payanneme

اسماعیل پور کمال تشکر و سپاسگزاری را دارم.
فهرست مطالب
عنوانصفحه

فصل اول: مقدمه......................................................................................................................... ١
فصل دوم: مروری یر کارهای انجام شده..................................................................................... ۴
٢‐١‐ مقدمه ............................................................................................................................................ ۵
٢‐٢‐ مروری بر روشهای شناسایی اغتشاشات کیفیت توان ................................................................... ۵
٢‐٣‐ مروری بر روشهای شناسایی خطای امپدانس بالا......................................................................... ٩
فصل سوم: پدیده فرورزونانس.................................................................................................... ١۵
٣‐١‐ مقدمه ............................................................................................................................................ ١۶
٣‐٢‐ تاریخچه فرورزونانس................................................................................................................... ١٧
٣‐٣‐ موارد وقوع فرورزونانس در سیستم های قدرت ......................................................................... ۷۱
٣‐۴ ‐ شروع فرورزونانس...................................................................................................................... ١٨
٣‐۴‐١‐ شرایط ادامه یافتن فرورزونانس ......................................................................................... ١٨
٣‐۵‐ اثرات نامطلوب فرورزونانس ........................................................................................................ ١٩
٣‐۶‐ مبانی پدیده فرورزونانس ............................................................................................................. ٢٠
٣‐٧‐فرورزونانس در ترانسفورماتورهای توزیع ..................................................................................... ٢٢
٣‐٧‐١‐ فرورزونانس پایدار .............................................................................................................. ٢٣
٣‐٧‐٢‐ فرورزونانس ناپایدار............................................................................................................ ٢٣
٣‐٨‐ تاثیر نوع سیم بندی ترانسفورماتورها............................................................................................ ٢۴
٣‐٩‐ تاثیر بار بر اضافه ولتاﮊهای فرورزونانس....................................................................................... ٢۴
٣‐١٠‐ طبقه بندی مدلهای فرورزونانس ................................................................................................ ٢۵
٣‐١١‐ شناسایی فرورزونانس................................................................................................................. ٢۵
فصل چهارم: مبانی علمی روشهای پیشنهادی...............................................................................٢٧
۴‐١‐ از تبدیل فوریه تا تبدیل موجک.................................................................................................... ٢٨
۴‐٢‐ سه نوع تبدیل موجک................................................................................................................... ٣٣
۴‐٢‐١‐تبدیل موجک پیوسته............................................................................................................ ٣٣
۴‐٢‐٢‐ تبدیل موجک نیمه گسسته.................................................................................................. ٣۵
۴‐٣‐ انتخاب نوع تبدیل موجک......................................................................................................... ۷۳
۴‐۴‐ آنالیز مالتی رزولوشن و الگریتم DWT سریع ........................................................................... ۷۳
۴‐۴‐١‐ آنالیز مالتی رزولوشن ....................................................................................................... ٣٧
۴‐۵‐ زبان پردازش سیگنالی ............................................................................................................... ۴٠
۴‐۶‐ شبکه عصبی .............................................................................................................................. ۴۵
۴‐۶‐١‐ مقدمه .................................................................................................................................. ۴۵
۴‐۶‐٢‐ یادگیری رقابتی................................................................................................................. ۴۶
۴‐۶‐٢‐١‐روش یادگیری کوهنن ................................................................................................. ۴٧
۴‐۶‐٢‐٢‐ روش یادگیری بایاس .................................................................................................. ۴٨
۴‐٧‐ نگاشت های خود سازمانده ..................................................................................................... ۵٠
۴‐٨‐ شبکه یادگیری کوانتیزه کننده برداری ...................................................................................... ۵٢
۴‐٨‐١‐ روش یادگیری ................................................................................................... LVQ1 ۵٣
۴‐٨‐٢‐ روش یادگیری تکمیلی..................................................................................................... ۵۵
۴‐٩‐ مقایسه شبکه های رقابتی ........................................................................................................ ۵۵
فصل پنجم: جمعآوری اطلاعات ................................................................................................ ۵٧
۵‐١‐ نحوه بدست آوردن سیگنالها......................................................................................................... ۵٨
۵ ‐١‐١‐ بدست آوردن سیگنالهای فرورزونانس................................................................................. ۵٨
۵‐١‐٢‐ انواع کلیدزنیها و انواع سیم بندی در ترانسفورماتورها............................................................. ۵٩
۵ ‐١‐٣‐ اثر بار بر فرورزونانس .......................................................................................................... ۶۴
۵ ‐١‐۴‐ اثر طول خط......................................................................................................................... ۶۵
۵‐١‐۵‐ بدست آوردن سیگنالهای سایر حالات گذرا............................................................................. ۶۶
فصل ششم: پیاده سازی الگوریتم و نتایج شبیه سازی .............................................................. ٧۴
۶‐١‐ مقدمه ........................................................................................................................................ ٧۵
۶‐٢‐ تعیین کلاسها و تعداد الگوهای هر کلاس ................................................................................ ٧۵
۶‐٣‐ اعمال تبدیل موجک و استخراج ویژگیها ................................................................................. ٧۵
۶‐۴‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی ................................................................LVQ ٨١
۶‐۵‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی رقابتی.............................................................. ٨٨
فصل هفتم: نتیجه گیری و پیشنهادات........................................................................................ ٩۵
٧‐١‐ نتیجه گیری................................................................................................................................ ٩۶
٧‐٢‐ پیشنهادات ................................................................................................................................. ٩٨
فهرست منابع........................................................................................................................... ١٠٠
فهرست جدولها عنوان صفحه
جدول ۵‐۲. اطلاعات بارها ................................................................................................ ........................ ۹۵
جدول۵‐۳.مشخصات ترانسفورماتورها ....................................................................................................... ۹۵
جدول۶‐۱ در صد تشخیص شبکه LVQ با موجک ............................................................................ Db ۴۸
جدول ۶‐۲ در صد تشخیص شبکه LVQ با موجک ....................................................................... dmey ۴۸
جدول ۶‐۳ در صد تشخیص شبکه LVQ با موجک ....................................................................... haar ۵۸
جدول۶‐۴ در صد تشخیص شبکه رقابتی با موجک ............................................................................ Db ۱۹
جدول ۶‐۵ در صد تشخیص شبکه رقابتی با موجک ..................................................................... dmey ۱۹
جدول ۶‐۶ در صد تشخیص شبکه رقابتی با موجک ....................................................................... haar ۲۹
فهرست شکلها عنوان صفحه
۱‐۳. مدار معادل پدیده فرورزونانس............................................................................................................ ۰۲
۲‐۳ حل ترسیمی مدار LC غیر خطی.......................................................................................................... ۱۲
۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس............................................................................. ۹۲
۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. ................................................................................................ ۱۳
۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس زمان....................... ۳۳
۴‐۴‐ تشریح CWT طبق معادله۴ ................................................................................................................ ۴۳
۴‐۵ مثالی از آنالیزموجک پیوسته. در بالا سیگنال مورد نظر نمایش داده شده است. ............................... ۵۳
۴‐۶ طرح الگوریتم کد کردن زیر باند ......................................................................................................... ۱۴
۴‐۷ نمایش تجزیه توسط موجک................................................................................................................. ۳۴
۴‐۸ مثالیاز تجزیه .DWT سیگنال اصلی، سیگنال تقریب (AP) وسیگنالهای جزئیات CD1) تا ..................................................................................................................................................... (CD6 ۴۴
۴‐۹ معماری شبکه رقابتی............................................................................................................................ ۶۴
۴‐ ۰۱نمایش همسایگی................................................................................................................................ ۱۵
۴‐۱۱ معماری شبکه ......................................................................................................................... LVQ ۲۵
۵‐۱. فیدر .......................................................................................................................................... 20kV ۸۵
۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۹۵
۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۹۵
۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۱۶
۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۱۶
۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۱۶
۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۱۶
۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۲۶
۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز ................................................................................... ۲۶
۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۳۶
۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۳۶
۵‐۸۱ ولتاﮊ ثانویه فاز a در اثر افزایش بار................................................................................................ ...۴۶
۵‐۹۱ ولتاﮊ ثانویه فاز a در اثر قطع تعدادی از بارها ................................ ...................................................۶۴
۵‐۰۲ ولتاﮊ فاز a ثانویه ترانس با کاهش طول خط................................ ......................................................۶۵
۵‐۱۲.ولتاﮊ فاز a ثانویه ترانس با افزایش طول خط................................ .....................................................۵۶
۵‐۲۲.پیکربندی فازها و اطلاعات مکانیکی................................................................ .................................۷۶
۵‐٢٣مدل فرکانسی بار CIGRE در ................................................................ EMTP ...............................۷۶
۵‐٢۴یک نمونه از منحنی مغناطیس شوندگی ترانسفورماتورها................................ ....................................٧٠
۵‐۵۲ . سه نمونه از سیگنالهای کلیدزنی خازنی................................................................ ...........................۰۷
۵‐۶۲. سه نمونه از سیگنالهای کلیدزنی بار ................................................................ ..................................۱۷
۵‐۷۲. سه نمونه از سیگنالهای کلیدزنی ترانسفورماتور ................................ ...............................................۱۷
۶ ‐۸ یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1 تا (CD6 با
استفاده از تبدیل موجک ................................................................ Daubechies ....................................۸۷
۶‐۹. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Daubechies .................................۸۷
۶‐۰۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................Daubechies .................................................۸۷
۶‐۱۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا
(CD6 با استفاده از تبدیل موجک ................................................................ Daubechies .....................۸۷
۶‐۲۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................ Haar .............................۹۷
۶‐۳۱. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ Haar .................................................۹۷
۶‐۴۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با استفاده از
تبدیل موجک ................................................................................................ Haar .................................۹۷
۶‐۵۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Haar .............................................۹۷
۶‐۶۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۷۱یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ DMeyer ...........................................۰۸
۶‐۸۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۹۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ DMeyer ........................................۰۸
۶‐۰۲ الگوریتم ارائه شده ................................................................................................ ............................۱۸
۶‐۱۲‐ انرﮊی لحظه ای یک نمونه از جریان فاز دوم سیگنالها......................................................................۶۸
۶‐۲۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها........................................................................۶۸
۶‐۳۲ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies1 بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده...........................................۷۸
۶‐۴۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده..............................................۷۸
۶‐۵۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک 1
Daubechies بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده. ............................................۲۹
۶‐۶۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2 بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده ............................................۳۹
۶‐۷۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها ......................................................................۳۹
۶‐۸۲‐ انرﮊی لحظه ای یک نمونه از جریان فازدوم سیگنالها ......................................................................۴۹
چکیده
یکــی از عوامــل ســوختن و خرابــی ترانــسفورماتورها در سیــستم هــای قــدرت، وقــوع پدیــده
فرورزونانس است. با توجه به اثرات مخرب این پدیده، تشخیص آن از سایر پدیده هـای گـذرا از
اهمیت ویژه ای برخوردار است که در این پایان نامه کارکرد دو شـبکه عـصبی یـادگیری کـوانتیزه
کننده برداری((LVQ١ و شبکه عصبی رقابتی در دسته بندی دو دسته سیگنال کـه دسـته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشد، با استفاده از ویژگیهای استخراج شده توسط تبدیل موجک٢ خانواده Daubechies تا شش
سطح مورد بررسی قرار گرفته است. نقش شبکه های عصبی مذکور بعنـوان طبقـه بنـدی کننـده،
جدا سازی پدیده فرورزونانس از سایر پدیده های گذرا است. سیگنالهای مذکور بـا شـبیه سـازی
توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی بدست آمده اند. بـرای اسـتخراج ویژگیهـا،
کلیه موجکهای موجود در جعبه ابزار Wavelet نرم افزار MATLAB بررسی شده اسـت کـه تبـدیل
موجک خانواده Daubechies بعنوان مناسبترین موجک تشخیص داده شد. به منظـور اسـتخراج هـر
چه بهتر ویژگیها سیگنالها، الگوها نرمالیزه (مقیاسبنـدی) شـدهانـد سـپس انـرﮊی شـش سـیگنال
جزئیات حاصل از اعمال تبدیل موجک به عنوان ویژگیهای استخراج شده از الگوها، برای آموزش
و امتحان دو شبکه عصبی مذکور بکار رفتهاست. به کمک این الگوریتم تفسیر برخـی از رخـدادها
که احتمال بروز پدیده فرورزونانس در آنها وجود دارد قابل انجام بوده، همچنین میتوان نسبت بـه
ساخت رله هایی برای مقابله با پدیده فرورزونانس کمک نماید. عناوین روشهای ارایه شده در این
پایان نامه به شرح زیر میباشند:

1 -Learning Vector Quantizer (LVQ)
2- Wavelet Transform
١) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی LVQ
٢) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی رقابتی
نتایج حاصل از این روشها بیانگر موفقیت بسیار هر دو روش در شناسـایی فرورزونـانس از سـایر
پدیده های گذرا می باشد.
کلید واﮊه: شبکه عصبی LVQ، شبکه عصبی رقابتی، تبدیل موجک، پدیده فرورزونانس, نـرم
افزار EMTP ، نرم افزار MATLAB

١
مقدمه
امروزه انرﮊی الکتریکی نقش عمدهای در زمینههای مختلف جوامـع بـشری ایفـا مـیکنـد و جـزﺀ
لاینفک زندگی است. بدیهی است که مانند سایر خـدمات اندیـسها و معیارهـایی جهـت ارزیـابی
کیفیت برق تولید شده مورد توجه قرار گیرد. اما ارزیابی میزان کیفیت برق از دید افراد مختلـف و
در سطوح مختلف سیستم قدرت بکلی متفاوت است. به عنوان مثال شرکتهای توزیع، کیفیت بـرق
مناسب را به قابلیت اطمینان سیستم برقرسانی نسبت میدهنـد و بـا ارائـه آمـار و ارقـام قابلیـت
اطمینان یک فیدر را مثلاﹰ ٩٩% ارزیابی میکنند سازندگان تجهیـزات الکتریکـی بـرق بـا کیفیـت را
ولتاﮊی میدانند که در آن تجهیزات الکتریکی به درسـتی و بـا رانـدمان مطلـوب کـار مـیکننـد و
بنابراین از دید سازندگان آن تجهیزات، مشخصات مطلوب ولتاﮊ شبکه بکلی متفاوت خواهد بـود.
اما آنچه که مسلم است آنست که موضوع کیفیت برق، نهایتـاﹰ بـه مـشترکین و مـصرف کننـدگان
مربوط میشود و بنابراین، تعریف مصرفکنندگان اهمیت بیشتری دارد.
بروز هر گونه اشکال یا اغتشاش در ولتاﮊ، جریان یا فرکانس سیستم قدرت کـه باعـث خرابـی یـا
عدم عملکرد صحیح تجهیزات الکتریکی مشترکین گردد به عنوان یک مشکل در کیفیت برق، تلقی
میگردد.
واضح است که این تعریف نیز از دید مشترکین مختلـف، معـانی متفـاوتی خواهـد داشـت. بـرای
مشترکی که از برق برای گرم کردن بخاری استفاده میکند، وجود هارمونیکها در ولتاﮊ یا انحراف
فرکانس از مقدار نامی هیچ اهمیتی ندارد، در حـالی کـه تغییـر انـدکی در فرکـانس شـبکه، بـرای
مشترکی که فرکانس برق شهر را به عنوان مبنای زمانبندی تجهیزات کنترلی یک سیـستم بـه کـار
گرفته است،میتواند به طور کلی مخرب باشد.
٢
یکی از مواردی که بعنوان یک مشکل در کیفیت برق تلقی می گردد، پدیده فرورزونانس است. در
اثر وقوع این پدیده و اضافه ولتاﮊ و جریان ناشی از آن، موجب داغ شدن و خرابی
ترانسفورماتورهای اندازه گیری و ترانسفورماتور های قدرت می گردد که میتوانند بر حسب
شرایط اولیه، ولتاﮊ و فرکانس تحریک و مقادیر مختلف پارامترهای مدار (کاپاسیتانس وشکل
منحنی مغناطیسی)، مقادیر متفاوتی پیدا کنند، بنابراین بایستی محدودیت هایی بر پارامترهای
سیستم اعمال کرد تا از وقوع چنین پدیده ناخواسته جلوگیری نمود.
با توجه به اهمیت شناسایی پدیده فرورزونانس از سایر حالتهای گذرا دراین پایان نامه تلاش شد
تا سیستمی هوشمند جهت تشخیص این پدیده از سایر حالتهای گذرای کلیدزنی ارائه گردد. در
طراحی این سیستم هوشمند اولاﹰ از جدیدترین روش های تجزیه و تحلیل و پردازش سیگنالهای
الکتریکی برای پردازش دادهها استفاده گردید. ثانیاﹰ از طبقهبندی کنندههای پیشرفته با توانایی بالا
در دستهبندی دادهها بهره گرفته شد. به منظور مقایسه نتایج حاصل از فرورزونانس با سایر
سیگنالهای گذرای شبکه توزیع، تعدادی از حالتهای گذرا نظیر کلیدزنی بار، کلیدزنی خازنی و
کلید زنی ترانسفورماتور توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی شبیه سازی شد.
در فصل دوم به مروری بر کارهای انجام شده در زمینه پـردازش سـیگنال در سیـستمهای قـدرت
پرداخته، در فصل سوم به معرفی پدیده فرورزونانس خـواهیم پرداخـت. در فـصل چهـارم مبـانی
علمی روشهای پیشنهادی، در فصل پنجم نحوه جمع آوری اطلاعات و سیگنالها بررسی مـی شـود
و درفصل ششم نحوه پیاده سازی روشهای پیشنهادی بررسی مـی شـود و نهایتـا نتیجـه گیـری و
پیشنهادات پایان بخش مطالب خواهند بود.
٣

۴
۲‐۱‐ مقدمه
با دستهبندی دقیق مسائل، همچنین میتوان منابع تولید هر دسته از مشکلات را نیز شناسـایی و در
دستهبندی فوق جـای داد. بـه ایـن ترتیـب پـس از شناسـایی نـوع اغتـشاش از روی پارامترهـای
اندازهگیری شده اقدام برای بهبود کیفیت برق نیز تا حدودی آسانتر خواهد شد. در ضمن میتـوان
اغتشاشهای بوجود آمده در هر دسته را با اندیسها و مشخصههای مربوط به خودش تعریف کرد و
بنابراین توصیف کاملی از انحرافات بوجود آمده در شکل مـوج ولتـاﮊ نـسبت بـه حالـت ایـدهآل
بدست آورد.
به منظور تشخیص پدیده های تصادفی در سیستم های قدرت, سـیگنالهای مختلفـی مـورد توجـه
قرار گرفته اند. از این سیگنالها می توان به سیگنالهای کیفیت توان و سـیگنالهای خطـای امپـدانس
بالا و سیگنالهای فرورزونانس اشاره کرد که در ادامه مـروری بـر روشـهای شناسـایی سـیگنالهای
کیفیت توان و سیگنالهای خطای امپدانس بالا شده است. لازم به ذکر است با توجـه بـه اینکـه در
زمینه شناسایی سیگنالهای فرورزونانس از سایر سیگنالهای گذرا، مقالـه یـا کـار تحقیقـاتی وجـود
ندارد در این پایان نامه روشهای شناسایی این پدیده بررسی شده است.
٢‐٢‐ مروری بر روشهای شناسایی اغتشاشات کیفیت توان
در این بخش قبل از بررسی کامل روشهای گوناگون شناسایی اغتشاشات کیفیت توان لازم دیـدیم
که با توجه به کاربرد وسیع روشهای پردازش سیگنال در بحث کیفیت توان نکات چندی را خـاطر
نشان سازیم. در وهله اول، با توجه به توضیحات قسمت قبل، لزوم جداسازی اغتشاشات و تعیـین
نوع آنها هرچه بیشتر اهمیت مییابد. در ضمن با مرور کارهـای گذشـته و انجـام شـده در بحـث
کیفیت توان روشهای مختلف پردازش سیگنال به صورت عمده در سه بخش زیـر مـورد اسـتفاده
۵
قرار گرفتهاند:
١‐ کاربرد پردازش سیگنال و تکنیکهای آن در فشردهسازی اطلاعات و شکل موجهـا و کـاربرد
آن در کیفیت توان
٢‐ استفاده از تکنیکهای مختلف پردازش سیگنال و سیستمهای خبره در جداسازی اغتشاشات
٣‐ استفاده از تکنیکهای مختلف پردازش سیگنال در تشخیص نوع اغتشاش بوجود آمده
١. سیستمهای هوشمند در طبقهبندی اغتشاشات
در این قسمت تشخیص دو موضوع عمده ضروری است. اول آنکه کدام یک از روشهای پردازش
سیگنال اعم از تبدیل فوریه، موجک و … جهت تجزیه و تحلیل و استخراج ویژگیهای مربوط بـه
هر یک از اغتشاشات به کار گرفته شدهاند و در مرحله دوم دستهبندی کننده موردنظر جـزﺀ کـدام
یک از سیستمهای هوشمند مانند شبکههای عصبی، فازی و … بوده است.
الف) تکنیک مورد استفاده در پردازش شکل موجهای مربوط به اغتشاشات
تکنیکهای مورد استفاده در طبقهبندی اغتشاشات کیفیت توان در چهار دسته زیر قرار می گیرند:
۱. تکنیکهای مطرح شده با استفاده از تبدیل فوریه (FFT, STFT)
٢. تکنیکهای مطرح شده با استفاده از تبدیل موجک (DWT, CWT)
۳. تکنیکهای ترکیبی
۴. تکنیکهای نوین مطرح شده در حوزه پردازش سیگنال
اگر قرار باشد به سراغ کارهای قدیمی در حوزه پردازش سیگنال بـرویم آنگـاه تبـدیل فوریـه بـه
عنوان یک ابزار قوی در این زمینه مطرح میگردد. تبدیل فوریه سریع و تبدیل فوریه زمان کوتاه از
جمله تکنیکهایی هستند که در این قسمت مورد استفاده قرار گرفتهاند] ۱.[
ابزار جدید مطرح شده در حوزه پردازش سـیگنال تبـدیل موجـک مـیباشـد. بـا توجـه بـه آنکـه
۶
تکنیکهای گسسته پردازش سیگنال امروزه فراگیر شدهاند، اکثریت قریب به اتفـاق کارهـای انجـام
شده با استفاده از تبدیل موجک به DWT یا همان تبدیل موجک گسسته برمیگـردد. نمونـه هـای
فراوانی از کاربردهای این تبدیل را در کارهای قبلی می توان مشاهده کرد]۲.[
عدهای از محققان روشهای ترکیبی را جهت استخراج ویژگیهایی اغتـشاشات بـه کـار بـردهانـد. از
جمله این روشها میتوان به ترکیب تبدیل فوریه و تبدیل والش در ]۳[ و ترکیب تبـدیل فوریـه و
موجک در ]۴[ اشاره کرد. از طرفی با پیشرفتهای بدست آمده در حوزه پردازش سـیگنال مـیتـوان
نمونههایی از به کارگیری تبدیلهای جدید مانند S Transform را در بحث طبقهبنـدی اغتـشاشات
درمراجع یافت] ۵.[
آنچه که در تمامی این تحقیقات بیش از همه به چشم می آید عدم وجود یک شـبکه واقعـی اسـت
که نتایج این روشها را همچنان در هالهای از ابهام نگه میدارد.
ب) سیستمهای خبره به کار گرفته شده
تحت عنوان طبقهبندی کننده اغتشاشات کیفیت توان قبل از بـه کـارگیری یـک سیـستم هوشـمند
جهت تشخیص اغتشاشات موردنظر در یک بازه زمانی خاص لازم است ویژگیهایی جهت هر یک
از اغتشاشات استخراج شود. این ویژگیها میتوانند مجموع ضرایب، مجمـوع قـدرمطلق ضـرایب،
ماکزیمم ضرایب، انحراف معیار ضرایب یا هرچیز دیگـر باشـند. در ادامـه ضـمن معرفـی سیـستم


هوشمند در هر تحقیق ویژگیهای استفاده شده در آن تحقیق را بررسی می کنیم.
شبکه های موجک: شبکههای موجک نوع خاصی از شبکههای عصبی مـیباشـند کـه در آنهـا توابع متداول شبکه های عصبی با توابع موجک مادر جایگزین مـیشـوند. ایـن شـبکههـا بـه خصوص در سالهای اخیر توانایی خاصی از خود در تقریب توابع نشان دادهاند. این شـبکههـا به همراه دوره اغتشاشی سیگنال جهت طبقـهبنـدی اغتـشاشات کیفیـت تـوان بـه کـار گرفتـه
٧
شدهاند]۶.[
شبکه های عصبی: شبکههای عصبی مورد اسـتفاده در طبقـهبنـدی اغتـشاشات بیـشتر از نـوع شبکههای عصبی چند لایه پرسپترون یا همان MLP بوده، البته کارهایی از شبکههـای عـصبی احتمالی (PNN) و شبکههای عصبی خودسازمانده تطبیقی را در این بحث مـیتـوان مـشاهده کرد. ویژگیهای موردنظر جهت آموزش این شبکهها مشتمل بر انحراف معیار ضـرایب، انـرﮊی سیگنال در سطوح مختلف فرکانسی، ماکزیمم ضرایب سیگنالها در سطوح مختلف فرکانسی، متوسط و واریانس آنها و مینیمم آنها بوده اند]۷.[
منطق فازی: در استفاده از منطق فازی، تحقیقات انجام شده براساس قوانین – مبتنی بر ویژگیهای استخراج شده استوار بوده است. به عنوان مثال انرﮊی سیگنال در سطوح مختلف فرکانسی یک بردار ویژگی میسازد که مولفههای این بردار بسته به نوع اغتشاش دارای شدت یا ضعف خواهند بود. این شدت یا ضعف انرﮊی سـیگنال در سـطوح مختلـف فرکانـسی بـه همراه استنتاج فازی سیستم هوشمندی را میسازد که توانایی آن در دستهبندی اغتشاشات قابل ملاحظه است]۸.[
مدل مخفی مارکوف: این مدل که براساس نظریه مارکوف و نظریه احتمالات بنا نهـاده شـده است و در سالهای اخیر با منطق فازی نیز ترکیب شده علـیرغـم داشـتن توانـایی مناسـب در بحث طبقهبندی از پیچیدگیهای خاصی برخوردار است]۹.[
درخت تصمیمگیری: درخت تصمیمگیری از مباحـث مطـرح شـده در Machine Learning میباشد. این دستهبندی کننده به همراه ویژگیهای استخراج شده از تبـدیل موجـک بـه عنـوان یک دستهبندی کننده توانمند در حوزه کیفیت توان مطرح شده است]۰۱.[
٨
فیلتر کالمن: فیلتر کالمن بویژه فیلتر کالمن غیرخطی در سالهای اخیر به عنوان یک ابزار قـوی جهت تجزیه و تحلیل سیگنالهای مختلف به کار گرفته شده است. اگر شکل موج اغتشاشی به عنوان ورودی این فیلتر به کار رود. خروجی فیلتر مـیتوانـد نـوع اغتـشاش بوجـود آمـده را شناسایی کند]۱۱.[
٢‐٣‐ مروری بر روشهای شناسایی خطای امپدانس بالا
این روشها مبتنی بر تجزیه و تحلیل ولتاﮊها و جریانهای ابتدای فیـدر مـی باشـند و در یـک طبقـه
بندی کلی به چهار گروه تقسیم می شوند.
١. روشهای ارائه شده در حوزه زمان
٢. روشهای ارائه شده در حوزه فرکانس
٣. روشهای ارائه شده در حوزه زمان‐ فرکانس
١. روشهای ارائه شده در حوزه زمان:
این روشها بر اساس اطلاعات زمانی سیگنالها اقدام به شناسایی خطاهای امپدانس بالا مـی نماینـد
تعدادی از آنها عبارتند از:
الف) الگوریتم رله تناسبی
برای سیستمهایی که در چند نقطه زمین شده اند زاویه و دامنه جریان عدم تعـادل بـار( ( IO ثابـت
نیستند و جریان خطا نیز متغیر است. در نتیجه رله های اضافه جریان را نمی توان حساس ساخت.
٩
اگر رله ای بتواند فقط جریان خطا را حس کند، حساسیت آن بالا مـی رود. در رلـه پیـشنهادی بـا
توجه به سهولت اندازه گیری جریان عـدم تعـادل بـار( IO )، جریـان سیـستم نـول( I N )، جریـان
خطا( ( It طبق رابطه ١‐٢ محاسبه و موجب عملکرد رله می گـردد]۲۱.[
(۱‐۲)
It  K1 IO  K2 I N
که در آن IO و I N به ترتیب جریان عدم تعادل بار و جریان سیم نـول و K1 و K2 ثابـت مـی
باشند.
ب) الگوریتم رله نسبت به زمین
این رله به خاطر غلبه بر اثر تغییرات بار بر روی حساسیت رله هـای اضـافه جریـان سـاخته شـده
است و گشتاور عملکرد آن بطور اتوماتیک بار تغییر می کند] ۳۱.[
ج) استفاده از رله های الکترومکانیکی
در این رابطه برای شناسایی خطاهای امپدانس بالا بر روی شبکه های چهـار سـیمه شـرکت بـرق
پنسیلوانیا با همکاری شرکت وستینگهاوس اقدام به ساخت رلـه ای نمـوده انـد کـه بـا اسـتفاده از
نسبت جریان باقیمانده( (3 IO به جریان مولفه مثبت( ( I1 عمل می کند. اگر نسبت 3 IO از مقـدار
تنظیم شده رله فراتر رفت رله عمل خواهد کرد.] ۴۱.[
د) الگوریتم تغییرات جریان
در یکی از روشهای ارائه شده با توجه به تغییرات ملایم جریان به هنگام کلیـدزنی بـار از سـرعت
١٠
تغییرات جریان برای شناسایی خطاهای امپدانس بالا استفاده شـده اسـت]۵۱.[ ایـن روش کـارایی
خود را هنگامیکه جریانهای خطا دارای تغییرات اولیـه سـریع نیـستند از دسـت میدهـد. در روش
دیگر از تغییرات لحظه ای دامنه جریان برای آشکارسازی خطا استفاده شده اسـت]۶۱.[ هـر چنـد
خطاهای امپدانس بالا رفتار تصادفی دارند ولی سطح جریان همه آنها برای چند سـیکل زیـاد مـی
شود(لحظه وقوع جرقه) و بعد به میزان جریان بار می رسد. با توجه به این تغییـرات کـه در سـایر
کلیدزنیها وجود ندارد اقدام به شناسایی آنها گردیده اسـت. در روش دیگـری از تغییـرات بوحـود
آمده در نیم سیکل مثبت و منفی شکل موج جریان برای آشکارسازی استفاده شده است]۷۱.[
برای فیدرهایی که از طریق ترانسهای ∆ − ∆ تغذیه می شوند افزایش دامنـه جریـان و پـیش فـاز
شدن آن برای شناسایی خطای امپدانس بالا استفاده شده است] ۸۱.[
٢. روشهای ارائه شده در حوزه فرکانس:
این روشها بر اساس اطلاعات حوزه فرکانس سیگنالها عمل می کننـد و در آنهـا عمـدتا از تبـدیل
فوریه برای نگاشت سیگنالهای حوزه زمان به حوزه فرکانس استفاده می شود که در ادامه تعـدادی
از روشهای حوزه فرکانس ارائه می گردند
الف) استفاده از هارمونیک دوم و سوم جریان برای شناسایی خطاهای امپدانس بالا
برخورد هادی انرﮊی دار با زمین باعث ایجاد جرقه می گردد. این جرقه ها باعث ایجاد ناهماهنگی
و عدم تقارن شکل موج جریان می شوند که این عدم تقارن تولید هارمونیک های دوم و سـوم در
جریان خطا می کند و تعدادی از روشهای آشکارسازی بر این اساس ارائـه شـده انـد. در یکـی از
روشها نسبت دامنه مولفه دوم جریان به مولفه اصلی آن برای هـر سـه فـاز بعنـوان معیـاری بـرای
١١
شناسایی معرفی شده اند] ۹۱ .[ در روش دیگری از نسبت دامنه هارمونیک سوم جریان بـه مولفـه
اصلی برای شناسایی استفاده شده است] ۰۲.[
در روش دیگر با استفاده از مولفه هـای صـفر و منفـی هارمونیکهـای دوم، سـوم و پـنجم بعنـوان
ویژگیهای مناسب و روشی درست اقدام به جداسازی خطای امپدانس بالا از سایر حالتهـای گـذرا
همچون کلیدزنی بار، کلیدزنی خازنها و جریان هجـومی ترانـسها گردیـده اسـت] ۱۲ .[ همچنـین
انرﮊی سیگنال در یک فرکانس یـا محـدوده فرکانـسی بعنـوان ویژگیهـای مناسـبی بـرای ارزیـابی
خطاهای امپدانس بالا در نظر گرفته شده اند]۲۲.[
ب) استفاده از مولفه های فرکانس بالا جهت شناسایی خطاهای امپدانس بالا
٩۵% خطاهای امپدانس بالا با جرقه توام هستند و این جرقه ها ایجـاد نوسـانات فرکـانس بـالا در
محدوده kHz١٠‐ ٢ می نمایند. حد پایین به منظور عدم تداخل با فرکانسهای پایین که در شـرایط
معمولی وجود دارند، تعیین گ
ردیده و حد بالا به علت کاهش انرﮊی سیگنال در فرکانسهای بسیار بالا انتخاب شـده انـد. نتـایج
عملی نشان می دهند که این مولفه ها برای شناسایی مناسب هستند. هر چند اگر دامنه جریان کـم
و یا بانکهای خازنی بزرگ در شبکه وجود داشته باشند موجب حذف این مولفه ها مـی گردنـد و
عمل آشکارسازی را با مشکل مواجه می سازد] ۳۲ .[
ج) شناسایی خطاهای امپدانس بالا به کمک مولفه های بین هارمونیکی
علاوه بر هارمونیک های فرکانس پایین و فرکانس بالا مولفه های بین هـارمونیکی بـرای فرکـانس
پایه ۵٠ هرتز عبارتند از:٢۵،٧۵ و ١٢۵ هرتز و بـرای فرکـانس پایـه ۶٠ هرتـز، ٣٠،٩٠، ١۵٠، ٢١٠
١٢
هرتز می باشند] ۴۲،۵۲.[ این فرکانـسها تغییـرات دامنـه و زاویـه زیـادی در هنگـام وقـوع خطـای
امپدانس بالا از خود نشان می دهند و با حذف فرکانسهای پایه و بعضی از هارمونیک ها به کمـک
فیلتر کردن جریان می توان به آنها دست یافت و برای آشکار سازی از آنها اسـتفاده کـرد. مـشکل
عمده این روشها ساخت فیلتر هایی است که مولفه های بین هارمونیک را از خود عبور دهند] ۴۲
.[استفاده از انرﮊی این مولفه ها نیز بعنوان روشی برای جداسازی خطاهای امپـدانس بـالا از سـایر
حالات مطرح شده است] ۵۲ .[
د) آشکارسازی به کمک فیلتر کالمن
تبدیل فوریه برای سیگنالهای ایستان که دامنه آنهـا بـا زمـان تغییـر نمـی کنـد مناسـب هـستند در
صورتیکه خطاهای امپدانس بالا دارای ماهیت غیر ایستان می باشند و استفاده از تبدیل فوریه برای
تجزیه و تحلیل آنها روش بهینه ای نیست. یکی از روشـهایی کـه بـرای بررسـی سـیگنالهای غیـر
ایستان بکار می رود فیلتر کالمن است، در این روش هم مولفه اصلی و هم هارمونیک هـا بررسـی
می شوند. فیلتر کالمن برآورد مناسبی برای تغییرات زمانی فرکانس اصلی و هارمونیک ها ارائه می
کند و خطاهای مربوط به فیلترهای کلاسیک و فوریه را ندارد] ۶۲ .[
٣.روشهای ارائه شده در حوزه زمان‐ فرکانس
در این روشها از تبدیل موجک برای تجزیه و تحلیل سیگنالها استفاده می شود. با توجه به مزیـت
این تبدیل نسبت به تبدیل فوریه اخیرا در پردازش سیگنالها از جمله سیگنالهای ناشی از خطاهـای
امپدانس بالا تبدیل موجک بعنوان تبدیلی کارآمد مورد توجه قرار گرفته است. مقالاتی که در ایـن
ارتباط ارائه شده اند عبارتند از:
١٣
الف) اولین کاربرد موجک برای شناسایی خطاهای امپدانس بالا مربوط به خطاهایی اسـت کـه در
آنها از یک مقاومت زیاد بعنوان مدل خطا استفاده شده است. شبکه بررسی شـده یـک شـبکه سـه
شینه، kV۴٠٠ بوده و با استفاده از برنامه EMTP شـبیه سـازی شـده و اطلاعـات مـورد نیـاز بـا
فرکانس نمونه برداری kHZ ۴ ثبت گردیده و سه سیکل از شکل موج ولتاﮊ برای پردازش اسـتفاده
شده است. کاهش دامنه ضرایب بعنوان معیاری برای شناسایی خطا استفاده گردیده است] ۷۲ .[
ب) کاربرد دیگر تبدیل موجـک اسـتفاده از موجـک Spline و قـدر مطلـق ضـرایب سـطوح ۱و۲
سیگنالهای جریان تجزیه شده برای شناسایی خطاهای امپدانس بـالا مـی باشـد. اطلاعـات لازم بـا
شبیه سازی یک فیدر kV۱۱ با استفاده از برنامه EMTP ثبت شده اند و سه سیکل از سـیگنالهای
جریان پردازش شده اند] ۸۲. [
١۴

١۵
۳‐۱‐ مقدمه
فرورزونانس اصطلاحی است که بمنظور توصیف پدیده رزونانس در مداری که حداقل دارای یک
عنصر غیر خطی اندوکتیو است، بکار برده می شود. مداری که شامل ترکیب سری یک اندوکتانس
قابل اشباع و مقاومت خطی وخازن است، مدار فرورزونانس نامیده می شود.
رزونانسی که در مدار شامل راکتور خطی رخ می دهد به رزونانس خطی سری و رزونانسی که در
مدار شامل راکتور قابل اشباع رخ می دهد به فرورزونانس یا رزونانس جهشی موسوم است.
بواسطه مشخصه غیر خطی راکتور، مقدار اندوکتانس در ناحیه اشباع تابعی از درجه اشباع هسته
مغناطیسی که خود وابسته به ولتاﮊ دو سر راکتور است، می باشد و از این رو در ناحیه اشباع
اندوکتانس می تواند مقادیر متعددی را به خود اختصاص دهد که ممکن است در هر یک از این
مقادیر تحت شرایط خاصی پدیده فرورزونانس تحقق یابد.
در حقیقت پدیده فرورزونانس مورد خاصی از رزونانس جهشی است که در آن غیر خطی بودن،
مربوط به هسته مغناطیسی راکتور است. رزونانس جهشی به این معناست که هر گاه در سیستمی
که توسط منبع سینوسی تحریک می شود، در اثر افزایش مقدار یا فرکانس ورودی و یا مقدار یکی
از پارامترهای سیستم، یک جهش ناگهانی در مقدار یکی از سیگنالهای دیگر سیستم پیش آید. این
جهش می تواند در ولتاﮊ یا جریان و یا فلوی مغناطیسی یا در تمامی آنها ایجاد گردد.
هنگامیکه در اثر اشباع هسته مغناطیسی و تحت شرایط خاصی چنین پدیده ای رخ می دهد ولتاﮊ
زیادی در دو سر راکتور ظاهر شده و جریان مغناطیس کننده در نقاطی که ولتاﮊ تغییر جهت می
دهد به شکل پالس به مقدار زیادی افزایش می یابد.
١۶
۳‐۲‐ تاریخچه فرورزونانس
تحقیقات در مورد پدیده فرورزونانس سابقه هشتاد ساله دارد. کلمه فرورزونانس در مقالات علمی
دهه ١٩٢٠ دیده شد. علایق عملی در سال ١٩٣٠ زمانی به وجود آمد که استفاده از خازنهای سـری
برای تنظیم ولتاﮊ در سیستمهای توزیع آن زمان، باعث بروز اضافه ولتاﮊ در شبکه توزیع می گـردد
]۹۲.[ از آن زمان تاکنون بیشتر تحقیقات در این زمینه بر مـدل سـازی دقیـق تـر ترانـسفورماتور و
مطالعه پدیده فرورزونانس در سطح سیستم متمرکـز بـوده اسـت. اصـولا فرورزونـانس پدیـده ای
غیرخطی است. بنابراین بسیاری از روشهای بکار برده شده جهت بررسـی ایـن پدیـده مبتنـی بـر
حوزه زمان و با بکار بردن نرم افزار EMTP می باشد
٣‐٣‐ موارد وقوع فرورزونانس در سیستم های قدرت
در سیستم های قدرت الکتریکی مواردی که در آنها احتمال وقوع فرورزونانس وجود دارد عبارتند
از :
الف‐ ترانسفورماتورهای ولتاﮊ (CVT, VT)
ب‐ خطوط انتقال موازی EHV جابجا نشده
ج‐ سیستم توزیع انرﮊی
این پدیده معمول بواسطه اثر متقابل ترانسفورماتور (بدون بار یا بار کم) با کاپاسیتانس سیستم
بوجود می آید.
مثلا اگر ولتاﮊی در نقطه صفر شکل موج آن به ترانسفورماتور بدون بار اعمال شود، یک جریان
زیادی از مقدار عبور می کند زیرا، فلوی مغناطیسی تمایل دارد که در سیکل اول مقدارش را دو
١٧
برابر نماید و در نتیجه هسته به میزان زیادی اشباع می گردد، این جریان زیاد تا چند سیکل ادامه
می یابد و در شرایط ماندگار جریان تحریک به مقدار معمولش تنزل می یابد.
اما اگر چنانچه ترانسفورماتور از طریق یک خازن سری انرﮊی دار گردد این جریان غیرعادی
درشرایط ماندگار نیز ادامه می یابد، این جریان حتی از جریان بار نیز بزرگتر است و در این حالت
شکل موج جریان و ولتاﮊ دو سر ترانسفورماتور اعوجاج یافته اند و پدیده فرورزونانس تحقق
یافته است.
٣‐۴‐ شروع فرورزونانس
پدیده فرورزونانس همواره پس از وقوع یک اغتشاش فاحش، رخ میدهد. اغتشاش وارده به
سیستم ممکن است منجر به تغییر افزایشی در مقدار فرکانس ورودی سیستم یا مقادیر پارامترهای
سیستم گردد.در سیستم های قدرت، معمولا اغتشاش ناشی از قطع خط ترانسفورماتور بدون بار و
شرایط سوئیچینگ نامطلوب، احتمال وقوع فرورزونانس را افزایش می دهد. اغلب این پدیده در
سیستم قدرتی که دارای تلفات کم است آغاز می گردد.
٣‐۴‐١ شرایط ادامه یافتن فرورزونانس
وقوع فرورزونانس در سیستم های قدرت به شرایط اولیه مخصوصا به انرﮊی اولیه ذخیره شده
سیستم در زمان پس از اغتشاش وابسته است اگر این انرﮊی کافی باشد اندوکتانس با هسته آهنی
را به اشباع می برد.
اگر برای تغذیه تلفات سیستم بقدر کافی انرﮊی از منبع تغذیه انتقال یابد پدیده فرورزونانس ادامه
می یابد، البته مکانیزم انتقال انرﮊی در موارد مختلف، متفاوت خواهد بود.
١٨
مثلا در خطوط دوبل EHV وقتی یک از مدارها قطع می شود و خط دیگر انرﮊی دار می گردد،
انتقال توان از طریق کاپاسیتانس کوپلاﮊ بین دو خط از خط انرﮊی دار صورت می گیرد.
نتایج نشان می دهد که با وارد کردن مقاومت بزرگ در مدار امکان وقوع فروزونانس کاهش
مییابد که از آن می توان برای جلوگیری فروزونانس درترانسفورماتور ولتاﮊ استفاده نمود.
داغ شدن ترانسفورماتور قدرت عایقی آن را تضعیف کرده و منجر به شکست عایق تحت تنشهای
الکتریکی می شود. در صورت عدم توقف این پدیده ترانسفورماتور شدیدا آسیب دیده و ممکن
است باعث اتصال کوتاه و با انفجار و یا حتی آتش سوزی شود.
اضافه ولتاﮊهای ناشی از پدیده فرورزونانس می تواند تا حدود ۵ پریونیت افزایش یابد. بدیهی
است چنین اضافه ولتاﮊهایی به راحتی می توانند به سیم پیچی ترانسفورماتور آسیب برسانند. با
توجه به مسائل و مشکلات فوق شبیه سازی و تفهیم پدیده فرورزونانس موضوع بسیاری از
مقالات بوده است.
۳‐۵‐ اثرات نامطلوب فرورزونانس] ۰۳[
به وجود آمدن ولتاﮊها و جریانهای بزرگ ماندگار یا موقت در سیستم
ایجاد اعوجاج در شکل موجهای ولتاﮊ جریان
تولید صداهای گوش خراش پیوسته در ترانسفورماتورها و راکتورها
تخریب تجهیزات الکتریکی به علت گرمای زیاد یا شکست الکتریکی
عملکرد ناخواسته رله ها
گرم شدن ترانسفورماتور (در حالت بی باری)
١٩
به علت اشباع هسته ترانسفورماتور و عبور جریانهای لحظه ای بزرگ در سیم پیچهای
ترانسفورماتور در زمان وقوع این پدیده، ترانسفورماتور داغ می شود.
٣‐۶‐ مبانی پدیده فرورزونانس
به منظور تفهیم هر چه بهتر پدیده فرورزونانس مدار شکل (١‐٣) را در نظر بگیرید که در آن
سلف دارای مشخصه غیر خطی است. هر گاه منبع ولتاﮊ سینوسی باشد، می توان KVL را طبق
رابطه (١‐٣) نوشت :
L

C
R
E
شکل ۱‐۳. مدار معادل پدیده فرورزونانس
R ≈ 0 (١‐٣) jI ) V  E  − j E  I ( jwL  wC wC با توجه به شکل (٢‐٣) مشخص است که به تناسب مقدار ظرفیت خازنی، یک یا سه نقطه تقاطع
بین منحنی سلف غیرخطی و راکتانس خازنی وجود دارد. نقطه تقاطع (٢) ناپایدار می باشد. و
فقط در حالتهای گذرا چنین نقطه ای به وجود می آید. همچنین واضح است که اگر نقطه
تقاطع(۳) نقطه کار باشد در آن صورت ولتاﮊ و جریانهای بسیار بزرگی به وجود می آیند.
در مقادیر کم ظرفیت خازنی، نقطه کار فقط، نقطه سوم بوده و چون در این حالت راکتانس
خازنی بزرگ است، موجب جریان پیشفاز در سیستم و ولتاﮊ بزرگتر روی سلف می شود. با
٢٠
افزایش مقدار ظرفیت خازنی نقطه تقاطع دیگری به وجود می آید که تمایل سیستم به نقطه تقاطع
که دارای حالت سلفی با جریان پسفاز است. بیشتر می باشد.
هر گاه مقدار ولتاﮊ اعمالی به اندازه کمی تغییر نماید آنگاه نقطه کار (١) حذف و نقطه کار به نقطه

(٣) پرش خواهدکرد.
voltage
2
1
current
3
شکل۲‐۳ حل ترسیمی مدار LC غیر خطی
در این حالت جریان بسیار زیادی از سلف می گذرد و طبیعی است که با عبور این جریان بزرگ،
ولتاﮊ دوباره کاهش یافته و دبواره نقطه کار (١) به وجود می آید. و بدین ترتیب نقطه کار بین (١)
و (٣) پرش خواهد کرد. در این صورت ولتاﮊ و جریانهای به وجود آمده کاملا تصادفی و غیر
قابل پیش بینی می باشند.
در سیستمهای توزیع، پدیده فرورزونانس زمانی اتفاق می افتد که بانک خازنی و یا طولی از کابل
با مشخصه مغناطیسی ترانسفورماتور و یک منبع ولتاﮊ بطور سری قرار بگیرد. برای کابلهای با
طول کم فقط یک نقطه کار در ناحیه سوم وجود دارد و بنابراین شکل موج ولتاﮊ و جریان ناشی
از فرورزونانس دارای پریودی برابر پریود شبکه میباشد. با افزایش ظرفیت خازنی قله این اضافه
٢١
ولتاﮊها روی منحنی اشباع مدام بالا می رود تا جائیکه اندازه ولتاﮊ بسیار بیشتر از حالت عادی می
شود. با افزایش بیشتر ظرفیت خازنی نقطه کار (١) نیز فعال می شود و به تناسب نوع حالت
گذاری پیش آمده، اضافه ولتاﮊهای به وجود آمده در دو سر اندوکتانس غیرخطی، ممکن است
دارای پریود پایدار و یا شکل موج آشفته باشند.
با افزایش دوباره ظرفیت خازنی زمانی فرا می رسد که نقطه تقاطع سوم حذف می شود و در
حالت عادی در ناحیه فرورزونانس نخواهیم بود. اما حالتهای گذرا نظیر کلید زنی می توانند باعث
به وجود آوردن چنین نقطه کاری در ناحیه سوم شوند.
٣‐٧‐ فرورزونانس در ترانسفورماتورهای توزیع] ۱۳[
با گسترش خطوط کابلی زیر زمینی و همچنین تمایل روزافزون استفاده از ترانسفورماتورهای با
تلفات کم، مخصوصا ترانسفورماتور های ساخته شده از ورقه های فولاد حاوی سیلیکان، احتمال
وقوع فرورزونانس در این ترانسفورماتورها بیشتر شده است. این مشکل زمانی رخ می دهد که
ترانسفورماتور بی بار تغذیه شده از طریق خط کابلی (و یا متصل شده به بانک خازنی) تحت کلید
زنی تک فاز و یا دو فاز قرار می گیرد. همچنین در خطوط انتقال توزیع طولانی نیز، این مشکل
می تواند اتفاق بیافتد.
البته در رده توزیع خوشبختانه تمامی کلیدهای قدرت دارای قطع سه فاز بوده و این مسئله زیاد
جدی نمی باشد. اما در حالتهایی که از وسایل قطع تک فاز مانند کات آوت فیوزاستفاده می شود
امکان وقوع چنین شرایطی بسیار مهیا است. در این حالت مدار فرورزونانس شامل ولتاﮊ القایی
(ولتاﮊ القا شده از فازهای دیگر ترانسفورماتور به فاز قطع شده) و مشخصه مغناطیسی هسته
ترانسفورماتور و ظرفیت خازنی بین کابل (یا خط انتقال) و زمین می باشد. در این حالت ولتاﮊ
٢٢
ظاهر شده در فاز قطع شده ترانسفورماتور به تناسب مقدار ظرفیت خازنی کابل متصل به آن و
سایر پارامترها می تواند از چند پریونیت تجاوز نماید. شکل هسته ترانسفورماتور و منحنی
مشخصه آن در رفتار ترانسفورماتور بسیار با اهمیت می باشد.
فرورزونانس زمانی اتفاق می افتد که در هنگام بی باری و یا کم باری ترانسفورماتور در نقطه ای
دور از آن قطع تک فاز و یا دو فاز انجام شود. به تناسب پارامترهای مقدار امکان دارد که
فرورزونانس دارای دو حالت مختلف به شرح زیر میباشد:
٣‐٧‐١‐ فرورزونانس پایدار
در این حالت اضافه ولتاﮊهای فرورزونانس تا زمانی که فاز قطع شده بی برق بماند، پایدار می
باشند. این اضافه ولتاﮊها ممکن است که دارای قله بسیار بزرگی نباشند ولی به دلیل پایدار بودن
می توانند باعث صدمات جدی به برقگیرها و حتی انفجار آنها در عرض چند دقیقه شوند.
٣‐٧‐٢‐ فرورزونانس ناپایدار
در این حالت نقاط کار سیستم در حالت پایدار در محدوده فرورزونانس نمی باشند، اما حالتهای
گذرا نظیر کلید زنی می توانند نقاط کار سیستم را برای مدت کوتاهی به این محدوده وارد نمایند.
در این حالت اضافه ولتاﮊهای فرورزونانس برای مدت کوتاهی بعد از کلید زنی پدیدار شده ولی
به زودی میرا می شوند.
٢٣
٣‐٨‐ تاثیر نوع سیم بندی ترانسفورماتور
یکی از مزیتهای مدلسازی دوگانی ترانسفورماتورهای قدرت که در این مطالعه استفاده شده است،
این است که بدون تغییر در مدل هسته ترانسفورماتور، می توان سیم بندی ترانسفورماتور را
تعویض نمود] ۲۳.[
در ظرفیتهای خازنی مساوی، اضافه ولتاﮊهای فرورزونانس در ترانسفورماتور مورد نظر در حالت
اتصال ستاره با نوترال زمین شده بسیار کمتر است. با قطع نوترال ترانسفورماتور مورد نظر و قطع
تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتری حاصل می شوند که حتی از حالت اتصال
مثلث‐ ستاره بزرگتر می باشند
۳‐۹‐ تاثیر بار بر اضافه ولتاﮊهای فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم باری ترانسفورماتور
به وجود می آید. شبیه سازیها نشان می دهد که در مقادیر پایین ظرفیت خازنی مقدار بار لازم
برای حذف پدیده فرورزونانس بسیار کم است ولی با اضافه شدن ظرفیت خازنی مقدار بار لازم
برای قطع تک فاز و دو فاز بیشتر می شود. اضافه ولتاﮊهای فرورزونانس در ترانسفورماتورهای با
اولیه زمین شده کمتر هستند.
فازهای مختلف ترانسفورماتور دارای رفتار مساوی درمقابل اضافه ولتاﮊهای فرورزونانس نیستند.
با افزایش ظرفیت خازنی، میزان بارلازم برای حذف اضافه ولتاﮊهای فرورزونانس افزایش می یابد.
باری در حدود ۵ % بار نامی ترانسفورماتور در بیشتر حالات، قادر به حذف اضافه ولتاﮊهای
فرورزونانس می باشد.
٢۴
٣‐١٠‐ طبقه بندی مدلهای فرورزونانس
مدل پایه
در این حالت ولتاﮊ و جریان پریودیک می باشند و پریود آنها با پریود سیستم برابر است.
مدل زیر هارمونیک
در این حالت ولتاﮊ و جریان با پریودی نوسان می کنند که ضریبی از پریود منبع می باشند. این
حالت به زیر هارمونیک n ام معروف است که حالت فرورزونانس زیر هارمونیک فرد می باشد.
مدل شبه پریودیک
در این نوع فرورزونانس نوسانات کاملا اتفاقی و غیر پریودیک می باشند
٣‐١١‐ شناسایی فرورزونانس
بروز فرورزونانس با اثرات وعلایمی به شرح زیر همراه است:
اضافه ولتاﮊهای با دامنه زیاد و دائمی بصورت فاز به فاز و فاز به زمین اضافه جریانها با دامنه زیاد و دائمی اعوجاجها با دامنه زیاد و دائمی در شکل موج ولتاﮊ و جریان جابجایی ولتاﮊ نقطه صفر افزایش دمای ترانس در حالت بی باری
افزایش بلندی نویز ترانسها و راکتورها تریپ بی موقع تجهیزات حفاظتی
البته بعضی از این علایم مختص این پدیده نیست بطور مثال جابجایی نقطه صفر در شبکه هایی
که نقطه صفر آنها زمین نشده است می تواند بدلیل وقوع اتصال فاز به زمین رخ دهد.
٢۵
٣‐١١‐١ شرایط لازم برای بروز پدیده فرورزونانس
۱‐ حضور همزمان خازن با راکتور غیر خطی در سیستم
۲‐ وجود حداقل یک نقطه از سیستم که دارای ولتاﮊ ثابت نباشد
۳‐ وجود اجزا سیستم با بار کم مانند ترانسهای قدرت یا ترانسهای ولتاﮊ بدون بار یا منابع انرﮊی
با اتصال کوتاه پایین مانند ﮊنراتورهای اضطراری
در صورتیکه هر کدام از این سه شرط برقرار نباشد احتمال وقوع فرورزونانس بسیار ضعیف است
در غیر این صورت باید تحقیقات گسترده ای به عمل آورد.
٢۶

٢٧
۴‐۱‐ از تبدیل فوریه٣ تا تبدیل موجک ]۳۳[
در قرن نوزدهم، ﮊان پاپتیست فوریه، ریاضی دان فرانسوی، نشان داد که هر تابع متناوب را میتـوان
به صورت حاصل جمعی نامحدود از توابع نمایی مختلط متناوب نمایش داد. سالها بعـد از عنـوان
شدن این خاصیت مهم، ایده او به نمایش سیگنالهای نامتناوب و سپس سیگنالهای گسسته متناوب
و نامتناوب گسترش یافت. بعد از این عمومیت بـه حـوزه گسـسته، تبـدیل فوریـه در محاسـبات
کامپیوتری بسیار موثر واقع گردید. در سال ۵۶۹۱، الگوریتم جدیدی به نـام تبـدیل فوریـه سـریع۴
عنوان شد، که نسبت به الگوریتم های قبلی تبدیل فوریه بیشتر به کار گرفته شد.
FFT چنین تعریف میشود
(۴‐ ۱) ∞∫ f (t )e − jwt dt F (w)  − ∞ (۴‐ ۲) f (t)  ∞∫F(w)e jwt dw −∞ اطلاعات حاصل از انتگرال، مربوط به تمام زمانها میباشد، چرا کـه انتگـرال گیـری از زمـان منفـی
بینهایت تا مثبت بینهایت انجام میشود. به همین علت، اگر سیگنال شامل فرکانسهای متغییر با زمان
باشد، یعنی سیگنال ثابت نباشد، تبدیل فوریه مناسب نخواهد بود. این بـدان معناسـت کـه تبـدیل
فوریه تنها مشخص میکند که آیا یک مولفه فرکانسی بخصوص در یک سیگنال وجود دارد یـا نـه،
و اطلاعاتی در مورد زمان ظاهر شدن این فرکانس به ما نمی دهد.

3-Fourier Transform 4-Fast Fourier Transform
٢٨
به همین دلیل، یک نمایش فرکانسی‐ زمانی به نام تبدیل فوریه زمان کوتاه۵ معرفی شد. در STFT،
سیگنال به قطعات زمانی به اندازه کافی کوتاه تقسیم میسود، بطوری که میتوان این قسمتهای کوتاه
را سیگنال ثابت فرض کرد. برای رسیدن به این هدف، یک تابع پنجره انتخاب میشود. پهنـای ایـن
پنجره باید با طولی از سیگنال که میتوان آنرا فرایند ثابت در نظر گرفت، برابر باشد. نمـایش STFT
به شکل زیر تمام مطالب ذکر شده در این مورد را خلاصه میکند:

(۴‐۳)
که w تابع پنجره میباشد.
نکته مهم در STFT پهنای پنجره بکار رفته میباشد. این پهنا را تکیه گاه پنجره نیز مینامند. هر چقدر
پهنای پنجره را کاهش دهیم، رزولوشن زمانی بهتر، و فرض فراینـد ثابـت محکمتـر میـشود ولـی
رزولوشن فرکانسی ضعیفتر خواهد شد، و بر عکس‐ شکل۴‐۱ راببینید.

شکل۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس

5-Short Time Fourier Transform
٢٩
مشکل STFT را میتوان به وسیله اصل عدم قطعیت هایزنبرگ۶ مطرح کرد. ایـن اصـل معمـولاﹲبرای
مقدار جنبش و موقعیت مکانی ذرات در حال حرکت به کار میرود، با این حال میتوان آنـرا بـرای
اطلاعات حوزه زمانی‐فرکانسی بکار ببریم. بطور مختصر، ایـن اصـل مـیگویـد کـه نمـیتـوانیم
تشخیص دهیم که در هر لحظه زمانی کدام فرکانس وجود دارد. آنچه که ما میتـوانیم بفمـیم ایـن
است که در هر بازه زمانی کدام باندهای فرکانسی وجود دارند.
بنابراین، مساله انتخاب یک تابع پنجره، واستفاده از آن در تمام آنالیز میباشد. جـواب ایـن مـساله
بستگی به کاربرد دارد. اگر اجزاﺀ فرکانسی در سیگنال اصلی به خوبی از هم تفکیک شـده باشـند،
میتوانیم رزولوشن فرکانسی را در یک انـدازه مناسـب در نظـر بگیـریم و آنگـاه بـه طراحـی یـک
رزولوشن زمانی خوب بپردازیم، چرا که مولفههای طیفی قبلاﹲ از هم تفکیک شدهاند. در غیـر ایـن
صورت، پیدا کردن یک تابع پنجره مناسب بسیار مشکل خواهد بود.
اگر چه مشکل رزولوشن فرکانسی و زمانی از یک پدیده فیزیکی (اصل عـدم قطعیـت هـایزنبرگ)
ناشی میشود، و همواره برای هر تبدیل بکار رفته وجود دارد، میتوان سـیگنال را بـا یـک تبـدیل
دیگر بنام تبدیل موجک (WT) آنالیز کنیم
تبدیل موجک سیگنال را در فرکانسهای مختلف با رزولوشنهای مختلف آنالیز میکنـد. و بـا
تمام اجزاﺀ فرکانسی به صورت یکسان، آنطور که در STFT عمل میشد، برخورد نمیشود.
تبدیل موجک طوری طراحی شده است که در فرکانسهای بالا رزولوشن زمانی خوب و رزولوشن
فرکانسی ضعیف، و در فرکانسهای پایین، رزولوشن فرکانسی خوب و رزولوشـن زمـانی ضـعیف
داشته باشد. این خاصیت هنگامی که سیگنال تحت بررسـی دارای فرکانـسهای بـالا در بـازههـای

6-Heisenberg 's Uncertainty Principle
٣٠
زمانی کوتاه و فرکانسهای پایین برای زمانهای طولانی میباشد. دو تفاوت عمده بین STFT و CWT
عبارتند از
۱_ تبدیل فوریه سیگنال حاصل از اعمال تابع پنجره، گرفته نمیشود.
۲_ هنگامی که تبدیل برای یک جزﺀ طیفی محاسبه میشود، طول پنجره تغییر میکند. احتمالاﹲ ایـن
مهمترین مشخصه تبدیل موجک میباشد.
تبدیل موجک پیوسته (CWT) بصورت زیر تعریف میشود(:(Daubechies92
(۴‐۴)

که

(۴‐۵)
یک تابع پنجره است که موجک مادر٧ نامیده میشود، a یک مقیاس و b یک انتقال است.

شکل۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. عدد بعد از نام موجک معرف تعداد لحظات محو شدن
است

7-Mother Wavelet
٣١
اصطلاح موجک به معنی موج کوچک میباشد. کوچکی برای شرایطی تعریف شده است که تـابع
پنجره طول محدود داشته باشد. موج هم برای شرایطی تعریف شده است کـه ایـن تـابع نوسـانی
باشد. اصطلاح مادر بر این نکته دلالت دارد که توابع بـا نـواحی مختلـف کـارایی، کـه در تبـدیل
استفاده میشوند، از یک تابع اصلی یا تابع مادر یک نمونه اصلی بـرای تولیـد سـایر توابـع پنجـره
میباشد. یک نمونه ازموجک مادر را در شکل۴‐۲ مشاهده میکنیم
اصطلاح انتقال به همان نحو که برای STFT بکار میرفت، در اینجا استفاده میشود. این اصـطلاح
به مکان پنجره، هنگامی که در امتداد سیگنال شیفت مییابد، دلالت میکند. واضح اسـت کـه ایـن
اصطلاح به اطلاعات زمانی در حوزه تبدیل مربوط میشود. با ایـن وجـود، مـا پـارامتر فرکانـسی،
آنطور که برایSTFT داشتیم، برای تبدیل موجک نداریم. در عوض در اینجا یـک مقیـاس موجـود
میباشد. مقیاس دهی همانند یک تبدیل ریاضی، به معنی گسترده یا فشرده کردن سیگنال میباشد.
مقیاسهای کوچکتر به معنی سیگنالهای گستردهتر و مقیاسهای بزرگتر به معنی سیگنالهای فشردهتـر
میباشد. از آنجا که در مبحث موجک پارامتر مقیاس دهی در مخرج بکار میرود، عکـس عبـارت
فوق در اینجا صادق خواهد بود.
رابطه بین مقیاس و فرکانس این است که مقیاسهای پایین مربوط به فرکانـسهای بـالا و مقاسـهای
بالا مربوط به فرکانسهای پایین میباشد. با توجه به بحث ذکر شده، ما تا بحال طرح زمـان‐مقیـاس
داریم. توصیف شکل۴‐۳ معمولاﹲ در توضیح اینکه چگونه رزولوشنهای زمانی و فرکانسی تفسیر
شوند، بکار میرود.
٣٢

شکل۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس‐ زمان
هر مستطیل در شکل۴‐۳ مربوط به یک مقدار تبدیل موجک در صفحه زمـان‐مقیـاس مـیباشـد.
توجه کنید که مستطیلها یک مساحت غیر صفر مشخص دارند، که این بدان معناسـت کـه مقـدار
یک نقطه بخصوص در طرح زمان‐مقیاس قابل تشخیص نیـست. اگـر ابعـاد جعبـههـا را در نظـر
نگیریم، مساحت جعبهها، در STFT و WTبـا هـم برابـر هـستند و بـا نامـساوی هـایزنبرگ تعیـین
میشوند. خلاصه، مساحت مستطیلها برای تابع پنجره (STFT) و (WT) ثابت است. همچنین، تمام
مساحتها دارای حد پایین محدود شده به ۴π/ هستند. یعنی، طبـق اصـل عـدم قطعیـت هـایزنبرگ
نمیتوانیم مساحت جعبهها را هر اندازه که بخواهیم، کاهش دهیم.
۴‐۲‐سه نوع تبدیل موجک ]۳۳[
ما سه نوع تبدیل در اختیار داریم: پیوسته، نیمه گسسته٨ و گسسته در زمان. اختلاف انـواع مختلـف
تبدیل موجک مربوط به روشی است که مقیاس وشیفت را پیاده سازی میکند. در این بخـش ایـن
سه نوع مختلف را ریزتر بررسی خواهیم کرد.

8-Semidiscrete
٣٣
۴‐۲‐۱‐ تبدیل موجک پیوسته
برای CWT پارامترها به صورت پیوسته تغییر میکنند. این موضـوع باعـث حـداکثر آزادی در
انتخاب موجک مناسب برای آنالیز خواهد شد. تنها لازم است که تبدیل موجـک شـرط (۴‐۷)، و
مخصوصاﹲ مقدار متوسط صفر را داشته باشد. این شرط برای اینکه CWT معکـوس پـذیر باشـد،
لازم است. تبدیل عکس به صورت زیر تعریف میشود:
(۴‐۶)

که Ψ شرط لازم زیر را باید ارضا کند

(۴‐۷)
که Λψ تبدیل فوریه Ψ است.
بطور شهودی واضح است که CWT بر محاسبه "ضریب همبـستگی" بـین سـیگنال وموجـک
اصرار دارد. شکل۴ را ببینید

شکل۴‐۴‐ تشریح CWT طبق معادله۴
الگوریتم CWT را میتوان به شکل زیر توصیف کرد‐شکل۴‐۴ را ببینید.
۱_ یک موجک در نظر بگیرید و آنرا با با قسمتی از ابتدای سیگنال اصلی مقایسه کنید.
٣۴
۲_ ضریب c(a,b) که نمایانگر میزان ارتباط موجک با این قـسمت از سـیگنال اسـت را محاسـبه
کنید. هر چقدر c بیشتر باشد، شباهت بیشتر است. توجه کنید که نتیجه به شکل موجک انتخـاب
شده دارد.
۳_موجک را به سمت راست شیفت دهید و مراحل ۱و ۲ را تا رسیدن بـه انتهـای سـیگنال تکـرار
کنید.
۴_موجک را به سمت راست شیفت دهید و مراحل ۱ تا ۳ را تکرار کنید.
یک مثال از ضرایب CWT مربوط به سیگنال استاندارد در شکل۴‐۵ نشان داده شده است.

شکل۴‐۵ مثالی از آنالیزموجک پیوسته. در شکل بالا سیگنال مورد نظر نمایش داده شده است.
شکل پایین ضرایب موجک مربوطه را نشان میدهد.
٣۵
۴‐۲‐۲ تبدیل موجک نیمهگسسته
در عمل، محاسبه تبدیل موجک برای بعضی مقادیر گسسته a و b بسیار متداولتر است. برای مثـال، بکارگیری مقیاسهای a 2j dyadic و شـیفتهای صـحیح b  2j k بـا (j, k) z2 راتبـدیل
موجک نیمه گسسته (SWT) مینامیم.
در صورتی که مجموعه متناظر با الگوها، یک قالب موجـک را تعریـف کنـد، تبـدیل عکـسپـذیر
خواهد بود. به عبارت دیگر، موجک باید طوری طراحی شود که

(۴‐۸)
در اینجا A و B دو ثابت مثبت، ملقب به حدود قالب هستند. که ما باید برای بدستآوردن ضرایب
موجک انتگرالگیری انجام دهیم، چرا که f(t) هنوز یک تابع پیوسته است.
۴‐۲‐۳ ‐ تابع موجک گسسته
در اینجا، تابع گسسته f(n) و تعریف موجک (DWT) داده شده بـه صـورت زیـر را در اختیـار
داریم:
(۴‐۹)

که ψj,x یک موجک گسسته تعریف شده به شکل زیر میباشد:

(۴‐۰۱)
پارامترهای a و b به شکل a2j و b  2jkتعریف میشوند. عکس تبدیل به شـکلی مـشابه،
چنین تعریف میشود:
٣۶

(۴‐۱۱)
اگر حدود قالب در معادله۴‐٨ A=B=1 باشد، آنگـاه تبـدیل عمـودی خواهـد بـود. ایـن تبـدیلهـا
میتوانند با یک آنالیز چند بعدی، که در بخش بعد بحث خواهد شد، شروع شوند.
۴‐۳‐ انتخاب نوع تبدیل موجک
چه موقع آنالیز پیوسته از آنالیز گسسته مناسبتر است؟ هنگامی که انرﮊی سیگنال محدود است، اگر
از یک تبدیل موجک مناسب استفاده کنیم، تمام مقادیر یک تجزیه برای بازسازی شکل موج اصلی
لازم نخواهد بود. در این شرایط، یک سیگنال پیوسته را میتوان بوسیله تبـدیل گسـسته آن کـاملاﹰ
مشخص کرد. بنابراین آنالیز گسسته کافی است و آنالیز پیوسته اضافی خواهـد بـود. هنگـامی کـه
سیگنال بصورت پیوسته یا یک شبکه زمانی ریز ثبت میشود، هر دو نوع آنالیز، امکانپذیر خواهـد
بود. کدامیک باید استفاده شود؟ جواب این است: هر یک مزایای مربوط به خود را دارد.
آنالیز پیوسته معمولاﹰ برای تفسیر آسانتر اسـت، چـرا کـه اضـافات آن، تمایـل بـه تقویـت ویژگیها دارد و و اطلاعات را بسیار واضحتر خواهد کرد. این موضوع بـرای بـسیاری از ویژگیهای مفید درست است. آنالیز پیوسته تفسیر را راحتر، و خوانایی را بیشتر مـی کنـد، در عوض حجم بیشتری برای زخیره لازم دارد.
آنالیز گسسته حجم ذخیره سازی را کاهش میدهد و برای بازسازی کافی است.
٣٧
۴‐۴‐ آنالیز مالتی رزولوشن٩ و الگوریتم DWT سریع
برای اینکه تبدیل موجک مفید باشد، باید آنرا با الگوریتمهای سریع به منظور استفاده در ماشینهای
محاسباتی، پیادهسازی کنیم. یعنی روشی مثل FFT که هم ضرایب تبدیل wavwlet را بدست آورد و
هم بازسازی تابعی را که نمایش میدهد، انجام دهد.
۴‐۴‐۱‐آنالیز مالتی رزولوشن (MRA)
آنالیز مالتیرزولوشن Mallat را که خیلی عمومیت دارد، توضیح میدهیم. با فضایl2 که شامل تمام
توابع جمعپذیر مربعی است، شروع میکنیم، یعنی: f در فضای l2 (s) است، اگرMRA . ∫f 2  ∞
s
یک سری افزایشی از زیر فضای بسته {vj}jzاسـت، کـه l2 (R)را تخمـین میزنـد. شـروع کـار،
انتخاب یک تابع مقیاسدهی مناسـبΦ اسـت. تـابع مقیـاسدهـی بـه منظـور ارضـاﺀ پیوسـتگی،
یکنواختی و بعضی شرایط لازم بعدی انتخاب شده است. اما نکته مهمتر این اسـت کـه، مجموعـه
{φ(x − k), k z} یک اساس درست برای فضای مرجع v0 ایجاد میکند. رابطههای زیر آنالیز را
توصیف میکنند:
(۴‐۲۱)...v-1 v0 v1
فضاهایvj به صورت تودرتو قرار گرفتهاند. فضای l2 (R) اشتراک تمامvj را شامل مـیشـود. بـه
عبارت دیگر j z vj در(l2 (R متراکم شده است. اشتراک همهvj ها تهی است.
(۴‐۳۱)

9-Multiresolution
٣٨
فضاهای vj وvj1 مشابه هستند. اگر فضایvj دارای فاصـلههـای خـالی(φ1,k (x ، k z باشـد،
آنگـــاه فـــضایij1 دارای فاصـــلههـــای(φ1,k (x ، k z اســـت. فاصـــلهvj1 بوســـیله تـــابع
، که تولید میشود.
حالا شکلگیری موجک را توضـیح مـیدهـیم. چـون v0 v1 ، هـر تـابعی در v0 را مـیتـوانیم
بصورت ترکیبی از توابع پایه 2φ(x − k) ازv1 بنویسیم. مخصوصاﹰΦ باید معادلات دو بعـدی ۴۱

و ۵۱ را برآورده کند:
(۴‐۴۱)2φ (x − k) (φ (x)  ∑h(k

k
ضرایب h(k) بصورت((2Φ(x − k h(k)  (Φ(x), تعریف شـدهانـد. حـال بـه عـضو عمـودی

wj از vj برvj1 ،vj1  vj wj را در نظر بگیرید. این بدان معناست که تمام اعضایvj بـر
اعضای wj عمود هستند. ما لازم داریم که

تعریف زیر را ارائه میدهیم:
(۴‐۵۱)2∑(−1)k h(−k  1)φ (x − k) ψ (x) 

k
ما میتوانیم نشان دهیم کـه2{ψ(x − k), k z} یـک اسـاس درسـت بـرایw1 اسـت. دوبـاره، خاصیت تشابه MRI عنوان میکند که2j{ψ( 2jx − k), k z} یک اساس بـرایwj اسـت. از

آنجــــا کــــه v  wدر l2 (R) متمرکــــز اســــت، خــــانواده داده شــــده
jj z jj z
2j{ψ( 2jx − k), k z} یک اساس بـرای l2 (R) اسـت. بـرای یـک تـابع داده شـده f l2 (R)

٣٩
میتوان N را طوری بیابیم که f N vj ، f را بالاتر از دقت تعیین شده، تقریب بزند. اگـرgi wi
و f i vi آنگاه

(۴‐١۶)
معادله (۴‐١۶) تجزیه موجک تابع f است.
۴‐۵ ‐ زبان پردازش سیگنالی]۳۳و۴۳[
ما مراحل آنالیز مالتیرزولوشنی را با زبان پردازش سیگنالی تکرار میکنیم. آنالیز مالتی رزولوشـن
waveletبا الگوریتم کد کردن زیرباند یا محوطهای در پردازش سیگنال در ارتباط اسـت. همچنـین،
فیلترهای آینهای مربعی هم در الگوریتم مالتی رزولوشـن Mallat قابـل تـشخیص اسـت. در نتیجـه
نمایش زمان‐ مقیاس یک سیگنال دیجیتال با اسـتفاده از روشـهای فیلتـر کـردن دیجیتـال حاصـل
میشود.
معادلات۴‐۴۱ و۴‐۵۱ را از بخش قبل به خاطر بیاورید. سـریهای{h(k), k z} و {g(k), k z}
در اصطلاح پردازش سیگنال، فیلترهای آیینهای مربعی هستند. ارتباط بین h و g چنین است:
(۴‐۷۱)g(k)  (−1)n h(1 − n)
h(k) فیلتر پایین گذر و g(k) فیلتر بالا گذر است. این فیلتر با خانواده فیلترهای بـا پاسـخ ضـزبه
محدود (FIR) تعلق دارند. خواص زیر را میتوان با استفاده از تبدیل فوریه و عمـود بـودن اثبـات
کرد:
(۴‐۸۱) ∑g(k)  0 ∑h(k)  2
k k

۴٠
عملیات تجزیه با عبور سیگنال (دنباله) از یک فیلتر پایین گذر نیم باند دیجیتال با پاسخ ضربه h(n)
شروع میشود. فیلتر کردن یک سیگنال معادل با عملیات ریاضی کانولوشن سیگنال با پاسخ ضـربه
فیلتر میباشد. یک فیلتر پایین گذر نـیم بانـد تمـام فرکانـسهایی را کـه بـالاتر از نـصف بیـشترین
فرکانس سیگنال قرار دارند را حذف میکند
اگر سیگنال با نرخ نایکویست (که دو برابر بیشترین فرکانس در سیگنال است) نمونهبرداری شـده
باشد، بالاترین فرکانس که در سیگنال وجود داردπرادیان است. یعنـی، فرکـانس نایکویـست در
حوزه فرکانسی گسسته مطابق با π(--/s) میباشد. بعد از عبور سیگنال از یک فیلتر پایین گذر نـیم
باند، طبق روش نایکویست میتوان نصف نمونهها را حذف کـرد، چـرا کـه حـال سـیگنال دارای
حداکثر فرکانس(π/2(--/s میباشد. به این ترتیب سیگنال حاصل دارای طـولی بـه انـدازه نـصف
طول سیگنال اولیه میباشد.

شکل۴‐۶ طرح الگوریتم کد کردن زیر باند(قسمت بالا تجزیه و قسمت پایین ترکیب را نمایش میدهد)
۴١
حال مقیاس سیگنال دو برابر شده است. توجه کنید فیلتـر پـایینگـذر، اطلاعـات فرکـانس بـالای
سیگنال را حذف کرده است، اما مقیاس را بدون تغییر گذاشته است. این تنها کاهش تعداد نمونهها
است که مقیاس را تغییر میدهد. از طرف دیگر رزولوشن که به میزان اطلاعلت موجود در سیگنال
ارتباط دارد، توسط فیلتر کردن تغییر کرده است. فیلتر پـایین گـذر نـیم بانـد نـصف، فرکانـسها را
حذف کرده است، که میتوان این عمل را به نصف شدن اطلاعات تفـسیر کـرد. توجـه کنیـد کـه
کاهش نمونهها بعد از فیلتر کردن تاثیری در میزان رزولوشن ندارد، چرا کـه بعـد از فیلتـر کـردن
نصف نمونهها اضافی خواهد بود. پس نصف کردن نمونههـا باعـث حـذف هیچگونـه اطلاعـاتی
نمیشود. خلاصه، فیلتر کردن اطلاعات را نصف میکند، ولی مقیـاس را تغییـر نمـیدهـد. سـپس
سیگنال با نرخ دو نمونه برداری میشود، چرا که حال نصف نمونهها اضـافی اسـت. ایـن عمـل ،
مقیاس را دو برابر میکند. عملیات توصیف شده در شکل۴‐۶ نشان داده شده است.
یک روش بسیار مختصر برای توصیف این عملیات و همچنین عملیات موثر برای تعیین ضـرایب
موجک نمایش عملکرد فیلترها است. برای یک دنبالـه، f  {f n} نمایـانگر سـیگنال گسـستهای
است که باید تجزیه شود و G وH بوسیله روابط هممرتبه زیر تعریف می شوند:
(۴‐۹۱)

(۴‐۰۲)
معادلات ۴‐۹۱و ۴‐۰۲ فیلتر کردن سیگنال با فیلترهای دیجیتال h(k) و g(k) که معـادل عملگـر
ریاضی کانولوشن با پاسخ ضربه فیلترها میباشد، را نمایش میدهد. فاکتور 2k کاهش نمونههـا را
نمایش میدهد.
۴٢
عملگرهای G و H مربوط به گام اول در تجزیه موجک میباشند. تنها تفاوت این است که روابط با
از ضریب 2 معادلات ۴‐١٣و۴‐١۴ چشمپوشی کرده است. بنابراین تبـدیل موجـک گسـسته را

میتوان در یک خط خلاصه کرد‐ شکل ۴‐۷ را ببینید:

(۴‐۱۲)
(0)0(j 1)(j 2)(1)
که ما میتوانیم d  ,d  ,..., d ,d را جزئیات ضرایب و cرا تقریب ضرایب بنامیم.
جزئیات و ضرایب با روش تکرار حاصل می شوند:

شکل۴‐۷ نمایش تجزیه توسط موجک
برای مقایسه این روش با SWT، بیایید دنباله x(k) حاصـل از ضـرب داخلـی سـیبگنال پیوسـته
u(t) با انتقالهای صحیح تابع مقیاس دهی را تعریف کنیم

(۴‐۲۲)
حال، ما میتوانیم SWT را با استفاده از DWT طبق رابطه زیر بدست آوریم
(۴‐۳۲)

که برای هر عدد صحیح j ≥ 0 و هر عدد صحیح k درست است.
۴٣
عملیات بازسازی مشابه عملیات تجزیه است. تعداد نمونههای سـیگنال در هـر سـطحی دو برابـر
− −− −
میشود، از فیلترهای ترکیب کننده نشان داده شده بـا H و G عبـو داده مـیشـود، و سـپس جمـع
− −− −
H و G را طبق روابط زیر تعریف میکنیم

(۴‐۴۲)
(۴‐۵۲)
AP Signal 4 10 x 10 2 5 0 15 10 5 00 0.4 0.3 0.2 0.1 0 -2 CD5 5 CD6 0.5 0 0 30 20 CD3 10 -50 15 10 CD4 5 0 -0.5 0.5 1 0 0 80 60 40 20 -0.50 40 30 20 10 0 -1 CD1 0.2 CD2 0.5 0 0 400 300 200 100 -0.20 200 150 100 50 0 -0.5
شکل۴‐۸ مثالی از تجزیه .DWT سیگنال اصلی، سیگنال تقریب((AP
و سیگنالهای جزئیات(CD1تا (CD6
با استفاده مکرر از روابط بالا داریم

(۴‐۶۲)
۴۴
که در حوزه زمانی
(۴‐۷۲)

Dj و cجزئیات و تقریب نامیده میشوند. یک مثـال از تجزیـه در شـکل۸ ، همـراه بـا تقریـب و
جزئیات و سیگنال اصلی نشان داده شده است.
۴‐۶‐ شبکه عصبی
۴‐۶‐۱ مقدمه]۵۳[
خودسازماندهی١٠ شبکهها یکی از موضوعات بـسیار جالـب در شـبکههـای عـصبی میباشـد. ایـن
شبکهها میتوانند انتظام و ارتباط موجود در ورودی خود را تشخیص و به ورودیهـای دیگـر طبـق
این انتظام پاسخ دهند. نرونهای شبکه های عـصبی رقـابتی طـرز تـشخیص گـروه هـای مـشابه از
بردارهای ورودی را یاد میگیرند. نگاشـتهای خـود سـازمانده طـرز تـشخیص گـروه هـای مـشابه
بردارهای ورودی را به این شکل یاد میگیرند که نرونهـای مجـاور هـم از لحـاظ مکـانی در لایـه
نرونی، به بردارهای ورودی مشابه پاسخ می دهند.
یادگیری کوانتیزه نمودن برداری (LVQ) روشی است که از ناظر برای یادگیری شبکه هـای رقـابتی
استفاده میکند. یک لایه رقابتی خود به خود طبقه بندی بردارهای ورودی را یـاد میگیـرد. بـا ایـن
وجود، کلاسهایی که لایه رقابتی پیدا می کند، تنها به فاصله بردارهای ورودی ارتباط دارد. اگـر دو
بردار ورودی خیلی به هم شبیه باشند، احتمالآ لایه رقابتی آن دو را در یک کلاس قرار مـی دهـد.
در شبکه های عصبی رقابتی، روشی یرای تشخیص اینکه آیا دو نمونه بردار ورودی در یک طبقـه

10-Self Organizing
۴۵
قرار می گیرند یا نه، وجود ندارد. با این وجود، شبکه های طبقـه بنـدی بردارهـای ورودی را در
طبقه هایی که توسط خود کاربر تعیین می شوند، انجام می دهد.
۴‐۶‐۲‐ یادگیری رقابتی١١
نرونها در یک لایه رقابتی طوری توزیع می شوند که بتوانند بردارهای ورودی را تـشخیص دهنـد.
معماری یک شبکه رقابتی در شکل(۴‐۹) نشان داده شده است.
جعبه ||dist|| بردار ورودی p و ماتریس وزن ورودی IW1,1 را بـه عنـوان ورودی دریافـت مـی
کند، و برداری شامل s1 عنصر تولید می کنـد. ایـن عناصـر، منفـی فاصـله بـین بـردار ورودی و
بردارهای j IW1,1 تشکیل شده از سطر های ماتریس وزن ورودی، می باشند.

شکل۴‐۹معماری شبکه رقابتی
ورودی خالص١٢ n1 یک لایه رقابتی، با جمع کردن بایاس b با فاصله هـای بردارهـای ورودی از
سطرهای ماتریس وزن، محاسبه میشوند. اگر بایاسها صفر باشند، بیشترین مقداری که یـک ورودی
خالص میتواند داشته باشد، صفر خواهد بود. این هنگامی اتفاق می افتد که بردار ورودی p برابر با
یکی از بردارهای وزن شبکه باشد.

-Competitive Learning -Net Weight

11
12
۴۶
تابع تبدیل رقابتی یک بردار وزن خالص را دریافت می کند، و خروجی صفر را برای همه نرونهـا،
به غیر از نرون برنده (نرون دارای کمترین فاصله)، که همـان نـرون مربـوط بـه بزرگتـرین عنـصر
ورودی خالصn1 میباشد، تولید می کند، و نـرون برنـده دارای خروجـی ۱ خواهـد بـود. فوائـد
استفاده از جمله بایاس در هنگام بحث از آموزش شبکه روشن خواهد شد.
۴‐۶‐۲‐۱ روش یادگیری کوهنن١٣ (learnk)
وزنهای نرون برنده (یک سطر در ماتریس وزن ورودی) با روش یادگیری کوهنن تنظیم می شـود.
فرض کنید که i امین نرون برنده شـود، آنگـاه عناصـر i امـین سـطر از مـاتریس وزن ورودی بـه
صورت زیر تنظیم میشود.
(۴‐۸۲)j IW1,1 (q) j IW1,1 (q − 1)  α ( p(q)− jIW1,1(q−1))
روش یادگیری کوهنن باعث میشود که وزنهای نرون یک بردار ورودی را یـاد بگیرنـد، و بـه ایـن
دلیل در کاربردهای تشخیص الگو مفید می باشد.
به این ترتیب نرونی که بردار وزن آن از همه نرونهای دیگـر بـه ورودی نزدیکتـر اسـت، طـوری
تغییر میکند که بیشتر به ورودی نزدیکتر شود. نتیجه این تغییـر ایـن خواهـد بـود کـه در صـورت
عرضه کردن ورودی مشابه ورودی قبلی بـه شـبکه، نـرون برنـده در رقابـت قبلـی، دارای شـانس
بیشتری برای برنده شدن مجدد خواهد داشت.
هر چقدر ورودیهای بیشتری به شبکه عرضه شود، هر نرونی که بـه ایـن ورودیهـا نزدیکتـر باشـد
بردار وزن آن طوری تنظیم میشود که به این ورودیها نزدیک ونزدیکتر شود. در نتیجه، اگـر تعـداد
نرونها به اندازه کافی باشد، هر خوشه از ورودیهای مشابه، یک نرون خواهد داشـت کـه خروجـی

13-Kohonen Learning Rule
۴٧
آن با عرضه کردن یک بردار از این خوشه یک و در غیر این صورت صـفر خواهـد بـود. بـه ایـن
ترتیب شبکه یاد گرفته است که بردارهای ورودی عرضه شده را طبقه بندی کند.
۴‐۶‐۲‐۲ روش یادگیری بایاس١۴ (learncon)
یکی از محدودیتهای شبکه های رقابتی این است که یک نرون ممکن است هرگز تنظیم نشود. بـه
عبارت دیگر، بعضی از بردارهای وزن نرونی ممکن است در آغاز از هر بردار ورودی دور باشـند،
و هر چند آموزش را ادامه دهیم هرگز در رقابت پیروز نشوند. نتیجـه ایـن اسـت وزن هـای آنهـا
تنظیم نمیشود و هرگز در رقابت پیروز نمی شوند. این نرون های نا مطلـوب، کـه بـه نـرون هـای
مرده اطلاق می شوند، هرگز عمل مفیدی انجام نمی دهند.
برای جلوگیری از روی دادن این مورد، بایاسهایی اعمال میشود تا اینکه نرونهـایی کـه بـه نـدرت
برنده میشوند، احتمال برنده شدن را دررقابتهای بعدی داشته باشند. یک با یـاس مثبـت بـه منفـی
فاصله اضافه می شود، به این ترتیب احتمال برنده شدن نرون دورتر بیشتر می شود.
به این منظور، یک متوسط از خروجی نرونها نگهداری میشود. این مقادیر نمایانگر درصـد برنـده
شدن نرونها در رقابتهای قبلی می باشد. و از آنها برای تنظیم با یاس های نرونها استفاده می شوند
به این ترتیب که با یاس نرونهای غالبا برنده کاهش و بر عکس با یاس نرونهایی که بندرت برنـده
می شود، افزایش می یابد.
برای اطمینان از درستی متوسطهای خروجی، نرخ یادگیری learncon بسیار کمتر از learnk انتخـاب
می شود. نتیجه این است که بایاس نرونهایی که اغلب بازنده اند در مقابل نرون هـای غالبـا برنـده
افزایش مییابد. هنگامی که بایاس نرونهای غالباﹰ بازنده افزایش می یابد، فضای ورودی که نرون بـه

14-Bias Learning Rule
۴٨
آن پاسخ می دهد نیز گسترش می یابد. هر چقـدر فـضای ورودی افـزایش بیابـد، نرونهـای غالبـاﹰ
بازنده، به ورودیهای بیشتری پاسخ میدهند. سرانجام این نرون نـسبت بـه سـایر نرونهـا بـه تعـداد
برابری از ورودیها پاسخ خواهد داد
این امر، دو نتیجه خوب دارد. اول اینکـه، اگـر یـک نـرون بـه علـت دوری وزنهـای آن از همـه
ورودیها هرگز برنده نشود، بایاس آن عاقبت به حدی بزرگ خواهد شد که این نرون بتواند برنـده
شود. وقتی که این اتفاق ( برنده شدن نرون ) روی داد، این نرون به سمت دسته هـایی از ورودی
حرکت خواهد کرد. هنگامی که وزن یک نرون در بازه یک دسته از ورودیها قـرار گرفـت، بایـاس
آن به سمت صفر کاهش خواهد یافت به این ترتیب مشکل نرون بازنده حل خواهد شد.
فایده دوم استفاده از بایاس این است که آنها نرونها را وادار می کننـد کـه هـر کـدام درصـدهای
یکسانی از ورودیها را طبقه بندی کنند. بنابراین، اگـر یـک ناحیـه از فـضای ورودی دارای تعـداد
بیشتری از بردارهای ورودی نسبت به سـایر مکانهـا باشـد، ناحیـه بـا چگـالی بیـشتر در ورودی،
نرونهای بیشتری جذب خواهد کرد. و در نتیجه این ناحیه بـه زیـر گروههـای کـوچکتری تقـسیم
خواهد شد.
۴‐۷‐ نگاشت های خود سازمانده١۵ (SOM)
نگاشت های خود سازمانده یاد می گیرند کـه بردارهـای ورودی را آنطـور کـه در فـضای ورودی
طبقه بندی شده اند، طبقه بندی کنند. تفاوت آنها با لایه های رقابتی این است که نرونهای مجـاور
نگاشت خود سازمانده، قسمتهای مجاور از فضای ورودی را تشخیص می دهند.

15-Self Organizing Maps
۴٩
بنابراین، نگاشتهای خود سازمانده هم توزیع( مثل لایه ها رقابتی) و هم موقعیت مکانی بردارهای
ورودی آموزشی را یاد می گیرند. در اینجا یک شبکه نگاشت خود سازمانده نرون برنـده i* را بـه
روشی مشابه لایه رقابتی تعیین می کند. اما به جای اینکه تنها نرون برنده تنظیم شود، تمام نرونهـا
در یک همسایگی مشخص N (d) از نرون برنده با استفاده از قانون کوهنن تنظیم می شوند. یعنی،
i*
ما تمام نرونهای i Ni* (d) را طبق رابطه زیر تنظیم می کنیم
(۴‐۹۲)i W (q)i W (q − 1)  α ( p(q)−i IW (q−1))
یا
(۴‐٣٠i W (q) (1−α) i W (q − 1)  αp(q)(
در اینجا همسایگی N (d) شامل آندیس تمام نرونهایی است کـه در شـعاع d بـه مرکزیـت نـرون
i*
برنده i* قرار دارند.
(۴‐۱۳)Ni* (d)  {j,dij≤d}
بنابراین، هنگامی که بردار p به شبکه عرضه میشود، وزنهای نرون برنده و همسایه های نزدیک آن
به سمت p حرکت خواهد کرد. در نتیجه، بعد از آزمونهای پی در پی فـراوان، نرونهـای همـسایه،
نمایانگر بردارهای مشابه هم خواهند بود.
برای توضیح مفهوم همسایگی، شکل ۴‐۰۱ را در نظر بگیرید. شکل سمت چـپ یـک همـسایگی
دو بعدی به شعاع d=1 را حول نرون 13 نشان میدهد. دیاگرام سمت راست یـک همـسایگی بـه
شعاع d=2 را نشان میدهد. این همسایگی ها را میتوان به صورت زیر نوشت:
N13 (1)  {8,12,13,14,18}
و
۵٠
N13 (2)  {3,7,8,9,11,12,13,14,15,17,18,19,23}

شکل۴‐۰۱نمایش همسایگی
میتوان نرونها را در یک فضای یک بعدی، دو بعدی، سه بعدی یا حتـی بـا ابعـاد بیـشتر نیـز قـرار
دهیم. برای یک شبکه SOM یک بعدی ، یک نرون تنها دو همسایه (یا اگر نرونها در انتها باشـند
یک همسایه) در شعاع یک خواهد داشت.
۴‐۸‐ شبکه یادگیری کوانتیزه کننده برداری١۶]۵۳[
معماری شبکه عصبی LVQ در شکل۴‐۱۱ نشان داده شده است. یـک شـبکه LVQ در لایـه اول از
یک شبکه رقابتی و در لایه دوم از یک شبکه خطی تـشکیل شـده اسـت. لایـه رقـابتی بردارهـای
ورودی را به همان روش لایه های رقابتی ذکر شده، طبقه بندی میکند. لایه خطـی نیـز کلاسـهای
لایه رقابتی را بصورت کلاسهای مورد نظر کاربر طبقه بندی میکند. ما کلاسهایی کـه لایـه رقـابتی
جدا کرده است را زیر کلاس و کلاسهایی را که لایـه خطـی مـشخص میکنـد، کلاسـهای هـدف
مینامیم.

16-Learning Vector Quantization Networks
۵١

شکل۴‐۱۱ معماری شبکه LVQ
هر دوی لایه های رقابتی و خطی دارای تنها یک نرون بـرای هـر زیـر کـلاس یـا کـلاس هـدف
هستند. به همین دلیل لایه رقابتی میتواند S1 کلاس را یاد بگیرد. در مرحله بعد این S1 کـلاس در
S2 کلاس توسط لایه خطی طبقه بندی خواهد شد.( S1 همیشه از S2 بزرگتر است.)
برای مثال فرض کنید که نرونهای ١،٢و٣ در لایهرقابتی، زیر کلاسهایی از ورودی را یـاد میگیرنـد
که به کلاس هدف شماره ٢ لایه خطی تعلق دارند. آنگـاه نرونهـای رقـابتی ١،٢و٣ دارای وزنهـای
Lw2,1 برابر یک در نرون n2 لایهخطی، و وزنهای صفر برای بقیه نرونهای لایه خطی خواهند بود.
بنابراین این نرون لایه خطی ( ( n2 در صورت برنده شدن هر یک از نرونهای ١،٢و٣ لایـه رقـابتی،
یک ١ در خروجی ایجاد خواهد کرد. به این ترتیب زیر کلاسهای لایه رقابتی بـصورت کلاسـهای
هدف ترکیب خواهند شد.
خلاصه، یک ١ در iامین ردیف از a1 (بقیه عناصر a1 صفر خواهد بود)، iامـین ردیـف از Lw2,1
را به عنوان خروجی شبکه انتخاب میکند. این ستون شامل یک ١ که نمایانگر یـک کـلاس هـدف
است، خواهد بود را تعیین کنیم. اما ما باید با استفاده از یک عملیات آموزشی به لایه اول بفهمانیم،
که هر ورودی را در زیر کلاس مورد نظر طبقه بندی کند.
۵٢
۴‐٨‐١ روش یاد گیری (learnlv1) LVQ1
یادگیری LVQ در لایه رقابتی بر اساس یک دسته از جفتهای ورودی/ هدف میباشد.
(۴‐۲۳){ p1 ,t1},{ p2 ,t2},...,{ pQ ,tQ}
هر بردار هدف شامل یک ١ میباشد. بقیه عناصر صفر هستند. عدد ١ نمایانگر طبقه بردار ورودی
میباشد. برای نمونه، جفت آموزشی زیر را در نظر بگیرید.
0 2 (۴‐٣٣) 0 − 1 ,  t1 p1 1 0 0 در اینجا ما بردارهای ورودی سه عنصری داریم، و هر بردار ورودی باید به یکی از چهـار کـلاس
تعلق گیرد. شبکه باید طوری آموزش یابد که این بردار ورودی را در سومین کـلاس طبقـه بنـدی
کند.
به منظور آموزش شبکه، یک بردار ورودی p ارائه میشود، و فاصله از p بـرای هـر ردیـف بـردار
وزن ورودی Iw1,1 محاسبه میشود. نرونهای مخفی لایه اول به رقابت می پردازند. فرض کنیـد کـه
iامین عنصر از n1 مثبت ترین است، و نرون i* رقابت را می برد. آنگاه تابع تبدیل رقابتی یک ۱ را
به عنوان i* عنصر از a1 تولید می کند. تمام عناصر دیگرa1 صفر هستند. هنگـامی کـهa1 در وزنهـای
لایه دوم یعنیLw2,1 ضرب میشود، یک موجود در a1 کلاس k* مربوطه راانتخاب میکنـد. بـه ایـن
ترتیب، شبکه بردار ورودی p را در کلاس k* قرار داده و a2 یک شـده اسـت. البتـه ایـن تعیـین
k*
کلاس بردار p توسط شبکه بسته به اینکه آیا ورودی در کلاس k* است یا نه، میتواند درسـت یـا
غلط باشد.
۵٣
اگر تشخیص شبکه درست باشد سطر i* ام ازIw1,1 را طوری تصحیح میکنیم کـه ایـن سـطر بـه
بردار ورودی نزدیکتر شود، وبرعکس، در صورت غلـط بـودن تـشخیص ، تـصحیح بـه گونـه ای
صورت میگیرد که این سطر ماتریس وزن Iw1,1 از ورودی دورتر میشود. بنابراین اگـر p درسـت
طبقه بندی شود، یعنی
(۴‐٣۴( a2k*  tk*  1)(
ما مقدار جدید i* امین ردیف ازIw1,1 را چنین تنظیم میکنیم:
(۴‐٣۵) IW1,1 (q)i*IW1,1α(p(q)−i*IW1,1(q−1))
از طرفی، اگر طبقه بندی اشتباه باشد،
(۴‐٣۶) a2k*  1 ≠ tk*  0
مقدار جدیدi* امین ردیف را Iw1,1 را طبق رابطه زیر تغییر میدهیم
(۴‐۷۳) IW1,1 (q)i*IW1,1−α(p(q)−i*IW1,1(q−1))
این تصحیحات موجب میشود که نرون مخفی به سوی برداری کـه در کـلاس مربوطـه قـرار دارد
حرکت کند و از طرفی از سایر بردارها فاصله بگیرد.
۴‐۸‐۲ روش یادگیری تکمیلی١٧ LVQ21
روش یادگیری که در اینجا توضیح میدهیم را میتوانیم بعد از استفاده از 1 بکار ببریم. بکـارگیری
این روش ممکن است نتایج یادگیری اولیه را بهبود بخشد.
اگر نرون برنده در لایه میانی، بردار ورودی را به درستی طبقه بندی ننمود، بردار وزن آن نـرون را
طوری تنظیم میکنیم که از بردار ورودی فاصله بگیرد و به طور همزمان بردار وزن متناظر با نرونی

17-Supplemental Learning Rule
۵۴
را که بیشترین نزدیکی را به بردار ورودی دارد، طوری تنظیم میکنیم کـه بـه سـمت بـردار ورودی
حرکت نماید(به بردار ورودی نزدیکتر گردد).
زمانی که شبکه بردار ورودی را به درستی طبقه بندی نمود، تنها بردار وزن یـک نـرون بـه سـمت
بردار ورودی نزدیک میشود. اما اگر بردار ورودی بطور صحیح طبقـه بنـدی نـشد، بـردار وزن دو
نرون تنظیم میشود، یکی به سمت بـردار ورودی نزدیـک میـشود و دیگـری از بـردار ورودی دور
میشود.
۴‐۹‐ مقایسه شبکههای رقابتی
یک شبکه رقابتی طرز طبقه بندی بردار ورودی را یاد میگیرد. اگر تنها هدف ایـن باشـد کـه یـک
شبکه عصبی طبقه بندی بردارهای ورودی را یاد بگیرد، آنگاه یک شـبکه رقـابتی مناسـب خواهـد
بود. شبکه های عصبی رقابتی همچنین توزیع ورودیها را نیز با اعطای نرونهای بیشتر بـرای طبقـه
بندی قسمتهایی از فضای ورودی دارای چگالی بیشتر، یاد میگیرنـد. یـک نگاشـت خودسـازمانده
طبقه بندی بردارهای ورودی را یاد میگیرد. همچنین توضیع بردارهای ورودی را نیـز یـاد میگیـرد.
این نگاشت نرونهای بیشتری را برای قسمتهایی از فضای ورودی که بردارهای بیشتری را به شبکه
اعمال میکند، در نظر میگیرد.
نگاشت خودسازمانده، همچنین توپولوﮊی بردارهای ورودی را نیز یـاد خواهـد گرفـت. نرونهـای
همسایه در شبکه به بردارهای مشابه جواب میدهنـد. لایـه نرونهـا را میتـوان بـه فـرم یـک شـبکه
لاستیکی کشیده شده در نواحی از فضای ورودی که بردارها را به شبکه اعمال کرده است، تـصور
کرد.
۵۵
در نگاشت خودسازمانده تغییرات بردارهای خروجی نسبت به شبکه های رقابتی بسیار ملایـم تـر
خواهد بود.
شبکه عصبی LVQ بردارهای ورودی را در کلاسهای هدف به وسیله یک لایـه رقـابتی بـرای پیـدا
کردن زیر کلاسهای ورودی، و سپس با ترکیب آنها در کلاسهای هدف، طبقه بندی میکنند.
بر خلاف شبکه های پرسپترون که تنها بردارهای مجزا شده خطی را طبقه بنـدی میکننـد، شـبکه
های LVQ میتواند هر دسته از بردارهای ورودی را طبقه بندی کند. تنها لازم است که لایـه رقـابتی
به اندازه کافی نرون داشته باشد، تا به هر طبقه تعداد کافی نرون تعلق بگیرد.
۵۶

۵٧
۵‐۱‐ نحوه بدست آوردن سیگنالها
در این پایان نامه ۴ نوع سیگنال داریم که عبارتند از سـیگنالهای فرورزونـانس، کلیـدزنی خـازنی،
کلیدزنی بار، کلیدزنی ترانسفورماتور. سیگنالها را به دو دسته تقسیم می کنیم که دسته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشند. سیگنالها، با شبیه سازی بر روی فیدر توزیع واقعی توسط نرم افزار EMTP بدست آمـده
است که نحوه بدست آوردن سیگنالها در زیر توضیح داده شده است.
۵‐۱‐۱‐ سیگنالهای فرورزونانس
از آنجائیکه در وقوع پدیده فرورزونانس پارامترهای مختلف از جمله انواع کلید زنیها، نوع اتـصال
ترانسفورماتور، پدیده هیسترزیس، خاصیت خازنی خـط، طـول خـط و بـار مـوثر هـستند، انـواع
سیگنالهای فرورزونانس با بررسی اثرات هر یک از خواص بر روی شبکه واقعی بدست آمده انـد.
برای بدست آوردن این سیگنالها، بخشی از یک فیدر 20kV جزیره قشم کـه در شـکل ۵‐۱ نـشان
داده شده است انتخاب شده است] ۶۳.[

U

315 500 315 250 315 100 800 250
1250

315 315 500 315 1250 630 500 315 500 800 630 800 100 630 250
شکل۵‐۱. فیدر 20kV
۵٨
۵‐١‐٢‐ انواع کلید زنیها و انواع سیم بندی درترانسفورماتورها
عملکرد غیر همزمان کلیدهای قدرت و تغذیه ترانسفورماتور بی بار یا کم بار توسط یک فاز یا دو
فاز خط انتقال، شرایط بسیار مساعدی برای تحقق فرورزونانس مهیا می کند. عملکرد غیر همزمان
کلیدهای قدرت که در اثر قطع فاز یا گیر کردن کنتاکتهای بریکر در شبکه اتفاق می افتد را میتـوان
به دو نوع کلیدزنی تکفاز و دوفاز تقسیم بندی کرد. در این قسمت تاثیر انواع سیم بندیهای ترانس
20/0.4kv ابتدای فیدر را در اثر کلیدزنی تکفاز و دوفاز بررسی می کنیم.
الف)ترانس Yزمین شده ∆ /

شکل۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۵٩
ب)ترانس Yزمین نشدهY/ زمین شده

شکل۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ﭖ)ترانس Yزمین شدهY/ زمین شده

شکل۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٠
ت)ترانس ∆/∆

شکل۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ث)ترانس Y/∆ زمین شده:

شکل۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

۶١
شکل۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ج)ترانس Yزمین نشدهY/ زمین نشده

شکل۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
چ )ترانس Yزمین نشده ∆ /

شکل۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٢
ح )ترانسفورماتور Y/∆ زمین نشده:

شکل۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
همانطور که ملاحظه می شود سوئیچینگ تکفاز که بدترین حالت کلیدزنی است باعـث بـه اشـباع
رفتن سریع هسته می شود. در این نوع کلیدزنی اضافه ولتاﮊهایی بصورت دائم و با دامنـه بـیش از
۲ برابر ولتاﮊ سیستم خواهد بود. در کلید زنی دوفاز نوسانات پایه یا زیر هارمونیک دائـم بـا دامنـه
۵,۱ تا ۷,۱ برابر خواهد بود. زمین کردن نقطه ستاره ترانس اگرچه احتمال فرورزونـانس را از بـین
نمی برد ولی احتمال آن را کمتر و دامنه اضافه ولتاﮊهای ناشی از این پدیده را کمتـر مـی کنـد. در
حالت کلید زنی دوفاز این احتمال بسیار پایین می آید و وقوع آن به شرایط دیگر سیـستم بـستگی
دارد و در صورت وقوع، سیستم دارای هـر چـه مقاومـت نـوترال یـا زمـین کمتـر باشـد احتمـال
۶٣
فرورزونــانس کمتــر اســت. در ظرفیتهــای خــازنی مــساوی، اضــافه ولتاﮊهــای فرورزونــانس
درترانسفورماتور مورد نظر در حالت اتصال ستاره با نوترال زمین شده بسیار کمتر اسـت. بـا قطـع
نوترال ترانسفورماتور مورد نظر و قطع تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتـری حاصـل
می شوند که حتی از حالت اتصال مثلث‐ ستاره بزرگتر می باشـند. همچنـین بـا توجـه بـه شـبیه
سازیهای انجام شده، فازهای مختلف ترانسفورماتور دارای رفتار مساوی در مقابل اضافه ولتاﮊهای
فرورزونانس نیسستند.
۵‐۱‐۳‐ اثر بار بر فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم بـاری ترانـسفورماتور
به وجود می آید. با افزایش بار اضافه ولتاﮊهای ناشی از فرورزونـانس بـسیار کـم اسـت ولـی بـا
تعدادی از بارها اضافه ولتاﮊهای ناشی از فرورزونانس بسیار زیاد می شود

شکل ۵‐۸۱ ولتاﮊ ثانویه فاز a در اثر افزایش بار
۶۴

—211

4-1- مطالعه موردی بر روی ساخت پالایشگاه میعانات گازی خلیج فارس PAGEREF _Toc422607429 h 1034-1-1- توجیح اقتصادی پالایشگاه میعانات گازی ستاره خلیج فارس: PAGEREF _Toc422607430 h 1044-1-2-نواحی اصلی پالایشگاه: PAGEREF _Toc422607431 h 1054-1-2-1-واحد Utility: PAGEREF _Toc422607432 h 1064-1-2-2-واحد فرآیند: PAGEREF _Toc422607433 h 1074-1-2-3-واحد فصل مشترک: PAGEREF _Toc422607434 h 1084-1-2-4-واحد مخازن: PAGEREF _Toc422607435 h 1084-1-2-5-واحد ساختمانها: PAGEREF _Toc422607436 h 1084-1-3-واحد های فرآیندی پالایشگاه: PAGEREF _Toc422607437 h 1084-1-3-1- شرح واحد های فرایندی (اصلی و جانبی) پالایشگاه: PAGEREF _Toc422607438 h 1094-1-3-2- شرح واحد های فرایندی Utility پالایشگاه: PAGEREF _Toc422607439 h 1104-2- استفاده از آنالیز ارزش در پالایشگاه میعانات گازی ستاره خلیج فارس با استفاده از نمودار FAST: PAGEREF _Toc422607440 h 1134-2-1-نمودار FAST نواحی PAGEREF _Toc422607441 h 1134-2-2-نمودار FAST بخش های فرآیند PAGEREF _Toc422607442 h 1144-3- نتایج PAGEREF _Toc422607443 h 117فصل پنجم
نتیجه گیری و پیشنهاد ها
مقدمه PAGEREF _Toc422607444 h 1235-1- مروری بر یافتته های تحقیق PAGEREF _Toc422607445 h 1235-2- محدودیت ها و موانع تحقیق PAGEREF _Toc422607446 h 1235-3- پاسخ به سؤالات تحقیق PAGEREF _Toc422607447 h 1245-4-پیشنهادات PAGEREF _Toc422607448 h 1265-5- نتیجه گیری PAGEREF _Toc422607449 h 127فهرست منابع PAGEREF _Toc422607450 h 139الف) منابع داخلی PAGEREF _Toc422607451 h 139ب) منابع خارجی PAGEREF _Toc422607452 h 141
فهرست جداول
عنوان صفحه
جدول 2-1-گرایشات مهم لجستیک در طول زمان .....................................................................................................18
جدول 2-2- کمبود پژوهش های گذشته.................................................................................................................. 95
جدول 4-1- واحدهای فرایندی وسرویسهای جانبی یوتیلیتی .................................................................................. 108
جدول 4-2- بخش های واحد فرآیند ..................................................................................................................... 108
جدول 4-3- واحد های فرایندی (اصلی و جانبی) پالایشگاه میعانات گازی............................................................ 111
جدول 4-4- در صد پیشرفت نواحی پالایشگاه خلیج فارس .................................................................................. 119
جدول 4-5- در صد پیشرفت فرآیندهای پالایشگاه خلیج فارس............................................................................ 120
فهرست نمودار ها
عنوان صفحه
نمودار 2-1، نمودار FAST در مدیرت هزینه............................................................................................................ 68
نمودار 4-1- نمودار FAST ساخت نواحی پالایشگاه ............................................................................................. 114
نمودار 4-2- نمودار FATS بخش های نواحی فرآیندی........................................................................................... 117
فهرست اشکال
عنوان صفحه
شکل 2-1- تاریخچه تغییر استاندارد سازی زنجیره تأمین........................................................................................ 14
شکل 2-2- ارتباط حوزه تدارک، تولید و توزیع در زنجیره تأمین .......................................................................... 16
شکل 2-3- تفاوت چارچوب لجستیک یکپارچه و قدیمی ..................................................................................... 19
شکل 2-4-ابعاد راهبردی ارزش............................................................................................................................ 33
شکل 2-5: شمای کلی مطالعه ارزش..................................................................................................................... 34
شکل 2-6: مراحل مطالعه ارزش ........................................................................................................................... 35
شکل 2-7- پتانسیل های موجود جهت بهبود با توجه به پیشرفت پروژه................................................................. 42
شکل 2-8- زنجیره ارزش پورتر ........................................................................................................................... 44
شکل 2-9 جانمایی نمودارآرگوس یا FAST ...................................................................................................... 46
شکل 2-10 مدل سلسل مراتبی کارکرد.................................................................................................................. 49
شکل 2-11- نمونه ساختار کلی FAST تکنیکی ................................................................................................. 51
شکل 2-12-تفاوت قیمت گذاری از دیدگاه سنتی و نوین ..................................................................................... 70
شکل 2-13- فرآیند تحویل کالا............................................................................................................................. 76
شکل 2-14- فرآیند ناب سازی ............................................................................................................................. 78
شکل 4-1- نحوه استقرار ناحیه ها ........................................................................................................................ 107
شکل 4-2-وضعیت واحد های پالایشگاه در ترین یک پس از راه اندازی ............................................................. 122
فهرست نقشه ها
عنوان صفحه
نقشه کلی واحد تقطیر CDU..................................................................................................................................... 131
نقشه کلی واحد مراکس LMU ................................................................................................................................ 132
نقشه کلی واحد بازیافت گازهای مایع LRU............................................................................................................. 133
نقشه کلی واحدتصفیه نفت سفید KHU.................................................................................................................... 134
نقشه کلی واحد تصفیه نفت ها NHT ...................................................................................................................... 135
نقشه کلی واحد کاتالیسی پیوسته CCR..................................................................................................................... 136
نقشه کلی واحد ایزومراسیون ISU............................................................................................................................ 137
چکیده
امروزه توجه به موضوع زنجیره تأمین و مدیریت آن، در عصر جهانی از اهمیت بسیار بالایی برخوردار است و اغلب شرکت ها با توجه به رقابت سنگینی که میان آنها وجود دارد دریافتند بخش خرید آنها می تواند در بازدهی و افزایش کارایی شرکتشان اثر بخشی موثری داشته باشد. اگرچه تاکنون روش های بسیاری در زمینه بهره وری زنجیره تأمین مطرح شده است اما هیچکدام منجر به خلق ارزش در زنجیره تأمین نشده است و بسیاری از پروژه ها پس از پایان به ارزش از پیش تعیین شده دست نیافته اند بنابراین شرکت ها می بایست برای رسیدن به بهره وری مناسب در زنجیره تأمین خود به خلق ارزش در زنجیره تأمین بپردازند؛ بنابراین یکی از جدید ترین و مهمترین این روش ها استفاده از تکنیک FAST یا همان تحلیل کارکرد که به عنوان قلب مهندسی ارزش معرفی می گردد زیرا که این روش می تواند خلأ موجود در سایر روش ها را تحت پوشش دهد و منجر به خلق ارزش شود؛ بنابراین برای اثبات این موضوع به یک تحقیق کاربردی و مطالعه موردی در زمینه پروژه ساخت پالایشگاه میعانات گازی ستاره خلیج فارس پرداخته ایم و در بررسی این پالایشگاه خواهیم دید که با حذف کارکرد های غیر ارزش آفرین و اولویت بندی زنجیره تأمین که از طریق نمودار FAST می توان با کاهش هزینه ها و زمان ساخت به خلق ارزش در زنجیره تأمین دست یافت.
کلید واژه: زنجیره تأمین، خلق ارزش، تکنیک FAST، پالایشگاه میعانات گازی ستاره خلیج فارس
فصل اول
کلیات تحقیق
مقدمه:در رقابت‌های جهانی در عصر حاضر، باید محصولات متنوع را با توجه به درخواست مشتری، در دسترس وی قرار داد. خواست مشتری بر کیفیت بالا و خدمت رسانی سریع، موجب افزایش فشارهایی در زنجیره تأمین شده است که قبلاً وجود نداشته است، در نتیجه شرکت‌ها بیش از این نمی ‌توانند به تنهایی از عهده تمامی کارها برآیند. در بازار رقابتی موجود، بنگاه‌های اقتصادی و تولیدی علاوه بر پرداختن به سازمان و منابع داخلی، خود را به مدیریت و نظارت بر منابع و ارکان مرتبط خارج از سازمان نیازمند یافته‌اند. علت این امر در واقع دستیابی به مزیت یا مزایای رقابتی با هدف کسب سهم بیشتری از بازار است. بر این اساس، فعالیت‌های نظیر برنامه ریزی عرضه و تقاضا، تهیه مواد، تولید و برنامه ریزی محصول، خدمت نگهداری کالا، کنترل موجودی، توزیع، تحویل و خدمت به مشتری که قبلاً همگی در سطح شرکت انجام می شده به سطح زنجیره تأمین انتقال پیدا کرده است. مسئله کلیدی در یک زنجیره تأمین، مدیریت و کنترل مناسب تمامی این فعالیت ‌ها است.
مدیریت زنجیره تأمین (SCM) پدیده‌ای است که این کار را به طریقی انجام می ‌دهد که مشتریان بتوانند خدمت قابل اطمینان و سریع را با محصولات با کیفیت در حداقل هزینه دریافت کنند.
در حالت کلی زنجیره تأمین از دو یا چند سازمان تشکیل مى‌شود که رسماً از یکدیگر جدا هستند و به وسیله جریان‌های مواد، اطلاعات و جریان‌هاى مالی به یکدیگر مربوط می ‌شوند. این سازمان‌ها می توانند بنگاه‌هایی باشند که مواد اولیه، قطعات، محصول نهایی و یا خدماتی چون توزیع، انبارش، عمده فروشی و خرده فروشی تولیدمی ‌کنند. حتی خود مصرف کننده نهایی را نیز می ‌توان یکی از این سازمان‌ها در نظر گرفت.
برای رسیدن به اهداف زنجیره‌ی تأمین، سازمان ها و شرکت ها باید در زنجیره‌ی تأمین خود به خلق ارزش بپردازند؛ زیرا ارزش از دید مشتری دارای مفاهیم گسترده ای است که ممکن است در هر محصول متفاوت باشد. یکی از راه های خلق ارزش که تقریباً در همه ی محصولات و خدمات مشترک است کاهش قیمت مصرف کننده است. در این پروژه هدف این بوده که راه های خلق ارزش برای مشتری شناسایی شود و سپس به بیان راهکار های خلق ارزش مخصوصاً کاهش هزینه در زنجیره‌ی تأمین پرداخته شود.
این فصل تحقیق مروری بر کلیات تحقیق است. در این فصل، در ابتدا موضوع به تفصیل مورد بررسی قرار گرفته و لزوم پرداختن به این موضوع شرح داده شده است و در ادامه به ضرورت انجام تحقیق و اهداف و سؤالات تحقیق اشاره شده و در انتها به مواردی همچون قلمرو تحقیق و تعاریف متغیرهای اشاره شده است، همچنین در هر جا که نیاز بوده، مناسب با موضوع، تجربیات شرکت های مختلف و دلایل موفقیت آن ها مورد بررسی قرار گرفتند.
بیان مسئلهامروزه شرکت‌ها دریافته‌اند که بخش خرید آنها می تواند به طور فزاینده ای در افزایش کارایی و اثربخشی آنها مؤثر باشد و به همین دلیل شیوه های خریدشان را تغییر داده و سعی کرده اند تا برای کالاهای خود شیوه خرید مناسب را بیابند، به طوری که بخش خرید بتواند به عنوان جزئی از شرکت، اهداف استراتژیک خرید شرکت را برآورده سازد.
تاکنون تعاریف گوناگونی از زنجیره‌ی تأمین و بهره وری آن ارائه شده است. زنجیره تأمین شامل سازمان ها و فرآیند هایی می شود که کالاها، اطلاعات و خدمات ایجاد شده را ایجاد کرده و به مصرف کنندگان تحویل می دهند. خرید، جریان وجوه، باربری مواد، برنامه ریزی و کنترل تولید، کنترل موجودی و لجستیکی و توزیع و تحویل نیز درون این زنجیره جای خواهند گرفت. به عبارت دیگر، مدیریت زنجیره‌ی تأمین، مدیریت تمام فعالیت های مورد نیاز برای ارائه یک محصول به مشتری نهایی (زنجیره‌ی تأمین) است.
در زنجیره‌ی تأمین، مدیریت اطلاعات در بخش های گوناگونی تأثیر گذار خواهد بود که برخی از آن ها عبارتند از (زنجیرانی،1382):
مدیریت لجستیک
تبادل و پردازش داده ها میان شرکا
جمع آوری و پردازش اطلاعات برای تحلیل فرآیند منبع یابی و ارزیابی، انتخاب و توسعه تأمین کنندگان
جمع آوری و پردازش اطلاعات عرضه و تقاضا و ... برای پیش بینی روند بازار و شرایط آینده عرضه و تقاضا
ایجاد و بهبود روابط بین شرکا (ابراهیمی و همکاران، 1388)
با توجه به شرایط کنونی که بین تولید کنندگان رقابت سنگینی وجود دارد، عدم هماهنگی بین فعالیت های شرکای تجاری به عنوان یکی دیگر از مسائلی که اداره ی زنجیره‌ی تأمین را با مشکل مواجه می سازد، شناخته می شود. این نوع مشکلات هنگامی اتفاق می افتد که یک بخش سازمان با دیگر بخش ها ارتباط خوبی نداشته باشد و یا اینکه اولویت بندی در اجرای زنجیره تأمین جهت بهبود آن انجام نشده باشد.
بنابراین عدم استفاده مناسب و عدم تلفیق تکنیک ها در زنجیره تأمین شرکت ها موجب می گردد در زنجیره تأمین، بهره وری و کاربرد ارزشمندی مشاهده نگردد و نتوان مدیریت جامعی بر روی زنجیره تأمین داشت، تاکنون مدل های متفاوتی جهت حل مسئله مدیریت زنجیره تأمین و خلق ارزش ارائه شده است که در زیر یک دسته بندی جامع از این مدل ها بیان شده است:
روش های مبتنی بر برنامه ریزی ریاضی (زنجیرانی،1382)
روشهای تحلیل تصمیم، نظیر تصمیم گیری چند معیاره (AHP- ANP-TOPSIS ...) (لعیا الفت و هکاران، 1390)
استفاده از مهندسی ارزش و تئوری فازی (بیات، 1388)
تکنیک های بهینه سازی
اما با توجه به بکارگیری روش های فوق تاکنون بهره وری ارزشمندی در خصوص خلق ارزش در زنجیره تأمین مشاهده نشده است مهندسی ارزش با تکیه بر آنالیز ارزش شکل گرفته است و فرآیندی است که طی آن تیم طراحی که در زمینه آنالیز ارزش آموزش دیده است سعی در به کار گیری آن در محصول جدید دارد. فرآیند مهندسی ارزش از پنچ فاز تشکیل شده است. (ایر اس، 1383)
1 - فاز اولیه آماده سازی
2- فاز اطلاعات
3-فاز خلاقیت
4-ارزشیابی فاز
5-فاز اجرا
که با به کارگیری هر یک از این مراحل، تکنیک FAST می تواند نسبت به سایر روش های به کار گرفته شده راه گشا شود. چرا که برخی تلاش ها و صرف منابع منجر به تأمین نیاز واقعی مشتریان نمی شود و این بدان معنی است که وقتی محصول یا خدمت در اختیار مشتری قرار می گیرد با نیاز های او منطبق نیست
با توجه به اینکه تولید کننده موفق کسی است که به نیاز مشتریان، با کیفیت و هزینه مناسب به عرضه تولید و یا ارائه خدمت بپردازد. مهندسی ارزش می تواند از طریق شناخت نیاز ها و خواسته های مشتریان این موفقیت را فراهم سازد. می توان گفت ارزش، کمترین هزینه برای این که عملکرد ها و یا خدمات لازم را در زمان و مکان مطلوب و با کیفیت و قابلیت اطمینان مناسب انجام داد می باشد. نسبت بها به هزینه به عنوان شاخص ارزش تعریف می شود (بیرقی، 1389).
بنابراین برای رسیدن به هدف ارزش آفرینی در زنجیره‌ی تأمین، سازمان ها و شرکت ها باید در زنجیره‌ی تأمین خود به تهیه مدل FAST (تکنیک) بپردازند، تحلیل و کارکرد نمودار FAST به‌عنوان قلب مهندسی ارزش تعریف می گردد و انجام کامل آن نقش تعیین کننده ای در شناسایی کشتزارهای خلاقیت و تحلیل هزینه های ناشی از تغییرات بکارگیری ایده ای جدید خواهد داشت.
در این پروژه هدف این است که به کمک نمودار FAST بالاترین مرتبه کارکرد اندازه گیری و کنترل هوشمند مدیریت درآمد و پایین ترین مرتبه هزینه برای مشتری شناسایی شود و سپس با بیان مدل FAST، افزایش ارزش حاصل در زنجیره‌ی تأمین برنامه ریزی می شود؛ که به عنوان نمونه به طور ویژه به بررسی مطالعه موردی در رابطه با برنامه ریزی طراحی، ساخت و برنامه ریزی سفارشات مواد در راستای ساخت پالایشگاه میعانات گازی خلیج فارس با هدف کاهش هزینه های سفارش دهی و کاهش زمان ساخت با توجه به شرایط در حال رخداد و سایر عوامل در خصوص تأخیر و عدم ارزش مناسب با توجه به تأخیر در بهره برداری از این پالایشگاه می پردازیم این مطالعه موردی یکی از روش های تحقیق کیفی است و با توجه به اینکه یکی از ویژگی های عمده تحقیق کیفی، تمرکز آن بر مطالعه عمیق نمونه‌ی معانی از یک پدیده (که به آن مورد می گویند) است. تحقیق کیفی با داده هایی سروکار دارد که واقعیت های مورد مطالعه را به صورت کلامی تصویری، یا امثال آن (نه کمی و عددی) نمایان کرده و مورد تحلیل قرار می دهد و با بررسی این مطالعه موردی می توان به سؤالاتی مانند اینکه چرا در برخی پروژه ها پس از پایان کار متوجه می شویم فعالیت های غیر ارزش آفرینی انجام شده است که قابل پیشگیری بوده و یا اینکه آیا می شود با تکنیک FAST خلأ های موجود در سایر تکنیک های استفاده شده در زنجیره تأمین را پوشش داد؟ که منجر به خلق ارزش شود را عنوان کرد.
1-2- ضرورت انجام تحقیقشرایط فعلی که بین تولید کنندگان وجود دارد با توجه به رقابت سنگین که بر آنها حاکم است و محدودیت منابع از یک طرف و از طرف دیگر توسعه سریع فناوری و تغییرات شدید سازمانی باعث عدم هماهنگی بین فعالیت های شرکای تجاری می شود که این خود مسئله ای است که اداره ی زنجیره‌ی تأمین را با مشکل مواجه می سازد و مشکلات اینچنینی هنگامی اتفاق می افتد که یک بخش سازمان با دیگر بخش ها از ارتباط مناسبی برخوردار نباشد.
بنابراین عدم استفاده مناسب و عدم تلفیق تکنیک ها در زنجیره تأمین شرکت ها موجب می گردد در زنجیره تأمین، بهره وری و کاربرد ارزشمندی مشاهده نگردد و نتوان مدیریت جامعی بر روی زنجیره تأمین داشت که ما را بر این داشته است با انتخاب استراتژی زنجیره‌ی تأمین و خلق ارزش با استفاده از تکنیک FAST که دومین فاز 6 فاز مهندسی ارزش با عنوان تحلیل کارکرد و تلفیق این دو مقوله که کمتر مورد توجه واقع شده است به بررسی زنجیره تأمین و ارزش آفرینی بپردازیم
با توجه به اینکه تولید کننده موفق کسی است که به نیاز مشتریان و با کیفیت و هزینه مناسب به عرضه تولید و یا ارائه خدمت بپردازد. مهندسی ارزش می تواند از طریق شناخت نیاز ها و خواسته های مشتریان این موفقیت را فراهم سازد. می توان گفت ارزش، کمترین هزینه برای این که عملکرد ها و یا خدمات لازم را در زمان و مکان مطلوب و با کیفیت و قابلیت اطمینان مناسب انجام داد می باشد.
بنابراین برای رسیدن به هدف ارزش آفرینی در زنجیره‌ی تأمین، سازمان ها و شرکت ها باید در زنجیره‌ی تأمین خود به تهیه مدل FAST بپردازند تا با استفاده از این تکنیک بتوانند پاسخگوی نیازهای روز افزون سازمان ها در انتخاب پروژه های تحقیق و توسعه با توجه به محدودیت ها و عدم قطعیت بالای این گونه پروژه ها باشند و با افزایش اثربخشی و کارایی زنجیره تأمین در پروژه ها با مدیریت صحیح منابع و کاهش هزینه ها بتوانند هم‌راستا با مأموریت و اهداف سازمان ها عمل کنند و با استفاده از یک الگوی مناسب به حل مسائل مرتبط بپردازند.
1-3- اهداف تحقیقهدف اساسی از انجام این تحقیق، پاسخگویی به نیازهای روز افزون سازمان ها در انتخاب پروژه های تحقیق و توسعه با توجه به محدودیت ها و عدم قطعیت بالای این گونه پروژه ها و همچنین مدیریت صحیح منابع و کاهش هزینه ها است که همراه با ارائه یک الگوی مناسب جهت حل مسائل مرتبط با اجرا و ارزیابی صحیح عملکرد مدیریت زنجیره تأمین و بحث ارزش آفرینی است.
1-4- سؤالات تحقیقبا توجه به اهداف بیان شده برای این تحقیق می توان سؤالات زیر را بیان نمود:
آیا می شود با استفاده تکنیک FAST خلأ های موجود در سایر تکنیک های استفاده شده در زنجیره تأمین را پوشش داد؟ و منجر به خلق ارزش شد
آیا می توان ارزش حاصله در زنجیره تأمین را با استفاده از تکنیک FAST افزایش داد؟
آیا پروژه های موجود در یک سازمان تحقیق و توسعه، با اهداف و مأموریت سازمان هم راستا هستند؟
چرا در برخی پروژه ها پس از پایان کار متوجه می شویم فعالیت های غیر ارزش آفرینی انجام شده است که قابل پیشگیری بوده؟
آیا می توان با استفاده از خلق ارزش یک مدیریت جامع بر روی مدیریت زنجیره تأمین داشت؟
1-5- مروری بر تحقیقهدف از این تحقیق خلق ارزش در زنجیره تأمین در پالایشگاه میعانات گازی ستاره خلیج فارس با استفاده از مدل FAST بوده است. کل این نتیجه در پنج فصل ارائه شده است. در فصل اول به مسئله تحقیق و ضرورت انجام آن و همچنین فرضیات، اهداف و سؤال‌های تحقیق و قلمرو تحقیق از مهمترین مواردی بوده اند که به آنها پرداخته شده است. فصل دوم را می توان به سه بخش تقسیم نمود: مفاهیم مربوط به زنجیره تأمین، مفاهیم مربوط به مهندسی ارزش و پیشینه تحقیقات انجام شده در زمینه مدیریت زنجیره تأمین، مهندسی ارزش و نمودار FAST در بخش اول و دوم این فصل موضوع مورد بررسی تعریف شده است و ضمن اشاره به نظریات ارائه شده درباره آن، مفاهیم مرتبط با آن نیز به تفصیل مورد بررسی قرار گرفته است در بخش انتهایی این فصل مدل FAST به عنوان روش مورد استفاده این تحقیق بیان شده است. فصل سوم این تحقیق به روش انجام شده این تحقیق پرداخته است.
فصل چهارم تحقیق به تجزیه و تحلیل یافته ها اختصاص دارد. در این فصل با هدف خلق ارزش در زنجیره تأمین که در این صنعت و پالایشگاه در حال ساخت اهمیت داشته است و به تفصیل به بررسی خلق ارزش در زنجیره تأمین با هدف کاهش هزینه و زمان ساخت پرداخته ایم و نتایج بررسی را در فصل چهارم ارائه نموده ایم. در فصل پنجم نیز به نتایج تحقیق به همراه پیشنهاداتی کاربردی و پیشنهاداتی برای تحقیق های آتی اشاره شده است.
1-6- تعاریف واژه های تحقیقزنجیره تأمین
زنجیره تأمین شامل سازمان ها و فرآیند هایی می شود که کالاها، اطلاعات و خدمات ایجاد شده را ایجاد کرده و به مصرف کنندگان تحویل می دهند (زنجیرانی فراهانی، 1389).
مدیریت زنجیره تأمین (SCM):
عبارت است از فرایند برنامه ریزی، اجرا و کنترل عملیات مرتبط با زنجیره تأمین، مدیریت زنجیره تأمین در برگیرنده تمامی جابه جایی ها و ذخیره مواد اولیه، موجودی در حین کار و محصول تمام شده از نقطه شروع اولیه تا پایان نقطه مصرف است.
مهندسی ارزش:
مهندسی ارزش با تکیه بر آنالیز ارزش شکل گرفته است. مهندسی ارزش فرآیندی است که طی آن تیم طراحی که در زمینه آنالیز ارزش آموزش دیده است سعی در به کار گیری آن در محصول جدید دارد (پورنژدیو همکاران، 1389).
مدل FAST:
نموداری با عنوان تحلیل کارکرد (FAST) استخراج و کارکردهای پر هزینه، پر ریسک و پر فرصت پروژه است که به عنوان دومین فاز شش فاز مطالعه مهندسی ارزش به شمار می رود (بیرقی، 1389).


پالایشگاه میعانات گازی ستاره خلیج فارس:
این پالایشگاه به عنوان نخستین پالایشگاه طراحی شده بر اساس خوراک میعانات گازی با ظرفیت ۳۶۰ هزار بشکه در روز شامل واحدهای تقطیر، تصفیه گاز مایع، تبدیل کاتالیستی، تصفیه نفتا، ایزومریزاسیون، تصفیه نفت سفید و نفت گاز با هدف تولید بنزین، گازوئیل، گاز مایع و سوخت جت در کنار پالایشگاه فعلی بندرعباس در حال ساخت است و شرکت نفت ستاره خلیج فارس در سال 1385 با هدف طراحی، مدیریت، تأمین منابع مالی، احداث، بهره‌برداری و نگهداری از پالایشگاه میعانات گازی تأسیس و در حال اجرای این پروژه است.
1-7- محدودیت های تحقیقموضوع تحقیق در پالایشگاه میعانات گازی ستاره خلیج فارس انجام شده و نتایج به دست آمده همگی مربوط به این پالایشگاه می باشند.
فرض شده است متغیر ثابت این پژوهش، زنجیره تأمین و متغیرهای وابسته چون مهندسی ارزش، تکنیک FAST  است که دسته بندی و تجزیه و تحلیل خواهند شد.
1-8- روش انجام تحقیقدر این تحقیق، ابتدا با مفهوم زنجیره‌ی تأمین به صورت جامع آشنا شده و هدف از زنجیره تأمین مورد بررسی قرار می گیرد. سپس به بررسی و جمع آوری اطلاعات جهت آشنایی با ارزیابی عملکرد مدیریت زنجیره‌ی تأمین، ضرورت تعریف و اجرای آنها در سازمان‌های تحقیق و توسعه می پردازیم. پس از آشنایی با مدیریت زنجیره‌ی تأمین، به بررسی و شناسایی معیارهای استاندارد جهت تعریف و ارائه زنجیره‌ی تأمین مذکور پرداخته و با استفاده از جلسات کارشناسی با افراد خبره در این زمینه، معیارهای مناسب و مرتبط، مشخص می گردد. پس از اینکه معیارهای مناسب جهت تعریف زنجیره‌ی تأمین مشخص گردید، با استفاده از تکنیک های مهندسی ارزش و بحث لجستیک، به تجزیه و تحلیل و رتبه بندی معیار های انتخاب در زنجیره‌ی تأمین پرداخته. با توجه به مطالب مطرح شده در قسمت بیان مسئله، از مدل FAST در انتخاب زنجیره‌ی تأمین برای افزایش بهره وری به مطالعه موردی در راستای ساخت پالایشگاه میعانات گازی ستاره خلیج فارس با هدف کاهش هزینه های سفارش دهی و کاهش زمان ساخت می پردازیم بدلیل اینکه مطالعه موردی یکی از روش های تحقیق کیفی است و با توجه به اینکه یکی از ویژگی های عمده تحقیق کیفی، تمرکز آن بر مطالعه عمیق نمونه‌ی معانی از یک پدیده (که به آن مورد می گویند) است (نصر و همکاران، 1383). تحقیق کیفی را به این دلیل که با داده هایی سروکار دارد که واقعیت های مورد مطالعه را به صورت کلامی تصویری، یا امثال آن (نه کمی و عددی) نمایان کرده و مورد تحلیل قرار می دهد را انتخاب نموده ایم (بازرگان، 1387).
فصل دوم
مبانی نظری و پیشینه تحقیق
مقدمه:در دهه 60 و 70 میلادی، سازمان ها جهت افزایش توان رقابتی خود تلاش می کردند تا با استاندارد سازی و بهبود فرآیند داخلی خود محصولی با کیفیت بهتر و هزینه کمتر تولید کنند. در آن زمان تفکر غالب این بود که مهندسی و طراحی قوی و نیز عملیات تولید منسجم را هماهنگ، پیش نیاز دست یابی به خواسته های بازار و در نتیجه کسب سهم بازار بیشتر می شود. لذا سازمان ها تمام تلاش خود را برافزایش کارایی معطوف می کردند (میان آبادی، 1389).
در دهه ی 80 میلادی با افزایش تنوع در الگوهای مورد انتظار مشتریان، سازمان ها به طور گسترده به افزایش انعطاف پذیرش در خطوط تولید و توسعه محصولات جدید برای ارضای نیاز های مشتریان علاقه مند شدند. در دهه ی 90 میلادی، به همراه بهبود در فرآیند های تولید و به کارگیری الگوهای مهندسی مجدد، مدیران بسیاری از صنایع دریافتند که برای ادامه حضور در بازار تنها بهبود فرآیندهای داخلی و انعطاف پذیری در توانایی شرکت کافی نیست، بلکه تأمین کنندگان قطعات و مواد باید موادی با بهترین کیفیت و کمترین هزینه تولید کنند و توزیع کنندگان محصولات نیز باید ارتباط نزدیکی با سیاست های توسعه بازار تولید کننده داشته باشند که در شکل 2-1 به شکل ساده ای به نمایش تغییر نگرش ها در دهه های 70 تا 90 پرداخته ایم. با چنین نگرشی، رویکرد های زنجیره تأمین و مدیریت آن پا به عرصه وجود نهاد. از طرف دیگر با توسعه سریع فناوری اطلاعات در سال های اخیر و کاربرد وسیع آن در مدیریت زنجیره تأمین، بسیاری از فعالیت های اساسی مدیریت زنجیره با روش های جدید در حال انجام است (سالاری، 1390).
left114301960
1970
1980
1990
کارایی
مدیریت زنجیره تامین
انعطاف پذیری
001960
1970
1980
1990
کارایی
مدیریت زنجیره تامین
انعطاف پذیری

شکل 2-1- تاریخچه تغییر استاندارد سازی زنجیره تأمین
2-1-مفاهیم و ادبیات زنجیره تأمین2-1-1- زنجیره‌ی تأمین تاکنون تعاریف بسیار زیادی از زنجیره‌ی تأمین بیان شده است. برخی زنجیره‌ی تأمین را شامل تمام فعالیت های مورد نیاز برای ارائه یک محصول به مشتری نهایی می‌دانند و مدیریت زنجیره‌ی تأمین، مدیریت تمام فعالیت های مورد نیاز برای ارائه یک محصول به مشتری نهایی (زنجیره‌ی تأمین) می نامند.
طبق تعریف دیگر، زنجیره‌ی تأمین در روابط میان خریدار و فروشنده محدود می شود، چنین نگرشی تنها بر عملیات خرید رده اول در یک سازمان تمرکز دارد (کاردر لاله، 1389). گروهی دیگر از محققین و نویسندگان زنجیره‌ی تأمین را شامل تمام سرچشمه های تأمین برای سازمان می دانند. با این تعریف که زنجیره‌ی تأمین شامل تمام تأمین کنندگان رده ی اول، دوم، سوم و... خواهد بود؛ بنابراین چنین نگرشی نسبت به زنجیره‌ی تأمین، تنها به تحلیل شبکه خواهد پرداخت. تعریف دیگر آن، نگرش زنجیره‌ی ارزش پورتر است که درآن زنجیره‌ی تأمین شامل تمام فعالیت های مورد نیاز برای ارائه یک محصول یا خدمت به مشتری نهایی است (نقشینه و همکاران، 1388). با این نگرش به زنجیره‌ی تأمین، توابع ساخت و توزیع به عنوان بخشی از جریان کالا و خدمات به زنجیره اضافه می شوند؛ بنابراین با این نگرش، زنجیره‌ی تأمین شامل سه حوزه تدارک، تولید و توزیع است. شکل 2-2 به حوزه های تدارکات، تولید و توزیع و ارتباطات میان آن ها پرداخته است (غضنفری و همکاران، 1380). تأمین کنندگان یکی از عوامل تأثیر گذار بر سازمان می باشند یکی از راه های تولید محصول با قیمت تمام شده ی کمتر و هزینه ی کمتر، استفاده از تأمین کنندگان مواد اولیه و قطعات مورد نیاز ارزانتر می باشد از سوی دیگر کیفیت محصول با کیفیت مواد اولیه پیوندی نا گسستنی دارد بنابراین نقش تأمین کنندگان در کیفیت محصول قابل توجه و تامل است بنابراین می توان گفت بدون دریافت به موقع مواد اولیه و قطعات نمی توان محصول را به موقع تحویل مشتری داد تأمین کنندگان را می توان به تأمین کنندگان رده دوم که مواد خام را در اختیار تأمین کنندگان رده اول که پس از تغییرات در مواد خام اولیه، در اختیار بخش مونتاژ یا تولید قرار می گیرد، تقسیم بندی کرد.
center142240000
شکل 2-2- ارتباط حوزه تدارک، تولید و توزیع در زنجیره تأمین
با توجه به موارد مطرح شده، زنجیره‌ی تأمین تمامی فعالیت های مرتبط با جریان و تبدیل کالاها از مرحله ماده خام (استخراج) تا تحویل به مصرف کننده نهایی و نیز جریان های اطلاعاتی مرتبط با آن ها را در برمی‌گیرد. در جریان کالا دو جریان دیگر که یکی جریان اطلاعات و دیگری جریان منابع مالی و اعتبارات است نیز حضور دارند. بنابراین برای بررسی یک سازمان باید هر دو شبکه تأمین کنندگان و کانال های توزیع در نظر گرفته شوند. این تعریف؛ مدیریت سیستم های اطلاعات، منبع یابی، تدارکات و زمان بندی تولید، پردازش سفارشات، مدیریت موجودی، انبارداری و خدمت به مشتری را در برمی‌گیرد.
با توجه به مطالب بیان شده تاکنون، مدیریت زنجیره‌ی تأمین عبارت است از فرایند یکپارچه سازی فعالیت های زنجیره‌ی تأمین و نیز جریان های اطلاعاتی مرتبط با آن ها از طریق بهبود و هماهنگ سازی فعالیت ها در زنجیره‌ی تأمین، تولید و عرضه محصول یا خدمات. مدیریت زنجیره تأمین نوین، نه تنها به بررسی راه های ترویج کاهش هزینه در سراسر کانال عرضه کالا و خدمات می پردازد، بلکه باید بین تقاضای روز افزون مشتریان برای ارائه خدمات به موقع و کارآمد موازنه ایجاد کرده و از تحولات سریعی که در عرصه فناوری صورت می گیرد نیز غافل نباشد (غفاری، 1386)؛ بنابراین، مدیریت کارآمد زنجیره‌ی تأمین به یک شرکت این امکان را می دهد تا تولید و انتقال محصولات در کانال تولید و توزیع را، از تأمین مواد اولیه یا قطعات گرفته تا قرار دادن محصول تمام شده در دستان مشتری، هماهنگ می سازد و از وقت و منابع به کار گرفته شده بهترین استفاده ممکن را ببرند.
قبل از معرفی انواع زنجیره های تأمین و شبکه های تأمین، به دلیل اینکه عموماً در مورد ارتباط لجستیک و زنجیره‌ی تأمین صحبت های بسیاری وجود دارد، جا دارد به بحث لجستیک و تعریف آن نیز پرداخته شود.
2-1-2- لجستیک و مدیریت لجستیک لجستیک واژه ای است که از تاریخ طولانی برخوردار است و به علت وجود تعاریف بسیار در این زمینه شاید نتوان، جمع بندی کلی بر روی این واژه صورت داد. اغلب این تعاریف از طرف افرادی بوده است که به صورت تجربی و ملموس با این موضوع دست و پنجه نرم کرده اند. یکی از این تعاریف است که آن را 7R می نامند و به صورت زیر تعریف می شود (عیسایی، 1390):
"انجام فعالیت هایی به منظور تضمین نمودن تأمین بودن محصول صحیح، در مقدار درست، در زمان درست و در شرایط درست و در مکان درست برای مشتری درست و در هزینه ی مناسب".
عبارت "تأمین بودن" در عبارت بالا تأکید بیش از حد لجستیک، به موضوع موجود بودن کالا است که به عنوان هسته ی اصلی پیدایش رسالت لجستیک محسوب می شود. نکته ی جالب توجه این است که اگر لیستی از مفاهیم وابسته به لجستیک تهیه شود، آن ها را می توان به سه گروه تقسیم نمود:
تأمین گرا
تولید گرا
توزیع گرا
در ادامه باید به این توجه داشت گفت که اکثر اصطلاحت و مفاهیمی که در شرایط امروزه وجود دارند نتیجه ی یک سری مفاهیم توسعه یافته هستند. همچنین لازم به توضیح است که سابقه ی فعالیت های لجستیک به قبل از سال 1950 بر می گردد. پس از آن که تعریف جامعی از آنالیز کل هزینه به وجود آمد، مدل های جدید برنامه ریزی خصوصاً برای توزیع فیزیکی به صورت منسجم تری با یکدیگر تلفیق شدند و مفاهیم جدید تری را به وجود آوردند (ماکویی و فضل الهی، 1386). به طور خلاصه مفاهیم لجستیک در اثر تغییرات زمان تغییر نموده، به طوری که با تغییرات زمان گرایش و تمرکز صنایع نیز در لجستیک شکل تازه ای به خود گرفت. در جدول 2-1- بعضی از گرایشات مهم نشان داده شده است (فراهانی، 1382):
دوره نوع محیط تمرکز صنعت تمرکز لجستیک
دهه 50 حجم تولید هزینه ها موجودی
دهه 60 فروش / بازاریابی خدمت توزیع
دهه 70 آرایش سرمایه سود آوری تولید
دهه 80 رقابت کیفیت خرید، تولید / فروش
دهه 90 جهانی شدن و شراکت زمان فرایند تجاری
جدول 2-1-گرایشات مهم لجستیک در طول زمان
در چهارچوب تعاریفی که برای لجستیک اشاره شد، جریان مواد به قسمت های تأمین، تولید و توزیع تقسیم می شوند و فعالیت های لجستیک شامل موجودی ها، حمل و نقل و هماهنگی کلی بر جریان مواد در شرکت است. در حال حاضر جریان مواد توسط سازمان های گوناگون، وظایف و سیستم های اطلاعاتی صورت می گیرد. شکل 2-3- بعد چهارچوب قدیمی لجستیک و لجستیک یکپارچه را نشان می دهد.
در چهارچوب جدید لجستیک، تمرکز روی عملکرد کلی است تا عملکرد تک تک اجزا و جریان مواد به صورت یک موجودیت بررسی می شود. یکپارچه سازی به صورت یک مفهوم مهم در چهارچوب جدید است. در چهارچوب جدید لجستیک حیطه ی یکپارچه سازی تنها به جریان مواد و اطلاعات ختم نمی شود. بلکه لازم است تا مدیریت مالی، منابع انسانی و علاوه بر این سیکل عمر کل لجستیک مورد بررسی قرار گیرد.
6661151078230لجستیک
00لجستیک
در چهارچوب لجستیک جدید، مدیریت مفروضات سازمانی برای جریان مواد مهم تر از بهینه کردن جریان مواد برای رسیدن به مفروضات سازمانی است. در چهارچوب لجستیک جدید، یکپارچه سازی فرآیندها، وظایف، سازمان ها، روش ها (قواعد) و سیستم ها ضروری است.
مشتری سازنده تأمین‌کننده
left14859000 چهارچوب قدیمی لجستیک
مشتری سازنده تأمین‌کننده
چهارچوب لجستیک یکپارچه
شکل 2-3- تفاوت چارچوب لجستیک یکپارچه و قدیمی
2-1-3- ارتباط میان لجستیک و زنجیره‌ی تأمین ریشه ی اصلی ایجاد مدیریت زنجیره‌ی تأمین به سالیان گذشته بر می گردد. مدیریت امور لجستیکی از ابتدای ایجاد سازمان ها وجود داشته ولی این مدیریت عمدتاً بر روی قسمت های گوناگون زنجیره‌ی تأمین یعنی خرید، تولید، توزیع و غیره به صورت جداگانه و مستقل انجام می شده است. در طول زمان به دلیل ارتباط این امور با یکدیگر تدریجاً حرکت هایی در جهت یکپارچه نمودن این زنجیره و مدیریت آن صورت پذیرفته است. در دهه ی 70 میلادی بحث مدیریت مواد بسیار متداول شد، در این ارتباط نیز عملیات های برنامه ریزی تولید، برنامه ریزی مواد و برنامه ریزی کار در کارگاه ادغام شد. هدف از این ادغام معلول سه علت اصلی بوده است (مرس سامر، 1387):
بهبود شرایط تحویل کالا به مشتری
بهبود سطح موجودی کالا
بهبود هزینه های تولید
به دنبال این گونه اقدامات در دهه ی 80 میلادی، مفاهیم ترکیبی لجستیکی گسترش یافت. در این دوره عملیات دیگری نظیر مدیریت حمل و نقل و توزیع به مدیریت مواد اضافه شد. هدف از این حرکت عمدتاً این بود که شرکت های بزرگ با کثرت مراکز تولید و توزیع بتوانند عملکرد خود را در مجموعه عملیات شرکت بهبود بخشند. از دهه ی 90 میلادی تدریجاً مدیریت زنجیره‌ی تأمین به عنوان حالت تکمیل شده ی مدیریت لجستیکی مطرح شد که در آن مدیریت جریان مواد و اطلاعات به منظور بالا بردن درجه ی پاسخ گویی به مشتریان از اهمیت خاص برخوردار گردید. در این نظام، کاهش هزینه های کل مجموعه نیز از اهمیت خاصی برخوردار است. در زمینه ی مدیریت زنجیره‌ی تأمین محققین نظرات و دیدگاه های گوناگونی دارند. بعضی ها توجه بیشتری روی مدیریت مواد مبذول می دارند، در حالی که بعضی دیگر به مدیریت اطلاعات اهمیت بیشتری می دهند و گروه سومی نیز بر روی مدیریت لجستیک و حمل و نقل تأکید دارند. ولی جدای از این که توجه اولیه در چه زمینه ای باشد، همگی در یک موضوع اصلی هم عقیده هستند و آن هم این است که مدیریت زنجیره‌ی تأمین شامل فعالیت هایی است که در گذشته به طور جداگانه مورد توجه مدیریت قرار گرفته است و اکنون سعی می شود به صورت یکپارچه انجام شوند. فعالیت های مطرحی نظیر بازاریابی، مهندسی، تولید، خرید، توزیع که در گذشته هر یک مدیریت مستقلی را طلب می کردند، اینک به صورت یکپارچه مورد توجه قرار گرفته اند.
2-1-4- فرآیند های اصلی مدیریت زنجیره‌ی تأمین مدیریت زنجیره‌ی تأمین دارای سه فرآیند اصلی است (میان آبادی، 1389):
2-1-4-1- مدیریت اطلاعات:اهمیت اطلاعات و سیستم های اطلاعاتی در دنیای امروزه بر کسی پوشیده نیست، همچنین واضح است که اگر اطلاعات در زمان مناسب و مکان مناسب به طور صحیح و کامل در اختیار مدیریت مربوطه قرار نگیرد، زیان های فراوانی بر جای خواهد گذاشت و قطعاً بر روی موارد دیگر نیز اثر منفی خواهد گذاشت. زنجیره‌ی تأمین برای خود یک سیستم است و اگر نتواند اطلاعات مورد نیاز خویش را در شرایط مناسب دریافت کند، احتمال نابودی آن وجود دارد؛ اما آنچه که باعث تکمیل نقش اطلاعات می شود وجود سیستم های اطلاعاتی مناسب است و اگر ضعفی در این سیستم ها باشد، یا منجر به کاهش توان و کارایی زنجیره شده و یا زنجیره‌ی تأمین را به نابودی می کشاند.
اما همان طور که عنوان شد کیفیت و صحت اطلاعات از مشخصه های مهم اطلاعات محسوب می شود. فرض کنید که اطلاعات در شرایط و زمان مناسب و در محل مورد نظر برسد ولی صحت کافی نداشته باشد، مسلماً هیچ پایه و اساس محکمی در اختیار مدیریت جهت تصمیم گیری ها قرار نخواهد داد. نکته ی مهم دیگر سرعت مناسب در انتقال و جابه جایی اطلاعات است، مشخصه یا عاملی که قرار گرفتن اطلاعات در زمان و مکان مناسب را پشتیبانی می کند.
در مدیریت زنجیره‌ی تأمین گرایش اصلی به سمت مشتری است (اصطلاحاً مشتری گرا است) و با افزایش ارتباط مناسب با تأمین کنندگان سعی در رسیدن به این خواسته دارد. در نتیجه یکی از علل یکپارچه سازی و اهمیت آن، توان پاسخ گویی به تغییرات پیش بینی شده برای جلب رضایت مشتری است. سرعت انتقال اطلاعات در زنجیره‌ی تأمین در جلوگیری از ضرر های احتمالی که موسسه مزبور و یا واحد های پایین دستی بایستی تاوان آن را پرداخت کنند مؤثر است. به عبارت دیگر انتقال اطلاعات به عنوان یکی از مشخصه های استراتژیک سیستم های اطلاعاتی حاکم در هر زنجیره‌ی تأمین محسوب می شود.
پیشرفت های تکنولوژی، تأثیر بسزایی در افزایش سرعت، دقت، کیفیت (صحت) و سایر مشخصه های سیستم های اطلاعاتی گذاشته است و به احتمال قوی بسیاری از فرآیند هایی که در حال حاضر در زنجیره‌ی تأمین وجود دارد، به طور کلی تغییر ماهیت داده و دگرگون می شوند. مثال بارز آن حذف فرآیند خرید به صورت صدور درخواست خرید، صدور سفارش خرید، استعلام و صورت حساب فرم های دریافت و... است.
به طور کلی در زنجیره‌ی تأمین، مدیریت اطلاعات در بخش های گوناگونی تأثیر گذار خواهد بود که برخی از آن ها عبارتند از (ابراهیمی و همکاران، 1388):
مدیریت لجستیک (انتقال، جابه جایی، پردازش و دسترسی به اطلاعات لجستیکی برای یکپارچه سازی فرآیند های حمل و نقل، سفارش دهی و ساخت، تغییرات سفارش، زمان بندی تولید، برنامه های لجستیکی و عملیاتی انبارداری)
تبادل و پردازش داده ها میان شرکا (مانند تبادل و پردازش اطلاعات فنی، سفارشات و...)
جمع آوری و پردازش اطلاعات برای تحلیل فرآیند منبع یابی و ارزیابی، انتخاب و توسعه تأمین کنندگان
جمع آوری و پردازش اطلاعات عرضه و تقاضا و...برای پیش بینی روند بازار و شرایط آینده عرضه و تقاضا
ایجاد و بهبود روابط بین شرکا
همانگونه که پیداست، مدیریت اطلاعات و مجموعه سیستم های اطلاعاتی زنجیره‌ی تأمین می تواند بر روی بسیاری از تصمیم گیری های داخلی بخش های گوناگون زنجیره‌ی تأمین مؤثر باشد که این موضوع حاکی از اهمیت بالای این مؤلفه در مدیریت زنجیره‌ی تأمین است.
2-1-4-2- مدیریت موجودی: موجودی از اجزای لاینفک هر زنجیره‌ی تأمین محسوب می شود. گاهی اوقات موجودی به صورت کالای فیزیکی و محصول نمایان است و گاهی به صورت اطلاعات و خدمات مشاوره ای است. به هر حال آنچه که باعث حرکت رو به جلوی موجودی در زنجیره‌ی تأمین می گردد تقاضای مشتریان است. کاملا مشخص است که جریان اطلاعات (تقاضای مشتری) به صورت یک جریان رو به عقب به زنجیره‌ی تأمین اثر کرده و باعث به جریان در آمدن موجودی می گردد. بنابراین واضح است که در هر زنجیره‌ی تأمین، مشتری حلقه ی ما قبل و تأمین‌کننده حلقه ی ما بعد است. همانطور که میدانید زمان به عنوان یکی از پارامتر های مهم در زنجیره‌ی تأمین و در بحث تهیه و تأمین موجودی است، چون هر فرآیندی به نوبه ی خود زمان بر است. به عبارتی بنا بر اهمیت زمان، هر حلقه در زنجیره‌ی تأمین اجباراً به نگهداری کالا و مواد مبادرت می کند. نکته ی دیگر این است که مدیریت موجودی تا حد زیادی به پیش بینی تقاضا وابسته است. چون نمی توان به طور دقیق مقدار تقاضای مشتریان را پیش بینی کرد، اگر مراکز توزیع کالا، انبار ها و... مقدار کافی از موجودی کالاهای گوناگون در محل خود نداشته باشند، امکان از دست دادن مشتری و احتمال عوارض ناشی از کمبود موجودی وجود دارد. بنابراین زنجیره‌ی تأمین به منظور جلب رضایت مشتری و برای جلوگیری از به وجود آمدن هر گونه هزینه های بسیار سنگین و نامشخص، نظیر از دست دادن مشتری که باعث از دست رفتن بازار اقتصادی خواهد شد، اقدام به نگهداری موجودی می کند. نوع محصول از جمله پارامتر های مهم در مقدار نگهداری موجودی است؛ و منظور این است که محصول در چه رده ای از مصرف کنندگان قرار می گیرد:
محصول انحصاری است یا خیر؟
محصول رقابتی است یا خیر؟
محصول صادراتی است یا خیر؟
عمر محصول چقدر است؟
و بسیاری از پارامتر های دیگر که به طور خاص به خود زنجیره‌ی تأمین بر می گردد، مانند این که شیوه ی حمل و نقل چگونه است؟ مسافت حمل و نقل چقدر است؟ و یا از چه مکان هایی تهیه می گردد؟ سابقه ی تأمین کنندگان چگونه است؟ آیا قابلیت پاسخ گویی به نیاز های غیر مترقبه را دارند؟ قیمت محصول و هزینه ی هر واحد نگهداری و بسیاری از پارامتر های دیگر که مجموعاً مقدار موجودی‌ای که باید نگهداری شود را مشخص می کنند.
نگهداری کالا قطعاً فوایدی در پی خواهد داشت. علاوه بر این که نگهداری موجودی توان پاسخ گویی به نیاز های متفاوت را افزایش می دهد، فواید دیگر آن جدا سازی مراحل گوناگون واحد های داخل زنجیره از دید عملکرد وابستگی است؛ اما علی رغم فواید بارزی که نگهداری موجودی دارد، دارای مضراتی نیز است؛ که اگر به نحو مناسبی مورد بررسی و تحلیل قرار نگیرد، منجر به نابودی زنجیره خواهد شد.
نگهداری موجودی چیزی جز متحمل شدن هزینه نیست. در حقیقت پذیرفتن این هزینه ها برای جلوگیری از یک ضرر بزرگ تر، یعنی از دست دادن مشتری و سود دهی شرکت است. در دهه ی 80 میلادی که به دهه ی حمله به موجودی ها نیز معروف است، به موجودی مانند یکی از منفورترین اجزای سیستم می نگریستند، چیزی که در نهایت منجر به پیدایش بحث جدیدی با عنوان موجودی صفر یا Just In Time گردید. این رویکرد در ابتدا به وسیله ی ژاپنی ها به صورت عملی به مرحله ی اجرا در آمد و بسیار موفقیت آمیز بود. البته بعدها و بر اساس مطالعاتی که بر روی این روش و هم چنین مردم ژاپن و فرهنگ آن ها صورت گرفت، نتیجه گیری شد که بعد فرهنگی این رویکرد بسیار مهم است. به عبارت دیگر برای این که این رویکرد بتواند به موفقیت ها و اهدافی که برای آن ترسیم شده است، دست یابد، به زیر بنایی محکم از نظر فرهنگ و ساختار سازمانی نیاز دارد، به طوری که این رویکرد بتواند در اجرای سیاست ها و استراتژی ها موفق گردد.
با توجه به اینکه نگهداری موجودی امری مهم و ضروری است، بایستی مدیریتی مناسب بر آن اعمال شود. در این جاست که جایگاه مدیریت موجودی تبیین می شود. مدیریت موجودی به معنای برنامه ریزی، سازماندهی، تربیت و جذب نیروی انسانی متخصص، هدایت و کنترل امور مربوط به نگهداری کالا در کل زنجیره‌ی تأمین به منظور دست یابی به رضایت مشتری با هدف حداقل کردن هزینه هاست. بنابراین مدیریت موجودی مطلوب دارای سه پیش نیاز اطلاعات مناسب، نیروی انسانی مناسب و منابع، ابزار و سیستم های مناسب است.
2-1-4-3- مدیریت روابط: فاکتوری که شاید مهم ترین بخش مدیریت زنجیره‌ی تأمین به خاطر ساخت و فرم آن باشد، مدیریت روابط در زنجیره‌ی تأمین است. مدیریت روابط، تأثیر شگرفی بر همه زمینه های زنجیره‌ی تأمین و هم چنین سطح عملکرد آن دارد. در بسیاری از موارد، سیستم های اطلاعاتی و تکنولوژی مورد نیاز برای فعالیت های مدیریت زنجیره ی تأمین به سهولت در دسترس بوده و می توانند در یک دوره زمانی نسبتاً کوتاه تکمیل شده و به کار گرفته شوند. علاوه بر این، مهم ترین فاکتور برای مدیریت موفق زنجیره‌ی تأمین، ارتباط مطمئن میان شرکا در زنجیره است، به گونه ای که شرکاء اعتماد متقابل به قابلیت ها و عملیات یکدیگر داشته باشند. لازمه ی داشتن یک جریان مواد روان، بانظم، مناسب و قابل توجه، بهره گیری از یک سیستم جریان اطلاعات دقیق و کامل، در زمان و مکان های مناسب و هم چنین بهره گیری از روابط مناسب تعریف شده، هماهنگ و سازمان یافته با سایر اعضای زنجیره‌ی تأمین است. کاملا مشخص است که اگر هر گونه آسیبی به این مؤلفه های مهم در زنجیره‌ی تأمین وارد شود قطعاً آثار آن بر روی مؤلفه های دیگر (جریان مواد و اطلاعات) نمایان خواهد شد. بنابراین برقرار نمودن رابطه ای مشخص و تعریف شده با سایر اعضای زنجیره‌ی تأمین بسیار مهم و ضروری است؛ اما تنها زمانی به این اعتماد و اطمینان آرامش بخش دست پیدا می کند که "رابطه " مناسب تعریف شده باشد. به هر حال اهداف اصلی این توافقات ارضای نیاز های مشتریان و جلب رضایت آن ها است. از سوی دیگر همان طور که برقراری ارتباط بلند مدت در دنیای رقابتی امروز مهم و ضروری است، حفظ و ارتقای آن هم نیز قابل توجه است.
2-1-5- راهبرد زنجیره‌ی تأمین و خلق ارزشدر اواسط دهه ی نود کارخانه های تولیدی در اروپا شروع به پیاده سازی زنجیره‌ی تأمین کردند. دلیل این امر فشار فزاینده ی مشتریان بر این شرکت ها هم در اروپا و هم در ایالات متحده بود. در گذشته نه چندان دور زمان تحویل محصول در حالت عادی چند روزه بود، در حالی که اکنون این زمان به چند ساعت کاهش پیدا کرده است. ایده ای که در زنجیره‌ی تأمین وجود دارد این است که " همان کاری را با تأمین‌کننده ی خود انجام دهیم که مشتریان با ما انجام می دهند". هم چنین باید از تأمین کنندگان اصلی خواست تا پیشنهادی جهت بهبود جریان تدارک کالا و کاهش هزینه های عملیاتی ارائه دهند (سید رضوی و همکاران، 1390).
اما چرا پروژه های زنجیره‌ی تأمین به خوبی اجرانمی شوند؟ چرا برای تأمین کنندگان سخت است تا به طور مشترک کار کنند؟ چرا صرفه جویی قابل توجهی در هزینه ها در زنجیره‌ی تأمین نمی شود؟ در ادامه سعی می کنیم به این سؤالات پاسخ دهیم و به بیان مشکلاتی که ممکن است در سر راه شرکت هایی که قصد اجرای زنجیره‌ی تأمین را دارند، به وجود آید می پردازیم. سپس به ذکر دو نمونه‌ی عملی موفق در این مورد می پردازیم و دلایل موفقیت آن ها را بررسی می کنیم. به نظر می رسد که توانایی شرکت ها برای تقویت جایگاه خود در این شبکه یک فاکتور موفقیت آمیز کلیدی است و در آخر چند پیشنهاد برای رسیدن به این جایگاه ارائه می شود.
2-1-6- بهره وری زنجیره‌ی تأمین: دو مثال موردی1. اهولد (Ahold)
" اهولد" یکی از سوپر مارکت های برجسته ای است که به طور زنجیره ای در اروپا و ایالات متحده وجود دارند. این سوپرمارکت با 9000 فروشگاه در 28 کشور و در 4 قاره، فروشی معادل 66 بیلیون یورو در سال دارد. یکی از مهم ترین شعبه های این سوپرمارکت "آلبرت هجین" است که در کشور هلند قرار دارد. این شرکت یک ایده ی جدید در خرده فروشی و زنجیره‌ی تأمین داده است. تفکر جدید خرده فروشی در آلبرت هجین روی ECR تمرکز یافته است. ECR بدین معنا است که مصرف کننده عامل محرکی برای فرآیند تدارکات در زنجیره‌ی غذایی است. استفاده از تکنولوژی بارکد می تواند سریعا نشان دهد که یک محصول مشخص در یک روز مشخص چقدر فروش داشته است. اگر موجودی انبار زیر یک سطح مشخصی باشد، سفارش به طور خودکار به تأمین‌کننده داده می شود. از تأمین‌کننده انتظار می رود که در مدت زمان معینی که از قبل توافق شده است (که معمولا حداکثر چند ساعت است)، محصولات را یا مستقیما به فروشگاه ها (برای محصولات فاسد شدنی) و یا به توزیع کنندگان خرده فروشان تحویل دهد. از دید آلبرت هجین، ECR وضعیتی است که تولید کننده / تأمین‌کننده در واقع به یک مدیر تدارکات و توزیع کننده برای خرده فروشان تبدیل می شود و همه ی کار های مربوط به تدارکات را انجام می دهد. بر پایه اطلاعات واقعی فروش، تصور می شود تولید کننده حجمی از کالا که باید در روز بعد جایگزین شود را تعیین می کند. هرگاه تولید کننده ترجیح دهد یک کامیون پر (به دلایل اقتصاد حمل و نقل)، از یک محموله را ارسال کند، حجم اضافی می تواند در مراکز توزیع انبار شود. (ممکن است به دلایلی از جمله خالی حرکت نکردن کامیون، تأمین‌کننده ترجیح دهد بیشتر از تقاضا، محصول را به نقطه ی تقاضا ارسال کند)، در این صورت فضایی که محصولات اضافی اشغال می کنند توسط تولید کننده پرداخت می شود. جایگزینی و تدارک کالاها عموماً بر پایه اصل تخلیه و بارگیری هم زمان انجام می شود.
خرده فروشان روی تصحیح مفهوم خرده فروشی و بهبود مدیریت اقلام تمرکز می کنند. کارت اشتراک (وفاداری) مشتری از مواردی است که بعد از مطالعات عمیق روی رفتار مشتری ایجاد شده است. با استفاده از برنامه های اشتراک مشتری خرده فروشان سعی دارند تا مشتریان را جذب کرده و آن ها را نگه دارند. با استفاده از برنامه های تدارکات پیچیده ای، جریان تدارک کالاها می تواند ردیابی و پی گیری شود. در نتیجه کارمندان انبار می توانند وضعیت سفارشات و تحویل کالا را جداگانه چک کنند. عمل پردازش سفارشات و پرداخت ها با استفاده از سیستمEDI و یا سایر سیستم های الکترونیکی انجام شود.
سیستم تخصیص قفسه ای پیشرفته این قابلیت را ایجاد می کند که به تفصیل سود به ازای هر قلم کالا، سود به ازای هر تأمین‌کننده بررسی شود و اگر این سود هدف را برآورده نکرد، تأمین کنندگان مربوطه دعوت می شوند تا به این سؤال جواب دهند که چطور می توان سود یک قلم جنس خاص را بهبود داد. در این جلسه گروه پشتیبانی مشتریان و گروه حسابداران تأمین کنندگان شرکت دارند. با توجه به توازن موجود در صنعت غذایی، تولید کنندگان عاقلانه و منطقی سعی خواهند کرد که مسائل ایجاد شده را حل کنند. البته با توجه به تجربه ی این شرکت، این حالت وقتی درست است که خرده فروش دارای یک موقعیت مذاکره ای رو در روی قوی در مقابل تولید کننده باشد. به هر حال ممکن است در بعضی اوقات خرده فروش با یک تولید کننده ی قوی مواجه شود. در این موارد اغلب به نظر می رسد که بحث بر سر چگونگی بهبود برای تأمین‌کننده چندان مناسب نیست.
برای این که شرکت اهولد مطمئن شود که تولید کنندگانش شرایط استاندارد های جهانی را دارند، این شرکت یک مزایده ی اینترنتی از سال 1998 برگزار می کند که در آن تأمین کنندگان بهترین پیشنهادهای خود را برای شرکت می فرستند. این فرآیند معامله ی اینترنتی به شرکت اجازه می دهد تا هزینه ی معاملات را به طور قابل توجهی پایین آورده و سرعت فرآیند سفارش دهی، حمل و نقل، تحویل و پرداخت را افزایش دهد.
2. لی فانگ (Li & Fung)
یک مثال عملی از چگونگی پیاده سازی مدیریت زنجیره‌ی تأمین در عمده فروشی را می توان در شرکت لی فانگ مشاهده کرد. در نتیجه ی جهت گیری های مؤثر، این شرکت در سال های اخیر به طور فوق العاده ای گسترش یافته است. لی فانگ در سال 1906 به عنوان یک بنگاه خرید سنتی شروع به کار کرد. سفارشات تولید با مناقصه هایی که انجام می شود از کشور چین به تأمین کنندگان داده می شود. اکنون این شرکت دارای دفاتر خریدی در 20 کشور است که اکثر آن در جنوب شرقی آسیا قرار دارند. فروشگاه های این شرکت به طور عمده در اروپا و ایالات متحده قرار دارند. محصولاتی که فروخته می شوند بیشتر در رابطه با پوشاک و مد هستند. برای همین این شرکت بیشتر از مشخصه های پوشاک غربی استفاده کرده و با برچسب خود تولید می کند. بعد از این که طرح توسط مشتری تایید شد، جستجو برای یافتن بهترین تولید کننده در شبکه ی جهانی تأمین کنندگان شرکت (که بیشتر در جنوب شرقی آسیا قرار دارند) برای سفارش تولید آغاز می شود. این شرکت با یک شبکه تأمین‌کننده ی پایدار کار می کند، یعنی تأمین کنندگان خود را تغییر نمی دهد. در بیشتر موارد لی فانگ حداقل 50% گردش مالی تأمین کنندگان خود را سبب می شود. هم چنین یک ناظر کیفیت در محل وجود دارد تا بر سفارشات تولید نظارت کرده و اطمینان یابد که محصولات خصوصیات مورد نظر را دارند. همین خود یک ایده ی ناب است که سبب حذف یک مواد می شود، زیرا اصلاً اجازه نمی دهد محصول معیوب به شرکت فرستاده شود و فعالیت اضافی صورت گیرد. دفاتر خرید شرکت همه ی مواد خام و مواد دیگر لازم برای تولید را خود تهیه می کنند. (پارچه، نخ، دکمه ها، زیپ ها) علت آن این است که چون این مواد در مقیاس بسیار بزرگ تهیه می شوند، لی فانگ می تواند شرایط بسیار بهتری در قرارداد قرار دهد تا این که هر تأمین‌کننده خود مواد لازم را تهیه کند. یعنی در واقع از حجم خرید به عنوان اهرمی برای افزایش قدرت چانه زنی استفاده کند. بعد از تولید و تایید کیفیت، این شرکت آن را به تمام نقاط در سراسر جهان تحویل می دهد. در این جا لی فانگ از مزیت اقتصاد حمل و نقل بهره می برد. بدین معنی که چون ارسال کالا به هر کشور با کانتینر های کاملا پر انجام می شود، هزینه ی حمل و نقل در کمترین مقدار ممکن است.
شرکت لی فانگ شبکه ی خود را کاملا مخفی نگه نمی دارد. اگر لازم باشد، مشتری می تواند تجهیزات تولید را مشاهده کند و طرز کار یکپارچه لی فانگ این شرکت را قادر ساخته تا 30 الی 40 درصد از هزینه ها را کاهش دهد. شرکت لی فانگ یک نمونه از نسل جدیدی از سیستم تدارک یکپارچه است که نمونه‌ی آن را در سال های آینده بیشتر خواهیم دید. البته کاربرد موفقیت آمیز این مدل های تجاری را می توان در سایر شرکت ها نظیر Cisco، Dell و Chrysler مشاهده کرد. البته در این جا به ذکر همین دو مثال اکتفا کرده و بیشتر روی فاکتور های کلیدی که عامل موفقیت این دو شرکت شده اند تمرکز می کنیم.
2-1-7- پیش نیاز متحول ساختن زنجیره‌ی تأمینهر دو مطالعه موردی فوق نشان دهنده ی این است که برای انجام موفقیت آمیز تحول در زنجیره‌ی تأمین در نظر گرفتن چند فاکتور لازم و ضروری است. در زیر به این چند فاکتور اشاره می شود:
در نظر گرفتن منابع تأمین: هر دو شرکت تأمین کنندگان را به عنوان یک منبع مزیت رقابتی در نظر گرفته اند. تأمین کنندگان به دقت انتخاب شده اند و ارتباطات بلند مدت مورد پی گیری قرار گرفته اند. مذاکرات با تأمین کنندگان با هدف کسب ارزش بیشتر صورت می گیرد و تأمین کنندگان نیز کارایی عملیاتی خود را بهبود می دهند. در مورد شرکت اهولد، وقتی سود آوری در مورد یک محصول خاص رضایت بخش نیست، از تأمین کنندگان خواسته می شود برای تجزیه و تحلیل مشکل، راه حل های پیشنهادی خود را ارائه دهند. با این روش خرده فروشان از رقابت تأمین کنندگان و مهارت و اطلاعات و منابع آن ها بهره مند می شوند. این روش در برابر روش سنتی که در آن سازمان های خریدار هیچ استفاده ای از اطلاعات و تجربیات سازمان های تأمین‌کننده نمی برند بسیار بهتر به نظر می رسد.
داشتن موقعیت قوی در برابر شبکه ها ی تأمین کنندگان: هر دو شرکت فوق از این مزیت بسیار عالی برخوردار هستند که دارای یک موقعیت قوی و برتر در برابر تأمین کنندگان خود برخوردار هستند. این موقعیت در طول یک دهه ایجاد شده است. شرکت اهولد به خاطر دارا بودن موقعیت برتر در میان سوپر مارکت های زنجیره ای در کشور های مختلف، از این مزیت به عنوان اهرم برای مذاکره با تأمین کنندگان خود استفاده می کند. زیرا تأمین کنندگان به خاطر موقعیت برتر این شرکت اشتیاق زیادی به عقد قرار داد با آن را دارند. ولی شرکت لی فانگ در یک بازار متفاوت کار می کند. این شرکت به طریقی متفاوت موقعیت خود را در برابر تأمین کنندگان مستحکم ساخته است. قبلاً ذکر کرده بودیم که این شرکت در اکثر موارد بیشتر از 50 درصد جریان مالی تأمین کنندگان خود را به خود اختصاص داده است. این شرکت با همین مورد تأمین کنندگانش را به خود وابسته کرده است. زیرا حیات تأمین کنندگانش تا حد زیادی به این شرکت وابسته است. در نتیجه در مذاکرات با تأمین کنندگانش می تواند از این مزیت به عنوان یک اهرم بسیار خوب استفاده کند.
سیستم اجرایی و تدارکات پیشرفته: هر دو شرکت سرمایه گذاری قابل توجهی در سیستم اطلاعاتی خود کرده اند که آن ها را قادر می سازد با دقت زیاد جریان کالای خود را در شبکه های مشتری، توزیع، تدارکات و تأمین کنندگان دنبال کنند. در واقع تکنولوژی اطلاعاتی که در مدل های تجارت این دو شرکت وجود دارد، آن ها را قادر ساخته که تأمین کنندگان خود را مدیریت و بر کارایی آن ها نظارت کنند.
کارمندان خرید و تأمین حرفه ای: در هر دو شرکت خرید و تأمین اصلی ترین و با اهمیت ترین فعالیت هایی هستند که در شبکه ی تأمین کنندگان مورد توجه قرار گرفته اند. کارمندان خرید و تأمین با جزییات امور برخورد دارند و می توانند در بهبود برنامه زمان بندی تحویل، کاهش زمان تحویل و بهبود کارایی عملیات تحویل کالا، بهبود کیفیت محصولات و کاهش هزینه ها بسیار مؤثر واقع شوند. شرکت لی فانگ یک نمونه‌ی خوبی از شرکتی است که توانسته با موفقیت شبکه ی مشتریان را به شبکه ی تأمین کنندگان خود متصل کند.
2-2- مفاهیم و ادبیات مهندسی ارزشمهندسی ارزش در زمان جنگ جهانی دوم هنگامی‌که دست‌یابی به مواد حیاتی دچار مشکل شده بود در صنایع مطرح گردید. این مسئله ارائه راهکارهای جایگزین برای مواد و طرح‌های موجود را موجب شد. در سال 1947 لاورنس دی‌میلز یکی از مهندسین شرکت جنرال الکتریک آمریکا موارد ممکن را مورد ارزیابی قرار داد؛ او طرحها و روشهای متعددی برای مقابله با تغییرات آتی بیان کرد و روشی مناسب برای تعیین ارزش یک طرح ارائه داد. به کارگیری این نظریه در صنایع، به سرعت در آمریکا فراگیر شد و برگشت عظیم سرمایه را به همراه داشت؛ او این حرکت را آنالیز ارزش نام نهاد. پس از آن در اواخر دهه شصت میلادی، انجمن مهندسی ارزش آمریکا بنیان گزارده شد و سپس صنایع دفاع، شرکتهای ساختمانی و مراکز صنعتی به‌تدریج مقرراتی در رابطه با الزام در اجرای مهندسی ارزش تصویب و به اجرا گذاردند ؛ تا جاییکه در اوایل دهه هشتاد میلادی پیشنهاد اجرای مهندسی ارزش در صنایع دفاعی، مدیریت خدمات عمومی، خدمات پستی و غیره مطرح و موجب موفقیت‌های چشمگیر در کاهش هزینه‌ها در مرحله اجرا گردید. در حال حاضر، بر اساس قوانین مصوب در ایالات متحده، کلیه سازمانهای اجرایی وابسته به دولت ملزم به ایجاد و بکارگیری روشهای مؤثر مهندسی ارزش در پروژه‌هایی هستند که با سرمایه‌ای بیش از یک میلیون دلار انجام می‌گیرد.
در آغاز، این تکنیک به نام آنالیز ارزش نامیده شد و بعدها به نامهای دیگری مانند مدیریت ارزش، بهبود ارزش، کنترل ارزش و خرید ارزش به کار رفته است؛ نیروی دریایی ایالات متحده امریکا این نام را به مهندسی ارزش تغییر داد تا بر روی قسمت مهندسی این متدولوژی نیز تاکید شود. با وجود تغییر نام، هدف مهندسی ارزش همانند قبل باقی مانده که به مفهوم ایجاد کنترل برای مجموع هزینه‌ها در زمینه محصول-خدمات در طول عمر محصول است، بدون اینکه کیفیت فدا شود و یا قابلیت اطمینان خدمات-محصول کاهش یابد.
این واقعیت که هزینه‌های غیرضروری معمولا در محصول و فرایند وجود دارد قابل تأمل است؛ میلز نتیجه گرفته است که هزینه‌های غیرضروری معمولا ممکن است به علل مختلف از جمله موارد زیر باشد:
کمبود زمان کافی برای طراحی، کمبود اطلاعات، کمبود ایده، پیش‌داوریهای منفی،  کمبود تجربه، ضعف در روابط انسانی، چندمفهومی بودن، طراحی و تخمین بالاتر از حد نیاز.
متدولوژی ارزش، سازمان را قادر به رقابت مؤثر و کارا در بازار خواهد کرد؛ زیرا با بکارگیری مهندسی ارزش سازمان می‌تواند به اهداف زیر دست یابد:
کاهش هزینه، افزایش سود، بهبود کیفیت، افزایش سهم بازار، انجام کار در زمان کوتاهتر واستفاده کاراتر از منابع.
ملاحظه می‌شود که برای به‌ ثمر رسیدن اهداف فوق فرایندی باید طی شود و امکان نیل به اهداف با نگرش مقطعی تقریباً غیرممکن به نظر می‌رسد ؛ از موارد فوق لزوم نگرش سیستمی احساس می‌شود. یک سازمان بایستی در کنار کاهش هزینه، بهبود کیفیت،‌ افزایش سود، زمان کمتر، تخصیص بهینه منابع و غیره را مدنظر داشته باشد ؛ لــذا بــا سیستمی مواجه می‌شود که ارتباط سیال بین عوامل بـــرقرار می‌کند و فرایند ارتباطات را در نظر می‌گیرد. در مورد این فرایند که چرخه‌ای یکطرفه نیست می‌توان گفت که بهترین مدل نمایش یک سیستم مهندسـی ارزش، دیاگرام جریان داده ها (DFD) است که خاستگاه آن فناوری اطلاعات (IT) می‌باشد؛ اگر بتوان مهندسی ارزش را به کمک DFD نمایش داد آنگاه چگونگی ارتباطات اجزای اصلی و فرعی سیستم و آنچه بین اجزا جاری می‌شود به سهولت قابل پیگیری خواهد بود.
2-2-1-تعریف مهندسی ارزشمهندسی ارزش روشی سیستماتیک، نظام‌یافته و مبتنی بر خلاقیت و کارگروهی برای حل مسئله، کاهش هزینه و بهبود عملکرد و کیفیت پروژه‌ها، محصولات و فرآیندها است. مهندسی ارزش به کمک گستره وسیعی از دانش و تجربیات متخصصین و با تمرکز بر کارکردهای پروژه، محصول یا فرآیند نتایج قابل اجرا برای بهبود را به سرعت ارائه می‌کند.
بر اساس تعریف مؤسسه بین‌المللی مدیریت پروژه، مهندسی ارزش نگرشی خلاق به منظور بهینه‌سازی هزینه‌های چرخه عمر، صرفه‌جویی در زمان، افزایش سود، بهبود کیفیت، افزایش سهم بازار، حل مشکلات و استفاده بهینه از منابع می‌باشد.
158559566484500بنابراین همانطور که بیان شد ارزش مفهومی چهار بعدی است که در شکل 2-4- نشان داده شده است و دارای یک مفهوم بسیار زیباست که قدمت آن به پیدایش انسان و تمدن او بر می گردد
شکل 2-4-ابعاد راهبردی ارزش
در صورتی که عملکرد تغییر نکند، ارزش با هزینه نسبت معکوس دارد. هم چنین افزایش در ارزش لزوماً افزایش در هزینه را به دنبال ندارد. چرا که با افزایش عملکرد به شرط این که توسعه یا بهبود عملکرد مطلوب باشد می توان به این نتیجه رسید که به عنوان نمونه در ادامه چند نمونه از تابع های تعریف شده برای ارزش را نشان خواهیم داد
-1289056350004300855111125فرمول شماره 1
00فرمول شماره 1
4342765690245فرمول شماره 2
00فرمول شماره 2

436689589535فرمول شماره 3
00فرمول شماره 3
4370070792480فرمول شماره 4
00فرمول شماره 4

مهندسی ارزش با تکیه بر آنالیز ارزش شکل گرفته است. با دریافت اطلاعات پروژه یا محصول، ورودی مورد نیاز مهندسی ارزش فراهم شده و پی از انجام آن، راه‌حل‌های و گزینه‌های جایگزین به عنوان خروجی مهندسی ارزش به منظور کاهش هزینه و ارتقای کیفیت پروژه یا محصول ارائه می‌گردد.

شکل 2-5: شمای کلی مطالعه ارزش
فرآیند مهندسی ارزش در قالب سه گام عمده انجام می‌شود که به ترتیب عبارتند از: 1- گام پیش‌مطالعه 2- گام مطالعه اصلی 3- گام پس‌مطالعه (مطالعه تکمیلی). هر یک از این سه گام به فازها یا فعالیت‌های مهمی تقسیم می‌شوند که به تفکیک ارائه خواهند شد.
152908024257000
شکل 2-6: مراحل مطالعه ارزش

–29

حسین یوسفی لالیمی- بهار 1392
تقدیم به:
پدر و مادرعزیزم
و
همسر مهربان و صبورم

چکیده:
استفاده از منابع توان پالسی در فرآیندهای مختلف پلاسما با توجه به ارتباط برقرار شده بین آنها رو به افزایش است. با توجه به تحقیقات به عمل آمده در این مورد، طراحی منابع توان پالسی با هدف کاهش تلفات و افزایش راندمان، می تواند تاثیرات مهمی درکاربردهای پلاسما داشته باشد. اساس فناوری سیستم توان پالسی بر پایه ذخیره انرژی زیاد در زمان نسبتا طولانی و آزاد کردن خیلی سریع آن می باشد که هدف از فرآیند آزاد سازی انرژی، افزایش توان لحظه ای آن است. از ویژگی های بارز منابع توان پالسی جهت افزایش راندمان و قابلیت اطمینان، پیچیدگی ها و ریزه کاری آن است. بهبود راندمان و قابلیت اطمینان در منابع توان پالسی با توجه به کاربرد آن در پلاسما، ارتباط اساسی با مشخصات سیستم های توان پالسی دارد. این پژوهش یک توپولوژی جدید مبتنی بر مبدل باک- بوست اصلاح شده (مثبت) در ورودی مدار منبع توان پالسی پلاسما پیشنهاد می دهد. بر اساس این توپولوژی در محدوده ای مشخص در منبع توان پالسی پلاسما، مجموعه ای از کلید- دیود- خازن به صورت متوالی اتصال دارند که جهت تولید ولتاژ و dv/dt بالا به کار می رود. مولفه های کلیدی توپولوژی پیشنهادی برای افزایش قابلیت اطمینان و راندمان عبارتنداز: ساختارتوپولوژی جدید مبتنی بر مبدل DC-DC ، استفاده از روش کنترلی مناسب(منبع ولتاژ) و تعیین مقدار انرژی ذخیره شده در المان های اصلی مدار (سلف و خازن). بنابراین توپولوژی ارائه شده به آسانی قابلیت تنظیم، ارتقا و توسعه با دامنه وسیعی درکاربردهای متنوع منابع توان پالسی را دارا می باشد. توپولوژی پیشنهادی مطرح شده با توجه به تاثیر مولفه های کلیدی آن، با دقت کامل از اجرای شبیه سازی در محیط نرم افزار MATLAB/SIMULINK به دست آمده است که با بررسی نتایج شبیه سازی، کارایی و قابل اجرا بودن این توپولوژی را جهت انجام اهداف مورد نظر که همان تولید پالس های قدرت بالا با ولتاژ زیاد و بهبود راندمان و قابلیت اطمینان منابع توان پالسی پلاسما است، تائید می کند .
واژه‌های کلیدی:
توپولوژی ،پلاسما ، قابلیت اطمینان و راندمان ،منبع توان پالسی، مبدل باک- بوست مثبت .
فهرست مطالب
عنوان صفحه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما 1
1.1مقدمه
2.1 آشنایی با پلاسما
1.2.1 منحنی دشارژ گازی ولتاژ – جریان پلاسما
3.1 جنبه های کاربردی منابع توان پالسی در پلاسما
4.1 مبانی عملکرد منابع توان پالسی پلاسما
1.4.1مشخصات پالس های قدرت بالا در منابع توان پالسی
2.4.1ذخیره سازی انرژی الکتریکی
1.2.4.1 بانک خازنی
2.2.4.1 مولد مارکس
3.4.1 اصول کلید زنی در پلاسما
4.4.1 شبکه های شکل دهی پالس (PEN)
5.4.1 خط انتقال بلوملین (BLUMLEIN)
5.1 اهداف مورد بررسی در این پژوهش
6.1 نتیجه گیری
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده درپلاسما
1.2 مقدمه
2.2 توپولوژی های موجود برای منابع توان پالسی پلاسما
1.2.2 توپولوژی مبتنی بر مولد مارکس
2.2.2 توپولوژی مبتنی بر مبدل های dc - dc
1.2.2.2 مبدل باک (Buck)
2.2.2.2 مبدل بوست (Boost)
فهرست مطالب
عنوان 3.2.2.2 مبدل باک - بوست (Boost -Buck)
4.2.2.2 مبدل کاک (Cuk)
5.2.2.2 مبدل های تشدیدی با کلیدزنی نرم
3.2.2 توپولوژی مبتنی بر تقویت کننده های ولتاژ
4.2.2 توپولوژی مولدهای پالس مبتنی بر اینورترها
3.2 روش های کنترلی مورد استفاده در منابع توان پالسی مورد استفاده در پلاسما
1.3.2روش کنترلی منبع ولتاژ
2.3.2روش کنترلی منبع جریان
4.3.2 روش کنترلی پسماند
4.2 نتیجه گیری
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
1.3 مقدمه
2.3 طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت
1.2.3 آرایش مداری توپولوژی پیشنهادی
2.2.3 حالت های کلید زنی توپولوژی پیشنهادی
3.2.3 تحلیل مداری توپولوژی پیشنهادی
4.2.3 محاسبه مقدارdv/dt تولید شده ناشی از کلیدزنی گذرای توپولوژی پیشنهادی
3.3 محاسبه انرژی ذخیره شده منابع توان پالسی مورد استفاده در پلاسما مبتنی بر توپولوژی پیشنهادی
3.1.3 محاسبه مقادیر المان های منابع توان پالسی پلاسما
2.3.3 محاسبه انرژی ذخیره شده منابع توان پالسی پلاسما
3.3.3 محاسبه انرژی ذخیره شده در حالت استفاده از خازن اضافی در منابع توان پالسی پلاسما
فهرست مطالب
عنوان 4.3 طراحی استراتژی کنترلی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
1.4.3 تحلیل روش کنترلی منبع ولتاژ برای توپولوژی پیشنهادی در حالت یک طبقه
2.4.3 طراحی و تحلیل روش کنترلی منبع ولتاژ برای توپولوژی پیشنهادی در حالت دو طبقه
5.3 نتیجه گیری
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
1.4 مقدمه
2.4 روند شبیه سازی توپولوژی پیشنهادی برای منبع توان پالسی پلاسما
1.2.4 تعیین مقادیر المان و مولفه های اصلی منابع توان پالسی پلاسما
2.2.4 روش مدل سازی بار در توپولوژی پیشنهادی
3.2.4 شبیه سازی توپولوژی پیشنهادی در حالت یک طبقه
4.2.4 شبیه سازی توپولوژی پیشنهادی در حالت دو طبقه
3.4 تخمین انرژی ذخیره شده در منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
4.4 شبیه سازی dv/dt تولید شده ناشی از کلیدزنی گذرای توپولوژی پیشنهادی
5.4 نتیجه گیری
فصل پنجم - بحث و نتیجه گیری
- نتیجه گیری
- مراجع
فهرست شکل ها
عنوان صفحه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما
شکل(1-1) نمایی از الکترودهای بکار رفته در پلاسما
شکل(1-2) منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
شکل (1-3) نمای کلی از ساختار منابع توان پالسی
شکل (1-4) منحنی مشخصات یک پالس تولید شده در منابع توان پالسی
شکل(1-5) نمونه ای از کمپرسور پالس مغناطیسی
شکل (1-6) نمونه ای از بانک خازنی بکار رفته در منابع توان پالسی
شکل(1-7) نمونه ای از مولد مارکس مورد استفاده در منابع توان پالسی
شکل (1-8) مدارهای اصلی مورد استفاده در منابع توان پالسی با المان های ذخیره ساز انرژی
شکل(1-9) نمونه ای از بانک خازنی با کلیدهای چندکاناله
شکل (1-10) آرایش مختلفی از شبکه نردبانی مورد استفاده در شبکه های شکل دهی پالس


شکل (1-11) آرایش خط انتقال بلوملین
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
شکل (2-1) الف) نمونه ای از توپولوژی مبتنی بر مولد مارکس، ب) حالت شارژ مولد ، ج) حالت دشارژ شکل(2-2)مبدل باک (Buck) شکل(2-3)شکل موج های ولتاژ – جریان و مدارمعادل مبدل باک : (الف) کلید وصل (ب) کلید قطع
شکل(2-4)مبدل بوست (Boost)
شکل(2-5)شکل موج های ولتاژ – جریان و مدارمعادل مبدل بوست : (الف) کلید وصل (ب) کلید قطع
شکل(2-6)مبدل باک - بوست (Boost -Buck)
شکل(2-7) شکل موج های ولتاژ - جریان و مدارمعادل مبدل باک - بوست : (الف) کلید وصل (ب) کلید قطع
شکل(2-8) مبدل باک – بوست مثبت ( Positive Buck-Boost )
فهرست شکل ها
عنوان صفحه
شکل (2-9) مبدل کاک (Cuk)
شکل (2-10)مدار معادل مبدل کاک در حالت های کلید زنی : الف) حالت وصل کلید ب) حالت قطع کلید
شکل (2-11) شکل موج های جریان و ولتاژ مبدل کاک در حالت های کلید زنی
شکل (2-12) مبدل تشدید با کلیدزنی نرم
شکل (2-13)تقویت کننده ولتاژ N طبقه کوک کرافت – والتون
شکل (2-14) توپولوژی های کنترلی مورد استفاده در یک منبع توان پالسی پلاسما
شکل (2-15)روش کنترلی منبع ولتاژ در منابع توان پالسی پلاسما
شکل(2-16)روش کنترلی منبع جریان مورد استفاده در منابع توان پالسی پلاسما
شکل(2-17)روش کنترلی حلقه جریان پسماند برای کنترل جریان سلفی در منابع توان پالسی پلاسما
شکل (2-18) روش کنترلی پسماند برای منابع توان پالسی پلاسما
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
شکل(3-1) شمای کلی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت منبع توان پالسی
شکل (3-2) منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی با یک مجموعه کلید- دیود- خازن
شکل (3-3) منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی با دو مجموعه کلید- دیود- خازن
شکل (3-4) مدل سازی توپولوژی پیشنهادی جهت تحلیل حالات کلیدزنی در منبع توان پالسی
شکل(3-5) حالت کلیدزنی شارژ شدن سلف در توپولوژی پیشنهادی
شکل(3-6) حالت کلیدزنی عبور جریان سلفی در توپولوژی پیشنهادی
شکل(3-7) حالت کلیدزنی شارژ همزمان خازن ها در توپولوژی پیشنهادی
شکل(3-8) حالت تامین بار در توپولوژی پیشنهادی
شکل(3-9) حالت کلید زنی شارژ جداگانه خازن ها در توپولوژی پیشنهادی
شکل (3-10) فلوچارت کنترلی پیشنهادی
فهرست شکل ها
عنوان صفحه
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع
توان پالسی مورد استفاده در پلاسما
شکل (4-1) شبیه سازی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی – یک طبقه
شکل(4-2) شبیه سازی روش کنترلی منبع ولتاژ در توپولوژی پیشنهادی
شکل(4-3) مولفه ولتاژ توپولوژی پیشنهادی در حالت یک طبقه: (الف) کلید Ss (ب) کلید S1
شکل(4-4) مولفه جریان کلید بارSL توپولوژی پیشنهادی در حالت یک طبقه
شکل (4-5) شبیه سازی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی – دو طبقه
شکل(4-6) مولفه ولتاژ توپولوژی پیشنهادی - دو طبقه درحالت کلید زنی همزمان: (الف) خازنC1 یا کلید S1 (ب) خازنC2 یا کلید S2 (ج) کلید SL
شکل(4-7) مولفه های اصلی توپولوژی پیشنهادی - دو طبقه درحالت کلید زنی جداگانه: (الف) ولتاژ خروجی (ب) جریان سلفی (ج) جریان خروجی(بار) IL (د) ولتاژ ورودی
شکل (4-8) شبیه سازی پیشنهادی جهت تخمین میزان انرژی ذخیره شده
شکل(4-9) تخمین انرژی ذخیره شده در توپولوژی پیشنهادی: (الف)انرژی ذخیره شده در سلف (ب) انرژی ذخیره شده درخازن (ج) انرژی ذخیره شده در بار
شکل(4-10) جریان خازنی در حالت کلیدزنی گذرای توپولوژی پیشنهادی
فهرست جدول ها
عنوان صفحه ه
فصل اول- آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما
جدول(1-1) شرح نواحی منحنی دشارژ گازی ولتاژ - جریان حالت dc پلاسما
جدول (1-2) خلاصه ای از مشخصات منابع توان پالسی برای کاربردهای مختلف
جدول(1-3) دامنه پالس های تولید شده در منابع توان پالسی
جدول (1-4)مشخصات دو مدل از مولد مارکس نواری
جدول (1-5)مشخصات مولد مارکس قطعه ای مدلA 43733
جدول(1-6) کلیدهای نیمه هادی گازی در منابع توان پالسی مورد استفاده در پلاسما
فصل دوم- بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
جدول(2-1) شاخص های کلیدی مبدل های dc - dc
جدول(2-2) شاخص های کلیدی مبدل های تشدید با کلید زنی نرم
فصل سوم - طراحی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
جدول( 3-1) شاخص های کلیدی توپولوژی های مورد استفاه در منایع توان پالسی پلاسما
فصل چهارم- شبیه سازی توپولوژی پیشنهادی مبتنی بر مبدل باک – بوست مثبت برای منابع توان پالسی مورد استفاده در پلاسما
جدول (4-1) مقادیرمولفه و المان های اصلی منبع توان پالسی پلاسما مبتنی بر توپولوژی پیشنهادی
جدول(4-2) مقادیر dv/dt تولید شده در حالت کلیدزنی گذرای توپولوژی پیشنهادی
جدول(4-3) خلاصه ای از مقایسه بین دو آرایش مختلف توپولوژی پیشنهادی منبع توان پالسی پلاسما
2
2
3
5
5
6
8
10
11
14
15
17
18
18
19
20
20
20
22
22
23
25
صفحه
26
28
30
32
34
35
35
36
37
39
40
41
42
42
44
48
51
51
52
53
54
صفحه
55
55
56
58
59
60
61
61
62
62
63
65
67
69
70
72
73
76
3
4
6
8
8
9
9
10
11
16
17
22
23
24
25
26
27
28
28
29
29
30
31
34
35
36
37
38
38
42
43
43
44
45
46
47
47
48
57
63
64
64
65
65
66
67
68
69
70
4
6
7
13
13
15
32
32
41
62
70
71
لیست علایم و اختصارات
AC ) Alternating Current جریان متناوب (
BJT ) Bipolar Junction Transistorترانزیستور پیوند دو قطبی (
CCM ) Continuous-Conduction-Modeحالت هدایت پیوسته (
CDVM ( Capacitor-Diode Voltage Multiplier)تقویت کننده ولتاژ دیود و خازن
CSR ) Converter Series Resonanمبدل تشدید سری (
DC ) Direct Currentجریان مستقیم (
EMI ) Electromagnetic Interferenceتداخلات الکترومغناطیسی (
EMC ) Electromagnetic Compatibilityسازگاری الکترومغناطیسی (
HV ) High Voltageولتاژ بالا (
IGBT ) Insulated Gate Bipolar Transistorترانزیستور دوقطبی گیت عایق شده (
MBL )Multistage Blumlein Linesخطوط بلوملین چند طبقه ای (
MFC ) Magnetic Flux Compressorکمپرسور شار مغناطیسی (
MG ) Marx Generatorمولد مارکس (
MOSEFET ) Metal-Oxide Semiconductor Field-Effect Transistorترانزیستورنیمه هادی اکسید فلزی با اثر میدان(
MPC )Magnetic Pulse Compressorکمپرسور پالس مغناطیسی (
MVM ) Multilevel Voltage تقویت کننده ولتاژ چند سطحی (
PEF ( Pulsed Electric Fieldمیدان الکتریکی پالسی (
PFC ) Power Factor Correctorsتنظیم کننده های ضریب قدرت (
PFN ) Pulse Forming Networkشبکه شکل دهی پالس (
SMPS (Switched-Mode Power Supply)روش کلید زنی منابع توان پالسی
ZCS )Zero Current Switchingکلید زنی جریان صفر (
ZVS ) Zero Voltage Switchingکلید زنی ولتاژ صفر (
فصل اول

آشنایی با ساختار منابع توان پالسی مورد استفاده در پلاسما

1.1مقدمه
اساس فناوری سیستم توان پالسی بر پایه ذخیره انرژی زیاد در زمان نسبتا طولانی و آزاد کردن خیلی سریع آن می باشد که هدف از فرآیند آزاد سازی انرژی، افزایش توان لحظه ای آن است. از مشخصه های کلیدی منابع توان پالسی می توان به سطح ولتاژ و مدت زمان افزایش آن که بر مبنای مشخصات بار مورد نیاز تعیین می شود، اشاره کرد]1[. روش های سازگاری منابع توان پالسی با بارهای متفاوت توسط تکنولوژی موجود، یکی از بحث های کلیدی فناوری سیستم توان پالسی مورد استفاده در پلاسما می باشد. استفاده از دانش پیشرفته و رویکردهای اخیر در الکترونیک قدرت و نیمه هادی ها به حساب سطح نیازمندی صنعتی و علمی آن است که باعث پیشرفت سریع منابع توان پالسی در دهه اخیر شده است.از ویژگی های بارز منابع توان پالسی جهت افزایش راندمان و قابلیت اطمینان آن، پیچیدگی ها و ریزه کاری آن است]2[. کنترل بهینه روند تولید توان در منابع تولید توان پالسی یک روش مهم و حیاتی برای افزایش راندمان می باشد. از سوی دیگر استفاده از منابع توان پالسی با ولتاژ بالا نیازمند کلیدهای قدرت بالا می باشد که ولتاژ شکست و زمان کلید زنی آن محدودی است.
2.1 آشنایی با پلاسما
واژه "پلاسما" برای اولین بار در سال 1927 توسط ایروین لانگمویر برای یک توده خنثی از ذرات باردار به کار رفت]3[. پلاسما را می توان با ایجاد یک اختلاف پتانسیل بین دو الکترود در یک محیط گازی بوجود آورد. میدان الکتریکی ایجاد شده بین دو الکترودهای آند و کاتد، باعث یونیزاسیون ذرات گاز خنثی و ایجاد مسیر هدایت می شود. در شکل(1-1) نمونه ای از الکترودها را نشان داده شده است. ساده ترین حالت، خطوط میدان الکتریکی بین آند و کاتد که در آن میدان الکتریکی تقریبا یکنواخت است، به اندازه و شکل الکترودها(دو الکترود مسطح با یک شکاف کوچک در میان شان است) بستگی دارد]4[.

شکل(1-1) نمایی از الکترودهای بکار رفته در پلاسما
1.2.1 منحنی دشارژ گازی ولتاژ – جریان پلاسما
شکل (1-2) منحنی دشارژ گازی ولتاژ – جریان الکترودها را در حالت dc نشان می دهد]5[. این منحنی دارای چند ناحیه می باشد که نام نواحی در جدول (1-1) به صورت خلاصه بیان شده است. ناحیه دشارژ تاریک پلاسما، که در آن دشارژ شروع می شود. هر چند که برای ایجاد حالت شکست، این دشارژ به صورت کافی ذرات را تحریک نمی کند. به این دشارژ تاریک می گویند زیرا که در این حالت دشارژ هیچ گونه انتقال انرژی به الکترون ها صورت نمی گیرد تا منجر به انتشار نور مرئی شود. در دشارژ تاریک با یونیزاسیون، یون ها والکترون ها به تنهایی اشعه های کیهانی و اشکال دیگری از آن (مانند اشعه یونیزه کننده طبیعی) که با افزایش ولتاژ همراه است، تولید می کند. در حالت اشباع با یونیزاسیون، تمام ذرات باردار حذف و الکترون ها به علت یونیزاسیون انرژی کافی ندارند. در حالت تاونزند با شروع یونیزاسیون، میدان الکتریکی ایجاد و جریان و ولتاژ به صورت نمایی افزایش می یابد]6[. بین حالت تاونزند و شکست در پلاسما، ممکن است تخلیه کرونا صورت گیرد که در نتیجه میدان الکتریکی بر روی لبه های تیز الکترود متمرکز می شود. تخلیه کرونا می تواند به صورت مرئی یا تیره باشد که به میزان جریان عبوری از آن بستگی دارد. ناحیه دشارژ تابشی با حالت شکست شروع می شود و با تشکیل قوس الکتریکی به پایان می رسد. به طور عمده فرآیندهایی که منجر به شکل گیری حالت شکست و دشارژ تابشی می شود را می توان به دو گروه اصلی تقسیم کرد: (الف) فرآیندهای گازی پلاسما، که در آن یونیزاسیون از برخورد الکترون و یون صورت می گیرد. (ب) فرآیندهای کاتدی پلاسما، که در آن الکترون ها از کاتد آزاد می شوند. به این فرآیند، به علت ایجاد الکترون در آن، فرآیند ثانویه نیز می گویند]7[. با مطالعه مقالات منتشر شده در این مورد می توان دریافت که جنس کاتد تاثیر زیادی درایجاد حالت شکست دارد. توسط فرآیند ثانویه می توان انواع انرژی تابشی را بصورت فتوالکتریک که در آن انرژی نوری باعث آزاد شدن الکترون ها می شود انتشار داد. در این مورد می توان به حالت گرما یونی در پلاسما نیز اشاره کرد، که در آن انرژی حرارتی باعث ایجاد الکترون و منجر به تولید میدان الکتریکی می شود. جرقه های ناشی از دشارژ در این حالت بسیار شدید است و دارای درخشندگی و چگالی جریان زیادی می باشد. قوس های ناشی از دشارژ را می توان معادل چگالی جریان زیاد در حد کیلو آمپر در سانتیمتر مربع در نظر گرفت. هرچند که شدت طبیعی قوس می تواند عامل فرسایش سریع تر الکترودها شود]9،8[.

شکل(1-2)منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
جدول(1-1) شرح نواحی منحنی دشارژ گازی ولتاژ-جریان حالت dc پلاسما
شماره 1 2 3 4 5 6 7 8 9
نواحی دشارژ تاریک دشارژ تابشی حالت جرقه ای حالت یونیزاسیون حالت اشباع حالت کرونا حالت تاونزند حالت شکست حالت تابشی
شماره 10 11 12 13
نواحی حالت تابشی غیر عادی حالت انتقالی از تابشی به جرقه حالت حرارتی حالت حرارتی با جرقه
3.1 جنبه های کاربردی منابع توان پالسی در پلاسما
اولین کاربرد منابع توان پالسی در دهه 1960 در نیرو گاه های هسته ای و تسلیحات هسته ای برای تولید پالس های با ولتاژ مگاولت و توان های تراوات (1 تراوات، 1000 گیگاوات است) و عرض پالس های چند ده نانو ثانیه تا چند صد نانو ثانیه برای تحریک شتاب دهنده های الکترونی پلاسما بوده است]10[. محدودیت عناصر ذخیره کننده انرژی و نبود تکنولوژی کلیدزنی پالس قدرت، مانع از گسترش آن در حوزه های عمومی تر شده بود. اما هم اکنون با توسعه این منابع و بهبود تکنولوژی ساخت خازن ها، اندوکتانس ها و کلیدها، بسیاری از مشکلات در تولید پالس های قدرت، با انرژی بالا و قیمت مناسب برطرف شده است. اخیرا یکی از اهداف اصلی و کلیدی جهت افزایش راندمان و قابلیت اطمینان سیستم های توان پالسی ،استفاده مکرر از مولدهای توان پالسی باحداکثر توان در صنایع از جمله : صنعت مواد غذایی، معالجات پزشکی، آب و فاضلاب (تصفیه آب و...)، تولیدگازهای ازن ،بازیافت بتن ، سیستم احتراق ماشین بخار و کاشت یون در پلاسما می باشد]11[. رایج ترین موارد استفاده از منابع توان پالسی می توان به : مولد مارکس ، کمپرسورهای پالسی الکترومغناطیسی ، عایق کاری ، خطوط انتقال و شکل دهی پالس اشاره کرد. هر چندکه مولدهای توان پالسی نیز با حداکثر توان به صورت وسیعی در مصارف نظامی و گداخت هسته ای مورد بهره برداری قرار می گیرد. هم چنین میدان های الکتریکی پالسی کاربردهای مستقیم و غیر مستقیم بسیاری در صنعت دارند و اخیرا کاربرد این میدان ها در استریلیزه کردن مواد غذایی مورد توجه بسیاری قرار گرفته است]12[. خلاصه ای از مشخصات منابع توان پالسی مورد نیاز برای کاربردهای متفاوت در جدول(1-2) شرح داده است.
4.1مبانی عملکرد منابع توان پالسی مورد استفاده در پلاسما
اصول فناوری توان پالسی، از ذخیره سازی انرژی بیش از یک مدت زمان طولانی (معمولا ثانیه یا دقیقه) و سپس فرآیند تخلیه انرژی الکتریکی را در طول کوتاه تر از زمان ذخیره انرژی (معمولا میکروثانیه یا نانوثانیه)انجام پذیرد.
جدول (1-2) خلاصه ای از مشخصات منابع توان پالسی برای کاربردهای مختلف
ردیف کاربردها انرژی الکتریکی طول پالس حداکثرتوان پالس توان متوسط
1 فیزیک پلاسما با چگالی انرژی بالا 20 مگا ژول 10 نانو ثانیه کمتر از ده ترا وات 5 گیگا وات
2 رادیو گرافی با پرتو الکترونی قوی 200 کیلو ژول 70 نانو ثانیه بیشتر از یک ترا وات 10 گیگا وات
3 مایکروویو توان بالا (باندباریک) 10 کیلو ژول 100 نانو ثانیه 100 گیگا وات 100 کیلو وات
4 مایکروویو توان بالا (باندخیلی پهن) 10 ژول 1 نانو ثانیه 10 گیگا وات 10 کیلو وات
5 تبدیل مواد با پرتو الکترونی 10 کیلو ژول 100 نانو ثانیه 30 گیگا وات اندک
6 بیو الکتریک 1 میلی ژول 100 نانو ثانیه 10 کیلو وات تا 100 مگا وات چند میلی وات تا چند وات

ساده ترین شکل سیستم های توان پالسی با توجه به شکل(1-3) شامل: یک منبع انرژی الکتریکی، ذخیره ساز میانی انرژی و بار است که مرحله تشکیل پالس بین آنها قرار دارد. سیستم توان پالسی در مرحله تشکیل پالس دارای یک کلید قدرت بالا است که می تواند انرژی ذخیره شده را به بار یا یک سیستم پیچیده تر (شامل شبکه ای از کلید های قدرت بالا) انتقال دهد.
بار
شکل دهنده پالس
ذخیره ساز میانی
منبع انرژی
کلیدکلید

شکل (1-3)نمای کلی از ساختار منابع توان پالسی
با بررسی مطالعاتی درباره تکنولوژی های به کار رفته در منابع توان پالسی پلاسما، می توان با توجه به عملکرد و کارایی، آنها را در 5 بخش اصلی خلاصه کرد که به شرح ذیل می باشد:
1.4.1مشخصات پالس های قدرت بالا در منابع توان پالسی
همان طور که می دانید هر سیستم توان پالسی متشکل از یک منبع، شبکه ذخیره کننده انرژی، تجهیزات شکل دهنده پالس، کلید و بار الکتریکی است. منبع انرژی را در برخی از کاربردها می توان باتری در نظر گرفت که به شبکه ذخیره کننده انرژی متصل و سپس در ارتباط با تجهیزات شکل دهنده پالس قرار می گیرد و پس از کلید زنی به صورت پالس ولتاژ بالا بر روی بار تخلیه می گردد]13[. با توجه به سطوح مختلف توان الکتریکی مورد نیاز، فناوری تولید توان پالسی به دو شاخه پالس های کم قدرت و قدرت بالا تقسیم می شود. پالس های قدرت بالا مرتبط با پالس هایی است که توانی در حد چند مگاوات یا بیشتر دارند که محدوده کمیت های فیزیکی این گونه پالس ها در جدول (1-3) به اختصار بیان شده است. تولید و کنترل پالس های قدرت بالا، نوعی فناوری پیشرفته و پیچیده به شمار می رود و به ابزارها و تکنیک های خاصی جهت انجام آزمایش ها نیازمند است. در سیستم های توان پالسی انرژی به صورت الکتریکی ذخیره و به بار درطی یک پالس و یا پالس های کوتاه با نرخ تکرار کنترل شده ای تخلیه می گردد. مقدار قدرت میدان الکتریکی، شکل پالس، مدت پالس و تعداد پالس ها و... بیشترین تاثیر را بر راندمان و قابلیت اطمینان منابع توان پالسی دارد.
جدول(1- 3) دامنه پالس های تولید شده در منابع توان پالسی
ردیف کمیت فیزیکی محدوده کمیت فیزیکی
1 انرژی (ژول) 101 -107
2 توان (وات) 106 -1014
3 ولتاژ(ولت) 103 -107
4 جریان (آمپر) 103 -107
5 چگالی جریان (آمپر برمترمربع) 106 -1011
6 عرض پالس(ثانیه) 5-10 -10-10
با بالا و پایین رفتن شکل موج ولتاژ، طول مدت پالس بین چند نانوثانیه و یا چند میکرو ثانیه اندازه گرفته می شود. به عنوان نمونه در شکل (1-4) منحنی یک پالس قدرت بالا را نشان داده شده است. زمان صعودی پالس، مدت زمان لازم برای رسیدن ولتاژ از10% به 90% ( مقدار ماکزیمم) تعریف می شود و می توان زمان نزولی را به روشی مشابه تعریف کرد.که هر دو زمان (صعودی و نزولی) یک پالس قدرت بالا به امپدانس بار بستگی دارد]14[.
در چند دهه اخیر فناوری تولید پالس های ولتاژ بالا توسط کمپرسورهای پالس مغناطیسی با توجه به کاربردهای گوناگون آن در حوزه منابع توان پالسی بسیار حائز اهمیت است . شکل (1-5) یک نمونه رایج از این نوع کمپرسورها را نشان می دهد.

شکل (1-4) منحنی مشخصات یک پالس تولید شده در منابع توان پالسی
توپولوژی های مختلفی می توان برای منابع توان پالسی با توجه به ادوات الکترونیک قدرت، مولدهای پالسی و کمپرسورهای پالس مغناطیسی در نظر گرفت . که از جمله می توان به طراحی یک منبع توان پالسی مبتنی بر کمپرسور جریان مغناطیسی خطی و شبکه شکل دهی پالس بلوملین برای ادوات الکتریکی نظامی (از جمله : شوک دهنده ها) اشاره کرد]15[.

شکل(1-5) نمونه ای از کمپرسور پالس مغناطیسی
2.4.1ذخیره سازی انرژی الکتریکی
انرژی مورد نیاز منابع توان پالسی عموما از منابع انرژی کم توان جمع آوری و به مرور ذخیره می شود. متناسب با کاربردها و احتیاجات، ذخیره انرژی به شکل خازنی ، سلفی یا ترکیبی از این دو است. ذخیره سازی انرژی خازنی، معمولا توسط تعدادی از خازن های ولتاژ بالا که اتصال آنها به صورت موازی یا سری است ، تشکیل می شود. حالت اول را بانک خازنی که در شکل (1-6) و حالت بعدی را مولد مارکس می نامند.که در شکل (1-7) نمونه ای از مولد مارکس را نشان داده است]16[.

شکل (1-6) نمونه ای از بانک خازنی بکار رفته در منابع توان پالسی
در هر دو حالت، خازن ها به صورت موازی شارژ می شوند و معمولا به عنوان منبع جریان استفاده می شوند. مولدهای مارکس، ولتاژ و جریان بالا را فراهم می سازند بنابراین در منابع توان بالای پالسی پلاسما به صورت گسترده ای مورد استفاده قرار می گیرند.

شکل(1-7) نمونه ای از مولد مارکس مورد استفاده در منابع توان پالسی
برای ذخیره سازی اندوکتیو انرژی از القاگرهای مغناطیسی استفاده می شود. بر خلاف حالت ذخیره سازی خازنی که انرژی مستقیما با بستن کلید به بار منتقل می شود در این حالت نخست انرژی از ذخیره ساز القایی (که در این حالت می تواند یک سیم پیچ باشد) عبور کرده و سپس به بار منتقل می شود. برای تحویل انرژی ذخیره شده سلفی به بار، با باز کردن یک کلید قدرت بالا که جریان مدار نیز از آن عبور می کند و با بار اتصال موازی دارد ، نیاز است. برای تحویل انرژی ذخیره شده خازنی به بار، با بستن یک کلید قدرت بالا که جریان مدار نیز از آن عبور می کند و اتصال سری با بار دارد ، نیاز است . شکل (1-8) مدارهای اصلی این دو حالت را نشان می دهد. برای بهبود پالس تولید شده می توان از این دو حالت به صورت ترکیبی در شرایط گوناگون با توجه به مشخصات بار مورد نیاز استفاده کرد.

شکل (1-8) مدارهای اصلی مورد استفاده در منابع توان پالسی با المان های ذخیره ساز انرژی
1.2.4.1 بانک خازنی
در بانک های خازنی برای تولید پالس های سریع، مطلوب است که میزان اندوکتانس مدار در وضعیت حداقل قرار گیرد. چندین راه برای کاهش اندوکتانس سیستم توان پالسی وجود دارد: برای مثال، می توان به استفاده از خازن های با ظرفیت کم، انتخاب ابعاد مناسب برای خطوط انتقال و سیم های رابط، استفاده از کلیدهای موازی چند کاناله و... اشاره کرد. مزیت استفاده از کلید چند کاناله این است که جریان عبوری از هر کلید به طور قابل ملاحظه ای کاهش می یابد و در نتیجه طول عمر کلید افزایش خواهد یافت لیکن هزینه ها افزایش می یابد. در این حالت، عملکرد هم زمان کلیدهای قدرت بالا سیستم توان پالسی پلاسما که به صورت موازی با هم اتصال دارند، ضروری است و در غیر این صورت ، سیستم به خوبی کار نخواهد کرد.برای حل این مشکل می توان از مدارکنترلی خارجی استفاده کرد به گونه ای که هریک از کلیدها از خارج سیستم فعال شوند که در شکل (1-9) نشان داده است.
به منظور دست یابی به ولتاژهای خروجی بالاتردر سیستم های توان پالسی پلاسما، بانک های خازنی اغلب به صورت دوقطبی شارژ می شوند که در آن نصف خازن ها به طور مثبت و نصف دیگر به صورت منفی شارژ و سپس به صورت متوالی دشارژ می شوند. در نتیجه ولتاژی بدست می آید که دو برابر ولتاژ ورودی سیستم است. در حالت شارژ دو قطبی، می توان از آرایش تک کلیدی یا چند کلیدی استفاده نمود. اما استفاده از آرایش چند کلیدی در شرایطی که عملکرد مکرر سیستم توان پالسی به صورت پیوسته مورد نیاز است، مفیدتر است.زیرا که در عملکرد مکرر سیستم اگر تمام جریان از یک کلید عبور کند ، خرابی الکترودهای آن مشکل آفرین خواهد بود]17[.

شکل(1-9) نمونه ای از بانک خازنی با کلیدهای چندکاناله
2.2.4.1 مولد مارکس
در حوزه پالس های قدرت بالا، تقاضا برای مولدهای مارکس زیاد است. این نوع ژنراتورها باید قادر به تامین ولتاژهای بالا و جریان های زیاد باشند. هم چنین شاخصه های کلیدی اجزای آن دارای قابلیت اطمینان و طول عمر بالا و در عین حال به صورت فشرده می باشد به گونه ای که بتوان مجموعه ای از مولدهای مارکس را بدون استفاده از فضای زیاد مورد استفاده قرار داد. در مولد مارکس مانند بانک های خازنی از خازن ها برای ذخیره سازی انرژی استفاده می گردد، اما در این حالت تمام خازن ها هنگام دشارژ به طور لحظه ای اتصال سری پیدا می کنند. بنابراین از مولد مارکس نه فقط به عنوان یک ذخیره ساز انرژی ، بلکه به صورت یک تقویت کننده ولتاژ نیز مورد استفاده قرار می گیرد]18[. اگر مولد مارکس متشکل از N طبقه باشد در این حالت ولتاژ خروجی N برابر ولتاژ ورودی می گردد. حال اگر تعداد زیادی طبقات برای افزایش ولتاژ استفاده شود، قابلیت اطمینان سیستم توان پالسی کاهش می یابد. هم چنین برای افزایش جریان ، از خازن های بزرگ نیز استفاده می شود، با توجه به فشردگی سیستم و طول عمر کلیدها با مشکلاتی در این زمینه روبرو خواهیم شد. تکنیک شارژ دوقطبی یک روش عملی است که امکان استفاده از طبقات زیاد را در شرایط کم حجم بودن سیستم فراهم می سازد. یک راه حلی که می توان برای افزایش قابلیت اطمینان مولد مارکس توان پالسی با توجه به تعداد زیاد طبقات آن ارائه داد، عبارت است از انتخاب α و β با توجه به رابطه (1-1)، به گونه ای که هر دو مقدار افزایش یابند و هم چنین استفاده از پالس کنترلی قدرتمند برای راه اندازی مدارات کنترلی هر یک از کلیدهای سیستم توان پالسی نیز موثر است.
(1-1)
*که در رابطه فوق ، Vsb : ولتاژشکست ، Vch : ولتاژشارژ، Vtr : ولتاژپالس کنترلی است.
انواع متفاوتی از مولدهای مارکس برای کاربردهای خاصی طراحی می شوند. یکی از آنها، مولدمارکس نواری است که برای ایجاد پالس های ولتاژ پایین طراحی می شود. در این نوع مولدهای مارکس، از خطوط انتقال نواری شکل به جای خازن های ذخیره ساز انرژی استفاده می گردد. یعنی خطوط انتقال نواری به صورت موازی شارژ و به صورت متوالی دشارژ می شوند. بنابراین هر خط انتقال برای تولید پالس های ولتاژی پله ای شکل می باشد و از این رو اتصال سری آنها به عنوان یک مولد پالس سریع عمل می کند. قابلیت تولید پالس سریع ، یکی از مزیت های اصلی این نوع مولدها به شمار می رود. اشکال عمده مولدهای مارکس نواری، ابعاد نسبتا بزرگ آنها است و به دلیل ساختار هندسی خاص، امکان فشرده سازی برای این نوع مولدها امکان پذیر نیست. در جدول (1-4) مشخصات دو مدل از مولد مارکس نواری به اختصار بیان شده است]19[.
نوع دیگری از مولد مارکس که قادر به تولید پالس سریع است، مولد مارکس قطعه ای نامیده می شود. که از تعدادی قطعات یکسان تشکیل گردیده است که به راحتی به یکدیگر متصل یا از هم جدا می شوند.
جدول (1-4)مشخصات دو مدل از مولد مارکس نواری
ردیف مشخصات مدلI مدلII
1 تعداد طبقات 50 100
2 ولتاژ پیک پالس(کیلوولت) 400 1000
3 جریان پیک پالس (کیلو آمپر) 4 4
4 پهنای پالس (نانو ثانیه) 40 40
5 امپدانس منبع(اهم) 125 250
این ویژگی امکان تنظیم تعداد طبقات مورد نیاز را برای کاربر فراهم می سازد. هر طبقه متشکل از تعدادی خازن سرامیکی است که به صورت موازی با یکدیگر اتصال پیدا می کنند تا اندوکتانس سیستم توان پالسی کاهش یابد. با توجه به ظرفیت کم خازن های سرامیکی، معمولا چنین مولدهایی به عنوان منابع جریان زیاد در سیستم توان پالسی عمل می کنند، اما امکان تنظیم ولتاژ خروجی را نیز فراهم می سازند. جدول (1-5) مشخصات مولد مارکس قطعه ای مدلA 43733 نشان داده است. ویژگی های اصلی مولد مارکس قطعه ای عبارت است از:
الف ) خازن ها در مرحله ذخیره سازی همگی به صورت موازی اتصال دارند به گونه ای که اندوکتانس در به حداقل می رسد.
ب) یک کلید خلا قدرت بالا با زمان کلیدزنی سریع برای کنترل پهنای پالس مورد استفاده قرار می گیرد ]20[.
جدول (1-5)مشخصات مولد مارکس قطعه ای مدلA 43733
ردیف مشخصات مدل A 43733
1 تعداد طبقات مستقل 12
2 ولتاژ شارژ(کیلوولت) 25
3 ولتاژ خروجی(کیلوولت) 300
4 جریان خروجی (کیلو آمپر) 5
5 پهنای پالس (نانو ثانیه) 30
6 راندمان ولتاژ (درصد) %50
3.4.1 اصول کلید زنی در پلاسما
در کاربردهای توان پالسی قدرت بالا به کلیدهایی نیاز است که توانایی تحمل توان تا حد تراوات و زمان شکست الکتریکی آن در گستره نانو ثانیه واقع شود. کلیدهای معمولی از قبیل نمونه هایی که در کاربردهای عادی ولتاژ بالا مورد استفاده قرار می گیرند جهت برآورده کردن این نیازها مناسب نیستند. بنابراین توسعه انواع جدید کلیدها بر مبنای تکنولوژی انتقال انرژی در پلاسما اجتناب ناپذیر است. کلیدهای قدرت بالا به دو گروه کلیدهای باز و بسته تقسیم می شوند.
همان طور که در مقدمه ذکر شد، در سیستم های توان پالسی پلاسما مهم ترین المان در قسمت شکل گیری پالس، کلید قدرت بالا هستند. هم چنین برای انتقال مقادیر زیادی از انرژی ذخیره شده با دامنه بالا و طول پالس کوتاه به سر بار نیز استفاده می شود، بنابراین با توجه به مشخصات بار، این کلیدها باید دارای ویژگی کار با ولتاژ وجریان زیاد (با سطح ولتاژی بین 10 کیلوولت تا چند مگاولت) و دامنه زمان صعودی کوتاه( درحد نانو ثانیه تا چند میکرو ثانیه) را داشته باشند. برای چندین دهه است که کلیدهای پلاسمایی را با مشخصه انتقال انرژی خوب و قابلیت تحمل بالای ولتاژ آن می شناسند. از کلیدهای پلاسمایی نوع بسته را می توان به اسپارک گپ های گازی، ایگنترون ها،تایترون ها و... اشاره کرد که برای بررسی جزئیات بیشتر می توان به منابع مراجعه کرد]21,22[
استفاده از کلیدهای حالت جامد پلاسمایی به صورت کمپکت با تجهیزات جانبی(مدارات کنترلی و ...) با توجه به کارایی مطلوب آن در بازه زمانی طولانی ، دامنه کاری وسیع آن و عمر مفید بالای کلیدها با توجه به نرخ خرابی کم در این کلیدها که منجر به افزایش قابلیت اطمینان و راندمان سیستم های توان پالسی می شود، روبه افزایش است. با این حال قابلیت های فعلی این کلیدها از جمله : ولتاژ شکست و حداکثر جریان عبوری، هنوز هم قادر به تحمل پارامترهای کلیدی سیستم های توان پالسی بزرگ و پیچیده مورد استفاده در پلاسما نمی باشند. جدول (1-6) به طور خلاصه به برخی از پارامتر های اصلی کلیدهای گازی نوع بسته پلاسمایی مانند اسپارک گپ ها و ... هم چنین برای کلیدهای حالت جامد مانند تریستور، IGBT و ماسفت اشاره می شود.
ردیف
نوع کلید حداکثر جریان (کیلو آمپر) ولتاژ شکست
(کیلو ولت) افت ولتاژ مجاز
(ولت)
1 اسپارک گپ 1000-10 100 20
2 ایگنترون 10-1 30 150
3 تایترون 100-5 35 200
4 تریستور 50-1 5-1 2
5 IGBT 1 1 3
6 ماسفت 0.1 1 1
جدول(1-6) کلیدهای نیمه هادی با حالت گازی در منابع توان پالسی مورد استفاده در پلاسما
در سیستم های توان پالسی بستن کلیدهای پلاسمایی که در حالت عادی باز هستند، برای تحریک مدار به کار می رود. شکل کلی این نوع کلیدها به صورت دو الکترود با یک عایق در میان آن می باشد. به طور کلی تحریک کلیدها با افزایش بار حامل عایق های میانی آن به نوع کلید و ساختار گوناگون آن بستگی دارد. با توجه عملکرد بار حامل در این کلیدها، حالت شکست یا عمل بسته شدن کلید انجام می پذیرد.
4.4.1 شبکه های شکل دهی پالس
در سیستم توان پالسی پلاسما دو هادی الکتریکی که بین آنها ولتاژ اعمال شود و بتواند جریان الکتریکی را انتقال دهد، به عنوان خط انتقال در نظر گرفته می شود. در بسیاری موارد هیچ تمایز مشخصی بین خط انتقال و یک مدار الکتریکی عادی وجود ندارد. که در این حالت دو عامل طول هادی ها و طول موج ولتاژ اعمالی تعیین کننده است. اگر طول موج ولتاژ اعمال شده در مقایسه با طول هادی ها بسیار بلند باشد می توان دو هادی را به عنوان یک مدار الکتریکی در نظر گرفت در غیر این صورت باید آنها را در قالب خط انتقال مورد تحلیل قرار داد. خطوط استاندارد انتقال در سیستم های توان پالسی، که به صورت تجاری تولید می شوند و معمولا از نوع هم محور هستند، دارای امپدانس 50 اهم هستند. البته دست یابی به دیگر امپدانس ها با ایجاد خطوط شکل دهی پالس نواری امکان پذیر است. اگر این خطوط در ولتاژ های بالایی قرارگیرند این روش، هزینه بر و مشکل است. مشکل دیگر مربوط به سرعت انتشار امواج الکترومغناطیسی در خطوط انتقال است. می دانیم که سرعت انتشار متناسب با نفوذپذیری نسبی یا ثابت دی الکتریک ماده ای است که برای عایق کاری بین دو رسانای سازنده خط به کار برده می شود. ماده ای که به طور متداول مورد استفاده قرار می گیرد، نوعی پلاستیک پلیمر مانند پلی پروپیلن است که ثابت دی الکتریک آن تقریبا کوچک است. از این رو سرعت انتشار موج بر روی این خط در حدود 108*2 متر در ثانیه و معادل 20 سانتیمتر در هر نانو ثانیه است. بنابراین برای ایجاد یک پالس به طول یک میکرو ثانیه با استفاده از یک خط شکل دهنده پالس، به خط انتقالی معادل 100 متر نیاز خواهد بود. برای تولید پالس های طولانی استفاده از این روش امکان پذیر نیست مگر آن که از خط های نواری که با موادی با ثابت دی الکتریک بالا عایق بندی شده اند، استفاده گردد.
یکی از روش های تحلیل و بررسی شبکه های شکل دهی پالس، شبیه سازی خط با استفاده از شبکه نردبانی متشکل از سلف و خازن ها است که در شکل (1-10) نشان داده است. انرژی آزاد شده از این خط که ناشی از پالس های مربعی است معمولا در خازن های شبکه نردبانی ذخیره می شوند.این شبکه به عنوان یک شبکه تغذیه کننده ولتاژ نیز شناخته می شود. با توجه به امکان ذخیره سازی مغناطیسی انرژی در القاگر های شبکه، در این حالت به آن شبکه تغذیه کننده جریان نیز می گویند. اطلاعات بیشتر در مورد مشخصات امپدانسی، معادلات تبدیل و ویژگی های انتشار و... در یک شبکه نردبانی LC را می توان درمرجع ]23[ مشاهده کرد.

شکل (1-10)آرایش مختلفی از شبکه نردبانی مورد استفاده در شبکه های شکل دهی پالس
5.4.1 خط انتقال بلوملین
یک ایراد مهم شبکه های شکل دهی پالس در سیستم توان پالسی پلاسما آن است که در شرایط تطبیق امپدانس ، دامنه پالس روی بار الکتریکی برابر با نصف دامنه ولتاژ شارژ کننده است. این مشکل را می توان با استفاده از خط شکل دهنده پالس بلوملین برطرف کرد. یک خط انتقال بلوملین از دو خط انتقال ساده که به یکدیگر متصل شده اند، تشکیل می گردد. این دو خط به صورت موازی باردار و به صورت سری تخلیه می شوند. در صورت صحت اتصالات در ورودی و بار ، دامنه ولتاژ خروجی در آنها تا دو برابر سطح ولتاژ خروجی یک خط انتقال خواهد رسید. خط بلوملین را می توان به صورت استوانه ای یا به شکل صحفه ای موازی ساخت. در بیشتر کاربردهای پالس های قدرت بالا، فضای بین استوانه ها با نوعی دی الکتریک مایع ، نظیر روغن یا آب پر می شود. یک کلید در بین استوانه های میانی و داخلی برای کنترل ولتاژ خط وجود داردکه در شکل(1-11) نشان داده شده است. شعاع استوانه ها را به گونه ای انتخاب می شوند که امپدانس مشخصه در تمام طول خط یکنواخت باشد و ولتاژ مورد نیاز تامین گردد. معمولا بار الکتریکی بین استوانه های داخلی و خارجی متصل می شود و تغذیه ولتاژ ورودی از طریق استوانه میانی صورت می گیرد. به طور ایده آل خط بلوملین را به گونه ای طراحی می کنیم که دارای ولتاژ و جریان خروجی زیاد ،با راندمان انتقال انرژی وتوان نزدیک به یک باشدکه در نتیجه باعث افزایش قابلیت اطمینان و کاهش ابعاد آن می شود.

شکل (1-11) آرایش خط انتقال بلوملین
5.1 اهداف مورد بررسی در این پژوهش
بهبود قابلیت اطمینان و راندمان در منابع توان پالسی با توجه به کاربرد آن در پلاسما ارتباط اساسی با مشخصات سیستم های توان پالسی دارد. اخیرا با توجه به استفاده متعدد از منابع توان پالسی در حوزه های صنعتی و هسته ای ، تحقیقات و بررسی زیادی در مورد استفاده بهینه فناوری توان پالسی صورت گرفته است. با توجه به مطالعات صورت گرفته در این زمینه ، این پایان نامه، یک توپولوژی جدید مبتنی بر مبدل باک – بوست مثبت را پیشنهاد می کند که می توان با مدل کردن یک منبع جریان در منابع توان پالسی، امکان کنترل شدت جریان را در حالت تغذیه بارداشته باشیم. بخش اصلی در این آرایش استفاده از کلید های نیمه هادی با ولتاژ کاری مناسب برای تولید ولتاژ های بالا می باشد. در خروجی این توپولوژی تعداد مشخصی از کلید – دیود – خازن به منظور تبادل انرژی منبع جریان با توجه به نوع ولتاژ و تولید توان پالسی کافی با مقدار ولتاژی مناسب طراحی شده است. با شبیه سازی در محیط نرم افزاری MATLAB/SIMULINK، کارایی و قابلیت اجرا بودن این توپولوژی به اثبات رسیده است که بهبود راندمان و قابلیت اطمینان منبع توان پالسی از مزایای کاربردی و مهم آن است
6.1 نتیجه گیری
در این فصل ابتدا به بررسی فناوری سیستم های توان پالسی و حوزه های کابردی آن پرداخته شد و سپس جهت آشنایی با محیط پلاسما منحنی ولتاژ- جریان مورد تحلیل قرار گرفت و در انتها تکنولوژی های به کار رفته در منابع توان پالسی پلاسما با توجه به آرایش ساختاری شان ارائه شد. با توجه به اهمیت بهبود راندمان و قابلیت اطمینان منابع توان پالسی ، در فصل بعدی توپولوژی های موجود برای منابع توان پالسی پلاسما مورد بررسی و تحلیل قرار می گیرد و توپولوژی پیشنهادی با توجه به تاثیر آن در افزایش قابلیت اطمینان و راندمان انتخاب می شود.

فصل دوم

بررسی توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما

1.2 مقدمه
استفاده از منابع توان پالسی در فرآیندهای مختلف پلاسما با توجه به ارتباط برقرار شده بین آنها رو به افزایش است. با توجه به تحقیقات به عمل آمده در این مورد، طراحی منابع توان پالسی با هدف کاهش تلفات و افزایش راندمان می تواند تاثیرات کلیدی درکاربردهای پلاسما (از جمله تصفیه سازی مایعات و...) بگذارد. برای درک بهتر از ماهیت منابع توان پالسی و اثرات متقابل آن برحوزه های توسعه یافته پلاسما، با طراحی یک منبع توان پالسی که متشکل از المان های الکترونیک قدرت می باشد می توان روند استفاده از منابع توان پالسی در پلاسما را ارتقا داد.
2.2 توپولوژی های موجود برای منابع توان پالسی مورد استفاده در پلاسما
تکنولوژی کلیدهای قدرت بالا با توجه به نوع کاربرد آن در منابع توان پالسی پلاسما و نسبت به تغییر و تحولات صورت گرفته در عرصه فناوری قطعات نیمه هادی الکترونیک قدرت، متفاوت و گوناگون هستند. تریستور IGBT,،ماسفت و ... نمونه ای از کلیدهای قدرتی هستند که به عنوان کلیدهای نیمه هادی حالت جامد شناخته می شوند. در منابع توان پالسی پلاسما برای داشتن dv/dt بالا، نیاز به کلید زنی سریع (کلیدزنی آن حالت گذرای کوچکی داشته باشد) است و این مشخصه ، نقش کلیدی در شکل گیری توپولوژی منابع توان پالسی پلاسما دارد. درکلیدهای قدرت بالا مورد استفاده در سیستم های توان پالسی، بازه زمانی کلید زنی با حالت گذرا و روند جابجایی و انتقال سیگنال عبوری آن از نانو ثانیه تا میکرو ثانیه است. کلیدزنی گذرا مستقیما برروی کارایی و قابلیت اطمینان سیستم های توان پالسی تاثیر می گذارد و از هدایت الکتریکی ادوات نیمه رسانا سیستم جلوگیری می کند. اکثر منابع توان پالسی مورد استفاده در پلاسما مشخصات مقاومتی – خازنی دارند. بنابراین در توپولوژی پیشنهادی یک منبع جریان برای تامین بارها ضروری است. در این فصل به بررسی توپولوژی های موجود و روش های کنترلی آن می پردازیم :
1.2.2 توپولوژی مبتنی بر مولد مارکس
معمولا ازکلیدهای گازی اسپارک گپ مغناطیسی در کلید زنی منابع توان پالسی پلاسما مورد استفاده قرار می گرفت اما اخیرا با توجه به استفاده گسترده از تکنولوژی حالت جامد در مولدهای مارکس توان پالسی، عملکرد سیستم را از لحاظ راندمان و قابلیت اطمینان بهبود بخشیده است. شکل (2-1) نمونه ای از مولد مارکس را در در حالت شارژ و دشارژ نشان داده است. برای آشنایی با کارایی این توپولوژی در پلاسما به چند مورد از کاربردهای آن با شرح توضیحات اشاره می شود. از مولد مارکس در این توپولوژی می توان به عنوان منبع تحریک در پلاسما استفاده کرد. مدار ارائه شده در این حالت از دو مولد مارکس حالت جامد با اتصال موازی با استفاده از ترانزیستورهای دوقطبی به عنوان کلید بسته استفاده می شود. در این توپولوژی زمان بازدهی ترانزیستورهای دوقطبی در حالت شکست بهمنی به صورت سریع افزایش می یابد. در این طراحی با توجه به پلارتیه مثبت و منفی پالس ها به راحتی می توان تغییراتی از جمله : افزایش مقدار بازدهی یا کاهش مقدار ولتاژ خروجی را داشته باشیم. در مطالعه دیگری، توپولوژی مبتنی بر مولد مارکس، شامل یک مدولاتور مارکس متشکل از IGBT های مجزا و مدار تشدید پالس مغناطیسی است که برای فشرده سازی پالس خروجی مارکس و کاهش تاثیر نسبتا تدریجی فعالیت IGBT در مدولاتور مارکس است. استفاده از این توپولوژی درسطح ولتاژی مختلف برای منابع توان پالسی پلاسما دارای شاخصه های کلیدی است که به طور خلاصه می توان به آن اشاره کرد: در ولتاژ 1.3 کیلوولت، استفاده از یک تقویت کننده ولتاژ بالا به همراه مولد مارکس متشکل ازکلیدهای ماسفت الزامی است. در ولتاژ 2000 ولت، نیاز به مولد مارکس 20 طبقه است که در هر طبقه آن شامل مجموعه ای از IGBT و دیود و خازن است.
فناوری مولدهای مارکس را می توان با جایگزین کردن کلیدهای حالت جامد مانند IGBT ها و مجموعه های دیود و خازن متصل به آن ، به جای کلید های گازی اسپارک گپ در سیستم های توان پالسی پلاسما ارتقا بخشید که در نتیجه سیستم های توان پالسی ارائه شده دارای ویژگی هایی از قبیل سادگی و فشردگی ابعاد، قابلیت اطمینان بالا و عمر مفید طولانی می باشد. با توجه به مزایای زیاد استفاده از توپولوژی مبتنی بر مولد مارکس ، می توان بسیاری از کاربردهای ولتاژ بالای پلاسما را به این توپولوژی اختصاص داده شود]24[.

شکل (2-1) الف) نمونه ای از توپولوژی مبتنی بر مولد مارکس ،ب) حالت شارژ مولد ، ج) حالت دشارژ
2.2.2 توپولوژی مبتنی بر مبدل های Dc - Dc
در میان تمام توپولوژی های مورد استفاده در سیستم های توان پالسی پلاسما توسط ادوات الکترونیک قدرت، توپولوژی مبتنی بر مبدل هایdc-dc از اهمیت ویژه ای برخوردار است. تغییرات سطح ولتاژی مناسب یکی از نیازهای اساسی در بسیاری از کاربردهای منابع توان پالسی پلاسما می باشد. برای بسیاری از دستگاه ها و مدارات کنترلی سیستم توان پالسی پلاسما یک ترانسفورماتور که عهده دار تبدیل ولتاژ سیستم می باشد، مورد نیاز است. استفاده از ترانسفورماتورها به همراه مبدل های dc-dc را می توان به عنوان یک روش عملی و موثر برای افزایش قابلیت اطمینان و راندمان سیستم های توان پالسی پلاسما ارائه کرد. حالت های کلید زنی منابع توان پالسی به عنوان یک روش کاربردی برای بارهای غیر خطی پلاسما شناخته شده است. از مبدل های dc-dc نیز می توان به عنوان رگولاتور در حالت کلیدزنی منابع توان پالسی استفاده کرد تا یک ولتاژ dc که معمولا به صورت تنظیم نشده است را به یک ولتاژ خروجیdc تنظیم شده تبدیل کند. عمل رگولاتوری درحالت کلیدزنی، توسط فناوری مدولاسیون پهنای پالس(PWM) در یک فرکانس ثابت انجام می شود و المان های کلیدزنی معمولا یک ترانزیستور دو قطبی یا ماسفت است. حالت کلیدزنی گذرا، اثرات زیان باری بر کیفیت توان و راندمان منابع توان پالسی دارد. برای سنجش کیفیت توان منابع توان پالسی که به یک شبکه توزیع شده پلاسما متصل است باید هارمونیک تزریقی جریان و توان راکتیو سیستم را درنظر گرفت. برای افزایش کیفیت توان و کاهش اثرات هارمونیک های جریان سیستم توان پالسی، می توان از تنظیم کننده های ضریب قدرت در انواع مختلف (اکتیو و راکتیو) استفاده نمود.
توپولوژی مبتنی بر مبدل هایdc-dc در منابع توان پالسی پلاسما، شامل مبدل های: باک، بوست، باک- بوست و کاک است که می تواند به صورت تک کاناله یا چند کاناله مورد استفاده قرار گیرد]25[. مشخصات این مبدل ها به صورت خلاصه به شرح ذیل می باشد:
1.2.2.2 مبدل باک
در یک مبدل باک، ولتاژ خروجی کمتر از ولتاژ ورودی است. شکل(2-2) مدار معادل آن را نشان می دهد. عمل مداری مبدل باک در دو مرحله کلیدزنی طراحی و بررسی می شود.

شکل(2-2)مبدل باک
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان ورودی که در حال افزایش است از داخل سلف (L) و خازن(C) و مقاومت بار (R) به جریان می افتد.
مرحله دوم: هنگامی آغاز می شود که ترانزیستور SW در t=t1 قطع می شود. دیود هرزگرد(D) به دلیل انرژی ذخیره شده در سلف همچنان هدایت می کند و جریان سلفی از سلف، خازن، بار و دیود هرزگرد(D) می گذرد. با کاهش جریان سلفی، ترانزیستور SW مجددا در سیکل بعدی وصل می شود.
مبدل باک ساده بوده زیرا فقط به یک ترانزیستور احتیاج دارد و راندمان بالایی دارد. مقدار di/dt جریان بار توسط سلف (L) محدود می شود. اما جریان ورودی متغیر بوده و معمولا به یک فیلتر ورودی بالانس کننده احتیاج است. این فیلتر یک پلارتیه برای ولتاژ خروجی و جریان خروجی یکسو شده فراهم می کند. در وضعیتی که احتمال اتصال کوتاه شدن مسیر دیود وجود داشته باشد مدار حفاظت نیز لازم است. مدار معادل وضعیت مبدل باک در دو مرحله کلیدزنی مذکور و شکل موج های جریان – ولتاژ آن در شکل (2-3) نشان داده شده است

شکل(2-3)شکل موج های ولتاژ – جریان و مدارمعادل مبدل باک : (الف) کلید وصل (ب) کلید قطع
2.2.2.2 مبدل بوست
در یک مبدل بوست، ولتاژ خروجی از ولتاژ ورودی بیشتر است. شکل(2-4) مدار معادل آن را نشان می دهد.عمل مداری این مبدل در دو مرحله قابل بیان است.

شکل(2-4)مبدل بوست
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان ورودی شروع به زیاد شدن کرده و از سلف (L) و ترانزیستور SW می گذرد.
مرحله دوم: هنگامی آغاز می شودکه ترانزیستور SW درt=t1 قطع می شود. جریانی که تاکنون از ترانزیستور SW عبور می کرد، حال از سلف (L)، خازن (C)، دیود هرزگرد(D) و بار می گذرد. با کاهش جریان سلفی در سیکل بعدی ترانزیستور SW مجددا وصل می شود و انرژی ذخیره شده در سلف (L)، به بار منتقل می شود. مدار معادل وضعیت مبدل افزاینده در دو مرحله کلیدزنی مذکور و شکل موج های جریان – ولتاژ آن در شکل (2-5) نشان داده شده است.
مبدل بوست می تواند ولتاژ خروجی را بدون کمک ترانسفورماتور افزایش دهد و چون در آن فقط یک ترانزیستور وجود دارد، راندمان بالایی دارد. جریان ورودی ، پیوسته است اما پیک جریان گذرنده از ترانزیستور قدرت، مقدار بزرگی دارد. ولتاژ خروجی نیز حساسیت زیادی نسبت به تغییرات سیکل کاری مبدل دارد و از این رو ممکن است پایدار ساختن مبدل، دشوار باشد. هم چنین ترانزیستور با بار موازی شده است ، حفاظت کردن از آن در هنگام اتصال کوتاه مشکلاتی دارد.
در حالت کلیدزنی منابع توان پالسی پلاسما، می توان از یک مبدل بوست بین پل یکسوساز و خازن های ورودی مدار استفاده کرد. این مبدل سعی می کند تا ولتاژ خروجیdc سیستم ثابت باشد، تا زمانی که فرکانس با ولتاژ خط متناسب است، جریان عبوری نیز پیوسته است.

شکل(2-5)شکل موج های ولتاژ – جریان و مدارمعادل مبدل بوست : (الف) کلید وصل (ب) کلید قطع
در حالت دیگر، ارایه ولتاژ خروجی مطلوب با توجه به ولتاژ dc سیستم می باشد که این روش نیاز به افزودن کلیدهای نیمه هادی با روش های کنترلی مطلوب است که المان های آن در ابعاد کوچکتر و کمپکت ارائه می شود.
3.2.2.2 مبدل باک - بوست
مبدل باک – بوست، ولتاژ خروجی تولید می کند که می تواند کوچکتر یا بزرگتر از ولتاژ ورودی باشد. پلارتیه ولتاژ خروجی، مخالف پلارتیه ولتاژ ورودی می باشد. هم چنین این مبدل، به مبدل وارون ساز یا تغذیه معکوسنیز معروف است]26[.که شکل (2-6) مدار معادل آن را نشان می دهد. عمل مداری این مبدل در دو مرحله قابل بیان است:

شکل(2-6)مبدل باک - بوست
مرحله اول : هنگامی آغاز می شود که ترانزیستور SW وصل بوده و دیود هرزگرد(D) بایاس معکوس است. جریان ورودی که در حال افزایش است از سلف (L) و ترانزیستور SW می گذرد.
مرحله دوم : هنگامی آغاز می شود که ترانزیستور SW قطع است. جریانی که از ترانزیستورSWعبور می کرد، اکنون از سلف (L)، خازن (C)، دیود هرزگرد(D) و بار می گذرد. اکنون انرژی ذخیره شده در سلف (L)، به بار منتقل می شود و جریان سلف کاهش می یابد تا این که ترانزیستور SWدر سیکل بعد مجددا وصل شود. مدار معادل وضعیت مبدل باک - بوست در دو مرحله کلیدزنی مذکور و شکل موج های جریان - ولتاژ آن در شکل (2-7) نشان داده شده است.
مبدل باک – بوست این امکان را می دهد که بدون در اختیار داشتن ترانسفورماتور، پلارتیه ولتاژخروجی معکوس شود، راندمان بالایی دارد و حفاظت خروجی در مقابل اتصال کوتاه نیز به سادگی امکان پذیر است اما جریان ورودی متغیر بوده و مقدار جریان عبوری از ترانزیستور مدار نیز مقدار بزرگی است. بر خلاف مبدل های باک و بوست ، این مبدل هنگامی که بدون ایزولاسیون مورد استفاده قرار گیرد در خروجی مبدل ولتاژی با پلارتیه منفی قرار می گیرد.
البته می توان یک توپولوژی جدید بر اساس مبدل باک – بوست با پلارتیه ولتاژی مثبت در خروجی را مطرح کرد. در شکل (2-8) مدار معادل مبدل باک – بوست مثبت نشان داده است. یک مبدل باک - بوست مثبت می تواند به صورت تک خروجی یا چند خروجی باشد که آرایش آن شامل مبدل های باک و بوست با اتصال طبقاتی است.

شکل(2-7)شکل موج های ولتاژ - جریان و مدارمعادل مبدل باک - بوست : (الف) کلید وصل (ب) کلید کلیدقطع

شکل(2-8) مبدل باک – بوست مثبت
4.2.2.2 مبدل کاک
آرایشی که شامل ترکیب مبدل باک– بوست با اتصال سری، که ولتاژ خروجی بزرگتر یا کوچکتر از ولتاژ ورودی است و پلارتیه ولتاژ خروجی مخالف ولتاژ ورودی است، به نام مبدل کاک شناخته می شود. که به نام مخترع خود از انیستیتوی تکنولوژی کالیفرنیا نام گذاری شده است]27[. شکل (2-9) مدار معادل آن را نشان داده است. عمل مداری این مبدل در دو مرحله قابل بیان است:

شکل (2-9)مبدل کاک (Cuk)
مرحله اول: هنگامی آغاز می شود که ترانزیستور SW در t=0 وصل می شود. جریان عبوری از سلف (L1) افزایش می یابد در همان موقع ولتاژ خازن (C1)، دیود هرزگرد(D) را در حالت بایاس معکوس قرار داده و آن را قطع می کند. بنابراین انرژی خازن(C1) به مداری که توسط خازن (C2)، سلف (L2) و بار تشکیل شده تحویل داده می شود.
مرحله دوم : هنگامی آغاز می شود که ترانزیستور SW در t=t1 قطع می شود. خازن (C1) از منبع ورودی شارژ شده و انرژی ذخیره شده در سلف (L2)، به بار منتقل می شود. دیود هرزگرد(D) در حالت بایاس مستقیم قرار می گیرد و همزمان با ترانزیستور SW در آن کلید زنی صورت می گیرد. شکل (2-10)مدار معادل حالت کلید زنی مبدل کاک را نشان داده است.

شکل (2-10)مدار معادل مبدل کاک در حالت های کلید زنی : الف) حالت وصل کلید ب) حالت قطع کلید
مبدل کاک بر اساس خاصیت انتقال انرژی خازنی ساخته شده، درنتیجه جریان ورودی پیوسته می باشد. تلفات کلیدزنی کم و راندمان زیادی دارد. درحالتی که کلید وصل است جریان هر دو سلف از آن عبور می کند که پیک جریان کلید را افزایش می دهد. شکل (2-11)، شکل موج های جریان – ولتاژ مبدل کاک را نشان داده است.

شکل (2-11) شکل موج های جریان و ولتاژ مبدل کاک در حالت های کلید زنی
5.2.2.2 مبدل های تشدیدی با کلیدزنی نرم
یک دسته جدید از مبدل های dc-dc درحوزه الکترونیک قدرت با نام مبدل های تشدیدی با کلیدزنی نرم شناخته شده اند. کلیدزنی نرم بدین معنی است که در یک یا چند کلید به کار رفته در مبدلdc-dc، تلفات کلیدزنی در حالت قطع و وصل شدن کلید حذف شده است. نوع دیگری از کلیدزنی که مطرح می شود، کلیدزنی سخت است که در آن هم حالت قطع و وصل کلیدهای قدرت در سطوح ولتاژ و جریان بالا انجام می شود. بسیاری از تکنیک های کلیدزنی نرم برای اصلاح رفتار کلیدزنی مبدل های تشدیدی dc-dc وجود دارد. دو تکنیک مهم برای رسیدن به کلیدزنی نرم وجود دارد: کلید زنی جریان صفر و کلید زنی ولتاژ صفر.
در ساختار مبدل تشدیدی با کلید زنی نرم، یک شبکه تشدیدLC اضافه می گردد تا شکل موج جریان یا ولتاژ ادوات کلیدزنی را به صورت یک موج نیمه سینوسی شکل دهد تا یک شرط ولتاژ صفر یا جریان صفر را در مدار ایجاد کند. یک روش ایجاد نمودن یک پدیده تشدید کامل در این مبدل ها، استفاده از ترکیبات سری یا موازی عناصر تشدید می باشدکه برای dc-dc کردن آن از طریق یک طبقه اضافی یعنی طبقه تشدید، که در آن سیگنال dc به سیگنال ac فرکانس بالا تبدیل می گردد، انجام می گیرد. از نظر مداری، یک مبدل تشدید dc-dc را می توان با سه بلوک مداری شرح داد.که شکل(2-12) نشان داده است.
ولتاژ خروجی dc
ولتاژ ورودی dc
یکسوساز ac-dc
حالت تشدید
وارون ساز dc-ac

شکل (2-12) مبدل تشدید با کلیدزنی نرم
نوع وارون ساز در مبدل های تشدیدی با کلید زنی نرم، از انواع مختلف ساختار های شبکه کلیدزنی به دست می آید. حالت تشدید،که به عنوان یک بلوک میانی بین ورودی و خروجی مبدل به کار گرفته می شود، معمولا با یک شبکه دارای فیلتر فرکانس، ترکیب می گردد. علت استفاده از این شبکه، تنظیم نمودن جریان شبکه از منبع به بار است. از مبدل های تشدید با کلیدزنی نرم می توان در مشعل های پلاسما با سطح توانی بالاتر از 30 کیلووات، استفاده کرد. از مبدل های تشدید سری با کلیدزنی ولتاژ صفر نیز می توان در منابع توان پالسی ولتاژ بالا استفاده کرد. مزیت توپولوژی مبتنی بر مبدل های تشدیدی با کلیدزنی نرم ، شامل کموتاسیون طبیعی کلیدهای قدرت پلاسمایی می باشد که منجر به کاهش تلفات قدرت کلیدزنی، افزایش راندمان و فرکانس کلیدزنی سیستم های توان پالسی می شود و در نتیجه کاهش اندازه ، وزن سیستم و کاهش احتمالی تداخلات الکترومغناطیسی را به دنبال دارد. عیب مهم تکنیک های کلید زنی ولتاژ یا جریان صفر در مبدل های تشدید آن است که برای تنظیم خروجی، نیاز به کنترل فرکانس متغیر است. که به واسطه آن مدار کنترلی پیچیده تر می شود و هارمونیک های ناشی از تداخلات الکترومغناطیسی ناخواسته که در تغییرات زیاد بار تولید می شود بسیار نامطلوب است.
با بررسی مقالات منتشر شده در مورد توپولوژی مبتنی بر مبدل های dc-dc توسط ادوات الکترونیک قدرت با توجه به انواع مبدل ها، در کاربردهای مختلف منابع توان پالسی پلاسما، می توان به نتایج جامعی در این باره دست یافت که چکیده آن در جدول های مقایسه ای (2-1) و (2-2) آمده است]28[.
جدول(2-1) شاخص های کلیدی مبدل های dc - dc
ردیف نوع مبدل
مبدل
باک
مبدل بوست
مبدل
باک- بوست
مبدل
باک- بوست مثبت مبدل
کاک
شاخصه ها 1 سطح ولتاژ خروجی کمتر از ولتاژ ورودی بیشتر از ولتاژ ورودی هر دو حالت
هردو حالت هر دو حالت
2 پلارتیه خروجی موافق ورودی موافق ورودی مخالف ورودی مخالف ورودی مخالف ورودی
3 سطح عایقی کم کم زیاد زیاد کم
5 کنترل اضافه جریان وجود ندارد وجود ندارد وجود دارد وجود دارد وجود دارد
6 قابلیت اطمینان کم متوسط متوسط بالا متوسط
7 راندمان متوسط متوسط بالا بالا متوسط
جدول(2-2) شاخص های کلیدی مبدل های تشدید با کلید زنی نرم
ردیف شاخصه ها حالت کلیدزنی اولیه حالت کلیدزنی ثانویه سطح ولتاژ خروجی راندمان
نوع مبدل وصل قطع وصل قطع کم زیاد کم باری بار کامل
1 مبدل تشدید NV ZVS ZVS ZVS di/dt- زیاد ___ * کم بالا
2 مبدل تشدید نیم پل ZVS ZVS ZVS ZCS ___ * متوسط بالا
3 مبدل تشدید دو برابر کننده جریان نیم پل سخت
ZCS ZVS ZVS زیاد
di/dt * __ متوسط بالا
4
مبدل تشدید دو برابر کننده جریان تمام پل ZVS
سخت
ZVS ZVS زیاد
di/dt * __ کم بالا
5 مبدل تشدیدی ترکیبی ZVZC با ترانسفورماتور پالسی ZVS
ZVS/ZCS ZVS ZCS __ * کم بالا

=19

،،و تابع هایی به اندازه ی کافی هموار هستند که سرعت همگرایی و سازگاری روش دیفرانسیل مسائل مورد نظر را حفظ می کنند.در معادله ذکر شده ثابت های مثبت و ثابت نا منفی می باشد. موارد خاص معادله موج ذکر شده در بالا در مجموعه ای گسترده از مسائل فیزیک ، شیمی ، زیست شناسی و...مطرح می شود.
به عنوان مثال اگر مثبت و و معادله مذکور به صورت معادله تلگرافدر می آید که دسته ای از پدیده هایی مانند: انتشار موج های الکترو مغناطیس در ابر رسانه ها و همین طور انتشار فشار امواج در گردش پلاستیکی خون در سرخ رگ ها و یا حرکت دوبعدی ذرات در جریان سیالات را بیان می کند.
زمانی که و باشد معادله ذکر شده یک معادله معروف غیر خطی کلین-گوردون می شود.
زمانی که با و معادله بالا به نوعی معادله ی سینو-گوردون متعلق است.
معادلات سینو- گوردون و کلین- گوردون همچنین مدل برخی از پدیده های فیزیکی[43 ،45 ،52] شامل انتشار حدفاصله در اتصال جوزفسون میان دو ابر رسانه ، تعامل راه حل ها در یک پلاسما بدون برخورد و ... از نوع معادلات موج هذلولوی هستند.
آنالیز جواب معادلات سینو- گوردون و کلین- گوردون در [52،53،57] بحث و بررسی شده است.
در طی سالیان محققان توجه زیادی به توسعه و کاربرد روش های فشرده با مرتبه بالا داشته اند.
روش ها فشرده مرتبه بالا در مقایسه با روش استاندارد دارای مزایای منحصر بفرد همچون دقت بالاو فشردگی برای امواج با دوره تناوب بالا هستند و دارای کاربرد در مسائل بسیاری مانند مسائل مالی، مکانیک کوانتوم ، بیولوژی و دینامیک سیالات می باشند. روش های تفکیک اپراتور همچون روش های ضمنی مسیر متناوب و روش های یک بعدی موضعی ثابت شده در تقریب جواب های مسایل هذلولوی چند بعدی بسیار مناسب و مفید هستند.
روش ضمنی مسیر متناوب اولین بار توسط دونالد پیچمن و هنری واچفورد درسال 1955و جیم داگلاس و راچفورد [23و29] برای حل ضمنی معادله گرمای دو بعدی مطرح گردید. این روش را در آن زمان با محدودیت های کامپیوتری موجود با ارائه روش تجزیه در تراز زمانی نصف گام حل کردند. آن ها ابتدا معادله گرما را در یک بعد و سپس در بعد دوم حل کردند هر یک از این افراد یک ماتریس سه قطری منحصر به فرد به دست اوردند و این روش به مرحله اجرا درامد. روش ضمنی مسیر متناوب به سرعت توسط داگلاس و راچفورد (1956) ، بریان (1961) و داگلاس(1962) به سه بعد توسعه یافت و داگلاس پیچمن و راچفورد پایداری و همگرایی روش را ثابت کردند.به خاطر اهمیت معادلات دیفرانسیل تحقیق روی الگوریتم های عددی آن ها همیشه یک موضوع فعال در محاسبات عددی به شمار می آید . امروزه روش های تفاضلی به طور مداوم مطرح می شوند و روش ضمنی مسیر متناوب برای معادلات چند بعدی به واسطه پایداری نا مشروط و کارایی بالا مورد توجه هستند.
روش یک بعدی موضعی که توسط دیاکولو [10و11] ارائه شد روش کارآمدی است که معادلات دویا سه بعدی را پی در پی به دستگاه های یک بعدی کاهش می دهد و روش یک بعدی موضعی توسعه یافته توسط وانگ [12و6] را می‌توان برای معادلات ناهمگن به کاربرد اما وجود عبارت های اختلالی زیاد دقت ان را تحت تأثیر قرار می‌دهد . روش ضمنی مسیر متناوب مرتبه دوم توسط کین را فقط می توان برای معادلات سه بعدی با شرایط مرزی همگن به کاربرد. با توجه به کاربرد روش های ضمنی مسیر متناوب برای حل معادلات هذلولوی و سهموی با مقادیر اولیه و مرزی این گونه روش ها مورد توجه قرار گرفتند [6و14و11و12و13و14و16و21و32] نتایج عددی به دست امده با دقت بالا و هزینه های محاسباتی پایین به توسعه روش ضمنی مسیر متناوب فشرده مرتبه بالا منجر شد. برای آشنایی بیشتر با روش ضمنی مسیر متناوب خواننده علاقه‌مند را به [21] ارجاع می دهیم. به تازگی توسعه و کاربرد روش های تفاضل متناهی فشرده برای حل معادلات نفوذ- انتقال پایای دوبعدی ، با استفاده از بسط سری ها معادله دیفرانسیل را به یک روش تفاضل متناهی فشرده نه نقطه ای مرتبه چهار توسعه دادند که جواب های عددی مرتبه بالا را نتیجه گرفتند به طور مشابه طرح فشرده مرتبه بالا توسط افراد دیگر توسعه یافت [19و28] دنیس و هاتسون [7] طرح مشابه با [12] را با استفاده از روش دیگر بدست آوردند.
نوی و تن [22] روش تفاضلی متناهی مرتبه سوم را برای حل معادلات نفوذ-انتقال ناپایای یک بعدی گسترش دادند این روش دارای دقت بالا و هزینه محاسباتی پایین و پایداری نامشروط است.
نوی و تن همچنین طرح ضمنی فشرده نه نقطه ای مرتبه سوم را برای حل معادلات نفوذ – انتقال ناپایای دو بعدی توسعه دادند این طرح دارای دقت مرتبه سه در مکان و مرتبه دو در زمان و ناحیه پایداری بزرگ است.
کالیتا و همکاران [14و29] مجموعه ای از طرح های فشرده مرتبه بالا را برای حل معادلات نفوذ-انتقال ناپایای دو بعدی با ضرایب معین بدست آوردند. به تازگی کارا و ژنگ یک روش ضمنی مسیر متناوب مرتبه بالا رابرای حل معادلات نفوذ- انتقال ناپایای دو بعدی ارائه کردند این روش که در آن روش کرانک نیکلسون برای گسسته سازی زمان و فرمول تفاضل متناهی فشرده مرتبه چهار چند نقطه ای مربوط به معادله نفوذ- انتقال ناپایای یک بعدی برای گسسته سازی مکانی استفاده می شود، دارای دقت مرتبه چهار در مسیر مکان و مرتبه دو در مسیر زمان و پایداری نامشروط و هزینه محاسباتی پایین است.
اخیرا روش های فشرده مرتبه بالای ضمنی مسیر متناوب که دارای دقت بالای روش های فشرده مرتبه بالا و کارآیی بالای روش های ضمنی مسیر متناوب هستند با موفقیت به جواب مسایل هذلولوی منجرشده است . بطور مثال در [45] ، کویی یک روش را برای معادلات سینو-گوردون ، تعمیم یافته دو بعدی بکار برد که این روش با مرتبه دو در زمان و مرتبه چهار در مکان است. یک دسته از روشهای فشرده مرتبه بالای ضمنی مسیر متناوب همواره پایدار برای معادلات تلگرافی چند بعدی در [63] تعبیه شده است. این روشها دارای دقت مرتبه چهار در مکان هستند ، اما تنها دارای دقت مرتبه دو در زمان می باشند.
جهت کارایی بیشتر محاسباتی ، کاربرد برون یابی ریچاردسون در روش فشرده مرتبه بالا در مسائل سینو-گوردون جایگزینی مناسب است . لوییس فراید ریچارد سون که یک ریاضی دان و فیزیک دان انگلیسی بود در قسمت هواشناسی و پیشگویی وضع هوا کار می کرد ریچاردسون شهرتش علاوه بر برون یابی در قسمت های دیگر ریاضی نیز مشهور است در سال1927روش برون یابی ریچاردسون توسط ریچاردسون و گرانت در پروژه - ریسرچای منتشرشد براساس این پروژه - ریسرچاین برون یابی را می توان در هر تقریب زمانی استفاده کرد این روش در مسایل آنالیز عددی کاربرد زیادی دارد ایده ای که پشت این روش است آن است که فرمول های با مراتب پایین تر که خطای برشی آن ها شناخته شده است مرتبه دقت آن ها بالا می رود یعنی از این روش برای ترکیب با روش هایی با مرتبه همگرایی پایین تر استفاده می شود تا دقت آن روش هارا بالا ببرد [72و73و74] .
به طور مثال ترکیب روش فشرده مرتبه بالای ضمنی مسیر متناوب با یک برون یابی ریچاردسون در حل معادلات سهموی خطی در [60] به کار برده شده است. ما ترکیب روش های فشرده مرتبه بالای ضمنی مسیر متناوب با برون یابی ریچاردسون را برای حل مسائل هذلولوی بررسی خواهیم کرد. در این پایان نامه با روش هایی مشابه با روش های به کار رفته در [45] ، یک سه ترازی مرتبه دوم در زمان و مرتبه چهار در مکان به دست می اوریم و روش های فشرده مرتبه بالای ضمنی مسیر متناوب برای حل معادله اولیه مرزی ذکر شده طراحی می کنیم. سپس یک برون یابی ریچاردسون بر اساس پارامترهای سه ترازی برای ایجاد جواب نهایی با مرتبه چهارم در زمان و مکان ایجاد می شود . و با روش گسسته سازی انرژی ، خطا را تخمین میزنیم . همچنین یادآوری می کنیم که یک برون یابی ریچاردسون دو ترازی در روش مرتبه دو نمی تواند دقت مرتبه چهار را حاصل کند حتی در مورد خطای برشی روش ضمنی مسیر متناوب دارای خطای برشی موقت به شکلاست.
در حقیقت ، به علت بسط مجانبی روش تقریب در تراز اول که شامل قدرت عجیبی در تراز است یک فرمول برون یابی ریچاردسون بر اساس سه تراز زمانی معرفی میشود.
در فصل اول توضیحاتی درباره معادلات دیفرانسیل خطی و غیر خطی و روش های حل آن ها داده می شود. در فصل دوم روش های ضمنی مسیر متناوب و روش های ضمنی مسیر متناوب فشرده و آنالیز و همگرایی آن ها و روش برون یابی ریچاردسون مطرح می شود در فصل سوم درباره ساخت روش فشرده مرتبه بالای ضمنی مسیر متناوب و آنالیز همگرایی بحث می کنیم و یک فرمول جدید برون یابی ریچاردسون بر اساس پارامترهای سه ترازی بدست می آوریم . سپس در فصل چهارم سه مثال عددی برای آزمایش عملکرد الگوریتم مطرح می شود و سپس یک نتیجه گیری کلی ارائه خواهیم کرد.
فصل اولمعادلات دیفرانسیل
1-1- معادلات دیفرانسیل[1]تعریف (1-1) معادلات دیفرانسیل: هر معادله شامل مشتق را یک معادله دیفرانسیل می نامیم که به دو نوع معمولی وجزئی تقسیم می شود.
تعریف (1-2) معادلات دیفرانسیل: رابطه بین متغیرو تابع وابسته و مشتقات مراتب مختلف آن را معادله دیفرانسیل معمولی می گویند که به صورت زیر تعریف می شود

مثال هایی از معادله دیفرانسیل معمولی به صورت زیر است:

تعریف(1-3) معادله دیفرانسیل با مشتقات جزئی : یک معادله دیفرانسیل با مشتقات جزئی معادله ای
شامل یک تابع نا مشخص از 2 یا بیش از 2 متغیر مستقل و مشتقات آن نسبت به آن متغیرهاست صورت کلی این گونه معادلات برای دو متغیر مستقل و و یک متغیروابسته عبارت است از:

تعریف (1-4) مرتبه معادله دیفرانسیل: بزرگترین مرتبه مشتق در یک معادله دیفرانسیل را مرتبه آن معادله دیفرانسیل می نامیم.
تعریف (1-5) درجه معادله دیفرانسیل: در یک معادله دیفرانسیل توان مشتق با بالاترین مرتبه را درجه معادله دیفرانسیل می نامیم.
تعریف (1-6) معادله دیفرانسیل با مشتقات جزیی خطی و غیر خطی
یک معادله دیفرانسیل با مشتقات جزئی را خطی نامیم هرگاه متغیرهای وابسته و مشتقات آن ها به صورت خطی ظاهر شود لذا در غیر این صورت معادله دیفرانسیل را غیرخطی می گویند
مثال/ نمونه ای از معادلات خطی:

نمونه ای از حالت غیر خطی:

تعریف (1-7) معادلات دیفرانسیل با مشتقات جزئی شبه خطی:
معادلات دیفرانسیل با مشتقات جزئی را شبه خطی می نامیم اگر معادله نسبت به بالاترین مرتبه مشتقات جزئی که در معادله ظاهر می شود خطی باشد.
صورت کلی یک معادله دیفرانسیل شبه خطی برای دو متغیر مستقل خطی عبارتست از :

1-2- معادلات کلاسیک مربوط به فیزیک ریاضی [3]معادلات زیر که معادلات کلاسیک مربوط به فیزیک ریاضی می باشند:
معادله سهموی (1-1)
معادله هذلولوی (1-2)
معادله لاپلاس (1-3)
و این معادلات به ترتیب به معادله گرمای یک بعدی و معادلات موج یک بعدی و معادله لاپلاس دو بعدی مشهور هستند.
در حالت کلی می توان صورت کلی یک معادله هذلولوی شبه خطی مرتبه دوم را به شکل زیربیان کرد:
(1-4)
که در این معادله توابعی از می باشند
ولی بر حسب نیستند.
داریم:با فرض
(1-5)
فرض کنید منحنی در صفحه باشد مقادیر که مشتقات مرتبه دوم آن ها یعنی به گونه ای باشند که در روابط فوق صدق کنند خواهیم داشت:
s
(1-6)

(1-7)
با جایگذاری (1-7) و (1-6) در (1-5) داریم :

داریم:با ضرب این رابطه در

حال منحنی را طوری در نظر می گیریم که شیب مماس در هر نقطه روی آن ریشه معادله زیر باشد:
(1-8)
(1-9)
با توجه به اینکه معادله (1-8) یک معادله درجه دوم است می توان به کمک

سه حالت زیر را درنظر گرفت:
معادله هذلواوی می باشد.حالت اول: اگر
معادله سهموی می باشد.حالت دوم : اگر
معادله بیضوی حاصل می شود.حالت سوم: اگر
و به این ترتیب شیب جهات مشخصه (ریشه های معادله) مربوط به معادله (1-4) بایافتن ریشه های معادله درجه دوم (1-8) حاصل می شود.
1-3- کاربرد معادلات هذلولوی در فیزیک[1]در اینجا یک معادله دیفرانسیل جزئی هذلولوی را بررسی خواهیم کرد.
فرض می کنیم یک نخ قابل ارتجاع به طول بین دو نقطه اتکا در یک سطح افقی کشیده شده باشد هرگاه نخ چنان به حرکت در آید که در یک سطح قائم نوسان کند آن گاه تغییر مکان قائم یعنی یک نقطه ، در زمان در معادله دیفرانسیل جزئی

صدق می کند به شرطی که از اثرات بی حرکت کردن سیم صرف نظر شود و نوسانات خیلی بزرگ نباشد.
برای اعمال قیود روی این مسأله فرض می کنیم محل اولیه و سرعت نخ به صورت زیراست:

و از این امر استفاده می کنیم که نقاط انتهایی ثابت هستند که نتیجه می دهد:

مسائل فیزیکی دیگری شامل معادلات دیفرانسیل جزئی هذلولوی درمطالعه ی موج های نوسان کننده که یک یا دو انتهای آن با گیره نگه داشته می شود و انتقال الکتریسیته در یک خط انتقال طویل که در آن مقداری انتقال جریان به زمین وجود دارد ، رخ می دهد.
1-4- حل عددی معادله موج [1]مثالی از یک معادله دیفرانسیل جزئی هذلولوی را بررسی خواهیم کرد.
معادله دیفرانسیل
(1-10)
تحت شرایط

داده میشود که در آن یک ثابت است.برای بدست آوردن روش تفاضلی متناهی ، یک عدد صحیح مثبت و اندازه طول گام زمانی مثبت و انداره طول گام مکانی مثبت معرفی می شوند.
را انتخاب می کنیم. به طوریکه
تعریف می شوند.و بانقاط شبکه ای
و
معادله موج به حالت زیر می شود: در هر نقطه شبکه ای داخل

روش تفاضلی با استفاده از خارج قسمت تفاضل مرکزی برای مشتقات جزیی مرتبه دوم که با فرمول های زیر داده می شود بدست می آید:
(1-11)
به طوریکه است
(1-12)

با جایگذاری ( 1-12 ) و (1-11) در ( 1- 8 ) به دست می آوریم:
(1-13)
قضیه1-1 : مسأله مقدار مرزی : رجوع کنید به منبع ]4[
مسأله مقدار اولیه:

و مسأله مقدار اولیه

به طوری که جواب های منحصر به فرد دارند اگر بر دامنه بربه ازای یک پارامتر دلخواه

پیوسته باشند. الف)
وجود داشته باشدب) ثابت
پ)

1-5- حل عددی معادلات غیر خطی [1] مواجه هستیم به طوری کهما در معادلات غیر خطی موج با دستگاه معادلات غیرخطی

یا به طور ماتریسی

حال با روش نقطه ثابت به طور کلی حل معادله غیرخطی را بررسی می کنیم و سپس با تعمیم روش نیوتن درباره همگرایی اینگونه معادلات بحث می کنیم.
1-6- روش نقطه ثابت با فرض اینکه تابع در بازه تعریف شده باشد اگر در این بازه باشد به طوری که آنگاه را نقطه ثابت تابع می نامند.
با فرض اینکه ریشه معادله باشد در روش تکرار نقطه ثابت برای تعیین ابتدا معادله را به صورت می نویسیم بعنی را طوری تعریف می کنیم که اگر آن گاه و بر عکس برای به دست آوردن نقطه ی ثابت نقطه ی را به عنوان تقریبی برای آن انتخاب می کنیم و دنباله را به صورت زیر تعریف می کنیم :

تحت شرایط مناسب داریم:

است. یا ریشه معادله حد دنباله نقطه ثابت به عبارت دیگر
قضیه 1-2 : شرایط تابع در روش نقطه ثابت:
پیوسته و مشتق پذیر باشد و بازای هر در بازه الف) فرض کنیم تابع
داشته باشیم یعنی تابع بازه را به خودش می نگارد.
ب) فرض کنیم عددی مانند وجود داشته باشد به طوری که به ازای هر داشته باشیم که تابع دارای یک و تنها یک نقطه ثابت باشد.
آنگاه به ازای هر نقطه آغازین دنباله تعریف شده همگرا به است.
تولید می شود تابع تکرار می نامیم. را که توسط دنبالهدر قضیه بالا تابع
به گونه ای انتخاب شود، کمتر باشد ، آنگاه باید را به دست آوریم به طوری که خطا ازاگر بخواهیم بدست آورد.که تقریبی برای
در حالت خاص اگر نا مساوی را خواهیم داشت زیرا در این صورت عبارت را داریم .
درباره آهنگ همگرایی روش تکرار نقطه ثابت بیان می کنیم که اگر نقطه ثابت ریشه معادله باشد و در بازه ی در شرایط قضیه نقطه ثابت صدق می کند داریم:

اگر در بازه پیوسته باشد و به ازای هر داشته باشیم آنگاه خواهیم د اشت از انجایی که نتیجه می گیریم است. بنابراین داریم

پس برای های به قدر کافی بزرگ است که نشان می دهد خطا در هر گام متناسب با خطا در گام های قبلی است در چنین حالتی گفته میشود که همگرایی از مرتبه اول یا خطی است.
هر اندازه کوچکتر باشد سریعتر به سمت صفر میل می کند به ویژه سریعترین حالت وقتی است که باشد در این صورت برای تعیین مرتبه همگرایی فرض می کنیم که در بازه ی پیوسته باشد با به کار بستن بسط تیلور داریم

است نتیجه می شودبا فرض اینکه
ا
بدست می آوریم

بنابراین

آن گاه می توان گفت کهاگر

در این حالت همگرایی را از مرتبه دوم نامند به همین ترتیب می توان همگرایی از مرتبه بالاتر را تعریف کرد به طور کلی داریم که اگر دنباله ای باشد به طوری که قرار می دهیم

وجود داشته باشد به طوریکهو عدد مثبتاگر عدد حقیقی

آن گاه گفته می شود که مرتبه همگرایی به برابر است واضح است که هر چه بزرگتر باشد آهنگ همگرایی سریعتر است
1-7-روش نیوتنروش نیوتن حالت خاصی از روش تکرار ساده است و آن را به صورت زیر نشان می دهیم

فرض می کنیم به همگرا باشد اگر عددی مانند و ثابتی غیرصفر مانند وجود داشته باشد به طوری که

آن گاه را مرتبه همگرایی آن دنباله گوییم هرگاه همگرایی را خطی گویند. مرتبه همگرایی روش تکرار ساده وقتی یک است و روش تکراری نیوتن وقتیحداقل دو است برای کسب اطلاعات بیشتر به [1]رجوع شود.
حال روش نیوتن را برای حل دستگاه که یک دستگاه معادلات غیرخطی شامل معادله و مجهول می‌باشد ، به کار می‌بریم یعنی در حالت کل روش نیوتن را برای حل دستگاه‌های معادلات غیرخطی تعمیم می دهیم.
1-8- تعمیم روش نیوتن برای حل دستگاه های غیر خطیحال روش نیوتن را برای حل دستگاه که یک دستگاه معادلات غیرخطی شامل معادله و مجهول می‌باشد ، به کار می‌بریم یعنی در حالت کل روش نیوتن را برای حل دستگاه‌های معادلات غیرخطی تعمیم می دهیم.
دستگاه زیر را درنظر می گیریم:
(1-14)
که شکل یک دستگاه از معادلات غیرخطی است. اغلب مطلوب است که دستگاه را به گونه‌ای دیگر با تعریف یک تابع نمایش داد که است و

با استفاده از نماد بردار به منظور نمایش متغیرهای می‌نویسیم که است لذا دستگاه معادلات (1-14) شکل زیر را پیدا می‌کند.
(1-15)
می خواهیم یک ریشه برای معادله غیرخطی(1-15) بیابیم. در نظر می گیریم که یک دستگاه معادله و مجهول داریم که با استفاده از روش نیوتن آن را حل میکنیم.
هدف ، یافتن یک ریشه برای تابع ماتریس است که جواب واقعی آن است ، این جواب می تواند به عنوان یک نقطه ثابت برای بعضی از توابع در نظر گرفته شود که بوسیله روش تکرار نقطه ثابت بدست می‌آید ، داریم:
(1-16)
را تخمین اولیه (1-14) را در نظر می‌گیریم.که
ام باشد در مرحله تقریب جواب دستگاه (1-14) وبه طور کلی فرض کنید بردار
در این صورت

بنابراین خواهیم داشت داریمبا توجه به اینکه
...+ جملات شامل
درصورتی که به اندازه کافی به نزدیک باشد می‌توان از جملات شامل صرف نظر کرد بنابراین از (1-16) داریم:
(1-17)
مشتق را در با یا نشان می دهیم که به صورت زیر تعریف می شود و همان ماتریس ژاکوبی است.

در این صورت رابطه (1-17)کهماتریس ژاکوبی دستگاه باشد یعنیبنابراین هرگاه
را می توان به صورت زیر نوشت:
(1-18)
که در آن ماتریس ژاکوبین در نقطه است (1-18) را می توان به صورت باز نویسی کرد.
هرگز را محاسبه نمی کنیم بلکه از رابطه (1-18) و مثلاً ازروش حذفی گاوس را تعیین می نماییم.
با توجه به اینکه رابطه (1-18) یک دستگاه معادلات خطی است و دیگر غیر خطی نیست می توان مثلا روش حذفی گاوس را برای تعیینبه کار برد.

قرار می دهیم و روند را تکرار می کنیم تا به دقت مناسب برسیم.
تقریبی برای جواب دستگاه غیر خطی زیر بیابید مثال 1-4 : با

حل:

با حل دستگاه بالا داریم
بنابراین:

از دستگاه بالا بدست می آوریم

و از آن داریم

با ادامه روند جدول زیر را داریم:
جدول1-1.جواب های تقریبی مثال (1-4)

1 1.5
0.75 1.5
0.756944444 1.486111112
0.755982262 1.448035475
0.755983064 1.488033871
0.755983064 1.488033871
جدول همگرایی مرتبه دوم را نشان می دهد
قضیه1-3 : روش نیوتن برای حل دستگاه های معادلات غیر خطی همگرایی مرتبه دوم دارد. (اثبات به [1] مراجعه شود)
1-9- همگرایی [2]می دانیم که معادلات غیرخطی را می توانیم به دستگاه خطی تبدیل کنیم به طوری کهاگر ماتریسبسیار بزرگ باشد روش های تکراری روش های بهتری برای حل دستگاه خواهند بود.
ایده اصلی پشت روش های تکراری آن است که دستگاه به
(1-19)
از بردار جواب یک دنباله از تقریب هایتبدیل شودسپس با شروع از یک تقریب اولیه
به صورت
(1-20)
تعریف می شوند با این امید که تحت برخی شرایط معتدل دنبالههنگامی کهبه جواب همگرا گردد.
باشد. که معیار توقف همگرایی در روش های تکراری آن است که
اغلب ساختن یک حدس خوب از تقریب اولیه دشوار است.
بنابراین داشتن شرایطی که همگرایی (20-1)را برای هر انتخاب دلخواه از تقریب اولیه تضمین کند
مطلوب خواهدبود.
قضیه 1-4 : (قضیه همگرایی تکرار) : روش تکراری به یک حد با یک انتخاب دلخواه از تقریب اولیه همگرا می گردد اگر و فقط اگر ماتریس یعنی یک ماتریس همگرا باشد.
برای اثبات به[2] رجوع کنید.
کمتر از یک باشد. همگراست اگر و فقط اگر شعاع طیفیقضیه1 -5:
برای اثبات به [2] رجوع کنید.
نکته: به طور کلی نرخ همگرایی مجانبی روش تکراری به صورت است .

فصل دومروش ضمنی مسیرمتناوب وبرون یابی ریچاردسون
2-1- افرازها و نمادهابرای گسسته سازی زمانی ،طول گام زمان است و دو عدد صحیح مثبتN و n وجود دارد
به طوری که است.
به ازای هر
داریم :

درابعاداست به طوریو عدد صحیح مثبت میباشند.
تعریف می کنیم

شبکه های گسسته زیر را در نظر می گیریم

.

و داریم

که قرار می‌دهیم:
و

ما مشخص می کنیم:

گزینه های ، و میتواند به همان صورت تعیین شود.
ما یک بردار مکانی را بصورت زیر مشخص میکنیم:

اگر باشد آنگاه می باشد که این بردار به عنوان یک تابع شبکه با مقدار صفر در است

به ازای هر نتایج ضرب داخلی به صورت زیر مشخص می شود

مشابه آن و بخوبی تعیین میشود. بعلاوه ما داریم:

به طور مشابه ، مشخص میشوند. و داریم:

2-2- روش ضمنی مسیرمتناوب برای حل معادلات موج دو بعدیمعادله دیفرانسیل موج نا همگن دو بعدی زیر با شرایط اولیه و مرزی داده شده را روی دامنه در نظر می گیریم
(2-1)
(2-2)
(2-3)
که در آن دامنه مستطیل شکلی است که می باشد و است.
تابع هایی باندازه کافی هموار هستند به طوری که ،و
نامنفی است مثبت اند و ثابت ثابت های
شبکه بندی کرده و شبکه بدست بر را با استفاده ازنقاطدامنه
باشد همچنین اندازه گام شبکه مکانی در راستاهای نشان می دهیم اگر آمده را با
طول گام زمان است .

اگر در (1-2) قرار دهیم
(2-4) در نتیجه رابطه به صورت زیر نوشته می شود
(2-5)
(2-6)
(2-7)

گسسته سازی ضمنی کرانک نیکلسون روی معادله (2-4) و (5-5) به ترتیب به صورت زیر است:
(2-8)
(2-9)
هستند کهبه ترتیب مقدار تقریبی توابعفرض کنیم که:

در(2-8) بدست می آوریمبا ضرب
(2-10)
از(9-2) در(10-2) داریم: با جایگذاری عبارت

به عبارت دیگر:

(2-11)
باشد رابطه (2-11) به صورت زیر نوشته می شود:حال اگر
(2-12)
با افزودن عبارت اختلالی به سمت چپ (2-12) رابطه زیر را بدست می آوریم

(2-13)
روش ضمنی مسیر متناوب به صورت زیر است: با معرفی متغیر میانی

(2-14)

(2-15)
(2-16)
از ترکیب (2-14)- (2-16) داریم:
(2-17)
اما چون محاسبه مقدار مرزی رابطه میانی از این رابطه به سادگی امکان پذیرنیست با فرض کوچک چنین می شود:مقدار مرزی بودن
(2-18)
به کمک رابطه های (2-14)- (2-18) می توان معادله موج ناهمگن را حل کرد از طرف دیگر با دنبال کردن ایده داگلاس [9و10] روش داگلاس زیر را بدست می آوریم:

(2-19)
(2-20)
روی مرز به سادگی از رابطه (2-20) نتیجه می شودمتغیر میانی

به شرط کوچکی مقادیر مرزی متغیر میانی را معمولاً با استفاده ازتساوی ساده زیر محاسبه می کنیم.
روش ضمنی مسیر متناوب مطرح شده در [35] به صورت زیر است:
(2-21)
(2-22)

(2-23)
(2-24)

2-3-تجزیه و تحلیل روشبرای تحلیل خطای برشی از رابطه (13-2) این نتیجه بدست می آید:
(2-25)
طبق رابطه (2-9) داریم:
(2-26)
با گسسته سازی (4-2)و(5-2) مشابه رابطه های (25-2) و (26-2) می توان نوشت:
(2-27)
(2-28)
به ترتیب در (27-2) و (28-2) خطاهای گسسته سازی روش است.عبارت های
بنابراین خطاهای برشی به صورت زیر محاسبه می شود:

یا داریم :

به عبارت دیگر:

(2-29)

(2-30)
وجود دارند به طوریکه:از این رو ثابت های مثبت

2-4- همگرایی روش دنباله ای از اعداد حقیقی نا منفی استلم 1-2 (نا برابری گرونوال) : فرض کنید
که در عبارت زیر صدق می کند:

، ثابت های مثبت اند در این صورت نا برابری زیر را داریمو،که در آن

معادله های خطا از رابطه های (25-2) و (27-2) به صورت زیر بدست می اید:با فرض

(2-31)
برای راحتی کار زیر اندیس را از (2-31) حذف می کنیم بدون آنکه خللی در اثبات پیش بیاید. با محاسبه ضرب داخلی دو طرف (2-31) در عبارت واستفاده از لم (1-2) به آسانی نتیجه می‌شود

(2-33) =

(2-34)

(2-35)

(2-36)

(2-37)
(2-38)
در دو طرف رابطه های(2-33)-( 2-38) و جایگذاری در (2-31) داریم:با ضرب عبارت

(2-39)
چون (2-39) به ازای هرn برقرار است با جمع بستن روابط و تغییر اندیسn بهl داریم

با استفاده از قاعده تلسکوپی داریم:

به عبارتی دیگر

(2-40)
قضیه 2-1 : فرض کنید جواب های دقیق رابطه های (2-4) تا (2-7) به اندازه کافی هموار و
جواب های عددی رابطه های (2-14) تا (2-16) هستند.
قرار دهید در این صورت یک ثابت مثبت مستقل از و وجود دارد به طوریکه :

طبق (2-40) داریم لذا اثبات: فرض کنیم

فرض کنیم:

طبق لم (1-2) خواهیم داشت:

می باشد.از قضیه (1-2) نتیجه می شود که رابطه (2-31) دارای همگرایی از مرتبه
2-5- روش ضمنی مسیر متناوب فشرده تعمیم یافتهدر این بخش یک روش ضمنی مسیر متناوب فشرده برای حل عددی معادلات موج (2-1) تا (2-3) بیان می شود که :
(2-41)
(2-42)
(2-43)
با استفاده از گسسته سازی تفاضل متناهی فشرده مرتبه چهار [6و18] ، رابطه های (2-42) و (2-43)
را به صورت زیر گسسته می کنیم
(2-44)
(2-45)
به صورت: با گسسته سازی ضمنی کرانک نیکلسون رابطه (2-43) بازای

با ضرب (2-46) در و اعمال عملگر بر دو طرف رابطه و با استفاده از این مطلب که عملگرهای با یکدیگر جابه جا می شوند بدست می آوریم :

(2-47)
از ترکیب رابطه های (2-44) تا ( 2-47) داریم :

(2-48)
مشابه بخش (2-2) از (2-48) رابطه زیر بدست می آید :

(2-49)
به سمت چپ (2-49) رابطه زیر را نتیجه می گیریم:با افزودن عبارت

(2-50)
روش ضمنی مسیر متناوب فشرده زیر را بدست می آوریم:با معرفی متغیر میانی

(2-51)

(2-52)
(2-53)
از (2-51) ، (2-52) و (2-53) معادله مرزی زیر نتیجه می شود:
(2-54)
اما چون محاسبه مقدار مرزی متغیر میانی از این رابطه به سادگی امکان پذیر نیست،مقادیر مرزی متغیر میانی را با فرض کوچک از رابطه (2-54) بدست می آوریم. بودن
(2-55)
به علاوه با دنبال کردن ایده داگلاس [10و9] می توان روش ضمنی مسیر متناوب فشرده را به صورت زیر بیان کرد
به عبارت دیگر

(2-56)
(2-57)
از رابطه (2-57) معادله مرزی زیر نتیجه می شود:

و روش ضمنی مسیر متناوب فشرده [35] به صورت زیر است:

(2-58)
(2-59)

2-6- تجزیه و تحلیل روش
(2-60)
با گسسته سازی مشابه رابطه (60-2) داریم:

(2-61)
بنابراین خطای برش به صورت زیر محاسبه می شود:

-)

(2-62)

را می توان به صورت زیر بازنویسی کرد:

(2-63)

(2-64)
وجود دارند به طوری کهثابت های مثبت

2-7-همگرایی روشاگر داشته باشیم

معادله خطا به صورت زیر در می آید:

(2-65)
بدون آنکه خللی در اثبات پیش بیاید با استفاده از لم (1-2) و نابرابری کوشی شوارتز و محاسبه ضرب داخلی دو خواهیم داشت: طرف (65-2) درعبارت

(2-66 )

(2-67)

(2-68)

(2-69)

(2-70)

(2-71)
در دوطرف رابطه های (2-66) - (2-71) و از (2-65) نتیجه می گیریم: با ضرب عبارت

(2-72)
چون(2-72) بازای هر برقرار است با جمع بستن این رابطه ها بازای و تغییر اندیس به خواهیم داشت :

با استفاده از قاعده تلسکوپی داریم:

با فرض داریم:

قضیه 2 -2 : فرض کنید جواب های دقیق برای رابطه های (2-4) تا (2-7) به اندازه کافی
هموار و جواب های عددی حاصل از رابطه های (2-51) تا (2-53) هستند که اگر قرار دهید:
در این صورت یک ثابت مثبت مستقل از وجود دارد به طوریکه:

اثبات: باتوجه به رابطه (2-74) داریم:

بنابراین

داریم:با فرض

طبق لم( 2-1 ) خواهیم داشت:

است. از قضیه( 2-2 ) نتیجه می شود که رابطه (2-72) دارای همگرایی از مرتبه
2-8- روش برونیابی ریچارد سون: [72و73]
در این روش با ترکیب دو تقریب برای یک کمیت تقریب دقیق تری برای آن بدست می آید فرض
باشد , با دقت تقریبی از مقدار واقعی یک کمیت کنیم

هستند بنابراین:ثابت و مستقل ازکه

است.زیرا با دقت تقریبی از اماحال قرار می دهیم

به همین ترنیب می توان تقریب هایی برای بادقت بدست آورد .تقریب در روش برونیابی ریچاردسون را می توان به صورت آرایه مثلثی زیر نشان داد

که در آن مؤلفه ها ، مرتبه و خطای آن ها به صورت زیر قابل محاسبه است:

فصل سومروش جدید مرتبه چهارم برای حل دسته‌ای از معادلات موج غیرخطی
3-1-مقدمهمادرصدد تقریب عددی یک دسته از مسائل اولیه با مقدار مرزی از معادلات موج غیرخطی ذیل هستیم
(3-1)
(3-2)
(3-3)

،و تابع هایی باندازه کافی هموار هستند که سرعت همگرایی و سازگاری روش دیفرانسیل مسائل مورد نظر را حفظ می کنند.
3-2- روش ضمنی مسیر متناوب فشرده سه ترازیدر این بخش با استفاده از روشهای مشابه با [45] یک روش دیفرانسیل ضمنی مسیر متناوب فشرده برای حل مسأله مقدار اولیه مرزی (1-1)- (3-1) مطرح می شود
داریم:

بنابراین


و داریم

به طوری کهتقریباست بنابراین تقریباست.بنابراین

و یک اپراتور خطی و یک تابع شبکه مشخص بر دامنه است به طوری که داریم:

با مشخص کردن اپراتورهای متفاوت و توسعه مجموعه های تیلور با باقی مانده مک لورن داریم:

از روش نیومرو [4] می دانیم

(4-3)
بنابراین خواهیم داشت

از رابطه (3-4) خواهیم داشت
(3-5)
داریم به همین ترتیب همین روابط را برای بعد مکانی

داریماز تعریف اپراتور

باین ترتیب مسأله مقدار اولیه با مقدار مرزی (3-1) را به صورت زیر بدست می آوریم
(3-6)
به طوری که

توسعه مجموعه های تیلور با باقی مانده مک لورین معادله زیر را نتیجه میدهد:

(3-7)
داریمبرای
(3-8)

پس از قرار دادن (3-8) در (3-7) و مرتب کردن دوباره آن ماداریم:

بنابراین

سپس رابطه زیر را بدست می آوریم

حال اگر قرار دهیم

از رابطه (3-7) بدست می آوریم
(3-9)
عبارت اختلال را به صورت زیر در نظر می گیریم

حال با اضافه کردن عبارت اختلال به (3-9) خواهیم داشت

بنابراین داریم

در نتیجه خواهیم داشت

(3-10)

که و به ترتیب تنها به i و j بستگی دارند وو به یکدیگر تبدیل می شوند. مشابه آن ها دو اپراتور و نیز به یکدیگرتبدیل می شوند ، یعنی است.
حال با ضرب در رابطه (3-10) بدست می آوریم

(3-11)
خطای برشی رابطه (3-11) است که طبق اثبات قضیه (2-2) در فصل قبل داریم:به طوری که
(3-12)
با حذف خطای برشی در (3-11) و جایگذاری بامقدار تقریبی داریم :

(3-13)
به طوری که

حال با ضرب در (3-13) و ارائه دو متغیر میانی و یک روش ضمنی مسیر متناوب داگلاس- گان [5و60] بصورت زیر به دست می آید

(3-14)
که بدست می آوریم:

(3-15)
(3-16)

که معادلات (3-14)و(3-15)حل میشود، ما به شرایط مرزی زیر نیاز داریم:

(3-17)
که رابطه (3-17) از مسأله مقدار اولیه مرزی (3-1) تا (3-3) و به کار بردن روابط (3-15) و (3-16) حاصل میشود.
می دانیم که به طور کلی معادلات (3-14) تا (3-16) یک روش دیفرانسیل ضمنی مسیر متناوب سه ترازی است.

ما به برای شروع محاسبه نیاز داریم که. با استفاده از روابط مسأله مقدار اولیه با مقدار مرزی (3-1) تا (3-3) حل می شود به این ترتیب که با به کاربردن بسط تیلور با باقی مانده انتگرال داریم:
(3-18)
با به کاربردن مسأله مقدار اولیه با مقدار مرزی (3-1) تا (3-3) ما می توانیم و را محاسبه کنیم.
و سپس با به کاربردن ،و در (3-18) خواهیم داشت:

با به کار بردن فرمول (3-18) و چشم پوشی از خطای برشی داریم:

بدست می آوریم

و در نتیجه خواهیم داشت

(3-19) +

بنابراین با استفاده ازروابط مسأله مقدار اولیه مرزی و به کار بردن رابطه (3-19)،و را بدست خواهیم آورد.
سپس رویه حذف را اجرا میکنیم تا و را از روابط (3-14) تا ( 3-16) بدست آوریم.
در نهایت با رابطه (3-16) تعیین میشود.
از روابط بدست آمده می دانیم که طبق قضیه (1-1) دارای جواب است و ماتریس ضرایب پیوسته است.
3-3- تجزیه و تحلیل همگراییدر این بخش ، برآورد خطا های مختلف با استفاده از روش گسسته سازی نرم انرژی داده شده است.در این قسمت چند لم کاربردی بیان می شود.
لم3-1- رجوع کنید به [51]. برای هر تابع شبکه ، هر گاه شرایط زیر برقرار باشد
و
آن گاه داریم

اثبات:

بنابراین

و اثبات کامل می شود.
لم3-2- رجوع کنید به [42و45] .اگرتابع شبکه آن گاه

برقرار است.
لم3-3-رجوع کنید به [60و59] اگر برای تابع شبکه ، برقرار باشد
آن گاه ثابت مثبتوجود دارد به طوری که
اثبات:

داریمبازای هر

بدست می آوریم

اثبات کامل می شود.
لم3-4- رجوع کنید به [20]. اگر و دنباله زمانی باشند آن گاه داریم

(3-20)
اثبات:
اثبات(a

برقرار است بنابراین داریممثبت ، رابطه می‌دانیم بازای هر

اثبات b)
با تفریق رابطه (3-13) از (3-11) و قرار دادن رابطه های

به طوری که

داریم:

حال با ضرب رابطه بالا در خواهیم داشت :

=
به راحتی رابطه زیر حاصل می شود

با تفریق(3-18) از (3-19) داریم

در نهایت خواهیم داشت
(3-20)
اثبات کامل می شود.
3-4- خطای نرم
ابتدا فرض میکنیم که ثابت های مثبت وجود دارد به طوری که برای هر و طبق قانون لیپ شیتز داریم:
(3-21)
بنابراین با قرار دادن ما فرض میکنیم که ثابت مثبت بگونه ای است که است.
می دانیم که است .
با فرض این که چهار ثابت مثبت و وجود دارد ،به طوری که

(3-22)
بدنبال آن ما استقراریاضی را برای اثبات قضیه (1-3 ) بکار میبریم.
قضیه 3-1: هرگاه
1- تابع شبکه حل عددی روش دیفرانسیل (3-14) تا (3-16) و (3-19) در سطح زمان k باشد.
2- تابع شبکه جواب حقیقی مسأله مقدار اولیه مرزی(3-1)تا
(3-3) در زمان باشد.
آن گاه تحت رابطه (3-21) و فرض ، داریم:
(3-23)

به طوری که
اثبات: واضح است که (3-23) برایk=0,1 معتبر است. حال فرض میکنیم که (3-20) برای k=0,1,….L(2<L<n-1) صدق می کند. نشان می دهیم که (3-20) برای k=L+1 نیزصدق می کند .
می‌دانیم که است.

از فرضیات قیاس است که:

اگر و باندازه کافی کوچک باشند ترکیبی از فرضیات (3-21) با (3-24) بیان می کند

می دانیم
(3-25)
(3-26)
حال رابطه اول (3-20) را در نظر می گیریم

رابطه را به صورت زیر می نویسیم

را به صورت زیر تعریف می کنیم

(3-27)
که نابرابری زیر به راحتی بدست می آید

و لم ( 3-1 ) و ( 3-2 ) را اعمال میکنیم و باتوجه بهداریم:
(3-28)
(3-29)
حال برای بدست آوردن چنین عمل می کنیم

بنابراین با استفاده از روابط (3-22) رابطه زیر به راحتی بدست می آید

به طور کلی
(3-30)
(3-31)
با ضرب داخلی اولین معادله (3-20) در و سپس استفاده از گسسته سازی داریم:

=
داریم

که با استفاده از روابط (3-25) و (3-26) به دست می آوریم

+
+

که به راحتی می بینیم

(3-32)
با ضرب دو طرف (3-32) در

که به آسانی دیده می شود

با استفاده استفاده از روابط (3-27) تا (3-31) و به کاربردن نابرابری گرونوال خواهیم داشت:
(3-33)
که با استفاده از (3-32) و (3-33) مشخص است که:
(3-34)

به این ترتیب ثابت شد که (3-25) برای معتبر است و اثبات کامل شد.
3-5- حداکثر خطابرای حداکثر خطا ، ما سه فرض داریم:
1- با فرض اینکه برقرار باشد فرض میکنیم که ثابتمثبت است به طوری که:
(3-35)
2- فرض میکنیم که ثابت های مثبت و وجود دارد واست.
داریم:

3- فرض میکنیم که دو ثابت μ3 وμ4وجود دارندبه طوری که:

(3-37)
اکنون میتوانیم با در نظر گرفتن فرضیات بالاقضیه زیر را ثابت کنیم.
قضیه 3-2: هرگاه تابع شبکه جواب عددی روش تفاضلی(3-14) و (3-17) و (3-19) ، در تراز زمانیو جواب واقعی مسأله مقدار اولیه مرزی (3-1) تا (3-3) در زمان باشد با در نظر گرفتن روابط (3-21) و (3-23) و (3-32) و اینکه آنگاه خطای زیر تقریب زده میشود

(3-38)
برای داریم:

وثابت، مثبت است و تنها وابسته به و است
اثبات:
با استفاده از لم ( 3-1 ) و به کار بردن روابط و (3-26) خواهیم داشت:

به اندازه کافی کوچک است.
حال با ترکیب روابط (3-35) و (3-36) داریم:

که تنها وابسته به و است.
بنابراین با استفاده ازقضیه (1-3) می بینیم که:

(3-39)
از ترکیب قضیه (3-1 ) با رابطه (3-21) داریم:
(3-40)
روابط زیر را تعریف می کنیم :

به طوری که

(3-41)
داریم

به طوری که

(3-42)
داریم

به طوری که

(3-43)
داریم

به طوری که
(3-44)
به طوری که از لم (3-1) و (3-2) داریم

از این رابطه می دانیم:
(3-45)
(3-46)
(3-47)

با ضرب داخلی معادله (3-20) در عبارت داریم

بدست می آوریم :

از روابط بالا بدست می آوریم

با به کار بردن گسسته ساز ی و استفاده از لم (3-2) و (3-4 ) و قرار دادن بدست آوریم
:

(3-48)

بنابراین با روابط (3-46) و (3-48) داریم:

(3-49)
بنابراین با به کاربردن لم گرونوال بر (3-49) داریم:

(3-50)

اثبات کامل می شود.
قضیه3-3 :هرگاه جواب واقعی مسأله مقدار اولیه با مقدار مرزی (3-1) و (3-3) باشد. آنگاه با به کار بردن قضیه (3-2) جواب عددی روش ضمنی مسیر متناوب جدید (3-14)تا (3-16) و (3-19) با مرتبه در همگرا میشود.
اثبات: با به کار بردن لم3-3 و قضیه2-2، ما به راحتی قضیه(3-3) را بدست میاوریم
3-6- بهبود دقت در ابعاد زماندر حقیقت یک کران مشخص در (50-3) به صورت زیر است:

که از لم (3-3)داریم

که ثابت است.
برای رسیدن به جواب عددی مرتبه چهار در مسیر زمان ، یک برون یابی ریچاردسون سه ترازی را ایجاد می کنیم .
قضیه 3-4: هرگاه تابع جواب واقعی مسأله مقدار اولیه مقدار مرزی
(3-1) تا (3-3) باشد و جواب عددی روش ضمنی مسیر متناوب (13-14)تا (3-16) و (3-19) در زمان باشد.

وجواب مسأله برون یابی در تراز زمانی به صورت زیر تعریف شود:
(3-51)
آن گاه با به کار بردن قضیه ( 3-2 ) خواهیم داشت:
(3-52)
اثبات:
با فرض اینکه

از (3-12) بدست می آوریم:

ما فرض میکنیم که و برای دو مسأله مقدار اولیه با مقدارمرزی به صورت زیر است:
(3-53)
و
(3-54)
که داریم

توابع عضو شبکه هستندبه طوری که

همانند (3-11) ما میتوانیم معادلات دیفرانسیل مربوط به آنها را بصورت زیر گسترش دهیم:
(3-55)
به طوری که

به همین ترتیب
(3-56)
به طوریکه:

222222222

فهرست مطالب
عنوان پروﮊه :
انتخاب بهینه انواع تولید پراکنده برق در شبکه های توزیع در مناطق مختلف جغرافیایی کشور
چکیده
مقدمه 1.................................................................................
فصل اول:
بررسی انرﮊیهای تجدید پذیر و تجدیدناپذیر مورد استفاده در نیروگاههای تولید پراکنده....3
انرﮊیهای مورد استفاده در نیروگاههای تولید پراکنده4
انرﮊیهای تجدید پذیر4
انرﮊی باد4
منشاﺀ باد5
توزیع جهانی باد5
اندازه گیری پتانسیل انرﮊی باد6
قدرت باد..7
مزایای بهره برداری از انرﮊی باد7
پتانسیل باد در ایران7
توربینهای بادی و انواع آن8
انواع کاربرد توربینهای بادی8
انرﮊی خورشید8
کاربردهای انرﮊی خورشیدی9
کاربردهای نیروگاهی9
کاربردهای غیر نیروگاهی9
مصارف و کاربردهای فتوولتائیک9
انرﮊی های تجدیدناپذیر10
انرﮊی گاز10
ذخایر و میادین گاز طبیعی10
شبکه گذاری گاز طبیعی در ایران10
انشعابات و مصرف کنندگان گاز طبیعی11
انرﮊی نفت12
فصل دوم:
انواع تولید پراکنده 14.............................................................................
مقدمه15
7
انواع تولید پراکنده16
توربینهای گازی احتراقی16
توربینهای کوچک17
سلولهای سوختی19
توربینهای بادی20
شبکه های فتوولتاییک22
وسایل ذخیره انرﮊی23
نیروگاههای انرﮊی جزر و مد24
نیروگاههای ترمو الکتریک24
نیروگاههای ترمیونیک24
نیروگاههای بیوماس25
نیروگاه های مبدل انرﮊی خورشیدی – حرارتی – الکتریکی26
نیروگاه تولید همزمان برق، گرما و سرما27
نیروگاههای آبی کوچک28
دیزل ﮊنراتور28
چرخ لنگر28
موتورهای رفت و برگشتی28
تعاریف مربوط به تولید پراکنده29
مکان تولید پراکنده29
هدف تولید پراکنده29
میزان تولید در تولید پراکنده29
محدودیتهای عملکردی تولید پراکنده29
کاربردهای تولید پراکنده31
نحوه اتصال منابع تولید پراکنده به شبکه31
تقسیم بندی های مختلف تولید پراکنده32
تلفات توان در شبکه های توزیع شعاعی34
نتیجه گیری34
فصل سوم:
تقسیم بندی اقلیمی ایران و انتخاب ده شهر نمونه35
مقدمه36
تقسمیات اقلیمی در جهان36
تقسیمات اقلیمی در ایران37
8
روش اولگی40
بحث و نتیجهگیری..41
فصل چهارم:
تعیین تابع هدف47
مقدمه48
دسترسی تجاری48
هزینه های اولیه ونصب49
ضریب کارکرد50
محاسبه مقدار قدرت الکتریکی تولیدی توسط پنلهای خورشیدی و ضریب کارکرد50
مقدمه50
تشعشعات خورشید بیرون از محیط زمین51
ثابت خورشیدی52
مقدار شدت تابش خورشید در خارج از اتمسفر زمین و برروی سطح افقی 52................................................
زاویه انحراف53
متوسط ضریب صافی ماهیانه53
ضریب صافی لحظهای53
تابش پراکنده و مستقیم53
تابش خورشید توسط صفحه ای که با شیب β که رو به جنوب نصب شده است54
محاسبه ضریب کارکرد در توربین بادی54
متوسط سرعت باد55
واریانس.55
پارامترهای K و 55C
تولید متوسط قدرت توربین56
ضریب کارکرد56
هزینه های بهره برداری ‐ تعمیر – نگهداری57
هزینه سوخت57
هزینه برق و بیان تابع هدف57
فصل پنجم:
الگوریتم و فلوچارت برنامه59
فلوچارت محاسبه ضریب کارکرد در سیستم فتو ولتائیک60
فلوچارت محاسبه ضریب کارکرد در سیستم توربین بادی62
9
فلوچارت محاسبه 64COE
نتایج حاصل از تابع هدف66
فصل ششم:
اصول مدلسازی سیستمهای قدرت کوچک توسط 73......HOMER
مقدمه ای بر مدلسازی سیستمهای قدرت کوچک 1 توسط 74HOMER
شبیه سازی.75
بهینه سازی...79
تحلیل حساسیت.83
بررسی عدم قطعیت ها.84
تحلیل حساسیت مجموعه اطلاعات ساعت به ساعت...85
مدلسازی اقتصادی.86
فصل هفتم:
شبیه سازی با استفاده از نرم افزار homer برای شهر نمونه تهران 89....................................
فصل هشتم:


نتیجه گیری و ارائه پیشنهادات101
پیوست :1
اصول همسان سازی هزینه ها و فایده ها 104.........
پیوست:2
آمار هواشناسی108
پیوست :3
نرم افزار برنامه..119
منابع و ماخذ124
چکیده انگلیسی 128...............................................................................................................................

1 Micropower sys-- modeling
10
ردیف جدول عنوان صفحه 1‐1 ذخایر قابل استحصال گاز طبیعی کشور در سال 1381 10 2‐1 مقدار شبکه گذاری انجام شده توسط شرکتهای گازرسانی استانی 12 3‐1 ذخایر هیروکربوری مایع ایران 14 4‐1 میزان ذخایر و شاخص جایگزینی ذخایر به تولید کشور در سالهای 80‐81 14 2‐1 تقسیم بندی تولید پراکنده 32 2‐2 تقسیم بندی تولید پراکنده 33 2‐3 دسته بندی تولید پراکنده بر اساس مصرف سوخت 33 3‐1 تقسیمات نه گانه اقلیمی در ایران 41 3‐2 مشخصات شهرهای انتخاب شده 41 3‐3 شرایط اقلیمی شهر اصفهان در ماههای مختلف سال 42 3‐4 شرایط اقلیمی شهر اهواز در ماههای مختلف سال 42 3‐5 شرایط اقلیمی شهر بندر عباس در ماههای مختلف سال 43 3‐6 شرایط اقلیمی شهر تبریز در ماههای مختلف سال 43 3‐7 شرایط اقلیمی شهر تهران در ماههای مختلف سال 44 3‐8 شرایط اقلیمی شهر رشت در ماههای مختلف سال 44 3‐9 شرایط اقلیمی شهر شیراز در ماههای مختلف سال 45 3‐10 شرایط اقلیمی شهر کرمان در ماههای مختلف سال 45 3‐11 شرایط اقلیمی شهر مشهد در ماههای مختلف سال 46 3‐12 شرایط اقلیمی شهر همدان در ماههای مختلف سال 46 4‐1 دسترسی تجاری انواع تکنولوﮊی DG 48 4‐2 مشخصات انواع DG مورد مطالعه 58 11
ردیف شکل عنوان صفحه 2‐1 سیستم بازیافت حرارت 17 2‐2 شکل ساده یک میکرو توربین 18 2‐3 مراحل عملکرد پیلهای سوختی 19 2‐4 اجزاﺀ توربین بادی 20 2‐5 نحوه عملکرد سیستمهای فتوولتائیک 22 2‐6 مراحل عملکردی موتورهای رفت و برگشتی 29 2‐7 شبکه شعاعی معمولی 34 4‐2 زمین در گردش سالانه خودش بدور خورشید 51 4‐2 نمودار تغییرات Gon بر حسب روزهای سال 52 4‐3 c به ازاﺀ پارامتر K 55 u 5‐1 فلوچارت محاسبه cf در فتوولتائیک 61 5‐2 فلوچارت محاسبه ضریب کارکرد توربینهای بادی 63 5‐3 فلوچارت محاسبه هزینه COE 65 5‐4 مقدار COE انواع DG در شهر اصفهان 66 5‐5 مقدار COE انواع DG در شهر اهواز 66 5‐6 مقدار COE انواع DG در شهر بندرعباس 67 5‐7 مقدار COE انواع DG در شهر تبریز 67 5‐8 مقدار COE انواع DG در شهر تهران 68 5‐9 مقدار COE انواع DG در شهر رشت 68 5‐10 مقدار COE انواع DG در شهر شیراز 69 5‐11 مقدار COE انواع DG در شهر کرمان 69 5‐12 مقدار COE انواع DG در شهر مشهد 70 5‐13 مقدار COE انواع DG در شهر همدان 70 5‐14 مقایسه COE باد در ده شهر نمونه 71 5‐15 مقایسه COE فتوولتائیک در ده شهر نمونه 71 5‐16 مقایسه CF توربین بادی در ده شهر نمونه 72 5‐17 مقایسه CF فتوولتائیک در ده شهر نمونه 72 6‐1 ارتباط بین ارکان مختلف نرم افزار HOMER 75 6‐2 نمونه هایی از سیستم های قدرت کوچک شبیه سازی شده با HOMER 77 6‐3 نتایج نمونه از تحلیل ساعتی 79 6‐4 سیستم بادی‐ دیزلی 80 6‐5 فضای جست و جو که شامل 140 حالت مختلف است 81 6‐6 نتایج کلی شبیه سازی که طبق NPC مرتب شده اند 82 6‐7 نتایج دسته بندی شده بهینه سازی 82 12
6‐8 نمونه ای از تحلیل حساسیت 84 6‐9 نتایج تحلیل حساسیت با قیمت متغیر برای سوخت 85 6‐10 نوع سیستم بهینه 86 7‐1 انتخاب بار‐ دستگاهها و حالت شبکه 89 7‐2 ورود اطلاعات ساعتی بار در روزهای هفته به تفکیک ماههای مختلف 89 7‐3 ورود اطلاعات ساعتی بار روز تعطیل آخر هفته 90 7‐4 انتخاب نوع سوخت مصرفی 90 7‐5 شماتیک نرم افزار بعد از وارد کردن مشخصات دستگاهها 91 7‐6 ورود اطلاعات ضریب صافی آسمان به تفکیک ماه برای شهر تهران 91 7‐7 ورود اطلاعات سرعت باد به تفکیک ماه برای شهر تهران 92 7‐8 قیمت دیزل بر حسب دلار بر لیتر(0.1دلار بر لیتر) 92 7‐9 0.0025 دلار بر متر مکعب) 92 قیمت گاز بر حسب دلار بر متر مکعب ( 7‐10 اجرای نرم افزارتوسط دکمه CALCULATE 93 7‐11 نتایج شبیه سازی اولین انتخاب بهینه 93 7‐12 قدرت خروجی ساعتی توسط دستگاه میکروتوربین در روز اول ماه 94 7‐13 قدرت خروجی ساعتی توسط دستگاه دیزل ﮊنراتور در روز اول ماه 94 7‐14 قدرت خروجی ساعتی توسط دستگاه موتور احتراق درونی در روز اول ماه 94 7‐15 قدرت خروجی ساعتی توسط سه دستگاه در روز اول ماه 95 7‐16 نتیجه شبیه سازی استفاده از تمام دستگاههای ) DG بدترین انتخاب بهینه) 95 7‐17 قدرت خروجی ساعتی توسط دستگاه PV در روز اول ماه 96 7‐18 قدرت خروجی ساعتی توسط دستگاه توربین بادی در روز اول ماه 96 7‐19 قدرت خروجی ساعتی توسط دستگاه میکرو توربین در روز اول ماه 96 7‐20 قدرت خروجی ساعتی توسط دستگاه دیزل ﮊنراتور در روز اول ماه 97 7‐21 قدرت خروجی ساعتی توسط دستگاه موتور احتراق درونی در روز اول ماه 97 7‐22 قدرت خروجی ساعتی توسط دستگاه باطری در روز اول ماه 97 7‐23 حساسیت نسبت به تغییرات گاز و دیزل 98 7‐24 حساسیت نسبت به تغییرات سرعت باد و قیمت دیزل با تابش خورشید برابر6kwh/m2/d 98 7‐25 حساسیت نسبت به تغییرات سرعت باد و قیمت دیزل با تابش خورشید برابر4.55kwh/m2/d 98 7‐26 حساسیت نسبت به تغییرات قیمت دیزل و تابش خورشید 99 7‐27 حساسیت نسبت به تغییرات قیمت گاز طبیعی و تابش خورشید 99 13
چکیده
از زمانی که بحث مولدهای پراکنـده در نقـاط مختلـف دنیـا رواج یافتـه، تـاکنون مباحـث زیـادی در ایـن خصوص مفتوح مانده است. سازندگان اصلی این نوع مولدها همواره به دنبال کاهش هزینه های مربوط به طراحـی، ساخت و خدمات پس از فروش بوده اند. در حال حاضر بدلیل بکارگیری تکنولوﮊیهای جدید، برخی از انـواع ایـن مولدها همچنان دارای سرمایه گذاری پایه اولیه بالایی بوده و قیمت تمام شده برق تولیدی آنها قابل رقابت بـا رویـه های جاری نیست. در حال حاضر در کشور ما بدلیل ارزان بودن قیمت سوخت، علاوه بر عدم ارزش انرﮊی گرمائی تولیدی برای واحدها و مصارف مختلف، مصرف انرﮊی هنـوز جایگـاه واقعـی خـود را پیـدا نکـرده اسـت. هزینـه تجهیزات برای تکنولوﮊیهای DG اغلب بر حسب هزینه آنهـا در هـر کیلـووات از بـرق تولیـدی، قیمـت گـذاری می گردد. در این پروژه - ریسرچ، ابتدا هزینه تولید برق انواع نیروگاههای تولید پراکنده با توجه به پتانسیل انـرﮊی موجـود در
مناطق مختلف جغرافیایی کشور تعیین و سپس به اصـول شـبیه سـازی سیـستمهای قـدرت کوچـک بـا اسـتفاده از نرم افزار HOMER برای شهر نمونه تهران پرداخته می شود. و نتایج حاصل از شـبیه سـازی بـا نتـایج پـروﮊه
مقایسه می گردد. از نتایج مشاهده می گردد که در بین انواع نیروگاههای تولید پراکنده موتورهای احتراق درونـی در تمامی شهرها دارای هزینه تولید انرﮊی کمتری نسبت به دیگر نیروگاههای تولید پراکنده دارا می باشد و همچنین بـا توجه به منابع گاز طبیعی فراوان در کشور ایران استفاده از نیروگاههای تولید پراکنده که با سوخت گاز کار می کننـد دارای هزینه تولید برق کمتری می باشند.
1
مقدمه
از زمانی که بحث مولدهای پراکنده در نقاط مختلف دنیا رواج یافته، تاکنون مباحث زیادی در این خصوص مفتوح مانده است و با توجه به جدید بودن ایده بکارگیری گسترده از این واحدها و نحوه مشارکت بخشهای غیر دولتی و همچنین نحوه حمایت دولت برای بهره برداری از آنها این بحث هنوز بصورت قـانونی مـدون اسـتخراج نگردیـده است. سازندگان اصلی این نوع مولدها همواره به دنبال کاهش هزینه های مربوط بـه طراحـی، سـاخت و خـدمات پس از فروش بوده اند. در حال حاضر بدلیل بکارگیری تکنولوﮊیهای جدید، برخی از انـواع ایـن مولـدها همچنـان دارای سرمایه گذاری پایه اولیه بالایی بوده و قیمت تمام شده برق تولیدی آنها قابل رقابـت بـا رویـه هـای جـاری نیست. بایستی توجه داشت که این مولدها دارای امکانات و مشخصات ویژه ای هستند که قیـاس آنهـا را بـا سـایر واحدهای تأمین کننده برق امکان پذیر می سازد. در حال رشدی معادل 4/7 درصد برای مصرف انرﮊی برق (بطور متوسط) در اکثر کشورهای جهان تعیین شده است. که البته طبق اظهار نظر مسؤلان این روند در کشور، دارای رشد حدود %8 سالیانه است. با توجه به راندمان حدود %50 نیروگاهها (سیکل ترکیبی) و مد نظر قراردادن این موضـوع که تلفات ناشی از انتقال انرﮊی و توزیع آن رقمی معادل 10 الی 15 درصد را در بردارد تأمین مازاد نیاز انـرﮊی بـه معنای استفاده فراوان از منابع انرﮊی فسیلی است.
جهت رفع این نقیصه استفاده از انرﮊیهای نو و تجدید پذیر1 و همچنین ایجاد یک الگوی مصرف مناسب به همراه تجدید ساختار در صنعت برق با بهره گیری از مولدهای پراکنده، راهکارهای با ارزش و مهم محسوب میـشوند. در اکثر کشورهای جهان که بهای انرﮊی دارای ارزش واقعی نیست مـصرف بـی رویـه از آن هزینـه هـای فراوانـی در بردارد. در حال حاضر در کشور ما بدلیل ارزان بودن قیمت سوخت، علاوه بر عدم ارزش انـرﮊی گرمـائی تولیـدی برای واحدها و مصارف مختلف، مصرف انرﮊی هنوز جایگاه واقعی خود را پیدا نکرده است. مولدهای پراکنـده ای که در ادامه از آنها صحبت به میان خواهد آمد علاوه بر حفظ منابع انرﮊی و جلوگیری از اتـلاف آن، بـدون داشـتن آلاینده های زیست محیطی و صوتی شرایط حفظ محیط زیست را نیز فراهم می سازند.
از لحاظ بعد تاریخی تولید کننده های برق به صورت پراکنده بودند و به طور محلی مورد استفاده قرار می گرفتند.
بعدها به دلایل اقتصادی و تکنیکی تمرکز تولید بیشتر شد، تا بـه حالـت امـروزی در آمـد. در عـصرحاضر بـدلایل متعددی تولید در حال تغییر ماهیت به تولید پراکنده می باشد. طبق پیش بینی انسیتیتو تحقیقـات بـرق آمریکـا2 تـا سال 2010 حدود %25 تولید به صورت تولید پراکنده خواهد بود و نیز طبق پیش بینی مؤسسه گاز طبیعی آمریکـا تا سال 2010 حدود %30 تولید به صورت پراکنده خواهد بود.

1 - Renewable Energy 2 - EPRI
2
در ادامه ما به بحث شرایط اقلیمی کشور ایران می پردازیم. کشور ایران 1648195 کیلومتر مربع وسعت دارد و در غرب قاره آسیا واقع شده و جزﺀ کشورهای خاورمیانه محسوب می شود. در مجموع محیط ایـران 8731 کیلـومتر می باشد. حدود 90 درصد خاک ایران در محدوده فلات ایران واقع شده است. بنابراین ایران کـشوری کوهـستانی محسوب می شود. بیش از نیمی از مساحت ایران را کوهها و ارتفاعات، یـک چهـارم را صـحراها و کمتـر از یـک چهارم را اراضی قابل کشت تشکیل می دهند. ایران دارای آب و هوای متنوع و متفاوت اسـت و بـا مقایـسه نقـاط کشور این تنوع را بخوبی می توان مشاهده کرد. میزان تفاوت و ترکیب گوناگون عوامل اقلیمی کـه خـود ناشـی از تفاوت موقعیت جغرافیایی مناطق مختلف است، حوزههـای اقلیمـی متفـاوتی در جهـان پدیـد آورده کـه هـر یـک ویژگیهای خاصی دارد. محیط زیست، شهرها و حتی بناهای مربوط به این حوزههای اقلیمی، ویژگیهای خاصـی متناسب با شرایط اقلیمی خود به دست آوردهاند. بدین منظور، نخست به تقسیمات اقلیمی در سطح جهان و ایـران اشاره نموده و سپس به انتخاب ده شهر در مناطق مختلف اقلیمی ایران پرداخته می شود.
در ادامه به تعیین هزینه تولید برق از یک نیروگاه تولید پراکنده می پردازیم که یکی از عوامل مهم به هنگام اسـتفاده از یک تکنولوﮊی DG، هزینه می باشد. بهرحال تعیین هزینه یک تکنولوﮊی DG اغلب پیچیده می باشد. علاوه بـر هزینه یا سرمایه اولیه تجهیزات، نیروی کار و دیگر مخارج مربوط به نصب، بهره برداری و تعمییرات تجهیزات نیـز وجود دارد. همچنین هزینه برق تولیدی توسط تکنولوﮊی DG می تواند برآورد و با قیمت موجـود پرداخـت شـده برای برق شبکه قدرت مقایسه شود. هزینه تجهیزات برای تکنولوﮊیهای DG اغلب بـر حـسب هزینـه آنهـا در هـر کیلووات از برق تولیدی و یا دلار بر کیلووات، قیمت گـذاری مـی گـردد. بـرای انتخـاب یکـی از انـواع مختلـف نیروگاههای تولید پراکنده عوامل مختلفی وجود دارد تا مشخص شود کدام نیروگاه برای وضعیت ویژه مناسـب تـر می باشد. که این عوامل در فصل چهارم به تفصیل تشریح گردیده است. در پایان با استفاده از نرم افـزار HOMER
به مدلسازی سیستمهای تولید پراکنده کوچک می پردازیم که این نرم افزار قابلیت انتخاب بهینه هیبرید انواع تولیـد پراکنده را دارا می باشد.
3

فصل اول:
بررسی انرﮊیهای تجدید پذیر و تجدیدناپذیر مورد استفاده در نیروگاههای تولید پراکنده((DG

4
انرﮊیهای مورد استفاده در نیروگاههای تولید پراکنده به دو نوع تقسیم می شود : [1]-[10]
الف‐ تجدید پذیر
ب‐ تجدید ناپذیر
انرﮊیهای تجدید پذیر:
انرﮊی باد
انرﮊی خورشید
انرﮊی باد
انرﮊی باد یکی از انواع اصلی انرﮊی های تجدید پذیر می باشد که از دیرباز ذهن بشر را به خود معطوف کرده بـود بطوریکه وی همواره به فکر کاربرد این انرﮊی در صنعت بوده است. بشر از انرﮊی باد بـرای بـه حرکـت در آوردن قایقها و کشتی های بادبانی و آسیابهای بادی استفاده می کرده است. در شرایط کنونی نیز با توجـه بـه مـوارد ذکـر شده و توجیه پذیری اقتصادی انرﮊی باد در مقایسه با سایر منابع انرﮊیهای نو، پرداختن به انرﮊی باد امری حیـاتی و ضروری به نظر می رسد. در کشور ما ایران، قابلیتها و پتانسیلهای مناسبی جهت نصب و راه اندازی توربینهای بـرق بادی وجود دارد، که با توجه به توجیه پذیری آن و تحقیقات، مطالعات و سرمایه گذاری که در این زمینـه صـورت گرفته، توسعه و کاربرد این تکنولوﮊی، چشم انداز روشنی را فرا روی سیاستگذاران بخـش انـرﮊی کـشور در ایـن زمینه قرار داده است.
انرﮊی باد نظیر سایر منابع انرﮊی تجدیدپذیر از نظـر جغرافیـایی گـسترده و در عـین حـال بـه صـورت پراکنـده و غیرمتمرکز و تقریبا همیشه دردسترس می باشد. انرﮊی باد طبیعتی نوسانی و متناوب داشـته و وزش دائمـی نـدارد.
هزاران سال است که انسان با استفاده از آسیابهای بادی، تنها جزﺀ بسیار کوچکی از آن را استفاده می کند.
این انرﮊی تا پیش از انقلاب صنعتی بعنوان یک منبع انرﮊی، بطور گسترده ای مورد استفاده قرار می گرفت ولـی در دوران انقلاب صنعتی، استفاده از سوختهای فسیلی بدلیل ارزانی و قابلیت اطمینان بالا، جایگزین انرﮊی باد گردیـد.
در این دوره، توربینهای بادی قدیمی دیگر از نظر اقتصادی قابل رقابت با بازار انرﮊیهای نفت و گاز نبودند. تا اینکه در سالهای 1973 و 1978 دو شوک بزرگ نفتی، ضربه بزرگی به اقتـصاد انرﮊیهـای حاصـل از نفـت و گـاز وارد آورد. به این ترتیب هزینه انرﮊی تولید شده بوسیله توربینهای بادی در مقایسه با نرخ جهـانی قیمـت انـرﮊی بهبـود یافت. پس از آن مراکز و موسسات تحقیقاتی و آزمایـشگاهی متعـددی در سراسـر دنیـا بـه بررسـی تکنولوﮊیهـای مختلف جهت استفاده از انرﮊی باد بعنوان یک منبع بزرگ انـرﮊی پرداختنـد. بـه عـلاوه ایـن بحـران باعـث ایجـاد تمایلات جدیدی در زمینه کاربرد تکنولوﮊی انرﮊی باد جهت تولید برق متصل به شبکه، پمپاﮊ آب و تـامین انـرﮊی الکتریکی نواحی دورافتاده شد. همچنین در سالهای اخیر، مشکلات زیست محیطی و مسائل مربوط به تغییـر آب و هوای کره زمین بعلت استفاده از منابع انرﮊی فسیلی بر شدت این تمایلات افزوده است. از سال 1975 پیشرفتهای
5
شگرفی در زمینه توربینهای بادی در جهت تولید برق بعمل آمده است. در سال 1980 اولـین تـوربین بـرق بـادی متصل به شبکه سراسری نصب گردید. بعد از مدت کوتاهی اولین مزرعه برق بادی چند مگاواتی در آمریکا نـصب و به بهره برداری رسید. در پایان سال 1990 ظرفیت توربینهای برق بادی متصل به شبکه در جهان بـه 200MV
رسید که توانایی تولید سالانه 3200 GWh برق را داشته که تقریبا تمام این تولیـد مربـوط بـه ایالـت کالیفرنیـا آمریکا و کشور دانمارک بود. امروزه کشورهای دیگر نظیر هلند، آلمان، بریتانیا، ایتالیا و هندوستان برنامه های ملـی و ویژه ای را در جهت توسعه و عرضه تجاری انرﮊی باد آغاز کرده اند. در طی دهه گذشته، هزینه تولید انـرﮊی بـه کمک توربینهای بادی بطور قابل ملاحظه ای کاهش یافته است.
در حال حاضر توربینهای بادی از کارائی و قابلیت اطمینان بیشتری در مقایسه با 15 سال پیش برخوردارند. با ایـن همه استفاده وسیع از سیستمهای مبدل انرﮊی باد((wecs هنوز آغاز نگردیده است. در مباحث مربوط به انـرﮊی
باد، بیشتر تاکیدات بر توربینهای بادی مولد برق جهت اتصال به شبکه است زیرا این نوع از کاربرد انرﮊی بـاد مـی تواند سهم مهمی در تامین برق مصرفی جهان داشته باشد. بر اساس برنامه سیاسـتهای جـاری (cp)، تخمـین زده می شود که سهم انرﮊی باد در تامین انرﮊی جهان در سال 2020 تقریبا برابر با 375 twh در سال خواهـد بـود.
این میزان انرﮊی با استفاده از توربینهای بادی، به ظرفیت مجموع 180Gw تولیـد خواهـد گردیـد. امـا در قالـب برنامه ضرورتهای زیست محیطی (ed) سهم این انرﮊی در سال 2020 بالغ بـر ( 970 twh) در سـال خواهـد بود که با استفاده از توربینهای بادی به ظرفیت مجموع 470 Gw تولید خواهد شد. بطور کلی با استفاده از انرﮊی باد به عنوان یک منبع انرﮊی در دراز مدت می توان دو برابر مصرف انرﮊی الکتریکی فعلی جهان را تامین کرد.
منشاﺀ باد هنگامی که تابش خورشید بطور نامساوی به سطوح ناهموار زمین می رسد سبب ایجاد تغییرات در دما و فشار مـی
گردد و در اثر این تغییرات باد بوجود می آید. همچنن اتمسفر کره زمین به دلیل حرکت وضعی زمـین، گرمـا را از مناطق گرمسیری به مناطق قطبی انتقال می دهد که این امر نیز باعث بوجود آمدن باد می گردد. جریانات اقیانوسـی نیز به صورت مشابه عمل نموده و عامل %30 انتقال حـرارت کلـی در جهـان مـی باشـد. در مقیـاس جهـانی ایـن جریانات اتمسفری به صورت یک عامل قوی جهت انتقال حرارت و گرما عمل می نمایند. دوران کره زمین نیز می تواند در برقراری الگوهای نیمه دائم جریانات سیاره ای در اتمسفر، انرﮊی مضاعف ایجاد نماید.
پس همانطوریکه عنوان شد باد یکی از صورتهای مختلف انرﮊی حرارت خورشیدی می باشد که دارای یک الگوی جهانی نیمه پیوسته می باشد. تغییرات سرعت باد، ساعتی، روزانه و فصلی بوده و متاثر از هوا و توپـوگرافی سـطح زمین می باشد. بیشتر منابع انرﮊی باد در نواحی ساحلی وکوهستانی واقع شده اند.
توزیع جهانی باد بطورکلی جریان باد در جهان دارای دو نوع توزیع می باشد:
6
الف‐ جریان چرخشی هادلی1
بین عرضهای جغرافیایی 30 درجه شمالی و 30 درجه جنوبی، هوای گرم شـده در اسـتوا بـه بـالا صـعود کـرده و هوای سردتری که از شمال و جنوب می آید جایگزین آن می شود. این جریـان را چـرخش هـادلی مـی نامنـد. در سطح کره زمین این جریان بدین معنی است که بادهای سرد به طرف استوا می وزند و از طرف دیگر هوایی کـه در
30 درجه شمالی و 30 درجه جنوبی به پایین می آید خیلی خشک است و بدلیل آنکه سرعت دوران زمین در ایـن عرضهای جغرافیایی به مراتب کمتر از سرعت دوران زمین در استوا است، به سمت شرق حرکت می کنـد. معمـولا در این عرضهای جغرافیایی نواحی بیابانی مانند صحرا قرار دارند.
ب‐ جریان چرخشی راسبی2
بین عرضهای جغرافیایی 30 درجه شمالی(جنوبی) و 70 درجه شمالی (جنوبی) عمـدتا بادهـای غربـی در جریـان هستند. این بادها تشکیل یک چرخش موجی را می دهند و هوای سرد را به جنوب و هوای گرم را به شمال انتقال می دهند. این الگو را جریان راسبی می نامند.
اندازه گیری پتانسیل انرﮊی باد پتاسیل انرﮊی باد به عنوان یک منبع قدرت در مناطق مختلف و بر اساس اطلاعات موجود در مورد منابع بـاد قابـل
دسترس در هر منطقه مورد مطالعه قرار گرفته است. پتانسیل مربوط به منابع باد به طور کلی به پـنج دسـته تقـسیم می شود:
‐1 پتانسیل هواشناسی: این پتانسیل بیانگر منبع انرﮊی باد در دسترس می باشد.
‐2 پتانسیل محلی: این پتانسیل بر مبنای پتانسیل هواشناسی بنا شده ولی محدود به محلهایی است کـه از نظـر جغرافیایی برای تولید انرﮊی در دسترس هستند.
‐3 پتانسیل فنی: این پتانسیل با در نظر گرفتن نـوع تکنولـوﮊی دردسـترس (کـارایی، انـدازه تـوربین و... ) از پتانسیل محلی محاسبه می شود.
‐4 پتانسیل اقتصادی: این پتانسیل، استعداد بالقوه فنی است کـه بـه صـورت اقتـصادی و بـر پایـه سیاسـتهای اقتصادی قابل تحقق و اجرا است.
‐5 پتانسیل اجرایی: این پتانسیل با در نظر گرفتن محدودیتها و عوامل تشویقی برای تعیین ظرفیـت توربینهـای بادی قابل اجرا در یک محدوده زمانی خاص تعیین می شود. مانند تعرفه های تشویقی که طبـق سیاسـت‐ های دولتهای مختلف به تولیدکنندگان انرﮊی برق بادی حاصل از توربینهای بادی تخصیص داده می شود.
قدرت باد انرﮊی جنبشی باد همواره متناسب با توان دوم سرعت باد است. هنگامی که باد به یک سطح برخورد می کند انرﮊی
جنبشی آن به فشار (نیرو) روی آن سطح تبدیل می شود. حاصلضرب نیروی باد در سرعت باد مساوی قـدرت بـاد

1 - hadly 2 - Rossby
7
می شود. نیروی باد متناسب با مربع سرعت باد است پس قدرت باد متناسب با مکعـب سـرعت بـاد خواهـد بـود.
بنابراین هرچه سرعت باد بیشتر باشد قدرت آن نیز بیشتر خواهد شد. به عنوان مثال اگر سرعت باد دو برابـر شـود قدرت آن هشت برابر و اگر سرعت باد سه برابر گردد قدرت باد بیست و هفت برابر خواهد شد.
مزایای بهره برداری از انرﮊی باد
‐1 عدم نیاز توربینهای بادی به سوخت، که در نتیجه از میزان مصرف سوختهای فسیلی می کاهد.
‐2 رایگان بودن انرﮊی باد
‐3 توانایی تامین بخشی از تقاضای انرﮊی برق
‐4 کمتر بودن نسبی قیمت انرﮊی حاصل از باد نسبت به انرﮊیهای فسیلی
‐5 کمتر بودن هزینه های جاری و هزینه های سرمایه گذاری انرﮊی باد در بلند مدت
‐6 تنوع بخشیدن به منابع انرﮊی و ایجاد سیستم پایدار انرﮊی
‐7 قدرت مانور زیاد جهت بهره برداری در هر ظرفیت و اندازه ( از چند وات تا چندین مگاوات)
‐8 عدم نیاز به آب
‐9 عدم نیاز به زمین زیاد برای نصب
‐10 نداشتن آلودگی محیط زیست نسبت به سوختهای فسیلی پتانسیل باد در ایران
کشور ایران 1648195 کیلومتر مربع وسعت دارد و در غرب قاره آسیا واقع شـده و جـزﺀ کـشورهای خاورمیانـه محسوب می شود. در مجموع محیط ایران 8731 کیلومتر می باشد. حـدود 90 درصـد خـاک ایـران در محـدوده فلات ایران واقع شده است. بنابراین ایران کشوری کوهستانی محسوب می شود. بیش از نیمی از مساحت ایـران را کوهها و ارتفاعات، یک چهارم را صحراها و کمتر از یک چهارم را اراضی قابـل کـشت تـشکیل مـی دهنـد. ایـران دارای آب و هوای متنوع و متفاوت است و با مقایسه نقاط کشور این تنوع را بخوبی می توان مشاهده کرد.
ارتفاع کوههای شمالی، غربی و جنوبی به قدری زیاد است که از تاثیر بادهای دریای خزر، دریای مدیترانه و خلیج فارس در نواحی داخلی ایران جلوگیری می کند. به همین سبب دامنه های خارجی این کوههـا دارای آب و هـوای مرطوب بوده و دامنه های داخلی آن خشک است. در رابطه با بادهای ایران می توان گفـت کـه ایـران بـا موقعیـت جغرافیایی که دارد، در آسیا بین شرق و غرب و نواحی گرم جنوب و معتدل شمالی واقـع شـده اسـت و در مـسیر جریانهای عمده هوایی بین آسیا، اروپا، آفریقا، اقیانوس هند و اقیانوس اطلس است که تـاکنون آنچـه مـسلم اسـت قرار گرفتن ایران در مسیر جریانهای مهم هوایی زیر می باشد:
‐1 جریان مرکز فشار آسیای مرکزی در زمستان
‐2 جریان مرکز فشار اقیانوس هند در تابستان
‐3 جریان غربی از اقیانوس اطلس و دریای مدیترانه مخصوصا در زمستان
8
‐4 جریان شمال غربی در تابستان توربینهای بادی و انواع آن
از نظر عملکردی در توربینهای بادی انرﮊی جنبشی باد به انـرﮊی مکـانیکی و سـپس بـه انـرﮊی الکتریکـی تبـدیل میگردد.
انواع توربینهای بادی:
‐1 توربینهای بادی با محور چرخش عمودی
‐2 توربینهای بادی با محور چرخش افقی انواع کاربرد توربینهای بادی الف – کاربردهای غیر نیروگاهی الف( 1 ‐ پمپهای بادی آبکش
الف( 2 ‐ کاربرد توربینهای کوچک بعنوان تولیدکننده برق الف( 3 ‐ شارﮊ باتری ب – کاربردهای نیروگاهی
کاربردهای نیروگاهی توربینهای برق بادی شامل کاربردهای متصل به شبکه برق رسانی است که عبارتنداز:
ب(1‐ توربینهای بادی منفرد ب(2‐ مزارع بادی
انرﮊی خورشید
خورشید نه تنها خود منبع عظیم انرﮊی است، بلکه سـر آغـاز حیـات و منـشا تمـام انرﮊیهـای دیگـر اسـت. طبـق برآوردهای علمی در حدود 6000 میلیون سال از تولد این گوی آتشین می گذرد و در هر ثانیه 4.2 میلیون تـن از جرم خورشید به انرﮊی تبدیل می شود. با توجه به وزن خورشید که حدود 333 هزار برابر وزن زمین اسـت، ایـن کره نورانی را مـی تـوان بعنـوان منبـع عظـیم انـرﮊی تـا 5 میلیـارد سـال آینـده بـه حـساب آورد. قطـر خورشـید
1/39*10^6 کیلومتر است و از گازهایی نظیر هیدروﮊن 86/8) درصد)، هلیوم 3) درصد) و 63 عنصر دیگـر کـه مهمترین آنها اکسیژن، کربن، نئون و نیتروﮊن می باشد، تشکیل شده است. میزان دما در مرکز خورشید حدود 10 تا
14 میلیون درجه سانتیگراد می باشد که از سـطح آن بـا حرارتـی نزدیـک بـه 5600 درجـه و بـه صـورت امـواج الکترومغناطیسی در فضا منتشر می شود.
زمین در فاصله 150 میلیون کیلومتری خورشید واقع است و 8 دقیقه و 18 ثانیه طول می کشد تا نور خورشید بـه
1
زمین برسد. بنابراین سهم زمین در دریافت انرﮊی از خورشید حدود 2 109 از کل انرﮊی تابشی آن می باشد.

جالب است بدانید که سوختهای فسیلی ذخیره شده در اعماق زمین، انرﮊیهای باد، آبشار، امـواج دریاهـا و بـسیاری موارد دیگر از جمله نتایج همین مقدار انرﮊی دریافتی زمین از خورشید می باشد.
9
کاربردهای انرﮊی خورشیدی در عصر حاضر از انرﮊی خورشیدی توسط سیستمهای مختلف و برای مقاصد متفاوت استفاده و بهـره گیـری مـی شود که عبارتنداز:
الف) استفاده از انرﮊی حرارتی خورشیدی برای مصارف خانگی، صنعتی و نیروگاهی ب ) تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک کاربردهای نیروگاهی:
‐1 نیروگاههایی که گیرنده آنها آینه های سهموی ناودانی هستند(شلجمی باز)
‐2 نیروگاههایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه های بزرگـی بـه نـام هلیوستات به آن منعکس می شود.(دریافت کننده مرکزی)
‐3 نیروگاههایی که گیرنده آنها بشقابی سهموی (دیش) می باشد(شلجمی بشقابی)
کاربردهای غیر نیروگاهی:
‐1 آبگرمکن و حمام خورشیدی
‐2 گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی
‐3 آب شیرین کن خورشیدی
‐4 خشک کن خورشیدی
‐5 اجاقهای خورشیدی
‐6 کوره خورشیدی
‐7 خانه های خورشیدی مصارف و کاربردهای فتوولتائیک:
‐1 مصارف فضانوردی و تامین انرﮊی مورد نیاز ماهواره ها جهت ارسال پیام
‐2 روشنایی خورشیدی
‐3 سیستم تغذیه کننده یک واحد مسکونی
‐4 سیستم پمپاﮊ خورشیدی
‐5 سیستمهای تغذیه کننده ایستگاههای مخابراتی و زلزله نگاری
‐6 ماشین حساب، ساعت، رادیو، ضبط صوت و هر وسیله ای که تاکنون با باطری خشک کار می کرده است
‐7 نیروگاههای فتوولتائیک
‐8 یخچالهای خورشیدی
‐9 سیستم تغذیه کننده پرتابل یا قابل حمل
10
انرﮊی های تجدیدناپذیر
گاز
دیزل
انرﮊی گاز
ذخایر و میادین گاز طبیعی بزرگترین ذخایر گازی شناخته شده جهان متعلق به کشور روسیه می باشد و میلیونها انـشعاب در اروپـا، بـه منـابع
گازی این کشور متصل است. ایران نیز بعد از روسیه، دارای عظیم ترین ذخـایر گـاز طبیعـی در جهـان مـی باشـد.
حدود 17/2 درصد از کل ذخایر گاز طبیعی دنیا و 47/72 درصد از ذخایر خاورمیانه به ایران تعلق دارد.
میزان ذخایر کل قابل استحصال گاز طبیعی کشور در پایان سال 1381، بالغ بر 26/75 تریلیون متر مکعب بـرآورد گردیده است.
وجود پشتوانه عظیم گاز طبیعی در ایران، به همراه جهت گیری سیاسـت انـرﮊی کـشور بـه سـمت افـزایش رونـد جایگزین گاز طبیعی، موجب شده که در دهه های اخیر، سرعت نفوذ گاز طبیعی در سبد انرﮊی کـشور از افـزایش قابل ملاحظه ای برخوردار شود. به طوری که هم اکنون، حدود 40 درصد از انـرﮊی مـصرفی کـشور توسـط گـاز طبیعی تامین می گردد.
جدول((1‐1 ذخایر قابل استحصال گاز طبیعی کشور در سال 1381

شبکه گذاری گاز طبیعی در ایران توسعه عملیات شبکه گذاری گاز طبیعی در راستای سیاست افزایش سهم گـاز در سـبد مـصرف انـرﮊی در داخـل
کشور، از طریق جایگزینی مصرف فراورده های نفتی با گاز طبیعـی بـوده اسـت. بطوریکـه عملیـات مـذکور طـی سالهای دهه 1360 شدت بیشتری گرفته است. در طی این سالها، تا پایان سال 1381، بسیاری از مناطق روسـتایی که در مجاورت شبکه انتقال خطوط انتقال سراسری قرار داشتند، مجهز به سیستم های انتقال، توزیع و مصرف گـاز طبیعی شده اند، بطوریکه سایر استانهای کشور از این شبکه بهره مند گردیده اند. طی دوره مورد بحث، میزان شبکه گذاری گاز طبیعی در کل کشور به 79000 کیلومتر تا پایان سال 1381 رسیده است. از کـل شـبکه گـذاری گـاز کشور تا پایان سال 1381، حدود 17 درصد آن در استان تهران واقع شده و کمترین میـزان برخـورداری از شـبکه گاز رسانی به استانهای کهگیلویه و بویراحمد و کردستان، به ترتیـب بـا 1/04 و 1/22 درصـد تعلـق دارد. بعـد از
11
استان تهران با درصد تمرکز 10/68 درصد، استانهای مازندران، اصفهان، آذربایجان شرقی، فارس، خراسان، گـیلان و کرمان به ترتیب با درصد تمرکز 03/60،8/9،8/02، 6/95،6/53،6/07 قرار داشته اند. نمـودار((1‐1 خلاصـه ای از حجم شبکه گذاری انجام شده توسط شرکت گاز رسانی استانی را نشان می دهد.
نمودار((1‐1 مقدار شبکه گذاری انجام شده در استانها تا پایان سال 1381

قابل ذکر است تا سالهای اولیه دهه هفتاد هجری شمسی، عمده شبکه های توزیع گاز طبیعی به صورت لولـه هـای فولادی بوده که دارای فشاری بالغ بر 60‐250 پوند براینچ مربع می باشند. تجارب موفق بکارگیری لوله های پلی اتیلن با فشار زیاد موجب شده که اخیرا بخش قابل توجهی از شبکه گذاری با استفاده از لوله های پلی اتیلن انجـام گیرد.
انشعابات و مصرف کنندگان گاز طبیعی مجموع انشعابات در کل کشور تا پایان سال 1381 به 4183 هزار انشعاب رسیده است که از ایـن میـزان، حـدود
460 هزار انشعاب در سال 1381 صورت گرفته است. 99/8 درصد کل انشعابات صورت گرفته در سـال مزبـور به انشعابات بخش خانگی و تجاری تعلق داشته و مراکز صنعتی، دارای سهم ناچیزی از انشعابات گازرسانی بودند.
البته، افزایش تعداد انشعابات بخش صنعت طی سالهای اخیر از روند مطلوبی برخودار بوده، بطوریکه با ادامه رونـد موجود، در سالهای نزدیک، اکثر مراکز عمده صنعتی کشور به گاز طبیعی مجهز مـی گردنـد. جـدول (2‐1) تعـداد انشعابات نصب شده توسط شرکتهای گازرسانی را نشان می دهند.
12
جدول((2‐1 تعداد انشعابات نصب شده توسط شرکتهای گاز رسانی تا پایان سال 1381

ا
انرﮊی نفت
بخش نفت در ابعاد ملی و بین المللی، از اهمیت فوق العاده ای برخوردار است. از بعد اقتـصاد ملـی، نفـت نقـشی مهم در تولید ناخالص داخلی، تجارت خارجی، تشکیل سرمایه ملی، اشتغال زایی، تامین بودجـه و گـسترش زمینـه صادرات غیر نفتی دارد. ایران در مقام دومین تولیدکننده نفت اوپک قرار دارد. مجموع ذخایر قابل استحـصال نفـت خام و میعانات گازی در آغاز سال 1382 حدود 130/8 میلیارد بشکه بوده است. تاریخ اتمام ذخـایر، در صـورت کشف نشدن ذخایر جدید و برداشت سالانه معادل سال 1381 برای نفت خام و میعانات گـازی حـدود 93 سـال است. با توجه به جدول((3‐1، ذخایر واقع در دریا و خشکی به ترتیب حدود 21/5 و 78/6 درصد کـل ذخـایر
13
قابل استحصال هیدروکربوری مایع کشور را تشکیل می دهد. این در حالی اسـت کـه 91/1 درصـد از کـل تولیـد انباشتی از میادین خشکی و تنها 8/9 درصد آن از میادین دریایی صورت گرفته است.
جدول((3‐1 ذخایر هیدروکربوری مایع ایران

جدول((4‐1 میزان ذخایر قابل استحصال جدید و شاخص جایگزینی ذخایر به تولید را نشان می دهد.
جدول((4‐1 میزان ذخایر و شاخص جایگزینی ذخایر به تولید کشور در سالهای 80‐81

14

فصل دوم:
انواع تولید پراکنده
(Distributed Generation)

15
مقدمه
برخی دلایل گرایش تولید به سمت تولید پراکنده عبارتند از:[48]
– 1 محدودیتهای محیطی و جغرافیایی تولید
– 2 مسایل تکنیکی شبکه همچون پایداری، قابلیت اطمینان و...
– 3 روند رو به رشد بار در شبکه توزیع و نیاز به احداث نیروگاههای جدید و توسعه شبکه تولید پراکنده
– 4 گرایش به سمت انرﮊیهای پاک و سازگاز با محیط زیست
– 5 قطع وابستگی به سوختهای فسیلی به دلیل نوسانات قیمت سوخت
– 6 تلفات کمتر نسبت به نیروگاههای بزرگ
– 7 جاگذاری و نصب آسانتر
– 8 جاگذاری نزدیک مصرف کننده که این باعث کاهش هزینه توزیع و انتقال و تلفات ناشی از آنها میگردد.[15]
و همچنین دارای معایبی به شرح ذیل است:
– 1 هزینه اولیه گران
– 2 پیچیده بودن ساختار
– 3 نیاز به سیستم های ذخیره برق، حرارت تولید پراکنده را با اسامی مختلفی مانند زیر خطاب میکنند:[49],[18]
Embedded Generation - 1
Distributed Generation - 2
Dispersed Generation - 3
Power Distribution - 4
Distributed Resources - 5
اصطلاحا تولید پراکنده را DG هم می گویند. در اکثر موارد تولید پراکنده در شبکه های توزیع جایگذاری میـشود.
وارد کردن تولید پراکنده در شبکه های توزیع، مزایا و معایبی دارد. مزایای استفاده از تولید پراکنده عبارتند از:
‐1 اصلاح کیفیت توان
‐2 اصلاح قابلیت اطمینان
‐3 کم کردن تلفات
‐4 بالا بردن قابلیت اعتماد معایب استفاده از تولید پراکنده عبارتند از:
‐1 پیچیده شدن شبکه و ضرورت توسعه سیستم حفاظت شبکه
‐2 پیچیده شدن بهره برداری و کنترل شبکه مولدهای پراکنده دارای انواع مختلفی بوده که در ذیل به بررسی اجمالی آنها پرداخته شود.
16
انواع تولید پراکنده
تولید پراکنده دارای انواع گوناگونی می باشد، که از مهمترین آنها می توان به موتورهای احتراق درونی، توربینهـای گازی احتراقی1، توربینهای کوچک2، وسایل ذخیره انرﮊی3، توربینهای بادی4، انرﮊی بیوماس5، سلولهای سـوختی6 و سلولهای خورشیدی7 را نام برد.[17],[21]
این تولیدات پراکنده را می توان از دید تکنولوﮊی به سه دسته عمده تقسیم نمود که عبارتند از:
‐1 تکنولوﮊی گازی
‐2 تکنولوﮊی های انرﮊی نو
‐3 وسایل ذخیره انرﮊی که در آن تکنولوﮊی گازی شـامل توربینهـای احتراقـی گـازی، توربینهـای کوچـک و سـلولهای سـوختی میباشـد.
تکنولوﮊی های انرﮊی نو شامل انرﮊی نهفته طبیعی، توربینهـای کوچـک بـادی، سـلولهای فتوولتائیـک مـی باشـند.
وسایل ذخیره انرﮊی شامل باتری، 8SMES، سوپرخازنها، سدهای ذخیره آب و 9CAES می باشند.
توربینهای گازی احتراقی تکنولوﮊی توربینهای گازی سالهاست که مورد استفاده قرار می گیرد هم اکنـون در شـبکه انتقـال ایـران توربینهـای
گازی زیادی با توان خروجی بالا در حال سرویس دهی می باشند. توربینهای گـازی مـورد بحـث در اینجـا خیلـی کوچکتر از توربینهای گازی به کار رفته در شبکه انتقال بوده و توان خروجی پایین تری دارند.
در این نوع توربینها مطابق شکل (2‐1) هوا با عبور از کمپرسور فشرده شده سپس با سوخت ترکیب مـی گـردد و پس از احتراق، باعث گردش توربین و در نهایت توسط ﮊنراتور باعث تولید توان می شود. این توان تولید شده هم توسط مبدل های توان به شبکه تحویل داده می شود. در این فرآیند می توان از حرارت تولید شـده در تـوربین کـه مورد استفاده نیست جهت سیستم گرمایش یا هر هدف دیگری استفاده نمود. توربینهای گازی احتراقی دارای مزایـا و معایبی هستند که در زیر شرح داده شده اند.

1- Combustion Gas turbine 2- Micro Turbine 3- Enegy Storage Devices 4- Wind Turbine 5- Biomass Power 6- Fuel Cells 7- Photovoltaic Arrays
8- Superconducting Magnetic Energy Storage 9- Compressed Air Energy Storage
کمپرسور

جعبه دنده
گاز خروجی
17
بخارورودی توربین
محفظه احتراق
گاز خروجی
شکل (2‐1) سیستم بازیافت حرارت
مزایا:
‐1 راندمان بالا و هزینه پایین
‐2 توانایی تولید دمای بالا
‐3 مشتری های زیاد در بازار برق
‐4 نسبت توان به وزن بالا
‐5 در دسترس بودن و قابل اطمینان بودن
‐6 رنج بهره برداری وسیع از توان خروجی معایب:
‐1 کاهش راندمان با کاهش بار
‐2 حساسیت به شرایط محیطی (دما، ارتفاع)
‐3 هزینه و راندمان واحدهای کوچک آن به اندازه واحدهای بزرگ قابل قبول نیست.
توربینهای گازی احتراقی از جمله تولید کننده های انرﮊی است که به راحتی در هر نقطه ای قابل نصب بـوده ولـی دارای فاکتور آلوده کنندگی هوا می باشند، که به نظر می رسد نقش آنها را در آینده کم رنگ نماید.
توربینهای کوچک تکنولوﮊی توربینهای کوچک دارای آینده درخشانی است این نوع توربینها، توربینهای احتراقی با ظرفیـت کـم مـی
باشند که می توانند از گاز طبیعی پروپان و سوخت مایع استفاده نمایند. مطابق شـکل (2‐2) در یـک نگـاه سـاده، توربینهای کوچک دارای کمپرسور، محفظه احتراق، توربین کوچک و ﮊنراتور می باشـد. توربینهـای کوچـک دارای حجم کوچکی به اندازه 1– 0/004 m3 و تولیـدی بـه انـدازه 500‐20KW دارنـد. بـرخلاف توربینهـای احتراقـی
18
معمولی، توربینهای کوچک در دما و فشار کمتر و سرعت بیشتری (100000rpm) که بیشتر اوقات به هـیچ جعبـه دنده ای نیاز ندارند، کار می کنند. انواع تجاری موجود دارای قیمت پایین، قابلیت اطمینان خـوب، سـرعت بـالامی باشند. این نوع تولید پراکنده در رنج تولید توان75‐30 KW در شـمال غربـی آمریکـا و غـرب کانـادا و آرﮊانتـین توسط کمپانی Honeywell نصب شده اند. قسمتهای مختلف یک توربین کوچک در شکل (2‐2) نشان داده شـده است. با توجه به شکل (2‐2) هوا با عبور از فیلتر و کمپرسور در محفظه احتراق با سوخت ترکیب شده و واکنش نشان می دهد و سپس توربین به گردش درآمده و ﮊنراتور تولید توان می نمایـد. تـوان تولیـد شـده هـم از طریـق مبدلهای توان به شبکه تزریق می گردد.

جعبه دندهبخارورودی توربین
سیستم بازیافت
محفظه احتراق
دود خروجی
شکل (2‐2) شکل ساده یک میکرو توربین
توربینهای کوچک در بهره برداری و استفاده دارای مزایا و معایبی هستند که به ترتیب در زیر شرح داده شده اند.
مزایای توربینهای کوچک عبارتند از:
‐1 قطعات گردنده کم، سایز کوچک و وزن کم
‐2 راه اندازی ساده و سریع و دارای مشخصات هماهنگ با بار
‐3 راندمان بالا در استفاده دوگانه گرمایی‐ الکتریکی و دوره های تعمیر بلند مدت
‐4 مواد زاید خروجی کم و استفاده مجدد سوخت مصرف نشده معایب توربینهای کوچک عبارتند از:
‐1 نسبت نامناسب سوخت به راندمان الکتریکی
‐2 درجه حرارت بالای محیط وارتفاع بر تلفات توان خروجی و راندمان اثر منفی دارد
19
استفاده وسیع از توربینهای کوچک به دلیل حجم کم و راه اندازی سریع و مواد زاید پایین به سرعت درحـال رشـد است و آینده ای روشن برای آن پیش بینی می شود.
سلولهای سوختی سلول سوختی وسیله ای است که توان الکتریکی و انرﮊی حرارتـی را از انـرﮊی شـیمیایی از طریـق واکـنش هـای
الکتروشیمیایی تولید و تا زمانی که سوخت ورودی تامین گردد تولید الکتریسیته ادامه می یابد. برخلاف باطریها در سلولهای سوختی نیازی نیست که در حین عملیات الکتروشیمیایی، تا زمانی که سوخت ورودی تـامین مـی گـردد، شارﮊ گردد. تکنولوﮊی سلولهای سوختی از سال 1960 شناخته شده است ظرفیت سلولهای سوختی از کیلووات تـا مگاوات برای واحد قابل حمل و ثابت در حـال تغییـر اسـت، ایـن وسـیله در کاربردهـای مختلـف بـا اسـتفاده از سوختهای گازی و مایع، توان و گرمای پاک و سازگار، با محیط تولید مـی نمایـد، سـلولهای سـوختی مـی تواننـد سوختهایی همچون سوخت هیدورﮊن سنگین، گاز طبیعی، بیوگاز و پروپان مصرف نمایند.[11]
سلول سوختی دارای قسمت های مختلفی همچون مبدل سوخت، کاتالیزور آند، الکترولیت پلیمری، کاتالیزور کاتـد و مبدل توان الکتریکی می باشد. هیدروﮊن سوخت با عبور از مبدل سوخت اسـتخراج شـده و وارد کاتـالیزور آنـد میگردد، با عبور از آند الکترون آن گرفته شده و هیدروﮊن یونیزه شده از الکترولیت پلیمری عبور می کند و در کاتد با اکسیژن ترکیب شده و آب و گرما می دهد. بدینوسیله گرما و الکتریسیته تولید می شود. الکتریسیته تولید شده از طریق مبدل توان به شبکه تزریق مـی گـردد. در شـکل((2‐3 مراحـل عملکـرد پیلهـای سـوختی نـشان داده شـده است. [19]

شکل (2‐3) مراحل عملکرد پیلهای سوختی
مزایا و معایب استفاده از بهره برداری از سلولهای سوختی به شرح زیر آمده است.
مزایا:
‐1 راندمان الکتریکی بالا
‐2 نبود قسمتهای متحرک در حین کارکرد سلول سوختی‐ به غیر از پمپها و دمنده های سلول سوختی کـه باعـث کاهش آلودگی صوتی و محیطی می گردد.
20
‐3 نبود احتراق در سلولهای سوختی باعث کاهش قابل ملاحظه مواد زاید خروجی و ماهیت سازگاری بـا طبیعـت را به سلول سوختی داده است.
‐4 با توجه به راندمان بالای سلول سوختی درحالت الکتروگرمایی روز بـه روز سـلولهای سـوختی کـوچکتری بـا مقیاس تجاری و قیمت مناسب ساخته می شود.
معایب:
‐1 قیمت بالا
‐2 نیاز به یک مبدل توان الکترونیک قدرت جهت تنظیم ولتاﮊ خروجی باتوجه به راندمان بالا و سازگاری با محیط زیست و نیز پایین آمدن هزینه سلول سوختی با پیشرفت علم پیش بینی می شود که میزان زیادی از تولید به سمت سلول سوختی متمایل گردد.
توربینهای بادی انرﮊی بادی، انرﮊی است که از هزاران سال پیش مورد استفاده های متعدد داشته است. و از جمله انرﮊیهای متغیر با
زمان و مکان است. چگالی توان تولیدی بر حسب وات بر واحد سطح، یک تابع درجه سوم از سـرعت بـاد اسـت.
در اینصورت یک افزایش کوچک در سرعت باد، افزایش زیادی در توان را در بر خواهد داشت. بادها به دسته های خوب، عالی و شدید تقسیم بندی می شوند که معادل بـا سـرعتهای 13، 16 و 19 مایـل برسـاعت اسـت. توسـط توربینهای بادی ( ایروتوربین ) حرکت رانشی باد به انرﮊی مکانیکی دورانی تبدیل می شود که آن نیز به نوبه خـود توسط یک ﮊنراتور به انرﮊی الکتریکی تبدیل می گردد. ضریب تـوان یـک ایروتـوربینCP شـاخص نـشان دهنـده اصطکاک شفت ایروتوربین می باشد.
یک توربین بادی شامل یک رتور، پره های توربین، ﮊنراتور، وسایل مکانیکی مبدل سرعت و نیرو، شفت و درایـور ﮊنراتور می باشد. توربین های بادی مدرن می توانند به تنهایی یا به صورت مزرعه های بادی و دسته جمعی انرﮊی الکتریکی را تولید نمایند. پره های توربین بادی عموما دو یا سه پره می باشد که هر کدام حدود m 30‐ 10 طـول دارد.

شکل((2‐4 اجزاﺀ توربین بادی
21
انواع مختلفی ایروتوربین در دسترس هستند. آنها می توانند دارای محورهای افقی یا عمودی باشند. تعداد پـره هـا، ثابت یا متحرک بودن آنها و کنترل پره ها بستگی به نوع ایروتـوربین دارد. توربینهـای بـا محـور عمـودی بـا دارای
سیستم خود راه انداز نیستند و نیاز به مکانیسم راه انداز دارند.
توربینهای با محور افقی با دو تا یا بیشتر پره متداولترند. توان الکتریکی خروجی از رابطه زیر بدست می آید:
Pc  η gηm ACp KV 3(2‐1)
که در اینجا ηm و η g به ترتیب بازده های مکانیکی و الکتریکی ﮊنراتـور مـی باشـند. بـه همـین ترتیـب A سـطح جاروب شده، K یک ثابت و V سرعت برخورد باد به توربین می باشد.
اگر سرعت باد تغییر کند، با کنترل گام پره ها، توربین در یک سرعت ثابت عمل می کنـد و یـک ماشـین سـنکرون معمولی برای تولید فرکانس ac ثابت بکار گرفته می شود.
معمولا یک ﮊنراتور القایی با منبع قابل تغییر استفاده می گردد. در این حالت، توربین در یک سرعت نسبتا ثابت کار می کند. انتخاب سرعت متغیر موجب می شود که بازده توربین در رنج وسـیعی از سـرعتهای بـاد بهینـه گـردد در نتیجه خروجی افزایش می یابد. در آینده انتظار می رود که توربینهای پیشرفته در مد سرعت متغیر عمل نموده و از الکترونیک قدرت برای تبدیل خروجی فرکانس متغیر به فرکانس ثابت با اغتـشاشات هـارمونیکی حـداقل در آنهـا استفاده گردد.
اگرچه تبدیل انرﮊی باد به انرﮊی برق اثرات زیست محیطی حداقل دارد ولی ساختارهای بزرگ آنها مقـداری نـویز تولید نموده و از لحاظ زیباسازی هم مشکل ساز خواهد بود. با جایابی سیستمهای باد، تا حد امکان دور از مراکـز مسکونی، این تاثیرات حداقل می گردد. [12]
با توجه به تحقیقات انجام شده توربینهای بادی دارای مزایا و معایبی است که در زیر آورده شده اند.
مزایا:
‐1 انرﮊی تولید شده از توربین بادی می تواند ارزان شود.
‐2 هزینه تولید انرﮊی پائین
‐3 توربین بادی هیچ ماده زاید خروجی نداشته و هیچ سوختی هم نیاز ندارد.
‐4 استفاده بهینه از زمین: زمین مورد استفاده آن می تواند برای کشاورزی یا غذا دادن به حیوانـات مـورد اسـتفاده قرار گیرد.
معایب:
‐1 توان خروجی متغیر در ازای تغییرات سرعت باد
‐2 مکان های مناسب جهت نصب توربین بادی محدود می باشد.
‐3 اثر روحی روانی نیروگاه بادی به دلیل بزرگی آن بر روی مردم مجاور آن
‐4 کشتار پرندگان که از محدوده آن می گذرند
22
‐5 نیروگاه بادی بدلیل تولید انرﮊی پاک و نیز بدلیل پایین آمدن هزینه تمام شده انرﮊی توسط آنها بـه مـرور زمـان درآینده متقاضی بیشتری خواهند داشت.
شبکه های فتوولتاییک پدیده فتوولتائیک: به پدیده ای که در اثر تابش بدون استفاده از مکانیزمهای محرک، الکتریـسیته تولیـد کنـد پدیـده فتوولتائیک می گویند.
شبکه های فتوولتائیک مجموعه ای از سلولهای فتوولتاییک می باشند که انرﮊی خورشید را بطور مستقیم به انـرﮊی الکتریکی تبدیل می نمایند. سلولهای فتوولتائیک می توانند به صورت مربعی یا گرد باشند.
این سلولهای به گونه ای به هم متصل شده اند تا ردیفهای قابل حملی را تشکیل دهند. بـا اتـصال ایـن ردیفهـا بـه صورت سری موازی1 (امروزه این گونه سلولها عموما از ماده سیلیسیوم و سیلیسیوم مورد نیاز از شن و ماسه تهیـه می شود که در مناطق کویری کشور، به فراوانی یافت می گردد) می توان انرﮊی مورد نیاز خود را تامین نمود.
سیستمهای فتوولتائیک را می توان به طور کلی به سه بخش اصلی تقسیم نمود:
‐1 پنلهای خورشیدی: این بخش در واقع مبدل انرﮊی تابـشی خورشـید بـه انـرﮊی الکتریکـی بـدون واسـطه مکانیکی می باشد. جریان و ولتاﮊ خروجی از این پنلها ) DC مستقیم )می باشد.
‐2 تولید توان مطلوب یا بخش کنترل: این بخش در واقـع کلیـه مشخـصات سیـستم را کنتـرل کـرده و تـوان ورودی پنلها را طبق طراحی انجام شده و نیاز مصرف کننده به بار یا باتری تزریق یا کنترل می کند. در این بخش مشخصات و عناصر تشکیل دهنده با توجه به نیازهای بار الکتریکی و مصرف کننـده و نیـز شـرایط آب و هوایی محلی تغییر می کند.
‐3 مصرف کننده یا بار الکتریکی: با توجه به خروجی DC پنلهای فتوولتائیک، مصرف کننده می تواند دو نوع
DC یا AC باشد. همچنین با آرایشهای مختلف پنلهای فتوولتائیک می توان نیاز مصرف کننـدگان مختلـف را با توانهای متفاوت تامین نمود.
مجموعه یک شبکه فتوولتائیک تولید انرﮊی در شکل (2‐5) نشان داده شده است. در شـکل دیـده مـی شـود کـه انرﮊی خورشید از طریق شبکه فتوولتاییک به انرﮊی الکتریکی تبدیل و توسط یک مبدل تـوان بـه بـرق مـورد نیـاز شبکه تبدیل می گردد. با استفاده از یک ﮊنراتور پشتیبان می توان انرﮊی الکتریکی دائمی به شبکه تحویل داد.

شکل((2‐5 نحوه عملکرد سیستمهای فتوولتائیک[20]

1- Panel
23
بکارگیری شبکه های فتوولتائیک مزایا و معایبی دارند که در زیر شرح داده شده اند:
مزایا:
‐1 جهت نقاط دور دست کاربرد فراوانی دارد
‐2 نیاز به تعمیر آنها خیلی کم است
‐3 طبیعت دوست هستند معایب:
‐1 شرایط جوی و جغرافیایی محیط و میزان نور خورشید تاثیر مستقیم بر تولید توان در این وسیله دارند
‐2 این سلولها توان خروجی کمی تولید می نمایند
‐3 هزینه زمین در جاهایی که PV نصب می شود گران است و نسبت زمین مصرفی به توان خروجـی در آن کـم می باشد.
تحقیقات وسیعی در زمینه سلولهای خورشیدی درحال انجام است و با توجه به کاهش روز افزون ذخـایر سـوخت فسیلی و خطرات ناشی از بکارگیری نیروگاههای اتمی و با توجه به طبیعت دوست بودن این وسیله امید است کـه در آینده بعنوان جایگزین مناسب و بی خطر برای سوختهای فسیلی و نیروگاههای اتمی توسـط بـشر بکـار گرفتـه شود. [13]
وسایل ذخیره انرﮊی این وسایل با ذخیره انرﮊی در ساعات خاص و سپس پس دادن انرﮊی در ساعات تعیین شده به عنـوان منبـع تـوان
تولید پراکنده در شبکه توزیع شناخته شده اند. وسایل ذخیره انرﮊی شامل باتری، SEMS، سـوپر خازنهـا، سـدهای ذخیره آب و CAES می باشند. این وسایل معمولا با انواع دیگر تولید پراکنده ترکیب می شوند تا در زمان پیک بار مورد استفاده قرار گیرند.
بکارگیری این وسایل مزایا و معایبی دارد که در زیر شرح داده شده اند.
مزایا:
‐1 اصلاح کیفیت توان و قابلیت اطمینان
‐2 کاهش اندازه تولیدات پراکنده
‐3 صرفه جویی انرﮊی / تقاضا از تقسیم بندی بار
‐4 کاهش دادن احداث تجهیزات جدید در شبکه انتقال و توزیع معایب:
‐1 هزینه بالای سیستم ذخیره در مدت طولانی
‐2 تلفات توان کنار سایت جهت حفظ انرﮊی شارﮊ شده
‐3 نرخ تعمیرات بالا
24
با بکارگیری وسایل ذخیره انرﮊی می توان از اضافه توان شبکه در زمان پیک بار استفاده نمود و شبکه ای با قابلیت مانور بالایی داشت.
نیروگاههای انرﮊی جزر و مد انرﮊی جزر و مد حاصل نیروی گرانش ماه است که ناشی از تغییرات دوره ای انرﮊی پتانسیل آب در نقطه از سطح
زمین است. این تغییرات بوسیله ویژگیهای جغرافیایی مثل شکل و اندازه مصب رودخانه ها زیادتر می شود. نـسبت بین ماکزیمم خیز جزر و مد و مینمم مقدار آن می تواند برابر 3 به 1 باشد. در مصب رودخانه ها، دامنه جزر و مـد می تواند به بزرگی 10 تا 15 متر باشد. توان تولید شده از جزر و مد با ایجاد یک آبگیر و یک سـد در یـک نقطـه مفید در طول مصب تولید می شود. با نصب توربین در نقاط مناسب امکان تولید برق هم در زمـان جـزر و هـم در زمان مد وجود دارد. در شکل دو آبگیره، تولید می تواند در زمانهای مختلف انجـام شـود. بـه ایـن ترتیـب کـه در ساعات پیک عرضه از آبگیره دوم استفاده می گردد. استفاده از انرﮊی حاصل از جزر و مد، نیاز به محل های خاص دارد. بزرگترین این نیروگاهها از نوع یک آبگیره است کـه در انگلـستان و فرانـسه وجـود دارنـد. تـوان نـامی ایـن نیروگاهها 240 مگا وات است که از 24 توربین افقی پره ای استفاده می کنند که توان نامی هر کدام 10 مگا ولـت آمپر است. این نیروگاهها از سال 1966با فناوری خوبی آغاز به کار کرده و بطور متوسط حـدود 500 گیگـا وات ساعت، انرﮊی خالص در هر سال تولید نموده است. [12]
نیروگاههای ترمو الکتریک ترمو الکتریک با استفاده از تاثیرات ترموالکتریکی مواد، انرﮊی حرارتی را مستقیما به انرﮊی برق تبدیل می کننـد کـه
نیمه هادیها بهترین انتخاب برای ترموکوبلها هستند.
در یک ﮊنراتور ترموالکتریکی، ولتاﮊ سیبک تولید شده که تحت اختلاف دما بوجود میآید و یـک جریـان مـستقیم
DC را از طریق مدار باز راهاندازی میکند. [11]
نیروگاههای ترمیونیک تبدیل مستقیم گرما به برق که ادیسون به آن نایل گشت، آزاد شدن الکترونهـا از یـک جـسم داغ اسـت کـه تـابش
ترمیونیک نامیده میشود.گرمای ورودی، انرﮊی کافی به الکترونهایی که در کاتد هستند را میدهـد کـه ایـن باعـث گسیل شدن این الکترونها میگردد. اگر این الکترونها با استفاده از یک جمع کننده (آند) جمع شـوند و یـک مـسیر بسته از طریق یک بار برای کامل کردن مدار برگشتشان به کاتد برقدار گردد، خروجی الکتریکـی بدسـت مـیآیـد.
مبدلهایی که با گازهای قابل یونیزه مثل بخار سدیم در فضای بین دو الکترود پر میشوند. چگالی تـوان بـالاتری را بخاطر بیبار کردن فضای بار موجب میگردند. وقتی این شـاخص کـاهش مـییابـد، کاربردهـای بیـشتری عملـی میگردند. یک نمونه از این تکنولوﮊی 1TFE است که ترکیبی از مبدل و سوخت هستهای بوده و تـوان تولیـدی آن در مقیاس کیلووات تا مگاوات است و برای دورههای زمانی طولانی 7) تا 10 سال) میباشد.

1 - Thermal Fuel Element
25
مبدل دیگر دیگ بخار تولید همزمان برق و گرما، یک دیگ بخار با دمای بالاست که با مبـدلهای ترمیونیـک مجهـز شده است. خروجی الکتریکی آن 50 کیلووات در برابر یک مگاوات خروجی گرمایی است. [17]
نیروگاههای بیوماس بیوماس نوعی ماده آلی است که به وسیله گیاهان اعم از گیاهان خاکی ( که در زمین می رویند ) و گیاهان آبی ( که
در آب می رویند ) و مشتقات آنها تولید می شود. بیوماس شامل گیاهان جنگلی و پسمانده های آنها، گیاهـانی کـه به خاطر محتوای انرﮊی شان در " مزارع انرﮊی " کاشته می شوند، و کود حیوانی نیز مـی شـود. بـر خـلاف زغـال سنگ، نفت و گاز طبیعی که در طی میلیون ها سال بوجود می آیند، بیوماس را می توان منبع انـرﮊی تجدیـد پـذیر تلقی کرد زیرا عمر گیاه تجدید می شود و هر سال به مقدار آن اضافه می شود. بیوماس را می توان شکلی از انرﮊی خورشیدی تصور کرد چون که در واقع این انرﮊی در نتیجه فتوسنتز و رشد گیاهان حاصل می شود.
بیوماس، علاوه بر پسماند های چوبی و تفاله مواد گیاهی که در بالا به آنها اشاره شد، برخی مواد دیگر را نیز شامل می شود. انواع مختلف بیوماس به صورتی هستند که حجم را اشغال می کنند و محتوی مقدار زیادی آب هـستند (
50 تا 90 درصد ). از این رو، انتقال آنها تا مسافتهای دور اقتصادی نیست، بلکه تبدیل آنها به صورت انرﮊی قابـل استفاده باید در نزدیکی محل تولید که محدود به مناطق خاصی است، صورت گیرد. با وجود ایـن، بیومـاس را مـی توان به سوختهای گازی و مایع تبدیل کرد که بدین وسیله چگالی انرﮊی آن افزایش می یابد و انتقال آن بـه منـاطق دور عملی می شود.
تبدیل بیوماس به صورتهای گوناگون انجام می گیرد:
‐1 احتراق مستقیم مانند سوزاندن تفاله و پسماندهای چوبی
‐2 تبدیل گرما شیمیایی
‐3 تبدیل زیست شیمیایی
تبدیل گرما شیمیایی به دو شکل صورت می گیرد:
‐1 تهیه گاز
‐2 تهیه مایع
تهیه گاز با گرمایش بیوماس و با استفاده از اکسیژن محدود عملی می شود که در نتیجه آن گـاز، بـا ارزش گرمـایی پایین تولید می شود، یا اینکه بیوماس با بخار آب و اکسیژن در فشار و دمای بالا به طور شیمیایی ترکیب می شـود که حاصل آن تولید گاز با ارزش گرمایی متوسط است. این گاز را می توان مستقیما به عنوان سوخت مصرف کـرد آن را به متانول ( متیل الکل ( CH 3 OH یا اتانول ( اتیل الکل ( CH 3 CH 2 OH که سوختهای مایع هستند تبـدیل کرد و یا اینکه آن را به صورت گاز، با ارزش گرمایی بالا در آورد. تبدیل زیست شیمیایی به دو صورت انجـام مـی گیرد: تجزیه ناهوازی و تخمیر. تجزیه ناهوازی مستلزم تجزیه میکروبی بیومـاس اسـت. موجـود نـاهوازی موجـود
26
ریزی است که بدون نیاز به هوا یا اکسیژن می تواند زندگی کند. این موجود می تواند اکسیژن مورد نیاز خـود را از تجزیه ماده ای که در آن است به دست آورد. این نوع موجودات در تجزیه پسمانده های حیـوان دخالـت دارنـد و می توان در تجزیه سایر انواع بیوماس نیز از آنها استفاده کرد. این فرایند در دما های پایین تا 65 درجـه سـانتیگراد صورت می گیرد و حداقل به رطوبتی معادل 80 درصد نیاز دارد. در این فرایند گازی، گه عمدتا شامل دی اکـسید کربن و متان است تولید می شود و گاز محتوی حداقل ناخالصی های ممکن مانند سولفید هیدروﮊن است. این گاز را می توان مستقیما سوزانده یا با جدا کردن CO2 و دیگر ناخالصی ها، آن را به گـاز طبیعـی سـنتزی کـه کیفیـت بالاتری دارد تبدیل کرد. پسمانده های این فرایند شامل لجن و ماده مایع زایدی است که اولی دارای مقـدار زیـادی پروتئین است که از آن می توان به عنوان خوراک حیوانی استفاده کرد و دومـی را مـی تـوان بـه کمـک تکنیکهـای استاندارد زیست شناسی به خاک تبدیل کرد.
تخمیر عبارت است از تجزیه مولکولهای پیچیده به مولکولهـای عـالی در اثـر مخمـری ماننـد خمیرمایـه، بـاکتری، آنزیمها و غیره. تخمیر یک تکنولوﮊی کاملا جا افتاده و بطور وسیع پذیرفته شده برای تبدیل شکر و جو بـه اتـانول است. در سال 1979 در حدود شصت میلیون گالن اتانول در ایالات متحده تولید شد و پیشبینی میشود که مقدار آن در سال 1985 با استفاده از غلات اضافی به پانصد میلیون گالن برسد. در نظـر اسـت کـه اتـانول را بـا بنـزین مخلوط کنند و گاز و هول 90) درصد بنزین و 10 درصد اتانول) بدست آورنـد. ایـن طـرح در سـالهای اول دهـه
1980 به دلیل بالا بودن هزینه تولید و نیاز به انرﮊی زیاد در فرآیند تولید بـا موفقیـت بزرگـی روبـرو نـشد. طـرح دیگری که برای کاهش هزینه تولید اتانول به روش تخمیر تحت مطالعه است، پیـدا کـردن غـلاب یـا مـواد قنـدی ارزانتر و استفاده از روشهای تولیدی است که به انرﮊی کمتری نیاز داشته باشند. برای این منظور، گلوکز تولید شده ناشی از هیدرولیز پلیمر کربوهیدرات که بسیار فراوان هم است، و لیگنوسلولوز نامیده میشـود، مـورد توجـه قـرار گرفته است. مطالعات نشان دادهاند که استفاده از انرﮊی بیوماس را میتوان با انجام طرحهای جنگلکاری وسـیع در مناطقی که برای تولید مواد غذایی مساعد نیستند، عملی کرد. بدین وسیله میتوان از هر جریب (حدود 4000 متـر مربع) در هر سال ده تا بیست تن چوب جنگلی بدست آورد. وسعت جنگل ممکن است به 130 کیـومتر مربـع تـا
520 کیلومترمربع برسد. درختان با بکارگیری ادوات خودکار بریده میشوند و آنگـاه پـس از خـرد شـدن و پـودر شدن، آماده احتراق در نیروگاهی که در میانه جنگل قرار میگیرد میشوند. نیروگاههایی که با بیوماس سوختدهـی میشوند در مقیاسهای کم (کمتر از 100 مگاوات) بارهای پایه و بارهای میانی را در ایالات متحده تغذیه میکننـد.
این منابع قابل تجدید بوده و انتشار دی اکسید کربن را کاهش میدهند. خاکستر حاصل از این نیروگاهها هم دوباره بازیافت شده و بعنوان کود شیمیایی مورد استفاده قرار میگیرد.[17]
نیروگاه های مبدل انرﮊی خورشیدی – حرارتی – الکتریکی ویژگی انرﮊی گرمایی مورد نیاز واحدهای تولید پراکنده که از تبدیل نور و گرما به برق استفاده می کنند وابسته بـه ایجاد نور متمرکز شده، می باشد.
27
بشقابهای سهموی شکل و گیرنده های مرکزی برای تولید دما در رنج 400 تا 500، 800 تا 900 و بیشتر از 500
درجه سانتیگراد استفاده می شوند. بزرگترین ظرفیت نصب ( نزدیک 400 مگا وات ) می باشد. نیروگاه خورشیدی
– حرارتی – الکتریکی از جمع کننده های سهموی و از روغن برای انتقال انرﮊی حرارتی به یک مکـان مرکـزی از طریق سیکل بخار رانکین استفاده می کنند و اضافه بر این، دارای یک آتشدان گـاز طبیعـی بـرای عملکـرد ترکیبـی است. این تکنولوﮊی با نام اختصاری SEGS عرضه شده است و بیشتر از 90 درصد انرﮊی بـرق خورشـیدی را در جهان شامل می شود. این تکنولوﮊی از گاز طبیعی برای جبران تغییرات موقتی انرﮊی تابشی خورشید و بهبود تـوان عرضه شده سیستم، استفاده می کند. این جبران در سـاعات 7 تـا 11 شـب در تابـستان و 8 شـب تـا 5 صـبح در زمستان صورت می گیرد. [14],[4]
مزایای نیروگاههای خورشیدی
‐1 تولید برق بدون مصرف سوخت
‐2 عدم احتیاج به آب زیاد
‐3 عدم آلودگی محیط زیست
‐4 امکان تامین شبکه های کوچک و ناحیه ای
‐5 استهلاک کم و عمر زیاد
‐6 عدم احتیاج به متخصص
نیروگاه تولید همزمان برق، گرما و سرما :1(CHCP)
با استفاده از یک سوخت یا ترکیبی ازسوختهای متفاوت میتوان توسط مجموعه موتور‐ مولـد (یـا مجموعـههـای مبتنی بر توربین) برق تولید کرد. بخش بزرگی از کل گرمای اتلافی حاصل از فرآیند تولید برق را میتـوان توسـط مبدلهای گرمایی بازیافت کرد تا برای مصارف تامین گرمایش فضا، آبگـرم مـصرفی، بخـار مـورد نیـاز فرآینـدهای کارخانهها و... بکار برد. با استفاده از یک چیلر جذبی میتوان از بخشی از گرمای بازیافت شده بـرای تولیـد سـرما بهره گرفت. در نتیجه بطور همزمان میتوان هر سه نوع انرﮊی الکتریکی، گرمایی و سرمایی را تولید کـرد کـه ایـن پدیده بنام تولید همزمان برق، گرما و سرما شناخته میشود. از یک بویلر کمکی نیز مـیتـوان بـرای جبـران کمبـود گرمای مورد نیاز بارهای گرمایی و از یک منبع ذخیره گرما برای ذخیره گرما در مواقعی کـه بـار گرمـایی از میـزان خروجی گرما کمتر است استفاده کرد.
تولید متداول قدرت به طور میانگین تنها %35 بازده دارد، تا حدود %65 ظرفیت انرﮊی بصورت گرمای اتلافی آزاد میشود. جدیدترین تولید سیکل ترکیبی میتواند این بازده را صرفنظر از اتلاف انتقال و توزیع برق، تا %55 بهبـود بخشد. تولید همزمان، این اتلاف را با استفاده گرما در بخـشهای صـنعت، تجـارت و گرمـایش و سـرمایش منـزل کاهش میدهد. تولید همزمان عبارتست از تولید گرما و برق که هردوی آنها مورد استفاده قرار میگیرند. این تولیـد

1- Combined heat and cold and power
28
شامل گسترهای از فناوریها است، ولی معمولا شامل یک مولد برق و یـک سیـستم بازیافـت گرمـایی اسـت. تولیـد همزمان، نیز بعنوان »ترکیب برق و گرما «(CHP) و »انرﮊی کل« شناخته میشود.
در تولید متداول برق، تلفات بیشتر در حدود 5 تا %10 ناشی از انتقال و توزیع برق از نیروگاههای نسبتا دور افتاده تا شبکه برق است. هنگامیکه برق به کوچکترین مشتریان تحویل داده میشود، این تلفات بیشترین مقدار اسـت. بـا بهرهبرداری از گرما، بازده دستگاه تولید همزمان میتواند به %90 یا بیشتر برسد. بعـلاوه، بـرق تولیـد شـده توسـط دستگاه تولید همزمان معمولا بطور محلی استفاده میشود و تلفـات انتقـال و توزیـع قابـل صـرفنظر خواهـد بـود.
بنابراین صرفهجویی پیشنهادی توسط تولید همزمان در مقایسه با تامین برق و گرما توسـط نیروگاههـا و بویلرهـای متداول، در حدود 15 تا %40 خواهد بود.
ازآنجاییکه انتقال برق در مسیرهای طولانی آسانتر و ارزانتر از انتقال گرماست، دستگاه تولید همزمان معمولا هرچـه نزدیکتر به محل مصرف گرما نصب میشود و درحالت ایدهآل ظرفیت آنها را بگونهای درنظر میگیرنـد کـه تـامین کننده نیازهای گرمایی محل باشد. در غیر اینصورت یک بویلر اضافی مورد نیاز است و درنتیجه بخـشی از مزایـای زیست محیطی برآورده نخواهد شد. این بنیادی ترین اصل تولید همزمان میباشد.
هنگامیکه برق کمتر از حد نیاز تولید شود، لازم است تا باقیمانده آنرا خریداری کرد. با این وجود هنگامیکه ظرفیت دستگاه برمبنای نیاز گرمایی است، معمولا برق بیشتری نسبت به نیاز تولید میشود. برق اضافی را میتوان به شـبکه برق فروخت یا از راه شبکه توزیع، به مشتری دیگری تحویل داد. [17]
نیروگاههای آبی کوچک به طور کلی واحدهای آبی کوچک به دو دسته میکرو هیدرو و مینی هیدرو تقسیم می شوند.
در عمل تولید توان الکتریکی برای واحدهای میکروهیدرو در محدوده 5 تا 100 کیلو وات و برای مینی هیدرو در محدوده 500 کیلو وات تا 10 مگا وات می باشد. ارتفاع آب برای چنین واحدهایی می تواند در گستره ای از 1.5
تا 400 متر با محدوده دبی صدها لیتر تا دهها متر مکعب بر ثانیه باشد. [16]
دیزل ﮊنراتور این منابع سالهاست که در تولید برق ضروری مورد استفاده قرار می گیرند. سوخت اصلی آنها مازوت یـا گازوئیـل
است. در نوع جدید از گاز طبیعی به عنوان سوخت استفاده می شود. [16]
چرخ لنگر چرخ لنگر سیستم ذخیره انرﮊی الکترومکانیکی است که انرﮊی را به صورت انرﮊی جنبشی در یـک جـسم گـردان
ذخیره می کند. این سیستمها معمولا به دو صورت روتورهای فولادی و روتورهـایی از جـنس رزیـن سـاخته مـی شوند. در هر دو نوع سیستم، روتور در خلاﺀ می چرخد. در سیستمهای با روتور فولادی، بیشتر بـر ممـان اینرسـی روتور برای ذخیره انرﮊی تاکید دارند و در سیستمهایی با روتور مرکب بیشتر بر سرعت روتور برای ذخیـره انـرﮊی تاکید می کنند. [16]
29
موتورهای رفت و برگشتی موتورهای رفت وبرگشتی، بیشتر از 100 سال سابقه دارند و در واقع اولین مدل از تکنولوﮊی بـا سـوخت فـسیلی
هستند. و در تمامی بخشهای اقتصادی نتایج قابل قبولی داشته اند و انواع مختلف این موتورها از واحـدهای بـسیار کوچک با توان درحد کسری از اسب بخار تا واحدهای بزرگ 60 مگاواتی نیروگاهی ساخته شده اند. تقریبا تمامی موتورهایی که برای تولید انرﮊی بکار گرفته می شوند چهار زمانه هستند و در چهار سیکل عمل می کنند:
ورود ( مکش )
فشرده سازی
احتراق
تخلیه
در شکل زیر مراحل عملکردی موتورهای رفت و برگشتی نشان داده شده است.

شکل (2‐6) مراحل عملکردی موتورهای رفت و برگشتی
تعاریف مربوط به تولید پراکنده
با توجه به وسعت بهره برداری از تولید پراکنده توسط کشورهای مختلف مقررات متفاوتی در هر کـشور بـر تولیـد پراکنده اعمال می شود. بنابراین باید مقررات حاکم بر عملکرد مربوط به تولید پراکنده که در ایـن پـروﮊه در شـبیه سازیها بر تولید پراکنده اعمال شده است بیان شود. این تعاریف و مقررات در زیر شرح داده شده اند.
مکان تولید پراکنده: تولید پراکنده به شبکه توزیع و یا به سایت مصرف کننده متصل است.
هدف تولید پراکنده: تولید پراکنده جهت تولید قسمتی از توان مصرف کننده به صورت آمـاده بـه کـار مـورد بهـره برداری قرار می گیرد.
میزان تولید در تولید پراکنده: هر واحد تولید پراکنده باید حداکثر MW 1/5 تولید نمایـد، در مـورد مزرعـه هـای بادی تولید هر کدام از نیروگاههای بادی نیز از این قاعده پیروی میکنند.
محدودیتهای عملکردی تولید پراکنده دراین تحقیق ما تولید پراکنده را در حالت ماندگار و شبکه توزیع را بدون هیچ خطایی فرض کرده ایم.
30
تولید پراکنده را می توان بر اساس محدودیتهای تولید توان، نوع توان تولیـدی وعوامـل مـوثر در تولیـد تـوان بـه قسمتهای مختلفی تقسیم کرد که در زیر به تفضیل شرح داده شده است.
توربینهای گازی احتراقی، توربینهای کوچک این نوع تولید کننده ها را در صورتی که قابلیت اعمال پخش توان را داشته باشـند، مـی تـوان ماننـد نیروگاههـای
تولید متمرکز که دارای قابلیت پخش توان هـستند مـدل کـرد، ولـی در عـوض دارای محـدودیتهای متفـاوت زیـر میباشند.
الف) تولید توان خروجی: تولید توان خروجی این نوع تولید پراکنده دارای محدودیتهای تـوان مـاکزیمم و مینـیمم می باشد.
pg min ≤ pg ≤ pg max(2-2)
ب) تاخیر تولید: تاخیر تولید، تاخیری طبیعی می باشد و زمانی رخ می دهد که بخواهیم درمدت زمان خاصی تولید توان را افزایش دهیم. تغییرتوان در مدت زمان خاصی دارای محدودیتی است که عبارتنداز:
(2‐3) ∆pgt ≤ ∆pglim it
که در آن ∆Pgt میزان افزایش توان تولیدی خروجی از زمـان t‐1 و t مـی باشـد و ∆pglim it محـدودیت افـزایش
تولید توان می باشد. تولید کننده های انرﮊی نو این نوع تولید کننده ها شامل توربینهای بادی و شبکه های فتوولتاییک می باشند مشخـصه اصـلی ایـن نـوع تولیـد کننده ها این است که در موقعیت های اضطراری قابل پخش توان نیستند و توان خروجی آنها به شدت تحت تـاثیر اثرات محیط می باشد. در بسیاری از انواع این تولید پراکنده توان خروجـی تولیـد پراکنـده، تـابعی از ولتـاﮊ( ( v و
فرکانس ( ( f سیستم، در باسی که تولید پراکنده به آن وصل شده است می باشند. (2‐4)
pg ε( f ,v)
وسایل ذخیره انرﮊی وسایل ذخیره انرﮊی مانند باطری، قابلیت ذخیره وپس دهی انرﮊی را به شبکه در مدت زمان محدود و مـشخص را
دارند. این نوع از تولید پراکنده قابلیت پخش توان و کنترل میزان و مدت تولید توان خروجـی را دارنـد. مـی تـوان مشخصه ریاضی آنها را به طور کلی به صورت زیر تعریف کرد:
2 5 ) ∑pgt .T ≤ E ‐ ) t1: j که در آن؛ pgt ، مقدار توان آزاد شده در مدت زمان T می باشد ؛ E، انرﮊی قابل ذخیره می باشـد؛ و T زمـان آزاد سازی انرﮊی می باشد.
سلولهای سوختی
31
این نوع از تولید پراکنده فقط تولید توان حقیقی می نمایند. بنابراین توان راکتیو مورد نیاز را به طرفی بـا اسـتفاده از وسایل جانبی به کار رفته درشبکه مانند خازنهـای ثابـت، خازنهـای قابـل کنتـرل بـا ضـریب تـوان ثابـت و ادوات الکترونیک قدرت تامین نمود.
کاربردهای تولید پراکنده
تکنولوﮊیهای مختلف کاربردهای مختلفی در شبکه های توزیع دارند. این کاربردها بر اساس نیازمندیهای بار متغیـر است. این کاربردها در انتخاب تولید پراکنده مورد استفاده موثر است. درادامه تعدادی از ایـن کاربردهـا شـرح داده شده اند.
تولید پراکنده آماده به کار تولید پراکنده را می توان به صورت آماده به کار جهت تغذیه توان مورد نیاز بارهـای حـساس بـه کـار بـرد. ماننـد
بیمارستانها و کارخانه ها زمانی که شبکه خارج از سرویس است.
تقسیم پیک بار هزینه توان الکتریکی بر اساس منحنی تقاضای بار و تولید انتظاری موجود در یک زمان، تغییر می نماید. در نتیجـه،
تولیدات پراکنده می توانند جهت تغذیه بارها در زمانهای پیک بار مورد استفاده قرار گیرنـد. بدینوسـیله مـی تـوان هزینه الکتریسیته را برای مصرف کننده های صنعتی که باید هزینه زمان مصرف برق را پرداخت کنند، کاهش داد.
کاربردهای محلی و مناطق دوردست تولید پراکنده می تواند به طور مستقل برای تامین توان مناطق دوردست که دسترسی به شـبکه بـرق ندارنـد مـورد
استفاده قرار گیرد. کاربردهای آن عبارتند از روشنائی، گرمایش، سرمایش، مخابرات و کارگاههای تولیدی کوچـک.
ضمنا تولیدات پراکنده قابلیت پشتیبانی و تنظیم ولتاﮊ در کاربردهای محلی (بارهای حـساس) را هنگـام اتـصال بـه شبکه دارند.
تهیه گرما و الکتریسیته ترکیبی (CHP)
تولیدات پراکنده ای که قابلیت تهیه گرما و الکتریسیته ترکیبی را دارنـد، در مجمـوع دارای رانـدمان انـرﮊی بـالایی هستند. گرمای تولید شده از پروسه تبدیل سوخت به انرﮊی الکتریکی، در خود سایت رنج وسـیعی از کاربردهـا را دارا می باشد، مثل گرم کردن بیمارستانها و مراکز تجاری بزرگ و پروسه های صنعتی.
بار پایه شرکت دارنده تولید پراکنده، معمولا تولید پراکنده را برای تغذیه بار پایه جهت تهیه قسمتی از توان مورد نیاز شبکه مورد استفاده قرار می دهد با این عمل باعث بهبود پروفیل ولتـاﮊ شـبکه، کـاهش تلفـات تـوان و بهبـود کیفیت توان می شود.
نحوه اتصال منابع تولید پراکنده به شبکه
‐1 مستقل از شبکه سراسری برق:
32
برای تامین انرﮊی الکتریکی مورد نیاز مناطق دور از شبکه سراسری برق از این نوع نیروگاهها استفاده می شـود کـه بازده توانی این سیستمها از چند صدوات تا چندین مگاوات متغیر، قابل نصب و راه اندازی می باشـد. کـه ممکـن است یک منبع تولید پراکنده بصورت تنهایی استفاده شود و یا اینکه برای افزایش قابلیت اطمینان از دو یا چند منبع بصورت موازی با هم استفاده گردد.
‐2متصل به شبکه سراسری برق
تقسیم بندی های مختلف تولید پراکنده
تولید پراکنده را می توان از دیدگاههای متفاوتی بررسی کرد. این تقسیم بندی ها بر اساس کاربرد هـای مختلـف و محدودیت های تولید پراکنده و نیز روش استفاده از آنها مطرح می شود. در ذیل این روشها به تفـصیل شـرح داده شده است.
دوره تغذیه و انواع توان تولیدی دوره تولید توان خروجی در تولید پراکنده به طور عمده مطابق اندازه تولید پراکنده نوع و کاربرد آن تغییر مـی کنـد
دوره تغذیه تولید پراکنده می تواند دروه دراز مدت تغذیه انرﮊی الکتریکی در بار پایه باشد، حالـت گـذاری تغذیـه انرﮊی الکتریکی که شامل تولید کننده های انرﮊی نو می باشد و دوره کوتاه مدت تغذیه انرﮊی الکتریکی که جهـت پشتیبانی از تغذیه شبکه مورد استفاده قرار می گیرد. با یک ساده سازی مطابق میزان تولیـد تـوان الکتریکـی دوره و نوع آن می توان مطابق جدول((2‐1 تقسیم بندی از تولید پراکنده بوجود آورد.
جدول((2‐1 تقسیم بندی تولید پراکنده دوره تغذیه توان نوع تولید پراکنده نکات توربین های گازی وسلولهای سوختی ‐ تولیــد تــوان حقیقــی و موهــومی بــه غیــر از بلند مدت سلولهای سوختی که تولید توان حقیقی تنهـا مـی نمایند. ‐ بعنوان بار پایه مورد استفاده قرار می گیرند. تغذیه غیر دائم سیــستم هــای انــرﮊی نو،نیروگاههــای ‐ وابسته به شرایط محیطی ‐ فقط توان حقیقی تولید میکنند. PVوWT ‐ در جاهای دور دست استفاده می شوند. کوتاه مدت باطریها، سلولهایPV، واحدهای ذخیره ‐ برای تضمین تداوم تغذیه به کار می روند. انرﮊی ‐ ذخیره انرﮊی برای استفاده کوتاه مدت 33
ظرفیت های تولید پراکنده
تولیدات پراکنده را مطابق جدول (2‐2) به چهار دسته از نظر ظرفیت تولید تقسیم نموده ایم. این ظرفیت ها دارای رنج تغییرات وسیعی از یک واحد کوچک تا تعداد زیادی واحدهای بهم پیوسته در حالت ماﮊولار می باشند.
جدول((2‐2 تقسیم بندی تولید پراکنده

مقدار ظرفیت تولید پراکنده

5KW-1W Micro
5MW-5KW Small
5MW-50MW Medium
50MW-300MW Large

نوع توان تولید شده جریان الکتریسیته خروجی می تواند هم مستقیم و هم متناوب باشـد. سـلولهای سـوختی، سـلولهای فتوولتائیـک و
باطریها جریان مستقیم تولید می نمایند، که برای بارهای DC مناسب است. همچنین می تـوانیم بوسـیله مبـدلهایی الکترونیک قدرت این جریان مستقیم را به جریان متناوب و قابل تزریق به شبکه تبـدیل نمـود. انـواع دیگـر تولیـد پراکنده، همچون توربینهای کوچک و توربینهای بادی تولید جریان متناوب می نمایند که در بسیاری از مـوارد بایـد توسط کنترل کننده های مدرن الکترونیک قدرت به گونه ای کنترل شوند که ولتاﮊ خروجی تنظـیم شـده ای داشـته باشند.
تکنولوﮊی روش دیگر دسته بندی تولیدات پراکنده می تواند مطابق نوع سوخت مصرفی آنها باشد. ایـن سـوختها مـی تواننـد
فسیلی یا غیر فسیلی باشند. دسته بندی ذکر شده مطابق جدول((2‐3 بر تولیدات پراکنده اعمال شده است.
جدول((2‐3 دسته بندی تولید پراکنده بر اساس مصرف سوخت
تولید پراکنده تکنولوﮊی توربین های کوچک و سلول های سوختی تکنولوﮊی سوختهای فسیلی وسایل ذخیره انرﮊی و تولید کننده های انرﮊی نو تکنولوﮊی مبتنی بر منابع غیر فسیلی 34
تلفات توان در شبکه های توزیع شعاعی[17]
در شکل (2‐7) یک شبکه شعاعی نشان داده شده است که در طرف بار آن یک تولید پراکنده وصـل شـده اسـت.
تلفات توان را بدون تولید پراکنده در این شبکه ها به سادگی می توان با جمع کردن توان تلف شده در هر خط بـه دست آورد. توان تلف شده در هر خط به صورت زیر محاسبه می شود:
(2‐6) plossi  Ii.2 Ri
= Ri مقاومت خط i ام : Ii جریان خط i ام
شکل (2‐7) شبکه شعاعی معمولی
با توجه به شکل (2‐7) زمانی که تولید پراکنده به سیستم اضافه می شود توانی که بـار بایـد از منبـع جـذب کنـد کاهش یافته و مابتفاوت را از تولید پراکنده جذب می نماید. در این حالت هم مجموع تلفات توان در خطوط را بـه عنوان تلفات شبکه می شناسیم.
(2‐7) ploss  ∑Ii2 .Ri :n تعداد خطوط i:1,n :Ii جریان جدید خط i ام :Ri مقاومت خط i ام نتیجه گیری
در این فصل با بررسی انواع تولید پراکنده مشخصات عمومی هر کدام مزایا و معایـب آنهـا را مـورد بررسـی قـرار دادیم. سپس با ارایه تعاریفی محدوده کاربرد تولید پراکنده را معین نمودیم. در ادامه به کاربردهـای مختلـف تولیـد پراکنده اشاره نموده و در ضمن به تقسیم بندی انواع تولید پراکنـده بـر اسـاس فاکتورهـای متفـاوتی پـرداختیم. در نهایت موضوع تلفات در شبکه های توزیع به همراه تولید پراکنده و بدون آن، به طور مختصر مـورد بررسـی قـرار دادیم.
35

فصل سوم:

—d1809

از نظر پاسخگویان اقدامات ذیل در کاهش تمایل مردم به تماشاى ماهواره در حد زیاد و خیلى زیاد مؤثر است: افزایش کیفیت، تنوع و جذابیت برنامه‏ها، توجه به نیازهاى مردم در تولید برنامه‏ها و تخصصى شدن شبکه‏هاى داخلى.
70 درصد پاسخگویان مهم‏ترین اهداف شبکه‏هاى ماهواره‏اى را اهداف ضد فرهنگى، تضعیف دین و ایجاد اغتشاش در کشور دانسته‏اند. برخى مواردى که پاسخگویان ذکر کرده‏اند عبارتند از: گمراه کردن جوانان، تهاجم فرهنگى، تضعیف دین، اغتشاش در کشور، ترویج بى‏بندوبارى، منفعت مادى، انحراف اخلاقى، از بین بردن خانواده و از بین بردن اتحاد.
مهم‏ترین پیشنهاد پاسخگویان براى استفاده کمتر مردم از ماهواره عبارتست از: تنوع برنامه‏ها، توجه به کیفیت، توجه به شادى و سرگرمى، جذابیت و بیان واقعیت.
مقایسه نتایج نظرسنجی با نظر سنجی سال گذشته
میزان بینندگان ماهواره در شهرهاى مرکز استان در کشور نسبت به سال گذشته با افزایش 8 درصدى از 34 درصد به 42 درصد رسیده است. هم‏چنین میزان کسانى که در حد زیاد علاقه‏مند به تماشاى برنامه‏هاى ماهواره هستند، با افزایش 6 درصدى از 28 درصد به 33 درصد رسیده است و کسانى که اصلاً علاقه‏اى به تماشاى ماهواره ندارند با کاهش 5 درصدى از 40 درصد به 35 درصد کاهش یافته است. در حال حاضر میزان رجوع به شبکه‏هاى ماهواره‏اى در شهرهاى مرکز استان با بینندگان ماهواره در شهر تهران برابرى مى‏کند.
افزایش جذابیت و تنوع برنامه‏هاى ماهواره‏
رویکرد فرهنگى شبکه‏هاى ماهواره‏اى در مقایسه با جذابیت کم برنامه‏هاى رسانه ملى، مهم‏ترین دلیل افزایش رویکرد مردم به ماهواره مى‏باشد. در حال حاضر در حدود 70 شبکه فارسى ماهواره‏اى وجود دارد که پرمخاطب‏ترین آن‏ها، فارسى‏وان (نمایش فیلم) و شبکه من و تو (سرگرمى و تفریحى) مى‏باشد. 23 درصد از کل پاسخگویان، بیننده فارسى وان و 19 درصد، بیننده من و تو هستند. اگرچه شبکه بى.بى.سى فارسى با رویکرد سیاسى 21 درصد بیننده دارد اما مهم‏ترین رویکرد مردم به ماهواره، برنامه‏هاى فرهنگى آن مى‏باشد. قابل توجه است که در حدود 70 درصد پاسخگویان، برنامه‏هاى ماهواره را در بعد فرهنگى و دینى «مخرب» دانسته‏اند و باعث اغتشاشات سیاسى قلمداد کرده‏اند اما با این حال 60 درصد اذعان داشته‏اند برنامه‏هاى ماهواره باعث شاد شدن روحیه مردم مى‏شود. یعنى: بییندگان ماهواره در غیاب برنامه‏هاى جذاب و متنوع در رسانه ملى به ناچار به سمت ماهواره سوق پیدا مى‏کنند.
نتایج این نظر سنجی که با توجه به غیرقانونی بودن نگهداری وتماشای ماهواره در کشور و خودسانسوری بخشی از پاسخ دهندگان بدلایل اخلاقی و احساس ناامنی باید آن را خوش‌بینانه در نظر گرفت این است که مخاطب ماهواره در کشور به‌شدت رو به افزایش است. این افزایش هم در بعد کمی رخ داده وظرف یکسال 8درصد افزایش یافته است و هم در بعد کیفی رخ داده و از قشر متوسط و با توانایی مالی متوسط به بالا ساکن پایتخت کشور به ساکنین کل کشور تعمیم یافته است و موجب بروز گسست ارزش وهنجارهای دوگانه در جامعه می گردد.
چرا که اکثر مخاطبان با اطلاع از پیامدهای اخلاقی وسیاسی این رسانه اقدام به تماشای شبکه های ماهواره ای می نمایند بنابرین دارای یک نظام ارزشی دوگانه در نظر وعمل می باشند. نتیجه این روند فاصله کردن نظام رفتاری مخاطب با هنجارهای رسمی می باشد و بروز تناقضات رفتاری به فراگیرشدن ناهنجاری در جامعه می انجامد.
در صورتی که روند افزایش مخاطب شبکه‌های ماهواره‌ای که درسال گذشته هشت درصد افزایش یافته در سال جاری ادامه یابد، میزان مخاطب ماهواره در جامعه از 42 درصد فعلی به بیش از50 درصد یعنی اکثریت مردم می‌انجامد.
چگونه می توان با پدیده من وتو، MBC فارسی، فارسی 1 و سایر شبکه های ماهواره ای در حال ظهور برخورد کرد آیا با ارسال پارازیت موضوع قابل حل است که اگر اینگونه بود شاهد رشد تصاعدی مخاطبان و اثرگذاری این شبکه ها نبودیم، به گونه ای که بنا برنظرسنجی رسمی مرکز تحقیقات سازمان. صداوسیما، بیننده ماهواره در سراسر کشور از مرز 42 درصد عبور کرده است.
2-2-1- انحصار و نفی فرصتهای رسانه ایاز سوی دیگر ظرفیت اجرایی، مالی و مدیریتی سازمان صدا و سیما نیز دارای محدودیت های طبیعی می باشد، اگرچه رفع تنگ نظری ها، با استفاده از هنرمندان و فیلمسازان توانا و بهبود شرایط مدیریت و فنی صدا و سیما بر توانمندی‌های این مجموعه عظیم قطعا خواهد افزود و فرصت بروز استعدادهای کارکنان این سازمان را فراهم می کند، اما نمی‌توان انتظار داشت در دنیای متنوع و متکثر کنونی به ازای تاسیس هر شبکه بیگانه، صدا و سیما شبکه تلویزیونی مشابهی را راه اندازی کند.
بنابر این به نظر می رسد تنها راه مقابله با موج جدید تهاجم تلویزیونی، شکستن انحصار در تلویزیون و گشودن مسیر حضور بخش خصوصی و مردمی در این عرصه است تا پتانسیل و ظرفیت به مراتب بیشتری از شرایط فعلی به ظرفیت محدود صدا و سیما برای تولید و پخش برنامه ها اضافه شود.
طبیعی است سیاست گذاری، مدیریت و کنترل تلویزیون خصوصی در داخل کشور، مزیت فراوانی به فضای کنونی که نظام هیچ گونه کنترل محتوایی بر شبکه های تلویزیونی ماهواره ای ندارد و این شبکه ها به ترویج انواع و اقسام ناهنجاری های اخلاقی، اجتماعی، سیاسی و امنیتی و دینی می پردازند، دارد و در صورت ورود بخش خصوصی به این عرصه بازوی دیگری در کنار سازمان صداو سیما در میدان ستیزه و تقابل فرهنگی ایجاد می‌شود که می‌تواند نیاز فزاینده و عطش فرهنگی جامعه به تنوع و تکثر در برنامه های تلویزیونی را بدون ایجاد بار مالی انسانی و ساختاری برطرف سازد.
در این راه با توجه به تصریح اصل 44 قانون اساسی مبنی بر انحصار فعالیت سازمان صدا و سیما مستثنی شدن این سازمان از سیاست های کلی اصل 44 )مقام رهبری،1384) که درخرداد سال 1384 توسط رهبر انقلاب ابلاغ شد و سایر انحصارات در بخش‌های اقتصادی را شکست.
یکی از مسیرهای تاسیس رادیو تلویزیون خصوصی در کشور، می‌تواند تهیه سیاست‌های کلی اصل 44 در حوزه رسانه توسط مجمع تشخیص مصلحت نظام و تایید و ابلاغ آن توسط رهبر انقلاب مشابه سایر سیاست های کلی می باشد.
اقدام دیگر تدوین و تقویت قانون تاسیس رادیو تلویزیون خصوصی توسط مجلس شورای اسلامی است تا بستر قانونی لازم را برای فعالیت در این عرصه فراهم آورد که در این مسیر تجربیات سایر کشورها به ویژه کشورهای مشابه نظیر افغانستان، پاکستان، مالزی و ترکیه که طی دو دهه اخیر این مسیر را پیموده اند بسیار راهگشا خواهد بود.
همزمان، پیشگام شدن نهادهای عمومی نظیر جهاد دانشگاهی، سازمان تبلیغات اسلامی، خبرگزار ی جمهوری اسلامی و سایر نهاد ها و بنیادهای مشابه در تاسیس شبکه های تلویزیونی خارج از صداوسیما یا واگذاری برخی از شبکه های موجود به این نهادها است که انحصار موجود در مدیریت رادیو و تلویزیون به نحوی تدریجی رفع گردد، تجربه موفق خبرگزاری‌های غیردولتی ایسنا، مهر و فارس که توسط نهادهای غیردولتی برای شکستن انحصار خبرگزاری‌های دولتی ایرنا و واحد مرکزی خبر انجام شد، می تواند الگوی تاسیس تلویزیون غیردولتی نیز باشد.
نکته مهم در این میان لزوم توجه به حفظ ابزارهای حاکمیتی برای مدیریت و کنترل شبکه های خصوصی است که در بخش پخش امواج و فرستنده های تلویزیونی می تواند کنترل حاکمیتی حفظ گردد تا زمینه نگرانی ها برای سوء استفاده از تلویزیون خصوصی علیه فرهنگ و امنیت ملی رفع گردد.
در این میان عدم مخالفت و مقاومت مدیران صدا و سیما در برابر ایجاد و فعالیت رادیو تلویزیون خصوصی یکی از ملزومات تسریع در پیمودن این مسیر است.
مدیران صدا و سیما نباید تاسیس تلویزیون خصوصی را تهدیدی برای خود و جایگاه این سازمان بدانند چرا که با توجه به پیشینه و امکانات مالی و فیزیکی صدا و سیما، این سازمان عملا رقیبی غیر قابل جایگزینی برای شبکه های تلویزیونی خصوصی خواهد بود. اما شکل گرفتن فضای رقابت و نوآوری می تواند موجب خلق فرصت ها، شناسایی نیروها و ایجاد نشاط در این عرصه شود که در بهبود عملکرد رسانه ملی نیز موثر خواهد بود.
در این شرایط، به نظر می رسد، پرداختن جدی به مقوله تاسیس تلویزیون خصوصی نه به عنوان یک ایده و آرزو بلکه به مثابه واقعیتی اجتناب ناپذیر در قرن 21 که با حضور رسانه های نوین و دیجیتال نظیر تلویزیون اینترنتی و هزاران شبکه ماهواره ای تلویزیون عملا دوره انحصار در رسانه ها را خاتمه داده است، یک نیاز ضروری جامعه است.
بنابراین موضوع شکسته شدن انحصار در رادیو تلویزیون از مسائل امروز جامعه است که با توجه به تحولات تکنولوژیک و ورود شبکه های ماهواره ای و تلویزیونهای وب و همچنین تکثر دیدگاههای داخل کشور مورد توجه افکارعمومی وصاحب نظران می باشد.
3-1- مساله اصلی تحقیقبا گذشت بیش از سه دهه از تاسیس نظام جمهوری اسلامی، تبیین الگوی مطلوب نظام رادیو - تلویزیونی کشور تا کنون انجام نشده است.
تفسیر رسمی اصل 44 قانون اساسی بر انحصار دولتی رادیو تلویزیون در کنار تعدادی دیگر از حوزه های اقتصادی تاکید دارد و بر این اساس نظام رسانه ای موجود در ایران بر اساس ساختار انحصار دولتی رادیو- تلویزیون، خبرگزاری‌های دولتی و عمومی و مطبوعات دولتی، عمومی و خصوصی شکل گرفته است، اما آیا این الگو تامین کننده نیازهای کشور و بهترین ساختار ممکن رسانه ای برای جمهوری اسلامی است؟
واقعیت آن است که هم اکنون نیازهای فراوانی در حوزه رسانه ها به ویژه در شاخه رسانه های دیداری- شنیداری وجود داردکه تاکنون به آن پاسخ داده نشده و منجر به بروز بسیاری از ناهنجاری ها به ویژه گسترش روزافزون مخاطب شبکه های ماهواره ای و استفاده از محصولات فرهنگی غیر مجاز شده است، این موضوع علاوه بر پیامدهای نامطلوب فرهنگی و اجتماعی و آثار زیان بار اخلاقی، دارای تاثیرات منفی فراوانی در سایر حوزه ها به ویژه عرصه های اجتماعی، فرهنگی و سیاسی است.
به نظر می‌رسد، طراحی و تبیین الگوی رسانه های دیداری – شنیداری کشور ، متناسب با اهداف نظام جمهوری اسلامی و تامین‌کننده نیازهای کنونی جامعه یکی از ضرورت های امروز کشور باشد، که مساله اصلی این تحقیق می‌باشد. با توجه به وجود انحصار دولتی در بخش رادیو تلویزیون به نظر می‌رسد شکسته شدن این انحصار و امکان‌سنجی تاسیس رادیو تلویزیون غیردولتی، مهمترین بخش این الگو باشد که به صورت ویژه در این تحقیق مورد بررسی قرار می‌گیرد.
لازم به ذکر است فارغ از مباحث تئوریک و مبانی اسلامی الگوی مذکور، تحولات اخیر در حوزه فن‌آوری و ظهور رادیو - تلویزیون دیجیتال و رادیو-تلویزیون وب و همچنین سهولت دسترسی به شبکه های ماهواره ای تداوم وضعیت موجود و حفظ انحصار دولتی در رسانه‌های دیداری- شنیداری را غیر ممکن کرده است و در صورت عدم توجه به تدبیر مناسب برای حل این مساله، خلأ موجود اجتماعی در حوزه رسانه، خود به نیازهای برآورده نشده در این حوزه پاسخ خواهد داد.
حفظ امنیت و منافع ملی در جوامع در حال گذار، منوط به توسعه همه جانبه، پایدار و موزون است. در این میان توسعه فرهنگی منوط به تعامل خرده‌فرهنگ‌های داخلی، دادوستد میان فرهنگ ملی ایرانی با دیگر فرهنگ‌ها، مدیریت چالش‌های فرهنگی موجود، بسط و توزیع کالاها و خدمات فرهنگی به سراسر کشور و استیفای حقوق فرهنگی شهروندان است. براساس این ضرورت، رادیو وتلویزیون باید قادر باشند به‌عنوان رسانه‌ای اثرگذار، چالش‌های فرهنگی موجود را مدیریت کنند.
با توجه به دیدگاههای گوناگون و شاید متضاد در مورد تاسیس و فعالیت شبکه های خصوصی به نظر می رسد، "قانون اساسی فقط تکلیف سازمان موجود رادیو و تلویزیون را معین کرده است اما نفی کننده رادیو – تلویزیون‌های خصوصی نیست "(محمدی1379) و جز در اصل 44 که با سیاستهای کلی ابلاغ شده توسط رهبرانقلاب موانع مرتفع گردیده است، صراحتی در قانون اساسی جهت منع فعالیت بخشهای غیردولتی در حوزه رادیو-تلویزیون وجود ندارد.
بنابراین مساله اصلی تحقیق، یافتن الگوی کارآمد برای نظام رسانه‌ای دیداری وشنیداری کشور است، در طراحی این الگو بررسی مهمترین موضوع، بررسی ضرورت امکان ایجاد تکثر ساختاری در رادیو تلویزیون رسمی ایران می باشد.
4-1- پیشینه تحقیق1-4-1- سوابق داخلی: اقتدارگرایی تلویزیون دولتی
محمدی(1379) در کتابی با عنوان سیمای اقتدارگرایی تلویزیون دولتی ایران ضرورت تاسیس تلویزیون خصوصی را مورد بررسی قرارداده وپیش نویس قانون تاسیس تلویزیون خصوصی را ارائه داده است.
لزوم راه اندازی تلویزیون خصوصی
نقبایی (1383) در رساله کارشناسی ارشد خود در رشته ارتباطات، لزوم راه اندازی تلویزیون خصوصی در ایران از نگاه اساتید ارتباطات را بررسی کرده است.
وی با جمع آوری اطلاعات میدانی از اساتید ارتباطات به این نتیجه رسیده است که:
اکثریت مطلق اساتید موافق با تدوین قانون خاص تلویزیون خصوصی،و موافق با محو شدن انحصار رسانه ای دولتی با پیدایش تکنولوژی نوین ،افزایش توجه مدیران و گردانندگان رسانه مستقل و خصوصی به نیاز و دیدگاه جامعه، خواسته مردم در جهت تکثر اطلاعات ، عدم پاسخگویی اصل 175 قانون اساسی به تحولات اخیر در حوزه رسانه، عدم تامین نیازهای جامعه توسط صداوسیماو گرایش افراد به رسانه های برون مرزی، وموافق تاسیس تلویزیون خصوصی میباشند.
نظام های تلویزیونی
محمودیان(1376) در رساله کارشناسی ارشد با عنوان پژوهشی در نظامهای تلویزیونی سرمایه داری، بلوک شرق وجهان سوم در دانشگاه آزاد اسلامی واحد مرکز ارتباط میان نظام مالکیت وکارکرد رادیو تلویزیون را بررسی کرده وبه نتایج زیر رسیده است.
در نظام تلویزیونی جوامع سرمایه داری، هدف اصلی جنبه اقتصادی است که سعی در تحقق آن دارند.
در نظام تلویزیونی جوامع سوسیالیستی برخلاف اساس القائات ایدئولوژیک، در این زمینه موفقیتی به دست نیامده است.
در نظام تلویزیونی کشورهای جهان سوم تلویزیون ابزاری برای نفوذ و قدرت کشورهای سلطه گر در آن جوامع است.
چشم انداز رادیو تلویزیون
اکبرز‌اده(۱۳۸۶) در پژوهشی با‌عنو‌ان‌: چشم‌ ‌اند‌از تحولات‌ ر‌ادیو و تلویزیون‌ در ‌ایر‌ان‌ که برای وز‌ارت‌ فر‌هنگ‌ و ‌ارشاد ‌اسلامی‌ انجام شده است ، به این نتیجه رسیده است :
امکان راه‌اندازی تلویزیون تعاملی در کشور به دلیل مشکلات ''اجتماعی و فرهنگی''، ''فنی و تولیدی'' و ''حقوقی و قانونی'' در آینده نزدیک، میسر نیست.
براساس این تحقیق، راه‌اندازی تلویزیون کابلی در تهران حداقل به 300 تا 400 میلیارد تومان سرمایه‌گذاری و نیروی متخصص و کارآمد نیاز دارد.
این محقق تلویزیون تعاملی را متفاوت از تلویزیون دور از تخیل دانسته و برنامه‌ها و خدمات آن را شامل سرویس 24 در 7، مسابقات تلویزیونی، بازی از طریق اینترنت، آگهی‌های بازرگانی تعاملی، سفارش و خرید، ویدئوی درخواستی، راهنمای الکترونیک برنامه، دسترسی به اینترنت و رای‌گیری ارزیابی کرده است.
وی در خصوص تفاوت تلویزیون سنتی و تعاملی نتیجه گرفته است: در تلویزیون تعاملی بیننده فعال است و برنامه‌ها نیز از جذابیت بیشتری برخوردارند و دسترسی به کانال‌های متعدد نیز امکان‌پذیر است.
ارکان تلویزیون ملی ایران
منشی (1350) در رساله کارشناسی ارشد خود باعنوان ارکان سازمان تلویزیون ملی ایران در دانشگاه شهید بهشتی نقش تلویزیون بخش خصوصی قبل وبعد از ادغام در بخش دولتی را بررسی کرده است.
تأسیس رادیو تلویزیون خصوصی
حسینی پاکدهی (1375) در پایاننامه کارشناسی ارشد با عنوان مسأله تأسیس رادیو تلویزیون خصوصی در ایران: نظرسنجی از متخصصان و مسئولان، که در دانشکده علوم اجتماعی دانشگاه علامه طباطبایی، انجام شده است، به این موضوع پرداخته است، پاسخگویان این تحقیق را که به روش کیو انجام شده است، دو گروه متخصصان و مسئولان رسانه تشکیل دادهاند.
بر اساس این تحقیق، سه چهارم پاسخگویان عقیده داشتند که عملکرد رادیو و تلویزیون مناسب و مطلوب نیست و سازمان صداوسیما در جهت تحقق مهمترین وظایف و نقشهای خود گام برنمیدارد. همچنین یک پنجم پاسخگویان به فعالیت رادیو و تلویزیون با ساختار دولتی و خصوصی در کنار یکدیگر به عنوان ساختار پیشنهادی رادیو و تلویزیون با ساختار دولتی و خصوصی در کنار انحصار اطلاعات چه توسط بخش دولتی و چه بخش خصوصی مخالف بوده و آنرا موجب فروپاشی سلسله اعصاب جامعه و عقبماندگی فرهنگی دانستهاند. به علاوه بر این باور بودهاند که رادیو و تلویزیون بیش و پیش از هر چیز باید به آگاهیدهی، هشیارسازی، اطلاعرسانی، آموزش، ترتیب و تحکیم وحدت و حفظ هویت فرهنگی و ملی بپردازند و نه سرگرمی و تفریح.
ضرورت تاسیس تلویزیون خصوصی
محمدی(1388)، در رساله کارشناسی ارشد خود با عنوان " بررسی ضرورت های تأسیس و مصرف تلویزیون خصوصی در ایران و ترسیم الگوی مطلوب برای آن"، در دانشکده صداوسیما این موضوع را بررسی کرده است.
در این پژوهش که با به کارگیری دو روش اسنادی-کتابخانه ای و مصاحبه عمیق انجام گرفته، کوشش شده است تا ضرورت های تأسیس و مصرف تلویزیون های خصوصی در ایران بررسی و الگویی برای گذار از شرایط انحصار کنونی و ورود به فضایی که در این رساله از آن به عنوان بازار پیام یاد می شود، ترسیم گردد. ریشه یابی دلایل انحصار دولتی تلویزیون در ایران، آشنایی با شیوه عمل و تجربه برخی کشورها در داشتن هردو تلویزیون دولتی و خصوصی، پیش بینی آسیب های احتمالی ناشی از راه اندازی تلویزیون خصوصی در کنار تلویزیون دولتی و راهکارهای اجتناب از این آسیب ها نیز سایر اهداف این پژوهش را تشکیل می دهد. در نهایت، با بررسی اظهارات صاحب نظران ارتباطات و رسانه و مطالعه قوانین رسانه ای کشورهای افغانستان، پاکستان، ترکیه و لبنان که نشان می داد در این کشورها صدور مجوز و نظارت بر تلویزیون های دولتی و خصوصی بر عهده نهادهای شورایی، با سطح اختیارات متفاوت، قرار دارد، الگویی هفت بخشی حاوی شروط لازم جهت گذر از انحصار و ورود به شرایط تکثر در رسانه های دیداری و شنیداری ارائه شده است.
بخش اصلی این تحقیق مصاحبه با 17تن از اساتید و خبرگان حوزه رسانه وتحلیل محتوای این مصاحبه ها می باشد که محقق بر اساس آن الگوی صدور مجوز ونظارت بر رادیو تلویزیون خصوصی و زمینه های موفقیت وشکست آن را تبیین می کند.
نظام حقوقی مطلوب رادیو تلویزیون ایران
حسینی پاکدهی(1382) در رساله دکترا در دانشکده علوم اجتماعی دانشگاه علامه طباطبایی، موضوع نظام حقوقی مطلوب رادیو تلویزیونی در ایران را بررسی کرده است. در این پژوهش محقق با مروری برنظریه ها ونظام های رسانه ای، مدل رادیو تلویزیون خدمت عمومی را به‌عنوان مدل منتناسب با قانون اساسی وارزشهای علمی واخلاقی دانسته است.
تحقیق مذکور که با استفاده از روش اسنادی انجام شده است ، 5 فرضیه را درباره نظام رسانه ای فعلی ومطلوب ایران ارائه کرده وبه بررسی آنها پرداخته است، وی وضعیت فعلی سازمان صداوسیما را متناسب با اهداف ، انتظارات و ظرفیتهای موجود در قانون اساسی نمی داند.
در بخش دیگر این پژوهش بررسی تطبیقی میان نظام رسانه ای ایران وتعدادی از کشورهای غربی انجام شده است.
در پایان این پژوهش پنج پیشنهاد به عنوان نخستین گامهای اساسی برای دستیابی به نظام مطلوب رادیو- تلویزیون ارائه گردیده است.
2-4-1- پیشینه خارجی1) بایا(2008) در تحقیقی با عنوان «تمرکز در مالکیت رسانه در رومانی: تقویت یا تضعیف تکثر و آزادی رسانه ای» که در دانشگاه تیمچورا رومانی انجام شده است، موضوع تاثیر تمرکز در مالکیت رسانه ها بر آزادی و تمرکز را بررسی کرده است.
یافته های این تحقیق نشان می دهد که لزوما تمرکز در مالکیت رسانه یک روند منفی در زمینه آزادی و تکثر نیست اما باید در زمینه قوانین و زمینه فعالیت بخش محتوایی (سردبیری) رسانه ها و بخش تجاری آن شفاف سازی صورت گیرد.
2) در تحقیقی که پروسر ( 1992) در مرکز مطالعات اجتماعی دانشگاه شفیلد با عنوان « رادیو تلویزیون عمومی و انحصار زدایی در بریتانیا » انجام داده است، روند انحصار زدایی و خصوصی سازی رادیو تلویزیون در انگلستان بررسی شده و محقق به این نتیجه رسیده که قوانین نانوشته و غیر رسمی، محدودیت های جدی را برای قوانین رسمی در زمینه فعالیت ایجاد می کند. محقق به این نتیجه رسیده که در بریتانیا تلاش برای دستیابی به یک سیستم بازار محور و شفافیت در موضوع رادیو تلویزیون عمومی شکست خورده است و مدل جدید باید الزاماتی جهت حفظ BBC و کانال های 3 و 4 در یک شرایط رقابتی و غیر محدود از نظر قانونی فراهم کند.
3) در تحقیقی که توسط کارزیگس ( 1994) در دانشگاه سانیو مالزی با عنوان « انحصار زدایی در توسعه تلویزیونی ملت های آسیایی، مورد کاوی روند مالزی» صورت گرفته است، محقق با بررسی موانع سیاسی، فرهنگی و ساختاری توسعه رادیو تلویزیون و عبور از انحصار، تاثیر ورود تکنولوژی های جدید در این حوزه را بررسی کرده است، و با بررسی روند سایر کشورهای آسیایی، و ساختار تلویزیونی مالزی، عبور از انحصار و پذیرش انحصار زدایی در این حوزه را با توجه به تحولات تکنولوژیکی و جهانی گرایی، ناگزیر ارزیابی کرده است.
4)در تحقیقی که اسپیشال (1992)در دانشگاه لابلاجنا با عنوان « رسانه خصوصی و دموکراسی گرایی در اروپای شرقی» انجام داده است، محقق با برسی محیط فرهنگی و اجتماعی کشورهای اروپای شرقی پس از فروپاشی شوروی و زمینه های ایدئولوژیک و ضد امپریالیستی باقی مانده در این جوامع روند و موانع خصوصی سازی در کشورهایی نظیر چکسلواکی، مجارستان، لهستان و یوگسلاوی را برسی کرده و نقش رسانه ها در توسعه آزادی، دموکراسی و تکثر را مورد مطالعه قرار داده است و موقعیت دولتها در برابر انحصار زدایی از سه منظر، کاهش سلطه با لغو انحصار رادیو تلویزیون، منافع مالی ورود بخش خصوصی به این حوزه و تاثیرات مثبت آن بر دموکراسی را بررسی کرده است، و در نهایت با اشاره به موانعی نظیر شبه آمریکایی سازی، تسلط سرمایه داران بر جامعه و تضعیف ملی گرایی، ارائه مدلی که بتواند با خصوصی سازی در حوزه رادیو تلویزیون قدرت ملی را افزایش و هزینه های دولت را کاهش دهد را توصیه کرده است.
5)در تحقیقی که سالامندرا (2008)با عنوان «ایجاد مصالحه میان اسلام و سکولاریسم در صنعت تلویزیون سوریه» انجام داده است، محقق با بررسی سیاست های دولت سوریه در ارائه تصویری از تمدن اسلامی که با خصوصیات این رژیم سازگار باشد و ملزومات فعالان بخش خصوصی و صنعت رادیو تلویزیون به ویژه بازارهای صادراتی برنامه های تلویزیونی، تلاش برنامه سازان تلویزیونی برای ایجاد سازگاری میان نیازهای بازار و سیاست های دولت سوریه را موفق ارزیابی کرده است.
6) سانگ واک(2009) در تحقیقی در انستیتو اقتصادی کره با عنوان «انحصار زدایی از رادیو- تلویریون، در کره جنوبی، روند خصوصی سازی و شکستن انحصار در صنعت رادیو- تلویزیون کره جنوبی طی 22 سال گذشته را بررسی کرده و آثار آن بر تقویت بخش خصوصی، باز شدن عرصه های جدید فعالیت و دستاوردهای اقتصادی، فرهنگی و ساختاری آن را بررسی کرده است.
وی باز شدن عرصه های جدید تلویزیونی نظیر تلویزیون کابلی، شبکه های ماهواره ای، سیستم چند رسانه ای دیجیتال و تلویزیون اینترنتی را در زمینه سازی شکوفایی و تقویت این صنعت و ارائه خدمات بیشتر به انبوه مخاطبان ارزیابی کرده است. این محقق در نهایت با ترسیم چشم انداز توسعه صنعت رادیو – تلویزیون در کره جنوبی، موانع شکوفایی آن را بررسی کرده است.
8) سوفس(1990) در تحقیقی با عنوان «علایق عمومی، تسهیلات یا ضرورت: مرگ استانداردها در عصر انحصار زدایی از صنعت رادیو- تلویزیون»، با بررسی روند تاریخی ظهور صنعت رادیو تلویزیونی، پروسه مقررات زایی و انحصار زدایی از این عرصه را بررسی کرده است.این محقق با تمرکز بر چالش میان رعایت علایق و مصالح عمومی در صنعت رادیو تلویزیون، و منافع و تمایلات بخش خصوصی و ویژگی های بازار رقابتی، غلبه تدریجی واقعیات بازار بر سیاست های دولت های فدرال ایالات متحده از دهه 1980 به این سو را بررسی کرده است.
5-1- ا هداف وپرسشهای تحقیق:هدف اصلی تحقیق طراحی و تبیین الگوی ایجاد تکثر رادیو - تلویزیونی در نظام جمهوری اسلامی ایران می باشد.
اهداف فرعی تحقیق عبارت اند از:
نیازسنجی ایجاد تکثر در نظام رادیو - تلویزیونی ایران.
امکان سنجی لغو انحصار و ایجاد تکثر در نظام رادیو - تلویزیونی ایران.
شناسانی موانع و پیامدهای تکثر در نظام رادیو - تلویزیونی ایران.
ارائه فرایند و نقشه راه ایجاد تکثر رادیو تلویزیونی در ایران.
در این راستا پرسش اصلی تحقیق عبارت است از:
الگوی کارآمد نظام رادیو - تلویزیونی در جمهوری اسلامی ایران چیست؟
پرسش های فرعی تحقیق:


چه نیاز و ضرورتی به ایجاد تکثر رادیو تلویزیونی در ایران وجود دارد؟
موانع ایجاد تکثر رادیو – تلویزیونی در ایران چیست؟
تکثر ساختاری در رادیو تلویزیون چه پیامدهایی در حوزه های سیاسی، اقتصادی، فرهنگی و امنیتی دارد؟
فرایند تحقق این الگو در ساختار حاکمیتی نظام جمهوری اسلامی چگونه است؟
نقشه راه ایجاد ایجاد رادیو - تلویزیون خصوصی در ایران چیست؟
6-1- روش ونمونه تحقیقاین پژوهش از نظر مبنای هدف، تحقیقی کاربردی است .
با توجه به فقدان مدل نظری، ضرورت ارائه مدل نظری براساس این تحقیق روش تحقیق کیفی برای تحقیق انتخاب می شود.
از میان روشهای تحقیق کیفی روش گراندد تئوری وتحلیل گفتمان برای استخراج مدل از میان مصاحبه های صورت گرفته انتخاب می گردد.
جامعه آماری
-جامعه آماری این تحقیق مسئولان گذشته و فعلی حوزه مورد مطالعه و متخصصان در این حوزه می باشند.
نمونه‌گیری
انتخاب نمونه به صورت نظری صورت گرفته و با 11 تن از مسئولان گذشته و فعلی دارای تجربه و تخصص در حوزه های مورد مطالعه و سه تن از صاحب نظران و نخبگان مصاحبه صورت گرفته و تحقیق به اشباع رسیده است.
روش گردآوری و تحلیل داده ها بر اساس شیوه تحلیل سه سطحی در روش گراندد تئوری می باشد که به صورت مشروح در فصل سه تحقیق بیان شده است.
قلمرو زمانی
قلمرو زمانی تحقیق سال 1390 می باشد.
فصل دوم بررسی متون تحقیق
1-2- مقدمهدر این بخش با توجه به لزوم بررسی متون وتحقیقات علمی در رابطه با موضوع تحقیق، ابتدا پرسشهایی جهت روشن شدن ابعاد گوناگون موضع طرح وسپس براساس آثار علمی تولید شده واستنتاجات محقق از آن به این پرسش ها پاسخ داده خواهد شد.
برای دستیابی یه الگوی مطلوب در حوزه رسانه ای ، به‌ویژه رسانه دیداری شنیداری یا رادیو تلویزیونی ، نیاز به پاسخ دادن به پرسشهای گوناگونی وجود دارد ، از جمله این پرسشها عبارتند از :
آرمانهای انقلاب اسلامی در حوزه اطلاع رسانی چه بوده است؟
اطلاع رسانی از نظر اسلام چه وجهی دارد ؟ و نظام اطلاع رسانی مطلوب از نظر اسلام کدام است؟
نظام اطلاع رسانی از منظر نظریه پردازان انقلاب اسلامی از چه خصوصیاتی برخوردار است؟
نظام اطلاع رسانی مطلوب از دیدگاه قانون اساسی چه ویژگیهایی دارد؟
مهمترین نظریات در حوزه نظامهای اطلاع رسانی در جهان کدامند؟
وضعیت موجود نظام اطلاع رسانی کشور به کدام یک از این نظریات نزدیکی بیشتری دارد؟
تجربه سایرکشورهای جهان به‌ویژه کشورهای مشابه ایران در حوزه نظام رسانه ای چه بوده است؟
عملکردنظام رسانه ای کشور چه نتایجی داشته است؟
الگوهای متصور برای نظام رسانه ای ایران در حوزه رادیو – تلویزیون چیست؟
هریک از این الگوها چه مزایا ومعایبی دارد؟
تحولات اخیر در حوزه فن آروی رسانه چیست وچه پیامدهایی بر نظامهای رسانه ای به همراه دارد؟
مهمترین امتیازات وآسیبهای افزوده شدن رادیو تلویزیون غیردولتی به ساختار رسانه ای کشور کدامند؟
برای پاسخ دادن به این پرسشها در این فصل از تحقیق ابتدا مبانی ایدئولوژیک تکثر رسانه ای را از دیدگاه اسلام ونظریه انقلاب اسلامی بررسی کرده ، سپس تکثر رسانه ای از منظر امنیت ومنافع ملی مورد تحلیل قرار می گیرد، در ادامه ریشه های تکثر رسانه ای در تحولات جهانی رسانه و رویکرد بین المللی در حمایت از تکثر بررسی شده وسپس به ارزیابی عملکرد سازمان صداو سیمای جمهوری اسلامی از منظرهای گوناگون می پردازیم، تا ضرورت تغییر جهت حل معضلات وناکارامدی های فعلی این سازمان تبیین گردد.
در ادامه فصل ، پیشینه موضوع تلویزیون خصوصی قبل وبعد از انقلاب مورد بررسی قرار می گیرد و در بخش دیگر این فصل ، تئوریهای تکثر وانحصار مطالعه و تحلیل شده ونظر صاحب نظران جهانی درباره این موضع بررسی شده است.
سپس نظامهای رایج رادیو تلویزیونی در جهان در دوگروه رادیو - تلویزیون های خدمت عمومی ونظام خصوصی رادیو - تلویزیونی مورد بررسی قرار گرفته و دلایل موافقت و مخالفت صاحب نظران با این نوع نظام رسانه ای تبیین گردیده است.
در بخش بعدی این فصل، تجربه جهانی در حوزه نظام رادیو تلویزوینی در 16 کشور جهان مورد بررسی قرار گرفته است ودر نهایت ، نتیجه مطالب این فصل در باره ضرورت لغو انحصار فعلی در نظام رادیو تلویزیونی کشور تبیین شده و گزینه های ممکن برای نظام رادیو تلویزیونی کشور ارائه واز دیدگاه هزینه – فایده بررسی گردیده است.
پایان بخش این فصل، ارائه چارچوب مفهومی از نظام رسانه ای است که از یکسوبه تهدیدات ومعضلات نظام رسانه ای فعلی می پردازد و از سوی دیگر فرصتها وتوانمندیهای یک نظام متکثر رادیو تلویزیونی را ارائه می دهد.2-2- مبانی نظام متکثر رسانه ای در اسلام ونظریه انقلاب اسلامیبرای بررسی این موضوع نیاز به مراجعه به منابع اصلی اسلام وآرا نظریه پردازان انقلاب اسلامی وجود دارد.
1-2-2- مبانی نظام متکثر رسانه ای در اسلام
اگرچه زمان ظهور اسلام در 14 قرن قبل هنوز رسانه های امروزی پا به عرصه فعالیت نگذاشته بودند و اطلاع رسانی عمدتا در چارچوب کهکشان شفاهی انجام می شد اما دیدگاهها و سیاستهای کلی اسلام و شارع درباره اطلاع رسانی به صراحت در متون دینی به‌ویژه قران کریم وسیره پیامبر(ص) وامیرالمومنین(ع) تعیین شده است.
در رابطه با رسانه نیز محققان و پژوهشگران دینی براساس منابع اصیل اسلامی و روشهای علمی استنتاج احکام اسلامی دیدگاه های اسلام در رابطه با رسانه ر ا استخراج کردند. رویکرد کلی دین اسلام که مبارزه با جهل و بی اطلاعی را به عنوان جهت گیری اصلی خود در اصلاح جامعه برگزیده است، موجب شده تا در مبانی اسلامی، اطلاع رسانی و جریان آزاد اطلاعات با تاییدات متعددی همراه گردد.
مهمترین دلیل بر ضرورت تکثر رسانه ای از دیدگاه اسلام، بشارت قرآن کریم بر کسانی است که دیدگاههای گوناگون را مشاهده کرده و سپس بهترین آنها را بر می گزینند(زمر، 18). این آیه قرآن کریم که بردسترسی به دیدگاهها ومنظرهای متکثر تاکید دارد ، بصورت طبیعی ومنطقی، وجود رسانه های متکثر را نیز ضروری می شمارد چرا که تا زمانی که رسانه های متکثر وجود نداشته باشند تضمینی بری انعکاس ودسترسی به دیدگاههای متکثر وجود نخواهد داشت.
علاوه بر آن موضوع جریان آزاد اطلاعات وتکثر در نشر اطلاعات واخبار مورد توجه ویژه دین اسلام قرار دارد:“ مساله تولید و نشر و عرضه اخبار و اطلاعات، از مصادیق افعال مباح شمرده می‌شود و علیالاصول جریان آزاد اطلاعات مورد منع شارع نیست. “(فخارطوسی، 1385،63)
بنابراین حتی در صورت وجود تردید و تشکیک نسبت به مجاز بودن اطلاع‌رسانی در حوزه خاص، اصل آزادی بشر در همه اقدامات خود، راه را برای توسل به اصل مذکور در مواردی که جواز عرضه یا نشر خبر مشکوک باشد باز میگذارد.
یکی از مهمترین زیربناهای جریان آزاد اطلاعات وجود نظام رسانه ای متکثر است، چرا که با وجود انحصار رسانه ای ، هم حق دسترسی صاحبان عقاید و منتشرکنندگان اطلاعات به رسانه ها محدود می گردد و هم حق انتخاب رسانه از مخاطبان سلب می گردد، بنابراین تایید اصل جریان آزاد اطلاعات ، می تواند تایید تکثر رسانه ای نیز تلقی گردد.
بخشی از دلایل ضرورت آزادی اطلاعرسانی از منظر اسلام بشرح زیر است:
ممنوعیت کتمان حق:
کتمان حق یا انکار حقیقت یکی از مواردی است که در مبانی دین به شدت از آن نهی گردیده است.
بر اساس آیه 42 سوره بقره( به باطل جامه حق نپوشانید و حق را کتمان نکنید در حالی که حقیقت را میدانید.)، کتمان آگاهانه حق، ممنوع میباشد. مفسرین قران کریم از جمله آیتالله شهید مصطفی خمینی معتقدند: “هر عاقل، تمامی وظیفهاش عدم کتمان حق است “( خمینی، 1376، جلد 5، 544) بنابر این آیه، افراد و یا نهادهای متکلف اطلاعرسانی عمومی مشمول این خطاب هستند.
ونه تنها هیچ الزامی برای عدم انتشار حقایق واطلاع رسانی وجود ندارد بلکه برای عدم کتمان حق وآشکارکردن آن مومنان وظیفه دارند که حقیقت را تبیین کنند وبدیهی است که رسانه اعم از انواع آن وسیله تبیین حق می باشد.
مقدمه بودن برای انتخاب آگاهانه:
پذیرفتن اصالت عقل به عنوان یکی از منابع اصلی دین جهت گیری اسلام را به بنا نهادن ایمان بر آگاهی و معرفت در برابر پذیرش کورکورانه و تقلیدی دین نشان می دهد.
بر اساس آیه 18 سوره زمر(آنان که سخنان را میشنوند و بهترین آن را پیروی میکنند، آنان را خداوند هدایت کرده و ایشان خردمندانند)، بنابراین مجراهای که اطلاعات مختلف را که در انتخاب رأی مخاطبان موثر است ، منتقل میکنند از سوی خداوند تحسین شدهاند.
بر این اساس ، انتخاب آگاهانه از میان نظرات و قرائت‌های مختلف بهترین شیوه گزینش در دین است و زمانی می توان به سخنان ونظرات گوناگون دسترسی داشت که دیدگاه های گوناگون به رسانه متناسب با خود جهت انتشار دسترسی داشته باشد. بنابراین لازمه تکثر دیدگاه ها، تکثر در رسانه ها می باشد.
امر به معروف و نهی از منکر:
یکی از فروعات دین اصل امر به معروف و نهی از منکر است که نظارت عمومی در جامعه اسلامی را سازمان می‌دهد.
از جمله مهمترین امکاناتی که باید به منظور تضمین سلامت روند امربه معروف و نهی از منکر ملی وجود داشته باشد گردش آزاد اطلاعات و اخبار است تا تصمیمات و عملکردها در معرض دید مردم و کارشناسان قرار گیرد و زمینه نهی از منکرات و امر به معروف ها فراهم آید.
در واقع اصل مترقی نظارت عمومی با سازوکار امر به معروف ونهی از منکر که تضمین کننده سلامت اجتماعی حکومتی و فردی در جامعه اسلامی است، نیاز به آگاهی عمومی معیارها ودیدگاه های دین ویا به عبارتی معروف ومنکر از سوی جامعه دارد وهمزمان بایستی افکارعمومی از عملکرد آشکار وپنهان حکومت مطلع باشند که انجام هردوی این اقدامات نیازمند وجود رسانه ها وآزادی فعالیت آنها می باشد. در واقع این رسانه ها هستند که بستر اطلاع وآگاهی عمومی از معیارهای اسلامی واخلاقی را فراهم کرده وبه مردم این امکان را می دهند که از عملکرد دستگاههای حاکمیتی آگاهی یافته عملکرد آنها را بانظام مطلوب ودینی تطبیق داده ودر موارد انحراف، قصور یا تقصیر نسبت به حکومت نهی از منکر کنند .
بنابراین برخلاف برخی دیدگاه‌های متحجر که با استناد به اصل امر به معروف ونهی از منکر در پی تحدید و جلوگیری از فعالیت آزاد و مستقل رسانه‌ها از قدرت حاکم هستند بایدگفت: اصل امر به معروف ونهی از منکر خود مهمترین ضرورت حضور رسانه‌های آزاد و مستقل را در جامعه تبیین می‌کنند و مقدمه‌ای لازم برای تحقق نظارت عمومی برحاکمیت را فراهم می آورد.
4. ضرورت ادای حق:
عدالت نیز یکی از آرمان های اصلی اسلام است و تحقق عدالت اعطای حق به ذی حق محور اصلی به شمار می آید. از این رو ضرورت ادای حق در اندیشه اسلامی یکی از بنیادهای تنظیم روابط اجتماعی است.
“ضرورت دیگر فعالیت آزاد رسانه ای، مسئولیت عمومی نسبت به ادای حق است که برپایه آن شرعا بر کسانی که متصدی و متکفل اطلاعرسانی هستند واجب است که حق شهروندان را ادا کنند و آنها را از آگاهی نسبت به اطلاعات و اخبار که حق ایشان محسوب می‌شود محروم ننمایند. “(فخار طوسی،1385، 69)
از این رو می توان تکثر رسانه ها را یکی دیگر از نتایج ادای حق از نظر دین دانست، چراکه بخشی از حقوق افراد وگروههای دینی، سیاسی و فرهنگی آن است که مستقیماً قادر باشند که دیدگاه‌های خود را به اطلاع جامعه برسانند واگر انحصار رسانه ای توسط حاکمیت، مانع این ادای حق شود ضرورت دارد این گروهها به رسانه های مستقلی جهت انتشار عقاید خود دسترسی داشته باشند.
بر این اساس ایجاد دسترسی دوگانه شهروندان به رسانه برای نشر و دریافت اطلاعات از وظایف دولت محسوب می‌گردد.
“آحاد شهروندان در قالب نهادهای اجتماعی و سیاسی باید به نهاد اطلاعرسانی دسترسی داشته باشند، اگر این امر مستلزم توسعه کمی امکانات باشد، تأمین آن بر دولت ضرورت دارد و در غیر این صورت امکانات موجود باید به صورت متناسب در اختیار قرار گیرد.
عدالت اطلاعاتی در این بعد یکی از مصادیق بارز عدالت اجتماعی است و گاه -اعطا با رفع موانع دستیابی شخص به حق خود و بهرهبرداری از منافع آن صورت میگیرد. بنابراین لازم است اطلاعاتی در بعد «عرضه اطلاعات» امکان نشر اطلاعات و اخبار به گروههای مختلف اجتماعی و سیاسی داده شود.”(همان، ص71)
2-2-2- مبانی نظام متکثر رسانه ای در نظریه انقلاب اسلامی
تکثر و آزادی رسانه‌ها یکی از مقولات مهمی است که براساس جایگاه و حدود آن نظامهای سیاسی تقسیم‌بندی می شوند. وجه مشترک نظامهای استبدادی در محدودکردن اطلاع رسانی و جریان یکسویه اطلاعات وتحدید وحصر آزادی بیان می باشد، از این رو جایگاه آزادی در هر نظامی نشاندهنده میزان پویایی، مردمسالاری و استبدادگریزی آن نظام می باشد.
برای تبیین جایگاه تکثر رسانه ای در نظریه انقلاب اسلامی ناگزیر به مطالعه وبررسی جایگاه آزادی می باشیم چرا که آزادی اصلی ترین بستر ولازمه تاسیس و فعالیت رسانه ای واطلاع رسانی مستقل وآزاد می باشد.
به عبارتی دیگر میزان آزادی، خود نشاندهنده میزان انحصار واستبداد در جامعه است وبرای جستن زمینه های انحصار واستبداد بهترین راه رجوع به جایگاه وارزش آزادی در نظریه مادر نظام سیاسی می باشد.
از آنجا که انقلاب اسلامی ماهیتی خودجوش، غیرحزبی وغیرنظامی داشته است، مشابه انقلابهای سوسیالیستی قرن بیستم نمی‌توان پشتوانه تئوریک نظام جمهوری اسلامی را در مانیفست احزاب حاکم جستجو کرد بلکه باید مبانی فکری انقلاب اسلامی و نظام جمهوری اسلامی را در آرای نظریه پردازان مقبول و شاخص انقلاب جست. از این رو تدوین جایگاه آزادی در نظریات شهیدان مطهری و بهشتی، دو نظریه پرداز شاخص انقلاب اسلامی اهمیت بسزایی دارد که اولی به جهت نقش منحصر بفرد در تبیین هویت انقلاب اسلامی و دومی به‌دلیل محور بودن در جریان طراحی وتعیین ساختار نظام مورد توجه می باشند.
آزادی آرمان محوری انقلاب اسلامی
پیروزی انقلاب اسلامی در بهمن ماه سال 1357، بدون تردید نقطه عطفی در تاریخ این سرزمین محسوب می‌شود، ویژگیهایی انقلاب اسلامی که مبتنی بر آگاهی بخشی بود ، موجب گردید، در قرن بیستم که مملو از تغییرات خشونت‌بار بود، انقلاب اسلامی با مبارزه نرم و بدون توسل به خشونت از سوی انقلابیون به پیروزی برسد والگویی جهت مبارزه ملتها با استبداد واستعمار پدید آید.
ایده وشعار محوری انقلاب اسلامی که همواره از سوی میلیونها تظاهرکننده انقلابی سرداده می شد، "استقلال آزادی جمهوری اسلامی " بود.
تامل در این شعار روشن می سازد که آزادی به‌عنوان عنصر محوری انقلاب اسلامی ، نقش رهایی بخشی انقلاب از قیود وحدود غیرمنطقی وغیرانسانی که از سوی نظام استبدادی پهلوی بر جامعه ایران حاکم گردیده بود را آشکار می‌سازد.
علاوه بر عنصر آزادی که به عنوان یکی از سه ضلع آرمانهای اساسی انقلاب اسلامی مطرح می باشد، آزادی واختیار بخش اصلی دوضلع دیگر این آرمان را تشکیل می دهد.
استقلال در لغت به معنای" پرداختن به کاری بدون مشارکت دیگران است." (طریحی،1380، 1510).در علوم سیاسی استقلال به معنای"جدا بودن حاکمیت یک کشور از دیگر کشورها از نوع سلطه" می باشد. (آقابخشی،1376،154) یا "آزادی اراده ملی برای اداره امور داخلی و خارجی، خود بدون دخالت دیگران است." (علی بابایی،1369،45)
به عبارت دیگر "ملت استقلال طلب می خواهد وابستگی خود به بیگانه را تقلیل بدهد و اتکای به دیگران را به حداقل برساند." (منصوری، 1374،54)
استقلال در برابر وابستگی معنا می‌یابد و در حیطه عمل استقلال‌طلبی یک کشور از استعمار و استثمار قدرت‌های خارجی عنوان نهاده می‌شود، بنابراین استقلال به‌عنوان یکی از آرمانهای انقلاب مفهوم آزادی در سطح ملی را نشان می‌دهد که مردم با قرار دادن این مفهوم به‌عنوان یکی از محورهای انقلاب اسلامی، بازیابی هویت ملی و بازپس گیری نقش خویش در تصمیم گیری برای کشور خود را مطالبه کردند.
بدیهی است مفهوم استقلال در سطح ملی مفهومی عمیق است که مراد از آن انتقال تصمیم گیری برای کشور به آحاد جامعه وتک تک شهروندان است و نمی توان استقلال را تنها به قطع کردن نفوذ و اثرگذاری قدرت خارجی در سرنوشت کشور محدود و محصور کرد و به همان دلیلی که یک ملت از حاکمیت اراده بیگانه بر سرنوشت خود تنفر دارند، این حاکمیت را در دستان یک مستبد داخلی نیز نمی پسندند و از این جهت تفاوتی میان نقض استقلال ملی از سوی استعمار خارجی با استبداد داخلی وجود ندارد.
در ضلع سوم آرمانهای انقلاب اسلامی ، واژه "جمهوری اسلامی " قرار دارد، در این آرمان نیز دو مفهوم جمهوری و اسلامی وجود دارند.
جمهوری: “جمهور در لغت به معنای همگانی یا عمومی می باشد” ( مک لین ،1381، 34) و در علوم سیاسی “جمهور نوعی نظام حکومتی است که به جای اقتدار سلطانی که مشروعیت آن به فراسوی اراده بشر تعلق دارد مردم در حکومت به طور مستقیم یا توسط نمایندگان برگزیده خود اعمال حاکمیت می کنند “(آشوری، 1377، 111).
“حکومت جمهوری بر چهار اصل تعیین دولت توسط مردم، ساماندهی جامعه با احزاب و گروه ها، تفکیک قوا و آزادی های مدنی استوار است” (رحیمی، 1358،57)
البته در قرون پیشین جمهوری‌خواهی به معنای مخالفت با سلطنت بود اما اکنون “بسیاری از نظام های سلطنتی در کشورهای توسعه یافته خود را متکی به اراده و رای مردم می دانند و مدعی اقتدار سلطانی نیستند” ( طلوعی ،1377،126).
تاکید بر حاکمیت جمهور و عموم مردم بر سرنوشت خویش و نظام سیاسی مردمسالار در برابر سایر مدلهای مدیریت جامعه از جمله نظام سلطنتی، دیکتاتوری، حکومت اشرافی و نظامی می باشد و از این رو آزادی مردم در تصمیم‌گیری درباره سرنوشت خود و تاثیر اراده عمومی بر حاکمیت یکی از مفاهیم اساسی جمهوریت نظام می باشد و واژه اسلام نیز محتوای نظام مردمسالار را مشخص می کند که مبتنی بر اعتقادات عمومی جامعه به اصول اسلامی و ارزشهای دینی است.
در این میان تاکیدات مکرر دین مبین اسلام بر محترم شمردن آزادی فردی و به رسمیت شناختن اختیار هر فرد جهت تصمیم گیری در حوزه فردی واجتماعی، اهمیت آزادی را در نظام فکری اسلام مشخص می نماید به نحوی که اصل پذیرش دین و انجام کلیه واجبات و طاعات شرعی اگر همراه با آزادی و اختیار کامل فرد در تصمیم گیری نباشد فاقد هرگونه ارزشی می باشد، بنابراین آزادی واختیار یکی از مبانی اصلی دینداری وپذیرش و پایبندی به اسلام می باشد.
علاوه بر استناد به این شعار که دیدگاه متن مردم انقلاب کننده را نشان می دهد، بررسی دیدگاه ایدئولوگ‌های انقلاب اسلامی و جمهوری اسلامی نیز راهگشاست. نگاهی اجمالی به نظرات امام خمینی(ره)، استاد شهید مطهری و شهید دکتر بهشتی به عنوان سه چهره فکری تبیین کننده نگاه جمهوری اسلامی نیز بر دفاع از «آزادی» به عنوان یک ارزش و آرمان حکایت دارد.
مهمترین زمینه بروز آزادی در فضای عمومی جامعه را می توان در رسانه ها جستجو کرد و از این روست که رسانه ها به عنوان رکن چهارم مردمسالاری شناخته می شوند، تکثر وآزادی رسانه موجب می شود تا پویایی ، نشاط و روح آزادی در بطن جامعه ظهور یابد ، بنابراین سخن گفتن از آزادی بدون پایبندی به لوازم آن که مهمترین بخشش ، آزادی وتکثر رسانه ای است معنا ندارد.
بررسی مشروح جایگاه تکثر و آزادی در نظریه انقلاب اسلامی در پیوست تحقیق آمده است.
3-2- تکثر رسانه ای از منظر منافع و امنیت ملیبه‌طور کلی در نظامهای ایدئولوژیک که برپایه سیستم هنجاری خاص ایجاد می شوند نظارت وکنترل نظام فرهنگی جامع برای اطمینان از سازنده بودن روند فرهنگی اجتماعی جامعه اهمیت می یابد. در نظام جمهوری اسلامی نیز این موضوع اهمیت خاص خود را دارد به‌ویژه آنکه ماهیت انقلاب اسلامی فرهنگی بوده واز این رو نگرانی نسبت به تعاملات وتبادلات فرهنگی جامعه واقدامات سازماندهی شده قدرتهای بیگانه علیه فرهنگ اسلامی – ملی تحت عنوان تهاجم فرهنگی در نظر مسئولان فرهنگی نظام به دغدغه نخست تبدیل شده است.
رویکرد مواجهه با تهدیدات فرهنگی ونحوه تبادل فرهنگی با جهان وهمچنین کارکردهای نظام رسانه ای در حوزه های منافع ملی وامنیت ملی یکی از مولفه ای اصلی تصمیم گیری در این باره به‌شمار می آید.
تاکنون رویکرد غالب حاکم بر رفتار رسمی حاکمیت در حوزه فرهنگی رسانه ای ، رویکرد تدافع فرهنگی در برابر تهاجم فرهنگی ورسانه ای بوده است .
در این رویکرد از ابزار های کنترلی محدود کننده ومخرب جهت مقابله با رسانه های بیگانه استفاده شده است، رویکرد سلبی در حوزه تعاملات فرهنگی اگرچه می تواند در کوتاه مدت آثار پیامدهای نفوذ فرهنگ غرب ورسانه های بیگانه را درجامعه کاهش دهد اما در دراز مدت وبا توجه به تحولات فن اوری به منفعل شدن کشور در برابر تحرکات بیگانگان وتهدیدات می انجامد.
در این بخش تاثیرات تحولات رسانه ای را برحوزه منافع ملی وامنیت ملی بررسی می کنیم.
تحول در مفهوم امنیت ملی ونقش تکثررسانه
پس از پایان جنگ سرد مفهوم امنیت و امنیت ملی دچار تحولات چشمگیری شده است یکی از کانون های این تحولات مکتب کپنهاگ و نظریه‌پردازان آن از جمله باری بوزان، او ویور و دو ویلد می باشد برخلاف تصور کلاسیک از امنیت که اساس امنیت را در کسب قدرت فیزیکی می دانست و در برابر نگرش های صلح طلبانه قرار داشت "مکتب کپنهاگ دیدگاهی را ارائه می دهد که تامین امنیت و صلح را همزمان دنبال می کند" (بوزان، 1378،32)
در این دیدگاه "امنیتی کردن یک موضوع به منزله ضد امنیتی کردن آن تلقی می شود" (,41997Buzan, waever, wilde). و بر تغییر تهدیدهای امنیتی جهان پس از جنگ سرد تاکید دارد. (,371997Buzan,)
همان گونه که در فصل پنج بیان خواهد شد گفتمان امنیت پایدار مبنی بر نگاه جدی به مقوله امنیت می باشد که در حال تغییر بنیادین در نگرش های کلاسیک به مفهوم امنیت، امنیت ملی تهدیدات است که نوعی میانه روی در مطالعات امنیتی محسوب می شود.(1996Katzenstein,)
سرعت تحولات در حوزه رسانه به حدی است که ظرف کمتر از یک دهه کارکردهای مهم خود را درعرصه بین الملل به نمایش گذاشته است، کمتر از ده سال قبل و در آغاز سال 2003 میلادی ادعای جعلی غرب مبنی بر اقدام عراق برای تهیه سلاحهای کشتار جمعی با خریداری مواد رادیواکتیو از گینه به یک نمایش رسانه ای گسترده جهت فراهم کردن افکارعمومی برای حمله به عراق تبدیل شد وزمینه ساز تصرف این کشور گردید اما در پاییز سال 2011 ، تلاش گسترده دولت آمریکا برای متهم کردن جمهوری اسلامی به اقدام به ترور سفیر عربستان سعودی در آمریکا ، آنچنان با واکنش متقابل افکار عمومی و نخبگان مواجه شد که بسرعت این سناریو را ناکام کرد.
در کنار عرصه بین المللی ، فضای داخل ایران نیز از این انقلاب دیجیتال نیز به‌شدت تاثیر پذیرفته است، بنابر اظهار وزیر ارتباطات، "ضریب نفوذ اینترنت در جامعه ایران به حدود 43 درصد رسیده است" (تقی پور،1390)، به عبارتی دیگر بیش از سی میلیون نفر از شهروندان ایرانی امکان اتصال ودریافت اطلاعات از شبکه جهانی اینترنت را دارا می باشند، با وجود منع قانونی وبرخوردهای انتظامی وقضایی، مخاطبان شبکه های ماهواره ای در داخل کشور مطابق با آمار رسمی از 40 درصد فراتر رفته اند.
آمار عضویت ایرانیان در شبکه های اجتماعی نیز قابل توجه است، با وجود تحریم ایران در شبکه اجتماعی فیس بوک ونامعلوم بودن آمار رسمی ایرانیان عضو این شبکه، برآوردها از عضویت 2تا 4میلیون ایرانی در این شبکه اجتماعی حکایت دارد، این در حالیست که ابزار فیلترینگ نیز بتدریج قدرت خود را برای کنترل دسترسی کاربران به پایگاه‌های اینترنتی از دست می دهد، به نوشته نیویورک تایمز "داده‌های شرکت اولترا سرف یکی از عرضه کنندگان نرم افزارهای فیلتر شرکت حکایت از استفاده حدود 215 هزار کاربر ایرانی تنها ظرف یک روز از این نرم افزار را دارد، این درحالیست که در کشور چین که 18برابر ایران جمعیت دارد ، درهمین مدت تنها 18 هزار نفر از این نرم افزار استفاده کرده اند"، این آمار بدین معناست که سرانه استفاده کاربر ایرانی اینترنت از این فیلتر شکن حدود 180برابر کاربران چینی اینترنت است واین درحالیست که کشور چین بیشترین کنترلها و فیلترینگ را در شبکه اینترنت خود نسبت به سایر کشورهای صنعتی ایجاد کرده است.(Diehl,2010)
علاوه بر این نرم افزار، عبور از فیلتر از مسیرهای دیگری نظیر وی پی ان، سایتهای پروکسی و نرم افزارهای دیگری نظیر تور و... در میان کاربران ایرانی رایج است.
پخش رادیوهای بیگانه بر روی امواج کوتاه و متوسط که از طریق گیرنده های معمولی رادیو نیز قابل دریافت است از دیگر روشهای دسترسی شهروندان ایرانی به رسانه های غیر رسمی است.

—d1231

فهرست جدول‌ها
عنوان صفحه
جدول شماره 3-1: نتایج رای گیری استفاده از نرم افزارهای داده کاوی24
جدول شماره 3-2: فیلدهای اولیه داده های صدور26
جدول شماره 3-3: فیلدهای نهایی داده های صدور27
جدول شماره 3-4: فیلدهای حذف شده داده های صدور و علت حذف آنها28
جدول 3-5: فیلدهای استخراج شده از داده های خسارت28
جدول 3-6: نتایج نمودار boxplot31
جدول 3-7: انواع داده استفاده شده33
جدول 3-8: نتایج حاصل از اجتماع فیلدهای با بالاترین وزن در الگوریتمهای مختلف37
جدول 3-9: ماتریس در هم ریختگی رکوردهای تخمینی(Predicted Records)38
جدول 3-10: قوانین استخراج شده توسط الگوریتم Fpgrowth55
جدول 3-11: قوانین استخراج شده توسط الگوریتم Weka Apriori55
جدول 3-12: تنظیمات پارامترهای الگوریتم K-Means57
اجرا برای 9 خوشه در الگوریتم K-Means60
جدول 3-13: تنظیمات پارامترهای الگوریتم Kohonen64
جدول 3-14: تنظیمات پارامترهای الگوریتم دوگامی69
جدول 4-1: مقایسه الگوریتم های دسته بند70
جدول 4-2: مقایسه الگوریتم های دسته بند درخت تصمیم70
جدول 4-3: ماتریس آشفتگی قانون شماره 171
جدول 4-4: ماتریس آشفتگی قانون شماره 272
جدول 4-5: ماتریس آشفتگی قانون شماره 3 الف72
جدول 4-6: ماتریس آشفتگی قانون شماره 3 ب72
جدول 4-7: ماتریس آشفتگی قانون شماره 3 ج73
عنوان صفحه
جدول 4-8: ماتریس آشفتگی قانون شماره 3 د73
جدول 4-9: ماتریس آشفتگی قانون شماره 3 ه73
جدول 4-10: ماتریس آشفتگی قانون شماره 3 و74
جدول 4-11: ماتریس آشفتگی قانون شماره 3 ز76
جدول 4-12: ماتریس آشفتگی قانون شماره 476
جدول 4-13: ماتریس آشفتگی قانون شماره 577
جدول 4-14: ماتریس آشفتگی قانون شماره 6 الف77
جدول 4-15: ماتریس آشفتگی قانون شماره 6 ب78
جدول 4-16: ماتریس آشفتگی قانون شماره778
جدول 4-17: ماتریس آشفتگی قانون شماره879
جدول 4-18: مقایسه الگوریتم های خوشه بندی79
جدول 4-19: فیلدهای حاصل از الگوریتم های خوشه بندی80
جدول 4-20: نتایج الگوریتم های FpGrowth, Weka Apriori81

فهرست شکل‌ها
عنوان صفحه
شکل شماره3-1: داده از دست رفته فیلد" نوع بیمه " پس از انتقال به محیط داده کاوی33
شکل 3-2: نتایج الگوریتمPCA 34
شکل 3-3: نتایج الگوریتم SVM Weighting در ارزشدهی به ویژگی ها35
شکل 3-4: نتایج الگوریتم Weighting Deviation در ارزشدهی به ویژگی ها35
شکل 3-5: نتایج الگوریتم Weighting Correlation در ارزشدهی به ویژگی ها36
شکل 3-6: نمای کلی استفاده از روشهای ارزیابی41
شکل 3-7: نمای کلی استفاده از یک مدل درون یک روش ارزیابی42
شکل 3-8: نمودار AUC الگوریتم KNN42
شکل 3-9: نمودار AUC الگوریتم Naïve Bayes43
شکل 3-10: تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی44
شکل 3-11: نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net44
شکل 3-12: تبدیل ویژگی های غیر عددی به عدد در الگوریتم SVM خطی45
شکل 3-13 : نمودار AUC الگوریتم SVM Linear46
شکل 3-14 : نمودار AUC الگوریتم رگرسیون لجستیک47
شکل 3-15 : نمودار AUC الگوریتم Meta Decision Tree48
شکل 3-16 : قسمتی از نمودارtree الگوریتم Meta Decision Tree49
شکل 3-17 : نمودار --ial الگوریتم Meta Decision Tree49
شکل 3-18: نمودار AUC الگوریتم Wj4850
شکل 3-19 : نمودار tree الگوریتم Wj4851
شکل 3-20 : نمودار AUC الگوریتم Random forest52
شکل 3-21 : نمودار تولید 20 درخت در الگوریتم Random Forest53
شکل 3-22 : یک نمونه درخت تولید شده توسط الگوریتم Random Forest53
عنوان صفحه
شکل 3-23 : رسیدن درصد خطا به صفر پس از 8مرتبه57
شکل 3-24 : Predictor Importance for K-Means58
شکل 3-25 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم
K-Means59
شکل 3-26 : کیفیت خوشه ها در الگوریتمMeans K-60
شکل 3-27 : Predictor Importance for Kohonen61
شکل 3-28 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم
Kohonen62
شکل 3-29 : کیفیت خوشه ها در الگوریتمMeans K-63
شکل 3-30 : تعداد نرون های ورودی و خروجی در Kohonen63
شکل 3-31 : Predictor Importance for دوگامی64
شکل 3-32 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در
الگوریتم دوگامی65
شکل 3-33 : کیفیت خوشه ها در الگوریتم دوگامی66
شکل4-1: نمودارنسبت تخفیف عدم خسارت به خسارت75
فصل اول
194500518986500
مقدمه
شرکتهای تجاری و بازرگانی برای ادامه بقا و حفظ بازار همواره بر سود دهی و کاهش ضرر و زیان خود تاکید دارند از این رو روشهای جذب مشتری و همچنین تکنیکهای جلوگیری یا کاهش زیان در سرلوحه کاری این شرکتها قرار می گیرد.
از جمله شرکتهایی که بدلایل مختلف در معرض کاهش سود و یا افزایش زیان قرار می گیرند شرکتهای بیمه ای می باشند. عواملی همچون بازاریابی، وفاداری مشتریان، نرخ حق بیمه، تبلیغات، تقلب، می تواند باعث جذب یا دفع مشتری گردد که در سود و زیان تاثیر مستقیم و غیر مستقیم دارد. پرداخت خسارت نیز به عنوان تعهد شرکتهای بیمه منجر به کاهش سود و در بعضی موارد موجب زیان یک شرکت بیمه می شود. خسارت می تواند بدلایل مختلف رخ دهد و یا عملی دیگر به گونه ای خسارت جلوه داده شود که در واقع اینچنین نیست[Derrig et. al 2006].
عواملی از قبیل فرهنگ رانندگی، داشتن گواهینامه رانندگی، نوع گواهینامه و تطابق یا عدم تطابق آن با وسیله نقلیه، جاده های بین شهری و خیابانهای داخل شهر که شهرداری ها و ادارات راه را به چالش می کشد، تقلب، وضعیت آب و هوا، کیفیت خودروی خودرو سازان، سن راننده، سواد راننده، عدم تطابق حق بیمه با مورد بیمه [Wilson 2003]، روزهای تعطیل، مسافرتها و بسیاری موارد دیگر می توانند موجب خسارت و در نهایت افزایش زیان یک شرکت بیمه ای گردند.
بیمه صنعتی سودمند، ضروری و مؤثر در توسعه اقتصادی است. این صنعت بدلیل «افزایش امنیت در عرصه های مختلف زندگی و فعالیتهای اقتصادی»، «افزایش سرمایه گذاری و اشتغال و رشد اقتصادی» و « ارتقای عدالت اقتصادی و کاهش فقر ناشی از مخاطرات »، حائز جایگاه مهمی در پیشرفت و تعالی یک کشور است.
با وجود نقش مهم بیمه در بسترسازی و تأمین شرایط مساعد اقتصادی، وضعیت کنونی این صنعت در اقتصاد ملی با وضعیت مطلوب آن فاصله زیادی دارد. عدم آشنایی عمومی و کم بودن تقاضا برای محصولات بیمه ای، دانش فنی پایین در عرصه خدمات بیمه ای، عدم تطابق ریسک با حق بیمه، تفاوت فاحش در مقایسه معیارهای تشخیص ریسک بیمه شخص ثالث با نوع بیمه معادل در کشورهای توسعه یافته، وجود نارسایی ها در مدیریت واحدهای عرضه بیمه از دلایل عدم توسعه مناسب این صنعت در کشور است. از آنجا که بشر در طول تاریخ به کمک علم و تجربه رستگاری ها و توفیقات فراوانی کسب کرده است، نگاه علمی تر به مشکلات این صنعت و یافتن راه حل در بستر علم می تواند راه گشا باشد.
امروزه بوسیله روشهای داده کاوی ارتباط بین فاکتورهای مختلف موثر یا غیر موثر در یک موضوع مشخص می شود و با توجه به اینکه داده کاوی ابزاری مفید در استخراج دانش از داده های انبوه می باشد که ارتباطات نهفته بین آنها را نشان می دهد، شرکتهای تجاری بازرگانی رو به این تکنیکها آورده اند.
داده کاوی محدود به استفاده از فناوری ها نیست و از هرآنچه که برایش مفید واقع شود استفاده خواهد کرد. با این وجود آمار و کامپیوتر پر استفاده ترین علوم و فناوری های مورد استفاده داده کاوی است.
تعریف داده کاوی XE "تعریف داده کاوی" XE "تعریف داده کاوی"
داده کاوی روند کشف قوانین و دانش ناشناخته و مفید از انبوه داده ها و پایگاه داده است[ Liu et. al 2012].
انجام عمل داده کاوی نیز مانند هر عمل دیگری مراحل خاص خود را دارد که به شرح زیر می باشند:
1-جدا سازی داده مفید از داده بیگانه
2-یکپارچه سازی داده های مختلف تحت یک قالب واحد
3-انتخاب داده لازم از میان دیگر داده ها
4- انتقال داده به محیط داده کاوی جهت اکتشاف قوانین
5-ایجاد مدلها و الگوهای مرتبط بوسیله روشهای داده کاوی
6-ارزیابی مدل و الگوهای ایجاد شده جهت تشخیص مفید بودن آنها
7-انتشار دانش استخراج شده به کاربران نهایی
تعریف بیمهبیمه: بیمه عقدی است که به موجب آن یک طرف تعهد می کند در ازاء پرداخت وجه یا وجوهی از طرف دیگر در صورت وقوع یا بروز حادثه خسارت وارده بر او را جبران نموده یا وجه معینی بپردازد. متعهد را بیمه گر طرف تعهد را بیمه گذار وجهی را که بیمه گذار به بیمه گر می پردازد حق بیمه و آنچه را که بیمه می شود موضوع بیمه نامند]ماده یک قانون بیمه مصوب 7/2/1316[.
هدف پایان نامهدر این پژوهش سعی شده است با استفاده از تکنیکهای داده کاوی اقدام به شناسایی فاکتورهای تاثیر گذار در سود و زیان بیمه شخص ثالث خودرو شرکتهای بیمه نموده و ضریب تاثیر آنها را بررسی نماییم. الگوریتم های استفاده شده در این پژوهش شامل دسته بند ها، خوشه بند ها، درخت های تصمیم و قوانین انجمنی بوده است.
مراحل انجام تحقیقدر این پایان نامه با استفاده از روشهای داده کاوی با استفاده از بخشی از داده های صدور و خسارت یک سال شرکت بیمه مدل شده و از روی آنها یک الگو ساخته می شود. در واقع به این طریق به الگوریتم یاد داده می شود که ارتباطات بین داده ها، منجر به چه نتایجی می شود. سپس بخشی از داده ها که در مرحله قبل از آن استفاده نشده بود به مدل ایجاد شده داده می شود ونتایج توسط معیارهای علمی مورد ارزیابی قرار میگیرند. بمنظور آزمایش عملکرد می توان داده های دیگری به مدل داده شود و نتایج حاصله با نتایج واقعی موجود مقایسه شوند.
ساختار پایان نامهاین پایان نامه شامل چهارفصل خواهد بود که فصل اول شامل یک مقدمه و ضرورت پژوهش انجام شده و هدف این پژوهش است. در فصل دوم برخی تکنیک های داده کاوی و روشهای آن مطرح و تحقیقاتی که قبلا در این زمینه انجام شده مورد بررسی قرار می گیرند. در فصل سوم به شرح مفصل پژوهش انجام شده و نرم افزار داده کاوی مورد استفاده در این پایان نامه می پردازیم و با کمک تکنیک های داده کاوی مدل هایی ارائه می شود و مدلهای ارائه شده درهرگروه با یکدیگر مقایسه شده و بهترین مدل از میان آنها انتخاب می گردد. در فصل چهارم مسائل مطرح شده جمع بندی شده و نتایج حاصله مطرح خواهند شد و سپس تغییراتی که در آینده در این زمینه می توان انجام داد پیشنهاد می شوند.

فصل دوم
193548028194000
ادبیات موضوع و تحقیقات پیشیندر این فصل ابتدا مروری بر روشهای داده کاوی خواهیم داشت سپس به بررسی تحقیقات پیشین می پردازیم.
داده کاوی و یادگیری ماشینداده کاوی ترکیبی از تکنیک های یادگیری ماشین، تشخیص الگو، آمار، تئوری پایگاه داده و خلاصه کردن و ارتباط بین مفاهیم و الگوهای جالب به صورت خودکار از پایگاه داده شرکتهای بزرگ است. هدف اصلی داده کاوی کمک به فرآیند تصمیم گیری از طریق استخراج دانش از داده هاست [Alpaydin 2010].
هدف داده کاوی آشکار کردن روندها یا الگوهایی که تا کنون ناشناخته بوده اند برای گرفتن تصمیمات بهتر است که این هدف را بوسیله به کارگیری روشهای آماری همچون تحلیل لجستیک و خوشه بندی و همچنین با استفاده از روشهای تحلیل داده به دست آمده از رشته های دیگر )همچون شبکه های عصبی در هوش مصنوعی و درختان تصمیم در یادگیری ماشین( انجام میدهد[Koh & Gervis 2010] . چون ابزارهای داده کاوی روند ها و رفتارهای آینده را توسط رصد پایگاه داده ها برای الگوهای نهان پیش بینی می کند با عث می شوند که سازمان ها تصمیمات مبتنی بر دانش گرفته و به سوالاتی که پیش از این حل آنها بسیار زمان بر بود پاسخ دهند [Ramamohan et. al 2012 ] .
داده کاوی یک ابزار مفید برای کاوش دانش از داده حجیم است. [Patil et. al 2012 ]. داده کاوی یافتن اطلاعات بامعنای خاص ازیک تعداد زیادی ازداده بوسیله بعضی ازفناوری ها به عنوان رویه ای برای کشف دانش ازپایگاه داده است، که گام های آن شامل موارد زیر هستند [Han and Kamber 2001] .
1-پاک سازی داده ها :حذف داده دارای نویز و ناسازگار
2-یکپارچه سازی داده: ترکیب منابع داده گوناگون
3-انتخاب داده: یافتن داده مرتبط با موضوع از پایگاه داده
4-تبدیل داده: تبدیل داده به شکل مناسب برای کاوش
5-داده کاوی: استخراج مدل های داده با بهره گیری از تکنولوژی
6- ارزیابی الگو: ارزیابی مدل هایی که واقعا برای ارائه دانش مفید هستند
7-ارائه دانش: ارائه دانش بعد ازکاوش به کاربران بوسیله استفاده از تکنولوژیهایی همچون ارائه بصری [Lin & Yeh 2012] .
ابزارها و تکنیک های داده کاویبا توجه به تنوع حجم و نوع داده ها، روش های آماری زیادی برای کشف قوانین نهفته در داده ها وجود دارند. این روش ها می توانند با ناظر یا بدون ناظر باشند. [Bolton & Hand 2002] در روش های با ناظر، نمونه هایی از مواردخسارتی موجود است و مدلی ساخته می شود که براساس آن، خسارتی یا غیر خسارتی بودن نمونه های جدید مشخص می شود. این روش جهت تشخیص انواع خسارت هایی مناسب است که از قبل وجود داشته اند]فولادی نیا و همکاران 1392[ .
روش های بدون ناظر، به دنبال کشف نمونه هایی هستند که کمترین شباهت را با نمونه های نرمال دارند. برای انجام فعالیت هایی که در هر فاز داده کاوی باید انجام شود از ابزارها و تکنیک های گوناگونی چون الگوریتمهای پایگاه داده، تکنیکهای هوش مصنوعی، روشهای آماری، ابزارهای گرافیک کامپیوتری و مصور سازی استفاده می شود. هر چند داده کاوی لزوما به حجم داده زیادی بعنوان ورودی نیاز ندارد ولی امکان دارد در یک فرآیند داده کاوی حجم داده زیادی وجود داشته باشد.
در اینجاست که از تکنیک ها وابزارهای پایگاه داده ها مثل نرمالسازی، تشخیص و تصحیح خطا و تبدیل داده ها بخصوص در فازهای شناخت داده و آماده سازی داده استفاده می شود. همچنین تقریبا در اکثرفرآیند های داده کاوی از مفاهیم، روشها و تکنیک های آماری مثل روشهای میانگین گیری )ماهیانه، سالیانه و . . . (، روشهای محاسبه واریانس و انحراف معیار و تکنیک های محاسبه احتمال بهره برداری های فراوانی می شود. یکی دیگر از شاخه های علمی که به کمک داده کاوی آمده است هوش مصنوعی می باشد.
هدف هوش مصنوعی هوشمند سازی رفتار ماشینها است. می توان گفت تکنیک های هوش مصنوعی بطور گسترده ای در فرآیند داده کاوی به کار می رود بطوریکه بعضی از آماردانها ابزارهای داده کاوی را بعنوان هوش آماری مصنوعی معرفی می کنند.
قابلیت یادگیری بزرگترین فایده هوش مصنوعی است که بطور گسترده ای در داده کاوی استفاده می شود. تکنیک های هوش مصنوعی که در داده کاوی بسیار زیاد مورد استفاده قرار می گیرند عبارتند از شبکه های عصبی، روشهای تشخیص الگوی یادگیری ماشین و الگوریتمهای ژنتیک ونهایتا تکنیک ها و ابزارهای گرافیک کامپیوتری و مصور سازی که بشدت در داده کاوی بکار گرفته می شوند و به کمک آنها می توان داده های چند بعدی را به گونه ای نمایش داد که تجزیه وتحلیل نتایج برای انسان براحتی امکان پذیر باشد [Gupta 2006].
روشهای داده کاوی عمده روشهای داده کاوی عبارتند از روشهای توصیف داده ها، روشهای تجزیه و تحلیل وابستگی، روشهای دسته بندی و پیشگویی، روشهای خوشه بندی، روشهای تجزیه و تحلیل نویز.
می توان روش های مختلف کاوش داده را در دو گروه روش های پیش بینی و روش های توصیفی طبقه بندی نمود. روش های پیش بینی در متون علمی به عنوان روش های با ناظر نیزشناخته می شوند. روش های دسته بندی، رگرسیون و تشخیص انحراف از روشهای یادگیری مدل در داده کاوی با ماهیت پیش بینی هستند. در الگوریتم های دسته بندی مجموعه داده اولیه به دو مجموعه داده با عنوان مجموعه داده های آموزشی و مجموعه داده های آزمایشی تقسیم می شود که با استفاده از مجموعه داده های آموزشی مدل ساخته می شود و از مجموعه داده های آزمایشی برای اعتبار سنجی و محاسبه دقت مدل ساخته شده استفاده می شود. هررکورد شامل یک مجموعه ویژگی است.
یکی از ویژگی ها، ویژگی دسته نامیده می شود و در مرحله آموزش براساس مقادیر سایر ویژگی ها برای مقادیر ویژگی دسته، مدل ساخته می شود. روشهای توصیفی الگوهای قابل توصیفی را پیدا میکنند که روابط حاکم بر داده ها را بدون در نظرگرفتن هرگونه برچسب و یا متغیرخروجی تبیین نمایند. درمتون علمی روشهای توصیفی با نام روشهای بدون ناظر نیز شناخته می شوند ]صنیعی آباده 1391[.

روشهای توصیف داده هاهدف این روشها ارائه یک توصیف کلی از داده هاست که معمولا به شکل مختصر ارائه می شود. هر چند توصیف داده ها یکی از انواع روشهای داده کاوی است ولی معمولا هدف اصلی نیست واغلب از این روش برای تجزیه و تحلیل نیاز های اولیه و شناخت طبیعت داده ها و پیدا کردن خصوصیات ذاتی داده ها یا برای ارائه نتایج داده کاوی استفاده می شود [Sirikulvadhana 2002] .
روشهای تجزیه و تحلیل وابستگی هدف این روشها پیدا کردن ارتباطات قابل توجه بین تعداد زیادی از متغیر ها یا صفات می باشد[Gupta 2006] . یکی از روشهای متداول برای کشف قواعد وابستگی مدل Apriori است که نسبت به سایر مدلهای کشف قواعد وابستگی سریعتر بوده و محدودیتی از نظر تعداد قواعد ندارد [Xindong et al 2007] . کاوش قواعد تلازمی یکی از محتواهای اصلی تحقیقات داده کاوی در حال حاضر است و خصوصا بر یافتن روابط میان آیتم های مختلف در پایگاه داده تاکید دارد [Patil et. al 2012] . سه مدل CARMA و GRI و Fpgrowth سه الگوریتم دیگر از قواعد وابستگی هستند.
روشهای دسته بندی و پیشگویی
دسته بندی یک فرآیند یافتن مدل است که برای بخش بندی داده به کلاس های مختلف برطبق بعضی محدودیت ها استفاده شده است. به بیان دیگر ما می توانیم بگوییم که دسته بندی یک فرآیند تعمیم داده بر طبق نمونه های مختلف است. چندین نمونه اصلی الگوریتم های طبقه بندی شامل C4. 5 ، K نزدیکترین همسایه، بیز ساده و SVM است [Kumar and Verna 2012].
یکی از این نوع الگوریتم ها نظریه بیز می باشد. این دسته بند از یک چارچوب احتمالی برای حل مساله استفاده می کند. یک رکورد مفروض با مجموعه ویژگی های (A1, A2…. An) را درنظر بگیرید. هدف تشخیص دسته این رکورد است. در واقع از بین دسته های موجود به دنبال دسته ای هستیم که مقدارP(C|A1, A2…. An) را بیشینه کند. پس این احتمال را برای تمامی دسته های موجود محاسبه کرده و دسته ای که این احتمال به ازای آن بیشینه شود را به عنوان دسته رکورد جدید در نظر می گیریم.
PCA=PAC PCPAرگرسیون نیز نوع دیگری از این الگوریتم ها است. پیش بینی مقدار یک متغیر پیوسته بر اساس مقادیر سایر متغیرها بر مبنای یک مدل وابستگی خطی یا غیر خطی رگرسیون نام دارد. درواقع یک بردار X داریم که به یک متغیر خروجی y نگاشت شده است. هدف محاسبه y یا همان F(X) است که از روی تخمین تابع مقدار آن محاسبه می شود.
درخت تصمیمدرخت تصمیم از ابزارهای داده کاوی است که در رده بندی داده های کیفی استفاده می شود. در درخت تصمیم، درخت کلی به وسیله خرد کردن داده ها به گره هایی ساخته می شود که مقادیری از متغیر ها را در خود جای می دهند. با ایجاد درخت تصمیم بر اساس داده های پیشین که رده آنها معلوم است، می توان داده های جدید را دسته بندی کرد. روش درخت تصمیم به طور کلی برای دسته بندی استفاده می شود، زیرا یک ساختار سلسله مراتبی ساده برای فهم کاربر و تصمیم گیری است. الگوریتم های داده کاوی گوناگونی برای دسته بندی مبتنی بر شبکه عصبی مصنوعی، قوانین نزدیکترین همسایگی و دسته بندی بیزین در دسترس است اما درخت تصمیم یکی از ساده ترین تکنیک هاست [Patil et. al 2012] . از انواع درخت های تصمیم می توان C4. 5 و C5 و Meta Decision Tree و Random Forest وJ48 را نام برد.

2-3-5-شبکه عصبیروش پرکاربرد دیگر در پیشگویی نتایج استفاده از شبکه های عصبی می باشد. شبکه های عصبی مدل ساده شده ای است که بر مبنای عملکرد مغز انسان کار می کند. اساس کار این شبکه شبیه سازی تعداد زیادی واحد پردازشی کوچک است که با هم در ارتباط هستند. به هریک از این واحد ها یک نرون گفته می شود. نرون ها بصورت لایه لایه قرار دارند و در یک شبکه عصبی معمولا سه لایه وجود دارد [Gupta 2006] . اولین لایه )لایه ورودی ( ، دومین )لایه نهان (و سومین )لایه خروجی (. لایه نهان می تواند متشکل از یک لایه یا بیشتر باشد [P--han et. al 2011 ] .
2-3-6- استدلال مبتنی بر حافظهتوانایی انسان در استدلال براساس تجربه، به توانایی او در شناخت و درک نمونه های مناسبی که مربوط به گذشته است، بستگی دارد. افراد در ابتدا تجارب مشابهی که در گذشته داشته را شناسایی و سپس دانشی که از آن ها کسب کرده است را برای حل مشکل فعلی به کار می گیرند. این فرآیند اساس استدلال مبتنی بر حافظه است. یک بانک اطلاعاتی که از رکوردهای شناخته شده تشکیل شده است مورد جستجو قرار می گیرد تارکوردهای از قبل طبقه بندی شده و مشابه با رکورد جدید یافت شود.
از این همسایه ها برای طبقه بند ی و تخمین زدن استفاده می شود. KNN یک نمونه از این الگوریتم هاست. فرض کنید که یک نمونه ساده شده با یک مجموعه از صفت های مختلف وجود دارد، اما گروهی که این نمونه به آن متعلق است نامشخص است. مشخص کردن گروه می تواند از صفت هایش تعیین شود. الگوریتم های مختلفی می تواند برای خودکار سازی فرآیند دسته بندی استفاده بشود. یک دسته بند نزدیک ترین همسایه یک تکنیک برای دسته بندی عناصر است مبتنی بردسته بندی عناصر در مجموعه آموزشی که شبیه تر به نمونه آزمایشی هستند.
باتکنیک Kنزدیکترین همسایه، این کار با ارزیابی تعداد K همسایه نزدیک انجام می شود. [Tan et al 2006] . تمام نمونه های آموزشی در یک فضای الگوی چند بعدی ذخیره شده اند. وقتی یک نمونه ناشناخته داده می شود، یک دسته بند نزدیکترین همسایه در فضای الگو برای K نمونه آموزشی که نزدیک به نمونه ناشناخته هستند جستجو می کند. نزدیکی بر اساس فاصله اقلیدسی تعریف می شود [Wilson and Martinez 1997] .
2-3-7-ماشین های بردار پشتیبانیSVM اولین بار توسط Vapnik در سال 1990 معرفی شد و روش بسیار موثری برای رگرسیون و دسته بندی و تشخیص الگو است [Ristianini and Shawe 2000] .
SVM به عنوان یک دسته بند خوب در نظر گرفته می شود زیرا کارایی تعمیم آن بدون نیاز به دانش پیشین بالاست حتی وقتیکه ابعاد فضای ورودی بسیار بالاست. هدف SVM یافتن بهترین دسته بند برای تشخیص میان اعضای دو کلاس در مجموعه آموزشی است [Kumar and Verna 2012] .
رویکرد SVM به این صورت است که در مرحله آموزش سعی دارد مرز تصمیم گیری را به گونه ای انتخاب نماید که حداقل فاصله آن با هر یک از دسته های مورد نظر را بیشینه کند. این نوع انتخاب مرز بر اساس نقاطی بنام بردارهای پشتیبان انجام می شوند.
2-3-8-روشهای خوشه بندی هدف این روشها جداسازی داده ها با خصوصیات مشابه است. تفاوت بین دسته بندی و خوشه بندی این است که در خوشه بندی از قبل مشخص نیست که مرز بین خوشه ها کجاست و برچسبهای هر خوشه از پیش تعریف شده است ولی در دسته بندی از قبل مشخص است که هر دسته شامل چه نوع داده هایی می شود و به اصطلاح برچسب های هر دسته از قبل تعریف شده اند. به همین دلیل به دسته بندی یادگیری همراه با نظارت و به خوشه بندی یادگیری بدون نظارت گفته می شود [Osmar 1999] .
2-3-9- روش K-Meansیکی از روش های خوشه بندی مدل K-Means است که مجموعه داده ها را به تعدادثابت و مشخصی خوشه، خوشه بندی می کند. روش کار آن به این صورت است که تعداد ثابتی خوشه در نظر میگیرد و رکوردها را به این خوشه ها اختصاص داده و مکرراً مراکز خوشه ها را تنظیم می کند تا زمانیکه بهترین خوشه بندی بدست آید[Xindong et al 2007].
2-3-10-شبکه کوهننشبکه کوهنن نوعی شبکه عصبی است که در این نوع شبکه نرون ها در دو لایه ورودی و خروجی قرار دارند و همه نرون های ورودی به همه نرون های خروجی متصل اندو این اتصالات دارای وزن هستند. لایه خروجی در این شبکه ها بصورت یک ماتریس دو بعدی چیده شده و به آن نقشه خروجی گفته می شود. مزیت این شبکه نسبت به سایر انواع شبکه های عصبی این است که نیاز نیست دسته یا خوشه داده ها از قبل مشخص باشد، حتی نیاز نیست تعداد خوشه ها از قبل مشخص باشد. شبکه های کوهنن با تعداد زیادی نرون شروع می شود و به تدریج که یادگیری پیش می رود، تعداد آنها به سمت یک تعداد طبیعی و محدود کاهش می یابد.
2-3-11-روش دو گاماین روش در دو گام کار خوشه بندی را انجام می دهد. در گام اول همه داده ها یک مرور کلی می شوند و داده های ورودی خام به مجموعه ای از زیر خوشه های قابل مدیریت تقسیم می شوند. گام دوم با استفاده از یک روش خوشه بندی سلسله مراتبی بطور مداوم زیر خوشه ها را برای رسیدن به خوشه های بزرگتر با هم ترکیب می کند بدون اینکه نیاز باشد که جزئیات همه داده ها را مجددا مرور کند.
2-3-12-روشهای تجزیه و تحلیل نویزبعضی از داده ها که به طور بارز و مشخصی از داده های دیگر متمایز هستند اصطلاحاً بعنوان داده خطا یا پرت شناخته می شوند که باید قبل از ورود به فاز مدلسازی و در فاز آماده سازی داده ها برطرف شوند. با وجود این زمانیکه شناسایی داده های غیر عادی یا غیر قابل انتظار مانند موارد تشخیص تقلب هدف اصلی باشد، همین نوع داده ها مفید هستند که در این صورت به آنها نویز گفته می شود [Osmar 1999].
دسته های نامتعادل]صنیعی آباده 1391[.
مجموعه داده هایی که در آنها ویزگی دسته دارای توزیع نامتعادل باشد بسیار شایع هستند. مخصوصاً این مجموعه داده ها در کاربردها و مسائل واقعی بیشتر دیده می شوند.
در چنین مسائلی با وجود اینکه تعداد رکوردهای مربوط به دسته نادر بسیار کمتر از دسته های دیگر است، ولی ارزش تشخیص دادن آن به مراتب بالاتر از ارزش تشخیص دسته های شایع است. در داده کاوی برای برخورد با مشکل دسته های نامتعادل از دو راهکار استفاده می شود:
راهکار مبتنی بر معیار
راهکار مبتنی بر نمونه برداری
راهکار مبتنی بر معیاردر دسته بندی شایع ترین معیار ارزیابی کارایی دسته بند، معیار دقت دسته بندی است. در معیار دقت دسته بندی فرض بر یکسان بودن ارزش رکوردهای دسته های مختلف دسته بندی است. در راهکار مبتنی بر معیار بجای استفاده از معیار دقت دسته بندی از معیارهایی بهره برداری می شود که بتوان بالاتر بودن ارزش دسته های نادر و کمیاب را در آنها به نحوی نشان داد. بنابراین با لحاظ نمودن معیارهای گفته شده در فرآیند یادگیری خواهیم توانست جهت یادگیری را به سمت نمونه های نادر هدایت نماییم. از جمله معیارهایی که برای حل مشکل عدم تعادل دسته ها بکار می روند عبارتند از Recall, Precession, F-Measure, AUC و چند معیار مشابه دیگر.
2-4-2-راهکار مبتنی بر نمونه بردارینمونه برداری یکی از راهکارهای بسیار موثربرای مواجهه با مشکل دسته های نامتعادل است. ایده اصلی نمونه برداری آن است که توزیع نمونه ها را به گونه ای تغییر دهیم که دسته کمیاب به نحو پررنگ تری در مجموعه داده های آموزشی پدیدار شوند. سه روش برای این راهکار وجود دارد که عبارتند از:
الف- نمونه برداری تضعیفی:
در این روش نمونه برداری، توزیع نمونه های دسته های مساله به گونه ای تغییر می یابند که دسته شایع به شکلی تضعیف شود تا از نظرفراوانی با تعداد رکوردهای دسته نادر برابری کند. به این ترتیب هنگام اجرای الگوریتم یادگیری، الگوریتم ارزشی مساوی را برای دو نوع دسته نادر و شایع درنظر می گیرد.
ب- نمونه برداری تقویتی:
این روش درست برعکس نمونه برداری تضعیفی است. بدین معنی که نمونه های نادر کپی برداری شده و توزیع آنها با توزیع نمونه های شایع برابر می شود.
ج- نمونه برداری مرکب:
در این روش از هردو عملیات تضعیفی و تقویتی بصورت همزمان استفاده میشود تا توزیع مناسب بدست آید.
در این پژوهش با توجه به کمتر بودن نسبت نمونه نادر یعنی منجر به خسارت شده به نمونه شایع از روش نمونه برداری تضعیفی استفاده گردید که کل تعداد نمونه ها به حدود 3 هزار رکورد تقلیل پیدا کرد و توزیع نمونه ها به نسبت مساوی بوده است. شایان ذکر است این نمونه برداری پس از انجام مرحله پاک سازی داده ها انجام شد که خود مرحله پاکسازی با عث تقلیل تعداد نمونه های اصلی نیز گردیده بود.
پیشینه تحقیقسالهاست که محققان در زمینه بیمه و مسائل مرتبط با آن به تحقیق پرداخته اند و از جمله مسائلی که برای محققان بیشتر جذاب بوده است می توان به کشف تقلب اشاره کرد.
Brockett و همکاران [Brockett et. al 1998] ابتدا به کمک الگوریتم تحلیل مولفه های اصلی (PCA) به انتخاب ویژگی ها پرداختند و سپس با ترکیب الگوریتم های خوشه بندی و شبکه های عصبی به کشف تقلبات بیمه اتومبیل اقدام کردند. مزیت این کار ترکیب الگوریتمها و انتخاب ویژگی بوده که منجر به افزایش دقت خروجی بدست آمده گردید.
Phua و همکاران [ Phua et. al 2004] با ترکیب الگوریتم های شبکه های عصبی پس انتشاری ، بیزساده و درخت تصمیم c4.5 به کشف تقلب در بیمه های اتومبیل پرداختند.نقطه قوت این کار ترکیب الگوریتم ها بوده اما بدلیل عدم کاهش ویژگی ها و کاهش ابعاد مساله میزان دقت بدست آمده در حد اعلی نبوده است.
Allahyari Soeini و همکاران [Allahyari Soeini et. al 2012] نیز یک متدلوژی با استفاده از روشهای داده کاوی خوشه بندی ودرخت تصمیم برای مدیریت مشتریان ارائه دادند. از ایرادات این روش میتوان عدم استفاده از الگوریتم های دسته بندی و قوانین انجمنی را نام برد.
مورکی علی آباد ] مورکی علی‌آباد1390[ تحقیقی داشته است که اخیراً در زمینه بیمه صورت گرفته و درمورد طبقه‌بندی مشتریان صنعت بیمه با هدف شناسایی مشتریان بالقوه با استفاده از تکنیک‌های داده‌کاوی (مورد مطالعه: بیمه‌گذاران بیمه آتش‌سوزی شرکت بیمه کارآفرین (که هدف آن دسته بندی مشتریان صنعت بیمه بر اساس میزان وفاداری به شرکت، نوع بیمه نامه های خریداری شده، موقعیت جغرافیایی مکان های بیمه شده و میزان جذب به شرکت بیمه در بازه زمانی 4 سال گذشته بوده است. روش آماری مورد استفاده از تکنیک های داده کاوی نظیر درخت تصمیم و دسته بندی بود. این تحقیق نیز چون نمونه آن قبلا انجام شده بوده از الگوریتم های متفاوت استفاده نکرده است. همچنین سعی بر بهبود تحقیق قبلی نیز نداشته است. وجه تمایز این تحقیق با نمونه قبلی استفاده از ویژگی های متفاوت بوده است.
عنبری ]عنبری 1389[ نیز پژوهشی در خصوص طبقه بندی ریسک بیمه گذاران در رشته بیمه بدنه اتومبیل با استفاده از داده کاوی داشته است که هدف استفاده از داده های مربوط به بیمه نامه بدنه از کل شرکتهای بیمه (بانک اطلاعاتی بیمه خودرو) بوده و سعی بر آن شده است تا بررسی شود که آیا میتوان بیمه گذاران بیمه بدنه اتومبیل را از نظر ریسک طبقه بندی کرد؟ و آیا درخت تصمیم برای طبقه بندی بیمه گذاران بهترین ابزار طبقه بندی می باشد؟ و آیا سن و جنسیت از موثرترین عوامل در ریسک بیمه گذار محسوب می شود؟ نتایج این طبقه بندی به صورت درخت تصمیم و قوانین نشان داده شده است. ونتایج حاصل از صحت مدل درخت تصمیم با نتایج الگوریتم های شبکه عصبی و رگرسیون لجستیک مورد مقایسه قرار گرفته است. از مزیت های این تحقیق استفاده از الگوریتم های متفاوت و مقایسه نتایج حاصله برای بدست آوردین بهترین الگوریتم ها بوده است.
رستخیز پایدار]رستخیز پایدار 1389[ تحقیقی دیگر در زمینه بخش بندی مشتریان بر اساس ریسک با استفاده از تکنیک داده کاوی (مورد مطالعه: بیمه بدنه اتومبیل بیمه ملت) داشته است. با استفاده از مفاهیم شبکه خود سازمانده بخش بندی بر روی مشتریان بیمه بدنه اتومبیل بر اساس ریسک صورت گرفت. در این تحقیق عوامل تأثیرگذار بر ریسک بیمه گذاران طی دو مرحله شناسایی گردید. در مرحله اول هیجده فاکتور ریسک در چهار گروه شامل مشخصات جمعیت شناختی، مشخصات اتومبیل، مشخصات بیمه نامه و سابقه راننده از بین مقالات علمی منتشر گردیده در ژورنال های معتبر در بازه سال های 2000 الی 2009 استخراج گردید و در مرحله دوم با استفاده از نظرسنجی از خبرگان فاکتورهای نهایی تعیین گردید. مشتریان بیمه بدنه اتومبیل در این تحقیق با استفاده از شبکه های عصبی خودسازمانده به چهار گروه مشتریان با ریسک های متفاوت بخش بندی گردیدند. مزیت این تحقیق استفاده از نظر خبرگان بیمه بوده و ایراد آن عدم استفاده از ویژگی های بیشتر و الگوریتم های انتخاب ویژگی بوده است.
ایزدپرست  ]ایزدپرست1389[ همچنین تحقیقی در مورد ارائه چارچوبی برای پیش بینی خسارت مشتریان بیمه بدنه اتومبیل با استفاده از راهکار داده کاوی انجام داده است که چارچوبی برای شناسایی مشتریان بیمه بدنه اتومبیل ارائه می‌گردد که طی آن میزان خطرپذیری مشتریان پیش‌بینی شده و مشتریان بر اساس آن رده‌بندی می‌گردند. در نتیجه با استفاده از این معیار (سطح خطرپذیری) و نوع بیمه‌نامه مشتریان، میتوان میزان خسارت آنان را پیش‌بینی کرده و تعرفه بیمه‌نامه متناسب با ریسک آنان تعریف نمود. که این مطلب می‌تواند کمک شایانی برای شناسایی مشتریان و سیاستگذاری‌های تعرفه بیمه نامه باشد. در این تحقیق از دو روش خوشه‌بندی و درخت‌تصمیم استفاده می‌گردد. در روش خوشه‌بندی مشتریان بر اساس ویژگی هایشان در خوشه هایی تفکیک شده، سپس میانگین سطح خسارت در هر یک از این خوشه‌ها را محاسبه میکند. حال مشتریان آتی با توجه به اینکه به کدامیک از این خوشه‌ها شبیه تر هستند در یکی از آنها قرار می‌گیرند تا سطح خسارتشان مشخص گردد. در روش درخت‌تصمیم با استفاده از داده‌های مشتریان، درختی را بر اساس مجموعه‌ای از قوانین که بصورت "اگر-آنگاه" می‌باشد ایجاد کرده و سپس مشتریان جدید با استفاده از این درخت رده‌بندی می‌گردند. در نهایت هر دو این مدلها مورد ارزیابی قرار می‌گیرد. ایراد این روش در عدم استفاده از دسته بند ها بوده است. چون ماهیت تحقیق پیش بینی بوده است استفاده از دسته بند ها کمک شایانی به محقق در تولبد خروجی های حذاب تر می کرد.
خلاصه فصلعمده پژوهشهایی که درخصوص داده های بیمه ای صورت گرفته کمتر به سمت پیش بینی سود و زیان شرکتهای بیمه بوده است. در موارد مشابه نیزپیش بینی خسارت مشتریان انجام شده که هدف دسته بندی مشتریان بوده است. موضوع این پژوهش اگرچه از نوع همسان با تحقیقات گفته شده است اما در جزئیات بیمه شخص ثالث را پوشش می دهد که درکشور ما یک بیمه اجباری تلقی می شود. همچنین تعداد خصیصه هایی که در صدور یا خسارت این بیمه نامه دخالت دارند نسبت به سایر بیمه های دیگر بیشتر بوده ضمن اینکه بررسی سود یا زیان بیمه شخص ثالث با استفاده از دانش نوین داده کاوی کارتقریبا جدیدی محسوب می شود.

فصل سوم
2087880229743000
شرح پژوهشدر این فصل هدف بیان مراحل انجام این پژوهش و تحلیل خروجی های بدست آمده می باشد.

انتخاب نرم افزاردر اولین دهه آغاز به کار داده کاوی و در ابتدای امر، هنوز ابزار خاصی برای عملیات کاوش وجود نداشت و تقریبا نیاز بود تا تمامی تحلیل گران، الگوریتمهای موردنظر داده کاوی و یادگیری ماشین را با زبان های برنامه نویسی مانند c یا java یا ترکیبی از چند زبان پیاده سازی کنند. اما امروزه محیط های امکان پذیر برای این امر، با امکانات مناسب و قابلیت محاوره گرافیکی زیادی را می توان یافت]صنیعی آباده 1391[.
Rapidminerاین نرم افزار یک ابزار داده کاوی متن باز است که به زبان جاوا نوشته شده و از سال 2001 میلادی تا به حال توسعه داده شده است. در این نرم افزار سعی تیم توسعه دهنده بر این بوده است که تا حد امکان تمامی الگوریتم های رایج داده کاوی و همچنین یادگیری ماشین پوشش داده شوند. بطوری که حتی این امکان برای نرم افزار فراهم شده است تا بتوان سایر ابزارهای متن باز داده کاوی را نیز به آن الحاق نمود. رابط گرافیکی شکیل و کاربر پسند نرم افزار نیز آن را یک سرو گردن بالاتر از سایر ابزارهای رقیب قرار میدهد]صنیعی آباده 1391[.
مقایسه RapidMiner با سایر نرم افزار های مشابهدر اینجا دو نرم افزار مشهور متن باز را با RapidMiner مقایسه خواهیم کرد و معایب و مزایای آنها را بررسی می کنیم.
الف-R
یک زبان برنامه نویسی و یک پکیج داده کاوی به همراه توابع آماری است و بر پایه زبان های s و scheme پیاده سازی شده است. این نرم افزار متن باز، حاوی تکنیک های آماری مانند: مدل سازی خطی و غیرخطی، آزمون های کلاسیک آماری، تحلیل سری های زمانی، دسته بندی، خوشه بندی، و همچنین برخی قابلیت های گرافیکی است. R را می توان در محاسبات ماتریسی نیز بکار برد که این امر منجر به استفاده از آن در علم داده کاوی نیز می شود.
-مزایا:
شامل توابع آماری بسیار گسترده است.
بصورت بسیارمختصر قادر به حل مسائل آماری است.
دربرابر سایر نرم افزار های مرسوم کار با آرایه مانند Mathematica, PL, MATLAB, LISP/Scheme قدرت مند تر است.
با استفاده از ویژگی Pipeline قابلیت ترکیب بالایی را با سایر ابزارها و نرم افزارها دارد.
توابع نمودار مناسبی دارد.
-معایب:
فقدان واسط کاربری گرافیک
فقدان سفارشی سازی لزم جهت داده کاوی
ساختار زبانی کاملا متفاوت نسبت به زبان های برنامه نویسی مرسوم مانندc, PHP, java, vb, c#.
نیاز به آشنایی با زبانهای آرایه ای
قدیمی بودن این زبان نسبت به رقبا. این زبان در 1990 ساخته شده است.
ب- Scipy
یک مجموعه از کتابخانه های عددی متن باز برای برنامه نویسی به زبان پایتون است که برخی از الگوریتم های داده کاوی را نیز پوشش می دهد.
-مزایا
برای کاربردهای ریاضی مناسب است.
عملیات داده کاوی در این نرم افزار چون به زبان پایتون است راحت انجام می شود.
-معایب
الگوریتم های یادگیری مدل در این کتابخانه هنوز به بلوغ کامل نرسیده اند و درحال تکامل هستند.
برای پیاده سازی الگوریتم های داده کاوی توسط این ابزار باید از ترکیب های متفاوت آنچه در اختیار هست استفاده کرد.
ج-WEKA
ابزار رایج و متن باز داده کاوی است که کتابخانه های آماری و داده کاوی بسیاری را شامل میشود. این نرم افزار بوسیله جاوا نوشته شده است و در دانشگاه وایکاتو در کشور نیوزلند توسعه داده شده است.
-مزایا
دارای بسته های فراوان یادگیری ماشین.
دارای نمای گرافیکی مناسب.
مشخصا به عنوان یک ابزار داده کاوی معرفی شده است.
کار کردن با آن ساده است.
اجرای همزمان چندین الگوریتم و مقایسه نتایج.
همانطور که مشخص شد weka در مقابل دیگر نرم افزار های بیان شده به لحاظ قدرت و کاربر پسندی به Rapidminer نزدیک تر است و شباهت های زیادی به هم دارند زیرا که:
هردو به زبان جاوا نوشته شده اند.
هردو تحت مجوزGPL منتشر شده اند.
Rapidminer بسیاری از الگوریتمهای weka را در خود بارگذاری میکند.
اما weka معایبی نسبت به Rapidminer دارد از جمله اینکه:
در اتصال به فایلهای حاوی داده Excel و پایگاه های داده که مبتنی بر جاوا نیستند ضعیف عمل میکند.
خواندن فایلهای csv به شکل مناسبی سازماندهی نشده است.
به لحاظ ظاهری در رده پایینتری قرار دارد.
در نهایت بعد از بررسی های انجام شده حتی در میان نرم افزار های غیرمتن باز تنها ابزاری که کارایی بالاتری از Rapidminer داشت statistica بود که متن باز نبوده و استفاده از آن نیازمند تقبل هزینه آن است]صنیعی آباده 1391[.
در یازدهمین و دوازدهمین بررسی سالانه KDDnuggets Data Mining / Analytics رای گیری با طرح این سوال که کدام ابزار داده کاوی را ظرف یک سال گذشته برای یک پروژه واقعی استفاده کرده ایددر سال 2010 از بین 912 نفر و در سال 2011 ازبین 1100 نفر انجام شد. توزیع رای دهندگان بدین صورت بوده است:
اروپای غربی 37%
آمریکای شمالی 35%
اروپای شرقی 10%


آسیا 6%
اقیانوسیه 4%
آمریکای لاتین 4%
آفریقا و خاورمیانه %4
نتایج به شرح جدول 3-1 بوده است :
جدول شماره 3-1: نتایج رای گیری استفاده از نرم افزارهای داده کاوی
2011 Vote 2010 Vote Software name
37. 8% 27. 7% Rapidminer
29. 8% 23. 3% R
24. 3% 21. 8% Excel
12. 1% 13. 6% SAS
18. 4% 12. 1% Your own code
19. 2% 12. 1% KNIMe
14. 4% 11. 8% WEKA
1. 6% 10. 6% Salford
6. 3% 8. 5% Statistica
همانطور که نتایج رای گیری مشخص میکند نرم افزار Rapidminer بیشترین استفاده کننده را دارد.
در این پایان نامه نیز عملیات داده کاوی توسط این نرم افزار انجام می شود. ناگفته نماند در قسمتهایی از نرم افزار minitab و Clementine12 نیز برای بهینه کردن پاسخ بدست آمده و بالابردن کیفیت نتایج استفاده شده است.

داده ها داده های مورد استفاده در این پژوهش شامل مجموعه بیمه نامه های شخص ثالث صادر شده استان کهگیلویه و بویراحمد در سال 1390 شمسی بوده که بیمه نامه های منجر شده به خسارت نیز در این لیست مشخص گردیده اند. تعداد کل رکوردها حدود 20 هزار رکورد بوده که از این تعداد تقریباً 7. 5 درصد یعنی حدود 1500 رکوردمنجر به خسارت گردیده اند.
3-2-1- انتخاب دادهداده مورد استفاده در این پژوهش شامل دو مجموعه داده به شرح زیر بوده است:
صدور: اطلاعات بیمه نامه های صادره
خسارت: جزئیات خسارت پرداختی ازمحل هر بیمه نامه که خسارت ایجاد کرده
3-2-2-فیلدهای مجموعه داده صدور
این فیلدها در حالت اولیه 137 مورد به شرح جدول 3-2 بوده است.
3-2-3-کاهش ابعاد
در این پژوهش بخاطر موثرنبودن فیلدهایی اقدام به حذف این مشخصه ها کرده و فیلدهای موثر نهایی به 42 فیلد کاهش یافته که به شرح جدول 3-3 بدست آمده اند. کاهش ابعاد میتواند شامل حذف فیلدهای موثر که دارای اثر بسیار ناچیز درمقابل دیگر فیلدها است نیز باشد.
جدول شماره 3-2: فیلدهای اولیه داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
1 بیمه‌نامه 33 مدت بیمه 65 تعهدمازاد
2 سال‌صدوربیمه‌نامه 34 زمان‌شروع 66 کدنوع‌تعهدسرنشین
3 رشته‌بیمه 35 شغل‌بیمه‌گذار 67 میزان‌تعهدسرنشین
4 نمایش سند 36 سن‌بیمه‌گذار 68 حق‌بیمه‌ثالث‌قانونی
5 مکانیزه 37 سال‌کارت 69 ثالث قانونی+تعدددیات
6 دستی 38 سریال‌کارت 70 حق‌بیمه‌بند4
7 وب‌بنیان 39 کدوسیله‌نقلیه 71 حق‌بیمه‌ماده1
8 نام‌استان 40 کدزیررشته‌آمار 72 حق‌بیمه‌مازاد
9 نام‌شعبه 41 نوع‌وسیله‌نقلیه 73 حق‌بیمه‌سرنشین
10 کدشعبه 42 سیستم 74 مالیات
11 شعبه‌محل‌صدور 43 سال ساخت 75 مازادجانی
12 شعبه 44 رنگ 76 حق‌بیمه‌مازادمالی
13 نمایندگی‌محل‌صدور 45 شماره‌شهربانی 77 عوارض‌ماده92
14 کددولتی 46 شماره‌موتور 78 حق‌بیمه‌دریافتی
15 نمایندگی 47 شماره‌شاسی 79 tadodflg
16 دولتی 48 تعدادسیلندر 80 حق‌بیمه‌تعددخسارت
17 صادره‌توسط شعبه 49 کدواحدظ‌رفیت 81 جریمه‌بیمه‌مرکزی
18 کارمندی 50 ظرفیت 82 حق‌بیمه‌صادره‌شعبه
19 کدصادره‌توسط شعبه 51 شرح‌مورداستفاده 83 حق‌بیمه‌صادره‌نمایندگی
20 سریال‌بیمه‌نامه 52 یدک‌دارد؟ 84 کداضافه‌نرخ‌حق‌بیمه
21 شماره‌بیمه‌نامه 53 اتاق‌وسیله‌نقلیه 85 اضافه‌نرخ‌ثالث
22 نام‌بیمه‌گذار 54 نوع‌پلاک 86 اضافه‌نرخ‌بند4
23 آدرس‌بیمه‌گذار 55 جنسیت 87 اضافه‌نرخ‌مازاد
24 تلفن‌بیمه‌گذار 56 کدنوع‌بیمه‌نامه 88 تعدددیات
25 کدسازمان 57 نوع‌بیمه 89 اضافه‌نرخ‌تعدددیات
26 نام‌سازمان 58 بیمه‌نامه‌سال‌قبل 90 اضافه‌نرخ‌ماده‌یک
27 کدنوع‌بیمه 59 انقضاسال‌قبل 91 دیرکردجریمه
28 cbrn. cod 60 بیمه‌گرقبل 92 کدملی‌بیمه‌گذار
29 نوع‌بیمه 61 شعبه‌قبل 93 صادره‌توسط شعبه
30 تاریخ‌صدور 62 خسارت‌داشته‌؟ 94 نوع‌مستند1
31 تاریخ‌شروع 63 تعهدمالی 95 شماره‌مستند1
32 تاریخ‌انقضا 64 تعهدبدنی 96 تاریخ‌مستند1
ادامه جدول شماره 3-2: فیلدهای اولیه داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
97 مبلغ‌مستند1 111 تخفیف ایمنی 125 کداقتصادی
98 شماره‌حساب1 112 سایرتخفیف ها 126 کدملی
99 بانک1 113 ملاحظات 127 تاریخ‌ثبت
100 نوع‌مستند2 114 نام‌کاربر 128 کدشعبه‌صادرکننده‌اصلی
101 شماره‌مستند2 115 تاریخ‌سند 129 کدنمایندگی‌صادرکننده‌اصلی
102 تاریخ‌مستند2 116 کدشهربانی 130 کدسازمان‌صادرکننده‌اصلی
103 مبلغ‌مستند2 117 شعبه‌محل‌نصب 131 سال
104 شماره‌حساب2 118 کدمحل‌نصب 132 ماه
105 بانک2 119 دستی/مکانیزه 133 نوع
106 تخفیف‌نرخ‌اجباری 120 تیک‌باحسابداری 134 crecno
107 تخفیف‌نرخ‌اختیاری 121 سال‌انتقال 135 type_ex
108 تخفیف عدم خسارت 122 ماه‌انتقال 136 updflg
109 تخفیف صفرکیلومتر 123 sysid 137 hsab_sync
110 تخفیف گروهی 124 trsid کداقتصادی
جدول شماره 3-3: فیلدهای نهایی داده های صدور
ردیف نام فیلد ردیف نام فیلد ردیف نام فیلد
1 ماه 15 تعهدمازاد 29 تاریخ‌شروع
2 سال 16 تعهدبدنی 30 تاریخ‌صدور
3 کدنمایندگی‌صادرکننده‌اصلی 17 تعهدمالی 31 نام‌سازمان
4 تخفیف گروهی 18 بیمه‌نامه‌سال‌قبل 32 شماره‌بیمه‌نامه
5 تخفیف عدم خسارت 19 نوع‌بیمه 33 کارمندی
6 نوع‌مستند1 20 نوع‌پلاک 34 صادره‌توسط شعبه
7 دیرکردجریمه 21 شرح‌مورداستفاده 35 دولتی
8 کداضافه‌نرخ‌حق‌بیمه 22 ظرفیت 36 نمایندگی‌محل‌صدور
9 حق‌بیمه‌دریافتی 23 تعدادسیلندر 37 خسارتی؟
10 عوارض‌ماده92 24 سال ساخت 38 مبلغ خسارت
11 مالیات 25 سیستم 39 تاریخ ایجادحادثه
12 حق‌بیمه‌سرنشین 26 نوع‌وسیله‌نقلیه 40 بیمه گر زیاندیده اول
13 حق‌بیمه‌مازاد 27 مدت بیمه 41 تعداد زیاندیدگان مصدوم
14 حق‌بیمه‌ثالث‌قانونی 28 تاریخ‌انقضا 42 تعداد زیاندیدگان متوفی
در کاهش ابعاد این مساله برای حذف فیلدهای مختلف نظرات کارشناسان بیمه نیز لحاظ شده است. جدول 3-4 فیلدهای حذف شده و علت حذف آنها را بیان کرده است.
جدول شماره 3-4: فیلدهای حذف شده داده های صدور و علت حذف آنها
نام فیلد حذف شده علت حذف
Crecno-type_ex-updflg-hsab_sync-کدمحل‌نصب-دستی/مکانیزه-تیک‌باحسابداری-سال‌انتقال-ماه‌انتقال-sysid-trsid-کدزیررشته آمار-نمایش سند-مکانیزه-دستی-وب‌بنیان-Cbrn. cod کاربرد آماری
نوع-کد شعبه صادرکننده-شعبه محل نصب-کدشهربانی-سایرتخفیف ها-تخفیف ایمنی-تخفیف صفر کیلومتر-تخفیف نرخ اختیاری-تخفیف نرخ اجباری-خسارت داشته؟-شعبه قبل-جنسیت-کد نوع بیمه نامه-یدک دارد-
اتاق وسیله نقلیه-سن بیمه گذار-شغل بیمه گذار-زمان شروع-کد نوع بیمه دارای مقدار یکسان یا null
کد سازمان صادر کننده-کد نوع تعهد سرنشین-کدواحدظرفیت-کد وسیله نقلیه-کد سازمان-کد صادره توسط-نمایندگی-کد دولتی بجای این کد از فیلد اسمی معادل آن استفاده شده است و یا برعکس زیرا در نتایج خروجی قابل فهم تر خواهد بود.
تاریخ ثبت-تاریخ سند-بیمه گر قبل-مبلغ -مستند 1و2-اضافه‌نرخ‌ثالث-4اضافه‌نرخ‌بند-
اضافه‌نرخ‌مازاد-میزان تعهد سرنشین-تعدددیات-اضافه‌نرخ‌تعدددیات-اضافه‌نرخ‌ماده‌یک-تاریخ مستند1و2-شماره -حساب 1و2-بانک1و2 دارای مقدار تکراری
کدملی-بیمه نامه-کداقتصادی-نوع مستند2-
شماره مستند1و2-نام کاربر-ملاحظات-
کدملی بیمه گذار-شماره شاسی-شماره موتور-
شماره شهربانی-سریال کارت-سال کارت-
نام‌استان-نام‌شعبه-کدشعبه-شعبه‌محل‌صدور
شعبه-سال‌صدوربیمه‌نامه-رشته‌بیمه-رنگ-تلفن بیمه گذار-نام بیمه گذار-آدرس بیمه گذار-سریال بیمه نامه بدون تاثیر
حق‌بیمه‌تعددخسارت-جریمه‌بیمه‌مرکزی-
حق‌بیمه‌صادره‌شعبه-حق‌بیمه‌صادره‌نمایندگی-
مازادجانی-حق‌بیمه‌مازادمالی-حق بیمه ماده1-
حق بیمه ماده4-ثالث قانونی + تعدد دیات- انقضا سال قبل بخشی از فیلد انتخاب شده
جدول 3-5: فیلدهای استخراج شده از داده های خسارت
مبلغ خسارت
تاریخ ایجادحادثه
بیمه گر زیاندیده اول
تعداد زیاندیدگان مصدوم
تعداد زیاندیدگان متوفی
3-2-4- فیلدهای مجموعه داده خسارتاز مجموعه داده خسارت فقط فیلدهای مشخص کننده میزان خسارت و جزئیات لازم استخراج شده است. متاسفانه اطلاعات مفید تری مثل سن راننده مقصر، میزان تحصیلات و. . . در این مجموعه داده وجود نداشته است و چون هنگام ثبت خسارت برای یک بیمه نامه از اطلاعات کلیدی داده های صدور استفاده می شود، با توجه به اینکه از مرحله قبل مهمترین فیلدهای داده های صدور را در دسترس داریم بنابراین با ادغام فیلدهای خسارت و صدور به اطلاعات جامعی در خصوص یک بیمه نامه خاص دسترسی خواهیم داشت. مشخصه ها استخراج شده از داده های خسارت طبق جدول 3-5 است.

3-2-5-پاکسازی داده هاداده ها در دنیای واقعی ممکن است دارای خطا، مقادیر از دست رفته، مقادیر پرت و دورافتاده باشند [Jiawei Han, 2010]. در مرحله پاکسازی با توجه به نوع داده ممکن است یک یا چند روش پاکسازی بر روی داده اعمال شود.
3-2-6- رسیدگی به داده های از دست رفتهدر این قسمت از کار اقدام به رفع Missing data نموده که خود مرحله مهمی از پاکسازی داده بحساب می آید. در مرحله ابتدایی با مرتب سازی تمام ویژگی های قابل مرتب سازی در نرم افزار Microsoft Excel اقدام به کشف مقادیر از دست رفته کرده و از طریق دیگر ویژگی های هر رکورد مقدار از دست رفته را حدس زده ایم. همچنین درحین انتقال داده به محیط داده کاوی مقادیر از دست رفته نیز مشخص می گردند. در بعضی موارد بدلیل تعداد زیاد ویژگی های از دست رفته اقدام به حذف کامل رکورد نمودیم. این کار برای زمانی که داده ها در حجم انبوهی وجود دارند مفید واقع میشوند اما زمانی که تعداد رکوردها کم می باشد اجتناب از این عمل توصیه می شود. برای ویژگی نوع بیمه که از نوع چند اسمی بوده است فقط دو مقدار"کارمندی" و "عادی" وجود داشته که تعداد 49 مورد فاقد مقدار بوده است. کل تعداد بیمه کارمندی 27 مورد بوده است. با توجه به کم بودن تعداد داده های ازدست رفته این فیلد و پس از مقایسه نام بیمه گذاران با اسم کارمندان مشخص شد هیچ کدام از موارد فوق کارمندی نبوده و همه از نوع عادی بوده اند.
از جمله فیلدهای دارای مقادیر از دست رفته و روش رفع ایراد آنها عبارتند از:
سیستم*** 70 مورد***تشخیص با توجه به دیگر ویژگی ها
نوع وسیله نقلیه***33مورد***تشخیص با توجه به دیگر ویژگی ها
شرح مورد استفاده***11مورد***تشخیص با توجه به دیگر ویژگی هاتعدادسیلندر***2مورد***تشخیص با توجه به دیگر ویژگی ها
دولتی***28 مورد***تشخیص از روی پلاک
ماه***130 مورد***تشخیص از روی تاریخ صدور
نوع بیمه***49مورد***تشخیص از روی نام بیمه گذار
تعداد رکوردهایی که مقادیرازدست رفته در چند ویژگی مهم را داشته اند و حذف شده اند حدود 350 مورد بوده است.
3-2-7-کشف داده دور افتادهبعضی از مقادیر بسته به نوع داده علی رغم پرت تشخیص داده شدن مقادیر صحیحی می باشند. بنابراین حذف اینگونه داده ها برای کاستن پیچیدگی مساله میتواند موجب حذف قوانین مهمی در الگوریتم های مبتنی برقانون یا درختهای تصمیم شود. پس بررسی خروجی الگوریتم توسط یک فردخبره در موضوع مساله می تواند مانع از این اتفاق شود. نوع برخورد با داده پرت میتواند شامل حذف داده پرت، تغییر مقدار، حذف رکورد و در مواردی حذف مشخصه باشد.
برای تشخیص داده پرت از نمودار boxplot نرم افزار minitab 15 استفاده گردید. در این نمودار از مفهوم درصدک استفاده میشود که داده های بین 25% تا 75% که به ترتیب با Q1 و Q3 نشان داده می شوند مهم ترین بخش داده ها هستند. X50% نیز میانه را نشان می دهد و با یک خط در وسط نمودار مشخص می شود. Interquartile range (IQR) نیز مفهوم دیگری است که برابر است با IQR = Q3-Q1 .
مقادیر بیشتر از Q3 + [(Q3 - Q1) X 1. 5] و کمتر از Q1 - [(Q3 - Q1) X 1. 5]داده پرت محسوب می شوند. برای انجام اینکار نمودار boxplot را روی تک تک مشخصه های داده ها به اجرا در آورده و نتایج مطابق جدول 3-6 حاصل گردید.
جدول 3-6: نتایج نمودار boxplot
نام فیلد محاسبه مقادیر پرت توضیحات
تعداد زیاندیدگان متوفی Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقدار 1و2 نشان داده شده صحیح می باشد
تعداد زیاندیدگان مصدوم Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 1و2و3 نشان داده شده صحیح می باشد
بیمه گر زیاندیده اول Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقدار 1و2و3و. . . نشان داده شده صحیح می باشد و عدد 99 مقداری صحیح است که به معنی ندارد استفاده میگردد
مبلغ خسارت Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مبلغ خسارت 1.658.398.000 ریال و 900.000.000 ریال واقعا پرداخت گردیده است
تعداد سیلندر Q1=4, Q3=4, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=4
Q1 - [(Q3 - Q1) X 1. 5]=4مقدار 5 به عنوان تعداد سیلندر ناصحیح می باشد
ظرفیت Q1=5, Q3=5, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=5
Q1 - [(Q3 - Q1) X 1. 5]=5 مقادیر بین 1 تا 96 ظرفیتهای منطقی بر اساس تناژ یا سرنشین بوده و صحیح است اما مقدار 750 نا صحیح است
نوع پلاک Q1=3, Q3=3, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=3
Q1 - [(Q3 - Q1) X 1. 5]=3 مقادیر با مفهوم بوده و دور افتاده نیست
بیمه نامه سال قبل Q1=1, Q3=1, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=1
Q1 - [(Q3 - Q1) X 1. 5]=1 مقادیر عددی 0 یا 1 به معنی داشتن یا نداشتن بوده و صحیح است
تعهدات مالی Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقادیر با مفهوم بوده و دور افتاده نیست
حق بیمه ثالث قانونی Q1=1992600, 3=3332500, IQR=1339900
Q3 + [(Q3 - Q1) X 1. 5]=5342350
Q1 - [(Q3 - Q1) X 1. 5]=17250 مقادیر با مفهوم بوده و دور افتاده نیست
حق بیمه مازاد Q1=0, Q3=9100, IQR=9100
Q3 + [(Q3 - Q1) X 1. 5]=22750
Q1 - [(Q3 - Q1) X 1. 5]=13650 مقادیر با مفهوم بوده و دور افتاده نیست
دیرکرد جریمه Q1=0, Q3=0, IQR=0
Q3 + [(Q3 - Q1) X 1. 5]=0
Q1 - [(Q3 - Q1) X 1. 5]=0 مقادیر با مفهوم بوده و دور افتاده نیست
تخفیف عدم خسارت Q1=610080, Q3=1495200, IQR=885120
Q3 + [(Q3 - Q1) X 1. 5]=2822880
Q1 - [(Q3 - Q1) X 1. 5]=717600 مقادیر با مفهوم بوده و دور افتاده نیست
3-2-8-انبوهش دادهبا ادغام کردن داده های صدور و خسارت به خلق ویژگیهای جدیدی دست زده ایم. چون داده ها در دو فایل جدا گانه بوده و حجم داده زیاد بوده است برای ادغام از پرس و جوی نرم افزار Microsoft Access استفاده شد. برای تشخیص بیمه نامه های خسارت دیده از فیلد شماره بیمه نامه که در هردوفایل مشترک بود استفاده کردیم.
3-2-9- ایجاد ویژگی دستهدر این مرحله پس از ادغام ویژگی های مختلف اقدام به ایجاد یک فیلد برای تمام رکوردهایی که منجر به خسارت شده اند می نماییم. این فیلد در الگوریتمهای دسته بندی مورد استفاده قرار خواهد گرفت. برای انجام این کار از یک پر و جوی Microsoft Access استفاده میکنیم.
3-2-10-تبدیل دادهجهت استفاده کاربردی تر از برخی ویژگی ها باید مقادیر آن ویژگی تغییر کند. یک نمونه از این کار تغییر مقدار ویژگی " دیرکرد جریمه " است. مقدار این فیلد مبلغ جریمه دیرکرد بیمه گذار بوده است که با تقسیم این مبلغ به عدد 13000 تعداد روزهای تاخیر در تمدید بیمه نامه افراد مشخص می شود، زیرا به ازای هر روز تاخیر مبلغی حدود 13000ریال در سال 1390 به عنوان جریمه دیرکرد از فرد متقاضی بیمه نامه دریافت می گردید.
3-2-11-انتقال داده به محیط داده کاویپس از انجام پاکسازی، داده باید به محیط داده کاوی منتقل شود. در خلال این انتقال نیاز به تعریف و یا تغییر نوع داده وجود دارد. در طول این تغییر داده ممکن است مقادیری از داده ها بدلیل ناسازگاری و یا دلایل مشابه به عنوان داده از دست رفته مشخص گردد و یا داده از دست رفته ای که قبلاً قابل تشخیص نبوده مشخص گردد. (شکل 3-1)

شکل شماره3-1: داده از دست رفته فیلد" نوع بیمه " پس از انتقال به محیط داده کاوی
3-2-12-انواع داده تعیین شده
پس از انتقال داده به محیط داده کاوی، هر ویژگی به نوع خاصی از داده توسط نرم افزار تشخیص داده شد. پس از آن نوع داده تشخیصی مورد بررسی قرار گرفت و اشتباهات پیش آمده تصحیح گردیدند. همچنین گروهی از ویژگی ها که به هیچ نوع داده ای اختصاص داده نشده بود بصورت دستی به بهترین نوع ممکن اختصاص داده شد. چون برخورد الگوریتم ها با انواع داده ها متفاوت است با توجه به موضوع پژوهش بهترین نوع داده که بتواند نسبت به الگوریتم موثرترواقع شود برای هر ویژگی درنظر گرفته شد.
جدول نوع داده های مورد استفاده در این پژوهش به شرح جدول 3-7 است:
جدول 3-7: انواع داده استفاده شده
نام فیلد نوع فیلد
ماه-سال-کدنمایندگی‌صادرکننده‌اصلی- تعداد زیاندیدگان مصدوم- نوع‌پلاک- ظ‌رفیت- تعدادسیلندر- سال ساخت- مدت بیمه- نمایندگی‌محل‌صدور- تعداد زیاندیدگان متوفی-حق‌بیمه‌ثالث‌قانونی-تعهدمازاد-تعهدبدنی-تعهدمالی Integer
- نوع‌بیمه- شرح‌مورداستفاده- بیمه گر زیاندیده اول نوع‌مستند1- سیستم نوع‌وسیله‌نقلیه- نام‌سازمان-دولتی polynominal
دیرکردجریمه-کداضافه‌نرخ‌حق‌بیمه-حق‌بیمه‌دریافتی-عوارض‌ماده92-مالیات-حق‌بیمه‌سرنشین-حق‌بیمه‌مازاد- تخفیف گروهی-تخفیف عدم خسارت- مبلغ خسارت real
بیمه‌نامه‌سال‌قبل- کارمندی- صادره‌توسط شعبه- خسارتی؟ binominal
تاریخ‌انقضا-تاریخ‌شروع-تاریخ‌صدور- تاریخ ایجادحادثه date
شماره‌بیمه‌نامه text
3-2-13-عملیات انتخاب ویژگیهای موثرتردر برخورد با برخی از الگوریتمها که با بیشتر شدن تعداد ویژگی پیچیدگی بیشتری نیز پیدا میکنند، مانند درختهای تصمیم، svm، Regression و شبکه های عصبی باید از ویژگی های کمتری استفاده کنیم. درکل انتخاب ویژگی برای استفاده در الگوریتم های دسته بندی تکنیک کارآمدی است. دراینجا ازتکنیکهای کاهش ویژگی و یا وزن دهی استفاده کرده و فیلدهای منتخبی که وزن بیشتری را دارند به عنوان ورودی الگوریتمها انتخاب گردیدند.
با توجه به اینکه احتمال ارزش دهی به یک ویژگی در تکنیکهای مختلف متغیر است و ممکن است ویژگی خاصی توسط یک تکنیک باارزش قلمداد شده و توسط تکنیکی دیگر بدون ارزش تلقی شود، نتیجه تمام تکنیکها Union, شده و فیلدهای حاصل به عنوان ورودی الگوریتم مشخص گردید.
3-3-نتایج اعمال الگوریتم PCA و الگوریتم های وزن دهی
نتایج حاصل از این تکنیک ها در شکل های 3-2 الی3-5 نمایش داده شده است.

شکل 3-2: نتایج الگوریتمPCA
در ارزشدهی به ویژگی ها

شکل 3-3: نتایج الگوریتم SVM Weighting
در ارزشدهی به ویژگی ها

شکل 3-4: نتایج الگوریتم
Weighting Deviation در ارزشدهی به ویژگی ها

شکل 3-5: نتایج الگوریتم Weighting Correlation
در ارزشدهی به ویژگی ها
3-4-ویژگی های منتخب جهت استفاده در الگوریتمهای حساس به تعداد ویژگیلازم به توضیح است در تمام الگوریتمهایی که از 24 ویژگی جدول 3-8 استفاده شده است از تمام ویژگی ها نیز استفاده شده و نتایج با هم مقایسه گردیده اند و مشخص شد که وجود برخی ویژگی ها که در آن جدول قرار ندارند باعث کاهش دقت الگوریتم شده و در برخی الگوریتم ها نیز تفاوتی میان دو مقایسه مشخص نشد.
جدول 3-8: نتایج حاصل از اجتماع فیلدهای با بالاترین وزن در الگوریتمهای مختلف
نام فیلد نوع فیلد
تعهدمازاد- تعهدبدنی- تعهدمالی- نوع‌پلاک- ظ‌رفیت- تعدادسیلندر- سال ساخت- مدت بیمه- تعداد زیاندیدگان مصدوم- تعداد زیاندیدگان متوفی Integer
شرح‌مورداستفاده- سیستم- نوع‌وسیله‌نقلیه- بیمه گر زیاندیده اول polynominal
دیرکردجریمه- کداضافه‌نرخ‌حق‌بیمه- حق‌بیمه‌دریافتی- مالیات- حق‌بیمه‌سرنشین- حق‌بیمه‌ثالث‌قانونی- مبلغ خسارت real
بیمه‌نامه‌سال‌قبل- کارمندی- صادره‌توسط شعبه binominal
3-5-معیارهای ارزیابی الگوریتمهای دسته بندیدر این بخش توضیحاتی درخصوص چگونگی ارزیابی الگوریتم های دسته بندی و معیار های آن ارائه خواهد شد.
3-6-ماتریس درهم ریختگیماتریس در هم ریختگی چگونگی عملکرد دسته بندی را با توجه به مجموعه داده ورودی به تفکیک نشان میدهد که:
TN: تعدادرکوردهایی است که دسته واقعی آنها منفی بوده و الگوریتم نیز دسته آنها را به درستی منفی تشخیص داده است.
FP: تعدادرکوردهایی است که دسته واقعی آنها منفی بوده و الگوریتم دسته آنها را به اشتباه مثبت تشخیص داده است.
FN: تعدادرکوردهایی است که دسته واقعی آنها مثبت بوده و الگوریتم دسته آنها را به اشتباه منفی تشخیص داده است.
TP: تعدادرکوردهایی است که دسته واقعی آنها مثبت بوده و الگوریتم نیز دسته آنها را به درستی مثبت تشخیص داده است.
جدول 3-9: ماتریس در هم ریختگی
رکوردهای تخمینی(Predicted Records)
دسته+ دسته- FP TN دسته-
TP FN دسته+
1903095210185رکوردهای واقعی(Actual Records)
00رکوردهای واقعی(Actual Records)

مهمترین معیار برای تعیین کارایی یک الگوریتم دسته بندی معیاردقت دسته بندی است. این معیارنشان می دهد که چند درصد ازکل مجموعه رکوردهای آموزشی بدرستی دسته بندی شده است.
دقت دسته بندی بر اساس رابطه زیر محاسبه می شود:
CA=TN+TPTN+FN+TP+FP3-7-معیار AUCاین معیار برای تعیین میزان کارایی یک دسته بند بسیار موثر است. این معیار نشان دهنده سطح زیر نمودار ROC است. هرچقدرعدد AUC مربوط به یک دسته بند بزرگتر باشد، کارایی نهایی دسته بند مطلوب تر است. در ROC نرخ تشخیص صحیح دسته مثبت روی محور Y و نرخ تشخیص غلط دسته منفی روی محورX رسم میشود. اگر هر محور بازه ای بین 0و1 باشد بهترین نقطه در این معیار (0, 1) بوده و نقطه (0, 0) نقطه ای است که دسته بند مثبت و هشدار غلط هیچگاه تولید نمی شود.
3-8-روشهای ارزیابی الگوریتم های دسته بندیدر روشهای یادگیری با ناظر، دو مجموعه داده مهم به اسم داده های آموزشی و داده های آزمایشی وجود دارند. چون هدف نهایی داده کاوی روی این مجموعه داده ها یافتن نظام حاکم بر آنهاست بنابراین کارایی مدل دسته بندی بسیار مهم است. از طرف دیگر این که چه بخشی از مجموعه داده اولیه برای آموزش و چه بخشی به عنوان آزمایش استفاده شود بستگی به روش ارزیابی مورد استفاده دارد که در ادامه انواع روشهای مشهور را بررسی خواهیم کرد]صنیعی آباده 1391[.
روش Holdoutدر این روش چگونگی نسبت تقسیم مجموعه داده ها بستگی به تشخیص تحلیلگر داشته اما روش های متداول ازنسبت 50-50 و یا دو سوم برای آموزش و یک سوم برای آزمایش و ارزیابی استفاده میکنند.
مهم ترین حسن این روش سادگی و سرعت بالای عملیات ارزیابی می باشد اما معایب این روش بسیارند. اولین ایراد این روش آن است که بخشی از مجموعه داده اولیه که به عنوان داده آزمایشی است، شانسی برای حضور در مرحله آموزش ندارد. بدیهی است مدلی که نسبت به کل داده اولیه ساخته می شود، پوشش کلی تری را بر روی داده مورد بررسی خواهد داشت. بنابراین اگر به رکوردهای یک دسته در مرحله آموزش توجه بیشتری شود به همان نسبت در مرحله آزمایش تعدادرکوردهای آن دسته کمتر استفاده می شوند.
دومین مشکل وابسته بودن مدل ساخته شده به، نسبت تقسیم مجموعه داده ها است. هرچقدر داده آموزشی بزرگتر باشد، بدلیل کوچکتر شدن مجموعه داده آزمایشی دقت نهایی برای مدل یادگرفته شده غیرقابل اعتماد تر خواهد بود. و برعکس با جابجایی اندازه دو مجموعه داده چون داده آموزشی کوچک انتخاب شده است، واریانس مدل نهایی بالاتربوده و نمی توان دانش کشف شده را به عنوان تنها نظم ممکن درمجموعه داده اولیه تلقی کنیم.
روش Random Subsamplingاگر روش Holdout را چند مرتبه اجرا نموده و از نتایج بدست آمده میانگین گیری کنیم روش قابل اعتماد تری را بدست آورده ایم که Random Subsampling نامیده می شود.
ایراد این روش عدم کنترل بر روی تعداد استفاده از یک رکورد در آموزش یا ارزیابی می باشد.
3-8-3-روش Cross-Validationاگر در روش Random Subsampling هرکدام از رکوردها را به تعداد مساوی برای یادگیری و تنها یکبار برای ارزیابی استفاده کنیم روشی هوشمندانه تر اتخاذ کرده ایم. این روش در متون علمی Cross-Validation نامیده می شود. برای مثال مجموعه داده را به دوقسمت آموزش و آزمایش تقسیم میکنیم و مدل را بر اساس آن می سازیم. حال جای دوقسمت را عوض کرده و از مجموعه داده آموزش برای آزمایش و از مجموعه داده آزمایش برای آموزش استفاده کرده و مدل را می سازیم. حال میانگین دقت محاسبه شده به عنوان میانگین نهایی معرفی می شود. روش فوق 2-Fold Cross Validation نام دارد. اگر بجای 2 قسمت مجموعه داده به K قسمت تقسیم شود، و هر بار با K-1 قسمت مدل ساخته شود و یک قسمت به عنوان ارزیابی استفاده شود درصورتی که این کار K مرتبه تکرار شود بطوری که از هر قسمت تنها یکبار برای ارزیابی استفاده کنیم، روش K-Fold Cross Validation را اتخاذ کرده ایم. حداکثر مقدار k برابر تعداد رکوردهای مجموعه داده اولیه است.
3-8-4-روش Bootstrapدر روشهای ارزیابی که تاکنون اشاره شدند فرض برآن است که عملیات انتخاب نمونه آموزشی بدون جایگذاری صورت می گیرد. درواقع یک رکورد تنها یکبار در یک فرآیند آموزشی شرکت داده می شود. اگر یک رکورد بیش از یک مرتبه در عملیات یادگیری مدل شرکت داده شود روش Bootstrap را اتخاذ کرده ایم. در این روش رکوردهای آموزشی برای انجام فرآیند یادگیری مدل ازمجموعه داده اولیه به صورت نمونه برداری با جایگذاری انتخاب خواهند شد و رکوردهای انتخاب نشده جهت ارزیابی استفاده می شود.
3-9-الگوریتمهای دسته بندیدر این بخش به اجرای الگوریتم های دسته بندی پرداخته و نتایج حاصل را مشاهده خواهیم کرد.
درالگوریتمهای اجرا شده از هر سه روش Holdout, k fold Validation, Bootstrap استفاده شده است و نتایج با هم مقایسه شده اند. در روشHoldout که در نرم افزار با نام Split Validation آمده است از نسبت استاندارد آن یعنی 70 درصد مجموعه داده اولیه برای آموزش و 30 درصد برای آزمایش استفاده شده است. برای k fold Validation مقدار k برابر 10 درنظر گرفته شده است که مقدار استانداردی است. در Bootstrap نیز مقدار تقسیم بندی مجموعه داده برابر 10 قسمت درنظر گرفته شده است. مقدار local random seed نیز برابر عدد 1234567890 می باشد که برای همه مدلها، نرم افزار از آن استفاده می کند مگر اینگه در مدل خاصی عدم استفاده از آن ویا تغییر مقدارموجب بهبود عملکرد الگوریتم شده باشد که قید میگردد. اشکال 3-6و3-7 چگونگی استفاده از یک مدل ارزیابی را در Rapidminer نشان می دهد.

شکل 3-6: نمای کلی استفاده از روشهای ارزیابی

شکل 3-7: نمای کلی استفاده از یک مدل درون یک روش ارزیابی
الگوریتم KNNدر انتخاب مقدار k اعداد بین 1 تا 20 و همچنین اعداد 25 تا 100 با فاصله 5 آزمایش شدند. بهترین مقدار عدد 11 بوده است.
پس از اجرای الگوریتم، بهترین نتیجه مربوط به ارزیابی Split Validation با دقت91.23%بوده است. نمودار AUC آن در شکل 3-8 ترسیم شده است.
25768302223135آستانه قابل قبول
020000آستانه قابل قبول
716280-63500دسته مثبت
020000دسته مثبت

شکل 3-8: نمودار AUC الگوریتم KNN
الگوریتم Naïve Bayesاین الگوریتم پارامترخاصی برای تنظیم ندارد.
بهترین نتیجه مربوط به ارزیابی Split Validation با دقت 96.09% بوده است. نمودار AUC آن در شکل 3-9 ترسیم شده است.
22872701749425آستانه قابل قبول
020000آستانه قابل قبول
7689856985دسته مثبت
020000دسته مثبت

شکل 3-9: نمودار AUC الگوریتم Naïve Bayes
الگوریتم Neural Networkتکنیک شبکه عصبی استفاده، مدل پرسپترون چندلایه با 4 نرون در یک لایه نهان بوده است.
تنظیمات الگوریتم شبکه عصبی به شرح زیر بوده است:
Training cycles=500
Learning rate=0.3
Momentum=0.2
Local random seed=1992
چون این الگوریتم فقط از ویژگیهای عددی پشتیبانی می کند، از عملگرهای مختلفی برای تبدیل مقادیر غیرعددی به عدد استفاده شده است. به همین دلیل تنها از روش Split validation با نسبت 70-30برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام گرفت.
شکل3-10 عملیات انجام شده را نشان می دهد.

شکل 3-10: تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی
نتیجه اجرای الگوریتم Neural Network دقت 91.25%بوده ماتریس آشفتگی آن و نمودار AUC در شکل 3-11 رسم شده است.

29222702265680آستانه قابل قبول
020000آستانه قابل قبول
725170-55245دسته مثبت
020000دسته مثبت

شکل 3-11: نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net
الگوریتم SVM خطیدر این الگوریتم نیز بدلیل عدم پشتیبانی از نوع داده اسمی از عملگرهای مختلفی برای تبدیل مقادیر غیرعددی به عدد استفاده شده است. به همین دلیل تنها از روش Split validation با نسبت 70-30 برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام شد.
شکل3-12 عملیات انجام شده را نشان می دهد.

شکل 3-12: تبدیل ویژگی های غیر عددی به عدد در الگوریتم SVM خطی
پارامترهای الگوریتم عبارتند از :
Kernel cache=200
Max iteretions=100000
نتیجه حاصل از اجرای الگوریتم SVM خطی دقت 98.54% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-13 رسم شده است.

25711152215515آستانه قابل قبول
020000آستانه قابل قبول
1045845-111760دسته مثبت
020000دسته مثبت

شکل 3-13 : نمودار AUC الگوریتم SVM Linear
3-9-5-الگوریتم رگرسیون لجستیک
در این الگوریتم از روش Split validation با نسبت 70-30برای ارزیابی استفاده شده است که تقسیم ورودی ها نیز توسط کاربر انجام شد.
نتیجه حاصل از اجرای الگوریتم رگرسیون لجستیک دقت 98.54% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-14 رسم شده است.

25482552319020آستانه قابل قبول
020000آستانه قابل قبول
974725-249555دسته مثبت
020000دسته مثبت

شکل 3-14 : نمودار AUC الگوریتم رگرسیون لجستیک
3-9-6- الگوریتم Meta Decision Treeدر این الگوریتم که یک درخت تصمیم است، از روش Split validationبا نسبت 70-30 برای ارزیابی استفاده شده است که دقت 96.64% اقدام به پیش بینی خسارت احتمالی نموده است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-15 رسم شده است.

26714452353945آستانه قابل قبول
020000آستانه قابل قبول
835660-73660دسته مثبت
020000دسته مثبت

شکل 3-15 : نمودار AUC الگوریتم Meta Decision Tree
با توجه به اندازه بزرگ درخت خروجی فقط قسمتی از آن در شکل 3-16 بصورت درخت نمایش داده می شود. در شکل 3-17 درخت بصورت کامل آمده است اما نتایج آن در فصل چهارم مورد تفسیر قرار خواهند گرفت.

شکل 3-16 : قسمتی از نمودارtree الگوریتم Meta Decision Tree

شکل 3-17 : نمودار --ial الگوریتم Meta Decision Tree
3-9-7-الگوریتم درخت Wj48چون RapidMiner توانایی استفاده ازالگوریتمهای نرم افزار WEKA را نیز دارد، در بسیاری از الگوریتم ها قدرت مند تر عمل میکند. Wj48 نسخه WEKA از الگوریتمj48 است.
پارامترهای این الگوریتم عبارتند از:
C=0.25
M=2
در این الگوریتم از روش ارزیابی 10 Fold Validation استفاده شده است و دقت پیش بینی آن برابر 99.52% است. ماتریس آشفتگی آن و نمودار AUC در شکل 3-18 رسم شده است. نمای درخت در شکل 3-19 ترسیم شده است.

—d1244

4-1-3 مقابله با حملات انسداد ..................................................................................................... 15
5-1-3 تکنیک های کاهش اثرات حمله در لایه ی فیزیکی ................................................... 15
1-5-1-3 تغییر کانال ...................................................................................................... 16
2-5-1-3 عقب نشینی فضایی ....................................................................................... 16
3-5-1-3 استفاده از کرم چاله ها ................................................................................. 17
4-5-1-3 نقشه برداری منطقه ی مسدود شده ......................................................... 17
5-5-1-3 تکنیک های طیف گسترده .......................................................................... 17
6-5-1-3 نظریه ی بازی ................................................................................................. 17
7-5-1-3 گره های عسل ................................................................................................ 18
8-5-1-3 سایر استراتژی های موجود ......................................................................... 18
2-3 حملات در لایه ی MAC ................................................................................................................ 18
1-2-3 تقسیم بندی حملات در لایه ی MAC ........................................................................ 18
1-1-2-3 حملات نقض احراز هویت/نقض برقرای ارتباط ........................................ 18
2-1-2-3 حمله ی مدت زمان تورمی ........................................................................... 19
3-1-2-3 حمله بر علیه i802.11 ................................................................................. 19
4-1-2-3 حمله بر علیه گره های به خواب رفته ........................................................ 19
5-1-2-3 حملات لایه ی MAC کامل ...................................................................... 19
2-2-3 مقابله در لایه ی MAC ................................................................................................... 20
1-2-2-3 شناسایی شنود آدرس MAC ..................................................................... 20
2-2-2-3 محافظت از فریم های کنترلی و مدیریتی از طریق رمز نگاری ............. 20
3-2-2-3 تعمیر پروتکل ................................................................................................... 21


4-2-2-3 پازل رمز نگاری شده (کاربر) ......................................................................... 21
5-2-2-3 سایر راه حل های رمز نگاری نشده ............................................................. 21
3-3 حملات DOS به شبکه های 802.11، شامل لایه ی MAC و لایه های بالاتر ............... 22
1-3-3 اقدامات متقابل ...................................................................................................................... 23
1-1-3-3 فیلترینگ ........................................................................................................... 23
2-1-3-3 سیستم های شناسایی نفوذ ........................................................................... 23
4-3 اقدامات متقابل در لایه ی MAC با استفاده از لایه ی فیزیکی .............................................. 23
1-4-3 شناسایی ایستگاه از طریق ویژگی های سیگنال ............................................................ 24
4- نتیجه گیری ................................................................................................................................................ 25
5- مراجع ............................................................................................................................................................ 27
1- تشریح مسئله
ظهور شبکه های بی سیم، مجموعه ای از مشکلات امنیتی را به همراه آورد. سهولت استفاده و قیمت های پایین شبکه های مبتنی بر 802.11 سبب گسترش وسیع استفاده از آن شده است، اما در گسترش شبکه های بی سیم، در درجه ی اول باید آسیب پذیری های مربوط به دسترسی غیر مجاز و نقض محرمانگی رسیدگی گردد]2 [. واسط انتقال که توسط همه ی کاربران شبکه به اشتراک گذاشته می شود، راهی جذاب برای حملات به سرویس های بی سیم را ارائه می کند]2,8,9[. شبکه های بی سیم به دلیل طبیعت داده پراکنی خود، نسبت به حملات DOS آسیب پذیرند. حملات DOS گونه از حملات هستند که قابلیت دسترسی را هدف قرار می دهند و تلاش می کنند از دسترسی کاربران مجاز به شبکه جلوگیری نمایند]4[.

شکل SEQ تصویر * ARABIC 1- دیاگرام داده پراکنی شبکه های بی سیم
تجهیزات تخصصی و یا مهارت های بالای خاصی برای از کار انداختن شبکه های بی سیم از طریق حمله ی DOS نیاز نیست، تعداد زیادی آسیب پذیری در 802.11 وجود دارد که در سال های اخیر به صورت تجربی نشان داده شده است]4[.
1-1 انواع فریم در شبکه های 802.11]4[
سه نوع فریم (بسته) در شبکه های 802.11 وجود دارد: فریم های مدیریتی، کنترلی و داده. هر نوع فریم شامل زیر فریم هایی نیز می شود. فریم های مدیریتی برای مدیریت شبکه و پذیرش کنترل، به کار گرفته می شوند، فریم های کنترلی برای کنترل دسترسی و فریم های داده برای حمل داده به کار می روند. در حملات DOS از فریم های مدیریتی خاصی استفاده می گردد]4[. بنابراین در بین این سه نوع فریم، فریم های مدیریتی بیشتر مورد بررسی قرار خواهند گرفت.

شکل SEQ تصویر * ARABIC 2 - نمایش لایه های OSI در فریم 802.11

شکل SEQ تصویر * ARABIC 3- انواع فریم ها در 802.11
2-1 تقسیم بندی شبکه های 802.11
شبکه های بی سیم به طور کلی به دو دسته تقسیم می شوند : شبکه های مبتنی بر زیر ساخت (Wlan, Cellular net,…) و شبکه های بدون زیرساخت (ad-hoc net) ]2[. شبکه های سیار ad-hoc دارای معماری شبکه ای خود سازماندهی شده می باشند. این حالت زمانی رخ می دهد که مجموعه ای از گره های سیار، توسط رابط شبکه ی بی سیم، یک شبکه ی موقتی بدون هیچ زیرساخت و یا مدیریت متمرکز ایجاد نمایند. بر اساس تعریف IETF (Internet Engineering Task Force) ]1[، شبکه های بی سیم ad-hoc سیستمی خودگردان از روتر های سیار هستند که از طریق پیوند های بی سیم به یکدیگر متصل شده اند]1[. توپولوژی شبکه های بی سیم ممکن است به دفعات و بدون پیش بینی تغییر کند]1[.

شکل SEQ تصویر * ARABIC 4 - شبکه های مبتنی بر زیر ساخت (تصویر بالا) و شبکه های بدون زیرساخت (تصویر پایین)
1-2-1 شبکه های بدون زیرساخت
خصوصیات شبکه های ad-hoc (توپولوژی پویا، بدون زیرساخت بودن، گنجایش پیوند های متفاوت و...) ریشه ی بسیاری از مسائل هستند. پهنای باند محدود، انرژی محدود، هزینه بالا و امنیت، برخی از مشکلاتی هستند که اینگونه شبکه ها با آن مواجه می شوند]1[. حملات DOS تلاش می کنند تا منابع انرژی اندک این شبکه ها را مصرف کنند]1[. به دلیل اینکه منابع انرژی شبکه های ad-hoc محدود است، استفاده از راه های سنگین مانند PKI (Public Key Infrastructure) موثر نیستند]1[. به دلیل خصوصیت های ویژه ی شبکه های ad-hoc، مسیر یابی، جنبه ای مهم در این شبکه ها محصوب می گردد. بین گره های شبکه امکان وجود چندین راه مجزا وجود دارد، در نتیجه مسیریابی چند مسیره می تواند به صورت آماری، محرمانگی تبادل پیام ها را بین منبع و مقصد بالا ببرد. ارسال داده های محرمانه از طریق یک مسیر، به حمله کننده این امکان را می دهد تا تمام داده ها را دریافت کند، اما ارسال آن به صورت چند قسمتی در مسیر های متفاوت، استحکام محرمانگی را بالاتر می برد، به دلیل اینکه این کاملا غیر ممکن است که، تمام قسمت های پیامی را که تقسیم شده و در مسیر های متفاوت موجود بین منبع و مقصد ارسال شده را به دست آورد]1[. با توجه به ویژگی ها، شبکه های بی سیم بدون زیر ساخت علاوه بر نیاز به غلبه بر مسائلی که با آن روبرو می گردد باید برای مقابله با حملات DOS احتمالی نیز آمادگی داشته باشد، و عدم وجود زیر ساخت در این زمینه مسائلی را پیش خواهد آورد.
2-2-1 شبکه های مبتنی بر زیرساخت
در شبکه های مبتنی بر زیر ساخت، تمام AP ها (نقاط دسترسی) فریم های beacon را در فاصله های زمانی ثابتی ارسال می کنند. کاربران برای شناسایی AP هایی که در محدوده ی آن ها هستند به بسته های beacon گوش می دهند. به همین ترتیب فریم های درخواست Prob نیز توسط ایستگاه ها (گره ها) به طور مداوم برای جستجوی شبکه های بی سیم موجود تولید می گردند. ایستگاه ها به وسیله ی آدرس MAC خود شناسایی می شوند. هنگامی که یک AP فریم Prob را دریافت می کند، با فریم Prob دیگر پاسخ آن را ارسال می کند، که بسیار شبیه فریم beacon بوده و شامل اطلاعات مورد نیاز موجود در BSS (Basic Service Set) است. تنها تفاوت آن در این است که beacon شامل نقشه ی نشانه گذاری ترافیک (Traffic Indication Map – TIM) می باشد. TIM نشان می دهد که برای کدام یک از ایستگاه هایی که جهت صرفه جویی در مصرف انرژی به خواب رفته اند، بسته هایی در بافر AP در انتظار است. بعد از شناسایی یک BSS موجود، یک ایستگاه باید برای برخورداری از امتیازات بیشتر توسط AP احراز هویت گردد. بنابراین درخواست ها و پاسخ های احراز هویت تبادل می شوند. زمانی که سیستم احراز هویت باز (بدون احراز هویت – آزاد) جایگزین کلید اشتراک گذاری شده در WEP (Wired Equivalent Privecy) شده باشد، احراز هویت به دست آمده ضعیف است و پس از آن نیاز است تا توسط 802.11i تکمیل گردد. یک ایستگاه می تواند توسط چند AP احراز هویت شده باشد، اگرچه باید در یک زمان فقط با یک AP در ارتباط باشد. پس از احراز هویت، فریم درخواست ها و پاسخ های برقراری ارتباط برای ایجاد ارتباط تبادل می شوند]4[.
3-1 فریم های نقض احراز هویت
فریم های قطع احراز هویت، فریم هایی هستند که برای بازگشت به حالت اول احراز هویت نشده، مرتبط نشده، تبادل می گردند. فریم های قطع ارتباط نیز برای بازگشت به حالت احراز هویت شده، مرتبط نشده، به کار می روند. هیچ کدام از فریم های مدیریتی از طریق رمزنگاری محافظت نمی گردند، در نتیجه هر ایستگاهی می تواند چنین فریم هایی را ارسال کند]4[.
4-1 دسترسی به کانال
802.11 DCF (Distributed Coordination Function) یک مکانیسم دسترسی به کانال بر پایه ی CSMA/CA است. در حالت عادی ایستگاه ها، در حالت دریافت قرار دارند، به واسطه ی بسته های دریافتی در صف انتقال یک ایستگاه، به حالت ارسال، تغییر حالت داده و یک مقدار عقب کشیدن (backoff) تصادفی که توسط مقدار متغیر خاص ایستگاه CW (Contention Window)، محدود شده، انتخاب کرده و شروع به اتصال به کانال می کند. ماژول CCA (Clear Channel Assessment) برای تعیین وضعیت کانال به کار می رود . زمانی که CCA اعلام می کند که رسانه ی انتقال، بی کار است، ایستگاه برای مقدار زمانی به اندازه ی DIFS (Distributed Inter-Frame Space) صبر می کند، اگر کانال به اندازه ی DIFS بی کار ماند، ایستگاه (یا AP) اندازه ی backoff خود را برای هر بازه ی زمانی که حس کرد کانال بی کار است، کاهش می دهد. پس از پایان شمارنده ی backoff، فرستنده بسته های RTS (Request-To-Send) را برای گرفتن کانال و اعلام آمادگی برای آغاز ارسال به گیرنده، ارسال می کند. دریافت کننده با یک بسته ی CTS (Clear To Send) پاسخ ارسال کننده را می دهد، سپس فرستنده فریم های داده را ارسال می کند. استفاده از فریم های RTS/CTS در 802.11 اختیاری است و فریم های داده می توانند بدون استفاده از آن ها، ارسال شوند. در این تبادل، گیرنده و فرستنده، زمانی به اندازه ی SIFS (Short Inter-Frame Space)، برای شروع ارسال فریم صبر می کنند، اگر ارسال با شکست مواجه شود، اندازه ی فعلی CW دو برابر شده و فرستنده سعی می کند با تکرار کامل زنجیره، بسته را مجددا ارسال کند]4[.

شکل SEQ تصویر * ARABIC 5 - نمودار زمانی انتظار

شکل SEQ تصویر * ARABIC 6 - نمودار زمانی ارسال فریم
هر فریم شامل یک فیلد مدت زمان برای تعیین پیش بینی مدت زمان (بر اساس میکرو ثانیه) پایان موفق دست دهی در حال انجام است که NAV (Network Allocation Vector) را در هر یک از ایستگاه های همسایه به روز می کند. دسترس کانال تا انقضای NAV به تعویق می افتد]4[.

شکل SEQ تصویر * ARABIC 7- انتظار برای دسترسی به کانال
5-1 PLCP
فریم های MAC در 802.11، توسط هدر PLCP (Physical Layer Convergence Protocol) کپسوله می شوند. فریمی که با مقدمه ی PLCP آغاز می شود، شامل یک فیلد sync است، که مدار شناسایی انرژی ، که تمایز بین نویز یا مداخله و تداخل را در یک انتقال فریم موجود نشان می دهد را، راه اندازی می کند. این فریم ها برای هماهنگ سازی نمادی گیرنده به کار رفته و شامل فیلد SFD (Start FrameDelimiter) هستند، که محل حقیقی شروع هدر PLCP را مشخص می کند. PLCP شامل فیلد زیر است: سیگنال، سرویس، طول و CRC (Cyclic Redundancy check) که در طول هدر PLCP محاسبه می شود. فریم MAC شامل یک CRC جداگانه که روی فریم MAC محاسبه شده است، می باشد]4[.

شکل SEQ تصویر * ARABIC 8 - فریم PLCP
6-1 کانال های 802.11
802.11 b/g از 11 کانال همپوشان (فقط 3 کانال همپوشانی ندارند) در باند 2.4 گیگاهرتز ISM (Industrial,Scintific,Medical) در کانادا و آمریکا استفاده می کند (در ژاپن از 14 کانال، فرانسه 4 کانال، اسپانیا 2 کانال و 13 کانال در سایر نقاط اروپا استفاده می کنند.)]4[.

شکل SEQ تصویر * ARABIC 9- کانال ها در 802.11
7-1 احراز هویت و دست دهی چهار طرفه
در شبکه های محلی بی سیم به وضوح شناخته شده است، که احراز هویت ایستگاه ها با آدرس های MAC آن ها، از امنیت برخوردار نیست، به این دلیل که یافتن آدرس های مجاز، و تغییر MAC به آن آدرس، برای حمله کننده کار ساده ای است]4[.
WEP (Wired Equivalent Privacy) از آغاز تصویب استاندارد 802.11 بخشی از آن بوده است و احراز هویت از طریق کلید اشتراک گذاری شده را فراهم می سازد. در ژوئن 2004، IEEE استاندارد امنیتی 802.11i را تایید کرد که، ویژگی های قبلی WEP را که ضعف های امنیتی شدیدی داشت، به روز نمود. 802.11i با به کار گیری دست دهی چهارگانه، احراز هویت متقابل ایجاد می کند و یک کلید مخفی اشتراک گذاری شده برای محافظت از فریم های داده در نشست های ارتباطات پس از آن، تولید می نماید]4[.
در پروتکل 802.11i سه طرف دیگر وجود دارد، درخواست کننده (ایستگاه)، احراز هویت کننده (AP) و سرور احراز هویت (مانند سرور RADIUS). اگر کلید اشتراک گذاری شده از قبل تنظیم یا ذخیره نشده باشد، ایستگاه و سرور احراز هویت یکی از پروتکل های احراز هویت دو طرفه را در چهارچوب EAP (Extensible Authentication Portal) برای تولید MSK (Master Session Key) جهت استفاده در دست دهی چهار طرفه اجرا می کنند. این پروتکل معمولا به عنوان امنیت لایه ی انتقال EAP انتخاب می شود (EAP-LTS) (جانشین پروتکل شناخته شده ی SSL). در اجرای EAP-TLS، AP به عنوان تقویت کننده (رله) عمل می کند و نشانه های 8 بیتی بسته ها، برای پیگیری درخواست ها و پاسخ ها به کار می روند]4[.
دست دهی چهار طرفه فقط زمانی بین ایستگاه و AP اجرا می شود که کلید اصلی به صورت ایمن از سرور احراز هویت به AP منتقل شده باشد. در ابتدا AP و ایستگاه، هر دو کلیدی مخفی که PMK (Pairwise Master Key) نامیده می شود، بر اساس MSK تولید می نمایند، سپس اطمینان حاصل می کنند که شریک دیگر کلید PMK مشابه را در دست دهی به کار می برد. در پایان هر دو شرکت کننده یک PTK (Pairwise Transient Key) مشتق شده، برای به کارگیری در نشست داده ی فعلی تولید می کنند. PTK همچنین می تواند از روی کلید از پیش اشتراک گذاری شده (PSK) تولید شود، به شرطی که ایستگاه و AP به این شکل تنظیم شده باشند. تا زمانی که دست دهی به صورت موفقیت آمیزی تکمیل نگردد، هیچ بسته ی داده ای مجاز به ارسال نیست]4[.

شکل SEQ تصویر * ARABIC 10 - احراز هویت گره (منبع: http://www.cisco.com)
2- اهداف و کاربرد موضوع
در سال های اخیر، به دلیل گسترش بهره گیری از شبکه های کامپیوتری در زمینه های گوناگون، راه های نوینی برای دسترسی به این تکنولوژی ارائه و استفاده شده اند. شبکه های سیمی به صورت گسترده در محیط های اداری و تجاری استفاده می شوند. این گونه شبکه ها نیاز به پیاده سازی و پشتیبانی داشته و اجرای چنین ساختاری نیاز به هزینه های بالایی دارد، بدون در نظر گرفتن هزینه ی کابل های شبکه، نیاز به تجهیزات گوناگونی از قبیل داکت، پریز، رک، سوئیچ و ... و همچنین نصب تمام این تجهیزات می باشد. بدین دلیل که شبکه های سیمی از سرعت بسیار بالاتر، امنیت بیشتر، کیفیت مناسب و... نسبت به شبکه های بی سیم برخوردارند، برای محیط های کاری که نیاز به چنین شبکه هایی دارند، بسیار مناسب هستند. اما در چند سال اخیر نیازمندی های جدیدی مانند برخورداری از شبکه ی سیار و... مطرح گردیده است که راه را برای تکنولوژی های جدید تری هموار میسازد، علاوه بر این ها، کاربران خانگی نمی توانند هزینه های بالای پیاده سازی و پشتیبانی از شبکه های سیمی را متقبل گردند، درنتیجه با این اوصاف شبکه های بی سیم با پیاده سازی و پشتیبانی آسان و هزینه ی پایین انتخاب بسیار مناسبی به نظر می آیند. با ازدیاد روز افزون شبکه های بی سیم و پوشش شهر ها با امواج رادیویی این شبکه ها، هر روزه آسیب پذیری های جدیدی در این شبکه ها کشف می گردد. مهمترین آسیب پذیری شبکه های بی سیم، ضعف آنها در حملات DOS می باشد. این گونه حملات می توانند به راحتی و توسط مبتدی ترین افراد، به سادگی شبکه های بی سیم را از پای درآورند. با توجه به افزایش این گونه حملات و تولید روز افزون راه های ایجاد و تولید این گونه حمله ها، نیاز است تا برای مقابله و کاهش اثرات آن ها راه کارهایی قابل اجرا و قطعی ایجاد شوند. از زمان ارئه ی تکنولوژی های بی سیم، ارائه ی راه کارهای مقابله با حملات DOS جزء جدایی ناپذیر تحقیقات محققان و سازمان های دولتی و خصوصی بوده است. با وجود تمام این تحقیقات هنوز نمی توان به طور قطع راه کاری به عنوان بهترین شیوه ی موجود پیشنهاد نمود. برای رسیدن به نقطه ای که بتوان به جرات شبکه ی بی سیمی امن ارائه کرد، تحقیقات بسیاری نیاز است. یکی از ابتدایی ترین قدم ها، پیاده سازی و آزمایش راه های ارائه شده تا کنون و بررسی عیوب، نقاط ضعف و قوت آنها است.

شکل SEQ تصویر * ARABIC 11 - کاربرد شبکه های بی سیم و سیمی
3- مسائل، مشکلات و راه حل های ارائه شده
یکی از اصلی ترین خطرات امنیتی شبکه های بی سیم حملات انسداد ( پارازیت ) است]2[. چنین حملاتی زیر مجموعه ای از حملات DOS به شمار می آید ]2,10,11,12[ و یکی از خطر ناکترین آن ها محسوب می گردند]2[، به این دلیل که با وجود معماری فعلی شبکه های بی سیم، فعالیت های محدودی وجود دارد که می توان برای غلبه بر حملات انسداد انجام داد]2[. حملات DOS که بر اساس مسدود کننده انجام می شوند، بر روی جلوگیری از برقراری ارتباط گره های شبکه متمرکز می گردند]2[، به عبارت دیگر حملات انسداد به معنای مسدود نمودن کانال ارتباطی با مقصود جلوگیری از جریان اطلاعات می باشد]2[.
1-3 حملات انسداد
یک مسدود کننده (پارازیت دهنده) موجودیتی است که به صورت هدفمند تلاش می کند که در ارسال و دریافت فیزیکی تداخل ایجاد کند. یکی از پر کاربرد ترین الگوریتم ها برای مقابله با حملات انسداد، تغییر کانال ارتباطی می باشد]2,13[.
حملات پارازیت را می توان به دو دسته تقسیم بندی نمود، مسدود نمودن (ایجاد پارازیت در) لایه ی فیزیکی و نادیده گرفتن مقررات لایه ی MAC ]2[. انسداد در لایه ی فیزیکی، شامل تولید پارازیت های ثابت در رسانه ی ارتباطی شبکه های بی سیم (هوا) به منظور ناتوان ساختن گره های تحت نفوذ از شرکت در هرگونه فعالیت های بیشتر شبکه است]2[. حملات انسداد می توانند با پیروی نکردن از پروتکل های زیر لایه ی MAC نیز پیاده سازی شوند. برای این منظور مسدود کننده ها می توانند از نفوذپذیری های پروتکل های 802.11 b، و g در شبکه ی بی سیم سوء استفاده نمایند]2,12,14[.
1-1-3 تقسیم بندی کلی حملات انسداد
به طور کلی یکی از چهار روش زیر برای انسداد دنبال می شود]2,15[:
ثابت: این نوع مسدود کننده به صورت متوالی بیت های تصادفی داده را روی کانال ارسال می کند.
فریبنده: این نوع مسدود کننده بسته های معتبر را با سرعت بسیار بالا به گره های نزدیک خود ارسال می کند، به این ترتیب گره های معتبر به اشتباه مسدود کننده را یک گره قانونی و معتبر می پندارند.
تصادفی: این نوع مسدود کننده ها بین حالت خواب و ارسال پارازیت متناوبا تغییر حالت می دهند.
واکنشی: این نوع حملات مسدود کننده، فقط زمانی حمله می کنند که در کانالی که به طور مداوم مورد پویش قرار می دهند، متوجه برقراری ارتباط شوند.
صرفنظر از نوع مسدود کننده ای که به کار گرفته شده است، حملات پارازیت سبب ایجاد پارازیت و تداخل سیگنال کافی، که برای ایجاد ازدحام در شبکه ی بی سیم منتهی می گردد، می شود. نتیجه می تواند قطع کامل خدمات باشد. بیشتر این عملیات بر روی باند های بدون نیاز به مجوز 2.4 گیگاهرتز و 5.2 گیگاهرتز که هر گره ای بدون نیاز به تایید قبلی می تواند از آن استفاده کند، انجام می شود. برخی از مسدو کننده های رادیویی از انرژی زیادی استفاده می کنند یا از تقویت کننده برای تقویت سیگنال هایشان بهره می برند، تا انرژی کافی را حتی برای آسیب رسانی به قطعات الکترونیکی نقاط دسترسی و ناتوان ساختن، تولید نمایند]2[، این امر حتی با ماندن در محدوده و مرز مجاز تولید حداکثر 4 میلی وات انرژی (طبق دستورالعمل های شبکه های بی سیم آمریکا ]2,16[ توسط تقویت کننده ها، امکان پذیر است. این ویژگی های حملات پارازیت، آن ها را تبدیل به ترسناکترین نوع حملات DOS در شبکه های بی سیم نموده است]2[.

شکل SEQ تصویر * ARABIC 12- حملات انسداد در شبکه های بدون زیرساخت
حملات DOS در لایه ی فیزیکی عموما با نام انسداد شناخته می شوند ]23,24,4[. این حملات می توانند با توجه به اهداف (مثلا بخش خاصی از مقدمه ی فریم یا فریم کامل)، زمان بندی (مانند مستمر، دوره ای، تصادفی و یا واکنشی) و بودجه ی انرژی (به عنوان مثال کم و زیاد)، طبقه بندی شوند]4[.
2-1-3 تقسیم بندی حملات انسداد
در اینجا حملات DOS لایه ی فیزیکی با توجه به این ویژگی ها طبقه بندی می گردند]4[.
1-2-1-3 حمله با منابع نا محدود (RUA)]4[
اگر مسدود کننده، منابع تقریبا نا محدودی داشته باشد (مانند انرژی، قدرت، پهنای باند)، می تواند قدرت سیگنال را بر روی هر گیرنده ای به طور مستمر و در محدوده ی فرکانس وسیع بالا نگاه دارد. در این گونه حملات انسداد، تمام دستگاه های بی سیم موجود در محدوده ی موثر و پهنای باند مسدود شده، تا زمانی که حمله ادامه داشته باشد، مسدود می گردند. (نمونه ی این گونه حملات انسداد، در جنگ جهانی دوم گزارش شده بود). با این وجود، این امکان پذیر است که یک گیرنده را با سیگنالی خیلی ضعیف تر از توان سیگنال انتقال یک فریم مجاز، مختل نمود.
2-2-1-3 حمله ی مقدمه ]4[
با ارسال مستمر یک الگوی SYNC یک مسدود کننده می تواند به طور موثر از همگام سازی یک ایستگاه گیرنده، با انتقالات هر ایستگاه دیگری جلوگیری کند]4,23[. این نشان می دهد که اینگونه مسدود کننده می تواند، سبب از دست رفتن قابل توجه فریم ها شود، حتی با وجود این که توان دریافت شده ی آن سه برابر کمتر از توان دریافتی آن برای ارسال یک فریم مجاز باشد. بعلاوه، اگر حمله ی مقدمه در مدل خاموش/روشن دوره ای، پیاده سازی شود، واحد AGC توسط مسدود کننده فریب می خورد، که این سبب از دست رفتن فریم به دلیل خطا های بیتی می گردد.
3-2-1-3 حمله ی SFD ]4[
یک الگوی SFD ابتدای هدر واقعی PLCP را منتشر می کند. اگر گیرنده الگوی SFD ارسال شده توسط مسدود کننده را قبل از الگوی SFD فرستنده ببیند، شروع به پردازش بیت های در حال آمدن، بر طبق الگوی SFD با ترتیب غلط، می کند، که سبب تولید خطای CRC در هدر PLCP و فریم MAC می شود(فیلد های PLCP مانند طول و CRC از روی نمونه های غلط ایجاد شده اند).
4-2-1-3 حملات واکنش ]4[
ارسال مستمر، منابع انرژی مسدود کننده را خالی می کند. یک روش مصرف انرژی کارآمد در انسداد، انسداد واکنشی است. در این روش، مسدود کننده منفعلانه، تا زمانی که یک انتقال فریم احساس کند، به مانیتور کردن کانال می پردازد. در صورت شناسایی ارسال فریم در حال انجام، مسدود کننده شروع به ارسال سیگنال های مداخله، برای خراب کردن انتقال فریم در حال انجام می کند]4,24[. به همین ترتیب، هنگامی که مسدود کننده شروع یک دست دهی DCF در حال رخداد را شناسایی می کند، می تواند بدون نیاز به شناسایی یک انتقال در حال وقوع، سیگنال های مداخله را تولید نماید. شانس انسداد در تمام مراحل دست دهی وجود دارد.
5-2-1-3 حمله ی HR (Hit and Run) ]4[
اگر ایستگاه مسدود کننده به صورت مستمر، سیگنال های انسداد ارسال کند، مصرف انرژی بالایی خواهد داشت، همچنین یافتن چنین ایستگاهی ساده خواهد بود. حال آنکه اگر سیگنال های انسداد به صورت دوره ای و یا تصادفی، خاموش و روشن شوند، مصرف انرژی چنین ایستگاهی کمتر شده و شناسایی و پیدا کردن آن دشوارتر خواهد شد]4,24[.
6-2-1-3 حمله ی نماد ]4[
فریم های 802.11 و b802.11 شامل هیچ گونه طرح FEC (Forward Error Correction) نمی باشد. در نتیجه، ایجاد خطا در نماد سیگنال، تمام فریم را غیر قابل استفاده خواهد کرد. مانند حملات واکنشی در طول رخداد یک انتقال، مسدود کننده یک سیگنال قوی برای طول مدت یک نماد سیگنال، ارسال می نماید و می تواند در نابود کردن تمام فریم موفق باشد.
7-2-1-3 حمله ی به انحصار کشیدن ]4[
حمله کننده می تواند با ارسال یک فریم کوتاه در هر دوره ی SIFS برای به انحصار در آوردن کانال تلاش کند، اگرچه تعداد فریم های مورد نیاز برای قطعی کامل بسیار زیاد است]25[. (برای دوره های SIFS 20 میکرو ثانیه، 50.000 بسته در ثانیه مورد نیاز است.)
حملات SFD و مقدمه، در درجه ی اول، بیت های مقدمه را هدف قرار می دهند، اما هر دوی آن ها بر روی بیت هایی که به دنبال مقدمه می آیند نیز تاثیر می گذارند. حملات SFD و مقدمه هر دو می توانند از هر استراتژی زمانی بهره ببرند (مانند واکنشی، دوره ای، مستمر و تصادفی). از طرف دیگر حملات واکنشی، HR، نماد و به انحصار کشیدن، می توانند با الگوی SFD و یا SYNC پیاده سازی شوند. از این رو، با توجه به ویژگی های در هم تنیده ی حملات لایه ی فیزیکی ذکر شده، طبقه بندی بیشتر این حملات معنی دار نیست]4[.
3-1-3 شناسایی حملات انسداد
پارامتر های ذیل برای شناسایی حملات انسداد به کار می روند]2[:
نسبت سیگنال به نویز (SNR): SNR نسبت انرژی سیگنال به انرژی پارازیت موجود در سیگنال دریافتی است. SNR بالاتر نشان دهنده ی کارایی بهتر شبکه است.
نسبت تحویل بسته (PDR): نسبت تعداد بسته هایی که به صورت موفقیت آمیزی به مقاصد مورد نظر تحویل شده اند به تعداد کل بسته های ارسال شده از گره.
معمولا مجموعه ی ترکیبی از متریک های نشان دهنده ی SNR و PDR به کار می روند تا مشخص گردد که یک گره مسدود شده یا فقط یک خطا در آن رخ داده است.
4-1-3 مقابله با حملات انسداد
رویکرد های مقابله با حملات پارازیت، سه گام ذیل را شامل می گردند]2[:
1- شناسایی حمله: شناسایی حمله روندی است که در آن مکانیزم شناسایی تعیین می کند آیا سیستم تحت تاثیر یک حمله است یا خیر. شناسایی می تواند در دو جایگاه انجام شود]2, 17[: لایه ی MAC و لایه ی فیزیکی.
شناسایی در لایه ی MAC:
پروتکل های بی سیم، به ویژه آن هایی که بر پایه ی معماری 802.11 هستند، از CSMA-CA ]2,18[ برای برقراری ارتباط قابل اطمینان در شبکه استفاده می کنند. برای اینکه CSMA به درستی عمل کند، کانال باید برای گره در زمانی کمتر از یک حد آستانه قابل دسترس باشد. حد آستانه می تواند هم به صورت تئوری و هم به صورت تجربی تنظیم شود. اگر در کانال زمان دسترسی به طور مداوم و مکرر از حد آستانه فراتر رود، گره اینگونه تصور می کند که یک حمله ی DOS رخ داده است]2[.
شناسایی در لایه ی فیزیکی: در حملات DOS بر اساس مسدود کننده، SNR پارامتری عمده برای تشخیص یک حمله است. SNR خیلی کم، نشان دهنده ی احتمال وجود یک حمله ی DOS است. برای عملکرد صحیح این نوع از شناسایی، هر دستگاه باید SNR را در فواصل منظم نمونه سازی کند تا دیدگاهی مناسب از SNR در حالت طبیعی فعالیت شبکه ی بی سیم به دست آید]2[.
2- کاهش اثرات حمله:
بعد از اینکه شناسایی حمله انجام شد، مکانیسم کاهش اثرات حمله برای غلبه بر تاثیرات حمله انجام می گردد]2[.
3- جلوگیری از حمله:
این اقدامات برای جلوگیری از رخداد یک حمله در شبکه استفاده می شوند]2[.
5-1-3 تکنیک های کاهش اثرات حمله در لایه ی فیزیکی
با بررسی مقالات و تحقیقات اخیر تکنیک های زیر برای کاهش اثرات حملات انسداد حاصل شده است :
تغییر کانال ]2,19,7[
عقب نشینی فضایی ]2,19,7[
استفاده از کرمچاله ها]2,20,7[
نگاشت مناطق مسدود شده]2,21,7[
تکنیک های گسترش طیف ]2,22,7[
نظریه ی بازی]7[
گره های عسل ]2[
1-5-1-3 تغییر کانال]2,7[:
تغییر کانال بر اساس یک مکانیسم گریز طیفی است که در آن، گره ای که زیر حملات انسداد قرار می گیرد، استراتژی کاهش اثرات را با جا به جایی به کانالی دیگر پی خواهد گرفت. در تشخیص یک حمله گره ها، کانال عملیاتی خود را بر اساس یک توالی شبه تصادفی از پیش تعریف شده که به آن ها ابلاغ شده است تغییر می دهند. به منظور بررسی وجود یا عدم وجود گره ها، یک نقطه ی دسترسی مکررا امواج beacon را برای گره های مرتبط ارسال می کند، اگر هریک از آن ها به امواج beacon پاسخ ندادند، نقطه ی دسترسی دستور تغییر کانال را صادر می کند، که به گره های باقی مانده می گوید تا بر روی یک کانال عملیاتی جدید که بر اساس توالی شبه تصادفی از پیش تعیین شده، انتخاب شده، پرش کنند.
2-5-1-3 عقب نشینی فضایی]2,7[:
الگوریتم عقب نشینی فضایی بر اساس گریز فضایی است. نقاط دسترسی اجزای ساکن یک شبکه هستند و ثابت می مانند، اما گره های معمولی مرتبط، از منطقه ی نقطه ی دسترسی فعلی (که در حال حاضر مسدود شده است) به منطقه ی یک نقطه ی دسترسی اضطراری که بر اساس لیست نقاط دسترسی اضطراری، که توسط نقطه ی دسترسی اصلی، در طول ارتباط در طول ارتباط با آن ها داده شده است، تعیین گردیده، نقل مکان می کنند. هنگامی که گره ها از نقطه ی دسترسی فعلی به سمت نقطه ی دسترسی اضطراری حرکت می کنند، در تلاشند تا به نقطه ی دسترسی مسدود شده ی خود متصل شوند. اگر یک ارتباط پیدا شد، گره از حرکت باز می ایستد، در غیر این صورت، به ناحیه ی نقطه ی دسترسی اضطراری حرکت کرده و از طریق یک مکانیسم دست به دست کردن مناسب، با آن ارتباط برقرار می کند.
3-5-1-3 استفاده از کرم چاله ها]2,7[:
در حملات کرم چاله، دو (یا بیشتر) حمله کننده، از طریق یک مکانیسم حمله ی هماهنگ، مانند یک حمله کننده عمل می کنند. مشابه همین مکانیسم، هنگام برقراری ارتباط یک گره مسدود شده با گره ای مسدود نشده از طریق رسانه ی مسدود نشده، برای کاهش اثرات حمله رخ می دهد. رسانه ی مسدود نشده ی اشتراک گذاری شده، مانند کرم چاله عمل می کند.
4-5-1-3 نقشه برداری منطقه ی مسدود شده]2,7[:
این تکنیک بدون تمرکز بر اقدامات متقابل از هر نوعی، بر روی نقشه برداری از منطقه ی مسدود شده، با تعریف یک پروتکل نقشه برداری متمرکز شده است. این روش بر پایه ی پاسخ های در یافت شده از گره هایی که در درازای مرز منطقه ی مسدود شده قرار دارند، می باشد. در این شیوه هدف کاهش اثرات مسدود کننده با تعریف و ایزوله نمودن منطقه ی مسدود شده و سپس تلاش برای تعیین راه مسیریابی جایگزین برای بسته های داده می باشد.
5-5-1-3 تکنیک های طیف گسترده]2[:
سیستم های قدیمی تلاش می کنند تا به اجبار بیشترین میزان اطلاعات را بر داخل کمترین میزان پهنای باند موجود وارد نمایند. فرکانس مسدود کننده ی توان بالایی که باند فرکانس این سیستم ها را پوشش می دهند، به راحتی می تواند سیستم را مسدود کنند. در سیستم طیف گسترده، سیگنال، در پهنای باندی به گسترده ترین صورت ممکن پخش می شود. بدین وسیله تشخیص و مسدود نمودن ارتباطات ایجاد شده بسیار سخت خواهد شد. دو نوع تکنیک محتلف طیف گسترده، قابل استفاده می باشد، طیف گسترده ی توالی مستقیم (DSSS) ]2,22,28,29[ و پرش فرکانس گسترده (FHSS) ]2[.
6-5-1-3 نظریه ی بازی]7[:
اخیرا استفاده از تئوری بازی، توجه تحقیقات فراوانی را، در حوزه های مختلف ارتباطات بی سیم به خود جلب کرده است]7[. در این شیوه، اجزای شبکه ی بی سیم، مسدود کننده و نیز ویژگی ها و اجزای آن ها در قالب یک بازی مدل سازی شده و سپس برای پیروزی و یا رقابت در این بازی، به ارائه ی نظریه و فرموله سازی پرداخته می شود. در سال های اخیر بسیاری از مقالات به بررسی و مدل سازی در این زمینه پرداخته اند]7[.
7-5-1-3 گره های عسل]2[:
گره های عسل بر اساس مفهومی شبیه به ظرف عسل شکل گرفته اند. این گره ها تلاش می کنند تا به مسدود کننده ها حمله کنند، در نتیجه قادر خواهند بود تا اطلاعاتی در باره ی حمله و حمله کننده جمع آوری نمایند. اگر یک گره ی عسل حمله ای را تشخیص دهد، به ارسال سیگنال در همان کانال ادامه داده و در همین زمان ایستگاه اصلی را از حمله ای که در شرف وقوع است آگاه می کند تا استراتژی های از پیش تعیین شده ی کاهش اثرات و... را به کار گیرد]2[.
8-5-1-3 سایر استراتژی های موجود]7[:
در این زمینه استراتژی های دیگری نیز معرفی شده اند، یکی از استراتژی ها شامل ساخت یک کانال زمانبندی نرخ پایین در لایه ی فیزیکی به رغم حضور مسدود کننده می باشد]7[. در جایی دیگر پروتکلی مقاوم در برابر پارازیت برای شبکه های بی سیم تک هاپی معرفی گشته است]7[. با توجه به رشد فناوری های بی سیم و تحقیقات وسیعی که در این زمینه انجام می گیرد، در سال های اخیر مقالات بسیاری به بررسی ای موضوعات پرداخته اند و تحقیقات به سرعت در حال رشد و گسترش است.
2-3 حملات در لایه ی MAC ]4[
پروتکل MAC در 802.11 به حمله کننده اجازه می دهد که به طور انتخابی یا کامل، دسترسی شبکه را با تعداد اندکی بسته و مصرف انرژی پایین، از بین ببرد. انتخابی بدین معنی است که حمله کننده می تواند یک ایستگاه منحصر به فرد را هدف قرار دهد و نیازی نیست به تمام شبکه حمله کند. این گونه حملات DOS از یک آسیب پذیری مرکزی اصلی بهره می برند که آن، سهولت شنود آدرس MAC در شبکه های بی سیم است.
1-2-3 تقسیم بندی حملات در لایه ی MAC
1-1-2-3 حملات نقض احراز هویت/نقض برقرای ارتباط ]4[
امنیت از طریق رمزنگاری هنوز برای بسته های مدیریتی در استاندارد 801.11 پیاده سازی نشده است. در نتیجه با گوش دادن به ترافیک شبکه و یاد گرفتن آدرس های MAC ایستگاه ها و AP، یک حمله کننده می تواند با جعل فریم نقض احراز هویت/نقض برقرای ارتباط و ارسال آن، ایستگاه را از شبکه خارج کند. حملات نقض احراز هویت از حملات نقض برقراری ارتباط کارایی بیشتری دارند، به این دلیل که برای ایستگاه، زمان و کار بیشتری نیاز است تا به حالت مرتبط شده برگردد. اگر حمله به طور مداوم تکرار گردد، ایستگاه به طور نا محدود از دسترسی به شبکه منع می شود]4,25[.
2-1-2-3 حمله ی مدت زمان تورمی ]4[
اگر حمله کننده در محدوده ی رادیویی هدف خود باشد، می تواند به صورت مستمر، انتقال اطلاعات هدف را با تولید فیلد مدت زمان بزرگ در RTS، CTS و دیگر فریم های خود، به تعویق بیاندازد. باید به این نکته توجه داشت که در استاندارد 802.11، هر ایستگاه همسایه باید NAV خود را بر طبق مقدار فیلد مدت زمان به روز کند، اما این ویژگی به درستی در اکثر دستگاه های بی سیم، پیاده سازی نشده است ]4,25[.
3-1-2-3 حمله بر علیه i802.11 ]4[
اگر حمله کننده سبب شود که پروتکل i502.11 در برخی نقاط با شکست مواجه شود (مثلا توسط جعل مجموعه های امنیتی مذاکره شده)، نیاز است ایستگاه مجاز برای بازیابی دوباره، پیام های اضافی تبادل کند. اگر زمان بازیابی به اندازه ی کافی بزرگ باشد و ضمنا اجرای دوباره ی حمله امکان پذیر باشد، این یک حمله ی موثر DOS برای یک ایستگاه خاص خواهد بود. همچنین، این امکان وجود دارد که با ارسال پشت سر هم پیام های آغازین جعلی در دست دهی چهارطرفه ی i802.11، حافظه ی ایستگاه را از پای در آورد]4,26[.
4-1-2-3 حمله بر علیه گره های به خواب رفته ]4[
در پروتکل 802.11 ایستگاه ها قادرند برای صرفه جویی در مصرف انرژی به خواب بروند. در این حالت AP فریم ها را برای ایستگاه بافر می کند و به محض دریافت یک پیام رای گیری از ایستگاه، بیدار شده، بسته ها را برای ایستگاه ارسال می کند و آن ها را از بافر خود حذف می نماید. با شنود پیام رای گیری ایستگاه، حمله کننده می تواند سبب حذف پیام هایی که مقصد آن ها، ایستگاه مورد نظر است گردد. همچنین امکان پذیر است تا با جعل پیام های TIM نقطه ی دسترسی (AP)، ایستگاه را قانع کرد که داده ای در انتظار او نیست. یک حمله ی DOS می تواند سبب شود تا ایستگاه از همگامی با AP خارج گردد، در زمان نادرست از خواب بیدار شود و در نتیجه بسته ها را از دست بدهد]4,25[.
5-1-2-3 حملات لایه ی MAC کامل ]4[
حملاتی که تشریح گردید، قادرند برای قطع دسترسی تمام ایستگاه های یک AP تعمیم یابند. حال آنکه حملاتی با کارایی بیشتر در مصرف منابع، برای ایجاد قطعی کامل وجود دارد. حمله کننده می تواند به راحتی AP را مورد هدف قرار دهد و منابع محدود محاسباتی و/یا حافظه ی آن را تمام کند تا دیگر نتواند به هیچ ایستگاه دیگری خدمات دهد.
1- سیل درخواست های Probe ]4[
ایده ی اصلی این است که با ارسال پشت سر هم درخواست های Probe با آدرس های MAC برای مقاصد متفاوت، حجم کار سنگینی به AP تحمیل گردد، تا AP دیگر نتواند به ایستگاه های مجاز خدمت رسانی کند ]4,27[.
2- سیل درخواست های احراز هویت یا ارتباط ]4[
حمله کننده می تواند با ارسال پشت سر هم درخواست های احراز هویت و برقراری ارتباط، منابع AP را هدر دهد. نشان داده شده است که اگر WEP روی AP فعال شده باشد، مجبور است تا بار بیشتری را مدیریت کند و در نتیجه با ترافیک کمتری مسدود می گردد]4,27[. بسیاری از AP ها به درخواست های برقراری ارتباط در حالت اولیه ی خود، پاسخ می دهند. اگر i802.11 پیاده سازی شده باشد، حمله کننده می تواند فضای شناسه ی بسته ی EAP را که فقط 8 بیت طول دارد، با سیل درخواست برقراری ارتباط تمام کند]4,26[.
2-2-3 مقابله در لایه ی MAC ]4[
1-2-2-3 شناسایی شنود آدرس MAC ]4[
یک روش (بدون استفاده از رمزنگاری) برای شنود آدرس MAC، بر اساس فیلد شماره ی توالی (ترتیب) است، که مقدار آن به ازای هر فریم بخش بندی نشده، یکی اضافه می گردد. حمله کننده قادر نخواهد بود که مقدار فیلد شماره ی توالی را جایگزین کند، اگر نتواند عملکرد سیستم عامل کارت بی سیم خود را کنترل کند]4,30,31[. از طریق تحلیل الگوی شماره ی توالی ترافیک بی سیم شنود شده، سیستم شناسایی قابلیت شناسایی شنود آدرس MAC را برای مشخص کردن حملات نقض احراز هویت/نقض برقراری ارتباط دارد]4,30 [.
2-2-2-3 محافظت از فریم های کنترلی و مدیریتی از طریق رمز نگاری ]4[
راه حل رمزنگاری می تواند در مقابل حملات گوناگونی به کار گرفته شود، اما به طور خاص رمزنگاری از طریق کلید عمومی گران بوده و خود می تواند به راحتی هدف حملات DOS قرار بگیرد. برای اینکه حفره ای دیگر برای حملات DOS ایجاد نگردد، کارایی پروتکل های جدید (مانند w802.11) در این زمینه بسیار مهم است. استفاده از رمزنگاری پس از شناسایی وقوع یک حمله ی DOS می تواند یک راه جایگزین باشد، که ارزش تحقیقات آتی را داراست. به منظور گسترش راه حل های رمزنگاری برای فریم های مدیریتی دیگر، باید محدودیت هایی اضافی در نظر گرفته شوند. به عنوان مثال توسعه، مستقیما برای جستجوی درخواست و پاسخ پیاده سازی نمی شود، به این دلیل که موارد لزوم تولید کلید، پیش از تبادل فریم موجود نیستند، تا زمانی که، دو طرف، یک کلید امنیتی بلند مدت را به اشتراک بگذارند.
3-2-2-3 تعمیر پروتکل ]4[
پس از تعریف حملات DOS مربوط به جعل اولین پیام دست دهی در i802.11، یک پروتکل به استاندارد i802.11 پیشنهاد شد که در آخرین بررسی های آن کارگروه به تصویب رسید ]4,26[. موضوع دیگر در مورد تعمیر پروتکل، تبادل در i802.11 است، که در حالت احراز هویت شده/مرتبط شده انجام می شود. نشان داده شده است که از بین بردن سیل درخواست برقراری ارتباط با به کارگیری i802.11 قبل از برقراری ارتباط امکان پذیر می باشد ]4,32[. اما، این نیازمند تغییرات بزرگ در استاندارد است ]4,26[، بنابراین به سادگی می توان گفت تمام تعمیرات پروتکل نمی توانند یک راه حل عملی کوتاه مدت باشند.
4-2-2-3 پازل رمز نگاری شده (کاربر) ]4[
ایده ی اصلی پازل کاربر به شکل زیر است:
هنگامی که یک سرور درخواستی دریافت می کند، یک پازل به کابر توزیع می کند. فقط پس از اینکه تایید گردید پازل به درستی توسط کاربر حل شده است، سرور به درخواست او پاسخ می دهد. در صورتی که سرور تشخیص دهد زیر حملات DOS قرار گرفته است و حملات در حال شدید تر شدن هستند، سختی پازل می تواند بیشتر شود.
استاندارد i802.11 می تواند برای شامل شدن این حفاظت به روز گردد، اگرچه تحقیقات آتی نیاز است تا مشخص شود که آیا امکان پذیر است یک پازل موثر برای شبکه های بی سیم ساخته شود، به طوری که حل آن برای ایستگاه های مجاز با منابع متوسط آسان باشد، اما به اندازه ی کافی برای مسدود نمودن حمله کننده ها که حملات سیل ایجاد می کنند، دشوار باشد.
5-2-2-3 سایر راه حل های رمز نگاری نشده ]4[
با وجود اینکه راه حل های رمز نگاری، راه حل های امیدوار کننده ای برای جلوگیری بعضی از موثرترین حملات DOS ارائه می کنند، آن ها نیازمند به روز رسانی در استاندارد i802.11 هستند. راه حل های زیر بیشتر مختص یک نوع از حملات هستند، اما نیازی به یک تغییر در استاندارد ندارند.
1- به تاخیر انداختن تاثیر درخواست ]4[
اگر تاثیر درخواست های نقض احراز هویت و نقض برقراری ارتباط برای چند ثانیه به تاخیر بیافتد، درخواست می تواند به صورت امنی حذف شود، اگر بسته ای پس از آن دریافت شود. این راه حل یک آسیب پذیری جدید DOS برای ایستگاه های بی سیم سیار ایجاد می کند، و یک محدودیت قابل توجه از دیدگاه عملی به نظر نمی رسد ]4,25[.
2- تعریف تفسیر جدید از فیلد مدت زمان ]4[
چهار نوع فریم کلیدی که شامل مقادیر مدت زمان می باشند، ACK، DATA، RTS و CTS هستند. از آنجایی که قطعه بندی (تکه تکه شدن) تقریبا هیچ وقت در شبکه های 802.11 استفاده نمی شود، فیلد مدت زمان فریم های DATA و ACK که با یک قطعه دنبال نمی شوند، به راحتی می توانند نادیده گرفته شوند. برای فریم RTS، مانند راه حل قبل، ما می توانیم تاثیر فیلد مدت زمان را به تاخیر بیاندازیم و تاثیر آن را اگر بسته های داده ی بعدی دیده نشدند، حذف کنیم. بزرگترین چالش فریم های CTS هستند، بدین دلیل که راه حل استفاده شده برای RTS به صورت مستقیم قابل اعمال نیست که دلیل آن وجود مشکل پایانه های مخفی می باشد. یک راه حل ناکامل می تواند نادیده گرفتن بسته های CTS ایزوله شده برای بخشی از زمان باشد]4,25[.
3- کاهش محدودیت سعی مجدد ]4[
زمانی که یک حد سعی مجدد بالا برای فریم های تصدیق نشده (مانند پیام پاسخ Probe) تعیین می گردد، حملات سیل، آسیب رسان تر می شوند. یک راه حل، تغییر حد سعی مجدد به مقداری کوچکتر به محض شناسایی یک حمله ی DOS، است. اگرچه گزارش شده است که پیاده سازی این راه حل بالاتر از سطح سیستم عامل دستگاه، دشوار است.
3-3 حملات DOS به شبکه های 802.11، شامل لایه ی MAC و لایه های بالاتر ]4[
پروتکل حل آدرس (ARP) یک پروتکل بدون وضعیت است که برای مشخص کردن نگاشت بین آدرس IP و MAC استفاده می شود. از آنجایی که هیچ منبع احراز هویتی در ARP وجود ندارد، حمله کننده می تواند مخزن ARP ایستگاه دیگری را با ارسال پاسخ های ARP غلط، زمانی که آن ها در یک دامنه ی داده پراکنی هستند، مسموم کند. این مشکل به طور منطقی در شبکه های سیمی کاهش پیدا کرده است، در صورتی که در زمینه ی شبکه های بی سیم، نیازمند آنیم تا مشکل را دوباره بررسی کنیم، چرا که دامنه ی داده پراکنی با حضور AP ها بزرگتر شده و شامل شبکه های سیمی و بی سیم می گردد]4,33[.
گونه ای دیگر از حملات DOS نیز به دلیل محدودیت در پهنای باند شبکه های بی سیم در مقایسه با شبکه های سیمی، امکان پذیر می باشد. برای مثال، یک فرد می تواند با ایجاد سیل ICMP ping یا TCP sync از یک شبکه ی سیمی، پهنای باند بی سیم را خالی کند.
1-3-3 اقدامات متقابل ]4[
راه حل قدیمی در مقابله با این حملات لایه های بالاتر، فیلترینگ (برای جلوگیری) و سیستم های شناسایی نفوذ (برای شناسایی) می باشد.
1-1-3-3 فیلترینگ ]4[
ریسک مسموم کردن ARP و حملات سیل می تواند با پیاده سازی فیلترینگ بسته کاهش یابد. یک دیوار آتش بین سوئیچ هایی که AP ها را به یکدیگر متصل می کنند و شبکه ی سیمی، می تواند ترافیک را فیلتر نموده و از حملات ARP که از شبکه های سیمی سرچشمه گرفته اند، جلوگیری کند.
2-1-3-3 سیستم های شناسایی نفوذ ]4[
هنگامی که جلوگیری از حمله امکان پذیر نیست، شناسایی تنها راه دفاع است. این نیازمند آن است اطمینان حاصل گردد که اقدامات دفاعی واقعا کار می کنند]4,33[. سیستم های شناسایی نفوذ ممکن است قادر باشند تا حملات مسموم سازی ARP و همچنین حملات دیگری که از نقض در پروتکل های شبکه بهره گیری می کنند را، با تعداد بیش از اندازه ی پاسخ های ناخواسته شناسایی کنند. با این حال شناسایی بدون واکنش معمولا تاثیر زیادی ندارد.
4-3 اقدامات متقابل در لایه ی MAC با استفاده از لایه ی فیزیکی ]4[
اکثر حملات DOS فقط به این دلیل امکان پذیر هستند که یک حمله کننده می تواند توسط یک آدرس MAC ساختگی تغییر ظاهر دهد. خصوصیات لایه ی فیزیکی مانند قدرت سیگنال و ویژگی های فرستنده را می توان برای تولید اثرانگشت هایی نسبتا قابل اعتماد و دشوار برای جعل، به منظور شناسه ی یک ایستگاه به کار برد ]4,32,34[.

شکل SEQ تصویر * ARABIC 13- تولید کننده ی نرم افزاری سیگنال
1-4-3 شناسایی ایستگاه از طریق ویژگی های سیگنال ]4[
موقعیت یک ایستگاه، با کمی ابهام (به دلیل انحراف ذاتی استاندارد انتشار سیگنال های RF در حدود مقداری میانی)، از طریق اندازه گیری های RSSI (Receive Signal Strength Indicator) از فریم های ارسال شده توسط چند AP، قابل شناسایی می باشد.
اندازه گیری های RSSI از یک ایستگاه مشخص، توسط هر AP، در یک ردگیری سیگنال از یک موجودیت مرکزی، ترکیب می شوند. RSSI خصوصیات مشخصی دارد که آن را قادر می سازد تا به عنوان یک معیار معتبر استفاده شود:
1- جعل ویژگی های RSSI دشوار است.
2- RSSI همبستگی زیادی با مکان فیزیکی ایستگاه دارد.
3- RSSI ایستگاه های ساکن، نسبتا ثابت است.
گزارش شده است که ردیابی سیگنال بر اساس RSSI را می توان به طور قابل اطمینان برای تعریف مکان نسبی ایستگاه به کار برد، و نیز به شرطی که گره ها در مجاورت نزدیکی، نباشند، به صورت فیزیکی بین آنها تمایز قائل شد ]4,34[، این مطلب پتانسیل آن را دارد تا به عنوان دو اقدام متقابل استفاده شود:
1- برای شناسایی و رها کردن زیر مجموعه ی فریم هایی که از همان ایستگاه سرچشمه می گیرند تا از حملات کاهش منابع جلوگیری کنند.
2- برای شناسایی حملات، با مقایسه ی اثر انگشت درخواست های متناقض (احراز هویت و نقض احراز هویت).
باید در نظر داشت که در اینجا هدف تعیین فیزیکی مکان ایستگاه نمی باشد، بلکه هدف متمایز نمودن آن در میان سایرین است.
این تکنیک ها قابلیت این را دارند که فقط واکنش صحیح از حذف فریم های سرچشمه گرفته از ایستگاه متخاصم را ارائه کنند. سایر روش های شناسایی بر اساس تحلیل ردیابی ترافیک، نمی توانند واکنش مناسب را به حملاتی که در آن حمله کننده از آدرس های MAC جعلی استفاده می کند، نشان دهد و هیچ مکانیسم شناسایی دیگری در این جایگاه وجود ندارد. برای مثال، هنگامی که بسیار قدرتمند در برابر رفتار حریصانه ی کاربران مجاز که به صورت رمزنگاری شده توسط AP احراز هویت شده اند، عمل کنیم و در نتیجه آن ها نتوانند آدرس MAC خود را تغییر دهند، نرم افزار DOMINO ]4,35[ اگر به تنهایی استفاده شود، نمی تواند حمله کننده ای را که فقط قصد حمله ی DOS را دارد شناسایی نموده و با آن مقابله کند.
می توان این گونه در نظر گرفت، تکنیک های مکان یابی برای شبکه ها بی سیم، که بر انواع دیگر اندازه گیری (مانند، TDOA، [4]Time Difference Of Arrival) وابسته هستند نیز می توانند در مقابل حملات DOS استفاده شوند. به همین ترتیب، اثر انگشت RF فرستنده می تواند برای شناسایی به کار گرفته شود. در ]4,36[ یک سیستم کامل برای شناسایی ایستگاه های 802.11، بر اساس ویژگی های سیگنال RF نشان داده شده است.
4- نتیجه گیری
هدف اصلی این سمینار، بررسی کلی حملات DOS و نیز راه های جلوگیری و کاهش اثرات این حملات است. انواع حمله های ارائه شده و راهکار های مقابله ی مطرح شده، تماما از مقالات علمی معنبر استخراج گردیده اند، اما تنها با مطالعه ی مقالات نمی توان به بررسی و مطالعه ی این گونه مسائل امنیتی پرداخت، چرا که اکثر کار های انجام شده در این زمینه یا به صورت پروژه - ریسرچبه چاپ نمی رسند و یا زمان زیادی بعد از ارائه ی آن عمومی می شوند. برای آگاهی از تمام جوانب موجود اولین راه کار ورود مستقیم به عرصه ی پژوهش های آزمایشگاهی در این حیطه و در مرحله ی بعد پیگیری کار های شرکت های معتبر و جستجو در اینترنت به صورت گسترده است. با وجود اینکه اطلاعات موجود در اینترنت از صحت قابل اعتمادی برخوردار نیستند اما جدید ترین مسائل ابتدا در این محیط منتشر خواهند شد (مگر تحقیقات علمی آزمایشگاهی).
شیوه های بحث شده ی حملات و تقابل با آن در این سمینار، نشان می دهد که این حیطه فضای زیادی برای تحقیقات آتی دارد. شیوه های مطرح گشته ی حملات، روش هایی است که تا کنون به صورت علمی به ثبت رسیده اند و به طور قطع هر روزه روش ها و ابزار های جدیدی ابداع می گردند و بسیاری از راه کار ها نیز هرگز عمومی نخواهند شد. مهم ترین مبحث در حملات DOS بی سیم مسدود کننده ها هستند که به راحتی قابل ساخت و به روز رسانی با تکنولوژی های جدید هستند. اکثر مسدود کننده های موثر به طور قطع هرگز توسط عموم شناخته نخواهند شد چرا که بیشتر کاربرد نظامی و یا دولتی دارند، اما به دلیل شناخته شده بودن تکنولوژی، قابل تولید توسط افراد بسیاری هستند. روش های حملات با به کار گیری لایه های دیگر نیز هر روز در حال گسترش و پیشرفت هستند تا جایی که هرگز نمی توان مطمئا بود که داده های شبکه ی بی سیم شما به هیچ وجه آسیب نمی بینند. به حر حال در این زمینه نیز ره کار هایی ارائه شد که میتوانند سکوی پرتابی برای تحقیقات آینده باشند. به سهولت و با جمع بندی کامل می توان این گونه بیان نمود که مطالب بیان شده در هر پروژه - ریسرچ، پیرامون این مطالب، چندی پس از ارائه منسوخ خواهند شد، چرا که این تکنولوژی هنوز به مرحله ی بلوغ خود نرسیده و فضای زیادی برای پیشرفت و بهتر شدن دارد.
مراجع
[1] Jalel Ben Othmana, Lynda Mokdadb, “Enhancing data security in ad hoc networks based on multipath routing”, Journal of Parallel and Distributed Computing, vol. 70, pp. 309_316, 2010
[2] Sudip Misra, Sanjay K. Dhurandher, Avanish Rayankula, Deepansh Agrawal, “Using honeynodes for defense against jamming attacks in wireless infrastructure-based networks”, Computers and Electrical Engineering, vol. 36, pp. 367–382, 2010
[3] Ningrinla Marchang, Raja Datta, “Collaborative techniques for intrusion detection in mobile ad-hoc networks”, Ad Hoc Networks vol. 6, pp. 508–523, 2008
[4] Kemal Bicakci, Bulent Tavli , “Denial-of-Service attacks and countermeasures in IEEE 802.11 wireless networks”, Computer Standards & Interfaces vol. 31,pp. 931–941,2009
[5] Shafiullah Khan, Kok-Keong Loo, Tahir Naeem, Mohammad Abrar Khan, “Denial of Service Attacks and Challenges in Broadband Wireless Networks”, International Journal of Computer Science and Network Security, vol. 8 No. 7, July 2008.
[6] S. A. Arunmozhi, Y. Venkataramani, “DDoS Attack and Defense Scheme in Wireless Ad hoc Networks”, International Journal of Network Security & Its Applications, vol. 3, No. 3, May 2011.
[7] Lin Chen, Jean Leneutre, “Fight jamming with jamming – A game theoretic analysis of jamming attack in wireless networks and defense strategy”, Computer Networks, vol. 55, pp. 2259–2270, 2011.
[8] Mahadevan K, Hong S, Dullum J, “Anti-jamming: a study”, <http://www users.itlabs.umn.edu/classes/Fall-2007/csci5271/jamming.pdf>.
[9] Negi R, Perrig A, “Jamming analysis of MAC protocols”, Carnegie Mellon Technical Memo, 2003.
[10] Wood AD, Stankovic JA, “Denial of service in sensor networks”, IEEE Comp, vol. 35(10), pp. 54–62, 2002.
[11] Lin G, Noubir G, “On link-layer denial of service in data wireless LANs”, J Wireless Comm Mob Comput, vol. 5(3), pp. 273–84, 2005.
[12] Bellardo J, Savage S, “802.11 denial-of-service attacks: Real vulnerabilities and practical solutions”, In: Proceedings of the USENIX security symposium, pp. 15–28, 2003.
[13] Xu W, Trappe W, Zhang Y, Wood T, “Channel surfing and spatial retreats: defenses against wireless denial of service”, ACM Wireless Security, pp. 80–9, 2004.
[14] LAN MAN Standards Committee of IEEE Computer Society, Draft International Standard ISO/IEC 8802-11 IEEE P802.11/D10, January 1999.
[15] Xu W, Ma K, Trappe W, Zhang Y, “Jamming sensor networks: attack and defense strategies”, IEEE Network, May/June 2006.
[16] FCC Part 15 regulations for low power, non-licensed transmitters, OET Bulletin 63, <http://www.fcc.gov/oet/info/documents/bulletins/>, October 1993.
[17] Xu W, Trappe W, Zhang Y, Wood T, “The feasibility of launching and detecting jamming attacks in wireless networks”, In: Proceedings of MobiHoc’05, May 25–27, 2005, Urbana-Champaign, IL, USA, p. 46–57.
[18] Colvin A. CSMA with collision avoidance. Comp Commun, vol. 6(5), pp. 227–35, 1983.
[19] Xu W, Trappe W, Zhang Y, Wood T, “Channel surfing and spatial retreats: defenses against wireless denial of service”, ACM Wireless Security, pp. 80–9, 2004.
[20] Cagali M, Capkun S, “Wormhole-based anti-jamming techniques in sensor networks”, IEEE Trans Mobile Comput, vol. 6(1), pp. 100–14, 2007.
[21] Wood AD, Stankovic JA, Son SH, “JAM: a jammed-area mapping service for sensor networks”, In: Proceedings of the 24th IEEE international real-time sys-- symposium, pp. 286–297, 2003.
[22] Pickholtz R, Schilling D, Milstein L, “Theory of spread-spectrum communications – a tutorial”, IEEE Trans Commun, pp. 855–84, 1982.
[23] R. Gummadi, D.Wetherall, B. Greenstein, S. Seshan, “Understanding and mitigating the impact of RF interference on 802.11 networks”, Proceedings of the ACM SIGCOMM, pp. 385–396, 2007.
[24] W. Xu, K. Ma,W. Trappe, Y. Zhang, “Jamming in sensor networks: attack and defense strategies”, IEEE Network, vol. 20 pp. 41–47, 2006.
[25] J. Bellardo, S. Savage, “802.11 Denial-of-Service attacks: real vulnerabilities and practical solutions”, Proceedings of USENIX Security Symposium, 2003.
[26] C. He, J.C. Mitchell, “Security analysis and improvements for IEEE 802.11i”, Proceedings of the 12th Annual Network and Distributed Sys-- Security Symposium (NDSS'05), pp. 90–110, 2005.
[27] N. Bernaschi, F. Ferreri, L. Valcamonici, “Access points vulnerabilities to DoS attacks in 802.11 networks”, Wireless Networks, pp. 634–638, 2004.
[28] Haykins S. Communication sys--s. 4th ed. Wiley; 2000.

—d1221

2-4-2-2- الگوریتم NSGA-II محدود شده45
2-4-2-3- الگوریتم ژنتیک رتبه بندی نامغلوب46
2-4-3- الگوریتم‌های تکاملی برای بهینه سازی مسائل چندهدفه بر مبنای سیستم ایمنی مصنوعی49
2-4-3-1- سیستم ایمنی مصنوعی49
2-4-3-1-1- مفاهیم ایمنی49
2-4-3-1-2- ایمنی ذاتی51
2-4-3-1-3- ایمنی اکتسابی51
2-4-3-1-4- تئوری شبکه ایمنی52
2-4-3-1-5- الگوریتم ایمنی مصنوعی53
2-4-3-1-6- سیستم ایمنی مصنوعی و مسائل بهینه سازی چندهدفه54
2-4-3-2- الگوریتم MISA56
2-4-3-3- الگوریتم VIS61
2-4-3-4- الگوریتم NNIA64
2-5- روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه67
2-5-1- فاصله نسلی68
2-5-2- درجه توازن در رسیدن همزمان به اهداف69
2-5-3- مساحت زیر خط رگرسیون70
2-5-4- تعداد جواب‌های غیرمغلوب نهائی71
2-5-5- فاصله گذاری71
2-5-6- گسترش72
2-5-7- سرعت همگرائی73
2-5-8- منطقه زیر پوشش دو مجموعه73
2-6- جمع بندی74
فصل سوم: مدل سازی مسأله و توسعه الگوریتم‌ها76
3-1- مسأله موردتحقیق77
3-2- طراحی الگوریتم‌ها81
3-2-1- تطبیق الگوریتم‌ها با مسئله موردبررسی81
3-2-1-1- ساختار حل‌ها81
3-2-1-2- معیار توقف82
3-2-2- تطبیق الگوریتم NSGA-II برای مسئله موردبررسی83
3-2-3- تطبیق الگوریتم CNSGA-II برای مسئله موردبررسی84
3-2-4- تطبیق الگوریتم NRGA برای مسئله موردبررسی85
3-2-5- تطبیق الگوریتم MISA برای مسئله موردبررسی85
3-2-6- تطبیق الگوریتم VIS برای مسئله موردبررسی85
3-2-7- تطبیق الگوریتم NNIA برای مسئله موردبررسی86
فصل چهارم: تجزیه و تحلیل داده‌ها87
4-1- تولید مسأله نمونه88
4-2- اندازه گیری عملکرد الگوریتم‌ها براساس معیارها89
4-3- تجزیه و تحلیل نتایج92
فصل پنجم: نتیجه گیری و مطالعات آتی100
5-1- نتیجه گیری101
5-2- مطالعات آتی102
فهرست منابع و مراجع103
پیوست الف: محاسبه معیارهای هشت گانه برای الگوریتم های استفاده شده105
پیوست ب: نمودارهای بدست آمده از تجزیه و تحلیل نتایج113
پیوست ج: یک نمونه مسئله حل شده توسط الگوریتم NSGA-II118
پیوست د: کد برنامه نویسی الگوریتم NSGA-II در محیط MATLAB123

فهرست اشکال
شکل 2-1- مدل پایه‌ای صف36
شکل 2-2- مجموعه حل‌های غیرمغلوب41
شکل 2-3- نمایشی از نحوه عملکرد NSGA-II43
شکل2-4- الگوریتم NRGA47
شکل 2-5- سلول B، آنتی ژن، آنتی بادی، اپیتوپ، پاراتوپ و ادیوتوپ50
شکل 2-6- فلوچارت الگوریتم MISA57
شکل 2-7- یک شبکه تطبیقی برای رسیدگی به حافظه ثانویه60
شکل 2-8- فلوچارت الگوریتم VIS62
شکل 2-9- تکامل جمعیت NNIA65
شکل 2-10- نمایش حل‌های مناسب69
شکل 2-11- مساحت زیر خط رگرسیون70
شکل 2-12- بیشترین گسترش73
شکل 3-1- مکانیسم عملگر تقاطع83
شکل 4-1- نمودار همگرایی الگوریتم‌ها براساس شاخص MID90
شکل 4-2- نتیجه بدست آمده از آنالیز واریانس برای معیار تعداد جواب‌های غیرمغلوب94
شکل 4-3- نتیجه بدست آمده از آزمون توکی برای معیار تعداد جواب‌های غیرمغلوب95
شکل 4-4- نتیجه به دست آمده از آنالیز واریانس برای تعداد جواب‌های غیرمغلوب97

فهرست جداول
جدول 4-1- مشخصات هر نمونه88
جدول 4-2- گروه بندی الگوریتم‌ها براساس معیار تعداد جواب‌های غیرمغلوب96
جدول 4-3- مقایسه الگوریتم‌ها ازنظر معیارهای مختلف و در حالت‌های گوناگون98
جدول 4-4- متوسط معیارهای الگوریتم‌ها و رتبه بندی الگوریتم‌ها براساس آن99
4221207272
82867519050 1
00 1

تعریف مسأله

1-1- مقدمه
با رشد روز افزون معاملات تجاری در سطح جهان و در سال‌های اخیر، ظهور پدیده تجارت الکترونیک و بانکداری الکترونیک به عنوان بخش تفکیک ناپذیر از تجارت الکترونیک مطرح شد. بانکداری الکترونیک اوج استفاده از فناوری انفورماتیک و ارتباطات و اطلاعات برای حذف دو قید زمان و مکان از خدمات بانکی است. ضرورت یک نظام بانکی کارامد برای حضور در بازارهای داخلی و خارجی ایجاب می‌کند تا بانکداری الکترونیک نه به عنوان یک انتخاب، بلکه ضرورت مطرح شود. امروزه پایانه فروش، پایانه شعب، دستگاه‌های خودپرداز و ... نماد بانکداری الکترونیک است و یافتن مکان بهینه برای این پایانه‌ها و دستگاه‌ها می‌تواند نقش مهمی در حضور یک بانک یا مؤسسه در بازارهای داخلی و خارجی داشته باشد [1].
1-2- مکانیابی تسهیلات
فرض کنید که یک شرکت رسانه‌ای می‌خواهد که ایستگاه‌های روزنامه را در یک شهر ایجاد کند. این شرکت در حال حاضر جایگاه‌هایی را به صورت بالقوه در شهرهای همسایه اش مشخص کرده‌است و هزینه ایجاد و نگهداری یک جایگاه را می‌داند. همچنین فرض کنید که تقاضای روزنامه در هر شهر همسایه مشخص است. اگر این شرکت بخواهد تعدادی از این ایستگاه‌ها را ایجاد کند، باتوجه به مینیمم کردن کل هزینه‌های ایجاد و نگهداری این ایستگاه‌ها و همچنین متوسط مسافت سفر مشتریان، این ایستگاه‌ها در کجا باید واقع شوند؟
سؤال قبل یک مثال از مسأله مکانیابی تسهیلات بود. مکانیابی تسهیلات یعنی اینکه مجموعه‌ای از تسهیلات (منابع) را به صورت فیزیکی به گونه‌ای در یک مکان قراردهیم که مجموع هزینه برآورده کردن نیازها (مشتریان) باتوجه به محدودیت‌هایی که سر راه این مکانیابی قرار دارد، مینیمم گردد.
از سالهای 1960 به این طرف مسائل مکانیابی یک جایگاه ویژه‌ای را در حیطه تحقیق در عملیات اشغال کرده‌اند. آنها وضعیت‌های مختلفی را درنظر گرفته‌اند که می‌توان به موارد ذیل اشاره کرد: تصمیم گیری در مورد مکان کارخانجات، انبارها، ایستگاه‌های آتش نشانی و بیمارستان‌ها.
به طور اساسی، یک مسأله مکانیابی بوسیله چهار عنصر زیر توصیف می‌شود:
مجموعه‌ای از مکانها که در آن‌ها، تسهیلات ممکن است ایجاد یا باز شوند. برای هر مکان نیز بعضی اطلاعات درمورد هزینه ساخت یا باز نمودن یک تسهیل در آن مکان مشخص می‌شود.
مجموعه‌ای از نقاط تقاضا (مشتریان) که برای سرویس دهی به بعضی از تسهیلات اختصاص داده شوند. برای هر مشتری، اگر بوسیله یک تسهیل معینی خدمت‌رسانی شود، بعضی اطلاعات راجع به تقاضایش و درمورد هزینه یا سودش بدست می‌آید.
لیستی از احتیاجات که باید بوسیله تسهیلات بازشده و بوسیله تخصیص نقاط تقاضا به تسهیلات برآورده شود.
تابعی از هزینه یا سودهایی که به هر مجموعه از تسهیلات اختصاص پیدا می‌کند.
پس هدف این نوع مسائل، پیدا کردن مجموعه‌ای از تسهیلات است که باید باتوجه به بهینه کردن تابع مشخصی باز شوند.
مدل‌های مکانیابی در یک زمینه گسترده از کاربردها استفاده می‌شود. بعضی از این موارد شامل موارد ذیل است: مکانیابی انبار در زنجیره تأمین برای مینیمم کردن متوسط زمان فاصله تا بازار؛ مکانیابی سایت‌های مواد خطرناک برای مینیمم کردن درمعرض عموم قرار گرفتن؛ مکانیابی ایستگاه‌های راه آهن برای مینیمم کردن تغییرپذیری زمان بندی‌های تحویل بار؛ مکانیابی دستگاه‌های خودپرداز برای بهترین سرویس دهی به مشتریان بانک و مکانیابی ایستگاه‌های عملیات تجسس و نجات ساحلی برای مینیمم کردن ماکزیمم زمان پاسخ به حادثه‌های ناوگان دریایی. با اینکه این پنج مسأله توابع هدف مختلفی دارند، همه این مسائل در حوزه مکانیابی تسهیلات واقع می‌شوند. درواقع، مدل‌های مکان‌یابی تسهیلات می‌توانند در موارد ذیل متفاوت باشند: توابع هدفشان، معیارهای فاصله‌ای که به کار می‌برند، تعداد و اندازه تسهیلاتی که قرار است مکانیابی شوند و چندین معیار تصمیم گیری مختلف دیگر. بسته به کاربرد خاص هر مسأله، درنظرگرفتن این معیارهای مختلف در فرموله کردن مسأله، منتهی به مدل‌های مکانیابی بسیار متفاوتی خواهدشد.
1-3- بیان مسأله
هدف از اجرای این تحقیق، مکان‌یابی سیستم‌های خدمات رسانی ثابت با ظرفیت خدمت محدود می‌باشد. یعنی دستگاه‌های خدمت‌رسان به چه تعداد و در چه محل‌هایی استقرار یابند و چه مراکز تقاضایی به این دستگاههای خدمت‌رسان تخصیص یابند. در چنین سیستم‌هایی، زمانی که برای انجام سرویس موردنیاز است تصادفی است و همچنین تقاضای انجام خدمت در نقاط تصادفی از زمان می‌رسند که این تقاضا از جمعیت بزرگی از مشتریان سرچشمه می‌گیرد و معمولاً این سرویس‌دهی در نزدیک ترین تسهیل انجام می‌شود. چنین سیستم‌های خدمت‌رسانی، سیستم‌های صف را تشکیل می‌دهند. مدل‌های مختلفی برای حل این مسائل مکان‌یابی سیستم صف ارائه شده‌است.
دو ناحیه کاربردی وجود دارد که ما با این مدل‌ها روبه رو می‌شویم [4]: اولی در طراحی سیستم ارتباط کامپیوتری مانند اینترنت می‌باشد. در یک سیستم ارتباط کامپیوتری، ترمینال‌های مشتری (کاربران اینترنت) به کامپیوترهای میزبان (سرورهای پروکسی، سرورهای آینه) وصل می‌شوند که قابلیت پردازش بالا و/یا پایگاه داده‌های بزرگ میزبان دارند. زمانی که طول می‌کشد تا سرور درخواست را پردازش کند بستگی به سرعت پردازش سرور و و نوع درخواست دارد که آن هم تصادفی است. زمانی که مشتری برای پاسخ سرور منتظر می‌ماند نیز بستگی به تعداد و اندازه درخواست‌های داده‌ای است که در حال حاضر در صف هستند. به طور کلی، درخواست‌های مشتری‌ها به نزدیکترین سرور وصل می‌شود. این مکان و ظرفیت سرورها، پارامترهای طراحی بحرانی هستند. این انتخاب پارامترها تأثیری قابل توجه روی کیفیت خدمات دارد، به طوری که بوسیله یک مشتری درک می‌شود.
کاربرد دوم شامل طراحی یک سیستم دستگاه خودپرداز برای بانک است. مشتری‌ها به صورت تصادفی به یک دستگاه خودپرداز می‌رسند. اگر هنگامی‌که آن‌ها می‌رسند، دستگاه آزاد باشد، آن‌ها بلافاصله سرویس دهی می‌شوند. در غیر این صورت ، آن‌ها به صف می‌پیوندند یا آن جا را ترک می‌کنند. زمان تصادفی که یک مشتری در یک دستگاه سپری می‌کند بستگی به تعداد و نوع تراکنشی (مثلاً مانده حساب، دریافت وجه، انتقال وجه و غیره) دارد که او انجام می‌دهد. منبع قابل توجه دیگر زمان مشتری در یک دستگاه، شامل تأخیر ارسال در مدت شبکه ارتباط بانک است. از آن جا که دستگاه‌ها ثابت هستند، مشتری‌ها باید به یک مکان خودپرداز مراجعه کنند تا یک تراکنش را انجام دهند. گاهی اوقات، مردم در طول مسیر خود (مثلاً از خانه به محل کار) برای استفاده از یک دستگاه خودپرداز به آن مراجعه می‌کنند؛ گاهی اوقات هم، آن‌ها آن را طبق یک مسیر از پیش برنامه‌ریزی‌شده (مثلاً مسیر روزانه بین خانه و کار) استفاده می‌کنند. به طور کلی، آن‌ها از تسهیل با کمترین هزینه قابل‌دسترس استفاده می‌کنند. برای مثال، هنگامی‌که هزینه‌ها بوسیله مسافت سفر تعیین می‌شود، مشتری‌ها نزدیکترین تسهیل به محل کار/خانه یا نزدیکترین مسیر روزانه شان را انتخاب می‌کنند. ما فرض می‌کنیم که مشتری‌ها هیچ اطلاعی از تأخیرات دستگاه‌های خودپرداز ندارند و از این رو نزدیکترین تسهیل را برای درخواست سرویسشان انتخاب می‌کنند.
فرضیاتی که برای این مسأله درنظر گرفته می‌شود به شرح زیر می‌باشد:
گره مشتری وجود دارد که هر یک درخواستی را برای سرویس ایجادمی‌کند؛
تعداد درخواست‌ها در واحد زمان، یک جریان پوآسن مستقل را تشکیل می‌دهند؛
گره خدمت‌رسان بالقوه وجود دارد؛
مشتریان از مراکز تقاضا به سمت مکان این دستگاه‌ها حرکت می‌کنند؛
هر جایگاه خدمت فقط یک خدمت دهنده دارد؛
زمان سرویس یک دستگاه به صورت تصادفی و توزیع نمایی دارد؛
مکان دستگاه‌ها ثابت هستند؛
مشتری‌ها بوسیله نزدیکترین دستگاه خودپرداز خدمت‌رسانی می‌شوند؛
میزان زمان انتظار مشتریان در صف نباید از یک حد ازپیش تعیین شده، فراتر رود؛
ماکزیمم تعداد دستگاه‌های خدمت‌رسان از قبل تعریف شده‌است.
در مسائل مکان‌یابی تک هدفه، هدف مسأله معمولاً هزینه یا پوشش بوده‌است، امّا در مسائل چندهدفه، حداقل یک هدف دیگر وجود دارد که باتوجه به طبیعت این گونه مسائل، با هدف اوّلی درتضاد است.
براین اساس، ما مروری بر روی اهدافی که در مسائل مکان‌یابی چندهدفه توسعه یافته می‌کنیم. این اهداف می‌توانند به صورت زیر توصیف شوند:
هزینه: انواع مختلفی از هزینه وجود دارد. این انواع می‌توانند به دو قسمت ثابت و متغیر تقسیم شوند. هزینه‌های ثابت شامل هزینه شروع و نصب به همراه سرمایه گذاری می‌باشد. هزینه‌های متغیر می‌تواند هزینه حمل و نقل، عملیات، تولید، خدمات، توزیع، تدارکات، دفع پسماند، نگهداری و محیطی باشد. هزینه حمل و نقل بیشترین و هزینه نصب بعد از آن قرار دارد. مسائل مختلفی از یک معیار «هزینه کل» استفاده کرده‌اند که شامل همه هزینه‌ها تحت یک هدف می‌شود.
ریسک‌های محیطی: این هدف شامل ریسک حمل و نقل، ریسک طبیعی، دفع پسماند یا ریسک رفتاری، یا «اثرات نامطلوب» عمومی است که جایگاه بزرگی دارد. به هر حال نسبت ریسک محیطی در مسائل مکان‌یابی کمتر از دیگر هزینه‌هاست.
پوشش: تقریبا مجموعه کامل مسائل مکان‌یابی درباره پوشش مسافت، زمان، مبلغ و یا حتی انحراف پوشش است. اگرچه بسیاری از مسائل از مسافت و پوشش جمعیّت به عنوان هدفشان استفاده می‌کنند، اما در بعضی مسائل نیز زمان مهّم است.
مفهوم تساوی نیز در این طبقه قرار می‌گیرد، زیرا این نوع مسائل، روشی منصفانه در برخورد با مسأله پوشش دارند.
سطح و کارائی خدمت: در این طبقه، هدف سطح سرویس به همراه کارائی قرارمی‌گیرد.
سود: بعضی مسائل به سود خالص (تفاوت بین سودها و هزینه‌ها) علاقمندند.
اهداف دیگر: بعضی اهداف دیگر که در مسائل مکان‌یابی استفاده می‌شوند، مانند دستیابی به منابع به همراه ریسک‌های سیاسی و اجتماعی که نمی‌توانند در دیگر دسته‌ها قرار بگیرند.
سه هدف برای مسأله موردنظر ما درنظر گرفته شده‌است که هدف اول، مینیمم کردن متوسط تعداد مشتریان درحال سفر؛ هدف دوم، مینیمم کردن متوسط تعداد مشتریان در حال انتظار و هدف سوم، ماکزیمم کردن مجموع کارکرد دستگاه‌ها در واحد زمان می‌باشد.
1-4- روش حل
به طور کلی مسائل مکانیابی تسهیلات اصولاً NP-Hardهستند و بعید است بدون کاربرد الگوریتم‌های فراابتکاری بتوان حلّی بهینه را در زمان معقول پیدا کرد و زمان محاسباتی نیز با توجه به اندازه مسأله به صورت نمایی افزایش می یابد.
مسائل بهینه یابی چندهدفه، به طور کلی با یافتن حل‌های بهینه پارتو یا حل‌های مؤثّر کارمی‌کنند. چنین حل‌هایی غیرمغلوب هستند، یعنی هنگامی‌که همه اهداف درنظر گرفته شوند، هیچ حل دیگری برتر از آن‌ها نیست. بیشترین روش‌هایی که برای حل مسائل بهینه سازی چندهدفه به کار می‌روند، روشهای ابتکاری و فراابتکاری هستند.
برای مسائلی که در کلاس NP-Hard قرار می گیرند، تاکنون روش‌های دقیقی که بتواند در حالت کلی و در زمانی معقول به جواب دست یابد توسعه داده نشده‌است. از این رو روش‌های ابتکاری و فراابتکاری مختلفی را برای حل این دسته از مسائل به کار می برند تا به جواب‌های بهینه یا نزدیک به بهینه دست یابند.
در این تحقیق سعی شده‌است که از چندین الگوریتم بهینه سازی چندهدفه استفاده شود. الگوریتم NSGA-II به این خاطر انتخاب شده‌است که این الگوریتم در بسیاری از مقالات به عنوان الگوریتم مرجع مقایسه گردیده‌است. الگوریتم CNSGA-II نیز به این علت انتخاب شده‌است که روشی مناسب برای برخورد با محدودیت‌های حل مسأله ارائه می‌کند. چون باتوجه به ماهیت مسأله، چندین محدودیت سر راه حل مسأله ایجاد شده‌است که راهکار مناسبی برای رسیدگی به این محدودیت‌ها ایجاب می‌کند. الگوریتم NRGA نیز چون جزء جدیدترین الگوریتم‌های ارائه شده در زمینه بهینه سازی چندهدفه می‌باشد مورداستفاده قرار گرفته‌است. در سال‌های اخیر، الگوریتم‌های بهینه سازی مبتنی بر ایمنی مصنوعی بسیار مورد توجه قرار گرفته‌است که به همین علت، ما در این تحقیق سعی بر آن داریم که از کارآمدترین این الگوریتم‌ها استفاده کنیم. از میان الگوریتم‌های چندهدفه ایمنی، ما از MISA، VIS و NNIA استفاده کرده ایم که در ادامه و در بخش‌های بعدی به نتایج خوبی که دراثر استفاده از این الگوریتم‌ها بدست می‌آید، اشاره می‌کنیم.
1-5- اهمیت و ضرورت تحقیق
امروزه پایانه فروش، پایانه شعب، دستگاه‌های خودپرداز و ... نماد بانکداری الکترونیک است و یافتن مکان بهینه برای این پایانه‌ها و دستگاه‌ها می‌تواند نقش مهمی در حضور یک بانک یا مؤسسه در بازارهای داخلی و خارجی داشته باشد.
در این تحقیق سعی شده‌است که محدودیت‌ها و چالش‌های فراروی این مسأله در دنیای واقعی تا حد ممکن درنظر گرفته شود. به همین منظور محدودیت‌هایی ازقبیل ماکزیمم دستگاه خدمت‌رسانی که می‌تواند به کار گرفته شود و حدّ بالای زمان انتظار برای مشتریان منظور شده‌است. همچنین به‌دلیل اینکه یک هدف، پاسخگوی انگیزه ایجاد شده برای انجام این طرح نمی‌باشد، این مسأله به صورت یک مسأله چند هدفه درنظر گرفته شده‌است تا به دنیای واقعی هر چه نزدیکتر گردد تا در درجه اول سود بانک یا مؤسسه ازطریق انتخاب بهینه دستگاه‌های خودپرداز افزایش یابد و در درجه دوم رضایت مشتریان جلب گردد، به صورتی که هم پوشش مناسب برای خدمت‌رسانی داده شود و هم مدت زمان خدمت‌رسانی به مشتریان حداقل گردد.
1-6- اهداف تحقیق
اهدافی که برای اجرای این تحقیق درنظر گرفته شده‌است عبارتند از:
مروری بر مدل‌های مکانیابی تسهیلات به صورت کلّی
مروری بر مدل‌های مکانیابی تسهیلات با تقاضای تصادفی و تراکم
بهینه نمودن استفاده از دستگاه‌های‌های خدمت‌رسان؛ یعنی دستگاه‌های خدمت‌رسان به چه تعداد و در چه محل‌هایی استقرار یابند و چه مراکز تقاضایی به این دستگاههای خدمت‌رسان تخصیص یابند، به‌صورتی که هم رضایت مشتریان جلب شود (این هدف را به صورت کمینه کردن مجموع زمان خدمت‌رسانی به مشتریان که شامل زمان سفر مشتریان از مراکز تقاضا به مراکز خدمت‌رسانی و زمان انتظار آنها برای خدمت‌رسانی درنظر گرفته ایم) و هم مجموع کارکرد دستگاه‌ها بیشینه گردد.
تطبیق الگوریتم‌های مختلف با مسئله مورد بررسی
تجزیه و تحلیل الگوریتم‌های مختلف با استفاده از روشهای مقایسه الگوریتم‌ها
1-7- جمع بندی
مسأله مکانیابی تسهیلات در حالت کلی به عنوان یک مسأله NP-Hard شناخته می‌شود. به‌خصوص در حالتی که محدودیت‌های دیگری نظیر محدودیت انتظار مشتریان در صف و محدودیت در تعداد تسهیلات باز شده نیز مطرح باشد، پیچیدگی این مسأله چندین برابر می‌شود.
هدف اول، مینیمم کردن متوسط تعداد مشتریان درحال سفر؛ هدف دوم، مینیمم کردن متوسط تعداد مشتریان در حال انتظار و هدف سوم، ماکزیمم کردن مجموع کارکرد دستگاه‌ها در واحد زمان می‌باشد.
پایان نامه دارای ساختار زیر است: در فصل دوم برای آنکه خواننده با مفاهیمی که در این پایان‌نامه به کار گرفته شده‌است و همچنین موضوعاتی که در این تحقیق مطرح می‌شود، مروری جامع بر ادبیات موضوعات در بخش‌های مختلف اعم از مکانیابی تسهیلات به صورت کلی، مکانیابی تسهیلات باتوجه به مسأله مطرح شده و محدودیت‌های ایجاد شده به عمل آمده‌است. همچنین الگوریتم‌های چندهدفه‌ای که در این پروژه - ریسرچبه کار گرفته شده‌است به طور عمومی معرفی و تشریح می‌شوند. باتوجه به اینکه سه الگوریتم از این الگوریتم‌ها از مبحث ایمنی مصنوعی است، سعی شده‌است تا مروری مختصر بر این موضوع نیز انجام شود. در آخر نیز روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه معرفی شده‌اند.
در فصل سوم ابتدا درمورد مسئله مورد بررسی این تحقیق توضیحات کافی داده می شود و اهداف و محدودیت های فراروی آن شرح داده می شود. سپس، در قسمت طراحی الگوریتم‌ها، الگوریتم‌های درنظر گرفته شده را با مسئله مورد بررسی تطبیق می دهیم.
در فصل چهارم پس از اینکه درمورد تولید مسائل نمونه صحبت کردیم، به تجزیه و تحلیل و مقایسه الگوریتم‌ها خواهیم پرداخت که این کار را به این صورت انجام می‌دهیم که ابتدا معیارهای مختلف را برای تمامی الگوریتم‌ها اندازه گیری کرده و سپس این نتایج را باتوجه به روش‌های موجود درزمینه تحلیل واریانس، مورد تجزیه و تحلیل قرارمی‌دهیم.
در فصل پنجم نیز پس از مروری کلّی بر تحقیقی که انجام شده، چند زمینه تحقیق برای مطالعات آتی به خوانندگان پیشنهاد می‌شود.
4221207272
82867519050 2
00 2

مرور ادبیات

2-1- مقدمه
در این فصل، ابتدا به بحث درباره موضوع مکانیابی تسهیلات می پردازیم. در ابتدا، به مروری بر ادبیات این موضوع می پردازیم. در ادامه، مسائل پوشش که مهمترین و پرکاربردترین مباحث در این حوزه است را توضیح داده و مدل های دیگر مکانیابی تسهیلات را معرفی می نمائیم. سپس باتوجه به اینکه مسئله ما در حیطه مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکم می باشد، به مرور ادبیات این حیطه و خصوصیات این نوع مدل ها می پردازیم. سپس سیستم صف و مسائلی که در این حوزه و ادامه تحقیق، موردنیاز است، شرح داده می شود. همچنین الگوریتم‌های چندهدفه‌ای که در این پروژه - ریسرچبه کار گرفته شده‌است به طور عمومی معرفی و تشریح می‌شوند. باتوجه به اینکه سه الگوریتم از این الگوریتم‌ها از مبحث ایمنی مصنوعی است، سعی شده‌است تا مروری مختصر بر این موضوع نیز انجام شود. در آخر نیز روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه معرفی شده‌اند.
2-2- مکانیابی تسهیلات
2-2-1- مرور ادبیات در موضوع مکانیابی تسهیلات [5]
می‌توان استدلال نمود که تحلیل‌های مکانیابی در قرن هفدهم و با مسأله پیِر دِ فِرمَت شروع شد: فرض کنید که سه نقطه در یک صفحه وجود دارد، نقطه چهارمی را پیداکنید به صورتی که مجموع فواصلش تا سه نقطه فرض شده مینیمم گردد. اِوانجلیستا توریچلی نیز یکی از کسانی است که ساختارهای فضایی که نیاز به یافتن یک چنین میانه‌های فاصله‌ای یا «نقاط توریچلی» دارند، به آن نسبت داده شده‌است. به هر حال در قرن اخیر، با «مسأله وِبِر» از آلفرد وِبِر و بعضی از گسترش‌های بعدی اش در مسئله درِزنر و همکارانش دوران جدید تحلیلهای مکانیابی با کاربردش در مکانیابی صنعتی شروع می‌شود. مسأله وِبِر نقاطی را در یک سطح پیدا می‌کند که مجموع فواصل اقلیدسی وزن‌دهی شده آن تا یک مجموعه نقاط ثابت مینیمم گردد. این مسأله به این صورت تفسیر می‌شود که مکان یک کارخانه را به گونه‌ای پیداکنیم که کل مسافت وزن دهی شده آن از تأمین کنندگان و مشتریان مینیمم گردد، که وزن‌ها بیانگر حجم مبادلات می‌باشد، مثل وزن موادی که باید از یک تأمین‌کننده منتقل شود یا حجم محصولات نهایی که برای یک مشتری ارسال می‌شود.
تنها در دهه 60 و 70، با فراهم بودن گسترده قدرت محاسبات برای پردازش و تحلیل مقادیر بزرگی از داده‌ها بود که ما شروع واقعی بهینه سازی جدید و به همراه آن، تحقیق در مسائل مکانیابی را مشاهده می‌کنیم. این دوره را به این دلیل دوره بلوغ تحلیلهای مکانیابی می‌نامند که گرایش زیادی به مطالعه p-median کلاسیک، p-center، پوشش مجموعه، مکانیابی تأسیسات ساده و مسائل تخصیص درجه دوم و گسترش آنها پیدا شد.
در این دوره، کوپر مسأله تک تسهیلی وِبِر را گسترش داد تا مسأله تخصیص-مکانیابی چندتسهیلی را ایجاد کند. سپس مارانزانا این مسأله را از فضای پیوسته به شبکه گسترش داد. به هر حال حکیمی است که شالوده تحقیق در p-median و مسائل دیگر در یک شبکه را کامل می‌کند. مسأله p-median شبیه مسأله وِبِر در یک سطح، مکان p نقطه را در یک شبکه به گونه‌ای پیدا می‌کند که کل مسافت وزن دهی شده با تقاضا را تا نزدیکترین تسهیل مینیمم می‌کند. به علاوه حکیمی مسأله p-center اصلی را ارائه می‌کند که مکان p نقطه را در یک شبکه به گونه‌ای پیدا می‌کند که ماکزیمم مسافت تقاضا تا نزدیکترین تسهیل مینیمم گردد. نتیجه مهم قضیه حکیمی نیز مشخص است، یعنی اینکه یک حل در مسأله p-median، همیشه در گره‌های یک شبکه در مسأله واقع می‌شود، درحالیکه یک حل در مسأله p-center لزومی ندارد که در گره‌ها واقع شود. کاریف و حکیمی اثبات می‌کنند که مسائل p-center و p-median، NP-Hard هستند.
مدلهای پوشش، مسائلی را درنظر می‌گیرند که تقاضاها باید در یک مسافت مطمئنی از زمان سفر پوشش داده شوند. تورِگاس و همکارانش روش حلی را برای اینگونه مسائل که در کاربرد با نام مسأله پوشش مجموعه (LSCP) شناخته می‌شود را فرمول بندی و ارائه کردند. مکان تسهیلات برای خدمات اورژانسی از این مسأله الهام می‌شوند. چِرچ و رِوِله، مسأله مکانیابی حداکثر پوشش (MCLP) را ارائه کردند. این مسأله، مکانهای بهینه‌ای را برای تعداد معیّنی از تسهیلات پیدا می‌کند که جمعیّتی که درون یک فاصله خدمت‌رسانی مشخص، پوشش داده می‌شوند، حداکثر گردد.
دیگر مسأله بنیادی با مفهوم پوشش، مسأله تخصیص درجه دوم (QAP) می‌باشد که به دلیل طبیعت درجه دوّم فرموله کردن تابع هدفش به این نام خوانده می‌شود. تعدادی (N) تسهیل که در همان تعداد جایگاه (N) به گونه‌ای واقع می‌شوند که کل هزینه انتقال مواد درمیان آنها مینیمم گردد. هزینه حرکت مواد بین هر دو مکان بوسیله ضرب یک وزن یا جریان در فاصله بین مکان‌ها بدست می‌آید. مدل خطی آن بوسیله کوپمنس و بِکمن ارائه شد که مورد خاصی از مسأله حمل و نقل شناخته شده‌است. این مسأله NP-Hard علائق بسیاری را برای تحقیق ایجاد کرد و هنوز هم حل آن در هر اندازه ای، بسیار سخت به نظر می‌رسد.
دهه 80 و 90 تحقیقاتی را در تحلیل مکانیابی دید که به رشته‌های دیگر نیز گسترش پیدا کرد و نتایج سودمندی را از دیدگاه مدل سازی و کاربرد بدست آورد. این نوآوری‌ها تا به امروز نیز ادامه دارد.
از جمله این مدل‌ها می‌توان به مکان‌یابی رقابتی، مکان تسهیلات گسترده، مکانیابی تصادفی، مسیریابی، مکان‌یابی هاب و جلوگیری از جریان اشاره کرد. به عنوان کاربردهای جدید در این دوران می‌توان به ناحیه‌هایی ازجمله برنامه ریزی خدمات اورژانسی، کاربردهای محیط زیستی همچون تسهیلات زیان آور و ترکیب مکانیابی با مدیریت زنجیره تأمین اشاره کرد.
مدلهای مکانیابی رقابتی: حکیمی مدلهای رقابتی را درون تئوری مکانیابی وارد کرد. بیشتر نتایج در این زمینه یک فضای گسسته یا یک شبکه را درنظر می‌گیرند. اخیراً مدل‌های مکانیابی رقابتی پیوسته توسط داسکی و لاپورته ارائه شده‌است.
مدلهای مکانیابی تسهیلات گسترده: یک تسهیل اگر در مقایسه با محیطش، خیلی کوچکتر از یک نقطه به نظر برسد، گسترده نامیده می‌شود. چنین مدل‌هایی بارها در وضعیت‌های طراحی شبکه به کار گرفته شده‌است. مِسا و بوفی یک سیستم دسته بندی شامل مسائلی برای تعیین خط مسیر حمل و نقل مواد خطرناک ارائه کردند. اخیراً یک مثال بوسیله بریمبرگ و همکارانش آورده شده‌است که مسأله مکانیابی یک دایره درون یک کره را درنظر می‌گیرد، به صورتی که فاصله از تسهیلات موجود باید مینیمم گردد.
مکانیابی تصادفی: مدلهای مکانیابی تصادفی هنگامی رخ می‌دهند که داده‌های مسأله فقط به روشی احتمالی شناخته شوند. بِرمن و همکارانش مسائلی را درنظر گرفتند که ورود به تسهیلات به صورت تصادفی است و اثر تراکم نیز باید درنظر گرفته می‌شد. لوگندران و تِرِل یک مسأله LA با ظرفیت نامحدود را با تقاضاهای تصادفی حسّاس به قیمت درنظر گرفتند. بِرمن و کراس یک کلاس کلی از «مسائل مکانیابی با تقاضای تصادفی و تراکم» را ارائه کردند.
مسیریابی مکان: ترکیب تحلیلهای مکانیابی با زمینه‌های شناخته شده مسائل مسیریابی وسایل نقلیه، ناحیه جدید دیگری از مدل سازی، یعنی مسیریابی مکان را ایجاد می‌کند.
مکانیابی هاب: در چنین مسائل مکانیابی، هاب‌ها به عنوان متمرکزکننده‌ها یا نقاط سوئیچینگ ترافیک عمل می‌کنند، خواه برای مسافران خطوط هوایی باشد، خواه بسته‌های کوچک در سیستمهای سوئیچینگ. جریان بین منابع و مقاصد اساس مدل سازی این دسته از مسائل را تشکیل می‌دهد. اُکِلی اساس تحلیلهای مکانیابی هاب را بنانهاد. آن مدل‌ها به صورتی مدل سازی شد تا بهترین مکان‌ها برای متصل کردن ترمینال‌ها را باتوجه به مینیمم کردن هزینه‌های کل تراکنش‌ها، پیدا کند.
جلوگیری از جریان: در بسیاری از مسائل مکانیابی، تقاضاها فرض می‌شوند که در گره‌های یک شبکه رخ می‌دهند. یک تغییر جالب که بوسیله مسائل فرض می‌شود این است که تقاضا بوسیله جریانی از وسایل نقلیه یا پیاده‌هایی که از میان اتصالات شبکه عبور می‌کنند، ارائه می‌شوند. ازجمله کاربردهای این حیطه می‌توان به دستگاه‌های خودپرداز و ایستگاه‌های نفتی اشاره کرد. چنین مسائلی اولین بار توسط هاچسون و بِرمن و همکارانش ارائه شد.
مکانیابی یا جابجایی وسایل خدمات اورژانسی: مقدار شگرفی از تحقیقات در مطالعه مکانیابی وسایل خدمات اورژانسی ایجاد شده‌است. چَپمن و وایت اولین کار را برحسب محدودیت‌های کاربردی که در LSCP کاربرد دارد، ارائه کردند. مطالعه میرچندانی و اُدُنی زمان‌های سفر تصادفی را در مکانیابی تسهیلات اورژانس درنظر می‌گیرد. همچنین باتوجه به کاربردهای وسایل اورژانسی، مدل MEXCLP که توسط داسکین ارائه شده‌است، مدل MCLP را با محدودیت‌های احتمالی گسترش می‌دهد. رِپِده و برناردو، مدل TIMEXCLP را ارائه کردند که MEXCLP را با تغییر تصادفی در تقاضا گسترش می‌دهد.
کاربردهای مرتبط با محیط زیست: تسهیلات زیان آور و مفاهیم دیگر: بعضی از تحلیلهای مکانیابی در موضوع محیط زیست، مربوط به مکان تسهیلاتی می‌شود که برای جمعیت مجاورشان مضر یا نامطبوع هستند. گُلدمن و دیِرینگ و همچنین چِرچ و گارفینکل جزء اولین افرادی بودند که مکانیابی برای تسهیلات زیان آور یا تسهیلاتی که ترجیح می‌دهیم دور از دسترس باشند را درنظر گرفتند.
تحلیلهای مکانیابی با مدیریت زنجیره تأمین: مدیریت زنجیره تأمین (SCM) شامل تصمیمات درمورد تعداد و مکان تسهیلات و جریان شبکه در حیطه تأمین، تولید و توزیع می‌شود. در اولین کارها در برنامه ریزی پویا، بالُو از برنامه نویسی پویا برای جابجایی انبارها در طول دوره برنامه‌ریزی استفاده می‌کند. جئوفریون و پاورز محیطی یکپارچه را بین مکان و SCM درنظر می‌گیرد.
2-2-2- معیارهای دسته بندی مدلهای مکانیابی
مدلهای مکانیابی تسهیلات می‌توانند باتوجه به اهداف، محدودیتها، حل‌ها و دیگر خصوصیات دسته بندی شوند. در زیر، هشت معیار رایجی که برای دسته بندی مدل‌های مکانیابی تسهیلات سنتی استفاده می شود، آورده شده‌است ‍‍[6]:
مشخصات مکان: مشخصات مکان تسهیلات و جایگاه‌های تقاضا شامل مدل‌های مکانیابی پیوسته، مدل‌های شبکه گسسته، مدل‌های اتصال هاب و غیره می‌شود. در هر یک از این مدل‌ها، تسهیلات می‌توانند فقط در جایگاه‌هایی واقع شوند که توسط شرایط مکانی مجاز هستند.
اهداف: هدف یکی از معیارهای مهم برای دسته بندی مدل‌های مکانیابی است. هدف مدل‌های پوشش، مینیمم کردن تعداد تسهیلات برای پوشش همه نقاط تقاضا یا ماکزیمم کردن تعداد تسهیلاتی است که باید پوشش داده شوند. هدف مدل‌های p-center مینیمم کردن ماکزیمم فاصله (یا زمان سفر) بین نقاط تقاضا و تسهیلات است. آن‌ها اغلب برای بهینه کردن تسهیلات در بخش‌های عمومی همچون بیمارستان‌ها، اداره‌های پست و آتش‌نشانی‌ها استفاده می‌شوند. مدل‌های p-median سعی می‌کنند که جمع فاصله (یا متوسط فاصله) بین نقاط تقاضا و نزدیکترین تسهیلشان مینیمم گردد. شرکت‌هادر بخش‌های عمومی اغلب از مدل‌های p-median استفاده می‌کنند تا برنامه توزیع تسهیل را به گونه‌ای بریزند که مزایای رقابتشان را بهبود دهند.
روش‌های حل: روش‌های حل مختلف در مدل‌های مکانیابی مختلف همچون مدل‌های بهینه‌سازی و مدل‌های توصیفی بدست می‌آیند. مدل‌های توصیفی از رویکردهای ریاضی همچون برنامه نویسی ریاضی یا برنامه نویسی عددی استفاده می‌کنند تا حل‌های مختلف را برای سبک و سنگین کردن اکثر اهداف مهم در مقابل یکدیگر جستجو کنند. در مقابل، مدل‌های توصیفی، از شبیه سازی یا رویکردهای دیگری استفاده می‌کنند تا موفقیت دستیابی به الگوی مکانیابی را افزایش دهند تا حلی با درجه مطلوب بدست آید. روش‌های حل ترکیبی نیز بوسیله گسترش مدلهای توصیفی با تکنیک‌های بهینه سازی توسعه داده شده‌است تا مسائل مکانیابی تعاملی یا پویا (مثل سرورهای متحرک) را بسازند.
مشخصات تسهیلات: مشخصات تسهیلات نیز مدل‌های مکانیابی را به انواع مختلف تقسیم می‌کند. مثلاً، محدودیت تسهیل می‌تواند منجر به مدلی با یا بدون ظرفیت خدمت‌رسانی شود، و تکیه تسهیلات به یکدیگر می‌تواند به مدل‌هایی منجر شود که همکاری تسهیلات را به حساب آورند یا نیاورند.
الگوی تقاضا: همچنین مدل‌های مکانیابی می‌توانند براساس الگوهای تقاضا دسته بندی شوند. اگر یک مدل تقاضای انعطاف پذیر داشته باشد، پس آن تقاضا محیطی متفاوت با تصمیمات مکانیابی تسهیلات مختلف خواهد داشت؛ درحالیکه یک مدل با تقاضای غیرانعطاف پذیر، به علت تصمیمات مکانیابی تسهیلات، با آن الگوی تقاضا متفاوت نخواهد بود.
نوع زنجیره تأمین: مدل‌های مکانیابی می‌تواند بوسیله نوع زنجیره تأمینی که درنظر می‌گیرند تقسیم شوند (یعنی مدلهای تک مرحله‌ای درمقابل مدل‌های چند مرحله ای). مدل‌های تک‌مرحله‌ای بر روی سیستمهای توزیع خدمت تنها با یک مرحله تمرکز می‌کنند، درحالیکه مدل‌های چندمرحله ای، جریان خدمات را در طول چند سطح سلسله مراتبی درنظر می‌گیرند.
افق زمانی: افق زمانی، مدل‌های مکانیابی را به مدل‌های استاتیک و پویا دسته بندی می‌کند. مدل‌های استاتیک، کارایی سیستم را با درنظر گرفتن همزمان همه متغیرها بهینه می‌کند. درمقابل، مدل‌های پویا، دوره‌های زمانی مختلف را با تغییر داده‌ها درطول این دوره‌ها درنظر می‌گیرند و حل‌هایی را برای هر دوره زمانی با وفق دادن با شرایط مختلف ارائه می‌کند.
پارامترهای ورودی: روش دیگری برای دسته بندی مدل‌های مکانیابی براساس خصوصیت پارامترهای ورودی به مسأله است. در مدلهای قطعی، پارامترها با مقادیر مشخص پیش بینی می‌شوند و بنابراین، این مسأله، برای حل‌های ساده و سریع، ساده سازی می‌شود. به هر حال، برای بیشتر مسائل جهان واقعی، پارامترهای ورودی ناشناخته هستند و طبیعتاً ماهیت احتمالی/تصادفی دارند. مدل‌های مکانیابی احتمالی/تصادفی برای رسیدگی به ماهیت پیچیده مسائل جهان واقعی از توزیع احتمالی متغیرهای تصادقی استفاده می‌کنند یا مجموعه‌ای از طرحهای ممکن را برای پارامترهای نامعیّن درنظر می‌گیرند.
همچنین مدل‌های مکانیابی می‌توانند براساس مشخصات دیگری همچون مدل‌های تک محصولی درمقابل مدلهای چندمحصولی و یا مدلهای کششی درمقابل مدلهای فشاری متمایز شوند.
2-2-3- مسائل پوشش
ایده اصلی پشت مدلهای پوشش مکانیابی تسهیلات به گونه‌ای است که بعضی خدمات موردنیاز مشتریان فراهم شود. دو هدف برای مکانیابی تسهیلات وجود دارد که آیا همه مشتریان در شبکه با حداقل تسهیلات پوشش داده می‌شوند یا هر تعدادی از مشتریان که ممکن است با تعداد مشخصی از تسهیلات پوشش داده شوند. در اینجا به مسائل پوشش در شبکه می‌پردازیم [7]،[8].
2-2-3-1-مسأله پوشش مجموعه
برای ساده سازی، فرض می‌کنیم که همه مشتریان و تسهیلات در گره‌های شبکه واقع می‌شوند. در ادامه، ما از اندیس i برای اشاره به مشتریان و از اندیس j برای اشاره به تسهیلات استفاده می‌کنیم. همچنین تقاضاها (یا وزن‌ها) در گره i را با و تعداد تسهیلاتی است که باید مکانیابی شوند را با p نمایش می‌دهیم. همچنین ما را به عنوان کوتاهترین مسیر (یا زمان، هزینه یا هر عدم مطلوبیت دیگری) بین گره تقاضای و جایگاه تسهیل در گره تعیین می‌کنیم. اگر گره i بتواند بوسیله تسهیل در مکان j پوشش داده شود، قرارمی‌دهیم، درغیر اینصورت . همچنین را مجموعه همه جایگاه‌های کاندیدشده‌ای قرار می‌دهیم که می‌توانند گره تقاضای i را پوشش دهند. اینکه p تسهیل در کجا واقع شوند و کدام تسهیل باید کدام گره تقاضا را سرویس دهد، تصمیمات کلیدی در اینگونه مسائل هستند.
مسائل پوشش مجموعه در ابتدای دهه 70 ایجاد شد. هدف LSCP مکانیابی حداقل تعداد تسهیلات به گونه‌ای است که هر گره تقاضا بوسیله یک یا چند تسهیل «پوشش» داده شود. به طور کلی، تقاضا در یک گره i توسط تسهیل j پوشش داده شده نامیده می‌شود اگر فاصله (یا زمان سفر) بین گره‌ها کمتر از فاصله بحرانی D باشد. به علاوه، D به ماکزیمم فاصله یا زمان خدمتی که تصمیم‌گیرنده مشخص می‌کند اشاره می‌کند.
با این توضیحات، می‌توان مدل مکان پوشش مجموعه را که اولین بار توسط تورِگاس و همکارانش ارائه شد، به صورت زیر فرموله کرد:
(1.2)
(2.2)
(3.2)
تابع هدف (1.2) تعداد تسهیلاتی که استفاده می‌شوند را مینیمم می‌کند. محدودیت (2.2) تعیین می‌کند که برای هر نقطه تقاضای i، حداقل یک تسهیل باید در مجموعه ایجاد گردد که بتواند این گره را پوشش دهد. محدودیت‌های (3.2) محدودیت‌های تکمیلی هستند.

2-2-3-2- مسأله مکانیابی حداکثر پوشش
درمقابل مسأله پوشش مجموعه که در بالا آورده شد، مسأله مکانیابی حداکثر پوشش (MCLP) سعی نمی‌کند که همه مشتریان را پوشش دهد. تعداد p تسهیل را فرض کنید که هدف ما مکانیابی این تسهیلات به گونه‌ای است که بیشترین تعداد ممکن از مشتریان را پوشش دهیم. منظور از پوشش را نیز در بالا آوردیم.
با تعیین این محدودیت‌های مدل پوشش مجموعه، چِرچ و رِوِله مسأله مکانیابی حداکثر پوشش را به صورت زیر فرمول بندی کردند:
(4.2)
(5.2)
(6.2)(3.2)
(7.2)
که اگر گره تقاضای i پوشش داده شود، برابر یک خواهد بود، درغیر اینصورت صفر می‌شود. تابع هدف (4.2) تعداد تقاضاهایی که پوشش داده می‌شوند را ماکزیمم می‌کند. محدودیت (5.2)، متغیرهای مکان و پوشش را به همدیگر مرتبط می‌کند و نشان می‌دهد که گره تقاضای i نمی‌تواند به عنوان پوشش داده شده تلقی گردد مگر اینکه ما حداقل یک تسهیل را در یکی از جایگاه‌های کاندید شده مستقر کنیم که بتواند آن گره را پوشش دهد. محدودیت (6.2) تعداد تسهیلات را به p محدود می‌کند و محدودیت‌های (3.2) و (7.2) محدودیت‌های تکمیلی هستند.
اگر تعداد تسهیلاتی که برای پوشش تمام تقاضاها نیاز است، از منابع دردسترس بیشتر شود، یک گزینه، راحت کردن الزامات برای پوشش کامل می‌باشد.
2-2-3-3- مسائل p-center
نوع دیگری از مسائل کلاسیک پوشش، اصطلاحاً مسائل p-center نامیده می‌شود. هدف مسائل p-center ، مکانیابی تعداد معین p تسهیل به گونه‌ای است که بزرگترین فاصله بین هر مشتری و نزدیکترین تسهیلش تا حد ممکن کوچک شود. اگرچه از دیدگاه نظری، مسائل p-center متفاوت هستند، اما یک روش دوبخشی ساده می‌تواند به کار گرفته شود تا مسائل p-center را به عنوان بخشی از مسائل پوشش حل نماید. این مسأله می‌تواند به صورت زیر فرمول بندی شود که Q ماکزیمم فاصله است که باید مینیمم گردد:
(8.2)
(9.2)
(10.2)
(6.2)
(11.2)
(3.2)
(12.2)محدودیت (9.2) ما را مطمئن می‌کند که هر گره تقاضا تخصیص داده شده‌است، درحالیکه محدودیت (10.2) تصریح می‌کند که این تخصیصها می‌توانند فقط در تسهیلاتی که بهره برداری شده‌اند ایجاد شود. محدودیت (6.2) بیان می‌کند که دقیقاً p تسهیل می‌تواند ایجاد شود. محدودیت (11.2) ماکزیمم فاصله را برحسب متغیرهای تصمیم تعیین می‌کند. این محدودیت‌ها تصریح می‌کنند که Q باید بزرگتر یا مساوی با فاصله‌ای باشد که برای هر گره تقاضا تخصیص داده می‌شود.
2-2-3-4- مسائل p-median
درمقابل مسائل p-center با اهداف مینیماکسش که در قسمت قبل توضیح داده شد، مسائل p-median اهداف مینیمم مجموع دارند. به عبارت دیگر مسائل p-median ، p تسهیل را به‌گونه‌ای مکان‌یابی می‌کنند که مجموع فواصل بین همه مشتریان و نزدیکترین تسهیل مرتبطشان مینیمم گردد. رِوِله و سواین مسأله p-median را به صورت زیر فرمول بندی کردند:
(13.2)
(9.2)
(10.2)
(6.2)
(3.2)
(12.2)
تابع هدف (13.2) کل فاصله‌ای که در تقاضا ضرب شده‌است را مینیمم می‌کند. از آنجائیکه تقاضاها مشخص هستند و کل تقاضا ثابت است، این هدف در حکم مینیمم کردن متوسط فاصله ضرب در تقاضا است. به خاطر داشته باشید که این فرمول بندی خیلی شبیه به فرمول بندی مسأله p-center است مگر در تابع هدف و محدودیت شماره (11.2).

2-2-4- مسائل دیگر مکانیابی [8]
در این بخش به اختصار به انواع دیگری از مدل‌های مکانیابی که در مقالات استفاده شده‌است اشاره می‌کنیم. اولین نوع، مدل‌هایی هستند که به تسهیلات نامطلوب اشاره می‌کنند. چنین مدل‌هایی به مکانیابی تسهیلاتی همچون تأسیسات تصفیه فاضلاب، محل‌های بازیافت زباله‌ها، نیروگاه‌ها یا زندان‌ها می‌پردازند که همسایگی آنها با نواحی مسکونی نامطلوب به نظر می‌رسد.
به عنوان سیستم‌هایی که معمولاً شامل دو یا چند سطح از تسهیلات می‌شوند، از سیستمهای سلسله مراتبی استفاده می‌کنیم. بسیاری از سیستمها در طبیعت سلسله مراتبی هستند. این تسهیلات معمولاً برحسب نوع خدماتی که ارائه می‌کنند سلسله مراتبی هستند. مثلاً مراکز مراقبت‌های پزشکی را درنظر بگیرید که شامل کلینیک‌های عمومی، بیمارستان‌ها و مراکز دارویی هستند.
نوع دیگری از مدل‌ها، به مدل‌های مکانیابی می‌پردازد که اهداف «یکسان» دارند. این مدل‌ها، تسهیلات را به گونه‌ای مکانیابی می‌کنند که برای همه مشتریان به طور مساوی دردسترس باشند.
ناحیه فعال دیگر در این زمینه، مکانیابی هاب‌هاست. هاب به عنوان توپ در مرکز یک چرخ است و منظور از آن، تسهیلاتی است که به بعضی جفت‌های منبأ-مقصد به عنوان گره‌های معاوضه و حمل و نقل سرویس دهی می‌کند و در سیستمهای ترافیک و ارتباطات استفاده می‌شود.
نوع دیگر از مدل‌های مکانیابی، مدل‌های مکانیابی رقابتی است. مثالی از این نمونه به این صورت است که دو فروشنده انحصاری یک محصول را درنظر بگیرید که تسهیلی را هر کدام در یک پاره خط ایجاد می‌کنند. آنها از ابزاری مشابه استفاده می‌کنند و در مکان و قیمت رقابت می‌کنند.
در پایان، تسهیلات گسترده و مسائل جانمایی تسهیلات را درنظر بگیرید. در هر دو زمینه، به خاطر اینکه اندازه تسهیلات در قیاس با فضایی که در آن واقع شده‌اند قابل چشم پوشی نیست، تسهیلات نمی‌توانند به صورت یک نقطه بر روی نقشه نشان داده شوند و خیلی بزرگتر از آن هستند که به صورت یک نقطه درنظر گرفته شوند. به عنوان نمونه‌هایی از مسائل جانمایی، آرایش ایستگاه‌های کاری در یک اداره و قراردادن اتاق‌ها در یک بیمارستان را می‌توان نام برد.
2-2-5- مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکمما در این بخش به مسائل پیدا کردن مکان‌های بهینه برای مجموعه‌ای از تسهیلات در حضور تقاضای مشتریان تصادفی و تراکم در آن تسهیلات می‌پردازیم. ما به این گونه مسائل به عنوان «مسائل مکانیابی با تقاضای تصادفی و تراکم» (LPSDC) نگاه می‌کنیم [9]. اکثراً ما بحث درباره مسائل را به شبکه محدود می‌کنیم، حتی اگر این مدل‌ها بتواند به مکان‌های گسسته گسترش یابند.
اهمیت مشهود پرداختن به مسائل مکانیابی تسهیلات در حضور عدم قطعیت‌های گوناگون، منجر به تعداد زیادی از مقالات در این موضوع می‌شود. اصولاً مدل‌های LPSDC بر روی دو منبع از عدم قطعیت متمرکز می‌شود: (1) مقدار واقعی و مقدار زمانی که تقاضا بوسیله هر مکان مشتری تولید می‌شود و (2) از دست دادن تقاضا (یا جریمه پولی) به علت ناتوانی تسهیل در فراهم کردن سرویس مناسب به (بعضی از) مشتریان به علت تراکم در آن تسهیل.
این گونه مسائل به پیدا کردن بهترین مکان‌ها برای مجموعه‌ای از تسهیلات می‌پردازند تا ظرفیت سرویس (تعداد خدمت دهندگان) را در تسهیل j مشخص کند. نتیجه چنین سیستمی می‌تواند به صورت یک سیستم صف با M صف و سرویس دهنده مشاهده شود. حتی تحلیل‌های توصیفی چنین سیستمهایی (یعنی با فرض اینکه تصمیمات مکانیابی در حال حاضر گرفته شده‌اند) می‌تواند توانایی حال حاضر سیستم صف را گسترش دهد. چنین مسائلی، قابلیت‌های مسائل مکان‌یابی «کلاسیک» (که بیشتر آن‌ها NP-complete شناخته می‌شوند) را با پویایی پیچیده سیستم‌های صف ترکیب می‌کند. بنابراین، در ساختن یک مدل LPSDC کاربردی، بعضی فرض‌ها و تخمین‌های ساده سازی باید انجام شود تا مدل را قابل حل کند.
یک ناحیه مهم کاربرد مدل‌های LPSDC، مکان‌یابی تسهیلات خدمات اورژانسی (مانند بیمارستان‌ها)، ایستگاه‌های پلیس، ایستگاه‌های آتش نشانی و آمبولانس‌ها هستند. توانایی پاسخگویی به یک درخواست برای خدمت‌رسانی در زمان مناسب، به چنین سیستم‌هایی اختصاص دارد (مثلاً استاندارد رایج برای آمبولانس‌ها در آمریکای شمالی برای پاسخگویی به تلفن‌های با ارجحیت بالا، 3 دقیقه می‌باشد). خصوصیت پایه چنین سیستم‌هایی غیرقابل پیش بینی بودن تعداد و زمان رسیدن تلفن‌ها برای درخواست و اثری که روی کارایی سیستم تراکمی می‌گذارد است و هنگامی‌که بعضی از این تسهیلات درخواست‌های بسیاری را برای خدمت در دوره زمانی مشخصی دریافت می‌کنند، نتیجه آن مشخص می‌شود. به راستی که از لحاظ تاریخی، مسأله مکان‌یابی تسهیلات خدمات اورژانسی، محرّک اصلی برای تحقیقات بیشتر در این زمینه را فراهم کرده‌است.
دیگر ناحیه مهم کاربرد این مسائل که کمتر مورد تجزیه و تحلیل قرار گرفته‌است، مکان‌یابی خرده فروشی‌ها یا تسهیلات خدمت‌رسانی دیگر است که مقدار کل تجارت (تقاضای مشتری) در یک تسهیل ممکن است هنگامی‌که نرخ خدمت‌رسانی به علت تراکم کاهش می‌یابد، به طور معکوس عمل کند. درحالی که بعضی از مدل‌هایی که برای مکان‌یابی تسهیلات اورژانسی توسعه پیدا کرده‌اند، می‌توانند به خوبی برای تسهیلات غیراورژانسی نیز به کار روند، این دو دسته از کاربردها، خصوصیات مختلف خودشان را نیز ایجاد می‌کنند.
2-2-5-1- مرور ادبیات مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکم [10]
باتوجه به انعطاف پذیری تقاضا، دسترسی به یک تسهیل می‌تواند برحسب مجاورت با مشتریان بالقوه اش (وِرتر و لاپیِره)، به صورت کل زمان موردنیاز برای دریافت سرویس (پارکر و سرینیواسان) مدل سازی شود. در این مورد یا موارد دیگر، شکل تابع تقاضای مورداستفاده، گسترشی از انعطاف پذیری تقاضا را نشان می‌دهند. بیشتر توابع تقاضای رایج در مقالات به شکل‌های زیر هستند: تابع خطی (وِرتر و لاپیِره؛ پارکر و سرینیواسان)؛ تابع نمایی (بِرمن و پارکان؛ بِرمن و کاپلان و درِزنِر)؛ و تابع مرحله‌ای (بِرمن و کِراس).
اگر انتخاب مشتری را درنظر بگیریم ( که بدین معنی است که هر عضو این حق را دارد که خود تسهیلش را انتخاب کند و نه اینکه توسط یک مرکز به یکی اختصاص پیدا کند)، یک گروه از مقالات، انتخاب بهینه را فرض می‌کنند، یعنی، هر مشتری، تسهیلی که برحسب مزیتش بهینه است را انتخاب می‌کند. بسیاری از نویسندگان به سادگی فرض می‌کنند که مشتریان به نزدیکترین تسهیل مراجعه می‌کنند، درحالیکه پارکر و سرینیواسان فرض می‌کنند که مشتریان، تسهیلی که بیشترین منفعت را دارد انتخاب می‌کنند. درمقابل، گروه دوم مطالعات، انتخاب احتمالی را فرض می‌کنند، یعنی، انتخاب تسهیل توسط مشتری، براساس توزیع احتمالی است که از سودمندی و مجاورت هر تسهیل ایجاد می‌شود. این فرض اغلب در محیط بازار استفاده می‌شود و شاید یک کار اصولی از هاف، مؤثرترین مدل در این دسته باشد. همچنین ماریانوف و همکارانش یک مسأله مکانیابی تسهیلات با تراکم را پیشنهاد کردند که از یک مدل انتخابی احتمالی برای نشان دادن رفتار تخصیص مشتریان استفاده می‌کرد.
مسأله موردنظر ما که تا حدودی در تئوری مکان‌یابی تسهیلات، پایه‌ای به حساب می‌آید، توجّهات بسیاری را در مقالات به خود جلب کرده‌است؛ مخصوصاً اینکه تقابل جنبه‌های مکانیابی و تصادفی (صف بندی)، آن را چالش برانگیز کرده‌است [11]. این مسأله متعلق به دسته‌ای از مسائل مکانیابی با تقاضای تصادفی و تراکم و سرویس دهندگان ثابت (LPSDC) است که توسط بِرمن و کراس مرور شده‌است. مطالعه مدل‌هایی از این نوع، با ماریانوف و سِرا در سال 1998 شروع شده‌است. مقالات دیگری نیز در این زمینه نوشته شده‌است که می‌توان به مقالات بِرمن، کراس و وانگ؛ ماریانوف و ریوس؛ ماریانوف و سِرا؛ وانگ، باتا و رامپ اشاره کرد. به علت پیچیدگی باطنی مسأله، همه مقالاتی که در بالا آورده شده، ساده سازی‌های بزرگی را انجام داده‌اند: فرض می‌شود که تقاضا گسسته است، یا فرض می‌شود که تعداد یا ظرفیت تسهیلات (یا هر دو) ثابت هستند، فرض می‌شود که مکان‌های تسهیلات بالقوه گسسته و بینهایت هستند، فرض می‌شود که فرایند رسیدن تقاضا پواسن باشد و همچنین معمولاً فرض می‌شود که فرایند خدمت‌رسانی نمایی است.
ترکیب حالت تصادفی (شامل تراکم بالقوه در تسهیلات) در مدل‌های نوع پوشش تسهیلات، با مسأله مکانیابی حداکثر پوشش موردانتظار (MEXCLP) توسط داسکین شروع شد؛ و تعداد قابل ملاحظه‌ای از دیگر کاربردها نیز در ادامه آن آورده شد. اما این مدل شامل بعضی ساده سازی‌های بزرگی بود، برای مثال: احتمال اینکه یک خدمت‌رسان مشغول باشد، مستقل از هر خدمت دهنده دیگری است و این موضوع برای همه خدمت دهندگان یکسان است؛ این احتمالات نسبت به مکان و حجم کار یکسان هستند. ماریانوف و سِرا فرض کردند که: (1) تقاضای مشتریان توسط یک فرایند پواسن تولید می‌شود؛ (2) توزیع زمان خدمت نمایی است؛ (3) هر تسهیل به صورت یک سیستم صف M/M/1/a با ظرفیت محدود a عمل می‌کند؛ و (4) همه تقاضاها هنگامی‌که برای خدمت‌رسانی به سیستم می‌رسند، اگر سیستم پر باشد، فرض می‌شود که تقاضا از دست می‌رود. توسط این مدل، تقاضای مشتریان ممکن است ازبین برود، چون یا تسهیل در شعاع پوشش آن وجود ندارد و یا تسهیلات مسدود شده‌اند. هدف، قرار دادن m تسهیل به گونه‌ای است که تقاضا‌ها را هرچه بیشتر پاسخ دهد. ماریانوف و ریوس این مدل را برای مکانیابی دستگاه‌های خودپرداز به کار گرفتند. در مدل آن‌ها، دستگاه‌ها، حافظه کوچکی دارند که هر کدام می‌تواند تعداد ثابتی، b، درخواست را نگهدارند که آن به این علت است که درخواست‌های دستگاه‌ها، اندازه ثابتی (53 بایت) دارند. همچنین دستگاه‌ها به صورت یک صف M/M/1، حداکثر b درخواست در صف (یعنی حافظه) را انجام می‌دهد. اگر یک درخواست درحالی برسد که حافظه پر است، آن درخواست ازدست می‌رود (و باید دوباره فرستاده شود)، و برای اینکه مطمئن باشیم که این رویداد نادر است، یک محدودیت سطح سرویس اعمال شده‌است. به هر حال تعداد کل دستگاه‌ها،به جای اینکه به عنوان قسمتی از فرایند بهینه سازی تعیین شود، ثابت هستند. مدل LSCP این مدل توسط ماریانوف و سِرا گسترش داده شد که در آن، هدف، پیدا کردن حداقل تعداد تسهیلات به گونه‌ای است که همه مشتریان، یک تسهیل در شعاع پوششان داشته باشند و محدودیت بر روی حداکثر نسبت تقاضای از دست رفته (یا حداکثر زمان انتظار) رعایت شود. باید به یاد داشته باشیم که این مدل، فرض می‌کند که مشتریان به جای اینکه به نزدیکترین تسهیل مراجعه کنند، می‌توانند به هر تسهیل باز شده‌ای در شعاع پوشش تخصیص یابند. بنابراین، آنها به جای مکانیسم انتخاب مشتری، مکانیسم انتخاب هدایت شده را انتخاب می‌کنند.
2-2-5-2- مکانیابی تسهیلات با تقاضای تصادفی و تراکم
دو منبع بالقوه برای از دست دادن تقاضا به صورت زیر است [12]:
عدم پوشش: این مورد زمانی اتفاق می‌افتد که هیچ کدام از تسهیلات به اندازه کافی به مشتری نزدیک نیستند که سطح مناسبی از راحتی را فراهم کنند.
عدم سرویس: این مورد زمانی اتفاق می‌افتد که مشتری تصمیم می‌گیرد که یک تسهیل را ملاقات کند، اما باتوجه با سطح سرویسی که در آنجا دریافت می‌کند، ناراضی می‌شود. علت‌های زیادی ممکن است وجود داشته باشد که حادثه شکست خدمت اتفاق افتد: یکی از رایج ترین آنها (و مرتبط ترین به تصمیمات مکانیابی) تراکم (پرجمعیتی) در آن تسهیل است.
برای مدل سازی تقاضایی که به علت تراکم از دست می‌رود، ما هر تسهیل را به صورت یک صف مارکفی با ظرفیت ثابت معین درنظر می‌گیریم و فرض می‌کنیم که اگر این ظرفیت به دست آمده باشد، تقاضای مشتری هنگامی‌که درطول این دوره می‌رسد، از دست می‌رود (یعنی، مشتریان بالقوه‌ای که هنگام پر بودن سیستم می‌رسند، مسدود می‌شوند).
مدل‌های LPSDC اصولاً به تقابل چهار مجموعه از عناصر مربوط می‌شود [9]:
مشتریان: که برای انجام خدمت، درخواست می‌دهند.
تسهیلات: که به منابعی (خدمات دهندگان) که برای انجام خدمات موردنیاز است مکان می‌دهند.
خدمت دهندگان: که خدمت درخواست شده را انجام می‌دهند، و
درخواست انجام خدمت: که توسط مشتریان انجام می‌شود و بوسیله اتصال یک مشتری با یک خدمت دهنده دردسترس، رسیدگی می‌شود.
دیگر اجزاء موردنیاز برای توصیف یک مدل LPSDC به صورت زیر هستند: انواع فراهم شدن خدمت (که یا مشتریان به تسهیلات سفر می‌کنند تا به خدمت دهندگان دست یابند و یا خدمت‌دهندگان متحرّک، به مکان مشتریان سفر می‌کنند)، طبیعت و نتایج تراکم (هنگامی‌که یک تسهیل درخواست‌های بسیار زیادی برای انجام خدمت دریافت می‌کند، چه عکس العملی از خود نشان می‌دهد؟)، فرضیات رفتار مشتری (مشتریان تصمیم می‌گیرند که برای بدست آوردن خدمت، به کدام تسهیل مراجعه کنند یا یک «مرجع مرکزی» وجود دارد که مشتریان را به تسهیلات متصل می‌کند)، نوع اهداف و احتیاجات خاص دیگر مانند «استانداردهای پوشش» (که معمولاً به صورت محدودیت‌ها بیان می‌شود).
یک شبکه مشخص را فرض می‌کنیم ، که N، مجموعه گره‌ها و A مجموعه کمان‌هاست. برای از استفاده می‌کنیم که به کوتاهترین مسیر از x به y است.
مشتریان: فرض می‌شود که مشتریان در گره‌های شبکه واقع می‌شوند. نسبت را برای همه درخواست‌هایی که برای انجام خدمت از گره ایجاد می‌شود درنظر می گیریم که . معمولاً فرض می‌شود که کل تقاضای مشتریان برای خدمت‌رسانی، یک فرایند پوآسن از جنس زمان با نرخ است. همچنین فرایند درخواست خدمت برای هر گره i، یک فرایند پوآسن با نرخ می‌باشد. درحالیکه بیشتر مدل‌ها، از ساختار تقاضای مشتریانی که در بالا توضیح داده شد استفاده می‌کنند، بعضی تلاشها برای دخالت دادن امکان ازدست دادن تقاضا به علت تراکم انجام شده‌است. این می‌تواند بوسیله تعریف دوباره نرخ تقاضا در گره i به صورت تعریف شود که C، بعضی اندازه‌های هزینه تراکم است که بوسیله مشتریان اتفاق می‌افتد و یک تابع غیر افزایشی است. در ادامه این بخش، به طور عمومی فرض می‌کنیم که تحت تأثیر تراکم قرار نمی‌گیرد.
تسهیلات: ما فرض می‌کنیم که حداکثر M تسهیل وجود دارد که باید مکان‌یابی شود. ما فرض میکنیم که یک مجموعه گسسته از مکان‌های بالقوه تسهیلات X تعیین شده‌است (که ) و . این فرضیات نیز بدون از دست دادن عمومیت انجام می‌شود: باتوجه به استدلالاتی که توسط بِرمن، لارسون و چیو انجام شده‌است می‌توان نشان داد که اگر به تسهیلات اجازه دهیم که در هر جایی در طول کمان واقع شوند، یک حل بهینه در یک مجموعه گسسته از مکان‌ها بدست می‌آید که شامل گره‌های شبکه است که بوسیله بعضی نقاط داخلی در طول کمان ایجاد شده‌است. بنابراین، با تکمیل کردن مجموعه گره‌های اصلی بوسیله بعضی گره‌های «ساختگی» اضافی، می‌توان فرض کرد که X گره‌ای است.
خدمت دهندگان: هر تسهیل j می‌تواند بین 1 و K خدمت دهنده داشته باشد. بسته به ماهیت خدمتی که بوسیله این تسهیل انجام می‌شود، خدمت دهندگان یا ثابت هستند، یعنی به طور ثابت در تسهیل واقع می‌شوند، یا متحرک هستند، یعنی برای انجام خدمت به مکان مشتریان سفر می‌کنند. تعداد خدمت دهندگانی که در تسهیل j واقع می‌شوند، یک متغیرتصمیم گیری در مدل می‌باشد.
درخواست خدمت: معمولاً یک درخواست برای انجام خدمت، به یک «یارگیری» بین مشتری ایجاد کننده درخواست و یکی از خدمت دهندگان موجود در سیستم احتیاج دارد. این کار معمولاً به صورت زیر انجام می‌شود:
اول باید تعیین کنیم که آیا مکان i بوسیله سیستم پوشش داده می‌شود یا خیر؟ معمولاً برای اینکه یک مشتری پوشش داده شود فرض می‌شود که با استاندارد‌های پوشش معینی مطابقت دارد (مثلاً، تعداد خدمت دهنده کافی باید در اطراف مشتری واقع شده باشد و غیره). این استانداردهای پوشش اغلب از طریق قانونگذاری یا قوانین اجرایی ایجاد می‌شود. اگر مکان مشتری i پوشش داده نشده باشد، همه درخواست‌های خدمت که از i ایجاد می‌شود، به صورت خودکار بوسیله سیستم برگردانده می‌شود (صرفنظر از اینکه آیا سیستم در حال حاضر متراکم هست یا خیر؟). معمولاً برای از دست دادن پوشش مجموعه یک جریمه درنظر گرفته می‌شود. یک تفسیر دیگر از گسترش ندادن پوشش به یک مشتری این است که مشتری بوسیله بعضی خدمات «دیگر» یا «ذخیره» پوشش داده شود (مثلاً، یک خدمت آمبولانس غیردولتی)؛ پس جریمه پوشش ندادن، می‌تواند به عنوان حق الزحمه قرارداد فرعی تفسیر می‌شود.
زمانی که معین می‌شود که درخواست خدمت از یکی از مشتریان «پوشش داده شده» بیاید، یک ارزیابی انجام می‌شود که آیا حالت فعلی سیستم اجازه می‌دهد که فرایند درخواست انجام شود یا خیر؟ این ارزیابی معمولاً در دو مرحله اتفاق می‌افتد: اول، قوانین منطقه‌ای و مکان مشتری برای تعیین «زیرسیستم» مشتری، استفاده می‌شود، یعنی، کدام تسهیلات و خدمت دهندگان می‌توانند به طور بالقوه به این درخواست پاسخ دهند (این ممکن است شامل همه خدمت دهندگان در شبکه شود و یا فقط خدمت دهندگانی که در شعاع سفر معینی از مکان مشتری واقع شده‌اند و غیره). بعد، تعداد درخواست‌های انجام نشده در زیرسیستم ارزیابی می‌شود و تصمیم گیری می‌شود که آیا این درخواست پذیرفته شود یا رد شود؟ این تصمیم معمولاً براساس ظرفیت زیرسیستم صورت می‌پذیرد (مثلاً برای یک صف «ازدست رفته»، اگر هیچ خدمت دهنده‌ای در حال حاضر دردسترس نباشد، یک عدم پذیرش ممکن است اتفاق بیفتد؛ در موارد دیگر ممکن است این محدودیت وجود داشته باشد که چه تعداد درخواست می‌تواند در یک زمان مشخص در صف وجود داشته باشد). معمولاً یک جریمه مرتبط با قبول نکردن یک درخواست وجود دارد. باز هم تأکید می‌کنیم، برخلاف نپذیرفتن یک درخواست از مشتریانی که پوشش داده نشده‌اند که به صورت خودکار است، نپذیرفتن درخواست یک مشتری که پوشش داده شده‌است، براساس حالت سیستم است. به خاطر داشته باشید که قوانین منطقه ای، درجه همکاری بین تسهیلات گوناگون و خدمت دهندگان را در سیستم معین می‌کند.
بعد، درخواست پذیرفته شده به یکی از تسهیلات متصل می‌شود (یعنی تخصیص پیدا می‌کند). این تخصیص ممکن است به قوانین اتصال مطمئن بستگی داشته باشد، همانطور که به حالت فعلی سیستم بستگی دارد (مثلاً، یک درخواست ممکن است به نزدیکترین تسهیل متصل شود و یا ممکن است به نزدیکترین تسهیل با حداقل یک خدمت دهنده آزاد متصل شود و غیره). همچنین قوانین اتصال به فرضیات رفتار مشتریان نیز بستگی دارد، یعنی اینکه کدام تسهیل باید این درخواست را انجام دهد به مشتری بستگی دارد یا به بعضی مراجع مرکزی. ما، این مورد را که مشتری تصمیم می‌گیرد که کدام تسهیل باید به درخواستش رسیدگی کند به عنوان «انتخاب کاربر» و موردی که یک مرجع مرکزی این تصمیم را می‌گیرد به عنوان «انتخاب هدایت شده» می‌شناسیم.
معمولاً یک درخواست پذیرفته شده در یک تسهیل معین، در صف قرار می‌گیرد تا یک خدمت دهنده، دردسترس قرار گیرد. زمانی که این اتفاق می‌افتد، خدمت دهنده و مشتری «یارگیری» کرده‌اند. درمورد خدمت دهندگان متحرک، لازم است که این خدمت‌دهندگان از مکان فعلی شان به مکان مشتری سفر کنند (که متحمل هزینه سفر می‌شوند).
معمولاً مسائل مکانیابی با خدمت دهندگان متحرک، دارای مشخصات زیر هستند:
این تخصیص بستگی به حالت فعلی خدمت دهندگان در زمان ارسال دارد. برای خدمت دهندگان ثابت، این تخصیص ممکن است قبل از تصمیم گیری برای انجام خدمت اتفاق بیفتد، بنابراین ممکن است گفته شود که خدمت دهندگان متحرک ممکن است با یکدیگر همکاری کنند، درحالیکه خدمت دهندگان ثابت تمایلی به این کار ندارند.
اگر یک کاربر، درخواستی را انجام دهد و نزدیکترین خدمت دهنده مشغول باشد، خدمت دهنده دیگری ارسال می‌شود. یعنی، این تخصیص، در حالت مطلق، به نزدیکترین تسهیل اتفاق نمی‌افتد.
مسائل مکانیابی احتمالی اغلب می‌توانند به خوبی به صورت مجموعه مستقلی از سیستم‌های صف، مدل سازی شوند. این استقلال، ازطریق ابزاری ناشی می‌شود که حتی اگر زمان‌های خدمت از یک توزیع نمایی پیروی کنند، درمورد هنگامی‌که زمان سفر احتمالی است، این امر صادق نیست. بنابراین، تئوری صف M/G/m مناسب‌تر از تئوری M/M/m است.
حال به فرموله کردن مسأله می‌پردازیم. محدودیت‌های مسأله معمولاً شامل موارد ذیل است:
- یک حد بالای M بر روی کل تعداد تسهیلاتی که می‌توانند واقع شوند:
(14.2)
- یک حد بالای K بر روی کل تعداد خدمت دهندگانی که می‌تواند واقع شوند:
(15.2)
- استانداردهای پوشش: بسته به احتیاجات پوششی که استفاده می‌شود، می‌تواند شکل‌های گوناگونی به خود بگیرد. شاید ساده ترین (و قدیمی‌ترین) شکل این محدودیت‌ها، به این نیاز دارد که حداقل تعداد مشخصی از این خدمت دهندگان ،، باید در حداکثر فاصله مشخصی از هر مکان مشتری i، واقع شوند. اجازه دهید زیرمجموعه‌ای از مکان‌های تسهیلات بالقوه در فاصله موردنیاز از i باشد. پس این محدودیت می‌تواند به صورت زیر بیان شود:
(16.2)
شکل پیچیده تر این محدودیت پوشش، ممکن است احتیاجاتی احتمالی را به زمان‌های پاسخ تحمیل کند. مثلاً، یک پاسخ سه دقیقه‌ای زمان پاسخ را درنظر بگیرید که برای درخواست‌های آمبولانس با ارجحیت بالا موردنیاز است. شکل دیگری از محدودیت‌ها، ممکن است یک حد بالایی را بر روی نسبت درخواست‌هایی که برگردانده می‌شود ،، اعمال کند. به طور خلاصه، ما می‌توانیم یک محدودیت عمومی را به صورت زیر ارائه کنیم. اجازه دهید که یک متغیر تصادفی باشد که بیانگر «سطح سرویسی» است که بوسیله سیستم به نقاط تقاضای مشتری i تحویل می‌شود (مثلاً، زمان پاسخ). اجازه دهید، ، بیانگر حداقل فراوانی مطلوب این اتفاق باشد (مثلاً، 95% از این زمان). بنابراین، یک محدودیت سطح سرویس کلی می‌تواند به صورت زیر بیان شود:
(17.2)
اکنون، مسأله LPSDC عمومی می‌تواند به صورت زیر فرمول بندی شود:
(18.2)
باتوجه به محدودیت‌های (15)، (16) و (17)

بدیهی است که برای اینکه فرمول بندی بالا را ساده کنیم، به بعضی روشها احتیاج داریم تا پارامترهای کارایی سیستم گوناگونی را که در توسعه تابع هدف و محدودیت‌ها استفاده شد را ارائه کنیم (یعنی، احتمال برگرداندن ، زمان انتظار صف و غیره). متأسفانه، معمولاً بیان تحلیلی کلی برای این مقادیر دردسترس نیست. این منجر به دو رویکرد ممکن می‌شود: رویکرد اول نیاز دارد که فرضیاتی ساده سازی مطمئنی را بر روی عملیات سیستم ایجاد کنیم (مانند قوانین منطقه‌ای ساده، زمان‌های سفر قابل اغماض و غیره). دومین رویکرد شامل استفاده از تکنیک‌هایی براساس توصیف است (مثل شبیه سازی) تا اندازه‌های کارایی سیستم موردنیاز را برای مقادیر خاص بردار مکان x محاسبه کنیم. علاوه بر آن می‌توان از بعضی تکنیک‌های ابتکاری استفاده کرد.
2-3- نظریه صف
انتظار در صف هر چند بسی ناخوشایند است، اما متأسفانه بخشی از واقعیت اجتناب ناپذیر زندگی را تشکیل می‌دهد. انسان‌ها در زندگی روزمره خود با انواع مختلف صف، که به از بین رفتن وقت، نیرو و سرمایه آن‌ها می‌انجامد، روبه رو می‌شوند. اوقاتی که در صف‌های اتوبوس، ناهارخوری، خرید و نظایر آن‌ها به هدر می‌رود، نمونه‌های ملموسی از این نوع اتلاف‌ها در زندگی است. در جوامع امروزی صف‌های مهمتری وجود دارد که هزینه‌های اقتصادی و اجتماعی آن‌ها به مراتب بیش از نمونه‌های ساده فوق است.
2-3-1- مشخصات صف [13]
یک مدل صف در شکل (2-1) نشان داده شده‌است. آن می‌تواند یک مدل صف مثل ترتیب ماشین آلات یا اپراتورها باشد.

شکل 2-1- مدل پایه‌ای صف
یک مدل صف بوسیله مشخصات زیر توصیف می‌شود:
فرایند رسیدن مشتریان
معمولاً فرض می‌کنیم که زمان بین رسیدن‌ها مستقل هستند و یک توزیع رایج دارند. در بسیاری از کاربردهای عملی، مشتریان باتوجه به یک جریان پواسن (یعنی زمان بین رسیدن‌ها نمایی) می‌رسند. مشتریان ممکن است یک به یک و یا به صورت دسته‌ای برسند.
رفتار مشتریان
مشتریان ممکن است صبور باشند و راضی باشند که (برای یک مدت طولانی) منتظر بمانند. یا مشتریان ممکن است کم حوصله باشند و بعد از مدتی صف را ترک کنند.
زمان‌های رسیدن
معمولاً فرض می‌کنیم که زمان‌های رسیدن مستقل هستند و به طور یکسان توزیع شده‌اند و مستقل از زمان بین رسیدن‌ها هستند. مثلاً زمان‌های رسیدن ممکن است به صورت قطعی یا نمایی توزیع شده باشد. همچنین ممکن است که زمان‌های رسیدن، وابسته به طول صف باشد.
نظم سرویس
ترتیبی که مشتریان ممکن است به صف وارد شوند به صورت‌های زیر می‌تواند باشد:
کسی که اول می‌آید، اوّل هم سرویس دهی می‌شود، مثل ترتیب رسیدن‌ها
ترتیب تصادفی
کسی که آخر می‌آید، اول سرویس دهی می‌شود.


حق تقدّم
اشتراک پردازنده (در کامپیوتر که قدرت پردازششان را در میان کل کارها در سیستم، به طور مساوی تقسیم می‌کنند).
ظرفیت سرویس
ممکن است یک سرور تک و یا گروهی از سرورها به مشتریان کمک کنند.
اتاق انتظار
ممکن است محدودیتهایی در رابطه با تعداد مشتریان در سیستم وجود داشته باشد.
یک کد سه قسمتی برای مشخص کردن این مدل‌های به صورت a/b/c استفاده می‌شود که حرف اول توزیع زمان بین رسیدن‌ها و حرف دوم توزیع زمان سرویس را مشخص می‌کند. مثلاً برای یک توزیع عمومی از حرف G و برای توزیع نمایی از حرف M (که M بیانگر فاقد حافظه بودن است) استفاده می‌شود. حرف سوم و آخر نیز تعداد سرورها را مشخص می‌کند. این نمادسازی می‌تواند با یک حرف اضافه که دیگر مدل‌های صف را پوشش دهد، گسترش یابد. مثلاً، یک سیستم با توزیع زمان بین رسیدن و زمان سرویس دهی نمایی، یک سرور و داشتن اتاق انتظار فقط برای N مشتری (شامل یکی در سرویس) بوسیله چهار کد حرفی M/M/1/N نشان داده می‌شود.
در این مدل پایه، مشتریان یک به یک می‌رسند و همیشه اجازه ورود به سیستم را دارند، همیشه اتاق وجود دارد، هیچ حق تقدّمی وجود ندارد و مشتریان به ترتیب رسیدن سرویس دهی می‌شوند.
در یک سیستم G/G/1 با نرخ رسیدن و میانگین زمان سرویس ، مقدار کار که در واحد زمان می‌رسد برابر است. یک سرور می‌تواند به یک کار در واحد زمان رسیدگی کند. برای جلوگیری از اینکه طول صف بینهایت نشود، باید .
معمولاً از نماد زیر استفاده می‌کنند:

اگر ، نرخ اشتغال یا بکارگیری سرور نامیده می‌شود، چون کسری از زمان است که سرور، مشغول کارکردن است.
2-3-2- قانون لیتِل [13]
اگر E(L)، میانگین تعداد مشتریان در سیستم، E(S)، میانگین زمان اقامت مشتری در سیستم باشد و ، متوسط تعداد مشتریانی باشد که در واحد زمان وارد سیستم می‌شوند، قانون لیتِل، رابطه بسیار مهمی را بین این سه نماد می‌دهد و به صورت زیر بیان می‌شود:
(19.2)در اینجا فرض می‌شود که ظرفیت سیستم برای رسیدگی به مشتریان کافی است (یعنی، تعداد مشتریان در سیستم به سمت بینهایت میل نمی‌کند).
به طور حسی، این نتیجه می‌تواند به صورت زیر فهمیده شود: فرض کنید که مشتریان هنگامی‌که به سیستم وارد می‌شوند، یک دلار در واحد زمان می‌پردازند. این پول می‌تواند به دو روش گرفته شود. روش اول اینکه به مشتریان اجازه دهیم که به طور پیوسته در واحد زمان بپردازند. پس متوسط درآمدی که توسط سیستم کسب می‌شود، برابر E(L) دلار در واحد زمان است. روش دوم این است که به مشتریان اجازه دهیم که برای اقامتشان در سیستم، 1 دلار را در واحد زمان در موقع ترک سیستم بپردازند. در موازنه، متوسط تعداد مشتریانی که در واحد زمان، سیستم را ترک می‌کنند برابر متوسط تعداد مشتریانی است که به سیستم وارد می‌شوند. بنابراین سیستم، یک متوسط درآمد دلار را در واحد زمان کسب می‌کند.
با به کار بردن قانون لیتِل در صف، رابطه‌ای بین طول صف، و زمان انتظار W به دست می‌آید:
(20.2)
2-3-3- صف M/M/1
این مدل، حالتی را درنظر می‌گیرد که زمان بین رسیدن‌ها، نمایی با میانگین ، زمان‌های سرویس، نمایی با میانگین و یک سرور مشغول کار است. مشتریان به ترتیب رسیدن، سرویس دهی می‌شوند. ما نیاز داریم که:
(21.2)درغیراینصورت، طول صف منفجر خواهد شد (قسمت قبل را ببینید). مقدار ، کسری از زمان است که سرور، مشغول کار است.
میانگین تعداد مشتریان در سیستم و همچنین میانگین زمانی که در سیستم گذرانده می‌شوند به صورت زیر بیان می‌شود:
(22.2)
و با استفاده از قانون لیتِل،
(23.2)
میانگین تعداد مشتریان در صف، ، می‌تواند از E(L) و با کم کردن میانگین تعداد مشتریان در سیستم بدست آید:
(24.2)
میانگین زمان انتظار، E(W)، از E(S) و با کم کردن میانگین زمان سرویس بدست می‌آید:
(25.2)
2-4- مسائل بهینه سازی چندهدفه
بسیاری از مسائل کاربردی در جهان واقعی را مسائل بهینه سازی ترکیباتی چندهدفه تشکیل می‌دهند، زیرا متغیر‌های مجزا و اهداف متضاد به طور واقعی در ذات آنها است. بهینه سازی مسائل چندهدفه نسبت به مسائل تک هدفه متفاوت بوده، زیرا شامل چندین هدف است که باید در بهینه‌سازی به همه اهداف همزمان توجه شود. به عبارت دیگر الگوریتم‌های بهینه سازی تک هدفه، حل بهینه را با توجه به یک هدف می یابند و این در حالی است که در مسائل چندهدفه (با چندهدف مخالف و متضاد) معمولاً یک حل بهینه مجزا را نمی توان بدست آورد. بنابراین طبیعی است که مجموعه ای از حل‌ها برای این دسته از مسائل موجود بوده و تصمیم گیرنده نیاز داشته باشد که حلّی مناسب را از بین این مجموعه حل‌های متناهی انتخاب کند و در نتیجه حل مناسب، جواب‌هایی خواهد بود که عملکرد قابل قبولی را نسبت به همه اهداف داشته باشد.
2-4-1- فرمول بندی مسائل بهینه سازی چندهدفه
مسائل بهینه سازی چندهدفه را به طور کلی می‌توان به صورت زیر فرموله کرد:
(26.2)

x یک حل است و S مجموعه حل‌های قابل قبول و k تعداد اهداف در مسأله و F(x) هم تصویر حل x در فضای k هدفی و هم مقدار هر یک از اهداف است.
تعریف حل‌های غیرمغلوب: حل a حل b را پوشش می‌دهد، اگر و تنها اگر:
(27.2)
(28.2)
به عبارت دیگر، حل‌های غیرمغلوب، به حل‌های گفته می‌شود که حل‌های دیگر را پوشش داده ولی خود، توسط حل‌های دیگر پوشش داده نمی‌شوند. در شکل (2-2) چگونگی پوشش سایر حل‌ها (دایره‌های با رنگ روشن) توسط مجموعه حل‌های غیرمغلوب (دایره‌های تیره رنگ) نشان داده شده‌است. در این شکل، جبهه‌ی پارتو با خط چین نشان داده شده‌است.
هدف B
هدف A
هدف B
هدف A

شکل 2-2- مجموعه حل‌های غیرمغلوب
2-4-2- الگوریتم‌های تکاملی برای بهینه سازی مسائل چندهدفه بر مبنای الگوریتم ژنتیک
با توجه به آنکه بسیاری از مسائل بهینه سازی، NP-Hard هستند، بنابراین حل به روش‌های دقیق در یک زمان معقول غیرممکن بوده و در نتیجه، استفاده از روش‌های فراابتکاری در این موارد مناسب می باشد. درحقیقت الگوریتم‌های فراابتکاری برای زمانی که محدودیت زمانی وجود دارد و استفاده از روش‌های حل دقیق میسّر نبوده و یا پیچیدگی مسائل بهینه سازی زیاد باشد، به دنبال جواب‌های قابل قبول هستند.
اولین پیاده سازی واقعی از الگوریتم‌های تکاملی، «الگوریتم ژنتیک ارزیابی برداری» توسط دیوید اسکافر در سال 1984 انجام گرفت. اسکافر الگوریتم را به سه بخش انتخاب، ترکیب و جهش که به طور جداگانه در هر تکرار انجام می‌شدند، تغییر داد. این الگوریتم به صورت کارآمدی اجرا می‌شود، اما در برخی از حالات مانند اریب بودن اهداف، با مشکل مواجه می‌شود. درواقع هدف اول الگوریتم‌های بهینه یابی چندهدفه، یعنی رسیدن به جواب‌های بهینه پارتو، به نحو شایسته‌ای توسط این الگوریتم بدست می‌آید، ولی جواب‌های بدست آمده از گستردگی و تنوع خوبی برخوردار نیستند.
در ادامه این قسمت، به سه الگوریتم تکاملی چند هدفه که مبنای اصلی آنها، الگوریتم ژنتیک می‌باشد، می‌پردازیم. الگوریتم NSGA-II به این خاطر انتخاب شده‌است که این الگوریتم در بسیاری از مقالات به عنوان الگوریتم مرجع مقایسه گردیده‌است. الگوریتم CNSGA-II نیز به این علت انتخاب شده‌است که روشی مناسب برای برخورد با محدودیت‌های حل مسأله ارائه می‌کند؛ چون باتوجه به ماهیت مسأله، چندین محدودیت سر راه حل مسأله ایجاد شده‌است که راهکار مناسبی برای رسیدگی به این محدودیت‌ها ایجاب می‌کند. الگوریتم NRGA نیز چون جزء جدیدترین الگوریتم‌های ارائه شده در زمینه بهینه سازی چندهدفه می‌باشد مورداستفاده قرار گرفته‌است.
2-4-2-1- الگوریتم ژنتیک مرتب سازی نامغلوب
دب و همکارانش [14]، یک نخبه گرایی دسته بندی یا مرتب سازی نامغلوب را در الگوریتم‌های ژنتیک پیشنهاد دادند. در اغلب مواقع، این الگوریتم شباهتی به NSGA ندارد، ولی مبتکران نام NSGA-II را به دلیل نقطه پیدایش آن، یعنی همان NSGA، برای آن حفظ کردند.
در این روش، ابتدا جمعیت فرزندان، ، با استفاده از جمعیت والدین، ، ساخته می‌شود. در اینجا به جای پیدا کردن جواب‌های نامغلوب از ، ابتدا دو جمعیت با یکدیگر ترکیب شده و جمعیت با اندازه 2N را ایجاد می‌کنند. سپس از یک مرتب سازی نامغلوب برای دسته بندی تمام جمعیت استفاده می‌شود، البته این مرتب سازی، نسبت به مرتب سازی بر روی ، به تعداد مقایسه بیشتری نیاز دارد. در این شیوه، یک مقایسه عمومی در بین اعضای که مجموع دو جمعیت فرزندان و والدین است، انجام می‌شود و پس از ایجاد صف‌های متفاوت نامغلوب، به ترتیب اولویت (اولویت صفها نسبت به هم) جمعیت بعدی، یکی یکی از این صف‌ها پر می‌شود. پر کردن جمعیت ، با بهترین صف نامغلوب شروع شده و سپس به ترتیب با دومین صف نامغلوب و همین طور سومین و الی آخر، تا زمانی که پر شود، ادامه می‌یابد. از آنجا که اندازه برابر 2N است، تمام اعضای آن ممکن است نتوانند در قرارگیرند و به راحتی جواب‌های باقیمانده را حذف خواهیم کرد. شکل (2-3) نحوه عمل الگوریتم NSGA II را نمایش می‌دهد.

شکل 2-3- نمایشی از نحوه عملکرد NSGA-II
درمورد جواب‌هایی که در صف آخر با استفاده از عملگر نخبه گرایی ازبین می‌روند، باید مهارت بیشتری به کار برده و جواب‌هایی که در ناحیه ازدحام کمتری قراردارند را حفظ کرد. درواقع برای رعایت اصل چگالی در بین جواب‌ها، جواب‌هایی که در ناحیه ازدحامی کوچکتری هستند، برای پر کردن ، در اولویت قرار دارند.
یک استراتژی شبیه بالا در پیشرفت مراحل اولیه از تکامل الگوریتم، تأثیر زیادی نخواهد داشت، چرا که اولویت‌های زیادی در جمعیت ترکیب شده از فرزندان و والدین وجود دارد. احتمالاً جواب‌های نامغلوب زیادی وجود دارند که آماده قرارگرفتن در جمعیت قبل از آن که اندازه‌اش از N تجاوز کند، می‌باشند. یک مسأله مهم و در عین حال سخت این است که مابقی جمعیت چگونه باید پر شود؟ اگرچه درخلال مراحل بعدی شبیه سازی الگوریتم، احتمالاً بیشتر جواب‌های موجود در جمعیت با اندازه 2N، در رده جواب‌هایی با بهترین درجه نامغلوب بودن قرار می‌گیرند و تعداد آن‌ها از N متجاوز خواهد شد، اما الگوریتم بالا با یک راهکار موقعیتی انتخاب، وجود مجموعه متنوعی از جواب‌ها در جمعیت را تضمین می‌کند. با چنین راهکاری، یعنی زمانی که به‌نحوی تمام ناحیه بهینه پارتو توسط جمعیت پوشانده می‌شود، در ادامه الگوریتم، جواب‌های گسترده تری را در فضای جواب فراهم خواهدآورد.
در ادامه، الگوریتم NSGA-II را به اختصار آورده ایم [15]:
گام 1: جمعیت فرزندان و والدین را با یکدیگر ترکیب کرده و را می‌سازیم:

جمعیت حاصل را با استفاده از یک مرتب سازی نامغلوب به صفوف دسته بندی می‌کنیم.
گام 2: قرارمی‌دهیم، i=1، سپس تا زمانی که ، عملیات زیر را تکرار می‌کنیم:

گام 3: روال مرتب سازی ازدحام را اجرا کرده و با استفاده از مفهوم فاصله ازدحام، ارزشهای متفاوتی را برای از جواب‌های تعیین می‌کنیم.
گام 4: جمعیت فرزندان را از با استفاده از یک الگوریتم انتخاب مسابقه‌ای ازدحام و عملگرهای ترکیب و جهش ایجاد می‌کنیم.
گام سوم از الگوریتم بالا، مرتب سازی برحسب ازدحام جواب‌ها در صف i (منظور آخرین صفی است که احتمالاً برخی از جواب‌های موجود در آن نتوانسته‌اند در جمعیت قرار گیرند)، با بکارگیری مفهوم فاصله ازدحام انجام می‌شود. بنابراین، جمعیت به صورت نزولی تحت میزان بزرگی ارزش فاصله ازدحام مرتب شده و در گام چهارم یک عملگر انتخاب مسابقه‌ای ازدحام که مبنای مقایسه آن همان فاصله ازدحام است بکار برده می‌شود. لازم به ذکر است، مرتب سازی نامغلوب واقع در گام اول می‌تواند به همراه عمل پر کردن جمعیت به صورت موازی انجام شود. درواقع هر بار که یک صف نامغلوب، پیدا شده و تست می‌شود که ازنظر اندازه می‌تواند به جمعیت اضافه شود یا نه، درصورتی که نتواند، دیگر نیازی نیست که مرتب سازی بیشتری انجام دهیم. این موضوع، به کاهش زمان اجرا الگوریتم کمک می‌کند.
2-4-2-2- الگوریتم NSGA-II محدود شده
اگر در حین حل مسأله‌ای که باید حل شود، حل‌هایی ایجاد شود که با محدودیت‌های مسأله مغایرت داشته باشد و آن‌ها را نقض کند و درنتیجه غیرقابل قبول باشد، چگونه باید با این موضوع برخورد کرد؟ روش‌های مختلفی برای مقابله با این موضوع وجود دارد که از جمله آن‌ها می‌توان به توابع جریمه و یا نادیده گرفتن و حذف حل غیرقابل قبول ایجاد شده اشاره کرد.
الگوریتم CNSGA-II، همانند الگوریتم NSGA-II عمل می‌کند، تنها با این تفاوت که برای رسیدگی به محدودیت‌ها، روشی را برمی‌گزیند که براساس مفهوم غلبه و امتیازدهی عمل می‌کند [14].
این روش که به محدودیت رسیدگی می‌کند، از انتخاب تورنمنت دودویی استفاده می‌کند که دو حل از جمعیت، انتخاب و حل بهتر انتخاب می‌شود. باتوجه به محدودیتها، هر حل می‌تواند یا قابل قبول و یا غیرقابل قبول باشد. بنابراین، ممکن است حداکثر سه وضعیت به وجود آید:
هرد و حل قابل قبول باشند؛
یکی از حل‌ها قابل قبول و دیگری غیرقابل قبول باشد؛
هر دو حل غیر قابل قبول باشند.
برای مسائل بهینه سازی تک هدفه، از یک قانون ساده برای هر مورد استفاده می‌کنیم:
مورد 1) حلی که تابع هدف بهتری دارد را انتخاب می‌کنیم.
مورد 2) حل قابل قبول را انتخاب می‌کنیم.
مورد 3) حلی که کمترین انحراف از محدودیت‌ها را دارد انتخاب می‌کنیم. باتوجه به اینکه در هیچدام از موارد، اندازه تابع هدف و محدودیت‌ها با یکدیگر مقایسه نشده‌اند، هیچ نیازی به داشتن پارامترهای جریمه نیست، این موضوعی است که این رویکرد را مفید و جذاب کرده‌است.
درمورد مسائل بهینه سازی چندهدفه، دو مورد آخر می‌تواند همانطور که هستند استفاده شوند و مورد اول نیز می‌تواند با استفاده از اپراتور مقایسه ازدحام، حل شود. برای مقایسه کردن در این الگوریتم، تعریف «غلبه» را بین دو حل i و j تعریف می‌کنیم.
تعریف 1) حل i اگر یکی از وضعیت‌های زیر درست باشد، گفته می‌شود که از لحاظ محدودیت بر حل j غلبه دارد:
حل i قابل قبول است ولی حل j نیست.
حل i و j هر دو غیر قابل قبول می‌باشند، اما حل i انحراف از محدودیت کمتری دارد.
حل i و j قابل قبول هستند و حل i، حل j را مغلوب می‌کند.
اثر استفاده از مفهوم غلبه محدودیت این است که، هر حل قابل قبول، رتبه غیرمغلوبی بهتری از هر حل غیرقابل قبول دارد. همه حل‌های قابل قبول، باتوجه به سطح غلبه شان و براساس مقادیر توابع هدفشان رتبه بندی می‌شوند. به هر حال، از بین دو حل غیر قابل قبول، حلی که کمترین انحراف از محدودیت را دارد، دارای رتبه بهتری است. به هر حال، این اصلاح، در مفهوم غلبه، تغییری در پیچیدگی NSGA-II ندارد. بقیه فرایند CNSGA-II، همانطور که قبلاً درمورد NSGA-II توضیح داده شد، اجرا می‌شود.
2-4-2-3- الگوریتم ژنتیک رتبه بندی نامغلوب
این الگوریتم که توسط الجدان و همکارانش [16] ارائه شده، الگوریتم انتخاب چرخ رولت رتبه‌بندی شده را با الگوریتم رتبه بندی جمعیت برمبنای پارتو ترکیب می‌کند. در این الگوریتم از الگوریتم انتخاب چرخ رولتی استفاده شده‌است که به هر عضو، یک اندازه برازش برابر با رتبه اش در جمعیت، تخصیص می‌دهد؛ بالاترین رتبه، بیشترین احتمال را دارد که انتخاب شود (درمورد ماکزیمم سازی).
این احتمال به صورت معادله زیر محاسبه می‌شود:
(29.2)
که N، تعداد اعضاء این جمعیت است. در این الگوریتم، اعضاء در یک جبهه، براساس فاصله ازدحامشان و جبهه ها براساس رتبه غلبه شان رتبه می‌گیرند.
الگوریتم NRGA، همان طور که سودوکد آن را در شکل (2-4) مشاهده می کنید، به این صورت است که ابتدا، یک جمعیت تصادفی والدین، P، ایجاد می‌شود. مرتب کردن جمعیت براساس غلبه است. به هر حل، برازشی (یا رتبه ای) برابر سطح غلبه اش، تخصیص داده می‌شود (1 برای بهترین سطح، 2 برای سطح بعدی و الی آخر).
Initialize Population P
{ Generate random population-size N
Evaluate Objective Values
Assign Rank (level) Based on Pareto dominance-sort }
Generate Child Population Q

—d1174

شکل 2-15: شبکه تک لایه برگشتی .................................................................................................41
شکل 4-1 : نمودار سرعت بر حسب تراکم ........................................................................................ 79
شکل 4-2 : نمودار سرعت بر حسب جریان ...................................................................................... 80
شکل 4-3 : نمودار زمان سفر بر حسی تقاضا ....................................................................................82
شکل 4-4 : نمودار تقاضا بر حسب عرضه ......................................................................................... 89
عنوان صفحه
شکل 4-5: نمودار هزینه متوسط و جانبی ....................................................................................... 92
شکل 4-6 : جریان ترافیک در چند روز مختلف در طول شبانه روز ............................................... 96
شکل 4-7 : نحوه ارتباط سرعت، جریان و چگالی در توابع جریان ترافیک ................................... 100
شکل 4-8 : نمونه جریان ترافیک در بزرگراه ها .............................................................................. 101
شکل 4-9 : نمودار سرعت – تقاضا در مدل ویکری ........................................................................ 103
شکل 4-10 : نمودار هزینه حاشیه ای و هزینه تراکم ....................................................................... 104
شکل 4-11 : ساختار مدل پیشنهادی برای پیش بینی جریان ترافیک .......................................... 117
شکل 4-12 مراحل ساخت مدل پیش بینی حجم ترافیک ............................................................. 118
شکل 4-13: رگرسیون خطی ساده .................................................................................................. 121
شکل 5-1: انواع هزینه های حمل و نقل .......................................................................................... 131
شکل 5-2 : نمودار ترافیک عبوری خودروها را در بازه زمانی یک ساعت .....................................137
شکل 5-3 : نمودار ترافیک عبوری خودروها ...................................................................................137
شکل 5-4 : نمودار مبلغ تراکم در ساعت های مختلف ....................................................................139
شکل 5-5: ارتباط مابین تقاضا، عرضه و حجم ترافیک ...................................................................139
شکل 5-6: مدل چهار مرحلهای برنامه ریزی حمل ونقل ............................................................... 140
شکل 5-7 : خروجی Train شبکه عصبی ........................................................................................144
شکل 5-8: خروجی مربوط به اعتبار سنجی شبکه عصبی .............................................................144
شکل 5-9 : خروجی مربوط به آزمایش شبکه عصبی ......................................................................145
شکل 5-10: تعداد epochهای مورد استفاده توسط الگوریتم یادگیری شبکه .............................145
شکل5-11 : مقایسه خروجی شبکه عصبی با اطلاعات موجود ........................................................146
شکل5-12 : مقایسه خروجی مدل رگرسیون با اطلاعات موجود ....................................................151

فهرست نشانه های اختصاری
TDNN = Time delay neural network
BOT = Build-operate-transfer
PCI = Pavement Condition Index
PSI = Present Serviceability Index
MLF = Multi-layer feed forward
TTI = Texas Transportation Institute
BPR = Bureau of Public Roads
VOTT = Value of Travel Time
HCM = Highway Capacity Manual
BP = Back Propagation
فصل اول
مقدمه و طرح مسئله
1- مقدمه1-1- مقدمهبخش حمل ونقل نیز به عنوان یکی شاهرگ اصلی اقتصاد، نقش بسزایی در شکوفایی و توسعه جامعه ایفا می کند. در کشور ما تاکنون این بخش نتوانسته به جایگاه واقعی خود دست یابد. شاید به جرأت بتوان گفت که امروزه ملاک توسعه یافتگی کشورها پس از صنعت، مربوط به توسعه ارتباطات ریلی، جاده ای، هوایی و دریایی است. بنابراین حمل و نقل را می توان به شریانی تشبیه کرد که موجب پویایی و شکوفایی اقتصاد کشورها می شود.
اگر امروز در جهان از خدمات حمل ونقل تحت عنوان صنعت یاد می شود بخاطر گستردگی و اهمیت این خدمات به عنوان حلقه اتصال صنایع با یکدیگر و عامل ارتباط میان بازارهای تولید و مصرف است . بدین خاطر است که بین نظام حمل ونقل و فرآیند توسعه اقتصادی و اجتماعی جوامع همبستگی شدیدی وجود دارد و اقتصاد دانان، صنعت حمل ونقل را به عنوان نیروی محرکه توسعه می دانند و کارآمدی و توانمندی آن را زمینه ساز توسعه پایدار می شناسند. لذا چنانچه این بخش از اقتصاد، مورد بی مهری و بی توجهی برنامه ریزان اقتصادی قرار گیرد یا به دلیل سیاستگذاری های نامناسب کارایی لازم را نداشته باشد، خواسته یا ناخواسته اقتصاد کشورها را با مشکلات جدی مواجه خواهد کرد.
کشور ایران به دلیل موقعیت جغرافیایی و دسترسی به آبهای آزاد، از موقعیت ویژه ای در حمل ونقل منطقه برخوردار است. اینکه ایران موقعیت طلایی برای ترانزیت و عبور کالا را دارد بر کسی پوشیده نیست ولی متأسفانه طی دهه اخیر، علیرغم گنجاندن این مهم در راهبردهای اقتصادی و برنامه های توسعه کشور، عملاً شاهد تحقق بهره برداری از این پتانسیل نبوده ایم. یکی از مهم ترین عوامل زیربنایی برای توسعه هر کشوری، وجود یک شبکه کارا و مناسب جهت رفع نیازهای حمل ونقلی آن است. بطور کلی حمل ونقل به جهت رفع نیازهای مختلف اقتصادی، اجتماعی و دسترسی صورت می گیرد و تقاضای آن ناشی از تقاضا برای سایر بخش ها است (صفارزاده،هدایتی،1378).
بین صنعت حمل ونقل و سایر بخش های صنعتی از منظر اقتصاد تفاوت هایی وجود دارد . فعالیت های حمل ونقل دارای هزینه ثابت بسیار بالا هستند که بیشتر صرف زیرساخت های حمل ونقل می شود و برای ساخت زیرساخت های حمل ونقل نیاز به سرمایه گذاری بلند مدت است. این دو خصیصه از جمله ویژگی های بارزی هستند که حمل ونقل را از نظر اقتصادی، از دیگر صنایع جدا می کند. بر همین اساس تامین منابع مالی و جذب سرمایه گذاری در این بخش در مقایسه با دیگر بخش های اقتصادی با مشکلات بیشتری همراه است.
حمل ونقل جاده ای به دلیل خصوصیات ویژه ای که داراست (از جمله انعطاف پذیری در انتخاب مسیر، میزان بار، زمان سفر، دسترسی به نقاط مختلف، عدم نیاز به تجهیزات بارگیری و تخلیه) به عنوان متداول ترین شیوه حمل ونقل در کشورهای مختلف محسوب می شود. در ایران نیز علاوه بر ویژگی های خاص حمل ونقل جاده ای، موقعیت ویژه جغرافیایی، عدم پوشش گسترده شبکه ریلی در سطح کشور، فقدان مقررات محدود کننده در خصوص آثار منفی حمل ونقل جاده ای همچون مسائل زیست محیطی، سبب گشته تا درصد بسیار بالایی از حمل ونقل کالا و مسافر توسط این زیربخش صورت گیرد، بطوریکه هم اکنون بیش از 90 % کل حمل بار و مسافر در کشور توسط جاده انجام می شود(سازمان راهداری و حمل و نقل جاده ای، 1383).
در حالیکه فعالیت های حمل و نقل بیش از 9% از تولید ناخالص ملی کشور را در بر می گیرد و در حدود 5/7 میلیون نفر از شاغلان کشور در این حوزه فعالیت می کنند و همچنین بر اساس برآوردهای کارشناسان در صورتی که تمام فعالیتهای مستقیم و غیر مستقیم حمل ونقل به حساب این بخش منظور شود، ارزش افزوده آن بالغ بر 20 % از تولید ناخالص داخلی را تشکیل خواهد داد (سایت اینترنتی بانک مرکزی جمهوری اسلامی ایران، 1389).
ضرورت توجه به حمل ونقل در کشور دو چندان نمایان می شود. در برنامه چهارم توسعه و در ماده 28 آن بطور مشخص اقداماتی در این خصوص پیش بینی شده است که بر اساس آن دولت موظف شده است اقداماتی را به منظور تقویت اقتصاد حمل و نقل، بهره برداری مناسب از موقعیت جغرافیایی کشور، افزایش ایمنی و سهولت حمل ونقل بار و مسافر انجام دهد.
علاوه بر این موارد، افزایش جمعیت، روند رو به رشد اقتصاد کشور و گذر از درحال توسعه به توسعه یافته و استعداد ترانزیت بین المللی، لزوم توسعه و ساخت هر چه بیشتر زیرساخت های حمل ونقل را بیشتر نمایان می کند. اما محدودیت منابع مالی و سرمایه، اکثر کشورهای جهان و ازجمله ایران را به فکر یافتن راه حلی جهت تامین سرمایه مورد نیاز توسعه زیرساخت های حمل ونقل انداخته است . کشورهای مختلف خط مشی های متنوعی برای تامین سرمایه در پروژه های راهسازی در پیش گرفته اند. از روش های متداول اتخاذ شده از سوی دولت ها می توان به وضع مالیات بر سوخت و سایر کالاهای مرتبط با حمل ونقل، مالیات بر خودرو و دریافت عوارض از رانندگان وسایل نقلیه اشاره نمود. معمولاً هزینه های دوره بهره برداری زیربناها نیز از محل اخذ عوارض از کاربران راهها تامین می شود (پژوهشکده حمل و نقل،1389).
در دهه های 80 و 90 میلادی، در سطح دنیا تمایل بسوی ساخت زیربناهای حمل ونقل با مشارکت بخش غیردولتی به جای زیربناهایی عمومی و رایگان صددرصد دولتی، بسیار افزایش یافت . ساخت و توسعه راهها از طریق مشارکت بخش غیردولتی به دلیل استحصال فواید و نتایج مطلوبی همچون کمک به جبران کمبود بودجه عمومی جهت ساخت و نگهداری راهها، پاسخگویی به رشد تقاضا و نیز ارتقا کیفیت و مطلوبیت خدمات حمل ونقل فراگیر شده است. همچنین قیمت گذاری راهها به عنوان فرآیندی مناسب جهت بازگشت سرمایه و هزینه های مدیریت و نگهداری راهها، از سوی کشورها پذیرفته شده و در بیشتر آنها به اجرا درآمده است (Heggie,1995).
بنابراین باید اذعان داشت که امروزه قیمت گذاری راهها به یکی از اولویت های کاری در رئوس سیاست های حمل ونقل در سراسر جهان تبدیل شده است . بیشتر کارشناسان و اقتصاددانان حمل ونقل و همچنین سیاست مداران متقاعد شده اند که قیمت گذاری راه، و هزینه های جانبی مربوط به آنها، راهکار مؤثری برای کسب و جذب منابع مالی جهت توسعه و بهبود سیستم های حمل ونقل و همچنین مدیریت تقاضا و کنترل ازدحام روی راهها است.


در مجموع با بررسی اجمالی وضعیت خدمات راهسازی و راهداری در ایران می توان گفت: کشور ایران از نظر توسعه زیرساخت ها و بهبود شبکه راههای خود دارای نیاز زیادی است. تامین منابع مالی و سرمایه از مشکلات اصلی کنونی برای رفع نیازهای زیرساختی است. همچنین در صورت عدم ایجاد فضای منطقی و هدفمند برای ساخت آزادراهها با مشارکت بخش غیردولتی، مشکلات تقاضای برآورده نشده دوچندان شده و آثار نامناسبی بر اقتصاد خواهد گذاشت. علاوه براین، در صورتیکه حتی بخش غیر دولتی نیز به مشارکت بخش دولتی بیاید اما ساز و کار مناسب برای بازگشت سرمایه به سرمایه گذاران در نظر گرفته نشود، مشکلات بیشتری به دولت و سیستم حمل ونقل وارد شده و بار مالی زیادی به بودجه عمومی وارد می شود.
قیمت گذاری راه مفهوم جدیدی نیست. عوارض روی جاده ها و پلها از اواخر قرن هیجدهم یعنی سال 1790 میلادی در آمریکا رایج بوده است. این دوران با شکوفایی اقتصاد آمریکا مقارن بود . در آن موقع حمل ونقل بهتر به معنی آزادراههای بهتر بود. ایالت ها و دولت های محلی بودجه و منابع مالی محدودی در اختیار داشتند که پاسخگوی نیازهای حمل ونقل نبود . بهمین دلیل آزادراههای خصوصی با فاینانس شرکت های سهامی احداث شد و سهام آن در بازارهای بورس معامله می شد. صاحبان سهام از محل دریافت عوارض و مالیات های بزرگراهها، سود سهام خود را دریافت می کردند (Durenberger,1981).
به این طریق راههای خصوصی و سیستم عوارضی در این راهها تا اواسط قرن نوزدهم ادامه داشت و در آن سا لها به اوج خود رسید. توسعه ریل رقابت شدیدی را بین ریل و جاده به وجود آورد که منجر به کم رنگ شدن اهمیت جاده شد. در نتیجه بیشتر بزرگراهها یا به دولت واگذار شدند یا به صورت نیمه دولتی درآمدند. از آن زمان یعنی اواسط قرن نوزدهم تا اواسط قرن بیستم مردم آمریکا رغبت چندانی به قیمت گذاری راهها نشان داده و با آن مخالفت ورزیده اند . از اوایل سال های 1960 سیستم عوارض سنتی برچیده شد و بجای آن سیستم پرداخت فوری جایگزین شد و در دهه های60، 70 و 80 میلادی مورد استفاده قرار گرفت (پژوهشکده حمل و نقل، 1389).
در کشور انگلیس از سال 1964 تاکنون با هدف کم کردن بار ترافیکی راهها و کمک به تامین اعتبارات برای ساخت و توسعه راهها، استراتژی های مختلفی برای قیمت گذاری راهها اجرا شده است. از سال 2003 به بعد در شهر لندن سیاست های سخت گیرانه تر و همراه با نرخ های بالاتر با هدف کاهش هرچه بشتر بارترافیک اعمال شده است.
یکی از موفق ترین تجربه های قیمت گذاری راهها را کشورهای هنگ کنگ(Ison, Rye,2005) و سنگاپور(Goh,2002) از اواسط دهه 70 میلادی تا کنون داشته اند. هنگ کنگ در خلال سال های 80 و 90 میلادی علیرغم رشد جمعیت و تقاضای حمل و نقل توانست 20 % از بارترافیکی درون پایتخت بکاهد. همچنین سنگاپور نیز در مدیریت ترافیک توفیق زیادی داشته و دو دهه است اخذ الکترونیکی عوارض را تجربه می کند.
در کشور نروژ از سال 1930 تا 1980 5% کل بودجه ساخت و توسعه زیرساخت های حمل ونقل از ، محل قیمت گذاری راهها تامین شده است . اما در دو دهه 80 و 90 میلادی تحولات زیادی در سیستم قیمت گذاری راهها به وجود آمد و در نتیجه 26 % کل بودجه ساخت زیربناهای حمل ونقل کشور نروژ در دو دهه مذکور از محل قیمت گذاری راهها تامین گردید. در سال 1997 تعداد پروژه های راهسازی با استفاده از درآمد های حاصل از قیمت گذاری راهها به 30 پروژه رسید(Odeck, Bråthen,1997).
در کشور ایران تا کنون قیمت گذاری سیستماتیک و جامعی روی شبکه راههای کشور انجام نشده است و تنها در چند آزادراه کشور سیستم اخذ عوارض سنتی وجود دارد که البته بیشتر درآمدهای آن صرف پوشش هزینه های ساخت آزادراههای مذکور می شود. در واقع این آزادراهها با سرمایه بخش خصوصی یا بانک ها ساخته شده و در قالب قراردادهای ساخت-عملیات-واگذاری احداث شده اند و تا دوره ی مشخصی با نظارت دولت مجازند کابران این راهها را شارژ کنند.
بطور کلی در بیشتر کشورهای دنیا در سه دهه اخیر، قیمت گذاری راهها به عنوان منبعی مکمل جهت تامین اعتبارات و منابع مالی بخش حمل ونقل، همچنین مشوقی جهت همکاری و تعامل توأم بخش خصوصی و دولتی برای ساخت و توسعه راههای جدید، مدیریت تقاضا و کنترل ترافیک روی شبکه راهها، مورد نگاهی ویژه قرار گرفته است(پژوهشکده حمل و نقل،1389).
1-2- اهداف قیمت گذاری راههااهدافی زیادی برای قیمت گذاری راهها ذکر شده است. در اینجا به ۴ هدف اشاره می شود که در زیرآمده اند.
1. از مشهورترین و مهمترین اهداف قیمت گذاری راهها، هدف مالی و سرمای های است.قیمت گذاری راهها به عنوان منبعی برای کسب درآمد جهت بهسازی و توسعه زیر ساخت های حمل ونقل عمل می کند. شکاف موجود بین نیازهای زیرساختی حمل ونقل و درآمدهای موجود یکی از محرک های اصلی قیمت گذاری است. جمع آوری منابع مالی از این طریق برای پوشش دادن و جبران هزینه های ساخت راه، توسعه راههای فعلی و ساخت زیرساخت های جدید حمل ونقل صورت می گیرد. در بیشتر کشورهای دنیا بخش زیادی از این منابع از محل مالیات بر سوخت، مالیات بر وسائل نقلیه تامین می گردد. با توجه به تحولات تکنولوژیکی و ورود وسائل نقلیه با سوخت های نوین مانند باطری های خورشیدی، پیل های سوختی و امثالهم، که جایگزین وسایل با سوخت فسیلی می شوند ، انتظار می رود بخش حمل ونقل با کاهش مالیات بر سوخت و در نتیجه کاهش منابع مالی مواجه شود. لذا اهمیت قیمت گذاری راهها به عنوان محلی برای تامین منابع مالی مذکور بیشتر می شود . البته به دلیل اینکه در کشور ایران مالیات بر سوخت گرفته نمی شود، این نگرانی بدین صورت برای کشور ما وجود ندارد؛ بلکه بیشتر کمبود منابع مالی برای ساخت و توسعه شبکه راهها دغدغه اصلی محسوب میشود. قابل ذکر است این هدف بیشتر در قیمت گذاری راههای بین شهری در کشور ما و نیز دیگر کشورها دنبال میشود. (پژوهشکده حمل و نقل،1389).
2. هدف دوم ارائه مکانیزمی برای مدیریت تقاضای حمل ونقل است. با تغییر تعرفه ها در طول شبانه روز (که گاهی قیمت گذاری تراکم یا قیمت گذاری ارزش نامیده می شود ) استفاده کنندگان بگونه ای ترغیب می شوند که در طول ساعات شلوغ و پرتردد از سفر پرهیز کنند و سفرهای خود را در ساعات کم تردد انجام دهند. بدین طریق جریان ترافیک تعدیل شده و تقاضای سفر بگونه ای در طول ساعات روز توزیع می شود که کمتر بار ترافیکی شدید به وجود آید. علاوه بر توزیع تقاضا در ساعات مختلف، با تقسیم شبکه راهها به بخش های مختلف و تخصیص تعرفه های متفاوت به هر کدام به توزیع مناسب تقاضا روی کل شبکه پرداخته و از ترافیک شدید جلوگیری می کنند. طبیعی است با کاهش ترافیک، شاخص دسترسی پذیری افزایش یافته و کارایی حمل ونقل بهبود می یابد(May,1992). البته این هدف، بیشتر در مناطق شهری و درون شهرها مدنظر قرار می گیرد. امروزه در بیشتر شهرهای بزرگ و شلوغ دنیا از جمله شهر تهران این هدف دنبال می شود.
3. هدف سوم کاهش آثار زیان آور زیست محیطی است. معمولاً فعالیت های حمل ونقل اعم ازاحداث راهها و حرکت وسایل نقلیه، موجب وارد شدن آسیب هایی به محیط زیست می شو ند. هزینه های محیط زیستی مربوط به زیرساخت های حمل و نقل، شامل مواردی چون تصرف زمین و اراضی، تغییر مناظر و زیباییهای طبیعی، تخریب زیست گاههای وحوش، آسیب رسانی به منابع و ذخایر زمینی، آلاینده های جوی و غیره است(بیضایی،1382). لذا قیمت گذاری بگونه ای انجام می شود که بخشی از قیمت صرف جبران خسارات وارده به محیط زیست شود.
4. هدف چهارم که بیشتر در مناطق خارج از شهر و روستایی دنبال می شود، شارژ مستقیم کسانی است که از راهها، استفاده های مخاطره آمیز می کنند. مثلاً، ادوات سنگین کشاورزی و عمرانی، ممکن است سبب وارد کردن خساراتی به راهها شوند. تصادفات جاده ای نیز به دلیل تحمیل هزینه به اجتماع و البته بخش حمل ونقل، می تواند شامل این مورد باشد که در این صورت، شرکت های بیمه ای باید هزینه ها و عوارض مربوطه را بپردازند . علاوه بر این موارد، استفاده از وسایل غیراستاندارد و فرسوده که بیش از وسایل استاندارد به راهها آسیب می رسانند، مشمول این نوع قیمت گذاری می شوند. در کشور ایران، فرسود گی زیاد ناوگان حمل ونقل از جمله عوامل فرساینده راه بشمار رفته و اصولاً این دسته از وسایل حمل ونقل باید قیمت بیشتری را بابت استفاده ار راهها بپردازند. پیگیری این هدف می تواند به بهبودی وضع ناوگان و کاهش فرسودگی کمک کند(پژوهشکده حمل و نقل،1389).
برحسب اهداف در نظر گرفته شده برای قیمت گذاری راهها، استراتژی های قیمت گذاری نیز متفاوت خواهد بود. بطور مثال، قیمت گذاری در شهرهای کشورهای سنگاپور و هنگ کنگ بیشتر با هدف کاهش تراکم و مدیریت تقاضا است (Olszewski, Xie,2005) و در شهر لندن این کار بیشتر با هدف کاهش آلودگی های زیست محیطی و البته کاهش تراکم صورت می گیرد(Mitchell,2005) در حالیکه در کشور نروژ قیمت گذاری راه با هدف اصلی ساخت و توسعه شبکه راهها انجام می شود(Odeck, Bråthen,2002). در حوزه فعالیت وزارت راه و ترابری در کشور ایران، قیمت گذاری راهها، بیش از آنکه برای کاهش بار ترافیکی مورد نظر باشد، با هدف ساخت و توسعه شبکه راهها و جبران هزینه های ساخت راههای موجود، انجام می گیرد.
1-3- جمع بندی و نتیجه گیریحمل ونقل جاده ای به دلیل خصوصیات ویژه ای که داراست (از جمله انعطاف پذیری در انتخاب مسیر، میزان بار، زمان سفر، دسترسی به نقاط مختلف، عدم نیاز به تجهیزات بارگیری و تخلیه) به عنوان متداول ترین شیوه حمل ونقل در کشورهای مختلف محسوب می شود. در ایران نیز علاوه بر ویژگی های خاص حمل ونقل جاده ای، موقعیت ویژه جغرافیایی، عدم پوشش گسترده شبکه ریلی در سطح کشور، فقدان مقررات محدود کننده در خصوص آثار منفی حمل ونقل جاده ای همچون مسائل زیست محیطی، سبب گشته تا درصد بسیار بالایی از حمل ونقل کالا و مسافر توسط این زیربخش صورت گیرد. بنابراین باید اذعان داشت که امروزه قیمت گذاری راهها به یکی از اولویت های کاری در رئوس سیاست های حمل ونقل در سراسر جهان تبدیل شده است . بیشتر کارشناسان و اقتصاددانان حمل ونقل و همچنین سیاست مداران متقاعد شده اند که قیمت گذاری راه، و هزینه های جانبی مربوط به آنها، راهکار مؤثری برای کسب و جذب منابع مالی جهت توسعه و بهبود سیستم های حمل ونقل و همچنین مدیریت تقاضا و کنترل ازدحام روی راهها است.

فصل دوم
مبانی نظری
2- مبانی نظری تحقیق2-1- مقدمهحمل و نقل یا جابجایی انسان و کالا از نقطه ای به نقطه دیگر، از جمله خصایص ذاتی و کهن ماندگار انسان ها است. در جوامع ابتدایی به فرم معیشتی نیز، حرکت جزو اساسی ترین الزامات روزانه به شمار می رود و برای تولطد و یا جابجایی هر محصول غیر اقتصادی لازم است حجم معینی از حرکات از محل تولید تا مصرف صورت پذیرد تا کالای مورد نیاز به مصرف کننده برسد.
چنین فرایندی از حرکت از حرکت در یک جامعه توسعه یافته مبادلاتی، ابعاد وسیع تری دارد و اشکال مختلفی از حرکت و جابجایی را پدید می آورد. بنابراین حرکت و جابجایی یکی از عمده الزامات انسانی است که نتایج اقتصادی به دنبال دارد. در علم اقتصاد، مجموعه خدماتی که سبب انتقال و جابجایی منابع تولید می گردد دارای ارزش اقتصادی است و بخشی از جریان تولید محسوب می شود. از این رو حمل و نقل از جمله ضروریات اقتصادی است و تقاضا برای حمل و نقل مشتق از سایر فعالیت های اقتصادی و اجتماعی است و لذا محصول حمل و نقل در عین حال که یک تولید پیچیده و مرکب است، تابع تغییرات تقاضا در نقاط و یا بخش های دیگر اقتصاد نیز می باشد(محمودی،1389)
حمل و نقل به گونه سایر فعالیت های اقتصادی بدون هزینه نیست و حرکت در ابعاد فضایی، همانند هر تولید دیگری دارای هزینه می باشد. تفاوت های ساختاری در عملکرد هزینه های انواع مختلف حمل و نقل میدان کاربری وسیعی را برای برنامه ریزی حمل و نقل فراهم می آورد.
روند توسعه در افزایش تسهیلات حمل و نقل جهانی مبین یک روند فزاینده در تقاضا برای سرمایه گذاری در زیر ساخت های حمل و نقل می باشد و به همین دلیل است که سرمایه گذاری در زیر ساخت های حمل و نقل اهمیت یافته و جزو لاینفک برنامه های توسعه ملی گردیده است. در بسیاری از کشورهای توسعه یافته تامین مالی حمل و نقل بخصوص از این جهت اهمیت دارد که حمل و نقل بزرگترین جزء سرمایه گذاری این کشورها را تشکیل می دهد.
به دلیل بالا بودن هزینه های اجرایی طرح های زیر بنایی حمل و نقل و همچنین به خاطر مسئولیت های مالی دولت ها و ضرورت های توزیع در سطح ملی لازم است دولت ها به سرمایه گذاری در زیر ساخت های حمل و نقل توجه عمده ای مبذول دارند.
2-2- هزینه های حمل ونقلعملکردهای زیانبخش فاصله و محدود ساختن ابعاد حرکت در واقع ناشی از هزینه های حرکت است که بر اثر غلبه بر فاصله به وجود می آید. زیرا عملا هر مصرف کننده ای در حرکت بسوی گردآوری منابع مورد نیاز و یا بمنظور مبادله مقداری از درآمد خود با کالا و خدمات، ضرورتا مقادیر مشخصی از منابع کمیاب (پول، وقت و انرژی فیزیکی ) را به مصرف می رساند تا هزینه مسافت را از میان بردارد. بنابراین وقتی از موانع ناشی از مسافت و سنجش آن با واحدهای پولی صحبت می کنیم، در واقع اشاره به عملکرد خدمات حمل و نقل در غلبه بر مسافت و ساخت هزینه های حرکت و بهای مربوط به آن است که بر پایه ذخایر مالی قرار دارد.
ولی روند غلبه بر هزینه های مسافت همیشه بر اساس مبادلات پولی استوار نیست. مثلا قدم زدن تا فروشگاه برای خرید کالای مورد نیاز، پرداخت هزینه ای را شامل می شود که صرفا جنبه فعالیت بدنی داشته و می توان آنرا از طریق محاسبه واحد کالری مصرفی اندازه گیری نمود. در حالی که استفاده از وسایل ارتباطی محتاج مبادله پولی است و روند چنین مبادله ای بر اساس میزان سرمایه گذاری، نوع خدمات و هزینه های ناشی از آن بسیار متنوع است.
از این رو، برای تجزیه و تحلیل هزینه های حمل و نقل ضرورتا باید شناخت وسیعی از ماهیت هزینه های حمل و نقل داشت.حمل و نقل نوع ویژه ای از تولید است که بر خلاف اصول جاری در تولید کالاهای اقتصادی، در یک نقطه مشخص مکانی مستقر نیست ، بلکه عوامل تولید در چنین شیوه ای در طول یک خط معین و یا در امتداد مسیرهای مختلف ترکیب یافته وشکل می گیرند. بنابراین، از لحاظ اقتصادی، ساخت موقعیتی حمل و نقل با موضوعات مورد مطالعه در سایر فعالیت های اساسی دارد. این وضع زاییده اختلاف های بنیادی بین اهمیت و نقش تولیدی خطوط و گذرگاه ها در مقایسه با سایر فعالیت های اقتصادی است که خود مسائل ویژه ای را در موقعیت مکانی پدیده های تولید مطرح می کند. اهمیت بنادر، ایستگاه های راه آهن و سایر ترمینال ها به عنوان کانون فعالیت های حمل و نقل در واقع نتیجه مستقیم ارتباط های زنجیره ای این نقاط با پاره ای از نقاط دیگر است که هرگز به تنهایی حاوی ارزش های اقتصادی بالقوه ای نیستند. ارزش و اعتبار چنین مراکزی یا بر اساس شاخص هایی مانند تعداد مسافران و وزن کالاهای حمل شده و درآمدهای حاصله از آن تعیین می شود و یا ارزیابی آن ها بر پایه معیارهای فیزیکی دیگری قرار دارد. در هر حال، وسایل حمل و نقل و موسسات مربوط به آن عملا کالاهایی را عرضه نمی کنند و درآمد آن ها ناشی از خدماتی است که در مقطع زمانی و مکانی مشخصی ارائه شده است(محمودی،1389).
در هندسه فرض بر این است که هر خطی از به هم پیوستن بی انقطاع مجموعه ای از نقاط هندسی تشکیل می شود که عملکرد هر یک از نقاط مفروض در ساخت این خط برابر و یکسان است. خطوط ارتباطی را از بسیاری جهات همانند عملکرد نقاط در تشکیل خط می توان فرض کرد و ثابت کرد که تولید در طول چنین خطوطی و بر سر هر نقطه ای می تواند احتمال وقوع داشته باشد. بنابراین، سهمی که هر یک از این نقاط در حرکت دادن مسافر . کالا دارند از طریق محاسبه ای ساده (نرخ کالا هنگام صدور از مبدا منهای ارزش آن در زمان ورود به مقصد) می توان تعیین کرد. ولی کیفیت این گونه استدلال ها انسان را متقاعد می سازد که این نوع محاسبات تقریبا غیر عملی است و کمتر با واقعیت های موجود در حمل یک کالا مطابقت دارد. زیرا حمل و نقل هر محموله ای از ایستگاه مبدا علاوه بر هزینه های خدماتی عملا متضمن پاره ای هزینه های سرمایه ای نیز هست. بنابراین ، اگر از تطبیق این فرضیه که قسمت های مختلف یک خط را نقاط هندسی تشکیل می دهند صرف نظر کنیم و حرکت فرضی یک کالا را با ابعاد محدودتر، در طول یک راه آهن در نظر بگیریم در زمینه ترکیب هزینه های حمل و نقل به نتایج بهتری دست خواهیم یافت.
هزینه هایی که در طول راه آهن خیالی ما به واسطه انتقال کالاهای فرضی پدید می آید، نتیجه محاسبه و جمع زدن هزینه هایی مانند دستمزد، اجاره بها، بهره و غیره است. بسیاری از این هزینه ها به خدمات انجام شده در ادارات مرکزی متعلق می گیرد و برخی دیگر به خدمات انجام شده در ایستگاه های بین راه مربوط است و سایر هزینه ها به طول مسیر طی شده مربوط می شود. بدین ترتیب، سود حاصله از این خدمات برخی به بخش های ویژه ای از دارایی راه آهن و برخی دیگر به قسمت های واقع در طول راه مربوط خواهد بود.
حسابداران و متخصصان نرخ گذاری در بررسی توزیع درآمدهای حاصله، روش های ویژه ای دارند که بر حسب این روش ها، نخست هزینه های اداره مرکزی و سایر اقلام مربوط به آن معین می شود، سپس دستمزدها و هزینه های عملیاتی شهرهایی که ایستگاه ها در آنجا واقع شده اند و در آخر، بخش های ویژه ای از مسیر که به طریقی به نظام ارتباطی مربوط اند تعیین می شوند. چنین روشی را در مورد حمل و نقل های زمینی، دریایی و هوایی نیز می توان تعمیم داد و به کار بست. ولی یک اصل عمده در چنین شیوه ای از برنامه ریزی این است که حجم عمده ای از درآمد تقریبا در ترمینال ها جای گرفته و چنین به نظر می رسد که راه هایی که این ترمینال ها را به هم متصل می کنند بدون هزینه نگهداری می شوند، در حالی که چنین نیست و در واقع ساخت هزینه ها در انواع مختلف حمل و نقل سبب و نتیجه عملکرد هزینه های ثابت و هزینه های متغیر است که از سرمایه گذاری در طول مسیر حاصل آمده است. شکل (2-1) توجیه ساده ای از این مطلب است.

شکل 2-1 : عملکرد هزینه های حمل و نقل
به این ترتیب، حمل و نقل نوعی تولید است که در یک فرایند فضایی شکل یافته و در مقایسه با سایر تولیدات اقتصادی غیر قابل ذخیره است و مصرف آتی دارد. مهم تر از همه آنکه تولید حمل و نقل نسبت به مقیاس دارای بازده صعودی است و با افزایش بهره برداری «طول مسیر، وسایط نقلیه، زمان بهره برداری» ، مقدار تولید افزایش می یاید و از این رو عملکرد هزینه ها « ثابت، متغیر» در تولید تسهیلات حمل و نقل دارای وجوه ویژه ای است.
2-2-1- هزینه های ثابتهزینه های ثابت عبارت است از هزینه هایی که در اثر استهلاک فنی سرمایه های اولیه وسایط نقلیه، مخارج ساخت و نگه داری ترمینال ها و راه ها ، پرداخت مالیات های مختلف و عوارض گمرکی پدید می آید. هزینه های ثابت را معمولا غیر مستقیم، هزینه های مکمل، هزینه های اضافی و یا هزینه های سربار می نامند که تابع آن را به شکل زیر می توان نوشت.
TFX=k=0npi viدر رابطه فوق Vi مقادیر عوامل تولید ثابت و Pi قیمت های آن ها فرض شده است.
کوپر هزینه های ثابت را بر حسب کیفیت آن ها به دو قسمت تقسیم می کند. نخست، هزینه های ثابت سرمایه ای که خود شامل سرمایه گذاری مجدد و هزینه های استهلاک و فرسودگی وسایل نقلیه و ساختمان های مربوط به آن می شود و دوم، هزینه های ثابت روزمره که مشتمل بر دستمزدها، هزینه های انبارداری، گمرکات، بازرسی، مدیریت و غیره است. در هر حال، تاثیر پذیری چنین هزینه هایی در ساخت هزینه های کلی حمل و نقل تا حدودی ثابت است. زیرا این هزینه ها نه تنها ارتباط مستقیمی با سطوح مختلف حرکت ندارند، بلکه به آسانی نیز می توان آن ها را به مصرف کنندگان ویژه ای تحمیل کرد، مگر آنکه افزایش استفاده از تسهیلات ترمینال ها و تجهیزات اصلی آنها، مانند کامیون ها، قطارها و خودروها، موجب تقلیل حد متوسط هزینه های ثابت شود. مثلا در خصوص ارتباط دو نقطه از طریق یک سیستم مجهز راه آهن که در آن میلیارها ریال سرمایه گذاری شده است، تاثیر هزینه های ثابت در بهای تمام شده نرخ حمل و نقل به میزان بهره برداری از آن بستگی خواهد داشت. اگر میزان بهره برداری تا حد مشخصی افزایش یابد، سهم هزینه های ثابت در نرخ حمل و نقل به همان نسبت تقلیل می یابد و منحنی آن مانند شکل(2-2) می باشد. بدین ترتیب، اگر شبکه ارتباطی oq که هزینه های ثابت معینی در ساختمان آن به کار رفته است، در فاصله زمانی مشخص، Z مرتبه بهره برداری شود، تاثیر هزینه های ثابت در بهای تمام شده حمل و نقل، به مراتب کمتر از میزان بهره برداری به مقادیر x و y خواهد بود.
اگر چنانکه هزینه های ثابت بر حسب هر تن کالای حمل شده در طول مسافت بیان شود، فرم عمومی عملکرد هزینه های ثابت به گونه ای خواهد بود که با افزایش عملکرد، هزینه های ثابت به ازای هر تن در مسافت طی شده کاهش خواهد یافت و نتیجتا به کاهش نسبی هزینه های متوسط کل منجر خواهد شد (شکل 2-2).

شکل 2-2 : روند تحلیلی هزینه های ثابت بر حسب میزان بهره برداری

شکل 2-3: عملکرد هزینه های ثابت بر حسب تن-مسافت
معمولا هزینه های نیروی کار و تاسیسات ترمینال ها بخش مهمی از هزینه های ثابت حمل و نقل را تشکیل می دهند و در ترمینال های راه آهن و بنادر کشتیرانی، شاخص بهره دهی بر حسب رابطه بین این هزینه ها به ازای هر تن کالای حمل شده ارزیابی می شود.
برآورد میزان واقعی هزینه های ثابت و نحوه عملکرد آن در ساخت کلی هزینه های حمل و نقل همیشه براحتی میسر نیست و بر حسب میزان سرمایه گذاری، از سیستمی به سیستم دیگر تغییر می کند. معمولا هزینه واقعی عمل حمل و نقل بیش از مبلغی است که از ضریب نرخ باربری در تن – کیلومتر به دست می آید. زیرا در غالب کشورها بخش مهمی از هزینه های ثابت به اقتصاد عمومی تحمیل می شود و دولت به منظور تقلیل هزینه های حمل و نقل برای مصرف کننده مقداری از هزینه های ثابت را به صورت کمک های مالی مستقیم و یا غیر مستقیم تعهد می کند. بوریر به نقل از پرفسور پیرات نشان داده است که در کشور آلمان استفاده مجانی از راهها بویژه در سالهای گذشته برای کامیون ها حداقل به منزله کمک مالی معادل 15 الی 20 درصد بهای تمام شده حمل و نقل بوده است. رساندن چنین کمک های مالی و اعتباری از عمده ترین دلایل علاقمندی دولت ها به تشویق تخصص های منطقه ای و ایجاد رفاه و اشتغال در سطح ملی است. البته بازگشت چنین هزینه های از طرف دولت معمولا از طریق اخذ عوارض و مالیات های مختلف بر سوخت و تاسیسات تامین می شود.
بنابراین در هر شرایطی هدف اساسی سیاست دولت از کمک به حمل و نقل عمومی انجام یکسری خدمات در سطح ملی و تسریع فرایند مبادلات به ویژه توزیع مکانی واحدهای تولیدی است تا از تمرکز فعالیت های اقتصادی در قطب های مشخص جلوگیری به عمل آید و استعدادهای نهفته در نقاط دیگر به کار گرفته شوند.
2-2-2- هزینه های جاری یا متغیرهزینه های جاری یا خدماتی مشتمل بر مجموع هزینه هایی است که در ترمینال ها و یا ضمن حرکت در طول مسیر از انجام خدمات لازم پدید می آید. هزینه های متغیر را گاهی هزینه های دسته اول و یا هزینه های مستقیم می خوانند و تابع آن را به شکل زیر می توان نوشت :
Tvc=i=1npj vjدر رابطه فوق Vj مقادیر عوامل متغیر تولید و Pj قیمت آن ها است.
این گونه هزینه ها اصولا بر حسب کیفیت ساختمانی کالا و سیستم حمل و نقل تغییر می کند و به تناسب ظرفیت وسیله نقلیه و ترمینال ها متفاوت است. در هر حال عملکرد آن تابع مجموع هزینه هایی است که از ایستگاه مبدا تا مقصد صرف می شود. اصولا مخارج استاندارد و بسته بندی کالا در نظام های مختلف حمل و نقل متفاوت اند و غالبا میزان آن در حمل و نقل های درازمدت مانند حمل و نقل دریایی بیش از مبالغی است که در حمل و نقل های کوتاه مدت نظیر حمل و نقل هوایی وجود دارد. نرخ بیمه نیز معمولا در حمل و نقل های درازمدت زمینی و دریایی به جهت طول زمانی حمل و نقل و آسیب پذیری کالا بیش از حمل و نقل هوایی است.
علاوه بر هزینه های بارگیری و تخلیه در ایستگاههای مبدا و مقصد هزینه های بارگیری مجدد بین راه را نیز می توان از جمله هزینه های جاری و یا متغیر به حساب آورد. گاهی ممکن است کالایی پیش از حرکت از ایستگاه مبدا و قبل از رسیدن به ایستگاه مقصد چندین مرحله جابجایی را به همراه داشته باشند که هر یک از آنها هزینه های متفاوتی را بر سطح هزینه های خدماتی وارد می کنند.
در مواردی ممکن است انتقال کالا از یک نوع وسیله نقلیه به نوع دیگر، علاوه بر هزینه های فنی و بارگیری مجدد، مخارج انبارداری و احیانا ایجاد ضایعات و گاهی تاخیر زمانی تحویل کالا را به همراه آورد که هر یک در نوع خود متضمن هزینه های متغیر است.
به هر حال هزینه های متغیر را بر حسب نوع آنها در دو گروه مشخص می توان طبقه بندی کرد.
الف) هزینه های متغیر که بطور مطلق با مسافت طی شده رابطه نسبی دارند
ب) هزینه های متغیری که رابطه مطلق با مسافت طی شده ندارند. مانند پرداخت عوارض گمرکی و هزینه استفاده از ترمینال ها (شکل 2-4)

شکل 2-4: هزینه های متغیر بر حسب عملکرد حمل و نقل
هزینه های متغیر به طور کلی بسیار متنوعند و از یک نوع حمل و نقل به نوع دیگر دارای تفاوت های زیادی می باشند. به همین دلیل گاهی اوقات تفکیک کردن هزینه ها کار بسیار پیچیده ای می باشد. با این حال در اقتصاد حمل و نقل ضرورت دارد که کار تحلیل هزینه ها به دقت انجام پذیرد(محمودی،1389).
2-2-3- هزینه های خارجیهزینه هایی که از عملکرد بنگاه حمل و نقل به محیط زیست تحمیل شده است ولی بابت آن مبلغی پرداخت نمی شود هزینه های خارجی یا در مواردی هزینه های چرخه حیات نامیده می شوند. در مدل تعادل عمومی چنین فرایندی دارای پیامد خارجی است و اثرات زیانباری را از طریق عملکرد یک بنگاه اقتصادی بر منافع یا هزینه های فرد و یا بنگاه دیگری اعمال می کند.
از نظر اقتصاد دانان، آلودگی در محیط زیست ابعاد وسیع تری را شامل می شود و اثرات آن زنجیره وسیعی را در چرخه حیات تحت تاثیر خود قرار می دهد. کلیه هزینه های تباهی و خسارت پذیری محیط زیست چه در قالب هزینه های بازسازی و چه بصورت هزینه های اجتناب از خسارت از آثار تخریب و آلودگی محیط زیست به شمار می روند.
بازتاب تخریب در حوزه حمل و نقل بسیار وسیع است. نتایج مطالعات انجام شده(محمودی،1383) مشخصا به چهار نوع از انواع هزینه های خارجی که بر عملکرد سیستم های مختلف حمل و نقل تاثیر می گذارند اشاره دارد. این نوع هزینه ها در ساده ترین شکل خود عبارتند از هزینه های خارجی ناشی از :
آلودگی صدا
آلودگی هوا
اثرات هزینه ای ناشی از تراکم
هزینه های حاصل از تصادفات
نتایج مطالعات انجام شده در سال 1991 در هفده کشور اروپایی نشان می دهد که 92 درصد هزینه های خارجی مربوط به حمل و نقل جاده ای، 9/5 درصد مربوط به حمل و نقل هوایی، 7/1 درصد مربوط به راهآهن و فقط 3/0 درصد آن به حمل و نقل آبی تعلق دارد.
یک مثال ساده برای شناخت نحوه عملکرد این هزینه ها وضعیت موجود در ترافیک شهری است که مترادف با حجم بالایی از آلاینده ها می باشد. مطالعات موردی نشان داده است که مصرف بنزین و سایر سوخت های فسیلی، مواد آلاینده ای از نوع منو اکسید کربن،هیدرو کربورها، اکسیدهای ازت و غیره را به مقدار زیادی در محیط های شهری پراکنده می کند، در حالی که هزینه های تخریب آن عملا پرداخت نمی شود.
بنابراین لازم است رانندگان شهری علاوه بر پرداخت بهای بنزین هزینه ای نیز بابت تخریب حاصل از مصرف آن که در قیمت بنزین مستتر شده است را پرداخت نمایند. این عمل در نوع خود سبب خواهد شد مصرف بنزین با کاهش قابل ملاحظه ای مواجه شود.

شکل 2-5: تعادل عرضه بنزین با احتساب هزینه های آلوده سازی محیط زیست
در نمودار فوق منحنی تقاضا PP و منحنی عرضه SS است. قیمت بنزین در نقطه تلاقی این دو منحنی یعنی EM به قیمت PM می باشد. با افزایش هزینه های خارجی ناشی از مصرف بنزین منحنی عرضه SS به S’S’ انتقال پیدا کرده است که این منحنی تابع تقاضا را در نقطه E’ قطع می کند. در چنین شرایطی اگر چه بنزین در مقدار کمتری عرضه می شود ولی بدلیل اینکه با قیمت بیشتری بفروش می رسد موجبات کاهش مصرف را فراهم می آورد. همچنین در نمودار فوق تفاضل PM’ و PM نشان دهنده هزینه های خارجی هستند که مصرف کنندگان از پرداخت آن خودداری می کنند.
روش داخلی کردن هزینه های خارجی اگرچه در موارد بسیاری ممکن نیست، ولی برای پیشگیری از اثرات نامطلوب زیست محیطی، لازم است با ایجاد ضوابط و مقرراتی روش هایی برای پرداخت اینگونه هرینه ها اعمال گردند.
2-3- قیمت گذاری حمل ونقلدر تئوری اقتصاد، قیمت ها دارای دو نقش اساسی هستند. نخست تخصیص بهینه خدمات و کالاها میان مصرف کنندگان و دوم انگیزه برای تولید کنندگان و حفظ منافع آنان. هدف یک گرداننده حمل و نقل در سیاست قیمت گذاری به حداکثر رساندن درآمد است. این کار به دو طریق ممکن می شود(محمودی،1389) :
گسترش اندازه بازار
جذب مشتریان جدید و افزایش سهم خود در بازار
یکی از مسائلی که در قیمت گذاری حمل و نقل می بایست مد نظر قرار داده شود هزینه های خارجی است که از مهمترین آنها هزینه تراکم ناشی از سنگینی ترافیک می باشد، که اغلب از سوی افراد و یا شرکت های حمل و نقل در نظر گرفته نمی شوند.
2-4- قیمت گذاری بر اساس هزینه خارجیاگرچه اصول قیمت گذاری بخش عمومی و وضع مالیات و عوارض امر شناخته شده ای است ولی به هر حال طرح و اجرای آن در مسائل حمل و نقل بخصوص در حمل و نقل جاده ای مشکلات و ویژگی های خاص خود را دارد. اصولا به دلیل مشکلات گردآوری عوارض از استفاده کنندگان محلی جاده های برون شهری، مخارج مستقیم مربوط به استفاده از این تاسیسات، پایه مهمی برای تامین مالی این زیر ساخت ها نمی باشد. از سوی دیگر هزینه های جانبی ناشی از استفاده از این تاسیسات، بسط و توسعه عملیات حمل و نقل بر روی آنها نیز به دلیل ضعیف بودن بنیان مالیاتی و یا به دلیل توسعه نیافتگی سیستم های مالی دارای عملکرد درستی نبوده و توزیع بهینه خدمات را با مشکل مواجه می کند.
به منظور ایجاد یک پیوند مفید اقتصادی و محیطی لازم است هزینه های مصرف کنندگان تاسیسات حمل و نقل در رابطه با افزایش درآمد طوری تنظیم شود که اولا از ظرفیت موجود استفاده موثر به عمل آید و ثانیا تامین هزینه های جانبی آنها فراهم شود.
مساله کارایی را می توان از طریق انتخاب بهینه در وسایط نقلیه و سوخت، افزایش کارایی میان قسمت های مختلف حمل و نقل و اعمال سیاست های مناسب در نگاه داری و مدیریت زیر ساخت های حمل و نقل تعمیم داد. امروزه با استفاده از روش های مختلف اخذ عوارض و مالیات که معمولا از طریق نصب باجه های مخصوص در محل های معین صورت می گیرد، موجب پیدایش یک درآمد دائمی شده و در نهایت موجب بوجود آمدن تشویق کننده ای برای استفاده کنندگان و متصدیان امور حمل و نقل گردیده است. افزایش کارایی منابع به خدمت گرفته شده در زیر ساخت های حمل و نقل و همچنین تخصیص بهینه منابع میان اشکال مختلف حمل و نقل نتایج مستقیم اینگونه تصمیمات می باشد. اینگونه اقدامات که سیاست های قیمت گذاری خاصی را می طبید، در نوع خود می تواند هزینه ها را کاراتر سازد و اساس و بنیان مالی بهتری را برای تدارک و نگاه داری تاسیسات حمل و نقل بوجود بیاورد.
در محتوای بهینه سازی هزینه ها این حقیقت وجود دارد که رفت و آمد در جاده ها چندین نوع آثار بیرونی از جمله ایجاد تراکم، آلوده سازی محیط زیست، تخریب سطوح جاده و غیره را به دنبال دارد که هر یک در نوع خود متضمن هزینه های جانبی است.
اثرات خارجی این عوامل و سطح اصطکاک آن در جاده ها به مقدار و نوع سوخت مصرفی وفناوری که در کاربرد این مواد انتخاب شده بستگی دارد. امروزه اخذ عوارض در محدوده نواحی پرتراکم جاده ها موجب شده است بخشی از هزینه های فوق تامین شود. گزارش بانک جهانی حاکی از آن است که اعمال این سیستم در بازگرداندن بخشی از هزینه های جانبی در سنگاپور بسیار موثر بوده است.
اخذ مالیات بابت بنزین و سایر سوخت های فسیلی به علت قابلیت آن در کاربردهای مختلف جانشین مناسبی برای کنترل آلوده سازی محیط زیست بشمار می رود. البته علیرغم آنکه مالیات بر بنزین نقش چندان مهمی را نمی تواند در محدود ساختن تراکم اعمال نماید ولی در بسیاری از کشورها تنها ابزاری است که به منظور رعایت کنترل ترافیک بکار برده می شود.
برای ایجاد فرایندی در فرموله کردن قیمت ابتدا لازم است اجزای تشکیل دهنده قیمت به خوبی شناخته شوند و سپس با استفاده از تجربیات جهانی و در نظر گرفتن قوانین، ضوایط قیمت تعیین شود. در مورد سوخت های فسیلی جامعه جهانی تقریبا به رعایت اصول فوق توافق دارد :
هزینه های منابع سوخت در حد قیمت های جهانی تعیین شود
هزینه های خارجی ناشی از مصرف سوخت در کلیه سطوح اعمال شود
هرگونه مالیات و یا عوارض برای مصرف و یا تعدیل مخارج باید بگونه ای تنظیم شود که تغییر در الگوی مصرف را به حداقل برساند.
تاکید دستور العمل فوق این است که هر گاه هزینه های جانبی و مخارج استفاده از تاسیسات زیربنایی حمل و نقل به طور مستقیم تامین نمی شود، مالیات بر سوخت و اخذ هزینه های خارجی می تواند هزینه های مربوط به زیر ساخت های حمل و نقل و برخی از هزینه های محیطی را بپوشاند. هر چند قیمت سوخت یک جانشین خیلی ضعیف برای تامین هزینه های حمل و نقل به شمار می رود ولی در شرایطی که حمل و نقل به طور سیستماتیک در طول روز جریان دارد می تواند به عنوان بهترین جانشین انتخاب شود. به دنبال تمهیدات فوق انتخاب یک روش مناسب برای قیمت گذاری خدمات حمل و نقل با مشکلاتی همراه می باشد زیرا اکثر منازعات بر سر قیمت به تخصیص هزینه های مشترک کل مربوط می شود. بنابراین بهتر است ابتدا یک محاسبه کلی از هزینه های زیر بنایی و همچنین هزینه های خارجی به عمل آورده و سپس در قیمت تعمیم داده شود.
بهترین مثال در چگونگی انجام این امر شامل مطالعاتی است که توسط گرانائو در سال 1994 و وینوبری در سال 1988 در کشورهای غنا، زیمباوه و تونس برای بانک جهانی انجام شده است. در این مطالعات چنین راهکار مناسب برای هزینه یابی و اعمال سیاست های مالیاتی در سیستم قیمت گذاری حمل و نقل نشان داده شده است. اساسی ترین نکته این مطالعات تاکید بر روی هزینه های جانبی است که از طریق تخریب جاده ها و افزایش تراکم توسط وسایل نقلیه سنگین و اتوبوسها ایجاد می شود.اگر چه بخش عمده از این خرابی ها به شرایط جغرافیایی مناطق مربوط می شود ولی نقش عمده وسایل نقلیه سنگین را نمی توان از نظر دور داشت. توصیه لازم در این زمینه این است که اولا هزینه های سرمایه ای در حساب مخارج گنجاند شود ثانیا مالیات سوخت بر حسب مسافت و میزان بارگیری اخذ شود. به طور مثال در برخی از کشورها مالیات سالانه برای وسایط نقلیه سنگین و خودروهای سواری با توجه به نوع خودرو متفاوت می باشد. مقدار مالیات در این شرایط به طور قابل ملاحظه ای به ظرفیت های بارگیری وسایل نقلیه بستگی دارد. این مسئله موجب برطرف شدن تخصیص هزینه های خارجی و توزیع آنها نمی شود ولی تاثیر بسزایی در بهبود آنها ایجاد می کند. الیته باید توجه داشت در انتخاب سیستهای اخذ مالیات و عوارض اولا باید بسیار محتاطانه عمل کرد و از اتخاذ روشهای نا معقول که ممکن است به آشفتگی بازار بینجامد اجتناب نمود، ثانیا افزایش درآمد عاملی برای توسعه دادن عرضه بشمار می رود و از این رو لازم است درآمدهای حاصله از منابع فوق به بهبود ساختار حمل و نقل اختصاص داده شود.
2-5- پیش بینی حجم ترافیکطی دهه اخیر پیشرفت و گسترش شناسگرهای ترافیکی، امکانات جدیدی را برای مدیریت ترافیک و شبکه معابر فراهم کرده است. شناسگرهای ترافیکی در سطح شبکه معابر نصب شده و به صورت لحظه ای پارامترهای ترافیکی را برداشت می کنند. اطلاعات برداشت شده توسط شناسگرها به کمک بستر مخابراطی به مرکز کنترل ترافیک – مرکز شهری و یا جاده ای – منتقل می شوند. یکی از وظایف مرکز کنترل ترافیک استفاده بهنگام از این اطلاعات برای مدیریت ترافیک است. مدل پیش بینی حجم ترافیک در کوتاه مدت یکی از بخش هایی است که از این اطلاعات استفاده می کند. این مدل با بکارگیری اطلاعات شناسگرهای ترافیکی هر معبر، حجم عبوری از یک معبر در لحظات پیش رو را پیش بینی می کند. از این اطلاعات برای مدیریت پیشگیرانه ترافیک استفاده می شود (افندی زاده، کیانفر،1387).
مدل های مرسوم پیش بینی، مقدار حجم ترافیک را برای سال های آینده و یا برای سناریوهای مختلف پیش بینی می کنند. این پیش بینی با استفاده از مدل های آینده و یا برای سناریوهای مختلف پیش بینی می کنند. این پیش بینی با استفاده از مدل های چهار مرحله ای و یا مدل های مستقیم انجام می شود. نتایج حاصل از این پیش بینی در حوزه برنامه ریزی حمل و نقل بکار گرفته می شود.
شبکه های عصبی از اجزای هوش مصنوعی هستند که در حوزه های کاربردی مختلف با موفقیت استفاده شده اند. یکی از روش پیشنهادی در اینجا، بکارگیری تکنیک های هوش مصنوعی می باشد.در ادامه از روش آماری رگراسیون جهت پیش بینی حجم تردد استفاده گردیده است و در انتها به مقایسه دو روش می پردازیم.
2-6- کلیات شبکههای عصبی مصنوعی تفاوت انسان با سایر موجودات زنده دیگر در توانایی تصمیمگیری و اراده اوست که به ساختار پیچیده مغز و سلسله اعصاب او بر می گردد. از دیرباز دانشمندان و محققین زیادی علاقمند به شناخت ساختمان مغز انسان و چگونگی انجام محاسبات و پردازشها در آن بودهاند آنچه باعث توجه گسترده به این موضوع شده اموری است که مغز آنها را در کسری از ثانیه انجام میدهد (مثل شناسایی چهره آشنا) در حالی که رایانههای دیجیتال برای انجام آنها نیاز به زمان زیادی دارند، بنابراین مغز برای محاسبات خود اساسا از ساختاری کاملا مغایر با ساختار رایانههای متداول برخوردار میباشد.
احساس نیاز بشر برای دستیابی به هوش مصنوعی به منظور نزدیکتر کردن ارتباط انسان و ماشین و دستیابی به ماشینهای هوشمندی که بتواند از عهده وظایف پیچیدهتر برآیند انگیزه اصلی تحقیقات گسترده بر روی سیستم عصبی انسان و دیگر موجودات زنده و تلاش در جهت شبیهسازی مصنوعی آن بوده است. شبکه عصبی مصنوعی (ANN)  ایدهای است برای پردازش اطلاعات که از سیستم عصبی زیستی الهام گرفته شده و مانند مغز به پردازش اطلاعات میپردازد . عنصر کلیدی این ایده ، ساختار جدید سیستم پردازش اطلاعات است.
2-7- نرون بیولوژیکی
همانطورکه گفته شد شبکههای عصبی مصنوعی الهام گرفته از سیستمهای بیولوژیکی هستند. اما اختلافهای عمدهای بین معماری و قابلیت شبکههای عصبی مصنوعی و طبیعی وجود دارد.
مغز انسان به عنوان یک سیستم پردزاش اطلاعاتی با ساختار موازی از 100 تریلیون (1011) نرونهای به هم مرتبط با تعداد کل (1016) ارتباط میباشد که این نرونها از طریق شبکهای از آکسونها و سیناپسها با چگالی تقریبی10 هزار سیناپس در هر نرون ، با هم ارتباط دارند.
محیط عملکرد این نرونها یک محیط شیمیایی است. گیرندههای حسی تحریکات را هم از محیط و هم از داخل بدن دریافت میکند. این تحریکات که به صورت ایمپالسهای الکتریکی هستند اطلاعات را به شبکه نرون ها وارد میکنند. سیستم عصبی مرکزی، اطلاعات دریافتی را پردازش میکند و با کنترل انگیزندهها پاسخ انسان را به صورتهای مختلف بروز میکند.

شکل 2-6: اجزای اصلی یک شبکه عصبی بیولوژیکسلول عصبی یا نرون که عنصر اساسی شبکه عصبی است در شکل 2-6 نشان داده شده است اجزا این سلول عبارتند از : بدنه سلول ، اکسون ، دندریت ، سیناپس
2-8- شبکههای عصبی مصنوعیشبکههای عصبی، نظیر انسانها، با مثال یاد میگیرند . یک ANN برای انجام وظیفههای مشخص، مانند شناسایی الگوها و دستهبندی اطلاعات، در طول یک پروسه یادگیری، تنظیم میشود . در سیستمهای زیستی یادگیری با تنظیماتی در اتصالات سیناپسی که بین اعصاب قرار دارد همراه است. این روش آموزش ANN ها نیز میباشد.
در این قسمت شبکههای عصبی را بر اساس ساختار شبکههای عصبی بیولوژیکی که مطرح شد معرفی میکنیم. اما قبل از آن شباهتهای بین این دو شبکه را عنوان میکنیم.
بلوکهای ساختاری در هر شبکه دستگاههای محاسباتی خیلی سادهای هستند و مضاف بر این نرونهای مصنوعی از سادگی بیشتری برخوردار میباشند.
ارتباطات بین نرونها عملکرد شبکه را تعیین میکند.
اما با وجود اینکه نرونهای بیولوژیکی از نرونهای مصنوعی که توسط مدارات الکتریکی ساخته میشوند بسیار کندتر هستند (یک میلیون بار)، عملکرد مغز خیلی سریعتر از عملکرد یک رایانه معمولی است. علت این پدیده بیشتر به دلیل ساختار کاملا موازی نرونها میباشد و این یعنی اینکه همه نرونها معمولا به طور همزمان کار میکنند و پاسخ میدهند از آنجائی که شبکههای عصبی مصنوعی هم دارای ساختار موازی هستند اما توسط رایانههای سری پیادهسازی میشوند و این مسأله باعث افت سرعت شدید در این شبکهها میشود.
با وجود این که شبکههای عصبی مصنوعی با سیستم عصبی طبیعی قابل مقایسه نیستند ویژگیهایی دارند که آنها را در بعضی از کاربردها مانند تفکیک الگو ، رباتیک ، کنترل و به طور کلی در هر جا که نیاز به یادگیری یک نگاشت خطی یا غیر خطی باشد ممتاز مینمایند. این ویژگی ها به شرح زیر هستند:
قابلیت یادگیری: استخراج نتایج تحلیلی از نگاشت غیر خطی که با چند مثال مشخص شده کار ساهای نیست. چون میدانیم که یک نرون یک دستگاه غیر خطی است در نتیجه یک شبکه عصبی که از اجتماع این نرونها تشکیل میشود هم یک سیستم کاملا پیچیده و غیرخطی خواهد بود. به علاوه خاصیت غیرخطی عناصر پردازش در کل شبکه توزیع می گردد هنگام پیاده سازی این نتایج با یک الگوریتم معمولی وبدون قابلیت یادگیری نیاز به دقت و مراقبت زیادی دارد درچنین حالتی سیستمی که بتواند خود این رابطه را استخراج کند بسیار سودمند به نظر میرسد . خصوصاً اینکه افزودن مثالهای اجتماعی در آینده به یک سیستم با قابلیت یادگیری، به مراتب آسانتر از انجام آن در یک سیستم بدون چنین قابلیتی است.
قابلیت یادگیری یعنی توانایی تنظیم پارمترهای شبکه (وزنهای سیناپتیکی) در مسیر زمان که محیط شبکه تغییر میکند و شبکه شرایط جدید را تجربه میکند، با این هدف که اگر شبکه برای یک وضعیت خاص آموزش دید و تغییر کوچکی در شریط محیطی شبکه رخ داد، شبکه بتواند با آموزش مختصر برای شریط جدید نیز کارآمد باشد. دیگر اینکه اطلاعات در شبکههای عصبی در سیناپسها ذخیره و هر نرون در شبکه، به صورت بالقوه ازکل فعالیت سایر نرونها متأثر میشود. در نتیجه، اطلاعات از نوع مجزا از هم نبوده، بلکه متأثر از کل شبکه میباشد.
2- پراکندگی اطلاعات: آنچه که شبکه فرا میگیرد و یا به عبارت دیگراطلاعات یا دانش، در وزنهای سیناپسی مستتر میباشد و رابطه یک به یک بین ورودیها و وزنهای سیناپتیکی وجود ندارد. میتوان گفت که هر وزن سیناپسی مربوط به همه ورودیها است ولی به هیج یک از آنها به طور منفرد مربوط نیست به عبارت دیگر هر نرون در شبکه از کل فعالیت سایر نرونها متأثر میباشد در نتیجه اطلاعات به صورت زمینهای توسط شبکههای عصبی پردازش میشود.
3- قابلیت تعمیم: پس از آنکه مثالهای اولیه به شبکه آموزش داده شد شبکه می تواند در مقابل یک ورودی آموزش داده نشده قرار می گیرد و یک خروجی مناسب ارائه نماید. این خروجی بر اساس مکانسیم تعیمم که همانا چیزی جز پروسه درونیابی نیست بدست می آید.