏تر و قابل فهم‌تر است، زیرا هر فرد تعداد کمی باند واضح را نشان می‏دهد. در حالی‌که تعداد باندهای به دست آمده از کاوشگرهای مخصوص VNTRچند‌مکانی بیش‌تر است، به‌طوری که به‌طور هم‌زمان تا بیش از 30 باند به دست می‏آید(12).
در نخستین نشان‌گرهای مبتنی بر ماهوارک‌ها، از الیگونوکلئوتید‏های حاوی ریزماهواره به عنوان کاوشگر استفاده گردید و توسط علی و همکاران انگشت‌نگاری الیگونوکلئوتیدی نام‌گذاری شد.
از کاوشگرهای الیگونوکلئوتیدی نشان‏دار‌شده مکمل با موتیف‌های کوتاه تکرار‌شونده در هیبریداسیون در ژل، با به کارگیری DNAژنومی برش داده شده با آنزیم‌های برشی خاص و الکتروفورز ژل آگارز استفاده شده است. گوبتا و وارشنی در سال2000 طی تحقیقات خود مراحل زیر را برای انگشت‌نگاری الیگونوکلئوتیدی مطرح کردند:
جداسازیDNA ژنومی با وزن مولکولی زیاد
هضم DNAژنومی با یک آنزیم محدودگر مناسب
تفکیک قطعه‌های حاصل از هضم روی ژل آگارز
انتقال ساترن قطعه ها به غشا
دو ‏رگ‏گیری غشا با کاوشگر‏های(نشاندار با مواد پرتوزا یا غیر پرتوزا) الیگونوکلئوتیدی دربردارنده‏ی ردیف‌های دو یا سه تایی تکراری
خودپرتونگاری یا رنگ آمیزی برای مشاهده‏ی قطعه‌های دو رگ‌شده.
به‌کمک این روش می‌توان تنوع نواحی تکرار‌شونده‏ی مورد نظر را آشکار کرد. قطعه‌هایی از DNA که با الیگونوکلئوتیدها دو ‌رگ می‌شوند، در دامنه‌ای از اندازه‏ی چند صد جفت تا ده کیلو جفت باز قرار می‏گیرند. هم‌چنین گاهی بیش از یک نوع ماهواره در داخل یک قطعه‏ی برش داده شده قرار می‌گیرد. تفاوت‏هایی که این نوع نشان‌گرها نشان می‏دهند، به دلیل تفاوت در طول قطعه‌های برش داده‌شده‌ای است که در بردارنده‏ی ماهوارک‌ها هستند. از این روش برای شناسایی ژنوتیپ‌ها و همچنین در ژنتیک جمعیت استفاده می‌شود(12).
پس از مدتی، لیت و لوتی و سه گروه دیگر همین روش را برای ریزماهواره‏ها(عمدتا از نوع (CA)n) به‌کار بردند و دریافتند که ریز ماهواره‏ها به دو دلیل به مراتب آسانتر از ماهوارک‌ها با روش PCR تکثیر می‏شوند:
1-ریزماهواره‏ها کوچکتر از ماهوارک‏ها هستند؛
2-ردیف‌های تکرار‌شونده ریز ماهواره‏ای فراوانتر و توزیع آنها در کل ژنوم یکنواخت‌تر ازماهوارک‏هاست(13).
1-3-3-2 نشان‌گرهای مبتنی بر PCRنشان‌گرهای مبتنی بر PCR نشان‌گرهایی هستند که از توالی الیگونوکلئوتیدی به عنوان آغازگر برای تکثیر قطعه‏ی خاصی از DNA استفاده می‌کنند. روش‏های مختلف در این گروه، در طول و توالی آغازگرها، سختی شرایط PCR و روش‏های جداسازی و آشکار کردن قطعات با همدیگر فرق دارند.
انواع نشان‌گرهای مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعه‌های حاصل از تکثیر(AFLP)
DNA چند شکل تکثیر‌شده‏ی تصادفی(RAPD)
تفاوت تک نوکلئوتیدی(SNP)
نشان‌گرهای مبتنی برنقاط نشانمند از ردیف (STS)
1-3-3-2-1 تفاوت طول قطعه‌های حاصل از تکثیر (AFLP)
در سال 1995 نشان‌گرهای جدیدی ابداع و معرفی شدند که به نظر می‌رسد بسیاری از محدودیت‌های نشان‌گر‌های پیشین را نداشته باشند. در این روش که AFLP نامیده می‏شود نشان‌گرهایی تولید می‏شوند که علاوه بر دارا بودن مزایایRFLP مانند دقت و تکرار‌پذیری ویژگی‌های مثبت روش‌های مبتنی بر واکنش زنجیره‌ای پلی‌مراز را نیز دارند. پایه‌ی این روش تکثیر انتخابی برخی قطعه‌ها از بین تمام قطعه‌های هضم شده‌ی DNA است و سه مرحله‌ی مجزا دارد:
هضمDNA با یه جفت آنزیم محدودگر و اتصال آنها به آداپتور‌های اولیگونوکلئوتیدی؛
طراحی، ساخت آغازگر و تکثیر انتخابی دسته‌ای از قطعه‌های حاصل از هضم .با استفاده از ردیف بازی آداپتور‌ها و نیز ردیف بازی نقاط برش، طراحی و ساخت آغازگر انجام می‌شود، اما برای تکثیر انتخابی قطعه‌های حاصل از هضم دو، سه یا چند نوکلئوتید به انتهای’3 ردیف آغازگر اضافه می‌شود که موجب می‌گردد فقط قطعه‌هایی تکثیر‌شوند که ردیف بلافصل آنها در مجاورت نقطه‌ی برش ،مکمل نوکلئوتیدهای یاد شده باشد؛
جداسازی قطعه‌های حاصل از تکثیر روی ژل‌های توالی‌یابی(پلی‌اکریل‌آمید) و خودپرتونگاری یا رنگ‌آمیزی نقره برای ثبت نتیجه‌ها.
با استفاده از این روش تعداد زیادی از قطعه‌های حاصل از هضم، تکثیر و قابل رویت می‌شوند. این در حالی است که نیازی به دانش اولیه در مورد توالی‌بازی قطعه‌هایی که تکثیر می‌شوند، وجود ندارند. هر یک از این قطعه‌هایی که به صورت باند روی ژل ظاهر می‌شوند، می‌توانند به عنوان یک نشان‌گر ژنتیک مورد استفاده قرار گیرند.
تعداد قطعه‌هایی که با این روش تکثیر می‌شوند، به دقت و توانمندی روش‌های جداسازی (الکتروفورز)، ثبت نتایج و تعداد نوکلئوتید اضافه شده به انتهای آغازگر بستگی دارد. معمولا در این روش بین پنجاه تا صد قطعه‌ی حاصل از هضم تکثیر و با استفاده از ژل‌های پلی‌اکریل‌امید واسرشت ساز ثبت می‏شوند(19)
مزایای AFLP
این روش در مقایسه یا سایر روش‌ها بیشترین تعدا نشان‌گر‌ها به ازای هر ژل را ایجاد می‌کند؛
در این روش نیازی به تهیه و تدارک و نگه‌داری کاوشگر نیست .دقت و تکرار‌پذیری این نشان‌گر به دلیل انتخاب دمای زیاد هم رشته‌سازی و اتصال آغازگر به DNA الگو بیشتر از RAPD است(20).
معایب AFLP
پیچیدگی نسبی این روش در مقایسه با سایر روش‌های میتنی برPCR ؛
عدم اطلاع از جایگاه ژنی نشان‌گر‌ها؛
غالب بودن این نشان‌گر موجب عدم امکان تشخیص افراد خالص از ناخالص می‏گردد؛
تکثیر قطعه‌های غیر‌واقعی در AFLP موجب کاهش قابلیت اعتماد این روش می‏گردد(20).
1-3-3-2-2 DNA چندشکل تکثیرشده‏ی تصادفی(RAPD)در این روش از تک آغازگرهایی به طول هشت تا ده نوکلئوتید که ردیف بازی آن به طور قراردادی تعیین می‌گردد، استفاده می‏شود. در این واکنش یک آغازگر منفرد نقاط مکمل خود را روی دو رشته‏ی DNA ژنومی می‌یابد و در آن نقاط به رشته‌های DNAمتصل می‌شود. چنانچه محل اتصال آغازگرها در روی دو رشته‏ی مقابل به هم نزدیک باشند(فاصله‏ای که DNA قابل تکثیر باشد)، ردیف بین آن دو نقطه طی واکنش PCR تکثیر خواهد شد. فراورده‌های واکنش PCRروی ژل آگارز از هم جدا می‏شوند. تولید هر باند بیانگر وجود شباهت زیاد بین ردیف بازی آغازگرها و ردیف بازی محل اتصال درDNA ژنوم است. به طور معمول هر آغازگر تکثیر چندین جایگاه مختلف را درDNA ژنومی هدایت خواهد کرد. وجود یا عدم وجود یک باند واحد در ژل های RAPD بیانگر جهش نقطه‌ای در محل اتصال آغازگرها و یا حذف یا (اضافه) شدن در ناحیه قابل تکثیر است. بنابراین چند شکلی در RAPDمعمولا به شکل حضور و غیاب یک باند پدیدار می‏شود. بدین معنی که نشان‌گرهای RAPD از نوع غالب‌اند و افرادی که دو نسخه از یک آلل دارند، به طور کمی از افرادی که یک نسخه از آن آلل را دارند، قابل تشخیص نیستند. تفاوت طول قطعه‏ها در RAPD از طریق تکثیر قطعه‌های DNA مکمل با ردیف‌های آغازگرهای اختیاری (ردیف مشخص ولی تصادفی) به‌دست می‌آیند. قطعه‏های تکثیر شده به صورت نوارهایی با وزن مولکولی متفاوت به‌طور مستقیم روی ژل قابل مشاهده‌اند (15).
مزایای RAPD
عدم نیاز به کاوشگر، مواد پرتوزا و غیره؛
امکان بررسی هم زمان چندین جایگاه در ژنوم؛
عدم نیاز به اطلاعات اولیه در مورد ریف DNA برای ساخت آغازگر(16).
معایب RAPD
عدم تکرار پذیری؛
حساسیت بسیار به آلودگی؛
در صورت تغییر شرایط محیطی ظهور باندهای جدید؛
نامعلوم بودن جایگاه نشان‌گر RAPD روی نقشه‌ی ژنتیکی(16).
1-3-3-2-3 تفاوت تک نوکلئوتیدی(SNP)تنوع‌ها و تفاوت‌هایی که به واسطه‏ی اختلاف در یک جایگاه نوکلئوتیدی(به علت جایگزینی، حذف یا ازدیاد) اتفاق می‌افتند، با عنوان تفاوت تک نوکلئوتیدی نامیده می‏شوند. این نوع از تنوع به‌وفور در ژنوم انسان اتفاق می‏افتد به طوری که مطالعات انجام گرفته توسط کاتانو-آنولز و گرس هوف (1998) در ژنوم انسان و اسب نشان می‏دهد که در فاصله‏ی هر دویست و پنجاه تا چهارصد نوکلئوتید یک SNP وجود دارد(17).
با اینکه‌SNP ها به وفور در ژنوم انسان یافت می‌شوند، ولی ایجاد و توسعه‌ی نشان‌گرهای SNP چندان آسان نیست. تهیه نشان‌گر‏های SNP شامل مراحل زیر است:
تعیین ردیف DNA اطراف SNP؛
تکثیر قطعه‌ای منحصر به فرد از DNA به کمک PCR به منظور غربال SNP؛
شناسایی SNP که شامل مشاهده‌ی دو آلل در افراد مختلف می‌باشد؛
مکان‌یابی نشان‌گر SNP و تعیین جایکاه خاص کروموزومی آن؛
تعیین فراوانی دو آلل در جمعیت؛
بررسی SNP در افراد و ژنوتیپ‌های مختلف(17).
برخی از معایب نشاگرهای SNP
SNPها به دلیل داشتن فقط دو آلل در یک جایگاه ژنی نسبت به نشان‌گر‌های چند آللی، اطلاعات کمتری را در نقشه‌های پیوستگی نشان می‌دهند؛
شناسایی نشان‌گرSNP بسیار پر‌هزینه و هم‌چنین زمان‌بر است(17).
1-3-3-2-4 نشان‌گرهای مبتنی برنقاط نشانمند از ردیف(STS)هر نشان‌گری که مبتنی بر واکنش PCR باشد و با استفاده از آغازگرهای اختصاصی (معمولا بیش از بیست نوکلئوتید) ایجاد شود، یک نقطه‌ی نشانمند از ردیف نامیده می‏شود، زیرا پیش از طراحی آغازگر، بی‏شک در یک مرحله ردیف‌یابی صورت گرفته است. نشان‌گرهایی همچون تفاوت طول قطعه‌های قابل تکثیر (ALP) و ریزماهواره‏ها از آن جهت که مستلزم ردیف‏یابی برای طراحی آغازگر به منظور تکثیر DNA در یک نقطه‌ی خاص هستند، ذیل STS دسته‌بندی می‌شوند:
-تفاوت طول قطعه‏های قابل تکثیر(ALP)
-ریز ماهواره‌ها (18).
1-3-3-2-4-1 تفاوت طول قطعه‏های قابل تکثیر(ALP)
ALP یکی از ساده‏ترین و سریع‏ترین نشان‌گرهای مبتنی بر PCR است. اگر ردیف باز‏های قطعه‏ای از DNA در یک موجود مشخص باشد (یا دست کم بخشی از دو انتهای آن قطعه معلوم باشد)، براساس آن می‏توان به طراحی و ساخت مصنوعی آغازگرهایی به طول بیست تا سی نوکلئوتید اقدام کرد. چنان‌چه نمونه‏های مختلف DNA توسط این آغازگرها و از طریق واکنش زنجیره‏ای پلی‌مراز تکثیر و سپس روی ژل الکتروفورز از هم جدا شوند، در صورت وجود اختلاف در طول قطعه‏ی قابل تکثیر، باندهایی به اندازه‏های مختلف تولید خواهند شد که بیانگر وقوع پدیده‏ی حذف یا اضافه در بین نمونه‏های مورد مطالعه است. این تفاوت در اندازه‏ی قطعه‏های قابل تکثیر که جهش‏های ژنتیک را نشان می‏دهد به عنوان نشان‌گرهای ژنتیک مورد استفاده قرار می‏گیرد(14).
مزایای ALP
از نظر کاربردی در بین نشان‌گرهای DNA،یکی از سریع ترین و ارزان‌ترین‌ها است؛
به‌کاربرد مواد پرتوزا یا بیوشیمیایی پیچیده نیاز ندارد؛
به‌تدارک، نگهداری و کاربرد کاوشگرها نیاز ندارد؛
بسیار اختصاصی عمل می‌کند، تکرار پذیری آن خوب است و تا حد بسیار زیادی می‌توان به نتایج آن اعتماد داشت؛
به‌مقدار خیلی کمی از DNA نیاز است؛
هم‌بارز بودن این نشان‌گر امکان تشخیص افراد خالص از هر یک از انواع افراد ناخالص را فراهم می‌آورد(14).
معایب ALP
طراحی و ساخت آغازگرها، به اطلاعات اولیه در مورد ردیف DNAژنوم مورد مطالعه نیاز دارد که با توجه به اینکه ژنوم بسیاری از موجودات به طور کامل در دسترس نیست این روش استفاده بسیار کمی دارد؛
هزینه‌ی اولیه مورد نیاز به منظور تولید تعداد کافی نشان‌گر ژنتیک با توزیع مناسب در سرتاسر ژنوم بسیار زیاد و مستلزم صرف وقت است(14).
1-3-3-2-4-2 ریزماهواره‌هاریزماهواره‏ها شامل واحدهای یک الی شش تایی تکرار شونده هستند که در ژنوم بیشتر یوکاریوت‏ها پراکنده‏شده‏اند. به طوری که در هر ده کیلو جفت باز از ردیف DNA دست کم یک ردیف ریزماهواره‏ای دیده می‏شود. طول ریز‌ماهواره‏ها معمولا کمتر از 100 جفت باز بوده و توسط دو ردیف منحصر به فرد در دو طرف محدود شده‏اند. ریزماهواره‏ها به سه گروه عمده‌ی تکرارهای کامل، تکرارهای ناکامل (معمولا توسط بازهای غیرتکرارشونده قطع می‌شوند) و تکرارهای مرکب(دو یا تعداد بیشتری از واحدهای مجاور یکدیگر) تقسیم می‏شوند. تعداد تکرارها در هر واحد بسیار متفاوت است. حداقل تعداد واحد تکرار‌شونده برای ریز ماهواره‏های دو نوکلئوتیدی به ترتیب ده و هفت بار تکرار تعیین شده است(21).
مزایای ریزماهواره‏ها
کاربرد آنها و تفسیر نتایج نسبتا ساده است؛
سیستم چند آللی(تا 11 آلل) از ویژگی‌های بارز این نوع نشان‌گر است؛
ریزماهواره‌ها بسیار متنوعند؛
به وفور در ژنوم یوکاریوت‏ها یافت می‏شوند؛
بیشتر ریزماهواره‏ها غیر‏عملکردی هستند؛
همبارز هستند [22].
1-4 فراوانی، توزیع و سازماندهی ریزماهواره‏ها در داخل ژنومریزماهواره‌ها بسیار فراوان بوده و در کل ژنوم موجودات به صورت تصادفی پراکنده اند. فراوانی ریزماهواره ها در بین موجودات زنده متفاوت است. برای مثال تخمین زده شده است که ژنوم انسان به طور میانگین ده برابر بیشتر از گیاهان ریزماهواره دارد. علاوه برDNA کروموزومی تعداد زیادی ریزماهواره در DNA کلروپلاست ها نیز گزارش شده است. به کمک روش‏هایی از قبیل دورگه‏گیری در ژل، نقشه‏یابی ژنتیکی و فیزیکی و هم چنین دورگه‏گیری در محل فلورسنت، ثابت شده است که ریزماهواره ها به طور یکنواخت در ژنوم پراکنده‏اند. اگرچه در برخی موارد می توانند به صورت مجتمع قرار گرفته باشند(12).
1-5 مکانیسم ایجاد تنوع در طول توالی‏های تکراریچنین فرض می‏شود که جهش در تعداد واحدهای تکرار شونده در هر یک ازDNA های تکرار شونده با یکی از دو سازوکار کراسینگ آور نامساوی(uco) یا جفت نشدن ناشی از سرخوردن در طول رشته (خطای همانندسازی DNA ) صورت می‏گیرد. بیشتر عقیده بر این است که ریزماهواره‏ها و ماهواره‏ها توسط سازوکار کراسینگ آور نامساوی ایجاد می‏شوند، ولی در مورد ریزماهواره‏ها برخی افراد یکی از دو سازوکار و برخی دیگر هر دو سازوکار را موثر می‏دانند(23).
1-5-1 کراسینگ اور نابرابرگاهی کراسینگ اور نابرابر در داخل تکرارهای ریزماهواره‏ای بین کروموزوم های مشابه یا خواهری اتفاق می‏افتد و سبب تغییر در تعداد واحدهای تکرار شونده می‏شود.(شکل 1-2).کراسینگ اور نابرابر می‏تواند هم در میوز و هم میتوز اتفاق بیفتد. چنین توجیه می‏شود که وجود نواحی تکرارشونده احتمالا مانع از ردیف شدن کامل در همولوگ یا کروموزوم‏های خواهری می‏شود. به نظرمی‏رسد که این نوترکیبی مکانیزم اصلی ایجاد تنوع مینی‏ستلایتی است(23).

شکل 1-2 کراسینگ آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف شدگی یا الحاق می‌شود(23.)
1-5-2 عدم جفت شدن ناشی از سرخوردن DNA در طول رشته(خطاهای همانند سازی)گاهی DNA پلی‌مراز در طول همانند سازی در نواحی تکرار شونده‏ی ریز ماهواره‏ای سر می‏خورد و موجب تغییر در تعداد واحد تکرار شونده می‏شود. در حقیقت سر خوردن پلی‌مراز در طول نواحی تکراری موجب عدم جفت شدن کامل دو رشته‏ی DNA شده و در نهایت حلقه‌هایی در رشته‌ی الگو یا رشته‏ی جدید ایجاد می‏شود(شکل1-3). این امر مکانیسم اصلی به وجود آورنده‏ی چندشکلی در میکروستلایت‌هاست(23).

شکل 1-3 متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد(23).اگر نتیجه‏ی همانند سازی ایجاد واحد های تکرار شونده‏ی اضافی باشد، حلقه در رشته ی جدید و اگر نتیجه‌ی همانند سازی کاهش در تعداد واحد‏های تکرار شونده باشد، حلقه در رشته‏ی الگو تشکیل خواهد شد(23).
گلدستین و شلوترر فرضیه‏ی عدم جفت شدن ناشی از سر‏خوردن در طول رشته را نسبت به فرضیه کراسینگ آور نامساوی به دلایل زیر به واقعیت نزدیکتر دانسته‏اند:
الف)‌در انسان بسیاری از تغییرات ریز ماهواره‏ای موجب تغییر در نشان‌گر های مجاور ناحیه ی ریز ماهواره‏ای نمی‌شود. بنابراین در ایجاد چنین تغییراتی نوترکیبی بی‏تاثیر است. از آنجا که جهش در فرضیه کراسینگ اور نامساوی، وابسته به نوترکیبی است، تغییرات ریز ماهواره ای و عدم تغییر نقاط مجاور با این فرضیه قابل توجیه نیست.
ب)‌نقصان در ژن‏هایی که در نوترکیبی نقش اساسی دارند تاثیری در پایداری ریز ماهواره‏ها ندارد.
ج)‌مطالعات انجام گرفته در ساکارومایسزسرویزیه نشان می‏دهد که پایداری ریز ماهواره‏ها در سلول‏هایی که تقسیم میوز را انجام می‏دهند مشابه با یاخته ها در تقسیم میتوز است. با توجه به اینکه نوترکیبی در میوز بیشتر از میتوز است، پس اگر فرضیه‏ی کراسینگ اور نامساوی صادق باشد، باید ریز ماهواره‏ها در میوز ناپایدارتر از میتوز باشد(23).
1-6 دامنه تنوع واحدهای تکرارشوندهدو مدل متفاوت برای توصیف دامنه‏ی تنوع تعداد واحدهای تکرار شونده‏ی ریز ماهواره‏ای وجود دارد:
1.مدل جهش گام به گام
2. مدل آللی نا محدود
1-6-1 مدل جهش گام به گاماگر فرض کنیم در ریزماهواره‏ها یک گام معادل تغییر در یک واحد تکرار شونده باشد، بنابر این مدل ریز ماهواره‏ها از نظر اندازه فقط در تعداد محدودی گام تفاوت دارند، به‌طوری که هر گام از گام بعدی به وسیله‏ی یک واحد تکرار شونده جدا می‏شود. در این مدل چنین فرض می‏شود که بسیاری از جهش‏های با فراوانی زیاد، فقط ریزماهواره‏ها را در یک گام یا دو گام‌(در یک زمان) تغییر می‏دهند. طرفداران این نظریه معتقدند که در بیشتر آزمایش‏ها، بیشترین تغییر در ساختار ریزماهواره‏ها مربوط به افزایش یا کاهش در یک واحد تکرار شونده بوده است(10).
1-6-2 مدل آللی نا‏محدودبر اساس این مدل هیچگونه محدودیتی در اندازه‏ی پتانسیل ریزماهواره‏ها وجود ندارد. از این رو تعداد نا محدودی از انتخاب‏ها می‌توانند اتفاق بیفتند که تمامی آنها احتمال یکسان را داشته باشند.
بسیاری از پژوهشگران معتقدند که ترکیبی از این دو مدل(عموما تغییر در یک یا دو واحد تکرار شونده و به مقدار کمتر تغییرات بزرگتر) بهتر می‌تواند تغییرات جهشی در ریزماهواره‏ها را توضیح دهد(10).
1-7 مارکرهای STRتوالی‏های تکراری کوتاه پشت سر هم(STRS) ، توالی‏های تکرارشونده کوتاه با طول 1-13 نوکلئوتید هستند که به شکل سر به دم قرار می‏گیرند. در ژنوم انسان، معمول‏ترینSTR ، توالی دو نوکلئوتیدی [CA]n است،که در این فرمول n تعداد تکرارهاست که معمولا بین 5 تا 20 بار متغیر است(24).
1-8 کاربرد مارکرهای STRمارکرهایSTR کاربردهای فراوانی دارد که از مهمترین آنها تعیین هویت افراد است(25). تعیین هویت در موارد بسیاری کاربرد دارد که از جمله‏ی آنها می‌توان به موارد زیر اشاره کرد:
1- مطالعات شجره‏ای و روابط فامیلی
2- شناسایی هویت قربانیان حوادث
3- تعیین هویت در موارد جنایی
4- ردیابی تاریخ بشر و مطالعات جمعیتی(26).
1-8-1 مطالعات شجره‏ای و روابط فامیلیاز مارکرهایSTR می توان برای بررسی خویشاوندی دو یا چند نفر استفاده کرد. این نوع مطالعه را آنالیز فامیلی می‌گویند و کاربرد متداول آن در بررسی رابطه والدین ـ فرزندی است(27).
هرساله بیش از 300000 مورد تست ابویت به منظور تعیین رابطه پدر فرزندی در ایالات متحده انجام می‏شود. این تست‏ها معمولا شامل یک مادر، یک کودک و یک یا چند پدر مدعی است. همانطور که می‏دانیم هر فرد دارای دو سری آلل می‏باشد که یک سری آن را از پدر و سری دیگر را از مادر دریافت کرده است. بدین منظور آلل‏های پدر و فرزند برای یافتن تعدادی از جایگاه‏هایSTR مورد بررسی قرار می‏گیرند. اساس این تست بر این است که در فقدان جهش، آلل‏های کودک باید مطابقت کاملی با آلل‏های پدری و مادری داشته باشد(28-29-30).

شکل 1-4 آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد(26).علاوه بر این بسیاری از افراد برای شناسایی اقوام خود از مارکرهایSTR استفاده می‏کنند. برای مثال با آنالیز STR های کروموزومY می توان نسبت فامیلی میان مردان یک خانواده را مشخص کرد. زیرا همان‌طور که می‏دانید کروموزومY توارث پدری دارد و از پدر به تمام پسران به ارث می‌رسد. پس طبیعی است که تمام پسران خانواده در همه‏ی نسل‌هاSTR های یکسانی روی کروموزوم Y خود داشته باشند. آزمایشی که بدین منظور انجام می‏گیرد آزمایش Y-filer نامیده می‏شود. به کمک این آزمایش می‏توان روابط میان برادرها، عمو و برادرزاده و... را مشخص نمود(27-31).
1-8-2 شناسایی هویت قربانیان حوادثفجایع بزرگ، طبیعی یا بدست بشر، می‌تواند جان افراد بسیاری را بگیرد، تست‏‏‏هایی که برای شناسایی قربانیان حادثه انجام می‏شود، تست تعیین هویت قربانیان حادثه نامیده می‏شود. از این تست در مواردی مانند سقوط هواپیما ،آتش سوزی‏های بزرگ و حوادث تروریستی استفاده می‏شود. در این قبیل حوادث با استفاده از اسامی افراد، خانواده‏های آنها شناسایی می‏شوند و پس از مراجعه‏ی خانواده‌ها، از اعضای خانواده شامل پدر، مادر، فرزند، خواهر و برادر نمونه‏ی DNA گرفته می‏شود و نواحی STR آنها بررسی می‏شود. پس از این مرحله با استفاده از DNAبه دست آمده از بقایای اجساد پروفایل ژنتیکی آنها تهیه می‏شود و در نهایت با مقایسه‏ی پروفایل‏های تهیه شده هویت قربانیان شناسایی می‏شود(32).
1-8-3 تعیین هویت در موارد جناییتعیین هویت در موارد جنایی شامل دو بخش می‏باشد:
شناسایی افراد مجهول الهویه
ردیابی مجرمین(25).
1-8-3-1 شناسایی افراد مجهول الهویههر ساله میلیون‏ها نفر در سراسر جهان تحت شرایط مشکوکی مفقود می‏شوند. بسیاری از این افراد قربانی فعالیت‏های مجرمانه از قبیل تجاوز و قتل می‏شوند و هویت آنها ناشناس باقی می‏ماند. در این موارد هم می‏توان از مارکرهای ژنتیکی موجود در DNA افراد برای تعیین هویت آنها استفاده کرد(33).
سه دسته نمونه در مورد افراد قربانی وجود دارد:
1-نمونه مستقیم از فرد قربانی
2-نمونه خانواده قربانی
3-نمونه‌های ناشناس باقی مانده از انسان در صحنه‏ی جرم
این نمونه‏ی باقی مانده می‏تواند استخوان، دندان، بافت، تار مو، لکه ی خون و یا هر چیز دیگری باشد(34).
1-8-3-2 ردیابی مجرمینعلاوه بر این می‏توان از آنالیز DNA برای ردیابی و شناسایی مجرمین استفاده کرد. این که فردی مرتکب جرم و جنایتی بشود و نمونه‌ای از DNA خود را به جا نگذارد، تقریبا غیرممکن است. مو، لکه‌های خون و حتی اثر انگشت، مقادیر بسیار جزئی از DNA را دارند که برای مطالعه با PCR کافی هستند. این بررسی‌ها لازم نیست که بلافاصله انجام شوند، زیرا در سال‌های اخیر، با آزمایش DNA روی مواد بایگانی شده، تعدادی از جنایات گذشته ـ با عنوان پرونده‌های مختومه ـ نیز روشن شده است(35).
باید به خاطر داشته باشیم که یک پروفایل DNA به تنهایی فاقد اعتبار است و کاربردی ندارد. همیشه برای بررسی یک پروفایل DNA نیاز است که یک مقایسه‏ای انجام شود:
1-نمونه ی مورد بررسی که با Q مشخص می شود
2-نمونه شناخته شده که با K نمایش داده می شود
در موارد جنایی، نمونه ی صحنه ی جرم (Q) با نمونه ی فرد مظنون (K) و یا مظانین (K1,K2,K3,K...) مقایسه می شود . در یک مورد بدون مظنون، نمونه ی صحنه ی جرم با نمونه هایی که در اطلاعات کامپیوتری از افراد سابقه دار وجود دارد، بررسی می شود . (K1,K….,KN)(34).

شکل 1-5 شناسائی مجرمین به کمک مارکرهای STR(26).1-8-4 ردیابی تاریخ بشر و مطالعات جمعیتیباستان شناسان با بررسی و مقایسه توالی DNA انسان‌های امروزی با افراد مرده، به کشف منشأ تکاملی انسان امروزی و مسیرهای استقرار انسان در کره زمین می‌پردازند. این زمینه تحقیقاتی آرکئوژنتیک نامیده می‌شود(35).
ردیابی مهاجرت انسانی در طول تاریخ با استفاده از آنالیز DNA روش نوینی است. هدف از این کار تخمین ارتباط میان جمعیت ها بر اساس شباهت‏ها و تفاوت‏هایDNA آنها است. به همین منظور پروژه‏ی عظیمی در سال2005 به منظور ردیابی تاریخ بشر انجام شد که در آن از ده ها هزار نفر از افراد در سراسر جهان آزمایش به عمل آمد. اساس کار بر این مطلب است که اگر تکامل ژنوم‏ها به دلیل انباشتگی جهش ها رخ داده باشد، بنابراین میزان اختلاف در توالی نوکلئوتید های دو ژنوم می تواند زمان حضور جد مشترک آنها را مشخص نماید. انتظار می رود دو ژنومی که اخیرا از یکدیگر جدا شده اند در مقایسه با دو ژنومی که جد مشترک آنها قدیمی‏تر است، اختلاف کمتری داشته باشند(36).
در مطالعه روی یافتن مبدا انسان‏های امروزی و الگوی جغرافیایی مهاجرت‏های بشر از مطالعه‏ی ژن‏ها در جمعیت‏ها می‏توان استفاده کرد. بدین منظور ژن‏های انتخابی جهت بررسی باید دارای گوناگونی باشند. در صورت فقدان گوناگونی ژن‏ها، اطلاعات فیلوژنتیکی بدست نمی‏آید، زیرا همه‏ی افراد حتی اگر به جمعیت‏های مجزایی تقسیم شده باشند که تنها به صورت متناوب با یکدیگر آمیزش داشته‏اند، همچنان دارای همانندی‏های بسیاری خواهند بود. بدین معنی که توالی DNA مورد استفاده در آنالیز فیلوژنتیکی باید از متنوع ترین توالی‏های متغیر باشد(36).
در انسان از سه نوع توالی استفاده می‏شود :
ژن های چند آللی مانند اعضای خانواده‏ی HLA، که اشکال بسیار متفاوتی دارند .
ریز ماهواره‏ها که STR ها نیز جز این گروه به حساب می‏آیند .
DNA میتوکندریایی که به دلیل فقدان سیستم‏های ترمیمی موجود در هسته‌های سلول انسان که نسبتا به سرعت دچار انباشتگی نوکلئوتیدی می‏شوند. انواع مختلف DNA میتوکندریایی موجود در یک گونه را هاپلوگروه می‏نامند(36).
باید توجه نمود که آلل‌ها و هاپلوگروه‌های مختلف به طور هم‌زمان در جمعیت‌ها وجود دارند. به این ترتیب این لوکوس‏ها چند شکلی بوده و به کمک مقایسه ترکیب آلل‌ها و یا هاپلوگروه‌های آنها می‌توان اطلاعات مربوط به وابستگی بین افراد مختلف را بدست آورد. به دلیل جهش‌های ایجاد شده در سلول‏های تولید مثلی هر یک از موجودات، آلل‏ها و هاپلوگروه‏های جدیدی در جمعیت ظاهر می‏شوند. هر یک از آلل‏ها، فراوانی آللی خود را دارند که در طول زمان به دلیل انتخاب طبیعی و تغییر ژنتیکی اتفاقی تغییر می‌کند. انتخاب طبیعی به دلیل تغییر در تناسب (توانائی یک موجود جهت بقا و تولید نسل) رخ می‌دهد و بنابر نظریه‌ی داروین منجر به حفظ انواع مناسب و از بین رفتن انواع زیان آور می‏گردد. به این ترتیب انتخاب طبیعی، فراوانی آلل‏های کاهنده‏ی تناسب را کم کرده و فراوانی آلل‏های افزاینده‌‌ی تناسب را افزایش می‏دهد. در حقیقت در یک جمعیت آلل‏های اندکی ایجاد می‏شوند که تاثیر قابل توجهی بر تناسب موجود داشته باشند، اما هم‌چنان فراوانی آنها به دلیل تغییر ژنتیکی اتفاقی که جز جدا نشدنی طبیعت تولد،تولید مثل و مرگ است در حال تغییر می‏باشد. به دلیل انتخاب طبیعی یا تغییر ژنتیکی اتفاقی ممکن است یک آلل در جمعیت غالب شده و فراوانی آن به صد در صد نیز برسد، به طوریکه این آلل در جمعیت تثبیت شود. اگر یک گونه به دو جمعیت تقسیم شود به طوریکه آمیزش‌های فراوانی بین دو جمعیت رخ ندهد، فراوانی آلل در دو جمعیت به طور مختلف تغییر می‌کند. بنابراین پس از چند ده نسل این دو جمعیت ویژگی‏های ژنتیکی مجزایی را کسب می‏کنند. سرانجام جایگزینی ژنی متفاوتی در این دو جمعیت اتفاق می‏افتد ولی حتی قبل از آن نیز می‏توان از روی اختلاف فراوانی آللی در دو جمعیت، آن دو را از هم باز شناخت(36).
محققان طی سال‏ها تحقیقات در سراسر جهان با استفاده از اصول تئوری اطلاعات، پارامترهای عمومی برای هر جمعیت را به منظور تعیین مقدار اطلاعاتی که مارکرهای STR در جمعیت‏ها به ما می‏دهند، تعریف کردند. در یک نمونه‏گیری از مارکرهای افراد از سراسر جهان، مارکرهایی که بیشترین چندشکلی را در میان جمعیت‏های مختلف داشتند و منحصر به جمعیت‏های خاص بودند، انتخاب شدند .امروزه از این مارکرها برای بررسی تنوع و تفاوت میان جمعیت‏ها استفاده می‏شود(37).
1-9 سایر کاربردهای مارکرهای STRمارکرهای مختلف STR تحت عنوان کیت های تجاری مختلف در کنار تست‏های تعیین هویت کاربردهای گسترده‏ی دیگری دارند که از مهم ترین آنها می‏توان به موارد زیر اشاره کرد:
جمع آوری سلول های جنینی از خون مادر؛
بیماری های نقشه‏ی ژنومی؛
مشخص نمودن خطوط سلولی؛
تعیین هویت افراد استفاده کننده‏ی سرنگ مشترک؛
تشخیص کلون‏های موفق؛
بررسی و نظارت بر روی پیوند عضو؛
تشخیص کایمرهای ژنتیکی؛
تشخیص تومورهای سرطانی(26).
1-9-1 جمع آوری سلول های جنینی از خون مادرهنگامی که یک خانم باردار است تعدادی از سلول‌های جنینی می‏توانند از راه جفت وارد جریان خون مادر شوند. جمع‌آوری این سلول ها که تحت عنوان micro chimerism خوانده می‏شود و بررسی آنها با مارکرهای STR یک روش غیر تهاجمی برای تعیین رابطه‌ی پدر فرزندی است. همچنین با استفاده از این روش می‏توان جنسیت جنین را نیز تعیین نمود(26).
1-9-2 نقشه‏ی ژنوم بیماری‏ها
اسکن ژنوم انسان برای شناسایی نقشه ژنوم بیماری‏ها به طور معمول با استفاده از حدود چهارصد نشان‌گر STR در سراسر ژنوم در فواصل 10 سانتی مورگان انجام می‏شود. مرکز تحقیقات بیماری‏های ارثی در طول سال ها مطالعات و آزمایشات بسیاری را روی صدها نفر با استفاده از مارکرهای STR انجام داده است. هدف از این آزمایشات یافتن ارتباط میان فراوانی آللی در جمعیت های مختلف و بیماری های ژنتیکی بود. در پژوهش‌های صورت یافته ارتباط میان برخی مارکرها و بیماری‏ها مشخص شد. پس از آن از مارکر‏های مذکور می‏توان برای شناسایی تعیین دقیق محل ناشناخته‏ی ژن بیماری استفاده کرد(26).
1-9-3 تعیین هویت افراد استفاده کننده از سرنگ مشترکیکی دیگر از کاربردهای مارکرهایSTR نشان دادن به اشتراک گذاری سرنگ در میان مصرف کنندگان مواد مخدر است. با این روش و با استفاده ازجایگاه D8 آزمایشگاه قادر به تشخیص هویت فرد و یا افرادی است که از یک سرنگ مشترک برای تزریق مواد مخدر استفاده کرده‏اند. با این روش می‏توان هویت شخصی را که منشا انتقال بیماری عفونی بوده و از سرنگ مشترک با سایر افراد استفاده می‏کرده تعیین نمود(26).
1-9-4 تشخیص کلون‏های موفقهنگامی که یک موجود کلون می‏شود ازSTR Typing برای آزمایش آن موجود استفاده می‏شود. برای مثال در کلون کردن موجوداتی مانند سگ و گربه. این روش برای آزمودن میزان موفقیت در کلون کردن به کار می‏رود. اگر یک پروفایل STR یکسان میان موجود کلون شده و سلول‎های مادری اولیه مشاهده نشود، در این صورت کلون کردن موفقیت آمیز نبوده(26).
1-9-5 بررسی و نظارت روی پیوند عضواز کاربردهای دیگر مارکرهای STR، نظارت پیوند سلول‏های پیوند شده بعد از پیوند مغز استخوان است، آزمایش STR از فردی که پیوند گرفته می‏تواند در تشخیص نارسایی پیوند مفید واقع شود(26).
1-9-6 تشخیص کایمرهای ژنتیکیChimerism حضور دو خط سلولی ژنتیکی متفاوت در یک ارگانیسم است که می‏تواند از طریق پیوند سلول‏های بنیادی خونی و یا انتقال خون و یا به طور ارثی در شخص اتفاق بیفتد. در سال 2004 آزمایشی روی افراد دهنده و گیرنده‏ی پیوند انجام شد که توانایی بالای 27 نشان‌گر STR به کار گرفته شده، ازجمله نشان‌گرهای CODIS در تشخیص کایمرها شگفت انگیز بود(26).
1-9-7 مشخص نمودن خطوط سلولیدر آزمایشگاه خطوط سلولی می‏توانند با سایر خطوط سلولی آلوده شوند. در نتیجه ممکن است با هم مخلوط و یا به یکدیگر تبدیل شوند احراز هویت خط سلولی انسان در حال حاضر به وسیله ی سازمانی در آمریکا انجام شده است. به کمک مارکرهای STR می‏توان آلودگی متقاطع بین خطوط سلولی مختلف را به سرعت کشف کرد و همچنین می‏توان برای مشخص کردن خطوط سلولی انسان به عنوان یک مرجع جهانی سود جست. در طول چند سال گذشته بیش از 500 خط سلولی از انسان به کمک این روش و با استفاده از 8 جایگاه STR بدست آمده است(26).
1-9-8 تشخیص تومورهای سرطانیفقدان هتروزیگوسیتی (LOH) پدیده‏ای است که در آن حذف در یک ناحیه‏ی لوکوس منجر به عدم تکثیر در PCR می‏شود، به طوری که یک هتروزیگوت واقعی به عنوان یک هموزیگوت به نظر می رسد. این پدیده در بسیاری از افراد مبتلا به تومورهای سرطانی دیده می‏شود. بررسی روی بافت های سرطانی با بافت نرمال با استفاده از STR نشان می‏دهد که جایگاه های مختلف در بافت سالم ارتفاع بلندتری نسبت به بافت های سرطانی نشان می دهند؛چرا که LOH سبب حذف در آن ناحیه شده است(26).
1-10 روش‏های کلی شناسایی هویت افراد در سطح مولکولیدو روش کلی برای شناسایی هویت افراد در سطح مولکولی عبارتند از:
اثر انگشت ژنتیکی از طریق هیبرید کردن با DNA جستجوگر
تعیین الگوی DNA با PCR توالی‌های کوتاه تکراری(38).
1-10-1 روش انگشت‌نگاری ژنتیکی از طریق هیبرید کردن با DNA جستجوگراولین روشی که در آنالیز DNA با هدف شناسایی افراد به کار رفت، روشی بود که در اواسط دهه 1980 توسط سر آلک جفری از دانشگاه لیستر ارائه شد . این روش براساس نوع دیگری از تنوع ژنوم انسان، موسوم به توالی تکراری بسیار متغیر پراکنده بود. همانگونه که از نام این توالی‌ها بر می‌آید، این توالی‌ها عبارتند از یک توالی تکراری که در جایگاه مختلفی‌(به‌طور پراکنده) از ژنوم انسان وجود دارد. نکته کلیدی این توالی‌ها این است که جایگاه ژنتیکی آنها متنوع است و در افراد مختلف در جایگاه‌های مختلفی از ژنوم قرار دارند(38).
توالی که در ابتدا برای انگشت‌نگاری ژنتیکی بکار رفت، توالی GGGCAGGANG (N: هریک از چهار نوکلئوتید) بود. برای تهیه اثر انگشت یک نمونه، DNA آن را با آنزیم محدودگر برش می‌دهند و قطعات حاصل را با استفاده از الکتروفورز ژل آگارز از هم تفکیک کرده و با آزمون ساترن بلات مورد بررسی قرار می‌دهند. هیبریداسیون با جستجوگری که دارای این توالی بود چند سری از نوارها را مشخص کرد. هریک از این نوارها مربوط به قطعه‌ای از DNA هضم شده بود که دارای این توالی تکراری بود. به دلیل تنوع جایگاه‌های این توالی اگر این آزمون با نمونه DNA فرد دیگری تکرار شود، نتیجه متفاوتی به دست می‌آید و می‌توان نتایج حاصل را انگشت‌نگاری ژنتیک این افراد محسوب نمود . در شکل 1-6 مراحل انگشت نگاری ژنتیکی نشان داده شده است(38).

شکل 1-6 مراحل انگشت نگاری ژنتیکی(38)
1-10-1-1 محدودیت‏های روش انگشت نگاریاین روش در کارهای جنایی خود را بسیار ارزشمند نشان داد اما سه محدودیت داشت:
مقادیر بالایی از DNA برای انجام آزمون مورد نیاز است، زیرا این روش نیازمند آنالیز هیبریداسیون است. برای انگشت‌نگاری نمی‌توان از مقادیر اندک DNA موجود در مو و لکه‌های خون استفاده کرد.
بحث کردن در مورد الگوهای حاصل از انگشت‌نگاری مشکل است، زیرا نوارهای حاصل شدت و ضعف‌های متفاوتی دارند. از نظر قانونی، کوچک‌ترین اختلاف شدت در انگشت‌نگاری ژنتیکی یک متهم برای برائت او کافی است.
با وجود اینکه جایگاه‌های تکراری پراکنده بسیار متنوع هستند، اما اندک احتمالی نیز برای یکسان بودن یا حداقل تشابه الگوی حاصل از دو فرد وجود دارد. این موضوع می‌تواند منجر به برائت یک متهم شود(38).
1-10-2 روش پروفایلینگ
روش قدرتمند پروفایلینگ DNA چنین مشکلاتی را ندارد. در پروفایلینگ از توالی‌های معروف به توالی‌های چند شکلی STR استفاده می‌شود. در این روش، به وسیله PCR با پرایمرهایی که به توالی‌های جانبی STR می‌چسبند، به سرعت می‌توان مقادیر بسیار اندک DNA را افزایش داد. بعد از PCR، محصولات از نظر اندازه نوارها یا وجود نوارهایی که الل‌ یا آلل‌های موجود در نمونه DNAی مورد آزمون هستند، با الکتروفورز ژل آگارز بررسی می‌شوند. روش پروفایلینگ DNA، به دلیل استفاده از PCR بسیار حساس است و امکان انجام آزمون روی مو و دیگر نمونه‌هایی که مقادیر اندکی DNA دارند، فراهم می‌آورد. در نتایج حاصل نیز شکی وجود ندارد و مقایسه میان پروفایل‌های DNA معمولا به عنوان یک مدرک پذیرفته می‌شود. با استفاده از این روش امکان اینکه دو نفر، البته بجز دوقلوهای یکسان، دارای پروفایل‌ مشابهی باشند برابر یک در 1015 می‌باشد. با توجه به جمعیت کره زمین که حدود 109×6 می‌باشد، امکان تشابه آماری پروفایل مربوطه در دو نفر به قدری اندک است که می‌تواند غیرممکن تلقی گردد. نوع هر STR با PCR بوسیله پرایمرهایی که با فلورسنت نشاندار شده‌اند و به دو طرف نواحی تکرار شونده متصل می‌گردند، تعیین می‌شود. سپس الل‌های موجود در STRها با تعیین اندازه به وسیله ژل الکتروفورز موئینه‌ای مشخص می‌شوند. دو یا چند STR می‌تواند با PCR چندگانه مشخص گردد، مشروط به اینکه محصولات از لحاظ اندازه همپوشانی نداشته باشند یا هر جفت پرایمر با فلورسانت متفاوتی نشاندار شده باشند تا امکان تشخیص در ژل الکتروفورز موئینه را داشته باشند. در شکل 1-7 مراحل روش پروفایلینگ نشان داده شده است‌(38).

شکل 1-7 مراحل پروفایلینگ ‌DNA(36).1-11 تاریخچه استفاده از مارکرهایSTR
مارکرهای STRبرای اولین بار به عنوان ابزاری قوی در تست تعیین هویت انسانی در سال 1990 به‌کار گرفته شدند. دستگاه پزشکی قانونی ((FSS مطالعه برای شناسایی جایگاه‌های جدید و ارتباط جایگاه های شناخته شده با تنوع در جمعیت‏ها را آغاز کرد. پس از آن پلیس سلطنتی کانادا (RCMP) به همراه تعدادی از آزمایشگاه‌های اروپا تلاش‌های اولیه را در رابطه با جایگاه های STR آغاز کردند. اولین جایگاه‏های مورد استفاده شامل چهار جایگاه TH01،VWA ، FES/FPS و.F13A1 نسل دوم کیت‌ها ((SGM شامل جایگاه‌های TH01، VWA‌، FGA ،D8S1179 ،D18S51 و D21S11 بود. پایگاه داده‌های ملی DNA انگلستان ((NDNAD در سال 1995 جایگاه ژن آمیلوژنین (برای تعیین جنسیت) را به کیت SGM اضافه کرد. با توجه به تکنولوژی STR Typingو موفقیت‏هایی که در این زمینه در انگلستان به‌دست آمد، FBI درصدد برآمد که با استفاده از لوکوس‌های STR، بنیان CODIS را شکل دهد(41).
1-12 CODIS چیست؟سیستم شاخص اندیس‌دهی ترکیبی CODISشامل سیزده جایگاه STRاست. در شکل 1-8 محل قرارگیری این جایگاه‌ها روی کروموزوم‌های انسان نشان داده شده‌اند. نرم افزار CODIS در سال 1990 به عنوان نرم افزاری برای FBI تاسیس گردید. این نرم افزار در صورت اولیه برای آنالیز پروفایل‏های RFLP مورد استفاده قرار می‏گرفت که در بانک اطلاعاتی قابل جستجو بود. تکنولوژی DNA پزشکی قانونی و تکنولوژی کامپیوتری با یکدیگر ادغام گردیدند و باعث بهبود این نرم افزار شدند و این بهبود در جهت نیاز‌های پزشکی قانونی صورت گرفت. در سال 1997نرم افزار CODIS بر اساس مارکرهای STR طراحی شد. سیزده جایگاه STRکه امروزه تحت عنوان CODIS خوانده می‏شوند، عبارتند‌از:
D8S2179
D21S11
D7S820
CSF1PO
D3S1358
TH01
D13S317
D16S539
VWA
TPOX
D18S51
D5S818

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

FGA (42).

شکل 1-8 جایگاه‌های CODIS روی کروموزوم های انسان(25).1-13 کیت مورد استفاده در تعیین هویت
برای تعیین هویت از کیتAmp FI STR Identifiler PCR Amplification استفاده می‌شود، که حاوی 15 جایگاه تترانوکلئوتید STRبه همراه مارکر آمیلوژنین که برای تشخیص جنسیت به کار می‏رود می‏باشد. از این پانزده جایگاه، سیزده جایگاه، جایگاه‌های شناخته شده‏ی سیستم اندیس دهی ترکیبی‌(CODIS) هستند، اما علاوه بر آنها دو جایگاه دیگر هم در این کیت گنجانده شده است. جدول(۱-1) نشان دهنده‌ی نام جایگاه‏های موجود در CODIS، به همراه موقعیت کروموزومی هر یک از جایگاه‏ها و آلل‏های موجود در هر جایگاه است(43).
جدول 1-1 جایگاه‏های موجود در کیت ABIآلل‌های موجود در هر جایگاه موقعیت کروموزومی نام جایگاه
8,9,10,11,12,13,14,15,16,17,18,19 8 D8S2179
24,24.2,25,26,27,28,28.2,29,29.2,
30,30.2,31,31.2,32,32.2,33,33.2,
34,34.2,35,35.2,36,37,38 21q11.2-q21 D21S11
6,7,8,9,10,11,12,13,14,15 7q11.21-22 D7S820
6,7,8,9,10,11,12,13,14,15 5q33.3-34 CSF1PO
12,13,14,15.16,17,18,19 3p D3S1358
4,5,6,7,8,9,9.3,10,11,13.3 11p15.5 TH01
8,9,10,11,12,13,14,15 13q22-31 D13S317
5,8,9,10,11,12,13,14,15 16q24-qter D16S539
15,16,17,18,19,20,21,22,23,24,25,
26,27,28 2q35-37.1 D2S1338
9,10,11,12,12.2,13,13.2,14,14.2,15,
15.2,16,16.2,17,17.2 19q12-13.1 D19S433
11,12,13,14,15,16,17,18,19,20,21,
22,23,24 12p12-pter VWA
6,7,8,9,10,11,12,13 2p23-2per TPOX
7,9,10,10.2,11,12,13,13.2,14,14.2,
15,16,17,18,19,20,21,22,23,24,25
26,27 18q21.3 D18S51
X,Y Amelogenin
7,8,9,10,11,12,13,14,15,16 5q21-31 D5S818
17,18,19,20,21,22,23,24,25,26,26.2
27,28,29,30,30.2,31.2,32.2,33.2,
42.2,43.2,44.2,45.2,46.2,47.2,48.2
50.2,51.2 4q28 FGA
1-14 معرفی استان‏ها1-14-1 استان کرمانشاه
کرمانشاه یکی از باستانی‌ترین شهرهای ایران است و بر اساس افسانه ها توسط طهمورث دیوبند - پادشاه افسانه‌ای پیشدادیان ساخته شده است. برخی از مورخین بنای آن را به بهرام پادشاه ساسانی نسبت می‌دهند. کرمانشاه در زمان قباد اول و انوشیروان ساسانی به اوج عظمت خود رسید. در اوایل حکومت شاه اسماعیل صفوی سلطان مراد آق قویونلو با 70 هزار نفر کرمانشاه و همدان را اشغال کرد. صفویه برای جلوگیری از تجاوز احتمالی امپراطوری عثمانی این شهر را مورد توجه قرار داد. در زمان شیخ علیخان زنگنه صدر اعظم صفوی به آبادانی و رونق کرمانشاه افزوده شد. تاورنیه، جهانگرد و بازرگان فرانسوی، درباره کرمانشاه چنین نوشته‌ است: ” هم زمان با حمله افغان و سقوط اصفهان که طومار فرمانروایی خاندان صفوی در نوردیده شد، کرمانشاه به جرم قرب جوار، با تهاجم عثمانی‌ها مواجه گردید و بار دیگر شهر رو به خرابی نهاد.“ نادر شاه به منظور آمادگی در مقابل تجاوز عثمانی‌ها، به این شهر توجهی خاص مبذول داشت. در زمان نادر شاه این شهر مورد هجوم عثمانی‌ها قرار گرفت. اما نادرشاه عثمانی‌ها را به عقب راند، ولی در اواخر زندگی نادرشاه، کرمانشاه با محاصره و تاراج عثمانی‌ها مواجه شد. کرمانشاه در عهد زندیه دستخوش آشوب فراوانی گردید. به طوری‌که درکتاب ”تحفه العالم“ عبدالصیف جزایری از کرمانشاه به عنوان خرابه نام برده شده است. در دوره قاجار تا حدی از حملات عثمانی‌ها به ناحیه کرمانشاه کاسته شد. در سال 1267ه.ق، امام قلی میرزا از طرف ناصرالدین شاه به سرحدداری کرمانشاه منصوب شد و مدت 25 سال در این شهر حکومت کرد و در همین دوره بناهایی را احداث و به یادگار گذاشت. این شهر در جنبش مشروطه سهمی به سزا داشت و در جنگ جهانی اول و دوم به تصرف قوای بیگانه درآمد و پس از پایان جنگ تخلیه شد. در نتیجه جنگ تحمیلی عراق علیه ایران، این شهر خسارات زیادی دید و پس از جنگ اقدامات مؤثری در جهت بازسازی آن صورت گرفت. در حال حاضر شهر کرمانشاه، مرکز استان کرمانشاه یکی از هفت کلانشهر کشور(تهران، مشهد، اصفهان، تبریز، شیراز، کرمانشاه و اهواز) است‌(44).
1-14-1-1 موقعیت جغرافیایی
استان کرمانشاه در موقعیت ۳۴ درجه شرقی و ۴۷ درجه شمالی شمالی قرار دارد. از شمال به کردستان، از غرب به کشور عراق، از شرق به استان لرستان و همدان و از جنوب به استان ایلام محدود می گردد. شهرستان‌های این استان عبارت‌اند از: اسلام‌آباد غرب، سنقر، پاوه، صحنه، ثلاث باباجانی، قصر شیرین، جوانرود، دالاهو، روانسر، کرمانشاه، کنگاور، گیلان غرب، سر‌پل ذهاب، هرسین. در شکل1-13 استان کرمانشاه به همراه شهرستان‌های آن دیده می‌شود(44).

شکل 1-9 موقعیت جغرافیائی استان کرمانشاه)44.(1-14-2 استان یَزدیزد سرزمینی کهن با پیشینه‌ای در خور توجه، در تاریخ پر فراز و نشیب ایران است. نام یزد برای اولین بار در آثار دوره‌ی ماد‌ها (701 تا 550 قبل از میلاد) دیده می‌شود که گواهی بر قدمت سه هزار ساله‌ی این سرزمین است. در دوره‌های هخامنشی، اشکانی و ساسانی نیز در اسناد و کتیبه‌ها بار‌ها به نام یزد برمی‌خوریم(45).
حسن پیر‌نیا، در کتاب خود،"ایران باستان"،به نقل از تاریخ هرودوت، مورخ یونانی(484 تا 420 قبل از میلاد)، بر مبنای کتیبه‌های داریوش، یزد را بنا بر رسم یونانیان، به نام ایساتیس می‌خواند. وی می‌افزاید: یزد در عصر اشکانی در قلمرو حکومت مهرداد اول بود و در این شهر به نام او سکه ضرب می‌کردند. در دوره‌ی پادشاهی اردشیر بابکان، (241-224‌م) بنیان‌گذار سلسله‌ی ساسانی، یزد زیر نفوذ او بود. پس از ظهور اسلام و فروپاشی دولت ساسانی، در زمان خلافت عمر، و به روایت برخی، در دوران عثمان (دهه ی سوم هجری)، شهر یزد و نواحی آن فتح شد. از آن زمان تا پایان حکومت امویان، فرمانروایان عرب بر این ولایت حکم‌رانی می‌کردند. چنان‌که آمده است، در دوران خلافت حضرت علی(ع)، مسلم ابن زیاد، والی فارس، مالیات یزد را هم می‌گرفت. چنین بود تا هنگامی‌که به‌دست خود ایرانیان، حکومت های مستقل و نیمه مستقلی تشکیل شد و فرمانروایان ایرانی بر ولایت یزد حاکم شدند(45).
مرکز این استان، شهر یزد است. یزد منطقه‌ای خشک و بیابانی است. گروه بزرگی از زرتشتیان ایران در استان یزد و بویژه شهر یزد زندگی می‌کنند. زبان مردم استان یزد فارسی با لهجه یزدی است. آبادی نشینی در این منطقه از قدمت طولانی برخوردار است. این سرزمین از گذرگاه‌های مهم در ادوار تاریخی محسوب می‌شده‌ است. این ناحیه در دوره هخامنشیان از راه‌های معتبر موسسه‌های راهداری، مراکز پستی و چاپاری برخوردار بوده‌است. راهداری در یزد قدیم چنان اهمیتی داشت که خاندان آل مظفر از منصب راهداری ناحیه میبد به پادشاهی رسیدند. با این‌همه این استان از درگیری‌ها و جنگ‌های تاریخ کشور ایران تا حدودی ایمنی داشته‌است. سخت‌گذر بودن راه‌ها به همراه محدودیت منابع آبی مانع عمده تسخیر این منطقه توسط بعضی از حکومت های بزرگ و کوچک حاشیه و پیرامون این منطقه در طول تاریخ بوده‌است. همان طور که در شکل 1-14 دیده می شود استان یزد دارای شهرستان های ابرکوه، اردکان، بافق، بهاباد، تفت، خاتم، صدوق، طبس، مهریز، میبد و یزد می باشد که شهرستان های مهریز و تفت از آب و هوای خوبی برخوردار می باشد (45).
1-14-2-1 موقعیت جغرافیایی
استان یزد در مرکز ایران در قلمرو سلسله جبال مرکزی ایران بین عرض های جغرافیایی 29 درجه و 48 دقیقه تا 33 درجه و 30 دقیقه شمالی و طول جغرافیایی 52 درجه و 45 دقیقه تا 56 درجه و 30 دقیقه شرقی از نصف النهار مبدا قرار گرفته است. استان یزد از سرزمین‌های تاریخی است که در میان ایالت های قدیمی و بزرگ پارس، اصفهان، کرمان و خراسان قرار داشته‌است(45).

شکل 1-10 موقعیت جغرافیائی استان یزد(45).1-15 هدف از تحقیق:آنچه که باعث استفاده از مارکرهای STR در جمعیت شناسی شده است، این واقعیت است که درجه فراوانی آللی هر مارکر STR در هر جمعیت منحصر به فرد است. در حقیقت طبق مطالعات انجام شده فراوانی آلل‏های STR در نژاد‏های مختلف و حتی در مناطق جغرافیایی خاص، تفاوت‏هایی را نشان داده است. بنابراین بررسی هر یک از لوکوس های STR در هر نژاد یا جمعیت خاص برای تفسیر صحت نتایج حاصل از انجام آزمایش های تعین الگوی ژنتیکی به کمکSTR و انجام محاسبات آماری مربوطه امری ضروری است. برای بهره گیری از فواید این فناوری نوپا در زمینه‏ی تشخیص افراد، ضروری است تا فراوانی آللی لوکوس‏هایSTR مختلف در جمعیت بومی کشور مورد بررسی قرار گیرند (45).
مطالعات گذشته روی جمعیت های ایرانی، حضور تعدادی از آلل‏ها را با پلی مورفیسم بالا نشان می‏دهد‌(37-46.)
هدف از این مطالعه به دست آوردن پارامترهای جمعیتی بر اساس فراوانی آللی به دست آمده از شانزده جایگاه STR، در جمعیت‏های کرمانشاه و یزد به منظور بررسی تفاوت ژنتیکی میان این دو جمعیت و سایر جمعیت‏ها می‏باشد.

فصل دوم
2-1 نمونه‌گیریبرای نمونه‌گیری از اقوام کرد و یزد از نمونه هایی که به آزمایشگاه ژنتیک پزشکی تهران رجوع می‌کردند، استفاده شد. پس ازکسب رضایت نامه 4 میلی لیتر خون محیطی از افراد غیر خویشاوند بر اساس محل تولد و اطلاعات مربوط به سه نسل گذشته (پدری و مادری) تهیه شد و در لوله‌های حاوی ماده ضد انعقاد (EDTA) ریخته شد برای تکمیل نمونه‌های یزدی از همکاری آزمایشگاهی در یزد استفاده گردید و برای نمونه‌های کرد به استان کرمانشاه رفته و از آزمایشگاه بیمارستان طالقانی نمونه‌گیری به عمل آمد.
2-2 استخراج DNA به روش نمک اشباعاستخراج DNA با استفاده از روش استاندارد نمک اشباع طبق مراحل زیر انجام شد:
۱- ۳ میلی لیتر از نمونه‌ی خون محیطی حاوی ماده‌ی ضد انعقاد EDTA، داخل فالکون ۱۵ میلی لیتری ریخته شد و با استفاده از آب مقطر سرد به حجم ۱۰ میلی لیتر رسانده شد. سپس فالکون به شدت حرکت داده شد این کار جهت لیز بهتر گلبول‌های قرمز از طریق فرآیند تورژسانس می‌باشد. سپس نمونه را در دستگاه EBA 20 Hettich zentrifugen به مدت ۱۰ دقیقه با دور ۵۰۰۰ سانتریفیوژ شد و محلول رویی خارج گردید و رسوب انتهایی فالکون نگه داشته شد.
۲- با افزودن آب مقطر سرد به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد و مجدداً با همان شرایط ذکر شده آن را سانتریفیوژ گردید و رسوب حاصل که حاوی گلبول‌های سفید است نگه داشته شد.
۳- پس از افزودن ml10 محلول I استخراج DNA به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد. سپس در شرایط ذکر شده آن را سانتریفوژ کرده و محلول رویی آن دور ریخته شد.
جدول2-1 محلولI استخراج DNA (محلول لیز کننده گلبول‌های قرمز)غلظت مواد
10 mM Tris-Hcl: pH:7.5
0.32 mM Sacarose
5 mM MgCl2
%1 Triton X-100
4-5/۱ میلی لیتر از محلول II استخراج DNA(از قبل تهیه شده به شرح زیر)، lμ ۲۵ سدیم دو دسیل سولفات ‌ SDS و lμ ۲۰ پروتئیناز K به رسوب سفید رنگ انتهای فالکون افزوده شد.
جدول 2-2 محلول II استخراج DNA (محلول لیز کننده گلبول‌های سفید)غلظت مواد
10 mM Tris-HCl: pH:8.2
2mM EDTA: pH:8
0.45mM NaCl
۵- نمونه‌ها به مدت ۳۰ تا ۴۵ دقیقه در دمایc° ۵۶ و یا به مدت یک شب در دمایc° ۳۷ در انکوباتور قرار داده شد تا رسوب حل شود.
۶- پس از افزودن lμ ۵۰۰ نمک اشباع به نمونه، به آرامی تکان داده شد و به مدت ۱۰ دقیقه در ۴۰۰۰ دور سانتریفیوژ شد. سپس محلول رویی به یک فالکون حاوی ۲ میلی لیتر اتانول خالص (۱۰۰ درصد) انتقال یافت و به آرامی حرکت داده شد تا کلاف DNA شکل بگیرد.
۷- کلاف DNA توسط سمپلر به درون یک ویال حاوی ۱ میلی لیتر الکل ۷۰ درصد انتقال یافت تا الکل 100 خارج شود. در مرحله‌ی بعدی ویال را به مدت ۳ دقیقه در ۱۳۰۰۰ دور در دستگاه 20 Hettich zentrifugen Mikro سانتریفیوژ گشت.
۸- محلول رویی دور ریخته شد و ویال حاوی DNA به مدت ۵ دقیقه در انکوباتور قرار داده شد تا اتانول کاملاً تبخیر گردد.
۹- بر حسب میزان DNA بین ۵۰ تا ۳۰۰ ماکرولیتر TE به آن افزوده و به مدت یک شب در انکوباتور C°۳۷ قرار داده شد تا DNA به طور کامل حل شود.
جدول 2-3 ترکیبات TEغلظت محتویات
10mM Tris-Hcl, PH:7.6
1mM EDTA, PH:8
2-3 آماده‌سازی نمونه‌ها جهت انجام تست DNA Typingدر هر واکنش Multiplex PCR بهتر است از lμ ۵ نمونه‌ی DNA انسانی با غلظت ng ۱۰۰-50 استفاده شود. اگر‌چه حساسیت آنالیزی این روش در حد ng۵۰-20 از DNA می‌باشد. روش استخراج و نگهداری DNA می‌تواند روی نتایج PCR تأثیر گذار باشد. این روش نیاز به کیت خاصی برای استخراج DNA ندارد با این وجود توجه به این مسئله که در نمونه‌ها غلظت بالایی از آلودگی با نمک وجود نداشته باشد حائز اهمیت است. در این روش نباید از خون هپارینه استفاده شود زیرا هپارین می‌تواند ممانعت کننده‌ی مرحله‌ی PCR باشد. نمونه‌ی DNA را باید در TE حل کرد. pH نمونه‌ی DNA باید بین ۸ تا ۵/۸ باشد تا از دپوریناسیون در طی مرحله‌ی حرارت دادن اولیه جلوگیری شود. بهتر است در صورتی‌که قصد نگهداری طولانی مدت نمونه‌های DNA را داشته، نمونه را در دمای C°۲۰- نگهداری کرد. اگرچه DNA پس از حل شدن در TE به شدت پایدار است اما نگهداری طولانی مدت آن در دمای C °۴ ممکن است منجر به آلودگی آن با میکروارگانیسم‌ها شود .
۲-3-1 رسوب گذاری با اتانولبا توجه به این مسئله که نتایج مربوط به روش STR در نهایت با یکدیگر مقایسه می‌شوند، بهتر است نمونه‌های انتخاب شده از یک نوع بافت گرفته شوند و با روش یکسانی استخراج شوند. در مواردی که از نمونه‌های DNA قدیمی یا نمونه‌هایی با کیفیت نامناسب استفاده می‌شود و یا مواقعی که غلظت DNA مورد استفاده کمتر از ng/µl۴ است، روش‌های خالص سازی DNA مانند روش رسوب گذاری با اتانول، می‌تواند سبب بهبود کیفیت نمونه‌ها و ایجاد نتایج بهتر و مطمئن‌تری شود. استفاده از روش رسوب گذاری با اتانول آلودگی‌های ناشی از یون‌ها، نمک‌ها، اتانول و... را کاهش می‌دهد. غلظت نمک (NaCl)، نباید بیشتر از mM ۶۰ باشد تا دناتوراسیون به طور کامل انجام شود. هم‌چنین غلظت EDTA نباید بیش از mM۱ باشد زیرا EDTA به منیزیوم متصل شده و مانع انجام مرحله‌ی PCR می‌گردد. ناخالصی‌های یونی مانند آهن، اتانول و فنل نیز باعث کاهش فعالیت پلی‌مراز می‌گردند.
رسوب‌گذاری با اتانول به شیوه زیر بر روی نمونه‌ها انجام گرفت.
به میزان ۱/۰ حجم اولیه‌ی نمونه‌ی DNA استات سدیم M ۳ با 5/4:pH به نمونه‌ها اضافه شد.
به اندازه‌ی ۳ برابر حجم (پس از افزودن سدیم استات) به نمونه‌ها اتانول سرد خالص افزوده شد.
نمونه‌ها به مدت ۱ ساعت در دمای اتاق قرار گرفتند و سپس به مدت ۳۰ دقیقه در دور rpm14۰۰۰ سانتریفوژ گشتند.
محلول رویی به آرامی خارج شد و به رسوب DNA نصف حجم اتانول اولیه،اتانول ۷۰ درصد افزوده شد.
نمونه‌ها به مدت ۱۵ دقیقه در دور ۱4۰۰۰ سانتریفیوژ شدند.
محلول رویی خارج شد و پس از اینکه اتانول کاملاً تبخیر شد رسوب در مقدار مناسبی از TE حل گردید.
2-3-2 تعیین غلظت نمونه‌های DNA توسط دستگاه Nanodrop از ان جایی‌که روش DNA Typing دارای دقت و حساسیت بالایی است، بنابراین نمونه‌های DNA باید دارای کیفیت مطلوبی باشند. در این مطالعه جهت تعیین غلظت نمونه‌های DNA، از دستگاه نانودراپ c۲۰۰۰ استفاده شد. حین استفاده از این دستگاه، نیازی به رقیق سازی نمونه‌های DNA نمی‌باشد. ابتدا دستگاه را با استفاده از کنترل فاقد DNA (آب مقطر یا TE) صفر نموده، سپس 2 میکرولیتر از نمونه‌ی DNA را با استفاده از سمپلر در دستگاه قرار داده شد تا میزان جذب نوری نمونه‌ها در طول موج ۲۸۰/۲۶۰ و ۲۳۰/۲۶۰ اندازه‌گیری شود. به طور کلی اسید‌های نوکلئیک در طول موج ۲۶۰ نانومتر و پروتئین‌ها در طول موج ۲۸۰ نانومتر بیشترین میزان جذب نوری را دارند. از نسبت جذب نمونه در طول موج ۲6۰ به ۲۸۰ نانومتر جهت تعیین خلوص DNA و جهت بررسی حضور دترجنت‌هایی مانند SDS، کربوهیدرات، کلروفرم و فنل از نسبت جذب در طول موج ۲۶۰ به ۲۳۰ نانومتر استفاده شد. برای داشتن نمونه‌هایی با کیفیت مطلوب، عدد حاصل از نسبت ۲۶۰ به ۲۸۰ باید ۸/۱ یا بیشتر باشد. میزان جذب پایین‌تر از ۷/۱ نشان دهنده‌ی آلودگی نمونه‌ها با پروتئین است.
2-3-3 تهیه‌ی Working Stokeبرای انجام واکنش DNA Typing ، غلظت مناسب از نمونه‌های مورد آزمایش تهیه گردید. در این مطالعه از DNA با غلظت ng/µl70 استفاده شد.

شکل ۲-1 تصویر دستگاه نانودراپ c2000(51)
2-4 تست DNA Typingروشی که امروزه برای تعیین هویت افراد در آزمایشگاه‌های سراسر جهان انجام می‌شود روشDNA Typing است. در این روش از توالی‏های کوتاه تکراری استفاده می‌شود. نشان‌گرهای STR به آسانی قابل تکثیر هستند و به واسطه طول کوتاه امکان تکثیر هم‌زمان آنها از طریق PCR چندتایی وجود دارد. در این روش از بیش از یک جفت پرایمر در مخلوط واکنش PCR استفاده می شود و بنابراین منجر به تکثیر هم‌زمان دو یا چند ناحیه از DNA می شود. قابلیت انجام PCR چندتایی روی مارکرهای STR بدین معنی است که کمترین مقدار DNA (1/0 تا 1 نانوگرم) حتی DNA شکسته شده نیز با موفقیت قابل الگویابی (تایپینگ) می‌باشد.
2-4-1 Multiplex PCRنوعی واکنش PCR است که به منظور تکثیر از نواحی مختلف ژنوم در یک واکنش به کار می‌رود. در این فرایندDNA ژنومی با استفاده از پرایمرهای مختلف، با یک DNA پلی‌مراز و درجه‏ی حرارت حدواسط برای تمامی پرایمرها تکثیر می شود. این تکنیک نخستین بار برای بررسی حذف ها در ژن دیستروفین به کار گرفته شد. در سال 2008 از این تکنیک برای آنالیز میکرو ستلایتها و SNP ها استفاده شد. در واقع این PCR شامل چندین مجموعه پرایمر است که داخل یک مخلوط واحدPCR هستند و قادر به تکثیر توالی‏های مختلف DNA با اندازه‏های مختلف می باشند. با هدف قرار دادن چندین ژن در آن واحد، اطلاعات بسیار بیشتری نسبت به یک PCR عادی به دست می‌آید. در واقع مزیت این روش صرفه جوئی در مواد و زمان است. نکته حائز اهمیت در این روش دمای اتصال پرایمرها است که باید به طور دقیق محاسبه شوند تا به درستی در واکنش عمل کنند. هم چنین طول جفت بازهای آنها باید به اندازه‌ای با هم متفاوت باشد که باندها از طریق الکتروفورز از یکدیگر قابل شناسایی باشند. در حال حاضر از کیت‏های تجاری بسیاری در آزمایشگاه‏های سراسر جهان به منظور تکثیر چندگانه DNAاستفاده می‏شود.

—d1231

جدول 3-13: تنظیمات پارامترهای الگوریتم Kohonen64
جدول 3-14: تنظیمات پارامترهای الگوریتم دوگامی69
جدول 4-1: مقایسه الگوریتم های دسته بند70
جدول 4-2: مقایسه الگوریتم های دسته بند درخت تصمیم70
جدول 4-3: ماتریس آشفتگی قانون شماره 171
جدول 4-4: ماتریس آشفتگی قانون شماره 272
جدول 4-5: ماتریس آشفتگی قانون شماره 3 الف72
جدول 4-6: ماتریس آشفتگی قانون شماره 3 ب72
جدول 4-7: ماتریس آشفتگی قانون شماره 3 ج73
عنوان صفحه
جدول 4-8: ماتریس آشفتگی قانون شماره 3 د73
جدول 4-9: ماتریس آشفتگی قانون شماره 3 ه73
جدول 4-10: ماتریس آشفتگی قانون شماره 3 و74
جدول 4-11: ماتریس آشفتگی قانون شماره 3 ز76
جدول 4-12: ماتریس آشفتگی قانون شماره 476
جدول 4-13: ماتریس آشفتگی قانون شماره 577
جدول 4-14: ماتریس آشفتگی قانون شماره 6 الف77
جدول 4-15: ماتریس آشفتگی قانون شماره 6 ب78
جدول 4-16: ماتریس آشفتگی قانون شماره778
جدول 4-17: ماتریس آشفتگی قانون شماره879
جدول 4-18: مقایسه الگوریتم های خوشه بندی79
جدول 4-19: فیلدهای حاصل از الگوریتم های خوشه بندی80
جدول 4-20: نتایج الگوریتم های FpGrowth, Weka Apriori81

فهرست شکل‌ها
عنوان صفحه
شکل شماره3-1: داده از دست رفته فیلد" نوع بیمه " پس از انتقال به محیط داده کاوی33
شکل 3-2: نتایج الگوریتمPCA 34
شکل 3-3: نتایج الگوریتم SVM Weighting در ارزشدهی به ویژگی ها35
شکل 3-4: نتایج الگوریتم Weighting Deviation در ارزشدهی به ویژگی ها35
شکل 3-5: نتایج الگوریتم Weighting Correlation در ارزشدهی به ویژگی ها36
شکل 3-6: نمای کلی استفاده از روشهای ارزیابی41
شکل 3-7: نمای کلی استفاده از یک مدل درون یک روش ارزیابی42
شکل 3-8: نمودار AUC الگوریتم KNN42
شکل 3-9: نمودار AUC الگوریتم Naïve Bayes43
شکل 3-10: تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی44
شکل 3-11: نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net44
شکل 3-12: تبدیل ویژگی های غیر عددی به عدد در الگوریتم SVM خطی45
شکل 3-13 : نمودار AUC الگوریتم SVM Linear46
شکل 3-14 : نمودار AUC الگوریتم رگرسیون لجستیک47
شکل 3-15 : نمودار AUC الگوریتم Meta Decision Tree48
شکل 3-16 : قسمتی از نمودارtree الگوریتم Meta Decision Tree49
شکل 3-17 : نمودار --ial الگوریتم Meta Decision Tree49
شکل 3-18: نمودار AUC الگوریتم Wj4850
شکل 3-19 : نمودار tree الگوریتم Wj4851
شکل 3-20 : نمودار AUC الگوریتم Random forest52
شکل 3-21 : نمودار تولید 20 درخت در الگوریتم Random Forest53
شکل 3-22 : یک نمونه درخت تولید شده توسط الگوریتم Random Forest53
عنوان صفحه
شکل 3-23 : رسیدن درصد خطا به صفر پس از 8مرتبه57
شکل 3-24 : Predictor Importance for K-Means58
شکل 3-25 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم
K-Means59
شکل 3-26 : کیفیت خوشه ها در الگوریتمMeans K-60
شکل 3-27 : Predictor Importance for Kohonen61
شکل 3-28 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم
Kohonen62
شکل 3-29 : کیفیت خوشه ها در الگوریتمMeans K-63
شکل 3-30 : تعداد نرون های ورودی و خروجی در Kohonen63
شکل 3-31 : Predictor Importance for دوگامی64
شکل 3-32 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در
الگوریتم دوگامی65
شکل 3-33 : کیفیت خوشه ها در الگوریتم دوگامی66
شکل4-1: نمودارنسبت تخفیف عدم خسارت به خسارت75
فصل اول
194500518986500
مقدمه
شرکتهای تجاری و بازرگانی برای ادامه بقا و حفظ بازار همواره بر سود دهی و کاهش ضرر و زیان خود تاکید دارند از این رو روشهای جذب مشتری و همچنین تکنیکهای جلوگیری یا کاهش زیان در سرلوحه کاری این شرکتها قرار می گیرد.
از جمله شرکتهایی که بدلایل مختلف در معرض کاهش سود و یا افزایش زیان قرار می گیرند شرکتهای بیمه ای می باشند. عواملی همچون بازاریابی، وفاداری مشتریان، نرخ حق بیمه، تبلیغات، تقلب، می تواند باعث جذب یا دفع مشتری گردد که در سود و زیان تاثیر مستقیم و غیر مستقیم دارد. پرداخت خسارت نیز به عنوان تعهد شرکتهای بیمه منجر به کاهش سود و در بعضی موارد موجب زیان یک شرکت بیمه می شود. خسارت می تواند بدلایل مختلف رخ دهد و یا عملی دیگر به گونه ای خسارت جلوه داده شود که در واقع اینچنین نیست[Derrig et. al 2006].
عواملی از قبیل فرهنگ رانندگی، داشتن گواهینامه رانندگی، نوع گواهینامه و تطابق یا عدم تطابق آن با وسیله نقلیه، جاده های بین شهری و خیابانهای داخل شهر که شهرداری ها و ادارات راه را به چالش می کشد، تقلب، وضعیت آب و هوا، کیفیت خودروی خودرو سازان، سن راننده، سواد راننده، عدم تطابق حق بیمه با مورد بیمه [Wilson 2003]، روزهای تعطیل، مسافرتها و بسیاری موارد دیگر می توانند موجب خسارت و در نهایت افزایش زیان یک شرکت بیمه ای گردند.
بیمه صنعتی سودمند، ضروری و مؤثر در توسعه اقتصادی است. این صنعت بدلیل «افزایش امنیت در عرصه های مختلف زندگی و فعالیتهای اقتصادی»، «افزایش سرمایه گذاری و اشتغال و رشد اقتصادی» و « ارتقای عدالت اقتصادی و کاهش فقر ناشی از مخاطرات »، حائز جایگاه مهمی در پیشرفت و تعالی یک کشور است.
با وجود نقش مهم بیمه در بسترسازی و تأمین شرایط مساعد اقتصادی، وضعیت کنونی این صنعت در اقتصاد ملی با وضعیت مطلوب آن فاصله زیادی دارد. عدم آشنایی عمومی و کم بودن تقاضا برای محصولات بیمه ای، دانش فنی پایین در عرصه خدمات بیمه ای، عدم تطابق ریسک با حق بیمه، تفاوت فاحش در مقایسه معیارهای تشخیص ریسک بیمه شخص ثالث با نوع بیمه معادل در کشورهای توسعه یافته، وجود نارسایی ها در مدیریت واحدهای عرضه بیمه از دلایل عدم توسعه مناسب این صنعت در کشور است. از آنجا که بشر در طول تاریخ به کمک علم و تجربه رستگاری ها و توفیقات فراوانی کسب کرده است، نگاه علمی تر به مشکلات این صنعت و یافتن راه حل در بستر علم می تواند راه گشا باشد.
امروزه بوسیله روشهای داده کاوی ارتباط بین فاکتورهای مختلف موثر یا غیر موثر در یک موضوع مشخص می شود و با توجه به اینکه داده کاوی ابزاری مفید در استخراج دانش از داده های انبوه می باشد که ارتباطات نهفته بین آنها را نشان می دهد، شرکتهای تجاری بازرگانی رو به این تکنیکها آورده اند.
داده کاوی محدود به استفاده از فناوری ها نیست و از هرآنچه که برایش مفید واقع شود استفاده خواهد کرد. با این وجود آمار و کامپیوتر پر استفاده ترین علوم و فناوری های مورد استفاده داده کاوی است.
تعریف داده کاوی XE "تعریف داده کاوی" XE "تعریف داده کاوی"
داده کاوی روند کشف قوانین و دانش ناشناخته و مفید از انبوه داده ها و پایگاه داده است[ Liu et. al 2012].
انجام عمل داده کاوی نیز مانند هر عمل دیگری مراحل خاص خود را دارد که به شرح زیر می باشند:
1-جدا سازی داده مفید از داده بیگانه
2-یکپارچه سازی داده های مختلف تحت یک قالب واحد
3-انتخاب داده لازم از میان دیگر داده ها
4- انتقال داده به محیط داده کاوی جهت اکتشاف قوانین
5-ایجاد مدلها و الگوهای مرتبط بوسیله روشهای داده کاوی
6-ارزیابی مدل و الگوهای ایجاد شده جهت تشخیص مفید بودن آنها
7-انتشار دانش استخراج شده به کاربران نهایی
تعریف بیمهبیمه: بیمه عقدی است که به موجب آن یک طرف تعهد می کند در ازاء پرداخت وجه یا وجوهی از طرف دیگر در صورت وقوع یا بروز حادثه خسارت وارده بر او را جبران نموده یا وجه معینی بپردازد. متعهد را بیمه گر طرف تعهد را بیمه گذار وجهی را که بیمه گذار به بیمه گر می پردازد حق بیمه و آنچه را که بیمه می شود موضوع بیمه نامند]ماده یک قانون بیمه مصوب 7/2/1316[.
هدف پایان نامهدر این پژوهش سعی شده است با استفاده از تکنیکهای داده کاوی اقدام به شناسایی فاکتورهای تاثیر گذار در سود و زیان بیمه شخص ثالث خودرو شرکتهای بیمه نموده و ضریب تاثیر آنها را بررسی نماییم. الگوریتم های استفاده شده در این پژوهش شامل دسته بند ها، خوشه بند ها، درخت های تصمیم و قوانین انجمنی بوده است.
مراحل انجام تحقیقدر این پایان نامه با استفاده از روشهای داده کاوی با استفاده از بخشی از داده های صدور و خسارت یک سال شرکت بیمه مدل شده و از روی آنها یک الگو ساخته می شود. در واقع به این طریق به الگوریتم یاد داده می شود که ارتباطات بین داده ها، منجر به چه نتایجی می شود. سپس بخشی از داده ها که در مرحله قبل از آن استفاده نشده بود به مدل ایجاد شده داده می شود ونتایج توسط معیارهای علمی مورد ارزیابی قرار میگیرند. بمنظور آزمایش عملکرد می توان داده های دیگری به مدل داده شود و نتایج حاصله با نتایج واقعی موجود مقایسه شوند.
ساختار پایان نامهاین پایان نامه شامل چهارفصل خواهد بود که فصل اول شامل یک مقدمه و ضرورت پژوهش انجام شده و هدف این پژوهش است. در فصل دوم برخی تکنیک های داده کاوی و روشهای آن مطرح و تحقیقاتی که قبلا در این زمینه انجام شده مورد بررسی قرار می گیرند. در فصل سوم به شرح مفصل پژوهش انجام شده و نرم افزار داده کاوی مورد استفاده در این پایان نامه می پردازیم و با کمک تکنیک های داده کاوی مدل هایی ارائه می شود و مدلهای ارائه شده درهرگروه با یکدیگر مقایسه شده و بهترین مدل از میان آنها انتخاب می گردد. در فصل چهارم مسائل مطرح شده جمع بندی شده و نتایج حاصله مطرح خواهند شد و سپس تغییراتی که در آینده در این زمینه می توان انجام داد پیشنهاد می شوند.

فصل دوم
193548028194000
ادبیات موضوع و تحقیقات پیشیندر این فصل ابتدا مروری بر روشهای داده کاوی خواهیم داشت سپس به بررسی تحقیقات پیشین می پردازیم.
داده کاوی و یادگیری ماشینداده کاوی ترکیبی از تکنیک های یادگیری ماشین، تشخیص الگو، آمار، تئوری پایگاه داده و خلاصه کردن و ارتباط بین مفاهیم و الگوهای جالب به صورت خودکار از پایگاه داده شرکتهای بزرگ است. هدف اصلی داده کاوی کمک به فرآیند تصمیم گیری از طریق استخراج دانش از داده هاست [Alpaydin 2010].
هدف داده کاوی آشکار کردن روندها یا الگوهایی که تا کنون ناشناخته بوده اند برای گرفتن تصمیمات بهتر است که این هدف را بوسیله به کارگیری روشهای آماری همچون تحلیل لجستیک و خوشه بندی و همچنین با استفاده از روشهای تحلیل داده به دست آمده از رشته های دیگر )همچون شبکه های عصبی در هوش مصنوعی و درختان تصمیم در یادگیری ماشین( انجام میدهد[Koh & Gervis 2010] . چون ابزارهای داده کاوی روند ها و رفتارهای آینده را توسط رصد پایگاه داده ها برای الگوهای نهان پیش بینی می کند با عث می شوند که سازمان ها تصمیمات مبتنی بر دانش گرفته و به سوالاتی که پیش از این حل آنها بسیار زمان بر بود پاسخ دهند [Ramamohan et. al 2012 ] .
داده کاوی یک ابزار مفید برای کاوش دانش از داده حجیم است. [Patil et. al 2012 ]. داده کاوی یافتن اطلاعات بامعنای خاص ازیک تعداد زیادی ازداده بوسیله بعضی ازفناوری ها به عنوان رویه ای برای کشف دانش ازپایگاه داده است، که گام های آن شامل موارد زیر هستند [Han and Kamber 2001] .
1-پاک سازی داده ها :حذف داده دارای نویز و ناسازگار
2-یکپارچه سازی داده: ترکیب منابع داده گوناگون
3-انتخاب داده: یافتن داده مرتبط با موضوع از پایگاه داده
4-تبدیل داده: تبدیل داده به شکل مناسب برای کاوش
5-داده کاوی: استخراج مدل های داده با بهره گیری از تکنولوژی
6- ارزیابی الگو: ارزیابی مدل هایی که واقعا برای ارائه دانش مفید هستند
7-ارائه دانش: ارائه دانش بعد ازکاوش به کاربران بوسیله استفاده از تکنولوژیهایی همچون ارائه بصری [Lin & Yeh 2012] .
ابزارها و تکنیک های داده کاویبا توجه به تنوع حجم و نوع داده ها، روش های آماری زیادی برای کشف قوانین نهفته در داده ها وجود دارند. این روش ها می توانند با ناظر یا بدون ناظر باشند. [Bolton & Hand 2002] در روش های با ناظر، نمونه هایی از مواردخسارتی موجود است و مدلی ساخته می شود که براساس آن، خسارتی یا غیر خسارتی بودن نمونه های جدید مشخص می شود. این روش جهت تشخیص انواع خسارت هایی مناسب است که از قبل وجود داشته اند]فولادی نیا و همکاران 1392[ .
روش های بدون ناظر، به دنبال کشف نمونه هایی هستند که کمترین شباهت را با نمونه های نرمال دارند. برای انجام فعالیت هایی که در هر فاز داده کاوی باید انجام شود از ابزارها و تکنیک های گوناگونی چون الگوریتمهای پایگاه داده، تکنیکهای هوش مصنوعی، روشهای آماری، ابزارهای گرافیک کامپیوتری و مصور سازی استفاده می شود. هر چند داده کاوی لزوما به حجم داده زیادی بعنوان ورودی نیاز ندارد ولی امکان دارد در یک فرآیند داده کاوی حجم داده زیادی وجود داشته باشد.
در اینجاست که از تکنیک ها وابزارهای پایگاه داده ها مثل نرمالسازی، تشخیص و تصحیح خطا و تبدیل داده ها بخصوص در فازهای شناخت داده و آماده سازی داده استفاده می شود. همچنین تقریبا در اکثرفرآیند های داده کاوی از مفاهیم، روشها و تکنیک های آماری مثل روشهای میانگین گیری )ماهیانه، سالیانه و . . . (، روشهای محاسبه واریانس و انحراف معیار و تکنیک های محاسبه احتمال بهره برداری های فراوانی می شود. یکی دیگر از شاخه های علمی که به کمک داده کاوی آمده است هوش مصنوعی می باشد.
هدف هوش مصنوعی هوشمند سازی رفتار ماشینها است. می توان گفت تکنیک های هوش مصنوعی بطور گسترده ای در فرآیند داده کاوی به کار می رود بطوریکه بعضی از آماردانها ابزارهای داده کاوی را بعنوان هوش آماری مصنوعی معرفی می کنند.
قابلیت یادگیری بزرگترین فایده هوش مصنوعی است که بطور گسترده ای در داده کاوی استفاده می شود. تکنیک های هوش مصنوعی که در داده کاوی بسیار زیاد مورد استفاده قرار می گیرند عبارتند از شبکه های عصبی، روشهای تشخیص الگوی یادگیری ماشین و الگوریتمهای ژنتیک ونهایتا تکنیک ها و ابزارهای گرافیک کامپیوتری و مصور سازی که بشدت در داده کاوی بکار گرفته می شوند و به کمک آنها می توان داده های چند بعدی را به گونه ای نمایش داد که تجزیه وتحلیل نتایج برای انسان براحتی امکان پذیر باشد [Gupta 2006].
روشهای داده کاوی عمده روشهای داده کاوی عبارتند از روشهای توصیف داده ها، روشهای تجزیه و تحلیل وابستگی، روشهای دسته بندی و پیشگویی، روشهای خوشه بندی، روشهای تجزیه و تحلیل نویز.
می توان روش های مختلف کاوش داده را در دو گروه روش های پیش بینی و روش های توصیفی طبقه بندی نمود. روش های پیش بینی در متون علمی به عنوان روش های با ناظر نیزشناخته می شوند. روش های دسته بندی، رگرسیون و تشخیص انحراف از روشهای یادگیری مدل در داده کاوی با ماهیت پیش بینی هستند. در الگوریتم های دسته بندی مجموعه داده اولیه به دو مجموعه داده با عنوان مجموعه داده های آموزشی و مجموعه داده های آزمایشی تقسیم می شود که با استفاده از مجموعه داده های آموزشی مدل ساخته می شود و از مجموعه داده های آزمایشی برای اعتبار سنجی و محاسبه دقت مدل ساخته شده استفاده می شود. هررکورد شامل یک مجموعه ویژگی است.
یکی از ویژگی ها، ویژگی دسته نامیده می شود و در مرحله آموزش براساس مقادیر سایر ویژگی ها برای مقادیر ویژگی دسته، مدل ساخته می شود. روشهای توصیفی الگوهای قابل توصیفی را پیدا میکنند که روابط حاکم بر داده ها را بدون در نظرگرفتن هرگونه برچسب و یا متغیرخروجی تبیین نمایند. درمتون علمی روشهای توصیفی با نام روشهای بدون ناظر نیز شناخته می شوند ]صنیعی آباده 1391[.

روشهای توصیف داده هاهدف این روشها ارائه یک توصیف کلی از داده هاست که معمولا به شکل مختصر ارائه می شود. هر چند توصیف داده ها یکی از انواع روشهای داده کاوی است ولی معمولا هدف اصلی نیست واغلب از این روش برای تجزیه و تحلیل نیاز های اولیه و شناخت طبیعت داده ها و پیدا کردن خصوصیات ذاتی داده ها یا برای ارائه نتایج داده کاوی استفاده می شود [Sirikulvadhana 2002] .
روشهای تجزیه و تحلیل وابستگی هدف این روشها پیدا کردن ارتباطات قابل توجه بین تعداد زیادی از متغیر ها یا صفات می باشد[Gupta 2006] . یکی از روشهای متداول برای کشف قواعد وابستگی مدل Apriori است که نسبت به سایر مدلهای کشف قواعد وابستگی سریعتر بوده و محدودیتی از نظر تعداد قواعد ندارد [Xindong et al 2007] . کاوش قواعد تلازمی یکی از محتواهای اصلی تحقیقات داده کاوی در حال حاضر است و خصوصا بر یافتن روابط میان آیتم های مختلف در پایگاه داده تاکید دارد [Patil et. al 2012] . سه مدل CARMA و GRI و Fpgrowth سه الگوریتم دیگر از قواعد وابستگی هستند.
روشهای دسته بندی و پیشگویی
دسته بندی یک فرآیند یافتن مدل است که برای بخش بندی داده به کلاس های مختلف برطبق بعضی محدودیت ها استفاده شده است. به بیان دیگر ما می توانیم بگوییم که دسته بندی یک فرآیند تعمیم داده بر طبق نمونه های مختلف است. چندین نمونه اصلی الگوریتم های طبقه بندی شامل C4. 5 ، K نزدیکترین همسایه، بیز ساده و SVM است [Kumar and Verna 2012].
یکی از این نوع الگوریتم ها نظریه بیز می باشد. این دسته بند از یک چارچوب احتمالی برای حل مساله استفاده می کند. یک رکورد مفروض با مجموعه ویژگی های (A1, A2…. An) را درنظر بگیرید. هدف تشخیص دسته این رکورد است. در واقع از بین دسته های موجود به دنبال دسته ای هستیم که مقدارP(C|A1, A2…. An) را بیشینه کند. پس این احتمال را برای تمامی دسته های موجود محاسبه کرده و دسته ای که این احتمال به ازای آن بیشینه شود را به عنوان دسته رکورد جدید در نظر می گیریم.
PCA=PAC PCPAرگرسیون نیز نوع دیگری از این الگوریتم ها است. پیش بینی مقدار یک متغیر پیوسته بر اساس مقادیر سایر متغیرها بر مبنای یک مدل وابستگی خطی یا غیر خطی رگرسیون نام دارد. درواقع یک بردار X داریم که به یک متغیر خروجی y نگاشت شده است. هدف محاسبه y یا همان F(X) است که از روی تخمین تابع مقدار آن محاسبه می شود.
درخت تصمیمدرخت تصمیم از ابزارهای داده کاوی است که در رده بندی داده های کیفی استفاده می شود. در درخت تصمیم، درخت کلی به وسیله خرد کردن داده ها به گره هایی ساخته می شود که مقادیری از متغیر ها را در خود جای می دهند. با ایجاد درخت تصمیم بر اساس داده های پیشین که رده آنها معلوم است، می توان داده های جدید را دسته بندی کرد. روش درخت تصمیم به طور کلی برای دسته بندی استفاده می شود، زیرا یک ساختار سلسله مراتبی ساده برای فهم کاربر و تصمیم گیری است. الگوریتم های داده کاوی گوناگونی برای دسته بندی مبتنی بر شبکه عصبی مصنوعی، قوانین نزدیکترین همسایگی و دسته بندی بیزین در دسترس است اما درخت تصمیم یکی از ساده ترین تکنیک هاست [Patil et. al 2012] . از انواع درخت های تصمیم می توان C4. 5 و C5 و Meta Decision Tree و Random Forest وJ48 را نام برد.

2-3-5-شبکه عصبیروش پرکاربرد دیگر در پیشگویی نتایج استفاده از شبکه های عصبی می باشد. شبکه های عصبی مدل ساده شده ای است که بر مبنای عملکرد مغز انسان کار می کند. اساس کار این شبکه شبیه سازی تعداد زیادی واحد پردازشی کوچک است که با هم در ارتباط هستند. به هریک از این واحد ها یک نرون گفته می شود. نرون ها بصورت لایه لایه قرار دارند و در یک شبکه عصبی معمولا سه لایه وجود دارد [Gupta 2006] . اولین لایه )لایه ورودی ( ، دومین )لایه نهان (و سومین )لایه خروجی (. لایه نهان می تواند متشکل از یک لایه یا بیشتر باشد [P--han et. al 2011 ] .
2-3-6- استدلال مبتنی بر حافظهتوانایی انسان در استدلال براساس تجربه، به توانایی او در شناخت و درک نمونه های مناسبی که مربوط به گذشته است، بستگی دارد. افراد در ابتدا تجارب مشابهی که در گذشته داشته را شناسایی و سپس دانشی که از آن ها کسب کرده است را برای حل مشکل فعلی به کار می گیرند. این فرآیند اساس استدلال مبتنی بر حافظه است. یک بانک اطلاعاتی که از رکوردهای شناخته شده تشکیل شده است مورد جستجو قرار می گیرد تارکوردهای از قبل طبقه بندی شده و مشابه با رکورد جدید یافت شود.
از این همسایه ها برای طبقه بند ی و تخمین زدن استفاده می شود. KNN یک نمونه از این الگوریتم هاست. فرض کنید که یک نمونه ساده شده با یک مجموعه از صفت های مختلف وجود دارد، اما گروهی که این نمونه به آن متعلق است نامشخص است. مشخص کردن گروه می تواند از صفت هایش تعیین شود. الگوریتم های مختلفی می تواند برای خودکار سازی فرآیند دسته بندی استفاده بشود. یک دسته بند نزدیک ترین همسایه یک تکنیک برای دسته بندی عناصر است مبتنی بردسته بندی عناصر در مجموعه آموزشی که شبیه تر به نمونه آزمایشی هستند.
باتکنیک Kنزدیکترین همسایه، این کار با ارزیابی تعداد K همسایه نزدیک انجام می شود. [Tan et al 2006] . تمام نمونه های آموزشی در یک فضای الگوی چند بعدی ذخیره شده اند. وقتی یک نمونه ناشناخته داده می شود، یک دسته بند نزدیکترین همسایه در فضای الگو برای K نمونه آموزشی که نزدیک به نمونه ناشناخته هستند جستجو می کند. نزدیکی بر اساس فاصله اقلیدسی تعریف می شود [Wilson and Martinez 1997] .
2-3-7-ماشین های بردار پشتیبانیSVM اولین بار توسط Vapnik در سال 1990 معرفی شد و روش بسیار موثری برای رگرسیون و دسته بندی و تشخیص الگو است [Ristianini and Shawe 2000] .
SVM به عنوان یک دسته بند خوب در نظر گرفته می شود زیرا کارایی تعمیم آن بدون نیاز به دانش پیشین بالاست حتی وقتیکه ابعاد فضای ورودی بسیار بالاست. هدف SVM یافتن بهترین دسته بند برای تشخیص میان اعضای دو کلاس در مجموعه آموزشی است [Kumar and Verna 2012] .
رویکرد SVM به این صورت است که در مرحله آموزش سعی دارد مرز تصمیم گیری را به گونه ای انتخاب نماید که حداقل فاصله آن با هر یک از دسته های مورد نظر را بیشینه کند. این نوع انتخاب مرز بر اساس نقاطی بنام بردارهای پشتیبان انجام می شوند.
2-3-8-روشهای خوشه بندی هدف این روشها جداسازی داده ها با خصوصیات مشابه است. تفاوت بین دسته بندی و خوشه بندی این است که در خوشه بندی از قبل مشخص نیست که مرز بین خوشه ها کجاست و برچسبهای هر خوشه از پیش تعریف شده است ولی در دسته بندی از قبل مشخص است که هر دسته شامل چه نوع داده هایی می شود و به اصطلاح برچسب های هر دسته از قبل تعریف شده اند. به همین دلیل به دسته بندی یادگیری همراه با نظارت و به خوشه بندی یادگیری بدون نظارت گفته می شود [Osmar 1999] .
2-3-9- روش K-Meansیکی از روش های خوشه بندی مدل K-Means است که مجموعه داده ها را به تعدادثابت و مشخصی خوشه، خوشه بندی می کند. روش کار آن به این صورت است که تعداد ثابتی خوشه در نظر میگیرد و رکوردها را به این خوشه ها اختصاص داده و مکرراً مراکز خوشه ها را تنظیم می کند تا زمانیکه بهترین خوشه بندی بدست آید[Xindong et al 2007].
2-3-10-شبکه کوهننشبکه کوهنن نوعی شبکه عصبی است که در این نوع شبکه نرون ها در دو لایه ورودی و خروجی قرار دارند و همه نرون های ورودی به همه نرون های خروجی متصل اندو این اتصالات دارای وزن هستند. لایه خروجی در این شبکه ها بصورت یک ماتریس دو بعدی چیده شده و به آن نقشه خروجی گفته می شود. مزیت این شبکه نسبت به سایر انواع شبکه های عصبی این است که نیاز نیست دسته یا خوشه داده ها از قبل مشخص باشد، حتی نیاز نیست تعداد خوشه ها از قبل مشخص باشد. شبکه های کوهنن با تعداد زیادی نرون شروع می شود و به تدریج که یادگیری پیش می رود، تعداد آنها به سمت یک تعداد طبیعی و محدود کاهش می یابد.
2-3-11-روش دو گاماین روش در دو گام کار خوشه بندی را انجام می دهد. در گام اول همه داده ها یک مرور کلی می شوند و داده های ورودی خام به مجموعه ای از زیر خوشه های قابل مدیریت تقسیم می شوند. گام دوم با استفاده از یک روش خوشه بندی سلسله مراتبی بطور مداوم زیر خوشه ها را برای رسیدن به خوشه های بزرگتر با هم ترکیب می کند بدون اینکه نیاز باشد که جزئیات همه داده ها را مجددا مرور کند.
2-3-12-روشهای تجزیه و تحلیل نویزبعضی از داده ها که به طور بارز و مشخصی از داده های دیگر متمایز هستند اصطلاحاً بعنوان داده خطا یا پرت شناخته می شوند که باید قبل از ورود به فاز مدلسازی و در فاز آماده سازی داده ها برطرف شوند. با وجود این زمانیکه شناسایی داده های غیر عادی یا غیر قابل انتظار مانند موارد تشخیص تقلب هدف اصلی باشد، همین نوع داده ها مفید هستند که در این صورت به آنها نویز گفته می شود [Osmar 1999].
دسته های نامتعادل]صنیعی آباده 1391[.
مجموعه داده هایی که در آنها ویزگی دسته دارای توزیع نامتعادل باشد بسیار شایع هستند. مخصوصاً این مجموعه داده ها در کاربردها و مسائل واقعی بیشتر دیده می شوند.
در چنین مسائلی با وجود اینکه تعداد رکوردهای مربوط به دسته نادر بسیار کمتر از دسته های دیگر است، ولی ارزش تشخیص دادن آن به مراتب بالاتر از ارزش تشخیص دسته های شایع است. در داده کاوی برای برخورد با مشکل دسته های نامتعادل از دو راهکار استفاده می شود:
راهکار مبتنی بر معیار
راهکار مبتنی بر نمونه برداری
راهکار مبتنی بر معیاردر دسته بندی شایع ترین معیار ارزیابی کارایی دسته بند، معیار دقت دسته بندی است. در معیار دقت دسته بندی فرض بر یکسان بودن ارزش رکوردهای دسته های مختلف دسته بندی است. در راهکار مبتنی بر معیار بجای استفاده از معیار دقت دسته بندی از معیارهایی بهره برداری می شود که بتوان بالاتر بودن ارزش دسته های نادر و کمیاب را در آنها به نحوی نشان داد. بنابراین با لحاظ نمودن معیارهای گفته شده در فرآیند یادگیری خواهیم توانست جهت یادگیری را به سمت نمونه های نادر هدایت نماییم. از جمله معیارهایی که برای حل مشکل عدم تعادل دسته ها بکار می روند عبارتند از Recall, Precession, F-Measure, AUC و چند معیار مشابه دیگر.
2-4-2-راهکار مبتنی بر نمونه بردارینمونه برداری یکی از راهکارهای بسیار موثربرای مواجهه با مشکل دسته های نامتعادل است. ایده اصلی نمونه برداری آن است که توزیع نمونه ها را به گونه ای تغییر دهیم که دسته کمیاب به نحو پررنگ تری در مجموعه داده های آموزشی پدیدار شوند. سه روش برای این راهکار وجود دارد که عبارتند از:
الف- نمونه برداری تضعیفی:
در این روش نمونه برداری، توزیع نمونه های دسته های مساله به گونه ای تغییر می یابند که دسته شایع به شکلی تضعیف شود تا از نظرفراوانی با تعداد رکوردهای دسته نادر برابری کند. به این ترتیب هنگام اجرای الگوریتم یادگیری، الگوریتم ارزشی مساوی را برای دو نوع دسته نادر و شایع درنظر می گیرد.
ب- نمونه برداری تقویتی:
این روش درست برعکس نمونه برداری تضعیفی است. بدین معنی که نمونه های نادر کپی برداری شده و توزیع آنها با توزیع نمونه های شایع برابر می شود.
ج- نمونه برداری مرکب:
در این روش از هردو عملیات تضعیفی و تقویتی بصورت همزمان استفاده میشود تا توزیع مناسب بدست آید.
در این پژوهش با توجه به کمتر بودن نسبت نمونه نادر یعنی منجر به خسارت شده به نمونه شایع از روش نمونه برداری تضعیفی استفاده گردید که کل تعداد نمونه ها به حدود 3 هزار رکورد تقلیل پیدا کرد و توزیع نمونه ها به نسبت مساوی بوده است. شایان ذکر است این نمونه برداری پس از انجام مرحله پاک سازی داده ها انجام شد که خود مرحله پاکسازی با عث تقلیل تعداد نمونه های اصلی نیز گردیده بود.
پیشینه تحقیقسالهاست که محققان در زمینه بیمه و مسائل مرتبط با آن به تحقیق پرداخته اند و از جمله مسائلی که برای محققان بیشتر جذاب بوده است می توان به کشف تقلب اشاره کرد.
Brockett و همکاران [Brockett et. al 1998] ابتدا به کمک الگوریتم تحلیل مولفه های اصلی (PCA) به انتخاب ویژگی ها پرداختند و سپس با ترکیب الگوریتم های خوشه بندی و شبکه های عصبی به کشف تقلبات بیمه اتومبیل اقدام کردند. مزیت این کار ترکیب الگوریتمها و انتخاب ویژگی بوده که منجر به افزایش دقت خروجی بدست آمده گردید.
Phua و همکاران [ Phua et. al 2004] با ترکیب الگوریتم های شبکه های عصبی پس انتشاری ، بیزساده و درخت تصمیم c4.5 به کشف تقلب در بیمه های اتومبیل پرداختند.نقطه قوت این کار ترکیب الگوریتم ها بوده اما بدلیل عدم کاهش ویژگی ها و کاهش ابعاد مساله میزان دقت بدست آمده در حد اعلی نبوده است.
Allahyari Soeini و همکاران [Allahyari Soeini et. al 2012] نیز یک متدلوژی با استفاده از روشهای داده کاوی خوشه بندی ودرخت تصمیم برای مدیریت مشتریان ارائه دادند. از ایرادات این روش میتوان عدم استفاده از الگوریتم های دسته بندی و قوانین انجمنی را نام برد.
مورکی علی آباد ] مورکی علی‌آباد1390[ تحقیقی داشته است که اخیراً در زمینه بیمه صورت گرفته و درمورد طبقه‌بندی مشتریان صنعت بیمه با هدف شناسایی مشتریان بالقوه با استفاده از تکنیک‌های داده‌کاوی (مورد مطالعه: بیمه‌گذاران بیمه آتش‌سوزی شرکت بیمه کارآفرین (که هدف آن دسته بندی مشتریان صنعت بیمه بر اساس میزان وفاداری به شرکت، نوع بیمه نامه های خریداری شده، موقعیت جغرافیایی مکان های بیمه شده و میزان جذب به شرکت بیمه در بازه زمانی 4 سال گذشته بوده است. روش آماری مورد استفاده از تکنیک های داده کاوی نظیر درخت تصمیم و دسته بندی بود. این تحقیق نیز چون نمونه آن قبلا انجام شده بوده از الگوریتم های متفاوت استفاده نکرده است. همچنین سعی بر بهبود تحقیق قبلی نیز نداشته است. وجه تمایز این تحقیق با نمونه قبلی استفاده از ویژگی های متفاوت بوده است.
عنبری ]عنبری 1389[ نیز پژوهشی در خصوص طبقه بندی ریسک بیمه گذاران در رشته بیمه بدنه اتومبیل با استفاده از داده کاوی داشته است که هدف استفاده از داده های مربوط به بیمه نامه بدنه از کل شرکتهای بیمه (بانک اطلاعاتی بیمه خودرو) بوده و سعی بر آن شده است تا بررسی شود که آیا میتوان بیمه گذاران بیمه بدنه اتومبیل را از نظر ریسک طبقه بندی کرد؟ و آیا درخت تصمیم برای طبقه بندی بیمه گذاران بهترین ابزار طبقه بندی می باشد؟ و آیا سن و جنسیت از موثرترین عوامل در ریسک بیمه گذار محسوب می شود؟ نتایج این طبقه بندی به صورت درخت تصمیم و قوانین نشان داده شده است. ونتایج حاصل از صحت مدل درخت تصمیم با نتایج الگوریتم های شبکه عصبی و رگرسیون لجستیک مورد مقایسه قرار گرفته است. از مزیت های این تحقیق استفاده از الگوریتم های متفاوت و مقایسه نتایج حاصله برای بدست آوردین بهترین الگوریتم ها بوده است.
رستخیز پایدار]رستخیز پایدار 1389[ تحقیقی دیگر در زمینه بخش بندی مشتریان بر اساس ریسک با استفاده از تکنیک داده کاوی (مورد مطالعه: بیمه بدنه اتومبیل بیمه ملت) داشته است. با استفاده از مفاهیم شبکه خود سازمانده بخش بندی بر روی مشتریان بیمه بدنه اتومبیل بر اساس ریسک صورت گرفت. در این تحقیق عوامل تأثیرگذار بر ریسک بیمه گذاران طی دو مرحله شناسایی گردید. در مرحله اول هیجده فاکتور ریسک در چهار گروه شامل مشخصات جمعیت شناختی، مشخصات اتومبیل، مشخصات بیمه نامه و سابقه راننده از بین مقالات علمی منتشر گردیده در ژورنال های معتبر در بازه سال های 2000 الی 2009 استخراج گردید و در مرحله دوم با استفاده از نظرسنجی از خبرگان فاکتورهای نهایی تعیین گردید. مشتریان بیمه بدنه اتومبیل در این تحقیق با استفاده از شبکه های عصبی خودسازمانده به چهار گروه مشتریان با ریسک های متفاوت بخش بندی گردیدند. مزیت این تحقیق استفاده از نظر خبرگان بیمه بوده و ایراد آن عدم استفاده از ویژگی های بیشتر و الگوریتم های انتخاب ویژگی بوده است.
ایزدپرست  ]ایزدپرست1389[ همچنین تحقیقی در مورد ارائه چارچوبی برای پیش بینی خسارت مشتریان بیمه بدنه اتومبیل با استفاده از راهکار داده کاوی انجام داده است که چارچوبی برای شناسایی مشتریان بیمه بدنه اتومبیل ارائه می‌گردد که طی آن میزان خطرپذیری مشتریان پیش‌بینی شده و مشتریان بر اساس آن رده‌بندی می‌گردند. در نتیجه با استفاده از این معیار (سطح خطرپذیری) و نوع بیمه‌نامه مشتریان، میتوان میزان خسارت آنان را پیش‌بینی کرده و تعرفه بیمه‌نامه متناسب با ریسک آنان تعریف نمود. که این مطلب می‌تواند کمک شایانی برای شناسایی مشتریان و سیاستگذاری‌های تعرفه بیمه نامه باشد. در این تحقیق از دو روش خوشه‌بندی و درخت‌تصمیم استفاده می‌گردد. در روش خوشه‌بندی مشتریان بر اساس ویژگی هایشان در خوشه هایی تفکیک شده، سپس میانگین سطح خسارت در هر یک از این خوشه‌ها را محاسبه میکند. حال مشتریان آتی با توجه به اینکه به کدامیک از این خوشه‌ها شبیه تر هستند در یکی از آنها قرار می‌گیرند تا سطح خسارتشان مشخص گردد. در روش درخت‌تصمیم با استفاده از داده‌های مشتریان، درختی را بر اساس مجموعه‌ای از قوانین که بصورت "اگر-آنگاه" می‌باشد ایجاد کرده و سپس مشتریان جدید با استفاده از این درخت رده‌بندی می‌گردند. در نهایت هر دو این مدلها مورد ارزیابی قرار می‌گیرد. ایراد این روش در عدم استفاده از دسته بند ها بوده است. چون ماهیت تحقیق پیش بینی بوده است استفاده از دسته بند ها کمک شایانی به محقق در تولبد خروجی های حذاب تر می کرد.
خلاصه فصلعمده پژوهشهایی که درخصوص داده های بیمه ای صورت گرفته کمتر به سمت پیش بینی سود و زیان شرکتهای بیمه بوده است. در موارد مشابه نیزپیش بینی خسارت مشتریان انجام شده که هدف دسته بندی مشتریان بوده است. موضوع این پژوهش اگرچه از نوع همسان با تحقیقات گفته شده است اما در جزئیات بیمه شخص ثالث را پوشش می دهد که درکشور ما یک بیمه اجباری تلقی می شود. همچنین تعداد خصیصه هایی که در صدور یا خسارت این بیمه نامه دخالت دارند نسبت به سایر بیمه های دیگر بیشتر بوده ضمن اینکه بررسی سود یا زیان بیمه شخص ثالث با استفاده از دانش نوین داده کاوی کارتقریبا جدیدی محسوب می شود.

فصل سوم
2087880229743000
شرح پژوهشدر این فصل هدف بیان مراحل انجام این پژوهش و تحلیل خروجی های بدست آمده می باشد.

انتخاب نرم افزاردر اولین دهه آغاز به کار داده کاوی و در ابتدای امر، هنوز ابزار خاصی برای عملیات کاوش وجود نداشت و تقریبا نیاز بود تا تمامی تحلیل گران، الگوریتمهای موردنظر داده کاوی و یادگیری ماشین را با زبان های برنامه نویسی مانند c یا java یا ترکیبی از چند زبان پیاده سازی کنند. اما امروزه محیط های امکان پذیر برای این امر، با امکانات مناسب و قابلیت محاوره گرافیکی زیادی را می توان یافت]صنیعی آباده 1391[.
Rapidminerاین نرم افزار یک ابزار داده کاوی متن باز است که به زبان جاوا نوشته شده و از سال 2001 میلادی تا به حال توسعه داده شده است. در این نرم افزار سعی تیم توسعه دهنده بر این بوده است که تا حد امکان تمامی الگوریتم های رایج داده کاوی و همچنین یادگیری ماشین پوشش داده شوند. بطوری که حتی این امکان برای نرم افزار فراهم شده است تا بتوان سایر ابزارهای متن باز داده کاوی را نیز به آن الحاق نمود. رابط گرافیکی شکیل و کاربر پسند نرم افزار نیز آن را یک سرو گردن بالاتر از سایر ابزارهای رقیب قرار میدهد]صنیعی آباده 1391[.
مقایسه RapidMiner با سایر نرم افزار های مشابهدر اینجا دو نرم افزار مشهور متن باز را با RapidMiner مقایسه خواهیم کرد و معایب و مزایای آنها را بررسی می کنیم.
الف-R
یک زبان برنامه نویسی و یک پکیج داده کاوی به همراه توابع آماری است و بر پایه زبان های s و scheme پیاده سازی شده است. این نرم افزار متن باز، حاوی تکنیک های آماری مانند: مدل سازی خطی و غیرخطی، آزمون های کلاسیک آماری، تحلیل سری های زمانی، دسته بندی، خوشه بندی، و همچنین برخی قابلیت های گرافیکی است. R را می توان در محاسبات ماتریسی نیز بکار برد که این امر منجر به استفاده از آن در علم داده کاوی نیز می شود.
-مزایا:
شامل توابع آماری بسیار گسترده است.
بصورت بسیارمختصر قادر به حل مسائل آماری است.
دربرابر سایر نرم افزار های مرسوم کار با آرایه مانند Mathematica, PL, MATLAB, LISP/Scheme قدرت مند تر است.
با استفاده از ویژگی Pipeline قابلیت ترکیب بالایی را با سایر ابزارها و نرم افزارها دارد.
توابع نمودار مناسبی دارد.
-معایب:
فقدان واسط کاربری گرافیک
فقدان سفارشی سازی لزم جهت داده کاوی
ساختار زبانی کاملا متفاوت نسبت به زبان های برنامه نویسی مرسوم مانندc, PHP, java, vb, c#.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

نیاز به آشنایی با زبانهای آرایه ای
قدیمی بودن این زبان نسبت به رقبا. این زبان در 1990 ساخته شده است.
ب- Scipy
یک مجموعه از کتابخانه های عددی متن باز برای برنامه نویسی به زبان پایتون است که برخی از الگوریتم های داده کاوی را نیز پوشش می دهد.
-مزایا
برای کاربردهای ریاضی مناسب است.
عملیات داده کاوی در این نرم افزار چون به زبان پایتون است راحت انجام می شود.
-معایب
الگوریتم های یادگیری مدل در این کتابخانه هنوز به بلوغ کامل نرسیده اند و درحال تکامل هستند.
برای پیاده سازی الگوریتم های داده کاوی توسط این ابزار باید از ترکیب های متفاوت آنچه در اختیار هست استفاده کرد.
ج-WEKA
ابزار رایج و متن باز داده کاوی است که کتابخانه های آماری و داده کاوی بسیاری را شامل میشود. این نرم افزار بوسیله جاوا نوشته شده است و در دانشگاه وایکاتو در کشور نیوزلند توسعه داده شده است.
-مزایا
دارای بسته های فراوان یادگیری ماشین.
دارای نمای گرافیکی مناسب.
مشخصا به عنوان یک ابزار داده کاوی معرفی شده است.
کار کردن با آن ساده است.
اجرای همزمان چندین الگوریتم و مقایسه نتایج.
همانطور که مشخص شد weka در مقابل دیگر نرم افزار های بیان شده به لحاظ قدرت و کاربر پسندی به Rapidminer نزدیک تر است و شباهت های زیادی به هم دارند زیرا که:
هردو به زبان جاوا نوشته شده اند.
هردو تحت مجوزGPL منتشر شده اند.
Rapidminer بسیاری از الگوریتمهای weka را در خود بارگذاری میکند.
اما weka معایبی نسبت به Rapidminer دارد از جمله اینکه:
در اتصال به فایلهای حاوی داده Excel و پایگاه های داده که مبتنی بر جاوا نیستند ضعیف عمل میکند.
خواندن فایلهای csv به شکل مناسبی سازماندهی نشده است.
به لحاظ ظاهری در رده پایینتری قرار دارد.
در نهایت بعد از بررسی های انجام شده حتی در میان نرم افزار های غیرمتن باز تنها ابزاری که کارایی بالاتری از Rapidminer داشت statistica بود که متن باز نبوده و استفاده از آن نیازمند تقبل هزینه آن است]صنیعی آباده 1391[.
در یازدهمین و دوازدهمین بررسی سالانه KDDnuggets Data Mining / Analytics رای گیری با طرح این سوال که کدام ابزار داده کاوی را ظرف یک سال گذشته برای یک پروژه واقعی استفاده کرده ایددر سال 2010 از بین 912 نفر و در سال 2011 ازبین 1100 نفر انجام شد. توزیع رای دهندگان بدین صورت بوده است:
اروپای غربی 37%
آمریکای شمالی 35%
اروپای شرقی 10%
آسیا 6%
اقیانوسیه 4%
آمریکای لاتین 4%
آفریقا و خاورمیانه %4
نتایج به شرح جدول 3-1 بوده است :
جدول شماره 3-1: نتایج رای گیری استفاده از نرم افزارهای داده کاوی
2011 Vote 2010 Vote Software name
37. 8% 27. 7% Rapidminer
29. 8% 23. 3% R
24. 3% 21. 8% Excel
12. 1% 13. 6% SAS
18. 4% 12. 1% Your own code
19. 2% 12. 1% KNIMe
14. 4% 11. 8% WEKA
1. 6% 10. 6% Salford
6. 3% 8. 5% Statistica
همانطور که نتایج رای گیری مشخص میکند نرم افزار Rapidminer بیشترین استفاده کننده را دارد.
در این پایان نامه نیز عملیات داده کاوی توسط این نرم افزار انجام می شود. ناگفته نماند در قسمتهایی از نرم افزار minitab و Clementine12 نیز برای بهینه کردن پاسخ بدست آمده و بالابردن کیفیت نتایج استفاده شده است.

داده ها داده های مورد استفاده در این پژوهش شامل مجموعه بیمه نامه های شخص ثالث صادر شده استان کهگیلویه و بویراحمد در سال 1390 شمسی بوده که بیمه نامه های منجر شده به خسارت نیز در این لیست مشخص گردیده اند. تعداد کل رکوردها حدود 20 هزار رکورد بوده که از این تعداد تقریباً 7. 5 درصد یعنی حدود 1500 رکوردمنجر به خسارت گردیده اند.
3-2-1- انتخاب دادهداده مورد استفاده در این پژوهش شامل دو مجموعه داده به شرح زیر بوده است:
صدور: اطلاعات بیمه نامه های صادره
خسارت: جزئیات خسارت پرداختی ازمحل هر بیمه نامه که خسارت ایجاد کرده
3-2-2-فیلدهای مجموعه داده صدور
این فیلدها در حالت اولیه 137 مورد به شرح جدول 3-2 بوده است.
3-2-3-کاهش ابعاد
در این پژوهش بخاطر موثرنبودن فیلدهایی اقدام به حذف این مشخصه ها کرده و فیلدهای موثر نهایی به 42 فیلد کاهش یافته که به شرح جدول 3-3 بدست آمده اند. کاهش ابعاد میتواند شامل حذف فیلدهای موثر که دارای اثر بسیار ناچیز درمقابل دیگر فیلدها است نیز باشد.
جدول شماره 3-2: فیلدهای اولیه داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
1 بیمه‌نامه 33 مدت بیمه 65 تعهدمازاد
2 سال‌صدوربیمه‌نامه 34 زمان‌شروع 66 کدنوع‌تعهدسرنشین
3 رشته‌بیمه 35 شغل‌بیمه‌گذار 67 میزان‌تعهدسرنشین
4 نمایش سند 36 سن‌بیمه‌گذار 68 حق‌بیمه‌ثالث‌قانونی
5 مکانیزه 37 سال‌کارت 69 ثالث قانونی+تعدددیات
6 دستی 38 سریال‌کارت 70 حق‌بیمه‌بند4
7 وب‌بنیان 39 کدوسیله‌نقلیه 71 حق‌بیمه‌ماده1
8 نام‌استان 40 کدزیررشته‌آمار 72 حق‌بیمه‌مازاد
9 نام‌شعبه 41 نوع‌وسیله‌نقلیه 73 حق‌بیمه‌سرنشین
10 کدشعبه 42 سیستم 74 مالیات
11 شعبه‌محل‌صدور 43 سال ساخت 75 مازادجانی
12 شعبه 44 رنگ 76 حق‌بیمه‌مازادمالی
13 نمایندگی‌محل‌صدور 45 شماره‌شهربانی 77 عوارض‌ماده92
14 کددولتی 46 شماره‌موتور 78 حق‌بیمه‌دریافتی
15 نمایندگی 47 شماره‌شاسی 79 tadodflg
16 دولتی 48 تعدادسیلندر 80 حق‌بیمه‌تعددخسارت
17 صادره‌توسط شعبه 49 کدواحدظ‌رفیت 81 جریمه‌بیمه‌مرکزی
18 کارمندی 50 ظرفیت 82 حق‌بیمه‌صادره‌شعبه
19 کدصادره‌توسط شعبه 51 شرح‌مورداستفاده 83 حق‌بیمه‌صادره‌نمایندگی
20 سریال‌بیمه‌نامه 52 یدک‌دارد؟ 84 کداضافه‌نرخ‌حق‌بیمه
21 شماره‌بیمه‌نامه 53 اتاق‌وسیله‌نقلیه 85 اضافه‌نرخ‌ثالث
22 نام‌بیمه‌گذار 54 نوع‌پلاک 86 اضافه‌نرخ‌بند4
23 آدرس‌بیمه‌گذار 55 جنسیت 87 اضافه‌نرخ‌مازاد
24 تلفن‌بیمه‌گذار 56 کدنوع‌بیمه‌نامه 88 تعدددیات
25 کدسازمان 57 نوع‌بیمه 89 اضافه‌نرخ‌تعدددیات
26 نام‌سازمان 58 بیمه‌نامه‌سال‌قبل 90 اضافه‌نرخ‌ماده‌یک
27 کدنوع‌بیمه 59 انقضاسال‌قبل 91 دیرکردجریمه
28 cbrn. cod 60 بیمه‌گرقبل 92 کدملی‌بیمه‌گذار
29 نوع‌بیمه 61 شعبه‌قبل 93 صادره‌توسط شعبه
30 تاریخ‌صدور 62 خسارت‌داشته‌؟ 94 نوع‌مستند1
31 تاریخ‌شروع 63 تعهدمالی 95 شماره‌مستند1
32 تاریخ‌انقضا 64 تعهدبدنی 96 تاریخ‌مستند1
ادامه جدول شماره 3-2: فیلدهای اولیه داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
97 مبلغ‌مستند1 111 تخفیف ایمنی 125 کداقتصادی
98 شماره‌حساب1 112 سایرتخفیف ها 126 کدملی
99 بانک1 113 ملاحظات 127 تاریخ‌ثبت
100 نوع‌مستند2 114 نام‌کاربر 128 کدشعبه‌صادرکننده‌اصلی
101 شماره‌مستند2 115 تاریخ‌سند 129 کدنمایندگی‌صادرکننده‌اصلی
102 تاریخ‌مستند2 116 کدشهربانی 130 کدسازمان‌صادرکننده‌اصلی
103 مبلغ‌مستند2 117 شعبه‌محل‌نصب 131 سال
104 شماره‌حساب2 118 کدمحل‌نصب 132 ماه
105 بانک2 119 دستی/مکانیزه 133 نوع
106 تخفیف‌نرخ‌اجباری 120 تیک‌باحسابداری 134 crecno
107 تخفیف‌نرخ‌اختیاری 121 سال‌انتقال 135 type_ex
108 تخفیف عدم خسارت 122 ماه‌انتقال 136 updflg
109 تخفیف صفرکیلومتر 123 sysid 137 hsab_sync
110 تخفیف گروهی 124 trsid کداقتصادی
جدول شماره 3-3: فیلدهای نهایی داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
1 ماه 15 تعهدمازاد 29 تاریخ‌شروع
2 سال 16 تعهدبدنی 30 تاریخ‌صدور
3 کدنمایندگی‌صادرکننده‌اصلی 17 تعهدمالی 31 نام‌سازمان
4 تخفیف گروهی 18 بیمه‌نامه‌سال‌قبل 32 شماره‌بیمه‌نامه
5 تخفیف عدم خسارت 19 نوع‌بیمه 33 کارمندی
6 نوع‌مستند1 20 نوع‌پلاک 34 صادره‌توسط شعبه
7 دیرکردجریمه 21 شرح‌مورداستفاده 35 دولتی
8 کداضافه‌نرخ‌حق‌بیمه 22 ظرفیت 36 نمایندگی‌محل‌صدور
9 حق‌بیمه‌دریافتی 23 تعدادسیلندر 37 خسارتی؟
10 عوارض‌ماده92 24 سال ساخت 38 مبلغ خسارت
11 مالیات 25 سیستم 39 تاریخ ایجادحادثه
12 حق‌بیمه‌سرنشین 26 نوع‌وسیله‌نقلیه 40 بیمه گر زیاندیده اول
13 حق‌بیمه‌مازاد 27 مدت بیمه 41 تعداد زیاندیدگان مصدوم
14 حق‌بیمه‌ثالث‌قانونی 28 تاریخ‌انقضا 42 تعداد زیاندیدگان متوفی
در کاهش ابعاد این مساله برای حذف فیلدهای مختلف نظرات کارشناسان بیمه نیز لحاظ شده است. جدول 3-4 فیلدهای حذف شده و علت حذف آنها را بیان کرده است.
جدول شماره 3-4: فیلدهای حذف شده داده های صدور و علت حذف آنها
نام فیلد حذف شده علت حذف
Crecno-type_ex-updflg-hsab_sync-کدمحل‌نصب-دستی/مکانیزه-تیک‌باحسابداری-سال‌انتقال-ماه‌انتقال-sysid-trsid-کدزیررشته آمار-نمایش سند-مکانیزه-دستی-وب‌بنیان-Cbrn. cod کاربرد آماری
نوع-کد شعبه صادرکننده-شعبه محل نصب-کدشهربانی-سایرتخفیف ها-تخفیف ایمنی-تخفیف صفر کیلومتر-تخفیف نرخ اختیاری-تخفیف نرخ اجباری-خسارت داشته؟-شعبه قبل-جنسیت-کد نوع بیمه نامه-یدک دارد-
اتاق وسیله نقلیه-سن بیمه گذار-شغل بیمه گذار-زمان شروع-کد نوع بیمه دارای مقدار یکسان یا null
کد سازمان صادر کننده-کد نوع تعهد سرنشین-کدواحدظرفیت-کد وسیله نقلیه-کد سازمان-کد صادره توسط-نمایندگی-کد دولتی بجای این کد از فیلد اسمی معادل آن استفاده شده است و یا برعکس زیرا در نتایج خروجی قابل فهم تر خواهد بود.
تاریخ ثبت-تاریخ سند-بیمه گر قبل-مبلغ -مستند 1و2-اضافه‌نرخ‌ثالث-4اضافه‌نرخ‌بند-
اضافه‌نرخ‌مازاد-میزان تعهد سرنشین-تعدددیات-اضافه‌نرخ‌تعدددیات-اضافه‌نرخ‌ماده‌یک-تاریخ مستند1و2-شماره -حساب 1و2-بانک1و2 دارای مقدار تکراری
کدملی-بیمه نامه-کداقتصادی-نوع مستند2-
شماره مستند1و2-نام کاربر-ملاحظات-
کدملی بیمه گذار-شماره شاسی-شماره موتور-
شماره شهربانی-سریال کارت-سال کارت-
نام‌استان-نام‌شعبه-کدشعبه-شعبه‌محل‌صدور
شعبه-سال‌صدوربیمه‌نامه-رشته‌بیمه-رنگ-تلفن بیمه گذار-نام بیمه گذار-آدرس بیمه گذار-سریال بیمه نامه بدون تاثیر
حق‌بیمه‌تعددخسارت-جریمه‌بیمه‌مرکزی-
حق‌بیمه‌صادره‌شعبه-حق‌بیمه‌صادره‌نمایندگی-
مازادجانی-حق‌بیمه‌مازادمالی-حق بیمه ماده1-
حق بیمه ماده4-ثالث قانونی + تعدد دیات- انقضا سال قبل بخشی از فیلد انتخاب شده
جدول 3-5: فیلدهای استخراج شده از داده های خسارت
مبلغ خسارت
تاریخ ایجادحادثه
بیمه گر زیاندیده اول
تعداد زیاندیدگان مصدوم
تعداد زیاندیدگان متوفی
3-2-4- فیلدهای مجموعه داده خسارتاز مجموعه داده خسارت فقط فیلدهای مشخص کننده میزان خسارت و جزئیات لازم استخراج شده است. متاسفانه اطلاعات مفید تری مثل سن راننده مقصر، میزان تحصیلات و. . . در این مجموعه داده وجود نداشته است و چون هنگام ثبت خسارت برای یک بیمه نامه از اطلاعات کلیدی داده های صدور استفاده می شود، با توجه به اینکه از مرحله قبل مهمترین فیلدهای داده های صدور را در دسترس داریم بنابراین با ادغام فیلدهای خسارت و صدور به اطلاعات جامعی در خصوص یک بیمه نامه خاص دسترسی خواهیم داشت. مشخصه ها استخراج شده از داده های خسارت طبق جدول 3-5 است.

3-2-5-پاکسازی داده هاداده ها در دنیای واقعی ممکن است دارای خطا، مقادیر از دست رفته، مقادیر پرت و دورافتاده باشند [Jiawei Han, 2010]. در مرحله پاکسازی با توجه به نوع داده ممکن است یک یا چند روش پاکسازی بر روی داده اعمال شود.
3-2-6- رسیدگی به داده های از دست رفتهدر این قسمت از کار اقدام به رفع Missing data نموده که خود مرحله مهمی از پاکسازی داده بحساب می آید. در مرحله ابتدایی با مرتب سازی تمام ویژگی های قابل مرتب سازی در نرم افزار Microsoft Excel اقدام به کشف مقادیر از دست رفته کرده و از طریق دیگر ویژگی های هر رکورد مقدار از دست رفته را حدس زده ایم. همچنین درحین انتقال داده به محیط داده کاوی مقادیر از دست رفته نیز مشخص می گردند. در بعضی موارد بدلیل تعداد زیاد ویژگی های از دست رفته اقدام به حذف کامل رکورد نمودیم. این کار برای زمانی که داده ها در حجم انبوهی وجود دارند مفید واقع میشوند اما زمانی که تعداد رکوردها کم می باشد اجتناب از این عمل توصیه می شود. برای ویژگی نوع بیمه که از نوع چند اسمی بوده است فقط دو مقدار"کارمندی" و "عادی" وجود داشته که تعداد 49 مورد فاقد مقدار بوده است. کل تعداد بیمه کارمندی 27 مورد بوده است. با توجه به کم بودن تعداد داده های ازدست رفته این فیلد و پس از مقایسه نام بیمه گذاران با اسم کارمندان مشخص شد هیچ کدام از موارد فوق کارمندی نبوده و همه از نوع عادی بوده اند.
از جمله فیلدهای دارای مقادیر از دست رفته و روش رفع ایراد آنها عبارتند از:
سیستم*** 70 مورد***تشخیص با توجه به دیگر ویژگی ها
نوع وسیله نقلیه***33مورد***تشخیص با توجه به دیگر ویژگی ها
شرح مورد استفاده***11مورد***تشخیص با توجه به دیگر ویژگی هاتعدادسیلندر***2مورد***تشخیص با توجه به دیگر ویژگی ها
دولتی***28 مورد***تشخیص از روی پلاک
ماه***130 مورد***تشخیص از روی تاریخ صدور
نوع بیمه***49مورد***تشخیص از روی نام بیمه گذار
تعداد رکوردهایی که مقادیرازدست رفته در چند ویژگی مهم را داشته اند و حذف شده اند حدود 350 مورد بوده است.
3-2-7-کشف داده دور افتادهبعضی از مقادیر بسته به نوع داده علی رغم پرت تشخیص داده شدن مقادیر صحیحی می باشند. بنابراین حذف اینگونه داده ها برای کاستن پیچیدگی مساله میتواند موجب حذف قوانین مهمی در الگوریتم های مبتنی برقانون یا درختهای تصمیم شود. پس بررسی خروجی الگوریتم توسط یک فردخبره در موضوع مساله می تواند مانع از این اتفاق شود. نوع برخورد با داده پرت میتواند شامل حذف داده پرت، تغییر مقدار، حذف رکورد و در مواردی حذف مشخصه باشد.
برای تشخیص داده پرت از نمودار boxplot نرم افزار minitab 15 استفاده گردید. در این نمودار از مفهوم درصدک استفاده میشود که داده های بین 25% تا 75% که به ترتیب با Q1 و Q3 نشان داده می شوند مهم ترین بخش داده ها هستند. X50% نیز میانه را نشان می دهد و با یک خط در وسط نمودار مشخص می شود. Interquartile range (IQR) نیز مفهوم دیگری است که برابر است با IQR = Q3-Q1 .
مقادیر بیشتر از Q3 + [(Q3 - Q1) X 1. 5] و کمتر از Q1 - [(Q3 - Q1) X 1. 5]داده پرت محسوب می شوند. برای انجام اینکار نمودار boxplot را روی تک تک مشخصه های داده ها به اجرا در آورده و نتایج مطابق جدول 3-6 حاصل گردید.
جدول 3-6: نتایج نمودار boxplot
نام فیلد محاسبه مقادیر پرت توضیحات
تعداد زیاندیدگان متوفی Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقدار 1و2 نشان داده شده صحیح می باشد
تعداد زیاندیدگان مصدوم Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 1و2و3 نشان داده شده صحیح می باشد
بیمه گر زیاندیده اول Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقدار 1و2و3و. . . نشان داده شده صحیح می باشد و عدد 99 مقداری صحیح است که به معنی ندارد استفاده میگردد
مبلغ خسارت Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مبلغ خسارت 1.658.398.000 ریال و 900.000.000 ریال واقعا پرداخت گردیده است
تعداد سیلندر Q1=4, Q3=4, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=4
Q1 - [(Q3 - Q1) X 1. 5]=4مقدار 5 به عنوان تعداد سیلندر ناصحیح می باشد
ظرفیت Q1=5, Q3=5, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=5
Q1 - [(Q3 - Q1) X 1. 5]=5 مقادیر بین 1 تا 96 ظرفیتهای منطقی بر اساس تناژ یا سرنشین بوده و صحیح است اما مقدار 750 نا صحیح است
نوع پلاک Q1=3, Q3=3, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=3
Q1 - [(Q3 - Q1) X 1. 5]=3 مقادیر با مفهوم بوده و دور افتاده نیست
بیمه نامه سال قبل Q1=1, Q3=1, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=1
Q1 - [(Q3 - Q1) X 1. 5]=1 مقادیر عددی 0 یا 1 به معنی داشتن یا نداشتن بوده و صحیح است
تعهدات مالی Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقادیر با مفهوم بوده و دور افتاده نیست
حق بیمه ثالث قانونی Q1=1992600, 3=3332500, IQR=1339900
Q3 + [(Q3 - Q1) X 1. 5]=5342350
Q1 - [(Q3 - Q1) X 1. 5]=17250 مقادیر با مفهوم بوده و دور افتاده نیست
حق بیمه مازاد Q1=0, Q3=9100, IQR=9100
Q3 + [(Q3 - Q1) X 1. 5]=22750
Q1 - [(Q3 - Q1) X 1. 5]=13650 مقادیر با مفهوم بوده و دور افتاده نیست
دیرکرد جریمه Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقادیر با مفهوم بوده و دور افتاده نیست
تخفیف عدم خسارت Q1=610080, Q3=1495200, IQR=885120
Q3 + [(Q3 - Q1) X 1. 5]=2822880
Q1 - [(Q3 - Q1) X 1. 5]=717600 مقادیر با مفهوم بوده و دور افتاده نیست
3-2-8-انبوهش دادهبا ادغام کردن داده های صدور و خسارت به خلق ویژگیهای جدیدی دست زده ایم. چون داده ها در دو فایل جدا گانه بوده و حجم داده زیاد بوده است برای ادغام از پرس و جوی نرم افزار Microsoft Access استفاده شد. برای تشخیص بیمه نامه های خسارت دیده از فیلد شماره بیمه نامه که در هردوفایل مشترک بود استفاده کردیم.
3-2-9- ایجاد ویژگی دستهدر این مرحله پس از ادغام ویژگی های مختلف اقدام به ایجاد یک فیلد برای تمام رکوردهایی که منجر به خسارت شده اند می نماییم. این فیلد در الگوریتمهای دسته بندی مورد استفاده قرار خواهد گرفت. برای انجام این کار از یک پر و جوی Microsoft Access استفاده میکنیم.
3-2-10-تبدیل دادهجهت استفاده کاربردی تر از برخی ویژگی ها باید مقادیر آن ویژگی تغییر کند. یک نمونه از این کار تغییر مقدار ویژگی " دیرکرد جریمه " است. مقدار این فیلد مبلغ جریمه دیرکرد بیمه گذار بوده است که با تقسیم این مبلغ به عدد 13000 تعداد روزهای تاخیر در تمدید بیمه نامه افراد مشخص می شود، زیرا به ازای هر روز تاخیر مبلغی حدود 13000ریال در سال 1390 به عنوان جریمه دیرکرد از فرد متقاضی بیمه نامه دریافت می گردید.
3-2-11-انتقال داده به محیط داده کاویپس از انجام پاکسازی، داده باید به محیط داده کاوی منتقل شود. در خلال این انتقال نیاز به تعریف و یا تغییر نوع داده وجود دارد. در طول این تغییر داده ممکن است مقادیری از داده ها بدلیل ناسازگاری و یا دلایل مشابه به عنوان داده از دست رفته مشخص گردد و یا داده از دست رفته ای که قبلاً قابل تشخیص نبوده مشخص گردد. (شکل 3-1)

شکل شماره3-1: داده از دست رفته فیلد" نوع بیمه " پس از انتقال به محیط داده کاوی
3-2-12-انواع داده تعیین شده
پس از انتقال داده به محیط داده کاوی، هر ویژگی به نوع خاصی از داده توسط نرم افزار تشخیص داده شد. پس از آن نوع داده تشخیصی مورد بررسی قرار گرفت و اشتباهات پیش آمده تصحیح گردیدند. همچنین گروهی از ویژگی ها که به هیچ نوع داده ای اختصاص داده نشده بود بصورت دستی به بهترین نوع ممکن اختصاص داده شد. چون برخورد الگوریتم ها با انواع داده ها متفاوت است با توجه به موضوع پژوهش بهترین نوع داده که بتواند نسبت به الگوریتم موثرترواقع شود برای هر ویژگی درنظر گرفته شد.
جدول نوع داده های مورد استفاده در این پژوهش به شرح جدول 3-7 است:
جدول 3-7: انواع داده استفاده شده
نام فیلد نوع فیلد
ماه-سال-کدنمایندگی‌صادرکننده‌اصلی- تعداد زیاندیدگان مصدوم- نوع‌پلاک- ظ‌رفیت- تعدادسیلندر- سال ساخت- مدت بیمه- نمایندگی‌محل‌صدور- تعداد زیاندیدگان متوفی-حق‌بیمه‌ثالث‌قانونی-تعهدمازاد-تعهدبدنی-تعهدمالی Integer
- نوع‌بیمه- شرح‌مورداستفاده- بیمه گر زیاندیده اول نوع‌مستند1- سیستم نوع‌وسیله‌نقلیه- نام‌سازمان-دولتی polynominal
دیرکردجریمه-کداضافه‌نرخ‌حق‌بیمه-حق‌بیمه‌دریافتی-عوارض‌ماده92-مالیات-حق‌بیمه‌سرنشین-حق‌بیمه‌مازاد- تخفیف گروهی-تخفیف عدم خسارت- مبلغ خسارت real
بیمه‌نامه‌سال‌قبل- کارمندی- صادره‌توسط شعبه- خسارتی؟ binominal
تاریخ‌انقضا-تاریخ‌شروع-تاریخ‌صدور- تاریخ ایجادحادثه date
شماره‌بیمه‌نامه text
3-2-13-عملیات انتخاب ویژگیهای موثرتردر برخورد با برخی از الگوریتمها که با بیشتر شدن تعداد ویژگی پیچیدگی بیشتری نیز پیدا میکنند، مانند درختهای تصمیم، svm، Regression و شبکه های عصبی باید از ویژگی های کمتری استفاده کنیم. درکل انتخاب ویژگی برای استفاده در الگوریتم های دسته بندی تکنیک کارآمدی است. دراینجا ازتکنیکهای کاهش ویژگی و یا وزن دهی استفاده کرده و فیلدهای منتخبی که وزن بیشتری را دارند به عنوان ورودی الگوریتمها انتخاب گردیدند.
با توجه به اینکه احتمال ارزش دهی به یک ویژگی در تکنیکهای مختلف متغیر است و ممکن است ویژگی خاصی توسط یک تکنیک باارزش قلمداد شده و توسط تکنیکی دیگر بدون ارزش تلقی شود، نتیجه تمام تکنیکها Union, شده و فیلدهای حاصل به عنوان ورودی الگوریتم مشخص گردید.
3-3-نتایج اعمال الگوریتم PCA و الگوریتم های وزن دهی
نتایج حاصل از این تکنیک ها در شکل های 3-2 الی3-5 نمایش داده شده است.

شکل 3-2: نتایج الگوریتمPCA
در ارزشدهی به ویژگی ها

شکل 3-3: نتایج الگوریتم SVM Weighting
در ارزشدهی به ویژگی ها

شکل 3-4: نتایج الگوریتم
Weighting Deviation در ارزشدهی به ویژگی ها

شکل 3-5: نتایج الگوریتم Weighting Correlation
در ارزشدهی به ویژگی ها
3-4-ویژگی های منتخب جهت استفاده در الگوریتمهای حساس به تعداد ویژگیلازم به توضیح است در تمام الگوریتمهایی که از 24 ویژگی جدول 3-8 استفاده شده است از تمام ویژگی ها نیز استفاده شده و نتایج با هم مقایسه گردیده اند و مشخص شد که وجود برخی ویژگی ها که در آن جدول قرار ندارند باعث کاهش دقت الگوریتم شده و در برخی الگوریتم ها نیز تفاوتی میان دو مقایسه مشخص نشد.
جدول 3-8: نتایج حاصل از اجتماع فیلدهای با بالاترین وزن در الگوریتمهای مختلف
نام فیلد نوع فیلد
تعهدمازاد- تعهدبدنی- تعهدمالی- نوع‌پلاک- ظ‌رفیت- تعدادسیلندر- سال ساخت- مدت بیمه- تعداد زیاندیدگان مصدوم- تعداد زیاندیدگان متوفی Integer
شرح‌مورداستفاده- سیستم- نوع‌وسیله‌نقلیه- بیمه گر زیاندیده اول polynominal
دیرکردجریمه- کداضافه‌نرخ‌حق‌بیمه- حق‌بیمه‌دریافتی- مالیات- حق‌بیمه‌سرنشین- حق‌بیمه‌ثالث‌قانونی- مبلغ خسارت real
بیمه‌نامه‌سال‌قبل- کارمندی- صادره‌توسط شعبه binominal
3-5-معیارهای ارزیابی الگوریتمهای دسته بندیدر این بخش توضیحاتی درخصوص چگونگی ارزیابی الگوریتم های دسته بندی و معیار های آن ارائه خواهد شد.
3-6-ماتریس درهم ریختگیماتریس در هم ریختگی چگونگی عملکرد دسته بندی را با توجه به مجموعه داده ورودی به تفکیک نشان میدهد که:
TN: تعدادرکوردهایی است که دسته واقعی آنها منفی بوده و الگوریتم نیز دسته آنها را به درستی منفی تشخیص داده است.
FP: تعدادرکوردهایی است که دسته واقعی آنها منفی بوده و الگوریتم دسته آنها را به اشتباه مثبت تشخیص داده است.
FN: تعدادرکوردهایی است که دسته واقعی آنها مثبت بوده و الگوریتم دسته آنها را به اشتباه منفی تشخیص داده است.
TP: تعدادرکوردهایی است که دسته واقعی آنها مثبت بوده و الگوریتم نیز دسته آنها را به درستی مثبت تشخیص داده است.
جدول 3-9: ماتریس در هم ریختگی
رکوردهای تخمینی(Predicted Records)
دسته+ دسته- FP TN دسته-
TP FN دسته+
1903095210185رکوردهای واقعی(Actual Records)
00رکوردهای واقعی(Actual Records)

مهمترین معیار برای تعیین کارایی یک الگوریتم دسته بندی معیاردقت دسته بندی است. این معیارنشان می دهد که چند درصد ازکل مجموعه رکوردهای آموزشی بدرستی دسته بندی شده است.
دقت دسته بندی بر اساس رابطه زیر محاسبه می شود:
CA=TN+TPTN+FN+TP+FP3-7-معیار AUCاین معیار برای تعیین میزان کارایی یک دسته بند بسیار موثر است. این معیار نشان دهنده سطح زیر نمودار ROC است. هرچقدرعدد AUC مربوط به یک دسته بند بزرگتر باشد، کارایی نهایی دسته بند مطلوب تر است. در ROC نرخ تشخیص صحیح دسته مثبت روی محور Y و نرخ تشخیص غلط دسته منفی روی محورX رسم میشود. اگر هر محور بازه ای بین 0و1 باشد بهترین نقطه در این معیار (0, 1) بوده و نقطه (0, 0) نقطه ای است که دسته بند مثبت و هشدار غلط هیچگاه تولید نمی شود.
3-8-روشهای ارزیابی الگوریتم های دسته بندیدر روشهای یادگیری با ناظر، دو مجموعه داده مهم به اسم داده های آموزشی و داده های آزمایشی وجود دارند. چون هدف نهایی داده کاوی روی این مجموعه داده ها یافتن نظام حاکم بر آنهاست بنابراین کارایی مدل دسته بندی بسیار مهم است. از طرف دیگر این که چه بخشی از مجموعه داده اولیه برای آموزش و چه بخشی به عنوان آزمایش استفاده شود بستگی به روش ارزیابی مورد استفاده دارد که در ادامه انواع روشهای مشهور را بررسی خواهیم کرد]صنیعی آباده 1391[.
روش Holdoutدر این روش چگونگی نسبت تقسیم مجموعه داده ها بستگی به تشخیص تحلیلگر داشته اما روش های متداول ازنسبت 50-50 و یا دو سوم برای آموزش و یک سوم برای آزمایش و ارزیابی استفاده میکنند.
مهم ترین حسن این روش سادگی و سرعت بالای عملیات ارزیابی می باشد اما معایب این روش بسیارند. اولین ایراد این روش آن است که بخشی از مجموعه داده اولیه که به عنوان داده آزمایشی است، شانسی برای حضور در مرحله آموزش ندارد. بدیهی است مدلی که نسبت به کل داده اولیه ساخته می شود، پوشش کلی تری را بر روی داده مورد بررسی خواهد داشت. بنابراین اگر به رکوردهای یک دسته در مرحله آموزش توجه بیشتری شود به همان نسبت در مرحله آزمایش تعدادرکوردهای آن دسته کمتر استفاده می شوند.
دومین مشکل وابسته بودن مدل ساخته شده به، نسبت تقسیم مجموعه داده ها است. هرچقدر داده آموزشی بزرگتر باشد، بدلیل کوچکتر شدن مجموعه داده آزمایشی دقت نهایی برای مدل یادگرفته شده غیرقابل اعتماد تر خواهد بود. و برعکس با جابجایی اندازه دو مجموعه داده چون داده آموزشی کوچک انتخاب شده است، واریانس مدل نهایی بالاتربوده و نمی توان دانش کشف شده را به عنوان تنها نظم ممکن درمجموعه داده اولیه تلقی کنیم.
روش Random Subsamplingاگر روش Holdout را چند مرتبه اجرا نموده و از نتایج بدست آمده میانگین گیری کنیم روش قابل اعتماد تری را بدست آورده ایم که Random Subsampling نامیده می شود.
ایراد این روش عدم کنترل بر روی تعداد استفاده از یک رکورد در آموزش یا ارزیابی می باشد.
3-8-3-روش Cross-Validationاگر در روش Random Subsampling هرکدام از رکوردها را به تعداد مساوی برای یادگیری و تنها یکبار برای ارزیابی استفاده کنیم روشی هوشمندانه تر اتخاذ کرده ایم. این روش در متون علمی Cross-Validation نامیده می شود. برای مثال مجموعه داده را به دوقسمت آموزش و آزمایش تقسیم میکنیم و مدل را بر اساس آن می سازیم. حال جای دوقسمت را عوض کرده و از مجموعه داده آموزش برای آزمایش و از مجموعه داده آزمایش برای آموزش استفاده کرده و مدل را می سازیم. حال میانگین دقت محاسبه شده به عنوان میانگین نهایی معرفی می شود. روش فوق 2-Fold Cross Validation نام دارد. اگر بجای 2 قسمت مجموعه داده به K قسمت تقسیم شود، و هر بار با K-1 قسمت مدل ساخته شود و یک قسمت به عنوان ارزیابی استفاده شود درصورتی که این کار K مرتبه تکرار شود بطوری که از هر قسمت تنها یکبار برای ارزیابی استفاده کنیم، روش K-Fold Cross Validation را اتخاذ کرده ایم. حداکثر مقدار k برابر تعداد رکوردهای مجموعه داده اولیه است.
3-8-4-روش Bootstrapدر روشهای ارزیابی که تاکنون اشاره شدند فرض برآن است که عملیات انتخاب نمونه آموزشی بدون جایگذاری صورت می گیرد. درواقع یک رکورد تنها یکبار در یک فرآیند آموزشی شرکت داده می شود. اگر یک رکورد بیش از یک مرتبه در عملیات یادگیری مدل شرکت داده شود روش Bootstrap را اتخاذ کرده ایم. در این روش رکوردهای آموزشی برای انجام فرآیند یادگیری مدل ازمجموعه داده اولیه به صورت نمونه برداری با جایگذاری انتخاب خواهند شد و رکوردهای انتخاب نشده جهت ارزیابی استفاده می شود.
3-9-الگوریتمهای دسته بندیدر این بخش به اجرای الگوریتم های دسته بندی پرداخته و نتایج حاصل را مشاهده خواهیم کرد.
درالگوریتمهای اجرا شده از هر سه روش Holdout, k fold Validation, Bootstrap استفاده شده است و نتایج با هم مقایسه شده اند. در روشHoldout که در نرم افزار با نام Split Validation آمده است از نسبت استاندارد آن یعنی 70 درصد مجموعه داده اولیه برای آموزش و 30 درصد برای آزمایش استفاده شده است. برای k fold Validation مقدار k برابر 10 درنظر گرفته شده است که مقدار استانداردی است. در Bootstrap نیز مقدار تقسیم بندی مجموعه داده برابر 10 قسمت درنظر گرفته شده است. مقدار local random seed نیز برابر عدد 1234567890 می باشد که برای همه مدلها، نرم افزار از آن استفاده می کند مگر اینگه در مدل خاصی عدم استفاده از آن ویا تغییر مقدارموجب بهبود عملکرد الگوریتم شده باشد که قید میگردد. اشکال 3-6و3-7 چگونگی استفاده از یک مدل ارزیابی را در Rapidminer نشان می دهد.

شکل 3-6: نمای کلی استفاده از روشهای ارزیابی

شکل 3-7: نمای کلی استفاده از یک مدل درون یک روش ارزیابی
الگوریتم KNNدر انتخاب مقدار k اعداد بین 1 تا 20 و همچنین اعداد 25 تا 100 با فاصله 5 آزمایش شدند. بهترین مقدار عدد 11 بوده است.
پس از اجرای الگوریتم، بهترین نتیجه مربوط به ارزیابی Split Validation با دقت91.23%بوده است. نمودار AUC آن در شکل 3-8 ترسیم شده است.
25768302223135آستانه قابل قبول
020000آستانه قابل قبول
716280-63500دسته مثبت
020000دسته مثبت

شکل 3-8: نمودار AUC الگوریتم KNN
الگوریتم Naïve Bayesاین الگوریتم پارامترخاصی برای تنظیم ندارد.
بهترین نتیجه مربوط به ارزیابی Split Validation با دقت 96.09% بوده است. نمودار AUC آن در شکل 3-9 ترسیم شده است.
22872701749425آستانه قابل قبول
020000آستانه قابل قبول
7689856985دسته مثبت
020000دسته مثبت

شکل 3-9: نمودار AUC الگوریتم Naïve Bayes
الگوریتم Neural Networkتکنیک شبکه عصبی استفاده، مدل پرسپترون چندلایه با 4 نرون در یک لایه نهان بوده است.
تنظیمات الگوریتم شبکه عصبی به شرح زیر بوده است:
Training cycles=500
Learning rate=0.3
Momentum=0.2
Local random seed=1992
چون این الگوریتم فقط از ویژگیهای عددی پشتیبانی می کند، از عملگرهای مختلفی برای تبدیل مقادیر غیرعددی به عدد استفاده شده است. به همین دلیل تنها از روش Split validation با نسبت 70-30برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام گرفت.
شکل3-10 عملیات انجام شده را نشان می دهد.

شکل 3-10: تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی
نتیجه اجرای الگوریتم Neural Network دقت 91.25%بوده ماتریس آشفتگی آن و نمودار AUC در شکل 3-11 رسم شده است.

29222702265680آستانه قابل قبول
020000آستانه قابل قبول
725170-55245دسته مثبت
020000دسته مثبت

شکل 3-11: نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net
الگوریتم SVM خطیدر این الگوریتم نیز بدلیل عدم پشتیبانی از نوع داده اسمی از عملگرهای مختلفی برای تبدیل مقادیر غیرعددی به عدد استفاده شده است. به همین دلیل تنها از روش Split validation با نسبت 70-30 برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام شد.
شکل3-12 عملیات انجام شده را نشان می دهد.

شکل 3-12: تبدیل ویژگی های غیر عددی به عدد در الگوریتم SVM خطی
پارامترهای الگوریتم عبارتند از :
Kernel cache=200
Max iteretions=100000
نتیجه حاصل از اجرای الگوریتم SVM خطی دقت 98.54% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-13 رسم شده است.

25711152215515آستانه قابل قبول
020000آستانه قابل قبول
1045845-111760دسته مثبت
020000دسته مثبت

شکل 3-13 : نمودار AUC الگوریتم SVM Linear
3-9-5-الگوریتم رگرسیون لجستیک
در این الگوریتم از روش Split validation با نسبت 70-30برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام شد.
نتیجه حاصل از اجرای الگوریتم رگرسیون لجستیک دقت 98.54% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-14 رسم شده است.

25482552319020آستانه قابل قبول
020000آستانه قابل قبول
974725-249555دسته مثبت
020000دسته مثبت

شکل 3-14 : نمودار AUC الگوریتم رگرسیون لجستیک
3-9-6- الگوریتم Meta Decision Treeدر این الگوریتم که یک درخت تصمیم است، از روش Split validationبا نسبت 70-30 برای ارزیابی استفاده شده است که دقت 96.64% اقدام به پیش بینی خسارت احتمالی نموده است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-15 رسم شده است.

26714452353945آستانه قابل قبول
020000آستانه قابل قبول
835660-73660دسته مثبت
020000دسته مثبت

شکل 3-15 : نمودار AUC الگوریتم Meta Decision Tree
با توجه به اندازه بزرگ درخت خروجی فقط قسمتی از آن در شکل 3-16 بصورت درخت نمایش داده می شود. در شکل 3-17 درخت بصورت کامل آمده است اما نتایج آن در فصل چهارم مورد تفسیر قرار خواهند گرفت.

شکل 3-16 : قسمتی از نمودارtree الگوریتم Meta Decision Tree

شکل 3-17 : نمودار --ial الگوریتم Meta Decision Tree
3-9-7-الگوریتم درخت Wj48چون RapidMiner توانایی استفاده ازالگوریتمهای نرم افزار WEKA را نیز دارد، در بسیاری از الگوریتم ها قدرت مند تر عمل میکند. Wj48 نسخه WEKA از الگوریتمj48 است.
پارامترهای این الگوریتم عبارتند از:
C=0.25
M=2
در این الگوریتم از روش ارزیابی 10 Fold Validation استفاده شده است و دقت پیش بینی آن برابر 99.52% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-18 رسم شده است. نمای درخت در شکل 3-19 ترسیم شده است.

35471102441575آستانه قابل قبول
020000آستانه قابل قبول
908685160020دسته مثبت
020000دسته مثبت

شکل 3-18: نمودار AUC الگوریتم Wj48

—d1193

2-1-9 مزایا و معایب نهان نگاری31
2-2 تبدیل فوریه گسسته33
2-2-1 فضای فرکانس34
2-2-2 تبدیل فوریه دو بعدی35
2-2-3 فیلتر حوزه فرکانس36
2-3 استخراج ویژگی های محلی تصویر با الگوریتم SIFT 37
2-3-1 آشکارسازی نقاط اکسترمم در فضای مقیاس38
2-3-2 نسبت دادن جهت41
2-4 نسل دوم تکنیکهای نهان نگاری مقاوم در برابر اعوجاجات هندسی42
2-4-1 تکنیکهای نهان نگاری مبتنی بر گشتاور تصویر44
2-4-2 تکنیکهای نهان نگاری مبتنی بر هیستوگرام45
2-4-3 تکنیکهای نهان نگاری مبتنی بر استخراج نقاط ویژگی46
3- فصل سوم :روش تحقیق
3-1 روش تولید واترمارک48
3-2 محل جایگذاری واترمارک49
3-3 نحوه جایگذاری واترمارک52
3-4 آشکارسازی واترمارک57
4-فصل چهارم:پیاده سازی
4-1 پیاده سازی الگوریتم62
4-2 نتایج تجربی و ارزیابی62
4-2-1 تست نامریی بودن واترمارک62
4-2-2 تست چرخش64
4-2-3 تست تغییر مقیاس65
4-2-4 تست فیلتر گوسی66
4-2-5 تست نویز نمک و فلفل67
4-2-6 تست نویز گوسی68
4-2-7 تست تغییر کنتراست تصویر69
4-3 مقایسه با سایر روشها 70
5- فصل پنجم نتیجه گیری و پیشنهادات 72
منابع73
Abstract 76
فهرست جداول

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

جدول 2-1 نقاط قوت وضعف حوزه های مختلف جایگذاری20
جدول 4-1 مقایسه روش پیشنهادی با روش] [3870
فهرست تصاویر و نمودارها
شکل2-1 :روش نهان نگاری13
شکل2-2 :حذف تصویردرتایید صحت اثر15
شکل 2-3 :یک سیستم نهان نگاری16
شکل 2-4 :آشکارسازی واترمارک پس ازحمله17
شکل 2-5 :انواع نهان نگاری23
شکل 2-6: مزایای روش فضای فرکانسی سیگنال33
شکل 2-7 :محتوی فرکانسی سیگنال 34
شکل 2-8 :مفهوم گرافیکی توابع هارمونیک35
شکل 2-9 :عملکرد فیلترینگ در حوزه فرکانسی36
شکل 2-10 :فرآیند پایه فیلتر فرکانسی37
شکل 2-11 :شمایی از مراحل ا الگوریتم SIFT تا مرحله اکسترمم یابی40
شکل 2-12:نحوه مقایسه نقاط و بدست آوردن نقاط اکسترمم40
شکل 2-13:نحوه تعیین بردار مشخصه برای هر ویژگی42
شکل 3-1:واترمارک تولید شده48
شکل 3-2:تصویر میزبان50
شکل 3-3:نقاط استخراج شده توسط الگوریتم SIFT50
شکل 3-4:انتخاب فرکانس میانی در تبدیل فوریه تصویر51
شکل 3-5:مختصات نقاط استخراجی توسط الگوریتم SIFT51
شکل 3-6:بلاک دیاگرام فرآیند جایگذاری واترمارک52
شکل 3-7:تصویر نهایی Wm 55
شکل 3-8: قسمت حقیقی دامنه بعد از جایگذاری55
شکل 3-9:تصویر واترمارک شده56
شکل 3-10:بلاک دیاگرام فرآیند آشکارسازی57
شکل 3-11:نقاط استخراج شده توسط اSIFT در تصویرواترمارک شده58
شکل 4-1:تصویر میزبان62
شکل 4-2:تصویر واتر مارک شده63
شکل 4-3:تصویر واترمارک بعد از چرخش64
شکل 4-4:نمودار همبستگی مابین واترمارک و واترمارک استخراجی64
شکل 4-5:تصویر واترمارک شده با تغییر مقیاس 0.765
شکل4-6: نمودار همبستگی مابین واترمارک و واترمارک استخراجی65
شکل4-7:تصویرواترمارک شده پس از اعمال فیلتر گوسی66
شکل 4-8: نمودار همبستگی مابین واترمارک و واترمارک استخراجی66
شکل 4-9:تصویر واترمارک شده با نویز نمک و فلفل67
شکل 4-10: نمودار همبستگی مابین واترمارک و واترمارک استخراجی67
شکل 4-11:تصویر واترمارک شده با نویز گوسی68
شکل 4-12: نمودار همبستگی مابین واترمارک و واترمارک استخراجی68
شکل 4-13:تصویرواترمارک شده با تغییر کنتراست69
شکل 4-14: نمودار همبستگی مابین واترمارک و واترمارک استخراجی69
چکیده:
گسترش روز افزون فناوری دیجیتال و استفاده از آن، انسانها را به سوی جهان دیجیتال و ارتباطات از طریق داده های دیجیتالی سوق داده است. سهولت دسترسی به منابع دیجیتال و امکان توزیع و کپی برداری غیر مجاز آن یک چالش مهم در حفاظت ازحق مالکیت داده های دیجیتالی بوجود آورده است. نهان نگاری دیجیتالی بعنوان یک راه حل برای این مسئله مطرح می شود.نهان نگاری دیجیتالی یعنی قرار دادن یک سیگنال نامحسوس در بین داده های رسانه میزبان، بطوریکه هیچ گونه تغییر در دادههای اصلی نداشته باشد ولی در صورت نیاز بتوان آنرا استخراج کرده و بعنوان ادعا برای مالکیت اثر دیجیتالی استفاده نمود. دراین طرح یک الگوریتم ترکیبی برای نهان نگاری غیر قابل مشاهده تصاویر دیجیتال در حوزه تبدیل فوریه گسسته واستفاده از الگوریتم SIFT ارائه شده است این الگوریتم از اعداد تصادفی در تصویر نهان نگاری استفاده می کند.. روش پیشنهادی نا بینا می باشد، یعنی برای تشخیص وجود تصویر واترمارک نگاری به اطلاعات تصویر میزبان اصلی نیاز ندارد و فقط به تصویر واتر مارک اصلی احتیاج دارد .برای بررسی و ارزیابی روش پیشنهادی، پارامترهای PSNR و میانگین مربع خطا ها و ضریب همبستگی مورد مطالعه قرار گرفته است. بررسی تحلیلی نشان می دهدکه الگوریتم پیشنهادی در برابر حملات رایج و حملات هندسی در مقایسه توانمند ومقاوم است.
کلمات کلیدی: نهان نگاری ، حوزه تبدیل فوریه ، الگوریتم SIFT
فصل اول
مقدمه و کلیات تحقیق
در این فصل ابتدا نهان نگاری دیجیتالی و مساله حفاظت از حق مالکیت داه های دیجیتالی و اهمیت آن ذکر می شود سپس اهداف طرح توضیح داده میشود. در ادامه سوالات و فرضیه های تحقیق و نوآوریهای الگوریتم پیشنهادی بیان می شود و درباره کلمات کلیدی تحقیق توضیحاتی ارائه می شود. در پایان ساختار طرح ذکر شده است.
1-1)مقدمه
در طول تاریخ و از زمانی که انسانها قادر به ارتباط با یکدیگر شدند امکان بر قراری ارتباط مخفیانه یک خواسته مهم بشمار می آمد. گسترش روز افزون اینترنت و رشد سریع استفاده از آن، انسانها را به سوی جهان دیجیتال و ارتباطات از طریق داده های دیجیتالی سوق داده است. در این میان امنیت ارتباط یک نیاز مهم است و هر روزه نیاز به آن بیشتر احساس می شود.
به طور کلی دو روش برای ارتباط پنهانی وجود دارد. در روش اول که رمز نگاری است، اطلاعات به طریقی رمز نگاری می شوند تا برای شخص ثالث قابل فهم نباشند اما فرستنده و گیرنده با استفاده از کلید مشترک می توانند اطلاعات مورد نظر را رمزگشایی کنند. تصور می شود که با کد کردن پیام مورد مبادله، ارتباط امن است ولی در عمل تنها رمز کردن کافی نیست و به همین دلیل روش های دیگری برای پنهان کردن داده ها به جای کد کردن آن ارائه شدند. روش دوم استانوگرافی می باشد که در لغت به معنای "نوشتار استتار شده" است و در واقع پنهان کردن ارتباط بوسیله قرار دادن پیام در یک رسانه پوششی است بگونه ای که کمترین تغییر قابل کشف را در آن ایجاد نماید و نتوان موجودیت پیام پنهان در رسانه را حتی به صورت احتمالی کشف کرد. روش دیگر پنهان کردن داده ها، نهان نگاری از ترکیب دو کلمه واتر+ مارکینگ است و به معنی نشانه گذاری یا نقش بر آب می باشد استگانوگرافی را نباید با فرآیند واترمارکینگ یا نقشاب سازی داده ها اشتباه گرفت، با وجود آنکه اهداف اصلی آنها یکسان هستند.
افزایش ناگهانی علاقه به نهان نگاری بعلت نگرانی از حفظ کپی رایت آثار بوجود آمد.اینترنت با معرفی جستجوگر صفحات وب در سال 1993 بسیار کاربردی شده بود . به آسانی موزیک ، تصویر و ویدئو در دسترس بودند و دانلود می شدند . همانطور که می دانیم اینترنت یک سیستم توزیع پیشرو برای واسط های دیجیتال است زیرا هم ارزان است و هم با سهولت و آنی در دسترس می باشد .این سهولت دسترسی صاحبان اثر بخصوص استادیو های بزرگی مانند هالیوود را در معرض خطر نقض کپی رایت قرار داد.
خطر سرقت توسط سیستمهای ضبط دیجیتال با ظرفیت بالا شدت گرفته است .در زمانی تنها راه برای مشتریان کپی یک آهنگ یا فیلم بر روی نوارهای آنالوگ بود معمولا کپی محصول کیفیت کمتری داشت ولی امروزه کپی دیجیتال آهنگ و فیلم تقریبا بدون هیچ کاهش کیفیتی صورت می گیرد .و گستردگی اینترنت و این تجهیزات ضبط سرقت آثار بدون اجازه مالک اثر را افزایش داده است بهمین دلیل صاحبان اثر بدنبال تکنولوژی و راهی هستند که از حقوقشان حمایت نماید.دیگر روشهای قدیمی رمزنگاری برای جلوگیری از استفاده غیر مجاز حملات بداندیشانه کارایی لازم را نخواهند داشت. در این شرایط گنجاندن داده، به صورت غیرمحسوس، برای جلوگیری از استفاده های غیرمجاز از پتانسیل تجاری بالایی برخوردار است . لذا برای غلبه بر این مشکل، نهان نگاری دیجیتال مطرح شده است. نهان نگاری دیجیتال اهداف گوناگونی مانند اثبات حق مالکیت ، احراز اصالت محتوی و کنترل تعداد نسخه های چاپ شده از یک اثر را محقق ساخته است.
با توجه به اینکه نهان نگاری در طیف گسترده ای از رسانه های دیجیتالی و با اهداف خاصی طراحی می شوند لذا با توجه به موارد کاربردی در دسته های مختلفی طبقه بندی می شوند. با وجود تفاوت در اعمال روش های نهان نگاری دیجیتال، همه روش ها در داشتن امنیت بالا دارای نقطه اشتراک هستند. با توجه بهمی شوند لذا با توجه به موارد کاربردی در دسته های مختلفی طبقه بندی می شوند. با وجود تفاوت در اعمال روش های نهان نگاری دیجیتال، همه روش ها در داشتن امنیت بالا دارای نقطه اشتراک هستند. با توجه به دامنه وسیع کاربرد تکنیک های نهان نگاری، آنها را می توان به صورت زیر طبقه بندی نمود:
طبقه بندی با توجه به حوزه کاری (حوزه فرکانس یا حوزه مکان)، با توجه به نوع اثر (متن،صدا، تصویر) و با توجه به ادراک و آگاهی انسانی (سیستم بینایی و یا شنوایی) ؛ باتوجه به برنامه های کاربردی
تکنیک های نهان نگاری در حوزه فرکانس و حوزه مکان یکی از معروفترین روش های نهان نگاری می باشند. در روش های حوزه مکان برای گنجاندن شی دیجیتال مورد نظر مقادیر پیکسل ها بطور مستقیم دستکاری می شود. این روش پیچیدگی کمتری دارند، شکننده ترند و قوی نیستند، اما در روش های حوزه فرکانس ابتدا تصاویر به یکی از حوزه های فرکانسی انتقال یافته و سپس پنهان نگاری با دستکاری مقادیر درحوزه فرکانس انجام می گیرد و در نهایت تصویر به حوزه مکان باز گردانده می شود. روش های نهان نگاری حوزه فرکانس که عموماً در الگوریتم های نهان نگاری تصاویر دیجیتال مورد استفاده قرار می گیرد شامل انتقال های زیر است: دامنه تبدیل کسینوسی گسسته) (DCT ، تبدیل فوریه گسسته (DFT)، دامنه تبدیل موجک گسسته(DWT) از جمله معروفترین روش های نهان نگاری دیجیتالی است که بسیار پر کاربرد می باشد
در این پایان نامه ، یک الگوریتم جدید نهان نگاری تصاویر دیجیتال مبتنی بر استخراج ویژگی های محلی که در حوزه فرکانس کار میکند پیشنهاد شده است ابتدا بخش فرکانس تصویر توسط ی تبدیل فوریه بدست می اید و سپس یک الگوریتم استخراج ویژگی که نقاط کلیدی ویژگی را برای زیر تصویر در حوزه فرکانس محاسبه می کند استفاده می شود.این نقاط کلیدی انتخاب شده ناحیه قرار گیری نهان نگاری می باشند.این روش از مزایای روش انتخاب ویژگی ها محلی و تبدیل فوریه سود می برد .
1-2 )بیان مساله
امروزه با رشد سریع اینترنت و فناوریهای چندرسانهای دیجیتال، نسخه برداری از داده ها بدون هیچ افت کیفیت و با هزینه های بسیار اندک امکانپذیر شده است. بدین ترتیب بهره گیری از آثار دیجیتال بدون رعایت حق نشر، دستکاری اسناد به راحتی امکان پذیر می باشد. در همین راستا هر روز نیاز های امنیتی متنوعتری مطرح می شود. نهان نگاری یکی از روش هایی است که برای پاسخگویی به این نیاز بکار میرود. بعنوان مثال شما میتوانید برای جلوگیری از انتشار غیرقانونی محتوا و فایلهای دیجیتالی تولیدی تان از این روش استفاده کنید. فرض کنید که یک تصویر یا فایل متنی تولید کرده اید؛ با استفاده از این روش میتوانید کپی رایت اثر خود را در فایل مربوطه پنهان کنید، تا در صورت لزوم بعداً بتوانید از حق خود دفاع کنید. نهان نگاری زمینه های کاربردی فراوانی دارد، بیشترین کاربرد آن در حک کردن اسم ها و امضاها برروی تصاویر و ویدئو ها و صداها و... می باشد به طوری که مشخص نخواهد بود. در اینصورت هر گونه استفاده غیر مجاز از رسانه دیجیتالی واترمارک شده، مانند کپی غیر مجاز از آن و یا هرگونه تحریف و تغییر تصویر توسط افراد غیر مجاز، صاحب اصلی داده می تواند با استخراج سیگنال واترمارک، که تنها توسط اوامکان پذیر است، مالکیت خود را به اثبات برساند و یا محل تغییرات صورت گرفته بر روی داده دیجیتالی را مشخص کند.
سیستم های نهان نگاری دیجیتال بر اساس کاربردهایشان توسعه یافته اند. نمونه از موارد کاربردی نهان نگاری دیجیتالی عبارتست از : حفاظت از حق مالکیت، تایید محتوا، کنترل کپی و کنترل طریقه استفاده، توصیف محتوا، نهان کردن داده های مختلف با امکان رد گیری، ارتباطات مخفیانه و پنهان سازی داده و...حفاظت از حقوق مالکیت داده های دیجیتال یکی از مهم ترین کاربردهای نهان نگاری می باشد. در حیطۀ حفاظت حق مالکیت اثر دیجیتال و احراز اصالت اثر دیجیتال، تکنیکهای بسیاری به منظور تشخیص تغییرات غیر مجاز معرفی شده و توسعه یافته اند. استخراج علامت نهان نگاری از یک تصویر نهان نگاری شده برای اثبات حق مالکیت کافی نیست زیرا در کاربردهای مختلف همواره نیت های خرابکارانه برای تهدید امنیت روش های نهان نگاری وجود دارد لذا یک مسئله مهم برای طرح های نهان نگاری دیجیتال استحکام در برابر حملات است زیرا ممکن است یک خرابکار بوجود پیام مخفی در رسانه دیجیتالی پی ببرد و در صدد کشف و شناسایی آن بربیاید .در برخی موارد ممکن است خرابکار علامت نهان نگاری را از بین برده یا آنرا جعل نماید. به همین دلیل می توان میزان سودمندی داده نهان نگاری شده مورد حمله قرار گرفته را با روش های گوناگونی مورد بررسی قرار داد مثلا کیفیت ادراکی آنرا اندازه گیری نموده و مقدار از بین رفتن علامت نهان نگاری را می توان با معیارهای از قبیل احتمال از دست رفتن، احتمال خطای بیتی، یا ظرفیت کانال، اندازه گیری کرد. محققان نشان داده اند که روش های نهان نگاری موجود قادر به ارائه پاسخ روشنی به اثبات حقوق مالکیت نیستند و همچنین برای بسیاری از این روش ها، حمله جعل کردن وجود دارد
1-3 )ضرورت و اهمیت تحقیق
با گسترش استفاده از کامپیوتر و اینترنت، دسترسی و تبادل داده های دیجیتال کار بسیار آسانی شده است. یکی از مشکلات واقعی که در این زمینه مطرح شده است، بازتولید غیر قانونی اطلاعات دیجیتالی میباشد. این مشکل، پرسش ها و نگرانی هایی در رابطه با حقوق مالکیت مطرح می کند. نهان نگاری دیجیتالی یک راه حل برای این مشکل فراهم می کند
یکی از چالش های مهم در الگوریتم های نهان نگاری دیجیتالی اثبات حق مالکیت می باشد. اکثر الگوریتم های موجود نسبت به ارائه راهکار مناسب برای این مسئله عاجزند و این مسئله یک خلا تحقیقاتی را نمایان می کند. همچنین افزایش ضریب امنیت و توانمندی تصاویردیجیتالی نهان نگاری شده در برابر حملات تخریبی یکی دیگر از مسائل مورد بحث می باشد.
اکثر پژوهشگران با توجه به راه حل های پیشنهادی خود بر این باورند که سایر الگوریتم های نهان نگاری دارای ضعف هستند و اختلاف آرا در این زمینه وجود دارد. لذا مقایسه و بررسی الگوریتم پیشنهادی با سایر روش ها برای تحقیق در نظر گرفته شده است.
1-4 )اهداف تحقیق
در این پایان نامه ، یک الگوریتم جدید نهان نگاری تصاویر دیجیتال مبتنی بر استخراج ویژگی های محلی که در حوزه فرکانس کار میکند پیشنهاد شده است که برای محافظت از حق مالکیت اثر و احراز هویت مناسب است، ابتدا بخش فرکانس تصویر توسط تبدیل فوریه بدست می اید و سپس یک الگوریتم استخراج ویژگی که نقاط کلیدی ویژگی را برای زیر تصویر در حوزه فرکانس محاسبه می کند استفاده می شود.این نقاط کلیدی انتخاب شده ناحیه قرار گیری نهان نگاری می باشند.این روش از مزایای روش انتخاب ویژگی ها محلی و تبدیل فوریه سود می برد .
سوالات پژوهش
چگونه میتوان الگوریتم های نهان نگاری با استفاده از روش استخراج ویژگی های محلی در تصاویر دیجیتال را از نطر دقت و سرعت بهبود بخشید؟
چطور میتوان الگوریتم نهان نگاری مبتنی بر استخراج ویژگی های محلی پیشنهادی در تصاویر دیجیتال را در برابر حملات تخریب کننده اعوجاج هندسی توانمند و مقاوم کرد؟
1-5 ) فرضیه ها
الگوریتم نهان نگاری ارائه شده، یک الگوریتم بهبود یافته از نظر سرعت و دقت می باشد
الگوریتم نهان نگاری بمنظور حفاظت از حق مالکیت در برابر رایج ترین حملات و به طور خاص، در برابر حملات اعوجاج هندسی توانمند و ایمن می باشد
1-6 )پیشینه تحقیق
بهمراه مشکلات مختلفی که در نهان نگاری تصاویر دیجیتال می بایست حل شود .مساله مقاومت در مقابل تبدیل هندسی یکی از مشکلات چالش برانگیز و اکثر الگوریتمهای نهان نگاری در مقابل این نوع حمله دارای ضعف می باشند.
اخیرا طرحهای نهان نگاری مبتنی برویژگی ها [2-8] که بعنوان طرحهای نسل دوم شناخته می شوند مورد توجه قرار گرفته اند که یک رویکرد برای معرفی نهان نگار های مقاوم در برابر اعواج های هندسی می باشند چراکه ویژگی های تصویر یک مرجع پایدار برای جا گذاری نهان نگار و اشکار سازی آن می باشند. بس و همکاران[2] اشکار ساز هریس را برای استخراج نقاط ویژگی و استفاده از آنها برای ایجاد موزائیکهای مثلثی شکل بر روی تصویر که برای جایگذاری نهان نگار استفاده می شود را بکار برده است. تانگ و همکاران [3] از روش استخراج ویژگی کلاه مکزیکی برای استخراج نقاط ویژگی استفاده کردندکه نواحی محلی بر مبنا نقاط ویژگی ایجاد می شوند و نهان نگار در این زیر قطعه ها در حوزه DFT جایگذاری میشود . لیی و همکاران[4] نقاط ویژگی تصویر را توسط الگوریم SIFT استخراج نموده و از انها برای ایجاد تعدادی از نواحی دایرهایی شکل برای جایگذاری نهان نگار استفاده کردند. ونگو همکاران[5] از آشکار ساز هریس–لاپلاس برای استخراج نقاط ویژگی تصویر استفاده کردند ونواحی اختصاصی محلی ایجاد شده محل قرار گیری نهان نگار می باشند.سلیدو و همکاران[8] از الگوریتم SURFبرای استخراج نقاط ویژگی استفاده کردند و واتر مارک را در حوزه DFT جایگداری نمودند.
استراتژی پایه در این طرحهای نهان نگاری وابستگی واترمارک به ناحیه محلی است.بعبارت دیگر نواحی محلی نفش محوری برای موفقیت یا شکست طرح نهان نگاری دارند. بنابراین چند نقص در این روشها ی مبتنی بر ویژگی که باعث کاهش کارایی می شود وجود دارد[8].
بدلیل اینکه همه بیتهای رشته نهان نگار در یک ناحیه محلی جایگذاری می شوند ، مقاومت طرح نهان نگاری به مقاومت آن ناحیه بستگی دارد.
تعداد نقاط استخراجی برای جایگذاری نهان نگار کم است و اگر تعدادی از نواحی محلی در اثر خراب شوند ویا از دست روند کارایی طرح نهان نگاری دچار مشکل می شود
بدلیل کوچک بودن نواحی محلی ظرفیت بسیارکم است و افزایش ظرفیت منجر به نقص در مقاومت می شود.
1-7 )جنبه نوآوری
در این پایان نامه بدلیل اینکه ویژگی محلی نقطه ایی که واتر مارک را در آن قرار می دهیم دچار تغییرات در اشکار سازی نشود از یک واتر مارک حلقوی استفاده شده است .از الگوریتم SIFT برای استخراج نقاط بیشتر که اگر تعدادی از نقاط در اثر حمله از بین رفتند کارایی نهان نگار دچار مشکل نشود و همچنین برای کاهش پیچیدگی و بالا بردن سرعت الگوریتم پیشنهادی از مقیاس میانه الگوریتم SIFT استفاده شده همچنین جهت بالا بردن کیفیت تصویر واتر مارک شده ، سیگنال واتر مارک در فرکانسهای میانی تبدیل فوریه تصویر میزبان قرار گرفته است .
1-8 )کلمات کلیدی
نهان نگاری ، حوزه تبدیل فوریه ، الگوریتم SIFT
1-9 )نتیجه گیری
یکی از راهکارهای انجام نهان نگاری استفاده از استخراج ویژگی های محلی می باشد که نقاط استخراجی دارای سه ویزگی ، مشخص و متمایز هستند ، به آسانی استخراج می شوند و مستقل از مقیاس، دوران ، تغییر در روشنایی تصویر و میزان نویز تصویر هستند ،محل جایگداری واتر مارک را مشخص می نماید ، همچنین استفاده ازتبدیل فوریه گسسته که ذاتا در برابر اعوجاجات هندسی مقاوم است در این پایان نامه مورد استفاده قرار گرفته است که روش پیشنهادی موجب افزایش ضریب امنیت و توانمندی تصاویر دیجیتالی نهان نگاری شده در برابر حملات بخصوص حملات هندسی شده است .
1-10 )ساختار پایان نامه
در این پایان نامه در فصل اول کلیات تحقیق ارائه می شود، در ادامه بحث فصل دوم مروری بر ادبیات تحقیق و مفاهیم کلی نهان نگاری دیجیتالی و تبدیل فوریه گسسته و الگوریتم استخراج ویژگی محلی و نهان نگاری مبتنی بر الگوریتم SIFT ارائه می شود و در فصل سوم روش پیشنهادی برای نهان نگاری مبتنی بر الگوریتم SIFT و تبدیل فوریه گسسته ارائه شده است، در فصل چهارم پیاده سازی الگوریتم پیشنهادی و نتایج تجربی مقایسه الگوریتم پیشنهادی با سایر الگوریتمها آمده است و در سرانجام فصل پنجم نتیجه گیری و پیشنهادات بیان شده است .
فصل دوم
ادبیات و پیشینه تحقیق
در این فصل مروری بر ادبیات تحقیق ارایه شده است. برای این منظور در بخش اول اصول نهان نگاری دیجیتال بیان شده و سپس مفاهیم مربوط به انواع نهان نگاری، ساختار و نحوه عملکرد آنها بیان و روشهای مختلف انجام نهان نگاری مورد بررسی قرار می گیرند. در انتها خصوصیات نهان نگاری دیجیتال و حملات مختلف بر نهان نگاری دیجیتال وسپس به بیان مزایا و معایب آن پرداخته می شود .در بخش دوم مفاهیم مربوط به تبدیل فوریه گسسته را ارائه شده است و در بخش سوم الگوریتم SIFT که جهت استخراج ویژگی های تصویر بکار می رود را معرفی و سپس در بخش چهارم به پیشینه تحقیق و الگوریتمهای نسل دوم نهان نگاری اشاره گردیده است.
2-1 ) پنهان سازی اطلاعات ،استانوگرافی و نهان نگاری
اینها سه موضوع با ارتباط نزدیک می باشند که در بسیاری از رویکردهای تکنیکی همپوشانی دارند. هرچند که مفهوم وجودی آنها متفاوت است و تفاوت موجود نیازمندیها، طراحی و راه حلهای تکنیکی برای انجام و اعمال آنها را تحت تاثیر قرار می دهد[1].
پنهان سازی اطلاعات (پنهان سازی داده) یک مفهوم کلی است که شامل گستره ایی از روشها برای قرار دادن و جایگذاری پیغام در متن می باشد .منظور از پنهان کردن ممکن است مانند بعضی از انواع نهان نگاری روشی نامحسوس باشدکه با وجود اطلاعات، آن را مخفی نگهدارد. بعضی از مثالهای تحقیقاتی در این حوزه را می توان در کارگاههای بین المللی تحقیقاتی پنهان سازی اطلاعات یافت .که شامل مقالاتی بطور مثال با عنوان ناشناس ماندن در هنگام استفاده از شبکه و یا مخفی نگه داشتن بخشی از پایگاه داده از کاربران غیر مجاز می باشد. مخترع کلمه استانوگرافی ترتیمیوس ، نویسنده اولین مقالات رمزنگاری می باشد.که بخش تکنیکی آن از کلمه یونانی steganos بمعنای پوشیده شده و graphia به معنای نوشتن مشتق شده است .استانوگرافی هنر ارتباط پنهان است. سیستمها برای قراردادن پیغام در اثر می تواند تقسیم به سیستم نهان نگاری که پیغام وابسته به تصویرمیزبان می شود. سیستمهای غیرنهان نگاری که پیغام وابسته به تصویر میزبان نمی باشد.همچنین می توان سیستمها را به سیستمهای استانوگرافی که پیام در آنها مخفی است و غیر استانوگرافی تقسیم کرد که وجود پیام نیاز به مخفی بودن ندارد[1].
2-1-1 ) اهمیت نهان نگاری دیجیتال
افزایش ناگهانی علاقه به نهان نگاری بعلت نگرانی از حفظ کپی رایت آثار بوجود آمد.اینترنت با معرفی جستجوگر صفحات وب در سال 1993 بسیار کاربردی شده بود . به آسانی موزیک ، تصویر و ویدئو در دسترس بودند و دانلود می شدند . همانطور که می دانیم اینترنت یک سیستم توزیع پیشرو برای واسط های دیجیتال است زیرا هم ارزان است و هم با سهولت و آنی در دسترس می باشد. این سهولت دسترسی صاحبان اثر بخصوص استادیو های بزرگی مانند هالیوود را در معرض خطر نقض کپی رایت قرار داد.
خطر سرقت توسط سیستمهای ضبط دیجیتال با ظرفیت بالا شدت گرفته است .در زمانی تنها راه برای مشتریان کپی یک آهنگ یا فیلم بر روی نوارهای آنالوگ بود معمولا کپی محصول کیفیت کمتری داشت ولی امروزه کپی دیجیتال آهنگ و فیلم تقریبا بدون هیچ کاهش کیفیتی صورت می گیرد .و گستردگی اینترنت و این تجهیزات ضبط، سرقت آثار بدون اجازه مالک اثر را افزایش داده است بهمین دلیل صاحبان اثر بدنبال تکنولوژی و راهی هستند که از حقوقشان حمایت نماید.
اولین تکنولوژی که صاحبان اثر بسمتش رفتند رمز نگاری بود .رمز نگاری احتمالا مشهور ترین روش در حفظ آثار دیجیتال است و یقینا به بهترین نحو توسعه یافته است. در رمز نگاری اثر پیش از تحویل رمز می شود و کلید رمزگشایی فقط به کسانی داده میشود که اثر را بطور قانونی خریده باشند. فابل رمز شده قادر به حضور در اینترنت خواهد بود و بدون کلید مناسب قابل سرقت نمی باشد. متاسفانه رمز نگاری قادر به کمک به فروشنده برای نظارت بر چگونگی استفاده خریدار از اثر بعد از رمز نگاری نخواهد بود. یک سارق ادبی می تواند بطور قانونی محصول را خریده باشد ، از کلید رمز گشایی استفاده کند و به کپی محصول محافظت نشده دست یابد و بعد از آن کپی های غیر مجاز را توزیع نماید . به عبارت دیگر رمز نگاری از اثر در حین انتقال محافظت می کند ولی وقتی که اثر یکبار رمز گشایی شد دیگر حفاظتی برای آن وجود ندارد. بنابراین یک نیاز شدید برای جایگزینی یا تکمیل رمز نگاری وجود دارد.تکنولوژیی که بتواند محصول را حتی بعد از رمز نگاری حفاظت کند نهان نگاری است زیرا که اطلاعات را در اثر قرار می دهد که در حین استفاده معمولی از بین نمی رود .آشکار سازی ، مجددا رمزنگاری ،فشرده سازی تبدیل دیجیتال به آنالوگ و تغییر فرمت فایل نمی تواند واتر مارک طراحی شده را ازبین ببرند.
نهان نگاری در بسیاری از کاربردهای برای جلوگیری از کپی غیر مجاز وحفظ کپی رایت در نظر گرفته شده است .در جلوگیری از کپی غیر مجاز ممکن است برای اعلام کپی ممنوع به سخت افزار و نرم افزار بکار رود و در کاربرد حفظ کپی رایت ممکن است برای شناسایی صاحب کپی و اطمینان از صحت پرداخت استفاده شود .
هرچند جلوگیری از کپی و حفظ کپی رایت علت تحقیقات بر روی نهان نگاری است کاربردهای دیگری نیز برای نهان نگاری پیشنهاد شده است که شامل نظارت بر انتشار،پیگیری تعاملات ،تصدیق صحت ،کنترل کپی و کنترل ابزار بکار می رود که در ادامه توزیع داده می شوند[1].
2-1-2 ) اهمیت استاگونوگرافی
ارتباطات الکترونیکی بطور گسترده ایی در معرض استراق سمع و مداخله های بد خواهانه می باشند .موضوع امنیت و حریم خصوصی دلیلی برای استفاده از ابزار رمز نگاری. یک پیغام را می توان به یک پیغام تایید صحت الحاق کرد که فقط گیرنده واقعی قادر به تایید و خواندن آن باشد. رمز نگاری مدرن یک حوزه کارآمد است که تکیه زیادی بر ریاضیات پیشرفته دارد.
پیغامهای رمز شده واضح می باشند و وقتی در حال ارسال هستند آشکار است که گیرنده و فرستنده دارند محرمانه ارتباط برقرار می کنند. استانوگرافی خواهر جوانتر و کوچکتر رمز نگاری بوده و یک ابزار جایگزین برای حفظ حریم شخصی و امنیت می باشد. بر خلاف پیغام رمز شده می توان آنها را در موضوعات نامحسوس دیگری قرار دادکه حضور آنها را نا پیدا می سازند. بنابراین ، می توان از استاگونوگرافی بعنوان یک جایگزین عملی در کشورهایی که رمزنگاری غیر قانونی است یا ممکن است منجر به جلب توجه نا خواسته شود استفاده نمود.
همانطور که می دانیم کشف رمز روی دیگر سکه رمزنگاری می باشد بهمین خاطر رمزگشایی یک بخش جدایی ناپذیر از استانوگرافی است .حقیقتا ،یک روش استانوگرافی بدون در نظر گرفتن وقت کافی برای چگونگی شکستن آن ممکن نمی باشد.
بدلیل اینکه امروزه استانوگرافی توسط تروریستها و توزیع کنندگان تصاویر غیرمجاز کودکان بکار می رود،نیاز برای یک ابزار رمزگشا که توانایی مشخص نمودن پیغامهای مخفی را داشته باشد افزایش یافته است[1].
2-1-3 ) واترماکینگ یا نهان نگاری چیست؟
بطور کلی روش پنهان کردن داده ها، مخفی سازی اطلاعات، جاسازی داده های دیجیتال اغلب در یک واژه کلی تحت عنوان نهان نگاری مورد استفاده قرار می گیرند. نهان نگاری از ترکیب دو کلمهWater به معنی "آب" وMarking به معنی "نشانه گذاری" است و به معنی نشانه گذاری یا نقش بر آب می باشد؛ اما این روش بخشی از مطلب کلی تری به نام استگانوگرافی هست و برای روشن شدن مطلب توجه کنید اگر یک چوبی را در دست خود بگیرید و بر روی آب نقشی حک کنید می بینید بعد از مدتی محو می شود ولی این نوشته وجود داشته است. همان طور که گفته شد نهان نگاری دیجیتال رابطه نزدیکی با پنهان نگاری و پنهان سازی داده دارد. ولی با این حال، بسته به کاربردهایی که دارد، تفاوتهایی نیز مشاهده میشود. در تکنیک های نهان نگاری ، یک سیگنال پنهانی به نام واترمارک ، مستقیما در داخل داده میزبان جایگذاری می شود و همواره در آن باقی می ماند. برای استفاده از داده نهان نگاری شده، نیازی به برداشتن سیگنال واترمارک نیست زیرا این سیگنال طوری در داده میزبان قرار داده می شود که هیچ تأثیر نامطلوبی بر داده اصلی نمی گذارد. به عنوان مثال در نهان نگاری داده در تصویر، چشم انسان نباید تفاوت بین تصویر اصلی و تصویر واترمارک شده را حس کند. دو مساله اساسی در نهان نگاری مقاومت (جداناپذیری واترمارک از تصویر) و مشاهده ناپذیری واتر مارک است. یک بده بستان بین مقاومت و غیر قابل مشاهده بودن وجود دارد بطوری که هر چه مقاومت روش نهان نگاری بیشتر باشد مشاهده پذیری آن بیشتر و بالعکس.
هر یک از حوزه های پنهان نگاری و نهان نگاری کاربردهای متنوع و خاص خود را دارند. امروزه نهان نگاری قابل مشاهده و پنهان در شاخه های مختلف کاربردی شده و یک نیاز جدی به حساب میآید و از الگوریتمهای متنوع با هدف دستیابی به امنیت، مقاومت و ظرفیتهای مورد نظر بهره گرفته شده تا کاربردهای مختلفی ازنهان نگاری و پنهان نگاری پوشش داده شود[1].

2-1 روش نهان نگاری
2-1-3-1 )کاربردهایی از نهان نگاری
در اینجا سعی شده به بعضی از کاربردهای واقعی و مد نظر این تکنیک ، که عبارتند از :شناسایی مالک اثر ،پیگیری تراکنشها ، تایید صحت وکنترل انتشار نسخه اشاره نماییم. در ادامه بحث به آنها می پردازیم برای هر کدام از این موارد کاربردی سعی می کنیم نشان دهیم که کدام یک از مشکلات موجود در سایر تکنیکها استفاده از واتر مارک را مناسب می سازد. بهمین دلیل بدقت نیازمندیهای کاربرد را درنظر می گیریم و محدودیتها و روشهای جایگزین را می سنجیم.
شناسایی مالک اثر
طبق قوانین خالق هر اثری مانند داستان ، نقاشی ،آهنگ یا هر کار اصلی دیگری بطور خودکار حق مالکیت برای هر نمونه ایی از اثر، که به هر شکلی کپی شده است دارد. صاحبان آثار خواهان انتشار آنها بدون از دست دادن حقوق خود می باشند. شکل دقیق نمایش کپی رایت آثار مهم است برای آثار دیداری استفاده از علامت © و آثار شنیداری ℗ میبایست در سطح رسانه بعنوان اینکه این اثر تحت قانون کپی رایت است قرار داده شود.
علامت متنی محدودیت چندگانه برای شناسایی مالک دارد. یک از آنها اینست که به سادگی از روی اثر با کپی کردن آن برداشته می شود. یک دیگر نازیبا کردن تصویر است با پوشاندن بخشی از آن است و موارد دیگر. بدلیل اینکه واتر مارک می تواند هم محسوس و هم نامحسوس باشد برتری زیادی نسبت به علامتهای متنی دارد. و مالک اثر با آشکار سازی واتر مارک حتی بعد از دستکاری اثر قابل شناسایی است .
اثبات مالکیت
جذابیت استفاده از واتر مارک فقط در شناسایی مالکیت کپی رایت نیست بلکه در حقیقت در اثبات مالکیت است. بعلت اینکه علامتهای متنی و نوشتاری براحتی برداشته می شوند، نمی توان از آنها استفاده کرد. یک راه اینست که ابتدا تصویری که مثلا بر روی صفحه وب قرارمیگیرد ابتدا به مراجع قانونی برای ثبت مالکیت فرستاده شود و در آنجا ثبت شود ولی معمولا این روش هزینه دارد که ممکن است عهده مالک اثر بر نیاید. میتوان با استفاده از واتر مارک براین مشکل غلبه کرد که مالک اثر بطور مستقیم علامت خود را جایگذاری کند. این مانند اینست که عکاس نگاتیو تصویری را که گرفته است برای اثبات مالکیت نزد خود نگهدارد.
پیگیری تراکنشها
در این کاربرد واترمارک، یک یا تعداد بیشتری از واترمارک که در سابقه اثر وجود دارد را ثبت می کند.مثلا واتر مارک می بایست در هر فروش یا توزیع قانونی اثر را ثبت شود مالک یا تولید کننده اثر می بایست در هر نسخه یک واتر مارک متفاوت قرار دهد و اگر ترتیب و شکل واتر مارک تغییر کرد مالک می تواند مسوول آن را پیدا نماید. پیگری تراکنش اغلب اثر انگشت نامیده می شود. هر نسخه از اثر با واتر مارک منحصر بفرد شناسایی می شود. همانند اثر انگشت انسان وبه این عمل شناسایی غیر فعال نیز گفته می شود
تایید صحت اثر
دستکاری و تقلب در آثار دیجیتال هر روز آسانتر و آسانتر می شود.برای مثال تصویر زیر(1-2) دستکاری تصویر توسط فتوشاپ را نشان می دهد که تصویر سمت راست تصویر اصلی و تصویر سمت چپ نسخه دستکاری شده آنست .اگر این تصویر بخشی از یک شواهد مهم در یک مورد حقوقی یا تحقیقات پلیس باشد این نوع جعل ممکن منجر به مشکلات عدیده ایی گردد.این عمل ممکن است در تصاویر ویدئویی نیز صورت پذیرد.

شکل( 2-2 ) تصویر انسان در سمت چپ با فتوشاب حذف شده است[1]
مشکل تایید صحت پیام در مطالعات رمز نگاری بخوبی به آن پرداخته شده است. یکی از رویکرد های مهم در رمز نگاری امضای دیجیتال می باشد که اساسا خلاصه ایی از پیغام را رمز می کند. امضا ها را می توان یک فرا داده در نظر گرفت که بهمراه اثر برای تایید آن فرستاده می شود و این امکان وجود دارد که امضا در استفاده های معمولی گم شود. یک راه حل مناسب قرار دادن امضا درون اثر مانند واترمارک است مااین امضا جایگذاری شده را علامت تایید صحت می نامیم. این علامتهای تایید صحت طوری طراحی می شوند که با دستکاری تصویر از بین بروند و نا معتبر گردند که به آنها واتر مارکهای شکننده1 گویند .
کنترل نسخه برداری
اغلب کاربردهای واترمارک که تا کنون بحث شد فقط تاثیر بعد از اینکه کسی کاری خطا انجام داد دارد. برای مثال در نظارت بر پخش کمک به یافتن منتشر کننده غیر صادقی، وقتی که آگهی که پولش پرداخت شده است را بخش نمی نماید و پیگیری تراکنش وقتی که کپی غیر مجاز آن انتشار یافت را شناسایی می کند. آشکار است بهتر است قبل از وقوع جلوی آن را گرفت . در کنترل نسخه برداری هدف جلوگیری از نسخه برداری از اثر کپی رایت شده است .
2-1-3-2 ) ساختار نهان نگاری تصاویر دیجیتال
نهان نگاری تصویر، همانطور که قبلا هم اشاره شد، روند جایگذاری کردن یک سیگنال در یک تصویر میزبان می باشد به طوری که سیگنال را بعدا می توان شناسایی کرده یا استخراج نمود و از آن به عنوان ادعا در مورد مالکیت تصویر استفاده کرد . به طور کلی، هر طرح نهان نگاری شامل سه بخش زیر است:
اطلاعات واتر مارک
جایگذار واتر مارک که علامت نهان نگاری را در رسانه ی مورد نظر درج می کند،
آشکارساز واترمارک که حضور علامت نهان نگاری در رسانه را مشخص می کند

شکل(2-3 ) یک سیستم نهان نگاری
شکل) 2-2) یک سیستم نهان نگاری معمولی مربوط به ژنگ و همکاران 1 [9] 1شامل جایگذار واترمارک و آشکارساز علامت واترمارک را نشان می دهد. ورودی مربوط به بخش جایگذار واترمارک عبارتند از واترمارک، اطلاعات تصویر میزبان و کلید امنیتی می باشد. علامت نهان نگاری می تواند یک دنباله عددی، یک دنباله بیتی باینری و یا ممکن است یک تصویر باشد. به منظور افزایش امنیت کل سیستم نهان نگاری از کلید امنیتی استفاده می شود. خروجی واحد جایگذار واتر مارک، دیتای نهان نگاری شده است. ورودی مربوط به واحد آشکارساز واترمارک ؛ دیتای واترمارک شده، کلید امنیتی، و بسته به نوع روش، داده های اصلی و یا علامت نهان نگاری اصلی می باشد. عملیات واحد آشکارساز علامت واتر مارک شامل دو مرحله می باشد. مرحله ای شامل استخراج علامت واتر مارک است که خود شامل چند پردازش جداگانه می باشد. در این مرحله تصویر اصلی واترمارک نشده ممکن استفاده شود و یا اینکه استفاده نشود که البته به روش نهان نگاری بستگی دارد. اگر واحد آشکارساز برای استخراج علامت نهان نگاری به نسخه اصلی تصویر نیاز نداشته باشد، به آن طرح نهان نگاری عمومی یا نابینا گفته می شود، اگر واحد آشکارساز به تصویر اصلی نیاز داشته باشد، طرح نهان نگاری خصوصی یا نهان نگاری بینا نامیده می شود.
اگر تصویر اصلی استفاده شود، علامت واترمارک را می توان به شکل دقیقتر استخراج نمود(در صورتی که تصویر خراب شود) اگر روش تشخیص نابینا باشد، ما می توانیم وجود سیگنال واتر مارک را در تصویر تعیین کنیم. پس از آن، مرحله دوم است، در این مرحله باید مشخص گردد که آیا علامت استخراج شده همان سیگنال نهان نگاری اصلی هست یا نه. مرحله دوم معمولا شامل مقایسه علامت استخراج شده با علامت واترمارک اصلی هست و برای نتیجه گیری می توان از روش های مختلف اندازه گیری استفاده شود. معمولا از روش همبستگی برای این منظور استفاده می شود. تابع همبستگی مقدار همبستگی را محاسبه میکند و همبستگی محاسبه شده را با یک مقدار آستانه مقایسه می کند. اگر مقدار همبستگی بیش از مقدار آستانه باشد، یعنی این که علامت استخراج شده همان سیگنال نهان نگاری شده می باشد. در برخی الگوریتم های نهان نگاری، علامت استخراج شده را می توان برای دریافت پیام های جاسازی شده رمزگشایی نمود تا برای مقاصد مختلف مانند حفاظت از کپی رایت استفاده شوند.
همانطور که گفته شد یک رویه نهان نگاری معمولا دو قسمت دارد بخش جایگذاری و حک کردن واتر مارک در اثر داده شده و بخش آشکار ساز که واتر مارک را استخراج می نماید.
در هنگام فرایند جایگذاری واتر مارک، تصویر واتر مارک نشده اصلی ابتدا به حوزه ایی که می خواهیم واتر مارک را در آن جایگذاری کنیم انتقال داده و سپس واتر مارکی که از یک کلید نهان استفاده می کند و یا می تواند یک تصویر باشد ایجاد وبعد از آن ما واتر مارک را درون حوزه مورد نظر جایگذاری می کنیم و تبدیل معکوس برا ی بدست آوردن تصویر واتر مارک شده انجام می گیرد.
وقتی که واتر مارک x درون تصویر اصلی v حک می شود ،تصویر واتر مارک شده v’ بدست می آید. ما قدرت جایگذاری α رابرای مشخص نمودن اینکه چه مقدار واتر مارک تصویر اصلی را تغییر می دهد بکار می رود. فرمولی که معمولا برای محاسبه v’ استفاده می شود عبارتند از :
(1)
(2)
(3)
فرمول شماره (1) جایگذاری افزایشی نامیده می شود و به آسانی مقدار حاضل ضرب قدرت جایگذاری و واتر مارک را به تصویر اصلی اضافه می کند و زمانی که مقدار v تغییرات گسترده ایی دارد ممکن است مناسب نباشد بطور مثال اگر vi=105 اضافه نمودن 100 ممکن است برای تشخیص و آشکار سازی واتر مارک مناسب نباشد، برعکس اگر vi=10 باشد سپس اضافه کردن 100 منجر به تخریب اصالت تصویر می گردد. فرمول شماره(2) جایگذاری بکمک اضافه کردن با ضرب نامیده می شود. و وابسته به تصویر است زیرا مقداری که تصویر اصلی را تغییر می دهیم بستگی بهv دارد. این روش مقاومت بیشتری در مقابل تغییر مقیاسهای چنینی دارد. فرمول شماره(3) نتایجی مشابه فرمول 2 دارد وقتی کوچک است ، بعنوان نسخه لگاریتمی فرمول شماره (1) در نظر گرفته می شود.
انتخاب حوزه جایگذاری واتر مارک بسیار مهم است .روشهای نهان نگاری اولیه بسادگی واتر مارک را در حوزه مکانی جایگذاری می کردند. مطمئنا دستیابی به نامرئی بودن و ظرفیت بالا به سادگی قابل دستیابی می باشد، اما مقاومت آنها بسیارکم است و واتر مارک قادر به مقاومت در برابر هیچ تحریف و اعوجاج عمدی یا غیر عمدی نمی باشد.بعد ها نهان نگاری در حوزه فرکانس مد نظر قرار گرفت که با استفاده از برخی از انتقالهای گسسته و بهره برداری از خواص آنها صورت پذیرفت. بنابراین بعد از اجراء تبدیل و معکوس آن به حوزه مکانی، انرژی واتر مارک در تمامی تصویر توزیع می گردد. که نامریی بودن و مقاومت را بطور همزمان بهبود می بخشد.
2-1-4) تقابل امنیت، ظرفیت و مقاومت
به صورت کلی در سیستمهای پنهان سازی اطلاعات سه عنصر اصلی ظرفیت، امنیت و مقاومت دخیل هستند. در روشهای نهان نگاری عناصر ظرفیت و امنیت اهمیت اصلی را دارند. در دنیای امروز، جوهر نامرئی و کاغذ که در گذشته برای برقراری ارتباط پنهانی به کار برده میشد به وسیله رسانه های عملی تر مثل تصویر ویدئو و فایل های صوتی جایگزین شده اند. به دلیل اینکه این رسانه های دیجیتال دارای افزونگی اطلاعاتی زیادی هستند می توانند به عنوان یک پوشش مناسب برای پنهان کردن پیام استفاده شوند. تصاویر مهمترین رسانه مورد استفاده به خصوص در اینترنت می باشند و درک تصویری انسان از تغییرات در تصاویر محدود است. تصاویر نوعی رسانه میزبان مناسب در پنهان نگاری محسوب می شوند و الگوریتمهای نهان نگاری متعددی برای ساختارهای مختلف تصاویر ارائه شده است. هیچ یک از این الگوریتمها تاکنون امنیت را به طور کامل تأمین نکرده اند. به طور کلی رو شهای نهان نگاری در تصویر از الگوریتم جاسازی و الگوریتم استخراج بیت ها تشکیل شده اند. به تصویر مورد استفاده برای نهان نگاری پوشش و به تصویری که در اثر قرار دادن پیام به وسیله الگوریتم جایگذاری به دست می آید تصویر میزبان می گوییم. الگوریتمهای نهان نگاری به صورت عمومی از افزونگی در فضای مکانی یا افزونگی در فضای تبدیل استفاده می کنند. در هر کدام از این فضاها به شیوه های گوناگونی می توان داده ها را پنهان کرد که یکی از ساده ترین روشها، استفاده از بیت های کم ارزش فضای مورد نظر است.
2-1-5 ) تکنیک های نهان نگاری در حوزه مکان یا فرکانس
تکنیک های نهان نگاری همانطور که گفته شد می توانند به دو دسته تقسیم شوند: تکنیک های حوزه مکان و تکنیکهای حوزه فرکانس. در روش های حوزه مکان برای گنجاندن شی دیجیتال مورد نظر مقادیر پیکسل ها بطور مستقیم دستکاری می شود. این روش پیچیدگی کمتری دارند، شکننده ترند و قوی نیستند، اما در روش های حوزه فرکانس ابتدا تصاویر به یکی از حوزه های فرکانسی انتقال یافته و سپس نهان نگاری با دستکاری مقادیر در حوزه فرکانس انجام می گیرد و در نهایت تصویر به حوزه مکان باز گردانده می شود. در مقایسه با تکنیک های حوزه مکان ثابت شده است که تکنیک های حوزه فرکانس در دست یافتن به الگوریتم های نهان نگاری دیجیتال از لحاظ غیر قابل مشاهده بودن و استحکام بهتر می باشد
حوزه های فرکانسی که عموما استفاده می شوند عبارتند از تبدیل کسینوسی گسسته(DCT) ، تبدیل موجک گسسته (DWT) و تبدیل فوریه گسسته(DFT)همچنین بعضی از روشها وجود دارند که از تبدیل فوریه ملین برای عدم تغییر در مقابل چرخش و تغییر مقیاس بکار می روند. هر روش قوت و ضعفهای خود را دارد. رویکرد های مبتنی بر (DCT)یک مقاومت مناسب در مقابل فشرده سازی JPEG دارند زیرا که این نوع فشرده سازی خودش در حوزه) (DCT جای می گیرد همچنین این تبدیل در مقابل کمی سازی HVSنیز مقاومت می کند، هر چند در مقابل تحریف هندسی مقاوم نیست. رویکرد مبتنی بر DWT در مقابل فشرده سازی JPEG، فیلتر های پایین گذر و بالا گذر مقاوم است ولی نمی تواند در مقابل تحریف و اعوجاج هندسی مقاومت کندو منطبق با سیستم بینایی انسان HVS نمی باشد. رویکرد مبتنی بر DFT در مقابل تبدیلات هندسی بسیار مقاوم است زیرا در مقابل چرخش و انتقال ثابت است همچنین برای مدل HVS مناسب می باشد. هرچند خطای گرد کردن را ایجاد می نماید که ممکن است منجر به از دست دادن کیفیت و خطای استخراج واترمارک شود. رویکرد فوریه ملین در مقابل چرخش و انتقال بدون تغییر است و در مقابل تحریف هندسی بسیار مقاوم، اما در مقابل فشرده سازی با اتلاف ضعیف می باشد و پیچیدگی محاسباتی زیادی دارد. معایب و مزایای تبدیلات مختلف جایگذاری در جدول زیر آمده است
حوزه جایگذاری مزیت معایب
حوزه مکانی -به آسانی نامریی
-ظرفیت بالا مقاومت ضعیف
حوزه کسینوسی -مقاومت در برابر فشرده سازی JPEG
-مقاومت در برابر چندی کردن سیستم بینایی انسان عدم مقاومت در برابر اعوجاج هندسی
حوزه موجک -مقاومت در برابر فشرده سازی JPEG
مقاومت در برابر فیلتر های مینگین و پایین گذر عدم مقاومت در برابر تحریفات هندسی
عدم تطبیق با سیستم بینایی انسان
حوزه فوریه مقاومت در اعوجاج هندسی
مناسب برای سیستم بینایی انسان کاهش کیفیت و خطا در آشکارسازی واتر مارک
حوزه فوریه-ملین ثابت بودن در چرخش و انتقال
مقاوم در برابر اعوجاج هندسی ضعف در برابر فشرده سازی
پیچیدگی زیاد محاسباتی
جدول 2-1 نقاط قوت و ضعف حوزه های مختلف جایگذاری
بدلیل اینکه هدف ما طراحی یک واتر مارک مقاوم در مقابل اعوجاج و تحریفات هندسی می باشد لذا عمل جایگذاری واتر مارک در حوزه DFT انجام می پذیرد.
بعد از اینکه واتر مارک جایگذاری شد ،کیفیت تصویر واترمارک شده می بایست ارز یابی شود.متر هایی که برای اندازه گیری عمومیت دارند peak to noise ratio(PSNR) ، visual information fiedelity(VIF) ،visual to noise ratio(VSNR) و structure similarity(SSIM) . هر چند که اغلب از PSNRویا SSIM استفاده می شود. در اینجا ما از PSNR استفاده میکنیم قابل بذکر است که در بعضی از شرایط خوب کار نمی کند با این حال بعنوان یک سنجه برای رتبه بندی کیفیت بکار می رود.مقدار PSNR اغلب یصورت دسی بل نمایش داده می شود معمولا مقدار بالای 40db کاهش کم کیفیت را نشان می دهد و مقدار کمتر از 30db مشخص کنند کیفیت پایین است . بنابراین اگر مقدار PSNR یک تصویر واتر مارک شده بالای 40db باشد ما واتر مارک را کاملا نامریی در نظر می گیریم.
بعد از جایگذاری، فرایند آشکار سازی اعمال می شود که مشخص نماید آیا واتر مارک در تصویرپس از اعمال حمله وجود دارد یا خیر. در حین آشکار سازی، تصویر واتر مارک شده و مورد حمله قرار گرفته ابتدا به حوزه ایی که واتر مارک جایگداری شده انتقال می یابد. سپس واتر مارک را استخراج و با واتر مارک اصلی مقایسه می شود که آیا واتر مارک قادر به بازیابی بعد از حمله می باشد یا خیر. بلاک دیاگرام این فرایند در زیر نشان داده شده است شکل (2-3) .

شکل 2-4 آشکار سازی واتر مارک پس از حمله
بخش خط چین در بلاک دیاگرام تفاوت بین دو نوع آشکار ساز را مشخص می کند.آشکار ساز نابینا و آشکار ساز بینا. در بعضی از کاربردها تصویر اصلی واتر مارک نشده در حین آشکار سازی در دسترس می باشد. که کارایی آشکار سازی را بطور موثری افزایش می دهد. در کاربرد های دیگر ،تصویر اصلی در دسترس نیست که آشکار سازی بدون استفاده از تصویر اصلی انجام می پذیرد.
آشکار ساز بینا، اشکار سازی تعریف می شود که نیاز به دسترسی به تصویر اصلی واتر مارک نشده یا بعضی از اطلاعات تصویر اصلی بجای همه تصویردر فرایند آشکار سازی دارد. در مقابل اشکار ساز بینا، اشکار ساز نابینا بعنوان آشکارسازی تعریف می شود که نیاز به هیچ اطلاعاتی مربوط تصویر اصلی واتر مارک نشده ندارد. اینکه از کدام واتر مارک استفاده کنیم بر اساس کاربرد مشخص می شود. از واتر مارک بینا فقط در کاربردهایی که تصویر اصلی موجود است استفاده می شود. بطور کلی سند اصلی فقط در کاربرد های خصوصی موجود است و بنابراین آشکار سازهای بینا را نمی توان در کاربردهای عمومی بکار برد.
در این پایان نامه از آشکار ساز نابینا به جای آشکار ساز بینا جهت افزایش انطباق پذیری استفاده شده است.
2-1-6 ) نهان نگاری در تصاویر:
امروزه , پرکاربردترین روش نهان نگاری , مخفی کردن اطلاعات در تصاویر دیجیتالی است ؛ این تکنیک، از ضعف سیستم بینایی انسان(HVS) بهره می گیرد. با توجه به اینکه درک تصویری انسان از تغییرات در تصاویر محدود است، تصاویر نوعی رسانه پوششی مناسب در نهان نگاری محسوب می شوند والگوریتم های نهان نگاری متعددی برای ساختارهای مختلف تصاویر ارائه شده است. به طور کلی با استفاده از استگانوگرافی می توان هر چیزی در درون هرچیزی پنهان کرد، اما باید به این نکته توجه کرد که در هرتصویری نمی توان به یک میزان اطلاعات مخفی کرد و بستگی به شرایط تصاویر و الگوریتم مورد استفاده دارد. تغییر کم ارزش ترین بیت در ساختار بیتی داده ی پوششی و استفاده از روش 2LSBبرای تغییر کسینوسی گسسته ی (DCT) تصویر پوششی از جمله ی متداولترین روشهای نهان نگاری در تصاویر می باشد.
2-1-6-1 )نهان نگاری دیجیتالی بر پایه ادراک و آگاهی انسان
در این بخش می خواهیم ادراک تجزیه و تحلیل تکنیک های مختلف نهان نگاری بر اساس بینایی انسانی را مورد بررسی قرار دهیم. بر اساس ادراک بینایی انسان سیستم نهان نگاری به دو دسته اصلی یعنی قابل رویت و غیرقابل رویت طبقه بندی می شود.
در نهان نگاری قابل رویت علامت نهان نگاری بر روی یک تصویر میزبان تعبیه شده و توسط انسان قابل مشاهده است. نهان نگاری قابل رویت یک نوع ساده از نهان نگاری دیجیتال می باشد، آرم ها نمونه هایی از نهان نگاری قابل مشاهده است که مالکیت صاحب محتوا را نشان می دهند[10]. یکی از راه های معمول نهان نگاری تصویر قابل مشاهده، چاپ علامت " © تاریخ ، صاحب " بر روی تصویر می باشد. مثلا متنی که جایی از فایل های تصویری یا word، pdf و یا .... به منظور حفاظت از حق نشر قرار می گیرد. نهان نگاری قابل رویت نه تنها استفاده غیر مجاز جلوگیری مینماید بلکه شناسائی سریع کپی رایت داده های چند رسانه ای را نیز فراهم میکند. یکی از نقطه ضعف های نهان نگاری قابل مشاهده این است که می توان آن را به راحتی از روی تصویر دیجیتال حذف کرد.
در نهان نگاری غیر قابل رویت علامت نهان نگاری درون یک تصویر میزبان پنهان شده و به همین دلیل توسط انسان قابل مشاهده نمی باشد. نهان نگاری دیجیتال غیر قابل رویت، روشی است برای قرار دادن برخی بیت ها در درون رسانه دیجیتال، به طوری که کمترین اثر را داشته باشد و توسط چشم انسان قابل دیدن نباشد. در طرح های نهان نگاری غیر قابل رویت تصاویر دیجیتال ویژگیهای مهمی برای نهان نگاری وجود دارد. اولین ویژگی این است که درج واترمارک نبایدکیفیت و ظاهر تصویر میزبان را تغییر زیادی دهد و دوم اینکه باید از لحاظ ادراکی غیر قابل رویت باشد. علاوه بر دو ویژگی فوق سوم اینکه نهان نگاری باید در مقابل اعمال پردازش تصویر معمول نظیر فیلتر کردن، فشرده سازی، اعمال نویز و حذف قسمتی از تصویر مقاومت داشته باشد. در ادامه با انواع نهان نگاری قابل رویت و غیرقابل رویت آشنا خواهیم شد شکل(2-4).

شکل 2-5 انواع نهان نگاری
2-1-6-2 )نهان نگاری قابل مشاهده
نهان نگاری قابل مشاهده، روند جاسازی کردن علامت نهان نگاری در تصویر میزبان است. برای این روش نهان نگاری نرخ بیتی و قدرت سیگنال بالا می باشد. نهان نگاری قابل مشاهده به دو دسته سیستم بینایی انسان و نهان نگاری برگشت پذیر طبقه بندی می شوند.
سیستم بینایی انسان(HVS)
فرآیند نهان نگاری از نظر سیستم بینایی انسان، مدل حساس به وضوح می باشد. روش های زیر متعلق به نهان نگاری قابل مشاهده در سیستم بینایی انسان است بیائو بینگ و شائو شیان [11] با توسعه ضرایب ترکیبی تصویر میزبان و تصویر واترمارک، ویژگی های محلی و عمومی را محاسبه کردند و مورد استفاده قرار دادند. با استفاده از تابع حساسیت به وضوح و دامنه تبدیل موجک گسسته (DWT) تصویر میزبان و علامت واترمارک به بلوک های بیشتر تقسیم می شوند. بلوکها بر اساس ابعاد تصویر)طرح ، لبه و بافت( طبقه بندی می شوند. باید توجه داشته باشید که حساسیت فضایی انسان با توجه به وضوح تصویر نهان نگاری متفاوت است. یانگ و همکاران[12] ، روش بازیابی تصویر اصلی بدون درج هیچ گونه جزئیات فرآیند نهان نگاری در سمت گیرنده را پیشنهاد دادند. با توجه به عوامل تغییر اندازه HVS فرآیند نهان نگاری با تنظیم مقدار پیکسل انجام می شود. بر اساس تفاوت بین تصویر میزبان و نسخه تقریبی آن)با استفاده از روش بازیابی تصویر)یک بسته بازسازی تصویر برای برگشت پذیری ایجاد می شود. ویژگی های HVSبا توجه به فاکتور مقیاس بزرگتر و فاکتور مقیاس کوچکتر محاسبه شده است. سپس عوامل مقیاس بزرگتر و کوچکتربه ترتیب مناطق درخشندگی میانی و بافت اختصاص داده می شوند. مین جن [13] با استفاده از DWT یک روش نهان نگاری را توسعه داد. در حوزه DWT، تصویر اصلی و علامت نهان نگاری از ویژگی های محلی و عمومی بهره می برند. این روش برای پیدا کردن بهترین موقعیت جایگذاری واترمارک و وضوح جاسازی کردن علامت واترمارک استفاده می شود. عملیات جایگذاری بصورت پیکسل به پیکسل بین علامت واترمارک و تصویر میزبان انجام می شود. پیکسل نهان نگاری بسته به میزان روشنایی آن به دو دسته تقسیم می شود
نهان نگاری قابل مشاهده برگشت پذیر
نهان نگاری قابل مشاهده برگشت پذیر، عملیات جایگذاری علامت واترمارک قابل مشاهده درتصویر میزبان و استخراج علامت واترمارک بدون از دست دادن داده ی اصلی می باشد. این روش امکان بازیابی تصویر اصلی را فراهم می کند. همچنین این نوع نهان نگاری، برگشت پذیر و یا بازیابی بدون اتلاف واترمارک نامیده می شود. بر اساس روش بازیابی مورد نیاز ، دوباره این روش به دو نوع نهان نگاری نابینا و بینا طبقه بندی می شود.
نهان نگاری قابل مشاهده برگشت پذیر نابینا (خصوصی):
در نهان نگاری نابینا، اطلاعات تصویر میزبان برای بازیابی تصویر اصلی مورد نیاز نمی باشد و فرایند بازیابی تصویر اصلی با استفاده از واترمارک و بدون از دست دادن اطلاعات انجام می شود. یونگ جین و بیونگ وو [14] یک سیستم نهان نگاری قابل مشاهده که در آن علامت نهان نگاری قابل مشاهده به عنوان یک برچسب یا حقوق شناسه می باشد و همچنین برای بازیابی تصویر و استخراج کامل تصویر اصلی حذف می شود، را پیشنهاد دادند. در این مطلب، دو روش ارائه میگردد. در روش اول مخفی کردن داده ها، بخش خاصی از تصویر اصلی که قرار است کشف شود، در تصویرعلامت نهان نگاری قابل رویت ذخیره شده است. برای کاهش عملیات محاسباتی، برنامه نویسی مبتنی برکدگزاری ریاضی استفاده می شود. در روش دوم جاسازی کردن یک کلید که توسط کاربر ساخته شده بهمراه علامت نهان نگاری در بخش رزرو شده تصویر پوشش تعبیه می گردد. حذف علامت نهان نگاری با استفاده از کلید کاربر انجام می شود. کلید کاربر نه تنها برای حذف کامل نهان نگاری استفاده می شود و بلکه برای کمک به مخفی کردن اطلاعات کاربران مجاز استفاده می شود. این روش نهان نگاری قابل مشاهده امنیت را بخوبی فراهم می کند.
نهان نگاری قابل مشاهده برگشت پذیر بینا (عمومی)
در این روش برای بازیابی تصویر اصلی در سمت گیرنده، تصویر اصلی یا سیگنال نهان نگاری موردنیاز می باشد. تسونگ یوان و ون هسیانگ [15]روش نهان نگاری برگشت پذیر قابل مشاهده بصورت نگاشت یک به یک بین علامت نهان نگاری قابل مشاهده و تصویر میزبان را پیشنهاد دادند. این روش تصویر علامت نهان نگاری سیاه-سفید و یا رنگی را به تصویر میزبان رنگی اضافه می کند. همچنین برای بازیابی تصویر اصلی از کلید کاربر و سیگنال نهان نگاری استفاده می شود. یونگ جین و بیونگ وو [16]نهان نگاری قابل رویت قابل جابجایی با استفاده از کلید کاربر در حوزه DWT را پیشنهاد داد.برای بدست آوردن اطلاعات نهان نگاری شده، ابتدا قالب علامت نهان نگاری قبل از پردازش با استفاده از کلید کاربر مشخص می شود، سپس این الگو با تصویر میزبان و ضرایب تصویر میزبان نهان نگاری تعبیه می گردد. حذف علامت نهان نگاری معکوس روند جاسازی کردن بدون تصویر میزبان است.
2-1-6-3 ) نهان نگاری غیرقابل مشاهده
در نهان نگاری غیر قابل مشاهده که برای حمل اطلاعات کپی رایت و یا دیگر پیامهای مخفی استفاده می شود، علامت واترمارک در یک تصویر میزبان پنهان می گردد. یک علامت واترمارک غیر قابل مشاهده، تغییر بسیار جزئی در وضوح مناطق واتر مارک شده تصویر دارد که برای چشم انسان غیرقابل مشاهده است.برای روش نهان نگاری غیر قابل مشاهده، نرخ بیت و قدرت سیگنال باید پایین باشد. علامت نهان نگاری غیرقابل مشاهده را نمی توان از رسانه های دیجیتالی حذف نمود، زیرا این سیگنال پس از جاسازی کردن، یک جزء جدایی ناپذیر از محتوای رسانه دیجیتال شده است. با این حال، می توان بوسیله برخی از روش های دستکاری و تحریف آنها را دچار تغییر کرد و غیر قابل کشف نمود که به آن حملات 3گفته می شود. یک علامت نهان نگاری، ایده آل، باید در برابر تمام حملات ممکن انعطاف پذیر باشد. اثبات مالکیت اثر حوزه کاربردی دیگر از نهان نگاری های دیجیتال غیر قابل مشاهده می باشد، که به سطح بالاتر امنیت از شناسایی مالک اثر نیازمند است. در این بررسی نهان نگاری غیرقابل مشاهده بر اساس نیرومندی در دو نوع قوی و شکننده (همانطور که در شکل نشان داده شده است)، طبقه بندی می شود
نهان نگاری غیرقابل مشاهده مقاوم (قوی):
در این گروه حذف علامت نهان نگاری توسط کاربر غیر مجاز بسیار دشوار است و بهمین ترتیب این روش در برابر حملات نهان نگاری مقاومت بالایی را داراست، و حملات هرگز بر روی تصویر نهان نگاری تاثیر نمی گذارند. هدف از الگوریتم های قوی استقامت علامت نهان نگاری در برابر تحریف ها و حملات ممکن مانند فشرده سازی ، فیلتر کردن و ایجاد نویز می باشد. ایمن و دوایت [16]یک روش نهان نگاری غیرقابل مشاهده قوی را برای محافظت از علامت نهان نگاری در برابر حملات پردازش هندسی و سیگنال پیشنهاد دادند. در این روش با استفاده از تبدیل متعامد میانی، علامت واترمارک در تصویر اصلی جایگذاری شده است. تبدیل محافظ طبیعی (NPT) به عنوان یک تبدیل واسط در بین دامنه فرکانس و دامنه فضایی مورد استفاده قرار می گیرد. دو فرم مختلف NPT بر اساس تبدیل کسینوسی گسسته و تبدیل هارتلی6 برای بهبود کیفیت تصویر شده اند. در این روش تصویر اصلی و تصویر واترمارک شده برای استخراج علامت نهان نگاری مورد نیاز می باشند. ساراجو و همکاران [17]برای مدیریت حقوق دیجینال (DRM) یک روش نهان نگاری غیر قابل مشاهده پیاده سازی نمودند. در این روش دامنه نهان نگاری غیرقابل مشاهده قوی از تبدیل کسینوس گسسته(DCT) بهمراه رمزنگاری برای محفاظت در برابر حملات استفاده شده است. برای اینکار در داخل یک تصویر رنگی یک تصویر باینری غیر قابل رویت بهمراه کلید خصوصی که برای احراز هویت ایجاد شد، جاسازی شده است.
نهان نگاری غیرقابل مشاهده شکننده:
در این روش نهان نگاری علامت نهان نگاری چندان قدرتمند نیست و ممکن است در هنگام برقراری ارتباط تصویر نهان نگاری توسط برخی حملات نهان نگاری تحت تاثیر قرار بگیرد و یا حذف شود. صبا و همکاران [18] نهان نگاری غیر قابل مشاهده در هر دو حوزه دامنه مکانی و دامنه فرکانس را ارائه دادند. روش نهان نگاری در حوزه مکانی در مقابل حملات نهان نگاری شکننده است و اطلاعات نهان نگاری را در اختیار کاربران غیر مجاز قرار می دهد. در این تکنیک از جایگذاری یک تصویر و متن با استفاده از روش جایگزینی حداقل بیت(LSB) استفاده می شود. استخراج علامت نهان نگاری غیرقابل مشاهده با استفاده از مقدار کلید انجام می شود. سومیک و همکاران [19] یک روش جدیدی را برای جایگذاری علامت نهان نگاری در تصویر میزبان با استفاده از محل های مختلف ارائه دادند. تصویر میزبان به تعدادی بلوک تقسیم شده است و تصویر علامت واترمارک در همه بلوک های موقعیت LSB جا سازی می شود. در این روش احراز هویت کاربر مجاز با استفاده از کلید پنهان و تابع هش صورت می گیرد. با ترکیب مقادیر تمام بلوک های LSB ، برای استخراج تصویر علامت نهان نگاری ، تکنیک شکننده مورد نظر توسعه داده شده است.
نهان نگاری با توجه به برنامه کاربردی
با توجه به برنامه های کاربردی، نهان نگاری می تواند به دو گروه نهان نگاری مبتنی بر منبع و نهان نگاری مبتنی بر مقصد طبقه بندی شود. در الگوریتم های نهان نگاری مبتنی بر منبع، تمامی نسخه های نهان نگاری شده تنها با یک علامت واترمارک منحصر به فرد نهان نگاری می شوند و همان سیگنال واترمارک منحصر بفرد برای شناسایی مالکیت و یا تصدیق هویت استفاده می شود. این علامت نهان نگاری صاحب محتوای دیجیتالی را شناسایی می کند. با این حال، نهان نگاری های مبتنی بر مقصد (اثر انگشت) به صورت جداگانه در هر یک از نسخه های نهان نگاری شده، علامت واترمارک مجزایی را جاسازی می کند و برای مشخص کردن خریدار یک محصول خاص و جلوگیری از یک عمل غیر قانونی(انتشار غیر قانونی) مورداستفاده قرار بگیرد. روش اثر انگشت می تواند برای نظارت بر پخش محصول دیجیتالی استفاده شود. قبل ازپخش، علامت نهان نگاری منحصر به فرد در هر فایل ویدئویی یا صوتی و یا کلیپ جاسازی می گردد. کامپیوتر های خودکار بر پخش و شناسایی زمان و جایی که هر فایل دیجیتالی ظاهر شده است نظارت می کنند[3].
2-1-7 ) خواص و ویژگی نهان نگاری دیجیتال
خواص اصلی نهان نگاری شامل نیرومندی، وفاداری، هزینه محاسباتی و نرخ مثبت-کاذب هستند.[3]با این حال، ممکن است طرح نهان نگاری تمامی این خواص را تامین نکند همچنین شاید برخی از انواع نهان نگاری ها به همه ویژگی ها نیاز نداشته باشند. برای نهان نگاری قابل مشاهده، برآورده نشدن خصوصیت وفاداری، نگران کننده نیست، اما، این ویژگی یکی از مهم ترین مسائل برای نهان نگاری غیر قابل مشاهده می باشد. برای پاسخگویی به خواص مورد نیاز نهان نگاری، طراحی نهان نگاری باید با توجه به نوع کاربرد انجام بگیرد. بعبارت دیگر، ممکن است یک خصوصیت با خصوصیت دیگر تناقض داشته باشد. مثلا افزایش قدرت و صلابت علامت نهان نگاری باعث افزایش استحکام و نیرومندی نهان نگاری می شود، اما همچنین باعث کاهش ویژگی وفاداری هم می شود. بنابراین با توجه به برنامه های کاربردی می توان بین الزامات و خواص طرح نهان نگاری تعادل برقرار نمود. در این بخش، این خواص مورد بررسی قرار می گیرند.
استحکام
در بسیاری از برنامه های نهان نگاری، انتظار می رود داده های نهان نگاری شده قبل از آنکه به گیرنده برسند، در بین راه توسط سایر کاربران پردازش شوند. برای مثال، در پخش تلویزیونی و رادیویی، رسانه نهان نگاری شده باید نسبت به فشرده سازی با اتلاف تبدیل به کار رفته در فرستنده و طرف گیرنده گیرنده ، و برخی از انتقال های افقی و عمودی انعطاف پذیر باشد. علاوه بر این، با توجه به رسانه انتقال نویز هم می تواند به داده اصلی اضافه شود. گاهی اوقات تکنیک های فشرده سازی بر روی تصاویر و فیلم ها در محیط وب استفاده می شود، بنابراین اگر علامت نهان نگاری در این فایل ها وجود دارد، باید در برابر فشرده سازی مقاوم باشد. گاهی اوقات، ممکن است بخشی از محتوای چند رسانه ای نیاز باشد، و به این ترتیب بخواهند همان بخش را از تصویر جدا کنند، که در اینصورت نیاز به استحکام در برابر حذف کردن یا یا برداشتن نیز احساس می شود. ممکن است بعدا این تصاویر چاپ و توزیع شوند. ممکن است در این مورد، اعمال برخی نویز و اصلاح هندسی بر روی تصویر رخ دهد. نسخه های کپی توزیع شده در پخش رادیویی و تلویزیونی دارای نهان نگاری های مختلفی می باشند. ممکن است فردی بوسیله متوسط نسخه های کپی، نسخه کپی موجود را برای فراهم کردن کپی نهان نگاری نشده استفاده کند، که به نام "حمله تبانی" نامگذاری می شود. علامت نهان نگاری قوی باید پس از حملات ممکن، ثابت و قابل تشخیص باقی بماند. بهر حال، این مطلب که علامت نهان نگاری در برابر تمامی حملات ممکن بدون تغییر باقی بماند غیر ممکن است و این فرضیه تا حدودی غیر ضروری و افراطی است. معیار نیرومندی برای کاربرد خاص مورد استفاده قرار می گیرد. از سوی دیگر، مفهوم نهان نگاری شکننده با معیارهای نیرومندی چالش ایجاد می کند. در این نوع از کاربردها، پس از هر حمله اعمال شده، باید بتوان علامت نهان نگاری را تغییر داد و یا از بین برد. در بسیاری از موارد کاربردی، تغییرات و پردازش بر روی سیگنال نهان نگاری بین زمان تعبیه کردن سیگنال و زمان تشخیص آن در مقصد، غیر قابل پیش بینی است، بنابر این لازم است تا علامت نهان نگاری در برابر حملات اعوجاج احتمالی مقاوم باشد. این مورد بخصوص برای شناسایی مالک ، اثبات مالکیت ، انگشت نگاری و کنترل کپی ضروری می باشد. در ضمن این مطلب برای هر برنامه ای که در آن هکرها ممکن است بخواهند علامت نهان نگاری را از بین ببرند، هم درست است.
وفاداری
ویژگی وفاداری یک نگرانی عمده را برای انواع مختلف نهان نگاری غیر قابل مشاهده ایجاد کرده است. وفاداری بالا یعنی اینکه میزان تخریب ناشی از جاسازی کردن علامت نهان نگاری درکیفیت تصویر پوشش(میزبان) برای فرد بیننده محسوس نیست. با این حال، در اکثر برنامه های کاربردی برای افزایش نیرومندی، یک سیگنال واترمارک قوی تر را در تصویر اصلی جاسازی می کنند که این امر باعث از دست دادن وفاداری نهان نگاری می گردد. در این مورد با توجه به سطح اولویت ویژگی وفاداری یا نیرومندی در فرآیند نهان نگاری باید تصمیم گیری مناسب را انجام داد. برخی از الگوریتم های نهان نگاری که از سیستم بینایی انسان استفاده می کنند، علامت نهان نگاری را در مناطق غیر قابل مشاهده از شی پوشش جاسازی می کنند. برای نهان نگاری های قابل مشاهده، صحبت در مورد وفاداری بی ارزش است. با این حال، در این مورد، به منظور جلوگیری از حذف علامت نهان نگاری، آنرا در یک منطقه بزرگ یا مهم تصویر جاسازی نمایند.
هزینه محاسباتی
سرعت فرآیند جاسازی کردن علامت نهان نگاری، یک مسئله بسیار مهم به ویژه در برنامه های کاربردی نظارت بر پخش است. به این صورت که همزمان که نظارت بر پخش انجام می گیرد سرعت تولید رسانه ها نباید کاهش یابد و آشکارسازی علامت نهان نگاری در زمان واقعی باید کار کند. این امر نیاز به طرح نهان نگاری عملی دارد که بسیاری از کارهای محاسباتی را نمی تواند تولید کند. از سوی دیگر، برای یک تابع آشکارسازی که برای اثبات مالکیت مورد استفاده قرار می گیرد چندان اهمیتی ندارد، چون تنها در صورت اختلافات بر سر مالکیت اثر از این تابع آشکار ساز استفاده می شود
میزان تشخیص مثبت-کاذب
ممکن است تابع آشکارساز علامت نهان نگاری یک علامت نهان نگاری اشتباه در رسانه ها پیدا کند ویا ممکن است علامت نهان نگاری را حتی در صورتی که وجود دارد پیدا نکند. به این مورد تشخیص مثبت- کاذب گفته می شود. نرخ تشخیص مثبت-کاذب برابر است با، تعداد موارد مثبت-کاذب که انتظار می رود پیدا شوند به تعداد مواردی که توسط تابع آشکارساز در طی اجرا برنامه پیدا شده است.

—d1183

شکل 1-1 چارچوبی برای مرحله قبل از اجرای مدیریت ارتباط با مشتری
هنگامی که شرایط اقتصادی باعث می‌شود، بودجه‌های فناوری اطلاعات به صورت دقیق و موشکافانه بررسی شوند، مدیریت ارتباط با مشتری همچنان به عنوان یک اولویت برای شرکت‌ها باقی می‌ماند. یک بررسی از شرکت‌های خرده‌فروش، نشان می‌دهد که 52 درصد از آن‌ها مدیریت ارتباط با مشتری را به عنوان یکی از اولویت‌های اصلی تجارتشان در نظر دارند. بازار مدیریت ارتباط با مشتری الکترونیکی هنوز نوپا است. با تکنولوژی و کاربردهایی که هنوز در حال رشد و بلوغ بوده و فروشنده‌هایی که در حال استحکام بخشیدن به کارشان در این زمینه توسط این تکنولوژی‌ها هستند. شرکت‌ها خدمات چندکاناله با کیفیتی بالا برای مشتریانشان بوجود می‌آورند، مشتریانی که فروشنده‌های مدیریت ارتباط با مشتری الکترونیکی را مجبور به ارائه راه‌حل‌های بهتر و پربارتر می کنند. [6]
با توجه به تغییرات دائمی محیط سازمان‌ها و فعالیت‌های آن‌ها که هم‌راستا با گسترش نیاز‌های مشتریان است، سازمان‌ها همواره نیازمند به‌کارگیری مدیریتی نوین هستند. مهندسی مجدد (بازمهندسی) از جمله فنونی است که با انطباق اثربخش سازمان‌ها و شرایط نوین به مدیران کمک‌های فراوانی در جهت برآورده‌سازی نیازهای جدید مشتریان می‌نماید. همان‌طور که ذکر کردیم با توجه به رشد روزافزون دامنه نیازهای مشتریان از سازمان یا سیستم، نحوه مدیریت ارتباط با آن‌ها نیز ابعاد تازه‌ای به خود می‌گیرد که توان پوشش این گستردگی در استفاده از فن بازمهندسی تحقق می‌یابد. به عبارت دیگر بازمهندسی یک فرآیند ارتباط با مشتری عبارتست از یک نگرش مدیریتی جهت پیشرفت در شناخت، جذب و نگهداری مشتریان به وسیله افزایش کارایی و اثربخشی فرآیندهای موجود. البته شایان ذکر است که جهت حصول اطمینان از انجام موفقیت آمیز پروژه بازمهندسی، نخست باید شناخت مناسبی نسبت به وظیفه بازمهندسی فرآیندها بدست آورد. [8]
به بیان دیگر، مهندسی مجدد فرآیند مدیریت ارتباط با مشتریان به مفهوم ارائه طرحی نوین در عرصه روابط میان سازمان و مشتریان برای ایجاد خلاقیت و نوآوری در ذهنیت، دگرگونی ساختارها و سازماندهی نیروها و واحدهای سازمانی در راستای کاربرد موثر منابع و امکانات، نقشی اساسی ایفا نموده است. البته قابل ذکر است که عدم درک مناسب از بازمهندسی و به‌کار‌گیری نامناسب آن باعث شکست پروژه‌های بازمهندسی می‌شود. بنابراین، شناخت کامل مفاهیم و تعاریف بازمهندسی می‌تواند در درک مناسب آن موثر باشد.
1-2 ضرورت تحقیقدر بازار رقابتی امروز سازمان‌هایی موفق خواهند بود که گستره بیشتری از مشتریان را تحت پوشش قرار دهند. از سوی مقابل مشتریان نیز در پی سازمان‌هایی هستند که میزان بیشتری از خواسته‌های آن‌ها را تحت پوشش قرار می‌دهند. جهت انطباق این دو موضوع، طراحی ساز و کاری که بتواند ارتباط فوق را برقرار سازد دارای اهمیت است. همین‌طور شناسایی بازارهای هدف از دید سازمان که منجر به سوددهی بیشتر می‌گردد، دارای اهمیت می‌باشد. به طور خلاصه ضرورت انجام تحقیق را می‌توان در موارد زیر خلاصه نمود:
پوشش گستره بیشتری از مشتریان جهت افزایش سهم بازار و سود‌دهی
انطباق ارضای خواسته‌های مشتریان با فرایندهای کاری سازمان
تسهیل و افزایش سرعت بازمهندسی از طریق گردش اطلاعات با فناوری اطلاعات
انعطاف بیشتر در سیستم بازاریابی با ارایه استراتژی‌های مناسب
1-3 اهداف تحقیقهدف اصلی این طرح ارائه ساختار فرآیندی مهندسی مجدد در امور سازمان با توجه به نظریات مشتریان از طریق یک سیستم الکترونیکی می‌باشد که علاوه بر ارضای تمایلات مشتریان با ارائه استراتژی‌های بازاریابی تحت وب، افزایش سود دهی سازمان مدنظر قرار می‌گیرد. به عبارت دیگر اهداف تحقیق را می‌‌توان در موارد زیر خلاصه نمود:
ارائه ساختار فرآیندی مهندسی مجدد در امور سازمان با توجه به نظریات مشتریان
استفاده از یک سیستم الکترونیکی (مبتنی بر وب)
ارضای تمایلات مشتریان با ارائه استراتژی‌های بازاریابی تحت وب
افزایش سود دهی سازمان
1-4 مفروضات مسئلهفرضیات در نظر گرفته شده برای تحقیق به قرار زیر می‌باشد:
استقرار سیستم مدیریت ارتباط با مشتری الکترونیکی در سازمان ممکن می‌باشد.
مدیریت تمایل به بازمهندسی در فرآیندهای کاری را دارد.
هدف مدیریت ارتباط با مشتری، بهبود روابط با مشتریان، و برآوردن نیازهای آن‌هاست.
سیستم بازاریابی تحت وب دارای قابلیت اجرایی می‌باشد.
مشتریان تحت یک سیستم الکترونیکی نظرات خود در مورد وضعیت خدمات سازمان را ارائه می‌نمایند.
1-5 مدل تحقیقهمان‌طور که در شکل 1-2 هم قابل مشاهده است. ابتدا با مشخص کردن خواسته‌های مشتریان تحت سیستمی الکترونیکی و شناسایی نقاط اثر آن در سازمان به عمل بازمهندسی (با در نظر گرفتن محدودیت‌های سازمان) پرداخته می‌شود. سپس جهت ارتقای مفاهیم بهره‌وری و اثربخشی و نیز توسعه سوددهی حاصل از خدمات سازمان استراتژی‌های متمرکز بر متدلوژی‌های بازاریابی ارائه می‌گردد. بنابراین مرور کامل روش‌های بازاریابی مبتنی بر وب نیز ضروری می‌باشد.

شکل 1-2 مدل تحقیق1-6 کلمات کلیدی و تعاریفدر این بخش به توضیح مختصری از کلمات استفاده شده می‌پردازیم:
مدیریت ارتباط با مشتری: فرآیند جذب مشتریان جدید، نگهداری مشتریان موجود، و سرمایه گذاری بر روی مشتریان تعریف است که به وجود آورندهی فضایی است که سازمان تحت آن در تعامل با مشتریانش میباشد.
مدیریت ارتباط با مشتری الکترونیکی: همان فرآیند مدیریت ارتباط با مشتری در بستری الکترونیکی (مبتنی بر) و با استفاده از فناوری اطلاعات (IT) که اشتقاقی از تجارت الکترونیکی می‌باشد.
بازمهندسی: تفکر مجدد بنیادین و طراحی مجدد اساسی فرآیندها برای دست یافتن به اصلاحات چشمگیر در موارد حساس و سنجش هم‌زمان کارایی پارامترهایی مانند هزینه‌ها؛ کیفیت؛ خدمات و سرعت.
برنامه‌ریزی استراتژیک: فرآیندی که سازمانها برای پیشبرد برنامهها و فعالیتهای خود جهت دستیابی به اهداف، و تحقق مأموریت سازمانی بهره میگیرند.
بازاریابی: بازاریابی شامل درک خواسته‌های مشتری و تطابق محصولات شرکت، برای برآورده ساختن آن نیازها و در برگیرنده فرآیند سودآوری برای شرکت است.
بازاریابی الکترونیکی: بکارگیری کانال‌های الکترونیکی ارتباط با مشتریان به منظور نشر پیام‌های بازاریابی
تجارت الکترونیکی: فرایند خرید، فروش یا تبادل محصولات، خدمات و اطلاعات از طریق شبکه‌های کامپیوتری و اینترنت می‌باشد.

فصل دوم
ادبیات و پیشینه تحقیق2-1 مقدمهبا توجه به یکپارچه شدن عناصر فناوری و بازاریابی در مدیریت ارتباط با مشتری الکترونیکی، همه جنبه‌های تجربه برخط مشتری در طول چرخه تعامل تحت پوشش قرار می‌گیرد، لذا در این پایان‌نامه‌ با تکیه بر بازمهندسی فرآیند‌های مدیریت ارتباط با مشتری الکترونیکی به ارائه استراتژی‌های بازاریابی می‌پردازیم. از این رو در این فصل مروری بر ادبیات موضوعی در حوزه مدیریت ارتباط با مشتری و ترکیب آن با مباحث بازاریابی و بازمهندسی در سه بخش مجزا مطرح خواهند شد.
2-2 بازاریابی و بازمهندسیبخش اول مربوط به مباحث بازاریابی و بازمهندسی است که در آن با استفاده از تکینیک‌های بازمهندسی فرآیندها، به بهبود بازاریابی سیستم کنونی پرداخته می‌شود که از نتایج آن می‌توان به افزایش گستره بازار مشتریان الکترونیکی و سود حاصل از آن اشاره کرد. با توجه به نقاط ضعفی که در ساختار فعلی سازمان در زمینه بازاریابی وجود دارد تکنیک بازمهندسی بهترین راه برای بهبود روش‌های موجود است زیرا با استفاده از نقاط قوت موجود و تقویت نقاط ضعف بیشترین کارایی را نتیجه خواهد داد.
2-2-1 مفاهیم پایه‌ای در حوزه بازاریابی و بازمهندسیبازاریابی الکترونیک عبارتست از بکارگیری کانال‌های الکترونیکی ارتباط با مشتریان به منظور نشر پیام‌های بازاریابی [9]. در همین ارتباط، بازاریابی اینترنتی اصطلاحی است که عموما بدین معنی است: دستیابی به اهداف شرکت از طریق برآوردن و فراتر رفتن از نیازهای مشتریان به نحوی بهتر از رقبا با استفاده از فن‌آوری‌های دیجیتالی اینترنت [10]. بازاریابی اینترنتی عبارتست از فرایند ایجاد و حفظ روابط مفید متقابل با مشتریان از طریق فعالیتهای اینترنتی به منظور تسهیل تبادل ایده‌ها کالاها و خدمات به نحوی که اهداف هر دو طرف را محقق سازد [11]. این تعریف شامل بخشهای زیر است: فرآیند، ایجاد و حفظ روابط مفید متقابل با مشتریان، استفاده از اینترنت درانجام فعالیتهای بازاریابی، مبادله، تحقق اهداف طرفین. همچنین بازاریابی آنلاین به شرکتهای عضو شبکه‌های لجستیک بازاریابی که حاوی جریانی از اطلاعات کالاها خدمات، تجارب و پرداخت‌ها و اعتبارات می‌باشند اشاره دارد [10].
بازمهندسی فرایندهای سازمانی راهی است برای تطابق سریع و آنی با شرایط محیطی. بازمهندسی از طریق ابزارهایی که در اختیار دارد باعث تغییر فرایند‌ها و در نهایت کل سازمان در ابعاد وسیع می‌شود و با همین ابزار که به اهرم‌های تغییر بازمهندسی فرایندها نیز معروف است بازمهندسی عملی می شود. نقطه شروع برای کسب موفقیت در بازاریابی الکترونیک مانند راهبرد بازاریابی یا کسب و کار خلق یک فرایند راهبردی است که به خوبی تعریف شده باشد تا اهداف بازاریابی را از طریق ارتباطات بازاریابی پیوند داده و روش‌هایی را برای کسب اهداف مورد نظر طراحی کند. [1]
همچنین با توجه به تعاریفی که از مهندسی مجدد فرآیندهای کسب و کار ارائه شده، فناوری اطلاعات نقش حساس و برجسته‌ای در مهندسی مجدد سازمان ایفا می‌کند، خلق نیازهای جدید، لزوم توسعه محصولات جدید و صدور رویه‌ها و مقررات اجرایی بهتر از عمده تأثیرات مهم فناوری اطلاعات در مهندسی مجدد فرآیندهای کسب و کار خواهد بود. به‌وسیله پیاده‌سازی کامل فناوری اطلاعات در سازمان، این تغییرات داخلی باعث تسریع روند کاری و هدایت تغییرات به نوع محصولات، خدمات و بازار، صنعت و حتی جامعه خواهد شد. چهارچوب نقش‌های فناوری اطلاعات در مهندسی مجدد را می‌توان بصورت آغازکننده، تسهیل‌کننده و توانمندساز تصور کرد. [37]
2-2-2 کارهای مرتبط در حوزه بازاریابی و بازمهندسیدر ادامه این بخش به بیان چند مورد مطالعه انجام شده در زمینه پیوند دو شاخه بازاریابی و بازمهندسی خواهیم پرداخت.
شانون اسکالین، جری جرمستاد و نیکولاس رومانو مطالعه‌ای راجع به ارتباط الکترونیکی در بازاریابی و جایگزینی مدیریت ارتباط با مشتری الکترونیکی با بازاریابی سنتی ارائه دادند. این مطالعه نشان می‌دهد که مدیریت ارتباط با مشتری الکترونیکی جدیدترین تکنیکی است که شرکت‌ها برای افزایش مهارت و ظرفیت‌های بازاریابی استفاده می‌کنند. همچنین نشان می‌دهد که چگونه مدیریت ارتباط با مشتری الکترونیکی تعاریف مفاهیم بازاریابی سنتی را گسترش می‌دهد و یک شرکت را قادر می‌سازد تا اهداف بازاریابی داخلی شرکت آشنا شود. در این مطالعه برای موثر و کارامد بودن یک سازمان به مواردی همچون خرید مشتری، استراتژی بازاریابی و تکامل مراکز تماس مشتری به مراکز تماس الکترونیکی مشتری در اجرای مدیریت ارتباط با مشتری الکترونیکی پرداخته شد. [12]
در سال 2010 در پروژه - ریسرچ‌ای تحت عنوان «زیرساخت های فناوری اطلاعات، طراحی مجدد فرایند سازمانی، ارزش کسب و کار» رونالد رامیرز، نایجل ملویل، ادوارد لاولر در مطالعه‌ای فن‌آوری اطلاعات و طراحی مجدد فرایند و عملکرد شرکت‌ها را در سه روش بیان کردند: تجزیه و تحلیل فناوری اطلاعات و بازمهندسی فرآیندهای کسب و کار یک شرکت، برآورد مفاهیم عملکرد ارزش بازاریابی و تولید، تجزیه و تحلیل رفتار (با استفاده از مجموعه داده های 228 شرکت بین سال‌های 1996-1999). [13]
آنها ارتباطی بین فناوری اطلاعات و بازمهندسی و عملکرد فرایند یافتند. تعامل بین فناوری اطلاعات و اوراق بهادار بازمهندسی فرآیندهای کسب و کار، با بهره‌وری شرکت و ارزش بازار همراه می‌باشد. همچنین در این پروژه - ریسرچدیدگاهی برای سرمایه گذاری کسب و کار در فناوری اطلاعات و باز طراحی فرآیند مورد بررسی قرار گرفت. دو گروه اصلی طراحی مجدد فرآیند یعنی توجیه اقتصادی و بازسازی کار در این پروژه - ریسرچبررسی شد. تحقیقات نشان می‌دهد که فناوری اطلاعات نقش مهم و مکملی در طراحی مجدد فرایند دارد. شرکت‌ها با سطوح بالای سرمایه گذاری فناوری اطلاعات که دارای کاربرد بیشتری در تصمیم‌های غیر متمرکز دارند، از سیستم‌های خودمحور و کارکرد متقابل استفاده می‌کنند.
بازمهندسی فرایند کسب و کار، فرآیند‌های کسب و کار نوآورانه و جدید را در بر می‌گیرد و باعث می‌شود که شرکت‌ها در محیط‌های رقابتی، با تغییرات سازگار شوند. مخصوصا بازمهندسی در فضای کسب و کار کنونی، شرکت‌ها را قادر می‌سازد که فرایندهای کسب و کار انعطاف‌پذیر ایجاد کنند که با خواسته‌های پویا و اطلاعات فشرده و بازار جهانی همخوانی داشته باشد. بازطراحی فرایند یکی از برنامه‌هایی است که می‌تواند تغییرات سازمانی مثبتی ایجاد کند. دیگر برنامه های مورد استفاده توسط شرکت‌ها، شامل مشارکت کارمندان، مدیریت کیفیت جامع و مدیریت فرایند کسب و کار می‌باشد. [14]
فن‌آوری اطلاعات، سازمان‌ها را برای طراحی مجدد فرایند‌ها آماده می‌کند و طراحی سازمانی با عملکرد بالایی را نشان می‌دهد. قابلیت‌های اطلاعاتی که توسط فناوری اطلاعات ایجاد می‌شود، باعث می‌شود که سرمایه‌گذاری اطلاعاتی، یک مؤلفه مهم در شیوه‌های کاری‌ای باشد که با تغییرات سازمانی در ارتباط است. در این پروژه - ریسرچفرضیه‌های زیر نتیجه شد:
1. تعامل بین فناوری اطلاعات سازمان و طراحی مجدد فرایند به طور مثبت و قابل توجهی با عملکرد سازمانی ارتباط دارد.
2. ارتباط بین عملکرد سازمانی و تعامل بین فناوری اطلاعات با توجه به طراحی مجدد فرآیند به دو عامل توجیه اقتصادی و بازسازی کار بستگی دارد.
نتایج حاصل از این تحقیقات نشان می‌دهد که:
1. مدیران باید سرمایه گذاری در فناوری اطلاعات و طراحی مجدد فرایند را به عنوان وسیله‌ای برای بهبود عملکرد شرکت در نظر بگیرند. در کوتاه مدت، با تمرکز بر چگونگی ساختار کار در شرکت، می‌توانند بهره‌وری تولید و همچنین عملکرد را بهبود بخشند.
2. برای اثرات دراز مدت، مدیران باید محافظه کارانه تر با تغییرات برخورد کنند. به جای تلاش برای پیاده‌سازی تغییرات زیاد در شرکت، طراحی مجدد فرایند می‌تواند موثر واقع شود.
محیط مجازی ارتباطی و شبکه جهانی اینترنت موجب افزایش سرعت و توسعه ارتباط‌های پیشرفته در همه جا، دسترسی در هر لحظه و ابزاری ساده از طریق مرورگرهای وب گردیده است. سازمان‌ها پیشرو با استفاده از تکنولوژی‌های نوین در ارتباطی پا به عرصه بازاریابی الکترونیکی گذاشته‌اند و بدین ترتیب از طریق محیط مجازی با مشتری‌ها، فروشنده‌ها و شرکای خود تماس برقرار می‌کنند. اینترنت و اینترانت موجب تغییر حرکت اطلاعات در سازمان‌ها، تغییر نحوه تبادل اطلاعات تجاری و ارتباطات گردیده‌اند. این شرایط نوین موجب ایجاد ارزش‌های جدید در دنیای کسب و کار گردیده است.
بازمهندسی فرآیندهای کسب و کار برای بازاریابی الکترونیکی نقش بیشتری نسبت به توانمندی‌های وب دارد. این مطلب دکتر زرگر در کتاب اصول و مفاهیم فن‌آوری اطلاعات به این ترتیب بیان شده که بازمهندسی فرآیندهای کسب و کار شامل طراحی مجدد فرآیندها در سرتاسر حلقه‌های ارتباطی درون سازمانی و بین سازمانی است. این شرکت‌ها چه در ابتدای زنجیر ارتباطی باشند (مانند سفارش‌گذاری، مدیریت انبارداری و تولید) و چه در انتهای این حلقه (مانند فروش، بازاریابی و خدمات مشتری) باید به یکدیگر متصل شوند. وقتی سازمان‌ها بتوانند اطلاعات را به موقع و در هر لحظه به راحتی مبادله کنند، کارها در یک شبکه ارتباطی بین سازمان‌ها از قبیل مدیریت زنجیره تأمین نیز بهتر انجام می‌شود. [2]
بازمهندسی فرآیندهای کسب و کار در بازاریابی الکترونیکی شامل فکر نو و طراحی مجدد فرآیندها در سطح یک سازمان و سطح ارتباط‌های زنجیره‌ای سازمان‌ها، معروف به مدیریت زنجیره تأمین، برای بهره‌برداری بیشتر از مزایای ارتباطی، فضای مجازی اینترنت و راه‌های نوین ایجاد ارزش است. با استفاده از بازاریابی الکترونیکی، اطلاعات فرآیندها هر لحظه در اختیار مشتری قرار می‌گیرد. علاوه بر این، اطلاعات مشتری به سازنده نیز ارسال شده است تا نظر و سلیقه مشتری مستقیماً در طراحی محصول مدنظر واقع شود. از این رو قواعد کاری سازمان‌ها تغییر می‌کند؛ انجام سفارش، فرآیندهای کاری و فروش نیز برای تجارت الکترونیکی باید طراحی مجدد شوند. بنابراین در تجارت الکترونیک، اگر به مانند بسیاری از سازمان‌هایی که هم‌اکنون در این زمینه سرمایه‌گذاری کرده‌اند عمل شده و توجهی به تغییرات فرآیندی نگردد، نتیجه‌ای جز شکست عاید سازمان نخواهد شد. [3]
در سال 2008 پژوهشی در رابطه با مدل اندازه‌گیری عملکرد بازمهندسی فرایند مدیریت ساخت (CMPRPM) ، که بر اساس استفاده از فلسفه مهندسی مجدد فرایند کسب و کار است، انجام شد. در این پژوهش زمان عملیات فرایند و رضایت مشتری به عنوان شاخص‌های ارزیابی کارایی و اثربخشی استفاده می‌شود. مدل CMPRPM برای محاسبه زمان عملیات فرایند، از نظریه صف‌بندی استفاده می‌کند. [15]
به منظور دستیابی به رضایت مشتری، خواسته‌های مشتری شناسایی می‌شود و شاخص حصول هدف برای محاسبه اثر بخشی فرایند مورد استفاده قرار می‌گیرد. پس از یکپارچه سازی نتایج ارزیابی کارایی و اثربخشی، شاخص‌های ارزش فرایند و بهبود ارزش برای اندازه‌گیری قبل و بعد مهندسی مجدد، مورد استفاده قرار می‌گیرند.
مدل CMPRPM پیشنهاد داده شده در این پروژه - ریسرچ، عملکرد (AS-IS) اولیه و فرایند‌های مهندسی مجدد (TO-Be) را برای تسهیل طراحی موفقیت آمیز بازمهندسی فرآیندهای کسب و کار نشان می‌دهد. نتایج نشان می‌دهد که با اتخاذ مدل ارائه شده، صنعت ساخت و ساز به طور قابل توجهی در طراحی بازمهندسی فرآیندهای کسب و کار سودمند است.
نویسندگان این پروژه - ریسرچبازمهندسی فرآیندهای کسب و کار را که یک ابتکار سازمانی استراتژی محور طراحی شده برای بهبود طراحی مجدد فرایند های کسب و کار می‌باشد، شامل چهار مرحله اصلی زیر می‌دانند:
1. ارائه فرایند: در مهندسی مجدد فرایند یکی از سخت‌ترین و مهمترین وظایف، شناسایی و توصیف روند کلی شرکت هاست. به طور دقیق، توصیف فرایند عملیاتی طبقه‌بندی شده، یک گام اساسی در برنامه مهندسی مجدد می‌باشد. ارائه فرایند یک تعریف سیستماتیک برای کمک به شرکت‌ها به منظور روشن ساختن و انتخاب فرایند برای مهندسی مجدد می‌باشد.
2. انتقال فرایند: انتقال فرایند به طور عمده نشان دهنده کاربرد تجزیه و تحلیل عملیاتی و مدلسازی فرایند است. هدف اولیه از تجزیه و تحلیل عملیاتی، تعریف پردازش دسته بندی عملیاتی و سپس بعد از تجزیه و تحلیل عملیاتی و مدلسازی، فرایند کسب و کار (TO-Be) آینده را فرموله می‌کند.
3. ارزیابی: همانطور که فعالیت‌های مهندسی مجدد، بر فعالیت‌های ناکارامد تمرکز دارد، تا تغییراتی را در راستای بدست آوردن بیشترین تأثیر، قبل از اجرا، ایجاد کند، روند کنونی باید برای موانع فرایند‌ها مورد بررسی قرار گیرند تا از طراحی مجدد فرایند‌ها اطمینان حاصل شود. ارزش فرایند به منظور برآورد عملکرد فرایند مورد استفاده قرار می‌گیرد، می‌تواند در 2 دیدگاه بررسی شود: دیدگاه اول بهره‌وری در هر واحد هزینه و دیدگاه دوم بهره‌وری در هر واحد زمان.
4)طراحی مجدد فرایند: باید شامل بررسی عملیات‌های کسب و کار فعلی باشد. نتایج تجزیه و تحلیل از مدل ارزیابی فرایند بدست آمده می‌تواند برای شناسایی نقص‌های اصلی فرایند مورد استفاده قرار گیرد.
2-3 بازاریابی و مدیریت ارتباط با مشتریدر بخش دوم به مروری بر ادبیات در حوزه بازاریابی و مدیریت ارتباط با مشتری الکترونیکی پرداخته می‌شود. مدیریت ارتباط با مشتری الکترونیکی یک استراتژی مدیریتی است که سازمان را قادر می‌سازد بر مشتریان تمرکز کنند و روابط قوی‌تری را ایجاد نمایند. این کار کمک می‌کند تا اطلاعات مربوط به مشتری، فروش، بازاریابی، حساسیت و گرایشات بازار را یک به یک کنار هم قرار دهیم. قابل ذکر است گستره این مشتریان الکترونیکی محدود به مشتریان موجود نمی‌شود بلکه مشتریانی که از طریق بازاریابی به سیستم اضافه شده‌اند هم نیاز به مدیریت ارتباطی کارآمد دارند.
2-3-1 مفاهیم پایه‌ای در حوزه بازاریابی و مدیریت ارتباط با مشتریمعاملاتی که تنها بر اثر بخشی عناصر آمیخته بازاریابی تاکید داشت، به سوی بازاریابی مبتنی بر رابطه و برقراری مدیریت موثر ارتباط با مشتری تغییر جهت داده است. طی دو دهه گذشته سازمان‌های بسیاری به اهمیت رضایتمندی مشتریان خود واقف شده و دریافته‌اند که حفظ مشتریان موجود به مراتب کم هزینه تر از جذب مشتریان جدید است. به علاوه وجود رابطه قوی بین رضایتمندی مشتریان و سودآوری مورد قبول واقع شده و تأمین و ارتقای رضایتمندی مشتریان به هدف عملیاتی بسیار مهم اغلب سازمان‌ها تبدیل شده است. بنابراین شرکت‌ها همواره باید ناظر و مراقب تعامل بین خود و مشتریانشان باشند و با شناخت و درک صحیح از نیازها و ارزش‌های مد نظر مشتریان، کالاها و خدمات با ارزشی را به آنان ارائه کنند تا با جلب رضایتمندی ، در آن‌ها وفاداری ایجاد کنند. محققان، بازاریابی رابطه‌مند را از ابعاد مختلفی مورد بررسی قرار داده‌اند که یکی از آن‌ها تاکید بر برقراری روابطی بلند مدت و متقابل بین خریدار (مشتری) و فروشنده است.
بر خلاف تئوری بازاریابی کلاسیک که هنرش در جذب مشتریان جدید و تاکید آن بیشتر بر انجام معاملات متمرکز بود تا ایجاد رابطه با دیگران، با شدت گرفتن رقابت بین شرکت‌ها در مشتری‌یابی برای محصولات و خدماتشان و همچنین افزایش قدرت مشتری در دنیای رقابتی امروز، شرکت‌ها دیگر نه تنها باید به دنبال جذب مشتریان جدید باشند، بلکه حفظ و نگهداری مشتریان قبلی و برقراری روابطی مستحکم با آنان را نیز باید مورد توجه قرار دهند. [16]
دنیای امروز مملو از تغییرات و دگرگونی هاست. تغییر در فناوری، تغییر در اطلاعات، تغییر در خواسته‌های مردم، تغییر در مصرف‌کنندگان و تغییر در بازارهای جهانی. اما از مهمترین تغییرات ایجاد شده در صحنه کسب‌وکار، تغییر در ارزش‌های قابل عرضه به خریداران بوده است که به عنوان عامل اصلی موفقیت در سازمان‌های فعلی شناخته می شود و سازمان‌های پیشرو در هر صنعت موفقیت خود را مدیون توانایی در عرضه و ارائه ارزش بیشتر به خریداران در مقایسه با رقبایشان می‌دانند.به عبارت دیگر تنها در صورت تمرکز منابع بر فرصت‌ها و ایجاد ارزش برای مشتریان است که می‌توان به مزیت رقابتی پایدار دست یافت و پشتوانه‌ای محکم برای ادامه حیات سازمان و کسب رهبری در آن عرصه از رقابت را پیدا کرد.
بازاریابی رابطه‌مند به دنبال برقراری چنان روابطی با مشتریان هدف است که مجدداً در آینده از او (شرکت) خرید کنند و دیگران را نیز به این کار ترغیب کنند. بهترین رویکرد جهت حفظ و نگهداری مشتریان این است که رضایتمندی فراوان در مشتری ایجاد کرد و آنچه را برای او ارزش تلقی می‌شود مورد توجه قرار داد تا در نتیجه وفاداری او نسبت به شرکت مستحکم شود. مدیریت ارتباط با مشتری نیز در پی ارائه ارزش‌های بیشتر برای مشتری و دست‌یابی به مزایای ملموس و غیر ملموس ناشی از این رابطه است. در دنیای کنونی توجه و عمل به اصول بازاریابی رابطه مند و مدیریت ارتباط با مشتری به عنوان یک مزیت رقابتی به شمار می‌رود. [17]
2-3-2 کارهای مرتبط در حوزه بازاریابی و مدیریت ارتباط با مشتریپل هریگان، الین رمزی و پاتریک ایباستن، در پروژه - ریسرچ‌ای به تأثیرات مدیریت ارتباط با مشتری الکترونیکی در سازمان‌های کوچک و متوسط (SMEs) پرداختند. هدف از این پروژه - ریسرچ، تعیین اصول بازاریابی روابط که به ندرت در این سازمان‌ها اعمال می‌شود و همچنین بررسی نقش تکنولوژی اینترنت در مدیریت ارتباط با مشتری در ایرلند شمالی و نیز آنچه در این نقش قابل ملاحظه است می‌باشد. در طی این مطالعات یک روش کمی برای جمع آوری داده‌ها ارائه داده شد و نتایج این مطالعات حاکی از آن بود که سازمان‌ها در حال رو آوردن به سمت الکترونیکی کردن مدیریت ارتباط با مشتری می‌باشند. [18]
ایوانجلیا بلری و میشائیل میشالاکوپولوس در پروژه - ریسرچ‌ای به بررسی کاربرد مدیریت ارتباط با مشتری الکترونیکی در بخش ارتباطات راه دور (که یک بخش در حال توسعه مداوم می‌باشد) در سازمان‌های یونانی پرداختند و سودها و مشکلات به عنوان فاکتورهای موفقیت و شکست مورد تجزیه و تحلیل قرار گرفت. نتایج نشان داد که سازمان‌ها منافع زیادی در اثر اجرای مدیریت ارتباط با مشتریان الکترونیکی که به طور قابل ملاحظه‌ای به جریان اطلاعات در سازمان‌ها برای ارتباط با مشتری کمک می‌کند، بدست می‌آورند. [19]
در تحقیقی تحت عنوان «یک چارچوب تلفیقی (یکپارچه) برای ارزش مشتری و عملکرد مدیریت رابطه با مشتری» که در کشور چین صورت گرفته است، محققان مدعی شده‌اند که ارائه ارزش‌های برتر برای مشتری می‌تواند مزایای ملموس و غیر ملموسی را که از رفتارهای مشتری ناشی می‌شود، برای شرکت به همراه آورد. [20]
در این تحقیق اشاره شده است که با توجه به رقابت شدید و تغییرات سریع تکنولوژیک، بسیاری از شرکت‌ها به دنبال ارائه ارزش‌های برتر برای مشتریان خود هستند و ارائه ارزش‌های برتر به مشتریان به عنوان یکی از مهمترین عوامل موفقیت شرکت‌ها چه در زمان حال و چه در زمان آینده تلقی می‌شود و همچنین تأثیر مهمی روی رفتارهای مشتریان خواهد داشت و در نهایت اینکه عملکرد مدیریت رابطه با مشتری باید از طریق رفتار‌های مشتری اندازه‌گیری و ارزیابی شود، چرا که رفتارهای مشتری می‌تواند جریان درآمدی را به سوی شرکت سرازیر کند و از اهمیت استراتژیک زیادی برخوردار است. در مقابل دیدگاه‌های گذشته که ارزش را تنها در منافع حاصل شده می‌دانستند، مطالعه حاضر چنین فرض کرده که ارزش مشتری مبنی بر ادراک مشتری است، از اینکه وی چه چیزهایی را دریافت می کند (از قبیل قیمت، هزینه فرصت، هزینه نگهداری و یادگیری).
در تحقیق دیگری تحت عنوان «از آمیخته بازاریابی به سوی بازاریابی رابطه مند» چنین عنوان شده است که با توجه به تحولات اقتصادی به وجود آمده، پارادایم جدیدی در حوزه مدیریت بازاریابی در حرکت از توجه محض به عناصر آمیخته بازاریابی به سوی بازاریابی رابطه‌مند گسترش یافته است و این گرایش بخصوص در بازاریابی خدمات و بازاریابی صنعتی مورد تاکید قرار گرفته است و روابط بازاریابی به عنوان یک پارادایم جدید در ادبیات بازاریابی شناخته شده است. [21]
با توجه به این مطلب که در دنیای رقابتی امروز عنوان می شود: «هزینه جذب مشتری جدید به مراتب بیش از هزینه نگهداری مشتریان کنونی است»، محققان عنوان داشته اند که پیروی از اصول بازاریابی رابطه‌مند می‌تواند سهم عمده ای در حفظ و نگهداری مشتریان کنونی و در نتیجه سودآوری شرکت داشته باشد و می‌توان آن را یک مزیت رقابتی ممتاز برشمرد.
با مطالعه و بررسی تحقیقات صورت پذیرفته می‌توان به نقاط مشترک و همپوشی مفاهیم بازاریابی رابطه‌مند و مدیریت ارتباط با مشتری پی برد. شرکت‌ها در پی به کارگیری استراتژی‌هایی هستند که از آن طریق مشتریان کنونی خود را حفظ کنند و با داده‌کاوی و به کارگیری تکنولوژی مناسب در پی کسب اطلاعات به هنگام در خصوص مشتریانشان بوده تا از طریق برقراری روابطی پایدار و بلند مدت با مشتریان خود در پی جلب رضایتمندی و وفاداری آن‌ها باشند. بازاریابی رابطه‌مند و مدیریت ارتباط با مشتری از جمله استراتژی‌هایی است که شرکت‌های کامیاب امروز برای دست‌یابی به اهداف گفته شده از آن بهره برداری می‌کنند و می‌توان توان استفاده مطلوب از آن‌ها را به عنوان یک مزیت رقابتی پایدار در دنیای تجارت امروز دانست. [21]
در سال 2010، لی لینگ‌یی در پروژه - ریسرچ‌ای تحت عنوان «استفاده از متریک‌های بازاریابی» به تعیین شرایط ترویج استفاده از معیار‌های بازاریابی در مدیریت ارتباط مشتری پرداخت و عوامل سازمانی استفاده از متریک‌های بازاریابی که بر تضعیف یا تقویت عملکرد مدیریت ارتباط با مشتری تأثیر می‌گذارد را مشخص کرد. [22]
بر اساس تئوری ارزش مبتنی بر مشتری ، یک چارچوب تحقیقاتی برای روشن‌تر شدن نقش فرهنگ سازمانی مبتنی بر ارزش مشتری، توسعه داده شد. شواهد تجربی از 209 نمونه شرکت‌های تجاری نشان داد که شرکت‌هایی که از متریک‌های بازاریابی استفاده می‌کنند تأثیر اصلی و مهمی بر افزایش عملکرد مدیریت ارتباط با مشتری دارند.
متریک‌های بازاریابی که در این تحقیقات تمرکز اصلی بر آن است، اشاره به جمع آوری داده‌های بازاریابی، کانال‌ها، رفتارها و پاسخ مشتری، به منظور اثر بخشی بر فعالیت‌های مدیریت ارتباط با مشتری می‌باشد. با توجه به تحقیقات انجام شده در پژوهش متریک‌های بازاریابی را می‌توان به 6 گروه زیر خلاصه کرد:
1. متریک‌های مالی (به عنوان مثال: حجم معاملات، سودها و...)
2. متریک‌های بازار رقابتی
3. متریک‌های رفتار مصرف کننده (نفوذ مشتری، وفاداری و جذب مشتری جدید)
4. مقیاس‌های مشتری‌های با واسطه
5. مقیاس‌های مشتری‌های مستقیم
6. اندازه‌گیری نوآورانه (راه‌اندازی محصولات جدید و درآمد این محصولات به عنوان درصدی از کل ارسال‌ها)

شکل 2- SEQ شکل * ARABIC 1 چارچوبی برای استفاده از متریک‌های بازاریابیشکل 2-1 مروری بر چارچوب این تحقیقات را فراهم می‌کند که روابط بین ویژگی‌های شرکت‌های مبتنی بر ارزش مشتری، استفاده از متریک‌های بازاریابی و عملکرد برنامه‌های مدیریت ارتباط با مشتری را نشان می‌دهد.
همچنین در سال 2003 آمبلر و وانگ نشان دادند که رابطه مثبت و معنی داری بین ارتباط مشتری و 2 نوع از متریک‌های بازاریابی به نام‌های رفتار مشتری و مشتری‌های با واسطه وجود دارد [23]. از این رو فرضیه‌های زیر نتیجه شده است:
1. فرهنگ سازمانی مبتنی بر ارزش مشتری، با سطح قابل توجهی از استفاده از متریک‌های بازاریابی مرتبط است.
2. استفاده از متریک‌های بازاریابی به طور قابل توجهی با عملکرد مدیریت ارتباط با مشتری ارتباط دارد.
3. زنجیره تأمین بازاریابی تأثیر استفاده از متریک‌های بازاریابی در بدست آوردن عملکرد برتر مدیریت ارتباط با مشتری را تضعیف می‌کند.
4. قضیه ارزش نوآورانه، تأثیر استفاده از متریک‌های بازاریابی در بدست آوردن عملکرد برتر مدیریت ارتباط با مشتری را تقویت می‌کند.
همچنین در سال 2009 مدلی برای پیش‌بینی ارزش مشتری از دیدگاه جذابیت محصول و استراتژی بازاریابی مطرح شد که در آن، پیش بینی ارزش مشتری از دیدگاه جذابیت محصول و استراتژی بازاریابی مورد بررسی قرار می‌گیرد [24]. این پژوهش مدلی برای مدیریت ارتباط با مشتری با استفاده از فکر هوشمند، که شامل مفهوم پویایی سیستم می‌باشد، را پیشنهاد می‌کند که شامل سه ماژول زیر است:

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

1. مدل رفتار خرید مشتری
2. مدل زنجیره مارکوف برای ارزش طول عمر مشتری
3. مدل بازده مالی در دراز مدت
احتمال خرید مشتری در مدل 1، محاسبه ارزش طول عمر مشتری در ماژول 2 و تخمین طول عمر در ماژول 3 بررسی می‌شود. مدل رفتار خرید مشتری، از دینامیک سیستم (تغییرات سیستم) به عنوان یک ابزار شبیه‌سازی استفاده می‌کند. این مدل فعالیت‌های بازاریابی و تأثیر توسعه محصول (شامل اهمیت تصمیم‌گیری خرید مشتری بر روی یک محصول، جذابیت محصول از نظر کیفیت، طراحی و قیمت) در نظر می‌گیرد. این مدل در شکل 2-2 نشان داده شده است.

شکل SEQ شکل * ARABIC 2-2 مدل رفتار خرید مشترییک شرکت به راحتی می‌تواند با تعریف پارامتر‌هایی همچون جذابیت یک محصول و پاسخ مشتری، استراتژی کسب و کار خود را از هر دو دیدگاه بازاریابی و توسعه محصول ارزیابی کنند. در نتیجه پالایش این پارامترها و اتخاذ بهترین استراتژی، برای ایجاد ارزش مشتری و حداکثر سود بازده مفید است. دو پارامتر مهم دیگر در این پژوهش برای توسعه محصول درنظر گرفته شده است:
الف) جذابیت یک محصول، که به طراحی، کیفیت و قیمت بستگی دارد.
ب) تجربه کاربر از محصول، رضایت و وفاداری به سازمان.
نتایج این مطالعه نشان می‌دهد که شرکت‌ها در بازار به شدت رقابتی امروز، باید تاکید بیشتری بر جذب مشتری برای توسعه محصول خود داشته باشند. از طریق تجزیه و تحلیل فعالیت‌های بازاریابی مختلف و ویژگی ‌های محصول بر روی رفتار مشتری، شرکت‌ها می‌توانند نتایج را از نظر سهم بازار و فروش پیش‌بینی کنند. با این حال پیدا کردن مدلی برای این استراتژی مشکل است.
مدل پویایی سیستم که از تجزیه و تحلیل زنجیره مارکوف برای برآورد ارزش طول عمر مشتری استفاده می‌کند، از اهمیت زیادی در کسب و کار برخوردار می باشد. شکل 2-3 روابط بین ایجاد ارزش و دریافت ارزش در یک شرکت را نشان می‌دهد. به منظور تقویت فرآیندهای ایجاد و دریافت ارزش، یک استراتژی بازاریابی مبتنی بر مشتری لازم می‌باشد. این بدان معناست که شرکت‌ها باید در ارتباط با قیمت‌گذاری، بخش مشتری، طراحی و کیفیت محصول، و استراتژی‌های تبلیغاتی به منظور رقابت در بازار، تصمیمات معقولی بگیرند.

شکل 2-3 مدل فرآیندی نحوه ایجاد ارزش و دریافت آن در سازمانمدل پویایی سیستم که از تجزیه و تحلیل زنجیره مارکوف برای برآورد ارزش طول عمر مشتری استفاده می‌کند، از اهمیت زیادی در کسب و کار برخوردار می باشد. شکل 2-3 روابط بین ایجاد ارزش و دریافت ارزش در یک شرکت را نشان می‌دهد. به منظور تقویت فرآیندهای ایجاد و دریافت ارزش، یک استراتژی بازاریابی مبتنی بر مشتری لازم می‌باشد. این بدان معناست که شرکت‌ها باید در ارتباط با قیمت‌گذاری، بخش مشتری، طراحی و کیفیت محصول، و استراتژی‌های تبلیغاتی به منظور رقابت در بازار، تصمیمات معقولی بگیرند.
همچنین در سال 2011 نیز در پروژه - ریسرچ‌ای تحت عنوان « استراتژی‌های تطبیق فناوری اطلاعات برای مدیریت ارتباط با مشتری » به نحوه ارتباط میان استراتژی‌های ارتباط با مشتری و زیرساخت‌های فناوری اطلاعات اشاره شده است و راهکاری جهت هم‌ترازی این استراتژی‌ها و زیرساخت‌های یک شرکت ارائه گردید. [25]
2-4 بازمهندسی و مدیریت ارتباط با مشتریدر ادامه و در بخش آخر حوزه بازمهندسی و مدیریت ارتباط با مشتری الکترونیکی مطرح می‌گردد که در آن برای دست یافتن به مدیریتی موفق در زمینه ارتباط با مشتریان از تکنیک‌های بازمهندسی استفاده می‌شود. به عبارت دیگر از بازمهندسی به عنوان یک نگرش مدیریتی برای پیشرفت به وسیله افزایش کارایی و اثربخشی فرآیندهای مدیریتی موجود در سازمان استفاده می‌گردد.
2-4-1 مفاهیم پایه‌ای در حوزه بازمهندسی و مدیریت ارتباط با مشتریسازمان‌ها و دستگاه‌های دولتی و غیردولتی به منظور ارتقاء سطح کیفیت خدمات خود می‌کوشند با بهره‌گیری از استراتژی‌های موثر و مناسب ، نقش حیاتی مشتریان را بعنوان تعیین، طراحی، و ارزیابی کننده کیفیت توسعه دهند. مدیریت ارتباط با مشتری یکی از استراتژی‌هایی که اکنون کشورهای توسعه یافته و پیشرفته در سازمان‌های انتفاعی و خصوصی خود اتخاذ نموده و براساس آن کوشیده‌اند با افزایش و به حداکثر رساندن اطلاعات مشتریان خود از طریق سیستم‌ها و ابزارهای مناسب ارتباطی، تعادل بهینه بین سرمایه‌گذاری مشارکتی و رضایتمندی آن‌ها برقرار نمایند و از این طریق سود و منفعت را به حداکثر برسانند. با این وصف و با توجه به سیاست‌های مدیریت کیفیت سازمان بیمه خدمات درمانی، ارتباط مناسب و شنود نیازها ، خواسته‌ها و انتظارات مشتریان (اعم از داخلی، خارجی و نهایی) و به دنبال آن، تحقق مدیریت ارتباط با مشتری امری الزامی است، از این طریق امکان برقراری ارتباط موثر و سالم که اساس مدیریت مشارکتی را نیز فراهم می‌آورد، میسر می‌شود.
نوآوری و تغییر در محصولات و خدمات جوامع صنعتی، چنان شتابی گرفته است که قدرت انتخاب و خرید بسیاری محصولات و خدمات را از مشتریان گرفته است، به گونه‌ای که نو بودن بسیاری از کالاها بیش از چند ماه دوام ندارد. سرعت تغییر در خدمات و کالاها و جهانی شدن اقتصاد تأثیر خود را به گونه‌ای در تمامی بنگاه‌های اقتصادی نمایان کرده است که رفتار و فرهنگ تمام مردم تحت تأثیر این تغییرات قرار گرفته است. جوامع و سازمان‌هایی که خود را با این تغییرات هماهنگ نکرده‌اند احساس عقب‌ماندگی دارند و بنگاه‌های اقتصادی در این گونه جوامع رو به نابودی هستند. رقابت در سازمان‌ها و بنگاه‌های اقتصادی پیشرو چنان سرعت و شتابی دارد که تصور رسیدن به آن‌ها بیشتر اوقات محال و غیر ممکن به نظر می‌رسد. لحظه‌ای درنگ باعث حذف و حتی نابودی بنگاه‌های اقتصادی می‌شود. سرعت تغییر بر بنگاه‌های اقتصادی و همه هنجارهای اجتماعی تأثیر گذاشته و اگر هنجارهای اجتماعی توان تغییر سریع نداشته باشند ممکن است به فروپاشی آن جوامع منجر شود. [26]
هر سازمان و یا شرکت، یک نهاد اجتماعی است که مبتنی بر هدف بوده و دارای سیستم های فعال و هماهنگ است و با محیط خارجی ارتباط دارد. در گذشته، هنگامی که محیط نسبتاً باثبات بود بیشتر سازمان ها برای بهره‌برداری از فرصت های پیش‌آمده به تغییرات تدریجی و اندک اکتفا می‌کردند؛ اما با گذشت زمان، در سراسر دنیا سازمان ها دریافته‌اند که تنها تغییرات تدریجی راهگشای مشکلات کنونی آنان نیست و گاهی برای بقای سازمان لازم است تغییراتی به صورتی اساسی و زیربنایی در سازمان ایجاد شود.
امروزه در سراسر دنیا این تغییرات انقلابی را با نام مهندسی مجدد می شناسند؛ مهندسی مجدد روندی است که در آن وظیفه های فعلی سازمان جای خود را با فرایندهای اصلی کسب‌وکار عوض کرده و بنابراین، سازمان از حالت وظیفه‌گرایی به سوی فرایند‌محوری حرکت می‌کند. همین امر موجب سرعت بخشیدن به روند کسب‌وکار و کاهش هزینه‌ها و درنتیجه رقابتی‌تر شدن سازمان می‌گردد . در ‌رویکرد مهندسی مجدد، روش‌ انجام‌ کار در دوره‌ تولید انبوه و سلسله مراتب‌ سازمانی‌ گذشته جهت استانداردسازی از اهمیت‌ می‌افتند. ‌اساس‌ مهندسی‌ مجدد بر بررسی های‌ مرحله‌ای‌ و حذف‌ مقررات‌ کهنه‌ و تصورات‌ بنیادینی‌ استوار است‌ که‌ زمینه‌ساز عملکرد کسب‌وکار کنونی‌اند. اکثر شرکت ها انباشته‌ از مقررات‌ نانوشته‌ای‌ هستند که‌ از دهه‌های‌ پیشین‌ بر‌جا مانده‌اند. این‌ مقررات‌ بر پایه‌ فرض هایی‌ درباره‌ فناوری، کارمندان و اهداف سازمان‌ به‌‌وجود آمده‌اند که‌ دیگر کاربردی‌ ندارند.
مهندسی‌ مجدد عبارت‌ است‌ از بازاندیشی بنیادین‌ و ریشه‌ای‌ فرایندها برای‌ دستیابی‌ به‌ پیشرفتی‌ شگفت‌انگیز در معیارهای‌ حساسی‌ چون‌ کیفیت‌ و سرعت‌ خدمات. سازمان های‌ تازه، شرکت هایی‌ خواهند بود که‌ به‌طور مشخص‌ برای‌ بهره‌برداری‌ در جهان‌ امروز و فردا طراحی‌ می‌شوند و نهادهایی‌ نیستند که‌ از یک‌ دوران‌ اولیه‌ و باشکوه‌ که‌ ربطی‌ به‌ امروز ندارند انتقال‌ یابند. در مهندسی مجدد اعتقاد براین است که مهندسی مجدد را نمی‌توان با گام های کوچک و محتاط به اجرا درآورد. این قضیه همان قضیه صفر یا یک است؛ به عبارت دیگر یا تغییری تحقق نیابد و یا در صورت تحقق از ریشه و بنیان تغییر حاصل گردد. [27]
مهندسی مجدد به این معنا نیست که آنچه را که از پیش وجود دارد ترمیم کنیم یا تغییراتی اضافی بدهیم و ساختارهای اصلی را دست نخورده باقی بگذاریم؛ مهندسی مجدد یعنی از نقطه صفر شروع کردن، یعنی به کنار نهادن روش های قدیمی و به کار گرفتن نگاه نو. مهندسی مجدد در پی اصلاحات جزیی و وصله‌کاری وضعیت موجود و یا دگرگونی های گسترشی که ساختار و معماری اصلی سازمان را دست‌نخورده باقی می‌گذارد، نیست. مهندسی مجدد در پی آن نیست که نظام موجود را بهبود بخشیده و نتیجه کار را بهتر کند.
مهندسی مجدد به معنای ترک کردن روش های کهنه و دستیابی به روش های تازه‌ای است که برای تولید کالاها و خدمات شرکت و انتقال ارزش به مشتری لازم هستند. مهندسی مجدد را با نام های متفاوتی می‌توان شناخت، نام هایی مانند طراحی مجدد فرایندهای اصلی (کالپان و مورداک)، نوآوری فرایندی (داونپورت)، طراحی مجدد فرایندهای کسب‌وکار (داونپورت و شورت، ابلنسکی)، مهندسی مجدد سازمان (لوونتال، هامر و چمپی)، طراحی مجدد ریشه‌ای (جوهاتسون) و معماری مجدد سازمان (تالوار) همگی از نام هایی هستند که مقوله مهندسی مجدد را معرفی کرده‌اند. پس چنانچه از ما خواسته ‌شود تعریف کوتاهی از مهندسی مجدد به عمل آوریم پاسخ می‌دهیم: همه چیز را از نو آغاز کردن.
2-4-2 کارهای مرتبط در حوزه بازمهندسی و مدیریت ارتباط با مشتریهمر در کتاب خود، مهندسی مجدد را شروع دوباره معرفی کرد. وی در همان کتاب اصول کلی این روش را بیان کرد و مزایای به کارگیری آن را با ذکر کاربرد آن در شرکت‌های ایالات محده مانند «فورد موتور» برشمرد [28]. دامامپور اظهار داشت که تغییرات همه‌جانبه، باعث تغییرات اساسی در فعالیت‌های یک سازمان می‌شوند و این تغییرات نشان‌دهنده ترک آشکار شیوه‌های موجود در کار هستند، درست برعکس تغییرات تدریجی که معمولاً این‌گونه شیوه‌های کار را همراهی می‌کنند. به همین دلیل لازم است، بین تغییر تدریجی و تغییر همه جانبه تمایز قائل شویم. [29]
بارزاک و همکارانش نشان دادند که تغییرات تدریجی در درازمدت باعث بروز کارایی می‌شوند. برعکس، تغییرات همه جانبه می‌توانند باعث سازمان‌دهی مجدد شرکت شوند. آنان متغیرهایی را شناسایی کردند که شرکت‌ها را به ترک ساختارها و فرآیندهای موجود و ایجاد ساختار و فرآیندی جدید و متفاوت ترغیب می‌کنند. [30]
همر و چمپی این متدلوژی را در کتاب خود به نام «طراحی مجدد کسب و کار» توسعه دادند. این کتاب توضیح می‌دهد، هنگامی که تصمیم بر طراحی مجدد اتخاذ می‌شود، افراد و پیشرفت‌ها چگونه تأثیر قرار می‌گیرند. ویتمن و گیبسون، برای کشف اینکه چرا سازمان‌ها از فرآیند مهندسی مجدد کسب و کار استفاده می‌کنند مطالعه‌ای انجام دادند [31]. نتایج به دست آمده آنها به ترتیب اهمیت عبارتند از:
بهبود فرآیندهای کسب و کار؛
پیشرو شدن در صنعت؛
سازماندهی مجدد وظایف کسب و کار؛
بهبود وضعیت فعلی صنعت؛
قرار گرفتن در میان رهبران صنعتی؛
تغییر چشمگیر وضعیت شرکت؛
اردالجیان و فانز، معتقدند که فرآیند مهندسی مجدد کسب و کار روشی است مبتنی بر فرآیندها که توسط مدیریت ارشد هدایت می‌شود که عملکرد بهتری را از طریق تغییرات همه جانبه از سازمان انتظار دارد. [32]
همچنین در سال 2010، اهمیت و ارزش پیاده‌سازی بازمهندسی فرآیندهای کسب‌و‌کار بر مبنای استراتژی‌های ارتباط با مشتری در سه لایه مفهومی، سیستمی و تکنیکی توسط وینا گو و ویهوا لو بررسی و چارچوبی مبتنی بر معماری مشتری‌مدار جهت پیاده‌سازی بازمهندسی ارائه شد که از نتایج آن می‌توان به راهبری استراتژیک در راستای توسعه بلندمدت و ماندگار سازمان اشاره نمود. [33]
فصل سوم
روش تحقیق3-1 تعریف مسئله و هدفتمرکز اصلی مدیریت ارتباط با مشتری بر شکل‌دهی روابط با مشتریان با هدف بهبود رضایت مشتری و بیشینه ساختن سود ناشی از هر مشتری است. امروزه بسیاری از شرکت‌ها می‌کوشند ارتباطات خود با مشتریان را از نو برقرار ساخته و بر طول مدت باقی ماندن آنها در دایره محصولات و خدمات شرکت بیافزایند. برای مدیریت ارتباط با مشتری تعاریف گوناگونی گفته شده که همگی آنها در عنصر مشتری مداری مشترک هستند و حکایت از نیاز سازمان‌ها به تأمین نیازهای مشتری و جلب رضایت وی به منظور حفظ وفاداری اوست. بحث مدیریت روابط با مشتریان الکترونیکی، نتیجه یکی از تغییرات بنیادین در باورها و پارادایم‌های تجاری می‌باشد و آن تغییر رویکرد سازمان‌ها از روابط انبوه و کلی با گروه‌های مختلف مشتریان به روابط تک تک و مجازی با آن‌ها از طریق فناوری اطلاعات و ارتباطات می‌باشد که آن نوعی راهبرد تجاری است که به سمت افزایش حجم مبادله‌های تجاری شرکت پیش می‌رود.
در عصر اطلاعات که شیوه‌های تبادل داده‌ها به سمت الکترونیکی شدن به پیش می‌رود، حجم فعالیت‌های اقتصادی بدون نیاز به افزایش فضای فیزیکی، افزایش پیدا می‌کند و با کوتاه‌تر شدن زمان انجام این معاملات، تسهیلات فراوانی برای کسب و کارهای مختلف فراهم آمده است. سیستم‌های مدیریت ارتباط با مشتری در کشورهای غربی نیز تحت تأثیر فرآیند الکترونیکی شدن قرار داشته‌اند و پایه بسیاری از آن‌ها مدیریت ارتباط با مشتری الکترونیکی است. در واقع، در فلسفه مدیریت ارتباط با مشتری تغییرات چندانی حاصل نشده و صرفاً در مبحث مدیریت ارتباط با مشتری الکترونیکی شیوه‌های تبادل داده‌ها و معاملات به صورت الکترونیکی در آمده‌اند. البته مفاهیم اساسی در مدیریت ارتباط با مشتری نیز تحت تأثیر این فرایند تعابیر جدید پیدا کرده‌اند. می‌توان بیان نمود که مدیریت روابط مشتریان الکترونیکی زاییده کاربرد فناوری وب و اینترنت به منظور تسهیل پیاده‌سازی و کارایی سیستم‌های مدیریت ارتباط با مشتری می‌باشد.
با توجه به اینکه محیط سازمان‌ها و فعالیت‌های آن‌ها هم‌راستا با گسترش نیاز‌های مشتریان همواره در حال تغییر است سازمان‌ها همواره نیازمند به‌کارگیری مدیریتی نوین هستند. در جهت برآوردن نیازهای جدید مشتریان فن مهندسی مجدد با انطباق اثربخش سازمان‌ها و شرایط نوین به مدیران کمک‌های فراوانی می‌نماید. به عبارت دیگر برای حصول یک نگرش مدیریتی جهت پیشرفت در شناخت، جذب و نگهداری مشتریان به وسیله افزایش کارایی و اثربخشی فرآیندهای موجود می‌توان از فن بازمهندسی استفاده نمود. البته شایان ذکر است که جهت حصول اطمینان از انجام موفقیت آمیز پروژه بازمهندسی، نخست باید شناخت مناسبی نسبت به وظیفه بازمهندسی فرآیندها بدست آورد.
با توجه به تغییرات دائمی سازمان‌ها و نیز بازارهای مشتری‌گرا، آنچه در این پایان‌نامه مورد نظر قرار می‌گیرد، بازبینی در فرآیندهای کاری سازمان جهت انطباق خواسته‌های مشتری با توانمندی سازمان است و هدف ما ارائه یک ساز و کار مهندسی مجدد در یک سیستم ارتباط با مشتری الکترونیکی می‌باشد که علاوه بر تطابق فوق‌الذکر در جهت کسب منافع مالی گستره بزرگ‌تری از بازار را نیز تحت تأثیر قرار دهد. ابتدا با مشخص کردن خواسته‌های مشتریان تحت سیستمی الکترونیکی و شناسایی نقاط اثر آن در سازمان به عمل بازمهندسی (با در نظر گرفتن محدودیت‌های سازمان) پرداخته می‌شود. سپس جهت ارتقای مفاهیم بهره‌وری و اثربخشی و نیز توسعه سوددهی حاصل از خدمات سازمان استراتژی‌های متمرکز بر متدلوژی‌های بازاریابی ارائه می‌گردد. بنابراین مرور کامل روش‌های بازاریابی مبتنی بر وب نیز ضروری می‌باشد.
هدف اصلی این طرح ارائه ساختار فرآیندی مهندسی مجدد در امور سازمان با توجه به نظریات مشتریان از طریق یک سیستم الکترونیکی می‌باشد که علاوه بر ارضای تمایلات مشتریان با ارائه استراتژی‌های بازاریابی تحت وب، افزایش سود دهی سازمان مدنظر قرار می‌گیرد. همچنین قابل ذکر است در بازار رقابتی امروز سازمان‌هایی موفق خواهند بود که گستره بیشتری از مشتریان را تحت پوشش قرار دهند. از سوی مقابل مشتریان نیز در پی سازمان‌هایی هستند که میزان بیشتری از خواسته‌های آن‌ها را تحت پوشش قرار می‌دهند. جهت انطباق این دو موضوع، طراحی ساز و کاری که بتواند ارتباط فوق را برقرار سازد دارای اهمیت است. همین‌طور شناسایی بازارهای هدف از دید سازمان که منجر به سوددهی بیشتر می‌گردد، دارای اهمیت می‌باشد.
3-2 طراحی سیستم اطلاعاتی مشتری و دیاگرام‌هامدیریت روابط با مشتریان شامل متدلوژی‌ها، فرآیندها، نرم‌افزارها و سیستم‌هایی است‌ که به اداره روابط با مشتریان در سازمان‌ها کمک می‌نماید. جذب مشتریان و فراهم آوردن‌ امکان مراجعات مجدد آنان یکی از مهمترین چالش‌های سازمان‌های تجاری محسوب می‌گردد. این امر با توسعه تکنولوژی و تغییر رفتار مشتریان و انتظارات آن‌ها مشکل‌تر گردیده است. همچنین فناوری اطلاعات و توسعه مفاهیم ارتباطی و الکترونیکی جدید هزینه‌های کلی‌ تعاملات با مشتریان را کاهش داده و فعالیتهای بازاریابی را به صورت هدف‌دارتر و در راستای‌ ارائه خدمات اقتصادی و شخصی توسعه داده است.
با پیشرفت تکنولوژی، مدیریت روابط مشتریان به تدریج به فرآیندهایی تبدیل گردید که‌ امکان تعاملات همه‌جانبه بین سازمان‌ها، شرکت‌ها و مشتریان آنان را فراهم آورد بدین‌ ترتیب عملیات ایجاد، انسجام، تجزیه و تحلیل اطلاعات مشتریان و کاربرد نتایج حاصل از آن در ارائه خدمات و انجام فعالیت‌های بازاریابی از اهم وظایف این سیستم‌ها به شمار می‌رود [34]. (همانند شکل 3-1)
با توسعه مفاهیم جدید بازاریابی از قبیل بازاریابی مستقیم و بازاریابی مبتنی بر تکنولوژی‌ اطلاعات در راستای ارائه خدمات و محصولات، مفهوم جدیدی با نام‌ سیستم‌های اطلاعاتی مدیریت روابط با مشتریان پایه‌گذاری گردید. سیستم‌های اطلاعاتی‌ مدیریت روابط با مشتریان با به کارگیری نسل دوم تکنولوژی‌های تجزیه و تحلیلی و بخش‌بندی، اطلاعات جامع تعاملات با مشتریان، ارتباطات چندکاناله و تعاملات شخص به‌ شخص به منظور ارائه خدمات و محصولات سفارشی به هربخش از بازار توسعه یافت.

شکل 3-1 ساختار چندسطحی مدیریت روابط با مشتریان سنتی [6]سیستم‌های اطلاعاتی مدیریت روابط با مشتریان عبارت است از جذب و نگهداری‌ مشتریانی که دارای ارزش اقتصادی برای واحدهای تجاری می‌باشند و حذف آن دسته از مشتریانی که صرفه اقتصادی برای موسسه ندارند [35]. بر اساس دیدگاه‌های‌ سنتی، تمرکز فعالیت‌های بازاریابی بر جذب مشتریان جدید می‌باشد. این دیدگاه به مرور زمان‌ به سمت مشتری‌محوری در بازاریابی جهت‌گیری نموده است. ایجاد روابط با مشتریان و مدیریت ارتباطات آن‌ها اساس جدیدترین رهیافت‌های بازاریابی از هر دو دیدگاه تئوری و عملی‌ به شمار می‌رود.
با توجه مقدمات ذکر شده طراحی سیستم اطلاعاتی در چند بخش مختلف به صورت زیر ارائه می‌گردد:
ورود مشتری به سیستم و احراز هویت
دریافت سفارش از مشتری (وضعیت سفارش: معلق پرداخت نشده)
پرداخت توسط مشتری (وضعیت سفارش: معلق پرداخت شده یا انصرافی)
آماده سازی سفارش مشتری (وضعیت سفارش: آماده به ارسال)
تحویل سفارش به مشتری (وضعیت سفارش: توزیع شده) و تعیین وضعیت نهایی سفارش
3-2-1 ورود مشتری به سیستم و احراز هویتبخش اول از این قرار است که کاربر قبل از داشتن اجازه برای ثبت سفارش می‌بایستی حتماً در سامانه عضو شده با‌شد و اطلاعاتی از وی از جمله اطلاعات شخصی و آدرس تحویل مرسوله و پیشینه‌ای از خریدهای قبلی وی در سامانه موجود باشد. مکانیزم کار به این صورت است که بعد از ثبت‌نام کاربر در او با استفاده از نام کاربری و رمز عبور تخصیص داده شده می‌توان در سیستم وارد شود. در نتیجه اگر کاربری در سیستم ثبت‌نام نکرده باشد ملزم به انجام این مرحله است. شمای کلی کار در قالب یک فلوچارت در شکل 3-2 نمایش داده شده است. در ادامه هر بخش با استفاده از زبان مدلسازی UML (زبانی استاندارد برای مدلسازی سیستم‌های اطلاعاتی) برای درک عملکرد و رفتار سیستم به طراحی مدل پرداخته می‌شود و نیز کلیه تعاملات میان کاربران با سیستم موردنظر در قالب همین مدل‌سازی بیان می‌گردد.

شکل 3-2 روند جریان اطلاعاتی ورود مشتری به سیستم
شکل 3-3 دیاگرام مورد استفاده ورود مشتری به سیستمدیاگرام مورد استفاده ورود مشتری به سیستم نیز از قرار شکل 3-3 می‌باشد. مشتری بعد از ورود موفقیت‌آمیز به سیستم می‌تواند محصولات و یا خدمات مورد نظرش را به سبد خریدش اضافه نماید.

شکل 3-4 روند جریان اطلاعاتی ثبت سفارش توسط مشتری3-2-2 دریافت سفارش از مشتری و پرداخت صورتحسابهمان‌طور که در شکل 3-4 نشان داده شده است مکانیزم ثبت سفارش که توسط مشتری انجام می‌پذیرد به این صورت است که مشتری بعد از ورود به سیستم می‌تواند از لیست خدمات و محصولات موجود موارد مورد نظرش را به سبد خرید اضافه کند و در پایان بعد از تایید نهایی سفارش به صورت یک سفارش معلق و پرداخت نشده ثبت خواهد شد. در ادامه نوبت به پرداخت صورتحساب ایجاد شده در مرحله ثبت سفارش می‌رسد. در این مرحله می‎بایستی سفارش معلق پرداخت نشده که خروجی مرحله پیش است به سفارش معلق پرداخت شده تبدیل شود. (شکل 3-5)

شکل 3-5 روند جریان اطلاعاتی پرداخت صورت‌حساباین مرحله شامل دو نوع خروجی می‌باشد. یکی سفارش انصرافی است، همان سفارش معلقی که کاربر آن‌را لغو کرده است. همچنین در این مرحله سفارشاتی که برای مدتی معین در وضعیت معلق پرداخت نشده باقی بماند به طور اتوماتیک به صورت انصرافی در می‌آیند. در صورتی که پرداخت صورتحساب سفارش معلق با موفقیت صورت بپزید سفارش به صورت معلق پرداخت شده در می‌آید. همچنین دیاگرام مورد استفاده دو جریان اطلاعاتی ثبت سفارش و پرداخت صورت حساب به صورت زیر می‌باشد.

شکل 3-6 دیاگرام مورد استفاده ثبت سفارش و پرداخت صورتحساب3-2-3 آماده‌سازی و تحویل سفارشبعد از پرداخت موفقیت‌آمیز صورتحساب سفارش به مرحله آماده‌سازی وارد می‌شود. روند جریان اطلاعاتی در شکل 3-7 نشان داده شده است. خروجی این مرحله یک سفارش آماده به ارسال می‌باشد. در یک حلقه تمامی سفارشات معلقی که پرداختشان با موفقیت انجام شده بررسی می‌شوند و در صورت موجود بودن در انبار وضعیت آن‌ها به صورت آماده به ارسال در می‌آید. در غیر این صورت درخواست برای بخش تولید ارسال شده و سفارش تا زمانی که تولید کامل شود به صورت معلق باقی می‌ماند.

شکل 3-7 روند جریان اطلاعاتی آماده سازی سفارشحالا نوبت به این است که سفارش آماده به ارسال شده تحویل مشتری داده شود. عموما این بخش به صورت سرویس‌گرا و با استفاده از سرویس‌های سازمان پست انجام می‌پذیرد. روند انجام کار این چنین است که محصول آماده به ارسال شده تحویل سازمان پست می‌گردد. در این مرحله وضعیت سفارش به صورت "ارسال شده" در می‌آید. بعد از دریافت، سفارش وارد بخش توزیع شده و با اولویت خاص، بسته به نوع پست انتخاب شده، برای رسیدن به دست مشتری ارسال می‌گردد. با دریافت سفارش توسط مشتری و تایید دریافت وضعیت سفارش به صورت توزیع شده در سیستم ذخیره می‌گردد. روند جریان اطلاعاتی در شکل 3-8 نمایش داده شده است. خروجی این مرحله یک سفارش توزیع شده است. که بعد از گذشتن مدت زمان پشتیبانی (گارانتی) در صورت تایید صحت عملکرد کالا توسط مشتری وضعیت سفارش به صورت "وصول شده" در می‌آید.

شکل 3-8 روند جریان اطلاعاتی تحویل سفارشدیاگرام مورد استفاده مراحل آماده سازی و تحویل سفارش به ترتیب در شکل‌های 3-9 و 3-10 نشان داده شده است.

شکل 3-9 دیاگرام مورد استفاده آماده‌سازی
شکل 3-10 دیاگرام مورد استفاده تحویل سفارش3-3 وضعیت سفارشبا توجه به مطالب ذکر شده می‌توان وضعیت هر سفارش را از مرحله اول ثبت شدن آن توسط مشتری تا مرحله تحویل به وی در جدول 3-1 خلاصه نمود.
جدول 3-1 لیست وضعیت‌های یک سفارشوضعیت سفارش توضیحات
معلق پرداخت نشده سفارشی که مشتری به تازگی ثبت کرده است و هنوز بخش مالی ثبت سفارش انجام نشده. به عبارت دیگر سفارش به صورت پرداخت نشده ثبت شده است.
معلق پرداخت شده زمانی‌که عملیات مالی یک سفارش معلق پرداخت نشده با موفقیت انجام شود سفارش تبدیل به یک سفارش معلق پرداخت شده می‌گردد.
انصرافی کاربر بعد از ثبت سفارش می‌تواند تا زمانی که وضعیت سفارش آماده به ارسال نشده است آن را لغو نماید. در این صورت سفارش تبدیل به یک سفارش انصرافی می‌گردد.
آماده به ارسال سفارشی که مراحل آماده سازی و بسته بندی آن به اتمام رسیده است. به عبارت دیگر سفارش آماده برای ارسال برای مشتری می‌باشد.
ارسال شده سفارش ارسال شده سفارشی است که فروشنده بسته را تحویل پست داده و در سیستم پستی در حال ارسال است. این تغییر وضعیت توسط پست مبدأ انجام می شود.
توزیع شده سفارشی که خریدار آن را دریافت کرده است.
وصول شده سفارشی که مهلت ضمانت آن به اتمام رسیده و خریدار آن‌را برگشت نداده باشد. (مرحله پایانی)
برگشتی سفارشی که به هر دلیلی خریدار از دریافت آن ممانعت کرده و یا به علت نقص برگشت داده شده است.
3-4 واحد‌های عملیاتی سازمانجهت ارائه دیدگاه بهتر ساختار داخلی این سازمان چارت سازمانی در زیر ارائه شده است. چارت سازمانی یا نمودار سازمانی یک نمودار سلسله مراتبی از جایگاه های و مشاغل موجود در سازمان و ارتباط میان آنها است. این نمودار سلسله مراتب سازمان و جایگاه های شغلی موجود در سازمان را مشخص می کند. همچنین به صورت ساده ارتباط طولی و عرضی میان جایگاه های کاری و شغلی را مشخص می کند. به عبارت دیگر ساختار واحدهای عملیاتی سازمان به صورت زیر ارائه می‌گردد.

—d1151

2-14 سیستم های توزیعی 32
2-14-1 شفافیت 33
2-14-2 قابلیت اطمینان 34
2-14-3 کارایی 34
2-14-4 مقیاس پذیری 35
2-15 سیستم عامل های توزیعی 35
2-15-1 الگوی مبتنی برپیام 36
2-15-2 الگوی مبتنی بر شیء 36
2-16 رویکرد سیستم عامل های ابری 36
2-17 الگوی سیستم عامل ابری 37
2-17-1 شیء ابری 37
2-17-2 نخ 39
2-17-3 تعامل میان شیء و نخ 39
2-18 برنامه نویسی در مدل شیء – نخ در ابرها 40
2-19 معماری سیستم عامل ابری 41
2-20 برخی سیستم عامل های ابری موجود 42
2-20-1 سیستم عامل iCloud 43
2-20-2 سیستم عامل GlideOS 44
2-20-3 سیستم عامل G.ho.st 45
2-20-4 سیستم عامل JoliCloud 46
2-20-5 سیستم عامل eyeOS 47
2-20-6 گوگل کروم، سیستم عامل اینترنت 47
2-21 مزایا و معایب سیستم عامل های ابری مبتنی بر وب 51
2-22 مطالعه مروری بر سایر پژوهش های مرتبط مهم 51
فصل سوم: روش تحقیق 54
3-1 چالش های رایج در زمینه سیستم عامل های ابری 55
3-1-1 مقیاس پذیری 55
3-1-1-1 تغییر مقیاس افقی و عمودی 56
3-1-1-2 مقیاس پذیری پایگاه داده ها 57
3-1-1-3 طراحی برای مقیاس پذیری 58
3-1-1-4 مقیاس پذیری در محاسبات ابری 59
3-1-1-5 تغییر مقیاس قوی و ضعیف 59
3-1-2 کشش تقاضا 60
3-1-3 خطاها 60
3-1-4 گره خوردن کاربران به یک سرویس دهنده خاص 61
3-1-5 وابستگی شدید بین مولفه ها 61
3-1-6 فقدان پشتیبانی چند مستاجری 62
3-1-7 فقدان پشتیبانی از SLA 62
3-1-7-1 تعریف توصیف SLA 62
3-1-7-2 فقدان SLA در ابرهای موجود 64
3-1-8 فقدان انعطاف پذیری لازم در واسط کاربری 64
3-2 ارائه راهکارها 64
فصل چهارم: محاسبات و یافته های تحقیق 68
4-1 پیاده سازی و شبیه سازی 69
4-2 شرایط محیط شبیه سازی 71
4-3 مقیاس پذیری با اندازه شبکه 72
فصل پنجم: نتیجه گیری و پیشنهادات 74
5-1 خلاصه و نتیجه گیری 75
5-2 مزایای تحقیق انجام شده 75
5-3 معایب تحقیق انجام شده 75
5-4 کارهای آتی 76
منابع و مآخذ 77
منابع فارسی 78
منابع غیرفارسی 79
فهرست جداول
عنوان صفحه
جدول 2-1 : سرویس دهندگان زیرساخت به عنوان سرویس 13
جدول2-2 : سرویس دهندگان سکو به عنوان سرویس 15
جدول 2-3 : سرویس دهندگان نرم افزار به عنوان سرویس 16
جدول 4-1 : شرایط محیط شبیه سازی 72
فهرست شکل ها
عنوان صفحه
شکل 2-1 : تصویری از محاسبات ابری 8
شکل2-2 : الگوی استقرار ابر 17
شکل 2-3 : مشخصات محاسبات ابری 19
شکل 2- 4: تمایل به سمت محاسبات ابری 24
شکل 2-5: بررسی وضعیت محاسبات ابری جهان 26
شکل 2-6: سیستم توزیع شده به عنوان میان افزار 33
شکل 2-7 : ساختمان یک شی ابری 38
شکل 2-8 : اجرای نخ ها در شیء ابری 39
شکل 2-9 : مدل منطقی از یک معماری سیستم عامل ابری 41
شکل 2-10 : سیستم عامل iCloud 43
شکل 2-11: تصویری از سیستم عامل GlideOS 44
شکل 2-12 : تصویری از سیستم عامل G.ho.st 45
شکل 2-13 : تصویری از سیستم عامل JoliCloud 46
شکل 2-14 : تصویری از سیستم عامل eyeOS 47
شکل 3-1 : بروز رسانی موقعیت گره در روش RNP 66
شکل 3-2 : درخواست موقعیت و ارسال بسته در روش RNP 66
شکل 3-3: شبه کد به روز رسانی موقعیت گره 67
شکل 3-4: شبه کد درخواست موقعیت 67
شکل 4-1: مقایسه سرعت اجرای برنامه با افزایش تعداد پردازنده 69
شکل 4-2: مقایسه سرعت اجرای برنامه با افزایش تعداد ماشین مجازی 70
شکل 4-3: مقایسه اجاره بها با افزایش تعداد پردازنده 70
شکل 4-4: مقایسه اجاره بها با افزایش تعداد ماشین مجازی 71
شکل 4-5: نرخ موفقیت درخواست با افزایش تعداد گره ها 72
شکل 4-6: افزایش درصد بسته های تحویل داده شده با افزایش گره ها 73
شکل 4-7: کاهش سربار داده با افزایش تعداد گره ها 73
فصل اول
مقدمه و کلیات تحقیق
مقدمه
در دهه های آینده ما شاهد رشد چشمگیر تکنولوژی در زمینه پردازنده ها خواهیم بود. ابرها که از پردازنده های چند هسته ای تشکیل شده اند منابع محاسباتی بی نظیری فراهم می سازند. باید توجه داشت که با افزایش وسعت دامنه های اطلاعاتی و محاسباتی نیاز به منابع این چنینی بیش از پیش احساس خواهد شد و با افزایش حجم منابع نیاز به مدیریتی کارا و شفاف الزام پیدا می کند. در اینجا ممکن است این سوال مطرح شود که: ابرها چه امکاناتی برای کاربران فراهم می آورند؟ ابرها در انجام محاسبات عظیم نقش مهمی را ایفا می کنند و به کاربران این امکان را می دهند که برنامه های خود را بر روی بستری قابل اطمینان و بسیار کارآمد که از اجزای صنعتی استاندارد تشکیل شده است اجرا کنند. همچنین ابرها مدل محاسباتی بسیار ساده ای را فراهم می آورند به این صورت که کاربران تنها خروجی مورد نظر را با کمترین هزینه برای کاربر تامین می نمایند. ابرها در کنار اینکه فرصت های فراوانی را برای کاربران فراهم می آورند، چالش هایی را نیز برای مدیریت این منابع پدید می آورند. برای مثال از این چالش ها می توان به نحوه هماهنگ ساختن میزان منابع با درخواست ها و یا وسعت زیاد منابع تحت مدیریت سیستم عامل اشاره نمود. در این تحقیق با چالش های موجود در این زمینه بیشتر آشنا می شویم و پیرامون هر کدام به تفضیل صحبت خواهیم کرد.
سوالات اصلی تحقیق
سیستم عامل های ابری که نوعی از سیستم عامل های توزیعی می باشند، می توانند مجموعه ای از گره ها را با هم یکپارچه ساخته و یک سیستم متمرکز را تولید کنند. با توجه به اینکه ابرها فرصت های فراوانی را برای کاربران فراهم می آورند، چالش هایی را نیز برای مدیریت این منابع پدید می آورند. به همین منظور سوالات زیر مطرح می شود:
چالش های موجود در سیستم عامل های ابری کدامند؟
آیا تا به حال این چالش ها مورد بررسی قرار گرفته اند؟
این چالش ها تا چه اندازه اهمیت دارند؟
آیا راهکاری برای این چالش ها در نظر گرفته شده است؟
هدف از اجراء
در دهه های اخیر شاهد رشد چشمگیر تکنولوژی در زمینه پردازنده ها بوده ایم و این تکنولوژی همچنان با سرعت قابل توجهی در حال پیشرفت است. دلیل این امر افزایش منابع اطلاعاتی و محاسباتی است که این نیاز را به وجود آورده است که با ساخت چنین تکنولوژی هایی به ویژه پردازنده های چند هسته ای، مدیریتی کارا و شفاف بر این اطلاعات حجیم و محاسبات عظیم صورت گیرد. مدیریت اطلاعات و محاسبات این چنینی در محیط هاو سیستم های توزیعی به مراتب آسان تر از محیط های دیگر است. یکی از سیستم های توزیعی ابرها می باشند که می توانند نقش مهمی را در محاسبات عظیم و ذخیره سازی اطلاعات حجیم، ایفا کنند. بنابراین لزوم بررسی چالش ها و موانع در این قبیل سیستم ها و رفع آنها می تواند گامی موثر در افزایش سرعت و کارایی این گونه سیستم ها داشته باشد.
توجیه ضرورت انجام طرح
همزمان با رشد چشمگیر تکنولوژی پردازنده ها، ابرها نیز گسترش روز افزونی پیدا کرده اند. به همین ترتیب تعداد کامپیوترهای افزوده شده به زیر ساخت ابرها نیز افزایش پیدا کرده است که البته قابل ذکر است این افزایش با توجه به تقاضای روزافزون کاربران برای میزبانی این منابع می باشد. منابع ابری برای کاربران نامحدود بوده و کاربران تنها محدودیت مالی برای خرید این منابع را پیش رو دارند. پس می توان نتیجه گرفت که یکی از مهم ترین چالش ها در این زمینه مقیاس پذیر بودن سیستم عامل های ابری می باشد. در ابرها پارامترهایی همچون تقاضا، حجم کار و منابع در دسترس در طول زمان پیوسته در حال تغییر می باشند. برای مثال هنگامی که کاربر محاسبات سنگین و پیچیده ای درخواست می کند منابع مورد نیاز وی افزایش پیدا می کند و در پایان منابع از کاربر تحویل گرفته می شوند، قابل ذکر است این افزایش و کاهش در منابع ممکن است از دید کاربر پنهان بماند. باید به این نکته توجه داشت که تقاضا هیچ گاه ثابت نمی ماند و میزان منابع مورد نیاز در گستره زیادی در حال تغییر می باشد. از طرفی برنامه های کاربردی مبتنی بر ابر معمولا منابع را بین کاربران و دیگر برنامه های کاربردی به اشتراک می گذارند. اگرچه برنامه کاربردی هر کاربر در لفاف مجازی جداگانه ای قرار گرفته است ولی کیفیت سرویسی که برای برنامه فراهم می شود را تحت تاثیر قرار می دهد. علاوه براین برنامه نویسی در این سیستم عامل نیز کاری مشکل و توام با خطا است. با توجه به مشکلات برنامه نویسی چند نخی و چند فرآیندی که در این نوع سیستم عامل ها استفاده می شود امکان وجود خطا افزایش می یابد. همچنین به دلیل کمبود ابزارهای اشکال زدایی و آنالیز سیستم های بزرگ فهمیدن خطاها سخت و برطرف سازی آنها چالش برانگیز است. برخی چالش های ذکر شده در این زمینه موجب به وجود آمدن مسیر تحقیقاتی گوناگون شده است که از آن جمله می توان به موارد زیر اشاره کرد که البته هر کدام از این مسیرها به بخش های دیگری می شکنند که زمینه جدیدی را فراهم می کند.
استفاده از اشیاء پایدار: یکی از زمینه های اصلی مدل ابری فراهم آوردن مخازن داده پایدار و قابل اشتراک می باشد. بنابراین محور اصلی برخی از تحقیقات در زمینه سیستم عامل های ابری، پشتیبانی کارامد و استفاده بهینه از حافظه پایدار می باشد. علاوه بر این عرصه دیگر تحت کنترل درآوردن منابع توزیع شده می باشد که منجر به افزایش سرعت برنامه های اجرایی بر روی ابرها می گردد.
اطمینان و امنیت در سیستم عامل های ابری: یکی از اهداف مهم این سیستم ها فراهم آوردن محیط محاسباتی امن برای کاربران است. این چالش از دو بخش اصلی تشکیل می شود: حفاظت از داده ها هنگام خرابی سیستم و تضمین انجام ادامه محاسبه از جایی که محاسبه قطع گردید. می توان به این نتیجه رسید یکی دیگر از زمینه های تحقیق پیرامون سیستم عامل های ابری افزایش اطمینان این سیستم عامل ها می باشد.
تحمل خطا: افزایش تحمل خطا زمینه ی تحقیقات دیگر حول این موضوع می باشد.
تعاریف واژه ها
سیستم های توزیعی
سیستم توزیعی در واقع مجموعه ای از کامپیوترهای مستقل است که برای کاربر خود مانند یک سیستم منسجم و منفرد به نظر می رسد[2].
سیستم عامل توزیع شده
این سیستم عامل ها خود را مانند سیستم عامل های تک پردازنده به کاربر معرفی می کنند اما در عمل از چندین پردازنده استفاده می کنند. این نوع سیستم عامل در یک محیط شبکه ای اجرا می شود و در حقیقت در این نوع سیستم جواب نهایی یک برنامه، پس از اجرا در کامپیوترهای مختلف به سیستم اصلی بر می گردد. سرعت پردازش در این نوع سیستم بسیار بالاست.
سیستم عامل ابری
سیستم عامل ابری نیز نوعی از سیستم عامل های توزیعی می باشند که مجموعه ای از گره ها را با هم یکپارچه می سازد و یک سیستم متمرکز تولید می کند.

فصل دوم
ادبیات و پیشینه تحقیق
در این فصل سعی شده قبل از آشنایی کامل با سیستم عامل های ابری در مورد محاسبات ابری، انواع سیستم عامل ها، سیستم های توزیعی و سیستم عامل های توزیعی آشنا شویم، سپس با برخی سیستم عامل های ابری موجود آشنا شده و در نهایت به تحقیقاتی که در این زمینه صورت گرفته می پردازیم.
محاسبات ابری
محاسبات ابری مدل محاسباتی بر پایه شبکه‌های بزرگ کامپیوتری مانند اینترنت است که الگویی تازه برای عرضه، مصرف و تحویل سرویس‌های فناوری اطلاعات (شامل سخت افزار، نرم افزار، اطلاعات، و سایر منابع اشتراکی محاسباتی) با به کارگیری اینترنت ارائه می‌کند. سیر تکاملی محاسبات به گونه ای است که می توان آن را پس از آب، برق، گاز و ‌تلفن به عنوان عنصر اساسی پنجم فرض نمود. در چنین حالتی، کاربران سعی می کنند بر اساس نیازهای خود و بدون توجه به اینکه یک سرویس در کجا قرار دارد و یا چگونه تحویل داده می شود، به آن دسترسی یابند. نمونه های متنوعی از سیستم های محاسباتی ارائه شده است که سعی دارند چنین خدماتی را به کاربران ارئه دهند. برخی از آنها عبارتند از: محاسبات کلاستری، محاسبات توری و اخیراً محاسبات ابری[15]. محاسبات ابری ساختاری شبیه یک توده ابر دارد که به واسطه آن کاربران می توانند به برنامه های کاربردی از هر جایی از دنیا دسترسی داشته باشند. بنابراین، محاسبات ابری می تواند با کمک ماشین های مجازی شبکه شده، بعنوان یک روش جدید برای ایجاد پویای نسل جدید مراکز داده مورد توجه قرار گیرد. بدین ترتیب، دنیای محاسبات به سرعت به سمت توسعه نرم‌افزارهایی پیش می رود که به جای اجرا بر روی کامپیوترهای منفرد، به عنوان یک سرویس در دسترس میلیون ها مصرف کننده قرار می گیرند.

شکل 2-1: تصویری از محاسبات ابری[33]
معرفی محاسبات ابری
دنیای فناوری اطلاعات و اینترنت که امروزه تبدیل به جزئی حیاتی از زندگی بشر شده، روز به روز در حال گسترش است. همسو با آن، نیازهای اعضای جوامع مانند امنیت اطلاعات، پردازش سریع، دسترسی پویا و آنی، قدرت تمرکز روی پروژه های سازمانی به جای اتلاف وقت برای نگه داری سرورها و از همه مهم تر، صرفه جویی در هزینه ها اهمیت زیادی یافته است. راه حلی که امروزه در عرصه فناوری برای چنین مشکلاتی پیشنهاد می شود تکنولوژی ای است که این روزها با نام محاسبات ابری شناخته می شود.
محاسبات ابری نمونه ای است که منابع بیرونی همه نیازهای IT را از قبیل ذخیره سازی، محاسبه و نرم افزارهایی مثل Office و ERP را در اینترنت تهیه می کند. محاسبات ابری همچنین، رشد و پیشرفت کاربرد های وسیع و تست برای شرکت های IT کوچکی را اجازه می دهد که نمی توانند سرمایه های بزرگ در سازمان داشته باشند. مهم ترین مزیت پیشنهاد شده توسط ابر در مفهوم اقتصاد مقیاس است و آن هنگامی است که هزاران کاربر، تسهیلات یکسان، هزینه یکسان برای هر کاربر و بهره برداری از سرور به اشتراک می گذارند. برای فعال سازی چنین تسهیلاتی، محاسبات ابری در برگیرنده تکنولوژی ها و مفاهیمی است مثل: مجازی سازی و محاسبات سودمند، پرداخت در ازای میزان استفاده، بدون سرمایه گذاری های کلان، انعطاف پذیری، مقیاس بندی، شرایط تقاضا و منابع بیرونی IT.
محاسبات ابری را ابر نیز می نامند چون یک سرور ابری دارای شکل بندی است که می تواند هر جایی در جهان قرار داشته باشد. ابر، تصویری است انتزاعی از شبکه‌ای عظیم؛ توده‌ای که حجم آن مشخص نیست، نمی‌دانیم از چه میزان منابع پردازشی تشکیل شده. ابعاد زمانی و مکانی یکایک اجزای آن نیز دانسته نیست، نمی‌دانیم سخت‌افزار‌ها و نرم‌افزارها کجای این توده قرار دارند، اما آن‌چه را که عرضه می‌کند، می‌شناسیم. درست مثل برق! شما برای اینکه از وسایل و تجهیزات برقی در خانه یا محل کارتان استفاده کنید لازم نیست یک ژنراتور یا کارخانه برق در خانه خود داشته باشید، بلکه به ازای هزینه مشخصی برق را اجاره می‌کنید. حالا اگر مصارف برقی شما بیشتر و متفاوت‌‌تر باشند مثلاً‌ می‌روید و از خدمات برق صنعتی استفاده می‌کنید. در محاسبات ابری هم شرکت‌ها و سازمان‌ها و افراد دیگر برای نرم‌افزار، سخت‌افزار یا شبکه پولی پرداخت نمی‌کنند، بلکه توان محاسباتی و سرویس‌های نرم‌افزاری مورد نیازشان را خریداری می‌کنند. این ایده در واقع صرفه‌جویی بزرگ و بهره‌وری زیادی در منابع IT را به همراه خواهد داشت. بدین ترتیب کافی است وسیله شما (پی‌سی، موبایل، تلویزیون، حتی یخچال!) یک رابط نرم‌افزاری (مرورگر) برای استفاده از سرویس‌های آنلاین و یک دسترسی به اینترنت داشته باشد،‌ خواهید دید که قادر هستید به راحتی از توان محاسباتی برای انجام کارهای دیجیتالی خود بهره بگیرید.
رشد و پیشرفت محاسبات ابری منجر به چندین تعریف پیشنهادی از خصوصیات آن می شود. برخی از این تعاریف توسط دانشمندان مشهور و سازمان ها ارائه شده است مثل:
الف) Buyya و همکارانش که محاسبات ابر را در مفهوم کاربری است برای کاربر نهایی بدین صورت تعریف می کنند: یک ابر سیستمی محاسباتی توزیع شده بازارگرا است که شامل جمع آوری کامپیوترهای مجازی و ارتباط داخلی هستند که از لحاظ دینامیکی به عنوان یک یا چند منبع محاسباتی متحد بر اساس توافق های سطح سرویس بین مصرف کنندگان و فراهم کنندگان خدمات مذاکره می کنند[14].
ب) موسسه ملی استانداردها و تکنولوژی محاسبات ابری را به صورت زیر تعریف می کند: محاسبه ابری، الگویی است برای اینکه شبکه های مبتنی بر تقاضا به منابع محاسباتی (مثل سرور، شبکه، ذخیره سازی، برنامه های کاربردی و خدمات) طوری دستیابی پیدا کنند که شامل حداقل تلاش مدیریت یا تعامل فراهم کننده سرویس است. این الگوی ابر، قابلیت دستیابی را ارتقا می دهد و شامل پنج تا از ویژگی های ضروری، سه تا از الگوهای سرویس و چهار تا الگوی استقرار است.
ویژگی های ابری شامل انتخاب سرویس مبتنی بر تقاضا، دسترسی وسیع به شبکه، ائتلاف منابع، انعطاف پذیری سریع و سرویس اندازه گیری شده است. الگوهای خدمات در دسترس به صورت نرم افزار به عنوان سرویس(SaaS)، سکو به عنوان سرویس (PaaS) و زیرساخت به عنوان سرویس (IaaS) تقسیم بندی می شوند. الگوی گسترش به ابرهای عمومی، خصوصی، اجتماعی و هیبرید تقسیم بندی می شود.
مشخصه اصلی محاسبات ابری

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

موسسه ملی استانداردها و فناوری، خصوصیات محاسبات ابری زیر را به صورت زیر تعریف می کند:
سرویس مبتنی بر تقاضا
مشتری می تواند به صورت یک طرفه امکانات و خدمات محاسباتی همچون سرور و فضای ذخیره سازی در شبکه را به هنگام نیاز از هر فراهم کننده ای به صورت خودکار و بدون نیاز به دخالت انسان به دست آورده و از آنها استفاده کند. به عبارت دیگر، برای مدیریت زیرساخت ابر نیازمند استخدام مدیران شبکه یا Admin به صورت تمام وقت نیستیم. بیشتر سرویس های ابر، پورتال های سلف سرویس دارند که به آسانی مدیریت می شوند.
دسترسی وسیع به شبکه
توانمندی های موجود بر روی شبکه، از طریق مکانیزم های استاندارد که استفاده از روش های ناهمگون پلتفرم های کلاینت، مانند تلفن های موبایل، لپ تاپ ها و PDA ها، را ترویج می کنند، قابل دسترسی هستند.
ائتلاف منابع
منابع محاسباتی فراهم کننده جمع آوری شده اند تا با به کارگیری مدل چند مشتری به چندین مشتری خدمت رسانی کنند. این کار به وسیله منابع فیزیکی یا مجازی مختلف که به شکلی پویا و بنابر درخواست مشتری واگذار و پس گرفته می شوند، صورت می گیرد. در اینجا حالتی از عدم وابستگی به مکان وجود دارد که در آن مشتری معمولاً کنترل یا دانشی درباره محل دقیق منابع فراهم شده ندارد ولی ممکن است در سطوح بالاتر انتزاعی بتواند محل را تعیین کند، مثل: کشور، استان یا مراکز داده. برای نمونه منابع شامل فضای ذخیره سازی، توان پردازشی، حافظه، پهنای باند شبکه و ماشین های مجازی می شود.
انعطاف پذیری سریع
می توان امکانات را به سرعت و با انعطاف، در بعضی موارد به صورت خودکار، به دست آورد تا به سرعت گسترش داده شده( از دید مقیاس) یا درجا آزاد شوند و خیلی سریع به مقیاس کوچکتری دست یابند. از دید مشتری امکاناتی که برای به دست آمدن در دسترس هستند اغلب نامحدود به نظر می آیند و می توانند به هر مقدار و در هر زمان خریداری شوند.
سرویس اندازه گیری شده
سیستم های ابری منابع را خودکار کنترل و بهینه می کنند. این کار با به کارگیری توانایی اندازه گیری در سطحی از تجرید که مناسب گونه آن خدمت ( مثل: فضای ذخیره سازی، توان پردازشی، پهنای باند و شمار کاربران فعال) است انجام می شود. میزان استفاده از منابع می تواند به شکلی شفاف هم برای مشتری و هم برای فراهم کننده زیر نظر گرفته، کنترل شده و گزارش داده شود.
معماری سرویس گرا
معماری مبتنی بر سرویس در واقع یک مجموعه ای از سرویس ها است که با یکدیگر ارتباط برقرار می کنند. حین این ارتباط ممکن است داده هایی را بین یکدیگر پاس کاری کنند و همچنین ترکیب دو یا چند سرویس با هم یک کار انجام دهد. در این جا چند مفهوم اتصال بین سرویس ها مورد نیاز است. برخلاف دهه های گذشته که نرم افزارها قائم به خود و انفرادی بودند، در حال حاضر روند تکامل نرم افزارها به سوی معماری مبتنی بر سرویس می رود. رشد انفجاری تکنولوژی های اینترنت و تعداد کاربران آن موجب شده که فروش نرم افزار جای خودش را به اجاره نرم افزار بدهد. شرکت های بزرگی مانند مایکروسافت، گوگل، سان و حتی آمازون به این سمت می روند که به جای فروش مستقیم نرم افزار به کاربر خدمات نرم افزاری را ارئه دهند. معماری مبتنی بر سرویس معماری نرم افزار یا سیستمی است که امکاناتی چون کامپوننت ها، استفاده مجدد، توسعه پذیری و راحتی را در اختیار ما قرار می دهد. این ویژگی ها برای شرکت هایی که به دنبال کاهش هزینه هستند و به جای فروش به اجاره سرویس های نرم افزار تاکید دارند، الزامی است[9].
مدلهای سرویس
در مدل سرویس، انواع گوناگون ابر بیانگر قالبی هستند که زیر ساختها در آن قرار میگیرد. اکنون محدوده شبکه، مدیریت و مسئولیتها به پایان میرسد و امور مربوط به بخش سرویسدهندهی ابر آغاز میشود. با پیشرفت محاسبات ابری فروشندگان، ابرهایی را با سرویس های مختلف مرتبط به کار خود عرضه مینمایند. با سرویسهایی که عرضه میشوند مجموعه دیگری از تعاریف به نام مدل سرویس در محاسبات ابری مطرح میشود. برای مدلهای سرویس، نامگذاریهای بسیاری صورت گرفته که همگی به فرم زیر تعریف شده اند:
XaaS,or "<something>as a Service"
در حال حاضر در جهان سه نوع سرویس به صورت متداول شناخته می شود:
زیر ساخت به عنوان سرویس
زیر ساخت به عنوان سرویس یا IaaS ماشینهای مجازی، فضای ذخیرهسازی مجازی، زیر ساخت های مجازی و سایر سخت افزارهای کاربردی را به عنوان منابع برای مشتریان فراهم میآورد. سرویسدهندهی IaaS تمامی زیر ساختها را مدیریت مینماید و در حالی که مشتریان مسئول باقی جنبههای استقرار میباشند. از جمله سیستم عامل، برنامهها و تعاملات سیستم با کاربر و غیره.
در جدول 2-1 تعدادی از سرویس دهندگان شناخته شده در حوزه IaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-1 : سرویس دهندگان زیر ساخت به عنوان سرویس
سازمان سرویس/ ابزار توصیف لایه-سطح
آمازون Elastic Compute Cloud سرور مجازی IaaS- سرویس منبع مجازی
Dynamo سیستم ذخیره سازی مبتنی بر کلید-ارزش IaaS- سرویس زیرساخت پیشرفته
Simple Storage Service سیستم ذخیره سازی دسته ای IaaS- سرویس زیر ساخت پایه
SimpleDB پایگاه داده به عنوان سرویس IaaS- سرویس زیر ساخت پیشرفته
CloudFront تحویل محتوا IaaS- سرویس زیر ساخت پیشرفته
SQS سرویس صف و زمانبندی IaaS- سرویس زیر ساخت پیشرفته
AppNexus AppNexus Cloud سرور مجازی IaaS- سرویس منبع مجازی
گوگل Google Big Table سیستم توزیع شده برای ذخیره سازی IaaS- سرویس زیر ساخت پیشرفته
Google File Sys-- سیستم- فایل توزیع شده IaaS- سرویس زیر ساخت پایه
اچ پی iLO مدیریت خاموشی سرور IaaS- سرویس منبع فیزیکی
Tycoon سیستم مدیریت منابع محاسباتی در کلاسترها IaaS- سرویس منبع مجازی
Joyent Accelerator سرور مجازی IaaS- سرویس منبع مجازی
Connector سرور مجازی از قبل تنظیم شده IaaS- سرویس زیر ساخت پیشرفته
BingoDisk دیسک ذخیره سازی IaaS- سرویس زیر ساخت پایه
Bluelock Bluelock Virtual Cloud Computing سرور مجازی IaaS- سرویس منبع مجازی
Bluelock Virtual Recovery بازیابی مصیبت و شکست IaaS- سرویس زیر ساخت پیشرفته
Emulab Emulab Network Testbed بستر آزمایش شبکه IaaS- سرویس منبع فیزیکی
ENKI ENKI Virtual Private Data Centers منابع دیتا سنتر مجازی بنابر تقاضا IaaS- سرویس منبع مجازی
EU Resevoir Project Open Nebula موتور مجازی زیرساخت(متن باز) IaaS- سرویس منبع مجازی
FlexiScale FlexiScale Cloud Computing سرور مجازی IaaS- سرویس منبع مجازی
GoGrid Cloud Hosting سرور مجازی IaaS- سرویس منبع مجازی
Cloud Storage فضای ذخیره سازی IaaS- سرویس زیر ساخت پایه
Nirvanix Nirvanix Storage Delivery Network دیسک ذخیره سازی IaaS- سرویس زیر ساخت پیشرفته
OpenFlow OpenFlow شبیه سازی شبکه IaaS- سرویس زیر ساخت پیشرفته
RackSpace Masso Cloud Sites سرور مجازی از پیش تنظیم شده IaaS- سرویس زیر ساخت
Masso Cloud Storage دیسک ذخیره سازی IaaS- سرویس زیر ساخت پایه
Masso Cloud Severs سرور مجازی IaaS- سرویس منبع مجازی
Skytap Skytap Virtual Lab محیط آزمایشگاه مجازی فناوری اطلاعات IaaS- سرویس زیر ساخت
Terremark Infinistructure سرور مجازی IaaS- سرویس منبع مجازی
UCSB Eucalyptus نسخه متن باز EC2 آمازون IaaS- سرویس منبع مجازی
10gen Mongo DB پایگاه داده برای ذخیره سازی ابری IaaS- سرویس زیر ساخت پیشرفته
Babble Application Server سرور برنامه های تحت وب برای استقرار ابری IaaS- سرویس زیر ساخت پیشرفته
سکو به عنوان سرویس
سکو به عنوان سرویس یاPaaS ، ماشینهای مجازی، سیستمهای عامل، برنامهها، سرویسها، چارچوبهای توسعه، تراکنشها و ساختارهای کنترلی را فراهم میآورد. مشتری میتواند برنامههای خود را بر روی زیر ساخت ابر قرار دهد و یا اینکه از برنامههایی استفاده کند که با استفاده از زبانها و ابزارها نوشته شدهاند و توسط سرویس دهندهیPaaS پشتیبانی می شوند. سرویسدهنده زیرساخت ابر، سیستمهای عامل و نرمافزارهای فعالسازی را فراهم میآورد. مشتری مسئول نصب و مدیریت برنامههایی که قرار داده است، میباشد.
در جدول 2-2 تعدادی از سرویس دهندگان شناخته شده در حوزه PaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-2 : سرویس دهندگان سکو به عنوان سرویس
سازمان سرویس/ابزار توصیف لایه-سطح
Akamai EdgePlatform تحویل برنامه کاربردی، محتوا و سایت PaaS
مایکروسافت Azure محیط توسعه و اجرا برای برنامه های کاربردی مایکروسافت PaaS
Live Mesh بستری برای به هنگام سازی، اشتراک و دسترسی به دامنه وسیعی از دستگاه هایی با سیستم عامل مایکروسافت PaaS
فیس بوک Facebook Platform بستر آزمایش شبکه PaaS
گوگل App Engine محیط اجرایی قابل گسترش برای برنامه های تحت وب نوشته شده در زبان پایتون PaaS
NetSuite SuiteFlex جعبه ابزاری برای سفارشی سازی برنامه های کاربردی کسب و کار آنلاین همین شرکت PaaS
Salesforce Force.com ساخت و تحویل برنامه های کاربردی در کلاس کسب و کار PaaS
Sun Caroline بستر قابل گسترش افقی برای توسعه و استقرار سرویس های تحت وب PaaS
Zoho Zoho Creator جعبه ابزاری برای ساخت و تحویل برنامه های کاربردی در کلاس کسب و کار و به شکل بنابر بر تقاضا PaaS
نرمافزار به عنوان سرویس
نرمافزار به عنوان سرویس یا SaaS یک محیط کاملاً عملیاتی برای مدیریت برنامهها و واسط کاربری است. در مدل SaaS برنامه از طریق یک برنامه واسط (معمولاً مرورگر) به مشتری سرویس میدهد و مسئولیت مشتری با ورود داده شروع و با مدیریت داده و تعاملات کاربری پایان مییابد. همه چیز مربوط به برنامه تا زیر ساخت در حوزهی مسئولیت فروشنده است.
در جدول 2-3 تعدادی از سرویس دهندگان شناخته شده در حوزه SaaS به همراه توصیفی کوتاه از نوع سرویس ارائه شده آنها آورده شده است.
جدول2-3 : سرویس دهندگان نرم افزار به عنوان سرویس
سازمان سرویس/ابزار توصیف لایه-سطح
گوگل Google Docs بسته نرم افزاری آفیس آنلاین SaaS
Google Maps API رابط برنامه نویس سرویس نقشه گوگل به توسعه دهندگان این امکان را می دهد تا نقشه گوگل را در سایت های خود جاسازی کنند SaaS- سرویس ساده
OpenID Foundation OpenSocial یک رابط برنامه نویسی کاربردی مشترک برای برنامه های شبکه های اجتماعی SaaS-سرویس مرکب
OpenID یک سیستم توزیع شده که به کاربران این اجازه را می دهد تا تنها با یک شناسه دیجیتال بتوانند از سایتها مختلف استفاده نمایند. SaaS- سرویس ساده
مایکروسافت Office Live بسته نرم افزاری آفیس آنلاین SaaS
Salesforce Salesforce.com بسته نرم افزاری مدیریت روابط مشتریان SaaS
این سه مدل متفاوت سرویس به نام مدل SPI محاسبات ابری شناخته میشوند. گرچه تاکنون از مدلهای سرویس بسیاری نام برده شد، staas فضای ذخیرهسازی به عنوان سرویس؛ idaas هویت به عنوان سرویس؛ cmaas توافق به عنوان سرویس؛ و غیره، با این وجود سرویس های SPI تمامی باقی سرویسهای ممکن را نیز در بر میگیرد. IaaS دارای حداقل سطوح عاملیت مجتمع شده و پایین ترین سطوح مجتمع سازی میباشد و SaaS دارای بیشترینها است. یک PaaS یا سکو به عنوان سرویس خصوصیات مجتمع سازی، میانافزارها و سایر سرویسهای هماهنگساز را به مدل IaaS یا زیر ساخت به عنوان سرویس میافزاید. هنگامی که که یک فروشندهی محاسبات ابری، نرمافزاری را بر روی ابر عرضه میکند، با استفاده از برنامه و پرداخت فوری، یک عملیات SaaS انجام می گیرد. با SaaS مشتری برنامه را در صورت نیاز استفاده میکند و مسئول نصب، نگهداری و تعمیر برنامه نیست.
مدل‌های پیاده‌سازی
در تعریف NIST (انستیتوی ملی استاندارد ها و فناوری ها) مدل های استقرار ابر به چهار صورت زیر است:

شکل 2-2 : الگوی استقرار ابر[29]
ابر عمومی
ابر عمومی یا ابر خارجی توصیف کننده محاسبات ابری در معنای اصلی و سنتی آن است. سرویس‌ها به صورت دینامیک و از طریق اینترنت و در واحدهای کوچک از یک عرضه کننده شخص ثالث تدارک داده می‌شوند و عرضه کننده منابع را به صورت اشتراکی به کاربران اجاره می‌دهد و بر اساس مدل محاسبات همگانی و مشابه صنعت برق و تلفن برای کاربران صورتحساب می‌فرستد. این ابر برای استفاده همگانی تعبیه شده و جایگزین یک گروه صنعتی بزرگ که مالک آن یک سازمان فروشنده ی سرویس های ابری می باشد.
ابر گروهی
ابر گروهی در جایی به وجود می‌آید که چندین سازمان نیازهای یکسان دارند و به دنبال این هستند که با به اشتراک گذاردن زیرساخت از مزایای محاسبات ابری بهره‌مند گردند. به دلیل اینکه هزینه‌ها بین کاربران کمتری نسبت به ابرهای عمومی تقسیم می‌شود، این گزینه گران‌تر از ابر عمومی است اما میزان بیشتری از محرمانگی، امنیت و سازگاری با سیاست‌ها را به همراه می‌آورد.
ابر ترکیبی
یک ابر ترکیبی متشکل از چندین ارائه دهنده داخلی و یا خارجی، گزینه مناسبی برای بیشتر مؤسسات تجاری می‌باشد. با ترکیب چند سرویس ابر کاربران این امکان را می‌یابند که انتقال به ابر عمومی را با دوری از مسائلی چون سازگاری با استانداردهای شورای استانداردهای امنیت داده‌های کارت های پرداخت آسان تر سازند.
ابر خصوصی
ابر خصوصی یک زیر ساخت محاسبات ابری است که توسط یک سازمان برای استفاده داخلی آن سازمان به وجود آمده‌است. عامل اصلی که ابرهای خصوصی را از ابرهای عمومی تجاری جدا می‌سازد، محل و شیوه نگهداری از سخت افزار زیرساختی ابر است. ابر خصوصی امکان کنترل بیشتر بر روی تمام سطوح پیاده سازی ابر (مانند سخت افزار، شبکه، سیستم عامل، نرم افزار) را فراهم می‌سازد. مزیت دیگر ابرهای خصوصی امنیت بیشتری است که ناشی از قرارگیری تجهیزات در درون مرزهای سازمان و عدم ارتباط با دنیای خارج ناشی می‌شود. اما بهره گیری از ابرهای خصوصی مشکلات ایجاد و نگهداری را به همراه دارد. یک راه حل میانه برای دوری از مشکلات ابرهای خصوصی و در عین حال بهره مند شدن از مزایای ابرهای خصوصی، استفاده از ابر خصوصی مجازی است. به عنوان نمونه می‌توان از ابر خصوصی مجازی آمازون نام برد.
مشخصات محاسبات ابری
مشخصات کلیدی توسط ابر در شکل 2-3 نشان داده شده است و در قسمت زیر مورد بحث و بررسی قرار گرفته است:

شکل 2-3 : مشخصات محاسبات ابری[28]
مجازی شده : منابع (یعنی محاسبه کردن، ذخیره سازی و ظرفیت شبکه) در ابرها تصور می شوند و این روش در سطوح مختلف مثل vm و سطوح بسته بدست می آید[9]. اصلی ترین آن در سطح ماشین مجازی است که در آن برنامه های کاربردی متفاوت در سیستم های عملکردی با همان ماشین فیزیکی اجرا می شوند. سطح سکو باعث نقشه برداری برنامه های کاربردی در یک یا چند منبع می شود که توسط فراهم آورندگان زیرساخت ابری پیشنهاد شده است.
سرویس گرا: ابر با استفاده از الگوی زیرساخت سرویس گرا به کار می رود که در آن همه اجزا در شبکه به عنوان یک سرویس در دسترس هستند، چه نرم افزار باشد، چه سکو یا هر زیرساختی که به عنوان سرویس پیشنهاد می کنند.
انعطاف پذیری : منابع (یعنی محاسبه کردن، ذخیره سازی و ظرفیت شبکه) برای برنامه های کاربردی ابر موردنیاز هستند که می توانند به صورت پویا و مختلف مقرر می شوند. یعنی افزایش یا کاهش در زمان اجرا بستگی به نیازهای QOS کاربر دارد. فراهم کنندگان ابر اصلی مثل آمازون حتی سرویس هایی را برای توسعه عمودی و توسعه افقی در براساس نیازهای برنامه های کاربردی میزبان دارد.
پویا و توزیع شده: گرچه منابع ابر، مجازی شده اند، آنها اغلب در عملکردهای بالا یا سرویس های ابر قابل اطمینان توزیع می شوند. این منابع انعطاف پذیر و می توانند بر طبق نیازهای مشتری سازگاری یابند مثل: نرم افزار، پیکربندی شبکه و غیره[10].
اشتراک (اقتصاد مقیاسی): زیرساخت ابرها هر جایی است که منابع های متعدد از خود کاربر بر طبق نیازهای برنامه کاربردی خود استفاده می کنند، مشترک می شوند. این الگوی اشتراکی به عنوان الگوی اجاره چندگانه نیز می باشد. به طور کلی، کاربران نه دارای کنترل مستقیم بر منابع فیزیکی هستند و نه از تخصیص منابع و اینکه با چه کسانی مشترک شده اند، خبر دارند.
بازارگرا (پرداخت - در ازای - میزان استفاده): در محاسبات ابری، کاربران براساس پرداخت - در ازای - میزان استفاده برای سرویس ها پرداخت می کنند. الگوی قیمت گذاری می تواند با توجه به انتظار برنامه های کاربردی در کیفیت سرویس متفاوت باشد. فراهم آورندگان ابر IaaS مثل منابع قیمت ها در آمازون از الگوهایی بازاری مثل الگوهای قیمت گذاری کالاها یا زمان پرداخت آنها استفاده می کنند. یک الگوی قیمت گذاری توسط Thualsiram و Allenofor برای منابع مجهز پیشنهاد شده است که می تواند به عنوان اساسی برای منابع ابر استفاده شوند. این خصوصیت، بعد بهره برداری از محاسبات ابری را بیان می کند. یعنی، سرویس های ابری به عنوان سرویس های سنجیده شده هستند که در آن فراهم کنندگان دارای الگوی محاسباتی برای اندازه گیری کاربردها از سرویس ها هستند که به توسعه برنامه های قیمت گذاری متفاوت کمک می کند. الگوی محاسباتی به کنترل و بهینه سازی از منابع کمک می کند.[16]
خودمختار : برای فراهم کردن سرویس های قابل اطمینان در حد بالا، ابرها رفتاری مستقل را با مدیریت خودشان در دگردیسی عملکرد یا شکست نشان می دهند.
مزایای محاسبات ابری
 
کارمان را با بیان مزایای متعددی که توسط محاسبات ابری ارائه می شود آغاز می کنیم. وقتی شما به سمت استفاده از ابر می روید، به چیزهای زیر دست پیدا می کنید:
 
هزینه های کامپیوتری کمتر: شما برای اجرای برنامه های کاربردی مبتنی بر وب، نیازی به استفاده از یک کامپیوتر قدرتمند و گران قیمت ندارید. از آن جائی که برنامه های کاربردی بر روی ابر اجرا می شوند، نه بر روی یک کامپیوتر رو میزی. کامپیوتر رومیزی شما نیازی به توان پردازشی زیاد یا فضای دیسک سخت که نرم افزارهای دسکتاپ محتاج آن هستند ندارد. وقتی شما یک برنامه کاربردی تحت وب را اجرا می کنید، کامپیوتر شما می تواند ارزان تر، با یک دیسک سخت کوچک تر، با حافظه کم تر و دارای پردازنده کارآمدتر باشد. در واقع، کامپیوتر شما در این سناریو حتی نیازی به یک درایو CD یا DVD هم ندارد زیرا هیچ نوع برنامه نرم افزاری بار نمی شود و هیچ سندی نیاز به ذخیره شدن بر روی کامپیوتر ندارد.
کارآیی توسعه یافته:  با وجود برنامه های کم تری که منابع کامپیوترشما، خصوصاً حافظه آن را به خود اختصاص می دهند، شما شاهد کارآیی بهتر کامپیوتر خود هستید. به عبارت دیگر کامپیوترهای یک سیستم محاسبات ابری، سریع تر بوت و راه اندازی می شوند زیرا آن ها دارای فرآیندها و برنامه های کم تری هستند که به حافظه بار می شود.
 
هزینه های نرم افزاری کم تر:  به جای خرید برنامه های نرم افزاری گران قیمت برای هر کامپیوتر، شما می توانید تمام نیازهای خود را به صورت رایگان برطرف کنید. بله درست است، اغلب برنامه های کامپیوتری محاسبات ابری که امروزه عرضه می شوند، نظیر Google Docs، کاملاً رایگان هستند. این، بسیار بهتر از پرداخت 200 دلار یا بیشتر برای خرید برنامه office مایکروسافت است که این موضوع به تنهایی می تواند یک دلیل قوی برای سوئیچ کردن به محاسبات ابری محسوب شود.
 
ارتقای نرم افزاری سریع و دائم:  یکی دیگر از مزایای مربوط به نرم افزار در  محاسبات ابری این است که شما دیگر نیازی به بروز کردن نرم افزارها و یا اجبار به استفاده از نرم افزارهای قدیمی، به دلیل هزینه زیاد ارتقای آن ها ندارید. وقتی برنامه های کاربردی، مبتنی بر وب باشند، ارتقاها به صورت اتوماتیک رخ می دهد و دفعه بعد که شما به ابر وارد شوید به نرم افزار اعمال می شوند. وقتی شما به یک برنامه کاربردی مبتنی بر وب دسترسی پیدا می کنید، بدون نیاز به پرداخت پول برای دانلود یا ارتقای نرم افزار، از آخرین نسخه آن بهره مند می شوید.
 
سازگاری بیشتر فرمت اسناد:  نیازی نیست که شما نگران مسئله سازگاری اسنادی که بر روی کامپیوتر خود ایجاد می کنید با سایر سیستم عامل ها یا سایر برنامه های کاربردی دیگران باشید. در دنیایی که اسناد 2007Word نمی تواند بر روی کامپیوتری که 2003Word را اجرا می کند باز شوند، تمام اسنادی که با استفاده از برنامه های کاربردی مبتنی بر وب ایجاد می شوند می تواند توسط سایر کاربرانی که به آن برنامه کاربردی دسترسی دارند خوانده شوند. وقتی همه کاربران اسناد و برنامه های کاربردی خود را بر روی ابر به اشتراک می گذارند، هیچ نوع ناسازگاری بین فرمت ها به وجود نخواهد آمد.
 
ظرفیت نامحدود ذخیره سازی:  محاسبات ابری ظرفیت نامحدودی برای ذخیره سازی در اختیار شما قرار می دهد. دیسک سخت 200 گیگابایتی فعلی کامپیوتر رومیزی شما در مقایسه با صدها پتابایت (یک میلیون گیگابایت) که از طریق ابر در دسترس شما قرار می گیرد اصلا چیزی به حساب نمی آید. شما هر چیزی را که نیاز به ذخیره کردن آن داشته باشید می توانید ذخیره کنید.
 
قابلیت اطمینان بیشتر به داده:  برخلاف محاسبات دسکتاپ، که در آن یک دیسک سخت می تواند تصادم کند و تمام داده های ارزشمند شما را از بین ببرد، کامپیوتری که بر روی ابر تصادم کند نمی تواند بر داده های شما تاثیر بگذارد. این همچنین بدان معنا است که اگر کامپیوترهای شخصی شما نیز تصادم کنند، تمام داده ها هنوز هم آن جا و برروی ابر وجود دارند و کماکان در دسترس شما هستند. در دنیایی که تنها تعداد اندکی از کاربران به طور مرتب و منظم از داده های مهم و حساس خود نسخه پشتیبان تهیه می کنند، محاسبات ابری حرف آخر در زمینه محافظت از داده ها به شمار می رود.
 
دسترسی جهانی به اسناد:  آیا تا به حال کارهای مهم خود را از محیط کار به منزل برده اید؟ و یا تاکنون به همراه بردن یک یا چند فایل مهم را فراموش کرده اید؟ این موضوع در محاسبات ابری رخ نمی دهد زیرا شما اسناد و فایل های مهم  خود را همراه خود حمل نمی کنید. در عوض، این اسناد و فایل ها بر روی ابر می مانند و شما می توانید از هرجایی که یک کامپیوتر و اتصال اینترنتی وجود داشته باشد به آن دسترسی پیدا کنید. شما در هر کجا که باشید به سرعت می توانید به اسناد خود دسترسی پیدا کنید و به همین دلیل، نیازی به همراه داشتن آن ها نخواهید داشت.
 
در اختیار داشتن آخرین و جدیدترین نسخه:  یکی دیگر از مزایای مرتبط با اسناد در محاسبات ابری این است که وقتی شما یک سند را در خانه ویرایش می کنید، این نسخه ویرایش شده همان چیزی است که وقتی در محل کار خود به آن دسترسی می یابید مشاهده می کنید. ابر همواره، آخرین نسخه از اسناد شما را میزبانی می کند و تا وقتی شما به اینترنت و ابر متصل باشید، هیچ گاه در معرض خطر استفاده از یک نسخه تاریخ گذشته نخواهید بود.
همکاری گروهی ساده تر:  به اشتراک گذاشتن اسناد، شما را مستقیماً به همکاری بر روی اسناد رهنمون می کند. برای بسیاری از کاربران، این یکی از مهم ترین مزایای استفاده از محاسبات ابری محسوب می شود زیرا چندین کاربر به طور همزمان می توانند برروی اسناد و پروژه ها کار کنند، به دلیل این که اسناد بر روی ابر میزبانی می شوند، نه بر روی کامپیوترهای منفرد، همه چیزی که شما نیاز دارید یک کامپیوتر با قابلیت دسترسی به اینترنت است.
 
مستقل از سخت افزار:  در نهایت، در این جا به آخرین و بهترین مزیت محاسبات ابری اشاره می کنیم. شما دیگر مجبور نیستید به یک شبکه یا یک کامپیوتر خاص محدود باشید. کافی است کامپیوتر خود را تغییر دهید تا ببینید برنامه های کاربردی و اسناد شما کماکان و به همان شکل قبلی، بر روی ابر در اختیار شما هستند. حتی اگر از ابزار پرتابل نیز استفاده کنید، باز هم اسناد به همان شکل در اختیار شما هستند. دیگر نیازی به خرید یک نسخه خاص از یک برنامه برای یک وسیله خاص، یا ذخیره کردن اسناد با یک فرمت مبتنی بر یک ابزار ویژه ندارید. فرقی نمی کند که شما از چه نوع سخت افزاری استفاده می کنید زیرا اسناد و برنامه های کاربردی شما در همه حال به یک شکل هستند.
محاسبات ابری که در اواخر سال 2007 پا به عرصه ظهور گذاشت، هم اکنون به دلیل توانایی اش در ارائه زیرساخت فن آوری پویا و بسیار منعطف، محیط های محاسباتی تضمین شده از نظر کیفیت و همچنین سرویس های نرم افزاری قابل پیکربندی به موضوع داغ مبدل شده است. در گزارش گوگل Trends و همانطور که در شکل 2-4 مشاهده می کنید، محاسبات ابری که از تکنولوژی مجازی سازی بهره می برد، محاسبات گریدی را پشت سر گذاشته است.

شکل2-4 : تمایل به سمت محاسبات ابری[35]
پروژه های متعددی در حوزه صنعت و دانشگاه بر روی محاسبات ابری آغاز شده است وشرکت های بسیار بزرگی با این موضوع درگیر شده اند و این نشان از توجه عمومی به سمت این پدیده نوین است.
نقاط ضعف محاسبات ابری
چند دلیل وجود دارد که ممکن است با استناد به آن ها شما نخواهید از محاسبات ابری استفاده کنید. در این جا به ریسک های مرتبط با استناد از محاسبات ابری اشاره می کنیم:
نیاز به اتصال دائمی به اینترنت دارد: در صورتی که شما نتوانید به اینترنت متصل شوید، محاسبات ابری غیر ممکن خواهد بود. از آن جائی که شما باید برای ارتباط با برنامه های کاربردی و اسناد خود به اینترنت متصل باشید، اگر یک ارتباط اینترنتی نداشته باشید نمی توانید به هیچ چیزی، حتی اسناد خودتان دسترسی پیدا کنید. نبود یک ارتباط اینترنتی، به معنای نبود کار است. وقتی شما آفلاین هستید، محاسبات ابری کار نمی کند.
با اتصال های اینترنتی کم سرعت کار نمی کند: به همان شکلی که در بالا اشاره شد، یک ارتباط اینترنتی کم سرعت نظیر نمونه ای که در سرویس های Dial-up دیده می شود، در بهترین حالت، استفاده از محاسبات ابری را با دردسرهای فوق العاده ای همراه می کند و اغلب اوقات، استفاده از آن را غیرممکن می سازد. برنامه های کاربردی تحت وب و همچنین اسنادی که بر روی ابر ذخیره شده اند برای دانلود شدن به پهنای باند بسیار زیادی نیاز دارند. اگر شما از یک اینترنت Dial-up استفاده می کنید، اعمال تغییر در یک سند یا رفتن از یک صفحه به صفحه دیگر همان سند ممکن است برای همیشه به طول بینجامد. و البته در مورد بار شدن یک سرویس غنی از امکانات حرفی نمی زنیم. به عبارت دیگر، محاسبات ابری برای افرادی که از اینترنت باند پهن استفاده نمی کنند، نیست.
می تواند کند باشد: حتی در یک ارتباط اینترنتی سریع نیز، برنامه های کاربردی تحت وب می توانند گاهی اوقات کندتر از دسترسی به همان برنامه نرم افزاری از طریق یک کامپیوتر رومیزی باشند. تمام جنبه های یک برنامه، از جمله اینترفیس و سند فعلی، باید بین کامپیوتر یا کامپیوترهای موجود بر روی ابر مبادله شود. اگر در آن لحظه، سرورهای ابر در معرض تهیه نسخه پشتیبان باشند یا اگر اینترنت یک روز کند را پشت سر بگذارد، شما نمی توانید به همان دسترسی سریعی که در یک برنامه دسک تاپ وجود دارد، برسید.
ویژگی ها ممکن است محدود باشند: این وضعیت در حال تغییر است اما بسیاری از برنامه های کاربردی مبتنی بر وب به اندازه همتای دسک تاپ خود دارای ویژگی ها و امکانات غنی نیستند. به عنوان مثال، شما می توانید کارهای بسیار زیاد با برنامه PowerPoint انجام دهید که امکان انجام همه آن ها توسط برنامه ارائه Google Docs وجود ندارد. اصول این برنامه ها یکسان هستند، اما برنامه کاربردی که بر روی ابر قرار دارد فاقد بسیاری از امکانات پیشرفته PowerPoint است. اگر شما یک کاربر با تجربه و حرفه ای هستید، ممکن است نخواهید از محاسبات ابری استفاده کنید.
داده های ذخیره شده ممکن است از امنیت کافی برخوردار نباشند: با استفاده از محاسبات ابری، تمام داده های شما بر روی ابر ذخیره می شوند. این داده ها تا چه حد ایمن هستند؟ آیا کاربران غیرمجاز می توانند به داده های مهم و محرمانه شما دسترسی پیدا کنند؟ کمپانی محاسبات ابری اظهار می کند که داده ها امن هستند اما هنوز برای اطمینان کامل از این موضوع خیلی زود است. از نظر تئوری، داده های ذخیره شده بر روی ابر ایمن هستند و بین چندین ماشین توزیع شده اند. اما در صورتی که داده های شما مفقود شوند، شما هیچ نسخه پشتیبان فیزیکی یا محلی در اختیار نخواهید داشت (مگر این تمام اسناد ذخیره شده بر روی ابر را بر روی دسک تاپ خود دانلود کنید که معمولاً کاربران کمی چنین کاری می کنند). به سادگی بگویم، اتکا به ابر، شما را در معرض خطر قرار می دهد.
بررسی وضعیت محاسبات ابری در جهان از نگاه آماری
وب سایت cloudehypermarket.com تصویری را منتشر کرده است که اطلاعات آماری جالبی را در مورد محاسبات ابری و اوضاع فعلی آن در جهان به تصویر می‌کشد.
1562101485900
شکل 2-5 : بررسی وضعیت محاسبات ابری در جهان[36]
برخی از مهمترین نکات موجود در شکل عبارتند از: (آمار مربوط به اواخر سال ۲۰۱۰ می‌باشد).
۱- در بخش اول تصویر میزان سرمایه‌گذاری جهانی در حوزه‌ی آی‌تی بررسی شده است. در سال ۲۰۰۸ مجموعاً ۳۶۷ میلیارد پوند صرف هزینه‌های معمول فناوری اطلاعات و ۱۶ میلیارد پوند صرف هزینه‌های مربوط به سرویس‌های محاسبات ابری شده است. پیش‌بینی می‌شود در سال ۲۰۱۲ مجموع سرمایه‌گذاری معمول در حوزه‌ی IT به رقم ۴۵۱ میلیارد پوند و سرمایه‌گذاری در حوزه‌ی محاسبات ابری به ۴۲ میلیارد پوند برسد. با این محاسبات، رشد سالانه‌ی سرمایه‌گذاری در حوزه‌ی محاسبات ابری از سال ۲۰۰۸ تا ۲۰۱۲ به عدد ۲۵ درصد نزدیک است.
۲- مؤسسه‌ی تحقیقات بازار IDC پیش‌بینی می کند که در چند سال آینده، علاوه بر رشد سرمایه گذاری در حوزه‌ی محاسبات ابری، شرکت‌ها نیز حوزه‌های فعالیت خود را تغییر خوهند داد و خدمات خود را به سمت محاسبات ابری سوق خواهند داد. پیش‌بینی می‌شود خدمات محاسبات ابری شرکت‌ها در سال ۲۰۱۲ اینگونه ارائه شود:
اپلیکیشن‌های تجاری: ۵۲ درصد
نرم افزارهای زیرساختی: ۱۸ درصد
خدمات ذخیره‌سازی اطلاعات: ۱۳ درصد
تولید و پیاده‌سازی نرم افزارها و اپلیکیشن‌ها: ۹ درصد
خدمات سرور: ۸ درصد
۳- آیا استفاده از محاسبات ابری فرآیند مدیریت فناوری اطلاعات را آسان تر کرده است؟
۷۰ درصد کارشناسان موافق این جمله هستند.
۲۰ درصد نظری در این باره نداشته اند.
۱۰ درصد مخالف این جمله هستند.
۴- آیا استفاده از محاسبات ابری، بهبودی در تجربه‌ی مصرف کننده‌ی نهایی ایجاد کرده است؟
۷۲ درصد کارشناسان موافق این جمله هستند.
۱۶ درصد نظری در این باره نداشته اند.
۱۲ درصد مخالف این جمله هستند.
۵- آیا استفاده از محاسبات ابری، چالش‌های مربوط به کارایی فناوری اطلاعات را کاهش داده است؟
۶۳ درصد کارشناسان موافق این جمله هستند.
۲۰ درصد نظری در این باره نداشته اند.
۱۷ درصد مخالف این جمله هستند.
۶- آیا استفاده از محاسبات ابری، هزینه‌های زیرساختی سازمان ها را کاهش داده است؟
۷۳ درصد کارشناسان موافق این جمله هستند.
۱۷ درصد نظری در این باره نداشته اند.
۱۰ درصد مخالف این جمله هستند.
۷- آیا استفاده از محاسبات ابری، فشارهای ناشی از تأمین منابع درون‌سازمانی بر روی سازمان را کاهش داده است؟
۷۴ درصد کارشناسان موافق این جمله هستند.
۱۸ درصد نظری در این باره نداشته اند.
۸ درصد مخالف این جمله هستند.
۸- امروزه ۵۰ میلیون سرور فیزیکی در سراسر جهان وجود دارد. ۲درصد از این تعداد سرور در اختیار گوگل است (یعنی ۱ میلیون سرور).
۹- امروزه ۳۳ هزار و ۱۵۷ مؤسسه‌ی خدمات مرکز داده در جهان وجود دارد که ایالات متحده‌ی امریکا به تنهایی ۲۳ هزار و ۶۵۶ عدد از این مراکز داده را در خود جای داده است. کانادا، انگلستان، آلمان و هلند با اختلاف فاحشی نسبت به آمریکا در جایگاه‌های بعدی این آمار هستند.
۱۰- پیش بینی می‌شود در سال ۲۰۱۳ حداقل ۱۰ درصد از این سرورهای فیزیکی فروخته شده بر روی سرورهای مجازی (Virtual Machine) مستقر باشند به طوری که بر روی هر سرور فیزیکی ۱۰ ماشین مجازی مشغول به کار است. این به معنای شکل گیری سالانه ۸۰ تا ۱۰۰ میلیون سرور مجازی در سراسر دنیاست.
۱۱- در سال ۲۰۱۳ تقریبا ۶۰ درصد از بار کاری سرورها به صورت مجازی خوهد بود.
۱۲- مالکین دنیای محاسبات ابری در حال حاضر ۴ شرکت (بدون در نظر گرفتن رشد ناگهانی آمازون در ۴ ماهه‌ی ابتدایی سال ۲۰۱۱) گوگل، مایکروسافت، زوهو (Zoho) و رک‌اسپیس (RackSpace) با در اختیار داشتن بازاری با مجموع ارزش بیش از ۱۰۰ میلیارد پوند هستند.
۱۳- این ۱۰۰ میلیارد پوند، درآمد ناشی از خدماتی به شرح زیر است:
۵۶ درصد از مردم از سرویس‌های پست الکترونیکی همانند Gmail، Ymail و Hotmail استفاده می‌کنند.
۳۴ درصد از مردم از خدمات ذخیره‌سازی تصاویر در وب استفاده می‌کنند.
۲۹ درصد از مردم از اپلیکیشن‌های آنلاین مثل Google Docs و Photoshop Express استفاده می‌کنند.
۷ درصد از مردم از سرویس‌های ذخیره‌سازی ویدئو در وب استفاده می‌کنند.
۵ درصد از مردم برای ذخیره‌سازی فایل های رایانه‌ای خود در وب پول پرداخت می‌کنند.
۵ درصد از مردم برای پشتیبان‌گیری از اطلاعات هارد دیسک خود بر روی وب‌سایت‌های اینترنتی هزینه می‌کنند.
یک نمونه قیمت در سیستم عامل Azure از شرکت مایکروسافت
هزینه های مربوط به پردازش:
معادل یک کامپیوتر شخصی ۱۲۰۰ ریال / ساعت
معادل یک سرویس دهنده ۳۰۰۰ ریال / ساعت
معادل یک ابر رایانه ۱۰۰۰۰ ریال / ساعت
هزینه های مربوط به فضای ذخیره سازی:
هر گیگابایت اجاره نگهداری ماهانه ۱۵۰۰ ریال
هر ده هزار تراکنش ذخیره سازی ۱۰ ریال
هزینه دریافت هر گیگابایت داده از ابر:
بسته به کشوری که در آن قرار دارید، از ۱۵۰ تا ۲۰۰ ریال
این سیستم عامل به نام Windows Azure درحال حاضر توسط شرکت مایکروسافت با قیمت هایی شبیه آنچه در بالا آمد، ارائه می گـردد. بـرای اجرای این سیستم عامل به رایانه ای با چند گیگابایت حافظه RAM و چندصد گیگابایت دیسک سخت نیاز نبوده و یک دستگاه نسبتاً قـدیـمی هم می تواند برای آن به کار رود.
بعد از اینکه با محاسبات ابری آشنا شدیم و آن را از نگاه آماری بررسی کردیم و به این نتیجه رسیدیم که محاسبات ابری می توانند نقش عمده ای در جهان امروزی داشته باشند به معرفی سیستم عامل های ابری که از پلتفرم های مربوط به محاسبات ابری هستند، می پردازیم. در ابتدا تعریفی از سیستم عامل.
تعریف سیستم عامل
سیستم عامل، نرم افزاری است که مدیریت منابع رایانه را به عهده گرفته، اجرای برنامه های کاربردی را کنترل نموده و به صورت رابط کاربر و سخت افزار عمل می نماید. سیستم عامل خدماتی به برنامه های کاربردی و کاربر ارائه می دهد. برنامه های کاربردی یا از طریق واسط های برنامه نویسی کاربردی و یا از طریق فراخوانی های سیستم به این خدمات دسترسی دارند. با فراخوانی این واسط ها، برنامه های کاربردی می توانند سرویسی را از سیستم عامل درخواست کنند، پارامترها را انتقال دهند، و پاسخ عملیات را دریافت کنند. ممکن است کاربران با بعضی انواع واسط کاربری نرم افزار مثل واسط خط فرمان یا یک واسط گرافیکی کاربر یا سیستم عامل تعامل کنند. برای کامپیوترهای دستی و رومیزی، عموماً واسط کاربری به عنوان بخشی از سیستم عامل در نظر گرفته می شود. در سیستم های بزرگ و چند کاربره مثل یونیکس، واسط کاربری معمولاً به عنوان یک برنامه کاربردی که خارج از سیستم عامل اجرا می شود پیاده سازی می شود (استالینگ، 1381).
انواع سیستم عامل
سیستم عامل تک پردازنده
این نوع سیستم عامل ها، سیستم عامل های نسل چهارم (نسل فعلی) هستند که بر روی یک پردازنده اجرا می شوند. از قبیل XP98، Me و Vista که بیشتر محصول شرکت مایکروسافت می باشند.
سیستم عامل شبکه ای
این نوع سیستم عامل ها، از کنترل کننده های واسط شبکه و نرم افزارهای سطح پایین به عنوان گرداننده استفاده می کنند و برنامه هایی برای ورود به سیستم های راه دور و دسترسی به فایل از راه دور در آنها به کار گرفته می شود[13].
سیستم عامل توزیع شده
این سیستم عامل ها خود را مانند سیستم عامل های تک پردازنده به کاربر معرفی می کنند اما در عمل از چندین پردازنده استفاده می کنند. این نوع سیستم عامل در یک محیط شبکه ای اجرا می شود و در حقیقت در این نوع سیستم جواب نهایی یک برنامه، پس از اجرا در کامپیوترهای مختلف به سیستم اصلی بر می گردد. سرعت پردازش در این نوع سیستم بسیار بالاست.
سیستم عامل بی درنگ
از این نوع سیستم عامل برای کنترل ماشین آلات صنعتی، تجهیزات علمی و سیستم های صنعتی استفاده می گردد. یک سیستم عامل بی درنگ دارای امکانات محدود در رابطه با بخش رابط کاربر و برنامه های کاربردی مختص کاربران می باشد. یکی از بخش های مهم این نوع سیستم های عامل، مدیریت منابع موجود کامپیوتری به گونه ای که عملیات خاصی در زمانی که بایستی اجرا شوند، اجرا گردند و مهم تر از همه اینکه مدیریت منابع به گونه ای است که این عملیات خاص در هر بار وقوع، مقدار زمان یکسانی بگیرد[1].
سیستم های توزیعی
در منابع مختلف تعاریف مختلفی برای سیستم های توزیعی ارائه شده است. اما هیچ یک نه کامل است و نه با دیگری همخوانی دارد. در این تحقیق تعریفی از این نوع سیستم ها که در کتاب سیستم های توزیعی آقای تانن باوم به آن اشاره شده را بیان می کنیم:
سیستم توزیعی در واقع مجموعه ای از کامپیوترهای مستقل است که برای کاربر خود مانند یک سیستم منسجم و منفرد به نظر می رسد[2].
از این تعریف می توان به این نتیجه رسید که اولاً یک سیستم توزیعی از کامپیوترهای خود مختار تشکیل شده است و ثانیاً کاربران تصور می کنند که با یک سیستم منفرد کار می کنند. پس با تعریفی که ذکر شد می توان یک سیستم توزیعی را اینگونه نیز تعریف کرد:
هر سیستمی که بر روی مجموعه ای از ماشین ها که دارای حافظه اشتراکی نیستند، اجرا شده و برای کاربران به گونه ای اجرا شود که گویا بر روی یک کامپیوتر می باشند ، یک سیستم توزیع شده است. اما نکته ای که در اینجا باید به آن توجه داشت این است که در سیستم های توزیعی تفاوت بین کامپیوترهای مختلف و نحوه ارتباط آنها با یکدیگر باید تا حدود زیادی از دید کاربران پنهان بماند. سیستم های توزیعی برای اینکه بتوانند از کامپیوترها و شبکه های ناهمگن پشتیبانی کنند و همگی سیستم ها را در غالب یک سیستم منفرد نمایش دهند، به عنوان یک لایه میانی به نام میان افزار بین یک لایه سطح بالایی شامل کاربران و برنامه های کاربردی و یک لایه پائینی شامل سیستم های عامل در نظر گرفته می شوند[12]. در شکل 2-6 لایه سیستم توزیعی یا به عبارتی میان افزاری را مشاهده می کنید که بین سیستم های عامل 1 تا 4 و چهار کامپیوتر شبکه که شامل سه برنامه کاربردی هستند قرار گرفته است. این لایه باعث می شود که تفاوت بین سخت افزار و سیستم های عامل از دید برنامه های کاربردی وکاربران مخفی بماند.

شکل 2-6 : سیستم توزیعی که به عنوان یک لایه میانی یا میان افزار بین برنامه های کاربردی و سیستم عامل ها قرار گرفته است[12].
و اما مواردی که باید در طراحی سیستم های توزیع شده در نظر گرفت و به نوعی اهداف سیستم های توزیع شده می باشند عبارتند از شفافیت، انعطاف پذیری، قابلیت اطمینان، کارآیی خوب و قابلیت گسترش.
شفافیت
یکی از اهداف مهم سیستم های توزیع شده این است که فرآیندها و منابعی که بین ماشین های متعدد توزیع شده اند، باید از دید کاربران مخفی بماند[17]. به سیستم توزیعی که از دید کاربران و برنامه های کاربردی خود به صورت یک سیستم کامپیوتری منفرد جلوه می کند را اصطلاحاً شفاف می گویند.
شفافیت انواع مختلفی دارد و در مورد هر یک طبق تعریفی که در کتاب سیستم های توزیعی آقای تانن باوم آمده توضیح می دهیم، شفافیت دسترسی که در مورد مخفی سازی تفاوت های ارائه داده و نحوه دسترسی به منابع به وسیله کاربران می باشد. شفافیت مکان یعنی اینکه کاربران نتوانند محل استقرار فیزیکی منبع در سیستم را شناسایی کنند. شفافیت مهاجرت یعنی اینکه بتوان منابع آنها را بدون تاثیرگذاری بر نحوه دسترسی به آنها انتقال داد. شفافیت مکان یابی مجدد هنگامی است که بتوان منابع را در حین دسترسی به آنها و بدون کوچکترین اطلاعی به کاربر یا برنامه کاربردی مجددا مکان یابی کرد. شفافیت تکثیر به مخفی سازی وجود چندین نسخه تکثیری از یک منبع می پردازد. شفافیت هم روندی زمانی است که مثلا دو کاربر مستقل فایل های خود را روی یک خدمتگذار فایل واحد ذخیره کرده و یا به جداول واحدی در پایگاه داده مشترک دسترسی داشته باشند. در این موارد هیچ یک از کاربران نباید کوچکترین اطلاعی از واقعیت استفاده کاربر دیگر از آن منبع داشته باشد. شفافیت خرابی به این معناست که کاربر متوجه خرابی و عملکرد نادرست یک منبع نشده و سپس سیستم اقدام به ترمیم آن خرابی کند[2].
قابلیت اطمینان
در دسترس بودن یک فاکتور مهم مرتبط با این سیستم ها است. طراحی نباید به گونه ای باشد که نیاز به اجرای همزمان کامپوننت های اساسی باشد. افزونگی بیشتر داده ها باعث افزایش در دسترس بودن شده اما ناسازگاری را بیشتر می کند. قدرت تحمل خطا باعث پوشاندن خطاهای ایجاد شده توسط کاربر می شود.
کارآیی
بدون کارآیی مناسب کلیه موارد استفاده نرم افزار بی فایده می باشد. اندازه گیری کارایی در سیستم های توزیع شده کار آسانی نیست. برای رسیدن به کارایی باید توازنی خاص در تعداد پیغام ها و اندازه کامپوننت های توزیع شده بر قرار باشد.
مقیاس پذیری
امروزه اتصال جهانی از طریق اینترنت، مانند امکان ارسال یک کارت پستال برای هر کسی در هر گوشه ای از جهان تبدیل به امر عادی شده است. به همین دلیل، مقیاس پذیری یکی از مهمترین اهداف طراحی برای سازندگان سیستم های توزیعی محسوب می شود. مقیاس پذیری یک سیستم را می توان حداقل در سه بعد مختلف اندازه گیری کرد(نیومان، 1994). اولاً، یک سیستم می تواند با توجه به اندازه خود مقیاس پذیر باشد. به این معنا که بتوان به راحتی کاربران و منابع دیگری را به سیستم اضافه نمود. ثانیاً، یک سیستم مقیاس پذیر جغرافیایی سیستمی است که ممکن است کاربران و منابع آن در فاصله های دوری از هم قرار گرفته باشند. ثالثا، یک سیستم ممکن است از نظر مدیریت اجرایی مقیاس پذیر باشد، به این معنا که حتی اگر سازمان هایی با مدیریت اجرایی مستقل را به هم پیوند دهد. باز به راحتی قابل مدیریت باشد. متاسفانه، اغلب سیستم هایی که از یک یا چند مقیاس پذیر هستند، با افزایش مقیاس پذیری سیستم، تاحدودی با افت عملکرد مواجه می شوند.
سیستم عامل های توزیعی
محیط های کامپیوتری تحت شبکه( شبکه های کامپیوتری) امروزه بسیار رایج شده اند و این محیط ها شامل مجموعه ای از ایستگاه های کاری و سرویس دهنده ها می باشند. واضح است که مدیریت این منابع کار آسانی نخواهد بود. استفاده از مجموعه ای از کامپیوترها که از طریق شبکه به هم متصل شده اند مشکلات بسیاری را در بر دارد، از جمله مشکلات تقسیم منابع و یکپارچه سازی محیط( که این مشکلات در سیستم های متمرکز وجود ندارد). علاوه بر این برای افزایش میزان کارآیی، توزیع بایستی از دید کاربر پنهان بماند. راه حل مناسب این است که سیستم عاملی طراحی شود که توزیعی بودن سخت افزار را در تمامی سطوح در نظر داشته باشد. به این صورت که سیستم عامل مجموعه را به صورت یک سیستم متمرکز نشان دهد و در کنار آن از مزیت های سیستم توزیعی استفاده کند. در ساختار سیستم عامل های توزیعی از دو الگوی مبتنی بر پیام و مبتنی بر شیء استفاده می شود[11].
الگوی مبتنی بر پیام
در این الگو سیستم عامل یک هسته مبتنی بر پیام در هر گره قرار می دهد و برای برقراری ارتباطات داخل فرآیند از ارسال پیام استفاده می کند. هسته از هر دو نوع ارتباط محلی( ارتباط بین فرآیندهای داخل هر گره) و غیر محلی(ارتباط از راه دور) پشتیبانی می کند. در یک سیستم عامل سنتی همانند یونیکس دسترسی به سرویس های سیستمی از طریق فراخوانی متدها صورت می پذیرفت در حالی که در سیستم عامل های مبتنی بر پیام، درخواست ها از طریق ارسال پیام مطرح می شوند. با این قرار می توان نتیجه گرفت سیستم عامل های مبتنی بر پیام ساخت جذاب تر و بهتری دارند، زیرا سیاست های موجود در فرآیند های سرویس دهنده از مکانیزم پیاده سازی هسته جدا می باشد.
الگوی مبتنی بر شیء
در این الگو سیستم عامل سرویس ها و منابع را به موجودیت هایی به نام شیء کپسوله می کند. این اشیاء همانند نمونه هایی از داده های انتزاعی می باشند و از ماژول های منحصر به فردی تشکیل شده اند. همچنین این ماژول ها نیز متشکل از متدهای به خصوصی می باشند که اینترفیس(واسط) ماژول را توصیف می کنند. عملکرد در این الگو این چنین است که کاربران درخواست سرویس را از طریق احضار شیء مورد نظر مطرح می سازند. این مکانیزم بسیار شبیه به فراخوانی پروسه ها در سیستم های معمولی می باشد. قابل ذکر است که اشیاء عملیات را کپسوله می کنند.
رویکرد سیستم عامل های ابری
سیستم عامل ابری نیز نوعی از سیستم عامل های توزیعی می باشند که مجموعه ای از گره ها را با هم یکپارچه می سازد و یک سیستم متمرکز تولید می کند. سیستم عامل ابری شامل سرویس دهنده های محاسباتی، سرویس دهنده های داده ای و ایستگاه های کاربر می باشد.
سرویس دهنده های محاسباتی: ماشینی است برای استفاده به عنوان موتور محاسباتی.
سرویس دهنده های داده ای: ماشینی است برای استفاده به عنوان مخرن داده های بلند مدت.
ایستگاه های کاربری: ماشینی است که محیطی برای توسعه دادن برنامه های کاربردی فراهم می کند و واسطی بین کاربر و سرویس دهنده های محاسباتی یا داده ای می باشد[3].
ساختار سیستم عامل های ابری بر پایه مدل شیء- نخ می باشد. این مدل از مدل برنامه نویسی معروف شیء گرا اقتباس شده است که نرم افزار سیستم را بر پایه مجموعه ای از اشیاء می سازد. هر شیء شامل تعدادی داده و عملیات بر روی آن داده ها می باشد. عملیات بر روی داده ها را متد می نامند و نوع شیء نیز با کلاس مشخص می گردد. هر کلاس می تواند صفر یا یک و یا چند نمونه داشته باشد ولی یک نمونه تنها از یک کلاس ناشی می شود. اشیاء به پیام ها پاسخ می دهند و ارسال پیام به یک شیء می تواند به داده های درون شیء دسترسی داشته باشد و آن ها را بروز رسانی کند و یا به اشیاء دیگر درون سیستم پیام ارسال کند. اشیاء ابر کپسولی از کد و داده می باشند که در یک فضای آدرس مجازی قرار دارند. هر شیء نمونه ای از یک کلاس است و هر کلاس ماژولی از برنامه. اشیاء ابرها به احضارها پاسخ می دهند و احضارها ( با استفاده از نخ ها) برای اجرای متد درون شیء ابر استفاده می گردند. ابرها از اشیاء برای تضمین انتزاع مخازن و از نخ ها برای اجرای متد درون شیء استفاده می نمایند. این موجب می شود که محاسبات و مخازن داده ای از یکدیگر تفکیک شوند. از دیگر ویژگی های مدل شیء- نخ می توان به این موارد اشاره کرد:
عملیات ورودی و خروجی
به اشتراک گذاری داده ها
ارتباط درون فرآیندها
ذخیره سازی بلند مدت داده ها در حافظه
الگوی سیستم عامل ابری
الگوی مورد استفاده در سیستم عامل های ابری همان الگوی شیء- نخ می باشد که در این بخش به توضیح اجزا و نحوه عملکرد این الگو می پردازیم.
شیء ابری
شیء ابری یک فضای آدرس مجازی پایدار می باشد. برخلاف فضاهای آدرس در سیستم های معمولی، محتویات اشیاء برای مدت طولانی باقی می مانند. به همین دلیل در هنگام خرابی سیستم از بین نمی روند، مگر اینکه عمدا از سیستم حذف شوند. همانطور که از تعریف برمی آید اشیاء ابری سنگین وزن هستند، به همین علت است که این اشیاء بهترین انتخاب برای مخازن داده ای و اجرای برنامه های بزرگ به حساب می آیند. داده های درون شیء فقط توسط خود شیء قابل دسترسی و بروزرسانی می باشند، زیرا محتویات یک فضای آدرس مجازی از بیرون از فضای مجازی قابل دست یابی نمی باشند.
یک شیء ابری شامل موارد زیر است:
کد مخصوص به خود ( متدهای اختصاصی )
داده های پایدار
حافظه ای زودگذر و سبک ( برای تخصیص حافظه موقت )
حافظه ای پایدار و دائمی ( برای تخصیص دادن حافظه ای که بخشی از ساختمان داده پایدار شیء می باشد )
داده با احضار متدها وارد شیء می شود و با پایان احضار از شیء خارج می گردد (شکل شماره 2-7 ). اشیاء ابری دارای یک نام در سطح سیستم می باشند که آن ها را از یکدیگر منحصر به فرد می سازد. این اشیاء درون سرویس دهنده های محاسباتی قابل استفاده می باشند که این کارآیی موجب می شود توزیعی بودن داده ها از دید کاربر مخفی باقی بماند.
4375151651000
شکل شماره 2-7 : ساختمان یک شیء ابری[5]
نخ
یک نخ عبارت است از مسیری اجرایی که وارد اشیاء شده و متدهای درون آن ها را اجرا می کند و محدود به یک فضای آدرس نمی شود. نخ ها توسط کاربران و یا برنامه های کاربردی ساخته می شوند. نخ ها با اجرای متدی از یک شیء می توانند به داده های درون شیء دسترسی یابند، آن ها را بروزرسانی کنند و یا اینکه متدهایی از شیء دیگر را احضار کنند. در این حالت، نخ به طور موقت شیء فعلی را رها می کند، از آن خارج شده و وارد شیء فراخوانی شده می گردد و متد مورد نظر آن را اجرا می کند، پس از پایان اجرای متد به شیء قبلی باز می گردد و نتیجه را برمی گرداند. نخ ها پس از پایان عملیات مورد نظر از بین می روند. علاوه بر این چند نخ می توانند به طور هم زمان وارد یک شیء شوند و به طور موازی به اجرا درآیند که در این صورت نخ ها محتویات فضای آدرس شیء را بین یکدیگر به اشتراک می گذارند. شکل شماره 2-8 نحوه اجرای نخ ها در اشیاء را نشان می دهد.

شکل شماره 2-8 : اجرای نخ ها در شیء ابری[5]
تعامل میان شیء و نخ ( مدل شیء- نخ )
ساختار یک سیستم عامل ابری متشکل از اشیاء و نخ ها می باشد. مکانیزم ذخیره سازی داده ها در سیستم عامل های ابری با سایر سیستم عامل های معمول تفاوت دارد. در سیستم عامل های معمولی از فایل ها برای ذخیره سازی داده ها استفاده می شود ولی در سیستم عامل های ابری اشیاء نقش مخازن داده را ایفا می کنند. برخی از سیستم ها برای برقراری ارتباط با داده های مشترک و هماهنگ سازی محاسبات از الگوی ارسال پیام استفاده می کنند. ابرها با قراردادن داده ها درون اشیاء آن ها را به اشتراک می گذارند. متدها در صورت نیاز به دسترسی داده ها شیء مورد نظر را که داده درون آن قرار دارد احضار می کنند. در یک سیستم مبتنی بر پیام، کاربر می بایست درجه هم زمانی را در هنگام نوشتن برنامه تعیین کند و برنامه را به تعدادی پروسه سیستمی بشکند. مدل شیء-نخ این احتیاجات را حذف می کند، به این صورت که در زمان اجرا درجه هم زمانی با ایجاد نخ های موازی مشخص می شود.
به طور خلاصه می توان گفت:
سیستم عامل ابری از فضاهای آدرس نام گذاری شده به نام شیء تشکیل شده است و این اشیاء قادرند:
مخازن داده پایدار فراهم کنند.
متدهایی برای دست یابی و دست کاری داده ها ایجاد نمایند.
داده ها را به اشتراک بگذارند.
هم زمانی را کنترل نمایند.
جریان کنترلی توسط نخ هایی که اشیاء را احضار می کنند انجام می شود.
جریان داده ای با ارسال پارامتر انجام می شود.
برنامه نویسی در مدل شیء- نخ در ابرها
مفاهیم مورد استفاده برنامه نویس در مدل شیء – نخ عبارتند از:
کلاس: ماژول های سیستم
نمونه: شیء ای از کلاس می باشد که می تواند توسط نخ ها احضار شود.
بنابراین برای نوشتن برنامه کاربردی در ابرها، برنامه نویس یک یا چند کلاس را تعریف می کند و داده ها و کدهای برنامه را درون این کلاس ها قرار می دهد. برنامه برای اجرا شدن نخی ایجاد می کند که متد اصلی شیء اجرا کننده برنامه را احضار می کند. اشیاء دارای نام هایی می باشند که برنامه نویس هنگام تعریف شیء برای آن ها مشخص کرده است و این نام ها بعدا به نام سیستمی شیء تبدیل می شوند.
معماری سیستم عامل ابری
دراین بخش معماری سیستم عامل های ابری را مورد بررسی قرار می دهیم. شکل شماره 2-9 مدلی منطقی از معماری یک سیستم عامل ابری را نمایش می دهد. یک پروسه ابری به مجموعه ای از اشیاء ابری اطلاق می شود که با هم یک برنامه کاربردی را تشکیل می دهند.

شکل شماره 2-9 : مدل منطقی از معماری یک سیستم عامل ابری[6]
فضای هسته ابر به تعدادی از پروسه های ابری که عملیات کنترل دسترسی ها، تخصیص حافظه و محاسبات مقدار منابع لازم را انجام می دهند گفته می شود. مابقی پروسه ها که مربوط به فضای هسته ابر نیستند، فضای کاربر را تشکیل می دهند. پروسه های ابری فضای کاربر که مستقیما توسط خود کاربر اجرا می شوند برنامه های کاربران نامیده می شوند و کتابخانه های ابری، پروسه های ابری می باشند که توسط برنامه های کاربران مورد استفاده قرار می گیرند. این برنامه ها از طریق مجموعه ای از واسط های استاندارد به نام فراخوانی های سیستمی ابر با کتابخانه ها و پروسه های هسته ارتباط برقرار می کنند. تمامی اشیاء موجود در فضای کاربر برای گرفتن دستورات از سیستم عامل از یک دستگیره فراخوانی استفاده می کنند، بدین معنی که برای مدیریت شدن از طریق یک واسط تحت شبکه قابل دسترسی می باشند که ارتباط میان اشیاء و آدرس آن ها در شبکه توسط پروسه های ابری «مدیریت پروژه» و «مدیریت ماشین مجازی» موجود در فضای هسته انجام می گیرند. اطلاعات نهایی نیز توسط پروسه ابری «کتابخانه نامگذاری» در دسترس قرار می گیرد. قابلیت دسترسی تمامی عملیات مدیریتی را پروسه ابری «اعتباردهی» مورد بررسی قرار می دهد و عملیات محاسبه میزان منابع مورد نیاز در هر لحظه نیز بر عهده پروسه ابری «اندازه گیری» می باشد. البته قابل ذکر است که مفروضات لحاظ شده در شکل شماره 2-4 تعداد اندکی از محدودیت های موجود در ابرها را در نظر گرفته است و کامل نمی باشد[6].
برخی سیستم عامل های ابری موجود(سیستم عامل های مبتنی بر وب)
سیستم عامل های وب روش بسیار مناسبی برای دستیابی به همه داده های شما در همه جای دنیا هستند (مشروط بر اینکه کامپیوتری با یک اتصال به اینترنت و یک مرورگر وب وجود داشته باشد). چنانچه تعدادی کامپیوتر داشته باشید، اما بخواهید همه اطلاعات را در یک جا نگهدارید و از برنامه های کاربردی مورد علاقه خود نیز استفاده کنید، این سیستم عامل ها بسیار سودمند هستند. اکنون در این مرحله ممکن است این سوال مطرح شود که چرا سیستم عامل وب؟. اساساً، یک سیستم عامل وب چیزی شبیه یک سیستم عامل روی اینترنت است. سیستم عامل وب، دسکتاپ مجازی شماست که به هیچ مکان فیزیکی متصل نیست و این امکان را به شما می دهد که در هر جایی از دنیا با کمک یک مرورگر به آن دستیابی داشته باشید. اجازه دهید تا از بین سیستم عامل های وبی که وجود دارد به بیان ویژگی های چند مورد از آنها بپردازیم.
سیستم عامل iCloud
سیستم عامل iCloud، مزایای بسیار زیادی دارد، علاوه بر اینکه هر برنامه ای که نیاز داریم در آن موجود است، 50 گیگابایت فضای ذخیره سازی آنلاین، به اشتراک گذاری آسان و ویژگی های افزایش برنامه های کاربردی را دارد. این سیستم عامل دارای ویژگی هایی مانند زیر است:
سیستم فایل آنلاین برای ذخیره سازی انواع فایل ها.
پشتیبان DAV وب از طریق ویندوز اکسپلورر امکان دستیابی مستقیم به انباره icloud شما را فراهم می کند.
برنامه های بهره وری- نوشتن، پست الکترونیکی ( که با همه حساب های پست الکترونیکی شما به اضافه یک حساب icloud رایگان هماهنگی دارد)، تماس ها، ToDo، ماشین حساب، دفترچه یادداشت، آنزیپ (فایل های حاوی داده های فشرده را از هم باز می کند).
عکس ساز با قابلیت به اشتراک گذاری، مدیا پلیر iplay، مووی پلیر، و حتی رادیو.
IM و یک مرورگر وب[8].
69850069596000تصویری از این سیستم عامل را در شکل 2-10 مشاهده می کنید.

user8340

کارآموزی برخط - 33.7% ویلینگ و جانسون(2004)
دروس برخط - 35% اسمیت(2006)
دوره الکترونیکی - 36% یوکسال ترک و اینان (2006)
کار آموزی بر خط - 54.2% پارک (2009)
آمار افت تحصیلی در آموزش الکترونیکی را این‌گونه میتوان جمعبندی کرد:
افت تحصیلی در تحصیل الکترونیکی به مراتب بیشتر از حضوری است.
نرخ افت تحصیلی متفاوت است اما متوسط افت تحصیلی 32 درصد در آموزشهای الکترونیکی مشهود است.
هر چند تردیدی بر بالا بودن افت تحصیلی در آموزش الکترونیکی نیست، اما مهم‌تر از گزارش توصیفی آمار افت تحصیلی، بررسی علل زمینه ساز و ارائه راهکارهای مناسب جهت مدیریت این معضل است. این پژوهش با علم به این واقعیت که عوامل متعددی ممکن است زمینه ساز این معضل شوند، در صدد شناسایی متغیرهای پیشبینی کنندۀ افت تحصیلی دانشجویان الکترونیکی است. ضرورت موضوع پژوهش از چند دیدگاه قابل بررسی است:
مدیران و دستاندرکاران نظامهای آموزشی در تصمیمگیری خود برای توسعه و پذیرش فناوری در آموزش، پایین بودن شکست و بالا بودن موفقیّت دانشجویان را به عنوان یک شاخص حیاتی لحاظ میکنند، لذا برای زمینهسازی پذیرش همگانی آموزش الکترونیکی در سیستمهای آموزشی، کاهش میزان افت و تضمین موفقیت دانشجو از اهمیت به سزایی برخوردار است. از طرف دیگر، شناخت عوامل زمینهساز عدم موفقیت دانشجو در تحصیل الکترونیکی، با کاهش هزینهها و افزایش رضایتمندی مشتری، زمینه اثربخشی هر چه بیشتر موسسه آموزشی را فراهم میکند.
اساتید و کارکنان با درک عوامل مرتبط با ریزش، مشروطی، افت یا ترک تحصیل دانشجویان میتوانند اقداماتی انجام دهند تا میزان مشروطی را کاهش دهند.
دانشجویان وقت و هزینه قابل توجهی برای تحصیل به روش الکترونیکی صرف میکنند، این هزینهها شامل هزینههای مستقیم (شهریه) و هزینه فرصت - ادامه تحصیل به روش دیگر یا ورود به بازار کار- است که برای دانشجوی مشمول افت بسیار سنگین خواهد بود؛ لذا مدیریت این پدیده و پیشبینی وضعیت تحصیلی دانشجو، در وقت و سرمایه وی صرفهجویی خواهد کرد.
از آنجا که آموزش، یک صنعت بزرگ در جهان محسوب میشود، شکست و خروج هر دانشجو به معنای از دست دادن یک مشتری و موجّه نبودن سرمایهگذاری در حوزه آموزش الکترونیکی خواهد بود؛ لذا شناسایی علل زمینه ساز و تضمین موفقیت دانشجو، صنعت آموزش الکترونیکی کشور را به صنعتی پایا و مطمئن تبدیل خواهد کرد.
با توجه به آنچه گذشت و نظر به نوپا بودن این نوع آموزش عالی در ایران و با اهتمام به بالا بودن افت تحصیلی می‌توان اهمیت پرداختن به این پژوهش را توجیه و تبیین کرد.
1-4 سؤال ‌های تحقیقهدف کلی این پژوهش شناسایی عوامل پیشبینی کننده میزان موفقیت دانشجویان در آموزش الکترونیکی و ارائه مدل مبتنی بر هوش مصنوعی برای عوامل پیشبینی کننده است. نظر به پیچیدگی عوامل موثر بر وضعیت تحصیلی دانشجو به ویژه یادگیرنده الکترونیکی، پس از بررسی دقیق پیشینه پژوهشهای انجام شده در خارج از کشور که مشروح آن در فصل دوم خواهد آمد، مهم‌ترین علل زمینهساز به ویژه از بعد یادگیرنده، شناسایی و با توجه به اهمیت در سؤالات پژوهشی گنجانده شد که به قرار زیر است:
متغیرهای دموگرافیک (جنسیت، سن، تأهل)، چه مقدار از تغییرات میزان موفقیت دانشجو را در آموزش الکترونیکی تبیین می‌کنند؟
متغیرهای مربوط به پیشینه تحصیلی (فاصله بین دو مقطع تحصیلی، معدل مقطع قبل)، چه مقدار از تغییرات میزان موفقیت دانشجو را در آموزش الکترونیکی تبیین میکنند؟
متغیرهای اجتماعی- اقتصادی (اشتغال، سکونت، تأمین‌کننده هزینه تحصیل)، چه مقدار از تغییرات میزان موفقیت دانشجو را در آموزش الکترونیکی تبیین میکنند؟
متغیرهای روانی- فنی (اطمینان رایانه ای، اضطراب امتحان، مرکز کنترل، استقلال در یادگیری)، چه مقدار از تغییرات میزان موفقیت دانشجو را در آموزش الکترونیکی تبیین میکنند؟
متغیرهای رسانهای (دسترسی به اینترنت، رایانه قابل حمل، تلفن همراه)، چه مقدار از تغییرات میزان موفقیت دانشجو را در آموزش الکترونیکی تبیین میکنند؟
متغیرهای مربوط به تجارب یادگیری الکترونیکی (عادت به یادگیری الکترونیکی، معدل اولین ترم تحصیل، رضایتمندی تحصیلی)، چه مقدار از تغییرات میزان موفقیت دانشجو را در آموزش الکترونیکی تبیین میکنند؟
متغیرهای مدیریتی (توانایی مدیریت زمان، خود نظم دهی)، چه مقدار از تغییرات میزان موفقیت دانشجو را در آموزش الکترونیکی تبیین میکنند؟
دانشجویان چه دلایلی را برای موفقیت و عدم موفقیت خود بیان می‌کنند؟

1-5 اهداف تحقیقهدف کلی این پژوهش شناسایی عوامل پیشبینی کننده میزان موفقیت دانشجویان در آموزش الکترونیکی و شناسایی مدل مبتنی بر هوش مصنوعی برای عوامل پیش بینی کننده است.
اهداف جزئی زیر برای رسیدن به این هدف پژوهش دنبال میشود:
شناسایی نقش متغیرهای دموگرافیک در تبیین میزان موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی نقش متغیرهای مربوط به پیشینه تحصیلی در تبیین میزان موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی نقش متغیرهای اجتماعی- اقتصادی در تبیین میزان موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی نقش متغیرهای روانی- فنی در تبیین میزان موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی نقش متغیرهای رسانهای در تبیین میزان موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی نقش متغیرهای مربوط به تجارب یادگیری الکترونیکی در تبیین میزان موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی نقش متغیرهای مدیریتی در تبیین میزان موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی علل موفقیت و عدم موفقیت دانشجویان در آموزش الکترونیکی.
شناسایی مدل مناسب هوش مصنوعی برای پیشبینی موفقیت دانشجویان الکترونیکی.
آزمون مدل بدست آمده برای موفقیت تحصیلی دانشجوی الکترونیکی با استفاده از داده‌های تجربی.
1-6 تعریف مفاهیم و واژگان اختصاصی1-6-1 تعاریف مفهومییادگیری الکترونیکی: آموزشی است که از طریق کامپیوتر و تکنولوژیهای وابسته به آن مانند لوح فشرده، اینترنت و اینترانت و ... ارائه میشود (کلارک و مایر،2003)
هوش مصنوعی: فرایندهای کامپیوتری که سعی دارند فرایند تفکر انسان را تقلید نمایند، این فرایندها با فعالیتهایی که نیاز به استفاده از هوش دارند در ارتباط هستند (غضنفری و کاظمی، 1382)
مرکز کنترل: برداشت فرد از این امر که دستاوردهای فرد ناشی از رفتار خود فرد بوده تا سایر عوامل و افراد (روتر، 1966 به نقل از لوی، 2007).
اطمینان رایانه ای: سطح اطمینان فرد در مواجه با رایانه و انجام کارهایی که با رایانه سرکار دارد (اسبوم، 2001 به نقل از هلدر،2007).
استقلال در یادگیری: توانایی پذیرش مسئولیت یادگیری توسط خود فرد (لیتل،2007).
خودگردانی در یادگیری: یادگیری مستقل و اثربخش تحصیلی که شامل فراشناخت، انگیزش درونی و اقدام راهبردی میشود (زیمرمن، 2002).
اعتیاد اینترنتی: وابستگی روانی به اینترنت، صرف نظر از نوع کاری که انجام می‌شود (کندل،1998).
1-6-2 تعاریف عملیاتی 1) جنس: مذکر، مؤنث
2) سن: سنین تقویمی
3) وضعیت تأهل: متأهل و مجرد
4) وضعیت سکونت: تهران، شهرستانهای تهران، سایر شهرستانهای ایران
5) فاصله بین دوره قبل با دوره الکترونیکی: برای دانشجویان کارشناسی حد فاصل سن پذیرش از 18 سال و برای دانشجویان کارشناسی ارشد عبارت است از حد فاصل سن پذیرش از 23 سال.
6) معدل دوره تحصیلی قبل: برای دانشجویان کارشناسی معدل دیپلم و برای دانشجویان کارشناسی ارشد معدل کارشناسی
7) معدل اولین ترم تحصیل: معدل اولین ترم تحصیل به روش الکترونیکی.
8) اشتغال: اشتغال یا عدم اشتغال دانشجو در حین تحصیل
9) نوع دسترسی به اینترنت: خط اینترنت Dial up در مقابل ADSL
10) تأمین کننده هزینه تحصیل: خود دانشجو، خانواده، مشارکتی بین خود و خانواده، سایرین
11) عادت به یادگیری الکترونیکی: امتیاز کسب شده در سؤالات مربوط به عادت به یادگیری الکترونیکی در پرسشنامه محقق ساخته.
12) مرکز کنترل: امتیاز کسب شده در سؤالات مربوط به مرکز کنترل در پرسشنامه محقق ساخته.
13) اطمینان رایانهای: امتیاز کسب شده در سؤالات مربوط به اطمینان رایانهای در پرسشنامه محقق ساخته.
14) مدیریت زمان: امتیاز کسب شده در سؤالات مربوط به مدیریت زمان در پرسشنامه محقق ساخته.
15) خود نظمدهی: امتیاز کسب شده در سؤالات مربوط به خود نظمدهی در پرسشنامه محقق ساخته.
16) استقلال در یادگیری: امتیاز کسب شده در سؤالات مربوط به استقلال یادگیری در پرسشنامه محقق ساخته.
17) اضطراب امتحان: امتیاز کسب شده در سؤالات مربوط به اضطراب امتحان در پرسشنامه محقق ساخته.
18) رضایت تحصیلی: امتیاز کسب شده در سؤالات مربوط به رضایت تحصیلی در پرسشنامه محقق ساخته.
19) دانشجوی ناموفق: دانشجویانی را شامل میشوند که دارای میانگین پایینتر از 12 است.
20) میزان موفقیت: معدل کل دانشجو طی سنوات تحصیل الکترونیکی
21) آموزش الکترونیکی: نوعی از آموزش که در مرکز آموزشهای الکترونیکی دانشگاه علم و صنعت ایران جریان دارد.
22) مدل هوشمند: مدلی بر گرفته از مدلهای پیشبینی کننده در هوش مصنوعی است. به عنوان نمونه می‌توان به شبکه عصبی مصنوعی اشاره کرد.
1-7 خلاصه فصل
آموزش الکترونیکی به طور روز افزونی سیستمهای آموزشی به ویژه آموزش عالی کشورهای جهان را تحت تأثیر خود قرار داده است. امروزه کمتر دانشگاهی را میتوان یافت که خدمات آموزش الکترونیکی را به عنوان یک گزینه آموزشی یا مکمل آموزشهای خود قرار نداده باشد. سرآمد نمونه دانشگاههایی که آموزشهای کاملاً الکترونیکی ارائه میکند دانشگاه برخط Phoenix است که به گزارش وب سایت این دانشگاه در سال 2012 بالغ بر 300 هزار دانشجو در دوره های رسمی، غیر رسمی و کوتاه مدت از خدمات آموزش الکترونیکی این دانشگاه بهره بردهاند. علاوه بر این نمونه، دانشگاههایی که آموزش الکترونیکی را به عنوان مکمل آموزشهای خود ارائه میکنند، بسیار فراوان هستند. در ایران نیز از اوایل دهه 80 دانشگاههای زیادی وارد این حوزه شدند که امروزه تعداد آن‌ها به بیش از 20 دانشگاه و موسسه آموزش عالی رسیده است. قریب به دو دهه از آموزش الکترونیکی در جهان و یک دهه در آموزش عالی ایران میگذرد. یکی از چالشهای اساسی و مشترک ایران و جهان بالا بودن ریزش، مشروطی و افت تحصیلی دانشجویان است. در این فصل به عنوان نمونه، آماری از میزان افت تحصیلی دانشجویان الکترونیکی ارائه شد. در چند نمونه گزارش شده بازهای بین 18% تا 54% افت قابل مشاهده است. بالا بودن افت تحصیلی در کشورهایی که خود بهترین بسترهای فناوری را دارند، به عنوان یک مسئله بنیادی توجه پژوهشگران زیادی را به خود جلب کرده است. مسئله‌ای که محور اصلی پژوهش حاضر را شکل میدهد.
با توجه به پیچیده بودن عوامل مرتبط با افت تحصیلی دانشجویان به ویژه در آموزشهای الکترونیکی، پژوهش حاضر بر اساس پیشینه پژوهشها مهم‌ترین عوامل را شناسایی و در صدد است میزان ارتباط آن‌ها را با موفقیت تحصیلی دانشجو به ویژه قدرت پیشبینی متغیرها را شناسایی کند. شناسایی عوامل پیشبین موفقیت دانشجو از جهات مختلف ضروری بوده و بر اهمیت این پژوهش میافزاید که مهم‌ترین مزیّت آن برای دانشجو است. اگر دانشجوی الکترونیکی بتواند پس از یک ترم کسب تجربه در آموزش الکترونیکی وضعیت خود را پیشبینی کند، میتواند در مورد ادامه تحصیل به این روش آگاهانه تصمیم گیری نماید. شناسایی دانشجویان در معرض خطر ریزش می‌تواند زمینهای فراهم آورد تا دانشجو یا موسسه ارائهدهنده خدمات آموزش الکترونیکی با تدارک اقدامات پیشگیرانه، موفقیت دانشجویان الکترونیکی را تضمین کند.
فصل دوّم (مرور مطالعاتی)2-1 یادگیری الکترونیکیبه عنوان شروع بحث، مقدمهای بر یادگیری الکترونیکی، آموزش‌های مبتنی بر فناوری اطلاعات و ارتباطات و اصطلاحات رایج در این حوزه ضروری است. در ادامه جایگاه آموزش الکترونیکی در میان سایر انواع آموزشهای مبتنی بر فناوری تشریح شده و همچنین اصطلاحاتی چون آموزش مبتنی بر وب؛ آموزش مبتنی بر رایانه و آموزش مبتنی بر اینترنت از یکدیگر تفکیک خواهد شد.
آموزش‌هایی که به نحوی تحت تأثیر فناوری اطلاعات و ارتباطات قرار گرفته‌اند تحت عناوین مختلفی یاد می‌شود (الی،2004، آناهینا،2005). REF _Ref349841946 h * MERGEFORMAT جدول ‏21 برخی از اصطلاحات متداول در دو حوزۀ فناوری اطلاعات و آموزش را نشان می‌دهد. برخی از این اصطلاحات معادل هم هستند و برخی تفاوت‌های جزئی یا بعضاً بنیادی با یکدیگر دارند.
جدول STYLEREF 1 s ‏2 SEQ جدول * ARABIC s 1 1: اصطلاحات به کار رفته برای انواع آموزش مبتنی بر فناوری اطلاعاتآموزش مبتنی بر فناوری اطلاعات معادل لاتین سرواژه
آموزش مبتنی بر وب Web Based Instruction WBI
کارآموزی مبتنی بر وب Web Based Training WBT
یادگیری مبتنی بر وب Web Based Learning WBL
یادگیری ارتقاء داده شده توسط وب web-enhanced Learning WEL
تدریس مبتنی بر وب Web- Based Teaching ---
خودآموزهای مبتنی بر وب Web-Based Tutorials ---
سیستم‌های آموزشی مبتنی بر وب Web-based Educational Sys-- WEBS
آموزش و پرورش مبتنی بر رایانه Computer -Based Education CBE
آموزش مبتنی بر رایانه Computer- Based Instruction CBI
آموزش مدیریت شده توسط رایانه Computer- Managed Instruction CMI
آموزش به کمک رایانه Computer -Assisted Instruction CAI
آموزش مبتنی بر اینترنت Internet Based Instruction IBI
یادگیری بر خط Online Learning ---
یادگیری الکترونیکی Electronic –Learning E-Learning
یادگیری مجازی Virtual Learning VL
همان‌گونه که در REF _Ref349841946 h * MERGEFORMAT جدول ‏21 مشاهده می‌شود به جز یادگیری برخط، یادگیری الکترونیکی و یادگیری مجازی؛ اغلب اصطلاحات یا واژگان فوق از سه قسمت تشکیل شده است:
مفهوم تربیتی: این دسته مفاهیمی هستند که در بین متخصصان علوم تربیتی مورد بحث و بررسی قرار می‌گیرند که عبارتند از: تعلیم تربیت، آموزش، یادگیری، تدریس، کارآموزی و معلم خصوصی.
کلمه میانجی (ارتباطی) : این کلمات مفهوم تربیتی را به مفهوم مربوط به نوع فناوری متصل می‌کند. «مبتنی بر»، «مدیریت شده» و «به کمک» در این دسته قرار دارند.
مفهوم مربوط به نوعِ فناوری: این دسته از مفاهیم به نوع فناوری به کار رفته در آموزش اشاره دارند که «وب»، «اینترنت» و «رایانه» متداول‌ترین مفاهیمِ همراه با مفاهیم تربیتی هستند.
یادگیری، آموزش، کارآموزی مبتنی بر وب یا اینترنت از متداول‌ترین مفاهیم مطرح هستند. کلارک(1996) آموزش مبتنی بر وب را نوعی آموزش انفرادی شده می‌داند که از طریق شبکه های رایانه ایِ عمومی یا خصوصی ارائه و به وسیله مرورگرهای وب دریافت می‌شود. آموزش مبتنی بر وب، دانلود آموزش‌های مبتنی بر رایانه (CBT) نیست بلکه آموزش‌های مورد نیاز و به روزی است که در سِروِر ذخیره می‌شوند و قابلیت دسترسی از طریق شبکه را دارند. آموزش مبتنی بر وب به سرعت به روز شده و دسترسی به محتوای آموزشی، توسط تهیهکنندگان کنترل می‌شود.
خان(1997) آموزش مبتنی بر وب را این‌گونه تعریف میکند:" برنامههای آموزشی مبتنی بر فرامتن که از منابع و ویژگی‌های www برای خلق و پشتیبانی محیطهای یادگیری معنادار استفاده میکند (ص 6) ". در تعریفی جدیدتر خان (2001) آموزش مبتنی بر وب را رویکرد نوآورانه به ارائه برنامه های آموزشی توصیف می‌کند که مبتنی بر فرا رسانه است و مخاطبانی که در فواصل دورتر از مراکز آموزشی هستند، می‌توانند با بهره گیری از توانمندیها و منابع وب به آموزشهای خوب طراحی شده، یادگیرنده محور، تعاملی، درگیر کننده و آسان شده دست یابند (ص 5) .
یادگیری الکترونیکی مفهوم عامتری است که شامل انواع آموزش مبتنی بر رایانه و وب می‌شود. برخی چون الیس(2004) معتقدند یادگیری الکترونیکی نه تنها به آموزشهایی اشاره دارد که مبتنی بر وب، اینترنت یا لوح فشرده هستند، بلکه آموزشهایی که از طریق نوارهای صوتی- تصویری، ماهواره و تلویزیون تعاملی ارائه می‌شود را نیز در بر می‌گیرد. دیدگاه مورد پذیرش در پژوهش حاضر، نظر مطرح شده در تحلیل صورت گرفته توسط آناهینا (2005) است. "آناهینا"یادگیری الکترونیکی را زیر مجموعه آموزشهای از راه دور میداند و چهار مفهوم دیگر را زیر مجموعه آن می‌داند REF _Ref93246188 h * MERGEFORMAT شکل ‏21 نشاندهنده آموزش الکترونیکی و خرده نظام‌های مربوط به آن است.

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 1: مفاهیم مرتبط با یادگیری الکترونیکیتوضیح بیشتر اینکه نظامهای یادگیری بر مبنای اینترنت، از یادگیری بر مبنای وب وسیعتر هستند زیرا وب یکی از خدماتی است که توسط اینترنت ارائه می‌شود و خدماتی چون اسناد HTML و جستجوگری، فرامتنها و ...را در بر می‌گیرد و بر مبنای پروتکل HTTP فعالیت می‌کند؛ در صورتی که اینترنت بزرگ‌ترین شبکه در دنیا است که از هزاران شبکه کامپیوتری به هم متصل شده (ملی، محلی، تجاری و سازمانی) تشکیل میشود. قابلیتهای اینترنت فقط شامل شبکه نمیشود، یعنی یادگیری فقط بر مبنای وب سازماندهی نمیشود و محدود به پروتکل HTTP نیست بلکه تمام پروتکلهای مناسب را در بر میگیرد. یادگیری برخط میتواند از طریق هر شبکهای سازماندهی شود، بنابراین یادگیری بر مبنای اینترنت، زیر مجموعهی یادگیری برخط است. در یادگیری بر مبنای کامپیوتر، یادگیرنده به شبکه متصل نبوده و مواد یادگیری بیشتر به صورت محلی تولید و توزیع میشوند. بنابراین یادگیری بر مبنای کامپیوتر زیر مجموعه یادگیری برخط نیست ولی از آنجا که به عنوان یک رسانه الکترونیکی فرایند یادگیری را تسهیل میکند جزء آموزشهای الکترونیکی محسوب میشود (آناهینا،2005).
آنچنان که گذشت صاحب‌نظران بر جامعیت مفهوم یادگیری الکترونیکی بر سایر مفاهیم تفاهم نسبی دارند. البته آموزش از راه دور از آموزش الکترونیکی عامتر است. زیرا همان‌گونه که در تاریخچه آموزشهای از راه دور خواهیم دید، آموزش مکاتبهای و متکی بر کتابهای خودآموز، یکی از انواع آموزش از راه دور محسوب می‌شود؛ لذا این نوع آموزشها نمیتواند زیر مجموعه آموزشهای الکترونیکی قرار گیرند. تعاریف متعددی از یادگیری الکترونیکی ارائه شده است. کلارک و مایر (2011) دو تن از شاخصترین محققین این حوزه، یادگیری الکترونیکی را آموزشی میدانند که از طریق تجهیزات الکترونیکی مانند رایانه و تلفن همراه ارائه میشود و هدفِ پشتیبانی یادگیری را دارد. این نوع یادگیری دارای ویژگیهای زیر است:
دروس را در لوح فشرده، حافظههای داخلی و خارجی محلی یا در سرورهای اینترنتی و اینترانتی ذخیره و منتقل می‌کنند.
دارای محتوای مربوط به اهداف آموزشی.
از روش‌هایی آموزشی مانند مثالها و تمرینها برای کمک به یادگیری استفاده میکند.
از عناصر رسانه ای مانند متن، تصویر و ... برای ارائه محتوا و روش خاص استفاده میشود.
ممکن است متکی بر استاد (یادگیری الکترونیکی همزمان) و یا برای یادگیری انفرادی شده متناسب با سرعت یادگیری فرد (یادگیری غیر همزمان) طرح ریزی شده باشد.
به یادگیرندگان کمک میکند تا دانش و مهارت جدیدی بسازند که با نیازهای یادگیری انفرادی و یا نیازهای سازمانی آن‌ها مرتبط باشد (کلارک و مایر،2011 صص 8 و 9) .
کلارک و مایر معتقدند در یادگیری الکترونیکی سه عنصر چه، چگونه و چرا وجود دارد.
چه: منظور همان محتوا، روش‌هایی آموزشی، مثالها، تمرینها و ... است.
چگونه: منظور همان نحوه ارائه از طریق کامپیوتر با استفاده از انیمیشن، متن، تصویر و ... است.
چرا: اشاره به اهداف یادگیری فردی و سازمانی دارد که فلسفه وجودی تمام انواع آموزشهاست.
ایشان معتقدند در یادگیری الکترونیکی حرف انگلیسی (e) اشاره به چگونگی دارد که همان روش آموزش است و یادگیری اشاره به چه یعنی محتوا و نحوه یادگیری دارد و چرا اشاره به اهدافی دارد که افراد در یادگیری الکترونیکی آن‌را دنبال میکنند.
اگر به درستی به تعریف فوق توجه کنیم متوجه میشویم چگونگی ارائه، فاحشترین تفاوت یادگیری الکترونیکی با سایر سیستمهای یاددهی- یادگیری است که اشاره به تغییر روش آموزشی دارد. اما نکته حائز اهمیت، بیشترین زمینه کاربرد این اصطلاح است؛ این مفهوم بیشتر در سیستمهای آموزش از راه دور کاربرد دارد. بنابراین آموزش الکترونیکی را میتوان روشی برای آموزش از راه دور دانست که با استفاده از قابلیتهای فناوری اطلاعات و ارتباطات ارائه میشود. از مجموعه تعاریف ارائه شده توسط صاحب‌نظران در تعریف یادگیری الکترونیکی دو بعد قابل شناسایی است: الف) بعد فناورانه تعریف؛ ب) بعد تربیتی تعریف. شبکههای رایانهای، سرور، مرورگر وب، فرامتن و فرا رسانه در تعاریف فوق بر بعد فناوریِ تعریف آموزشهای مبتنی بر وب دلالت دارد. انفرادی بودن آموزش، محیطهای یادگیری معنادار، آموزشهای خوب طراحی شده، یادگیرنده محور، تعاملی، درگیر کننده و آسان شده در تعاریف (کلارک، 1996؛ خان، 1997؛ خان،2001) دلالت بر بعد تربیتیِ تعریف دارد. برخی چون توانگریان و همکارانش(2004) توجه صرف به ویژگی فناوری را برای تعریف یادگیری الکترونیکی کافی نمیدانند. به عبارتی وجه تمایز این نوع از آموزش با سایر انواع متداول فقط به‌کارگیری انواع فناوریهای الکترونیکی در فرایند یاددهی-یادگیری نیست؛ بلکه مهم‌ترین تمایز این نوع آموزش گذر از فرایند کسب تجربه شخصی به کسب دانش از طریق فرایند ساختن دانش است. در این تعریف مهم‌ترین ویژگی یادگیری الکترونیکی بعد تربیتی مربوط به نظریه یادگیری آن یعنی نظریه یادگیری ساختنگرایانه است.
به دلیل ماهیت بین رشتهای آموزش الکترونیکی محققان و متخصصان حوزههای مختلف در این حوزه وارد می‌شوند، محققان حوزه رایانه، الکترونیک، برق، فناوران آموزشی، متخصصان علوم تربیتی، فناوری اطلاعات، مدیریت، جامعه شناسی و... نمونههایی از مهم‌ترین این متخصصان هستند. ورود متخصصان حوزههای مختلف باعث می‌شود، افراد مفاهیم مختلف را به طور یکسان بکار می‌برند، و حساسیت زیادی نسبت به نوع مفاهیم و مصادیق آن نداشته باشند. به عبارتی بسیاری از محققان مفاهیمی چون آموزش مبتنی بر رایانه، یادگیری الکترونیکی، آموزش مبتنی بر وب یا وب 2، آموزش برخط و ... را معادل هم به کار برند. در این گزارش پژوهشی نیز با اذعان به تفاوتهای ماهوی برخی از این مفاهیم سعی شده است، نسبت به این مفاهیم حساسیت زیادی نشان داده نشود و یادگیری الکترونیکی را مفهوم عام لحاظ نماید که جزء آموزشهای از راه دور بوده و از انواع فناوریهای الکترونیکی برای ارائه آموزش و پیاده سازی برنامه درسی متداول در دانشگاهها بهره میگیرد.
2-2 تاریخچه آموزش‌های از راه دور و الکترونیکیاز آنجا که پژوهش حاضر به یادگیری الکترونیکی و از راه دور مرتبط است. در ادامه مختصری از تاریخچه آموزشهای از راه دور و الکترونیکی ارائه میشود.
آموزش از راه دور یک نظام یاددهی-یادگیری است که دارای مواد آموزشی از پیش تدارک دیده شده بوده و به صورت انفرادی یا گروهی با مخاطبان خود ارتباط مداوم و رسانه ای دارد (هولمبرگ 1995، ص 1). وریون و کلارک(1991) آموزش از راه دور را رویکرد رسمی به یادگیری می‌دانند که در آن قسمت اعظم آموزش زمانی محقق می‌شود که یادگیرنده و مدرس از یکدیگر فاصله دارند. تاریخچه آموزش از راه دور، به قبل از قرن 19 بر می‌گردد، با آموزشهای مکاتبهای شروع شده است. در این نوع آموزش، بسته‌ها و متون آموزشی از طریق پست برای مخاطبان ارسال می‌شد. در قرن 20 با سیستمهای ارائه جدیدتری چون رادیو و تلویزیون آموزشی تداوم پیدا کرد (فلیپس و موریستز،1999). از اوایل 1990 نسل جدیدی از آموزشهای از راه دور با اتکاء به شبکههای کنفرانس رایانهای، مجموعه چند رسانه‌ای های مبتنی بر رایانه، کنفرانس صوتی- تصویری و ویدئو کنفرانس‌های دو طرفه به وجود آمد (مور و کیرسلی،1996). برای آموزشهای از راه دور برنارد و همکارانش (2004) پنج نسل معرفی می‌کنند: "نسل اوّل آموزش مکاتبهای متکی بر چاپ است؛ که نمونه بارز آن راه اندازی دانشگاه باز انگلستان در سال 1969 است. نسل دوم به دورهای بر میگردد که رادیو تلویزیون و نوارهای کاست ویدئویی در کنار چاپ و آموزش مکاتبهای بکار رفتند و ارتباط با یادگیرنده قویتر شد. نسل سوم به زمانی بر می‌گردد که فرامتنها پا به عرصه وجود گذاشتند و کنفرانسهای از راه دور (صوتی و تصویری) اوج گرفتند. در سال 2001 تیلورنسل چهارمی تحت عنوان یادگیری منعطف (چون ارتباطات تسهیل شده به وسیله رایانه و اینترنت) را افزود. نسل پنجم نیز شامل دروس برخط چندرسانهای میشود"(برنارد و همکاران، 2004 به نقل از باتلر، 2008، ص 25).
با ورود به نسل سوم آموزشهای از راه دور، یادگیری الکترونیکی نیز پا به عرصه وجود میگذارد. آنچنان که مور، دیکسون- دین و گلین(2011) اذعان دارند، سرآغاز به‌کارگیری اصطلاح یادگیری الکترونیکی مشخص نیست اما به احتمال قوی رواج این مفهوم به دهه 1980 میلادی بر میگردد. ورود به این نسل از آموزش از راه دور با تغییراتی در نظامهای آموزشی همراه بوده است. به اعتقاد تَپاسکات (1998) با ورود شبکهها، هشت انتقال یا تغییر در فرایندهای یاددهی- یادگیری به قرار زیر صورت گرفته است:
1) از یادگیری خطی به یادگیری فرا رسانهای
2) از آموزش به ساخت و کشف
3) از یادگیری مدرس-محور به یادگیرنده محور
4) از مشاهده مواد به یادگیری نحوه راهبری و نحوه یادگیری
5) از مدارس به یادگیری مادام‌العمر
6) از یک نوع یادگیری برای همه به یادگیری شخصی شده
7) از یادگیری به عنوان عذاب به یادگیری به عنوان لذت
8) از معلم به عنوان انتقال دهنده به معلم به عنوان تسهیلگر (تَپاسکات 1998، به نقل از باتلر2008)
بنا بر آنچه گذشت، مهم‌ترین مبنای تاریخی برای تفکیک نسلهای مختلف آموزش از راه دور، نوع فناوری بکار رفته برای ارائه محتوا، تعامل با دانشجو و ارزشیابی درس است. بر اساس نوع فناوری بکار رفته در یادگیری الکترونیکی سه نسل قابل تفکیک است؛ نسل اول، دوره‌ای ست که فناوری قالب برای ارائه محتوا، چاپ بوده و تعاملات دانشجو با استاد و موسسه آموزشی از طریق مکاتبه و پست صورت میگرفته است. نسل دوم، دوره‌ای ست که در کنار محتوای چاپی، نوارهای صوتی و تصویری، رادیو و تلویزیون از طریق پست و یا از طریق ماهواره محتوای آموزشی را در اختیار دانشجو قرار می‌دهد. در این نسل، تعاملات دانشجو با استاد و موسسه، اغلب از طریق تلفن و نامه محقق می‌شد. نسل سوم، نسلی است که رایانه و پیرو آن انواع شبکهها (اینترنت، اینترانت، وب، وب 2 و ...) فراگیر میشود، با فراگیر شدن این فناوریها محتوا در قالبهای مختلف دیجیتالی (متن، فرامتن، صوت، تصویر، چندرسانهای، واقعیت مجازی و ... ) از طریق اینترنت یا شبکههای محلی در اختیار دانشجو قرار می‌گیرد. تعاملات این نسل از طرق مجاری مختلفی چون، پست الکترونیکی، فرومها، چتها، کلاسهای برخط، ویدئو کنفرانس و... تسهیل میشود. نسل سوم، به دلیل تحول عظیم و نقش برجسته فناوری اطلاعات و ارتباطات در آموزش از راه دور به آموزش الکترونیکی معروف شده است.
آموزش الکترونیکی نیز با توجه به توسعه فناوریهای جدید الکترونیکی نسل بندی شده است. آنچنان که قبلاً ذکر شد، در تقسیمبندی برنارد و همکاران (2004) نیز با ورود فناوری اطلاعات و ارتباطات سه نسل برای آموزش از راه دور معرفی شد. آموزشهای متداول الکترونیکی به ویژه آنچه که موضوع پژوهش حاضر است، جزء نسل پنجم محسوب میشود که از امکانات چندرسانهای و تعاملات آنلاین برای آموزش استفاده میکند.
اخیراً نسل جدیدی برای آموزشهای الکترونیکی معرفی شده است. نسل جدید را که می‌توان به عنوان نسل ششم بر طبقهبندی برنارد و همکاران (2004) افزود، بیش از آنکه بر بعد فناورانه یادگیری الکترونیکی تاکید داشته باشد بر بعد اجتماعی شبکهها تاکید دارد. آموزش الکترونیکی مبتنی بر وب 2 نسل جدید و ششم آموزشهای الکترونیکی محسوب میشود. به زعم ایوانوا و اسمیراکوا(2009) به قابلیت وب 2 کمتر به عنوان یک ابزار قدرتمند برای اشتراک دانش، ایدهها و تجارب، توجه شده است و بیشتر به عنوان بستری برای سرگرمی مد نظر بوده است. با توجه به سرعت افزایش کاربران این شبکههای اجتماعی، نسل جدید آموزشهای الکترونیکی از قابلیتهای وب 2 برای آموزش بهره میگیرند. به اعتقاد ایوانو و اسمیراکو (2009) سامانههای مدیریت یادگیری نمیتوانند نیازهای نسل جدید مخاطبان خود را برآورده سازند، زیرا یادگیرنده در این سامانهها منفعل بوده و در برابر محتوایِ ثابت قرار میگیرد؛ در حالی که افراد نسل حاضر دوست دارند با هم در ارتباط باشند و به طور فعال در محیطهای یادگیری شخصی شده با یکدیگر تعامل و همیاری داشته باشند؛ لذا از سال 2005 گروهی از فناوران آموزشی بر روی محیطهای یادگیری شخصی شده شروع به کار کردهاند که دیگر مانند سامانههای مدیریت متداول و مبتنی بر سرور نیستند. مهم‌ترین مشخصّه محیطهای یادگیری شخصی شده این است که یادگیرنده، مجموعه ابزارهایی در اختیار دارد که منطبق با نیازهایش بوده و از آن‌ها برای تعامل با سازمانها و نهادهای مختلف استفاده میکنند، این در حالی است که در سامانههای مدیریت یادگیری الکترونیکی مبتنی بر سرور این امکان فراهم نیست (ایوانوا و اسمیراکوا،2009).
2-3 نظریه ها و مدل های موفقیت و افت تحصیلی در یادگیری الکترونیکی
پیش از پرداختن به نظریهها و مدلهای مطرح شده در زمینه موفقیت و افت تحصیلی دانشجو در آموزشهای الکترونیکی، درنگی بر معنا و مفهوم موفقیت و افت تحصیلی ضروری است. برای عدم موفقیت یا افت تحصیلی از مفاهیم مترادفی استفاده میشود که آشنایی با این مفاهیم ضروری است. برخی از این مفاهیمِ هم خانواده عبارتند از:
کسانی که شروع نکردهاند: افرادی هستند که ثبت نام کرده‌اند اما تحصیل خود را آغاز نکردهاند.
بازگشت به عقب: دانشجویانی که در مراحل اولیه، مشمول افت شده‌اند. مثلاً هفته های اول، دوم یا سوم.
افت تحصیلی: دانشجویانی که تا مرحله امتحان پایان ترم میرسند اما در امتحانات شرکت نمیکنند.
اخراجی‌ها: دانشجویانی که در گذراندن دروس پایانی خود موفق نبودهاند (فریتچ،1988).
البته باید توجه داشت، افت تحصیلی در بسیاری از پژوهشها مفهومی کلی بوده که انصراف، مشروطی، ریزش و اخراج را شامل میشود. نرخ ماندگاری مفهومی در مقابل افت تحصیلی است؛ به دانشجویانی اشاره دارد که در برابر شکست مقاومت نشان داده و تحصیلات خود را ادامه میدهند (دوهرتی،2006). نرخ ماندگاری زیاد به معنای افت تحصیلی کم است. برگ و هانگ (2004) در مدلی که برای ماندگاری دانشجو در یادگیری الکترونیکی ارائه کردهاند، ماندگاری، کاهش و تداوم را این‌گونه تعریف کردهاند:
ماندگاری: عبارت است از شرکت مداوم دانشجو در وقایع یادگیری تا انتهای آن که در آموزش عالی میتواند انتهای درس، دوره و یا برنامه، موسسه یا سیستم باشد.
کاهش: کاهش تعداد دانشجو از ابتدا تا انتهای دروس، برنامه، سازمان و یا سیستم تحت بررسی است.
تداوم: پیامد تصمیم دانشجو برای ادامه شرکت در وقایع یادگیری است (برگ و هانگ، 2004 صص 2 و 3).
موفقیت تحصیلی مفهوم متداول دیگری است که در مقابل افت تحصیلی بکار رفته است. کِرکا (1988) موفقیت را رسیدن به اهداف مشارکت تعریف میکند (کِرکا، 1988 به نقل از برگ و هانگ، 2004). در پژوهش شرادر، پَرِنت و بریتاپت(2005)، دانشجویان موفق در مقابل افرادی بودهاند که دوره آنلاین را ترک کردهاند یا در مدت زمان معین به پایان نرساندهاند.
شاخص موفقیت در یادگیری الکترونیکی بر اساس انگیزه و هدف پژوهشگران، مختلف بوده است. منچاکا و بکِله(2008) به پژوهشهای مختلفی اشاره میکنند که شاخصهای متفاوتی برای سنجش موفقیت در محیطهای یادگیری الکترونیکی داشتهاند؛ برخی از آن‌ها عبارتند از:
رضایت‌مندی مشتری
نرخ بالای ماندگاری و تکمیل درس
استفاده و لذت بیشتر
برداشت از سودمندی
سطوح بالای یادگیری
رضایت دانشجو
رضایت استاد
رشد تعداد ثبتنامی
بازگشت سرمایه
تعداد دروس
پیشرفت تحصیلی
تعاملات و مشارکت
انگیزش تحصیلی دانشجو
به طور خلاصه، پیشینه پژوهشها برای موفقیت و عدم موفقیت دانشجویان در تحصیل الکترونیکی، مفاهیم مختلفی را به کار بردهاند که برخی از مفاهیم عبارتند از: انصراف، گرفتن انتقالی، عدم تکمیل دوره، داشتن افت تحصیلی، کاهش تعداد دانشجو، مرخصی یا انصراف، افتادن درس. برای موفقیت دانشجو نیز از مفاهیمی چون ماندگاری، تداوم، دانش آموخته شدن، تکمیل درس یا دورهو گذراندن درس و پیشرفت تحصیلی استفاده شده است. دو مفهومی که اغلب در مقابل هم بیشترین کاربرد را داشته‌اند، موفقیت در مقابل افت تحصیلی بوده که مهم‌ترین شاخص آن نمرات پیشرفت تحصیلی دانشجو است. به عنوان مثال اگر در پژوهشی فقط یک درس آنلاین بررسی شده باشد، منظور از موفقیت تحصیلی، میزان نمره دانشجو در آن درس است، همچنین یا اگر یک دوره کامل آنلاینمانند یک دوره یک ساله یا چهار ساله بررسی شده باشد، موفقیت به گذراندن دروس دوره با نمره قابل قبول اشاره دارد. البته افت تحصیلی به دو نوع تقسیم می‌شود؛ در نوع اول، افت تحصیلی به معنای ترک تحصیل اختیاری است که در این معنا افت تحصیلی کمتر به نمرات پیشرفت تحصیلی دانشجو مربوط است؛ اما در نوع دوم، افت تحصیلی اجباری، افت تحصیلی به اجبار به ترک تحصیل از طرف موسسه به دلیل نتایج ضعیف تحصیلی اشاره دارد.
در پژوهش حاضر نیز منظور از موفقیت تحصیلی، معنی متداول آن در سایر پژوهشها یعنی نمرات پیشرفت تحصیلی دانشجو است. در ادامه برخی از مدلهایی که به تبیین یا پیشبینی موفقیت یا افت تحصیلی دانشجو پرداختهاند، اشاره میشود.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

مدل مسیر تینتو برای ترک تحصیل دانشجو در آموزش حضوری
از جمله مدلهایی که برای آموزش حضوری تدوین شده، مدل معروف"تینتو" است. این مدل جزء اولین دسته از مدلهای ارائه شده در این حوزه مطالعاتی است. هر چند مدل مذکور برای آموزشهای متداول (حضوری) ارائه شده است، اما به گزارش کمبر(1989) چندین پژوهش، اثربخشی این مدل را در آموزشهای از راه دور آزمودهاند. REF _Ref349847194 h * MERGEFORMAT شکل ‏22 اجزاء مدل و روابط آن‌ها را نشان می‌دهد.
361315118110پیشینه خانوادگی
مهارت و تواناییهای پیش دانشگاهی
پیشینه تحصیلی
اهداف و التزامات سازمانی
التزامات بیرونی
یکپارچگی تحصیلی
یکپارچگی اجتماعی
اهداف و الزامات سازمانی
الزامات بیرونی
تصمیم به ترک تحصیل
00پیشینه خانوادگی
مهارت و تواناییهای پیش دانشگاهی
پیشینه تحصیلی
اهداف و التزامات سازمانی
التزامات بیرونی
یکپارچگی تحصیلی
یکپارچگی اجتماعی
اهداف و الزامات سازمانی
الزامات بیرونی
تصمیم به ترک تحصیل

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 2: مدل طولی "تینتو"بنا به اعتقاد ونسترا، دی و هرین(2009) مدل "تینتو" در سال 1970 ارائه شده است. از نظر ولش (2007) و کمبر (1998) این مدل بعد از مدل "اسپادی" و در سال 1975 ارائه شده و به نوعی توسعه یافته مدل "اسپادی" است. مدل "تینتو" و "اسپادی" هر دو برگرفته از نظریه خودکشی "دورکیم" است؛ ترک تحصیل در این مدلها، معادل خودکشی و موسسه آموزشی معادل جامعه در نظریه دورکیم است. بر اساس نظریه دورکیم فرد در صورتی دست به خودکشی می‌زند که نتواند خودش را با بافت جامعه انطباق دهد. دو مفهوم اساسی در مدل "اسپادی" و "تینتو" یکپارچگی تحصیلی و اجتماعی است. یکپارچگی تحصیلی به توانایی جذب و درگیر کردن دانشجو در موسسه آموزشی اشاره دارد؛ حس دانشجو بودن و تعلق خاطر به موسسه اجتماعی نیز جزء مصادیق یکپارچگی تحصیلی است. یکپارچگی اجتماعی به میزان درگیر شدن و جذب دانشجو در فعالیتهای اجتماعی و فوق برنامهی موسسه آموزشی اشاره دارد. عضویت و فعالیت در کلوپ‌ها و باشگاههای دانشگاه، مصادیقی از یکپارچگی اجتماعی دانشجو محسوب می‌شوند (کمبر،1998). بر اساس مدل تینتو، مسافرت دانشجو و قرار گرفتن او در محیط دانشگاه، نیاز به انطباق فرد با شرایط جدید دارد. برای این وفق دادن، دو فرایند یکپارچگی تحصیلی و اجتماعی ضروری است. در مدل"تینتو" متغیرهای قبل از دانشگاه عبارتند از: 1) پیشینه خانوادگی، 2) مهارتها و تواناییها و 3) پیشینه تحصیلی. پیشینه خانوادگی شامل وضعیت اجتماعی، سطح سواد والدین و اندازه محل زندگی دانشجو است. مهارتها و تواناییها، مهارتهای اجتماعی و هوشی، منابع مالی، انگیزهها و ترجیحات سیاسی را در بر میگیرد. پیشینه تحصیلی و نیز به متغیرهایی چون آمادگی تحصیلی و تجارب تحصیلی دانشجو اشاره دارد (ونسترا، دی و هرین،2009).
مدل تینتو جزء مدلهای طولی (مسیر) است. به این معنا که دانشجو با مجموعهای از ویژگیها و مشخصات دموگرافیک و پیشینه تحصیلی وارد موسسه آموزشی میشود. قاعدتاً برای ادامه تحصیل خود، مجموعه اهدافی را دنبال میکند. دانشجو پس از ورود به دانشگاه با دو فرایند یکپارچگی تحصیلی و اجتماعی مواجه میشود. در صورتی که دانشجو بتواند خود را با فعالیتهای تحصیلی و اجتماعی انطباق دهد؛ به هدف خود برای ادامه تحصیل و مطالعه دروس ادامه خواهد داد. در غیر این صورت هدف خود را تغییر داده و ترک تحصیل خواهد کرد.
مدل مسیر کمبر
کمبر با بررسی و نقد مدل "تینتو" به دلیل عدم حضور دانشجو و تفاوت دانشجویان آموزش حضوری با دانشجویان از راه دور، مدلی برای افت تحصیلی دانشجو در آموزش از راه دور ارائه کرده که در REF _Ref349848318 h * MERGEFORMAT شکل ‏23 آمده است.
172720321945ویژگی‌ها:
فردی، خانوادگی، شغلی و آموزشی
التزام به هدف:
انگیزه درونی
انگیزه بیرونی
محیط
آکادمیک
محیط اجتماعی و کاری
یکپارچگی تحصیلی
یکپارچگی اجتماعی و شغلی
تحلیل هزینه فایده
افت تحصیلی
تکمیل دوره
00ویژگی‌ها:
فردی، خانوادگی، شغلی و آموزشی
التزام به هدف:
انگیزه درونی
انگیزه بیرونی
محیط
آکادمیک
محیط اجتماعی و کاری
یکپارچگی تحصیلی
یکپارچگی اجتماعی و شغلی
تحلیل هزینه فایده
افت تحصیلی
تکمیل دوره

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 3: مدل مسیر "کمبر" برای افت تحصیلی در آموزش از راه دورمدل کمبر (1989) نوعی مدل تحلیل مسیر است که تا حد زیادی بر مدل "تینتو" مبتنی است، با این تفاوت که برخی از عوامل تأثیرگذار بر آموزش از راه دور در آن لحاظ شده است. مهم‌ترین اجزاء مدل به قرار زیر است:
ویژگیها: این عامل بر اهمیت برخی متغیرهای دموگرافیک چون سن، جنس، وضعیت اشتغال و پیشینه تحصیلی دانشجو مبتنی است. به اعتقاد "کمبر"، ممکن است تأثیر مستقیم این متغیرها بر افت تحصیلی دانشجو کم باشد، اما تأثیر غیر مستقیم معنی داری خواهند داشت.
عامل التزام به هدف: این عامل بر اهمیت انگیزش در ادامه تحصیل تاکید دارد. در این مدل انگیزش شامل انگیزه بیرونی و انگیزه درونی برای ادامه تحصیل می‌شود و تحت تأثیر متغیرهای دموگرافیک قرار می‌گیرند.
متغیرهای آکادمیک: شامل تمام متغیرهای مربوط به موسسه آموزشی می‌شود. عواملی چون بستههای آموزشی، تعاملات و حمایتهای موسسه آموزشی در این دسته قرار می‌گیرند.
محیط اجتماعی و شغلی: نظر به اینکه اغلب دانشجویان در سیستمهای آموزش از راه دور شاغل تمام وقت هستند، مسئولیتهای شغلی و خانوادگی آن‌ها بر وضعیت تحصیلیشان تأثیر به سزایی دارد. میزان حمایت خانواده و محیط کار، مصادیقی از متغیرهای مربوط به محیط اجتماعی و شغلی است.
یکپارچگی تحصیلی و اجتماعی: یکپارچگی اجتماعی به میزان تطابق دانشجو با بافت اجتماعی زندگی در دانشگاه مورد مطالعه تاکید دارد. به عبارتی دانشجو چقدر توانسته است خودش را با محیط اجتماعی دانشگاه انطباق دهد. یکپارچگی یا تطابق تحصیلی نیز به میزان انطباق دانشجو با روش‌هایی یاددهی-یادگیری و تعاملات تحصیلی در دانشگاه اشاره دارد.
تحلیل هزینه فایده: این تحلیل قبل از ترک تحصیل توسط دانشجو انجام میگیرد. دانشجو تصمیم میگیرد؛ آیا وقت و هزینهای که برای ادامه تحصیل میگذارم با توجه به عوایدی که خواهد داشت، مقرون به صرفه است یا خیر؟
مدل بویلزبرای آموزشهای از راه دور
36830057150خود پنداره تحصیلی
پیشینه و متغیرهای تعریف شده، سن، وضعیت ثبت نام، اهداف تحصیلی
اندازه سازمان
متغیرهای آکادمیک، مشاوره تحصیلی، اطمینان شغلی
متغیرهای محیطی، مالی، ساعات اشتغال، مسئولیتهای خانوادگی، تشویق بیرونی
یکپارچگی اجتماعی
نتایج تحصیلی، معدل
نتایج روانی، سودمندی
یکپارچگی اجتماعی
ماندگاری
00خود پنداره تحصیلی
پیشینه و متغیرهای تعریف شده، سن، وضعیت ثبت نام، اهداف تحصیلی
اندازه سازمان
متغیرهای آکادمیک، مشاوره تحصیلی، اطمینان شغلی
متغیرهای محیطی، مالی، ساعات اشتغال، مسئولیتهای خانوادگی، تشویق بیرونی
یکپارچگی اجتماعی
نتایج تحصیلی، معدل
نتایج روانی، سودمندی
یکپارچگی اجتماعی
ماندگاری

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 4 :مدل مسیر "بویلز"مدل بویلز (2000) از جمله مدلهای مسیر است، که برای آموزشهای از راه دور طراحی شده و تا حدی برگرفته از مدل "تینتو" است. این مدل سه مجموعه متغیر دارد: پیشینه و متغیرهای تعریف شده، متغیرهای محیطی و متغیرهای آکادمیک. این مدل هفت متغیر دیگر دارد که عبارتند از: خود پنداره تحصیلی، یکپارچگی تحصیلی، نتایج تحصیلی (معدل)، اندازه سازمان، یکپارچگی اجتماعی، نتایج روانی و سودمندی (بویلز، 2000، به نقل از برگ و هانگ 2004).
این مدل شباهت زیادی با مدل "کمبر" دارد با این تفاوت که در مدل "بویلز" نتایج و نمرات پیشرفت تحصیلی و پیامدهای روانی حاصل از تجربه تحصیل در آموزش از راه دور بر ماندگاری یا عدم ماندگاری دانشجو تأثیر میگذارد.
مدل برنارد و هانگ برای ماندگاری دانشجو در یادگیری الکترونیکی
برنادر و هانگ (2004) پس از بررسی پیشینه پژوهشها و بررسی مدلهایی چون مدل "تینتو" و "بویل" بر پیچیدگی و درهم تنیدگی عوامل موثر بر افت تحصیلی در آموزش از راه دور اذعان دارند. این پژوهشگران عوامل موثر بر ماندگاری دانشجو را در سه دسته تلخیص میکنند. 1) عوامل مربوط به فرد؛ 2) عوامل مربوط به سازمان؛ 3) عوامل وابسته به موقعیت. همان‌گونه که در REF _Ref349848595 h * MERGEFORMAT شکل ‏25 مشاهده میشود، این سه دسته عوامل سه ضلع مثلث را تشکیل میدهند.
-6159560325متغیرهای مربوط به فرد
تعاملات در محیط عمومی
تعاملات در محیط ویژه
متغیرهای مربوط به موقعیت
متغیرهای مربوط به سازمان
نحوه ارائه
نحوه ارائه
نحوه ارائه
یادگیری ترکیبی
یادگیری برخط
یادگیری حضوری
تصمیم به
ماندگاری
پشتیبانی اجتماعی و تحصیلی
÷ برنامه درسی و آموزش
مدیریت سازمانی
00متغیرهای مربوط به فرد
تعاملات در محیط عمومی
تعاملات در محیط ویژه
متغیرهای مربوط به موقعیت
متغیرهای مربوط به سازمان
نحوه ارائه
نحوه ارائه
نحوه ارائه
یادگیری ترکیبی
یادگیری برخط
یادگیری حضوری
تصمیم به
ماندگاری
پشتیبانی اجتماعی و تحصیلی
÷ برنامه درسی و آموزش
مدیریت سازمانی

شکل STYLEREF 1 s ‏2 SEQ شکل * ARABIC s 1 5:‏ مدل "برنارد و هانگ" برای ماندگاری دانشجو در یادگیری الکترونیکیعوامل مربوط به فرد: شامل متغیرهای دموگرافیک، متغیرهای فردی (چون: مهارت و توانایی‌های تحصیلی، انگیزه) و پیشینه تحصیلی میشود.عوامل مربوط به سازمان: به موسسه یا سازمان ارائه دهنده آموزش الکترونیکی اشاره دارد. عواملی چون ساختار سازمانی، چشم انداز و مأموریت سازمان بر این دسته از عوامل تأثیرگذار هستند.
عوامل وابسته به موقعیت: شامل دو دسته تعاملات مربوط به موسسه (تعاملات بوروکراتیک، تعاملات تحصیلی و اجتماعی) و تعاملات خارج از موسسه (محدودیتهای مربوط به زندگی، کار و خانواده) میشود.
تشریح جزئیات مدل "برنارد و هانگ" از حوصله این بحث خارج است، این مدل که به زعم ارائه دهندگان آن جامع بوده و در عین حال نسبت به موقعیت حساس است. یک موسسه در راستای کاهش میزان افت، ضروری است. با توجه به سیستم ارائۀ خود (برخط، تلفیقی و حضوری)، عوامل تأثیرگذار را در سه دسته عوامل شناسایی کرده و مداخلات لازم را برای کاهش افت انجام دهد.
مدل بکِله برای عوامل موثر بر موفقیت یادگیری الکترونیکی
مدل بکِله از جمله مدلهایی است که برای موفقیت یادگیری الکترونیکی ارائه شده است. این مدل محدود به موفقیت دانشجو نیست. همان‌گونه که در دایره مرکزی REF _Ref92635428 h * MERGEFORMAT شکل ‏26 مشاهده میشود، موفقیت در این مدل محدود به موفقیت تحصیلی دانشجو نیست، اما از آنجا که یکی از شاخصهای موفقیت، پیشرفت تحصیلی دانشجو است، در این گزارش پژوهشی به آن پرداخته می‌شود. منچاکا و بکِله (2008) اجزاء مدل را به قرار زیر تشریح کردهاند:
عوامل انسانی که به فهم، برداشت و توانمندی استاد و دانشجو از محیطهای یادگیری برخط اشاره دارد. انگیزش بالا، توانمندی بالا در کار با فناوری اطلاعات، نگرش و تجربه بیشتر در محیطهای یادگیری برخط، موجب موفقیت بیشتر خواهد شد.
عوامل مربوط به فناوری که به ویژگیهای تکنولوژی آموزشی اشاره دارد. دسترسی به انواع فناوریها در قالبهای مختلف و در زمینههای مختلف بر چگونگی، زمان، مکان و حتی آنچه که باید یاد گرفته شود، تأثیر می‌گذارد.
عوامل پداگوژیک که بر نحوه یادگیری و آموزش در محیطهای برخط اشاره دارد. از لحاظ نظری وقتی یادگیری موفقتر است که یادگیرنده محور، همیارانه، مسئله محور، فرایند محور و منعطف باشد.
عوامل مربوط به درس که به طراحی آموزشی دروس بر میگردد. سازمان درس، ارتباط درس با نیازهای دانشجو، اهداف و انتظارات شفاف و سایر عوامل از این حیث بر موفقیت یادگیری الکترونیکی تأثیر میگذارد.
عوامل مربوط به رهبری که به مدیریت و نقش رهبری در مدیریت فناوری اشاره دارد. عوامل مدیریتی به طور مستقیم چهار عامل دیگر را تحت تأثیر قرار میدهند، اما تأثیر مستقیمی بر موفقیت یادگیری الکترونیکی ندارد (منچاکا و بکِله، 2008، ص 237).
214630111760عوامل مربوط به فناوری
همزمان، غیر همزمان، چندرسانهای، کاربرپسندی، قالب، ابزارهای جایگزین، ظرفیت/سرعت
عوامل پداگوژیک
همیارانه، تعاملی، بازخورددهی، مسئله محوری، فرایند محوری، یادگیرنده محوری، انعطاف/چند جلسه رو در رو
شاخص موفقیت
پیامدهای یادگیری، رضایت دانشجو، یادگیری سطوح بالا، رضایت استاد، پایداری، مقیاسپذیری، نرخ بازگشت
عوامل مربوط به رهبری
تدارک فناوری، آموزش کارکنان /دانشجو، توسعه حرفهای کارکنان /دانشجو، پشتیبان فنی، پشتیبانی اساتید، سایر لجستیکها
عوامل انسانی
مهارت ICT، انگیزش، نگرش، تجارب، برداشت از یادگیری، دانش و فناوری، برداشت از نقش فناوری در یادگیری
عوامل مربوط به درس
ساختار/سازمان، کیفیت محتوا، فعالیتها/پروژهها، ارتباط، اهداف شفاف، انتظارات شفاف، انگیزنده بودن، چالشی بودن، منعطف بودن
00عوامل مربوط به فناوری
همزمان، غیر همزمان، چندرسانهای، کاربرپسندی، قالب، ابزارهای جایگزین، ظرفیت/سرعت
عوامل پداگوژیک
همیارانه، تعاملی، بازخورددهی، مسئله محوری، فرایند محوری، یادگیرنده محوری، انعطاف/چند جلسه رو در رو
شاخص موفقیت
پیامدهای یادگیری، رضایت دانشجو، یادگیری سطوح بالا، رضایت استاد، پایداری، مقیاسپذیری، نرخ بازگشت
عوامل مربوط به رهبری
تدارک فناوری، آموزش کارکنان /دانشجو، توسعه حرفهای کارکنان /دانشجو، پشتیبان فنی، پشتیبانی اساتید، سایر لجستیکها
عوامل انسانی
مهارت ICT، انگیزش، نگرش، تجارب، برداشت از یادگیری، دانش و فناوری، برداشت از نقش فناوری در یادگیری
عوامل مربوط به درس
ساختار/سازمان، کیفیت محتوا، فعالیتها/پروژهها، ارتباط، اهداف شفاف، انتظارات شفاف، انگیزنده بودن، چالشی بودن، منعطف بودن

user8254

جدول 3-9: ماتریس در هم ریختگی رکوردهای تخمینی(Predicted Records)38
جدول 3-10: قوانین استخراج شده توسط الگوریتم Fpgrowth55
جدول 3-11: قوانین استخراج شده توسط الگوریتم Weka Apriori55
جدول 3-12: تنظیمات پارامترهای الگوریتم K-Means57
اجرا برای 9 خوشه در الگوریتم K-Means60
جدول 3-13: تنظیمات پارامترهای الگوریتم Kohonen64
جدول 3-14: تنظیمات پارامترهای الگوریتم دوگامی69
جدول 4-1: مقایسه الگوریتم های دسته بند70
جدول 4-2: مقایسه الگوریتم های دسته بند درخت تصمیم70
جدول 4-3: ماتریس آشفتگی قانون شماره 171
جدول 4-4: ماتریس آشفتگی قانون شماره 272
جدول 4-5: ماتریس آشفتگی قانون شماره 3 الف72
جدول 4-6: ماتریس آشفتگی قانون شماره 3 ب72
جدول 4-7: ماتریس آشفتگی قانون شماره 3 ج73
عنوان صفحه
جدول 4-8: ماتریس آشفتگی قانون شماره 3 د73
جدول 4-9: ماتریس آشفتگی قانون شماره 3 ه73
جدول 4-10: ماتریس آشفتگی قانون شماره 3 و74
جدول 4-11: ماتریس آشفتگی قانون شماره 3 ز76
جدول 4-12: ماتریس آشفتگی قانون شماره 476
جدول 4-13: ماتریس آشفتگی قانون شماره 577
جدول 4-14: ماتریس آشفتگی قانون شماره 6 الف77
جدول 4-15: ماتریس آشفتگی قانون شماره 6 ب78
جدول 4-16: ماتریس آشفتگی قانون شماره778
جدول 4-17: ماتریس آشفتگی قانون شماره879
جدول 4-18: مقایسه الگوریتم های خوشه بندی79
جدول 4-19: فیلدهای حاصل از الگوریتم های خوشه بندی80
جدول 4-20: نتایج الگوریتم های FpGrowth, Weka Apriori81

فهرست شکل‌ها
عنوان صفحه
شکل شماره3-1: داده از دست رفته فیلد" نوع بیمه " پس از انتقال به محیط داده کاوی33
شکل 3-2: نتایج الگوریتمPCA 34
شکل 3-3: نتایج الگوریتم SVM Weighting در ارزشدهی به ویژگی ها35
شکل 3-4: نتایج الگوریتم Weighting Deviation در ارزشدهی به ویژگی ها35
شکل 3-5: نتایج الگوریتم Weighting Correlation در ارزشدهی به ویژگی ها36
شکل 3-6: نمای کلی استفاده از روشهای ارزیابی41
شکل 3-7: نمای کلی استفاده از یک مدل درون یک روش ارزیابی42
شکل 3-8: نمودار AUC الگوریتم KNN42
شکل 3-9: نمودار AUC الگوریتم Naïve Bayes43
شکل 3-10: تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی44
شکل 3-11: نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net44
شکل 3-12: تبدیل ویژگی های غیر عددی به عدد در الگوریتم SVM خطی45
شکل 3-13 : نمودار AUC الگوریتم SVM Linear46
شکل 3-14 : نمودار AUC الگوریتم رگرسیون لجستیک47
شکل 3-15 : نمودار AUC الگوریتم Meta Decision Tree48
شکل 3-16 : قسمتی از نمودارtree الگوریتم Meta Decision Tree49
شکل 3-17 : نمودار --ial الگوریتم Meta Decision Tree49
شکل 3-18: نمودار AUC الگوریتم Wj4850
شکل 3-19 : نمودار tree الگوریتم Wj4851
شکل 3-20 : نمودار AUC الگوریتم Random forest52
شکل 3-21 : نمودار تولید 20 درخت در الگوریتم Random Forest53
شکل 3-22 : یک نمونه درخت تولید شده توسط الگوریتم Random Forest53
عنوان صفحه
شکل 3-23 : رسیدن درصد خطا به صفر پس از 8مرتبه57
شکل 3-24 : Predictor Importance for K-Means58
شکل 3-25 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم
K-Means59
شکل 3-26 : کیفیت خوشه ها در الگوریتمMeans K-60
شکل 3-27 : Predictor Importance for Kohonen61
شکل 3-28 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم
Kohonen62
شکل 3-29 : کیفیت خوشه ها در الگوریتمMeans K-63
شکل 3-30 : تعداد نرون های ورودی و خروجی در Kohonen63
شکل 3-31 : Predictor Importance for دوگامی64
شکل 3-32 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در
الگوریتم دوگامی65
شکل 3-33 : کیفیت خوشه ها در الگوریتم دوگامی66
شکل4-1: نمودارنسبت تخفیف عدم خسارت به خسارت75
فصل اول
194500518986500
مقدمه
شرکتهای تجاری و بازرگانی برای ادامه بقا و حفظ بازار همواره بر سود دهی و کاهش ضرر و زیان خود تاکید دارند از این رو روشهای جذب مشتری و همچنین تکنیکهای جلوگیری یا کاهش زیان در سرلوحه کاری این شرکتها قرار می گیرد.
از جمله شرکتهایی که بدلایل مختلف در معرض کاهش سود و یا افزایش زیان قرار می گیرند شرکتهای بیمه ای می باشند. عواملی همچون بازاریابی، وفاداری مشتریان، نرخ حق بیمه، تبلیغات، تقلب، می تواند باعث جذب یا دفع مشتری گردد که در سود و زیان تاثیر مستقیم و غیر مستقیم دارد. پرداخت خسارت نیز به عنوان تعهد شرکتهای بیمه منجر به کاهش سود و در بعضی موارد موجب زیان یک شرکت بیمه می شود. خسارت می تواند بدلایل مختلف رخ دهد و یا عملی دیگر به گونه ای خسارت جلوه داده شود که در واقع اینچنین نیست[Derrig et. al 2006].
عواملی از قبیل فرهنگ رانندگی، داشتن گواهینامه رانندگی، نوع گواهینامه و تطابق یا عدم تطابق آن با وسیله نقلیه، جاده های بین شهری و خیابانهای داخل شهر که شهرداری ها و ادارات راه را به چالش می کشد، تقلب، وضعیت آب و هوا، کیفیت خودروی خودرو سازان، سن راننده، سواد راننده، عدم تطابق حق بیمه با مورد بیمه [Wilson 2003]، روزهای تعطیل، مسافرتها و بسیاری موارد دیگر می توانند موجب خسارت و در نهایت افزایش زیان یک شرکت بیمه ای گردند.
بیمه صنعتی سودمند، ضروری و مؤثر در توسعه اقتصادی است. این صنعت بدلیل «افزایش امنیت در عرصه های مختلف زندگی و فعالیتهای اقتصادی»، «افزایش سرمایه گذاری و اشتغال و رشد اقتصادی» و « ارتقای عدالت اقتصادی و کاهش فقر ناشی از مخاطرات »، حائز جایگاه مهمی در پیشرفت و تعالی یک کشور است.
با وجود نقش مهم بیمه در بسترسازی و تأمین شرایط مساعد اقتصادی، وضعیت کنونی این صنعت در اقتصاد ملی با وضعیت مطلوب آن فاصله زیادی دارد. عدم آشنایی عمومی و کم بودن تقاضا برای محصولات بیمه ای، دانش فنی پایین در عرصه خدمات بیمه ای، عدم تطابق ریسک با حق بیمه، تفاوت فاحش در مقایسه معیارهای تشخیص ریسک بیمه شخص ثالث با نوع بیمه معادل در کشورهای توسعه یافته، وجود نارسایی ها در مدیریت واحدهای عرضه بیمه از دلایل عدم توسعه مناسب این صنعت در کشور است. از آنجا که بشر در طول تاریخ به کمک علم و تجربه رستگاری ها و توفیقات فراوانی کسب کرده است، نگاه علمی تر به مشکلات این صنعت و یافتن راه حل در بستر علم می تواند راه گشا باشد.
امروزه بوسیله روشهای داده کاوی ارتباط بین فاکتورهای مختلف موثر یا غیر موثر در یک موضوع مشخص می شود و با توجه به اینکه داده کاوی ابزاری مفید در استخراج دانش از داده های انبوه می باشد که ارتباطات نهفته بین آنها را نشان می دهد، شرکتهای تجاری بازرگانی رو به این تکنیکها آورده اند.
داده کاوی محدود به استفاده از فناوری ها نیست و از هرآنچه که برایش مفید واقع شود استفاده خواهد کرد. با این وجود آمار و کامپیوتر پر استفاده ترین علوم و فناوری های مورد استفاده داده کاوی است.
تعریف داده کاوی XE "تعریف داده کاوی" XE "تعریف داده کاوی"
داده کاوی روند کشف قوانین و دانش ناشناخته و مفید از انبوه داده ها و پایگاه داده است[ Liu et. al 2012].
انجام عمل داده کاوی نیز مانند هر عمل دیگری مراحل خاص خود را دارد که به شرح زیر می باشند:
1-جدا سازی داده مفید از داده بیگانه
2-یکپارچه سازی داده های مختلف تحت یک قالب واحد
3-انتخاب داده لازم از میان دیگر داده ها
4- انتقال داده به محیط داده کاوی جهت اکتشاف قوانین
5-ایجاد مدلها و الگوهای مرتبط بوسیله روشهای داده کاوی
6-ارزیابی مدل و الگوهای ایجاد شده جهت تشخیص مفید بودن آنها
7-انتشار دانش استخراج شده به کاربران نهایی
تعریف بیمهبیمه: بیمه عقدی است که به موجب آن یک طرف تعهد می کند در ازاء پرداخت وجه یا وجوهی از طرف دیگر در صورت وقوع یا بروز حادثه خسارت وارده بر او را جبران نموده یا وجه معینی بپردازد. متعهد را بیمه گر طرف تعهد را بیمه گذار وجهی را که بیمه گذار به بیمه گر می پردازد حق بیمه و آنچه را که بیمه می شود موضوع بیمه نامند]ماده یک قانون بیمه مصوب 7/2/1316[.
هدف پایان نامهدر این پژوهش سعی شده است با استفاده از تکنیکهای داده کاوی اقدام به شناسایی فاکتورهای تاثیر گذار در سود و زیان بیمه شخص ثالث خودرو شرکتهای بیمه نموده و ضریب تاثیر آنها را بررسی نماییم. الگوریتم های استفاده شده در این پژوهش شامل دسته بند ها، خوشه بند ها، درخت های تصمیم و قوانین انجمنی بوده است.
مراحل انجام تحقیقدر این پایان نامه با استفاده از روشهای داده کاوی با استفاده از بخشی از داده های صدور و خسارت یک سال شرکت بیمه مدل شده و از روی آنها یک الگو ساخته می شود. در واقع به این طریق به الگوریتم یاد داده می شود که ارتباطات بین داده ها، منجر به چه نتایجی می شود. سپس بخشی از داده ها که در مرحله قبل از آن استفاده نشده بود به مدل ایجاد شده داده می شود ونتایج توسط معیارهای علمی مورد ارزیابی قرار میگیرند. بمنظور آزمایش عملکرد می توان داده های دیگری به مدل داده شود و نتایج حاصله با نتایج واقعی موجود مقایسه شوند.
ساختار پایان نامهاین پایان نامه شامل چهارفصل خواهد بود که فصل اول شامل یک مقدمه و ضرورت پژوهش انجام شده و هدف این پژوهش است. در فصل دوم برخی تکنیک های داده کاوی و روشهای آن مطرح و تحقیقاتی که قبلا در این زمینه انجام شده مورد بررسی قرار می گیرند. در فصل سوم به شرح مفصل پژوهش انجام شده و نرم افزار داده کاوی مورد استفاده در این پایان نامه می پردازیم و با کمک تکنیک های داده کاوی مدل هایی ارائه می شود و مدلهای ارائه شده درهرگروه با یکدیگر مقایسه شده و بهترین مدل از میان آنها انتخاب می گردد. در فصل چهارم مسائل مطرح شده جمع بندی شده و نتایج حاصله مطرح خواهند شد و سپس تغییراتی که در آینده در این زمینه می توان انجام داد پیشنهاد می شوند.

فصل دوم
193548028194000
ادبیات موضوع و تحقیقات پیشیندر این فصل ابتدا مروری بر روشهای داده کاوی خواهیم داشت سپس به بررسی تحقیقات پیشین می پردازیم.
داده کاوی و یادگیری ماشینداده کاوی ترکیبی از تکنیک های یادگیری ماشین، تشخیص الگو، آمار، تئوری پایگاه داده و خلاصه کردن و ارتباط بین مفاهیم و الگوهای جالب به صورت خودکار از پایگاه داده شرکتهای بزرگ است. هدف اصلی داده کاوی کمک به فرآیند تصمیم گیری از طریق استخراج دانش از داده هاست [Alpaydin 2010].
هدف داده کاوی آشکار کردن روندها یا الگوهایی که تا کنون ناشناخته بوده اند برای گرفتن تصمیمات بهتر است که این هدف را بوسیله به کارگیری روشهای آماری همچون تحلیل لجستیک و خوشه بندی و همچنین با استفاده از روشهای تحلیل داده به دست آمده از رشته های دیگر )همچون شبکه های عصبی در هوش مصنوعی و درختان تصمیم در یادگیری ماشین( انجام میدهد[Koh & Gervis 2010] . چون ابزارهای داده کاوی روند ها و رفتارهای آینده را توسط رصد پایگاه داده ها برای الگوهای نهان پیش بینی می کند با عث می شوند که سازمان ها تصمیمات مبتنی بر دانش گرفته و به سوالاتی که پیش از این حل آنها بسیار زمان بر بود پاسخ دهند [Ramamohan et. al 2012 ] .
داده کاوی یک ابزار مفید برای کاوش دانش از داده حجیم است. [Patil et. al 2012 ]. داده کاوی یافتن اطلاعات بامعنای خاص ازیک تعداد زیادی ازداده بوسیله بعضی ازفناوری ها به عنوان رویه ای برای کشف دانش ازپایگاه داده است، که گام های آن شامل موارد زیر هستند [Han and Kamber 2001] .
1-پاک سازی داده ها :حذف داده دارای نویز و ناسازگار
2-یکپارچه سازی داده: ترکیب منابع داده گوناگون
3-انتخاب داده: یافتن داده مرتبط با موضوع از پایگاه داده
4-تبدیل داده: تبدیل داده به شکل مناسب برای کاوش
5-داده کاوی: استخراج مدل های داده با بهره گیری از تکنولوژی
6- ارزیابی الگو: ارزیابی مدل هایی که واقعا برای ارائه دانش مفید هستند
7-ارائه دانش: ارائه دانش بعد ازکاوش به کاربران بوسیله استفاده از تکنولوژیهایی همچون ارائه بصری [Lin & Yeh 2012] .
ابزارها و تکنیک های داده کاویبا توجه به تنوع حجم و نوع داده ها، روش های آماری زیادی برای کشف قوانین نهفته در داده ها وجود دارند. این روش ها می توانند با ناظر یا بدون ناظر باشند. [Bolton & Hand 2002] در روش های با ناظر، نمونه هایی از مواردخسارتی موجود است و مدلی ساخته می شود که براساس آن، خسارتی یا غیر خسارتی بودن نمونه های جدید مشخص می شود. این روش جهت تشخیص انواع خسارت هایی مناسب است که از قبل وجود داشته اند]فولادی نیا و همکاران 1392[ .
روش های بدون ناظر، به دنبال کشف نمونه هایی هستند که کمترین شباهت را با نمونه های نرمال دارند. برای انجام فعالیت هایی که در هر فاز داده کاوی باید انجام شود از ابزارها و تکنیک های گوناگونی چون الگوریتمهای پایگاه داده، تکنیکهای هوش مصنوعی، روشهای آماری، ابزارهای گرافیک کامپیوتری و مصور سازی استفاده می شود. هر چند داده کاوی لزوما به حجم داده زیادی بعنوان ورودی نیاز ندارد ولی امکان دارد در یک فرآیند داده کاوی حجم داده زیادی وجود داشته باشد.
در اینجاست که از تکنیک ها وابزارهای پایگاه داده ها مثل نرمالسازی، تشخیص و تصحیح خطا و تبدیل داده ها بخصوص در فازهای شناخت داده و آماده سازی داده استفاده می شود. همچنین تقریبا در اکثرفرآیند های داده کاوی از مفاهیم، روشها و تکنیک های آماری مثل روشهای میانگین گیری )ماهیانه، سالیانه و . . . (، روشهای محاسبه واریانس و انحراف معیار و تکنیک های محاسبه احتمال بهره برداری های فراوانی می شود. یکی دیگر از شاخه های علمی که به کمک داده کاوی آمده است هوش مصنوعی می باشد.
هدف هوش مصنوعی هوشمند سازی رفتار ماشینها است. می توان گفت تکنیک های هوش مصنوعی بطور گسترده ای در فرآیند داده کاوی به کار می رود بطوریکه بعضی از آماردانها ابزارهای داده کاوی را بعنوان هوش آماری مصنوعی معرفی می کنند.
قابلیت یادگیری بزرگترین فایده هوش مصنوعی است که بطور گسترده ای در داده کاوی استفاده می شود. تکنیک های هوش مصنوعی که در داده کاوی بسیار زیاد مورد استفاده قرار می گیرند عبارتند از شبکه های عصبی، روشهای تشخیص الگوی یادگیری ماشین و الگوریتمهای ژنتیک ونهایتا تکنیک ها و ابزارهای گرافیک کامپیوتری و مصور سازی که بشدت در داده کاوی بکار گرفته می شوند و به کمک آنها می توان داده های چند بعدی را به گونه ای نمایش داد که تجزیه وتحلیل نتایج برای انسان براحتی امکان پذیر باشد [Gupta 2006].
روشهای داده کاوی عمده روشهای داده کاوی عبارتند از روشهای توصیف داده ها، روشهای تجزیه و تحلیل وابستگی، روشهای دسته بندی و پیشگویی، روشهای خوشه بندی، روشهای تجزیه و تحلیل نویز.
می توان روش های مختلف کاوش داده را در دو گروه روش های پیش بینی و روش های توصیفی طبقه بندی نمود. روش های پیش بینی در متون علمی به عنوان روش های با ناظر نیزشناخته می شوند. روش های دسته بندی، رگرسیون و تشخیص انحراف از روشهای یادگیری مدل در داده کاوی با ماهیت پیش بینی هستند. در الگوریتم های دسته بندی مجموعه داده اولیه به دو مجموعه داده با عنوان مجموعه داده های آموزشی و مجموعه داده های آزمایشی تقسیم می شود که با استفاده از مجموعه داده های آموزشی مدل ساخته می شود و از مجموعه داده های آزمایشی برای اعتبار سنجی و محاسبه دقت مدل ساخته شده استفاده می شود. هررکورد شامل یک مجموعه ویژگی است.
یکی از ویژگی ها، ویژگی دسته نامیده می شود و در مرحله آموزش براساس مقادیر سایر ویژگی ها برای مقادیر ویژگی دسته، مدل ساخته می شود. روشهای توصیفی الگوهای قابل توصیفی را پیدا میکنند که روابط حاکم بر داده ها را بدون در نظرگرفتن هرگونه برچسب و یا متغیرخروجی تبیین نمایند. درمتون علمی روشهای توصیفی با نام روشهای بدون ناظر نیز شناخته می شوند ]صنیعی آباده 1391[.

روشهای توصیف داده هاهدف این روشها ارائه یک توصیف کلی از داده هاست که معمولا به شکل مختصر ارائه می شود. هر چند توصیف داده ها یکی از انواع روشهای داده کاوی است ولی معمولا هدف اصلی نیست واغلب از این روش برای تجزیه و تحلیل نیاز های اولیه و شناخت طبیعت داده ها و پیدا کردن خصوصیات ذاتی داده ها یا برای ارائه نتایج داده کاوی استفاده می شود [Sirikulvadhana 2002] .
روشهای تجزیه و تحلیل وابستگی هدف این روشها پیدا کردن ارتباطات قابل توجه بین تعداد زیادی از متغیر ها یا صفات می باشد[Gupta 2006] . یکی از روشهای متداول برای کشف قواعد وابستگی مدل Apriori است که نسبت به سایر مدلهای کشف قواعد وابستگی سریعتر بوده و محدودیتی از نظر تعداد قواعد ندارد [Xindong et al 2007] . کاوش قواعد تلازمی یکی از محتواهای اصلی تحقیقات داده کاوی در حال حاضر است و خصوصا بر یافتن روابط میان آیتم های مختلف در پایگاه داده تاکید دارد [Patil et. al 2012] . سه مدل CARMA و GRI و Fpgrowth سه الگوریتم دیگر از قواعد وابستگی هستند.
روشهای دسته بندی و پیشگویی
دسته بندی یک فرآیند یافتن مدل است که برای بخش بندی داده به کلاس های مختلف برطبق بعضی محدودیت ها استفاده شده است. به بیان دیگر ما می توانیم بگوییم که دسته بندی یک فرآیند تعمیم داده بر طبق نمونه های مختلف است. چندین نمونه اصلی الگوریتم های طبقه بندی شامل C4. 5 ، K نزدیکترین همسایه، بیز ساده و SVM است [Kumar and Verna 2012].
یکی از این نوع الگوریتم ها نظریه بیز می باشد. این دسته بند از یک چارچوب احتمالی برای حل مساله استفاده می کند. یک رکورد مفروض با مجموعه ویژگی های (A1, A2…. An) را درنظر بگیرید. هدف تشخیص دسته این رکورد است. در واقع از بین دسته های موجود به دنبال دسته ای هستیم که مقدارP(C|A1, A2…. An) را بیشینه کند. پس این احتمال را برای تمامی دسته های موجود محاسبه کرده و دسته ای که این احتمال به ازای آن بیشینه شود را به عنوان دسته رکورد جدید در نظر می گیریم.
PCA=PAC PCPAرگرسیون نیز نوع دیگری از این الگوریتم ها است. پیش بینی مقدار یک متغیر پیوسته بر اساس مقادیر سایر متغیرها بر مبنای یک مدل وابستگی خطی یا غیر خطی رگرسیون نام دارد. درواقع یک بردار X داریم که به یک متغیر خروجی y نگاشت شده است. هدف محاسبه y یا همان F(X) است که از روی تخمین تابع مقدار آن محاسبه می شود.
درخت تصمیمدرخت تصمیم از ابزارهای داده کاوی است که در رده بندی داده های کیفی استفاده می شود. در درخت تصمیم، درخت کلی به وسیله خرد کردن داده ها به گره هایی ساخته می شود که مقادیری از متغیر ها را در خود جای می دهند. با ایجاد درخت تصمیم بر اساس داده های پیشین که رده آنها معلوم است، می توان داده های جدید را دسته بندی کرد. روش درخت تصمیم به طور کلی برای دسته بندی استفاده می شود، زیرا یک ساختار سلسله مراتبی ساده برای فهم کاربر و تصمیم گیری است. الگوریتم های داده کاوی گوناگونی برای دسته بندی مبتنی بر شبکه عصبی مصنوعی، قوانین نزدیکترین همسایگی و دسته بندی بیزین در دسترس است اما درخت تصمیم یکی از ساده ترین تکنیک هاست [Patil et. al 2012] . از انواع درخت های تصمیم می توان C4. 5 و C5 و Meta Decision Tree و Random Forest وJ48 را نام برد.

2-3-5-شبکه عصبیروش پرکاربرد دیگر در پیشگویی نتایج استفاده از شبکه های عصبی می باشد. شبکه های عصبی مدل ساده شده ای است که بر مبنای عملکرد مغز انسان کار می کند. اساس کار این شبکه شبیه سازی تعداد زیادی واحد پردازشی کوچک است که با هم در ارتباط هستند. به هریک از این واحد ها یک نرون گفته می شود. نرون ها بصورت لایه لایه قرار دارند و در یک شبکه عصبی معمولا سه لایه وجود دارد [Gupta 2006] . اولین لایه )لایه ورودی ( ، دومین )لایه نهان (و سومین )لایه خروجی (. لایه نهان می تواند متشکل از یک لایه یا بیشتر باشد [P--han et. al 2011 ] .
2-3-6- استدلال مبتنی بر حافظهتوانایی انسان در استدلال براساس تجربه، به توانایی او در شناخت و درک نمونه های مناسبی که مربوط به گذشته است، بستگی دارد. افراد در ابتدا تجارب مشابهی که در گذشته داشته را شناسایی و سپس دانشی که از آن ها کسب کرده است را برای حل مشکل فعلی به کار می گیرند. این فرآیند اساس استدلال مبتنی بر حافظه است. یک بانک اطلاعاتی که از رکوردهای شناخته شده تشکیل شده است مورد جستجو قرار می گیرد تارکوردهای از قبل طبقه بندی شده و مشابه با رکورد جدید یافت شود.
از این همسایه ها برای طبقه بند ی و تخمین زدن استفاده می شود. KNN یک نمونه از این الگوریتم هاست. فرض کنید که یک نمونه ساده شده با یک مجموعه از صفت های مختلف وجود دارد، اما گروهی که این نمونه به آن متعلق است نامشخص است. مشخص کردن گروه می تواند از صفت هایش تعیین شود. الگوریتم های مختلفی می تواند برای خودکار سازی فرآیند دسته بندی استفاده بشود. یک دسته بند نزدیک ترین همسایه یک تکنیک برای دسته بندی عناصر است مبتنی بردسته بندی عناصر در مجموعه آموزشی که شبیه تر به نمونه آزمایشی هستند.
باتکنیک Kنزدیکترین همسایه، این کار با ارزیابی تعداد K همسایه نزدیک انجام می شود. [Tan et al 2006] . تمام نمونه های آموزشی در یک فضای الگوی چند بعدی ذخیره شده اند. وقتی یک نمونه ناشناخته داده می شود، یک دسته بند نزدیکترین همسایه در فضای الگو برای K نمونه آموزشی که نزدیک به نمونه ناشناخته هستند جستجو می کند. نزدیکی بر اساس فاصله اقلیدسی تعریف می شود [Wilson and Martinez 1997] .
2-3-7-ماشین های بردار پشتیبانیSVM اولین بار توسط Vapnik در سال 1990 معرفی شد و روش بسیار موثری برای رگرسیون و دسته بندی و تشخیص الگو است [Ristianini and Shawe 2000] .
SVM به عنوان یک دسته بند خوب در نظر گرفته می شود زیرا کارایی تعمیم آن بدون نیاز به دانش پیشین بالاست حتی وقتیکه ابعاد فضای ورودی بسیار بالاست. هدف SVM یافتن بهترین دسته بند برای تشخیص میان اعضای دو کلاس در مجموعه آموزشی است [Kumar and Verna 2012] .
رویکرد SVM به این صورت است که در مرحله آموزش سعی دارد مرز تصمیم گیری را به گونه ای انتخاب نماید که حداقل فاصله آن با هر یک از دسته های مورد نظر را بیشینه کند. این نوع انتخاب مرز بر اساس نقاطی بنام بردارهای پشتیبان انجام می شوند.
2-3-8-روشهای خوشه بندی هدف این روشها جداسازی داده ها با خصوصیات مشابه است. تفاوت بین دسته بندی و خوشه بندی این است که در خوشه بندی از قبل مشخص نیست که مرز بین خوشه ها کجاست و برچسبهای هر خوشه از پیش تعریف شده است ولی در دسته بندی از قبل مشخص است که هر دسته شامل چه نوع داده هایی می شود و به اصطلاح برچسب های هر دسته از قبل تعریف شده اند. به همین دلیل به دسته بندی یادگیری همراه با نظارت و به خوشه بندی یادگیری بدون نظارت گفته می شود [Osmar 1999] .
2-3-9- روش K-Meansیکی از روش های خوشه بندی مدل K-Means است که مجموعه داده ها را به تعدادثابت و مشخصی خوشه، خوشه بندی می کند. روش کار آن به این صورت است که تعداد ثابتی خوشه در نظر میگیرد و رکوردها را به این خوشه ها اختصاص داده و مکرراً مراکز خوشه ها را تنظیم می کند تا زمانیکه بهترین خوشه بندی بدست آید[Xindong et al 2007].
2-3-10-شبکه کوهننشبکه کوهنن نوعی شبکه عصبی است که در این نوع شبکه نرون ها در دو لایه ورودی و خروجی قرار دارند و همه نرون های ورودی به همه نرون های خروجی متصل اندو این اتصالات دارای وزن هستند. لایه خروجی در این شبکه ها بصورت یک ماتریس دو بعدی چیده شده و به آن نقشه خروجی گفته می شود. مزیت این شبکه نسبت به سایر انواع شبکه های عصبی این است که نیاز نیست دسته یا خوشه داده ها از قبل مشخص باشد، حتی نیاز نیست تعداد خوشه ها از قبل مشخص باشد. شبکه های کوهنن با تعداد زیادی نرون شروع می شود و به تدریج که یادگیری پیش می رود، تعداد آنها به سمت یک تعداد طبیعی و محدود کاهش می یابد.
2-3-11-روش دو گاماین روش در دو گام کار خوشه بندی را انجام می دهد. در گام اول همه داده ها یک مرور کلی می شوند و داده های ورودی خام به مجموعه ای از زیر خوشه های قابل مدیریت تقسیم می شوند. گام دوم با استفاده از یک روش خوشه بندی سلسله مراتبی بطور مداوم زیر خوشه ها را برای رسیدن به خوشه های بزرگتر با هم ترکیب می کند بدون اینکه نیاز باشد که جزئیات همه داده ها را مجددا مرور کند.
2-3-12-روشهای تجزیه و تحلیل نویزبعضی از داده ها که به طور بارز و مشخصی از داده های دیگر متمایز هستند اصطلاحاً بعنوان داده خطا یا پرت شناخته می شوند که باید قبل از ورود به فاز مدلسازی و در فاز آماده سازی داده ها برطرف شوند. با وجود این زمانیکه شناسایی داده های غیر عادی یا غیر قابل انتظار مانند موارد تشخیص تقلب هدف اصلی باشد، همین نوع داده ها مفید هستند که در این صورت به آنها نویز گفته می شود [Osmar 1999].
دسته های نامتعادل]صنیعی آباده 1391[.
مجموعه داده هایی که در آنها ویزگی دسته دارای توزیع نامتعادل باشد بسیار شایع هستند. مخصوصاً این مجموعه داده ها در کاربردها و مسائل واقعی بیشتر دیده می شوند.
در چنین مسائلی با وجود اینکه تعداد رکوردهای مربوط به دسته نادر بسیار کمتر از دسته های دیگر است، ولی ارزش تشخیص دادن آن به مراتب بالاتر از ارزش تشخیص دسته های شایع است. در داده کاوی برای برخورد با مشکل دسته های نامتعادل از دو راهکار استفاده می شود:
راهکار مبتنی بر معیار
راهکار مبتنی بر نمونه برداری
راهکار مبتنی بر معیاردر دسته بندی شایع ترین معیار ارزیابی کارایی دسته بند، معیار دقت دسته بندی است. در معیار دقت دسته بندی فرض بر یکسان بودن ارزش رکوردهای دسته های مختلف دسته بندی است. در راهکار مبتنی بر معیار بجای استفاده از معیار دقت دسته بندی از معیارهایی بهره برداری می شود که بتوان بالاتر بودن ارزش دسته های نادر و کمیاب را در آنها به نحوی نشان داد. بنابراین با لحاظ نمودن معیارهای گفته شده در فرآیند یادگیری خواهیم توانست جهت یادگیری را به سمت نمونه های نادر هدایت نماییم. از جمله معیارهایی که برای حل مشکل عدم تعادل دسته ها بکار می روند عبارتند از Recall, Precession, F-Measure, AUC و چند معیار مشابه دیگر.
2-4-2-راهکار مبتنی بر نمونه بردارینمونه برداری یکی از راهکارهای بسیار موثربرای مواجهه با مشکل دسته های نامتعادل است. ایده اصلی نمونه برداری آن است که توزیع نمونه ها را به گونه ای تغییر دهیم که دسته کمیاب به نحو پررنگ تری در مجموعه داده های آموزشی پدیدار شوند. سه روش برای این راهکار وجود دارد که عبارتند از:
الف- نمونه برداری تضعیفی:
در این روش نمونه برداری، توزیع نمونه های دسته های مساله به گونه ای تغییر می یابند که دسته شایع به شکلی تضعیف شود تا از نظرفراوانی با تعداد رکوردهای دسته نادر برابری کند. به این ترتیب هنگام اجرای الگوریتم یادگیری، الگوریتم ارزشی مساوی را برای دو نوع دسته نادر و شایع درنظر می گیرد.
ب- نمونه برداری تقویتی:
این روش درست برعکس نمونه برداری تضعیفی است. بدین معنی که نمونه های نادر کپی برداری شده و توزیع آنها با توزیع نمونه های شایع برابر می شود.
ج- نمونه برداری مرکب:
در این روش از هردو عملیات تضعیفی و تقویتی بصورت همزمان استفاده میشود تا توزیع مناسب بدست آید.
در این پژوهش با توجه به کمتر بودن نسبت نمونه نادر یعنی منجر به خسارت شده به نمونه شایع از روش نمونه برداری تضعیفی استفاده گردید که کل تعداد نمونه ها به حدود 3 هزار رکورد تقلیل پیدا کرد و توزیع نمونه ها به نسبت مساوی بوده است. شایان ذکر است این نمونه برداری پس از انجام مرحله پاک سازی داده ها انجام شد که خود مرحله پاکسازی با عث تقلیل تعداد نمونه های اصلی نیز گردیده بود.
پیشینه تحقیقسالهاست که محققان در زمینه بیمه و مسائل مرتبط با آن به تحقیق پرداخته اند و از جمله مسائلی که برای محققان بیشتر جذاب بوده است می توان به کشف تقلب اشاره کرد.
Brockett و همکاران [Brockett et. al 1998] ابتدا به کمک الگوریتم تحلیل مولفه های اصلی (PCA) به انتخاب ویژگی ها پرداختند و سپس با ترکیب الگوریتم های خوشه بندی و شبکه های عصبی به کشف تقلبات بیمه اتومبیل اقدام کردند. مزیت این کار ترکیب الگوریتمها و انتخاب ویژگی بوده که منجر به افزایش دقت خروجی بدست آمده گردید.
Phua و همکاران [ Phua et. al 2004] با ترکیب الگوریتم های شبکه های عصبی پس انتشاری ، بیزساده و درخت تصمیم c4.5 به کشف تقلب در بیمه های اتومبیل پرداختند.نقطه قوت این کار ترکیب الگوریتم ها بوده اما بدلیل عدم کاهش ویژگی ها و کاهش ابعاد مساله میزان دقت بدست آمده در حد اعلی نبوده است.
Allahyari Soeini و همکاران [Allahyari Soeini et. al 2012] نیز یک متدلوژی با استفاده از روشهای داده کاوی خوشه بندی ودرخت تصمیم برای مدیریت مشتریان ارائه دادند. از ایرادات این روش میتوان عدم استفاده از الگوریتم های دسته بندی و قوانین انجمنی را نام برد.
مورکی علی آباد ] مورکی علی‌آباد1390[ تحقیقی داشته است که اخیراً در زمینه بیمه صورت گرفته و درمورد طبقه‌بندی مشتریان صنعت بیمه با هدف شناسایی مشتریان بالقوه با استفاده از تکنیک‌های داده‌کاوی (مورد مطالعه: بیمه‌گذاران بیمه آتش‌سوزی شرکت بیمه کارآفرین (که هدف آن دسته بندی مشتریان صنعت بیمه بر اساس میزان وفاداری به شرکت، نوع بیمه نامه های خریداری شده، موقعیت جغرافیایی مکان های بیمه شده و میزان جذب به شرکت بیمه در بازه زمانی 4 سال گذشته بوده است. روش آماری مورد استفاده از تکنیک های داده کاوی نظیر درخت تصمیم و دسته بندی بود. این تحقیق نیز چون نمونه آن قبلا انجام شده بوده از الگوریتم های متفاوت استفاده نکرده است. همچنین سعی بر بهبود تحقیق قبلی نیز نداشته است. وجه تمایز این تحقیق با نمونه قبلی استفاده از ویژگی های متفاوت بوده است.
عنبری ]عنبری 1389[ نیز پژوهشی در خصوص طبقه بندی ریسک بیمه گذاران در رشته بیمه بدنه اتومبیل با استفاده از داده کاوی داشته است که هدف استفاده از داده های مربوط به بیمه نامه بدنه از کل شرکتهای بیمه (بانک اطلاعاتی بیمه خودرو) بوده و سعی بر آن شده است تا بررسی شود که آیا میتوان بیمه گذاران بیمه بدنه اتومبیل را از نظر ریسک طبقه بندی کرد؟ و آیا درخت تصمیم برای طبقه بندی بیمه گذاران بهترین ابزار طبقه بندی می باشد؟ و آیا سن و جنسیت از موثرترین عوامل در ریسک بیمه گذار محسوب می شود؟ نتایج این طبقه بندی به صورت درخت تصمیم و قوانین نشان داده شده است. ونتایج حاصل از صحت مدل درخت تصمیم با نتایج الگوریتم های شبکه عصبی و رگرسیون لجستیک مورد مقایسه قرار گرفته است. از مزیت های این تحقیق استفاده از الگوریتم های متفاوت و مقایسه نتایج حاصله برای بدست آوردین بهترین الگوریتم ها بوده است.
رستخیز پایدار]رستخیز پایدار 1389[ تحقیقی دیگر در زمینه بخش بندی مشتریان بر اساس ریسک با استفاده از تکنیک داده کاوی (مورد مطالعه: بیمه بدنه اتومبیل بیمه ملت) داشته است. با استفاده از مفاهیم شبکه خود سازمانده بخش بندی بر روی مشتریان بیمه بدنه اتومبیل بر اساس ریسک صورت گرفت. در این تحقیق عوامل تأثیرگذار بر ریسک بیمه گذاران طی دو مرحله شناسایی گردید. در مرحله اول هیجده فاکتور ریسک در چهار گروه شامل مشخصات جمعیت شناختی، مشخصات اتومبیل، مشخصات بیمه نامه و سابقه راننده از بین مقالات علمی منتشر گردیده در ژورنال های معتبر در بازه سال های 2000 الی 2009 استخراج گردید و در مرحله دوم با استفاده از نظرسنجی از خبرگان فاکتورهای نهایی تعیین گردید. مشتریان بیمه بدنه اتومبیل در این تحقیق با استفاده از شبکه های عصبی خودسازمانده به چهار گروه مشتریان با ریسک های متفاوت بخش بندی گردیدند. مزیت این تحقیق استفاده از نظر خبرگان بیمه بوده و ایراد آن عدم استفاده از ویژگی های بیشتر و الگوریتم های انتخاب ویژگی بوده است.
ایزدپرست  ]ایزدپرست1389[ همچنین تحقیقی در مورد ارائه چارچوبی برای پیش بینی خسارت مشتریان بیمه بدنه اتومبیل با استفاده از راهکار داده کاوی انجام داده است که چارچوبی برای شناسایی مشتریان بیمه بدنه اتومبیل ارائه می‌گردد که طی آن میزان خطرپذیری مشتریان پیش‌بینی شده و مشتریان بر اساس آن رده‌بندی می‌گردند. در نتیجه با استفاده از این معیار (سطح خطرپذیری) و نوع بیمه‌نامه مشتریان، میتوان میزان خسارت آنان را پیش‌بینی کرده و تعرفه بیمه‌نامه متناسب با ریسک آنان تعریف نمود. که این مطلب می‌تواند کمک شایانی برای شناسایی مشتریان و سیاستگذاری‌های تعرفه بیمه نامه باشد. در این تحقیق از دو روش خوشه‌بندی و درخت‌تصمیم استفاده می‌گردد. در روش خوشه‌بندی مشتریان بر اساس ویژگی هایشان در خوشه هایی تفکیک شده، سپس میانگین سطح خسارت در هر یک از این خوشه‌ها را محاسبه میکند. حال مشتریان آتی با توجه به اینکه به کدامیک از این خوشه‌ها شبیه تر هستند در یکی از آنها قرار می‌گیرند تا سطح خسارتشان مشخص گردد. در روش درخت‌تصمیم با استفاده از داده‌های مشتریان، درختی را بر اساس مجموعه‌ای از قوانین که بصورت "اگر-آنگاه" می‌باشد ایجاد کرده و سپس مشتریان جدید با استفاده از این درخت رده‌بندی می‌گردند. در نهایت هر دو این مدلها مورد ارزیابی قرار می‌گیرد. ایراد این روش در عدم استفاده از دسته بند ها بوده است. چون ماهیت تحقیق پیش بینی بوده است استفاده از دسته بند ها کمک شایانی به محقق در تولبد خروجی های حذاب تر می کرد.
خلاصه فصلعمده پژوهشهایی که درخصوص داده های بیمه ای صورت گرفته کمتر به سمت پیش بینی سود و زیان شرکتهای بیمه بوده است. در موارد مشابه نیزپیش بینی خسارت مشتریان انجام شده که هدف دسته بندی مشتریان بوده است. موضوع این پژوهش اگرچه از نوع همسان با تحقیقات گفته شده است اما در جزئیات بیمه شخص ثالث را پوشش می دهد که درکشور ما یک بیمه اجباری تلقی می شود. همچنین تعداد خصیصه هایی که در صدور یا خسارت این بیمه نامه دخالت دارند نسبت به سایر بیمه های دیگر بیشتر بوده ضمن اینکه بررسی سود یا زیان بیمه شخص ثالث با استفاده از دانش نوین داده کاوی کارتقریبا جدیدی محسوب می شود.

فصل سوم
2087880229743000
شرح پژوهشدر این فصل هدف بیان مراحل انجام این پژوهش و تحلیل خروجی های بدست آمده می باشد.

انتخاب نرم افزاردر اولین دهه آغاز به کار داده کاوی و در ابتدای امر، هنوز ابزار خاصی برای عملیات کاوش وجود نداشت و تقریبا نیاز بود تا تمامی تحلیل گران، الگوریتمهای موردنظر داده کاوی و یادگیری ماشین را با زبان های برنامه نویسی مانند c یا java یا ترکیبی از چند زبان پیاده سازی کنند. اما امروزه محیط های امکان پذیر برای این امر، با امکانات مناسب و قابلیت محاوره گرافیکی زیادی را می توان یافت]صنیعی آباده 1391[.
Rapidminerاین نرم افزار یک ابزار داده کاوی متن باز است که به زبان جاوا نوشته شده و از سال 2001 میلادی تا به حال توسعه داده شده است. در این نرم افزار سعی تیم توسعه دهنده بر این بوده است که تا حد امکان تمامی الگوریتم های رایج داده کاوی و همچنین یادگیری ماشین پوشش داده شوند. بطوری که حتی این امکان برای نرم افزار فراهم شده است تا بتوان سایر ابزارهای متن باز داده کاوی را نیز به آن الحاق نمود. رابط گرافیکی شکیل و کاربر پسند نرم افزار نیز آن را یک سرو گردن بالاتر از سایر ابزارهای رقیب قرار میدهد]صنیعی آباده 1391[.
مقایسه RapidMiner با سایر نرم افزار های مشابهدر اینجا دو نرم افزار مشهور متن باز را با RapidMiner مقایسه خواهیم کرد و معایب و مزایای آنها را بررسی می کنیم.
الف-R
یک زبان برنامه نویسی و یک پکیج داده کاوی به همراه توابع آماری است و بر پایه زبان های s و scheme پیاده سازی شده است. این نرم افزار متن باز، حاوی تکنیک های آماری مانند: مدل سازی خطی و غیرخطی، آزمون های کلاسیک آماری، تحلیل سری های زمانی، دسته بندی، خوشه بندی، و همچنین برخی قابلیت های گرافیکی است. R را می توان در محاسبات ماتریسی نیز بکار برد که این امر منجر به استفاده از آن در علم داده کاوی نیز می شود.
-مزایا:
شامل توابع آماری بسیار گسترده است.
بصورت بسیارمختصر قادر به حل مسائل آماری است.
دربرابر سایر نرم افزار های مرسوم کار با آرایه مانند Mathematica, PL, MATLAB, LISP/Scheme قدرت مند تر است.
با استفاده از ویژگی Pipeline قابلیت ترکیب بالایی را با سایر ابزارها و نرم افزارها دارد.
توابع نمودار مناسبی دارد.
-معایب:
فقدان واسط کاربری گرافیک
فقدان سفارشی سازی لزم جهت داده کاوی
ساختار زبانی کاملا متفاوت نسبت به زبان های برنامه نویسی مرسوم مانندc, PHP, java, vb, c#.
نیاز به آشنایی با زبانهای آرایه ای
قدیمی بودن این زبان نسبت به رقبا. این زبان در 1990 ساخته شده است.
ب- Scipy
یک مجموعه از کتابخانه های عددی متن باز برای برنامه نویسی به زبان پایتون است که برخی از الگوریتم های داده کاوی را نیز پوشش می دهد.
-مزایا
برای کاربردهای ریاضی مناسب است.
عملیات داده کاوی در این نرم افزار چون به زبان پایتون است راحت انجام می شود.
-معایب
الگوریتم های یادگیری مدل در این کتابخانه هنوز به بلوغ کامل نرسیده اند و درحال تکامل هستند.
برای پیاده سازی الگوریتم های داده کاوی توسط این ابزار باید از ترکیب های متفاوت آنچه در اختیار هست استفاده کرد.
ج-WEKA
ابزار رایج و متن باز داده کاوی است که کتابخانه های آماری و داده کاوی بسیاری را شامل میشود. این نرم افزار بوسیله جاوا نوشته شده است و در دانشگاه وایکاتو در کشور نیوزلند توسعه داده شده است.
-مزایا
دارای بسته های فراوان یادگیری ماشین.
دارای نمای گرافیکی مناسب.
مشخصا به عنوان یک ابزار داده کاوی معرفی شده است.
کار کردن با آن ساده است.
اجرای همزمان چندین الگوریتم و مقایسه نتایج.
همانطور که مشخص شد weka در مقابل دیگر نرم افزار های بیان شده به لحاظ قدرت و کاربر پسندی به Rapidminer نزدیک تر است و شباهت های زیادی به هم دارند زیرا که:
هردو به زبان جاوا نوشته شده اند.
هردو تحت مجوزGPL منتشر شده اند.
Rapidminer بسیاری از الگوریتمهای weka را در خود بارگذاری میکند.
اما weka معایبی نسبت به Rapidminer دارد از جمله اینکه:
در اتصال به فایلهای حاوی داده Excel و پایگاه های داده که مبتنی بر جاوا نیستند ضعیف عمل میکند.
خواندن فایلهای csv به شکل مناسبی سازماندهی نشده است.
به لحاظ ظاهری در رده پایینتری قرار دارد.
در نهایت بعد از بررسی های انجام شده حتی در میان نرم افزار های غیرمتن باز تنها ابزاری که کارایی بالاتری از Rapidminer داشت statistica بود که متن باز نبوده و استفاده از آن نیازمند تقبل هزینه آن است]صنیعی آباده 1391[.
در یازدهمین و دوازدهمین بررسی سالانه KDDnuggets Data Mining / Analytics رای گیری با طرح این سوال که کدام ابزار داده کاوی را ظرف یک سال گذشته برای یک پروژه واقعی استفاده کرده ایددر سال 2010 از بین 912 نفر و در سال 2011 ازبین 1100 نفر انجام شد. توزیع رای دهندگان بدین صورت بوده است:
اروپای غربی 37%
آمریکای شمالی 35%
اروپای شرقی 10%
آسیا 6%
اقیانوسیه 4%
آمریکای لاتین 4%
آفریقا و خاورمیانه %4
نتایج به شرح جدول 3-1 بوده است :
جدول شماره 3-1: نتایج رای گیری استفاده از نرم افزارهای داده کاوی
2011 Vote 2010 Vote Software name
37. 8% 27. 7% Rapidminer
29. 8% 23. 3% R
24. 3% 21. 8% Excel
12. 1% 13. 6% SAS
18. 4% 12. 1% Your own code
19. 2% 12. 1% KNIMe
14. 4% 11. 8% WEKA
1. 6% 10. 6% Salford
6. 3% 8. 5% Statistica
همانطور که نتایج رای گیری مشخص میکند نرم افزار Rapidminer بیشترین استفاده کننده را دارد.
در این پایان نامه نیز عملیات داده کاوی توسط این نرم افزار انجام می شود. ناگفته نماند در قسمتهایی از نرم افزار minitab و Clementine12 نیز برای بهینه کردن پاسخ بدست آمده و بالابردن کیفیت نتایج استفاده شده است.

داده ها داده های مورد استفاده در این پژوهش شامل مجموعه بیمه نامه های شخص ثالث صادر شده استان کهگیلویه و بویراحمد در سال 1390 شمسی بوده که بیمه نامه های منجر شده به خسارت نیز در این لیست مشخص گردیده اند. تعداد کل رکوردها حدود 20 هزار رکورد بوده که از این تعداد تقریباً 7. 5 درصد یعنی حدود 1500 رکوردمنجر به خسارت گردیده اند.
3-2-1- انتخاب دادهداده مورد استفاده در این پژوهش شامل دو مجموعه داده به شرح زیر بوده است:
صدور: اطلاعات بیمه نامه های صادره
خسارت: جزئیات خسارت پرداختی ازمحل هر بیمه نامه که خسارت ایجاد کرده
3-2-2-فیلدهای مجموعه داده صدور
این فیلدها در حالت اولیه 137 مورد به شرح جدول 3-2 بوده است.
3-2-3-کاهش ابعاد
در این پژوهش بخاطر موثرنبودن فیلدهایی اقدام به حذف این مشخصه ها کرده و فیلدهای موثر نهایی به 42 فیلد کاهش یافته که به شرح جدول 3-3 بدست آمده اند. کاهش ابعاد میتواند شامل حذف فیلدهای موثر که دارای اثر بسیار ناچیز درمقابل دیگر فیلدها است نیز باشد.
جدول شماره 3-2: فیلدهای اولیه داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
1 بیمه‌نامه 33 مدت بیمه 65 تعهدمازاد
2 سال‌صدوربیمه‌نامه 34 زمان‌شروع 66 کدنوع‌تعهدسرنشین
3 رشته‌بیمه 35 شغل‌بیمه‌گذار 67 میزان‌تعهدسرنشین
4 نمایش سند 36 سن‌بیمه‌گذار 68 حق‌بیمه‌ثالث‌قانونی
5 مکانیزه 37 سال‌کارت 69 ثالث قانونی+تعدددیات
6 دستی 38 سریال‌کارت 70 حق‌بیمه‌بند4
7 وب‌بنیان 39 کدوسیله‌نقلیه 71 حق‌بیمه‌ماده1
8 نام‌استان 40 کدزیررشته‌آمار 72 حق‌بیمه‌مازاد
9 نام‌شعبه 41 نوع‌وسیله‌نقلیه 73 حق‌بیمه‌سرنشین
10 کدشعبه 42 سیستم 74 مالیات
11 شعبه‌محل‌صدور 43 سال ساخت 75 مازادجانی
12 شعبه 44 رنگ 76 حق‌بیمه‌مازادمالی
13 نمایندگی‌محل‌صدور 45 شماره‌شهربانی 77 عوارض‌ماده92
14 کددولتی 46 شماره‌موتور 78 حق‌بیمه‌دریافتی
15 نمایندگی 47 شماره‌شاسی 79 tadodflg
16 دولتی 48 تعدادسیلندر 80 حق‌بیمه‌تعددخسارت
17 صادره‌توسط شعبه 49 کدواحدظ‌رفیت 81 جریمه‌بیمه‌مرکزی
18 کارمندی 50 ظرفیت 82 حق‌بیمه‌صادره‌شعبه
19 کدصادره‌توسط شعبه 51 شرح‌مورداستفاده 83 حق‌بیمه‌صادره‌نمایندگی
20 سریال‌بیمه‌نامه 52 یدک‌دارد؟ 84 کداضافه‌نرخ‌حق‌بیمه
21 شماره‌بیمه‌نامه 53 اتاق‌وسیله‌نقلیه 85 اضافه‌نرخ‌ثالث
22 نام‌بیمه‌گذار 54 نوع‌پلاک 86 اضافه‌نرخ‌بند4
23 آدرس‌بیمه‌گذار 55 جنسیت 87 اضافه‌نرخ‌مازاد
24 تلفن‌بیمه‌گذار 56 کدنوع‌بیمه‌نامه 88 تعدددیات
25 کدسازمان 57 نوع‌بیمه 89 اضافه‌نرخ‌تعدددیات
26 نام‌سازمان 58 بیمه‌نامه‌سال‌قبل 90 اضافه‌نرخ‌ماده‌یک
27 کدنوع‌بیمه 59 انقضاسال‌قبل 91 دیرکردجریمه
28 cbrn. cod 60 بیمه‌گرقبل 92 کدملی‌بیمه‌گذار
29 نوع‌بیمه 61 شعبه‌قبل 93 صادره‌توسط شعبه
30 تاریخ‌صدور 62 خسارت‌داشته‌؟ 94 نوع‌مستند1
31 تاریخ‌شروع 63 تعهدمالی 95 شماره‌مستند1
32 تاریخ‌انقضا 64 تعهدبدنی 96 تاریخ‌مستند1
ادامه جدول شماره 3-2: فیلدهای اولیه داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
97 مبلغ‌مستند1 111 تخفیف ایمنی 125 کداقتصادی
98 شماره‌حساب1 112 سایرتخفیف ها 126 کدملی
99 بانک1 113 ملاحظات 127 تاریخ‌ثبت
100 نوع‌مستند2 114 نام‌کاربر 128 کدشعبه‌صادرکننده‌اصلی
101 شماره‌مستند2 115 تاریخ‌سند 129 کدنمایندگی‌صادرکننده‌اصلی
102 تاریخ‌مستند2 116 کدشهربانی 130 کدسازمان‌صادرکننده‌اصلی
103 مبلغ‌مستند2 117 شعبه‌محل‌نصب 131 سال
104 شماره‌حساب2 118 کدمحل‌نصب 132 ماه
105 بانک2 119 دستی/مکانیزه 133 نوع
106 تخفیف‌نرخ‌اجباری 120 تیک‌باحسابداری 134 crecno
107 تخفیف‌نرخ‌اختیاری 121 سال‌انتقال 135 type_ex
108 تخفیف عدم خسارت 122 ماه‌انتقال 136 updflg

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

109 تخفیف صفرکیلومتر 123 sysid 137 hsab_sync
110 تخفیف گروهی 124 trsid کداقتصادی
جدول شماره 3-3: فیلدهای نهایی داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
1 ماه 15 تعهدمازاد 29 تاریخ‌شروع
2 سال 16 تعهدبدنی 30 تاریخ‌صدور
3 کدنمایندگی‌صادرکننده‌اصلی 17 تعهدمالی 31 نام‌سازمان
4 تخفیف گروهی 18 بیمه‌نامه‌سال‌قبل 32 شماره‌بیمه‌نامه
5 تخفیف عدم خسارت 19 نوع‌بیمه 33 کارمندی
6 نوع‌مستند1 20 نوع‌پلاک 34 صادره‌توسط شعبه
7 دیرکردجریمه 21 شرح‌مورداستفاده 35 دولتی
8 کداضافه‌نرخ‌حق‌بیمه 22 ظرفیت 36 نمایندگی‌محل‌صدور
9 حق‌بیمه‌دریافتی 23 تعدادسیلندر 37 خسارتی؟
10 عوارض‌ماده92 24 سال ساخت 38 مبلغ خسارت
11 مالیات 25 سیستم 39 تاریخ ایجادحادثه
12 حق‌بیمه‌سرنشین 26 نوع‌وسیله‌نقلیه 40 بیمه گر زیاندیده اول
13 حق‌بیمه‌مازاد 27 مدت بیمه 41 تعداد زیاندیدگان مصدوم
14 حق‌بیمه‌ثالث‌قانونی 28 تاریخ‌انقضا 42 تعداد زیاندیدگان متوفی
در کاهش ابعاد این مساله برای حذف فیلدهای مختلف نظرات کارشناسان بیمه نیز لحاظ شده است. جدول 3-4 فیلدهای حذف شده و علت حذف آنها را بیان کرده است.
جدول شماره 3-4: فیلدهای حذف شده داده های صدور و علت حذف آنها
نام فیلد حذف شده علت حذف
Crecno-type_ex-updflg-hsab_sync-کدمحل‌نصب-دستی/مکانیزه-تیک‌باحسابداری-سال‌انتقال-ماه‌انتقال-sysid-trsid-کدزیررشته آمار-نمایش سند-مکانیزه-دستی-وب‌بنیان-Cbrn. cod کاربرد آماری
نوع-کد شعبه صادرکننده-شعبه محل نصب-کدشهربانی-سایرتخفیف ها-تخفیف ایمنی-تخفیف صفر کیلومتر-تخفیف نرخ اختیاری-تخفیف نرخ اجباری-خسارت داشته؟-شعبه قبل-جنسیت-کد نوع بیمه نامه-یدک دارد-
اتاق وسیله نقلیه-سن بیمه گذار-شغل بیمه گذار-زمان شروع-کد نوع بیمه دارای مقدار یکسان یا null
کد سازمان صادر کننده-کد نوع تعهد سرنشین-کدواحدظرفیت-کد وسیله نقلیه-کد سازمان-کد صادره توسط-نمایندگی-کد دولتی بجای این کد از فیلد اسمی معادل آن استفاده شده است و یا برعکس زیرا در نتایج خروجی قابل فهم تر خواهد بود.
تاریخ ثبت-تاریخ سند-بیمه گر قبل-مبلغ -مستند 1و2-اضافه‌نرخ‌ثالث-4اضافه‌نرخ‌بند-
اضافه‌نرخ‌مازاد-میزان تعهد سرنشین-تعدددیات-اضافه‌نرخ‌تعدددیات-اضافه‌نرخ‌ماده‌یک-تاریخ مستند1و2-شماره -حساب 1و2-بانک1و2 دارای مقدار تکراری
کدملی-بیمه نامه-کداقتصادی-نوع مستند2-
شماره مستند1و2-نام کاربر-ملاحظات-
کدملی بیمه گذار-شماره شاسی-شماره موتور-
شماره شهربانی-سریال کارت-سال کارت-
نام‌استان-نام‌شعبه-کدشعبه-شعبه‌محل‌صدور
شعبه-سال‌صدوربیمه‌نامه-رشته‌بیمه-رنگ-تلفن بیمه گذار-نام بیمه گذار-آدرس بیمه گذار-سریال بیمه نامه بدون تاثیر
حق‌بیمه‌تعددخسارت-جریمه‌بیمه‌مرکزی-
حق‌بیمه‌صادره‌شعبه-حق‌بیمه‌صادره‌نمایندگی-
مازادجانی-حق‌بیمه‌مازادمالی-حق بیمه ماده1-
حق بیمه ماده4-ثالث قانونی + تعدد دیات- انقضا سال قبل بخشی از فیلد انتخاب شده
جدول 3-5: فیلدهای استخراج شده از داده های خسارت
مبلغ خسارت
تاریخ ایجادحادثه
بیمه گر زیاندیده اول
تعداد زیاندیدگان مصدوم
تعداد زیاندیدگان متوفی
3-2-4- فیلدهای مجموعه داده خسارتاز مجموعه داده خسارت فقط فیلدهای مشخص کننده میزان خسارت و جزئیات لازم استخراج شده است. متاسفانه اطلاعات مفید تری مثل سن راننده مقصر، میزان تحصیلات و. . . در این مجموعه داده وجود نداشته است و چون هنگام ثبت خسارت برای یک بیمه نامه از اطلاعات کلیدی داده های صدور استفاده می شود، با توجه به اینکه از مرحله قبل مهمترین فیلدهای داده های صدور را در دسترس داریم بنابراین با ادغام فیلدهای خسارت و صدور به اطلاعات جامعی در خصوص یک بیمه نامه خاص دسترسی خواهیم داشت. مشخصه ها استخراج شده از داده های خسارت طبق جدول 3-5 است.

3-2-5-پاکسازی داده هاداده ها در دنیای واقعی ممکن است دارای خطا، مقادیر از دست رفته، مقادیر پرت و دورافتاده باشند [Jiawei Han, 2010]. در مرحله پاکسازی با توجه به نوع داده ممکن است یک یا چند روش پاکسازی بر روی داده اعمال شود.
3-2-6- رسیدگی به داده های از دست رفتهدر این قسمت از کار اقدام به رفع Missing data نموده که خود مرحله مهمی از پاکسازی داده بحساب می آید. در مرحله ابتدایی با مرتب سازی تمام ویژگی های قابل مرتب سازی در نرم افزار Microsoft Excel اقدام به کشف مقادیر از دست رفته کرده و از طریق دیگر ویژگی های هر رکورد مقدار از دست رفته را حدس زده ایم. همچنین درحین انتقال داده به محیط داده کاوی مقادیر از دست رفته نیز مشخص می گردند. در بعضی موارد بدلیل تعداد زیاد ویژگی های از دست رفته اقدام به حذف کامل رکورد نمودیم. این کار برای زمانی که داده ها در حجم انبوهی وجود دارند مفید واقع میشوند اما زمانی که تعداد رکوردها کم می باشد اجتناب از این عمل توصیه می شود. برای ویژگی نوع بیمه که از نوع چند اسمی بوده است فقط دو مقدار"کارمندی" و "عادی" وجود داشته که تعداد 49 مورد فاقد مقدار بوده است. کل تعداد بیمه کارمندی 27 مورد بوده است. با توجه به کم بودن تعداد داده های ازدست رفته این فیلد و پس از مقایسه نام بیمه گذاران با اسم کارمندان مشخص شد هیچ کدام از موارد فوق کارمندی نبوده و همه از نوع عادی بوده اند.
از جمله فیلدهای دارای مقادیر از دست رفته و روش رفع ایراد آنها عبارتند از:
سیستم*** 70 مورد***تشخیص با توجه به دیگر ویژگی ها
نوع وسیله نقلیه***33مورد***تشخیص با توجه به دیگر ویژگی ها
شرح مورد استفاده***11مورد***تشخیص با توجه به دیگر ویژگی هاتعدادسیلندر***2مورد***تشخیص با توجه به دیگر ویژگی ها
دولتی***28 مورد***تشخیص از روی پلاک
ماه***130 مورد***تشخیص از روی تاریخ صدور
نوع بیمه***49مورد***تشخیص از روی نام بیمه گذار
تعداد رکوردهایی که مقادیرازدست رفته در چند ویژگی مهم را داشته اند و حذف شده اند حدود 350 مورد بوده است.
3-2-7-کشف داده دور افتادهبعضی از مقادیر بسته به نوع داده علی رغم پرت تشخیص داده شدن مقادیر صحیحی می باشند. بنابراین حذف اینگونه داده ها برای کاستن پیچیدگی مساله میتواند موجب حذف قوانین مهمی در الگوریتم های مبتنی برقانون یا درختهای تصمیم شود. پس بررسی خروجی الگوریتم توسط یک فردخبره در موضوع مساله می تواند مانع از این اتفاق شود. نوع برخورد با داده پرت میتواند شامل حذف داده پرت، تغییر مقدار، حذف رکورد و در مواردی حذف مشخصه باشد.
برای تشخیص داده پرت از نمودار boxplot نرم افزار minitab 15 استفاده گردید. در این نمودار از مفهوم درصدک استفاده میشود که داده های بین 25% تا 75% که به ترتیب با Q1 و Q3 نشان داده می شوند مهم ترین بخش داده ها هستند. X50% نیز میانه را نشان می دهد و با یک خط در وسط نمودار مشخص می شود. Interquartile range (IQR) نیز مفهوم دیگری است که برابر است با IQR = Q3-Q1 .
مقادیر بیشتر از Q3 + [(Q3 - Q1) X 1. 5] و کمتر از Q1 - [(Q3 - Q1) X 1. 5]داده پرت محسوب می شوند. برای انجام اینکار نمودار boxplot را روی تک تک مشخصه های داده ها به اجرا در آورده و نتایج مطابق جدول 3-6 حاصل گردید.
جدول 3-6: نتایج نمودار boxplot
نام فیلد محاسبه مقادیر پرت توضیحات
تعداد زیاندیدگان متوفی Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقدار 1و2 نشان داده شده صحیح می باشد
تعداد زیاندیدگان مصدوم Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 1و2و3 نشان داده شده صحیح می باشد
بیمه گر زیاندیده اول Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقدار 1و2و3و. . . نشان داده شده صحیح می باشد و عدد 99 مقداری صحیح است که به معنی ندارد استفاده میگردد
مبلغ خسارت Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مبلغ خسارت 1.658.398.000 ریال و 900.000.000 ریال واقعا پرداخت گردیده است
تعداد سیلندر Q1=4, Q3=4, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=4
Q1 - [(Q3 - Q1) X 1. 5]=4مقدار 5 به عنوان تعداد سیلندر ناصحیح می باشد
ظرفیت Q1=5, Q3=5, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=5
Q1 - [(Q3 - Q1) X 1. 5]=5 مقادیر بین 1 تا 96 ظرفیتهای منطقی بر اساس تناژ یا سرنشین بوده و صحیح است اما مقدار 750 نا صحیح است
نوع پلاک Q1=3, Q3=3, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=3
Q1 - [(Q3 - Q1) X 1. 5]=3 مقادیر با مفهوم بوده و دور افتاده نیست
بیمه نامه سال قبل Q1=1, Q3=1, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=1
Q1 - [(Q3 - Q1) X 1. 5]=1 مقادیر عددی 0 یا 1 به معنی داشتن یا نداشتن بوده و صحیح است
تعهدات مالی Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقادیر با مفهوم بوده و دور افتاده نیست
حق بیمه ثالث قانونی Q1=1992600, 3=3332500, IQR=1339900
Q3 + [(Q3 - Q1) X 1. 5]=5342350
Q1 - [(Q3 - Q1) X 1. 5]=17250 مقادیر با مفهوم بوده و دور افتاده نیست
حق بیمه مازاد Q1=0, Q3=9100, IQR=9100
Q3 + [(Q3 - Q1) X 1. 5]=22750
Q1 - [(Q3 - Q1) X 1. 5]=13650 مقادیر با مفهوم بوده و دور افتاده نیست
دیرکرد جریمه Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقادیر با مفهوم بوده و دور افتاده نیست
تخفیف عدم خسارت Q1=610080, Q3=1495200, IQR=885120
Q3 + [(Q3 - Q1) X 1. 5]=2822880
Q1 - [(Q3 - Q1) X 1. 5]=717600 مقادیر با مفهوم بوده و دور افتاده نیست
3-2-8-انبوهش دادهبا ادغام کردن داده های صدور و خسارت به خلق ویژگیهای جدیدی دست زده ایم. چون داده ها در دو فایل جدا گانه بوده و حجم داده زیاد بوده است برای ادغام از پرس و جوی نرم افزار Microsoft Access استفاده شد. برای تشخیص بیمه نامه های خسارت دیده از فیلد شماره بیمه نامه که در هردوفایل مشترک بود استفاده کردیم.
3-2-9- ایجاد ویژگی دستهدر این مرحله پس از ادغام ویژگی های مختلف اقدام به ایجاد یک فیلد برای تمام رکوردهایی که منجر به خسارت شده اند می نماییم. این فیلد در الگوریتمهای دسته بندی مورد استفاده قرار خواهد گرفت. برای انجام این کار از یک پر و جوی Microsoft Access استفاده میکنیم.
3-2-10-تبدیل دادهجهت استفاده کاربردی تر از برخی ویژگی ها باید مقادیر آن ویژگی تغییر کند. یک نمونه از این کار تغییر مقدار ویژگی " دیرکرد جریمه " است. مقدار این فیلد مبلغ جریمه دیرکرد بیمه گذار بوده است که با تقسیم این مبلغ به عدد 13000 تعداد روزهای تاخیر در تمدید بیمه نامه افراد مشخص می شود، زیرا به ازای هر روز تاخیر مبلغی حدود 13000ریال در سال 1390 به عنوان جریمه دیرکرد از فرد متقاضی بیمه نامه دریافت می گردید.
3-2-11-انتقال داده به محیط داده کاویپس از انجام پاکسازی، داده باید به محیط داده کاوی منتقل شود. در خلال این انتقال نیاز به تعریف و یا تغییر نوع داده وجود دارد. در طول این تغییر داده ممکن است مقادیری از داده ها بدلیل ناسازگاری و یا دلایل مشابه به عنوان داده از دست رفته مشخص گردد و یا داده از دست رفته ای که قبلاً قابل تشخیص نبوده مشخص گردد. (شکل 3-1)

شکل شماره3-1: داده از دست رفته فیلد" نوع بیمه " پس از انتقال به محیط داده کاوی
3-2-12-انواع داده تعیین شده
پس از انتقال داده به محیط داده کاوی، هر ویژگی به نوع خاصی از داده توسط نرم افزار تشخیص داده شد. پس از آن نوع داده تشخیصی مورد بررسی قرار گرفت و اشتباهات پیش آمده تصحیح گردیدند. همچنین گروهی از ویژگی ها که به هیچ نوع داده ای اختصاص داده نشده بود بصورت دستی به بهترین نوع ممکن اختصاص داده شد. چون برخورد الگوریتم ها با انواع داده ها متفاوت است با توجه به موضوع پژوهش بهترین نوع داده که بتواند نسبت به الگوریتم موثرترواقع شود برای هر ویژگی درنظر گرفته شد.
جدول نوع داده های مورد استفاده در این پژوهش به شرح جدول 3-7 است:
جدول 3-7: انواع داده استفاده شده
نام فیلد نوع فیلد
ماه-سال-کدنمایندگی‌صادرکننده‌اصلی- تعداد زیاندیدگان مصدوم- نوع‌پلاک- ظ‌رفیت- تعدادسیلندر- سال ساخت- مدت بیمه- نمایندگی‌محل‌صدور- تعداد زیاندیدگان متوفی-حق‌بیمه‌ثالث‌قانونی-تعهدمازاد-تعهدبدنی-تعهدمالی Integer
- نوع‌بیمه- شرح‌مورداستفاده- بیمه گر زیاندیده اول نوع‌مستند1- سیستم نوع‌وسیله‌نقلیه- نام‌سازمان-دولتی polynominal
دیرکردجریمه-کداضافه‌نرخ‌حق‌بیمه-حق‌بیمه‌دریافتی-عوارض‌ماده92-مالیات-حق‌بیمه‌سرنشین-حق‌بیمه‌مازاد- تخفیف گروهی-تخفیف عدم خسارت- مبلغ خسارت real
بیمه‌نامه‌سال‌قبل- کارمندی- صادره‌توسط شعبه- خسارتی؟ binominal
تاریخ‌انقضا-تاریخ‌شروع-تاریخ‌صدور- تاریخ ایجادحادثه date
شماره‌بیمه‌نامه text
3-2-13-عملیات انتخاب ویژگیهای موثرتردر برخورد با برخی از الگوریتمها که با بیشتر شدن تعداد ویژگی پیچیدگی بیشتری نیز پیدا میکنند، مانند درختهای تصمیم، svm، Regression و شبکه های عصبی باید از ویژگی های کمتری استفاده کنیم. درکل انتخاب ویژگی برای استفاده در الگوریتم های دسته بندی تکنیک کارآمدی است. دراینجا ازتکنیکهای کاهش ویژگی و یا وزن دهی استفاده کرده و فیلدهای منتخبی که وزن بیشتری را دارند به عنوان ورودی الگوریتمها انتخاب گردیدند.
با توجه به اینکه احتمال ارزش دهی به یک ویژگی در تکنیکهای مختلف متغیر است و ممکن است ویژگی خاصی توسط یک تکنیک باارزش قلمداد شده و توسط تکنیکی دیگر بدون ارزش تلقی شود، نتیجه تمام تکنیکها Union, شده و فیلدهای حاصل به عنوان ورودی الگوریتم مشخص گردید.
3-3-نتایج اعمال الگوریتم PCA و الگوریتم های وزن دهی
نتایج حاصل از این تکنیک ها در شکل های 3-2 الی3-5 نمایش داده شده است.

شکل 3-2: نتایج الگوریتمPCA
در ارزشدهی به ویژگی ها

شکل 3-3: نتایج الگوریتم SVM Weighting
در ارزشدهی به ویژگی ها

شکل 3-4: نتایج الگوریتم
Weighting Deviation در ارزشدهی به ویژگی ها

شکل 3-5: نتایج الگوریتم Weighting Correlation
در ارزشدهی به ویژگی ها
3-4-ویژگی های منتخب جهت استفاده در الگوریتمهای حساس به تعداد ویژگیلازم به توضیح است در تمام الگوریتمهایی که از 24 ویژگی جدول 3-8 استفاده شده است از تمام ویژگی ها نیز استفاده شده و نتایج با هم مقایسه گردیده اند و مشخص شد که وجود برخی ویژگی ها که در آن جدول قرار ندارند باعث کاهش دقت الگوریتم شده و در برخی الگوریتم ها نیز تفاوتی میان دو مقایسه مشخص نشد.
جدول 3-8: نتایج حاصل از اجتماع فیلدهای با بالاترین وزن در الگوریتمهای مختلف
نام فیلد نوع فیلد
تعهدمازاد- تعهدبدنی- تعهدمالی- نوع‌پلاک- ظ‌رفیت- تعدادسیلندر- سال ساخت- مدت بیمه- تعداد زیاندیدگان مصدوم- تعداد زیاندیدگان متوفی Integer
شرح‌مورداستفاده- سیستم- نوع‌وسیله‌نقلیه- بیمه گر زیاندیده اول polynominal
دیرکردجریمه- کداضافه‌نرخ‌حق‌بیمه- حق‌بیمه‌دریافتی- مالیات- حق‌بیمه‌سرنشین- حق‌بیمه‌ثالث‌قانونی- مبلغ خسارت real
بیمه‌نامه‌سال‌قبل- کارمندی- صادره‌توسط شعبه binominal
3-5-معیارهای ارزیابی الگوریتمهای دسته بندیدر این بخش توضیحاتی درخصوص چگونگی ارزیابی الگوریتم های دسته بندی و معیار های آن ارائه خواهد شد.
3-6-ماتریس درهم ریختگیماتریس در هم ریختگی چگونگی عملکرد دسته بندی را با توجه به مجموعه داده ورودی به تفکیک نشان میدهد که:
TN: تعدادرکوردهایی است که دسته واقعی آنها منفی بوده و الگوریتم نیز دسته آنها را به درستی منفی تشخیص داده است.
FP: تعدادرکوردهایی است که دسته واقعی آنها منفی بوده و الگوریتم دسته آنها را به اشتباه مثبت تشخیص داده است.
FN: تعدادرکوردهایی است که دسته واقعی آنها مثبت بوده و الگوریتم دسته آنها را به اشتباه منفی تشخیص داده است.
TP: تعدادرکوردهایی است که دسته واقعی آنها مثبت بوده و الگوریتم نیز دسته آنها را به درستی مثبت تشخیص داده است.
جدول 3-9: ماتریس در هم ریختگی
رکوردهای تخمینی(Predicted Records)
دسته+ دسته- FP TN دسته-
TP FN دسته+
1903095210185رکوردهای واقعی(Actual Records)
00رکوردهای واقعی(Actual Records)

مهمترین معیار برای تعیین کارایی یک الگوریتم دسته بندی معیاردقت دسته بندی است. این معیارنشان می دهد که چند درصد ازکل مجموعه رکوردهای آموزشی بدرستی دسته بندی شده است.
دقت دسته بندی بر اساس رابطه زیر محاسبه می شود:
CA=TN+TPTN+FN+TP+FP3-7-معیار AUCاین معیار برای تعیین میزان کارایی یک دسته بند بسیار موثر است. این معیار نشان دهنده سطح زیر نمودار ROC است. هرچقدرعدد AUC مربوط به یک دسته بند بزرگتر باشد، کارایی نهایی دسته بند مطلوب تر است. در ROC نرخ تشخیص صحیح دسته مثبت روی محور Y و نرخ تشخیص غلط دسته منفی روی محورX رسم میشود. اگر هر محور بازه ای بین 0و1 باشد بهترین نقطه در این معیار (0, 1) بوده و نقطه (0, 0) نقطه ای است که دسته بند مثبت و هشدار غلط هیچگاه تولید نمی شود.
3-8-روشهای ارزیابی الگوریتم های دسته بندیدر روشهای یادگیری با ناظر، دو مجموعه داده مهم به اسم داده های آموزشی و داده های آزمایشی وجود دارند. چون هدف نهایی داده کاوی روی این مجموعه داده ها یافتن نظام حاکم بر آنهاست بنابراین کارایی مدل دسته بندی بسیار مهم است. از طرف دیگر این که چه بخشی از مجموعه داده اولیه برای آموزش و چه بخشی به عنوان آزمایش استفاده شود بستگی به روش ارزیابی مورد استفاده دارد که در ادامه انواع روشهای مشهور را بررسی خواهیم کرد]صنیعی آباده 1391[.
روش Holdoutدر این روش چگونگی نسبت تقسیم مجموعه داده ها بستگی به تشخیص تحلیلگر داشته اما روش های متداول ازنسبت 50-50 و یا دو سوم برای آموزش و یک سوم برای آزمایش و ارزیابی استفاده میکنند.
مهم ترین حسن این روش سادگی و سرعت بالای عملیات ارزیابی می باشد اما معایب این روش بسیارند. اولین ایراد این روش آن است که بخشی از مجموعه داده اولیه که به عنوان داده آزمایشی است، شانسی برای حضور در مرحله آموزش ندارد. بدیهی است مدلی که نسبت به کل داده اولیه ساخته می شود، پوشش کلی تری را بر روی داده مورد بررسی خواهد داشت. بنابراین اگر به رکوردهای یک دسته در مرحله آموزش توجه بیشتری شود به همان نسبت در مرحله آزمایش تعدادرکوردهای آن دسته کمتر استفاده می شوند.
دومین مشکل وابسته بودن مدل ساخته شده به، نسبت تقسیم مجموعه داده ها است. هرچقدر داده آموزشی بزرگتر باشد، بدلیل کوچکتر شدن مجموعه داده آزمایشی دقت نهایی برای مدل یادگرفته شده غیرقابل اعتماد تر خواهد بود. و برعکس با جابجایی اندازه دو مجموعه داده چون داده آموزشی کوچک انتخاب شده است، واریانس مدل نهایی بالاتربوده و نمی توان دانش کشف شده را به عنوان تنها نظم ممکن درمجموعه داده اولیه تلقی کنیم.
روش Random Subsamplingاگر روش Holdout را چند مرتبه اجرا نموده و از نتایج بدست آمده میانگین گیری کنیم روش قابل اعتماد تری را بدست آورده ایم که Random Subsampling نامیده می شود.
ایراد این روش عدم کنترل بر روی تعداد استفاده از یک رکورد در آموزش یا ارزیابی می باشد.
3-8-3-روش Cross-Validationاگر در روش Random Subsampling هرکدام از رکوردها را به تعداد مساوی برای یادگیری و تنها یکبار برای ارزیابی استفاده کنیم روشی هوشمندانه تر اتخاذ کرده ایم. این روش در متون علمی Cross-Validation نامیده می شود. برای مثال مجموعه داده را به دوقسمت آموزش و آزمایش تقسیم میکنیم و مدل را بر اساس آن می سازیم. حال جای دوقسمت را عوض کرده و از مجموعه داده آموزش برای آزمایش و از مجموعه داده آزمایش برای آموزش استفاده کرده و مدل را می سازیم. حال میانگین دقت محاسبه شده به عنوان میانگین نهایی معرفی می شود. روش فوق 2-Fold Cross Validation نام دارد. اگر بجای 2 قسمت مجموعه داده به K قسمت تقسیم شود، و هر بار با K-1 قسمت مدل ساخته شود و یک قسمت به عنوان ارزیابی استفاده شود درصورتی که این کار K مرتبه تکرار شود بطوری که از هر قسمت تنها یکبار برای ارزیابی استفاده کنیم، روش K-Fold Cross Validation را اتخاذ کرده ایم. حداکثر مقدار k برابر تعداد رکوردهای مجموعه داده اولیه است.
3-8-4-روش Bootstrapدر روشهای ارزیابی که تاکنون اشاره شدند فرض برآن است که عملیات انتخاب نمونه آموزشی بدون جایگذاری صورت می گیرد. درواقع یک رکورد تنها یکبار در یک فرآیند آموزشی شرکت داده می شود. اگر یک رکورد بیش از یک مرتبه در عملیات یادگیری مدل شرکت داده شود روش Bootstrap را اتخاذ کرده ایم. در این روش رکوردهای آموزشی برای انجام فرآیند یادگیری مدل ازمجموعه داده اولیه به صورت نمونه برداری با جایگذاری انتخاب خواهند شد و رکوردهای انتخاب نشده جهت ارزیابی استفاده می شود.
3-9-الگوریتمهای دسته بندیدر این بخش به اجرای الگوریتم های دسته بندی پرداخته و نتایج حاصل را مشاهده خواهیم کرد.
درالگوریتمهای اجرا شده از هر سه روش Holdout, k fold Validation, Bootstrap استفاده شده است و نتایج با هم مقایسه شده اند. در روشHoldout که در نرم افزار با نام Split Validation آمده است از نسبت استاندارد آن یعنی 70 درصد مجموعه داده اولیه برای آموزش و 30 درصد برای آزمایش استفاده شده است. برای k fold Validation مقدار k برابر 10 درنظر گرفته شده است که مقدار استانداردی است. در Bootstrap نیز مقدار تقسیم بندی مجموعه داده برابر 10 قسمت درنظر گرفته شده است. مقدار local random seed نیز برابر عدد 1234567890 می باشد که برای همه مدلها، نرم افزار از آن استفاده می کند مگر اینگه در مدل خاصی عدم استفاده از آن ویا تغییر مقدارموجب بهبود عملکرد الگوریتم شده باشد که قید میگردد. اشکال 3-6و3-7 چگونگی استفاده از یک مدل ارزیابی را در Rapidminer نشان می دهد.

شکل 3-6: نمای کلی استفاده از روشهای ارزیابی

شکل 3-7: نمای کلی استفاده از یک مدل درون یک روش ارزیابی
الگوریتم KNNدر انتخاب مقدار k اعداد بین 1 تا 20 و همچنین اعداد 25 تا 100 با فاصله 5 آزمایش شدند. بهترین مقدار عدد 11 بوده است.
پس از اجرای الگوریتم، بهترین نتیجه مربوط به ارزیابی Split Validation با دقت91.23%بوده است. نمودار AUC آن در شکل 3-8 ترسیم شده است.
25768302223135آستانه قابل قبول
020000آستانه قابل قبول
716280-63500دسته مثبت
020000دسته مثبت

شکل 3-8: نمودار AUC الگوریتم KNN
الگوریتم Naïve Bayesاین الگوریتم پارامترخاصی برای تنظیم ندارد.
بهترین نتیجه مربوط به ارزیابی Split Validation با دقت 96.09% بوده است. نمودار AUC آن در شکل 3-9 ترسیم شده است.
22872701749425آستانه قابل قبول
020000آستانه قابل قبول
7689856985دسته مثبت
020000دسته مثبت

شکل 3-9: نمودار AUC الگوریتم Naïve Bayes
الگوریتم Neural Networkتکنیک شبکه عصبی استفاده، مدل پرسپترون چندلایه با 4 نرون در یک لایه نهان بوده است.
تنظیمات الگوریتم شبکه عصبی به شرح زیر بوده است:
Training cycles=500
Learning rate=0.3
Momentum=0.2
Local random seed=1992
چون این الگوریتم فقط از ویژگیهای عددی پشتیبانی می کند، از عملگرهای مختلفی برای تبدیل مقادیر غیرعددی به عدد استفاده شده است. به همین دلیل تنها از روش Split validation با نسبت 70-30برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام گرفت.
شکل3-10 عملیات انجام شده را نشان می دهد.

شکل 3-10: تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی
نتیجه اجرای الگوریتم Neural Network دقت 91.25%بوده ماتریس آشفتگی آن و نمودار AUC در شکل 3-11 رسم شده است.

29222702265680آستانه قابل قبول
020000آستانه قابل قبول
725170-55245دسته مثبت
020000دسته مثبت

شکل 3-11: نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net
الگوریتم SVM خطیدر این الگوریتم نیز بدلیل عدم پشتیبانی از نوع داده اسمی از عملگرهای مختلفی برای تبدیل مقادیر غیرعددی به عدد استفاده شده است. به همین دلیل تنها از روش Split validation با نسبت 70-30 برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام شد.
شکل3-12 عملیات انجام شده را نشان می دهد.

شکل 3-12: تبدیل ویژگی های غیر عددی به عدد در الگوریتم SVM خطی
پارامترهای الگوریتم عبارتند از :
Kernel cache=200
Max iteretions=100000
نتیجه حاصل از اجرای الگوریتم SVM خطی دقت 98.54% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-13 رسم شده است.

25711152215515آستانه قابل قبول
020000آستانه قابل قبول
1045845-111760دسته مثبت
020000دسته مثبت

شکل 3-13 : نمودار AUC الگوریتم SVM Linear
3-9-5-الگوریتم رگرسیون لجستیک
در این الگوریتم از روش Split validation با نسبت 70-30برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام شد.
نتیجه حاصل از اجرای الگوریتم رگرسیون لجستیک دقت 98.54% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-14 رسم شده است.

25482552319020آستانه قابل قبول
020000آستانه قابل قبول
974725-249555دسته مثبت
020000دسته مثبت

شکل 3-14 : نمودار AUC الگوریتم رگرسیون لجستیک
3-9-6- الگوریتم Meta Decision Treeدر این الگوریتم که یک درخت تصمیم است، از روش Split validationبا نسبت 70-30 برای ارزیابی استفاده شده است که دقت 96.64% اقدام به پیش بینی خسارت احتمالی نموده است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-15 رسم شده است.

26714452353945آستانه قابل قبول
020000آستانه قابل قبول
835660-73660دسته مثبت
020000دسته مثبت

شکل 3-15 : نمودار AUC الگوریتم Meta Decision Tree
با توجه به اندازه بزرگ درخت خروجی فقط قسمتی از آن در شکل 3-16 بصورت درخت نمایش داده می شود. در شکل 3-17 درخت بصورت کامل آمده است اما نتایج آن در فصل چهارم مورد تفسیر قرار خواهند گرفت.

شکل 3-16 : قسمتی از نمودارtree الگوریتم Meta Decision Tree

شکل 3-17 : نمودار --ial الگوریتم Meta Decision Tree
3-9-7-الگوریتم درخت Wj48چون RapidMiner توانایی استفاده ازالگوریتمهای نرم افزار WEKA را نیز دارد، در بسیاری از الگوریتم ها قدرت مند تر عمل میکند. Wj48 نسخه WEKA از الگوریتمj48 است.
پارامترهای این الگوریتم عبارتند از:
C=0.25
M=2
در این الگوریتم از روش ارزیابی 10 Fold Validation استفاده شده است و دقت پیش بینی آن برابر 99.52% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-18 رسم شده است. نمای درخت در شکل 3-19 ترسیم شده است.

35471102441575آستانه قابل قبول
020000آستانه قابل قبول
908685160020دسته مثبت
020000دسته مثبت

شکل 3-18: نمودار AUC الگوریتم Wj48

شکل 3-19 : نمودار tree الگوریتم Wj48
3-9-8-الگوریتم درخت Random forest در این الگوریتم از هر سه روش ارزیابی بیان شده در قسمت 3-9 استفاده شده است، که بهترین کارایی مربوط به ارزیاب Split Validation با دقت96.72% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-20 رسم شده است.

24853902600960آستانه قابل قبول
020000آستانه قابل قبول
1046480273685دسته مثبت
020000دسته مثبت

شکل 3-20 : نمودار AUC الگوریتم Random forest
تنظیمات این الگوریتم برای تولید 20 درخت، بطوری که هر درخت حداقل 6 برگ را شامل شود به همراه هرس و بدون پیش هرس انجام گرفته است. شکل کلی درختهای تولید شده و یک نمونه از درخت تولیدی در شکلهای 3-21و3-22 قابل مشاهده است.

user8260

شکل 1-2 مدل تحقیق1-6 کلمات کلیدی و تعاریفدر این بخش به توضیح مختصری از کلمات استفاده شده می‌پردازیم:
مدیریت ارتباط با مشتری: فرآیند جذب مشتریان جدید، نگهداری مشتریان موجود، و سرمایه گذاری بر روی مشتریان تعریف است که به وجود آورندهی فضایی است که سازمان تحت آن در تعامل با مشتریانش میباشد.
مدیریت ارتباط با مشتری الکترونیکی: همان فرآیند مدیریت ارتباط با مشتری در بستری الکترونیکی (مبتنی بر) و با استفاده از فناوری اطلاعات (IT) که اشتقاقی از تجارت الکترونیکی می‌باشد.
بازمهندسی: تفکر مجدد بنیادین و طراحی مجدد اساسی فرآیندها برای دست یافتن به اصلاحات چشمگیر در موارد حساس و سنجش هم‌زمان کارایی پارامترهایی مانند هزینه‌ها؛ کیفیت؛ خدمات و سرعت.
برنامه‌ریزی استراتژیک: فرآیندی که سازمانها برای پیشبرد برنامهها و فعالیتهای خود جهت دستیابی به اهداف، و تحقق مأموریت سازمانی بهره میگیرند.
بازاریابی: بازاریابی شامل درک خواسته‌های مشتری و تطابق محصولات شرکت، برای برآورده ساختن آن نیازها و در برگیرنده فرآیند سودآوری برای شرکت است.
بازاریابی الکترونیکی: بکارگیری کانال‌های الکترونیکی ارتباط با مشتریان به منظور نشر پیام‌های بازاریابی
تجارت الکترونیکی: فرایند خرید، فروش یا تبادل محصولات، خدمات و اطلاعات از طریق شبکه‌های کامپیوتری و اینترنت می‌باشد.

فصل دوم
ادبیات و پیشینه تحقیق2-1 مقدمهبا توجه به یکپارچه شدن عناصر فناوری و بازاریابی در مدیریت ارتباط با مشتری الکترونیکی، همه جنبه‌های تجربه برخط مشتری در طول چرخه تعامل تحت پوشش قرار می‌گیرد، لذا در این پایان‌نامه‌ با تکیه بر بازمهندسی فرآیند‌های مدیریت ارتباط با مشتری الکترونیکی به ارائه استراتژی‌های بازاریابی می‌پردازیم. از این رو در این فصل مروری بر ادبیات موضوعی در حوزه مدیریت ارتباط با مشتری و ترکیب آن با مباحث بازاریابی و بازمهندسی در سه بخش مجزا مطرح خواهند شد.
2-2 بازاریابی و بازمهندسیبخش اول مربوط به مباحث بازاریابی و بازمهندسی است که در آن با استفاده از تکینیک‌های بازمهندسی فرآیندها، به بهبود بازاریابی سیستم کنونی پرداخته می‌شود که از نتایج آن می‌توان به افزایش گستره بازار مشتریان الکترونیکی و سود حاصل از آن اشاره کرد. با توجه به نقاط ضعفی که در ساختار فعلی سازمان در زمینه بازاریابی وجود دارد تکنیک بازمهندسی بهترین راه برای بهبود روش‌های موجود است زیرا با استفاده از نقاط قوت موجود و تقویت نقاط ضعف بیشترین کارایی را نتیجه خواهد داد.
2-2-1 مفاهیم پایه‌ای در حوزه بازاریابی و بازمهندسیبازاریابی الکترونیک عبارتست از بکارگیری کانال‌های الکترونیکی ارتباط با مشتریان به منظور نشر پیام‌های بازاریابی [9]. در همین ارتباط، بازاریابی اینترنتی اصطلاحی است که عموما بدین معنی است: دستیابی به اهداف شرکت از طریق برآوردن و فراتر رفتن از نیازهای مشتریان به نحوی بهتر از رقبا با استفاده از فن‌آوری‌های دیجیتالی اینترنت [10]. بازاریابی اینترنتی عبارتست از فرایند ایجاد و حفظ روابط مفید متقابل با مشتریان از طریق فعالیتهای اینترنتی به منظور تسهیل تبادل ایده‌ها کالاها و خدمات به نحوی که اهداف هر دو طرف را محقق سازد [11]. این تعریف شامل بخشهای زیر است: فرآیند، ایجاد و حفظ روابط مفید متقابل با مشتریان، استفاده از اینترنت درانجام فعالیتهای بازاریابی، مبادله، تحقق اهداف طرفین. همچنین بازاریابی آنلاین به شرکتهای عضو شبکه‌های لجستیک بازاریابی که حاوی جریانی از اطلاعات کالاها خدمات، تجارب و پرداخت‌ها و اعتبارات می‌باشند اشاره دارد [10].
بازمهندسی فرایندهای سازمانی راهی است برای تطابق سریع و آنی با شرایط محیطی. بازمهندسی از طریق ابزارهایی که در اختیار دارد باعث تغییر فرایند‌ها و در نهایت کل سازمان در ابعاد وسیع می‌شود و با همین ابزار که به اهرم‌های تغییر بازمهندسی فرایندها نیز معروف است بازمهندسی عملی می شود. نقطه شروع برای کسب موفقیت در بازاریابی الکترونیک مانند راهبرد بازاریابی یا کسب و کار خلق یک فرایند راهبردی است که به خوبی تعریف شده باشد تا اهداف بازاریابی را از طریق ارتباطات بازاریابی پیوند داده و روش‌هایی را برای کسب اهداف مورد نظر طراحی کند. [1]
همچنین با توجه به تعاریفی که از مهندسی مجدد فرآیندهای کسب و کار ارائه شده، فناوری اطلاعات نقش حساس و برجسته‌ای در مهندسی مجدد سازمان ایفا می‌کند، خلق نیازهای جدید، لزوم توسعه محصولات جدید و صدور رویه‌ها و مقررات اجرایی بهتر از عمده تأثیرات مهم فناوری اطلاعات در مهندسی مجدد فرآیندهای کسب و کار خواهد بود. به‌وسیله پیاده‌سازی کامل فناوری اطلاعات در سازمان، این تغییرات داخلی باعث تسریع روند کاری و هدایت تغییرات به نوع محصولات، خدمات و بازار، صنعت و حتی جامعه خواهد شد. چهارچوب نقش‌های فناوری اطلاعات در مهندسی مجدد را می‌توان بصورت آغازکننده، تسهیل‌کننده و توانمندساز تصور کرد. [37]
2-2-2 کارهای مرتبط در حوزه بازاریابی و بازمهندسیدر ادامه این بخش به بیان چند مورد مطالعه انجام شده در زمینه پیوند دو شاخه بازاریابی و بازمهندسی خواهیم پرداخت.
شانون اسکالین، جری جرمستاد و نیکولاس رومانو مطالعه‌ای راجع به ارتباط الکترونیکی در بازاریابی و جایگزینی مدیریت ارتباط با مشتری الکترونیکی با بازاریابی سنتی ارائه دادند. این مطالعه نشان می‌دهد که مدیریت ارتباط با مشتری الکترونیکی جدیدترین تکنیکی است که شرکت‌ها برای افزایش مهارت و ظرفیت‌های بازاریابی استفاده می‌کنند. همچنین نشان می‌دهد که چگونه مدیریت ارتباط با مشتری الکترونیکی تعاریف مفاهیم بازاریابی سنتی را گسترش می‌دهد و یک شرکت را قادر می‌سازد تا اهداف بازاریابی داخلی شرکت آشنا شود. در این مطالعه برای موثر و کارامد بودن یک سازمان به مواردی همچون خرید مشتری، استراتژی بازاریابی و تکامل مراکز تماس مشتری به مراکز تماس الکترونیکی مشتری در اجرای مدیریت ارتباط با مشتری الکترونیکی پرداخته شد. [12]
در سال 2010 در پروژه - ریسرچ‌ای تحت عنوان «زیرساخت های فناوری اطلاعات، طراحی مجدد فرایند سازمانی، ارزش کسب و کار» رونالد رامیرز، نایجل ملویل، ادوارد لاولر در مطالعه‌ای فن‌آوری اطلاعات و طراحی مجدد فرایند و عملکرد شرکت‌ها را در سه روش بیان کردند: تجزیه و تحلیل فناوری اطلاعات و بازمهندسی فرآیندهای کسب و کار یک شرکت، برآورد مفاهیم عملکرد ارزش بازاریابی و تولید، تجزیه و تحلیل رفتار (با استفاده از مجموعه داده های 228 شرکت بین سال‌های 1996-1999). [13]
آنها ارتباطی بین فناوری اطلاعات و بازمهندسی و عملکرد فرایند یافتند. تعامل بین فناوری اطلاعات و اوراق بهادار بازمهندسی فرآیندهای کسب و کار، با بهره‌وری شرکت و ارزش بازار همراه می‌باشد. همچنین در این پروژه - ریسرچدیدگاهی برای سرمایه گذاری کسب و کار در فناوری اطلاعات و باز طراحی فرآیند مورد بررسی قرار گرفت. دو گروه اصلی طراحی مجدد فرآیند یعنی توجیه اقتصادی و بازسازی کار در این پروژه - ریسرچبررسی شد. تحقیقات نشان می‌دهد که فناوری اطلاعات نقش مهم و مکملی در طراحی مجدد فرایند دارد. شرکت‌ها با سطوح بالای سرمایه گذاری فناوری اطلاعات که دارای کاربرد بیشتری در تصمیم‌های غیر متمرکز دارند، از سیستم‌های خودمحور و کارکرد متقابل استفاده می‌کنند.
بازمهندسی فرایند کسب و کار، فرآیند‌های کسب و کار نوآورانه و جدید را در بر می‌گیرد و باعث می‌شود که شرکت‌ها در محیط‌های رقابتی، با تغییرات سازگار شوند. مخصوصا بازمهندسی در فضای کسب و کار کنونی، شرکت‌ها را قادر می‌سازد که فرایندهای کسب و کار انعطاف‌پذیر ایجاد کنند که با خواسته‌های پویا و اطلاعات فشرده و بازار جهانی همخوانی داشته باشد. بازطراحی فرایند یکی از برنامه‌هایی است که می‌تواند تغییرات سازمانی مثبتی ایجاد کند. دیگر برنامه های مورد استفاده توسط شرکت‌ها، شامل مشارکت کارمندان، مدیریت کیفیت جامع و مدیریت فرایند کسب و کار می‌باشد. [14]
فن‌آوری اطلاعات، سازمان‌ها را برای طراحی مجدد فرایند‌ها آماده می‌کند و طراحی سازمانی با عملکرد بالایی را نشان می‌دهد. قابلیت‌های اطلاعاتی که توسط فناوری اطلاعات ایجاد می‌شود، باعث می‌شود که سرمایه‌گذاری اطلاعاتی، یک مؤلفه مهم در شیوه‌های کاری‌ای باشد که با تغییرات سازمانی در ارتباط است. در این پروژه - ریسرچفرضیه‌های زیر نتیجه شد:
1. تعامل بین فناوری اطلاعات سازمان و طراحی مجدد فرایند به طور مثبت و قابل توجهی با عملکرد سازمانی ارتباط دارد.
2. ارتباط بین عملکرد سازمانی و تعامل بین فناوری اطلاعات با توجه به طراحی مجدد فرآیند به دو عامل توجیه اقتصادی و بازسازی کار بستگی دارد.
نتایج حاصل از این تحقیقات نشان می‌دهد که:
1. مدیران باید سرمایه گذاری در فناوری اطلاعات و طراحی مجدد فرایند را به عنوان وسیله‌ای برای بهبود عملکرد شرکت در نظر بگیرند. در کوتاه مدت، با تمرکز بر چگونگی ساختار کار در شرکت، می‌توانند بهره‌وری تولید و همچنین عملکرد را بهبود بخشند.
2. برای اثرات دراز مدت، مدیران باید محافظه کارانه تر با تغییرات برخورد کنند. به جای تلاش برای پیاده‌سازی تغییرات زیاد در شرکت، طراحی مجدد فرایند می‌تواند موثر واقع شود.
محیط مجازی ارتباطی و شبکه جهانی اینترنت موجب افزایش سرعت و توسعه ارتباط‌های پیشرفته در همه جا، دسترسی در هر لحظه و ابزاری ساده از طریق مرورگرهای وب گردیده است. سازمان‌ها پیشرو با استفاده از تکنولوژی‌های نوین در ارتباطی پا به عرصه بازاریابی الکترونیکی گذاشته‌اند و بدین ترتیب از طریق محیط مجازی با مشتری‌ها، فروشنده‌ها و شرکای خود تماس برقرار می‌کنند. اینترنت و اینترانت موجب تغییر حرکت اطلاعات در سازمان‌ها، تغییر نحوه تبادل اطلاعات تجاری و ارتباطات گردیده‌اند. این شرایط نوین موجب ایجاد ارزش‌های جدید در دنیای کسب و کار گردیده است.
بازمهندسی فرآیندهای کسب و کار برای بازاریابی الکترونیکی نقش بیشتری نسبت به توانمندی‌های وب دارد. این مطلب دکتر زرگر در کتاب اصول و مفاهیم فن‌آوری اطلاعات به این ترتیب بیان شده که بازمهندسی فرآیندهای کسب و کار شامل طراحی مجدد فرآیندها در سرتاسر حلقه‌های ارتباطی درون سازمانی و بین سازمانی است. این شرکت‌ها چه در ابتدای زنجیر ارتباطی باشند (مانند سفارش‌گذاری، مدیریت انبارداری و تولید) و چه در انتهای این حلقه (مانند فروش، بازاریابی و خدمات مشتری) باید به یکدیگر متصل شوند. وقتی سازمان‌ها بتوانند اطلاعات را به موقع و در هر لحظه به راحتی مبادله کنند، کارها در یک شبکه ارتباطی بین سازمان‌ها از قبیل مدیریت زنجیره تأمین نیز بهتر انجام می‌شود. [2]
بازمهندسی فرآیندهای کسب و کار در بازاریابی الکترونیکی شامل فکر نو و طراحی مجدد فرآیندها در سطح یک سازمان و سطح ارتباط‌های زنجیره‌ای سازمان‌ها، معروف به مدیریت زنجیره تأمین، برای بهره‌برداری بیشتر از مزایای ارتباطی، فضای مجازی اینترنت و راه‌های نوین ایجاد ارزش است. با استفاده از بازاریابی الکترونیکی، اطلاعات فرآیندها هر لحظه در اختیار مشتری قرار می‌گیرد. علاوه بر این، اطلاعات مشتری به سازنده نیز ارسال شده است تا نظر و سلیقه مشتری مستقیماً در طراحی محصول مدنظر واقع شود. از این رو قواعد کاری سازمان‌ها تغییر می‌کند؛ انجام سفارش، فرآیندهای کاری و فروش نیز برای تجارت الکترونیکی باید طراحی مجدد شوند. بنابراین در تجارت الکترونیک، اگر به مانند بسیاری از سازمان‌هایی که هم‌اکنون در این زمینه سرمایه‌گذاری کرده‌اند عمل شده و توجهی به تغییرات فرآیندی نگردد، نتیجه‌ای جز شکست عاید سازمان نخواهد شد. [3]
در سال 2008 پژوهشی در رابطه با مدل اندازه‌گیری عملکرد بازمهندسی فرایند مدیریت ساخت (CMPRPM) ، که بر اساس استفاده از فلسفه مهندسی مجدد فرایند کسب و کار است، انجام شد. در این پژوهش زمان عملیات فرایند و رضایت مشتری به عنوان شاخص‌های ارزیابی کارایی و اثربخشی استفاده می‌شود. مدل CMPRPM برای محاسبه زمان عملیات فرایند، از نظریه صف‌بندی استفاده می‌کند. [15]
به منظور دستیابی به رضایت مشتری، خواسته‌های مشتری شناسایی می‌شود و شاخص حصول هدف برای محاسبه اثر بخشی فرایند مورد استفاده قرار می‌گیرد. پس از یکپارچه سازی نتایج ارزیابی کارایی و اثربخشی، شاخص‌های ارزش فرایند و بهبود ارزش برای اندازه‌گیری قبل و بعد مهندسی مجدد، مورد استفاده قرار می‌گیرند.
مدل CMPRPM پیشنهاد داده شده در این پروژه - ریسرچ، عملکرد (AS-IS) اولیه و فرایند‌های مهندسی مجدد (TO-Be) را برای تسهیل طراحی موفقیت آمیز بازمهندسی فرآیندهای کسب و کار نشان می‌دهد. نتایج نشان می‌دهد که با اتخاذ مدل ارائه شده، صنعت ساخت و ساز به طور قابل توجهی در طراحی بازمهندسی فرآیندهای کسب و کار سودمند است.
نویسندگان این پروژه - ریسرچبازمهندسی فرآیندهای کسب و کار را که یک ابتکار سازمانی استراتژی محور طراحی شده برای بهبود طراحی مجدد فرایند های کسب و کار می‌باشد، شامل چهار مرحله اصلی زیر می‌دانند:
1. ارائه فرایند: در مهندسی مجدد فرایند یکی از سخت‌ترین و مهمترین وظایف، شناسایی و توصیف روند کلی شرکت هاست. به طور دقیق، توصیف فرایند عملیاتی طبقه‌بندی شده، یک گام اساسی در برنامه مهندسی مجدد می‌باشد. ارائه فرایند یک تعریف سیستماتیک برای کمک به شرکت‌ها به منظور روشن ساختن و انتخاب فرایند برای مهندسی مجدد می‌باشد.
2. انتقال فرایند: انتقال فرایند به طور عمده نشان دهنده کاربرد تجزیه و تحلیل عملیاتی و مدلسازی فرایند است. هدف اولیه از تجزیه و تحلیل عملیاتی، تعریف پردازش دسته بندی عملیاتی و سپس بعد از تجزیه و تحلیل عملیاتی و مدلسازی، فرایند کسب و کار (TO-Be) آینده را فرموله می‌کند.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

3. ارزیابی: همانطور که فعالیت‌های مهندسی مجدد، بر فعالیت‌های ناکارامد تمرکز دارد، تا تغییراتی را در راستای بدست آوردن بیشترین تأثیر، قبل از اجرا، ایجاد کند، روند کنونی باید برای موانع فرایند‌ها مورد بررسی قرار گیرند تا از طراحی مجدد فرایند‌ها اطمینان حاصل شود. ارزش فرایند به منظور برآورد عملکرد فرایند مورد استفاده قرار می‌گیرد، می‌تواند در 2 دیدگاه بررسی شود: دیدگاه اول بهره‌وری در هر واحد هزینه و دیدگاه دوم بهره‌وری در هر واحد زمان.
4)طراحی مجدد فرایند: باید شامل بررسی عملیات‌های کسب و کار فعلی باشد. نتایج تجزیه و تحلیل از مدل ارزیابی فرایند بدست آمده می‌تواند برای شناسایی نقص‌های اصلی فرایند مورد استفاده قرار گیرد.
2-3 بازاریابی و مدیریت ارتباط با مشتریدر بخش دوم به مروری بر ادبیات در حوزه بازاریابی و مدیریت ارتباط با مشتری الکترونیکی پرداخته می‌شود. مدیریت ارتباط با مشتری الکترونیکی یک استراتژی مدیریتی است که سازمان را قادر می‌سازد بر مشتریان تمرکز کنند و روابط قوی‌تری را ایجاد نمایند. این کار کمک می‌کند تا اطلاعات مربوط به مشتری، فروش، بازاریابی، حساسیت و گرایشات بازار را یک به یک کنار هم قرار دهیم. قابل ذکر است گستره این مشتریان الکترونیکی محدود به مشتریان موجود نمی‌شود بلکه مشتریانی که از طریق بازاریابی به سیستم اضافه شده‌اند هم نیاز به مدیریت ارتباطی کارآمد دارند.
2-3-1 مفاهیم پایه‌ای در حوزه بازاریابی و مدیریت ارتباط با مشتریمعاملاتی که تنها بر اثر بخشی عناصر آمیخته بازاریابی تاکید داشت، به سوی بازاریابی مبتنی بر رابطه و برقراری مدیریت موثر ارتباط با مشتری تغییر جهت داده است. طی دو دهه گذشته سازمان‌های بسیاری به اهمیت رضایتمندی مشتریان خود واقف شده و دریافته‌اند که حفظ مشتریان موجود به مراتب کم هزینه تر از جذب مشتریان جدید است. به علاوه وجود رابطه قوی بین رضایتمندی مشتریان و سودآوری مورد قبول واقع شده و تأمین و ارتقای رضایتمندی مشتریان به هدف عملیاتی بسیار مهم اغلب سازمان‌ها تبدیل شده است. بنابراین شرکت‌ها همواره باید ناظر و مراقب تعامل بین خود و مشتریانشان باشند و با شناخت و درک صحیح از نیازها و ارزش‌های مد نظر مشتریان، کالاها و خدمات با ارزشی را به آنان ارائه کنند تا با جلب رضایتمندی ، در آن‌ها وفاداری ایجاد کنند. محققان، بازاریابی رابطه‌مند را از ابعاد مختلفی مورد بررسی قرار داده‌اند که یکی از آن‌ها تاکید بر برقراری روابطی بلند مدت و متقابل بین خریدار (مشتری) و فروشنده است.
بر خلاف تئوری بازاریابی کلاسیک که هنرش در جذب مشتریان جدید و تاکید آن بیشتر بر انجام معاملات متمرکز بود تا ایجاد رابطه با دیگران، با شدت گرفتن رقابت بین شرکت‌ها در مشتری‌یابی برای محصولات و خدماتشان و همچنین افزایش قدرت مشتری در دنیای رقابتی امروز، شرکت‌ها دیگر نه تنها باید به دنبال جذب مشتریان جدید باشند، بلکه حفظ و نگهداری مشتریان قبلی و برقراری روابطی مستحکم با آنان را نیز باید مورد توجه قرار دهند. [16]
دنیای امروز مملو از تغییرات و دگرگونی هاست. تغییر در فناوری، تغییر در اطلاعات، تغییر در خواسته‌های مردم، تغییر در مصرف‌کنندگان و تغییر در بازارهای جهانی. اما از مهمترین تغییرات ایجاد شده در صحنه کسب‌وکار، تغییر در ارزش‌های قابل عرضه به خریداران بوده است که به عنوان عامل اصلی موفقیت در سازمان‌های فعلی شناخته می شود و سازمان‌های پیشرو در هر صنعت موفقیت خود را مدیون توانایی در عرضه و ارائه ارزش بیشتر به خریداران در مقایسه با رقبایشان می‌دانند.به عبارت دیگر تنها در صورت تمرکز منابع بر فرصت‌ها و ایجاد ارزش برای مشتریان است که می‌توان به مزیت رقابتی پایدار دست یافت و پشتوانه‌ای محکم برای ادامه حیات سازمان و کسب رهبری در آن عرصه از رقابت را پیدا کرد.
بازاریابی رابطه‌مند به دنبال برقراری چنان روابطی با مشتریان هدف است که مجدداً در آینده از او (شرکت) خرید کنند و دیگران را نیز به این کار ترغیب کنند. بهترین رویکرد جهت حفظ و نگهداری مشتریان این است که رضایتمندی فراوان در مشتری ایجاد کرد و آنچه را برای او ارزش تلقی می‌شود مورد توجه قرار داد تا در نتیجه وفاداری او نسبت به شرکت مستحکم شود. مدیریت ارتباط با مشتری نیز در پی ارائه ارزش‌های بیشتر برای مشتری و دست‌یابی به مزایای ملموس و غیر ملموس ناشی از این رابطه است. در دنیای کنونی توجه و عمل به اصول بازاریابی رابطه مند و مدیریت ارتباط با مشتری به عنوان یک مزیت رقابتی به شمار می‌رود. [17]
2-3-2 کارهای مرتبط در حوزه بازاریابی و مدیریت ارتباط با مشتریپل هریگان، الین رمزی و پاتریک ایباستن، در پروژه - ریسرچ‌ای به تأثیرات مدیریت ارتباط با مشتری الکترونیکی در سازمان‌های کوچک و متوسط (SMEs) پرداختند. هدف از این پروژه - ریسرچ، تعیین اصول بازاریابی روابط که به ندرت در این سازمان‌ها اعمال می‌شود و همچنین بررسی نقش تکنولوژی اینترنت در مدیریت ارتباط با مشتری در ایرلند شمالی و نیز آنچه در این نقش قابل ملاحظه است می‌باشد. در طی این مطالعات یک روش کمی برای جمع آوری داده‌ها ارائه داده شد و نتایج این مطالعات حاکی از آن بود که سازمان‌ها در حال رو آوردن به سمت الکترونیکی کردن مدیریت ارتباط با مشتری می‌باشند. [18]
ایوانجلیا بلری و میشائیل میشالاکوپولوس در پروژه - ریسرچ‌ای به بررسی کاربرد مدیریت ارتباط با مشتری الکترونیکی در بخش ارتباطات راه دور (که یک بخش در حال توسعه مداوم می‌باشد) در سازمان‌های یونانی پرداختند و سودها و مشکلات به عنوان فاکتورهای موفقیت و شکست مورد تجزیه و تحلیل قرار گرفت. نتایج نشان داد که سازمان‌ها منافع زیادی در اثر اجرای مدیریت ارتباط با مشتریان الکترونیکی که به طور قابل ملاحظه‌ای به جریان اطلاعات در سازمان‌ها برای ارتباط با مشتری کمک می‌کند، بدست می‌آورند. [19]
در تحقیقی تحت عنوان «یک چارچوب تلفیقی (یکپارچه) برای ارزش مشتری و عملکرد مدیریت رابطه با مشتری» که در کشور چین صورت گرفته است، محققان مدعی شده‌اند که ارائه ارزش‌های برتر برای مشتری می‌تواند مزایای ملموس و غیر ملموسی را که از رفتارهای مشتری ناشی می‌شود، برای شرکت به همراه آورد. [20]
در این تحقیق اشاره شده است که با توجه به رقابت شدید و تغییرات سریع تکنولوژیک، بسیاری از شرکت‌ها به دنبال ارائه ارزش‌های برتر برای مشتریان خود هستند و ارائه ارزش‌های برتر به مشتریان به عنوان یکی از مهمترین عوامل موفقیت شرکت‌ها چه در زمان حال و چه در زمان آینده تلقی می‌شود و همچنین تأثیر مهمی روی رفتارهای مشتریان خواهد داشت و در نهایت اینکه عملکرد مدیریت رابطه با مشتری باید از طریق رفتار‌های مشتری اندازه‌گیری و ارزیابی شود، چرا که رفتارهای مشتری می‌تواند جریان درآمدی را به سوی شرکت سرازیر کند و از اهمیت استراتژیک زیادی برخوردار است. در مقابل دیدگاه‌های گذشته که ارزش را تنها در منافع حاصل شده می‌دانستند، مطالعه حاضر چنین فرض کرده که ارزش مشتری مبنی بر ادراک مشتری است، از اینکه وی چه چیزهایی را دریافت می کند (از قبیل قیمت، هزینه فرصت، هزینه نگهداری و یادگیری).
در تحقیق دیگری تحت عنوان «از آمیخته بازاریابی به سوی بازاریابی رابطه مند» چنین عنوان شده است که با توجه به تحولات اقتصادی به وجود آمده، پارادایم جدیدی در حوزه مدیریت بازاریابی در حرکت از توجه محض به عناصر آمیخته بازاریابی به سوی بازاریابی رابطه‌مند گسترش یافته است و این گرایش بخصوص در بازاریابی خدمات و بازاریابی صنعتی مورد تاکید قرار گرفته است و روابط بازاریابی به عنوان یک پارادایم جدید در ادبیات بازاریابی شناخته شده است. [21]
با توجه به این مطلب که در دنیای رقابتی امروز عنوان می شود: «هزینه جذب مشتری جدید به مراتب بیش از هزینه نگهداری مشتریان کنونی است»، محققان عنوان داشته اند که پیروی از اصول بازاریابی رابطه‌مند می‌تواند سهم عمده ای در حفظ و نگهداری مشتریان کنونی و در نتیجه سودآوری شرکت داشته باشد و می‌توان آن را یک مزیت رقابتی ممتاز برشمرد.
با مطالعه و بررسی تحقیقات صورت پذیرفته می‌توان به نقاط مشترک و همپوشی مفاهیم بازاریابی رابطه‌مند و مدیریت ارتباط با مشتری پی برد. شرکت‌ها در پی به کارگیری استراتژی‌هایی هستند که از آن طریق مشتریان کنونی خود را حفظ کنند و با داده‌کاوی و به کارگیری تکنولوژی مناسب در پی کسب اطلاعات به هنگام در خصوص مشتریانشان بوده تا از طریق برقراری روابطی پایدار و بلند مدت با مشتریان خود در پی جلب رضایتمندی و وفاداری آن‌ها باشند. بازاریابی رابطه‌مند و مدیریت ارتباط با مشتری از جمله استراتژی‌هایی است که شرکت‌های کامیاب امروز برای دست‌یابی به اهداف گفته شده از آن بهره برداری می‌کنند و می‌توان توان استفاده مطلوب از آن‌ها را به عنوان یک مزیت رقابتی پایدار در دنیای تجارت امروز دانست. [21]
در سال 2010، لی لینگ‌یی در پروژه - ریسرچ‌ای تحت عنوان «استفاده از متریک‌های بازاریابی» به تعیین شرایط ترویج استفاده از معیار‌های بازاریابی در مدیریت ارتباط مشتری پرداخت و عوامل سازمانی استفاده از متریک‌های بازاریابی که بر تضعیف یا تقویت عملکرد مدیریت ارتباط با مشتری تأثیر می‌گذارد را مشخص کرد. [22]
بر اساس تئوری ارزش مبتنی بر مشتری ، یک چارچوب تحقیقاتی برای روشن‌تر شدن نقش فرهنگ سازمانی مبتنی بر ارزش مشتری، توسعه داده شد. شواهد تجربی از 209 نمونه شرکت‌های تجاری نشان داد که شرکت‌هایی که از متریک‌های بازاریابی استفاده می‌کنند تأثیر اصلی و مهمی بر افزایش عملکرد مدیریت ارتباط با مشتری دارند.
متریک‌های بازاریابی که در این تحقیقات تمرکز اصلی بر آن است، اشاره به جمع آوری داده‌های بازاریابی، کانال‌ها، رفتارها و پاسخ مشتری، به منظور اثر بخشی بر فعالیت‌های مدیریت ارتباط با مشتری می‌باشد. با توجه به تحقیقات انجام شده در پژوهش متریک‌های بازاریابی را می‌توان به 6 گروه زیر خلاصه کرد:
1. متریک‌های مالی (به عنوان مثال: حجم معاملات، سودها و...)
2. متریک‌های بازار رقابتی
3. متریک‌های رفتار مصرف کننده (نفوذ مشتری، وفاداری و جذب مشتری جدید)
4. مقیاس‌های مشتری‌های با واسطه
5. مقیاس‌های مشتری‌های مستقیم
6. اندازه‌گیری نوآورانه (راه‌اندازی محصولات جدید و درآمد این محصولات به عنوان درصدی از کل ارسال‌ها)

شکل 2- SEQ شکل * ARABIC 1 چارچوبی برای استفاده از متریک‌های بازاریابیشکل 2-1 مروری بر چارچوب این تحقیقات را فراهم می‌کند که روابط بین ویژگی‌های شرکت‌های مبتنی بر ارزش مشتری، استفاده از متریک‌های بازاریابی و عملکرد برنامه‌های مدیریت ارتباط با مشتری را نشان می‌دهد.
همچنین در سال 2003 آمبلر و وانگ نشان دادند که رابطه مثبت و معنی داری بین ارتباط مشتری و 2 نوع از متریک‌های بازاریابی به نام‌های رفتار مشتری و مشتری‌های با واسطه وجود دارد [23]. از این رو فرضیه‌های زیر نتیجه شده است:
1. فرهنگ سازمانی مبتنی بر ارزش مشتری، با سطح قابل توجهی از استفاده از متریک‌های بازاریابی مرتبط است.
2. استفاده از متریک‌های بازاریابی به طور قابل توجهی با عملکرد مدیریت ارتباط با مشتری ارتباط دارد.
3. زنجیره تأمین بازاریابی تأثیر استفاده از متریک‌های بازاریابی در بدست آوردن عملکرد برتر مدیریت ارتباط با مشتری را تضعیف می‌کند.
4. قضیه ارزش نوآورانه، تأثیر استفاده از متریک‌های بازاریابی در بدست آوردن عملکرد برتر مدیریت ارتباط با مشتری را تقویت می‌کند.
همچنین در سال 2009 مدلی برای پیش‌بینی ارزش مشتری از دیدگاه جذابیت محصول و استراتژی بازاریابی مطرح شد که در آن، پیش بینی ارزش مشتری از دیدگاه جذابیت محصول و استراتژی بازاریابی مورد بررسی قرار می‌گیرد [24]. این پژوهش مدلی برای مدیریت ارتباط با مشتری با استفاده از فکر هوشمند، که شامل مفهوم پویایی سیستم می‌باشد، را پیشنهاد می‌کند که شامل سه ماژول زیر است:
1. مدل رفتار خرید مشتری
2. مدل زنجیره مارکوف برای ارزش طول عمر مشتری
3. مدل بازده مالی در دراز مدت
احتمال خرید مشتری در مدل 1، محاسبه ارزش طول عمر مشتری در ماژول 2 و تخمین طول عمر در ماژول 3 بررسی می‌شود. مدل رفتار خرید مشتری، از دینامیک سیستم (تغییرات سیستم) به عنوان یک ابزار شبیه‌سازی استفاده می‌کند. این مدل فعالیت‌های بازاریابی و تأثیر توسعه محصول (شامل اهمیت تصمیم‌گیری خرید مشتری بر روی یک محصول، جذابیت محصول از نظر کیفیت، طراحی و قیمت) در نظر می‌گیرد. این مدل در شکل 2-2 نشان داده شده است.

شکل SEQ شکل * ARABIC 2-2 مدل رفتار خرید مشترییک شرکت به راحتی می‌تواند با تعریف پارامتر‌هایی همچون جذابیت یک محصول و پاسخ مشتری، استراتژی کسب و کار خود را از هر دو دیدگاه بازاریابی و توسعه محصول ارزیابی کنند. در نتیجه پالایش این پارامترها و اتخاذ بهترین استراتژی، برای ایجاد ارزش مشتری و حداکثر سود بازده مفید است. دو پارامتر مهم دیگر در این پژوهش برای توسعه محصول درنظر گرفته شده است:
الف) جذابیت یک محصول، که به طراحی، کیفیت و قیمت بستگی دارد.
ب) تجربه کاربر از محصول، رضایت و وفاداری به سازمان.
نتایج این مطالعه نشان می‌دهد که شرکت‌ها در بازار به شدت رقابتی امروز، باید تاکید بیشتری بر جذب مشتری برای توسعه محصول خود داشته باشند. از طریق تجزیه و تحلیل فعالیت‌های بازاریابی مختلف و ویژگی ‌های محصول بر روی رفتار مشتری، شرکت‌ها می‌توانند نتایج را از نظر سهم بازار و فروش پیش‌بینی کنند. با این حال پیدا کردن مدلی برای این استراتژی مشکل است.
مدل پویایی سیستم که از تجزیه و تحلیل زنجیره مارکوف برای برآورد ارزش طول عمر مشتری استفاده می‌کند، از اهمیت زیادی در کسب و کار برخوردار می باشد. شکل 2-3 روابط بین ایجاد ارزش و دریافت ارزش در یک شرکت را نشان می‌دهد. به منظور تقویت فرآیندهای ایجاد و دریافت ارزش، یک استراتژی بازاریابی مبتنی بر مشتری لازم می‌باشد. این بدان معناست که شرکت‌ها باید در ارتباط با قیمت‌گذاری، بخش مشتری، طراحی و کیفیت محصول، و استراتژی‌های تبلیغاتی به منظور رقابت در بازار، تصمیمات معقولی بگیرند.

شکل 2-3 مدل فرآیندی نحوه ایجاد ارزش و دریافت آن در سازمانمدل پویایی سیستم که از تجزیه و تحلیل زنجیره مارکوف برای برآورد ارزش طول عمر مشتری استفاده می‌کند، از اهمیت زیادی در کسب و کار برخوردار می باشد. شکل 2-3 روابط بین ایجاد ارزش و دریافت ارزش در یک شرکت را نشان می‌دهد. به منظور تقویت فرآیندهای ایجاد و دریافت ارزش، یک استراتژی بازاریابی مبتنی بر مشتری لازم می‌باشد. این بدان معناست که شرکت‌ها باید در ارتباط با قیمت‌گذاری، بخش مشتری، طراحی و کیفیت محصول، و استراتژی‌های تبلیغاتی به منظور رقابت در بازار، تصمیمات معقولی بگیرند.
همچنین در سال 2011 نیز در پروژه - ریسرچ‌ای تحت عنوان « استراتژی‌های تطبیق فناوری اطلاعات برای مدیریت ارتباط با مشتری » به نحوه ارتباط میان استراتژی‌های ارتباط با مشتری و زیرساخت‌های فناوری اطلاعات اشاره شده است و راهکاری جهت هم‌ترازی این استراتژی‌ها و زیرساخت‌های یک شرکت ارائه گردید. [25]
2-4 بازمهندسی و مدیریت ارتباط با مشتریدر ادامه و در بخش آخر حوزه بازمهندسی و مدیریت ارتباط با مشتری الکترونیکی مطرح می‌گردد که در آن برای دست یافتن به مدیریتی موفق در زمینه ارتباط با مشتریان از تکنیک‌های بازمهندسی استفاده می‌شود. به عبارت دیگر از بازمهندسی به عنوان یک نگرش مدیریتی برای پیشرفت به وسیله افزایش کارایی و اثربخشی فرآیندهای مدیریتی موجود در سازمان استفاده می‌گردد.
2-4-1 مفاهیم پایه‌ای در حوزه بازمهندسی و مدیریت ارتباط با مشتریسازمان‌ها و دستگاه‌های دولتی و غیردولتی به منظور ارتقاء سطح کیفیت خدمات خود می‌کوشند با بهره‌گیری از استراتژی‌های موثر و مناسب ، نقش حیاتی مشتریان را بعنوان تعیین، طراحی، و ارزیابی کننده کیفیت توسعه دهند. مدیریت ارتباط با مشتری یکی از استراتژی‌هایی که اکنون کشورهای توسعه یافته و پیشرفته در سازمان‌های انتفاعی و خصوصی خود اتخاذ نموده و براساس آن کوشیده‌اند با افزایش و به حداکثر رساندن اطلاعات مشتریان خود از طریق سیستم‌ها و ابزارهای مناسب ارتباطی، تعادل بهینه بین سرمایه‌گذاری مشارکتی و رضایتمندی آن‌ها برقرار نمایند و از این طریق سود و منفعت را به حداکثر برسانند. با این وصف و با توجه به سیاست‌های مدیریت کیفیت سازمان بیمه خدمات درمانی، ارتباط مناسب و شنود نیازها ، خواسته‌ها و انتظارات مشتریان (اعم از داخلی، خارجی و نهایی) و به دنبال آن، تحقق مدیریت ارتباط با مشتری امری الزامی است، از این طریق امکان برقراری ارتباط موثر و سالم که اساس مدیریت مشارکتی را نیز فراهم می‌آورد، میسر می‌شود.
نوآوری و تغییر در محصولات و خدمات جوامع صنعتی، چنان شتابی گرفته است که قدرت انتخاب و خرید بسیاری محصولات و خدمات را از مشتریان گرفته است، به گونه‌ای که نو بودن بسیاری از کالاها بیش از چند ماه دوام ندارد. سرعت تغییر در خدمات و کالاها و جهانی شدن اقتصاد تأثیر خود را به گونه‌ای در تمامی بنگاه‌های اقتصادی نمایان کرده است که رفتار و فرهنگ تمام مردم تحت تأثیر این تغییرات قرار گرفته است. جوامع و سازمان‌هایی که خود را با این تغییرات هماهنگ نکرده‌اند احساس عقب‌ماندگی دارند و بنگاه‌های اقتصادی در این گونه جوامع رو به نابودی هستند. رقابت در سازمان‌ها و بنگاه‌های اقتصادی پیشرو چنان سرعت و شتابی دارد که تصور رسیدن به آن‌ها بیشتر اوقات محال و غیر ممکن به نظر می‌رسد. لحظه‌ای درنگ باعث حذف و حتی نابودی بنگاه‌های اقتصادی می‌شود. سرعت تغییر بر بنگاه‌های اقتصادی و همه هنجارهای اجتماعی تأثیر گذاشته و اگر هنجارهای اجتماعی توان تغییر سریع نداشته باشند ممکن است به فروپاشی آن جوامع منجر شود. [26]
هر سازمان و یا شرکت، یک نهاد اجتماعی است که مبتنی بر هدف بوده و دارای سیستم های فعال و هماهنگ است و با محیط خارجی ارتباط دارد. در گذشته، هنگامی که محیط نسبتاً باثبات بود بیشتر سازمان ها برای بهره‌برداری از فرصت های پیش‌آمده به تغییرات تدریجی و اندک اکتفا می‌کردند؛ اما با گذشت زمان، در سراسر دنیا سازمان ها دریافته‌اند که تنها تغییرات تدریجی راهگشای مشکلات کنونی آنان نیست و گاهی برای بقای سازمان لازم است تغییراتی به صورتی اساسی و زیربنایی در سازمان ایجاد شود.
امروزه در سراسر دنیا این تغییرات انقلابی را با نام مهندسی مجدد می شناسند؛ مهندسی مجدد روندی است که در آن وظیفه های فعلی سازمان جای خود را با فرایندهای اصلی کسب‌وکار عوض کرده و بنابراین، سازمان از حالت وظیفه‌گرایی به سوی فرایند‌محوری حرکت می‌کند. همین امر موجب سرعت بخشیدن به روند کسب‌وکار و کاهش هزینه‌ها و درنتیجه رقابتی‌تر شدن سازمان می‌گردد . در ‌رویکرد مهندسی مجدد، روش‌ انجام‌ کار در دوره‌ تولید انبوه و سلسله مراتب‌ سازمانی‌ گذشته جهت استانداردسازی از اهمیت‌ می‌افتند. ‌اساس‌ مهندسی‌ مجدد بر بررسی های‌ مرحله‌ای‌ و حذف‌ مقررات‌ کهنه‌ و تصورات‌ بنیادینی‌ استوار است‌ که‌ زمینه‌ساز عملکرد کسب‌وکار کنونی‌اند. اکثر شرکت ها انباشته‌ از مقررات‌ نانوشته‌ای‌ هستند که‌ از دهه‌های‌ پیشین‌ بر‌جا مانده‌اند. این‌ مقررات‌ بر پایه‌ فرض هایی‌ درباره‌ فناوری، کارمندان و اهداف سازمان‌ به‌‌وجود آمده‌اند که‌ دیگر کاربردی‌ ندارند.
مهندسی‌ مجدد عبارت‌ است‌ از بازاندیشی بنیادین‌ و ریشه‌ای‌ فرایندها برای‌ دستیابی‌ به‌ پیشرفتی‌ شگفت‌انگیز در معیارهای‌ حساسی‌ چون‌ کیفیت‌ و سرعت‌ خدمات. سازمان های‌ تازه، شرکت هایی‌ خواهند بود که‌ به‌طور مشخص‌ برای‌ بهره‌برداری‌ در جهان‌ امروز و فردا طراحی‌ می‌شوند و نهادهایی‌ نیستند که‌ از یک‌ دوران‌ اولیه‌ و باشکوه‌ که‌ ربطی‌ به‌ امروز ندارند انتقال‌ یابند. در مهندسی مجدد اعتقاد براین است که مهندسی مجدد را نمی‌توان با گام های کوچک و محتاط به اجرا درآورد. این قضیه همان قضیه صفر یا یک است؛ به عبارت دیگر یا تغییری تحقق نیابد و یا در صورت تحقق از ریشه و بنیان تغییر حاصل گردد. [27]
مهندسی مجدد به این معنا نیست که آنچه را که از پیش وجود دارد ترمیم کنیم یا تغییراتی اضافی بدهیم و ساختارهای اصلی را دست نخورده باقی بگذاریم؛ مهندسی مجدد یعنی از نقطه صفر شروع کردن، یعنی به کنار نهادن روش های قدیمی و به کار گرفتن نگاه نو. مهندسی مجدد در پی اصلاحات جزیی و وصله‌کاری وضعیت موجود و یا دگرگونی های گسترشی که ساختار و معماری اصلی سازمان را دست‌نخورده باقی می‌گذارد، نیست. مهندسی مجدد در پی آن نیست که نظام موجود را بهبود بخشیده و نتیجه کار را بهتر کند.
مهندسی مجدد به معنای ترک کردن روش های کهنه و دستیابی به روش های تازه‌ای است که برای تولید کالاها و خدمات شرکت و انتقال ارزش به مشتری لازم هستند. مهندسی مجدد را با نام های متفاوتی می‌توان شناخت، نام هایی مانند طراحی مجدد فرایندهای اصلی (کالپان و مورداک)، نوآوری فرایندی (داونپورت)، طراحی مجدد فرایندهای کسب‌وکار (داونپورت و شورت، ابلنسکی)، مهندسی مجدد سازمان (لوونتال، هامر و چمپی)، طراحی مجدد ریشه‌ای (جوهاتسون) و معماری مجدد سازمان (تالوار) همگی از نام هایی هستند که مقوله مهندسی مجدد را معرفی کرده‌اند. پس چنانچه از ما خواسته ‌شود تعریف کوتاهی از مهندسی مجدد به عمل آوریم پاسخ می‌دهیم: همه چیز را از نو آغاز کردن.
2-4-2 کارهای مرتبط در حوزه بازمهندسی و مدیریت ارتباط با مشتریهمر در کتاب خود، مهندسی مجدد را شروع دوباره معرفی کرد. وی در همان کتاب اصول کلی این روش را بیان کرد و مزایای به کارگیری آن را با ذکر کاربرد آن در شرکت‌های ایالات محده مانند «فورد موتور» برشمرد [28]. دامامپور اظهار داشت که تغییرات همه‌جانبه، باعث تغییرات اساسی در فعالیت‌های یک سازمان می‌شوند و این تغییرات نشان‌دهنده ترک آشکار شیوه‌های موجود در کار هستند، درست برعکس تغییرات تدریجی که معمولاً این‌گونه شیوه‌های کار را همراهی می‌کنند. به همین دلیل لازم است، بین تغییر تدریجی و تغییر همه جانبه تمایز قائل شویم. [29]
بارزاک و همکارانش نشان دادند که تغییرات تدریجی در درازمدت باعث بروز کارایی می‌شوند. برعکس، تغییرات همه جانبه می‌توانند باعث سازمان‌دهی مجدد شرکت شوند. آنان متغیرهایی را شناسایی کردند که شرکت‌ها را به ترک ساختارها و فرآیندهای موجود و ایجاد ساختار و فرآیندی جدید و متفاوت ترغیب می‌کنند. [30]
همر و چمپی این متدلوژی را در کتاب خود به نام «طراحی مجدد کسب و کار» توسعه دادند. این کتاب توضیح می‌دهد، هنگامی که تصمیم بر طراحی مجدد اتخاذ می‌شود، افراد و پیشرفت‌ها چگونه تأثیر قرار می‌گیرند. ویتمن و گیبسون، برای کشف اینکه چرا سازمان‌ها از فرآیند مهندسی مجدد کسب و کار استفاده می‌کنند مطالعه‌ای انجام دادند [31]. نتایج به دست آمده آنها به ترتیب اهمیت عبارتند از:
بهبود فرآیندهای کسب و کار؛
پیشرو شدن در صنعت؛
سازماندهی مجدد وظایف کسب و کار؛
بهبود وضعیت فعلی صنعت؛
قرار گرفتن در میان رهبران صنعتی؛
تغییر چشمگیر وضعیت شرکت؛
اردالجیان و فانز، معتقدند که فرآیند مهندسی مجدد کسب و کار روشی است مبتنی بر فرآیندها که توسط مدیریت ارشد هدایت می‌شود که عملکرد بهتری را از طریق تغییرات همه جانبه از سازمان انتظار دارد. [32]
همچنین در سال 2010، اهمیت و ارزش پیاده‌سازی بازمهندسی فرآیندهای کسب‌و‌کار بر مبنای استراتژی‌های ارتباط با مشتری در سه لایه مفهومی، سیستمی و تکنیکی توسط وینا گو و ویهوا لو بررسی و چارچوبی مبتنی بر معماری مشتری‌مدار جهت پیاده‌سازی بازمهندسی ارائه شد که از نتایج آن می‌توان به راهبری استراتژیک در راستای توسعه بلندمدت و ماندگار سازمان اشاره نمود. [33]
فصل سوم
روش تحقیق3-1 تعریف مسئله و هدفتمرکز اصلی مدیریت ارتباط با مشتری بر شکل‌دهی روابط با مشتریان با هدف بهبود رضایت مشتری و بیشینه ساختن سود ناشی از هر مشتری است. امروزه بسیاری از شرکت‌ها می‌کوشند ارتباطات خود با مشتریان را از نو برقرار ساخته و بر طول مدت باقی ماندن آنها در دایره محصولات و خدمات شرکت بیافزایند. برای مدیریت ارتباط با مشتری تعاریف گوناگونی گفته شده که همگی آنها در عنصر مشتری مداری مشترک هستند و حکایت از نیاز سازمان‌ها به تأمین نیازهای مشتری و جلب رضایت وی به منظور حفظ وفاداری اوست. بحث مدیریت روابط با مشتریان الکترونیکی، نتیجه یکی از تغییرات بنیادین در باورها و پارادایم‌های تجاری می‌باشد و آن تغییر رویکرد سازمان‌ها از روابط انبوه و کلی با گروه‌های مختلف مشتریان به روابط تک تک و مجازی با آن‌ها از طریق فناوری اطلاعات و ارتباطات می‌باشد که آن نوعی راهبرد تجاری است که به سمت افزایش حجم مبادله‌های تجاری شرکت پیش می‌رود.
در عصر اطلاعات که شیوه‌های تبادل داده‌ها به سمت الکترونیکی شدن به پیش می‌رود، حجم فعالیت‌های اقتصادی بدون نیاز به افزایش فضای فیزیکی، افزایش پیدا می‌کند و با کوتاه‌تر شدن زمان انجام این معاملات، تسهیلات فراوانی برای کسب و کارهای مختلف فراهم آمده است. سیستم‌های مدیریت ارتباط با مشتری در کشورهای غربی نیز تحت تأثیر فرآیند الکترونیکی شدن قرار داشته‌اند و پایه بسیاری از آن‌ها مدیریت ارتباط با مشتری الکترونیکی است. در واقع، در فلسفه مدیریت ارتباط با مشتری تغییرات چندانی حاصل نشده و صرفاً در مبحث مدیریت ارتباط با مشتری الکترونیکی شیوه‌های تبادل داده‌ها و معاملات به صورت الکترونیکی در آمده‌اند. البته مفاهیم اساسی در مدیریت ارتباط با مشتری نیز تحت تأثیر این فرایند تعابیر جدید پیدا کرده‌اند. می‌توان بیان نمود که مدیریت روابط مشتریان الکترونیکی زاییده کاربرد فناوری وب و اینترنت به منظور تسهیل پیاده‌سازی و کارایی سیستم‌های مدیریت ارتباط با مشتری می‌باشد.
با توجه به اینکه محیط سازمان‌ها و فعالیت‌های آن‌ها هم‌راستا با گسترش نیاز‌های مشتریان همواره در حال تغییر است سازمان‌ها همواره نیازمند به‌کارگیری مدیریتی نوین هستند. در جهت برآوردن نیازهای جدید مشتریان فن مهندسی مجدد با انطباق اثربخش سازمان‌ها و شرایط نوین به مدیران کمک‌های فراوانی می‌نماید. به عبارت دیگر برای حصول یک نگرش مدیریتی جهت پیشرفت در شناخت، جذب و نگهداری مشتریان به وسیله افزایش کارایی و اثربخشی فرآیندهای موجود می‌توان از فن بازمهندسی استفاده نمود. البته شایان ذکر است که جهت حصول اطمینان از انجام موفقیت آمیز پروژه بازمهندسی، نخست باید شناخت مناسبی نسبت به وظیفه بازمهندسی فرآیندها بدست آورد.
با توجه به تغییرات دائمی سازمان‌ها و نیز بازارهای مشتری‌گرا، آنچه در این پایان‌نامه مورد نظر قرار می‌گیرد، بازبینی در فرآیندهای کاری سازمان جهت انطباق خواسته‌های مشتری با توانمندی سازمان است و هدف ما ارائه یک ساز و کار مهندسی مجدد در یک سیستم ارتباط با مشتری الکترونیکی می‌باشد که علاوه بر تطابق فوق‌الذکر در جهت کسب منافع مالی گستره بزرگ‌تری از بازار را نیز تحت تأثیر قرار دهد. ابتدا با مشخص کردن خواسته‌های مشتریان تحت سیستمی الکترونیکی و شناسایی نقاط اثر آن در سازمان به عمل بازمهندسی (با در نظر گرفتن محدودیت‌های سازمان) پرداخته می‌شود. سپس جهت ارتقای مفاهیم بهره‌وری و اثربخشی و نیز توسعه سوددهی حاصل از خدمات سازمان استراتژی‌های متمرکز بر متدلوژی‌های بازاریابی ارائه می‌گردد. بنابراین مرور کامل روش‌های بازاریابی مبتنی بر وب نیز ضروری می‌باشد.
هدف اصلی این طرح ارائه ساختار فرآیندی مهندسی مجدد در امور سازمان با توجه به نظریات مشتریان از طریق یک سیستم الکترونیکی می‌باشد که علاوه بر ارضای تمایلات مشتریان با ارائه استراتژی‌های بازاریابی تحت وب، افزایش سود دهی سازمان مدنظر قرار می‌گیرد. همچنین قابل ذکر است در بازار رقابتی امروز سازمان‌هایی موفق خواهند بود که گستره بیشتری از مشتریان را تحت پوشش قرار دهند. از سوی مقابل مشتریان نیز در پی سازمان‌هایی هستند که میزان بیشتری از خواسته‌های آن‌ها را تحت پوشش قرار می‌دهند. جهت انطباق این دو موضوع، طراحی ساز و کاری که بتواند ارتباط فوق را برقرار سازد دارای اهمیت است. همین‌طور شناسایی بازارهای هدف از دید سازمان که منجر به سوددهی بیشتر می‌گردد، دارای اهمیت می‌باشد.
3-2 طراحی سیستم اطلاعاتی مشتری و دیاگرام‌هامدیریت روابط با مشتریان شامل متدلوژی‌ها، فرآیندها، نرم‌افزارها و سیستم‌هایی است‌ که به اداره روابط با مشتریان در سازمان‌ها کمک می‌نماید. جذب مشتریان و فراهم آوردن‌ امکان مراجعات مجدد آنان یکی از مهمترین چالش‌های سازمان‌های تجاری محسوب می‌گردد. این امر با توسعه تکنولوژی و تغییر رفتار مشتریان و انتظارات آن‌ها مشکل‌تر گردیده است. همچنین فناوری اطلاعات و توسعه مفاهیم ارتباطی و الکترونیکی جدید هزینه‌های کلی‌ تعاملات با مشتریان را کاهش داده و فعالیتهای بازاریابی را به صورت هدف‌دارتر و در راستای‌ ارائه خدمات اقتصادی و شخصی توسعه داده است.
با پیشرفت تکنولوژی، مدیریت روابط مشتریان به تدریج به فرآیندهایی تبدیل گردید که‌ امکان تعاملات همه‌جانبه بین سازمان‌ها، شرکت‌ها و مشتریان آنان را فراهم آورد بدین‌ ترتیب عملیات ایجاد، انسجام، تجزیه و تحلیل اطلاعات مشتریان و کاربرد نتایج حاصل از آن در ارائه خدمات و انجام فعالیت‌های بازاریابی از اهم وظایف این سیستم‌ها به شمار می‌رود [34]. (همانند شکل 3-1)
با توسعه مفاهیم جدید بازاریابی از قبیل بازاریابی مستقیم و بازاریابی مبتنی بر تکنولوژی‌ اطلاعات در راستای ارائه خدمات و محصولات، مفهوم جدیدی با نام‌ سیستم‌های اطلاعاتی مدیریت روابط با مشتریان پایه‌گذاری گردید. سیستم‌های اطلاعاتی‌ مدیریت روابط با مشتریان با به کارگیری نسل دوم تکنولوژی‌های تجزیه و تحلیلی و بخش‌بندی، اطلاعات جامع تعاملات با مشتریان، ارتباطات چندکاناله و تعاملات شخص به‌ شخص به منظور ارائه خدمات و محصولات سفارشی به هربخش از بازار توسعه یافت.

شکل 3-1 ساختار چندسطحی مدیریت روابط با مشتریان سنتی [6]سیستم‌های اطلاعاتی مدیریت روابط با مشتریان عبارت است از جذب و نگهداری‌ مشتریانی که دارای ارزش اقتصادی برای واحدهای تجاری می‌باشند و حذف آن دسته از مشتریانی که صرفه اقتصادی برای موسسه ندارند [35]. بر اساس دیدگاه‌های‌ سنتی، تمرکز فعالیت‌های بازاریابی بر جذب مشتریان جدید می‌باشد. این دیدگاه به مرور زمان‌ به سمت مشتری‌محوری در بازاریابی جهت‌گیری نموده است. ایجاد روابط با مشتریان و مدیریت ارتباطات آن‌ها اساس جدیدترین رهیافت‌های بازاریابی از هر دو دیدگاه تئوری و عملی‌ به شمار می‌رود.
با توجه مقدمات ذکر شده طراحی سیستم اطلاعاتی در چند بخش مختلف به صورت زیر ارائه می‌گردد:
ورود مشتری به سیستم و احراز هویت
دریافت سفارش از مشتری (وضعیت سفارش: معلق پرداخت نشده)
پرداخت توسط مشتری (وضعیت سفارش: معلق پرداخت شده یا انصرافی)
آماده سازی سفارش مشتری (وضعیت سفارش: آماده به ارسال)
تحویل سفارش به مشتری (وضعیت سفارش: توزیع شده) و تعیین وضعیت نهایی سفارش
3-2-1 ورود مشتری به سیستم و احراز هویتبخش اول از این قرار است که کاربر قبل از داشتن اجازه برای ثبت سفارش می‌بایستی حتماً در سامانه عضو شده با‌شد و اطلاعاتی از وی از جمله اطلاعات شخصی و آدرس تحویل مرسوله و پیشینه‌ای از خریدهای قبلی وی در سامانه موجود باشد. مکانیزم کار به این صورت است که بعد از ثبت‌نام کاربر در او با استفاده از نام کاربری و رمز عبور تخصیص داده شده می‌توان در سیستم وارد شود. در نتیجه اگر کاربری در سیستم ثبت‌نام نکرده باشد ملزم به انجام این مرحله است. شمای کلی کار در قالب یک فلوچارت در شکل 3-2 نمایش داده شده است. در ادامه هر بخش با استفاده از زبان مدلسازی UML (زبانی استاندارد برای مدلسازی سیستم‌های اطلاعاتی) برای درک عملکرد و رفتار سیستم به طراحی مدل پرداخته می‌شود و نیز کلیه تعاملات میان کاربران با سیستم موردنظر در قالب همین مدل‌سازی بیان می‌گردد.

شکل 3-2 روند جریان اطلاعاتی ورود مشتری به سیستم
شکل 3-3 دیاگرام مورد استفاده ورود مشتری به سیستمدیاگرام مورد استفاده ورود مشتری به سیستم نیز از قرار شکل 3-3 می‌باشد. مشتری بعد از ورود موفقیت‌آمیز به سیستم می‌تواند محصولات و یا خدمات مورد نظرش را به سبد خریدش اضافه نماید.

شکل 3-4 روند جریان اطلاعاتی ثبت سفارش توسط مشتری3-2-2 دریافت سفارش از مشتری و پرداخت صورتحسابهمان‌طور که در شکل 3-4 نشان داده شده است مکانیزم ثبت سفارش که توسط مشتری انجام می‌پذیرد به این صورت است که مشتری بعد از ورود به سیستم می‌تواند از لیست خدمات و محصولات موجود موارد مورد نظرش را به سبد خرید اضافه کند و در پایان بعد از تایید نهایی سفارش به صورت یک سفارش معلق و پرداخت نشده ثبت خواهد شد. در ادامه نوبت به پرداخت صورتحساب ایجاد شده در مرحله ثبت سفارش می‌رسد. در این مرحله می‎بایستی سفارش معلق پرداخت نشده که خروجی مرحله پیش است به سفارش معلق پرداخت شده تبدیل شود. (شکل 3-5)

شکل 3-5 روند جریان اطلاعاتی پرداخت صورت‌حساباین مرحله شامل دو نوع خروجی می‌باشد. یکی سفارش انصرافی است، همان سفارش معلقی که کاربر آن‌را لغو کرده است. همچنین در این مرحله سفارشاتی که برای مدتی معین در وضعیت معلق پرداخت نشده باقی بماند به طور اتوماتیک به صورت انصرافی در می‌آیند. در صورتی که پرداخت صورتحساب سفارش معلق با موفقیت صورت بپزید سفارش به صورت معلق پرداخت شده در می‌آید. همچنین دیاگرام مورد استفاده دو جریان اطلاعاتی ثبت سفارش و پرداخت صورت حساب به صورت زیر می‌باشد.

شکل 3-6 دیاگرام مورد استفاده ثبت سفارش و پرداخت صورتحساب3-2-3 آماده‌سازی و تحویل سفارشبعد از پرداخت موفقیت‌آمیز صورتحساب سفارش به مرحله آماده‌سازی وارد می‌شود. روند جریان اطلاعاتی در شکل 3-7 نشان داده شده است. خروجی این مرحله یک سفارش آماده به ارسال می‌باشد. در یک حلقه تمامی سفارشات معلقی که پرداختشان با موفقیت انجام شده بررسی می‌شوند و در صورت موجود بودن در انبار وضعیت آن‌ها به صورت آماده به ارسال در می‌آید. در غیر این صورت درخواست برای بخش تولید ارسال شده و سفارش تا زمانی که تولید کامل شود به صورت معلق باقی می‌ماند.

شکل 3-7 روند جریان اطلاعاتی آماده سازی سفارشحالا نوبت به این است که سفارش آماده به ارسال شده تحویل مشتری داده شود. عموما این بخش به صورت سرویس‌گرا و با استفاده از سرویس‌های سازمان پست انجام می‌پذیرد. روند انجام کار این چنین است که محصول آماده به ارسال شده تحویل سازمان پست می‌گردد. در این مرحله وضعیت سفارش به صورت "ارسال شده" در می‌آید. بعد از دریافت، سفارش وارد بخش توزیع شده و با اولویت خاص، بسته به نوع پست انتخاب شده، برای رسیدن به دست مشتری ارسال می‌گردد. با دریافت سفارش توسط مشتری و تایید دریافت وضعیت سفارش به صورت توزیع شده در سیستم ذخیره می‌گردد. روند جریان اطلاعاتی در شکل 3-8 نمایش داده شده است. خروجی این مرحله یک سفارش توزیع شده است. که بعد از گذشتن مدت زمان پشتیبانی (گارانتی) در صورت تایید صحت عملکرد کالا توسط مشتری وضعیت سفارش به صورت "وصول شده" در می‌آید.

شکل 3-8 روند جریان اطلاعاتی تحویل سفارشدیاگرام مورد استفاده مراحل آماده سازی و تحویل سفارش به ترتیب در شکل‌های 3-9 و 3-10 نشان داده شده است.

شکل 3-9 دیاگرام مورد استفاده آماده‌سازی
شکل 3-10 دیاگرام مورد استفاده تحویل سفارش3-3 وضعیت سفارشبا توجه به مطالب ذکر شده می‌توان وضعیت هر سفارش را از مرحله اول ثبت شدن آن توسط مشتری تا مرحله تحویل به وی در جدول 3-1 خلاصه نمود.
جدول 3-1 لیست وضعیت‌های یک سفارشوضعیت سفارش توضیحات
معلق پرداخت نشده سفارشی که مشتری به تازگی ثبت کرده است و هنوز بخش مالی ثبت سفارش انجام نشده. به عبارت دیگر سفارش به صورت پرداخت نشده ثبت شده است.
معلق پرداخت شده زمانی‌که عملیات مالی یک سفارش معلق پرداخت نشده با موفقیت انجام شود سفارش تبدیل به یک سفارش معلق پرداخت شده می‌گردد.
انصرافی کاربر بعد از ثبت سفارش می‌تواند تا زمانی که وضعیت سفارش آماده به ارسال نشده است آن را لغو نماید. در این صورت سفارش تبدیل به یک سفارش انصرافی می‌گردد.
آماده به ارسال سفارشی که مراحل آماده سازی و بسته بندی آن به اتمام رسیده است. به عبارت دیگر سفارش آماده برای ارسال برای مشتری می‌باشد.
ارسال شده سفارش ارسال شده سفارشی است که فروشنده بسته را تحویل پست داده و در سیستم پستی در حال ارسال است. این تغییر وضعیت توسط پست مبدأ انجام می شود.
توزیع شده سفارشی که خریدار آن را دریافت کرده است.
وصول شده سفارشی که مهلت ضمانت آن به اتمام رسیده و خریدار آن‌را برگشت نداده باشد. (مرحله پایانی)
برگشتی سفارشی که به هر دلیلی خریدار از دریافت آن ممانعت کرده و یا به علت نقص برگشت داده شده است.
3-4 واحد‌های عملیاتی سازمانجهت ارائه دیدگاه بهتر ساختار داخلی این سازمان چارت سازمانی در زیر ارائه شده است. چارت سازمانی یا نمودار سازمانی یک نمودار سلسله مراتبی از جایگاه های و مشاغل موجود در سازمان و ارتباط میان آنها است. این نمودار سلسله مراتب سازمان و جایگاه های شغلی موجود در سازمان را مشخص می کند. همچنین به صورت ساده ارتباط طولی و عرضی میان جایگاه های کاری و شغلی را مشخص می کند. به عبارت دیگر ساختار واحدهای عملیاتی سازمان به صورت زیر ارائه می‌گردد.
شکل 3-11 ساختار قرارگیری واحدهای عملیاتی3-5 پایگاه‌داده سیستم اطلاعاتی مشتریبازاریابی رابطه‌ای بر ایجاد روابط بین سازمان و مشتریان که وفاداری و جذب بیشتر آنان‌ را به همراه دارد، تأکید می‌نماید. این موضوع دقیقاً مخالف بازاریابی سنتی مبتنی بر داد و ستد که در آن هدف تنها ایجاد یک رابطه موقت و یکباره برای انجام فروش فوری برای مشتری‌ بوده، می‌باشد. به دنبال این رویکرد نوین در بازاریابی بود که سیستم‌های اطلاعاتی مدیریت‌ روابط با مشتریان پا به عرصه وجود گذاشت و به صورت ترکیبی از سخت‌افزار، نرم‌افزار، فرآیندها، کاربردها و تعهد مدیریت تعبیر گردید.
به منظور ذخیرهسازی اطلاعات مورد نیاز در طراحی این سیستم و نمایش روند جریان اطلاعات، و همچنین نحوهی ذخیره سازی آنها، پایگاه‌داده زیر را در نظر میگیریم. در شکل 3-12 این جداول و اجزای سازندهی آنها با جزئیات نشان داده میشود.
شکل 3-12 پایگاه داده سیستم اطلاعاتی مشتری3-5-1 ارتباط فیلدهای بازمهندسی با واحدهای عملیاتی سازمانبه منظور بازمهندسی سیستم مدیریت ارتباط با مشتری الکترونیکی بخش‌های دخیل در سفارشات مشتریان و نحوه ارتباط این فیلدها با واحدهای عملیاتی مورد نظر به صورت زیر نمایش داده خواهند شد. به عبارت دیگر در شکل زیر مشخص می‌شود کدام فیلدها برای کدام واحدهای عملیاتی بازخورد مفیدی در راستای انجام هرچه بهینه‌تر بازمهندسی به حساب می‌آیند.

user834

چکیده
بررسی تنوع ژنتیکی اقوام ایرانی با استفاده از STR
مونا داودبیگی
بررسی تنوع ژنتیکی در جمعیت‏ها با استفاده ار تعیین فراوانی آللی و پارامترهای ژنتیکی روش نوینی است که در سال‏های گذشته در بسیاری از جمعیت‏های جهان صورت گرفته و با استفاده از آن شباهت بسیاری از جمعیت‏ها به یکدیگر مشخص گردیده. شباهت جمعیت‏ها نشان‌دهنده‏ی همسان‌بودن خزانه‏ی ژنتیکی آنها و احتمالا یکسان‌بودن آن جمعیت‏ها در گذشته است. پس این احتمال وجود دارد که این جمعیت‏ها در گذشته یک جمعیت بوده باشند و بعد‏ها به دلایل جغرافیایی و یا مهاجرت‏ها از یکدیگر جدا شده باشند. یکی از راه‏های بررسی تنوع‌ ژنتیکی در جمعیت‏ها استفاده از توالی‏های کوتاه تکراری می‏باشد .هدف این مطالعه بررسی تنوع ژنتیکی در دو قوم یزد و کرد (کرمانشاه) از ایران بود. بدین منظور پروفایل ژنتیکی پنجاه فرد غیر‌خویشاوند از هر یک از جمعیت‏های کرمانشاه و یزد با استفاده از کیت ABIتهیه شد. این کیت حاوی پانزده جایگاه D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOX و TH01 و ژن آمیلوژنین (برای تعیین جنسیت افراد) می‏باشد. نتایج نشان‌دادند که به جز دو جایگاه D7S820 وD19S433 در جمعیت کرمانشاه و سه جایگاه D21S11 ,D19S433 و VWA در یزد سایر جایگاه‏ها در تعادل هاردی‏واینبرگ بودند. همچنین پارامترهای پزشکی‌قانونی شامل PIC,PD,PE,MP در این مطالعه بررسی شدند. سپس دو جمعیت با جمعیت‏های کشورهای همسایه مقایسه شدند. این مطالعه نشان داد که این جایگاه‏ها، جایگاه‏های مناسب برای استفاده در تست‏های تعیین هویت و مطالعات جمعیتی می‏باشند. در نتیجه‏‏ی مقایسات هم دیده شد که هر دو جمعیت یزد و کرمانشاه شباهت زیادی به جمعیت کشور ترکیه داشتند ولی با سایر کشورها متفاوت بودند. از طرفی یزد نسبت به کرمانشاه دارای جمعیت همگن‌تری بود که این مسئله می‏تواند به‌علت بکر بودن این جمعیت در طول سالیان مختلف باشد.
کلمات کلیدی: توالیهای کوتاه تکراری، نشانگرهای مولکولی، ژنتیک جمعیت
Abstract
Genetic variation in two Iranian population with STR
Mona Davood Beigi
In recent years studying genetic variation among population by determination of allele frequencies and genetic parameters became a new method that it has been done in different population all around the world. By using this method lots of similarities has been founded among population around the world. These similarities represent the same genetic pool and also it may show the same population in the past as well. So it seems that different population were one at the first and geographical situations or migrations were the reasons that caused its separation.
Studying short tandem repeats (STR) in genome is the best way to founding genetic variation in population. The aim of this study was to investigate the genetic variation of two population of Iran, Yazd and Kermanshah people.
For this purpose the genetic profile of 50 unrelated individual from each population prepared by using ABI kit. This kit contains fifteen str loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) and also amylogenin gene for sex determination. The result showed all the loci were in Hardy Weinberg equilibrium except two loci(D19s433 , D2s820) in Kermanshah and three loci (D19s433, D21s11 and VWA) in Yazd population. More over forensic parameters including PIC, PD, PE and MP have been calculated. After all the results have been compared with other population in neighbor countries.
This study revealed that these loci were the suitable loci for identification people and studying genetic population variation. Also the comparison showed that both of Yazd and Kermanshah people were similar to Turkish genetically, but were different from other countries. In addition Yazd has more homogeneous population than Kermanshah, that it could be due to pristine gene pool of this population in the past centuries.
Keywords: Short tandem repeats; Microsatellite markers; Population genetic
فصل اول
مقدمه
1-1 مقدمهدرگذشته مطالعه‏ی تکامل و مهاجرت‏ها از طریق کشف و بررسی بقایای اسکلتی و فسیل‏ها انجام می‏شد. اما از حدود سه دهه‏ی پیش، باستان‏شناسان و زیست‏شناسان با به‌کار‏گیری آنالیز‏های DNA موفق به کشف‏های بسیار دقیقی شدند که کمک فراوانی به ردیابی تاریخ مهاجرت بشر و تکامل انسان‏ها نموده است. یکی از پر‏کاربرد‏ترین راه‏های آنالیز DNA، بررسی نشان‌گرهای ژنتیکی افراد است، که از مهم‌ترین آنها می‏توان به توالی‏های کوتاه تکراری موسوم به STR اشاره کرد. STR‏ها، توالی‏هایی به طول یک تا سیزده نوکلئوتید هستند که در ژنوم موجودات در نواحی غیر‌کد‏کننده موجود می‏باشند. هر فرد توالی‏های منحصر به فردی دارد و هیچ دو نفری در جهان نیستند که توالی‏های یکسانی داشته باشند. به همین دلیل ازSTR ‏ها می‏توان در مطالعات جمعیتی و بررسی تنوع ژنتیکی در جمعیت‏ها سود جست [1].
علاوه بر مطالعات جمعیتی ازSTR ‏ها می‏توان در موارد تعیین هویت‏، تعیین ابویت، تست‏های پزشکی‏قانونی و سایر موارد استفاده کرد. به طور معمول STRهایی که برای تعیین هویت و مطالعات ژنتیکی جمعیت به‌کار می‏روند، یکسان هستند و شامل پانزده جایگاه به نام‏های D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOXو TH01 می‏باشند [1].
هم‌چنین از روش مشترکی موسوم به تعیین الگوی DNA در این زمینه‏ها استفاده می‏شود. هر فرد دارای الگوی DNA منحصر به فرد است که تا پایان عمر تغییر نخواهد کرد. محققان دریافتند که افراد یک جمعیت در الگوهای ژنتیکی خود دارای تشابهاتی هستند که منحصر به همان جمعیت است و با الگوی افراد جمعیت‏های دیگر متفاوت است. از این تفاوت‏ها می‏توان برای ردیابی تاریخ مهاجرت و تکامل انسان‏ها استفاده نمود (1).
1-2 نشان‌گر چیست؟
صفاتی را که می‏توانند به عنوان نشانه‏ای برای شناسایی افراد حامل آن صفت مورد استفاده قرار گیرند، نشان‌گر می‏نامند. مندل نخستین کسی بود که از نشان‌گرهای ظاهری برای مطالعه چگونگی توارث صفات در نخود‌فرنگی استفاده کرد. اما گاهی صفات به سادگی و با چشم غیر مسلح قابل مشاهده نیستند، مانند گروه خونی. برای مشاهده چنین صفاتی باید آزمایش‏های خاصی صورت گیرد. به طور کلی هر صفتی که بین افراد متفاوت باشد، ناشی از تفاوت موجود میان محتوای ژنوم آنها می‏باشد. حتی بروز صفات به صورت متفاوت در میان افراد (در شرایط محیطی یکسان)، به علت تفاوت‏ در ژنوم آنها است. این تفاوت‏ها می‏توانند به عنوان نشانه یا نشان‌گر ژنتیک به کار گرفته شوند. به طور کلی برای آنکه صفتی به عنوان نشان‌گر ژنتیک مورد استفاده قرار گیرد، باید دست کم دو ویژگی داشته باشد‌:
1-در بین دو فرد متفاوت باشد (چند شکلی)
2-به توارث برسد (2).
1-3 انواع نشان‌گرهای ژنتیکینشان‌گرهای ژنتیکی عبارتند از:
1-نشان‌گرهای مورفولوژیک
2-نشان‌گرهای پروتئینی
3-نشان‌گرهای مولکولی در سطح DNA و RNA
1-3-1 نشان‌گرهای مورفولوژیک
کاربرد نشان‌گرهای مورفولوژیک به ده‏ها سال پیش از کشف DNA مربوط می‏شود. نشان‌گرهای مورفولوژیکی که پیامد جهش‏های قابل رویت در مورفولوژی هسته، از ابتدای این سده مورد استفاده قرار گرفتند. صفات مورفولوژیکی که عمدتا توسط یک ژن کنترل می‏شوند، می‏توانند به عنوان نشان‌گر مورد استفاده قرار گیرند. این نشان‌گرها شامل دامنه وسیعی از ژن‏های کنترل‌کننده صفات فنوتیپی هستند و جز نخستین نشان‌گرها به شمار می‌آیند و از زمان‏های بسیار دور یعنی از زمانی که محل ژن‏ها روی کروموزوم مشخص شد، مورد استفاده قرار می‏گرفتند (2).
معایب نشان‌گرهای مورفولوژیک
اغلب دارای توارث غالب و مغلوب بوده و اثرات اپیستازی و پلیوتروپی دارند.
تحت تاثیر شرایط محیطی و مرحله رشد موجود قرار می‏گیرند.
فراوانی و تنوع کمی دارند.
گاهی برای مشاهده و ثبت آنها باید منتظر ظهور آنها ماند.
اساس ژنتیک بسیاری از نشان‌گرهای مورفولوژیک هنوز مشخص نشده است‌(2).
1-3-2 نشان‌گرهای پروتئینی
در دهه‌ی 1950، نشان‌گرهای پروتئینی قابل مشاهده توسط الکتروفورز پروتئین‏ها تحول شگرفی را ایجاد نمودند. برخی از تفاوت‏های موجود در ردیفDNA بین دو موجود ممکن است به صورت پروتئین‏هایی با اندازه‏های مختلف تجلی کنند، که به روش‏های مختلف بیوشیمیایی قابل ثبت و مطالعه می‏گردند. این قبیل نشان‌گرها را نشان‌گرهای مولکولی در سطح پروتئین می‏نامند که از آن جمله می‏توان به سیستم آیزوزایم/آلوزایم اشاره کرد. معمول‏ترین نوع نشان‌گرهای پروتئینی آیزوزایم‏ها هستند که فرم‏های مختلف یک آنزیم را نشان می‏دهند. آیزوزایم‏ها به‏ طور گسترده در بررسی تنوع ژنتیکی به‌کار گرفته‌شدند. نشان‌گرهای پروتئینی تغییرات را در سطح ردیف و عمل ژن به صورت نشان‌گرهای هم‌بارز نشان می‏دهند. اما این دسته از نشان‌گرها هم دارای معایبی هستند. برخی از معایب آن‏ها عبارت‌اند از:
محدود بودن فراوانی این نوع نشان‌گرها؛
تعداد آیزوزایم‏های قابل ثبت و مشاهده که می‏توان از آنها به عنوان نشان‌گر استفاده کرد به یکصد عدد نمی‏رسد؛
محدود بودن تنوع ژنتیکی قابل ثبت در آیزوزایم‏ها‌(نداشتن چند شکلی)؛
پیچیدگی فنوتیپ‏های الکتروفورزی آیزوزایم‏ها به دلیل دخیل بودن آنزیم‏های مرکب از چند پلی‌پپتید مستقل در ترکیب برخی از آیزوزایم‏ها‌(3).
اما پیشرفت‏هایی که در زمینه‏ی الکتروفورز دو‏بعدی با قدرت تفکیک زیاد پدید آمده، تجزیه تحلیل هم‌زمان هزاران پروتئین را میسر ساخته و مجددا به‌عنوان فناوری پیشتاز در عرصه نشان‌گر‏های مولکولی مطرح شده‏اند. تاثیرپذیری نشان‌گرها از محیط که به‌طور معمول به‌عنوان یکی از محدودیت‏ها و نکات منفی نشان‌گرهای مولکولی یاد می‏شود، در مورد این نشان‌گر‏ها تبدیل به برتری شده و جایگاه متمایزی را در بین سایر نشان‌گرها به ارمغان آورده است. پروتئومیکس‌(مطالعه سراسری کل پروتئین‏های موجود در یک سلول یا یک ارگانیسم) می‏تواند به‌طور هم‌زمان برای مطالعه بیان ژن و هم‌چنین برای شناسایی پروتئین‏های واکنش دهنده به شرایط محیطی مورد استفاده قرار گیرد(3).
1-3-3 نشان‌گرهای مولکولیDNA وRNA
دسته‌ای دیگر از تفاوت‏های موجود در سطح DNA هیچ تظاهری ندارند. نه صفت خاصی را کنترل می‏کنند و نه در ردیف اسید‏های آمینه پروتئین‏ها تاثیری برجای می‌گذارند. این دسته از تفاوت‏ها را می‏توان با روش‏های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشان‌گر مورد استفاده قرار داد. این نشان‌گر‏ها که تعدادشان تقریبا نا‏محدود است، فقط از راه تجزیه و تحلیل مستقیم DNA قابل ثبت هستند. بنابراین به آنها نشان‌گرهای مولکولی در سطح DNA گفته می‏شود. نشان‌گرهای مولکولی فراوان و در هر موجود زنده‌ای می‌توانند مورد استفاده قرار گیرند. تاکنون تعداد زیادی از نشان‌گرهای DNA معرفی شده‌اند. این نشان‌گرها از نظر بسیاری از ویژگی‏ها مانند درجه‏ی چندشکلی، غالب یا هم‌بارز بودن، تعداد جایگاه‏های تجزیه شده در هر آزمایش DNA، توزیع در سطح کروموزوم، تکرار‌پذیری، نیاز یا عدم نیاز به توالی‏یابی DNA الگو و هزینه‏ی مورد نیاز با همدیگر متفاوت‌اند. انتخاب بهترین نشان‌گر به هدف مطالعه (انگشت نگاری، تهیه نقشه پیوستگی، ژنتیک جمعیت و روابط تکاملی) و سطح پلوئیدی موجود مورد مطالعه بستگی دارد‌(4).
مزایای کاربرد نشان‌گرهای مولکولی
عدم تاثیرپذیری آنها از شرایط محیطی خارجی و داخلی موجود؛
امکان به‌کارگیری آنها در مراحل نخستین رشد جنینی حیوانات و مراحل نخستین رشد موجودات؛
فراهم نمودن امکان مطالعه موجودات در خارج از فصل و محیط کشت؛
دقت و قابلیت مطلوب تفسیر نتایج؛
هم‌بارز بودن بسیاری از این نشان‌گرها؛
امکان استفاده از آنها در مورد گونه‏های منقرض شده؛
سهولت تشخیص افراد ناخالص از خالص؛
سهولت امتیازدهی و تجزیه و تحلیل نتایج؛
دسترسی به برنامه‏های رایانه‏ای قوی برای تجزیه و تحلیل و تفسیر سریع نتایج‌(4)
انواع نشان‌گرهای مولکولی
نشان‌گرهای DNA گروه بزرگی از نشان‌گرها را تشکیل می‏دهند. این نشان‌گرها سیر تحول و تکامل خود را به پایان نرسانده‏اند و ابداع و معرفی روش‏های متنوع و جدیدتر ثبت و مشاهده‏ی تفاوت‏های ژنتیک بین موجودات از طریق مطالعه‏ی مستقیم تفاوت‏های موجود در بین ردیف‏های DNA هم‌چنان ادامه دارد. نشان‌گر‏های DNA در مدت یک دهه تکاملی شگرف و تحسین‌برانگیز داشته‏اند‌(5).
ابداع و معرفی واکنش زنجیره‌ای پلی‌مراز یا PCR یک روش سریع تکثیر آزمایشگاهی قطعه یا قطعه‌های مورد نظر DNA است. در واقع PCR روشی بسیار قوی است که تکثیر ردیف منتخبی از مولکول یک ژنوم را تا چندین میلیون در کم‌تر از نیم‌روز امکان‌پذیر می‏سازد. اما این فرایند هنگامی امکان‌پذیر است که دست‌کم ردیف کوتاهی از دو انتهای قطعه DNA مورد نظر معلوم باشد. در این فرایند که تقلیدی از فرایند همانندسازی DNAدر طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده دو انتهای قطعه‏ی مورد‌نظرDNA هستند، به‌عنوان آغازگر مورد استفاده قرار می‏گیرند تا واکنش آنزیمی همانندسازی DNA درون لوله‌ی آزمایش امکان‌پذیر شود. این همانند‏سازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‏های پلی‌مراز صورت می‏گیرد. امروزه تعداد زیادی از این نوع آنزیم‏ها به صورت تجاری دردسترس هستند‌(6).
واکنش زنجیره‏ای پلی‌مراز (PCR) در سال 1983 توسط کری‌مولیس در حالیکه در یک نیمه شب تابستانی در حال رانندگی بود، ابداع گردید و سبب انقلاب عظیمی در زیست شناسی مولکولی شد(6).
همان‌گونه که در شکل 1-1 نشان داده شده است، نشان‌گرهای DNAبه دو دسته‏ی کلی طبقه‌بندی می‏شوند.
نشان‌گرهای DNAمبتنی بر PCR
نشان‌گرهای DNA غیر مبتنی PCR(6).

شکل 1-1 انواع نشان‌گرهای ژنتیکی‌(10)
1-3-3-1 نشان‌گرهای غیر مبتنی بر PCRاین دسته از نشان‌گرهای DNA بدون استفاده از روشPCR تولید می‌شوند و مورد استفاده قرار می‌گیرند.
انواع نشان‌گرهای غیر مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‏های محدودگر(RFLP)
پویش ژنومی نشانه‏های هضم (RLGS)
ماهوارک‏ها
1-3-3-1-1 تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‌های محدودگر( (RFLPسرگروه نشان‌گرهای غیر‌مبتنی برPCR ، همان تفاوت طول قطعه‏های حاصل از هضم DNA توسط آنزیم‏های محدودگر یا RFLP است. از بین نشان‌گرهای مولکولی DNA، RFLP ها اولین نشان‌گرهایی بودند که برای نقشه‌یابی ژنوم انسان توسط بوتستین و همکاران در سال 1980 و پس از آن برای نقشه‌یابی ژنوم گیاهان توسط بر و همکاران در سال 1983 مورد استفاده قرار گرفتند. در اوایل دهه 1980 بوتستین و همکاران استفاده از تفاوت طول قطعه‏های حاصل از هضم یا RFLP را برای مطالعه‏ی مستقیم DNA و یافتن نشان‌گر‏های ژنتیک جدید معرفی کردند. این تحول از پیامد‏های منطقی کشف آنزیم‏های محدودگر بود. این آنزیم‏ها که بسیار اختصاصی‏ هستند، ردیف‏های ویژه‏ای را روی مولکولDNA شناسایی کرده و آنها را از محل خاصی (نقطه‏ی برش) برش می‏دهند‌(7).
RFLP الزاما مختص ژن‏های خاص نیست، بلکه در کل ژنوم پراکنده است. ازاین رو، از نشان‌گرهای RFLP برای نقشه‌یابی تمام ژن‌ها در ژنوم انسان استفاده می‏شد(5). علاوه برRFLP که هنوز هم از قدرتمندترین و معتبرترین نشان‌گرهایDNA است، انواع مختلف نشان‌گرهایDNA با تفاوت‌های زیادی از نظر تکنیکی و روش تولید، نحوه‌ی کاربرد، امتیاز‌بندی، تجزیه و تحلیل و تفسیر نتایج به سرعت ابداع ومعرفی شده‌اند‌(7).
مهم‌ترین مزایای RFLP
تکرارپذریری، دقت و قابلیت اعتماد این نشان‌گر فوق‌العاده زیاد است؛
این نشان‌گر هم‌بارز است و امکان تشخیص افراد خالص را از افراد ناخالص فراهم می‏آورد؛
فراوانی این نشان‌گر در حد بالایی است؛
RFLP تحت تاثیر عوامل محیطی داخلی و خارجی نبوده و صد در صد ژنتیکی است(8).
برخی معایب RFLP
دشواری، پیچیدگی و وقت‌گیر بودن؛
RFLP ژنوم‌های بزرگ نیازمند کاربرد مواد پرتوزا یا روش‌های پیچیده‏تر و گران‏تر بیوشیمیایی است؛
RFLP نیازمند نگه‌داری میکروارگانیسم‌ها به‌منظور تهیه‏ی کاوشگر است که خود بر پیچیدگی این روش می‏افزاید؛
هزینه‏ی اولیه و نگه‏داری کاوشگر‏ها و کاربرد آنها بسیار زیاد است؛
نیازمندی به مقدار نسبتا زیاد DNA از محدودیت‏های دیگر روش RFLPاست به‌طوری که ده‏ها میکروگرم از DNAبرای هر فرد به منظور تجزیه‏ی ژنوم مورد نیاز است؛
از دیگر محدودیت‏های این نشان‌گر آن است که در گونه‏های بسیار نزدیک به یکدیگر این نوع نشان‌گر‏ها آلل‏های مشابهی را نشان می‏دهند(8).
1-3-3-1-2 پویش ژنومی نشانه‏های هضم (RLGS)در سال1991، هاتادا و همکاران روشی را برای شناسایی و انگشت‌نگاری موجودات عالی ابداع و معرفی کردند. پیش از ابداع این روش که بر مبنای نشان‌دار کردن هم‌زمان انتهای هضم شده‏ی هزاران قطعه‌ی DNA است، ردیابی و ثبت موجودات عالی با روش نشان‌دار کردن انتهای هضم شده غیر ممکن می‌نمود. دو دلیل اصلی برای این تصور ذکر شده است:
ژنوم موجودات عالی بسیار بزرگ و پیچیده است برای مثال ژنوم انسان 109×3 جفت باز دارد و در نتیجه‏ی هضم آن با آنزیمی مانند EcoRI بیش از یک میلیون قطعه‌ی DNA به وجود می‌آید. تفکیک این تعداد مولکولDNA حتی با الکتروفورز دو بعدی نیز غیر ممکن است.
معمولا DNA ژنومی در هنگام استخراج به صورت تصادفی و غیر‌اختصاصی شکسته می‌شود و ایجاد مولکول‏هایی با انتهای تصادفی می‏کند. این امر سبب ایجاد پس‌زمینه‌ی ناشی از نشان‌دار شدن این انتهاها طی فرایند نشان‌دارکردن می‏شود‌(9).
برای رفع این دو نقص تدابیری پیش‏بینی شد و روش RLGS ابداع گردید. این روش جدید که برای تجزیه و تحلیلDNA ژنومی به‌کار می‌رود، بر مبنای این فرضیه است که نقاط برش اختصاصی آنزیم‏های محدودگر می‌توانند به‌عنوان نشانه و وجهه تمایز ارقام و افراد به کار گرفته‌شوند.
در این روش انتهای آزاد مولکول‌های DNA که در اثر صدمات مکانیکی در طی استخراج به وجود آمده‏اند، مسدود می‏شود. سپس برای کاهش پیچیدگی، DNA ژنومی توسط آنزیم‏های محدودگر، با محل برش نادر، هضم و نقاط برش به‌طور مستقیم با فسفر پرتوزا نشان‌دار می‏شوند. آنزیم‏های با محل برش نادر معمولا هزاران قطعه DNA به وجود می‏آورند. سپس با الکتروفورز دو‌بعدی، قطعه‏های هضم‌شده‏یDNA از هم جدا شده و خودپرتونگاری صورت می‏گیرد. این روش یک الگوی دو بعدی با هزاران نقطه‏ی پراکنده (قطعه‏های نشان‌دارDNA) ایجاد می‏کند که هر یک می‏توانند به عنوان یک نشان‌گر به کار گرفته شوند(10)
برخی از مزایای روشRLGS
در هر آزمایش هزاران نشان‌گر به‌دست می‌آید؛
مقدار کمی DNAمورد نیاز است؛
در صورت استفاده از آنزیم‌های محدودگر متفاوت، تفاوت‏های بیشتری ظاهر و ثبت خواهند شد[10].
برخی از معایب روش RLGS
DNA مورد نیاز برای این روش باید از کیفیت مطلوبی برخوردار باشد؛
هضم ناقص DNA توسط آنزیم‏های محدودگر نتایج تکرار ناپذیر و گمراه کننده‏ای خواهد داشت؛
این روش پیچیدگی فوق العاده‏ای داشته و تفسیر نتایج حاصل از آن دشوار است(10).
1-3-3-1-3 ماهوارک‏ها
ماهوارک‏ها نخستین بار در سال 1985 توسط جفری و همکاران گزارش شدند. پس از آن در سال 1988 تکثیر جایگاه‏های ژنی خاص نواحی تکرارشونده، روی ماهوارک‏ها در ژنوم انسان انجام شد.
این دسته از نشان‌گرها از نظر تکنیکی مبتنی بر استفاده از کاوشگرهای مصنوعی و کاربرد مواد پرتوزا و روش ساترن هستند.
ماهوارک‌ها واحدهایی 10 تا 100 جفت بازی هستند که ممکن است صدها بار تکرار شده باشند. آنها معمولا یک هسته مشترک 10 تا 15 جفت بازی دارند که احتمالا در تنوع‌پذیری ماهوارک‌ها موثرند. ماهوارک‌ها بیش‌تر در نواحی یوکروماتین ژنوم پستانداران، قارچ‌ها و گیاهان متمرکز‌ند. تنوع‌پذیری ماهوارک‌ها در حدی است که گاهی در انگشت‌نگاریDNA انسان مورد استفاده قرار می‏گیرند. از جمله‌ی ماهوارک‌ها می‏توان به تکرارهای پشت سر هم با فراوانی بالا (VNTR) اشاره کرد[11]. VNTR ها به دو دسته‌ی کلی تقسیم می‌شوند: VNTR تک مکانی و VNTR چند مکانی.
دسته‏ی نخست، تعداد متفاوت ردیف‌های تکراری در یک جایگاه ژنی و دسته‏ی دوم تعداد متفاوت ردیف‌های تکرار‌شونده در چندین جایگاه ژنی را نشان می‌دهند. الگوی بانددهی به‌دست آمده با استفاده از کاوشگر‌های VNTR تک مکانی ساده‏تر و قابل فهم‌تر است، زیرا هر فرد تعداد کمی باند واضح را نشان می‏دهد. در حالی‌که تعداد باندهای به دست آمده از کاوشگرهای مخصوص VNTRچند‌مکانی بیش‌تر است، به‌طوری که به‌طور هم‌زمان تا بیش از 30 باند به دست می‏آید(12).
در نخستین نشان‌گرهای مبتنی بر ماهوارک‌ها، از الیگونوکلئوتید‏های حاوی ریزماهواره به عنوان کاوشگر استفاده گردید و توسط علی و همکاران انگشت‌نگاری الیگونوکلئوتیدی نام‌گذاری شد.
از کاوشگرهای الیگونوکلئوتیدی نشان‏دار‌شده مکمل با موتیف‌های کوتاه تکرار‌شونده در هیبریداسیون در ژل، با به کارگیری DNAژنومی برش داده شده با آنزیم‌های برشی خاص و الکتروفورز ژل آگارز استفاده شده است. گوبتا و وارشنی در سال2000 طی تحقیقات خود مراحل زیر را برای انگشت‌نگاری الیگونوکلئوتیدی مطرح کردند:
جداسازیDNA ژنومی با وزن مولکولی زیاد
هضم DNAژنومی با یک آنزیم محدودگر مناسب
تفکیک قطعه‌های حاصل از هضم روی ژل آگارز
انتقال ساترن قطعه ها به غشا
دو ‏رگ‏گیری غشا با کاوشگر‏های(نشاندار با مواد پرتوزا یا غیر پرتوزا) الیگونوکلئوتیدی دربردارنده‏ی ردیف‌های دو یا سه تایی تکراری
خودپرتونگاری یا رنگ آمیزی برای مشاهده‏ی قطعه‌های دو رگ‌شده.
به‌کمک این روش می‌توان تنوع نواحی تکرار‌شونده‏ی مورد نظر را آشکار کرد. قطعه‌هایی از DNA که با الیگونوکلئوتیدها دو ‌رگ می‌شوند، در دامنه‌ای از اندازه‏ی چند صد جفت تا ده کیلو جفت باز قرار می‏گیرند. هم‌چنین گاهی بیش از یک نوع ماهواره در داخل یک قطعه‏ی برش داده شده قرار می‌گیرد. تفاوت‏هایی که این نوع نشان‌گرها نشان می‏دهند، به دلیل تفاوت در طول قطعه‌های برش داده‌شده‌ای است که در بردارنده‏ی ماهوارک‌ها هستند. از این روش برای شناسایی ژنوتیپ‌ها و همچنین در ژنتیک جمعیت استفاده می‌شود(12).
پس از مدتی، لیت و لوتی و سه گروه دیگر همین روش را برای ریزماهواره‏ها(عمدتا از نوع (CA)n) به‌کار بردند و دریافتند که ریز ماهواره‏ها به دو دلیل به مراتب آسانتر از ماهوارک‌ها با روش PCR تکثیر می‏شوند:
1-ریزماهواره‏ها کوچکتر از ماهوارک‏ها هستند؛
2-ردیف‌های تکرار‌شونده ریز ماهواره‏ای فراوانتر و توزیع آنها در کل ژنوم یکنواخت‌تر ازماهوارک‏هاست(13).
1-3-3-2 نشان‌گرهای مبتنی بر PCRنشان‌گرهای مبتنی بر PCR نشان‌گرهایی هستند که از توالی الیگونوکلئوتیدی به عنوان آغازگر برای تکثیر قطعه‏ی خاصی از DNA استفاده می‌کنند. روش‏های مختلف در این گروه، در طول و توالی آغازگرها، سختی شرایط PCR و روش‏های جداسازی و آشکار کردن قطعات با همدیگر فرق دارند.
انواع نشان‌گرهای مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعه‌های حاصل از تکثیر(AFLP)
DNA چند شکل تکثیر‌شده‏ی تصادفی(RAPD)
تفاوت تک نوکلئوتیدی(SNP)
نشان‌گرهای مبتنی برنقاط نشانمند از ردیف (STS)
1-3-3-2-1 تفاوت طول قطعه‌های حاصل از تکثیر (AFLP)
در سال 1995 نشان‌گرهای جدیدی ابداع و معرفی شدند که به نظر می‌رسد بسیاری از محدودیت‌های نشان‌گر‌های پیشین را نداشته باشند. در این روش که AFLP نامیده می‏شود نشان‌گرهایی تولید می‏شوند که علاوه بر دارا بودن مزایایRFLP مانند دقت و تکرار‌پذیری ویژگی‌های مثبت روش‌های مبتنی بر واکنش زنجیره‌ای پلی‌مراز را نیز دارند. پایه‌ی این روش تکثیر انتخابی برخی قطعه‌ها از بین تمام قطعه‌های هضم شده‌ی DNA است و سه مرحله‌ی مجزا دارد:
هضمDNA با یه جفت آنزیم محدودگر و اتصال آنها به آداپتور‌های اولیگونوکلئوتیدی؛
طراحی، ساخت آغازگر و تکثیر انتخابی دسته‌ای از قطعه‌های حاصل از هضم .با استفاده از ردیف بازی آداپتور‌ها و نیز ردیف بازی نقاط برش، طراحی و ساخت آغازگر انجام می‌شود، اما برای تکثیر انتخابی قطعه‌های حاصل از هضم دو، سه یا چند نوکلئوتید به انتهای’3 ردیف آغازگر اضافه می‌شود که موجب می‌گردد فقط قطعه‌هایی تکثیر‌شوند که ردیف بلافصل آنها در مجاورت نقطه‌ی برش ،مکمل نوکلئوتیدهای یاد شده باشد؛
جداسازی قطعه‌های حاصل از تکثیر روی ژل‌های توالی‌یابی(پلی‌اکریل‌آمید) و خودپرتونگاری یا رنگ‌آمیزی نقره برای ثبت نتیجه‌ها.
با استفاده از این روش تعداد زیادی از قطعه‌های حاصل از هضم، تکثیر و قابل رویت می‌شوند. این در حالی است که نیازی به دانش اولیه در مورد توالی‌بازی قطعه‌هایی که تکثیر می‌شوند، وجود ندارند. هر یک از این قطعه‌هایی که به صورت باند روی ژل ظاهر می‌شوند، می‌توانند به عنوان یک نشان‌گر ژنتیک مورد استفاده قرار گیرند.
تعداد قطعه‌هایی که با این روش تکثیر می‌شوند، به دقت و توانمندی روش‌های جداسازی (الکتروفورز)، ثبت نتایج و تعداد نوکلئوتید اضافه شده به انتهای آغازگر بستگی دارد. معمولا در این روش بین پنجاه تا صد قطعه‌ی حاصل از هضم تکثیر و با استفاده از ژل‌های پلی‌اکریل‌امید واسرشت ساز ثبت می‏شوند(19)
مزایای AFLP
این روش در مقایسه یا سایر روش‌ها بیشترین تعدا نشان‌گر‌ها به ازای هر ژل را ایجاد می‌کند؛
در این روش نیازی به تهیه و تدارک و نگه‌داری کاوشگر نیست .دقت و تکرار‌پذیری این نشان‌گر به دلیل انتخاب دمای زیاد هم رشته‌سازی و اتصال آغازگر به DNA الگو بیشتر از RAPD است(20).
معایب AFLP
پیچیدگی نسبی این روش در مقایسه با سایر روش‌های میتنی برPCR ؛
عدم اطلاع از جایگاه ژنی نشان‌گر‌ها؛
غالب بودن این نشان‌گر موجب عدم امکان تشخیص افراد خالص از ناخالص می‏گردد؛
تکثیر قطعه‌های غیر‌واقعی در AFLP موجب کاهش قابلیت اعتماد این روش می‏گردد(20).
1-3-3-2-2 DNA چندشکل تکثیرشده‏ی تصادفی(RAPD)در این روش از تک آغازگرهایی به طول هشت تا ده نوکلئوتید که ردیف بازی آن به طور قراردادی تعیین می‌گردد، استفاده می‏شود. در این واکنش یک آغازگر منفرد نقاط مکمل خود را روی دو رشته‏ی DNA ژنومی می‌یابد و در آن نقاط به رشته‌های DNAمتصل می‌شود. چنانچه محل اتصال آغازگرها در روی دو رشته‏ی مقابل به هم نزدیک باشند(فاصله‏ای که DNA قابل تکثیر باشد)، ردیف بین آن دو نقطه طی واکنش PCR تکثیر خواهد شد. فراورده‌های واکنش PCRروی ژل آگارز از هم جدا می‏شوند. تولید هر باند بیانگر وجود شباهت زیاد بین ردیف بازی آغازگرها و ردیف بازی محل اتصال درDNA ژنوم است. به طور معمول هر آغازگر تکثیر چندین جایگاه مختلف را درDNA ژنومی هدایت خواهد کرد. وجود یا عدم وجود یک باند واحد در ژل های RAPD بیانگر جهش نقطه‌ای در محل اتصال آغازگرها و یا حذف یا (اضافه) شدن در ناحیه قابل تکثیر است. بنابراین چند شکلی در RAPDمعمولا به شکل حضور و غیاب یک باند پدیدار می‏شود. بدین معنی که نشان‌گرهای RAPD از نوع غالب‌اند و افرادی که دو نسخه از یک آلل دارند، به طور کمی از افرادی که یک نسخه از آن آلل را دارند، قابل تشخیص نیستند. تفاوت طول قطعه‏ها در RAPD از طریق تکثیر قطعه‌های DNA مکمل با ردیف‌های آغازگرهای اختیاری (ردیف مشخص ولی تصادفی) به‌دست می‌آیند. قطعه‏های تکثیر شده به صورت نوارهایی با وزن مولکولی متفاوت به‌طور مستقیم روی ژل قابل مشاهده‌اند (15).
مزایای RAPD
عدم نیاز به کاوشگر، مواد پرتوزا و غیره؛
امکان بررسی هم زمان چندین جایگاه در ژنوم؛
عدم نیاز به اطلاعات اولیه در مورد ریف DNA برای ساخت آغازگر(16).
معایب RAPD
عدم تکرار پذیری؛
حساسیت بسیار به آلودگی؛
در صورت تغییر شرایط محیطی ظهور باندهای جدید؛
نامعلوم بودن جایگاه نشان‌گر RAPD روی نقشه‌ی ژنتیکی(16).
1-3-3-2-3 تفاوت تک نوکلئوتیدی(SNP)تنوع‌ها و تفاوت‌هایی که به واسطه‏ی اختلاف در یک جایگاه نوکلئوتیدی(به علت جایگزینی، حذف یا ازدیاد) اتفاق می‌افتند، با عنوان تفاوت تک نوکلئوتیدی نامیده می‏شوند. این نوع از تنوع به‌وفور در ژنوم انسان اتفاق می‏افتد به طوری که مطالعات انجام گرفته توسط کاتانو-آنولز و گرس هوف (1998) در ژنوم انسان و اسب نشان می‏دهد که در فاصله‏ی هر دویست و پنجاه تا چهارصد نوکلئوتید یک SNP وجود دارد(17).
با اینکه‌SNP ها به وفور در ژنوم انسان یافت می‌شوند، ولی ایجاد و توسعه‌ی نشان‌گرهای SNP چندان آسان نیست. تهیه نشان‌گر‏های SNP شامل مراحل زیر است:
تعیین ردیف DNA اطراف SNP؛
تکثیر قطعه‌ای منحصر به فرد از DNA به کمک PCR به منظور غربال SNP؛
شناسایی SNP که شامل مشاهده‌ی دو آلل در افراد مختلف می‌باشد؛
مکان‌یابی نشان‌گر SNP و تعیین جایکاه خاص کروموزومی آن؛
تعیین فراوانی دو آلل در جمعیت؛
بررسی SNP در افراد و ژنوتیپ‌های مختلف(17).
برخی از معایب نشاگرهای SNP
SNPها به دلیل داشتن فقط دو آلل در یک جایگاه ژنی نسبت به نشان‌گر‌های چند آللی، اطلاعات کمتری را در نقشه‌های پیوستگی نشان می‌دهند؛
شناسایی نشان‌گرSNP بسیار پر‌هزینه و هم‌چنین زمان‌بر است(17).
1-3-3-2-4 نشان‌گرهای مبتنی برنقاط نشانمند از ردیف(STS)هر نشان‌گری که مبتنی بر واکنش PCR باشد و با استفاده از آغازگرهای اختصاصی (معمولا بیش از بیست نوکلئوتید) ایجاد شود، یک نقطه‌ی نشانمند از ردیف نامیده می‏شود، زیرا پیش از طراحی آغازگر، بی‏شک در یک مرحله ردیف‌یابی صورت گرفته است. نشان‌گرهایی همچون تفاوت طول قطعه‌های قابل تکثیر (ALP) و ریزماهواره‏ها از آن جهت که مستلزم ردیف‏یابی برای طراحی آغازگر به منظور تکثیر DNA در یک نقطه‌ی خاص هستند، ذیل STS دسته‌بندی می‌شوند:
-تفاوت طول قطعه‏های قابل تکثیر(ALP)
-ریز ماهواره‌ها (18).
1-3-3-2-4-1 تفاوت طول قطعه‏های قابل تکثیر(ALP)
ALP یکی از ساده‏ترین و سریع‏ترین نشان‌گرهای مبتنی بر PCR است. اگر ردیف باز‏های قطعه‏ای از DNA در یک موجود مشخص باشد (یا دست کم بخشی از دو انتهای آن قطعه معلوم باشد)، براساس آن می‏توان به طراحی و ساخت مصنوعی آغازگرهایی به طول بیست تا سی نوکلئوتید اقدام کرد. چنان‌چه نمونه‏های مختلف DNA توسط این آغازگرها و از طریق واکنش زنجیره‏ای پلی‌مراز تکثیر و سپس روی ژل الکتروفورز از هم جدا شوند، در صورت وجود اختلاف در طول قطعه‏ی قابل تکثیر، باندهایی به اندازه‏های مختلف تولید خواهند شد که بیانگر وقوع پدیده‏ی حذف یا اضافه در بین نمونه‏های مورد مطالعه است. این تفاوت در اندازه‏ی قطعه‏های قابل تکثیر که جهش‏های ژنتیک را نشان می‏دهد به عنوان نشان‌گرهای ژنتیک مورد استفاده قرار می‏گیرد(14).
مزایای ALP
از نظر کاربردی در بین نشان‌گرهای DNA،یکی از سریع ترین و ارزان‌ترین‌ها است؛
به‌کاربرد مواد پرتوزا یا بیوشیمیایی پیچیده نیاز ندارد؛
به‌تدارک، نگهداری و کاربرد کاوشگرها نیاز ندارد؛
بسیار اختصاصی عمل می‌کند، تکرار پذیری آن خوب است و تا حد بسیار زیادی می‌توان به نتایج آن اعتماد داشت؛
به‌مقدار خیلی کمی از DNA نیاز است؛
هم‌بارز بودن این نشان‌گر امکان تشخیص افراد خالص از هر یک از انواع افراد ناخالص را فراهم می‌آورد(14).
معایب ALP
طراحی و ساخت آغازگرها، به اطلاعات اولیه در مورد ردیف DNAژنوم مورد مطالعه نیاز دارد که با توجه به اینکه ژنوم بسیاری از موجودات به طور کامل در دسترس نیست این روش استفاده بسیار کمی دارد؛
هزینه‌ی اولیه مورد نیاز به منظور تولید تعداد کافی نشان‌گر ژنتیک با توزیع مناسب در سرتاسر ژنوم بسیار زیاد و مستلزم صرف وقت است(14).
1-3-3-2-4-2 ریزماهواره‌هاریزماهواره‏ها شامل واحدهای یک الی شش تایی تکرار شونده هستند که در ژنوم بیشتر یوکاریوت‏ها پراکنده‏شده‏اند. به طوری که در هر ده کیلو جفت باز از ردیف DNA دست کم یک ردیف ریزماهواره‏ای دیده می‏شود. طول ریز‌ماهواره‏ها معمولا کمتر از 100 جفت باز بوده و توسط دو ردیف منحصر به فرد در دو طرف محدود شده‏اند. ریزماهواره‏ها به سه گروه عمده‌ی تکرارهای کامل، تکرارهای ناکامل (معمولا توسط بازهای غیرتکرارشونده قطع می‌شوند) و تکرارهای مرکب(دو یا تعداد بیشتری از واحدهای مجاور یکدیگر) تقسیم می‏شوند. تعداد تکرارها در هر واحد بسیار متفاوت است. حداقل تعداد واحد تکرار‌شونده برای ریز ماهواره‏های دو نوکلئوتیدی به ترتیب ده و هفت بار تکرار تعیین شده است(21).
مزایای ریزماهواره‏ها
کاربرد آنها و تفسیر نتایج نسبتا ساده است؛
سیستم چند آللی(تا 11 آلل) از ویژگی‌های بارز این نوع نشان‌گر است؛
ریزماهواره‌ها بسیار متنوعند؛
به وفور در ژنوم یوکاریوت‏ها یافت می‏شوند؛
بیشتر ریزماهواره‏ها غیر‏عملکردی هستند؛
همبارز هستند [22].
1-4 فراوانی، توزیع و سازماندهی ریزماهواره‏ها در داخل ژنومریزماهواره‌ها بسیار فراوان بوده و در کل ژنوم موجودات به صورت تصادفی پراکنده اند. فراوانی ریزماهواره ها در بین موجودات زنده متفاوت است. برای مثال تخمین زده شده است که ژنوم انسان به طور میانگین ده برابر بیشتر از گیاهان ریزماهواره دارد. علاوه برDNA کروموزومی تعداد زیادی ریزماهواره در DNA کلروپلاست ها نیز گزارش شده است. به کمک روش‏هایی از قبیل دورگه‏گیری در ژل، نقشه‏یابی ژنتیکی و فیزیکی و هم چنین دورگه‏گیری در محل فلورسنت، ثابت شده است که ریزماهواره ها به طور یکنواخت در ژنوم پراکنده‏اند. اگرچه در برخی موارد می توانند به صورت مجتمع قرار گرفته باشند(12).
1-5 مکانیسم ایجاد تنوع در طول توالی‏های تکراریچنین فرض می‏شود که جهش در تعداد واحدهای تکرار شونده در هر یک ازDNA های تکرار شونده با یکی از دو سازوکار کراسینگ آور نامساوی(uco) یا جفت نشدن ناشی از سرخوردن در طول رشته (خطای همانندسازی DNA ) صورت می‏گیرد. بیشتر عقیده بر این است که ریزماهواره‏ها و ماهواره‏ها توسط سازوکار کراسینگ آور نامساوی ایجاد می‏شوند، ولی در مورد ریزماهواره‏ها برخی افراد یکی از دو سازوکار و برخی دیگر هر دو سازوکار را موثر می‏دانند(23).
1-5-1 کراسینگ اور نابرابرگاهی کراسینگ اور نابرابر در داخل تکرارهای ریزماهواره‏ای بین کروموزوم های مشابه یا خواهری اتفاق می‏افتد و سبب تغییر در تعداد واحدهای تکرار شونده می‏شود.(شکل 1-2).کراسینگ اور نابرابر می‏تواند هم در میوز و هم میتوز اتفاق بیفتد. چنین توجیه می‏شود که وجود نواحی تکرارشونده احتمالا مانع از ردیف شدن کامل در همولوگ یا کروموزوم‏های خواهری می‏شود. به نظرمی‏رسد که این نوترکیبی مکانیزم اصلی ایجاد تنوع مینی‏ستلایتی است(23).

شکل 1-2 کراسینگ آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف شدگی یا الحاق می‌شود(23.)
1-5-2 عدم جفت شدن ناشی از سرخوردن DNA در طول رشته(خطاهای همانند سازی)گاهی DNA پلی‌مراز در طول همانند سازی در نواحی تکرار شونده‏ی ریز ماهواره‏ای سر می‏خورد و موجب تغییر در تعداد واحد تکرار شونده می‏شود. در حقیقت سر خوردن پلی‌مراز در طول نواحی تکراری موجب عدم جفت شدن کامل دو رشته‏ی DNA شده و در نهایت حلقه‌هایی در رشته‌ی الگو یا رشته‏ی جدید ایجاد می‏شود(شکل1-3). این امر مکانیسم اصلی به وجود آورنده‏ی چندشکلی در میکروستلایت‌هاست(23).

شکل 1-3 متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد(23).اگر نتیجه‏ی همانند سازی ایجاد واحد های تکرار شونده‏ی اضافی باشد، حلقه در رشته ی جدید و اگر نتیجه‌ی همانند سازی کاهش در تعداد واحد‏های تکرار شونده باشد، حلقه در رشته‏ی الگو تشکیل خواهد شد(23).
گلدستین و شلوترر فرضیه‏ی عدم جفت شدن ناشی از سر‏خوردن در طول رشته را نسبت به فرضیه کراسینگ آور نامساوی به دلایل زیر به واقعیت نزدیکتر دانسته‏اند:
الف)‌در انسان بسیاری از تغییرات ریز ماهواره‏ای موجب تغییر در نشان‌گر های مجاور ناحیه ی ریز ماهواره‏ای نمی‌شود. بنابراین در ایجاد چنین تغییراتی نوترکیبی بی‏تاثیر است. از آنجا که جهش در فرضیه کراسینگ اور نامساوی، وابسته به نوترکیبی است، تغییرات ریز ماهواره ای و عدم تغییر نقاط مجاور با این فرضیه قابل توجیه نیست.
ب)‌نقصان در ژن‏هایی که در نوترکیبی نقش اساسی دارند تاثیری در پایداری ریز ماهواره‏ها ندارد.
ج)‌مطالعات انجام گرفته در ساکارومایسزسرویزیه نشان می‏دهد که پایداری ریز ماهواره‏ها در سلول‏هایی که تقسیم میوز را انجام می‏دهند مشابه با یاخته ها در تقسیم میتوز است. با توجه به اینکه نوترکیبی در میوز بیشتر از میتوز است، پس اگر فرضیه‏ی کراسینگ اور نامساوی صادق باشد، باید ریز ماهواره‏ها در میوز ناپایدارتر از میتوز باشد(23).
1-6 دامنه تنوع واحدهای تکرارشوندهدو مدل متفاوت برای توصیف دامنه‏ی تنوع تعداد واحدهای تکرار شونده‏ی ریز ماهواره‏ای وجود دارد:
1.مدل جهش گام به گام
2. مدل آللی نا محدود
1-6-1 مدل جهش گام به گاماگر فرض کنیم در ریزماهواره‏ها یک گام معادل تغییر در یک واحد تکرار شونده باشد، بنابر این مدل ریز ماهواره‏ها از نظر اندازه فقط در تعداد محدودی گام تفاوت دارند، به‌طوری که هر گام از گام بعدی به وسیله‏ی یک واحد تکرار شونده جدا می‏شود. در این مدل چنین فرض می‏شود که بسیاری از جهش‏های با فراوانی زیاد، فقط ریزماهواره‏ها را در یک گام یا دو گام‌(در یک زمان) تغییر می‏دهند. طرفداران این نظریه معتقدند که در بیشتر آزمایش‏ها، بیشترین تغییر در ساختار ریزماهواره‏ها مربوط به افزایش یا کاهش در یک واحد تکرار شونده بوده است(10).
1-6-2 مدل آللی نا‏محدودبر اساس این مدل هیچگونه محدودیتی در اندازه‏ی پتانسیل ریزماهواره‏ها وجود ندارد. از این رو تعداد نا محدودی از انتخاب‏ها می‌توانند اتفاق بیفتند که تمامی آنها احتمال یکسان را داشته باشند.
بسیاری از پژوهشگران معتقدند که ترکیبی از این دو مدل(عموما تغییر در یک یا دو واحد تکرار شونده و به مقدار کمتر تغییرات بزرگتر) بهتر می‌تواند تغییرات جهشی در ریزماهواره‏ها را توضیح دهد(10).
1-7 مارکرهای STRتوالی‏های تکراری کوتاه پشت سر هم(STRS) ، توالی‏های تکرارشونده کوتاه با طول 1-13 نوکلئوتید هستند که به شکل سر به دم قرار می‏گیرند. در ژنوم انسان، معمول‏ترینSTR ، توالی دو نوکلئوتیدی [CA]n است،که در این فرمول n تعداد تکرارهاست که معمولا بین 5 تا 20 بار متغیر است(24).
1-8 کاربرد مارکرهای STRمارکرهایSTR کاربردهای فراوانی دارد که از مهمترین آنها تعیین هویت افراد است(25). تعیین هویت در موارد بسیاری کاربرد دارد که از جمله‏ی آنها می‌توان به موارد زیر اشاره کرد:
1- مطالعات شجره‏ای و روابط فامیلی
2- شناسایی هویت قربانیان حوادث
3- تعیین هویت در موارد جنایی
4- ردیابی تاریخ بشر و مطالعات جمعیتی(26).
1-8-1 مطالعات شجره‏ای و روابط فامیلیاز مارکرهایSTR می توان برای بررسی خویشاوندی دو یا چند نفر استفاده کرد. این نوع مطالعه را آنالیز فامیلی می‌گویند و کاربرد متداول آن در بررسی رابطه والدین ـ فرزندی است(27).
هرساله بیش از 300000 مورد تست ابویت به منظور تعیین رابطه پدر فرزندی در ایالات متحده انجام می‏شود. این تست‏ها معمولا شامل یک مادر، یک کودک و یک یا چند پدر مدعی است. همانطور که می‏دانیم هر فرد دارای دو سری آلل می‏باشد که یک سری آن را از پدر و سری دیگر را از مادر دریافت کرده است. بدین منظور آلل‏های پدر و فرزند برای یافتن تعدادی از جایگاه‏هایSTR مورد بررسی قرار می‏گیرند. اساس این تست بر این است که در فقدان جهش، آلل‏های کودک باید مطابقت کاملی با آلل‏های پدری و مادری داشته باشد(28-29-30).

شکل 1-4 آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد(26).علاوه بر این بسیاری از افراد برای شناسایی اقوام خود از مارکرهایSTR استفاده می‏کنند. برای مثال با آنالیز STR های کروموزومY می توان نسبت فامیلی میان مردان یک خانواده را مشخص کرد. زیرا همان‌طور که می‏دانید کروموزومY توارث پدری دارد و از پدر به تمام پسران به ارث می‌رسد. پس طبیعی است که تمام پسران خانواده در همه‏ی نسل‌هاSTR های یکسانی روی کروموزوم Y خود داشته باشند. آزمایشی که بدین منظور انجام می‏گیرد آزمایش Y-filer نامیده می‏شود. به کمک این آزمایش می‏توان روابط میان برادرها، عمو و برادرزاده و... را مشخص نمود(27-31).
1-8-2 شناسایی هویت قربانیان حوادثفجایع بزرگ، طبیعی یا بدست بشر، می‌تواند جان افراد بسیاری را بگیرد، تست‏‏‏هایی که برای شناسایی قربانیان حادثه انجام می‏شود، تست تعیین هویت قربانیان حادثه نامیده می‏شود. از این تست در مواردی مانند سقوط هواپیما ،آتش سوزی‏های بزرگ و حوادث تروریستی استفاده می‏شود. در این قبیل حوادث با استفاده از اسامی افراد، خانواده‏های آنها شناسایی می‏شوند و پس از مراجعه‏ی خانواده‌ها، از اعضای خانواده شامل پدر، مادر، فرزند، خواهر و برادر نمونه‏ی DNA گرفته می‏شود و نواحی STR آنها بررسی می‏شود. پس از این مرحله با استفاده از DNAبه دست آمده از بقایای اجساد پروفایل ژنتیکی آنها تهیه می‏شود و در نهایت با مقایسه‏ی پروفایل‏های تهیه شده هویت قربانیان شناسایی می‏شود(32).
1-8-3 تعیین هویت در موارد جناییتعیین هویت در موارد جنایی شامل دو بخش می‏باشد:
شناسایی افراد مجهول الهویه
ردیابی مجرمین(25).
1-8-3-1 شناسایی افراد مجهول الهویههر ساله میلیون‏ها نفر در سراسر جهان تحت شرایط مشکوکی مفقود می‏شوند. بسیاری از این افراد قربانی فعالیت‏های مجرمانه از قبیل تجاوز و قتل می‏شوند و هویت آنها ناشناس باقی می‏ماند. در این موارد هم می‏توان از مارکرهای ژنتیکی موجود در DNA افراد برای تعیین هویت آنها استفاده کرد(33).
سه دسته نمونه در مورد افراد قربانی وجود دارد:
1-نمونه مستقیم از فرد قربانی
2-نمونه خانواده قربانی
3-نمونه‌های ناشناس باقی مانده از انسان در صحنه‏ی جرم
این نمونه‏ی باقی مانده می‏تواند استخوان، دندان، بافت، تار مو، لکه ی خون و یا هر چیز دیگری باشد(34).
1-8-3-2 ردیابی مجرمینعلاوه بر این می‏توان از آنالیز DNA برای ردیابی و شناسایی مجرمین استفاده کرد. این که فردی مرتکب جرم و جنایتی بشود و نمونه‌ای از DNA خود را به جا نگذارد، تقریبا غیرممکن است. مو، لکه‌های خون و حتی اثر انگشت، مقادیر بسیار جزئی از DNA را دارند که برای مطالعه با PCR کافی هستند. این بررسی‌ها لازم نیست که بلافاصله انجام شوند، زیرا در سال‌های اخیر، با آزمایش DNA روی مواد بایگانی شده، تعدادی از جنایات گذشته ـ با عنوان پرونده‌های مختومه ـ نیز روشن شده است(35).
باید به خاطر داشته باشیم که یک پروفایل DNA به تنهایی فاقد اعتبار است و کاربردی ندارد. همیشه برای بررسی یک پروفایل DNA نیاز است که یک مقایسه‏ای انجام شود:
1-نمونه ی مورد بررسی که با Q مشخص می شود
2-نمونه شناخته شده که با K نمایش داده می شود
در موارد جنایی، نمونه ی صحنه ی جرم (Q) با نمونه ی فرد مظنون (K) و یا مظانین (K1,K2,K3,K...) مقایسه می شود . در یک مورد بدون مظنون، نمونه ی صحنه ی جرم با نمونه هایی که در اطلاعات کامپیوتری از افراد سابقه دار وجود دارد، بررسی می شود . (K1,K….,KN)(34).

شکل 1-5 شناسائی مجرمین به کمک مارکرهای STR(26).1-8-4 ردیابی تاریخ بشر و مطالعات جمعیتیباستان شناسان با بررسی و مقایسه توالی DNA انسان‌های امروزی با افراد مرده، به کشف منشأ تکاملی انسان امروزی و مسیرهای استقرار انسان در کره زمین می‌پردازند. این زمینه تحقیقاتی آرکئوژنتیک نامیده می‌شود(35).
ردیابی مهاجرت انسانی در طول تاریخ با استفاده از آنالیز DNA روش نوینی است. هدف از این کار تخمین ارتباط میان جمعیت ها بر اساس شباهت‏ها و تفاوت‏هایDNA آنها است. به همین منظور پروژه‏ی عظیمی در سال2005 به منظور ردیابی تاریخ بشر انجام شد که در آن از ده ها هزار نفر از افراد در سراسر جهان آزمایش به عمل آمد. اساس کار بر این مطلب است که اگر تکامل ژنوم‏ها به دلیل انباشتگی جهش ها رخ داده باشد، بنابراین میزان اختلاف در توالی نوکلئوتید های دو ژنوم می تواند زمان حضور جد مشترک آنها را مشخص نماید. انتظار می رود دو ژنومی که اخیرا از یکدیگر جدا شده اند در مقایسه با دو ژنومی که جد مشترک آنها قدیمی‏تر است، اختلاف کمتری داشته باشند(36).
در مطالعه روی یافتن مبدا انسان‏های امروزی و الگوی جغرافیایی مهاجرت‏های بشر از مطالعه‏ی ژن‏ها در جمعیت‏ها می‏توان استفاده کرد. بدین منظور ژن‏های انتخابی جهت بررسی باید دارای گوناگونی باشند. در صورت فقدان گوناگونی ژن‏ها، اطلاعات فیلوژنتیکی بدست نمی‏آید، زیرا همه‏ی افراد حتی اگر به جمعیت‏های مجزایی تقسیم شده باشند که تنها به صورت متناوب با یکدیگر آمیزش داشته‏اند، همچنان دارای همانندی‏های بسیاری خواهند بود. بدین معنی که توالی DNA مورد استفاده در آنالیز فیلوژنتیکی باید از متنوع ترین توالی‏های متغیر باشد(36).
در انسان از سه نوع توالی استفاده می‏شود :
ژن های چند آللی مانند اعضای خانواده‏ی HLA، که اشکال بسیار متفاوتی دارند .
ریز ماهواره‏ها که STR ها نیز جز این گروه به حساب می‏آیند .
DNA میتوکندریایی که به دلیل فقدان سیستم‏های ترمیمی موجود در هسته‌های سلول انسان که نسبتا به سرعت دچار انباشتگی نوکلئوتیدی می‏شوند. انواع مختلف DNA میتوکندریایی موجود در یک گونه را هاپلوگروه می‏نامند(36).
باید توجه نمود که آلل‌ها و هاپلوگروه‌های مختلف به طور هم‌زمان در جمعیت‌ها وجود دارند. به این ترتیب این لوکوس‏ها چند شکلی بوده و به کمک مقایسه ترکیب آلل‌ها و یا هاپلوگروه‌های آنها می‌توان اطلاعات مربوط به وابستگی بین افراد مختلف را بدست آورد. به دلیل جهش‌های ایجاد شده در سلول‏های تولید مثلی هر یک از موجودات، آلل‏ها و هاپلوگروه‏های جدیدی در جمعیت ظاهر می‏شوند. هر یک از آلل‏ها، فراوانی آللی خود را دارند که در طول زمان به دلیل انتخاب طبیعی و تغییر ژنتیکی اتفاقی تغییر می‌کند. انتخاب طبیعی به دلیل تغییر در تناسب (توانائی یک موجود جهت بقا و تولید نسل) رخ می‌دهد و بنابر نظریه‌ی داروین منجر به حفظ انواع مناسب و از بین رفتن انواع زیان آور می‏گردد. به این ترتیب انتخاب طبیعی، فراوانی آلل‏های کاهنده‏ی تناسب را کم کرده و فراوانی آلل‏های افزاینده‌‌ی تناسب را افزایش می‏دهد. در حقیقت در یک جمعیت آلل‏های اندکی ایجاد می‏شوند که تاثیر قابل توجهی بر تناسب موجود داشته باشند، اما هم‌چنان فراوانی آنها به دلیل تغییر ژنتیکی اتفاقی که جز جدا نشدنی طبیعت تولد،تولید مثل و مرگ است در حال تغییر می‏باشد. به دلیل انتخاب طبیعی یا تغییر ژنتیکی اتفاقی ممکن است یک آلل در جمعیت غالب شده و فراوانی آن به صد در صد نیز برسد، به طوریکه این آلل در جمعیت تثبیت شود. اگر یک گونه به دو جمعیت تقسیم شود به طوریکه آمیزش‌های فراوانی بین دو جمعیت رخ ندهد، فراوانی آلل در دو جمعیت به طور مختلف تغییر می‌کند. بنابراین پس از چند ده نسل این دو جمعیت ویژگی‏های ژنتیکی مجزایی را کسب می‏کنند. سرانجام جایگزینی ژنی متفاوتی در این دو جمعیت اتفاق می‏افتد ولی حتی قبل از آن نیز می‏توان از روی اختلاف فراوانی آللی در دو جمعیت، آن دو را از هم باز شناخت(36).
محققان طی سال‏ها تحقیقات در سراسر جهان با استفاده از اصول تئوری اطلاعات، پارامترهای عمومی برای هر جمعیت را به منظور تعیین مقدار اطلاعاتی که مارکرهای STR در جمعیت‏ها به ما می‏دهند، تعریف کردند. در یک نمونه‏گیری از مارکرهای افراد از سراسر جهان، مارکرهایی که بیشترین چندشکلی را در میان جمعیت‏های مختلف داشتند و منحصر به جمعیت‏های خاص بودند، انتخاب شدند .امروزه از این مارکرها برای بررسی تنوع و تفاوت میان جمعیت‏ها استفاده می‏شود(37).
1-9 سایر کاربردهای مارکرهای STRمارکرهای مختلف STR تحت عنوان کیت های تجاری مختلف در کنار تست‏های تعیین هویت کاربردهای گسترده‏ی دیگری دارند که از مهم ترین آنها می‏توان به موارد زیر اشاره کرد:
جمع آوری سلول های جنینی از خون مادر؛
بیماری های نقشه‏ی ژنومی؛
مشخص نمودن خطوط سلولی؛
تعیین هویت افراد استفاده کننده‏ی سرنگ مشترک؛
تشخیص کلون‏های موفق؛
بررسی و نظارت بر روی پیوند عضو؛
تشخیص کایمرهای ژنتیکی؛
تشخیص تومورهای سرطانی(26).
1-9-1 جمع آوری سلول های جنینی از خون مادرهنگامی که یک خانم باردار است تعدادی از سلول‌های جنینی می‏توانند از راه جفت وارد جریان خون مادر شوند. جمع‌آوری این سلول ها که تحت عنوان micro chimerism خوانده می‏شود و بررسی آنها با مارکرهای STR یک روش غیر تهاجمی برای تعیین رابطه‌ی پدر فرزندی است. همچنین با استفاده از این روش می‏توان جنسیت جنین را نیز تعیین نمود(26).
1-9-2 نقشه‏ی ژنوم بیماری‏ها
اسکن ژنوم انسان برای شناسایی نقشه ژنوم بیماری‏ها به طور معمول با استفاده از حدود چهارصد نشان‌گر STR در سراسر ژنوم در فواصل 10 سانتی مورگان انجام می‏شود. مرکز تحقیقات بیماری‏های ارثی در طول سال ها مطالعات و آزمایشات بسیاری را روی صدها نفر با استفاده از مارکرهای STR انجام داده است. هدف از این آزمایشات یافتن ارتباط میان فراوانی آللی در جمعیت های مختلف و بیماری های ژنتیکی بود. در پژوهش‌های صورت یافته ارتباط میان برخی مارکرها و بیماری‏ها مشخص شد. پس از آن از مارکر‏های مذکور می‏توان برای شناسایی تعیین دقیق محل ناشناخته‏ی ژن بیماری استفاده کرد(26).
1-9-3 تعیین هویت افراد استفاده کننده از سرنگ مشترکیکی دیگر از کاربردهای مارکرهایSTR نشان دادن به اشتراک گذاری سرنگ در میان مصرف کنندگان مواد مخدر است. با این روش و با استفاده ازجایگاه D8 آزمایشگاه قادر به تشخیص هویت فرد و یا افرادی است که از یک سرنگ مشترک برای تزریق مواد مخدر استفاده کرده‏اند. با این روش می‏توان هویت شخصی را که منشا انتقال بیماری عفونی بوده و از سرنگ مشترک با سایر افراد استفاده می‏کرده تعیین نمود(26).
1-9-4 تشخیص کلون‏های موفقهنگامی که یک موجود کلون می‏شود ازSTR Typing برای آزمایش آن موجود استفاده می‏شود. برای مثال در کلون کردن موجوداتی مانند سگ و گربه. این روش برای آزمودن میزان موفقیت در کلون کردن به کار می‏رود. اگر یک پروفایل STR یکسان میان موجود کلون شده و سلول‎های مادری اولیه مشاهده نشود، در این صورت کلون کردن موفقیت آمیز نبوده(26).
1-9-5 بررسی و نظارت روی پیوند عضواز کاربردهای دیگر مارکرهای STR، نظارت پیوند سلول‏های پیوند شده بعد از پیوند مغز استخوان است، آزمایش STR از فردی که پیوند گرفته می‏تواند در تشخیص نارسایی پیوند مفید واقع شود(26).
1-9-6 تشخیص کایمرهای ژنتیکیChimerism حضور دو خط سلولی ژنتیکی متفاوت در یک ارگانیسم است که می‏تواند از طریق پیوند سلول‏های بنیادی خونی و یا انتقال خون و یا به طور ارثی در شخص اتفاق بیفتد. در سال 2004 آزمایشی روی افراد دهنده و گیرنده‏ی پیوند انجام شد که توانایی بالای 27 نشان‌گر STR به کار گرفته شده، ازجمله نشان‌گرهای CODIS در تشخیص کایمرها شگفت انگیز بود(26).
1-9-7 مشخص نمودن خطوط سلولیدر آزمایشگاه خطوط سلولی می‏توانند با سایر خطوط سلولی آلوده شوند. در نتیجه ممکن است با هم مخلوط و یا به یکدیگر تبدیل شوند احراز هویت خط سلولی انسان در حال حاضر به وسیله ی سازمانی در آمریکا انجام شده است. به کمک مارکرهای STR می‏توان آلودگی متقاطع بین خطوط سلولی مختلف را به سرعت کشف کرد و همچنین می‏توان برای مشخص کردن خطوط سلولی انسان به عنوان یک مرجع جهانی سود جست. در طول چند سال گذشته بیش از 500 خط سلولی از انسان به کمک این روش و با استفاده از 8 جایگاه STR بدست آمده است(26).
1-9-8 تشخیص تومورهای سرطانیفقدان هتروزیگوسیتی (LOH) پدیده‏ای است که در آن حذف در یک ناحیه‏ی لوکوس منجر به عدم تکثیر در PCR می‏شود، به طوری که یک هتروزیگوت واقعی به عنوان یک هموزیگوت به نظر می رسد. این پدیده در بسیاری از افراد مبتلا به تومورهای سرطانی دیده می‏شود. بررسی روی بافت های سرطانی با بافت نرمال با استفاده از STR نشان می‏دهد که جایگاه های مختلف در بافت سالم ارتفاع بلندتری نسبت به بافت های سرطانی نشان می دهند؛چرا که LOH سبب حذف در آن ناحیه شده است(26).
1-10 روش‏های کلی شناسایی هویت افراد در سطح مولکولیدو روش کلی برای شناسایی هویت افراد در سطح مولکولی عبارتند از:
اثر انگشت ژنتیکی از طریق هیبرید کردن با DNA جستجوگر
تعیین الگوی DNA با PCR توالی‌های کوتاه تکراری(38).
1-10-1 روش انگشت‌نگاری ژنتیکی از طریق هیبرید کردن با DNA جستجوگراولین روشی که در آنالیز DNA با هدف شناسایی افراد به کار رفت، روشی بود که در اواسط دهه 1980 توسط سر آلک جفری از دانشگاه لیستر ارائه شد . این روش براساس نوع دیگری از تنوع ژنوم انسان، موسوم به توالی تکراری بسیار متغیر پراکنده بود. همانگونه که از نام این توالی‌ها بر می‌آید، این توالی‌ها عبارتند از یک توالی تکراری که در جایگاه مختلفی‌(به‌طور پراکنده) از ژنوم انسان وجود دارد. نکته کلیدی این توالی‌ها این است که جایگاه ژنتیکی آنها متنوع است و در افراد مختلف در جایگاه‌های مختلفی از ژنوم قرار دارند(38).
توالی که در ابتدا برای انگشت‌نگاری ژنتیکی بکار رفت، توالی GGGCAGGANG (N: هریک از چهار نوکلئوتید) بود. برای تهیه اثر انگشت یک نمونه، DNA آن را با آنزیم محدودگر برش می‌دهند و قطعات حاصل را با استفاده از الکتروفورز ژل آگارز از هم تفکیک کرده و با آزمون ساترن بلات مورد بررسی قرار می‌دهند. هیبریداسیون با جستجوگری که دارای این توالی بود چند سری از نوارها را مشخص کرد. هریک از این نوارها مربوط به قطعه‌ای از DNA هضم شده بود که دارای این توالی تکراری بود. به دلیل تنوع جایگاه‌های این توالی اگر این آزمون با نمونه DNA فرد دیگری تکرار شود، نتیجه متفاوتی به دست می‌آید و می‌توان نتایج حاصل را انگشت‌نگاری ژنتیک این افراد محسوب نمود . در شکل 1-6 مراحل انگشت نگاری ژنتیکی نشان داده شده است(38).

شکل 1-6 مراحل انگشت نگاری ژنتیکی(38)
1-10-1-1 محدودیت‏های روش انگشت نگاریاین روش در کارهای جنایی خود را بسیار ارزشمند نشان داد اما سه محدودیت داشت:
مقادیر بالایی از DNA برای انجام آزمون مورد نیاز است، زیرا این روش نیازمند آنالیز هیبریداسیون است. برای انگشت‌نگاری نمی‌توان از مقادیر اندک DNA موجود در مو و لکه‌های خون استفاده کرد.
بحث کردن در مورد الگوهای حاصل از انگشت‌نگاری مشکل است، زیرا نوارهای حاصل شدت و ضعف‌های متفاوتی دارند. از نظر قانونی، کوچک‌ترین اختلاف شدت در انگشت‌نگاری ژنتیکی یک متهم برای برائت او کافی است.
با وجود اینکه جایگاه‌های تکراری پراکنده بسیار متنوع هستند، اما اندک احتمالی نیز برای یکسان بودن یا حداقل تشابه الگوی حاصل از دو فرد وجود دارد. این موضوع می‌تواند منجر به برائت یک متهم شود(38).
1-10-2 روش پروفایلینگ
روش قدرتمند پروفایلینگ DNA چنین مشکلاتی را ندارد. در پروفایلینگ از توالی‌های معروف به توالی‌های چند شکلی STR استفاده می‌شود. در این روش، به وسیله PCR با پرایمرهایی که به توالی‌های جانبی STR می‌چسبند، به سرعت می‌توان مقادیر بسیار اندک DNA را افزایش داد. بعد از PCR، محصولات از نظر اندازه نوارها یا وجود نوارهایی که الل‌ یا آلل‌های موجود در نمونه DNAی مورد آزمون هستند، با الکتروفورز ژل آگارز بررسی می‌شوند. روش پروفایلینگ DNA، به دلیل استفاده از PCR بسیار حساس است و امکان انجام آزمون روی مو و دیگر نمونه‌هایی که مقادیر اندکی DNA دارند، فراهم می‌آورد. در نتایج حاصل نیز شکی وجود ندارد و مقایسه میان پروفایل‌های DNA معمولا به عنوان یک مدرک پذیرفته می‌شود. با استفاده از این روش امکان اینکه دو نفر، البته بجز دوقلوهای یکسان، دارای پروفایل‌ مشابهی باشند برابر یک در 1015 می‌باشد. با توجه به جمعیت کره زمین که حدود 109×6 می‌باشد، امکان تشابه آماری پروفایل مربوطه در دو نفر به قدری اندک است که می‌تواند غیرممکن تلقی گردد. نوع هر STR با PCR بوسیله پرایمرهایی که با فلورسنت نشاندار شده‌اند و به دو طرف نواحی تکرار شونده متصل می‌گردند، تعیین می‌شود. سپس الل‌های موجود در STRها با تعیین اندازه به وسیله ژل الکتروفورز موئینه‌ای مشخص می‌شوند. دو یا چند STR می‌تواند با PCR چندگانه مشخص گردد، مشروط به اینکه محصولات از لحاظ اندازه همپوشانی نداشته باشند یا هر جفت پرایمر با فلورسانت متفاوتی نشاندار شده باشند تا امکان تشخیص در ژل الکتروفورز موئینه را داشته باشند. در شکل 1-7 مراحل روش پروفایلینگ نشان داده شده است‌(38).

شکل 1-7 مراحل پروفایلینگ ‌DNA(36).1-11 تاریخچه استفاده از مارکرهایSTR
مارکرهای STRبرای اولین بار به عنوان ابزاری قوی در تست تعیین هویت انسانی در سال 1990 به‌کار گرفته شدند. دستگاه پزشکی قانونی ((FSS مطالعه برای شناسایی جایگاه‌های جدید و ارتباط جایگاه های شناخته شده با تنوع در جمعیت‏ها را آغاز کرد. پس از آن پلیس سلطنتی کانادا (RCMP) به همراه تعدادی از آزمایشگاه‌های اروپا تلاش‌های اولیه را در رابطه با جایگاه های STR آغاز کردند. اولین جایگاه‏های مورد استفاده شامل چهار جایگاه TH01،VWA ، FES/FPS و.F13A1 نسل دوم کیت‌ها ((SGM شامل جایگاه‌های TH01، VWA‌، FGA ،D8S1179 ،D18S51 و D21S11 بود. پایگاه داده‌های ملی DNA انگلستان ((NDNAD در سال 1995 جایگاه ژن آمیلوژنین (برای تعیین جنسیت) را به کیت SGM اضافه کرد. با توجه به تکنولوژی STR Typingو موفقیت‏هایی که در این زمینه در انگلستان به‌دست آمد، FBI درصدد برآمد که با استفاده از لوکوس‌های STR، بنیان CODIS را شکل دهد(41).
1-12 CODIS چیست؟سیستم شاخص اندیس‌دهی ترکیبی CODISشامل سیزده جایگاه STRاست. در شکل 1-8 محل قرارگیری این جایگاه‌ها روی کروموزوم‌های انسان نشان داده شده‌اند. نرم افزار CODIS در سال 1990 به عنوان نرم افزاری برای FBI تاسیس گردید. این نرم افزار در صورت اولیه برای آنالیز پروفایل‏های RFLP مورد استفاده قرار می‏گرفت که در بانک اطلاعاتی قابل جستجو بود. تکنولوژی DNA پزشکی قانونی و تکنولوژی کامپیوتری با یکدیگر ادغام گردیدند و باعث بهبود این نرم افزار شدند و این بهبود در جهت نیاز‌های پزشکی قانونی صورت گرفت. در سال 1997نرم افزار CODIS بر اساس مارکرهای STR طراحی شد. سیزده جایگاه STRکه امروزه تحت عنوان CODIS خوانده می‏شوند، عبارتند‌از:
D8S2179
D21S11
D7S820
CSF1PO
D3S1358
TH01
D13S317
D16S539
VWA
TPOX
D18S51
D5S818
FGA (42).

شکل 1-8 جایگاه‌های CODIS روی کروموزوم های انسان(25).1-13 کیت مورد استفاده در تعیین هویت
برای تعیین هویت از کیتAmp FI STR Identifiler PCR Amplification استفاده می‌شود، که حاوی 15 جایگاه تترانوکلئوتید STRبه همراه مارکر آمیلوژنین که برای تشخیص جنسیت به کار می‏رود می‏باشد. از این پانزده جایگاه، سیزده جایگاه، جایگاه‌های شناخته شده‏ی سیستم اندیس دهی ترکیبی‌(CODIS) هستند، اما علاوه بر آنها دو جایگاه دیگر هم در این کیت گنجانده شده است. جدول(۱-1) نشان دهنده‌ی نام جایگاه‏های موجود در CODIS، به همراه موقعیت کروموزومی هر یک از جایگاه‏ها و آلل‏های موجود در هر جایگاه است(43).
جدول 1-1 جایگاه‏های موجود در کیت ABIآلل‌های موجود در هر جایگاه موقعیت کروموزومی نام جایگاه
8,9,10,11,12,13,14,15,16,17,18,19 8 D8S2179
24,24.2,25,26,27,28,28.2,29,29.2,
30,30.2,31,31.2,32,32.2,33,33.2,
34,34.2,35,35.2,36,37,38 21q11.2-q21 D21S11
6,7,8,9,10,11,12,13,14,15 7q11.21-22 D7S820
6,7,8,9,10,11,12,13,14,15 5q33.3-34 CSF1PO
12,13,14,15.16,17,18,19 3p D3S1358
4,5,6,7,8,9,9.3,10,11,13.3 11p15.5 TH01
8,9,10,11,12,13,14,15 13q22-31 D13S317
5,8,9,10,11,12,13,14,15 16q24-qter D16S539
15,16,17,18,19,20,21,22,23,24,25,
26,27,28 2q35-37.1 D2S1338
9,10,11,12,12.2,13,13.2,14,14.2,15,
15.2,16,16.2,17,17.2 19q12-13.1 D19S433
11,12,13,14,15,16,17,18,19,20,21,
22,23,24 12p12-pter VWA
6,7,8,9,10,11,12,13 2p23-2per TPOX
7,9,10,10.2,11,12,13,13.2,14,14.2,
15,16,17,18,19,20,21,22,23,24,25
26,27 18q21.3 D18S51
X,Y Amelogenin
7,8,9,10,11,12,13,14,15,16 5q21-31 D5S818
17,18,19,20,21,22,23,24,25,26,26.2
27,28,29,30,30.2,31.2,32.2,33.2,
42.2,43.2,44.2,45.2,46.2,47.2,48.2
50.2,51.2 4q28 FGA
1-14 معرفی استان‏ها1-14-1 استان کرمانشاه
کرمانشاه یکی از باستانی‌ترین شهرهای ایران است و بر اساس افسانه ها توسط طهمورث دیوبند - پادشاه افسانه‌ای پیشدادیان ساخته شده است. برخی از مورخین بنای آن را به بهرام پادشاه ساسانی نسبت می‌دهند. کرمانشاه در زمان قباد اول و انوشیروان ساسانی به اوج عظمت خود رسید. در اوایل حکومت شاه اسماعیل صفوی سلطان مراد آق قویونلو با 70 هزار نفر کرمانشاه و همدان را اشغال کرد. صفویه برای جلوگیری از تجاوز احتمالی امپراطوری عثمانی این شهر را مورد توجه قرار داد. در زمان شیخ علیخان زنگنه صدر اعظم صفوی به آبادانی و رونق کرمانشاه افزوده شد. تاورنیه، جهانگرد و بازرگان فرانسوی، درباره کرمانشاه چنین نوشته‌ است: ” هم زمان با حمله افغان و سقوط اصفهان که طومار فرمانروایی خاندان صفوی در نوردیده شد، کرمانشاه به جرم قرب جوار، با تهاجم عثمانی‌ها مواجه گردید و بار دیگر شهر رو به خرابی نهاد.“ نادر شاه به منظور آمادگی در مقابل تجاوز عثمانی‌ها، به این شهر توجهی خاص مبذول داشت. در زمان نادر شاه این شهر مورد هجوم عثمانی‌ها قرار گرفت. اما نادرشاه عثمانی‌ها را به عقب راند، ولی در اواخر زندگی نادرشاه، کرمانشاه با محاصره و تاراج عثمانی‌ها مواجه شد. کرمانشاه در عهد زندیه دستخوش آشوب فراوانی گردید. به طوری‌که درکتاب ”تحفه العالم“ عبدالصیف جزایری از کرمانشاه به عنوان خرابه نام برده شده است. در دوره قاجار تا حدی از حملات عثمانی‌ها به ناحیه کرمانشاه کاسته شد. در سال 1267ه.ق، امام قلی میرزا از طرف ناصرالدین شاه به سرحدداری کرمانشاه منصوب شد و مدت 25 سال در این شهر حکومت کرد و در همین دوره بناهایی را احداث و به یادگار گذاشت. این شهر در جنبش مشروطه سهمی به سزا داشت و در جنگ جهانی اول و دوم به تصرف قوای بیگانه درآمد و پس از پایان جنگ تخلیه شد. در نتیجه جنگ تحمیلی عراق علیه ایران، این شهر خسارات زیادی دید و پس از جنگ اقدامات مؤثری در جهت بازسازی آن صورت گرفت. در حال حاضر شهر کرمانشاه، مرکز استان کرمانشاه یکی از هفت کلانشهر کشور(تهران، مشهد، اصفهان، تبریز، شیراز، کرمانشاه و اهواز) است‌(44).
1-14-1-1 موقعیت جغرافیایی
استان کرمانشاه در موقعیت ۳۴ درجه شرقی و ۴۷ درجه شمالی شمالی قرار دارد. از شمال به کردستان، از غرب به کشور عراق، از شرق به استان لرستان و همدان و از جنوب به استان ایلام محدود می گردد. شهرستان‌های این استان عبارت‌اند از: اسلام‌آباد غرب، سنقر، پاوه، صحنه، ثلاث باباجانی، قصر شیرین، جوانرود، دالاهو، روانسر، کرمانشاه، کنگاور، گیلان غرب، سر‌پل ذهاب، هرسین. در شکل1-13 استان کرمانشاه به همراه شهرستان‌های آن دیده می‌شود(44).

شکل 1-9 موقعیت جغرافیائی استان کرمانشاه)44.(1-14-2 استان یَزدیزد سرزمینی کهن با پیشینه‌ای در خور توجه، در تاریخ پر فراز و نشیب ایران است. نام یزد برای اولین بار در آثار دوره‌ی ماد‌ها (701 تا 550 قبل از میلاد) دیده می‌شود که گواهی بر قدمت سه هزار ساله‌ی این سرزمین است. در دوره‌های هخامنشی، اشکانی و ساسانی نیز در اسناد و کتیبه‌ها بار‌ها به نام یزد برمی‌خوریم(45).
حسن پیر‌نیا، در کتاب خود،"ایران باستان"،به نقل از تاریخ هرودوت، مورخ یونانی(484 تا 420 قبل از میلاد)، بر مبنای کتیبه‌های داریوش، یزد را بنا بر رسم یونانیان، به نام ایساتیس می‌خواند. وی می‌افزاید: یزد در عصر اشکانی در قلمرو حکومت مهرداد اول بود و در این شهر به نام او سکه ضرب می‌کردند. در دوره‌ی پادشاهی اردشیر بابکان، (241-224‌م) بنیان‌گذار سلسله‌ی ساسانی، یزد زیر نفوذ او بود. پس از ظهور اسلام و فروپاشی دولت ساسانی، در زمان خلافت عمر، و به روایت برخی، در دوران عثمان (دهه ی سوم هجری)، شهر یزد و نواحی آن فتح شد. از آن زمان تا پایان حکومت امویان، فرمانروایان عرب بر این ولایت حکم‌رانی می‌کردند. چنان‌که آمده است، در دوران خلافت حضرت علی(ع)، مسلم ابن زیاد، والی فارس، مالیات یزد را هم می‌گرفت. چنین بود تا هنگامی‌که به‌دست خود ایرانیان، حکومت های مستقل و نیمه مستقلی تشکیل شد و فرمانروایان ایرانی بر ولایت یزد حاکم شدند(45).
مرکز این استان، شهر یزد است. یزد منطقه‌ای خشک و بیابانی است. گروه بزرگی از زرتشتیان ایران در استان یزد و بویژه شهر یزد زندگی می‌کنند. زبان مردم استان یزد فارسی با لهجه یزدی است. آبادی نشینی در این منطقه از قدمت طولانی برخوردار است. این سرزمین از گذرگاه‌های مهم در ادوار تاریخی محسوب می‌شده‌ است. این ناحیه در دوره هخامنشیان از راه‌های معتبر موسسه‌های راهداری، مراکز پستی و چاپاری برخوردار بوده‌است. راهداری در یزد قدیم چنان اهمیتی داشت که خاندان آل مظفر از منصب راهداری ناحیه میبد به پادشاهی رسیدند. با این‌همه این استان از درگیری‌ها و جنگ‌های تاریخ کشور ایران تا حدودی ایمنی داشته‌است. سخت‌گذر بودن راه‌ها به همراه محدودیت منابع آبی مانع عمده تسخیر این منطقه توسط بعضی از حکومت های بزرگ و کوچک حاشیه و پیرامون این منطقه در طول تاریخ بوده‌است. همان طور که در شکل 1-14 دیده می شود استان یزد دارای شهرستان های ابرکوه، اردکان، بافق، بهاباد، تفت، خاتم، صدوق، طبس، مهریز، میبد و یزد می باشد که شهرستان های مهریز و تفت از آب و هوای خوبی برخوردار می باشد (45).
1-14-2-1 موقعیت جغرافیایی
استان یزد در مرکز ایران در قلمرو سلسله جبال مرکزی ایران بین عرض های جغرافیایی 29 درجه و 48 دقیقه تا 33 درجه و 30 دقیقه شمالی و طول جغرافیایی 52 درجه و 45 دقیقه تا 56 درجه و 30 دقیقه شرقی از نصف النهار مبدا قرار گرفته است. استان یزد از سرزمین‌های تاریخی است که در میان ایالت های قدیمی و بزرگ پارس، اصفهان، کرمان و خراسان قرار داشته‌است(45).

شکل 1-10 موقعیت جغرافیائی استان یزد(45).1-15 هدف از تحقیق:آنچه که باعث استفاده از مارکرهای STR در جمعیت شناسی شده است، این واقعیت است که درجه فراوانی آللی هر مارکر STR در هر جمعیت منحصر به فرد است. در حقیقت طبق مطالعات انجام شده فراوانی آلل‏های STR در نژاد‏های مختلف و حتی در مناطق جغرافیایی خاص، تفاوت‏هایی را نشان داده است. بنابراین بررسی هر یک از لوکوس های STR در هر نژاد یا جمعیت خاص برای تفسیر صحت نتایج حاصل از انجام آزمایش های تعین الگوی ژنتیکی به کمکSTR و انجام محاسبات آماری مربوطه امری ضروری است. برای بهره گیری از فواید این فناوری نوپا در زمینه‏ی تشخیص افراد، ضروری است تا فراوانی آللی لوکوس‏هایSTR مختلف در جمعیت بومی کشور مورد بررسی قرار گیرند (45).
مطالعات گذشته روی جمعیت های ایرانی، حضور تعدادی از آلل‏ها را با پلی مورفیسم بالا نشان می‏دهد‌(37-46.)
هدف از این مطالعه به دست آوردن پارامترهای جمعیتی بر اساس فراوانی آللی به دست آمده از شانزده جایگاه STR، در جمعیت‏های کرمانشاه و یزد به منظور بررسی تفاوت ژنتیکی میان این دو جمعیت و سایر جمعیت‏ها می‏باشد.

فصل دوم
2-1 نمونه‌گیریبرای نمونه‌گیری از اقوام کرد و یزد از نمونه هایی که به آزمایشگاه ژنتیک پزشکی تهران رجوع می‌کردند، استفاده شد. پس ازکسب رضایت نامه 4 میلی لیتر خون محیطی از افراد غیر خویشاوند بر اساس محل تولد و اطلاعات مربوط به سه نسل گذشته (پدری و مادری) تهیه شد و در لوله‌های حاوی ماده ضد انعقاد (EDTA) ریخته شد برای تکمیل نمونه‌های یزدی از همکاری آزمایشگاهی در یزد استفاده گردید و برای نمونه‌های کرد به استان کرمانشاه رفته و از آزمایشگاه بیمارستان طالقانی نمونه‌گیری به عمل آمد.
2-2 استخراج DNA به روش نمک اشباعاستخراج DNA با استفاده از روش استاندارد نمک اشباع طبق مراحل زیر انجام شد:
۱- ۳ میلی لیتر از نمونه‌ی خون محیطی حاوی ماده‌ی ضد انعقاد EDTA، داخل فالکون ۱۵ میلی لیتری ریخته شد و با استفاده از آب مقطر سرد به حجم ۱۰ میلی لیتر رسانده شد. سپس فالکون به شدت حرکت داده شد این کار جهت لیز بهتر گلبول‌های قرمز از طریق فرآیند تورژسانس می‌باشد. سپس نمونه را در دستگاه EBA 20 Hettich zentrifugen به مدت ۱۰ دقیقه با دور ۵۰۰۰ سانتریفیوژ شد و محلول رویی خارج گردید و رسوب انتهایی فالکون نگه داشته شد.
۲- با افزودن آب مقطر سرد به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد و مجدداً با همان شرایط ذکر شده آن را سانتریفیوژ گردید و رسوب حاصل که حاوی گلبول‌های سفید است نگه داشته شد.
۳- پس از افزودن ml10 محلول I استخراج DNA به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد. سپس در شرایط ذکر شده آن را سانتریفوژ کرده و محلول رویی آن دور ریخته شد.
جدول2-1 محلولI استخراج DNA (محلول لیز کننده گلبول‌های قرمز)غلظت مواد
10 mM Tris-Hcl: pH:7.5
0.32 mM Sacarose
5 mM MgCl2
%1 Triton X-100
4-5/۱ میلی لیتر از محلول II استخراج DNA(از قبل تهیه شده به شرح زیر)، lμ ۲۵ سدیم دو دسیل سولفات ‌ SDS و lμ ۲۰ پروتئیناز K به رسوب سفید رنگ انتهای فالکون افزوده شد.
جدول 2-2 محلول II استخراج DNA (محلول لیز کننده گلبول‌های سفید)غلظت مواد
10 mM Tris-HCl: pH:8.2
2mM EDTA: pH:8
0.45mM NaCl
۵- نمونه‌ها به مدت ۳۰ تا ۴۵ دقیقه در دمایc° ۵۶ و یا به مدت یک شب در دمایc° ۳۷ در انکوباتور قرار داده شد تا رسوب حل شود.
۶- پس از افزودن lμ ۵۰۰ نمک اشباع به نمونه، به آرامی تکان داده شد و به مدت ۱۰ دقیقه در ۴۰۰۰ دور سانتریفیوژ شد. سپس محلول رویی به یک فالکون حاوی ۲ میلی لیتر اتانول خالص (۱۰۰ درصد) انتقال یافت و به آرامی حرکت داده شد تا کلاف DNA شکل بگیرد.
۷- کلاف DNA توسط سمپلر به درون یک ویال حاوی ۱ میلی لیتر الکل ۷۰ درصد انتقال یافت تا الکل 100 خارج شود. در مرحله‌ی بعدی ویال را به مدت ۳ دقیقه در ۱۳۰۰۰ دور در دستگاه 20 Hettich zentrifugen Mikro سانتریفیوژ گشت.
۸- محلول رویی دور ریخته شد و ویال حاوی DNA به مدت ۵ دقیقه در انکوباتور قرار داده شد تا اتانول کاملاً تبخیر گردد.
۹- بر حسب میزان DNA بین ۵۰ تا ۳۰۰ ماکرولیتر TE به آن افزوده و به مدت یک شب در انکوباتور C°۳۷ قرار داده شد تا DNA به طور کامل حل شود.
جدول 2-3 ترکیبات TEغلظت محتویات
10mM Tris-Hcl, PH:7.6
1mM EDTA, PH:8
2-3 آماده‌سازی نمونه‌ها جهت انجام تست DNA Typingدر هر واکنش Multiplex PCR بهتر است از lμ ۵ نمونه‌ی DNA انسانی با غلظت ng ۱۰۰-50 استفاده شود. اگر‌چه حساسیت آنالیزی این روش در حد ng۵۰-20 از DNA می‌باشد. روش استخراج و نگهداری DNA می‌تواند روی نتایج PCR تأثیر گذار باشد. این روش نیاز به کیت خاصی برای استخراج DNA ندارد با این وجود توجه به این مسئله که در نمونه‌ها غلظت بالایی از آلودگی با نمک وجود نداشته باشد حائز اهمیت است. در این روش نباید از خون هپارینه استفاده شود زیرا هپارین می‌تواند ممانعت کننده‌ی مرحله‌ی PCR باشد. نمونه‌ی DNA را باید در TE حل کرد. pH نمونه‌ی DNA باید بین ۸ تا ۵/۸ باشد تا از دپوریناسیون در طی مرحله‌ی حرارت دادن اولیه جلوگیری شود. بهتر است در صورتی‌که قصد نگهداری طولانی مدت نمونه‌های DNA را داشته، نمونه را در دمای C°۲۰- نگهداری کرد. اگرچه DNA پس از حل شدن در TE به شدت پایدار است اما نگهداری طولانی مدت آن در دمای C °۴ ممکن است منجر به آلودگی آن با میکروارگانیسم‌ها شود .
۲-3-1 رسوب گذاری با اتانولبا توجه به این مسئله که نتایج مربوط به روش STR در نهایت با یکدیگر مقایسه می‌شوند، بهتر است نمونه‌های انتخاب شده از یک نوع بافت گرفته شوند و با روش یکسانی استخراج شوند. در مواردی که از نمونه‌های DNA قدیمی یا نمونه‌هایی با کیفیت نامناسب استفاده می‌شود و یا مواقعی که غلظت DNA مورد استفاده کمتر از ng/µl۴ است، روش‌های خالص سازی DNA مانند روش رسوب گذاری با اتانول، می‌تواند سبب بهبود کیفیت نمونه‌ها و ایجاد نتایج بهتر و مطمئن‌تری شود. استفاده از روش رسوب گذاری با اتانول آلودگی‌های ناشی از یون‌ها، نمک‌ها، اتانول و... را کاهش می‌دهد. غلظت نمک (NaCl)، نباید بیشتر از mM ۶۰ باشد تا دناتوراسیون به طور کامل انجام شود. هم‌چنین غلظت EDTA نباید بیش از mM۱ باشد زیرا EDTA به منیزیوم متصل شده و مانع انجام مرحله‌ی PCR می‌گردد. ناخالصی‌های یونی مانند آهن، اتانول و فنل نیز باعث کاهش فعالیت پلی‌مراز می‌گردند.
رسوب‌گذاری با اتانول به شیوه زیر بر روی نمونه‌ها انجام گرفت.
به میزان ۱/۰ حجم اولیه‌ی نمونه‌ی DNA استات سدیم M ۳ با 5/4:pH به نمونه‌ها اضافه شد.
به اندازه‌ی ۳ برابر حجم (پس از افزودن سدیم استات) به نمونه‌ها اتانول سرد خالص افزوده شد.
نمونه‌ها به مدت ۱ ساعت در دمای اتاق قرار گرفتند و سپس به مدت ۳۰ دقیقه در دور rpm14۰۰۰ سانتریفوژ گشتند.
محلول رویی به آرامی خارج شد و به رسوب DNA نصف حجم اتانول اولیه،اتانول ۷۰ درصد افزوده شد.
نمونه‌ها به مدت ۱۵ دقیقه در دور ۱4۰۰۰ سانتریفیوژ شدند.
محلول رویی خارج شد و پس از اینکه اتانول کاملاً تبخیر شد رسوب در مقدار مناسبی از TE حل گردید.
2-3-2 تعیین غلظت نمونه‌های DNA توسط دستگاه Nanodrop از ان جایی‌که روش DNA Typing دارای دقت و حساسیت بالایی است، بنابراین نمونه‌های DNA باید دارای کیفیت مطلوبی باشند. در این مطالعه جهت تعیین غلظت نمونه‌های DNA، از دستگاه نانودراپ c۲۰۰۰ استفاده شد. حین استفاده از این دستگاه، نیازی به رقیق سازی نمونه‌های DNA نمی‌باشد. ابتدا دستگاه را با استفاده از کنترل فاقد DNA (آب مقطر یا TE) صفر نموده، سپس 2 میکرولیتر از نمونه‌ی DNA را با استفاده از سمپلر در دستگاه قرار داده شد تا میزان جذب نوری نمونه‌ها در طول موج ۲۸۰/۲۶۰ و ۲۳۰/۲۶۰ اندازه‌گیری شود. به طور کلی اسید‌های نوکلئیک در طول موج ۲۶۰ نانومتر و پروتئین‌ها در طول موج ۲۸۰ نانومتر بیشترین میزان جذب نوری را دارند. از نسبت جذب نمونه در طول موج ۲6۰ به ۲۸۰ نانومتر جهت تعیین خلوص DNA و جهت بررسی حضور دترجنت‌هایی مانند SDS، کربوهیدرات، کلروفرم و فنل از نسبت جذب در طول موج ۲۶۰ به ۲۳۰ نانومتر استفاده شد. برای داشتن نمونه‌هایی با کیفیت مطلوب، عدد حاصل از نسبت ۲۶۰ به ۲۸۰ باید ۸/۱ یا بیشتر باشد. میزان جذب پایین‌تر از ۷/۱ نشان دهنده‌ی آلودگی نمونه‌ها با پروتئین است.
2-3-3 تهیه‌ی Working Stokeبرای انجام واکنش DNA Typing ، غلظت مناسب از نمونه‌های مورد آزمایش تهیه گردید. در این مطالعه از DNA با غلظت ng/µl70 استفاده شد.

شکل ۲-1 تصویر دستگاه نانودراپ c2000(51)

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

2-4 تست DNA Typingروشی که امروزه برای تعیین هویت افراد در آزمایشگاه‌های سراسر جهان انجام می‌شود روشDNA Typing است. در این روش از توالی‏های کوتاه تکراری استفاده می‌شود. نشان‌گرهای STR به آسانی قابل تکثیر هستند و به واسطه طول کوتاه امکان تکثیر هم‌زمان آنها از طریق PCR چندتایی وجود دارد. در این روش از بیش از یک جفت پرایمر در مخلوط واکنش PCR استفاده می شود و بنابراین منجر به تکثیر هم‌زمان دو یا چند ناحیه از DNA می شود. قابلیت انجام PCR چندتایی روی مارکرهای STR بدین معنی است که کمترین مقدار DNA (1/0 تا 1 نانوگرم) حتی DNA شکسته شده نیز با موفقیت قابل الگویابی (تایپینگ) می‌باشد.