pdf

جدول ۱-۱. نسبت سیگنال به نویز واحتمال آشکارسازی و احتمال خطاﺀ...................... ۶۱
جدول ۱-۲. مثالی از سطح مقطعهای راداری در فرکانس ماکروویو................................. ۳۲
جدول ۳-۱. مقایسه رادارهای با PRFهای مختلف و ابهامات آنها.................................... ۴۶
جدول ۳-۲. محاسبه داپلر واقعی از روی داپلرهای مبهم............................................. ۴۷
جدول ۳-۳. مقادیر بدست آمده از معادلات ۳-۶۱برای برد .................................70Km ۱۸
جدول ۳-۴. مقادیر بدست آمده از معادلات ۳-۶۱برای برد .................................20Km ۶۸
جدول۳-۵. مقایسه مدلهای مختلف TMSها از نظر سرعت و مقدار حافظه هایشان................. ۳۰۱
جدول۳-۶. حجم محاسبات برای یک بافر........................................................... ۴۰۱
فهرست شکلها
عنوان صفحه
شکل ۱-۱. سیگنال دریافتی در مجاورت نویز......................................................... ۳
شکل۱-۲. آشکار ساز پوش............................................................................ ۸
شکل ۱-۳. پوش خروجی گیرنده برای تشریح آﮊیرهای غلط در اثر نویز............................ ۰۱
شکل ۱-۴. زمان متوسط بین آﮊیرهای غلط بر حسب سطح آستانه V وپهنای باند گیرنده.......... B ۱۱
شکل۱-۵. تابع چگالی احتمال برای نویز به تنهایی و سیگنال همراه با نویز.......................... ۴۱
شکل ۱-۶. احتمال آشکارسازی یک سیگنال سینوسی آغشته به نویز.................................. ۵۱
شکل۱-۷. تلفات جمع بندی بر حسب تعداد پالسها....................................................... ۸۱
شکل۱-۸. احتمال آشکار سازی بر حسب سیگنال به نویز واحتمال خطاﺀ .......................10−9 ۰۲
شکل۱-۹. سطح مقطع راداری کره ای به شعاع a و طول موج ................................... λ ۲۲
شکل۱-۰۱. نسبت سیگنال به نویز دریافتی بر حسب برد هدف........................................ ۳۲
شکل۱-۱۱. انعکاس با زمان حدود چند پریود وابهام در فاصله........................................ ۸۲
شکل۱-۲۱. مقدار نسبت سیگنال به نویزبر حسب برد هدف........................................... ۹۲
شکل ۲-۱. بلاک دیاگرام یک رادار پالسی ساده....................................................... ۲۳
شکل ۲-۲. قطار پالسهای ارسالی و دریافتی........................................................... ۲۳
شکل ۲-۳. توضیح فاصله مبهم........................................................................ ۴۳
شکل ۲-۴. تحلیل اهداف در راستای عمود و افق...................................................... ۵۳
شکل ۲-۵. .aدو هدف غیر قابل تفکیک .b دو هدف قابل تفکیک.................................... ۷۳
شکل ۲-۶. تاثیر هدف متحرک در جبهه موج همفاز ارسالی.......................................... ۹۳
شکل ۲-۷. شرح چگونگی فشردگی یک هدف متحرک برای یک پالس تنها........................... ۰۴
شکل ۲-۸. شرح چگونگی تاثیرات هدف متحرک بر روی پالسهای رادار............................. ۱۴
شکل ۲-۹. فرکانس دریافتی یک رادار مربوط به اهداف دور و نزدیک شونده.................... ....۳۴
شکل ۲-۰۱. نمایه سه هدف با سرعتهای برابر ولی سرعتهای شعاعی متفاوت......................... ۳۴
شکل ۲-۱۱. سرعت شعاعی متناسب است با زاویه هدف در راستاهای عمود وافق..................... ۴۴
شکل ۲-۲۱. خروجی حاصله از برنامه lprf_req.m برای سه مقدار از ........................... np ۷۴
شکل ۲-۳۱. نمودار نسبت سیگنال به نویز به ازاﺀ تعداد پالسهای همزمان............................. ۸۴
شکل ۲-۴۱. نمودار سیگنال به نویز بر حسب برد برای رادار ........................... HighPRF ۰۵
شکل ۲-۵۱. شمای پترن یک آنتن بسیار ساده شده..................................................... ۲۵
شکل ۲-۶۱. تلفات فروپاشی............................................................................ ۴۵
شکل ۳-۱. مقایسه فاصله هامونیکها در LPRF و ..........................................HPRF ۹۵
عنوان صفحه
شکل ۳-۲. مقایسه بین تعداد پاسهای دریافتی درLPRFو....................................HPRF ۰۶
شکل ۳-۳. نحوه تاثیر فیلترهای MTI بر روی کلاتر دریافتی....................................... ۳۶
شکل ۳-۴. بلاک دیاگرام یک رادار پالسی........................................................... ۵۶
شکل ۳-۵. نمودار توان بر حسب فرکانس برای قسمت های مختلف یک رادار...................... ۶۶
شکل ۳-۶. پاسخ فرکانسی سیگنال ارسالی با مد نظر قرار دادن ...............................PRF ۸۶
شکل ۳-۷. طیف فرکانسی سیگنالهای فرستاده شده و دریافتی و بانک فیلترها....................... ۹۶
شکل ۳-۸. رفع ابهام در برد......................................................................... ۱۷
شکل ۳-۹. برگشتیهای حاصل از PRF3 و PRF1 برای برد ..............................70Km ۲۸
شکل ۳-۰۱. نمایی از برگشتیها در خلال PRF1 برای برد .................................70Km ۲۸
شکل ۳-۱۱. مقاسیه پالسهای دریافتی در طول ارسال PRF برای برد .......................70Km ۳۸
شکل ۳-۲۱. پالسهای دریافتی در طول PRFهای ارسالی و نتیجه نهایی............................. ۴۸
شکل ۳-۳۱. برگشتیهای حاصل در خلال ارسال PRF1 برای برد ..........................20Km ۶۸
شکل ۳-۴۱. برگشتیها در خلالPRF1 و فاصله از آخرین پالس ارسالی در برد...............20Km ۷۸
شکل ۳-۵۱. مقاسیه پالسهای دریافتی در طول ارسال ...................................PRF1,2,3 ۷۸
شکل ۳-۶۱. پالسهای دریافتی در طول PRFهای ارسالی و نتیجه نهایی مقایسه پالسها................ ۸۸
شکل ۳-۷۱. نحوه استفاده از توان بالای ارسالی و دریافتی دریک رادار.....................MPRF ۰۹
شکل ۳-۸۱. بهبود سیگنال به نویز با کمک تعداد زیاد پالسهای دریافتی.............................. ۱۹
شکل ۳-۹۱. بهبود در پاسخ با استفاده از Integration به ازای۶ و ۲۱ بار تجمع.................. ۳۹
شکل ۳-۰۲. تاثیر جمع پذیری همفاز بر روی سیگنالهای برگشتی در۰۱ مرتبه جمع کردن........... ۴۹
شکل ۳-۱۲. افزایش SNR با تجمع همفاز و بهره کامل .................................................. ۵۹
شکل ۳-۲۲. کاهش اثر تجمع همفاز در اثر تغییر فاز سیگنالهای دریافتی...................................... ۶۹
شکل ۳-۳۲. ضریب بهبود آشکار سازی برحسب تعداد پالسها........................................ ۸۹
شکل ۳-۴۲. نمای یک رادار مولتی PRF با قابلیت جمع پذیری...................................... ۰۰۱
شکل ۳-۵۲. چگونگی ارتباط TMS با سیستم مولد ............................................PRF ۲۰۱
شکل ۳-۶۲. الگوریتم تعیین برد هدف برای یک رادار .....................................MPRF ۷۰۱
چکیده:
در رادارها پالسی، با بالا رفتن فرکانس تکرار پالس رادار، برد غیر مبهم کاهش می یابـد.
چنانکه در پروﮊه نیز دیده شد، با افزایش فرکانس تکرار پالس از 1KHz به 50KHz برد
غیر مبهم از 150Km به 3Km کاهش یافت ولی در عوض توانستیم اهدافی با سرعت تـا
750m/s را آشکارسازی کنیم. این در حالی است که به ازای فرکانس تکرار پالس اولیـه،
ما فقط قادر به آشکار سازی صحیح اهداف با سرعتهای تا 15m/s بودیم! همچنین توانستیم
با کم کردن τ، متناسب با افزایش PRF ، قدرت تفکیک را از 3000m به 60m برسـانیم که یک پارامتر مناسب برای آشکارسازی اهداف نزدیک به هم می باشد. همچنـین نشـان دادیم با بالا بردن فرکانس تکرار پالس و افزایش در تعداد پالسهای ارسالی و دریـافتی در
طول ارسال یک PRF ، در مقایسه با رادارهای LPRF مقدار بسیار زیادی توان حاصـل شد ، که با استفاده از روشی خاص ، از این پالسهای دریافتی برای بالا بردن نسبت سیگنال
به نویز تا 15dB وحتی بیشتر برای PRFهای بالاتر استفاده شد که ایـن امـر مـا را در آشکار سازی بهتر یاری خواهد داد. همچنین نشان دادیم که با تجمـع بـر روی پالسـهای
دریافتی در طول ارسال چند PRF می توان باز هم نسبت سیگنال به نویز را افـزایش داد.
و فرضا با توجه به زمان ارسال هر PRF اگر هدف ۰۳ برابر این زمان در پتـرن آنـتن
رادار ما قرار گیرد برای هر کدام از PRFها می توان تا 10dB نسبت سیگنال به نویز را افزایش داد. و در انتها بحث کلاترها که با بالا بردن فرکانس تکرار پالس می توان اثـرات
منفی آنها را بهبود بخشید، ولی با استفاده از چند PRF قادر خواهیم بود تا اثرات آنرا بـه حداقل برسانیم و از طرفی همانطور که نشان داده شد ، توانستیم برد واقعی هـدف را بـا
استفاده از PRF های مرتبط با هم از روی مقایسه دریافتیهایشان بدست آوریم.
I
مقدمه:
در این پروﮊه گردآوری و شبیه سازی روی رادارهای پالسی انجام شده است. رادارهـای پالسی خود به چند گونه تقسیم می شوند که یکی از مهمترین آن تقسیمات ، مربوط به میزان فرکانس تکرار پالس می باشد که به دو و یا سـه دسـته تقسـیم مـی شـوند. دسـته اول
LowPRF و دسته دوم Medium PRF و دسته سوم HighPRF ها. در حالت کلی و با در نظر گرفتن دسته اول و سوم ،در میابیم که هرکدام دارای مزایایی هسـتند. مهمتـرین مزیت رادارهای با فرکانس تکرار پالس کم ساده بودن طراحی و برد مبهم زیاد است. ولی در قبال این وضعیت ما دچار مشکلاتی در شناسایی فرکانس داپلر خواهیم بـود و ..... .
برای رادارهای با فرکانس تکرار پالس بالا در قبال برد مبهم کم ، ما به شناسایی بهتری از تغییر فرکانس داپلر دست خواهیم یافت . البته این سیستم پیچیده تر است. ولی با توجه بـه آنکه با بالا رفتن فرکانس تکرار پالس می توان چرخه کار را کاهش داد ، لذا پدیده اخفـاﺀ کمتر پیش می آید از طرف دیگر چنانکه در فصل دوم هم نشان داده شـده ، بیشـینه بـرد رادار با توان میانگین نسبت مستقیم دارد که سبب می شود به نسبت رادارهای LowPRF
، توان میانگین بیشتری در رادارهای HighPRF انتقال یابد و این خود سبب بـالا رفـتن نسبت سیگنال به نویز و برد آشکار سازی رادار می شود. اما برد مبهم کـم ایـن گونـه
رادارها این مزیت را از بین می برد. لذا می توان با ترکیب چند (Multi PRF) PRF که نزدیک به هم هستند و بر هم قابل قسمت نیز نمی باشند ، برد مبهم رادار را افزایش داد که این کار سبب پیچیده تر شدن هرچه بیشتر رادار می شود ولی در قبال این پیچیدگی ما هـم قادر به آشکارسازی هرچه بهتر فرکانس داپلر هستیم ، برد مبهم رادار زیاد مـی شـود و
نسبت سیگنال به نویز نیز افزایش می یابد و .... . مقایسه کامل بین رادارهای LowPRF
وHighPRF در فصل ۳ ارائه شده است.
II
فصل اول
بررسی معادله رادار:
مقدمه:
به طور کلی با استفاده از معادله رادار می توان حداکثر برد رادار را بدست آورد. حداکثر برد رادار بر حسب پارامترهای رادار به صورت زیر بدست می آید.
14 P GA σ Rmax  ۱-۱) e t 2 (4π) Smin
که در آن :
= Pt توان ارسالی بر حسب وات؛
= G بهره آنتن؛
= Ae سطح موثر آنتن بر حسب متر مربع؛
=σ سطح مقطع راداری هدف بر حسب متر مربع؛
= Smin حداقل توان سیگنال قابل آشکار سازی بر حسب وات؛
از پارامترهای فوق تمام گزینه ها به جز سطح مقطع راداری هدف ، تقریبا دراختیار طراح رادار است. معادله رادار نشان می دهد که برای بردهای زیاد ، توان ارسالی باید زیاد باشد
١
و انرﮊی تششع شده دریک شعاع باریک متمرکز باشد به معنی اینکه بهره آنتن زیاد باشد و گیرنده نسبت به سیگنالهای ضعیف حساس باشد.
در عمل برد محاسبه شده از یک چنین معادله ای شاید به نصف هم نرسد! علت آن است که پارامترها و تضعیفات بسیاری بر سر سیگنال منتشر شده قرار خواهند گرفت کـه مقـدار بسیاری از توان ارسالی را تلف خواهد کرد و ما در ادامه به این پارامترهاو پارامترهـای ارائه شده در فرمول فوق می پردازیم تا به یک مقدار توان مناسب بـرای ۰۵۱ کیلـومتر برای رادار موردنظر برسیم.
البته اگر تمام پارامترهای موثر در برد رادار معین بودند ، پیش بینی دقیـق از عملکـرد رادار امکان پذیر بود ولی در واقع اکثر این مقادیر دارای ماهیت آماری می باشند و ایـن کار را برای یک طراح رادار بسیار سخت می کند. پس به ناچار همیشه یک مصالحه بین آنچه که انسان می خواهد و آنچه عملا با کوشش معقول می توان بدست آورد لازم اسـت، که این مطلب به طور کامل در طول این فصل حس خواهد شد.
البته اطلاعات کامل و مفصل در مورد این عوامل خارج از محدوده این پروﮊه می باشد .
لذا ما به اندازه ای و نه عمیق بر بعضی از مهمترین این عوامل خـواهیم پرداخـت و در نهایت یک معادله را که شبیه به معادله ۱-۲ است ولی پارامترهای زیادی بـه آن اضـافه شده است را ارائه خواهیم کرد که با استفاده از آن فرمول می توان مقـدار نهـایی تـوان ارسالی برای برد مورد نظر را محاسبه کرد.
۱-۱) حداقل سیگنال قابل آشکار سازی:
توانایی گیرنده رادار برای آشکارسازی یک سیگنال برگشتی ضعیف ، توسط انرﮊی نـویز موجود در باند فرکانسی انرﮊی سیگنال محدود می شود. ضعیف ترین سیگنالی که گیرنـده
می تواند آشکار نماید ، حداقل سیگنال قابل آشکار سازی یا آسـتانه (Threshold) نامیـده
٢
می شود. تعیین مشخصه حداقل سیگنال قابل آشکار سازی معمولا به علت ماهیت آماری آن و بخاطر فقدان معیاری بسیار مشکل است.
آشکار سازی بر اساس ایجاد یک سطح آستانه در خروجی گیرنده اسـت. اگـر خروجـی گیرنده بیشتر ازآستانه باشد ، فرض می شود که سیگنال وجود دارد و در غیر این صورت سیگنال آشکار نشده نویز می باشد. به این روش آشکار سازی آستانه ای گویند. خروجـی یک رادار نمونه را برحسب زمان ، اگر به صورت شکل ۱-۱ در نظر بگیـریم ، پـوش سیگنال دارای تغییرات نامنظمی است که در اثر تصادفی بودن نویز حاصل می شود.

Square with Gaussian Noise Signal With Noise A C B Time
شکل ۱-۱) سیگنال دریافتی در مجاورت نویز
اگر در نقطه A در این شکل دامنه بزرگی داشته باشیم و این دامنه از پیکهـای نویزهـای مجاور بیشترباشد،می توان آنرا بر حسب دامنه آشکار ساخت.اگر سطح آشکار سـازی را بالا ببریم ممکن است احتمال آشکار سازی پایین بیاید کما اینکه در آینده نیز به این نتیجـه
خواهیم رسید. برای مثال اگر در نظر بگیرید که نقاط B وC نیز سیگنال ارسالی از یـک هدف واقعی باشند ، در این صورت ممکن است بالا بردن سطح آشکار سـازی مـانع از بدست آمدن اطلاعات درست شود و اگر سطح آشکار سازی را برای بالا بـردن احتمـال آشکارسازی پایین ببریم در این صورت احتمال خطا بالا می رود. یعنی ممکن است جـایی
٣
نویز بجای سیگنال واقعی آشکار سازی شود.انتخاب سطح آستانه مناسب یـک مصـالحه است که بستگی به این موضوع دارد که اهمیت یک اشتباه در هر یک از موارد (۱) یعنی از دست دادن یک هدف که وجود دارد و یا (۲) نشان دادن اشتباهی یک هدف که وجـود ندارد ، چقدر است.
فرض کنیم که پوش سیگنال شکل مورد نظر خروجی فیلتر تطبیق شده باشـد.یـک فیلتـر تطبیق شده به شکلی عمل می کند که نسبت پیک سیگنال خروجی بـه متوسـط نـویز را حداکثر کند. فیلتر تطبیق شده ایده ال عملا موجود نیست ولی می توان در عمل تا حـدودی سیستم را به آن نزدیک کرد.این چنین فیلتری برای راداری که پـالس مسـتطیل شـکل را
ارسال می کند ، دارای پهنای باند B است که برابر معکوس τ ، یا زمان ارسال سـیگنال در طول یک پریود ، می باشد. خروجی سیگنال از یک فیلتر تطبیقی دارای شـکل مـوج ورودی نمی باشد.
نسبت سیگنال به نویز لازم برای آشکارسازی مناسب، یکی از پارامترهای مهم اسـت کـه برای محاسبه حداقل سیگنال قابل آشکارسازی لازم است مشخص گردد.به طور کلی تصمیم گیری در این مورد بر اساس اندازه گیریهایی در خروجی ویدئو انجام می شود ، ولی ساده
تر است حداکثر نسبت توان سیگنال به نویز در خروجی تقویت کننده IF مـد نظـر قـرار گیرد.
۱-۲) نویز گیرنده:
چون نویز یکی از عوامل اصلی محدود کننده حساسیت گیرنده است ، لذا لازم اسـت بـه وسیله ای به صورت مقادیر کمی مورد بررسی قرار گیرد.نویز در واقـع یـک انـرﮊی الکترومغناطیسی ناخواسته است که با انرﮊی مورد نظر و خواسته ما کـه بـرای آشـکار
۴
سازی هدف استفاده می شود تداخل می نماید. نویز می تواند در قسمت آنتن گیرنده یـا در داخل خود گیرنده به خصوص زمان تقویت سیگنال ، با سیگنال اصلی ما جمـع شـود. در صورتی که اگر تمام المانهای هم به صورت ایده آل عمل می کردند باز هم مقداری نـویز در اثر حرکت حرارتی الکترونها در طبقات ورودی گیرنده ایجاد خواهد شدکه به آن نـویز حرارتی یا جانسون گویند. این گونه نویز به طور مستقیم با دما و پهنای باند گیرنده متناسب است. توان نویز حاصل شده توسط گیرنده با پهنای باندBn (بـر حسـب هرتـز) و درجـه
حرارت T (درجه کلوین) ایجاد می شود و برابر است با:
۱-۲) Availablethermal − Noise Power  kTBn
که در آن k ، ثابت بولتزمن است و اگر درجه حرارت را دمای محیط در نظر بگیریم یعنی همان ۰۹۲ درجه کلوین در این صورت مقدار kT برابر خواهد بود بـا . 4 ×10−21W / Hz
البته این مقدار با تغییر دما می تواند کم یا زیاد شود.
برای رادارهای سوپر هیترودین که دارای کاربرد بسیاری هستند ، پهنای باند گیرنده تقریبا
با پهنای باند طبقات فرکانس میانی IF برابر است. البته پهنای باند ۳ دسیبل یا نیم توان که توسط مهندسین الکترونیک استفاده می شود متفاوت است و از رابطه زیر بدست می آید:
2 df H ( f ) ∞∫ ۱-۳) −∞ Bn  2 H ( f ) در رابطه فوق وقتی که H(f) نرمالیزه شود، به طوری که حداکثر آن در مرکز باند برابر واحد گردد، پهنای باندBn پهنای باند نویز نامیده می شود که در واقع پهنای باند یک فیلتـر
مستطیلی معادل است. و پهنای باند فاصله بین دو نقطه است که پاسخ برابـر بـا ۷۰۷/۰
مقدار ماکزیمم در وسط باند شود. به طور کلی مشخصه بسیاری از گیرنده های رادارهای
۵
عملی به گونه ایست که پهنای باند ۳ دسیبل و نویز تفاوت قابل ملاحظه ای باهم ندارنـد و می توان پهنای باند ۳ دسیبل را به جای پهنای باند نویز به کار برد.
اگر حداقل سیگنال قابل آشکارسازیSmin برابر مقدارSi مربوط به حداقل سیگنال به نـویز
خروجی (S0 N0 )min در خروجی IF که برای آشکار سازی لازم اسـت باشـد، در ایـن

صورت :
S0 ۱-۴الف) Smin  kT0 Bn Fn min N0 که در این رابطه F0 عدد نویز مربوط به تقویت کننده می باشد و می توان آن را به شـکل
ساده زیر معرفی کرد : نسبت سیگنال به نویز ورودی تقویت کننده وبه نسبت سیگنال بـه نویز خروجی تقویت کننده.
Si
۱-۴ب)Fn  So Ni
No
با جایگذاری رابطه بالا در رابطه ۱-۲ معادله رادار را برای بیشترین برد آن بدست مـی آوریم وخواهیم داشت:
۱-۵) Pt GAσ R4 max  F (So ( (4π)2 kT B min No n n 0 البته به غیر از این پارامتر عوامل زیادی هستند که در کاهش نسبت سیگنال به نویز موثر خواهند بود که در انتهای فصل به مهمترین آنها اشاره می کنیم.
۶
۱-۳) نسبت سیگنال به نویز:
در این بخش نتایج تئوری آماری نویز برای بدست آوردن نسبت سیگنال به نـویز لازم در
خروجی تقویت کننده IF برای ایجاد یک احتمال آشکارسازی معین به کار گرفته می شـود به طوری که از یک احتمال خطای معین (احتمال آﮊیر غلط) تجاوز نکنیم. برای این کـار نسبت سیگنال به نویز خروجی در معادله ۱-۶ جایگزین می شود تا حداقل سـیگنال قابـل آشکار سازی بدست آید که بنوبه خود در معادله حداکثر برد رادار به کار می رود.
یک تقویت کننده IF با پهنای باند BIF را در نظر بگیرید که خروجی آن به یک آشکارساز
ثانویه و تقویت کننده ویدئویی با پهنای باند BV وصل شده است( همانند شکل ۱-۳). نقـش
آشکارساز و تقویت کننده ویدئو عبارتست از ایجاد یک آشکارساز پوش. این مدار فرکانس
حامل یا همان carrier را حذف کرده و پوش مدوله شده را عبور می دهد. برای استخراج پوش مدولاسیون پهنای ویدئو باید به اندازه ای پهن باشد که بتواند مولفه های فرکانس پائین ایجاد شده توسط آشکارساز ثانویه را عبور دهد ولی نباید آنقدر هم پهن باشد که مولفه های
نزدیک فرکانس IF راعبور دهد.به طور کلی پهنای باند BV بایستی بزرگتر از BIF باشد تا
کلیه مدولاسیونهای ویدئو را عبور دهد.
نویز ورودی به فیلتر IF به صورت گوسی وارد می شود که دارای تابع چگـالی احتمـال زیر است:
۱-۶) 2 υ 1 P(υ)  exp − 0 2ψ 2πψ0
که p(v)dv احتمال یافتن ولتاﮊ نویز v در فاصله v و v+dv ونماد ψ واریانس یـا مقـدار
متوسط مربع ولتاﮊ نویز است و مقدار متوسط v ، صفر در نظر گرفته شده است.
٧
اگر نویز گوسی از یک فیلتر IF با پهنای باند باریک عبور نماید ، چگالی احتمـال پـوش ولتاﮊ نویز خروجی توسط تابع رایس به صورت زیر داده می شود.
2 R R ۱-۷) P(R)  exp − ψ0 2ψ0 که R دامنه پوش خروجی IF است.احتمال اینکه پوش ولتاﮊ نویز بزرگتر از مقدار ولتـاﮊ آستانه VT باشد برابر است با:
2 R R ∞ Pr obability[VT  R  ∞]  ∫ ۱-۸) dR exp − 2ψ0 0 V ψ T V 2 ۱-۹) Pfa T exp − 2ψ0 وقتی پوش سیگنال بیشتر از ولتاﮊ آستانه گردد، آشکارسازی یک هدف طبق تعریف انجـام می شود.چون احتمال آﮊیر غلط عبارتست از احتمال اینکه نویز از آستانه بیشتر شود. لـذا معادله فوق احتمال آﮊیر خطا را بدست می آورد.

شکل۱-۲) آشکار ساز پوش
٨
فاصله زمانی متوسط بین نویزهایی که از آستانه بیشتر می شود را زمان آﮊیر غلط یا خطا گویند که با Tfa نشان داده می شود و از رابطه زیر بدست می آید:
Tfa  lim 1 N∑TK

N →∞ N k 1
که TK عبارتست از زمان بین عبورهای پوش نویز از آستانه VT وقتیکه ضریب زاویه عبور
مثبت باشد. احتمال آﮊیر غلط را می توان همچنین به صورت نسبت فاصله زمانی که پوش بالای آستانه است به کل زمانی که پوش می تواند بالای آستانه باشد تعریف کرد:

که tK و TK در شکل ۱-۳ تعریف شده اند . فاصله زمانی متوسط یک پالس نویز تقریبـا
برابر است با معکوس پهنای باند، که در این حالت آشکارسازی پوش برابر BIF اسـت. از
برابری دو معادله آخر می توان نتیجه گرفت که:
V 2 1 ۱-۰۱) T exp Tfa  2ψ0 BIF نمودار معادله ۱-۹ در شکل ۱-۴ بر حسب VT 2 2ψ0 به عنوان محور افقی رسم شده است.

برای مثال اگر پهنای باند IF برابر MHz ۱ باشد و زمان متوسط آﮊیر قابل تحمل برابـر
۵۱ دقیقه باشد در این صورت احتمال آﮊیر غلط برابر 1.11×10−9 می باشد وطبق معادلـه
بالا ولتاﮊ آستانه لازم برای این زمان آﮊیر غلط برابر با ۵۴/۶ برابر مقدار مـوثر ولتـاﮊ نویز است.
٩

شکل ۱-۳) پوش خروجی گیرنده برای تشریح آﮊیرهای غلط در اثر نویز
البته مشخصه زمان آﮊیرغلط قابل تحمل بستگی به نیازهای مصرف کننـده و البتـه نـوع کاربرد مورد نظر دارد. رابطه نمایی بین زمان آﮊیر غلط و سطح آستانه باعث می شود که زمان آﮊیر غلط نسبت به تغییرات و یا ناپایداری سطح آستانه حساس باشد. به این معنی که
اگر پهنای باند یک مگا هرتز باشد مقداری برابر 10log(VT 2 2ψ0 ) 12.95dB باعث ایجاد یک

زمان آﮊیر غلط متوسط ۶ دقیقه خواهد شد ولی اگر این مقدار به ۲۷/۴۱ دسی بـل برسـد زمان آﮊیر غلط برابر ۰۰۰۱ ساعت خواهد بود! یعنی افزایش ۷۷/۱ دسی بلی در سـطح آستانه باعث تغییرات زمانی برابر با توان پنج می شود!
این طبیعت نویز گوسی است ، بنابراین در عمل سطح آستانه ممکن است کمـی بیشـتر از مقدار محاسبه شده از رابطه ۱-۰۱ انتخاب گردد به طوری که ناپایـداریهایی کـه باعـث کاهش سطح آستانه در سطح پایین می گردد ، باعث تغییرات زیادی در آﮊیر غلط نشوند.
١٠

شکل ۱-۴) زمان متوسط بین آﮊیرهای غلط بر حسب سطح آستانه V و
پهنای باند گیرنده[1] B
اگر گیرنده برای مدت زمان کوتاهی خاموش گردد احتمال آﮊیر غلط به نسبت زمـانی کـه گیرنده خاموش است افزایش می یابد، البته به شرط آنکه متوسط آﮊیر غلط ثابت بماند.ولی در غالب موارد این موضوع اهمیتی ندارد زیرا تغییرات کم در احتمال آﮊیر غلـط باعـث ایجاد تغییرات کمتری در سطح آستانه می گردد ، چون معادله ۱-۰۱ حالت نمایی دارد.
تاکنون یک گیرنده با ورودی نویز تنها بحث شد.اکنون می خواهیم یک موج سینوسـی بـا
دامنه A همراه با نویز به ورودی فیلتر IF برسد. فرکانس سیگنال فـوق برابـر فرکـانس
میانی IF یعنی FIF می باشد. در این صورت خروجی آشکارساز پوش دارای یـک تـابع
چگالی احتمال به صورت زیر است:
١١
RA 2 A  2 R R ۱-۱۱) I0 − Ps (R)  exp 2ψ ψ0 ψ0 0 که در آن( I0 (Z تابع اصلاح شده بسل مرتبه صفر با متغیر Z می باشد. بـرای مقـدار Z
بسط مجانب( I0 (Z به صورت زیر است:
 1 e z I0 (Z ) ≈ ... 8Z 1  2πZ وقتی که سیگنال وجود نداشته باشد A=0 و رابطه ۱-۱۱ به شکل رابطه ۱-۷ یعنی تابع
چگالی احتمال برای نویز تنها ، خلاصه می شود. احتمال آنکه سیگنال تشخیص داده شـود برابر است با احتمال اینکه پوش R از ولتاﮊ آستانه معین VT بیشتر گردد. بنابراین احتمـال آشکار سازی Pd برابر است با:
RA 2 A  2 R R ∞ Pd  ∫ ۱-۲۱) dR I0 2ψ exp − ψ0 0 0 V ψ T انتگرال بالا با روش ساده قابل محاسبه نیست و باید تکنیکهای عددی با تقریبهای سریها به
کاربرده شود . یک تقریب سری در حالتی که R − A A  ،1 RA باشد، با صرف نظر 0 ψ کردن از یک سری پارامترهای اضافی به شرح زیر در می آید. ۱-۳۱)
١٢
که در آن تابع خطا به صورت زیر تعریف می گردد:
z 2 ∫e−u2 du erf (Z )  0 π
شکل ۱- ۵ یک تشریح ترسیمی از فرایند آشکارسازی آستانه را نشان می دهـد. در ایـن
شکل چگالی احتمال نویز به تنهایی و یک بار همراه با سیگنال با 0.5  3 A نشـان داده 0 ψ شده است. یک ولتاﮊ آستانه0.5  2.5 A نشان داده شده است ومنطقه هاشور خورده سـمت 0 ψ
راست سطح تریشلد زیر منحنی سیگنال همراه با نویز احتمال آشکار سازی را نشان مـی دهد و ناحیه دوبار هاشور خورده زیر منحنی نویز به تنهایی مشخص کننده احتمـال آﮊیـر غلط است. اگر ما مقدار سطح آستانه را بالا ببریم تا احتمال آﮊیر غلط کـم شـود ناچـار احتمال آشکار سازی نیز کم خواهد شد. معادله ۱-۳۱ را می توان برای رسم یـک دسـته منحنی در ارتباط با احتمال آشکار سازی نسبت به ولتاﮊ آستانه و نسبت به دامنـه سـیگنال سینوسی بکار برد.اگرچه طراح گیرنده ترجیح میدهد که با ولتاﮊ کار کنـد ، ولـی بـرای مهندسان رادار مناسبتر است که با توان کار کنند و روابط توانی را داشته باشند. لـذا بـا جایگذاری نسبت سیگنال به ولتاﮊ موثر نویز با رابطه زیر ، می توان معادله ۱-۳۱ را به روابط توانی تبدیل نمود:
2s 12  signal 12  signal amplitude  A 2 N noise rms noise 1 ψ 2 0
همچنین به جای 2ψ VT 2 مقدار آن 1P را از رابطه ۱-۹ قرار خواهیم داد. با استفاده از
0 fa

روابط بالا ، احتمال آشکار سازی بر حسب نسبت سیگنال به نویز با احتمال آﮊیر غلط بـه عنوان یک پارامتر در شکل ۱-۷ نشان داده شده است.
١٣

شکل۱-۵) تابع چگالی احتمال برای نویز به تنهایی و سیگنال همراه با نویز برای تشریح عملکرد آشکارسازی آستانه
هر دو مقدار زمان آﮊیر غلط و احتمال آشکار سازی با توجه به نیاز سیستم مشخص مـی گردند. طراح رادار احتمال آﮊیر غلط را محاسبه کرده و از منحنی ۱-۵ نسبت سیگنال به نویز لازم را برای آشکار سازی بدست می آورد. این مقدار نسبت سیگنال به نویزی است که در رابطه حداقل سیگنال آشکار سازی معادله ۱-۶ به کار می رود. البته ایـن مقـدار برای یک پالس رادار می باشد. مثلا برای زمان آﮊیر غلط معادل با۵۱ دقیقه و پهنای بانـد
۱ مگا هرتز است در این شرایط احتمال آﮊیر غلط برابر با 1.11×10−9 خواهد بود.
همچنین از شکل می توان در یافت که نسبت سیگنال به نویز ۱/۳۱ دسی بل برای احتمـال آشکار سازی ۵/۰ و ۷/۶۱ دسی بل برای احتمال آشکار سازی ۹/۰ لازم است.
۴١

شکل ۱-۶) احتمال آشکارسازی یک سیگنال سینوسی آغشته به نویز به نسبت توان سیگنال به نویز و احتمال آﮊیر غلط
چندین نکته مهم در شکل ۱-۶ قابل بیان است: در نگاه اول ممکن است به نظر برسد کـه نسبت سیگنال به نویز لازم برای آشکارسازی ، بیشتر از مقداری است که به طور مسـتقیم حس شده است و البته بیان شده.حتی برای آشکار سازی با احتمـال ۵/۰ ! ممکـن اسـت اظهار شود که مادامی که سیگنال از نویز بیشتر باشد آشکار سازی انجام می پذیرد. ایـن نوع استدلال زمانیکه احتمال آﮊیر غلط در نظر گرفته شود می تواند صحیح نباشد. مطلـب مهمی دیگری که در شکل ۱-۶ نشان داده شده است ، این است که یک تغییر ۴/۳ دسی بل به معنی اختلاف بین آشکارسازی قابل قبول ۹۹۹۹/۰ و مرز آشکار سـازی ۵/۰ اسـت!
۵١
همچنین نسبت سیگنال به نویز لازم برای آشکار سازی ، تابع حساسی از زمان آﮊیر غلـط نمی باشد.برای مثال یک رادار با عرض باند ۱ مگا هرتز احتیاج به نسبت سیگنال به نویز ۷/۴۱ دسی بل برای احتمال آشکارسازی ۹/۰ و زمان آﮊیر غلط ۵۱ دقیقه دارد. اگر زمان آﮊیر غلط به ۴۲ ساعت برسد ، نسبت سیگنال به نویز باید به ۴/۵۱ دسی بل برسد و برای زمان آﮊیر غلط معادل با یک سال ، احتیاج به نسبت سیگنال به نویز برابر با ۲/۶۱ دسـی بل می باشد.

جدول ۱-۱) نسبت سیگنال به نویز واحتمال آشکارسازی و احتمال خطاﺀ
۶١
۱-۴) جمع بندی پالسهای رادار:
رابطه بین نسبت سیگنال به نویز ، احتمال آشکارسازی و احتمال آﮊیر غلط کـه در شـکل ۱-۷ رسم شده است ، فقط برای یک تک پالس می باشد. در هر مرور رادار معمولا تعداد زیادی پالس از هدف معین بر می گردد که برای بهبود آشکار سازی می تواند به کار رود.
تعداد پالسهایی که از یک هدف نقطه ای در حین مرور آنتن در محـدوده پهنـای شـعاع تششعی آن بر می گردد از رابطه زیر بدست می آید:
۱-۴۱) θB f p  θB f p nB  6ωm θ&s که در آن:
=θB پهنای شعاع تششعی آنتن بر حسب درجه
= f p فرکانس تکرار پالس بر حسب هرتز
=θs سرعت مرور آنتن رادار بر حسب درجه بر ثانیه
= ωm سرعت مرور آنتن بر حسب دور بر دقیقه
فرایند جمع کردن کلیه پالسهای برگشتی از هـدف در یـک مـرور آنـتن بـرای بهبـود آشکارسازی را جمع بندی گویند. برای این کـار روشـهای گونـاگونی وجـود دارد کـه معمولترین آنها روش جمع بندی رادار نمایشگر با خصوصیات جمع بنـدی چشـم و مغـز اپراتور باشد. البته بحث در این قسمت ، مقدمتا در رابطه با جمع بندی عناصر الکترونیکی است که در آنها آشکارسازی به طور خودکار و بر اساس عبور از آستانه می باشد.
جمع بندی در سیستم رادار ممکن است قبل از دومین آشکار سازی یعنـی در قسـمت IF
انجام پذیرد ، که به آن همدوس گفته می شود یا بعد از آن در قسمت ویدئویی کـه بـه آن ناهمدوس گفته می شود. جمع بندی همدوس نیاز به حفظ فاز سیگنال برگشتی دارد تا بتواند
١٧
استفاده کامل را از فرآیند جمع کردن ممکن سازد. در جمع بندی ناهمدوس فاز سـیگنال از بین می رود و به طور کلی جمع بندی آسانتر است ولی راندمان پایین تری دارد.
اگر n پالس همه با نسبت سیگنال به نویز یکسان توسط یک جمع کننـده ایـده آل قبـل از
آشکارسازی جمع گردند، نسبت سیگنال به نویز حاصل دقیقا n برابر نسبت سیگنال به نویز
یک تک پالس خواهد بود. اگر همان n پالس با یک جمع کننده ایده آل پس از آشکار سازی
جمع شود، نسبت سیگنال به نویز حاصل کمتر از n برابر نسبت سیگنال به نویز یک تـک پالس خواهد بود. این افت راندمان در اثر عملکرد غیرخطی آشکار ساز دوم است، زیـرا در این فرایند مقداری از انرﮊی سیگنال به انرﮊی نویز تبدیل می شود.
مقایسه دو جمع بندی قبل و بعد از آشکاری را می توان چنین خلاصه کرد: اگرچـه جمـع بندی پس از آشکار سازی به اندازه جمع بندی پیش آشکارسازی کارایی ندارد ولی در عمل آن بسیار آسان تر است و لذا جمع بندی در عمل ترجیح داده می شود.

۱-۷) تلفات جمع بندی بر حسب تعداد پالسها
١٨
پارامتر متغیر n f در منحنی های شکل ۱-۷ عبارتست از عدد آﮊیر غلط که ایـن متغیـر
برابر معکوس احتمال آﮊیر غلط است. بعضی از مهندسین رادار ترجیح می دهند از احتمال و بعضی دیگر از عدد آﮊیر غلط استفاده کنند. به طور متوسط از هر n f تصمیم ، ممکـن
است در زمان آﮊیر غلط Tfa یک تصمیم غلط وجود داشته باشد. اگر τ پهنای پـالس وTp
زمان تناوب تکرار پالس و f p  1Tp فرکانس تکرار پالس باشد، در این صـورت تعـداد

تصمیمات n f در زمان Tfa برابر است با تعدادعرض پالسها در یک زمـان تنـاوب پـالس
ضربدر تعداد زمان تناوبهای پالس درf p ثانیه ضربدر زمان آﮊیر غلط. بنـابراین تعـداد
تصمیمات ممکن برابر است با n f  Tfa f pη  Tp /τ و B τ ≈ 1 است که B پهنـای بانـد است ، بنابراین عدد آﮊیر نویز برابر است با 1P n f  Tfa B  .معادله رادار با n پالس fa را می توان به شکل زیر نوشت: ۱-۵۱) Pt GAσ R4 max  ( F (S n N (4π)2 kT B n n 0
پارامترها در معادله فوق نظیر پارامترهای معادله ۱-۷ می باشند ، بجـز اینکـه نسـبت
سیگنال به نویز یکی از n پالس معادل است که با هم جمع شده اند تا احتمال آشکار سازی مورد لزوم برای یک احتمال آﮊیر غلط معین ایجاد نماید. برای استفاده از این نوع معادلـه
رادار بایستی یک سری منحنی نظیر منحنی های شکل ۱-۶ به ازاﺀ هر مقـدار n رسـم شود. البته با اینکه چنین منحنیهایی در دسترس هستند ولی نیازی به آنها نیست! و می توان از شکلهای ۱-۶ و ۱-۷ استفاده کرد . و در نهایت به معادله ۱-۶۱ دست یافت.
١٩
۱-۶۱) Pt GAσEi (n) R4 max  ( N F (S (4π)2 kT B 1 n n 0 مقدار)1 N (S از شکل ۱-۶ و مقدار(nEi (n از شکل ۱-۷ بدست می آید.
شکل ۱-۸) احتمال آشکار سازی بر حسب سیگنال به نویز واحتمال خطاﺀ10−9
۱-۵) سطح مقطع راداری اهداف:
در واقع تمام انرﮊی تابیده شده به هدف ، به سمت رادار بازتابیده نمی شود و بسته به نوع و اندازه هدف درصدی از آن بازتابیده مناسب خواهد شد. سطح مقطع راداری یک هـدف، سطحی فرضی است که هر مقدار توان به آن تابیده شود( به آن برسد) به طور مساوی در همه جهات پراکنده خواهد کرد وبه این شکل فقط درصدی از توان رسیده شده به هدف بـه رادار باز تابیده می شود. به عبارت دیگر:
۱-۷۱) 2 Er lim 4πR2 power reflected toward source / unit solid angle σ  Ei R→∞ incident power density / 4π ٢٠
که در آن:
= R فاصله بین هدف ورادار
= Er شدت میدان برگشتی از هدف روی رادار
= Ei شدت میدان تابشی به هدف
این رابطه معادل با رابطه برد رادار که در ابتدا ارائه شد می باشـد. بـرای بسـیاری از هدفهای راداری نظیر هواپیماها ، کشتیها ، سطح زمین وسطح مقطع راداری ضرورتا تابع ساده ای از سطح فیزیکی نیست و تنها می توان گفت هرچه اندازه هدف بزرگتر باشد سطح مقطع راداری آن نیز بزرگتر خواهد بود.
پراکندگی و پراش گونه های متفاوتی از یک فرایند فیزیکی یکسان هستند. وقتی که جسمی موج الکترومغناطیسی را پراکنده می کند، میدان پراکنده شده برابر تفاوت میـدان کـل در حضور جسم و میدانی که بدون حضور جسم وجود دارد ، تعریف میگردد. با فرض تغییر نکردن منابع ، از طرف دیگر میدان پراش عبارتست از میدان کل در حضور جسم. البتـه می توان با معادلات ماکسول و شرایط مرزی مناسب مقدار سطح مقطـع را بدسـت آورد ولی این شیوه برای اشکال هندسی بسیار ساده استفاده می شود و برای شکلهای پیچیده تـر همانند بدنه یک هواپیما و یا کشتی و .... کاربرد ندارد. در عمل برای محاسبه سطح مقطع اجسامی از این قبیل نمونه کوچک آنرا در اتاقهای خاصی قرار می دهند ومقدار باز تـابش تششع مغناطیسی آنرا محاسبه می کنند. سطح مقطع راداری یک کره ساده به عنوان تـابعی از محیط آن نسبت به طول موج 2πa λ در شکل ۱-۹ رسم شده است. ناحیه ای که انـدازه

کره نسبت به طول موج کوچک است را ناحیه رایلی گویند. ناحیه ای را که در آن ابعـاد کره نسبت به طول موج بزرگ باشد ناحیه نوری گویند. ناحیه بین این دو قسـمت را کـه سطح مقطع نسبت به فرکانس رزونانس دارد ناحیه رزونانس گویند. نمودارهـای شـکلهای
٢١
زیر بر اساس تابع "مای" که سطح مقطع یک کره را بر اساس قطر آن و همچنین فرکـانس
سیگنال رادار مشخص می کند ، نشان می دهد.
5 0 -5 dB- RCS -10 sphere Normalized -15 -20 15 14 13 12 11 10 9 8 7 6 5 4 3 2 -25 1 Sphere circumference in wavelengths 2 1.8 1.6 1.4 RCS 1.2 sphere 1 Normalized 0.8 0.6 0.4 0.2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 Sphere circumference in wavelengths شکل ۱-۹) خروجیهای برنامه .rcs-sphere سطح مقطع راداری کره ای به شعاع a و طول موج λ
لذا با توجه به این توضیحات هیچ گاه راداری را نمی توان پیدا کرد کـه در فرکـانس ۲۲
گیگا هرتز کار کند ، چون در این فرکانس ذرات آب ودیگر ذرات معلق در هوا در اندازه
های بسیار بزرگتر در دید رادار خواهند بود و تمام انرﮊی تابیده شده را باز تاب می کننـد
٢٢
و لذا رادار همیشه در اشباع خواهد بود! البته پارامترهای دیگری هم وجود دارنـد کـه در سطح مقطع تاثیر گذار است مثل زاویه دید که فرضا برای یک لوله دراز و باریک بسته به زاویه دید می تواند تغییرات بسیاری داشته باشد. در زیر مقادیر نمونه برای سطح مقطـع راداری اهداف مختلف در یک فرکانس ماکروویو نشان داده شده است.

جدول ۱-۲) مثالی از سطح مقطعهای راداری در فرکانس ماکروویو
default RCS 100 RCS-rcsdelta1 RCS-rcsdelta2 80 60 40 dB- SNR 20 0 150 100 50 -200 Detection range - Km
شکل ۱-۰۱) خروجی برنامه .--ar_eq نسبت سیگنال به نویز دریافتی بر حسب برد هدف با توجه به مقدار سطح مقطع هدف
٢٣
۱-۶) پارامترهای آنتن:
تقریبا تمام آنتنها از انتهای سمتگرا برای گیرنده وفرستنده استفاده مـی کننـد. در حالـت فرستندگی ، آنتن سمتگرا انرﮊی را به شعاع باریک ارسال می کند تا تمرکـز انـرﮊی در
محدوده هدف را افزایش دهد. بهره آنتن G معیاری برای اندازه گیری توان تششعی یـک آنتن سمت گرا در یک جهت خاص نسبت به توان ایجاد شده در همان جهت توسط یک آنتن بدون سمت گرایی با راندمان صد در صد است . به طور دقیق تر ، بهره توان یک آنتن در حالت فرستندگی برابر است با:
۱-۸۱)
توجه شود که بهره آنتن تابعی از جهت می باشد. اگر بهره در جهاتی بزرگتر از واحد باشد ، لزوما در جهاتی دیگر باید کمتر از یک گردد. اصل اولیه انتنها اصل هم پاسخی است که می گوید:خصوصیت آنتنها در حالت فرستندگی با گیرندگی کاملا یکسان می باشند.
اشکال شعاع آنتنهایی که اغلب در رادارها استفاده می شود مدادی یا بادبزنی است. پتـرن مدادی دارای تقارن محوری یا لااقل نزدیک به محوری می باشد. پهنای پترن یک انتن بـا شعاع مدادی می تواند در حدود یا کمتر از چند درجه باشد وعموما در مـواردی کـاربرد دارند که دقت اندازه گیری در فضا برای ما مهم باشد.اگرچه در صورت نیاز با یک شعاع باریک می توان یک قطاع بزرگ و یا حتی یک نیمکره را مرور کرد، ولی اغلب این کار در عمل مورد نظر نیست. معمولا نیازهای عملی بر حداکثر زمان مرور ، محدودیتهایی را ایجاد می کند به طوری که رادار روی هر سلول تقسیم شده صفحه نمایشگر نمـی توانـد زمان زیادی بایستد. این موضوع خصوصا اگر سلول های تفکیک که باید جسـتجو شـوند زیاد باشند، بیشتر مسئله ساز می شود. لذا می توان با جایگزینی یک آنتن با پترن بادبزنی که در آن یک بعد وسیع ودیگر بعد بسیار باریک است ، زمان اسکن فضای مورد نظر را
۴٢
کاهش داد. در واقع بسیاری از رادارهای زمینی دور برد از یک شعاع بـادبزنی کـه در صفحه افق باریک ولی در راستای عمود پهن هستند برای آشکارسازی اهداف با سـرعت اسکن بالا بکار گرفته می شوند. سرعت اسکن یک پارامتر مصلحتی بین سرعت داده ها و قدرت آشکار سازی اهداف ضعیف است . فرضا سرعت مرور برای رادارهای دیده بـان عملی بین ۱ تا ۰۶ دور در دقیقه می باشد ولی این مقدار برای رادارهای تجسـس هـوایی دور برد ۵ تا ۶ دور در دقیقه می باشد. پوشش یک شعاع بادبزنی ساده برای دیدن هدفهای با ارتفاع زیاد و نزدیک انتن معمولا کافی نیست. چون در این حالت آنتن انرﮊی کمـی را در این جهت منتشر می کند. ولی ، می توان پرتو را اصلاح نموده به طوری که انـرﮊی بیشتری در زوایای بزرگتر منتشر کند. یک روش برای دست یابی به چنین هدفی ، به کار گیری یک پترن بادبزنی با شکل مناسب ، و با مربع کسکانت زاویه عمودی می باشـد. در آنتن مربع کسکانتی ، بهره به صورت تابعی از زاوِه عمودی به صـورت زیـر داده مـی
شود: ۱-۹۱) 0  φ  φm φ csc2 (φ) 0 ) G(φ)  G(φ 0 ) csc2 (φ که(G(φ بهره آنتن نسبت به زاویه عمودی φ می باشد.خاصیت مهم آنتنهای مربع کسـکانت
این است که توان برگشتی از یک هدف با مقطع ثابت Pr در ارتفـاع ثابـت h مسـتقل از
فاصله هدف تا رادار R می گردد. با جایگذاری بهره آنتن مربع کسکانتی در معادله سـاده رادار می توان نوشت:
2 K csc4 (φ) K1 ) csc4 (φ)λ2σ 0 P G 2 (φ Pr  ۱-۰۲)  t h4 R4 (4π)3 csc4 (φ0 )R4 کهK1 مقدار ثابتی است. اگر ارتفاع نیز ثابت فرض شود، چون cscφ  R h ثابت می باشد،

و نیزK2 نیز مقدار ثابتی خواهد بود. در عمل ، توان دریافتی توسط گیرنده از یک آنـتن
مربع کسکانتی واقعا مستقل از فاصله نمی باشد. سطح مقطع با زاویه دید تغییر می کند، و
۵٢
عوامل دیگری همچون نا همواری زمین و.... می توان علل این تغییر باشند.در فصل بعد نکات بیشتری از آنتنهای رادار بخصوص برای کاربرد مورد نظر ما ارائه خواهد شد.
۱-۷) توان فرستنده:
توان Pt در معادله ۱-۷ توسط مهندسین رادار به عنوان توان پیک نامیده می شود. تـوان
پیک پالسی در معادله رادار با توان پیک لحظه ای یک موج سینوسی تفـاوت دارد. ایـن توان عبارتست از توان متوسط در یک تناوب فرکانس حامل که در حداکثر پالس توان اتفاق می افتد. توان پیک به طور کلی معمولا نصف توان لحظه ای است. اغلب توان متوسط که باPav نشان داده می شوددر رادار مد نظر است ، که عبارتست از توان متوسط فرستنده در
یک دوره تناوب تکرار پالس. اگر موج ارسالی قطاری از پالسهای ارسالی با پهنـای τ و
دوره تناوب تکرار پالسی برابر با Tp  1 f p باشد ، در این صورت رابطه توان متوسط با

توان حداکثر به صورت زیر در خواهد آمد:
۱-۱۲) Ptτfp Ptτ Pav  Tp نسبت τ fp را نسبت زمانی یا چرخه کار گویند. مقدار نمونه نسبت زمـانی بـرای یـک
رادار پالسی به منظور آشکارسازی یک هواپیما ۱۰۰/۰ می باشد. در صورتی کـه یـک
رادار CW که به طور پیوسته سیگنال ارسال می کند نسبت زمانی واحد است. با نوشـتن معادله رادار برحسب توان متوسط بجای توان پیک رابطه زیر به دست می آید:
۱-۲۲) Pav GAσnEi (n) R4max  p f 1 ( N τ)(S (4π)2 kT F (B n 0 n
پهنای باند و عرض پالس با یکدیگر به کار می روند زیرا معمولا حاصلضرب ایـن دو در بیشتر کاربردهای رادار پالسی برابر واحد است . در صورتی که شکل پالسها مستطیلی
۶٢
نباشد مناسبتر است که معادله بر حسب انرﮊی موجود در شکل موج ارسالی نوشته شود:
۱-۳۲) Eτ GAσnEi (n) R4max  Pav  Eτ ( N τ)(S (4π)2 kT F (B f p 1 n 0 n
که در آن Eτ  Pav f p می باشد. در این فرم ، فاصله به طور مشخص و جداگانه بـه طـول

موج و فرکانس تکرار پالس بستگی ندارد. پارامترهای مهم موثر برد رادار عبارتند از کل
انرﮊی فرستنده nEτ ، بهره آنتن فرستندگی G ، سـطح مـوثر گیرنـدهAe و عـدد نـویز
گیرنده. Fn فرکانس تکرار پالس در درجه اول توسط حداکثر فاصله که در آن انتظار هدف
وجود دارد تعیین می شود. اگر prf خیلی زیاد گردد احتمال دریافت انعکاسهای ناشـی از انتقال غلط پالسها افزایش می یابد. سیگنالهای برگشتی پس از یـک زمـان بـیش از دوره تناوب تکرار پالسها را انعکاسهای با زمان محدود چند پریود گویند و می توانند سبب خطا
یا سردرگمی در اندازه گیری برد شود.سه هدف A و B وC را مطابق شـکل ۱-۱۱ در
نظر بگیرید. هدف A در ناحیه حداکثر فاصله بدون ابهـام رادار ، هـدف B در فاصـله
بزرگتر از حداکثر فاصله بدون ابهام و هدف C در فاصله بین دو برابر تا سه برابر حداکثر فاصله بدون ابهام قرار دارند. ظهور ۳ هدف روی یک اسکوﭖ در شکل ۱-۱۱ب نشـان
داده شده است. انعکاسهای با زمان حدود چند پریود روی اسکوﭖ-A از انعکاسهای صحیح هدف که واقعا در حداکثر فاصل بدون ابهام قرار دارند قابل تشخیص نمـی باشـند. فقـط
فواصل اندازه گیری شده برای هدف A صحیح است و بـرای هـدفهای B و C صـحیح نیست. یک راه برای تشخیص انعکاسهای با زمان حدود پریود از برگشتهای بدون ابهـام ،
استفاده از یک فرکانس تکرار پالس prf متغیر می باشد.
٢٧

شکل۱-۱۱) انعکاس با زمان حدود چند پریود که باعث افزایش ابهام در فاصله می شود
سیگنال برگشتی از یک هدف در فاصله بدون ابهام روی اسکوﭖ A در هر مـورد بـدون
توجه به مدوله شدن prf در یک محل ظاهر می شوند ، و این در حالی است که برگشـتی از هدف با زمان حدود چند پریود مطابق شکل ۱-۱۱ج در یک زمان محدود گسترده می
شود. Prf را می توان به صورت پیوسته بین دو حد معین و یا به صورت گسسته بین چند مقدار معین تغییر داد. تعداد فرکانسهای تکرار پالس مجزا ، بستگی به درجه هـدفهای بـا زمان حدود چند پریود دارد. برای مثال هدفهای با زمان برگشت مضاعف فقط نیاز بـه دو
فرکانس تکرار مجزا دارند.به جای مدوله کردن prf ، به روشهای دیگری از جمله تغییـر دامنه ، عرض ، فرکانس و فاز و .... می توان پرداخت. سیگنال برگشتی با زمان حـدود چند پریود را می توان تشخیص داد. معمولا این روشها در عمل به مقدار لازم موفق نیستند لذا کاربرد چندانی ندارند. یکی از محدودیتهای اساسی ، رویهم افتادگی هدفهای نزدیک بـه هم می باشند ، یعنی هدفهای قوی زمینه ( زمین و کوه های اطراف) می تواند بـه قـدری بزرگ باشند که هدفهای کوچکتر و مورد نظر مارا مخفی کنند. همچنین زمان لازم بـرای
٢٨
پردازش سیگنال برای رفع ابهامات بیشتر می شود.به طورکلی و تئوری ، ابهامات را مـی توان با مشاهده تغییرات سیگنال برگشتی بر حسب زمان ( فاصله) بر طرف نمود. لیکن این دو روش همواره عملی نیست بدلایل زیادی چون دامنه سیگنال برگشتی به غیر از تغییـر
فاصله می تواند تغییر کند. در عوض ابهامات فاصله در یک رادار با چند prf را می توان با استفاده از تئوری باقیمانده چینی یا روشهای عددی محاسباتی دیگر مرتفع نمود وفاصـله واقعی را بدست آورد.مطالب ارائه شده در این فصل ، مقدمه ای بود کوچک بـر رادار و پارامترهای آن ، برای آنکه دانشجویی که اطلاعات کاملی در مورد سیستمهای رادار ندارد در هنگام مواجه با مطالب فصل ۲ و بخصـوص ۳ دچـار سـردرگمی نشـود. برنامـه
--ar_eq همچنین می تواند نسبت سیگنال به نویز را بر حسب برد هدف برای ما آشکار سازد. شکل زیر نمونه ای از خروجی این برنامه است ، که به ازای سه مقدار متفاوت از توان لحظه ای ورودی و همچنین سایر پارامترهای رادار از قبیل بهره آنتن و ... ، مقادیر
نسبت سیگنال به نویز را در رنجهای متفاوت تا 150Km نشان می دهد. خروجیهای ایـن
برنامه برای راداری با توان لحظه ای 1.5MWatt و 0.1 و 0.01 آن بدست آمده است.
default power 100 .ptpercent1*pt ptpercent2*pt 80 60 40 dB- SNR 20 0 150 100 50 -200 Detection range - Km
شکل ۱-۲۱) خروجی برنامه .--ar_eq مقدار نسبت سیگنال به نویز بر حسب برد هدف به ازای ۳ مقدار از توان ورودی
٢٩
فصل دوم
مشخصات رادار پالسی:
مقدمه:
رادارهای پالسی که در این پروﮊه به آنها پرداخته می شود دارای ۲مد هستند، مد فرستندگی
مدگیرندگی. در مد فرستندگی رادار فقط امواج الکترومغناطیسی را ارسال مـی کنـد و قسمت گیرندگی به طور کامل از کار می افتد و در مد گیرندگی رادار در حـال دریافـت امواج الکترومغناطیسی است که قبلا به هدف ارسال شده و بازتابش یافته اند. این عملکـرد دارای یک حسن بزرگ و یک عیب است که می توان آنرا تا حدودی رفع کرد. به طـور کلی در رادار های CW که به طور بیوسته در حال ارسال و دریافـت هسـتند ، مسـئله ایزولاسیون بین آنتن فرستنده و گیرنده بحث بسیار مهمی است و تلاش مهندسان رادار بـر آن است که این ایزولاسیون را تا حد امکان بالا ببرند. در رادارهای پالسی چون فرسـتنده در حال کار گیرنده خاموش است و بلعکس ، لذا این ایزولیشن برابر است با بینهایت! امـا یک عیب نسبتا بزرگی که در رادارهای پالسی موجود است آنست که اگر سیگنال برگشتی از هدف در مد فرستندگی رادار به رادار برسد ، کل سیگنال از بـین مـی رود و هـدف آشکار نخواهد شد. در شرایط دیگر ممکن است که قسمتی از سیگنال دریافتی دریافت شود
قسمت دیگر بدلیل عوض شدن مد رادار از گیرندگی به فرستندگی از دست برود . که در
٣٠
این صورت چگالی توان سیگنال دریافتی کاهش می یابد و احتمال آشکارسازی هدف نیـز
کم خواهد شد. در این قسمت می توان با بالا بردن PRF رادارهای پالسـی و کـم کـردن ضریب کار آنها این احتمال را به حداقل کاهش داد.
۲-۱) برد:
شکل ۲-۱ بلوک دیاگرام رادار پالسی را نشان می دهد. کنترل کننده زمان ، سـیگنالهای زمانی همزمان مورد نیاز سرتاسر سیستم را تولید می کند. یک سیگنال مدوله شده در دامنه تولید می شود و به وسیله بلاک مدوله کننده فرستنده به آنتن فرستاده می شود. سوئیچ کردن
آنتن بین حالتهای فرستندگی و گیرندگی توسط Duplexer انجام می شود.Duplexer سبب می شود که آنتن بتواند به عنوان فرستنده و گیرنده مورد استفاده قـرار گیـرد. در طـول
فرستندگی Duplexer انرﮊی الکترومغناطیسی را به طور مستقِم به سمت آنتن هدایت مـی
کند . متناوبا در زمان گیرندگی Duplexer انرﮊی منعکس شده از هدف را که توسط آنتن دریافت می شود به سمت گیرنده انتقال می دهد. گیرنده رادار سیگنال دریـافتی را تقویـت کرده و آنرا برای پردازش آماده می سازد. استخراج اطلاعات هدف توسط بلاک پردازشگر
سیگنال صورت می پذیرد. فاصله هدف ،R، توسط اندازه گیری تاخیر زمـانی سـیگنال و ، محاسبه می شود. یک پالس از سمت رادار به سمت هدف فرستاده می شود و برمی گردد. اگر موج الکترومغناطیسـی بـا سـرعت نـور در هـوا منتشـر شـود ، یعنـی
s 8 m c  3×10 ، پس خواهیم داشت: ۲-۱) c∆t R  2
که R بر حسب متر است و بر حسب ثانیه و ضریب 0.5 یا همان 2 در مخرج به دلیل آن است که موج مسیر بین رادار تا هدف را دو بار طی کرده است ، یک بار هنگام تابش
٣١
از رادار تا هدف رفته است و بار دیگر هنگام باز تابش از هدف به سمت رادار آن مسـیر را طی می کند.

شکل ۲-۱) بلاک دیاگرام یک رادار پالسی ساده معمولا رادارهای پالسی یک قطار از پالسها را همانگونه که در شکل ۱-۲ نشان داده شده
است به سمت هدف می فرستند و سپس دریافت خواهند کرد.T مدت زمان تکـرار پـالس
است و τ پهنای پالس می باشد. IPP یا همان مدت تکرار پالس به PRI اشاره مـی کنـد.

معکوس PRI ، PRF است که توسط نشان داده می شود. ۲-۲) 1  1 fr  T PRI
شکل ۲-۲) قطار پالسهای ارسالی و دریافتی


در طول هر PRI رادار فقط به مدت τ انرﮊی الکترومغناطیسی ساطع می کند و در طول
بقیه PRI منتظر امواج دریافتی از هدف می شود.
٣٢
ضریب dt که Duty cycle فرستندگی رادار است با نسبت d  τ T مشخص می شـود.

توسط انرﮊی فرستاده شده متوسط رادار که باPav مشخص می شود از فرمول زیر بدسـت
می آید:
۲-۳)Pav  Pt ×dt
که Pt نشان دهنده مقدار ماکزیمم توان انتشار یافته توسط رادار می باشد. و انرﮊی پالسـی
برابر با :
EP  Ptτ  pavT  Pav fr

برد متناظر با تاخیر زمانی T به عنوان برد غیر مبهم رادار معرفی می شود. و باRu نشان
داده می شود. نمونه ای راکه در شکل ۱-۳ نشان داده شـده اسـت را در نظـر بگیـریم
برگشتی 1 نشان دهنده برگشتی رادار از هدفی در فاصله 2R1  c∆t است که حاصـله از
پالس 1 است. در برگشتی 2 می تواند نشان دهنده برگشتی رادار حاصل از فرستاده شـدن
پالس 2 باشد و یا اگر هدف فاصله اش از رادار بسیار زیاد باشد امکان دارد که برگشتی از
پالس شماره 1 باشد که در این صورت احتمال خطا وجود دارد.
۲-۴) c(T  ∆t) R2  or c∆t R2  2 2 به روشنی فاصله غیر مبهم با برگشتی 2 مرتبط است. بنابراین زمانی که پالسـی فرسـتاده می شود، یک مدت زمان کافی منتظر بماند. آنقدر که پالس مـنعکس شـده از هـدف در بیشترین برد ، قبل از آنکه پالس بعدی فرستاده شود دریافت شود. نتیجه آنکه ماکزیمم بـرد
غیر مبهم با نصف PRI مرتبط است:
۲-۵) c  T Ru  c 2 fr 2 ٣٣

شکل ۲-۳) توضیح فاصله مبهم
برای مثال اگر یک رادار هوایی را در نظر بگیریم که رادار توان پیـک اسـت و از دو
PRF استفاده می کند ، . fr1 10KHz, fr 2  30KHz پهنای پالس مورد نیاز برای هرکدام
از PRFها دارای توان متوسط برابر با هم و مقدار 1500Watts باشند در ایـن صـورت انرﮊی برای هر مورد برابر است با:
dt  10 ×1500103  0.15

به طور دقیق خواهیم داشت.
1 0.1ms T1  3 10 ×10 1 0.0333ms T  3 10 30 × 2 در نتیجه پهنای نهایی برای هر پالس برابر است با:
τ1  0.15 ×T1 15s τ1  0.15 ×T2  5s
−6 4 0.15joules 10 15 × × 10 p1  Ptτ1  E ×5×10−60.05joules 104 Pτ 2 p2 E t ۴٣
۲-۲) میزان تفکیک پذیری:
تفکیک برد ( ( range resolution که با نشان داده می شود، یـک پـارامتر رادار است که بیان کننده تواننایی آشکارسازی اهدافی است که در نزدیکی هم قرار دارند. معمولا سیستمهای راداری برای کار کردن در یک محدوده حداقل و حداکثر ( ( Rmax , Rmin طراحی
می شوند. محدوده بین این حداقل و حداکثر به m قسمت تقسیم می شوند. که هر کدام آنهـا دارای یک پهنای می باشند:
۲-۶) Rmax − Rmin M  ∆R در اینصورت اهداف با رنجهای حداقل تفکیک می شوند و این امر سبب می شود که کاملا از هم قابل شناسایی باشند. این امر در شکل ۱-۸ نشان داده شده است .

شکل ۲-۴) تحلیل اهداف در راستای عمود و افق
اهدافی که در داخل یک محدوده تشخیص برد قرار دارند را می توان بـا بکـارگیری تکنیکهای پردازش سیگنال در راستای عمود از هم شناسایی شوند.
۵٣
دو هدف که در فواصلR1 وR2 قرار دارند. در نظر بگیرید. در این صورت تاخیر زمانی
متناظر با هر کدام از این اهداف برابر سیگنال برگشتی برابر است باt1 و. t2 را باید
به عنوان تفاوت برد میان دو هدف در نظر گرفت که در این صورت داریم:
۲-۷) δ . t c t2 −t1 ∆R  R2 − R1  c 2 2 حالت سوال زیر را مطرح می کنیم و به آن پاسخ می دهیم . کمترین فاصله زمانی کـه
می توان هدف شماره 1 را در فاصلهR1 و هدف شماره 2 را در فاصلهR2 از هم تشخیص
داد چه مقداری است؟ به بیان دیگر کمترین مقدار چه مقداری است؟
در ابتدا فرض کنید ، که دو هدف با cτ 4 از همدیگر تفکیک می شوند که τ پهنای پالس

می باشد. در این شرایط وقتی لبه عقبی پالس به هدف 2 برخورد کند ، لبه جلـویی پـالس مسافت Cτ را به سمت رادار بازگشته است. وپالس برگشتی ممکن که بـا سـایر امـواج
برگشتی از اهداف دیگر ترکیب شود. همانطور که در شکل ۱-۹.a نشان داده شده اسـت.
به هر حال اگر دو هدف به اندازه cτ 2 با هم فاصله داشته باشند. هنگامی که عقبی پـالس

برگشتی از هدف اول به رادار رسید لبه جلویی پالس برگشتی از هدف دوم هم به رادار می
رسد. در نتیجه دو پالس برگشتی همانند شکل ۱-۹.b نشان داده خواهد شد بنـابراین
باید بزرگتر و یا برابر با cτ 2 باشد. و چون پهنای باند رادار که B نشان داده می شـود

برابر است با 1 پس: τ ۲-۸) c  cτ ∆R  2B 2
معمولا طراحان رادار همانند استفاده کنندگان آن در پی کاهش این فاصله هستند به منظـور افزایش عملکرد رادار می باشند. همانطور که در شکل ۱-۸ توصیه شد، به منظور رسیدن
۶٣
به یک تفکیک برد مناسب باید پهنای پالس را کاهش دهیم و این بدین معنی است که توان متوسط انتشار یافته نیز کاهش یافته است و برعکس پهنای باند افزایش.
برای رسیدن به درجه تفکیک پذیری مناسب برای آنکه توان متوسـط انتشـار در سـطح مناسب نگه داشته شود ، می توان از تفکیک فشردگی پالس استفاده کرد.

شکل ۲-۵) .aدو هدف غیر قابل تفکیک .b دو هدف قابل تفکیک
می توان مثالی در زمینه ارائه داد تا درک بهتری از قضیه داشت. یک رادار را بـا بـرد
مبهم 100Km در نظر بگیرید که دارای پهنای باند 0.5MHz اسـت. مقـادیر PRF ،
PRI، ∆R و τ به ترتیب زیر بدست می آیند.
1500Hz 8 10 3×  C PRF  105 2 × 2R u 0.6667ms 1  1 PRI  1500 PRF ٣٧
300m 8 3×10  c ∆R  106 2 ×0.5 × 2B 2s 2 ×300  2∆R τ  c 3×108 ۲-۳) فرکانس داپلر:
رادارها از تغییر فرکانس داپلر برای استخراج سرعت نسبی هدف یا همان تغییـر فاصـله هدف نسبت به رادار استفاده می کنند. همچنین برای آنکه اهداف متحرک و ثابت و همچنین اشیاﺀ ثابت را از هم تفکیک کنند ، از فرکانس داپلر استفاده می کنند. پدیده داپلر تغییـر در فرکانس مرکزی یک موج به خاطر برخورد با یک هدف متحرک است.
تغییر فرکانس بنا بر جهت حرکت هدف می تواند مثبت ویـا منفـی باشـد. شـکل مـوج برخوردی به هدف دارای جبهه موجهای همفازی است که به اندازه λ همان طول مـوج ، از هم فاصله دارند. یک هدف نزدیک شونده سبب می شود جبهه موجهای همفاز برگشـتی به همدیگر نزدیگتر شوند وطول موج کوتاهتر یا فرکانس بالاتری را نتیجه می دهد. متناوبا هدفی که در حال دور شدن از رادار است سبب می شود جبهه موجهای همفاز برگشتی از هم باز شوند و طول موج بلندتر ویا فرکانس پایین تری را حاصل کند. این امر در شـکل ۲-۶ نشان داده شده است.
پالسی را با پهنای پالس τ که با هدفی که دارای سرعت υ و در حال نزدیـک شـدن بـه
راداراست برخورد می کند ، همانطور که در شکل ۱-۱۱ نشان داده شده است. فاصله d
برحسب متر است که هدف در فاصله بین 2 پالس ارسالی به سمت هدف طی کرده است.
۲-۹)d  v∆t
٣٨

شکل ۲-۶) تاثیر هدف متحرک در جبهه موج همفاز ارسالی
که ∆t برابر است با مدت زمان بین برخورد لبه پیشرو و لبه عقبی پالس با هدف. اگر پالس
با سرعت نور در فضا منتشر شود لبه عقبی به اندازه cτ − d حرکت داده می شود ، پـس خواهیم داشت:
۲-۰۱) cτ − d ∆t  c با ادغام کردن معادلات ۲-۰۱ و ۲-۱۱ داریم: ۲-۱۱) τ vc d  v  c لبه عقبی پالس با توجه به تغییر زمانی بین لبه جلویی و عقبی پالس به اندازه ∆t در راستای
رادار به اندازه s تغییر می کند.
۲-۲۱)s  c∆t
٣٩

شکل ۲-۷) شرح چگونگی فشردگی یک هدف متحرک برای یک پالس تنها
بنابراین پهنای پالس برگشتیτ′ برحسب ثانیه و یا برحسب متر به صورت L خواهد بود:
۲-۳۱) L  cτ′  s − d با قرار دادن معادلات ۲-۱۱ و ۲-۲۱ در معادله ۲-۳۱ خواهیم داشت: vc ′ ۲-۴۱) c∆t−vcτ cτ
۲-۵۱)
۲-۶۱) τ c − v τ′  c  v در عمل ضریب به عنوان ضریب انبساط زمانی معرفی می شود. توجه
داشته باشید که اگر v=0 باشد در این صورتτ τ′ خواهد بود و به طرز مشابه اگر هدف ما یک هدف دور شونده باشد در این صورت :
۲-۷۱) τ v  c τ′  c − v ٠۴
برای بدست آوردن یک عبارت در مورد فرکانس داپلر توضیحات نشان داده شده در شکل
۲-۸ را در نظر بگیرید. لبه جلویی پالس 2 در مدت زمان ∆t فاصـله بـه سمت هدف می رود و با آن برخورد می کند.
در طی فاصله زمانی مشابه لبه جلویی پالس 1 یک فاصله متناظر با c∆t را طی می کند.
۲-۸۱) d  v∆t ۲-۹۱) − d  c∆t c fr
شکل ۲-۸) شرح چگونگی تاثیرات هدف متحرک بر روی پالسهای رادار
با حل کردن دو معادله برای بدست آوردن ∆t خواهیم داشت:
۲-۰۲)
۲-۱۲)
حال فاصله پالسهای برگشتی برابر است با

frv∆t  cc

fr ∆t  cv c v

s-d و PRF جدیدfr ′ خواهد بود:
۲-۲۲) cv fr c∆t− c s − d  c  v f ′
١۴
این امر نشان می دهد که PRF جدید با PRF اصلی و اولیه به صورت زیر رابطه دارد:
۲-۳۲) fr c  v fr ′  c − v اگرچه مقدار Cycle تغییر نمی کند ، ولی فرکانس سیگنال برگشتی با یک ضریب مشـابه
بالا خواهد رفت و فرکانس fo′ را خواهد داد که از رابطه زیر بدست می آید:
۲-۴۲) f0 c  v f0′  c − v که fo فرکانس سیگنال برخوردی ( سیگنالی که به سمت هدف می رود ) است و فرکانس
داپلر حاصله از سرعت هدف که با fd نشان داده می شود ، و برابر است بـاf0′ − f0 بـه
طور دقیق از رابطه زیر بدست می آید:
۲-۵۲) f0 2v f0 − f0  c  v f0′ − f0  fd  c − v c − v برای زمانهایی که سرعت هدف بسیار کوچکتر از سرعت نور است ، که همیشه این چنین
نیز هست! ، و با توجه به آنکه c  λf0 است ، معادله فوق را می توان به صـورت زیـر بازنویسی کرد. ۲-۶۲) 2v f0  2v ≈ fd λ c این معادله را می توان برای یک هدف دور شونده نیز نوشت که در این صورت تغییـرات
فرکانس داپلر برابر است با . fd  − 2λv توضیحات مربوط به اهداف نزدیـک شـونده و

دور شونده به طور کامل در شکل ۲-۹ نشان داده شده اند.
٢۴

شکل ۲-۹) فرکانس دریافتی یک رادار مربوط به اهداف دور و نزدیک شونده
در معادله ۱-۶۲ سرعت نسبی هدف نسبت به رادار با υ نشان داده شده است ، امـا یـک اصل همیشگی نیست . در واقع ، میزان تغییر فرکانس داپلر به قسمتی از سرعت هدف که در راستای رادار باشد ، بستگی دارد. این سرعت نسبی را سرعت شعاعی هدف نسبت به رادار می نامند.
شکل ۲-۰۱ سه هدف را که با زوایای مختلف نسبت به راستای رادار در حـال حرکـت هستند نشان می دهد. هدف ۱ دارای تغییر داپلر صفر است. هدف ۲ ( همـانطور کـه در معادله ۱-۶۲ نشان داده شد) دارای بالاترین داپلر است ( داپلر ماکزیمم). ولـی هـدف ۳
دارای فرکانس داپلری متناظر با λfd  2v cosθ است . که v cosθ سـرعت شـعاعی
هدف می باشد . در واقع θ زاویه بین خط رادار تا هدف و مسیر هدف است.

شکل ۲-۰۱) نمایه سه هدف با سرعتهای برابر ولی سرعتهای شعاعی متفاوت
٣۴
بنابراین ، یک تعریف کلی برای fd با توجه به زاویه مطلق بین هدف و رادار به صـورت
زیر می باشد:
۲-۷۲) cosθ 2v  fd λ و برای اهداف دور شونده خواهیم داشت: ۲-۸۲) cosθ − 2v  fd λ که cosθ  cosθe cosθa است . که زوایای θa وθe به زوایای رادار با هدف در جهتهـای
افق و عمود اشاره داردبرای درک بهتر قضیه به شکل ۲-۱۱ توجه کنید.

۲-۱۱) سرعت شعاعی متناسب است با زاویه هدف در راستاهای عمود وافق
برای درک بهتر قضیه با یک مثال این قسمت را به پایان می بریم هدفی را درنظر بگیرید
که دارای سرعت s 175 m می باشد حال اگر رادار ما دارای سرعت s 250 m باشد و طول
۴۴
موج کاری رادار ما برابر باشد با0.03m در این صورت می توان فرکانس داپلر را بـرای سیگنال دریافتی توسط رادار بدست آورد. در صورتی که هدف یک هدف نزدیک شـونده باشد ، پس سرعت هواپیمای هدف و رادار ما با هم جمع می شود و طبـق رابطـه ۱-۶۲ تغییر فرکانس داپلر برابر خواهد شد با:
fd  2 (250 175)  28.3KHz 0.03

ولی در صورتی که هدف در حال دور شدن از رادار ما باشد ( مسیر حرکتش در جهـت مسیر حرکت رادار ما باشد ) لذا سرعتها از هم کم می شوند و تغییر داپلر برابر خواهد بود با:
5KHz (250 −175) 2 fd 0.03 ۲-۴) معادلات رادار با PRF کم:
در فصل قبل به طور کامل بر روی معادلات رادار بحث شـد و همچنـین هـر کـدام از پارامترهای آن نیز به صورت جداگانه مورد بررسی و تحلیل قرار گرفت. در این قسـمت
سعی ما بر آن است که معادلات رادار برای PRFهای کم و زیاد را بر حسـب حساسـیت آنها از هم تفکیک نماییم و مورد بررسی قرار دهیم. در این قسمت ابتدا روی رادارهای با
PRF کم پرداخته می شود.
یک رادار با پهنای پالس τ و تناوب ارسال پالس برابر با PRI که برابر است بـا T را در نظر بگیرید. این رادار دارای حداکثر توان تششعی لحظه ای Pt است. در چنین شـرایطی
توان میانگین تششعی رادار همانطور که در فصل قبل هم به آن اشاره شد برابر است با :
Pav  Pt dt
۵۴
که dt  τ T برابر است با ضریب چرخه کار رادار ویا همان نسبت انتقال به کـل طـول

تناوب رادار. می توان ضریب چرخه کار دریافت راdr در نظر گرفت ، که:
۲-۹۲) 1−τ.fr T −τ dr  T بنابر این برای رادار با PRF کم T τ ضریب چرخه کار دریافت برابر است با. dr ≈1
Ti را بعنوان زمان هدف ( زمانی که هدف توسط بیم رادار آشکار می شود) در نظر مـی
گیریم ، یعنی:
۲-۰۳) np  Ti . fr np Ti  fr که در معادله فوق np تعداد پالسهایی است که با هدف برخورد می کنـد و fr همـان PRF
رادار می باشد. حال یک رادار با PRF کم را در نظر بگیرید. با توجه به توضیحات فوق ، معادله یک رادار تک پالسی به صورت زیر داده می شود:
۲-۱۳) P G 2 λ2σ (SNR)1  (4π)3 R4 kT BFL t e برای پالسهای هم زمان ، به تعداد np خواهیم داشت:
p P G 2 λ2σ.n ۲-۲۳) t (SNR)np  (4π)3 R4 kT BFL e با استفاده از معادله ۲-۰۳ و رابطه همیشه برقرار B  τ1 می توان معادله رادارهـای بـا

PRF کم را به صورت کلی زیر بیان کرد:
τ P G 2 λ2σT f (SNR)np  ۲-۳۳) r i t (4π)3 R4 kT FL e ۶۴
تابع مطلب مربوط به مشخص کردن نسبت سیگنال به نویز برای یک رادار با PRF کم با
نام lprf_req.m ، در انتهای پروژه - ریسرچارائه شده است که می توان با دادن ورودیهای دلخـواه نسبت سیگنال به نویز را برای بردهای مختلف هدف بدست آورد. در شکل ۲-۲۱ نتیجـه حاصله از ورودیهای ارائه شده در انتها ( همراه با برنامه) نشان داده شده است. اما مطلب قابل استنتاج و مهم که در این قسمت باید برداشت شود نسبت سیگنال به نویز برای ۳ مقدار مختلف از یک پارامتر می باشد.
np = 1 120 np1 np2 100 80 60 dB- SNR 40 20 150 100 50 00 Range - Km
شکل ۲-۲۱) خروجی حاصله از برنامه lprf_req.m برای سه مقدار از np
در ورودی تابع مطلب ۳ مقـدار بـرای np در نظـر گرفتـه شـد ،np 1 وnp 1 10
و. np 2  30 همانطور که مشاهده می کنید هرچه تعداد پالسهای همزمان بـر روی هـدف
بیشتر باشد نتیجه حاصله مقدار بیشتری از نسبت سیگنال به نویز است. تابع مطلـب ذکـر شده علاوه بر این نمودار تابع دیگری را نیز در اختیار ما قـرار مـی دهـد و آن نسـبت
٧۴
سیگنال به نویز به ازاﺀ تعداد پالسهای همزمان دریافتی ازهدف می باشد کـه بـه ازاﺀ دو مقدار دلخواه از توان در اختیار ما قرار می دهدو درشکل ۲-۳۱ نشان داده شده است.
25

20
15
10
5
default power pt * percent
00 50 45 40 35 30 25 20 15 10 5 Number of coherently integrated pulses
dB-SNR
شکل ۲-۳۱) نمودار نسبت سیگنال به نویز به ازاﺀ تعداد پالسهای همزمان اما نکته مهم که در اینجا باید به آن پرداخته شود آنست که بالا رفتن خطی تعداد پالسـهای
همزمان برگشتی به معنی بالا رفتن خطی نسبت سیگنال به نویز نیست بلکه همانطور که از شکل ۲-۳۱ نیز مشاهده می شود ، در ابتدا بالا رفتن تعداد پالسهای همزمان دریافتی فرضا از ۱ به ۰۱ تاثیر زیادی در نسبت سیگنال به نویز دارد ولی برای رسیدن به تآثیری برابر با ۲ برابر همان مقدار به طور مجدد ، نیاز به بالا بردن تعداد پالسهای هم زمان دریـافتی برابر با ۰۰۱ می باشد ، که این امر به طور کامل در نمودار شکل ۲-۳۱ نشان داده شـده است.
٨۴
۲-۵) معادلات رادار با PRF زیاد:
در این قسمت به مهم بخش این فصل می رسیم که مربوط به استنتاج معادلـه رادار بـرای یک رادار با PRF بالا می باشد. معادله رادار از آن جهت مهم است که با توجه به اینکـه
PRF ارئه شده در پروﮊه باید در حدود 50KHz باشد لذا معادلات جدید تا حد قابل قبولی بر آن بر قرار خواهند بود.
حال یک رادار با PRF زیاد را در نظر بگیرید. سیگنال فرستاده شده قطـار سـریعی از پالسهای ارسالی خواهد بود. همانند قبل پهنای پالس را τ در نظر گرفته و تناوب آنـرا T
مشخص سازید. این قطار پالس را می توان با استفاده از تبدیل فوریه نمایی نمایش داد. خط طیف توان مرکزی ( جزﺀ ( DC این سری به طور عمده شامل توان سیگنال اسـت کـه
2 τ مقدار آن است و برابر است با توان دوم ضـریب چرخـه فرسـتندگی . در چنـین T شرایطی معادله رادار پالس واحد برای رادارهای با PRF بالا عبارتست از:
۲-۴۳) P G 2 λ2σ.d 2 SNR  (4π)3 R4 kT BFLd t t r e که در چنین شرایطی احتیاج به در نظر گرفتن تفاوت طول پالس ارسالی با طـول پـالس
دریافتی نیست ، در واقع . dr ≈ dt τfr بعلاوه پهنای باند رادارهای عملیاتی بـا زمـان
هدف ( ( time on target مشابه خواهد بود یعنی 1 . B  این امر بیانگر آن است که: T i λ2σ T G 2 Pτ. f SNR  ۲-۵۳) r i t (4π)3 R4 kT FL e و در انتها داریم :
٩۴
P T G 2 λ2σ SNR  ۲-۶۳) av i (4π)3 R4 kT FL e که در اینجاPav به جایPtτ. fr استفاده خواهد شد. توجه داشته باشید که PavTi خود از جنس
انرﮊی خواهد بود ، که نشان می دهد ، رادارهای با PRF بالا می توانند با استفاده از یک توان نسبی کم و زمان یکیسازی طولانی تر قابلیت آشکارسازی را بالا ببرند. واین اصـلی است که ما برای بالا بردن برد رادار بدون بالا بردن توان منبع به طور غیر متعـادل ، از آن استفاده می کنیم.
در انتهای پروژه - ریسرچهمانند قبل برنامه مطلب مربـوط بـه یـک رادارHigh-PRF بـا نـام
hprf_eq.m ارائه شده است که شکل خروجی آنرا که همان نسبت سیگنال به نـویز بـر واحد رنج می باشد ارائه شده است.
50 dt dt1 40 dt2 30 20 10 dB- SNR 0 -10 -20 150 100 50 -300 Range - Km
شکل ۲-۴۱) نمودار سیگنال به نویز بر حسب برد برای رادار HighPRF
٠۵
در ورودی تابع مطلب dt0 = 4 و dt1 =0.4 و dt2 =0.04 می باشد. همچنـین توجـه داشته باشید که یا dt نیاز است و یا باید fr و τ ، هردو را به ورودی برنامه داد. در ایـن
برنامه وقتی کاربر از مقدارdt اطمینان دارد باید مقادیر fr و τ را برابر صفر قرار دهد و همچنین وقتی مقادیر τ و fr در اختیار است بایدdt را برابر صفر قرار دهد.
۲-۶) تلفات رادار:
همانطور که با کمک معادلات رادار نشان داده شد ، نسبت سیگنال به نویز دریافتی با تلفات رادار نسبت معکوس دارد. بنابراین هرگونه افزایش در تلفات سبب کاهش نسبت سیگنال به نویز می شود. واین خود سبب کاهش احتمال آشکارسازی می گردد.
تفاوت اصلی بین عملکرد یک رادار با طراحی خوب و یک رادار بـا طراحـی ضـعیف مربوط به تلفات آن رادار است. تلفات رادار شامل تلفات اهمیـک ( مقـاومتی ) و تلفـات آشکارسازی می شود. در این بخش به طور کوتاه تلفات رادار را خلاصه وار بیان می کنیم و در انتها مقادیر معمول برای مهمترین آنها را به صورت تیتروار ارائه خواهیم کرد.
۲-۶-۱) تلفات ارسال و دریافت :
این تلفات شامل یکی از مهمترین ها می باشد که عبارتند از تلفات دریافت و ارسـال بـین ورودی آنتن فرستنده و خود فرستنده رادار و همچنین بین خروجی آنـتن گیرنـده و خـود
گیرنده. چنین افتهایی را معمولا به عنوان تلفات لوله کشـی ( (Plumbing معرفـی مـی
شوند. معمولا افت چنین تلفاتی بین 1 تا 2 دسی بل می باشد.
۲-۶-۲) افت الگوی آنتن و افت بررسی:
قبلا وقتی در معادلات رادار استدلال و استنتاج داشتیم فرض ما بر آن بود که بهـره آنـتن رادار برابر با ماکزیمم ان باشد . این امر وقتی صادق است که هدف در راستای بیم اصلی
١۵
آنتن رادار قرار داشته باشد . ولی وقتی رادار هدف را اسکن می کند ، بهره آنتن در جهت هدف همانطور که با پترن انتشار آنتن در درس آنتن محرض شده است ، کمتر از مقـدار ماکزیمم است.
تلفات در نسبت سیگنال به نویز به خاطر در اختیار نبودن ماکزیمم بهره آنتن در راسـتای
هدف برای تمام زمانها ، افت الگوی آنتن نامیده مـی شـود( . ( Antenna pattern loss
زمانیکه یک آنتن برای یک رادار انتخاب می شود، میزان افت الگوی آنتن را می توان به صورت ریاضی محاسبه کرد.
2 2.776θ ۲-۷۳) G(θ)  exp − 2 θ3dB برای مثال تششع یک آنتن فرستنده کاملا ساده را به صورت sin x در نظر بگیرید هماننـد x شکل ۲-۵۱ .

شکل ۲-۵۱) شمای پترن یک آنتن بسیار ساده شده
٢۵
در عمل یک آنتن گوسی مورد قبول است. در معادله ۲-۷۳ ،θ3db بیانگر بـیم 3dB مـی
باشد. اگر سرعت اسکن کردن آنتن رادار آنقدر سریع باشد که برای آنـتن گـین دریـافتی
همانند گین ارسال نباشد ، تلفات اسکن ( Scan loss ) نیز باید به اجبار به تلفات شکل بـیم آنتن رادار اضافه شود و در ان محاسبه گردد. رادارهای آرایه ای فازی ، نخستین کاندیدا و انتخاب برای رادارهایی هستند که باید در آنها تلفات اسکن و شکل بـیم آنـتن رادار را در نظر داشت.
۲-۶-۳) تلفات اتمسفر:
مبحث تلفات اتمسفر و پیامدهای انتشار از مهمترین بحثهای رادار است که بسیار گسـترده است و برای درک کامل آن بهتر است به مرجع شماره ۲ مراجعه شود. تضعیف اتمسفری تابعی از فرکانس عملکرد رادار ، فاصله هدف و زاویه عمودی می باشد. تلفات اتمسـفری می تواند تا چند دسی بل هم باشد.
۲-۶-۴) تلفات فروپاشی( 🙁 Collapsing
زمانیکه پالسهای نویزی برگشتی تلفیق شده بزرگتر از پالسهای برگشتی از هـدف باشـد ، یک افت در نسبت سیگنال به نویز اتفاق می افتد. به این افت ، افت فروپاشی گفتـه مـی شود. ضریب تلفات فروپاشی با رابطه زیر بدست می آید:

–272

ثابت نیم واکنش 1/s Kc
ضریب قابلیت هدایت پروتونی S/m K
کسر حجمی اجزاء L
ضخامت غشاء m Lmem
بارگذاری جرمیm/kg m
جرم مولکولی kg/mol M
تعداد الکترون‌های انتقالی به ازای یک مول مصرف سوخت n
شار مولی اجزاءmol/m.s N
فشار atm P
چگالی توان پیل w/m Pcell
بار الکتریکی C Q
نرخ مصرف حجمی mol/m.s R
ثابت جهانی گازها J/mol.K 8.314 R
مقاومت اهمیک.m ROhmic
مقاومت نفوذ اکسیژن از طریق فاز غشاء s/m
مقاومت نفوذ اکسیژن از طریق آبs/m
مختصات شعاعی m r
دما K T
حجم توده m Vagg
حجم مولار اکسیژن در نقطه جوش نرمال m/mol 25.6
کسر مولی اجزاء X
مختصه مکانی در دستگاه مختصات m Z
علائم یونانی نسبت شار مولی 
ضریب انتقال بار آند و کاتد c,a
ضخامت m 
تخلخل 
مدول تایلی 
افت ولتاژ v 
محتویات آب غشاء 
ویسکوزیته آب cP 
زاویه فاز هر جزء 
چگالی kg/m 
قابلیت هدایت الکترونی S/m 
پارامتر وابستگی 
ضریب استکیومتری 
زیرنویس‌ها و بالانویس‌ها مؤثر eff
تبادلی 0
بی‌بعد *
میانگین ¯
فعال‌سازی act
توده agg
کربن C
لایه کاتالیست CL
آیونومر i
آیونومر درون توده i,agg
محدود کننده L
جریان داخلی n
اکسیژن در سطح خارجی توده Ol
اکسیژن نفوذی در غشاء Oاکسیژن در سطح داخلی توده Osاکسیژن نفوذی در آب Ow
ذرات پلاتین – کربن Pt/C
واکنش‌دهنده R
مرجع ref
جامد s
اشباع sat
آب آند w,a
آب کاتد w,c
فصل اولمقدمه
23837903448685020000
مقدمهامروزه به دلیل بحران آلودگی‌هایزیستمحیطیناشی از مصرف سوخت‌هایفسیلیروش‌های پاک تولیدانرژی از اهمیتویژه‌ای برخوردار است. بشر به سبب افزایشآلودگی و کاهش منابع سوخت طبیعی مجبور به یافتن راه حلی شد که در اینفرآیند،تولیدانرژی از طریقهیدروژن کشف شد. در طی مطالعات و آزمایشاتی که برایتولیدانرژی از طریقهیدروژن انجام می‌گردیدوسیله‌ای که هیدروژن را به عنوان سوخت استفاده می‌کردپیلسوختینامیدند. سیستم‌هایپیل‌هایسوختی به عنوان یکی از گزینه‌هایتولیدانرژی پاک محسوب می‌شوند. توان تولید شده اینسیستم‌هایک گستره وسیعبین چند وات تا چند هزار کیلو وات را شامل می‌شود، به طوریکهاینسیستم‌هااز یک سوتامین کننده توان مورد نیازبراییکبیمارستان و یایک واحد ساختمانی به عنوان کاربرد ساکن، و از سویدیگرتامین کننده بخشی از توان مورد نیازیک فضا پیما، وسیلهنقلیه، لپ تاپ و یاحتی قلب مصنوعی به عنوان کاربردهای متحرک می‌باشند [REF _Ref333997665 h * MERGEFORMAT1]. دانشمندان معتقد بودند که هیدروژنمی‌تواند راه حلیکارآمدبرایتأمین بخشی ازنیازهایانرژیدنیا در آینده باشد. پیلسوختییکوسیله‌ای است که هیدروژن و اکسیژن را ترکیب کرده و آب و الکتریسیتهتولیدمی‌کند. انرژیتولید شده توسط پیلسوختیمی‌تواند در مصارف روزمره استفاده گردد.پیلسوختیمزایایبسیاری نسبت به وسایل مرسوم تولیدانرژی دارد از جمله این مزایا راندمان بالا،عدم ایجاد سر و صدا و آلودگیاست.
ساخت لایه‌های مختلف پیلسوختینظیرلایه‌های نفوذ گاز، صفحات دو قطبی، غشاء و لایهکاتالیستدشوار بوده و نیازمندفناوریپیشرفته‌ایمی‌باشد. چون در ساخت این لایهها از موادی نظیر فیبر بسیار نازک کربن، آیونومر، نفیون و ... استفاده میشود که فرآوری آنها نیازمند یک پروسه پیشرفته و دشوار میباشد و در انحصار کشورهای خاصی قرار دارد، همچنین مراحل ساخت برخی از این لایهها نظیر لایه کاتالیست که شامل فاز جامد، فاز غشاء و فضای خالی است بسیار پیچیده میباشد. بنابراین بدون انجام یکمدل‌سازی کامل از کل لایه‌هایپیلسوختی، ساخت یک تودهپیلسوختیکار دشواری خواهد بود.همچنین ممکن است پیل ساخته شده از نظر هزینه‌های تمام شده مقرون به صرفه نباشد. به منظور بررسیکارایی و عملکرد پیل‌هایسوختی،بایدلایههای مختلف یکپیلسوختی را مورد مطالعه قرار داده و شبیه‌سازی نمود. در اینپایان‌نامهمدل‌سازییکبعدی عملکرد یکپیلسوختی غشا پلیمری انجام می‌پذیرد، و تمامیلایه‌هایاینپیلسوختی تک سلولیشبیه‌سازیمی‌شوند. مدل ارائه شده برایلایهکاتالیست، مدل توده‌ایمی‌باشد. این مدل افت غلظت موجود در منحنیقطبیتپیل را که در چگالیجریان بالا اتفاق می‌افتد بدون اضافه کردن روابط نیمهتجربی مربوط به افت غلظت درستپیش‌بینیمی‌کندهمچنین در حالتی که اندازه تودهها به سمت صفر میرود(تودههای بسیار کوچک) این مدل به مدل همگن ساده میشود. لایه‌های نفوذ گاز نیزکه در دو طرف آند و کاتد پیل قرار دارند با استفاده از معادلات مربوط به نفوذ گازهای چند جزئی مدل شده‌اند. غشاء نیز با مدل کردن انواع مکانیزم‌های انتقال آب که در آن وجود دارد شبیه‌سازی شده است. عملکرد یکپیلسوختی توسط منحنی ولتاژ بر حسب چگالیجریانبیانمی‌شود. این عملکرد با کسر نمودن افت‌های مربوط به ولتاژ فعال‌سازی، اهمیک و غلظت از ولتاژ بازگشت‌پذیرپیل در یکچگالیجریان بدست می‌آید. سپس با تغییرچگالیجریان، منحنیجریان–ولتاژپیل بدست می‌آید. در اینپایان‌نامه معادلات حاکم بر عملکرد لایه‌های مختلف پیل (که ترکیبی از معادلات دیفرانسیل و معادلات جبریمی‌باشند) بدست آمده سپس این معادلات حل می‌گردد تا افت‌هایقید شده بدست آید. در انتها یکسری مطالعات پارامتری به منظور بررسیمیزانحساسیت تابع عملکرد به یکسریپارامترها انجام می‌پذیرد.
تاریخچهاگرچهپیلسوختیبهتازگیبهعنوانیکیازراهکارهایتولیدانرژیالکتریکیمطرحشدهاستولیتاریخچهآنبهقرننوزدهمو کاردانشمندانگلیسیویلیامگروبرمی‌گردد.اواولینپیلسوختیرادرسال۱۸۳۹باسرمشقگرفتنازواکنشالکترولیزآب،طیواکنشمعکوسودرحضورکاتالیستپلاتینساخت.
واژهپیلسوختیدرسال۱۸۸۹توسطلودویکمندوچارلزلنجربهکارگرفتهشد.آن‌هانوعیپیلسوختیکههواوسوختذغالسنگرامصرفمی‌کرد،ساختند.تلاش‌هایمتعددیدراوایلقرنبیستمدرجهتتوسعهپیلسوختیانجامشدکهبهدلیلعدمدرکعلمیمسئلههیچیکموفقیتآمیزنبود.علاقهبهاستفادهازپیلسوختیباکشفسوخت‌هایفسیلیارزانورواجموتورهایبخارکمرنگگردید.
فصلیدیگرازتاریخچهتحقیقاتپیلسوختیتوسطفرانسیسبیکنازدانشگاهکمبریجانجامشد.اودرسال۱۹۳۲بررویماشینساختهشدهتوسطمندولنجراصلاحاتبسیاریانجامداد.ایناصلاحاتشاملجایگزینیکاتالیستگرانقیمتپلاتینبانیکلوهمچنیناستفادهازهیدروکسیدپتاسیمقلیاییبهجایاسیدسولفوریکبهدلیلمزیتعدمخورندگیآنمی‌باشد.ایناختراعکهاولینپیلسوختیقلیاییبود، پیلبیکننامیدهشد.او۲۷سالتحقیقاتخودراادامهدادتاتوانستیکپیلسوختیکاملوکارا، ارائهنماید.بیکندرسال۱۹۵۹پیلسوختیباتوان۵کیلوواتراتولیدنمودکهمی‌توانستنیرویمحرکهیکدستگاهجوشکاریراتأمیننماید.
تحقیقاتجدیددراینعرصهازاوایلدهه۶۰میلادیبااوجگیریفعالیت‌هایمربوطبهتسخیرفضاتوسطانسانآغازشد.مرکزتحقیقاتناسادرپیتأمیننیروجهتپروازهایفضاییباسرنشینبود.ناساپسازردگزینههایموجودنظیرباتری(بهعلتسنگینی)،انرژیخورشیدی (بهعلتگرانبودن)وانرژیهسته ای (بهعلتریسکبالا)پیلسوختیراانتخابنمود.تحقیقاتدراینزمینهبهساختپیلسوختیپلیمریتوسطشرکتجنرالالکتریکمنجرشد.ایالاتمتحدهآمریکافناوریپیلسوختیرا در برنامه فضاییجمینیاستفادهنمودکهاولینکاربردتجاریپیلسوختیبود.پرتوویتنیدوسازندهموتورهواپیما،پیلسوختیقلیاییبیکنرابهمنظورکاهشوزنوافزایشطولعمراصلاحنمودهوآنرادربرنامهفضاییآپولوبهکاربردند.درهردوپروژهپیلسوختیبه عنوانمنبع برای تأمینانرژیالکتریکیبرایفضاپیمااستفادهشد[REF _Ref332024462 h * MERGEFORMAT2]. امادرپروژهآپولوپیلهایسوختیبرایفضانوردانآبآشامیدنینیزتولیدمی‌کرد. پسازکاربردپیلهایسوختیدراینپروژه‌ها،دولت‌هاوشرکت‌هابهاینفنآوریجدیدبهعنوانمنبعمناسبیبرایتولیدانرژیپاکدرآیندهتوجهروزافزونینشاندادند.
ازسال۱۹۷۰فنآوریپیلسوختیبرایسیستم‌هایزمینیتوسعهیافت. تحریمنفتیازسال1973-1979 موجبتشدیدتلاشدولتمردانآمریکاومحققیندرتوسعهاینفنآوریبهجهتقطعوابستگیبهوارداتنفتیگشت.
درطولدهه۸۰تلاشمحققین، در جهتتهیهموادموردنیاز، انتخابسوختمناسبوکاهشهزینهاستواربود.همچنیناولینمحصولتجاریجهتتأمیننیرویمحرکهخودرودرسال۱۹۹۳توسطشرکتبلاردارائهشد [REF _Ref332024462 h * MERGEFORMAT2].
تاریخچهپیلسوختیPEMفنآوریپیلسوختیپلیمریدرسال۱۹۶۰درشرکتجنرالالکتریکتوسط گروب و نیدرچابداعشد. اولینموفقیتجنرال الکتریکدرتولیدپیلسوختیپلیمریدراواسطدهه۱۹۶۰درپیهمکاریاینشرکتباکمیتهنیرویدریاییآمریکا و رسته مخابرات ارتش آمریکابهمنظورساختمولدهایکوچکبرقبود. اینمولدهاباسوختهیدروژنتولیدیازترکیبآبوهیدریدلیتیمتغذیهمی‌شدند. پیلسوختیتهیهشدهکوچکوقابلحملبودودرآنازکاتالیستگرانقیمتپلاتیناستفادهشدهبود[REF _Ref332024550 h * MERGEFORMAT4].
دربرنامههایفضاییمرکوریازباتریبهعنوانمنابعتأمینانرژیاستفادهشدولیبرایپروژهآپولونیازبهوسیلهایباطولعمربیشتربود. لذابرایاینمنظورپیلهایسوختیپلیمریساختشرکتجنرالالکتریکموردتستوآزمایشقرارگرفت.ناسادرپروازهایفضاییبعدیخودازپیلسوختیقلیاییاستفادهنمود.
شرکتجنرالالکتریکفعالیتخودرادردهه۱۹۷۰باتوسعهفناوریالکترولیزجهتتجهیزاتزیردریاییباحمایتواحدتولیداکسیژننیرویدریاییآمریکاآغازنمود. ناوگان سلطنتیانگلیسیدراوایلدهه۱۹۸۰اینفناوریرابرایناوگانزیردریاییخودپذیرفت. دراوایلدهه۱۹۹۰سایرگروه‌هانیزتحقیقاتدراینزمینهراآغازنمودند.آزمایشگاهملیلوسآلاموسودانشگاهتگزاسروش‌هاییراجهتکاهشمیزانکاتالیستموردنیازآزمایشنمودند [REF _Ref332024462 h * MERGEFORMAT2].
مزایا و معایبپیلسوختیعمدهترینمزایایپیل‌هایسوختی به شرح زیر هستند:
پیلسوختیآلودگیناشیازسوزاندنسوخت‌هایفسیلیراحذفنمودهوتنهامحصولجانبیآنآب و گرمامی‌باشد.
درصورتیکههیدروژنمصرفیحاصلازالکترولیزآبباشدنشرگازهایگلخانه‌ایبهصفرمی‌رسد.
به دلیلوابستهنبودنبهسوخت‌هایفسیلیمتداولنظیربنزینونفت،وابستگیاقتصادی،کشورهایجهان سومراحذفمی‌کند[REF _Ref332024462 h * MERGEFORMAT2].
بانصبپیلهایسوختینیروگاهیکوچک،شبکهغیرمتمرکزنیروگستردهمی‌گردد.
پیل‌هایسوختیراندمانبالاترینسبتبهدستگاه‌هایاحتراقی استفاده کننده از سوخت‌هایفسیلیمتداولدارند.
هیدروژندرهرمکانی که حیات باشد (آب باشد) طی پروسه الکترولیزازآبوبرقتولیدمی‌گردد. لذاپتانسیلتولیدسوخت،غیرمتمرکزخواهدشد [REF _Ref332024462 h * MERGEFORMAT2].
اکثرپیل‌هایسوختیدرمقایسهباموتورهایمتداولبسیاربیصداهستند.
انتقالگرماازپیل‌هایدماپایینبسیارکممی‌باشد،لذاآن‌هابرایکاربردهاینظامیمناسبخواهندبود.
زمانعملکردآن‌هاازباتری‌هایمتداولبسیارطولانی‌تراست، مثلاًفقطبادوبرابرنمودنسوختمصرفیمی‌توانزمانعملکردرادو برابرنمودونیازیبهدوبرابرکردن اندازهخودپیلنمی‌باشد.
به علتعدموجوداجزایمتحرکهزینهتعمیر و نگهداریازآن‌هابسیارکماست.
نصبوبهرهبرداریازپیل‌هایسوختیبسیارسادهومقرونبهصرفهمی‌باشد.
اینمولدهاقابلیتتولیدهمزمانبرقوحرارترادارند.
عمدهترینمعایبپیل‌هایسوختی:
تبدیلهیدروکربنبههیدروژنازطریقمبدلهنوزباچالش‌هاییروبروستوهنوزفنآوری کاملاًپاکنمی‌باشد.
پیل‌هایسوختیازباتری‌هایمتداولسنگین‌ترهستندومحققیندرپیکاهشوزنآن‌هامی‌باشند.
تولیدپیلسوختیبدلیلنداشتنخطتولیدهنوزگراناست.
برخیپیل‌هایسوختیازموادگرانقیمتاستفادهمی‌کنند.
اینفنآوریهنوزکاملاًتوسعهنیافتهومحصولاتکمیازآنموجوداست.
شناخت کلیپیلسوختیپیلسوختینوعیوسیلهالکتروشیمیاییاستکهانرژیشیمیاییحاصلازواکنشرامستقیماًبهانرژیالکتریکیتبدیلمی‌کند.سازهوبدنهاصلیپیلسوختیازالکترولیت،الکترودآندوالکترودکاتدتشکیلشدهاست. نمایکلییکپیلسوختیبههمراهگازهایواکنشدهندهوتولیدشدهومسیرحرکتیون‌ها و الکترون‌هادر REF _Ref331172597 h * MERGEFORMAT شکل‏11ارائهشدهاست.
پیلسوختییکدستگاهتبدیلانرژیاستکهبهلحاظنظریتازمانیکهمادهاکسیدکنندهوسوختدرالکترودهایآنتأمینشوندقابلیتتولیدانرژیالکتریکیرادارد.البتهدرعملاستهلاک،خوردگیوبدعملکردناجزایتشکیلدهنده،طولعمرپیلسوختیرا کاهشمی‌دهد.
دریکپیلسوختی،سوختبهطورپیوستهبهالکترودآندواکسیژنبهالکترودکاتدتزریقمی‌شودوواکنش‌هایالکتروشیمیاییدرالکترودهاانجامشدهوباایجادپتانسیلالکتریکیجریانالکتریکیبرقرارمی‌گردد. اگرچهپیلسوختیاجزاءوویژگی‌هایمشابهیکباتریرادارداماازبسیاریجهاتباآنمتفاوتاست. باترییکوسیلهذخیرهانرژیاستوبیشترینانرژیقابلاستحصالازآنبهوسیلهمیزانمادهشیمیاییواکنشدهندهکهدرخودباتریذخیرهشدهاست (عموماًدرالکترودها)تعیینمی‌شود. چنانچهمادهواکنشدهندهدرباتریکاملاًمصرفشود،تولیدانرژیالکتریکیمتوقفخواهدشد (باتریتخلیهمی‌شود).درباتری‌هاینسلدوممادهواکنشدهندهباشارژمجدد،دوبارهاحیامی‌شودکهاینعملمستلزمتأمینانرژیازیکمنبعخارجیاست. دراینحالتنیزانرژیالکتریکیذخیرهشدهدرباتری،محدودووابستهبهمیزانمادهواکنشدهندهدرآنخواهدبود.
گازاکسیدکنندهنظیرهوایااکسیژنخالصدرالکترودکاتدکهباصفحهالکترولیتدرتماساستجریانپیدامی‌کند.بااکسیداسیونالکتروشیمیاییسوختکهمعمولاًهیدروژناستوبااحیاءاکسیدکننده، انرژیشیمیاییگازهایواکنشگربهانرژیالکتریکیتبدیلمی‌شود.
ازنظرتئوری،هرمادهایکهبهصورتشیمیاییقابلاکسیدشدنباشدوبتوانآنرابهصورتپیوسته (بهصورتسیال) بهپیلسوختیتزریقکرد،می‌تواندبهعنوانسوختدرالکترودآندپیلسوختیمورداستفادهقرارگیرد.بهطورمشابهمادهاکسید کنندهسیالیاستکهبتواندبانرخمناسبیاحیاء شود.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 1:شماتیکطریقه عملکرد پیلسوختیPEM [REF _Ref334005828 h * MERGEFORMAT3].در پیل سوختی پلیمری گازهیدروژنبهعنوانسوختایدهآلمورداستفادهقرارمی‌گیرد.هیدروژنرا می‌توانازتبدیلهیدروکربن‌هاازطریقواکنشکاتالیستی،تولیدوبهصورت‌هایگوناگونذخیرهسازیکرد. اکسیژنموردنیازدرپیلسوختی را میتوانبهطورمستقیمازهواتهیهنمود.بررویسطحالکترودهایآندوکاتدپیلسوختیواکنشاکسیداسیونواحیاءدرناحیهسهفازی (ودرصورتجامدبودنالکترولیتدوفازی) نزدیکسطحمشترکواکنشدهنده‌ها (فاز گاز)،کاتالیست (فاز جامد)والکترولیت(در برخی از پیلها فاز مایع و در برخی دیگر نظیر PEM فاز جامد) صورتمی‌گیرد. اینناحیه دویا سهفازینقشمهمیدرعملکردالکتروشیمیاییپیلسوختیبهویژهپیل‌هایسوختیباالکترولیتجامددارد. دراینگونهپیل‌هایسوختی،گازهایواکنشدهندهازمیانیکلایهنازکازالکترولیتکهسطحالکترودهایمتخلخلراپوشاندهاستعبورکردهوواکنشالکتروشیمیاییمناسبرویسطحالکترودمربوطهانجاممی‌شود.
چنانچهالکترودمتخلخلحاویمقادیربیشازحدالکترولیتباشدالکتروددر اصطلاحغرقشدهوبه اینترتیبانتقالالکترونهابهمکان‌هایواکنشمحدودمی‌شود.درنتیجهعملکردالکتروشیمیاییالکترودمتخلخلتضعیفمی‌شودلذاضروریاستکهدرساختارالکترودهایمتخلخلیکتعادلمناسببینالکترود،الکترولیتوفازگازیایجادشود.
تلاش‌هایاخیربر بهبودعملکردواکنشالکتروشیمیایی،کاهشهزینه‌هایتولید،کاهشضخامتاجزایپیلسوختیودرعینحالاصلاحوبهبودساختارالکترودهاوالکترولیتمتمرکزشدهاست. الکترولیتباهدایتیون‌هابینالکترودهاسببتکمیلمدارالکتریکیپیلسوختیمی‌شود. الکترولیتیکمانعفیزیکیبینسوختوگازاکسیژنایجادمی‌کندومانعاختلاطمستقیمآن‌هامی‌شود. از جمله وظایف مهمصفحاتالکترودمتخلخلدرپیلسوختیعبارتاند از:
1- ایجادیکسطحفعال کافیومناسبکهواکنش‌هایالکتروشیمیاییرویاینسطوحانجاممی‌شود.
2- هدایتیون‌هایحاصلازواکنشبهداخلیاخارجازناحیهتبادلسهفازیوانتقالالکترون‌هایتولیدیبهمدارخارجی(الکترودهابایدهدایتالکتریکیخوبیداشتهباشند).
3- انتقال واکنش دهندهها به سطوح انجام واکنش.
4- انتقال گرمای تولید شده در لایه کاتالیست کاتد به سیستم خنککاری پیل، بویژه برای پیلهای دما بالا.
برایافزایشسطحتماسواکنشدهنده‌هاباکاتالیستلازماستکهساختارالکترود،متخلخلبودهومیزانسطحدردسترس، وپوششدادهشدهتوسطکاتالیستنسبتبهحجمالکترود (مساحت در واحد حجم سطح مؤثر پلاتین)(m/m)زیادباشد. ساختارمتخلخل،دسترسیراحتاجزاءواکنشدهندهبهمراکزفعالراتسهیلمینماید.
نرخواکنش‌هایالکتروشیمیباافزایشدماافزایشپیدامی‌کند،لذاخاصیتکاتالیزوریالکترودهادرپیلهایسوختیدماپایینازاهمیتبیشتریدرمقایسهباپیلسوختیدمابالابرخورداراست. الکترودهایمتخلخلبایددرهردوطرفتماسباالکترولیتوگازهایواکنشدهنده،نفوذپذیرباشندتاحدیکهتوسطالکترولیتاشباعنشدهوبوسیلهگازهایواکنشدهندهخشکنشوند [REF _Ref332024462 h * MERGEFORMAT2].

پیلسوختیPEMپیل‌هایسوختی غشاءمبادله‌گر پروتون (پلیمری) اولین بار در دهه 1960 برای برنامهجمینی ناسا استفاده شد. ایننوع پیل سوختی از نقطه نظر طراحی و کارکردیکی از جذاب‌ترین انواع پیلسوختی است. پیلسوختیپلیمریدارایالکترولیتپلیمری به شکلیک ورقه نازک منعطف است کههادییونهیدروژن(پروتون)می‌باشد و بین دو الکترود متخلخل قرار می‌گیرد. جهت کارایی مطلوب لازم است الکترولیت، از آب اشباع باشد. نفیونیکی از بهترینالکترولیت‌های مورد استفاده در این نوع پیل سوختی است. این غشاء کوچک و سبک است و در دمایپایین 80 درجه سانتی‌گراد(تقریباً 175 درجه فارنهایت) کارمی‌کند. در پیل سوختیپلیمریواکنشاحیاءاکسیژنواکنشکندتر است (اینواکنشپنج مرتبه کندتر از واکنشاکسید شدن هیدروژن است [REF _Ref332024550 h * MERGEFORMAT4]). کاتالیست مورد استفاده در اینپیل سوختی اغلب از جنس پلاتین بوده و میزانکاتالیستمصرفی در الکترودهایاین نوع پیل سوختیبیشتر از سایر انواع پیل سوختی است.
بازدهالکتریکیاین نوع پیل سوختی بر اساس ارزش حرارتی پایین در حدود 40% تا 50% است [REF _Ref332024550 h * MERGEFORMAT4]. سوخت مصرفی در پیل سوختیپلیمرینیازمندهیدروژنتقریباً خالص است لذا مبدل در خارج پیل سوختی جهت تبدیلسوخت‌های متانول و یابنزین به هیدروژننیاز است.گسترهتوان تولیدیاین نوع پیل سوختیبیشتر از انواع دیگرپیل سوختی است. محدوده توان در این نوع پیل سوختیبین(1W الی 100kW) است[REF _Ref332024550 h * MERGEFORMAT4]. طول عمر پیش‌بینی شده برایپیل سوختیپلیمریبیش از 20000 ساعت است [REF _Ref334011700 h * MERGEFORMAT5].
در پیل سوختیپلیمری سوخت مورد استفاده هیدروژنمی‌باشد. مولکولهایهیدروژن در آند به یون‌های پروتون و الکترونیونیزه شده، و الکترون‌هااز پروتونها جدا می‌شوند. یون‌هایهیدروژنکه شامل بار مثبت هستند (پروتون) به یک سطح غشاء متخلخل نفوذ می‌کنند و به سمت کاتدمی‌روند. الکترون‌هاینمی‌توانند از این غشاء عبور کنندبلکه از یک مدار خارجی عبور کرده و موجب تولید برق می‌شوند. در کاتدالکترون‌ها، پروتون‌های و اکسیژن موجود در هوا با هم ترکیبمی‌شوند و مطابق REF _Ref331172597 h * MERGEFORMATشکل‏11 آب را تشکیلمی‌دهند.واکنش‌ها در الکترودها به شرح ذیلمی‌باشند:
(1- SEQ 1- * ARABIC1) واکنش سمت آند:
(1- SEQ 1- * ARABIC2) واکنش سمتکاتد:
(1- SEQ 1- * ARABIC3) واکنشکلیپیل:
واکنش سمت آند به مقدار خیلی کمی گرماگیر است و واکنش سمت کاتداین نوع پیل سوختی به دلیلدمایپایین به زمان کمیبرایراه‌اندازینیاز دارد و همینخصوصیتآن را بهترینگزینه در کاربردهایوسایلنقلیهبه عنوانجایگزینبرای موتور احتراق داخلیدیزلی و بنزینیمعرفیمی‌نماید. همچنیناینسیستم‌هاکاربریمناسبی در زمینهمولدهایخانگی، نیروگاهیکوچک، صنعت حمل‌ونقل و نظامی دارند [REF _Ref332024462 h * MERGEFORMAT2].
لایههایتشکیل دهنده پیلسوختی غشاء پلیمریهر یک از سلول‌هاییکپیلسوختی غشاء پلیمری از یکسریلایهتشکیل شده است، که در هر یک از اینلایه‌هافرآیندهایخاصی انجام می‌شود. در این قسمت به اختصار هر یک از لایههایپیل را معرفیمی‌کنیم، سپس در فصول بعد به تفصیلبه معرفیاینلایه‌ها و مدل‌سازیآن‌هامی‌پردازیم.
لایه نفوذ گازلایه‌هاینفوذگازیبهطورعمومیساختارمتخلخلبرمبنایکربندولایهدارند،شماییازلایهنفوذگازیبین کانال جریانولایهکاتالیستیدر REF _Ref331328151 h * MERGEFORMAT شکل ‏12نشاندادهشدهاست.لایهاوللایهنفوذگازی،یکساختارکربنیماکرومتخلخلباپارچه‌هایکربنیویاورقه‌هایکربنیاست.ساختارماکرومتخلخلبهعنوانجمعکنندهجریانعملمی‌کند.دومینلایه،لایهمیکرومتخلخلنازکیاستکهشاملپودرکربنوبرخیعواملآبگریزاست. اینلایهدرتماسبالایهکاتالیستاست.اینمیکرولایهمتخلخلازبروزطغیاندرلایهنفوذگازیجلوگیریکردهوتماسالکتریکیبینسطحولایهکاتالیستراافزایشمی‌دهد [REF _Ref332025360 h * MERGEFORMAT6].

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 2: شمایی از یک لایه نفوذ گازی دو لایه.لایهکاتالیستبرایافزایشنرخواکنش‌هایشیمیاییبهیکلایهکاتالیستاحتیاجاست. لایهکاتالیستتنهاجاییاستکهدرآنواکنش‌هایالکتروشیمیاییداخلپیلسوختیاتفاقمی‌افتدودربقیهنواحیپیلمانندکانال‌ها،لایه‌هایپخشگازوغشاءهیچواکنشالکتروشیمیاییاتفاقنمی‌افتد. درپیلسوختیهیدروژنیهردولایهکاتالیستکاتدوآندعموماًیکسانهستندوشاملیکفازهدایت‌کنندهیونبراینمونهنفیون، یکفازهدایت‌کنندهالکترونمعمولاًذراتکربن،حفره‌ها (تخلخل‌ها)کهازآن‌هاگازهایواکنشگرانتقالپیدامی‌کندویکفلزنجیب(فلزی که واکنش شیمیایی را تسهیل میکند) کاتالیستعموماًپلاتینهستند،تاواکنش‌هایالکتروشیمیاییراتسهیلکنند. دلیلدیگراستفادهازکربنایناستکهمساحتسطحتماسکاتالیستزیادشود.گازهایواکنشگرازلایهپخشگازواردلایهکاتالیستمی‌شوندوازمیانحفره‌هایموجوددرلایهکاتالیستپخشمی‌شوند.برایرسیدنبهپلاتینیعنیمحلانجامواکنش،واکنشگرهابایدمحلولشوندواینباردرمیانپلیمری (آیونومر)کهدانه‌هایکربنرااحاطهکرده‌اندپخشمی‌شوند.ایندانه‌هایکربنباپلاتینپوششدادهشده‌اندوبارسیدنگازهایواکنشگربهاینکربن‌ها،واکنشالکتروشیمیاییشروعمی‌شود. درواقعداخللایهکاتالیستدومسیرپخش وجود دارد، یکی نفوذ درمیانحفره‌هاودیگری نفوذدرونپلیمرمی‌باشد. افزایشمقاومتدرمقابلنفوذدرطولهرکدامازایندومسیر،عملکردلایهکاتالیستراکاهشمی‌دهد. REF _Ref331417729 h * MERGEFORMAT شکل ‏13نماییازلایهکاتالیسترانشانمی‌دهد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 3: نماییازلایهکاتالیست.لایه کاتالیست یکی از پیچیده‌ترین اجزاء در پیل سوختیمی‌باشد، به همین دلیل در مدل‌سازی لایه کاتالیست، مدل‌های مختلفی در دهه‌های اخیر با درجات مختلفی از دقّت و جزئیات ارائه شده است. که از آن جمله می‌توان به روش‌های لایه نازک، همگن و توده‌ای اشاره کرد. در سال‌های اخیر دو روش همگن و توده‌ای بیشتر مورد توجّه بوده است.
در روش لایه نازک، لایه کاتالیست به صورت یک سطح مشترک بین لایه نفوذ گاز و غشاء مدل می‌شود. این روش در حقیقت ساختار درونی لایه کاتالیست را بررسی نمی‌کند، و تنها رابطه‌ای بین افت فعال‌سازیو چگالی جریان پیل (رابطه تافل) ارائه می‌دهد.در فصل سوم مفصل‌تر این رابطه ارائه می‌شود. به طور کلی این مدل هنگامی استفاده می‌شود که هدف مطالعه، بررسی رفتار لایه کاتالیست نمی‌باشد، بلکه بررسی رفتار لایه های دیگر پیل مدّ نظر است.
روش همگن یکی از روش‌های متداول بررسی لایه کاتالیست می‌باشد. در این روش فرض می‌شود که تمامی اجزاء تشکیل‌دهنده لایه کاتالیست به صورت کاملاً یکنواخت و همگن در سرتاسر لایه کاتالیست توزیع شده‌اند، این بر خلاف مدل توده‌ای است. در مدل توده ای ذرات پلاتین بر روی ذرات کربن پایه ریزی می‌شوند، سپس با تجمع تعدادی از این ذرات کربن کنار یکدیگر، یک توده کروی شکل ایجاد می‌شود که درون آن پر از آیونومر می‌باشد. تفاوت این دو مدل، در نحوه پیش‌بینی منحنی قطبیّت پیل است. دلیل این تفاوت در منحنی قطبیت،خصوصاً در چگالی جریان‌های بالا در فصل دوم شرح داده می‌شود.
غشاءغشاءها بایستی دارای قابلیت زیادی برای عبور یون پروتون از خود باشند. آن‌ها شرایطی فراهم می‌آورند که گازهای ورودی به پیل سوختی از دو طرف با هم مخلوط نشوند. از لحاظ شیمیایی (خوردگی) و مکانیکی (استحکام) بایستی سازگار با شرایط عملکرد پیل سوختی باشند [REF _Ref332024936 h * MERGEFORMAT7]. غشاءیکه در پیل سوختی پروتونی بکار می‌رود، از پلیمری بنام پرفلئورو کربن-سولفونیک اسید ساخته می‌شود. بهترین ماده‌ی غشاء موسوم به نفیونمی‌باشد که دارای شاخه‌ی پروفلئورو-سولفیلفلئوراید-اتیل-پروپیل-وینیلمی‌باشد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 4: شاخه پلیمری پرفلئوروسولفونیک اسید (Perfluorosulfonate). REF _Ref331339393 h * MERGEFORMAT شکل ‏14 زیر شاخه‌ی پلیمری پرفلئورو سولفونیت را برای نفیون نشان می‌دهد. انتهای شاخه، گروه اسید سولفونیک مشاهده می‌شود که شامل یون‌های پروتون H+ و می‌باشد. این ساختار شدیداً آب دوست است. این خاصیت در انتهای شاخه یعنی جاییکه اسید سولفونیک وجود دارد رخ می‌دهد. این خاصیت به غشاء اجازه می‌دهد که مقدار بسیار زیادی آب جذب نماید. یون پروتون از این ناحیه مرطوب عبور می‌کند و این کمیت را بهصورت قابلیت هدایت تعریف می‌کنند [REF _Ref332024550 h * MERGEFORMAT4].
انواع مختلف نفیون را با حرف N و با سه یا چهار رقم به فرمN---- نشان می‌دهند، دو رقم اوّل وزن معادل را تقسیم بر صد نشان می‌دهد و دو رقم بعدی ضخامت غشاء را بر حسب میل نشان می‌دهد [REF _Ref332025524 h * MERGEFORMAT8]. قابل ذکر است که: . نفیونهای موجود در بازار دارای ضخامتهای 2، 3.5، 5، 7 و 10 میل میباشند. به عنوان مثال N117 دارای وزن معادل 1100 g/eqو ضخامت 7 میل (0.178 mm) میباشد.وزن معادل هر ماده برابر است با جرمی از آن مادهکه یک مول پروتون (H+) را تامین میکند، یا با یک مول پروتون در یک واکنش پایه اسیدی واکنش میدهد.
عملکرد پیلسوختیعملکرد یکپیلسوختی را می‌توان از طریق نمودار ولتاژ–چگالی جریان آن بررسی و تحلیل کرد. این نمودار که منحنی ولتاژ-چگالیجریاننامیدهمی‌شود، خروجی ولتاژ یکپیلسوختی را در یک چگالیجریانورودی نشان می‌دهد.این نمودار، منحنیقطبیتنیز نامیدهمی‌شود که در REF _Ref331172664 h * MERGEFORMAT شکل ‏15آن را مشاهده می‌کنید. محور افقیچگالیجریان، یعنیجریان بر واحد سطح پیل را نشان می‌دهد. به کار بردن چگالیجریان به ایندلیل است که یکپیل با ابعاد بزرگ‌تر مقدار الکتریسیتهبیشتری از یکپیلکوچک‌ترتولیدمی‌کند در نتیجهمنحنی‌هایقطبیت با سطح پیلسوختی نرمال سازیمی‌شوند تا قابل مقایسه با یکدیگر باشند.
REF _Ref331172664 h * MERGEFORMAT شکل ‏15منحنیقطبیت را که دارای چهار ناحیهافتجریانداخلی، افتفعال‌سازی، افتاهمیک و افت انتقال جرم که توسط افت‌های موجود در پیلسوختی مورد تأثیر قرار گرفته‌اند را نشان می‌دهد. افتفعال‌سازی در ناحیه افتفعال‌سازیمنحنیقطبیت، غالب است. سینتیک الکترود،ناحیه مربوط به افتفعال‌سازی را کنترل می‌کند. افتناحیهاهمیک در منحنیقطبیت به سبب مقاومت‌هایپروتونیک و الکترونیک موجود در پیلسوختیمی‌باشد. افت غلظت بیشترین مقدار خود را در انتهایمنحنیقطبیت (یعنیناحیه‌ای که انتقال جرم واکنشگرها با مشکل مواجه است) دارد. در چگالیجریان‌های بالا، میزانواکنشگرهای مورد نیاز به مراتب افزایشمی‌یابد، این در حالی است که میزان آب تولیدینیززیادمی‌شود. اینمیزان آب مایعمی‌تواند سبب مسدود شدن مسیرهای عبور واکنشگرها شود (خصوصاً در پیلهای دما پایین)،این امر سبب افت غلظت واکنش‌دهنده‌هاشده و در پی آن افت ولتاژ را بوجود می‌آورد.

شکلSTYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 5:منحنیقطبیتیکپیلسوختی [REF _Ref334022735 h * MERGEFORMAT9].خروجیولتاژواقعییکپیلسوختی کمتر از ولتاژ ایده آل یا ولتاژ ترمودینامیکی است. ولتاژ خروجی از یکپیلسوختی بر روی توان کلیتولید شده تأثیرمی‌گذارد. چگالی توان تولید شده از پیلسوختی توسط حاصل ضرب ولتاژ در چگالی جریان (P=V.i) حاصل می‌شود. منحنیچگالی توان، چگالی توان خروجی را به صورت تابعی از چگالیجریانپیلسوختی نشان می‌دهد این منحنی در نتایج مدلسازی نظیر REF _Ref331174635 h * MERGEFORMATشکل ‏211 رسم شده است. چهار نوع اصلی افت در پیلسوختی (در نمودار قطبیتنیز نشان داده شده است) وجود دارند، که این چهار افت به این شرح هستند:
الف) افت فعال‌سازی
ب) افتجریانداخلی
ج) افتاهمیک
د) افت غلظت
افتفعال‌سازیعامل ایجاد افت فعال سازیکندیواکنش‌هایی است که روی سطوح الکترودها رخ می‌دهد. در نتیجهقسمتی از ولتاژ تولیدی صرف غلبه بر انرژیفعال‌سازی واکنش شیمیایی و به راه انداختن واکنش می‌شود. افت فعال‌سازی را با η نشان می‌دهند. در سال 1905 تافل مشاهده کرد که افت فعال‌سازی موجود در هر یک از الکترودها با لگاریتمچگالیجریانتقریباً رابطه خطی دارد، به طوریکه مقدار این افت تا یکچگالیجریان خاص که چگالیجریانتبادلیپیلنامیده شد صفر است، چگالیجریانتبادلی، i0، را می‌توانچگالیجریانی در نظر گرفت که افت ولتاژ فعال‌سازی از صفر شروع به تغییرمی‌کند. روند تغییراتاین افت بر حسب لگاریتمچگالیجریان عمدتاً به صورت خطی است که در REF _Ref331172831 h * MERGEFORMAT شکل ‏16برای دو نمونه نشان داده شده است.

شکل STYLEREF 1 s‏1SEQ شکل_ * ARABIC s 1 6: نمودار تافل برایواکنش‌هایالکتروشیمیاییسریع و کند [REF _Ref332024550 h * MERGEFORMAT4].تافل این نمودار را با معادله زیرتقریب زد:
(1- SEQ 1- * ARABIC4)
در معادله REF _Ref330209497 h * MERGEFORMAT (1- 4)، i0، چگالیجریانتبادلی و aشیب خط تافل هستند که به الکتروشیمی واکنش بستگی دارند [REF _Ref332025607 h * MERGEFORMAT11].همین‌طور که در REF _Ref331172831 h * MERGEFORMAT شکل ‏16مشاهدهمی‌شود هر چه واکنش سریع‌تر انجام شود شیبمنحنی تافل به مراتب کمتر می‌شود و با توجه به رابطه REF _Ref330209497 h * MERGEFORMAT (1- 4)میزان افت فعال‌سازی برای یک چگالی جریان ثابت کاهش می‌یابد.چگالیجریانتبادلی، i، نیز در واکنش‌هایی که سریع‌تر اتفاق می‌افتد، بزرگ‌تر است، بنابراینمیزان افت فعال‌سازی در محدوده وسیع‌تری صفر خواهد بود[REF _Ref332024550 h * MERGEFORMAT4]. درپیلسوختیغشاء پلیمری، افت فعال‌سازی به طور عمده در سمت کاتد رخ می‌دهدزیراiدر واکنش آند چندین مرتبه (چهار - پنج مرتبه) نسبت به واکنش کاتد بزرگتر است، به عبارت دیگر واکنش اکسایش هیدروژن در لایه کاتالیست آند بسیار سریع‌تر از واکنش کاهش اکسیژن در لایه کاتالیست کاتد است [REF _Ref332025607 h * MERGEFORMAT11]. به همین علت اغلب در بررسی افت فعال‌سازی از افت فعال‌سازی آند در مقابل کاتد صرف نظر می‌شود.
افتجریانداخلیغشاء پلیمری نسبت به گازهایواکنش‌دهنده (سوخت) نفوذ ناپذیر است اما همواره از یکسو مقدار کمی از سوخت و از سویدیگر تعداد اندکی الکترون به غشاء پلیمری نفوذ می‌کند. نفوذ سوخت در غشاء معادل از دست رفتن سوخت بدون تولیدجریان در مدار خارجی است. به عبارت دیگر به ازای عبور هر مولکول هیدروژن از درون غشاء قابلیت عبور دو الکترون از مدار خارجی از بینمی‌رود و در حقیقتیک مدار اتصال کوتاه در پیلایجادمی‌شود که جریانداخلینامیدهمی‌شود. این نوع افت ولتاژ در حالتی که پیلسوختی تحت بار نیست (حالت مدار باز، i=0) وجود دارد، چون حتی در این حالت نیز سوخت می‌تواند درون غشاء نشت کند. به همیندلیل ولتاژ مدار باز به طور محسوسی از ولتاژ تئوریبازگشت‌پذیر کمتر است، میزان این افت ولتاژ از ولتاژ تئوریبازگشت‌پذیر از همان ابتدای منحنی قطبیت(i=0) در REF _Ref331172664 hشکل‏15 نشان داده شده است. مقدار نشت هیدروژن از غشاء تابعی از نفوذ پذیری، ضخامت غشاء، شرایطعملکردیپیل و گرادیان فشار جزئیهیدروژناست [REF _Ref332025559 h * MERGEFORMAT10]. مقدار جریانداخلیتولید شده ناشی از عبور همزمان هیدروژن و الکترون از درون غشاء را با inنشان می‌دهند. برای محاسبه افت ناشی از جریان داخلی کافی است که مقدار in به مقدار چگالی جریان پیل اضافه کنیم:
(1- SEQ 1- * ARABIC5)
افتاهمیکافت‌هایاهمیکبه دلیلمقاومت‌هایی که در برابر جریانالکترون‌ها در الکترودها و اتصالات داخلی مختلف و همچنینمقاومت‌هایی که بر سر راه جریانیون‌های مثبت در الکترولیت وجود دارند، می‌باشند. این افت ولتاژ متناسب با چگالیجریان و خطی است [REF _Ref332024550 h * MERGEFORMAT4] و با ηOhmic نشان می‌دهند. از قانون اهم داریم:
(1- SEQ 1- * ARABIC6)
که iچگالی جریان پیل، RElectronic و RIonicمقاومت‌های ویژهالکترونیک و یونیک بر حسب m2 در پیلسوختی هستند. قسمت عمده افت اهمی، مقاومت یونی غشاء می‌باشدبطوریکهتقریباً کل افت اهمیک موجود در پیل را می‌توانبا مقاومت یونیک موجود در الکترولیت با دقت خوبیتخمین زد [REF _Ref332025559 h * MERGEFORMAT10]. افت اهمی وابسته به جنس قطعات به کار رفته در پیل است.

افت غلظتدر چگالیجریان‌های بالا بر اثر مصرف زیاد واکنش دهنده‌ها، غلظت واکنش دهنده‌هاروی سطح الکترودها کاهش می‌یابد و سبب افت ولتاژ می‌شود و با ηconcentration نشان می‌دهند [REF _Ref332024550 h * MERGEFORMAT4]. البته این رابطه، یک رابطه نیمه تجربی میباشد، که در برخی از روشهای شبیهسازی نظیر مدل همگن لایه کاتالیست از آن استفاده میشود:
(1- SEQ 1- * ARABIC7)
iLچگالیجریان محدود کننده است و زمانیایجادمی‌شود که غلظت واکنش دهنده روی سطح در محل واکنش به صفر برسد.
اگر CR غلظت واکنش دهندهها در ورودی لایه نفوذ گاز و CRS غلظت واکنش دهندهها در سطوح انجام واکنش باشد، آنگاه شار عبوری واکنش دهندهها برابر است با:
(1- SEQ 1- * ARABIC8)
که در آن Dضریب نفوذ پذیری واکنش دهنده‌ها[cm/s]،A سطح فعال الکترودو δ ضخامت لایه نفوذ گاز هستند.
از طرفی طبق قانون فارادی (پیوست 1)، نرخ مصرف واکنش دهندهها با نرخ جریان تولیدی به صورت زیر متناسب است:
(1- SEQ 1- * ARABIC9)
n تعداد الکترون‌های انتقال یافته به ازای یک مول سوختمیباشد. اکنون با ترکیب کردن معادلات (1-4) و (1-5) داریم:
(1- SEQ 1- * ARABIC10)
همانطور که میدانیم در چگالیجریان محدود کننده که غلظت واکنش دهنده روی سطح در محل واکنش به صفر میرسدCRS=0.بنابراین چگالی جریان محدود کننده برابر است با [REF _Ref332025777 h * MERGEFORMAT12]:
(1- SEQ 1- * ARABIC11)
Bدر معادله REF _Ref331420287 h * MERGEFORMAT (1- 7)عدد ثابت است و کاملاً وابسته به شرایطعملکردیپیلمی‌باشد.این عدد معمولاً به صورت تجربیبرایپیلهای مختلف گزارش می‌شود به طوریکه ابتدا منحنیتجربیقطبیتپیل با انجام تست در چگالیجریان‌های مختلف بدست می‌آید سپس اینمنحنی را با رابطه REF _Ref330220987 h * MERGEFORMAT (1- 12)که در حقیقت ولتاژ واقعیپیل در چگالیجریان‌های مختلف می‌باشد، و از کم کردن تمامیافت‌ها از ولتاژ بازگشت‌پذیرپیل بدست می‌آید، برازش می‌کنند تا ثوابتینظیرa،B بدست آیند [REF _Ref332024550 h * MERGEFORMAT4].
(1- SEQ 1- * ARABIC12)
افت غلظت با بهینهسازی انتقال جرم در الکترودها و ساختار جریانپیلسوختی قابل کم شدن است.
مروری بر پروژه - ریسرچ‌هافیزیک حاکم بر یکپیلسوختیبسیارپیچیده است. تعداد زیادیفرآیند که به طور هم زمان در پیلسوختی رخ می‌دهند، وجود دارند و مطالعه هر فرآیندی که در پیلسوختی انجام می‌گردد دشوار می‌باشد. تاکنون محققان مختلفی بر رویجنبه‌های متفاوت پیلسوختی تمرکز کرده‌اند. تحقیقاتتجربیپیلسوختیبسیار زمان بر و گران قیمتاست. محققان اولیه تنها بر رویجنبه‌هایخاصی از پیلسوختی مثل صفحات دو قطبی، لایهکاتالیست، لایه نفوذ گاز و غشاء تمرکز کرده‌اند. در این بخش ابتدا مروری بر رویانواع مدل‌سازی‌های انجام شده بر رویلایهکاتالیست انجام می‌دهیم و سپس برخی از مدل‌سازی‌های مربوط به غشاء و لایه نفوذ گاز ارائه می‌گردد:
لایهکاتالیستبه طور کلی سه روش مختلف به منظور مدل‌سازیلایهکاتالیست وجود دارد:
مدل لایه نازک
مدل همگن
مدل تودهای
در سال‌هایاولیه توان محاسباتی محدود بوده و در نتیجه تنها یک مدل عددییکبعدیپیلسوختی غشاء پلیمری توسط برناردی و همکارانش [REF _Ref332025833 h * MERGEFORMAT13] توسعه یافته بود و نتایج آن با مدل تجربیمقایسه شده بود.برناردی و همکارانش اولینمحققینی بودند که لایهکاتالیست کاتد را به روش همگن مدل‌سازی کردند. آن‌هارفتار لایهکاتالیست مسئله مدیریت آب در پیلسوختی و همچنین عملکرد پیل را مورد بررسی قرار دادند. نتایج کار آن‌هابیانگراینواقعیت بود که واکنش کاهش اکسیژندر یکلایهبسیارباریکی از لایهکاتالیست که نزدیک به لایه نفوذ گاز می‌باشد انجام می‌شود. بعدها خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14]نشان دادند که در یک ولتاژ عملکردیپیل (A m-5000) تنها 5% از لایهکاتالیست که در مجاورت سطح مشترک لایهکاتالیست با لایه نفوذ گازمی‌باشد در واکنش کاهش اکسیژنشرکت می‌کنند، اینیعنیاینکهاکسیژنمصرفی به محض ورود به قلمرو لایهکاتالیست مصرف می‌شود. بنابراینبراییکطراحیبهینه و مقرون به صرفه،تجمع بارگذاریپلاتین در مجاورت سطح مشترک لایهکاتالیست با لایه نفوذ گاز می‌تواند به عنوان یکگزینه مورد توجه باشد.
برناردی و وربروگ[REF _Ref332025833 h * MERGEFORMAT13] همچنینمعادلات استفان- بولتزمن را برای مدل کردن انتقال جرم در لایه نفوذ گاز، معادله باتلر- ولمر را برای سینتیک واکنش و معادله نرنست – پلانک را برای انتقال جرم در غشاء به کار بردند. یک سال بعد آن‌ها مدل خود را از بخش کاتد به دو بخش آند و کاتد پیل سوختی بسط دادند. اینبار افت اهمیک در اثر انتقال الکترون در لایه نفوذ گاز، افت فعال‌سازی و افت اهمیک در اثر عبور پروتون در غشاء را در مدل‌سازی خود مورد مطالعه قرار دادند.
برناردی و وربروگ در سال 1992 پیل سوختی غشاء پلیمری جامد را با استفاده از روش همگن مدل کردند [REF _Ref332025887 h * MERGEFORMAT15]. آن‌ها مکانیزم انتقال اجزاء در شبکه پیچیده پیل در فازهای مختلف گاز و مایع و فاکتورهای مؤثر بر کارایی پیل را در تحقیق خود مورد تحلیل و بررسی قرار دادند. در این بررسی رفتار قطبیت پیل با داده‌های آزمایشگاهی مقایسه شده است. استفاده از ضخامت‌های متفاوت الکترود در کار آن‌ها نشان می‌دهد که برای دوری جستن از اینکه چگالی جریان محدود کننده پیل، در جریانهای پایینتر اتفاق افتد، نسبت حجمی الکترود کاتد (تخلخل لایه نفوذ گاز سمت کاتد) برای انتقال گازها باید بیش از 20 درصد باشد. به عبارت دیگر آنها ثابت کردند که به ازای مقادیر بسیار اندک تخلخل الکترد کاتد(به عنوان مثال 11%) چگالی جریان محدود کنندهپیل به دلیل محدود شدن انتقال جرم به سرعت اتفاق میافتد. نتایج مدل آن‌ها همچنین نشان می‌دهد که در گستره وسیعی از چگالی‌های جریان، هیچ نیازی به آب خارجی وجود ندارد زیرا آب تولیدی در کاتد به منظور تأمین نیازمندی‌های آبی غشاء کافی است.
در سال 2002 جنویو همکارانش [REF _Ref332025901 h * MERGEFORMAT16]مدلسازی لایه کاتالیست را بر اساس روش همگن ارائه کردند. اثر انتقال جرم و حرارت در پیل سوختی غشاء پلیمری بر طبق الکتروشیمی لایه کاتالیست در مدل آن‌ها مورد بررسی قرار گرفته است. همچنین با استفاده از مدل خود نشان دادند، هنگامیکه غلظت اکسیژن در مرز لایه کاتالیست و غشاء به صفر می‌رسد، چگالی جریان محدود کننده حاصل می‌شود. آن‌ها با استفاده از فرض کاملاً توسعه یافته بودن سیال در کانال‌های انتقال گاز، یک بعدی و همگن بودن لایه کاتالیست، به مقدار بهینه استفاده از کاتالیست پلاتین در لایه کاتالیست رسیدند. همچنین از مدل‌سازی خود به این نتیجه رسیدند که افزایش دما بیش از حد معقول، باعث کم آب شدن آیونومر لایه کاتالیست شده و کارائی پیل را کاهش می‌دهد و نشان دادند که تخلخل و میزان بارگذاری پلاتین در لایه کاتالیست نقش بسیار مهمی را در کارائی پیل ایفا می‌کنند.
در سال 1999 سینگ و همکارانش [REF _Ref332025916 h * MERGEFORMAT17]لایهکاتالیستپیلسوختی غشاء پلیمری را به صورت دو بعدیمدل‌سازی کردند، آن‌هاهمچنینجریان‌های واکنش دهنده‌ها در آند و کاتد را به صورت همسو و غیر همسو مدل کرده و نتایج آن را با هم مقایسه کردند.آن‌هانتیجه گرفتند که مدل‌سازی دو بعدی نقش مهمی بر رویپیش‌بینیصحیح عملکرد پیلسوختیایفامی‌کند، این امر در چگالیجریان‌هایپایینشدیدتر است. مار و لی [REF _Ref332025950 h * MERGEFORMAT18] اثراتساختاریاجزایتشکیلدهنده‌ییکلایهکاتالیست همگن را بر روی عملکرد پیلسوختی غشاء پلیمری مورد بررسی قرار دادند. آن‌هانتیجه گرفتند که به منظور دستیابی به بالاترینمیزانکاراییپیلاز نقطه نظر ساختاریباید همواره 40% از لایهکاتالیست از ذرات پلاتین–کربن(Pt/C)ساخته شده باشد. در سال 2010 خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14]یک مطالعه جامع پارامتری را بر رویلایهکاتالیستی که به روش همگن مدل کرده بودند انجام دادند. در این مطالعه، اثر شش پارامتر ساختاری بر روی عملکرد پیلسوختی غشا پلیمری مورد بررسی قرار گرفت. آن‌ها نشان دادند که برخی از پارامتر هایساختارینظیر کسر حجمی فاز غشاء موجود در لایهکاتالیست، ضخامت لایهکاتالیست و بارگذاری کربن ازتأثیرگذارترینپارامترها بر رویمنحنیقطبیتپیل هستند.
علیرغمموفقیت‌های ذکر شده در مورد مدل همگن لایهکاتالیست،پیش‌بینی عملکرد سلول سوختی با استفاده از مدل همگن در چگالیجریان‌های بالا بسیارضعیف است و با نتایجتجربی اختلاف قابل ملاحظه‌ای دارد. این اختلاف به دلیل این است که افت غلظت در مدل همگن به خوبی و بدون استفاده از روابط تجربی قابل پیش‌بینینیست. اکنون مدل توده‌ای که کمی از مدل همگن نوین‌تر است می‌توانداین مشکل را مرتفع سازد.
گراف‌های میکرو الکترونی، بروکا و اکدونج[REF _Ref332026000 h * MERGEFORMAT19] نشان داد که ذرات Pt/Cموجود در لایه کاتالیست، نزدیک به یکدیگر و به شکل یک توده کروی انباشته شده‌اند، همچنیناین توده کروینیز با لایهنازکی از آیونومر احاطه شده است. آن‌هاهمچنینلایهکاتالیست کاتد را با استفاده از مدل همگن و توده‌ایشبیه‌سازی کرده و نتایجآن‌ها را با یکدیگرمقایسهکرده‌اند. سان و همکارانش [REF _Ref332026047 h * MERGEFORMAT20]در سال 2005 مدل تودهای را برایبررسیاثر بارگذاریآیونومرنفیون و پلاتین بر روی عملکرد پیل مورد بررسی قرار دادند. آن‌ها 36% را یک کسر وزنیبهینهبرایبارگذارینفیونبدست آوردند. در سال 2007 سیکنل و همکارانش [REF _Ref332026057 h * MERGEFORMAT21] الکترود کاتد یکپیلسوختی غشاء پلیمری را که بهروشتوده‌ای مدل شده بود با استفاده از روش بهینه‌سازی چند متغیرهبهینه کردند. آن‌هانتیجه گرفتند کههرچه شعاع ذرات توده ای موجود در لایهکاتالیست و همچنین ضخامتلایهآیونومر اطراف آن‌هاکوچک‌تر باشد، عملکرد پیلبهینه‌تر است. در واقع تا آنجایی که فرآیندهای ساخت اجازه می‌دهندباید شعاعذرات توده‌ای و ضخامت آیونومر دور آن‌ها کوچک باشد. آن‌ها کسر حجمیبهینه را برای فاز جامد و غشاء موجود در لایهکاتالیست به ترتیب 22.05% و 53.95% گزارش کردند. البته اینمقادیر در چگالیجریان‌های متوسط گزارش شده‌اند.
در سال 2012، کاماراجوگادا و مازومدر [REF _Ref332026073 h * MERGEFORMAT22]لایه کاتالیست را به روش توده‌ایمدل‌سازی کردند، البته یک فرق اساسی که مدلآن‌ها با سایر روش‌هایتوده‌ای داشت، این است که آن‌ها فرض کردند ذرات توده‌ای با شعاع‌های متفاوت با یکدیگر تداخل داشته باشند. نتایج کار آن‌ها نشان می‌دهد که تا هنگامی که اندازه ذرات توده‌ای کوچک (کوچکتر از nm 200) باشد، اثر آن‌ها بر روی منحنی قطبیت پیل اندک است. اما برای ذرات بزرگتر اثر آن‌هابر روی منحنی قطبیت قابل ملاحظه است. به ویژه در چگالی جریان بالا جایی که افت غلظت شدید بوده و مقاومت در برابر انتقال جرم به درون توده به شکل توده وابسته است، این اثر بحرانی‌تر خواهد بود. آن‌ها همچنین نتیجه گرفتند که کارایی پیل در این حالت نسبت به حالتی که توده‌ها به صورت کروی و جدا از هم هستند به ازای یک حجم یکسان به مراتب بیشتر است و به نتایج تجربی نیز نزدیکتر می‌باشد.
لایه نفوذ گاز و غشاءلایههای نفوذ گاز به دلیلیکنواخت کردن جریانگازهای واکنش دهنده بکار می‌روند. البته استفاده از اینلایه‌ها باعث کاهش فشار واکنش دهنده‌ها نیزمی‌گردد. غشاء نیزیکلایه مرطوب می‌باشد که پروتون‌ها از طریق آن از آند به سمت کاتد مهاجرت می‌کنند. در پیل‌هایسوختی غشاء پلیمری از انواع نفیون‌ها به عنوان غشاء استفادهمی‌شود. میزان آب موجود در غشاء ازاهمیتویژه‌ای برخوردار است. تمامی خواص غشاء اعم از میزاننفوذ آب، قابلیت هدایتپروتونی و مقاومت پروتونی به میزان آب موجود در غشاء بستگی دارد. اگر دمایپیل بالا باشد (oC100) ممکن است که رطوبت غشاء از دست برود و مقاومت پروتونیکافزایشیابد. از سویدیگرزیادی آب درون غشاء باعث ایجادپدیدهغرقابی شده و منافذ نفوذ گاز را مسدود می‌کند.
اثر دما و ضخامت غشاء بر بازده پیل سوختی و اثر انتقال آب در داخل لایه غشاء، مواردی هستند که اشپرینگر و همکارانش [REF _Ref332026117 h * MERGEFORMAT23]در مدل‌سازی پیل سوختی با استفاده از روش لایه نازک به بررسی آن‌ها پرداخته‌اند.اشپرینگر و همکارانش در سال 1991یکپیلسوختیپلیمری با نفیونN117 به عنوان غشاء مدل‌سازی کردند. آن‌ها هوا و هیدروژنورودی به کاتد و آند را کاملاً اشباع در نظر گرفتند. آن‌ها اثر برخی از پارامترهایساختاری و عملکردیپیل را بر رویکاراییپیل مورد بررسی قرار دادند، و به طور خاص اثر جزء آب موجود در غشاء و دما را بر روی مقاومت پروتونیک غشاء و در نتیجهکاراییپیل مورد بررسی قرار دادند. آن‌هانتیجه گرفتند که هر چه دمایپیلسوختی بالاتر باشد و همچنین هر چه ضخامت غشاء بیشتر باشد جزء آب موجود در غشاء کاهش و در پی آنمقاومت پروتونیک غشاء افزایشمی‌یابد.آن‌ها به این نتیجه رسیدند که با افزایش چگالی جریان پیل، مقاومت غشاء نیز افزایش مییابد، که برای کاهش این مقاومت میتوان از غشاء با ضخامت کمتر استفاده نمود، همچنین دریافتند که نسبت شارخالص آب عبوری به شار پروتون در داخل غشاء، از میزان پیش‌بینی شده توسط پدیده کشش الکترواسمزی بسیار کمتر است.
موتوپالی و همکارانش [REF _Ref332026155 h * MERGEFORMAT24] نفوذ آب درون نفیونN115 را مورد بررسی قرار دادند. آن‌ها شار نفوذ آب را در درون غشاء با استفاده از قانون فیک مدل کردند. نتایج کار آن‌ها نشان داد که گرادیانضریبفعالیت آب در داخل غشاء به فشار عملکرد پیلسوختیبستگی دارد. شان-های و بائو-لیان [REF _Ref332026180 h * MERGEFORMAT25]اثر نوع جریانواکنشگرها در کانال‌هایورودی (همسو و غیر همسو) را بر رویفرآیندهای انتقال درون غشاء (مهاجرت پروتون و انتقال آب)، مقاومت اهمیک و توزیع آب درون غشاء بررسی کردند. آن‌ها اثبات کردند که جریانغیر همسو می‌تواند باعث بهبود عملکرد پیلسوختی شود. جنگ و همکارانش [REF _Ref332026198 h * MERGEFORMAT26] نفوذ اکسیژن را در الکترود کاتد پیل سوختی با استفاده از یکضریبنفوذ معادل به صورت دو بعدی مدل کردند. آن‌ها اثر ضخامت لایه نفوذ گاز را بررسی کردند و اثبات کردند که هر چه ضخامت لایه نفوذ گاز کمتر باشد عملکرد پیلبهینه‌تر خواهد بود، البته این امر در مورد لایه‌های نفوذ گاز با تخلخل اندک می‌باشد.
اهداف پروژه و خلاصهای از کارهای صورت گرفتهبا توجه به مطالب ذکر شده در بخشهای قبلی میتوان نتیجه گرفت که به منظور طراحی صحیح و بهینه یک سیستم پیل سوختی نیازمند یک مدلسازی از عملکرد لایههای مختلف پیل سوختی نظیر مدلسازی لایه کاتالیست، لایه نفوذ گاز و غشاء هستیم. هدف اصلی از انجام این پایاننامه ارائه یک مدل کارآمد جهت پیشبینی عملکرد لایههای مختلف پیل و بررسی تاثیر پارامترهای مختلف (عملکردی و ساختاری) بر روی کارایی پیل میباشد. این مدل میتواند آغاز راه برای سازندههای پیل سوختی غشاء پلیمری باشد.
از اینرو در اینپایان‌نامهمدل‌سازییکبعدی عملکرد یکپیلسوختی غشا پلیمری انجام می‌پذیرد، و تمامیلایه‌هایاینپیلسوختی تک سلولیشبیه‌سازیمی‌شوند. مدل ارائه شده برایلایهکاتالیست، مدل توده‌ایمی‌باشد. این مدل افت غلظت موجود در منحنیقطبیتپیل را که در چگالیجریان بالا اتفاق می‌افتد بدون اضافه کردن روابط نیمهتجربی مربوط به افت غلظت درستپیش‌بینیمی‌کندهمچنین در حالتی که اندازه تودهها به سمت صفر میرود(تودههای بسیار کوچک) این مدل به مدل همگن ساده میشود. لایه‌های نفوذ گاز نیز که در دو طرف آند و کاتد پیل قرار دارند با استفاده از معادلات مربوط به نفوذ گازهای چند جزئی مدل شده‌اند. غشاء نیز با مدل کردن انواع مکانیزم‌های انتقال آب که در آن وجود دارد شبیه‌سازی شده است. عملکرد یکپیلسوختی توسط منحنی ولتاژ بر حسب چگالیجریانبیانمی‌شود. این عملکرد با کسر نمودن افت‌های مربوط به ولتاژ فعال‌سازی، اهمیک و غلظت از ولتاژ بازگشت‌پذیرپیل در یکچگالیجریان بدست می‌آید. سپس با تغییرچگالیجریان، منحنیجریان–ولتاژ پیل بدست می‌آید. در اینپایان‌نامه معادلات حاکم بر عملکرد لایه‌های مختلف پیل (که ترکیبی از معادلات دیفرانسیل و معادلات جبریمی‌باشند) بدست آمده سپس این معادلات حل می‌گردد تا افت‌هایقید شده بدست آید. در انتها یکسری مطالعات پارامتری به منظور بررسیمیزانحساسیت تابع عملکرد به یکسریپارامترها انجام می‌پذیرد.

فصل دوممدل‌سازی لایه کاتالیست به روش توده‌ای و نتایج آن25050754247515020000
معرفی لایه کاتالیستلایه کاتالیست لایه بسیار نازکی است که بین غشاء و الکترود (ناحیه‌ی متخلخل) فشرده شده است. در این ناحیه واکنش الکتروشیمیایی رخ می‌دهد و بهطوردقیق‌تر واکنش الکتروشیمیایی در سطح کاتالیست رخ می‌دهد. سهمؤلفه که شامل الکترون‌ها و پروتون‌ها و گازها هستند در واکنش شرکت می‌کنند بنابراین واکنش در ناحیه‌ای رخ می‌دهد که این سه ماده وجود داشته باشند. الکترون‌ها از جامدی که رسانای الکتریسیته است عبور می‌کند و خود را به سطح کاتالیست می‌رساند. پروتون‌ها نیز از فاز غشاء عبور می‌کنند و خود را به سطح کاتالیست می‌رساند و در نهایت گازهای واکنش‌دهنده از منافذ خالی عبور می‌کنند. بنابراین الکترود باید متخلخل باشد تا به گازها اجازه دهد به محل انجام واکنش برسند. آب تولید شده بایستی بهصورت موثر و بهینه خارج شود، در ضمن ممکن است که پدیده غرقابی رخ دهد، در این حالت آب مایع منافذ خالی الکترود را می‌پوشاند و مانع رسیدن گازها (اکسیژن) به لایه کاتالیست(کاتد) می‌شود.
همان‌طور که در REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (الف) مشاهده می‌شود واکنش در مرز سه فازی رخ می‌دهد که شامل فاز غشاء، فاز جامد و فضای خالی می‌باشد. البته اگر فاز غشاء جامد باشد این مرز دو فازی خواهد بود. این ناحیه گاهی تنها بهصورت یک سطح تداخلی در نظر گرفته می‌شود. در عمل چون ممکن است نفوذ گاز از غشاء صورت گیرد، ناحیه‌ی واکنش بزرگ‌تر از یک خط مرزی سه فازی است. محیط واکنش ممکن است با وجود نفوذ غشاء به قسمتی از کاتالیست بهصورت یک ناحیه در نظرگرفتهشود( REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (ب)). اما در اغلب موارد، تمام سطح کاتالیست با فاز غشاء پوشیده می‌شود( REF _Ref331266301 h * MERGEFORMAT شکل ‏21 (پ)). مسلماًیک حالت بهینه برای کسر حجمیهریک از این‌ فازهای غشاء، جامد و فضای خالی به منظور بهترین کارکرد لایه‌ی کاتالیست قابل حصول است.
متداول‌ترین کاتالیستی که در پیل‌های سوختی پروتونی برای واکنش کاهش اکسیژن و اکسایش هیدروژن کاربرد دارد، پلاتین است. در پیل‌های قدیمی مقادیر زیادی پلاتین استفاده می‌شد(mg/cm2 28). در اواخر سال 1990 این مقدار به mg/cm20.3-0.4رسید. مسئله مهم در ساختمان کاتالیست‌ها سطح آن‌هاست نه وزنشان، زیرا هر چه که سطح کاتالیست بیشتر باشد، سطوح انجام واکنش افزایش مییابد، بنابراین ذرات پلاتین بایستی ریز باشند (کمتر از nm4) زیرا به ازای یک مقدار بارگذاری معین هر چه ذرات کاتالیست ریزتر باشند سطوح انجام واکنش افزایش مییابد.
(الف) (ب) (پ)

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 1: نمایش گرافیکی سطحی که در آن واکنش رخ می‌دهد[REF _Ref332025524 h8].برای به حداقل رساندن افت پتانسیل که ناشی از کاهش نرخ انتقال پروتون و نفوذ گازهای واکنش‌دهنده به عمق لایه‌ی کاتالیست می‌باشد، این ناحیه بایستی به اندازه‌ی کافی نازک باشد. همزمان بایستی مساحت سطح موثر پلاتین نیز ماکزیمم باشد و برای این منظور ذرات پلاتین نیز بایستی تا حدامکان کوچک باشد. بهخاطر دلیل اول بایستی ذرات پلاتین– کربن(Pt/C) هرچه زیادتر باشد (از لحاظ وزنی این کسر بالاتر از 40٪ باشد)، از طرفی ذرات پلاتین باید کوچک‌تر باشند، تا سطح موثر واکنش، با وجود درصد بارگذاری کمتر، افزایش یابد ( REF _Ref331265979 h * MERGEFORMAT جدول ‏21).
باربیر [REF _Ref332025524 h * MERGEFORMAT8] گزارش کرده است که عملکرد پیل وقتی که درصد ذرات پلاتین –کربن(Pt/C) بین 10٪ تا 40٪ با بارگذاری mg/cm20.4 می‌باشد، تغییری نمی‌کند. اما عملکرد پیل وقتی که درصد ذرات پلاتین – کربن(Pt/C) از 40٪ بیشتر می‌شود، کاهش می‌یابد. این مسئله بیانگر این واقعیت است که هنگامی که درصد ذرات پلاتین–کربن(Pt/C) در گستره‌ی 10 تا 40٪ باشدتغییر قابل چشم‌پوشی برای مساحت سطح موثر کاتالیست و در گستره بالاتر از 40٪کاهش قابل ملاحظه‌ای در سطح موثر لایه‌ی کاتالیست اتفاق میافتد.
REF _Ref331265979 h * MERGEFORMAT جدول ‏21[REF _Ref332025524 h * MERGEFORMAT8] مساحت موثر کاتالیست را برای درصدهای مختلف پلاتین – کربن (Pt/C) نشان می‌دهد.


در عمل بارگذاری بیشتر پلاتین، پتانسیل بیشتر و عملکرد بهتر را برای پیل به ارمغان می‌آورد (با فرض قابل استفاده بودن و ضخامت معقول برای لایه‌ی کاتالیست). نکته‌ی کلیدی برای بهبود عملکرد پیل‌های سوختی افزایش بارگذاری پلاتین نیست بلکه افزایش استفاده از کاتالیست (افزایش سطح موثر) است.
جدول STYLEREF 1 s‏2SEQ جدول_ * ARABIC s 1 1: مساحت موثر کاتالیست برای درصدهای مختلف پلاتین – کربن.Active Area, m2/gPt XRD Pt Crystallite Size, nm Wt. % Pt on Carbone
(Pt/C)
120 2.2 40
105 2.5 50
88 3.2 60
62 4.5 70
20-25 5.5-6 Pt Black
شرح پدیده‌هایی که در لایه کاتالیست رخ می‌دهدهمان‌طور که در بخش REF _Ref330375638 n h * MERGEFORMAT ‏1-8-1-اشاره شد، لایه کاتالیست را عموماً به سه روش زیر مدل‌سازیمی‌کنند:
مدل لایه نازک
مدل همگن
مدل توده ای
اختلاف اصلی بین این سه روش را می‌توان در مکانیزم انتقال اکسیژن جستجو کرد در حالی که مدل‌های نام برده در نحوه انتقال الکترون و پروتون به یکدیگر شباهت زیادی دارند.
از آنجایی که در دهه اخیر از مدل سوم یعنی توده‌ای بیشتر از دو مدل دیگر استفاده شده است، لذا فقط به معرفی ابتدایی دو مدل اوّل بسنده کرده‌ایم، و برای مدل‌سازی لایه کاتالیست از مدل توده‌ای که جامع‌تر از دو مدل قبلی است و نواقص آن دو مدل را پوشش می‌دهد استفاده شده است.
مدل لایه نازکدر مدل لایه نازک[REF _Ref332026335 h * MERGEFORMAT27] فرض بر این است که در لایه کاتالیست، ذرات پلاتین روی سطح کربن قرار داده شده و همان‌گونه که در REF _Ref331173016 h * MERGEFORMAT شکل ‏22نشان داده شده است این ذرات بوسیله الکترولیتی احاطه می‌شوند که با حفره گاز در تماس است. در اینمدل تقارن محوری وجود دارد که در REF _Ref331173016 h * MERGEFORMAT شکل ‏22با خط چین نشان داده شده است، بنابراین در فاصله‌یحفره‌ی گاز و الکترولیت، هیچ شاری از صفحات متقارن عبور نمی‌کند (شرط تقارن). در این مدل ضخامت الکترولیت و فاصله بین ذره‌ای، ثابت در نظر گرفته می‌شود، همچنین تخلخل لایه کاتالیست در این مدل صفر است. فرآیندهای انتشار، همدما بوده و سیستم نیز در شرایط حالت پایا فرض می‌شوند.
مدل لایه نازک معمولاً هنگامی استفاده می‌شود که هدف ما مطالعه اثرات ترکیب لایه کاتالیست نباشد [REF _Ref332025607 h * MERGEFORMAT11]. در این مدل لایه کاتالیست به صورت لایه بسیار نازکی فرض می‌شود و با فرض اینکه همه خواص در این لایه یکنواخت باشند، ترکیب و ساختار آن در نظر گرفته نمی‌شود. سپس این لایه به صورت فاصله‌ای مابین غشاء و لایه نفوذ گاز ملاحظه می‌شود.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 2: شماتیک مدل لایه نازک با تقارن محوری نشان داده شده بوسیله خط چین [REF _Ref332026373 h * MERGEFORMAT28].به منظور مدل کردن اثر لایه کاتالیست بر کارایی پیل در این مدل، تنها یک معادله مورد استفاده قرار می‌گیرد (معادله تافل) که در هنگام مدل سازی به صورت یک شرط مرزی بین لایه نفوذ گاز و غشاء مطرح می‌شود. همان‌گونه که اشاره شد، به نظر می‌رسد که این مدل زمانی کافی باشد که اثرات دیگر، نسبت به اثرات لایه کاتالیست دارای اهمیت بیشتری باشند.
مدل همگنمدل همگن را می‌توان شکل اصلاح شده مدل لایه نازک نامید. در این مدل، لایه کاتالیست به صورت یک ساختار متخلخل متشکل از: یک ماده هادی جامد (معمولاً کربن)، کاتالیست (معمولاً پلاتین) و یک الکترولیت (معمولاً نفیون) ساخته می‌شود، REF _Ref331173107 h * MERGEFORMAT شکل ‏23.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 3: تصویر شماتیک لایه کاتالیست سمت کاتد بر اساس مدل همگن[REF _Ref332025841 h * MERGEFORMAT14].مدل همگن فرض می‌کند که فضای حفره، ماده هادی جامد و الکترولیت بهطور یکنواخت در لایه کاتالیست توزیع شده‌اند، این واقعیت در REF _Ref331173169 h * MERGEFORMAT شکل ‏24به خوبی به تصویر کشیده شده است.
واکنش روی سطح ذرات کاتالیست نهاده شده روی ماده هادی جامد اتفاق می‌افتد. بنابراین پروتون‌ها، الکترون‌ها و اکسیژن باید از میان لایه کاتالیست عبور کنند تا به محل انجام واکنش برسند. در لایه کاتالیست کاتد، الکترون‌ها از طریق ماده هادی جامد، پروتون‌ها از طریق الکترولیت و اکسیژن از طریق فضای حفره انتقال داده می‌شوند. مسیر انتقال اکسیژن به دو صورت فرض می‌شود. برخی از محققین فرض می‌کنند که اکسیژن از طریق آب مایعی که فضاهای حفره را پر می‌کند انتقال داده می‌شود [REF _Ref332025887 h * MERGEFORMAT15]. برخی دیگر از محققین فرض می‌کنند که اکسیژن از طریق انتشار در فاز گاز در میان حفره‌های گازی انتقال داده می‌شود [REF _Ref332026434 h * MERGEFORMAT29-REF _Ref332026924 h * MERGEFORMAT33]. هر دو فرض مدلی را نتیجه می‌دهند که برخی از اثرات بسیار مهم که در لایه کاتالیست اتفاق می‌افتد را شرح می‌دهند. هر دو فرض، همچنین ترکیب لایه کاتالیست را از طریق ربط دادن خواص لایه کاتالیست به نسبت حجمی هر فاز نشان می‌دهند.

شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 4: نمایی از لایه کاتالیست همگن و تودهای و اجزاء تشکیل دهنده آنها.مدل توده‌ایدر سال 1980 ایزکوفسکی و کاتلیپ جزء اولین کسانی بودند که مدل توده‌ای را برای شبیه‌سازی لایه کاتالیست به کار بردند. آن‌ها از توده‌های استوانه‌ای برای شبیه‌سازی خود استفاده کردند و نشان دادند که لایه کاتالیست از توده‌های کربن تقویت شده توسط پلاتین ساخته شده است که بوسیله لایه‌ای نازک از نفیون احاطه شده و بوسیله حفره‌ها از هم جدا می‌شوند. این توده‌ها اگلومریتنامیده می‌شوند. توده‌ها، کره‌هایی از الکترولیت معمولاً نفیون، هستند که با کربن و ذرات پلاتین پر شده‌اند و دارای شعاع حدوداً یک میکرونهستند [REF _Ref332026047 h * MERGEFORMAT20].این مدل، از جدیدترین مدل‌هایی است که برای لایه کاتالیست پیل سوختی ارائه شده است، REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) یک نمای میکروسکوپیک از لایه کاتالیست که حاوی ذرات اگلومریت (توده) است را نشان می‌دهد.REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) نشان می‌دهد که ذرات تودهای از یک طرف با فیبرهای (رشته‌های) کربن موجود در لایه نفوذ گاز که در مرز مشترک لایه کاتالیست با لایه نفوذ گاز قرار دارد در تماس بوده، و از طرف دیگر نیز در تماس با آیونومر الکترولیت موجود در مرز مشترک لایه کاتالیست با غشاءمی‌باشند. در این بین، ذرات تودهای به صورت نامنظم در آیونومر موجود در لایه کاتالیست مستغرق می‌باشند. همان‌طور که در REF _Ref331173305 h * MERGEFORMATشکل ‏25(الف) دیده می‌شود یک سری فضای خالی ما بین این ذرات وجود دارد، معمولاً فرض می‌شود که این فضاهای خالی با آب مایع بوجود آمده ناشی از انجام واکنش کاملاً پر می‌شود. این فرض مخصوصاً در مورد پیل‌های دما پایین که در آن‌ها تمامی آب تولیدی به صورت آب مایع می‌باشدصحیح بهنظرمی‌رسد. به این حالت، حالت غرقابی کاملمی‌گویند. REF _Ref331173305 h * MERGEFORMAT شکل ‏25 (ب) نمای بزرگ شده یکی از هزاران توده‌یموجود در لایه کاتالیست را نشان می‌دهد. این ذرات با یک فیلم بسیار نازک از آیونومر احاطه شده‌اند. همان‌طور که در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) دیده می‌شود ذرات پلاتین که بروی ذرات کربن بار گذاری شده‌اند و بوسیله آن‌ها تقویت شده‌اند به صورت کاتوره‌ایدرون آیونومر موجود در توده پخش شده‌اند.
به صورت کلی نفوذ اکسیژن از مرز مشترک لایه نفوذ گاز با لایه کاتالیست تا درون هر توده‌ی موجود در لایه کاتالیست را می‌توان به ترتیبدر فرآیندهای زیر خلاصه نمود:
نفوذ اکسیژن به درون لایه کاتالیست با حل شدن در آب مایع موجود در مرز مشترک لایه کاتالیست با لایه نفوذ گاز،
حل شدن اکسیژن در فاز آیونومر و همچنین فضاهای خالی پر شده از آب مایع، به منظور رسیدن به سطح توده‌ها،
نفوذ اکسیژن به درون فیلم آیونومر اطراف هر اگلومریت،
حل شدن اکسیژن درون توده و واکنش کاهش اکسیژن درون سایت‌های انجام واکنش (پلاتین‌ها).
REF _Ref331173381 h * MERGEFORMAT شکل ‏26تصویر میکروالکترونی (SEM)از توده‌ها را نشان می‌دهد. در شکل ناحیه خاکستری روشن آیونومر است. انتقال گاز در کاتالیست توسط حفره‌های ماکرو در ابعاد m10-1آسان‌تر می‌شود. قطر ذراتکاتالیست پلاتین حدود3 nm است.همان‌طور که در REF _Ref331173381 h * MERGEFORMAT شکل ‏26مشاهدهمی‌شود مدل تودهای به تصاویر میکروالکترونیلایه کاتالیست بسیار شبیه تر ازمدل همگن است.
با توجه به مطالب گفته شده می‌توان گفت که روش همگن نسبت به روش توده‌ای از دقت کمتری برخوردار است. مطالعات بسیاری نشان داده‌اند که مدل انباشته پیشگویی‌های بهتری نسبت به نتایج آزمایشگاهی در اختیار قرار می‌دهد [REF _Ref332026000 h * MERGEFORMAT19]. مدل‌های انباشته نیازمند پارامترهایی هستند که به صورت تجربی تعیین شده‌اند و این امر می‌تواند دلیلی برای نزدیک‌تر بودن نتایج مدل نسبت به نتایج آزمایشگاهی باشد.
(الف)
(ب)
شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 5: (الف) نمای لایه کاتالیست به روش توده‌ای که بین لایه نفوذ گاز و غشاء فشرده شده است (ب) نمای بزرگ شده از یک عدد توده موجود در لایه کاتالیست.
شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 6: تصویر SEM لایه کاتالیست [REF _Ref332026000 h19].استخراج روابط حاکم بر مدل تودهایشبیهسازی انجام شده بر اساس مدل توده‌ای بوده و بر فرضیات زیر استوار می‌باشد:
الف) پیل سوختی غشاء پلیمری در حالت پایا کار می‌کند.
ب) تمامی واکنش‌ها در دما و فشار ثابت انجام می‌شوند.
پ) گازها ایده آل فرض می‌شوند.
ت) کاتد و آند پیل سوختی به ترتیببا اکسیژن و هیدروژن خالص تغذیه می‌شوند.
ث)حفرههای موجود در مرز مشترک لایه کاتالیست با لایه نفوذ گاز و همچنین فضای خالی بین ذرات توده‌ای پر از آب مایع در نظر گرفته شده است (شرایط کاملاً غرقابی).
ج) ذرات توده‌ای به صورت کروی و با شعاع یکسان در نظر گرفته می‌شوند.
چ) تمامی واکنش‌هایی که در لایه کاتالیست رخ می‌دهند مرتبه اوّل می‌باشند، این بدین معنی است که نرخ مصرف اکسیژن در لایه کاتالیست کاتد با غلظت آن متناسب است.
دراین بخش معادلات دیفرانسیل معمولی حاکم بر لایه کاتالیست کاتد شرح داده می‌شود:
نرخ واکنش الکتروشیمیایی در مدل توده‌ایاستخراج معادله نرخ واکنش الکتروشیمیایی مستلزم شبیه‌سازی کامل فرآیندها نفوذ اکسیژن در لایه کاتالیست می‌باشد (فرآیندهای بخش REF _Ref331683273 r h * MERGEFORMAT ‏2-2-3-). بنابراین این بخش به چهار زیر بخش تقسیم شده است و در هر زیر بخش قسمتی از نفوذ اکسیژن مدلسازی شده است.
واکنش کاهش اکسیژن درون تودهدر ابتدا مکانیزم نفوذ اکسیژن درون هر توده، یعنی فرآیند 4 بخش REF _Ref331683273 r h * MERGEFORMAT ‏2-2-3- مدل می‌شود.
قانون بقای مولی برای اکسیژن درون یک توده در حالت پایا به صورت زیر بیان می‌گردد:
(2- SEQ 2- * ARABIC1)که در آن(ترم چشمه) بیان کننده نرخ اکسیژن مصرفی ناشی از واکنش الکتروشیمیایی درون توده است. انتقال جرم اکسیژن درون تودهبا استفاده از قانون فیک به صورت زیر مدل می‌شود:
(2- SEQ 2- * ARABIC2)که در آن ضریب نفوذ مؤثر اکسیژن درون یک توده است. از آنجا که اکسیژن برای نفوذ در هر توده باید در آیونومر موجود در آن توده حل شود لذا این ضریب نفوذ مؤثر را می‌توان با استفاده از تصحیح برگمان در محیط متخلخل به صورت زیر گزارش کرد:
(2- SEQ 2- * ARABIC3)
که در آن Li,agg کسر حجمی فاز غشاء موجود در هر توده می‌باشد. نیز ضریب نفوذ اکسیژن درون آیونومر است که خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] از داده های تجربی فرمول زیر را با برازش منحنی پیشنهاد می‌کنند:
(2- SEQ 2- * ARABIC4)
اکنون با توجه به فرض آخر در بخش REF _Ref331435271 r h‏2-3-(فرض (چ))، نرخ حجمی مصرف اکسیژن به صورت زیر بیان می‌شود:
(2- SEQ 2- * ARABIC5)که در آن kCثابت نیمواکنش سمت کاتد می‌باشد. و علامت منفی در معادله REF _Ref330398231 h * MERGEFORMAT (2- 5) بیانگر مصرف اکسیژن می‌باشد.
با جایگذاری معادلات REF _Ref330398315 h * MERGEFORMAT (2- 2) و REF _Ref330398231 h * MERGEFORMAT (2- 5) در معادله REF _Ref330398327 h * MERGEFORMAT (2- 1)می‌توان نوشت:
(2- SEQ 2- * ARABIC6)اکنون اگر معادله REF _Ref330580384 h * MERGEFORMAT (2- 6) برای یک ذره توده‌ای کروی شکل در دستگاه مختصات کروی بسط داده شود، میتوان نوشت:
(2- SEQ 2- * ARABIC7)معادله REF _Ref330398567 h * MERGEFORMAT (2- 7) یک معادله دیفرانسیل معمولی مرتبه دوم می‌باشد، بنابراین دو شرط مرزی برای حل آن نیاز است این دو شرط در ادامه توضیح داده شده‌اند(برای جزئیات بیشتر به REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) رجوع شود):
شرط مرزی در سطح داخلی توده،r = ragg: غلظت اکسیژن در سطح داخلی توده برابر با در نظر گرفته شده است( REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب)):
(2- SEQ 2- * ARABIC8)شرط مرزی در مرکز توده،r =: در مرکز توده شرط تقارن وجود دارد:
(2- SEQ 2- * ARABIC9)اگر معادله دیفرانسیل REF _Ref330398567 h * MERGEFORMAT (2- 7) با شرایط مرزی معادلات REF _Ref330399466 h * MERGEFORMAT (2- 8) و REF _Ref330399471 h * MERGEFORMAT (2- 9) حل شود آنگاه جواب زیر حاصل می‌گردد:
where and (2- SEQ 2- * ARABIC10)گروه بی بعد  که در معادله REF _Ref330399611 h * MERGEFORMAT (2- 10) ظاهر شده است را عدد تایلی یا مدول تایلی می‌نامند که برابر است با [REF _Ref332026047 h * MERGEFORMAT20]:
(2- SEQ 2- * ARABIC11) REF _Ref331173594 h * MERGEFORMAT شکل ‏27نحوه تغییرات شعاعی غلظت بی بعد اکسیژن را درون یک توده به ازای مقادیر مختلف عدد تایلی نشان می‌دهد.
بر اساس معادله REF _Ref330399927 h * MERGEFORMAT (2- 11) حالت  حداقل با یکی از دو شرایط زیر متناظر است:
الف)ragg: ذرات تودهای بسیار ریز باشند،
ب)kC : ترم چشمه، به سمت صفر میل کند.
حالت (الف) متناظر است با حالتی که ذرات تودهای بسیار ریز باشند، در این حالت مدل توده‌ای به مدل همگن ساده می‌شود، به زبان دیگر این حالت بسیار به مدل همگن و مفروضات همگن پخش شدن اجزاءدر لایه کاتالیست نزدیک است. از طرف دیگر حالت (ب) متناظر با حالتی است که مصرف اکسیژن درون لایه کاتالیست به صفر رسیده است. در هر صورت همان‌طور که در REF _Ref331173594 h * MERGEFORMAT شکل ‏27 مشاهده می‌شود حالت حدی  ناشی از هر دو حالت (الف) یا (ب) که باشد، منجربه توزیع تقریباً یکنواخت غلظت اکسیژن درون کل توده است.

شکل STYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 7: تغییرات شعاعی غلظت بی بعد اکسیژن درون یک توده برای مدول تایلی مختلف.از طرف دیگر حالت حدی (مثل = 10در REF _Ref331173594 h * MERGEFORMAT شکل ‏27) متناظر با مصرف بسیار زیاد اکسیژن درون لایه کاتالیست است، به نحوی که نرخ نفوذ اکسیژن درون توده بسیار کمتر از نرخ مصرف اکسیژن است. این امر سبب می‌شود که اکسیژن توانایی نفوذ به اعماق توده را نداشته باشد و پس از کمی نفوذ درون توده به سرعت مصرف گردد در این حالت غلظت اکسیژن در r* = 1 به سرعت افت می‌کند که در REF _Ref331173594 h * MERGEFORMAT شکل ‏27مشخص است.
نرخ حجمی واکنش کاهش اکسیژن[mol m-3 s-1]، که همان میانگین نرخ حجمی مصرف اکسیژن درون توده می‌باشد با انتگرال گیری بر روی حجم کل توده به صورت زیر قابل محاسبه است:
(2- SEQ 2- * ARABIC12)در معادله REF _Ref330580866 h * MERGEFORMAT (2- 12)، Vagg حجم یک توده می‌باشد، که برابر است با:
(2- SEQ 2- * ARABIC13)
اکنون معادله REF _Ref330399611 h * MERGEFORMAT (2- 10) در معادله REF _Ref330398231 h * MERGEFORMAT (2- 5) جایگذاری شده، و سپس حاصل آن در معادله REF _Ref330580866 h * MERGEFORMAT (2- 12) جایگذاری می‌شود و انتگرال روی حجم توده محاسبه می‌شود، نرخ میانگین حجمی مصرف اکسیژن به صورت بی‌بعد و بر حسب عدد تایلی بدست می‌آید:
(2- SEQ 2- * ARABIC14)در فرمول REF _Ref330581539 h * MERGEFORMAT (2- 14)، مقدار نرمال شده (بی‌بعد) نرخ مصرف حجمی اکسیژن می‌باشد که برابر است با:
(2- SEQ 2- * ARABIC15)
طبق فرض (چ) در بخش REF _Ref331435271 r h‏2-3-، نرخ حجمی مصرف اکسیژن با غلظت آن متناسب است، بنابراین ماکزیمم نرخ حجمی مصرف اکسیژن درون توده که در r = ragg رخ می‌دهد برابر است با ( REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب)):
(2- SEQ 2- * ARABIC16)ضریب موثرEr، که نسبت میانگین نرخ حجمی مصرفی اکسیژن به ماکزیمم نرخ مصرف اکسیژن می‌باشد، به صورت زیر تعریف می‌شود:
(2- SEQ 2- * ARABIC17) در حالت حدی، معادله REF _Ref330583898 h * MERGEFORMAT (2- 17) مقدارErرا برابر با 1 پیش‌بینیمی‌کند. از این نکته در بخش بعد برای تطبیق دادن مدل همگن و توده‌ای در شرایط حدی فوق استفاده می‌شود. اکنون معادلات REF _Ref330584219 h * MERGEFORMAT (2- 16) و REF _Ref330583898 h * MERGEFORMAT (2- 17) برای بدست آوردن با هم ادغام می‌شود:
(2- SEQ 2- * ARABIC18)نفوذ اکسیژن درون فیلم آیونومر اطراف تودهاکسیژن از طریق نفوذ در لایه نازک اطراف توده به درون آن نفوذ می‌کند.وبهترتیب غلظت اکسیژن در سطحبیرونی و داخلی فیلم آیونومر میباشد، این موضوع در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(ب) نشان داده شده است. اکنون شار مولی نفوذی اکسیژن به درون فیلم آیونومر اطراف هر توده را می‌توان با استفاده از مقاومت پخشی اکسیژن در مختصات کروی به صورت زیر بدست آورد:
(2- SEQ 2- * ARABIC19)agg، ضخامت مفروض لایه آیونومر اطراف توده است.
اگر aagg، سطح مؤثر (مساحت سطح مفید جهت نفوذ اکسیژن به درون تودهها نسبت به حجم لایه کاتالیست m/m) کل توده‌های موجود درون لایه کاتالیست باشد، اکنون نرخ کل اکسیژن مصرفی درون لایه کاتالیست برابر است با:
(2- SEQ 2- * ARABIC20)از سوی دیگر غلظت اکسیژن بر روی سطح بیرونی لایه آیونومر، ، با استفاده از قانون هانری قابل محاسبه است (قانون هانری در پیوست 2 توضیح داده شده است)، بطوریکه:
(2- SEQ 2- * ARABIC21)، ثابت هانری مربوط به انحلال اکسیژن درون آیونومر است. سان و همکارانش [REF _Ref332026047 h * MERGEFORMAT20]مقدار آن را 0.3125 [atm m3 mol-1] گزارش کرده‌اند.
اکنون مقدار غلظت اکسیژن در سطح داخلی فیلم آیونومر، ، با ادغام معادلات REF _Ref330627395 h * MERGEFORMAT (2- 18)، REF _Ref330627402 h * MERGEFORMAT (2- 19)، REF _Ref330627421 h * MERGEFORMAT (2- 21)و REF _Ref330627456 h * MERGEFORMAT (2- 20) بدست می‌آید:
(2- SEQ 2- * ARABIC22)نرخ واکنش الکتروشیمیایینرخ واکنش الکتروشیمیایی از ادغام قانون فارادی و معادله REF _Ref330398327 h * MERGEFORMAT (2- 1) به صورت زیر قابل محاسبه است(شرحی بر قانون فارادی در پیوست 1 آمده است):
(2- SEQ 2- * ARABIC23)CL تخلخل لایه کاتالیست است.
نهایتاً نرخ واکنش الکتروشیمیایی در مدل توده‌ای با جایگزین کردن معادله REF _Ref330628360 h * MERGEFORMAT (2- 22) در معادله REF _Ref330627395 h * MERGEFORMAT (2- 18) و جایگذاری معادله حاصله درون رابطه REF _Ref330628414 h * MERGEFORMAT (2- 23) بدست می‌آید:
مدل توده ای:(2- SEQ 2- * ARABIC24)معادله REF _Ref330628605 h * MERGEFORMAT (2- 24) از دو بخش تشکیل شده است:
and (2- SEQ 2- * ARABIC25)بعداً اثبات می‌شود که Term I در معادله REF _Ref330628753 h * MERGEFORMAT (2- 25) تنها بخشی از مدل توده‌ای است که در مدل همگن نیز وجود دارد، Term II یک بخش اضافی است که در مدل توده‌ای ظاهر شده است و مدل همگن فاقد آن است.Term II، ترمی است که شامل پارامترهای ساختاری و هندسی ذرات توده‌ای بوده و به صورت مستقیم به شرایط عملکردی و چگالی جریان پیل وابسته نیست، از طرف دیگر Term I ترمی است که کاملاً وابسته به شرایط عملکردی و چگالی جریان پیل می‌باشد. در بخش نتایج این دو ترم از نظر مرتبه بزرگی با یکدیگر مقایسه شده‌اند. به نظر می‌رسد که دلیل ایجاد افت غلظت در چگالی جریان بالا در منحنی قطبیت پیل در مدل توده‌ای، همین اختلاف بین دو مدل همگن و توده ای یعنی، Term IIباشد. در نبود این ترم، مدل توده‌ای به مدل همگن کاهش می‌یابد، که در این حالت مدل همگن قادر به پیش بینی افت غلظت در چگالی جریان‌های بالا نیست و این یکی از اصلی‌ترین معایب مدل همگن بشمار می‌رود.
در معادله REF _Ref330628605 h * MERGEFORMAT (2- 24) تنها ترم مجهول kCمی‌باشد. این پارامتر با استفاده از بررسی یک حالت حدی که در آن مدل توده‌ای به مدل همگن کاهش می‌یابد بدست می‌آید. مدل همگن تحت شرایط زیر از مدل توده‌ای قابل بازیافت است:
Er 1  Term II  (ragg, agg)مدل همگن:
(2- SEQ 2- * ARABIC26)از طرف دیگر نرخ واکنش الکتروشیمیایی در مدل همگن با استفاده از رابطه باتلر- ولمر به صورت زیر بدست می‌آید [REF _Ref332025841 h * MERGEFORMAT14]:
مدل همگن:
(2- SEQ 2- * ARABIC27)نهایتاً kC از تساوی دو رابطه REF _Ref330630372 h * MERGEFORMAT (2- 26) و REF _Ref330630376 h * MERGEFORMAT (2- 27) بدست می‌آید:
(2- SEQ 2- * ARABIC28)
aeff سطح موثر پلاتین بر واحد حجم لایه کاتالیست است ([m2 m-3]). aوcبه ترتیب ضرایب انتقال بار سمت آند و کاتد میباشد.چگالی جریان مرجع می‌باشد که پرتاساراتی و همکارانش [REF _Ref332026674 h * MERGEFORMAT34] فرمول زیر را از برازش داده های تجربی پیشنهاد داده‌اند:
(2- SEQ 2- * ARABIC29)
غلظت مرجع اکسیژن می‌باشد که خواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] مقدار آن را 1.2mol m-3گزارش کرده‌اند.
انتقال جرم اکسیژنخواجه حسینی و همکارانش [REF _Ref332025841 h * MERGEFORMAT14] توزیع غلظت اکسیژن را بر حسب چگالی جریان محلی پیل (i) به صورت زیر بدست آورده‌اند:
(2- SEQ 2- * ARABIC30)که در آن Itotوبه ترتیب چگالی جریان پیل سوختی و ضریب نفوذ مؤثر کلی اکسیژن در کل لایه کاتالیست می‌باشد.
همان‌طور که قبلاً اشاره شد فرض بر این است که فضای خالی بین توده‌ها از آب مایع پر شده است، بنابراین همان‌طور که در REF _Ref331173305 h * MERGEFORMAT شکل ‏25(الف) دیده می‌شود دو مسیر موازی برای رسیدن اکسیژن به محل‌های انجام واکنش وجود دارد:
مسیر اول:انتقال اکسیژن به وسیله حل شدن در فاز آیونومر موجود در لایه کاتالیست.
مسیردوم: انتقال اکسیژن از طریق حل شدن در آب مایع موجود در فضای خالی بین ذرات توده‌ای.
اکنون برای محاسبه ، هر یک از دو مسیر بالا با یک مقاومت نفوذ بر اساس کسر حجمی متناظر با هر بخشی که اکسیژن به درون آن نفوذ کرده مدلسازی میشود.بر این اساس با در نظر گرفتن یک حجم کنترل به صورت کروی به شعاع r حول یک توده به شعاع raggمی‌توانمقاومت نفوذ به درون تودهاز طریق هر یک از مسیرها را به صورت زیر محاسبه کرد:
(2- SEQ 2- * ARABIC31)مقاومت نفوذ مسیر اول:
مقاومت نفوذ مسیر دوم:
در اینجا NوWبه ترتیب نشان دهنده زاویه‌ای از فاز آیونومر و بخش حفره در حجم کنترل انتخاب شده می‌باشد، که با توجه به کسر حجمی فازهای غشاء (Li)، فاز جامد (LS) و فضای خالی (CL) برابرند با:
(2- SEQ 2- * ARABIC32)ونیز به ترتیب ضریب انتشار مؤثر اکسیژن در آیونومر و آب مایع می‌باشد که با استفاده از تصحیح برگمان به صورت زیر به دست می‌آید:
(2- SEQ 2- * ARABIC33)
(2- SEQ 2- * ARABIC34)
ضریب نفوذ اکسیژن در آب مایع می‌باشد که با استفاده از رابطه وایلک- چنگ بدست می‌آید [REF _Ref332027179 h * MERGEFORMAT35]:
(2- SEQ 2- * ARABIC35)
که در آن، وزن مولکولی آب بوده و برابر باg/mol 18 است.، حجم مولار اکسیژن در نقطه جوش نرمال است که برابر باcm3/mol 25.6است. پارامتر وابستگی است که برای آب مقدار آن 2.26می‌باشد.ویسکوزیته آب بر حسب سانتی پوآز [cP]می‌باشد، وایت[REF _Ref332027206 h * MERGEFORMAT36] مقدار آن را برای آب مایع به صورت زیر پیشنهاد کرده است:
(2- SEQ 2- * ARABIC36)
اکنون مقاومت معادل دو مقاومت موازی مسیرهای اول و دوم به صورت زیر قابل محاسبه می‌باشد:
(2- SEQ 2- * ARABIC37)
با جانشین کردن معادله REF _Ref330634607 h * MERGEFORMAT (2- 32) درمعادله REF _Ref330634616 h * MERGEFORMAT (2- 31) و استفاده از معادلههای حاصله در رابطه REF _Ref330634659 h * MERGEFORMAT (2- 37)مقدار بدست می‌آید:
(2- SEQ 2- * ARABIC38)
محاسبه افت فعال‌سازیمقاومت در برابر عبور جریان پروتونی و الکترونی در فازهای غشاء و جامد موجود در لایه کاتالیست مربوط به افت فعال‌سازیمی‌باشد و با استفاده از قانون اهم بدست می‌آید. مار و لی [REF _Ref332025950 h * MERGEFORMAT18] رابطه زیر را بدست آورده‌اند:
(2- SEQ 2- * ARABIC39)که در آن، keffوeffبه ترتیب قابلیت هدایت مؤثر پروتونی و الکترونی فازهای غشاء و جامد در لایه کاتالیست می‌باشد، با استفاده از تصحیح برگمان و کسر حجمی متناظر با هر فاز میتوان نوشت:
(2- SEQ 2- * ARABIC40)
مقادیر kو در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 آمده است.
شرایط مرزیمعادلات حاکم بر انتقال اجزاء یک دستگاه معادلات دیفرانسیل معمولی بوده که شامل معادلات REF _Ref330628605 h * MERGEFORMAT (2- 24)، REF _Ref330636162 h * MERGEFORMAT (2- 30) و REF _Ref330636169 h * MERGEFORMAT (2- 39)می‌باشد. این دستگاه معادلات مرتبه اول غیر خطی و کوپل است. برای حل این دستگاه سه شرط مرزی مستقل لازم است که در ادامه توضیح داده می‌شود:
شرایط مرزی در سطح مشترک لایه نفوذ گاز با لایه کاتالیست (z=0):حفره‌های موجود در سطح مشترک لایه نفوذ گاز با لایه کاتالیست پر از آب فرض شده‌اند(فرض (ث) در بخش REF _Ref331435271 r h ‏2-3-). بنابراین اکسیژن برای نفوذ به درون لایه کاتالیست باید در آب حل شود. از این‌رو غلظت اکسیژن در این مرز با استفاده از قانون هانری بدست می‌آید:
(2- SEQ 2- * ARABIC41)که در آن ، ثابت هانری برای انحلال اکسیژن در آب می‌باشد. برناردی و همکارانش [REF _Ref332025833 h * MERGEFORMAT13] این پارامتر را به صورت تابعی از دمای پیل بر حسب atm m3 mol-1 گزارش کرده‌اند، بطوریکه:
(2- SEQ 2- * ARABIC42)
فرض بر این است که تمامی پروتون‌هایی که از لایه کاتالیست آند به سمت کاتد از درون غشاء مهاجرت می‌کنندقبل از رسیدن به مرز مشترک لایه کاتالیست با لایه نفوذ گاز کاملاً مصرف می‌شوند، بنابراین در این مرز میزان چگالی جریان پروتونی محلی صفر خواهد بود.
(2- SEQ 2- * ARABIC43)این دومین شرط در این مرز می‌باشد.
شرط مرزی در سطح مشترک غشاء با لایه کاتالیست (z=LCL):چگالی جریان محلی در این مرز به بیشینه مقدار خود، یعنی چگالی جریان کلی پیل،Itot، می‌رسد:
(2- SEQ 2- * ARABIC44)جایگذاری معادله REF _Ref330637704 h * MERGEFORMAT (2- 44)در معادله REF _Ref330636162 h * MERGEFORMAT (2- 30) نتیجه می‌دهد که شار غلظت اکسیژن در این مرز برابر با صفر است، این یعنی اینکه اکسیژن موجود در لایه کاتالیست نمی‌تواند از طریق این مرز به داخل غشاء عبور کند (شار نفوذ اکسیژن در این مرز صفر است).
تمامی شروط مرزی را که در بخش‌های REF _Ref331452886 r h * MERGEFORMAT ‏2-7-1- و REF _Ref331452893 r h * MERGEFORMAT ‏2-7-2- توضیح داده شده است، به صورت شماتیکی در REF _Ref331453206 h * MERGEFORMAT شکل ‏28 نشان داده شده است.

شکلSTYLEREF 1 s‏2SEQ شکل_ * ARABIC s 1 8: شماتیک شروط مرزی در دو طرف لایه کاتالیست.شرحی بر پارامترهای استفاده شده در مدل‌سازیمقدار برخی از پارامترهای ساختاری و عملکردی برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 گزارش شده است. باقیمانده پارامترها در ادامه توضیح داده می‌شوند.
مساحت سطح مؤثر پلاتیندر لایه‌های کاتالیست مدرن مساحت سطوح انجام واکنش بسیار بیشتر از مساحت اسمی لایه کاتالیست می‌باشد. این به دلیل زبری لایه کاتالیست است که مساحت واقعی واکنش را تا چندین هزار برابر افزایش می‌دهد[REF _Ref332024550 h * MERGEFORMAT4]. مساحت سطح مؤثر پلاتین،aeff، در حقیقت نسبت مساحت سطح واقعی انجام واکنش به حجم لایه کاتالیست است، بطوریکه:
(2- SEQ 2- * ARABIC45)در معادله REF _Ref330642170 h * MERGEFORMAT (2- 45)، l، نسبت سطح مؤثر پلاتین می‌باشد. As مساحت سطح واقعی واکنش بر واحد جرم پلاتین است. ایتک[REF _Ref332027291 h * MERGEFORMAT37] مقدار آن را به صورت تجربی بر حسب کسر جرمی پلاتین به فرم زیر بیان می‌کند:
(2- SEQ 2- * ARABIC46)
f نسبت بارگذاری جرمی پلاتین به بارگذاری جرمی کل فاز جامد (پلاتین + کربن) می‌باشد، یعنی:
(2- SEQ 2- * ARABIC47)
mPtوmCبه ترتیب بارگذاری جرمی پلاتین و کربن است که مقدار آن‌ها برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 گزارش شده است.
تخلخل لایه کاتالیستمساحت سطح مؤثر توده‌ها برابر با سطح تمامی توده‌ها (سطح در دسترس برای نفوذ اکسیژن به درون توده‌ها) بر واحد حجم لایه کاتالیست است، و به صورت زیر بدست می‌آید:
(2- SEQ 2- * ARABIC48)در رابطه REF _Ref330643201 h * MERGEFORMAT (2- 48)،CLبه منظور محاسبه سطح در دسترس برای نفوذ اکسیژن به درون توده‌ها بکار برده شده است. پارامتر n درمعادله REF _Ref330643201 h * MERGEFORMAT (2- 48)، تعداد توده‌ها بر واحد حجم لایه کاتالیست می‌باشد و به صورت زیر تعریف می‌گردد:
(2- SEQ 2- * ARABIC49)تعداد توده‌ها (#) از تقسیم زیر بدست می‌آید:
(2- SEQ 2- * ARABIC50)
بنابراین:
(2- SEQ 2- * ARABIC51)که در آن Ls نسبت حجم کل Pt/C های موجود در لایه کاتالیست به حجم کل لایه کاتالیست است، یعنی:
(2- SEQ 2- * ARABIC52)
و Li,agg کسر حجمی غشاء درون هر توده می‌باشد،یعنی:
(2- SEQ 2- * ARABIC53)
که مقدار آن برای حالت پایه در REF _Ref331243557 h * MERGEFORMAT جدول ‏22 آمده است.
از آنجایی که درون توده‌ها فقط ذرات Pt/Cو فاز آیونومر است لذا می‌توان نوشت که:
(2- SEQ 2- * ARABIC54)
شایان ذکر است که حجم هر یک از توده‌ها برابر است با:
(2- SEQ 2- * ARABIC55)
کسر حجمی فاز جامد در لایه کاتالیست،Ls، به بارگذاری پلاتین و کربن وابسته است، بطوریکه:
(2- SEQ 2- * ARABIC56)PtوCبه ترتیب چگالی پلاتین و کربن می‌باشد.
فاز آیونومر درون لایه کاتالیست از دو قسمت تشکیل شده است: (الف) آیونومر درون ذرات توده‌ای (ب) فیلم نازک آیونومر اطراف ذرات. بنابراین کسر حجمی فاز غشاء در کل لایه کاتالیست برابر است با:
(2- SEQ 2- * ARABIC57)
نهایتاً تخلخل لایه کاتالیست از کم کردن کسر حجمی فازهای غشاء و جامد از عدد یک بدست می‌آید:
(2- SEQ 2- * ARABIC58)جدول STYLEREF 1 s‏2SEQ جدول_ * ARABIC s 1 2: پارامترهای عملکردی، فیزیکی و سینیتکی مدل (حالت پایه).پارامترها کمیت مقدار/مرجع
T دما، 50oC
P فشار گازهای ورودی، 5 atm
کسر مولی اکسیژن سمت کاتد، 100 %
کسر مولی هیدروژن سمت آند، 100 %
LCLضخامت لایه کاتالیست، 50 m [ REF _Ref332025841 h * MERGEFORMAT 14]
Rohmic مقاومت اهمیک پیل، 0.47×10-4m2[ REF _Ref332027389 h * MERGEFORMAT 38]
mPtبارگذاری جرمی پلاتین بر واحد سطح کاتد،0.0035 kg m-2[ REF _Ref332027389 h 38]
mC بارگذاری جرمی کربن بر واحد سطح کاتد، 0.045 kg m-2[ REF _Ref332025841 h * MERGEFORMAT 14]
Pt چگالی پلاتین،21400 kg m-3C چگالی کربن، 1800 kg m-3
غلظت مرجع اکسیژن، 1.2 mol m-3[ REF _Ref332025841 h * MERGEFORMAT 14]
Cضریب انتقال بار کاتدی، 1.0
a ضریب انتقال بار آندی، 0.5
k قابلیت هدایت حجمی پروتونی، 17 m-1[ REF _Ref332025841 h * MERGEFORMAT 14]
 قابلیت هدایت حجمی الکترونی، 72700 m-1[ REF _Ref332025841 h * MERGEFORMAT 14]
raggشعاع توده، 0.75 m
agg ضخامت توده، 60 nm
ثابت هانری برای انحلال اکسیژن در آیونومر، 0.3125 atm m3 mol-1[ REF _Ref332026047 h 20]

—c668

1-6)فرایندهای مختلف بازیابی اتیلن گلیکول 10

فصل دوم : فرایند جداسازی تقطیر غشایی 2-1)مقدمه 13 2-2)مشخصات غشاهای تقطیر غشایی 20
2-3)مزایای تقطیر غشایی 22
2-4)گرفتگی غشا 23
2-5)پلاریزاسیون دما وپلاریزاسیون غلظت 23
2-6)ساخت غشاهای تجاری برای فرایند تقطیر غشایی 24
2-7)مدلهای توسعه یافته جهت فرایند تقطیر غشایی 33
2-8)انتقال جرم در فرایند تقطیر غشایی 36
2-9)انتقال گرما در فرایند تقطیر غشایی 41
2-10)آنالیز و تخمین انرژی مصرفی در فرایند تقطیر غشایی 45
2-11)زمینه های که در تقطیر غشایی کم کار شده 50
2-12)چشم اندازی بر آینده ی تقطیر غشایی 51 فصل سوم :مواد و روشهای انجام آزمایشات 3-1)سیستم آزمایشگاهی 54
3-2)تجهیزات مورد استفاده در فرایند تقطیر غشای خلاء 56
3-3)طراحی آزمایش ها 58
3-4)پارامترهای موثر در فرایند تقطیر غشایی 61
3-5)طراحی آزمایش به وسیله ی نرم افزار MINITAB 63
فصل چهارم :نتایج آزمایشها و بحث 4-1)نتایج حاصل از آزمایش ها 64 4-2)تحلیل آماری نتایج آزمایشگاهی مربوط به شار محصول 66
4-3) بررسی تاثیر هریک از پارامترهای فرایندی به روی شار جریان تراوشی 69
4-4) تحلیل آماری نتایج آزمایشها مربوط به درصد جداسازی(R) اتیلن گلیکول 77
4-5) تحلیل نمودار مربوط به فاکتور جداسازی اتیلن گلیکول 78
4-6)آزمایشها مربوط به تایید نتایج آزمایشهای انجام شده 84
نتیجه‌گیری و پیشنهادات 85
منابع و ماخذ 86


فهرست جدول ها
عنوان شماره صفحه

1-1)مشخصات شیمیایی و فیزیکی اتیلن گلیکول و آب 4
2-1)مشخصات غشاهای تخت تجاری در فرایند تقطیر غشایی 25 2-2)مشخصات غشاهای موئینه و الیاف توخالی در فرایند تقطیر غشایی 26 2-3)شار نفوذی گزارش شده مربوط به غشاهای تجاری صفحه تخت 27 2-4)شار نفوذی گزارش شده مربوط به غشاهای تجاری موئینه والیاف توخالی 28 2-5)شار نفوذی گزارش شده مربوط به غشاهای صفحه تخت مختلف ساخته شده 30 2-6)شار نفوذی گزارش شده مربوط به غشاهای الیاف توخالی مختلف ساخته شده 31 2-7)انرژی مصرف شده در سیستمهای مختلف تقطیر غشایی 47
2-8)تخمین هزینه ی تولید آب برای سیستمهای مختلف تقطیر غشایی 49
3-1)مشخصات غشاهای مورد استفاده 56
3-2)فاکتورهای قابل کنترل و سطوح انتخابی 68
3-3)ماتریس آرایه ی L9 69
4-1)نتایج بدست آمده برای غشای پلی پروپیلن(PP) 70
4-2)نتایج بدست آمده برای غشای PTFE 71
4-3)نتایج آماری بدست آمده برای شار محصول 72
4-4)نتایج آماری بدست آمده برای فاکتور جداسازی 75
4-5)مقایسه نتایج آزمایش ها تایید کننده با پیش بینی روش تاگوچی 90
فهرست نمودارها
عنوان شماره صفحه

1-1)منحنی انجماد محلول آبی اتیلن گلیکول 7
1-2) فشار بخار محلولهای آبی اتیلن گلیکول در دماهای مختلف 8
2-1)نرخ رشد تحقیقات در زمینه MD به شکل تعداد مقالات سالانه منتشر شده 14
2-2) تعداد مقالات منتشر شده در زمینه ی مطالعات تجربی و مدلسازی روی MD 15
2-3) روند رشد تعداد مقالات منتشر شده در زمینه ی ساخت غشای MD 16
3-1)مراحل انجام آزمایش با استفاده از روش تاگوچی 64
4-1)تغییرات شار با زمان برای غشای PP و PTFE 71
4-2)تاثیر پارامترهای فرایند به روی شار محصول غشای PP و نسبت SN آنها 73
4-3)تاثیر پارامترهای فرایند به روی شار محصول غشای PTFE و نسبت SN
4-4)درصد توزیع سهم هریک از پارامترها روی شار تراوش کننده ی غشا 74
75
4-5)تاثیر پارامترهای فرایند روی فاکتور جداسازی غشاء PP و نسبت SN 77
4-6)تاثیر پارامترهای فرایند روی فاکتور جداسازی غشاء PTFE و نسبت SN 78
4-7)مقایسه تاثیر دما روی فاکتور جداسازی دو غشای PP و PTFE 79
4-8)مقایسه تاثیر فشار روی فاکتور جداسازی دو غشای PP و PTFE 79
4-9)مقایسه تاثیر پارامتر غلظت خوراک روی فاکتور جداسازی دو غشای PP و PTFE 80
4-10) مقایسه تاثیر پارامتر شدت جریان روی فاکتور جداسازی دو غشای PP و PTFE 80
4-11)توزیع سهم هریک از پارامترها روی فاکتور جداسازی غشای PP 81
4-12) توزیع سهم هریک از پارامترها روی فاکتور جداسازی غشای PTFE 81
4-13)مقایسه ی تاثیر پارامتر دما روی شار غشای PP و PTFE و نسبت SN 83
4-14) مقایسه ی تاثیر پارامتر فشار خلاء روی شار غشای PP و PTFE و نسبت SN 85
4-15) مقایسه ی تاثیر پارامتر شدت جریان روی شار غشای PP و PTFE و نسبت SN 87
4-16) مقایسه ی تاثیر پارامتر غلظت خوراک روی شار غشای PP و PTFE و نسبت SN 89
فهرست شکل‌ها
عنوان شماره صفحه

2-1)گونه های مختلف فرایند جداسازی تقطیر غشایی 17 2-2)تصویر SEM از سطح بالایی(a) و سطح مقطع (b) غشاهای صفحه تخت 32 2-3)مکانیزم های مختلف انتقال در مدل Dudty Gas 38 2-4)انتقال گرما در فرایند تقطیر غشایی 41 2-5)شماتیک فرایند عملیاتی MD همراه با بازیابی گرما به وسیله ی مبدل حرارتی 46 3-1)شماتیک فرایند تقطیر غشایی خلاء 55
چکیده:
در این پایان نامه امکان استفاده از تقطیر غشایی خلاء برای تغلیظ اتیلن گلیکول به عنوان یک مایع خنک کننده با ارزش بررسی شده است. آزمایشهای تقطیر غشایی با یک مخلوط آب - اتیلن گلیکول و با استفاده از یک سلول جریان مماسی و غشاهای مختلف و در شرایط عملیاتی متفاوت انجام شد. این فرایند با 2 غشای صفحه تخت آبگریز میکرو متخلخل PP و PTFE و با استفاده از پمپ خلاء و کندانسور برای بازیابی و جمع آوری بخار آب ، صورت پذیرفت. اثر پارامترهای عملیاتی گوناگون روی بازده تغلیظ اتیلن گلیکول مورد مطالعه قرار گرفت. 4 پارامتر در 3 سطح انتخاب شدند که عبارتند از : دما(40 ،50 و 60 ℃)، فشار پایین دست(خلاء)(30 ،70 و 100 mbar)، دبی جریان(60 ،90 و 120 lit/h)، غلظت(30، 40 و50 wt%). روش تاگوچی به منظور حداقل کردن تعداد آزمایشها استفاده شد. نتایج نشان می دهد که افزایش دما و کاهش فشار خلاء شار پرمیت را بهبود می بخشد. شار پرمیت به شدت از دمای خوراک ورودی اثر می پذیرد. در شرایط دما 60 ℃ و فشار خلاء 30 mbar و غلظت 30 wt% و دبی خوراک 60 l/h، شار تولیدی پرمیت به حداکثر مقدار خود می رسد.

مقدمه :
امروزه قوانین محیط زیستی محدودیت های زیادی را برای صنایع به وجود آورده است تا آنجا که عمده ی هزینه ها در طراحی های جدید کارخانجات، در نظر گرفتن اینگونه قوانین و ایجاد صنعت پاک و بدون آلاینده می باشد. لذا در دهه های اخیر به شدت به روی تصفیه پسابها و ضایعات حاصل از صنایع تاکید شده است. به جهت تنوع محصولات حاصل از نفت و صنایع مرتبط، محدوده وسیعی از پسابها و ضایعات با درصد آلایندگی گوناگون تولید می شوند و از طرفی از آنجا که نفت و گاز جزء منابع تجدید ناپذیر به حساب می آیند لذا کوشش در مصرف بهینه و صحیح این منابع در اکثر کشورها به شدت مورد توجه قرار گرفته است. یکی از راههای ذخیره کردن و استفاده صحیح ، بازیابی و تصفیه پسابهای صنایع می باشد. امروزه تکنولوژی بازیافت و تصفیه پسابها هم بعلت کمک به کاهش آلودگی محیط زیستی و هم حفظ منابع ملی به سرعت رو به رشد می باشد و روش های جدید و پربازده ی در این زمینه ابداع شده است. متاسفانه در کشورهایی که دارای منابع نفت و گاز هستند به این موضوع توجه خاصی نمی گردد و فقط این مسائل مورد توجه مجامع علمی و دانشگاهی قرار گرفته است.
اتیلن گلیکول یکی از محصولات با ارزش می باشد، کاربرد وسیع این ماده به خصوص در تهیه ضدیخ و سیستمهای خنک کننده آنرا جزء مهمترین محصولات صنایع پتروشیمی قرار داده است. به تبع کاربرد فراوان آن در صنعت ، ضایعات حاوی اتیلن گلیکول که همراه با مقدار زیادی آب می باشند نیز به وفور وجود دارد. میزان قابل توجهی از این پسابها سالانه تولید می شود، لذا بازیابی این ماده و جدا کردن آب از آن می تواند بسیار سودمند و مفید باشد.
از طرفی در واکنش تولید اتیلن گلیکول مقدار زیادی آب به منظور افزایش تولید محصول اصلی اتیلن گلیکول و کاهش تولید محصولات جانبی به واکنش اضافه می شود. هنگامیکه نسبت مولی آب به اکسید اتیلن 1:22 باشد، بیشترین مقدار اتیلن گلیکول و مقدار زیادی آب تولید می شود. بنابراین محصول حاوی مقدار زیادی آب می باشد که بایستی از طریق جداسازی ، خالص سازی و تغلیظ شود.
در این خصوص سعی شده در ابتدا توضیحاتی در مورد خواص و کاربردهای این ماده و سپس به روش هایی که تاکنون برای بازیابی و تغلیظ آن به کار رفته است پرداخته شود.سرانجام،هدف این پروژه مطالعه آزمایشگاهی جداسازی و تغلیظ کامل(تقریبا 99%) اتیلن گلیکول از محلول آبی آن توسط تکنولوژی و فرایند تقطیر غشایی می باشد.

فصل اول
اتیلن گلیکول ،کاربردها و روشهای تصفیه
1-1)مقدمه :
اتیلن گلیکول (مونو اتیلن گلیکول1) با نام آیوپاک اتان 1و2 – دیول یک الکل با دو گروه عاملی می باشد.اتیلن گلیکول ماده ی شیمیایی است که به سبب پایین بودن نقطه انجماد و بالا بودن نقطه جوش به طور گسترده در خنک کننده ها و به عنوان ضدیخ و ضد جوش در وسایل نقلیه مورد استفاده قرار می گیرد.در حالت خالص، مایعی بی رنگ، لزج ،با مزه ی شیرین می باشد.جرم ملکولی 62.068 ،چگالی 1.1132 g/cm3 ،نقطه جوش 197.5 ℃و دارای فراریت کمی می باشد.فشار بخار آن در 25 ℃در حدود 12.25 Pa می باشد.اتیلن گلیکول سالهاست به دلیل صدماتی که به سیستم عصبی و کلیه ها می رساند در زمره مواد سمی شناخته شده است.
این ماده برای اولین بار در سال 1859 به وسیله شیمیدان فرانسوی چارلز ورتز2 تهیه شد و در میزان کم در زمان جنگ جهانی اول به عنوان سیال خنک کننده و بخشی از آن در تولید مواد منفجره مورد استفاده قرار گرفت.تولید انبوه صنعتی این ماده در سال 1927 وقتی که ماده ی اولیه آن یعنی اکسید اتیلن به راحتی و ارزان در دسترس سازندگان قرار گرفت،آغاز شد.این ماده وقتی برای اولین بار معرفی شد انقلابی هرچند کوچک در صنعت هواپیمایی خلق کرد هنگامیکه به جای آب به عنوان خنک کننده در رادیاتور ها استفاده شد،این ماده به دلیل بالا بودن نقطه جوش خود این امکان را فراهم کرد که رادیاتورهای کوچکتر در حرارتهای بالاتر هم کار کنند.قبل از تولید این ماده اکثر سازندگان هواپیماها از سیستمهای خنک کننده تبخیری که از آب با فشار بالا استفاده می کردند ،بهره می جستند بطوریکه این سیستمها غیر قابل اعتماد و در عملیات جنگی به آسانی آسیب پذیر بودند چرا که این سیستم فضای زیادی را در اتاق هواپیما اشغال می کرد و به راحتی می توانست مورد اصابت گلوله قرار گیرد.[1]

1-Mono Ethylene Glycol(MEG)
2-Charles Wurts

جدول1: مشخصات شیمیایی و فیزیکی اتیلن گلیکول و آب

1-2) روش تولید :
هیدرولیز اکسید اتیلن متداولترین روش تولید EG می باشد.اکسید اتیلن با آب طبق معادله زیر واکنش می دهد :
C2H4O + H2O HOCH2CH2OH
این واکنش به وسیله کاتالیزور اسید یا باز تسریع می شود و یا در pH خنثی با افزایش دما انجام می گردد. جریان خوراک حاوی اکسید اتیلن (حاصل از اکسیداسیون مستقیم اتیلن) و آب می باشد. مخلوط تحت فشار و در دمای 100 ℃ که در انتهای واکنش به 170℃ می رسد به داخل راکتور فرستاده می شود. مقداری از دی و تری اتیلن گلیکول به وسیله واکنش اتیلن گلیکول و اکسید اتیلن اضافی تولید می شوند. در این واکنش آب اضافی به اکسید اتیلن به منظور افزایش مقدار اتیلن گلیکول در محصولات و کاهش دی اتیلن گلیکول و تری اتیلن گلیکول افزوده می شود. هنگامیکه نسبت مولی آب به اکسید اتیلن 22 به 1 باشد ، بیشترین مقدار اتیلن گلیکول و 68% وزنی آب تولید می شود.بنابراین محصول حاوی مقدار زیادی آب می باشد که بایستی جدا گردد. محلول گلیکول خام در چند تبخیرکننده تغلیظ می شود و جداسازی نهایی به وسیله تقطیر انجام می شود.[1]
1-3)کاربردهای اتیلن گلیکول:
1-3-1)ضدیخ و خنک کننده
بیشترین کاربرد اتیلن گلیکول در تولید مایع ضدیخ1 و خنک کننده2 است. محصولات بر پایه گلیکول به مدت چندین سال برای کاهش دمای یخ زدن و افزایش نقطه جوش خنک کننده موتور مورد استفاده قرار می گیرند. مواد افزودنی به گلیکول ، مانع خوردگی در سیستم خنک کننده می شوند. امروزه عمده ی ضد یخها بر مبنای اتیلن گلیکول می باشند اما محصولات پروپیلن گلیکول3(PG) نیز در حال رشد می باشند. محصولات EG ارزانتر از PG بوده و در مقابل سمیت محصولات EG بیشتر از PG می باشد. اما هنوز EG جزء اصلی همه ی ضدیخها می باشد.
بدون توجه به نوع گلیکول مصرفی ، خنک کننده موتور چهار کار مهم را انجام می دهد. این موارد انتقال حرارت ، کاهش دمای یخ زدن ، افزایش دمای جوش و بالاخره جلوگیری از خوردگی می باشد. آب گرما را به خوبی هدایت می کند اما گلیکولها هدایت خوبی ندارند در نتیجه وقتی که غلظت گلیکول افزایش می یابد ضریب انتقال حرارت مخلوط کاهش می یابد. به منظور بهینه کردن انتقال حرارت ، موتورهای پیشرفته امروزی طوری طراحی می شوند که با مخلوطی در محدوده 40 به 60 تا 60 به 40 حجمی از آب و اتیلن گلیکول کار کنند. کیفیت آب مورد استفاده در ساخت خنک کننده به منظور اطمینان از کارکرد طولانی سیستم خنک کننده و موتور آب مقطر و یا آب دی یونیزه شده پیشنهاد می گردد.
1-3-2)سیال یخ زدای هواپیما4
اتیلن گلیکول به عنوان سیال یخ زدای هواپیما در فصول سرد به داخل موتور و بالها و بدنه هواپیما پاشیده می شود. این سیال به طور متداول حاوی 10 الی 50 درصد EG (مونو اتیلن گلیکول)، مواد فعال کننده سطحی و دیگر افزودنیها شیمیایی می باشد. البته حجم زیادی از پسابهای این ماده مشکل زیادی را برای فرودگاهها ایجاد می کند.

1.Antifreeze liquid 3.Propylene Glycol
2.Coolant 4.Airplan Deicing Fluid

1-3-3)پرداخت فلزات1
عملیات پرداخت فلزات در مقیاس بزرگ مانند ساختن هواپیما به عمل خنک کاری بخشهای گرم فلز به وسیله این سیال انجام می شود. سیالات خنک کننده اکثرا حاوی تقریبا 50% پلی اتیلن گلیکول،پلی آلکیل گلیکول یا اکسی پلی گلیکولها به همراه مقادیری از مواد مانع خوردگی در حدود چند ppm می باشند.
1-3-4)سایر کاربردهای اتیلن گلیکول
اتیلن گلیکول در صنعت پلاستیک برای تولید الیاف پلی استر،رزین ها و همچنین پلی اتیلن ترفتالات ، که برای ساخت بطری های پلاستیکی نوشیدنی های غیر الکلی استفاده می شود.
بالا بودن نقطه جوش اتیلن گلیکول و تمایل ترکیب با آب ، آن را یک خشک کن ایده آل برای بهره برداری از گاز طبیعی می سازد. در این مورد معمولا بخار آب اضافی با جذب توسط گلیکول2 برداشته می شود. اتیلن گلیکول از بالا به پایین برج جاری شده و با مخلوط بخار آب و گاز هیدروکربن که از کف چاه بالا می آیند برخورد می کند گلیکول به طور شیمیایی بخار آب را جذب کرده و اجازه می دهد که گاز خشک شده از بالای برج خارج شود سپس گلیکول و آب از یکدیگر جدا شده و گلیکول مجددا به برج برگشت داده می شود. بعلاوه مقدار تزریق مونو اتیلن گلیکول برای جلوگیری از تشکیل هیدرات ها بسیار پایین تر از مصرف دی اتیلن گلیکول در سیکل جذب آب از گاز است[2].
1-4)خطرات صنعتی
اتیلن گلیکول در دمای 230 تا 250 ℉(110-121℃) می تواند شروع به شکستن کند. بایستی توجه کرد که شکستن می تواند وقتی که دمای کل سیستم زیر این حد است هم اتفاق بیافتد ، زیرا درجه حرارت سطحی در مبدل های حرارتی و دیگ بخار می تواند در برخی بخشها حتی بالای دمای فوق باشد.
مسموم کنندگی به عنوان خطر محیط زیستی اصلی اتیلن گلیکول در نتیجه استفاده بیش حد آن می باشد . به دلیل مزه شیرین آن گاهی اوقات بچه ها و حیوانات مقدار زیادی از آن را مصرف می کنند در کشورهای پیشرفته معمولا یک ماده تلخ کننده بنام دناتونیم-بنزوات3 برای تغییر مزه اتیلن گلیکول به آن اضافه می شود[3].

1.Metal Finishing 2.Dehydration
3.Denatonium Benzoate

نمودار 1 : منحنی انجماد محلول آبی اتیلن گلیکول

نمودار 2 : فشار بخار محلولهای آبی اتیلن گلیکول در دماهای مختلف
1-5)منطق بازیابی اتیلن گلیکول
چند دلیل برای بازیابی خنک کننده های مصرف شده وجود دارد. اول اینکه طبق قوانین محیط زیستی اگرچه اتیلن گلیکول به صورت بیولوژیکی قابل تجزیه می باشد اما از آنجا که پساب ضد یخ حاوی فلزات سنگین مانند سرب ، کادمیم و کروم بوده و این پساب را جزء ضایعات سمی و مضر قرار داده است ، لذا دفع آن به محیط و سیستم فاضلاب قبل از تصفیه غیر قانونی می باشد و همچنین به دلیل مقادیر زیاد آب در سیال خنک کننده سوزاندن روشی مناسب نمی باشد. بنابراین در عمل ، فرایند بازیافت گلیکول ، اگر هزینه کمتری نسبت به روشهای دیگر داشته باشد ترجیح داده می شود. در آلمان با وجود قوانین زیست محیطی سفت و سخت نسبت به مصرف مایع خنک کننده استفاده شده ، فقط در حدود 40% مایع خنک کننده استفاده شده برای تصفیه به مراکز بازیافت فرستاده می شود[8].
دومین مساله این است که بازیابی ضدیخ مانند بازیابی روغن موتور مصرف شده می تواند در حفظ منابع تجدید ناپذیر اولیه مثل گاز طبیعی مفید باشد و هزینه فرایند خنک کننده بازیابی شده ارزانتر از خنک کننده اولیه و اصلی می باشد ، البته کارایی این دو تا حد زیادی شبیه به هم می باشد. تجربه چنین بازیافتی در تصفیه و بازیابی روغن موتور مصرف شده نتایج خوب و مقرون به صرفه ای را برای صنعت به ارمغان آورده است. البته موضوع بازیابی ضدیخ و خنک کننده ها و محصولات این چنینی هنوز به طور عمده در کشورهای صنعتی مورد توجه قرار نگرفته است و در سالهای اخیر تلاشهای زیادی برای بازیابی اینگونه پسابها انجام نگرفته است[5].
بازیابی گلیکول مصرف شده نیازمند دو فرایند اصلی جداسازی می باشد که تنها مرحله دوم در تغلیظ محصول حاصل از واکنش آب و اکسید اتیلن مشترک می باشد.
1-جداسازی آلاینده ها به منظور تولید یک محصول پایه ی به اندازه کافی خالص از گلیکول و آب برای فرموله کردن دوباره ضدیخ
2-جداسازی آب و گلیکول تا غلظت اتیلن گلیکول در آب خالص برای تخلیه مستقیم به سیستم پساب مناسب گردد.
1-5-1)مرحله اول پیش تصفیه :
پیش تصفیه خنک کننده مصرف شده،نقشی حیاتی در عملکرد سیستمهای نمک زدایی جریانهای پایین دستی دارد. جداسازی ثقلی و فیلتراسیون ذرات معمولا در ابتدای فرایندهای نمک زدایی نصب می شوند. به خاطر پتانسیل بالای گرفتگی ، سیستمهای غشایی در مرحله پیش تصفیه کمتر مورد توجه قرار می گیرند و در فیلتراسیون / سانترفیوژ مواد حل شده از خنک کننده مصرف شده زدوده شده سپس به آن گرما داده می شود و بعضی از ناخالصی ها توسط عمل سانترفیوژ حذف می گردند.
1-5-2)مرحله دوم پیش تصفیه
مرحله دوم پیش تصفیه با استفاده از تکنیکهای جداسازی غشایی انجام می گیرد. تعدادی از سیستمهای بر پایه غشاء نیز ممکن است به منظور پیش تصفیه یا نمک زدایی خنک کننده مصرف شده به کار روند. این موارد را می توان به دو گروه ، نیرومحرکه فشاری و نیرومحرکه الکتریکی تقسیم بندی کرد. فرایندهای غشایی با نیرومحرکه فشار بر پایه اندازه ذرات و روشهای با نیرومحرکه الکتریکی براساس یونهای باردار عمل می کنند.

1-5-3)فرایندهای غشایی با نیرومحرکه فشار
الترافیلتراسیون(UF) : این روش به طور متداول مواد آلی دارای وزن ملکولی بالاتر از 1000 را دفع می کند. در حالیکه یونها و ذرات آلی کوچکتر را از خود عبور می دهد و معمولا این روش با نانوفیلتراسیون ترکیب می شود. UF می تواند ضد یخ روغنی ، کدر و مصرف شده را به منظور تولید محصولی نیمه شفاف فرآوری کند. در این روش گرفتگی برگشت ناپذیر در غشا اتفاق میافتد. این فرایند نمی تواند خنک کننده موتور با خلوص کافی به منظور دسترسی به خواص خنک کننده اصلی تولید کند.
نانوفیلتراسیون(NF) : فرایند NF برای زدایش موثر ملکولهای و یونها با توجه به اندازه آنها در محدوده بین دو فرایند الکتروفیلتراسیون و اسمز معکوس انتخاب مناسبی می باشد. NF از غشاهای با تخلخل بیشتری نسبت به RO بهره می گیرد. این فرایند نمی تواند اجزای کوچکتر و دارای بار کمتر مانند کلرید را نگه داشته یا دفع کند و معمولا قادر به تولید خنک کننده با درجه خلوص کافی در حد خواص خنک کننده اصلی نمی باشد. بعضی از غشاهای NF مشابه غشاهای UF می باشد که درنتیجه می توانند بدون عبور دادن رنگ و یونهای چند والانسی (سخت) و دیگر آلاینده ها در امر تصفیه استفاده شوند.
اسمز معکوس(RO) : در اسمز معکوس آب از درون یک غشا نیمه تراوا از منطقه ای با غلظت بالاتر به درون منطقه ای رقیق تر به وسیله فشاری که بیشتر از فشار اسمزی می باشد رانده می شود. تحت فشار اسمزی نرمال ، آب از طرف رقیق تر به سمت غلیظ تر حرکت می کند. RO به غیر از تعداد کمی اکثر مواد را دفع کرده و درفشار 125 الی 1000 psia عمل می کند. غشاهایی که EG را دفع می کنند جهت تغلیظ گلیکولها برای تصفیه محلولهای مانند سیال یخ زدای فرودگاه ها که به صورت رقیق همراه با آب خارج می شوند، استفاده می شوند.
کاربرد RO در این زمینه عموما وقتی که غلظت EG اولیه در خوراک کمتر از 6% باشد عملی است و برای تغلیظ EG رقیق برای رسیدن به ماکزیمم غلظت حدود 10 الی 12 درصد در فشار عملیاتی 1000 psig مفید می باشد[5]. به منظور بازیابی ضد یخ وسایل نقلیه که بطور متداول در برگیرنده بیش از 20% اتیلن گلیکول می باشد غشاهایی که می توانند EG و یا آب را از خود عبور داده و نمکها و دیگر آلاینده ها را دفع کنند،استفاده می شوند. مشکل ابتدایی برای نیرومحرکه فشاری مانند UF/NF وجود روغنهای تعلیق شده می باشد، روغن روی سطح غشا را پوشانده(گرفتگی) در نتیجه بحث کاهش شدید نرخ تولید می شود. وقتی که گرفتگی اتفاق می افتد سیستم باید خاموش و تمیز گردد که این فرایند زمان بر می باشد.
1-6)فرایندهای مختلف بازیابی اتیلن گلیکول
مطابق با آنچه گفته شد پیش تصفیه برای جداسازی مکانیکی جامدات و مواد با وزن کم که عمدتا شامل فیلتراسیون ذرات و میکروفیلتراسیون یا الترافیلتراسیون برای جلوگیری از کلوخه شدن و کاهش رسوب گرفتگی در مراحل بعدی می شود انجام می گیرد. بعد از پیش تصفیه بایستی آب از اتیلن گلیکول جدا گردد.
فرایند های مختلف مورد بررسی قرار گرفته در جداسازی آب از اتیلن گلیکول شامل فرایندهای متداول تقطیر و تبخیر1 و فرایندهای غشایی، تراوش تبخیری2و تقطیر غشایی3 می گردد. در تبخیر(EV) مایع خنک کننده از 25% تا 70% وزنی گلیکول تغلیظ می گردد. دمای فرایند خیلی پایین تر از دمای سیستم خنک کننده موتور برای جلوگیری از تشکیل نیترو آمینها می تواند نگه داشته شود و آب با غلظت کمی از گلیکول به عنوان محصول بالادستی تولید می شود.
محصول اصلی EV برای تغلیظ بیشتر، خصوصا آب گیری به مرحله ی تراوش تبخیری(PV) فرستاده می شود. جزء عبور نکرده از غشاء تراوش تبخیری مایع گلیکولی با غلظت بالا (96%<) می باشد[8].
1-6-1)کاربرد فرایند تبخیر در جداسازی آب و اتیلن گلیکول
در تبخیر محلول آب و اتیلن گلیکول،محلولی که از ماده حل شده غیر فرار اتیلن گلیکول و حلال فرار آب تشکیل شده است تغلیظ می گردد. با بخار شدن قسمتی از آب، که بر اثر آن محلول غلیظ لیکور به دست می آید، تبخیر انجام می شود. تفاوت آن با تقطیر این است که بخار حاصل از تبخیر معمولا یک جزء تنهاست و حتی وقتی بخار به صورت مخلوط است ، در مرحله تبخیر سعی نمی شود بخار به اجزای تشکیل دهنده اش تفکیک شود[9].
فرایند تبخیر برای رسیدن به غلظت 70% وزنی اتیلن گلیکول مناسب می باشد. برای غلظت خوراک بالاتر از 70% کیفیت محصول بالادست به طور قابل ملاحظه ی به تغییر خصوصیات فاز آب و اتیلن گلیکول می انجامد. از طرف دیگر در فرایند تبخیر در محدوده ی غلظت اتیلن گلیکول بالاتر از 70% انرژی مورد نیاز به میزان چشمگیری با افزایش غلظت خوراک اتیلن گلیکول افزایش می یابد.

1. Evaporation 2.Pervaporation
3.Membrane Distillation
1-6-2)فرایند تقطیر در تغلیظ اتیلن گلیکول
خنک کننده مصرف شده قدیمی در موتور آلودگی هایی دارد که اثرات زیان باری در سیستم خنک کننده موتور به جای می گذارد. بنابراین سازندگان اتومبیل توصیه می کنند که خنک کننده مصرف شده در فاصله زمانی مشخصی جایگزین شود. استفاده مجدد خنک کننده استفاده شده از لحاظ اقتصادی و محیط زیستی مقرون به صرفه و مطلوب می باشد.
یکی از متداول ترین روشهای بازیابی اتیلن گلیکول مصرف شده و جداسازی آب و اتیلن گلیکول تقطیر است. روش تقطیر سیستم چند جزئی اتیلن گلیکول استفاده شده بدین صورت است که آب در یک فشار اولیه تقطیر شده و جزء دیگر (اتیلن گلیکول) در یک فشار ثانویه تقطیر می شود. هر جریان تقطیر شده ای به یک تانک ذخیره سازی جداگانه فرستاده می شود.
خنک کننده مصرف شده شامل دو جزء مهم به نام آب و اتیلن گلیکول می باشد. اجزای باقیمانده تقطیر ، ضد زنگ، نمک، سیلیکات ها، فلزات و دیگر آلودگی های نامطلوب می باشند، که اغلب بخش خیلی زیان آوری از حجم کلی را تشکیل می دهند.
در فرایند تقطیر دو جزء اصلی خنک کننده مصرف شده(آب و اتیلن گلیکول) از یکدیگر و از اجزاء دیگر جدا می شوند. در واقع آب خالص در یک ظرف و اتیلن گلیکول خالص در ظرفی دیگر جمع می شود. این جداسازی دفع قانونی آب با استفاده دوباره آب و استفاده مجدد اتیلن گلیکول را موجب می شود. آلودگی های باقی مانده حجم خیلی کمتری نسبت به مقدار خنک کننده فرآوری شده دارند که این امر دفع باقی مانده را با هزینه ی کمتر امکان پذیر می سازد. هدف این فرایند آب با خلوص 98% از خنک کننده مصرف شده و تولید حجم کمی از پسماند آلوده می باشد. این روش می تواند به طور خودکار اداره گردد. به طور خلاصه، مطابق با این فرایند از یک سیستم ناپیوسته برای جداسازی یک محلول یا مخلوط چند جزئی که شامل یک مایع با فراریت بیشتر، مایع با فراریت کمتر و مواد آلوده کننده جامد یا مایع غیر فرار می شود. مایع با فراریت بیشتر آب و مایع با فراریت کمتر اتیلن گلیکول می باشد[16].
مزایا و معایب فرایند تقطیر
این روش برای بازیافت خنک کننده مصرف شده ذاتا ساده می باشد.
به دلیل بازگشت سریع هزینه های ابتدایی صرف شده برای تجهیزات که نوعا در محدوده شش ماه تا 2 سال می باشد این فرایند ارزش تجاری بالایی دارد.
این فرایند محسنات زیست محیطی قابل توجه ای دارد، چرا که خنک کننده مصرف شده یک ماده مضر می باشد و جدا کردن آب و اتیلن گلیکول از خنک کننده مصرف شده به طور قابل ملاحظه ای حجم ماده ی مضر را کاهش می دهد. اگرچه در این فرایند اتیلن گلیکول به کیفیت قابل استفاده می رسد و اما برای رسیدن به این خلوص انرژی زیادی صرف می شود.
1-6-3)فرایند تراوش تبخیری برای تغلیظ اتیلن گلیکول
فرایند تراوش تبخیری1 در طی سالیان اخیر کاربردهای فراوانی در صنایع مختلف شیمیایی به عنوان یک فرایند جداسازی به منظور بازیابی مخلوطهای مایع یافته است. این روش در مقایسه با روش های سنتی جداسازی تقطیر و تبخیر دارای مزایایی نظیر انرژی مورد نیاز کمتر ، آلودگی کمتر محیط زیست، کوچک بودن فضای مورد نیاز، سادگی فرایند و ... می باشد. در طی سالهای متمادی تراوش تبخیری بیشتر به عنوان فرایندی به منظور تولید مواد آلی با خلوص بالا جهت آبزدایی مخلوط های آبی – آلی که آزوتروپ تشکیل می دهند نظیر مخلوط آب و اتانل و یا جهت جداسازی مخلوطهایی با نقطه جوش نزدیک مانند مخلوط آب و ایزوپروپانول به کار رفته است، ولیکن در سالهای گذشته استفاده از آن در زمینه جداسازی مخلوط آب و اتیلن گلیکول نیز مورد توجه محققین قرار گرفته است.
غشاء در جداسازی آب و اتیلن گلیکول با فرایند تراوش تبخیری از اهمیت بالایی برخوردار است چرا که غشاء نقش زیادی در گزینش پذیری یا انتخاب پذیری جداسازی دارد و آنچه مهم است کاربرد غشایی است که فلاکس بالا و فاکتور جداسازی بالایی را فراهم آورد.
در تراوش تبخیری عمدتا از غشاهای پلیمری استفاده می شود ،پلیمرهایی مانند پلی وینیل الکل (PVA2)،چیتوسان(CS3) از عمده پلیمر هایی هستند که در فرایند تراوش تبخیری آب و اتیلن گلیکول مورد استفاده قرار گرفته اند.
گروههای آب دوست این غشاءها نقش مهمی در جذب آب و نفوذ از غشاء دارند. تحقیقات مختلف صورت گرفته بر روی این غشاءها نشان دهنده خصوصیات خوب این غشاءها نظیر سهولت تشکیل فیلم، مقاومت شیمیایی و گزینش پذیری بالا برای جداسازی آب می باشد. غشاهای آب دوست پلیمری جزء اولین غشاهایی هستند که برای آب زدایی از اتیلن گلیکول در تراوش تبخیری بکار گرفته شده اند.
اگر چه آب زدایی از محلول ها با غشاهای آب دوست نتایج خوبی را به همراه داشته است اما این غشاها در دماهای بالا و غلظت بالای آب ناپایدار می باشند، غشای زئولیتی NaA برای غلبه بر مشکلات بالا تنها غشای غیر پلیمری به کار گرفته شده در این زمینه می باشد[29]. زئولیتها آلومینا سیلیکات هیدراته ی هستند که متشکل از ساختار کریستالی همراه با خاصیت غربال ملکولی می باشند، زئولیت همچنین موادی با مقاومت شیمیایی و حرارتی بالا می باشند. اندازه حفرات زئولیت ها در محدوده 9-10 می باشد. از این رو زئولیت به منظور جداسازی ملکولهای آب در PV برای محلول های آبی در دماهای بالا مناسب می باشد.
'Permeate' + 'Evaporation' 'Pervaporation'

1.Pervaporation 2.Poly Venyl Alchol
3.Poly(D-glucosamine)
فصل دوم
فرایند جداسازی تقطیر غشایی
2-1:مقدمه
عمده ی فرایندهای غشایی به صورت هم دما انجام می شود و نیرو محرکه ی آنها فشار هیدرواستاتیک ، غلظت، پتانسیلهای الکتریکی یا شیمیایی می باشد. تقطیر غشایی، یک فرایند غیر هم دماست که بیش از 40 سال است که شناخته شده است اما واقعا هنوز برای صنعتی شدن نیاز به کار و تلاش مداوم دارد. ثبت اختراع این فرایند توسط Bodell در سوم جولای 1963 می باشد و اولین پروژه - ریسرچدر مورد تقطیر غشایی، 4 سال بعد از آن توسط Findly در مجله ی "توسعه مهندسی طراحی فرایندهای شیمیایی و صنعتی" منتشر شد.
عبارت تقطیر غشایی از تشابه این فرایند با تقطیر معمولی (از جمله تقطیرساده و چند مرحله ای) نشات گرفته است که هردویی این فرایند ها برپایه ی تعادل بخار/ مایع به منظور جداسازی می باشد و هر دو تکنولوژی نیاز به گرمای کافی برای تامین گرمای نهان تبخیر برای محلول خوراک دارند.
اساسا تقطیر غشایی به عنوان فرایندی غشایی غیر هم دما به کار می رود که نیرو محرکه ی آن گرادیان فشار جزئی اجزا در دو سمت غشا می باشد که این غشا بایستی متخلخل بوده و بوسیله محلول فرایند خیس نشود بطوریکه تعادل بخار / مایع اجزاء را بهم نزند. این غشا از چگالش درون حفره ها جلوگیری می کند، و تا پایان فرایند بایستی در تماس مستقیم با محلول مایع خوراک گرم مقاومت مکانیکی خوبی داشته باشد.
پتانسیلهای کاربرد MD تولید آب با خلوص بالا، تغلیظ یونی، کلوئیدی و یا سایر محلولهای آبی غیر فرار و حذف آثار مواد آلی فرار (VOCs) از پساب ها می باشد. در کاربردهای گوناگون از جمله نمک زدایی، تصفیه پسابها با دیدگاه محیط زیستی، استفاده مجدد از آب، در صنایع غذایی و صنایع داروسازی و غیره ، تقطیر غشایی می تواند بکارگیری شود. همه این تفاسیر موجب می شود که تقطیر غشایی جذابیت کافی را در مجامع دانشگاهی داشته باشد.
دمای عملیاتی پایین تر از دمای تقطیر غشایی مرسوم، فشار هیدرواستاتیکی عملیاتی پایین تر از فشار فرایند ها با نیروی محرکه فشاری از ویژگی های بارز این فرایند می باشد از جمله فرایندهای نیرو محرکه فشاری عبارتند از (اسمز معکوس1، نانو فیلتراسیون2، اولترافیلتراسیون3، میکروفیلتراسیون4) می باشند که برخلاف آنها در تقطیر غشایی خواص مکانیکی غشا کمتر مورد نظر است و در این فرایند فاکتور بالایی از دفع به ویژه زمانیکه محلولها شامل اجزاء غیر فرار (نمکها، کلوئیدها و غیره) هستند به چشم می خورد. بعلاوه، توانایی استفاده از گرمای اتلافی و منابع انرژی تجدید پذیر سبب می شود تقطیر غشایی درکنار سایر فرایندهای صنعتی انرژی مورد نیاز خود را تامین کند.
اگرچه در سراسر دنیا تقطیر غشایی موضوع تحقیقاتی برای بسیاری از دانشمندان می باشد. از لحاظ تجاری تقطیر غشایی کم توجیه می شود و هنوز به عنوان ابزار کاربردی صنعتی نشده است. موانع عمده در مقابل این فرایند شامل ساخت غشای مخصوص تقطیر غشایی و طراحی مدول آن، تر شدن حفره های غشاء، نرخ جریان کم پرمیت (کاهش شار)، بعلاوه هزینه های انرژی و اقتصاد این فرایند نامشخص می باشند. اخیرا علاقه مندی در زمینه تقطیر غشایی بطور چشمگیری افزایش یافته است. در نمودار 1 تعداد مقالات منتشر شده در زمینه تقطیر غشایی که در مجلات وجود دارد می توان مشاهده نمود.

نمودار1 : نرخ رشد تحقیقات در زمینه MD به صورت تعداد مقالات سالانه منتشر شده
از این رو سزاوار یادآوری است که از میان شکلهای فرایند تقطیر غشایی، بیشترین تحقیق روی روش تقطیر غشایی تماس مستقیم 5بوده، اگرچه گرما در این روش از طریق مکانیسم هدایت از میان غشا انتقال داده می شود با در نظر گرفتن اتلاف گرمای در تقطیر غشایی این روش بیشترین اتلاف را در بین روشهای تقطیر غشایی به خود اختصاص می دهد.

1.Rever Osmosis 2.Nano Filteration 3.Ultra Filteration
4.Micro Filtration 5.Direct Contact Membrane Distillation
بیش از 60% تحقیقات تقطیر غشایی با استفاده از روش تقطیر غشایی تماس مستقیم صورت گرفته است. زیرا در این روش مرحله چگالش جریان تراوشی در داخل مدول انجام می شود و این امر منجر به ساده بودن فرایند می شود. در مقابل روش تقطیر غشایی با گاز حامل1، از میان روش های تقطیر غشایی کمترین سهم را به خود اختصاص می دهد زیرا در آن یک کندانسور خارجی برای جمع آوری جریان تراوشی مورد نیاز است که این امر طراحی سیستم را پیچیده و هزینه آن را بالا می برد. شایان ذکر است که هر روش تقطیر غشایی مزایا و معایبی برای کاربرد خاص خود خواهد داشت.
بیشتر موضوعات مورد توجه در نشریات در نمودار 2 آمده که شامل مدلسازی تئوری تقطیر غشایی و مطالعات آزمایشگاهی بررسی اثر پارامترهای عملیاتی می باشد.44% از تحقیقات در رابطه با مدل های تئوری این فرایند بوده و در حالیکه 14.8% از پژوهش ها روی ساخت غشا برای تقطیر غشایی تمرکز دارند. در مقایسه با سایر فرایندهای جداسازی غشایی از جمله،تراوش تبخیری،اسمز معکوس،نانوفیلتراسیون،اولترافیلتراسیون و جداسازی با گاز تنها تعداد کمی از محققان به امکان ساخت و طراحی غشاهای جدید برای استفاده در تقطیر غشایی توجه دارند. اخیرا تعداد مقالات در زمینه تولید غشاهای مخصوص فرایند تقطیر غشایی طبق نمودار 3 در حالا افزایش است.

نمودار 2 : تعداد مقالات منتشر شده در زمینه مطالعات تجربی و مدلسازی روی MD

1.Seewp Gas Membrane Distillation

نمودار 3 : روند رشد تعداد مقالات منتشر شده در زمینه ساخت غشای مخصوص MD
در شکل 1 انواع روشهای تقطیر غشایی را می توان مشاهده کرد. به دلیل وجود همزمان پدیده های انتقال گرما و جرم از میان غشا، تنوع شکلهای مختلف تقطیر غشایی و کاربردهای مختلف آن باعث شده در مجامع دانشگاهی به عنوان یک فرایند آموزشی نیز استفاده شود. بعلاوه، امکان استفاده از گرمایی اتلافی و یا منابع انرژی دیگری از جمله انرژی خورشیدی و زمین گرمایی و انرژی باد در تقطیر غشایی وجود دارد و این فرایند می تواند با سایر فرایندها در یک سیستم یکپارچه ترکیب شود که این موضوعات باعث شده به عنوان تکنیک جداسازی امیدوار کننده ای در مقیاس صنعتی بکار گرفته شود. این فرایند به عنوان یک مرحله عملیات پیش تصفیه و یا پس تصفیه با فرایندهای دیگر ادغام می شود.

شکل1:گونه های مختلف فرایند جداسازی تقطیر غشایی
این فرایند بیشتر برای کاربردهای که در آن آب جزء عمده حاضر در محلول خوراک می باشد مناسب است. به عنوان مرور، تقطیر غشایی یک فرایند با نیرو محرکه گرمایی می باشد که در آن تنها ملکولهای بخار از میان غشای آبگریز متخلخل عبور می کند. مایع خوراک برای اینکه تصفیه شود بایستی در تماس مستقیم با یک سمت از غشا قرار گیرد. آبگریزی ذاتی غشا مانع از ورود محلول آبی در داخل حفره هایش می شود که به دلیل کشش سطحی مواد غشا می باشد. در نتیجه، سطح مشترک مایع/ بخار در ورودی حفره های غشا تشکیل می شود.
باتوجه به شکل 1 نیرومحرکه تقطیر غشایی بوسیله یکی از 4 طریق زیر در سمت جریان تراوشی اعمال می شود:

user6-758

2-5-1 فضازمانِ آنتی دوسیته در بُعد30
2-5-2 حل استاتیک باردار بُعدی معادلات میدان اینشتین در حضور ثابت کیهان‌شناسی31
2-6 گرانش لاولاک: گسترش استاندارد نسبیت عام به ابعاد بالا32
2-7 کُنش مرزی در گرانش لاولاک مرتبه سوم36
2-8 روش کانترترم و رفع واگرایی در محاسبه کمیت‌های پایا37
فصل سوم42
نظریهی الکترودینامیک غیرخطی42
3-1 الکترودینامیک ماکسول43
3-1-1 جرم الکترومغناطیسی و مسئلهی واگرائی خودانرژی بارهای نقطهای45
3-1-2 اصل برهمنهی خطی در نظریه ماکسول47
3-2 نظریه الکترودینامیک غیرخطی48
3-2-1 معادلات میدان در نظریه الکترودینامیک غیرخطی51
3-2-2 محاسبه‌ی شدت میدان مطلق 55
3-2-3 معادلاتِ موج در نظریههای الکترودینامیک غیرخطی56
3-3 جمعبندی58
فصل چهارم60
ترمودینامیک سیاه‌چاله‌ها در گرانش لاولاک60
4-1 ترمودینامیک سیستمها در طبیعت61
4-2 ترمودینامیک سیاهچالهها64
4-3 ترمودینامیک سیاهچالهها در گرانش خمش مراتب بالا68
4-4 کمیتهای ترمودینامیکی70
4-4-1 بار الکتریکی70
4-4-2 پتانسیل الکتریکی71
4-4-2 سرعت زاویه‌ای71
فصل پنجم73
ترمودینامیک جوابهای گرانش لاولاک مرتبه سوم در حضور کلاسهای نمائی و لگاریتمی نظریه الکترودینامیک غیرخطی73
5-1 کُنش و معادلات میدان گرانش لاولاک مرتبه سوم در حضور میدانهای الکترومغناطیسی غیرخطی74
5-2 جوابهای سیاهچالههای باردار استاتیک در گرانش لاولاک مرتبه سوم در حضور شکلهای نمائی و لگاریتمی الکترودینامیک غیرخطی75
5-2-1 جوابهای باردار استاتیک 1+6 بُعدی79
5-2-2 معرفی جرمِ هندسی در گرانش لاولاک مرتبه سوم82
5-2-3 خصوصیات فضازمانِ جوابهای باردار استاتیک 1+6 بُعدی83
5-2-4 جوابهای سیاهچالههای باردار استاتیک بُعدی91
5-3 بررسی ترمودینامیک سیاهچالههای لاولاک مرتبه سوم در حضور میدانهای الکترومغناطیسی غیرخطی94
5-4 طبیعتِ پایداری سیاه‌چاله‌ها در آنسامبل‌های کانونی و کانونی بزرگ99
5-4-1 بررسی پایداری ترمودینامیکی سیاهچالههای باردار مجانباً تخت در آنسامبل کانونی100
5-4-2 بررسی پایداری ترمودینامیکی سیاهچالههای باردار مجانباً تخت در آنسامبل کانونی بزرگ105
5-5 لایههای سیاهِ چرخانِ باردار مجانباً در گرانش لاولاک مرتبه سوم در حضور شکلهای نمائی و لگاریتمی الکترودینامیک غیرخطی110
5-6 بررسی ترمودینامیک لایههای سیاه چرخانِ باردار مجانباً گرانشِ لاولاک مرتبه سوم در حضور میدانهای الکترومغناطیسی غیرخطی114
5-7 طبیعتِ پایداری لایههای سیاه در آنسامبل‌های کانونی و کانونی بزرگ120
5-7-1 بررسی پایداری ترمودینامیکی لایههای سیاه چرخانِ باردار مجانباً در آنسامبل کانونی120
5-7-2 بررسی پایداری ترمودینامیکی لایههای سیاه چرخانِ باردار مجانباً در آنسامبل کانونی بزرگ123
فصل ششم127
نتیجهگیری و پیشنهادات127
پیوست الف132
پیوست ب134
پیوست ج135
مراجع137

فهرست شکلها
شکل 1- SEQ شکل_1- * ARABIC 1: نظریه به عنوان نظریه مادر برای پنج نظریه اَبرریسمان 10 بُعدی و نظریه اَبرگرانش 11 بُعدی ............................................................................................................................................................................................................. 8
شکل 2-1: شکل سمت چپ تقسیم فضای فیزیکی به صفحاتِ زمان ثابت در چارچوبِ 4 مختصهای فضا و زمان در نظریه نیوتن. یک نقطه در این چارچوب یک رویداد نامیده میشود و مسیر یک ذره در فضا و زمان توسط پیوستاری یک بُعدی از رویدادها، تحت عنوان جهانخط، مشخص میشود. شکل سمت راست لایه‌بندی فضازمان در نظریه نسبیت خاص را نشان میدهد ................................................................... .................................................................................19
شکل 2-2: دستگاه مختصات یک نگاشت از خمینه به فضای اقلیدسی است ..................................................................22
شکل 2-3: یک تبدیل مختصات بین دو مجموعه مختصات ...................................................................................23
شکل 3-1: تغییرات بر حسب. شکل سمت چپ به ازای مقادیر و . شکل میانی به ازای مقادیر و ؛ دیده میشود که با افزایش سه مدل در فاصلهی مکانی خیلی کوچک برهم منطبق میشوند. شکل سمت راست رفتار در نزدیکی مبدأ به ازای مقادیر و را نشان میدهد ....................................55
شکل 5-1: مقایسه رفتار تابعهای متریک (لگاریتمی، نمائی و ماکسولی) برای فضازمانهای مجانباً تخت . به ازای مقادیر ............................................................................................................86
شکل 5-2: مقایسه رفتار تابعهای متریک (لگاریتمی، نمائی و ماکسولی) برای فضازمانهای مجانباً. به ازای مقادیر .................................................................................................86
شکل 5-3: تغییرات تابع متریک نسبت به برای کلاسهای (شکل مشکی رنگ) و (شکل آبی رنگ) برای حالتهای متفاوت پارامترِ جرم. به ازای مجموعه مقادیر............................................................................................................................................................................................................88
شکل 5-4: تغییرات تابع متریک نسبت به برای کلاسهای(شکل مشکی رنگ) و (شکل آبی رنگ) به ازای مقادیر،، و . در شکل خطوط باریک مربوط به حالت (سیاهچاله با یک اُفق)، خطوط پررنگ مربوط به حالت (سیاهچاله با دو اُفق)، خطوط نقطهای مربوط به حالت (سیاهچاله با اُفق اکستریم) و خطوط خط-نقطهای مربوط به حالت (تکینگی عریان) هستند...............................................................................................................................................................................................90
شکل 5-5: برای کلاس- تغییرات دما بر حسب (شکل سمت چپ) و تغییرات دما بر حسب (شکل سمت راست). به ازای مقادیر ........................................................................................................................102
شکل 5-6: برای کلاس- تغییرات ظرفیت گرمایی بر حسب. شکل سمت چپ تغییرات در دامنههای کوچک را نشان میدهد. شکل سمت راست تغییرات در مقادیر بزرگتر را نشان میدهد. به ازای مقادیر .............................................................................................................................................................................103
شکل 5-7: برای کلاس- تغییرات دما بر حسب (شکل سمت چپ) و تغییرات دما بر حسب (شکل سمت راست). به ازای مقادیر ......................................................................................................................104
شکل 5-8: برای کلاس- تغییرات ظرفیت گرمایی بر حسب. به ازای مقادیر ........................................................................................................................................................................................................104
شکل 5-9: برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما، ظرفیت گرمایی و دترمینان ماتریس هسیان (در آنسامبل کانونی بزرگ) بر حسب. به ازای مقادیر .........................................................................................................................................................................................................107
شکل 5-10: برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما، ظرفیت گرمایی و دترمینان ماتریس هسیان (در آنسامبل کانونی بزرگ) بر حسب. به ازای مقادیر .........................................................................................................................................................................................................108
شکل 5-11: برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما و ظرفیت گرمایی بر حسب. به ازای مقادیر .........................................................................................................................122
شکل 5-12: : برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما و ظرفیت گرمایی بر حسب. به ازای مقادیر ...........................................................................................................................122
شکل 5-13: تغییرات دترمینان ماتریس هسیان در آنسامبل کانونی بزرگ . شکل سمت چپ مربوط به کلاس و شکل سمت راست برای کلاس. به ازای مقادیر .........................................................................................................................................................................................................124

فصل اولمقدمه1-1 قراردادِ یکاییبرای کاربردهای بعدی، ابتدا مشخص می‌کنیم که در چه یکایی از یکاهای فیزیکی کار می‌کنیم. در این پایان‌نامه از واحدهای طبیعی استفاده می‌کنیم به جز مواردی که خلاف آن ذکر شود. در واحدی که کار میکنیم ثانیه به طور دقیق برابر است با متر. بنابراین برای سرعت نور خواهیم داشت و برای گذردهی الکتریکی و تراویی مغناطیسی خلأ مقدار را اختیار می‌کنیم. در نتیجه ثابت کولن برابر به دست می‌آید. علاوه بر این برای ثابت پلانک و ثابت بولتزمن نیز مقدار واحد را انتخاب می‌کنیم:

بنابراین در واحدهای طبیعی داریم:

و برای سادگی انتخاب می‌کنیم:

بنابراین با مختصر نویسی داریم . از آن‌جایی که کُنشِ، بنا به تعریف، انتگرالِ زمانی یک لاگرانژین (با واحدِ انرژی) است بنابراین تمام کُنش‌ها بدون بُعد خواهند بود یعنی . در نتیجه برای عنصرِ حجم خواهیم داشت:

و برای داشتن یک کُنش بدون بُعد لازم است که چگالی لاگرانژی دارای یکای

باشد. برای مثال با این تحلیل پارامتر غیرخطی در فصل سوم (نظریه الکترودینامیک غیرخطی) دارای یکای جرم خواهد بود.
ثابتِ گرانشِ اینشتین ، که در معادلاتِ میدانِ اینشتین ظاهر می‌شود، برحسبِ ثابتِ گرانش نیوتن در چهار بُعد فضازمانی به صورت

است و آن را نیز، در هر بُعدی از فضازمان، برابر با واحد انتخاب می‌کنیم. ثابت گرانش نیوتن در ابعاد بالا به صورتِ زیر در می‌آید

و بنابراین ثابتِ گرانشِ اینشتین در هر بُعد برحسب ثابتِ گرانشِ نیوتن در همان بُعد نوشته می‌شود که مقدار آن، همان‌طور که ذکر شد، برابر واحد اختیار می‌شود.
1-2 معرفی مفاهیم ارجاعی: ذرات نقطه‌ای، ریسمان‌ها و لایه‌ها
بنیادی‌ترین ذرات در طبیعت به صورت ذراتِ نقطه‌ای فرض می‌شوند زیرا بدون ساختارند و نمی‌توان برای آن‌ها بُعدی در نظر گرفت. یک نقطه در فضایبُعدی، بدون بُعد است. می‌توان ذره‌ی نقطه‌ای را درون یک فضازمان بُعدی (که بُعد اضافی زمان است) توصیف کرد. با وجودِ مفهوم زمان، حرکت برای ذره‌ی نقطه‌ای معنی پیدا می‌کند. حرکت ذره در فضازمان بُعدی یک خط 1+0 بُعدی است، یعنی بدون بُعد مکانی. به این موجود 1 بُعدی جهان‌خط می‌گوییم. با گسترش نظری ایده‌ی ذره به ریسمان، به‌عنوان مولدهای احتمالی ذرات بنیادی و رد ایده‌ی نقطه‌ای بودن آن‌ها، می‌توان برای ریسمان‌ها در فضازمان بُعدی یک جهان‌سطح 1+1 بُعدی در نظر گرفت. بنابراین فضازمانی که یک ریسمان تجربه می‌کند یک جهان‌صفحه است. بر اساس نظریه ریسمان اجزای تشکیل دهنده‌ی ماده، نه ذرات، بلکه ریسمان‌ها هستند. مطابق با این دیدگاه یک الکترون در حقیقت ریسمانی‌ست دارای ارتعاش و چرخش، اما در مقیاسی بسیار کوچک، بنابراین در مقیاس انرژی شتاب‌دهنده‌های امروزی به صورت ذره احساس می‌شوند. این نظریه برای تکامل به لایه‌ها احتیاج دارد. لایه‌ها گسترش ایده‌ی ریسمان‌ها هستند و برخلاف ریسمان‌ها اشیائی چند-بُعدی هستند. لایه شئ‌ای شبیه ریسمان اما با ابعاد دلخواه است. ریسمان را می‌توان یک لایه در نظر گرفت. ذره‌ی نقطه‌ای لایه است. یک پوسته که در هر لحظه از زمان به شکل یک رویه باشد یک لایه است و به همین ترتیب لایه، لایه، لایه (دو نوع)، لایه الی لایه را داریم. این لایه‌ها می‌توانند کل فضای حجمی یک فضازمان را پر کنند. نوع خاصی از لایه‌ها تحت عنوان لایه‌ها وجود دارند که می‌توانند در فضازمان‌های با ابعاد بالا غوطه‌ور باشند و نقش شرایط مرزی دیریکله را در نظریه اَبرریسمان بازی کنند. لایه‌ها ذرات نقطه‌ای هستند. لایه‌ها مشابه ریسمان‌ها و اشیائی یک بُعدی هستند. دو انتهای آن‌ها می‌تواند بر روی هم قرار گرفته و تشکیل یک حلقه دهند و همانند ریسمان‌ها می‌توانند در تمامی جهات حرکت کنند. به همین دلیل می‌توانند ارتعاش داشته باشند و دارای نوسانات کوانتومی هستند. لایه شئ گسترده شده در بُعد فضایی است و بنابراین در ادامه‌ی امتداد ایده‌ی جهان‌خط و جهان‌صفحه می‌توان برای آن‌ها جهان‌حجم‌هایی بُعدی در نظر گرفت. این‌ها تعمیم ذره‌ی نقطه‌ای بدون ساختار داخلی به ابعاد بالا هستند. ویژگی بارز آن‌ها این است که مکان‌هایی در فضا هستند که انتهای ریسمان‌ها بر روی آن‌ها قرار می‌گیرد.لایه‌ها دارای جرم مشخصی هستند و با استفاده از این واقعیت که انتهای ریسمان‌ها می‌تواند بر روی آن‌ها قرار گیرد می‌توان جرم‌شان را حساب کرد. با ضعیف‌تر شدن اندرکُنش ریسمان‌ها جرم لایه افزایش می‌یابد. در مطالعه‌ی جهان‌صفحه‌ی ریسمان‌ها از فرض ضعیف بودن اندرکنش ریسمان‌ها استفاده می‌شود. در نتیجه لایه‌ها اجسام بسیار سنگینی هستند به گونه‌ای که حرکت دادن آن‌ها بسیار دشوار بوده و از این لحاظ به سختی می‌توان آن‌ها را اشیائی پویا در نظریه ریسمان محسوب کرد. دلیل اصلی شکل‌گیری انقلابِ مربوط به ورود لایه‌ها به حوزه‌ی فیزیک نظری، اَبرگرانش 11-بُعدی است. این نظریه بر پایه‌ی دو ایده شکل گرفت: اَبَرتقارن و نسبیت عام. این نظریه با نظریه‌های اَبرگرانشی مستخرج از نظریه‌ی ریسمان نیز مرتبط است و نظریه‌پردازان از این ارتباط، قبل از انقلاب دوم ریسمان به خوبی آگاه بودند. اما ارتباط آن با جهان‌صفحه نظریه ریسمان ناشناخته بود. بدتر از همه این‌که این نظریه هیچ همگونی با مکانیک کوانتومی نداشت. به همین دلیل نظریه‌پردازان ریسمان با تردید به آن نگاه می‌کردند، زیرا بر این باور بودند که مکانیک کوانتومی و گرانش کاملاً به یک‌دیگر وابسته هستند. با گسترش یافتن این ایده‌ها بین نظریه‌پردازان طی چند سال، مسیر این نظریه در اواسط دهه‌ی 90 به ناگاه عوض شد. با این‌که هنوز هم ریسمان‌ها اشیائی مهم به شمار می‌رفتند اما وجود لایه‌ها با ابعاد مختلف در این نظریه ضروری به نظر می‌رسید و گاه در بعضی موارد حتی دارای اهمیتی به اندازه خود ریسمان‌ها بودند. در مواردی هم لایه‌ها به عنوان سیاه‌چاله‌های دمای صفر توصیف می‌شدند.
فرض اولیه در نظریه ریسمان این است که ذرات اشیائی نقطه‌گونه نیستند بلکه مدهای نوسانی از ریسمان‌ها هستند. ریسمان‌ها بی‌نهایت باریک هستند و بر اساس فرضیات نظریه ریسمان دارای طولی بسیار کوچک در حدود هستند [1,4]. جرم کل ریسمان به سه بخش تقسیم می‌شود:
جرم سکون ریسمان که بین دو لایه قرار گرفته است.
انرژی ارتعاشی مربوط به هر مُد ثانویه ریسمان، که از طریق رابطه‌ی این انرژی به عنوان جرم تعبیر می‌شود.
نوسانات کمینه مربوط به عدم قطعیت کوانتومی (تحت عنوانِ انرژی نقطه صفر کوانتومی).
برخلاف انرژی نوسانی، سهم مربوط به انرژی نقطه‌ی صفر قابل حذف نیست. سهم انرژی نقطه صفر در جرم مقداری منفی است. تمام اثرات مربوط به جرم سکون، انرژی‌های ارتعاشی و انرژی نقطه صفر جمع می‌شوند تا مجذور جرم کل حاصل شود و اگر انرژی نقطه صفر بر بقیه‌ی سهم‌ها چیره شود این مجذور جرم است که منفی می‌شود. یک ریسمان نسبیتی در پایین‌ترین حالت انرژی کوانتومی خود دارای جرم منفی است. ریسمان در این حالت تاکیون نامیده می‌شود. دیدگاه کنونی در مورد تاکیون‌ها این‌ست که آن‌ها نشانه‌ی بی‌ثباتی نظریه هستند. انرژی نوسانی سبب کاهش اثر منفی نوسانات کوانتومی در جرم می‌شود. در نتیجه کوچک‌ترین افزایش در سهم انرژی نوسانی مجاز، بر اساس مکانیک کوانتومی، سبب می‌شود مجذور جرم کل صفر شود که نتیجهای رضایتبخش است. زیرا ذرات بدون جرم مانند فوتون، و تا‌به‌حال از لحاظ نظری گراویتون، در طبیعت وجود دارند. کم‌ترین مقدار انرژی حاصل از نوسانات، ارتباطی به ابعاد فضا ندارند. اما نوسانات کوانتومی نقطه صفر این‌گونه نیستند. وقتی چیزی نوسان می‌کند، به عنوان مثال راستای ارتعاش ریسمان پیانو، دارای راستای معینی برای مثال به سمت بالا و پایین است. اما نوسانات کوانتومی ممکن در تمامی جهات رخ می‌دهد. هر بُعد جدیدی که تعریف شود، راستای جدیدی را در اختیار نوسانات کوانتومی جهت ارتعاش قرار می‌دهد. راستای بیشتر به معنای نوسانات نقطه‌ی صفر بیشتر و در نتیجه سهم منفی بیشتر است. آن‌چه باقی می‌ماند، توضیح نحوه‌ی برقراری تعادل بین نوسانات ریسمان و نوسانات اجتناب‌ناپذیر کوانتومی نقطه صفر است. نظریه‌پردازان ریسمان با محاسبه دریافته‌اند که کمینه‌ی ابعاد لازم، جهت حذف اثر نوسانات کوانتومی توسط نوسانات ریسمان، 1+25 بُعد است که منجر به ایجاد حالات ریسمانی بدون جرم می‌شود که مطلوب ماست. در مقیاس‌های فاصله‌ای بزرگ‌تر از طول ریسمان‌ها، هر مد نوسانی منطبق بر ذراتی متفاوت است که با خواصی هم‌چون جرم، بار و ویژگی‌های دیگری که توسط دینامیک ریسمان‌ها تعیین می‌شود. شکاف و ترکیب ریسمان‌ها متناظر است با انتشار و جذبِ ذرات که به معنی برهم‌کُنش بین ذرات است و بنابراین سازوکار انواع نیروها در بنیادی‌ترین سطح فیزیک، با فرض وجودِ احتمالی ابعاد اضافی، توصیف می‌شود.
در نظریه ریسمان یکی از مدهای نوسانی ریسمان‌ها متناظر با یک ذره‌ی بدون جرم با اسپین 2 (همان گراویتون پیش‌بینی شده در نسبیت عام) است و بنابراین این ذره مسئول نیروی گرانشی خواهد بود. در نتیجه نظریه ریسمان یک نظریه مکانیک کوانتومی خودسازگار ریاضیاتی‌ست، که وجود گراویتون به عنوان یکی از محصولات این نظریه در آن ایجاب می‌کند که آن را به عنوان نظریه گرانش کوانتومی احتمالی به حساب آوریم. نظریه ریسمان شامل دو گونه ریسمان، ریسمان‌های باز و ریسمان‌های بسته، است. این دو نوع ریسمان ذرات متفاوتی را در بر می‌گیرند. برای مثال تمام نظریه‌های ریسمان شامل ریسمان‌های بسته‌ای با مد نوسانی گراویتون هستند، درحالی‌که فقط ریسمان‌های باز می‌توانند متناظر با ذراتی چون فوتون‌ها باشند. دلیل این امر آن است که دو انتهای ریسمان‌های باز همیشه می‌توانند به یکدیگر متصل شوند و یک ریسمان بسته تشکیل دهند بنابراین تمامی این نظریه‌ها شامل گراویتون نیز می‌شوند و گرانش به صورت طبیعی ظاهر می‌شود. در نتیجه‌ی بررسی این‌که "چطور می‌توان یک نظریه ریسمان شامل فرمیون‌ها داشت" اَبرتقارن، به عنوان ارتباطی ریاضی بین بوزون‌ها و فرمیون‌ها، ابداع شد. نظریه‌های ریسمان شامل ارتعاشات فرمیونی تحت عنوان نظریه‌های اَبرریسمان شناخته می‌شوند. انواع متفاوتی از نظریه‌های اَبرریسمان وجود دارند که به عنوان حدهای متفاوت یک نظریه مادر، تحت عنوان نظریه، شناخته می‌شوند.

شکل 1- SEQ شکل_1- * ARABIC 2 نظریه به عنوان نظریه مادر برای پنج نظریه اَبرریسمان 10 بُعدی و نظریه اَبرگرانش 11 بُعدی
از آن‌جایی که نظریه اَبرریسمان تمامی سازوکارهای بنیادی طبیعت را شامل می‌شود بسیاری از فیزیک‌دانان معتقدند که مناسب‌ترین کاندید برای نظریه‌ی همه چیز احتمالی‌ست. نظریه اَبرریسمان در کنار اَبرتقارن، که فرض می‌کند به ازای هر ذره‌ی بوزونی یک ذره‌ی فرمیونی وجود دارد، تعداد ابعاد نظریه را به 1+9 بُعد کاهش می‌دهد. در حال حاضر پنج نظریه‌ی اَبرریسمانِ نوع ، نوع ، نوع ، نوع و نوع وجود دارند که می‌توانند توصیف‌گر طبیعت باشند. برای مثال نظریه‌های اَبرریسمان نوع دارای لایه‌های با شماره‌های زوج است: ، ، ، و هم‌چنین لایه‌های سالیتونی و اشیای پیچیده دیگر. در مقابل مدل دارایلایه‌هایی با شماره‌های فرد است: ، ، ،لایه‌های سالیتونی و تعدادی لایه‌های دیگر که بسیار پیچیده‌اند. یک شبکه پیوسته از دوگانگی‌ها در نظریه ریسمان وجود دارد به طوری که با شروع از یک لایه دلخواه و اِعمال چند دوگانگی و تغییر شکل ناشی از آن‌ها به نوع دیگری از لایه دست می‌یابیم. در واقع بین نظریه‌های اَبرریسمان به ظاهر متفاوت می‌توان ارتباط برقرار کرد. دوگانگی نوعِ مقیاس‌های فاصله‌ای بلند و کوتاه در نظریه‌های اَبرریسمان را به هم مرتبط می‌سازد، در حالی‌که دوگانگی نوعِ شدت جفت‌شدگی‌های قوی و ضعیف را در نظریه‌ها به هم مربوط می‌سازد. دوگانگی نوعِ نیز دوگانگی‌های و را به یک‌دیگر مربوط می‌سازد. برای مثال دوگانگی نوعِ می‌تواند نظریه‌های اَبرریسمان مدل و را به هم مربوط سازد. اگر یک لایه را تماماً به دور بُعد دایروی شکل بپیچانیم از دید ناظری فاقد دستگاهی جهت تشخیص ابعاد دقیق بُعد دایره‌ای شکل،لایه را به شکل یک نقطه‌ی بی‌بُعد می‌بیند: یکلایه. بنابراین اگر یکی از 10 بُعد موجود در مدل را تا کرده و به شکل دایره در آوریم، و اگر این دایره آن‌قدر کوچک باشد که نتوان آن را مشاهده کرد، در این حالت نظریه ریسمان 9 بُعدی به نظر می‌رسد. در جهان 9 بُعدی جدیدی که بدین شکل ساخته می‌شود دیگر نمی‌توان تفاوتی میان مدل‌های و قائل شد. می‌توان این فشرده‌سازی برای سایر ابعاد را نیز ادامه داد و به 1+3 بُعد فیزیکی رسید. در نظریه ریسمان ابعاد اضافی از نوع ابعاد فشرده هستند. به منظور درک ابعاد فشرده، برای نمونه می‌توان یک استوانه بینهایت دراز دو بعدی را در نظر گرفت. موجودی که روی این سطح در راستای طولی استوانه حرکت می‌کند به جای خود باز نمی‌گردد، اما در عوض اگر به سمت چپ یا راست حرکت عرضی کند به جای اول خود باز می‌گردد. به بُعدی که در راستای طولی استوانه است بُعد نافشرده و به بُعد عرضی استوانه بُعد فشرده می‌گوییم. در پارادایم فکری نظریه ریسمان، ابعاد بالا از نوع بُعد فشرده هستند. اگر بُعد عرضی این استوانه مانند یک نخ بسیار باریک باشد برای ما یک رویه‌ی یک بُعدی (خط) خواهد بود. یک فضای دو بُعدی فشرده مانند کره نیز می‌توانیم داشته باشیم و با گسترش منطق ریاضی می‌توان اَبرکره کاملاً فشرده در ابعاد بالا داشت. این موضوع که "آیا ابعاد اضافی به خودی‌خود در ارتباط احتمالی بین نظریه‌های فیزیکی در ابعاد بالا (به ویژه نظریه اَبرریسمان) با جهان واقعی نقشی دارند یا نه"، هنوز واضح نیست، در واقع بسیار مبهم و پیچیده است.
1-3 انگیزه، هدف و ساختار تحقیقرفتار قوانینِ طبیعت تاکنون در چهار نیروی بنیادی خلاصه شده است: گرانش، الکترومغناطیس، نیروی ضعیف و نیروی قوی. در مکانیک کلاسیک یا دیدگاه کلاسیکی فیزیک، قوانینی برای پدیدههای طبیعت نوشته شده است که توصیف کنندهی رفتار آن پدیدهها هست ولی چیزی دربارهی ماهیت و سازوکار این رفتار نمیگوید. برای مثال قانون پایستگی انرژی و قانون گرانشی نیوتن. در اینجا میتوان با روابط ریاضی مربوط به این قوانین کار کرد، کمیات را در آنها قرار داد و به یک نتیجه و رفتار رسید. فیزیک مدرن به سطح عمیقتر پدیدهها نگاه میکند، برای مثال با گلوئونها سازوکار برهمکُنش قوی را توضیح میدهند، بوزونهای و را مسئول نیروها در برهمکُنش ضعیف میدانند و فوتونها مسئولیت برهمکُنشهای الکترومغناطیسی را بر عهده دارند. اما تاکنون هیچ چیز و سازوکاری پیدا نشده است که ماهیت گرانش را توضیح دهد. یعنی هیچ توضیح رضایتبخشی برای گرانش بر حسب نیروهای دیگر یا ذرات بنیادی وجود ندارد. تنها توصیفی که تاکنون توانسته است سازوکار گرانش را توسطِ اجزایی بنیادی توضیح دهد نظریه‌ی بحث‌برانگیز ریسمان است که حیاتش منوط به وجودِ ابعادِ اضافی در فضازمان است [1].
از دید یک نظریه ریسمان، رفتار هندسی فضازمانِ توصیف شده توسط نظریه نسبیت عام حد کلاسیکی یک نظریه گرانش کوانتومی‌ست که به واسطه‌ی مقیاس‌های عظیم انرژی از دنیای ماکروسکوپیک ما جدا شده است، و این رفتار به عنوان تجلی‌ای از خمشِ فضازمان توسط ما درک می‌شود. بنابراین با کارکردن در پارادایم میدان‌های کلاسیکی گرانشی در ابعاد بالا می‌توانیم به رفتارهای حدی نظریه‌های منتج‌شده از ریسمان دست پیدا کنیم. در نتیجه با محدود کردن خود در پارادایم میدان‌های کلاسیکی گرانشی در ابعاد بالا، در حضور خمش مراتب بالا، انتظار می‌رود ویژگی‌هایی از جمله "انواع فضازمان‌های مشابه جواب‌های نظریه نسبیت عام (گسترش یافته شده به ابعاد بالا)" ، "وجود تکینگی در فضازمان" و "اُفق رویداد"، دوباره ولی با پیچیدگی‌های بیشتر، ظهور کنند. در این بین می‌توان از یک نظریه گرانشی خمش مراتب بالا بدون فرضِ اَبرتقارن استفاده کرد. این نظریه گرانشی در ابعاد بالا می‌تواند، به منظور داشتن ویژگی‌های نظریه نسبیت عام، گسترش استاندارد نظریه نسبیت عام در ابعاد بالا باشد. در این بین حل‌های سیاه‌چاله‌ای گرانش در ابعاد بالا می‌تواند نقش مهمی را در ارتباط بین گرانش و اَبرریسمان (کاندیدای نظریه گرانش کوانتومی احتمالی) ایفا کند. در اولین قدم، سیاه‌چاله‌ها به عنوان سیستم‌هایی که می‌توان آن‌ها را به صورت نیمه کلاسیکی، یعنی با لحاظ کردن بعضی ملاحظات کوانتومی، در نظر گرفت می‌توانند مهم‌ترین نقش را ایجاد ارتباطِ هم‌زمانِ مفاهیمی هم‌چون خمش مراتبِ بالا، گرانش کوانتومی، ابعاد بالا و ترمودینامیک سیاه‌چاله‌ها داشته باشند. از سوی دیگر از طریق مطالعهی لایهها در نظریه ریسمان است [2,4] که کُنشی غیرخطی برای میدان‌های الکترومغناطیسی از نوع کُنش بورن-اینفلد، که قبلاً به طور مستقل برای تعمیم کلاسیکی نظریه الکترومغناطیس ماکسول پیشنهاد شده بود، پیدا می‌شود [4]. این لایه‌های چند بُعدی از یک دینامیک غیرخطی برای میدانهای الکترومغناطیسی مانند الکترودینامیک نظریه بورن-اینفلد تبعیت میکنند. همانند سیاه‌چاله‌ها، مفهومی تحت عنوان لایه‌های سیاه را می‌توان وارد حوزه‌ی نظری بررسی‌ها کرد، که نام لایه‌ی سیاه اشاره به اُفق‌های توپولوژیکی با شکل‌های کاملاً منحصربه‌فرد دارد. لایه‌های سیاه همانند سیاه‌چاله‌ها نقشی کلیدی در درکِ مفاهیمی هم‌چون خمش مراتب بالا، گرانش کوانتومی، ابعاد بالا و ترمودینامیکِ اُفق‌شان دارند. بنابراین انگیزه‌های لازم برای یافتن جواب‌های نظریه گرانش خمش مراتب بالا در حضور یک دینامیک غیرخطی از میدان‌های الکترومغناطیسی به دست می‌آید.
در حال حاضر باور عمومی فیزیک‌دانان بر این است که نظریه‌ی گرانشی اینشتین حد انرژی‌های پایین یک نظریه‌ی گرانش کوانتومی است. بنابراین صرف‌نظر از طبیعت بنیادی گرانش کوانتومی، باید یک کُنش مؤثر در انرژی‌های پایین وجود داشته باشد که گرانش را در سطحی کلاسیکی توصیف کند. این کُنش مؤثر شامل کُنش اینشتین-هیلبرت به علاوه‌ی جملات خمش مراتب بالا می‌شود. ظهور جملات خمش مراتب بالا در بازبهنجارش نظریه میدان‌های کوانتومی در فضازمان‌های خمیده [6] و یا در ساختن کُنش‌های مؤثر انرژی پایین در نظریه ریسمان دیده می‌شود .[7] در کیهان‌شناسی جهان‌لایه‌ای (که با نظریه ریسمان سازگار است) نیز فرض بر این است که ماده و میدان‌های پیمانه‌ای در یک لایه جایگزیده و درون یک فضازمان با ابعاد بالاتر محصور شده‌اند و میدان گرانشی می‌تواند در سرتاسر این فضازمان با ابعاد بالا منتشر شود. این‌ها دلایلی هستند که نیاز به بررسی گرانش در ابعاد بالا را مهم و بنیادی جلوه می‌دهند. در این راستا چارچوبی که برای بررسی گرانش در ابعاد بالا، از یک کُنش مؤثر کلاسیکی، انتخاب می‌کنیم چارچوبی‌ست که فرضیات اینشتین در نسبیت عام را نگه دارد و در عین حال در ابعاد بالا در انرژی‌های پایین نظریه اَبریسمان سازگار باشد. چنین چارچوبی مدل گرانش لاولاک است [8,9]. از آن‌جایی که تنها کُنش‌های مؤثری که شامل جملات مراتب بالا از مشتقات مرتبه دوم متریک هستند بدون شبح می‌باشند [10]، و گرانش لاولاک از چنین خاصیتی برخوردار است، بنابراین مناسب‌ترین کُنش برای برای بررسی گرانش در ابعاد بالا به نظر می‌رسد. در نتیجه به نظر لازم می‌آید که اثرات خمش مراتب بالا را در ویژگی‌ها و ترمودینامیکِ جواب‌های سیاه‌چاله‌ای بررسی نماییم. در این پایان‌نامه گرانش لاولاک را تا چهار جمله اول بررسی می‌کنیم که آن را تحتِ عنوانِ گرانش لاولاک مرتبه سوم ارجاع می‌دهیم (اولین جمله در کُنش لاولاک با شماره‌ی صفر مشخص می‌شود). از سوی دیگر در حد انرژیهای پایین نظریههای ریسمان کُنشی غیرخطی از نوع کُنش بورن-اینفلد ظاهر میشود [11-14]. در این کُنش یک لاگرانژی جدید به جای لاگرانژی ماکسول قرار میگیرد که مشکل نامتناهی شدن خود انرژی ذراتِ باردار نقطهای را، به صورت کلاسیکی، حل میکند[15]. این کُنش می‌تواند به عنوان تصحیحات ریسمانی بر روی نظریه ماکسول در نظر گرفته شود. بنابراین طبیعی به نظر می‌رسد که، با توجه به مطالب گفته شده، به دنبال جواب‌های سیاه‌چاله‌ای و همچنین لا‌یه‌های سیاه در ابعاد بالا باشیم. هنوز فهم دقیق و کاملی در مورد ارتباط بین چارچوبهای نظریِ گرانشِ خمش مراتب بالا، نظریه ریسمان، فیزیکِ سیاهچالهها، و مفهومِ ابعاد بالاتر از 1+3 بُعد بدست نیامده است و به همین دلیل تاکنون گرانش لاولاک نقش یک آزمایشگاه را برای فیزیکدانان در ابعاد بالا داشته است. سیاه‌چاله‌ها و لایه‌های سیاه در ابعاد بالا نقطه برخورد مفاهیمی هم‌چون خمش مراتبِ بالا، گرانش کوانتومی، ابعاد بالا و ترمودینامیکِ اُفق‌شان هستند و از این حیث پیدا کردن چنین جواب‌هایی ضروری می‌باشد. بنابراین انگیزه‌ای علمی ایجاد می‌شود که سیاه‌چاله‌ها و لایه‌های سیاه مربوط به گرانش خمش مراتب بالا، در حضور یک دینامیک غیرخطی برای میدان‌های الکترومغناطیسی، پیدا و بررسی شوند. تاکنون گرانش لاولاک مرتبه سوم فقط در حضور دینامیک غیرخطی بورن-اینفلد برای میدانهای الکترومغناطیسی مورد بررسی قرار گرفته است [16]. هدف این تحقیق پیدا کردن جواب‌های گرانش مرتبه سوم در حضورِ کلاس‌های نمائی و لگاریتمی از نظریه الکترودینامیک غیرخطی (به عنوان کُنش‌های بورن-اینفلد گونه) و بررسی ترمودینامیک اُفق جواب‌ها است.
در این راستا چنین طرحی برای ساختار پایان‌نامه در نظر گرفته‌ایم:
ابتدا در فصل دوم نظریه نسبیت عام اینشتین را با تأکید بر روی بُعد چهارم زمان مرور می‌کنیم و به بررسی اصول و مهم‌ترین نتایج این نظریه می‌پردازیم. در این بین، مفاهیمی را که برای بحث در ابعاد بالا به آن‌ها نیازمندیم ابتدا در حوزه نسبیت عام مطرح می‌کنیم، بنابراین تعمیم آنها به ابعاد بالا سرراستتر خواهد بود. در ادامه گرانش لاولاک مرتبه سوم را، به عنوان امتداد استاندارد نظریه نسبیت عام به ابعاد بالا، معرفی می‌کنیم.
در فصل سوم به مطالعه‌ی نظریه الکترودینامیک غیرخطی به عنوان تعمیمی از نظریه ماکسول می‌پردازیم. در این بین دو انگیزه‌ی مهم نظری وجود دارد: رفع مشکل نامتناهی شدن خودانرژی بارهای نقطه‌ای در نظریه ماکسول و پیروی کردن میدان‌های الکترومغناطیسی در جهان‌حجم‌های -لایه‌ها از یک دینامیک غیرخطی برای میدان‌های الکترومغناطیسی، نظیر الکترودینامیکِ شبه بورن-اینفلد. در ادامه مشکل نظری معادلات ماکسول و ناسازگاری درونی نظریه را خاطر نشان می‌سازیم و به معرفی نظریه الکترودینامیک غیرخطی، به منظور رفع این ناسازگاری می‌پردازیم. در پایان با به دست آوردن میدان‌های الکتروستاتیکی مقایسه‌هایی بین کلاس‌های نمائی، لگاریتمی و بورن-اینفلد انجام می‌دهیم و سپس ایده‌ی اصل برهم‌نهی غیرخطی برای میدان‌ها را، با توجه به معادلات موج نظریه، ارائه می‌دهیم.
در فصل چهارم نیز به منظور ورود به بحث ترمودینامیک سیاه‌چاله‌ها ابتدا به بیان قوانین مرسوم ترمودینامیک برای سیستم‌ها در طبیعت می‌پردازیم. سپس در تناظر با قوانین ترمودینامیک مرسوم، قوانین ترمودینامیک مربوط به سیاه‌چاله‌ها را مرور می‌کنیم و سپس این بحث را به سیاه‌چاله‌های ابعاد بالا می‌کشانیم.
در فصل پنجم، که مهم‌ترین فصل این تحقیق محسوب می‌شود، با توجه به انگیزه‌های گفته شده جواب‌های سیاه‌چاله‌ها و لایه‌های سیاه گرانش لاولاک را در حضور دو کلاس نمائی و لگاریتمی از نظریه الکترودینامیک غیرخطی را پیدا می‌کنیم. سپس جواب‌ها را به تمام ابعاد گسترش می‌دهیم. در این بین شاهد خصوصیات جدیدی از گرانش خمش مراتب بالا خواهیم بود که نظیر آن در گرانش اینشتین دیده نمی‌شود. در ادامه به بررسی ترمودینامیک و محاسبه کمیت‌های پایای ترمودینامیکی برای جواب‌ها خواهیم پرداخت. در انتها نیز تحلیلی از پایداری ترمودینامیکی سیاه‌چالهها و لایههای سیاه ارائه خواهیم داد.
در نهایت فصل ششم را با جمع‌بندی نتایج و مرور کار انجام شده و ارائه چند طرح پیشنهادی به پایان می‌رسانیم.

فصل دومگرانش در ابعاد بالاابتدا در بخش اول، نظریهی نسبیت عامِ اینشتین را به عنوان چارچوبی که در آن به مفاهیمی چون فضا، زمان و گرانش میاندیشیم مرور میکنیم. در این نظریه زمان به منزلهی بُعد چهارم، به عنوان یک اِلزام و نه یک فرض، در نظر گرفته میشود. سپس به مطالعهی مهمترین رئوس نظریه نسبیت عام و مفاهیم استخراج شده از آن میپردازیم. در ادامه گرانش لاولاک که گسترش استاندارد نظریه نسبیت عام به ابعاد بالا است را با توجه به انگیزه‌های گفته شده در فصل مقدمه معرفی می‌کنیم.
2-1 بُعد چهارم و نظریه نسبیت عام اینشتیندر یک دستگاه مختصات متعامدِ تختِ دو بُعدی، عنصر ناوردای فاصله بینهایت کوچک توسط رابطهی فیثاغورث تعیین میشود. گسترش این رابطه به یک دستگاه مختصات متعامدِ تخت سه بُعدی به رابطهی ناوردای میانجامد. از لحاظ منطق ریاضیاتی میتوان این گسترشِ مختصاتِ متعامدِ تخت را همچنان ادامه داد. به این دستگاههای مختصاتی، چارچوبهای دکارتی میگوئیم. یک چارچوب دکارتی 3 بُعدی، که آن را با نشان می‌دهیم، میتواند موقعیت و فاصلهی تمام اجسام در فضای فیزیکی را تعیین کند. میتوان مختصهی چهارمی، تحت عنوانِ زمان، به چارچوب دکارتی 3 بُعدی اضافه کرد که موقعیت و فاصلهی اجسام را در فضا و زمانِ فیزیکی نمایش دهد. در این چارچوب 1+3 مختصهای دو جسم میتوانند در یک مکان باشند ولی در زمانهای متفاوت؛ و در یک زمان میتوان دو جسم در مکانهای متفاوت داشت. در این چارچوب، صفحاتِ زمان ثابت، فضای فیزیکی را به صورتِ صفحاتی تخت لایهبندی میکند (شکل 1-1). این ترسیم تفکر نیوتنی از فضا و زمانِ مطلق است. در نظریه نیوتنی دو رویداد میتوانند، به طرز کاملاً خوشتعریف و بدون ابهامی، همزمان رخ دهند؛ یعنی فرضِ همزمانی مطلق. در آن تعیین زمان مستقل از انتخاب فضای مرجع است، یعنی برای هر دو چارچوبِ دکارتی لختی گذر زمان یکسان است و این مبنایی نظری برای تبدیل گالیلهای است. برای انجام یک تحلیل همزمانی بین دو رویداد باید تأخیر زمانی در رسیدن اطلاعات به ناظر نیز لحاظ شود. چنین الزامی ناشی از وجود یک ثابت جهانی برای سرعت انتشار نور است. اینشتین این تحلیل را ابتدا با معرفی اصل ثابت بودن سرعت نور در تمام چارچوبهای لخت ارائه داد: "اصلِ ثابت بودن سرعت نور : نور همیشه در فضای تهی با یک سرعت ثابت c منتشر میشود که مستقل از چگونگی حرکت جسمِ تابشکننده است. این قانون پیامد طبیعی داشتن یک نظریه برای پدیدههای الکترومغناطیسی به شکل کنونیاش است. قوانین باید طوری اصلاح شوند که تأخیر در رسیدن اطلاعات در نظریه لحاظ شده باشد". با تحلیل مسئلهی همزمانی، و با توجه به این واقعیت تجربی که سرعت نور یک ثابت جهانیست، میتوان دریافت که حتی یک مورد همزمانی مطلق برای ناظرهای لخت مختلف نمیتوان یافت. این پیامدی اساسی از ثابتِ جهانی بودنِ سرعتِ نور است[17] . تنها چیزی که میتوان یافت یک تعریف قراردادی همزمانی رویدادها برای ناظریست که نسبت به دو رویداد ساکن است و همچنین از لحاظ موقعیت مکانی در فاصلهی یکسانی از دو رویداد قرار دارد. از آنجا که به دلیل عدم هرگونه هم‌زمانی مطلق هیچ تفکیک معقول عینی از پیوستار فضازمان به یک فضای 3 بُعدی به همراه یک بُعد زمانی وجود ندارد، قوانین طبیعت باید قابل قبولترین شکل خود را هنگامی اختیار کنند که به صورتِ
شکل 2-1 : شکل سمت چپ تقسیم فضای فیزیکی به صفحاتِ زمان ثابت در چارچوبِ 4 مختصهای فضا و زمان در نظریه نیوتن. یک نقطه در این چارچوب یک رویداد نامیده میشود و مسیر یک ذره در فضا و زمان توسط پیوستاری یک بُعدی از رویدادها، تحت عنوان جهانخط، مشخص میشود. شکل سمت راست لایه‌بندی فضازمان در نظریه نسبیت خاص را نشان میدهد.
قوانینی در پیوستار فضازمان بیان شوند. بنابراین دستگاه مختصات متعامد تخت 3 بُعدی را به پیوستار 1+3 بُعدی از فضازمان گسترش میدهیم. برای اینکه بتوانیم زمان را وارد عنصر دیفرانسیلی فاصله کنیم لازم است که از یک ثابت جهت برگرداندن اندازهگیریهای زمانی به مکانی استفاده کنیم. در واقع در طبیعت تنها یک ثابت جهانی برای سرعت وجود دارد که همان سرعت نور در شرایط خلأ است و همین ثابت است که منجر به تعریف یک فاصلهی ناوردا در پیوستار فضازمانی میشود. بنابراین برای عنصر ناوردای فاصلهی فضازمانی خواهیم داشت: . علامت منفی از این واقعیت ناشی میشود که سرعت نور در یک چارچوب مفروض کمیتی مثبت است. ضرایب مختصه‌های این عنصر ناوردای طول همان ضرایب متریک برای یک سطح شبه‌اقلیدسی هستند و آن را با نمادگذاری نمایش می‌دهیم. از آن‌جایی که طبق تعریف‌مان این عنصر طول در هر چارچوب لَختی ناورداست بنابراین از این ناوردایی در بین دو چارچوب، تبدیلات لورنتس به عنوان تنها تبدیلات خطی استخراج میشوند، و به تبع آن اثرات اتساع زمان و انقباض طول پیشبینی میشوند. تحت تبدیلات لورنتس، الکترودینامیک ماکسول در همهی چارچوبهای لخت دارای شکل یکسانی خواهد بود و برای اجسام متحرک باردار به جوابهای فیزیکی صحیحی میانجامد. در واقع این تبدیلات همارزی تمام دستگاههای مختصات لخت را نشان میدهد که تحت عنوان اصل نسبیت خاص شناخته میشود. اصل نسبیت خاص نتیجهی عدم آشکارسازی هرگونه ناهمارزی برای چارچوبهای لخت است [17]. همهی آنچه که گفته شد اساس نظریهی نسبیت خاص است که برای چارچوبهای لخت مختصاتی تدوین شده است، و بنابراین نظریهایست برای فضازمان 4-بُعدی تخت که تحت عنوانِ فضای مینکوفسکی شناخته میشود.
لایه‌بندی‌ای که نظریه نسبیت خاص برای فضازمان فیزیکی ارائه می‌دهد به صورت مخروط‌های نوری برای هر ناظر (یا رویداد) مفروضی در فضازمان است (شکل 1-1). بنابراین در نسبیت خاص (یا پیکربندی مینکوفسکی برای فضازمان) هیچ مفهوم خوش تعریفی برای دو رویدادِ جدا که در یک زمان اتفاق میاُفتند وجود نخواهد داشت. ولی چه دلیلی برای قبول چنین لایه‌بندی‌ای از فضازمان در دست داریم؟ تاکنون تمامی آزمایشات چنین ساختاری از فضازمان را در کره‌ی زمین تأیید کرده‌اند. فرض چنین ساختاری برای فضازمان فیزیکی بسیاری از مشکلاتِ فیزیک پیش‌نسبیتی را حل می‌کند. ولی مواردی وجود دارد که نشان می‌دهند چنین ساختاری از فضازمان (پیکربندی مینکوفسکی) فقط بخشی از واقعیت را تفسیر می‌کند و نمی‌تواند اثراتی ناشی از بازتاب فضازمان مانند "حرکت تقدیمی حضیض عطارد"، "خم شدن مسیر نور در مجاورت اجرام سنگین" و "انتقال به سرخ گرانشی" را توضیح دهد. پیکربندی مینکوفسکی از فضازمان معادل با هموردایی قوانین فیزیک برای تمامی ناظرهای چسبیده به چارچوب لخت است. در این‌جا می‌توان پرسید یک ناظر غیرلخت فضازمان را چگونه لایه‌بندی می‌کند یا قوانین فیزیک را به چه شکل می‌بیند؟ اگر هم‌ارزی همه دستگاه‌های مختصات را برای تدوین قوانین طبیعت به منزله‌ی یک اصل ارتقا دهیم به نظریه نسبیت عام دست می‌یابیم به شرط آن‌که قانون ثابت بودن سرعت نور، یا فرضیه‌ی وجود عینی متریک مینکوفسکی را، دست‌کم در نواحی بی‌نهایت کوچکی از فضای چهار بُعدی حفظ کنیم. در چنین تعمیمی از اصل نسبیت خاص به اصل هموردایی عام از اصلِ هم‌ارزی استفاده شده است. این اصل محصولِ واقعیتِ تجربی برابری جرم لختی و جرم گرانشی است. حد خطی بودن نسبت میان جرم‌های گرانشی و لختی چیزی نزدیک به یک در است (براساس آزمایشات دیکه در 1964 و براجینسکی در 1971) [19]. یعنی با دقت بسیار بالایی جرم گرانشی با جرم لختی برابر است. این یعنی وجود رابطه‌ای میان حرکت‌های شتاب‌دار و میدان‌های گرانشی. معادل بودن این دو پدیده اینشتین را به سمت ایجاد یک اصل فیزیکی به نام اصل هم‌ارزی سوق داد. بیان اصل هم‌ارزی به صورت قوی: "در هر نقطه از فضازمان در یک میدان گرانشی می توان یک «دستگاه مختصات لخت موضعی» انتخاب کرد به طوری که در ناحیه به قدر کافی کوچک در اطراف آن نقطه قوانین فیزیکی به همان شکل قوانین در دستگاه مختصات بدون شتاب در غیاب گرانش باشند."
این اصل دلالت بر این دارد که یک «دستگاه مختصات جهانی» وجود ندارد و در هر نقطه در فضازمان چهار بُعدی می‌توان یک مجموعه چهار مختصه‌ی پیدا کرد که مبدأ آن در قرار داشته باشد و متریک به صورت موضعی لورنتسی باشد؛ یعنی . در این دستگاه مختصات لخت موضعی روابط زیر برقرارند:
(2-1-1)
این شرط از لحاظ ریاضی مطابق با وجودِ یک ناحیه‌ی شبه‌اقلیدسی (یا فضازمان مینکوفسکی) در هر ناحیه‌ی بسیار کوچکی از یک خمینه‌ی عام‌تر (خمینه‌ی ریمانی) است. بنابراین زبان ریاضیاتی مربوط به نظریه نسبیت عام زبان هندسه‌ی دیفرانسیل تانسوری خواهد بود. برای کاربرد‌های بعدی بهتر است تعریف دقیق‌تری از خمینه‌ها داشته باشیم. خمینه چیزی بیشتر از فضای پیوسته‌ای از نقاط که ممکن است به طور سرتاسری خمیده (دارای خمش) باشند، نیست. اما این خمینه‌ها به طور موضعی (یعنی در ناحیه محدودی از سطح‌شان) مانند صفحه در فضای تخت هستند. فرض می‌شود یک خمینه به دفعات مشتق‌پذیر است. خمینه یک سازهی ریاضی است که برای توصیف فضازمان به کار میرود، حال آنکه نظریه نسبیت خاص نوع ویژهای از فضازمان را در بر میگیرد، فضازمانی که نه خمشی دارد و در نتیجه نه گرانشی، بنابراین خمینهی مربوط به آن شبهاقلیدسی خواهد بود. بر طبق اصل هم‌ارزی در هر نقطه‌ای از فضازمان هر ناظری می‌تواند دستگاه مختصاتی را بیابد که متریک آن به صورت لورنتسی (مینکوفسکی) باشد، در مورد خمینه‌ها هم می‌توانیم بگوییم که در هر ناحیه‌ی کوچکی از خمینه می‌توان آن ناحیه را موضعاً اقلیدسی در نظر گرفت. متریک لورنتسی یک متریک شبه اقلیدسی است. این متریک در هر ناحیه از فضا – زمان موضعاً برقرار است که این خود ناشی از موضعی بودن نظریه نسبیت خاص در مقابل نظریه نسبیت عام است. به طور عام یک خمینه نمی‌تواند توسط یک سیستم مختصاتی یکتا و سرتاسری پوشانده شود. یعنی هیچ نگاشتی از کل خمینه به فضای وجود ندارد و مجبوریم خمینه را تکه تکه کنیم (یعنی به تکه‌های باز تقسیم کنیم). این بازه‌های باز را می‌نامیم و هر بازه می‌تواند به فضای تخت اقلیدسی نگاشته شود.

شکل 2-2 : دستگاه مختصات یک نگاشت از خمینه به فضای اقلیدسی است.
بر طبق تعریف در خمینه نگاشت‌های وجود دارد که یک ناحیه (بازه) باز در است. اگر یک نقطه در باشد بنابراین یک بردار در خواهد بود. چنین نگاشتی یک «دستگاه مختصات» نامیده می‌شود و ناحیه‌ی (بازه) مختصاتی است. یک دستگاه مختصات شامل مجموعه‌ای از نگاشت‌ها است. دستگاه مختصات نماینده‌ی نقاط در است که توسط علائم نمایش داده می‌شود. خمینه‌ها دارای این خاصیت هستند که ضرب مستقیم دو خمینه‌ی و با ابعادِ و یک خمینه با بُعد ، شامل جفت نقاط مرتب با و است. به طور کلی فرض می‌کنیم کلیه خمینه‌های مورد بحث، ریمانی هستند. خمینه‌‌های ریمانی دسته‌ای از خمینه‌ها هستند که برای توصیف فضازمان‌های نسبیت عامی از آنها استفاده می‌کنیم.
بنابراین با توجه به توضیحات داده شده متریک یک فضازمان عام ریمانی را می توان به صورت

شکل 2-3 : یک تبدیل مختصات بین دو مجموعه مختصات
6882491683385مشخص کرد که در آن مؤلفه های دستگاه مختصات و خمش فضا را تعیین می‌کنند. اطلاعات مربوط به یک فضازمان خمیده و چگونگی انحراف آن از رابطهی فیثاغورث در تانسور متریک کُدگذاری میشود. عناصر متریک دستگاه‌های مختصات عام توسط دستور به یکدیگر مربوط میشوند. به زبان خمینه‌ها اگر دو ناحیه و دارای فصل مشترک باشند که و به ترتیب دارای مختصه‌هایو هستند می‌توانیم یک تبدیل مختصات وارون‌پذیر به صورت در تعریف کنیم. آنگاه بیان ریاضی اصل نسبیت عام این میشود که دستگاه‌های معادلاتی که «قوانین عام طبیعت» را بیان می کنند در دستگاه‌های مختصات ریمانی یکسانند. قضاهایی که گفته شدند به هندسه ریمانی موسوم هستند و از این پس فرض می کنیم که فضاهای مورد بحث ریمانی (خمینه‌های ریمانی) هستند. با در نظر گرفتن وجود چنین لایه‌بندی‌ای برای فضازمانِ فیزیکی 1+3 بُعدی پدیده‌های "حرکت تقدیمی حضیض عطارد"، "انتقال به سرخ گرانشی" و "خم شدن مسیر نور در مجاورت اجرام سنگین و به تبع آن اتساع زمانی گرانشی" پیش‌بینی یا تفسیر می‌شوند. اثر اتساع زمانی گرانشی به ما می‌گوید که اجسام از مکان‌هایی که گذر زمان در آن‌جا سریع‌تر است به مکان‌هایی که گذر زمان کمتر است سقوط می‌کنند. فرض چنین ساختارِ هندسی برای فضازمان باید در حد میدان‌های گرانشی ضعیف به نظریه گرانشی نیوتن برسد. در این‌جا، با توجه به فرمالیزم ریاضیاتی به کار رفته شده، می‌توان اصلی با عنوان اصل تطابق تعریف کرد. مطابق این اصل داریم:
"در میدان‌های گرانشی ضعیف پیکربندی ریمانی فضازمان به یک پیکربندی مینکوفسکی میل می‌کند. در حد سرعت‌های پایین و میدان‌های گرانشی ضعیف نیز پیکربندی ریمانی فضازمان به یک پیکربندی اقلیدسی از فضا و زمان میل می‌کند."
معادله پواسون برای پتانسیل گرانشی نیوتن به صورت است که در آن توزیع جرم ماده است. در طرف چپ این معادله عملگر لاپلاسی، که تولید کننده‌ی مشتقات مرتبه دوم است، وجود دارد و در طرف راست اندازه‌ای از توزیع جرم. یک تعمیم نسبیت عامی از این معادله، با توجه به نوع لایه‌بندی ارائه شده توسط اصلِ هم‌ارزی و ورود بُعد زمان به عنصر ناوردای فاصله، باید ارتباطی از نوع تانسوری بین دو طرف این معادله برقرار کند تا در تمام چارچوب‌ها شکلی یکسان، مطابق با اصل هوردایی عام، داشته باشد. چنین تعمیمی توسط اینشتین در سال 1915 به صورت زیر ارائه شد [18]:
(2-1-1)
که همان ثابت عددی موسوم به ثابت گرانش اینشتین است. طرف چپ این رابطه تانسور اینشتین نام دارد و برآوردی از خمشِ فضازمان است، طرف راست موسوم به تانسور انرژی-تکانه نیز انرژی و تکانهی ماده و میدان را اندازه میگیرد که نقش چشمه گرانشی را بازی می‌کنند. معادلات میدان اینشتین توضیح می‌دهد که چطور خمشِ فضازمان به حضور تکانه-انرژی ماده و میدان واکنش نشان می‌دهد که در تطابق با فرم ضعیف اصلِ ماخ به صورتِ "توزیع ماده شکل هندسه را تعیین می‌کند" است. اصل ماخ در فرم قوی‌اش به صورت "ماده وجود هندسه را تعیین می‌کند، در صورت نبود ماده هندسه‌ای نیز وجود نخواهد داشت" با نسبیت عام سازگار نیست. به طور خلاصه می‌توان نظریه نسبیت عام را، مطابق با رهیافت اینشتین، از پنج اصلِ زیر به دست آورد:
فرم ضعیف اصل ماخ
اصل هم‌ارزی
اصل هموردایی عام
اصل تطابق
اصل جفت‌شدگی گرانشی کمینه
آخرین اصل، که توسط اینشتین به صورت ضمنی استفاده شد، بیان می‌کند که در تعمیم روابط نسبیت خاص به نسبیت عام نباید جملاتی که به صورت صریح شامل تانسور انحنای ریمان هستند به معادلات اضافه گردند.
2-2 نظریه میدان‌های کلاسیکی: فرمول‌بندی لاگرانژی میدان‌های گرانشیدر مکانیک کلاسیک کُنش به صورت تعریف می‌شود که در آن لاگرانژین سیستم است. کمینه کردن تابع با استفاده از حساب وردشی به اصل کمترین کُنش یا اصل هامیلتون منجر می‌شود. در مکانیک کلاسیک با تعریف اختلاف انرژی جنبشی و پتانسیل به عنوان لاگرانژین، برای یک ذره‌ی نقطه‌ای، قانون دوم نیوتن بدست می‌آید. نظریه میدان کلاسیکی بر اساس اصل کمترین کُنش تعریف می‌شود. تنها تفاوت در جابجا شدن مختصه‌های با یک مجموعه از میدان‌های وابسته به فضازمان ، است و در نتیجه کُنش نهایی تابعی از این میدان‌ها خواهد شد. در نظریه میدان‌ها، می‌توان لاگرانژین را به عنوانِ انتگرالِ فضایی یک چگالی لاگرانژی ، که تابعی‌ست از میدان‌های و مشتق‌های به صورت تعریف کرد و بنابراین کُنش، در گذار به یک فضازمان خمیده، یعنی یک پیکربندی ریمانی 1+3 بُعدی (خمینه‌ی )، به صورت زیر خواهد شد
(2-2-1)
که در آن اشاره بر دترمینان متریک فضازمان مورد نظر دارد. وقتی که یک گذار از نظریه نسبیت خاص به نسبیت عام انجام می‌دهیم متریک به میدانِ دینامیکی تانسوری تحول پیدا می‌کند [20]. با انتخاب یک میدان اسکالر به صورت و وردش کوچک روی ها به معادلات میدان اینشتین در فضای تهی، با فرض بی‌نهایت بودن امتداد فضازمان (معادل با فرض بی‌نهایت بودنِ خمینه‌ی )، دست پیدا می‌کنیم:
(2-2-2)
به این جمله کُنش اینشتین-هیلبرت گفته میشود. می‌توان معادلات عام‌تر میدان گرانشی اینشتین را، با احتساب ثابت کیهان‌شناسی و در حضور یک توزیع پیوسته ماده باردار و برهم‌کُنش آن با میدان‌های الکترومغناطیسی و گرانشی، یک‌جا با تعریف کُنش عام به صورت
(2-2-3)
به دست آورد که آثار ماده و میدان در جمله‌ی کُنش توسط کُنش ماده‌ی لحاظ شده است. تانسور انرژی-تکانه نیز از وردش و مرتب کردن آن مطابق رابطه‌ی
(2-2-4)
به دست می‌آید [19].
2-3 کُنشِ مرزی نظریه نسبیت عامبا وردش دادنِ کُنش (2-2-3) نسبت به تانسور متریک، برای یک فضازمان متناهی، عبارت خوشتعریفی به دست نمیآید. در واقع جملاتی مربوط به مرز فضازمان در معادلات میدان نهایی ظاهر میشوند. بنابراین برای یک فضازمان متناهی، متناظر با پیکربندی ریمانی با مرزِ ، کُنش اینشتین-هیلبرت بنیادی‌ترین کُنش محسوب نمی‌شود. زیرا در وردش این کُنش نسبت به تانسور متریک در یک فضازمان دارای مرز جمله‌ای دارای انتگرال سطحی که شامل مشتق نرمالِ است ظاهر می‌شود که فقط در بی‌نهایت تأثیر این جمله‌ی سطحی از بین می‌رود. بنابراین برای خوش تعریف کردن کُنش، باید یک انتگرال مرزی به کُنش حجمی اضافه کنیم تا معادلات میدان گرانشی اینشتین به دست آید. این جمله اثری در معادلات میدان عام گرانشی ایجاد نمی‌کند و تابعی از هندسه‌ی مرزی فضازمان است. این جمله اولین بار توسط گیبونز و هاوکینگ به صورت زیر ارائه شد[21] :
(2-3-1)
که در آن دترمینان متریک مرزِاست و ردِ انحنای خارجی مرز می‌باشد. بنابراین این کُنش مرزی در کنار جمله‌ی کُنش اینشتین-هیلبرت، در فضازمان‌های دارای مرز متناهی، معادلات میدان اینشتین را به دست می‌دهد.
2-4 ایزومتری و میدان‌های برداری کیلینگیک خمینه (که توصیف ریاضی‌وار فضازمان نسبیت عامی است) دارای یک تقارن است اگر هندسه آن تحت یک تبدیل مشخص –که خمینه را به خودش می‌نگارد– یکسان باقی بماند. این یعنی وقتی از نقطه‌ای به نقطه‌ی دیگر می‌رویم متریک تغییری نکند. چنین تقارن‌هایی در متریک را ایزومتری می‌نامیم. مستقل بودن مؤلفه‌های متریک از یک یا چند مختصه شرط وجود داشتن ایزومتری را تضمین می‌کند (ولی عکس این مطلب صحیح نیست). بنابراین یک فضازمان می‌تواند دارای تقارن باشد. برای مثال اگر در یک دستگاه مختصات (مثلاً در کاربردهای کیهان‌شناسی) مؤلفه‌های متریک مستقل از زمان باشند می‌گوییم که فضازمان دارای تقارن زمان گونه است و پایا است. به یک متریک ناوردای شکل می‌گویند هر گاه تحت تبدیل مختصات ، متریک تبدیل یافته‌ی دارای شکل یکسانی، از لحاظ وابستگی به شناسه‌هایش ، نسبت به متریک اولیه‌اش باشد، که برای تمامیها به صورت
(2-4-1)
نشان می‌دهیم. مؤلفه‌های متریک توسط روابط
(2-4-2)

تبدیل می‌شوند. در صورت معتبر بودن دستور (2-4-1) می‌توانیم را با عوض کنیم و خواهیم داشت:
(2-4-3)
هر تبدیل مختصات که شرط (2-4-3) را برقرار نماید، یک ایزومتری نامیده می‌شود. حال برای به دست آوردن شرطی برای وجود ایزومتری‌ها می‌توانیم ایزومتری‌های بی‌نهایت کوچک را در نظر بگیریم که برای آنها حرکت نقاط کوچک هستند. با تغییر مختصات بی نهایت کوچک
(2-4-4)
و با قراردادن آن در دستور (2-4-3) تا مرتبه‌ی اول بر حسب رابطه‌ی زیر را، به شکل هموردا، به دست خواهیم آورد
(2-4-5)
ها را بردارهای کیلینگ می نامیم. دستور (2-4-5) معادله‌ی کیلینگ خوانده می‌شود و هر میدان برداری که در این معادله صدق کند بردارهای کیلینگ نامیده می‌شود [19]. حال مسئله تعیین کردن تمام ایزومتری‌های بی نهایت کوچک به مسئله پیدا کردن بردارهای کیلینگ متریک تبدیل می‌شود. هر ترکیب خطی از بردارهای کیلینگ با ضرایب ثابت هنوز هم یک بردار کیلینگ است. هر بردار کیلینگی وجود یک کمیت پایسته مرتبط با خطوط ژئودزیک را تضمین می‌کند، این یعنی متریک در راستای بردار کیلینگ تغییر نمی‌کند.
2-5 جواب‌های نظریه نسبیت عامدر این بخش ابتدا به معرفی حلِ (آنتی)دوسیته در بُعد می‌پردازیم. در ادامه، با توجه به نوع قراردادی که در انتخاب یکاها اختیار کردیم، با استفاده از نرم‌افزار میپل تانسور اینشتین را در می‌نویسیم و سپس حل ایستای باردار بُعدی معادلات میدان اینشتین را برای کاربردهای بعدی می‌یابیم.
2-5-1 فضازمانِ آنتی دوسیته در بُعددر اینجا برای کاربردهای بعدی فضازمان (آنتی)دوسیته را معرفی می‌کنیم. این متریک را دوسیته در سال 1917 در رابطه با کیهان‌شناخت کشف کرد و فرم بُعدی آن به صورت
(2-5-1)
است که در آن نوع هندسه مرز را مشخص میکند. فضاهای هندسی (آنتی) دوسیته یا حل معادلات میدان تهی اینشتین با ثابت کیهانشناسی هستند که تعداد ابعاد فضازمان است و هم شعاع انحنای این فضا است. فضای توسط فرم درجه دو
(2-5-2)
تعریف می شودکه دریک فضای بامتریک
(2-5-3)
غوطه ور است. یک فضای تخت شبه اقلیدسی است که دارای دو مؤلفه ی زمانی و مؤلفهی فضایی است. این فضا را می توان با اضافه کردن یک مؤلفه ی زمانی به (فضای مینکوفسکی بُعدی با مؤلفهی فضایی و یک مؤلفهی زمانی) بدست آورد یعنی. پس به صورت

تعریف می شود. فضای دارای توپولوژی میباشد. این فضا دارای گروه تقارنی است. این متریک یک حل دقیق معادلات میدان اینشتین در دنیای تهی با ثابت کیهانشناسی مثبت است. می‌بینیم که در اینجا فضای دوسیته جانشین فضای مینکوفسکی در دنیای تهی می‌شود، اسکالر ریچی ثابت و برابر ِ است. هر فضا با (اسکالر ریچی ثابت و منفی) را فضای آنتی دوسیته می‌نامیم.
2-5-2 حل استاتیک باردار بُعدی معادلات میدان اینشتین در حضور ثابت کیهان‌شناسی با نوشتن معادلات میدان اینشتین در بُعد در حضور میدان‌های الکترومغناطیسی و حل کردن این معادلات به جواب زیر دست پیدا می‌کنیم
(2-5-4)
که در آن ، که نوع تقارن به کار رفته در فضازمان را مشخص میکند، متریکِ یک اَبَرسطح بُعدی با خمشِ ثابتِ مثبت، منفی و یا صفر با حجمِ میباشد. تابع متریکِ به صورت زیر است
(2-5-5)
که در آن ثابت کیهان‌شناسی در هر بُعد دلخواه به صورتِ تعریف می‌شود. واضح است که این متریک در حد مجانباً (آنتی)دوسیته است. جواب‌های گرانش مشتقات بالا در حد میدان‌های ضعیف در هر بُعدی باید به این جواب میل کنند. بنابراین این جواب معیاری از درستی جواب‌هایمان در نظریه‌های گرانشی مشتقات بالا خواهد بود.
2-6 گرانش لاولاک: گسترش استاندارد نسبیت عام به ابعاد بالاتانسور گرانشی اینشتین () به همراه یک جملهی کیهانشناسی() ، در هر بُعد، تنها تانسور متقارن و پایستهای () است که میتوان از مشتقاتِ مرتبهی اول و دوم متریک تشکیل داد به طوری که این تانسور نسبت به مشتقاتِ مرتبه دومِ متریک خطی باشد[22,23]. اینشتین رابطه تانسوری را به عنوان معادلاتِ عامِ تعیین کنندهی میدانِ گرانشی معرفی کرد که در آن ثابت گرانش اینشتین است. بنا به فرضهای اینشتین، طرف چپ معادله چنین خواصی دارد:
الف) تانسور سمت چپ این معادله (–موسوم به تانسور اینشتین) به مشتقهای مرتبه اول و دوم ِمتریکِ فضا-زمان محدود میشود.
ب) تانسور اینشتین باید نسبت به مشتقهای مرتبه دوم خطی باشد، یعنی جملات مربعی میتوانند فقط از ترکیب دو مشتقِ مرتبه اولِ متریک تشکیل شوند.
ج) همچنین به دلیل قانون بقای انرژی-تکانه (که سمت راستِ معادلات میدان به طرف چپ تحمیل میکند) دیورژانس باید همواره صفر شود.
د) باید متقارن باشد (این تقارن را نیز سمت راست معادلات میدان به طرف چپ تحمیل میکند).
با این مفروضات تانسور به شکل بهدست میآید. بهطور کلی پذیرفتن کامل این فرضیاتِ اینشتین بحثبرانگیز است. اینشتین دو شرط اول را بهطور طبیعی از معادلهی پواسون استخراج کرده است (یعنی وقتی میخواهیم در تقریب مرتبه اول از معادلات میدان اینشتین به معادلات کلاسیکی نیوتن برسیم معادله پواسون ظاهر میشود). به دلایل نظری، در صورت نپذیرفتن کامل فرضهای اعمالی اینشتین بر روی تانسورِ میتوان نظریه را طوری تغییر داد که جملات دیگری در طرف چپ این معادلهی تانسوری ظاهر شود. در این صورت به معادلاتی دست پیدا میکنیم که در حالتهای حدی، بسته به نوع تغییری که بر فرضهای اولیه اعمال میکنیم، به معادلات میدان اینشتین کاهش پیدا میکنند. به چنین نظریههایی، نظریههای گرانشیِ "تعمیم یافته یا اصلاح شده" گفته میشود. نظریههای گرانشی و تئوری لاولاک نمونهای از این نظریههای گرانشی اصلاح شده هستند. کُنش ارائه شده برای این نظریهها کلیتر و پیچیدهتر از کُنش اینشتین-هیلبرت است و طبیعتاً جوابهای معادلاتِ میدان جدید نیز پیچیدهتر از جوابهای معادلات میدان اینشتین خواهد بود. در بین سالهای 72-1970 لاولاک، طی یک دورهی تحقیقاتی، شرط وابستگی خطی تانسور اینشتین به مشتقات مرتبهی دوم (شرطِ ب) را کنار گذاشت و عامترین تانسور اینشتین را –که دیگر شرایط را ایجاب کند- یافت [8,9]. خصوصیت مهم لاگرانژی لاولاک این است که این لاگرانژی نسبت به تانسور ریمان غیرخطی است و تفاوتِ معادلاتِ میدانِ ناشی از این لاگرانژی لاولاک با معادلاتِ میدانِ اینشتین تنها در فضا-زمانهای بالاتر از 4 بُعد مشخص میشود، یعنی در 4 بُعد جوابهای معادلاتِ میدانِ لاولاک به جوابهای گرانشِ اینشتین کاهش پیدا میکنند. بنابراین با وضعیتی روبرو هستیم که میتوان آن را طبیعیترین تعمیمِ نسبیت عام به ابعاد بالاتر دانست [22]. همان‌طور که در مقدمه گفته شد اینکه ممکن است فضا-زمان ابعادی بالاتر از 1+3 بُعد داشته باشد به نظریههای میدان وحدت یافته و یا حتی به عنوان شرطی اجباری در نظریه ریسمان، برمیگردد. روش لاولاک یک فرمالیزم ریاضیاتی‌ست که با انجام روند تکرار طی یک دستورالعمل منجر به ساخت لاگرانژی لاولاک، مطابق با فرضیات اینشتین، در ابعاد دلخواه می‌شود. بنابراین تمام اصولی که برای رسیدن به نظریه نسبیت عام باید لحاظ شوند در این‌جا نیز به قوت خود باقی می‌مانند. بنابراین نسبیت عام حالت حدی گرانش لاولاک در 1+3 بُعد و هم‌چنین حد میدان‌های گرانشی ضعیف است. در این‌جا از آوردن روش لاولاک خودداری می‌کنیم (برای جزئیات بیشتر به [8] مراجعه شود). لاگرانژی لاولاک به صورت
(2-6-1)
نوشته میشود، که در آن بُعد فضازمان را مشخص میکند و یک ثابت اختیاری است که دارای ابعاد میباشد و بر طبق نتیجهای که از نظریه ریسمان به دست میآید این ضرایب باید مثبت باشند [60]. علامت اشاره به قسمتِ جزء صحیحِ حدِ بالای علامتِ مجموع دارد. به شکل
(2-6-2)
است که در آن تانسور انحنای ریمان در بُعد و دلتای کرونکر پادمتقارنِ تعمیم یافته، به صورتِ است. به ازای خواهیم داشت ، که با احتساب یک ثابت مناسب در لاگرانژی نهایی یک جملهی کیهانشناسی در معادلات میدان حاصل میگردد. به ازای خواهیم داشت ، که همان لاگرانژین اینشتین-هیلبرت است. به ازای، جملات مرتبه دوم تئوری لاولاک حاصل میشود که، وقتی مطالعات محدود به مرتبه دوم گرانش لاولاک باشند، به گرانش گاوس-بونه معروف است. لاگرانژی گاوس-بونه به صورت زیر معرفی میشود
(2-6-3)
تأثیراتِ گرانش گاوس-بونه (جملات مرتبه دومِ گرانش لاولاک) در فضازمانهای 1+4 بُعد به بالا ظاهر میشود. به ازای جملاتِ مرتبه سومِ تئوری لاولاک حاصل میشود که به صورت زیر است
(2-6-4)
تأثیرات این جملات در فضا-زمانهای 1+6 بُعد به بالا ظاهر میشود، و با ترکیب کردن این جمله مرتبه سوم با جملات قبلی، معادلات میدان اینشتین بسیار پیچیدهتر از قبل خواهند شد. در این تحقیق گرانش لاولاک را تا چهار جمله‌ی اول (با احتساب ثابت کیهان‌شناسی) مورد بررسی قرار می‌دهیم و جواب‌های معادلات میدان این گرانش را در ابعاد دلخواه، در حضور میدان‌های الکترومغناطیسی غیرخطی، به دست می‌آوریم. جوابهای گرانش لاولاک مرتبه سوم در حضور یک تانسور انرژی-تکانه دارای خصوصیاتی است که در گرانش اینشتین و گرانش گاوس-بونه مشاهده نمیشود. این خصوصیات در فصل پنجم بررسی میشوند. در یک فضازمان تهی وردش کُنش لاولاک تا مرتبه سوم منجر به تولید معادلاتِ میدانِ تهی لاولاک به صورتِ
(2-6-5)
می‌شود که در آن همان تانسور اینشتین است، و و به ترتیب تانسورهای مرتبه دوم و سوم لاولاک هستند و به صورت زیر به دست می‌آیند
(2-6-8)

2-7 کُنش مرزی در گرانش لاولاک مرتبه سومبا توجه به توضیحات مربوط به گرانش لاولاک کُنش گرانشی لاولاک به صورت زیر نوشته می‌شود
(2-7-1)
و همان‌طور که دیده می‌شود این کُنش در یک فضازمان بُعدی نوشته می‌شود. همان‌طور که برای فضازمان‌های 1+3 بُعدی در نظریه نسبیت عام توانستیم یک مرز نسبت دهیم، و با اضافه کردن یک جمله مرزی در کُنش معادلات میدان اینشتین را تولید کنیم، در این‌جا نیز به کُنش لاولاک می‌توان یک جمله‌ی مرزی اضافه کرد بدون این‌که تأثیری در معادلات میدان لاولاک ایجاد شود. وظیفه‌ی این کُنش مرزی این‌ست که برای خمینه‌های متناهی جمله‌ای متناسب با انتگرال سطحی که شامل مشتق نرمالِ است و در وردش کُنش لاولاک ایجاد می‌شود را حذف نماید. یعنی ایده‌ی گیبونز-هاوکینگ را به گرانش مشتقات بالا گسترش دهیم. این جمله اثری در معادلات میدان عام گرانشی لاولاک ایجاد نمی‌کند و تابعی از هندسه‌ی مرزی فضازمان است. بنابراین برای خوش‌تعریف کردن کُنش باید جملاتی مرزی متناظر با جملات مرتبه دوم و سوم لاولاک به کُنش اولیه اضافه گردند. جمله‌ی مرزی کُنش در گرانش لاولاک مرتبه سوم شکل پیچیده‌ای دارد و به صورت زیر می‌باشد [26]
(2-7-2)
که در آن دترمینان متریک مرزِاست و ردِ انحنای خارجی مرز می‌باشد. در رابطه‌ی بالا جمله‌ی اول در براکت همان جمله‌ی گیبونز-هاوکینگ و دو جمله‌ی دیگر به ترتیب مربوط به جملات مرتبه دوم و سوم کُنش لاولاک هستند. کمیت‌های و نیز به صورت زیر تعریف می‌شوند
(2-7-3)

در این روابط و به ترتیب تانسورهای بُعدی اینشتین و لاولاک مرتبه دوم برای متریک مرزِ هستند. و نیز معرف ردِ عبارت‌های زیر می‌باشند
(2-7-4)

2-8 روش کانترترم و رفع واگرایی در محاسبه کمیت‌های پایادر کُنش‌های گرانشی (2-2-3) و (2-7-1) معرفی شده برای هر دو گرانش اینشتین و لاولاک (به همراه جمله‌ی مرزی کُنش) یک مشکل اساسی وجود دارد: این کُنش‌ها برای فضازمان‌هایی که رفتار مجانبی تخت یا دارند بی‌نهایت می‌شوند. هم‌چنین در محاسبه کمیت‌های پایا از قبیل جرم به مشکل بر می‌خوریم و برای فضازمان جرمی معادل بی‌نهایت می‌یابیم. در مرجع [24] واگرایی‌های کُنش گرانشی برای فضازمان‌های مجانباً تخت و مجانباً بررسی شده است. برای رفع این واگرایی‌ها از تکنیکی موسوم به روش کانترترم استفاده می‌شود. در این روش جمله‌ای به کُنش اصلی اضافه می‌گردد که وظیفه آن حذف واگرایی‌هاست. در نتیجه با داشتن جمله‌ی کانترترم در کُنش نهایی، واگرایی‌ها از بین می‌روند و بیان‌های خوش‌تعریفی برای تانسور انرژی-تکانه و کُنشِ گرانشی خواهیم داشت. جمله‌ی کانترترم باید به صورتی باشد که تحت تبدیلات مختصات ناوردا باشد و در معادلاتِ حرکتِ ناشی از کُنشِ حجمی تأثیری نگذارد. پس باید تابعی از هندسه‌ی مرز فضازمان باشد که در تقارن‌ها و معادلات میدان حجم تأثیری نگذارد. در نتیجه جمله‌ی کانترترم فقط تابعی از ناورداهای انحنای مرز به صورت زیر خواهد بود
(2-8-1)
از روی این کُنش دیده می‌شود که ساختِ کانترترم برای فضازمان‌های مجانباً یکتاست. زیرا در آن فقط مقیاس انحنای مطابق رابطه‌ی (2-8-1) دیده می‌شود. در نتیجه با یک بار ساختن آن، می‌توان آن را برای تمام فضازمان‌های مجانباً و هم‌چنین در تمام دستگاه‌های مختصات به کار برد. در این تحقیق چون به بررسی فضازمان‌های مجانباً نیز علاقه‌مند هستیم از جمله‌ی کانترترم نیز در کنار کُنش اصلی برای این فضازمان‌ها استفاده می‌کنیم. کُنش اصلی در این تحقیق، کُنش لاولاک به علاوه‌ی کُنش مرزی‌ست. با توجه به این‌که تاکنون روش کانترترم برای گرانش لاولاک ابداع نشده است ولی می‌توان برای فضازمان‌های با مرزِ تخت، مطابق رابطه (2-8-1) کانترترم مناسب را پیدا کرد. برای فضازمان‌های با مرزِ تخت، انحنای مرز است، و می‌توان نشان داد که برای گرانش‌های مختلف، از جمله گرانش اینشتین و لاولاک مرتبه سوم، کانترترم یکسانی به دست می‌آید که به صورتِ زیر می‌باشد
(2-8-2)
که در آن فاکتور مقیاس طول بوده و به مقیاس انحنای و ضرایب لاولاک بستگی دارد و در حالتِ خواهیم داشت . بنابراین کُنش نهایی محدود برای گرانش لاولاک مرتبه سوم با مرز تخت به صورت زیر خواهد بود
(2-8-3)
با توجه به تعریف ارائه شده توسط براون و یورک [25] برای تانسور انرژی-تکانه‌ی مرز داریم
(2-8-4)
که برای گرانش لاولاک مرتبه سوم به نتیجه‌ی زیر می‌رسیم
(2-8-5)
سه جمله‌ی اول در رابطه‌ی بالا نتیجه‌ی وردشِ کُنشِ مرزی نسبت به است و آخرین جمله نیز از وردشِ نسبت به به دست می‌آید. برای محاسبه کردن کمیت‌های پایای فضازمان، یک سطح فضاگونه در با متریکِ انتخاب می‌کنیم و متریک مرز را به فرم به صورت زیر می‌نویسیم
(2-8-6)
که در آن مختصه‌های متغیرهای زاویه‌ایِ پارامتریزه کننده‌ی ابرسطوحِ ثابت حولِ مبدأ هستند. هرگاه یک میدان برداری کیلینگِ روی مرز وجود داشته باشد، کمیت‌های پایای موضعی متناظر با تانسور انرژی-تکانه (رابطه‌ی) می‌تواند به صورت زیر نوشته شود
(2-8-7)
که در آن دترمینان متریک است، و بردار زمان‌گونه واحد عمود بر میباشد. برای فضازمان‌هایی با میدان‌های برداری کیلینگ زمان‌گونه‌ی و دورانیِ می‌توان جرم و تکانه‌ی زاویه‌ای را به صورت زیر به دست آورد
(2-8-8)

و بنا به فرض اولیه تمامی این کمیت‌های پایا توسط سیستمی با مرزِ محصور شده‌اند. این کمیت‌ها همگی به موقعیتِ مرزِ در فضازمان بستگی دارند، گرچه هر کدام از آن‌ها مستقل از نوع انتخاب خاصِ لایه‌بندی درون سطحِ است [26].

فصل سومنظریهی الکترودینامیک غیرخطیانگیزه‌ی مهم برای مطالعه‌ی نظریه الکترودینامیک غیرخطی در بین فیزیکدانان نظری به نظریه‌ی اَبرریسمان برمی‌گردد. -لایه‌ها می‌توانند حامل میدان‌های الکتریکی و مغناطیسی باشند. ریسمان‌های باز در دو سر انتهایی‌شان با این میدان‌های الکترومغناطیسی جفت می‌شوند. با استفاده از دوگانگی نشان داده‌اند که یک -لایه با یک میدان الکتریکی عملاً با یک -لایه متحرک بدون میدان الکتریکی معادل است. قید وجود یک کران بالایی سرعت، معادل با سرعت نور، برای -لایه‌ها ایجاب می‌کند که شدت میدان الکتریکی نمی‌تواند از یک مقدار بیشینه تجاوز کند. وجود یک بیشینه‌ی میدان الکتریکی در دینامیک میدان‌ الکترومغناطیسی تأثیرات غیرخطی می‌گذارد که با دینامیکی که توسط نظریه ماکسول توصیف می‌شود تفاوت دارد. در واقع نشان داده شده است که میدان‌های الکترومغناطیسی در جهان‌رویه‌های-لایه‌ها توسط نظریه بورن-اینفلد (یا شبه بورن-اینفلد) توصیف می‌شوند. در واقع جالب است که لاگرانژی نظریه بورن-اینفلد که صرفاً برای رفع مشکلات نظریه ماکسول طراحی شده بود در حد پایین انرژی نظریه اَبرریسمان ظاهر می‌شود. در این فصل ابتدا به بررسی مهم‌ترین نتایج نظریه خطی الکترودینامیک ماکسول می‌پردازیم. در ادامه با معرفی مسئله‌ی واگرایی خودانرژی برای ذرات باردار نقطه‌ای در مجموعه معادلاتِ میدان ماکسول، و به منظور رفع آن، به بررسی نظریه الکترودینامیک غیرخطی به عنوان تعمیمی از نظریه خطی ماکسول می‌پردازیم. در اینجا سه کلاس از نظریههای الکترودینامیک غیرخطی را، که دارای ویژگیهایی از قبیل متناهی شدن مقدار خودانرژی الکتروستاتیکی بارهای نقطهای و انحراف از قانون کولن هستند، بررسی می‌کنیم. خصوصیات معادلات میدان، میدان‌های الکتروستاتیکی و معادلات موج را برای سه کلاس متفاوت از نظریه‌های الکترودینامیک غیرخطی به دست می‌آوریم و به تحلیل جواب‌ها می‌پردازیم.
3-1 الکترودینامیک ماکسولبه بیان ساده، نظریه الکترودینامیک ماکسول، توصیفیست کلاسیکی از میدانهای الکتریکی و مغناطیسی، تولید میدانها توسط بارهای ساکن و جریانهای الکتریکی، و نحوهی انتشارشان به صورت موج و واکنش آنها نسبت به ماده. این نظریه با توزیعی ماکروسکوپی از بار و جریان الکتریکی سروکار دارد. این بدین معنی‌ست که مفاهیمِ "بار و جریان جایگزیده"، اعتبارِ فرایندهای حدگیری حساب دیفرانسیل را بدیهی فرض میکنند. در این فرایندهای حدگیری احتمال اینکه توزیع بار و جریان در ناحیهی بسیار کوچکی از فضا جایگزیده باشند لحاظ میشود. در سرتاسر این فصل از چنین فرایندهای حدگیری، تحت عنوان حد کلاسیکی، استفاده میکنیم. یعنی با دید صرفاً کلاسیکی به ذرات باردار و میدانها نگاه میکنیم. معادلات میدان ماکسول، معادلات حاکم بر پدیدههای الکترومغناطیسی هستند که از یک کُنش به شکل زیر
(3-1-1)

aslinezhad project

λ
(2-6-2 استفاده از مدار اتصال کوتاه ( طول 44( 2

(7-2 آنالیز(تحلیل) مدار π شکل خط شاخهای دوبانده و مشاهده نتایج شبیهسازی46
فصل سوم: طراحی مدار میکرواستریپ فشردهT شکل دوبانده با
اندازه کاهش یافته.50
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه به روند ارائه شده در
دو بانده کردن کوپلرπ شکل ( 900MHz و 51(2400MHz
(2-3 استفاده از برنامه کامپیوتری ساده جهت بدست آوردن پارامترهای مدار دو بانده52
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محیط ( نرم افزار) مختلف و مشاهده
نتایج53
فصل چهارم: بررسی انواع مختلف DGS و اثرات آن بر روی
خطوط میکرواستریپ59
DGS (1-4 چیست60
( 2 – 4 مشخصات کلی 60 .DGS
( 3 – 4 کاربردهای 61DGS
٧
( 4 – 4 ویژگیهای 61DGS
( 5 – 4 اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ....61
( 1 – 5 – 4 الگوی .DGSدمبلی شکل و ویژگی شکاف باند63
DGS ( 2 – 5 – 4 دمبلی پریودیک قویتر64
( 3 – 5 – 4 اندازهگیریهای مربوط به DGS دمبلی شکل..66
( 6 – 4 بررسی اثرات DGSهای هلزونی در تقسیم کننده توان بر روی هارمونیکها68
-7-4مدل مداری و هندسه DGS هلزونی غیرمتقارن70
( 8 – 4 حذفهارمونیکهادر مدار مقسم توان73
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی78
( 10 – 4 مشاهده اثرات DGS برروی مدار دو بانده طراحی شده80
فصل پنجم:چگونگی استفاده از کوپلر بدست آمده در طراحی
سیرکولاتور82
(1-5طراحی سیرکولاتور83
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر83
فصل ششم:نتیجه گیری وپیشنهادات86
(1-6نتیجه گیری87
(2-6پیشنهادات88
٨
پیوست ها................................................................................................................................... 89
٩
فهرست مطالب
عنوان مطالبشماره صفحه

منابع و ماخذ. 93
سایتهای اطلاع رسانی97.
چکیده انگلیسی98
١٠
فهرست جدول ها
عنوانشماره صفحه

:(1-2)مشخصات الکتریکی وفیزیکی مدار در دو باند..47
(1-3) دو بازه فرکانسی و دو هدف مورد نظر پروژه..55
(2-3.) بازه بالا و پایین جهت optimom هدف.56
(1–4)مقایسه اثر DGSهای واحد و پریودیک با توزیع نمایی..66
١١
فهرست شکل ها
عنوانشماره صفحه

(a) ( 1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و
استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع23
(a) ( 2 – 1) سرس خطوط انتقال کوچک شده با چندین استاب
باز (b) بزرگی پاسخ.25
( 3 – 1) نمایی از نرم افزار Serenade. RTL جهت بدست آورن طول
فیزیکی و پنهای خطوط.26
( 1-2 ) ساختار T شکل خط انتقال ربع طول موج30
( 2-2 ) منحنی رسم شده حاصل از برنامه کامپیوتری θ1)بر حسب32.(θ3
( 3-2 ) مدار چاپی خط شانهای T شکل34
S11 (a) ( 4-2)،S12،S13،(b) S14 پاسخ فازی مدار Tخط شاخهای35
(5-2) ساختار کوپلر خط شاخه ای یک بانده مرسوم.38
(a) ( 6 – 2) ساختار معادل پیشنهادی (b) خط شاخهای 38. λ4

S11 ( 7-2 )،S12،S13وS14 از کوپلر بدون استاب42
( 8-2 ) پاسخ زاویهS12وS14 برای مدار بدون استاب42
( 9-2 ) ساختار کوپلر پیشنهادی با استاب مدار باز44
١٢
( 10-2 ) ساختار کوپلر پشنهادی با استاب اتصال کوتاه ........................................................ 45
11-2 ) ) نتایج شبیه سازی .................................................................................. ...(S11) 47
12-2 ) ) نتایج شبیه سازی(S12و............................................................................ .(S13 48
( ( 13-2 نتایج شبیه سازی .................................................................................... .(S14) 48
14-2 ) )نتایج شبیه سازی (پاسخ فاز مدار با استاب باز) ................................................... 49
( (a) ( 1-3 شماتیک (b) مدار چاپی ................................ (designer, hfss) ansoft 55
( S11(a) ( 2-3،S12،S13وS14 مدار شبیه سازی شده در .....................................................................ADS (c) serenade (b) ansoft (a) 57
( 3-3 ) پاسخ فازی مدار دو بانده. ....................................................................................... 58
1-4 ) ) شمای مختلف H (a) DGS شکل T ( b)شکل (c)هلزونی شکل (d) دمبلی شکل. ......................................................................................................... 60
( 2-4 ) خط میکرواستریپ با εr = 15 و ................... ................................ h = 1/575 62
( 3-4 ) پارامترهای S مدار دوپورته.. ................................................................................ 62
( 4-4 ) مدار با DGS دمبلی شکل .. ............................................................................... 63
( 5-4 ) پارامترهای S مدار با DGS دمبلی شکل ............................................................ 63
( 6-4 (a) ( نوع (b) 1 نوع (c) 24 نوع DGS 3 دمبلی شکل ...................................... 65
( 7-4 ) پارامترهای S برای DGS دمبلی با انواع مختلف سایز. ....................................... 66
( 8-4 ) مقایسه پارامترهای S مدارهای (a) DGS نوع (b) نوع (c) 2 نوع 67 ............. ..3
١٣
( 9-4 ) خط میکرواستریپ با DGS هلزونی نامتقارن برروی زمین. ............................... 70
( 10-4 ) پارامترهای انتقال خط با DGS متقارن ( A = A' = B' = 3mm و نامتقارن A = 3/4m) و ............................................................................(B = 2/6 mm 71
11-4 ) ) فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از ...................................................................................................................... .B/A 71
12-4 ) ) مدار معادل بخش DGS هلزونی نامتقارن ........................................................ 73
13-4 ) DGS (a) ( هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این ......................................................................................DGS 74
( 14-4 ) پارامترهای S مدار با DGS هلزونی بصورت EM و شبیه سازی شماتیک ........ 75
15-4 ) ) هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن....................................................................................................................... 76
( 16-4 ) نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با ....................................................................................................................... ..DGS 77
17-4 ) ) مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار...................................................................................................................... 77
( 18-4 ) نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(.......... S12 ( b) S11 (a 78
( 19-4 ) مدار T شکل با استفاده از DGS هلزونی (a) یک بعدی (b) سه بعدی.......... 79
20-4 ) (a) ( نتیجه پاسخ شبیه سازی کوپلر با استفاده از اعمال (b) DGS بدون ١۴
استفاده از 80DGS
( 21-4 ) مدار چهار پورتی T شکل دوبانده با اعمال DGS دمبلی شکل در
شاخه خطوط..81
( 22-4) پارامترهای S حاصل از بکار بستن 81DGS
(1-5)نماد ژیراتور83
( 2-5)سیرکولاتور 4 پورته متشکل از دو مدار هیبریدی و زیراتور83
(3-5) سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور84
(a)(4-5)،((b،((cو(:(dنتایج شبیه سازی سیرکولاتور85
(1-6)شبکه دو قطبی خطی. 91
١۵
چکیده:
در این پروژه سیرکولاتور دو بانده با ابعاد کوچک ارائه شـده اسـت. در طراحـی سـیرکولاتور مـورد نظـر از
کوپلر شاخه ای (BLC)1 میکرواستریپی دو بانده کوچک شده استفاده شده است . لذا در این پـروژه بیـشتر
بر روی چگونگی کوچک سازی و دو بانده کردن کوپلر شاخه ای میکرواستریپی با اسـتفاده از مـدارات T و
همچنین DGS2 متمرکز شده ایم . در کوپلر شاخه ای پیشنهادی از مدارات T در هر شاخه که دارای طـول
الکتریکی ±90 درجه در دو بانده می باشند ، استفاده شده است. از طرفی در صفحه زمـین در زیـر خطـوط
این کوپلر DGS هایی قرار دارند که با استفاده از این DGSها ، طول الکتریکی خطوط کاهش یافته و ابعاد
کوچکتر می گردند. کوپلر دو بانده کوچک شده توسط نرم افزارهایSerenadeوADS3وAnsoft تحلیـل
شده و نتایج شبیه سازی در این پروژه آورده شده اند. سپس با استفاده از کوپلرهای دو بانده کوچک شـده ،
سیرکولاتور مورد نظر طراحی گردیده است.

Branch line coupler١ Defected ground structure٢ Advance designe sys--٣
١۶
مقدمه:
امروزه تقاضا برای استفاده از عناصر دو بانده در صنعت مخابرات رو به افزایش است . سیستمهای مخابرات
با آنتن های دو بانده کاربرد زیادی دارند. سیرکولاتور یکی از عناصر اصلی در چنین سیستم هایی اسـت. بـا
استفاده از سیرکولاتور دو بانده می توان از یک تغذیه بین آنتن و سیستم مخـابراتی اسـتفاده نمـود. یکـی از
اجزای اصلی در ساخت سیرکولاتورهای چهار پورتی ، کوپلرهای هایبریدی و کوپلرهای شاخه ای((BLC
می باشند.
(BLC) از چهار خط انتقال به طول ربع طول موج مؤثر در فرکانس اصلی و هارمونیک هایی کار می کنـد.
.[1] ,[2]
معمولا این کوپلرها بزرگ هستند و سطح و فضای اشغال شده توسط آن ها زیاد است. در اکثـر کاربردهـای
امروز به خصوص در بردهای صفحه ای و میکرواستریپی ، این عیب محسوب می شود. لذا ، امـروزه روش
های مختلفی برای کوچک سازی و افزایش پهنای باند]٣[7- این کوپلرها ارائه شده است.
در مخابرات مدرن امروزی نیاز به اجزاء دو بانده بالاخص کوپلر BLC دو بانده ، می باشد تا مقدار عناصـر
مورد استفاده ،کاهش یابد.
] Hsiang٨[ از خطوط چپگرد برای دو بانده کردن کوپلر استفاده کرده است.BLC شامل خطـوط متـصل
شده به یک جفت المان موازی]١١[ گزارش شده است.
در این پروژه با استفاده از روشـهای کوچـک سـازیBLC و ترکیـب آن هـا بـا روشـهای دو بانـده سـازی
ابتداBLC با ابعاد کوچک در دو بانده 900Mhzو2400Mhz طراحی شده است سپس برای کاهش بیـشتر
سطحBLCصفحه ای ازDGS ها استفاده شده است.
١٧
گزارش ارائه شده از نمونه طراحی سیرکولاتور مورد نظر شامل قسمت های زیر می باشد:
در فصل اول کلیاتی در مورد مراحل انجام پروژه ،هدف از انجام مراحل کار ، پیشینه تحقیقهای انجـام شـده
در مورد مدارمورد نظر و روش کمی کار مورد بررسی قرار گرفته است.
در فصل دوم ابتدا نحوه افزایش پهنای باند کوپلرها ، کوچک سازی با استفاده از مدارT و استفاده از مـدارπ
بــرای دو بانــده کــردن کوپلربررســی شــده اســت. ســپس بــا اســتفاده از نــرم افزارهــای تخصــصی
مانندSerenadeوAnsoft مدارات ذکر شده تحلیل گشته و نتایج شبیه سازی آورده شده اند.
در ادامه کوپلر کوچک شده با استفاده از مدارT ، با توجه به روند ارائـه شـده در دو بانـده کـردن کـوپلر بـا
مدارπ ، در فصل سوم دو بانده شده و روابط حاصل برای دو بانده کردن آن به دست آمده است.
کوپلر به دست آمده با استفاده از نـرم افـزار ADSوSerenadeوAnsoft تحلیـل و بهینـه گـشته اسـت و
منحنی های مربوط به آن در این فصل آورده شده اند.
در فصل چهارم DGS به عنوان ابزاری برای کوچک سازی مدارات صفحه ای شرح داده شده و از آن برای
کوچکتر کردن ابعاد کوپلر دو بانده استفاده شده است . نتایج شبیه سـازی کـوپلر حاصـل ، نـشان داده شـده
است. چگونگی استفاده از کوپلر به دست آمده در طراحی سیرکولاتور در فصل پنجم شرح داده شده اسـت
و در آخر در فصل ششم نتیجه گیری و پیشنهاداتی برای ادامه کار آورده شده است.
١٨
فصل اول:
کلیات
١٩
(1-1 هدف
کوپلرهای شاخهای با بکار بستن استابها ( مدارباز – مدار کوتاه) نیزو با Cascade شدن یک سـری شـاخه
برکاستن حجم و بالا رفتن پهنای باند نقش بسازیی را دارند. همچنین المانهای فشرده به ما امکـان کـوچکتر
کردن مدار را میدهند و با عث افزایش باند میگردند منتهی برای ساخت مدار نهایی با کـاهش سـایز کلـی و
افزایش پهنای باند و بکار بردن کوپلینگ مناسب در سرهای مدار و ایزوله کردن پورتها از همدیگر مـیتـوان
از روش مناسب بکار بردن DGS و نتیجتاً افزایش اندوکتانس خطوط و در نتیجه اهداف مطلوب دسترسـی
پیدا کرد.
در این پروژه هدف کلی رسیدن به ساختار فشرده و نیز استفاده از مدار میکرواستریپی در دو بانـد فرکانـسی
دلخواه و نیز افزایش هر یک از باندهای فرکانسی می باشد. و عـلاوه بـر ایـن بـا بکـار بـستن ( defected
ground structure) DGS بر روی زمین مدار شاهد اثرات مثبت آن برروی دستیابی باند فرکانسی مورد
نظر و نتیجتاً کاهش سایز مدار و خواهیم بود.
(2-1 پیشینه تحقیق
با توجه به ساختار مدار این پروژه و هدف مورد نظـر تحقیقهـایی مـورد نظـر بـودهانـد کـه بیـشتر در بـاره
Compact و فشرده سازی المانها، افزایش پهنـای بانـد، از بـین بـردن هارمونیکهـای اضـافی و اسـتفاده از
DGS میباشد.
در[1] افزایش پهنای باند مدارهای هایبرید با استفاده از اتصال خطوط شاخهای و استفاده از اسـتابهای مـدار
λ
باز در دو انتهای خط میکرواستریپ و معادل قرار داده خط با خط انتقال 4 جهت کاهش ابعاد مورد بررسی

قرار گرفته است.
٢٠
فعالیتهای گستردهای در جهت طراحی و بکاربردن کوپلرها و سـیرکولاتورهای صـفحهای فـشرده دردو بانـد
مورد دلخواه بعنوان مثال در پروژه - ریسرچ[2]انجام گردیده است که در فصل دوم نتایج حاصل از شـبیه سـازی ایـن
گونه کوپلرها و استفاده از ماترسیهای انتقال و نوشتن برنامه کامپیوتری جهت استفاده در دو فرکانس دلخـواه
مورد بررسی خواهند گرفت.
در مورد کاهش بیشتر سایز کوپلرها در حدود 45% مقدار کوپلرهـای مرسـوم خـط شـاخه ای و بـا مـدل T
شکل فعالیتهایی در مقالات گوناگون [3] تنها در یک باند فرکانسی مطرح گردیده است که در فصل بعدی
نیز این پروژه - ریسرچو نتایج شبیه سازی آن با نرمافزارهای گوناگون مورد بررسی قرار می گیرند.
یکی از مسائل مهم در چند قطبیهای میکرواستریپ مسئله کاهش اندازه بـوده کـه بـا توجـه بـه اسـتفاده از
المانهای باند و کاهش حجم مدار نیز استفاده از (defected ground structure) DGS مـیباشـد. ایـن
کار باعث از بین بردن هارمونیکهای اضافی و نتیجتاً کاهش اندوکتانس مدار و بالا بردن پهنای باند و کاهش
سایز مدار با کم کردن المانهـای مـوازی مـیگـردد. در ایـن زمینـه نیـز فعالیـتهـای گـسترده و اسـتفاده از
DGSهای مختلف صورت گرفته است [2]و[4]و[21]و .[22]
که اثرات تک DGS و نیـز DGS دمبلـی پریـود یـک را بـر روی پارامترهـای اسـکترینگ یـک خـط
میکرواستریپ دو پورتی ،بررسی شده است.
همچنین در[21] کاربرد DGS برروی خطوط یک کوپلر و تأثیر آن برروی پاسخ شبیه سـازی بـرروی ایـن
مدار در نرمافزار Ansoft بررسی گردیده است.
علاوه[23] نیز اثرات DGS هلزونی برروی حذف هارمونیکها و پهنای باند در یک تقسیم کننده توان ویـل
کینسن را مورد بررسی قرار داده است که در این پروژه در انتهای از این نوع DGS در زیـر خطـوط کـوپلر
خط شاخه ای تک بانده استفاده گردیده و نتایج آن آورده شده است.
٢١
و اثرات شکلهای گوناگون [21]DGSو[22]و[23]و مدل کردن مداری آنها بـرروی کـوپلر، سـیرکولاتور و
تقسیم کنندههای توان و به طور کلی خطوط میکرواستریپ را بررسی میکنند که در فصلهای بعـدی در ایـن
مورد به طور مفصل توضیح داده شده و نتایج حاصل از شبیه سازی نیز آورده شده است.
( 3 – 1 روش کار و تحقیق
در این پروژه روش کار و تحقیقهای انجام شده جهت رسیدن به هدف مورد نظر یعنـی اسـتفاده از دو بانـد
فرکانسی دلخواه کاهش حجم مدار بالابردن ضریب کوپلینگ نیز بـه صـورت اسـتفاده از مراجـع و منـابع و
مشاهده نتایج حاصله از این کارها بوده و بعد از برقراری لینک مورد نظر این منبع مـورد بررسـی بـا هـدف
نهایی به آیتم بعدی پروژه - ریسرچمربوط به مرجعهای اولیه پرداخته شده است. در بخشهای بعدی این مراحل عنوان
میگردند.
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن:
در این مرحله نیز خط میکرواسـتریپ Zc4 بـا طـول الکتریکـی θ نیـز کـه در شـکل (1 – 1) (a) مـشاهده
میگردد به صورت یک خط انتقال مرسوم با المانهای توزیع شده فشرده معادل آن نیز مدل گردیده است[9]
و با بکار بردن فرمول ماتریس ABCD5 مدار معادل مشاهده شده در شکل (1 – 1) ( b) میتوانـد اسـتنباط
گردد. با معادلات ماتریس ABCD در شکل (1 – 1) به نتایج زیر دسترسی پیدا میکنیم.
(1 – 1)
JB01  J tan θ01 / Z 01

امپدانس خط معادل
ماتریس انتقال خط
٢٢
که B01 امپدانس ورودی استاب مدار باز است و٠١θ طول الکتریکی استاب مدار باز است.
و با در دست داشتن ادمیتانس ورودی استاب مدار باز شکل (b ) ( 1 – 1) به معادلات زیر میرسیم
(2 – 1) cosθs −cosθ B01  Z c sin θ (3 – 1) Zc sinθ Zs  sinθs که ≤θs≤θ≤1٠ می باشد و همانطوری که در شکل((1-1 دیـده میـشود θs طـول خـط بـین دو اسـتاب در
مدارπ است.

شکل (a ) (1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع
٢٣
ما همچنین میتوانیم فرکانس قطع برای ساختار فیلتر مانند شکل (b ) ( 1 – 1) و مـدار معـادل آن در شـکل
(c) (1-1) به صورت زیر بدست آوریم:
(4 – 1)
1 Wc  Leq Ceq
(5 – 1)
1  Wc )ZsSinθs tan(θs / 2)  Cosθs − Cosθ 2( W0 Zs Zc Sinθ
که در Wc فرکانس قطع مدار معادل نشان داده شده شکل (b ) ( 1 – 1) و Wo فرکانس کار مرکـزی مـدار
مورد نظر با المانهای فشرده معادل 7Ceq, Leq6 میباشند.
حال در اینجا برای بالا رفتن پهنای باند و عریض کردن باند فرکانسی دلخواه، با استاب مدار بـاز بـه خـوبی
طول واحد خطوط سری با یکدیگر بوده و مدل کردن خط میکرواستریپ با خطوط معـادل بـا اسـتابهـای
مدار باز سری همانطور که در شکل (2 – 1) نشان داده شده باعث کم شدن امپدانس استاب بـاز و افـزایش
فرکانس قطع (fc) میگردد.

۶ سلف ٧خازن معادل
٢۴

شکل((a) ( 2 – 1 سری خطوط انتقال کوچک شده با چندین استاب باز (b) بزرگی پاسخ
با مشاهده پارامترهای S این مدار در شکل (b ) (2 – 1) از این مدارات میتوان جهت بالا بردن باند فرکانس
و نیز استفاده مدار دو باند فرکانسی دلخواه،اسنفاده گردد.
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(:(2000/900
در اینجا نیز با ایده گرفتن از کار قبلی و استفاده از ماتریسهای ABCD که در فصل بعدی آورده شده زمینه
جهت استفاده از کوپلر خط شاخهای Tشکل با حجم کم و باند فرکانسی دو بانده کـه در فـصل سـوم آمـده
فراهم میگردد.
٢۵
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخهای T شکل
در این قسمت با ایده گرفتن از روشهای قبلـی کـه در فـصلهای بعـد توضـیح داده مـیشـود از ماتریـسهای
ABCD استفاده شده و بعد از نوشتن برنامه کامپیوتری زمینه جهت استفاده از المانهای فـشرده در دو بانـد
فرکانسی دلخواه فراهم گردیده است. از بدست آوردن مقادیر Z و θ که امپدانس مشخصه خطـوط و طـول
الکتریکی آنها هستند با استفاده از فرمولهای موجود در بازههای مختلف که در منابع مختلـف هـم آمـدهانـد
طول و پنهای خطوط چند پورتی مورد نظر بدست میآید که در این پروژه از serenade استفاده شده است
و این مقادیر با دادن فرکانس کار، مشخصه دی الکتریک مورد نظر و امپدانس و طول الکتریکی خط نیـز بـه
سادگی بدست میآیند. در شکل (3 – 1) شمای کلی این نرم افزار آمده است.

شکل :(3 – 1) شمایی از نرمافزار serenade جهت بدست آوردن طول و پنهای خطوط
٢۶
با بستن مدار فوق در نرم افزارهای مختلف نتـایج شـبیهسـازی را مـشاده و در صـورت عـدم نتیجـهگیـری
همانطور که در فصل سوم آمده آنرا optimum میکنیم. در نهایت با ایده گرفتن از کارهای انجـام شـده در
مقالات مختلف DGS های گوناگون را بکار گرفته و نتایج حاصل از آن را آوردهایم.
٢٧
فصل دوم:
تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده وTشکل
٢٨
(1-2 مدار خط شاخهای اندازه فشردهT شکل
دراینجا هدف طراحی کوپلر و در نهایت سیرکولاتور خط شاخهای بهم پیوسـته بـدون اسـتفاده از المانهـای
توده میباشد. اندازه کـوپلر پیـشنهادی تنهـا 45درصـد کوپلرهـای خـط شـاخهای مرسـوم در فرکـانس 2/4
گیگاهرتز میباشد.
اندازه المانهای این نوع کوپلر میتوانند به راحتی با استفاده از عمل قلم زنـی بـرد مـدار چـاپی بـه صـورت
واقعی کشیده شده و برای سیستمهای ارتباطی بیسیم بسیار مفید و پرکاربردند. چرا که اخیراً سیستم ارتبـاط
بیسیم در جهت اهداف کوچک کردن و پائین آوردن هزینه بـه قطعـات کـوچکتری نیـاز دارنـد. از ایـن رو
کاهش اندازه از اهداف قابل توجه در بکاربستن این طراحی میباشد. در پایینترین باند فرکانس مایکروویو،
اندازه کوپلر خط شاخهای مرسوم جهت استفاده عملی بسیار پیچیده و بزرگ است. تکنیکهای زیادی جهـت
کاهش سایز این گونه کوپلرها گزارش شده است. ترکیب خط انتقال با امپدانس بالا و خازنهای فشرده شنت
شده به آنها نیز مورد بررسی قرار گرفته اند.در این موارد خازنها با عایقهایی خاص، مورد نیاز مدارهای شنت
میباشند که در بحث بعدی جهت دو بانده کردن کوپلرهای خط شاخهای πشکل توضیح داده میشود.
مرجع[11] کوپلر خط شاخهای درخطوط میکرو استریپ تک لایه از فلز بدون هیچ گونه المان فـشرده شـده
واضافی ̦ سیمهای اتصال را پیشنهاد می کند.اندازه این گونه کوپلرها حدود 63درصـدطراحی هـای مرسـوم
میباشد. هرچند که قسمتهایی که ناپیوستگی در داخل کوپلر بوجود میآورند نیز همان ناپیوستگیهای ناشی
از اتصال مدارهای استاب شنت مدار باز یا کوتاه میباشند کـه باعـث بوجـود آمـدن مـشکل (over lap)8
میگردند. بنابراین ما در فصل بعدی روی طراحی یک کوپلر خط شـاخهای T شـکل جمـع و جـور جدیـد

٨هم پوشانی
٢٩
متمرکز خواهیم شد و در قسمت بعدی آنها را در کوپلرهای واقعی بکار برده و به تحلیـل و بهینـهسـازی آن
میپردازیم.
این نوع کوپلرها بدون استفاده از هیچ گونه المان فشرده، سـیم و قطعـه ای، مـیتواننـد بـه سـادگی بـرروی
سابستریتها ساخته شوند و در مقایسه با مدارات مرسوم طراحی شده اطلاعات را بخـوبی آشـکار مـیکننـد،
همچنین هماهنگی نزدیک و خوبی ما بین نتایج شبیهسازی و اندازه گیری شده مشاهده می گردد.
روش مرسوم ومعمولی جهت آنالیز کوپلر T شکل خط شاخهای بر روی استفاده از آنالیز مد نرمال است کـه
در اینجا ما از آن استفاده کردیم و این بدلیل ساختار هندسی آن نیز میباشد.
هر چند که خط با سایز کاهش یافته با طولی کمتر از λ / 4 اندوکتانس و ظرفیت پائینتـری را دارد، منتهـی
جبران اندوکتانس بوسیله افزایش امپدانس مشخصه خط و جبران ظرفیت نیـز بوسـیله اضـافه کـردن خـازن
شنت متصل شده [15] C میباشد. در این پـروژه خـازن C نیـز بوسـیله یـک خـط اسـتاب مـدار بـاز [9]
جایگزین گردیدهاست و معادل آنرا در مدار T شکل قرار دادهایم.

شکل(:(1-2ساختار T شکل خط انتقال ربع طول موج
ساختار T شکل معادل معمولی از یک خط کاهش یافته در شکل (1-2)نـشان داده شـده اسـت کـه در ایـن
شکل Z1،Z2،Z3وθ1،θ2وθ3 امپدانس مشخصه خطوط و همچنین طول الکتریکی آنها را نـشان مـیدهنـد.
لزومی ندارد که جایگاه خط با طول الکتریکـی((θ2 مـدارباز در وسـط خـط کـاهش انـدازه یافتـه مـا بـین
٣٠
Z1وZ2قرار داشته باشد. روابط ما بین این عناصر یعنی امپدانس مشخصه و طولهای الکتریکی را مـیتـوانیم
بوسیله ماتریس ABCD آنها تخمین بزنیم.
با استفاده از روابط قبلی برای طراحی یک کوپلر خط شاخهای πشکل مرسوم در اینجا با معـادل قـرار دادن
ماتریس آن با امپدانس مشخصه خط با طول θ = ±90° و ±ZT داریم:
3 Sinθ 3 JZ 3 Cosθ 1 0 Sinθ JZ Cosθ A B (1-2) j 1 1 1 j Cosθ3 Sinθ3 1 JB Cosθ1 Sinθ1 D  C Z3 2 Z1 (1-2) jB2  jTanθ2 / Z 2 (3-2) N Z1 Z3 (4-2) K Z1 Z 2 (5-2) M Z1 ZT از طرفی با معادل قرار دادن ماتریس فوق با ماتریس خط 90° داریم.
JZT
0(6-2)

0 JZT Sinθ j  Cosθ Z T
Cosθ B A Sinθ j  D C T Z و پس ساده سازی چهار معادله به صورت زیر خواهیم داشت:
(7-2) Cosθ1Cosθ3 − KTanθ2 Sinθ1Cosθ3 − NSinθ1 Sinθ3  0 (8-2) N Cosθ1Sinθ3 − KTanθ2Sinθ1Sinθ3  NSinθ1Cosθ3  M ٣١
(9-2) Tanθ2Cosθ1Sinθ3  Cosθ1Cosθ3  0 K Sinθ1Sinθ3 − 1 − N N (10-2) Sinθ1Cosθ3  KTanθ2Cosθ1Cosθ3  NCosθ1Sinθ3  M با ساده سازی روابط فوق دو معادله زیر را خواهیم داشت:
N 2 M 2 2 − N M 3  Tanθ Tanθ Tanθ N) ,Cotθ ) Tanθ Cotθ 2(11-2) M N N 1 3 1 3 1 (12-2) ( 2 − N 2 M 3 ( Tanθ 2  ) Tanθ 2 − N 2 M 3 ( 3  Sinθ Tanθ2Cosθ K KN MN M معادلات (11-2) و (12-2) نیز مقادیر θ1 و θ2 وθ3 را تحت شرایطی که M و N را داشـته باشـیم بـه مـا
میدهند. برای سادگی کار در اینجا Z1 را برابر Z3 در نظر میگیریم. طـول الکتریکـی θ1 بـر حـسب طـول
الکتریکی θ3 برحسب مقادیر مختلف M رسم گردیده است که در شکل (2-3) نیز آمـده اسـت. در اینجـا
نیز برنامه سادهای با نرم افزار مطلب نوشـته شـده(پیوسـت الـف-(1 و بـه ازای مقـادیر مختلـف N و M
میتوان به ازای θ1 های مختلف مقادیر θ2 و θ3 را بدست آورد.
١θ

٣θ
شکل θ1:(2-2) بر حسبθ3
٣٢
واضح است که طول الکتریکی کل خط کوچک شده( (θ= θ1 + θ3 با افزایش مقدار M نیز کاهش مییابد.
جایگاه خط استاب مدار باز شده در داخل کوپلر خط شاخهای تحـت شـرایط خـاص نیـز تحمیـل گردیـده
است. مقدار طول الکتریکی (θ2) ما بین مقادیر θ2 و θ میباشد. جهت جلـوگیری از مـشکل هـم پوشـانی

(Over lab) خط استاب باز را به انتهای خط اتصال کوتاه وصل میکنیم. θ1 و θ3 به ازای مقادیر شناخته
شده M به یکدیگر تبدیل شده در حالیکه حالت معادله (12-2) تحت N = 1 بدون نغییر باقی میماند. ایـن
نتایج به توانایی دو رابطه بدست آمده اشاره دارد. با بدست آوردن مقـادیر θ1 و θ3 و بـا داشـتن معادلـه
(12-2) مقادیر θ2 وZ2 محاسبه میگردند.
(2-2 طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن
با روشی که در بالا توضیح داده شد به سادگی میتوان انـدازه کـوپلر خـط شـاخهای مرسـوم را کـاهش داد
سابستریت مدار فوق دارای ویژگیهای زیر میباشند:
metal thickness =0 .02mm و h = 0.8mm و Tanδ  0.022 و εr  4.7
امپدانس مشخصه کوپلر خط شاخهای مرسوم 35 اهم در خط اصلی و در شاخه عمودی 50 اهم میباشند.
جهت کاهش دادن اثر افت هادی، افت تشعـشعی و جلـوگیری از مـدهای مـزاحم انتـشار نیـز پهنـای خـط
میکرواستریپ محدود شده و این امر با محدود کردن مقدار امپدانس مشخصه موثر واقع میگردد.
در ابتدا پارامترهای خط کوتاه شده اصلی ( افقی) را بـرای M=1/7 و بـا درنظـر گـرفتنθm1=17° بدسـت
میآوریم که از شکل θm3 = 48 °(2-2) حاصل میگردد. با قراردادن اطلاعات فـوق در رابطـه (12-2) و
٣٣
در نظر گرفتن k=2/6 مقدار θm2=39° (طول الکتریکی استاب باز خط اصـلی) بدسـت مـیآیـد. بـه طـور
مشابه پارامترهای خط شاخهای کاهش یافته را هم بدست میآوریم.
θb2=31 ْ θb3=58 ْ M=1/5 k=3/3 θb1=16
با در دست داشتن مقادیر فوق از نرمافزار Serenade جهت بدست آوردن ابعـاد مـدار چـاپی ) W پهنـای
خطوط) و ) L طول خطوط) اسـتفاده مـیکنـیم. بعـد از بدسـت آوردن ابعـاد فـوق، مـدار را بـا نـرمافـزار
Ansoft designer ترسیم نموده و بعد از تحلیل مدار فوق نیز نتایج اندازهگیری شده را بدست میآوریـم.
مدار چاپی آن در شکل (3-2) نشان داده شده است. و نتایج شبیهسازی در شکلهای (a) (4-2) و (b) نشان
داده شده است.

شکل :(3-2)مدار چاپی خط شانهای T شکل
٣۴

(a)

(b)
شکل S11:(a)(4-2)،S12،S13وS14 و(:(bپاسخ فازی کوپلر خط شاخه ای
مشاهده می شود S11 وS14 در فرکانس مرکزی کمتر از -20dB وS12 وS13 حدود -3dB میباشند.
حال با توجه به نتایج شبیه سازی اندازه گیری شده مستقیم و توان کوپل، افت بـالا بوسـیله سـاختار فلـزی و
افت تشعشعی دیده نمیشود . حوزه مدار کاهش یافته در مقایسه با کوپلر خط شاخهای مرسوم بـشتر از 55
درصد میباشد.
٣۵
مادر بخشهای بعدی مدار فوق را با اسـتفاده از بکـار بـستن (Defected ground structure)
DGS نیز مورد بررسی قرار خواهیم داد و اثرات DGS بر روی نتایج شبیهسازی مورد بررسی قرار خواهند
گرفت.
٢( 3 – کوپلر خط شاخهای π شکل
طراحی یک کوپلر خط شاخهای جدیدی که میتواند در دو فرکانس دلخـواه کـار کنـد از ویژگیهـای مـدار
پیشنهادی اندازه فشرده و ساختار شاخهای میباشد. فرمولهای طراحی روشن و واضـحی از ایـن مـدار بیـان
گردیده، چرا که موضوع مجهولات آن از قیبل امپدانس شاخههای خط مشخص گردیده اند.
فعالیتهایی جهت بررسی و رسیدگی نتایج شبیهسـازی شـده و انـدازه گیـری شـده از عملکـرد کـوپلر خـط
شاخهای میکرواستریپ در فرکانسهای 0/9 الی 2 گیگا هرتز انجام شده است.
کوپلرهای خط شاخهای از معروفترین مدارات پسیو استفاده شده در کاربردهای موج میلیمتری و میکرویـو


میباشند.
هایبریدهای λ / 4 طول موج [10] ,[9] مثالهای خوبی هستند که در باند فرکانسی مناسب دامنـه مـساوی و
فاز 90° در خروجی ایجادی میکنند. آنها عموماً در تقویت کنندههای بالانس شده و میکسرها برای بدسـت
آوردن یک افت برگشتی خوب استفاده شده و در جهت حذف سیگنالهای ناخواسته بوده، اگرچه بـه خـاطر
طبیعت ذاتی باند باریک ، طرح مرسوم بر روی خط انتقال λ / 4 بنا نهـاده شـده، کـاربردش در سیـستمهای
چند بانده و باند وسیع محدود گردیده است.
در سالهای اخیر، گزارشهای متفاوتی در رابطه با افزایش و بالا بردن پهنـای بانـد[11] و تکنیکهـای مـوثر در
کاهش سایز [14] ,[12] در مقالات مختلف عنوان گردیده اسـت. طراحـی کـوپلر خـط شـاخهای بـر روی
٣۶
المانهای توزیع شده فشرده بنا گردیده و همچنین برای کاربردهایی در دو باندفرکانسی نیز پیـشنهاد گردیـده
است. در [16] مولف یک ساختار صفحهای جدید را برای طراحی کوپلرهای خط شـاخهای دو بانـد عنـوان
کرده است هرچند مدار پیشنهاد شده از اشکالات زیر برخوردار می باشد:
-1 پهنای باند محدود ( کمتر از (10MHz
-2 افت داخلی و برگشتی بهینه نشده
-3 فضای اشغالی سابستریت آن خیلی بیشتر از کوپلرهای مرسوم بوده ( برخی از خطوط شاخهای، طولی به
اندازه 0/5λ را دارند)
درطرح پیشنهادی، تمام خطوط شاخهای تنها دارای طول λ / 4 بوده ( اندازه فشرده) و در فرکانس میـانی دو
تا باند فرکانسی بکار بسته شده، همچنین در مقایسه با طرح ذکر شده قبلی پهنای باند عملکرد وسیعتـری را
( > 100MHz ) ایجاد میکند، همچنین ایزولاسیون بین پورتهای بهتر و افت داخلی و برگشتی بهینـه تـری
را دارد ( بخش بعدی).
در قسمت بعد جهت آنالیزکردن، فرمولهای یک کوپلر خط شاخهای با فرمولهای واضح و روشـن نـشان داده
شده، در نهایت جهت رسیدگی و تحقیق، نتایج اندازهگیری و شبیهسازی شده ساختار کوپلر خـط شـاخهای
درباند فرکانسی (900/2000)Mhzکه با تکنولوژی میکرواستریپ ساخته شده آورده شده است.
( 4 – 2 فرموله کردن با استفاده از ماتریس خطوط انتقال
٣٧
شکل (5-2) طرح یک کوپلر خط شاخهای تک باند مرسوم توسط بخشهای خطوط انتقال بـا طـول λ / 4 را
نشان میدهد. در شکل (6-2) مدار معادل برای یـک خـط انتقـال λ / 4 پیـشنهاد شـده کـه شـامل خطـوط
شاخهای به طول الکتریکی θ و امپدانس مشخصه ZA بوده و به جفت المان موازی (jY)9 متصل گردیده.

شکل(:(5-2ساختار کوپلر خط شاخه ای یک بانده مرسوم

(a)

(b)
شکل((a):(6-2ساختار معادل پیشنهادی (b).خط شاخه ای λ / 4

٩ مقدار ادمیتانس خط
٣٨
حال جهت تحلیل ساختار پیشنهادی با در نظر گرفتن عدم افت و بکار بردن فرمـول ماتریـسها، پارامترهـای
ABCD ساختار پیشنهادی نشان داده شده در شکل((a)(6-2 بصورت زیر بیان میگردد.
(13-2) 0 jZ A Sinθ 1 0 Cosθ 1 Cosθ 1 jY 1 jYA Sinθ jY که این ماتریس در نتیجه به ذیل منتج می گردد.
jZASinθ Cosθ −ZAYSinθ (14-2) Cosθ −ZAYSinθ 2ZAYCotθ) 2 2 (1−ZA Y jYASinθ و نیز ماتریس بالا به صورت زیر خلاصه میگردد.
±jZT 0 jZASinθ 0 (15-2) 0 ±j  1 0 j Z T A Z Sinθ با معادل قرار دادن ماتریسهای بالا داریم:
Z A Sinθ ±ZT(16-2)
Cotθ
Y(17-2)
Z A
معادله (15-2) نشان میدهد که ساختار پیشنهاد شده معادل با بخشی از خط انتقـال بـا امپـدانس مشخـصه
ZT± و طول الکتریکی θ = ± 90° میباشد. مطابق با عملکرد یک مدار دو بانده (Dual – band) شـرایط
لازم ممکن است به صورت زیر داده شود.
٣٩
(18-2) Z A Sinθ1 ±ZT
(19-2) Z ASinθ2 ±ZT
کهθ1 و θ2 طولهای الکتریکی معادل شده خط شاخهای در باند فرکانسی مرکزی f1 و f2 میباشد.
روش معمولی حل معادلات (18-2) و (19-2) به صورت زیر میباشد:
3.......و2وn=1
(20-2) θ2  nπ −θ1 (21-2) f1  θ1 f2 θ2 (22-2) (1 −δ) nπ θ1  2 (23-2) (1 δ) nπ θ2  2 (24-2) f2 − f1 δ  f 2 f 1 در نتیجه طول الکتریکی خط شاخهای معادل شده در فرکانس مرکزی (θo)به صورت زیر تعیین میگردد
(θ0 ) = θ1 2θ2  n2π(25-2)

با قرار دادن معادلات (22-2) و (23-2) در معادلات (16-2) و (17-2) خواهیم داشت:
(26-2) ZT Z A  ( nδπ Cos( 2 ۴٠
nδπ ( tan( 2 f1 , f  Z A (27-2) y  nπδ ( − tan( 2 f2  , f Z A برای مقادیر 5.....و3وn=1 (28-2) ZT Z A  ( nδπ Sin( 2 nδπ ( −Cot( 2 f1  , f ZA (29-2) y  nπδ ( Cot( 2 f2 , f  ZA برای مقادیر..... 6و4وn=2 در معادلات بالا مقادیر مدار معادل داده شده بـرای دو بانـد فرکانـسی دلخـواه f1 وf2 کـه همـان y و ZA
هستند به دست میآیند.
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب
با در نظر گرفتن امپدانس خطوط عمودی zo=50Ω وخطوط افقی35 و طول الکتریکی 90درجه و نیـز قـرار
دادن آنها در serenade مقادیر طول(( L و پهنای خطوط (w) را بدست آورده و بادر نظـر گـرفتنf=1/45
و بستن مدار در قسمت شماتیک نتایج حاصل را می بینـیم.در شـکلهای((7-2 الـی (8-2) نتـایج حاصـل از
شبیه سازی کوپلر بدون استفاده از المانهای شنت در فرکانس مرکزی نشان داده شده است.
۴١

شکل(S13 ̦S12 ̦ S11:(7-2 وS 14 کوپلر بدون استاب
مشاهده می کنیم مادیرS11و S12 در فرکانس مرکزی کمتر از -20dB بوده یعنی پورت 1 از 4 ایزوله است
وS13وS12 حدوداً dB٣- می باشد .

شکل(:(8-2زاویهS 12 و S14 برای مدار بدون استاب
۴٢
(6-2 تحقق جهت دوبانده کردن مدار
دربخش قبل روش مشخصی برای طراحی یک کوپلر دو بانده (dual – band) به صورت فرمـولی تحلیـل
و تجزیه گردید. نتایج نشان میدهند روشهایی جهت انتخاب مقدار n و همچنین راههای مختلف در بدسـت
آوردن مقادیر المان شنت با ادمتیانس ورودی (Y) که در معادلات (27-2) و (29-2) توضیح داده شده بودند
وجود دارد.جهت معادل سـازی و نـشان داد ن توپولـوژی دو تـا مـدار در اینجـا مقـدار n را یـک در نظـر
میگیریم.
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)
با استفاده از معادلات (22-2) و (23-2) ادمیتانس ورودی یک استاب مدار باز بـه صـورت زیـر مـیتوانـد
باشد.
δπ ( Cot( f1 , f  2 ZΒ (30-2) yoc  ( δπ −Cot( f2 , f 2 ZΒ که در اینجا ZB نیز امپدانس مشخصه استاب مدار باز میباشد . از ایـن رو بـا ترکیـب معـادلات (27-2) و
(30-2) مقدار ZB به صورت زیر بدست میآید: (31-2) Z T ZB  δπ δπ ( )Tan( Sin( 2 2 ۴٣

شکل (9-2) ساختار کوپلر پیشنهادی با استاب مدار باز
در شکل (9-2) ساختار نهایی ( با ساده سازی بوسیله ادغام استابهای شنت موازی شده ) از یـک کـوپلر دو
بانده (dual – band) با تمام خطوط شاخهای جایگزین شده بوسیله مدار پیشنهاد شده شکل (6-2) نـشان
داده شده است و نتیجتاً مقادیر Z3, Z2, Z1 بوسیله معادلات زیر تعیین میگردند.
(32-2) 1 . Z0 Z1  ( δπ Cos( 2 2 (33-2) 1 Z2  Z0. ( δπ Cos( 2 (34-2) 1 . 0 Z Z3  δπ δπ 2 1  ( )Tan( Sin( 2 2
(2-6-2 استفاده از مدار اتصال کوتاه ( طول ( λ2

به طور مشابه ادمیتانس ورودی یک استاب اتصال کوتاه میتواند به صورت زیر بیان گردد:
۴۴
f1 , f Cotδπ Z B (35-2) ysc  Cotδπ − f2  , f Z B شکل (10-2) (مدار چاپی) Layout یک کوپلر اصلاح شده با اتصالات شنت کوتاه شده نشان میدهد کـه
امپدانس مشخصه استاب شنت به صورت زیر محاسبه میگردد.
(36-2) 1 . 0 Z Z3  δπ 2 1  )Tanδπ Sin( 2
شکل (10-2) ساختار کوپلر پیشنهادی با استاب اتصال کوتاه
در تئوری نیز کوپلر پیشنهاد شده میتواند در هر دو باند فرکانسی دلخواه عمل کرده، اما در عمل تعیین رنـج
امپدانسی ساختار کوپلر میتواند مقداری حقیقی پاشد.
۴۵
واضح است که با انتخاب مناسبی از شکل مدار برای رنجهای متفاوتی از کـسر پنهـای بانـد ( 0/2 تـا 0/3 و
همچنین 0/3 تا ( 0/5 کوپلر پیشنهاد شده ممکن است امپدانس خطوط که تنها 30 الی 90 اهم تغییر میکنـد
در آنها بکار برده شود.
( 7- 2 آنالیز(تحلیل) مدار π شکل خط شاخهای دو باند و مشاهده نتایج شبیهسازی :
جهت اثبات و تأیید عملکرد، یک کـوپلر خـط شـاخهای میکرواسـتریپ دو بانـده در فرکانـسهای 0/9 و 2
گیگاهرتز طراحی و شبیهسازی شده و روی کسری از پهنای باند محاسبه شده((δ= 0/38 بنا نهاده شدهاست.
ساختار فشرده یک استاب مدار باز با طول λ / 4 جهت بکار بستن نیز مورد استفاده قـرار گرفتـه اسـت . از
معادلات (32-2) الی (35-2) مقادیر Z3, Z2, Z1 حدود 42/7 و 60/6 و 54/4 اهم نیز بدست آمـده اسـت.
جهت بهتر کردن دقت کار، پاسخ فرکانسی ساختار کامل شـامل ناپیوسـتگی و اثـر زیـر لایـه (Substrate)
بهینه شده با استفاده از یک مدار شبیه سازی شده اشکال (11-2) الی (14-2) پاسـخ فرکانـسی شـبیهسـازی
شده مدار نهایی از یک کوپلر دو بانده را نشان میدهند. مطابق با اثر یـک اسـتاب شـنت تلفـات داخلـی در
فرکانس مرکزی (1.45GHz) صفر گردیده که به حذف هر سیگنال مداخله کننده کمک میکند. کوپلر فوق
سابستریتی با ثابت اللکتریک εr = 3/38 و ضخامت h = 0/81mm میباشد. حال با اسـتفاده از نـرم افـزار
Serenade ابتـدا مقـادیر خطـوط یعنـی پهنـای خطـوط W1 ،W2،W3و طـول آنهـا L1،L2،L 3 را در
فرکــانس مرکــز 1/45 بدســت مــیآوریــم و بــا بــستن مــدار در ایــن فــرمافــزار مقــادیر پارامترهــای
S11،S12،S13وS14را برای باند فرکانسی دوبل شبیهسازی کردهایم.
۴۶
جدول(:(1-2مشخصات الکتریکی وفیزیکی مدار در دو باند امپدانس طول الکتریکی پهنای خط طول خط Z1=42.7 θ1=90 W1=2.38mm L1=31.25mm Z2=60.4 θ2=90 W2=1.36mm L2=31.95mm Z3=54.4 θ3=90 W3=1.63mm L3=31.73mm
شکل(:(11-2نتایج شبیه سازی(افت برگشتی(S11
۴٧

شکل(:(12-2نتایج شبیه سازی(S12و(S13

شکل(:(13-2نتایج شبیه سازی((S14
پارامترهای تشعشتی در این شبکه آنالایزر روی رنج فرکانسی از 0/1 الی 4 گیگاهرتز انجام میگردد.
۴٨

شکل(:(14-2نتایج شبیه سازی(پاسخ فازمدار با استاب)
شکلهای (11-2) الی (14-2) پاسخ اندازهگیری شده کوپلر در فرکانـسهای مرکـز دو تـا بانـد عملکـرد کـه
0/9GHz و 2GHz میباشد نشان میدهند..افت برگشتی و ایزولاسیون پورت بهتر از -20dB در فرکانسی
مرکزی دو باند بدست آمده است هر چنـد تـضعیف سـیگنال بـالا تـر از 50dB جـذب شـده در فرکـانس
1/41GHz نیز میباشد.
درمقایسه با طراحی یک کوپلر تک بانده، افت داخلی اندازهگیری شده دردو پـورت خروجـی تنهـا 0/4dB
بالاتر از مقدار واقعی آن((-3db میباشدو این بـاور وجـود دارد کـه ایـن اخـتلاف اساسـاً ناشـی از وجـود
ناپیوستگیهای اتصالات و اثر انتهای باز نشان داده شده در شبیه سازی میباشد.
طراحی و بکار بستن کوپلر خط شاخهای فشرده صفحهای بالا نیز درطراحی کـوپلری بـا دو بانـد فرکانـسی
کوچک و بزرگ بکار میرود.
۴٩
فصل سوم:
طراحی مدار میکرواستریپ فشردهT شکل با اندازه کاهش
یافته در دو باند فرکانسی
۵٠
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه بـه رونـد
ارائه شده در دو بانده کردن کوپلرπ شکل ( 900MHz و (2400MHz
در این بخش ابتدا با روش دستی و استفاده از ماتریسهای ABCD کوپلرخط شاخهای و معـادل قـرار دادن
آن با ماتریس ABCD یک خط ±90°، طول الکتریکی و امپدانس مشخصه کوپلر خط شـاخهای بـا تبـدیل
θ به ' θ θ) f 2  ' (θ بوده را در حالت دو بانده معادل ساخته و در نهایت بوسیله برنامه ساده کامپیوتر که f1 بر اساس اطلاعات موجود نوشته شده، خطای موجود را در بدست آوردن θ و امپدانس مشخصههـایی کـه
برای هـر دو فرکـانس دلخـواه بـالا و پـائین 0/9GHz)و(2/4GHzصـدق کنـد بـا کمتـرین درصـد خطـا
0/4)درصد) درنظر میگیریم و با شرایط در نظر گرفته شده مقادیر θ و Z را بدست میآرویم.
همانطور که در بخش قبل نیز گفتیم با معادل سازی مدل T شکل خطوط استاب شنت متـصل شـده از نـوع
مدار باز بوده و این استاب خود باعث کاهش طول خط می گردد.
3 Sinθ' 3 jZ 3 Cosθ' 0 1 Sinθ' jZ Cosθ' A B (1-3) j − 1 1 1 j 3 Cosθ' 3 Sinθ' 1 jβ'2 Cosθ' Sinθ'  Z3 1 1 Z1 C D در بخش قبل مقادیر β2 و Z1 و Z1 ، Z1 بـا مقـادیر معـادل آن آورده شـده انـد و در اینجـا θ f2 θ' Z Z Z f 3 2 T 1 میباشد.
با معدل قرار دادن ماتریس فوق با خط -90 درجه داریم:
− jZ 0 Sinθ' jZ Cosθ' B A (2-3) T − j  T j 0 Cosθ' Sinθ'  ZT ZT C D ۵١
وبا ساده سازی روابط فوق داریم:
(3-3) Cosθ'1Cosθ'3 −kTanθ'2 Sinθ'1 Cosθ'3 −NSinθ'1 Sinθ'3  0 (4-3) N Cosθ'1 Sinθ'3 −kTanθ'2 Sinθ'1 Sinθ'3 NSinθ'1 Cosθ'3  − M (5-3) K 1 Cosθ'1 Sinθ'3 Cosθ'1 Cosθ'3  0 Tanθ'2 Sinθ'1 Sinθ'3 − − N N (6-3) Sinθ'1 Cosθ'3 KTanθ'2 Cosθ'1 Cosθ'3 NCosθ'1 Sinθ'3  −M در روابط بالا f2  θ'3 f2  θ'2 f2  θ'1 f 3 θ f 2 θ f θ 1 1 1 1 مقادیرf1 =900MHz و f2 =2400MHz می باشند. با ساده سازی روابط (3-3) و (4-3) به معادلا ت زیر میرسیم. (7-3) Cosθ'3 '1  − Sinθ M (8-3) Sinθ'3 − M Cosθ'1  N (2-3 استفاده از برنامه کامپیوتری ساده جهت بدسـت آوردن پارامترهـای مـدار دو
بانده
حال نیز برنامه ای با نرم افزار مطلب نوشتهایم و میخواهیم طولهـای الکتریکـی و امپـدانس مشخـصههـای
کوپلر و درنهایت سیرکولاتور موردنظر را در شرایطی بدست آوریم که خطاهای زیر حـاکم باشـند یعنـی در
آن واحد شرایط برای فرکانسهای بالا و همچنین پائین (استفاده از دو باند فرکانسی) موجود باشد.
۵٢
(9-3) N f 2 θ1 )Tan( f 2 Tan( 0.4 θ3 ) − M 2 f1 f1 (10-3) 0.4 θ3 ) f2 Tan( 2 − N 2 M θ2 ) − f2 Tan( f1 kN f1 (11-3) 0.4 θ3 ) f 2 Sin( M θ1 )  f 2 Cos( f1 N f1 برنامه نوشته شده در نرم افزار مطلب در پیوست الف ارئه شده است.
طول الکتریکی و امپدانس مشخصههایی که در شرایط خطای بالا بر قرار باشند جوابها میباشند کـه شـرایط
برای استفاده درحالت دو باند فرکانسی را دارند. θ1و θ2 وθ3 وZ1وZ2وZ3 در شرایط فـوق را مطـابق بـا
برنامهای که آورده شده بدست میآیند.
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محـیط ( نـرم افـزار) مختلـف و
مشاهده نتایج حاصل
با قرار دادن مقادیر بدست آمده از برنامه نوشته شده که برای استفاده در دو باند فرکانـسی دلخـواه در نظـر
گرفته شده در روابط زیر و یا با استفاده از محیط serenade طولهای Lm1و)Wm1پهنا وطول خط شاخه
اصلی)Lm3و)Wm3پهنا وطول خط متصل به Zm1 در خط اصلی)Lm2و)Wm2پهنا وطول استاب مـدار
بــاز در خــط اصــلی)Lb1 و )Wb1پهنــا وطــول خــط متــصل بــهZm2در خــط عمــودی)وLb1
،Wb1،Lb2وWb2را بدست میآوریم.
۵٣
(12-3) 4 π εr −1 1 Z 0 2(εr 1) 1 (1/ εr )Ln π )  2 (εr 1)(Ln 2  119.9  H (13-3) −1 1 1 exp H W ( − ( 4 exp H 1 8 h (14-3) −2 4 Ln 1  π )(Ln 1 εr − 1 − 1 εr  ε eff  ) ) 1 π εr 2 1 εr  2H ' 2
با در دست داشتن مقادیر فوق مدار را در نرم افزارهـای Serenade و Advance designer (ADS)
sys-- ترسیم و نتایج شبیهسازی راعلاوه در ansoft مشاهده میکنیم منتهی در نهایت مقدار پهنـای بانـد
را حدوداً در Optimom 10% کرده و نتایج حاصل در زیر آورده شده اند.
h = 0/762mmεr =3/55 Tanδ  0. 022
در شکلهای((1-3و((2-3و((3-3 شماتیک ومدارچاپی و پاسخ مـدار شـبیه سـازی شـده در نـرم افزارهـای
مختلفی نشان داده شده است.

(a)
۵۴

(b)
شکل((a ) 🙁 1-3شماتیک (b)مدارچاپی (designer,hfss)ansoft
در جدول((1-3و(2-3 )با در دست داشتن مقادیر ابتدایی از المانهای مدار که توسط روابـط((12-3 الـی(-3
(14بدست آمده اند بازهای جهت حد بالا وپایین المان ها در نظر گرفته شده است و به سمت اهدافی که در
جدول((2-3 امده optimom انجام می گردد
.جدول(:(1-3دو بازه فرکانسی ودو هدف مورد نظر پروژه 905mhz 895mhz Frange1 باند فرکانس اول
2.45ghz 2.35ghz Frange2 باند فرکانس دوم
-20db lt ms12=-3.5db w=3 ms13=-3.5db w=3 ms14 -20db lt ms11 Goals1 هدف اول
-20db lt ms12=-3.7db w=3 ms13=-3.7db w=3 ms14 -20db lt ms11 Goals2 هدف اول
۵۵
جدول(:(2-3بازه بالا وپایین جهت optimom هدف بازه بالا مقدار اپتیمم شده بازه پایین نام المان
7MM? 5.69180mm ?5mm lb1
12.5MM? 11.35000mm ?10mm lb2
41MM? 39.57900mm ?37mm lb3
11.5MM? 10.77600mm ?9.5mm lm1
16.5MM? 15.36700mm ?14.5mm lm2
40MM? 38.67200mm ?37mm lm3
0.8MM? 0.16152mm ?.08mm wb1
1.2MM? 0.95112mm ?0.6mm wb2
2.5mm? 1.45870mm ?0.8mm wb3
2.1MM? 1.65260mm ?1mm wm1
0.5MM? 0.20507mm ?0.1mm wm2
3.5MM? 2.70090mm ?2mm wm3
2.5MM? 0.20010MM ?0.1mm wp

(a)
۵۶

(b)

(c)
شکل(S 11 :(2-3، S12،S13و S14 مدار شبیه سازی شده در ADS(c) SERANADE(b) ANSOFT(a)
۵٧

شکل(:(3-3پاسخ فازی مدار 2بانده
مشاهده میگردد که مقدار پارامترهای تضعیف در 0/9 و 2/4 گیگاهرتز -3dBو -20dbمیباشند.
در بخش بعدی در مورد اثرات DGS و مشاهده تاثیرات آن بروی این کوپلر بحث میکنیم.
۵٨
فصل چهارم:
بررسی انواع مختلف DGS و اثرات آن بر روی خطوط
میکرواستریپ
۵٩
DGS (1-4 چیست؟
DGS نیز شبکهبندی قلم زده شده ای است با شکل اختیاری که بر روی صفحه زمین قـرار مـیگیـرد و در
شکلهای T ، H ،دمبلی و حلزونی و...بکار میروند.
در شکل (1-4) انواع مختلف DGS نشان داده شده است.

شکل(H(a) :(1-4 شکل T(b) شکل (c) هلزونی شکل (d) دمبلی شکل
(2-4مشخصات کلی DGS
در ساختار DGS مشخصه های زیر رامی توان عنوان کرد:
-1 تغییر اندازه شکاف باند نوری . (PBG)10
-2 دارا بودن ساختارهای پریودیک وغیر پریودیک.
-3 به سادگی نیز مدار معادل LC را میسازد.

10 Photonic band gap
۶٠
(3-4 کاربردهای DGS
-1 در تشدید کنندههای صفحهای
-2 بالا بردن امپدانس مشخصهخط انتقال
-3 استفاده در فیلتر ،کوپلر و سیرکولاتور، اسیلاتور، آنتن و تقویت کنندهها
(4-4 ویژگیهای DGS
-1 پوشش میدان روی صفحه زمین را مختل میکند.
-2 بالا بردن ضریب گذردهی موثر.
-3 بالابردن ظرفیت موثر و اندوکتانس خط انتقال
-4 از بین بردن هارمونیکهای اضافی با تک قطب کردن ویژگی ) LPF11 فرکانس قطع و تشدید)
(5-4اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ
DGS نیز بوسیله الگوی کـم کـردن قلـم زنـی، در صـفحه زمـین مـدار ایجـاد مـی گـردد.. در ابتـدا خـط
میکرواستریپی با الگوی DGS از نوع دمبلی شکل نشان داده شده است و تـأثیر شـکاف بانـد خـوبی را در
بعضی ار فرکانسهای معین نیز ایجاد می کند .[21]
DGS در طراحی مدارات امواج میلیمتری و مایکرویو خیلی زیاد بکار میرود . اخیراً DGSهای متوالی بـا
کاستن الگوهای مربعی از مدارات صفحهای کـه ویژگیهـای Slow wave و stop band بـسیار خـوبی را

11 Low pass filter
۶١
تولید میکنند مورد بررسی قرار گرفته که در تقویت کنندهها و اسیلاتورها بیشتر مورد استفاده قرار گرفتهانـد
.[23] [ ,22]
در مقایسه با DGS پریودیک قبلی [21] و [22] یک نـوع DGS پریودیـک بهتـر و قـویتـر نیـز پیـشنهاد
1
گردیده که ابعاد مربعات کاسته شده متناسب با توزیع دامنه تابع نمـایی ) e n کـه n عـدد صـحیح اسـت)

میباشد.
در شکل((2-4مدار دو پورتی بدون DGS نشان داده و پارامترهـایS حاصـل از آن بـا ansoft در شـکل
(3-4) آمده است.

شکل(:(2-4خط میکرواستریپ دو پورته باεr=10 وh=1.575

شکل(:(3-4پارامترهایSمدار شکل((2-4
۶٢
به منظور بررسی این اثرات توسط DGS پریودیک نیز یک عدد مدار DGS پریودیک متحدالـشکل و دو
تا مدار DGS پریودیک قوی شده نیز در اینجا طراحی و اندازهگیری شدهاند. اندازهها نـشان مـیدهنـد کـه
نمایشهای اخیر اجرای نقش دقیقی توسط متوقف شدن رپیل و بزرگ کردن پهنـای بانـد را ایفـا مـیکنـد.در
شکل((4-4 دو پورتی با DGS دمبلی شکل نشان داده شده و نتیجه شبیه سازی شده این خـط بـا ansoft
در شکل((5-4رسم گردیده است.

شکل(:(4-4مدا با DGS دمبلی شکل

شکل(:(5-4پارامترهایS مدار باDGS دمبلی شکل
در بالا می بینیم فرکانس قطع ومقدار تضعیف کاهش می یابند.
( 1 – 5 – 4 الگویDGSدمبلی شکل و ویژگی شکاف باند
۶٣
نمای شماتیک مدار دمبل شکی DGS در شکل (4-4) نشان داده شده است .خـط میکرواسـتریپ رو قـرار
گرفته و DGS نیز در زیر صفحه فلزی زمین قلم زده شده است. طرح DGS توسط خطوط دش مـشخص
شدهاند. پهنای خط نیز برای امپدانس مشخصه 50 اهم تعیین گردیده است. ضـخامت سابـستریت زیـر لایـه
1/575 میلیمتر و ثابت دی الکتریک εr = 10 میباشد. در [20] آمده که شـکاف قلـم زده شـده و کاسـتن
مربعی قلم زده شده با ظرفیت موثر خط و اندوکتانس خط نیز متناسب میباشد و وقتی ناحیه قلـم زده شـده
کاسته شده مربع شکل کاهش می یابد و فاصله شکاف نیز 0/6 میلیمتر نـشان داده شـده اسـت، انـدوکتانس
موثر کاهش یافته و این کاهش اندوکتانس نیز فرکانس قطع (fc) را بالا میبرد که این قضیه در شکل (7-4)
نشان داده شده است. در اینجا ما نیز این کار را با Ansoft انجام دادهایم.
( 2 – 5 – 4 ایجاد DGS دمبلی پریودیک قویتر
نمایش شماتیک DGS پریودیک با الگوهای مربعـی واحـد بـرای مـدارات صـفحهای [21] نـوع 1 نامیـده
میشود که در شکل (6-4)(a) آمده است.مدار ما در اینجا نیز خـط میکرواسـتریپ 50 اهمـی و نیـز5 عـدد
الگوهای مربع متحدالشکل با دوره یکسان d = 5mm میباشند.پهنای طرفین مربعها و فاصله شکاف هـوایی
ما بین آنها 4/5 (g) میلیمتر و 0/6 میلیمتر میباشند.
براساس نوع 1 ، متحدالشکل بودن توزیع پنج عدد الگوی مربعی توسط یک شکل غیر واحد توزیع میگردد.
حوزه المانهای مربعی نیز متناسب با توزیع دامنه تابع نمایی e1/ n میباشد.در اینجا دامنه سـوم از پـنج المـان
مربعی شکل نیز 4/5mm میباشد.پس نوع دوم بوده و دامنه المـان توزیـع شـده بـر اسـاس زیـر مـشخص
میگردند.
2/3mm2/7mm4/5mm(1-4)
۶۴

شکل (a) :(6-4) نوع1 ، (b) نوع2، (c) نوع3
استفاده از توزیع ارتفاع غیر واحد DGSهای پریودیک، نوع دوم را تشکیل می دهند که در شکل (6-4)(b)
نشان داده شده است. براساس نوع دوم، دیگر مدار DGS پریودیک قوی شـده، یـک خـط میکرواسـتریپ
جبرانی را دارد که نوع سوم نامیده میشود. در شکل (6-4)(c) آمده است.خط میکرواستریپ جبرانی شـامل
۶۵
یک خط 50 اهمی و یک خط عریض میباشد. همچنین بزرگی المانهای DGS توسط رابطه سوم مشخص
گردیده است. المانهای الگوی مربعی غیر هم شکل نیز دارای دوره مساوی d=5mm بوده و فاصـله هـوایی
ثابت d = 0/6mm دارند که در شکل (6-4) نوع دوم و سوم خطوط میکرواستریپ رو قـرار دارد و DGS
ها نیز در صفحه زمین فلزی کنده شده و توسط خطوط دش مشخص شدهاند.
(3-5-4اندازهگیریهای مربوط به DGS دمبلی شکل
سه نوع مدار DGS پریودیک که ذکر شدند مورد بررسی و اندازهگیری قرار گرفتهاند، نتایج اندازهگیری نیـز
در شکل (8-4)((a)-(c)) نشان داده شده هستند . این نتایج به طور خلاصه در جدول (1-4) آمده است.
جدول(:(1-4مقایسه DGS های واحد وپریودیک وتوزیع نمایی

شکل(:(7-4پارامترهایS برای DGS دمبلی شکل
۶۶

(a)

(b)

(c)
شکل(:(8-4 مقایسه پارامترهای S مدارهای (a) DGSنوع(b) 1نوع(c) 2 نوع3
۶٧
سابستریت این مدارات دارای h = 1/575 و εr = 10 هستند. این اندازه گیـریهـا توسـط Ansoft انجـام
شده و نشان داده شدهاند.
همان طوری که در جدول آمده، 20dB ایزولاسیون پهنای باند برای انواع 1و 2و 3 نیز در فرکانسهای 3/05
و 4/18 و 4/26 گیگاهرتز میّاشند.
مدارهای DGS پریودیک پیشنهاد شده نوع 2و 3 پهنـای بانـد ایزولاسـیون 20dB را بهتـر 37% و (39/7%
میکند.در ناحیه پائین گذر، اولین افت برگـشتی و پیـک افـت برگـشتی بـرای نـوع 3، مقـادیر -46/7dB و
-30/9dB بوده و در صورتیکه این مقادیر در نوع 1 نیز -10/8dB و -4/9dB هستند.اولین افت برگشتی و
ماکزیمم افت برگشتی نیز در 4 بار (لحظه) بهتر شده و بنابراین ر پیلها به صورت موثری از بـین رفتـهانـد و
پهنای باند موثر برای نوع سوم افزایش و فرکانس قطع 3dB به صورت مختصر و کم تغییر پیدا میکند.
(6 – 4بررسی اثرات DGS های هلزونی بر روی هارمونیکهای تقسیم کننده توان
در اینجا نشان خواهیم داد تکنیکهای موثری از حذف هارمونیک دوم و سوم برای یـک تقـسیم کننـده تـوان
ویل کینسون (WILLKINSON)با استفاده از DGS هلزونی شکل را، که ما در مدار کـوپلر از ایـن نـوع
DGS استفاده کردهایم.
شکاف باند الکترومغناطیسی و برهم زدن ساختار زمین اخیـراً نیـز کـار بردهـای متفـاوتی را در مـایکرویوو
فرکانس موج میلیمتری با شکلهای مختلف دارند [22] و [24] و DGS خط میکرواستریپ نیـز بـا بـر هـم
زدن مصنوعی صفحهای زمین در ویژگی رزونانس مشخـصه انتقـال تغیراتـی ایجـاد مـیکنـد. در یـک خـط
میکرواستریپ مطابق با اندازه DGS یا بر هم زدگی که روی صفحه زمین ایجاد میگردد، حذف باند بیـشتر
۶٨
در فرکانس رزونانس صورت میگیرد. همچنین DGS باعث بوجود آمدن اندوکتانس موثر اضـافی در خـط
انتقال میگردد. افزایش اندوکتانس موثر از ایجاد DGS باعث افزایش طول الکتریکی خط انتقال نـسبت بـه
یک خط متداول میگردد که خود نیز باعث کاهش اندازه مدارات موج میلی متر و مایکرویو میگـردد. [21]
، در طراحی فیلترها ،تقسیم کنندههای توان و تقویت کنندهها، ویژگی حذف باند و اثر موج آهـسته (Slow
wave) توسط DGS نیز بسیار مورد نظر می باشد [22]و [23]
هارمونیک های ناخواسته تولید شده با ویژگی غیر خطی مدارات اکتیو نیاز به حذف کردن دارند. در مدارات
مایکرویو و فرکانس بالا ویژگی حذف باند توسط DGS میتوانـد در متوقـف کـردن هارمونیکهـای مـورد
استفاده قرار گیرد [22] و .[23] با یـک DGS هلزونـی شـکل متقـارن، (یـک تـک ( DGS حـذف تـک
هارمونیک را خواهیم داشت، وDGS پریودیک در جهت حـذف هارمونیـک دوم و سـوم بکـار مـی رونـد.
DGS های آبشاری و پشت سرهم باعث افزایش افت داخلـی شـده و بهمـین دلیـل در مـدارات بـا انـدازه
کوچک نیز استفاده از ان محدود گردیده است. در اینجا ساختار DGS هلزونی شکل غیر متقارن نیز جهـت
حذف هارمونیکهای دوم و سوم بطور همزمان پیشنهاد گردیدهاند. به طور مـوثر یـک تـک DGS هلزونـی
غیرمتقارن باعث از بین بردن باند فرکانس دوم میگردد و نیاز به ناحیه کوچکی هم جهت نقش بـستن دارد.
تقسیم کننده توان ویل کینسن با بکار بستن یک DGS هلزونی غیـر متقـارن در خطـوط λ4 باعـث حـذف

هارمونیک دوم شده و اندازه آن نیز با اثر موج آهسته کاهش مییابد. مشاهده میگردد به دلیل ذکـر شـده در
این پروژه ما از این گونه DGS استفاده ننمودهایم. تقسیم کننده Willkinson پیشنهاد شده به خـوبی یـک
تقیسم کننده توان مرسوم، در فرکانس کار خواهد بود.
۶٩
(7-4مدل مداری و هندسه DGS هلزونی نا متقارن
در شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ که ابعـاد کنـده شـده هلزونـی
شکل در سمت راست و چپ متفاوت از یکدیگر هستند آمده است. برای هندسه این DGS نامتقارن مطابق
با کنده شدهگی سمت چپ و کندهشدگی سمت راست دوتا فرکانس عملکرد متفاوت وجود دارد. مشخـصه
انتقال خط میکرواستریپ با هندسه DGS نامتقارن ویژگی حذف باند در فرکانس تشدید را دارد.

شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ
فرکانس تشدید ممکن است با تغییر کردن ابعاد DGS عوض گردد. مقایسه مشخصه انتقال DGS هلزونـی
با ابعاد مختلف متقارن و غیرمتقارن در شکل (10-4) آمدهاست. امپدانس مشخصه خط 50 اهـم مـیباشـد.
برای هندسه هلزونی متقارون ( A=A'= 3mm و (B=B' = 3mm تنها یـک فرکـانس تـشدید (
(f=2/93GHz وجود دارد در صورتی که در یک DGS غیر متقارن فرکانس تشدید به دو فرکانس مختلـف
تبدیل میگردد. برای یک DGS نامتقارن با A = A' = 3/5mm و B = B' = 2/6mm همان طوری که در
شکل (10-4) مشاهده میگردد دو فرکانس تشدید مختلف دیده میشـودf=2/56GHz وf=4/22GHz کـه
این نتایج نشان میدهند DGS هلزونی نا متقارن با اندازههای متفاوت روی صفحه زمین در دو طرف خـط،
٧٠
فرکانسهای رزونانس مختلف را میتوانند ایجاد کنند.در هندسه نا متقارن DGS نیز میخواهیم بدانیم که بـه
چه صورتی فرکانس تشدید مطابق با بر هم زدگی چپ و راست خط با تغییـر انـدازه بـر هـم زدگـی رفتـار
میکند.

شکل(:(10-4پارامترهای انتقال خط با DGS متقارن( ( A = A' = B' = 3mm ونامتقارن A = 3/4m) و (B = 2/6 mm

شکل(:( 11-4 فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از B/A
٧١
فرکانس تشدید ناشی از بر هم زدگی سمت چپ خط و سمت راست خط در شکل (11-4) بعنوان تابعی از
اندازه بر هم زدگی سمت راست وقتی که اندازه سمت چپ ثابت باشد (A = A' = 2mm) رسم گردیـده
است. اندازه این آشفتگی هلزونی به صورت یک مربع در نظر گرفته شده (B = B' , A = A') .وقتـی کـه
اندازه برهم زدگی سمت راست از مقدار سـمت چـپ کـوچکتر اسـت (B/A<1)، فرکـانس رزونـانس در
سمت راست نیز بزرگتر از مقدار سمت چپ خواهد بود. هنگامیکه مقدار A با B برابر گردد دو تا فرکـانس
رزونانس ازهم پاشیده شده و به یک فرکانس تبدیل میگردد DGS) متقارن). باز وقتی کـه بـر هـم زدگـی
سمت راست افزایش پیدا کند B/A) زیاد شود)، فرکانس تشدید ناشی از بر هم زدگـی سـمت راسـت نیـز
کاهش مییابد. از این رو اندازه سمت چپ ثابت شده و مشاهده میگردد که فرکانس رزونانس ناشـی از بـر
هم زدگی سمت چپ تغییرات آهستهای خواهد داشت تا وقتی که B/A مقدار واحد شود.
مشخصه فرکانسی یک DGS متقارن با مدار رزوناتور RLC موازی میتواند مدل گردد. پارامترهای مـداری
معادل نیز از مشخصه انتقال شبیهسازی شده میتواند گرفته شود.
DGS نا متقارن نیز میتواند با دو تا رزوناتور RLC موازی که به صورت سدی متصل شدهاند مدل گـردد.
شکل((12-4، به همین جهـت مشخـصه انتقـال آن دو تـا فرکـانس تـشدید متفـاوت دارد. در مـدار معـادل
پارامترهای مدار اولین رزوناتور از مشخصه فرکانسی رزونانس بر هم زدگی سمت چپ گرفتـه مـیشـود در
حالیکه رزوناتور دوم بوسیله مشخصه رزونانس بر هم زدگی سمت راست مشخص می گردد. از نتـایج شـبیه
سازی پارامترهای اسکترینگ، پارامترهای مدار رزوناتور برای بر هم زدگی سمت چپ و راست بـه صـورت
زیر مشخص میگردند.
(۴-٢) C L,R W CL,R  ( 2 −W 2 (W 0 2Z C L,R 0 L,R ٧٢
(۴-٣) 1 LL,R  4π2 f02 L,R CL,R (۴-۴) 2zo RL,R  1 1 ))2 −1 − (2Z0 (W0 L,R CL,R − W0 L,R LL,R S11 (W0 L,R )2
شکل( 🙁 12-4 مدار معادل بخش DGS هلزونی نامتقارن
در اینجا اندیس R, L نیز پارامترهای برهم زدگی سمت چپ و راست را بیان می کنند. W0 فرکانس تشدید
و WC فرکانس قطع -3db را مشخص میکنند. Z0 امپدانس مشخصه خط انتقال می باشد.
(8-4حذف هارمونیکها در مدار مقسم توان
مقسم توان کاربردهای گوناگونی از قبیل توزیع توان سیگنال ورودی از آنتن و تقویت کنندههای توان بـالای
مایکرویو دارد. با قرار دادن فیلتر حذف هارمونیک در داخل مقسم توان ناحیه خروجـی فیلتـر کـاهش پیـدا
میکند .[23] جهت حذف هارمونیک نیز میتوان از استاب مدار باز در مرکز شاخههای بـا طـول λ4 مقـسم

توان استفاده نمود.
اگر DGS را بعنوان فیلتر هارمونیک اضافی استفاده کنیم میتوانیم با در نظر گرفتن کاهش سایز مقسم تـوان
که منجر به اثر (Slow – wave) میگردد نیز هارمونیک را حـذف نمـود. از ایـن رو یـک DGS متقـارن
٧٣
میتواند تنها یک سیگنال هارمونیک را حذف کند. ما نیاز به قرار دادن دو تا DGS به صـورت آبـشاری در
λ
هر شاخه ( ( 4 داریم تا هارمونیک دوم و سوم را حذف کنیم. هر چند ناحیه مقسم توان جهت گذشتن دو تا

DGS به صورت پریودیک در هر شاخه مقسم توان نیز محدود میگردد. DGS غیر متقارن هم، سـاختاری
موثر در جهت حذف هارمونیک دوم و سوم به صورت همزمان می باشد. [22]
شکل (13-4) (a) هندسه یک DGS هنرونی نامتقارن جهت حذف هارمونیـکهـای سـوم و دوم را نـشان
میدهد. در اینجا فرکانس عملکرد مقسم توان نیز 1/5 گیگاهرتز میباشد.

شکل(DGS (a): (13-4 هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این DGS
ناحیه بر هم زده شـده سـمت چـپ و راسـت رزونـانس هارمونیـک دوم و سـوم طراحـی شـدهانـد. 3) و
4.5گیگاهرتز). ابعاد طراحی شده این سـاختار D=2/4mm و A = 3 mm D' = S = G = 0/2mm و
A' = 3/2 mm، B = 2/4 mm و B' = 2/6 mm و امپدانس مشخصه خـط نیـز 70/7 Ω مـیباشـد.
٧۴
شکل (13-4) (b) مدار معادل DGS نامتقارن در شکل (13-4) (a) را نشان مـیدهـد. پارامترهـای مـدار
بوسیله پارامترهای اسکترینگ سیموله شده بوسیله روابط (2-4) تا (4-4) محاسبه میگردند.
شکل (14-4) نیز پارامترهای S محاسبه شده بوسیله شبیه سازی (EM) بـرای DGS نامتقـارن شـکل (a)
.(13-4) و محاسبه شده مدار معادل شکل (13-4)(b) را نشان میدهند. در هر دو تا شـبیه سـازی مـشاهده
میگردد که بوسیله DGS نامتقارن واحد، هارمونیکهای دوم و سـوم در فرکانـسهای 4. 5 , 3 گیگـا هرتـز
حذف میگردند.

شکل( ( 14- 4 پارامترهای S مدار با DGS هلزونی به صورت EM و شبیه سازی شماتیک
مشاهده میگردد که S12 موافق رنج فرکانسی پهن و S11 نیز در جهت حذف هارمونیک مقسم تـوان اصـلی
بکار میرود. یک مقسم توان معمولی در شکل (15-4)(a) مشاهده میگردد و نیز مقسم توان پیـشنهاد شـده
با DGS غیر متقارن در شکل (15-4)(b) آمده است. در اثر موج آهـسته (slow – wave) بـودن DGS
نیز اندازه مقسم توان پیشنهادی کاهش یافته است. اندازه L' = 17/3 mm در مقایسه L = 19mm حـدود
9/1 % کاهش یافته است.
٧۵
پارامترهای S شبیه سازی شده مقسم توان معمولی و پیشنهادی در شکل (16-4) آمده است.

شکل( ( 15- 4 هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن
در (16-4) (b)، فرو نشاندن حدود18 dB برای هارمونیک دوم و سـوم بـا وارد کـردن DGS نامتقـارن در
خط انتقال ( ( λ4 مقسم توان مشاهده میگردد. افـت برگـشتی بـرای فرکـانس 1/5 GHZ در هـر دو مـشابه

یکدیگر می باشند، حتی با وارد کردن DGS نامتقارن در مدار.
شکل (17-4) نیز قسمت رو و زیر از یک مقسم توان ویل کینسن با وارد DGS هلزونی نامتقـارن را نـشان
میدهد. در شکل (a) (18-4)، S11 اندازهگیری شـده را نـشان مـیدهـد. افـت برگـشتی در فرکـانس 1/5
گیگاهرتز – 40dB بوده. S21 نیـز در شـکل (18-4)(b) بعنـوان تـابعی از فرکـانس آمـده اسـت. توقیـف
هارمونیک دوم (3 GHZ) نیز 18dB و هارمونیک سوم در فرکانس (4/5 GH) نیز 15dB میباشد.
٧۶

شکل ( ( 16- 4 نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با DGS

شکل( ( 17-4 مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار
٧٧

شکل( ( 18- 4 نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(S12(b)S11(a
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی
ابتدا مدار شکل (3-2) را با اسـتفاده از DGS هلزونـی شـکل نیـز آنـالیز و نتـایج آن را در شـکل((19-4
مشاهده میکنیم
٧٨

شکل(:(19-4مدار بااستفاده از (a) DGSیک بعدی((bدو بعدی
در شکل (a)(20-4)و((b نتایج شبیه سازی حاصل از مدار قلم زده شده DGS و بدون استفاده از آن را
نشان میدهند.
٧٩

شکل((a):(20-4نتیجه شبیه سازی کوپلر با استفاده ار (b) DGSبدون استفاده از ((a)(3-2)) DGS
با مشاهده نتایج بالا به پایین آمدن فرکانس قطع و slow wave شدن پاسخ نیز پی می بریم.
(10-4مشاهده اثرات DGS روی مدار طراحی شده در این پروژه
در شکل (21-4) نوع DGS استفاده شده در این کوپلر آورده شده است.ونتیجـه ansoft در شـکل((22-4
مشاهده میگردد.
٨٠

شکل(:(21-4کوپلر باH DGS شکل در شاخه خطوط

شکل(:(22-4پارامتهای Sحاصل از به کار بستن DGS
٨١
فصل پنجم
چگونگی استفاده از کوپلر بدست آمده در طراحی سیرکولاتور
٨٢
(1-5 طراحی سیرکولاتور
یک سیرکولاتور 4 پورته فشرده نیز می تواند به وسیله یک کوپلر خط شاخه ای و شیفت دهنده فاز( پیوست
پ) نیز ساخته شود.این شیفت دهنده فازی همراه با ورودی و خروجی خط همواره مچینگ امپدانسی داشته
و دارای تضعیف صفر می باشد.در اینجا ما از زیراتور به عنوان شیفت دهنده فازی استفاده کرده ایمر .[26]
یکی از ترکیبات نا متقابل استاندارد ژیراتورها هستند که دارای 2 پورت بوده وشیفت فاز تفاضلی 180 درجه
ایجاد می کنند.نماد شماتیک برای یک ژیراتور در شکل (1-5)آمده است و ماتریس اسکترینگ برای یک
ژیراتور واقعی در زیر آمده است.
(1-5)

π
شکل(:(1-5نماد ژیراتور
که این ماتریس نشانه عدم افت ،مچ شده ونا متقابل بودن آن است.

s−0 11 0
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر

۴ ١
٢ π ٣
شکل(:(2-5سیرکولاتور 4پورته متشکل از دو مدار هایبریدی و ژیراتور
٨٣
استفاده ژیراتور به عنوان بنا ساخت در ترکیب با مقسم دو طرفه و کوپلرها میتواند منجر به ایجاد مدارات

=29

شکل (2-1) : طبقه بندی مولدهایDG....................................................................................................... 15شکل (3-1): جابجایی منحنی به علت تولید منابع تجدیدپذیر.............................................................................................. 41شکل (3-2): تاثیربرنامهDBدرتغییرقیمت بازار...................................................................................................................... 48شکل (3-3): تاثیر بارهای پاسخگو در کاهش قیمت بازار...................................................................................................... 50شکل(3-4): مقایسه انواع توابع تقاضا با ضرایب ثابت یکسان................................................................................................ 51شکل (3-5): الاستیسیته.......................................................................................................................................................... 54شکل (3-6): منحنی تابع تقاضای خطی..................................................................................................................................54شکل (3-7): منحنی تابع تقاضای توانی...................................................................................................................................55شکل (3-8):شکل شماتیکی ارتباط مخابراتی بین خودروی برقده وشبکه‌ی قدرت...............................................................59شکل (3-9): نمونهای از هاب انرژی.......................................................................................................................................62شکل (3-10): شرکت منایع سمت تولید ومصرف در بازار عمده فروشی برق...................................................................... 63شکل (3-11): استراتژی مدیریت سمت مصرف با تمرکز برارتباط بین شرکت برق ومشترک................................................64شکل (3-12): استراتژی مدیریت سمت مصرف برای شبکه هوشمند باوجودارتباط متقابل بین مشترکین............................. 64شکل (3-13): تعیین اندازه بهینه سیستم ذخیره ساز انرژی.................................................................................................... 65شکل (3-14): ساختارمورداستفاده پیشنهادی مبتنی بر نظریه عاملها برای مدیریت منابع در چندین ریز شبکه ....................66شکل (4-1): تابع توزیع احتمالاتی دادههای مربوط به باد...................................................................................................... 73شکل (4-2): منحنی توان منابع بادی.......................................................................................................................................74شکل (4-3): مدلسازی توان خروجی بادی منابع با استفاده ازروش احتمالاتی برحسب پریونیت.........................................74شکل (4-4): هزینه سرمایهگذاری یکنواخت شده درnسال.....................................................................................................79شکل(4-5): الگوریتم تسویه بازار در بازاربرق........................................................................................................................82 شکل(4-6): الگوریتم پیشنهادی مسئله برنامهریزی بهرهبرداری با درنظرگرفتن نقش خودروهای برقده قابل اتصال به شبکه درکنارمنابع بادی.......................................................................................................................................................................86شکل (5-1): مقایسه قیمت برق دردوسقف قیمت 80 ...........................................................................................................92شکل (5-2): مقایسه دیماندمشترکین در دوسقف قیمت 80................................................................................................93شکل (5-3): تابع توزیع احتمالاتی تنظیمی مربوط به درآمد منابع بادی................................................................................ 94شکل (5-4): مقایسه قیمت برق درسه سناریو......................................................................................................................97شکل (5-5): مقایسه دیماند مشترکین در سه سناریو............................................................................................................97شکل (5-6): هزینه سیاست تشویق در سه سناریو................................................................................................................98اظهارنامه
اینجانب پیمان سلطانیان دانشجوی کارشناسی ارشدرشته مهندسی برق گرایش قدرت به شماره دانشجویی 910841684تائیدمی‌نمایم که کلیه نتایج این پایان‌نامه حاصل کار اینجانب و بدون هیچ‌گونه دخل و تصرف است و مورد نسخه‌برداری‌شده از آثار دیگران را با ذکر کامل مشخصات منبع ذکر نموده‌ام در صورت اثبات خلاف مندرجات فوق به تشخیص دانشگاه مطابق با ضوابط و مقررات حاکم( قانون حمایت از مؤلفان و محققان و قانون ترجمه و تکثیر کتب و نشریات و آثار صوتی، ضوابط و مقررات آموزشی، پژوهشی و انضباطی ) با اینجانب رفتار خواهد شد و حق هرگونه اعتراض در خصوص احقاق حقوق مکتسب و تشخیص و تعیین تخلف و مجازات را از خویش سلب می‌کنم . در ضمن مسئولیت هرگونه پاسخگویی به اشخاص اعم از حقیقی و حقوقی و مراجع ذی‌صلاح ( اعم از اداری و قضایی ) به عهده اینجانب خواهد بود و دانشگاه هیچ‌گونه مسئولیتی در این خصوص نخواهد داشت .
نام و نام خانوادگی: پیمان سلطانیان
امضا و تاریخ : 20/11/ 93
تأییدیه
بدین‌وسیله تائید مینمایم پایاننامه / رسالهی:............................................................................دفاع شده توسط آقایپیمان سلطانیان دانشجوی کارشناسی ارشد رشته برق، گرایش قدرت تحت راهنمایی اینجانب صورت گرفته و مطالب ارائه شده در این پایان‌نامه حاصل کار وی بوده و بدون هرگونه دخل و تصرف است و موارد نسخه‌برداری‌شده از آثار دیگران با ذکر کامل مشخصات منبع ذکر شده است .
نام و نام خانوادگی استاد راهنما :
دکترسید مصطفی عابدی
امضاء و تاریخ :
تائیدیه هیات داوران جلسه
گروه تخصصی: برق
نام و نام خانوادگی دانشجو: پیمان سلطانیان
عنوان پایان‌نامه: برنامهریزی بهرهبرداری از منابع تولید پراکنده، ذخیرهسازها و راهکارهای مدیریت سمت مصرف در محیط رقابتی
تاریخ دفاع: /12/93
رشته: برق
گرایش:قدرت
امضاء دانشگاه یا موسسه محل خدمت مرتبه دانشگاهی سمت نام و نام خانوادگی رردیف
1
2
3
4
معاون پژوهشی
دانشگاه آزاد اسلامی
واحد بندرعباس
چکیده:
درسالیان اخیردو تحول بزرگ درسیستمهای قدرت رخ‌داده است. یکی از این تغییرات مربوط به تجدید ساختار صنعت برق و تبدیل محیط متمرکز سنتی به یک محیط غیرمتمرکز میباشد. تحول دیگردر زمینهٔگسترش استفاده از منابع تولیدپراکنده بخصوص منابع تجدیدپذیردرصنعت برق هست. نکته مهم اینکه در محیط رقابتی بدون اتخاذ راهکارهای مناسب، سرمایهگذاران بر روی این منابع سرمایهگذاری نخواهند کرد. دلیل عمده این مسئله وجود عدم قطعیت زیاد در توان تولیدی منابع تجدیدپذیر، هزینه سرمایهگذاری بالای این منابع و همچنین عدم قطعیت در سیاستهای حمایتی از این منابع میباشد. در این پایاننامه، بهرهبرداری همزمان از منابع تولیدپراکنده تجدیدپذیر در کنار ذخیرهسازهای انرژی و با در نظر گرفته راهکارهای مدیریت مصرف انجام شده است.ذخیرهسازها دارای این قابلیت هستند که در بعضی از ساعات شارژ و در ساعاتی دشارژ گردند. خودروهای برقده قابل اتصال به شبکه یکی از انواع ذخیرهسازهایی هستند که طی سالیان اخیر در مطالعات سیستم قدرت رقابتی و شبکههای هوشمند قدرت به‌وفور از آنها صحبت شده و کارهای متنوعی در این زمینه صورت گرفته است. در این پایاننامه نیز تأثیر این منابع یعنی خودروهای برقده در نظر گرفته شده است. به‌طورکلی خودروهای الکتریکی با قابلیت اتصال به شبکه خودروهایی هستند که قابلیت اتصال به شبکه‌ی قدرت در نقاط تعریف‌ شده معینی را دارا هستند و از این طریق می‌توانند در تبادل توان الکتریکی با شبکه‌ی قدرت شرکت نمایند. زیرساخت‌های فنی و مخابرات لازم به‌منظور بهره‌برداری بهینه از این خودروها می‌بایست فراهم باشد. این خودروها دارای این قابلیت هستند که در بعضی از ساعات شارژ و در ساعاتی دشارژ گردند. بنابراین این خودروها میتوانند در یک بازی همکارانه در کنار منابع بادی مورد بهرهبرداری قرار گیرند. علاوه بر این و با توجه به اینکه در سیستم قدرت هوشمند، علاوه بر منابع سمت تولید، منابع سمت مصرف نیز این قابلیت را دارند که در بازار برق شرکت کرده و در تسویه قیمت بازار سهیم باشند، لذا در این پایاننامه نیز تأثیر راهکارهای مدیریت مصرف نیز در نظر گرفته‌شده است. برای اجرایی کردن این راهکار بار مشترکین به‌صورت الاستیک در نظر گرفته‌شده و بار تابعی خطی از قیمت برق میباشد.
واژههای کلیدی: منابع تولیدپراکنده بادی، برنامهریزی بهرهبرداری، خودروهای برقده قابل اتصال به شبکه، راهکارهای مدیریت مصرففصل اولمقدمه
1-1-کلیاتهدف اصلی مسئله برنامهریزی بهرهبرداری در ساختار سنتی مدیریت صنعت برق، کمینه کردن هزینههای برنامهریزی و بهرهبرداری با در نظر گرفتن سطح تعریف‌شده‌ای از پایایی بود.در محیطهای سنتی دارای ساختار متمرکز، بیشتر مدلهای برنامهریزی بهرهبرداری بلندمدت بر اساس روشهای بهینهسازی یا روشهای تحلیل ریسک t--e-offچند معیاره بوده است. این روشها، روشهای مفید و مناسبی بودند؛ چراکه برنامهریزی به‌صورتمتمرکز و با عدم قطعیتهای کمتری صورت میگرفت[1و2]. تنها عدم قطعیتهایی که وجود داشت مربوط به قیمتهای سوخت، شرایط بار و تولیدات برخی از منابع تولید از قبیل نیروگاههای آبی بود. اما آنچه باعث شد تا اکثر کشورهای دنیا به بازنگری در تئوریهای انحصار طبیعی صنعت برق متمایل شوند، بحرانهای نفتی دهه 70 بود[3].
پس‌ازآن دولتها با این واقعیت انکارناپذیر مواجه شدند که انحصار صنعت برق در دست دولت، منابع مالی را برای سرمایه‌گذاری در زیرساختها برای پاسخگویی به رشد مصرف انرژی الکتریکی با مشکل مواجه می‌سازد.
تجدید ساختار در صنعت برق علاوه بر تغییر در اهداف و محدودیتهای حاکم بر بهره‌برداری سیستم قدرت، برنامه‌ریزی بهرهبرداری را نیز متحول ساخته است[10-4]. به‌طوری‌که تولیدکنندگان برق و سرمایهگذاران بخشهای خصوصی برای ورود به بازارهای رقابتی باید استراتژیهای خود را برمبنای ملاحظات اقتصادی و زیست‌محیطی بالحاظ عدم قطعیتهای فراوانی که در سیستم اقتصادی حاکم است، تدوین نمایند.در این ساختار، روشهای مربوط به برنامهریزی سنتی دیگر جوابگو بودند، چراکه بازیگران تصمیمات مربوط به سرمایهگذاری خود را در یک محیط بیثبات میگرفتند[12-11]. در مورد تحولات صورت گرفته در سیستم قدرت و ورود به عرصه رقابتی میتوان به دو عامل و محرک اصلی اشاره کرد؛ یکی گرایش به کارآیی هزینه و تأکید بیشتر به ایجاد فضای رقابتی و دیگری آگاهی جامعه و دولت از پیامدهای زیستمحیطی ناشی از افزایش مصرف انرژی در جهان میباشد. افزایش نگرانیهای زیستمحیطی نیز به وضع مقرراتی به‌منظور کنترل آلودگیهای ناشی از تولید برق توسط نیروگاهها منجر شده است. فراهم نمودن زمینه برای تجارت مجوز تولید برق توسط انرژیهای تجدیدپذیر و مالیات بر آلودگی نمونههایی از این مقررات به شمار میآیند. درحالی‌که محرک اول که تأکید بیشتری به ایجاد فضای رقابتی در بازار دارد و باعث پیچیدهتر شدن مسئله برنامهریزی بهرهبرداری میگردد، محرک دوم یعنی نگرانیهای زیستمحیطی نیز مقررات دیگری را به سیستم اضافه نموده است که خود میتواند منجر به افزایش عدم قطعیت‌ها در مسئله برنامهریزی بهرهبرداری تولید گردد[13].
از یک نقطه‌نظر دیگر میتوان گفت که مسئله برنامهریزی بهرهبرداری از دو دیدگاه قابل‌بررسی است. از نگاه قانون‌گذار سیستم، که مهمترین مأموریت آن برقراری بازاری پایدار در بلندمدت است. به این منظور، ضمن هدف‌گذاری در شاخصهای مهم پایداری بازار، برنامه‌ریزی بهرهبرداری باهدف بهینهسازی رفاه اجتماعی، قابلیت اطمینان مطلوب، در نظر گرفتن مسائل و مباحث زیست‌محیطی و وضع مقررات حمایتی و تشویقی برای سرمایه‌گذاری در این بخش و راهنمایی شرکتهای تولید برای توسعه توسط قانون‌گذار ضروری است. بعلاوه، باوجود عدم قطعیتهای متنوع و هزینه بالای سرمایه‌گذاری و غیرقابل‌بازگشت بودن تصمیم‌گیری در این حوزه، باید از رویکردها و چارچوبهای معتبری استفاده گردد تا دستیابی به اهداف بلندمدت و میانمدت را در کنترل سیستم قدرت و بازار برق محقق نماید[12].
از طرف دیگر چنانچه بحث برنامهریزی بهرهبرداری از نگاه سرمایه‌گذاران مورد بررسی قرار گیرد، ملاحظه می‌شود که سرمایهگذاران همانند تمام سازمانها برای بقای خود در بازار باید برنامهریزی بهینهای را در میانمدت و بلندمدت در دستور کار خود قرار دهند. برخورداری از سهم بازار و ترکیب بهینه فناوری‌های تولید تحت مالکیت از مهمترین اهداف کلان شرکتهای تولید در بازارهای برق به شمار می‌روند. در بحث برنامهریزی بهرهبرداری در محیط رقابتی که در این پایاننامه مدنظر است، چند نکته بسیار مهم وجود دارد:
در نظر گرفتن انواع مختلف منابع
توافق بین معیارهایی که با هم تداخل دارند و سازگار نیستند.
تأثیر دادن انواع مختلف عوامل عدم قطعیت
پیشبینی شرایط آینده از طریق یک روش مؤثر
در نظر گرفتن یک فرآیند برنامهریزی که عدمقطعیتها را نیز بهحساب آورد، جهت برنامهریزی بهرهبرداری از منابع بسیار ضروری است. در مورد تنوع منابع نیز در این پایاننامه منابع سنتی در کنار منابع بادی، ذخیرهسازهای انرژی در کنار اجرای راهکارهای مدیریت مصرف مدنظر میباشد.
به این منظور لازم است شرکتهای تولید برنامهریزی بهرهبرداری را براساس دستیابی به اهداف میانمدت و بلندمدت، انجام دهند. باوجود محدودیتها و عدم قطعیتهای زیادی که شرکتهای تولید در کوتاهمدت و بلندمدت با آن‌ها مواجه‌اند، ارائه چارچوبها و روشهای توانمند برای برنامه‌ریزی بهرهبرداری از نیازهای ضروری سیستم قدرت میباشد.
عدم قطعیتهای بار پیش‌بینی‌شده، بهای سوخت واحدهای تولیدی و عدم قطعیت استراتژیک رقبا ازجمله موارد مهمی هستند که بازیگران در برنامهریزی بهرهبرداری با آن‌ها مواجه‌اند. همانطور که بیان شد، عدم قطعیت استراتژیک بازیگران از اهمیت زیادی برخوردار میباشد؛ چراکه نوسانات قیمت ناشی از رفتار استراتژیک بازیگران بازار در میانمدت تأثیرقابل‌توجهی بر سودهای عملیاتی این شرکتها دارد. لذا ضروری است از روشهای مناسبی برای مدلسازی این عدم قطعیتها در برنامه‌ریزی بهرهبرداری استفاده گردد.
در این پایاننامه که هدف برنامهریزی بهرهبرداری منابع تولید پراکنده، ذخیرهسازها و راهکارهای مدیریت مصرف در محیط رقابتی میباشد، باید منابعی در نظر گرفته شوند که ضمن اینکه تکنولوژی نوین و بهروزی در سیستم قدرت هستند، مباحث جالبی را از لحاظ آکادمیک و علمی ایجاد کنند. یکی از این منابع، منابع تجدیدپذیر میباشد که در بین منابع تجدیدپذیر نیز منابع بادی ازنظر رشد تکنولوژی و قابل رقابت بودن با منابع سنتی از اهمیت بیشتری برخوردار میباشد. با در نظر گرفتن منابع بادی به خاطر اهمیت مسائل زیستمحیطی و با توجه به عدم قطعیت در تولید این منابع و فقدان سیاستهای حمایتی جامع، ریسک مسئله برنامهریزی بهرهبرداری افزایش مییابد. بدین منظور در کنار این منابع از ذخیرهسازهای انرژی نیز استفاده شده است. خودروهای برقده قابل اتصال به شبکه یکی از انواع ذخیرهسازهایی هستند که طی سالیان اخیر در مطالعات سیستم قدرت رقابتی و شبکههای هوشمند قدرت به‌وفور از آنها صحبت شده و کارهای متنوعی در این زمینه صورت گرفته است.
در این پایاننامه نیز تأثیر این منابع یعنی خودروهای برقده در نظر گرفته شده است. به‌طورکلی خودروهای الکتریکی با قابلیت اتصال به شبکه خودروهایی هستند که قابلیت اتصال به شبکه‌ی قدرت در نقاط تعریف شده معینی را دارا هستند و از این طریق می‌توانند در تبادل توان الکتریکی با شبکه‌ی قدرت شرکت نمایند. زیرساخت‌های فنی و مخابرات لازم به‌منظور بهره‌برداری بهینه از این خودروها می‌بایست فراهم باشد. این خودروها دارای این قابلیت هستند که در بعضی از ساعات شارژ و در ساعاتی دشارژ گردند. بنابراین این خودروها میتوانند در یک بازی همکارانه در کنار منابع بادی مورد بهرهبرداری قرار گیرند[17-14].
در این پایاننامه این مسئله مدلسازی شده و به‌عنوان یکی از نوآوریهای این پایاننامه مطرح میباشد. در این حالت خودروها به‌صورت یکپارچه با منابع بادی عمل کرده و در صورت برنامهریزی بهینه میتوانند باعث افزایش ضریب ظرفیت منابع بادی گردند. علاوه بر این و با توجه به اینکه در سیستم قدرت هوشمند، علاوه بر منابع سمت تولید، منابع سمت مصرف نیز این قابلیت را دارند که در بازار برق شرکت کرده و در تسویه قیمت بازار سهیم باشند، لذا در این پایاننامه نیز تأثیر راهکارهای مدیریت مصرف نیز در نظر گرفته شده است.
برای اجرایی کردن این راهکار بار مشترکین به‌صورت الاستیک در نظر گرفته شده و بار تابعی خطی از قیمت برق میباشد. یکی دیگر از راهکارهای مدیریت مصرف که در این پایاننامه توسعه یافته و اجرا شده است، جابجایی پیک میباشد. این کار از طریق توسعه یک بازی همکارانه بین خودروهای برقده قابل اتصال به شبکه (که نقش ذخیرهساز را دارند) و بار مشترکین صورت گرفته است. این مسئله نیز به‌عنوان یکی از نوآوریهای دیگر این پایاننامه مطرح میباشد.
1-2-ضرورت تحقیق و هدف از انجام پایاننامهامروزه بحث انرژی یکی از مهمترین دغدغههایی است که افکار دولتهـا و ملتهـا را در جهـان بـه خـود مشغول ساخته است. شاید بتـوان تـأمین انـرژی در آینـده را از مهمترین مـشکلات بـشر در دهـههـا وقرنهای آینده دانست.اصولاً بحث انرژی یک مبحث اسـتراتژیک میباشـد و به‌طور مـستقیم بـه سیاستهای کشورها و تعاملات بین آنها بستگی دارد. یکی از منابعی که در دهه اخیر استفاده وبهرهگیری از آن رایج شده است، منابع تولید پراکنده میباشند.
این منابع در ابتدا شامل منابعی بودند که از سوختهای فسیلی استفاده میکردند. اما بعد از چند سال مسائل و مشکلاتی راجع به این سوختها مطرح شد. پی بردن به متناهی بودن این منابع، مطرح شـدن بحـث آلـودگی محیط‌زیست و پایین بودن بازده این منابع ازجمله این مسائل و مشکلات میباشد.علاوه بر مسائل مطـرح شـده،با پیچیدهتر شدن روابط دیپلماتیک بین کشورها و تعامل دولتها با یکدیگر، منابع فسیلی به یک ابـزار در بحثهای سیاسی تبدیل شده است. همه این موارد باعث شده است که دولتها در کشورهای مختلف به دنبال منابع جدید انرژی باشند تا مشکلات ذکـرشده را نداشته و با نامتناهی بودن آن‌ها، خیال بشر برای همیشه از تأمین انرژی راحت گردد.یکی از منابعی که از دیرباز بشر از آن استفاده میکرده و امـروزه نیـز گـرایش جهـانی بـه سـمت استفاده از این منابع میباشد، انرژیهای تجدیدپذیراز قبیل منابع بادی، خورشیدی،بیوماس، جزر و مد و ... میباشد. باوجوداینکه تکنولوژیهای استفاده از ایـن منـابع نـوپـا و درنتیجه پـرهزینه میباشند، ولی به دلیل داشتن برتری در جنبههای ذکر شده، مورد استقبال تمام کـشورها قرارگرفته‌اند و متعاقب آن روزبه‌روز تکنولوژی آنها بهبود یافته و هزینه آنها کاهش مییابد.درنتیجه استفاده از آن‌ها در دنیا مقرون به‌صرفه‌ترشده و نیز خواهد شد .به‌طورقطع در چند دهه آینده درصد زیادی از انرژی دنیـا توسـط ایـن منـابع تأمین خواهـد شـد وکشوری موفق خواهد بود که از هم‌اکنون به این منابع توجه کرده و سـهمی از سـبد انـرژی خـود را از این منابع تأمین کند[13].
لازم به ذکر است، هنوز درصد استفاده از این منابع به دلیل تکنولوژی بالای آنهاو هزینههای ساخت زیاد، در اغلب کشورها پایین میباشد. ولی همـانطور کـه بیان شـد بـا پیـشرفت تکنولوژی، استفاده از این منابع سیر صعودی خود را با شتاب بیشتری طی خواهد کرد.یکی از مهمترین منابع تجدیدپذیر، منـابع بـادی مـیباشـد.در سالهای اخیر هدف عمده بیشتر سرمایهگذاریها در زمینه منابع بادی کاهش گازهای گلخانهای به میزان 20 درصد، افزایش کارایی انرژی به‌اندازه 20 درصد و افزایش مقادیر انرژی نو به میزان 20 درصد تا سال 2020 با استفاده از منابع بادی بوده است که آن را سیاست پنج- بیست نیز مینامند[13].
یکیدیگر از منابعی که طی سالیان اخیر استفاده از آن توسعه یافته است، ذخیرهسازهای انرژی بودهاند. در بین ذخیرهسازها نیز خودروهای برقده قابل اتصال به شبکه از اهمیت زیادی برخوردار گشتهاند. این خودروها قابلیت شارژ و دشارژ را دارا هستند و میتوانند به برقراری تعادل توان در شبکه کمک کنند. از طرف دیگر با مطرح شدن سیستمهای قدرت هوشمند، منابع سمت مصرف نیز این فرصت را یافتهاند که همانند منابع سمت تولید در بازار برق شرکت کنند.
در این پایاننامه تأثیر منابع تولید پراکنده سنتی، بادی، خودروهای برقده قابل اتصال به شبکه و راهکارهای مدیریت مصرف در نظر گرفته شده است و برنامهریزی بهرهبرداری از این منابع مدنظر میباشد. با توجه به اینکه این مطالعات در محیط رقابتی صورت میگیرد، لذا ضروری است که عدم قطعیت‌های مربوط به مسئله بخصوص عدم قطعیت استراتژیک بازیگران مدنظر قرارگیرد. بنابراین ضروری است که برنامهریزی بهرهبرداری از این منابع که اخیراً نرخ نفوذ آنها در شبکه نیز زیاد شده است، به صورت جامع و کاملی مدلسازی گردد. در این پایاننامه به این مهم پرداخته میشود.
1-3-نوآوریهای پایاننامهنوآوریهای اصلی مدلسازی عدمقطعیت استراتژیک بازیگران شامل منابع بادی، ذخیرهسازها با در نظر گرفتن راهکارهای مدیریت مصرف در محیط رقابتی میباشد. از طرف دیگر منابع بادی دارای تولید تصادفی بوده و این مسئله شرکت آنها را در بازار برق مشکل میکنند. علاوه بر این خودروهای برقده قابل اتصال به شبکه به‌عنوان ذخیرهساز دارای ظرفیت محدودی نسبت به کل شبکه میباشند که این مسئله باعث میگردد برای تأمین بار پایه مناسب نباشند.بنابراین در این پایاننامه یک مدل بازی همکارانه توسعه یافته تا منابع بادی و این خودروها در این بازی به فکر بیشینه کردن سود خود باشند. این مسئله باعث افزایش انعطافپذیری منابع بادی شده و همچنین نقش خودروهای برقده را برای شرکت در بازار برق پررنگتر میکند.
این مسئله نیز به‌عنوان یکی از نوآوریهای این پایاننامه مطرح میباشد.علاوه بر این در مدل پیشنهادی دیگر سعی شده است که خودروهای برقده در کنار راهکارهای مدیریت مصرف در یک بازی همکارانه در کنار هم فعالیت کنند که در این صورت قابلیت کنترلپذیری بارها نیز بیشتر میشود. این مسأله نیز به‌عنوان نوآوری دیگر این کار محسوب میشود.
1-4-سرفصلهای پایاننامهبعد از اینکه در این بخش مقدمهای راجع به موضوع پایاننامه بیان شد، در فصل دوم مروری بر توسعه منابع تولید پراکنده و دستهبندی آنها صورت میگیرد. ازآنجاکه در این پایاننامه منابعی مانند منابع بادی، خودروهای برقده قابل اتصال به شبکه و راهکارهای مدیریت مصرف مدنظرمیباشند، لذا در فصل سه به‌تفصیل در مورد آنها بحث شده و مروری بر کارهای صورت گرفته درزمینهٔ برنامهریزی بهرهبرداری این منابع صورت گرفته است.
در فصل چهارم نیز مدلسازی مسئله برنامهریزی بهرهبرداری در محیط رقابتی و با مدلسازی عدم قطعیت استراتژیک بازیگران صورت گرفته است. در فصل پنجم شبیهسازی مربوط به مدل استخراج شده در فصل چهارم صورت گرفته و نتایج حاصل شده موردبررسی و تحلیل قرار گرفته است. سرانجام نتیجه‌گیری حاصل از تحقیق و پیشنهادات لازم در فصل ششم ارائه شده است.
فصل دوممروری بر انواع مختلف تکنولوژیهای تولید پراکنده
2-1- مقدمهبا تغییر و پیشرفت روزافزون صنعت برق و به‌واسطه برخی عوامل همچون محدودیتهای محیطی، جغرافیایی و مالی برای ایجاد نیروگاههای با ظرفیت بالا، افزایش روزافزون مشکلات پایداری و امنیت در سیستمهای قدرت، رشد دائمی و زیاد مصرف و مطرح شدن بازار رقابتی، ساختار سیستمهای قدرت دستخوش تغییر و تحولات فراوانی در سایر بخشها شدهاند.
ازجمله این تغییر و تحولات در بخش تولید، به کارگیری منابع تولید با توان کم که به‌طور غیرمتمرکز و پراکنده در شبکه توزیع نصب میشوند، میباشد. براساس مطالعاتDCPAمنابع تولید پراکنده توانایی تأمین حداقل 20 درصد ظرفیت جدید نصب در شبکه را داشته که البته با روند فعلی، این چشمانداز تا 30 درصد نیز قابل افزایش است[20-18].
همچنین مؤسسه EPRI میزان مشارکت این منابع تا سال 2010 را بین 5/2 تا 5 گیگاوات تخمین زده است که نشان‌دهنده رشد روز افزون به‌کارگیری این تولیدات در تأمین انرژی موردنیاز در کشورهای مختلف میباشد[21].
به‌کارگیری و حضور این واحدهای تولیدی، تأثیرات مثبت و منفی گوناگونی را در آنالیز و ارزیابی فنی و اقتصادی شبکه به همراه دارد. نصب این واحدها بدون بررسی تأثیرات آنها در شبکه باعث افزایش اثرات منفی، بروز مشکلات جدی در بهرهبرداری و کاهش کارایی و بهرهوری از این تولیدات در شبکه میگردد.
در این فصل مروری بر تکنولوژیهای تولید پراکنده، مشخصات آنها، دستهبندی و اصول کارکرد آنها صورت میگیرد. ازآنجایی‌که هدف از این پایاننامه برنامهریزی بهرهبرداری از منابع تولید پراکنده، ذخیرهسازها و اجرای راهکارهای مدیریت مصرف است، لذا ضروری است که ضمن آشنایی با این منابع، منابعی در مطالعات در نظر گرفته شوند که اولاً در شبکه قدرت هوشمند امروزی رو به رشد بوده و ثانیاً بحثهای جذابی را در محیط رقابتی باوجودعدم قطعیت‌های زیاد مطرح کنند.
2-2- تعریف تولیدات پراکندهاستفاده از تولیدات پراکنده را میتوان بهعنوان یک حرکت و گرایش جدید در صنعت و شبکههای قدرت در نظر گرفت، لیکن تاکنون تعریف واحدی برای مشخص نمودن تکنولوژیهای این تولیدات معرفی نشده است. اگر بخواهیم یک تعریف کلی از این منابع داشته باشیم، به‌صورت زیر است:
" تولید پراکنده عبارت است از کلیه تکنولوژیهای تأمین انرژی الکتریکی موردنیاز در مقیاس کوچک که در نزدیکی و یا در محل مصرف قرار گرفته و توان تولیدی توسط این تولیدات به شبکه توزیع و یا مستقیماً به بار و مصرفکننده مشخصی تزریق میگردد [22] ".
استفاده از تعریف فوق در جداسازی این تولیدات از بقیه روشهای تأمین انرژی الکتریکی کار مبهم و پیچیدهای است. به همین منظور تعاریف و تقسیمبندی دقیقتری براساس هدف، کاربرد، ظرفیت و استفاده و عدم استفاده از انرژیهای تجدیدپذیر ارائه میشود. در ادامه به برخی از این تعاریف اشاره شده است.
2-2-1- اهداف و کاربردهای تولیدات پراکندههدف اصلی از به‌کارگیری واحدهای تولید پراکنده، تأمین توان راکتیو موردنیاز بارهای شبکه میباشد. بر اساس این تعریف نیازی به تأمین توان اکتیو موردنیاز از طریق این تجهیزات نمیباشد، هر چند که برخی از واحدهای تولید پراکنده قادر به تولید توان راکتیو نیز میباشند و بخشی از توان راکتیو بارها را نیز تأمین مینمایند. همچنین جهت تأمین نیازمندیهای بار و شبکه و با توجه به نوع تولید پراکنده، کاربردهای مختلفی را برای این تولیدات در نظر گرفتهاند که عبارت است از[23]:
تولید همزمان برق و حرارت (CHP):انرژی حرارتی بسیاری در فرآیند تبدیل سوخت به انرژی الکتریکی تولید میگردد. بهطور متوسط،انرژی تولیدی در طی این فرآیند تبدبل به انرژی حرارتی میگردد. این حرارت تولید شده در صورت نزدیکی به مراکز مصرف میتواند مورداستفاده قرار گیرد. علاوه بر مزیت فوق، استفاده از این تکنولوژی باعث کاهش آلودگیهای زیستمحیطی نیز میگردد.
تغذیه پشتیبان: تولید پراکنده میتواند در شبکه توزیع در برخی مواقع که یکی از بخشهای شبکه دچار مشکل شده است، به‌طور اضطراری بار موردنیاز برخی مصرفکنندگان که دارای هزینه خاموشی هنگفتی میباشند را تأمین نماید.
پیکسایی: هزینه تأمین انرژی موردنیاز بارهای شبکه در هر ساعت وابسته به میزان بار شبکه و آمادگی نیروگاهها میباشد. در صورتیکه هزینه تأمین انرژی توسط DGدر ساعات پیک از هزینه خرید انرژی از شبکه در این ساعات کمتر باشد، میتوان از این تولیدات جهت کاهش هزینههای تأمین انرژی الکتریکی استفاده نمود. در این حالت DGدر حدود 200 تا 3000 ساعت در سال به تأمین انرژی الکتریکی موردنیاز مصرفکنندگان میپردازد. ویژگیهای اساسی این تولیدات جهت استفاده در شبکه بدین‌صورت عبارت است از: پایین بودن هزینه نصب و راهاندازی،راهاندازی و اتصال سریع و پایین بودن هزینههای مربوط به تعمیر و نگهداری.
پشتیبانی شبکه: استفاده از تولید پراکنده قابلیت کاهش هزینههای سرمایهگذاری در سایر بخشها ازجمله تقویت ولتاژ شبکه، کاهش تلفات خطوط، کنترل توان راکتیو، آزادسازی ظرفیت خطوط انتقال و افزایش ظرفیت اضطراری شبکه را دارا میباشد.
تغذیه بارها بهصورت جداگانه از شبکه برای مناطقی که هزینه اتصال آنها به شبکه به دلیل موانع طبیعی بالا بوده و صرفه اقتصادی ندارد.
تعویق هزینههای احداث و توسعه شبکه: در این حالت با آنالیز و بررسی تولیدات پراکنده و هزینهها در طول دوره بهرهبرداری و مقایسه با توسعه شبکه، روش مناسب جهت توسعه شبکه ارائه میگردد.
کاهش آلودگیهای زیستمحیطی با استفاده از تولیدات مبتنی بر انرژیهای تجدیدپذیر و بالا بودن راندمان و آلودگی کمتر در تولیداتی که از سوختهای فسیلی استفاده میکنند.
تأمین خدمات جانبیموردنیاز جهت بهرهبرداری شبکه: در شبکههای قدرت تجدید ساختار یافته، قابلیت ارائه خدماتی همچون ذخیره چرخان، ذخیره تکمیلی و راهاندازی شبکه، دارای اهمیت زیادی میباشند[24].
بهبود کیفیت برقرسانی: حضور منابع تولیدات پراکنده در نزدیکی مراکز مصرف میتواند تأثیرات مثبتی بر روی قابلیت اطمینان و کاهش تعداد و تداوم مدت‌زمان خاموشیهای مصرفکنندگان و همچنین افزایش کیفیت برقرسانی به مراکز بار با بهبود پروفیل ولتاژ در نقاط مصرف داشته باشد.
2-2-2- ظرفیت تولیدات پراکندهحداکثر ظرفیت منابع تولید پراکنده را نمیتوان به‌طور دقیق مشخص نمود. به‌عنوان مثال EPRIظرفیت این تولیدات را از چند کیلووات تا چند مگاوات تعریف میکند[3]. نکتهای که در اینجا حائز اهمیت است این است که حداکثر ظرفیتی را که میتوان به یک شبکه متصل نمود وابسته به میزان ظرفیت شبکه و سطح ولتاژ میباشد؛ برای مثال تولیدات با ظرفیت بیش از 100 تا 150 مگاوات را نمیتوان به شبکههای با سطح ولتاژ کمتر از 110 کیلوولت متصل نمود[22]. در جدول زیر یک تقسیم‌بندی از واحدهای DGبر اساس ظرفیت تولیدی آن‌ها ارائه شده است.
جدول (2-1) تقسیم‌بندی DG بر اساس ظرفیت تولیدتوان تولیدی نوع مولد DG
W1-kW5 Micro
kW5-MW5 Small
MW5-MW50 Medium
MW50-MW300 Large
2-2-3- مکان نصب تولیدات پراکندهعموماً منابع تولید پراکنده را در شبکههای توزیع و در نزدیکی مصرفکنندگان نصب میکنند. یکی از مکانهای دیگر که برای نصب تولیدات پراکنده استفاده میشود، پستهای فوق توزیع میباشند. در این صورت نیاز به ایجاد یک مکان جدید برای نصب DGها دیگر وجود ندارد و همچنین به علت حضور اپراتور در پستهای فوق توزیع، بهرهبرداری منابع تولید پراکنده راحتتر و با هزینه کمتری صورت میگیرد.
2-3- تکنولوژی‌های DGمولدهای DG دارای انواع گوناگونی می‌باشند. از متداول‌ترین واحدهای DG می‌توان به توربین‌های احتراقی، دیزل ژنراتورها، میکرو توربین‌ها، وسایل ذخیره‌ساز انرژی، توربین‌های بادی، انرژی بیوماس، پیل‌های سوختی و سلول‌های فتوولتاییک اشاره کرد. البته هر نوع تکنولوژی DG برای کاربردی خاص و در محلی می‌تواند مورد استفاده قرار گیرد. به‌عنوان‌مثال از انرژی باد در مناطقی که بادخیز هستند، می‌بایستی استفاده کرد .
این تکنولوژی‌ها را می‌توان به سه دسته کلی تقسیم‌بندی نمود:
مولدهایی که بر اساس سوخت‌های فسیلی کار می‌کنند. این دسته شامل توربین‌های احتراقی، دیزل ژنراتورها و میکرو توربین‌ها می‌باشد.
مولدهایی که با استفاده از انرژی‌های تجدیدپذیر کار می‌کنند. این دسته نیز شامل توربین‌های بادی، سلول‌های خورشیدی، مولدهای انرژی امواج، زمین‌گرمایی و بیوماس می‌باشد.
تکنولوژی‌هایی که براساس ذخیره‌سازی انرژی استوارند. این دسته نیز شامل خودروهای برق ده قابل اتصال به شبکه، باتری‌ها، چرخ‌های طیار، ذخیره‌سازهای انرژی ابررسانای مغناطیسی (SMES)خازن‌ها، ذخیره‌سازهای انرژی با فشرده‌سازی هوا (CAES)، سلول‌های سوختی و هیدرو پمپ‌ها می‌باشد.در جدول (2-2) انواع مختلفی از تکنولوژی‌های DG همراه با محدوده ظرفیت تولید توان آن‌ها آورده شده است.
2-3-1- بررسی انواع تکنولوژی‌های DGدر ادامه به‌اختصار به بررسی برخی از تکنولوژی‌های مهم این‌گونه مولدها پرداخته شده است.در مرجع [18 و24] نوعی طبقه‌بندی در مورد منابع DGصورت گرفته است که به شرح زیر می‌باشد‌. عناصر عنوان شده در این طبقهبندی به‌عنوان نمونه ذکر گردیده و هدف دسته‌بندی مولدهاست ولی ازنظرگوناگونی مولدها چندان کامل نیست.
جدول (2-2) برخی از تکنولوژی‌های DG و ظرفیت قابل دسترستکنولوژی‌هایDG ظرفیت قابل‌دسترس
توربین گازی سیکل ترکیبی 35-400MW
موتورهای احتراق داخلی 5kW-10MW
توربین احتراقی 1-250MW
میکرو توربین 35kW-1MW
هیدرو کوچک 1-100MW
میکرو هیدرو 25kW-1MW
توربین بادی 200W-3MW
آرایه فتوولتاییک 20W-100kW
حرارتی خورشیدی( دریافت‌کننده مرکزی ) 1-10MW
حرارتی خورشیدی(سیستم لوتز) 10-80MW
بیوماس 100kW-20MW
پیل سوختی(phosacid) 200kW-2MW
پیل سوختی(molten carbonate) 250kW-2MW
پیل سوختی(proton exchange) 1kW-250kW
پیل سوختی(solide oxide) 250kW-5MW
زمین‌گرمایی (ژئوترمال) 5-100MW
انرژی امواج 100kW-1MW
موتورهای استرلینگ 2-10kW
ذخیره ‌سازی باتری 500kW-5MW
نمونه انواع فناوری‌های DG
ژنراتورهای مرسوم
میکروتوربینها
توربینهای گاز طبیعی
ژنراتورهای غیر مرسوم
طرحهای الکتروشیمیایی
سیستمهای ذخیره انرژی
سیکل ترکیبی
سیکل
بهبود یافته
سیکل
ساده
انرژیهای تجدیدپذیر
چچرخ طیار
باتری‌ها
سلولهای


سوختی
توربینهای بادی
DMFC
SOFC
MCFC
PAFC
AFC
PEMFC
سیستمهای فتوولتاییک

شکل (2-1) : طبقه‌بندی مولدهای DG2-3-1-1- ژنراتورهای مرسومدر این ژنراتورها اساس کار استفاده از سوخت‌های فسیلی است و معمولاً مولد توسط یک موتور سوختی ( دیزل، گاز یا بخار) راه‌اندازی شده و تولید توان می‌کند. از این نوع ژنراتورها بیشتر در کارخانه‌ها و مراکز مهم به‌عنوان برق اضطراری استفاده می‌شود که می‌توان به‌راحتی در قالب قرارداد فروش انرژی با مشترک به‌طور تمام وقت یا در ساعاتی از روز برای جبران پیک‌بار استفاده کرد. زیرگروه این مجموعه عبارت است از:
موتورهای احتراق داخلیموتورهای پیستونی به‌صورت گسترده برای انواع ژنراتورهای توزیع استفاده می‌شوند. پیش‌بینی می‌گردد این موتورها در آینده، به‌ویژه برای ژنراتورهای کوچک‌تر از 250 کیلووات، به خاطر عملکرد رضایت‌بخش آن‌ها، استفاده بیشتری داشته باشند. این موتورها از گازوییل، گاز طبیعی، پروپان یا متان به‌عنوان سوخت استفاده می‌کنند.
دو روش مختلف برای احتراق سوخت در موتورهای پیستونی وجود دارد، یکی از این روش‌ها احتراق جرقه‌ای است که در آن از یک جرقه الکتریکی که به داخل سیلندر وارد میگردد، استفاده می‌شود. در روش دوم که احتراق تراکمی می‌باشد، سیلندر با بالا رفتن خود مخلوط سوخت و هوا را متراکم می‌کند تا جایی که درجه حرارت آن تا حدی بالا می‌رود که خودبه‌خود منفجر می‌شود. در چنین موتورهایی، روتور ژنراتور معمولاً در همان سرعت میل‌لنگ موتور می‌چرخد، تقریباً همه واحدهای DG موتور پیستونی از ژنراتورهای AC سرعت ثابت، برای تولید برق استفاده می‌کنند، اگرچه ممکن است استثنائاتی نیز در این زمینه وجود داشته باشد. فرکانس جریان نیز اغلب با کنترل سرعت موتور، کنترل می‌شود.
توربین‌های گازیتوربین‌های گازی که به‌عنوان واحدهای DGمورداستفاده قرار می‌گیرند، کوچک‌تر از توربین‌های گازی‌ای هستند که در شبکه انتقال مورداستفاده قرار می‌گیرند و توان خروجی آن‌ها پایین است. قسمت‌های اصلی یک توربین گازی درواقع شامل کمپرسور، اتاق احتراق، توربین انبساط و مجرای گاز خروجی می‌باشد. مکانیزم عملکرد توربین‌های گازی به‌این‌ترتیب است که هوا با عبور از کمپرسور فشرده شده سپس تحت شرایط کنترل شده در اتاق احتراق با سوخت ترکیب می‌شود و پس از احتراق باعث گردش توربین و درنهایت باعث تولید توان الکتریکی از طریق ژنراتور سنکرون می‌شود[19و21].
میکرو توربین‌ها
میکرو توربین‌ها شامل یک کمپرسور،احتراق گر،برگشت دهنده، توربین کوچک ویک ژنراتور می‌باشند. در سیستم روان‌سازی آن‌ها از هوا یا روغن استفاده می‌شود.درمقیاس حجمی،میکرو توربین‌ها دارای حجم1-4/0 مترمکعب وظرفیت تولید 500-20کیلووات دارند.برخلاف توربین‌های بزرگ، میکرو توربین‌ها درفشارودرجه حرارت پایین‌تری کارمی‌کنند وسرعت بالایی در حدود (rpm100000)دارندکه گاهی نیازبه هیچ جعبه‌دنده‌ای ندارند.واحدهای تجاری میکرو توربین‌ها دارای هزینه تولید کمی بوده و از قابلیت اطمینان بالایی برخوردارمی‌باشند. به دلیل سرعت بالای میکرو توربین‌ها در آن‌ها از ژنراتورهای DC استفاده می‌گردد.مکانیزم عملکرد میکرو توربینبه‌این‌ترتیب است که هوا با عبور از فیلتر و کمپرسور در محفظه احتراق با سوخت ترکیب شده و محترق می‌گردد و سپس توربین به گردش درآمده و ژنراتور توان الکتریکی تولید می‌نماید. توان تولید شده توسط مبدل‌های توان به شبکه تزریق می‌شود. انواع مختلفی ازمیکرو توربین‌هابراساس نحوه عملکردشان وجود دارد،مانند توربین‌های گازی وتوربین‌های احتراقی.
توربین‌های گازی،درواقع، توربین‌های احتراقی می‌باشند که گاز بافشار ودمای بالاتولید می‌شود. این گازفشاربالا،برای چرخانیدن محورتوربین استفاده می‌گردد.توربین‌های ازنوع گازی معمولاً در واحدهایی باظرفیت حدود MW1استفاده می‌شوند. اما امروزه مدل‌های کوچک‌تری ازمیکرو توربین‌های گازی باظرفیت تولید kW200وجود دارند.
گرمای تولید شده درفرایند کاری میکرو توربین، می‌تواند به‌عنوان گرمای بازیافتی برای سیستم‌های CHPمورداستفاده قرارگیردو یااینکه درسیستم ترکیبی واحد پیل‌های سوختی باتوربین‌ها به کار گرفته شود.
2-3-1-2- ژنراتورهای غیرمرسومپیل‌های سوختیدر حال حاضر تهیه انرژی ثانویه در جهان به میزان زیادی به احتراق سوخت‌های فسیلی وابسته است، لیکن احتراق سوخت‌های فسیلی با بازدهی نسبتاً کمی صورت می‌پذیرد و گازهای حاصل از احتراق از عوامل آلودگی محیط‌زیست محسوب می‌شوند. بنابراین بشر سالیانی است که در جستجوی روش‌ها و توسعه فن‌آوری‌های جدیدی است، تا با بازدهی بیشتر و آلودگی کمتری از منابع انرژی سوخت‌های فسیلی استفاده نماید. پیل سوختی یکی از تکنولوژی‌های بدیع و نوظهوری است که از تطابق و سازگاری خوبی با محیط‌زیست برخوردار میباشد و عمل تبدیل انرژی در آن با بازدهی بالا صورت می‌پذیرد و به نظر می‌رسد که در آینده نزدیک با توجه به پیشرفت سریع فن‌آوری آن‌ها، جانشینی مناسب برای فرآیندهای احتراقی سوخت‌های فسیلی گردد.
استفاده از پیل‌های سوختی نقطه عطفی در صنعت تولید انرژی به حساب می‌آید، زیرا که تولید الکتریسیته در آن به‌طور مستقیم و از طریق فعل‌وانفعالات الکتروشیمیایی و بدون نیاز به احتراق سوخت صورت می‌گیرد، علاوه بر بازدهی بالا و تولید انرژی در ابعاد کوچک و بزرگ دارای مزایای ویژه‌ای چون آلودگی اندک و سروصدای نامحسوس می‌باشند.
اساس کار سلول سوختی استفاده از هیدروژن جهت تولید توان است و با استفاده از خاصیت الکترولیز عمل تولید توان الکتریکی شکل می‌‌گیرد.
از مهم‌ترین مزیت‌های این سلول‌ها راندمان بسیار بالای آن‌ها است که در میان دیگر مولدهای برق از بالاترین بازده برخوردار است. این سلول‌ها در پنج نوع طبقه‌بندی شده است که در شکل (2-1) آمده است. پیل‌های سوختی علاوه بر تولید الکتریسیته، حرارت موردنیاز برای مصارف گرمایشی را نیز تأمین می‌نمایند. بطوریکه با در نظر گرفتن تولید مشترک الکتریسیته و حرارت، بازدهی این سیستم‌ها به حدود %80 درصد می‌رسد. اجزاء اصلی تشکیل‌دهنده پیل سوختی در کل عبارت است از: مخزن سوخت، الکترولیت و الکترودهای آند و کاتد.
سوخت با ورود به الکترود متخلخل آند و برخورد با یک کاتالیست اکسیدکننده، الکترون از دست می‌دهد و یونیزه می‌گردد و اکسیژن (هوا) نیز با ورود به الکترود متخلخل کاتد و برخورد با کاتالیست احیاء کننده، احیاء می‌گردد. الکترون آزاد شده از آند از طریق یک مدار خارجی از آند به‌طرف کاتد جریان پیدا می‌کند و یک جریان الکتریکی DC ایجاد می‌کند [23].
2-3-1-3- وسایل ذخیره انرژیسیستم‌های ذخیره‌ساز انرژی که برای استفاده در DG مناسب باشند به دو گروه اصلی تقسیم می‌گردند: ذخیره انرژی به‌عنوان انرژی الکتریکی (مثل باتری‌ها) و یا ذخیره انرژی به صورت‌های دیگر (مثل ذخیره‌سازی حرارتی و ...) به روشی که در مواقع لازم به برق تبدیل می‌گردد. اساساً این سیستم‌ها،ذخیره کننده انرژی ساعات کم‌باری برای ساعات پرباری هستند و به‌خودی‌خود مولد برق نیستند و یا به‌عنوان یک تخلیه کننده انرژی عظیم برای جلوگیری از ناپایداری شبکه و اعمال اینرسی به شبکه کاربرد دارند که در اینجا شرح مختصریاز هر نمونه آورده شده است.
ازجمله واحدهای ذخیره‌ساز انرژی می‌توان ابررساناها،‌ سوپر خازن‌ها،‌ هیدرو پمپ‌ها،‌ چرخ‌های طیار و ... اشاره کرد. این واحدها بیشتر در مواقع پیک‌بارمورداستفاده قرار می‌گیرند [23].در این پایاننامه از خودروهای برق ده قابل اتصال به شبکه در بحث برنامهریزی بهرهبرداری استفاده شده است.
الف) باتری‌هابه نظر می‌آید اولین روش برای ذخیره انرژی الکتریکی استفاده از باتری‌ها باشد که انرژی را به‌صورت انرژی شیمیایی ذخیره می‌کنند. باتری‌ها در ساعت کم‌باری توسط توان مازاد شبکه شارژ می‌شوند و در ساعات پرباری به کمک مولدهای شبکه می‌آیند و از افت ولتاژ و کاهش توان شبکه جلوگیری می‌کنند. سیستم باتری‌ها به‌طورکلی ساده‌تر از دیگر سیستم‌های ذخیره‌ساز انرژی می‌باشد، هرچند که خروجی آن‌هابه‌صورتDC می‌باشد، بنابراین در کاربردهای DG همواره با مبدل DC/AC استفاده می‌شوند. باتری‌ها دارای انواع مختلفی می‌باشند که هرکدام دارای ویژگی‌های خاص خود هستند. ازجمله آن‌ها می‌توان به باتری‌های اسید- سرب،‌ هیدرید فلز-نیکل،‌باتری‌های لیتیم، باتری‌های آل کالین و نیکل-کادمیوم و سولفات سدیم اشاره کرد. پرکاربردترین و تجاری‌ترین نوع باتری‌ها از نوع اسید- سرب می‌باشد.
ب) ذخیره‌سازی انرژی مغناطیسی ابررساناسیستم‌های ذخیره‌سازی انرژی مغناطیسی ابررسانا، انرژی را در یک کویل مغناطیسی ابررسانا غوطه‌ور در یک مایع بسیار سرد مانند هلیم، ذخیره می‌کنند. کویل‌های مغناطیسی ابررسانا تقریباً هیچ‌گونه مقاومت الکتریکی ندارند، بنابراین یک جریان چرخشی ایجاد شده در درون کویل، انرژی موردنیاز را ذخیره خواهد کرد. هر سیم ابررسانا خاصیت ابررسانایی خود را تا جایی که جریان از یک حد خاصی تجاوز نکند، حفظ خواهد کرد. بنابراین یک کویل می‌تواند ماکزیمم توانی را در خودش ذخیره کند. به‌هرحال یک واحد ذخیره‌سازی انرژی مغناطیسی ابررسانا نیاز به یک دستگاه کمپرسور و پمپ برای نگهداری مایع خنک‌کننده در یک درجه حرارت پایین دارد، این واحدها نوعاً نیاز به یک مبدل DC/AC نیز دارند.
مشکل بزرگ آن‌ها بالا بودن هزینه آن‌هاست، هزینه ذخیره‌سازی انرژی در آن‌ها حدود $/kWhr3800-2500 می‌باشد که 20 برابر هزینه باتری‌های اسید ـ سرب می‌باشد، این هزینه در اکثر حالت‌های DG قابل توجیه نمی‌باشد. سیستم‌های ذخیره‌سازی انرژی مغناطیسی ابررسانا دارای چندین فایده می‌باشند، اول اینکه این سیستم‌ها بدون سروصدا، کارا و قابل‌اطمینان می‌باشند، دوم اینکه این واحدها می‌توانند انرژی ذخیره شده خود را به‌طور آنی تخلیه کنند.
بنابراین عملکرد آن‌ها خیلی نزدیک به منبع جریان ایده‌ال می‌باشد و درنهایت اینکه کیفیت توان تولیدی آن‌ها بسیار بالا می‌باشد و همین ویژگی می‌تواند در بعضی جاها هزینه بالای آن‌ها را توجیه کند. [19 و 21].
ج) خازن‌هاخازن‌ها می‌توانند به‌عنوان واحد ذخیره‌ساز انرژی در کاربردهای کوچک و کوتاه‌مدت و پایدارساز انرژی بکار برده شوند زیرا این‌ها تنها در حدود 01/0 تا 04/0 قدرت باتری‌های اسید- سرب را در خود ذخیره می‌کنند؛ اما خازن‌های ابررسانا که قابلیت ذخیره‌سازی انرژی در حدود 20 تا 1000 برابر خازن‌های قدیمی را دارند، از مواد جدید و با روش‌های جدید ساخته می‌شوند.
این خازن‌ها برای یک مقدار معادل از انرژی دارای هزینه سه تا ده برابر باتری‌های اسید - سرب خواهند بود. سودمندی‌های بزرگی که خازن‌ها را مناسب برای استفاده در DG می‌سازد این است که آن‌ها هیچ‌گونه قسمت متحرک ندارند، همچنین نیاز به هیچ‌گونه گرمایش یا سرمایش ندارند و برای عملکرد خود هیچ‌گونه واکنش شیمیایی انجام نمی‌دهند، به‌عبارت‌دیگر خازن‌ها بسیار ساده بوده و نیاز به هیچ‌گونه نگهداری خاصی ندارند، طول عمر آن‌ها نیز زیاد می‌باشد. درحالی‌که چگالی انرژی آن‌ها نسبتاً پایین است چگالی توان آن‌ها نسبتاً بالاست، به همین دلیل خازن‌ها می‌توانند انرژی خود را به‌صورت لحظه‌ای آزاد نمایند.
د) چرخ‌های طیارذخیره‌سازهای چرخ طیار یک روش کاملاً متفاوت برای ذخیره‌سازی انرژی استفاده می‌کنند.همان‌گونه که می‌دانیم یکی از پارامترهای مهم پایداری شبکه‌ها داشتن اینرسی بزرگ در شبکه است تا بتواند پاسخ‌گوی ورود و خروج بارهای سنگین از شبکه باشد. ازاین‌رو در شبکه‌های محلی DG که به نیروگاه‌های بزرگ و شبکه‌های سراسری متصل نیستند استفاده از چرخ‌های طیار بسیار قوی و پرانرژی جهت تأمین اینرسی شبکه لازم است تا در لحظات افزایش توان مصرفی و حالات گذاری مدار به‌عنوان یک ذخیره انرژی رها شده از پدیده فروپاشی ولتاژ جلوگیری کند.
دو نوع تکنولوژی از چرخ‌های طیار مورداستفاده قرار می‌گیرند، سیستم چرخ طیار سرعت بالا که نسبتاً دارای چرخ‌های کوچکی بوده (با قطر 6 اینچ) و در یک سرعت حدود 50000 دور بر دقیقه می‌چرخند این واحدها در شکل مدول‌های قرقره مانند ساخته می‌شوند.
چرخ‌های طیار سرعت پایین معمولاً در سرعتی حدود rpm7000 می‌چرخند و نسبتاً بزرگ می‌باشند، معمولاً چگالی انرژی آن‌ها 5 برابر (یا حتی بیشتر) باتری‌های اسید ـ سرب است. چرخ‌های طیار به‌طور کامل تکنولوژی تجاری تثبیت‌شده‌ای نمی‌باشند. این سیستم‌ها تعدادی برتری نسبت به خازن‌ها و باتری‌ها دارند. مشابه باتری‌ها و خازن‌ها، چرخ‌های طیار بی‌صدا بوده، شبیه خازن‌ها دارای طول عمر بالایی هستند؛ اما برخلاف باتری‌ها از تأثیر سیکلینگ بر طول عمر مبرا هستند و برخلاف خازن‌ها چگالی انرژی بالایی دارند. سیستم‌های چرخ طیار نسبتاً چگالی توان ضعیفی دارند، بنابراین از رهاسازی سریع انرژی ناتوان می‌باشند، این سیستم‌ها از این نقطه‌نظر نسبت به ابررساناها، باتری‌ها و خازن‌ها کند می‌باشند. قابلیت توان خروجی این سیستم‌ها متناسب با اندازه ژنراتور- موتور و سیستم مبدل/کنترل الکترونیکی است. سیستم مبدل/کنترلر و ژنراتور- موتور قسمت عمده‌ای از هزینه‌های مربوط به چرخ‌های طیار سرعت پایین را به خود اختصاص می‌دهد [19 و 22].
ﻫ) هیدرو پمپ‌هاهیدرو پمپ‌ها ذخیره‌ساز انرژی در ایستگاه‌های مرکزی تولید برق برای اصلاح پیک‌بار می‌باشند. توان اضافی در مواقع غیر پیک‌بار، برای پمپ کردن آب به ارتفاع بلندی استفاده می‌شود و در زمان پیک‌بار و در صورت نیاز، آب از طریق لوله‌هایی پایین آمده و یک توربین - ژنراتور را بکار می‌اندازد. واحدهای هیدرو پمپ خیلی ساده بوده و دارای طول عمر بالایی هستند اما بازدهی آن‌ها بالا نمی‌باشد. سیستم‌های هوا متراکم نیز از توان در مواقع غیر پیک برای بکار انداختن یک کمپرسور استفاده می‌کنند تا اینکه هوا را به داخل یک تانک در فشار بالایی وارد کنند و سپس در مواقع ضروری هوای تحت فشار را در یک توربین یا پیستون برای تولید برق استفاده می‌کنند. به‌طورکلی هر دو این واحدها برای کاربرد در واحدهای DG بزرگ می‌باشند.
2-3-1-4 مولدهای برق با استفاده از انرژی‌های تجدید پذیر
انرژی‌های تجدیدپذیرکاربردهای بسیار وسیعی دارد و به اشکال مختلف می‌توان در تأمین توان الکتریکی از آن‌ها استفاده کرد:توربین‌های بادیاستفاده از انرژی باد چیز تازه‌‌ای نیست در گذشته‌‌های دور کشتی‌های بادبانی را به کمک انرژی باد به حرکت درمی‌آورند و همین‌طور آسیاب‌های بادی نمونه‌های بارز استفاده از انرژی باد در گذشته می‌باشد. توربین‌های بادی ازنظر شکل ظاهری به دودسته تقسیم می‌شوند که نوع اول عمومیت بیشتری دارد:
توربین‌های با محور افقی:که متشکل از یک‌پایه یا برج می‌باشند و یک قسمت فوقانی برج که دارای یک شفت است و در قسمت بیرون برج بر روی شفت یک پروانه که معمولاً دو باله یا سه باله دارد بر روی آن قرارگرفته و طول باله‌ها از 10 تا 30 متر می‌رسد که بستگی به توان توربین بادی و ارتفاع برج دارد در قسمت داخلی بالای برج بر روی سر دیگر محور جعبه‌دنده و محرک ژنراتور قرار دارد.توربین‌های با محور عمودی: مولد این توربین‌ها معمولاً بر روی سطح قرار می‌گیرد و محورآن‌هابه‌صورت عمودی از آن‌هاخارج‌شده و تا ارتفاع مناسب بالا می‌رود در قسمت فوقانی این محور پره‌های توربین به شکلی که باد بتواند عامل چرخش آن شود قرار دارند.
توربین‌های بادی می‌توانند به‌صورت اختصاصی و یا در مزارع بادی در کنار توربین‌های دیگر تأمین توان الکتریکی نمایند. گاهی با استفاده از این توربین‌ها در کنار فتوولتاییک‌ها و با استفاده از باطری خانه‌ها می‌توان به‌طور کامل انرژی یک محل را تأمین کرد.
توربین‌های بادی در مقیاس‌ها و کاربردهای مختلفی به کار می‌روند، از مزارع بادی با تعداد توربین‌های زیاد که به شبکه متصل هستند تا توربین‌های منفردی که ممکن است به شبکه وصل نباشند و یا توربین‌هایی که برای پمپاژ آب مورداستفاده قرار می‌گیرند. با توجه به مورد کاربرد، راستای محور و ظرفیت تولید، توربین‌ها دارای ساختارهای متفاوت ازنقطه‌نظر اجزا تشکیل‌دهنده و روش‌های کنترلی می‌‌باشند. اجزای اصلی توربین‌های بادی عبارت‌اند از: روتور، جعبه‌دنده، محور کم‌سرعت، محور سرعت‌بالا، ژنراتورها، بدنه، سیستم ترمز، سیستم انحراف توربین به چپ و راست (سیستم گرداننده)، بادنما و بادسنج، سیستم کنترل و ایمنی، برج و سایر اجزا. در این پایاننامه در بین منابع تجدید پذیر از منابع بادی استفاده میگردد.
سیستم‌های فتوولتاییکولتاژ در سلول‌های فتولتاییک توسط یک پیوند شیمیایی ناشی از برخورد فوتون‌های نور به دست می‌آید. در سیستم‌های فتوولتاییک بدون بهره‌گیری از مکانیزم‌های متحرک، انرژی خورشیدی به انرژی الکتریکی تبدیل می‌گردد. جزء اساسی نیروگاه‌های فتوولتاییک را سلول‌های فتوولتاییک تشکیل می‌دهند. این سلول‌ها تازمانی که در مقابل نور خورشید قرار دارند مثل یک باتری کوچک تولید برق می‌کنند. با اتصال‌های سری و موازی تعداد زیادی از سلول‌ها واحدی بزرگ‌تر به دست می‌آید که آرایه خورشیدی نامیده می‌شود.
توان الکتریکی به دست آمده از آرایه خورشیدی به دلیل تغییر شرایط محیط ازلحاظ دما و شدت نور همواره دارای نوسان است. سلول‌های فتوولتایی زمانی بیشترین راندمان را دارند که بهترین حالت قرار گرفتن نسبت به خورشید را داشته باشند و حداکثر توان را جذب نمایند [19 و 22].
سیستم‌های حرارتی ـ خورشیدیعلاوه بر سلول‌های فتولتاییک که مستقیماً نور را به توان الکتریکی تبدیل می‌کنند سیستم‌های خورشیدی دیگری نیز از قبیل سیستم‌های حرارت خورشیدی وجود دارند که اساس این روش‌ها استفاده از نور یا گرمای خورشید به‌عنوان یک عامل محرک جهت راه‌اندازی مولدهاست. امروزه پنج نوع از این نیروگاه‌ها شناخته‌شده‌تر می‌باشند:
- نیروگاه‌های خورشیدی هلیواستاتی (دریافت‌کننده مرکزی)
- نیروگاه‌های با آینه‌های سهموی دراز
- برج‌های نیرو (دودکش خورشیدی)
- نیروگاه‌های با استخر آب‌شور (استخر خورشیدی)
- دریافت‌کننده مرکزی آینه‌های شلجمی (بشقابی ـ استرلینگ)
نیروگاه‌هایی که با فن‌آوری‌های دریافت‌کننده مرکزی و آیینه‌های شلجمی ـ موتورهای استرلینگ نصب شده‌اند، دارای بازدهی معادل 25-15 درصد برای تبدیل انرژی خورشیدی به برق هستند. نیروگاه‌های دودکش و استخر خورشیدی، به دلیل کارکرد قابل‌اطمینان و نصب ساده قسمت‌های اصلی آن‌ها، به‌خصوص برای کشورهای درحال‌توسعه مناسب هستند.
در نیروگاه‌های حرارتی ـ خورشیدی نیز به دلیل طبیعت انرژی خورشیدی امکان تولید برق مستمر و بدون وقفه برای مصرف‌کنندگان، با محدودیت‌هایی روبرو می‌باشد. این محدودیت‌ها با در نظر گرفتن سیستم پشتیبان و احیاناً سیستم ذخیره‌ساز انرژی گرمایی قابل‌حل است.
برای تأمین بدون وقفه برق مصرف‌کنندگان، امکان پیوند سیستم‌های پشتیبان سوخت فسیلی با چرخه نیروگاه‌های حرارتی ـ خورشیدی از نوع آینه‌های سهموی دراز، هلیواستاتی و آینه‌های شلجمی وجود دارد. برای پاسخ سریع به تغییرات طبیعی انرژی خورشیدی، سیستم‌های پشتیبان فقط از نفت یا گاز طبیعی به‌عنوان سوخت استفاده می‌کنند [1 و 18 و 19].مولدهای انرژی بیوماسمنابع بیوماسی که برای تولید انرژی مناسب هستند، طیف وسیعی از مواد را شامل می‌شوند. این مواد، چوب‌های سوختی جمع‌آوری شده از مزارع و جنگل‌های طبیعی تا محصولات کشاورزی و جنگلی بخصوص آن‌هایی که برای تولید انرژی رشد داده شده‌اند و همچنین ضایعات کشاورزی و جنگلی، ضایعات غذایی و ضایعات حاصل از فرآوری تیرهای چوبی، ضایعات جامد شهری و فاضلاب‌ها تا گیاهان آبی را شامل هستند. تکنولوژی‌های تبدیل بیوماس به سه دسته اساسی فرایندهای احتراق مستقیم، فرایندهای ترموشیمیایی و فرایندهای بیوشیمیایی تقسیم می‌شوند.
منابع بیوماس، از طریق احتراق مستقیم و یا از طریق تبدیل به سوخت‌های گازی و مایع، قابل‌استفاده برای تولید انرژی الکتریکی در نیروگاه‌های بخار، توربین‌های گازی و یا سیکل ترکیبی می‌باشند. برای ایجاد یک نیروگاه بیوماس، به‌خصوص از نوع ضایعات جامد شهری، اطلاع از میزان و ارزش گرمایی منبع بیوماس در دسترس بسیار حائز اهمیت است.
نیروگاه‌های بیوماس در سالیان اخیر بسیار متداول شده‌اند و امید آن می‌رود، که با پیشرفت تکنولوژی و افزایش بازدهی و کاهش میزان آلایندگی آن‌ها رقیبی جدی برای نیروگاه‌های بخار سوخت فسیلی گردند. نیروگاه‌های پیشرفته گازی بیوماس و سیکل ترکیبی نیز در حال گسترش و تثبیت موقعیت خود در بسیاری از کشورها هستند و جایگزینی قابل‌رقابت، ازنظر اقتصادی و حفظ محیط‌زیست، برای نیروگاه‌های سوخت فسیلی متداول محسوب می‌گردند [19 و 23].
مولدهای انرژی زمین‌گرماییانرژی گرمایی زمین، انرژی تجدید پذیری است که از حرارت مفید و قابل‌استخراج ناشی از گرمای گدازه‌ها و تخریب مواد رادیواکتیو موجود در اعماق زمین به دست می‌آید و این انرژی توسط بخار یا آب گرم به سطح زمین آورده می‌شود. انرژی گرمایی معمولاً به 4 دسته تقسیم می‌شود، که عبارت‌اند از: هیدروترمال، لایه تحت‌فشار، تخته‌سنگ‌های خشک و داغ و گدازه‌های آتش‌فشانی می‌باشند. گرچه مشخصات فیزیکی هر یک از آن‌ها متفاوت است اما صرف‌نظر از اقتصادی بودن، هر یک از آن‌ها توانایی تولید برق را دارا می‌باشند.
بین انواع مختلف انرژی زمین‌گرمایی، انرژی هیدروترمال بیش از سایر منابع توسعه پیدا کرده است و تنها نوعی است که به علت قیمت قابل‌رقابت آن کاربرد تجاری پیدا کرده است و این در حالی است که سایر سیستم‌ها در مرحله تست و آزمایش تجربی بسر می‌برند، هر چند دو نوع آخر به‌طور موفقیت‌آمیزی ازلحاظ فنی توجیه شده و به‌طور تجربی، استخراج انرژی از آن‌ها بهبود داده شده است. روش‌های مختلفی جهت تبدیل انرژی زمین‌گرمایی به انرژی الکتریکی وجود دارند، که به‌عنوان‌مثال می‌توان از سیستم‌های بخار خشک و بخار انبساط آنی که جزو روش‌های قدیمی می‌باشند و نیز سیستم‌های سیکل دو مداره و جریان کلی که روش‌های جدیدتری بوده و از امتیازات قابل‌توجهی برخوردارند، نام برد.2-3-2- مقایسه تکنولوژی تولید پراکندهاستفاده از هر یک از منابع تولید پراکنده با توجه به شرایط مصرفکننده و هزینه انرژی تولیدی متفاوت میباشد. اقتصادی بودن هر یک از طرحهای فوق بسته به هزینه سرمایهگذاری اولیه، راندمان، هزینه سوخت و هزینه تعمیرات و نگهداری میباشد. در جدول 2-3 مقایسه کلی برخی از منابع تولید پراکنده آمده است [18و 25].
جدول (2-3): مشخصات انواع تولیدات پراکندهنوع تکنولوژی موتور احتراق داخلی توربین گازی میکرو توربین پیل سوختی
نوع سوخت گاز طبیعی گاز طبیعی گاز طبیعی گاز طبیعی
طول عمر (سال) 20 20 10 10
مدت‌زمان راهاندازی سرد 10 ثانیه 10 دقیقه 5-2 دقیقه کمتر از 6 دقیقه
راندمان 37-30 37-22 28-23 46-30
2-3-3- قابلیت فنی تولیدات پراکندهمهمترین عامل در بررسی نصب تولیدات پراکنده، شناسایی ویژگیها و قابلیتهای فنی این منابع میباشد. در بیشتر موارد نیاز به نصب این منابع به‌گونه‌ای است که بایستی قابلیت کارکرد به‌صورت جدا از شبکه را نیز داشته باشند. در ضمن هر واحد تولید پراکنده بایستی قابلیت ارتباط، کنترل و فرمانگیری از اپراتور را داشته و ابزار لازم برای حفاظت، اتصال و سنکرونسازی با شبکه اصلی در آن در نظر گرفته شده باشد. در جدول 2-4 به برخی از مهمترین قابلیتهای فنی تولیدات پراکنده اشاره شده است.
جدول (2-4): مهمترین قابلیتهای فنی تکنولوژیهای تولید پراکندهنوع واحد تولیدقابلیت انعطاف در تولیدرزروکنترل ولتاژکنترل فرکانسقابلیت خود راه‌اندازی