dad100

جدول3-2- آمار هواشناسی سال زراعی91-90 ایستگاه تحقیقات کشاورزی دیم سرارود..........................................................36
جدول 3-3- اسامی 100 ژنوتیپ گلرنگ تحت بررسی در شرایط دیم- سرارود 1391- 1390...............................................38
جدول3-4- امید ریاضی میانگین مربعات مربعات تجزیه واریانس لاتیس مربع ساده در مدل تصادفی....................................43
جدول4-1- تجزیه واریانس ژنوتیپ های تحت بررسی از نظر صفات زراعی در شرایط دیم...............................................57
جدول 4-2- تجزیه واریانس (میانگین مربعات) طرح بلوکهای کامل تصادفی ژنوتیپ های گلرنگ از نظر طول و عرض براکته‌ها در شرایط دیم.....................................................................................................................................................57
جدول 4-3- مقایسه میانگین ژنوتیپ های تحت بررسی از نظر صفات زراعی در شرایط دیم....................................58
جدول 4-4- برآورد واریانس‌های ژنتیکی، محیطی و فنوتیپی، ضریب تنوع ژنتیکی، فنوتیپی و وراثت پذیری عمومی صفات اندازه گیری شده در 100 ژنوتیپ گلرنگ در شرایط دیم....................................................................................................63
جدول 4- 5- همبستگی ساده بین صفات کمّی ژنوتیپ های تحت بررسی از نظر صفات زراعی در شرایط دیم.........76
جدول 4-6- جدول عامل های چرخش یافته ژنوتیپ های تحت بررسی از نظر صفات زراعی در شرایط دیم .......................................................................................................................................................................................79
جدول 4-7- مقایسه میانگین و انحراف معیار کلاسترها.................................................................................................84
جدول 4-8- نحوه ارزیابی ، ژنوتیپ‌ها و شاخص شانون صفات کیفی در کلکسیون گلرنگ مورد بررسی............................................................................................................................................................................88
فهرست نمودارها
نمودار 3-1- بارندگی، تبخیر و متوسط دمای حداقل و حداکثر مطلق در سال زراعی 2012-2011 ایستگاه سرارود..................36نمودار 4 -1-پراکنش عملکرد دانه، مقدار میانگین و مقدار یک انحراف معیار بالاتر از میانگین در ژنوتیپ‌های تحت بررسی گلرنگ.............................................................................................................................................................................................72
نمودار 4= 2- پراکنش عملکرد روغن، مقدار میانگین و مقدار یک انحراف معیار بالاتر از میانگین در ژنوتیپ‌های تحت بررسی گلرنگ.............................................................................................................................................................................................73
نمودار 4- 3- پراکنش میزان روغن دانه، مقدار میانگین و مقدار یک انحراف معیار بالاتر از میانگین در ژنوتیپ‌های تحت بررسی گلرنگ ...........................................................................................................................................................................................73
4-1- دندوگرام حاصل از تجزیه کلاستر ژنوتیپ های مورد بررسی تحت شرایط دیم..............................................................83
4-2- دندوگرام حاصل از تجزیه کلاستر صفات مورد بررسی گلرنگ تحت شرایط دیم...........................................................86
چکیدهآگاهی از تنوع ژنتیکی و مدیریت منابع ژنتیکی به عنوان گام مهم برنامه‌های به‌نژادی تلقی می‌شوند. در این تحقیق به منظور بررسی تنوع ژنتیکی 19 صفت زراعی و مورفولوژیک ، شامل 14 صفت کمی و 5 صفت کیفی، تعداد 100 نمونه گلرنگ زراعی((Carthamus tinctorius L. در مزرعه تحقیقاتی مؤسسه تحقیقات کشاورزی دیم- سرارود در سال زراعی 91-90 مورد ارزیابی قرارگرفت. آزمایش در قالب طرح لاتیس ساده 10×10 در کشت پاییزه تحت شرایط دیم انجام یافت. صفات کیفی طول شاخه‌های جانبی، وسعت خاربرگ، حاشیه برگ، شکل قوزه، اندازه بذر و صفات کمی تعداد روز تا شروع و پایان گلدهی و رسیدگی، ارتفاع نهایی گیاه، تعداد شاخه جانبی، تعداد قوزه در بوته، قطر قوزه ، طول و عرض براکته، تعداد دانه در قوزه، وزن هزار دانه، محتوی روغن دانه و عملکرد دانه و روغن ارزیابی شد. نتایج نشان داد که بین تیمارهای تصحیح شده اختلاف معنی‌داری از نظر همه صفات کمی تحت بررسی بجز تعداد روز تا رسیدن و تعداد دانه در قوزه وجود داشت. نتایج آمار توصیفی صفات نشان داد که در صفات کمی تعداد شاخه جانبی ، تعداد قوزه و عملکرد دانه و روغن با بالاترین ضریب تغییرات فنوتیپی و ژنوتیپی و در صفات کیفی طول شاخه‌های جانبی و وسعت خار برگ با بالاترین شاخص شانون ، بیشترین تنوع را دارند. محتوی روغن دانه ژنوتیپ‌ها بین 7/37 - 6/26 درصد با متوسط 9/32 متغیر بود. و متوسط عملکرد دانه ژنوتیپ‌ها 7/593 و دامنه تغییرات 0/980 - 8/296 کیلوگرم در هکتار داشت. وراثتپذیریعمومی نسبتاً بالایی در صفات روز تا شروع گلدهی ، طول و عرض براکته، قطر قوزه و محتوی روغن دانه مشاهده شد. بر اساس این نتایج می‌توان گفت که اصلاح به روش گزینش برای این صفات تا حدود زیادی مؤثر است. رابطه خاصی بین محتوی روغن دانه و عملکرد دانه وجود نداشت و گزینش همزمان برای محتوی روغن و عملکرد دانه بالا مناسب‎تر بود. تجزیه‌عاملی با دوران وریماکس 6 عامل را استخراج نمود که حدود 68 درصد تغییرات میان صفات را توجیه نمود. تجزیه‌کلاستر ژنوتیپ‌های گلرنگ به روش وارد و با استفاده از کلیه صفات ژنوتیپ‌ها را در 4 گروه قرار داد به طوریکه بهترین ژنوتیپها از نظر عملکرد دانه و روغن در گروه 2 و 4 قرار داشتند. همچنین گروه‌بندی صفات ، همه صفات کمی اندازه‌گیری شده را در 6 کلاستر قرار داد. کلاستر دوم شامل صفات قطر قوزه، وزن هزار دانه و عملکرد دانه بود. به منظور گزینش ژنوتیپ‌های برتر گلرنگ از نظر سه صفت اقتصادی مهم شامل عملکرد دانه، عملکرد روغن و میزان روغن دانه اقدام به رسم نمودار پراکنش ژنوتیپ‌ها از نظر صفات مورد نظر گردید. نتایج نشان داد که ژنوتیپ‌های شماره 5، 41، 56 و 82 به ترتیب ژنوتیپ‌های محلی عجبشیر، باباریز درشت، لگزی درشت و 377 / S6 / 697 دارای عملکرد دانه و روغن بالا و نیز میزان روغن دانه بالا بودند.
واژههای کلیدی : گلرنگ زراعی، تنوع ژنتیکی، شرایط دیم، تجزیه و تحلیل چند متغیره
فصل اولمقدمه و کلّیاتمقدمه
1-1- تنوع ژنتیکی
اصلاح‌نباتات بر پایه اصول ژنتیکی یکی از فنون موفق در قرن بیستم به شمار می‌رود. افزایش میزان تولید محصولات کشاورزی، ‌همچنین تغذیه جهانی به طور عمده مرهون روش‌های به نژادی یا اصلاح‌نباتات و معرفی واریته‌های پرمحصول اصلاح شده می‌باشد (عبدمیشانی وهمکاران،‌1387). منابع ژنتیکی گیاهی در علم کشاورزی و تولید غذا، ‌اساس امنیت جهانی غذا هستند. آنها تنوع ژنتیکی موجود در ارقام سنتی، ارقام جدید، خویشاوند و حتی گیاهان زراعی و گونه‌های وحشی دیگر را در بر می‌گیرند. پیش‌بینی می‌شود که جمعیت جهان در سال 2020 میلادی به 8 میلیارد نفر برسد و برای تامین نیاز غذایی روزافزون، استفاده از دامنه وسیع تنوع ژنتیکی موجود در گیاهان دنیا ضروری است (کامسوارا و رائو 2004، سینگ، 1990، جین و همکاران، 1975). افزایش تولید با کیفیت مطلوب مستلزم فعالیت‌های به نژادی بر پایه تنوع وسیع ژرم‌پلاسم است. لذا ژرم‌پلاسم گیاهی پایه و اساس تمامی تحقیقات ژنتیکی و به‌نژادی به منزله خونی است که در کالبد برنامه‌های اصلاح نباتاتی جریان دارد (دانایی و همکاران،‌ 1380). تنوع ژنتیکی یا به علت جدایی جغرافیایی یا به علت موانع ژنتیکی تلاقی‌پذیری است شایان ذکر است که بین مفهوم تغییرپذیری، ‌مفهوم تنوع، تفاوت وجود دارد. بدین معنی که تغییرپذیری دارای تفاوت‌های قابل مشاهده فنوتیپی است اما چنین تفاوت‌های قابل مشاهده‌ای ممکن است در مفهوم تنوع باشد و یا نباشد (فرشادفر، 1376). یعنی ممکن است تنوع‌ژنتیکی، ‌بروز ظاهری و فنوتیپی قابل مشاهده نداشته باشد (باقری و همکاران، 1380). آگاهی دقیق از تنوع ژنتیکی مجموعه‌های ژنتیکی گیاهی،‌ ضمن حفظ ذخایر ژنتیکی گیاهی باعث استفاده از آنها در برنامه‌های اصلاحی می‌شود )ویرک و همکاران، 1995). یکی از اولین قدم‌ها در یک برنامه موفق به‌نژادی، ‌تشخیص صحیح ژنوتیپ‌های مطلوب است (صالحی ‌جوزانی و همکاران، 1382 و شعبانی، 1378). ابتدا تنوع توده‌های بومی و موجود مورد انتخاب قرار می‌گیرد و در صورت پیشرفت و رسیدن به یکنواختی تا ایجاد تنوع مصنوعی، این انتخاب گسترش می‌یابد (سرخی هه لو، 1374).
والدینی که از لحاظ ژنتیکی متفاوت هستند هیبریدهایی با هتروزیس بیشتر تولید می‌کنند که احتمال بدست آوردن نتایج تفرق یافته برتر از والدین را افزیش می‌دهند (کرافت و همکاران، 1997 و بیر و همکاران، 1993). بسیاری از ژن‌های مفید در ارقام محلی و جوامع گیاهی پراکنده بوده و در طول هزاران سال توسط کشاورزان، طبیعت به دلیل سازگاری، مقاومت یا تولید محصول بیشتر گزینش شده‌اند (چارکوست و ایسو، ‌1994). تنوع ژنتیکی در جمعیت‌های گیاهی بر اثر مجموعه‌ای از مکانیسم‌ها شامل جهش، نوترکیبی، مهاجرت، جریان ژن، رانده‌شدن ژنتیکی و انتخاب طبیعی یا مصنوعی به وجود آمده و حفظ می‌گردد. استفاده موثر از منابع ژنتیک و ذخایر توارثی گیاهان زراعی نیازمند اطلاع از تنوع، به عنوان یکی از گام‌های پایه‌ای و اساسی در نگهداری و حفاظت مواد ژنتیکی در بانک ژن و اجرای برنامه‌های به نژادی است (قهرمانزاده و همکاران، 1384). علاوه بر این اطلاع از سطح تنوع موجود در ژرم‌پلاسم‌ها خزانه ژنی برای تشخیص تکرار‌ها در بانک‌های ژنی، ‌غنی‌سازی ذخایر ژنتیکی از طریق اینتروگروسیون ژن‌های مطلوب و شناسایی ژن‌های مناسب ضروری به نظر می‌رسد (محمدی، 1385).
گزینش بر پایه اطلاعات ژنتیکی سبب افزایش عملکرد در هکتار به میزان 50% ظرف مدت 30 تا 40 سال اخیر شده است (ولیزاده، 1372). از این رو ارزیابی تنوع‌ژنتیکی در گیاهان زراعی برای برنامه‌های اصلاح‌نباتات و حفاظت از ذخایر توارث از اهمیت زیادی برخوردار است (فراهانی و همکاران، 1385). یعنی بدون تنوع، ‌هیچ برنامه اصلاحی قابل اجرا نیست. (عبدمیشانی وهمکاران،‌1387).
1-2- روش های شناسایی و بررسی تنوع ژنتیکیفنوتیپ یک گیاه توسط ترکیب ژنتیکی آن و عوامل محیطی تعیین می‌گردد. صفات مختلف گیاهی را می‌توان از نظر تعداد ژن‌های کنترل کننده و چگونگی تاثیر عوامل محیطی به دو دسته عمده تقسیم‌بندی نمود. صفات کیفی که در کنترل آنها تعداد بسیار کمی ژن دخالت داشته و عوامل محیطی در بروز آنها تأثیر چندانی ندارند. و صفات کمّی که تعداد زیادی ژن و عوامل بی‌شماری در بروز آنها دخالت دارند. صفات کیفی توارث‌پذیری بالایی داشته و در نتیجه انتخاب و اصلاح‌نژاد برای آنها نسبتاً آسان بوده و نیازی به انتخاب غیرمستقیم نیست. بر عکس صفات کمّی توارث پذیری پایینی داشته و انتخاب مستقیم و اصلاح نژاد برای آنها با مشکل روبرو است. از سال‌های دور محققین اصلاح نباتات در پی یافتن نشانگرهای ژنتیکی که با صفات کمّی پیوستگی نشان می‌دهند، بوده‌اند. از این نشانگرها می‌توان به عنوان معیار غیر مستقیم انتخاب استفاده نمود (فولاد و جونز، 1375). هر شاخص قابل ارزیابی فنوتیپی یا ژنوتیپی را می‌توان نشانگر نامید. رنگ گل، رنگ بذر، یک ترکیب شیمیایی خاص، بو، طعم خاص، فرم‌های مختلف یک آنزیم، پروتئین‌های ذخیره‌ای بذر، تفاوت طولی قطعات برشی دی. ان. ای و غیره را می‌توان به عنوان نشانگر در نظر گرفت (سادات نوری و نجف‌آبادی، 1385). در این روش ژن مورد نظر بر اساس پیوستگی که با یک نشانگر ژنتیکی دارد، تشخیص داده و انتخاب ‌شود یعنی نشانگرهای پیوسته با ژن‌های مورد نظر شناسایی شوند. یکی از پایه‌های اساسی اصلاح نباتات دسترسی و آگاهی از میزان تنوع در مراحل مختلف پروژه‌های اصلاحی است. به همین جهت نشانگرها برآورد مناسبی از فواصل ژنتیکی بین واریته‌های مختلف را نشان می‌دهند (نقوی و همکاران، 1386). مهمترین داده‌هایی که از طریق این گونه بررسی‌ها و مطالعات به دست می‌آیند عبارتند از اطلاعات شجره‌ای، داده‌های مورفولوژیک، ‌داده‌های بیوشیمیایی حاصل از تجزیه و تحلیل ایزوزایم‌ها و پروتئین‌های ذخیره‌ای و اخیراً داده‌های مبتنی بر نشانگرهای دی. ان. ای تمایز و طبقه‌بندی ژنوتیپ‌ها و ارقام گیاهی را با اطمینان بیشتری امکان‌پذیر ساخته‌اند (فاضلی، 1387).
نشانگرهایی که در مطالعات ژنتیکی مورد استفاده قرار می‌گیرند عبارتند از:
نشانگرهای مورفولوژیکی و زراعی
نشانگرها هر کدام دارای معایب و مزایایی هستند مشکل عمده نشانگرهای مورفولوژیکی این است که ممکن است آنها فنوتیپ تغییر یافته‌ای را که با نیازهای زارع منطبق نیست شناسایی نماید، دلایل آن می‌تواند یکی از عوامل زیر باشد: غالبیت،‌ عدم تظاهر در مراحل نمو، اثرات مضر محیطی، پلیوتروپی، اپیستازی، ‌تغییرات در نفوذ ژن و کم بودن چندشکلی (اروس، 1993).
نشانگرهای بیوشیمیایی مانند پروتئین و آیزوزایم
در دهه 1950، نشانگرهای مولکولی قابل مشاهده توسط الکتروفورز پروتئین‌ها تحول شگرفی را ایجاد نمودند. آیزوزایم‌ها به طور گسترده در بررسی تنوع‌ژنتیکی و طبقه‌بندی گیاهان زراعی به کار گرفته شدند. هر چند در دهه اخیر فناوری‌های مرتبط با دی. ان. ای در این زمینه پیشی گرفته‌اند. تا اواخر دهه 1970 نقشه‌های ژنتیکی تلفیقی (آیزوزایم‌ها و نشانگرهای مورفولوژیکی) بسیاری از گونه‌های مهم تهیه شدند. نشانگرهای پروتئینی نیز معایب ویژه خود را دارند. از معایب این نشانگرها محدود بودن آنهاست. همچنین تظاهر برخی از آنزیم‌ها و پروتئین‌ها تحت تأثیر مرحله رشد گیاه قرار می‌گیرد (نقوی و همکاران، 1386).
نشانگرهای DNA
مارکرهای مولکولی و نشانگرهای DNAابزار مناسبی هستند که بر اساس آن می‌توان جایگاه ژنی و کروموزمی عوامل تعیین کننده صفات مطلوب را شناسایی کرد. با دانستن جایگاه یک ژن روی کروموزوم می‌توان از نشانگرهای مجاور آن برای تأیید وجود صفت در نسلهای تحت گزینش استفاده نمود. با در دست داشتن تعداد زیادتر نشانگر می‌توان نقشه‌های ژنتیکی کاملتری را تهیه نمود که پوشش کاملی را در تمام کروموزم‌های گیاهان به وجود می‌آورد. استفاده از نشانگرها موجب افزایش اطلاعات مفید و مناسب از جنبه‌های پایه و کاربردی در اصلاح نباتات خواهد گردید.
انتخاب به کمک نشانگرهای مولکولی راه حلی است که دست‌آورد زیست‌شناسان مولکولی برای متخصصان اصلاح نباتات می‌باشد. در این روش ژن مورد نظر بر اساس پیوستگی که با یک نشانگر ژنتیکی دارد، تشخیص داده و انتخاب می‌شود. بنابراین به عنوان قدم اول در روش انتخاب به کمک نشانگر باید نشانگرهای پیوسته با ژن‌های مورد نظر شناسایی شوند. یکی از پایه‌های اساسی اصلاح نباتات دسترسی و آگاهی از میزان تنوع در مراحل مختلف پروژه‌های اصلاحی است. به همین جهت نشانگرها برآورد مناسبی از فواصل ژنتیکی بین واریته‌های مختلف را نشان می‌دهند (نقوی و همکاران، 1386).
اگر مطالعات مورفولوژیکی، بیوشیمیایی و مولکولی به صورت توأم انجام شوند و از تجزیه‌چند متغیره مناسب استفاده شود تنوع ژنتیکی بهتر برآورد می‌گردد (محمدی و پراسانا، 2003 و ولمن و همکاران، 2005).
 1-3- اهمیت تولید دانه های روغنی
با توجه به نیاز فزاینده کشور به روغنهای خوراکی، توسعه کشت دانه‌های روغنی از اهمیت زیادی برخوردار است. افزایش تقاضا برای روغن در بازارهای جهانی و بالطبع افزایش قیمت و واردات در کشورهای مصرف کننده و روند افزایش مصرف سرانه روغن نباتی از جمله عواملی هستند که اهمیت توسعه کشت دانه‌های روغنی و گسترش برنامه‌های علمی-تحقیقاتی را بیش از پیش روشن می‌سازد. تنوع ژنتیکی برای عملکرد دانه، میزان روغن و ترکیب اسیدهای چرب برای اصلاح دانه و کیفیت روغن و توسعه رقم‌ها ضروری است (اهلروگو 1994). برنامه‌های اصلاحی فعلی و آینده نه تنها نیازمند دسترسی به این تنوع‌ها می‌باشد بلکه وابسته به نگهداری و مدیریت صحیح حفظ و استفاده از آنها نیز هست (ویلیام و همکاران، 1990). تشکیل روغن و چربی در درجه نخست تابع ژن‌های کنترل کننده و در درجه دوم تحت تأثیر عوامل محیطی قرار می‌گیرد (آلیاری و شکاری، 1379).
گلرنگ یکی از قدیمی‌ترین دانه‌های روغنی دنیا می‌باشد که خاستگاه و تنوع آن خاورمیانه است (داجو و همکاران، 1993). برنامه‌های مهم اولیه برای توسعه گیاه گلرنگ بعنوان یک محصول تجاری با افزایش محتوی روغن دانه و شناسایی ژنهای مقاومت به چند بیماری مهم گلرنگ (نظیر زنگ، پژمردگی فوزاریومی، سوختگی برگ آلترناریا، پژمردگی ریشه فیتوفترایی) آغاز گردید (نولز، 1989). گلرنگ از حیث خصوصیات مختلف کمی و کیفی، سازگاری با عوامل محیطی و انواع مقاومت‌ها دارای تنوع ژنتیکی وسیعی می‌باشد.
گلرنگ گیاهی است که انواع تیپ‌های وحشی و توده‌های محلی آن در سراسر ایران وجود دارد و سازگاری زیادی با شرایط خشکی، کویری، شوری و گرما دارد. این سازگاری را در طی سالیان متمادی در طبیعت کسب کرده و می‌توان بسیاری از زمین‌های کم‌بهره را به زیر کشت این گیاه برد. موفقیت تولید گلرنگ به عنوان یک گیاه اقتصادی و رقابت آن با سایر گیاهان روغنی وابسته به معرفی، توسعه و ایجاد رقم‌هایی با عملکرد دانه و میزان روغن بالاست. کارایی برنامه گزینش برای اصلاح صفات کمی از جمله عملکرد دانه و میزان روغن بطور عمده وابسته به تنوع ژنتیکی این صفات و همبستگی آنها با سایر صفات است (فالکونر و مکای، 1996 و گوان و همکاران، 2008(.
گلرنگ از حیث خصوصیات مختلف کمی و کیفی، سازگاری با عوامل محیطی و انواع مقاومت‌ها دارای تنوع ژنتیکی وسیعی می‌باشد. تصور می‌شود که در کل 25179 نمونه از ژرم‌پلاسم گلرنگ در 22 بانک ژن از 15 کشور ذخیره شده باشد (زانگ، 2001).
مقدار روغن دانه گلرنگ مهم بوده و دانه‌هایی با بیش از 38 درصد روغن به صورت دانه‌های روغنی به فروش می‌رسند. فاکتورهایی چون پیری زودرس و کوتاه بودن دوره پر‌شدن دانه‌ها می‌تواند باعث کاهش میزان روغن آنها شود (پاسبان اسلام، 1383).
1-4- خصوصیات مهم گیاه شناسی گلرنگ
گلرنگ زراعی جز خانواده کمپوزیته یا آستراسه بوده و گیاهی است علفی و خاردار، یکساله یا یکساله زمستانه، پرشاخه با تعداد زیادی خار روی برگ‌ها و براکته‌ها و بذور سفید رنگ که به طور متوسط 03/0 تا 04/0 گرم وزن داشته و دارای سطح صاف و چهار وجهی با پریکارب ضخیم بوده و در برخی ارقام دارای اندازه‌های مختلف پرز هستند بعد از جوانه‌زنی، ‌رشد آرام مرحله روزت آغاز می‌شود که در طی آن بوته دارای تعداد زیادی برگ نزدیک سطح زمین می‌شود،‌ ریشه‌های اصلی توسعه یافته و شروع به نفوذ به عمق خاک می‌کنند اما ساقه ایجاد نمی‌شود. در مرحله روزت گیاهان به سرما و یخبندان مقاوم بوده ولی نسبت به علف‌های‌‌هرز سریع‌الرشد بسیار آسیب‌پذیرند. متعاقباً (بعد از مرحله روزت) ساقه‌ها به سرعت طویل شده و شاخه‌زایی می‌کنند. زاویه بین شاخه و ساقه بین 30 تا 70 درجه متغیر بوده و میزان شاخه‌زایی بطور ژنتیکی و محیطی کنترل می‌شود. هر شاخه به یک قوزه گل که به وسیله براکته‌ها احاطه شده و عموماً خاردارند، منتهی می‌شود. برگهای تحتانی معمولاً دارای دندانه‌های عمیق و برگهای نزدیک قوزه،‌ جایی که براکته‌های گریبانک را تشکیل می‌دهند، ‌به شکل تخم مرغی تا تخم مرغی واژگون هستند. خارهای ساقه در مرحله غنچه‌دهی بوجود آمده و تا مرحله گلدهی سخت و محکم می‌شوند. ارقامی که تقریباً عاری از خار هستند برای برداشت دستی گل و دانه در برخی مناطق جغرافیایی توسعه یافته‌اند.
1-5- نحوه گرده افشانی گرده افشانی زمانی انجام می‌شود که خامه و کلاله از درون ستون بساک برروی جام گل رشد کنند. کلاله رشد یافته (طویل شده) که هنوز تلقیح نشده ممکن است قدرت دریافت دانه گرده را تا چندین روز داشته باشد. زنبور عسل، زنبور معمولی و سایر حشرات گلهای گلرنگ را برای دانه گرده و شهد گل جستجو کرده و باعث افزایش میزان دگرگشنی می‌شوند. گرده افشانی به وسیله باد بر روی دانه‌بندی گلرنگ تاثیری ندارد. قوزه‌های کامل دارای 30-15 و یا بیشتر بذر بوده که 4 تا 5 هفته بعد از گلدهی به مرحله رسیدن فیزیولوژیک می‌رسند.
1-6- بذردانه رسیده ارقام معمولی دارای 33 تا 60 درصد پوسته و 40 تا 67 درصد مغز دانه است. میزان روغن دانه 20 تا 45 درصد کل دانه است. گزینش برای میزان بالای روغن در ارقام جدید باعث کاهش ضخامت فرابر شده است و میزان بذردهی طی 15 روز بعد از گلدهی 5 تا 10 برابر افزایش یافت. (هیل و نولز، 1968).
1-7- منشاء جغرافیاییواویلو در سال 1951 سه ناحیه را به عنوان منشأ جغرافیایی گونه زراعی گلرنگ معرفی نموده است:
هندوستان (مرکز 2 واویلوف): بر اساس تنوع و کشت سنتی آن.
افغانستان (مرکز 3 واویلوف): بر اساس تنوع و مجاورت با گونه‌های وحشی.
اتیوپی (مرکز 4 واویلوف): بر اساس وجود گونه‌های وحشی گلرنگ.
نولز (1969) با اشاره به چندین مرکز کشت و مصرف گلرنگ در دنیای قدیم فرضیه مراکز تشابه را ارائه نمود. مراکز تشابه شامل هفت منطقه ذیل است:
خاور دور (مرکز 1 واویلوف - چین): چین، ژاپن، کره.
هندوستان - پاکستان (مرکز 2 واویلوف، هندوستان): هندوستان، غرب و شرق پاکستان.
خاورمیانه (مرکز 3 و4 واویلوف، آسیای مرکزی و خاور نزدیک): افغانستان تا ترکیه .جنوب شوروی سابق تا اقیانوس هند.
4- مصر (مرکز 5 واویلوف، مدیترانه ای): حاشیه رود نیل در شمال آسوان.
5ـ سودان (تا جنوب مرکز 5 واویلوف): حاشیه رود نیل در شمال سودان و جنوب مصر.
6ـ اتیوپی (مرکز 4 واویلوف، اتیوپی).
7ـ اروپا (بخش غربی مرکز 5 واویلوف): اسپانیا، پرتغال، فرانسه، ایتالیا، رومانی، مراکش و الجزایر.
1-8- تاریخچه کشت گلرنگسابقه کشت گلرنگ در کشور مصر به 4000 سال قبل می‌رسد و به احتمال قوی در شمال شرقی هندوستان، ایران یا ترکیه اهلی گردیده است. در بین گیاهان متداول روغنی، گلرنگ بومی کشور بوده و ایران به عنوان یکی از مراکز تنوع آن شناخته شده است. سازگاری وسیع این دانه روغنی به شرایط مختلف آب و هوایی به اثبات رسیده و گونه‌های وحشی آن در سراسر کشور مشاهده می‌شود. در گذشته سطح زیر کشت گلرنگ در هند قابل توجه بوده و روغن گلرنگ حدود 4 درصد کل روغن نباتی خوراکی هند را تشکیل می‌داد، ولی عملاً به دلیل اعمال مدیریت ضعیف مزرعه، عملکرد حاصله رضایت‌بخش نبوده است. در کشور ژاپن بیش از 40 درصد روغن مصرفی متعلق به گلرنگ بوده که عمدتاً از کالیفرنیا خریداری می‌شود، زیرا در کالیفرنیا به کیفیت روغن تولید شده، توجه زیادی می‌شود (پاسبان اسلام، 1383). توده‌های بومی گلرنگ زراعی در اکثر مناطق ایران وجود دارند. در گذشته از گلچه‌های این گیاه به عنوان رنگ خوراکی و صنعتی استفاده می‌شد و دانه آن نیز به مصرف ماکیان می‌رسید، اما با وارد شدن رنگ‌های شیمیایی ارزان قیمت به بازار، کشت آن محدود شد و تنها به عنوان یک گیاه روغنی مورد توجه قرار گرفت. خوشبختانه در سال‌های اخیر مضرات متعدد رنگ‌های خوراکی شیمیایی آشکار شده و گرایش به سمت استفاده از رنگ‌های طبیعی بیشتر شده است (پورداد و همکاران، 1385).
1-9- پراکنش و تولید جهانی گلرنگ
در حال حاضر گلرنگ در 60 کشور جهان کشت می‌شود (بولز و همکاران، 2008) هندوستان هر ساله تقریباً نیمی از گلرنگ جهان را تولید می‌کند و عمده آن در داخل همان کشور مصرف می‌شود. پس از هندوستان، ایالات متحده‌آمریکا در رتبه بعدی قرار دارد. ایالت کالیفرنیای آمریکا دومین تولید کننده بزرگ گلرنگ در دنیاست. مکزیک، آرژانتین، استرالیا و چین از کشورهای مهم تولید کننده گلرنگ در جهان هستند (گیلبرت، 2008).
وضعیت زراعت گلرنگ طی ده سال اخیر نشان می‌دهد که سطح زیر کشت این محصول متغیر بوده و در نتیجه میزان تولید دانه نیز متغیر بوده است (جدول1-1).
جدول 1-1- وضعیت سطح زیر کشت، تولید و عملکرد دانه گلرنگ در جهان طی 10 سال (2011-2002)
سال سطح برداشت شده
(هکتار) تولید دانه (تن ) عملکرد دانه
(کیلوگرم در هکتار)
2002 722160 560499 1/776
2003 877744 703884 9/801
2004 949675 654010 6/688
2005 819756 582039 710
2006 687719 528602 6/768
2007 737818 622048 6/842
2008 691436 615214 7/889
2009 788744 648560 3/822
2010 794944 645178 6/811
2011 600440 591997 9/985
1-10- مصارف گلرنگاستفاده از گلرنگ به عنوان یک دانه روغنی تجاری سابقه طولانی ندارد و در قدیم بیشتر از گل آن استفاده می‌شد. امروزه گلرنگ به عنوان یک دانه روغنی که روغن آن مورد مصرف تغذیه‌ای و صنعتی دارد، کشت می‌گردد (خواجه پور، 1383). روغن گلرنگ، به دلیل بالا بودن نسبت اسیدهای چرب غیراشباع، مشابه روغن زیتون بوده و ضمن دارا بودن مقادیر بالای اسید لینولئیک یا اسید اولئیک قیمت کمتری نیز دارد. روغن گلرنگ قابلیت پایداری بیشتری در برابر حرارت داشته و به عنوان روغنی با کیفیت بالا برای سرخ کردن خصوصاً تهیه چیپس استفاده می‌شود. علاوه بر این در تولید روغن‌های آرایشی نیز کاربرد دارد. در کشور چین گلبرگ‌های خشک گلرنگ در تهیه داروهای گیاهی و تقویت کننده سیستم گردش خون به کار می‌رود. آمار و ارقام نشان می‌دهند که سالانه تقریباً 1700 تن از گل‌های گلرنگ در تهیه داروهای گیاهی استفاده می‌شود. چای گلرنگ موقعیت خاصی در زندگی امروزه چینی‌ها کسب کرده است. ماده مؤثره گل‌ها، التهاب را تسکین می‌دهد. برگ‌های گلرنگ از نظر کاروتن و ریبوفلاوین غنی هستند. در اتیوپی دانه‌های پوست‌گیری شده گلرنگ، بعد از خرد کردن کامل با آب مخلوط نموده و در تهیه نوعی غذا که اصطلاحاً «فیت فیت» نامیده می‌شود (یک نوع حلیم که مخلوطی از تف، تکه‌های نان و روغن است و در روزهای روزه‌داری مصرف می‌شود) استفاده می‌کنند. کنجاله به جا مانده بعد از استخراج روغن تا اندازه ای تلخ مزه است ولی با مخلوط نمودن آن با کنجاله چغندرقند و یا کنجاله ساقه نیشکر، به عنوان غذای دام مصرف می‌شود (آلیاری و شکاری، 1379). کنجاله از نظر اسید‌آمینه لیزین (5/0 درصد) فقیر می‌باشد و به علت دارا بودن مقادیر بالای فیبر (حدود 30 درصد)، از ارزش غذایی پایینی برخوردار است (خواجه‌پور، 1383). سالیان متمادی است که کنجاله حاصل از دانه‌ی گلرنگ پس از استخراج روغن به مصرف تغذیه‌ی حیوانات می‌رسد. وجود فیبر زیاد در دانه، آن را از نظر تغذیه‌ی دام نامطلوب می‌سازد. این ماده می تواند برای تغذیه‌ی طیور، گاو، گوسفند و غیره به کار رود.کنجاله حاصله از دانه‌ی گلرنگ نسبت به کنجاله حاصله از دانه‌ی سویا به دلیل اثری که بر افزایش وزن دام دارد، از برتری خاصی برخوردار می‌باشد. پروتئین گلرنگ به عنوان یک منبع پروتئین گیاهی می‌تواند جهت تغذیه‌ی طیور به کار رود.
ترکیبات مختلف دانه گلرنگ به عنوان یک گیاه روغنی شامل 50-35 درصد روغن، 20-15 درصد پروتئین و 45-35 درصد پوسته می‌باشد. روغن گلرنگ به دلیل بالا بودن اسیدهای چرب غیراشباع برای مداوای گرفتگی رگ‌ها و جلوگیری از لخته شدن خون، کاهش کلسترول بد و افزایش کلسترول خوب، درمان رماتیسم و تسکین دهنده درد استفاده می‌شود (فرناندز و همکاران، 1993).
بین مقدار پوست دانه و درصد روغن یک همبستگی منفی وجود دارد. همچنین این همبستگی بین پوست و مقدار مغز دانه هم صدق می‌کند. هر چه میزان پوست دانه کم باشد (به اصطلاح پوست کاغذی باشد) درصد مغز یا روغن بیشتر خواهد بود. بنابراین صفت فوق مطلوب تلقی می‌گردد. نازکی پوست دانه توسط ژنی به نامth کنترل شده و باعث افزایش روغن در بذر به مقدار 6 تا 7 درصد می‌گردد (آلیاری و شکاری، 1379).
1-11- روش‌های اصلاحی گلرنگاصلاحگران گلرنگ عمدتاً از روشهای مختلف شجره‌ای برای اداره نسلهای در حال تفکیک استفاده کرده‌اند (نولز،‌ 1989). گزینش برای خصوصیاتی با توارث‌پذیری بالا (مانند زودرسی، ‌مقاومت به بیماری‌ها) از تک بوته‌های F2 شروع می‌شود. می‌توان لاین‌های یکنواخت F3 یا F4 که دارای خصوصیات مطلوب هستند را در آزمایشات مقایسه عملکرد اولیه قرار داد. روش تلاقی برگشتی به منظور انتقال صفات ویژه مخصوصاً مقاومت به بیماری‌ها به ارقام تجاری خوب، مورد استفاده قرار گرفته است.
برنامه‌های گزینش دوره‌ای نیز در گلرنگ مورد ‌‌استفاده قرار گرفته است. در پروژه‌ای که در سال 1970 در آریزونای آمریکا آغاز شد روبیس (1981) از نوعی نرعقیمی ساختاری که با ژن نازکی پوسته بذر (th/th) همبستگی داشت، ‌استفاده نمود تا لاین‌هایی با مقاومت بالا به بیماری پوسیدگی ریشه (phytophorta spp.) ایجاد نماید.
کاراپتیان (1994) سه ژن غیر مشابه دارای اثرات متقابل را شناسایی نمود که توارث نر- ماده عقیمی را در گلرنگ کنترل می‌کند. تلاقی مورد استفاده شامل واریته S1,S1s2s2s3s3 US-10 و یک لاین هندی با فاصله جغرافیایی دور به نام s1,s1S2S2S3S3 147-54 بود.
برنامه اصلاحی دورگ گلرنگ در سال 1974 به وسیله هیل با استفاده از سیستم نرعقیمی سیتوپلاسمی آغاز شد (هیل، ‌1996). میانگین افزایش عملکرد هیبریدها نسبت به والدین برتر در مناطق کالیفرنیا، آریزونا، داکوتای شمالی،‌ کانادا،‌ پاکستان، مکزیک و اسپانیا، 127% بود. میزان روغن هیبریدها که در سال 1983 دارای میانگین 34% بود، به 40% و 42% در سال 1994 افزایش یافت و اکنون هیبریدهای با بیش از 45% روغن در حال توسعه‌اند.
1-12- نقاط ضعف گلرنگ
عملکرد پایین در واحد سطح همراه با شاخص برداشت کم و میزان کم روغن بذر، حساسیت زیاد ارقام تجاری موجود به بیماری‌های برگی (آلتراناریا، رامولاریا، پوکسینیا) پوسیدگی ریشه (ماکروفامیا)، ‌پژمردگی (فوزاریوم، ورتیسیلیوم)، ‌شته‌ها و تنش‌های غیرزنده (خشکی، شوری و ‌خاک قلیایی) و غیره را می‌توان نام برد.
با توجه به این که کشور ما یکی از مراکز منشأ گیاه گلرنگ می‌باشد، امید است بتوان با شناخت پتانسیل موجود در منابع ژنتیکی داخلی و بدست آوردن اطلاعات در رابطه با ساختار ژرم‌پلاسم این گیاه، مواد ژنتیکی مناسب را برای اهداف اصلاحی آن انتخاب کرد.
وجود خار در حاشیه برگ‌ها و دیگر بخش‌های گلرنگ در زراعت، صفتی منفی به شمار می‌رود، زیرا پس از استقرار بوته امکان هر گونه عملیات داشت و برداشت را با مشکل مواجه می‌سازد. از این رو دستیابی به ارقامی از گلرنگ که ضمن نداشتن خار از پتانسیل تولید بالاتری نسبت به ارقام خاردار برخوردار باشد از جمله اهداف مهم اصلاحی است.
عدم وجود تکنولوژی تولید منطقه‌ای (مثلاً در کشورهای آفریقایی) برای بهره برداری از پتانسیل کامل گلرنگ، عدم وجود اطلاعات در زمینه رسیدن به حداکثر پتانسیل تولید در مناطق مختلف. عدم وجود بازار مطمئن و قیمت تضمینی برای خرید گلرنگ،‌ عدم وجود امکانات فرآوری در نزدیکی مراکز تولید گلرنگ از دیگر مشکلات و نقاط ضعف این گیاه هستند.
1-13- اهداف اصلاحی گلرنگ
توسعه تحقیقات برای تعیین منابع مقاومت به تنش‌های محیطی زنده وغیر زنده.
ایجاد ارقام پرمحصول و هیبریدهای دارای میزان روغن بالا و متحمل به آفات و بیماری‌ها.
اصلاح گلرنگ برای حساسیت کمتر به درجه حرارت و طول روز و تولید ارقام پرمحصول زودرس.
بهبود تکنولوژی تولید و حفظ نباتات در گلرنگ به منظور افزایش عملکرد در شرایط آگرواکولوژیک مختلف.
اصلاح ارقام پرمحصول بی خار برای مناطقی که کشت گلرنگ در آنها مرسوم نیست.
توسعه تحقیقات به منظور شناسایی جنبه‌های مختلف در کشت گلرنگ.
ایجاد تکنولوژی فرآوری بذر مناسب.
یافتن سیستم‌های پویایی نرعقیمی سیتوپلاسمی برای تولید هیبریدها و آموزش کادر تحقیقاتی در زمینه روش‌های اصلاحی، تشخیص و مدیریت بیماری‌ها.
توسعه تیپ گیاهی دارای شاخه دهی کمتر و ارقام بدون خار.
1-14- اهداف مطالعهاین تحقیق به منظور ارزیابی ژرم‌پلاسم موجود گلرنگ در شرایط دیم و به‌گزینی بر اساس صفات مورد مطالعه و در مراحل مختلف رشد گیاه ‌صورت گرفت.
بررسی ارتباط بین صفات مورد مطالعه با همدیگر و تعیین صفات مؤثر بر عملکرد دانه.
شناسایی سهم هر یک از صفات تنوع کلی جمعیت مورد مطالعه با استفاده از برخی روش‌های چند‌‌‌‌‌متغیره.
بررسی تنوع ژنتیکی کلکسیون گلرنگ از لحاظ برخی صفات کیفی.
شناسایی ژنوتیپ‌های برتر به منظور استفاده به عنوان والدین در پروژه های اصلاحی گلرنگ.
فصل دوّمبررسی منابع
2-1- بررسی تحقیقات مرتبط با تنوع ژنتیکی گلرنگ
یزدی صمدی (1979) در بررسی کلکسیون بزرگی از گلرنگ شامل ژنوتیپ‌هایی از ایران و آمریکا، تنوع ژنتیکی گسترده‌ای را برای هفت صفت زراعی مختلف شامل تعداد روز تا گل‌دهی، ارتفاع بوته، تعداد قوزه در بوته، تعداد دانه در قوزه، وزن هزار دانه، عملکرد دانه و درصد روغن مشاهده کرد. در این مطالعه، ژنوتیپ‌های ایرانی دارای بیشترین تنوع از لحاظ ارتفاع بوته، تعداد قوزه در بوته و تعداد دانه در قوزه بودند.
نای و همکاران (1992) بررسی‌هایی را بر روی وراثت‌پذیری مربوط به 7 جزء صفت که بر روی عملکرد تأثیر دارد انجام دادند که در نهایت نتیجه گرفتند بیشترین وراثت‌‌پذیری برای ارتفاع گیاه و طول شاخه است.
قنواتی و نولز (1977) ذکر نمودند، که گیاهانی با یک مرحله روزت طولانی در یکی از جمعیت‌های محلی از شمال غرب ایران تحت عنوان لاینهای LRV موجود هستند و بیش از 50 لاین از این توده محلی با تنوع قابل ملاحظه‌ای در تحمل به سرمای زمستانه معرفی گردیدند.
باقری و همکاران (1380) به منظور بررسی تنوع ژنتیکی برای عملکرد و اجزای آن و برخی از صفات فنولوژیکی، ارزش غذایی و نیز برخی صفات کیفی در جمعیت های بومی گلرنگ ایران، آزمایشی با 121 ژنوتیپ در قالب طرح لاتیس ساده انجام دادند. 12 رقم خارجی نیز جهت مقایسه با ژرم‌پلاسم داخلی در آزمایش گنجانده شد. در این طرح، 14 صفت کمی و 6 صفت کیفی ارزیابی شد. نتایج نشان داد که در تمامی صفات ارزیابی شده به جز محتوای روغن، ژنوتیپ‌های ایرانی دارای بالاترین مقادیر بودند. در این مطالعه بیشترین ضریب تغییرات را صفت تعداد دانه در قوزه و کمترین آن را صفت محتوای پروتئین داشت.
بردلی و جانسون (1997) بر روی 2300 اکسشن گلرنگ بررسی را انجام دادند که در این آزمایش گسترده 7 صفت ارتفاع گیاه، وزن هزار دانه، عملکرد بوته، طول و عرض براکته‌ها، قطره قوزه اولیه و تاریخی که 50% گیاهان به گل رفته‌اند، مورد بررسی قرار گرفت. با تجزیه داده‌ها همبستگی زیادی بین ارتفاع و گلدهی و طول و عرض براکته‌ها مشاهده شد و در این آزمایش ارقامی را که از آسیای جنوب غربی جمع آوری کرده بودند فاصله زیادی از لحاظ صفات و برتری نسبت به سایر ارقام داشتند و در نهایت مشخص شد که تنوع زیادی بین ژنوتیپ‌های گلرنگ وجود دارد.
صمدانی و دانشور (1373) در مطالعه ارقام محلی ایرانی اعلام کردند که زمان کاشت پاییزه نسبت به بهاره برتری کامل‌تری از نظر عملکرد دارد و ضرائب همبستگی بین عملکرد و سایر صفات مثل تعداد شاخه جانبی، تعداد قوزه و ارتفاع مثبت و معنی‌دار است.
سروانتس مارتینز و ری پونس (2001) به منظور بررسی آلترناریای نقطه‌ای برگ و بررسی درصد روغن، 421 ژنوتیپ گلرنگ را از کل جهان جمع‌آوری کرده و مورد ارزیابی قرار‌ دادند. در نهایت 84ژنوتیپ به آلترناریا مقاومت نشان داده و 377 ژنوتیپ درصد روغن بین 7/12 تا 42 درصد و 37 اکسشن درصد روغن بالای 8/32% را نشان دادند. در انتها به این نتیجه دست یافتند که بعضی ارقام را می توان به عنوان منبع ژرم‌پلاسمی برای بعضی صفات بکار برد.
گروپادا و همکاران (1993) به منظور بررسی تنوع‌پذیری صفات اگرومورفولوژیکی گلرنگ، پزوهشی را با استفاده از 103 نمونه مختلف از ژرم پلاسم گلرنگ انجام دادند. آن‌ها در صفات عملکرد بوته، تعداد انشعابات اولیه وثانویه و تعداد قوزه مؤثر در بوته تنوع بالایی مشاهده کردند و تعداد 30 رگه امید بخش برای استفاده در برنامه های به نژادی انتخاب نمودند.
زبرجدی (1381) طی آزمایشی برروی28 رقم گلرنگ پاییزه در شرایط دیم در منطقه سرارود کرمانشاه نتیجه گرفت در نهایت از لحاظ میزان عملکرد، رقم شماره 27 (199877pI-( بیشترین عملکرد با میزان 25/968کیلو گرم و رقم شماره21(697) با عملکرد 3/360 کمترین عملکرد را نشان دادند. در ادامه بررسی اجزاءعملکرد نشان داد ارقام در سطح 1% اختلاف معنی‌داری با هم دارند و می‌‌توان گفت که افزایش عملکرد تنها از طریق یکی از اجزاء امکان‌پذیر نمی‌باشد.
اشری و همکاران (1974) در مطالعه 903 ‍ژنوتیپ گلرنگ برای متوسط عملکرد تک بوته و 3 جزء عملکرد به این نتیجه رسیدند که عملکرد تک بوته با طول فصل رشد تا گلدهی، ارتفاع بوته و میزان روغن دانه همبستگی نشان نداد. بنابراین امکان اصلاح واریته‌های زودرس با محتوای روغن بالا امکان‌پذیر است و میزان روغن با تعداد دانه در لاین‌های ایرانی و مصری همبستگی معنی‌داری دارد ولی این همبستگی در لاین‌های هندی مشاهده نشده است و نیز تجزیه رگرسیون نشان داد که 3 جزء عملکرد سهم بیشتری از واریانس عملکرد تک بوته را توجیه می‌کند. همچنین اصلاح برای عملکرد‌های بالا از طریق افزایش تعداد قوزه در بوته در جایی که مزرعه حاصلخیز است و رطوبت خاک فراوان است مهم می‌باشد. قابلیت تولید زیاد قوزه در جایی که آب آن قدر محدود است که گیاهان صرفاً چند شاخه جانبی تولید می‌کند و تنها چند قوزه می‌تواند پر شود بی‌اهمیت است.
سالیرا (1996) در آزمایشی گزارش نمود بالاترین درصد روغن در بذرهای برهنه در بالاترین تراکم مشاهده شد که احتمالاً بدلیل وزن کم بذر و درصد پوسته بذر می‌باشد.
اکبری و همکاران (1386) در آزمایشی بر روی ژنوتیپ‌های گلرنگ دریافتند که صفات تحت بررسی در سطح 1% تفاوت معنی‌دار داشته و خصوصیاتی مانند عملکرد روغن، تعداد قوزه در بوته، وزن هزار دانه، تعداد شاخه فرعی، عملکرد بیولوژیک و شاخص برداشت، همبستگی مثبت و معنی‌داری با عملکرد دانه از خود نشان دادند.
احمد زاده و همکاران (1389) در آزمایشی بر روی 30 ژنوتیپ گلرنگ نتیجه گرفتند که صفات ارتفاع بوته‌ و وزن 100 دانه بیشترین اثر مستقیم را بر عملکرد دانه داشته است. بنابراین بهتر است ژنوتیپ‌هایی انتخاب شوند که از نظر صفات مذکور دارای مقادیر بیشتری باشند.
پاتیل و همکاران (1989) در بررسی 60 ژنوتیپ گلرنگ اعلام کردند که ارتفاع گیاه، عملکرد دانه، ارتفاع شاخه‌دهی و وزن هزار دانه، 80 درصد تنوع موجود را توجیه می‌کنند.
یزدی صمدی و عبدمیشانی (1991) با ارزیابی 7 صفت کمی بر روی 1618 واریته و لاین ایرانی و آمریکایی، آنها را در 5 کلاستر گروه‌بندی کردند. آنها اعلام داشتند، گروه‌بندی دلالت بر شباهت بین لاین‌های اخذ شده از نواحی دارای شرایط اکولوژیک متضاد داشت و احتمالاً در اثر وجود مبنای ژنتیکی یکسان در آنها بوده است.
اشری و همکاران (1975) در یک پژوهش دیگر که بر روی ژنوتیپ‌های گلرنگ جمع آوری شده از مناطق مختلف دنیا انجام دادند تنوع زیادی برای صفات تحت بررسی بین ژنوتیپ‌ها مشاهده کردند به طوری که لاین های جمع‌آوری شده از کشور هند کمترین ارتفاع بوته و لاین‌های ایرانی بالاترین ارتفاع بوته را دارا بودند.
ماتور و همکاران) 1976) در کشور هند بررسی‌هایی را بر روی ارقام گلرنگ و همبستگی بین عملکرد و سایر صفات آنها انجام دادند که در نهایت بعد از تجزیه داده‌ها عملکرد هر گیاه همبستگی مثبتی با قطره قوزه و تعداد بذر در قوزه داشت و در مقابل، همبستگی منفی با تعداد شاخه‌های اولیه از خود نشان داد.
پورداد (1378) با بررسی مقدماتی ژرم‌پلاسم گلرنگ شامل 171 ژنوتیپ در کشت پاییزه دریافت که تنها 2 نمونه از ژنوتیپ‌های تحت بررسی در اثر سرما از بین رفتند و نتیجه گرفت که گلرنگ مقاومت خوبی به سرما داشته و دامنه عملکرد در متر مربع از 18 تا 468 گرم به ترتیب متعلق به Dincer 118 و لاین 81-79 بود. بیشترین تعداد قوزه در بوته مربوط به لاین 79-79 با 34 قوزه و بیشترین تعداد دانه در قوزه متعلق به رقم Dincer 118 و بیشترین وزن 100 دانه متعلق بهSyrian و PI-537631 بوده است.
بردلی و جانسون) 1997) برروی 13 رقم گلرنگ صفاتی کمی مانند اندازه قوزه و ارتفاع گیاه را مورد بررسی قرار دادند. از نظر ارتفاع کمترین میزان مربوط بهPI-314650 با 77 سانتی‌متر و بیشترین میزان مربوط به PI-304439 و PI-304442 که همه از ایران جمع آوری شده بودند بود که بر حسب سانتی‌متر ثبت گردید و از لحاظ قطر قوزه PI-560197 با 5/3 سانتی‌متر بزرگترین اندازه را به خود اختصاص داده بود.
نژاد شاملو و همکاران (1375) با بررسی ارقام گلرنگ بهاره سهم اجزاء عملکرد و سایر صفات در عملکرد را با استفاده از روش رگرسیون گام به گام بدست آوردند. در این تحقیق اختلاف اساسی عملکرد دانه ارقام گلرنگ بهاره به تعداد دانه در قوزه بستگی داشت و این جزء از عملکرد به تنهایی 3/87 درصد از تغییرات آن را توجیه کرد.
روژاس و همکاران) 1992) در بررسی 200 نمونه از کلکسیون جهانی گلرنگ به این نتایج دست یافتند که همبستگی بین محتوای روغن و پروتئین دانه معنی‌دار اما ضعیف بود و همبستگی درصد پوسته با محتوای روغن دانه و پروتئین منفی و معنی دار گردید و نیز محتوای روغن و پروتئین با وزن 100 دانه همبستگی مثبت و معنی‌دار نشان داد.
پورداد و همکاران (1378) در بررسی خود بر روی ارقام گلرنگ در 3 منطقه اسلام آباد، بیلوار و بیستون در استان کرمانشاه نتیجه گرفتند که درصد روغن از 04/25 تا 15/31 متغیر بوده و رقم شاهد در هر 3 منطقه دارای کمترین درصد روغن بود و در مجموع رقم سینا عملکرد روغن و دانه بالایی داشت و به عنوان رقم برتر معرفی گردید.
لینگر و یوری (1964) در بررسی برروی مراحل رشد دانه گلرنگ از نظر روند تغییرات درصد روغن و درصد پوسته دانه به این نتیجه رسیدند که با بلوغ بذر درصد پوسته دانه کاهش یافته و درصد روغن افزایش یافته و حداکثر میزان روغن پس از بلوغ کامل حاصل می‌گردد.
پورداد (1383) تعداد 933 رقم، رگه و توده گلرنگ جمع‌آوری شده از مناطق مختلف کشور و نیز ارقام و رگه‌های خارجی را در دو تاریخ کاشت بهاره و پاییزه و در شرایط دیم ایستگاه، تحقیقات کشاورزی سرارود مورد ارزیابی قرار داد. نتایج حاکی از تنوع ژنتیکی قابل ملاحظه‌ای در هر دو کشت بهاره و پاییزه در ژرم‌پلاسم مورد مطالعه از نظر تمامی صفات تحت بررسی بود.
جمشیدمقدم و همکاران (1385) به منظور بررسی صفات زراعی و مورفولوژیک و کاربرد آنها در برنامه‌های به نژادی گلرنگ، آزمایشی با 270 ژنوتیپ گلرنگ انجام دادند. صفات مختلف کمّی و کیفی شامل رنگ گل، وضعیت خار، تعداد روز تا شروع و پایان گلدهی، طول دوره گل‌دهی، تعداد روز تا رسیدگی، طول دوره پر‌شدن دانه، ارتفاع بوته، تعداد شاخه فرعی در بوته، قطر قوزه اصلی و فرعی، متوسط تعداد قوزه در بوته، تعداد دانه در قوزه، وزن هزار دانه، محتوای روغن دانه و عملکرد دانه و روغن در واحد سطح ارزیابی شد. نتایج حاکی از تنوع ژنتیکی قابل ملاحظه‌ای در ژرم‌پلاسم مورد مطالعه از نظر اکثر صفات فوق بود.
عباسعلی و همکاران (2006) 81 نمونه گلرنگ دریافتی خارج از کشور را بررسی کردند. 35 صفت کمی و کیفی مورد ارزیابی قرار گرفت. این آزمایش نشان داد که در بین ارقام تنوع مطلوبی وجود داشته به طوری که می‌توان از این تنوع برای اهداف مختلف اصلاحی سود جست.
امیدی‌تبریزی و همکاران (1379) بین ارقام و لاین‌های گلرنگ پاییزه از نظر عملکرد دانه و روغن اختلاف معنی‌داری گزارش کردند. ژنوتیپ‌های مورد بررسی آنها ارقامی پاییزه همچون ورامین-295، زرقان 279 و 51/51R.V .L تشکیل داده بودند.
منصوری‌فر (1373) طی آزمایشی که برروی 10 رقم گلرنگ انجام داد به این نتیجه رسید که رقم (60-55-7LR) A2 با 4130 کیلوگرم در هکتار بالاترین و رقم (295) A8با 2250 کیلوگرم در هکتار پایین‌ترین عملکرد را داشتند. همین طور A2 از نظر تعداد قوزه در بوته و وزن هزار دانه و رقم (51-51-7)A4 از نظر تعداد دانه در قوزه برتر از سایرین بودند.
کومار (1991) بین تعداد دانه در قوزه و وزن صد دانه همبستگی قوی مشاهده نمود. همچنین بین عملکرد دانه و تعداد دانه در قوزه و همچنین عملکرد دانه و تعداد قوزه در بوته همبستگی مشاهده نمودند و نتیجه گرفت که در کلکسیون مورد نظر با انتخاب بوته‌های دارای تعداد قوزه بیشتر و نیز دانه‌های درشت‌تر می‌توان در جهت افزایش عملکرد اقدام کرد.
ساری و همکاران (1988) در آزمایشی نتیجه گرفتند که با بالا رفتن تراکم، میزان روغن و پروتئین دانه افزایش یافت.
یزدی صمدی و عبدمیشانی (1989) با مطالعه 1858 لاین‌ ایرانی و خارجی تحت شرایط بدون آبیاری در کرج اعلام نمودند که ارتفاع گیاه بسیار متغیر بوده و محدوده تغییرات آن بین 20-90 سانتی‌متر می‌باشد. همچنین دریافتند که لاین‌های ایرانی جز کوتاه‌ترین نمونه‌ها هستند.
براتولون (1993) در مطالعه خود در کشور رومانی اعلام نمود که برترین ژنوتیپ عملکردی در حدود 5 تن در هکتار داشته است که نتجه فوق بیانگر پتانسیل بالای گلرنگ در تولید دانه می‌باشد.
پورداد (1376) در بررسی‌هایی بر روی ارقـام اصلاح شده گلرنگ پائـیزه در شرایط دیم در منطقه سرارود بیشترین میزان همبستگی منفی بین تعداد دانـه در قوزه با تعداد قوزه در بوته بوده که در سطح احتمال 1 درصد معنی‌دار بود و همین طور یک همبستگی منفی بین تـعداد قوزه در بوتـه و وزن دانه مشاهده گردید. این همبستگی منـفی بـین اجزاء عـملـکرد به این دلیل بود که با افزایش میزان تعداد قوزه، وزن دانه بدلیل وجود شرایط دیم و تنش رطوبتی کاهش یافـت.
کانگ دیمینگ (1993) با اجرای روش‌های آماری چند متغیره برروی 30 رقم گلرنگ را مشخص نمود که 6 مؤلفه اصلی که به ترتیب شامل صفاتی چون اولین شاخه موثر، قطر ساقه اصلی، اندازه دانه، وزن هزار دانه، میزان روغن دانه و زاویه شاخه از ساقه اصلی بودند که حدود 78 درصد واریانس کل را توجیه نمودند.
هایرمت و منسینکایس (1971) پس از مطالعه6 صفت کمی در 50 رقم گلرنگ به این نتیجه رسیدند که ارتفاع گیاه و عملکرد تک بوته به سبب وراثت‌پذیری بالا تاثیر چندانی از محیط نمی‌پذیرد
اکبارین (1992) با استفاده از روش تجزیه کلاستر، گونه‌های مختلف گلرنگ در چهار گروه مربوط به فلاونس و یک گروه متعلق به گلاکوس و یک گروه متعلق به دناتوس را طبقه‌بندی کرد.
پولینگناتو والبا (1995) با بهره جستن از روش‌های آماری تجزیه کلاستر و تابع تشخیص کانونی، ارقام مختلف گلرنگ مورد بررسی خود را به 5 گروه که هر گروه شامل کشور‌های مختلفی بودند، تقسیم نمودند، اساس تغییرات در این طبقه‌بندی مربوط به صفات ارتفاع بوته، روز تا گلدهی و وزن هزار دانه ذکر گردید.
یزدی صمدی و عبد میشانی (1989) در بررسی لاین‌ها و ارقام گلرنگ داخلی و خارجی و انجام تجزیه کلاستر بر روی آنها مشخص نمودند که ارقام مورد بررسی در 5 گروه اصلی آمریکایی، ایرانشهری، مرندی، ارومیه‌ای، مغانی، فارس، اصفهان و جیرفت قرار گرفتند و همچنین نتیجه‌گیری شد که شباهت در میان توده‌های فوق با توجه به شرایط اکولوژیک احتمالاً به دلیل پایه ژنتیکی یکسان (منشأ آمریکایی، ایرانی و کشورهای شرق آسیا) می‌باشد.
جمشید‌مقدم و همکاران (1385) در بررسی تنوع ژنتیکی گلرنگ در شرایط دیم از طریق تجزیه به عامل‌هانشان دادند که شش عامل اصلی و مستقل در مجموع 04/80 درصد از کل تغییرات را توجیه کرد. عوامل اول، دوم، پنجم، به عنوان عوامل فنولوژیک و مورفولوژیک 05/47 درصد عامل‌های سوم و چهارم به عنوان عامل‌های عملکرد و اجزای آن 56/25 درصد و عامل ششم به عنوان عامل کیفی با 13/7 درصد نامگذاری شدند.
سینگ و همکاران (1981) بیش از 50 ژنوتیپ بومی هند را از نظر 9 صفت زراعی در شرایط دیم مورد بررسی قرار دادند. آن‌ها تنوع زیادی را در بین ژنوتیپ‌ها از نظر صفات زراعی گزارش و ارقامی زودرس با طول دوره رویش 164 روز را گزینش کردند.
عباسعلی و همکاران (2006) نشان دادند بین ژنوتیپ‌های گلرنگ برای صفات مختلف تنوع کافی وجود دارد. همچنین همبستگی تعداد قوزه در بوته با عملکرد دانه در واحد تک بوته مثبت و با شاخص برداشت منفی بود و نیز بین درصد روغن با تعداد روز تا 50 درصد گلدهی همبستگی مثبت دیده شد.
اشری و همکاران (1974) در پژوهش دیگری نیز که برروی تعداد زیادی از ژنوتیپ‌های جمع‌آوری شده گلرنگ از کشور‌های مختلف از جمله ایران انجام دادند اعلام نمودند که تنوع زیادی از لحاظ عملکرد دانه و اجزای عملکرد و درصد روغن وجود داشته است.
باقری و همکاران (1380) در یک پژوهش دیگر نیز با استفاده از تجزیه کلاستر به روش وارد و مربع فاصله اقلیدسی 121 ژنوتیپ گلرنگ را در 9 کلاستر گروه‌بندی نمودند.
مکن و همکاران (1979) در یک مرکز تحقیقاتی در ماراس وادا هند آزمایشی را بروی 71 رقم گلرنگ که در مورد عملکرد و 7 صفت مربوط به آن بود انجام دادند. در این آزمایش همبستگی مثبتی بین عملکرد با ارتفاع گیاه و تعداد قوزه در بوته و تعداد دانه در قوزه و وزن 100 دانه وجود داشت و وراثت‌پذیری بالایی برای ارتفاع، وزن 100 دانه و تعداد دانه مشاهده شد.
زند و کوچکی (1375) پس از مطالعه 9 ژنوتیپ گلرنگ به این نتیجه رسیدند که خصوصیاتی مانند بیوماس کل، تعداد قوزه، تداوم شاخص سطح برگ، ارتفاع، شاخه‌دهی و طول دوره موثر پر‌شدن‌دانه بیشترین همبستگی را با عملکرد داشتند. طبق نتایج تجزیه علیت بیشترین اثرات مستقیم بر عملکرد دانه مربوط به بیوماس (65 %) و تداوم شاخص سطح برگ (39 %) و تعداد قوزه در بوته (12 %) بود.
صفوی (1389) نیز آزمایشی با 121 ژنوتیپ در ایستگاه تحقیقات کشاورزی دیم سرارود انجام داد. نتایج ضرایب مسیر نشان داد که صفت تعداد قوزه در بوته بیشترین اثر مستقیم را بر روی عملکرد تک بوته داشته است. تجزیه به عامل‌ها، چهار عامل را مشخص نمود که در مجموع 8/78 درصد از تغییرات کل را توجیه نمود. تجزیه خوشه‌ای به روش وارد و مقیاس مربع فاصله اقلیدسی ژنوتیپ‌ها را به 6 گروه تفکیک کرد.
شهبازی دورباش و همکاران (1390) با بررسی تنوع ژنتیکی 74 لاین ایرانی و 6 لاین خارجی گلرنگ دریافتند که این لاین‌ها در اکثر صفات زارعی تفاوت معنی‌داری داشتند. صفات ارتفاع بوته، تعداد قوزه در بوته و درصد سبز شدن بیشترین همبستگی مثبت را با عملکرد دانه داشتند.
گوپتا و سینگ (1997) در انستیتو تحقیقات کشاورزی در هند به بررسی تنوع و وراثت‌پذیری و ضریب همبستگی و عملکرد دانه و اجزاء آن بر روی 45 هیبرید F1 گلرنگ و 10 ژنوتیپ از گیاهان F2 پرداختند. در این آزمایش وراثت‌پذیری برای تمام صفات بالا بود. این بررسی نشان داد که عملکرد دانه با شاخه‌های اولیه، تعداد قوزه در گیاه، ارتفاع و وزن صد دانه همبستگی دارد. و در مقابل عملکرد روغن یک ارتباط منفی با عملکرد دانه و وزن صد دانه دارد.
سعیدی و همکاران (1383) در آزمایشی بر روی هفت توده بومی گلرنگ دریافتند که از لحاظ صفات تعداد روز تا گلدهی و رسیدگی، ارتفاع بوته، تعداد شاخه در بوته، متوسط وزن قوزه، تعداد دانه در قوزه، وزن‌صد‌دانه، عملکرد دانه در واحد سطح، درصد پوسته دانه تفاوت معنی‌داری بین توده‌ها، وجود دارد. نتایج تجزیه مسیر نیز نشان داد که از بین اجزای عملکرد دانه، تعداد دانه در قوزه و تعداد قوزه در بوته بیشترین اثرات ژنتیکی مستقیم و مثبت را بر عملکرد دانه در واحد سطح و عملکرد دانه در بوته داشتند.
گلکاری (1390) در آزمایشی شامل 89 ژنوتیپ گلرنگ دریافت که بر اساس تجزیه به عامل‌ها صفات عملکرد بیولوژیکی، عملکرد روغن، درصد سبز شدن و شاخص برداشت در عامل اصلی قرار گرفتند و عامل بهورزی نامگذاری شد. کلاستر بندی به روش UPGMA و فاصله مربع اقلیدس برای کلیه صفات مورد ارزیابی، ژنوتیپ‌ها را در 5 خوشه گروه‌بندی کرد که لاین‌های موجود در کلاستر اول و سوم از نظر صفات عملکرد دانه از ارزش بالاتری نسبت به میانگین کلیه ژنوتیپ‌ها برخوردار بودند.
بهدانی و جامی الاحمدی (1387) در آزمایشی به منظور بررسی تغییرات رشد و عملکرد سه رقم گلرنگ بهاره نتیجه گرفتند از بین ویژگی‌های مورفولوژیک، ارتفاع گیاه، قطر ساقه، تعداد شاخه‌های جانبی، بیشترین رابطه را با عملکرد نشان دادند و نیز قوزه اصلی همبستگی بالایی را با عملکرد داشت و در نتیجه کاشت رقم محلی اصفهان به دلیل بومی بودن و تطابق‌پذیری بیشتر به شرایط ایران، در مقایسه با ارقام دیگر عملکرد بیشتری را داشت.
درشولی ترک (1383) آزمایشی روی 240 ژنوتیپ گلرنگ انجام داد که در بررسی همبستگی بین صفات به نتایجی از قبیل عدم وجود رابطه بین درصد روغن و تعداد روز تا رسیدگی رسید. و ژنوتیپ ها در 12 کلاستر گروه‌بندی کرد.
امیدی تبریزی و همکاران (1378) در آزمایشی شامل 25 ژنوتیپ گلرنگ بهاره شامل ژنوتیپ‌های بومی ایران و ارقام خارجی نتیجه گرفتند که عملکرد دانه و روغن، با تعداد دانه یا تعداد قوره در بوته، شاخه‌های فرعی، روز تا گلدهی همبستگی مثبت و معنی‌داری داشت. تجزیه کلاستر به روش وارد و فاصله اقلیدسی، 25 ژنوتیپ را در سه کلاستر گروه‌بندی کرد.
در بررسی که هواگ (1978) انجام داد به این نتیجه رسید که با افزایش تراکم، وزن صد دانه گیاه کاهش و درصد روغن افزایش پیدا می‌کند.
فولز (1990) در دانشگاه کالیفرنیا تحقیقاتی را برروی عملکرد و کیفیت روغن انجام داد که ژرم‌پلاسم‌های جمع‌آوری‌شده از منطقه شمال آسیا، خاورمیانه و آفریقای شمالی انتخاب شده بودند که در نهایت ژرم‌پلاسم CU-1 انتخاب شد که پایه کارهای اصلاحی شد.
برگمن (1997) در آخرین تحقیقات خود به دو رقم گلرنگ به نامهای مونتالا با 81 درصد اسید اولئیک و مورلین با 83 درصد اسید لینولئیک اشاره نموده است.
داجو و گریف (2001) یک آزمایش بین المللی را در کشورهای آسیایی تایلند، هند و چین انجام دادند که در آن 9 رقم به همراه یک رقم محلی مورد ارزیابی قرار گرفتند. در نهایت آزمایش نشان داد که اگر گلرنگ به منظور روغن کشت شود ارقام GW-9024 و KU-4038و GW-9023 در هند و ارقام GW-9023 ACC407, GW-9024, GW-9025GW-9023 ACC407, در تایلند و ارقام GW-9025و KU-4038 در شمال چین درصد مناسبی از روغن نشان می‌دهند که می‌تواند مورد استفاده قرار بگیرد.
تحقیقات انجام شده توسط یوان (1983)، پارمسوارپا (1984)، پاتیل و دشماخ (1997)، و کازاتو و همکاران (1997) مشخص نموده است که همبستگی منفی و معنی‌داری بین پوسته دانه و درصد روغن در گلرنگ وجود دارد.
فصل سوّممواد و روش ها3-1- محل اجرای آزمایشاین آزمایش در مزرعه تحقیقاتی معاونت موسسه تحقیقات کشاورزی دیم سرارود واقع در 15 کیلومتری شهر کرمانشاه در سال زراعی 91-90 اجرا گردید. مشخصات اقلیمی و جغرافیایی محل اجرای آزمایش در جدول 3-1 آورده شده است.
جدول 3-1 برخی مشخصات جغرافیایی و اقلیمی محل اجرای آزمایش
حداقل و حداکثر
دما (سانتیگراد) حداقل و حداکثر بارندگی
سالیانه (میلیمتر) ارتفاع از
سطح دریا (متر) عرض جغرافیایی طول جغرافیایی موقعیت مکانی وضعیت آب و هوایی
24- و 44+ 241 و 783 6/1351 '20 و °34 '19 و °47 رشته کوه های
زاگرس شمالی نیمه خشک
معتدل سرد

وضعیت بارندگی و دما
میزان بارندگی سال زراعی 91-90 در ایستگاه سرارود 7/302 میلی‌متر بوده که در مقایسه با میانگین بلند مدت 2/111 میلی‌متر و نسبت به سال زراعی گذشته 6/11 درصد کاهش داشته است (جدول 3-2). پراکنش بارندگی در پاییز 1/127 در زمستان 2/104 و در بهار 4/71 میلی‌متر بوده است. به عبارت دیگر، 98/41 درصد بارش‌ها در پاییز 42/34 درصد در زمستان و58/23 درصد در بهار بوقوع پیوسته‌اند. داده‌های درجه حرارت نشان می‌دهند که متوسط دمای سال زراعی اخیر 6/10 درجه سانتی‌گراد بوده که در مقایسه با میانگین بلند مدت85/0 درجه سانتی‌گراد و نسبت به سال زراعی گذشته 97/0 درجه ‌سانتی‌گراد کاهش داشته است. مجموع روزهای زیر صفر 99 روز بوده که نسبت به میانگین بلند مدت 18 روز و نسبت به سال زراعی گذشته 22 روز افزایش داشته است. ‍‍جدول3-2- آمار هواشناسی سال زراعی91-90 ایستگاه تحقیقات کشاورزی دیم سرارودماه
بارندگی
میلیمترحداقل دمای مطلق حداکثر دمای مطلق متوسط
دما
تعداد روز زیر صفر % رطوبت نسبی تبخیر
میلیمتر متوسط دمای حداقل متوسط دمای حداکثر
مهر 0 2/1 8/31 6/17 0 4/27 6/182 3/8 27
آبان 2/126 4/2- 2/23 4/10 2 7/60 3/55 8/4 16
آذر 9/0 6/7- 6/15 4 27 4/52 0 4/3- 4/11
دی 3/14 8/8- 6/15 3/4 22 58 0 2- 6/10
بهمن 1/77 13- 2/14 7/2 18 60 0 7/2- 3/8
اسفند 8/12 12- 6/22 1/4 22 50 0 3/2- 5/10
فروردین 8/59 6/3- 6/25 5/11 8 53 8/62 1/4 9/18
اردیبهشت 4/11 3 2/33 7/17 0 37 3/227 9 5/26
خرداد 2/0 4/6 8/37 5/23 0 26 8/386 2/14 7/32

نمودار3-1- بارندگی، تبخیر و متوسط دمای حداقل و حداکثر مطلق در سال زراعی 2012-2011 ایستگاه سرارود3-2- طرح آزمایشی و عملیات زراعی در این بررسی 100 ژنوتیپ گلرنگ (جدول3-3) در قالب طرح لاتیس ساده 10×10 با 2 تکرار در کشت پاییزه و در شرایط دیم مورد ارزیابی قرار گرفتند. هر کرت آزمایشی شامل سه ردیف 4 متری با فاصله بین ردیف ها 30 سانتی‌متر، فاصله بوته‌های روی ردیف 10 سانتی‌متر و فاصله بین دو کرت 60 سانتی‌متر و فاصله بین دو بلوک 250 سانتی‌متر در نظر گرفته شد.
عملیات تهیه زمین در شهریور ماه شامل شخم، دیسک، ماله، مصرف علف‌کش و مصرف کود بوده و از خطی کار جهت ایجاد ردیف‌های کشت در مزرعه استفاده شد. کشت به صورت دستی و در تاریخ 28/7/90 انجام شد. میزان کود مصرفی برابر فرمول کودی N80 P60 بوده که کود فسفات و اوره در زمان کاشت مصرف گردید. در زمان داشت نیز دو نوبت وجین دستی صورت گرفت.
در طول دوره رشد گیاه همچنین از علف کش سیستمیک هالوکسی فوپ پی متیل 8/10% ای سی (گالانت سوپر) بر علیه باریک برگهای گرامینه موجود در مزرعه گلرنگ استفاده گردید. این سم علف کشی است که پس از رویش علف‌های هرز یکساله (مرحله 2-4 برگی) و چندساله (ارتفاع 10-30 سانتیمتر) بکار می‌رود. میزان مصرف آن 75/0- 1 لیتر در هکتار است.
جدول 3-3- اسامی 100 ژنوتیپ گلرنگ تحت بررسی در شرایط دیم
شماره ژنوتیپ شماره ژنوتیپ شماره ژنوتیپ
1 Isfahan Todeh 35 LRV 55 - 296 69 246 - LR 51- 83 / 697
2 PI - 198844 36 LSP 70 P559909/ACSTIRLING
3 697 37 Legzi Rez 71 8 - S6 / 60
4 LRV 51 / 5 38 Marageh 27 72 3147
5 Ajabshir Local 39 Varamin 295 73 PI - 250840
6 Isfahan10 40 Isfahan12 74 279
7 S6 / 7 /46 41 Babarez Dorosht 75 VARIETY FIRO- 44
8 Pacific - 3164 42 11 - V - 51 - 21 76 2 - 8 - S6 - 51
9 10 - 94 / SV /760/13 43 3150 77 SNC - 531
10 SnC - ABS 44 S - V - 60 78 PI - 258417
11 S6 / V / 46 - 9 45 30 / 324 - SV 76 / 697 79 2 / S6 / 697
12 29 46 250 - S6 / 91 80 PI 603207/LESAF 494
13 171 / LR - 55 - 697 47 508 81 13
14 472 48 LRV 51 / 20 82 377 / S6 / 697
15 Darab 4 49 196 - S6 - 58 - 41 83 25
16 Isfahan 14 50 185S6 - 58 84 183 - S6 - 58 / 41
17 Darab11 51 Isfahan37 85 2
18 Unknown 52 SNC - 456 86 357 - S6 / 697
19 Almaneh Rez 53 267 - S6 / 20 87 Syrian
20 12 54 PI - 307014 88 47 - S6 / 58 11
21 Dadaneh Dorosht 55 55 - 56 89 Zarghan 279
22 12D - 51 / 530 56 Legzy Dorosht 90 Almaneh Rez
23 Kerjo Rez 57 176 91 6 / 5 - S6 -58 / 11
24 Dincer 58 825 / 59 92 6 (Fall)
25 LRV 55 / 292 59 LRV-51 / 13 93 Zanjan Local
26 PI- 537636 60 LRV- 55 / 56 94 Darab 9
27 357 / S6 / 697 61 Isfahan28 95 3150
28 3 - LR55 / 292 62 S6/1151 96 1
29 24 - LR S3 - 11 63 LRV 55/296 97 S / 11 - 81
30 Goshtkani Dorosht 64 317 - S6 - 697 98 Sina
31 13 65 27258 -SV / V /60 /207 99 Galehkohneh Dorosht
32 PI - 251988 66 PI-258409 100 Goshkhani Dorosht
33 SNC . 1 67 268 / S6 - 20 34 180 68 Zard Gol 3-3- روش‌های نمونه برداری
3-3-1- تاریخ گلدهی (شروع و پایان) و دوره گلدهی
در این صفات به منظور تعیین شروع گلدهی هنگامی که حدود 10 درصد گیاهان وارد گلدهی شدند، زمان شروع گلدهی ثبت می‌شود. در ادامه به منظور مشخص کردن زمان پایان گلدهی وقتی تقریباً تمام گیاهان موجود در هر کرت گلهای خود را نشان دادند، پایان گلدهی یادداشت شد. از تفاضل این دو صفت طول دوره گلدهی به دست آمد. با تعیین تاریخ‌های فوق و استفاده از تاریخ سبز شدن به عنوان مبدأ محاسبات به ترتیب تعداد روز تا شروع و پایان گلدهی محاسبه گردید.
3-3-2- تاریخ رسیدگی
ثبت این تاریخ در مشخص کردن ارقام زودرس بسیار مؤثر می‌باشد. برای ثبت این صفت با بررسی قوزه‌های هر کرت، قوزه‌هایی که بذور آنها مراحل خمیری را طی کرده و رطوبت دانه‌ها به حدود 20 درصد رسیده باشند به طوری که با وارد کردن فشار به بذر در بین دو انگشت نباید له شود، بلکه باید براحتی خرد شود که در این صورت وارد مرحله رسیدن فیزیولوژیک شده است. در این مرحله کل بوته خشک بوده و پشت قوزه‌ها کاملاً زرد شده است. با تعیین تاریخ فوق و استفاده از تاریخ سبز‌شدن به عنوان مبدأ تعداد روز تا رسیدن محاسبه گردید.
3-3-3- ارتفاع گیاهدر این نمونه برداری ارتفاع از سطح زمین تا بلندترین قوزه فرعی ثبت شد و در جدول داده‌ها میانگین 5 گیاه از هر ژنوتیپ قرار داده شد.
3-3-4- تعداد شاخه‌جانبیبا شمارش و بر اساس میانگین شاخه فرعی 5 بوته به صورت تصادفی اندازه‌گیری شد.
3-3-5- طول شاخه‌های جانبیتعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بدون شاخه کد 0، شاخه کوتاه کد3، شاخه متوسط 5، شاخه بلند 7 داده شد.
3-3-6- وسعت خار برگ تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بدون خار کد 0، کم خار کد 3، متوسط کد 5، پرخار کد 7 داده شد.
3-3-7- حاشیه برگ تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بدون دندانه کد 1، دندانه دندانه کد 2، دندانه دار عمیق کد 3 داده شد.
3-3-8- تعداد قوزه در بوته
از طریق شمارش و بر اساس میانگین تعداد قوزه در 5 بوته در زمان رسیدگی محاسبه شد.
3-3-9- شکل قوزه تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور العمل IBPGR به قوزه مخروطی کد 1، بیضی کد 2، پهن کد 3 داده شد.
3-3-10- قطر قوزه
در مرحله رسیدگی تعداد 5 قوزه به صورت تصادفی از هر کرت انتخاب و بر حسب میلی‌متر به وسیله کولیس اندازه‌گیری شد.
3-3-11- طول و عرض براکتهبا استفاده از خط‌کش و بر اساس میانگین 5 بوته اندازه‌گیری شد.
3-3-12- تعداد دانه در قوزه
در زمان رسیدگی بر مبنای شمارش دانه‌های 5 قوزه در هر ژنوتیپ، میانگین تعداد دانه در قوزه شمارش گردید.
3-3-13- وزن هزار دانه پس از برداشت کرت‌ها، تعداد 500 دانه از هر ژنوتیپ شمارش و به وسیله ترازوی حساس و بر حسب گرم اندازه گیری گردید. سپس با دو برابر کردن وزن هزار دانه محاسبه گردید.
3-3-14- اندازه بذر تعداد 3 گیاه از هر تکرار به صورت تصادفی انتخاب شد و بر اساس دستور‌العمل IBPGR به بذر کوچک کد 3، بذر متوسط کد 5، بذر بزرگ کد 7 داده شد
3-3-15- عملکرد دانه در هکتاردانه جمع‌آوری شده بر اساس مساحت تخصیص داده شده به هر ژنوتیپ به صورت گرم در متر مربع یادداشت شده و در ادامه با تبدیل عملکرد به کیلوگرم در هکتار داده‌های آماری ثبت شد.
3-3-16- درصد روغن در اندازه‌گیری برای درصد روغن 20 گرم به همراه 2 گرم بذر اضافی به منظور از بین بردن خطا توزین و پوکی بذر و ناخالصی‌های فیزیکی دیگر، وزن گردید. سپس توسط دستگاه NMR در آزمایشگاه بخش دانه‌های روغنی معاونت مؤسسه تحقیقات دیم (سرارود) مورد تجزیه قرار گرفتند و درصد روغن آنها ثبت گردید.
3-3-17- عملکرد روغن
عملکرد روغن هر ژنوتیپ بعد از بدست آوردن درصد روغن و عملکرد دانه بر حسب واحد کیلوگرم در هکتار از طریق فرمول زیر محاسبه گردید.
عملکرد روغن = درصد روغن × عملکردانه
3-4- روش‌های آماری
نقش روش‌های آماری و بیومتری در جهت روشن شدن نتایج آزمایش قابل توجه می‌باشد. در این آزمایش سعی شده با استفاده از تجزیه و تحلیل داده‌ها به همراه مواردی مثل تشکیل جداول تجزیه و رسم نمودارها مفاهیم مربوط به آزمایش قابل درک شود. از روش‌های آماری استفاده شده به منظور تجزیه تنوع ژنتیکی گلرنگ می‌توان به موارد زیر اشاره نمود:
3-4-1- تجزیه واریانس و مقایسه میانگین صفات کمی
تجزیه واریانس بر اساس طرح لاتیس ساده برای همه صفات ذکر شده انجام ‌پذیرفت (جدول 3-4). مقایسه میانگین صفات با استفاده از آزمون SNKدر سطح احتمال 5 درصد انجام گرفت. محاسبات این آزمون مشابه با آزمون دانکن است، با این تفاوت که در اینجا از جدول توکی استفاده می شود. برآورد واریانس‌ها و امید‌ریاضی میانگین مربعات صفاتی که مزیت نسبی تجزیه واریانس آنها بر اساس طرح لاتیس ساده کمتر از 100 می‌باشد بر اساس طرح بلوک‌های کامل تصادفی انجام پذیرفت(کمپتورن 1969).
جدول 3-4- امید ریاضی میانگین مربعات تجزیه واریانس لاتیس مربع ساده در مدل تصادفی
امید ریاضی میانگین مربعات درجه آزادی منابع تغییر
σ2 + kσb2 + vσr2 MSR m-1 تکرار
σ2 + (k/k+1) + mσt2 MST (Adj) v-1 تیمار تصحیح شده
σ2 + (m-1/m) kσb2 MSB/R (Adj) m(k-1) بلوکهای درون تکرار
(تصحیح شده)
σ2 MSe (k-1)(mk-k-1) اشتباه
که در معادله فوق:
واریانس ژنتیکی
تعداد بلوک های ناقص
MST(Adj) = میانگین مربعات تیمار تصحیح شده
MSe = میانگین مربعات اشتباه
m = تعداد تکرار
3-4-2- استفاده از آمار توصیفی به منظور درک کلی از صفاتبه منظور ارزیابی تنوع ژنتیکی بین ژنوتیپ‌های مورد بررسی از لحاظ صفات اندازه‌گیری شده، پارامترهای آماری شامل میانگین، دامنه تغییرات، انحراف معیار، ضرایب تنوع‌ژنتیکیو فنوتیپیو وراثت‌پذیری هر صفت محاسبه شد. این ضرایب از تجزیه واریانس ژنوتیپ‎ها حاصل گردید.
به منظور محاسبه واریانس ژنتیکی از امید ریاضی جدول تجزیه واریانس طرح لاتیس ساده (جدول3-4) استفاده شد. برای برآورد واریانس ژنتیکی از معادله ذیل استفاده گردید (ویانا و رگازی 1999).

سپس ضرایب تنوع ژنتیکی و فنوتیپی و وراثت‌پذیری عمومی هر صفت از روابط زیر محاسبه شد:
ضریب تغییرات ژنوتیپی

ضریب تغییرات فنوتیپی

وراثت‌پذیری عمومی

در این فرمول‌ها میانگین صفت مورد مطالعه، واریانس ژنتیکی ، واریانس فنوتیپی و وراثت پذیری عمومی صفت می‌باشد.
نحوه ارزیابی و امتیازدهی صفات کیفی طول شاخه‌های جانبی، وسعت خار برگ، حاشیه برگ، شکل قوزه و اندازه بذر مطابق دستورالعمل IBPGR انجام شد. همچنین به منظور تعیین تنوع صفات کیفی، از شاخص شانون (H´) طبق فرمول زیر استفاده شد:
H´=-i=1sPi ln(Pi)در این فرمول Pi نشان دهنده فراونی نسبی هر گروه فنوتیپی، در صفت مربوطه، و s تعداد گروه های فنوتیپی هر صفت می‌باشد. هر چه مقدار این شاخص برای صفتی بیشتر باشد، نشان دهنده تنوع بیشتر آن صفت خواهد ‌‌بود (چاودری و همکاران 2004).
3-4-3- همبستگی ساده بین صفاتیکی از معیارهای اندازه گیری همبستگی بین دو متغیر تصادفی ضریب همبستگی یا کورولاسیون می‌باشد و مقدار عددی حاصل از آن بین 1 و 1- می باشد که در صورت نزدیکی به 1 نشان دهنده همبستگی شدید بین دو متغیر می‌باشد.
r=cov xy/δx. δy
3-4-4- گروه‌بندی جمعیت‌ها
پس از برآورد روابط ژنتیکی افراد و یا جمعیت‌ها، گام بعدی گروه‌بندی بر اساس درجه شباهت یا تفاوت آنهاست. در این راستا روش‌های آماری چند متغیره از قبیل تجزیه کلاستر، تجزیه به مؤلفه‌های اصلی و تجزیه به مختصات اصلی از متداول‌ترین روش‌های آماری مورد استفاده هستند (محمدی، 1381).
3-4-4-1 تجزیه کلاسترتجزیه کلاستر یکی از روش‌های آماری چند متغیره و غیر پارامتری است که در آن با در دست داشتن نمونه‌ای از n فرد و اندازه‌گیری p متغیر بر روی هر فرد، می توان افراد را در کلاسهایی گروه‌بندی نمود که افراد مشابه در داخل یک کلاس قرار می‌گیرند. از تجزیه کلاسترها هنگامیکه در بین افراد هیچ گروه‌بندی واضحی وجود ندارد استفاده می‌شود روش‌های زیادی در انجام تجزیه کلاستر وجود دارد اما این کار عمدتاً به دو روش طبقاتی و غیر‌طبقاتی صورت می‌گیرد. روش طبقاتی نیز خود به دو صورت طبقاتی تجمعی و طبقاتی تقسیم کننده انجام می‌شود (رومسبرگ، 1990). روش طبقاتی با محاسبه فاصله هر فرد از سایر افراد شروع می‌شود. در روش تجمعی هر فرد در ابتدا یک گروه مجزا را تشکیل می‌دهد سپس گروه‌های نزدیک به هم بتدریج ترکیب شده تا در نهایت کلیه افراد در یک گروه قرار گیرند (بودلندر و همکاران، 1964). با این روش می توان جهت بررسی دوری یا نزدیکی و خویشاوندی مواد گیاهی (گیاهان خودگشن) مورد مطالعه، استفاده نمود. این روش آماری به محققین کمک خواهد کرد که مقدار آمیزشهای مطلوب را افزایش دهند. چون با این روش هر چه فاصله اقلیدسی بین دو نمونه از کلاسترها بیشتر باشد، آن زوج از هم دورتر قرار دارند (فرشادفر، 1379).
مراحل تجزیه کلاستر
انجام تجزیه کلاستر شامل 6 مرحله زیر است:
تشکیل ماتریس داده‌های خام p ×n .
استاندارد کردن ماتریس داده‌ها.
محاسبه ماتریس تشابه یا ماتریس فاصله.
برای محاسبه ضرایب تشابه و یا فاصله باید عمل محاسبه در بین افراد بصورت دو به دو صورت گیرد. سپس برای n فرد باید ضریب تشابه یا فاصله محاسبه گردد. روش‌های مختلفی برای محاسبه ضرایب فاصله وجود دارد که در ارتباط با داده‌های کمّی اسامی برخی از این روشها عبارتند از ضریب فاصله اقلیدسی، ضریب فاصله اقلیدسی میانگین، ضریب اختلاف در شکل ضریب کسینوس، ضریب همبستگی، ضریب متریک کنبرا، ضریب بری کورتیکس، ضریب بری کورتیکس تغییر یافته، ضریب پنروز و ضریب ماهالانوبیس. متداولترین روش محاسبه فاصله برای داده‌های کمی استفاده از ضریب اقلیدسی است که در زیر توضیح داده می‌شود.
به منظور تفهیم بهتر، حالت ساده‌ای را در نظر می‌گیریم که بر روی n فرد تعداد p متغیر اندازه‌گیری شده باشد. ارزشهای فرد i عبارتست از و ارزشهای فرد j برابر است. فاصله بین فردi j مدنظر است اگر تنها دو متغیر وجود داشته باشد (p=2) بنابر قضیه فیثاغورث طول خط که از اتصال نقاط مربوط به فرد j i بدست می آید بصورت زیر خواهد آمد:


و اگر تعداد متغیرها بیشتر باشد رسم نمودار ممکن است اما می‌توان از فرمول کلی زیر که فاصله اقلیدسی نامیده می‌شود استفاده کرد:

نیاز به استاندارد کردن داده‌ها نیز در این مرحله آشکار می‌شود، زیرا در صورت بکار بردن داده‌های غیر‌استاندارد، اگر یکی از متغیرهای مورد اندازه‌گیری تغییرات بیشتری نسبت به سایر متغیرها داشته باشد، آنگاه سهم بیشتری در محاسبه فاصله‌ها خواهد داشت و انجام گروه‌بندی بر اساس فاصله‌ها گمراه کننده خواهد بود، در صفاتی که بصورت کیفی هستند، محاسبه ماتریس تشابه از طریق ضرایب خاص صورت می‌گیرد.
اعمال روش‌های کلاستر

—85

3-3-9- شمارش باکتری ساقه و محلول گلجای28
3-3-10- فعالیت آنزیم پراکسیداز (POD)28
3-3-11- فعالیت آنزیم سوپراکسید دسموتاز (SOD)29
3-4- تجزیه و تحلیل داده‌ها29
فصل چهارم: نتیجه گیری
4-1- عمر گلجایی31
4-2- کاهش وزن تازه گل32
4-3- درصد ماده خشک33
4-4- قطر گل34
4-5- کاهش درصد مواد جامد محلول در آب (TSS)35
4-6- میزان پروتئین گلبرگ36
4-7- میزان کاروتنوئید گلبرگ37
4-8- جذب آب38
4-9- جمعیت باکتریایی در ته ساقه39
4-10- جمعیت باکتریایی در محلول نگهداری گل‌ها40
4-11- فعالیت آنزیم سوپر اکسید دسموتاز41
4-12- فعالیت آنزیم پراکسیداز42
فصل پنجم: بحث
5-1- بحث45
5-2- نتیجه‌گیری50
5-3- پیشنهادها50
منابع51

فهرست شکل‌ها
عنوانصفحه
شکل 1-1- گل ژربرا3
شکل 1-1-2- روند رشد و اثرات بروز پیری در مراحل نمو گل9
شکل 3-1- گل‌های شاخه بریده‌ی ژربرا در مرحله‌ی برداشت22
شکل 3-2- چیدمان طرح آزمایشی23
شکل 3-3- اندازه‌گیری وزن تر شاخه گل25
شکل 3-4- اندازه‌گیری قطر گل‌ها26
شکل 3-5- رفراکتومتر دستی (مدل N-1)27
شکل 3-6- اندازه‌گیری پروتئین گلبرگ27
شکل 3-7- اندازه‌گیری رنگیزه کاروتنوئید گلبرگ28
شکل 4-1- اثر کاربرد تیمارهای مختلف نیکل بر عمر گلجایی گل‌های شاخه بریده ژربرا31
شکل 4-2- اثر کاربرد تیمارهای مختلف نیکل بر کاهش وزن تر گل‌های شاخه بریده ژربرا32
شکل 4-3- اثر کاربرد تیمارهای مختلف نیکل بر وزن درصد ماده خشک گل‌های شاخه بریده ژربرا33
شکل 4-4- اثر کاربرد تیمارهای مختلف نیکل بر قطر گل‌های شاخه بریده ژربرا34
شکل 4-5- اثر کاربرد تیمارهای مختلف نیکل بر روی کاهش درصد مواد جامد محلول در آب (TSS) هنگام نگهداری گل‌های شاخه بریده ژربرا35
شکل 4-6- اثر کاربرد تیمارهای مختلف نیکل بر میزان پروتئین گلبرگ گل‌های شاخه بریده ژربرا36
شکل 4-7- اثر کاربرد تیمارهای مختلف نیکل بر میزان کاروتنوئید گل‌های شاخه بریده ژربرا37
شکل 4-8- اثر کاربرد تیمارهای مختلف نیکل بر میزان جذب آب گل‌های شاخه بریده ژربرا38
شکل 4-9- اثر کاربرد تیمارهای مختلف نیکل بر جمعیت باکتریایی در ته ساقه گل‌های شاخه بریده ژربرا39
شکل 4-10- اثر کاربرد تیمارهای مختلف نیکل بر جمعیت باکتریایی در محلول نگهداری گل‌های شاخه بریده ژربرا40
شکل 4-11- اثر کاربرد تیمارهای مختلف نیکل بر فعالیت آنزیم سوپراکسید دسموتاز گل‌های شاخه بریده ژربرا41
شکل 4-12- اثر کاربرد تیمارهای مختلف نیکل فعالیت آنزیم پراکسیداز گل‌های ساقه بریده ژربرا42

فهرست جداول
عنوانصفحه
جدول 4-1- تجزیه واریانس اثر تیمارهای مختلف روی صفات اندازه‌گیری شده در گل‌های‌شاخه‌بریده‌ژربرا43

چکیده
این مطالعه به منظور بررسی اثر نیکل بر عمر پس از برداشت گل ژربرا در قالب طرح کاملاً تصادفی با سه تکرار انجام شد. گلهای سالم ژربرا ((Gerbera jamesonii cv. ‘Intense’ از یک تولید کننده تجاری خریداری گردید و فوراً به آزمایشگاه بخش باغبانی دانشکده کشاورزی دانشگاه آزاد رشت منتقل شد. گلها روی ارتفاع 50 سانتیمتری باز برش شد و در گلدان پلاستیکی دو لیتری محتوی محلول های مختلف نیکل برای 24 ساعت قرار گرفت. تیمار پالس شامل محلول نیکل ( 10، 20 و 30 میلی گرم بر لیتر)، سولفات و نیترات نیکل (10، 30 و 50 میلی گرم بر لیتر) بود. برای شاهد از آب مقطر استفاده شد. بعد از این دوره محلول پالس با 500 میلی لیتر محلول 3% ساکارز به علاوه 200 میلی گرم در لیتر 8-هیدروکسی کینولین سولفات جایگزین گردید. عمر گلجایی، کاهش وزن تر، درصد وزن خشک، جذب آب، شمارش باکتری های ته ساقه و محلول نگه دارنده، ، کاهش درجه بریکس و قطر گل ها، پروتئین و کارتنوئید گلبرگ ها و فعالیت آنزیم های سوپر اکسید دیسموتاز و پراکسیداز اندازه گیری شد. نتایج نشان می دهد که نیترات نیکل سبب ایجاد بیشترین میزان از عمر گلجایی (11 روز)، پروتئین ( 14%)، فعالیت سوپر اکسید دسموتاز (21/135میکرومول بر گرم ‎وزن تر) و پراکسیداز (3/6میکرومول بر گرم وزن تر در دقیقه) گردید. سولفات و نیترات نیکل به ویژه در غلظت‌های 30 و 50 میلی‌گرم بر لیتر اثرات مفید مشابه بر عمر پس از برداشت گل‌ها داشتند. بنابراین نیکل این پتانسیل را دارد که به عنوان یک عامل نگهدارنده عمر پس از برداشت عمل کند. مطالعات بیشتر می‌تواند به روشن‌تر شدن جنبه‌های مختلف این تأثیر کمک کند.
واژگان کلیدی: عمرگلجایی، ژریرا، نیکل، سولفات نیکل، نیترات نیکل (II)

فصل اول
کلیات

1-1- مقدمهژربرا (Gerbera jamesonii) از خانواده آستراسه یکی از معروف‌ترین گلهای شاخه بریده، در جهان محسوب می‌شود. ژربرا اولین بار توسط گیاه شناسی به نام روبرت جیمسن در سال 1884 در آفریقای جنوبی کشف گردید. جنس ژربرا در حدود 30 گونه وحشی دارد که در مناطق آفریقا، آمریکای جنوبی و قسمت‌های گرمسیری آسیا گسترده اند (بنایی و همکاران،2013). به طور کلی ژربرا گیاهی است حساس به سرما با ریشه هایی عمیق که چند ساله محسوب می‌شود. گل آذین ژربرا از سه نوع گلچه، گلچه‌های شعاعی (در قسمتهای حاشیهای گل)، گلچههای موجود در قسمت صفحه مرکزی و گلچههای حد واسط تشکیل شده است. این گلچه‌ها به صورت شعاعی و فشرده کنار یکدیگر قرار گرفتهاند (شکل1-1). امروزه بیشتر ارقام تجاری ژربرا از تلاقی مصنوعی گونه‌های G.jamesonii و G.viridifiolia بدست آمده‌اند که هر دوگونه بومی آفریقای جنوبی می باشند. شهرت این گل به علت تنوع رنگ گلبرگ‌هایش و اندازه بزرگ گل‌هایش (در واقع گل آذین) می‌باشد. در صنعت گل‌کاری به صورت تک‌شاخه بریده و یا به صورت دسته گل و هم به صورت گل خشک کاربرد و طرفدار دارد (نایر و همکاران 2003). بیشتر برنامه‌های بهنژادی این گل در کشور هلند انجام می‌شود (برمر، 1994).
1086817671167گل ژربرا در رنگ‌های مختلف; زرد، صورتی، نارنجی، قرمز، سفید، کرم و بنفش یافت میشود. قطر گل‌ها 5 تا 12 سانتی متر و طول ساقه حدود 25 تا 60 سانتی متر و دارای انواع کم پَر و پُر پَراست(کافی و قهساره، 1390).
شکل 1-1- گل ژربرا

1-1-1-تاریخچه ژربرازیستگاه گونههای مهم این گل محدود به قسمت‌های شرقی آمپومالانگا و بخش‌های ایالت لیمپوپو در آفریقای جنوبی است. ژربرا در سال 1878 نزدیک منطقه باربرتون کشف شد و به همین دلیل در زبان انگلیسی به آن مینای باربرتون یا مینای ترانسوال می گویند. روبرت جیمسون این گیاه را به باغ گیاه شناسی کمبریج در انگلستان فرستاد و فردی به نام لینچ آن را کشت کرد. بر اساس گزارشات موجود این گیاه ابتدا در باغ نورویچ و سپس در باغ کیو توسط آقای تیلت به گل نشست اما اولین کسی که در اروپا موفق به دورگه‌گیری این گیاه شد، لینچ بود او این گیاه را با; Gerbera virdifolia تلاقی داد در نتیجه این تلاقی اولین ژربرا فلوریست خلق شد، این ژربرا Gerbera cantabrigiensis نام گذاری شد، لینچ واریته Brilliant را از تلاقی Natal معروف به Sir Michael Forster و Gerbera jamesonii تولید کرد، البته دو رگه‌گیری این گونه تاریخچه ای طولانی دارد با این حال به دلیل ویژگی‌های هتروزیگوتی بالا هنوز بذرهای تثبیت شده‌ای از این گیاه به دست نیامده است. لینچ، آدنت و ویل مورین هریک به طور جداگانه توانستند تغییراتی در رنگ گلهای Gerbera jamesonii که به طور وحشی می‌رویید، ایجاد کند. طبق گزارشات هیبرید های رنگی اصلاح شده توسط لینچ نسبت به واریته های فرانسوی اصلاح شده توسط آدنت بذرهای بیشتری تولید می کرد. این دو محقق در سال 1891 اولین گواهی بذر پایه را از انجمن باغبانی سلطنتی انگلستان دریافت کرداند و در سال 1904 نمونه ای از واریته‌های تولیدی را در لندن عرضه نمودند. آدنت در ریویرای فرانسه تعداد زیادی رقم به دست آورد و لینچ نیز بذرها و گیاهان خود را با وی مبادله کرد قبل از این رویداد آدنت تقریبا کارهای اصلاحی خود را با Gerbera jamesonii آغاز کرده بود و گیاهانی به رنگ قرمز کم رنگ در آفریقا تولید کرده بود وی به نتایج تلاش‌های خود اطمینان داشت و کارهای اصلاحی خود را در ریویرا مشابه باربرتون زیستگاه ژربرا ادامه داد. دییم آلمانی به همراه آدنت عهده‌دار کارهای دو رگه‌گیری شد که موفقیت آمیز بود، تا سال 1909 تلاقی های اصلاحی توسط آدنت با بیش از 3000 بار گرده افشانی هیبریدهای انگلیسی و تلاقی با گونههای آفریقایی اصلاح شده انجام شد. این ادعا با معرفی گیاهان والد و ویژگی‌های آن‌ها قابل استناد است به این ترتیب تا بهار سال 1909 تحت شرایط سخت گزینش کشت 25000 هیبرید انتخاب شده بود، در این زمان آدنت امیدوار بود حداقل پس از چند نسل بذرهای پایداری تولید شود وی در همان زمان تاکید کرد که گیاهان به طور قابل ملاحظه‌ای از نظر رنگ و شکل متنوع هستند این ویژگی امروزه کاملا مستدل شده است، بنابراین به طور قابل توجهی مانع از تولید ژربرا از طریق کشت بذر می‌شود.
در سال 1909 والتر در نشریه جدیدترین ارقام آدنت را به صورت گلهایی با اختلاف بسیار زیاد در رنگ به قطر 13 سانتی متر و طول ساقه‌هایی به اندازه 50 تا 60 سانتی متر با ماندگاری شش تا هشت روز معرفی می‌کنند، طبق گزارشات دییم عملکرد قلمه بین 36 و 60 گل در گیاه با قابلیت نگه‌داری تقریبا دو هفته ارزیابی شده است. در سال 1906 برای اولین ژربرا به خودی خود از طریق جوانه زنی بذر تکثیر شد. جینک در سال 1897 فرصتی برای ازدیاد و اصلاح ژربرا در نیویورک یافت. در پاییز 1908 رقمی به نام Gigantea به بازار معرفی شد، این گل قطری به اندازه 12 سانتی متر به رنگ سرخ و ساقه‌هایی به طول یک متر داشت تناوب گلدهی در این رقم بسیار زیاد بود و برای اولین بار در سال 1909 موفق به دریافت گواهی بذر پایه شد در این دوره زمانی ژربرا همواره به دلیل دریافت جوایز ارزشمند ملی و بین المللی توسط انجمن‌های باغبانی برای مثال در سال 1904 در شهر دوسلدرف آلمان در همان سال و 1907 در لندن، 1909 در برلین و پاریس بسیار مورد توجه قرار گرفت بیشترین جوایز در تاریخ صنعت گل کاری به اصلاح این گل اختصاص داشته است (هانسن، 1999).
1-2- تکثیر
طریقه تکثیر گل ژربرا عمدتا به سه روش انجام می‌شود: تکثیر بوسیله بذر، تقسیم بوته و کشت بافت. تقسیم بوته در اواخر بهار یا پاییز صورت می‌گیرد. نکته مهم این است که قسمت مریستمی روی خاک قرار گیرد و زیر خاک مدفون نشود. افزایش با بذر هم امکان‌پذیر است. بذرها باید تازه باشند زیرا زیوایی بذرهای مانده کاهش می‌یابد. از آنجا که ژربرا بومی مناطق گرمسیری است و حساس به سرما، بذرها برای تندش نیاز به دمای حداقل 15 درجه سانتیگراد دارند. بذرها در طی دو هفته تندش می یابند. مشکل افزایش بذری تفرقه صفات و عدم یکنواختی گل‌های تولیدی است. امروزه یکی از پرکاربردترین روش‌های افزایش ژربرا از طریق کشت بافت است (راویانت، 2009). مشاهده شده که کاشت ژربرا از اواخر اردیبهشت تا اواخر تیر ماه، گل بریدهی زیادی تولید میکند اما محصول زمستانه خوبی میتواند از طریق کاشت از مهر تا اسفند در شرایط حفاظت شده حاصل شود. برای ارقام گل درشت تراکم کاشت بهینه هشت تا ده گیاه در مترمربع است. این تراکم، نور کافی را برای گیاهان فراهم میکند. اما کاشت متراکمتر بعد از دو سال باعث کاهش عملکرد، کاهش اندازه گل و طول ساقهی گل میشود. در زمان کاشت طوقه گیاه باید در سطح خاک و کمی بالای آن قرار گیرد چون ژربرا به مقدار زیادی در سطح خاک منشعب میشود. کاشت خیلی عمیق باعث بیماری قارچی و کاشت سطحی باعث سست شدن سیستم ریشهای میشود (رشیدی، 1389).
گلدهی گیاهچههای کشت بافتی 11 تا 16 هفته بعد از انتقال آن‌ها صورت می گیرد. اولین جوانه‌های گل هنگامی که 14- 10 برگ تشکیل شدند نمایان می‌شوند. القا و تمایزیابی گلها به میزان زیادی توسط شدت نور و دما تاثیر می‌پذیرند. تقریبا در تمام طول سال گل می دهند اما روز کوتاه طبفه بندی می‌شوند. دوره گلدهی این گیاه اواخر بهار تا اواخر پاییز و اوایل زمستان است (بروهولم و همکاران ، 2008).
1-3- عملکردمیانگین متوسط تولید در حدود 160- 130 گل به ازای هر متر مربع در سال است (شرایط سایه). در گلخانه تا 200 شاخه گل هم می‌توان تولید نمود اگر همه شرایط بهینه باشد. از هر بوته می‌توان 15- 10 شاخه گل در سال برداشت کرد (راویانات، 2009).1-4- نابسامانی های فیزیولوژیک1-4-1- خمیدگی و شکستن ساقه گل این نابسامانی نتیجه رشد و بلوغ ناکافی ساقه گل می‌باشد که نهایتاً سبب افتادن ساقه می‌شود. دلایل مختلفی می‌تواند سبب بروز این حالت گردد از جمله کمبود عناصر غذایی و نسبت نامناسب آن‌ها از جمله کلسیم گاهی اوقات کاهش آبیاری و تنش خشکی یا افزایش دما به ویژه با تابش آفتاب ممکن است سبب پژمردگی و شکستن ساقه شود. آبیاری بهینه، توجه به نیازهای تغذیه‌ای گل‌ها و دمای مناسب پرورش می‌تواند سبب بهبود این حالت و جلوگیری از آن گردد.
1-4-2- پژمردگی گل نابالغپژمردگی قبل از بلوغ گل در حالیکه شاخه هنوز به گیاه متصل است و اغلب درست زمانیکه بهطور کامل توسعه یافته است، اتفاق میافتد. دلیل این مشکل احتمالا، نبود کربوهیدراتهای لازم برای دستیابی به نمو سریع گل است. این عارضه اغلب پس از یک دوره از روزهای ابری با شدت پایین نور یک روز آفتابی اتفاق میافتد. در صورت امکان باید ارقام مقاوم به این عارضه غربالگری و کشت شود (هنسان، 1985).

1-5- آفات و بیماری‌ها لارو برخی حشرات که از برگ تازه تغذیه می‌کنند، کنه (Cyclamen mite و Spider mite)، حلزون و لیسه، تریپس و شته‌ها از جمله آفات این گیاه می باشند. بیماری‌های قارچی متداول مانند: بوتریتیس، سفیدک پودری، فایتوفتورا و ریزوکتونیا هم از جمله بیماری‌های مرسوم و تهدید کننده می‌باشند (رشیدی، 1389).1-6- بیان مسالهگل‌های شاخه بریده سهم مهمی از صنعت تولید و پرورش گل‌ها و گیاهان زینتی را تشکیل می‌دهند. آنچه در رابطه با این قسمت از صنعت گل‌کاری بسیار اهمیت دارد عمر گلجایی (Vase-life) است. هر چه این ویژگی طولانی تر باشد احتمال سود دهی تولید و پرورش آن گل بیشتر می‌شود. عمر گلجایی به عوامل متعددی در طول دوره کاشت، داشت و برداشت وابسته است. اما از دیدگاه پس از برداشت، در صورت بهینه بودن شرایط تولید و همچنین تأمین دما و رطوبت مناسب برای نگهداری گل‌های شاخه بریده عمر گلجایی آن‌ها به چند عامل از جمله وجود منابع در دسترس کربوهیدرات به میزان کافی، گاز اتیلن و جمعیت باکتریایی موجود در محلول نگهداری گل‌ها بستگی دارد (رید و جیانگ، 2012). اگرچه تمام گونه‌ها به صورت یکسان تحت تاثیر این عوامل قرار نمی‌گیرند اما تمامی آن‌ها از نقطه نظر پس از برداشت مهم اند. منابع کربوهیدرات از این نظر که منبع تامین انرژی گیاه اند چون گل‌های شاخه بریده، از گیاه مادری تامین کننده جدا شده اند، گاز اتیلن از این دیدگاه که محرک و تسریع‌کننده فرآیند پیری است اگرچه ژربرا حساسیت زیادی به آن ندارد و جمعیت باکتری‌های موجود در محلول نگهدارنده و ته ساقه گل‌ها، به این خاطر که می توانند سبب گرفتگی آوندها و مرگ زودرس سلول‌های گیاهی شوند (گوپینادهان و همکاران، 2008). از طرف دیگر عنصر نیکل اثر بازدارنده بر متابولیسم کربو هیدرات‌ها، ترکیبات نیتروژن‌دار، گاز اتیلن و پاتوژن‌ها دارد (وود و ریلی، 2007).
هدف از انجام این پژوهش این بود که اثر نمک‌های مختلف نیکل بر عمر گلجایی و شاخص‌های پس از برداشت گل‌های شاخه بریده ژربرا بررسی شود و بهترین نمک با بالاترین اثر تعیین گردد.
فصل دوم
بررسی منابع

2-1- استانداردها و عوامل موثر بر عمر پس از برداشت گل‌های شاخه بریدهپس از برداشت گل‌های شاخه بریده آنچه اهمیت حیاتی دارد حفظ کیفیت گل میباشد. برای عمر پس از برداشت گلهای شاخه بریده استانداردهایی موجود است که بین نقاط مختلف دنیا مثلا در آسیا یا در اروپا متفاوت است. به هر حال، رنگ، اندازه، عطر و ظاهر گلهای شاخه بریده این استانداردها را می‌سازند که آنها هم به شرایط کشت، زمان مناسب برداشت، شرایط حمل و نقل و نگهداری پس از برداشت وابستهاند. جذب آب به میزان مناسب توسط گل شاخه بریده، تبخیر و تعرق، هدایت هیدرولیکی در آوندها همگی بر عمر پس از برداشت گل‌های شاخه بریده موثراند. (سیلوا، 2003).
2-1-1- متابولیسم و مسیرهای متابولیکیمتابولیسم سلولی، مجموعه واکنشها و فعالیتهای شیمیایی است که در درون سلولها رخ میدهد جذب کربن و ذخیره انرژی (فتوسنتز) و استفاده از این انرژی ذخیره شده و سوختن آن (تنفس) دو فرآیند مرکزی هستند که به طور کلی در گیاهان متابولیسم را کنترل می‌کنند (سیلوا، 2003).
پیری و ریزش
(PCD)مرگ برنامه‌ریزی شده سلول
آغازش
مرگ
رشد
بلوغ
بلوغ فیزیولوژیکی
رسیدن
تخریب غشاء
نکروزه شدن وعلایم قابل مشاهده
(پژمردگی و چروکیدگی)
آسیب سرمازدگی
1)برفرایندهای متابولیک(تنفس، سنتز پروتئینها و ...
2)نشت یونها از طریق غشاء
3)جاری شدن پروتوپلاسم
تغییرات فیزیکی در لیپیدهای غشاء
تجزیه آنزیمها و پروتئینها
اثرات
پیامدها

شکل 1-1-2- روند رشد و اثرات بروز پیری در مراحل نموگل

2-1-2- پیری، ریزش و مرگ سلولیپیری و مرگ دو فرآیند مهم در چرخه زندگی یک موجود زنده محسوب می‌شوند؛ فرآیندهایی که در طی آن مواد و ساختارهای سلولی می‌شکنند و از درون بافت در حال پیری خارج و متابولیزه می‌شوند. پیری ارگآن‌هایی مثل برگ با مرگ برنامه ریزی شده سلولی متفاوت است. سلولها در ارگانهای پیر شونده یک سری تغییرات تدریجی منظم و فروپوشاننده را تجربه می‌کنند هستهها حداقل تا آخرین مراحل تغییرات ساختاری نشان نمی‌دهند (نودن، 1997). پیری کل گیاهی، پیچیدهترین نوع پیری است که اغلب به وسیله ساختارهای زایشی القا می‌شوند. هورمون‌ها به ویژه سایتوکنین در کنترل این نوع پیری بسیار موثراند. جبرلین کنترل کننده پیری در نوک مریستم است در حالی که اتیلن باعث پیری برگ و گلبرگ‌ها می‌شوند و نهایتا سبب خشک شدن گلبرگ‌ها، ریزش گلچهها، پژمردگی و تغییرات رنگ می‌شوند (دیویس،2002).
2-1-3- پیری گلبرگهادر گلبرگ، گلهای شاخه بریده که در حال پیر شدن هستند میزان پروتئین کاهش می یابد، فعالیت آنزیم شکننده پروتئین ها یعنی پروتئاز افزایش می یابد، سیالیت غشا تغییر پیدا می کند و شدت تنفس افزایش می‌یابد (ون دورن و استید، 1997). پیری گلبرگها همراه با کاهش کیفیت مرفولوژیک، بیوشیمیایی و بیوفیزیولوژیک است. گلهای میخک در حال پیری، یک افزایش فراز گرا در تولید اتیلن نشان می دهد و قرار دادن آنها در برابر اتیلن سبب پیچیده شدن گلبرگ‌ها، آغاز افزایش سنتز اتیلن و تغییرات فیزیکی و شیمیایی در چربیهای غشای سلولی گلبرگها می‌شود (بارتولی و همکاران، 1996). داوودی یک گونه نافرازگرا است، اتیلن نقش پر رنگی در پیری گل ندارد و سبب تغییرات جزیی در غلظت پروتئین و نسبت پلی پپتیدهای غالب می‌گردد، همین موضوع علت عمر پس از برداشت طولانی داوودی می‌باشد. واکنش گل ژربرا نیز مشابه داوودی است و اتیلن تاثیر شگرفی بر پیری آن ندارد. شرایطی که سبب جلوگیری از عمل اتیلن (مثلا: کاربرد نمک‌های نقره، بنزئات سدیم، اسید بوریک) و یا سنتز آن مثلا آمینوکسی استیک اسید (AoA) و نمک‌های نیکل گردد می تواند به طور بالقوه سبب افزایش عمر پس از برداشت گل‌های شاخه بریده و به ویژه گونههای فراز گرا گردد (سیلوا، 2003).
2-1-4- آب و نقش آن در عمر پس از برداشت گلهای شاخه بریدهکیفیت آب، برای نگهداری گلهای شاخه بریده بسیار اهمیت دارد. تأمین دایمی آب، که در زمان برداشت گل منقطع می‌شود، برای نمو فیزیکی گل شاخه بریده موثر است. بخشی از نمو فیزیکی، به وسیله فشار تورژسانس مثبت میسر می گردد که سبب انبساط سلول و پشتیبانی آن‌ها می‌شود. پتانسیل آب از فشار تورژسانس و پتانسیل اسمزی تشکیل می‌شود. در گیاهان در شرایط عادی (در حال رشد روی ریشه‌های خود) آب موجود در آوند چوبی تحت تنش است به علت کشش حاصل از تبخیر و تعرق که آن هم حاصل افزایش دما و کاهش رطوبت نسبی می‌باشد. آب از آوند چوبی در اثر شیب اسمزی به درون سلول‌ها وارد می‌شود. اگر پتانسیل آب سلول از پتانسیل آب سلول‌های مجاور کمتر باشد از این سلول‌ها آب بیرون کشیده می‌شود که نتیجه آن چروکیدن و جمع شدن سلول است (سیلوا، 2003). در سطح مولکولی/ بیوشیمیایی پروتئین‌های آکواپورین که سبب جریان دو طرفه آب در غشای سلول بافت‌ها و حتی ارگان‌ها می‌شوند در عمر پس از برداشت گلها موثراند (تایرمن، 1999). آب تمیز و خالص از پیش نیازهای عمر پس از برداشت بهینه گلهای شاخه بریده است. کاهش کیفیت و عمر پس از برداشت گلهای شاخه بریده ممکن است به وسیله انسداد آوندهای چوبی رخ دهد. از دلایل آن موارد زیر می‌باشد: رشد میکروبی، رسوب موادی مثل ترکیبات موسیلاژی در حفرات دستجات آوند چوبی، ایجاد تیلوز (ساختاری شبیه بالون که به وسیله رشد سلول‌ها در مکانهای ارتباط سلول‌های آوندی ایجاد می‌شوند)، وجود حباب هوا درون سیستم آوندی، پاسخ‌های فیزیولوژیک ساقه به برش و مرگ برنامه‌ریزی شده سلول (ون دورن و کروز،2000).

2-1-5- میکرو ارگانیسم ها در محلول نگهداری گلها
آب خالصی که در گلدان نگهداری وجود دارد بعد از مدتی به وسیله باکتری‌ها یا قارچ‌ها که روی بافت گیاهی وجود دارد و تکثیر می‌شوند، آلوده می‌گردد. ارگانیسم‌ها سبب تولید یا القای ترکیباتی مثل تانن‌ها در آوندها می‌شود که همین موضوع سبب انسداد آوندی می گردد. برای جلوگیری از چنین پدیده‌ای، در پژوهشهای مختلف مواد متفاوتی آزمایش شدهاست. از جمله مواد تست شده که سبب بهبود عمر پس از برداشت گلهای شاخه بریده از جمله ژربرا میشوند شامل: تیوسولفات نقره، دیکلروفن، ترکیبات آمونیوم چهارظرفیتی، 8- هیدروکسی کینولین سیترات و ترکیبات کلاته کننده می‌باشد (ایشیمورا، 1999).
لیو و همکاران (2000) نشان دادند که کاربرد 2/0 میلی مولار از تیو سولفات نقره STS)) برای دو ساعت در حدود ده روز طول عمر گلهای شاخه بریده رز را افزایش داد. محمودی و همکاران (2012) نشان دادند که کاربرد کلرید کبالت در غلظت‌های 200، 300 و 400 میلی گرم بر لیتر می‌تواند سبب افزایش عمر پس از برداشت گلهای مریم شود آن‌ها نتیجه گرفتند که کاربرد کلرید کبالت در غلظت 300 میلی گرم بالاترین اثر را بر افزایش عمر پس از برداشت گلها، جذب آب و کاهش وزن تر داشت. منشی‌زاده و همکاران (2011) گزارش کرده‌اند که کلرید کبالت می‌تواند سبب کاهش زردی گلچههای گل مریم و پژمردگی آنها شود.
کاربرد نمک سیلیسیم (K2SiO3) با غلظت‌های 100، 150 و 200 میلی گرم بر لیتر سبب افزایش عمر پس از برداشت گلهای شاخه بریده میخک گردید (جمالی و راحمی،2011 ). یکی از دلایل، شاید افزایش مقاومت غشای سلولی به وسیله ته نشین شدن سیلیسیم در آن باشد. این عنصر این توانایی را دارد که با ترکیبات آلی درون دیواره سلولی کمپلکس تشکیل بدهد و به این وسیله غشای سلولی در برابر آنزیم های تخریب کننده مقاومت بیشتری می‌یابند (سیندر و همکاران، 2007). کتسا و همکاران (1994) گزارش کردند که استفاده از نیترات نقره درمحلول نگه دارنده گل شاخه بریدهارکیده بهعنوان عامل ضد میکرب عمل میکند. اضافه نمودن نیترات کلسیم به محلولهای محافظ طول عمر دو رقم رز را یک تا سه روز افزایش داده و شکوفایی غنچهها را بهبود بخشید. همچنین محلول های حاوی دو میلی مول در لیتر کلسیم از هر دو منبع کلرید کلسیم و نیترات کلسیم باعث افزایش ماندگاری رز رقم ایلوانا گردید (ادریسی،1387). مقایسه اثر نمک های معدنی مختلف نشان داد که ترکیبات مس بویژه نیترات مس بیشترین تاثیر را روی کیفیت وماندگاری میخک دارد (ادریسی، 1384). استفاده از تیمارهای موقت سولفات مس، هیدروکسی کینولین سولفات و کلرید کبالت بیشترین تاثیر را بر کیفیت گل شاخه بریده میخک داشتند و تیمار کلرید کبالت بیشترین طول عمر را نیز به دنبال داشت (ادریسی و همکاران، 1382). کاظمی و همکاران (2012) تاثیر سیلیکون و نیکل و استیل استیک را بر عمرگلجایی رز بررسی کردند و نتیجه گرفتند که بر افزایش طول عمر گل شاخه بریده تاثیر مثبت دارد و باعث افزایش طول عمر می‌شود. مورالی و ردی، (1992) نشان دادند که کاربرد عناصر کبالت، کلسیم، روی و نیکل به همراه محلول ساکاروز دار سبب افزایش عمر پس از برداشت گلهای شاخه بریده گلایول می‌گردد. تیمار کوتاه مدت جیبرلیک اسید با غلظت 50 میلیگرم بر لیتر به همراه محلول نگهدارنده اتانول 5/2 درصد و ساکارز سه درصد بیشترین تأثیر را بر خصوصیات کیفی و دوام عمر گل ژربرا داشت. همچنین، کاربرد مکرر اتانول نسبت به کاربرد اتانول فقط در ابتدای آزمایش، نتایج بهتری را درخصوص افزایش دوام عمر و خصوصیات کیفی گل ژربرا به همراه داشت (دانایی و همکاران، 1390). گلهای شاخه بریده مریم که در محلول ساکارز و کلرید نیکل قرار گرفته بودند عمر پس از برداشت طولانی تری نسبت به نمونه های کنترل داشتند (ردی و همکاران، 1997(.
2-2- نیکلحدود ششصد میلیون سال پیش، عناصر اصلی تشکیل‌دهنده اتمسفر کره زمین گازهای احیا کننده مانند هیدروژن، آمونیاک و متان بود. در این دوره، نیکل نقش مهمی در سوخت و ساز و موفقیت پروکاریوت‌های اولیه داشته است اما شرایط به آرامی به سمت ایجاد یک اتمسفر اکسنده تغییر یافت. این تغییر باعث جایگزین شدن عناصر روی، آهن، منگنز و مس به جای نیکل، وانادیوم و تیتانیوم گردید (وود و رایلی، 2007). در سال‌های اولیه قرن بیستم، نیکل به صورت جزئی از خاکستر گیاهی کشف گردید و شک و تردیدها در رابطه با این موضوع که نیکل نقشی در فرآیندهای متابولیکی گیاه دارد، به طور دائم وجود داشته است (بایی و همکاران، 2006). بین عناصر ضروری برای گیاهان، منحصر به فرد است به این دلیل که نقش‌های متابولیکی آن مدتی قبل از اثبات ضروری بودن این عنصر برای گیاهان مشخص شد (براون، 2007). احتمال ضروری بودن نیکل برای رشد گیاه زمانی مشخص گردید که در سال ١٩٧۵ پژوهشگران متوجه شدند که اوره آز، آنزیمی که به صورت عمومی درون گیاهان وجود دارد، برای فعال شدن نیازمند عنصر نیکل است. در واقع نیکل جزئی از آنزیم اوره آز است. به زودی مشخص شد که نیکل، برای حبوبات ضروری است (اسکیو و همکاران، 1984) و سپس برای برخی از غلات مناطق معتدله نیز ضروری بودن نیکل به اثبات رسید (براون و همکاران ، 1990). ضروریت این عنصر برای گیاهان عالی به وسیله براون و همکاران (1987) پیشنهاد شد. امروزه این عنصر به عنوان یکی از عناصر ضروری برای زندگی گیاهان شناخته می‌شود (مارشنر، 1999 ؛ سیرکو وبردزیک، 2000 ؛ گرداس و همکاران، 1999).
2-2-1- نقش نیکل در متابولیسم گیاه
در گذشته اوره آز تنها آنزیمی بود که برای نیکل، درون گیاه نقش یک عنصر "ضروری" را توجیه می‌کرد در حال حاضر هفت آنزیم نیکل‌دار مشخص شده است که دو عدد از این آنزیم‌ها (اوره آز و گلوسیلاز) فعالیت اکسایش/ احیا ندارند و پنج آنزیم دیگر در واکنش‌های اکسایش/احیا دخالت دارند شامل: متیل کوانزیم، ام ردوکتاز، نیکل سوپر اکسید دسموتاز، کربن مونو اکسید دهیدروژن، استیل کوانزیم آ سنتازو هیدروژناز (براون، 2007). این پیشنهاد که آنزیم‌های دیگری که حاوی نیکل هستند یا پروتئین‌های نیکل‌دار، درون گیاهان عالی وجود دارد با توجه به مشاهداتی بیان شده است که برخی از آنزیم‌های باکتریایی مشابه‌های موازی در گیاهان و حیوانات دارند، اما بر عکس علم آنزیم‌شناسی در باکتری‌ها، این شاخه علمی درون گیاهان هنوز در مراحل ابتدایی به سر می‌برد، پس به احتمال زیاد در آینده نزدیک آنزیم‌های دیگری درون گیاهان عالی کشف می‌شود که حاوی نیکل‌اند یا دست کم به نیکل نیازمند هستند.
2-2-1-1- یوروید
گیاهان عالی قسمت قابل توجهی از ترکیبات نیتروژن‌دار خود را به صورت یوروید یا آمید نقل و انتقال می‌دهند (شوبرت و بولوند، 1990). داده‌ها نشان می‌دهد که گونه‌های انتقال دهنده یوروید مانند گردوی آمریکایی نسبت به آنهایی که ترکیبات آمید انتقال می‌دهند نیاز به نیکل بالاتری دارند (وود ، 2006)، بنابراین این احتمال افزایش می‌یابد که گونه‌های انتقال دهنده یوروید ممکن است آنزیم‌های دیگری داشته باشند که نیازمند حضور نیکل باشد. حبوبات نواحی گرمسیری مانند سویا و همچنین گیاهانی مثل گردوی آمریکایی از جمله گیاهان انتقال دهنده یوروید هستند. اگرچه، اطلاعات چندانی در مورد کاتابولیسم و آنابولیسم یوروید درون گیاه موجود نیست (بایی و همکاران، 2006).
به نظر می‌رسد که متابولیسم یوروید در درجه اول درون تاج گیاه و میوه‌ها رخ می‌دهد (پیت و آتکینسن،1983). نتیجه نهایی کاتابولیسم یوروید تشکیل اوره و گلی اکسالیت است. پس با توجه به تولید این دو ماده، به نظر می‌رسد که حضور نیکل روی دسترسی گیاه به منابع نیتروژن ذخیره خود اثر گذار و حیاتی است. به طور کلی مسیر یوروید مهمترین مسیر برای حرکت نیتروژن از ریشه‌ها به نقاط رشد گیاه است پس نیکل برای تبدیل شکل ذخیره شده نیتروژن در دوران قبل از خفتگی ضروری است (بایی و همکاران ، 2006). مثال‌هایی از چندین جنس انتقال‌‌دهنده یورید: افرا ، توس، ممرز، گردوی امریکایی، ارغوان، چنار و بید.
2-2-2- افزایش شاخص‌های رشدپژوهش‌های ابتدایی برای مشخص کردن پاسخ‌های رشدی در گندم، سیب‌زمینی و باقلا با محلول پاشی برگی نیکل انجام گرفت که این تیمار اثرهای مثبت و افزایش‌دهنده‌ای بر فرآیندهای کلی رشد داشت (ولچ،1981 ؛ دوبرولیوبسکیو اسلاو ، 1957 ؛ روچ و بارکلی، 1946). بعد از کشف نیکل به عنوان جزئی از آنزیم اوره آز پژوهش‌های زیادی انجام شد که نشان‌دهنده نقش مثبت کاربرد نیکل بر رشد گیاه، افزایش سلامت غذایی، تندش بذر و عملکرد نهایی بوده است. موردی و آلی، (1999) در پژوهش خود نشان دادند که افزودن ٢۵ و ۵٠ میلی‌گرم نیکل به هر کیلوگرم خاک رس به صورت معناداری سبب افزایش عملکرد سبزی جعفری و کیفیت آن (سطح برگ٬ غلظت عناصر معدنی، عملکرد روغن و مزه) گردید و همچنین برگ‌ها برای مصرف توسط انسان سالم‌ترند زیرا غلظت نیترات و آمونیوم کمتری دارند. نیکل می‌تواند باعث افزایش عملکرد میوه و کیفیت آنها در گوجه فرنگی گردد (اوزو و همکاران ، 1999 ؛ پالاکویز و همکاران 1999، راو و شانتارون، 2000) نیکل اثر مثبتی بر افزایش وزن خشک گیاه گوجه فرنگی و غلظت آهن، روی و منگنز دارد.
گاد و همکاران (2007) نشان دادند که ٣٠ میلی‌گرم نیکل به ازای هر کیلوگرم خاک باعث افزایش عملکرد گوجه فرنگی می‌گردد، همچنین کیفیت ظاهری، در صد مواد جامد محلول و پارامترهای فیزیکی (طول، قطر،وزن، وزن خشک) را بهبود بخشید افزون بر این میوه‌ها میزان نیترات کمتری داشتند که باعث سلامت بیشتر میوه‌ها می‌گردد. شواهد موجود نشانگر اثر مثبت نیکل روی تندش بذرهاست؛ اندروود (1971) نشان داد که خیساندن بذرها پیش از کشت در محلول سولفات نیکل اثر معناداری بر افزایش تندش بذرهای نخود، لوبیا، گندم و کرچک دارد. ولف و برتراند (1973) نشان دادند که سولفات نیکل، اثرات مفیدی بر تندش بذر لوپن سفید دارد. غلظت‌های پایین نیکل می‌تواند تندش بذر ارقام جنس ارغوان را تحریک کنند و روی رشد دانهال حاصل از آن اثر مثبت دارد (سین، 1984). براون و همکاران، (1987) نشان دادند که بذرهای جو که در آنها نیکل حذف شده بود توانایی تندش را حتی در حضور منبع نیتروژنی به غیر از اوره نداشتند. تندش بذرهای تیموتی به وسیله غلظت‌های پایین نیترات نیکل تحریک می‌گردد (ویر، 1998). گزارش شده است که برگ گیاهان جنس آلیسوم که انباشتگر نیکل هستند هنگامی که خزان می‌کنند و می‌ریزند مانع از رشد گیاهان رقابت کننده می‌گردند (لان‌ژان و همکاران، 2007). مشاهده شده است که ٢ میلی‌گرم بر لیتراز نیترات نیکل یا سولفید نیکل باعث سرعت بخشیدن به تندش بذرهای گندم گردیده است (سنگار و همکاران، 2008).

2-2-3-تاثیر نیکل بر عمر پس از برداشتیون‌های نیکل اثر ممانعت کنندگی بر 1- آمینو سیکلوپروپان-1-کربوکسیلیک اسیداکسیداز (آ- سی-سی اکسیداز) دارد به این صورت که Ni2+ یک کمپلکس فلز- آنزیم می‌سازد (اسمیت و وودبرن، 1984). در یک مطالعه دیگر، محلول یک دهم درصد وزن در حجم از کلرید نیکل روی کاسه گل خرمالو رقم ‘Saijo’ دو مرتبه قبل از برداشت، محلول پاشی گردید. تیمار نیکل به گونه‌ای موثر جلوی نرم شدن میوه را گرفت و عمر انباری آن را افزایش داد که علت آن جلوگیری از تجمع ACC و تشکیل اتیلن بود (ژن و همکاران، 2006). اثر محدودکننده‌ای که نیکل بر تولید اتیلن درون گیاهان دارد، از این عنصر انتخابی مناسب برای بهبود عمر پس از برداشت محصولات باغبانی می‌سازد به ویژه در گل‌های بریدنی، که بدون نگرانی از تجمع این عنصر در غلظت‌های سمی می‌توان آن را به کار برد.
تیمار گل‌های میخک سولفات نیکل با غلظت 45 میلی گرم بر لیتر، توانست به گونه ای معنادار سبب بهبود عمر پس از برداشت آن‌ها در مقایسه با نمونه های شاهدگردید. بررسی ها نشان دادند که این گل‌ها به گونه ای معنادار اتیلن کمتری تولید کرده بودند و همین موضوع سبب بهبود عمر پس از برداشت آن‌ها گردید (جمالی و راحمی، 2011). همچنین کاظمی وعامری، (2012) گزارش کردند که کاربرد عنصر نیکل بر روی گلهای سوسن، سبب بهبود عمر پس از برداشت و شاخص‌هایی مثل نشت آنتوسیانین در آن‌ها گردید. از طرف دیگر عنصر نیکل اثر ممانعت کنندگی بر رشد پاتوژن ها دارد (کار و میشرا، 1974؛ گراهام و همکاران، 1985). پس به طور کلی نیکل با تاثیر گذاری بر عوامل مهمی مثل غلظت کربوهیدرات‌ها، تولید اتیلن و جمعیت پاتولوژی می تواند سبب بهبود عمر پس از برداشت گل‌ها شود.
2-2-4- علائم کمبود عنصرنیکل در گیاهان
بر اساس گونه، نیاز گیاه به نیکل جهت تکمیل چرخه رشد طبیعی در خاک‌های بدون آلودگی در حدود ٠۵/٠ تا ۵ میلی‌گرم به ازای هر کیلوگرم وزن خشک گیاهی متغییر است (براون، 2007)، اما گیاهان انتقال دهنده یوروید نیاز بالاتری دارند تا حد ۵٠ میلی‌گرم به ازای هر کیلوگرم وزن خشک (بایی و همکاران، 2006). در کمتر از این غلظت‌ها، نکروزه شدن نوک برگ‌ها به ویژه در خانواده لوبیا ممکن است رخ بدهد علت آن هم کاهش فعالیت آنزیم اوره آز و تجمع اوره در سطوح سمی در داخل گیاه است (اسکیو و همکاران، 1984). در برخی موارد، علائم کمبود می‌تواند شامل کاهش رشد ریشه و شاخساره باشد. کمبود نیکل می‌تواند باعث القای بیماری (گوش موشی) در درختان گردوی آمریکایی (پیکان) گردد، این بیماری یک نابسامانی فیزیولوژیکی است که در اثر کمبود نیکل در درختان گردوی آمریکایی ایجاد می‌شود. علائم این نابسامانی شامل تاخیر در باز شدن و کاهش سطح برگ، شکفتن جوانه‌ها به صورت ضعیف، زرد شدن برگ‌ها، ایجاد حالت کپه‌ای و بافت مردگی در نوک برگ‌ها. استفاده از کودهای حاوی نیکل در زمان مناسب (اواخر پاییز یا در اوایل بهار) با غلظت کافی سبب درمان این ناهنجاری و همچنین فرم شدید این بیماری که به نام بیماری واکاری باغ نامیده می‌شود می‌گردد (وود و همکاران، a2004). شیوع بیماری در نسل دوم باغ‌های جنوب شرق ایالات متحده افزایش یافته است، این بیماری هنگامی ظاهر می‌شود که نشاهای جوان در مکان‌هایی که قبلا باغ گردوی آمریکایی بوده است دوباره کشت می‌شوند. احتمال دارد وجود مقادیر زیادی عنصر روی و مس در خاک نیز سبب ایجاد این بیماری گردد. تجمع این فلزات در طی سال‌ها می‌تواند سبب از دسترس خارج شدن نیکل گردد و فرم شدید یا متداول این نابسامانی را سبب گردد. در حالت شدید، درخت دارای رشد بسیار کند، تاج کم پشت است و در نهایت مرگ درخت نیز ممکن است رخ دهد (وود و ریلی، 2007). همچنین از آن‌جا که نیکل اثر مستقیم یا غیر مستقیم روی متابولیت‌های ثانویه گیاه دارد، روشن است که احتمال حمله عوامل بیماری‌زا و آفت‌ها در کمبود نیکل گسترش می‌یابد. کمبود نیکل می‌تواند به صورت غیر مستقیم روی نقل و انتقال انرژی درون گیاهان موثر باشد (بایی و همکاران، 2006؛ وود و همکاران،b 2004).
2-2-5 - تجمع و سمیترشد بسیاری از گیاهان در غلظت‌های بیش از ۵٠ میلی‌گرم به ازای هر کیلوگرم وزن خشک گیاهی نیکل صدمه می‌بیند. این اثرات در سطوح مرفولوژیکی، فیزیولوژیکی و بیوشیمیایی بروز می‌کند و ممکن است به علت اثر مستقیم سمیت این عنصر باشد یا ممکن است ناشی از رقابت نیکل با سایر عناصر ضروری مانند کلسیم، منیزیم، آهن، و روی باشد و در نهایت موجب ایجاد کمبود مصنوعی و ثانویه آن‌ها گردد (اندرسون و همکاران، 1973). در مراحل ابتدایی سمیت نیکل نشانه‌های چشمگیر و روشن بروز نمی‌کند اما رشد ریشه و شاخساره ممکن است کند گردد (براون،2007). در حالت سمیت شدیدتر نیکل، زرد شدن برگ‌ها از گوشه‌ها که به سمت مرکز پیش می‌رود رخ می‌دهد که سپس قسمت‌های زرد نکروزه می‌شوند و در نهایت احتمال دارد گیاه از بین برود (براون، 2007). نیکل می‌تواند درون گیاهان تجمع یابد که در اغلب موارد کمتر از ١/٠ درصد وزن خشک گیاه است اگرچه گیاه Sepertia accuminata می‌تواند بیش از این میزان نیکل را تجمع بدهد (لی و همکاران، 1987).
در طی دوران رویشی، بیشتر نیکل به سمت برگ‌ها منتقل می‌شود و در آن‌ها تجمع می‌یابد اگرچه در زمانی که برگ‌ها به سمت پیری می‌روند بیشتر نیکل به علت خاصیت تحرک دوباره به سمت بذرها منتقل می‌شوند این مورد برای سویا (کاتاکلو و همکاران، 1987) و میمولوس (تیلستون و مکنیر، 1991) گزارش شده است. پراساد و همکاران، (1997) نشان دادند که نیکل درسنبل آبی قابلیت تجمع دارد. همچنین گیاه خردل هندی به عنوان یک گیاه انباشتگر مهم نیکل در نظر گرفته می‌شود (سین و همکاران، 2001). گیاهان دیگری نیز به عنوان تجمع‌دهنده نیکل در نظر گرفته می‌شوند مانند: گیاه سوییس وآلیسوم (کانینگهام و همکاران، 1995)، Sepertia acuminata (انسلس و همکاران، 1997) و سنبل آبی (سین و همکاران، 2001).
مرحله رشد و اندام در امر تجمع نیکل درون گیاهان موثراند. در درخت بلوط، در طی ٧٠ روز بعد از تندش بذر میزان نیکل به سرعت در طی ٣٠ روز اول افزایش یافت اما بعد از آن دچار کاهش آرام گردید (جم، 1968). دلیل دیگر این نوسان در تجمع نیکل، احتمالاً به علت فعالیت ریشه‌ها می‌باشد؛ سیستم جذب کننده نیکل و یا فعالیت متابولیکی بافت تجمع دهنده فلز درون بافت گیاهی نیز می‌توانند روی این امر تاثیرگذار باشد. در گیاه ذرت، برگ‌های جوان‌تر نسبت به برگ‌های پیرتر حاوی نیکل بالاتری هستند (مکلین و دکر، 1978). در گیاهان پامچال، شبدر سفید، الودیاو برگ عبائیعنصر نیکل در ابتدا در برگ‌ها و بعد در گل‌ها تجمع می‌یابد (راف و همکاران، 1991). تغییر فصلی در تجمع نیکل درون گیاه نیز گزارش شده است به عنوان مثال در گیاه پیچک نیلوفر (سنگارو همکاران، 2008).

فصل سوم
مواد و روش ها
3-1- مواد گیاهیدر خرداد ماه سال 1392 گلهای شاخه بریدهی ژربرا که در مرحلهی تجاری (دارای دو ردیف گلچهی خارجی باز شده) برداشت شده بودند، از گلخانهای در تهران تهیه و بلافاصله برای انجام تیمار و ارزیابی صفات به آزمایشگاه پس از برداشت دانشگاه آزاد اسلامی واحد رشت منتقل شدند (شکل 3-1). گلها روی ارتفاع 50 سانتیمتری باز برش شده و هر چهار شاخهی گل در گلدانهای پلاستیکی به حجم دو لیتر قرارداده شدند، سپس به مقدار مورد نیاز تحت تیمار قرار گرفتند.

شکل 3-1- طریقه بسته‌بندی گلهای شاخه بریدهی ژربرا پس از برداشت
3-2- نوع طرح آزمایشیاین مطالعه بر پایه طرح کامل تصادفی با 10 تیمار شامل نیکل در سه سطح (10، 20 و 30 میلی گرم در لیتر)، سولفات نیکل و نیترات نیکل هر کدام در سه سطح (10، 30 و50 میلی گرم در لیتر) و شاهد (آب‌مقطر) با سه تکرار و در مجموع 30 پلات و در هر پلات 4 شاخه گل و در مجموع 120 شاخه گل انجام شد. تیمار به صورت پالس (به مدت 24 ساعت) و در شرایط فوتوپریود 12 ساعت روشنایی و 12 ساعت تاریکی بود که که توسط نور لامپهای فلورسنت سفید تامین میشد. شدت نور 12 میکرومول بر ثانیه متر مربع ، دمای 2±20 و رطوبت نسبی 60 تا 70 درصد بود و صفاتی از قبیل عمر گلجایی، کاهش وزن تر، درصد وزن خشک، جذب آب شمارش باکتریهای ته ساقه و محلول نگه دارنده، کاهش مواد جامد محلول در آب ((TSS و قطر گلها، پروتئین و کارتنوئید گلبرگ‌ها و فعالیت آنزیم های سوپر اکسید دیسموتاز و پراکسیداز اندازه‌گیری شد.
شکل3-2- چیدمان طرح آزمایشی
3-2-1- نحوه آمادهسازی گلها و انجام تیمارابتدا شاخه‌های ژربرا به طول 52 سانتی‌متر به صورت مورب در داخل آب 38 درجه سانتی‌گراد بریده شدند. گل‌ها با برچسب، کدگذاری شده و پس از توزین با ترازوی دیجیتال، در گلدان‌های پلاستیکی حاوی 250 میلی لیتر از تیمار های محلول نیکل با 3 سطح (10 و 20 و 30 میلی گرم در لیتر ) و نیترات نیکل در سه سطح (10 و 30 و 50 میلی گرم در لیتر) و سولفات نیکل در 3 سطح (10 و 30 و 50 میلی گرم در لیتر) به حالت پالس قرار گرفتند).برای تهیه محلول نیکل مقدار مورد نظر را در یک سی سی حلال اسید نیتریک غلیظ بر روی گرمکن با هم زدن مداوم حل شد. سه گلدان نیز به عنوان شاهد با 250 سی سی آب مقطر خالص در هر تکرار یکی قرار دادیم. پس از 24 ساعت گلها به گلدآن‌های محلول های تیمار مداوم حاوی 500 میلی لیتر محلول 3% ساکارز و 200 میلی گرم در لیتر هیدروکسی کینولین منتقل شدند .
در طول دوره آزمایش به منظور جلوگیری از انسداد آوندی هر سه روز یک بار عمل باز برش انتهای ساقه به اندازه یک سانتی‌متر درون آب 38 درجه سانتی‌گراد انجام شد.
3-2-2- معرفی تیمارهاده تیمار مورد استفاده به قرار زیر بودند:
شاهد یا (کنترل) : آب مقطر (10):Ni عنصر نیکل با غلظت 10 میلی گرم در لیتر N1
(20):Ni عنصر نیکل با غلظت 20 میلی گرم در لیتر N2
(30):Niعنصر نیکل با غلظت 30 میلی گرم در لیتر N3
(10)4:NiSOسولفات نیکل با غلظت 10 میلی گرم در لیتر SN1
(30)4:NiSO سولفات نیکل با غلظت 30 میلی گرم در لیتر SN2
(50)4:NiSOسولفات نیکل با غلظت 50 میلی گرم در لیتر SN3
(10)2:Ni(NO3) نیترات نیکل با غلظت 10 میلی گرم در لیتر NN1
(30)2:Ni(NO3) نیترات نیکل با غلظت 30 میلی گرم در لیتر NN2
(50)2:Ni(NO3) نیترات نیکل با غلظت 50 میلی گرم در لیتر NN3

3-3- اندازهگیری صفات3-3-1- طول عمر گلجاییبرای ارزیابی طول عمر گلجایی و پایان نگهداری گلهای بریده ژربرا، معیار اصلی پیچش گلبرگها و پژمردگی ظاهری گلها بود. بنابراین طول عمر هر یک از چهار شاخه گل موجود در محلول گلجا که طول عمرهای متفاوتی داشتند، اندازهگیری شده و از آنها میانگین گرفته شد. این عدد به عنوان طول عمر گلجایی آن تیمار در نظر گرفته شد.
3-3-2- کاهش وزن تر با توجه به میزان وزن تر اولیه گل‌ها، وزن تر نهایی گل‌ها، وزن باز برش‌ها و وزن ریزش‌گلبرگ‌ها، مقدار کاهش وزن تر بر حسب گرم به ازای هر شاخه گل طبق رابطه زیر محاسبه شد(شکل 3-2):
(وزن ریزش‌ها + وزن باز برش‌ها + وزن تر نهایی) – وزن تر اولیه = کاهش وزن تر

شکل 3-3- اندازه گیری وزن تر شاخه گل
3-3-3- درصد ماده خشکپس از پایان عمر گلجایی هر گل، وزن تر آن اندازه گیری شد و دو شاخه در آون در دمای 70 درجه سانتی‌گراد به مدت 24 ساعت قرار داده شد. پس از اطمینان یافتن از خشک شدن، گل‌ها با ترازوی دیجیتال توزین شدند. درصد ماده خشک از رابطه زیر محاسبه شد:
100 × (وزن تر گل‌ها در روز آخر ÷ وزن خشک) = درصد ماده خشک
3-3-4- قطر گلها با کمک کولیس دیجیتال یک روز در میان اندازه گیری شد.
43561088265
شکل 3-4- اندازه گیری قطر گلها3-3-5-کاهش مواد جامد محلول در آب (TSS)برای اندازه گیری میزان مواد جامد محلول در آب از باز برش های انتهای ساقه استفاده شده است. یک یا دو قطره از عصاره باز برش‌ها روی صفحهی شیشهای رفراکتومتر دستی (مدل N-1α ساخت شرکت ATAGO کشور ژاپن) ریخته و میزان قند آن هر دو روز یک بار اندازه گیری شد. تفاضل بین اعداد به دست آمده از اندازه گیری میانگین درصد قند روز دوم و میانگین درصد قند روز آخر عمر گلجایی به عنوان میزان کاهش درصد قند در ساقه گل‌های شاخه بریده ژربرا در نظر گرفته شد.

شکل3-5- رفراکتومتر دستی (مدل N-1)3-3-6- محتوای پروتئین گلبرگ949960677545برای اندازه گیری میزان پروتئین در گلبرگ‌های گل شاخه بریده ژربرا در تیمارهای مختلف در روز پنجم آزمایش یک شاخه از هر پلات خارج شده و جهت استخراج پروتئین، از روش برادفورد ( 1976) استفاده شد.
شکل 3-6- اندازه گیری پروتئین گلبرگ3-3-7 - رنگیزه کاروتنوئید گلبرگدر روز پنجم آزمایش یک شاخه گل از هر پلات جهت اندازه گیری کاروتنوئید خارج شد. گلبرگ‌ها را خشک کرده و رنگیزه کاروتنوئید از روش مزومدار و مجومدار(2003) اندازه گیری شد.

شکل 3-7- اندازه گیری رنگیزه کاروتنوئید گلبرگ3-3-8- جذب آب
با توجه به حجم اولیه محلول گلجای (500 میلیلیتر) و میزان تبخیر اتاق و کاهش حجم محلول گلجای، جذب آب از فرمول زیر میباشد:
(مقدار تبخیر اتاق در همان روز+ محلول باقیمانده در پایان عمر گلجایی) – 500 = جذب آب3-3-9- شمارش باکتری ساقه و محلول گلجاینمونهگیری از انتهای ساقه و محلول گلجایی 24 ساعت پس ازشروع آزمایش انجام و شمارش باکتری به روش لویی و همکاران (2009) انجام شد.
3-3-10- فعالیت آنزیم پراکسیداز (POD)برای سنجش فعالیت سینتیکی آنزیم POD از روش یین و همکاران (2007) استفاده گردید. 450 میکرولیتر محلول H2O2(225 میلیمولار) و 450 میکرولیتر محلول گایاکول (225 میلیمولار) با هم مخلوط گردید و به آن 100 میکرولیتر عصاره آنزیمی اضافه و تغییرات جذب در طول موج 470 نانومتر با استفاده از دستگاه اسپکتروفتومتر دنبال شد. در محلول بلانک به جای عصاره آنزیمی، 100 میکرولیتر از بافر فسفات 50 میلی مولار (7pH=) استفاده شد.
3-3-11- فعالیت آنزیم سوپر اکسید دسموتاز (SOD)
فعالیت SOD به روش اسپکتروفتومتری و با استفاده از روش ژیا نوپلتیس و رایس(1977) و با کمی تغییر اندازه‌گیری شد. نمونه‌های بافت در داخل یک هاون و در حضور نیتروژن مایع آسیاب شد و به دمای 80- منتقل شد. مقدار 5/0 گرم از بافت منجمد شده‌ با یک میلی‌لیتر بافر فسفات پتاسیم 5/0 مول، 1/0 گرم پلی‌وینیل پولی‌پیرولیدین (PVPP) و pH 7 رقیق شد. پس از هموژنایز کردن، نمونه‌ها به مدت 15 دقیقه و دمای 4 درجه سانتی‌گراد و با دور 14000 در دقیقه سانتریفیوژ شدند. محلول رویی به آرامی برداشته شد و با ریختن در تیوب بلافاصله به دمای 80- تا اندازه‌گیری فعالیت منتقل شد.
محلول واکنش شامل EDTA 1/0 میلی مولار، بافر فسفات 50 میلی مولار، متیونین13 میلی مولار وNBT 75 میکرومولار و ریبوفلاوین دو میکرومولار (مجموعا به یک میلی‌لیتر) و 100 میکرولیتر عصاره آنزیمی بود. تیوب‌های حاوی محلول واکنش به مدت 15 دقیقه درحالی‌که به آرامی شیکر می‌شدند در معرض نور فلورسانس (یک عدد لامپ فلورسانس حدود 400 لوکس) و دمای 22 درجه‌سانتی‌گراد قرار گرفتند. واکنش با انتقال تیوب‌ها به شرایط تاریکی متوقف شد و سپس جذب نمونه‌ها در طول موج 560 نانومتر قرائت شد. برای سنجش فعالیت این آنزیم علاوه بر کووت‌های نمونه و بلانک از کووت شاهد نیز استفاده شد، که محتوای واکنشی نمونه بلانک و شاهد مشابه نمونه‌ی اصلی است با این تفاوت که هر دو نمونه مذکور فاقد آنزیم بودند. لازم به ذکر است که نمونه‌ی کنترل به همراه نمونه‌ها در معرض نور قرار می‌گیرد و نمونه‌ی بلانک در تاریکی قرار داده می‌شود. میزان جذب نمونه‌ها در طول موج 560 نانومتر خوانده شد.
3-4- تجزیه و تحلیل داده‌هاداده‌ها ابتدا در نرم افزار Excel ثبت شدند، سپس تجزیه و تحلیل آن‌ها با استفاده از نرم افزار آماری SPSS و مقایسه میانگین‌ها بر اساس آزمون Tukey در سطح پنج درصد، انجام شد. رسم نمودارها با نرم‌افزار Excel انجام گرفت.
فصل چهارم
نتایج

4-1- عمر گلجاییبررسی نتایج تجزیه واریانس داده‌ها نشان داد که تیمارها اثر معناداری در سطح یک درصد برعمر گلجایی گل‌های شاخه بریده ژربرا داشته‌اند (جدول 4-1). نتایج حاصل از مقایسه میانگین‌ها نشان می‌دهد که کاربرد عنصر نیکل به تنهایی نتوانست سبب افزایش معناداری در عمر گلجایی گل‌های شاخه بریده ژربرا گردد، در حالی که کاربرد سولفات نیکل و نیترات نیکل سبب بهبود عمر گلجایی و افزایش معنادار این شاخص نسبت به نمونه‌های شاهد گردید همان طور که ملاحظه می‌شود حداکثر عمر گلجایی (11 روز) در کاربرد نیترات نیکل به غلظت 50 میلی گرم در لیتر به دست آمد. اگر چه تیمار سولفات نیکل سبب افزایش معناداری در عمر گلجایی گل‌های ژربرا گردید اما تفاوت معناداری بین سطوح مختلف سولفات نیکل وجودنداشت (شکل 4-1).
7.61c
6.89c
7.05c
7.22c
9.72b
10b
10.32ab
10.5ab
11a
9.92b
عمر گلجایی(روز)
32385125095
تتیما
تیمارها
نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
شکل 4-1- اثر کاربرد تیمارهای مختلف نیکل بر عمر گلجایی گل‌های شاخه بریده ژربرا
4-2-کاهش وزن تازه گل133352436495همان طور که در شکل 4-2 آمده است، سطوح مختلف تیمار نیکل به تنهایی سبب افزایش یا کاهش معناداری در تغییر وزن تازه در گل‌های ژربرا نگردیدند. اما به طور کلی براساس نتایج حاصل از تجزیه واریانس، تیمارها اثر معناداری در سطح یک درصد بر میزان کاهش وزن تازه گل‌های شاخه بریده ژربرا نسبت به شاهد داشته‌اند (جدول 4-1) سطوح مختلف تیمارهای سولفات و نیترات نیکل سبب کاهش کمتر در این شاخص گردیدند. یا به عبارت دیگر کاربرد هر یک از نمک‌های نامبرده سبب ثبات بالاتر وزن تازه گل‌ها شدند. بهترین نتیجه از کاربرد نیترات نیکل به غلظت 30 میلی‌گرم بر لیتر به دست آمد که حداقل کاهش وزن تازه گل را نشان می‌دهد (شکل 4-2).
2.482a
2.55a
2.485a
2.477a
2.176bc
2.231b
2.021d
1.772e
1.99d
2.035cd
کاهش وزن تازه گل (گرم)

تیمارها
شکل4-2- اثر کاربرد تیمارهای مختلف نیکل بر کاهش وزن تر گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-3- درصد ماده خشک
984252147570آنالیز واریانس نشان داد که تیمارهای مختلف درسطح یک درصد بردرصد ماده خشک موثر بوده‌اند(جدول4-1) نتایج مقایسه میانگین داده‌ها نشان داد که در گل‌های شاخه بریده ژربرا که تیمارهای نیترات و سولفات نیکل را دریافت کرده بودند، بیشینه وزن خشک را داشتند به گونه‌ای که حداکثر درصد ماده خشک (02/16%) هنگامی به دست آمد که گل‌ها با نیترات نیکل با غلظت 10 میلی‌گرم بر لیتر تیمار شدند. تیمارهای عنصر نیکل به تنهایی تاثیر معناداری بر این شاخص نداشتند (شکل 4-3).
12.73d
13.71cd
12.2d
13.16cd
15.71a
14.05bc
16.02a
15.57ab
15.91a
14c
ماده خشک (درصد)

تیمارها
شکل 4-3- اثر کاربرد تیمارهای مختلف نیکل بر وزن درصد ماده خشک گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-4- قطر گلها
1386512783785بررسی نتایج تجزیه واریانس داده‌ها نشان داد که تیمارهای نیکل، سولفات و نیترات نیکل از نظر آماری اثر معناداری در سطح پنج درصد نسبت به شاهد (آب مقطر) بر قطر گل‌های شاخه بریده ژربرا داشته‌اند (جدول 4-1). نتایج حاصل از مقایسه میانگین ها نشان داد که قطر گل‌هایی که تیمار30 میلی گرم بر لیتر از عنصر نیکل را دریافت کرده بودند و همچنین در گل‌هایی که توسط نمک‌های سولفات و نیترات نیکل تیمار شده بودند به گونه معنادار بیشتر از نمونه‌های شاهد بودند. حداکثر قطر گل‌ها (39/111 میلی‌متر) در ژربراهایی که توسط نیترات نیکل با غلظت 50 میلی گرم بر لیتر تیمار شده بودند به دست آمد. تفاوت معناداری بین نمونه‌هایی که تیمار سولفات نیکل دریافت کرده بودند موجود نبود (شکل 4-4).
105.53e
107.61cde
106.43de
108.42bcd
109.07abc
110.17ab
109.92abc
110.31ab
111.39a
110.22ab
قطر گل (میلی‌متر)

تیمارها
شکل 4-4- اثر کاربرد تیمارهای مختلف نیکل بر قطر گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-5- کاهش درصد مواد جامد محلول در آب (TSS)
1847852084070بررسی نتایج تجزیه واریانس داده‌ها نشان می‌دهد که استفاده از نیکل، سولفات و نیترات نیکل در محلول نگهدارنده نسبت به شاهد (آب مقطر) اثر معناداری در سطح پنج درصد بر روی میزان قند (TSS) موجود در ساقه گل بریده ژربرا داشته است (جدول 4-1) مقایسه میانگین داده ها نشان داد که تیمارهای30 میلی‌گرم بر لیتر عنصر نیکل و نمک‌های سولفات و نیترات نیکل همگی سبب کمترین کاهش درصد قند (TSS) شده‌اند. بهترین پاسخ‌ها در بالاترین سطح کاربردی نیترات و سولفات نیکل (50 میلی گرم بر لیتر ) به دست آمد.
1.05a
0.97ab
0.95ab
0.9b
0.75c
0.61de
0.77c
0.45f
0.51ef
0.66cd
کاهش مواد جامد محلول(درصد)

تیمارها
شکل 4-5- اثر کاربرد تیمارهای مختلف نیکل بر روی کاهش درصد مواد جامد محلول در آب (Tss) هنگام نگهداری گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-6- پروتئین گلبرگ
نتایج تجزیه واریانس داده‌ها نشان می‌دهد که تیمارهای استفاده شده در این آزمایش در ارتباط با حفظ میزان پروتئین در گلبرگ‌های شاخه بریده ژربرا نسبت به شاهد اثر مثبت و معناداری در سطح یک درصد داشته است جدول (4-1) نتایج حاصل از مقایسه میانگین داده ها نشان داد که تیمارهای سولفات نیکل و تمام غلظت‌های نیترات نیکل سبب بهبود این پارامتر گردید به گونه‌ای که گل‌هایی که تیمار50 میلی‌گرم بر لیتر از نیترات نیکل را دریافت کرده بودند بالاترین غلظت پروتئین را داشتند (14%) که در حدود سه درصد بالاتر نسبت به نمونه‌های شاهد بود شکل (4-6).
8001027368511e
11.05de
11.75cde
12.01bcde
12.53abcd
13.09abc
13.81a
13.61a
14a
13.21ab
پروتئین گلبرگ (درصد)

تیمارها
شکل 4-6- اثر کاربرد تیمارهای مختلف نیکل بر میزان پروتئین گلبرگ گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-7- کاروتنوئید گلبرگ
همان‌طور که در جدول آنالیز واریانس مشاهده می‌شود، تیمارها عنصر نیکل و نیز سولفات و نیترات نیکل نسبت به شاهد اثر معناداری در سطح یک درصد بر روی میزان کاروتنوئید گلبرگ در گل‌های شاخه بریده ژربرا داشته‌اند جدول (4-2). نتایج حاصل از مقایسه میانگین داده‌ها نشان داد که غلظت30 میلی‌گرم بر لیتر از عنصر نیکل و تمام غلظت‌های دو نمک سولفات و نیترات نیکل سبب افزایش معنادار کاروتنوئید گلبرگ نسبت به نمونه‌های شاهد گردد. براساس نتایج که در شکل (4-7) آورده شده است، بیشینه کاروتنوئید (92/1میکروگرم در گرم وزن تر) از گل‌هایی به دست آمد که تیمار50 میلی‌گرم بر لیتر سولفات نیکل را دریافت کرده بودند که بیش از سه برابر از نمونه شاهد بود.
222885121285
0.53f
0.71ef
0.61ef
0.95de
1.13cd
1.92a
1.37bc
1.56ab
1.77ab
1.56ab
کاروتنوئید گلبرگ (میکروگرم در گرم وزن تر)

تیمارها
شکل4-7- اثر کاربرد تیمارهای مختلف نیکل بر میران کاروتنوئید گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-8- جذب آب
نتایج تجربه واریانس داده‌ها نشان داد که تیمارها اثر معناداری در سطح پنج درصد بر میزان جذب آب در گل‌های شاخه بریده ژربرا داشته‌اند (جدول4-2) بررسی مقایسه میانگین داده‌ها نشان می‌دهد که غلظت30میلی گرم بر لیتر از عنصر نیکل به تنهایی و تمام غلظت‌های به کار رفته از نمک‌های سولفات و نیترات نیکل سبب بهبود و افزایش جذب آب نسبت به نمونه‌های شاهد گردید. بیشترین میزان جذب آب (61/95 میلی لیتر به ازای هر گل) از گل‌هایی به دست آمده که تیمار30 میلی‌گرم بر لیتر از نیترات نیکل را دریافت کرده بودند و کمینه جذب آب هم در نمونه‌های شاهد مشاهده گردیده است (شکل4-8).


127403174253
67.21f
70f
70.7f
77d
85.5c
89.26bc
91.74ab
95.61a
92.52ab
90.18b
جذب محلول (میلی‌لیتر)

تیمارها
شکل 4-8- اثر کاربرد تیمارهای مختلف نیکل بر میران جذب آب گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-9-جمعیت باکتریایی در ته ساقه
2228852503170آنالیز واریانس داده‌ها نشان داد که تیمارهای مختلف عنصر نیکل، سولفات و نیترات نیکل نسبت به شاهد از نظر آماری در سطح یک درصد برکاهش جمعیت باکتریایی در ته ساقه موثر بوده‌اند (جدول4-1). براساس مقایسه میانگین داده‌ها نشان داد که، کاربرد عنصر نیکل به تنهایی با غلظت‌های20 و30 میلی گرم بر لیتر و تمام غلظت‌های دو نمک سولفات و نیترات نیکل سبب کاهش معنی‌دار کلونی‌های باکتریایی حاصل از ته ساقه گل‌ها نسبت به شاهد (آب مقطر) گردیده است. کمترین تعداد کلونی باکتریایی از ته ساقه گل‌هایی به دست آمد که بالاترین سطح (50 میلی گرم بر لیتر) از دو نمک سولفات نیکل و نیترات نیکل را دریافت کرده بودند که تقریباً 50 درصد پایین تر از نمونه هایی شاهد بود.
110.11a
(log10CFU.ml-1)شمارش باکتری ساقه
105.81a
92.5b
88.5b
75.63c
61.4e
70.43cd
62.57e
57.53f
65.22de

تیمارها
شکل 4-9- اثر کاربرد تیمارهای مختلف نیکل بر جمعیت باکتریایی در ته ساقه گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-10- جمعیت باکتریایی در محلول نگهداری گل‌ها
همان طور که در جدول (4-1) آنالیز واریانس دیده می‌شود، تیمارهای مختلف نیکل نسبت به شاهد (آب مقطر) اثر معناداری در سطح یک درصد بر این شاخص در هنگام نگهداری گل‌های شاخه بریده ژربرا داشته‌اند. تمام تیمارها سبب کاهش معنادار کلونی‌های باکتریایی گردیدند و بیشینه تعداد کلونی‌های از محلول نگهدارنده گل‌هایی به دست آمد که بالاترین سطح نمک‌های سولفات و نیترات نیکل (50 میلی گرم بر لیتر) را دریافت کرده بودند که در حدود 40 درصد پایین تر از نمونه‌های شاهد بود (شکل4-10).
125.88a
90.25b
95.27b
85.18bc
70.05de
60.82ef
75.11cd
61.05ef
58.03f
60.91ef
شاهد
N1
N2
N3
SN1
SN2
SN3
NN1
NN2
NN3
(log10CFU. ml-1)شمارش باکتری محلول نگهدارنده
28237154310
تیمارها
شکل 4-10- اثر کاربرد تیمارهای مختلف نیکل بر جمعیت باکتریایی در محلول نگهداری گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-11- فعالیت آنزیم سوپر اکسیددسموتاز
همان‌طور که در شکل (4-11) مشاهده میشود، تمام تیمارها سبب افزایش فعالیت این آنزیم نسبت به شاهد گردیدند به گونهای که کمینه فعالیت این آنزیم از نمونه های شاهد به دست آمده است (61/60 واحد در گرم وزن تر) همچنین آنالیز واریانس داده ها نشان میدهدکه اثر تیمارها از نظر آماری در سطح یک در صد بر این شاخص در گلهای شاخه بریده ژربرا معنی دار بوده است. کاربرد 30 و 50 میلی گرم سولفات نیکل و همچنین تمام غلظت‌های نیترات نیکل سبب افزایش بیش از دو برابر این آنزیم نسبت به نمونههای شاهد گردیده است. بالاترین سطح فعالیت آنزیم سوپر اکسیددسموتاز (21/135 واحد در گرم وزن تر) از گلهایی به دست آمد که بالاترین سطح نیترات نیکل را دریافت کرده بودند (50 میلی گرم در لیتر).
7048521590
60.61e
81.05d
88.56d
85.85d
100.01c
125.22ab
125.31ab
129.61ab
135.21ab
120.11b
فعالیت آنزیم SOD (IU/g.FW)

تیمارها
شکل 4-11- اثر کاربرد تیمارهای مختلف نیکل بر فعالیت آنزیم سوپراکسید دسموتاز گل‌های شاخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10mg-1 NN1=10mgl-1
N2=20mgl-1 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50mgl-1 NN3=50mgl-1
4-12- فعالیت آنزیم پراکسیداز
همان طور که در جدول آنالیز واریانس مشخص شده است تیمارها اثر معنی داری در سطح یک در صد بر فعالیت آنزیم پراکسیداز گلهای شاخه بریده ژربرا داشتهاند (جدول 4-1).تیمارهای عنصر نیکل به جز تیمار 30 میلی گرم بر لیتر سبب افزایش یا کاهش فعالیت این آنزیم نسبت به نمونه های شاهد نگردید اما کاربرد دو نمک دیگر یعنی سولفات نیکل و نیترات نیکل در تمام سطحوح سبب افزایش معنی دار فعالیت این آنزیم نسبت به نمونه های شاهد گردید. حداقل فعالیت (02/4 میکرومول بر گرم وزن تر در دقیقه) از نمونه‌های شاهد به دست امد و حداکثر فعالیت در حدود(3/6 میکرومول بر گرم وزن تر در دقیقه) از نمونه‌هایی به دست آمد که بیشینهسطح سولفات و نیترات نیکل یعنی50 میلیگرم برلیتر را دریافتکرده بودند (شکل4-12).
4.02e
4.24de
4.32de
4.53d
5.56c
6.37a
5.78bc
6.28ab
6.36a
6.17ab
فعالیت آنزیم POD(MoL/g.FW.min)
175260130810
تیمارها
شکل 4-12- اثر کاربرد تیمارهای مختلف نیکل فعالیت آنزیم پراکسیداز گل‌های ساخه بریده ژربرا نیترات نیکل سولفات نیکل نیکل
N1=10 mgl-1 SN1=10 mgl NN1=10 mgl-1
N2=20mgl-10 SN2=30mgl-1 NN2=30mgl-1
N3=30mgl-1 SN3=50 mgl-1 NN3=50 mgl-1
جدول4-1- تجزیه واریانس اثر تیمارهای مختلف روی صفات اندازهگیری شده در گل‌های شاخه بریده ژربراکاهش بریکس پروتئین
گلبرگ قطر گل‎ها وزن خشک کاهش وزن تازه گل عمر گلجایی درجه آزادی 0/40* **63 18/82* 15/48** 1/281** 6/73** 9 تیمار
0/028 3/ 63 13/88 3/ 78 0/ 301 1/17 20 خطا
- - - - - - 29 کل
33 43 35 40 27 35 ضریب تغییرات (درصد)
* معنا دار در سطح 5 درصد
** معنا دار در سطح 1 درصد
ns عدم معنا دار بودن
ادامه جدول4-1- تجزیه واریانس اثر تیمارهای مختلف روی صفات اندازهگیری شده در گل‌های شاخه بریده ژربرا فعالیت
POD فعالیت
SOD تعداد باکتری محلول تعداد باکتری ته ساقه جذب آب کاروتنوئید درجه آزادی 921/09** 5058/99** 2638/98** 1245/32** 155/36* 1/53** 9 تیمار
26/01 168/63 168/30 83/86 36/73 0/28 20 خطا
- - - - - - 29 کل
33 33 40 27 37 29 ضریب تغییرات (درصد)

—120

فصل دومآشنایی با ساختارهای فرکتالی بهبود یافته با ابعاد کوچک2-1 مقدمه
در این فصل هدف بررسی استفاده از ساختارهای فرکتالی جهت کوچک کردن ابعاد آنتن می باشد اما لازم است به منظور درک بهتر ابتدا مروری مختصر بر روند تولید حلقه های فرکتالی در آنت های فرکتال داشته باشیم.
در این فصل ساختارهای فرکتالی حلقوی، دوقطبی و سه بعدی به طور مجزا مورد بررسی قرار می گیرند. در فصل سوم و چهارم با آنتن مایکرواستریپ، طراحی و شبیه سازی این آنتن با ذکر نتایج و مقایسه با کارهای انجام شده خواهیم پرداخت.
2-2 کوچک سازی آنتن مایکرو استریپ با استفاده از ساختارهای فرکتالیبه طور کلی به کارگیری ساختارهای فرکتالی در طراحی آنتن ها نه تنها باعث کوچک شدن ابعاد آنتن و بهبود امپدانس ورودی آنتن می گردد بلکه با استفاده از بعضی از ساختارهای فرکتالی آنتن ها این قابلیت را پیدا می کنند که در چندین باند فرکانسی عمل کنند. پس یکی از مزیت های اساسی استفاده از هندسه فرکتالی در آنتن ها قابلیت حداقل کردن ابعاد آنتن و افزایش نسبت سطح موثر آنتن به سطح واقعی آن می گردد. ساختارهای فرکتالی دارای یک روند تکرارشونده می باشند لذا می توان در یک حجم محدود به سطح و یا طول بسیار زیاد دست پیدا کنند که این خواص ذاتی هندسه های فرکتالی باعث ایجاد ویژگی های مناسبی در تشعشع کننده ها، منعکس کننده ها و آنتن ها می گردد که سبب می شود این ادوات عملکرد بهتری را در محیط انتشاری داشته باشند در این خصوص می توان به ساختارهای فرکتالی همچون درختی، هیلبرت، مینکوسکی و کخ اشاره کرد.
2-3 آنتن فرکتال حلقویبه طور کلی آنتن های حلقوی برای رسیدن به امپدانس ورودی مناسب به منظور تطبیق بهتر با سیستم تغذیه، نیاز به سطح مقطع بزرگ می باشند. یا به عبارتی دیگر آنتن های حلقوی ساده با سطح مقطع کوچک، دارای امپدانس ورودی کمی می باشند که این مشکلات زیادی را برای فراهم کردن شرایط تطبیق آنتن ایجاد می کند.
معمولاً از ساختارهای فرکتالی حلقوی جهت غلبه بر این مشکل استفاده می کنند. شکل (2-1) دو نمونه از ساختارهای فرکتالی حلقوی را نشان می دهد.

شکل (2-1) : دو نمونه از ساختارهای فرکتالی حلقوی، فرکتالی مینکوسکی و فرکتالی کخ [10]در شکل (2-1)، از دو ساختار فرکتالی حلقوی مینکوسکی و کخ استفاده شده است. مهمترین خاصیت هندسه های فرکتالی ذکر شده این است که در یک حجم محدود می توان به محیطی با طول نامحدود رسید. وجود این خاصیت در این ساختارها سبب می گردد تا آنتن هایی که از هندسه های فرکتالی فوق استفاده می کنند، دارای خواص تشعشعی بهتری باشند. برای مثال با افزایش طول آنتن می توان امپدانس ورودی حلقه را افزایش داد. این افزایش امپدانس ورودی، به آنتن کمک می کند تا بتواند بهتر با خط تغذیه ورودی تطبیق گردد.
در ادامه هر دو ساختار شکل (2-1) به طور جداگانه مورد بررسی قرار می گیرند.
2-3-1 آنتن فرکتال حلقوی کخ اولین آنتن فرکتالی حلقوی را که مورد بررسی قرار می دهیم، آنتن حلقوی کخ می باشد. برای طراحی آنتن فرکتالی کخ، همانند شکل (2-2) عمل می کنیم. همانگونه که در این شکل نشان داده شده است، حلقه اولیه در روند تولید ساختار کخ، یک مثلث می باشد. در مرحله بعدی هر کدام از اضلاع این مثلث با یک یک عملگر جایگزین می شود. در زیر شکل (2-2) جایگزینی یک ضلع با عملگر کخ نشان داده شده است. شکل (2-2) چهار تکرار اول در روند تولید ساختار کخ را نشان می دهد.

شکل (2-2) : روند تولید حلقه فرکتالی کخ برای چهار تکرار اول و عملگر کخ [10]با توجه به اینکه عملگر کخ، طول هر ضلع را به اندازه 13 مقدار اولیه اش افزایش می دهد، لذا در هر تکرار، طول محیط کل حلقه به اندازه 13 محیطش، افزایش می یابد.
در طراحی آنتن های فرکتالی حلقوی کخ معمولاً از چند تکرار اول حلقه استفاده می شود که در اینجا چهار تکرار اول حلقه فرکتالی کخ در نظر گرفته شده است، و نتایج آن با آنتن دایره ای مقایسه گردیده است. شکل (2-3) ابعاد این دو ساختار را با هم نشان می دهد. همان طور که در این شکل مشاهده می کنید، به ازای تمامی تکرارها همواره حلقه فرکتالی کخ در داخل حلقه دایره ای محاط می باشد. لذا سطح اشغالی حلقه دایروی همواره بزرگتر از سطح اشغالی توسط حلقه فرکتالی کخ می باشد. برای مثال سطح حلقه فرکتالی اشغال شده در تکرار چهارم به صورت زیر می باشد.
SKoch-loop=1+39+1281+48729+1926561×12 3 32r2=2.05r2 (1-2)در این حالت سطح حلقه دایروی برابر است با :
SKoch-loop=πr2 (2-2)لذا نسبت دو سطح برابر است با :
SKoch-loopScircl-loop=0.65 (3-2)لذا همان طور که رابطه (2-3) نشان می دهد، سطح اشغال شده توسط حلقه فرکتالی کخ پس از چهارمین تکرار، 35% کوچکتر از حلقه دایروی می باشد.

شکل (2-3) : مقایسه حلقه فرکتالی کخ در تکرار چهارم با حلقه دایروی [10]محیط فرکتالی پس از n امین تکرار به صورت زیر محاسبه می شود:
PKoch-loop=3343n (4-2)لذا برای تکرار چهارم محیط حلقه برابر است با :
PKoch-loop=16.42r (5-2)در تمامی این حالات حلقه دایروی دارای محیط زیر می باشد:
Pcircl-loop=2πr (6-2)لذا نسبت محیط حلقه کخ به محیط حلقه دایروی برابر است با :
PKoch-loopPcircl-loop=2.614 (7-2)در بخش های بعدی از این نسبت ها برای توضیح خواص تشعشعی آنتن فرکتالی کخ در مقایسه با آنتن دایروی استفاده می شود. در ادامه نتایج حاصل از اندازه گیری امپدانس ورودی آنتن و پترن راه دور را برای این دو ساختار، که توسط روش ممان به دست آمده است، با هم مقایسه می کنیم. امپدانس ورودی این دو آنتن در شکل (2-4) بر حسب محیط حلقه دایروی در طول موج، نشان داده شده است. همان طور که در این شکل مشاهده می کنید، حلقه دایروی با محیطی برابر با 0.05λ دارای امپدانس ورودی 0.000004Ω می باشد، که این مقدار برای زمانی که حلقه دایروی دارای محیطی برابر 0.26λ باشد، به 1.17Ω افزایش می یابد. این نتایج در حالی است که حلقه فرکتالی کخ در همان گستره فرکانسی، دارای تغییرات امپدانسی ورودی بسیار بالاتری می باشد، یعنی تغییرات فرکانس از نقطه شروع تا انتها، امپدانس ورودی را در گستره (0.000015Ω تا 26.65Ω) تغییر می دهد. اختلال کوچکی که در شکل (2-4) مشاهده می کنید، به محدودیت های عددی موجود در روش ممان مربوط می شود.
در حالت کلی برای یک حلقه کوچک دایروی می توان مقاومت تشعشعی را از رابطه تقریبی زیر محاسبه کرد:
Rr≈31.171 S2λ4 (8-2)
شکل (2-4) : امپدانس ورودی برای دو آنتن حلقوی کخ و آنتن حلقوی دایره ای [10]پترن تشعشعی برای این دو آنتن حلقهای در شکل (2-5) نشان داده شده است. شکل (2-5-a) پترن تشعشعی را در دو صفحه XZ و YZ نشان می دهد و شکل (2-5-b) پترن تشعشعی را در صفحه XY نشان می دهد. باید توجه داشت که در تمامی این حالات آنتن در صفحه XY قرار دارد. سمت گرایی آنتن حلقوی دایره ای برابر با 1.63db می باشد. این در حالی است که برای آنتن حلقوی کخ، این مقدار به 1.53db تغییر می یابد. یک تقریب مرتبه اول برای محاسبه سمت گرایی آنتن حلقوی دایره ای کوچک، به صورت زیر می باشد.
D=4πUmaxP--=32=1.76db (9-2)
شکل (2-5) : پترن تشعشعی برای آنتن حلقوی کخ و آنتن حلقوی دایروی [10]که در عبارت فوق Umax حداکثر تشعشع و P-- کل توان تشعشعی می باشد. سطح مؤثر روزنه برای آنتن حلقوی دایره ای برابر است با :
Aem=λ24πD=0.119λ2 (10-2)با توجه به دو رابطه (2-9) و (2-10) ضریب بازده روزنه برای آنتن حلقوی دایره ای برابر است با :
AemS=0.119λ2π0.0414λ2=22.12 (11-2)این مقادیر بیانگر این است که، سطح مؤثر آنتن دایروی 12/22 برابر بزرگتر از سطح واقعی آن می باشد. برای آنتن فرکتالی کخ ضریب بازدهی روزنه و سطح مؤثر آنتن برابر است با :
Aem=λ24πD=0.113λ2 (12-2)AemS=0.113λ22.050.0414λ2=32.21 (13-2)با توجه به مطالب فوق، ضریب بازدهی روزنه برای آنتن فرکتال کخ 5/1 برابر آنتن حلقوی دایره ای متناظر با آن می باشد، لذا برای رسیدن به گین یکسان برای این دو آنتن، به سطح مقطع کوچکتری در آنتن های فرکتالی در مقایسه با آنتن های حلقوی ساده نیاز می باشد.
با توجه به اینکه پترن تشعشعی برای آنتن حلقوی کوچک همانند آنتن دوقطبی (مغناطیسی) می باشد، لذا در صورتی که محیط حلقه از 0.5λ افزایش یابد با پدیده ایجاد گلبرگ فرعی در پترن تشعشعی آنتن مواجه خواهیم شد.
2-3-2 آنتن فرکتال حلقوی مینکوسکییکی دیگر از آنتن های فرکتالی حلقوی رایج، آنتن مینکوسکی می باشد. در این بخش ضمن بررسی ساختار این آنتن، از طریق مقایسه این آنتن با آنتن مربعی متناظرش، به تفصیر خواص آن می پردازیم. شکل (2-6) آنتن حلقوی مینکوسکی را در چهار تکرار اول نشان می دهد. علاوه بر این در این شکل می توانید عملگر تولید ساختار فرکتالی مینکوسکی را نیز مشاهده کنید. تفاوت اصلی بین ساختار فرکتالی مینکوسکی با ساختار کخ در نوع حلقه ابتدایی آنها می باشد، به طوری که حلقه ابتدایی در ساختار مینکوسکی یک مربع، و در ساختار کخ یک مثلث می باشد.

شکل (2-6) : روند تولید حلقه فرکتالی مینکوسکی برای چهار تکرار اول و عملگر مینکوسکی [10]در عملگر مینکوسکی، طول دو جزء اول و آخر و جزء میانی، هر کدام برابر 13 طول عنصر اولیه می باشند و طول دو جزء دیگر عملگر بسته به کاربرد ساختار، متغیر بوده و به آنها عرض فرورفتگی می گویند.
تغییر عرض فرورفتگی، باعث ایجاد تغییر در ابعاد شکل فرکتالی منتجه شده که این خود باعث تغییر خواص آنتن فرکتالی میشود. به عنوان مثال، افزایش عرض فرورفتگی باعث افزایش ابعاد فرکتال میگردد که نتیجه آن افزایش امپدانس ورودی آنتن میباشد. در ادامه این بخش ابتدا، مقایسهای بین تغییرات فرکانس رزنانس آنتن فرکتالی مینکوسکی و آنتن مربعی خواهیم داشت.
برای این منظور پارامتر فاکتور مقیاس را معرفی می کنیم. این پارامتر معیاری برای مقایسه فرکانس رزنانس آنتن فرکتالی، با آنتن مربعی با عرض λ4 می باشد. شکل (2-7) نتایج مقایسه این دو حلقه را در تکرارهای مختلف و عرض فرورفتگی مختلف، برای فاکتور مقیاس نشان می دهد.

شکل (2-7) : تغییرات فاکتور مقیاس برای تکرارها و عرض فرورفتگی های مختلف آنتن مینکوسکی [10]همان طور که در این شکل مشاهده می کنید، با افزایش عرض فروروفتگی، تغییرات فرکانس رزنانس مینکوسکی افزایش می یابد. که این نتیجه افزایش طول ساختار فرکتالی، بر اثر افزایش عرض فرورفتگی می باشد.
شکل (2-8) پترن تشعشعی را برای آنتنهای فرکتالی مینکوسکی با درجات تکرار و عرضهای فرورفتگی مختلف نشان می دهد. با توجه به اینکه آنتن ها در صفحه XZ قرار دارند، پترن تشعشعی در صفحه YZ رسم شده است. نتایج حاصل از اندازه گیری سمت گرایی آنتن حلقوی در جدول (2-1) آمده است. همان گونه که در این جدول مشاهده می کنید، سمت گرایی آنتن حلقوی، پس از فرکتالی شدن کاهش ناچیزی پیدا می کند و این در حالی است که ضریب بهره روزنه به شدت افزایش می یابد. یا به عبارتی دیگر، برای رسیدن به سطح مؤثر مشخص، در ساختار فرکتالی نیاز به سطح واقعی بسیار کمتری نسبت به حلقه مربعی، می باشد. برای مثال برای یک حلقه مربعی ساده ضریب بهره روزنه 254/2 می باشد در حالی که برای حلقه فرکتالی مینکوسکی در تکرار دوم و عرض فرورفتگی 9/0 ، ضریب بهره روزنه برابر با 59/11 می باشد. مقایسه سمت گرایی این دو آنتن نیز، تلفات سمت گرایی 1.28db را برای آنتن فرکتالی، در مقایسه با آنتن مربعی نشان می دهد. اگرچه کاهش سمت گرایی نامطلوب می باشد، اما از آنجا که سطح اشغالی آنتن پس از فرکتالی شدن 7 برابر کمتر شده است، این مقدار کاهش سمت گرایی قابل اغماض می باشد.

شکل (2-8) : پترن تشعشعی آنتن فرکتالی مینکوسکی با درجات تکرار و عرض های فرورفتگی مختلف [10]جدول (2-1) : سمت گرایی و سطح مؤثر آنتن های فرکتالی مینکوسکی با درجات تکرار و عرض های فرورفتگی مختلف [10]Indentation Iteration Width Area D0 (dB)AemAemS0.200 1 0.2680 λ0.0654λ23.21 0.1666λ22.547
2 0.2640 λ0.06005λ23.12 0.1632λ22.718
0.333 1 0.2543 λ0.05510λ23.02 0.1595λ22.895
2 0.2462 λ0.04665λ22.87 0.1541λ23.303
0.500 1 0.2379 λ0.04400λ22.82 0.1523λ23.462
2 0.2240 λ0.03284λ22.61 0.1451λ24.420
0.666 1 0.2222 λ0.03477λ22.66 0.1468λ24.223
2 0.2025 λ0.02212λ22.40 0.1383λ26.252
0.800 1 0.2097 λ0.02833λ22.56 0.1435λ25.064
2 0.1862 λ0.01549λ22.27 0.1342λ28.662
0.900 1 0.2010 λ0.2423λ22.51 0.1418λ25.853
2 0.1731 λ0.01132λ22.17 0.1312λ211.59
Square 0 0.2795 λ0.07812λ23.45 0.1761λ22.254
شکل (2-9) و شکل (2-10) آنتن های طراحی شده فوق را برای دو حالت تغذیه در حضور صفحه زمین و تغذیه هم صفحه نشان می دهند.

شکل (2-9) : آنتن های حلقوی فرکتالی مینکوسکی و حلقوی مربعی در حضور صفحه زمین [10]
شکل (2-10) : آنتن های حلقوی فرکتالی مینکوسکی و حلقوی مربعی با تغذیه هم صفحه [10]نتایج حاصل از اندازه گیری تلفات بازگشتی برای آنتن های شکل (2-9)، در شکل (2-11) نشان داده شده است. در این شکل امپدانس مرجع برابر با 50Ω می باشد. همان طور که در این شکل مشاهده می کنید، فرکانس رزونانس تقریباً ثابت نگه داشته شده است، اما در این حالت سطح اشغالی توسط آنتن فرکتالی بسیار پایین تر از آنتن مربعی می باشد. شکل (2-12) پترن تشعشعی این دو آنتن را نشان می دهد. این پترن، پترن صفحه عمود بر آنتن می باشد. نتایج اندازه گیری برای ساختارهای نشان داده شده در شکل (2-10)، بسیار شبیه به نتایج به دست آمده برای ساختارهای شکل (2-9) می باشد.
2-4 آنتن های سه بعدی درختیدر اینجا ضمن بررسی ساختارهای درختی سه بعدی، با چندین رابطه مهم بین خواص تشعشعی این آنتن ها و ساختار اصلی آنها، آشنا می شویم. بدون شک توجه به این روابط، ما را در طراحی صحیح این آنتن ها برای کاربرد مورد نظر، کمک می کند. در ادامه این بخش با چندین مثال از کاربردهای آنتن های درختی سه بعدی، به منظور کوچک کردن ابعاد آنتن های دو قطبی و تک قطبی آشنا می شویم. برای مثال درک نمونه از آنتن های دوقطبی درختی سه بعدی که در این بخش معرفی می گردد، کاهش 57% در ابعاد آنتن و افزایش 70% در پهنای باند را داریم.
2-4-1 مولد ساختار فرکتالی درختیاز آنجا که فرکتال ها ساختارهای خود متشابهی می باشند، لذا به منظور تولید آنها نیاز به تکرار یک مولد می باشد. برای یک ساختار درختی، مولد به صورت اتصالی از چند شاخه کوچک که به بچه شاخه ها معروف می باشند، تشکیل شده است. این شاخه ها از تقسیم یک شاخه اصلی که به شاخه والد معروف می باشد، بدست می آیند.
به طور کلی سه خانواده مختلف آنتن های فرکتالی سه بعدی درختی به منظور ایجاد یک دوقطبی مورد استفاده قرار می گیرند. این سه خانواده مختلف، آنتن های درختی 4 شاخه ای، آنتن های درختی 6 شاخه ای و آنتن های درختی 8 شاخه ای می باشند. به طور کلی آنتن های 4 شاخه ای در این بخش به عنوان یک معیار برای مقایسه آنتن های 6 شاخه ای و 8 شاخه ای مورد استفاده قرار می گیرند. ساختار کلی یک آنتن 4 شاخه ای در چهار تکرار اول آن در شکل (4-1) نشان داده شده است. در جدول (4-1) نیز پارامترهای تولید، برای یک آنتن درختی 4 شاخه ای داده شده است.

شکل (2-11) : چهار تکرار اول برای آنتن های درختی 4 شاخه ایجدول (2-2) : پارامترهای طراحی آنتن درختی 4 شاخه ایRotation Elevation Scale Branch
0°30°0.5 1
90°30°0.5 2
180°30°0.5 3
270°30°0.5 4
براساس پارامترهای داده شده در جدول فوق، مولدهای ساختاری آنتن های درختی 4 شاخهای دارای خواص زیر می باشند. اول اینکه بچه شاخه ها از نظر طول به اندازه نصف شاخه های مولد والد می باشند. دوم اینکه بچه شاخه ها دارای زاویه 30 درجه می باشند. همچنین تمامی بچه شاخهها دارای زاویه 90 درجه نسبت به هم می باشند. برای آنتن های درختی 6 شاخهای زاویه بین بچه شاخهها به 60 درجه و برای آنتنهای درختی 8 شاخهای، زاویه بین بچه شاخهها به 45 درجه کاهش مییابد. جدول (4-2) پارامترهای طراحی را برای آنتن 6 شاخهای و 8 شاخهای را نشان می دهد.
در ادامه این بخش به مقایسه نتایج حاصل از شبیه سازی پارامترهای آنتن 6 شاخه ای و 8 شاخه ای با آنتن 4 شاخه ای می پردازیم. نکته قابل توجه در این مقایسه، یکسان بودن فاصله منبع تا راس برای تمامی آنتن ها می باشد، که این مقدار برابر با cm 5/7 انتخاب شده است. نکته دوم در این مقایسه این است که تمامی آنتن ها از مرکز تغذیه می شوند. با توجه به فرضیات فوق، نتایج حاصل از شبیه سازی برای تلفات بازگشتی آنتن های 8 شاخه ای و 6 شاخه ای برای دو تکرار اول، به همراه چهار تکرار اول آنتن 4 شاخه ای، تماماً در شکل (4-2) نشان داده شده است.
نتایج نشان داده شده در این شکل نشان می دهد که در تمامی آنتن ها با افزایش درجه تکرار، فرکانس های رزنانس کاهش می یابند.
جدول (2-3) : پارامترهای طراحی آنتن درختی 6 شاخه ای و 8 شاخه ای8- Branch Class 6- Branch Class
Rotation
(Ф)Elevation
(θ)Scale Branch Rotation
(Ф)Elevation
(θ)Scale Branch
0°30°0.5 1 0°30°0.5 1
45°30°0.5 2 60°30°0.5 2
90°30°0.5 3 120°30°0.5 3
135°30°0.5 4 180°30°0.5 4
180°30°0.5 5 240°30°0.5 5
225°30°0.5 6 300°30°0.5 6
270°30°0.5 7 315°30°0.5 8
شکل (2-12) : مقایسه پارامتر S11 برای آنتن های 4 شاخه ای، 6 شاخه ای و 8 شاخه ایاز طرفی دیگر نتایج نشان میدهد که آنتن 6 شاخهای دارای فرکانسهایی به اندازه MHz 100 از آنتن 4 شاخهای بوده و این در حالی است که آنتن 8 شاخهای دارای فرکانسهایی به اندازه MHz150 پایین تر از آنتن 4 شاخهای می باشد.
نکته قابل توجه دیگر این است که برای آنتن های 6 شاخه ای و 8 شاخه ای تکرار سوم وجود ندارد. که این بدلیل تقاطع بچه شاخه ها در تکرار سوم این آنتن می باشد. اما با این حال آنتن های 6 و 8 شاخه ای در تکرارهای پایین، نسبت به تکرار های بالای آنتن های 4 شاخه ای عملکرد بهتری دارند، یا به عبارتی دیگر ساختارهای 6 و 8 شاخه ای در تکرارهای پایین، نسبت به تکرارهای بالای آنتن های 4 شاخه ای عملکرد بهتری دارند، یا به عبارتی دیگر ساختارهای 6 و 8 شاخه ای در تکرارهای پایین، قابلیت فشرده سازی بیشتری را برای آنتن، در مقایسه با ساختارهای 4 شاخه ای فراهم می کنند. از طرفی دیگر بدلیل کمتر بودن تعداد اتصالات در آنتن های 6 و 8 شاخه ای در تکرارهای پایین، نسبت به آنتن های 4 شاخه ای در تکرارهای بالا، ساخت آنتن های 6 و 8 شاخه ای راحت تر می باشد.
علیرغم پیچیدگی آنتن های فرکتالی درختی سه بعدی، پترن آنها به پترن آنتن دوقطبی معمولی بسیار نزدیک می باشد. شکل (4-3) مقایسه ای را بین پترن تشعشعی برای آنتن های درختی 4، 6 و 8 شاخه ای با آنتن دوقطبی معمولی نشان می دهد. پلاریزاسیون تداخلی برای پترن تشعشعی این آنتنها بسیار ناچیز(کمتر از dB150-) می باشد.

شکل (2-13) : پترن تشعشعی برای آنتن های درختی 4، 6 و 8 شاخه ای2-4-2 مولد ساختار فرکتالی درختی با زاویه متغیردر این قسمت هدف بررسی تأثیر تغییرات زاویه بین شاخه ای θ بر روی خواص تشعشعی آنتن های 4 شاخه ای در تکرار دوم و سوم می باشد. در این آنتن ها زاویه بین شاخه ای از 10 تا 90 درجه در تغییر است. در این حالت سایر پارامترهای طراحی برای این آنتن ثابت در نظر گرفته می شود. شکل (2-14) ساختار چند نمونه از این آنتن ها را نشان می دهد. جدول (2-4) نیز پارامترهای طراحی را برای ساختارهای شکل (2-14) نشان می دهد.
نتایج حاصل از شبیه سازی نسبت موج ایستان (VSWR) برای آنتن 4 شاخه ای برای تکرارهای دوم و سوم، به ازای مقادیر مختلف زاویه بین شاخه ای، در شکل (2-15) نشان داده شده است. همان طور که در این شکل مشاهده می کنید، تغییرات نسبت موج ایستان برای این آنتن به ازای فرکانس های مختلف، روند یکسانی ندارد. به عبارتی دیگر در زاویه بین شاخه ای نزدیک 50 درجه، روند تغییر فرکانس به منظور افزایش VSWR، تغییر می کند.
پترن تشعشعی برای آنتن ها نسبت به تغییرات زاویه بین شاخه ای، ثابت بوده و شبیه شکل (2-13) می باشد.

شکل (2-14) : آنتن 4 شاخه ای در تکرار سوم، برای چند زاویه بین شاخه ای متغیرجدول (2-4) : پارامترهای طراحی برای آنتن 4 شاخه ای در تکرار سوم94869075565Rotation
(Ф)Elevation
(θ)Scale Branch
0°10°→90°0.5 1
90°10°→90°0.5 2
180°10°→90°0.5 3
270°10°→90°0.5
4
00Rotation
(Ф)Elevation
(θ)Scale Branch
0°10°→90°0.5 1
90°10°→90°0.5 2
180°10°→90°0.5 3
270°10°→90°0.5
4

شکل (2-15) : نسبت موج ایستان برای آنتن 4 شاخهای برای تکرارهای دوم و سوم برای زوایای بین شاخهای مختلف2-4-3 ساختارهای فرکتالی درختی مرکبهمان طور که در قبل مشاهده کردیم، آنتن درختی 8 شاخه ای، در حالت عادی تکرارهای سوم و بالاتر را دارا نمی باشد. برای رفع این مشکل معمولاً از یک سری تغییرات بر روی مولد ساختار 8 شاخه ای استفاده می شود.
یک نمونه از آنتنهایی که برای رفع این مشکل مورد استفاده قرار میگیرند. آنتنهای مرکب میباشند که در ادامه مورد بررسی قرار میگیرند. شکل (2-16) آنتن درختی 8 شاخهای مرکب را برای سه تکرار اول نشان میدهد. جدول (2-4) پارامترهای طراحی را برای آنتن درختی 8 شاخهای مرکب، نشان میدهد. در این آنتن، برخلاف آنتن 8 شاخهای بخش قبل، طول تمامی بچه شاخهها برابر نمیباشد، بلکه بچه شاخهها در زوایای (0 و 90 و 180 و 270 درجه) دارای طولی برابر با نصف طول شاخه والد بوده و بچه شاخهها در زوایای (45 و 135 و 225 و 315 درجه) دارای طولی برابر با 4/0 طول شاخه والد میباشند. لذا در ساختار 8 شاخهای مرکب، آنتن، ترکیبی از بچه شاخهها با طولهای نابرابر میباشد. سایر پارامترهای طراحی برای آنتن 8 شاخهای مرکب مانند آنتن 8 شاخهای در بخش قبل میباشد. نتایج حاصل از شبیه سازی برای پارامتر S11 آنتن 8 شاخه ای مرکب در شکل (2-17) نشان داده شده است. همان طور که در این شکل مشاهده می کنید، در این آنتن یک کاهش در فرکانس های رزونانس در مقایسه با آنتن 4 و 6 شاخه ای متناظر، دیده می شود. پترن تشعشعی برای آنتن 8 شاخه ای مرکب نیز همانند دو قطبی معمولی می باشد.

شکل (2-16) : آنتن درختی 8 شاخه ای مرکب، برای سه تکرار اولجدول (2-5) : پارامترهای طراحی برای آنتن درختی 8 شاخه ای مرکبRotation(Ф)Elevation(θ)Scale
Branch
0°30°0.5 1
45°30°0.4 2
90°30°0.5 3
135°30°0.4 4
180°30°0.5 5
225°30°0.4 6
270°30°0.5 7
315°30°0.4 8

شکل (2-17) : نتایج حاصل از شبیه سازی برابر پارامتر S11 آنتن 8 شاخه ای مرکب2-4-4 آنتن های درختی با شاخه مرکزیدر این بخش با نمونهای از آنتنهای درختی آشنا میشویم که در آنها به منظور افزایش چگالی شاخههای مرکزی استفاده شده است. استفاده از شاخه مرکزی باعث کاهش فرکانس رزنانس در آنتنهای درختی میگردد. در این بخش دو ساختار فرکتالی درختی با شاخه مرکزی و بدون شاخه مرکزی با هم مقایسه میشوند. در این حالت آنتن درختی انتخاب شده، آنتن 4 شاخهای می باشد. ساختار کلی این آنتنها در شکل (2-18) نشان داده شده است و پارامترهای طراحی این آنتن در جدول (2-5) آمده است. مقایسه نتایج حاصل از شبیهسازی برای آنتن درختی با شاخه مرکزی، یک جابجایی فرکانسی منفی را برای فرکانسهای رزنانس، در مقایسه با آنتن درختی بدون شاخه مرکزی نشان میدهد. البته میزان تلفات بازگشتی برای آنتن درختی با شاخه مرکزی، به مقدار ناچیزی افزایش یافته است. این نتایج را در شکل (2-19) مشاهده میکنید. براساس نتایج داده شده در این شکل، میزان کاهش فرکانس برای آنتن درختی با شاخه مرکزی برابر با MHz60، و میزان افزایش پارامتر S11 نیز برابر با dB1 تا dB3 میباشد. پترن تشعشعی برای آنتن ها نیز شبیه به آنتنهای دوقطبی ساده میباشد.
جدول (2-6) : پارامترهای طراحی آنتن 4 شاخه ای درختی، با شاخه مرکزی و بدون شاخه مرکزی8- Branch, 45° Tree with Center stub 4- Branch,45° Tree
Rotation
(Ф)Elevation
(θ)Scale Branch Rotation
(Ф)Elevation
(θ)Scale Branch
45°45°0.5 1 45°45°0.5 1
135°45°0.5 2 135°45°0.5 2
225°45°0.5 3 225°45°0.5 3
315°45°0.5 4 315°45°0.5 4
45°0°0.5 5
شکل (2-18) : آنتن های درختی 4 شاخه ای با شاخه مرکزی و بدون شاخه مرکزی
شکل (2-19) : نتایج حاصل از شبیه سازی برای پارامتر S11 آنتن 4 شاخه ای با شاخه مرکزی و بدون شاخه مرکزی2-4-5 آنتن درختی تک قطبی با بارگزاری راکتیودر این بخش به بررسی آنتن هایی می پردازیم که با استفاده از بارگزاری راکتیو در آنها امکان ایجاد چندین فرکانس رزنانس فراهم می شود. این بار راکتیو به صورت اتصال باز برای بازه ای از فرکانس و به صورت اتصال کوتاه برای بازه دیگری از فرکانس عمل می کند. که این ویژگی سبب می گردد که این آنتن ها بتوانند به صورت خود ساخته، طول الکتریکی خود را تغییر دهند. استفاده از نظریه فوق برای ساختارهای فرکتالی درختی باعث ایجاد آنتنی می شود که نه تنها در بیش از یک فرکانس رزنانس می کند، بلکه از لحاظ ابعاد نیز کوچک می باشد.
اولین ساختاری که در این بخش مورد بررسی قرار می گیرد، ساختار درختی 4 شاخه ای می باشد که بر روی شاخه اصلی آن یک اتصال LC موازی قرار دارد. در این حالت در فرکانس های پایین به دلیل اتصال کوتاه شدن مدار LC موازی، طول آنتن برابر طول یک آنتن درختی 4 شاخه ای ساده می باشد و این در حالی است که برای فرکانس های بالا به دلیل اتصال باز شدن مدار LC موازی، طول آنتن تنها برابر با طول شاخه اصلی آنتن درختی 4 شاخه ای می باشد. با توجه به توضیحات فوق این آنتن درای کاری می باشد. به منظور ایجاد آنتن سه بانده می توان از دو اتصال LC موازی، به صورت سری نسبت به هم بر روی شاخه اصلی استفاده کرد. شکل (2-20) ساختار کلی آنتن 4 شاخه ای درجه سوم را برای بارگزاری راکتیو، در دو حالت دو بانده و سه بانده نشان می دهد. جدول (2-7) نیز محل قرار گرفتن بارها را نشان می دهد.
مقادیر S11 برای این ساختارها در شکل (2-21) نشان داده شده است. همان طور که در این شکل مشاهده می کنید، استفاده از المان بارگزاری، علاوه بر ایجاد آنتن چند بانده باعث ایجاد کاهش در فرکانس رزنانس نیز می گردد. که این خود یکی دیگر از امتیازات استفاده از این ساختار نسبت به آنتن درختی معمولی می باشد.
شکل (2-22) پترن تشعشعی را برای تمامی فرکانس های رزنانس در آنتن های 4 شاخه ای تک بانده، دوبانده و سه بانده نشان می دهد. همان طور که در این شکل مشاهده می کنید پترن تشعشعی برای آنتن بدون بارگزاری در فرکانس رزنانس MHz910 تنها دارای یک گلبرگ اصلی می باشد. فرکانس رزنانس دوم در این آنتن، که ناشی از مد رزنانسی دوم می باشد، برابر با MHz6100 بوده و پترن آن دارای دو گلبرگ اصلی می باشد. برای آنتن درختی با یک المان بارگزاری اولین فرکانس های رزنانس برابر با MHz 800 و MHz2460 می باشند که پترن تشعشعی برای این دو فرکانس بسیار به هم نزدیک می باشند. دومین فرکانس رزنانس آنتن درختی با یک المان بارگزاری نیز برابر با MHz 5240 می باشند. پترن تشعشعی برای این سه فرکانس بسیار به هم نزدیک می باشند.
در ادامه به بررسی یک آنتن تک قطبی 4 شاخه ای با زاویه θ=45° در تکرار سوم می پردازیم. در این ساختار از اتصالات LC سری، برای بارگزاری آنتن استفاده شده است. نکته قابل توجه در این ساختار این است که اتصالات سری LC می توانند بر روی هر دو نوع شاخه اصلی و یا بچه شاخه قرار گیرند. بطور کلی قابلیت قرارگیری کلیدهای LC بر روی قسمت های مختلف ساختار درختی، باعث ایجاد درجات آزادی زیادی در طراحی این آنتن ها می شود. در واقع به هنگامی که المان LC بر روی شاخه اصلی قرار دارد، فرکانس های رزنانس آنتن چند بانده در فاصله زیادی نسبت به هم قرار دارند.

شکل (2-20) : آنتن 4 شاخه ای درجه سوم بارگزاری شده، در دو حالت دو بانده و سه باندهجدول (2-7) : پارامترهای طراحی آنتن 4 شاخه ای درجه سوم بارگزاری شده، در دو حالت دوبانده و سه باندهDual- band Loaded Fractal Tree Monopole Antenna
C L Distance
From Ground Plane Branch
Length Position
Configuration Load
#
0.5pF 10nH 1.95 cm 2 cm Base Parallel 1
Tri- band Loaded Fractal Tree Monopole Antenna
C L Distance
From Ground Plane Branch
Length Position
Configuration Load
#
0.5pF 10nH 1.95 cm 2 cm Base Parallel 1
50nF 50μH 1.65 cm 2 cm Base Parallel 2

شکل (2-21) : پارامتر S11 آنتن 4 شاخه ای درجه سوم بارگزاری شده
شکل (2-22) : پترن تشعشعی آنتن 4 شاخه ای درجه سوم بارگزاری شدهعلت این اثر نیز، اختلاف زیاد طول الکتریکی آنتن برای فرکانس های رزنانس مختلف می باشد. به همین ترتیب، با قراردادن المان LC بر روی شاخه فرعی، این امکان به طراح داده می شود که بسته به نیاز خود فاصله بین باندهای مختلف آنتن چند بانده درختی را کاهش دهد. ساختار کلی آنتن 4 شاخه ای بارگزاری شده با المان های LC سری، در شکل (2-23) نشان داده شده اند. جدول (2-7) نیز پارامترهای طراحی را برای این آنتن نشان می دهد.
نتایج شبیه سازی، وجود سه فرکانس رزنانس MHz330 و MHz 800 و MHz2220 را برای این آنتن نشان می دهد. که این نتایج در شکل (2-24) نشان داده شده است. در این آنتن از یک شبکه تطبیق به منظور ایجاد تطبیق در تمامی فرکانس ها استفاده شده است. ساختار کلی این شبکه در شکل (2-25) نشان داده شده است. جهت کسب اطلاعات بیشتر در خصوص نحوه انتخاب این شبکه می توانید به مرجع مراجعه کنید. در نهایت نیز پترن تشعشعی برای این آنتن در شکل (4-26) نشان داده شده است. همان طور که در این شکل مشاهده می کنید پترن تشعشعی در هر سه فرکانس رزنانس این آنتن دارای یک گلبرگ می باشد.

شکل (2-23) : ساختار آنتن 4 شاخه ای بارگزاری شده با 5 المان LC سریجدول (2-8) : پارامترهای طراحی آنتن 4 شاخه ای بارگزاری شده با 5 المان LC سریLoaded Tri- band Center Stubbed Fractal Tree Monopole Antenna
C L Distance
From Base
Of Branch Branch
Length Position Configuration Load
#
50nF 50nH 0.1 cm 1 cm Center Stub 1st Stage Series 1
5nF 600nH 0.9 cm 1 cm Outer branch
1st Stage Series 2
5nF 600nH 0.9 cm 1 cm Outer branch
1st Stage Series 3
5nF 600nH 0.9 cm 1 cm Outer branch
1st Stage Series 4
5nF 600nH 0.9 cm 1 cm Outer branch
1st Stage Series 5

شکل (2-24) : پارامتر S11 آنتن 4 شاخه ای بارگزاری شده با 5 المان LC سری
شکل (2-25) : شبکه تطبیق برای آنتن 4 شاخه ای بارگزاری شده با 5 المان LC سری
شکل (2-26) : پترن تشعشعی برای آنتن 4 شاخه ای بارگزاری شده با 5 المان LC سریتا اینجا با چند نمونه از آنتن های درختی سه بعدی آشنا شدیم. استفاده اصلی این ساختارها جهت کوچک کردن ابعاد آنتن های دوقطبی و یا تک قطبی می باشد. در ادامه این فصل با ساختارهای فرکتالی سه بعدی هیلبرت آشنا می شویم.
2-5- آنتن های سه بعدی هیلبرتدر این بخش با یکی دیگر از آنتن های فرکتالی سه بعدی آشنا می شویم. ویژگی اصلی این آنتن ها وجود گین قابل قبول برای باندهای مختلف می باشد. پهنای باند امپدانسی برای این ساختارها به اندازه ای می باشد که می توان از آن ها جهت پوشش سیستم های DCS و PCS و UMTS استفاده نمود. در این بخش با دو نمونه از ساختارهای سه بعدی هیلبرت آشنا می شویم. که ضمن بررسی خواص آنها با نتایج حاصل از شبیه سازی و اندازه گیری این ساختارها نیز آشنا می شویم.
2-5-1 ساختارهای هیلبرت سه بعدی معمولی
اولین ساختار هیلبرتی که مورد بررسی قرار می دهیم، ساختار هیلبرت معمولی می باشد. نمای کلی این آنتن ها در تکرارهای اول، دوم و سوم در شکل (2-27) نشان داده شده است. این آنتن ها دارای ضخامت mm 2/0 و عرض mm 10 و mm 5 و mm5/2 به ترتیب برای تکرارهای اول، دوم و سوم می باشند. از طرفی دیگر اندازه طول هر المان آنتن سه بعدی هیلبرت در شکل (2-27)، یعنی پارامترهای L1 , L2, L3، برابر با mm10 و mm20 و mm40 می باشد و عرض هر المان نیز (W1,W2,W3)، برابر با mm5/2 و mm 5 و mm10 می باشد. این آنتن ها در ارتفاع mm3 از صفحه زمینی با ابعاد mm70 mm ×70 قرار گرفته اند.
تغذیه این آنتن ها نیز از طریق یک کابل هم محور در فاصله mm5/2 از ابتدای بازوهای آزاد برای تکرار اول و دوم و در فاصله mm 5/1 برای تکرار سوم، فراهم می شود. همان طور که در شکل (2-27) نشان داده شده است، آنتن فرکتالی سه بعدی هیلبرت در تکرار سوم در دو حالت مورد بررسی قرار گرفته است. در حالت اول آنتن در فضای آزاد قرار دارد و در حالت دوم آنتن در داخل یک استوانه دی الکتریک قرار گرفته است. در ادامه نتایج حاصل از شبیه سازی این دو آنتن مورد بررسی قرار می گیرد.
2-5-1-1 آنتن هیلبرت سه بعدی معمولی در فضای آزادشکل (2-28) نتایج حاصل از شبیه سازی پارامتر S11، را برای این آنتن را در تکرارهای مختلف نشان می دهد.

شکل (2-27) : آنتن هیلبرت سه بعدی معمولی در سه تکرار اول
شکل (2-28) : پارامتر S11 برای آنتن هیلبرت سه بعدی معمولی در سه تکرار اولبراساس آنچه در شکل (2-28) مشاهده میکنید، تعداد فرکانسهای رزنانس برای آنتن هیلبرت معمولی با افزایش درجات تکرار افزایش مییابد. نکته قابل توجه در این شکل این است که فرکانسهای رزنانس در این آنتن همانند آنتن سرپینسکی، متناوب لگاریتمی نمیباشند. شکل (2-29) نیز پترن تشعشعی را برای این آنتن در فرکانس GHz 5 در تکرارهای مختلف نشان می دهد. در این حالت گین آنتن برای تکرارهای اول، دوم، و سوم به ترتیب برابر با 3dBi و 7dBi و 6dBi می باشد. همان طور که در شکل (2-29) مشاهده می کنید، آنتن هیلبرت معمولی دارای پترن نامتقارن می باشد که این ویژگی به دلیل خاصیت نامتقادن ساختار آنتن هیلبرت می باشد. نکته دوم اینکه، با توجه به شکل (2-28) این آنتن دارای تلفات بازگشتی زیادی در اغلب باندهای رزنانسی می باشد. یک راه حل ساده برای رفع این مشکل استفاده از آنتن هیلبرت سه بعدی معمولی در داخل استوانه دی الکتریک، می باشد، که در ادامه مورد بررسی قرار می گیرند.

شکل (2-29) : پترن تشعشعی برای آنتن هیلبرت معمولی در فرکانس GHz5، برای تکرار اول (a) و برای تکرار دوم (b) و برای تکرار سوم (c)2-5-1-2 آنتن هیلبرت سه بعدی معمولی در داخل استوانه دی الکتریکهمان طور که اشاره شد، هدف از استفاده آنتن هیلبرت معمولی در داخل استوانه دی الکتریک، کاهش تلفات بازگشتی می باشد. در این بخش نتایج حاصل از بررسی آنتن هیلبرت معمولی در تکرار سوم را، که در داخل یک استوانه ای از دی الکتریک قرار دارد مورد بررسی قرار می دهیم. ضرایب دی الکتریک برای ماده داخل استوانه دو مقدار 07/1 و 25/2 انتخاب شده است. شکل (2-30) نتایج حاصل از شبیه سازی این آنتن ها را نشان می دهد. همان طور که در این شکل مشاهده می کنید، هنگامی که استوانه دارای ضریب دی الکتریک 07/1 می باشد، عملکرد آنتن در فرکانس های پایین مانند حالت فضای آزاد می باشد. این درحالی است که برای استوانه دارای ضریب دی الکتریک 25/2، آنتن باند فرکانسی بالای خود را در فضای آزاد از دست خواهد داد و به جای آن در فرکانس های پایین دارای دو باند می گردد.

شکل (2-30) : پارامتر S11 برای آنتن هیلبرت سه بعدی معمولی در تکرار سوم در فضای آزاد و محیط دی الکتریک2-5-2 آنتن هیلبرت سه بعدی معکوسیکی دیگر از ساختارهای هیلبرت سه بعدی، آنتن های هیلبرت معکوس می باشند، که نمای کلی آنها در شکل (2-31) نشان داده شده است. در این ساختارها بدلیل تقارن آنتن و قرار گرفتن محل تغذیه در مرکز، پترن تشعشعی این آنتن ها در مقایسه با آنتن های هیلبرت معمولی دارای کیفیت بهتری می باشد. نتایج حاصل از شبیه سازی این آنتن ها برای سه تکرار اول در شکل (2-32) نشان داده شده است. شکل (2-33) نیز پترن تشعشعی برای این آنتن در سه تکرار اول نشان می دهد. با توجه به این نتایج، گین بدست آمده برای این آنتن در سه تکرار اول به ترتیب برابر با 8dBi و 6dBiو 6dBi می باشد. که مقادیر بدست آمده بهبود گین این آنتن را در مقایسه با آنتن هیلبرت معمولی نشان می دهد.
همانگونه که در این بخش مشاهده کردید، با چند نمونه از آنتن های فرکتالی سه بعدی هیلبرت آشنا شدیم. نتایج بدست آمده در این بخش نشان می دهد که از این آنتن ها می توان برای کاربردهای چند بانده که نیاز به گین بیشتری می باشد استفاده نمود. مطمئناً به منظور افزایش پهنای باند امپدانسی و کاهش ابعاد این آنتن ها، نیاز به تغییرات بیشتری در این ساختارها می باشد. برای کسب اطلاعات بیشتر در این مورد می توان به مراجع 29 و 30 رجو ع کرد.

شکل (2-31) : آنتن هیلبرت سه بعدی معکوس در سه تکرار اول
شکل (2-32) : پارامتر S11 برای آنتن هیلبرت سه بعدی معکوس در سه تکرار اول
شکل (2-33) : پترن تشعشعی برای آنتن هیلبرت معکوس در فرکانس GHz5، برای تکرار اول (a)، تکرار دوم (b) و تکرار سوم (c)فصل سومآنتن های مایکرو استریپ3-1 مقدمهدر این فصل با آنتن های مایکرواستریپ ویژگی، عملکرد و میدان تشعشعی در این آنتن ها آشنا می شویم.
در ادامه روش های تغذیه آنتن مایکرو استریپ اشاره خواهیم کرد و سپس روش های کاهش ابعاد آنتن مایکرواستریپ را به طور جامع مورد بررسی قرار می گیرد.
3-2 تعریف آنتن های مایکرو استریپیک آنتن مایکرواستریپ، همان طور که در شکل(3-1) نشان داده شده است، شامل یک عایق است که در یک طرف آن، صفحه زمین و در طرف دیگر آن، صفحه تشعشعی قرارگرفته است که این صفحه تشعشع کننده هادی، شکلهای مختلفی میتواند داشته باشد ولی معمولا شکلهایی مورد استفاده قرار میگیرند که بتوان به راحتی مورد تحلیل قرار داد.
جنس هادی، معمولا مس و طلا انتخاب میشود و جنس لایه عایق معمولا به گونهای باید باشد که میدانهای پراکندگی و تشعشع کننده از لبههای آنتن بیشتر باشد، بنابراین ثابت دیالکتریک باید تا حد امکان کم باشد[1]-[3] .
وقتی فرکانس سیگنال به فرکانس تشدید نزدیک میشود، دامنه جریانهای سطحی که روی هادی جریان پیدا میکنند اهمیت مییابند و تشدید هنگامی اتفاق میافتد که اندازه هادی به اندازه نصف طول موج برسد. رزوناتورهای مایکرواستریپ را میتوان به دو دسته اصلی طبقه بندی کرد که بستگی به نسبت طول به عرض آنتنها دارد.
رزوناتورهایی که هادی آنها باریک است دی پل مایکرواستریپ و رزوناتورهایی که پهن هستند پچهای مایکرواستریپ نامیده میشوند. توزیع جریان طولی هر دو نوع آنتن برای مدار اصلی زیاد است، بنابراین پترن و گین آنها مشابه میباشد ولی مشخصات دیگر آنها می تواند با هم تفاوت داشته باشد (از قبیل امپدانس ورودی، لوبهای جانبی و پلاریزاسیون).
وقتی فرکانس سیگنال نزدیک فرکانس تشدید باشد، رزوناتور مایکرواستریپ، یک بیم گسترده در جهت لبه جانبی نسبت به صفحه آنتن تشعشع میکند. قسمت عمده سیگنال ورودی در تشعشع شرکت میکند و بنابراین رزوناتور بصورت یک آنتن عمل میکند.
از آنجایی که بعد اصلی پچ باید به اندازه نصف طول موج باشد، بنابراین دایرکتیویته آن بسیار پایین است. مثلا یک دیپل نصف طول موج، بطور معمول بین dB5 تا dB6 گین دارد و محدوده پهنای بیم dB3 آن از 70 تا 90 درجه میباشد.
در بسیاری از کاربردهای مایکروویو نیاز به آنتنهایی با دایرکتیویته بالا میباشد که در نتیجه، بیم آنتن باید باریک باشد. در اینگونه موارد، یک پچ تنها مناسب نمیباشد بلکه باید از یک تعداد المان های تشعشع کننده مشخصی که به صورت آرایه پریودیک قرارگرفتهاند استفاده کرد و در این صورت دایرکتیویته افزایش خواهد یافت.
ولی در برخی کاربردهای دیگر از قبیل موبایل و مخابرات شخصی، نیاز به بیم وسیعی میباشد که در اینگونه موارد یک پچ تنها مناسب میباشد.

شکل (3-1) : ساختار آنتن مایکرواستریپ3-3 ویژگی های آنتن های مایکرو استریپیک آنتن مایکرواستریپ از یک پچ فلزی تشعشع کننده یا آرایه ای از پچها بر روی یک وجه سطح صاف و مسطح دی الکتریک نازک و غیرهادی با صفحه زمین در وجه دیگر تشکیل شده است.
پچ فلزی اغلب از ورقه بسیار نازک مسی و یا ورقه نازک مسی روکشدار با روکشی مقاوم در مقابل خوردگی مانند طلا، قلع و یا نیکل ساخته میشود. پچ در اشکال مختلف هندسی میتواند طراحی شود ولی عمدتاً به شکل مستطیلی و یا دایروی می باشد.
اصولاً زیر لایه دی الکتریک اساساً به منظور فراهم آوردن فضای مناسب و به عنوان نگهدارنده مکانیکی ما بین پچ و صفحه زمین به کار گرفته می شود. موادی با ثابت دی الکتریک بالا به عنوان زیر لایه برای گذاشتن پچ و کاهش اندازه آنتن به کار گرفته میشود.
خصوصاً برای کاربردهای آرایه ای بزرگ زیر لایه بایستی کمترین اتلاف جاگذاری با تانژانت تلفات کمتر از 005/0 را داشته باشد.
عموماً مواد به کار گرفته شده بعنوان زیر لایه بر حسب ثابت دی الکتریک خود به سه دسته تقسیم می شود:
مواد با ثابت دی الکتریک rε در محدوده 2 > rε > 1. موادی مانند هوا، فوم پلیاسترین یا دی الکتریک لانه زنبوری در این دسته قرار میگیرند.
مواد با ثابت دی الکتریک rε در محدوده 4 > rε > 2. موادی مانند فایبر گلاس، تفلون مقاوم شده در این دسته قرار میگیرند.
مواد با ثابت دی الکتریک rε در محدوده 10 > rε > 4. موادی مانند سرامیک، کوارتز و آلومینا در این دسته قرار میگیرند.

–418

چکیده1فصل اول: مقدمه و کلیات تحقیق1-1 مقدمه PAGEREF _Toc418476894 h 31-1-1 ضرورت تحقیق PAGEREF _Toc418476895 h 51-1-2 سوالات PAGEREF _Toc418476896 h 61-1-3 اهداف تحقیق PAGEREF _Toc418476897 h 61-1-4 فرضیات PAGEREF _Toc418476898 h 61-2 کلیات PAGEREF _Toc418476899 h 71-2-1 تعاریف PAGEREF _Toc418476900 h 71-2-1-1 اکولوژی PAGEREF _Toc418476901 h 71-2-1-2 اکولوژی جنگل PAGEREF _Toc418476902 h 71-2-1-3 حوزه آبریز PAGEREF _Toc418476903 h 71-2-1-4 رویشگاه PAGEREF _Toc418476904 h 71-2-1-5 ذخیرهگاه جنگلی PAGEREF _Toc418476905 h 71-2-2 پارکها و ذخیره گاه های جنگلی PAGEREF _Toc418476906 h 81-2-2-1 ذخیرهگاه های جنگلی PAGEREF _Toc418476907 h 91-2-3 رویشگاه زاگرس PAGEREF _Toc418476908 h 101-2-3-1 جنگل های پیوسته ناحیه رویشی زاگرس PAGEREF _Toc418476909 h 141-2-3-2 جنگل های منفصل حوزه رویشی زاگرس PAGEREF _Toc418476910 h 141-2-3-3 زمین شناسی و خاکشناسی PAGEREF _Toc418476911 h 151-2-3-4 خصوصیات اقلیمی‌ناحیه رویشی زاگرس PAGEREF _Toc418476912 h 151-2-4 اسامی‌لرگ PAGEREF _Toc418476913 h 161-2-5 طبقه بندی لرگ PAGEREF _Toc418476914 h 161-2-5-1 کلید شناسی PAGEREF _Toc418476915 h 161-2-6 ویژگیهای مورفولوژی لرگ PAGEREF _Toc418476916 h 171-2-7 جنگلهای جهان و پراکنش لرگ در دنیا PAGEREF _Toc418476917 h 181-2-8 جنگلهای ایران و پراکنش لرگ در آن PAGEREF _Toc418476920 h 211-2-9 فسیل شناسی لرگ PAGEREF _Toc418476921 h 231-2-10 استفاده‌های صنعتی و غذایی لرگ PAGEREF _Toc418476922 h 24فصل دوم: سابقه تحقیق2-1 مروری بر مطالعات انجام شده بر روی لرگ PAGEREF _Toc418476925 h 262-2 مطالعات داخل کشور PAGEREF _Toc418476926 h 262-3 مطالعات خارج از کشور PAGEREF _Toc418476927 h 39فصل سوم: مواد و روش ها3- مواد و روش PAGEREF _Toc418476930 h 463-1 مواد PAGEREF _Toc418476931 h 463-1-1 موقعیت جغرافیایی منطقه مورد مطالعه PAGEREF _Toc418476932 h 463-1-2 وضعیت هواشناسی منطقه PAGEREF _Toc418476935 h 493-1-3 خصوصیات زمین شناسی PAGEREF _Toc418476937 h 503-1-3-1 سازند آسماری PAGEREF _Toc418476938 h 503-1-3-2 سازند پابده PAGEREF _Toc418476939 h 513-1-4 بررسی حیات وحش PAGEREF _Toc418476940 h 513-1-4-1 پستانداران PAGEREF _Toc418476941 h 523-1-4-2 خزندگان PAGEREF _Toc418476943 h 533-1-4-3 پرندگان PAGEREF _Toc418476944 h 533-1-4-4 گونه‌های در حال انقراض PAGEREF _Toc418476946 h 543-1-5 وضعیت اقتصادی اجتماعی PAGEREF _Toc418476948 h 543-1-5-1 روستاهای حاشیه ذخیره گاه PAGEREF _Toc418476949 h 543-1-5-2 تعداد واحد دامی‌در جوار و داخل ذخیره گاه PAGEREF _Toc418476951 h 563-2 روش تحقیق PAGEREF _Toc418476953 h 573-2-1 روش نمونه برداری PAGEREF _Toc418476954 h 583-2-1-1 نمونه برداری از عوامل محیطی PAGEREF _Toc418476955 h 583-2-1-1-1 عوامل فیزیوگرافیک PAGEREF _Toc418476956 h 583-2-1-1-2 عوامل خاکی PAGEREF _Toc418476957 h 583-2-2 روش آماربرداری و اندازه گیری پارامترهای مورد بررسی درختان رویشگاه PAGEREF _Toc418476958 h 583-2-3 روش تجزیه و تحلیل داده ها PAGEREF _Toc418476959 h 583-2-4 روش مطالعه زادآوری PAGEREF _Toc418476960 h 593-2-5 روش مطالعه گونه‌های کف رویشگاه PAGEREF _Toc418476961 h 59فصل چهارم: نتایج4- نتایج PAGEREF _Toc418476964 h 614-1 نتایج کمی PAGEREF _Toc418476965 h 614-1-1 فلور منطقه PAGEREF _Toc418476966 h 614-1-2 ترکیب گونه ای توده PAGEREF _Toc418476968 h 664-1-3 قطر برابر سینه PAGEREF _Toc418476972 h 674-1-4 ارتفاع کل PAGEREF _Toc418476978 h 704-1-5 ارتفاع تنه PAGEREF _Toc418476985 h 724-1-6 ارتفاع تاج پوشش PAGEREF _Toc418476989 h 734-1-7 نتایج سطح مقطع PAGEREF _Toc418476993 h 744-1-8 حجم PAGEREF _Toc418476997 h 754-1-9 بررسی سطح تاج پوشش PAGEREF _Toc418477001 h 764-1-10 بررسی زادآوری PAGEREF _Toc418477008 h 784-1-11 بررسی پوشش کف جنگل PAGEREF _Toc418477010 h 794-2 نتایج کیفی PAGEREF _Toc418477012 h 814-2-1 سلامت تاج PAGEREF _Toc418477013 h 814-2-2 سلامت تنه PAGEREF _Toc418477016 h 824-2-3 بررسی وضعیت تنه بلحاظ صاف و سیلندریک بودن PAGEREF _Toc418477019 h 834-3 نتایج بررسی‌های خاک شناسی PAGEREF _Toc418477022 h 844-3-1 آنالیز ارتباط خاک با رویشگاه PAGEREF _Toc418477027 h 874-3-2 نتایج مقایسه مولفه های خاک در دو منطقه شاهد و لرگ PAGEREF _Toc418477028 h 87فصل پنجم: بحث و نتیجه گیری5-1 بحث و نتیجه گیری PAGEREF _Toc418477035 h 915-2 مشکلات و معضلات تهدید کننده منطقه PAGEREF _Toc418477036 h 975-3 پیشنهادات PAGEREF _Toc418477037 h 100منابع و مأخذ PAGEREF _Toc418477038 h 102چکیده انگلیسی PAGEREF _Toc418477041 h 113

فهرست جدول‌ها


عنوان صفحه
جدول 1-2 : تقسیم بندی مناطق رویشی جهان توسط بروکمن PAGEREF _Toc418476918 h 20جدول 3-1: لیست پستانداران موجود در منطقه PAGEREF _Toc418476942 h 52جدول 3-2: لیست پرندگان موجود در منطقه PAGEREF _Toc418476945 h 53جدول 3-3: لیست گونه‌های در حال انقراض منطقه PAGEREF _Toc418476947 h 54جدول 3-4: جمعیت مراکز جمعیتی حاشیه ذخیره گاه لرگ PAGEREF _Toc418476950 h 56جدول 3-5: تعداد وانواع دام و طیور مراکز جمعیتی حاشیه ذخیره گاه PAGEREF _Toc418476952 h 57جدول 4-1: مشخصات فلورستیکی ذخیرهگاه PAGEREF _Toc418476967 h 62جدول 4-2 : مشخصات درختان لرگ و گونه‌های همراه PAGEREF _Toc418476969 h 66جدول 4-3: نتایج قطر برابر سینه درختان لرگ در رویشگاه PAGEREF _Toc418476973 h 67جدول 4-4: نتایج قطر برابر سینه کل درختان ذخیرهگاه لرگ PAGEREF _Toc418476974 h 68جدول 4-5: نتایج قطر برابر سینه برای کل درختان ذخیرهگاه PAGEREF _Toc418476977 h 69جدول 4-6: نتایج ارتفاع برای درختان لرگ در ذخیرهگاه PAGEREF _Toc418476979 h 70جدول 4-7: نتایج ارتفاع تمامی‌درختان ذخیرهگاه PAGEREF _Toc418476981 h 71جدول 4-8: نتایج ارتفاع برای کل درختان ذخیرهگاه PAGEREF _Toc418476982 h 71جدول 4-9: نتایج ارتفاع تنه درختان لرگ PAGEREF _Toc418476986 h 72جدول 4-10: نتایج ارتفاع تنه درختان ذخیرهگاه به تفکیک گونه PAGEREF _Toc418476987 h 73جدول 4-11: نتایج ارتفاع تنه برای کل درختان ذخیره گاه PAGEREF _Toc418476988 h 73جدول 4-12: نتایج ارتفاع تاج پوشش درختان لرگ PAGEREF _Toc418476990 h 73جدول 4-13: نتایج ارتفاع تاج پوشش درختان ذخیرهگاه به تفکیک گونه PAGEREF _Toc418476991 h 74جدول 4-14: نتایج ارتفاع تاج پوشش برای کل درختان ذخیرهگاه PAGEREF _Toc418476992 h 74جدول 4-15: نتایج سطح مقطع درختان لرگ PAGEREF _Toc418476994 h 74جدول 4-16: نتایج سطح مقطع به تفکیک گونه ها PAGEREF _Toc418476995 h 75جدول 4-17: نتایج سطح مقطع کل توده PAGEREF _Toc418476996 h 75جدول 4-18: نتایج حجم درختان لرگ PAGEREF _Toc418476998 h 75جدول 4-19: نتایج حجم به تفکیک گونه ها PAGEREF _Toc418476999 h 75جدول 4-20: نتایج حجم کل ذخیرهگاه PAGEREF _Toc418477000 h 76جدول 4-21: نتایج سطح تاج پوشش درخت لرگ PAGEREF _Toc418477002 h 76جدول 4-22: نتایج سطح تاج پوشش ذخیرهگاه به تفکیک گونه PAGEREF _Toc418477003 h 76جدول 4-23: نتایج سطح تاج پوشش کل توده PAGEREF _Toc418477004 h 77جدول 4-24: نتایج قطر متوسط تاج پوشش لرگ PAGEREF _Toc418477006 h 78جدول 4-25: نتایج قطر متوسط تاج پوشش لرگ برای کل توده به تفکیک گونه PAGEREF _Toc418477007 h 78جدول 4-26: نتایج زادآوری لرگ در ذخیرهگاه PAGEREF _Toc418477009 h 79جدول 4-27: نتایج بررسی سلامت تاج درختان لرگ80جدول 4-28: نتایج بررسی سلامت تنه درختان لرگ PAGEREF _Toc418477017 h 82جدول 4-29: نتیجه بررسی صاف و سیلندریک بودن تنه لرگ PAGEREF _Toc418477020 h 83جدول 4-30: نتایج آنالیز خاک برای دادههایی که معنی دار نبوده اند در ذخیره گاه لرگ85جدول 4-31: مقایسه میانگین ها برای داده هایی که معنی دار نبوده اند88
فهرست نمودارها
عنوان صفحه
نمودار 3-1 : نمودار آمبرو ترمیک ایستگاه دره شهر طی دوره آماری (1390 – 1381) PAGEREF _Toc418476936 h 49نمودار 4-1 : درصد حضور گونه لرگ در کل ذخیره گاه PAGEREF _Toc418476970 h 66نمودار4-2 : میزان ترکیب و درصد گونه های مختلف در ذخیره گاه PAGEREF _Toc418476971 h 67نمودار 4-3: پراکنش درختان لرگ در طبقات قطری مختلف PAGEREF _Toc418476975 h 68نمودار 4-4: پراکنش درختان ذخیره گاه در طبقات قطری PAGEREF _Toc418476976 h 69نمودار 4-5: پراکنش درختان لرگ در طبقات ارتفاعی PAGEREF _Toc418476980 h 70نمودار4-6: پراکنش کل درختان توده در طبقات ارتفاعی PAGEREF _Toc418476983 h 71نمودار 4-7: منحنی ارتفاع درختان لرگ PAGEREF _Toc418476984 h 72نمودار 4-8: درصد مساحت تاج پوشش درختان ذخیره گاه PAGEREF _Toc418477005 h 77نمودار 4-9: درصد سلامت تاج درختان لرگ از نظر آفت80نمودار 4-10: درصد سلامت تنه درختان لرگ بلحاظ پوکی تنه و گره الیافی PAGEREF _Toc418477018 h 82نمودار 4-11: درصد سلامت تنه درختان لرگ بلحاظ صاف و سیلندریک بودن82نمودار 4-12: مقدار پتاسیم آنالیز شده در ذخیرگاه لرگ PAGEREF _Toc418477023 h 84نمودار 4-13: مقدار فسفر آنالیز شده در ذخیرگاه لرگ PAGEREF _Toc418477024 h 85نمودار 4-14: مقدار شوری خاک آنالیز شده در ذخیرگاه لرگ85نمودار 4-15: مقایسه میزان میانگین پتاسیم در خاک دو منطقه لرگ و شاهد87نمودار 4-16: مقایسه میانگین فسفر در خاک دو منطقه لرگ و شاهد87نمودار 4-17: مقایسه میانگین شوری در خاک دو منطقه لرگ و شاهد PAGEREF _Toc418477031 h 89
فهرست شکل‌ها
عنوان صفحه

شکل 1-1 : نقشه پراکنش لرگ در جهان PAGEREF _Toc418476919 h 21شکل 3-1 : موقعیت توده لرگ در دره لارت، بدره، استان ایلام PAGEREF _Toc418476933 h 46شکل 3-2: تصویر کلی از منطقه مورد مطالعه PAGEREF _Toc418476934 h 47
چکیدههدف از پژوهش حاضر مطالعه شرایط رویشگاهی لرگ (Pterocarya Fraxinifolia (Poir) Spach) در دره لارت در شهرستان بدره- استان ایلام است. بدلیل محدود بودن عرصه تحت پوشش توده لرگ، پس از ثبت موقعیت تمام پایه‌های لرگ در حافظه GPS، آماربرداری صد در صد از مشخصه‌های کمی‌و کیفی تمامی‌درختان لرگ و گونههای همراه از جمله ارتفاع کل، ارتفاع تنه، ارتفاع تاج، قطر برابرسینه، قطرهای بزرگ و کوچک تاج، میزان و نوع زادآوری، بررسی پوشش کف، بررسیهای سلامت تاج و تنه درختان بلحاظ آفات و بیماریها انجام شد. برای تجزیه و تحلیل دادههای اولیه که در منطقه اندازهگیری شده بودند از فرمولها و روابط مخصوص آماربرداری جنگل، نرمافزارهای Excel و SPSS استفاده گردید. جهت بررسیهای خاکشناسی، نمونه‌های خاک از عمق 20 – 0 سانتی متری از عرصه تحت پوشش لرگ و منطقه شاهد تهیه و جهت تجزیه و تحلیل به آزمایشگاه فرستاده شد. نتایج نشان داد که خاک منطقه دارای بافت رسی لومی‌تا شنی رسی لومی‌است و pH منطقه از 15/7 تا 4/7 متغیر میباشد. ماده آلی منطقه از 26/1 تا 94/3 درصد در نوسان بود. مقایسه آنالیزهای خاکشناسی در مناطق استقرار لرگ و شاهد، اختلافات معنی داری را در رابطه با پتاسیم، فسفر و میزان شوری نشان داد بنحوی که متوسط میزان هرکدام به ترتیب در منطقه شاهد، 5/2، 2 و 2 برابر منطقه استقرار لرگ بود. سایر آنالیزهای خاک برای دیگر فاکتورها مانند اسیدیته، نیتروژن، ماده آلی، وزن مخصوص ظاهری، درصد ذرات رس، شن و سیلت و بافت خاک، اختلافات معنی داری را نشان نداده و بسیار نزدیک به هم بود. نتایج نشان داد که میانگین، حداقل و حداکثر قطر پایه ها به ترتیب 56/39، 7 و 91 سانتی متر بوده. حداقل و حداکثر ارتفاع درختان لرگ به ترتیب 05/2 و 20 متر می‌باشد. میانگین ارتفاع درختان لرگ به روش لوری برابر 34/14 متر محاسبه گردید. حداکثر و حداقل ارتفاع تنه به ترتیب 12 و 1 متر بود. میانگین حجم درختان و میانگین سطح مقطع به ترتیب 11079/1 متر مکعب و 161471/0 متر مربع اندازهگیری گردید. تجدید حیات درختان لرگ بطور متوسط برابر با 5/707 اصله در هکتار به صورت صد در صد شاخه زاد بوده است. میزان تاج پوشش توده یاد شده نیز 05/30 درصد تعیین شد.
کلمات کلیدی: شرایط رویشگاهی، لرگ، دره لارت، بدره، ایلام.
فصل اولمقدمه و کلیات تحقیق
1-1 مقدمهجنگل‌های ایران با تنوع زیست محیطی در شرایط متفاوت رویشگاهی، در مناطق مختلف حضور پیدا نموده اند. این حضور برای بعضی از گونه‌های درختی در بعضی از مناطق شگفت انگیز و غیر قابل تصور است. یکی از این مناطق رویشگاه منحصربفرد در زاگرس مرکزی بویژه در استان ایلام است که شامل توده لرگ میباشد. وجود این گونه در این منطقه برای هر کارشناس، محقق علوم جنگل و اکولوژیست در حوزه رویشی زاگرس سوال برانگیز است. توده حاضر به لحاظ جنبه‌های زیست محیطی و اهمیت ژنتیکی، بدون شک در زمره ذخایر ژنتیکی در عرصه زاگرس و منطقه قرار دارد.
رویشگاه زاگرس بخش وسیعی از سلسله جبال زاگرس را شامل می‌شود که از شمال غربی کشور، یعنی شهرستان پیرانشهر شروع و تا حوالی شهرستان فیروزآباد کشیده می‌شود. جنگلهای زاگرس را تحت عنوان جنگلهای نیمه خشک طبقه بندی کرده که بیشترین تاثیر را در تامین آب، حفظ خاک، تعدیل آب و هوا و تعادل اقتصادی و اجتماعی در کل کشور را دارند (ثاقب طالبی و همکاران 1383). جنگلهای منطقه زاگرس به دلیل اهمیت زیاد حفاظتی آب و خاک باید حالت جنگلهای حمایتی، حفاظتی و احیایی به خود گیرند و در این راستا نیز دخالت ها در این جنگلها باید بصورت ملایم و همگام با طبیعت باشد. آنچه در مورد تمام جنگلهای ایران حائز اهمیت بسیار می‌باشد، جلوگیری از روند تخریب کمی‌و کیفی جنگلها است. مساحت جنگلهای زاگرس در گذشته بیش از ده میلیون هکتار بوده که به دلیل بهره برداری بی رویه طی سالیان دراز مساحت این جنگلها دائما سیر نزولی را پیموده و متاسفانه این روند هنوز هم ادامه دارد (مهاجر1385).
88 درصد از مساحت استان ایلام را عرصه‌های طبیعی شامل جنگل، مرتع ، بیابان و ... تشکیل داده است. جنگلهای استان ایلام جزء جوامع جنگلی مناطق خشک و نیمه‌خشک سلسله جبال زاگرس می‌باشد که سهم جنگلهای استان 667/641 هکتار است. از مجموع کل جنگلهای استان حدود 4000 هکتار دست کاشت، 7200 هکتار بیشه زار، 416800 هکتار تنک، 211084 هکتار نیمه انبوه و 2593 هکتار آن انبوه است. تیپ غالب جنگلهای استان، بلوط (90 درصد) وگونه های همراه شامل بنه، ارژن، بادام کوهی، داغداغان، کنار، کیکم، کهور، پده و ... می‌باشد. از جمله گونه‌های نادر گیاهی استان ایلام میتوان به گلابی وحشی، سماق، ارغوان، لرگ، زربین و ... اشاره کرد که ذخیره گاه‌های استان می باشند. از گونه‌های اقتصادی جنگلهای استان، گونه با ارزش اقتصادی بنه را میتوان نام برد.
نظر به اینکه اکوسیستم ها همانند حلقه های زنجیر به هم مرتبط شده، اکوسیستم جهانی یا Biosphere را به وجود می آورند، در نتیجه انهدام یک اکوسیستم محلی به مانند پاره شدن یکی از حلقه های زنجیره بیوسفر می باشد. بدین ترتیب تاثیر سوء در این اکوسیستم ها (محلی، منطقه ای، ملی، فراملی و فرامنطقه ای) خواهد گذاشت و در نهایت اکوسیستم جهانی در معرض انهدام قرار میگیرد. امروزه بدلیل افزایش جمعیت، بهرهبرداری‌های بی رویه و غیر اصولی از جنگل، چرای دام، خشکسالی ها، کاهش تنوع زیستی، آفات، امراض و بیماری ها، حیات این نعمات خدادادی و ارزشمند در معرض خطر می‌باشد و روند تخریب جنگلها و منابع طبیعی روز به روز سرعت میگیرد. که این موضوع خود گواه بر لزوم کسب آگاهی و شناخت از این مسائل مهم جهت چاره اندیشی و اتخاذ شیوه مدیریتی مناسب و کارآمد، بمنظور حفاظت و احیای جنگل هاست.
بوم سازگان دریایی، جنگلی، بیابانی، مرتعی، توندرائی، ساوانی و… هنگامی از ثبات کافی برخوردارند که دارای تنوع زیستی کافی و کامل باشند. تمامی این بوم سازگانها در زندگی اقتصادی، اجتماعی، فرهنگی و روحی انسانها نقش بسیار مهمی دارند. نبود یا کم ثباتی آنها، کمبودی است برای زندگی سالم بشری. براثر ازیاد جمعیت، پیشرفت صنعت و بهره برداری بی رویه از زمین، با وجود کوشش های انجام شده در دهه‌های اخیر، این تنوع زیستی در بسیاری از مناطق شدیدا به خطر افتاده است. از این رو حفاظت و احیای مجدد آن در شمار یکی از وظایف مهم پیش روی بشر محسوب می شود.
برنامه ریزی، تصمیم سازی و اتخاذ تدابیر دقیق در قلمرو مدیریت منابع جنگلی (به ویژه گونه های درختی و درختچه ای) تحت عنوان ذخایر جنگلی از اولویت‌های بسیار مهم می‌باشد.
گونه درختی لرگ با نام علمی‌Pterocarya fraxinifolia (Poir) Spach از جمله این ذخائر جنگلی مهم و با ارزش است که در استان ایلام شهرستان دره شهر، بدره، دهستان دوستان، دره لارت واقع شده است. لرگ یکی از مهم ترین گونه‌های درختی جنگلهای خزری بوده (مهاجر 1385) و یکی از درختان زیبای سواحل خزر می باشد و طالب نواحی مرطوب و ساحلی دریای خزر است و از آستارا تا مینودشت در کلیه جنگلهای جلگه ای دیده می شود ( ثابتی ،1355 ؛ به نقل از ابراهیمی، 1383). درخت لرگ یکی از گونه هایی است که قبلا از جنگل‌های کم ارتفاع کاسپین، قفقاز و آناتولی گزارش شده است ( علیپور نصیرمحله، 1385). محل انتشار گونه لرگ در جنوب غربی آسیا ، قفقاز، آناتولی و شمال ایران می‌باشد ( browics،1978؛ به نقل از شیخ الاسلامی‌،1386). انتشار لرگ در جنگل‌های ناحیه خزر از آستارا تا مینودشت و از جلگه تا ارتفاع 1000 متر از سطح دریای آزاد( استثناء در جنگل‌های نور) بیان شده است ( ثابتی،1374؛ به نقل از شیخ الاسلامی‌،1386 ).
هدف از این مطالعه شناخت شرایط رویشگاهی و وضعیت کمی‌و کیفی رویشگاه توده لرگ مستقر در دره لارت – استان ایلام می‌باشد. با شناخت این شرایط و وضعیت رویشگاه ضمن استفاده از اطلاعات بدست آمده، راه کارهای مناسب جهت معرفی هرچه بهتر این توده به مجامع علمی‌و پژوهشی کشور و مدیریت صحیح اینگونه رویشگاهها فراهم می‌شود. همچنین ضمن رسیدن به اهداف فوق میتوان در امر بازسازی و احیاء آن در مناطق مشابه، برنامه ریزی و اقدامات لازم را انجام داد.
1-1-1 ضرورت تحقیقدر خصوص حضور این توده استثنایی (لرگ) با شرایط نسبتا ایده آل در جنگل‌های غرب سئوالات زیادی درباره علت پیدایش و وضعیت کمی‌وکیفی این توده در خارج از رویشگاه اصلی خود مطرح می‌گردد که بر اهمیت معرفی، حفظ، نگهداری و احیاء این چنین رویشگاه هایی می‌افزاید. توده حاضر به لحاظ جنبه‌های زیست محیطی و اهمیت ژنتیکی، که بدون شک آن را در زمره ذخایر ژنتیکی در عرصه زاگرس و منطقه (استان ایلام، دره لارت) قرار می‌دهد از اهمیت بالایی برخوردار بوده و در استان بعنوان ذخیره گاه معرفی شده، که به سبب اهمیت این موضوع اقدام به شناخت وضعیت رویشگاهی و خصوصیات جنگلشناسی توده لرگ شده که در برنامه ریزی، اداره و مدیریت صحیح آنها در آینده کمک موثری مینماید. بنابراین هدف از این تحقیق شناخت شرایط و وضعیت رویشگاهی توده لرگ مستقر در این رویشگاه ( دره لارت ) می‌باشد تا در آینده با توجه به این شناخت بتوان به گسترش آن در مناطق مستعد کمک نمود.
با وجود تحقیقات صورت گرفته بصورت پراکنده در نقاط مختلف ایران در خصوص گونه لرگ، تاکنون هیچگونه مطالعه خاصی در مورد گونه لرگ واقع در دره لارت بخش بدره استان ایلام صورت نگرفته است. به همین دلیل نیاز به مطالعات در خصوص این گونه ضروری است. بدیهی است نتایج این تحقیقات برای برنامه ریزی ها و اتخاذ بهترین تدابیر مناسب مدیریتی، حفاظتی، احیاء و توسعه ای در خصوص این ذخیره گاه در آینده، مورد استفاده قرار خواهد گرفت.
1-1-2 سوالاتمطالعه حاضر به دنبال پاسخ گویی به این سوال است که آیا درخت لرگ باعث افزایش اسیدیته خاک در منطقه ریزوسفر می‌شود؟ آیا زادآوری این گونه اکثرا از طریق جست دهی می‌باشد؟
1-1-3 اهداف تحقیقهدف کلی این تحقیق مطالعه شرایط رویشگاهی لرگ در دره لارت می‌باشد. همچنین مطالعه حاضر بدنبال دستیابی به اهدافی دیگر ازجمله بررسی زادآوری توده لرگ در دره لارت، بررسی پوشش کف جنگل در رویشگاه توده لرگ واقع در دره لارت، بررسی گونه‌های همراه درختان لرگ، مطالعات خاکشناسی و تجزیه تحلیل پارامترهای آن در ارتباط با رویشگاه لرگ می‌باشد.
1-1-4 فرضیاتفرضیه این مطالعه در راستای پاسخ گویی به سوالات مطالعه حاضر می‌باشد و عبارتند از اینکه درخت لرگ باعث افزایش اسیدیته خاک در منطقه سایهانداز و ریزوسفر می‌شود. زادآوری این گونه اکثرا از طریق جست دهی می‌باشد.

1-2 کلیات1-2-1 تعاریف1-2-1-1 اکولوژی
علم مطالعه رابطه و آثار متقابل بین موجودات زنده و غیر زنده است. اگر منظور روابط اکولوژیک بر روی یک گونه گیاه یا جانور بطور مستقل باشد اصطلاح ات اکولوژی (Autecology ) مطرح می‌شود. اگر این مطالعه بصورت جمعی با شد اصطلاح سین اکولوژی (Synecology ) بکار برده می‌شود (مهاجر، 1385).
1-2-1-2 اکولوژی جنگل
علم شناخت و تجزیه تحلیل روابط و آثار موجود در یک اکوسیستم جنگل است (مهاجر، 1385).
1-2-1-3 حوزه آبریز
حوزه آبریز، محدوده جغرافیایی است که جریان‌های سطحی ناشی از بارش را به یک پایانه نظیر  اقیانوس، دریا، دریاچه، تالاب یا کفه زهکشی می‌کند. بعبارت دیگر سطحی از زمین است که کلیه بارش‌های جوی وارد بر آن، توسط یک سیستم رودخانه زهکش می‌شود.
1-2-1-4 رویشگاه
مجموعه عوامل اقلیمی، خاکی و پستی بلندی که در یک محل وجود دارد و شرایط لازم و کافی را برای استقرار و رشد و توسعه درختان بوجود میآورد. رویشگاه مترادف پایگاه بکار برده میشود (مهاجر 1385 ).
1-2-1-5 ذخیرهگاه جنگلی
ذخیرهگاه به منطقه یا مناطقی از عرصه خشکی و یا دریا اطلاق می شود که از اکوسیستم ها یا گونه های نمونه یا استثنایی برخوردار هستند. ذخیرهگاههای جنگلی یا Forest reserver الگوهای کوچک شده ذخیره گاه های بیوسفر هستند که در آن گونه های منحصر به فرد و کمیاب و یا گونه های رو به انقراض به صورت طبیعی رویده اند. ذخیرهگاههای جنگلی در ابعاد کمی کوچکتر تابع رویشگاههای گونه های بومی که از نظر ژنتیکی در مقایسه با رویشگاه های دیگر همان گونه دارای برتری میباشند انتخاب میگردد. به عبارتی ذخیرهگاه جنگلی، قسمتی از جنگل است که به دلیل داشتن گونه‌های گیاهی نادر یا در حال انقراض یا داشتن رویشگاه خاص، گونه‌های گیاهی مورد تهدید، که دارای ارزش ژنتیکی بالا هستند، با سیم خاردار یا فنس یا نظایر آن محصور و محافظت شده است تا از انقراض گونه یا تخریب رویشگاه جلوگیری شود.
1-2-2 پارکها و ذخیرهگاههای جنگلیهمانطور که پیشتر اشاره شد رویشگاه لرگ در استان ایلام جزء ذخیرهگاههای مهم استان می‌باشد که ارائه مطالبی درخصوص ذخیره گاهها مناسب است.
افزایش روز افزون جمعیت جهان بویژه در کشورهای در حال توسعه و فقر اقتصادی و پایین بودن سطح درآمد ملی کشورهای مذکور، باعث شده تا جمعیت این کشورها در فشار و تنگناهای اقتصادی قرار گیرند. در بررسی علل عقب افتادگی این کشورها، علیرغم داشتن منابع طبیعی مناسب و دارا بودن منابع بالقوه درآمدی، فقر و محرومیت را پذیرفته و در واقع پایین بودن سطح دانش و فن آوری و آگاهی نداشتن از نحوه بهره برداری از پتانسیل‌های موجود، مزید بر علت شده و همچون تازیانهای بر پیکر بیجان این کشورها کوبیده میشود.
یکی از منابعی که بصورت عمده در عصر کنونی می‌تواند درآمدهای قابل توجهی را رقم زده و با بالا بردن تولید ناخالص ملی در نهایت درآمد ملی را در صحنه بین المللی افزایش دهد، صنعت توریسم و اکوتوریسم می‌باشد که در چند دهه گذشته این صنعت توانسته جای پای مناسبی را در روابط بین المللی یافته و با ایجاد پیوند میان کشورهای مختلف، منبع درآمد خوبی نیز برای بسیاری از کشورهای جهان گردد. به طوریکه در حال حاضر تنها درآمد حاصل از توریسم و اکوتوریسم در کشورهایی همچون فرانسه، آمریکا، اسپانیا، چین و آلمان بیش از درآمد ملی بعضی از کشورهای توسعه نیافته میباشد.
برقراری ارتباط میان ملل مختلف از طریق آشنایی با فرهنگ ها، آداب، رسوم، پیشینه‌های تاریخی و فرهنگی یکدیگر، موجبات استحکام پیوندهای اجتماعی و سیاسی ملل را فراهم آورده و در بسط و توسعه تفاهم آمیز روابط بین الملل، سهم بسزائی خواهد داشت. بنابراین یکی از تاثیرات مهم در صنعت توریسم و اکوتوریسم علاوه بر ایجاد ارتباط میان فرهنگ‌های مختلف، جنبه درآمد و اشتغال زایی این صنعت خواهد بود. بطوریکه پیش بینی می‌شود این صنعت با در استخدام داشتن 200 میلیون نفر نیروی انسانی، بزرگترین کارفرما بوده و می‌تواند تا پنج سال، 350 میلیون شغل ایجاد نماید.
در بهرهبرداری از منابع طبیعی بصورت کلی با رعایت اصل حفاظت و بهرهوری از پارکها بصورت عام و سایر مناطق حفاظت شده و ذخیرهگاههای بیوسفر و ذخیرهگاههای جنگلی در استفاده از اثرات غیر مستقیم اقتصادی که میزان آن به مراتب بالاتر از اثرات مستقیم اقتصادی خواهد بود، به عنوان یک اصل کاملا جدی مطرح و قابل تعمق میباشد.
اصولا پارک ها از نظر شکلگیری و ماهیت عملکرد به دو گروه عمده تقسیم میشوند:
گروه اول: پارک هایی هستند که در ارتباط با اوقات فراغت شکل میگیرند. فلسفه وجودی و هدف عمده در این پارک ها، فراهم آوردن امکانات تفریحی و تفرجی برای شهروندان میباشد. همانند پارک‌های شهری ( محلی، منطقهای و هرگونه تفرجگاه جنگلی متمرکز) که در این گونه پارک ها تفریح و تفرج به عنوان یک اصل مطرح میباشد.
گروه دوم: شامل پارک هایی می‌شود که در ارتباط با حفاظت از طبیعت و حفاظت از فون یا فلور منطقه و یا حفاظت از فون و فلور بصورت مشترک با هم احداث می‌شوند به عبارت دیگر، حفظ طبیعت در این پارک ها اولویت اول بوده و بهره وری از تفرج (متمرکز یا گسترده) به عنوان یک بحث حاشیه ای در این گونه پارک ها مطرح میباشد.
از جمله پارک هایی از این گروه که از نظر تشکیلاتی تحت مدیریت سازمان جنگلها و مراتع میباشند می‌توان به پارک‌های جنگلی طبیعی، پارک طبیعت، پارک جنگلی دست کاشت، پارک کویری و ذخیرهگاه جنگلی اشاره نمود و از جمله پارک‌های تحت مدیریت سازمان حفاظت و محیط زیست می‌توان به پارک‌های ملی، اثر طبیعی ملی، پناهگاه حیات وحش، مناطق حفاظت شده و ذخیره گاه بیوسفر اشاره کرد.
هر کدام از پارک ها، مناطق حفاظت شده و ذخایر جنگلی ذکر شده در تامین اهداف خود دارای مشخصات فنی خاص خود و امکان تفرج ( گسترده و متمرکز) با ظرفیت محدود و متناوب از یکدیگر میباشند ولی تمامی‌این مناطق در جهت تأمین سه اصل مهم یعنی اصل حفاظت و حمایت فیزیکی و فنی و حفاظت و تنوع بیولوژیکی گیاهی و جانوری و اصل آموزشی و تحقیقاتی در مقایسه با سایر مناطق در روند توالی و تواتر طبیعی در اکوسیستم‌های طبیعی با فون و فلور و اصل تفرج (گسترده و متمرکز) در جذب توریسم و اکوتوریسم، بطور جدی مطرح میباشند.
1-2-2-1 ذخیرهگاههای جنگلیاینگونه مناطق در مقایسه با سایر بخش‌های جنگلی جوان بوده و در واقع الگوهای خود را از ذخیرهگاه‌های بیوسفر که تابع پروونانس‌های جغرافیایی زیستی (بیوژئوگرافیکی) برداشته ولی در ابعاد کمی‌کوچکتر، تابع رویشگاههای جنگلی، گونه‌های در حال انقراض، نادر، گونه‌های مورد تهدید و سایر رویشگاههای گونه‌های بومی‌که از نظر ژنتیکی در مقایسه نسبی با دیگر رویشگاههای همان گونه برتر باشند، انتخاب میشوند.
بنابراین در این مناطق اطلاعات مربوط به بانک ژن گیاهی و حفظ تنوع گیاهی و دستاوردهای داروئی و پزشکی و همچنین دستاوردهای اقتصادی با استفاده از دو رگه گیری از پایه‌های وحشی برای بدست آوردن گونه، واریته یا کلن‌های جدید در بالا بردن تولیدات چوبی در واحد سطح و مقاوم به بیماری‌های گیاهی و هزاران اثر ناشناخته دیگر تکمیل شده و تحت مدیریت واقع میشوند.
معیار انتخاب این عرصه با بررسی‌های ریز کارشناسی و شناخت دقیق از رویشگاههای مختلف برای گونه‌های با اولویت مورد اشاره، در نظر گرفته میشوند. سطح این ذخیرهگاهها با توجه به پراکنش گونه با گونه‌های مورد نظر در هسته مرکزی یا طبیعی آن با عنوان Core zone ، یک پنجم سطح و چهار پنجم سطح به عنوان مناطق ضربه گیر یا Bufter zone در نظر گرفته میشود. در قسمت هسته مرکزی یا طبیعی با قطع عوامل و فاکتورهای تخریب به صورت صد درصد، حمایت و حفاظت میشوند تا با فراهم شدن تجدید حیات طبیعی، روند توالی و تواتر پوشش گیاهی در روند طبیعی قرار گیرد.
بنابراین در هسته مرکزی، ضمن بازسازی اکوسیستم طبیعی، جلوگیری از انقراض گونه ها و حفظ گونه ها از نظر تحقیقاتی و آموزش بسیار حائز اهمیت بوده و می‌تواند به عنوان عرصه‌های با حالت بکر مورد توجه محققان داخلی و خارجی باشد و زمینه‌های جذب اکوتوریسم را نیز فراهم نمایند. ضمن اینکه در قسمت مناطق ضربه گیر یا Bufter zone در برنامه‌های دراز مدت با احداث تأسیسات تفرجی و تحقیقی می‌توان در این زمینه اقدام نمود در ضمن اهداف مهمتری نیز در ذخائر جنگلی به جهت ارتباط عناصر اکولوژیکی با یکدیگر به عنوان زنجیره‌های متصل به هم و تاثیرپذیری این عناصر از عملکرد متقابل بوم سازگان متنوع و در جهت پایداری ذخایر بیوسفر مورد تعقیب و پیگیری میباشند.
1-2-3 رویشگاه زاگرسجنگلهای ایران با 4/12 میلیون هکتار وسعت، 4/7 % از سطح کشور را اشغال کرده اند. لذا کشور ایران در مقایسه با سایر نقاط دنیا به لحاظ پوشش جنگلی کشوری فقیر محسوب میگردد ولی به لحاظ تنوع گونه ای و گیاهی و ذخایر ژنتیکی گیاهی در جهان کم نظیر است (ثاقب طالبی و همکاران، 1383). مسلما درخت لرگ که در کشور ایران بویژه در استان ایلام بشکل کاملا طبیعی حضور دارد، از این قاعده مستثنا نمی‌باشد. یونانی ها، از دیرباز پشتکوه کنونی را که ایرانیان پاطاق می‌گویند بنام زاگرس (Zagros ) می‌نامیدند. این نام به مرور زمان به سرتاسر کوه هایی که به دنباله کوه‌های ارمنستان، از منتهی الیه شمال غربی ایران آغاز می‌شود، سپس غرب و جنوب کشور را در می‌نوردد، تعمیم داده شد. پژوهشگران، در مورد درازای زاگرس، بر حسب اینکه ابتدا و انتهای آن را در چه نقطه ای گرفته باشند، ارقام مختلفی ذکر کرده اند. زاگرس دارای دامنه هایی با شیب تند و قلل مرتفع می‌باشد که برخی از آنها مانند زرین کوه، دالاهو، دنا و زرد کوه پوشیده از برف‌های دائمی‌هستند (جزیره ای و رستاقی، 1382).
هفت رشته رودخانه درجه یک کشور که با 5/34 میلیارد متر مکعب آب، 40 درصد آبهای سطحی کشور را به خود اختصاص می‌دهند، از کوه‌های زاگرس سرچشمه میگیرند و راه به جلگه‌های حاصلخیز کشور می‌یابند که وجود آنها منوط به وجود این جنگلها در منطقه است (ثاقب طالبی و همکاران، 1383).
جنگلهای منطقه زاگرس به دلیل اهمیت زیاد حفاظتی آب و خاک باید حالت جنگلهای حمایتی، حفاظتی و احیایی به خود گیرند و در این راستا نیز دخالت ها در این جنگلها باید بصورت ملایم و همگام با طبیعت باشد (مهاجر، 1385). جنگلهای زاگرس را تحت عنوان جنگلهای نیمه خشک طبقه بندی کرده که بیشترین تاثیر را در تامین آب، حفظ خاک، تعدیل آب و هوا و تعادل اقتصادی و اجتماعی در کل کشور را دارند (ثاقب طالبی و همکاران 1383).
کوه‌های زاگرس که از شمال غرب تا جنوب غرب ایران گسترش می‌یابند، به علت جذب رطوبت ابرهای بارانزا از نواحی غربی با مبدأ دریای مدیترانه، شرایط لازم را جهت استقرار و گسترش پوشش جنگلی را بوجود آورده اند. جنگلهای این ناحیه از پیرانشهر در آذربایجان غربی شروع و در امتداد رشته جبال زاگرس و بختیاری تا اطراف جهرم و فسا ( میان جنگل) در استان فارس ادامه می‌یابد. طول این نوار جنگلی بیش از هزار کیلومتر و عرض آن 50 تا 100 کیلومتر است که معمولا منقطع بوده و فقط در قسمت کوههای بختیاری از پیوستگی بیشتری برخوردار می‌باشد. مساحت جنگلهای زاگرس در گذشته بیش از 10 میلیون هکتار بوده است و به دلیل بهره برداری بی رویه طی سالیان دراز مساحت این جنگلها دائما سیر نزولی را پیموده است و متاسفانه این روند هنوز هم ادامه دارد. مساحت فعلی این جنگلها در حال حاضر در حدود 5 میلیون هکتار می‌باشد که گونه غالب آن بلوط ایرانی Quercus persica است و همراه با سایر گونه‌های بلوط جنس غالب این جنگلها را تشکیل می‌دهد و به همین دلیل نیز به جنگلهای بلوط غرب مشهور است. مهمترین گونه‌های درختی و درختچه ای منطقه زاگرس بشرح جدول شماره 1-1 می‌باشد (مهاجر، 1385).
جدول شماره 1-1 : مهمترین گونه‌های درختی و درختچه ای جنگلهای زاگرس
ردیف نام علمی نام فارسی
1 Acer monspessulanum L. (A.cinerascens Boiss.) کیکم ( کرکو)
2 Amygdalus communis L. بادام معمولی
3 Amygdalus reuteri Boiss. (= A. horrida) بادام کوهی ( ارژن)
4 Amygdalus scoparia Spach. بادامک ( بخورک)
5 Berberis vulgaris L. زرشک
6 Cerasus mahaleb (L.) Mill. محلب
7 Cerasus microcarpa (C.A,M) Boiss. راناس (برالیک)
8 Cerasus vulgaris Mill. آلبالو
9 Cercis griffithii Boiss. ارغوان
10 Celtis Caucasica Willd. تا
11 Celtis tournefortii Lam. تایله
12 Cornus sanguinea L. شفت
13 Crataegus aronia (L.) Bosc. زالزالک
14 Crataegus persica pojark ولیک
15 Daphne angustifolia C.Koch (= D.mucronata) خشک
16 Daphne caucasica pall. (= D.salicifolia Lam.) تروانه
17 Eleagnus angustifolia L. سنجد
18 Ficus Carica Var. Johannis Boiss. انجیر
19 Fraxinus rotundifolia Mill. (= F.oxycarpa) زبان گنجشک
20 Juglans regia L. گردو
21 Juniperus polycarpos C.Koch ارس
22 Lonicera nummularifolia J.&sp.(=L.Persica). پلاخور ( شن)
23 Loranthus europaeus Jacq. موخور
24 Morus alba L. توت
25 Myrtus communis L. مورد
26 Nerium indicum Mill. کیش
27 Olea europea L. زیتون
28 Palliurus spina – christi Mill. سیاه تلو
29 Pistacia khinjuk Stocks. خنجوک ( کلخونک)
30 Pistacia mutica F.&.M. (=P.atlantica) بنه ( چاتلانقوش)
31 Platanus orientalis L. چنار
32 Populus euphratica oliv. پده
33 Prosopis stephaniana (Willd) Kunth. جغجغه
34 Punica granatum L. انار
35 Pyrus communis L. خج
36 Pyrus glabra Boiss. انچوچک
37 Pyrus syriaca Boiss. امرود
38 Quercus Brantii Lindl. بلوط (برودار)
39 Quercus infectoria Oliv. دارمازو
40 Quercus libani Oliv. ویول
41 Quercus persica J.&.Sp. بلوط ایرانی
42 Rhamnus kurdica Boiss. چغاله ( تنگرس)
43 Rhus coriaria L. سماق
44 Rosa canina L. نسترن وحشی
45 Salix persica Boiss. زرد بید
46 Sorbus luristanica (Bornm.) سپستان
47 Sorbus persica Hedl. دیو آلبالو
48 Tamarix gallica L. گز انگبین
49 Ulmus carpinifolia Borkh. اوجا
50 Vitis Sylvestris Gmelin مو
51 Ziziphus nummularia wight. دره
52 Ziziphus vulgaris Lam. عناب
جنگلهای حوزه رویشی زاگرس، در وضعیت موجود خود در دو صورت جنگلهای منفصل و جنگلهای پیوسته زاگرس قرار میگیرند.
1-2-3-1 جنگلهای پیوسته ناحیه رویشی زاگرساز فاصله حدودا بیست کیلومتری پیرانشهر، در مسیر سردشت شروع میشوند که منطبق با 36 درجه و 30 دقیقه عرض شمالی است. این جنگلها بخشهایی از استانهای آذربایجان غربی، کردستان، کرمانشاه، ایلام، لرستان، اصفهان، چهارمحال و بختیاری، کهکیلویه و بویراحمد، خوزستان و فارس را در بر میگیرند. جنگلهای پیوسته حوزه رویشی زاگرس، باتوجه به تمایز معنی دار ترکیب نباتی، خود به دو بخش شمالی و جنوبی تقسیم می‌شود. بخش شمالی حوزه رویشی زاگرس پیوسته برمبنای دامنه رویشی دو گونه مازودار (Quercus infectoria Oliv.) و وی ول (Quercus libani Oliv.) تعیین حدود شده است که با همراهی برودار (Quercus brantii Lindl) یا بصورت خالص و یا با سایر گونه ها تشکیل تیپ جنگلی می‌دهند. بخش جنوبی حوزه رویشی زاگرس پیوسته، محدوده رویش انحصاری برودار (Quercus brantii Lindl) بصورت پیوسته است که تقریبا در بین دو مدار 29 درجه و 5 دقیقه تا 33 درجه و 45 دقیقه عرض شمالی واقع شده است.
1-2-3-2 جنگلهای منفصل حوزه رویشی زاگرسدر قالب توده‌های جدا افتاده بلوط یا سایر گونه ها از جنگلهای پیوسته خودنمایی می‌کنند که در گذشته جزئی از جنگلهای پیوسته حوزه رویشی زاگرس بوده اند اما در طول تاریخ بر اثر بهره برداری و تغییر کاربری، از جنگلهای پیوسته جدا شده و در حال حاضر تحت عنوان جنگلهای گسسته خودنمایی میکنند (جزیره ای و ابراهیمی‌رستاقی، 1382). علاوه براین می‌توان زاگرس شمالی را در مجموع مرطوبتر و خنک تر (سردتر) از زاگرس جنوبی دانست. جنگلهای زاگرس اغلب دارای تاج پوشش باز بوده، رشد درختان اندک و زادآوری طبیعی بدلیل شدت تخریب بسیار اندک است. در حال حاضر تنها 7 درصد از جنگلهای منطقه زاگرس دارای فرم پرورشی دانه زاد بوده و 93 درصد آن دارای فرم‌های شاخه زاد و دانه و شاخه زاد می‌باشند (ثاقب طالبی و همکاران، 1383).
1-2-3-3 زمین شناسی و خاکشناسیدر اواخر پلیوسن در اثر جدا شدن سرزمین عربستان از آفریقا و نزدیک شدن آن به فلات ایران، تغییر شکل و چین خوردگی در بخش جنوبی و جنوب غربی کشور رخ داد. به این ترتیب زاگرس از آب خارج شد. در دوره میوسن، بر اثر فعالیتهای کوهزایی، این رسوبات بصورت کوههای عظیمی‌برافراشته شدند. در دوران سوم با پدیده آتشفشانی این حوزه در گدازه‌های آتشفشانی پوشیده شد و در دوران چهارم بر اثر فرسایش کوهها، خاک یا همان نهشته‌های آبرفتی بر فراز طبقات دیگر جای گرفت.
تیپ‌های عمده خاک در این منطقه عبارتند از :
خاکهای قهوه ای جنگلی Brown soils
خاکهای شاه بلوطی Chesnut soils
خاکهای سنگی Lithosols
خاکهای راندزین Rendzinas
خاکهای آبرفتی Alluvial soils
فراگیرترین خاک جنگلی در حوزه زاگرس شامل خاک قهوه ای جنگلی است که گاهی بصورت یکپارچه و در مواردی همراه با تیپ‌های دیگر ظاهر میشود. خاکهای سنگی و راندزین دارای عمق کمتر و فاقد حاصلخیزی کافی و ظرفیت نگهداری آب می‌باشند و معمولا در عرصه هایی با شیب متوسط یا تند دیده می‌شوند (ثاقب طالبی و همکاران 1383).
1-2-3-4 خصوصیات اقلیمی‌ناحیه رویشی زاگرسبارش
باران و برفی که در مناطق مختلف زاگرس فرو میریزد، از جریان هایی نشأت می‌گیرند که عمدتا از اقیانوس اطلس و دریای مدیترانه و تا حدی نیز از دریای سیاه و بعضا از مناطق شمالی اروپا به این سو حرکت می‌کنند. قاعده کلی بارش در این حوزه اینست که مقدار بارندگی از شمال به جنوب و از غرب به شرق کاهش می‌یابد. بارندگی در این منطقه اغلب از نوع زمستانه است و بطور متوسط بین 400 تا 800 میلیمتر است بطوریکه بیش از 70 درصد کل بارندگی سالانه و در مواردی (ایلام) تا 97 درصد آن در نیمه دوم سال فرو میریزد. این مسئله منجر به ایجاد یک تابستان خشک و طولانی می‌شود. بر اساس نمایه خشکی دومارتن چهار نوع اقلیم مرطوب، نیمه مرطوب، مدیترانه ای و نیمه خشک در منطقه زاگرس وجود دارد. طول مدت خشکی در این اقالیم به ترتیب 4 تا 5 ماه و برای دو مورد آخر 4 تا 6 ماه است.
دما
طبق آمار جوی در زاگرس، میانگین دمای متوسط سالانه بر حسب عرض جغرافیایی و ارتفاع بین 9 تا 25 درجه سانتیگراد نوسان دارد. فاصله بیشینه مطلق و کمینه مطلق دما در هر محل بسیار چشمگیر و حدود 50 درجه سانتیگراد می‌باشد که به 74 درجه سانتیگراد نیز می‌رسد و این پدیده نمایشگر شدت بری بودن اقلیم منطقه می‌باشد. همچنین تعداد روزهای یخبندان نیز در نقاط مختلف آن بین 10 تا 149 روز در سال است (ثاقب طالبی و همکاران 1383).
1-2-4 اسامی‌لرگنامهای محلی لرگ عبارتند از : موتال (در آستارا)، متول (در گرگانرود)، ملال (در طالش)، مولول (در شفارود)، کوچ، کوچی (در اطراف رشت، رودبار و درفک)، کهل و کهل (در لاهیجان، مازندران و گرگان)، سیاه کهل (در تنکابن و رامسر)، لرگ و لارگ (در نور، کجور، مازندران و گرگان)، درخت رحمان (در لرستان) و نیروز در ایلام (سهرابی و مهدیفر، 1375).
1-2-5 طبقه بندی لرگKingdom: Plantae – Plants
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Fagales
Family: Juglandaceae
Genus: Pterocarya
Species: P. fraxinifolia
1-2-5-1 کلید شناسی:الف – جوانه ها بدون پایه، فلس دار، برگها معطر، میوه یک شفت بزرگ .Juglans
ب – جوانه ها پایه دار، عریان و بدون فلس، برگها غیر معطر، میوه یک فندقه بالدار Pterocarya (Avis 1982).
خانواده گردو(Juglandaceae ) از 7 جنس و حدود 50 گونه تشکیل شده است که عمدتاً در مناطق معتدله و نیمه گرمسیری نیمکره شمالی پراکنش دارند. جنس های زیرخانواده یوگلاندوئیده عبارت اند از یوگلانس ( 15 گونه) و کاریا ( 25 گونه) و زیرخانواده اُرمونئوئیده دارای 5 جنس است که پتروکاریا ( 10 گونه) ازآن جمله است. یک گونه از جنس یوگلانس به نام گردو (یوگلانس رگیا) در جنگل های شمال و غرب و یا به صورت کاشته شده در غالب نواحی ایران و یک گونه از جنس پتروکاریا به نام کرُک پتروکاریا فراکسینیفولیا در جنگل های شمال ایران می رویند (بخشی خانیکی، 1386). بطورکلی این خانواده دارای 6 جنس و 40 گونه است که از مهمترین جنسهای آن گردو و لرگ را میتوان نام برد (Avis 1982).
تیره Juglandaceae شامل 8 جنس و 50 گونه می‌باشد که در بین آنها جنس گردو Juglans با 21 گونه مهمترین گیاه این خانواده است. لیست تمامی‌جنس‌های تیره Juglandaceae به قرار زیر است (بدرزاده، 1386) : Juglans – Platycarya – Pterocarya – Oreomunnia – Engelhardtia – Cyelocarya - Alfaroa
لرگ دارای یک واریته درختچه ای بنام P.f.var.dumosa بوده که شاخه‌های آن باریک، زرد قهوه ای و طول برگچه ها 5 تا 7 سانتیمتر می‌باشد که در دو زیرخانواده طبقه بندی می شوند. این جنس دارای یازده گونه است که شش گونه آن در چین، یک گونه در ژاپن و یک گونه در آسیای غربی انتشار دارد. گونه آسیای غربی که در قفقاز و شمال ایران و همچنین با تایید بخش تحقیقات گیاهشناسی موسسه در دو منطقه از جنگلهای غرب کشور شامل استانهای ایلام و لرستان انتشار دارد که بنام Pterocarya fraxinifolia (spach) یا P.caucasica معروف است (Avis 1982) .
1-2-6 ویژگیهای مورفولوژی لرگ
درختان برگ ریز، اغلب باقطر مشخص، برگها متناوب، شانه ای، بدون گوشواره، گلها تک جنسی، بدون گلبرگ، تک پایه، شاتون نر آویزان، شاتون ماده راست یا آویزان، گلهای نر با پوشش دندانه ای یا براکته مانند 60-3 لبی یا فاقد آن، پرچمها 40-3 عدد، گلهای ماده بدون دم گل روی ساقه قرار گرفته اند. براکته ها و پوشش گل روی تخمدان قرار گرفته و اغلب چهار لبی می‌باشند. تخمدان تحتانی، 3-2 خامه ای، تک حفره ای، تک تخمی، قاعده ای، میوه شفت یا فندق بالدار، دانه اغلب با لپه‌های خیلی پیچ خورده. بطورکلی این خانواده دارای 6 جنس و 40 گونه است که از مهمترین جنسهای آن گردو و لرگ را میتوان نام برد. درختان این خانواده معمولا دارای ریشه‌های عمیق و چوب بسیار عالی هستند. عموما در نواحی معتدله نیم کره شمالی انتشار دارند و استثنائا در آمریکا از خط استوا می‌گذرند. غالبا بصورت درخت و ندرتا درختچه هستند (Avis 1982) . درخت لرگ خزان کننده، شاخه ها دارای مغز نرم و اسفنجی یا مطبق، جوانه ها پایک دار و لخت، برگها متناوب شانه ای، گلها یک پایه و در روی شاتونهای آویزان قرار دارند. کوتیلدنها چهار لوبه و ژرمیناسیون اپیژه است. شاخه‌های اصلی بسیار توسعه یافته و رشد درخت سریع و پاجوش بسیار تولید می‌کند. این جنس دارای یازده گونه است که شش گونه آن در چین، یک گونه در ژاپن و یک گونه در آسیای غربی انتشار دارد. گونه آسیای غربی که در قفقاز و شمال ایران و همچنین با تایید بخش تحقیقات گیاهشناسی موءسسه در دو منطقه از جنگلهای غرب کشور شامل استانهای ایلام و لرستان انتشار دارد که بنام Pterocarya fraxinifolia (spach) یا P.caucasica معروف است (Avis 1982).
گیاهان این خانواده درختانی تک پایه با برگ های متناوب و مرکب شانه ای و معطّر و فاقد گوشوارک می باشند. گل ها تا 6 کاسبرگ و از 3 الی 40 پرچم تشکیل شده است. پرچم ها در 2 یا چند سری قرار دارند و دارای میله کوتاه و بساک دوخانه اند که با شکاف طولی شکفته می شوند. گل های نر در روی گل آذین سنبله یا خوشه ساده آویخته آرایش یافته اند. پوشش گل های ماده از تعداد محدودی براکته و کاسه گلی مرکب از 4 کاسبرگ تشکیل یافته است. مادگی زیرین و تخمدان از به هم پیوستن 2برچه به وجود آمده و تک خانه ای و حاوی یک تخمک راست می باشد. خامه کوتاه و منتهی به 2 کلاله بزرگ است. میوه تقریباً خشک و شکوفا یا ناشکوفا یا گاهی اوقات بالدار است. دانه منفرد، دارای رویان بزرگ و فاقد آندوسپرم می باشد (بخشی خانیکی، 1386). بر اساس منابع موجود لرگ درختی است که به ارتفاع 30 متر می‌رسد (جوانشیر، 1366)، و در جنگلهای حوضه آبخیز (واز) تا 40 متر ارتفاع نیز اندازه گیری شده است (ابراهیمی،‌1379).
1-2-7 جنگلهای جهان و پراکنش لرگ در دنیا30 درصد سطح کره خاکی را جنگل و بیشه‌های جنگلی مفروش می‌کند. 24 درصد آن را مراتع اشغال کرده اند و 11 درصد برای زمین‌های کشاورزی اختصاص داده شده اند. امروزه تخریب بیرویه در سطح جنگلهای جهان صورت می‌گیرد. سالهاست که با قطع بیرویه جنگلهای جهان رو به تخریب می‌باشد. و بنابر آمارهای F.A.O هر ساله یازده میلیون هکتار از جنگلهای جهان تخریب می‌شود. در واقع هرساله به اندازه سطح کشور گواتمالا تخریب صورت میگیرد. طبق آمار سازمان خواروبار و کشاورزی جهانی در سال 1991 جنگلهای مناطق حاره جهان 79/1 میلیارد هکتار بوده. بین سالهای 1981 تا 1990 هر ساله در حدود 15 میلیون هکتار از جنگلهای مناطق حاره از بین رفته اند. تخریب بیشتر در جنگلهای آفریقا، آمریکای لاتین و آسیا صورت گرفته است. جنگلهای مناطق معتدله و شمال کره زمین نیمی‌از جنگلهای جهان را تشکیل می‌دهند. محصولات چوبی این جنگلها برای صنایع مصرف می‌شود. و در حدود 80 درصد چوب صنایع از این جنگلها است. سطح جنگلهای معتدله و نیمه معتدله جهان 5/1 میلیارد هکتار می‌باشد (مصدق، 1384).
نظر به اینکه پراکنش آبها و خشکی ها در کره زمین یکسان نیست، عوامل موثر اکولوژیک از قبیل حرارت، رطوبت و غیره در همه نقاط بطور یکسان وجود ندارند، بدین جهت نوع و تیپ رستنی ها نیز اشکال مختلفی بخود می‌گیرند و در سطوح متفاوتی گسترش می‌یابند. چنانچه از قطب شمال یا جنوب به طرف استوا پیش رویم، ملاحظه می‌کنیم که درجه حرارت دائما افزایش می‌یابد. میزان رطوبت نیز هرچه از مناطق دریایی دور شویم و به خشکی ها نزدیک شویم کاهش می‌یابد. مقدار انرژی خورشید مثلا در نواحی استوایی 200 کیلوکالری در سانتی متر مربع است، در صورتیکه در عرض جغرافیایی 70 درجه این مقدار فقط 30 کیلو کالری در هر سانتیمتر مربع است. یعنی در یک دوره رویش گیاهی در مناطق استوایی انرژی خورشیدی 7 برابر بیشتر از مناطقی است که در عرض جغرافیایی 70 درجه هستند. هرچند که از نظر مقیاس جهانی حرارت و رطوبت مهمترین عوامل در پراکنش اجتماعات گیاهی هستند، با وجود این تاثیر کلی عوامل اکولوژیک در یک محل و قدرت رقابت گیاهان عوامل تعیین کننده ظاهر شدن یا فقدان یک تیپ گیاهی بشمار می‌آیند (مهاجر، 1385).
سطح کل جنگلهای دنیا حدود 4/3 میلیارد هکتار برآورد شده است (F.A.O، 1993 ). این رقم در سال 1980 بالغ بر 4 میلیارد هکتار بود. این موضوع روند تخریب سریع جنگلهای دنیا را نشان می‌دهد. جنگلهای دنیا نزدیک به 90% بیوماس گیاهی اکوسیستم‌های زمینی را تولید می‌کنند و همراه با دریاها 48% کل تولید اولیه کره زمین را تشکیل می‌دهند (مهاجر، 1385).
برای تفکیک و طبقه بندی جنگلهای دنیا روشهای مختلفی پیشنهاد شده است و دانشمندان زیادی جنگلها را بر حسب عوامل مختلف طبقه بندی نموده اند. بعضی جنگلها را برحسب مناطق جغرافیایی، برخی بر اساس سیمای ظاهری و گونه‌های تشکیل دهنده آنها تقسیم بندی نموده اند. یکی از تقسیم بندی‌های معروف توسط پروفسور بروکمن (Brockmann ) صورت گرفته است که در آن مناطق رویش گیاهی دنیا به ده قسمت تقسیم شده اند که در جدول 1- 2 ذکر شده اند.

جدول 1-2 : تقسیم بندی مناطق رویشی جهان توسط بروکمن1 – جنگلهای بارانی یا استوایی Pluvisilvae
2 – جنگلهای سبز بارانی یا نیمه استوایی Hiemisilvae
3 – جنگلهای همیشه سبز معتدله گرم و مرطوب Laurisilvae
4 – جنگلهای همیشه سبز مدیترانه ای Durisilvae
5 – جنگلهای سبز تابستانی ( خزان کننده) Aestisilvae
6 – جنگلهای سوزنی برگ مناطق معتدله سرد Aciculisilvae
7 – رویشهای استپیک Duriherbosa
8 – بیابانهای گرم Siccideserta
9 – بیابانهای سرد Frugorideserta
10 – مناطق قطبی Polaris
تقسیم بندی‌های دیگری که بر اساس سیمای ظاهری جنگلها بنا شده است نیز وجود دارد که بیشتر جنبه عملی دارند (مهاجر، 1385).
در جغرافیای جنگل، گسترش نباتات و درختان جنگلی در جهان بررسی می‌شود، ترکیب رستنی ها و جوامع مختلف جنگلی مطالعه میگردد. بنا بر عقیده Diels و Good جهان به شش سرزمین پهناور جنگلی تقسیم می‌شود که هرکدام از این سرزمین‌های پهناور جنگلی به چند تحت سرزمین تقسیم می‌شوند (مصدق، 1384). این شش سرزمین عبارتند از:
سرزمین‌های جنگلی شمال جهان Holarctic Kingdom
سرزمین‌های جنگلی حاره قدیم Paleotopical Kingdom
سرزمین‌های جنگلی حاره جدید Neotropical Kingdom
سرزمین‌های جنگلی استرالیا Australian Kingdom
سرزمین‌های جنگلی کاپ Cape Kingdom
سرزمین‌های جنگلی مجاور قطب جنوب Holantarctic Kingdom
Browicz (1982) ، محل انتشار گونه لرگ را در جنوب غربی آسیا، در قفقاز، آناتولی و شمال ایران می‌داند و نقشه پراکنش آن را در دنیا ترسیم کرده است (شکل 1 – 1).

شکل 1-1 : نقشه پراکنش لرگ در جهان Browicz (1982)گونه لرگ در جنگلهای شرق قفقاز، دشتی که به طرف دریای خزر و کوههای موازات آن است، در قسمت جلگه ای و در مسیر رودخانه ها وجود دارد. همچنین در جنگلهای جنوب قفقاز در دره Koura جنگل نواری از گونه لرگ حضور دارد. در جنگلهای خزان کننده مرکز ژاپن در قسمت جزیره Hondo نیز درخت لرگ ( Pterocarya sp ) به چشم می‌آید. در جنگلهای سابتروپیکال، قسمت جنگلهای کوهستانی چین مرکزی نیز جنس‌های Pterocarya موجود است. در جنگلهای بخش مدیترانه ای آسیا، در قسمت کوهستانی جنگلهای ترکیه بین ارتفاعات 1000 تا 1800 متر از سطح دریا درختان لرگ حضور دارند (مصدق، 1384).
1-2-8 جنگلهای ایران و پراکنش لرگ در آنجنگلهای ایران با 4/12 میلیون هکتار وسعت، 4/7% از سطح کشور را اشغال کرده است. لذا کشور ایران در مقایسه با سایر نقاط دنیا بلحاظ پوشش جنگلی، کشوری فقیر محسوب میگردد ولی بلحاظ تنوع گونه ای و گیاهی و ذخائر ژنتیکی گیاهی در جهان کم نظیر است ( ثاقب طالبی، 1383). آمار رسمی‌مساحت جنگلهای ایران در سال 1343 (دفتر فنی مهندسی منابع طبیعی) 18 میلیون هکتار را نشان می‌داده. در سال 1321 ساعی مساحت تقریبی جنگلهای ایران را 5/19 میلیون هکتار برآورد نموده است (مهاجر، 1385). کشور ایران که مساحت آن بالغ بر 1654000 کیلومتر مربع و یا به روایت دیگر 163 میلیون هکتار است تقریبا 18 میلیون هکتار جنگل داشته، در واقع می‌توان گفت 11% سطح کشور را جنگل پوشانیده ولی امروزه سطح آن به مراتب کمتر از آن است و احتمالا در حدود 12 میلیون هکتار است (مصدق، 1384).
شرایط طبیعی و موقعیت جغرافیایی ایران طوری است که این کشور را در تقاطع سه منطقه گیاهی مهم قرار داده است. منطقه ایران و تورانی که علاوه بر گیاهان بومی‌ویژه خود از نفوذ بعضی عناصر مدیترانه ای نیز برخوردار می‌باشد. این ناحیه خود شامل دو منطقه جنگلی زاگرس و ایران- تورانی است. منطقه هیرکانی که وابسته منطقه گیاهی اروپا – سیبری است و از دو منطقه جنگلی هیرکانی و ارسبارانی تشکیل می‌شود و منطقه صحرا – سندی که نوار جنوبی کشور را در بر می‌گیرد. بر اساس همین مطالعه، تعداد گونه‌های گیاهی ایران در حدود 8000 گونه برآورد می‌شود. در واقع تنوع اقلیمی‌بویژه از دیدگاه زمین ساختی در این کشور به گونه ای رقم خورده است که جغرافیدانان آن را پل ارتباطی بین اقالیم جهانی نیز نامیده اند و همین تنوع اقلیمی‌موجب پیدایش حداقل پنج رویشگاه جنگلی منفک از یکدیگر گردیده است. ناحیه رویشی خزری که جنگلهای مرطوب تجاری و صنعتی را در خود جای داده است، ناحیه رویشی ارسبارانی با جنگلهای نیمه مرطوب که با برخورداری از تنوع گیاهی وسیع بعنوان ذخیره گاه جهانی بیوسفر شناسایی شده است، ناحیه رویشی زاگرس با جنگلهای نیمه خشک تا معتدله خشک و مجموعه ای غنی از انواع گونه‌های بلوط، ناحیه رویشی ایران – تورانی که تحت عنوان جنگلهای خشک سیمای دیگری از جنگلها را با ارس، پسته وحشی و بادام به نمایش می‌گذارد (ثاقب طالبی، 1383).
در جنگلهای کرانه دریای خزر در ایران، در اشکوب اول جامعه Querco- buxetum درختان لرگ نیز حضور دارند(مصدق، 1384). جامعه Querco- buxetum یک جامعه گیاهی مخصوص دشت‌های کرانه خزر است که دارای خاک ماسه ای و قابل نفوذ می‌باشد. در این جامعه دو اشکوب مشخص وجود دارد. اشکوب اول شامل بلوط همراه گونه هایی مثل افرا، لرگ و توسکا و اشکوب دوم بسیار متراکم و مرکب از شمشاد، لیلکی، خرمندی و شب خسب که در زیر آنها علف هایی مثل سرخس، گرامینه ها و تعدادی از گونه‌های خزه خاکزی دیده می‌شود (ثاقب طالبی، 1383).
جنگلهای خزری از نظر سیمای ظاهری شباهت زیادی به جنگلهای پهن برگ اروپای مرکزی، شمال ترکیه و قفقاز دارد. تنوع گونه‌های درختی و جوامع جنگلی شمال ایران به مراتب غنی تر از جنگلهای اروپای مرکزی است و شباهت آن از این نظر بیشتر به جنگلهای شمال ترکیه و قفقاز نزدیک است . بر حسب شرایط اقلیمی، خاکی و غیره جوامع جنگلی مختلفی از جمله جامعه لرگ – توسکایستان ( Pterocaryo – Alnetum ) و لرگ – ونستان ( Pterocaryo – Fraxinetum ) ظاهر می‌شوند (مهاجر، 1385).
گسترش لرگ در جنگلهای خزری ایران در عرضهای جغرافیایی بالاتر (36 درجه شمالی) و با بارندگی بیشتر(1100 میلیمتر) و 27 روز یخبندان گزارش شده است (ابراهیمی، 1383). مناطق انتشار لرگ در ایران، در گرگان دره زیارت و بندر گز، در مازندران آمل، رودخانه چالوس (پارک فین)، قائم شهر، پل سفید، دشت نظیر کجور، رامسر، قاسم آباد، نوشهر، زیرآب، شیرگاه، در گیلان هشتپر، پیربازار، انزلی، رشت، لاهیجان، اسالم، رضوانشهر و آستارا گزارش شده است (قهرمان، 1362). انتشار لرگ در جنگل‌های ناحیه خزر از آستارا تا مینودشت و از جلگه تا ارتفاع 1000 متر از سطح دریای آزاد ( استثنا در جنگلهای نور) بیان شده است (ثابتی، 1374). وجود توده‌های لرگ در استان لرستان (شول آباد) نیز گزارش شده است (سهرابی، 1387).
1-2-9 فسیل شناسی لرگدر دوران یخبندان جنسهای زیادی در نواحی Colchique و قفقاز و ایران از گذشته به یادگار مانده اند که بعضی از این جنسها شامل Pterocarya ، Celtis ، Juglans ، Diospyros ، Parotia ، Zelkova ، Rhododedron می‌باشند(مصدق، 1377). Paganelli (1960) در مطالعه ای تحت عنوان نخستین نتایج مطالعه گرده در نهشته‌های لیگنینی منطقه Pietrafitta نشان داده است که جنس Pterocarya یکی از گونه‌های قدیمی‌بوده و در دوران اول زمین شناسی گرده آن در نهشته‌های لیگنینی قرار گرفته اند و در آن منطقه بصورت تدریجی تقلیل پیدا کرده اند. Hibino در سال 1968، در مطالعه ای در ارتباط با گرده‌های فسیل و در هوا پراکنده شده با پوشش گیاهی انجام گرفت که در این مطالعه گرده‌های Pterocarya spp. به دو صورت فسیلی و در هوا پیدا شده است که این گونه در منطقه مذکور سالها پیش ناپدید شده و از فلور منطقه حذف گردیده است.
1-2-10 استفاده‌های صنعتی و غذایی لرگچوب لرگ با رنگی آمیخته به قرمز، نرم و برای ساختن تغار، خمره، ظروف، پارو و غیره بکار می‌رود و الیاف درخت لرگ برای بستن خوشه‌های انگور و بافندگیهای بخصوص مانند راکت تنیس و غیره بکار میرود ( جوانشیر، 1366).
چوب گونه های مختلف گردو از اهمیت خاصی برخوردار بوده و دارای مصارف صنعتی است همچنین دانه‌های آن نیز مصرف خوراکی دارد. از برگ ها و پوست میوه آن نیز در صنایع رنگرزی استفاده به عمل می آید. برخی از گونه های این خانواده به عنوان درختان زینتی کاشته می شوند (بخشی خانیکی، 1386).
مدادهای حاصله از چوب لرگ بهترین کیفیت را دارا بوده و از این نظر حتی با چوبهای وارداتی برابری می‌کند. براساس تجربیات و سابقه علمی‌موجود اشاره می‌نماید که برگ سبز جوشیده شده لرگ به دلیل وجود مواد موثره و اثر گیج کننده ای که برای ماهی دارد، در گذشته نه چندان دور در رودخانه‌های جنگلی بخشی از مناطق شمال از جمله آمل و نور در فن ماهیگیری استفاده می‌شده است (ابراهیمی، 1379).
در مطالعاتی به تولید لاک از Laccifer laca بر روی درختان لرگ اشاره شده است (Hadzibejli ، 1968 ). گونه P.fraxinifolia بومی‌قفقاز بوده و از چوب آن جهت تهیه جعبه‌های بسته بندی و تهیه مبلمان استفاده می‌شود (Poucke ،1991 ).
فصل دومسابقه تحقیق
2-1 مروری بر مطالعات انجام شده بر روی لرگبدون شک یکی از اصلی ترین و مهمترین راه‌های دستیابی به اطلاعات مورد نظر در خصوص هریک از رشته‌های دانش بشری، مراجعه به تحقیقات، پژوهش ها و کارهای علمی‌است تا از این طریق بتوان برای رسیدن به هدف مورد نظر و برنامه ریزی‌های آتی، آگاهی و اطلاعات کافی را حصول کرد.
درخصوص لرگ مطالعاتی چند در داخل و خارج کشور انجام شده است. اما تاکنون هیچگونه پژوهشی در خصوص این گونه در استان ایلام انجام نشده است. امید است مطالعه حاضر گام مفید و موثری درجهت ادامه کارهای تحقیقاتی در خصوص گونه مذکور در آینده باشد.
در ادامه چندی از تحقیقات داخلی و خارجی در باب درخت لرگ را ذکر می‌کنیم.
2-2 مطالعات داخل کشوررمضانی و همکاران (1379) در مطالعه ای تحت عنوان بررسی ویژگیهای خاک و گیاهان همراه در رویشگاههای شیردار acer cappadocicum gled در منطقه غرب مازندران، به منظور بررسی ویژگیهای خاک و گیاهان همراه در رویشگاههای شیردار، 9 رویشگاه مناسب در جنگلهای منطقه فیتوژئوگرافیک هیرکانی انتخاب نمودند. Selective sampling از رده بندی خاک رویشگاههای مورد بررسی پنج رده mollisol ,entisol ,inceptisol ,alfisol ,ultisol به دست آورد. آنالیز فیزیکی شیمیایی این خاک ها نشان داد که درخت شیردار دامنه وسیعی از ph 4/3-8/17 و آهک 01-62 درصد را تحمل می کند خاک بیشتر رویشگاهها دارای بافت رسی یا لوم رسی بود از بین عناصر ضروری Mg در هیچ رویشگاهی دچار کمبود نبوده ولی مقادیر N ,K ,Ca ,P در برخی از پروفیلهای خاک از حد معمول کمتر بودند گیاهان درختچه ای و علفی در کل رویشگاهها شناسایی و استقرار این گیاهان درهریک از رده های خاک بررسی گردید. از بررسی گیاهان همراه مشخص شد که گیاهانی نظیر: علف جیوه Perennis mecurialis ، شیرپنیر galium odoratum بنفشه viola odorata و ... در همه رده های خاک دیده می شوند ولی برخی دیگر از گیاهان تنها در یک رده خاک مشاهده شدند که از این گروه میتوان به Brachypdium sylvaticum , Stellaria holostea اشاره کرد.
آخانی و سلیمیان (1382) تحقیقی تحت عنوان توده‌های منحصر بفرد لرگ موجود در کوه‌های زاگرس مرکزی- ایران انجام دادند. توده fraxinifolia Pterocarya که در بخش ایران -تورانی از ایران، در ارتفاع 1730 متر، در دریای خزر و در منطقه وان در جنوب شرقی ترکیه گزارش شده است، جدا از جمعیت، در کوه‌های زاگرس مرکزی نیز وجود دارند. این توده مدت طولانی است که توسط مردم محلی محافظت میشود، که بر این باورند کاهش این درختان شوم است. ساختار، اندازه و اهمیت فیتوژئوگرافیکی توده مورد بحث و حفاظت از آن، همراه با راش، چنار و درخت غول، به عنوان یک اثر طبیعی ملی پیشنهاد شده است.
ابراهیمی‌و همکاران (1383) تحقیقی تحت عنوان بررسی نیاز رویشگاهی لرگ در جنگل تحقیقاتی «واز» مازندران انجام دادند. در این مطالعه مشخصه‌های کمی و کیفی درختان لرگ به‌طور جداگانه یادداشت و ثبت گردید و تجزیه و تحلیل نهایی با استفاده از آمار و اطلاعات موجود انجام گرفت. مطالعه و بررسی رویشگاه های لرگ در حوضه نشان می‌دهد که درختان لرگ بر روی خاکهای رسی مرطوب و عمیق، شیب بین 5 تا 20 درصد، جهت های شمالی، ارتفاع 500 تا 1000 متر از سطح دریا، در حاشیه و اراضی کم شیب، بستر رودخانه‌ها و دره‌ها از بیشترین تراکم برخوردار بوده‌اند. از نظر درجه آمیختگی نیز 4/56 درصد درختان را لرگ، 5/14 درصد را خرمندی، 8 درصد را توسکای ییلاقی و بقیه را سایر گونه‌ها تشکیل می‌دهند. متوسط رویش قطری و طولی سالیانه لرگ در طول دوره زندگی، متفاوت و بیشترین رشد طولی و قطری مربوط به 20 سال اول دوره می‌باشد. در ضمن رویش ارتفاعی بعد از سنین حدود 55 سالگی، بسیار کم و به حداقل ممکن می‌رسد. تعداد درختان لرگ در توده‌های مورد مطالعه 2/14 اصله در قطعه نمونه (10 آر) می‌باشد که تا طبقه قطری 35 سانتیمتری افزایش و بعد از آن روند نزولی پیدا می‌کند. بیش از 80 درصد درختان لرگ در طبقات قطری 10 تا 45 سانتیمتری قرار دارند. از نظر زادآوری، کلیه نهالها مبدأ غیر جنسی (ریشه جوش) دارند، ضمن آنکه به‌رغم وجود نهال نسبتاً فراوان، زادآوری از روند مطلوبی برخوردار نیست. لرگ در عموم رویشگاهها همراه با توسکای ییلاقی، افرا (پلت)، توسکای قشلاقی، ممرز، سفید پلت، ون و گردو در اشکوب بالا قرار می‌گیرد. توده‌های لرگ مورد بررسی در اکثر موارد حالت دو اشکوبه دارند. از نظر کیفیت تنه، هرس، تقارن تاج، درختان لرگ وضعیت چندان مطلوبی ندارند. 84 درصد درختان سالم و تنها 16 درصد آنها دچار آفت و امراض، پوسیدگی، کت زدگی و سرشکستگی تاج می‌باشند.
زاهدی پور و همکاران (1383) در مطالعه ای تحت عنوان بررسی پراکنش، اکولوژی و فنولوژی پسته وحشی دراستان مرکزی مطالعه موردی رویشگاه کوه نظر کرده - شهرستان ساوه، ضمن بررسی دقیق خصوصیات رویشگاه، خصوصیات کمی و کیفی درختان از قبیل تعداد درخت در هکتار، ارتفاع درختان، قطر تاج بزرگ و کوچک، ارتفاع تنه، قطر تنه، نوع فرم رویش، شادابی و سلامت تنه و تاج و سایر ویژگیها در منطقه کوه نظر کرده شهرستان ساوه را مورد بررسی قرار دادند. نتایج حاصله از این تحقیق نشان داد که محدوده ارتفاعی پراکنش درختان 1293 – 1080 متر از سطح دریا بوده، تعداد درختان 30 – 50 اصله در هکتار و میانگین ارتفاع آنها برابر 27/3 متر بوده که حداکثر ارتفاع 5 متر می‌باشد. از طرفی ارتفاع تنه درختان 18/1 متر و میانگین ارتفاع تاج نیز برابر 10/2 متر بوده است. میانگین قطر برابر سینه 3/7 سانتیمتر و میانگین ارتفاع قطر تاج بزرگ و کوچک به ترتیب 16/3 و 10/2 متر است که 98% آن بصورت شاخه زاد می‌باشد.
علیپورنصیرمحله و همکاران (1385) تحقیقی با عنوان بررسی نقش درخت لرگ در کاهش فرسایش خاک انجام دادند. در این کار نواحی فرسایش خاک با ترکیبی از گرادیانت‌های شیب، انواع کاربرد زمین، میزان پوشش گیاهی و میزان فرسایش خاک طبقه بندی شده. کاهش در سرعت فرسایش خاک 11/2% در طول یک دوره 3 ساله بعد از حفاظت خاک وجود دارد. مقایسه شدت فرسایش خاک بین قبل از فرسایش و بعداز فرسایش مشخص می‌کند که فرسایش خاک به طور آشکار تقلیل یافته و اندازه گیری کاملا موثر بوده است.

–248

2-11اختصاصات بیوشیمیایی و شیمیایی تیره 29
2-12کاربرد اقتصادی تیره 29
2-13مصارف اقتصادی و دارویی 30
2-14 برخی از توالی های ژنی مورد استفاده در سیستماتیک مولکولی 31
2-14-1 توالی های DNA هستهای 31
2-15 PCR اساس مارکرها 32
2-15-1 اجزای واکنش زنجیره‌ای پلیمراز(PCR) 33
2-15-2آغازگر 33
2-15-3 آنزیم 34
2-15-4الگو 34
فهرست مطالب
عنوان صفحه
2-15-5 دزاکسی ریبونوکلئوزید تری‌فسفات‌ها 34
2-15-6کلرید منیزیم 34
2-15-7 بافر 35
2-15-8 مراحل تکثیر 35
2-16 درخت فیلوژنتیک 35
فصل سوم: مواد و روش ها37
3-1مطالعه منابع 38
3-2مطالعه هر بار یومی 38
3-3استفاده از DNA در سیستماتیک مولکولی 38
3-4بررسی روابط فیلوژنی بر اساس صفات مولکولی 40
3-4-1استخراج DNAاز برگ 40
3-4-2تکثیر قطعات مورد نظر با استفاده از واکنش زنجیره ای پلیمر از 42
3-4-3الکتروفورزژل آگارز 43
3-4-4تعیین توالی مناطق تکثیر شده 45
3-5آنالیز فیلوژنی 45
3-5-1روش ماکزیمم پارسیمونی 46
3-5-2روش Bayesian 46
3-5-3مقایسه دو روش آنالیزی ماکزیمم پارسیمونی و Bayesian 47
فصل چهارم: بحث و نتیجه گیری49
4-1 انالیز ماکزیمم پارسیمونی 50
4-2 انالیز Bayesian 52
4-3 فیلوژنی قبیله Cynoglosseae 54
4-4 روابط فیلوژنی جنس Rindera 55
منابع 61
فهرست شکل ها
عنوان صفحه
شکل 1-1 7
شکل 1-2 8
شکل 1-3 25
شکل 1-4 28
شکل 1-5 39
شکل 1-6 44
شکل 1-7 44
شکل 1-8 45
شکل 1-9 45
شکل1-10 51
شکل1-11 53
فهرست جداول
عنوان صفحه
جدول 1-1 گزارش عدد پایه کروموزومی تعدادی از گونه های Boraginaceae در ایران 24
جدول 1-2 مقایسه دریچه دانه گرده بین قبیله های Boraginaceae s.str 26
جدول 1-3 تاکسون های مورد استفاده برای تکثیر قطعه - جدول nrDNA ITS 40
جدول 1-4 توالی آغازگر های مورد استفاده برای تکثیر قطعه - جدولnrDNA ITS 42
جدول1-5 ترکیبات مورد استفاده برای مخلوط کلیpcr 42
جدول 1-6 برنامه مورد استفاده برای واکنش PCR قطعه ITS nrDNA 43
چکیده
تیره گاوزبان دارای 100 جنس و 1600 گونه بوده و دارای پراکنش جهانی می باشد. این تیره هم اکنون در گروه EuasteridsI واقع شده ودر بین راسته های این گروه جایگاهی ندارد. از مهمترین قبیله های تیره
s. str Boraginaceae در ایران، می توان قبیله هایBoragineae, Lithospermeae, Cynoglosseae, Echiochileae, Echieae, را نام برد در تحقیق حاضر 5گونه با استفاده از توالی nrDNAITS، به روش بیشنه صرفه جویی (mp: Parsimony Maximum) تعبیه شده در نرم افزار PAUP*4.0b10 و همچنین با روش Bayesian با نرم افزارVersion3.12 Mr Bayes آنالیز شدند. توالی همردیف سازی شده nrDNAITS دارای 658 جایگاه نوکلئوتیدی می باشد. که از این توالی ITS نشان داد جایگاه 146 جایگاه برای توالی nrDNAITS اطلاعاتی می باشد آنالیز انجام شده بر اساس داده های توالی ITS نشان داد،، قبیله Cynoglosseae تک تبار نمی باشداز این قبیله 5 گونه از جنس Rinderaو 3 گونه از جنس Cynoglossum آنالیز شدند و دو گونه از قبیله Lithospermeae مورد آنالیز قرار گرفتند .
و دو گونه HeliotropiumBacciferum, TournefortiaRubicunda به عنوان برون گروه قرار گرفتند قبیله Cynoglesseae دارای فندقه های خاردار است که در سطح پشتی – شکمی تخت و گاهی در حاشیه بالدارند در آنالیز انجام شده نشان داده شد که بین گونه های جنس Rindera روابط حل نشده است وبا جنس Cynoglossum در یک کلاد با حمایت قوی قرار گرفته اند
کلمات کلیدی: توالی هسته ای nrDNA ITSفیلوژنی مولکولی، Cynoglesseae ،Rindera ، تیره گاوزبان
534670108585فصل اول
مقدمه
00فصل اول
مقدمه

1-1تیره گاو زبان (Boraginaceae)
تیره Boraginaceae یا گاوزبانیان یکی از تیره های بزرگ گیاهان و دولپه های حقیقی است. جنس معروف آن Borago است که ازکلمات لاتین Bor و ago به معنای من محرک قلبم مشتق شده و از این نظر که گیاهان این تیره دارای اثر درمانی روی قلب می باشند، تیره را به این نام نامیده اند (خوش سخن، 1388)
تیره Boraginaceae در کلاد Euastrid I (Lamiids) قرار می گیرد که در حال حاضر در میان هیچ یک از راسته های این کلاد جای نگرفته است (APG III 2009) تیره Boraginaceae (subfamily Boraginaceae) دارای 100 سرده و حدود 1600 گونه در دنیا با مراکز پراکنش در اوراسیا می باشد (Weigend et al., 2010)
در فلور ایران Boraginaceae s.I دارای 41 سرده و 218 گونه و Boraginaceae s.str دارای 36 سرده و حدود 180 گونه است. (Khatamsaz, 2002)
در تیره Boraginaceae s.i دو جنس Onosma و Heliotropium بیشترین گونه ها را دارند. تقریبا درتمامی مناطق کشور و در رویشگاه های مختلف پراکنده شده اند. در مناطق کویری و کوهستانی دیده می شوند و گونه هایی از آنها نیز به صورت علف های هرز مزارع و یا در مجاورت مناطق مسکونی و زمین های مخروبه می رویند (kazempour Osaloo,1993)
تیره Boraginaceae s.str شامل یک سری گونه های علفی دو جنسی، ندرتا درختی و درختچه ای اغلب با پوششی از کرک یا موهای زبر، برگ ها معمولا ساده و بدون گوشواره، گل آذین گرزن دم عقربی ساده یا مرکب یا خوشه ای، کاسه گل 5 قسمتی، اغلب بعد از گلدهی وسیع شده، جام گل 5 لبه، منظم یا به ندرت نامنظم، معمولا با لوله مشخص، محل اتصال لب ها به لوله جام اغلب زائده دار، پرچم ها 5 عدد، متصل به سطح بیرونی جام، تخمدان فوقانی، 2 برچه و 4 خانه، خامه منفرد، 2-1 کلاله، جفت بندی قاعده ای، میوه شیزوکارپ معمولا با 4 فندقه می باشند.
این تیره دامنه تنوع وسیعی را به ویژه در ویژگی های میوه وگل نشان می دهد. به همین دلیل تا به حال به صورمختلف رده بندی شده است.
اهداف تحقیق
1.تعیین حدود گونه ای این جنس با استفاده ازتوالیDNA
2.مقایسه نتیجه حاصله با داده ی مورفولوژی
3.بازسازی مولکولی وتعیین حدود جنس Rinderaبااستفاده ازتوالی DNA
687070133350فصل دوم
مرور بر منابع
00فصل دوم
مرور بر منابع

2-1موقعیت تاکسونومیکی تیره Boraginaceae
این تیره در طبقه بندی های دالگرن (Dahlgren,1989) و تختاجان (Takhtajan,1997) در راسته Boraginales براساس نظر کوانکوئیست (Cronquist,1988) در راسته Lamiales و برطبق رده بندی تورن (Thorne,1983) در راسته Solanales قرار می گیرد.
اکنون تیره گاوزبان براساس بررسی های مولکولی در گروه Euasterids I قراردارد و فعلا در میان راسته های گیاهی موجود جایگاهی ندارد (APG III 2009) شکل (1-1)
Euastrids I یک نام غیر رسمی است که برای یک گروه تک تبار شامل چهار راسته به کار می رود Solananles,Gentianales,Lamiales,Garyales به اضافه تعدادی تیره که در راسته های این گروه جایی ندارند. مثل (APG III 2009)Boraginaceae شکل (1-1)
گورکه (Gurke, 1897) جانسون (Jahnston, 1951) و کرانکوئیست (Cronquist, 1981) تیره مذکور را براساس ویژگی های میوه به عنوان یک واحد طبیعی از گروه های خویشاوند مشتمل بر چهار زیر تیره
Heliotropioideae ,Ehretioideae ,Cordioideae ,Boragionideae در نظرگرفتند.
هم اکنون تیره گاو زبان با 4 زیر تیره ذکر شده، به عنوان Boraginaceae sensu lato در نظرگرفته می شود.
Boraginaceae sensu stricto فقط شامل زیر تیره Boraginoideae می باشد و زیر تیره های دیگر به عنوان تیره های مجزا معرفی شده اند و شامل Heliotropaceaee,Cordiaceae,Ehreticeae می باشند(Simpson, 2006). (تصاویر تعدادی از گونه های این تیره در شکل 1-2 آمده است.)
در فلور ایرانیکا Boraginaceae s.I به 4 زیر خانواده، Heliotropioideae,Cordioideae, Ehretioideae، (Boraginaceae s.str) Boraginoideae تقسیم بندی می شود و Boraginaceae s.str شامل قبیله های
Eritrichieae,Myosotideae,Trichodesmeae,Cynoglosseae,Lithospermeae,Boragineae
است.

شکل 1-1) درخت فیلوژنی نشان دهنده روابط بین راسته های نهاندانگان در APG III، موقعیت تیره Boraginoideae در کلاد Lamiids مشخص شده است. (APG III 2009).

شکل 1-2) برخی از گونه های تیره Boraginaceae
A:Onosma longilobum
B: Anchusa italica
C:Onosma dichroantum
D:Paracaryum
E:Nonea lutea
F:Borago officinalis
G:Echium italicum
H:Symphytum officinale
I:Cynoglossum germanicum
J:Maharanga emodi
2-1-1ویژگی های قبیله Cynoglosseae
قبیله Cynoglesseae دارای فندقه های خاردار است که در سطح پشتی – شکمی تخت و گاهی در حاشیه بالدارند (Hilger ,1985). قبیله Cynoglosseae در ایران با داشتن 11 جنس
Heliocarya,Rindera,Trachelanthus,Lindelofia,Omphalodes,Solenanthus,
Cynoglossum,Paracaryum,Microparacaryum,Caccinia,Trichodesma
سومین قبیله بزرگ تیره گاوزبان به شمار می رود که به طورگسترده در نواحی گرمسیری و معتدله پراکنش دارند. دانه گرده در گیاهان این قبیله به صورت 6 شیار ناجور دیده می شود که 3 شیار مرکب و 3 شیار ساده به طور متناوب قرار گرفته اند و عدد پایه کروموزومی در این قبیله عموماx=12 می باشد. این ها گیاهانی با پایه خامه (ژینوباز) مخروطی، هرمی یا به ندرت استوانه ای کوتاه هستند. در این گروه فندقه ها معمولا 4 عدد، و از تمام طول به پایه خامه متصل اند و یا فقط در قسمت انتهایی متصل می باشند و راس فندقه ها در بالاترین نقطه اتصال غیر برآمده می باشد. این قبیله در فلور ایران شامل 11 جنس و 53 گونه می باشد (khatamsaz, 2002)
2-1-2 ویژگی کلی جنسPall Rindera
گیاهی علفی، چند ساله، بدون کرک یا با کرک، ساقه افراشته، اغلب غیر منشعب، برگ ها تخم مرغی تا نواری، برگ های قاعده ای با دمبرگ طویل، گل آذین خوشه مرکب، خوشه ها مجتمع یا به صورت گرزن یک سویه، دمگل در حالت میوه وسیع شده، کاسه قسمتی تا قاعده شکافته شده، دندانه های کاسه باریک و غیر قابل تغییر، در حالت گل افراشته و در حالت میوه برگشته، جام گل لوله ای، با زایده بین لبه های جام، منقسم شده به 5 لبه کوتاه یا بلند، پرچم ها 5 عدد، بساک نواری – استوانه ای در قاعده تیرکمانی، یا بیضوی. خامه رشته ای شکل، معمولا خارج از جام گل و به ندرت داخل جام گل، کلاله سرسان و همیشه بدون چین خوردگی، فندقه ها چسبیده به خامه، بادکرده و با حاشیه غشایی وسیع شده و به صورت بال درآمده
1:R.Regia
حاشیه بال فندقه یک لبه. پرچم ها حداکثر تا لبه جام گل. زایده بزرگ و در انتهای جام گل، برگ ها مستطیلی نیزه ای یا نواری
حاشیه بال فندقه دولبه، پرچم ها بلندتر از جام گل، زایده در قسمت قاعده ای جام گل و تقریبا ً کوچک. برگ ها نیزه ای – نواری

Rindera regia
2:R.Lanata
گل آذین چتری، گل ها ارغوانی
گل آذین خوشه ای، گل ها قرمز، آبی یا سفید

Rindera lantana
3:R.Cyclodonta
گیاه پوشیده از کرک های پشمی، کاسبرگ ها پوشیده از کرک های پشمی زایده بین لبه های جام باد کرده و مربع شکل.
گیاه نسبتا بدون کرک ,کاسبرگها با کرک های انبوه. زایده بین لب ها کوچک وغیر باد کرده.

Rindera cyclodonta
4 :R.Albida
لب های جام گل طویل، جام گل فقط کمی بلندتر از کاسه، لب های جام گل کوتاهتر از لوله. جام گل 2 تا 3 برابر کاسه

Rindera albida
5 :R.Bungei
لبه داخلی بال میوه کاملا خم شده به داخل
لبه داخلی بال میوه کمی خم شده به داخل

Rindera bungei
6:R.Media
1-R.Regia
گیاهی چند ساله با ریزوم ضخیم، ساقه منفرد، افراشته، پوشیده از کرک های بلند پشمی سفید، برگ های قاعده ای نیزه ای با قاعده کشیده بردمبرگ، به طول 15 تا 20 و عرض 5/0 تا 2 سانتی متر، هردو سطح برگ پوشیده از کرک های بلند پشمی سفید، نوک تیز، در قاعده باریک شونده، برگ های ساقه ای نیزه ای، نواری، برگ های قاعده ساقه پهن تر و طویل تر و برگ های انتهایی باریک ترو کوچک تر، گل آذین متشکل از چندین گرزن که به صورت چتر درآمده اند. کاسه گل به طول 4 تا 6 میلی متر. جام گل ارغوانی، کمی طویل تر و کاسه، لب ها تخم مرغی کشیده، پرچم ها تا دهانه جام گل، با میله کوتاه، بساک تیر کمانی، خامه ارغوانی و طویل.
2-R.Lanata
گیاهی چند ساله، علفی، پوشیده از کرک های پشمی تا با کرک های اندک پشمی، در بعضی مواقع کرک ها ریزان و فقط قاعده آنها باقی می ماند. ساقه افراشته، منفرد یا منقسم، به ارتفاع 15 تا 65 سانتی متر. برگ های قاعده ای با دمبرگ طویل، مستطیلی – نواری یا مستطیلی، به طول 5 تا 15 و عرض یا تا 5/2 سانتی متر، با پوشش کرکی متراکم یا تقریبا بدون کرک، برگ های ساقه ای تخم مرغی تا نواری، بدون دمبرگ وبرگ های انتهایی تقریبا ساقه آغوش، گل آذین خوشه مرکب، متشکل از چندین گرزن، دمگل ها طویل تر از کاسه. کاسه گل استکانی، به طول 4 تا 7 میلی متر، پوشیده از کرک های پشمی سفید، جام گل قرمز، آبی یا سفید متمایل به زرد، بلندتر از کاسه، لب ها تخم مرغی کشیده، زایده بین لب ها مربع شکل و باد کرده، پرچم ها تا دهانه جام گل، میله کوتاه، بساک تیرکمانی، خامه طویل، فندقه دایره ای، به قطر 15 تا 22 میلی متر، حاشیه با بال غشایی ساده یا چین خورده.
زمان گل دهی تابستان، گیاه خاص مراتع و حاشیه جنگل ها و ارتفاعات خزری و ایران و تورانی.
3-R.Cyclodonta
گیاهی علفی، چند ساله، نسبتا بدون کرک، ساقه منفرد، انباشته به ارتفاع 15 تا 60 سانتی متر. برگ های قاعده ای با دمبرگ طویل، به طول 15 تا 25 و عرض 2 تا 6 سانتی متر، تخم مرغی، نوک کوچک.
برگ های ساقه ای تخم مرغی و بدون دمبرگ. برگ های انتهایی ساقه آغوش، هر دو سطح برگ بدون کرک و گاهی با غده های سفید. گل آذین خوشه مرکب، انتهایی، دمگل در حالت میوه طویل، کاسه گل استکانی، به طول 6 تا 8 میلی متر، جام گل استوانه ایی به طول 60 تا 13 میلی متر، آبی، زایده بین لبه ها کوچک و فرورفته (غیر باد کرده) پرچم ها تا لبه جام، بساک نواری، تیرکمانی، خامه نسبتا کوتاه فندقه دایره ای، به قطر حدود 15 میلی متر، با حاشیه غشایی و بال مانند.
4-R.Albida
گیاهی علفی، چند ساله پوشیده از کرک های سفید، کپه ای، ساقه ها افراشته و در انتها منشعب، به ارتفاع 10 تا 40 سانتی متر، برگ های قاعده ای نیزه ای یا نواری، قاشقی باریک یا نواری به طول 7 تا 10 و عرض 3/0 تا 5/0 سانتی متر، با دمبرگ کوتاه، برگ های ساقه ای کوچک و بدون دمبرگ، هر دو سطح برگ پوشیده از کرک های سفید انبوه، گل آذین خوشه مرکب.
دمگل در زمان میوه دهی طویل، کاسه گل استکانی، به طول 4 تا 5 میلی متر، پوشیده از کرک های متراکم، جام گل قرمز ارغوانی، استکانی – استوانه ای، 2 تا 3 برابر کاسه گل، زایده در قسمت قاعده ای جام گل، کوچک لب های جام گل کوچکتر از لوله جام. پرچم ها بلندتر از جام گل، بساک بیضوی، خامه طویل، به طول 12 تا 14 میلی متر، فندقه دایره ای، به قطر حدود 15 میلی متر، حاشیه غشایی، بال دو لبه، لبه ها ساده یا چین خورده و دندانه دار.
5-R.Bungei
گیاهی علفی، چند ساله، کپه ای، کوچک، پوشیده از کرک های زرد رنگ، ساقه افراشته به ارتفاع 5 تا 15 سانتی متر. برگ های قاعده ای نواری، با دمبرگ کوتاه، به طول 4 تا 10 و عرض 4/0 تا 6/0 سانتی متر. برگ های ساقه ای کوچکتر، بدون دمبرگ. گل آذین خوشه مرکب، دمگل در حالت میوه طویل، کاسه گل استکانی به طول 5 تا 7 میلی متر، پوشیده از کرک های انبوه، جام گل استوانه ای، کمی بلندتر از کاسه، لب های جام گل طویل، زایده در قسمت قاعده ای لوله جام گل و نسبتا کوچک. پرچم ها بلندتر از جام گل، بساک بیضوی، میله پرچم ها طویل، فندقه دایره ای، به قطر 5 تا 7 میلی متر. با حاشیه غشایی و با دولبه، لبه داخلی با بال میوه کاملا به داخل خم شده و لبه خارجی دندانه دار تاموج دار.
زمان گل دهی و میوه دهی: تابستان، گیاه خاص منطقه ایران وتورانی
6- R.Media
گیاهی علفی, چند ساله, کپه ای کوچک, پوشیده از کرک. ساقه افراشته به ارتفاع 5تا20سانتی متر.
برگهای قاعده ای نیزه ای –نواری ,به طول 3تا 10وعرض3/0تا 5/0سانتی متر, هر دو سطح برگ پوشیده از کرکهای انبوه. برگهای ساقه ای کم ,نواری نیزه ای.گل اذین خوشه مرکب ,انتهایی. دمگل طویل تر از کاسه. کاسه گل استکانی,پوشیده از کرک.جام گل خط کمی طویل تر از کاسه,لب های جام طویل, با زایده بین لب ها کوچک. پرچم ها طویل تر از جام گل ,بساک بیضوی.خامه طویل تر از جام گل.
فندقه دایره ای به قطر 5تا7میلی متر, حاشیه غشایی و با دو لبه ,لبه داخلی بال کمی به داخل خم شده.(خاتم ساز،2002)
Rindera pallus
علفی های چند ساله، ساقه ها معمولاً ساده، کرکی نرم(به ندرت بدون کرک)، برگ ها بیضوی تا خطی، دمگل بلند. گل آذین به فرم دیهیم،. پرانکل ها در میوه به هم می چسبند. کاسه گل 5 قسمتی، لوب ها کشیده بیضوی یا نوک تیز هستند. جام گل استوانه ای،
2- 12 1برابر کاسه گل بوده و شاخه های زیرین کوتاهتر یا بلندتر از لوله گل هستند. ضمائم حلقوی بیضوی - قلبی شکل یا مثلثی شکل، متمایز، تحلیل رفته، میله های پرچم برآمده، بساک ها کشیده هستند. خامه از کاسه گل بیرون، معمولا برآمده از جام گل هستند، فندقه چسبیده به خامه، مسطح، همراه با یک بال غشایی خارجی پهن و همچنین به ندرت یک بال داخلی باریکتر و خمیده هستند.
1.Caespitosa
لوله کاسه گل بلند تر یا مساوی با اندام زیرین ضمائم حلقوی به شکل تا خورده،0.1-0.3 mm هستند.
لوله کاسه گل کوتاهتر از اندام زیرین، ضمائم حلقوی مشخص 0.9 mm یا بیشتر
2.Lanata
2 -لوله کاسه گل 18 - 14 برابر طول اندام زیرین، بساک ها فندقه با یک بال پهن
3.Albida
3 -لوله کاسه گل 23 - 12 برابر طول اندام زیرین، بساک ها برآمده فندقه همراه با دو بال، بال درونی باریک و خمیده.
R.caespitosa
چند ساله های با کرک های نقره ای، خاکستری، ساقه های ساده، 5-10-30 cm، برگدار متراکم، برگ ها خطی – نوک تیز هستند. گل آذین انتهایی به فرم دیهیم، لوب های کاسه گل 5.5-6.5 mm، نوک تیز – بیضوی، به صورت گرد، تک رشته ای هستند. کاسه گل قرمز مایل به بنفش، 8-11.5 mm، لوله گل مساوی یا اندکی بلندتر از اندام های زیرین می باشد. ضمائم حلقوی بسیار کوچک، به صورت تاخورده.
R.Lanata
چند ساله های علفی قائم با ریشه های اصلی باریک محکم هستند. ساقه ها ساده و به ندرت در قسمت پایین منشعب، 15-55cm، کرک دار ، (پراکنده، کم پشت) یا بدون کرک هستند. برگ ها دارای دمگل بلند، بیضوی، دوک مانند یا خطی، با پهنک 20-150 2-25 mm، نوک تیز تا با زاویه منفرجه، برگچه نازک، کرکدار، بدون کرک های برآمده، یا بدون مو همراه با تعداد زیادی برجستگی آهکی، ساقه پایین شیاردار یا خطی، در انتها نازک، ساقه های بالاتر عموماً بیضوی، نوک تیز، توسعه یافته است.
تعداد زیادی سنبله، تشکیل یک گل آذین انتهایی بسیار بزرگ را می دهند. پرانکل ها تا حد زیادی در میوه توسعه می یابند. کاسه گل 3.5 -8 mm، لوب ها بیضوی، بسیار متراکم، سفید پشمی است. جام گل صورتی، 7-12 mm، زنگوله ای – استوانه ای، لوله گل 14 - 18 برابر اندام زیرین است. ضمائم حلقوی،رأس آن نا منظم است. پرچم ها در بردارنده میله هایی که با هم برابر (مساوی و اندازه)،
23 - 12 1 برابر طول بساک است. خامه 7-16 mm و معمولاً برآمده است. فندقه (اغلب 2 تا عقیم اند) مدور، 15 - 23 mm 14-26 ×، صاف، برگ ها با حاشیه ی صاف یا موج دار و اغلب آبی و بدون خار هستند.
برگ های پایه کشیده، بیضوی یا تخم مرغی 5-25 mm 25- 140× است (var. lantana)
برگ های پایه خطی یا خطی – نوک تیز، 20 -130 -2 – 12 mm است. (var.canescens)
R.albida
ساقه ها ساده، 25-4 cm، پر برگ، خاکستری – پشمی نسبتاً ضخیم هستند. برگ های پایه نوک تیز یا خطی نوک تیز، پهنک 4-11 mm 40-130× و برگ 20-40mm، ساقه خطی، نوک تیز، 1-8 mm 10-70 × است. کاسه گل 5-9 mm، لوب ها نوک تیز – بیضوی، با زاویه تند، کرک دار سفید نسبتاً ضخیم هستند. جام گل مایل به قرمز – بنفش، آبی محو، خشک شونده سیاه – بنفش، 7-12 mm، اندام زیرین به 12 تقسیم شده است. ضمائم حلقوی کشیده – نوک تیز، با زاویه تند، قلبی شکل هستند. پرچم ها و خامه معمولاً اندکی برآمده هستند. فندقه ها10.5-15 mm 9 -15×، با دوبال، بال بیرونی با عرض 4mm، با حاشیه موج دار، بال داخلی با عرض 1.8 mm خمیده به سمت داخل با حاشیه دندانه دار، و کاملاً بدون خار هستند. (Davis P.H ,1978)
جنس Rindera pall
کاسه گل تقریباً در قسمت پایه به لوب باریک عوض نشده، خمیده در میوه و قائم در گل تقسیم شدند. جام گل لوله ای شکل، با طول 8-14mm، اندکی یا دو برابر طول کاسه گل، متمایل به زرد، اغلب همراه با رنگ آنتوسیانین – بنفش روی دندانه یا لوله، به ندرت صاف، اغلب با چین های چروکیده متقاطع یا فلس، به ندرت فلس ها در قسمت میانی یا یک سوم پایینی لوله هستند، با لوب های قائم یا اندکی رو به زوال (و سپس اندام های زیرین اندکی قیف مانند اند)، اغلب نوک تیز، کشیده، تقریبا به بلندی لوله گل، به ندرت کوتاه و گرد شده – گوشه باز هستند.
میله ها (پرچم) کوتاه، به ندرت متصل (به زیر) گلوگاه هستند. بساک ها خطی – کشیده، با طول 2-4 mm، در پایین به صورت سهمی یا مطابق معمول، راس اغلب گوشه باز (منفرجه) یا دندانه دار، به ندرت نوک تیز و هممیشه برآمده از لوب های جام گل نیست.
خامه به صورت رشته ای، معمولاً از کاسه گل برآمده و به ندرت در آن مانده است، کلاله در یک نقطه یا اندکی رأسی و همیشه یکپارچه است. فندقه ها نسبتاً بزرگ، بالدار، بال از این سو به آن سو 10-20 mm، با پشتی صاف (Flat back) به صورت دیسک هستند.
برآمدگی اندک تیغه میانی به صورت یک خط به نظر می رسد که در کناره های چین دار پایین متورم می باشد.، فندقه ها صاف، درخشان، یا صیقلی و یا پوشیده در امتداد یک دیسک، به ندرت در کناره ها با چرخش به دور خود و با سر لنگر مانند یا یک ردیف با چرخش های لنگر مانند بزرگ و مسطح در طول تیغه هستند. بال های فندقه ها عریض، کما بیش مسطح، حاشیه خارجی اغلب به رنگ آبی است. حاشیه به ندرت صاف و اغلب به خوبی دندانه دار هستند. چند ساله ها، به ندرت ارتفاع 60-100 cm دارند، بدون کرک یا علف های بدون کرک با ریشه های کوتاه یا کم وبیش تیره نازک که در مناطق باستانی مدیترانه ای (تا یونان در غرب) رشد می کنند.
R.lanata
چند ساله ای ،ریشه عمودی اصلی به سمت پایین باریک و تیره می شود، ارتفاع ساقه ها 20-50 cm، به تعداد 1-2، افراشته، تراش دار، کرک دار، با شاخه زایی خوشه ای (به صورت پانیکول)، مولد گل و گاهی اوقات شاخه های دراز شده، برگ ها کما بیش پرزدار بوده و خاکستری، برگ های ریشه چه ای نوک تیز تا کشیده یا sublinear، با زاویه ای تنگ که به تدریج به صورت یک دمبرگ بلند باریک می شود که طول آن به 8-10 cm(و تا 30cm) می رسد و عرض آن1-2 (تا 6cm) است. برگ های ساقه ای اغلب پر پشت، بی پایه، که به تدریج به طرف بالا در اندازه کاهش می یابند،. گل آذین پانیکول (خوشه ایی دارای گل های افشان) در بالا دیهیم دو فرمی می شود، براکته ایی شده، پرانکل ها به آرامی (اغلب به طور قابل ملاحظه ای) از کاسه گل بلند تر می شود، خاکستری – پرزدار، کاسه گل کرک دار با طول 4-6 mm، با لوب های کشیده است، طول جام گل 10-11mm، صورتی، در حال تبدیل نشدن به آبی، لوب های آن قائم نوک تیز – خطی، و طول آن به اندازه لوله گل، فلس ها تقریباً برابر، پرچم ها در وسط لوله ی جام گل هستند، طول خامه 9-12 mm و برآمده هستند، فندقه ها (با بال) تخم مرغی شکل و از این سو تا آن سویش 17-22 mm، صفحه آنها صاف است، طول تخمدان 9mmبوده
R.cyclodonta
چند ساله ای، ریشه ضخیم، تیره، 1-3 ساقه، با ارتفاع در حدود 30 mm، در بالا به صورت پشمی، تراش دار، شاخه دهی در گل آذین، برگ های اندکی کرکی در حال تبدیل شدن به بدون کرک، خطی – نوک تیز، نوک تیز یا کشیده – نوک تیز، ریشه چه کما بیش و به تدریج در حال باریک شدن و تبدیل به دمبرگ، با طول 20cm، و گاهی با عرض 7cm و اغلب باریک تر و کوتاهتر 100 cm طول و 105 cm عرض.
جام گل بنفش، لوله ای، لوب های آن نوک تیز، افراشته (قائم)، تقریباً از نظر طول هم اندازه یا 23 طول لوله را دارد. کاسه گل کرکدار، لوب های آن خطی، تقریباً هم اندازه (از نظر طول) لوله کاسه گل،
گل آذین کوچک بلند، فقط بالایی ها کوتاهتر از کاسه گل هستند، مودار – پشمی، فلس ها به عنوان چین خوردگی های متقاطع تقریباً در گلوگاه توسعه یافتند. طول بساک ها 2-3 mm، کشیده، به صورت سهمی در پایین، گرد، دو تا سه برابر طویل تر از میله های عریض تر کوتاه هستند. میوه گرد، با بال های پهن، صفحه ی صاف، اغلب حاشیه ی بال با دندانه های مشخص می شوند.
Lipskil)) به درستی از که هیچ تفاوت اساسی بین این گونه و گونه ی پیشین نیست، تفاوت ها صرفاً قراردادی و فن آن ها را به دلیل عرف حفظ کردم. این صحیح تر خواهد بود که گونه ها ادغام شوند. در آسیای مرکزی آن ها یک چرخه ی پیچیده تر فرم ها را ایجاد می کنند که تفاوت های بین R.tetraspis مناسب و R.cyclodonta مناسب حذف می شوند، به هر حال تعداد زیادی فرم های محلی وجود دارند. یک نژاد منحصر به فرد در صحرای Mujunkum رشد می کند، یک نژاد دیگر با برگ های بسیار باریک از Kara Tau شمال، زندگی می کند، فرم های جنوبی از جنوب Dzhizak به R.baldshuanica نزدیک هستند. R.tetraspis یک نژاد از این گونه چند ریختی است. فرم های باستانی (اجدادی) به ویژه در E Tien shan فراوان هستند.(Popov M.G ,1953)
R.Karabaghensis با یک نژاد مشخص با بال های از Paropamisus(اشتباهاً توسط Brand به عنوان Bukhara"" توصیف شده است) و به علاوه در منطقه ی Eeast Dagh رشد می کند. (shamli, 1948 , Blinovskii).
2-2ترکیبات اسیدهای چرب
مثل لینولنیک اسید و انواع توکوفرول ها مثل a، δ،γ توکوفرول در این تیره ارزش تاکسونومیکی بالقوه دارند (Velasco & Goffman, 1999) مطالعات نشان داده است که آلفا لینولنیک اسید، لینولئیک اسید و اولئیک اسید به عنوان اسیدهای چرب معمول و گاما لینولنیک اسید و استئاریدونیک اسید از اسیدهای چرب غیرمعمول و تا حدی نیز توکومانول ها در دانه های روغنی این تیره ارزش تاکسونومیک دارند. به طور خاص وجود یا عدم وجود زنجیره طویل اوریک اسید و وجود یا عدم وجود استخلاف 6-متیلن در پلی انوئیک اسیدهایی مثل گاما لینولنیک اسید و استئاریدونیک اسید به عنوان شاخصی از طبقه بندی شناخته شده است Aitzetmuller & Altan2008, Bagci,Brueh,2008.) عمده اسیدهای چرب اشباع نشده در اعضای تیره گاوزبان آلفا لینولنیک اسید، لینولئیک اسید و اولئیک اسید می باشند. اما گاما لینولنی اسید و استئاریک اسید سطح قابل ملاحظه ای را در این گیاهان به خود اختصاص داده اند. درصد و نسبت اسیدهای چرب اشباع شده و اشباع نشده به عنوان شاخص های تاکسونومیک در این تیره محسوب می شوند (Ozcan, 2009)
گل و اعضای مختلف گیاه Borago officinalis دارای لعاب نسبتا فراوان مواد معدنی و مقدار کمی آلانتوئین می باشند. ریشه و ریزوم گیاه Cymphytum officinalis دارای موسیلاژ، اسید گالیک، آلانتوئین و آلکالوئیدی به نام کونسولیدین می باشد. ریشه گیاه Cymphytum officinalis حاوی کولین، مواد رزینی وآلکالوئیدهایی مثل سینوگلوسین و سینوگلوسئین است. قشر سطحی دانه Lithospermum officinale دارای کربنات کلسیم و سیلیکات کلسیم است. (زرگری، 1368).
2-3 فیزیولوژی
اعضای این تیره با فیزیولوژی C3 و C4 وجود دارند. فیزیولوژی C3 در،
Lappula,Lithospermum,Moltakiopsis,Onosmodium,Trichodesma,Arnebia,Heliotropoium و فیزیولوژی C4 در Heliotropium گزارش شده است(Watson & Dallwits,2011)
.
2-4میکرومورفولوژی
این تیره از حیث گرده شناسی بسیار متنوع است و گستره وسیعی از اشکال دریچه و آراستار را نشان می دهد. از 3 شیار، روزن (Tricolporate) یا 3 روزن (Triporate) گرفته تا چند شیاری (Polycolpate) و یا چند شیار – روزن (Polycolporate) و گاهی 6 شیار ناجور (Hetrocolpate) دیده می شود که به طور متناوب یکی دارای روزن و دیگری بدون روزن می باشد (Simpson ,2006).
تعداد دریچه های دانه گرده بین 3 تا 20 متغیر است دانه گرده آن ها 3 و یا به ندرت 2 هسته ای است. دانه گرده دو هسته ای در Cordia,Helitortopium,Coldenia دیده می شود و در اکثر جنس ها سه هسته ای است (Watson & Dallwits,2011)
2- 5 بررسی کروموزومی Boraginaceae s.str
تغییرات کروموزومی اولین محرک گونه زایی در تکامل گیاهان گلدار محسوب می شوند، به طوری که این تغییرات می تواند زیست شناختی موجود راتحت تاثیر قرار دهد و یا باعث جدایی جمعیتی با ایجاد جدایی های تولید مثلی شود.
Boraginaceae s.str دارای تنوع کروموزومی قابل توجهی است مطالعه مشخصات کروموزومی آن به درک بهتر مسیر تکاملی این تیره کمک می کند. ارزش خصوصیات کروموزومی در سیستماتیک این تیره بعد از مطالعات Britton(1951),strey(1931),smith(1932) مشخص شد که نشان داد این تیره دارای تنوع در سطوح پلوئیدی، عدد پایه کروموزومی و سایز و ریخت شناسی کروموزوم است (Selvi et al ,2006).
قبیله های Boraginaeae، Lithospermeae تنوع زیادی در عدد پایه کروموزومی نشان می دهند به طوری که x=6,7,8,9,10,15 از آنها گزارش شده است. قبیله Cynoglosseae کمترین تنوع در عدد پایه کروموزومی را نشان می دهد ودر اکثرسرده ها x=12 کمترین تنوع در عدد پایه کروموزومی را نشان می دهد و در اکثر سرده ها x=12 گزارش شده است. از قبیله Eritrichieae اعداد x=10,11,12 گزارش شده است عدد پایه نسبتا بالا و سایز کوچک کروموزوم ها در این قبیله قرابت آن را با قبیله Cynoglosseae نشان می دهد. (Coppi et al,2006)
مطالعات کروموزومی Onosma بزرگترین سرده تیره Boraginaceae s.str نشان دهنده نقش مهم پلوئیدی در تاریخچه تکاملی و غالبیت X=6,7 در این سرده است، همچنین نوعی کروموزوم غیر طبیعی به نام B-chromosome نیز در گونه های از سرده Onosma مشاهده شده است (Martonfi et al, 2008).
کمترین عدد کروموزومی گزارش شده از Boraginaceae s.str مربوط به گونه Amsinckia lunaris 2n=8 و بیشترین عدد گزارش شده مربوط به گونه 2n=144 symphytum tuberrosum است
(Coppi et al,2006)
جدول 1-1) گزارش عدد پایه کروموزومی تعدادی از گونه های Boraginaceae در ایران (Ghaffari, 1996)
Lavel of ploidy N Taxonon
Tetra ploid 14 Alkanna bracteosa
Diploid 8 Echium amoneom
Diploid 11 Arnebia decumbens
Diploid 14 Moltkia cearulea
Diploid 16 Anchea caspice
Diploid 14 Nonnea caspica
Tetra ploid 12 Lappula microcarpa
Diploid 24 Heterocayum macrocarpum
Tetra ploid 12 Caccinia strigose
Diploid 12 Paracaryum rugulosome
Diploid 12 Solenanthus stamineous
Diploid 12 Trichodesma incanum
Diploid 8 Onosma microcarpa
Diploid 22 Onosma albo-rosea
Tetra ploid 16 Onosuma sericea
2- 6 بررسی گرده شناسی Boraginaceae s.str
تیره مزبور از حیث گرده شناسی بسیار متنوع است به طوری که گستره وسیعی از اشکال، دریچه آراستار و غیره را نشان می دهد. دانه گرده دراین تیره منفرد و از نوع
Subprolate,prolate,isopolar,zonocolporate است تعداد دریچه ها از 13-4 عدد متفاوت است، در برخی از سرده های این تیره دریچه درونی با کمربند استوایی ادغام شده و endocingulum نامیده می شود hatgtove. L et al,2003))
قبیله Cynoglosseae دارای دانه گرده 6 ناجور شیار قبیله Erithrichieae دارای گرده های کوچک 10 و 8 و 6 ناجور شیار، بیضوی یا مستطیلی در نمای استوایی و شش ضلعی در نمای راس است قبیله Boragineae دارای 15 نوع گرده متفاوت در بین سرده ها و یا حتی گونه ها است قبیله Lithospremeae دارای متنوع ترین خصوصیات ریخت شناسی دانه گرده و دریچه است.
(S.Ovchinnikova,2009)
شکل 1-3) دانه گرده برخی گونه های Boraginaceae s.str
Rindera tetraspis Anchusa. arvensis
Nonea lutea
جدول 1-2) مقایسه دریچه دانه گرده بین قبیله های Boraginaceae s.str
Comparis on of the pollen apertures among the tribes the subfamily boraginioiseae
Types of pollen apertures Tribes
3-Colporate 3-syncolporate ,4-8-colporate.
4-6-syncolpate ,6-7-colpate Lithospermeae
3-colporate,4-colporate,5-colporate or more Boragineae
3-Colporate,3-pseudocolpate Trigonotideae
3-Colporate,3-pseudocolpate Eritichieae
3-Colporate,3-pseudocolpate Cynoglosseae
3-Colporate,3-pseudocolpate Myosotideae
2- 7 تقسیمات تاکسونومیکی زیر تیره Boraginoideae (Boraginaceae s.str)
گیاه شناسان متعدد این زیر تیره را به چهار الی هفت قبیله تقسیم کرده اند که با اقتباس از Mabberley 1990 پنج قبیله در زیر ارائه می شود:
Cynoglosseae (گل ها منظم، پایه خامه کم و بیش مخروطی، رئوس فندقه ها در بالاترین نقطه اتصال برآمده نیست)
Eritrichieae (گل ها منظم، پایه خام کم و بیش مخروطی، رئوس فندقه ها در بالاترین نقطه اتصال برآمده است).
Boragineae (گل ها منظم، پایه خامه مسطح و یاکمی محدب، فندقه ها با سطح اتصال مقعر).
Lithospermeae (گل ها منظم، پایه خامه مسطح، فندقه ها نیز با سطح اتصال مسطح).
Echieae (گل ها نامنظم)
2-8 مطالعات مولکولی DNA
مطالعات مولکولی انجام شده به صورت نمونه برداری های پراکنده با استفاده از مارکرهای مولکولی مختلف (matk,atpB,nrDNA ITS) انجام شده است. در مهم ترین مطالعه انجام شده بر روی تیره گاوزبان Langstrom & chase,2002 با استفاده از توالی DNAکلروپلاستی atp B روابط فیلوژنتیکی قبیله های موجود در زیر تیره Boraginoiseae را با تعداد معدودی جنس و گونه از هر قبیله بازسازی کردند. اخیرا فیلوژنی مولکولی قبیله Eritrichieae با استفاده از توالی DNA هسته ای ITS و توالی DNA کلروپلاستی trnL-F انجام شده است (2008 khoshsokhan et al.2010 khoshsokhan & kezempour osoloo) است اما طبق آخرین مطالعات مولکولی weigend و همکاران (2010) با نمونه برداری های کم نشان دادند که 3 قبیله
Trigonotideae,Myosotideae,Eritrichieae جزئی از قبیله Cynoglosseae sensu lato هستند.
اولین مطالعه مولکولی انجام شده پراکندگی سرده Echium L را در Macronesia توصیف می کنند 0 Bohle et al, 1996 ,Hilger, H. H. Bohle, 2000)، مطالعه مولکولی دیگر وسیعترین مطالعه از نظر تاکسون های نمونه گیری شده از قبیله Lithospermeae با تاکید بر سرده مدیترانه ی Lithodora Thomas et,2008 al بوده است. (Hacioglu & Erik2011) همچنین گزارشی از فیلوژنی سرده symphtum ارائه داده اند.
2- 9 تولید مثل و گرده افشانی
اعضای تیره گاوزبان اغلب گیاهانی تک پایه اند اما گاهی گیاهان دوپایه درگونه هایی از heliotropium دیده شده است. گرده افشانی این گیاهان از طریق حشرات و عمدتا توسط پروانه ها صورت می گیرد.
(waton & dallwits,2011)
روابط فیلوژنی درون قبیله Lithospermeae به عنوان بزرگترین زیرگروه Boraginaceae S.Str بسیار پیچیده است. در محدوده تاکسونومیکی (Johnston ,1954) و (seibert, 1978) قبیله Lithospermeae حاوی 450 گونه و حدود 22 تا 28 سرده می باشد که سرده اورسیایی Onosma L یک سوم گونه ها را تشکیل می دهد. گونه ها و سرده های این قبیله ازنظر محدوده فیلوژنتیکی بسیار مسئله دار است و تنها داده های محدودی درباره این قبیله منتشر شده است (Weigend et al, 2009).

پراکنش تیره Boraginaceae s.str
تیره Boraginaceae s.str در قلمروهای Antractic,Australian,Cape,Neotropic,Halorctic پراکنده شده است. در نواحی گرمسیری رشد می کنند، جهان شمول و در موارد نادری در نواحی سردسیری دیده شده اند (WWW.mobot.com).
برای این تیره در جنوب غرب آمریکا 113 تاکسون با مرکز پراکنش در ایالت های آریزونا و نیومکزیکو همچنین نواحی بیابانی جنوب شرقی کالیفورنیا تشخیص داده شده است. (Higgins, 1997)
شکل 1-4 نقشه پراکنش تیره (www.mobot.com)Boraginaceae
2-10مطالعات پیشین تیره Boraginaceae s.str
در گذشته مطالعاتی چند از حیث ریخت شناسی (,zarinkamar,2006,Hilger,1984,kazmpour osaloo,1993) گرده شناسی (khatamsaz, 2001,Kazempour Osaloo & Khatamsaz, 1994, 1984 Ahn & Lee ,1986 kazempour Osaloo, 1993,Clarke, 1977,Diez) سیتولوژی (Ghaffari 1996,selvi et al., 2006 ,luque,1900,Luque & Valdes,1984) مولکولی(Winkworth et al.,2002,Khoshsokhan et al.,2008) بر روی تعدادی از تاکسون های تیره انجام شده است. مطالعات مولکولی انجام شده به صورت نمونه برداری های پراکنده با استفاده از نشانگرهای مولکولی مختلف (trnL-F,mark,atpB,nrDNAITS) در خارج و داخل کشور انجام شده است. از مطالعات انجام شده روی قبیله Lithospermeae می توان کار
(Langstrom & Chase 2002,James et al.,2009,chosen et al., 2009,cecchi et al.,2009,weinged et al., 2009,2010,Liu et al., 2010 ,2008) را نام برد.
در مطالعات (2009,2010،.Weinged etal نمونه برداری های محدود از سرده های Lithospermum,Buglossoides,Echium,Cerinthe,Brunnera,podonosma,Arnebia,MoltkIA,echiochilon,Alkana,Symphytum انجام شده است و روابط تا حدودی حل شده اند. همچنین (.،Kolarcik et al 2010) در مطالعه خود تعدادی از گونه های اروپایی sec Asterotricha از سرده Onosma را مورد بررسی های جمعیتی و تکاملی قرار دادند.
ولی بسیاری از گونه های سرده های Onosma همچنین سرده های Suchtelenia,Hormozakia بررسی نشده اند.
2-11اختصاصات بیوشیمیایی و شیمیایی تیره
غالبا این گیاهان آلکالوئیدهای گروه پیرولیزیدین و یک نفتاکیننون قرمز به نام آلکانین تولید می کنند وفاقد ترکیبات ایریدوئیدند. فقط به ندرت ترکیبات سیانوژنیک و ساپونین دار ونه تانن دار به وجود می آورند. معمولا فاقد اسید الاژیک و پروآنتوسیانین ها هستند. غالبا فروکتوزان ها (عمدتا ایزوهپتوز و ایزوکتوز) را به عنوان کربوهیدرات های ذخیره ای و آلانتوئین (یک امید) را به عنوان ماده غذایی ارائه انباشته می کنند (Cronquist ,1981).
2-12کاربرد اقتصادی تیره
بسیاری از اعضای این تیره خواص دارویی دارند و به عنوان یک داروی سنتی برای درمان زخم ها، بیماری های پوستی، قلب و درد سینه و... استفاده می شوند.تعدادی از نمونه های دارویی این تیره در زیر ذکرمی شود:
Borago officinalis: گل واعضای مختلف گیاه دارای لعاب نسبتا فراوان مواد معدنی و مقدار کمی آلانتوئین می باشند. گل و برگ این گیاه اثر نرم کننده، معرق و مدر، آرام کننده و تصفیه کننده خون است.
Symphytum officinalis: ریشه و ریزوم گیاه دارای موسیلاژ، اسیدگالیک، آلانتوئین و آلکالوئیدی به نام کونسولیدین می باشد. از ریشه گیاه به عنوان نرم کننده تسکین دهنده آرام کننده درد و التیام دهنده استفاده می شود.
Cynoglossum officinale: ریشه گیاه دارای کولین، مواد رزینی و آلکالوئیدهایی مثل سینوگلوسین، سینوگلوسئین است. گل آن آرام کننده سرفه و دارای اثر مخدر به صورت خفیف است. ریشه آن اثر قابض ملایم وبرگ آن اثر ملین دارد. ریشه و برگ گیاه هم در رفع اسهال، سرفه های خشک و عصبی، اسپاسم های روده و خونریزی های داخلی مصرف می شود.
Lithospermum officinale: قشر سطحی دانه دارای کربنات کلسیم و سیلیکات کلسیم است. پوشش ریشه آن دارای ماده ای قرمز به نام لیتوسپرمین است که در رنگ کردن مواد غذایی استفاده می شود دانه این گیاه طعم ملایم لعابی و اثر مدر دارد.
Heliotropium europium: از ریشه و دانه آن آلکائیدی به نام سینوگلوسین به دست آمده است که اثر صفرابر و تب بر است.
از نمونه های دارویی دیگر نیز
cerinthe major,africanum,trichodesma,onosma,echium,vulgare
,anchusa italic,myxa cordial,alkanna tinctoria,pulmonaria officinalis رامی توان نام برد (زرگری، 1368).
در آخرین گزارش (Wiegend et. al.,2010) زیر تیره Boraginoideae را براساس توالی کلروپلاستی trnL-F به 4 قبیله Cynoglosseae,Echiochileae,Lthospermeae,Boragineae، S.L تقلیل داده است.
2-13مصارف اقتصادی و دارویی
بعضی از گیاهان این تیره به صورت گلدانی و برای مصارف زینتی استفاده می شوند. از ترکیبات رنگی این گیاهان در رنگ آمیزی چوب و سنگ استفاده می شود. در تهیه انواع داروها، شراب و لوازم آرایشی کاربرد دارند. و در عین حال از گیاهان مهم در تولید عسل به شمار می روند (2011 Dallwits &Watson., پوست ریشه Lithospermum officinale دارای ماده ی قرمز به نام لیتوسپرمین است که در رنگ کردن موادغذایی استفاده می شود (زرگری .،1368).
میوه بعضی از گونه های این تیره مصرف خوراکی دارد. در جنوب آفریقا از برگ، ساقه و میوه خشک شده
Ehretia rigida subsp.nevifolia چای تهیه می کنند ریشه خشک شده angufolia trichodesma مخلوط با آب سرد در درمان اسهال مورد استفاده قرار می گیرد. برگ گیاه Lobos--on سرخ شده در روغن بادام شیرین از داروهای قدیمی در درمان عفونت های قارچی انواع زخم ها و سوختگی ها است.
در سراسر اروپا، شمال آفریقا و آمریکا از شاخه، برگ و گل گیاه borago afficinalis در سالاد و نیز به عنوان ادویه استفاده می شود. این گیاه در طب سنتی هم کاربرد دارد. در اروپا از گل و ریشه cynolossum officinale در طب سنتی و برای درمان جراحات استفاده می شود. lithospermum officinale در طب سنتی اروپا در درمان نقرس مورد استفاده است (Retief, 2004).
گل و برگ گیاه Borago officinalis اثر نرم کننده، معرق، مدر، آرام کننده دارد و همچنین تصفیه کننده خون است. ریشه گیاه symphytum officinalis اثر نرم کننده، تسکین دهنده و آرام کننده درد و التیام دهنده دارد. گل cynoglossum officinale آرام کننده سرفه و دارای اثر مخدر خفیفی است. ریشه آن قابض و برگ آن اثر ملین دارد. ریشه و برگ گیاه هم در رفع اسهال، سرفه های خشک و عصبی، اسپاسم های روده و خونریزی های داخلی مصرف می شود. دانه گیاه Lithospermum officinale اثر مدر دارد. از ریشه ودانهheliotropium europium آلکالوئیدی به نام سینوگلوسین به دست امده که صفرابر و تب بر است (زرگری،1368).
2-14 برخی از توالی های ژنی مورد استفاده در سیستماتیک مولکولی
2-14-1 توالی های DNA هستهای
از متداولترین توالیهای هستهای مورد استفاده در سیستماتیک internal transcribed spacer nr DNAITS یا فاصلهگر رونویسی شونده درونی میباشد. ITS مربوط به توالی ریبوزومی هستهای است که ناحیه بین اگزون S 18 و S 26 واقع شده است و شامل ناحیه ITS1 و S 5.8 و ITS2 میباشد (شکل 2-1) فاصلهگرهای بین ژنی دارای سیگنالهای مورد نیاز برای پردازش و رونویسی rRNA است وغالبا برای فیلوژنی استنباطی شده واکثرا برای حل روابط در سطح زیر تیره یا پایینتر استفاده میشود برای سطوح بالاتر ITS آن قدر تنوع دارد که هم ردیف سازی توالی بسیار مشکل است (Alvarez and Wendel, 2003).
از فواید ITS برای بازسازی فیلوژنی میتوان موارد زیر را نام برد:
توارث دو والدی ITS: این ویژگی ITS را برای آشکار کردن شبکه سازیها، گونهزایی هیبدریدی و نشان دادن پلی پلوئیدی ارزشمند میسازد.
عمومی (جامع) بودن ITS: این ویژگی باعث میشود که توالی ITS در بعد وسیعی از موجودات (قارچ ها و اکثر گیاهان) کاربرد داشته باشد.
سادگی (simplicity): ژنهای ریبوزوم هستهای از تکرارهای 265 –S 5.8 –S 18 تشکیل شدهاند که این تکرارها Kbp10 در اندازه متفاوت اند. چون صدها تا هزاران تکرار از آنهاد وجود دارد، پس نسبت به لوکوسهای هستهای یا کپی کمتر، راحتتر خالص می شوند. در آنژیوسپرمها توالی ITS از 700-500 جفت باز و در ژیمنوسپرم ها تا 3700-1500 جفت باز متغیر است.
یکنواختی در ITS: معمولا در تیره های چند ژنی تکامل همزمان وجود دارد تکامل همزمان زمانی رخ می دهد که اختلافات توالی ها (حاصل از تجمع موتاسیون ها) در میان کپی های تکرار شونده در یک ژنوم توسط مکانیسم های مثل کراسینگ اورنا برابر و واژگونی ژنی، یکنواخت و هم شکل شده و توالی یکسانی ایجاد می شود.
تنوع بین ژنومی ITS: تنوع توالی ITS جهت استنباط فیلوزنتیکی در سطوح گونه جنس و تیره مناسب است. همچنین تنوع در سطوح سلسله مراتبی به عواملی مثل پلی مورفیسمهای نوکلئوتیدی نسبت داده میشود.Alvarez and Wendel, 2003
2- 15 PCR اساس مارکرها
PCR، به طور آنزیماتیک تکثیر یک منطقه تعریف شده از DNA الگو است. تکثیر قطعهی DNA وابسته به آغازگر بوده که آغازگرها توالی DNA مکمل موجود در DNA دو رشتهی را تشخیص می دهند و با آن پیوند برقرار میکند.
برای به دست آوردن محصولات PCR باید:
الف- دو آغازگر که هر دو دارای ردیفهای واحدی هستند به رشتههای مخالف بچسبند.
ب- دو آغازگر باید در جهت عکس هم آرایش یابند(انتهای ́3 آنها مجاور ناحیهای باشد که قرار است تکثیر شود)
پ- دو آغازگر باید با فاصلهای کوتاه نسبت به یکدیگر (به طور معمول کمتر از 4 جفت کیلوباز) به DNA الگو متصل شوند. دلیل این امر این است که پلی مراز Taq فقط در این فاصله میتواند فعال باشد و رشتهی دوم را سنتز کند. در حقیقت ساخته شدن رشتهی مکمل DNA به این دلیل است که پلیمراز Taq سبب طویل شدن آغازگر از انتهای́3 با اضافه کردنdNTPها میگردد. بعد از چند چرخه PCR، قطعههای سنتز شده جدید نسبت به قطعهی اولیه ژنومی غالب میشوند و از نظر تئوری به صورت توالی تکثیر خواهند شد.
2-15-1 اجزای واکنش زنجیره‌ای پلیمراز(PCR)
این روش در اواســـــط دهــــه 1980 به وسیـــــله کری مولیس معرفی شد. واکنش زنجیره‌ای پلیمراز مبتنی بر همانند‌سازی نیمه حفاظت شده DNA می‌باشد. در این واکنش قطعه‌ای از DNA بین دو ناحیه با توالی شناخته شده تکثیر می‌شود. تکثیر به وسیله دو توالی الیگونوکلئوتیدی به عنوان آغازگر که به دو رشته DNA و در ناحیه مکمل خود متصل می‌شوند صورت می‌گیرد (Chawla, 2002). اجزای تشکیل دهنده این واکنش به شرح زیر است.
2-15-2آغازگر
آغازگرهای PCR، الیگووکلئوتیدهایی هستند که بر روی رشته الگو به توالی‌های مکمل خود متصل می‌شوند و حدود محصولات تکثیر را مشخص می‌کنند. هنگام طراحی آغازگرها عوامل متعددی مانند پرهیز از مکمل بودن توالیهای درون یک آغازگر و یا بین آغازگرها، محتوی GC آغازگر، طول آغازگرها و دمای ذوب (Tm) آغازگر مورد توجه قرار می‌گیرد. دمای ذوب، درجه حرارتی است که در آن نیمی از آغازگرها به جایگاه هدف اتصال پیدا کرده باشند. دمای ذوب آغازگر در انتخاب دمای اتصال اهمیت دارد و معمولاً دمای اتصال چند درجه کمتر از دمای ذوب انتخاب می‌شود (Dawson, 1998).
2-15-3 آنزیم
مهم‌ترین ویژگی آنزیم مورد استفاده در واکنش زنجیره‌ای پلیمراز، مقاومت به حرارت می‌باشد. آنزیمی که به طور معمول در PCR استفاده می‌شود، آنزیم تـــــک DNA پلیمراز می‌باشد که از باکتری گرمادوست Thermus aquaticus استخراج می‌شود. این آنزیم فاقد فعالیت اگزونوکلئازی َ3 به َ5 بوده و قادر به تصحیح بازهای اشتباه نمی‌باشد. آنــزیم اضافه در واکنش سبب تکثیر توالی‌های غیرهدف می گردد Mcpherson M. and S. G. Moller2000))
2-15-4الگو
نمونه مورد استفاده جهت تکثیر در PCR ممکن است DNA تک رشته و یا دو رشتهای حیوانات، گیاهان و حتی باکتریها باشد. مولکول های RNA شامل RNA کل، و یا tRNA نیز می توانند بعد از اینکه توسط آنزیم ترانس‌کریپتاز معکوس بهDNA مکمل(cDNA) تبدیل شدند، به عنوان الگو برای تکثیر مورد استفاده قرار گیرند Dawson , M.T.,A.Powell and F ,1998).)
2-15-5 دزاکسی ریبونوکلئوزید تری‌فسفات‌ها
در واکنش زنجیره‌ای پلیمراز مرسوم، هرچهار نوع دزاکسی ریبونوکلئوزید تری‌فسفات با غلظت‌های مساوی به کار برده می‌شوند. غلظت مناسب dNTPs به عوامل متعددی مانند طول رشته مورد نظر، غلظت آغازگر، غلظت MgCl2 و تعداد سیکل‌های تکثیر بستگی دارد. جهت بهینه‌سازی یک واکنش ضروری است که بهترین غلظت به صورت عملی تعیین شود.
2-15-6کلرید منیزیم
کلرید منیزیم (MgCl2) یک عنصر اساسی برای تکثیر DNA در واکنش PCR می باشد زیرا یون Mg2+ با dNTPs کمپلکسی تشکیل می دهد که برای وارد کردن dNTP در رشته ضروری است. به علاوه، این یون از طریق تحریک فعالیت پلیمرازی، واکنش متقابل آغازگر – الگو را افزایش می‌دهد. غلظت MgCl2 باید برای هر جفت الگو– آغازگر بهینه شود. معمولاً غلظت پایین یون Mg2+ باعث کاهش محصولات PCRو غلظت زیاد آن منجر به تجمع محصولات غیراختصاصی می‌شود.
2-15-7 بافر
بافر موردنیاز برای فعالیت آنزیم تک‌ پلیمراز در واکنش زنجیره‌ای پلیمراز شامل 50 mM KCl، Tris-HCL 10 mM و Gelatin 1% pH 8.3 می‌باشد. قابل ذکر است که در صورت استفاده از سایر آنزیم‌های پلیمراز مقاوم به حرارت، ترکیبات بافر متفاوت خواهد بود (McPherson, 2000).
2-15-8 مراحل تکثیردر هر چرخه واکنش ابتدا توسط حرارت پیوندهای هیدروژنی دو رشته DNA شکسته شده و رشته‌ها از هم باز می‌شوند. جداشدن رشته‌ها معمولاً در دمای oC94 صورت می‌گیرد و واسرشته‌سازی نام دارد. سپس مخلوط واکنش سرد می‌شود تا آغازگرها به نواحی مکمل خود متصل شوند. این مرحله که به طور معمول در دمای oC65-35 انجام می‌گیرد، مرحله اتصال نامیده می‌شود. در مرحله سوم که دما حدود oC72 بوده و بسط نام دارد آنزیم پلیمراز از روی DNA الگو همانند سازی کرده و بسط یک ناحیه از DNA صورت می‌گیرد. نکته مهم در این چرخه، دمای واکنش در مرحله اتصال آغازگر است. دما برای اتصال تدریجی باید به حد کافی پائین باشد تا امکان دورگه‌گیری بین آغازگر و الگو وجود داشته باشد و از طرفی به حد کافی بالا باشد تا از تشکیل دورگه‌های اشتباه جلوگیری کند (Chawla, 2000).
2-16 درخت فیلوژنتیکبررسی فیلوژنتیکی یک خانواده بر اساس ترادف اسید نوکلئیک یا پروتئین تعیین میکند که چه طور یک خانواده در مسیر تکاملی خویش از اجداد اولیه خود مشتق شدهاند. ارتباطات تکاملی در میان ترادفها توسط مکان یا رتبه ترادفها که به عنوان شاخههای بیرونی یک درخت میباشند نمایش داده میشود. ارتباطات بین شاخهای در بخش داخلی درخت منعکس کننده درجهای است که ترادفهای متفاوت را که با هم ارتباط دارند را نمایش میدهد. دو ترادف که همانندی خیلی زیادی با هم دارند به صورت شاخههای بیرونی مجاور واقع خواهند شد و به یک شاخه مشترک (معمولی) که در زیر آنها واقع شده متصل میشوند. هدف از بررسی فیلوژنتیکی پیدا کردن ارتباطات بین شاخههای درخت و طول شاخهها می باشد. بررسی فیلوژنتیکی ترادفهای پروتئین و اسید نوکلئیک در حال حاضر وجود دارد و به صورت ناحیه مهمی از آنالیز ترادفی ادامه خواهد یافت. وقتی یک ژن خانوادگی در یک موجود زنده کشف شود، ارتباطات فیلوژنتیکی در میان ژنها میتواند به پیشگویی این که یکی از آنها ممکن است یک عملکرد مشابه داشته باشد کمک کند. که این پیشگوییهای کاربردی میتواند به وسیله آزمایشات ژنتیکی بررسی شوند. بررسی فیلوژنتیکی در دنبال کردن تغییراتی که به وقوع میپیوندند در گونههایی که به سرعت تغییر میکنند، مانند یک ویروس میتوانند استفاده شوند.
برنامههای بررسی فیلوژنتیکی زیادی در دسترس میباشند که هزینه کمی دارند و یا هزینهای ندارند. از مهم ترین این برنامهها که مورد استفاده قرار میگیرد برنامههای PHYLIP و PAUP میباشند. نسخههای جدید از این برنامهها 3 روش اصلی را برای بررسی فیلوژنتیکی شامل Parsimony, Distance, Maximum likelihood را فراهم کرد و همچنین تعداد زیادی از مدلهای تکاملی را برای درجه تنوع ترادف را شامل میشود. برنامه دیگر MacClade میباشدکه برای آنالیزهای با جزئیات بیشتر مفید است.
534670-576580فصل سوم
مواد و روش ها
00فصل سوم
مواد و روش ها

3-1مطالعه منابع
ابتدا به مطالعه منابع موجود در اینترنت و کتب مرجع جهت مطالعه مقالات بررسی تحقیقاتی که اخیراً صورت گرفته و تعیین چارچوب کاری پرداخته شد از فلور ایران Khatamsaz,2002)) و به عنوان شناسایی نمونه های هر بار یومی و بررسی صفات کیفی و کمی ریخت شناسی استفاده گردید.
نمونه برداری از آنجایی که محدوده پراکنش گونه ها وسیع بود و همچنین به علت عدم وجود امکانات و زمان کافی برای جمع آوری به موقع گیاهان بخش عمده بر روی نمونه های هر بار یومی انجام گرفت.
.
3-2مطالعه هر بار یومی
استفاده ازDNA در سیستماتیک مولکولی داده های مولکولی مخصوصاً توالی DNA برای بازسازی روابط فیلوژنی نسبت به سایر روشهای دیگر از صحت بیشتری برخوردار است به همین دلیل امروزه به خصوص از زمان پیدایش واکنش زنجیره ای پلیمراز این روش با استقبال محققین مواجهه شده است (Chase et al. ,1993).
3-3استفاده از DNA در سیستماتیک مولکولی
در گیاهان 3 نوع اصلی از توالی های DNAدر دسترس است که عبارتند از:توالی های هسته ای (nr DNA)، توالی های کلروپلاستی (cp DNA) و توالی میتوکندر یایی. توالی میتوکندر یایی به علت سرعت تکاملی پایین کمتر در بررسی روابط خویشاوندی گیاهان مورد استفاده قرار می گیرند.
اما توالی های کلروپلاستی و هسته ای در ابعاد وسیعی بدین منظور به کار می روند (معین، 1389).
(Internal Transcribed spacer) ITS یا ناحیه فاصله گذار رونویسی شونده درونی بخش از ریبوزومی هسته می باشد (شکل1-5) درون این ناحیه، نواحی کد گذار بسیار حفاظت شده
, 26snrDNA) (18nrDNA,5,8 snrDNAبه همراه نواحی غیر کد گذار (ETS و ITS)قرار دارند. نواحی ITS1 و 2 ITS در بالغ شدن و پردازش ریبوزوم نقش مهمی را ایفا می کنند اما ناحیهITS پس از پردازش ریبوزوم ترجمه نمی شود و به همین علت کمتر تحت فشار عملکردی است. و سرعت بالای تکاملی، این ناحیه را برای بررسی روابط فیلوژنتیکی مناسب کرده است (Baldwin et al. ,1995,Alvarez &vendel ,2003)
شکل 1-5 ساختار ناحیه - شکل 2 nrDNA ITS برگرفته از Baldwin et al.,1995 با اندکی تغییر

دهه اخیر از داده های توالی ITS به عنوان ابزاری برای تعیین روابط فیلوژنتیکی در سطح پائین تاکسونومی و مخصوصاً جنس های نزدیک استفاده شده است (2008،. Soltis et al)
دلایل استفاده از این ناحیه در بازسازی روابط فیلوژنی را می توان به صورت زیر بیان کرد:
1-دارای کپی های فراوان که به صورت تکرار های در یک یا چند لوکوس کروموزومی ژنوم هسته ای قرار گرفتند که سبب سهولت در تکثیر کلونینگ و توالی یابی آن می شود.
2-یکی از مهمترین ویژگی های این ناحیه برای بازسازی روابط فیلوژنی وجود تکامل هماهنگ در این منطقه از طریق کراسیگ اوور نابرابر و برابر می باشد.
3- اندازه کوچک این ناحیه (کمتر از 700 جفت باز در نهاندانگان) و حضور توالی های بسیار حفاظت شده در مجاورت آن، سبب سهولت در تکثیر این ناحیه حتی از نمونه های هر بار یومی می شود.
White و همکاران (1990) پرایمرهای همگانی برای تکثیر این قطعه در موجودات یوکاریوت طراحی کردند.
4- برتری این ناحیه نسبت به ژنوم کلروپلاستی در به ارث رسیدن از دو والد است که این ویژگی سبب می شود تا درصد هیبرید ها و پلی پلوئیدی ها را نیز تشخیص داد (Baldwin et al. ,1995).
عمومیت این ژن در تمامی نهاندانگان، مزیت آن برای استفاده از گیاهان انگل است که بخشی یا تمامی کلروپلاست خود را از دست داده اند (معین، 1389).
3-4بررسی روابط فیلوژنی بر اساس صفات مولکولی
به منظور بررسی و بازرسانی تاریخچه تکاملی قبیله Cynoglosseae از توالیهای هسته ای
nrDNAITS (Nuclear Ribosomal DNA Internal Tran cribed spacer)
استفاده شد تاکسونهای مورد بررسی در این مطالعه در جدول آورده شده است
1-3 تاکسون های مورد استفاده برای تکثیر قطعه - جدول nrDNA ITS
نام تاکسون محل جمع اوری محل نگهداری وشماره هرباریومی
Rindera regia موسسه جنگل هاو مراتع
Rindera lanata موسسه جنگل هاو مراتع
Rindera cyclodonta موسسه جنگل هاو مراتع
Rindera albida موسسه جنگل هاو مراتع
Rindera bungei موسسه جنگل هاو مراتع
Rindera media 3-4-1استخراج DNAاز برگ
استخراج DNA کل از سلولهای برگ نمونه های هربایومی صورت گرفت استخراج به روشCTAB
(Doyle,1987& Doyle) انجام گرفت گیاهان این تیره حاوی مقادیر قابل توجهی از متابولیت های ثانویه هستند. به منظوربالا رفتن کیفیت کار بافر استخراج هر روز درست و استفاده می شد.
مراحل استخراج DNA به شرح زیر است:
1-یک تکه برگ خشک را در هاون اتو کلاو شده می سابیم تا کاملاً پودر شود. (باید توجه داشت که از برگهای زرد، قهوه ای و بیمار استفاده نشود)
2-به پودر حاصل به نسبت برگ به کار رفته محلول CTAB اضافه می کنیم تا جاییکه محلول یکدست و به رنگ سبز روشن در آید.
3-700میکرولیتر از محلول فوق را درون میکروتیوبهای 2 میلی لیتری اتو کلاو شده می ریزیم.
4- زیر هود به هر میکروتیوب 20 میکرولیتر مر کاپتواتانول می افزائیم.
5- میکروتیوبها را به مدت 1 الی 2 ساعت در بن ماری 65 درجه سانتیگراد قرار می دهیم و هر 5 دقیقه یکبار به دلیل ته نشین شدن مر کاپتواتانول میکروتیوبها را تکان می دهیم.
6- 800 میکرو لیتر کلروفرم – ایزو آمیل الکل با نسبت 1: 24 به میکروتیوبها اضافه کردیم و سپس آنها را به مدت 20 دقیقه با دست تکان دادیم.
7- میکروتیوبها را به مدت 15 دقیقه با سرعت 11000 دور سانتریفیوژ می کنیم.
8- در این مرحله 3 فاز تشکیل می شود فاز بالایی حاوی DNA است برای اینکه با فاز پائینی مخلوط نشودDNAرا برداشته و به میکروتیوب استریل دیگری منتقل می کنیم.
9-و باز دوباره کلروفرم و ایزوآمیل الکل به حجم 800 میکرو لیتر به آن اضافه می کنیم و باز دوباره میکروتیوبها را به مدت 10 الی 20 دقیقه با دست تکان می دهیم باز سانتریفیوژ به مدت 15 دقیقه با سرعت 11000 دور.
10- میکروتیوبها از سانتریفیوژ خارج کرده و 200 میکرو لیتر از فاز بالایی می کشیم و به میکروتیوبهای جدید انتقال می دهیم.
11- 700 میکرو لیتر ایزوپروپانول اضافه می کنیم و در دمای منفی 20 درجه به مدت2 الی 24 ساعت می گذاریم.
12- میکروتیوبها را از یخچال در آورده و با سرعت 8000 دور در 15 دقیقه سانتریفیوژ می کنیم.
13 –بلافاصله محلول رویی را دور ریخته و اتانول 70% سرد را به مقدار 200 میکرولیتر به رسوب DNA اضافه می کنیم.
14- میکروتیوبها را به مدت 5 دقیقه با سرعت 8000سانتریفیوژ می کنیم.
15- میکروتیوب ها را از دستگاه سانتریفیوژ خارج می کنیم و بلافاصله محلول رویی را دور ریخته و میکروتیوب های حاوی رسوب DNA را در دمای آزمایشگاه قرار می دهیم تا کاملاً خشک شود و اتانول تبخیر گردد.
16- به هر میکروتیوب با توجه به مقدار رسوب DNA حدود 20تا 40 میکرولیتر آب دیونیزه اضافه می کنیم.
17- میکروتیوبها را در دمای 20 درجه نگه داری می کنیم تا در صورت نیاز از DNA استفاده کنیم.
3-4-2تکثیر قطعات مورد نظر با استفاده از واکنش زنجیره ای پلیمر از (PCR =Polymerase chaine Reaction).
به منظور تکثیر توالیهای nrDNA ITS از آغازگر های ITS1F و ITS4 (White et al.1990) استفاده گردید.
توالیهای آغازگرهای مورد استفاده در جدول 1-4آمده است.
جدول 1-4 توالی آغازگر های مورد استفاده برای تکثیر قطعه - جدولnrDNA ITS
توالی آغازگر جهت حرکت آغازگر نام آغاز گر
5-AAGGTTTCCGTAGGTGAACC-3 آغازگر رفت ITS1F
5-TCCTCCGCTTATTGATATGC-3 آغازگر برگشت ITS4
جهت انجام واکنش PCR ابتدا مخلوط کلی طبق جدول پایین تهیه گردید.
جدول1-5 ترکیبات مورد استفاده برای مخلوط کلیpcr
مقدار مورد استفاده غلظت نام ماده
7 میکرو لیتر برای تکثیر قطعه هسته nrDNA ITS - آب دیونیزه
10میکرو لیتر 2X PCRmaster Mix
1میکرو لیتر 10PmoL /ML آغاز گر رفت
1میکرو لیتر 10PmoL/ML آغاز گر برگشت
1میکرو لیتر 20-25ng/ML DNA الگو

مراحل اصلی در یک واکنش PCR به ترتیب زیر است:
واسرشتگی اولیه: مخلوط تا 95 درجه سانتی گراد حرارت داده می شود این دما پیوندهای هیدروژنی بین 2 رشته DNA را می شکند و باعث واسر شتگی دو رشته DNA می گردد.
واسر شتگی ثانویه: مرحله اول مجدداً تکرار می شود تا اطمینان حاصل گردد که دو رشته DNA کاملاً از یکدیگر جدا شده اند.
اتصال: مخلوط تا دمای 64-60 درجه سانتیگراد خنک می شود در این دما آغازگرها به محل های ویژه ای از DNA متصل می شوند.
بسط اولیه: دما تا 72 درجه سانتیگراد افزایش می یابد. این دما برای عملکرد آنزیم Taq پلیمر از مناسب است تا رشته جدیدی از DNA ساخته شود.
بسط نهایی: مرحله قبل مجدداً تکرار می شود تا قطعاتی که هنوز تکثیرشان کامل نشده تکمیل گردند
در هر واکنش PCR مراحل 2تا 4 بسته به نمونه های مختلف 25تا 30 مرتبه تکرار می گردد.
جدول1-6 برنامه مورد استفاده برای واکنش PCR قطعه ITS nrDNA
زمان دما چرخه
5 ثانیه 950C واسرشتگی اولیه 25-30
1دقیقه 950C  واسرشتگی ثانویه 45ثانیه 0C 64-60 اتصال آغازگر 1دقیقه 720C بسط اولیه 7دقیقه 720C بسط نهایی 3-4-3الکتروفورزژل آگارز
الکتروفورز روشی است که در آن مولکول های DNA با بار منفی در میدان الکتریکی قرار می گیرند.
مولکول های DNA از میان شبکه ژل آگارز به سمت قطب مثبت حرکت می کنند که سرعت حرکت مولکول ها وابسته به اندازه قطعات DNA می باشد.
به منظور حصول اطمینان از تکثیر ناحیه مورد نظر در DNA، پس از انجام فرایند PCR محصولات در ژل آگارز 1 % الکتروفورز شدند.
بدین ترتیب 6 % آگارز وزن شد و در 60 میلی لیتر TBE IX به کمک حرارت حل شد 5/1 میکرو لیتر اتیدیوم برو ماید اضافه می کنیم. بعد از خنک شدن، محلول حاصل در سینی مخصوص که شانه در آن قرار داده شده بود ریخته شد. پس ژل برای بسته شدن درون یخچال قرار گرفت. بعد از قرار دادن ژل درون دستگاه الکتروفورز 3 میکرولیتر از محصولات PCR درون چاهک های افقی ژل تزریق شد. همچنین درون یکی از چاهک ها Ladder تزریق شد.
دستگاه الکتروفورز افقی (GeL XL Ultrauk) که با TBE IX برشده است به مدت 1 ساعت بر روی 75 ولتاژ تنظیم شد.
بعد از اتمام کار برای مشاهده ژل از دستگاه UV Light استفاده شد. باید توجه داشت که وجود باند در ستون کنترل منفی نشان دهنده آلودگی در محلول PCR و یا حین کار است.
براساس نوارهای وزنی Ladder بر روی ژل می توان به طول قطعه تکثیر شده پی برد.
تصویر ژل آماده شود.

شکل 1-6 nrDNA IT’S حاصل از تکثیر DNAژل الکتروفورز محصول

به طور کلی آغازگرهای PCR، براساس نواحی بسیار حفاظت شده ای طراحی می شوند که در دو سوی نواحی بسیار متغیر قرار دارند. مثلا آغازگر trn-c مورد استفاده در این مطالعه دارای ژن trnF (GAA) می باشند که ضمن انجام فرآیند PCRمطابق شکل1-7 به جایگاه های مربوطه متصل شده و ناحیه مورد نظر را تکثیر می کنند.

شکل 1-7 ناحیه فاصله گر رونویسی شونده داخلی (nrDNAITS)، زیر واحد ها، جهت و موقعیت آغاز گرها نشان داده شده است (برگرفته از Soltis et al., 1998).

شکل 1-8. ناحیه توالی DNA کلروپلاستی دو منطقه ی غیر کد شونده: اینترون trnL و فاصله گر بین ژنی trnL-F، جهت و موقعیت آغازگرها نشان داده شده است (برگرفته از (Quanddt et al., 2004.
3-4-4تعیین توالی مناطق تکثیر شده
محصولات PCRتک باند قوی و بدون کشیدگی ، جهت تعیین توالی از طریق شرکت ژن فن آوران به کشور کره فرستاده شد. برای تعیین توالی نمونه های مربوط به nrDNAITS از آغازگرهای ITS5 یا ITS5m وI4 یا AB101F و AB101R استفاده گردید
3-5آنالیز فیلوژنی
برای آنالیز داده های مولکولی، کروماتوگرام های حاصل از تعیین توالی نمونه ها با استفاده از نرم افزار Bioedit ویرایش و به text تبدیل شد و سپس به دو طریق دستی و با استفاده از نرم افزار ClustalW (Thompson et al., 1994) هم ردیف سازی گردید. با روش بیشینه ی صرفه جویی (Maximum parsimony) با استفاده از نرم افزار PAUP*4.0bl0 (Sowfford, 2002) و همچنین با روش Bayesian با نرم افزارversion 3.12) MrBayes Ronquist & Huelsenbeck, 2003) آنالیز شدند.

شکل 1-9 کروماتوگرام حاصل از تعیین توالی قطعه - شکل nrDNA ITS
3-5-1روش ماکزیمم پارسیمونی
بر اساس روش پارسیمونی مناسب ترین درخت، درختی است که به حداقل تعداد تغییرات برای توضیح داده ها (توالی های نوکلئوتیدی) نیاز داشته باشد و بنابراین بهترین درخت، کمترین تغییرات را در مسیر تکامل طی کرده و کمترین میزان هموپلازی ناشی از همگرایی یا برگشت را دارد و کوتاهترین درخت است.
در آنالیز پارسیمونی ممکن است چند کوتاهترین درخت به دست آید، در این صورت درخت توافقی (strict consensus tree) آنها را نشان می دهند که در این درخت کلادهای مشترک بین آن درختان نشان داده می شود ولی روابط ناسازگار بین آنها به صورت پلی تومی دیده می شود (Hall, 2001, Soltis & Soltis ,2003).
برای آنالیز داده های nrDNAITS، cpDNAtrnL-F و ترکیب ایندو، از جست و جوی ابتکاری (Heuristic search) و روش تبادل شاخه ای (Swapping)، دو نیمه سازی درخت و اتصال مجدد شاخه
هاTree Bisection Reconnection (TBR) و گزینه چندین درخت (MULTrees) با 100 تکرار از Random addition sequences و MaxTrees = 20000 (بیشینه درختان ذخیره شده) استفاده گردید.
برای تعیین حدود اطمینان کلاد ها در درخت مطلق مرکزی (Strict Consensus) حاصل از هر یک از آنالیز های مذکور، آنالیـز (Felsenstein 1985) Bootstrap با روش جستجوی ابتـکاری و انتخاب گزیـنه های Simple addition sequences و TBR و با انتخاب گزینه off برای MULTREES، انجام شد. تعداد تکرارها در تمامی آنالیزهای Bootstrapping، 20000 تکرار در نظر گرفته شد. بیشینه ی درختان ذخیره شده به ازای هر تکرار در تمامی موارد 100 درخت انتخاب شد.
3-5-2روش Bayesian
آنالیز Bayesian بر اساس قاعده آماری Bayes بنا نهاده شده است. در این قاعده برآمد نهایی آزمایش به انچه در مراحل قبلی رخ می دهند، بستگی دارد.
روش استنباطی Bayesian اخیرا به فیلوژنی راه یافته و یک ابزار قوی برای پاسخ به سوالات پیچیده در بیولوژی تکاملی است. Bayesian در فیلوژنی بر اساس کمیتی است که احتمال ثانویه نام دارد. در واقع تئوری Bayes، ترکیب احتمال اولیه (prior probability) از فیلوژنی(pr [Tree]) با احتمال (pr [Data / Tree])، برای ایجاد یک احتمال ثانویه (posterior probability) بر درخت (pr [Tree / Data)
است (Hall ,2001, Soltis & Soltis, 2003, Huelsenbeck et al., 2001).
این روش بر مدل های تکاملی متمرکز می شود و تمامی مکان های جانشینی را بررسی می کند. برای آنالیز داده های nrDNAITS، cpDNAtrnL-F و ترکیب ایندو، مدلهای تکاملی با استفاده از برنامه MrModeltest version 2.3 (Nylander, 2004)، اجرا شده در MrMTgui (Nuin 2005) بر اساس معیار اطلاعاتیAkaike (AIC) (Posada & Buckley 2004) انتخاب شدند. برطبق این آنالیز، مجموعه داده ها با استفاده از مدلهای K81uf + I + G و SYM +I + G، به ترتیب برای داده های cpDNAtrnL-F و nrDNAITS آنالیز شدند. مجموعه داده های ترکیبی در دو بخش با استفاده از ترکیب مدلهای مشابه یا به عنوان یک بخش با مدل GTR + I + G آنالیز شدند. برنامه MrBayes version 3.12 (Ronquist & Huelsenbeck 2003) برای آنالیز های فیلوژنتیکی Bayesian استفاده شد. برای آنالیز بخش بندی شده (partitioned analysis) و غیر بخش بندی ((nonpartitioned data، اجازه داده شد تخمین های جانشینی ها و طول شاخه ها به طور مستقل در هر بخش متغیر باشد. احتمالات ثانویه بر روی پارامترهای مدل از داده ها با استفاده از پیش فرض های اولیه برآورد شدند. آنالیز های ترکیبی و جدا از هم در 2 میلیون نسل تکرار شدند. 4 زنجیره مارکوف مونته کارلو (MCMC) در یک زمان از یک درخت به طور تصادفی شروع به کار کرد. یک درخت را در هر 100 نسل نمونه برداری کرد. درختان نمونه برداری شده بعد از رسیدن به فاز خطی (بعد از 500000 نسل یا 5000 نمونه) جمع آوری شدند و برای ایجاد یک درخت توافقی با بیشینه 50%، همراه با ارزشهای احتمال ثانویه با استفاده ازTreeview (Page 1996) استفاده شدند.
3-5-3مقایسه دو روش آنالیزی ماکزیمم پارسیمونی و Bayesian
در روش ماکزیمم پارسیمونی، بهترین تفسیر از درخت، ساده ترین تفسیر است. در این روش، درختانی انتخاب می شوند که حداقل تعداد تغییرات را داشته باشند. مزایای این روش این است که انتخاب درخت با کوتاهترین طول، تعداد جانشینی های نوکلئوتیدی و هموپلازی ناشی از تکامل موازی و برگشت را نیز به حداقل می رساند. این روش آنالیزی به آسانی در برنامه PAUP* قابل اجراست و می تواند جایگاه های اطلاعاتی و مشکلدار را شناسایی کند. همچنین این روش قادر است به حالت های اجدادی نیز پی ببرد. از معایب این روش این است که ممکنست بر اساس توالی های وارد شده، نتایج متفاوت ناشی از چندین جستجو به دست آید. همچنین این آنالیز با مجموعه داده های بزرگ نسبتا کند انجام می شود. روش Bayesian از یک سری فنون جستجوی بسیار کارآمد استفاده می کند. این روش با در نظر گرفتن احتمال اولیه قبل از آنالیز و بر اساس احتمال ثانویه، نتیجه تولید می کند. از مزایای این روش بر ماکزیمم پارسیمونی اینست که از بسیاری از امکانات آماری و مدلهای تکاملی استفاده می کند در حالیکه روش پارسیمونی فقط بر اساس صفات بنا نهاده شده است. روش Bayesian می تواند مجموعه داده های نسبتا بزرگ را آنالیز کند و همچنین ارزشهای حمایتی بالایی دارد (Soltis & Soltis, 2003).
8394701098550فصل چهارم
بحث و نتیجه گیری
00فصل چهارم
بحث و نتیجه گیری

4-1 آنالیز ماکزیمم پارسیمونی
طول این ناحیه هسته ای برای 5 تاکسونی که مورد مطالعه قرار گرفت. 658 جفت باز میباشد. ماتریکس توالی های nrDND ITS شامل 13 تاکسون درون گروه و2 تاکسون برون گروه می باشد. صفات اطلاعاتی 146 وصفات غیراطلاعاتی 512 میباشد. انالیز دادهای nrDNA ITS با روشMPتعداد کوتاهترین درخت با337 گام میباشد. با شاخص پایداری یا ثبات CI 671/0،شاخص گروه پذیری یا ابقا RI 613/0ایجاد کرد.
در این آنالیز دو نمونهTournefortia Rubicunda,Heliotropium Bacciferum به عنوان
برون گروه انتخاب شدند.بعد از برون گروه کلادوگرام شامل 8 زیرکلاد میباشد اولین زیر کلاد با حمایت 100به دو زیر کلاد تقسیم می شود که یک کلاد تک تبار شامل Echiochilon persicumوکلاد بعدیEchiochilon Fruticosum میباشد که این دو با حمایت 100میباشد زیر کلاد بعدی با حمایت 100شامل گونه Solenanthus circinatusمیباشد وزیرشاخه بعدی به گونه هایی از جنس Rinderaکه یک کلاد با حمایت 54 که کمترین حمایت میباشد شامل یک گونه R.lanataو شاخه بعدی گونه R.Bungei می باشد زیر کلاد بعدی با حمایت 100 به یک کلاد تقسیم میشود. که شامل گونه incerpicua Lepechiniella میباشد و کلاد بعدی شامل گونه paracaryum میباشد. همچنین زیر کلاد بعدی با حمایت 58به یک شاخه که شامل گونه R.Cyclodonta میباشد. زیر کلاد بعدی نیز به یک گونه Cynoglossum creticum میباشد و یک زیر کلاد نیز با حمایت 86 به 2 شاخه که شامل گونه های Lindelofialongiflora,cynoglossum officinalis
تقسیم می شود که این 3 گونه با R.Cyclodontaخواهران متوالی اند.

شکل 1-10فیلوگرام حاصل از آنالیز داده های nrDNAITS با روش ماکزیمم پارسیمونی. اعداد روی شاخه ها، نشانگرحدود اطمینان شاخه هاست.
4-2 آنالیز Bayesian
در این فیلو گرام 2 گونهHeliotropium BacciferumوToumefortia Rubicundaبه عنوان برون گروه میباشند.فیلوگرام به 2 شاخه تقسیم می شود که این شاخه خود به 2 زیر کلاد با حمایت 00/1 می باشد زیر کلاد اولی به 2 شاخه تقسیم شده با حمایت 00/1 که 2 گونه Echiochilon persicum وEchiochilon fruticosumمیباشد که به عنوان کلاد خواهری هستند ومونوفیلند و شاخه بعدی به 2زیر کلاد تقسیم میشود که یک کلاد گونه Solenanthus circinatus وهستش وهمچنین گونه های جنس RinderaوSolenenthus با حمایت 90/0گروه تک تبار را تشکیل میدهند و گونهRindera bungieوR.Lanataبا حمایت 99/0 کلاد خواهری را تشکیل میدهند.شاخه بعدی که با حمایت 90/0 خارج شده خود به 2 زیر کلاد تقسیم شده که زیر کلاد اولی به گونه Paracaryum spوشاخه بعدی با حمایت 78/0 که گونه
incerpicua Lepechiniella را شامل میشود و زیر شاخه بعدی به 2 شاخه تقسیم میشود که شامل گونه
R. cyclodontaبا حمایت 60/0 میباشد و شاخه بعدی با حمایت 86/0به 2شاخه که شامل 3 گونه که اولی cynoglossum certicumبا حمایت 99/0 و زیر شاخه بعدی شامل lindelofialongiflora وcynoglossum officinaleبا حمایت 97/0 کلاد خواهری را تشکیل میدهند.
که گونهParacaryumو incerpicua Lepechiniella و R.Cyclodontaوcynoglossum certicum
و lindelofialongiflora وcynoglossum officinale پیرا تبار میباشد.
-579755-200025CynoglossumOfficinale
Lindelofialongiflora
0.97
CynoglossumCreticum
0.99
R.cyclodonata
0.86
Lepechiniella incerpicua
0.60
ParacaryumSP
0.70
R.lanata
R.bungei
0.99
R.albida
R.regia
Solenanthuscircinatus
0.98
EchiochilonPersicumIRan
EchiochilonFruticosum
1.00
1.00
TournefortiaRubicunda
HeliotropiumBacciferum
0.1
00CynoglossumOfficinale
Lindelofialongiflora
0.97
CynoglossumCreticum
0.99
R.cyclodonata
0.86
Lepechiniella incerpicua
0.60
ParacaryumSP
0.70
R.lanata
R.bungei
0.99
R.albida
R.regia
Solenanthuscircinatus
0.98
EchiochilonPersicumIRan
EchiochilonFruticosum
1.00
1.00
TournefortiaRubicunda
HeliotropiumBacciferum
0.1

شکل 1-11درخت فیلوژنی حاصل از آنالیز nrDNAITS با استفاده از روش Bayesian. اعداد نشان داده شده، حمایت آماری کلادها را نمایش میدهد.
4-3 فیلوژنی قبیله Cynoglosseae
همان گونه که درفیلوگرام نمایش داده شده در آنالیز ماکزیمم پارسیمونی حاصل از داده های ITSنمایش داده شده است گونه متعلق به جنس Echiochilon یک کلاد با حمایت 100 را با گونه های Echiochilon persicum و E. fruticosum و به عنوان اولین کلاد از درخت خارج می شوند را تشکیل داده اند.این 2گونه در تبارEchiochileaeقرار دارندکه بر اساس مطالعات لنگستروم (2002) به این قبیله معرفی شد.
گونه R.cyclodonta نیز دور از سایر گونه های جنس Rindera قرار گرفته است.بنابرابن جنس Rindera تک تبار نمی باشد.
اعضای قبیله Cynoglosseae دارای خامه ای با تقسیماتی در راس با 2 تا 4 کلاله، همچنین با فندقه های دارای اثر اتصال قاعده ای وسیع مشخص می شوند. از نظر کروموزومی عدد پایه کروموزومی 8 دارند. (Lugue & valdes ,1984)
قبیله Echiochileae با دو گونه آنالیز شده(Fruticosum E.percicum, Echiochilon)
تک تبار می باشد و این قبیله معمولا در قاعده درخت قرار گرفته است. اعضای این قبیله فرم چوبی دارند. در حالیکه بقیه اعضای زیرتیره علفی اند. از نظر گرده شناسی گونه های Echiochilon شبیه به گونه های Heliotropium، 3 شیاره (3- colpate) هستند.


(Kazempour osaloo& khatam saz ,1994, Diez& valdes 1986)
گروهی از گیاهشناسان (De candolle ,1846) Echiochilon را در قبیله Echieae و عده ای دیگر Al shehbaz, 1991 آن را در قبیله Eritrichieae قرار داده بودند.
khatamsaz,2002, Riedl ,1997 نیز این جنس را متعلق به قبیله Lithospermeae می دانستند.
در توضیح قبیله Cynoglosseae.s.L می توان گفت که پهنای قبیله Cynoglosseae در یک کلاد با حمایت بالا قرار می گیرد و تک تبار نیست. (سعادتی، 1390).
گونه های جنس Rindera همراه با گونه Solenanthus circinatus یک کلاد با حمایت بالا (pp=100) را تشکیل داده اند، این 2 جنس در داشتن برگهای قاعده ای با دمبرگ طویل. گل آذین خوشه مرکب، جام گل لوله ای پرچم ها 5 عدد، کلاله سرسان مشترک هستند. صفت نامساوی بودن شکل برگها – تعداد فندقه و شکل بساک میان سایر اعضای این قبیله صرفاً مختص به این دو جنس می باشد.
گونه های جنس Rindera در کلادی با حمایت 100 قرار گرفته اند. اعضای این کلاد، یک کلاد خواهری Solenanthus circinatus تشکیل داده اند این دو جنس در داشتن برگهای قاعده ای با دمبرگ طویل هستند. بنابراین ویژگی برگهای قاعده ای یک صفت طبیعی برای طبقه بندی اعضای این قبیله محسوب می شود. و موید قرابت این دو جنس است.
در پلی تومی 4 شاخه ای که در میانه فیلوگرام شکل گرفته، گونه های جنس Solenanthus در یک کلاد با حمایت 100 قرار گرفته که دال بر تک تبار بودن این جنس است (اسماعیل بگی کرماتی ،1391)
اعضای جنس ها Cynoglossum و lindelofia در فیلوگرام نیز در یک کلاد با حمایت 86 قرار گرفته اند. اعضای این دو جنس هیچ کلادتک تباری را تشکیل نداده اند. اما مجموعه ی کلادی با حمایت 86 ایجاد کرده اند. این دو جنس ظاهراً تک تبار نیستند اما خویشاوند نزدیک یکدیگر به شمار می روند. جنس های Cynoglossum و lindelofia در داشتن گل آذین انتهایی بدون براکته، زائده مستطیلی شکل بین لب ها در دهانه جام و فندقه های خاردار مشابه هستند.
گونه های جنس Rindera در دو زیر کلاد نزدیک به هم قرار دارند و به همراه جنس Lepechiniella incerpicua و یک گونه از جنس paracaryum پارافیلتیک را تشکیل داده اند. براساس نتایج حاصل از این مطالعه جنس Rindera تک تبار نمی باشد.
4-4 روابط فیلوژنی جنس Rindera
جنس Rindera 5 گونه از (R. Regia, R.Albida, R.Bungei, R.lanata, R.Cyclodanta)این جنس با استفاده از توالی هسته ای ITSآنالیز شده که درخت حاصل از آن نشان داد که این جنس تک تبار نمی باشد. آنالیز نیز نشان داد R.Cyclodontaبه عنوان گروه خواهری با کلادی متشکل از گونه های جنس, Lepechiniella ,paracaryum, cynoglossum creticum,lindelofialong, cynogolossum officinale) قرار می گیرد. و در آنالیز انجام شده با استفاده از توالی هسته ای ITSگونه های Rindera در کنارparararyum, Lepechiniella incerpicua قرار گرفته اند و نشان می دهد این گونه ها به هم نزدیکند.
خصوصیات مشترک جنس Rinderaعلفی، کپه ای کوچک، پوشیده از کرک،ساقه افراشته،کاسه گل استکانی هستند.. (خاتم ساز1381)
علفی،ساقه ها معمولا ساده، کرکی نرم،(به ندرت بدون کرک)برگها بیضوی،دمگل بلند،گل اذین به فرم دیهم،کاسه گل 5قسمتی (Davis P.H ,1978))
کاسه گل تقریبا در قسمت پایه به لوب باریک،در میوه خمیده،در گل قایم تقسیم میشود.جام گل لوله ای شکل(Popov M.G ,1953)
در جنس Rinderaدر فیلوگرام نمایش داده شده گونه Cyclodonta.Rدور از گونه های دیگر قرار گرفته
زیرا از لحاظ مورفولوژیکی به دلیل داشتن برگهای نسبتا بدون کرک،برگهای قاعده ای با دمبرگ طویل،
برگهای ساقه ای تخم مرغی و خامه نسبتا کوتاه از سایر جنس ها دور افتاده اند
دو گونه R.Lanata,R.Bungeiاز نظر داشتن علفی، کاسه گل استکانی،پوشیده از کرک،فندقه دایره ای
،گل اذین خوشه مرکب، مشترکند.(خاتم ساز،1381 )
R.Lanataچند ساله ای علفی؛ریشه باریک و محکم،ساقه ها ساده به ندرت در قسمت پایین منشعب،کرکدار،برگها دارای دمگل بلند،بیضوی،گل اذین انتهایی بسیار بزرگ،( Davis P.H ,1978)
ریشه باریک به سمت پایین، ساقه ها افراشته، کرکدار،شاخه خوشه ای،( Popov M.G ,1953)
R.albida,R.Regiaبه همراه R.Lanata,R.Bungieروابط حل نشده دارند.
دو گونه R.albida,R.Regia از نظر پوشیده از کرک سفید، ساقه افراشته، برگهای قاعده نیزه ای شباهت دارند.(خاتم ساز،1381)

aslinezhad project

عنوان مطالبشماره صفحه

چکیده16
مقدمه17
فصل اول: کلیات19
(1-1 هدف. 20
(2-1 پیشینه تحقیق20
(3-1روش کارو تحقیق22
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن22
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(25(900/2000Mhz
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخه ای T شکل26
فصل دوم: تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده πو T شکل28
(1-2مدار خط شاخهای اندازه فشرده T شکل29
(2-2طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن33
(3-2 کوپلر خط شاخهای36
(4-2 فرموله کردن با استفاده از ماتریس خطوط انتقال37
۶
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب41
(6-2 تحقق جهت دو بانده کردن مدار43
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)43
λ
(2-6-2 استفاده از مدار اتصال کوتاه ( طول 44( 2

(7-2 آنالیز(تحلیل) مدار π شکل خط شاخهای دوبانده و مشاهده نتایج شبیهسازی46
فصل سوم: طراحی مدار میکرواستریپ فشردهT شکل دوبانده با
اندازه کاهش یافته.50
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه به روند ارائه شده در
دو بانده کردن کوپلرπ شکل ( 900MHz و 51(2400MHz
(2-3 استفاده از برنامه کامپیوتری ساده جهت بدست آوردن پارامترهای مدار دو بانده52
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محیط ( نرم افزار) مختلف و مشاهده
نتایج53
فصل چهارم: بررسی انواع مختلف DGS و اثرات آن بر روی
خطوط میکرواستریپ59
DGS (1-4 چیست60
( 2 – 4 مشخصات کلی 60 .DGS
( 3 – 4 کاربردهای 61DGS
٧
( 4 – 4 ویژگیهای 61DGS
( 5 – 4 اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ....61
( 1 – 5 – 4 الگوی .DGSدمبلی شکل و ویژگی شکاف باند63
DGS ( 2 – 5 – 4 دمبلی پریودیک قویتر64
( 3 – 5 – 4 اندازهگیریهای مربوط به DGS دمبلی شکل..66
( 6 – 4 بررسی اثرات DGSهای هلزونی در تقسیم کننده توان بر روی هارمونیکها68
-7-4مدل مداری و هندسه DGS هلزونی غیرمتقارن70
( 8 – 4 حذفهارمونیکهادر مدار مقسم توان73
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی78
( 10 – 4 مشاهده اثرات DGS برروی مدار دو بانده طراحی شده80
فصل پنجم:چگونگی استفاده از کوپلر بدست آمده در طراحی
سیرکولاتور82
(1-5طراحی سیرکولاتور83
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر83
فصل ششم:نتیجه گیری وپیشنهادات86
(1-6نتیجه گیری87
(2-6پیشنهادات88
٨
پیوست ها................................................................................................................................... 89
٩
فهرست مطالب
عنوان مطالبشماره صفحه

منابع و ماخذ. 93
سایتهای اطلاع رسانی97.
چکیده انگلیسی98
١٠
فهرست جدول ها
عنوانشماره صفحه

:(1-2)مشخصات الکتریکی وفیزیکی مدار در دو باند..47
(1-3) دو بازه فرکانسی و دو هدف مورد نظر پروژه..55
(2-3.) بازه بالا و پایین جهت optimom هدف.56
(1–4)مقایسه اثر DGSهای واحد و پریودیک با توزیع نمایی..66
١١
فهرست شکل ها
عنوانشماره صفحه

(a) ( 1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و
استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع23
(a) ( 2 – 1) سرس خطوط انتقال کوچک شده با چندین استاب
باز (b) بزرگی پاسخ.25
( 3 – 1) نمایی از نرم افزار Serenade. RTL جهت بدست آورن طول
فیزیکی و پنهای خطوط.26
( 1-2 ) ساختار T شکل خط انتقال ربع طول موج30
( 2-2 ) منحنی رسم شده حاصل از برنامه کامپیوتری θ1)بر حسب32.(θ3
( 3-2 ) مدار چاپی خط شانهای T شکل34
S11 (a) ( 4-2)،S12،S13،(b) S14 پاسخ فازی مدار Tخط شاخهای35
(5-2) ساختار کوپلر خط شاخه ای یک بانده مرسوم.38
(a) ( 6 – 2) ساختار معادل پیشنهادی (b) خط شاخهای 38. λ4

S11 ( 7-2 )،S12،S13وS14 از کوپلر بدون استاب42
( 8-2 ) پاسخ زاویهS12وS14 برای مدار بدون استاب42
( 9-2 ) ساختار کوپلر پیشنهادی با استاب مدار باز44
١٢
( 10-2 ) ساختار کوپلر پشنهادی با استاب اتصال کوتاه ........................................................ 45
11-2 ) ) نتایج شبیه سازی .................................................................................. ...(S11) 47
12-2 ) ) نتایج شبیه سازی(S12و............................................................................ .(S13 48
( ( 13-2 نتایج شبیه سازی .................................................................................... .(S14) 48
14-2 ) )نتایج شبیه سازی (پاسخ فاز مدار با استاب باز) ................................................... 49
( (a) ( 1-3 شماتیک (b) مدار چاپی ................................ (designer, hfss) ansoft 55
( S11(a) ( 2-3،S12،S13وS14 مدار شبیه سازی شده در .....................................................................ADS (c) serenade (b) ansoft (a) 57
( 3-3 ) پاسخ فازی مدار دو بانده. ....................................................................................... 58
1-4 ) ) شمای مختلف H (a) DGS شکل T ( b)شکل (c)هلزونی شکل (d) دمبلی شکل. ......................................................................................................... 60
( 2-4 ) خط میکرواستریپ با εr = 15 و ................... ................................ h = 1/575 62
( 3-4 ) پارامترهای S مدار دوپورته.. ................................................................................ 62
( 4-4 ) مدار با DGS دمبلی شکل .. ............................................................................... 63
( 5-4 ) پارامترهای S مدار با DGS دمبلی شکل ............................................................ 63
( 6-4 (a) ( نوع (b) 1 نوع (c) 24 نوع DGS 3 دمبلی شکل ...................................... 65
( 7-4 ) پارامترهای S برای DGS دمبلی با انواع مختلف سایز. ....................................... 66
( 8-4 ) مقایسه پارامترهای S مدارهای (a) DGS نوع (b) نوع (c) 2 نوع 67 ............. ..3
١٣
( 9-4 ) خط میکرواستریپ با DGS هلزونی نامتقارن برروی زمین. ............................... 70
( 10-4 ) پارامترهای انتقال خط با DGS متقارن ( A = A' = B' = 3mm و نامتقارن A = 3/4m) و ............................................................................(B = 2/6 mm 71
11-4 ) ) فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از ...................................................................................................................... .B/A 71
12-4 ) ) مدار معادل بخش DGS هلزونی نامتقارن ........................................................ 73
13-4 ) DGS (a) ( هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این ......................................................................................DGS 74
( 14-4 ) پارامترهای S مدار با DGS هلزونی بصورت EM و شبیه سازی شماتیک ........ 75
15-4 ) ) هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن....................................................................................................................... 76
( 16-4 ) نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با ....................................................................................................................... ..DGS 77
17-4 ) ) مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار...................................................................................................................... 77
( 18-4 ) نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(.......... S12 ( b) S11 (a 78
( 19-4 ) مدار T شکل با استفاده از DGS هلزونی (a) یک بعدی (b) سه بعدی.......... 79
20-4 ) (a) ( نتیجه پاسخ شبیه سازی کوپلر با استفاده از اعمال (b) DGS بدون ١۴
استفاده از 80DGS
( 21-4 ) مدار چهار پورتی T شکل دوبانده با اعمال DGS دمبلی شکل در
شاخه خطوط..81
( 22-4) پارامترهای S حاصل از بکار بستن 81DGS
(1-5)نماد ژیراتور83
( 2-5)سیرکولاتور 4 پورته متشکل از دو مدار هیبریدی و زیراتور83
(3-5) سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور84
(a)(4-5)،((b،((cو(:(dنتایج شبیه سازی سیرکولاتور85
(1-6)شبکه دو قطبی خطی. 91
١۵
چکیده:
در این پروژه سیرکولاتور دو بانده با ابعاد کوچک ارائه شـده اسـت. در طراحـی سـیرکولاتور مـورد نظـر از
کوپلر شاخه ای (BLC)1 میکرواستریپی دو بانده کوچک شده استفاده شده است . لذا در این پـروژه بیـشتر
بر روی چگونگی کوچک سازی و دو بانده کردن کوپلر شاخه ای میکرواستریپی با اسـتفاده از مـدارات T و
همچنین DGS2 متمرکز شده ایم . در کوپلر شاخه ای پیشنهادی از مدارات T در هر شاخه که دارای طـول
الکتریکی ±90 درجه در دو بانده می باشند ، استفاده شده است. از طرفی در صفحه زمـین در زیـر خطـوط
این کوپلر DGS هایی قرار دارند که با استفاده از این DGSها ، طول الکتریکی خطوط کاهش یافته و ابعاد
کوچکتر می گردند. کوپلر دو بانده کوچک شده توسط نرم افزارهایSerenadeوADS3وAnsoft تحلیـل
شده و نتایج شبیه سازی در این پروژه آورده شده اند. سپس با استفاده از کوپلرهای دو بانده کوچک شـده ،
سیرکولاتور مورد نظر طراحی گردیده است.

Branch line coupler١ Defected ground structure٢ Advance designe sys--٣
١۶
مقدمه:
امروزه تقاضا برای استفاده از عناصر دو بانده در صنعت مخابرات رو به افزایش است . سیستمهای مخابرات
با آنتن های دو بانده کاربرد زیادی دارند. سیرکولاتور یکی از عناصر اصلی در چنین سیستم هایی اسـت. بـا
استفاده از سیرکولاتور دو بانده می توان از یک تغذیه بین آنتن و سیستم مخـابراتی اسـتفاده نمـود. یکـی از
اجزای اصلی در ساخت سیرکولاتورهای چهار پورتی ، کوپلرهای هایبریدی و کوپلرهای شاخه ای((BLC
می باشند.
(BLC) از چهار خط انتقال به طول ربع طول موج مؤثر در فرکانس اصلی و هارمونیک هایی کار می کنـد.
.[1] ,[2]
معمولا این کوپلرها بزرگ هستند و سطح و فضای اشغال شده توسط آن ها زیاد است. در اکثـر کاربردهـای
امروز به خصوص در بردهای صفحه ای و میکرواستریپی ، این عیب محسوب می شود. لذا ، امـروزه روش
های مختلفی برای کوچک سازی و افزایش پهنای باند]٣[7- این کوپلرها ارائه شده است.
در مخابرات مدرن امروزی نیاز به اجزاء دو بانده بالاخص کوپلر BLC دو بانده ، می باشد تا مقدار عناصـر
مورد استفاده ،کاهش یابد.
] Hsiang٨[ از خطوط چپگرد برای دو بانده کردن کوپلر استفاده کرده است.BLC شامل خطـوط متـصل
شده به یک جفت المان موازی]١١[ گزارش شده است.
در این پروژه با استفاده از روشـهای کوچـک سـازیBLC و ترکیـب آن هـا بـا روشـهای دو بانـده سـازی
ابتداBLC با ابعاد کوچک در دو بانده 900Mhzو2400Mhz طراحی شده است سپس برای کاهش بیـشتر
سطحBLCصفحه ای ازDGS ها استفاده شده است.
١٧
گزارش ارائه شده از نمونه طراحی سیرکولاتور مورد نظر شامل قسمت های زیر می باشد:
در فصل اول کلیاتی در مورد مراحل انجام پروژه ،هدف از انجام مراحل کار ، پیشینه تحقیقهای انجـام شـده
در مورد مدارمورد نظر و روش کمی کار مورد بررسی قرار گرفته است.
در فصل دوم ابتدا نحوه افزایش پهنای باند کوپلرها ، کوچک سازی با استفاده از مدارT و استفاده از مـدارπ
بــرای دو بانــده کــردن کوپلربررســی شــده اســت. ســپس بــا اســتفاده از نــرم افزارهــای تخصــصی
مانندSerenadeوAnsoft مدارات ذکر شده تحلیل گشته و نتایج شبیه سازی آورده شده اند.
در ادامه کوپلر کوچک شده با استفاده از مدارT ، با توجه به روند ارائـه شـده در دو بانـده کـردن کـوپلر بـا
مدارπ ، در فصل سوم دو بانده شده و روابط حاصل برای دو بانده کردن آن به دست آمده است.
کوپلر به دست آمده با استفاده از نـرم افـزار ADSوSerenadeوAnsoft تحلیـل و بهینـه گـشته اسـت و
منحنی های مربوط به آن در این فصل آورده شده اند.
در فصل چهارم DGS به عنوان ابزاری برای کوچک سازی مدارات صفحه ای شرح داده شده و از آن برای
کوچکتر کردن ابعاد کوپلر دو بانده استفاده شده است . نتایج شبیه سـازی کـوپلر حاصـل ، نـشان داده شـده
است. چگونگی استفاده از کوپلر به دست آمده در طراحی سیرکولاتور در فصل پنجم شرح داده شده اسـت
و در آخر در فصل ششم نتیجه گیری و پیشنهاداتی برای ادامه کار آورده شده است.
١٨
فصل اول:
کلیات
١٩
(1-1 هدف
کوپلرهای شاخهای با بکار بستن استابها ( مدارباز – مدار کوتاه) نیزو با Cascade شدن یک سـری شـاخه
برکاستن حجم و بالا رفتن پهنای باند نقش بسازیی را دارند. همچنین المانهای فشرده به ما امکـان کـوچکتر
کردن مدار را میدهند و با عث افزایش باند میگردند منتهی برای ساخت مدار نهایی با کـاهش سـایز کلـی و
افزایش پهنای باند و بکار بردن کوپلینگ مناسب در سرهای مدار و ایزوله کردن پورتها از همدیگر مـیتـوان
از روش مناسب بکار بردن DGS و نتیجتاً افزایش اندوکتانس خطوط و در نتیجه اهداف مطلوب دسترسـی
پیدا کرد.
در این پروژه هدف کلی رسیدن به ساختار فشرده و نیز استفاده از مدار میکرواستریپی در دو بانـد فرکانـسی
دلخواه و نیز افزایش هر یک از باندهای فرکانسی می باشد. و عـلاوه بـر ایـن بـا بکـار بـستن ( defected
ground structure) DGS بر روی زمین مدار شاهد اثرات مثبت آن برروی دستیابی باند فرکانسی مورد
نظر و نتیجتاً کاهش سایز مدار و خواهیم بود.
(2-1 پیشینه تحقیق
با توجه به ساختار مدار این پروژه و هدف مورد نظـر تحقیقهـایی مـورد نظـر بـودهانـد کـه بیـشتر در بـاره
Compact و فشرده سازی المانها، افزایش پهنـای بانـد، از بـین بـردن هارمونیکهـای اضـافی و اسـتفاده از
DGS میباشد.
در[1] افزایش پهنای باند مدارهای هایبرید با استفاده از اتصال خطوط شاخهای و استفاده از اسـتابهای مـدار
λ
باز در دو انتهای خط میکرواستریپ و معادل قرار داده خط با خط انتقال 4 جهت کاهش ابعاد مورد بررسی

قرار گرفته است.
٢٠
فعالیتهای گستردهای در جهت طراحی و بکاربردن کوپلرها و سـیرکولاتورهای صـفحهای فـشرده دردو بانـد
مورد دلخواه بعنوان مثال در پروژه - ریسرچ[2]انجام گردیده است که در فصل دوم نتایج حاصل از شـبیه سـازی ایـن
گونه کوپلرها و استفاده از ماترسیهای انتقال و نوشتن برنامه کامپیوتری جهت استفاده در دو فرکانس دلخـواه
مورد بررسی خواهند گرفت.
در مورد کاهش بیشتر سایز کوپلرها در حدود 45% مقدار کوپلرهـای مرسـوم خـط شـاخه ای و بـا مـدل T
شکل فعالیتهایی در مقالات گوناگون [3] تنها در یک باند فرکانسی مطرح گردیده است که در فصل بعدی
نیز این پروژه - ریسرچو نتایج شبیه سازی آن با نرمافزارهای گوناگون مورد بررسی قرار می گیرند.
یکی از مسائل مهم در چند قطبیهای میکرواستریپ مسئله کاهش اندازه بـوده کـه بـا توجـه بـه اسـتفاده از
المانهای باند و کاهش حجم مدار نیز استفاده از (defected ground structure) DGS مـیباشـد. ایـن
کار باعث از بین بردن هارمونیکهای اضافی و نتیجتاً کاهش اندوکتانس مدار و بالا بردن پهنای باند و کاهش
سایز مدار با کم کردن المانهـای مـوازی مـیگـردد. در ایـن زمینـه نیـز فعالیـتهـای گـسترده و اسـتفاده از
DGSهای مختلف صورت گرفته است [2]و[4]و[21]و .[22]
که اثرات تک DGS و نیـز DGS دمبلـی پریـود یـک را بـر روی پارامترهـای اسـکترینگ یـک خـط
میکرواستریپ دو پورتی ،بررسی شده است.
همچنین در[21] کاربرد DGS برروی خطوط یک کوپلر و تأثیر آن برروی پاسخ شبیه سـازی بـرروی ایـن
مدار در نرمافزار Ansoft بررسی گردیده است.
علاوه[23] نیز اثرات DGS هلزونی برروی حذف هارمونیکها و پهنای باند در یک تقسیم کننده توان ویـل
کینسن را مورد بررسی قرار داده است که در این پروژه در انتهای از این نوع DGS در زیـر خطـوط کـوپلر
خط شاخه ای تک بانده استفاده گردیده و نتایج آن آورده شده است.
٢١
و اثرات شکلهای گوناگون [21]DGSو[22]و[23]و مدل کردن مداری آنها بـرروی کـوپلر، سـیرکولاتور و
تقسیم کنندههای توان و به طور کلی خطوط میکرواستریپ را بررسی میکنند که در فصلهای بعـدی در ایـن
مورد به طور مفصل توضیح داده شده و نتایج حاصل از شبیه سازی نیز آورده شده است.
( 3 – 1 روش کار و تحقیق
در این پروژه روش کار و تحقیقهای انجام شده جهت رسیدن به هدف مورد نظر یعنـی اسـتفاده از دو بانـد
فرکانسی دلخواه کاهش حجم مدار بالابردن ضریب کوپلینگ نیز بـه صـورت اسـتفاده از مراجـع و منـابع و
مشاهده نتایج حاصله از این کارها بوده و بعد از برقراری لینک مورد نظر این منبع مـورد بررسـی بـا هـدف
نهایی به آیتم بعدی پروژه - ریسرچمربوط به مرجعهای اولیه پرداخته شده است. در بخشهای بعدی این مراحل عنوان
میگردند.
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن:
در این مرحله نیز خط میکرواسـتریپ Zc4 بـا طـول الکتریکـی θ نیـز کـه در شـکل (1 – 1) (a) مـشاهده
میگردد به صورت یک خط انتقال مرسوم با المانهای توزیع شده فشرده معادل آن نیز مدل گردیده است[9]
و با بکار بردن فرمول ماتریس ABCD5 مدار معادل مشاهده شده در شکل (1 – 1) ( b) میتوانـد اسـتنباط
گردد. با معادلات ماتریس ABCD در شکل (1 – 1) به نتایج زیر دسترسی پیدا میکنیم.
(1 – 1)
JB01  J tan θ01 / Z 01

امپدانس خط معادل
ماتریس انتقال خط
٢٢
که B01 امپدانس ورودی استاب مدار باز است و٠١θ طول الکتریکی استاب مدار باز است.
و با در دست داشتن ادمیتانس ورودی استاب مدار باز شکل (b ) ( 1 – 1) به معادلات زیر میرسیم
(2 – 1) cosθs −cosθ B01  Z c sin θ (3 – 1) Zc sinθ Zs  sinθs که ≤θs≤θ≤1٠ می باشد و همانطوری که در شکل((1-1 دیـده میـشود θs طـول خـط بـین دو اسـتاب در
مدارπ است.

شکل (a ) (1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع
٢٣
ما همچنین میتوانیم فرکانس قطع برای ساختار فیلتر مانند شکل (b ) ( 1 – 1) و مـدار معـادل آن در شـکل
(c) (1-1) به صورت زیر بدست آوریم:
(4 – 1)
1 Wc  Leq Ceq
(5 – 1)
1  Wc )ZsSinθs tan(θs / 2)  Cosθs − Cosθ 2( W0 Zs Zc Sinθ
که در Wc فرکانس قطع مدار معادل نشان داده شده شکل (b ) ( 1 – 1) و Wo فرکانس کار مرکـزی مـدار
مورد نظر با المانهای فشرده معادل 7Ceq, Leq6 میباشند.
حال در اینجا برای بالا رفتن پهنای باند و عریض کردن باند فرکانسی دلخواه، با استاب مدار بـاز بـه خـوبی
طول واحد خطوط سری با یکدیگر بوده و مدل کردن خط میکرواستریپ با خطوط معـادل بـا اسـتابهـای
مدار باز سری همانطور که در شکل (2 – 1) نشان داده شده باعث کم شدن امپدانس استاب بـاز و افـزایش
فرکانس قطع (fc) میگردد.

۶ سلف ٧خازن معادل
٢۴

شکل((a) ( 2 – 1 سری خطوط انتقال کوچک شده با چندین استاب باز (b) بزرگی پاسخ
با مشاهده پارامترهای S این مدار در شکل (b ) (2 – 1) از این مدارات میتوان جهت بالا بردن باند فرکانس
و نیز استفاده مدار دو باند فرکانسی دلخواه،اسنفاده گردد.
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(:(2000/900
در اینجا نیز با ایده گرفتن از کار قبلی و استفاده از ماتریسهای ABCD که در فصل بعدی آورده شده زمینه
جهت استفاده از کوپلر خط شاخهای Tشکل با حجم کم و باند فرکانسی دو بانده کـه در فـصل سـوم آمـده
فراهم میگردد.
٢۵
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخهای T شکل
در این قسمت با ایده گرفتن از روشهای قبلـی کـه در فـصلهای بعـد توضـیح داده مـیشـود از ماتریـسهای
ABCD استفاده شده و بعد از نوشتن برنامه کامپیوتری زمینه جهت استفاده از المانهای فـشرده در دو بانـد
فرکانسی دلخواه فراهم گردیده است. از بدست آوردن مقادیر Z و θ که امپدانس مشخصه خطـوط و طـول
الکتریکی آنها هستند با استفاده از فرمولهای موجود در بازههای مختلف که در منابع مختلـف هـم آمـدهانـد
طول و پنهای خطوط چند پورتی مورد نظر بدست میآید که در این پروژه از serenade استفاده شده است
و این مقادیر با دادن فرکانس کار، مشخصه دی الکتریک مورد نظر و امپدانس و طول الکتریکی خط نیـز بـه
سادگی بدست میآیند. در شکل (3 – 1) شمای کلی این نرم افزار آمده است.

شکل :(3 – 1) شمایی از نرمافزار serenade جهت بدست آوردن طول و پنهای خطوط
٢۶
با بستن مدار فوق در نرم افزارهای مختلف نتـایج شـبیهسـازی را مـشاده و در صـورت عـدم نتیجـهگیـری
همانطور که در فصل سوم آمده آنرا optimum میکنیم. در نهایت با ایده گرفتن از کارهای انجـام شـده در
مقالات مختلف DGS های گوناگون را بکار گرفته و نتایج حاصل از آن را آوردهایم.
٢٧
فصل دوم:
تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده وTشکل
٢٨
(1-2 مدار خط شاخهای اندازه فشردهT شکل
دراینجا هدف طراحی کوپلر و در نهایت سیرکولاتور خط شاخهای بهم پیوسـته بـدون اسـتفاده از المانهـای
توده میباشد. اندازه کـوپلر پیـشنهادی تنهـا 45درصـد کوپلرهـای خـط شـاخهای مرسـوم در فرکـانس 2/4
گیگاهرتز میباشد.
اندازه المانهای این نوع کوپلر میتوانند به راحتی با استفاده از عمل قلم زنـی بـرد مـدار چـاپی بـه صـورت
واقعی کشیده شده و برای سیستمهای ارتباطی بیسیم بسیار مفید و پرکاربردند. چرا که اخیراً سیستم ارتبـاط
بیسیم در جهت اهداف کوچک کردن و پائین آوردن هزینه بـه قطعـات کـوچکتری نیـاز دارنـد. از ایـن رو
کاهش اندازه از اهداف قابل توجه در بکاربستن این طراحی میباشد. در پایینترین باند فرکانس مایکروویو،
اندازه کوپلر خط شاخهای مرسوم جهت استفاده عملی بسیار پیچیده و بزرگ است. تکنیکهای زیادی جهـت
کاهش سایز این گونه کوپلرها گزارش شده است. ترکیب خط انتقال با امپدانس بالا و خازنهای فشرده شنت
شده به آنها نیز مورد بررسی قرار گرفته اند.در این موارد خازنها با عایقهایی خاص، مورد نیاز مدارهای شنت
میباشند که در بحث بعدی جهت دو بانده کردن کوپلرهای خط شاخهای πشکل توضیح داده میشود.
مرجع[11] کوپلر خط شاخهای درخطوط میکرو استریپ تک لایه از فلز بدون هیچ گونه المان فـشرده شـده
واضافی ̦ سیمهای اتصال را پیشنهاد می کند.اندازه این گونه کوپلرها حدود 63درصـدطراحی هـای مرسـوم
میباشد. هرچند که قسمتهایی که ناپیوستگی در داخل کوپلر بوجود میآورند نیز همان ناپیوستگیهای ناشی
از اتصال مدارهای استاب شنت مدار باز یا کوتاه میباشند کـه باعـث بوجـود آمـدن مـشکل (over lap)8
میگردند. بنابراین ما در فصل بعدی روی طراحی یک کوپلر خط شـاخهای T شـکل جمـع و جـور جدیـد

٨هم پوشانی
٢٩
متمرکز خواهیم شد و در قسمت بعدی آنها را در کوپلرهای واقعی بکار برده و به تحلیـل و بهینـهسـازی آن
میپردازیم.
این نوع کوپلرها بدون استفاده از هیچ گونه المان فشرده، سـیم و قطعـه ای، مـیتواننـد بـه سـادگی بـرروی
سابستریتها ساخته شوند و در مقایسه با مدارات مرسوم طراحی شده اطلاعات را بخـوبی آشـکار مـیکننـد،
همچنین هماهنگی نزدیک و خوبی ما بین نتایج شبیهسازی و اندازه گیری شده مشاهده می گردد.
روش مرسوم ومعمولی جهت آنالیز کوپلر T شکل خط شاخهای بر روی استفاده از آنالیز مد نرمال است کـه
در اینجا ما از آن استفاده کردیم و این بدلیل ساختار هندسی آن نیز میباشد.
هر چند که خط با سایز کاهش یافته با طولی کمتر از λ / 4 اندوکتانس و ظرفیت پائینتـری را دارد، منتهـی
جبران اندوکتانس بوسیله افزایش امپدانس مشخصه خط و جبران ظرفیت نیـز بوسـیله اضـافه کـردن خـازن
شنت متصل شده [15] C میباشد. در این پـروژه خـازن C نیـز بوسـیله یـک خـط اسـتاب مـدار بـاز [9]
جایگزین گردیدهاست و معادل آنرا در مدار T شکل قرار دادهایم.

شکل(:(1-2ساختار T شکل خط انتقال ربع طول موج
ساختار T شکل معادل معمولی از یک خط کاهش یافته در شکل (1-2)نـشان داده شـده اسـت کـه در ایـن
شکل Z1،Z2،Z3وθ1،θ2وθ3 امپدانس مشخصه خطوط و همچنین طول الکتریکی آنها را نـشان مـیدهنـد.
لزومی ندارد که جایگاه خط با طول الکتریکـی((θ2 مـدارباز در وسـط خـط کـاهش انـدازه یافتـه مـا بـین
٣٠
Z1وZ2قرار داشته باشد. روابط ما بین این عناصر یعنی امپدانس مشخصه و طولهای الکتریکی را مـیتـوانیم
بوسیله ماتریس ABCD آنها تخمین بزنیم.
با استفاده از روابط قبلی برای طراحی یک کوپلر خط شاخهای πشکل مرسوم در اینجا با معـادل قـرار دادن
ماتریس آن با امپدانس مشخصه خط با طول θ = ±90° و ±ZT داریم:
3 Sinθ 3 JZ 3 Cosθ 1 0 Sinθ JZ Cosθ A B (1-2) j 1 1 1 j Cosθ3 Sinθ3 1 JB Cosθ1 Sinθ1 D  C Z3 2 Z1 (1-2) jB2  jTanθ2 / Z 2 (3-2) N Z1 Z3 (4-2) K Z1 Z 2 (5-2) M Z1 ZT از طرفی با معادل قرار دادن ماتریس فوق با ماتریس خط 90° داریم.
JZT
0(6-2)

0 JZT Sinθ j  Cosθ Z T
Cosθ B A Sinθ j  D C T Z و پس ساده سازی چهار معادله به صورت زیر خواهیم داشت:
(7-2) Cosθ1Cosθ3 − KTanθ2 Sinθ1Cosθ3 − NSinθ1 Sinθ3  0 (8-2) N Cosθ1Sinθ3 − KTanθ2Sinθ1Sinθ3  NSinθ1Cosθ3  M ٣١
(9-2) Tanθ2Cosθ1Sinθ3  Cosθ1Cosθ3  0 K Sinθ1Sinθ3 − 1 − N N (10-2) Sinθ1Cosθ3  KTanθ2Cosθ1Cosθ3  NCosθ1Sinθ3  M با ساده سازی روابط فوق دو معادله زیر را خواهیم داشت:
N 2 M 2 2 − N M 3  Tanθ Tanθ Tanθ N) ,Cotθ ) Tanθ Cotθ 2(11-2) M N N 1 3 1 3 1 (12-2) ( 2 − N 2 M 3 ( Tanθ 2  ) Tanθ 2 − N 2 M 3 ( 3  Sinθ Tanθ2Cosθ K KN MN M معادلات (11-2) و (12-2) نیز مقادیر θ1 و θ2 وθ3 را تحت شرایطی که M و N را داشـته باشـیم بـه مـا
میدهند. برای سادگی کار در اینجا Z1 را برابر Z3 در نظر میگیریم. طـول الکتریکـی θ1 بـر حـسب طـول
الکتریکی θ3 برحسب مقادیر مختلف M رسم گردیده است که در شکل (2-3) نیز آمـده اسـت. در اینجـا
نیز برنامه سادهای با نرم افزار مطلب نوشـته شـده(پیوسـت الـف-(1 و بـه ازای مقـادیر مختلـف N و M
میتوان به ازای θ1 های مختلف مقادیر θ2 و θ3 را بدست آورد.
١θ

٣θ
شکل θ1:(2-2) بر حسبθ3
٣٢
واضح است که طول الکتریکی کل خط کوچک شده( (θ= θ1 + θ3 با افزایش مقدار M نیز کاهش مییابد.
جایگاه خط استاب مدار باز شده در داخل کوپلر خط شاخهای تحـت شـرایط خـاص نیـز تحمیـل گردیـده
است. مقدار طول الکتریکی (θ2) ما بین مقادیر θ2 و θ میباشد. جهت جلـوگیری از مـشکل هـم پوشـانی

(Over lab) خط استاب باز را به انتهای خط اتصال کوتاه وصل میکنیم. θ1 و θ3 به ازای مقادیر شناخته
شده M به یکدیگر تبدیل شده در حالیکه حالت معادله (12-2) تحت N = 1 بدون نغییر باقی میماند. ایـن
نتایج به توانایی دو رابطه بدست آمده اشاره دارد. با بدست آوردن مقـادیر θ1 و θ3 و بـا داشـتن معادلـه
(12-2) مقادیر θ2 وZ2 محاسبه میگردند.
(2-2 طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن
با روشی که در بالا توضیح داده شد به سادگی میتوان انـدازه کـوپلر خـط شـاخهای مرسـوم را کـاهش داد
سابستریت مدار فوق دارای ویژگیهای زیر میباشند:
metal thickness =0 .02mm و h = 0.8mm و Tanδ  0.022 و εr  4.7
امپدانس مشخصه کوپلر خط شاخهای مرسوم 35 اهم در خط اصلی و در شاخه عمودی 50 اهم میباشند.
جهت کاهش دادن اثر افت هادی، افت تشعـشعی و جلـوگیری از مـدهای مـزاحم انتـشار نیـز پهنـای خـط
میکرواستریپ محدود شده و این امر با محدود کردن مقدار امپدانس مشخصه موثر واقع میگردد.
در ابتدا پارامترهای خط کوتاه شده اصلی ( افقی) را بـرای M=1/7 و بـا درنظـر گـرفتنθm1=17° بدسـت
میآوریم که از شکل θm3 = 48 °(2-2) حاصل میگردد. با قراردادن اطلاعات فـوق در رابطـه (12-2) و
٣٣
در نظر گرفتن k=2/6 مقدار θm2=39° (طول الکتریکی استاب باز خط اصـلی) بدسـت مـیآیـد. بـه طـور
مشابه پارامترهای خط شاخهای کاهش یافته را هم بدست میآوریم.
θb2=31 ْ θb3=58 ْ M=1/5 k=3/3 θb1=16
با در دست داشتن مقادیر فوق از نرمافزار Serenade جهت بدست آوردن ابعـاد مـدار چـاپی ) W پهنـای
خطوط) و ) L طول خطوط) اسـتفاده مـیکنـیم. بعـد از بدسـت آوردن ابعـاد فـوق، مـدار را بـا نـرمافـزار
Ansoft designer ترسیم نموده و بعد از تحلیل مدار فوق نیز نتایج اندازهگیری شده را بدست میآوریـم.
مدار چاپی آن در شکل (3-2) نشان داده شده است. و نتایج شبیهسازی در شکلهای (a) (4-2) و (b) نشان


داده شده است.

شکل :(3-2)مدار چاپی خط شانهای T شکل
٣۴

(a)

(b)
شکل S11:(a)(4-2)،S12،S13وS14 و(:(bپاسخ فازی کوپلر خط شاخه ای
مشاهده می شود S11 وS14 در فرکانس مرکزی کمتر از -20dB وS12 وS13 حدود -3dB میباشند.
حال با توجه به نتایج شبیه سازی اندازه گیری شده مستقیم و توان کوپل، افت بـالا بوسـیله سـاختار فلـزی و
افت تشعشعی دیده نمیشود . حوزه مدار کاهش یافته در مقایسه با کوپلر خط شاخهای مرسوم بـشتر از 55
درصد میباشد.
٣۵
مادر بخشهای بعدی مدار فوق را با اسـتفاده از بکـار بـستن (Defected ground structure)
DGS نیز مورد بررسی قرار خواهیم داد و اثرات DGS بر روی نتایج شبیهسازی مورد بررسی قرار خواهند
گرفت.
٢( 3 – کوپلر خط شاخهای π شکل
طراحی یک کوپلر خط شاخهای جدیدی که میتواند در دو فرکانس دلخـواه کـار کنـد از ویژگیهـای مـدار
پیشنهادی اندازه فشرده و ساختار شاخهای میباشد. فرمولهای طراحی روشن و واضـحی از ایـن مـدار بیـان
گردیده، چرا که موضوع مجهولات آن از قیبل امپدانس شاخههای خط مشخص گردیده اند.
فعالیتهایی جهت بررسی و رسیدگی نتایج شبیهسـازی شـده و انـدازه گیـری شـده از عملکـرد کـوپلر خـط
شاخهای میکرواستریپ در فرکانسهای 0/9 الی 2 گیگا هرتز انجام شده است.
کوپلرهای خط شاخهای از معروفترین مدارات پسیو استفاده شده در کاربردهای موج میلیمتری و میکرویـو
میباشند.
هایبریدهای λ / 4 طول موج [10] ,[9] مثالهای خوبی هستند که در باند فرکانسی مناسب دامنـه مـساوی و
فاز 90° در خروجی ایجادی میکنند. آنها عموماً در تقویت کنندههای بالانس شده و میکسرها برای بدسـت
آوردن یک افت برگشتی خوب استفاده شده و در جهت حذف سیگنالهای ناخواسته بوده، اگرچه بـه خـاطر
طبیعت ذاتی باند باریک ، طرح مرسوم بر روی خط انتقال λ / 4 بنا نهـاده شـده، کـاربردش در سیـستمهای
چند بانده و باند وسیع محدود گردیده است.
در سالهای اخیر، گزارشهای متفاوتی در رابطه با افزایش و بالا بردن پهنـای بانـد[11] و تکنیکهـای مـوثر در
کاهش سایز [14] ,[12] در مقالات مختلف عنوان گردیده اسـت. طراحـی کـوپلر خـط شـاخهای بـر روی
٣۶
المانهای توزیع شده فشرده بنا گردیده و همچنین برای کاربردهایی در دو باندفرکانسی نیز پیـشنهاد گردیـده
است. در [16] مولف یک ساختار صفحهای جدید را برای طراحی کوپلرهای خط شـاخهای دو بانـد عنـوان
کرده است هرچند مدار پیشنهاد شده از اشکالات زیر برخوردار می باشد:
-1 پهنای باند محدود ( کمتر از (10MHz
-2 افت داخلی و برگشتی بهینه نشده
-3 فضای اشغالی سابستریت آن خیلی بیشتر از کوپلرهای مرسوم بوده ( برخی از خطوط شاخهای، طولی به
اندازه 0/5λ را دارند)
درطرح پیشنهادی، تمام خطوط شاخهای تنها دارای طول λ / 4 بوده ( اندازه فشرده) و در فرکانس میـانی دو
تا باند فرکانسی بکار بسته شده، همچنین در مقایسه با طرح ذکر شده قبلی پهنای باند عملکرد وسیعتـری را
( > 100MHz ) ایجاد میکند، همچنین ایزولاسیون بین پورتهای بهتر و افت داخلی و برگشتی بهینـه تـری
را دارد ( بخش بعدی).
در قسمت بعد جهت آنالیزکردن، فرمولهای یک کوپلر خط شاخهای با فرمولهای واضح و روشـن نـشان داده
شده، در نهایت جهت رسیدگی و تحقیق، نتایج اندازهگیری و شبیهسازی شده ساختار کوپلر خـط شـاخهای
درباند فرکانسی (900/2000)Mhzکه با تکنولوژی میکرواستریپ ساخته شده آورده شده است.
( 4 – 2 فرموله کردن با استفاده از ماتریس خطوط انتقال
٣٧
شکل (5-2) طرح یک کوپلر خط شاخهای تک باند مرسوم توسط بخشهای خطوط انتقال بـا طـول λ / 4 را
نشان میدهد. در شکل (6-2) مدار معادل برای یـک خـط انتقـال λ / 4 پیـشنهاد شـده کـه شـامل خطـوط
شاخهای به طول الکتریکی θ و امپدانس مشخصه ZA بوده و به جفت المان موازی (jY)9 متصل گردیده.

شکل(:(5-2ساختار کوپلر خط شاخه ای یک بانده مرسوم

(a)

(b)
شکل((a):(6-2ساختار معادل پیشنهادی (b).خط شاخه ای λ / 4

٩ مقدار ادمیتانس خط
٣٨
حال جهت تحلیل ساختار پیشنهادی با در نظر گرفتن عدم افت و بکار بردن فرمـول ماتریـسها، پارامترهـای
ABCD ساختار پیشنهادی نشان داده شده در شکل((a)(6-2 بصورت زیر بیان میگردد.
(13-2) 0 jZ A Sinθ 1 0 Cosθ 1 Cosθ 1 jY 1 jYA Sinθ jY که این ماتریس در نتیجه به ذیل منتج می گردد.
jZASinθ Cosθ −ZAYSinθ (14-2) Cosθ −ZAYSinθ 2ZAYCotθ) 2 2 (1−ZA Y jYASinθ و نیز ماتریس بالا به صورت زیر خلاصه میگردد.
±jZT 0 jZASinθ 0 (15-2) 0 ±j  1 0 j Z T A Z Sinθ با معادل قرار دادن ماتریسهای بالا داریم:
Z A Sinθ ±ZT(16-2)
Cotθ
Y(17-2)
Z A
معادله (15-2) نشان میدهد که ساختار پیشنهاد شده معادل با بخشی از خط انتقـال بـا امپـدانس مشخـصه
ZT± و طول الکتریکی θ = ± 90° میباشد. مطابق با عملکرد یک مدار دو بانده (Dual – band) شـرایط
لازم ممکن است به صورت زیر داده شود.
٣٩
(18-2) Z A Sinθ1 ±ZT
(19-2) Z ASinθ2 ±ZT
کهθ1 و θ2 طولهای الکتریکی معادل شده خط شاخهای در باند فرکانسی مرکزی f1 و f2 میباشد.
روش معمولی حل معادلات (18-2) و (19-2) به صورت زیر میباشد:
3.......و2وn=1
(20-2) θ2  nπ −θ1 (21-2) f1  θ1 f2 θ2 (22-2) (1 −δ) nπ θ1  2 (23-2) (1 δ) nπ θ2  2 (24-2) f2 − f1 δ  f 2 f 1 در نتیجه طول الکتریکی خط شاخهای معادل شده در فرکانس مرکزی (θo)به صورت زیر تعیین میگردد
(θ0 ) = θ1 2θ2  n2π(25-2)

با قرار دادن معادلات (22-2) و (23-2) در معادلات (16-2) و (17-2) خواهیم داشت:
(26-2) ZT Z A  ( nδπ Cos( 2 ۴٠
nδπ ( tan( 2 f1 , f  Z A (27-2) y  nπδ ( − tan( 2 f2  , f Z A برای مقادیر 5.....و3وn=1 (28-2) ZT Z A  ( nδπ Sin( 2 nδπ ( −Cot( 2 f1  , f ZA (29-2) y  nπδ ( Cot( 2 f2 , f  ZA برای مقادیر..... 6و4وn=2 در معادلات بالا مقادیر مدار معادل داده شده بـرای دو بانـد فرکانـسی دلخـواه f1 وf2 کـه همـان y و ZA
هستند به دست میآیند.
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب
با در نظر گرفتن امپدانس خطوط عمودی zo=50Ω وخطوط افقی35 و طول الکتریکی 90درجه و نیـز قـرار
دادن آنها در serenade مقادیر طول(( L و پهنای خطوط (w) را بدست آورده و بادر نظـر گـرفتنf=1/45
و بستن مدار در قسمت شماتیک نتایج حاصل را می بینـیم.در شـکلهای((7-2 الـی (8-2) نتـایج حاصـل از
شبیه سازی کوپلر بدون استفاده از المانهای شنت در فرکانس مرکزی نشان داده شده است.
۴١

شکل(S13 ̦S12 ̦ S11:(7-2 وS 14 کوپلر بدون استاب
مشاهده می کنیم مادیرS11و S12 در فرکانس مرکزی کمتر از -20dB بوده یعنی پورت 1 از 4 ایزوله است
وS13وS12 حدوداً dB٣- می باشد .

شکل(:(8-2زاویهS 12 و S14 برای مدار بدون استاب
۴٢
(6-2 تحقق جهت دوبانده کردن مدار
دربخش قبل روش مشخصی برای طراحی یک کوپلر دو بانده (dual – band) به صورت فرمـولی تحلیـل
و تجزیه گردید. نتایج نشان میدهند روشهایی جهت انتخاب مقدار n و همچنین راههای مختلف در بدسـت
آوردن مقادیر المان شنت با ادمتیانس ورودی (Y) که در معادلات (27-2) و (29-2) توضیح داده شده بودند
وجود دارد.جهت معادل سـازی و نـشان داد ن توپولـوژی دو تـا مـدار در اینجـا مقـدار n را یـک در نظـر
میگیریم.
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)
با استفاده از معادلات (22-2) و (23-2) ادمیتانس ورودی یک استاب مدار باز بـه صـورت زیـر مـیتوانـد
باشد.
δπ ( Cot( f1 , f  2 ZΒ (30-2) yoc  ( δπ −Cot( f2 , f 2 ZΒ که در اینجا ZB نیز امپدانس مشخصه استاب مدار باز میباشد . از ایـن رو بـا ترکیـب معـادلات (27-2) و
(30-2) مقدار ZB به صورت زیر بدست میآید: (31-2) Z T ZB  δπ δπ ( )Tan( Sin( 2 2 ۴٣

شکل (9-2) ساختار کوپلر پیشنهادی با استاب مدار باز
در شکل (9-2) ساختار نهایی ( با ساده سازی بوسیله ادغام استابهای شنت موازی شده ) از یـک کـوپلر دو
بانده (dual – band) با تمام خطوط شاخهای جایگزین شده بوسیله مدار پیشنهاد شده شکل (6-2) نـشان
داده شده است و نتیجتاً مقادیر Z3, Z2, Z1 بوسیله معادلات زیر تعیین میگردند.
(32-2) 1 . Z0 Z1  ( δπ Cos( 2 2 (33-2) 1 Z2  Z0. ( δπ Cos( 2 (34-2) 1 . 0 Z Z3  δπ δπ 2 1  ( )Tan( Sin( 2 2
(2-6-2 استفاده از مدار اتصال کوتاه ( طول ( λ2

به طور مشابه ادمیتانس ورودی یک استاب اتصال کوتاه میتواند به صورت زیر بیان گردد:
۴۴
f1 , f Cotδπ Z B (35-2) ysc  Cotδπ − f2  , f Z B شکل (10-2) (مدار چاپی) Layout یک کوپلر اصلاح شده با اتصالات شنت کوتاه شده نشان میدهد کـه
امپدانس مشخصه استاب شنت به صورت زیر محاسبه میگردد.
(36-2) 1 . 0 Z Z3  δπ 2 1  )Tanδπ Sin( 2
شکل (10-2) ساختار کوپلر پیشنهادی با استاب اتصال کوتاه
در تئوری نیز کوپلر پیشنهاد شده میتواند در هر دو باند فرکانسی دلخواه عمل کرده، اما در عمل تعیین رنـج
امپدانسی ساختار کوپلر میتواند مقداری حقیقی پاشد.
۴۵
واضح است که با انتخاب مناسبی از شکل مدار برای رنجهای متفاوتی از کـسر پنهـای بانـد ( 0/2 تـا 0/3 و
همچنین 0/3 تا ( 0/5 کوپلر پیشنهاد شده ممکن است امپدانس خطوط که تنها 30 الی 90 اهم تغییر میکنـد
در آنها بکار برده شود.
( 7- 2 آنالیز(تحلیل) مدار π شکل خط شاخهای دو باند و مشاهده نتایج شبیهسازی :
جهت اثبات و تأیید عملکرد، یک کـوپلر خـط شـاخهای میکرواسـتریپ دو بانـده در فرکانـسهای 0/9 و 2
گیگاهرتز طراحی و شبیهسازی شده و روی کسری از پهنای باند محاسبه شده((δ= 0/38 بنا نهاده شدهاست.
ساختار فشرده یک استاب مدار باز با طول λ / 4 جهت بکار بستن نیز مورد استفاده قـرار گرفتـه اسـت . از
معادلات (32-2) الی (35-2) مقادیر Z3, Z2, Z1 حدود 42/7 و 60/6 و 54/4 اهم نیز بدست آمـده اسـت.
جهت بهتر کردن دقت کار، پاسخ فرکانسی ساختار کامل شـامل ناپیوسـتگی و اثـر زیـر لایـه (Substrate)
بهینه شده با استفاده از یک مدار شبیه سازی شده اشکال (11-2) الی (14-2) پاسـخ فرکانـسی شـبیهسـازی
شده مدار نهایی از یک کوپلر دو بانده را نشان میدهند. مطابق با اثر یـک اسـتاب شـنت تلفـات داخلـی در
فرکانس مرکزی (1.45GHz) صفر گردیده که به حذف هر سیگنال مداخله کننده کمک میکند. کوپلر فوق
سابستریتی با ثابت اللکتریک εr = 3/38 و ضخامت h = 0/81mm میباشد. حال با اسـتفاده از نـرم افـزار
Serenade ابتـدا مقـادیر خطـوط یعنـی پهنـای خطـوط W1 ،W2،W3و طـول آنهـا L1،L2،L 3 را در
فرکــانس مرکــز 1/45 بدســت مــیآوریــم و بــا بــستن مــدار در ایــن فــرمافــزار مقــادیر پارامترهــای
S11،S12،S13وS14را برای باند فرکانسی دوبل شبیهسازی کردهایم.
۴۶
جدول(:(1-2مشخصات الکتریکی وفیزیکی مدار در دو باند امپدانس طول الکتریکی پهنای خط طول خط Z1=42.7 θ1=90 W1=2.38mm L1=31.25mm Z2=60.4 θ2=90 W2=1.36mm L2=31.95mm Z3=54.4 θ3=90 W3=1.63mm L3=31.73mm
شکل(:(11-2نتایج شبیه سازی(افت برگشتی(S11
۴٧

شکل(:(12-2نتایج شبیه سازی(S12و(S13

شکل(:(13-2نتایج شبیه سازی((S14
پارامترهای تشعشتی در این شبکه آنالایزر روی رنج فرکانسی از 0/1 الی 4 گیگاهرتز انجام میگردد.
۴٨

شکل(:(14-2نتایج شبیه سازی(پاسخ فازمدار با استاب)
شکلهای (11-2) الی (14-2) پاسخ اندازهگیری شده کوپلر در فرکانـسهای مرکـز دو تـا بانـد عملکـرد کـه
0/9GHz و 2GHz میباشد نشان میدهند..افت برگشتی و ایزولاسیون پورت بهتر از -20dB در فرکانسی
مرکزی دو باند بدست آمده است هر چنـد تـضعیف سـیگنال بـالا تـر از 50dB جـذب شـده در فرکـانس
1/41GHz نیز میباشد.
درمقایسه با طراحی یک کوپلر تک بانده، افت داخلی اندازهگیری شده دردو پـورت خروجـی تنهـا 0/4dB
بالاتر از مقدار واقعی آن((-3db میباشدو این بـاور وجـود دارد کـه ایـن اخـتلاف اساسـاً ناشـی از وجـود
ناپیوستگیهای اتصالات و اثر انتهای باز نشان داده شده در شبیه سازی میباشد.
طراحی و بکار بستن کوپلر خط شاخهای فشرده صفحهای بالا نیز درطراحی کـوپلری بـا دو بانـد فرکانـسی
کوچک و بزرگ بکار میرود.
۴٩
فصل سوم:
طراحی مدار میکرواستریپ فشردهT شکل با اندازه کاهش
یافته در دو باند فرکانسی
۵٠
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه بـه رونـد
ارائه شده در دو بانده کردن کوپلرπ شکل ( 900MHz و (2400MHz
در این بخش ابتدا با روش دستی و استفاده از ماتریسهای ABCD کوپلرخط شاخهای و معـادل قـرار دادن
آن با ماتریس ABCD یک خط ±90°، طول الکتریکی و امپدانس مشخصه کوپلر خط شـاخهای بـا تبـدیل
θ به ' θ θ) f 2  ' (θ بوده را در حالت دو بانده معادل ساخته و در نهایت بوسیله برنامه ساده کامپیوتر که f1 بر اساس اطلاعات موجود نوشته شده، خطای موجود را در بدست آوردن θ و امپدانس مشخصههـایی کـه
برای هـر دو فرکـانس دلخـواه بـالا و پـائین 0/9GHz)و(2/4GHzصـدق کنـد بـا کمتـرین درصـد خطـا
0/4)درصد) درنظر میگیریم و با شرایط در نظر گرفته شده مقادیر θ و Z را بدست میآرویم.
همانطور که در بخش قبل نیز گفتیم با معادل سازی مدل T شکل خطوط استاب شنت متـصل شـده از نـوع
مدار باز بوده و این استاب خود باعث کاهش طول خط می گردد.
3 Sinθ' 3 jZ 3 Cosθ' 0 1 Sinθ' jZ Cosθ' A B (1-3) j − 1 1 1 j 3 Cosθ' 3 Sinθ' 1 jβ'2 Cosθ' Sinθ'  Z3 1 1 Z1 C D در بخش قبل مقادیر β2 و Z1 و Z1 ، Z1 بـا مقـادیر معـادل آن آورده شـده انـد و در اینجـا θ f2 θ' Z Z Z f 3 2 T 1 میباشد.
با معدل قرار دادن ماتریس فوق با خط -90 درجه داریم:
− jZ 0 Sinθ' jZ Cosθ' B A (2-3) T − j  T j 0 Cosθ' Sinθ'  ZT ZT C D ۵١
وبا ساده سازی روابط فوق داریم:
(3-3) Cosθ'1Cosθ'3 −kTanθ'2 Sinθ'1 Cosθ'3 −NSinθ'1 Sinθ'3  0 (4-3) N Cosθ'1 Sinθ'3 −kTanθ'2 Sinθ'1 Sinθ'3 NSinθ'1 Cosθ'3  − M (5-3) K 1 Cosθ'1 Sinθ'3 Cosθ'1 Cosθ'3  0 Tanθ'2 Sinθ'1 Sinθ'3 − − N N (6-3) Sinθ'1 Cosθ'3 KTanθ'2 Cosθ'1 Cosθ'3 NCosθ'1 Sinθ'3  −M در روابط بالا f2  θ'3 f2  θ'2 f2  θ'1 f 3 θ f 2 θ f θ 1 1 1 1 مقادیرf1 =900MHz و f2 =2400MHz می باشند. با ساده سازی روابط (3-3) و (4-3) به معادلا ت زیر میرسیم. (7-3) Cosθ'3 '1  − Sinθ M (8-3) Sinθ'3 − M Cosθ'1  N (2-3 استفاده از برنامه کامپیوتری ساده جهت بدسـت آوردن پارامترهـای مـدار دو
بانده
حال نیز برنامه ای با نرم افزار مطلب نوشتهایم و میخواهیم طولهـای الکتریکـی و امپـدانس مشخـصههـای
کوپلر و درنهایت سیرکولاتور موردنظر را در شرایطی بدست آوریم که خطاهای زیر حـاکم باشـند یعنـی در
آن واحد شرایط برای فرکانسهای بالا و همچنین پائین (استفاده از دو باند فرکانسی) موجود باشد.
۵٢
(9-3) N f 2 θ1 )Tan( f 2 Tan( 0.4 θ3 ) − M 2 f1 f1 (10-3) 0.4 θ3 ) f2 Tan( 2 − N 2 M θ2 ) − f2 Tan( f1 kN f1 (11-3) 0.4 θ3 ) f 2 Sin( M θ1 )  f 2 Cos( f1 N f1 برنامه نوشته شده در نرم افزار مطلب در پیوست الف ارئه شده است.
طول الکتریکی و امپدانس مشخصههایی که در شرایط خطای بالا بر قرار باشند جوابها میباشند کـه شـرایط
برای استفاده درحالت دو باند فرکانسی را دارند. θ1و θ2 وθ3 وZ1وZ2وZ3 در شرایط فـوق را مطـابق بـا
برنامهای که آورده شده بدست میآیند.
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محـیط ( نـرم افـزار) مختلـف و
مشاهده نتایج حاصل
با قرار دادن مقادیر بدست آمده از برنامه نوشته شده که برای استفاده در دو باند فرکانـسی دلخـواه در نظـر
گرفته شده در روابط زیر و یا با استفاده از محیط serenade طولهای Lm1و)Wm1پهنا وطول خط شاخه
اصلی)Lm3و)Wm3پهنا وطول خط متصل به Zm1 در خط اصلی)Lm2و)Wm2پهنا وطول استاب مـدار
بــاز در خــط اصــلی)Lb1 و )Wb1پهنــا وطــول خــط متــصل بــهZm2در خــط عمــودی)وLb1
،Wb1،Lb2وWb2را بدست میآوریم.
۵٣
(12-3) 4 π εr −1 1 Z 0 2(εr 1) 1 (1/ εr )Ln π )  2 (εr 1)(Ln 2  119.9  H (13-3) −1 1 1 exp H W ( − ( 4 exp H 1 8 h (14-3) −2 4 Ln 1  π )(Ln 1 εr − 1 − 1 εr  ε eff  ) ) 1 π εr 2 1 εr  2H ' 2
با در دست داشتن مقادیر فوق مدار را در نرم افزارهـای Serenade و Advance designer (ADS)
sys-- ترسیم و نتایج شبیهسازی راعلاوه در ansoft مشاهده میکنیم منتهی در نهایت مقدار پهنـای بانـد
را حدوداً در Optimom 10% کرده و نتایج حاصل در زیر آورده شده اند.
h = 0/762mmεr =3/55 Tanδ  0. 022
در شکلهای((1-3و((2-3و((3-3 شماتیک ومدارچاپی و پاسخ مـدار شـبیه سـازی شـده در نـرم افزارهـای
مختلفی نشان داده شده است.

(a)
۵۴

(b)
شکل((a ) 🙁 1-3شماتیک (b)مدارچاپی (designer,hfss)ansoft
در جدول((1-3و(2-3 )با در دست داشتن مقادیر ابتدایی از المانهای مدار که توسط روابـط((12-3 الـی(-3
(14بدست آمده اند بازهای جهت حد بالا وپایین المان ها در نظر گرفته شده است و به سمت اهدافی که در
جدول((2-3 امده optimom انجام می گردد
.جدول(:(1-3دو بازه فرکانسی ودو هدف مورد نظر پروژه 905mhz 895mhz Frange1 باند فرکانس اول
2.45ghz 2.35ghz Frange2 باند فرکانس دوم
-20db lt ms12=-3.5db w=3 ms13=-3.5db w=3 ms14 -20db lt ms11 Goals1 هدف اول
-20db lt ms12=-3.7db w=3 ms13=-3.7db w=3 ms14 -20db lt ms11 Goals2 هدف اول
۵۵
جدول(:(2-3بازه بالا وپایین جهت optimom هدف بازه بالا مقدار اپتیمم شده بازه پایین نام المان
7MM? 5.69180mm ?5mm lb1
12.5MM? 11.35000mm ?10mm lb2
41MM? 39.57900mm ?37mm lb3
11.5MM? 10.77600mm ?9.5mm lm1
16.5MM? 15.36700mm ?14.5mm lm2
40MM? 38.67200mm ?37mm lm3
0.8MM? 0.16152mm ?.08mm wb1
1.2MM? 0.95112mm ?0.6mm wb2
2.5mm? 1.45870mm ?0.8mm wb3
2.1MM? 1.65260mm ?1mm wm1
0.5MM? 0.20507mm ?0.1mm wm2
3.5MM? 2.70090mm ?2mm wm3
2.5MM? 0.20010MM ?0.1mm wp

(a)
۵۶

(b)

(c)
شکل(S 11 :(2-3، S12،S13و S14 مدار شبیه سازی شده در ADS(c) SERANADE(b) ANSOFT(a)
۵٧

شکل(:(3-3پاسخ فازی مدار 2بانده
مشاهده میگردد که مقدار پارامترهای تضعیف در 0/9 و 2/4 گیگاهرتز -3dBو -20dbمیباشند.
در بخش بعدی در مورد اثرات DGS و مشاهده تاثیرات آن بروی این کوپلر بحث میکنیم.
۵٨
فصل چهارم:
بررسی انواع مختلف DGS و اثرات آن بر روی خطوط
میکرواستریپ
۵٩
DGS (1-4 چیست؟
DGS نیز شبکهبندی قلم زده شده ای است با شکل اختیاری که بر روی صفحه زمین قـرار مـیگیـرد و در
شکلهای T ، H ،دمبلی و حلزونی و...بکار میروند.
در شکل (1-4) انواع مختلف DGS نشان داده شده است.

شکل(H(a) :(1-4 شکل T(b) شکل (c) هلزونی شکل (d) دمبلی شکل
(2-4مشخصات کلی DGS
در ساختار DGS مشخصه های زیر رامی توان عنوان کرد:
-1 تغییر اندازه شکاف باند نوری . (PBG)10
-2 دارا بودن ساختارهای پریودیک وغیر پریودیک.
-3 به سادگی نیز مدار معادل LC را میسازد.

10 Photonic band gap
۶٠
(3-4 کاربردهای DGS
-1 در تشدید کنندههای صفحهای
-2 بالا بردن امپدانس مشخصهخط انتقال
-3 استفاده در فیلتر ،کوپلر و سیرکولاتور، اسیلاتور، آنتن و تقویت کنندهها
(4-4 ویژگیهای DGS
-1 پوشش میدان روی صفحه زمین را مختل میکند.
-2 بالا بردن ضریب گذردهی موثر.
-3 بالابردن ظرفیت موثر و اندوکتانس خط انتقال
-4 از بین بردن هارمونیکهای اضافی با تک قطب کردن ویژگی ) LPF11 فرکانس قطع و تشدید)
(5-4اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ
DGS نیز بوسیله الگوی کـم کـردن قلـم زنـی، در صـفحه زمـین مـدار ایجـاد مـی گـردد.. در ابتـدا خـط
میکرواستریپی با الگوی DGS از نوع دمبلی شکل نشان داده شده است و تـأثیر شـکاف بانـد خـوبی را در
بعضی ار فرکانسهای معین نیز ایجاد می کند .[21]
DGS در طراحی مدارات امواج میلیمتری و مایکرویو خیلی زیاد بکار میرود . اخیراً DGSهای متوالی بـا
کاستن الگوهای مربعی از مدارات صفحهای کـه ویژگیهـای Slow wave و stop band بـسیار خـوبی را

11 Low pass filter
۶١
تولید میکنند مورد بررسی قرار گرفته که در تقویت کنندهها و اسیلاتورها بیشتر مورد استفاده قرار گرفتهانـد
.[23] [ ,22]
در مقایسه با DGS پریودیک قبلی [21] و [22] یک نـوع DGS پریودیـک بهتـر و قـویتـر نیـز پیـشنهاد
1
گردیده که ابعاد مربعات کاسته شده متناسب با توزیع دامنه تابع نمـایی ) e n کـه n عـدد صـحیح اسـت)

میباشد.
در شکل((2-4مدار دو پورتی بدون DGS نشان داده و پارامترهـایS حاصـل از آن بـا ansoft در شـکل
(3-4) آمده است.

شکل(:(2-4خط میکرواستریپ دو پورته باεr=10 وh=1.575

شکل(:(3-4پارامترهایSمدار شکل((2-4
۶٢
به منظور بررسی این اثرات توسط DGS پریودیک نیز یک عدد مدار DGS پریودیک متحدالـشکل و دو
تا مدار DGS پریودیک قوی شده نیز در اینجا طراحی و اندازهگیری شدهاند. اندازهها نـشان مـیدهنـد کـه
نمایشهای اخیر اجرای نقش دقیقی توسط متوقف شدن رپیل و بزرگ کردن پهنـای بانـد را ایفـا مـیکنـد.در
شکل((4-4 دو پورتی با DGS دمبلی شکل نشان داده شده و نتیجه شبیه سازی شده این خـط بـا ansoft
در شکل((5-4رسم گردیده است.

شکل(:(4-4مدا با DGS دمبلی شکل

شکل(:(5-4پارامترهایS مدار باDGS دمبلی شکل
در بالا می بینیم فرکانس قطع ومقدار تضعیف کاهش می یابند.
( 1 – 5 – 4 الگویDGSدمبلی شکل و ویژگی شکاف باند
۶٣
نمای شماتیک مدار دمبل شکی DGS در شکل (4-4) نشان داده شده است .خـط میکرواسـتریپ رو قـرار
گرفته و DGS نیز در زیر صفحه فلزی زمین قلم زده شده است. طرح DGS توسط خطوط دش مـشخص
شدهاند. پهنای خط نیز برای امپدانس مشخصه 50 اهم تعیین گردیده است. ضـخامت سابـستریت زیـر لایـه
1/575 میلیمتر و ثابت دی الکتریک εr = 10 میباشد. در [20] آمده که شـکاف قلـم زده شـده و کاسـتن
مربعی قلم زده شده با ظرفیت موثر خط و اندوکتانس خط نیز متناسب میباشد و وقتی ناحیه قلـم زده شـده
کاسته شده مربع شکل کاهش می یابد و فاصله شکاف نیز 0/6 میلیمتر نـشان داده شـده اسـت، انـدوکتانس
موثر کاهش یافته و این کاهش اندوکتانس نیز فرکانس قطع (fc) را بالا میبرد که این قضیه در شکل (7-4)
نشان داده شده است. در اینجا ما نیز این کار را با Ansoft انجام دادهایم.
( 2 – 5 – 4 ایجاد DGS دمبلی پریودیک قویتر
نمایش شماتیک DGS پریودیک با الگوهای مربعـی واحـد بـرای مـدارات صـفحهای [21] نـوع 1 نامیـده
میشود که در شکل (6-4)(a) آمده است.مدار ما در اینجا نیز خـط میکرواسـتریپ 50 اهمـی و نیـز5 عـدد
الگوهای مربع متحدالشکل با دوره یکسان d = 5mm میباشند.پهنای طرفین مربعها و فاصله شکاف هـوایی
ما بین آنها 4/5 (g) میلیمتر و 0/6 میلیمتر میباشند.
براساس نوع 1 ، متحدالشکل بودن توزیع پنج عدد الگوی مربعی توسط یک شکل غیر واحد توزیع میگردد.
حوزه المانهای مربعی نیز متناسب با توزیع دامنه تابع نمایی e1/ n میباشد.در اینجا دامنه سـوم از پـنج المـان
مربعی شکل نیز 4/5mm میباشد.پس نوع دوم بوده و دامنه المـان توزیـع شـده بـر اسـاس زیـر مـشخص
میگردند.
2/3mm2/7mm4/5mm(1-4)
۶۴

شکل (a) :(6-4) نوع1 ، (b) نوع2، (c) نوع3
استفاده از توزیع ارتفاع غیر واحد DGSهای پریودیک، نوع دوم را تشکیل می دهند که در شکل (6-4)(b)
نشان داده شده است. براساس نوع دوم، دیگر مدار DGS پریودیک قوی شـده، یـک خـط میکرواسـتریپ
جبرانی را دارد که نوع سوم نامیده میشود. در شکل (6-4)(c) آمده است.خط میکرواستریپ جبرانی شـامل
۶۵
یک خط 50 اهمی و یک خط عریض میباشد. همچنین بزرگی المانهای DGS توسط رابطه سوم مشخص
گردیده است. المانهای الگوی مربعی غیر هم شکل نیز دارای دوره مساوی d=5mm بوده و فاصـله هـوایی
ثابت d = 0/6mm دارند که در شکل (6-4) نوع دوم و سوم خطوط میکرواستریپ رو قـرار دارد و DGS
ها نیز در صفحه زمین فلزی کنده شده و توسط خطوط دش مشخص شدهاند.
(3-5-4اندازهگیریهای مربوط به DGS دمبلی شکل
سه نوع مدار DGS پریودیک که ذکر شدند مورد بررسی و اندازهگیری قرار گرفتهاند، نتایج اندازهگیری نیـز
در شکل (8-4)((a)-(c)) نشان داده شده هستند . این نتایج به طور خلاصه در جدول (1-4) آمده است.
جدول(:(1-4مقایسه DGS های واحد وپریودیک وتوزیع نمایی

شکل(:(7-4پارامترهایS برای DGS دمبلی شکل
۶۶

(a)

(b)

(c)
شکل(:(8-4 مقایسه پارامترهای S مدارهای (a) DGSنوع(b) 1نوع(c) 2 نوع3
۶٧
سابستریت این مدارات دارای h = 1/575 و εr = 10 هستند. این اندازه گیـریهـا توسـط Ansoft انجـام
شده و نشان داده شدهاند.
همان طوری که در جدول آمده، 20dB ایزولاسیون پهنای باند برای انواع 1و 2و 3 نیز در فرکانسهای 3/05
و 4/18 و 4/26 گیگاهرتز میّاشند.
مدارهای DGS پریودیک پیشنهاد شده نوع 2و 3 پهنـای بانـد ایزولاسـیون 20dB را بهتـر 37% و (39/7%
میکند.در ناحیه پائین گذر، اولین افت برگـشتی و پیـک افـت برگـشتی بـرای نـوع 3، مقـادیر -46/7dB و
-30/9dB بوده و در صورتیکه این مقادیر در نوع 1 نیز -10/8dB و -4/9dB هستند.اولین افت برگشتی و
ماکزیمم افت برگشتی نیز در 4 بار (لحظه) بهتر شده و بنابراین ر پیلها به صورت موثری از بـین رفتـهانـد و
پهنای باند موثر برای نوع سوم افزایش و فرکانس قطع 3dB به صورت مختصر و کم تغییر پیدا میکند.
(6 – 4بررسی اثرات DGS های هلزونی بر روی هارمونیکهای تقسیم کننده توان
در اینجا نشان خواهیم داد تکنیکهای موثری از حذف هارمونیک دوم و سوم برای یـک تقـسیم کننـده تـوان
ویل کینسون (WILLKINSON)با استفاده از DGS هلزونی شکل را، که ما در مدار کـوپلر از ایـن نـوع
DGS استفاده کردهایم.
شکاف باند الکترومغناطیسی و برهم زدن ساختار زمین اخیـراً نیـز کـار بردهـای متفـاوتی را در مـایکرویوو
فرکانس موج میلیمتری با شکلهای مختلف دارند [22] و [24] و DGS خط میکرواستریپ نیـز بـا بـر هـم
زدن مصنوعی صفحهای زمین در ویژگی رزونانس مشخـصه انتقـال تغیراتـی ایجـاد مـیکنـد. در یـک خـط
میکرواستریپ مطابق با اندازه DGS یا بر هم زدگی که روی صفحه زمین ایجاد میگردد، حذف باند بیـشتر
۶٨
در فرکانس رزونانس صورت میگیرد. همچنین DGS باعث بوجود آمدن اندوکتانس موثر اضـافی در خـط
انتقال میگردد. افزایش اندوکتانس موثر از ایجاد DGS باعث افزایش طول الکتریکی خط انتقال نـسبت بـه
یک خط متداول میگردد که خود نیز باعث کاهش اندازه مدارات موج میلی متر و مایکرویو میگـردد. [21]
، در طراحی فیلترها ،تقسیم کنندههای توان و تقویت کنندهها، ویژگی حذف باند و اثر موج آهـسته (Slow
wave) توسط DGS نیز بسیار مورد نظر می باشد [22]و [23]
هارمونیک های ناخواسته تولید شده با ویژگی غیر خطی مدارات اکتیو نیاز به حذف کردن دارند. در مدارات
مایکرویو و فرکانس بالا ویژگی حذف باند توسط DGS میتوانـد در متوقـف کـردن هارمونیکهـای مـورد
استفاده قرار گیرد [22] و .[23] با یـک DGS هلزونـی شـکل متقـارن، (یـک تـک ( DGS حـذف تـک
هارمونیک را خواهیم داشت، وDGS پریودیک در جهت حـذف هارمونیـک دوم و سـوم بکـار مـی رونـد.
DGS های آبشاری و پشت سرهم باعث افزایش افت داخلـی شـده و بهمـین دلیـل در مـدارات بـا انـدازه
کوچک نیز استفاده از ان محدود گردیده است. در اینجا ساختار DGS هلزونی شکل غیر متقارن نیز جهـت
حذف هارمونیکهای دوم و سوم بطور همزمان پیشنهاد گردیدهاند. به طور مـوثر یـک تـک DGS هلزونـی
غیرمتقارن باعث از بین بردن باند فرکانس دوم میگردد و نیاز به ناحیه کوچکی هم جهت نقش بـستن دارد.
تقسیم کننده توان ویل کینسن با بکار بستن یک DGS هلزونی غیـر متقـارن در خطـوط λ4 باعـث حـذف

هارمونیک دوم شده و اندازه آن نیز با اثر موج آهسته کاهش مییابد. مشاهده میگردد به دلیل ذکـر شـده در
این پروژه ما از این گونه DGS استفاده ننمودهایم. تقسیم کننده Willkinson پیشنهاد شده به خـوبی یـک
تقیسم کننده توان مرسوم، در فرکانس کار خواهد بود.
۶٩
(7-4مدل مداری و هندسه DGS هلزونی نا متقارن
در شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ که ابعـاد کنـده شـده هلزونـی
شکل در سمت راست و چپ متفاوت از یکدیگر هستند آمده است. برای هندسه این DGS نامتقارن مطابق
با کنده شدهگی سمت چپ و کندهشدگی سمت راست دوتا فرکانس عملکرد متفاوت وجود دارد. مشخـصه
انتقال خط میکرواستریپ با هندسه DGS نامتقارن ویژگی حذف باند در فرکانس تشدید را دارد.

شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ
فرکانس تشدید ممکن است با تغییر کردن ابعاد DGS عوض گردد. مقایسه مشخصه انتقال DGS هلزونـی
با ابعاد مختلف متقارن و غیرمتقارن در شکل (10-4) آمدهاست. امپدانس مشخصه خط 50 اهـم مـیباشـد.
برای هندسه هلزونی متقارون ( A=A'= 3mm و (B=B' = 3mm تنها یـک فرکـانس تـشدید (
(f=2/93GHz وجود دارد در صورتی که در یک DGS غیر متقارن فرکانس تشدید به دو فرکانس مختلـف
تبدیل میگردد. برای یک DGS نامتقارن با A = A' = 3/5mm و B = B' = 2/6mm همان طوری که در
شکل (10-4) مشاهده میگردد دو فرکانس تشدید مختلف دیده میشـودf=2/56GHz وf=4/22GHz کـه
این نتایج نشان میدهند DGS هلزونی نا متقارن با اندازههای متفاوت روی صفحه زمین در دو طرف خـط،
٧٠
فرکانسهای رزونانس مختلف را میتوانند ایجاد کنند.در هندسه نا متقارن DGS نیز میخواهیم بدانیم که بـه
چه صورتی فرکانس تشدید مطابق با بر هم زدگی چپ و راست خط با تغییـر انـدازه بـر هـم زدگـی رفتـار
میکند.

شکل(:(10-4پارامترهای انتقال خط با DGS متقارن( ( A = A' = B' = 3mm ونامتقارن A = 3/4m) و (B = 2/6 mm

شکل(:( 11-4 فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از B/A
٧١
فرکانس تشدید ناشی از بر هم زدگی سمت چپ خط و سمت راست خط در شکل (11-4) بعنوان تابعی از
اندازه بر هم زدگی سمت راست وقتی که اندازه سمت چپ ثابت باشد (A = A' = 2mm) رسم گردیـده
است. اندازه این آشفتگی هلزونی به صورت یک مربع در نظر گرفته شده (B = B' , A = A') .وقتـی کـه
اندازه برهم زدگی سمت راست از مقدار سـمت چـپ کـوچکتر اسـت (B/A<1)، فرکـانس رزونـانس در
سمت راست نیز بزرگتر از مقدار سمت چپ خواهد بود. هنگامیکه مقدار A با B برابر گردد دو تا فرکـانس
رزونانس ازهم پاشیده شده و به یک فرکانس تبدیل میگردد DGS) متقارن). باز وقتی کـه بـر هـم زدگـی
سمت راست افزایش پیدا کند B/A) زیاد شود)، فرکانس تشدید ناشی از بر هم زدگـی سـمت راسـت نیـز
کاهش مییابد. از این رو اندازه سمت چپ ثابت شده و مشاهده میگردد که فرکانس رزونانس ناشـی از بـر
هم زدگی سمت چپ تغییرات آهستهای خواهد داشت تا وقتی که B/A مقدار واحد شود.
مشخصه فرکانسی یک DGS متقارن با مدار رزوناتور RLC موازی میتواند مدل گردد. پارامترهای مـداری
معادل نیز از مشخصه انتقال شبیهسازی شده میتواند گرفته شود.
DGS نا متقارن نیز میتواند با دو تا رزوناتور RLC موازی که به صورت سدی متصل شدهاند مدل گـردد.
شکل((12-4، به همین جهـت مشخـصه انتقـال آن دو تـا فرکـانس تـشدید متفـاوت دارد. در مـدار معـادل
پارامترهای مدار اولین رزوناتور از مشخصه فرکانسی رزونانس بر هم زدگی سمت چپ گرفتـه مـیشـود در
حالیکه رزوناتور دوم بوسیله مشخصه رزونانس بر هم زدگی سمت راست مشخص می گردد. از نتـایج شـبیه
سازی پارامترهای اسکترینگ، پارامترهای مدار رزوناتور برای بر هم زدگی سمت چپ و راست بـه صـورت
زیر مشخص میگردند.
(۴-٢) C L,R W CL,R  ( 2 −W 2 (W 0 2Z C L,R 0 L,R ٧٢
(۴-٣) 1 LL,R  4π2 f02 L,R CL,R (۴-۴) 2zo RL,R  1 1 ))2 −1 − (2Z0 (W0 L,R CL,R − W0 L,R LL,R S11 (W0 L,R )2
شکل( 🙁 12-4 مدار معادل بخش DGS هلزونی نامتقارن
در اینجا اندیس R, L نیز پارامترهای برهم زدگی سمت چپ و راست را بیان می کنند. W0 فرکانس تشدید
و WC فرکانس قطع -3db را مشخص میکنند. Z0 امپدانس مشخصه خط انتقال می باشد.
(8-4حذف هارمونیکها در مدار مقسم توان
مقسم توان کاربردهای گوناگونی از قبیل توزیع توان سیگنال ورودی از آنتن و تقویت کنندههای توان بـالای
مایکرویو دارد. با قرار دادن فیلتر حذف هارمونیک در داخل مقسم توان ناحیه خروجـی فیلتـر کـاهش پیـدا
میکند .[23] جهت حذف هارمونیک نیز میتوان از استاب مدار باز در مرکز شاخههای بـا طـول λ4 مقـسم

توان استفاده نمود.
اگر DGS را بعنوان فیلتر هارمونیک اضافی استفاده کنیم میتوانیم با در نظر گرفتن کاهش سایز مقسم تـوان
که منجر به اثر (Slow – wave) میگردد نیز هارمونیک را حـذف نمـود. از ایـن رو یـک DGS متقـارن
٧٣
میتواند تنها یک سیگنال هارمونیک را حذف کند. ما نیاز به قرار دادن دو تا DGS به صـورت آبـشاری در
λ
هر شاخه ( ( 4 داریم تا هارمونیک دوم و سوم را حذف کنیم. هر چند ناحیه مقسم توان جهت گذشتن دو تا

DGS به صورت پریودیک در هر شاخه مقسم توان نیز محدود میگردد. DGS غیر متقارن هم، سـاختاری
موثر در جهت حذف هارمونیک دوم و سوم به صورت همزمان می باشد. [22]
شکل (13-4) (a) هندسه یک DGS هنرونی نامتقارن جهت حذف هارمونیـکهـای سـوم و دوم را نـشان
میدهد. در اینجا فرکانس عملکرد مقسم توان نیز 1/5 گیگاهرتز میباشد.

شکل(DGS (a): (13-4 هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این DGS
ناحیه بر هم زده شـده سـمت چـپ و راسـت رزونـانس هارمونیـک دوم و سـوم طراحـی شـدهانـد. 3) و
4.5گیگاهرتز). ابعاد طراحی شده این سـاختار D=2/4mm و A = 3 mm D' = S = G = 0/2mm و
A' = 3/2 mm، B = 2/4 mm و B' = 2/6 mm و امپدانس مشخصه خـط نیـز 70/7 Ω مـیباشـد.
٧۴
شکل (13-4) (b) مدار معادل DGS نامتقارن در شکل (13-4) (a) را نشان مـیدهـد. پارامترهـای مـدار
بوسیله پارامترهای اسکترینگ سیموله شده بوسیله روابط (2-4) تا (4-4) محاسبه میگردند.
شکل (14-4) نیز پارامترهای S محاسبه شده بوسیله شبیه سازی (EM) بـرای DGS نامتقـارن شـکل (a)
.(13-4) و محاسبه شده مدار معادل شکل (13-4)(b) را نشان میدهند. در هر دو تا شـبیه سـازی مـشاهده
میگردد که بوسیله DGS نامتقارن واحد، هارمونیکهای دوم و سـوم در فرکانـسهای 4. 5 , 3 گیگـا هرتـز
حذف میگردند.

شکل( ( 14- 4 پارامترهای S مدار با DGS هلزونی به صورت EM و شبیه سازی شماتیک
مشاهده میگردد که S12 موافق رنج فرکانسی پهن و S11 نیز در جهت حذف هارمونیک مقسم تـوان اصـلی
بکار میرود. یک مقسم توان معمولی در شکل (15-4)(a) مشاهده میگردد و نیز مقسم توان پیـشنهاد شـده
با DGS غیر متقارن در شکل (15-4)(b) آمده است. در اثر موج آهـسته (slow – wave) بـودن DGS
نیز اندازه مقسم توان پیشنهادی کاهش یافته است. اندازه L' = 17/3 mm در مقایسه L = 19mm حـدود
9/1 % کاهش یافته است.
٧۵
پارامترهای S شبیه سازی شده مقسم توان معمولی و پیشنهادی در شکل (16-4) آمده است.

شکل( ( 15- 4 هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن
در (16-4) (b)، فرو نشاندن حدود18 dB برای هارمونیک دوم و سـوم بـا وارد کـردن DGS نامتقـارن در
خط انتقال ( ( λ4 مقسم توان مشاهده میگردد. افـت برگـشتی بـرای فرکـانس 1/5 GHZ در هـر دو مـشابه

یکدیگر می باشند، حتی با وارد کردن DGS نامتقارن در مدار.
شکل (17-4) نیز قسمت رو و زیر از یک مقسم توان ویل کینسن با وارد DGS هلزونی نامتقـارن را نـشان
میدهد. در شکل (a) (18-4)، S11 اندازهگیری شـده را نـشان مـیدهـد. افـت برگـشتی در فرکـانس 1/5
گیگاهرتز – 40dB بوده. S21 نیـز در شـکل (18-4)(b) بعنـوان تـابعی از فرکـانس آمـده اسـت. توقیـف
هارمونیک دوم (3 GHZ) نیز 18dB و هارمونیک سوم در فرکانس (4/5 GH) نیز 15dB میباشد.
٧۶

شکل ( ( 16- 4 نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با DGS

شکل( ( 17-4 مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار
٧٧

شکل( ( 18- 4 نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(S12(b)S11(a
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی
ابتدا مدار شکل (3-2) را با اسـتفاده از DGS هلزونـی شـکل نیـز آنـالیز و نتـایج آن را در شـکل((19-4
مشاهده میکنیم
٧٨

شکل(:(19-4مدار بااستفاده از (a) DGSیک بعدی((bدو بعدی
در شکل (a)(20-4)و((b نتایج شبیه سازی حاصل از مدار قلم زده شده DGS و بدون استفاده از آن را
نشان میدهند.
٧٩

شکل((a):(20-4نتیجه شبیه سازی کوپلر با استفاده ار (b) DGSبدون استفاده از ((a)(3-2)) DGS
با مشاهده نتایج بالا به پایین آمدن فرکانس قطع و slow wave شدن پاسخ نیز پی می بریم.
(10-4مشاهده اثرات DGS روی مدار طراحی شده در این پروژه
در شکل (21-4) نوع DGS استفاده شده در این کوپلر آورده شده است.ونتیجـه ansoft در شـکل((22-4
مشاهده میگردد.
٨٠

شکل(:(21-4کوپلر باH DGS شکل در شاخه خطوط

شکل(:(22-4پارامتهای Sحاصل از به کار بستن DGS
٨١
فصل پنجم
چگونگی استفاده از کوپلر بدست آمده در طراحی سیرکولاتور
٨٢
(1-5 طراحی سیرکولاتور
یک سیرکولاتور 4 پورته فشرده نیز می تواند به وسیله یک کوپلر خط شاخه ای و شیفت دهنده فاز( پیوست
پ) نیز ساخته شود.این شیفت دهنده فازی همراه با ورودی و خروجی خط همواره مچینگ امپدانسی داشته
و دارای تضعیف صفر می باشد.در اینجا ما از زیراتور به عنوان شیفت دهنده فازی استفاده کرده ایمر .[26]
یکی از ترکیبات نا متقابل استاندارد ژیراتورها هستند که دارای 2 پورت بوده وشیفت فاز تفاضلی 180 درجه
ایجاد می کنند.نماد شماتیک برای یک ژیراتور در شکل (1-5)آمده است و ماتریس اسکترینگ برای یک
ژیراتور واقعی در زیر آمده است.
(1-5)

π
شکل(:(1-5نماد ژیراتور
که این ماتریس نشانه عدم افت ،مچ شده ونا متقابل بودن آن است.

s−0 11 0
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر

۴ ١
٢ π ٣
شکل(:(2-5سیرکولاتور 4پورته متشکل از دو مدار هایبریدی و ژیراتور
٨٣
استفاده ژیراتور به عنوان بنا ساخت در ترکیب با مقسم دو طرفه و کوپلرها میتواند منجر به ایجاد مدارات
مفید همچون سیرکولاتور گردد .در شکل (2-5) مدار معادل سیرکولاتور 4 پورته متشکل از دو مدار
هایبریدی و درشکل (4-5) سیرکولاتور ساخته شده با استفاده از یک ژیراتور ودو کوپلر را نشان میدهد.

شکل(-5٣):سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور
مدار پیشنهادی با ایجاد شیفت فاز 180 درجه باعث عبور از پورت 1به2،2 به3،3به4و4به1 می گردد. در
شکل (4-5) نتایج شبیه سازی مدار طراحی شده آمده است.

(a)
٨۴

(b)

(c)