Text of Final Project -فایل پروژه - ریسرچ-.Pdf)

-1-2-4 دادههای آموزشی و آموزش شبکه عصبی.48
-2-2-4 تست شبکه عصبی تخمینگر50
-3-4 نتایج 51...................................................................
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر53
-2-3-4 بررسی تحلیلی نتایج .89
فصل پنجم: نتیجهگیری و پیشنهادات ...97
ضمیمهها100
ضمیمهالف- طرحهای بکار گرفته شده برای شبیهسازی ژنراتور سنکرون101
ضمیمهب- نمودار پارامترهای بکار گرفته شده در شبیهسازی ژنراتور سنکرون..105
منابع و ماخذ.110
6
فهرست جدول ها
عنوان شماره صفحه
1-2 : مراتب مختلف مدلهای ژنراتور سنکرون 24
1-4 : فهرست پارامترهای دینامیکی ژنراتورهای سنکرون 38
2-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه فراوانی خطا 81
3-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه دامنه خطا 82

7
فهرست شکلها
عنوان شماره صفحه
: 1-1 نمای کلی فرایند ارزیابی و بهبود سیستمهای قدرت 3
: 1-2 مدارهای استاتور و روتور ماشین سنکرون 9
:2-2 مدار معادل ماشین بر اساس تئوری پارک 13
:3-2 توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار 18
:4-2 مدار معادل ژنراتور سنکرون در حالت ماندگار 19
:5-2 مدار معادل ماشین سنکرون در دوره گذرا 20
:6-2 مدار معادل ماشین سنکرون طی دوره زیر گذرا 20
:7-2 مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز 21
: 8-2 مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز 22
: :1-4 طرح کلی سلول عصبی انسان 32
:2-4 شکل کلی سلول عصبی مصنوعی 33
:3-4 ساختار شبکه عصبی توسعه یافته 33
:4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون 35
:5-4 آلگوریتم آموزش شبکه عصبی 36
:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی 37
:7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd" 39
:8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 39
:9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 40
:10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 40
:11-4 هیستوگرام خطای شبکه عصبی در مرحله تست 41
:12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 41
:13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 42

8
:14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 42
:15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 43
:16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 43
:17-4 هیستوگرام خطای شبکه عصبی در مرحله تست 44
:18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 44
:19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 45
:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 45
:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 46
:22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 46
:23-4 هیستوگرام خطای شبکه عصبی در مرحله تست 47
:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 47
:25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq" 48
:26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 48
:27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 49
:28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 49
:29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 50
:30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 50
:31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 51
:32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 51
:33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 52
:34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq" 52
:35-4 هیستوگرام خطای شبکه عصبی در مرحله تست 53
:36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 53
:37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 54
:38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 54
:39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 55
9
:40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 55
:41-4 هیستوگرام خطای شبکه عصبی در مرحله تست 56
:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 56
:43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td" 57
:44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 57
:45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 58
:46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 58
:47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 59
:48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 59
:49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 60
:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 60
:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 61
:52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 61
:53-4 هیستوگرام خطای شبکه عصبی در مرحله تست 62
:54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 62
:55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 63
:56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 63
:57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 64
:58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 64
:59-4 هیستوگرام خطای شبکه عصبی در مرحله تست 65
:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 65
:61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq" 66
:62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 66
:63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 67
:64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 67
:65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 68
10
:66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 68 :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 69 :68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 69 :69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 70 :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq" 70 :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست 71 :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 71 :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 72 :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 72 :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 73 :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 73 :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست 74 :78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 74 ض-:1 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 88 ناگهانی تحریک ض-:2 طرح شبیه سازی ژنراتور سنکرون متـصل بـه شـین بینهایـت بـا اغنـشاش 89 اتصالکوتاه درترمینال ژنراتور ض-:3 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 90 ناگهانی توان ورودی ض-:4 تغییرات مقادیر Xd بکار گرفته شده 92 ض-:5 تغییرات مقادیر Xd' بکار گرفته شده 92 ض-:6 تغییرات مقادیر Xd" بکار گرفته شده 92 ض-:7 تغییرات مقادیر Xq بکار گرفته شده 93 ض-:8 تغییرات مقادیر Xq" بکار گرفته شده 93 ض-:9 تغییرات مقادیر Xl بکار گرفته شده 93 ض-:10 تغییرات مقادیر Td' بکار گرفته شده 94 ض-:11 تغییرات مقادیر Td" بکار گرفته شده 94 11
ض-:12 تغییرات مقادیر Tq" بکار گرفته شده 94
ض-:13 تغییرات مقادیر Rs بکار گرفته شده 95
ض-:14 تغییرات مقادیر WR بکار گرفته شده 95
ض-:15 تغییرات مقادیر H بکار گرفته شده 95
12
چکیده پایاننامه:
این پروژه روشی نو را برای بکارگیری رؤیتگرهای شبکه عـصبی در جهـت شناسـایی و تعیـین پارامترهـای دینامیکی ژنراتورهای سنکرون با استفاده از اطلاعات بهرهبرداری ارائه کرده است. اطلاعات بهـرهبـرداری از طریق اندازهگیریهای بلادرنگ بعمل آمده در قبال اغتشاشات حوزه بهرهبرداری فراهم مـیشـود. دادههـای آموزشی مورد نیاز شبکه عصبی از طریق شبیهسازیهای غیرهمزمـان بهـرهبـرداری از ژنراتـور سـنکرون در محیط یک ماشین متصل به شین بینهایت فراهم شده است. مقـادیر نمونـه ژنراتورهـای سـنکرون در مـدل مذکور بکار گرفته شدهاند. شبکه آموزش دیده در قبال اندازهگیریهای بلادرنگ شبیهسازی شـده در جهـت تخمین پارامترهای دینامیکی ژنراتورهای سنکرون تست شده است. مجموعه نتایج بدست آمده نشان دهنـده قابلیتهای نوید بخش شبکه عصبی مصنوعی در حوزه تخمین پارامترهای دینامیکی ژنراتورهـای سـنکرون، بصورت بلادرنگ و با استفاده از اطلاعات بهرهبرداری میباشد. اگرچه برای دست یـابی بـه خطـای تخمـین قابل قبول در مسیر شناسایی کلیه پارامترهای دینامیکی ژنراتورهای سنکرون، پارهای اصلاحات ضروری بـه نظر میرسد. در نگاه کلّی این اقدامات تکامل بخش را میتوان به دو مجموعه: پیشنهادات مربوط به اصـلاح شبکه عصبی رؤیتگر در حوزه شبیهسازی و آموزش و بخش دیگر را به عنوان گامهای تکاملی تلقی نمود، که سازماندهی این گامها در مبادی ورودی و خروجی شبکه عصبی، زمینه مناسبتـری را بـرای بهـرهگیـری از قابلیتهای آن فراهم خواهد کرد.
کلید واژه:
ژنراتور سـنکرون، پارامترهـای دینـامیکی، شناسـایی بلادرنـگ، شـبکههـای عـصبی مـصنوعی، اطلاعـات بهرهبرداری
13
14
مقدمه:
در سالهای اخیر با پیشرفت سیستمهای کامپیوتری, سیستمهای هوش مصنوعی نیز متولد شده و رشد کرده است. یکی از سیستمهای هوش مصنوعی, شبکه های عصبی مصنوعی هستند. این شبکه ها به علت عواملی چون قطعیت در پاسخ, سادگی در اجرا, قابلیت انعطاف بالا و .... جایگاه ویژه ای را به خود اختصاص داده اند. با توجه به ساختار و کارکرد شبکه های عصبی مصنوعی و اهمیت تعیین پارامترهای دینامیکی اجزاء سیستمهای قدرت از جمله ژنراتورهای سنکرون, بهره گیری از شبکه های عصبی مصنوعی در این حوزه قابل طرح است. از طرف دیگی نتایج ارائه شده از بکار گیری این شبکه ها در حوزه های مشابه, کارکردهای نوید بخشی را نشان می دهد. با توجه به مراتب فوق این پروژه بر آنست تا با طراحی و اجرای طرح شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون با استفاده از شیکه عصبی مصنوعی, قابلیت های این سیستم را در حوزه شناسایی بلادرنگ پارامترهای دینامیکی ژنراتورهای سنکرون نیز بیازماید.
15
فصلاول:

کلیات
16
سیستم های قدرت متشکلند از مجموعه ای از مراکز تولید(نیروگاهها) که توسط شبکه های انتقال و توزیع و تجهیزات حفاظتی و کنترل آن به مراکز مصرف متصل می گردند. وظیفه اصلی یک سیستم قـدرت تولیـد و تامین انرژی الکتریکی مورد نیاز مصرف کنندگان با حفظ شرایط سه گانه:
-1 ارزانی قیمت انرژی
-2 کیفیت بالا
-3 امنیت تامین انرژی میباشد. مراد از امنیت، پیوستگی و تداوم در تولید و تامین انرژی می باشد. عوامل مؤثر در امنیـت عبارتنـد از:
-1 سرمایه گذاری اولیه (تجهیزات سیستم ) -2 روشها و امکانات نگهداری و تعمیرات سیستم قدرت.
همانگونه که در کلیه وسایل و سیستم های غیرالکتریکی همواره دو ویژگی ارزانـی و بـالا بـودن کیفیـت-
امنیت با یکدیگر متعارض و متقابل می باشند در مقوله انرژی الکتریکی و سیستم هـای قـدرت نیـز بهمـان گونه خواهد بود. امنیت یک سیستم قدرت در حقیقت درجه و میدان توانایی آن سیستم در مواجهه با حـوادث
اغتشاشات می باشد . امنیت کلی یک سیستم به دو زیر شاخه:
امنیت دینامیکی
امنیت استاتیکی
قابل تقسیم است. از توانایی سیستم قدرت برای حفظ و نگهداری خود در دوره وقوع اختلال (که خود از سـه دامنه فوق گذرا-گذرا-دینامیک تشکیل شده است) با عنوان امنیت دینامیکی تعبیر مـی گـردد. بـا توجـه بـه اهمیت بسیار زیاد امنیت سیستمهای قدرت، فرایند ارزیابی وبهبود آن همواره مورد توجه مهندسـین طـراح و بهرهبردار بوده، به قسمی که عملیات ارزیابی و بهبود امنیت سیستم های قدرت یکی از وظایف بسیار مهـم و اساسی مراکز کنترل و بهره برداری شبکه های قدرت می باشد. شکل کلی فرایند ارزیـابی و بهبـود سیـستم های قدرت در شکل1-1 بیان شده است. باتوجه به اهمیت امنیت در سیستم های قدرت و همچنین تغییرات مستمری که در حین عملیات بهره برداری 24 ساعته در شبکه اتفاق می افتد ضرورت دارد که دائماً از طرف بهره بردار، عملیات بهره برداری به شکلهای مختلف بر روی سیستم های قدرت اعمال گردد،اما با توجه بـه ویژگی بالا بودن امنیت نباید این عملیات بگونه ای باشدکه سبب بروز اغتشاش در رفتار سیستم و در نتیجـه نقض غرض گردد. از طرفی سیستم قدرت هر کشور منحصر بفرد بوده به قسمی که نمونه دومی نمی تـوان برای آن ایجاد نمود. بنابر این با توجه به ویژگی منحصر بفرد بودن سیستمهای قدرت و ضـرورت اجتنـاب از عملیات بهره برداری بررسی نشده، برای ارزیابی اولیه از نتایج عملیات بهره برداری و یا طراحی ضرورتاً مـی باید از یک نمونه مشابه سیستم قدرت استفاده نمود تا بتوان ابتداً نتایج مانورهای طراحی یا بهـره بـرداری را برآن آزمایش و در صورت اطمینان از بی خطر بودن، نتایج آن مانورها را بر شبکه واقعی اعمال نمود.
17

نمونه مشابه سیستم قدرت را شبیه ساز1 و عملیات آزمایشی بـرروی نمونـه مـشابه را محاسـبات و مطالعـات شبیه سازی2 گویند. فرایند شبیه سازی سیستمهای قدرت فارغ از اینکه دیجیتال باشد یـا آنـالوگ از مراحلـی بدین ترتیب تشکیل شده است:
_1 شناسایی اجزاء سیستم قدرت
_2 ساخت و یا استخراج معادلات حاکم بر اجزاء
_3 ترکیب اجزاء و یا معادلات آنها
_4 حل معادلات با روشهای ریاضی بوسیلهکامپیوتر
_5 استخراج نتایج که در این میان مدلسازی اجزاء سیستم قدرت که همان شناسایی و استخراج معـادلات حـاکم بـر اجـزاء آن
است یکی از قدم های اصلی این فرایند بشمار میرود. به بیان دیگر یک متخـصص شـبکه در روش کـاری خود اولویت بندی هایی دارد که اولین آنها رساندن انرژی الکتریکی تولیدی به مصرف کننده است، در مرحله
دوم به تامین امنیت شبکه اهتمام می ورزد. و نهایتاً تلاش خویش را در جهت بهبود هر چـه بیـشتر کیفیـت انرژی که به مصرف کننده تحویل داده می شود مصروف می دارد. اگر چه بسیاری از اقداماتی که در جهـت امنیت سیستم های قدرت انجام می شود کیفیت توان را نیز ارتقاء می دهد. تامین امنیت سیستم خود شـامل مراحل و اولویتهایی است که اولین گام آن را مقاوم سازی و پایدار سازی شبکه در حالت های گذرا می باشد

1-simulator 2-simulation
18
و دومین گام شامل پایدار سازی دینامیکی شبکه می شود. از دیدگاه فرکانسی می توان حالت هـای گـذرا در شبکه را با نوسانات فرکانس بالا و حالت های دینامیکی آن را با نوسانات فرکانس پایین معرفی کرد. در اکثر شبکه های دنیا خاصه با پیچیده شدن شبکه ها پدیده نوسانات فرکانس پایین مشاهده شده است. ژنراتورهـا به عنوان تولید کننده نقش اصلی در ارتباط با این نوسانات دارند. اینها از نوع نوسان در پارامترها هستند و با اغتشاشات حالتهای گذرا متفاوتند. گاه این اغتشاشات بدون رخ دادن هیچ واقعهای در طی کار معمول شـبکه بوجود می آیند مثلاً با تغییر تپ ترانس درکم باری و مواردی از این قبیل. اگرچه در مرحله بعد از حالت هـای گذرای شبکه (از دیدگاه زمانی) نیز چنین بحثی مطرح می شود. بایـد توجـه داشـت کـه ایـن نوسـانات را در مقایسه با فرکانس شبکه، فرکانس پایین نام نهاده اند. دامنه فرکانسی مطرح از کسر یک تا چند هرتـز اسـت که بطور معمول بازه 0.5-2.5HZ را در بر می گیرند و در موارد حدی 0.1-4HZ می باشد. این نوسانات را به انواع :
-1 محلی
-2 بین ناحیه ای تقسیم کرده اند. که نوسانات یک ماشین نسبت به شبکه بزرگ یا شین بی نهایت متّصل به آن را محلّی نـام
نهاده اند. نوسانات بین ناحیه ای نمونه هایی مانند دو ژنراتور که با خطوطی به هم متصل هستند یا مجموعه دو ناحیه با یکدیگر را در برمی گیرد. از دیدگاه فرکانسی نیز این دو نوع نوسانات دینامیکی باهم تفاوت دارند.
ثابت می شود عامل این نوسانات، مد مکانیکی توربوژنراتور است. همانگونه کـه پـیشتـر توضـیح داده شـد تامین امنیت سیستم های قدرت در برابر نوسانات دینامیکی مانند سایر شاخه ها نیازمند شبیه سازی شبکه از این زاویه دید میباشد. مقادیر پارامترهای دینامیکی اجزاء در این شبیه سازی دارای نقش کلیدی هـستند. بـا توجه به نقش ژنراتور در میان اجزاء شبکه از دیدگاه نوسانات دینامیکی تعیین پارامترهـای آن بـسیار مهـم و تعیین کننده خواهد بود. صحت و دقّت تعیین این پارامترها وابسته است به روش بکار گرفته شده برای بـرای تعیین آنها . این مطالب موجب پیدایش روشهای گوناگون برای تعیین این پارامترها شده است. از طرف دیگـر این پارامترها برای هر ژنراتور مقدار ثابتی نیستند و بخـاطر عـواملی چـون پیرشـدن ژنراتـور، ایجـاد بعـضی خطاهای داخلی و ..... تغییر می کنند. این شرایط موجـب طـرح روشـهای بلادرنـگ1 در تعیـین پارامترهـای دینامیکی ژنراتور سنکرون شده است. از جهت دیگر روش بکارگیری و تبعات عملی یک تکنیک شناسـایی و ملزومات آن نیز حائز اهمیت است. گروهی از این روشها اگر چه نتایج نسبتاً دقیق و قابل اعتمادی نیز فراهم می آورند لیکن به علت خطر های ناشـی از تـست هـای مطـرح در آنهـا (ماننـد آزمـایش اتـصال کوتـاه2 و
باربرداری( 3 و یا ملزوماتشان چون جداسازی ژنراتور از شبکه چندان مطلـوب نیـستند. بعـضی از اجـزاء ایـن گروه روشها به مرور مطرود شده اند. مقالات جدید ارائه شده در سایر اجزاء این گروه با هـدف بهبـود آنهـا و حذف مشکلات مذکور شکل گرفتهاند. دسته دیگر این روشها نمونههـایی هـستند کـه بـا چنـین مـشکلاتی

3-On-Line 4-Short Circuit 5-Load Rejection
19
مواجه نیستند(مانند استفاده از تخمینگر شبکه عصبی مصنوعی.(1 کارهای انجام شده درباره ایـن روشـها در راستای بهبود هرچه بیشتر آنها و یا اطمینان از نتایج حاصله توسط آنها شکل گرفته اند. با توجه بـه مقدمـه ذکر شده ابتداً لازم است کلیات روشهای مدل سازی ژنراتور سنکرون مورد بررسی قرارگیـرد تـا درگـام بعـد نسبت به بررسی روشهای شناسایی پارامترهای آن اقدام شود.

6- Artificial-Neural Network
20
فصل دوم:

مدل سازی ماشین سنکرون
21
-1-2 پیشگفتار:
شبیه سازی رفتار ژنراتورهای سنکرون برای انجام مطالعات گوناگون دینامیکی در سیستمهای قدرت، مستلزم انتخاب یک مدل مناسب جهت مدلسازی ماشین میباشد. مدل ارائه شده برای هر سیستم شامل یک ساختار و تعدادی پارامتر میباشد که جهت پیشگویی رفتار آن سیستم در حالتهای مورد نظر بکار گرفته میشود. مدل مورد استفاده برای یک سیستم باید به سادگی قابل فهم بوده، بکارگیری آن سهل باشد و در عین حال بتواند رفتار سیستم را با دقت و صحت قابل قبولی برای یک محدوده مشخص پیشگویی نماید.
بعبارت بهتر رفتار پیشبینی شده سیستم بواسطه شبیهسازی براساس مدل ارائه شده تا حد قابل قبولی به رفتار واقعی سیستم نزدیک باشد. هر چند این دو خاصیت از مدل یعنی سادگی و واقعی بودن همواره در تضاد با یکدیگر هستند، (یعنی مدلهای واقعی به ندرت ساده هستند و مدلهای ساده به ندرت میتوانند واقعی باشند)، اما میتوان جهت رسیدن به پاسخ دلخواه مصالحهای منطقی مابین این دو خاصیت برقرار کرد. مدل دو محوری پارک از معمولترین و پذیرفتهترین مدلهای ماشین سنکرون میباشد. در این فصل ابتدا اصول مدلسازی ماشین سنکرون براساس تئوری دو محوری پارک به اختصار بررسی میشود، سپس پارامترهای ماشین سنکرون معرفی شده و نحوه محاسبه پارامترها براساس مدل دو محوری پارک و همچنین نحوه مدلسازی ماشین با داشتن پارامترهای آن بررسی میگردد. همچنین در این فصل ارتباط میان مرتبههای مختلف مدل پارک با نوع ژنراتور و نوع مطالعه مورد نظر تشریح میشود.
-2-2 ساختار فیزیکی ماشین سنکرون:
-1-2-2 ساختار روتور و استاتور:
بزرگترین و شاید متداولترین ماشین های الکتریکی که با سرعت سنکرون می چرخند، ماشین های سنکرون سه فاز میباشند. اگرچه ساخت ماشین های سنکرون سه فاز پر هزینه میباشد، اما بازده بالای این ماشینها در قدرتهای بالا بزرگترین مزیت آنها میباشد.
استاتور ماشینهای سنکرون معمولاً متشکل از یک هسته مورق فرومغناطیس با شیارهایی جهت قرار گیری سیم پیچیهای سه فاز گسترده میباشد. روتور ماشین نیز میتواند بصورت قطب برجسته یا قطب صاف ساخته شود. ماشینهای قطب برجسته اغلب به عنوان ژنراتورهای آبی جهت تطبیق سرعت پائین توربین-
های آبی با سرعت سنکرون استفاده میشوند. قطبهای روتور این نوع ماشین به صورت جداگانه ساخته شده و سپس بر روی یک استوانه سوار میشوند. ساختار روتور گرد یا قطب صاف نیز برای کاربردهای سرعت بالا مناسب است. ماشینهای سنکرون با روتور گرد با دو یا چهار قطب به عنوان ژنراتورهای واحدهای بخاری جهت تطابق با سرعت بالای توربین به کار میروند. همچنین در این ماشینها میتوان نسبت قطر به طول روتور را به منظور محدود کردن تنش های مکانیکی ناشی از نیروهای گریز از مرکز کوچک گرفت.
22
-2-2-2 سیمبندیهای ماشین
ماشین سنکرون سه فاز معمولاً متشکل از یک سیم پیچی سه فاز به عنوان آرمیچر و یک سیم پیچی تحریک میباشد که بنام سیم پیچی میدان نیز نامیده میشود. سیمپیچی آرمیچر معمولاً در ولتاژی بسیار بالاتر از ولتاژ تحریک کار میکند و از این رو نیازمند فضایی بیشتر برای عایقبندی مناسب میباشد.
همچنین با توجه به اینکه جریانهای گذرای شدیدی از این سیمپیچیها عبور می کند، باید قدرت مکانیکی کافی داشته باشند. از این رو معمول است که سیمپیچی آرمیچر را بر روی استاتور ماشین قرار دهند. از نظر فضایی سیمپیچیهای سه فاز آرمیچر، 120º با یکدیگر اختلاف مکان دارند و این موضوع سبب میشود که با چرخش یکنواخت روتور و به تبع آن چرخش یکنواخت میدان تحریک، در این سیمپیچیها ولتاژهایی القا شود که از نظر زمانی 120º با یکدیگر اختلاف فاز دارند. سیم پیچی تحریک یا میدان معمولاً بر روی روتور قرار داده میشود. در ماشینهای قطب برجسته معمولاً میله های مسی یا برنجی در سطح قطب جای می-
گیرند که عموماً این میلهها در دوانتها به وسیله حلقههایی به یکدیگر متصل میشوند تا یک قفس سنجابی شبیه آنچه در یک موتور القایی وجود دارد، ساخته شود. مجموعه این میلهها و حلقهها به عنوان سیم پیچی میراکننده میباشند.
روتور ژنراتورهای قطب صاف بصورت استوانهای است که از فولاد یکپارچه ساخته میشود. سیم پیچیهای میدان در این گونه روتورها بصورت یکنواخت در شکافهای بدنه روتور توزیع شدهاند که معمولاً به کمک گوههایی در جای خود محکم میشوند. اغلب در چنین ماشینهایی سیم پیچی میراکننده وجود ندارد، زیرا که روتور یکپارچه فلزی اجازه عبور جریانهای گردابی را فراهم می آورد که تاثیری مشابه جریانهای سیمپیچی-
های میراکننده دارد. برخی از سازندگان تاثیر میرایی بیشتر و قابلیت عبور جریان مولفه منفی را با استفاده از گوههای فلزی مستقر در شکافهای سیمپیچی تحریک (که در انتها به یکدیگر متصل شدهاند) یا با استفاده از میلههای مسی مستقل زیر گوههای نگه دارنده، فراهم میآورند.
-3-2 توصیف ریاضی ماشین سنکرون
-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون
در این قسمت مدل ریاضی ماشین سنکرون بر اساس تئوری دو محوری بصورت خلاصه پارک تشریح می-
شود. شکل (1-2) مدارهای در نظر گرفته شده برای استاتور و روتور ماشین را نشان میدهد. مدار استاتور شامل یک سیم پیچی سه فاز است و روتور نیز یک سیم پیچی تحریک و یک سیمپیچی میراکننده بر روی محور d و دو سیم پیچی میراکننده بر روی محور q دارد. تعداد سیم پیچیهای میراکننده در نظرگرفته شده به عوامل متعددی از جمله نوع ژنراتور بستگی دارد که در قسمتهای بعدی به آن اشاره خواهد شد. مدل نشان داده شده در شکل (1-2) مدل 2-2 براساس استاندارد IEEE Std 1110 میباشد.
23
i fd d ωr a e fd q ib i1d ikq Ψb Ψa θ eb i1q b a ia ea ec
c

Ψc
ic

شکل :(1-2) مدارهای استاتور و روتور ماشین سنکرون
:c , b, a سیم پیچی های سه فاز استاتور : fd سیم پیچی تحریک

: 1d سیم پیچی میرا کننده محور d

1q و : 2q سیم پیچی های میراکننده محور q : ωr سرعت زاویه ای روتور برحسب رادیان بر ثانیه
: θ زاویه مابین محور مغناطیسی روتور و محور مرجع (محور مغناطیسی فاز (a
در بدست آوردن معادلات ماشین سنکرون برای ساده سازی فرضیات زیر درنظر گرفته میشود:
الف ) شکافهای موجود بر روی سطح داخلی استاتور تاثیر قابل توجهی بر اندوکتانسهای روتور درحال حرکت ندارند.
) پسماند مغناطیسی آهن استاتور و روتور قابل صرف نظر کردن است.
) از نظر تاثیر متقابل استاتور و روتور، سیم پیچیهای استاتور بصورت سینوسی در امتداد فاصله هوایی
توزیع شدهاند.
هر چند در مدل ارائه شده اثر اشباع مستقیماً منظور نشدهاست، اما با تصحیح راکتانسهای دو محور با استفاده از ضرایب اشباع و یا با داخل کردن مولفههای جبرانکننده درتحریک میدان اصلی، پدیده اشباع نیز لحاظ میشود.
با فرض حالت ژنراتوری معادلات ولتاژ مربوط به سیم بندی های استاتور و روتور را میتوان به شکل روابط
(1-2) و (2-2) نوشت.
Ψs d vs  −is Rs  dt (1-2) d vr  −ir Rr  Ψr dt که در آن :
24
vs  v a vb vc t vr  v f v1d v1q v2q t is  i a ib ic t ir  i f i1d i1q i2q t Ys  Ya Yb Yc t Yr  Y f Y1d Y1q Y2q t Ra 0 0 0 Rb Rs  0 0 0 Rc Rf 0 0 0 R1d Rr  0 0 0 0 0 R1q 0 0 0 0 R2q :درک نایب ریز لکش هب ناوت یم ار روتور و روتاتسا یاهرودراش تلاداعم Ψs  Lssis  Lsrir (2-2) Ψ  Lt .i  L i r sr srr r : نآ رد هک
Lss  − −

Lls  L0 − Lms cos 2θr 1 L0 − Lms cos 2(θr − π 1 L0 − Lms cos 2(θr  π − 3 ) − 3 ) 2 2 1 π 2π 1 2 L0 − Lms cos 2(θr − 3 ) Lls  L0 − Lms cos 2(θr − 3 ) − 2 L0 − Lms cos 2(θr −π) 1 L0 − Lms cos 2(θr  π 1 L0 − Lms cos 2(θr  π) Lls  L0 − Lms cos 2(θr  2π ) − ) 2 3 2 3 25
0 0 L f 1d Llf  L f 0 0 L L L  L 1d l1d 1df L1q 2q Ll1q  L1q 0 0 rr Ll 2q  L2q L2q1q 0 0 Ls 2q cosθr Ls1q cosθr 2π Ls 2q cos(θr − 2π ) ( cos(θr − 3 3 2π Ls 2q cos(θr  2π ) 3 ( 3 cos(θr 
s1q
s1q

L L

Ls1d sin θr
Ls1d sin(θr − 23π )

Ls1d sin(θr  23π )

Lsf sin θr 2π t ( − r sin(θ sf L  rs L sr L 3 ( 2π sin(θr  Lsf 3 با استفاده از دسته معادلات (2-1) و((2-2 میتوان بطور کامل ماشین سنکرون را بررسی نمود. اما همچنانکه در این معادلات نیز دیده میشود، معادلات دارای عباراتی هستند که با θ تغییر میکنند. با توجه به اینکه θ نیز تابعی از زمان میباشد، این موضوع سبب پیچیدهتر شدن تحلیل ماشینهای سنکرون می-
شود. میتوان با تبدیل مناسبی متغیرهای استاتور را به شکل سادهتری درآورد. این تبدیل به نام تبدیل پارک معروف است. تبدیل پارک به صورت رابطه (3-2) میباشد.
2π cos(θ  Sa ) 3 (3-2) Sb ) 2π −sin(θ  3 1 Sc 2
( 2π − cos(θ cosθ 3 2 2π 3 ) −sin(θ − 3 −sinθ 1 1 2 2
Sd
Sq S0
که S میتواند هر کدام از متغیرهای ولتاژ، جریان یا شاردور ماشین باشد. عکس تبدیل پارک نیز بصورت رابطه (4-2) بیان میشود.
1 −sinθ Sd 2 (4-2) Sq 1 ( 2π −sin(θ − 2 3 S0 1 ( 2π −sin(θ  2 3
cosθ 2π 2 ( cos(θ − 3 3 ( 2π cos(θ  3
Sa
Sb Sc
با اعمال تبدیل، معادلات حاکم بر ماشین و متغیرهای متناظر بسیار ساده میشوند. این ساده شدن در دو مفهوم کلیدی زیر ریشه دارد:
الف: با اعمال این تبدیل در شرایط بهرهبرداری عادی و حالت ماندگار تمامی جریانها و شارهای سیم-
پیچیهای استاتور و روتور دارای مقدار ثابتی خواهند بود.
26
ب: با انتخاب دو محور d و q که 90درجه اختلاف فاز دارند، شارهای تولید شده توسط جریانها بر روی یک محور هیچ پیوندی با شارهای محور دیگر نخواهند داشت. بنابراین دو دسته متغیر متعامد بدست خواهد آمد که این موضوع باعث ساده سازی بسیاری خواهد شد، زیرا هم باعث ساده سازی مقادیر راکتانسها میشود و هم می توان مدار معادل ماشین را بصورت دو مدار مستقل از هم در نظر گرفت.
معادلات نهایی پریونیت شده در دستگاه مرجع روتور به شکل روابط (5-2) و (6-2) میباشند. جزئیات بدست آوردن این معادلات در مراجع مختلف تشریح شدهاست و در اینجا از تکرار مجدد آن خودداری می-
شود. باداشتن روابط فوق، رفتار الکتریکی ماشین شبیه سازی می شود.
(5-2)
(6-2)

Yd 1 d Yq + wr V d = - i d Ra - w0 dt w0 Y d 1 Y + wr + a R q = - i q V q w0 dt d w0 Yfd 1 d efd = i fd Rfd + w0 dt Y d 1 + 1d R 1d 0 = i 1d w0 dt Y d 1 + 1q R 1q 0 = i 1q w0 dt Y2q d 1 0 = i 2q R 2q + w0 dt id Xad Xad Xl  Xad 1 Yd i fd Xad Xlf  Xad Xad  Yfd Xad Xad W0 Xl1q  Xad i1d Y1d i Xaq Xaq Xl  Xaq Yq i q Xaq Xl1q  Xaq Xaq 1  Y1q W 1q Xaq Xaq 0 Xl2q  Xaq i2q Y 2q x 0i 0 1 Y0 = - w0 براساس روابط ولتاژ و شار ارائه شده میتوان مدار معادل ماشین سنکرون را بدست آورد. این مدار درشکل
(2-2) نشان داده شده است.
27

الف: محور طولی،

ب: محور عرضی، q
xl i 0 R0
+
V 0
ج: محور صفر

-
شکل :(2-2) مدار معادل ماشین بر اساس تئوری پارک
-2-3-2 معادلات حرکت
معادلات حرکت معادلاتی هستند که اهمیت اساسی در مطالعات پایداری سیستمهای قدرت دارند. این معادلات که بعنوان معادلات لختی چرخشی نیز نامیده میشوند، تاثیر عدم تعادل بین گشتاور الکترومغناطیسی و گشتاور مکانیکی ماشین سنکرون را بیان مینمایند. در این بخش نیز معادلات حاکم بدون ذکر جزئیات بیان میشوند که برای دسترسی به جزئیات کامل میتوان به مراجع مختلف موجود مراجعه نمود.
زمانی که عدم تعادل بین گشتاورهای اعمال شده بر روی روتور وجود داشته باشد، گشتاور خالص اعمال شده، باعث شتاب گرفتن (یا کندشدن حرکت) روتور میشود. این گشتاور برابر است با:
Ta  Tm −Te(5-2)
: Ta گشتاور شتاب دهنده برحسب N.m
28
: Tm گشتاور شتاب مکانیکی برحسبN.m : Te گشتاور الکترومغناطیسی برحسب N.m معادله حرکت نیز به صورت رابطه (6 - 2) میباشد: (6-2) TaTm−Te dωr J dt در شبیه سازیهای ماشین سنکرون معمولاً شارها به عنوان متغیرهای حالت فرض میشوند. در این صورت توان الکتریکی ماشین در مبنای واحد به شکل رابطه (7-2) خواهد بود.
Pe ωr (ψd iq −ψqid )(7-2)
با تقسیم رابطه توان الکتریکی بر سرعت مکانیکی روتور، رابطه گشتاور الکترومغناطیسی به شکل رابطه -2) (7 در میآید :
Te ψd iq −ψqid(8-2)
-4-2 پارامترهای ماشین سنکرون
در معادلات حاکم بر ماشین سنکرون که در قسمت 3-2 ارائه شد، اندوکتانسها و مقاومتهای مدارهای استاتور و روتور به صورت پارامتر ظاهر شدند. این پارامترها موسوم به پارامترهای اصلی یا اساسی ماشین هستند و بصورت اجزای مدارهای معادل دو محور d و q در شکل (2-2) قابل تشخیص هستند. هر چند این پارامترها بطور کامل مشخصههای الکتریکی ماشین را بیان میکنند، اما آنها را نمیتوان از عکسالعملهای قابل اندازهگیری ماشین مستقیماً بدست آورد. از اینرو، روش مرسوم در تعیین اطلاعات ماشین این است که آنها را برحسب پارامترهایی بیان میکنند که از رفتار قابل مشاهده ماشین در پایانههای آن قابل تشخیص بوده و تحت آزمایشهای مناسب، قابل اندازهگیری هستند. در این قسمت انواع پارامترهای ماشین و ارتباط آن با پارامترهای اساسی مورد بررسی قرار میگیرد.
-1-4-2 پارامترهای اساسی ماشین
پارامترهای اساسی ماشین یا پارامترهای مدار معادل، از اعمال تبدیل پارک بر روی معادلات حوزه زمان ماشین سنکرون بدست میآیند و مشخص کننده عناصر مدارهای معادل محورهای طولی و عرضی ماشین هستند. تعداد این پارامترها با مرتبه مدل تغییر میکنند. از مشکلات عمده کار با این پارامترها، مشخص نبودن دقیق مقدار همگی آنها است. بعبارت دیگر روشی برای تعیین مقادیر دقیق این پارامترها بصورت یک-
جا وجود ندارد و روشهای موجود همگی مقادیر تقریبی مربوط به این پارامترها را بدست می دهند.
29
بعنوان نمونه اگر مدل 2-2 استاندارد IEEE Std1110 که در شکل (1-2) نشان داده شدهاست را درنظر بگیریم، کلیه عناصر مداری که در شکل نشان داده شدهاند، پارامترهای مدار معادل بوده و به راحتی قابل محاسبه و اندازهگیری نمیباشند. حتی بعضی از آنها مخصوصاً بعضی از پارامترهای برخی از شاخههای مدار محور q وجود فیزیکی خارجی نداشته و صرفاً جهت مدل سازی رفتار ماشین در نظر گرفته میشوند.
-2-4-2 پارامترهای عملیاتی
همانگونه که از نام این پارامترها پیداست، پارامترهای عملیاتی، ماشین سنکرون را از دید سیستمی بیان می-
کنند و معین کننده رابطه ورودی و خروجی ماشین سنکرون هستند. در این حالت تغییرات شار محور طولی و عرضی، تغییرات جریان محورهای طولی و عرضی و تغییرات ولتاژ سیستم تحریک بعنوان ورودی یا خروجیهای سیستم در نظرگرفته شده و با استفاده از پارامترهای عملیاتی این ورودیها و خروجیها به یکدیگر مرتبط میشوند.
در شکل عملیاتی, معادلات روتور را میتوان به صورت سیستمی با پارامترهای گسترده محسوب کرد. این پارامترها را می توان از طریق محاسبات طراحی و یا آسانتر از طریق آزمایش پاسخ فرکانسی بدست آورد.
زمانیکه تعداد محدودی مدار برای روتور در نظر گرفته شود، می توان این پارامترها را بصورت نسبت دو چند جملهای برحسب S (عملگر لاپلاس) بیان نمود. درجه چند جملهای مخرج حداکثر برابر تعداد مدارهای فرض شده بر روی روتور است. پارامترهای عملیاتی نسبت به پارامترهای مدار معادل کاربرد بیشتری داشته و به ماشین وجهه سیستمی میدهند. این پارامترها درحقیقت مشخصههای فرکانسی ماشین سنکرون هستند و عبارتند از یک دسته منحنیهای مشخصه یا روابط تحلیلی که رابطه بین امپدانس مختلط (یا عکس آن) را نسبت به لغزش در فرکانس نامی مشخص مینمایند. در زیر سه مشخصه فرکانسی مهم ماشین معرفی می شوند .
الف ) امپدانس عملیاتی محور طولی ( ( Zd(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی و ماندگار ولتاژ آرمیچر (ناشی از مولفه محور طولی جریان آرمیچر) به دامنه مولفه اصلی و مختلط این جریان که بصورت تابعی از فرکانس بیان میشود، تعریف شده و آن را Zd(s) مینامند. این مشخصه را در حالتی که سیم بندی میدان اتصال کوتاه گردیده است، برای فرکانسهای مختلف اندازهگیری مینمایند.
ب) امپدانس عملیاتی محور عرضی ( ( Zq(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر تولید شده توسط شار مغناطیسی محور عرضی ناشی از مولفه جریان آرمیچر در جهت محور عرضی به دامنه مولفه اصلی این جریان تعریف شده و بر حسب تابعی از فرکانس(لغزش) بیان میگردد.
ج) مشخصه فرکانسی G(s) بین سیم بندی میدان و آرمیچر
30
این مشخصه به صورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر ناشی از جریان سیمبندی میدان در فرکانسهای مختلف به دامنه مولفه اصلی ولتاژ اعمالی در سیم بندی میدان تعریف میگردد.
-3-4-2 پارامترهای دینامیکی
این پارامترها به لحاظ سابقه، اهمیت و کاربرد فراوان آنها پارامترهای استاندارد ماشین نامیده میشوند، اما از آنجائیکه بیشتر حالتهای گذرا و دینامیکی ژنراتور را مدنظر دارند، به آنها پارامترهای دینامیکی نیز اطلاق می شود. یکی از دلایل اهمیت این پارامترها، قابلیت تشخیص و اندازهگیری آنها میباشد. این پارامترها را میتوان با استفاده از آزمایشهای خاصی که بعضی استانداردها نیز به آن اشاره دارند، مستقیماً بدست آورد. با استفاده از این پارامترها میتوان ژنراتور سنکرون را بویژه در حالات گذرا و دینامیکی تحلیل نمود. آزمایشات مربوط به استخراج این پارامترها سابقه نسبتاً زیادی دارد. تقسیم بندی این پارامترها که شامل اندوکتانسها و ثابت زمانیها هستند، به صورت پارامترهای دینامیکی محور طولی،محور عرضی همچنین پارامترهای
تندگذر و کندگذر میباشند که بسته به نوع تحلیل، جهت بررسی یک پدیده، پارامترهای مورد نیاز متفاوت
خواهد بود. این پارامترها بطور خلاصه شامل راکتانسهای سنکرون ( X q , X d )، راکتانسهای تندگذر و کندگذر محورهای طولی و عرضی( ( X ′q′, X ′d′, X ′q , X ′d ثابت زمانیهای کندگذر و تندگذر مدار باز محورهای طولی و عرضی ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do و ثابت زمانیهای کندگذر و تندگذر اتصال کوتاه محورهای طولی و عرضی ( ( Tq′′,Td′′,Tq′,Td′ می باشند.
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای
اساسی ماشین
در محاسبه مقادیر اولیه شارهای گذرا در مدارهای تزویج شده از تئوری ثابت بودن شار دور استفاده میشود.
این تئوری بطور خلاصه عبارتست از اینکه شاردور مدار القائی با مقاومت و emf کوچک نمیتواند بطور لحظهای تغییر یابد. در حقیقت اگر emf یا مقاومتی در مدار موجود نباشد، شاردور آن ثابت خواهد ماند. این تئوری را میتوان در محاسبه جریانها بلافاصله بعد از تغییر شرایط مدار برحسب جریانهای قبل از تغییر استفاده کرد. هنگامی که یک اغتشاش همانند اتصال کوتاه در سمت استاتور ماشین اتفاق میافتد، شار استاتور تغییر میکند. پاسخ ماشین به اغتشاش براساس نحوه تغییرات جریانها و شارها عموماً به سه دوره زیرگذرا، دوره گذرا و ماندگار تقسیم میشود. در دوره زیرگذرا تغییر در جریان سیمپیچیهای میراکننده مانع از نفوذ شار ایجاد شده توسط استاتور به روتور میگردد. با کاهش جریان سیم پیچیهای میراکننده، دوره گذرا آغاز میشود که در آن تغییر جریانهای سیمپیچی میدان همان اثر را، اما ضعیفتر خواهد داشت. در نهایت در حالت ماندگار شار ایجاد شده استاتور به داخل روتور نفوذ خواهد کرد. شکل (3-2) توزیع شار در دورههای زیر گذرا، گذرا و ماندگار ماشین پس از وقوع یک اغتشاش سمت استاتور را نشان میدهد که بر اساس مسیر شار در هر یک از این حالتها میتوان راکتانسهای سنکرون، گذرا و زیرگذرای ماشین را تعریف کرد.
31

دوره زیرگذرا

دوره گذرا

حالت ماندگار

25%

25%

90 9090

90 9090

25%
25%
شکل (3-2) توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار
در این قسمت نحوه محاسبه پارامترهای دینامیکی ماشین سنکرون برحسب پارامترهای اساسی یا همان پارامترهای مدار معادل ماشین تشریح میشود. همچنین مدار معادل ماشین برای هر یک حالتهای ماندگار، گذرا و زیرگذرا ارائه میشود. مدل در نظر گرفته شده برای ژنراتور بر اساس استاندارد IEEE Std1110،
32
مدل 2-2 میباشد. در صورت استفاده از مدلهایی با مرتبه متفاوت، رابطه پارامترهای دینامیکی تغییر یافته اما نحوه محاسبه آنها بصورت مشابه میباشد.
-1-5-2 محاسبه راکتانسهای ماشین
الف – راکتانسهای سنکرون
معمولاً اندوکتانس را به عنوان نسبت شاردور به جریان تعریف می کنند. وقتی که قله mmf گردان در امتداد محور d قرار گرفت، نسبت شاردور استاتور به جریان استاتور اندوکتانس محور (Ld) d نامیده میشود.
با بدست آمدن اندوکتانسها بدیهی است که راکتانسهای متناظر نیز به سادگی قابل محاسبه هستند.
همچنین وقتی قله mmf گردان در امتداد محور q قرار بگیرد، نسبت شاردور استاتور به جریان آن، اندوکتانس سنکرون محور (Lq) q خواهد بود. شکل (4-2) مدار معادل ماشین در شرایط حالت ماندگار را نشان می دهد.
x fd xl x1q xl i fd i1q  0 x1d X d → x2q X q → xad xaq 0 i i2q  0 1d الف-مدار معادل محور d ب-مدار معادل محورq شکل :(4-2) مدار معادل ژنراتور سنکرون در حالت ماندگار
در حالت ماندگار، راکتانسهای سنکرون محور d و q به ترتیب با توجه به شکل (4-2) محاسبه می شوند.
مقادیر این راکتانس ها در روابط (9-2) و (10-2) ارائه شده است.
(9-2) X d  xl  xad
(10-2) X q  xl  xaq
ب- راکتانسهای گذرا
برای محور مستقیم، با توجه به اینکه مقاومت سیمپیچیهای میراکننده معمولاً بزرگتر از مقاومت سیم بندی میدان میباشد، جریان القایی در این سیم پیچیها بسیار سریعتر از جریانهای القایی در سیم بندی میدان میرا میشود. برای دوره گذرا فرض میشود که حالت گذرای میراکننده با میرایی فوقالعاده زیاد تمام شده است، در حالیکه جریانهای القایی در سیم بندی میدان هنوز برای مخالفت با تغییر شاردور ناشی از جریان-

های استاتور تغییر میکنند. مدارهای معادل ماشین در دوره گذرا مطابق شکل (5-2) می باشد. مدار معادل محور q نیز به طریق مشابه قابل توجیه است.

33
x fd xl Vfd x1d X ′d → xad i1d  0 الف-مدار معادل محور d ب-مدار معادل محورq
شکل :(5-2) مدار معادل ماشین سنکرون در دوره گذرا
براساس مدارهای معادل بدست آمده، راکتانس های گذرای محورهای d و q به شکل روابط (11-2) و(-2 (12 محاسبه می گردند.
(11-2) xad x fd x fd xl  X ′d  xl  xad xad  x fd (12-2) xaq x1q x1q xl  X ′q  xl  xaq x aq x 1q ج-راکتانس های زیر گذرا
در دوره زیرگذرا، جریانهای گذرای القا شده در سیم بندیهای روتور سعی دارند تا شاردور هر یک از مدارهای روتور را در ابتدا ثابت نگه دارند. براین اساس مدارهای معادل محورهای d و q ماشین سنکرون در این حالت مطابق شکل (6-2) میباشد.

الف-مدار معادل محور dب-مدار معادل محورq
شکل :(6-2) مدار معادل ماشین سنکرون طی دوره زیر گذرا
در این حالت برای محور d راکتانس دیده شده معادل سه راکتانس موازی xad ، x fd و x1d میباشد که با xl سری شده است. راکتانس زیر گذرای مدار باز محور q نیز مشابه محور d محاسبه میشود. براساس مدار معادل های ارائه شده، این راکتانس ها طبق روابط (13-2) و (14-2) محاسبه میشوند.
(13-2) xad x fd x1d xl x fd  x1d X ′d′  xl  xad xad x fd  xad x1d  x fd x1d 34
(14-2) xad x fd x1d xl x1d x fd  X ′d′  xl  xad x x x ad x fd x ad x fd 1d 1d -2-5-2 محاسبه ثابت های زمانی ماشین
حضور دو مجموعه سیم بندی برروی روتور، دو مجموعه ثابت زمانی مختلف را سبب شدهاست. مجموعه با مقادیر بزرگتر مربوط به ثابت زمانیهای گذرا و مجموعه با مقادیر کوچکتر مربوط به ثابت زمانیهای زیرگذرا هستند. معمولاً سیم بندیهای میراکننده که مقاومت بیشتری نسبت به سیم بندیهای میدان دارند، با ثابت زمانیهای زیرگذرا متناظرند.
ثابت زمانیهای گذرا و زیرگذرا بر روی محورهای d و q معمولاً در دو حالت تعریف میشوند. در یک حالت که استاتور مدار باز است و ثابت زمانیهای مدار باز تعریف میشود، ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do، و درحالت دیگرسیم پیچی استارتور بصورت اتصال کوتاه فرض می شود( .( Tq′′,Td′′,Tq′,Td′ میتوان نشان داد که نسبت ثابت زمانی گذرای محور d با استاتور اتصال کوتاه به ثابت زمانی گذرای محور d با استاتور مدار باز برابر است با نسبت راکتانس ظاهری که جریان استاتور با سیم بندی میدان اتصال کوتاه شده می بیند، به راکتانسی که جریان استاتور با سیم بندی میدان مدار باز میبیند.
الف -ثابت زمانی های گذرا
مدار معادل ماشین جهت استخراج ثابت زمانیهای گذرای مدار باز محور d و q در شکل (7-2) نمایش داده شدهاست.

Rfd
′ T do ← R1d
i1q=0
xfd
Rsxl
x1d
xad
الف :
محور dب: محورq
شکل :(7-2) مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

براساس فرضیات فوق و مدارمعادل شکل (7-2) ثابت زمانیهای مدارباز ماشین بصورت روابط (15-2) و
(16-2) بدست می آیند. (15-2) xfdxad 1 T ′do  ω0 R fd (16-2) x1qxaq 1 T ′qo  R ω 0 1q 35
همچنین مقادیر ثابت زمانیهای گذرا با استاتور اتصال کوتاه شده بر اساس روابط (17-2) و (18-2) محاسبه میشوند.
(17-2) x′d  Td′ xd T ′do (18-2) x′q  Tq′ xq T ′qo ب- ثابت زمانیهای زیر گذرا
ثابت زمانی زیرگذرای مدار باز محور d عبارتست از زمان لازم برای کاهش مولفه d جریان به مقدار 1e ام مقدار اولیه خود، هنگامی که در ترمینال ماشینی که با سرعت نامی می چرخد، بطور ناگهانی اتصال کوتاهی رخ دهد. بعبارت دیگر این ثابت زمانی عبارتست از ثابت زمانی جریان سیمبندی میراکننده d وقتی سیمبندی میدان اتصال کوتاه شده و سیمبندیهای استاتور مدار باز باشند. از مقاومت سیم بندی میدان در این دوره کاهش ولتاژ صرف نظر میشود. ثابت زمانی های زیر گذرای مدار باز محور q نیز به طریق مشابه تعریف میشوند. مدار معادل ماشین جهت استخراج ثابت زمانیهای زیرگذرای مدار باز مطابق شکل (8-2) میباشد.

براساس فرضیات فوق و مدار معادلهای ماشین در دوره زیرگذرا و ثابت زمانیهای زیرگذرای مدار باز ماشین بر اساس روابط (19-2) و (20-2) محاسبه میگردند.

الف : محورdب:محورq
شکل :(8-2) مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز
(19-2)
(20-2)

 x fd xad x fd  xad x1q xaq  aq x x 1q
1 1 ′′ xad  ω x1dxfd x1d R R 0 Tdo  ω 1d 0 1d 1 1 ′′ xaq  ω x2qx1q x2q 2q R 0 R 0 Tqo  ω 2q 36
-6-2 مراتب مختلف مدلهای ژنراتور سنکرون براساس مدل دو محوری پارک
روابط ارائه شده در قسمت (3-2) تا حدود قابل قبولی عملکرد الکتریکی دینامیکی یک ماشین سنکرون را بیان می کنند. اما گاهی این روابط را نمی توان بطور مستقیم برای مطالعات سیستمهای قدرت بزرگ بکار برد. از طرفی برخی از اوقات نیز لازم است رفتار ماشین سنکرون با جزئیات بیشتری مدل شود. در مدل دو محوری پارک همانگونه که قبلاً هم تشریح شد، مقادیر استاتور به دو سری مقادیر در دو جهت تبدیل می-
شوند که یکی در راستای محور مغناطیسی سیم پیچی میدان بوده (محور (d و دیگری با 90 درجه اختلاف با محور d عمود بر محور مغناطیسی سیم پیچی میدان میباشد (محور .(q محور d روتور شامل سیم پیچی میدان و سیم پیچیهای میراکننده میباشد. محور q نیز شامل سیم پیچیهای میراکننده این محور است.
باتوجه به تعداد سیم پیچیهای درنظر گرفته شده برای محور d و q روتور، مراتب مختلفی برای مدل ژنراتور سنکرون متصور است. براساس استاندارد IEEE Std 1110، مدل ژنراتور بایک شماره دورقمی Model AB مشخص میشود که A تعداد سیم پیچیهای درنظر گرفته شده برای محور d روتور و B

تعداد سیمپیچیهای منظور شده برای محور q روتور میباشد. جدول (1-2) مراتب مختلف ژنراتور سنکرون را نشان میدهد. نوع مدل انتخاب شده برای ژنراتور سنکرون وابسته به پارامترهای مختلفی از جمله نوع ژنراتور و ساختار فیزیکی روتور و انواع مطالعه مورد نظر است که در قسمتهای بعدی تشریح میشود.
37
جدول :(1-2) مراتب مختلف مدلهای ژنراتور سنکرون

فصل سوم:

بررسی روشهای شناسایی پارامترهای
دینامیکی ژنراتورهای سنکرون
39
-1-3 مروری بر پیشینه شناسایی پارامترهای دینامیکی ژنراتور سنکرون:
بحث پارامترهای دینامیکی ماشین سنکرون و یا به عبارت دیگر این مطلب کـه بـرای بیـان رفتـار ماشـین سنکرون در حالتهای گذرا از راکتانسهای مربوط به حالت دائم نمیتوان استفاده کرد، برای اولین بار در سـال
1920 با طرح مفهوم راکتانس اتصال کوتاه مطرح گردید. بعدها این ایده بعنوان پایه و اسـاس اولیـه تئـوری
"ثابت بودن شاردور در برگیرنده" قرار گرفت و در مقالاتی توسط دوهرتی1 درسال 1923 و بیـولی2 در سـال
1929 دوباره عنوان گردید.
آقای کری3 این مطلب را به این صورت طرح کرد که در هر مدار بسته بلافاصله بعد از هر تغییر بوجود آمـده در جریان، ولتاژ ویا موقعیت فیزیکی این مدار نسبت به موقعیت مدارات دیگـر کـه بـا آن بطـور مغناطیـسی درگیر میباشند، شار دور در برگیرنده ثابت باقی خواهد ماند . با توجه به مقاومت موجود در سیم پیچی میدان و دیگر سیم پیچیهای روتور (دمپرها) و در نتیجه تغییرات حاصله در شاردور در بر گیرنده در طی مدت زمان بعد از وقوع تغییرات ناگهانی، لزوم معرفی ثابت زمانیهای گوناگون ماشین نیز بعدها بـرای تحلیـل دقیـق تـر مورد ملاحظه قرار گرفت.
بر این اساس پارک4 و روبیرتسون5 در سال 1928 راکتانسهای دیگری از قبیل راکتانسها و ثابـت زمانیهـای محور عرضی و محور طولی را برای رژیم های تندگذر و کندگذر و به همین صورت مفاهیم دیگری همچون حالات کندگذر و تندگذر را در شارها، ولتاژها و جریانها نیز مطرح نمودند. گام بعدی در همین رونـد معرفـی مدار معادل ماشین بود. بسط منطقی این طریقه تحلیـل رفتـار ماشـین (بعـد از هـر تغییـر ناگهـانی) معرفـی مدارهای مربوط به محورهای طولی و عرضی ماشین با این فرض بود که بتوان یک اندوکتانس متقابل بـین سیم بندیهای موجود در روتور و استاتور تعریف نمود. بدین ترتیب و با در نظر گرفتن یک اندوکتانس متقابـل برای کوپلاژ بین سیم بندیهای روتور و استاتور و همچنین انتساب یک اندوکتانس پراکندگی به هـر کـدام از سیم بندیها (استاتور، میدان وبدنه روتور) مدار معادل مربوط به محور طولی ماشین. در سال 1931،کیلگوری6
در طی یک پروژه - ریسرچفاکتورهای مؤثر در محاسبات مربوط به بدست آوردن راکتانسهای ماشین سـنکرون را کـه مبنای خواص فیزیکی و ابعاد هندسی ماشین(استاتور، روتور و سیم پیچی میدان) میباشند بیان نمود. در ایـن مسیر در سال 1929، پارک نیز ایده محورهای طولی و عرضی برای ماشین را که قبلا توسط خـود او مطـرح شده بود به تبدیلات d-q که طی آن کمیات مربوط به سه فاز به متغیرهای q-d مرتبط می گردیـد بـسط داده و به این ترتیب پایه معادلات ماشین بر مبنای تئوری دو محوری بنا نهاده شد.

1-Doherty 2- Biowly 3- Cary 4- Park 5- Robertson 6- Kilgore
40
در سال 1931، شروین1 روابط لازم جهت بدست آوردن پارامترهای ماشین سنکرون را بـرای حالـت دائـم و گذرا، از طریق نتایج آزمایش ارائه نمود و این در حقیقت اولین روش پذیرفته شده بطور عام برای آزمایشهای ماشین سنکرون بود.که در سال 1945 میلادی توسط کمیته مربوط به ماشین سنکرون AIEE چاپ گردید.
از لحاظ تاریخی کمیته ماشینهای الکتریکی و استاندارد شماره 115 مربوط به IEEE ماحصل همان کمیتـه و همان روش آزمایشی ارائه شده در طی سالهای بعدی می باشد.
در طی اوائل دهه 60 میلادی به همان صورت که ابزار و تکنیکهای محاسباتی کـه در تحلیـل سیـستمهای قدرت بکار می رفت از لحاظ ابعاد و سرعت با روند رو به رشدی روبرو بود نیاز به مـدلهای دقیـقتـر ماشـین سنکرون جهت مطالعات پایداری نیز محسوس شده و بـرای ایـن خـاطر روشـهای کلاسـیک بدسـت آوردن پارامترهای ماشین سنکرون نیز دوباره مورد توجه بیشتر و دقیقتر قرار گرفت. در طی ایـن سـالها عـلاوه بـر مقالات متعددی که در این رابطه به چاپ رسید، استانداردهایی نظیر اسـتانداردBS, IEC, IEEE مربـوط به بخش ماشین نیز به دفعات متعدد چاپ و مورد تجدید نظر قـرار گرفتنـد. ایـن اسـتانداردها از میـان انـواع روشهای متفاوت و گوناگونی که ارائه میگردیدند و با توجه به رعایت نکات عملی و تکنیکهای انـدازهگیـری در طی جلسات متعدد کمیتههای ماشینهای الکتریکی، آنهایی را که تا حدی قابل قبول تشخیص مـی دادنـد انتخاب کرده و در استانداردها به عنوان روشهای کلاسیک مطرح و مورد تایید قرار می دادنـد. از مشخـصات مهم آزمایشات کلاسیک مربوط به قبل از دهه 80 تاکید روی آزمایش اتصال کوتاه سه فاز ناگهـانی و سـعی در بدست آوردن پارامترهای ماشین بـا اسـتفاده از چنـین آزمایـشی بـود کـه در حـال حاضـر هنـوز هـم در مشخصات ارائه شده در نیروگاهها نتایج حاصل از آزمایش اتصال کوتاه ناگهانی ارائه می گردد.
از جمله نکات محدودکننده اینگونه آزمایشها عدم دسترسی به پارامترهای مربـوط بـه محـور عرضـی، عـدم صرفه اقتصادی و قابلیت انجام آن در محل نیروگاهها و در تحت ولتاژ نامی بود. در حقیقت تـا قبـل از سـال
1983 روشهای دسترسی به پارامترهای مربوط به محور q در استانداردها مسکوت گذارده شده بود.
در طی سالهای 1960 الـی 1980 آزمایـشات گونـاگونی جهـت پاسـخگویی بـه سـؤالاتی از قبیـل اهمیـت پارامترهای مربوط به محور عرضی و همچنین درجه دقّت مورد لزوم برای پارامترهای ماشین و یا درجه مدل بکار رفته برای ماشین مطرح شده است. آزمایشات نیروگاه نورث فلیت2 در سال 1969 و تحقیقات انجام شده مؤسساتی چون EPRI, NPCC & Ontario-Hydro از این دسـتهانـد. ایـن مجموعـه فعالیـتهـا نتایجی از این قبیل را به همراه داشت:
در شبیه سازی دینامیکی رفتار ماشینهای الکتریکی، اطلاع دقیـق از پارامترهـای ماشـین بـه انـدازه درجه مدل انتخابی اهمیت دارد. این اهمیت در باب پارامترهای محور عرضی بارزتر است.
در تعیین پارامترهای ماشین همواره آزمایشاتی که منجر به تغییرات کوچک(بزرگ) در مقادیر ولتاژ و جریانهای ماشین گردند، اطلاعات مناسبی از پارامترها برای مطالعات مربوط بـه اغتـشاشات بـزرگ (کوچک) را در اختیار قرار نمیدهد.

7- Shervin 8- North Fleet
41
با توجه به این نکته پارامترها باید بسته به نوع مطالعه تصحیح و بهینه سازی شوند.
ارزش پارامترهای محور عرضی در شبیه سازی رفتار توربوژنراتورهای با روتـور یکپارچـه بـه حـدی است که انجام آزمایشهای جداگانه در این جهت راتوجیه میکند.
بدین ترتیب در سالهای بعد از 1980 آزمایشهای جدیدتری چون میرائی شار1 جایگاه ویژهای در حوزه تعیـین پارامترهای دینامیکی ماشینهای سنکرون پیدا کردند.
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون:
به طور کلی آزمایشهای موجود در حوزه تعیین پارامترهای دینامیکی ژنراتور سنکرون را می توان به دو دسته :
روشهای کلاسیک
روشهای جدید
تقسیم بندی کرد. روشهای کلاسیک، آزمایشهایی محدود را تشکیل میدهند که عموماَ از نظر زمانی نیز، بـر روشهای جدید تقدم دارند. مهمترین معیارهای مطرح در انتخاب روشهای مورد استفاده عبارتنداز:
انجام آزمایش در آن کشور ممکن باشد و به ابزار پیچیده نیاز نداشته باشد.
استانداردهای معتبر آن را تایید کند.
با بکارگیری آن تعداد بیشتری از کمیتها را بتوان شناسایی کرد.
آن روش قادر به اندازهگیری پارامترهای محور عرضی نیز باشد.
-1-2-3 روشهای کلاسیک اندازهگیری پارامترهای دینامیکی ژنراتور سنکرون:
روشهای کلاسیک روشهایی محدود هستند که عموما قبل از دهه 80 میلادی ابداع شدهاند و بـا انجـام آنهـا تنها یک یا چند پارامتر شناسایی میشود. این روشها برروی هر ژنراتـوری قابـل اجـرا بـوده و بـه تجهیـزات پیشرفته و پیچیده نیاز ندارد. تغییرات این روشها در خلال این سالها عموما از جنس اصلاح روابط محاسـباتی میباشد. اغلب آنها استاندارد شدهاند، ولی متاسفانه با انجام هر یک از این آزمایشها تنهـا تعـداد محـدودی از پارامترها بدست میآیند. از نقاط ضعف این روشها مساله تعیین پارامترهای محور q اسـت. از معایـب عمـده دیگر بعضی از این روشها مخرب بودن آنهاست. با این شرایط مجوز استفاده از این روشها علیرغم اسـتاندارد بودن آنها صادر نمیگردد.
به عنوان نمونه آزمایش اتصال کوتاه سهفاز اگر چه نتایج خوبی را از جهت تعیین پارامترها در بر داشته باشد، به علت آثار مخرب الکتریکی و مکانیکی جبران ناپذیر آن چندان مورد توجـه نیـست. اغلـب کمیتهـایی کـه توسط آزمایشهای کلاسیک تعیین میشود بر پایه مدل استاندارد IEEE تبیین شـدهانـد بـا یـک سـیمپـیچ میرایی محور طولی و عرضی. بسیاری از این روشها در تعیین پارامترها برای مدلهایی از مرتبـه بـالاتر ناکـام خواهند بود.

9- dc decay
42
-2-2-3 روشهای جدید در تعیین پارامترهای دینامیکی ژنراتورهای سنکرون:
همگام با رشد سیستمهای کـامپیوتری، توسـعه تجهیـزات انـدارهگیـری و پدیـد آمـدن سیـستمهای هـوش مصنوعی، مجموعه جدیدی از روشها برای شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون پدیـد آمدنـد.
بطور کلی در این روشها با اعمال ورودیهای مناسب در وضعیتهای متفاوت روتور(ایـستا یـا متحـرک) و ثبـت خروجیها، توابع انتقال ماشین شناسایی شده است. سپس با فرض یک مدل خاص بـرای ماشـین مـیتـوان پارامترهای ماشین را با روشهای مناسبی تخمین زد. اخیرا مدلهایی با مرتبه بالاتر نیز در اسـتانداردها مطـرح شدهاند. شناسایی پارامترهای دیگری که همگام با رشد درجه مدل مطرح شدهاند را صرفا میتوان با اسـتفاده از روشهای جدید تعیین پارامترهای دینامیکی ژنراتور سنکرون شناسایی کرد، اگر چه توانایی روشهای مذکور در تعیین این پارامترها متفاوت است. در مجموع روشهای جدید را میتوان تلاشـهایی بـرای دسـتیـابی بـه اهداف زیر دانست:
أ- دستیابی به روشهای بلادرنگ در تخمین پارامترها ب- استفاده از اطلاعات بهره برداری برای شناسایی پارامترها ت- شناسایی پارامترها با دقت هرچه بیشتر ث- تلاش در سادهسازی مکانیزم تخمین
به عنوان نمونه از مهمترین روشهای مطرح در این دسته به موارد زیر میتوان اشاره کرد: (1 روشهای بنا شده برپایه سیستمهای هوش مصنوعی:
(a تخمین پارامترهای دینامیکی با استفاده از شبکه عصبی (b تخمین پارامترهای دینامیکی با استفاده از الگوریتم ژنتیک
(2 روشهای بنا شده بر پایه تکنیکهای معادلات معادلات جزئی: (a تعیین پارامترها با استفاده از تکنیک اجزاء محدود
(3 شناسایی پارامترها ماشین سنکرون با استفاده از تست پاسخ فرکانسی
(4 شناسایی پارامترها با استفاده از دامنه وسیع تحریک
(5 شناسایی پارامترها با استفاده از اطلاعات تست باربرداری
(6 شناسایی پارامترها با استفاده از اطلاعات میرایی شار
(7 شناسایی پارامترها با اطلاعات بدست آمده از اغتشاشات بهره برداری (a تخمین پارامترها با استفاده از اغتشاشات بزرگ بهره برداری (b تخمین پارامترها با استفاده از اغتشاشات کوچک بهره برداری
عموم این روشها غیر مخرب بوده و نتایج خوبی را در تخمین پارامترها نشان داده اند. از نکات قابـل توجـه در این روشها توانایی آنها در تعیین پارامترهای محور عرضی علاوه بر محور طولی و همچنـین امکـان تخمـین پارامترها، متناظر مدلهایی با درجههای مختلف است. البته این به معنی توانایی برابر این روشها برای تخمین
43
و شناسایی پارامترها در جهات مختلف نیست. البته همه این روشـها در حـال تکامـل و بهبـود مـیباشـند و
بسیاری از آنها هنوز استاندارد نشدهاند.
44
فصل چهارم:

شناسایی بلادرنگ پارامترهای
دینامیکی ژنراتورهای سنکرون با
استفاده از رویتگر شبکه عصبی
45
-1-4 اصول کار شبکه های عصبی:
یکی از روشهای مشهور در حوزه هوش مصنوعی شبکه عصبی مصنوعی است. شبکههای عصبی مـصنوعی الهام گرفته از شبکه عصبی انسان هستند که توانایی بالایی در تقلید رفتار توابـع غیـر خطـی از خـود نـشان دادهاند. انسان با استفاده از تجربیاتی که از وقایع پیرامون خود دارد و ارتباطی که بین آن وقایع و عوامل مؤثر بر آنها برقرار میکند، نسبت به تخمین وقایع آتی بر پایه وضـعیت عوامـل مـؤثر اقـدام مـینمایـد. براسـاس تحلیلهای موجود شبکه عصبی مغز انسان از لایههای مختلفی تشکیل شده که لایه خـارجی آن(کـورتکس)
متصل به مجاری ورودی است. این ورودیها در انسان حواس او هستند. تجربیات ما به صورت تفاوت قوت و ضعف نقاط اتصال سلولهای عصبی به یکدیگر(سیناپسها) بروز مـیکنـد. هـر یـک از نـرونهـا پیونـدهای متعددی با سلولهای لایه بعد دارند.

شکل:1-4 طرح کلی سلول عصبی انسان
مسلم است که هرچه تعداد پیوندهای عرضی بیشتر باشد شبکه توانایی بیشتری در آموزش رفتـار توابـع غیـر خطی خواهد داشت.
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها:
با درنظر گرفتن مبادی ذکر شده، مراحل شبیهسازی شبکههای عصبی بدین صورت خواهد بود:
ساخت نرون مصنوعی
ساختاربندی آن در قالب لایههای مختلف
تهیه بانک اطلاعات لازم برای آموزش شبکه عصبی
آموزش شبکه عصبی
تست شبکه
46

شکل :2-4 شکل کلی سلول عصبی مصنوعی
لایههای شبکه عصبی را به سه دسته لایه ورودی، لایه خروجی، و لایه (لایههای) مخفی تقسیم مـیکننـد.
تعداد عناصر لایه ورودی و خروجی باید برابر تعداد ورودی، خروجیهای در نظـر گرفتـه شـده بـرای شـبکه باشند. افزایش تعداد لایههای مخفی در شبکه عصبی دو اثر متضاد را به همراه دارد. از یک طرف تقلیـد هـر چه بهتر رفتار هر تابع غیر خطی را امکان پذیر می سـازد و از طـرف دیگـر مـشکلات شـبیه سـازی و مـدت آموزش را افزایش میدهد. در عمل باید بسته به شرایط، بین این دو عامل بهینهسازی شود. در عمل در طـی تحقیقات متعدد انجام شده شبکه عصبی با یک لایه مخفی به عنوان حالت بهینه مطرح شده است.

شکل:3-4 ساختار شبکه عصبی توسعه یافته
همانگونه که پیشتر مطرح شد تعداد نرونهای لایه خروجی شبکه عصبی برابـر تعـداد خروجـیهـای در نظـر گرفته شده برای آن شبکه است. در این طرح، شبکه عصبی با یک خروجی در نظر گرفته شده است. بنابراین برای تخمین هر یک از پارامترهای مورد نظر باید یک شبکه مستقل تـشکیل شـده، آمـوزش دیـده و مـورد استفاده قرار گیرد. این روش اگرچه مشکلاتی را در تشکیل و آموزش شبکههای متعدد به همـراه دارد لـیکن گامی در جهت دستیابی به حداکثر قابلیت شبکههای عصبی در تخمین پارامترهـای دینـامیکی ژنراتورهـای سنکرون بر اساس دادههای بهرهبرداری است. همانگونه که همواره بهینهسازیهای تک هدفه نتایج بهتـری از جهت دستیابی به نتیجه مورد نظر دارند، با توجه به تشابه ساختاری این معنی در باب شـبکههـای عـصبی نیز صادق است. تعداد نرونهای لایه ورودی نیز برابر تعداد ورودیهای در نظر گرفته شده برای شبکه عـصبی
47
است. تعداد شش ورودی برای شبکه مورد نظر در نظر گرفته شده است. تعداد ورودیها در این طرح با توجه به مجموعه پارامترهای قابل اندازهگیری در خروجی ژنراتورهای سنکرون انتخاب شده است. البته انتخـاب و ترتیب آرایش این پارامترها برپایه رؤیت پذیری پارامترهای دینامیکی ژنراتور سنکرون در رفتار دینـامیکی آن شکل گرفته است. این بحث در طی مطالعات پیشین انجام شـده در مرکـز مطالعـات دینامیـک ایـران مـورد بررسی قرار گرفته است.
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی تخمینگر:
از نکات بسیار مهم در تشکیل شبکه عصبی مـصنوعی، بانـک اطلاعـات آموزشـی مـورد اسـتفاده اسـت. در تجربیات گذشته که در حوزه استفاده از شبکههای عصبی مصنوعی مطرح است، گاه اصلاح مکانیزم تهیـه و تغییر دامنه دادههای آموزشی، یک شبکه عصبی با نتایج ضعیف را به شبکهای بـا نتـایج قابـل قبـول تبـدیل کرده است. شاید بتوان مهمترین نکته در گردآوری اطلاعات آموزشـی را شـمول و فراگیـری آن نـسبت بـه حالتهای مختلف رفتاری مطرح در حوزه مورد نظر دانست. اگرچه این شمول را نباید با بزرگی ابعـاد اشـتباه گرفت. عامل مهم نگاه ریشهای و بنیادین به حالات مطرح در آن حوزه است. از آنجا که این شبکه بر آنـست تا بر پایه اطلاعات بهرهبرداری نسبت به تخمین پارامترهای دینامیکی ژنراتور سنکرون اقدام نماید، لـذا بایـد بانک اطلاعات لازم برای آموزش شبکه عصبی در این حوزه فراهم شود. مجموعه اغتـشاشاتی کـه در طـی بهرهبرداری از ژنراتورها رخ میدهد را میتوان به سه دسته عمده تقسیم کرد:
اغتشاشاتی که در حوزه تحریک رخ می دهند
اغتشاشاتی که در حوزه توان ورودی رخ میدهند
اغتشاشاتی که در شبکه تحت تغذیه رخ میدهند
بدین ترتیب از هر یک از این حوزههای سهگانه یک نمونه شایع به عنوان نماینده آن گروه بـدین ترتیـب در
نظر گرفته شده است:
تغییر ناگهانی %10 در تحریک ژنراتور
تغییر ناگهانی %10 در توان ورودی ژنراتور
وقوع اتصال کوتاه سهفاز 10-5)میلی ثانیه) در خروجی ژنراتور
48

شکل :4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون
(برای آموزش و تست شبکه عصبی)
60 مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون به عنوان مقـادیر پایـه در تـشکیل بانـک اطلاعات آموزشی شبکه عصبی در نظر گرفته شده است. این مجموعه از دادههایی مربوط به:
واحدهای بخاری- فسیلی
واحدهای بخاری-فسیلی با پیوند عرضی
واحدهای بخاری- هستهای
واحدهای آبی
واحدهای با توربین احتراقی
تشکیل شده است. برای هر مجموعه از این پارامترها دو گام افزایشی و دو مرحله کاهش در نظر گرفته شده
است. هر یک از این مراحل تغییرات %10 پارامترها را بهمراه خواهد داشت. مجموعه نهایی دربرگیرنـده 225
مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون میباشد. مجموعه یک ژنراتور متصل به شین
بینهایت برای شبیه سازی رفتار ژنراتور سنکرون در نظر گرفته شده است. برای این که آثـار تفـاوت سـاختار
شبکه در رفتار ژنراتور نیز لحاظ شده باشد در هر مرحله از شبیهسازی بصورت همگام با تغییرات پارامترهـای
ژنراتور، تغییراتی در حوزه پارامترهای شبکه نیز در نظر گرفته شده است. در هر دوره شبیه سازی از خروجـی
ژنراتور 1000 نمونهگیری با فاصله زمانیهایی برابر0,01 ثانیه بعمل آمده است. 20 نمونه از اندازهگیری های
انجام شده و پارامترهای متناظر با آن به عنـوان مجموعـه اطلاعـات آموزشـی در نظـر گرفتـه شـده اسـت.
نمونههای منتخب از میان اندازهگیریهای انجام شده با گامهای متغیر و قابل کنترل گزینش شـدهانـد، ایـن
رویکرد امکان تهیه تصویری بهتر از رفتار دینامیکی ژنراتور سنکرون در قبال یک اغتـشاش را بـا رعایـت دو
مشخصه حداقل حجم اطلاعات و حفظ حداکثر مشخصات رفتاری فراهم میآورد.
49

شکل:5-4 آلگوریتم آموزش شبکه عصبی
آموزش شبکه بر پایه الگوریتم پسانتشار و با استفاده از راهبرد مارکوئیس_لونبرگ انجام شده است. برای هر یک از انواع سهگانه اغتشاشات ذکر شده بانک اطلاعات آموزشی مستقلی در نظـر گرفتـه شـده اسـت. ایـن روش امکان مقایسه بین نتایج اخذ شده در قبال هر یک از انواع اغتشاشات را فـراهم مـیآورد. ایـن راهبـرد امکان مقایسه درجه قابلیت اطمینان نتایج حاصل از تخمین پارامترهای گوناگون در قبال اغتشاشات مختلـف را نیز فراهم میĤورد.
-2-2-4 تست شبکه عصبی تخمینگر:
تست شبکه عصبی با استفاده از اطلاعات بهره برداری که در مجموعه آموزشی لحـاظ نـشده، شـکل گرفتـه است. بدین ترتیب تصویر واقعگرایانهتری از قابلیتهای شبکه مذکور خواهیم داشت. برای تحقق این معنـی اطلاعات مربوط به 75 ژنراتور سنکرون متفاوت با نمونه های مطـرح شـده در مجموعـه آموزشـی، دادههـای حاصل از اندازهگیریهای بعمل آمده در قبال رفتار دینامیکی آنهـا و مقـادیر حقیقـی پارامترهـای دینـامیکی متناظر با آن به عنوان مجموعه دادههای تست شبکه عصبی در نظر گرفته شده است. طرح کلی روش تست و بهرهبرداری شبکه عصبی مذکور در شکل4-6 بیان شده است. هریک از مراحـل آمـوزش و تـست شـبکه عصبی تخمینگر با مشخصات ذکر شده در قبال سه اغتشاش نمونه مطرح در نظر گرفته شده است.
50

شکل:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی
-3-4 نتایج:
مجموعه نتایج در سه بخش سازماندهی شده است. هربخش در برگیرنده نتایج آموزش و تست شبکه عصبی بر پایه یکی از انواع سهگانه اغتشاش میباشد. این طریقه بررسی امکان مقایسه بهتر نتایج را فراهم سـاخته، شاهدی بر رؤیت پذیری پارامترهای دینامیکی ژنراتورهای سنکرون در ازای اغتشاشات مختلف مـیباشـد. از طرف دیگر بررسی مقایسهای نتایج درجه دقـت شـبکه عـصبی در تخمـین پارامترهـای دینـامیکی بـر پایـه اطلاعات مختلف بهرهبرداری را نیز بیان میکند. برداشتهای مقایسهای امکان تعیین بهتر قابلیتهای شبکه عصبی را بدور از آثار ناشی از الگوی آموزشی فراهم میآورد، زیرا ابعاد و مکانیزم تشکیل مجموعـه آموزشـی در تخمین همه این پارامترها مشابه بوده است.
برای بررسی رفتار هر شبکه عصبی دو معیار اصلی دامنه و توزیع فراوانی خطا در نظر گرفتـه شـده اسـت. در تحلیل بر اساس توزیع فراوانی خطا، درصد فراوانی غالب و دامنه خطای متناظر با آن بیان شدهاند. با توجه به حجم زیاد مجموعه نتایج، چند نمونه از شبکههای تخمینگر و دادههای بدست آمده از طریق آنها در مرحلـه آموزش و تست ارائه شده است. این مجموعه به سه حوزه آموزش و تست بر اساس اطلاعـات بهـرهبـرداری شکل گرفته برپایه تغییر ناگهانی تحریک، تغییر ناگهانی تـوان ورودی و اغتـشاش حـوزه شـبکه متـصل بـه ژنراتور تقسیم شده است. برای فراهم سازی امکان مقایسه بیشتر، نتایج متناظر هر پارامترکه با استفاده از هر یک از بانکهای اطلاعاتی سهگانه مذکور بدست آمده اسـت در اختیـار خواننـده محتـرم قـرار گرفتـه اسـت.
پارامترهای دینامیکی مطرح برای ژنراتورهای سنکرون _در نگاه اشتراکی بین انواع مختلف آن _کـه مـا بـه تخمین آنها همت گماشته ایم مجموعهای بدین صورت را تشکیل خواهد داد:
51
جدول( (1-4 ردیف نام پارامتر مشخصه واحد
1 راکتانس سنکرون محور d Xd pu
2 راکتانس حالت گذرا محور d Xd' Pu
3 راکتانس فوق گذرا محور d Xd" Pu
4 راکتانس سنکرون محور q Xq pu
5 راکتانس فوق گذرا محور q Xq" Pu
6 راکتانس پوتیه Xl pu
7 ثابت زمانی محور d در دوره گذرا Td' s
8 ثابت زمانی محور d در دوره فوق گذرا Td" s
9 ثابت زمانی محور q در دوره فوق گذرا Tq" s
10 ثابت اینرسی H s
52
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر:
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd"

شکل :8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
53

شکل :9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
54

شکل :11-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
55
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل :14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
56

شکل :15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
57

شکل :17-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
58
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
59

شکل:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
60

شکل :23-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
61
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq"

شکل :26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
62

شکل :27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
63

شکل :29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
64
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
65

شکل :33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq"
66

شکل :35-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
67
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
68

شکل :39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
69

شکل :41-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
70
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td"

شکل :44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
71

شکل :45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
72

شکل :47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
73
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
74

شکل:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
75

شکل :53-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
76
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل :56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
77

شکل :57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
78

شکل :59-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
79
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq"

شکل :62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
80

شکل :63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
81

شکل :65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
82
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

.
شکل:68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
83

شکل:69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq"
84

شکل :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
85
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

شکل :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
86

شکل :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
87

شکل :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
88
-2-3-4 بررسی تحلیلی نتایج:
در طی این پروژه، شبیه سازیهای مربوطه در جهت تخمین کلیه پارامترهای مذکور انجام شده و بـر اسـاس اغتشاش بکار گرفته شده در تهیه دادههای بهرهبرداری تقسیم بندی و مقایسه شـده اسـت. بررسـی تحلیلـی نتایج در قالب شاخصبندیهای زیر ارائه شده است:
.1 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره آموزش:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحلـه آمـوزش، شـکل گرفتـه است. در مسیر تخمین هر یک از پارامترها نتایج سهگانه بدست آمده به ترتیب بر اساس برازندگی از دیدگاه حداقل خطا مرتب شده است. این نتایج برپایه اغتشاش متناظر با آنها نام گذاری و در جـدول
2-4 جای گرفتهاند.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شـاخص حـداکثر خطـا ارزیـابی و اولویت بندی شدهاند. نتایج این تحلیل به ترتیب بیان شده در گام قبل نامگذاری و در قالـب جـدول
3-4 در اختیار قرار گرفته است.
.2 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره تست:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحله تست، شکل گرفته است.
در مسیر تخمین هر یک از پارامترها، نتایج سهگانه بدست آمده بر اساس برازندگی از دیدگاه حداقل خطا ترتیب یافته است. این نتایج برپایه اغتشاش متناظر با آنها نام گـذاری و در جـدول 2-4 جـای گرفتهاند. به علّت اهمیت خاص نتایج حاصل در این بخش، علاوه بر تحلیلهای فوق شاخص خطای متناظر با فراوانی غالب و درصد فراوانی مربوطه در بهترین حالت نیز ارزیابی و در جدول 2-4 ارائـه شده است.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
89
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شاخص حداکثر خطا ارزیابی و بـر اساس برازندگی مرتب شده است. نتایج این تحلیل به همان صورت نامگذاری و در جدول 3-4 ارائه شده است.
درباب عملکرد شبکه عصبی در تخمین :Xd
با مقایسه نتایج بدست آمده با استفاده اغتشاشات مختلف هیستوگرام خطای شبکه در مرحله آموزش بهتـرین توزیع فراوانی را در وقوع قبال اتصال کوتاه در ترمینال ژنراتور نشان میدهـد نتـایج حاصـله بـر پایـه تغییـر ناگهانی تحریک و تغییر توان ورودی در مراتب بعدی قرار میگیرند.
از نظر دامنه خطا نیز در این مرحله بهترین نتایج به ترتیب در قبال نتایج حاصله از وقوع اتصال کوتاه, تغییـر توان ورودی و تغییر ناگهانی تحریک شکل گرفته اند.
در مرحله تست بهترین توزیع فراوانی در مرحله اول مربوط به نتـایج حاصـل از تغییـر ناگهـانی تحریـک، در مرحله دوم مربوط به نتایج حاصله بر پایه وقوع اتصال کوتاه و نهایتًا از تغییر توان ورودی بدست میآید.
کمترین دامنه خطا به ترتیب متعلق به تخمین برپایه نتایج حاصل از وقوع اتصال کوتاه، تغییر تـوان ورودی و نهایتًا تغییر تحریک میباشد.
در مرحله تست محدودترین دامنه خطا مربوط به وقوع اتصال کوتاه است. نتایج حاصل از تغییر تـوان ورودی و تغییر ناگهانی تحریک در مراتب بعدی قرار دارند.
%73,3 از نتایج دارای خطای کمتر از %9,2 دامنه تغییرات Xd هستند.
درباب عملکرد شبکه عصبی در تخمین :X'd
هیستوگرام خطای شبکه در مرحله آموزش نتایجی بدین ترتیب را در بر داشته است: در مرحلـه اول بهتـرین نتایج همراستا با تغییر ناگهانی تحریک شکل گرفته است، در مرحله دوم با تغییـر تـوان ورودی و در مرحلـه سوم با استفاده از وقوع اتصال کوتاه در خروجی ژنراتور.
کمتریم دامنه خطا در مرحله آموزش مربوط به وقوع اتصال کوتاه در ترمینال ژنراتور و در مرحله دوم و سـوم
مربوط به تغییر ناگهانی تحریک و توان ورودی ژنراتور میباشد.
در مرحله تست نمودار خطای شبکه نتایج مشابهی را در قبال اغتشاشهای سهگانه بجای گذاشته است و بـه سختی میتوان بین آنها تمایز قائل شد. شاید بتوان نتایج مربوط به تغییر توان ورودی، و در گامهـای بعـدی مربوط به تغییر ناگهانی تحریک و وقوع اتصال کوتاه در خروجی ژنراتور دانست.
90
کمترین دامنه خطا در این مرحله بترتیب مربوط به تغییر ناگهانی تحریک، وقوع اتصال کوتـاه و تغییـر تـوان ورودی میباشد.
%70 نتایج دارای خطای کمتر از %8,9 دامنه تغییرات X'd میباشند.
درباب عملکرد شبکه عصبی در تخمین :X"d

project

۴-۶-ﲨع بندی در مورد کاهش ریپل گشتاور ٨٠
فصل۵ : طراحی مدار راهانداز (DRIVER) به روش غیرمستقیم
۵-١-مقدمه ٨٢ ۵-٢-تشخیص موقعیت روتور بدون استفاده از سنسور ٨٣ ۵-٣-آنﱰل جهت چرخش ۶٩ فصل۶ : نتیجه گیری و پیشنهادات ٩٩ نتیجه گیری پیشنهادات ١٠٢ پیوست نقشه های ﴰاتیکی سخت افزار دستگاه ١٠٣ پیوست اطلاعات نرم افزاری سیستم ١١٠ فصل٧ : مـراجـع ١٣٩ ۶
فهرست شکل ها صفحه عنوان ١-١.a-شکل :دو ﳕونه موتور رلوآتانسی با یک دندانه در هر قطب. ١٧ ١-١.b-شکل :ﳕونهای دیگر با دو دندانه در هر قطب . ١٧ ١-٢.شکل : ﳓوه عملکرد موتور رلوآتانس. ١٩ ١-٣-الف.شکل :ﴰای موتور رلوآتانس با برجستگی دوگانه. ٢٠ ١-٣-ب.شکل :ﴰای موتور رلوآتانس با برجستگی واحد. ٢٠ ١-۴-١.شکل :موتور رلوآتانس از نوع روتور صفحهای. ٢٢ ١-۴-٢.شکل :موتور رلوآتانس سوئیچی چند لایه. ٢٣ ١-۵-.aشکل :روتور با فاصله x از استاتور. ۶٢ ١-۵-.bشکل :منحنی شار برحسب mmf برای x1 و x2 آه x1>x2 ۶٢ ١-۶-.aشکل :یک قطب از موتور رلوآتانس. ٢٨ ١-۶-.bشکل :منحنی اندوآتانس برحسب موقعیت روتور. ٢٨ ١-٧-١.شکل :مدار معادل موتور رلوآتانسی. ٣١ ١-٧-٢.شکل :منحنی گشتاور ـ سرعت یک موتور رلوآتانسی ﳕونه. ٣٢ ٢-١.شکل :دستهبندی مدارات مبدل. ۴٣ ٢-٢.a-شکل :مبدل پل نامتقارن. ۵٣ ٢-٢.b-شکل :شکل موجهای مبدل پل نامتقارن ـ روش اول. ۶٣ ٢-٢.c-شکل :شکل موجهای مبدل پل نامتقارن ـ روش دوم. ٣٨ ٢-٢.d-شکل :استفاده از SCR و آاهش تعداد ترانزیستورهادرمبدل پل نامتقارن. ٣٩ ٢-۴-.aشکل :توپولوژی R-Dump ١۴ ٢-۴-.bشکل :شکل موجهای توپولوژی R-Dump ١۴ ٢-۵-.aشکل :مبدل Bifilar ٢۴ ٢-۵-.bشکل :شکل موجهای مبدل Bifilar ٣۴ ٢-۶-.aشکل :مبدل، منبع تغذیه dc دو نیمهای. ۴۴ ٢-۶-.bشکل :شکل موجهای مبدل با منبع تغذیه دو نیمهای. ۵۴ ٢-٧.a-شکل :مبدل با q ترانزیستور و 2q دیود. ۶۴ ٧
٢-٧.b-شکل :شکل موجهای مدار فوق با روش اول.٧۴
٢-٧.c-شکل :شکل موجهای مدار فوق با روش دوم.٨۴
٢-٨-١.شکل :مبدل با (١(q+ سوئیچ در هر فاز.٩۴
٢-٨-٢.شکل :ﲠبود یافته مدار(١(q+ ترانزیستوری.٠۵
٢-٩.a-شکل :مدار مبدل C-Dump١۵
٢-٩.b-شکل :شکل موجهای مبدل C-Dump٢۵
٢-١٠-١.شکل :مبدل C-Dump با قابلیت جریان هرزگرد.۴۵
٢-١٠-٢.شکل :عملکرد مدار بدون ﳘپوشانی جریان فازها.۴۵
٢-١١.a-شکل :مبدل با یک ترانزیستور مشﱰک.۵۵
٢-١١.b-شکل :عملکرد مدار.۵۵
٢-١٢.شکل :مبدل با حداقل تعداد ترانزیستورو تغذیه ورودی متغیر. ٧۵
٢-١٣.شکل :مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost ٨۵
٢-۴١.a-شکل :مبدل با (1.5q) سوئیچ.٩۵
٢-۴١.b-شکل :عملکرد مدار.٩۵
٢-۵١.شکل :مبدل دو مرحلهای.١۶
٣-١.شکل :بلوک دیاگرام مدار آنﱰل موتور.٣۶
٣-٢-١.شکل :مدار ساده هر فاز.۴۶
٣-٢-٢.شکل :مدار درایو ترانزیستورهای قدرت.۵۶
٣-٣-١.شکل :مدار معادل فتواینﱰاپﱰ.۶۶
٣-٣-٢.شکل :مدار آامل سنسورها.۶۶
٣-٣-٣.شکل :شکل موجهای ناشی از سنسورها.٧۶
٣-۴-١.شکل :پالسهای PWM٨۶
٣-۴-٢.شکل :مدار سرعت موتور.٨۶
٣-۴-٣.شکل :مدار آنﱰل PI٩۶
٣-۴-۴.شکل IC-TL494:٧٠
۴-١.شکل :مدار معادل موتور رلوآتانسی.٧٢
۴-٢-١.شکل :تغییرات اندوکتانس با موقعیت روتور.۴٧
۴-٢-٢.شکل :پایین شکل،روتوراصلاح شده درمقایسه باروتور معمولی. ۵٧
٨
۴-٣.شکل :تغییرات اندوکتانس با جریان بر حسب زاویه. ۶٧ ۴-۴.شکل :استفاده از دیودهای هرزگرد برای ﲣلیه سریع تر جریان ٧٨ سیم پیچ. ۴-۵.شکل :کنﱰل جریان برای کاهش ریپل گشتاور. ٨٠ ۵-١-١.شکل :شفت انکدر و سه عدد سنسور برای تشخیص موقعیت روتور ٨٢ دریک موتور سه فاز ۴/۶. ۵-٢-١.شکل :شکل جریان سیمپیچ در استاتور. ۵٨ ۵-٢-٢.شکل :مدار مبدل ۶ سوئیچه با سه عدد مقاومت sense جریان. ۶٨ ۵-٢-٣.شکل :مقطع عرضی یک موتور رلوکتانس. ٨٧ ۵-٢-۴.شکل :پالسهای اعمال شده به یک فازﳕونه و جریان حاصله ٨٨ در ﳘان فاز. ۵-٢-۵.شکل :پالسهای اعمال شده به سه فاز و جریان حاصله در ٨٩ فازها. ۵-٢-۶.شکل :فاز A در حالت ﳘپوشانی کامل. ٩٢ ۵-٢-٧.شکل :فاز A در حالت عدم ﳘپوشانی کامل. ٩٢ ۵-٢-٨.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۴٩ جریاای حاصله. ۵-٢-٩.شکل :پالسهای تشخیص و فرمان اعمال شده به یک فاز و ۵٩ جریاای حاصله بعد از تقویت. ۵-٢-١٠.شکل :جریاای حاصل از پالسهای تشخیص هرسه فاز به ۵٩ صورت مالتی پلکس شده. ۵-٢-١١.شکل :پالسهای تشخیص وفرمان دو فاز متوالی. ۶٩ ۵-٣-١.شکل :ترتیب فرمان ها برای حرکت راست گرد یا چپ گرد. ٩٧ ۶-١.a-شکل :منحنی جریان فازها. ٩٩ ۶-١.b-شکل :منحنی گشتاور قبل از آنﱰل جریان. ٩٩ ۶-١.c-شکل :منحنی گشتاور باآنﱰل جریان. ٩٩ ۶-٢.شکل :منحنی گشتاور برحسب سرعت موتور. ١٠٠ ۶-٣.شکل :ارتباط میکرو با A/D و آنالوگ سوئیچ. ١٠٣ ۶-۴.شکل :مدار تغذیه رگوله شده برای درایور. ۴١٠ ٩
۶-۵.شکل :مدار تولید کننده PWM بر اساس سرعت.۵١٠
۶-۶.شکل :مدار مبدل۶ سوئیچه به ﳘراه مدار ﳏدود کننده جریان. ۶١٠
۶-٧.شکل :یک فاز از مدار مبدل به ﳘراه درایور MOSFET ها . ١٠٧
۶-٨.شکل :مدار راه انداز و مدار مبدل به ﳘراه موتور. ١٠٨
۶-٩.شکل :استاتور موتور ماشین لباسشویی.١٠٩
۶-١٠.شکل :روتور موتور ماشین لباسشویی.١٠٩
١٠
چکیده
ویژگیهای جذاب و مفید موتورهای رلوکتانس سوئیچی باعث افزایش میزان کاربرد آا در صنعت شده است که می توان به مواردی از قبیل هزینه پایین تولید، قابلیت کار در سرعت های ﳐتلف، راندمان بالا و دوام زیاد اشاره کرد. پیشرفت الکﱰونیک قدرت و رشد چشمگیر صنعت نیمه هادی تأثیر فراوانی بر طراحی و ساخت راه اندازهای موتورهای رلوکتانسی بر جای اده است. به این
صورت که با در دسﱰس قرار گرفﱳ مدارهای ﳎتمع ﳐتلف و کاهش
قیمت آا، این ادوات در ساخت راه اندازهای موتورهای رلوکتانسی مورد استفاده قرار گرفته و روز به روز باعث هوﴰندترشدن این راه اندازها گردیده اند.
به طورکلی دو روش برای راه اندازی موتورهای رلوکتانسی وجود
دارد :
١- روشهای مبتنی بر داشﱳ سنسور ٢- روشهای بدون سنسور روشهای بدون سنسور به علت حذف سنسورها و ﳘچنین اتصالات
مربوطه در صنعت دارای طرفداران بیشﱰی می باشد که از عمده ترین دلایل آن می توان به خراب شدن سنسورها به مرور زمان و نیاز به تنظیم سنسورها اشاره کرد. روشهای بدون سنسور به علت پیشرفت روزافزون علم الکﱰونیک و کنﱰل رشد چشمگیری پیدا کرده اند و با استفاده از مفاهیم ﳐتلف تنوع زیادی یافته اند. در فصل یک، ساختار موتورهای رلوکتانسی مورد بررسی قرار گرفته
است و در فصل دوم انواع مدارات مبدل ارائه شده و در فصل سوم راه اندازی با استفاده از سنسور گفته شده است و در فصل
چهارم رابطه ریاضی گشتاور مورد بررسی واقع شده و روش های عملی جهت کاهش ریپل گشتاور ارائه شده است و در فصل پنجم جزئیات روشی نوین در راه اندازی بدون سنسور موتورهای رلوکتانس سوئیچ شونده را بیان می کنیم.
١١
ﳘچنین در ضمائم، نقشه های ﴰاتیک سخت افزار و اطلاعات نرم افزاری مدار راه انداز آمده است.
١٢
مقدمه
با توجه به پیشرفت روز افزون صنایع نیمه هادی، موتورهای رلوکتانسی جایگاه ویژه ای در عرصه های ﳐتلف صنعت پیدا کرده اند. از ﲨله دلایل این امر می توان به مواردی از قبیل سادگی ساختمان این نوع موتورها، راندمان بالای آا نسبت به سایر موتورها و عدم نیاز به نگهداری اشاره کرد.
موتورهای رلوکتانسی بر خلاف اغلب موتورهای الکﱰیکی نیاز به یک سیستم راه انداز دارند، این سیستم راه- انداز به طور کلی به دو روش زیر قابل طراحی می باشد :
با استفاده از سنسور
بدون استفاده از سنسور
روشهای بدون سنسور به علت نداشﱳ سنسور و ﳘچنین اتصالات مربوطه در صنعت دارای طرفداران بیشﱰی می باشد که از عمده ترین دلایل آن می توان به توانایی کارکرد موتور در شرایط نامناسب ( از قبیل ﳏیطهای بسیار گرم و پر گرد و غبار ) و
عدم نیاز به تنظیم و نگهداری مداوم سنسور اشاره کرد.
روش ارائه شده مبتنی بر اعمال پالسهای شناسایی به موتور هم در مرحله ایستا و هم در مرحله چرخش می- باشد. عمده ترین مزایای این روش را نسبت به سایر روشهای مرسوم می توان در
موارد زیر ذکر کرد:
١- توانایی راه اندازی موتورهایی در گسﱰه توان چند ده وات
تا چندین کیلو وات.
٢- توانایی راه اندازی موتور با سطح ولتاژ ﳐتلف.
٣- این روش علاوه بر اینکه توانایی راه اندازی از حالت
ایستا با گشتاور زیاد را داراست، قادر است عملیات کنﱰل موتور را در سرعتهای ﳐتلف طبق تنظیمات اﳒام دهد.
۴- ریپل گشتاور به میزان قابل توجهی کاهش یافته است.
١٣
عملکرد موتور را طبق این روش می توان به مراحل زیر تقسیم
ﳕود :
١- مرحله تشخیص فاز مناسب در حالت ایستا.
در این مرحله با اعمال پالس شناسایی به هریک از فازها و ثبت نتایج حاصله و ﲢلیل آا مناسبﱰین فاز جهت دریافت اولین فرمان انتخاب می شود.
٢- مرحله اول چرخش با داشﱳ قابلیت تنظیم سرعت توسط PWM
در این مرحله الگوریتمی به صورت پیاپی و حلقه وار تکرار می شود تا موتور به میزان تعیین شده که می بایست در ابتدای کار تنظیم شود برسد.
١۴
فصل اول:
ساختمان موتورهای رلوآتانسی
١۵
١-١- مقدمه
راهاندازهای موتورهای رلوآتانسی سوئچ شونده، (SRM) برای آاربردهای صنعتی خواستگاه جدیدی میباشند. آلید فهمیدن هرماشینی فهمیدن گشتاور آن میباشد آه از اصول اولیه منتج میشود. عملکرد ماشین و خصوصیات برجسته آن از روابط گشتاور بدست می آیند. در این فصل ساختمان موتورهای رلوآتانسی را از نظر میگذرانیم، در دهه اخیر ﲢقیقات و مطالعات بر روی این دسته از موتورها بسیار افزایش یافته و به نتایج ارزندهای هم رسیده است بطور آه امروزه آا جزء ماشینهای الکﱰیکی مطرح در سطح جهان میباشند. از سال ١٩۶٩ یک موتور با رلوآتانس متغیر برای آاربردهای با سرعت متغیر ارائه شد آه منشأ آن به سال ١٨۴٢ برمیگردد، گرچه این ماشین جزء ماشینهای سنکرون میباشد اما خصوصیات جدیدی را دارد. ﳘانند موتورهای DC سیمپیچهایی بر روی استاتور این موتورها وجود دارد اما روتور آا هیچ مگنت یا سیمپیچ ندارد. روتور و استاتور قطبهای برجستهای دارند، این ماشین در شکل a)١-١) نشان داده شده است. و یک مدل تغییر یافته با دو دندانه در هر قطب نیز در شکل b)١-١)
آورده شده.
١۶

شکل (١-١) : (a) دو ﳕونه موتور رلوآتانسی با یک دندانه در هر قطب.
(b) ﳕونهای دیگر با دو دندانه در هر قطب
هرگاه قطبهای مقابل هم در استاتور ﲢریک شوند روتور (align)
ﳘردیف با آن میشود. در یک مدار مغناطیسی، عضو چرخشی (روتور)
میخواهد به موقعیتی برود آه آمﱰین رلوآتانس یا بیشﱰین اندوآتانس حاصل گردد.[16] وقتی دو قطب روتور ﳘراستا با دو قطب ﲢریک شده استاتور میشوند دو دسته دیگر از قطبهای روتور نسبت به دسته دیگری از قطبهای استاتور غیرهمراستا هستند، پس
١٧
این دو قطب استاتور ﲢریک میشوند تا قطبهای روتور را ﳘراستا
آنند، بهﳘین ترتیب با سوئیچ آردن متوالی جریان به داخل
سیمپیچهای قطبهای استاتور، روتور میچرخد، با حرآت روتور، توان و گشتاور ایجاد میشود.
این شامل سوئیچ آردن جریان در داخل سیمپیچهای استاتور است آه موجب رلوآتانس متغیر میشود، بنابراین یک چنین راهانداز موتور با سرعت متغیر بهعنوان راهانداز موتور رلوآتانسی سوئیچ شونده نامیده میشود.
١-٢- عملکرد اولیه موتور رلوآتانس
توجه آنید آه قطبهای r1 و r′1 از روتور و قطبهای C و C′ از استاتور با هم ﳘراستا هستند. اعمال یک جریان به فاز a با جهت نشان داده شده در شکل -a)٢-١) باعث ایجاد یک شار در قطبهای a و a′ از استاتور و قطبهای r2 و r′2 از روتور میگردد آه باعث آشیدن قطبهای r2 و r′2 از روتور به ﲰت قطبهای a و a′
از استاتور میشود. بهترتیب وقتی آه آا ﳘراستا هستند جریان فاز a قطع م یشود و موقعیت متناظر در شکل -b)٢-١) نشان داده شده است. حال فاز b ﲢریک میشود تا r1 و r′1 را در جهت عقربههای ساعت به ﲰت b و b′ بکشد، بطور مشابه ﲢریک فازC باعث ﳘراستا شدن C و C′ با r2 و r′2 میگردد، بنابر این با سه بار ﲢریک متوالی روتور °٩٠ میچرخد.[8]
١٨

شکل(٢-١) : ﳓوه عملکرد موتور رلوآتانس
١-٣- انواع موتورهای رلوآتانس متغیر
موتورهای رلوآتانس متغیر به دو دسته تقسیم میشوند:
الف) موتورهای رلوآتانس متغیر با برجستگی دوگانه ب) موتورهای رلوآتانس متغیر با برجستگی واحد[38]
در روتور هر دو نوع از موتورهای مذآور هیچگونه سیمپیچ یا مغناطیس دائم وجود ندارد و تنها منبع ﲢریک سیمپیچ استاتور میباشد. استاتور و روتور از مواد مغناطیسی با قابلیت نفوذپذیری مغناطیسی بالا ساخته میشوند در شکل (٣-١) (الف) و (ب) به ترتیب ﴰاهایی از یک موتور رلوآتانس با برجستگی دو گانه و دیگری با برجستگی واحد نشان داده شده است.[17]
١٩

شکل(٣-١) : (الف) ﴰای موتور رلوآتانس با برجستگی دوگانه
(ب) ﴰای موتور رلوآتانس با برجستگی واحد
١-۴- دسته بندی موتورهای رلوآتانسی از ﳊاظ ساختار
موتورهای رلوآتانس متغیر با برجستگی دوگانه از ﳊاظ ساختاری
به سه دسته آلی تقسیم میشوند آه عبارتند از : ١- موتورهای استوانهای با قطب برجسته مضاعف ٢- موتورهای صفحهای ٣- موتورهای چند لایهای آه این تقسیمبندی بنا به شکل ظاهری موتورها صورت گرفته
است.[37] - موتورهای رلوآتانس سوئیچی استوانهای با قطب برجسته
مضاعف : این موتورها دارای قطبهای برجسته بر روی استاتور و روتور
میباشند و از اینرو به آن قطب برجسته مضاعف میگویند. ﳕای
ظاهری دو مدل از آا در شکل (١-١) آمده است. سیمپیچهای آن
بر روی استاتور بسته شده و هیچگونه سیمپیچی روی روتور آن
وجود ندارد، بسته به جایگاه و موقعیت روتور جریان را در
٢٠
سیمپیچهای استاتور وصل میﳕاییم. حال ﲤایل به فراهم آوردن مسیری آم رلوآتانس در مدار مغناطیسی روتور باعث ایجاد گشتاور میشود.
- موتورهای رلوآتانس سوئیچی صفحهای :
آاربرد موتورهای صفحهای آه با جریان مستقیم آار میآنند از
نوع دیگر آا بیشﱰ است. برای چنین موتورهایی روتورهای
صفحهای بکار گرفته شده آه در آا اندازه فیزیکی از عوامل اصلی ﳏسوب میشود. لفظ »روتور صفحهای« ﲞاطر شکل فیزیکی ساختار روتور آن میباشد. چنین موتورهایی میتوانند دارای قطر بسیار بزرگ ولی طول آوچک یا بالعکس باشند و در ﳏدوده ما بین آا نیز ساخته میشوند و لذا چنین سیستمی دارای تنوع بسیار گسﱰدهای در اندازه و شکل ظاهری میباشد و حتی میتوان آن را در مکانهایی آه از ﳊاظ فضا بسیار ﳏدود میباشند بکار برد .[13]
یک مدل بسیار ساده از این موتور در شکل (١-۴-١) آمده است. در این شکل یک روتور ضخیم آه در داخل قطبهای استاتور؛ جهت ایجاد
گشتاور بیشﱰ در حرآت است را ملاحظه میآنید. چنانچه ملاحظه میگردد ساختار این سیستم بسیار ساده است.[5]
٢١

شکل(١-۴-١) : موتور رلوآتانس از نوع روتور صفحهای
- موتورهای رلوآتانس سوئیچی چند لایه :
ﳕای ظاهری این موتور در شکل (٢-۴-١) نشان داده شده است.
ﳘانطور آه در شکل نشان داده شده است این موتور از چند لایه ﳎزای مستقل تشکیل شده است آه هرقسمت میتواند معرف یک فاز موتور بوده و القای متقابل بین سیمپیچ فازها به حداقل ﳑکن رسیده است. در این ساختار ﳏدودیت افزایش قطبهای استاتور به سبب آمبود فضای سیمبندی مرتفع گشته و امکان دسﱰسی به قطبهای بیشﱰ و به تبع آن گشتاور بالاتر در موتورهای با ابعاد آوچک میسر میگردد .[11]
از آﳒا آه مسیر شارهای هر فاز ﳎزا بوده، میتوان از روی شار جاری در هر فاز به موقعیت روتور آن نسبت به استاتور پی برد و به سهولت در حذف سنسورهای موقعیت گام برداشت.[33]
٢٢

شکل(٢-۴-١) : موتور رلوآتانس سوئیچی چند لایه
- موتورهای رلوآتانس متغیر با برجستگی واحد :
ﴰای آلی این موتورها در شکل (ب ٣-١) نشان داده شده است.
استاتور اینگونه موتورها مشابه موتورهای AC میباشد ولی روتور آا طوری ساخته شده آه گشتاور تولید شده از تغییرات رلوآتانس بوجود میآید.
١-۵- ایجاد گشتاور در یک موتور رلوآتانس سوئیچی (روابط و
نتایج)
آلید فهمیدن هر ماشینی فهمیدن گشتاور آن میباشد آه از
اصول اولیه منتج میشود. روابط گشتاور نیاز به یک رابطه بین شار یا اندوآتانس با موقعیت روتور دارد، به منظور اختصار
٢٣
برای بیان تئوری پایه فقط عملکرد غیراشباع مورد بررسی قرار میگیرد.
ﳘانطور آه در شکل (۵-١) نشان داده شده سیمپیچ دارای N دور میباشد و وقتی آه با یک جریان i ﲢریک میشود سیمپیچ شار φ را ایجاد میآند. با افزایش جریان ﲢریک آرمیچر به ﲰت یوک آه ثابت است حرآت میآند. برای دو مقدار فاصله هوایی x1 و x2 شار برحسب mmf رسم شده است بهطوری آه x1>x2 میباشد. منحنی شار برحسب mmf برای x1 خطی میباشد بهخاطر اینکه رلوآتانس فاصله هوایی غالب میباشد. این امر باعث آاهش شار در مدار مغناطیسی میشود، انرژی الکﱰیکی ورودی بهصورت زیر نوشته میشود.
we  ∫eidt ∫idt ddNtφ  ∫Nidφ ∫Fdφ

در اینجا e، emf القایی بوده و F ، mmf میباشد، این انرژی الکﱰیکی ورودی، we، مساوی با ﳎموع انرژی ذخیره شده در سیم پیچ، wf، و انرژی تبدیل شده به آار مکانیکی، wm، میباشد.
we = wf + wm
وقتی آار مکانیکیای اﳒام ﳕیشود، مانند ﳊظهای آه آرمیچر از موقعیت x1 شروع میآند، انرژی ذخیره شده در میدان مغناطیسی، برابر انرژی الکﱰیکی ورودی میباشد، این منطق با مساحت OBEO
در شکل (۵-١) میباشد متمم این انرژی ذخیره شده در میدان
مغناطیسی، coenergy نامیده میشود، با مساحت OBAO در شکل (۵-٢
) داده میشود، و بهصورت ریاضی با رابطه ∫φdF داده میشود،
بطور مشابه در موقعیت x2 برای آرمیچر، اثری ذخیره شده در
میدان مغناطیسی منطبق با مساحت OCDO بوده و coenergy با
مساحت OCAO داده میشود برای تغییرات افزایش داریم dwe = dwf + dwm
٢۴
برای یک ﲢریک ثابت F1 آه با نقطه آار A در شکل (۵-١) داده میشود، انرژیهای ﳐتلف بهصورت زیر بدست میآیند :
(BCDEB) مساحت dwe  ∫φφ12 F1dφ  F1 φ2 −φ1 =
(OBEO) مساحت- (OCDO) مساحت x  x = − dw f 2 x  x dw f  dw f 1 با استفاده از معادلات فوق، انرژی مکانیکی بهصورت زیر بدست میآید :
(OBCO) مساحت dwm =dwe = dwf =
آه این مساحت بین دو منحنی برای یک mmf داده شده میباشد، در مورد یک ماشین با حرآت دوار انرژی مکانیکی افزایشی برحسب گشتاور الکﱰومغناطیسی و تغییرات در موقیعت روتور بهصورت زیر نوشته میشود.
dwe = Tedθ
بنابراین گشتاور الکﱰومغناطیسی بهصورت زیر بدست میآید :
T  dwm
edθ

برای حالتی آه ﲢریک ثابت است (وقتی آه mmf ثابت میباشد)
آار مکانیکی اﳒام شده برابر نرخ تغییرات coenergy میباشد، w′f،
آه فقط متمم انرژی ذخیره شده در میدان میباشد، بنابراین آار
مکانیکی اﳒام شده بهصورت زیر نوشته میشود :
dwm = dw′f
بهطوری آه :
we′  ∫φdF  ∫φd (Ni)  ∫Nφdi ∫λ(θ,i)di ∫L(θ,i)idi
در اینجا، اندوآتانس، L، و اتصال شار، λ ، توابعی از
موقعیت روتور و جریان میباشند، این تغییرات در coenergy بین
دو موقعیت θ1 و θ2 روتور اتفاق میافتند.
٢۵
dw′f (i,θ)  dw′f  dw T  m i  cons tan t dθ dθ dθ e اگر اندوآتانس بهصورت خطی با موقعیت روتور تغییر آند آه
در عمل عموماً این گونه نیست[6]، گشتاور بهصورت زیر میتواند نوشته شود :
i2 . dL(θ,i)  T 2 dθ e در رابطه اخیر dL(θ,i) ثابت گشتاور نامیده شده و واحد آن dθ N.m
A2 میباشد، باید تأآید شود آه این یک ثابت نیست و مرتباً

تغییر میآند و این بیان میآند آه SRM یک مدار معادل برای شرایط آار دائمی ندارد.

شکل(۵-١) : (a) روتور با فاصله x از استاتور (b) منحنی شار برحسب mmf برای x1 و x2 آه x1>x2
٢۶
- از رابطهگشتاور میتوان نتایج زیر را بدست آورد
١- گشتاور با توان دوم جریان متناسب است، بنابراین جریان میتواند در یک جهت برقرار شود تا گشتاور در یک جهت ایجاد
شود. بنابراین فقط با یک سوئیچ میتوان جریان را در سیمپیچ برقرار ﳕود، این سبب آاهش تعداد سوئیچهای قدرت و آاهش هزینه میشود.
٢- ثابت گشتاور با شیب اندوآتانس برحسب موقعیت روتور داده میشود. اینطور فهمیدهاند آه اندوآتانس سیمپیچ استاتور تابعی
از موقعیت روتور و جریان میباشد و بنابراین آن را غیرخطی میسازد.
٣- بهخاطر تناسب گشتاور با توان دوم جریان، این خصوصیت شبیه موتورهای DC سری میباشد، بنابراین SRM دارای گشتاور
راهاندازی خوب میباشد.
۴- عملکرد ژنراتوری با برقراری جریان در یک جهت هنگامیآه
شیب اندوآتانس منفی است، امکانپذیر میباشد.
۵- تغییر جهت چرخش با تغییر ترتیب فرمان سیمپیچهای استاتور امکانپذیر میباشد آه این یک عمل ساده است.
۶- گشتاور و سرعت هر دو به وسیله مدار مبدل (Converter) آنﱰل میشوند.
٧- این ماشین یک مدار مبدل آنﱰل شونده نیاز دارد و با تغذیه سهفاز برقشهر بهطور مستقیم ﳕ یتواند آار آند.
٨- تزویج در بین سیمپیچهای استاتور بسیار آم بوده و در بسیاری از آاربردها قابل صرفنظر میباشد. بنابراین هر فاز از این موتور میتواند بطور مستقل از فازهای دیگر عمل آند.
٩- بهخاطر اینکه جریان فقط لازم است در یک جهت در سیمپیچها جاری شود، ﲤام مبدﳍای قدرت دارای یک سوئیچ بصورت سری با سیم پیچ هستند بنابراین هیچگاه خطای shoot-through رخ ﳕیدهد.
٢٧
١-۶- رابطه بین موقعیت روتور و اندوآتانس سیمپیچ استاتور
برای یک جریان ثابت، اندوآتانس برحسب موقعیت روتور در شکل (۶-١) نشان داده شده است. این منحنی با صرفنظر از اثرات لبهای و اشباع سیمپیچ ترسیم شده است.

شکل(۶-١) : (a) یک قطب از موتور رلوآتانس (b) منحنی اندوآتانس برحسب
موقعیت روتور
نواحی ﳐتلف بر روی شکل (۶-١) را بهصورت زیر میتوان ﲢلیل آرد.
١ - φ1 - و φ4 - φ5 فازهای استاتور و روتور هیچگونه ﳘپوشانی با ﳘدیگر ندارند و شار عبوری به وسیله مسیر فاصله هوایی تعیین میشود، بنابراین اندوآتانس مینیمم شده و مقداری
٢٨
تقریباً ثابت باقی میماند بنابراین، این ناحیه باعث ایجاد گشتاور ﳕیشود، اندوآتانس در این ناحیه، اندوآتانس غیرﳘراستا
Lu(unaligned) نامیده میشود.
٢φ1- φ2 - در این ناحیه قطبها با هم ﳘپوشانی پیدا آردهاند بنابراین شار بطور عمده از ﳌینیتهای استاتور و روتور عبور
میآند، با تغییر موقعیت روتور اندوآتانس افزایش مییابد و به آن یک شیب مثبت میدهد، جریان تزریق شده به داخل سیمپیچ در این ناحیه باعث ایجاد یک گشتاور مثبت میشود، این ناحیه با ﳘپوشانی آامل قطبهای استاتور و روتور خاﲤه پیدا میآند.
٣φ2- φ3 - در این ناحیه حرآت روتور باعث تغییر ﳘپوشانی آامل فاز استاتور و روتور ﳕیشود و بنابراین تغییری در مسیر شار آه اآنون از طریق ﳌینیتها میباشد ایجاد ﳕیشود و اندوآتانس در مقدار حداآثر خود ثابت باقی میماند. این
اندوآتانس، اندوآتانس حالت ﳘپوشانی آامل La(aligned) نامیده میشود، از آﳒا آه تغییری در اندوآتانس ایجاد ﳕیشود بنابراین گشتاور تولید شده در این ناحیه صفر میباشد، هر چند جریان جاری در سیمپیچ غیرصفر باشد با دانسﱳ این حقیقت، این زمان ﲠﱰین زمان برای خاموش آردن فاز میباشد زیرا جریان برگشتی ناشی از انرژی ذخیره شده در فاز استاتور باعث ایجاد گشتاور منفی ﳔواهد شد.
۴φ3- φ4 - در این ناحیه قطب روتور در حال دور شدن از موقعیت ﳘپوشانی آامل فاز استاتور و روتور میباشد. این ناحیه خیلی شبیه ناحیه φ1- φ2 میباشد اما در این ناحیه با افزایش موقیت روتور، اندوآتانس آاهش مییابد و باعث تولید یک شیب منفی میگردد، عملکرد موتور در این ناحیه باعث ایجاد گشتاور
منفی میگردد. به خاطر اشباع جریان عبوری از سیمپیچ، رسیدن به منحنی
ایدهآل شکل فوق امکانپذیر ﳕیباشد، اشباع جریان باعث ﲬیده
٢٩ شدن منحنی به ﲰت بالا میشود و شیب را آاهش میدهد، بنابراین ثابت گشتاور آاهش مییابد. پس اشباع جریان باعث آاهش یافﱳ گشتاور و توان خروجی میشود.[14]
١-٧- مدار معادل موتور رلوآتانسی
مدار معادل اولیه یک موتور رلوآتانسی با صرفنظر آردن از اثر تزویج بین سیمپیچها بصورت زیر خواهد بود. ولتاژ اعمال شده به سیمپیچی فاز برابر با ﳎموع افت ولتاژ مقاومتی و نرخ تغییرات شار عبوری میباشد.
dλ(θ,i) V  Rs i  dt RS مقاومت بر هر فاز بوده و λ شار عبوری میباشد.
λ = L(θ,i) i
dL(θ,i)  dθ i di RSiL(θ,i) dL(θ , i )i V  RS i  dθ dt dt dt dL(θ,i) iw  di i  L(θ,i) V  R dθ m dt S در رابطه اخیر میتوان بهجای dL(θ,i) iwm ، e ، یعنی emf القا dθ شده را جایگذاری آرد. dL(θ,i) و dL(θ,i) Kb  Kbwmi e  iwm dθ dθ V  RS i  L(θ,i) dtdi  e

٣٠

شکل(١-٧-١) : مدار معادل موتور رلوآتانسی
با فرض ثابت بودن جریان در یک پریود داریم :
dL V  R i iw m dθ S V i  dL ( w (R m dθ S معادله اخیر بیانگر آن است آه جریان با سرعت نسبت عکس دارد و چون گشتاور با ﳎذور جریان نسبت دارد بنابراین گشتاور با ﳎذور سرعت نسبت عکس خواهد داشت.
Tα 1

w2m
این مطلب رفتار گشتاور سرعت یک موتور DC سری را تداعی میآند.[10]
٣١

شکل(٢-٧-١) : منحنی گشتاور ـ سرعت یک موتور رلوآتانسی ﳕونه
در موتورهای رلوآتانسی آه حرآت ابتدایی را خود آغاز
میآنند، تیغههای روتور باید با تیغههای استاتور مربوط به خودش ﳘپوشانی داشته باشد. تا در هر موقعیتی بر روی روتور آن گشتاور وجود داشته باشد.
ترآیبات ﳐتلف از تعداد قطبها (Nr , Ns) آه بهترتیب قطبهای
استاتور و روتور میباشند. ذیلا آورده شده است. 4 Nr = 6 Ns = برای موتور 3 فازه
6 = Nr 8 Ns = برای موتور 4 فازه
4 = Nr Ns = 10 برای موتور 5 فازه
البته ترآیبات دیگری نیز وجود دارد و تفاوت آا در این
است آه در برخی از جایگاههای روتور ﳑکن است گشتاوری تولید نگردد.[9]
٣٢
فصل دوم:
مدارات راه انداز (DRIVER)
٣٣
٢-١- پیکربندی مدارات مبدل
در موتورهای رلوآتانسی، تزویج بسیار ناچیز است، این امر سبب عدم وابستگی به دیگر فازها در آنﱰل هر فاز و تولید گشتاور میشود. درحالیآه این خصوصیت یک برتری ﳏسوب میشود، نداشﱳ تزویچ نیاز به عملکرد درست با انرژی مغناطیسی ذخیره شده دارد. در هنگام خاموش شدن فاز باید مسیری برای ﲣلیه انرژی ذخیره شده بوجود آورد، در غیراینصورت این انرژی سبب ایجاد ولتاژ بیش از حد خواهد شد و به سوئیچهای نیمه هادی صدمه خواهد رساند. این انرژی میتواند بهصورت آزاد بهحرآت درآید، ﲞشی از آن به انرژی الکﱰیکی/ مکانیکی تبدیل شده و ﲞشی دیگر از آن در سیمپیچهای ماشین تلف میشود[15]، روش دیگر بازگرداندن آن بر روی منبع ولتاژ DC میباشد.
دستهبندی مدارات مبدل بهصورت q ، q+1 ، 1. 5 q و 2 q سوئیچ در هر فاز و مبدل قدرت دو مرحلهای است آه q تعداد فازهای ماشین میباشد.[20]
این دستهبندی در شکل (١-٢) نشان داده شده است.

شکل(١-٢) : دستهبندی مدارات مبدل
٣۴
٢-٢- مبدل پل نامتقارن شکل -a)٢-٢) مبدل پل نامتقارن را با درنظر گرفﱳ یک فاز
SRM نشان میدهد.[3] بقیه فازها نیز بهطور مشابه متصل
میشوند. با روشن شدن ترانزیستورهای T1و T2 جریان در فاز A
برقرار میشود، اگر جریان بالاتر از حد تعیین شده برسد، T1و T2
خاموش میشوند. انرژی ذخیره شده در سیمپیچ فاز A موتور جریان را در ﳘان جهت حفظ میآند تا اینکه ﲣلیه شود، بنابراین دیودهای D1و D2 بهصورت مستقیک بایاس شده و باعث شارژ شدن دوباره منبع میشوند، این امر سبب آاهش سریع جریان و رسیدن
آن به زیر حد تعیین شده میشود این عملکرد با شکل موجهای شکل
-b)٢-٢) تشریح شده است. باید توجه داشت آه یک جریان با اندازه IP در هنگام عملکرد موتوری آه شیب اندوآتانس مثبت است مورد نیاز میباشد. در اینجا جریان فاز A ، ia، بهوسیله یک فیدبک جریان و مقایسه با ia ، در حدود ia حفظ میشود، ∆i
میزان اختلاف با جریان تعیین شده میباشد.

شکل(-a٢-٢) : مبدل پل نامتقارن
٣۵

شکل(-b٢-٢) : شکل موجهای مبدل پل نامتقارن ـ روش اول
وقتی اختلاف جریان ia و ia به اندازه -∆i شود، ترانزیستورهای
T1 و T2 بطور ﳘزمان خاموش میشوند در این هنگام دیودهای D1 و
D2 باعث هدایت جریان به منبع ولتاژ DC میشوند، توجه آنید آه
ولتاژ فاز A در این ﳊظه منفی و به اندازه منبع ، Vdc،
میباشد، روش آنﱰلی فوق (روش١) از آﳒا آه ریپلهای بیشﱰی به خازن تغذیه اعمال میآند باعث آوتاه شدن عمر این خازن و
افزایش تلفات سوئیچینگ در ترانزیستورهای قدرت میشود. برای
ﲠﱰ شدن این مسأله میتوان از روش سوئیچینگ متناوب استفاده
آرد.[4] انرژی ذخیره شده در فاز A میتواند بهطور مؤثر در داخل
خودش استفاده شود، این آار با خاموش آردن T2 به تنهایی (روش
٣۶
دوم) امکانپذیر است. در این مورد جریان در داخل T1 و فاز A
و D1 جاری میشود، اگر از افت ولتاژ بر روی ترانزیستورو دیود صرفنظر آنیم، ولتاژ بر روی فاز A صفر خواهد شد. شکل ( -C٢-٢ ) در این روش (روش دوم) نسبت به روش اول زمان بیشﱰی طول میآشد تا جریان از IP + ∆I به IP-∆I برسد. این امر سبب آاهش فرآانس سوئیچینگ و بنابراین آاهش تلفات سوئیچینگ خواهد شد.
در روش دوم وقتی فاز میخواهد آاملا خاموش شود یعنی وقتی ia
صفر است، آنگاه T1 و T2 ﳘزمان خاموش میشوند در این فاصله ولتاژ دو سر سیمپیچ -Vdc خواهد شد و ﳘچنین D1 و D2 هدایت میآنند تا اینکه ia صفر شود، ولتاژ روی T2 در حین خاموشی و هنگامیآه T1 روشن است، مساوی ولتاژ منبع، Vdc ، میباشد بنابراین ولتاژ ترانزیستورها و دیودها باید در حدود ولتاژ منبع تغذیه باشد. در روش دوم جریان برگشتی فازها دیرتر از روش اول صفر میشود ﳘچنین در روش دوم انرژی ذخیره شده به انرژی مکانیکی مفید تبدیل میشود، این روش برای آنﱰل جریان استفاده میشود ولی هنگامی آه جریان باید سریعاً خاموش شود، دشارژ در داخل منبع مفید خواهد بود، یعنی زمانی آه شیب اندوآتانس صفر میشود و بعد از آن منفی خواهد شد، در این زمان دیرتر خاموش شدن فاز باعث ایجاد گشتاور منفی و از دست رفﱳ انرژی خواهد شد.
توجه آنید آه این مدار مبدل به ازای هر فاز دو ترانزیستور و دو دیود نیاز دارد.
٣٧

شکل(-c٢-٢) : شکل موجهای مبدل پل نامتقارن ـ روش دوم
ﲠرهبرداری از ادوات قدرت در مبدل نامتقارن ضعیف میباشد.
میتوان زماای سوئیچ آا را افزایش داد. این آار با آاهش
تعداد ترانزیستورهای قدرت و استفاده از SCR ﳑکن خواهد شد.[7]
ﳘانطور آه در شکل -d)٢-٢) دیده میشود تعداد فازها باید
زوج باشد. SCR ها برای هدایت جریان به فاز مناسب استفاده
میشوند و برای آنﱰل استفاده ﳕیشوند. با این وجود استفاده از
SCR نیاز به مدارات جانبی داشته آه باعث افزایش تعداد
قطعات، هزینه و ابعاد مدار راهانداز خواهد شد.
تعداد دیودها به یکعدد در هر فاز تقلیل یافته است. باید توجه داشت آه فازهای غیرمتوالی در یک گروه با هم قرار میگیرند و با یک دسته از ترانزیستورها ﲢریک میشوند. این آار
٣٨
سبب میشود آه یک فاز بتواند در موقع لزوم به سرعت خاموش شود و جریانش به صفر برسد. برای ﲢریک فاز A، ترانزیستورهای T1 و
T2 و تریستور S1 روشن میشوند، اگر جریان به مقدار تعیین شده برسد T1 خاموش میشود و جریان از طریق فاز A و ترانزیستور T2
S1 و D2 برقرار میشود، در این هنگام ولتاژ دو سر فاز A در
صورت ایدهآل در نظر گرفﱳ قطعات صفر خواهد بود در این روش انرژی ذخیره شده در اندوآتانس ماشین به انرژی مکانیکی تبدیل شده و جریان فاز آاهش مییابد، هنگامیآه جریان فاز باید آاملا خاموش شود. T1 و T2 ﳘزمان خاموش میشوند آه باعث روشن شدن D1
D2 میشود، در این هنگام ولتاژ در دو سر سیمپیچ فاز -Vdc
خواهد شد. ﲞشی از انرژی به منبع بازگشته و ﲞشی دیگر از آن
به انرژی مکانیکی تبدیل خواهد شد به این ترتیب جریان فاز به
سرعت به صفر میرسد. تریستور S2 مانع از گردش جریان فاز A از طریق فاز C میشود.

شکل(-d٢-٢) : استفاده از SCR و آاهش تعداد ترانزیستورهادرمبدل پل
نامتقارن
٣٩
٢-٣- مبدﳍای یک سوئیچ در هر فاز
مبدﳍای یک سوئیچ در هر فاز بهخاطر آوچک بودن ابعاد مبدل و ﳘچنین آاهش قیمت ساخت آا جذاب هستند این مبدﳍا دارای اشکال عدم توانایی اعمال ولتاژ صفر در دو سر سیمپیچ هستند، این ﳏدودیت سبب افزایش مبادله انرژی بین ماشین و منبع ولتاژ dc
میشود آه خود موجب تلفات بیشﱰ و آاهش بازده میشود ﳘچنین نویز صوتی افزایش مییابد.[35]
٢-۴- مبدل R-Dump
شکل (۴-٢) یک مبدل با یک سوئیچ و یک دیود در هر فاز را
نشان میدهد، وقتی T1 خاموش میشود جریان آزادانه از طریق
دیود D2 عبور میآند و خازن CS را شارژ میآند پس از مقاومت
خارجی R عبور میآند. این مقاومت مقداری از انرژی ذخیره شده
در فاز A را مصرف میآند آه باعث مشکل دیر ﲣلیه شدن سیمپیچ
میشود. علاوه براین اتلاف انرژی در مقاومت باعث آاهش بازده
میشود. ولتاژ بر روی T1 در هنگامیآه خاموش میشود برابر Vdc +
IaR میباشد. مقدار R هم میزان تلفات را تعیین میآند هم میزان ولتاژ حداآثر را آه ترانزیستور باید ﲢمل آند. اگر R آوچک باشد جریان فاز دیرتر خاموش شده و ﳑکن است در ناحیهای آه اندوآتانس دارای شیب منفی است سیمپیچ ﳘچنان جریان داشته و هنوز ﲣلیه نشده باشد. این امر سبب ایجاد گشتاور منفی و آاهش گشتاور موتوری میشود. اگر R بزرگ باشد آنگاه افت ولتاژ روی ترانزیستورها بزرگ بوده و ترانزیستوری آه ﲢمل ولتاژ بالاتری داشته باشد نیاز است.[18]
۴٠

شکل(۴-٢) : (a) توپولوژی R-Dump
(b) شکل موجهای توپولوژی R-Dump
٢-۵- مبدل Bifilar
در شکل (۵-٢) یک مبدل با یک ترانزیستور فاز دیده میشود اما انرژی ذخیره شده در برمیگردد. اینآار با استفاده از یک سیمپیچ

ویک دیود در هر فاز به منبع dc bifilar (دو رشتهای)
۴١
با پلاریته نشان داده شده در شکل امکانپذیر میباشد. وقتی ترانزیستور T1 خاموش میشود emf القا شده در سیمپیچ دارای
پلاریتهای است آه دیود D1 را روشن میآند. این باعث ﲣلیه
جریان از طریق D1 میشود و انرژی به منبع باز میگردد.
هنگامیآه ترانزیستور خاموش میشود ولتاژ بر روی سیمپیچ bifilar
ثانویه برابر ولتاژ منبع dc میباشد ولتاژ بر روی سیمپیچ
اصلی بستگی به نسبت دور سیمپیچها دارد. با در نظر گرفﱳ نسبت دور a بین سیمپیچ اصلی سری با ترانزیستور و سیمپیچ bifilar
ثانویه، ولتاژ بر روی ترانزیستور برابر خواهد بود با:
vT1 = vdc + avdc = (1+a) vdc
این نشان میدهد آه ولتاژ بر روی T1 میتواند خیلی بزرگﱰ از ولتاژ منبع باشد. ﳘچنین نیاز به یک سیمپیچ ثانویه باعث ایجاد ﳏدودیت در فضای سیمبندی برای سیمپیچ اصلی شده و اقتصادی ﳕیباشد.[19]

شکل(-a۵-٢) : مبدل Bifilar
۴٢

شکل -b)۵-٢) : شکل موجهای مبدل Bifilar
٢-۶- مبدل با منبع تغذیه dc دو نیمهای
مبدل با منبع تغذیه dc دو نیمهای برای هر فاز یک سوئیچ
داشته و به این صورت آار میآند آه فاز A با روشن شدن T1
ﲢریک میشود. جریان در ترانزیستور T1، فاز A و خازن C1
برقرار میشود. وقتی ترانزیستور T1 خاموش میشود جریان با
حرآت از مسیر فاز A و خازن C2 و دیود D2 ادامه مییابد. در
این عمل خازن C2 شارژ شده و بنابراین انرژی ذخیره در فاز A
بهسرعت ﲣلیه میشود مشابه این عمل برای فاز B اتفاق میافتد،
۴٣
است و 0.5 vdc
عملکرد این مدار برای فاز A در شکل -b)۶-٢) نشان داده شده
است. وقتی T1 روشن است ولتاژ در دو سر فاز A برابر vdc 2
خواهد بود و وقتی T1 خاموش میشود ولتاژ دو سرفاز A برابر
−vdc 2 خواهد شد.[24] ولتاژ بر روی ترانزیستور T1 وقتی آه روشن
است قابل صرفنظر میباشد و وقتی خاموش میشود برابرvdc
وقتی آه جریان سیمپیچ به صفر میرسد ولتاژ T1 برابر
خواهد شد. برخی از اشکالات این درایو این است آه فقط نصف
ولتاژ تغذیه برای ﲢریک فاز استفاده میشود. برای تعادل بار
بر روی خازای تغذیه باید تعداد فازهای ماشین زوج باشد.
شکل(-a۶-٢) : مبدل، منبع تغذیه dc دو نیمهای
۴۴

شکل(-b ۶-٢) : شکل موجهای مبدل با منبع تغذیه دو نیمهای
٢-٧- مبدل با q ترانزیستور و 2q دیود
در شکل -a)٧-٢) یک مبدل با یک سوئیچ در هر فاز نشان داده شده است، توجه آنید آه دیودهای هرزگرد D1 و D2 و D3 و D4
دیودهای سریع هستند و دیودهایD5 و D6 و D7 و D8 دیودهای با سرعت روشن شدن پایین هستند. با روشن شدن ترانزیستورهای T1 و
T4 فاز A ﲢریک میشود وقتی جریان به میزان تعیین شده رسید ترانزیستورهای T1 و T2 خاموش میشوند. این آار سبب روشن شدن دیودهای D1 و D4 شده تا جریان را برقرار سازند، در این حین ولتاژ بر روی فاز A برابر -vdc خواهد شد آه نشان دهنده
۴۵
انتقال انرژی از سیمپیچ به منبع ولتاژ DC میباشد. ﳘانطور آه در شکل -b)٧-٢) دیده میشود این آار سبب صفر شدن سریع جریان
فاز A میشود (روش اول) در روش دوم آه سوئیچها ﳘزمان خاموش
ﳕیشوند. در این حالت T4 روشن بوده و T1 خاموش میشود و برای
سیکل بعدی T1 روشن بوده و T4 خاموش میشود تا جریان rms
سوئیچها آاهش یابد. این عملکرد در شکل -c)٧-٢) نشان داده
شده است برای ﲢریک فاز B باید ترانزیستورهای T1 و T2 با هم عمل آنند.[27]

شکل(-a٧-٢) : مبدل با q ترانزیستور و 2q دیود
۴۶

شکل(-b٧-٢) : شکل موجهای مدار فوق با روش اول
۴٧

شکل(-c٧-٢) : شکل موجهای مدار فوق با روش دوم
٢-٨- مبدل با (١(q+ سوئیچ و دیود
یک آرایش (١(q+ سوئیچ در شکل (١-٨-٢) نشان داده شده است، برای اینکه فاز A ﲢریک شود، T1 و T2 باید روشن شوند آه باعث اعمال ولتاژ منبع به دو سر سیم پیچ میشود. وقتی جریان ia به حد تعیین شده میرسد یک روش این است آه T1 یا T2 خاموش شوند، در این صورت جریان از طریق T1 و D2 یا T2 و D1 برقرار شده و ولتاژ در دو سر فاز صفر میشود، روش دیگر این است آه T1 و T2
ﳘزمان خاموش بشوند و ولتاژ دو سر سیمپیچ -vdc شود و جریان آاهش یابد، برای خاموش آردن فاز A و آاهش سریع جریان در آن
۴٨
روش دوم انتخاب میشود. بطور مشابه برای فاز B،
ترانزیستورهای T2و T3 و دیودهای D2 و D3 استفاده میشوند و برای فاز C ترانزیستورهای T3 و T4 و دیودهای D3 و D4 استفاده
میشوند، ترانزیستورهای T2 و T3 و دیودهای D2و D3 بهصورت مشﱰ
ک استفاده میشوند این امر نهتنها باعث افزایش جریان عبوری
از آا میشود بلکه در آنﱰل مستقل فازها نیز ﳏدودیت ایجاد
میآند. بهعنوان مثال اجازه دهید فاز A خاموش شده و فاز B
ﲢریک شود، در این حال T1 باید خاموش شود و T2 و T3 روشن شوند، این امر سبب میشود آه ولتاژ روی فاز A صفر شود، در صورتی آه مطلوب ما -vdc میباشد. این امر سبب دیرتر خاموش شدن فاز A
شده و حتی ﳑکن است باعث ایجاد گشتاور منفی و آاهش گشتاور موتوری شود.[21]

شکل (١-٨-٢) : مبدل با (١(q+ سوئیچ در هر فاز
ﲠبود یافته مدار فوق با دیودهای اضافه و q
شکل (٢-٨-٢) نشان داده شده است. این مدار میباشد، نیمی از آا (دیودهای Da و Db و Dc

ترانزیستور در دارای 2q دیود و (Dd جریان را
۴٩
به فاز مناسب هدایت میآنند و بنابراین میتوانند دیودهای با سرعت آم باشند. فقط ماشینهایی با تعداد فاز زوج میتوانند از فواید این درایو ﲠرهمند شوند. [25]

شکل(٢-٨-٢) : ﲠبود یافته مدار(١(q+ ترانزیستوری
٢-٩- مبدل C-Dump مبدل C-Dump با مدار بازیافت انرژی در شکل (٩-٢) نشان
داده شده است. ﲞشی از انرژی مغاطیسی ذخیره شده در فاز به
خازن Cd منتقل شده و از آن از طریق Tr و Lr و Dr بازیابی شده
به منبع ولتاژ DC ورودی منتقل میشود. فرض آنید آه
ترانزیستور T1 روشن شود تا فاز A ﲢریک گردد و هنگامیآه
جریان فاز A به میزان تعیین شده میرسد، T1 خاموش میشود،
اینآار باعث روشن شدن دیود D1 میشود و جریان از طریق خازن
Cd بسته میشود آه باعث افزایش ولتاژ روی آن میشود. در نتیجه جریان فاز A آاهش مییابد، وقتی آه جریان به اندازه ∆i از
میزان تعیین شده آمﱰ شد، T1 روشن میشود تا جریان به مقدار
تعیین شده نزدیک شود. وقتیآه جریان باید آاملا در فاز A
۵٠
خاموش شود، T1 خاموش میشود و مقداری از انرژی ذخیره شده در فاز A در خازن Cd ذخیره میشود و ﲞشی از آن به انرژی مکانیکی
تبدیل میشود. این مبدل حداقل تعداد سوئیچ را داشته و ﳘچنین
جریان در آن بطور مستقل از فازهای دیگر آنﱰل میشود. اشکال
اصلی این مبدل این است آه سرعت خاموش شدن فاز به اختلاف
ولتاژ تغذیه ورودی، vdc، و ولتاژ vo روی Cd بستگی دارد، سریعﱰ خاموش شدن جریان نیازمند vo بزرگﱰ است آه باعث افزایش میزان ولتاژی خواهد شد آه ادوات قدرت باید ﲢمل آنند. ﳘچنین تبادل انرژی بین Cd و منبع تغذیه dc ورودی باعث تلفات اضافی شده و بازده ماشین را پایین میآورد. مدار باز یافت انرژی فقط هنگامیعمل میآند آه یکی از ترانزیستورهای T1، T2 ، T3 یا T4
روشن باشند تا از جریان هرز گرد فازها جلوگیری شود. Tr
زمانیآه ترانزیستورهای T1 تا T4 ﳘگی خاموش هستند خاموش می شود.[2]

۵١

شکل(٩-٢) : (a) مدار مبدل C-Dump
(b) شکل موجهای مبدل C-Dump
٢-١٠- مبدل C-Dump با قابلیت جریان هرزگرد
مبدل SRM به روش C-Dump توانایی ایجاد ولتاژ صفر ولت را
بر روی فازها نداشت، این امر سبب افزایش نویز صوتی در این
موتورها میشود. ﳘچنین فازهای ماشین هم با ولتاژ منبع dc و
هم با اختلاف ولتاژ بین منبع dc و خازن C-dump مواجه میشدند یعنی یک ولتاژ با تغییرات بسیار زیاد، تقریباً دو برابر ولتاژ منبع dc، این موضع باعث تلفات بیشﱰ میشود، ﳘه این مسائل با اضافه آردن یک ترانزیستور و ایجاد جریان هرزگرد به ﳘراه دیود DS برای بازیافت انرژی ذخیره شده در خازن C-Dump
۵٢
برطرف می شوند. شکل (١-١٠-٢) در این آرایش Lr حذف شده است.
برای ﲢریک فاز A، ترانزیستور T1 روشن می شود. مرحله ١، وقتی جریان فاز به میزان تعیین شده میرسد T1 خاموش شده و Tf روشن میشود، مرحله ٢، زمانی شروع میشود آه ولتاژ Cd به ولتاژ منبع dc میرسد، در این هنگام Tf روشن شده و جریان در فاز
ترانزیستور Tf و دیود D1 برقرار میشود (در این هنگام ولتاژ
دو سر سیمپیچ صفر است). وقتی جریان فاز باید خاموش شود T1
خاموش شده و Tf روشن ﳕیشود، در نتیجه ﲞشی از انرژی به خازن
Cd منتقل میشود و ﲞشی دیگر به انرژی مکانیکی تبدیل میشود، این مرحله ٣ است، و در این مرحله ولتاژ دو سر فاز ماشین برابر (vd-vo) خواهد شد.
مرحله ۴ زمانی آغاز میشود آه فاز آاملا خاموش شده است و انرژی داخل Cd میتواند برای ﲢریک فاز B یا فاز C استفاده شود، در این مرحله دیود DS خاموش شده و اجازه میدهد آه ولتاژ Cd به فاز دارای جریان منتقل شود در ﲤامی این مراحل آنﱰل مستقل جریان فازها امکانپذیر میباشد. فقط هنگامیآه جریان فازها با هم ﳘپوشانی دارند روشن آردن Tf باعث دیرتر خاموش شدن فاز درحال خاموش شدن خواهد شد. شکل موج عملکرد مدار بدون ﳘپوشانی جریان فازها در شکل (٢-١٠-٢) نشان داده شده است.[34]
۵٣

شکل (١-١٠-٢) : مبدل C-Dump با قابلیت جریان هرزگرد

شکل (٢-١٠-٢) : عملکرد مدار بدون ﳘپوشانی جریان فازها
۵۴
٢-١١- مبدل با یک ترانزیستور مشﱰک
شکل (١١-٢) یک مبدل با یک ترانزیستور مشﱰک برای فازها را نشان میدهد، T1 قسمت بالای فازها را از منبع dc جدا میآند تا انرژی بتواند به خازن C1 منتقل شود، در غیر اینصورت جریان بهصورت هرزگرد در داخل فاز و دیود جاری خواهد شد، وقتی ﲞواهیم فاز A ﲢریک شود، ترانزیستورهای T1 و T3 روشن میشوند، هنگامیآه جریان به میزان تعیین شده رسید ترانزیستور T1 و T2
ﳘزمان یا به تنهایی خاموش خواهند شد. اشکال این مبدل عدم توانایی آنﱰل جریان بهصورت مستقل در هنگامیآه جریاا با هم ﳘپوشانی دارند میباشد، هنگامیآه فاز A در حال خاموش شدن است اگر فاز B یا C روشن شود جریان در فاز A بهصورت هرزگرد خواهد شد و ﲣلیه آن طولانیتر میشود.[39]

شکل (١١-٢) : (a) مبدل با یک ترانزیستور مشﱰک

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

(b) عملکرد مدار
۵۵
٢-١٢- مبدل با حداقل تعداد سوئیچ و تغذیه ورودی متغیر
دو ﳕونه مبدل با (١(q+ ترانزیستور بررسی شدند، با وجود
ﳏدودیتهایی آه داشتند بهخاطر سادگی توپولوژی و خصوصیات
آنﱰلی جالب از آا استفاده میشود. این نوع مبدﳍا ﳘان ولتاژ منبع را به ادوات نیمه هادی اعمال میآنند اما توانایی آنﱰل جریان فازها را هنگامیآه جریاا با هم ﳘپوشانی دارند (وقتی یک فاز در حال خاموش شدن است فاز دیگر ﲞواهد روشن شود)
ندارند. نوع C-dump مشکل آنﱰل جریان بهصورت مستقل را حل
آرده اما ادوات نیمههادی باید ولتاژ بزرگﱰی را ﲢمل آنند،
ﳘچنین در مبدل C-dump گردش انرژی بیشﱰ است و تلفات بالاتر
میباشد. اشکالات فوق استفاده از این مبدﳍا را در عمل ﳏدود آرده است.
مبدل نشان داده شده در شکل (١٢-٢) با ﳘان تعداد ترانزیستور دیگر مشکل آنﱰل مستقل جریان فازها را ندارد.
ترانزیستور TC، دیود DC، سلف LC و خازن CC مدار آاهنده ولتاژ
DC ورودی را تشکیل میدهند. این مدار ولتاژ vdc ورودی را به vi
آاهش میدهد تا اینکه ولتاژ مورد نظر به سیمپیچ ماشین اعمل شود. با آاهش ولتاژ vi دیگر نیاز به سوئیچینگ ترانزیستورهای قدرت فازها ﳕیباشد و فقط یک بار برای اعمال ولتاژ به فاز روشن شده و یک بار هم برای خاموش شدن جریان، خاموش میشوند.
در نتیجه تلفات ناشی از سوئیچینگ ترانزیستورهای فازها و تلفات هسته به حداقل میرسد. ﳘچنین این مبدل خاموش شدن سریع فازها را درحالیآه حداآثر ولتاژ روی ادوات نیمههادی برابر ولتاژ DC تغذیه است فراهم میآند، درست برخلاف مبدل [28]C-dump
.
۵۶

شکل (١٢-٢) : مبدل با حداقل تعداد ترانزیستور و تغذیه ورودی متغیر
٢-١٣- مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost
در شکل(١٣-٢) یک مبدل با ولتاژ DC ورودی متغیر و با چهار عدد ترانزیستور و دیود نشان داده شده است. به ازای هر فاز ماشین فقط یک عدد ترانزیستور وجود دارد، این ترانزیستور با سیمپیچ فاز بصورت سری قرار گرفته و از خطای shoot-through
جلوگیری میآند. ترانزیستور TC، دیود DC، سلفL و خازن خروجی
C طبقه خروجی مبدل Buck-Boost را تشکیل میدهند. ولتاژ DC
ورودی به ماشین، Vi، میتواند از صفر تا دو برابر ولتاژvdc
تغییر آند تا ولتاژ مورد نظر را به سیمپیچهای ماشین اعمال
آند. بنابراین خاموش شدن سریع فازها با ولتاژ vdc ثابت امکانپذیر است، با روشن شدن ترانزیستور v1 ولتاژ vi به فاز A
اعمال شده و باعث ﲢریک این فاز میشود. وقتی T1 خاموش میشود صرفنظر از خاموش یا روشن بودن ترانزیستور TC، جریان از مسیر
D1 و منبع ولتاژ vdc و سیمپیچ فاز A جاری میشود، انرژی
ذخیره شده در خازن C در زمانی آه ترانزیستور TC خاموش است
میتواند به فازی آه قرار است روشن شود انتقال یابد، به ﳘین
۵٧
دلیل آنﱰل مستقل فازها در این توپولوژی امکانپذیر است.
برتری این مبدل نسبت به مبدلی آه طبقه خروجی آن بصورت Buck
آار میآند این است آه ولتاژ خروجی آه به فازها اعمال میشود میتواند بیشﱰ از vdc شود تا افزایش جریان در سیمپیچ در حال
روشن شدن سریعﱰ صورت پذیرد، این برتریها در این مدار مبدل
بهﳘراه افزایش ولتاژی است آه سوئیچ مدار مبدل ولتاژ باید
ﲢمل آند، این ولتاژ برابر ولتاژ dc ورودی به اضافه ولتاژ
خروجی مدار مبدل dc به dc میباشد و با فرض اینکه ولتاژ خروجی مبدل dc به dc دو برابر ولتاژ dc ورودی است. ولتاژی آه این ترانزیستور باید ﲢمل آند سه برابر ولتاژ dc ورودی میباشد، حتی برای حالتی آه ولتاژ خروجی مدار مبدل آوچکﱰ از ولتاژ ورودی است، میزان ولتاژی آه این ترانزیستور باید ﲢمل آند نسبت به مبدل Buck بیشﱰ میباشد.[39]

شکل (١٣-٢) : مبدل با ولتاژ DC متغیر و توپولوژی Buck-Boost
۵٨
٢-۴١- مبدل با (1. 5 q) سوئیچ و دیود
این مبدل در شکل (١۴-٢) نشان داده شده، آه آمﱰ از دو
سوئیچ برای هر فاز نیاز دارد و به ازای دو فاز سه عدد سوئیچ دارد، علاوه بر این در صورتی آه تعداد فازهای ماشین زوج باشد و بصورت غیرمتوالی در یک گروه قرار گرفته باشند امکان آنﱰل مستقل جریان فازها وجود دارد. در این مبدل سوئیچهای T5 و T6
هریک باید جریان دو فاز را از خود عبور بدهند بنابراین
میزان جریانی آه باید ﲢمل آنند نسبت به ترانزیستورهای T1 و
T2 و T3 و T4 بیشﱰ است، شکل موجهای مربوط به این مبدل در
هنگام آار در شکل -b)١۴-٢) نشان داده شده.[39]

شکل (١۴-٢) : (a) مبدل با (1.5q) سوئیچ
(b) عملکرد مدار
۵٩
٢-۵١- مبدل دو مرحلهای
آرایشی آه توانایی انتقال انرژی را بهصورت مستقیم از
سیمپیچهای فاز به منبع ولتاژ ac داشته باشد در شکل (١۵-٢)
نشان داده شده آه دو مرحله تبدیل ولتاژ در آن صورت میگیرد،
طبقه اول شامل یک مبدل آنﱰل شونده با شش عدد ترانزیستور و
شش عدد دیود است آه ورودی سه فاز 60 HZ را به خروجی ac تکفاز
و با فرآانس متغیر ارتباط میدهد، طبقه بعدی یک طبقه قدرت
بوده آه به وسیله آن هر فاز ﲢریک میشود بیشﱰ مدارات
راهانداز موتور رلوآتانس سوئیچ شونده به جز آا آه تغذیه
ورودیشان را باطری تشکیل میدهد ﳕیتوانند انرژی را مستقیماً
از ماشین به منبع ورودی منتقل آنند، این امر بهخاطر وجود یکسوسازهای دیودی و ﳏدودیت جریانی در خازای الکﱰولیتی میباشد. بنابراین فقط ﲞش آوچکی از انرژی به خازن برگشته و دوباره استفاده میشود. در نتیجه یک مقاومت باید موازی خازن واقع شود تا مانع از افزایش ولتاژ dc در آن شود، آه این خود باعث آاهش بازده میشود، در این موارد شارژ و دشارژ متناوب خازن باعث آاهش عمر آن میشود، مبدل مطرح در این قسمت فاقد خازن بوده و میتواند انرژی را مستقیماً از ماشین به منبع منتقل آند. اشکال این مبدل این است آه تعداد ترانزیستورها و دیودها در آن زیاد است و هزینه ساخت آن نسبت به سایر مبدﳍا بیشﱰ میباشد. و درجاهایی آه انرژی بازیافتی مورد توجه نباشد اقتصادی نیست. آاربردی آه میتواند مناسب باشد آنﱰل متغیر سرعت و تولید فرآانس ثابت از انرژی باد است.[22]
۶٠

شکل (١۵-٢) : مبدل دو مرحلهای
۶١
فصل سوم:
طراحی مدار راهانداز (DRIVER)
به روش مستقیم
۶٢
٣-١- مقدمه
موتورهای رلوآتانس به یک مدار راهانداز برای چرخش نیاز دارند. مدار راهانداز بستگی به مورد استفاده میتواند، بسیار ساده باشد. در عین حال آنﱰل سرعت موتور در یک حلقه بسته، حذف سنسورهای تعیین موقعیت روتور، آاهش ریپل گشتاور و ...
میتوانند بر پیچیدگی، حجم و قسمت مدار طراحی شده تأثیر بگذارند.
شکل (١-٣)، بلوک دیاگرام مدار آنﱰل یک موتور رلوآتانس را نشان میدهد.

شکل (١-٣) : بلوک دیاگرام مدار آنﱰل موتور
۶٣
٣-٢- سوئیچ و اﳌاای قدرت
روش متداول برای سوئیچ آردن سیمپیچهای موتور رلوآتانس استفاده از دو سوئیچ برای هر فاز میباشد و چون موتور طراحی شده سه فاز میباشد، ﲨعاً ۶ سوئیچ ترانزیستوری مورد نیاز میباشد. شکل (١-٢-٣) مدارد ساده هر فاز را مشان میدهد.
هنگامی آه سوئیچها روشن باشند ولتاژ تغذیه بر روی سیمپیچ فاز موجب عبور جریان از آن میشود. پس از خاموش شدن سوئیچها جریان سیمپیچ از طریق دیودها عبور میﳕاید و این جریان پس از مدت زمانی آه بستگی به L و R سیم پیچ دارد به ﲰت صفر میل میآند و سپس دیودها نیز خاموش میشوند.

شکل (١-٢-٣) : مدار ساده هر فاز
دیودها از نوع سریع میباشند. ترانزیستورهای سوئیچ میتوانند MOSFET یا IGBT باشند آهIGBT دارای خازن ورودی
آمﱰی است، در عین حال حداآثر ولتاژ شکست آا بالاتر از
MOSFET ها میباشند. افت ولتاژ بر روی IGBT برابر VCesat میباشد آه در حد 1.5 تا 2.5 ولت است در حالیکه افت ولتاژ بر روی MOSFET وابستگی به مقاومت درین وسورس دارد آه این مقاومت نیز وابستگی شدیدی به حرارت دارد. مدار ﲢریک گیت
۶۴
برای ترانزیستورهای MOSFET و IGBT یکسان میباشد. بنابراین میتوان این مدار را برای هر دو بکار برد.
با توجه به اینکه بیشﱰین تلفات در مدارهای سوئیچینگ در زمان روشن و خاموش شدن سوئیچ صورت میگیرد، بایستی زمان روشن و خاموش شدن ترانزیستورها را به حداقل رساند. از آﳒایی آه
ورودی این ترانزیستورها دارای یک خازن است، برای شارژ آردن
و دشارژ آردن آن نیاز به یک منبع با امپدانس خروجی آم
میباشد، برای این منظور از ترآیب دو ترانزیستور npn و pnp
استفاده میشود آه یک امیﱰ فالوور دو جهته میباشد، هم جریان دهی و هم جریان آشی مناسب دارد، با توجه به β بالاتر از 100
برای این ترانزیستورها در صورتی آه جریان بیس در حد 10mA در نظر گرفته شود، جریان خروجی این ترانزیستورها 1A خواهد بود.
در این صورت زمان روشن و خاموش شدن ترانزیستورهای قدرت در این مدار آمﱰ از 500ns میباشد. شکل (٢-٢-٣) مدار درایو ترانزیستورهای قدرت را نشان میدهد.

شکل (٢-٢-٣) : مدار درایو ترانزیستورهای قدرت
۶۵
٣-٣- سنسور تعیین موقعیت و سرعت موتور برای چرخش موتورهای رلوآتانس، بایستی هر آدام از فازهای
سه گانه با ترتیب و زاویه مشخص روشن شوند، این ترتیب و
زاویه بستگی به تعداد قطبهای روتور و استاتور و ﳏل قرار
گیری آا نسبت بههم دارد. به ﳘین منظور بایستی از یک ﳎموعه سنسور برای مشخص آردن این وضعیت استفاده ﳕود. یکی از روشهای متداول، استفاده از یک پره شکافدار به ﳘراه سه عدد فتواینﱰاپﱰ (Photo Interrupter) میباشد. فتواینﱰاپﱰ قطعهای است آه در آن یک فرستنده و یک گیرنده مادون قرمز وجود دارد. شکل (١ -٣-٣) مدار معادل یک مدل از آن را نشان میدهد.

شکل (١-٣-٣) : مدار معادل فتواینﱰاپﱰ
سه عدد از این قطعات الکﱰونیکی در زاویه 30° نسبت به هم
قرار میگیرند و یک پره شکافدار آه به ﳏور روتور متصل شده
است از میان آا میگذرد. شکافهای پره شکافدار بگونهای تنظیم شده است آه ﳘواره یک شکاف در مقابل یکی از سه فتو اینﱰاپﱰ
قرار میگیرد. بنابراین ﳘواره یکی از این سه سنسور، نور را
از خود عبور میدهد و از دو سنسور دیگر نور عبور ﳕیآند،
طراحی پره شکافدار بستگی به تعداد قطب روتور دارد. شکل (٢-٣ -٣) مدار آامل سنسورها را نشان میدهد.

شکل (٢-٣-٣) : مدار آامل سنسورها
۶۶
شکل موجهای ناشی از سنسورها برای سه فاز در شکل (٣-٣-٣)
مشاهده میشود.

شکل (٣-٣-٣) : شکل موجهای ناشی از سنسورها
از پالسهای ایجاد شده برای روشن آردن ترانزیستورهای هر
فاز استفاده میشود. ترتیب فازها بگونهایست آه موتور تنها در جهت راست میچرخد. برای چرخش در جهت چپ یک ﳎموعه ٣ تائی فتواینﱰاپﱰ دیگر نصب میشود. انتخاب جهت چرخش و ﳎموعه فتواینﱰاپﱰها توسط میکروآنﱰلر صورت میگیرد.
٣-۴- آنﱰل دور و حلقه فیدبک برای آنﱰل دور موتور بایستی جریان سیمپیچها را آنﱰل ﳕود،
برای این منظور از روش PWM استفاده میشود. در این حالت هر
آدام از پالسهای خروجی از فتواینﱰاپﱰها با یک موج پالسی
PWM آمیخته میشود و بدینترتیب زمان عبور جریان از یک
سیمپیچ و در نتیجه میزان جریان آن آنﱰل میگردد. هر چه نای
روشن ]یا یک بودنPWM [ بیشﱰ باشد جریان عبوری بیشﱰ است و
در نتیجه دور و گشتاور موتور بیشﱰ میشود. شکل (١-۴-٣) سه
شکل موج را نشان میدهد، اولی پالسهای سنسور موقعیت، دومی پالسهای PWM میباشد. سومین شکل موج در نتیجه AND آردن آن دو پالس میباشد آه به ترانزیستورهای یکی از فازها اعمال میگردد.
۶٧

شکل (١-۴-٣) : پالسهای PWM
فرآانس پالسهای ,PWM ثابت است و تغییرات نای پالس میتواند در یک حلقه فیدبک آنﱰل شود تا سرعت موتور ﳘواره با تغییر بار ثابت ﲟاند.[1] سرعت موتور از روی تعداد پالسهای موقعیت در ثانیه اندازهگیری میشود، برای این آار از مدار شکل (٢-۴-٣) استفاده میشود.

شکل (٢-۴-٣) : مدار سرعت موتور
ولتاژ VP متناسب با سرعت موتور است، مقاومتهای R1 و R2 و
مقدار خازن C بستگی به میزان تغییرات سرعت و مقدار سرعت و تعداد پالسهای فازها در ثانیه دارد. بدیهی است هرچه سرعت بالاتر باشد، تعداد پالسهای فازها در ثانیه بیشﱰ است و مقدار
R1 و R2 و C آوچکﱰ میشود. برای آنﱰل PI روی موتور از آنﱰل
۶٨
آننده شکل ٣-۴-٣ استفاده میشود. VP ولتاژ متناظر با سرعت میباشد و Vref ولتاژ مرجع متناسب با سرعت مرجع میباشد. Ve
ولتاژ خطا متناسب با اختلاف دو سرعت است.[29]

شکل (٣-۴-٣) : مدار آنﱰل PI برای پالسهای PWM از TL494 استفاده میشود. این IC دارای
یک مولد PWM است آه نای پالسهای آن توسط چند ورودی قابل
آنﱰل میباشد. شکل (۴-۴-٣) قسمتهای ﳐتلف این IC را نشان
میدهد. توسط پایههای ١ و ٢ و ١۵ و ١۶ و از طریق دو op-amp
داخلی میتوان ولتاژی را در پایه ٣ ایجاد آرد آه سطح این ولتاژ بین 0 تا ٣.٣ ولت تغییر میآند و تغییرات آن موجب تغییر
در نای پالس خروجی میگردد. op-amp، را میتوان در حلقه بسته و یا بهعنوان مقایسه آننده بکار برد. مدار حلقه فیدبک شکل ۴
-١٠ با استفاده از پایههای ١ و ٢ و یکی از op-amp ساخته میشود. از op-amp دوم برای ﳏدد آردن جریان موتور استفاده میشود. هنگامی آه جریان موتور از یک حد مشخص مثلا ١٠ آمپر بیشﱰ شود، ولتاژ در پایه ١۶ بیشﱰ از ولتاژ پایه ١۵ میشود و
۶٩
ولتاژ پایه ٣ تغییر می آند. بطوریکه موجب بسته شدن PWM در خروجی میگردد و بدینترتیب جریان ﳏدود میگردد.[26]

شکل (۴-۴-٣) : IC-TL494
پایه ۴ این IC برای Soft Start میباشد، اگر این پایه به آرامی
از ولتاژ +5v به ﲰت 0 ولت برسد. PWM نیز با ﳘان سرعت از %0
به %100 میرسد. از این پایه در زمان روشن آردن موتور در
ابتدای آار استفاده میشود.
٧٠
فصل چهارم:
روش های عملی کاهش
ریپل گشتاور
٧١
۴-١- بدست آوردن رابطه گشتاور از مدار معادل : SRM
با توجه به شکل (١-۴) ولتاژ اعمال شده به یک فاز برابر است با ﳎموع افت ولتاژ مقاومتی و میران شار پیوندی که با رابطه زیر داده می شود.
V R s i  d (dtNφ)

Nφ  L(θ,i)i

شکل (١-۴) : مدار معادل موتور رلوآتانسی
در این رابطه، L اندوکتانس بوده که تابعی از جریان سیم پیچ وموقعیت روتور می باشد
dL(θ,i) i di RsiL(θ,i) d{L(θ,i) i} V R s i  dt dt dt توان ورودی با رابطه زیر داده می شود :
pi Vi  Rs i 2 i 2 dL(dtθ,i)  L(θ,i)i dtdi

و می توان نوشت :
dL(θ,i) i 2 1  di L(θ,i)i2 )  L(θ,i)i 1 ) d 2 2 dt dt dt با استفاده از رابطه اخیر در رابطه pi خواهیم داشت :
٧٢
dL(θ,i) i 2 1 ,i)i 2 )  L(θ 1 ) d pi  Rs i 2  2 dt dt 2 رابطه فوق نشان می دهد که توان ورودی برابر است با ﳎموع تلفات مقاومتی که با Rsi2 داده می شود و انرژی ذخیره شده در داخل سیم پیچ که با رابطه 12 L(θ,i)i2 داده می شود ونیز توان فاصله هوایی , Pa که با رابطه زیر داده می شود :
dθ dL(θ,i) i 2 1  dL(θ,i) i2 1 P  dt dθ 2 dt 2 a wm  ddtθ

Pa  1 i2 dL(θθ,i) wm 2 d

توان فاصله هوایی، حاصلضرب گشتاور الکﱰو مغناطیسی و سرعت روتور می باشد که با رابطه زیر داده می شود
Pa  wmTe
با توجه به دو رابطه اخیر، گشتاور الکﱰومغناطیسی بدست خواهد آمد
dL(θ,i) i2 1  T dθ 2 e در رابطه فوق، dL(θ,i) ثابت گشتاور نامیده می شود و به خاطر dθ رابطه ای که اندوکتانس، L ،با موقعیت روتور و جریان سیم پیچ دارد ، یک کمیت غیر خطی می باشد.
۴-٢- بررسی رابطه L با موقعیت روتور : θ
با توجه به شکل (١-٢-۴) در مکان هایی که روتور واستاتور کاملا ﳘراستا هستند، ( (θ2 −θ3 و مکان هایی که روتور و استاتور کاملا غیر ﳘراستا هستند، ( (0 −θ1 و ( (θ4 −θ5 تغییر در اندوکتانس
٧٣
ﳔواهیم داشت. یعنی dL(θ,i) صفر می باشد، در نتیجه گشتاور در dθ
این نقاط صفر خواهد شد، حتی اگر سیم پیچ دارای جریان باشد.

شکل (١-٢-۴) : تغییرات اندوکتانس با موقعیت روتور
راه حل مساله فوق تغییر شکل مکانیکی روتور به ﳓوی است که در شکل (٢-٢-۴) نشان داده شده است. با این کار هیچ گاه اندوکتانس هنگام چرخش روتور مقداری ثابت ﳔواهد داشت، در نتیجه گشتاور صفر ﳔواهد شد.
٧۴

شکل (٢-٢-۴) : پایین شکل، روتور اصلاح شده
در مقایسه با روتور معمولی
۴-٣- بررسی تاثیر جریان بر : L
در جریاای که هسته موتور هنوز اشباع تغریبا شبیه ﳕودار (٣-۴) است. افزایش رفﱳ هسته موتور می شود، این امر در استاتور ﳘراستا هستند به خاطر کاهش gap

نشده، رابطه L و θ جریان سبب به اشباع جاهایی که روتور و مشهودتر است. با به
اشباع رفﱳ هسته، dθdL کاهش می یابد و این امر سبب افت گشتاور می شود.[36]

٧۵

شکل (٣-۴) : تغییرات اندوکتانس با جریان بر حسب زاویه
راه حل مساله فوق کنﱰل جریان می باشد، به این ترتیب که قبل از ﳘراستا شدن روتور و استاتور هنگامی که dθdL در حال کاهش است جریان را افزایش می دهیم تا کاهش L جﱪان شود. افزایش

٧۶
جریان نیز به این صورت اﳒام می شود که فرمان فاز جدید با فرمان فاز قبلی بایدکمی ﳘپوشانی داشته باشد.
۴-۴- اثر ثابت گشتاور dL(θ,i) بر روی گشتاور :