—d1926

فهرست شکل‌ها
TOC h z t "شکل,5" شکل 1-2 کراسینگ‌آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف‌شدگی یا الحاق می‌شود]23.[ PAGEREF _Toc409965913 h 17شکل 1-3 متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد [23]. PAGEREF _Toc409965914 h 18شکل 1-4 آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد [62]. PAGEREF _Toc409965915 h 21شکل 1-5 شناسائی مجرمین به کمک مارکرهای STR[26]. PAGEREF _Toc409965916 h 23شکل 1-6 مراحل انگشت‌نگاری ژنتیکی [38]. PAGEREF _Toc409965917 h 28شکل 1-7 مراحل پروفایلینگ DNA[36]. PAGEREF _Toc409965918 h 30شکل 1-8 جایگاه‌های CODIS روی کروموزوم‌های انسان[25]. PAGEREF _Toc409965919 h 32شکل 1-9 موقعیت جغرافیائی استان کرمانشاه [44]. PAGEREF _Toc409965920 h 35شکل 1-10 موقعیت جغرافیائی استان یزد[45]. PAGEREF _Toc409965921 h 36شکل2-2 استفاده از Multiplex PCR در روش پروفایلینگ[36] PAGEREF _Toc409965922 h 44شکل 2-3 دستگاه الکتروفورز موئینه ای[51] PAGEREF _Toc409965923 h 46شکل 2-6ladder به‌کاررفته در کیت ABI[25] PAGEREF _Toc409965924 h 50شکل 4-1 درخت فیلوژنتیکی میان سیزده جمعیت مختلف[46] PAGEREF _Toc409965925 h 71شکل 4-2.درخت فیلوژنتیکی میان نه جمعیت مختلف[46] PAGEREF _Toc409965926 h 71

فهرست نمودار‌ها
TOC h z t "نمودار,6" نمودار3-1 پارامترهای ژنتیکی جمعیت استان کرمانشاه برحسب درصد PAGEREF _Toc409966026 h 60نمودار3-2 پارامترهای ژنتیک جمعیت استان یزد برحسب درصد PAGEREF _Toc409966027 h 64

چکیده
بررسی تنوع ژنتیکی اقوام ایرانی با استفاده از STR
مونا داودبیگی
بررسی تنوع ژنتیکی در جمعیت‏ها با استفاده ار تعیین فراوانی آللی و پارامترهای ژنتیکی روش نوینی است که در سال‏های گذشته در بسیاری از جمعیت‏های جهان صورت گرفته و با استفاده از آن شباهت بسیاری از جمعیت‏ها به یکدیگر مشخص گردیده. شباهت جمعیت‏ها نشان‌دهنده‏ی همسان‌بودن خزانه‏ی ژنتیکی آنها و احتمالا یکسان‌بودن آن جمعیت‏ها در گذشته است. پس این احتمال وجود دارد که این جمعیت‏ها در گذشته یک جمعیت بوده باشند و بعد‏ها به دلایل جغرافیایی و یا مهاجرت‏ها از یکدیگر جدا شده باشند. یکی از راه‏های بررسی تنوع‌ ژنتیکی در جمعیت‏ها استفاده از توالی‏های کوتاه تکراری می‏باشد .هدف این مطالعه بررسی تنوع ژنتیکی در دو قوم یزد و کرد (کرمانشاه) از ایران بود. بدین منظور پروفایل ژنتیکی پنجاه فرد غیر‌خویشاوند از هر یک از جمعیت‏های کرمانشاه و یزد با استفاده از کیت ABIتهیه شد. این کیت حاوی پانزده جایگاه D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOX و TH01 و ژن آمیلوژنین (برای تعیین جنسیت افراد) می‏باشد. نتایج نشان‌دادند که به جز دو جایگاه D7S820 وD19S433 در جمعیت کرمانشاه و سه جایگاه D21S11 ,D19S433 و VWA در یزد سایر جایگاه‏ها در تعادل هاردی‏واینبرگ بودند. همچنین پارامترهای پزشکی‌قانونی شامل PIC,PD,PE,MP در این مطالعه بررسی شدند. سپس دو جمعیت با جمعیت‏های کشورهای همسایه مقایسه شدند. این مطالعه نشان داد که این جایگاه‏ها، جایگاه‏های مناسب برای استفاده در تست‏های تعیین هویت و مطالعات جمعیتی می‏باشند. در نتیجه‏‏ی مقایسات هم دیده شد که هر دو جمعیت یزد و کرمانشاه شباهت زیادی به جمعیت کشور ترکیه داشتند ولی با سایر کشورها متفاوت بودند. از طرفی یزد نسبت به کرمانشاه دارای جمعیت همگن‌تری بود که این مسئله می‏تواند به‌علت بکر بودن این جمعیت در طول سالیان مختلف باشد.
کلمات کلیدی: توالیهای کوتاه تکراری، نشانگرهای مولکولی، ژنتیک جمعیت
Abstract
Genetic variation in two Iranian population with STR
Mona Davood Beigi
In recent years studying genetic variation among population by determination of allele frequencies and genetic parameters became a new method that it has been done in different population all around the world. By using this method lots of similarities has been founded among population around the world. These similarities represent the same genetic pool and also it may show the same population in the past as well. So it seems that different population were one at the first and geographical situations or migrations were the reasons that caused its separation.
Studying short tandem repeats (STR) in genome is the best way to founding genetic variation in population. The aim of this study was to investigate the genetic variation of two population of Iran, Yazd and Kermanshah people.
For this purpose the genetic profile of 50 unrelated individual from each population prepared by using ABI kit. This kit contains fifteen str loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) and also amylogenin gene for sex determination. The result showed all the loci were in Hardy Weinberg equilibrium except two loci(D19s433 , D2s820) in Kermanshah and three loci (D19s433, D21s11 and VWA) in Yazd population. More over forensic parameters including PIC, PD, PE and MP have been calculated. After all the results have been compared with other population in neighbor countries.
This study revealed that these loci were the suitable loci for identification people and studying genetic population variation. Also the comparison showed that both of Yazd and Kermanshah people were similar to Turkish genetically, but were different from other countries. In addition Yazd has more homogeneous population than Kermanshah, that it could be due to pristine gene pool of this population in the past centuries.
Keywords: Short tandem repeats; Microsatellite markers; Population genetic
فصل اول
مقدمه
1-1 مقدمهدرگذشته مطالعه‏ی تکامل و مهاجرت‏ها از طریق کشف و بررسی بقایای اسکلتی و فسیل‏ها انجام می‏شد. اما از حدود سه دهه‏ی پیش، باستان‏شناسان و زیست‏شناسان با به‌کار‏گیری آنالیز‏های DNA موفق به کشف‏های بسیار دقیقی شدند که کمک فراوانی به ردیابی تاریخ مهاجرت بشر و تکامل انسان‏ها نموده است. یکی از پر‏کاربرد‏ترین راه‏های آنالیز DNA، بررسی نشان‌گرهای ژنتیکی افراد است، که از مهم‌ترین آنها می‏توان به توالی‏های کوتاه تکراری موسوم به STR اشاره کرد. STR‏ها، توالی‏هایی به طول یک تا سیزده نوکلئوتید هستند که در ژنوم موجودات در نواحی غیر‌کد‏کننده موجود می‏باشند. هر فرد توالی‏های منحصر به فردی دارد و هیچ دو نفری در جهان نیستند که توالی‏های یکسانی داشته باشند. به همین دلیل ازSTR ‏ها می‏توان در مطالعات جمعیتی و بررسی تنوع ژنتیکی در جمعیت‏ها سود جست [1].
علاوه بر مطالعات جمعیتی ازSTR ‏ها می‏توان در موارد تعیین هویت‏، تعیین ابویت، تست‏های پزشکی‏قانونی و سایر موارد استفاده کرد. به طور معمول STRهایی که برای تعیین هویت و مطالعات ژنتیکی جمعیت به‌کار می‏روند، یکسان هستند و شامل پانزده جایگاه به نام‏های D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOXو TH01 می‏باشند [1].
هم‌چنین از روش مشترکی موسوم به تعیین الگوی DNA در این زمینه‏ها استفاده می‏شود. هر فرد دارای الگوی DNA منحصر به فرد است که تا پایان عمر تغییر نخواهد کرد. محققان دریافتند که افراد یک جمعیت در الگوهای ژنتیکی خود دارای تشابهاتی هستند که منحصر به همان جمعیت است و با الگوی افراد جمعیت‏های دیگر متفاوت است. از این تفاوت‏ها می‏توان برای ردیابی تاریخ مهاجرت و تکامل انسان‏ها استفاده نمود (1).
1-2 نشان‌گر چیست؟
صفاتی را که می‏توانند به عنوان نشانه‏ای برای شناسایی افراد حامل آن صفت مورد استفاده قرار گیرند، نشان‌گر می‏نامند. مندل نخستین کسی بود که از نشان‌گرهای ظاهری برای مطالعه چگونگی توارث صفات در نخود‌فرنگی استفاده کرد. اما گاهی صفات به سادگی و با چشم غیر مسلح قابل مشاهده نیستند، مانند گروه خونی. برای مشاهده چنین صفاتی باید آزمایش‏های خاصی صورت گیرد. به طور کلی هر صفتی که بین افراد متفاوت باشد، ناشی از تفاوت موجود میان محتوای ژنوم آنها می‏باشد. حتی بروز صفات به صورت متفاوت در میان افراد (در شرایط محیطی یکسان)، به علت تفاوت‏ در ژنوم آنها است. این تفاوت‏ها می‏توانند به عنوان نشانه یا نشان‌گر ژنتیک به کار گرفته شوند. به طور کلی برای آنکه صفتی به عنوان نشان‌گر ژنتیک مورد استفاده قرار گیرد، باید دست کم دو ویژگی داشته باشد‌:
1-در بین دو فرد متفاوت باشد (چند شکلی)
2-به توارث برسد (2).
1-3 انواع نشان‌گرهای ژنتیکینشان‌گرهای ژنتیکی عبارتند از:
1-نشان‌گرهای مورفولوژیک
2-نشان‌گرهای پروتئینی
3-نشان‌گرهای مولکولی در سطح DNA و RNA
1-3-1 نشان‌گرهای مورفولوژیک
کاربرد نشان‌گرهای مورفولوژیک به ده‏ها سال پیش از کشف DNA مربوط می‏شود. نشان‌گرهای مورفولوژیکی که پیامد جهش‏های قابل رویت در مورفولوژی هسته، از ابتدای این سده مورد استفاده قرار گرفتند. صفات مورفولوژیکی که عمدتا توسط یک ژن کنترل می‏شوند، می‏توانند به عنوان نشان‌گر مورد استفاده قرار گیرند. این نشان‌گرها شامل دامنه وسیعی از ژن‏های کنترل‌کننده صفات فنوتیپی هستند و جز نخستین نشان‌گرها به شمار می‌آیند و از زمان‏های بسیار دور یعنی از زمانی که محل ژن‏ها روی کروموزوم مشخص شد، مورد استفاده قرار می‏گرفتند (2).
معایب نشان‌گرهای مورفولوژیک
اغلب دارای توارث غالب و مغلوب بوده و اثرات اپیستازی و پلیوتروپی دارند.
تحت تاثیر شرایط محیطی و مرحله رشد موجود قرار می‏گیرند.
فراوانی و تنوع کمی دارند.
گاهی برای مشاهده و ثبت آنها باید منتظر ظهور آنها ماند.
اساس ژنتیک بسیاری از نشان‌گرهای مورفولوژیک هنوز مشخص نشده است‌(2).
1-3-2 نشان‌گرهای پروتئینی
در دهه‌ی 1950، نشان‌گرهای پروتئینی قابل مشاهده توسط الکتروفورز پروتئین‏ها تحول شگرفی را ایجاد نمودند. برخی از تفاوت‏های موجود در ردیفDNA بین دو موجود ممکن است به صورت پروتئین‏هایی با اندازه‏های مختلف تجلی کنند، که به روش‏های مختلف بیوشیمیایی قابل ثبت و مطالعه می‏گردند. این قبیل نشان‌گرها را نشان‌گرهای مولکولی در سطح پروتئین می‏نامند که از آن جمله می‏توان به سیستم آیزوزایم/آلوزایم اشاره کرد. معمول‏ترین نوع نشان‌گرهای پروتئینی آیزوزایم‏ها هستند که فرم‏های مختلف یک آنزیم را نشان می‏دهند. آیزوزایم‏ها به‏ طور گسترده در بررسی تنوع ژنتیکی به‌کار گرفته‌شدند. نشان‌گرهای پروتئینی تغییرات را در سطح ردیف و عمل ژن به صورت نشان‌گرهای هم‌بارز نشان می‏دهند. اما این دسته از نشان‌گرها هم دارای معایبی هستند. برخی از معایب آن‏ها عبارت‌اند از:
محدود بودن فراوانی این نوع نشان‌گرها؛
تعداد آیزوزایم‏های قابل ثبت و مشاهده که می‏توان از آنها به عنوان نشان‌گر استفاده کرد به یکصد عدد نمی‏رسد؛
محدود بودن تنوع ژنتیکی قابل ثبت در آیزوزایم‏ها‌(نداشتن چند شکلی)؛
پیچیدگی فنوتیپ‏های الکتروفورزی آیزوزایم‏ها به دلیل دخیل بودن آنزیم‏های مرکب از چند پلی‌پپتید مستقل در ترکیب برخی از آیزوزایم‏ها‌(3).
اما پیشرفت‏هایی که در زمینه‏ی الکتروفورز دو‏بعدی با قدرت تفکیک زیاد پدید آمده، تجزیه تحلیل هم‌زمان هزاران پروتئین را میسر ساخته و مجددا به‌عنوان فناوری پیشتاز در عرصه نشان‌گر‏های مولکولی مطرح شده‏اند. تاثیرپذیری نشان‌گرها از محیط که به‌طور معمول به‌عنوان یکی از محدودیت‏ها و نکات منفی نشان‌گرهای مولکولی یاد می‏شود، در مورد این نشان‌گر‏ها تبدیل به برتری شده و جایگاه متمایزی را در بین سایر نشان‌گرها به ارمغان آورده است. پروتئومیکس‌(مطالعه سراسری کل پروتئین‏های موجود در یک سلول یا یک ارگانیسم) می‏تواند به‌طور هم‌زمان برای مطالعه بیان ژن و هم‌چنین برای شناسایی پروتئین‏های واکنش دهنده به شرایط محیطی مورد استفاده قرار گیرد(3).
1-3-3 نشان‌گرهای مولکولیDNA وRNA
دسته‌ای دیگر از تفاوت‏های موجود در سطح DNA هیچ تظاهری ندارند. نه صفت خاصی را کنترل می‏کنند و نه در ردیف اسید‏های آمینه پروتئین‏ها تاثیری برجای می‌گذارند. این دسته از تفاوت‏ها را می‏توان با روش‏های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشان‌گر مورد استفاده قرار داد. این نشان‌گر‏ها که تعدادشان تقریبا نا‏محدود است، فقط از راه تجزیه و تحلیل مستقیم DNA قابل ثبت هستند. بنابراین به آنها نشان‌گرهای مولکولی در سطح DNA گفته می‏شود. نشان‌گرهای مولکولی فراوان و در هر موجود زنده‌ای می‌توانند مورد استفاده قرار گیرند. تاکنون تعداد زیادی از نشان‌گرهای DNA معرفی شده‌اند. این نشان‌گرها از نظر بسیاری از ویژگی‏ها مانند درجه‏ی چندشکلی، غالب یا هم‌بارز بودن، تعداد جایگاه‏های تجزیه شده در هر آزمایش DNA، توزیع در سطح کروموزوم، تکرار‌پذیری، نیاز یا عدم نیاز به توالی‏یابی DNA الگو و هزینه‏ی مورد نیاز با همدیگر متفاوت‌اند. انتخاب بهترین نشان‌گر به هدف مطالعه (انگشت نگاری، تهیه نقشه پیوستگی، ژنتیک جمعیت و روابط تکاملی) و سطح پلوئیدی موجود مورد مطالعه بستگی دارد‌(4).
مزایای کاربرد نشان‌گرهای مولکولی
عدم تاثیرپذیری آنها از شرایط محیطی خارجی و داخلی موجود؛
امکان به‌کارگیری آنها در مراحل نخستین رشد جنینی حیوانات و مراحل نخستین رشد موجودات؛
فراهم نمودن امکان مطالعه موجودات در خارج از فصل و محیط کشت؛
دقت و قابلیت مطلوب تفسیر نتایج؛
هم‌بارز بودن بسیاری از این نشان‌گرها؛
امکان استفاده از آنها در مورد گونه‏های منقرض شده؛
سهولت تشخیص افراد ناخالص از خالص؛
سهولت امتیازدهی و تجزیه و تحلیل نتایج؛
دسترسی به برنامه‏های رایانه‏ای قوی برای تجزیه و تحلیل و تفسیر سریع نتایج‌(4)
انواع نشان‌گرهای مولکولی
نشان‌گرهای DNA گروه بزرگی از نشان‌گرها را تشکیل می‏دهند. این نشان‌گرها سیر تحول و تکامل خود را به پایان نرسانده‏اند و ابداع و معرفی روش‏های متنوع و جدیدتر ثبت و مشاهده‏ی تفاوت‏های ژنتیک بین موجودات از طریق مطالعه‏ی مستقیم تفاوت‏های موجود در بین ردیف‏های DNA هم‌چنان ادامه دارد. نشان‌گر‏های DNA در مدت یک دهه تکاملی شگرف و تحسین‌برانگیز داشته‏اند‌(5).
ابداع و معرفی واکنش زنجیره‌ای پلی‌مراز یا PCR یک روش سریع تکثیر آزمایشگاهی قطعه یا قطعه‌های مورد نظر DNA است. در واقع PCR روشی بسیار قوی است که تکثیر ردیف منتخبی از مولکول یک ژنوم را تا چندین میلیون در کم‌تر از نیم‌روز امکان‌پذیر می‏سازد. اما این فرایند هنگامی امکان‌پذیر است که دست‌کم ردیف کوتاهی از دو انتهای قطعه DNA مورد نظر معلوم باشد. در این فرایند که تقلیدی از فرایند همانندسازی DNAدر طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده دو انتهای قطعه‏ی مورد‌نظرDNA هستند، به‌عنوان آغازگر مورد استفاده قرار می‏گیرند تا واکنش آنزیمی همانندسازی DNA درون لوله‌ی آزمایش امکان‌پذیر شود. این همانند‏سازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‏های پلی‌مراز صورت می‏گیرد. امروزه تعداد زیادی از این نوع آنزیم‏ها به صورت تجاری دردسترس هستند‌(6).
واکنش زنجیره‏ای پلی‌مراز (PCR) در سال 1983 توسط کری‌مولیس در حالیکه در یک نیمه شب تابستانی در حال رانندگی بود، ابداع گردید و سبب انقلاب عظیمی در زیست شناسی مولکولی شد(6).
همان‌گونه که در شکل 1-1 نشان داده شده است، نشان‌گرهای DNAبه دو دسته‏ی کلی طبقه‌بندی می‏شوند.
نشان‌گرهای DNAمبتنی بر PCR
نشان‌گرهای DNA غیر مبتنی PCR(6).

شکل 1-1 انواع نشان‌گرهای ژنتیکی‌(10)
1-3-3-1 نشان‌گرهای غیر مبتنی بر PCRاین دسته از نشان‌گرهای DNA بدون استفاده از روشPCR تولید می‌شوند و مورد استفاده قرار می‌گیرند.
انواع نشان‌گرهای غیر مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‏های محدودگر(RFLP)
پویش ژنومی نشانه‏های هضم (RLGS)
ماهوارک‏ها
1-3-3-1-1 تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‌های محدودگر( (RFLPسرگروه نشان‌گرهای غیر‌مبتنی برPCR ، همان تفاوت طول قطعه‏های حاصل از هضم DNA توسط آنزیم‏های محدودگر یا RFLP است. از بین نشان‌گرهای مولکولی DNA، RFLP ها اولین نشان‌گرهایی بودند که برای نقشه‌یابی ژنوم انسان توسط بوتستین و همکاران در سال 1980 و پس از آن برای نقشه‌یابی ژنوم گیاهان توسط بر و همکاران در سال 1983 مورد استفاده قرار گرفتند. در اوایل دهه 1980 بوتستین و همکاران استفاده از تفاوت طول قطعه‏های حاصل از هضم یا RFLP را برای مطالعه‏ی مستقیم DNA و یافتن نشان‌گر‏های ژنتیک جدید معرفی کردند. این تحول از پیامد‏های منطقی کشف آنزیم‏های محدودگر بود. این آنزیم‏ها که بسیار اختصاصی‏ هستند، ردیف‏های ویژه‏ای را روی مولکولDNA شناسایی کرده و آنها را از محل خاصی (نقطه‏ی برش) برش می‏دهند‌(7).
RFLP الزاما مختص ژن‏های خاص نیست، بلکه در کل ژنوم پراکنده است. ازاین رو، از نشان‌گرهای RFLP برای نقشه‌یابی تمام ژن‌ها در ژنوم انسان استفاده می‏شد(5). علاوه برRFLP که هنوز هم از قدرتمندترین و معتبرترین نشان‌گرهایDNA است، انواع مختلف نشان‌گرهایDNA با تفاوت‌های زیادی از نظر تکنیکی و روش تولید، نحوه‌ی کاربرد، امتیاز‌بندی، تجزیه و تحلیل و تفسیر نتایج به سرعت ابداع ومعرفی شده‌اند‌(7).
مهم‌ترین مزایای RFLP
تکرارپذریری، دقت و قابلیت اعتماد این نشان‌گر فوق‌العاده زیاد است؛
این نشان‌گر هم‌بارز است و امکان تشخیص افراد خالص را از افراد ناخالص فراهم می‏آورد؛
فراوانی این نشان‌گر در حد بالایی است؛
RFLP تحت تاثیر عوامل محیطی داخلی و خارجی نبوده و صد در صد ژنتیکی است(8).
برخی معایب RFLP
دشواری، پیچیدگی و وقت‌گیر بودن؛
RFLP ژنوم‌های بزرگ نیازمند کاربرد مواد پرتوزا یا روش‌های پیچیده‏تر و گران‏تر بیوشیمیایی است؛
RFLP نیازمند نگه‌داری میکروارگانیسم‌ها به‌منظور تهیه‏ی کاوشگر است که خود بر پیچیدگی این روش می‏افزاید؛
هزینه‏ی اولیه و نگه‏داری کاوشگر‏ها و کاربرد آنها بسیار زیاد است؛
نیازمندی به مقدار نسبتا زیاد DNA از محدودیت‏های دیگر روش RFLPاست به‌طوری که ده‏ها میکروگرم از DNAبرای هر فرد به منظور تجزیه‏ی ژنوم مورد نیاز است؛
از دیگر محدودیت‏های این نشان‌گر آن است که در گونه‏های بسیار نزدیک به یکدیگر این نوع نشان‌گر‏ها آلل‏های مشابهی را نشان می‏دهند(8).
1-3-3-1-2 پویش ژنومی نشانه‏های هضم (RLGS)در سال1991، هاتادا و همکاران روشی را برای شناسایی و انگشت‌نگاری موجودات عالی ابداع و معرفی کردند. پیش از ابداع این روش که بر مبنای نشان‌دار کردن هم‌زمان انتهای هضم شده‏ی هزاران قطعه‌ی DNA است، ردیابی و ثبت موجودات عالی با روش نشان‌دار کردن انتهای هضم شده غیر ممکن می‌نمود. دو دلیل اصلی برای این تصور ذکر شده است:
ژنوم موجودات عالی بسیار بزرگ و پیچیده است برای مثال ژنوم انسان 109×3 جفت باز دارد و در نتیجه‏ی هضم آن با آنزیمی مانند EcoRI بیش از یک میلیون قطعه‌ی DNA به وجود می‌آید. تفکیک این تعداد مولکولDNA حتی با الکتروفورز دو بعدی نیز غیر ممکن است.
معمولا DNA ژنومی در هنگام استخراج به صورت تصادفی و غیر‌اختصاصی شکسته می‌شود و ایجاد مولکول‏هایی با انتهای تصادفی می‏کند. این امر سبب ایجاد پس‌زمینه‌ی ناشی از نشان‌دار شدن این انتهاها طی فرایند نشان‌دارکردن می‏شود‌(9).
برای رفع این دو نقص تدابیری پیش‏بینی شد و روش RLGS ابداع گردید. این روش جدید که برای تجزیه و تحلیلDNA ژنومی به‌کار می‌رود، بر مبنای این فرضیه است که نقاط برش اختصاصی آنزیم‏های محدودگر می‌توانند به‌عنوان نشانه و وجهه تمایز ارقام و افراد به کار گرفته‌شوند.
در این روش انتهای آزاد مولکول‌های DNA که در اثر صدمات مکانیکی در طی استخراج به وجود آمده‏اند، مسدود می‏شود. سپس برای کاهش پیچیدگی، DNA ژنومی توسط آنزیم‏های محدودگر، با محل برش نادر، هضم و نقاط برش به‌طور مستقیم با فسفر پرتوزا نشان‌دار می‏شوند. آنزیم‏های با محل برش نادر معمولا هزاران قطعه DNA به وجود می‏آورند. سپس با الکتروفورز دو‌بعدی، قطعه‏های هضم‌شده‏یDNA از هم جدا شده و خودپرتونگاری صورت می‏گیرد. این روش یک الگوی دو بعدی با هزاران نقطه‏ی پراکنده (قطعه‏های نشان‌دارDNA) ایجاد می‏کند که هر یک می‏توانند به عنوان یک نشان‌گر به کار گرفته شوند(10)
برخی از مزایای روشRLGS
در هر آزمایش هزاران نشان‌گر به‌دست می‌آید؛
مقدار کمی DNAمورد نیاز است؛
در صورت استفاده از آنزیم‌های محدودگر متفاوت، تفاوت‏های بیشتری ظاهر و ثبت خواهند شد[10].
برخی از معایب روش RLGS
DNA مورد نیاز برای این روش باید از کیفیت مطلوبی برخوردار باشد؛
هضم ناقص DNA توسط آنزیم‏های محدودگر نتایج تکرار ناپذیر و گمراه کننده‏ای خواهد داشت؛
این روش پیچیدگی فوق العاده‏ای داشته و تفسیر نتایج حاصل از آن دشوار است(10).
1-3-3-1-3 ماهوارک‏ها
ماهوارک‏ها نخستین بار در سال 1985 توسط جفری و همکاران گزارش شدند. پس از آن در سال 1988 تکثیر جایگاه‏های ژنی خاص نواحی تکرارشونده، روی ماهوارک‏ها در ژنوم انسان انجام شد.
این دسته از نشان‌گرها از نظر تکنیکی مبتنی بر استفاده از کاوشگرهای مصنوعی و کاربرد مواد پرتوزا و روش ساترن هستند.
ماهوارک‌ها واحدهایی 10 تا 100 جفت بازی هستند که ممکن است صدها بار تکرار شده باشند. آنها معمولا یک هسته مشترک 10 تا 15 جفت بازی دارند که احتمالا در تنوع‌پذیری ماهوارک‌ها موثرند. ماهوارک‌ها بیش‌تر در نواحی یوکروماتین ژنوم پستانداران، قارچ‌ها و گیاهان متمرکز‌ند. تنوع‌پذیری ماهوارک‌ها در حدی است که گاهی در انگشت‌نگاریDNA انسان مورد استفاده قرار می‏گیرند. از جمله‌ی ماهوارک‌ها می‏توان به تکرارهای پشت سر هم با فراوانی بالا (VNTR) اشاره کرد[11]. VNTR ها به دو دسته‌ی کلی تقسیم می‌شوند: VNTR تک مکانی و VNTR چند مکانی.
دسته‏ی نخست، تعداد متفاوت ردیف‌های تکراری در یک جایگاه ژنی و دسته‏ی دوم تعداد متفاوت ردیف‌های تکرار‌شونده در چندین جایگاه ژنی را نشان می‌دهند. الگوی بانددهی به‌دست آمده با استفاده از کاوشگر‌های VNTR تک مکانی ساده‏تر و قابل فهم‌تر است، زیرا هر فرد تعداد کمی باند واضح را نشان می‏دهد. در حالی‌که تعداد باندهای به دست آمده از کاوشگرهای مخصوص VNTRچند‌مکانی بیش‌تر است، به‌طوری که به‌طور هم‌زمان تا بیش از 30 باند به دست می‏آید(12).
در نخستین نشان‌گرهای مبتنی بر ماهوارک‌ها، از الیگونوکلئوتید‏های حاوی ریزماهواره به عنوان کاوشگر استفاده گردید و توسط علی و همکاران انگشت‌نگاری الیگونوکلئوتیدی نام‌گذاری شد.
از کاوشگرهای الیگونوکلئوتیدی نشان‏دار‌شده مکمل با موتیف‌های کوتاه تکرار‌شونده در هیبریداسیون در ژل، با به کارگیری DNAژنومی برش داده شده با آنزیم‌های برشی خاص و الکتروفورز ژل آگارز استفاده شده است. گوبتا و وارشنی در سال2000 طی تحقیقات خود مراحل زیر را برای انگشت‌نگاری الیگونوکلئوتیدی مطرح کردند:
جداسازیDNA ژنومی با وزن مولکولی زیاد
هضم DNAژنومی با یک آنزیم محدودگر مناسب
تفکیک قطعه‌های حاصل از هضم روی ژل آگارز
انتقال ساترن قطعه ها به غشا
دو ‏رگ‏گیری غشا با کاوشگر‏های(نشاندار با مواد پرتوزا یا غیر پرتوزا) الیگونوکلئوتیدی دربردارنده‏ی ردیف‌های دو یا سه تایی تکراری
خودپرتونگاری یا رنگ آمیزی برای مشاهده‏ی قطعه‌های دو رگ‌شده.
به‌کمک این روش می‌توان تنوع نواحی تکرار‌شونده‏ی مورد نظر را آشکار کرد. قطعه‌هایی از DNA که با الیگونوکلئوتیدها دو ‌رگ می‌شوند، در دامنه‌ای از اندازه‏ی چند صد جفت تا ده کیلو جفت باز قرار می‏گیرند. هم‌چنین گاهی بیش از یک نوع ماهواره در داخل یک قطعه‏ی برش داده شده قرار می‌گیرد. تفاوت‏هایی که این نوع نشان‌گرها نشان می‏دهند، به دلیل تفاوت در طول قطعه‌های برش داده‌شده‌ای است که در بردارنده‏ی ماهوارک‌ها هستند. از این روش برای شناسایی ژنوتیپ‌ها و همچنین در ژنتیک جمعیت استفاده می‌شود(12).
پس از مدتی، لیت و لوتی و سه گروه دیگر همین روش را برای ریزماهواره‏ها(عمدتا از نوع (CA)n) به‌کار بردند و دریافتند که ریز ماهواره‏ها به دو دلیل به مراتب آسانتر از ماهوارک‌ها با روش PCR تکثیر می‏شوند:
1-ریزماهواره‏ها کوچکتر از ماهوارک‏ها هستند؛
2-ردیف‌های تکرار‌شونده ریز ماهواره‏ای فراوانتر و توزیع آنها در کل ژنوم یکنواخت‌تر ازماهوارک‏هاست(13).
1-3-3-2 نشان‌گرهای مبتنی بر PCRنشان‌گرهای مبتنی بر PCR نشان‌گرهایی هستند که از توالی الیگونوکلئوتیدی به عنوان آغازگر برای تکثیر قطعه‏ی خاصی از DNA استفاده می‌کنند. روش‏های مختلف در این گروه، در طول و توالی آغازگرها، سختی شرایط PCR و روش‏های جداسازی و آشکار کردن قطعات با همدیگر فرق دارند.
انواع نشان‌گرهای مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعه‌های حاصل از تکثیر(AFLP)
DNA چند شکل تکثیر‌شده‏ی تصادفی(RAPD)
تفاوت تک نوکلئوتیدی(SNP)
نشان‌گرهای مبتنی برنقاط نشانمند از ردیف (STS)
1-3-3-2-1 تفاوت طول قطعه‌های حاصل از تکثیر (AFLP)
در سال 1995 نشان‌گرهای جدیدی ابداع و معرفی شدند که به نظر می‌رسد بسیاری از محدودیت‌های نشان‌گر‌های پیشین را نداشته باشند. در این روش که AFLP نامیده می‏شود نشان‌گرهایی تولید می‏شوند که علاوه بر دارا بودن مزایایRFLP مانند دقت و تکرار‌پذیری ویژگی‌های مثبت روش‌های مبتنی بر واکنش زنجیره‌ای پلی‌مراز را نیز دارند. پایه‌ی این روش تکثیر انتخابی برخی قطعه‌ها از بین تمام قطعه‌های هضم شده‌ی DNA است و سه مرحله‌ی مجزا دارد:
هضمDNA با یه جفت آنزیم محدودگر و اتصال آنها به آداپتور‌های اولیگونوکلئوتیدی؛
طراحی، ساخت آغازگر و تکثیر انتخابی دسته‌ای از قطعه‌های حاصل از هضم .با استفاده از ردیف بازی آداپتور‌ها و نیز ردیف بازی نقاط برش، طراحی و ساخت آغازگر انجام می‌شود، اما برای تکثیر انتخابی قطعه‌های حاصل از هضم دو، سه یا چند نوکلئوتید به انتهای’3 ردیف آغازگر اضافه می‌شود که موجب می‌گردد فقط قطعه‌هایی تکثیر‌شوند که ردیف بلافصل آنها در مجاورت نقطه‌ی برش ،مکمل نوکلئوتیدهای یاد شده باشد؛
جداسازی قطعه‌های حاصل از تکثیر روی ژل‌های توالی‌یابی(پلی‌اکریل‌آمید) و خودپرتونگاری یا رنگ‌آمیزی نقره برای ثبت نتیجه‌ها.
با استفاده از این روش تعداد زیادی از قطعه‌های حاصل از هضم، تکثیر و قابل رویت می‌شوند. این در حالی است که نیازی به دانش اولیه در مورد توالی‌بازی قطعه‌هایی که تکثیر می‌شوند، وجود ندارند. هر یک از این قطعه‌هایی که به صورت باند روی ژل ظاهر می‌شوند، می‌توانند به عنوان یک نشان‌گر ژنتیک مورد استفاده قرار گیرند.
تعداد قطعه‌هایی که با این روش تکثیر می‌شوند، به دقت و توانمندی روش‌های جداسازی (الکتروفورز)، ثبت نتایج و تعداد نوکلئوتید اضافه شده به انتهای آغازگر بستگی دارد. معمولا در این روش بین پنجاه تا صد قطعه‌ی حاصل از هضم تکثیر و با استفاده از ژل‌های پلی‌اکریل‌امید واسرشت ساز ثبت می‏شوند(19)
مزایای AFLP
این روش در مقایسه یا سایر روش‌ها بیشترین تعدا نشان‌گر‌ها به ازای هر ژل را ایجاد می‌کند؛
در این روش نیازی به تهیه و تدارک و نگه‌داری کاوشگر نیست .دقت و تکرار‌پذیری این نشان‌گر به دلیل انتخاب دمای زیاد هم رشته‌سازی و اتصال آغازگر به DNA الگو بیشتر از RAPD است(20).
معایب AFLP
پیچیدگی نسبی این روش در مقایسه با سایر روش‌های میتنی برPCR ؛
عدم اطلاع از جایگاه ژنی نشان‌گر‌ها؛
غالب بودن این نشان‌گر موجب عدم امکان تشخیص افراد خالص از ناخالص می‏گردد؛
تکثیر قطعه‌های غیر‌واقعی در AFLP موجب کاهش قابلیت اعتماد این روش می‏گردد(20).
1-3-3-2-2 DNA چندشکل تکثیرشده‏ی تصادفی(RAPD)در این روش از تک آغازگرهایی به طول هشت تا ده نوکلئوتید که ردیف بازی آن به طور قراردادی تعیین می‌گردد، استفاده می‏شود. در این واکنش یک آغازگر منفرد نقاط مکمل خود را روی دو رشته‏ی DNA ژنومی می‌یابد و در آن نقاط به رشته‌های DNAمتصل می‌شود. چنانچه محل اتصال آغازگرها در روی دو رشته‏ی مقابل به هم نزدیک باشند(فاصله‏ای که DNA قابل تکثیر باشد)، ردیف بین آن دو نقطه طی واکنش PCR تکثیر خواهد شد. فراورده‌های واکنش PCRروی ژل آگارز از هم جدا می‏شوند. تولید هر باند بیانگر وجود شباهت زیاد بین ردیف بازی آغازگرها و ردیف بازی محل اتصال درDNA ژنوم است. به طور معمول هر آغازگر تکثیر چندین جایگاه مختلف را درDNA ژنومی هدایت خواهد کرد. وجود یا عدم وجود یک باند واحد در ژل های RAPD بیانگر جهش نقطه‌ای در محل اتصال آغازگرها و یا حذف یا (اضافه) شدن در ناحیه قابل تکثیر است. بنابراین چند شکلی در RAPDمعمولا به شکل حضور و غیاب یک باند پدیدار می‏شود. بدین معنی که نشان‌گرهای RAPD از نوع غالب‌اند و افرادی که دو نسخه از یک آلل دارند، به طور کمی از افرادی که یک نسخه از آن آلل را دارند، قابل تشخیص نیستند. تفاوت طول قطعه‏ها در RAPD از طریق تکثیر قطعه‌های DNA مکمل با ردیف‌های آغازگرهای اختیاری (ردیف مشخص ولی تصادفی) به‌دست می‌آیند. قطعه‏های تکثیر شده به صورت نوارهایی با وزن مولکولی متفاوت به‌طور مستقیم روی ژل قابل مشاهده‌اند (15).
مزایای RAPD
عدم نیاز به کاوشگر، مواد پرتوزا و غیره؛
امکان بررسی هم زمان چندین جایگاه در ژنوم؛
عدم نیاز به اطلاعات اولیه در مورد ریف DNA برای ساخت آغازگر(16).
معایب RAPD
عدم تکرار پذیری؛
حساسیت بسیار به آلودگی؛
در صورت تغییر شرایط محیطی ظهور باندهای جدید؛
نامعلوم بودن جایگاه نشان‌گر RAPD روی نقشه‌ی ژنتیکی(16).
1-3-3-2-3 تفاوت تک نوکلئوتیدی(SNP)تنوع‌ها و تفاوت‌هایی که به واسطه‏ی اختلاف در یک جایگاه نوکلئوتیدی(به علت جایگزینی، حذف یا ازدیاد) اتفاق می‌افتند، با عنوان تفاوت تک نوکلئوتیدی نامیده می‏شوند. این نوع از تنوع به‌وفور در ژنوم انسان اتفاق می‏افتد به طوری که مطالعات انجام گرفته توسط کاتانو-آنولز و گرس هوف (1998) در ژنوم انسان و اسب نشان می‏دهد که در فاصله‏ی هر دویست و پنجاه تا چهارصد نوکلئوتید یک SNP وجود دارد(17).
با اینکه‌SNP ها به وفور در ژنوم انسان یافت می‌شوند، ولی ایجاد و توسعه‌ی نشان‌گرهای SNP چندان آسان نیست. تهیه نشان‌گر‏های SNP شامل مراحل زیر است:
تعیین ردیف DNA اطراف SNP؛
تکثیر قطعه‌ای منحصر به فرد از DNA به کمک PCR به منظور غربال SNP؛
شناسایی SNP که شامل مشاهده‌ی دو آلل در افراد مختلف می‌باشد؛
مکان‌یابی نشان‌گر SNP و تعیین جایکاه خاص کروموزومی آن؛
تعیین فراوانی دو آلل در جمعیت؛
بررسی SNP در افراد و ژنوتیپ‌های مختلف(17).
برخی از معایب نشاگرهای SNP
SNPها به دلیل داشتن فقط دو آلل در یک جایگاه ژنی نسبت به نشان‌گر‌های چند آللی، اطلاعات کمتری را در نقشه‌های پیوستگی نشان می‌دهند؛
شناسایی نشان‌گرSNP بسیار پر‌هزینه و هم‌چنین زمان‌بر است(17).
1-3-3-2-4 نشان‌گرهای مبتنی برنقاط نشانمند از ردیف(STS)هر نشان‌گری که مبتنی بر واکنش PCR باشد و با استفاده از آغازگرهای اختصاصی (معمولا بیش از بیست نوکلئوتید) ایجاد شود، یک نقطه‌ی نشانمند از ردیف نامیده می‏شود، زیرا پیش از طراحی آغازگر، بی‏شک در یک مرحله ردیف‌یابی صورت گرفته است. نشان‌گرهایی همچون تفاوت طول قطعه‌های قابل تکثیر (ALP) و ریزماهواره‏ها از آن جهت که مستلزم ردیف‏یابی برای طراحی آغازگر به منظور تکثیر DNA در یک نقطه‌ی خاص هستند، ذیل STS دسته‌بندی می‌شوند:
-تفاوت طول قطعه‏های قابل تکثیر(ALP)
-ریز ماهواره‌ها (18).
1-3-3-2-4-1 تفاوت طول قطعه‏های قابل تکثیر(ALP)
ALP یکی از ساده‏ترین و سریع‏ترین نشان‌گرهای مبتنی بر PCR است. اگر ردیف باز‏های قطعه‏ای از DNA در یک موجود مشخص باشد (یا دست کم بخشی از دو انتهای آن قطعه معلوم باشد)، براساس آن می‏توان به طراحی و ساخت مصنوعی آغازگرهایی به طول بیست تا سی نوکلئوتید اقدام کرد. چنان‌چه نمونه‏های مختلف DNA توسط این آغازگرها و از طریق واکنش زنجیره‏ای پلی‌مراز تکثیر و سپس روی ژل الکتروفورز از هم جدا شوند، در صورت وجود اختلاف در طول قطعه‏ی قابل تکثیر، باندهایی به اندازه‏های مختلف تولید خواهند شد که بیانگر وقوع پدیده‏ی حذف یا اضافه در بین نمونه‏های مورد مطالعه است. این تفاوت در اندازه‏ی قطعه‏های قابل تکثیر که جهش‏های ژنتیک را نشان می‏دهد به عنوان نشان‌گرهای ژنتیک مورد استفاده قرار می‏گیرد(14).
مزایای ALP
از نظر کاربردی در بین نشان‌گرهای DNA،یکی از سریع ترین و ارزان‌ترین‌ها است؛
به‌کاربرد مواد پرتوزا یا بیوشیمیایی پیچیده نیاز ندارد؛
به‌تدارک، نگهداری و کاربرد کاوشگرها نیاز ندارد؛
بسیار اختصاصی عمل می‌کند، تکرار پذیری آن خوب است و تا حد بسیار زیادی می‌توان به نتایج آن اعتماد داشت؛
به‌مقدار خیلی کمی از DNA نیاز است؛
هم‌بارز بودن این نشان‌گر امکان تشخیص افراد خالص از هر یک از انواع افراد ناخالص را فراهم می‌آورد(14).
معایب ALP
طراحی و ساخت آغازگرها، به اطلاعات اولیه در مورد ردیف DNAژنوم مورد مطالعه نیاز دارد که با توجه به اینکه ژنوم بسیاری از موجودات به طور کامل در دسترس نیست این روش استفاده بسیار کمی دارد؛
هزینه‌ی اولیه مورد نیاز به منظور تولید تعداد کافی نشان‌گر ژنتیک با توزیع مناسب در سرتاسر ژنوم بسیار زیاد و مستلزم صرف وقت است(14).
1-3-3-2-4-2 ریزماهواره‌هاریزماهواره‏ها شامل واحدهای یک الی شش تایی تکرار شونده هستند که در ژنوم بیشتر یوکاریوت‏ها پراکنده‏شده‏اند. به طوری که در هر ده کیلو جفت باز از ردیف DNA دست کم یک ردیف ریزماهواره‏ای دیده می‏شود. طول ریز‌ماهواره‏ها معمولا کمتر از 100 جفت باز بوده و توسط دو ردیف منحصر به فرد در دو طرف محدود شده‏اند. ریزماهواره‏ها به سه گروه عمده‌ی تکرارهای کامل، تکرارهای ناکامل (معمولا توسط بازهای غیرتکرارشونده قطع می‌شوند) و تکرارهای مرکب(دو یا تعداد بیشتری از واحدهای مجاور یکدیگر) تقسیم می‏شوند. تعداد تکرارها در هر واحد بسیار متفاوت است. حداقل تعداد واحد تکرار‌شونده برای ریز ماهواره‏های دو نوکلئوتیدی به ترتیب ده و هفت بار تکرار تعیین شده است(21).
مزایای ریزماهواره‏ها
کاربرد آنها و تفسیر نتایج نسبتا ساده است؛
سیستم چند آللی(تا 11 آلل) از ویژگی‌های بارز این نوع نشان‌گر است؛
ریزماهواره‌ها بسیار متنوعند؛
به وفور در ژنوم یوکاریوت‏ها یافت می‏شوند؛
بیشتر ریزماهواره‏ها غیر‏عملکردی هستند؛
همبارز هستند [22].
1-4 فراوانی، توزیع و سازماندهی ریزماهواره‏ها در داخل ژنومریزماهواره‌ها بسیار فراوان بوده و در کل ژنوم موجودات به صورت تصادفی پراکنده اند. فراوانی ریزماهواره ها در بین موجودات زنده متفاوت است. برای مثال تخمین زده شده است که ژنوم انسان به طور میانگین ده برابر بیشتر از گیاهان ریزماهواره دارد. علاوه برDNA کروموزومی تعداد زیادی ریزماهواره در DNA کلروپلاست ها نیز گزارش شده است. به کمک روش‏هایی از قبیل دورگه‏گیری در ژل، نقشه‏یابی ژنتیکی و فیزیکی و هم چنین دورگه‏گیری در محل فلورسنت، ثابت شده است که ریزماهواره ها به طور یکنواخت در ژنوم پراکنده‏اند. اگرچه در برخی موارد می توانند به صورت مجتمع قرار گرفته باشند(12).
1-5 مکانیسم ایجاد تنوع در طول توالی‏های تکراریچنین فرض می‏شود که جهش در تعداد واحدهای تکرار شونده در هر یک ازDNA های تکرار شونده با یکی از دو سازوکار کراسینگ آور نامساوی(uco) یا جفت نشدن ناشی از سرخوردن در طول رشته (خطای همانندسازی DNA ) صورت می‏گیرد. بیشتر عقیده بر این است که ریزماهواره‏ها و ماهواره‏ها توسط سازوکار کراسینگ آور نامساوی ایجاد می‏شوند، ولی در مورد ریزماهواره‏ها برخی افراد یکی از دو سازوکار و برخی دیگر هر دو سازوکار را موثر می‏دانند(23).
1-5-1 کراسینگ اور نابرابرگاهی کراسینگ اور نابرابر در داخل تکرارهای ریزماهواره‏ای بین کروموزوم های مشابه یا خواهری اتفاق می‏افتد و سبب تغییر در تعداد واحدهای تکرار شونده می‏شود.(شکل 1-2).کراسینگ اور نابرابر می‏تواند هم در میوز و هم میتوز اتفاق بیفتد. چنین توجیه می‏شود که وجود نواحی تکرارشونده احتمالا مانع از ردیف شدن کامل در همولوگ یا کروموزوم‏های خواهری می‏شود. به نظرمی‏رسد که این نوترکیبی مکانیزم اصلی ایجاد تنوع مینی‏ستلایتی است(23).

شکل 1-2 کراسینگ آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف شدگی یا الحاق می‌شود(23.)
1-5-2 عدم جفت شدن ناشی از سرخوردن DNA در طول رشته(خطاهای همانند سازی)گاهی DNA پلی‌مراز در طول همانند سازی در نواحی تکرار شونده‏ی ریز ماهواره‏ای سر می‏خورد و موجب تغییر در تعداد واحد تکرار شونده می‏شود. در حقیقت سر خوردن پلی‌مراز در طول نواحی تکراری موجب عدم جفت شدن کامل دو رشته‏ی DNA شده و در نهایت حلقه‌هایی در رشته‌ی الگو یا رشته‏ی جدید ایجاد می‏شود(شکل1-3). این امر مکانیسم اصلی به وجود آورنده‏ی چندشکلی در میکروستلایت‌هاست(23).

شکل 1-3 متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد(23).اگر نتیجه‏ی همانند سازی ایجاد واحد های تکرار شونده‏ی اضافی باشد، حلقه در رشته ی جدید و اگر نتیجه‌ی همانند سازی کاهش در تعداد واحد‏های تکرار شونده باشد، حلقه در رشته‏ی الگو تشکیل خواهد شد(23).
گلدستین و شلوترر فرضیه‏ی عدم جفت شدن ناشی از سر‏خوردن در طول رشته را نسبت به فرضیه کراسینگ آور نامساوی به دلایل زیر به واقعیت نزدیکتر دانسته‏اند:
الف)‌در انسان بسیاری از تغییرات ریز ماهواره‏ای موجب تغییر در نشان‌گر های مجاور ناحیه ی ریز ماهواره‏ای نمی‌شود. بنابراین در ایجاد چنین تغییراتی نوترکیبی بی‏تاثیر است. از آنجا که جهش در فرضیه کراسینگ اور نامساوی، وابسته به نوترکیبی است، تغییرات ریز ماهواره ای و عدم تغییر نقاط مجاور با این فرضیه قابل توجیه نیست.
ب)‌نقصان در ژن‏هایی که در نوترکیبی نقش اساسی دارند تاثیری در پایداری ریز ماهواره‏ها ندارد.
ج)‌مطالعات انجام گرفته در ساکارومایسزسرویزیه نشان می‏دهد که پایداری ریز ماهواره‏ها در سلول‏هایی که تقسیم میوز را انجام می‏دهند مشابه با یاخته ها در تقسیم میتوز است. با توجه به اینکه نوترکیبی در میوز بیشتر از میتوز است، پس اگر فرضیه‏ی کراسینگ اور نامساوی صادق باشد، باید ریز ماهواره‏ها در میوز ناپایدارتر از میتوز باشد(23).
1-6 دامنه تنوع واحدهای تکرارشوندهدو مدل متفاوت برای توصیف دامنه‏ی تنوع تعداد واحدهای تکرار شونده‏ی ریز ماهواره‏ای وجود دارد:
1.مدل جهش گام به گام
2. مدل آللی نا محدود
1-6-1 مدل جهش گام به گاماگر فرض کنیم در ریزماهواره‏ها یک گام معادل تغییر در یک واحد تکرار شونده باشد، بنابر این مدل ریز ماهواره‏ها از نظر اندازه فقط در تعداد محدودی گام تفاوت دارند، به‌طوری که هر گام از گام بعدی به وسیله‏ی یک واحد تکرار شونده جدا می‏شود. در این مدل چنین فرض می‏شود که بسیاری از جهش‏های با فراوانی زیاد، فقط ریزماهواره‏ها را در یک گام یا دو گام‌(در یک زمان) تغییر می‏دهند. طرفداران این نظریه معتقدند که در بیشتر آزمایش‏ها، بیشترین تغییر در ساختار ریزماهواره‏ها مربوط به افزایش یا کاهش در یک واحد تکرار شونده بوده است(10).
1-6-2 مدل آللی نا‏محدودبر اساس این مدل هیچگونه محدودیتی در اندازه‏ی پتانسیل ریزماهواره‏ها وجود ندارد. از این رو تعداد نا محدودی از انتخاب‏ها می‌توانند اتفاق بیفتند که تمامی آنها احتمال یکسان را داشته باشند.
بسیاری از پژوهشگران معتقدند که ترکیبی از این دو مدل(عموما تغییر در یک یا دو واحد تکرار شونده و به مقدار کمتر تغییرات بزرگتر) بهتر می‌تواند تغییرات جهشی در ریزماهواره‏ها را توضیح دهد(10).
1-7 مارکرهای STRتوالی‏های تکراری کوتاه پشت سر هم(STRS) ، توالی‏های تکرارشونده کوتاه با طول 1-13 نوکلئوتید هستند که به شکل سر به دم قرار می‏گیرند. در ژنوم انسان، معمول‏ترینSTR ، توالی دو نوکلئوتیدی [CA]n است،که در این فرمول n تعداد تکرارهاست که معمولا بین 5 تا 20 بار متغیر است(24).
1-8 کاربرد مارکرهای STRمارکرهایSTR کاربردهای فراوانی دارد که از مهمترین آنها تعیین هویت افراد است(25). تعیین هویت در موارد بسیاری کاربرد دارد که از جمله‏ی آنها می‌توان به موارد زیر اشاره کرد:
1- مطالعات شجره‏ای و روابط فامیلی
2- شناسایی هویت قربانیان حوادث
3- تعیین هویت در موارد جنایی
4- ردیابی تاریخ بشر و مطالعات جمعیتی(26).
1-8-1 مطالعات شجره‏ای و روابط فامیلیاز مارکرهایSTR می توان برای بررسی خویشاوندی دو یا چند نفر استفاده کرد. این نوع مطالعه را آنالیز فامیلی می‌گویند و کاربرد متداول آن در بررسی رابطه والدین ـ فرزندی است(27).
هرساله بیش از 300000 مورد تست ابویت به منظور تعیین رابطه پدر فرزندی در ایالات متحده انجام می‏شود. این تست‏ها معمولا شامل یک مادر، یک کودک و یک یا چند پدر مدعی است. همانطور که می‏دانیم هر فرد دارای دو سری آلل می‏باشد که یک سری آن را از پدر و سری دیگر را از مادر دریافت کرده است. بدین منظور آلل‏های پدر و فرزند برای یافتن تعدادی از جایگاه‏هایSTR مورد بررسی قرار می‏گیرند. اساس این تست بر این است که در فقدان جهش، آلل‏های کودک باید مطابقت کاملی با آلل‏های پدری و مادری داشته باشد(28-29-30).

شکل 1-4 آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد(26).علاوه بر این بسیاری از افراد برای شناسایی اقوام خود از مارکرهایSTR استفاده می‏کنند. برای مثال با آنالیز STR های کروموزومY می توان نسبت فامیلی میان مردان یک خانواده را مشخص کرد. زیرا همان‌طور که می‏دانید کروموزومY توارث پدری دارد و از پدر به تمام پسران به ارث می‌رسد. پس طبیعی است که تمام پسران خانواده در همه‏ی نسل‌هاSTR های یکسانی روی کروموزوم Y خود داشته باشند. آزمایشی که بدین منظور انجام می‏گیرد آزمایش Y-filer نامیده می‏شود. به کمک این آزمایش می‏توان روابط میان برادرها، عمو و برادرزاده و... را مشخص نمود(27-31).
1-8-2 شناسایی هویت قربانیان حوادثفجایع بزرگ، طبیعی یا بدست بشر، می‌تواند جان افراد بسیاری را بگیرد، تست‏‏‏هایی که برای شناسایی قربانیان حادثه انجام می‏شود، تست تعیین هویت قربانیان حادثه نامیده می‏شود. از این تست در مواردی مانند سقوط هواپیما ،آتش سوزی‏های بزرگ و حوادث تروریستی استفاده می‏شود. در این قبیل حوادث با استفاده از اسامی افراد، خانواده‏های آنها شناسایی می‏شوند و پس از مراجعه‏ی خانواده‌ها، از اعضای خانواده شامل پدر، مادر، فرزند، خواهر و برادر نمونه‏ی DNA گرفته می‏شود و نواحی STR آنها بررسی می‏شود. پس از این مرحله با استفاده از DNAبه دست آمده از بقایای اجساد پروفایل ژنتیکی آنها تهیه می‏شود و در نهایت با مقایسه‏ی پروفایل‏های تهیه شده هویت قربانیان شناسایی می‏شود(32).
1-8-3 تعیین هویت در موارد جناییتعیین هویت در موارد جنایی شامل دو بخش می‏باشد:
شناسایی افراد مجهول الهویه
ردیابی مجرمین(25).
1-8-3-1 شناسایی افراد مجهول الهویههر ساله میلیون‏ها نفر در سراسر جهان تحت شرایط مشکوکی مفقود می‏شوند. بسیاری از این افراد قربانی فعالیت‏های مجرمانه از قبیل تجاوز و قتل می‏شوند و هویت آنها ناشناس باقی می‏ماند. در این موارد هم می‏توان از مارکرهای ژنتیکی موجود در DNA افراد برای تعیین هویت آنها استفاده کرد(33).
سه دسته نمونه در مورد افراد قربانی وجود دارد:
1-نمونه مستقیم از فرد قربانی
2-نمونه خانواده قربانی
3-نمونه‌های ناشناس باقی مانده از انسان در صحنه‏ی جرم
این نمونه‏ی باقی مانده می‏تواند استخوان، دندان، بافت، تار مو، لکه ی خون و یا هر چیز دیگری باشد(34).
1-8-3-2 ردیابی مجرمینعلاوه بر این می‏توان از آنالیز DNA برای ردیابی و شناسایی مجرمین استفاده کرد. این که فردی مرتکب جرم و جنایتی بشود و نمونه‌ای از DNA خود را به جا نگذارد، تقریبا غیرممکن است. مو، لکه‌های خون و حتی اثر انگشت، مقادیر بسیار جزئی از DNA را دارند که برای مطالعه با PCR کافی هستند. این بررسی‌ها لازم نیست که بلافاصله انجام شوند، زیرا در سال‌های اخیر، با آزمایش DNA روی مواد بایگانی شده، تعدادی از جنایات گذشته ـ با عنوان پرونده‌های مختومه ـ نیز روشن شده است(35).
باید به خاطر داشته باشیم که یک پروفایل DNA به تنهایی فاقد اعتبار است و کاربردی ندارد. همیشه برای بررسی یک پروفایل DNA نیاز است که یک مقایسه‏ای انجام شود:
1-نمونه ی مورد بررسی که با Q مشخص می شود
2-نمونه شناخته شده که با K نمایش داده می شود
در موارد جنایی، نمونه ی صحنه ی جرم (Q) با نمونه ی فرد مظنون (K) و یا مظانین (K1,K2,K3,K...) مقایسه می شود . در یک مورد بدون مظنون، نمونه ی صحنه ی جرم با نمونه هایی که در اطلاعات کامپیوتری از افراد سابقه دار وجود دارد، بررسی می شود . (K1,K….,KN)(34).

شکل 1-5 شناسائی مجرمین به کمک مارکرهای STR(26).1-8-4 ردیابی تاریخ بشر و مطالعات جمعیتیباستان شناسان با بررسی و مقایسه توالی DNA انسان‌های امروزی با افراد مرده، به کشف منشأ تکاملی انسان امروزی و مسیرهای استقرار انسان در کره زمین می‌پردازند. این زمینه تحقیقاتی آرکئوژنتیک نامیده می‌شود(35).
ردیابی مهاجرت انسانی در طول تاریخ با استفاده از آنالیز DNA روش نوینی است. هدف از این کار تخمین ارتباط میان جمعیت ها بر اساس شباهت‏ها و تفاوت‏هایDNA آنها است. به همین منظور پروژه‏ی عظیمی در سال2005 به منظور ردیابی تاریخ بشر انجام شد که در آن از ده ها هزار نفر از افراد در سراسر جهان آزمایش به عمل آمد. اساس کار بر این مطلب است که اگر تکامل ژنوم‏ها به دلیل انباشتگی جهش ها رخ داده باشد، بنابراین میزان اختلاف در توالی نوکلئوتید های دو ژنوم می تواند زمان حضور جد مشترک آنها را مشخص نماید. انتظار می رود دو ژنومی که اخیرا از یکدیگر جدا شده اند در مقایسه با دو ژنومی که جد مشترک آنها قدیمی‏تر است، اختلاف کمتری داشته باشند(36).
در مطالعه روی یافتن مبدا انسان‏های امروزی و الگوی جغرافیایی مهاجرت‏های بشر از مطالعه‏ی ژن‏ها در جمعیت‏ها می‏توان استفاده کرد. بدین منظور ژن‏های انتخابی جهت بررسی باید دارای گوناگونی باشند. در صورت فقدان گوناگونی ژن‏ها، اطلاعات فیلوژنتیکی بدست نمی‏آید، زیرا همه‏ی افراد حتی اگر به جمعیت‏های مجزایی تقسیم شده باشند که تنها به صورت متناوب با یکدیگر آمیزش داشته‏اند، همچنان دارای همانندی‏های بسیاری خواهند بود. بدین معنی که توالی DNA مورد استفاده در آنالیز فیلوژنتیکی باید از متنوع ترین توالی‏های متغیر باشد(36).
در انسان از سه نوع توالی استفاده می‏شود :
ژن های چند آللی مانند اعضای خانواده‏ی HLA، که اشکال بسیار متفاوتی دارند .
ریز ماهواره‏ها که STR ها نیز جز این گروه به حساب می‏آیند .
DNA میتوکندریایی که به دلیل فقدان سیستم‏های ترمیمی موجود در هسته‌های سلول انسان که نسبتا به سرعت دچار انباشتگی نوکلئوتیدی می‏شوند. انواع مختلف DNA میتوکندریایی موجود در یک گونه را هاپلوگروه می‏نامند(36).
باید توجه نمود که آلل‌ها و هاپلوگروه‌های مختلف به طور هم‌زمان در جمعیت‌ها وجود دارند. به این ترتیب این لوکوس‏ها چند شکلی بوده و به کمک مقایسه ترکیب آلل‌ها و یا هاپلوگروه‌های آنها می‌توان اطلاعات مربوط به وابستگی بین افراد مختلف را بدست آورد. به دلیل جهش‌های ایجاد شده در سلول‏های تولید مثلی هر یک از موجودات، آلل‏ها و هاپلوگروه‏های جدیدی در جمعیت ظاهر می‏شوند. هر یک از آلل‏ها، فراوانی آللی خود را دارند که در طول زمان به دلیل انتخاب طبیعی و تغییر ژنتیکی اتفاقی تغییر می‌کند. انتخاب طبیعی به دلیل تغییر در تناسب (توانائی یک موجود جهت بقا و تولید نسل) رخ می‌دهد و بنابر نظریه‌ی داروین منجر به حفظ انواع مناسب و از بین رفتن انواع زیان آور می‏گردد. به این ترتیب انتخاب طبیعی، فراوانی آلل‏های کاهنده‏ی تناسب را کم کرده و فراوانی آلل‏های افزاینده‌‌ی تناسب را افزایش می‏دهد. در حقیقت در یک جمعیت آلل‏های اندکی ایجاد می‏شوند که تاثیر قابل توجهی بر تناسب موجود داشته باشند، اما هم‌چنان فراوانی آنها به دلیل تغییر ژنتیکی اتفاقی که جز جدا نشدنی طبیعت تولد،تولید مثل و مرگ است در حال تغییر می‏باشد. به دلیل انتخاب طبیعی یا تغییر ژنتیکی اتفاقی ممکن است یک آلل در جمعیت غالب شده و فراوانی آن به صد در صد نیز برسد، به طوریکه این آلل در جمعیت تثبیت شود. اگر یک گونه به دو جمعیت تقسیم شود به طوریکه آمیزش‌های فراوانی بین دو جمعیت رخ ندهد، فراوانی آلل در دو جمعیت به طور مختلف تغییر می‌کند. بنابراین پس از چند ده نسل این دو جمعیت ویژگی‏های ژنتیکی مجزایی را کسب می‏کنند. سرانجام جایگزینی ژنی متفاوتی در این دو جمعیت اتفاق می‏افتد ولی حتی قبل از آن نیز می‏توان از روی اختلاف فراوانی آللی در دو جمعیت، آن دو را از هم باز شناخت(36).
محققان طی سال‏ها تحقیقات در سراسر جهان با استفاده از اصول تئوری اطلاعات، پارامترهای عمومی برای هر جمعیت را به منظور تعیین مقدار اطلاعاتی که مارکرهای STR در جمعیت‏ها به ما می‏دهند، تعریف کردند. در یک نمونه‏گیری از مارکرهای افراد از سراسر جهان، مارکرهایی که بیشترین چندشکلی را در میان جمعیت‏های مختلف داشتند و منحصر به جمعیت‏های خاص بودند، انتخاب شدند .امروزه از این مارکرها برای بررسی تنوع و تفاوت میان جمعیت‏ها استفاده می‏شود(37).
1-9 سایر کاربردهای مارکرهای STRمارکرهای مختلف STR تحت عنوان کیت های تجاری مختلف در کنار تست‏های تعیین هویت کاربردهای گسترده‏ی دیگری دارند که از مهم ترین آنها می‏توان به موارد زیر اشاره کرد:
جمع آوری سلول های جنینی از خون مادر؛
بیماری های نقشه‏ی ژنومی؛
مشخص نمودن خطوط سلولی؛
تعیین هویت افراد استفاده کننده‏ی سرنگ مشترک؛
تشخیص کلون‏های موفق؛
بررسی و نظارت بر روی پیوند عضو؛
تشخیص کایمرهای ژنتیکی؛
تشخیص تومورهای سرطانی(26).
1-9-1 جمع آوری سلول های جنینی از خون مادرهنگامی که یک خانم باردار است تعدادی از سلول‌های جنینی می‏توانند از راه جفت وارد جریان خون مادر شوند. جمع‌آوری این سلول ها که تحت عنوان micro chimerism خوانده می‏شود و بررسی آنها با مارکرهای STR یک روش غیر تهاجمی برای تعیین رابطه‌ی پدر فرزندی است. همچنین با استفاده از این روش می‏توان جنسیت جنین را نیز تعیین نمود(26).
1-9-2 نقشه‏ی ژنوم بیماری‏ها
اسکن ژنوم انسان برای شناسایی نقشه ژنوم بیماری‏ها به طور معمول با استفاده از حدود چهارصد نشان‌گر STR در سراسر ژنوم در فواصل 10 سانتی مورگان انجام می‏شود. مرکز تحقیقات بیماری‏های ارثی در طول سال ها مطالعات و آزمایشات بسیاری را روی صدها نفر با استفاده از مارکرهای STR انجام داده است. هدف از این آزمایشات یافتن ارتباط میان فراوانی آللی در جمعیت های مختلف و بیماری های ژنتیکی بود. در پژوهش‌های صورت یافته ارتباط میان برخی مارکرها و بیماری‏ها مشخص شد. پس از آن از مارکر‏های مذکور می‏توان برای شناسایی تعیین دقیق محل ناشناخته‏ی ژن بیماری استفاده کرد(26).
1-9-3 تعیین هویت افراد استفاده کننده از سرنگ مشترکیکی دیگر از کاربردهای مارکرهایSTR نشان دادن به اشتراک گذاری سرنگ در میان مصرف کنندگان مواد مخدر است. با این روش و با استفاده ازجایگاه D8 آزمایشگاه قادر به تشخیص هویت فرد و یا افرادی است که از یک سرنگ مشترک برای تزریق مواد مخدر استفاده کرده‏اند. با این روش می‏توان هویت شخصی را که منشا انتقال بیماری عفونی بوده و از سرنگ مشترک با سایر افراد استفاده می‏کرده تعیین نمود(26).
1-9-4 تشخیص کلون‏های موفقهنگامی که یک موجود کلون می‏شود ازSTR Typing برای آزمایش آن موجود استفاده می‏شود. برای مثال در کلون کردن موجوداتی مانند سگ و گربه. این روش برای آزمودن میزان موفقیت در کلون کردن به کار می‏رود. اگر یک پروفایل STR یکسان میان موجود کلون شده و سلول‎های مادری اولیه مشاهده نشود، در این صورت کلون کردن موفقیت آمیز نبوده(26).
1-9-5 بررسی و نظارت روی پیوند عضواز کاربردهای دیگر مارکرهای STR، نظارت پیوند سلول‏های پیوند شده بعد از پیوند مغز استخوان است، آزمایش STR از فردی که پیوند گرفته می‏تواند در تشخیص نارسایی پیوند مفید واقع شود(26).
1-9-6 تشخیص کایمرهای ژنتیکیChimerism حضور دو خط سلولی ژنتیکی متفاوت در یک ارگانیسم است که می‏تواند از طریق پیوند سلول‏های بنیادی خونی و یا انتقال خون و یا به طور ارثی در شخص اتفاق بیفتد. در سال 2004 آزمایشی روی افراد دهنده و گیرنده‏ی پیوند انجام شد که توانایی بالای 27 نشان‌گر STR به کار گرفته شده، ازجمله نشان‌گرهای CODIS در تشخیص کایمرها شگفت انگیز بود(26).
1-9-7 مشخص نمودن خطوط سلولیدر آزمایشگاه خطوط سلولی می‏توانند با سایر خطوط سلولی آلوده شوند. در نتیجه ممکن است با هم مخلوط و یا به یکدیگر تبدیل شوند احراز هویت خط سلولی انسان در حال حاضر به وسیله ی سازمانی در آمریکا انجام شده است. به کمک مارکرهای STR می‏توان آلودگی متقاطع بین خطوط سلولی مختلف را به سرعت کشف کرد و همچنین می‏توان برای مشخص کردن خطوط سلولی انسان به عنوان یک مرجع جهانی سود جست. در طول چند سال گذشته بیش از 500 خط سلولی از انسان به کمک این روش و با استفاده از 8 جایگاه STR بدست آمده است(26).
1-9-8 تشخیص تومورهای سرطانیفقدان هتروزیگوسیتی (LOH) پدیده‏ای است که در آن حذف در یک ناحیه‏ی لوکوس منجر به عدم تکثیر در PCR می‏شود، به طوری که یک هتروزیگوت واقعی به عنوان یک هموزیگوت به نظر می رسد. این پدیده در بسیاری از افراد مبتلا به تومورهای سرطانی دیده می‏شود. بررسی روی بافت های سرطانی با بافت نرمال با استفاده از STR نشان می‏دهد که جایگاه های مختلف در بافت سالم ارتفاع بلندتری نسبت به بافت های سرطانی نشان می دهند؛چرا که LOH سبب حذف در آن ناحیه شده است(26).
1-10 روش‏های کلی شناسایی هویت افراد در سطح مولکولیدو روش کلی برای شناسایی هویت افراد در سطح مولکولی عبارتند از:
اثر انگشت ژنتیکی از طریق هیبرید کردن با DNA جستجوگر
تعیین الگوی DNA با PCR توالی‌های کوتاه تکراری(38).
1-10-1 روش انگشت‌نگاری ژنتیکی از طریق هیبرید کردن با DNA جستجوگراولین روشی که در آنالیز DNA با هدف شناسایی افراد به کار رفت، روشی بود که در اواسط دهه 1980 توسط سر آلک جفری از دانشگاه لیستر ارائه شد . این روش براساس نوع دیگری از تنوع ژنوم انسان، موسوم به توالی تکراری بسیار متغیر پراکنده بود. همانگونه که از نام این توالی‌ها بر می‌آید، این توالی‌ها عبارتند از یک توالی تکراری که در جایگاه مختلفی‌(به‌طور پراکنده) از ژنوم انسان وجود دارد. نکته کلیدی این توالی‌ها این است که جایگاه ژنتیکی آنها متنوع است و در افراد مختلف در جایگاه‌های مختلفی از ژنوم قرار دارند(38).
توالی که در ابتدا برای انگشت‌نگاری ژنتیکی بکار رفت، توالی GGGCAGGANG (N: هریک از چهار نوکلئوتید) بود. برای تهیه اثر انگشت یک نمونه، DNA آن را با آنزیم محدودگر برش می‌دهند و قطعات حاصل را با استفاده از الکتروفورز ژل آگارز از هم تفکیک کرده و با آزمون ساترن بلات مورد بررسی قرار می‌دهند. هیبریداسیون با جستجوگری که دارای این توالی بود چند سری از نوارها را مشخص کرد. هریک از این نوارها مربوط به قطعه‌ای از DNA هضم شده بود که دارای این توالی تکراری بود. به دلیل تنوع جایگاه‌های این توالی اگر این آزمون با نمونه DNA فرد دیگری تکرار شود، نتیجه متفاوتی به دست می‌آید و می‌توان نتایج حاصل را انگشت‌نگاری ژنتیک این افراد محسوب نمود . در شکل 1-6 مراحل انگشت نگاری ژنتیکی نشان داده شده است(38).

شکل 1-6 مراحل انگشت نگاری ژنتیکی(38)
1-10-1-1 محدودیت‏های روش انگشت نگاریاین روش در کارهای جنایی خود را بسیار ارزشمند نشان داد اما سه محدودیت داشت:
مقادیر بالایی از DNA برای انجام آزمون مورد نیاز است، زیرا این روش نیازمند آنالیز هیبریداسیون است. برای انگشت‌نگاری نمی‌توان از مقادیر اندک DNA موجود در مو و لکه‌های خون استفاده کرد.
بحث کردن در مورد الگوهای حاصل از انگشت‌نگاری مشکل است، زیرا نوارهای حاصل شدت و ضعف‌های متفاوتی دارند. از نظر قانونی، کوچک‌ترین اختلاف شدت در انگشت‌نگاری ژنتیکی یک متهم برای برائت او کافی است.
با وجود اینکه جایگاه‌های تکراری پراکنده بسیار متنوع هستند، اما اندک احتمالی نیز برای یکسان بودن یا حداقل تشابه الگوی حاصل از دو فرد وجود دارد. این موضوع می‌تواند منجر به برائت یک متهم شود(38).
1-10-2 روش پروفایلینگ
روش قدرتمند پروفایلینگ DNA چنین مشکلاتی را ندارد. در پروفایلینگ از توالی‌های معروف به توالی‌های چند شکلی STR استفاده می‌شود. در این روش، به وسیله PCR با پرایمرهایی که به توالی‌های جانبی STR می‌چسبند، به سرعت می‌توان مقادیر بسیار اندک DNA را افزایش داد. بعد از PCR، محصولات از نظر اندازه نوارها یا وجود نوارهایی که الل‌ یا آلل‌های موجود در نمونه DNAی مورد آزمون هستند، با الکتروفورز ژل آگارز بررسی می‌شوند. روش پروفایلینگ DNA، به دلیل استفاده از PCR بسیار حساس است و امکان انجام آزمون روی مو و دیگر نمونه‌هایی که مقادیر اندکی DNA دارند، فراهم می‌آورد. در نتایج حاصل نیز شکی وجود ندارد و مقایسه میان پروفایل‌های DNA معمولا به عنوان یک مدرک پذیرفته می‌شود. با استفاده از این روش امکان اینکه دو نفر، البته بجز دوقلوهای یکسان، دارای پروفایل‌ مشابهی باشند برابر یک در 1015 می‌باشد. با توجه به جمعیت کره زمین که حدود 109×6 می‌باشد، امکان تشابه آماری پروفایل مربوطه در دو نفر به قدری اندک است که می‌تواند غیرممکن تلقی گردد. نوع هر STR با PCR بوسیله پرایمرهایی که با فلورسنت نشاندار شده‌اند و به دو طرف نواحی تکرار شونده متصل می‌گردند، تعیین می‌شود. سپس الل‌های موجود در STRها با تعیین اندازه به وسیله ژل الکتروفورز موئینه‌ای مشخص می‌شوند. دو یا چند STR می‌تواند با PCR چندگانه مشخص گردد، مشروط به اینکه محصولات از لحاظ اندازه همپوشانی نداشته باشند یا هر جفت پرایمر با فلورسانت متفاوتی نشاندار شده باشند تا امکان تشخیص در ژل الکتروفورز موئینه را داشته باشند. در شکل 1-7 مراحل روش پروفایلینگ نشان داده شده است‌(38).

شکل 1-7 مراحل پروفایلینگ ‌DNA(36).1-11 تاریخچه استفاده از مارکرهایSTR
مارکرهای STRبرای اولین بار به عنوان ابزاری قوی در تست تعیین هویت انسانی در سال 1990 به‌کار گرفته شدند. دستگاه پزشکی قانونی ((FSS مطالعه برای شناسایی جایگاه‌های جدید و ارتباط جایگاه های شناخته شده با تنوع در جمعیت‏ها را آغاز کرد. پس از آن پلیس سلطنتی کانادا (RCMP) به همراه تعدادی از آزمایشگاه‌های اروپا تلاش‌های اولیه را در رابطه با جایگاه های STR آغاز کردند. اولین جایگاه‏های مورد استفاده شامل چهار جایگاه TH01،VWA ، FES/FPS و.F13A1 نسل دوم کیت‌ها ((SGM شامل جایگاه‌های TH01، VWA‌، FGA ،D8S1179 ،D18S51 و D21S11 بود. پایگاه داده‌های ملی DNA انگلستان ((NDNAD در سال 1995 جایگاه ژن آمیلوژنین (برای تعیین جنسیت) را به کیت SGM اضافه کرد. با توجه به تکنولوژی STR Typingو موفقیت‏هایی که در این زمینه در انگلستان به‌دست آمد، FBI درصدد برآمد که با استفاده از لوکوس‌های STR، بنیان CODIS را شکل دهد(41).
1-12 CODIS چیست؟سیستم شاخص اندیس‌دهی ترکیبی CODISشامل سیزده جایگاه STRاست. در شکل 1-8 محل قرارگیری این جایگاه‌ها روی کروموزوم‌های انسان نشان داده شده‌اند. نرم افزار CODIS در سال 1990 به عنوان نرم افزاری برای FBI تاسیس گردید. این نرم افزار در صورت اولیه برای آنالیز پروفایل‏های RFLP مورد استفاده قرار می‏گرفت که در بانک اطلاعاتی قابل جستجو بود. تکنولوژی DNA پزشکی قانونی و تکنولوژی کامپیوتری با یکدیگر ادغام گردیدند و باعث بهبود این نرم افزار شدند و این بهبود در جهت نیاز‌های پزشکی قانونی صورت گرفت. در سال 1997نرم افزار CODIS بر اساس مارکرهای STR طراحی شد. سیزده جایگاه STRکه امروزه تحت عنوان CODIS خوانده می‏شوند، عبارتند‌از:
D8S2179
D21S11
D7S820
CSF1PO
D3S1358
TH01
D13S317
D16S539
VWA
TPOX
D18S51


D5S818
FGA (42).

شکل 1-8 جایگاه‌های CODIS روی کروموزوم های انسان(25).1-13 کیت مورد استفاده در تعیین هویت
برای تعیین هویت از کیتAmp FI STR Identifiler PCR Amplification استفاده می‌شود، که حاوی 15 جایگاه تترانوکلئوتید STRبه همراه مارکر آمیلوژنین که برای تشخیص جنسیت به کار می‏رود می‏باشد. از این پانزده جایگاه، سیزده جایگاه، جایگاه‌های شناخته شده‏ی سیستم اندیس دهی ترکیبی‌(CODIS) هستند، اما علاوه بر آنها دو جایگاه دیگر هم در این کیت گنجانده شده است. جدول(۱-1) نشان دهنده‌ی نام جایگاه‏های موجود در CODIS، به همراه موقعیت کروموزومی هر یک از جایگاه‏ها و آلل‏های موجود در هر جایگاه است(43).
جدول 1-1 جایگاه‏های موجود در کیت ABIآلل‌های موجود در هر جایگاه موقعیت کروموزومی نام جایگاه
8,9,10,11,12,13,14,15,16,17,18,19 8 D8S2179
24,24.2,25,26,27,28,28.2,29,29.2,
30,30.2,31,31.2,32,32.2,33,33.2,
34,34.2,35,35.2,36,37,38 21q11.2-q21 D21S11
6,7,8,9,10,11,12,13,14,15 7q11.21-22 D7S820
6,7,8,9,10,11,12,13,14,15 5q33.3-34 CSF1PO
12,13,14,15.16,17,18,19 3p D3S1358
4,5,6,7,8,9,9.3,10,11,13.3 11p15.5 TH01
8,9,10,11,12,13,14,15 13q22-31 D13S317
5,8,9,10,11,12,13,14,15 16q24-qter D16S539
15,16,17,18,19,20,21,22,23,24,25,
26,27,28 2q35-37.1 D2S1338
9,10,11,12,12.2,13,13.2,14,14.2,15,
15.2,16,16.2,17,17.2 19q12-13.1 D19S433
11,12,13,14,15,16,17,18,19,20,21,
22,23,24 12p12-pter VWA
6,7,8,9,10,11,12,13 2p23-2per TPOX
7,9,10,10.2,11,12,13,13.2,14,14.2,
15,16,17,18,19,20,21,22,23,24,25
26,27 18q21.3 D18S51
X,Y Amelogenin
7,8,9,10,11,12,13,14,15,16 5q21-31 D5S818
17,18,19,20,21,22,23,24,25,26,26.2
27,28,29,30,30.2,31.2,32.2,33.2,
42.2,43.2,44.2,45.2,46.2,47.2,48.2
50.2,51.2 4q28 FGA
1-14 معرفی استان‏ها1-14-1 استان کرمانشاه
کرمانشاه یکی از باستانی‌ترین شهرهای ایران است و بر اساس افسانه ها توسط طهمورث دیوبند - پادشاه افسانه‌ای پیشدادیان ساخته شده است. برخی از مورخین بنای آن را به بهرام پادشاه ساسانی نسبت می‌دهند. کرمانشاه در زمان قباد اول و انوشیروان ساسانی به اوج عظمت خود رسید. در اوایل حکومت شاه اسماعیل صفوی سلطان مراد آق قویونلو با 70 هزار نفر کرمانشاه و همدان را اشغال کرد. صفویه برای جلوگیری از تجاوز احتمالی امپراطوری عثمانی این شهر را مورد توجه قرار داد. در زمان شیخ علیخان زنگنه صدر اعظم صفوی به آبادانی و رونق کرمانشاه افزوده شد. تاورنیه، جهانگرد و بازرگان فرانسوی، درباره کرمانشاه چنین نوشته‌ است: ” هم زمان با حمله افغان و سقوط اصفهان که طومار فرمانروایی خاندان صفوی در نوردیده شد، کرمانشاه به جرم قرب جوار، با تهاجم عثمانی‌ها مواجه گردید و بار دیگر شهر رو به خرابی نهاد.“ نادر شاه به منظور آمادگی در مقابل تجاوز عثمانی‌ها، به این شهر توجهی خاص مبذول داشت. در زمان نادر شاه این شهر مورد هجوم عثمانی‌ها قرار گرفت. اما نادرشاه عثمانی‌ها را به عقب راند، ولی در اواخر زندگی نادرشاه، کرمانشاه با محاصره و تاراج عثمانی‌ها مواجه شد. کرمانشاه در عهد زندیه دستخوش آشوب فراوانی گردید. به طوری‌که درکتاب ”تحفه العالم“ عبدالصیف جزایری از کرمانشاه به عنوان خرابه نام برده شده است. در دوره قاجار تا حدی از حملات عثمانی‌ها به ناحیه کرمانشاه کاسته شد. در سال 1267ه.ق، امام قلی میرزا از طرف ناصرالدین شاه به سرحدداری کرمانشاه منصوب شد و مدت 25 سال در این شهر حکومت کرد و در همین دوره بناهایی را احداث و به یادگار گذاشت. این شهر در جنبش مشروطه سهمی به سزا داشت و در جنگ جهانی اول و دوم به تصرف قوای بیگانه درآمد و پس از پایان جنگ تخلیه شد. در نتیجه جنگ تحمیلی عراق علیه ایران، این شهر خسارات زیادی دید و پس از جنگ اقدامات مؤثری در جهت بازسازی آن صورت گرفت. در حال حاضر شهر کرمانشاه، مرکز استان کرمانشاه یکی از هفت کلانشهر کشور(تهران، مشهد، اصفهان، تبریز، شیراز، کرمانشاه و اهواز) است‌(44).
1-14-1-1 موقعیت جغرافیایی
استان کرمانشاه در موقعیت ۳۴ درجه شرقی و ۴۷ درجه شمالی شمالی قرار دارد. از شمال به کردستان، از غرب به کشور عراق، از شرق به استان لرستان و همدان و از جنوب به استان ایلام محدود می گردد. شهرستان‌های این استان عبارت‌اند از: اسلام‌آباد غرب، سنقر، پاوه، صحنه، ثلاث باباجانی، قصر شیرین، جوانرود، دالاهو، روانسر، کرمانشاه، کنگاور، گیلان غرب، سر‌پل ذهاب، هرسین. در شکل1-13 استان کرمانشاه به همراه شهرستان‌های آن دیده می‌شود(44).

شکل 1-9 موقعیت جغرافیائی استان کرمانشاه)44.(1-14-2 استان یَزدیزد سرزمینی کهن با پیشینه‌ای در خور توجه، در تاریخ پر فراز و نشیب ایران است. نام یزد برای اولین بار در آثار دوره‌ی ماد‌ها (701 تا 550 قبل از میلاد) دیده می‌شود که گواهی بر قدمت سه هزار ساله‌ی این سرزمین است. در دوره‌های هخامنشی، اشکانی و ساسانی نیز در اسناد و کتیبه‌ها بار‌ها به نام یزد برمی‌خوریم(45).
حسن پیر‌نیا، در کتاب خود،"ایران باستان"،به نقل از تاریخ هرودوت، مورخ یونانی(484 تا 420 قبل از میلاد)، بر مبنای کتیبه‌های داریوش، یزد را بنا بر رسم یونانیان، به نام ایساتیس می‌خواند. وی می‌افزاید: یزد در عصر اشکانی در قلمرو حکومت مهرداد اول بود و در این شهر به نام او سکه ضرب می‌کردند. در دوره‌ی پادشاهی اردشیر بابکان، (241-224‌م) بنیان‌گذار سلسله‌ی ساسانی، یزد زیر نفوذ او بود. پس از ظهور اسلام و فروپاشی دولت ساسانی، در زمان خلافت عمر، و به روایت برخی، در دوران عثمان (دهه ی سوم هجری)، شهر یزد و نواحی آن فتح شد. از آن زمان تا پایان حکومت امویان، فرمانروایان عرب بر این ولایت حکم‌رانی می‌کردند. چنان‌که آمده است، در دوران خلافت حضرت علی(ع)، مسلم ابن زیاد، والی فارس، مالیات یزد را هم می‌گرفت. چنین بود تا هنگامی‌که به‌دست خود ایرانیان، حکومت های مستقل و نیمه مستقلی تشکیل شد و فرمانروایان ایرانی بر ولایت یزد حاکم شدند(45).
مرکز این استان، شهر یزد است. یزد منطقه‌ای خشک و بیابانی است. گروه بزرگی از زرتشتیان ایران در استان یزد و بویژه شهر یزد زندگی می‌کنند. زبان مردم استان یزد فارسی با لهجه یزدی است. آبادی نشینی در این منطقه از قدمت طولانی برخوردار است. این سرزمین از گذرگاه‌های مهم در ادوار تاریخی محسوب می‌شده‌ است. این ناحیه در دوره هخامنشیان از راه‌های معتبر موسسه‌های راهداری، مراکز پستی و چاپاری برخوردار بوده‌است. راهداری در یزد قدیم چنان اهمیتی داشت که خاندان آل مظفر از منصب راهداری ناحیه میبد به پادشاهی رسیدند. با این‌همه این استان از درگیری‌ها و جنگ‌های تاریخ کشور ایران تا حدودی ایمنی داشته‌است. سخت‌گذر بودن راه‌ها به همراه محدودیت منابع آبی مانع عمده تسخیر این منطقه توسط بعضی از حکومت های بزرگ و کوچک حاشیه و پیرامون این منطقه در طول تاریخ بوده‌است. همان طور که در شکل 1-14 دیده می شود استان یزد دارای شهرستان های ابرکوه، اردکان، بافق، بهاباد، تفت، خاتم، صدوق، طبس، مهریز، میبد و یزد می باشد که شهرستان های مهریز و تفت از آب و هوای خوبی برخوردار می باشد (45).
1-14-2-1 موقعیت جغرافیایی
استان یزد در مرکز ایران در قلمرو سلسله جبال مرکزی ایران بین عرض های جغرافیایی 29 درجه و 48 دقیقه تا 33 درجه و 30 دقیقه شمالی و طول جغرافیایی 52 درجه و 45 دقیقه تا 56 درجه و 30 دقیقه شرقی از نصف النهار مبدا قرار گرفته است. استان یزد از سرزمین‌های تاریخی است که در میان ایالت های قدیمی و بزرگ پارس، اصفهان، کرمان و خراسان قرار داشته‌است(45).

شکل 1-10 موقعیت جغرافیائی استان یزد(45).1-15 هدف از تحقیق:آنچه که باعث استفاده از مارکرهای STR در جمعیت شناسی شده است، این واقعیت است که درجه فراوانی آللی هر مارکر STR در هر جمعیت منحصر به فرد است. در حقیقت طبق مطالعات انجام شده فراوانی آلل‏های STR در نژاد‏های مختلف و حتی در مناطق جغرافیایی خاص، تفاوت‏هایی را نشان داده است. بنابراین بررسی هر یک از لوکوس های STR در هر نژاد یا جمعیت خاص برای تفسیر صحت نتایج حاصل از انجام آزمایش های تعین الگوی ژنتیکی به کمکSTR و انجام محاسبات آماری مربوطه امری ضروری است. برای بهره گیری از فواید این فناوری نوپا در زمینه‏ی تشخیص افراد، ضروری است تا فراوانی آللی لوکوس‏هایSTR مختلف در جمعیت بومی کشور مورد بررسی قرار گیرند (45).
مطالعات گذشته روی جمعیت های ایرانی، حضور تعدادی از آلل‏ها را با پلی مورفیسم بالا نشان می‏دهد‌(37-46.)
هدف از این مطالعه به دست آوردن پارامترهای جمعیتی بر اساس فراوانی آللی به دست آمده از شانزده جایگاه STR، در جمعیت‏های کرمانشاه و یزد به منظور بررسی تفاوت ژنتیکی میان این دو جمعیت و سایر جمعیت‏ها می‏باشد.

فصل دوم
2-1 نمونه‌گیریبرای نمونه‌گیری از اقوام کرد و یزد از نمونه هایی که به آزمایشگاه ژنتیک پزشکی تهران رجوع می‌کردند، استفاده شد. پس ازکسب رضایت نامه 4 میلی لیتر خون محیطی از افراد غیر خویشاوند بر اساس محل تولد و اطلاعات مربوط به سه نسل گذشته (پدری و مادری) تهیه شد و در لوله‌های حاوی ماده ضد انعقاد (EDTA) ریخته شد برای تکمیل نمونه‌های یزدی از همکاری آزمایشگاهی در یزد استفاده گردید و برای نمونه‌های کرد به استان کرمانشاه رفته و از آزمایشگاه بیمارستان طالقانی نمونه‌گیری به عمل آمد.
2-2 استخراج DNA به روش نمک اشباعاستخراج DNA با استفاده از روش استاندارد نمک اشباع طبق مراحل زیر انجام شد:
۱- ۳ میلی لیتر از نمونه‌ی خون محیطی حاوی ماده‌ی ضد انعقاد EDTA، داخل فالکون ۱۵ میلی لیتری ریخته شد و با استفاده از آب مقطر سرد به حجم ۱۰ میلی لیتر رسانده شد. سپس فالکون به شدت حرکت داده شد این کار جهت لیز بهتر گلبول‌های قرمز از طریق فرآیند تورژسانس می‌باشد. سپس نمونه را در دستگاه EBA 20 Hettich zentrifugen به مدت ۱۰ دقیقه با دور ۵۰۰۰ سانتریفیوژ شد و محلول رویی خارج گردید و رسوب انتهایی فالکون نگه داشته شد.
۲- با افزودن آب مقطر سرد به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد و مجدداً با همان شرایط ذکر شده آن را سانتریفیوژ گردید و رسوب حاصل که حاوی گلبول‌های سفید است نگه داشته شد.
۳- پس از افزودن ml10 محلول I استخراج DNA به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد. سپس در شرایط ذکر شده آن را سانتریفوژ کرده و محلول رویی آن دور ریخته شد.
جدول2-1 محلولI استخراج DNA (محلول لیز کننده گلبول‌های قرمز)غلظت مواد
10 mM Tris-Hcl: pH:7.5
0.32 mM Sacarose
5 mM MgCl2
%1 Triton X-100
4-5/۱ میلی لیتر از محلول II استخراج DNA(از قبل تهیه شده به شرح زیر)، lμ ۲۵ سدیم دو دسیل سولفات ‌ SDS و lμ ۲۰ پروتئیناز K به رسوب سفید رنگ انتهای فالکون افزوده شد.
جدول 2-2 محلول II استخراج DNA (محلول لیز کننده گلبول‌های سفید)غلظت مواد
10 mM Tris-HCl: pH:8.2
2mM EDTA: pH:8
0.45mM NaCl
۵- نمونه‌ها به مدت ۳۰ تا ۴۵ دقیقه در دمایc° ۵۶ و یا به مدت یک شب در دمایc° ۳۷ در انکوباتور قرار داده شد تا رسوب حل شود.
۶- پس از افزودن lμ ۵۰۰ نمک اشباع به نمونه، به آرامی تکان داده شد و به مدت ۱۰ دقیقه در ۴۰۰۰ دور سانتریفیوژ شد. سپس محلول رویی به یک فالکون حاوی ۲ میلی لیتر اتانول خالص (۱۰۰ درصد) انتقال یافت و به آرامی حرکت داده شد تا کلاف DNA شکل بگیرد.
۷- کلاف DNA توسط سمپلر به درون یک ویال حاوی ۱ میلی لیتر الکل ۷۰ درصد انتقال یافت تا الکل 100 خارج شود. در مرحله‌ی بعدی ویال را به مدت ۳ دقیقه در ۱۳۰۰۰ دور در دستگاه 20 Hettich zentrifugen Mikro سانتریفیوژ گشت.

—d1965

فصل سوم: مواد و روشها
3-1 مقدمه22
3-2 نحوه انجام آزمایشات22
3-2-1 مخزن23
3-2-2 پمپ23
3-2-3 کانال آزمایشگاهی23
3-2-4 مخزن آرام کننده جریان24
فهرست مطالب
عنوان صفحه
3-2-5 مدل سازه ترکیبی سرریز - دریچه24
3-3 آنالیز ابعادی25
3-4 شبیهسازی عددی27
3-4-1 معرفی نرمافزار Flow3D28
3-4-2 معادلات حاکم32
3-4-3 مدلهای آشفتگی33
3-4-3-1 مدلهای صفر معادلهای35
3 -4-3-2 مدلهای یک معادلهای35
3-4-3-3 مدلهای دو معادلهای36
3-4-3-4 مدلهای دارای معادله تنش36
3-4-4 شبیهسازی عددی مدل37
3-4-4-1 ترسیم هندسه مدل38
3-4-4-2 شبکه بندی حل معادلات جریان38
3-4-4-3 شرایط مرزی کانال40
3-4-4-4 خصوصیات فیزیکی مدل41
3-4-4- 5 شرایط اولیه جریان43
3-4-4-6 زمان اجرای مدل43
فصل چهارم: نتایج و بحث
4-1 مقدمه46
4-2 شبیهسازی هیدرولیک جریان در حالت کف صلب46
4-2-1 واسنجی نرمافزار46
4-2-1-1 ارزیابی نرمافزارپ48
4-2-1-2 بررسی تأثیر انقباض جانبی سازه ترکیبی سرریز - دریچه بر هیدرولیک جریان54
فهرست مطالب
عنوان صفحه
4-3 شبیهسازی آبشستگی پاییندست جریان59
4-3-1 واسنجی نرمافزار59
4-3-1-1 ارزیابی نتایج نرمافزار61
فصل پنجم: پیشنهادها
5-1 مقدمه70
5-2 نتیجهگیری70
5-3 پیشنهادها71
منابع74

فهرست جدول‌ها
عنوان صفحه
جدول 3- 1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریان25
جدول 3- 2 معرفی نرمافزار Flow3D28
ادامه جدول 3-229
جدول 3- 3 محدوده دادههای به کار رفته جهت شبیهسازی آبشستگی38
جدول 3- 4 شرایط مرزی اعمال شده در نرمافزار40
جدول 3- 5 شرایط مرزی اعمال شده در نرمافزار41
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوب42
جدول 4- 1 نتایج آمارهای خطا مربوط به فرمول (4-1)51
جدول 4- 2 نتایج حاصل از مدلسازی سازه ترکیبی همراه با انقباض جانبی برای نسبت دبیها55
جدول 4- 3 تأثیر پارامتر عدد شیلدز بحرانی بر حداکثر عمق آبشستگی60
جدول 4- 4 تأثیر پارامتر ضریب دراگ بر حداکثر عمق آبشستگی60
جدول 4- 5 تأثیر زاویه ایستایی بر حداکثر عمق آبشستگی61
جدول 4-6 تأثیر پارامتر حداکثر ضریب تراکم مواد بستر بر حداکثر عمق آبشستگی61
جدول 4- 7 بهترین مقادیر برای پارامترهای مؤثر در شبیهسازی حفره آبشستگی61
جدول 4- 8 نتایج آمارهای خطا مربوط به فرمول (4-4)65
فهرست شکل‌ها
عنوان صفحه
TOC h z t "fig,1,table,1" شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه5
HYPERLINK l "_Toc366000088" شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی8
HYPERLINK l "_Toc366000089" شکل 2- 1 جریان عبوری از سازه ترکیبی سرریز - دریچه مستطیل شکل با فشردگی جانبی12
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی12
شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)14
شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)14
شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی درحین برخی از آزمایشات (دهقانی و بشیری، 2010) 15
شکل 3- 1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک23
شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک24
شکل 3- 3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریان25
شکل 3- 4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب26
شکل 3- 5 مدلسازی پرش هیدرولیکی30
شکل 3- 6 مدلسازی جریان در قوس رودخانه30
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه30
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض31
شکل 3- 9 مدلسازی آبشستگی پاییندست سازه31
شکل 3- 10 مشبندی یکنواخت در کانال با مقیاس کوچک39
شکل 3- 11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ40
شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلب40
شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوب41
شکل 3- 14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان43
شکل 3- 15 نمودار تغییرات زمانی حجم سیال در مدلسازی حفره آبشستگی43
شکل 4- 1 مقایسه نتایج پروفیل سطح آب برای شبکهبندیهای مختلف میدان جریان با داده آزمایشگاهی46
شکل 4- 2 مقایسه پروفیل سطح آب در دو مدل تلاطمی k-ε RNG و k-ε و دادههای آزمایشگاهی47
شکل 4- 3 مقایسه پروفیل سطح آب در مدل تلاطمی k-ε RNG با دادههای آزمایشگاهی49
فهرست شکل‌ها
عنوان صفحه
شکل 4-4 ارزیابی دقت مدل RNG k-ε برای عمق جریان در بالادست و روی سازه ترکیبی سرریز- دریچه49
شکل 4- 5 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs / Qg)51
شکل 4- 6 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی52
شکل 4- 7 مقایسه رابطه نسبت دبیها درسازه ترکیبی سرریز- دریچه با روابط تجربی برای تخمین دبی در سرریز و ریچه52
شکل 4- 8 توزیع مؤلفه طولی سرعت جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 9 توزیع فشار جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 10 الگوی جریان اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 11 توزیع تنش برشی کف در اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 12 شماتیکی از جریان عبوری از سازه ترکیبی دارای انقباض جانبی54
شکل 4-13 توزیع تنش برشی کف در اطراف سازه ترکیبی با انقباض جانبی55
شکل 4-14 مقایسه عمق جریان درعرض کانال دربلافاصله قبل از سازه برای میزان انقباضهای جانبی مختلف سازه رکیبی56
شکل 4-15 مقایسه عمق جریان در طول کانال برای میزان انقباضهای جانبی مختلف سازه ترکیبی56
شکل 4-16 توزیع مؤلفه طولی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-17 توزیع مؤلفه طولی سرعت روی سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-18 توزیع مؤلفه عرضی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض58
شکل 4-19 توزیع مؤلفه عرضی سرعت روی سازه در دو حالت با انقباض و بدون انقباض58
شکل 4- 20 مقایسه دقت شبیهسازی حفره آبشستگی با استفاده از مدلهای مختلف آشفتگی59
شکل 4- 21 ارزیابی دقت نرمافزار برای عمق جریان در بالادست و روی سازه ترکیبی62
شکل 4- 22 ارزیابی دقت نرمافزار برای حداکثر عمق آبشستگی62
شکل 4- 23 شماتیکی از جریان ترکیبی عبوری از روی سرریز و زیر دریچه در بستر متحرک63
فهرست شکل‌ها
عنوان صفحه
شکل 4- 24 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب64
شکل 4- 25 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی65
شکل 4-26 توزیع مؤلفه طولی سرعت جریان در اطراف سازه ترکیبی66
شکل 4-27 الگوی جریان اطراف سازه ترکیبی سرریز – دریچه (الف. بردارهای سرعت ب. خطوط جریان)66
شکل 4-28 توزیع تنش برشی در اطراف حفره آبشستگی پاییندست سازه ترکیبی سرریز- دریچه در ابتدای اجرای برنامه67
شکل 4- 29 مقایسه رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب و بستر صلب67
شکل 4-30 نمودار رابطه حداکثر عمق آبشستگی با نسبت دبیهای عبوری از رو و زیر سازه ترکیبی68

18849116456969
فصل اول
مقدمه
1-1- مقدمه
یکی از عمده‌ترین مشکلات سازه‌هایی از قبیل سرریزها، دریچه‌ها و حوضچه‌های آرامش که در بالادست بسترهای فرسایش‌پذیر قرار دارند، آبشستگی در مجاورت سازه است که علاوه‌بر تأثیر مستقیم بر پایداری سازه، ممکن است باعث تغییر مشخصات جریان و در نتیجه تغییر در پارامترهای طراحی سازه شود. به دلیل پیچیدگی موضوع، اکثر محققین آن را به صورت آزمایشگاهی بررسی کردهاند که با وجود تمام دستآوردهای مهمی که تاکنون در زمینه آبشستگی موضعی حاصل گردیده است، هنوز هم شواهد زیادی از آبشستگی گسترده در پایاب دریچه‌ها، سرریزها، شیب‌شکن‌ها، کالورت‌ها و مجاورت پایه‌های پل دیده می‌شود که می‌تواند پایداری این سازهها را با خطرات جدی مواجه کند.
پدیده آبشستگی زمانی اتفاق می‌افتد که تنش برشی جریان آب عبوری از آبراهه، از میزان بحرانی شروع حرکت ذرات بستر بیشتر شود. تحقیقات نشان داده است که عوامل بسیار زیادی بر آبشستگی در پایین‌دست سازه تأثیرگذار هستند که از جمله آنها می‌توان به اندازه و دانه‌بندی رسوبات، عمق پایاب، عدد فرود ذره، هندسه سازه و ... اشاره کرد (کوتی و ین (1976)، بالاچاندار و همکاران (2000)، کلز و همکاران (2001)، لیم و یو (2002)، فروک و همکاران (2006)، دی و سارکار (2006) و ساراتی و همکاران (2008)).
دریچهها و سرریزها به طور گسترده به منظور کنترل، تنظیم جریان و تثبیت کف، در کانالهای باز مورد استفاده قرار میگیرند. بر اثر جریان ناشی از جت عبوری از رو یا زیر سازهها، امکان ایجاد حفره آبشستگی در پاییندست سازهها وجود دارد که ممکن است پایداری سازه را به خطر اندازد؛ بنابراین تعیین مشخصات حفره آبشستگی مورد توجه محققین هیدرولیک جریان قرار گرفته است.
به منظور افزایش بهره‌وری از سازههای پرکاربرد سرریزها و دریچهها، می‌توان آنها را با هم ترکیب نمود به‌طوری‌که در یک زمان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. با ترکیب سرریز و دریچه می‌توان دو مشکل عمده و اساسی رسوب‌گذاری در پشت سرریزها و تجمع رسوب و مواد زائد در پشت دریچه‌ها را رفع نمود. در سازه ترکیبی سرریز- دریچه، شرایط هیدرولیکی جدیدی حاکم خواهد شد که با شرایط هیدرولیکی هر کدام از این دو سازه به‌تنهایی متفاوت است.
1-2 تعاریف1-2-1 سرریزها
یکی از سازههای مهم هر سد را سرریزها تشکیل میدهند که برای عبور آب اضافی و سیلاب از سراب به پایاب سدها، کنترل سطح آب، توزیع آب و اندازهگیری دبی جریان در کانالها مورداستفاده قرار میگیرد. با توجه به حساس بودن کاری که سرریزها انجام میدهند، باید سازهای قوی، مطمئن و با راندمان بالا انتخاب شود که هر لحظه بتواند برای بهرهبرداری آمادگی داشته باشد.
معمولاً سرریزها را بر حسب مهمترین مشخصه آنها تقسیمبندی میکنند. این مشخصه میتواند در رابطه با سازه کنترل و کانال تخلیه باشد. بر حسب اینکه سرریز مجهز به دریچه و یا فاقد آن باشد به ترتیب با نام سرریزهای کنترلدار و یا سرریزهای بدون کنترل شناخته میشوند.
1-2-2 دریچهها
دریچهها سازههایی هستند که از فلزات، مواد پلاستیکی و شیمیایی و یا از چوب ساخته میشوند. از دریچهها به منظور قطع و وصل و یا کنترل جریان در مجاری عبور آب استفاده میشود و از لحاظ ساختمان به گونهای میباشند که در حالت بازشدگی کامل عضو مسدود کننده کاملاً از مسیر جریان خارج میگردد.
دریچهها در سدهای انحرافی و شبکههای آبیاری و زهکشی کاربرد فراوان دارند. همچنین برای تخلیه آب مازاد کانالها، مخازن و پشت سدها به کار میروند (نواک و همکاران، 2004).
دریچهها به صورت زیر دستهبندی میشوند:
بر اساس محل قرارگیری: دریچههای سطحی و دریچههای تحتانی. دریچه سطحی تحت فشار کم و دریچه تحتانی تحت فشار زیاد قرار میگیرند.
بر اساس کاری که انجام میدهند: دریچههای اصلی، تعمیراتی و اضطراری. دریچه اصلی به طور دائم مورد بهرهبرداری قرار میگیرند. برای تعمیرات از دریچه تعمیراتی و در زمان حوادث از دریچه اضطراری استفاده میشود.
بر اساس مصالح بدنه: دریچههای فولادی، آلومینیومی، بتنی مسلح، چوبی و پلاستیکی. دریچه فولادی به خاطر استقامت زیاد به صورت وسیع مورد استفاده قرار میگیرد.
بر اساس نوع بهرهبرداری: دریچههای تنظیم کننده دبی و دریچههای کنترلکننده سطح آب
بر اساس مکانیزم حرکت: دریچههای خودکار، هیدرولیکی، مکانیکی، برقی و دستی. دریچه خودکار بر اساس نیروی شناوری و وزن دریچه و بدون دخالت انسان کار میکند. دریچه هیدرولیکی بر اساس قانون پاسکال عمل مینماید. دریچه برقی از دستگاههای برقی، دریچه مکانیکی با استفاده از قانون نیرو و بازو و بالاخره دریچه دستی به صورت ساده با دست جابهجا میشوند.
بر اساس نوع حرکت: دریچههای چرخشی، غلطان، شناور و دریچههایی که در امتداد یا در جهت عمود بر جریان حرکت مینمایند.
بر اساس انتقال فشار آب: دریچهها ممکن است فشار را به طرفین یعنی به پایههای پل یا به تکیهگاهها منتقل نمایند و یا ممکن است نیروی فشار آب بر کف منتقل شود و یا ممکن است نیروی فشار آب به هر دو یعنی هم تکیهگاهها و هم بر کف منتقل شود.
1-2-3 سازه ترکیبی سریز – دریچهترکیب سرریز - دریچه یکی از انواع سازههای هیدرولیکی میباشد که در سالهای اخیر عمدتاً برای عبور سیال در مواردی که سیال حاوی سرباره و رسوب به صورت همزمان میباشد (مانند کانال عبور فاضلاب) بکار رفته است. سازه ترکیبی سرریز - دریچه با تقسیم دبی عبوری از بالا و پایین خود از انباشت سرباره و رسوب در پشت سازه جلوگیری میکند. از دیگر کاربردهای عملی این ترکیب، میتوان انواع سدهای تأخیری را نام برد. در سدهای تأخیری برای جلوگیری از انباشت رسوب در پشت سد که منجر به کاهش حجم مفید مخزن میگردد اقدام به تعبیه تخلیهکنندههای تحتانی میگردد. از طرف دیگر این نوع سدها به علت برآورد اهداف طراحی و عبور سیلابهای محتمل به صورت روگذر نیز عمل میکنند که از این دو جهت، مدل ترکیبی سرریز - دریچه ایده مناسبی برای تحلیل این نوع سدها میباشد. اگرچه این نوع سازه دارای کاربرد فراوانی در سازههای هیدرولیکی میباشد.
جهت به حداقل رساندن مشکلات در سرریزها و دریچه‌ها و همچنین جهت بالا بردن مزایای آنها می‌توان از سازه ترکیبی سرریز - دریچه استفاده کرد به طوری که در یک زمان، جریان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. این وسیله ترکیبی می‌تواند مشکلات ناشی از فرسایش و رسوبگذاری را مرتفع نماید (دهقانی و همکاران، 2010).
همچنین با این روش، رسوبات و مواد زائد در پشت سرریزها انباشته نمی‌‌‌شوند (ماخرک، 1985).
مشکلاتی را که در اثر وجود مواد رسوبی یا شناور در آب انتقالی برای آبیاری حاصل می‌شود، می‌توان با استفاده از سازه ترکیبی سرریز - دریچه به مقدار زیادی کاهش داده که امکان اندازه‌گیری دقیق‌تر و ساده‌تر را به همراه دارد ( اسماعیلی و همکاران، 1385).
سیستم سرریز - دریچه امکان عبور جریان را از پایین و بالای یک مانع افقی در قسمت میانی مجرا به طور همزمان فراهم نموده، بدین صورت که مواد قابل رسوب را در پشت دریچه به صورت زیرگذر و مواد شناور را به صورت روگذر سرریز عبور میدهد (شکل 1- 1).
331470506095جریان عبوری از زیر دریچه
00جریان عبوری از زیر دریچه
267970163195جریان عبوری از روی سرریز
00جریان عبوری از روی سرریز
138620527622500143446560769500
شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچهاز اینرو تعیین شکل و حداکثر عمق آبشستگی در پاییندست سرریز و دریچه ترکیبی به منظور تثبیت وضعیت بستر میتواند مفید واقع شود.
1-2-4 آبشستگیآبشستگی یکی از موضوعات مهم و قابل توجه در مهندسی رودخانه و هیدرولیک جریان در بسترهای آبرفتی میباشد. چنانچه در یک بازه مورد بررسی، مقدار رسوب وارد شده کمتر از مقدار رسوب خارج شده باشد، عمل فرسایش کف رودخانه و یا بدنه آن رخ میدهد و کف رودخانه بتدریج عمیق میشود. از جمله اثرات منفی گود شدن بستر رودخانه، میتوان به شکست برشی و لغزش در بستر و نیز گرادیان هیدرولیکی خروجی اشاره کرد که در نهایت، افزایش فشار بالابرنده و ایجاد پدیده تراوش را در پی دارد.
به فرسایش بستر و کناره آبراهه در اثر عبور جریان آب، به فرسایش بستر در پاییندست سازههای هیدرولیکی به علت شدت جریان زیاد و یا به فرسایش بستر در اثر بوجود آمدن جریانهای متلاطم موضعی، آبشستگی گویند. عمق ناشی از فرسایش بستر اولیه را عمق آبشستگی مینامند. (کتاب هیدرولیک کانالهای روباز، دکتر ابریشمی)
از آنجا که مکانیزم عمل آبشستگی در مکانهای مختلف متفاوت میباشد، از این رو آبشستگی را به دو نوع تقسیمبندی میکنند:
نوع اول آبشستگی تنگشدگی میباشد. این نوع آبشستگی در دو حالت اتفاق می‌افتد:
الف) در جایی که رودخانه هنوز به حالت تعادل نرسیده و پتانسیل حمل رسوب در بازه‌ای از رودخانه بیش از میزان رسوب ورودی به این بازه باشد.
ب) در جایی که سرعت جریان به دلایلی مانند کاهش مقطع رودخانه در محل پل‌ها، افزایش پیدا می‌کند که در مقطع تنگ شده آبشستگی اتفاق می‌افتد.
در محل احداث پل، آبشکن و یا دیواره ساحلی معمولاً عرض رودخانه را کاهش می‌دهند. این عمل باعث می‌شود که سرعت جریان در این محدوده افزایش یابد. در نتیجه به ظرفیت حمل رسوب افزوده شده و سبب خواهد شد تا بستر رودخانه در این محل فرسایش یابد. عمل فرسایش آنقدر ادامه می‌یابد تا ظرفیت حمل رسوب کاهش یافته و برابر با ظرفیت حمل رسوب در مقطع بالادست گردد. در این حالت، نرخ فرسایش در این محل کمتر می‌شود. هر چند این فرسایش موجب می‌شود که تأثیر پسزدگی آب در بالادست کاهش یابد ولی به خاطر این مسئله نباید اجازه داده شود تا فرسایش صورت گیرد زیرا آبشستگی باعث خطرات جدی مثل واژگونی پل می‌گردد.
نوع دیگر آبشستگی، آبشستگی موضعی است. این نوع آبشستگی در پاییندست سازههای هیدرولیکی، در محل پایههای پل و به طور کلی هر مکانی که شدت جریانهای درهم به طور موضعی افزایش یابد، بوجود میآیند.
آبشستگی موضعی پاییندست سازههای هیدرولیکی نظیر سدها، سرریزها، شوتها، سازههای پلکانی و ... پدیده طبیعی است که به‌دلیل وجود سرعت محلی بیش از سرعت بحرانی بوجود میآید و دلایل آن را میتوان به صورت زیر بیان کرد:
ناکافی بودن مقدار استهلاک انرژی
تشکیل پرش هیدرولیکی ناپایدار و یا انتقال پرش خارج از کف حوضچه آرامش
بوجود آمدن جریانهای گردابی در پاییندست سازههای هیدرولیکی
شکل (1- 2) چند نوع سازه هیدرولیکی و آبشستگی پاییندست آنها را نشان میدهد.

شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی (استاندارد آب و آبفا، 1389)
میزان عمق آبشستگی برای هر یک از سازهها بستگی به شرایط هیدرولیکی جریان و مشخصات رسوب و شرایط هندسی سازه دارد. تخمین میزان عمق آبشستگی از اینرو اهمیت دارد که ممکن است باعث تخریب سازه گردد.
به طور کلی آبشستگی در اثر اندرکنش نیروهای زیر حاصل میشود:
1- نیروی محرک ناشی از جریان که در راستای جدا کردن ذره از بستر عمل میکند.
2- نیروی مقاوم ناشی از اصطکاک ذرات و وزن ذره که در برابر حرکت ذره مقاومت کرده و مانع جدایی ذره از بستر میشود.
جریانها در محل وقوع آبشستگی، یک فرآیند دوفازی (آب و رسوب) است. بنابراین آبشستگی متأثر از متغیرهای بسیاری از قبیل پارامترهای جریان، مشخصات بستر آبرفتی، زمان و هندسه آبراهه میباشد. به همین دلیل، محققین هر یک به مطالعه بخشی از این وقایع پرداخته و آن را به صورت آزمایشگاهی و تجربی بررسی کردهاند.
1-3 ضرورت انجام تحقیقاز آنجایی که در سازه‌های ترکیبی سرریز - دریچه، تداخل جریان از زیر دریچه و روی سرریز باعث اختلاط شدید در جریان، تغییرات در توزیع تنش‌های برشی کف و از این‌رو افزایش پیچیدگی محاسبات می‌شود، بنابراین شبیه‌سازی الگوی جریان، سطح آزاد آب و آبشستگی مورد توجه محققین قرار دارد و لذا در این تحقیق، علاوه بر بررسی آزمایشگاهی الگوی جریان در بستر صلب، توانایی نرمافزار Flow3D در شبیه‌سازی عددی الگوی جریان و آبشستگی مورد ارزیابی قرار خواهد گرفت‌.
1-4 اهداف تحقیقتحقیق انجام شده به منظور پاسخگویی به اهداف زیر صورت گرفته است:
1- بررسی آزمایشگاهی الگوی جریان عبوری از سازه ترکیبی سرریز- دریچه در بستر صلب و مدلسازی عددی آن با نرمافزار Flow3D و مقایسه نتایج حاصل از آن دو
2- مدلسازی عددی آبشستگی در پاییندست سازه ترکیبی با نرمافزار Flow3D و مقایسه نتایج حاصل از آن با نتایج بدست آمده از بررسیهای آزمایشگاهی توسط محققین دیگر
3- ارزیابی دقت مدلهای تلاطمی نرمافزار Flow3D در شبیهسازیهای عددی الگوی جریان و آبشستگی پاییندست سازه ترکیبی سرریز – دریچه در مقایسه با نتایج آزمایشگاهی
4- محاسبه نسبت دبی عبوری از بالای سرریز به زیر دریچه با استفاده از مدل Flow3D
1- 5 ساختار کلی پایاننامهاین تحقیق در پنج فصل به شرح زیر تدوین شده است:
فصل اول- کلیات: که شامل مقدمهای بر سرریزها، دریچهها و مبانی ترکیب این دو سازه بوده و همچنین در رابطه با هیدرولیک جریان و آبشستگی در پای هر کدام از سازههای سرریز یا دریچه و یا سازه ترکیبی سرریز - دریچه کلیاتی ارائه گردیده است.
فصل دوم- بررسی منابع: در این فصل، پیشینه تحقیقها در زمینه هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه، آبشستگی پاییندست سازه ترکیبی و همچنین مطالعات انجام شده توسط نرم‌‌افزار Flow3D بررسی خواهد شد.
فصل سوم- مواد و روشها: این فصل شامل معرفی مواد و روشهای تحقیق، آشنایی با نرمافزار Flow3D و مراحل مدلسازی است.
فصل چهارم- نتایج و بحث: در این فصل، نتایج ارائه شده شامل دو بخش است. بخش اول مربوط به نتایج آزمایشات انجام شده در بستر صلب مربوط به جریان عبوری از سازه ترکیبی سرریز – دریچه و بخش دوم مربوط به نتایج شبیهسازی عددی الگوی جریان، پروفیل و آبشستگی در پاییندست سازه ترکیبی است.
فصل پنجم- نتیجهگیری و پیشنهادها: این فصل دربرگیرنده نتایج بدست آمده از تحلیلها به همراه پیشنهادهایی برای تحقیقات بعدی است.
فصل دوم
مروری بر منابع
2-1 مرور منابع
در این فصل، بررسی منابع و سوابق تحقیق در دو بخش مطالعات آزمایشگاهی و مطالعات عددی توسط نرمافزار Flow3D ارائه میشود که ابتدا مطالعات آزمایشگاهی در دو حالت بستر صلب و متحرک ارائه شده و سپس مطالعات عددی با نرمافزار Flow3D نام برده میشود. چون در مورد جریان عبوری از سازه ترکیبی سرریز‌– دریچه، مدلسازی با نرمافزار Flow3D تاکنون انجام نگرفته است مطالعات عددی نرمافزار Flow3D در همه زمینهها اشاره شده است.
2-2 مطالعات آزمایشگاهی جریان
از جمله مطالعات آزمایشگاهی هیدرولیک جریان در سازه ترکیبی سرریز‌- دریچه، میتوان به مطالعات نجم و همکاران (1994) اشاره کرد. ایشان پارامترهای هندسی و هیدرولیکی مؤثر بر روی جریان ترکیبی را مورد بررسی قرار داده و برای جریان سرریز مثلثی روی دریچه مستطیلی، سرریز و دریچه مستطیلی با ابعاد تنگشدگیهای مختلف به طور جداگانه معادلاتی استخراج کردند. همچنین حالتی را که تنگشدگی دریچه و سرریز یکسان یا متفاوت باشد نیز به طور جداگانه مورد بررسی قرار دادند. این محققین همچنین برای شرایط مختلف مانند استفاده از سرریز مثلثی با زاویههای مختلف و یا سرریز مستطیلی با فشردگی جانبی (شکل 2-1) و بدون فشردگی جانبی (شکل 2-2) روابط جداگانهای به صورت رابطههای (2-1) تا (2-4) ارائه دادند.

شکل 2-‌1 جریان عبوری از سازه ترکیبی سرریز‌- دریچه مستطیل شکل با فشردگی جانبی
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی41052753175(2- 1)
00(2- 1)
Cd=Qc(b1d2gd+y+h-hd+232gb-0.2hh1.5)4274820140335(2- 2)
00(2- 2)
Qu=23Cu2g(b-0.2h)h1.54105275112395(2- 3)
00(2- 3)
Ql=Clb1d2g(d+y+h-hd)429387059690(2- 4)
00(2- 4)
Qc2gb(d1.5 )=Cl1+yd+hd+hdd+23Cu(hd)32شیواپور و پراکاش (2004)، به بررسی دبی جریان از روی سرریز مستطیلی و از زیر دریچه V شکل پرداختند. طبق نتایجی که ایشان گرفتند زمانی که از دریچه V شکل و کج استفاده میشود دبی کانالهای مستطیلی با بستر ثابت با دقت بالاتری قابل تخمین است.
اسماعیلی و فتحیمقدم (1385)، به بررسی آزمایشگاهی هیدرولیک جریان و تعیین ضریب دبی مدل سرریز‌- دریچه در کانالهای دایروی و جریانهای زیرگذر و روگذر با نصب مانع با عرضهای مختلف پرداختند.
سامانی و مظاهری (1386)، به بررسی تخمین رابطه دبی جریان عبوری از روی سرریز و زیر دریچه در حالتهای مستغرق و نیمهمستغرق پرداختند. نتایج بررسی هیدرولیک جریان ایشان نشان میدهد که سیستم سرریز- دریچه، موجب اصلاح خطوط جریان شده، شرایط جریان را به حالت تئوریک نزدیکتر و در نتیجه، واسنجی ضریب شدت جریان سیستم سرریز - دریچه و تخمین دبی جریان با دقت بیشتری نسبت به سرریزهای معمولی انجام میشود.

شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)

رضویان و حیدرپور (1386)، با بررسی خطوط جریان ترکیبی از روی سرریز مستطیلی با فشردگی جانبی و زیر دریچه مستطیلی بدون فشردگی جانبی در حالت لبهتیز، معادلهای برای ضریب شدت جریان پیشنهاد کردند.
تاکنون پژوهشهایی در زمینه آبشستگی پاییندست سازه ترکیبی سرریز - دریچه انجام شده است. اولین بار در سال 1987 یک سری آزمایش توسط آقای اویماز در آزمایشگاه سازههای هیدرولیکی استانبول بر روی آبشستگی پای سازه ترکیبی سرریز- دریچه صورت گرفته است. شکل (2-4) نمایی از مدل شبیهسازی جریان کار ایشان را نمایش میدهد.

شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)
ایشان برای 2 نوع دانهبندی و رسوب غیرچسبنده آزمایشات خود را اجرا نمودند. همچنین تمامی آزمایشات یک بار برای دریچه تنها و یک بار در حالت ترکیب دریچه و سرریز انجام دادند. پس از انجام آزمایشات، دادههای بدست آمده را تجزیه و تحلیل نموده تا به یک رابطه رگرسیونی خطی لگاریتمی بین پارامترهای عمق آبشستگی با قطر رسوبات و ارتفاع آب پاییندست برسند. نتایج تحقیق ایشان نشان می‌دهد که آبشستگی در پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که تنها جریان از زیر دریچه را داریم. همچنین عمق آبشستگی بستگی زیادی به مقدار دبی جریان دارد.
دهقانی و همکاران (2009) به بررسی آزمایشگاهی حداکثر عمق آبشستگی پاییندست سرریز تنها، دریچه تنها و سازه ترکیبی سرریز - دریچه بدون انقباض پرداختند. نکته جالبی که در کار آزمایشگاهی ایشان دیده شده است رفتار نوسانی روند فرسایش و رسوبگذاری به صورت پر و خالی شدن حفره آبشستگی است. حفره آبشستگی ابتدا عمیق میشود، سپس با وجود جریانهای برگشتی کمی رسوبات فرسایش یافته به درون حفره برمیگردد و حفره کمی پر میشود. سپس دوباره حفره توسط گردابههای زیر دریچه عمیق میشود و روند پر و خالی شدن ادامه مییابد (شکل 2- 5). البته این روند با گذشت زمان کندتر شده و شکل حفره در حوالی زمان تعادل تقریباً ثابت میشود (دهقانی و همکاران، 2010).
همچنین بررسیهای ایشان نشان داد که حداکثر عمق آبشستگی پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که جریان تنها از روی سرریز عبور میکند و این نتیجه با نتایج کار آقای اویماز (1985) تطابق دارد.

شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی در حین برخی از آزمایشات (دهقانی و بشیری، 2010) شهابی و همکاران (1389) به بررسی آزمایشگاهی مشخصات حفره آبشستگی در پاییندست سرریز و دریچه ترکیبی پرداختند. نتایج این بررسی آزمایشگاهی نشان داد که عمق آبشستگی پایین‌دست سازه ترکیبی سرریز - دریچه کمتر از عمق آبشستگی پاییندست سرریز میباشد. همچنین مشخصههای حفره آبشستگی، با افزایش عدد فرود (Fr)، افزایش مییابد و در ارتفاع ریزش ثابت برای جت عبوری از روی آن، با افزایش بازشدگی دریچه، حداکثر عمق آبشستگی کاهش مییابد. نتایج انجام آزمایشات در حالت وجود انقباض نشان می‌دهد که با ایجاد انقباض در دریچه یا سرریز به دلیل تمرکز بیشتر جت، حداکثر عمق آبشستگی، طول حفره آبشستگی و طول رسوبگذاری به ترتیب افزایش، افزایش و کاهش مییابد. همچنین نتایج آزمایش بر روی کفبند پاییندست سازه ترکیبی نشان داد که چنانچه طول کفبند از فاصله برخورد جت بالادست به کف کانال بیشتر در نظر گرفته شود، میتواند میزان آبشستگی را تا حد قابل توجهی کاهش دهد.
2-2 مطالعات عددی با نرمافزار Flow3Dنرمافزار Flow3Dتوانایی شبیه‌سازی عددی الگوی جریان و رسوب در اطراف سازه‌های هیدرولیکی مختلف را دارا می‌باشد. در ادامه برخی کارهای انجام شده با این نرمافزار بیان میشود:
موسته و اتما (2004)، تأثیر طول آبشکن بر منطقه چرخشی پشت آبشکن را با در نظر گرفتن تأثیر مقیاس با نرم‌افزار Flow3D مورد بررسی قرار دادند.
گونزالز و بومباردلی (2005)،‌ در یک شبیهسازی عددی با استفاده از Flow3D به بررسی مشخصات پرش هیدرولیکی بر روی سطح صاف در دو حالت شبکهبندی ریز و شبکهبندی درشت به صورت دوبعدی و سهبعدی پرداختند.
صباغ یزدی و همکارانش (2007)، در یک مدل سهبعدی به ارزیابی مدلهای تلاطمی k-ε و RNGk-ε بر روی میزان ورود هوا در پرش هیدرولیکی با استفاده از روش حجم محدود پرداختند و اثر آن را بر روی دقت تخمین سرعت متوسط جریان با استفاده از مدل در مقایسه با نتایج آزمایشگاهی موجود از پرش هیدرولیکی مورد بررسی قرار دادند. مقایسه نتایج نشان داد که نرمافزار قادر به پیش‌بینی توزیع عمقی سرعت در پرش هیدرولیکی است و همچنین در این آزمون مدل آشفتگی RNG در مقایسه با k-ɛ نتایج مناسبتری را ارائه کرده است.
امیراصلانی و همکارانش (1387)، به شبیه‌سازی سه‌بعدی آبشستگی در پایین‌دست یک جت‌ ریزشی آزاد با استفاده از مدل k-ε نرم‌افزار Flow3D جهت بررسی اثر زاویه اصطکاک داخلی رسوبات بر روی چاله آبشستگی پرداختند. نتایج این پژوهش نشان میدهد هر چقدر زاویه اصطکاک داخلی ذرات رسوب بیشتر باشد میتوان انتظار داشت حفره آبشستگی، ابعاد (طول، عرض و عمق) کوچکتری داشته باشد و ارتفاع برآمدگی رسوبات در پاییندست حفره بیشتر باشد. شیب دیوارهها تندتر بوده و مانعی برای خروج ذرات رسوب از حفره به حساب میآید.
شاهرخی (1387)، با استفاده از نرم‌افزارFlow3D‌ ، مدل عددی الگوی جریان اطراف یک آبشکن را تهیه و با اعمال مدل‌های مختلف آشفتگی، به تأثیر این مدل‌ها بر طول منطقه جداشدگی جریان در پشت یک آبشکن پرداخت‌‌. مهمترین نتیجه حاصل از این تحقیق، نشان میدهد که مدل آشفتگی LES بهترین تطابق را با نتایج آزمایشگاهی داشته و این مدل، پیشبینی بهتری از طول منطقه جداشدگی در پشت آبشکن ارائه میکند. سرانجام پیشنهاد شد مدل در دامنه وسیعتری از تغییرات پارامترهای جریان، طول و زاویه نصب آبشکن اجرا گردد.
شاملو و جعفری (1387)، به بررسی اثر وجود زبری کف بر روی تغییرات میدان سرعت و فشار جریان در اطراف پایه استوانه‌ای شکل در یک کانال مستطیلی توسط نرمافزارFlow3D و با استفاده از مدل آشفتگی k-ε به صورت سهبعدی پرداختند. در این شبیهسازی مقاطعی در سه راستای X , Y , Z نزدیکی پایه با نتایج آزمایشگاهی احمد (1994) مورد مقایسه قرار گرفت. نتایج حاکی از آن است که پروفیلهای سرعت در عمقهای مختلف و در راستای X , Y و میدان فشار در پاییندست پایه روند تغییرات قابل قبولی را با توجه به نتایج آزمایشگاه نشان میدهد. همچنین نتیجه شد نرمافزار با در نظر گرفتن زبری کف نتایج بهتری را ارائه میکنند.
باباعلی و همکاران (1387)، توسط نرمافزار Flow3D یک پارشال فلوم به طول یک فوت را که جریان درون آن شامل دو حالت آزاد و مستغرق بود، با استفاده از مدل آشفتگی LES مدل کردند. ایشان دادههای مدل خود را از جدول استاندارد WMM اقتباس کرده و نتایج محاسبه شده را با نتایج این جدول مقایسه نمودند. آنها نشان دادند که Flow3D میتواند به آسانی محاسبات پارشال فلوم را تحت هر دو جریان آزاد و مستغرق انجام دهد. نتایج محاسبه شده به خوبی با دبیهای منتشر شده مطابقت داشته و نیاز به زمان زیاد و استفاده از ابر رایانهها ندارد.
والش و همکاران (2009)، به شبیهسازی آبشستگی موضعی پایهها در جریان جزر و مدی پرداختند. نتایج نشان داد که نتایج مدلسازی عددی با اندازهگیریهای انجام شده تطابق خوبی داشته و همچنین نشان داد که مدل عددی Flow3D ابزاری مناسب در طراحی جریان در اطراف پایهها در شرایط مختلف جریان است.
شکری و همکاران (1389)، به بررسی عددی هیدرولیک جریان و انتقال رسوب اطراف پایه پل دایروی با نرمافزار Flow3D پرداختند. نتایج بررسی عددی با بررسی آزمایشگاهی انجام شده توسط آنگر و هگر (2006) مقایسه شد و با مقایسه نتایج شبیهسازی عددی و اندازهگیریهای آزمایشگاهی الگوی جریان و تغییر شکل بستر، نتیجه شد که مدل Flow3D نتایج قابل قبولی ارائه داده است.
حسینی و عبدی‌پور (1389)، با استفاده از نرم‌افزار Flow3D به مدل‌سازی عددی پروفیل سرعت در جریانهای گل‌آلود پیوسته پرداختند و تأثیر شیب، غلظت و دبی جریان بر آن را مورد مطالعه قرار دادند. برای صحتسنجی نرمافزار در تعیین پارامترهای هیدرولیکی جریانهای گلآلود (پروفیل سرعت)، از یک نمونه آزمایشگاهی استفاده شد و نتایج حاصل از شبیهسازی با اندازهگیریهای آزمایشگاهی مربوطه مقایسه شد. برای مقایسه نتایج از آزمایشات انجام گرفته توسط حسینی و همکاران استفاده گردید. نتایج حاصل از مدل عددی پروفیل سرعت در بدنه با نتایج آزمایشگاهی تطابق نسبتاً خوبی داشت. نتایج مدل عددی مربوط به پروفیل سرعت با برخی از نتایج آزمایشگاهی مطابقت کمتری داشت که بخش عمدهای از خطاها مربوط به عدم امکان مدلسازی جریان در بخش پایینی در مشبندی به علت کمبود حافظه کامپیوتری و بخشی از خطاها نیز به نحوه مدلسازی جریان گلآلود بود.
برتور و بورنهم (2010)، به مدل‌سازی فرسایش رسوب در پاییندست سد با نرم‌افزار Flow3D پرداختند‌. در بررسی ایشان، برای محاسبه هر یک از ضرایب مشخصه رسوب در نرمافزار Flow3D، فرمولی ارائه و برای هر ضریب محدودهای تعیین شد.
کاهه و همکاران (2010)، مدل‌های آشفتگی k-εو RNG k-ε را جهت تخمین پروفیل‌های سرعت در پرش هیدرولیکی بر روی سطوح موج‌دار مورد بررسی و مقایسه قرار دادند. نتایج، توانایی مدل RNG k-ε در تخمین عمق ثانویه، طول پرش و توزیع سرعت را به خوبی نشان داد. ضریب تنش برشی برآورد شده توسط مدل عددی به نتایج بدست آمده از بررسی‌های آزمایشگاهی بسیار نزدیک بوده و به طور متوسط 8 برابر مقدار آن در پرش هیدرولیکی بر روی سطوح صاف برآورد شد. با توجه به نتایج بدست آمده، مدل آشفتگی RNG k-ε در مقایسه با مدل k-ε در مدلسازی پرش هیدرولیکی بر روی سطوح موجدار از دقت بالایی برخوردار است.
آخریا و همکاران (2011)، به شبیهسازی عددی هیدرولیک جریان و انتقال رسوب اطراف انواع آبشکنها پرداختند. نتایج مدلسازی نشان داد که از بین مدلهای آشفتگی، مدلهای RNG k-ɛ و k-ɛ به دادههای آزمایشگاهی نزدیکتر بوده ولی مدل آشفتگی RNG k-ɛ بهترین نتایج را برای شبیه‌سازی میدان جریان اطراف آبشکن نشان داد.
الیاسی و همکاران (1390)، با بهرهگیری از نرمافزار Flow3D و با اعمال مدل آشفتگی RNG k-ɛ، الگوی جریان اطراف تک آبشکن مستغرق در کانال مستقیم شیبدار را بدون در نظر گرفتن سطح آزاد شبیهسازی نمودند و به مقایسه نتایج مدل عددی با دادههای آزمایشگاهی پرداختند. نتایج این شبیهسازی بدون در نظر گرفتن سطح آزاد، با دادههای آزمایشگاهی تطابق خوبی را نشان داد. مقایسه پروفیلهای سرعت در مدل عددی و نتایج آزمایشگاهی بیانگر مطابقت این دادهها با هم میباشد.
عباسی چناری و همکاران (1390)، الگوی جریان اطراف آبشکنهای L شکل عمود بر ساحل را توسط نرمافزار Flow3D و با مدل آشفتگی k-ɛ شبیهسازی نمودند. در این بررسی، آبشکن L شکل نفوذناپذیر بوده که به صورت غیرمستغرق در 5 زاویه مختلف از قوس رودخانه قرار داده شده است. نتایج حاکی از آن است که تلاطم جریان، محدوده سرعتهای ماکزیمم و در نهایت بیشترین آبشستگی بستر، در دماغه آبشکن اتفاق میافتد. همچنین با افزایش دبی و عدد فرود جریان، محدوده سرعت ماکزیمم جریان در نزدیکی دماغه آبشکن افزایش مییابد و شکل آن در جهت جریان کشیده میشود. در نهایت نتیجه شد که مدل آشفتگی k-ɛ در شبیهسازی نواحی جریان برگشتی در پاییندست آبشکن و محل ایجاد گردابه و آشفتگی جریان در اطراف آبشکن، دقت خوبی دارد.
قنادان و همکاران (1391)، با نرمافزار Flow3D، به شبیهسازی عددی جریان از روی سرریز جانبی لبهپهن پرداخته و نتایج حاصل از این نرمافزار را با دادههای آزمایشگاهی مقایسه کردند. نتایج نشان داد که از میان مدلهای تلاطمی موجود در نرمافزار، مدل تلاطمی RNG k–ε از دقت بالاتری برای شبیهسازی جریان از سرریز جانبی برخوردار است. همچنین با استفاده از مدل واسنجی شده، اثر تغییر ارتفاع و پهنای تاج سرریز بر دبی عبوری از سرریز مورد بررسی قرار گرفت. بر این اساس نتیجه شد که ارتفاع تاج سرریز جانبی لبهپهن بر مقدار دبی خروجی از سرریز نسبت به پهنای تاج مؤثرتر است.
فصل سوم
مواد و روش‌ها
3-1 مقدمه
در این بخش، علاوه بر بررسی آزمایشگاهی الگوی جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه در بستر صلب و شبیهسازی عددی هیدرولیک آن با نرمافزار Flow3D، توانایی مدل عددی Flow3D در شبیهسازی آبشستگی در پاییندست سازه ترکیبی ارزیابی میشود. بنابراین در این بخش، علاوه بر بررسی نحوه انجام آزمایشات، به معرفی مدل Flow3D پرداخته و مراحل مدل‌سازی هیدرولیک جریان و آبشستگی در پاییندست سازه ترکیبی سرریز و دریچه با نرمافزار Flow3D بیان میشود.
3-2 نحوه انجام آزمایشاتدر این بخش، به ارائه نحوه انجام آزمایشات هیدرولیک جریان عبوری از سازه ترکیبی سرریز- دریچه پرداخته میشود. در این تحقیق به منظور کالیبراسیون نرمافزار در حالت کف صلب، آزمایشاتی در کانال با طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر انجام شده و عمق جریان در طول کانال قرائت شد. همچنین جهت ارزیابی دقت نرمافزار در حالت کف متحرک از نتایج آزمایشگاهی شهابی(1389) در کانال با طول 12 متر، عرض و ارتفاع 60 سانتیمتر استفاده شده است.
کانال آزمایشگاهی مورد استفاده در کف صلب شامل قسمتهای زیر است (شکل 3-1):
1- مخزن
2- پمپ که شامل بخشهای تأمین برق، الکتروپمپ، شیر تنظیم دبی و مخزن تعیین دبی است.
3- مخزن آرام کننده جریان
4- کانال آزمایشگاهی
5- مدل سازه ترکیبی
شکل زیر نمای کلی مدل فیزیکی را نشان میدهد.

شکل 3-‌1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک
بخشهای اصلی کانال آزمایشگاهی با مقیاس کوچک، به صورت زیر تعریف میشوند:
3-2-1 مخزنبه منظور تأمین آب مورد نیاز جهت انجام آزمایش، از یک مخزن در قسمت پایین فلوم استفاده شده است. به هنگام آزمایش، آب به صورت رفت و برگشتی از مخزن به فلوم و بالعکس در جریان خواهد بود.
3-2-2 پمپجهت پمپاژ و جریان آب در فلوم، از پمپی با ظرفیت دبی 7 لیتر بر ثانیه استفاده شده است که با یک شیرفلکه معمولی، دبی پمپاژ تغییر داده میشود. به منظور قرائت دبی، از یک مخزن دبیسنج استفاده گردیده است.
3-2-3 کانال آزمایشگاهیکانال آزمایشگاهی دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر میباشد. جنس دیواره و کف کانال از پلکسی گلاس بوده تا امکان مشاهده جریان در کانال در حین آزمایش وجود داشته باشد.
3-2-4 مخزن آرامکننده جریاناین مخزن، آشفتگی جریانی که از پمپ سانتریفوژ وارد کانال خواهد شد را گرفته و جریان را به آرامی وارد کانال آزمایشگاهی میکند.

شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک3-2-5 مدل سازه ترکیبی سرریز- دریچهسازه ترکیبی سرریز- دریچه مورد استفاده در آزمایشات، در فاصله 2 متری از ابتدای کانال و با ضخامت 3 میلیمتر تعبیه شده که با ابعاد هندسی متفاوت ساخته شده است.

شکل 3-3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریانمشخصات آزمایشات انجام شده در کانال آزمایشگاهی با مقیاس کوچک، در جدول زیر شرح داده شده است:
جدول 3-1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریانپارامتر دفعات تغییر واحد محدوده تغییرات
دبی ورودی (Q) 7 Lit/s 64/2 – 39/1
بازشدگی دریچه (W) 5 Cm 5/1 – 5/0
ارتفاع سازه (T) 5 Cm 5/5 – 5/3
3-3 آنالیز ابعادیاولین گام در شبیهسازی و مدلسازی، شناخت متغیرهای اثرگذار بر پدیده فیزیکی است. تعداد متغیرهای اثرگذار با توجه به پیچیدگی رفتار پدیده موردنظر، میتواند افزایش یابد.
با توجه به اینکه هر کمیت فیزیکی در قالب ابعاد بیان میشود، استفاده از روشی که بتواند با ترکیب متغیرهای اثرگذار، متغیرهای بیبعد را که مفهوم فیزیکی دارند ایجاد کند، میتواند در کاهش تعداد متغیرها بسیار مفید باشد.
آنالیز ابعادی روشی است که در آن با استفاده از مفهوم همگنی ابعاد، متغیرهای اثرگذار بر پدیده فیزیکی مورد نظر در قالب متغیرهای بیبعد بیان میشوند. سپس بر اساس این متغیرها و انجام مطالعات آزمایشگاهی، رابطههای تجربی بدست میآورند.
برای انجام آنالیز ابعادی، روشهای مختلفی ازجمله روش فهرستنویسی، نظریه پیباکینگهام، روش گامبهگام و روش هانسیکر و رایت مایر وجود دارد.
در این تحقیق، روش پیباکینگهام که کاربرد وسیعتری دارد مورد بحث و استفاده قرار گرفت. این روش، یکی از روشهای معروف است که به طور وسیع در آنالیز ابعادی استفاده میشود.


در جریان عبوری از سازه ترکیبی سرریز - دریچه در حالت جریان آزاد، متغیرهای مؤثر عبارتند از:
1- دبی عبوری از روی سرریز، Qs
2- دبی عبوری از زیر دریچه، Qg
3- عمق بالادست سازه ترکیبی، H1
4- هد آب روی سرریز، Hd
5- طول سازه، T
6- بازشدگی دریچه، W
7- شتاب ثقل (g)، ρ و μ سیال
شکل (3-4) متغیرهای مؤثر در جریان عبوری از سازه ترکیبی سرریز- دریچه را در حالت جریان آزاد نشان می‌دهد.

شکل 3-4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب
با انجام آنالیز ابعادی به روش پیباکینگهام رابطه (3-1) بدست میآید. از آنجاییکه جریان آشفته است لذا از اثرات Re (رینولدز) صرف نظر شده و نهایتاً رابطه (3-2) بدست میآید.
430191950165(3- 1)
00(3- 1)
F(Qs , Qg , H1 , Hd , T , W , g , ρ , μ) = 0 → QsQg=f( Fr , Re , H1W , HdT )43584345080(3- 2)
00(3- 2)
QsQg=f( Fr , H1W , HdT )3-4 شبیهسازی عددیبه منظور مطالعه و تحلیل جریان در سازههای مختلف، مدلهای فیزیکی و ریاضی مختلف بکار گرفته میشود. با توجه به توسعه سیستمهای کامپیوتری و محاسباتی و همچنین وجود پیچیدگی‌های غیر قابل اندازه‌گیری در جریان عبوری از یک سازه ترکیبی سرریز - دریچه در مدل‌های آزمایشگاهی، استفاده از شبیهسازی عددی می‌تواند در بررسی هیدرولیکی چنین جریانهایی بسیار مؤثر و قابل توجه باشد.
در سالهای اخیر، بدلیل ابداع روشهای پیشرفته و دقیق حل عددی معادلات و بوجود آمدن رایانههای قوی برای انجام محاسبات، میتوان در طراحی این سازههای پیچیده از روشهای حل عددی نیز بهره گرفت. دینامیک سیالات محاسباتی، از روشهای محاسبه و شبیهسازی میدان جریان سیال میباشد که در قرن اخیر مورد توجه خاص مهندسین و طراحان قرار گرفته است.
استفاده از دینامیک سیالات محاسباتی حاکی از مزایای زیر است:
1- کاهش در زمان و هزینه در طراحیها
2- توانایی مطالعه سیستمهایی که انجام آزمایشات کنترل شده روی آنها دشوار و یا غیر ممکن است مانند تأسیسات بزرگ
3- توانایی مطالعه سیستمها تحت شرایط تصادفی و بالاتر از حدود معمول آنها
از جمله نرمافزارهای موجود در زمینه CFD میتوان به موارد زیر اشاره کرد:
CFX, Phonix, Telemac, FIDAP, Flow3D, Fluent
در این تحقیق، به ارزیابی مدل عددی Flow3D جهت شبیهسازی هیدرولیک جریان ترکیبی عبوری از روی سرریز و زیر دریچه و همچنین آبشستگی در پاییندست سازه ترکیبی پرداخته می‌شود.
3-4-1 معرفی نرمافزار Flow3Dنرمافزار Flow3D یک نرمافزار قوی در زمینه CFD میباشد که تولید، توسعه و پشتیبانی آن توسط Flow Science, Inc است و یک مدل مناسب برای حل مسائل پیچیده دینامیک سیالات بوده و قادر است دامنه وسیعی از جریان سیالات را مدل کند. این مدل برای شبیهسازی جریانهای سطح آزاد سهبعدی غیرماندگار با هندسه پیچیده کاربرد فراوانی دارد. نرمافزار Flow3D، برای مسائل یک‌بعدی، دوبعدی و سهبعدی طراحی شده است. در حالت ماندگار، نتایج در زمان بسیار کمی حاصل میشود زیرا برنامه بر روی قوانین بنیادی جرم، مومنتوم و بقاء انرژی پایهگذاری شده است تا این موارد برای مراحل مختلف جریان در هر زمینهای بکار برده شوند. این نرمافزار یک شبکه آسان از اجزاء مستطیلی را استفاده میکند.
نرمافزار Flow3D شامل مدلهای فیزیکی مختلف میباشد که عبارتند از: آبهای کمعمق، کاویتاسیون، آشفتگی، آبشستگی، کشش سطحی، پوشش متخلخل ذرات و ... . از این مدلها در زمینه‌های ریختهگری مواد، مهندسی فرآیند، طراحی تزریقهای مرکب، تولیدات مصرفی، هیدرولیک مهندسی محیط زیست، هوافضا، علوم دریایی، نفت، گاز و ... استفاده میشود.
در جدول (3-2)، ویژگیهای نرمافزار به اختصار نمایش داده شده است.
جدول 3- 2 معرفی نرمافزار Flow3Dنام نرمافزار Flow3D
زمینه کاری یک نرمافزار قوی در زمینه CFD میباشد. این نرمافزار برای کمک به تحقیق در زمینه رفتار دینامیکی مایعات و گازها در موارد کاربردی وسیع طراحی شده است.
قوانین بنیادی جرم، مومنتوم و بقاء انرژی
کاربردهای Flow3D در زمینه مهندسی آب پایههای پل- هوادهی در پرش هیدرولیکی- سرریز دایرهای- هوادهی در سرریزها- شکست سد- پارشال فلوم- آبشستگی- جریان بر روی یک پلکان- جریانهای با عمق کم- جریان در کانالهای کنترل پرش هیدرولیکی- موجهای کمارتفاع- دریچههای کشویی- جریان سرریز
سطح آزاد حد فاصل بین گاز و مایع همان سطح آزاد است. در Flow3D سطح آزاد با تکنیک حجم سیال مدل میشود. روش حجم سیال شامل سه جزء است: نمایش موقعیت سطح – شبکهبندی– شرایط مرزی سطح
تکنیک محاسبات Finite Difference - FiniteVolume
سیستمهای مختصات معادلات دیفرانسیلی که باید حل شود در قالب مختصات کارتزین (x,y,z) نوشته میشود. برای مختصات استوانهای (z,Ɵ,r) مختصات x به صورت شعاعی و مختصات y به صورت مختصات زاویهای
ادامه جدول 3- 2مدلهای آشفتگی در Flow3D پنج مدل آشفتگی ارائه شده است: طول اختلاط پرانتل، یک معادله، دو معادله k-ɛ، مدل‌های k-ɛ RNG و مدل شبیهسازی بزرگ
مدلسازی 1-General 2-Physics 3-Fluids 4- Meshing & Geometry
5-Boundaries 6-Initial 7-Output 8-Numerics
General زمان اتمام - تعداد سیالات – حالت جریان (که شامل حالت تراکمپذیر یا تراکمناپذیر است.)
Physics شامل بخشهایی نظیر ویسکوزیته که شامل حالتهای سیال ویسکوز و غیرویسکوز است، شتاب ثقل زمین، که در جهت قائم مختصات برابر 81/9- وارد میشود، کشش سطحی، حفرهزدایی، آبشستگی رسوب و ...
Fluids ویسکوزیته، جرم حجمی، تراکمپذیری، مشخصات گرمایی و آحاد
Meshing & Geometry برای مشخص کردن حدود مشبندی، بلوکهایی تعیین میشود که کلیه اندازه سازههای مورد نظر و فضای آزاد در داخل آن تعریف میشود. میتوان همه جزئیات سازه مورد نظر را در یک بلوک هم در نظر گرفت. سیستم مختصاتی میتواند از نوع کارتزین یا استوانهای باشد.
Boundaries در مختصات کارتزین برای تعریف شرایط مرزی،6 درجه مشخص داریم که با توجه به جهت مثبت x, y, z شامل Xmax ,Xmin, Ymax, Ymin, Zmax, Zmin میباشد.
Initial در این قسمت، با توجه به ویژگیهای مسئله شرایط اولیه اعمال میگردد.
Output در این بخش، ویژگیها و امکاناتی برای داشتن مشخصات خاصی از نتایج ارائه میشود.
Numerics در قسمت گزینههای ضمنی برای تنش ویسکوز، هدایت گرمایی و ... امکان انتخاب بین حل صریح یا ضمنی وجود دارد.
برخی از تواناییهای مدل Flow3D جهت شبیهسازی با نمایش شکل مدل عبارتند از:

شکل 3- 5 مدلسازی پرش هیدرولیکی
شکل 3- 6 مدلسازی جریان در قوس رودخانه
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض
شکل 3- 9 مدلسازی آبشستگی پاییندست سازهاین نرمافزار معادلههای حاکم بر حرکت سیال را با استفاده از تقریب احجام محدود حل میکند. محیط جریان به شبکهای با سلولهای مستطیلی ثابت تقسیمبندی میشود که برای هر سلول مقدارهای میانگین کمیتهای وابسته وجود دارد یعنی همه متغیرها در مرکز سلول محاسبه میشوند بجز سرعت که در مرکز وجوه سلول حساب میشود.
در این نرمافزار از دو تکنیک عددی جهت شبیهسازی هندسی استفاده شده است:
1- روش حجم سیال (VOF): این روش برای نشان دادن رفتار سیال در سطح آزاد مورد استفاده قرار میگیرد. این روش بر مبنای تقریبهای سلول دهنده - پذیرنده است که اولین بار توسط Hirt و Nichols در سال 1981 بیان شد.
2- روش کسر مساحت – حجم مانع (FAVOR): از این روش جهت شبیهسازی سطوح و احجام صلب مثل مرزهای هندسی استفاده میشود. هندسه مسئله با محاسبه کسر مساحت وجوه و کسر حجم هر المان برای شبکه که توسط موانعی محصور شدهاند تعریف میشود. همان طور که کسر حجم سیال موجود در هر المان شبکه برای برقراری سطوح سیال مورد استفاده قرار میگرفت، کمیت کسر حجم دیگری برای تعیین سطوح صلب مورد استفاده قرار میگیرد.
فلسفه روش FAVOR بر این مبناست که الگوریتمهای عددی بر مبنای اطلاعاتی شامل فقط یک فشار، یک سرعت، یک دما و ... برای هر حجم کنترل است، که این با استفاده از مقدارهای زیادی از اطلاعات برای تعریف هندسه متناقض است. بنابراین روش FAVOR، المانهای ساده مستطیلی را حفظ میکند، در صورتی که میتواند اشکالی با هندسه پیچیده در حد سازگاری با مقادیر جریان میان‌گیری شده را برای هر المان نشان دهد.
3-4-2 معادلات حاکمدینامیک سیالات محاسباتی، روشی برای شبیهسازی جریان است که در آن معادلات استاندارد جریان از قبیل معادلات ناویر استوکس و معادله پیوستگی قابل حل برای تمام فضای محاسبات می‌باشد. فرم کلی معادله پیوستگی به صورت شکل زیر بیان می‌شود:
416382464733(3-3)
00(3-3)
که درآن VF ضریب حجم آزاد به سمت جریان و مقدار R در معادله فوق، ضریب مربوط به مختصات به صورت کارتزین و یا استوانه‌ای می‌باشد. اولین عبارت در سمت راست معادله پیوستگی مربوط به انتشار تلاطم بوده و به صورت زیر قابل تعریف می باشد:
424413450800(3-4)
00(3-4)
عبارت دوم در سمت راست معادله (3-3) بیانگر منشأ دانسیته است که برای مدلسازی تزریق توده مواد اهمیت دارد:
428985427305(3-5)
00(3-5)
همچنین فرم کلی معادلات حرکت (مومنتم) در حالت سه بعدی به صورت زیر می‌باشد:
4361180396875(3-6)
00(3-6)

که در معادلات فوق Gx , Gy , Gz مربوط به شتاب حجمی می‌باشند. پارامترهای fx ,fy ,fz شتابهای ناشی از جریان‌های لزج بوده و bx , by , bz نیز شامل روابط مربوط به افت در محیطهای متخلخل هستند.
3-4-3 مدلهای آشفتگیاکثر جریانهای موجود در طبیعت به صورت آشفته میباشند. در اعداد رینولدز پایین، جریان آرام بوده ولی در اعداد رینولدز بالا جریان آشفته میشود، به طوری که یک حالت تصادفی از حرکت در جایی که سرعت و فشار بطور پیوسته درون بخشهای مهمی از جریان نسبت به زمان تغییر میکند، گسترش مییابد. این جریانها بوسیله خصوصیاتی که در ادامه ارائه شدهاند شناسایی میگردند:
1- جریانهای آشفته به شدت غیر یکنواخت هستند. در این جریانها اگر تابع سرعت در برابر زمان ترسیم شود، بیشتر شبیه به یک تابع تصادفی خواهد بود.
2- این جریانها معمولاً سهبعدی هستند. پارامتر سرعت میانگین گاهی اوقات ممکن است تنها تابع دو بعد باشد، اما در هر لحظه ممکن است سهبعدی باشد.
3- در این نوع جریانها، گردابهای کوچک بسیار زیادی وجود دارند. شکل کشیده یا عدم تقارن گردابها، یکی از خصوصیات اصلی این جریانها است که این امر با افزایش شدت آشفتگی، افزایش مییابد.
4- آشفتگی، شدت جریانهای چرخشی در جریان را افزایش میدهد که این عمل میتواند باعث اختلاط شود. فرآیند چرخش در سیالاتی رخ میدهد که حداقل، میزان یکی از مشخصههای پایستار آنها متغیر باشد. در عمل، اختلاط بوسیله فرآیند پخش انجام میشود، به این نوع جریانها غالباً جریانهای پخششی نیز میگویند.
5- آشفتگی جریان باعث میشود جریانهایی با مقادیر متفاوت اندازه حرکت با یکدیگر برخورد کنند. گرادیانهای سرعت بر اثر ویسکوزیته سیال کاهش مییابند و این امر باعث کاهش انرژی جنبشی سیال میشود. به بیان دیگر میتوان گفت که اختلاط یک پدیده، مستهلک کننده انرژی است. انرژی تلف شده نیز طی فرآیندی یکطرفه به انرژی داخلی (حرارتی) سیال تبدیل میشود.
تمام مشخصاتی که به آنها اشاره شد برای بررسی یک جریان آشفته مهم هستند. تأثیراتی که توسط آشفتگی ایجاد میشود بسته به نوع کاربری ممکن است ظاهر نشود و به همین دلیل باید این جریانها را با توجه به نوع و کاربری آن مورد بررسی قرار داد. برای بررسی جریانهای آشفته، روش‌های مختلفی وجود دارد که در ادامه به تعدادی از آنها اشاره خواهد شد.
مدلهای آشفتگی، ویسکوزیته گردابهای (vt) و یا تنش رینولدز (-Uij) را تعیین میکند و فرضیات زیادی برای همه آنها حاکم است که عبارتند از:
معادلات ناویر استوکس میانگینگیری شده زمانی، میتواند بیانگر حرکت متوسط جریان آشفته باشد.
پخش آشفتگی متناسب با گرادیان ویژگیهای آشفتگی است.
گردابهها میتوانند ایزوتروپیک و یا غیر ایزوتروپیک باشند.
همه مقادیر انتقال آشفته توابع موضعی از جریان هستند.
در مدلهای آشفته باید همسازی وجود داشته باشد.
این مدلها میتوانند یک مقیاسی و یا چند مقیاسی باشند.
همه مدلها در نهایت به کالیبراسیون به صورت تجربی نیاز دارند.
بسیاری از مدلهای آشفتگی بر پایه فرضیه بوزینسک استوار هستند. مدلهای آشفتگی به پنج دسته تقسیم میشوند:
1- مدلهای صفرمعادلهای
2- مدلهای تکمعادلهای
3- مدلهای دومعادلهای
4- مدلهای جبری
5- مدلهای شبیهسازی گردابهای بزرگ
3-4-3-1 مدلهای صفر معادلهایدر این مدلها هیچگونه معادله دیفرانسیلی برای کمیتهای آشفتگی ارائه نمیشود. این مدلها نسبتاً ساده بوده و دادههای تجربی و آزمایشگاهی در آنها نقش اساسی دارد و تنشهای آشفتگی در هر جهت متناسب با گرادیان سرعت میباشد. نمونهای از این مدلها عبارتند از:
1- مدل لزجت گردابهای ثابت
2- مدل طول اختلاط پرانتل
3- مدل لایه برش آزاد پرانتل
3-4-3-2 مدلهای یک معادلهایاین مدلها بر خلاف مدلهای صفر معادلهای، از یک معادله برای انتقال کمیت آشفتگی استفاده میکنند. این معادله ارتباط بین مقیاس سرعت نوسانی و کمیت آشفتگی میباشد که جذر انرژی جنبشی آشفتگی به‌عنوان مقیاس سرعت در حرکت آشفته مد نظر میباشد و مقدار آن توسط معادله انتقال محاسبه میگردد.
3-4-3-3 مدلهای دومعادلهایمدلهای دو معادلهای سادهترین مدلها هستند که قادرند نتایج بهتری در جریانهایی که مدل طول اختلاط نمیتواند به صورت تجربی در یک روش ساده مورد استفاده قرار بگیرد، ارائه دهند. به طور مثال جریانهای چرخشی از این نمونهاند. تقسیمبندی این مدلها بر اساس محاسبه تنش رینولدز و یا ویسکوزیته گردابهای به صورت زیر است:
ویسکوزیته گردابهای
جبری
تنش رینولدز غیرخطی
این مدلها، دو معادله دیفرانسیلی را حل میکنند. به معادله k که از قبل بوده، معادله ɛ هم اضافه میشود. معادله انرژی جنبشی، k، بیانکننده مقیاس سرعت است، بدین صورت که اگر قرار باشد سرعتهای نوسانی مورد بررسی قرار بگیرند، میتوان جذر انرژی جنبشی حاصل از آشفتگی در واحد جرم را به عنوان مقیاس در نظر گرفت، معادله نرخ میرایی انرژی جنبشی، ɛ، نیز مقیاس طول است. در حقیقت مقیاس طول، اندازه گردابههای بزرگ دارای انرژی جنبشی را میدهد که باعث انتقال آشفتگی در توده سیال میشود.
3-4-3-4 مدلهای دارای معادله تنشنرمافزار Flow3D مدل آشفتگی جدیدتری بر مبنای گروههای نرمال شده رینولدز پیادهسازی کرده است. این دیدگاه شامل روشهای آماری برای استحصال یک معادله متوسطگیری شده برای کمیت‌های آشفتگی است. مدلهای بر پایه RNG k-ɛ از معادلاتی استفاده میکند که شبیه معادلات مدل آشفتگی k-ɛ است اما مقادیر ثابت معادله که به صورت عملی در مدل استاندارد k-ɛ یافت شده‌اند، صریحاً از مدل RNG k-ɛ گرفته شدهاند. از این رو، مدل RNG k-ɛ قابلیت اجرایی گسترده‌تری نسبت به مدل استاندارد k-ɛ دارد. بویژه مدل RNG k-ɛ برای توصیف دقیقتر آشفتگی جریانهای با شدت کمتر و جریانهایی با مناطق دارای برش، قویتر شناخته شده است. در معادله RNG k-ɛ، فرمول تحلیلی برای محاسبه عدد پرانتل آشفته وجود دارد ولی در مدل k-ɛ، از یک مقدار ثابت که استفاده کننده مدل به آن معرفی میکند استفاده میگردد. در مدل RNG k-ɛ، تأثیر گرداب در آشفتگی لحاظ میگردد لذا دقت حل جریانهای چرخشی را بالا میبرد.
نرمافزار Flow3D از پنج مدل آشفتگی طول اختلاط پرانتل، مدل تک معادلهای، دومعادلهای k-ɛ، دومعادلهای RNG k-ɛ و روش گردابهای بزرگ (LES) بهره میبرد.
3-4-4 شبیهسازی عددی مدلدر این تحقیق، شبیهسازی عددی شامل دو قسمت میباشد:
1- قسمت اول مربوط به شبیهسازی هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه است که آزمایشات بکار رفته جهت واسنجی مدل، در کانال با مقیاس کوچک انجام شده است. کانال با مقیاس کوچک دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر بوده که سازه ترکیبی مورد نظر با ضخامت 3 میلیمتر و در فاصله 2 متری از ابتدای کانال تعبیه شده است.
همچنین با استفاده از مدل واسنجی شده با دادههای آزمایشگاهی مربوط به هیدرولیک جریان، مدلهایی مربوط به سازه ترکیبی همراه با انقباض جانبی مدل شده و تأثیر میزان انقباض سرریز- دریچه بر نسبت دبی عبوری از روی سرریز به دبی عبوری از زیر دریچه بررسی شد.
2- قسمت دوم مربوط به شبیهسازی حفره آبشستگی در پاییندست سازه ترکیبی سرریز- دریچه است که برای شبیهسازی عددی آبشستگی، از آزمایشات انجام شده توسط شهابی و همکاران (1389) در کانال با مقیاس بزرگ استفاده شده است. کانال با مقیاس بزرگ دارای طول 12 متر، عرض و ارتفاع 6/0 متر است. کف کانال به ارتفاع 25 سانتیمتر از رسوبات یکنواخت با D50= 1.5 mm و ضریب یکنواختی 18/1 پوشانده شده است. دریچه و سرریز ترکیبی با ضخامت 6 میلیمتر و در فاصله 4/6 متری از ابتدای کانال نصب شده است.
پس از واسنجی نرمافزار، مدل برای شرایط هندسی و هیدرولیکی مختلف اجرا شد و با انتگرال‌گیری پروفیل سرعت بالای سرریز و زیر دریچه، نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (QsQg) محاسبه شد. مشخصات مدلسازیهای انجام شده برای آبشستگی در جدول (3- 3) ارائه داده شده است.
جدول 3-3 محدوده دادههای بهکار رفته جهت شبیهسازی آبشستگیبازشدگی دریچه (cm) ارتفاع سازه (cm) مقادیر دبی (lit/s)
2 ، 1 8 34/11 66/10 98/9 68/8 52/7
2 ، 1 10 1/15 86/13 6/12 33/11 78/9
2 ، 1 12 26/16 14/15 4/14 88/13 3/11
3 ، 4 10 11/20 87/18 52/17 27/16 1/15
مراحل اصلی شبیهسازی عددی در نرمافزار Flow3D عبارتند از:
3-4-4-1 ترسیم هندسه مدلدر صورتی که هندسه مدل آزمایشگاهی به صورت منظم باشد میتوان شکل آن را در خود نرم‌افزار Flow3D ترسیم نمود اما در صورتی که مدل مورد نظر شکل نامنظم داشته باشد نرمافزار قادر خواهد بود فایلهای ایجاد شده در نرمافزارهایی نظیر اتوکد و همچنین فایلهای توپوگرافی به صورت X, Y, Z را مورد استفاده قرار دهد. در این تحقیق، مدلهای بکار رفته در خود نرمافزار ترسیم شده است.
3-4-4-2 شبکهبندی حل معادلات جریانیکی از مهمترین نکاتی که بایستی در شبیهسازی عددی مورد توجه قرار بگیرد، شبکهبندی مناسب برای حل دقیق معادلات حاکم است. ساختن شبکه مناسب برای میدان حل معادلات، دقت محاسبات، همگرایی و زمان محاسبات را تحت تأثیر قرار میدهد. در کلیه مدلهای عددی صورت گرفته، ابعاد شبکه طوری تعیین شد که پارامترهای کنترل شبکه از قبیل حداکثر نسبت ابعاد شبکه در راستای طولی و عمقی و ضریب نسبت ابعاد شبکه در راستاهای مختلف و در مجاورت یکدیگر مناسب انتخاب شده باشد. برای نتایج دقیق و مؤثر، مقدار هریک از دو پارامتر فوق باید به عدد 1 نزدیک بوده و مقدار نسبت ابعاد شبکه در مجاور یکدیگر از 25/1 و همچنین نسبت ابعاد شبکه در راستاهای مختلف از 3 نباید بیشتر باشد (فلوساینس، 2008).
در بخش شبیهسازی هیدرولیک جریان که در کانال با مقیاس کوچک صورت گرفت، مشبندی شبکه جریان، به صورت سهبعدی و ابعاد شبکه در هر سه بعد یکسان و برابر 5 میلیمتر در نظر گرفته شد. (در صورتی که مشبندی شبکه جریان، یکنواخت صورت گرفت نتایج حاصل از مدل به دادههای آزمایشگاهی نزدیکتر و دقت مدل عددی بیشتر میشد). برای این مدلسازی، زبری کف کانال و بدنه سازه برابر 5/1 میلیمتر انتخاب شد.
مشبندی در مقطع عرضی مشبندی در مقطع طولی

شکل 3-10 مشبندی یکنواخت در کانال با مقیاس کوچک
در بخش شبیهسازی آبشستگی در پاییندست سازه ترکیبی که در کانال با مقیاس بزرگ انجام شده است، جهت کاهش زمان تحلیل نرمافزار، شبکه جریان به صورت دوبعدی مشبندی شده و ابعاد شبکه در راستای Z به صورت یکنواخت و برابر 5 میلیمتر و در راستای X به صورت غیر یکنواخت و در نزدیکی سازه مورد نظر، تعداد مش بیشتر و اندازه آنها ریزتر در نظر گرفته شد به طوری که اندازه مش بین 6 تا 20 میلیمتر متغیر است. برای این مدلسازی، زبری کف کانال یکسان با قطر متوسط رسوبات و برابر با 5/1 میلیمتر انتخاب شد.
1501775101346000
شکل 3-11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ
3-4-4-3 شرایط مرزی کاناللایه مرزی ابتدا و انتهای مشها در کانال با مقیاس کوچک بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلبجدول 3-4 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
دبی ورودی جریان خروجی دیوار دیوار تقارن

لایه مرزی ابتدا و انتهای مشها در کانال با مقیاس بزرگ بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوبجدول 3- 5 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
فشار ثابت جریان خروجی دیوار دیوار تقارن
برای انتخاب فشار ثابت برای ورودی کانال، ارتفاع سیال در قسمت فشار ثابت برابر عمق ابتدایی جریان در حالت آزمایشگاهی انتخاب شد.
3-4-4-4 خصوصیات فیزیکی مدلبرای مدلسازی هیدرولیک جریان در بستر صلب، شرایط فیزیکی حاکم بر جریان، به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به‌دلیل آشفتگی جریان در آزمایشات، دو مدل آشفتگی k-ɛ و RNG k-ɛ در نرمافزار مورد ارزیابی قرار گرفت.
برای مدلسازی آبشستگی در پاییندست سازه ترکیبی، شرایط فیزیکی حاکم بر جریان به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به دلیل آشفتگی جریان، سه مدل آشفتگی k-ɛ ، RNG k-ɛ و LES در نرمافزار مورد ارزیابی قرار گرفت.
4- مشخصات رسوبی که در مدلسازیها جهت کالیبراسیون حداکثر عمق آبشستگی تعریف شد در جدول زیر ارائه داده شده است:
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوبپارامتر مورد نظر مقدارهای انتخاب شده
ضریب دراگ 5/1 2/1 1 5/0
عدد شیلدز بحرانی 15/0 1/0 05/0 035/0
زاویه ایستایی 40 35 30
حداکثر ضریب تراکم مواد بستر 8/0 74/0 7/0 6/0 4/0 38/0
ضریب تعلیق مواد بستر 026/0 018/0 01/0
ضریب بار بستر 16 8
عوامل مؤثر در کالیبراسیون حداکثر عمق آبشستگی در پاییندست سازه، پارامترهای حداکثر ضریب تراکم مواد بستر، عدد شیلدز بحرانی، ضریب دراگ، زاویه ایستایی و همچنین نوع مدل آشفتگی بودند.
3-4-4-5 شرایط اولیه جریانقبل از وارد کردن جریان در مدلسازی عددی، حالت اولیه کانال را انتخاب میکنند که در این تحقیق، قبل از ورود جریان، کانال تا قبل از سازه و تا لبه تاج سرریز از سیال مورد‌نظر در نظر گرفته شد.
3-4-4-6 زمان اجرای مدلنکته دیگری که در شبیهسازیهای عددی بسیار مهم است، زمان اجرای مدل تا رسیدن به یک مقدار مناسب از لحاظ پایداری و ماندگاری جریان است. بنابراین در کلیه آزمایشات شبیهسازی شده، زمان اجرای مدل برای شبیهسازی هیدرولیک جریان بین 30-15 ثانیه و برای شبیهسازی آبشستگی در پاییندست سازه ترکیبی بین 5000 - 4000 ثانیه در نظر گرفته شد، که با سپری شدن این مدت زمان، جریان در کانال به صورت یکنواخت میشود.

شکل 3-14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان

user8298

3-2 نحوه انجام آزمایشات22
3-2-1 مخزن23
3-2-2 پمپ23
3-2-3 کانال آزمایشگاهی23
3-2-4 مخزن آرام کننده جریان24
فهرست مطالب
عنوان صفحه
3-2-5 مدل سازه ترکیبی سرریز - دریچه24
3-3 آنالیز ابعادی25
3-4 شبیهسازی عددی27
3-4-1 معرفی نرمافزار Flow3D28
3-4-2 معادلات حاکم32
3-4-3 مدلهای آشفتگی33
3-4-3-1 مدلهای صفر معادلهای35
3 -4-3-2 مدلهای یک معادلهای35
3-4-3-3 مدلهای دو معادلهای36
3-4-3-4 مدلهای دارای معادله تنش36
3-4-4 شبیهسازی عددی مدل37
3-4-4-1 ترسیم هندسه مدل38
3-4-4-2 شبکه بندی حل معادلات جریان38
3-4-4-3 شرایط مرزی کانال40
3-4-4-4 خصوصیات فیزیکی مدل41
3-4-4- 5 شرایط اولیه جریان43
3-4-4-6 زمان اجرای مدل43
فصل چهارم: نتایج و بحث
4-1 مقدمه46
4-2 شبیهسازی هیدرولیک جریان در حالت کف صلب46
4-2-1 واسنجی نرمافزار46
4-2-1-1 ارزیابی نرمافزارپ48
4-2-1-2 بررسی تأثیر انقباض جانبی سازه ترکیبی سرریز - دریچه بر هیدرولیک جریان54
فهرست مطالب
عنوان صفحه
4-3 شبیهسازی آبشستگی پاییندست جریان59
4-3-1 واسنجی نرمافزار59
4-3-1-1 ارزیابی نتایج نرمافزار61
فصل پنجم: پیشنهادها
5-1 مقدمه70
5-2 نتیجهگیری70
5-3 پیشنهادها71
منابع74

فهرست جدول‌ها
عنوان صفحه
جدول 3- 1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریان25
جدول 3- 2 معرفی نرمافزار Flow3D28
ادامه جدول 3-229
جدول 3- 3 محدوده دادههای به کار رفته جهت شبیهسازی آبشستگی38
جدول 3- 4 شرایط مرزی اعمال شده در نرمافزار40
جدول 3- 5 شرایط مرزی اعمال شده در نرمافزار41
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوب42
جدول 4- 1 نتایج آمارهای خطا مربوط به فرمول (4-1)51
جدول 4- 2 نتایج حاصل از مدلسازی سازه ترکیبی همراه با انقباض جانبی برای نسبت دبیها55
جدول 4- 3 تأثیر پارامتر عدد شیلدز بحرانی بر حداکثر عمق آبشستگی60
جدول 4- 4 تأثیر پارامتر ضریب دراگ بر حداکثر عمق آبشستگی60
جدول 4- 5 تأثیر زاویه ایستایی بر حداکثر عمق آبشستگی61
جدول 4-6 تأثیر پارامتر حداکثر ضریب تراکم مواد بستر بر حداکثر عمق آبشستگی61
جدول 4- 7 بهترین مقادیر برای پارامترهای مؤثر در شبیهسازی حفره آبشستگی61
جدول 4- 8 نتایج آمارهای خطا مربوط به فرمول (4-4)65
فهرست شکل‌ها
عنوان صفحه
TOC h z t "fig,1,table,1" شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه5
HYPERLINK l "_Toc366000088" شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی8
HYPERLINK l "_Toc366000089" شکل 2- 1 جریان عبوری از سازه ترکیبی سرریز - دریچه مستطیل شکل با فشردگی جانبی12
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی12
شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)14
شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)14
شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی درحین برخی از آزمایشات (دهقانی و بشیری، 2010) 15
شکل 3- 1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک23
شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک24
شکل 3- 3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریان25
شکل 3- 4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب26
شکل 3- 5 مدلسازی پرش هیدرولیکی30
شکل 3- 6 مدلسازی جریان در قوس رودخانه30
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه30
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض31
شکل 3- 9 مدلسازی آبشستگی پاییندست سازه31
شکل 3- 10 مشبندی یکنواخت در کانال با مقیاس کوچک39
شکل 3- 11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ40
شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلب40
شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوب41
شکل 3- 14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان43
شکل 3- 15 نمودار تغییرات زمانی حجم سیال در مدلسازی حفره آبشستگی43
شکل 4- 1 مقایسه نتایج پروفیل سطح آب برای شبکهبندیهای مختلف میدان جریان با داده آزمایشگاهی46
شکل 4- 2 مقایسه پروفیل سطح آب در دو مدل تلاطمی k-ε RNG و k-ε و دادههای آزمایشگاهی47
شکل 4- 3 مقایسه پروفیل سطح آب در مدل تلاطمی k-ε RNG با دادههای آزمایشگاهی49
فهرست شکل‌ها
عنوان صفحه
شکل 4-4 ارزیابی دقت مدل RNG k-ε برای عمق جریان در بالادست و روی سازه ترکیبی سرریز- دریچه49
شکل 4- 5 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs / Qg)51
شکل 4- 6 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی52
شکل 4- 7 مقایسه رابطه نسبت دبیها درسازه ترکیبی سرریز- دریچه با روابط تجربی برای تخمین دبی در سرریز و ریچه52
شکل 4- 8 توزیع مؤلفه طولی سرعت جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 9 توزیع فشار جریان عبوری از سازه ترکیبی در طول کانال با استفاده از مدل RNG k-ε53
شکل 4- 10 الگوی جریان اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 11 توزیع تنش برشی کف در اطراف سازه ترکیبی سرریز - دریچه54
شکل 4- 12 شماتیکی از جریان عبوری از سازه ترکیبی دارای انقباض جانبی54
شکل 4-13 توزیع تنش برشی کف در اطراف سازه ترکیبی با انقباض جانبی55
شکل 4-14 مقایسه عمق جریان درعرض کانال دربلافاصله قبل از سازه برای میزان انقباضهای جانبی مختلف سازه رکیبی56
شکل 4-15 مقایسه عمق جریان در طول کانال برای میزان انقباضهای جانبی مختلف سازه ترکیبی56
شکل 4-16 توزیع مؤلفه طولی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-17 توزیع مؤلفه طولی سرعت روی سازه در دو حالت با انقباض و بدون انقباض57
شکل 4-18 توزیع مؤلفه عرضی سرعت در زیر سازه در دو حالت با انقباض و بدون انقباض58
شکل 4-19 توزیع مؤلفه عرضی سرعت روی سازه در دو حالت با انقباض و بدون انقباض58
شکل 4- 20 مقایسه دقت شبیهسازی حفره آبشستگی با استفاده از مدلهای مختلف آشفتگی59
شکل 4- 21 ارزیابی دقت نرمافزار برای عمق جریان در بالادست و روی سازه ترکیبی62
شکل 4- 22 ارزیابی دقت نرمافزار برای حداکثر عمق آبشستگی62
شکل 4- 23 شماتیکی از جریان ترکیبی عبوری از روی سرریز و زیر دریچه در بستر متحرک63
فهرست شکل‌ها
عنوان صفحه
شکل 4- 24 نمایش چگونگی رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب64
شکل 4- 25 نمودار تغییرات نسبت دبیهای نرمافزار و مشاهداتی65


شکل 4-26 توزیع مؤلفه طولی سرعت جریان در اطراف سازه ترکیبی66
شکل 4-27 الگوی جریان اطراف سازه ترکیبی سرریز – دریچه (الف. بردارهای سرعت ب. خطوط جریان)66
شکل 4-28 توزیع تنش برشی در اطراف حفره آبشستگی پاییندست سازه ترکیبی سرریز- دریچه در ابتدای اجرای برنامه67
شکل 4- 29 مقایسه رابطه پارامترهای بیبعد مؤثر بر جریان عبوری از سازه ترکیبی با نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (Qs/Qg) برای بستر رسوب و بستر صلب67
شکل 4-30 نمودار رابطه حداکثر عمق آبشستگی با نسبت دبیهای عبوری از رو و زیر سازه ترکیبی68

18849116456969
فصل اول
مقدمه
1-1- مقدمه
یکی از عمده‌ترین مشکلات سازه‌هایی از قبیل سرریزها، دریچه‌ها و حوضچه‌های آرامش که در بالادست بسترهای فرسایش‌پذیر قرار دارند، آبشستگی در مجاورت سازه است که علاوه‌بر تأثیر مستقیم بر پایداری سازه، ممکن است باعث تغییر مشخصات جریان و در نتیجه تغییر در پارامترهای طراحی سازه شود. به دلیل پیچیدگی موضوع، اکثر محققین آن را به صورت آزمایشگاهی بررسی کردهاند که با وجود تمام دستآوردهای مهمی که تاکنون در زمینه آبشستگی موضعی حاصل گردیده است، هنوز هم شواهد زیادی از آبشستگی گسترده در پایاب دریچه‌ها، سرریزها، شیب‌شکن‌ها، کالورت‌ها و مجاورت پایه‌های پل دیده می‌شود که می‌تواند پایداری این سازهها را با خطرات جدی مواجه کند.
پدیده آبشستگی زمانی اتفاق می‌افتد که تنش برشی جریان آب عبوری از آبراهه، از میزان بحرانی شروع حرکت ذرات بستر بیشتر شود. تحقیقات نشان داده است که عوامل بسیار زیادی بر آبشستگی در پایین‌دست سازه تأثیرگذار هستند که از جمله آنها می‌توان به اندازه و دانه‌بندی رسوبات، عمق پایاب، عدد فرود ذره، هندسه سازه و ... اشاره کرد (کوتی و ین (1976)، بالاچاندار و همکاران (2000)، کلز و همکاران (2001)، لیم و یو (2002)، فروک و همکاران (2006)، دی و سارکار (2006) و ساراتی و همکاران (2008)).
دریچهها و سرریزها به طور گسترده به منظور کنترل، تنظیم جریان و تثبیت کف، در کانالهای باز مورد استفاده قرار میگیرند. بر اثر جریان ناشی از جت عبوری از رو یا زیر سازهها، امکان ایجاد حفره آبشستگی در پاییندست سازهها وجود دارد که ممکن است پایداری سازه را به خطر اندازد؛ بنابراین تعیین مشخصات حفره آبشستگی مورد توجه محققین هیدرولیک جریان قرار گرفته است.
به منظور افزایش بهره‌وری از سازههای پرکاربرد سرریزها و دریچهها، می‌توان آنها را با هم ترکیب نمود به‌طوری‌که در یک زمان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. با ترکیب سرریز و دریچه می‌توان دو مشکل عمده و اساسی رسوب‌گذاری در پشت سرریزها و تجمع رسوب و مواد زائد در پشت دریچه‌ها را رفع نمود. در سازه ترکیبی سرریز- دریچه، شرایط هیدرولیکی جدیدی حاکم خواهد شد که با شرایط هیدرولیکی هر کدام از این دو سازه به‌تنهایی متفاوت است.
1-2 تعاریف1-2-1 سرریزها
یکی از سازههای مهم هر سد را سرریزها تشکیل میدهند که برای عبور آب اضافی و سیلاب از سراب به پایاب سدها، کنترل سطح آب، توزیع آب و اندازهگیری دبی جریان در کانالها مورداستفاده قرار میگیرد. با توجه به حساس بودن کاری که سرریزها انجام میدهند، باید سازهای قوی، مطمئن و با راندمان بالا انتخاب شود که هر لحظه بتواند برای بهرهبرداری آمادگی داشته باشد.
معمولاً سرریزها را بر حسب مهمترین مشخصه آنها تقسیمبندی میکنند. این مشخصه میتواند در رابطه با سازه کنترل و کانال تخلیه باشد. بر حسب اینکه سرریز مجهز به دریچه و یا فاقد آن باشد به ترتیب با نام سرریزهای کنترلدار و یا سرریزهای بدون کنترل شناخته میشوند.
1-2-2 دریچهها
دریچهها سازههایی هستند که از فلزات، مواد پلاستیکی و شیمیایی و یا از چوب ساخته میشوند. از دریچهها به منظور قطع و وصل و یا کنترل جریان در مجاری عبور آب استفاده میشود و از لحاظ ساختمان به گونهای میباشند که در حالت بازشدگی کامل عضو مسدود کننده کاملاً از مسیر جریان خارج میگردد.
دریچهها در سدهای انحرافی و شبکههای آبیاری و زهکشی کاربرد فراوان دارند. همچنین برای تخلیه آب مازاد کانالها، مخازن و پشت سدها به کار میروند (نواک و همکاران، 2004).
دریچهها به صورت زیر دستهبندی میشوند:
بر اساس محل قرارگیری: دریچههای سطحی و دریچههای تحتانی. دریچه سطحی تحت فشار کم و دریچه تحتانی تحت فشار زیاد قرار میگیرند.
بر اساس کاری که انجام میدهند: دریچههای اصلی، تعمیراتی و اضطراری. دریچه اصلی به طور دائم مورد بهرهبرداری قرار میگیرند. برای تعمیرات از دریچه تعمیراتی و در زمان حوادث از دریچه اضطراری استفاده میشود.
بر اساس مصالح بدنه: دریچههای فولادی، آلومینیومی، بتنی مسلح، چوبی و پلاستیکی. دریچه فولادی به خاطر استقامت زیاد به صورت وسیع مورد استفاده قرار میگیرد.
بر اساس نوع بهرهبرداری: دریچههای تنظیم کننده دبی و دریچههای کنترلکننده سطح آب
بر اساس مکانیزم حرکت: دریچههای خودکار، هیدرولیکی، مکانیکی، برقی و دستی. دریچه خودکار بر اساس نیروی شناوری و وزن دریچه و بدون دخالت انسان کار میکند. دریچه هیدرولیکی بر اساس قانون پاسکال عمل مینماید. دریچه برقی از دستگاههای برقی، دریچه مکانیکی با استفاده از قانون نیرو و بازو و بالاخره دریچه دستی به صورت ساده با دست جابهجا میشوند.
بر اساس نوع حرکت: دریچههای چرخشی، غلطان، شناور و دریچههایی که در امتداد یا در جهت عمود بر جریان حرکت مینمایند.
بر اساس انتقال فشار آب: دریچهها ممکن است فشار را به طرفین یعنی به پایههای پل یا به تکیهگاهها منتقل نمایند و یا ممکن است نیروی فشار آب بر کف منتقل شود و یا ممکن است نیروی فشار آب به هر دو یعنی هم تکیهگاهها و هم بر کف منتقل شود.
1-2-3 سازه ترکیبی سریز – دریچهترکیب سرریز - دریچه یکی از انواع سازههای هیدرولیکی میباشد که در سالهای اخیر عمدتاً برای عبور سیال در مواردی که سیال حاوی سرباره و رسوب به صورت همزمان میباشد (مانند کانال عبور فاضلاب) بکار رفته است. سازه ترکیبی سرریز - دریچه با تقسیم دبی عبوری از بالا و پایین خود از انباشت سرباره و رسوب در پشت سازه جلوگیری میکند. از دیگر کاربردهای عملی این ترکیب، میتوان انواع سدهای تأخیری را نام برد. در سدهای تأخیری برای جلوگیری از انباشت رسوب در پشت سد که منجر به کاهش حجم مفید مخزن میگردد اقدام به تعبیه تخلیهکنندههای تحتانی میگردد. از طرف دیگر این نوع سدها به علت برآورد اهداف طراحی و عبور سیلابهای محتمل به صورت روگذر نیز عمل میکنند که از این دو جهت، مدل ترکیبی سرریز - دریچه ایده مناسبی برای تحلیل این نوع سدها میباشد. اگرچه این نوع سازه دارای کاربرد فراوانی در سازههای هیدرولیکی میباشد.
جهت به حداقل رساندن مشکلات در سرریزها و دریچه‌ها و همچنین جهت بالا بردن مزایای آنها می‌توان از سازه ترکیبی سرریز - دریچه استفاده کرد به طوری که در یک زمان، جریان آب بتواند هم از روی سرریز و هم از زیر دریچه عبور نماید. این وسیله ترکیبی می‌تواند مشکلات ناشی از فرسایش و رسوبگذاری را مرتفع نماید (دهقانی و همکاران، 2010).
همچنین با این روش، رسوبات و مواد زائد در پشت سرریزها انباشته نمی‌‌‌شوند (ماخرک، 1985).
مشکلاتی را که در اثر وجود مواد رسوبی یا شناور در آب انتقالی برای آبیاری حاصل می‌شود، می‌توان با استفاده از سازه ترکیبی سرریز - دریچه به مقدار زیادی کاهش داده که امکان اندازه‌گیری دقیق‌تر و ساده‌تر را به همراه دارد ( اسماعیلی و همکاران، 1385).
سیستم سرریز - دریچه امکان عبور جریان را از پایین و بالای یک مانع افقی در قسمت میانی مجرا به طور همزمان فراهم نموده، بدین صورت که مواد قابل رسوب را در پشت دریچه به صورت زیرگذر و مواد شناور را به صورت روگذر سرریز عبور میدهد (شکل 1- 1).
331470506095جریان عبوری از زیر دریچه
00جریان عبوری از زیر دریچه
267970163195جریان عبوری از روی سرریز
00جریان عبوری از روی سرریز
138620527622500143446560769500
شکل 1- 1 شماتیکی از جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچهاز اینرو تعیین شکل و حداکثر عمق آبشستگی در پاییندست سرریز و دریچه ترکیبی به منظور تثبیت وضعیت بستر میتواند مفید واقع شود.
1-2-4 آبشستگیآبشستگی یکی از موضوعات مهم و قابل توجه در مهندسی رودخانه و هیدرولیک جریان در بسترهای آبرفتی میباشد. چنانچه در یک بازه مورد بررسی، مقدار رسوب وارد شده کمتر از مقدار رسوب خارج شده باشد، عمل فرسایش کف رودخانه و یا بدنه آن رخ میدهد و کف رودخانه بتدریج عمیق میشود. از جمله اثرات منفی گود شدن بستر رودخانه، میتوان به شکست برشی و لغزش در بستر و نیز گرادیان هیدرولیکی خروجی اشاره کرد که در نهایت، افزایش فشار بالابرنده و ایجاد پدیده تراوش را در پی دارد.
به فرسایش بستر و کناره آبراهه در اثر عبور جریان آب، به فرسایش بستر در پاییندست سازههای هیدرولیکی به علت شدت جریان زیاد و یا به فرسایش بستر در اثر بوجود آمدن جریانهای متلاطم موضعی، آبشستگی گویند. عمق ناشی از فرسایش بستر اولیه را عمق آبشستگی مینامند. (کتاب هیدرولیک کانالهای روباز، دکتر ابریشمی)
از آنجا که مکانیزم عمل آبشستگی در مکانهای مختلف متفاوت میباشد، از این رو آبشستگی را به دو نوع تقسیمبندی میکنند:
نوع اول آبشستگی تنگشدگی میباشد. این نوع آبشستگی در دو حالت اتفاق می‌افتد:
الف) در جایی که رودخانه هنوز به حالت تعادل نرسیده و پتانسیل حمل رسوب در بازه‌ای از رودخانه بیش از میزان رسوب ورودی به این بازه باشد.
ب) در جایی که سرعت جریان به دلایلی مانند کاهش مقطع رودخانه در محل پل‌ها، افزایش پیدا می‌کند که در مقطع تنگ شده آبشستگی اتفاق می‌افتد.
در محل احداث پل، آبشکن و یا دیواره ساحلی معمولاً عرض رودخانه را کاهش می‌دهند. این عمل باعث می‌شود که سرعت جریان در این محدوده افزایش یابد. در نتیجه به ظرفیت حمل رسوب افزوده شده و سبب خواهد شد تا بستر رودخانه در این محل فرسایش یابد. عمل فرسایش آنقدر ادامه می‌یابد تا ظرفیت حمل رسوب کاهش یافته و برابر با ظرفیت حمل رسوب در مقطع بالادست گردد. در این حالت، نرخ فرسایش در این محل کمتر می‌شود. هر چند این فرسایش موجب می‌شود که تأثیر پسزدگی آب در بالادست کاهش یابد ولی به خاطر این مسئله نباید اجازه داده شود تا فرسایش صورت گیرد زیرا آبشستگی باعث خطرات جدی مثل واژگونی پل می‌گردد.
نوع دیگر آبشستگی، آبشستگی موضعی است. این نوع آبشستگی در پاییندست سازههای هیدرولیکی، در محل پایههای پل و به طور کلی هر مکانی که شدت جریانهای درهم به طور موضعی افزایش یابد، بوجود میآیند.
آبشستگی موضعی پاییندست سازههای هیدرولیکی نظیر سدها، سرریزها، شوتها، سازههای پلکانی و ... پدیده طبیعی است که به‌دلیل وجود سرعت محلی بیش از سرعت بحرانی بوجود میآید و دلایل آن را میتوان به صورت زیر بیان کرد:
ناکافی بودن مقدار استهلاک انرژی
تشکیل پرش هیدرولیکی ناپایدار و یا انتقال پرش خارج از کف حوضچه آرامش
بوجود آمدن جریانهای گردابی در پاییندست سازههای هیدرولیکی
شکل (1- 2) چند نوع سازه هیدرولیکی و آبشستگی پاییندست آنها را نشان میدهد.

شکل 1- 2 آبشستگی موضعی پاییندست برخی از سازههای هیدرولیکی (استاندارد آب و آبفا، 1389)
میزان عمق آبشستگی برای هر یک از سازهها بستگی به شرایط هیدرولیکی جریان و مشخصات رسوب و شرایط هندسی سازه دارد. تخمین میزان عمق آبشستگی از اینرو اهمیت دارد که ممکن است باعث تخریب سازه گردد.
به طور کلی آبشستگی در اثر اندرکنش نیروهای زیر حاصل میشود:
1- نیروی محرک ناشی از جریان که در راستای جدا کردن ذره از بستر عمل میکند.
2- نیروی مقاوم ناشی از اصطکاک ذرات و وزن ذره که در برابر حرکت ذره مقاومت کرده و مانع جدایی ذره از بستر میشود.
جریانها در محل وقوع آبشستگی، یک فرآیند دوفازی (آب و رسوب) است. بنابراین آبشستگی متأثر از متغیرهای بسیاری از قبیل پارامترهای جریان، مشخصات بستر آبرفتی، زمان و هندسه آبراهه میباشد. به همین دلیل، محققین هر یک به مطالعه بخشی از این وقایع پرداخته و آن را به صورت آزمایشگاهی و تجربی بررسی کردهاند.
1-3 ضرورت انجام تحقیقاز آنجایی که در سازه‌های ترکیبی سرریز - دریچه، تداخل جریان از زیر دریچه و روی سرریز باعث اختلاط شدید در جریان، تغییرات در توزیع تنش‌های برشی کف و از این‌رو افزایش پیچیدگی محاسبات می‌شود، بنابراین شبیه‌سازی الگوی جریان، سطح آزاد آب و آبشستگی مورد توجه محققین قرار دارد و لذا در این تحقیق، علاوه بر بررسی آزمایشگاهی الگوی جریان در بستر صلب، توانایی نرمافزار Flow3D در شبیه‌سازی عددی الگوی جریان و آبشستگی مورد ارزیابی قرار خواهد گرفت‌.
1-4 اهداف تحقیقتحقیق انجام شده به منظور پاسخگویی به اهداف زیر صورت گرفته است:
1- بررسی آزمایشگاهی الگوی جریان عبوری از سازه ترکیبی سرریز- دریچه در بستر صلب و مدلسازی عددی آن با نرمافزار Flow3D و مقایسه نتایج حاصل از آن دو
2- مدلسازی عددی آبشستگی در پاییندست سازه ترکیبی با نرمافزار Flow3D و مقایسه نتایج حاصل از آن با نتایج بدست آمده از بررسیهای آزمایشگاهی توسط محققین دیگر
3- ارزیابی دقت مدلهای تلاطمی نرمافزار Flow3D در شبیهسازیهای عددی الگوی جریان و آبشستگی پاییندست سازه ترکیبی سرریز – دریچه در مقایسه با نتایج آزمایشگاهی
4- محاسبه نسبت دبی عبوری از بالای سرریز به زیر دریچه با استفاده از مدل Flow3D
1- 5 ساختار کلی پایاننامهاین تحقیق در پنج فصل به شرح زیر تدوین شده است:
فصل اول- کلیات: که شامل مقدمهای بر سرریزها، دریچهها و مبانی ترکیب این دو سازه بوده و همچنین در رابطه با هیدرولیک جریان و آبشستگی در پای هر کدام از سازههای سرریز یا دریچه و یا سازه ترکیبی سرریز - دریچه کلیاتی ارائه گردیده است.
فصل دوم- بررسی منابع: در این فصل، پیشینه تحقیقها در زمینه هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه، آبشستگی پاییندست سازه ترکیبی و همچنین مطالعات انجام شده توسط نرم‌‌افزار Flow3D بررسی خواهد شد.
فصل سوم- مواد و روشها: این فصل شامل معرفی مواد و روشهای تحقیق، آشنایی با نرمافزار Flow3D و مراحل مدلسازی است.
فصل چهارم- نتایج و بحث: در این فصل، نتایج ارائه شده شامل دو بخش است. بخش اول مربوط به نتایج آزمایشات انجام شده در بستر صلب مربوط به جریان عبوری از سازه ترکیبی سرریز – دریچه و بخش دوم مربوط به نتایج شبیهسازی عددی الگوی جریان، پروفیل و آبشستگی در پاییندست سازه ترکیبی است.
فصل پنجم- نتیجهگیری و پیشنهادها: این فصل دربرگیرنده نتایج بدست آمده از تحلیلها به همراه پیشنهادهایی برای تحقیقات بعدی است.
فصل دوم
مروری بر منابع
2-1 مرور منابع
در این فصل، بررسی منابع و سوابق تحقیق در دو بخش مطالعات آزمایشگاهی و مطالعات عددی توسط نرمافزار Flow3D ارائه میشود که ابتدا مطالعات آزمایشگاهی در دو حالت بستر صلب و متحرک ارائه شده و سپس مطالعات عددی با نرمافزار Flow3D نام برده میشود. چون در مورد جریان عبوری از سازه ترکیبی سرریز‌– دریچه، مدلسازی با نرمافزار Flow3D تاکنون انجام نگرفته است مطالعات عددی نرمافزار Flow3D در همه زمینهها اشاره شده است.
2-2 مطالعات آزمایشگاهی جریان
از جمله مطالعات آزمایشگاهی هیدرولیک جریان در سازه ترکیبی سرریز‌- دریچه، میتوان به مطالعات نجم و همکاران (1994) اشاره کرد. ایشان پارامترهای هندسی و هیدرولیکی مؤثر بر روی جریان ترکیبی را مورد بررسی قرار داده و برای جریان سرریز مثلثی روی دریچه مستطیلی، سرریز و دریچه مستطیلی با ابعاد تنگشدگیهای مختلف به طور جداگانه معادلاتی استخراج کردند. همچنین حالتی را که تنگشدگی دریچه و سرریز یکسان یا متفاوت باشد نیز به طور جداگانه مورد بررسی قرار دادند. این محققین همچنین برای شرایط مختلف مانند استفاده از سرریز مثلثی با زاویههای مختلف و یا سرریز مستطیلی با فشردگی جانبی (شکل 2-1) و بدون فشردگی جانبی (شکل 2-2) روابط جداگانهای به صورت رابطههای (2-1) تا (2-4) ارائه دادند.

شکل 2-‌1 جریان عبوری از سازه ترکیبی سرریز‌- دریچه مستطیل شکل با فشردگی جانبی
شکل 2- 2 جریان عبوری از سازه ترکیبی سرریز- دریچه بدون فشردگی جانبی41052753175(2- 1)
00(2- 1)
Cd=Qc(b1d2gd+y+h-hd+232gb-0.2hh1.5)4274820140335(2- 2)
00(2- 2)
Qu=23Cu2g(b-0.2h)h1.54105275112395(2- 3)
00(2- 3)
Ql=Clb1d2g(d+y+h-hd)429387059690(2- 4)
00(2- 4)
Qc2gb(d1.5 )=Cl1+yd+hd+hdd+23Cu(hd)32شیواپور و پراکاش (2004)، به بررسی دبی جریان از روی سرریز مستطیلی و از زیر دریچه V شکل پرداختند. طبق نتایجی که ایشان گرفتند زمانی که از دریچه V شکل و کج استفاده میشود دبی کانالهای مستطیلی با بستر ثابت با دقت بالاتری قابل تخمین است.
اسماعیلی و فتحیمقدم (1385)، به بررسی آزمایشگاهی هیدرولیک جریان و تعیین ضریب دبی مدل سرریز‌- دریچه در کانالهای دایروی و جریانهای زیرگذر و روگذر با نصب مانع با عرضهای مختلف پرداختند.
سامانی و مظاهری (1386)، به بررسی تخمین رابطه دبی جریان عبوری از روی سرریز و زیر دریچه در حالتهای مستغرق و نیمهمستغرق پرداختند. نتایج بررسی هیدرولیک جریان ایشان نشان میدهد که سیستم سرریز- دریچه، موجب اصلاح خطوط جریان شده، شرایط جریان را به حالت تئوریک نزدیکتر و در نتیجه، واسنجی ضریب شدت جریان سیستم سرریز - دریچه و تخمین دبی جریان با دقت بیشتری نسبت به سرریزهای معمولی انجام میشود.

شکل 2- 3 نمایی از مدلهای آزمایشگاهی جریان مستغرق و نیمه مستغرق (سامانی و مظاهری، 1386)

رضویان و حیدرپور (1386)، با بررسی خطوط جریان ترکیبی از روی سرریز مستطیلی با فشردگی جانبی و زیر دریچه مستطیلی بدون فشردگی جانبی در حالت لبهتیز، معادلهای برای ضریب شدت جریان پیشنهاد کردند.
تاکنون پژوهشهایی در زمینه آبشستگی پاییندست سازه ترکیبی سرریز - دریچه انجام شده است. اولین بار در سال 1987 یک سری آزمایش توسط آقای اویماز در آزمایشگاه سازههای هیدرولیکی استانبول بر روی آبشستگی پای سازه ترکیبی سرریز- دریچه صورت گرفته است. شکل (2-4) نمایی از مدل شبیهسازی جریان کار ایشان را نمایش میدهد.

شکل 2- 4 مدل شبیهسازی شده جریان و حفره آبشستگی جریان ترکیبی (اویماز، 1987)
ایشان برای 2 نوع دانهبندی و رسوب غیرچسبنده آزمایشات خود را اجرا نمودند. همچنین تمامی آزمایشات یک بار برای دریچه تنها و یک بار در حالت ترکیب دریچه و سرریز انجام دادند. پس از انجام آزمایشات، دادههای بدست آمده را تجزیه و تحلیل نموده تا به یک رابطه رگرسیونی خطی لگاریتمی بین پارامترهای عمق آبشستگی با قطر رسوبات و ارتفاع آب پاییندست برسند. نتایج تحقیق ایشان نشان می‌دهد که آبشستگی در پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که تنها جریان از زیر دریچه را داریم. همچنین عمق آبشستگی بستگی زیادی به مقدار دبی جریان دارد.
دهقانی و همکاران (2009) به بررسی آزمایشگاهی حداکثر عمق آبشستگی پاییندست سرریز تنها، دریچه تنها و سازه ترکیبی سرریز - دریچه بدون انقباض پرداختند. نکته جالبی که در کار آزمایشگاهی ایشان دیده شده است رفتار نوسانی روند فرسایش و رسوبگذاری به صورت پر و خالی شدن حفره آبشستگی است. حفره آبشستگی ابتدا عمیق میشود، سپس با وجود جریانهای برگشتی کمی رسوبات فرسایش یافته به درون حفره برمیگردد و حفره کمی پر میشود. سپس دوباره حفره توسط گردابههای زیر دریچه عمیق میشود و روند پر و خالی شدن ادامه مییابد (شکل 2- 5). البته این روند با گذشت زمان کندتر شده و شکل حفره در حوالی زمان تعادل تقریباً ثابت میشود (دهقانی و همکاران، 2010).
همچنین بررسیهای ایشان نشان داد که حداکثر عمق آبشستگی پای سازه ترکیبی سرریز - دریچه خیلی کمتر از زمانی است که جریان تنها از روی سرریز عبور میکند و این نتیجه با نتایج کار آقای اویماز (1985) تطابق دارد.

شکل 2- 5 فرآیند پر و خالی شدن حفره آبشستگی در حین برخی از آزمایشات (دهقانی و بشیری، 2010) شهابی و همکاران (1389) به بررسی آزمایشگاهی مشخصات حفره آبشستگی در پاییندست سرریز و دریچه ترکیبی پرداختند. نتایج این بررسی آزمایشگاهی نشان داد که عمق آبشستگی پایین‌دست سازه ترکیبی سرریز - دریچه کمتر از عمق آبشستگی پاییندست سرریز میباشد. همچنین مشخصههای حفره آبشستگی، با افزایش عدد فرود (Fr)، افزایش مییابد و در ارتفاع ریزش ثابت برای جت عبوری از روی آن، با افزایش بازشدگی دریچه، حداکثر عمق آبشستگی کاهش مییابد. نتایج انجام آزمایشات در حالت وجود انقباض نشان می‌دهد که با ایجاد انقباض در دریچه یا سرریز به دلیل تمرکز بیشتر جت، حداکثر عمق آبشستگی، طول حفره آبشستگی و طول رسوبگذاری به ترتیب افزایش، افزایش و کاهش مییابد. همچنین نتایج آزمایش بر روی کفبند پاییندست سازه ترکیبی نشان داد که چنانچه طول کفبند از فاصله برخورد جت بالادست به کف کانال بیشتر در نظر گرفته شود، میتواند میزان آبشستگی را تا حد قابل توجهی کاهش دهد.
2-2 مطالعات عددی با نرمافزار Flow3Dنرمافزار Flow3Dتوانایی شبیه‌سازی عددی الگوی جریان و رسوب در اطراف سازه‌های هیدرولیکی مختلف را دارا می‌باشد. در ادامه برخی کارهای انجام شده با این نرمافزار بیان میشود:
موسته و اتما (2004)، تأثیر طول آبشکن بر منطقه چرخشی پشت آبشکن را با در نظر گرفتن تأثیر مقیاس با نرم‌افزار Flow3D مورد بررسی قرار دادند.
گونزالز و بومباردلی (2005)،‌ در یک شبیهسازی عددی با استفاده از Flow3D به بررسی مشخصات پرش هیدرولیکی بر روی سطح صاف در دو حالت شبکهبندی ریز و شبکهبندی درشت به صورت دوبعدی و سهبعدی پرداختند.
صباغ یزدی و همکارانش (2007)، در یک مدل سهبعدی به ارزیابی مدلهای تلاطمی k-ε و RNGk-ε بر روی میزان ورود هوا در پرش هیدرولیکی با استفاده از روش حجم محدود پرداختند و اثر آن را بر روی دقت تخمین سرعت متوسط جریان با استفاده از مدل در مقایسه با نتایج آزمایشگاهی موجود از پرش هیدرولیکی مورد بررسی قرار دادند. مقایسه نتایج نشان داد که نرمافزار قادر به پیش‌بینی توزیع عمقی سرعت در پرش هیدرولیکی است و همچنین در این آزمون مدل آشفتگی RNG در مقایسه با k-ɛ نتایج مناسبتری را ارائه کرده است.
امیراصلانی و همکارانش (1387)، به شبیه‌سازی سه‌بعدی آبشستگی در پایین‌دست یک جت‌ ریزشی آزاد با استفاده از مدل k-ε نرم‌افزار Flow3D جهت بررسی اثر زاویه اصطکاک داخلی رسوبات بر روی چاله آبشستگی پرداختند. نتایج این پژوهش نشان میدهد هر چقدر زاویه اصطکاک داخلی ذرات رسوب بیشتر باشد میتوان انتظار داشت حفره آبشستگی، ابعاد (طول، عرض و عمق) کوچکتری داشته باشد و ارتفاع برآمدگی رسوبات در پاییندست حفره بیشتر باشد. شیب دیوارهها تندتر بوده و مانعی برای خروج ذرات رسوب از حفره به حساب میآید.
شاهرخی (1387)، با استفاده از نرم‌افزارFlow3D‌ ، مدل عددی الگوی جریان اطراف یک آبشکن را تهیه و با اعمال مدل‌های مختلف آشفتگی، به تأثیر این مدل‌ها بر طول منطقه جداشدگی جریان در پشت یک آبشکن پرداخت‌‌. مهمترین نتیجه حاصل از این تحقیق، نشان میدهد که مدل آشفتگی LES بهترین تطابق را با نتایج آزمایشگاهی داشته و این مدل، پیشبینی بهتری از طول منطقه جداشدگی در پشت آبشکن ارائه میکند. سرانجام پیشنهاد شد مدل در دامنه وسیعتری از تغییرات پارامترهای جریان، طول و زاویه نصب آبشکن اجرا گردد.
شاملو و جعفری (1387)، به بررسی اثر وجود زبری کف بر روی تغییرات میدان سرعت و فشار جریان در اطراف پایه استوانه‌ای شکل در یک کانال مستطیلی توسط نرمافزارFlow3D و با استفاده از مدل آشفتگی k-ε به صورت سهبعدی پرداختند. در این شبیهسازی مقاطعی در سه راستای X , Y , Z نزدیکی پایه با نتایج آزمایشگاهی احمد (1994) مورد مقایسه قرار گرفت. نتایج حاکی از آن است که پروفیلهای سرعت در عمقهای مختلف و در راستای X , Y و میدان فشار در پاییندست پایه روند تغییرات قابل قبولی را با توجه به نتایج آزمایشگاه نشان میدهد. همچنین نتیجه شد نرمافزار با در نظر گرفتن زبری کف نتایج بهتری را ارائه میکنند.
باباعلی و همکاران (1387)، توسط نرمافزار Flow3D یک پارشال فلوم به طول یک فوت را که جریان درون آن شامل دو حالت آزاد و مستغرق بود، با استفاده از مدل آشفتگی LES مدل کردند. ایشان دادههای مدل خود را از جدول استاندارد WMM اقتباس کرده و نتایج محاسبه شده را با نتایج این جدول مقایسه نمودند. آنها نشان دادند که Flow3D میتواند به آسانی محاسبات پارشال فلوم را تحت هر دو جریان آزاد و مستغرق انجام دهد. نتایج محاسبه شده به خوبی با دبیهای منتشر شده مطابقت داشته و نیاز به زمان زیاد و استفاده از ابر رایانهها ندارد.
والش و همکاران (2009)، به شبیهسازی آبشستگی موضعی پایهها در جریان جزر و مدی پرداختند. نتایج نشان داد که نتایج مدلسازی عددی با اندازهگیریهای انجام شده تطابق خوبی داشته و همچنین نشان داد که مدل عددی Flow3D ابزاری مناسب در طراحی جریان در اطراف پایهها در شرایط مختلف جریان است.
شکری و همکاران (1389)، به بررسی عددی هیدرولیک جریان و انتقال رسوب اطراف پایه پل دایروی با نرمافزار Flow3D پرداختند. نتایج بررسی عددی با بررسی آزمایشگاهی انجام شده توسط آنگر و هگر (2006) مقایسه شد و با مقایسه نتایج شبیهسازی عددی و اندازهگیریهای آزمایشگاهی الگوی جریان و تغییر شکل بستر، نتیجه شد که مدل Flow3D نتایج قابل قبولی ارائه داده است.
حسینی و عبدی‌پور (1389)، با استفاده از نرم‌افزار Flow3D به مدل‌سازی عددی پروفیل سرعت در جریانهای گل‌آلود پیوسته پرداختند و تأثیر شیب، غلظت و دبی جریان بر آن را مورد مطالعه قرار دادند. برای صحتسنجی نرمافزار در تعیین پارامترهای هیدرولیکی جریانهای گلآلود (پروفیل سرعت)، از یک نمونه آزمایشگاهی استفاده شد و نتایج حاصل از شبیهسازی با اندازهگیریهای آزمایشگاهی مربوطه مقایسه شد. برای مقایسه نتایج از آزمایشات انجام گرفته توسط حسینی و همکاران استفاده گردید. نتایج حاصل از مدل عددی پروفیل سرعت در بدنه با نتایج آزمایشگاهی تطابق نسبتاً خوبی داشت. نتایج مدل عددی مربوط به پروفیل سرعت با برخی از نتایج آزمایشگاهی مطابقت کمتری داشت که بخش عمدهای از خطاها مربوط به عدم امکان مدلسازی جریان در بخش پایینی در مشبندی به علت کمبود حافظه کامپیوتری و بخشی از خطاها نیز به نحوه مدلسازی جریان گلآلود بود.
برتور و بورنهم (2010)، به مدل‌سازی فرسایش رسوب در پاییندست سد با نرم‌افزار Flow3D پرداختند‌. در بررسی ایشان، برای محاسبه هر یک از ضرایب مشخصه رسوب در نرمافزار Flow3D، فرمولی ارائه و برای هر ضریب محدودهای تعیین شد.
کاهه و همکاران (2010)، مدل‌های آشفتگی k-εو RNG k-ε را جهت تخمین پروفیل‌های سرعت در پرش هیدرولیکی بر روی سطوح موج‌دار مورد بررسی و مقایسه قرار دادند. نتایج، توانایی مدل RNG k-ε در تخمین عمق ثانویه، طول پرش و توزیع سرعت را به خوبی نشان داد. ضریب تنش برشی برآورد شده توسط مدل عددی به نتایج بدست آمده از بررسی‌های آزمایشگاهی بسیار نزدیک بوده و به طور متوسط 8 برابر مقدار آن در پرش هیدرولیکی بر روی سطوح صاف برآورد شد. با توجه به نتایج بدست آمده، مدل آشفتگی RNG k-ε در مقایسه با مدل k-ε در مدلسازی پرش هیدرولیکی بر روی سطوح موجدار از دقت بالایی برخوردار است.
آخریا و همکاران (2011)، به شبیهسازی عددی هیدرولیک جریان و انتقال رسوب اطراف انواع آبشکنها پرداختند. نتایج مدلسازی نشان داد که از بین مدلهای آشفتگی، مدلهای RNG k-ɛ و k-ɛ به دادههای آزمایشگاهی نزدیکتر بوده ولی مدل آشفتگی RNG k-ɛ بهترین نتایج را برای شبیه‌سازی میدان جریان اطراف آبشکن نشان داد.
الیاسی و همکاران (1390)، با بهرهگیری از نرمافزار Flow3D و با اعمال مدل آشفتگی RNG k-ɛ، الگوی جریان اطراف تک آبشکن مستغرق در کانال مستقیم شیبدار را بدون در نظر گرفتن سطح آزاد شبیهسازی نمودند و به مقایسه نتایج مدل عددی با دادههای آزمایشگاهی پرداختند. نتایج این شبیهسازی بدون در نظر گرفتن سطح آزاد، با دادههای آزمایشگاهی تطابق خوبی را نشان داد. مقایسه پروفیلهای سرعت در مدل عددی و نتایج آزمایشگاهی بیانگر مطابقت این دادهها با هم میباشد.
عباسی چناری و همکاران (1390)، الگوی جریان اطراف آبشکنهای L شکل عمود بر ساحل را توسط نرمافزار Flow3D و با مدل آشفتگی k-ɛ شبیهسازی نمودند. در این بررسی، آبشکن L شکل نفوذناپذیر بوده که به صورت غیرمستغرق در 5 زاویه مختلف از قوس رودخانه قرار داده شده است. نتایج حاکی از آن است که تلاطم جریان، محدوده سرعتهای ماکزیمم و در نهایت بیشترین آبشستگی بستر، در دماغه آبشکن اتفاق میافتد. همچنین با افزایش دبی و عدد فرود جریان، محدوده سرعت ماکزیمم جریان در نزدیکی دماغه آبشکن افزایش مییابد و شکل آن در جهت جریان کشیده میشود. در نهایت نتیجه شد که مدل آشفتگی k-ɛ در شبیهسازی نواحی جریان برگشتی در پاییندست آبشکن و محل ایجاد گردابه و آشفتگی جریان در اطراف آبشکن، دقت خوبی دارد.
قنادان و همکاران (1391)، با نرمافزار Flow3D، به شبیهسازی عددی جریان از روی سرریز جانبی لبهپهن پرداخته و نتایج حاصل از این نرمافزار را با دادههای آزمایشگاهی مقایسه کردند. نتایج نشان داد که از میان مدلهای تلاطمی موجود در نرمافزار، مدل تلاطمی RNG k–ε از دقت بالاتری برای شبیهسازی جریان از سرریز جانبی برخوردار است. همچنین با استفاده از مدل واسنجی شده، اثر تغییر ارتفاع و پهنای تاج سرریز بر دبی عبوری از سرریز مورد بررسی قرار گرفت. بر این اساس نتیجه شد که ارتفاع تاج سرریز جانبی لبهپهن بر مقدار دبی خروجی از سرریز نسبت به پهنای تاج مؤثرتر است.
فصل سوم
مواد و روش‌ها
3-1 مقدمه
در این بخش، علاوه بر بررسی آزمایشگاهی الگوی جریان ترکیبی عبوری همزمان از روی سرریز و زیر دریچه در بستر صلب و شبیهسازی عددی هیدرولیک آن با نرمافزار Flow3D، توانایی مدل عددی Flow3D در شبیهسازی آبشستگی در پاییندست سازه ترکیبی ارزیابی میشود. بنابراین در این بخش، علاوه بر بررسی نحوه انجام آزمایشات، به معرفی مدل Flow3D پرداخته و مراحل مدل‌سازی هیدرولیک جریان و آبشستگی در پاییندست سازه ترکیبی سرریز و دریچه با نرمافزار Flow3D بیان میشود.
3-2 نحوه انجام آزمایشاتدر این بخش، به ارائه نحوه انجام آزمایشات هیدرولیک جریان عبوری از سازه ترکیبی سرریز- دریچه پرداخته میشود. در این تحقیق به منظور کالیبراسیون نرمافزار در حالت کف صلب، آزمایشاتی در کانال با طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر انجام شده و عمق جریان در طول کانال قرائت شد. همچنین جهت ارزیابی دقت نرمافزار در حالت کف متحرک از نتایج آزمایشگاهی شهابی(1389) در کانال با طول 12 متر، عرض و ارتفاع 60 سانتیمتر استفاده شده است.
کانال آزمایشگاهی مورد استفاده در کف صلب شامل قسمتهای زیر است (شکل 3-1):
1- مخزن
2- پمپ که شامل بخشهای تأمین برق، الکتروپمپ، شیر تنظیم دبی و مخزن تعیین دبی است.
3- مخزن آرام کننده جریان
4- کانال آزمایشگاهی
5- مدل سازه ترکیبی
شکل زیر نمای کلی مدل فیزیکی را نشان میدهد.

شکل 3-‌1 نمایی از مدل آزمایشگاهی کانال با مقیاس کوچک
بخشهای اصلی کانال آزمایشگاهی با مقیاس کوچک، به صورت زیر تعریف میشوند:
3-2-1 مخزنبه منظور تأمین آب مورد نیاز جهت انجام آزمایش، از یک مخزن در قسمت پایین فلوم استفاده شده است. به هنگام آزمایش، آب به صورت رفت و برگشتی از مخزن به فلوم و بالعکس در جریان خواهد بود.
3-2-2 پمپجهت پمپاژ و جریان آب در فلوم، از پمپی با ظرفیت دبی 7 لیتر بر ثانیه استفاده شده است که با یک شیرفلکه معمولی، دبی پمپاژ تغییر داده میشود. به منظور قرائت دبی، از یک مخزن دبیسنج استفاده گردیده است.
3-2-3 کانال آزمایشگاهیکانال آزمایشگاهی دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر میباشد. جنس دیواره و کف کانال از پلکسی گلاس بوده تا امکان مشاهده جریان در کانال در حین آزمایش وجود داشته باشد.
3-2-4 مخزن آرامکننده جریاناین مخزن، آشفتگی جریانی که از پمپ سانتریفوژ وارد کانال خواهد شد را گرفته و جریان را به آرامی وارد کانال آزمایشگاهی میکند.

شکل 3- 2 مشخصات اجزای فلوم آزمایشگاهی با مقیاس کوچک3-2-5 مدل سازه ترکیبی سرریز- دریچهسازه ترکیبی سرریز- دریچه مورد استفاده در آزمایشات، در فاصله 2 متری از ابتدای کانال و با ضخامت 3 میلیمتر تعبیه شده که با ابعاد هندسی متفاوت ساخته شده است.

شکل 3-3 مدل فیزیکی سازه ترکیبی مورد استفاده در آزمایشات هیدرولیک جریانمشخصات آزمایشات انجام شده در کانال آزمایشگاهی با مقیاس کوچک، در جدول زیر شرح داده شده است:
جدول 3-1 محدوده آزمایشات انجام شده برای مدلسازی هیدرولیک جریانپارامتر دفعات تغییر واحد محدوده تغییرات
دبی ورودی (Q) 7 Lit/s 64/2 – 39/1
بازشدگی دریچه (W) 5 Cm 5/1 – 5/0
ارتفاع سازه (T) 5 Cm 5/5 – 5/3
3-3 آنالیز ابعادیاولین گام در شبیهسازی و مدلسازی، شناخت متغیرهای اثرگذار بر پدیده فیزیکی است. تعداد متغیرهای اثرگذار با توجه به پیچیدگی رفتار پدیده موردنظر، میتواند افزایش یابد.
با توجه به اینکه هر کمیت فیزیکی در قالب ابعاد بیان میشود، استفاده از روشی که بتواند با ترکیب متغیرهای اثرگذار، متغیرهای بیبعد را که مفهوم فیزیکی دارند ایجاد کند، میتواند در کاهش تعداد متغیرها بسیار مفید باشد.
آنالیز ابعادی روشی است که در آن با استفاده از مفهوم همگنی ابعاد، متغیرهای اثرگذار بر پدیده فیزیکی مورد نظر در قالب متغیرهای بیبعد بیان میشوند. سپس بر اساس این متغیرها و انجام مطالعات آزمایشگاهی، رابطههای تجربی بدست میآورند.
برای انجام آنالیز ابعادی، روشهای مختلفی ازجمله روش فهرستنویسی، نظریه پیباکینگهام، روش گامبهگام و روش هانسیکر و رایت مایر وجود دارد.
در این تحقیق، روش پیباکینگهام که کاربرد وسیعتری دارد مورد بحث و استفاده قرار گرفت. این روش، یکی از روشهای معروف است که به طور وسیع در آنالیز ابعادی استفاده میشود.
در جریان عبوری از سازه ترکیبی سرریز - دریچه در حالت جریان آزاد، متغیرهای مؤثر عبارتند از:
1- دبی عبوری از روی سرریز، Qs
2- دبی عبوری از زیر دریچه، Qg
3- عمق بالادست سازه ترکیبی، H1
4- هد آب روی سرریز، Hd
5- طول سازه، T
6- بازشدگی دریچه، W
7- شتاب ثقل (g)، ρ و μ سیال
شکل (3-4) متغیرهای مؤثر در جریان عبوری از سازه ترکیبی سرریز- دریچه را در حالت جریان آزاد نشان می‌دهد.

شکل 3-4 شماتیکی از جریان ترکیبی عبوری از سرریز و زیر دریچه در بستر صلب
با انجام آنالیز ابعادی به روش پیباکینگهام رابطه (3-1) بدست میآید. از آنجاییکه جریان آشفته است لذا از اثرات Re (رینولدز) صرف نظر شده و نهایتاً رابطه (3-2) بدست میآید.
430191950165(3- 1)
00(3- 1)
F(Qs , Qg , H1 , Hd , T , W , g , ρ , μ) = 0 → QsQg=f( Fr , Re , H1W , HdT )43584345080(3- 2)
00(3- 2)
QsQg=f( Fr , H1W , HdT )3-4 شبیهسازی عددیبه منظور مطالعه و تحلیل جریان در سازههای مختلف، مدلهای فیزیکی و ریاضی مختلف بکار گرفته میشود. با توجه به توسعه سیستمهای کامپیوتری و محاسباتی و همچنین وجود پیچیدگی‌های غیر قابل اندازه‌گیری در جریان عبوری از یک سازه ترکیبی سرریز - دریچه در مدل‌های آزمایشگاهی، استفاده از شبیهسازی عددی می‌تواند در بررسی هیدرولیکی چنین جریانهایی بسیار مؤثر و قابل توجه باشد.
در سالهای اخیر، بدلیل ابداع روشهای پیشرفته و دقیق حل عددی معادلات و بوجود آمدن رایانههای قوی برای انجام محاسبات، میتوان در طراحی این سازههای پیچیده از روشهای حل عددی نیز بهره گرفت. دینامیک سیالات محاسباتی، از روشهای محاسبه و شبیهسازی میدان جریان سیال میباشد که در قرن اخیر مورد توجه خاص مهندسین و طراحان قرار گرفته است.
استفاده از دینامیک سیالات محاسباتی حاکی از مزایای زیر است:
1- کاهش در زمان و هزینه در طراحیها
2- توانایی مطالعه سیستمهایی که انجام آزمایشات کنترل شده روی آنها دشوار و یا غیر ممکن است مانند تأسیسات بزرگ
3- توانایی مطالعه سیستمها تحت شرایط تصادفی و بالاتر از حدود معمول آنها
از جمله نرمافزارهای موجود در زمینه CFD میتوان به موارد زیر اشاره کرد:
CFX, Phonix, Telemac, FIDAP, Flow3D, Fluent
در این تحقیق، به ارزیابی مدل عددی Flow3D جهت شبیهسازی هیدرولیک جریان ترکیبی عبوری از روی سرریز و زیر دریچه و همچنین آبشستگی در پاییندست سازه ترکیبی پرداخته می‌شود.
3-4-1 معرفی نرمافزار Flow3Dنرمافزار Flow3D یک نرمافزار قوی در زمینه CFD میباشد که تولید، توسعه و پشتیبانی آن توسط Flow Science, Inc است و یک مدل مناسب برای حل مسائل پیچیده دینامیک سیالات بوده و قادر است دامنه وسیعی از جریان سیالات را مدل کند. این مدل برای شبیهسازی جریانهای سطح آزاد سهبعدی غیرماندگار با هندسه پیچیده کاربرد فراوانی دارد. نرمافزار Flow3D، برای مسائل یک‌بعدی، دوبعدی و سهبعدی طراحی شده است. در حالت ماندگار، نتایج در زمان بسیار کمی حاصل میشود زیرا برنامه بر روی قوانین بنیادی جرم، مومنتوم و بقاء انرژی پایهگذاری شده است تا این موارد برای مراحل مختلف جریان در هر زمینهای بکار برده شوند. این نرمافزار یک شبکه آسان از اجزاء مستطیلی را استفاده میکند.
نرمافزار Flow3D شامل مدلهای فیزیکی مختلف میباشد که عبارتند از: آبهای کمعمق، کاویتاسیون، آشفتگی، آبشستگی، کشش سطحی، پوشش متخلخل ذرات و ... . از این مدلها در زمینه‌های ریختهگری مواد، مهندسی فرآیند، طراحی تزریقهای مرکب، تولیدات مصرفی، هیدرولیک مهندسی محیط زیست، هوافضا، علوم دریایی، نفت، گاز و ... استفاده میشود.
در جدول (3-2)، ویژگیهای نرمافزار به اختصار نمایش داده شده است.
جدول 3- 2 معرفی نرمافزار Flow3Dنام نرمافزار Flow3D
زمینه کاری یک نرمافزار قوی در زمینه CFD میباشد. این نرمافزار برای کمک به تحقیق در زمینه رفتار دینامیکی مایعات و گازها در موارد کاربردی وسیع طراحی شده است.
قوانین بنیادی جرم، مومنتوم و بقاء انرژی
کاربردهای Flow3D در زمینه مهندسی آب پایههای پل- هوادهی در پرش هیدرولیکی- سرریز دایرهای- هوادهی در سرریزها- شکست سد- پارشال فلوم- آبشستگی- جریان بر روی یک پلکان- جریانهای با عمق کم- جریان در کانالهای کنترل پرش هیدرولیکی- موجهای کمارتفاع- دریچههای کشویی- جریان سرریز
سطح آزاد حد فاصل بین گاز و مایع همان سطح آزاد است. در Flow3D سطح آزاد با تکنیک حجم سیال مدل میشود. روش حجم سیال شامل سه جزء است: نمایش موقعیت سطح – شبکهبندی– شرایط مرزی سطح
تکنیک محاسبات Finite Difference - FiniteVolume
سیستمهای مختصات معادلات دیفرانسیلی که باید حل شود در قالب مختصات کارتزین (x,y,z) نوشته میشود. برای مختصات استوانهای (z,Ɵ,r) مختصات x به صورت شعاعی و مختصات y به صورت مختصات زاویهای
ادامه جدول 3- 2مدلهای آشفتگی در Flow3D پنج مدل آشفتگی ارائه شده است: طول اختلاط پرانتل، یک معادله، دو معادله k-ɛ، مدل‌های k-ɛ RNG و مدل شبیهسازی بزرگ
مدلسازی 1-General 2-Physics 3-Fluids 4- Meshing & Geometry
5-Boundaries 6-Initial 7-Output 8-Numerics
General زمان اتمام - تعداد سیالات – حالت جریان (که شامل حالت تراکمپذیر یا تراکمناپذیر است.)
Physics شامل بخشهایی نظیر ویسکوزیته که شامل حالتهای سیال ویسکوز و غیرویسکوز است، شتاب ثقل زمین، که در جهت قائم مختصات برابر 81/9- وارد میشود، کشش سطحی، حفرهزدایی، آبشستگی رسوب و ...
Fluids ویسکوزیته، جرم حجمی، تراکمپذیری، مشخصات گرمایی و آحاد
Meshing & Geometry برای مشخص کردن حدود مشبندی، بلوکهایی تعیین میشود که کلیه اندازه سازههای مورد نظر و فضای آزاد در داخل آن تعریف میشود. میتوان همه جزئیات سازه مورد نظر را در یک بلوک هم در نظر گرفت. سیستم مختصاتی میتواند از نوع کارتزین یا استوانهای باشد.
Boundaries در مختصات کارتزین برای تعریف شرایط مرزی،6 درجه مشخص داریم که با توجه به جهت مثبت x, y, z شامل Xmax ,Xmin, Ymax, Ymin, Zmax, Zmin میباشد.
Initial در این قسمت، با توجه به ویژگیهای مسئله شرایط اولیه اعمال میگردد.
Output در این بخش، ویژگیها و امکاناتی برای داشتن مشخصات خاصی از نتایج ارائه میشود.
Numerics در قسمت گزینههای ضمنی برای تنش ویسکوز، هدایت گرمایی و ... امکان انتخاب بین حل صریح یا ضمنی وجود دارد.
برخی از تواناییهای مدل Flow3D جهت شبیهسازی با نمایش شکل مدل عبارتند از:

شکل 3- 5 مدلسازی پرش هیدرولیکی
شکل 3- 6 مدلسازی جریان در قوس رودخانه
شکل 3- 7 مدلسازی جریان عبوری از زیر دریچه
شکل 3- 8 مدلسازی جریان عبوری از روی سرریز با انقباض جانبی و بدون انقباض
شکل 3- 9 مدلسازی آبشستگی پاییندست سازهاین نرمافزار معادلههای حاکم بر حرکت سیال را با استفاده از تقریب احجام محدود حل میکند. محیط جریان به شبکهای با سلولهای مستطیلی ثابت تقسیمبندی میشود که برای هر سلول مقدارهای میانگین کمیتهای وابسته وجود دارد یعنی همه متغیرها در مرکز سلول محاسبه میشوند بجز سرعت که در مرکز وجوه سلول حساب میشود.
در این نرمافزار از دو تکنیک عددی جهت شبیهسازی هندسی استفاده شده است:
1- روش حجم سیال (VOF): این روش برای نشان دادن رفتار سیال در سطح آزاد مورد استفاده قرار میگیرد. این روش بر مبنای تقریبهای سلول دهنده - پذیرنده است که اولین بار توسط Hirt و Nichols در سال 1981 بیان شد.
2- روش کسر مساحت – حجم مانع (FAVOR): از این روش جهت شبیهسازی سطوح و احجام صلب مثل مرزهای هندسی استفاده میشود. هندسه مسئله با محاسبه کسر مساحت وجوه و کسر حجم هر المان برای شبکه که توسط موانعی محصور شدهاند تعریف میشود. همان طور که کسر حجم سیال موجود در هر المان شبکه برای برقراری سطوح سیال مورد استفاده قرار میگرفت، کمیت کسر حجم دیگری برای تعیین سطوح صلب مورد استفاده قرار میگیرد.
فلسفه روش FAVOR بر این مبناست که الگوریتمهای عددی بر مبنای اطلاعاتی شامل فقط یک فشار، یک سرعت، یک دما و ... برای هر حجم کنترل است، که این با استفاده از مقدارهای زیادی از اطلاعات برای تعریف هندسه متناقض است. بنابراین روش FAVOR، المانهای ساده مستطیلی را حفظ میکند، در صورتی که میتواند اشکالی با هندسه پیچیده در حد سازگاری با مقادیر جریان میان‌گیری شده را برای هر المان نشان دهد.
3-4-2 معادلات حاکمدینامیک سیالات محاسباتی، روشی برای شبیهسازی جریان است که در آن معادلات استاندارد جریان از قبیل معادلات ناویر استوکس و معادله پیوستگی قابل حل برای تمام فضای محاسبات می‌باشد. فرم کلی معادله پیوستگی به صورت شکل زیر بیان می‌شود:
416382464733(3-3)
00(3-3)
که درآن VF ضریب حجم آزاد به سمت جریان و مقدار R در معادله فوق، ضریب مربوط به مختصات به صورت کارتزین و یا استوانه‌ای می‌باشد. اولین عبارت در سمت راست معادله پیوستگی مربوط به انتشار تلاطم بوده و به صورت زیر قابل تعریف می باشد:
424413450800(3-4)
00(3-4)
عبارت دوم در سمت راست معادله (3-3) بیانگر منشأ دانسیته است که برای مدلسازی تزریق توده مواد اهمیت دارد:
428985427305(3-5)
00(3-5)
همچنین فرم کلی معادلات حرکت (مومنتم) در حالت سه بعدی به صورت زیر می‌باشد:
4361180396875(3-6)
00(3-6)

که در معادلات فوق Gx , Gy , Gz مربوط به شتاب حجمی می‌باشند. پارامترهای fx ,fy ,fz شتابهای ناشی از جریان‌های لزج بوده و bx , by , bz نیز شامل روابط مربوط به افت در محیطهای متخلخل هستند.
3-4-3 مدلهای آشفتگیاکثر جریانهای موجود در طبیعت به صورت آشفته میباشند. در اعداد رینولدز پایین، جریان آرام بوده ولی در اعداد رینولدز بالا جریان آشفته میشود، به طوری که یک حالت تصادفی از حرکت در جایی که سرعت و فشار بطور پیوسته درون بخشهای مهمی از جریان نسبت به زمان تغییر میکند، گسترش مییابد. این جریانها بوسیله خصوصیاتی که در ادامه ارائه شدهاند شناسایی میگردند:
1- جریانهای آشفته به شدت غیر یکنواخت هستند. در این جریانها اگر تابع سرعت در برابر زمان ترسیم شود، بیشتر شبیه به یک تابع تصادفی خواهد بود.
2- این جریانها معمولاً سهبعدی هستند. پارامتر سرعت میانگین گاهی اوقات ممکن است تنها تابع دو بعد باشد، اما در هر لحظه ممکن است سهبعدی باشد.
3- در این نوع جریانها، گردابهای کوچک بسیار زیادی وجود دارند. شکل کشیده یا عدم تقارن گردابها، یکی از خصوصیات اصلی این جریانها است که این امر با افزایش شدت آشفتگی، افزایش مییابد.
4- آشفتگی، شدت جریانهای چرخشی در جریان را افزایش میدهد که این عمل میتواند باعث اختلاط شود. فرآیند چرخش در سیالاتی رخ میدهد که حداقل، میزان یکی از مشخصههای پایستار آنها متغیر باشد. در عمل، اختلاط بوسیله فرآیند پخش انجام میشود، به این نوع جریانها غالباً جریانهای پخششی نیز میگویند.
5- آشفتگی جریان باعث میشود جریانهایی با مقادیر متفاوت اندازه حرکت با یکدیگر برخورد کنند. گرادیانهای سرعت بر اثر ویسکوزیته سیال کاهش مییابند و این امر باعث کاهش انرژی جنبشی سیال میشود. به بیان دیگر میتوان گفت که اختلاط یک پدیده، مستهلک کننده انرژی است. انرژی تلف شده نیز طی فرآیندی یکطرفه به انرژی داخلی (حرارتی) سیال تبدیل میشود.
تمام مشخصاتی که به آنها اشاره شد برای بررسی یک جریان آشفته مهم هستند. تأثیراتی که توسط آشفتگی ایجاد میشود بسته به نوع کاربری ممکن است ظاهر نشود و به همین دلیل باید این جریانها را با توجه به نوع و کاربری آن مورد بررسی قرار داد. برای بررسی جریانهای آشفته، روش‌های مختلفی وجود دارد که در ادامه به تعدادی از آنها اشاره خواهد شد.
مدلهای آشفتگی، ویسکوزیته گردابهای (vt) و یا تنش رینولدز (-Uij) را تعیین میکند و فرضیات زیادی برای همه آنها حاکم است که عبارتند از:
معادلات ناویر استوکس میانگینگیری شده زمانی، میتواند بیانگر حرکت متوسط جریان آشفته باشد.
پخش آشفتگی متناسب با گرادیان ویژگیهای آشفتگی است.
گردابهها میتوانند ایزوتروپیک و یا غیر ایزوتروپیک باشند.
همه مقادیر انتقال آشفته توابع موضعی از جریان هستند.
در مدلهای آشفته باید همسازی وجود داشته باشد.
این مدلها میتوانند یک مقیاسی و یا چند مقیاسی باشند.
همه مدلها در نهایت به کالیبراسیون به صورت تجربی نیاز دارند.
بسیاری از مدلهای آشفتگی بر پایه فرضیه بوزینسک استوار هستند. مدلهای آشفتگی به پنج دسته تقسیم میشوند:
1- مدلهای صفرمعادلهای
2- مدلهای تکمعادلهای
3- مدلهای دومعادلهای
4- مدلهای جبری
5- مدلهای شبیهسازی گردابهای بزرگ
3-4-3-1 مدلهای صفر معادلهایدر این مدلها هیچگونه معادله دیفرانسیلی برای کمیتهای آشفتگی ارائه نمیشود. این مدلها نسبتاً ساده بوده و دادههای تجربی و آزمایشگاهی در آنها نقش اساسی دارد و تنشهای آشفتگی در هر جهت متناسب با گرادیان سرعت میباشد. نمونهای از این مدلها عبارتند از:
1- مدل لزجت گردابهای ثابت
2- مدل طول اختلاط پرانتل
3- مدل لایه برش آزاد پرانتل
3-4-3-2 مدلهای یک معادلهایاین مدلها بر خلاف مدلهای صفر معادلهای، از یک معادله برای انتقال کمیت آشفتگی استفاده میکنند. این معادله ارتباط بین مقیاس سرعت نوسانی و کمیت آشفتگی میباشد که جذر انرژی جنبشی آشفتگی به‌عنوان مقیاس سرعت در حرکت آشفته مد نظر میباشد و مقدار آن توسط معادله انتقال محاسبه میگردد.
3-4-3-3 مدلهای دومعادلهایمدلهای دو معادلهای سادهترین مدلها هستند که قادرند نتایج بهتری در جریانهایی که مدل طول اختلاط نمیتواند به صورت تجربی در یک روش ساده مورد استفاده قرار بگیرد، ارائه دهند. به طور مثال جریانهای چرخشی از این نمونهاند. تقسیمبندی این مدلها بر اساس محاسبه تنش رینولدز و یا ویسکوزیته گردابهای به صورت زیر است:
ویسکوزیته گردابهای
جبری
تنش رینولدز غیرخطی
این مدلها، دو معادله دیفرانسیلی را حل میکنند. به معادله k که از قبل بوده، معادله ɛ هم اضافه میشود. معادله انرژی جنبشی، k، بیانکننده مقیاس سرعت است، بدین صورت که اگر قرار باشد سرعتهای نوسانی مورد بررسی قرار بگیرند، میتوان جذر انرژی جنبشی حاصل از آشفتگی در واحد جرم را به عنوان مقیاس در نظر گرفت، معادله نرخ میرایی انرژی جنبشی، ɛ، نیز مقیاس طول است. در حقیقت مقیاس طول، اندازه گردابههای بزرگ دارای انرژی جنبشی را میدهد که باعث انتقال آشفتگی در توده سیال میشود.
3-4-3-4 مدلهای دارای معادله تنشنرمافزار Flow3D مدل آشفتگی جدیدتری بر مبنای گروههای نرمال شده رینولدز پیادهسازی کرده است. این دیدگاه شامل روشهای آماری برای استحصال یک معادله متوسطگیری شده برای کمیت‌های آشفتگی است. مدلهای بر پایه RNG k-ɛ از معادلاتی استفاده میکند که شبیه معادلات مدل آشفتگی k-ɛ است اما مقادیر ثابت معادله که به صورت عملی در مدل استاندارد k-ɛ یافت شده‌اند، صریحاً از مدل RNG k-ɛ گرفته شدهاند. از این رو، مدل RNG k-ɛ قابلیت اجرایی گسترده‌تری نسبت به مدل استاندارد k-ɛ دارد. بویژه مدل RNG k-ɛ برای توصیف دقیقتر آشفتگی جریانهای با شدت کمتر و جریانهایی با مناطق دارای برش، قویتر شناخته شده است. در معادله RNG k-ɛ، فرمول تحلیلی برای محاسبه عدد پرانتل آشفته وجود دارد ولی در مدل k-ɛ، از یک مقدار ثابت که استفاده کننده مدل به آن معرفی میکند استفاده میگردد. در مدل RNG k-ɛ، تأثیر گرداب در آشفتگی لحاظ میگردد لذا دقت حل جریانهای چرخشی را بالا میبرد.
نرمافزار Flow3D از پنج مدل آشفتگی طول اختلاط پرانتل، مدل تک معادلهای، دومعادلهای k-ɛ، دومعادلهای RNG k-ɛ و روش گردابهای بزرگ (LES) بهره میبرد.
3-4-4 شبیهسازی عددی مدلدر این تحقیق، شبیهسازی عددی شامل دو قسمت میباشد:
1- قسمت اول مربوط به شبیهسازی هیدرولیک جریان عبوری از سازه ترکیبی سرریز - دریچه است که آزمایشات بکار رفته جهت واسنجی مدل، در کانال با مقیاس کوچک انجام شده است. کانال با مقیاس کوچک دارای طول 7/3 متر، عرض 5/13 سانتیمتر و ارتفاع 30 سانتیمتر بوده که سازه ترکیبی مورد نظر با ضخامت 3 میلیمتر و در فاصله 2 متری از ابتدای کانال تعبیه شده است.
همچنین با استفاده از مدل واسنجی شده با دادههای آزمایشگاهی مربوط به هیدرولیک جریان، مدلهایی مربوط به سازه ترکیبی همراه با انقباض جانبی مدل شده و تأثیر میزان انقباض سرریز- دریچه بر نسبت دبی عبوری از روی سرریز به دبی عبوری از زیر دریچه بررسی شد.
2- قسمت دوم مربوط به شبیهسازی حفره آبشستگی در پاییندست سازه ترکیبی سرریز- دریچه است که برای شبیهسازی عددی آبشستگی، از آزمایشات انجام شده توسط شهابی و همکاران (1389) در کانال با مقیاس بزرگ استفاده شده است. کانال با مقیاس بزرگ دارای طول 12 متر، عرض و ارتفاع 6/0 متر است. کف کانال به ارتفاع 25 سانتیمتر از رسوبات یکنواخت با D50= 1.5 mm و ضریب یکنواختی 18/1 پوشانده شده است. دریچه و سرریز ترکیبی با ضخامت 6 میلیمتر و در فاصله 4/6 متری از ابتدای کانال نصب شده است.
پس از واسنجی نرمافزار، مدل برای شرایط هندسی و هیدرولیکی مختلف اجرا شد و با انتگرال‌گیری پروفیل سرعت بالای سرریز و زیر دریچه، نسبت دبی عبوری از روی سازه به دبی عبوری از زیر دریچه (QsQg) محاسبه شد. مشخصات مدلسازیهای انجام شده برای آبشستگی در جدول (3- 3) ارائه داده شده است.
جدول 3-3 محدوده دادههای بهکار رفته جهت شبیهسازی آبشستگیبازشدگی دریچه (cm) ارتفاع سازه (cm) مقادیر دبی (lit/s)
2 ، 1 8 34/11 66/10 98/9 68/8 52/7
2 ، 1 10 1/15 86/13 6/12 33/11 78/9
2 ، 1 12 26/16 14/15 4/14 88/13 3/11
3 ، 4 10 11/20 87/18 52/17 27/16 1/15
مراحل اصلی شبیهسازی عددی در نرمافزار Flow3D عبارتند از:
3-4-4-1 ترسیم هندسه مدلدر صورتی که هندسه مدل آزمایشگاهی به صورت منظم باشد میتوان شکل آن را در خود نرم‌افزار Flow3D ترسیم نمود اما در صورتی که مدل مورد نظر شکل نامنظم داشته باشد نرمافزار قادر خواهد بود فایلهای ایجاد شده در نرمافزارهایی نظیر اتوکد و همچنین فایلهای توپوگرافی به صورت X, Y, Z را مورد استفاده قرار دهد. در این تحقیق، مدلهای بکار رفته در خود نرمافزار ترسیم شده است.
3-4-4-2 شبکهبندی حل معادلات جریانیکی از مهمترین نکاتی که بایستی در شبیهسازی عددی مورد توجه قرار بگیرد، شبکهبندی مناسب برای حل دقیق معادلات حاکم است. ساختن شبکه مناسب برای میدان حل معادلات، دقت محاسبات، همگرایی و زمان محاسبات را تحت تأثیر قرار میدهد. در کلیه مدلهای عددی صورت گرفته، ابعاد شبکه طوری تعیین شد که پارامترهای کنترل شبکه از قبیل حداکثر نسبت ابعاد شبکه در راستای طولی و عمقی و ضریب نسبت ابعاد شبکه در راستاهای مختلف و در مجاورت یکدیگر مناسب انتخاب شده باشد. برای نتایج دقیق و مؤثر، مقدار هریک از دو پارامتر فوق باید به عدد 1 نزدیک بوده و مقدار نسبت ابعاد شبکه در مجاور یکدیگر از 25/1 و همچنین نسبت ابعاد شبکه در راستاهای مختلف از 3 نباید بیشتر باشد (فلوساینس، 2008).
در بخش شبیهسازی هیدرولیک جریان که در کانال با مقیاس کوچک صورت گرفت، مشبندی شبکه جریان، به صورت سهبعدی و ابعاد شبکه در هر سه بعد یکسان و برابر 5 میلیمتر در نظر گرفته شد. (در صورتی که مشبندی شبکه جریان، یکنواخت صورت گرفت نتایج حاصل از مدل به دادههای آزمایشگاهی نزدیکتر و دقت مدل عددی بیشتر میشد). برای این مدلسازی، زبری کف کانال و بدنه سازه برابر 5/1 میلیمتر انتخاب شد.
مشبندی در مقطع عرضی مشبندی در مقطع طولی

شکل 3-10 مشبندی یکنواخت در کانال با مقیاس کوچک
در بخش شبیهسازی آبشستگی در پاییندست سازه ترکیبی که در کانال با مقیاس بزرگ انجام شده است، جهت کاهش زمان تحلیل نرمافزار، شبکه جریان به صورت دوبعدی مشبندی شده و ابعاد شبکه در راستای Z به صورت یکنواخت و برابر 5 میلیمتر و در راستای X به صورت غیر یکنواخت و در نزدیکی سازه مورد نظر، تعداد مش بیشتر و اندازه آنها ریزتر در نظر گرفته شد به طوری که اندازه مش بین 6 تا 20 میلیمتر متغیر است. برای این مدلسازی، زبری کف کانال یکسان با قطر متوسط رسوبات و برابر با 5/1 میلیمتر انتخاب شد.
1501775101346000
شکل 3-11 مشبندی غیر یکنواخت در راستای طولی کانال با مقیاس بزرگ
3-4-4-3 شرایط مرزی کاناللایه مرزی ابتدا و انتهای مشها در کانال با مقیاس کوچک بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 12 شرایط مرزی مورد استفاده در مدلسازی حالت بستر صلبجدول 3-4 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
دبی ورودی جریان خروجی دیوار دیوار تقارن

لایه مرزی ابتدا و انتهای مشها در کانال با مقیاس بزرگ بر اساس جدول و شکل زیر تعیین شده است.

شکل 3- 13 شرایط مرزی مورد استفاده در مدلسازی حالت بستر رسوبجدول 3- 5 شرایط مرزی اعمال شده در نرمافزارورودی کانال خروجی کانال دیوارههای کناری کانال کف کانال سقف کانال
فشار ثابت جریان خروجی دیوار دیوار تقارن
برای انتخاب فشار ثابت برای ورودی کانال، ارتفاع سیال در قسمت فشار ثابت برابر عمق ابتدایی جریان در حالت آزمایشگاهی انتخاب شد.
3-4-4-4 خصوصیات فیزیکی مدلبرای مدلسازی هیدرولیک جریان در بستر صلب، شرایط فیزیکی حاکم بر جریان، به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به‌دلیل آشفتگی جریان در آزمایشات، دو مدل آشفتگی k-ɛ و RNG k-ɛ در نرمافزار مورد ارزیابی قرار گرفت.
برای مدلسازی آبشستگی در پاییندست سازه ترکیبی، شرایط فیزیکی حاکم بر جریان به صورت زیر انتخاب شد:
1- مقدار شتاب ثقل در جهت عکس عمق جریان و برابر 81/9- انتخاب شد.
2- چون سیال مورد استفاده در آزمایشات، آب زلال در نظر گرفته شده بود سیال از نوع نیوتنی انتخاب شد.
3- به دلیل آشفتگی جریان، سه مدل آشفتگی k-ɛ ، RNG k-ɛ و LES در نرمافزار مورد ارزیابی قرار گرفت.
4- مشخصات رسوبی که در مدلسازیها جهت کالیبراسیون حداکثر عمق آبشستگی تعریف شد در جدول زیر ارائه داده شده است:
جدول 3- 6 مدلسازیهای انجام شده برای تعیین بهترین مقدار پارامترهای مربوط به رسوبپارامتر مورد نظر مقدارهای انتخاب شده
ضریب دراگ 5/1 2/1 1 5/0
عدد شیلدز بحرانی 15/0 1/0 05/0 035/0
زاویه ایستایی 40 35 30
حداکثر ضریب تراکم مواد بستر 8/0 74/0 7/0 6/0 4/0 38/0
ضریب تعلیق مواد بستر 026/0 018/0 01/0
ضریب بار بستر 16 8
عوامل مؤثر در کالیبراسیون حداکثر عمق آبشستگی در پاییندست سازه، پارامترهای حداکثر ضریب تراکم مواد بستر، عدد شیلدز بحرانی، ضریب دراگ، زاویه ایستایی و همچنین نوع مدل آشفتگی بودند.
3-4-4-5 شرایط اولیه جریانقبل از وارد کردن جریان در مدلسازی عددی، حالت اولیه کانال را انتخاب میکنند که در این تحقیق، قبل از ورود جریان، کانال تا قبل از سازه و تا لبه تاج سرریز از سیال مورد‌نظر در نظر گرفته شد.
3-4-4-6 زمان اجرای مدلنکته دیگری که در شبیهسازیهای عددی بسیار مهم است، زمان اجرای مدل تا رسیدن به یک مقدار مناسب از لحاظ پایداری و ماندگاری جریان است. بنابراین در کلیه آزمایشات شبیهسازی شده، زمان اجرای مدل برای شبیهسازی هیدرولیک جریان بین 30-15 ثانیه و برای شبیهسازی آبشستگی در پاییندست سازه ترکیبی بین 5000 - 4000 ثانیه در نظر گرفته شد، که با سپری شدن این مدت زمان، جریان در کانال به صورت یکنواخت میشود.

شکل 3-14 نمودار تغییرات زمانی حجم سیال در مدلسازی هیدرولیک جریان
شکل 3-15 نمودار تغییرات زمانی حجم سیال در مدلسازی حفره آبشستگی-420069-631311
فصل چهارم
نتایج و بحث

user8300

فصل سوم: مواد و روشها
3-1- ابزار 25
عنوان صفحه
3-2- مواد 26
3-2-1- مواد لازم جهت تهیه مایعات یونی 26
3-2-2- مواد لازم جهت تهیه آنزیم لیپاز درون سلولی TTL 26
3-2-2-1- سوش باکتری 26
3-2-2-2- مواد مورد نیاز برای ترانسفورماسیون 26
3-2-2-3- مواد مورد نیاز برای کشت باکتری و استخراج عصاره سلولی 26
3-2-2-4- مواد مورد نیاز برای تخلیص آنزیم لیپاز 26
3-2-2-5- مواد مورد نیاز برای سنجش کمی میزان پروتئین و ژل SDS PAGE 27
3-2-3- مواد مورد نیاز برای سنجش فعالیت آنزیمی لیپاز 27
3-2-4- نرم افزارها 27
3-3- روشها 28
3-3-1- روش تهیه مایعات یونی 28
3-3-1-1- روش تهیه مایعات یونی با آنیون برمید 28
3-3-1-2- روش تهیه مایعات یونی با آنیون هگزافلوروفسفات 28
3-3-2- روش کشت باکتری و بیان القایی پروتئین نو ترکیب 29
3-3-2-1- محیط کشت باکتری E. coli 29
3-3-2-2- انتقال DNA خارجی به باکتری E.coli 29
3-3-2-2-1- تهیه سلول های مستعد به روش شیمیایی 29
3-3-2-2-2- انتقال پلاسمید به سلول مستعد 30
3-3-2-3- روش تهیه استوک باکتری 31
3-3-2-4- کشت باکتری و القای بیان آنزیم نوترکیب 31
3-3-2-5- بهینه سازی بیان آنزیم نوترکیب 31
3-3-2-5- 1- انتخاب بهترین کلنی از نظر بیان آنزیم TTL 31
3-3-2-5-2- انتخاب بهترین زمان پس از القا 32
3-3-2-6- استخراج عصاره سلولی حاوی لیپاز TTL 32
3-3-3- روش تخلیص آنزیم لیپاز TTL 33
3-3-3-1- روش رسوب دهی دمایی 33
3-3-3-1-1- بهینه سازی رسوب دهی دمایی 33
3-3-3-2- روش تخلیص به کمک ستون کروماتوگرافی 33
3-3-4- روش سنجش کمی پروتئین 34
3-3-4-1- سنجش کمی میزان پروتئین به روش برادفورد 34
3-3-4-2- سنجش کمی میزان پروتئین به روش جذب nm 280 34
عنوان صفحه
3-3-5- الکتروفورز ژل پلیآکریل آمید با SDS (SDS-PAGE) 35
3-3-5-1- آماده سازی محلولهای الکتروفور 35
3-3-5-2- آماده سازی سیستم الکتروفورز 36
3-3-6- سنجش فعالیت آنزیمی با سوبسترای پارانیتروفنیل پالمیتات 38
3-3-7- روش بررسی فعالیت آنزیمی در حضور غلظت های مختلف از انواع مایعات یونی 39
3-3-8- روش بررسی پایداری دمایی آنزیم TTL در دماهای بالا 39
3-3-9- روش بررسی پایداری آنزیم لیپاز TTL در حضور مایعات یونی مختلف 39
3-3-10- روش بررسی ساختار سوم آنزیم TTL در حضور مایعات یونی 40
فصل چهارم: نتایج
4-1- بهینه سازی بیان آنزیم نوترکیب 42
4-1-1- انتخاب بهترین کلنی از نظر بیان آنزیم TTL 43
4-1-2- بهینه سازی زمان پس از القا 43
4-2- تخلیص آنزیم لیپاز TTL 44
4-2-1- بهینه سازی تخلیص نسبی به روش رسوب دهی دمایی 44
4-2-2- تخلیص به کمک ستون کروماتوگرافی Q- سفاروز 45
4-3- سنتز مایعات یونی 47
4-4- اثر مایعات یونی بر فعالیت هیدرولازی آنزیم TTL 47
4-5- اثر مایعات یونی بر پایداری دمایی آنزیم TTL 48
4-5-1- پایداری دمایی TTL در عدم حضور مایعات یونی 48
4-5-2- پایداری دمایی آنزیم TTL در حضور مایعات یونی 49
4-5-2-1- بررسی پایداری TTL در [C4MIM][Br] و ] [C4MIM][PF6 در دماهای مختلف 49
4-5-2-2- مقایسه اثر نوع آنیون مایعات یونی بر پایداری دمایی 51
4-5-2-3- مقایسه اثر نوع کاتیون و طولهای مختلف زنجیره کربنی مایعات یونی بر پایداری دمایی آنزیم 51
4-6- بررسی ساختار سوم آنزیم در حضور و عدم حضور مایعات یونی 54
فصل پنجم: بحث
5-1- اثر مایعات یونی بر فعالیت هیدرولازی آنزیم TTL 57
عنوان صفحه
5-2- اثر مایعات یونی بر پایداری دمایی آنزیم TTL 59
5-3- بررسی ساختار سوم آنزیم در حضور مایعات یونی 61
فصل ششم: نتیجهگیری و پیشنهادات
6-1- نتیجهگیری 63
6-2- پیشنهادات 63
فهرست منابع 65
چکیده انگلیسی 75
فهرست جدولها
عنوان
صفحه
جدول1-1- میکروارگانیسمهای تولید کننده لیپاز 4
جدول2-1- آنیونهای متداول در مایعات یونی 19
جدول 3-1- محیط کشت Luria Bertani 29
جدول 3-2- نحوه تهیه محلول TSB 30
جدول 3-3- نحوه تهیه محلول KCM 31
جدول 3-4- نحوه تهیه محلول برادفورد 34
جدول 3-5- نحوه تهیه بافر نمونه 4X 37
جدول 3-6- نحوه تهیه ژل پلی اکریل آمید 37
جدول 3-7- نحوه تهیه مخلوط سنجش فعالیت آنزیم 38
جدول 4-1- فعالیتهای لیپازی عصارههای سلولی کلنیهای 1 تا 6 حاصل از ترانسفورماسیون 44
جدول 4-2- مشخصات مراحل تخلیص TTL. 46
جدول 5-1- غلظتهای بهینه مایعات یونی (CnMIM Br n=2,4,6) و CMC های مربوطه 58
فهرست شکلها
عنوان
صفحه
شکل 1-1- آنزیم لیپاز ریزوموکور میهی (PDB entry 3TGL) 6
شکل 1-2- آنیونها و کاتیونهای مرسوم در مایعات یونی مورد استفاده در بیوکاتالیز 9
شکل 1-3- آنزیم CALB در حضور مایعات یونی بدون آب 12
شکل2-1- ساختارهای نمونه از کاتیون مایعات یونی معمول در بیوکاتالیز 18
شکل 3-1- سنتز مایعات یونی با آنیون برمید 28
شکل 4-1- وکتور PQE-80L حاوی ژن آنزیم TTL 42
شکل 4-2- بهینه سازی مدت زمان تخلیص به روش رسوب دهی دمایی 45
شکل 4-3- کروماتوگرام ستون Q- سفاروز؛ تخلیص آنزیم TTL 46
شکل 4-4- تصویر ژل SDS-PAGE 5/12 % از مراحل تخلیص آنزیم TTL 47
شکل 4-5- اثر غلظتهای مختلف مایعات یونی بر فعالیت آنزیمی 48
شکل 4-6- نمودار پایداری آنزیم TTL در دماهای بالا در بافر تریس mM 50 49
شکل4-7- نمودار پایداری TTL در [C4MIM][Br] و [C4MIM][PF6] در دماهای °C 85 و °C90 50
شکل4-8- نمودار پایداری دمایی TTL در مایعات یونی؛ مقایسه اثر نوع آنیون 52
شکل 4-9- نمودار مقایسه اثر مایعات یونی با طولهای مختلف زنجیره کربنی کاتیون ایمیدازولیوم بر پایداری دمایی آنزیم TTL 53
شکل 4-10- نمودار بررسی اثر نوع کاتیون بر پایداری دمایی آنزیم TTL 53
شکل 4-11- طیف فلورسانس آنزیم TTL در بافر تریس mM 50 پس از حرارتدهی در °C 85 54
شکل 4-12- طیفهای فلورسانس مربوط به آنزیم TTL انکوبه شده در مایعات یونی ایمیدازولیومی با آنیون PF6 55
شکل 4-13- طیف فلورسانس آنزیم TTL انکوبه شده در مایع یونی [C4MIM][PF6] 55
فصل اول
مقدمه
1-1- آنزیمها
آنزیم ها کاتالیزورهای زیستی بسیار کارآ هستند که میتوانند سرعت واکنشها را تا 17 برابر افزایش دهند(Agarwal, 2006). بخشی از زیست توده زمین لیپیدها هستند و آنزیمهای لیپولیتیک نقش مهمی در حذف این مواد نامحلول در آب را دارند. آنزیمهای لیپولیتیک در شکستن و حرکت دادن لیپیدها درون سلولهای یک جاندار و انتقال لیپیدها از یک جاندار به جاندار دیگر نقش دارند (Beisson et al., 2000).
آنزیمها مزایای زیادی در انجام واکنشها دارند که از جمله آنها میتوان اختصاصیت بالای آنها، انجام واکنش در شرایط معتدل، کاهش مواد زائد، تعیین نوع محصول و کاهش محصولات جانبی با انتخاب آنزیم مناسب، کاهش هزینهها و سرمایه لازم در مقیاس بزرگ، کاهش اتلاف هزینه در فرآیندهای آنزیمی، زیست تخریب پذیر بودن آنزیمها، کاهش میزان مصرف کاتالیزور (آنزیم) به میزان 1%- 1/0% سوبسترا را نام برد؛ بنابراین سهم آنزیم درBOD جریان مواد زائد بسیار ناچیز است (Posorske et al., 1984).
آنزیمهای میکروبی کارآتر از انواع گیاهی و جانوری هستند. آنزیمهای میکروبی دارای تنوع عملکردی بالا، بازده بالا، دستورزی ژنتیکی آسان، منبع مشخص (که این به دلیل نبود نوسانات فصلی، رشد سریع باکتری و محیط رشد ارزان قیمت آن میباشد)، پایداری بیشتر و تولید آسانتر نسبت به انواع گیاهی و جانوری هستند (Wiseman et al., 1995). رشد سریع باکتریها و بنابراین آسانتر بودن فرآیندهای غربالگری در مورد آنها، باعث تسهیل فرآیندهایی همچون دست ورزی ژنتیکی و ایجاد تغییرات در محیط اطراف سلول، در جهت دستیابی به بیشترین تولید آنزیم، افزایش فعالیت آنزیمی سلولها، ایجاد روند تولید پیوسته یا تولید القایی میشوند. تنها حدود دو درصد از گونههای میکروبی به عنوان منبع آنزیم بررسی شدهاند که در این میان سویه های باکتریایی به دلیل فعالیت بالاتر، pH بهینه خنثی یا قلیایی و مقاومت به دما، بیشتر از مخمرها مورد استفاده قرار گرفتهاند (Frost and Moss, 1987).
1-2- لیپازها
لیپازها اولین بار در سال 1901 در باکتریهای Bacillus prodigiosus، B. pyocyaneus و B. fluorescens (با نامهای امروزی Serratia marcescens، Pseudomonas aeruginosa و Pseudomonas fluorescens ) شناسایی شدند (Eijkman et al., 1901). باکتریهای گفته شده هماکنون بیشترین مطالعات لیپازی را به خود اختصاص دادهاند. حدود 300 سال از آغاز مطالعات روی آنزیمهای هیدرولیز کننده تریگلیسریدها میگذرد و حدود 70 سال است که توانایی لیپازها در کاتالیز واکنشهای هیدرولیز و سنتز استرها تشخیص داده شده است (Van Der Walle et al., 1927)
در سال 1856، Claude Bernard اولین آنزیم لیپاز را (آنزیم تجزیه کننده قطرات روغن نامحلول به محصولات محلول) در شیره پانکراس کشف کرد. انسانها در قدیم لیپاز را از پانکراس حیوانات به صورت خالص یا به صورت مخلوط با سایر آنزیمهای پانکراس میگرفتند و از آن به عنوان کمک هضمکننده غذا استفاده مینمودند. به دلیل کوچک بودن پانکراس و سخت بودن جمعآوری آنزیم از آن، دانشمندان به سراغ لیپازهای میکروبی رفتند. لیپازها از نظر نوع منشأ ( باکتری، قارچ یا پستاندار و غیره) و از نظر خصوصیات متفاوت هستند. این آنزیمها دارای توانایی کاتالیز واکنشهای مختلفی از جمله واکنشهای هیدرولیزی، یا سنتز کربوکسیلیکاسترهای مختلف و تبدیل آنها به اسیدهای آلی و گلیسرول هستند. همه لیپازها اختصاصیت بسیار بالایی برای سوبستراهای گلیسریدی دارند.
آنزیمهای لیپولایتیک به دلیل کاربرد فراوانی که در بیوتکنولوژی دارند ( به عنوان مهمترین گروه بیوکاتالیزورها در بیوتکنولوژی)، بسیار مورد توجه قرار گرفتهاند (Benjamin et al., 1998). تولید انبوه لیپازهای میکروبی نیازمند بیان شدید و کارآ از ژنهای مربوطه و فهم دقیق مکانیسم ملکولی نحوه پیچش پروتئین و ترشح آن میباشد. از جمله کاربردهای جدید لیپازها در بیوتکنولوژی میتوان استفاده از این آنزیم در سنتز بیوپلیمر، بیودیزل، داروهای خالص انانتیومری، مواد شیمیایی مورد استفاده در کشاورزی ( مانند انواع آفت کش)، ترکیبات طعمدهنده نام برد (Jaeger et al., 2002). بسیاری از مواد شیمیایی مهم صنعتی، به دست آمده از روغنها و چربیها طی فرآیندهای شیمیایی را میتوان به کمک لیپازها با سرعت بیشتر، اختصاصیت بهتر و در شرایط معتدل به دست آورد (Sih CJ et al., 1989, Vulfson et al., 1994). جهتگزینی بالای لیپازها و اختصاصیت بالای شیمیایی و انانتیومری آنها توجه بسیاری از دانشمندان و صنعتگران را به خود جلب کرده است (Saxena et al., 2003).
لیپازهای گرفته شده از منابع مختلف باکتری، قارچ، گیاه و حیوان، بسته به نوع منشأ، از نظر اختصاصیت به موقعیت پیوند، اختصاصیت به اسیدچرب، پایداری دمایی و pH بهینه و غیره متفاوت هستند (Huang et al., 1984). گونههای متعددی از باکتریها، مخمرها و قارچهای رشتهای توانایی تولید لیپاز دارند (جدول1) سویه های نزدیک به هم (از نظر تاکسونومی) ممکن است انواع مختلفی از لیپاز ها را تولید کنند (Sharma et al., 2001).
جدول 1-1- میکروارگانیسمهای تولید کننده لیپاز
منشأ جنس گونه
باکتری Bacillus B. megaterium
B. subtilis
B. thermoleovorans
B. thermocatenulatus
B. cereus
Pseudomonas P. putida 3SK
P. aeruginosa
P. fluorescens
P. fragi
Staphylococcus S. canosus
S. hyicus
S. haemolyticus
S. aureus
S. warneri
S. xylosus
قارچ Penicillium P. cyclopium
P. simplicissimum
Aspergillus A. niger
A. oryzae
Rhizopus Rhizop. delemar
Rhizop. oryzae
Rhizop. arrhizus
Rhizop. nigricans
Rhizop. nodosus
مخمر Candida C. rugosa
C. tropicalis
C. antarctica
لیپازها را میتوان براساس اختصاصیت به سه گروه تقسیم کرد (Mukherjee et al., 1994). لیپازهای غیر اختصاصی ملکولهای آسیل گلیسرول را در موقعیتهای تصادفی میشکنند و اسیدچرب آزاد و گلیسرول و منوآسیل گلیسرول و دیآسیلگلیسرول را به عنوان حدواسطهای واکنش ایجاد میکنند. محصولات این واکنش مشابه محصولات واکنش انجام شده توسط کاتالیزورهای شیمیایی است. در واکنش آنزیمی محصول در اثر دما کمتر تجزیه میشود و این به دلیل پایینتر بودن دمای واکنش در کاتالیز زیستی است. لیپازهای اختصاصی به موقعیتهای 1و3، آزادسازی اسیدچرب از موقعیتهای 1و3 اسکلت گلیسرولی را کاتالیز میکنند. لیپازهای دارای اسیدچرب اختصاصی، تنها یک اسیدچرب خاص از ملکول آسیل گلیسرول آزاد میکنند (Macrae et al., 1983). لیپازها همچنین تفکیک انانتیومری ترکیبات کایرال و واکنشهای استریفیکاسیون، ترانساستریفیکاسیون، و اینتراستریفیکاسیون را کاتالیز میکنند. این تواناییهای متنوع کاتالیز، در شکست چربیها، اصلاح چربیها و روغنها، سنتز ترکیبات آلی، تأمین شویندهها و روشهای تجزیهای، کاربرد بسیاری پیدا کرده است (Macrae et al., 1985).
1-2-1- ارتباط ساختار آنزیم لیپاز با عملکرد آن
این خصوصیت لیپازها که در سطح بین فضای آبدوست و آبگریز عمل میکنند، وجه تمایز لیپازها از استرازها میباشد (Cleasby et al., 1992). وزن ملکولی آنزیمهای لیپاز در محدوده 20000 تا 60000 دالتون میباشد. این آنزیمها نیز شبیه سرینپروتئازها دارای مجموعه سه تایی کاتالیتیک باقیمانده نوکلئوفیل- باقیمانده هیستیدین- باقیمانده اسیدی هستند (شکل1-1) که به صورت مجموعه سرین- هیستیدین- آسپارتات یا به صورت مجموعه سه تایی سرین- هیستیدین- گلوتامات میباشد (Noble et al., 1993).
جایگاه فعال بهطور معمول در درون ملکول دفن شده است که توسط باقیماندههای آبگریز احاطه میشود. یک ساختار مارپیچ پلیپپتیدی همانند یک درپوش مانع از قرارگیری جایگاه فعال و سوبسترا در دسترس حلال میشود. همچنین محافظت از آنزیم در برابر فعالیت پروتئازها ممکن است با ممانعت از عملکرد مجموعه سه تایی کاتالیتیک پروتئاز ایجاد شود (B--y et al., 1990). سمتی از درپوش که روبروی جایگاه فعال است بیشتر از زنجیرههای جانبی آبگریز آلیفاتیک تشکیل شده است و در سمت مقابل، سطح آبدوست است که به سمت بیرون قرار گرفته است.
تغییر جهتگیری ساختار α- هلیکس درپوش همراه با افزایش آبگریزی سطوح نزدیک جایگاه فعال و روبروی آن، باعث پدیده "فعال شدن در فضای بینابینی" میشود. باز شدن درپوش ممکن است با برخورد آنزیم به مرز روغن/ آب آغاز شود (Cleasby et al., 1992). در مورد سوبستراهای آبگریز، اتصال زنجیرههای آلیفاتیک سوبسترا به سطح آبدوست آنزیم، به ویژه در حضور یک لایه آبپوشی، بسیار نامطلوب است. فضای بینابینی ایجاد شده در دهانه شیار فعال ممکن است به فراهم سازی یک لایه ناکامل آبپوشی در اطراف ملکول لیپاز و در نتیجه تسهیل پیچش زنجیرههای آلیفاتیک ملکول سوبسترا در سطح آنزیم کمک کند (Petersen et al., 1996). پایدارسازی بیشتر میتواند به کمک محدودههای الکتروستاتیک موضعی در سطح آنزیم و با ایجاد جاذبه دوقطبی به سمت پیوند C-H (با قطبیت ضعیف) زنجیرههای جانبی آلیفاتیک فراهم شود.


شکل 1-1- آنزیم لیپاز ریزوموکور میهی (PDB entry 3TGL).
آمینواسیدهای اصلی جایگاه فعال با رنگ قرمز نشان داده شدهاند: Ser144، Asp203و His257.
1-3- آنزیمها در محیط آلی
کلیبانو با انجام تعدادی آزمایش ابتدایی و ساده نشان داد که میتوان از آنزیمها در حلالهای آلی آبگریز استفاده کرد(Zaks and Klibanov, 1985, Klibanov et al., 1986) ، هرچند که در چنین محیطهایی سرعت واکنش به شدت پایین میآید (Klibanov et al., 1997). به مرور مشخص شد که بسیاری از لیپازها و همچنین برخی از پروتئازها و آسیلازها بسیار پایدار هستند، به طوری که حتی در حلالهای آلی بدونآب نیز فعالیت خود را حفظ میکنند. این خصوصیت اساس استفاده موفقیتآمیز از این آنزیمهای هیدرولاز در واکنشهای غیرهیدرولازی است. از جمله این واکنشهای غیرهیدرولازی میتوان آسیلاسیون الکلها و آمینها با اختصاصیت انانتیومری را نام برد که در صنعت کاربرد زیادی دارند) (Schmidt et al., 2001.
تداخل محیط آلی، که شامل مایعات یونی نیز میشود، با فعالیت آنزیم غالبا از جنبه حذف آب ضروری آنزیم مورد بررسی قرار میگیرد. بسیاری از آنزیمها برای فعال بودن به یک پوشش آبی کامل نیاز دارند، اما تعداد زیادی استثناء نیز وجود دارد مانند لیپاز B کاندیدا آنتراکتیکا (CALB) که فعالیت خود را حتی پس از خشک شدن با پنتوکسید فسفر حفظ میکند (De Goede et al., 1993) و پروتئاز سوبتیسیلین که برای فعال ماندن تنها نیاز به تعداد اندکی ملکول آب با اتصال محکم به ملکول آنزیم دارد (Dolman et al., 1997). بررسی منابع علمی نشان میدهد که بیان نیاز آنزیم به آب در قالب فعالیت آبی (aW ) مرسومتر از بیان آن بر اساس غلظت آب است. حضور مقدار کم آب هنگام انجام واکنشهای غیرهیدرولازی با آنزیمهای لیپاز یا پروتئاز ممکن است باعث حفظ یا افزایش فعالیت آنزیمی شود. هرچند چنین محیطهایی همیشه باعث افزایش واکنشهای جانبی هیدرولازی میشوند. همچنین اسید حاصل از این واکنشها ممکن است باعث کاهش pH و از دست رفتن فعالیت آنزیمی شود.
حلالهایی که به خوبی توسط این آنزیمها تحمل میشوند – هیدروکربنهای آروماتیک و آلیفاتیک، اترها، و الکلها (بجز متانول)- فقط به صورت ضعیفی با آنزیم برهمکنش میدهند و میتوان حدس زد که این حلالها کم و بیش فقط برای آنزیم یک فضای خالی ایجاد میکنند. تنها الکلها که تشکیل دهنده پیوند هیدروژنی هستند میتوانند لیپازها را غیرفعال کنند. حلالهایی که برهمکنش بسیار قوی با پروتئینها میدهند، مانند دی متیل سولفوکسید (DMSO) و دی متیل فرمآمید (DMF) نیز باعث غیرفعال شدن برگشتناپذیر آنزیمها میشوند. بنابراین آنزیمها برهمکنشهای قوی با هیچ مادهای به جز آب را نمیتوانند تحمل کنند (Van Rantwijk, 2007).
نامشخص بودن pH در محیط بدون آب یک عامل پیچیده در آنزیمشناسی است. آنزیم توزیع بار الکتریکی (pH ظاهری) را مطابق با آخرین محلول آبی، مثلا بافر لیوفیلیز، حفظ میکند (Zaks and Klibanov 1985). البته pH بهینه ظاهری تحت تأثیر نوع حلال و aW تغییر میکند (Yang et al., 1993). چنین اثرات مشابهی در محیط مایعات یونی نیز قابل انتظار است.
در حقیقت بیشترین اطلاعات درباره رفتار آنزیم در محیط غیرآبی، حاصل از مطالعات آنزیمها در حلالهای آلی است. اما حلال های آلی برای طبیعت زیان آور هستند بنابراین در سالهای اخیر تلاش زیادی در جهت یافتن جایگزین پاکتری برای محیطهای واکنش انجام شده است.از جمله محلولهای دوستدار محیط زیست مایعات یونی را میتوان نام برد که میتوانند جایگزین حلالهای آلی شوند.
علاقه عمومی برای افزایش سرعت واکنشهای آنزیمی در حلالهای آلی نیز عامل پیشبرنده دیگر به سمت مایعات یونی بوده است. یکی از دلایل کاهش فعالیت آنزیمی در حلالآلی (در مقایسه با محیط آبی) پایدارسازی مواد واکنش دهنده در حلال است (Klibanov et al., 1997). این اثر که در واقع همان افزایش حلالیت (افزایش Km) است، با به کارگیری غلظتهای بالاتری از ماده واکنشدهنده قابل جبران است (Halling et al., 2004). بقیه کاهش فعالیت، در حد 1 تا 2 برابر، مربوط به اثر مجموعهای از عوامل شامل ناپایدار شدن حالت گذار واکنش (Clark et al., 2004)، تغییرات کنفورماسیون و از دست دادن انعطافپذیری میباشد (Halling et al., 2004, Clark et al., 2004 ). ثابت دیالکتریک پایین محیطهای آلی معمولی باعث افزایش انرژی حالت گذار شدیدا قطبیده در مقایسه با آب میشود و بنابراین ناپایدار شدن حالت گذار را در پی خواهد داشت (Clark et al., 2004).
1-4- مایعات یونی
از میان مایعات مختلفی که میتوان بهعنوان حلال به کار برد تنها تعداد اندکی به طور عمومی مورد استفاده قرار میگیرند. با معرفی تکنولوژیهای سبز یک نگرانی اصلی، ایجاد جایگزینهای مناسب برای حلالهای مخرب است که در صدر جدول مواد شیمیایی زیانآور هستند. زیرا این حلالها در مقادیر بالا استفاده میشوند و به طور معمول مایعات فراری هستند. نمکهای مرکب مایعاتی هستند که فقط یون دارند (مایعات یونی). در صورت انتخاب مواد اولیه مناسب میتوان مایعات یونی ساخت که در دمای اتاق و در دمای پایینتر از دمای اتاق مایع هستند. مایعات یونی مواد جدیدی نیستند. بسیاری از آنها سالهای زیادی است که شناخته شدهاند. برای مثال میتوان [EtNH3][NO3] را نام برد که دمای ذوب 12 درجه سانتیگراد دارد و در سال 1914 معرفی شد. از همان زمان پیشنهاد شد که از مایعات یونی در سنتز شیمیایی به جای حلال استفاده شود. البته تنها در سالهای اخیر تعداد زیادی مقالات در این زمینه به چاپ رسیده است. برخی خصوصیات فیزیکی ساده مایعات یونی که آنها را به عنوان حلالهای بالقوه برای سنتز جالب توجه کرده است توسط ولتون بیان گردیده است (Welton et al., 1999):حلالهای خوبی برای طیف وسیعی از مواد آلی و غیر آلی هستند.
معمولا شامل یونهای نامتناسبی هستند که امکان قطبیت بالا در آنها را ایجاد میکند.
طبق مقیاس قطبیت نرمال شده که در آن تترامتیل سیلان صفر و آب 0/1 در نظر گرفته شده، قطبیت مایعات یونی مرسوم، به طور معمول در محدوده 6/0-7/0 قرار میگیرد ( مانند فرمامید و الکلهای محلول در آب )
(van Rantwijk et al., 2003). همچنین کاهش طول زنجیره آلکیلی متصل به حلقه ایمیدازولیوم و اندازه آنیون در مایعات یونی دارای کاتیون ایمیدازولیومی، با افزایش قطبیت مایع یونی در ارتباط است (Carmichael and Seddon, 2000). مقدار قطبیت مایع یونی گاهی به دما و حضور آب حساس است (Baker et al., 2002). مایعات یونی به دلیل قطبیت بالایی که دارند محیط خوبی برای واکنشهای شیمیایی و بیوشیمیایی ایجاد میکنند. زیرا میتوانند سوبستراهای مختلفی شامل ترکیبات آلی قطبی و غیرقطبی و ترکیبات آلی و غیر آلی و پلیمری را در خود حل کنند.
با تعدادی از حلالهای آلی غیر قابل امتزاج هستند و بنابراین یک جایگزین قطبی غیرآبی برای سیستمهای دو فازی میباشند. همچنین مایعات یونی آبگریز را میتوان به عنوان فاز قطبی غیر قابل امتزاج همراه با آب استفاده کرد (Welton et al., 1999).
مایعات یونی فرار نیستند و این به دلیل یونی بودن ماهیت آنها است که فشار بخار ناچیزی دارند. بنابراین میتوان از آنها بدون ایجاد آلودگی در سیستمهایی با مکش قوی استفاده کرد (Welton et al., 1999).
بنابراین مایعات یونی دارای پایداری دمایی بوده و فاقد فشار بخار میباشند (Gordon et al., 2001, Brennecke et al., 2001). به علاوه داری خصوصیات استثنائی به عنوان حلال هستند و میتوانند هر ماده شیمیایی را در خود حل کنند. با جایگزین کردن کاتیون، آنیون و اجزای متصل به آنها، میتوان خصوصیات این حلالها را تغییر داد و به این صورت مایع یونی مناسب برای واکنش خاصی را ایجاد نمود (Brennecke and Maginn, 2001) (شکل 1-3). گرچه هنوز مشخص نیست که مایع یونی چگونه خصوصیات کاتالایتیک آنزیم را تحت تأثیر قرار میدهد، آنزیمها در مایعات یونی مانند [C4MIM][PF6] فعال و به شدت پایدار هستند (Erbeldinger et al., 2000, Cull et al., 2000, Laszlo et al., 2001).

شکل 1-2- آنیونها و کاتیونهای مرسوم در مایعات یونی مورد استفاده در بیوکاتالیز.
1-5- بیوکاتالیز در مایعات یونی
دلیل تمایل به انجام بیوکاتالیز در مایعات یونی در واقع میل به جایگزین کردن مایعات یونی غیرفرار به جای حلالهای آلی فرار بوده است. هرچند این واکنشها در محیط طبیعی آنزیم یعنی محیط آبی قابل انجام است اما حلالهای آلی به طور وسیعی همراه با آنزیمها مورد استفاده قرار گرفتهاند تا از این طریق میزان حلالیت واکنشگرهای آبگریز را بیشتر کرده و تعادل واکنش را از سمت هیدرولیز به سمت سنتز تغییر جهت دهند. همچنین خصوصیات غیرمرسوم مایعات یونی به عنوان حلال، باعث گسترش روشهای متعدد جدید و بسیار کارآ شده است (Van Rantwijk et al., 2007).1-5-1- آنزیمها در مخلوطهای مایع یونی- آب
در بیوترانسفورماسیون غالبا از مخلوط محیط آلی- آبی برای افزایش حلالیت واکنشدهندهها و محصولات آبگریز استفاده میشود. پایداری و فعالیت آنزیمها در مخلوطهای آبی مایعات یونی غالبا براساس اثرات هافمیستر مورد بررسی قرار میگیرد. سری هافمیستر نوعی دستهبندی یونها است که به ترتیب توانایی آنها در حل کردن و رسوبدهی پروتئینها ایجاد شده است.
اخیرا در حوزه بیوکاتالیز در مخلوطهای مایع یونی- آب کارهای زیادی در رابطه با طیف وسیعی از آنزیمها و مایعات یونی انجام شده است. مایعات یونی را به خوبی میتوان براساس موقعیت قرارگیری یونها، در سری هافمیستر به گونهای مرتب نمود که ترتیبی از پایدارکنندهترین تا ناپایدارکنندهترین (کاسموتروپ تا کائوتروپ) ایجاد شود.
نمک های سری هافمیستر با ویژگی های کاسموتروپیک و کائوتروپیک یونها مرتبط هستند. یونهایی که به شدت آب پوشی میشوند به کاسموتروپ ها معروفند و آن دسته از یون هایی که به صورت ضعیف هیدراته می شوند، کائوتروپ خوانده می شوند (Lo Nostro et al., 2005). یونهای حاصل از نمکهای سری هافمیستر به دو گروه تقسیم می شوند: Salting- out و Salting- in (Kunz et al., 2004). یون های out-Salting (آنیون های کاسموتروپ مثل فسفات، سولفات وکاتیون های کائوتروپیک مثل کاتیون های آمونیوم) پروتئین ها را پایدارکرده و نیز باعث رسوب آنها می شوند. در مقابل یون های Salting- in (آنیونهای کائوتروپ مثل آنیون های پرکلرات، برماید و کاتیونهای کاسموتروپ مثل کاتیون لیتیم) پروتئین ها را ناپایدار میکنند (Kunz et al., 2004). درغلظت های پایین نمک (تا سقف 01/0 مولار) یون ها غالبا از طریق برهمکنش های الکترواستاتیک روی آنزیم ها تاثیر می گذارند. هنگامی که در غلظت های زیاد نمک نیروهای انتشار یا پراکندگی یونی بر پتانسیل الکترواستاتیک پیروز میشوند، اثر یونهای هافمیستری اهمیت پیدا میکنند (Lo Nostro et al., 2005).
بسیاری از آنزیمها به خوبی در طیف وسیعی از مایعات یونی در محیط آبی عمل میکنند. به سختی میتوان مایع یونی پیدا کرد که به هیچ عنوان با هیچ آنزیمی سازگاری نداشته باشد. در رابطه با پیشبینی سازگاری آنزیم و مایعات یونی آبی به نظر میرسد که کائوتروپی و کاسموتروپی نمیتوانند به عنوان تنها عوامل پیشبینی کننده استفاده شوند. همچنین بعید به نظر میرسد که بتوان سازگاری آنزیم با مایعات یونی را با در نظر گرفتن تعداد محدودی پارامتر همچون قطبیت یا logP تفسیر نمود. این موضوع در مورد حلالهای ملکولی محلول در آب نیز صدق میکند (Van Rantwijk et al., 2007).
اساس پیشبینی سازگاری آنزیمها و مایعات یونی آبی را میتوان این گونه بیان کرد که پروتئین زمانی پایداری خود را از دست میدهد که یونها یا ملکول های حلال اطراف آن با فرم بازشده آنزیم برهمکنش قویتری نسبت به فرم طبیعی آنزیم داشته باشند (Baldwin et al.,1996). چنین برهمکنشهای ناپایدارکنندهای میتوانند حاصل از "Salting in" یونهای دوگانه دوست روی گروههای آبگریز فرو رفته درون ساختار پروتئین یا حاصل از برهمکنشهای قوی آنها با پیوندهای پپتیدی باشد (Kaar et al., 2003, Lou et al., 2006). از جمله مباحث مهمتری که باید به خصوص در مورد آنزیمهای حساس مد نظر قرار داد میتوان تغییرات pH ایجاد شده توسط یونهای اسیدی یا قلیایی برونشتد و فعالیت آبی ترمودینامیکی را نام برد.
1-5-2- فعالیت آنزیمها در شرایط نسبتا بیآب در مایعات یونی
توانایی لیپاز در تحمل مایعات یونی به صورت بیآب یک توانایی عمومی نیست. آنزیم CALB (Schofer et al., 2001) و CRL (Kaar et al., 2003) در طیف وسیعی از مایعات یونی امتزاجپذیر با آب، حاوی آنیونهای MeSO4- (Schofer et al., 2001)، NO3- (Kaar et al., 2003)، AcO-یا lactate- (Sheldon et al., 2002) غیرفعال است. نکته قابل توجه این است که لیپاز در چنین محیطهایی حل میشود زیرا حل شدن پروتئین مستلزم شکسته شدن برهمکنشهای پروتئین- پروتئین و تشکیل اینترکشنهای قویتر با محیط است (شکل 1-4). آب نیز چنین عملکردی دارد؛ اما حلالهای آلی مانند N،N- دیمتیل فرمامید و دیمتیل سولفوکسید که آنزیمها را در خود حل میکنند و در ضمن، گروههای سطح پروتئین را کئوردینه میکنند، عوامل دناتوره کننده قوی محسوب میشوند.
به نظر میرسد که مایعات یونی بدون آب با روشی مشابه حلالهای آلی مرسوم، آنزیم را تحت تأثیر قرار میدهند؛ زیرا بسیاری از آنها به خوبی تحمل میشوند اما برخی از آنها نیز سازگاری بسیار کمی دارند که البته این موضوع به نوع آنزیم نیز بسیار وابسته است. برای مثال مایعات یونی حاوی یونهای AcO- و NO3- که به صورت مخلوطهای آبی سازگاری بسیار خوبی دارند، در حالت بدون آب آنزیم بسیار مقاوم CALB را غیر فعال میکنند. بر اساس اطلاعات فعلی، مایعات یونی با آنیونهای BF4- و PF6-، و آنیون مقاوم به هیدرولیز NTf2- و آنیونهای زنجیر متوسط آلکیل سولفات به همراه کاتیونهای دیآلکیلایمیدازولیوم و آلکیلپیریدینیوم گزینههای ایمنتری به نظر میرسند (Van Rantwijk and Sheldon 2007).
تاکنون یک اساس نظری برای پیشبینی سازگاری آنزیمها و مایعات یونی بیآب ایجاد نشده است. هرچند تعدادی از عوامل سهیم احتمالی مانند قابلیت کاتیون برای ایجاد پیوند هیدروژنی (Park and Kazlauskas, 2001)، log P (Kaar et al., 2003)، تشکیل نانوساختارهای متصل به هیدروژن، و گرانروی حلال (Lozano et al., 2005) مورد بحث قرار گرفتهاند. براساس شواهد موجود به نظر میرسد که میزان هسته دوستی آنیون (Kaar et al., 2003) یا قابلیت پذیرش پیوند هیدروژنی توسط آن (Sheldon et al., 2002) نیز، حداقل در حالتی که میل کاتیون برای تشکیل پیوند هیدروژنی کم است، میتواند یکی از عوامل کنترل کننده باشد. در این مورد یک استثناء وجود دارد و آن در مورد آنیون H2PO4- است که بدون دناتوره کردن میتواند Cyt C را در خود به صورت کامل حل کند (Fujita et al. 2005). استثناء دیگر [HOPMIM][glycolate] است که با داشتن کاتیون و آنیونی با قابلیت بالا در ایجاد پیوند هیدروژنی، آنزیمهای احیاکننده را در فرم فعال در خود حل میکند (Walker and Bruce, 2004).

شکل 1-3- آنزیم CALB در حضور مایعات یونی بدون آب. الف) شکل شماتیک از نحوه برهمکنش مایع یونی با بخشهای باردار و غیرقطبی آنزیم، ب) ساختار شبیه سازی شده آنزیم CALB در محیط مایع یونی DCGUA-NO3؛
رنگ زرد مناطقی از سطح آنزیم را نشان میدهد که زنجیرههای آلیفاتیک حضور دارند و رنگ نارنجی نشان دهنده مناطق باردار سطح آنزیم هستند (Klahn et al., 2011).
1-5-3- پایداری آنزیمها در مایعات یونی تقریبا بیآب
پایداری (دمایی) آنزیمها (فعالیت در طی زمان) معمولا در محیطهای آلی به خصوص با فعالیت آبی کم، نسبت به محیطهای آبی، بهتر است (Zaks and klibanov, 1984). مایعات یونی نیز میتوانند چنین اثری داشته باشند. پایداری آنزیمی تعریف واضحی ندارد و روشهای متنوعی برای سنجش آن وجود دارد. برای بررسی پایداری در ذخیره سازی، آنزیم در مایع یونی در یک دمای خاص انکوبه شده و میزان فعالیت باقیمانده در نمونهها که با آب رقیق شدهاند بررسی میشود. بازیابی فعالیت بالایی از آنزیم در چنین روشی نشان دهنده این است که تغییرات ایجاد شده در ساختار آنزیم در این چنین محیط ذخیرهسازی برگشت پذیر است. پایداری آنزیم را میتوان با انکوبه کردن آنزیم در مایع یونی در بازههای زمانی مختلف و سنجش فعالیت در همان محیط بررسی نمود. همچنین میتوان ساختار آنزیم را با روشهای اسپکتروسکوپی در محیط مورد نظر بررسی نمود. برای مثال دمای بازشدن ساختار پروتئین شیرین مونولین از C° 40 در آب به C° 105 در [C4MPr][NTf2] افزایش یافت (Baker et al., 2004). نوع دیگر پایداری که میتوان مورد بررسی قرار داد پایداری در شرایط واکنش است.
بهطور کلی آنزیمها در مایعات یونی فعالیت و ساختار خود را در مدت زمان طولانیتر و در دماهای بالاتری نسبت به حلالهای آلی ملکولی حفظ میکنند. دلیل احتمالی این امر گرانروی بالای مایعات یونی است که باعث کند شدن حرکت دمینهای پروتئین از موقعیت خود در فرم فعال پروتئین به موقعیتهای جدید ایجاد کننده فرم غیرفعال میشود (Van Rantwijk and Sheldon, 2007).
1-5-4- آنزیمها، مایعات یونی، پیوندهای هیدروژنی و فعالیت
پیوندهای هیدروژنی عامل پیوستگی ساختار آنزیمهای آبپوشی شده و بدون آب هستند. هر تغییر ساختاری مستلزم فروپاشی تعداد قابل توجهی از پیوندهای هیدروژنی به طور همزمان میباشد؛ این امر سهم قابل توجهی در پایداری آنزیم دارد و گویای اثرات حافظه آبپوشی و اثرات پسماند است (Halling, 2004). منظور از اثرات پسماند این است که تعداد ملکولهای آب متصل به آنزیم تنها وابسته به میزان فعالیت آبی نیست، بلکه به حافظه آبپوشی نیز مربوط میباشد.
پژوهشهای مختلفی نشان داده اند حلالهایی که در شرایط آبی یا غیرآبی با آنزیم سازگارند، مانند استونیتریل یا ترت- بوتیل الکل، در غلظتهای پایین باعث غیرفعال شدن آنزیم میشوند (Griebenow et al., 1996). چنین نتایجی را میتوان در پژوهشهای انجام شده در مایعات یونی نیز مشاهده کرد. دلیل این امر کاهش اثر آبگریزی در حضور حلال است. در نتیجه پایداری آنزیم کاهش مییابد تا اینکه در یک غلظت مشخص آنزیم غیرفعال میشود.
پیوندهای هیدروژنی میتوانند توضیح مناسبی برای پایداری آنزیم در مایعات یونی بدون آب باشند. مایعات یونی، بهخصوص آنیون آنها که پیوندهای هیدروژنی قوی ایجاد میکنند، ممکن است باعث از بین رفتن پیوندهای هیدروژنی شوند که عامل یکپارچگی ساختار α- هلیکسها و صفحات β بودهاند و بنابراین باعث باز شدن کل پروتئین یا بخشی از آن شوند. برای مثال یون لاکتات به راحتی میتواند با اسکلت پلیپپتیدی پیوند هیدروژنی برقرار کند. اندازه یون نیز میتواند مهم باشد زیرا یونهای با اندازه بزرگ برای ایجاد تعداد اندکی پیوند هیدروژنی بین خود و آنزیم، نیاز دارند که تعداد زیادی پیوند هیدروژنی را بشکنند، بنابراین نمیتوانند به سادگی پایداری آنزیم را مختل کنند. در آنزیمهایی که به صورت برگشتپذیر غیرفعال شدهاند احتمالا پیوندهای هیدروژنی توانستهاند کانفورماسیون را حفظ کنند و در ادامه برای بازیابی ساختار آنزیم لازم است این پیوندها فروپاشند و پیوندهای طبیعی دوباره ایجاد شوند. رقیق کردن عوامل دناتوره کننده، مانند مایع یونی دناتوره کننده، میتواند باعث تشکیل دوباره پیوندها شود احتمالا چنین ترکیباتی که پیوند هیدروژنی قوی تشکیل میدهند با تشکیل پیوندهای هیدروژنی ناپایدار، تشکیل دوباره پیوندها را تسهیل میکنند.
1-5-5- بیوترانسفورماسیون در محیط مایعات یونی توسط لیپازها و استرازها
کاربرد لیپازها در بیوترانسفورماسیون شامل طیف وسیعی از واکنشهای سالوولایتیک( نوعی از واکنشهای جانشینی هستند که در آنها حلال به عنوان نوکلئوفیل عمل کرده و جانشین یک اتم یا گروه در ملکول سوبسترا میشود) مربوط به گروه کربوکسیل است (McNaught and Wilkinson, 1997). از جمله این واکنشها میتوان استریفیکاسیون، ترانساستریفیکاسیون (الکلولیز)، پرهیدرولیز، و آمینولیز (سنتز آمید) را نام برد (Schmidt and Verger, 1998). واکنشهای ترانساستریفیکاسیون و سنتز آمید ترجیحا در محیط بیآب و در حضور زئولیت فعال، جهت متوقف ساختن واکنشهای هیدرولازی ناخواسته، انجام میشود. در این واکنشها اغلب از آنزیمهایی همچون CALB (Anderson et al., 1998, Kirk and Christensen, 2002)، PSL و PCL استفاده میشود (Bornscheuer and Kazlauskas, 1999) که به راحتی چنین شرایطی را تحمل میکنند.
جهت دستیابی به بهینهترین حالت تشخیص انانتیومرها لازم است که محیط واکنش، مایع یونی یا محیطهای سنتی، با توجه به نوع ماده واکنش دهنده و نوع آنزیم بهینهسازی شود. در واقع نمیتوان یک مایع یونی را به عنوان بهترین گزینه برای انجام واکنشهای تفکیک مخلوطهای راسمیک نام برد، همانطور که یک حلال آلی را نمیتوان به طور کلی بهترین دانست. با ظهور مایعات یونی، گزینههای حلال انتخابی و بنابراین شانس یافتن محیط مناسب به میزان زیادی افزایش یافته است.
1-6- بررسی ساختار پروتئین به روش اسپکتروسکوپی فلورسانس
ملکول پروتئین طی فرآیندهای غیرفعال شدن چند فاز مختلف را طی میکند. این پدیده نشاندهنده یک سری وقایع درون ملکولی در کنفورماسیونهای گذرای پروتئین است (De Diego et al., 2004). از روشهای مختلفی جهت بررسی ساختار پروتئین استفاده میشود که از آن جمله میتوان روشهای DSC ، NMR، CD، FTIR، اسپکتروفتومتری UV، کریستالوگرافی اشعه X و اسپکتروسکوپی فلورسانس را نام برد. فلورسانس یک روش در دسترس است که میتوان از آن جهت بررسی ساختار سوم پروتئین استفاده کرد.
در پروتئینهایی که دارای آمینواسیدهای فلوروفور هستند (مثل تریپتوفان، تیروزین یا فنیلآلانین) تغییر در IMax فلورسانس و شیفت قرمز در λMax فرآیند دناتوره شدن پروتئین را نشان میدهند و هر دوی این تغییرات به دلیل افزایش قطبیت باقیماندههای تریپتوفان پروتئین با قرارگیری آن در معرض حلال است. مکانیسم ملکولی پایدار شدن آنزیم در مایعات یونی (در بیوکاتالیز کاربردی) همچنان نامعلوم است و نیاز به بررسیهای بیشتر وجود دارد (De Diego et al., 2004).
پروتئینها پس از برانگیختگی در طول موج nm 280 (مربوط به همگی فلوروفورهای پروتئین) یا nm 295 (بیشتر مربوط به باقیماندههای تریپتوفان)، به طور معمول نور را بین طول موج nm 300 و nm 350 منتشر میکنند. شدت فلورسانس در واقع جمع نور منتشر شده توسط هر کدام از باقیماندههای فلوروفور پروتئین میباشد. باز شدن نسبی ساختار پروتئین باعث افزایش برهمکنش باقیماندههای آمینواسیدی پروتئین با حلال (به طور معمول آب) میشود. همچنین ممکن است حلقه اندولی تریپتوفان با دیگر آمینواسیدهای موجود در ساختار پروتئین وارد برهمکنش شود. هر دوی این پدیدهها سبب کاهش شدت فلورسانس و گاهی سبب ایجاد یک شیفت قرمز در پیک نشر فلورسانس (کاهش λMax) میشود که این پدیده را نشانهای از باز شدن پروتئین در محیط آبی میدانند (Bekhouche et al., 2011).
با ورود مایعات یونی به محیط پروتئینها به عنوان حلالهای جدید، مشکلاتی در بررسی ساختار توسط روشهای مختلف ایجاد میشود. از جمله این مشکلات تداخلهای ایجاد شده در طیفهای CD و فلورسانس را میتوان نام برد که در گزارشات مختلفی به آنها اشاره شده است (Shu et al., 2011, Bekhouche et al., 2011, Attri and Venkatesu, 2013). با این وجود شاید بتوان ساختار پروتئین را بیشتر بر اساس شیفتهای λMax و مقایسه شدت فلورسانس در حالتهای دمادهی مختلف در یک مایع یونی با غلظت مشخص، مورد بررسی قرار داد.
به طور کلی میتوان گفت که طیف وسیعی از آنزیمها میتوانند مخلوطهای آبی مایعات یونی را به عنوان محیط واکنش تحمل کنند. به سختی میتوان مایع یونی را یافت که هیچ آنزیمی نتواند با آن سازگار باشد. عقیده بر این است که مایعات یونی در غلظتهای بالاتری، نسبت به حلالهای ملکولی قابل امتزاج با آب، میتوانند توسط آنزیمها تحمل شوند.
بسیاری از هیدرولازها به خصوص آنهایی که توانایی تحمل حلالهای ملکولی را دارند به میزان قابل توجهی میتوانند واکنشهای غیرهیدرولازی را در مایعات یونی کاتالیز کنند. میزان فعالیت آنزیمها در مایعات یونی در حد فعالیت آنها در حلالهای آلی و یا حتی بالاتر نیز میباشد. به علاوه در بسیاری از موارد افزایش پایداری دمایی و عملکردی و افزایش اختصاصیت انانتیو و ریجیو نیز دیده شده است.
مایعات یونی سازگار با آنزیمها به طور معمول برهمکنش قوی با آنزیم نمیدهند و باعث حل شدن آنزیم نمیشوند. تاکنون اساس نظری برای پیشبینی سازگار بودن یا نبودن مایع یونی با آنزیم ایجاد نشده است هرچند با توجه به علاقه زیادی که در این موضوع وجود دارد انتظار میرود که به زودی یک اساس نظری در این زمینه مطرح گردد.
مایعات یونی قابلیت بالایی در کاربرد به عنوان حلال در واکنشهای بیوترانسفورماسیون مربوط به واکنشدهندههای بسیار قطبی مانند پلیساکاریدها دارند؛ زیرا چنین واکنشهایی به دلیل محدودیتهای تعادل واکنش در آب قابل انجام نیستند. چنین جایگزینی یک محیط فرار با محیط غیرفرار مایعات یونی بدون شک ادامه خواهد یافت و به تدریج توسط صنایع شیمیایی پذیرفته خواهد شد و سهم بزرگی در ایجاد کارآیی بالای واکنشهای مختلف خواهد داشت. توسعه مایعات یونی ارزانتر نیز باعث افزایش استفاده از آنها در بیوترانسفورماسیونهای صنعتی خواهد شد. به علاوه باید این موضوع را در نظر داشت که سیستمهای حلالی که بر پایه مایعات یونی هستند قابلیت بالایی در انجام ترانسفورماسیونهای چند کاتالیزوری دارند. برای دستیابی به این اهداف تلاشهای جدیدی انجام گرفته است.
بدون شک انتظار میرود که مایعات یونی سبز و زیست سازگار به زودی در دسترس باشند؛ زیرا به کارگیری مایعات یونی در ایجاد صنایع شیمیایی سبزتر، امری کاملا ضروری است. اینگونه به نظر میرسد که انجام بیوترانسفورماسیون در مایعات یونی بسیار امید بخش است.
فصل دوم
مروری بر پژوهشهای پیشین
2-1- پیشینه کاربرد مایعات یونی در بیوکاتالیز
اولین گزارش از بیوکاتالیز در محیط مایعات یونی مربوط به سال 2000 است (Cull et al., 2000). اولین کارهای انجام شده در این زمینه شامل مایعات یونی متشکل از کاتیونهای 1و3- دی آلکیل ایمیدازولیوم یا N- آلکیل پیریدینیوم و یک آنیون ضعیف کئوردینه کننده بود (شکل2-1و جدول 2-1). این نوع مایعات یونی هنوز نقش اصلی را در واکنشهای آنزیمی ایفا میکنند. هرچند که تحقیقات در حال حاضر بیشتر به سمت مایعات یونی با ساختارهای جدید گرایش یافته است. تاکنون مقالات مروری خوبی در زمینه بیوکاتالیز در مایعات یونی منتشر شده است که از آن جمله پروژه - ریسرچمروری ون رنتویجک و شلدون و مقالات مروری منیرالزمان را میتوان نام برد (Van Rantwijk and Sheldon, 2007, Moniruzzaman, 2010 a& b).

شکل2-1- ساختارهای نمونه از کاتیون مایعات یونی که به طور مرسوم در بیوکاتالیز استفاده میشوند
(Van Rantwijk and Sheldon, 2007).
جدول2-1- آنیونهای متداول در مایعات یونیفرمول ساختاری علامت اختصاری نام آنیون
BF4- BF4- Tetrafluoroborate
PF6- PF6- Hexafluorophosphate
(CF3SO2)2N- Tf2N Bis(trifluoromethylsulfonyl)amide
CF3SO3- TfO Trifluoromethanesulfonate
CF3COO- TFA Trifluoroacetate
CH3SO3- MeSO3 Methylsulfite
n-C7H15SO3- HpSO3 Hydrogenthiophosphate
TsO- TsO Toluenesulfonate
CH3OSO3- MeSO4 Methylsulfate
C2H5OSO3- EtSO4 Ethylsulfate
n-C8H17OSO3- OctSO4 Octylsulfate
(HO)2PO2- H2PO4 Dihydrogenphosphate
(CH3O)2PO2- Me2PO4 Dimethyl phosphate
C2H5O(CH2)2OSO13- EtOEtSO4 Ethoxyethylsulfate
در بیوترانسفورماسیون غالبا از مخلوط محیط آلی- آبی برای افزایش حلالیت واکنشدهندهها و محصولات آبگریز استفاده میشود. پایداری و فعالیت آنزیمها در مخلوطهای آبی مایعات یونی غالبا براساس اثرات هافمیستر مورد بررسی قرار میگیرد. یک مطالعه اولیه روی آنزیم آلکالین فسفاتاز مربوط به باکتری اشرشیا کلای در مخلوط آبی [EtNH3][NO3] (قدیمیترین مایع یونی (Walden, 1914 )) نشان داد که این مایع یونی در غلظتهای پایین روی آنزیم اثر فعال کننده داشته است و بیشترین اثر گذاری آن (10 درصد افزایش فعالیت) در غلظت 1/1 مولار دیده شده است. با افزایش غلظت مایع یونی تا قبل از غلظت 80 درصد فعالیت آنزیم به طور برگشت پذیر کاهش یافت و پس از آن آنزیم به طور برگشت ناپذیری غیر فعال گردید (Magnuson et al., 1984).
2-2- اثر مایعات یونی مختلف بر فعالیت و پایداری آنزیم
در سالهای اخیر در حوزه بیوکاتالیز در مخلوطهای مایع یونی- آب کارهای زیادی در رابطه با طیف وسیعی از آنزیمها و مایعات یونی انجام شده است. به تازگی آنیونهای α-آمینواسیدها در مایعات یونی مورد استفاده قرار گرفتهاند. این آنیونها کاسموتروپ هستند (Zhao, 2006). مایعات یونی تشکیل شده از α-آمینواسیدهای D و L و ω- آمینوکربوکسیلاتها و کاتیون [C2MIM] در غلظت 5/0 مولار اثر بسیار کمی بر فعالیت آنزیم سوبتیلیسین داشتند. در حالی که [C2MIM][D-GluO] در غلظت 1 مولار سرعت واکنش را بیش از 60 درصد کاهش داد و [C2MIM][L-GluO] باعث کاهش 80 درصدی سرعت شد (Zhao, 2006). مایع یونی [C4MIM][Cl] در غلظتهای کمتر از 20 درصد اثر کمی بر آنزیم پراکسیداز ترب سیاه (HRP) گذاشت در حالیکه در غلظتهای 25 و 30 درصد کاهش شدید فعالیت و پایداری دمایی آنزیم را نشان داد (Machado and Saraiva, 2005).
آنیون نیترات یک آنیون بی ضرر و بی اثر است با این وجود مایعات یونی حاوی این آنیون زیاد مورد مطالعه قرار نگرفتهاند. از معدود مطالعات انجام شده در این زمینه میتوان پژوهشی روی آنزیم پاپائین را نام برد که در حضور 15 درصد [C4MIM][NO3] 50 درصد از فعالیت خود را حفظ کرد. در گزارشی توسط کفتزیک و همکاران دو آنزیم CbFDH و β-گالاکتوزیداز مربوط به باسیلوس سیرکولانس در حضور 25 درصد [PrNH3][NO3] کاملا غیرفعال شدند (Kaftzik et al., 2002). دلیل این غیرفعال شدن را اسیدی شدن pH احتمال دادند.
مایعات یونی حاوی یون [BF4] بسیار مورد استفاده قرار گرفته است. این آنیون به شدت کائوتروپ است و نسبت به آنیونهایی که قبل از این گفته شد قدرت کمتری در تشکیل پیوند هیدروژنی دارد. اثر [C4MIM][BF4] بر فعالیت HRP توسط ماکادو و همکاران مورد بررسی قرار گرفت. در غلظتهای کمتر از 20 درصد [C4MIM][BF4] کمترین کاهش فعالیت دیده شد و در غلظت 25 درصد آن 30 درصد کاهش فعالیت دیده شد. ماکادو و همکاران همچنین تغییرات پایداری دمایی HRP را در [C4MIM][BF4] بررسی کردند. در غلظت 10 درصدی مایع یونی، آنزیم HRP با تأخیر بیشتری نسبت به محیط آبی در اثر دمادهی غیرفعال شد. در حالی که در غلظت 25 درصد مایع یونی، پایداری آنزیم به شدت کاهش یافت (Machado and Saraiva, 2005).
اولین بیوترانسفورماسیون موفق در یک محیط مایع یونی حاوی 5 درصد آب مربوط به یک مایع یون آبگریز بود. ترمولایزین، یک آنزیم بسیار پایدار، واکنش سنتز Z- آسپارتام را در محیط [C4MIM][BF4] اشباع از بافر کاتالیز کرد؛ سرعت واکنش در این حالت نسبت به سرعت واکنش در محیط اتیل استات 40 درصد بود (Erbeldinger et al., 2000).
لیپازها به عنوان آنزیمهای مقاوم به حلالهای آلی مسلما اولین گزینه انتخابی برای انجام بیوکاتالیز در مایعات یونی بودند. در حقیقت لیپازهای میکروبی پایدار مانند CALB (Madeira Lau et al., 2000 , Schofer et al., 2001) و لیپاز سودوموناس کاپاسیا (PCL) (Park and Kazlauskas. 2001, Nara et al., 2002) در مایعات یونی از خانواده 1- آلکیل 3- متیل ایمیدازولیوم و 1- آلکیل پیریدینیوم، در ترکیب با آنیونهای BF4- ، PF6-، TfO- و NTf2- دارای فعالیت کاتالیتیک هستند. نتایج اولیه در این قبیل کارها معمولا تکرارپذیر نبود و این به دلیل حضور ناخالصی باقی مانده طی فرآیند تهیه مایعات یونی بود. لیپازها واکنشهای ترانساستریفیکاسیون را در این مایعات یونی با بازده قابل مقایسه با واکنشهای انجام شده در ترت- بوتیل الکل (Madeira Lau et al., 2000)، دیاکسان (Nara et al., 2002)، یا تولوئن (Park and Kazlauskas 2001) را کاتالیز کردند.
لیپاز A کاندیدا آنتراکتیکا (CALA) به عنوان یک استثناء در محیط مایعات یونی [C4MPy][BF4] و [C4MIM][NTf2] 10 برابر فعالتر از محیط دیایزوپروپیلاتر (DIPE) (Schofer et al., 2001) بود. مایعات یونی خارج از خانوادههای 1- آلکیل 3- متیل ایمیدازولیوم و 1- آلکیل پیریدینیوم به ندرت در فرآیند بیوکاتالیز مورد استفاده قرار گرفتهاند.
لیپازهای مختلفی برای انجام بیوکاتالیز در مایعات یونی مورد بررسی قرار گرفته اند که از این میان میتوان آنزیمهای لیپاز CALB (Lozano et al., 2003)،PCL (Itoh et al., 2003)، ASL (Schofer et al., 2001)، CALA، RML و TLL (Schofer et al., 2001) را نام برد. برای مثال دو آنزیم RML و TLL فعالیت خود را در مایع یونی [C4MIM][NTf2] حفظ کردند در حالی که در دو مایع یونی [C4MIM][PF6] و [C4MIM][BF4] غیرفعال شدند (Schofer et al., 2001).
لیپاز CRL به طور معمول در محیطهای بدون آب فعالیت کمی دارد. بر اساس مطالعات انجام شده در رابطه با کاتالیز واکنشهای مختلف، این آنزیم در مایعات یونی [C4MIM][PF6] و [C4MIM][BF4] فعالیت خود را حفظ میکند (Schofer et al., 2001, Kaar et al., 2003). CRL در [C4MIM][PF6] بهترین فعالیت خود را در حضور حداکثر 4/0 مولار آب (یا 5/0=aw براساس سایر گزارشات (Ulbert et al., 2004) نشان میدهد. همچنین گزارش شده است که CRL واکنش استریفیکاسیون را در محیط بدون آب [C4MIM][PF6] بهتر از محیط ایزواکتان کاتالیز میکند (Yu et al., 2005).
توانایی لیپاز در تحمل مایعات یونی به صورت بیآب یک توانایی عمومی نیست. آنزیم CALB (Schofer et al., 2001, Kaar et al., 2003)و CRL (Kaar et al., 2003) در طیف وسیعی از مایعات یونی امتزاجپذیر با آب، حاوی آنیونهای [MeSO4] (Schofer et al., 2001)، [NO3] (Kaar et al., 2003)، [AcO] یا [lactate] (Sheldon et al., 2002) غیرفعال است. نکته قابل توجه این است که لیپاز در چنین محیطهایی حل میشود زیرا حل شدن پروتئین مستلزم شکسته شدن برهمکنشهای پروتئین- پروتئین و تشکیل اینترکشنهای قویتر با محیط است. آب نیز چنین عملکردی دارد اما حلالهای آلی مانند N،N- دیمتیل فرمامید و دیمتیل سولفوکسید که آنزیمها را در خود حل میکنند، و در ضمن، گروههای سطح پروتئین را کوئوردینه میکنند، عوامل دناتوره کننده قوی محسوب میشوند.
2-3- بررسی ساختار آنزیمها در مایعات یونی
در گزارشی از لیو و همکاران فعالیت و ساختار آنزیم لیپاز CRL انکوبه شده در 17 نوع مایع یونی مختلف مورد بررسی قرار گرفت. نتایج نشان داد که انتخاب نوع آنیون اثر مهمتری بر فعالیت آنزیم در واکنش استریفیکاسیون داشته است و مایعات یونی محلول در آب اثر منفی بر فعالیت آنزیمی داشتهاند. مطالعات ساختاری این گروه با روش FTIR تا حدودی تغییرات ساختاری مرتبط با تغییرات فعالیت آنزیم را نشان داد. هرچند افزایش فعالیت دیده شده در برخی موارد را نمیتوان با دادههای تجربی حاصل از بررسی ساختار ارتباط داد (Liu et al., 2013).
در بررسی ساختاری آنزیم لاکاز در مخلوط آبی مایعات یونی [C4MIM][TfO]، [C4MPy][TfO]، [TMA][TfO] با روشهای CD و فلورسانس اثر مثبت مایع یونی [C4MA][TfO] بر پایداری ساختاری آنزیم نسبت به دو نوع دیگر نشان داده شد. در این مطالعه نتایج مطالعات ساختاری با نتایج حاصل از بررسی فعالیت آنزیمی مطابقت داشتند (Yua et al., 2013).
در مطالعه ساختاری دیگری به کمک فلورسانس و FTIR اثر مایعات یونی ایمیدازولیومی محلول در آب بر ساختار دو آنزیم α- آمیلاز باسیلوس لیکنیفورمیس و آمیلولیکوئی فاسینس مورد بررسی قرار گرفت. این بررسی نشان داد که آنزیم α- آمیلاز در محیط بافری و محلول آبی مایع یونی [C4MIM][Cl] لخته شده و دناتوره میشود. در حالیکه محلول آبی مایع یونی [C6MIM][Cl] به طور قابل ملاحظهای مانع از دناتوره شدن آنزیم میشود (Dabirmanesh et al., 2011).
اهداف
بررسی اثر مایعات یونی مختلف روی پایداری و فعالیت آنزیمهای لیپاز تا حدودی انجام شده است، اما مطالعه اثر طولهای مختلف زنجیره کاتیونی مایعات یونی روی آنزیم و بررسی چگونگی تغییر ساختار آنزیم و اثر آن بر فعالیت آنزیمی کمتر مورد توجه قرار گرفته است. همچنین با توجه به اثرات متفاوت مایعات یونی بر روی آنزیمهای مختلف، در این پژوهش اثر مایعات یونی روی آنزیم لیپاز TTL، یک آنزیم گرمادوست با پتانسیل کاربردهای صنعتی، مورد بررسی قرار میگیرد. بنابراین اهداف این پژوهش عبارتند از:
بررسی اثر غلظتهای مختلف مایعات یونی بر فعالیت هیدرولازی آنزیم TTL
بررسی اثر مایعات یونی با کاتیون و آنیونهای مختلف بر پایداری دمایی آنزیم TTL
مطالعه پایداری دمایی بر اساس تغییر در ساختار سوم آنزیم TTL در حضور و عدم حضور مایعات یونی
فرضیه
با استفاده از مایع یونی مناسب به عنوان محیط واکنش میتوان به پایداری بیشتر و فعالیت بهتری از آنزیم دست یافت.
فصل سوم
مواد و روشها
3-1- ابزار
انواع ظروف و لوازم آزمایشگاهی (ارلن، بشر، پلیت، بورت، کندانسور و غیره)
سمپلر
ترازو حساس (MettlerToledo)
کیسه دیالیز
استیرر (Vision)
pH سنج (Metrohm)
هات بلاک (پدیده نوژن پارس)
بن ماری (ریحان طب)
آون خلاء
سیستم تغلیظ پروتئین و فیلتر مربوطه (Amicon)
هود لامینار (ژال تجهیز)
انکوباتور (ریحان طب)
شیکر انکوباتور (Vision)
سانتریفوژ (Sigma 16-P)
سانیکاتور (Bandelin Sonicator)
اسپکتروفتومتر UV-Visible (Shimadzu)
اسپکتروفتومتر فلورسانس (Perkin Elmer LS 45)
اتوکلاو (ریحان طب)
پمپ پریستالتیک (Longer Pump BT100-2J)
دستگاه Power(Paya Pajoohesh)
3-2- مواد
3-2-1- مواد لازم جهت تهیه مایعات یونی
آلکیل هالید ها (برومواتان، بروموبوتان، بروموهگزان، برومودودکان) (Merck)
متیل ایمیدازولیوم (Merck)
آمونیوم هگزافلوروفسفات (Acros Organics)
دی اتیل اتر (Panreac)
3-2-2- مواد لازم جهت تهیه آنزیم لیپاز درون سلولی TTL
3-2-2-1- سوش باکتری
باکتریxL1blue E.coli (جهت تکثیر پلازمید حاوی ژن لیپاز)
باکتری E.coli BL21 (جهت بیان پروتئین)
3-2-2-2- مواد مورد نیاز برای ترانسفورماسیون
پلازمید حاوی ژن لیپاز درون سلولی TTL (pQE-TTL)
KCM (KCl, CaCl2, MgCl2)
آب مقطر استریل
3-2-2-3- مواد مورد نیاز برای کشت باکتری و استخراج عصاره سلولی
تریپتون، عصاره مخمر، نمک سدیم کلرید (Merck) (جهت تهیه محیط LB (Louria Bertoni))
آگار (Merck)
آنتی بیوتیک آمپی سیلین
ایزوپروپیل β-D- تیوگالاکتوزید (IPTG) (سیناژن)
آنزیم لیزوزیم (CinnaGen)
بافر تریس (Merck)
سدیم فسفات (Merck)
3-2-2-4- مواد مورد نیاز برای تخلیص آنزیم لیپاز
رزین Q- Sepharose
رزین Gel filtration
3-2-2-5- مواد مورد نیاز برای سنجش کمی میزان پروتئین و ژل SDS PAGE
رنگ کوماسی بلو G-250 و R-250
فسفریک اسید و استیک اسید گلاسیال (Merck)
اتانول و متانول مطلق (Merck)
آکریل آمید و بیس آکریل آمید (Merck)
TEMED(N,N,N,N'-tetramethylenediamine)
سدیم دو دسیل سولفات (SDS) (Merck)
آمونیوم پرسولفات (APS)
2- مرکاپتواتانول
بروموفنول بلو
آلبومین سرم گاو (BSA)
بافر تریس و گلایسین (Merck)
3-2-3- مواد مورد نیاز برای سنجش فعالیت آنزیمی لیپاز
سوبسترای پارانیتروفنیل پالمیتات (Sigma)
استونیتریل (Merck)
بافر تریس (Merck)
3-2-4- نرم افزارها
نرم افزار Excel 2010(جهت رسم نمودارها)
نرم افزار Sigma Plot (جهت رسم طیف های فلورسانس)
3-3- روشها
3-3-1- روش تهیه مایعات یونی
3-3-1-1- روش تهیه مایعات یونی با آنیون برمید
در این پژوهش جهت تهیه مایعات یونی از میزان مول برابر از آلکیل هالید و متیل ایمیدازولیوم استفاده شد. در این روش متیل ایمیدازولیوم قطره قطره در فواصل زمانی مساوی به آلکیل هالید که در حال بهم خوردن شدید بود اضافه شد و محلول نهایی در حال بهم خوردن شدید به مدت 24 ساعت در دمای °C 50 رفلاکس شد (شکل3-1). در مرحله بعد محلول بدست آمده با دی اتیل اتر شستشو داده شد تا مواد آلی واکنشگر باقیمانده حذف شود. مرحله شستشو 10 تا 15 بار انجام شد. پس از هر بار افزودن دی اتیل اتر به مایع یونی و بهم زدن شدید آن، محلول در حال سکون قرار داده شد تا دو فاز مایع یونی و دی اتیل اتر از هم جدا شوند. سپس مایع یونی شسته شده به مدت 24 ساعت در آون°C 50 گذاشته شد تا دی اتیل اتر آن کاملا تبخیر شود.

شکل 3-1- سنتز مایعات یونی با آنیون برمید
3-3-1-2- روش تهیه مایعات یونی با آنیون هگزافلوروفسفات
در این مرحله میزان مول مساوی از نمک آمونیوم هگزافلوروفسفات در مقداری آب حل شد و سپس محلول نمک آمونیوم هگزافلوروفسفات به کمک بورت قطره قطره به محلول آبی مایع یونی دارای آنیون برومید در حال بهم خوردن شدید اضافه گردید. سپس به مدت 24 ساعت در دمای اتاق محلول روی استیرر بهم خورد تا واکنش جایگزینی آنیون به خوبی انجام شود. در مرحله بعد شستشوی مایع یونی جدید با آب جهت جداسازی آنیون برومید انجام شد و تست برم دار بودن به کمک نیترات نقره نبود یون برمید را در مایع یونی PF6- دار تایید کرد. سپس مایع یونی PF6- دار بدست آمده به مدت 24 ساعت برای حذف آب موجود در محیط در آون خلاء در دمای °C 70 قرار داده شد. مایع یونی ساخته شده در ظرف درب دار نگهداری شد.
3-3-2- روش کشت باکتری و بیان القایی پروتئین نو ترکیب
3-3-2-1- محیط کشت باکتری E. coli
در این پژوهش از محیط کشت Luria Bertani (LB) برای رشد سویههای اشرشیاکلی به صورت مایع و جامد (حاوی آگار) استفاده گردید. همچنین در محیط کشت سوشهای حامل ساختار پلاسمید از آنتیبیوتیک آمپیسیلین با غلظت نهایی µg/ml 100 استفاده شد. جدول 3-1 نشان دهنده ترکیبات محیط کشت Luria Bertani است. شایان ذکر است که آنتی بیوتیک پس از استریل شدن محیط کشت توسط اتوکلاو و رسیدن دمای محیط کشت به حدود C° 50 اضافه میگردد.
جدول 3-1- محیط کشت Luria Bertani
ترکیب غلظت
عصاره مخمر 5/0 درصد
تریپتون 1 درصد
NaCl 1 درصد
آگار (محیط کشت جامد) 2 درصد
3-3-2-2- انتقال DNA خارجی به باکتری E.coli
3-3-2-2-1- تهیه سلول های مستعد به روش شیمیایی:به منظور تهیه سلولهای مستعد برای عمل ترانسفورماسیون (انتقال پلاسمید به داخل سلول)، ابتدا یک کشت خطی از سلولهای ذخیره شده مورد نظر در ازت مایع بر روی پلیت LB تهیه و یک شب در گرمخانه Cº 37 قرار داده میشود. سپس یک کلنی از روی پلیت برداشته و در شرایط استریل به 25 میلی لیتر محیط کشت مایع LB افزوده و به مدت 4 الی 6 ساعت در دمای cº37 با حرکت دورانی rpm180رشد داده میشود تا تراکم سلولها در محیط کشت به جذبی ما بین 4/0 تا 6/0 در طول موج 600 نانومتر برسد. سلولها را در دمای ºC 4 به مدت 10 دقیقه در g4000 سانتریفوژ کرده و آنها را در5/2 میلیلیتر محیط خاص مناسب برای تهیه ی این نوع سلولها به نام محیط TSB که طبق جدول3-2 تهیه گردید، به صورت معلق در میآوریم. لازم به ذکر است که در این حالت غلظت سلولی به میزان 10 برابر افزایش داده میشود. سپس سلولهای معلق شده را به مدت 10 الی 60 دقیقه (بسته به نوع سلول E.coli مورد استفاده) برروی یخ قرار میدهیم. محصول سلولی حاصل را در مقادیر 200-100 میکرولیتری در لولههای اپندروف استریل تقسیم کرده و بلافاصله در ازت مایع قرار میدهیم. این سلولها را میتوان در فریزر cº80- نگهداری کرد و به عنوان سلول مستعد به مدت حداقل شش الی دوازده ماه مورد استفاده قرار داد. لازم به ذکر است که از هر لوله تنها یک بار میتوان به عنوان سلول مستعد استفاده کرد.
3-3-2-2-2- انتقال پلاسمید به سلول مستعد :بین 1 تا 10 میکرولیتر بسته به غلظت محلولDNA موجود (معادل 1-1/0 میکروگرم) پلاسمید، در شرایط استریل در یک لوله اپندروف ریخته وبه آن پنج میکرولیتر از بافر KCM 5X که طبق جدول3-3 تهیه گردید، افزوده و با آب مقطر استریل به حجم lµ25 میرسانیم. مخلوط در یخ نگهداری میشود. حال سلول مستعد را از فریزر ºC80- خارج و اجازه میدهیم تا ذوب شود . 25 میکرولیتر از سلول مستعد را به محلول حاوی پلاسمید افزوده و به مدت 15 الی 20 دقیقه در دمای ºC4 قرار میدهیم. سپس در دمای ºC 42 به مدت 105 ثانیه گرمادهی شده که در این مرحله، ملکولهای DNA بر روی سطح سلول ها رونشینی شده و به درون سلول منتقل خواهند شد . بلافاصله سلولها را به درون یخ منتقل کرده و به آنها 100 میکرولیتر محیط LB سرد استریل و بدون آنتیبیوتیک،اضافه و به مدت یک ساعت در دمای Cº37 و حرکت دورانی مناسب قرار میدهیم. در نهایت 150 میکرولیتر محیط حاصل را بر روی پلیت حاوی محیط کشت انتخابی برده و با استفاده از لوپ شیشهای استریل به آرامی بر روی تمامی سطح پلیت بطور کامل و یکنواخت پخش میگردد . پس از جذب سلولها بر روی سطح پلیت، پلیتها به صورت وارونه در گرمخانه cº37 به مدت 16 ساعت قرار داده میشوند.
لازم به ذکر است که این پلیتها، حاوی آنتیبیوتیک خاصی است که ژن مقاومت مربوطه بر روی پلاسمید مورد نظر وجود دارد و در نتیجه تنها سلولهایی که حاوی پلاسمید نوترکیب هستند قادر به رشد بر روی محیط انتخابی هستند.
جدول 3-2- نحوه تهیه محلول TSBترکیبات مورد نیاز مقدار
Luria Bertani 75 (ml) 2X
DMSO 5/7 (ml)
PEG 400 3/13 (ml)
MgSo4 5/1 (ml)
MgCl2 5/1 (ml)
ddH2O 3/51 (ml)
Total valume 150 (ml)
جدول 3-3- نحوه تهیه محلول KCMغلظت مناسب برای تهیه محلول 5X ترکیبات مورد استفاده
(M) 5/0 KCl
(M) 15/0 CaCl2
(M) 25/0 MgCl2
3-3-2-3- روش تهیه استوک باکتری
برای تهیه استوک از باکتریهای حاوی ساختار پلاسمید، ابتدا از باکتری مورد نظر کشت یک شبه گذاشته شد. سلولها به کمک سانتریفوژ رسوب داده شدند و سوپ رویی دور ریخته شد. سپس به نسبت 1:1 گلیسرول استریل 50% به محیط کشت LB اضافه شد. آنگاه رسوب سلولها در 15 حجم اولیه محیط کشت، از این محلول حل شدند. در آخر آمپیسیلین با غلظت نهایی μg/ml 100 به سلولها اضافه شد و در C°20- ذخیره گردید.
3-3-2-4- کشت باکتری و القای بیان آنزیم نوترکیب
کلنی مورد نظر از بین باکتریهای ترانسفورم شده انتخاب شد و به محیط کشت LB دارای آنتی بیوتیک آمپیسیلین (μg/ml100) انتقال یافت. پس از رشد باکتری به مدت 16 ساعت در دمای °C 37، کشت 1 درصد تلقیح از نمونه باکتری رشد کرده، در حجم ml 20 محیط LB با آمپی سیلین ایجاد شد. پس از گذشت 4 ساعت از کشت اولیه باکتری ها در دمای °C 37، زمانی که کدورت محیط در طول موج nm 600 به 9/0 رسید، با افزودن IPTG (با غلظت نهایی mM 1) به محیط های کشت بیان پروتئین نوترکیب القا شد و با کاهش دمای انکوباتور به °C 30 شرایط برای تولید آنزیم نوترکیب توسط باکتریها فراهم شد. پس از گذشت 5 ساعت از زمان القا، سلول های باکتری به کمک سانتریفوژ به مدت 5 دقیقه با دور rpm 5000 رسوب داده شدند و در 110 حجم اولیه، در بافر تریس mM 50 دوباره حل شدند و به مدت 16 ساعت در °C 20- فریز شدند.
3-3-2-5- بهینه سازی بیان آنزیم نوترکیب
در این بخش بهینهسازی بیان پروتئین نوترکیب ابتدا با انتخاب بهترین کلنی از نظر بیان TTL بر اساس میزان فعالیت آنزیمی عصاره سلولی و سپس بهینه سازی زمان پس از القا بر اساس روش SDS-PAGE انجام شد.
3-3-2-5- 1- انتخاب بهترین کلنی از نظر بیان آنزیم TTL
ساختار پلاسمید حاوی ژن آنزیم TTL به روش گفته شده در بخش 3-3-2-2 به درون باکتری منتقل شد. سپس با لیز باکتریها پروتئینهای درون سلول جدا شدند (بخش 3-3-2-5) و سنجش فعالیت آنزیمی در مورد هرکدام از نمونهها انجام شد (بر اساس روش ذکر شده در بخش 3-3-6). از بین 6 کلنی ترانسفورم شده بر اساس میزان توانایی تولید آنزیم 1 کلنی انتخاب شد و به صورت غلیظ شده در دمای°C 20- ذخیره گردید و در مراحل بعد مورد استفاده قرار گرفت.
3-3-2-5-2- انتخاب بهترین زمان پس از القا
برای بهینه سازی بیان یک پروتئین نوترکیب پیشنهاد شده است که یک آنالیز زمانی با SDS-PAGE برای تشخیص سطح بیان پروتئین در زمانهای مختلف پس از القا انجام گیرد. محتوای پروتئین درون سلولی به طور معمول دارای یک تعادل بین میزان پروتئینهای محلول درون سلول و میزان پروتئینهای موجود دراجسام نامحلول و پروتئینهای در حال خراب شدن است. با بررسی میزان پروتئین موجود در عصاره سلولی در زمانهای مختلف پس از القا، میتوان مدت زمان پس از القا را یافت.
ابتدا از کشت یک شبه باکتری در محیط LB جدید به همراه آمپیسیلین، 1% تلقیح انجام شد و به مدت 4 ساعت در دمای °C 37 با rpm 200 به باکتریها اجازه رشد و تکثیر داده شد. زمانی که کدورت محیط در طول موج nm 600 به 9/0 رسید، ابتدا ml1 از باکتریها به عنوان نمونه القا نشده برداشته شد و پس از سانتریفوژ rpm 5000 به مدت 5 دقیقه، رسوب سلولی در μl 50 بافر نمونه SDS-PAGE با غلظت X1 (جدول 3-5) حل شد. سپس القای بیان پروتئین با IPTG با غلظت نهایی mM انجام شد. محیط کشت در دمای °C 30 قرار داده شد. پس از گذشت زمان 4، 5، 6 و24 ساعت از القا، ml 1 از محیط کشت نمونهبرداری شد و پس از سانتریفوژ رسوب سلولی در μl 100 بافر نمونه SDS-PAGE با غلظت X1 (جدول 3-6) حل شد. نمونهها تا زمان انجام SDS-PAGE در 20- نگهداری شد.
3-3-2-6- استخراج عصاره سلولی حاوی لیپاز TTL
سلول های فریز شده با قرار گرفتن در دمای اتاق ذوب شدند و سپس به مدت 2 تا 3 ساعت در حضور آنزیم لیزوزیم با غلظت نهایی mg/ml 1/0 انکوبه شدند. آنگاه هر ml 5 از محلول باکتریها با استفاده از دستگاه سانیکاتور با شدت % 60 در مراحل 30 ثانیه ای با رعایت فواصل زمانی 1 دقیقه ای که محلول در یخ قرار داده می شد، در مجموع به مدت 4 دقیقه سانیکیت شدند. سپس پروتئین های دناتوره شده، غشاهای سلولی و سایر عوامل نامحلول به کمک سانتریفوژ با دور rpm 8500 به مدت 10 دقیقه جدا سازی شدند و محلول رویی به عنوان مخلوط پروتئینی حاوی آنزیم لیپاز مورد استفاده قرار گرفت.
3-3-3- روش تخلیص آنزیم لیپاز TTL
3-3-3-1- روش رسوب دهی دمایی
در مرحله اول تخلیص، با توجه به مقاومت دمایی آنزیم TTL، رسوب دهی دمایی مخلوط پروتئینی در دمای °C 65 در بن ماری به مدت 40 دقیقه و بلافاصله یخ گذاری به مدت 30 دقیقه به منظور حذف پروتئین های غیر مقاوم به دما انجام گردید. سپس با سانتریفوژ دور rpm 13000 پروتئینهای دناتوره شده رسوب داده شدند و محلول رویی به عنوان نمونه پروتئینی با خلوص نسبی مورد استفاده قرار گرفت. مقداری از آنزیم نیز جهت استفاده به صورت پودر خشک به کمک دستگاه فریزدرایر لیوفیلیز شد.
3-3-3-1-1- بهینه سازی رسوب دهی دمایی
جهت انتخاب بهترین زمان حرارتدهی برای رسیدن به بیشترین خلوص ممکن و ایجاد کمترین آسیب به آنزیمهای TTL موجود در مخلوط پروتئینی، عصاره سلولی باکتری حاوی پروتئین نوترکیب (TTL)، به 6 بخش تقسیم شد و هر کدام به مدت زمان مشخصی (30، 40، 50، 60، 70 و 80 دقیقه) در دمای °C 65 قرار داده شد. پس از یخگذاری نمونهها، پروتئینهای دناتوره شده به کمک سانتریفوژ جدا شدند و μg 12 از پروتئینهای مقاوم به حرارتدهی باقیمانده در محلول مربوط به 6 نمونه، به همراه بافر نمونه حاوی رنگ، وارد چاهکهای SDS-PAGE شد(بخش 3-3-5) و بهینه مدت زمان رسوبدهی دمایی مشخص گردید.
3-3-3-2- روش تخلیص به کمک ستون کروماتوگرافی
در این مرحله از ستون کروماتوگرافی تعویض آنیونی Q- سفاروز با شیب نمکی سدیم کلرید در محدوده 0 تا 5/0 مولار در pH 8 بافر تریس استفاده شد. پس از تشخیص غلظت بهینه نمک برای جداسازی آنزیم TTL(حدود غلظت 15/0)، به صورت مرحلهای و طی 3 مرحله غلظتی از نمک سدیم کلرید (مرحله اول: غلظت 0، مرحله دوم: غلظت 1/0 مولار، مرحله سوم: غلظت 15/0 مولار) آنزیم TTL از سایر پروتئینهای مخلوط پروتئینی جدا گردید.
3-3-4- روش سنجش کمی پروتئین
در این پژوهش از دو روش مختلف جهت اندازه گیری کمی میزان پروتئین استفاده شد:
3-3-4-1- سنجش کمی میزان پروتئین به روش برادفورد
محلول برادفورد طبق جدول 3-5 تهیه گردید. ابتدا پودر کوماسی بلو به مدت 1 تا 2 ساعت در تاریکی با اتانول بر روی استیرر حل میکنیم. در ادامه اسید فسفریک را به آن افزوده و حجم آن را با آب مقطر به 1000 میلیلیتر میرسانیم. سپس محلول برادفورد تهیه شده را با کاغذ واتمن فیلتر کرده و در ظرف تیره نگهداری میکنیم.
جدول 3-5- نحوه تهیه محلول برادفوردمواد مورد نیاز مقدار
Comassie Brilliant Blue G-250 1/0 گرم
اتانول 95% 50 میلیلیتر
فسفریک اسید 85% 100 میلیلیتر
در روش برادفورد در اثر برهمکنش اختصاصی رنگ کوماسی بلو G-250 با آمینواسیدهای آروماتیک پروتئین (آرژینین، تریپتوفان، تیروزین، هیستیدین، فنیلآلانین) در محلول اسیدی (در فرم آنیونی آمینواسیدها)، رنگ آبی ایجاد میشود که شدت این رنگ در غلظتهای کم پروتئین نزدیک به قهوهای و در غلظتهای بالا آبی تیره است. میزان جذب نوری محلول پروتئینی به همراه معرف رنگی در 595 نانومتر خوانده میشود که بسته به غلظت پروتئین، مقدار جذب اندازهگیری شده در این طول موج، متفاوت است. برای تعیین غلظت کمی پروتئین ها، ابتدا µl 100 از غلظت های مختلف BSA (g/mlµ20،40،60،80،100) تهیه شد و برای تهیه نمودار استاندارد مورد استفاده قرار گرفت. سپس از نمونههای حاوی پروتئین مورد سنجش نیز به حجم نهایی 100 میکرولیتر، رقتهایی تهیه کرده و یک میلیلیتر از معرف برادفورد به هر کدام از نمونهها اضافه گردید. طی مدت زمان 5 تا 15 دقیقه پس از افزودن معرف برادفورد جذب آنها در 595 نانومتر خوانده شد. سپس جذب نوری به دست آمده برای پروتئین نامعلوم، بر اساس معادله خط به دست آمده از نمودار استاندارد، به غلظت پروتئینی تبدیل گردید.
3-3-4-2- سنجش کمی میزان پروتئین به روش جذب nm 280
در این روش با اندازه گیری میزان جذب نوری محلول پروتئین در طول موج nm 280 میزان پروتئین را تعیین می کنیم. این روش بر اساس میزان جذب نوری آمینواسید های آروماتیک مانند تیروزین طراحی شده است.
3-3-5- الکتروفورز ژل پلیآکریل آمید با SDS(SDS-PAGE)
این روش به طور معمول برای بررسی مراحل خالص سازی، محاسبه مقدار نسبی و تعیین وزن مولکولی پروتئینها و پپتیدها بکار میرود. قابلیت تفکیککنندگی بسیار بالای روش SDS-PAGE عمدتاً ناشی از وجود SDS و ویژگی مناسب ژل پلیاکریل آمید در غربال پروتئینهای مختلف است. در این روش پروتئینها بر اساس اندازه از هم جدا میشوند. با جوشاندن نمونهها و گذاشتن آنها در شرایط احیا، این ملکولها خطی شده و SDS به آنها بار منفی میدهد، که میزان بار منفی بسته به طول آنها متفاوت خواهد بود. بنابراین پروتئینها به این صورت بر اساس اندازهشان در میدان الکتریکی ایجاد شده با سرعتهای متفاوتی حرکت کرده و از هم جدا میشوند. مراحل این نوع الکتروفورز بر اساس دستورالعمل ارائه شده در Qiagen Protocols و به شرح زیر انجام گردید:
3-3-5-1- آماده سازی محلولهای الکتروفورزمحلول استوک اکریل آمید (8/30 %): 30 گرم اکریل آمید و 8/0 گرم بیس اکریل آمید در حدود 50 میلیلیتر آب حل شد و سپس حجم نهایی آن به 100 میلیلیتر رسید. محلول در ظرف تیره نگهداری شد (این محلول تا 3 ماه در یخچال قابل استفاده است).
بافر ژل پایین (ژل جدا کننده): این بافر دارای غلظت 5/1 مولار تریس با 8/8~pH است. برای تهیه آن 2/18 گرم تریس- باز در حدود 70 میلیلیتر آب مقطر حل شد. pH آن با اسید کلریدریک 2 مولار تا 8/8 پایین آمد و حجم نهایی با آب مقطر به 100 میلیلیتر رسید.
بافر ژل بالا (ژل متراکم کننده): این بافر دارای غلظت 5/0 مولار تریس با 8/6~pH است. برای تهیه آن 1/6 گرم تریس باز در حدود 50 میلیلیتر آب مقطر حل شد. pH آن با اسید کلریدریک 2 مولار تا 8/6 پایین آمد و حجم نهایی با آب مقطر به 100 میلیلیتر رسید.
بافر الکتروفورز: 5/1 گرم تریس- باز، 2/7 گرم گلیسین و 5/0 گرم SDS در 500 میلیلیتر آب مقطر حل شد. pH این بافر حدود 3/8 است.
APS 10%: 1/0 گرم APS در یک میلیلیتر آب مقطر حل شد (این محلول باید تازه تهیه شود).
TEMED 100%
بافر نمونه (4X): طبق جدول 3-5 تهیه گردید.
محلول رنگآمیزی: 05/0 گرم کوماسی آبی 250-R در 40 میلیلیتر متانول حل شد و محلول به مدت 1 ساعت در تاریکی روی استیرر بهم خورد. سپس 10 میلیلیتر اسید استیک گلاسیال و 50 میلیلیتر آب مقطر به آن اضافه گردید. غلظت رنگ در این محلول 05/0% وزنی/ حجمی است. قبل از استفاده محلول رنگ با کاغذ واتمن صاف شد و در ظرف تیره نگهداری میشود.
محلول رنگبر: 15 میلیلیتر متانول، 10 میلیلیتر اسید استیک گلاسیال و 75 میلیلیتر آب مقطر با هم مخلوط شدند (بالا بردن نسبت متانول رنگبری را تسریع میکند. با این حال باید توجه داشت که اگر ژل مدت طولانی در محلولهایی با درصد بالای متانول قرار گیرد، باندهای پروتئینی نیز بیرنگ میشوند).
3-3-5-2- آماده سازی سیستم الکتروفورزیک قالب شیشهای به کمک صفحات شیشهای کاملاً تمیز و فاصلهاندازها که با توجه به ضخامت مورد نیاز ژل انتخاب شده اند، ایجاد شد و با چند گیره محکم گردید. به انتهای صفحات شیشهای به اندازه 2/0 سانتیمتر آگار مذاب 5/0% اضافه شد.
محلول ژل پایین (ژل جدا کننده): مقادیر مورد نیاز برای تهیه ژل با درصد مشخص در جدول 3-6 آورده شده است. پس از افزودن مواد، محلول را به سرعت بهم زده و با دقت در قالب شیشهای تا ارتفاع مناسبی ریخته شد، به طوریکه حدود 3 سانتیمتر فضا برای ژل بالا باقی ماند. سپس به آرامی از کناره شیشه روی سطح ژل اتانول اضافه گردید (این کار به منظور صاف شدن ژل و جلوگیری از چین خوردن در اثر خشک شدن به دلیل تماس هوا با آن است). انعقاد ژل پایین معمولاً 45-15 دقیقه طول میکشد.
محلول ژل بالا (ژل متراکم کننده) طبق جدول 3-6 تهیه شد ، بعد از انعقاد ژل پایین، اتانول روی ژل پایین کاملاً خالی شد و پس از تهیه محلول ژل بالا و هم زدن آن، سریعاً تا ارتفاع مناسب روی ژل پایین ریخته شد. سپس شانه در ژل بالا قرار گرفت، به صورتی که حدود 5/1 سانتیمتر از سطح ژل پایین فاصله داشت. انعقاد ژل بالا حدود 45-60 دقیقه طول میکشد.
پس از خارج ساختن فاصلهانداز پایین از حد فاصل شیشهها، قالب شیشهای با چند گیره به تانک الکتروفورز متصل گردید و مخازن بالا و پایین تانک با بافر الکتروفورز پر شد (به وسیلهی یک سرنگ حبابهای هوا در حد فاصل شیشهها خارج شد)، سپس شانه به آرامی خارج و درون چاهکها با تزریق بافر الکتروفورز تمیز گردید.
برای آماده سازی نمونههای پروتئینی، یک حجم بافر نمونه به 3 حجم نمونهی پروتئین حاوی 6 تا 20 میکروگرم پروتئین اضافه شد (بافر نمونه 4x) و به مدت 5 دقیقه در دمای ˚C 100 قرار داده شد. سپس حجم مناسبی از آن (حداکثر 40 میکرولیتر) به کمک سمپلر وارد چاهک شد.
کابلها به الکترودهای مربوطه وصل گردید. برای الکتروفورز در جریان الکتریکی ثابت، شدت جریان 30-20 میلیآمپر برای یک مینی ژل مناسب است. در صورت استفاده از ولتاژ ثابت، ولتاژ 150-100 ولت مناسب میباشد. جریان برق قبل از رسیدن رنگ نشانگر به انتهای ژل قطع شد (حدود 5/2-5/1 ساعت).

user7-373

3-2-2- برآورد رسوب جاده با SEDMODL .................................................................
3-2-3- برآورد رسوب جاده با WARSEM ....................................................................
3-2-4- اندازه‌گیری میدانی رسوب .........................................................................................
3-2-5- محاسبات آماری ..........................................................................................................
فصل چهارم: نتایج
4-1-موقعیت جاده وسگمنت‌ها .....................................................................................................
4-2- مقایسه و ارزیابی دو مدل WARSEM و SEDMODL ..........................................
4-2-1- محاسبه فرسایش .................................................................................................................
فصل پنجم: بحث و نتیجه‌گیری
5-1- بحث............................................................................................................................................
5-2- نتیجه‌گیری ............................................................................................................................
5-3- پیشنهادات .............................................................................................................................
فصل اول
کلیات

مقدمه
در سطح جهانی پس از دهه‌های 60 و 70 میلادی علاوه بر ارزیابی‌ها و مطالعات فنی و اقتصادی برای پروژه‌های عمرانی از جمله راه‌سازی، ارزیابی زیست محیطی آغاز گردید. اما در کشور ما جز در سال‌های اخیر توجه چندانی به شناخت و ارزیابی‌ پیامد‌های اجتماعی – اقتصادی و زیست محیطی نشده است. با توجه به اینکه انجام ارزیابی زیست محیطی پروژه‌های راه‌سازی باعث شناخت و پیش‌بینی هرچه دقیق‌تر پیامد‌ها و اثرات اجرای این پروژها بر جوانب مختلف اجتماعی- اقتصادی وبه خصوص محیط‌های طبیعی، گیاهی، جانوری، آب، خاک و هوا گزینه‌‌های مناسب‌تر برای کاهش این اثرات نامطلوب را ارائه می‌نماید و برنامه‌های مدیریت و پایش زیست‌محیطی را مد نظر قرار می‌دهد (بی نام،1386).
جنگل‌های پهن برگ مناطق معتدله دارای اهمیت فراوانی از جهت بهبود کیفیت آب و تولید چوب هستند. برای دسترسی و مدیریت هر چه بهتر این جنگل‌ها وجود جاده‌های جنگلی ضروری بوده ولی از طرفی جاده‌های جنگلی با عملکرد اکولوژیکی و هیدرولوژیکی این جنگل‌ها در تضاد می‌باشد. جاده‌های جنگلی باعث به هم خوردن مسیر و سرعت آب‌های سطحی و زیر سطحی شده و سبب تغییر الگوی توزیع آب می شوند. افزایش سرعت رواناب در سطح جاده‌ها و کاهش پوشش گیاهی باعث تولید رسوب و انتقال آن به آبراهه‌های پایین دست شده و در نتیجه باعث آلودگی منابع و زیستگاه‌های آبی می‌شود (راهبری سی سخت و عبدی، 1389). هدر رفت خاک پدیده‌ای است که در صورت بروز در هر منطقه‌، حاصلخیزی خاک، دوام و پایداری ابنیه فنی و سازه‌های مختلف، پایداری دیواره‌های خاکی، کیفیت منابع آب سطحی، توازن بوم شناختی و منظره طبیعت را به مخاطره می‌اندازد (پارساخو 1391).
طراحی سطح جاده های جنگلی از اهمیت ویژهای برخوردار است به طوری که درجاده های تثبیت نشده سطح جاده پتانسیل تولید رسوب بالایی دارد، عبور و مرور وسایل نقلیه باعث خرد شدن مواد سطحی جاده می‌شود و آن‌ها را به ذرات ریز قابل حمل تبدیل می‌نماید. همچنین رد چرخ‌های وسایل نقلیه افزایش میزان فرسایش و حمل رسوبات را به دنبال دارد تمرکز آب در این مکان‌ها باعث افزایش انرژی رواناب و قدرت جریان رواناب شده و قدرت حمل ذرات درشت را افزایش می‌دهد، تناوب عملیات حفاظتی و نگهداری جاده نیز می‌تواند در افزایش و یا کاهش میزان تولید رسوب از سطح جاده‌ها موثر باشد عملیات مسطح سازی جاده می‌تواند مکان‌های تجمع هرز آب (شیارها و رد چرخ‌ها) را از بین ببرد و فرسایش را کاهش دهد. اما از طرف دیگر باعث خرد شدن مواد سخت سطح جاده شده و آن‌ها را به ذرات ریز قابل حمل تبدیل می‌کند(بهزادفر،1383). سطح جاده می‌تواند به شکلی طراحی شود که شیب داخلی یا شیب خارجی داشته باشد و یا به شکل گرده ماهی باشد جاده‌هایی که دارای شیب داخلی هستند رواناب را به سمت جوی کناری هدایت می‌کنند در حالی شیب بیرونی رواناب را به سمت دیواره خاکریزی هدایت می‌کند و شکل گرده ماهی تلفیقی از دو عمل بالا را انجام می‌دهد تا رواناب کمتری در سطح جاده جریان داشته باشد (ارهان کاسکن، 2012).
جاده‌های جنگلی تاثیر زیادی روی آب و منابع آبی وتولید رسوب دارند به همین جهت می‌توان با شناسایی بخش‌هایی از جاده که توان تولید رسوب بالایی را دارند این اثرات را به مقدار زیادی کاهش داد. تا کنون مدیران جنگل نتوانستند رسوب جاده جنگلی را اندازه‌گیری کنند ولی امروزه به کمک متغیرهایی نظیر خصوصیات مواد سطحی جاده، شدت ترافیک، شیب، روش ساخت جاده و بارندگی می‌توان تولید رسوب را مدل سازی واز آن در جهت احیا و نگهداری جاده‌های جنگلی استفاده نمود (بهزادفر،1383).
مساله
فرسایش آبی یک فرآیندی طبیعی است که طی آن ذرات خاک در اثر برخورد قطرات باران از بستر اصلی خود جدا شده و به کمک رواناب به مکانی دیگر حمل می‌شوند(هدر رفت خاک).کاهش توان تولید مزارع، جنگل‌ها و مراتع فقط بخشی از مسئله تاسف بار فرسایش را بازگو می کند. ذرات خاک شسته شده و یا باد رفته از مناطق فرسایشی بعداً در جای دیگر مانند اراضی پست مجاور رودخانه‌ها و نهر‌ها و یا در مخازن ته نشین می‌شوند. مواد خاکی جابجا شده سبب آلودگی آب و هوا شده و هزینه سنگین اقتصادی و اجتماعی را در جامعه به دنبال خواهد داشت. خوشبختانه دهه‌های اخیر پیشرفت‌های زیادی در فهم سازوکار فرسایش و ابداع روش‌هایی که می توانند به طور موثر و توجیه پذیر از جنبه اقتصادی هدر رفت خاک را در اکثر موارد مهار کنند، صورت گرفته است.در گذشته طراحی شبکه جاده بستگی زیادی به مسائل اجتماعی و اقتصادی داشته است، در سالهای اخیر نحوه نگهداری ساختمان جاده‌های جنگلی، وضعیت رسوبدهی جاده‌ها، حجم ترافیک، آلودگی صوتی و تنوع زیستی گیاهان و جانوران حاشیه جاده مورد بحث و بررسی محققین قرار گرفته است(آکای و همکاران، 2007) وجود جاده‌ها و اهمیت آن‌ها در جنگل ضروری و غیر قابل اجتناب است استقرار جاده در جنگل خسارت‌هایی را به اکوسیستم جنگل وارد می‌کند که غیر قابل محاسبه است رسوب تولیدی ناشی از احداث جاده موجب از دست رفتن خاک و مانع از استقرار گونه‌های گیاهی جنگلی می شود(خلیل پور و حسینی ، 2008).
مدیریت اقتصادی جاده‌های جنگلی نه تنها شامل مدیریت هزینه‌های کل جاده بلکه شامل مدیریت هزینه‌های خسارت زیست محیطی ایجاد شده طی مراحل ساخت جاده و استفاده از آن نیز میشود. همچنین کارایی وسایل سنگین جاده‌‌سازی بایستی مورد مطالعه قرار گیرد تا از بهترین آن‌ها برای ساخت جاده استفاده گردد(پارساخو و همکاران، 2009). در یک جاده با میزان فاکتور ترافیک بالا معمولاً کیفیت مواد روسازی به کار رفته خوب است و در نتیجه تولید رسوب کاهش مییابد(آکای و همکاران، 2007). مدلهای مختلفی برای پیشبینی میزان رسوب دهی وجود دارد که میتوانند به کارشناسان جهت پیش‌بینی میزان تولید رسوب در جاده‌های جنگلی کمک کنند. هم چنین به منظور تجزیه و تحلیل طرح سیستم زهکشی عرضی و کاستن از حجم تحویل رسوب حاصل از جاده‌های جنگلی به رودخانه، نرم افزارها و مدل‌های مختلفی طراحی شده است(آکای وسیسان، 2005). مدلهای مختلفی مانندWEPP،SEDMODL ، STJ-EROS،WARSEM، FROSAM، CULSEDو ... برای پیشبینی میزان رسوبدهی وجود دارد که میتوانند به کارشناسان جهت پیشبینی میزان تولید رسوب در جادههای جنگلی کمک کنند. در این مطالعه ازمدلهای پیش بینی تولید رسوب WARSEM و SEDMODL برای تخمین میزان متوسط سالیانه تولید رسوب در جادههای جنگلی استفاده شد. مدلهای مذکور، یک برنامه مدلسازی مبتنی بر GIS هستند که توسط شرکتهای خصوصی در ایالات متحده آمریکا و با همکاری انجمن ملی بهسازی هوا و رودخانه توسعه پیدا کردند(داف وهمکاران2010 ). این مدلها قسمتهایی از یک جاده با پتانسیل رسوبدهی بالا در یک حوزه آبخیز را معین و مشخص میکنند. وضعیت دوری و نزدیکی جادهها به شبکه رودخانه، توسط دادههای مکانی سنجیده میشود. به منظور افزایش اعتبار مدل، اغلب مجموعهای از مشخصات مهم جاده مانند نوع کاربری، وضعیت روسازی، پهنای جاده، زمان ساخت، ارتفاع شیروانی خاکبرداری و شیب جاده به مدل اضافه میشود. مدل فرسایش سطح جاده واشنگتن توسط گروه منابع طبیعی واشنگتن طراحی شده است(داف وهمکاران2010 ). این برنامه قادر است فرآیند رسوبگذاری و زهکشی را از یک حوزه آبخیز پهناور گرفته تا یک قسمت کوچک از جاده مدلسازی کند. به کمک این مدل میتوان یک برنامه دراز مدت برای مدیریت پایدار جاده تدوین نمود. در تحقیق حاضر، هر دو مدل یاد شده جهت برآورد نرخ رسوب تولیدی توسط سطح جاده جنگلی مورد استفاده قرار گرفته و نتایج حاصل از آنها با یکدیگر مقایسه گردید. دانستن این مطلب می تواند درتعمیر و نگهداری جاده های جنگلی به نحوی که میزان رسوب تولیدی به حداقل برسد، به مدیران و طراحان این جاده‌ها کمک کند.
1-1-2-فرضیات
کارآمدی SEDMODL بیشتر از مدل WARSEM در برآورد مقدار رسوب است .
میزان رسوب برآورد شده برای سطح جاده توسط دو مدلWARSEM و SEDMODEL بیشتر از مقدار واقعی است.
1-1-3-اهداف
به کارگیری مدلهای SEDMODL و WARSEM و ارزیابی قابلیت آنها در برآورد رسوب جاده جنگلی.
مقایسه دو مدل SEDMODEL و WARSEMو بررسی میزان تفاوت آنها در برآورد رسوب جاده جنگلی.
1-2- تعاریف و مفاهیم
1-2-1- جاده جنگلی
به هر خط ارتباطی که حداقل استاندارد های لازم برای عبور کامیون‌ها را داشته باشد،جاده یا راه گفته می شود، برای دسترسی به تمام نقاط یک جنگل، مجموعه ای از راه‌ها ساخته می‌شود که به آن شبکه جاده جنگلیمی‌گویند(لطفعلیان و پارساخو،1391). ساختمان یک یک جاده جنگلی از اجزاء زیر ساخته شده است:
عرض عبور: سطح تراز در آمده یا بستر ماشین رو را عرض عبور گویند.
شانه راه: شانه های خاکی که در طرفین عرض روسازی شده قرار دارند، به حفظ مواد متشکله سطح راه، توقف اتومبیل وتامین عرض اضافی برای موارد اضطراری کمک می‌کنند.
کانال کناری: جوی کناری جهت هدایت رواناب درسمت دیواره خاک برداری ساخته میشود.(پارساخو، 1391). (شکل1-1)

شکل1-1- اجزاء پروفیل عرضی جاده (پارساخو، 1391 )
1-2-2-واحدهای همگن جاده
یک واحد همگنطولی از جاده است که از نظر ترافیک، روسازی، شیب، پهنا، ارتفاع شیروانی خاکبرداری و پوشش گیاهی تغییرات کمی در آن به چشم می‌خورد. تمام جریانات سطحی یک قطعه ممکن است در انتها به یک آبراهه طبیعی یا مصنوعی، تغییر شیب عمده و گاه یک برجستگی ختم شود. همگن بودن خصوصیات واحدها بسیار حائز اهمیت می‌باشد (دابی و همکاران، 2004).
1-2-3- فرسایش پذیری خاک
فرسایش پذیری در حقیقت بیان کمی حساسیت ذاتی خاک نسبت به جداشدن ذرات از بستر و انتقال آن توسط عوامل فرساینده است. به عبارت دیگر فرسایش پذیری خاک مقاومت خاک در برابرجدا شدن و انتقال ذرات است. خصوصیاتی از خاک که در فرسایش پذیری آن موثرند عبارتند از سرعت نفوذ، مقدار مواد آلی، بافت، ساختمان و کلوئیدهای خاک (رفاهی،1385).
1-2-4- هدر رفت خاک: مقدار خاک شسته شده از یک سطح معین را گویند که بر حسب تن در هکتار یا گرم در متر مربع بیان می شود (مهدوی، 1378).
1-2-5- نقش بافت، ساختمان و مواد آلی در هدر رفت خاک
بین مقدار سیلت یک خاک و فرسایش پذیری آن ارتباط نزدیکی وجود دارد. هر چه مقدار سیلت خاک بیشتر باشد و میزان فرسایش پذیری آن افزایش می یابد، زیرا سیلت چسبندگی ندارد. ارتباط بین درصد سیلت خاک و میزان فرسایش پذیری تحت تاثیر درصد مواد آلی و رس خاک می باشد. بین دو خاک با میزان سیلت برابر ولی مواد آلی و رس متفاوت، خاکی که میزان مواد آلی و رس بیشتری دارد، کمتر فرسایش پذیر است ( رفاهی،1385).
1-2-6- نقش سازند زمین شناسی در هدررفت خاک
با شناخت سنگ ها، حساسیت آن ها نسبت به فرسایش تا حدودی معلوم می شود. مثلا سنگ های آذرین با فرسایش کم در مقابل آب و هوا و یخبندان مقاوم هستند و سنگ های رسوبی مانند مارن های دوره میوسن با مقدار گچ و نمک زیاد پتانسیل فرسایشی بیشتر و سنگ‌های آهکی مقاومت بیشتری در مقابل فرسایش دارند (احمدی،1377).
1-2-7- نقش درجه شیب در هدر رفت خاک
نقش شیب زمین در فرسایش بر حسب خصوصیات خاک متفاوت است. اثر شیب در خاک های قابل نفوذ کاهش می‌یابد زیرا آب پیش از سرعت گرفتن در داخل خاک نفوذ می‌کند. با افزایش شیب پایداری خاک کاهش می‌یابد، به عبارت دیگر نیروی انتقال ذرات به طرف پایین افزایش می‌یابد. در صورت یکسان بودن سایر شرایط، شیب های تند فرسایش بیشتری ایجاد می‌کنند. زیرا در شیب تند، آب به سرعت به طرف پایین جاری می‌شود و انرژی جنبشی و قدرت فرسایندگی آن بیشتر می‌شود. اگر شیب زمین چهار برابر شود سرعت جریان دو برابر می‌شود یا با دو برابر شدن سرعت جریان، انرژی جنبشی و در نتیجه قدرت فرسایندگی آن چهار برابر می‌شود (مهدوی،1387).
1-2-8- نقش جهت شیب در هدر رفت خاک
شیب های آفتاب گیر معمولا نسبت به شیب‌های سایه‌گیر فرسایش بیشتری ایجاد می‌کنند، زیرا شیب‌های آفتاب‌گیر نسبت به شیب‌های سایه‌گیر گرمتر بوده و تبخیر بیشتری دارند، بنابراین ذخیره آب خاک کم شده، رشد پوشش گیاهی کمتر است. همچنین، در شیب‌های آفتاب‌گیر تابش شدید خورشید با تجزیه مواد آلی، چسبندگی خاک از دست رفته و مستعد فرسایش می‌شود (پارساخو، 1391).
1-2-9- رواناب
زمانی که شدت بارندگی خالص در سطح زمین بر شدت نفوذ فزونی یافته و ذخیره چالاب سطحی پر شود، رواناب ایجاد خواهد شد. در حقیقت، رواناب از محاسبه اختلاف بین شدت بارندگی و نرخ نفوذ‌پذیری خاک بدست می‌آیدوقتی میزان مواد منتقله بیش از توان حمل رواناب باشد، رسوب گذاری شروع خواهد شد (فرسیت و همکاران، 2006؛ رفاهی، 1385).
1-2-10- الگوی جریان رواناب روی ساختمان جاده جنگلی
با وقوع بارندگی، رواناب از دامنه بالادست جاده روی شیروانی خاکبرداری سرریز شده و این جریان به همراه رواناب حاصل از شیروانی خاک‌برداری وارد جوی کناری می‌شود (پارساخو، 1391). در جاده گرده ماهی شکل نیمی از رواناب حاصل از شیروانی خاک‌ریزی وارد جنگل می‌شود (دابی و همکاران،2004).بخشی از جریان آب داخل جوی کناری از طریق آبروهای عرضی وارد دامنه پایین دست جاده شده و در سطح جنگل رسوب می‌کند و بخش دیگر مستقیما وارد آبروهای جنگلی می‌شود (پارساخو،1391).

شکل 1-2- الگوی جریان رواناب روی ساختمان جاده جنگلی (فو و همکاران 2010)
1-2-11- مدل برآورد رسوب SEDMODL
SEDMODLیک برنامه مدلسازی مبتنی برGISاست که در سال 1999 توسط شرکتی در شهر بیزایالات متحده آمریکا و با همکاری انجمن ملی بهسازی هوا و رودخانه توسعه پیدا کردند. این مدلها قسمتهایی از یک جاده با پتانسیل رسوبدهی بالا در یک حوزه آبخیز را معین و مشخص میکنند. وضعیت دوری و نزدیکی جادهها به شبکه رودخانه، توسط دادههای مکانی سنجیده میشود (آکای و همکاران، 2008؛ سارفیلت و همکاران، 2011).
1-2-12- مدل برآورد رسوب WARSEM
WARSEMیامدل فرسایش سطح جاده واشنگتنتوسط گروه منابع طبیعی واشنگتن طراحی شده است .این برنامه قادر است فرآیند رسوبگذاری و زهکشی را از یک حوزه آبخیز پهناور گرفته تا یک قسمت کوچک از جاده مدلسازی کند. به کمک این مدل میتوان یک برنامه دراز مدت برای مدیریت پایدار جاده تدوین نمود (داف وهمکاران، 2010 ).
1-2-13- سامانه اطلاعات جغرافیایی (GIS)
به دلیل نیاز به تسریع امور اجرایی، محدود بودن منابع مالی و افزایش هزینه‌‌ها در کشور ما، استفاده از فن‌آوری‌های برتر مانند فناوری اطلاعات، سامانه اطلاعات جغرافیایی(GIS) و تکنولوژی سنجش از دور(RS)در امور جنگل‌داری ضروری و از اهمیت زیادی برخوردار است. سامانه اطلاعات جغرافیایی، یک سیستم رایانه‌ای برای مدیریت داده‌های مکانی است. هدف نهایی در کلیه پروژه‌های این سیستم،‌ ترکیب داده‌های مختلف از منابع گوناگون به منظور توصیف، آنالیز پدیده‌ها یا ایجاد نقشه‌های جدید است که می‌توانند در تصمیم گیری‌ها مورد استفاده قرار گیرند (هوشیارخواه، 1385).
فصل دوم
پیشینه تحقیق

2-1- سابقه ی تحقیق در داخل کشور:
راهبری سی‌سخت و عبدی(1389) میزان تاثیر چهار عامل عرض روسازی، شیب طولی جاده، درصد پوشش گیاهی، و سن جاده در تولید رسوب جاده های جنگلی را با کمک CULSED در جنگل آموزشی و پژوهشی خیرود کنارمورد بررسی قرار دادند. میزان رسوب تولیدی به کمک این مدل 19/13 تن در سال برآوردشد. برای نشان دادن میزان حساسیت تولید رسوب نسبت به هر یک از عوامل فوق، از ضریب همبستگی اسپیرمن بین دو متغیر استفاده کردند، نتایج نشان داد همبستگی میان عرض جاده و میزان رسوب تولیدی بیشترین و همبستگی بین سن و رسوب تولیدی کمترین مقدار است.
حسینی و همکاران (1391) از مدل پیشبینی تولید رسوب SEDMODL، برای تخمین میزان متوسط سالیانه تولید رسوب در جادههای جنگلی سری 1 جنگلهای داراب کلا استفاده کردند سپس فاکتورهایی مانند طول جاده، عرض جاده، میزان رسوب دهی با توجه به وضعیت زمینشناسی، فاکتور مربوط به سطح جاده، فاکتور ترافیک، شیب، بارندگی و فاکتور تحویل دادن رسوب با استفاده از نقشههای GIS محاسبه کردند ونتایج نشان داد میزان فرسایش که در جادههای منطقه 514/77 تن در سال میباشد و از مقدار کل با توجه به فاکتور تحویل رسوب 175/13 تن در سال به آبراههها و رودخانهها وارد میشود.
پارساخو (1391) به اندازه‌‌‌گیری مقدار رواناب و هدررفت خاک بخش‌های مختلف ساختمان جاده جنگلی در سری‌های لت تار و لولت – ساری پرداخت و با بهره‌گیری از SEDMODLنقشه خطر رسوب‌دهی شبکه جاده به دست آمد. به منظور ارزیابی کارایی این مدل نرخ رواناب و هدر رفت خاک با باران ساز مورد اندازه‌گیری مستقیم قرار گرفت. نتایج نشان داد که زمان لازم تا ظهور رواناب در جنگل و شیروانی خاکریزی طولانی تر از شیروانی خاکبرداری و سطح جاده بودسطح جاده در مقایسه با شیروانی خاکبرداری شیروانی خاکریزی و جنگل رواناب بیشتری تولید می‌کند. هم‌چنین کارایی SEDMODL در برآورد هدررفت خاک 23درصد بدست آمد.
2-2- سابقه ی تحقیق در خارج از کشور:
لوس و بلک (1999) به بررسی رسوب تولید شده ناشی از جاده جنگلی در ساحل اورگان ایالت متحده آمریکا پرداختند. به این منظور جاده جنگلی را به هفتاد و چهار قطعه تقسیم کردند و به بررسی رابطه بین تولید رسوب و ویژگیهای جاده مانند فاصله میان زهکشهای عرضی، شیب جاده، بافت خاک و ارتفاع دیواره خاکبرداری پرداختند. نتایج نشان داد که تولید رسوب از جادههای که بافت لوم رسی سیلتی دارند حدود 9 برابر بیشتر جادههایی که بافت لومی شنی دارند است،هم‌ چنین خاک های دارای مقدار زیاد رس در مقایسه با خاک های در بردارنده مقادیر زیاد سیلت، پتانسیل فرسایش پذیری کمتری دارند و دانه‌های ریز شن سریعتر از دانه‌های درشت حرکت کرده وشسته می‌شوند.
لوس و بلک (2001) به مطالعه تاثیرات ترافیک و نگهداری جاده بر تولید رسوبات جاده جنگلی در ساحل اورگان ایالت متحده آمریکا پرداختند. نتایج نشان داد که ترافیک سنگین در طول بارندگی و یا خراش جاده به منظور ایجاد کانال میزان فرسایش در جاده را افزایش میدهد. در خاکهای ریزدانه و با مواد روسازی شده با کیفیت در پلاتهای مورد مطالعه کندن (احداث) کانال رسوب بیشتری تولید میکند که این رسوب تولیدی معادل رسوبی است که ممکن است از تردد 12 کامیون حمل بار در روز ایجاد شود.
گلن مورفی و وینگ (2005) به بررسی رسوبات دریافتی در جویها در روشهای بهره برداری تک گزینی و متمرکز در یک دوره 20 ساله در 4900 هکتار از جنگلهای کوهستانی ساحل اورگان ایالت متحده آمریکا با استفاده از سه مدل در یک package پرداختند. مدل SPECTRUMبرای برنامهریزی زمان برداشت در یک پریود 150 ساله و مدل NETWORK 2000 برای تعیین جادهها در یک دوره 20 ساله برداشت از جنگل و عبور کامیونهای حامل چوب استفاده شد. مدل SEDMODL2 نیز برای تخمین رسوبات دریافتی در جویها بکار گرفته شد. نتایج نشان داد که در برداشت جنگل به شیوه متمرکز 36 درصد کاهش در کل رسوبات دریافتی در جویها نسبت به شیوه تک گزینی مشاهده گردید. جادهها در شیوه متمرکز رسوب کمتری تولید میکنند اما میزان تردد در این جادهها بالاست.
آکای و همکاران (2007) مدلهایی را بر اساس روابط تجربی میان فاکتورهای محرک فرسایش تحت عنوان SEDMODL برای حوزه آبخیز جنگلی باسکنوس واقع در غرب شهر کهرمنمرس ترکیه طراحی کردند که امکان محاسبه حجم سالانه رسوب حاصل از شبکه جادههای جنگلی را به کمک تکنیکهای GIS فراهم نمود. در این تحقیق مقدار رسوب حاصل از جادههای جنگلی درجه دو با روسازی شنی، طول 893/5 متر، عرض 5 متر و شیب طولی 14 درصد 839/0 تن در سال بدست آمد.
فیو و همکاران (2007) در جنوب شرق استرالیا به بررسی مدل WARSEM در پیش بینی رسوب دریافتی در دو منطقه Moruya-Deua و حوزه آبخیز رودخانه تورسو پرداختند. نتایج حاصل از این مدل نشان داد که رسوبات ناشی از فرسایش جاده سالیانه 17000 تن در سال میباشد و کمتر از 8 درصد از رسوبات دریافت شده از جویها نشأت میگیرند و جالب اینکه تنها 2 درصد از کل بخش جاده نیمی از این رسوبات را تولید میکند.
فیو و همکاران (2008) در جنوب شرق استرالیا به بررسی مدل WARSEM در پیش بینی رسوب دریافتی در دو منطقه Moruya-Deua و حوزه آبخیز رودخانه تورسو پرداختند. نتایج حاصل از این مدل نشان داد که میزان فرسایش سالیانه جادهها در این دو منطقه به ترتیب 35000 و 21000 تن در سال و تحویل رسوب به رودخانه به ترتیب 6 و 9 درصد بود. نتایج این مطالعه نشان داد که WARSEMنرخ فرسایش خاک را بیشتر از میزان واقعی برآورد کرد.
مایرس (2008) در پژوهشی که در مورد کاهش رسوب در یافتی از جاده های جنگلی در جنگل تحقیقاتی مک دونالد دام ایالت متحده آمریکا پرداختند به این نتیجه رسیدند که رسوب ایجاد شده از جاده جنگلی در طول بارندگی ناشی از زیر لایه ها نیست بلکه از مواد روسازی شده (سنگریزهها) است و مدیران جاده جنگلی برای کاهش تولید رسوب جاده بایستی مواد روسازی مقاوم را به کارگرفته و به خوبی آن را متراکم کنند تا در برابر تایر ماشینها وایجاد شیار مقاومت نمایند. تراکم مواد سطح جاده و کنترل حداقل حمل بار و عدم برداشت چوب در هوای بارانی به بهبود سطح جاده و کاهش تولید رسوب کمک میکند.
فیو و همکاران (2009) میزان فرسایش و رسوب جاده جنگلی را با ترکیب دو مدل WARSEM(مدل پیش بینی رسوب) و CatchMODS(مدل تکنیکهای ردیابی رسوبات ژئوشیمیایی) در جنوب شرقی استرالیا برآورد کردند. این مطالعه به منظور ارائه اطلاعات جامعی در مورد رسوب معلق در مورویا و حوضه رودخانه تورسو انجام گرفت. نتایج حاصل از ترکیب این دو مدل در دو منطقه مورد مطالعه نشان داد که میزان رسوب حاصل از جاده به ترتیب 9% و10% از کل رسوبات دریافتی در حوزه آبخیز بود.
سارفلیت و همکاران (2011) ثابت کردند که برآورد تولید رسوب جاده در یک حوزه آبخیز در ایالت ارگون آمریکا از طریق اندازه گیری‌های میدانی رواناب و رسوب بهبود پیدا می‌کند. آن‌ها برای برآورد میزان رواناب ورسوب از مدل‌های DHSVM، WARSEM و SEDMODEL2 استفاده کردند. نتایج اندازه‌گیری‌های صحرایی نشان داد که میزان تحویل رسوب 9/6 تن در هکتار در سال برآورد شد، در حالی که با SEDMODEL2 و WARSEM تعدیلشده توسط مقادیر رواناب و رسوب اندازه‌گیری شده در صحرا، میزان تحویل رسوب به ترتیب 28درصد و 34 درصد کمتر از مقادیر به دست آمده توسط مدل‌های تعریف شده بدست آمد.
اسگاست و همکاران (2011) میزان تولید رسوب 44 قطعه از جاده های جنگلی مناطق معتدله و مرطوب ایالت ارگون و کالیفرنیا را به کمک مدل‌هایWARSEM، SEDMODEL2، WEPPو RUSLEبرآورد نمودند. مدل‌های یاد‌ شده، میزان تولید رسوب را 2تا 8 برابر بزرگتر از مقدار واقعی ارائه دادند.مقادیر به دست آمده توسط این چهار مدل برای هر قطعه از جاده بسیار متنوع بود.
ارهان کاسکن (2012) به برسی میزان تولید رسوب جاده جنگلی به کمک مدل‌های WEPP، SEDMODL، STJ-EROS در جنگل Anbardağ که در سواحل دریای سیاه کشور ترکیه واقع شده پرداخت وبه این نتیجه رسید میزان رسوب اندازه‌گیری شده توسط مدل SEDMODL کمتر از دو مدل دیگر برآورد و برای مدیران جنگل‌ها استفاده ازدو مدل SEDMODL و STJ-EROS آسان است ونتایج آن‌ها هم به واقعیت نزدیکتر می‌باشد.
2-2-3- جمع بندی نظرات ارائه شده
میزان تولید رسوب جاده جنگلی به کمک مدل‌های WEPP، SEDMODL، STJ-EROS ، WARSEM ، RUSLEنتایج نشان داد مدل ها نرخ فرسایش خاک را بیشتر از میزان واقعی برآورد می کنند . نتایج بررسیها نشان داده که با افزایش میزان شیب از 5 درصد به بیشتر از 10 درصد میزان فاکتور شیب از 1 به 5/2 افزایش مییابد و میزان تولید رسوب افزایش مییابد به همین علت ما میتوانیم در شیبهای بیشتر از 10 درصد، از موادی مانند شن وماسه که دارای فاکتور روسازی و سطحی کمتری هستند و میزان تولید رسوب را کاهش میدهند استفاده کرد. در برزیل با بهره‌گیری از مدل‌های WEPP، SEDMODL، STJ-EROS نشان داد که حدود 50 درصد طول جاده‌ها، دارای پتانسیل فرسایش بالایی است. بدین ترتیب با استفاده از نقشه خطر رسوبدهی شبکه جاده جنگلی می‌توان اولویت اجرای طرح‌های حفاظت و نگهداشت جاده را برای کنترل فرسایش در مناطق مختلف مشخص واز هدر رفت خاک جلوگیری کرد.
فصل سوم
مواد وروش‌ها

3-1- مواد
3- 1-1- مشخصات کلی منطقه مورد مطالعه
جنگل دارابکلا در جنوب شرقی شهر ساری بین طول شرقی "00 ´20°52 تا "00 ´31°52 و عرض شمالی "00 ´28 °36 تا "00´33 °36 قرار دارد. این جنگل شامل دو سری بوده که تا سال 1386 بخشی از منطقه مورد بهره برداری شرکت سهامی نکا چوب بوده است اما از آن به بعد سری یک آن به عنوان جنگل آموزشیو پژوهشی در اختیار دانشگاه علوم کشاورزی و منابع طبیعی ساری قرار گرفت. طرح جنگلداری سری یک دارابکلا شامل 41 قطعه با مساحت 2612 هکتار متعلق به حوزه استحفاظی جنگلداری ساری – کیاسر(شکل3-1) است.جنگلهای این منطقه در تقسیمبندی جغرافیایی جنگلهای جهان، بالاتر از عرضهای نیمه حارهای و پایین تر از عرضهای جغرافیایی مربوط به جنگلهای سردسیری قرار دارد. تیپ منطقه ممرز- انجیلی بوده و دارای خاک قهوهای شسته شده و در برخی موارد پسدوگلی میباشد. در مجموع در داخل طرح 24 کیلومتر جاده وجود دارد که عمدتا از نوع جاده درجه یک روستایی ودرجه یک جنگلی بوده وانشعابات داخلی آن عمدتا از نوع درجه 2 و3 جنگلی می‌باشد وتراکم جاده 87/10 متر درهکتار است (بی نام، 1383)..
404495-386080الف- نقشه استان مازندران

ب- نقشه سری یک دارابکلا
شکل 3-1- موقعیت منطقه مورد مطالعه
3-1-2- شیب و ارتفاع از سطح دریا
جهت عمومی شیب در جنگل‌های دارابکلا، شمالی و شمال غربی می باشد. میانگین شیب حدود 40% است، حداقل شیب منطقه 5% و حداکثر آن 70% می باشد، گاه در بعضی از نقاط میزان شیب از این مقدار بیشر بوده و پرتگاه‌های پراکنده دیده می شود. حداکثر سطح عرصه در مناطق کم شیب واقع شده، حداقل ارتفاع از سطح دریا 180 متر و حداکثر ارتفاع از سطح دریا 874 متر است (بی‌نام 1383).
3- 1- 3- خصوصیات اقلیمی
جهت بررسی شرایط آب و هوایی جنگل‌های دارابکلا از آمار و اطلاعات 20 ساله ایستگاه هواشناسی مهدشت ساری که در ارتفاع 118 متر از سطح دریا به فاصله 20 کیلومتری از محدوده ی طرح قرار دارد استفاده شده است. متوسط باران سالیانه 8/983 میلی متر، حداکثر باراندگی ماهانه مربوط به آبان ماه به میزان 8/119 میلی متر و متوسط حداقل بارندگی مربوط به تیرماه به میزان حدود 1/36 میلی متر می باشد به همین دلیل فصل رویش طولانی است. سری یک دارابکلا بر اساس اقلیم نمای آمبرژه در منطقه ااقلیمی مرطوب تا خیلی مرطوب قرار گرفته است (بی‌نام 1383) .
3-1-4- خصوصیات زمین شناسی
وجود و گسترش طبقات مارنی و رسوبات سست دیگر در نهشتههای کواترنری، پلیوسن و میوسن این سری از یک طرف و عبور گسلهای متعدد در تمامی قسمتهای این منطقه از سوی دیگر شرایطی ایجاد نموده است که حساسیت منطقه به فرسایش را بالا برد. در مجموع علل اصلی وقوع لغزشهای منطقه را میتوان در بارندگیهای شدید و هم شیب بودن حرکت آبهای زیرزمینی با شیب لایهها، وجود واریزههای منفصل رس و مارن در بین بلوکهای سنگی، دخالتهای انسانی، عملکرد ناقص یا فقدان زهکشهای سطحی و عاری بودن شیبها از پوشش گیاهی و عامل گسل دانست. بنابراین با توجه به پتانسیل لغزشی بالای منطقه که با دخالت عامل انسانی میتواند به شدت تشدید گردد پیشنهاد میشود هر گونه برنامه ریزی با توجه به مطالعه نقشه فرم زمین که در واقع نوعی نقشه پهنه بندی خطر بروز زمین لغزش منطقه محسوب میگردد صورت پذیرد مشخصات تیپ‌های مختلف زمین‌شناسی در جدول( 3-1) آمده است.
جدول 3-1- مشخصات زمین شناسی منطقه مورد مطالعه
ردیف تیپ زمین شناسی دوران دوره سنگهای غالب سطحی فرم زمین
1 L.P CM3 سوم میوسن کنگلومرا، مارن، مارن سیلتی مناطق جنگلی با شیب کم که از پایداری ضعیفی برخوردار بـوده و دارای نفوذپذیــری متــوسط میباشد.خاکزایی مناسب
2 L.M1 سوم میوسن مارن، ماسه سنگ آهکی، سنگ آهک ماسهای، کنگلومرا دامنههای با شیب تند بر روی مارنهای میوسن که دارای نفوذپذیری ضعیف بوده و ناپایدار محسوب میگردند. خاکزایی نسبتا ضعیف
3 L.M2 سوم میوسن مارن، ماسه سنگ آهکی، سنگ آهک ماسهای، کنگلومرا این زمینها دارای شیب تقریبا متوسط بوده خاکزایی نسبتا خوب، نفوذپذیری این فرم ضعیف بوده و پایداری آن ضعیف است.
4 L.M3 سوم میوسن مارن، ماسه سنگ آهکی، سنگ آهک ماسهای، کنگلومرا مناطق جنگلی باشیب ملایم، خاکزایی بسیار خوب نفوذپذیری و پایداری از متوسط تا ضعیف متغیـر میباشد.
5 L.R سوم میوسن مناطق گسلی مستعد حرکت و لغزش بوده و ناپایدار محسوب میگردد.
محدوده مورد مطالعه از دو تیپ زمین شناسی زیر تشکیل شده است شکل (3-2):
L.M2، این تیپ در بخش غرب تا جنوب غربی طرح دیده میشود از شیب توپوگرافی تقریبا متوسط برخوردار بوده و از سنگهای مارنی و ماسه سنگ آهکی، آهک ماسهای به همراه مختصری کنگلومرا تشکیل مییابند که به دوره میوسن مربوط میشوند، به دلیل گسترش و ضخامت مارن در این فرم از پایداری و نفوذپذیری ضعیفی برخوردارند.
LM3، دامنههای با شیب نسبتا ملایم که بر روی نهشتههای مارنی میوسن واقع است این فرم بیشترین گسترش را داشته و از نفوذپذیری و پایداری متوسط تا ضعیفی برخوردار است.
حاشیه دره‌ها را آبرفت‌های کوآرترنری در بر گرفته اند بنابراین وضعیت سنگ شناسی منطقه نشان از ناپایداری منطقه ومستعد لغزش و رانش بودن آن دارد.

شکل 3-2- نقشه زمین شناسی سری یک دارابکلا و جاده مورد مطالعه
3- 1- 5- مشخصات خاکشناسی
منشا خاک محدوده مورد مطالعه از سنگ های مادری آهکی و مارنی با ماسه سنگ آهکی می باشد، بر این اساس سه نوع تیپ خاک مشخص شد که عبارتند از 1- خاک قهوه‌ای جنگلی با pH قلیایی 2- خاک قهوه‌ای شسته شده با افق کلسیک 3- خاک قهوه‌ای شسته شده با پسدوگلی
سنگ مادر تشکیل دهنده خاک از نوع آهک، آهک مارنی و آهک ماسه‌ای می‌باشد. بنابراین بافت خاک کمی سنگین (رسی لومی) تا سنگین (رسی) و نفوذ‌پذیری آب در خاک غالبا متوسط و گاهی ضعیف است. pH خاک قلیایی ولی در خاک‌های تکامل یافته که عمل آبشویی آهک به طور کامل انجام گرفته، اسیدی تا خنثی می‌باشدریشه دوانی متوسط و عمق نفوذ ریشه حدود 70-65 سانتی متر است. علت این مسئله وجود سنگ‌های مادری، درصد زیاد رس و بافت سنگین در عمق زیرین می‌باشد که مانع پراکنش مناسب ریشه درختان قطور می‌شود. محدوده مورد مطالعه شامل زیر واحد اراضی به شماره‌های 2.1.2 و2.1.3 و 2.1.4 می‌باشد شکل (3-3)، خصوصیات هر یک از زیر واحد‌ها به شرح زیر است:
زیر واحد اراضی 2.1.2:
تیپ خاک قهوهای جنگلی با pH قلیایی متشکل از سنگهای آهکی و مارن با شیب متوسط گاهی کمی زیاد با پوشش جنگلی راش، ممرز، افرا، توسکا، انجیلی و ضخامت لاشبرگ حدود 4-1 سانتیمتر خاکی تکامل یافته بدون بیرون زدگی سنگی دارای سنگریزه کم حدود 5% در نیمرخ پروفیل با تیپ پروفیلی ABCکه دارای باد افتادگی درختان جنگلی، که علت آن عدم پراکنش مناسب ریشه در عمق زیرین است بافت خاک کمی سنگین Silty Clay loam تا Silty Clay نفوذپذیری آب در خاک بسیار ضعیف دارای لغزش و ریزش جدید توده خاک در بالا دانهای درشت در عمق زیرین چندوجهی رنگ خاک در بالا قهوهای تیره در عمق زیرین روشن، میزان خلل و فرج خاک کم تا متوسط تهویه در خاک به کندی صورت میگیرد.
زیر واحد اراضی 2.1.3:
تیپ خاک قهوهای شسته شده با افق کلسیک. متشکل از سنگهای آهکی و آهک مارنی همراه با آهک ماسهای با شیب کم گاهی متوسط بدون بیرون زدگی سنگی فاقد سنگریزه تا عمق یک متر با پوشش جنگلی راش، ممرز، توسکا در ارتفاعات پایین مخروبه با پوشش جنگلی انجیلی و بلوط ضخامت لاشبرگ حدود 3-1 سانتیمتر خاکی تکامل یافته نسبتاً عمیق تا عمیق با حداکثر عمق 120-110 سانتیمتر با تیپ پروفیلی ABC، ریشه دوانی متوسط عمق نفوذ ریشه حدود 70-65 سانتیمتر دارای بادافتادگی درختان قطور جنگلی که علت آن عدم پراکنش مناسب در عمق زیرین به علت درصد زیاد رس (بیش از 50%) میباشد نفودپذیری آب در خاک در بالا متوسط در عمق زیرین بسیار ضعیف که نفوذپذیری ضعیف آب در خاک بادافتادگی درختان جنگلی در سطح بعضی از پارسلها مشاهده میگردد.
-زیر واحد اراضی 2.1.4:
با تیپ خاک قهوهای شسته شده پسدوگلی، ارتفاعات نسبتاً بلند تا کوتاه متشکل از سنگهای آهکی و آهک ماسهای گاهی مارن با شیب کم تا متوسط بدون بیرون زدگی سنگی فاقد سنگ ریزه تا عمق یک متری با پوشش جنگلی انجیلی- ممرز و لرگ با تک درختان راش و ارتفاعات پایینتر فاقد گونه راش میباشد. نفوذپذیری آب در خاک به شدت ضعیف به طوریکه در سطح بعضی از پارسلها آب گرفتگی مشاهده میگردد که نشانه هیدرومورف بودن خاک است. در این گونه مناطق از بهره برداری زیاد و قطع درختان جداً باید خودداری گردد زیرا روند هیدرومورف خاک شدت مییابد. خاک سطحی دارای کوبیدگی ، نفوذپذیری و زهکشی خاک بسیار ضعیف است. لغزش و ریزش مشاهده نگردیده است.

شکل 3-3- نقشه خاک شناسی سری یک دارابکلا و جاده مورد مطالعه
3-1-6- راه‌های دسترسی
شبکه اصلی این طرح از محور ساری- نکا می‌باشد. که پس از عبور از روستای دارابکلا در محل نگهبانی سه شاخه می‌شود. شاخه اصلی از نوع جاده جنگلی درجه یک بوده که از داخل طرح جنگلداری و روی یال اصلی (مرز سری یک و دو) به طول 14 کیلومتر به بخش یک طرح جنگلداری نکا- ظالمرود متصل می‌گردد. از محل نگهبانی شاخه دیگری شروع واز داخل سری یک عبور کرده و به طول 11 کیلومتر به دانگ دوم بخش یک متصل می‌گردد و ازنوع جاده جنگلی درجه دو است شکل( 3-4). با توجه به شبکه جاده ساخته شده و جاده‌های پیش بینی شده کل جاده‌های طرح جنگلداری دارابکلا حدود 4/28 کیلومتر و تراکم آن 87/10 متر در هکتار خواهد بود(بی‌نام، 1383).
parselSkid way
Road

شکل3-4- نقشه جاده‌های موجود و موقعیت جاده در سری یک دارابکلا
3- 2- روش پژوهش
3-2- 1- جمع آوری اطلاعات و برداشت مقدماتی
جهت برآورد نرخ رسوبدهی جادههای جنگلی در SEDMODL و WARSEM مجموعهای از دادهها مورد نیاز است. جادههای جنگلی مورد مطالعه در جنگل آموزشی و پژوهشی دارابکلا غالباً بر روی یال ساخته شدهاند و لذا یا فاقد شیروانی خاکبرداری و خاکریزی هستند و یا در صورت وجود شیروانی، توسط انبوهی از گیاهان پوشیده شدهاند. در پژوهش حاضر، از این مدلها فقط به منظور برآورد نرخ رسوب حاصل از سطح جاده استفاده شد. ابتدا جهت بالا رفتن دقت برداشت دادهها، کلجادههای منطقه به فواصل کوتاه و واحدهای همگن از نظر ترافیک، روسازی، شیب و پهناکه اصطلاحاً Segment نام دارد، تقسیم و دادههای لازم از هر کدام از این قسمتها به صورت جداگانه برداشت شد. سپس هر یک از فاکتورها برای واحدهای همگن جادهای به صورت جداگانه محاسبه و میزان فرسایش در هر واحد با استفاده از مدلها مشخص گردید:
3-2-2- برآورد رسوب سطح جاده با SEDMODL
در این مدل میزان کل تحویل رسوب توسط جاده از رابطه (3-1) محاسبه میگردد. که در آن TS کل رسوب تولیدی مربوط به سطح جاده بر حسب تن در یک سال و فاکتور Af نیز مربوط به سن جاده بوده که میزان رسوب کل را تحت تأثیر قرار میدهد. با توجه به اینکه بیشترین میزان تولید رسوب در جادههای جنگلی مربوط به سال اول یا دوم ساخت است و در سالهای بعد کاهش مییابد، فاکتور سن جاده در معادله وارد میشود. میزان این فاکتور برای جادههایی که یک سال از ساخت آن میگذرد 10 و برای جادههایی که بیش از 2 سال از ساخت آنها گذشته باشد 2 میباشد.با توجه به سال ساخت جادههای منطقه فاکتور سن ساخت برابر عدد 2 قرار گرفت.
رابطه (3-1) Total Sediment (t/year) = (TS)Afجهت محاسبه TSاز رابطه (3-2) استفاده شد.
که در آن Lr طول جاده، Wr عرض جاده، GErمیزان فرسایش زمینشناسی، Sfفاکتور مربوط به سطح جاده، Tfفاکتور ترافیک، Gfفاکتور شیب، Pfفاکتور بارندگی و Dfفاکتور تحویل رسوب میباشد.
رابطه (3-2) TS= LrWrGErSfTfGfPfDfدر ذیل هر یک از این فاکتورها به تفکیک معرفی شده و مقادیر مربوط به آنها بر اساس نتایج مطالعات قبلی ارائه میگردد.
میزان فرسایش زمینشناسی (GEr): میزان تولید رسوب در جادههای جنگلی وابستگی زیادی به وضعیت زمینشناسی و خاکشناسی منطقه دارد. میزان تولید رسوب با توجه به وضعیت زمینشناسی از جدول (3-1) استخراج شد (حسینی و همکاران، 1391). وضعیت زمینشناسی و خاکشناسی از نقشههای پایهزمینشناسی، وخاکشناسی منطقه با مقیاس 1:25000 در محیط GIS بدست آمد.تمامی قسمتهای منطقه مورد مطالعه از سازندهای با رسوبات نرم مربوط به دوران سوم زمین شناسی تشکیل شدهاند. از اینرو مقدار فاکتور فرسایش زمین شناسی (GEr)برای تمامی بخشهای جاده مورد مطالعه، 74 تن در هکتار در سال یا به عبارتی معادل 0074/0 تن در متر مربع بدست آمد.
جدول 3-2- میزان فرسایش با توجه به وضعیت زمینشناسی و سنگشناسی (تن در هکتار در سال).

فاکتور مربوط به سطح جاده (Sf):کیفیت مواد استفاده شده در روسازی که در جدول (3-3) اشاره شده تأثیر مستقیمی در میزان رسوبدهی سطح جادههای جنگلی دارد .
جدول3-3- مقادیر فاکتور مربوط به سطح جاده برای جادهای مختلف.
نوع سطح آسفالت شن خاک درهم پوشش علفی بستر طبیعی بستر طبیعی همراه با شیار
عامل سطح 03/0 2/0 5/0 5/0 1 2
عامل ترافیک (Tf): میزان رسوبدهی سطح جادههای جنگلی به نوع کاربری جاده بستگی دارد و از جدول (3-4) استفاده شد (حسینی و همکاران، 1391). طول جاده موجود در منطقه 2471 متر بوده و تمامی جادههای جنگلی منطقه مورد مطالعه از نوع جادههای درجه 2 و شن ریزی شده هستند. از این‌رو فاکتور ترافیک Tf برای کل جادهها برابر با 2 قرار داده شد.مشخصات سطح جاده، وضعیت ترافیکی و بارندگی منطقه از کتابچه طرح جنگلداری دارابکلا استخراج گردید.
جدول3-4- میزان عامل ترافیک برای جادههای مختلف.
نوع جاده بزرگراه اصلی شهری درجه 1 درجه 2 فرعی متروکه و از رده خارج
فاکتور ترافیک 120 120 50 10 2 1 1/0
عامل شیب (Gf): شیب یکی از عوامل موثر در میزان رسوبدهی جادهای جنگلی است. جهت میزان برآورد فاکتور شیب از جدول (3-5) استفاده میشود (حسینی و همکاران، 1391).عرض، طول و شیب سطح جاده طی عملیات صحرایی و با استفاده از متر و دستگاه شیب سنج برداشت شد.
جدول3-5- میزان عامل شیب برای شیبهای مختلف جاده جنگلی.
درصد شیب کمتر از 5 درصد 10-5 درصد بیشتر از 10 درصد
عامل شیب 2/0 1 5/2
عامل بارندگی (Pf): میزان تولید رسوب جادههای جنگلی تحت تأثیر بارندگی محل قرار دارد. فاکتور بارندگی برای SEDMODL را با توجه به میانگین بارندگی سالانه به میلیمتر و از رابطه (3-3) محاسبه شد (حسینی و همکاران، 1391):
رابطه (3-3)
Pfعامل بارندگی، Pavrمیانگین بارندگی سالانه
میانگین بارندگی سالانه در منطقه 8/983 میلیمتر میباشد. نتیجه محاسبات نشان داد که میزان عامل بارندگی در منطقه 7046/0 بود.
عامل تحویل رسوب (Df): برای محاسبه فاکتور تحویل رسوب در این روش از میزان فاصله نقطه مرکزی جاده تا نقطه مرکزی رودخانه استفاده میشود. با افزایش فاصله جاده نسبت به رودخانه از میزان تحویل رسوب کاسته میشود. هنگامی که جاده مستقیماً رودخانه را قطع میکند، عامل تحویل دهی رسوب 100 درصد است. زمانی که فاصله مرکز جاده از مرکز رودخانه کمتر از 30 متر باشد، میزان عامل تحویل رسوب 35 درصد و زمانی که فاصله بین 30 تا 60 متر باشد، این فاکتور 10 درصد است. اگر جاده در فاصله بیش از 60 متر از آبراهه قرار داشته باشد، رسوب تولیدی آن در بستر طبیعی جنگل تهنشین شده و هیچ رسوبی وارد آبراهه نمیشود (حسینی و همکاران، 1391). بنابراین عامل تحویل رسوب برای جادههای موجود در این فاصله صفر میباشد. محاسبه میزان فاصله مرکز رودخانه تا جاده در محیط نرم افزاریGISانجام گرفت.
3-2-3- برآورد رسوب سطح جاده با WARSEM
این مدل یک مدل تجربی است که برای برآورد میانگین بلند مدت تولید و تحویل رسوب از جاده به رودخانه مورد استفاده قرار میگیرد و توسط دپارتمان منابع طبیعی واشنگتن توسعه پیدا کرده است (داف و همکاران 2010). در ذیل ساختار کلی مدل، روابط و عامل‌های مورد نیاز آن شرح داده شده است.
در این مدل میزان کل تحویل رسوب (E) توسط جاده از رابطه (3-4) محاسبه میگردد:
Eرسوب سطح جاده از هرواحد همگنمیباشد،RE رسوب دریافتی از سطح جاده در هر قسمت، CAP نسبت سطح شرکت داده شده در تولید رسوب (درصد)از طریق مشاهدات میدانی برای هر واحد همگن ضمن بارندگی طبیعی اندازه گیری شد، SDRمیزان رسوب دریافتی (درصد)
رابطه(3-4)
0
0(3)

محاسبه رسوب حاصل از سطح جاده:
برای محاسبه رسوب حاصل از سطح جاده (RE) از رابطه (3-5) استفاده میشود:
رابطه(3-5) RE = BE × G × SF × S × T × CA
REرسوب سطح جاده از هر بخش میباشد، BE میزان فرسایش بر مبنای متوسط بارش سالیانه، G فاکتور فرسایش زمین شناسی، SFفاکتور سطح جاده، Sفاکتور شیب جاده،Tفاکتور ترافیک، CAمساحت سطح جاده (متر مربع).
محاسبه میزان فرسایش (BE ) بر مبنای متوسط بارش سالیانه از رابطه (3-6) استفاده میشود:
رابطه(3-6)
Rمتوسط بارندگی سالیانه (mm/yr)، BE میزان فرسایش بر مبنای متوسط بارش سالیانه، CAمساحت سطح جاده (متر مربع).L طول جاده،Wعرض جاده(متر)
BE = 3 × 10-5 ×R1.5
رابطه(3-7)
محاسبه مساح CA = L × W
محاسبه میزان رسوب دریافتی از رابطه (3-8) بدست میآید:
رابطه(3-8)

D فاصله بین زهکشهای خروجی و جویها (متر).SDRمیزان رسوب دریافتی (درصد)
نتایج حاصل از این دو مدل در نرم افزار SPSS از طریق آزمون T-Studentبا یکدیگر مقایسه خواهد شد.
3- 2- 4- اندازه گیری مقدار واقعی رسوب
برای برداشت میزان رسوب واقعی سطح جاده، در انتهای هر سگمنت با قرار دادن ظرف مناسب پس از هر بارندگی اقدام به برداشت نمونه شد.به این صورت که مقدار آب موجود در هر ظرف بر حسب لیتر اندازه گیری شده و پس از ته نشین شدن رسوب در داخل ظرف آب داخل ظرف را خارج کرده و نمونه ته نشین شده را داخل آون گذاشته وپس از خشک شدن، مقدار رسوب برحسب گرم درمتر مربع (مساحت هر سگمنت) محاسبه شد. اندازه‌گیری غلظت رسوب به روش زیر انجام گرفت:
ریختن محلول رسوب جمع آوری شده طی بارندگی در طبیعت در بشر شیشه‌ای وتخلیه آب باقی مانده برروی آن پس از گذشت 24 ساعت
خشک کردن کاغذ‌های صافی در دمای 105درجه سانتی گراد آون به مدت 15 دقیقه
توزین کاغذ صافی و کددهی
قرار دادن کاغذ صافی برروی قیف داخل ارلن
تخلیه رسوب داخل بشر برروی کاغذ صافی
خارج کردن کاغذ صافی از داخل قیف پس از گذشت 24 ساعت و ته نشست کامل رسوب روی کاغذ
قرار دادن کاغذ صافی مملو از رسوب بر روی فویل آلومینیومی
قرار دادن فویل آلومینیومی‌( در بر گیرنده کاغذ صافی ورسوب ) در دمای 105 درجه سانتی گراد آون به مدت 2ساعت
خارج کردن کاغذ صافی مملو از رسوب از داخل فویل و توزین کاغذ و رسوب
10 -‌ محاسبه غلظت رسوب از تقسیم جرم رسوب (گرم) بر حجم رواناب (لیتر)
3-2-5- محاسبات آماری
نتایج حاصل از این دو مدل در نرم افزار SPSS از طریق آزمون -Studenttبا یکدیگر مقایسه شد.
فصل چهارم
نتایج

نتایج
4-1- موقعیت جاده وواحدهای همگن:


برای برآورد رسوب تولیدی از سطح جاده مورد مطالعه به طول 2067متر، جاده به 20 واحد همگن تقسیم گردید.
2023456789101112141316151718191
شکل 4-1- شکل واحدهای همگن در منطقه مورد مطالعه
4-2- مقایسه و ارزیابی دو مدل WARSEM و SEDMODL
نتایج بررسی و همچنین بازدیدهای صحرایی نشان داد که 1397متر از جاده دارای فاصله بیش از 60 متر از آبراهه‌ها بوده که در این قسمتها میزان فاکتور تحویل رسوب صفر و در نتیجه میزان رسوب کل نیز در این نقاط صفر میباشد و480 متر ازطول کل جاده در فاصله 30 تا 60 متر بوده همچنین 190متر از جاده نقاطی بودند که در آن جاده و آبراهه همدیگر را به طورمستقیم قطع میکنند.این نتایج در جدول(4-1) ارائه گردید.
جدول4- 1- طول جاده در فواصل مختلف جاده از آبراهه (متر) و در قطعههای مختلف منطقه در دو مدل SEDMODEL و WARSEM.
شماره پارسل قطع آبراهه کمتر از 30 متر 60-30متر بیشتر از 60 متر کل پارسل
12 - 240 272 512
15 - - 71 243 314
9 190 - 169 882 1241
جمع 190 - 480 1397 2067
تعداد سگمنت تحویل مستقیم فاصله30-0 متر فاصله60-30 متر بدون تحویل
20 5 0 7 8
جدول4-2- سگمنت بندی شبکه جاده و تعیین فواصل مختلف جاده از ابراهه
4-2-1- محاسبه فرسایش و تولید رسوب:
نتایج محاسبه میزان رسوبدهی در جادهها و قطعههای مختلف نشان دادکل میزانتحویل رسوب در جادههای منطقه به طول 2067 متر و مساحت کل 42/1 هکتار با استفاده از WARSEM و SEDMODELبه ترتیب 14/13 و 29/18 تن در سال میباشد. مقدار رسوب ویژه برآورد شده با WARSEM و SEDMODEL نیز به ترتیب 25/9 و 88/12 تن در هکتار در سال بود.
شماره سگمنت طول سگمنت(متر) شیب(%) عرض جاده (متر) مساحت سگمنت ها(متر مربع) رسوب سطح جاده (SEDMODL)،تن در سال رسوب سطح جاده (WARSEM)، تن در سال
1 60 2 7 420 24/0 09/0
2 40 2 7 280 08/0 08/0
3 93 3 7 651 36/0 21/0
4 70/60 5 7 2/494 00/0 00/0
5 120 4 7 840 63/1 31/1
6 130 2 7 910 00/0 00/0
7 110 2 7 770 00/0 00/0
8 62 5 7 434 58/0 40/0
9 68 5 7 476 00/0 00/0
10 147 3 7 1029 21/2 25/1
11 50 1 7 350 02/0 15/0
12 190 1 7 1330 00/0 00/0
13 145 3 7 1015 40/3 06/3
14 100 4 7 700 00/0 00/0
15 77 4 7 539 02/3 06/2
16 139 6 7 973 91/4 89/3
17 100 4 7 700 86/0 61/0
18 150 0 7 1050 98/0 08/0
19 75 3 7 210 00/0 00/0
20 150 6 7 1050 00/0 00/0
جدول4-3- نتایج محاسبه رسوب سطح جاده سگمنت‌هادر SEDMODL و WARSEM
نتایج نشان داد که شیب طولی جاده بر مقدار رسوب برآورد شده توسط مدلهای تجربی در سطح احتمال 5 درصد تأثیر معنیدار داشت. در حالی که شیب طولی تأثیری بر مقدار رسوب اندازهگیری شده در شرایط بارندگی طبیعی نداشت (جدول4-4). مقدار رسوب برآورد شده توسط مدلها در کلاسه شیب 8-4 درصد به طور معنیداری بیشتر از کلاسه شیب 4-0 درصد بود (جدول4-5). به طور کل، بین مقدار رسوب برآورد شده توسط WARSEM و SEDMODL تفاوت معنیداری وجود نداشت اما این مقادیر برآوردی در سطح احتمال 5 درصد بیشتر از مقدار اندازهگیری شده بود (جدول4-6).
جدول4-4- آنالیز واریانس تأثیر شیب طولی بر رسوب برآوردی توسط WARSEM، SEDMODL و مقدار واقعی
مدل درجه آزادی میانگین مربعات مقدار F
WARSEM 1 7846 *77/3
SEDMODL 1 9652 *15/5
مقدار اندازهگیری شده 1 4587 ns53/1
جدول4-5- مقایسه میانگین رسوب اندازه گیری شده و برآوردی در کلاسههای مختلف شیب طولی جاده
شیب
رسوب 4-0 8-4
WARSEM (تن در هکتار در سال) B43/3 A82/5
SEDMODL(تن در هکتار در سال) B13/5 A75/7
مقدار اندازهگیری شده (تن در هکتار در سال) A65/2 A21/3
جدول4-6- مقایسه مقادیر رسوب ویژه برآوردی و اندازهگیری شده
مدل تن در هکتار در سال
WARSEM 25/9
SEDMODL 88/12
مقدار اندازهگیری شده 86/5

شکل4- 1- تغییرات رسوب تولیدی در دو مدل WARSEM و SEDMODL در دو کلاسه شیب و مقدار اندازه گیری شده
اعتبار سنجی دو مدلWARSEMوSEDMODLو مقایسه آن‌ها با مقدار اندازه‌گیری شده نشان داد که اختلاف معنی داری با مقدار اندازه گیری شده وجود دارد، این دو مدل مقدار رسوب را بیشتر از مقدار اندازه گیری شده برآورد کردند جدول(4-5 وشکل 4-1).
همچنین پتانسیل تحویل رسوب برآورد شده توسط دو مدل ذکر شده مربوط به قسمتی از جاده که در پارسل‌‌9واقع شده است می‌باشد(شکل 4-2).
2023456789101112141316151718191 ton/ha/year 1> ton/ha/year 1-2.5 ton/ha/year 2.5<
شکل 4-2- نقشه خطر رسوبدهی جاده مورد مطالعه

فصل پنجم
بحث و نتیجه‌گیری

5-1- بحث
از آن جا که تلفات خاک جاده های جنگلی دارای پیامدهای زیست محیطی خطرناکی است، لذا کمی کردن صحیح آن در مقیاس مناسب، اطلاعات ارزنده‌ای را جهت ممانعت از هدر رفت منابع یک زیست بوم و تخریب غیر قابل بازگشت خاک فراهم می‌آورد. تا کنون از روش‌های مستقیم و غیرمستقیم نسبت به برآورد نرخ رواناب و هدر رفت خاک جاده‌های جنگلی اقدام شده است. محققین بسیاری با بهره‌گیری از مدل‌های تجربی (روش غیر مستقیم) نظیر WARSEM، WEPP، RUSLE ، SEDMODL و . . . میزان فرسایش آبی خاک ساختمان جاده‌‌ها را برآورد کردند.اما نتایج بدست آمده از این مدل‌ها همواره بیشتر و یا کمتر از مقدار واقعی بود. این موضوع دلالت بر روند تغییر پذیری متغیر های موثر بر فرسایش خاک دارد.از آنجایی که میزان رسوب وارد شده به دریاچه سدهای مخزنی کشور سالانه بیش از 260 میلیون متر مکعب میباشد بنابراین بطور متوسط در کشور هر ساله یک سد با حجم آبگیری معادل سد کرج بر اثر ورود رسوبات ناشی از حوزههای آبخیز بالادست از بین میروند. با توجه به هزینههای بالای لایروبی رسوبات پشت سدها از یک طرف و عدم دسترسی به سایت جدید جهت احداث سد و همچنین هزینههای هنگفت ملی که جهت احداث سدهای مخزنی هزینه میشود، توجه به مسئله تولید رسوب و عوامل موثر در ایجاد آن از مسائل اصلی و اساسی در توسعه اقتصاد کشور خصوصاً در بخش مدیریت منابع آب به حساب میآید. لذا در این تحقیق به بررسی تخمین میزان تولید رسوب سطح جادههای جنگلی با استفاده از دومدل پیشبینی، در 2067متر از جادههای جنگلی سری 1 جنگل آموزشی- پژوهشی دارابکلا که تحت مدیریت دانشکده منابع طبیعی شهرستان ساری قرار دارد پرداخته شد. نتایج این بررسی نشان داد که میزان فرسایش در جادههای منطقه با استفاده از مدل WARSEM14/13تن در سال وSEDMODL29/18 تن در سال میباشدکه با مقدار واقعی اندازه‌گیری شده تفاوت معنا داری را نشان می‌دهد جدول 4-4. این ممکن است به علت عملکرد این مدل‌ها باشد. در WARSEM و SEDMODL حجم زیادی از دادها در قالب کد وارد مدل می‌شود و به کمک این مدلها کل شبکه جاده‌های جنگلی منطقه مورد ارزیابی قرار می‌گیرد ولی در اندازه‌گیری‌های زمینی امکان جمع آوری رواناب از همه سگمنت‌ها امکان پذیر نبود و بخشی از رواناب بر اثر فرو رفتگی‌ها و شیارهایی که در سطح جاده ایجاد شده بود انباشته می‌شد و هم چنین بخشی از روانابی که از سطح جاده جاری می‌شد وارد جوی کناری میگشت و امکان نمونه‌گیری وجود نداشت به‌ دلیل این‌ که هدف، اندازه‌گیری مقدار رسوب سطح جاده بود، احتمالا این مسئله باعث گردیده که مقدار اندازه گیری شده از دقت بالایی برخوردار نباشد و اختلاف معنی داری با مدل‌ها داشته باشددر سال‌های اخیر، چند مطالعه برای برآورد وضعیت رسوب‌دهی شبکه جاده‌های جنگلی با استفاده از این مدل‌ها به انجام رسیده است. نتایج استفاده از SEDMODL در جنگل‌ سری یک دارابکلا- ساری نشان داد که میزان فرسایش جاده‌های منطقه 88/12تن در هکتار در سال می‌باشد، با توجه به فاکتور تحویل رسوب، هم‌چنین فاکتورهای شیب، فاصله جاده از آبراهه، موثرترین فاکتورها برای تولید رسوب و تحویل آن به آبراهه بودند که با نتایج حسینی و همکاران1391مطابقت داشت. در این مطالعه نتایج حاصل از اعتبار سنجی نشان داد که SEDMODL وWARSEM نرخ فرسایش خاک را بیشتر از مقدار واقعی برآورد می‌کند که با نتایج سارفیلت و همکاران 2011 و اسگاست و همکاران 2011مطابقت داشت.
در این مطالعه با استفاده از مدل WARSEM میزان تحویل رسوب جاده‌ مورد مطالعه14/13 تن در سال به دست آمد که این مقدار با نتایج فیو و همکاران 2008 در استرالیا مطابقت نداشت،به نظر می‌رسد اختلاف بین مقادیر به‌دست آمده توسط این مدل‌در مناطق مختلف به دلیل تفاوت مشخصات فنی جاده‌ها خصوصیات فیزیوگرافی اقلیم و زمین شناسی این مناطق باشد. نتایج این بررسی و بررسیهای مشابه نشان داده که میزان تولید رسوب در جادههای جنگلی به عواملی مانند نوع جاده، نوع استفاده از جاده، میزان شیب، فاصله جاده از آبراهه دارد. همانطور که در مقدمه نیز بیان شد یکی از کاراییهای SEDMODL تعیین مقاطعی از جاده میباشد که دارای حساسیت بالایی نسبت به فرسایش و تولید رسوب هستند. با توجه به نتایج این تحقیق مشخص گردید که واحدهای همگن جاده که در قسمتهای بالا دست مسیر قرار داشتند، دارای میزان تحویل رسوب و در نتیجه حساسیت بالایی بودند. این واحدها بیشتر در پارسل9 و بخش کمی نیز در پارسل12 قرار داشت. لذا توصیه میگردد جهت اجرای عملیات کنترل فرسایش این قسمتها در اولویت قرار گیرد. از آنجاییکه افزایش فاکتور تحویل دهی رسوب سبب ایجاد این تغییر فاحش در میزان تحویل رسوب در این واحدها گردیده، توصیه میگردد در صورت اجرای عملیات کنترلی، از اقداماتی استفاده شود که از انتقال رسوب به آبراهه جلوگیری نماید.
تحقیقات در زمینه عوامل موثر در میزان تولید رسوب نشان داده که یک رابطه معکوس بین فاکتور ترافیک و فاکتور روسازی جاده وجود دارد (لوس و بلک 2001). بدین معنی که در یک جاده با میزان فاکتور ترافیک بالا معمولاً کیفیت مواد روسازی به کار رفته خوب است و فاکتور مربوط به روسازی جاده در تولید رسوب کاهش مییابد (آکای و همکاران، 2007). نتایج این مطالعه نشان داد که شیب طولی جاده بر مقدار رسوب برآورد شده توسط مدلهای تجربی در سطح احتمال 5 درصد تأثیر معنیدار داشت. در حالی که شیب طولی تأثیری بر مقدار رسوب اندازهگیری شده در شرایط بارندگی طبیعی نداشت. مقدار رسوب برآورد شده توسط مدلها در کلاسه شیب 8-4 درصد به طور معنیداری بیشتر از کلاسه شیب 4-0 درصد بود که با نتایج کاستیلو و همکاران 2001، فیو و همکاران 2008 ، عطا صفری 1391 همخوانی داشت. دلیل این امر این است که چون همه متغیر ها به جز شیب و فاصله جاده تا آبراهه که وارد مدل شدند تقریبا در همه سگمنمت ها یکی بوده ولی در اندازه گیری مقدار واقعی رسوب عامل شیب معنی دار نشد به دلیل اینکه میزان کوبیدگی در شیب های کم بیشتر بوده و هم چنین میزان چاله چوله ها در منطقه دارابکلا در شیب های پایین تر بیشتر است و به دلیل کیفیت پایین مواد روسازی و تجمع آب در این نقاط موا روسازی در آب حل شده و موجب ایجاد رسوب میگردد.
نتایج نشان داد از موادی مانند شن وماسه که دارای فاکتور روسازی و سطحی کمتری هستند و میزان تولید رسوب را کاهش میدهند استفاده کرد که با نتایج آکای و همکاران، 2007 مطابقت دارد. مصالح شنی بستر جاده عامل موثری در افزایش ظرفیت هیدرولیکی سطح جاده بوده و باعث کاهش رواناب و فرسایش می‌شود (الیوت و همکاران، 2009). نتایج این بررسی نشان داد که در جادههای جنگلی منطقه مورد مطالعه فاکتورهای شیب، فاصله جاده از آبراهه، مؤثرترین فاکتورها برای تولید رسوب و تحویل آن به آبراهه میباشند که با نتایج تحقیق حسینی و همکاران (1391) مطابقت داشت.
در جنگل‌های شمال، هنوز طراحی شبکه جاده به صورت سنتی انجام می‌پذیرد و از رویهم گذاری لایه‌های مختلف اطلاعاتی برای تهیه نقشه پایداری زمین استفاده چندانی نمی‌گردد در این میان، نقشه خطر فرسایش خاک منطقه، لایه اطلاعاتی ارزشمندی است که در بسیاری از نقاط دنیا جهت طراحی مسیر جاده نادیده گرفته می‌شود. این مسئله سبب خواهد شد تا جاده‌ها پس از ساخت، با مسئله فرسایش ورسوب مواجه شوند. داف (2010) در برزیل با بهره‌گیری از مدل‌های WEPP، SEDMODL، STJ-EROS نشان داد که حدود 50 درصد طول جاده‌ها، دارای پتانسیل فرسایش بالایی است. بدین ترتیب با استفاده از نقشه خطر رسوبدهی شبکه جاده جنگلی می‌توان اولویت اجرای طرح‌های حفاظت و نگهداشت جاده را برای کنترل فرسایش در مناطق مختلف مشخص واز هدر رفت خاک جلوگیری کرد.
5-2- نتیجه گیری
با محاسبه میزان فرسایش و تولید رسوب در جادهها و سگمنت‌های مختلف با استفاده از SEDMODELو WARSEM و مقایسه آن‌ها با مقدار اندازه‌گیری شده مشخص شد که کل میزانفرسایش در جادههای منطقه با استفاده ازWARSEMوSEDMODLبه ترتیب، 14/13 29/18 تن در سال می‌باشد.به طور کل، بین مقدار رسوب برآورد شده توسط WARSEM و SEDMODL تفاوت معنیداری وجود نداشتاما این مقادیر برآوردی در سطح احتمال 5 درصد بیشتر از مقدار اندازهگیری شده بود. هم‌چنین شیب طولی جاده بر مقدار رسوب برآورد شده توسط مدلهای تجربی در سطح احتمال 5 درصد تأثیر معنیدار داشت.پتانسیل تحویل رسوب برآورد شده توسط دو مدل ذکر شده مربوط به قسمتی از جاده که در پارسل 9 واقع شده است می‌باشد.با توجه به فاکتور‌های اندازه‌گیری شده درSEDMODL و WARSEM به منظور برآورد رسوب جاده و میزان تاثیر آنها به این نتیجه رسیدیم که آنچه در قالب عملیات مدیریتی می‌توان انجام داد شامل: طراحی و عبور جاده از سازندهای زمین شناسی مقاوم به فرسایش، ارتقا کیفیت روسازی جاده، کاهش ترافیک، کاهش سطح تحویل دهنده رسوب از طریق ساخت جاده‌های با شیب خارجی و کاهش عرض قطعات جاده می‌باشد.
5-3- پیشنهادات
طراحی و ساخت جاده‌های جنگلی مطابق با استاندارد‌ها و همچنین عملیات به موقع تعمیر و نگهداری جاده برای کاهش اثر منفی جاده‌های جنگلی روی محیط زیست.
با توجه به اینکه در ایران از سه مدل WARSEM، SEDMODL، CULSED در برآورد رسوب جاده جنگلی شمال کشور استفاده شده پیشنهاد می‌شود از سایر مدل‌ها نیز در برآورد رسوب جاده استفاده شود و یا کارایی SEDMODLبا سایر مدل‌ها مقایسه شود.
در اندازه‌گیری مقدار واقعی رسوب جاده در جنگل از تکنولوژی‌های جدید مانند: دستگاه ثبت کننده داده‌ها، دستگاه باران‌نگر، ترافیک شمار، پارشال فلوم، دستگاه اندازه‌گیری فشار هیدروستاتیک و پمپ نمونه بردار آب اشاره کرد که برای اولین بار در جنوب شرق آلاسکا استفاده شده است.
استفاده از نقشه خطر فرسایش خاکی به عنوان یکی از لایه‌های اطلاعاتی در طراحی شبکه جاده جنگلی، تا جاده‌ها از مناطق مستعد فرسایش عبور داده نشوند.
استفاده از مصالح شنی مرغوب با ضخامت مناسب و حفظ سطح رویه در جاده‌های پر‌ترافیک و انجام به موقع عملیات تعمیر و نگهداری جاده.
منابع

منابع
احمدی ح.1377. ژئومورفولوژی کاربردی، فرسایش آبی. جلد اول، انتشارات دانشگاه تهران.
بی‌نام،1383. کتابچه طرح جنگلداری دارابکلا، اداره کل منابع طبیعی استان مازندران، سازمان جنگل‌ها و مراتع 380ص.
بی‌نام. 1386.دستورالعمل ارزیابی زیست محیطی طرح‌های حمل و نقل جاده‌ای. وزارت راه و ترابری، پژوهشکده حمل و نقل، 58ص.
بهزادفر م.1384. اندازه‌گیری میزان رسوب تولیدی از جاده‌های جنگلی. فصلنامه جنگل و مرتع، شماره 64. صفحه 83.
پارساخو آ.1391. بررسی مقدار رواناب وهدررفت خاک بخش‌های مختلف ساختمان جاده جنگلی با استفاده از شبیه ساز باران (مطالعه موردی: سری‌های لت تار و لولت در حوزه آبخیز تجن). پایان نامه دکترای تخصصی، دانشکده منابع طبیعی ساری،154ص.
حسینی،س،ع ، امیدوار,ا. نقوی ،ح.پارساخو،آ. 1391. برآورد مقدار رسوب حاصل از جادههای جنگلی به کمک SEDMODL. مجله علوم و فناوری چوب و جنگل. جلد نوزدهم، شماره اول.
رفاهی ح. 1385فرسایش آبی و کنترل آن. انتشارات دانشگاه تهران. 2298: 671 ص.
راهبری سی سختس. عبدیا. 1389.بررسی تاثیر عوامل موثر در تولید رسوب جاده‌های جنگلی با استفاده از GIS. اولین کنفرانس ملی ژئوماتیک نوین در خدمت جامعه 14 اسفند 1389، تهران- گروه کارتوگرافی دانشگاه تهران. موسسه آموزشی تحقیقات یوِرنال، موسسه افق دره مهرگان
لطفعلیان م، پارساخو آ. 1391. برنامه ریزی شبکه جاده‌های جنگلی. انتشارات آییژ. 163ص.
مهدوی م. 1378. هیدرولوژی کاربردی، جلد دوم، انتشارات دانشگاه تهران، 401ص.
هوشیار‌خواه ب.1385. بکارگیری فن‌آوری سامانه اطلاعات جغرافیایی(GIS) و سنجش از دور(RS) در طراحی جاده‌های جنگلی و مقایسه آن با روش رایج. پایان نامه کارشناسی ارشد، دانشکده منابع طبیعی ساری، 51ص.
- Akay, A.E., Erdas, O., Reis, M., Yuksel, A. 2007. Estimating sediment yield from a forest road network by using a sediment prediction model and GIS techniques. Building and Environment, Volume 43, Issue 5, May, Pages 687-695
-Dube, Kathy. Megahan,Walt.McCalmon,Marc.2004. Washington Road Surface Erosion Model, Washington state Department Natural Resource.www.dnr.wa.gov/publication/fp datawarsem manual .pdf
-‌‌‌Çalışkan،E. 2012. Evaluation of Sediment Erosion Prediction Models to Forest Road
in Mountain Area. Journal of Applied Environmental‌ and Biological Sciences, 2(11)567-580
- Duff, Marissa Joy. Con-- D. Heatwole, Chair. Aurelio C, Marco.2010. Evaluation of road erosion prediction models applied to unpaved roads in a small tropical watershed in Eastern Brazil, Master of Science in Biological Sys--s Engineering, scholar.lib.vt.edu/theses/avai lable/etd/duff-uj
-.Fu, B, Newham, L, Field, J 2007, 'A Catchment-Scale Model of Road Erosion and Sediment Delivery'International Congress on Modelling and Simulation (MODSM), ed. Les Oxley & Don Kulasiri, Modelling and Simulation Society of Australia and New Zealand Inc., New Zealand, pp. 2090-2096.
- Fu, B. Newham, L.T.H. Field, J.B. 2008. Modelling erosion and sediment delivery from unsealed roads in southeast Australia, Journal Mathematics and computers in simulation archive , Volume 79 Issue 9.Pages 2679 – 2688
- Fu, B, Newham, L and Field, J 2009, 'Integration of a road erosion model, WARSEM, with a catchment sediment delivery model, CatchMODS', Delivery'International Congress on Modelling and Simulation (MODSM), ed. Anderssen, R.S., R.D. B--dock and L.T.H. Newham, Modelling and Simulation Society of Australia and New Zealand Inc., Australia, pp. 4085-4091.
- Fu, B, Newham, L and Ramos-Scharro´n,C.E.2010.A review of surface erosion and sediment delivery models for unsealed roads.Environmental Modelling & Software 25 1–14
- Forsyth AR, Bubb KA, Cox ME.2006. Runoff, sediment loss and Water quality from forest roads in a southeast Queensland coastal plain pinus plantation. Forest Ecol. Manage.221: 194-206

user834

چکیده
بررسی تنوع ژنتیکی اقوام ایرانی با استفاده از STR
مونا داودبیگی
بررسی تنوع ژنتیکی در جمعیت‏ها با استفاده ار تعیین فراوانی آللی و پارامترهای ژنتیکی روش نوینی است که در سال‏های گذشته در بسیاری از جمعیت‏های جهان صورت گرفته و با استفاده از آن شباهت بسیاری از جمعیت‏ها به یکدیگر مشخص گردیده. شباهت جمعیت‏ها نشان‌دهنده‏ی همسان‌بودن خزانه‏ی ژنتیکی آنها و احتمالا یکسان‌بودن آن جمعیت‏ها در گذشته است. پس این احتمال وجود دارد که این جمعیت‏ها در گذشته یک جمعیت بوده باشند و بعد‏ها به دلایل جغرافیایی و یا مهاجرت‏ها از یکدیگر جدا شده باشند. یکی از راه‏های بررسی تنوع‌ ژنتیکی در جمعیت‏ها استفاده از توالی‏های کوتاه تکراری می‏باشد .هدف این مطالعه بررسی تنوع ژنتیکی در دو قوم یزد و کرد (کرمانشاه) از ایران بود. بدین منظور پروفایل ژنتیکی پنجاه فرد غیر‌خویشاوند از هر یک از جمعیت‏های کرمانشاه و یزد با استفاده از کیت ABIتهیه شد. این کیت حاوی پانزده جایگاه D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOX و TH01 و ژن آمیلوژنین (برای تعیین جنسیت افراد) می‏باشد. نتایج نشان‌دادند که به جز دو جایگاه D7S820 وD19S433 در جمعیت کرمانشاه و سه جایگاه D21S11 ,D19S433 و VWA در یزد سایر جایگاه‏ها در تعادل هاردی‏واینبرگ بودند. همچنین پارامترهای پزشکی‌قانونی شامل PIC,PD,PE,MP در این مطالعه بررسی شدند. سپس دو جمعیت با جمعیت‏های کشورهای همسایه مقایسه شدند. این مطالعه نشان داد که این جایگاه‏ها، جایگاه‏های مناسب برای استفاده در تست‏های تعیین هویت و مطالعات جمعیتی می‏باشند. در نتیجه‏‏ی مقایسات هم دیده شد که هر دو جمعیت یزد و کرمانشاه شباهت زیادی به جمعیت کشور ترکیه داشتند ولی با سایر کشورها متفاوت بودند. از طرفی یزد نسبت به کرمانشاه دارای جمعیت همگن‌تری بود که این مسئله می‏تواند به‌علت بکر بودن این جمعیت در طول سالیان مختلف باشد.
کلمات کلیدی: توالیهای کوتاه تکراری، نشانگرهای مولکولی، ژنتیک جمعیت
Abstract
Genetic variation in two Iranian population with STR
Mona Davood Beigi
In recent years studying genetic variation among population by determination of allele frequencies and genetic parameters became a new method that it has been done in different population all around the world. By using this method lots of similarities has been founded among population around the world. These similarities represent the same genetic pool and also it may show the same population in the past as well. So it seems that different population were one at the first and geographical situations or migrations were the reasons that caused its separation.
Studying short tandem repeats (STR) in genome is the best way to founding genetic variation in population. The aim of this study was to investigate the genetic variation of two population of Iran, Yazd and Kermanshah people.
For this purpose the genetic profile of 50 unrelated individual from each population prepared by using ABI kit. This kit contains fifteen str loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) and also amylogenin gene for sex determination. The result showed all the loci were in Hardy Weinberg equilibrium except two loci(D19s433 , D2s820) in Kermanshah and three loci (D19s433, D21s11 and VWA) in Yazd population. More over forensic parameters including PIC, PD, PE and MP have been calculated. After all the results have been compared with other population in neighbor countries.
This study revealed that these loci were the suitable loci for identification people and studying genetic population variation. Also the comparison showed that both of Yazd and Kermanshah people were similar to Turkish genetically, but were different from other countries. In addition Yazd has more homogeneous population than Kermanshah, that it could be due to pristine gene pool of this population in the past centuries.
Keywords: Short tandem repeats; Microsatellite markers; Population genetic
فصل اول
مقدمه
1-1 مقدمهدرگذشته مطالعه‏ی تکامل و مهاجرت‏ها از طریق کشف و بررسی بقایای اسکلتی و فسیل‏ها انجام می‏شد. اما از حدود سه دهه‏ی پیش، باستان‏شناسان و زیست‏شناسان با به‌کار‏گیری آنالیز‏های DNA موفق به کشف‏های بسیار دقیقی شدند که کمک فراوانی به ردیابی تاریخ مهاجرت بشر و تکامل انسان‏ها نموده است. یکی از پر‏کاربرد‏ترین راه‏های آنالیز DNA، بررسی نشان‌گرهای ژنتیکی افراد است، که از مهم‌ترین آنها می‏توان به توالی‏های کوتاه تکراری موسوم به STR اشاره کرد. STR‏ها، توالی‏هایی به طول یک تا سیزده نوکلئوتید هستند که در ژنوم موجودات در نواحی غیر‌کد‏کننده موجود می‏باشند. هر فرد توالی‏های منحصر به فردی دارد و هیچ دو نفری در جهان نیستند که توالی‏های یکسانی داشته باشند. به همین دلیل ازSTR ‏ها می‏توان در مطالعات جمعیتی و بررسی تنوع ژنتیکی در جمعیت‏ها سود جست [1].
علاوه بر مطالعات جمعیتی ازSTR ‏ها می‏توان در موارد تعیین هویت‏، تعیین ابویت، تست‏های پزشکی‏قانونی و سایر موارد استفاده کرد. به طور معمول STRهایی که برای تعیین هویت و مطالعات ژنتیکی جمعیت به‌کار می‏روند، یکسان هستند و شامل پانزده جایگاه به نام‏های D8S1179،D21S11 ، D7S820،CSF ،D3S1358 ،TH01 ، D13S317، D16S539،D2S1338 ، D19S433، VWA، TPOX،D18S51 ، D5S818،FGA ،VWA ، TPOXو TH01 می‏باشند [1].
هم‌چنین از روش مشترکی موسوم به تعیین الگوی DNA در این زمینه‏ها استفاده می‏شود. هر فرد دارای الگوی DNA منحصر به فرد است که تا پایان عمر تغییر نخواهد کرد. محققان دریافتند که افراد یک جمعیت در الگوهای ژنتیکی خود دارای تشابهاتی هستند که منحصر به همان جمعیت است و با الگوی افراد جمعیت‏های دیگر متفاوت است. از این تفاوت‏ها می‏توان برای ردیابی تاریخ مهاجرت و تکامل انسان‏ها استفاده نمود (1).
1-2 نشان‌گر چیست؟
صفاتی را که می‏توانند به عنوان نشانه‏ای برای شناسایی افراد حامل آن صفت مورد استفاده قرار گیرند، نشان‌گر می‏نامند. مندل نخستین کسی بود که از نشان‌گرهای ظاهری برای مطالعه چگونگی توارث صفات در نخود‌فرنگی استفاده کرد. اما گاهی صفات به سادگی و با چشم غیر مسلح قابل مشاهده نیستند، مانند گروه خونی. برای مشاهده چنین صفاتی باید آزمایش‏های خاصی صورت گیرد. به طور کلی هر صفتی که بین افراد متفاوت باشد، ناشی از تفاوت موجود میان محتوای ژنوم آنها می‏باشد. حتی بروز صفات به صورت متفاوت در میان افراد (در شرایط محیطی یکسان)، به علت تفاوت‏ در ژنوم آنها است. این تفاوت‏ها می‏توانند به عنوان نشانه یا نشان‌گر ژنتیک به کار گرفته شوند. به طور کلی برای آنکه صفتی به عنوان نشان‌گر ژنتیک مورد استفاده قرار گیرد، باید دست کم دو ویژگی داشته باشد‌:
1-در بین دو فرد متفاوت باشد (چند شکلی)
2-به توارث برسد (2).
1-3 انواع نشان‌گرهای ژنتیکینشان‌گرهای ژنتیکی عبارتند از:
1-نشان‌گرهای مورفولوژیک
2-نشان‌گرهای پروتئینی
3-نشان‌گرهای مولکولی در سطح DNA و RNA
1-3-1 نشان‌گرهای مورفولوژیک
کاربرد نشان‌گرهای مورفولوژیک به ده‏ها سال پیش از کشف DNA مربوط می‏شود. نشان‌گرهای مورفولوژیکی که پیامد جهش‏های قابل رویت در مورفولوژی هسته، از ابتدای این سده مورد استفاده قرار گرفتند. صفات مورفولوژیکی که عمدتا توسط یک ژن کنترل می‏شوند، می‏توانند به عنوان نشان‌گر مورد استفاده قرار گیرند. این نشان‌گرها شامل دامنه وسیعی از ژن‏های کنترل‌کننده صفات فنوتیپی هستند و جز نخستین نشان‌گرها به شمار می‌آیند و از زمان‏های بسیار دور یعنی از زمانی که محل ژن‏ها روی کروموزوم مشخص شد، مورد استفاده قرار می‏گرفتند (2).
معایب نشان‌گرهای مورفولوژیک
اغلب دارای توارث غالب و مغلوب بوده و اثرات اپیستازی و پلیوتروپی دارند.
تحت تاثیر شرایط محیطی و مرحله رشد موجود قرار می‏گیرند.
فراوانی و تنوع کمی دارند.
گاهی برای مشاهده و ثبت آنها باید منتظر ظهور آنها ماند.
اساس ژنتیک بسیاری از نشان‌گرهای مورفولوژیک هنوز مشخص نشده است‌(2).
1-3-2 نشان‌گرهای پروتئینی
در دهه‌ی 1950، نشان‌گرهای پروتئینی قابل مشاهده توسط الکتروفورز پروتئین‏ها تحول شگرفی را ایجاد نمودند. برخی از تفاوت‏های موجود در ردیفDNA بین دو موجود ممکن است به صورت پروتئین‏هایی با اندازه‏های مختلف تجلی کنند، که به روش‏های مختلف بیوشیمیایی قابل ثبت و مطالعه می‏گردند. این قبیل نشان‌گرها را نشان‌گرهای مولکولی در سطح پروتئین می‏نامند که از آن جمله می‏توان به سیستم آیزوزایم/آلوزایم اشاره کرد. معمول‏ترین نوع نشان‌گرهای پروتئینی آیزوزایم‏ها هستند که فرم‏های مختلف یک آنزیم را نشان می‏دهند. آیزوزایم‏ها به‏ طور گسترده در بررسی تنوع ژنتیکی به‌کار گرفته‌شدند. نشان‌گرهای پروتئینی تغییرات را در سطح ردیف و عمل ژن به صورت نشان‌گرهای هم‌بارز نشان می‏دهند. اما این دسته از نشان‌گرها هم دارای معایبی هستند. برخی از معایب آن‏ها عبارت‌اند از:
محدود بودن فراوانی این نوع نشان‌گرها؛
تعداد آیزوزایم‏های قابل ثبت و مشاهده که می‏توان از آنها به عنوان نشان‌گر استفاده کرد به یکصد عدد نمی‏رسد؛
محدود بودن تنوع ژنتیکی قابل ثبت در آیزوزایم‏ها‌(نداشتن چند شکلی)؛
پیچیدگی فنوتیپ‏های الکتروفورزی آیزوزایم‏ها به دلیل دخیل بودن آنزیم‏های مرکب از چند پلی‌پپتید مستقل در ترکیب برخی از آیزوزایم‏ها‌(3).
اما پیشرفت‏هایی که در زمینه‏ی الکتروفورز دو‏بعدی با قدرت تفکیک زیاد پدید آمده، تجزیه تحلیل هم‌زمان هزاران پروتئین را میسر ساخته و مجددا به‌عنوان فناوری پیشتاز در عرصه نشان‌گر‏های مولکولی مطرح شده‏اند. تاثیرپذیری نشان‌گرها از محیط که به‌طور معمول به‌عنوان یکی از محدودیت‏ها و نکات منفی نشان‌گرهای مولکولی یاد می‏شود، در مورد این نشان‌گر‏ها تبدیل به برتری شده و جایگاه متمایزی را در بین سایر نشان‌گرها به ارمغان آورده است. پروتئومیکس‌(مطالعه سراسری کل پروتئین‏های موجود در یک سلول یا یک ارگانیسم) می‏تواند به‌طور هم‌زمان برای مطالعه بیان ژن و هم‌چنین برای شناسایی پروتئین‏های واکنش دهنده به شرایط محیطی مورد استفاده قرار گیرد(3).
1-3-3 نشان‌گرهای مولکولیDNA وRNA
دسته‌ای دیگر از تفاوت‏های موجود در سطح DNA هیچ تظاهری ندارند. نه صفت خاصی را کنترل می‏کنند و نه در ردیف اسید‏های آمینه پروتئین‏ها تاثیری برجای می‌گذارند. این دسته از تفاوت‏ها را می‏توان با روش‏های مختلف شناسایی، قابل دیدن و ردیابی کرد و به عنوان نشان‌گر مورد استفاده قرار داد. این نشان‌گر‏ها که تعدادشان تقریبا نا‏محدود است، فقط از راه تجزیه و تحلیل مستقیم DNA قابل ثبت هستند. بنابراین به آنها نشان‌گرهای مولکولی در سطح DNA گفته می‏شود. نشان‌گرهای مولکولی فراوان و در هر موجود زنده‌ای می‌توانند مورد استفاده قرار گیرند. تاکنون تعداد زیادی از نشان‌گرهای DNA معرفی شده‌اند. این نشان‌گرها از نظر بسیاری از ویژگی‏ها مانند درجه‏ی چندشکلی، غالب یا هم‌بارز بودن، تعداد جایگاه‏های تجزیه شده در هر آزمایش DNA، توزیع در سطح کروموزوم، تکرار‌پذیری، نیاز یا عدم نیاز به توالی‏یابی DNA الگو و هزینه‏ی مورد نیاز با همدیگر متفاوت‌اند. انتخاب بهترین نشان‌گر به هدف مطالعه (انگشت نگاری، تهیه نقشه پیوستگی، ژنتیک جمعیت و روابط تکاملی) و سطح پلوئیدی موجود مورد مطالعه بستگی دارد‌(4).
مزایای کاربرد نشان‌گرهای مولکولی
عدم تاثیرپذیری آنها از شرایط محیطی خارجی و داخلی موجود؛
امکان به‌کارگیری آنها در مراحل نخستین رشد جنینی حیوانات و مراحل نخستین رشد موجودات؛
فراهم نمودن امکان مطالعه موجودات در خارج از فصل و محیط کشت؛
دقت و قابلیت مطلوب تفسیر نتایج؛
هم‌بارز بودن بسیاری از این نشان‌گرها؛
امکان استفاده از آنها در مورد گونه‏های منقرض شده؛
سهولت تشخیص افراد ناخالص از خالص؛
سهولت امتیازدهی و تجزیه و تحلیل نتایج؛
دسترسی به برنامه‏های رایانه‏ای قوی برای تجزیه و تحلیل و تفسیر سریع نتایج‌(4)
انواع نشان‌گرهای مولکولی
نشان‌گرهای DNA گروه بزرگی از نشان‌گرها را تشکیل می‏دهند. این نشان‌گرها سیر تحول و تکامل خود را به پایان نرسانده‏اند و ابداع و معرفی روش‏های متنوع و جدیدتر ثبت و مشاهده‏ی تفاوت‏های ژنتیک بین موجودات از طریق مطالعه‏ی مستقیم تفاوت‏های موجود در بین ردیف‏های DNA هم‌چنان ادامه دارد. نشان‌گر‏های DNA در مدت یک دهه تکاملی شگرف و تحسین‌برانگیز داشته‏اند‌(5).
ابداع و معرفی واکنش زنجیره‌ای پلی‌مراز یا PCR یک روش سریع تکثیر آزمایشگاهی قطعه یا قطعه‌های مورد نظر DNA است. در واقع PCR روشی بسیار قوی است که تکثیر ردیف منتخبی از مولکول یک ژنوم را تا چندین میلیون در کم‌تر از نیم‌روز امکان‌پذیر می‏سازد. اما این فرایند هنگامی امکان‌پذیر است که دست‌کم ردیف کوتاهی از دو انتهای قطعه DNA مورد نظر معلوم باشد. در این فرایند که تقلیدی از فرایند همانندسازی DNAدر طبیعت است، الیگونوکلئوتیدهای مصنوعی که مکمل ردیف شناخته شده دو انتهای قطعه‏ی مورد‌نظرDNA هستند، به‌عنوان آغازگر مورد استفاده قرار می‏گیرند تا واکنش آنزیمی همانندسازی DNA درون لوله‌ی آزمایش امکان‌پذیر شود. این همانند‏سازی فرایندی آنزیمی است و توسط انواع مختلفی از آنزیم‏های پلی‌مراز صورت می‏گیرد. امروزه تعداد زیادی از این نوع آنزیم‏ها به صورت تجاری دردسترس هستند‌(6).
واکنش زنجیره‏ای پلی‌مراز (PCR) در سال 1983 توسط کری‌مولیس در حالیکه در یک نیمه شب تابستانی در حال رانندگی بود، ابداع گردید و سبب انقلاب عظیمی در زیست شناسی مولکولی شد(6).
همان‌گونه که در شکل 1-1 نشان داده شده است، نشان‌گرهای DNAبه دو دسته‏ی کلی طبقه‌بندی می‏شوند.
نشان‌گرهای DNAمبتنی بر PCR
نشان‌گرهای DNA غیر مبتنی PCR(6).

شکل 1-1 انواع نشان‌گرهای ژنتیکی‌(10)
1-3-3-1 نشان‌گرهای غیر مبتنی بر PCRاین دسته از نشان‌گرهای DNA بدون استفاده از روشPCR تولید می‌شوند و مورد استفاده قرار می‌گیرند.
انواع نشان‌گرهای غیر مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‏های محدودگر(RFLP)
پویش ژنومی نشانه‏های هضم (RLGS)
ماهوارک‏ها
1-3-3-1-1 تفاوت طول قطعات حاصل از هضم DNA توسط آنزیم‌های محدودگر( (RFLPسرگروه نشان‌گرهای غیر‌مبتنی برPCR ، همان تفاوت طول قطعه‏های حاصل از هضم DNA توسط آنزیم‏های محدودگر یا RFLP است. از بین نشان‌گرهای مولکولی DNA، RFLP ها اولین نشان‌گرهایی بودند که برای نقشه‌یابی ژنوم انسان توسط بوتستین و همکاران در سال 1980 و پس از آن برای نقشه‌یابی ژنوم گیاهان توسط بر و همکاران در سال 1983 مورد استفاده قرار گرفتند. در اوایل دهه 1980 بوتستین و همکاران استفاده از تفاوت طول قطعه‏های حاصل از هضم یا RFLP را برای مطالعه‏ی مستقیم DNA و یافتن نشان‌گر‏های ژنتیک جدید معرفی کردند. این تحول از پیامد‏های منطقی کشف آنزیم‏های محدودگر بود. این آنزیم‏ها که بسیار اختصاصی‏ هستند، ردیف‏های ویژه‏ای را روی مولکولDNA شناسایی کرده و آنها را از محل خاصی (نقطه‏ی برش) برش می‏دهند‌(7).
RFLP الزاما مختص ژن‏های خاص نیست، بلکه در کل ژنوم پراکنده است. ازاین رو، از نشان‌گرهای RFLP برای نقشه‌یابی تمام ژن‌ها در ژنوم انسان استفاده می‏شد(5). علاوه برRFLP که هنوز هم از قدرتمندترین و معتبرترین نشان‌گرهایDNA است، انواع مختلف نشان‌گرهایDNA با تفاوت‌های زیادی از نظر تکنیکی و روش تولید، نحوه‌ی کاربرد، امتیاز‌بندی، تجزیه و تحلیل و تفسیر نتایج به سرعت ابداع ومعرفی شده‌اند‌(7).
مهم‌ترین مزایای RFLP
تکرارپذریری، دقت و قابلیت اعتماد این نشان‌گر فوق‌العاده زیاد است؛
این نشان‌گر هم‌بارز است و امکان تشخیص افراد خالص را از افراد ناخالص فراهم می‏آورد؛
فراوانی این نشان‌گر در حد بالایی است؛
RFLP تحت تاثیر عوامل محیطی داخلی و خارجی نبوده و صد در صد ژنتیکی است(8).
برخی معایب RFLP
دشواری، پیچیدگی و وقت‌گیر بودن؛
RFLP ژنوم‌های بزرگ نیازمند کاربرد مواد پرتوزا یا روش‌های پیچیده‏تر و گران‏تر بیوشیمیایی است؛
RFLP نیازمند نگه‌داری میکروارگانیسم‌ها به‌منظور تهیه‏ی کاوشگر است که خود بر پیچیدگی این روش می‏افزاید؛
هزینه‏ی اولیه و نگه‏داری کاوشگر‏ها و کاربرد آنها بسیار زیاد است؛
نیازمندی به مقدار نسبتا زیاد DNA از محدودیت‏های دیگر روش RFLPاست به‌طوری که ده‏ها میکروگرم از DNAبرای هر فرد به منظور تجزیه‏ی ژنوم مورد نیاز است؛
از دیگر محدودیت‏های این نشان‌گر آن است که در گونه‏های بسیار نزدیک به یکدیگر این نوع نشان‌گر‏ها آلل‏های مشابهی را نشان می‏دهند(8).
1-3-3-1-2 پویش ژنومی نشانه‏های هضم (RLGS)در سال1991، هاتادا و همکاران روشی را برای شناسایی و انگشت‌نگاری موجودات عالی ابداع و معرفی کردند. پیش از ابداع این روش که بر مبنای نشان‌دار کردن هم‌زمان انتهای هضم شده‏ی هزاران قطعه‌ی DNA است، ردیابی و ثبت موجودات عالی با روش نشان‌دار کردن انتهای هضم شده غیر ممکن می‌نمود. دو دلیل اصلی برای این تصور ذکر شده است:
ژنوم موجودات عالی بسیار بزرگ و پیچیده است برای مثال ژنوم انسان 109×3 جفت باز دارد و در نتیجه‏ی هضم آن با آنزیمی مانند EcoRI بیش از یک میلیون قطعه‌ی DNA به وجود می‌آید. تفکیک این تعداد مولکولDNA حتی با الکتروفورز دو بعدی نیز غیر ممکن است.
معمولا DNA ژنومی در هنگام استخراج به صورت تصادفی و غیر‌اختصاصی شکسته می‌شود و ایجاد مولکول‏هایی با انتهای تصادفی می‏کند. این امر سبب ایجاد پس‌زمینه‌ی ناشی از نشان‌دار شدن این انتهاها طی فرایند نشان‌دارکردن می‏شود‌(9).
برای رفع این دو نقص تدابیری پیش‏بینی شد و روش RLGS ابداع گردید. این روش جدید که برای تجزیه و تحلیلDNA ژنومی به‌کار می‌رود، بر مبنای این فرضیه است که نقاط برش اختصاصی آنزیم‏های محدودگر می‌توانند به‌عنوان نشانه و وجهه تمایز ارقام و افراد به کار گرفته‌شوند.
در این روش انتهای آزاد مولکول‌های DNA که در اثر صدمات مکانیکی در طی استخراج به وجود آمده‏اند، مسدود می‏شود. سپس برای کاهش پیچیدگی، DNA ژنومی توسط آنزیم‏های محدودگر، با محل برش نادر، هضم و نقاط برش به‌طور مستقیم با فسفر پرتوزا نشان‌دار می‏شوند. آنزیم‏های با محل برش نادر معمولا هزاران قطعه DNA به وجود می‏آورند. سپس با الکتروفورز دو‌بعدی، قطعه‏های هضم‌شده‏یDNA از هم جدا شده و خودپرتونگاری صورت می‏گیرد. این روش یک الگوی دو بعدی با هزاران نقطه‏ی پراکنده (قطعه‏های نشان‌دارDNA) ایجاد می‏کند که هر یک می‏توانند به عنوان یک نشان‌گر به کار گرفته شوند(10)
برخی از مزایای روشRLGS
در هر آزمایش هزاران نشان‌گر به‌دست می‌آید؛
مقدار کمی DNAمورد نیاز است؛
در صورت استفاده از آنزیم‌های محدودگر متفاوت، تفاوت‏های بیشتری ظاهر و ثبت خواهند شد[10].
برخی از معایب روش RLGS
DNA مورد نیاز برای این روش باید از کیفیت مطلوبی برخوردار باشد؛
هضم ناقص DNA توسط آنزیم‏های محدودگر نتایج تکرار ناپذیر و گمراه کننده‏ای خواهد داشت؛
این روش پیچیدگی فوق العاده‏ای داشته و تفسیر نتایج حاصل از آن دشوار است(10).
1-3-3-1-3 ماهوارک‏ها
ماهوارک‏ها نخستین بار در سال 1985 توسط جفری و همکاران گزارش شدند. پس از آن در سال 1988 تکثیر جایگاه‏های ژنی خاص نواحی تکرارشونده، روی ماهوارک‏ها در ژنوم انسان انجام شد.
این دسته از نشان‌گرها از نظر تکنیکی مبتنی بر استفاده از کاوشگرهای مصنوعی و کاربرد مواد پرتوزا و روش ساترن هستند.
ماهوارک‌ها واحدهایی 10 تا 100 جفت بازی هستند که ممکن است صدها بار تکرار شده باشند. آنها معمولا یک هسته مشترک 10 تا 15 جفت بازی دارند که احتمالا در تنوع‌پذیری ماهوارک‌ها موثرند. ماهوارک‌ها بیش‌تر در نواحی یوکروماتین ژنوم پستانداران، قارچ‌ها و گیاهان متمرکز‌ند. تنوع‌پذیری ماهوارک‌ها در حدی است که گاهی در انگشت‌نگاریDNA انسان مورد استفاده قرار می‏گیرند. از جمله‌ی ماهوارک‌ها می‏توان به تکرارهای پشت سر هم با فراوانی بالا (VNTR) اشاره کرد[11]. VNTR ها به دو دسته‌ی کلی تقسیم می‌شوند: VNTR تک مکانی و VNTR چند مکانی.
دسته‏ی نخست، تعداد متفاوت ردیف‌های تکراری در یک جایگاه ژنی و دسته‏ی دوم تعداد متفاوت ردیف‌های تکرار‌شونده در چندین جایگاه ژنی را نشان می‌دهند. الگوی بانددهی به‌دست آمده با استفاده از کاوشگر‌های VNTR تک مکانی ساده‏تر و قابل فهم‌تر است، زیرا هر فرد تعداد کمی باند واضح را نشان می‏دهد. در حالی‌که تعداد باندهای به دست آمده از کاوشگرهای مخصوص VNTRچند‌مکانی بیش‌تر است، به‌طوری که به‌طور هم‌زمان تا بیش از 30 باند به دست می‏آید(12).
در نخستین نشان‌گرهای مبتنی بر ماهوارک‌ها، از الیگونوکلئوتید‏های حاوی ریزماهواره به عنوان کاوشگر استفاده گردید و توسط علی و همکاران انگشت‌نگاری الیگونوکلئوتیدی نام‌گذاری شد.
از کاوشگرهای الیگونوکلئوتیدی نشان‏دار‌شده مکمل با موتیف‌های کوتاه تکرار‌شونده در هیبریداسیون در ژل، با به کارگیری DNAژنومی برش داده شده با آنزیم‌های برشی خاص و الکتروفورز ژل آگارز استفاده شده است. گوبتا و وارشنی در سال2000 طی تحقیقات خود مراحل زیر را برای انگشت‌نگاری الیگونوکلئوتیدی مطرح کردند:
جداسازیDNA ژنومی با وزن مولکولی زیاد
هضم DNAژنومی با یک آنزیم محدودگر مناسب
تفکیک قطعه‌های حاصل از هضم روی ژل آگارز
انتقال ساترن قطعه ها به غشا
دو ‏رگ‏گیری غشا با کاوشگر‏های(نشاندار با مواد پرتوزا یا غیر پرتوزا) الیگونوکلئوتیدی دربردارنده‏ی ردیف‌های دو یا سه تایی تکراری
خودپرتونگاری یا رنگ آمیزی برای مشاهده‏ی قطعه‌های دو رگ‌شده.
به‌کمک این روش می‌توان تنوع نواحی تکرار‌شونده‏ی مورد نظر را آشکار کرد. قطعه‌هایی از DNA که با الیگونوکلئوتیدها دو ‌رگ می‌شوند، در دامنه‌ای از اندازه‏ی چند صد جفت تا ده کیلو جفت باز قرار می‏گیرند. هم‌چنین گاهی بیش از یک نوع ماهواره در داخل یک قطعه‏ی برش داده شده قرار می‌گیرد. تفاوت‏هایی که این نوع نشان‌گرها نشان می‏دهند، به دلیل تفاوت در طول قطعه‌های برش داده‌شده‌ای است که در بردارنده‏ی ماهوارک‌ها هستند. از این روش برای شناسایی ژنوتیپ‌ها و همچنین در ژنتیک جمعیت استفاده می‌شود(12).
پس از مدتی، لیت و لوتی و سه گروه دیگر همین روش را برای ریزماهواره‏ها(عمدتا از نوع (CA)n) به‌کار بردند و دریافتند که ریز ماهواره‏ها به دو دلیل به مراتب آسانتر از ماهوارک‌ها با روش PCR تکثیر می‏شوند:
1-ریزماهواره‏ها کوچکتر از ماهوارک‏ها هستند؛
2-ردیف‌های تکرار‌شونده ریز ماهواره‏ای فراوانتر و توزیع آنها در کل ژنوم یکنواخت‌تر ازماهوارک‏هاست(13).
1-3-3-2 نشان‌گرهای مبتنی بر PCRنشان‌گرهای مبتنی بر PCR نشان‌گرهایی هستند که از توالی الیگونوکلئوتیدی به عنوان آغازگر برای تکثیر قطعه‏ی خاصی از DNA استفاده می‌کنند. روش‏های مختلف در این گروه، در طول و توالی آغازگرها، سختی شرایط PCR و روش‏های جداسازی و آشکار کردن قطعات با همدیگر فرق دارند.
انواع نشان‌گرهای مبتنی بر PCR به شرح زیر است:
تفاوت طول قطعه‌های حاصل از تکثیر(AFLP)
DNA چند شکل تکثیر‌شده‏ی تصادفی(RAPD)
تفاوت تک نوکلئوتیدی(SNP)
نشان‌گرهای مبتنی برنقاط نشانمند از ردیف (STS)
1-3-3-2-1 تفاوت طول قطعه‌های حاصل از تکثیر (AFLP)
در سال 1995 نشان‌گرهای جدیدی ابداع و معرفی شدند که به نظر می‌رسد بسیاری از محدودیت‌های نشان‌گر‌های پیشین را نداشته باشند. در این روش که AFLP نامیده می‏شود نشان‌گرهایی تولید می‏شوند که علاوه بر دارا بودن مزایایRFLP مانند دقت و تکرار‌پذیری ویژگی‌های مثبت روش‌های مبتنی بر واکنش زنجیره‌ای پلی‌مراز را نیز دارند. پایه‌ی این روش تکثیر انتخابی برخی قطعه‌ها از بین تمام قطعه‌های هضم شده‌ی DNA است و سه مرحله‌ی مجزا دارد:
هضمDNA با یه جفت آنزیم محدودگر و اتصال آنها به آداپتور‌های اولیگونوکلئوتیدی؛
طراحی، ساخت آغازگر و تکثیر انتخابی دسته‌ای از قطعه‌های حاصل از هضم .با استفاده از ردیف بازی آداپتور‌ها و نیز ردیف بازی نقاط برش، طراحی و ساخت آغازگر انجام می‌شود، اما برای تکثیر انتخابی قطعه‌های حاصل از هضم دو، سه یا چند نوکلئوتید به انتهای’3 ردیف آغازگر اضافه می‌شود که موجب می‌گردد فقط قطعه‌هایی تکثیر‌شوند که ردیف بلافصل آنها در مجاورت نقطه‌ی برش ،مکمل نوکلئوتیدهای یاد شده باشد؛
جداسازی قطعه‌های حاصل از تکثیر روی ژل‌های توالی‌یابی(پلی‌اکریل‌آمید) و خودپرتونگاری یا رنگ‌آمیزی نقره برای ثبت نتیجه‌ها.
با استفاده از این روش تعداد زیادی از قطعه‌های حاصل از هضم، تکثیر و قابل رویت می‌شوند. این در حالی است که نیازی به دانش اولیه در مورد توالی‌بازی قطعه‌هایی که تکثیر می‌شوند، وجود ندارند. هر یک از این قطعه‌هایی که به صورت باند روی ژل ظاهر می‌شوند، می‌توانند به عنوان یک نشان‌گر ژنتیک مورد استفاده قرار گیرند.
تعداد قطعه‌هایی که با این روش تکثیر می‌شوند، به دقت و توانمندی روش‌های جداسازی (الکتروفورز)، ثبت نتایج و تعداد نوکلئوتید اضافه شده به انتهای آغازگر بستگی دارد. معمولا در این روش بین پنجاه تا صد قطعه‌ی حاصل از هضم تکثیر و با استفاده از ژل‌های پلی‌اکریل‌امید واسرشت ساز ثبت می‏شوند(19)
مزایای AFLP
این روش در مقایسه یا سایر روش‌ها بیشترین تعدا نشان‌گر‌ها به ازای هر ژل را ایجاد می‌کند؛
در این روش نیازی به تهیه و تدارک و نگه‌داری کاوشگر نیست .دقت و تکرار‌پذیری این نشان‌گر به دلیل انتخاب دمای زیاد هم رشته‌سازی و اتصال آغازگر به DNA الگو بیشتر از RAPD است(20).
معایب AFLP
پیچیدگی نسبی این روش در مقایسه با سایر روش‌های میتنی برPCR ؛
عدم اطلاع از جایگاه ژنی نشان‌گر‌ها؛
غالب بودن این نشان‌گر موجب عدم امکان تشخیص افراد خالص از ناخالص می‏گردد؛
تکثیر قطعه‌های غیر‌واقعی در AFLP موجب کاهش قابلیت اعتماد این روش می‏گردد(20).
1-3-3-2-2 DNA چندشکل تکثیرشده‏ی تصادفی(RAPD)در این روش از تک آغازگرهایی به طول هشت تا ده نوکلئوتید که ردیف بازی آن به طور قراردادی تعیین می‌گردد، استفاده می‏شود. در این واکنش یک آغازگر منفرد نقاط مکمل خود را روی دو رشته‏ی DNA ژنومی می‌یابد و در آن نقاط به رشته‌های DNAمتصل می‌شود. چنانچه محل اتصال آغازگرها در روی دو رشته‏ی مقابل به هم نزدیک باشند(فاصله‏ای که DNA قابل تکثیر باشد)، ردیف بین آن دو نقطه طی واکنش PCR تکثیر خواهد شد. فراورده‌های واکنش PCRروی ژل آگارز از هم جدا می‏شوند. تولید هر باند بیانگر وجود شباهت زیاد بین ردیف بازی آغازگرها و ردیف بازی محل اتصال درDNA ژنوم است. به طور معمول هر آغازگر تکثیر چندین جایگاه مختلف را درDNA ژنومی هدایت خواهد کرد. وجود یا عدم وجود یک باند واحد در ژل های RAPD بیانگر جهش نقطه‌ای در محل اتصال آغازگرها و یا حذف یا (اضافه) شدن در ناحیه قابل تکثیر است. بنابراین چند شکلی در RAPDمعمولا به شکل حضور و غیاب یک باند پدیدار می‏شود. بدین معنی که نشان‌گرهای RAPD از نوع غالب‌اند و افرادی که دو نسخه از یک آلل دارند، به طور کمی از افرادی که یک نسخه از آن آلل را دارند، قابل تشخیص نیستند. تفاوت طول قطعه‏ها در RAPD از طریق تکثیر قطعه‌های DNA مکمل با ردیف‌های آغازگرهای اختیاری (ردیف مشخص ولی تصادفی) به‌دست می‌آیند. قطعه‏های تکثیر شده به صورت نوارهایی با وزن مولکولی متفاوت به‌طور مستقیم روی ژل قابل مشاهده‌اند (15).
مزایای RAPD
عدم نیاز به کاوشگر، مواد پرتوزا و غیره؛
امکان بررسی هم زمان چندین جایگاه در ژنوم؛
عدم نیاز به اطلاعات اولیه در مورد ریف DNA برای ساخت آغازگر(16).
معایب RAPD
عدم تکرار پذیری؛
حساسیت بسیار به آلودگی؛
در صورت تغییر شرایط محیطی ظهور باندهای جدید؛
نامعلوم بودن جایگاه نشان‌گر RAPD روی نقشه‌ی ژنتیکی(16).
1-3-3-2-3 تفاوت تک نوکلئوتیدی(SNP)تنوع‌ها و تفاوت‌هایی که به واسطه‏ی اختلاف در یک جایگاه نوکلئوتیدی(به علت جایگزینی، حذف یا ازدیاد) اتفاق می‌افتند، با عنوان تفاوت تک نوکلئوتیدی نامیده می‏شوند. این نوع از تنوع به‌وفور در ژنوم انسان اتفاق می‏افتد به طوری که مطالعات انجام گرفته توسط کاتانو-آنولز و گرس هوف (1998) در ژنوم انسان و اسب نشان می‏دهد که در فاصله‏ی هر دویست و پنجاه تا چهارصد نوکلئوتید یک SNP وجود دارد(17).
با اینکه‌SNP ها به وفور در ژنوم انسان یافت می‌شوند، ولی ایجاد و توسعه‌ی نشان‌گرهای SNP چندان آسان نیست. تهیه نشان‌گر‏های SNP شامل مراحل زیر است:
تعیین ردیف DNA اطراف SNP؛
تکثیر قطعه‌ای منحصر به فرد از DNA به کمک PCR به منظور غربال SNP؛
شناسایی SNP که شامل مشاهده‌ی دو آلل در افراد مختلف می‌باشد؛
مکان‌یابی نشان‌گر SNP و تعیین جایکاه خاص کروموزومی آن؛
تعیین فراوانی دو آلل در جمعیت؛
بررسی SNP در افراد و ژنوتیپ‌های مختلف(17).
برخی از معایب نشاگرهای SNP
SNPها به دلیل داشتن فقط دو آلل در یک جایگاه ژنی نسبت به نشان‌گر‌های چند آللی، اطلاعات کمتری را در نقشه‌های پیوستگی نشان می‌دهند؛
شناسایی نشان‌گرSNP بسیار پر‌هزینه و هم‌چنین زمان‌بر است(17).
1-3-3-2-4 نشان‌گرهای مبتنی برنقاط نشانمند از ردیف(STS)هر نشان‌گری که مبتنی بر واکنش PCR باشد و با استفاده از آغازگرهای اختصاصی (معمولا بیش از بیست نوکلئوتید) ایجاد شود، یک نقطه‌ی نشانمند از ردیف نامیده می‏شود، زیرا پیش از طراحی آغازگر، بی‏شک در یک مرحله ردیف‌یابی صورت گرفته است. نشان‌گرهایی همچون تفاوت طول قطعه‌های قابل تکثیر (ALP) و ریزماهواره‏ها از آن جهت که مستلزم ردیف‏یابی برای طراحی آغازگر به منظور تکثیر DNA در یک نقطه‌ی خاص هستند، ذیل STS دسته‌بندی می‌شوند:
-تفاوت طول قطعه‏های قابل تکثیر(ALP)
-ریز ماهواره‌ها (18).
1-3-3-2-4-1 تفاوت طول قطعه‏های قابل تکثیر(ALP)
ALP یکی از ساده‏ترین و سریع‏ترین نشان‌گرهای مبتنی بر PCR است. اگر ردیف باز‏های قطعه‏ای از DNA در یک موجود مشخص باشد (یا دست کم بخشی از دو انتهای آن قطعه معلوم باشد)، براساس آن می‏توان به طراحی و ساخت مصنوعی آغازگرهایی به طول بیست تا سی نوکلئوتید اقدام کرد. چنان‌چه نمونه‏های مختلف DNA توسط این آغازگرها و از طریق واکنش زنجیره‏ای پلی‌مراز تکثیر و سپس روی ژل الکتروفورز از هم جدا شوند، در صورت وجود اختلاف در طول قطعه‏ی قابل تکثیر، باندهایی به اندازه‏های مختلف تولید خواهند شد که بیانگر وقوع پدیده‏ی حذف یا اضافه در بین نمونه‏های مورد مطالعه است. این تفاوت در اندازه‏ی قطعه‏های قابل تکثیر که جهش‏های ژنتیک را نشان می‏دهد به عنوان نشان‌گرهای ژنتیک مورد استفاده قرار می‏گیرد(14).
مزایای ALP
از نظر کاربردی در بین نشان‌گرهای DNA،یکی از سریع ترین و ارزان‌ترین‌ها است؛
به‌کاربرد مواد پرتوزا یا بیوشیمیایی پیچیده نیاز ندارد؛
به‌تدارک، نگهداری و کاربرد کاوشگرها نیاز ندارد؛
بسیار اختصاصی عمل می‌کند، تکرار پذیری آن خوب است و تا حد بسیار زیادی می‌توان به نتایج آن اعتماد داشت؛
به‌مقدار خیلی کمی از DNA نیاز است؛
هم‌بارز بودن این نشان‌گر امکان تشخیص افراد خالص از هر یک از انواع افراد ناخالص را فراهم می‌آورد(14).
معایب ALP
طراحی و ساخت آغازگرها، به اطلاعات اولیه در مورد ردیف DNAژنوم مورد مطالعه نیاز دارد که با توجه به اینکه ژنوم بسیاری از موجودات به طور کامل در دسترس نیست این روش استفاده بسیار کمی دارد؛
هزینه‌ی اولیه مورد نیاز به منظور تولید تعداد کافی نشان‌گر ژنتیک با توزیع مناسب در سرتاسر ژنوم بسیار زیاد و مستلزم صرف وقت است(14).
1-3-3-2-4-2 ریزماهواره‌هاریزماهواره‏ها شامل واحدهای یک الی شش تایی تکرار شونده هستند که در ژنوم بیشتر یوکاریوت‏ها پراکنده‏شده‏اند. به طوری که در هر ده کیلو جفت باز از ردیف DNA دست کم یک ردیف ریزماهواره‏ای دیده می‏شود. طول ریز‌ماهواره‏ها معمولا کمتر از 100 جفت باز بوده و توسط دو ردیف منحصر به فرد در دو طرف محدود شده‏اند. ریزماهواره‏ها به سه گروه عمده‌ی تکرارهای کامل، تکرارهای ناکامل (معمولا توسط بازهای غیرتکرارشونده قطع می‌شوند) و تکرارهای مرکب(دو یا تعداد بیشتری از واحدهای مجاور یکدیگر) تقسیم می‏شوند. تعداد تکرارها در هر واحد بسیار متفاوت است. حداقل تعداد واحد تکرار‌شونده برای ریز ماهواره‏های دو نوکلئوتیدی به ترتیب ده و هفت بار تکرار تعیین شده است(21).
مزایای ریزماهواره‏ها
کاربرد آنها و تفسیر نتایج نسبتا ساده است؛
سیستم چند آللی(تا 11 آلل) از ویژگی‌های بارز این نوع نشان‌گر است؛
ریزماهواره‌ها بسیار متنوعند؛
به وفور در ژنوم یوکاریوت‏ها یافت می‏شوند؛
بیشتر ریزماهواره‏ها غیر‏عملکردی هستند؛
همبارز هستند [22].
1-4 فراوانی، توزیع و سازماندهی ریزماهواره‏ها در داخل ژنومریزماهواره‌ها بسیار فراوان بوده و در کل ژنوم موجودات به صورت تصادفی پراکنده اند. فراوانی ریزماهواره ها در بین موجودات زنده متفاوت است. برای مثال تخمین زده شده است که ژنوم انسان به طور میانگین ده برابر بیشتر از گیاهان ریزماهواره دارد. علاوه برDNA کروموزومی تعداد زیادی ریزماهواره در DNA کلروپلاست ها نیز گزارش شده است. به کمک روش‏هایی از قبیل دورگه‏گیری در ژل، نقشه‏یابی ژنتیکی و فیزیکی و هم چنین دورگه‏گیری در محل فلورسنت، ثابت شده است که ریزماهواره ها به طور یکنواخت در ژنوم پراکنده‏اند. اگرچه در برخی موارد می توانند به صورت مجتمع قرار گرفته باشند(12).
1-5 مکانیسم ایجاد تنوع در طول توالی‏های تکراریچنین فرض می‏شود که جهش در تعداد واحدهای تکرار شونده در هر یک ازDNA های تکرار شونده با یکی از دو سازوکار کراسینگ آور نامساوی(uco) یا جفت نشدن ناشی از سرخوردن در طول رشته (خطای همانندسازی DNA ) صورت می‏گیرد. بیشتر عقیده بر این است که ریزماهواره‏ها و ماهواره‏ها توسط سازوکار کراسینگ آور نامساوی ایجاد می‏شوند، ولی در مورد ریزماهواره‏ها برخی افراد یکی از دو سازوکار و برخی دیگر هر دو سازوکار را موثر می‏دانند(23).
1-5-1 کراسینگ اور نابرابرگاهی کراسینگ اور نابرابر در داخل تکرارهای ریزماهواره‏ای بین کروموزوم های مشابه یا خواهری اتفاق می‏افتد و سبب تغییر در تعداد واحدهای تکرار شونده می‏شود.(شکل 1-2).کراسینگ اور نابرابر می‏تواند هم در میوز و هم میتوز اتفاق بیفتد. چنین توجیه می‏شود که وجود نواحی تکرارشونده احتمالا مانع از ردیف شدن کامل در همولوگ یا کروموزوم‏های خواهری می‏شود. به نظرمی‏رسد که این نوترکیبی مکانیزم اصلی ایجاد تنوع مینی‏ستلایتی است(23).

شکل 1-2 کراسینگ آور و مبادلات نابرابر بین کروماتیدهای خواهری سبب ایجاد حذف شدگی یا الحاق می‌شود(23.)
1-5-2 عدم جفت شدن ناشی از سرخوردن DNA در طول رشته(خطاهای همانند سازی)گاهی DNA پلی‌مراز در طول همانند سازی در نواحی تکرار شونده‏ی ریز ماهواره‏ای سر می‏خورد و موجب تغییر در تعداد واحد تکرار شونده می‏شود. در حقیقت سر خوردن پلی‌مراز در طول نواحی تکراری موجب عدم جفت شدن کامل دو رشته‏ی DNA شده و در نهایت حلقه‌هایی در رشته‌ی الگو یا رشته‏ی جدید ایجاد می‏شود(شکل1-3). این امر مکانیسم اصلی به وجود آورنده‏ی چندشکلی در میکروستلایت‌هاست(23).

شکل 1-3 متزلزل بودن پلی‌مراز حین همانندسازی DNA می‏تواند طول تکرار را به اندازه یک یا دو واحد تغییر دهد(23).اگر نتیجه‏ی همانند سازی ایجاد واحد های تکرار شونده‏ی اضافی باشد، حلقه در رشته ی جدید و اگر نتیجه‌ی همانند سازی کاهش در تعداد واحد‏های تکرار شونده باشد، حلقه در رشته‏ی الگو تشکیل خواهد شد(23).
گلدستین و شلوترر فرضیه‏ی عدم جفت شدن ناشی از سر‏خوردن در طول رشته را نسبت به فرضیه کراسینگ آور نامساوی به دلایل زیر به واقعیت نزدیکتر دانسته‏اند:
الف)‌در انسان بسیاری از تغییرات ریز ماهواره‏ای موجب تغییر در نشان‌گر های مجاور ناحیه ی ریز ماهواره‏ای نمی‌شود. بنابراین در ایجاد چنین تغییراتی نوترکیبی بی‏تاثیر است. از آنجا که جهش در فرضیه کراسینگ اور نامساوی، وابسته به نوترکیبی است، تغییرات ریز ماهواره ای و عدم تغییر نقاط مجاور با این فرضیه قابل توجیه نیست.
ب)‌نقصان در ژن‏هایی که در نوترکیبی نقش اساسی دارند تاثیری در پایداری ریز ماهواره‏ها ندارد.
ج)‌مطالعات انجام گرفته در ساکارومایسزسرویزیه نشان می‏دهد که پایداری ریز ماهواره‏ها در سلول‏هایی که تقسیم میوز را انجام می‏دهند مشابه با یاخته ها در تقسیم میتوز است. با توجه به اینکه نوترکیبی در میوز بیشتر از میتوز است، پس اگر فرضیه‏ی کراسینگ اور نامساوی صادق باشد، باید ریز ماهواره‏ها در میوز ناپایدارتر از میتوز باشد(23).
1-6 دامنه تنوع واحدهای تکرارشوندهدو مدل متفاوت برای توصیف دامنه‏ی تنوع تعداد واحدهای تکرار شونده‏ی ریز ماهواره‏ای وجود دارد:
1.مدل جهش گام به گام
2. مدل آللی نا محدود
1-6-1 مدل جهش گام به گاماگر فرض کنیم در ریزماهواره‏ها یک گام معادل تغییر در یک واحد تکرار شونده باشد، بنابر این مدل ریز ماهواره‏ها از نظر اندازه فقط در تعداد محدودی گام تفاوت دارند، به‌طوری که هر گام از گام بعدی به وسیله‏ی یک واحد تکرار شونده جدا می‏شود. در این مدل چنین فرض می‏شود که بسیاری از جهش‏های با فراوانی زیاد، فقط ریزماهواره‏ها را در یک گام یا دو گام‌(در یک زمان) تغییر می‏دهند. طرفداران این نظریه معتقدند که در بیشتر آزمایش‏ها، بیشترین تغییر در ساختار ریزماهواره‏ها مربوط به افزایش یا کاهش در یک واحد تکرار شونده بوده است(10).
1-6-2 مدل آللی نا‏محدودبر اساس این مدل هیچگونه محدودیتی در اندازه‏ی پتانسیل ریزماهواره‏ها وجود ندارد. از این رو تعداد نا محدودی از انتخاب‏ها می‌توانند اتفاق بیفتند که تمامی آنها احتمال یکسان را داشته باشند.
بسیاری از پژوهشگران معتقدند که ترکیبی از این دو مدل(عموما تغییر در یک یا دو واحد تکرار شونده و به مقدار کمتر تغییرات بزرگتر) بهتر می‌تواند تغییرات جهشی در ریزماهواره‏ها را توضیح دهد(10).
1-7 مارکرهای STRتوالی‏های تکراری کوتاه پشت سر هم(STRS) ، توالی‏های تکرارشونده کوتاه با طول 1-13 نوکلئوتید هستند که به شکل سر به دم قرار می‏گیرند. در ژنوم انسان، معمول‏ترینSTR ، توالی دو نوکلئوتیدی [CA]n است،که در این فرمول n تعداد تکرارهاست که معمولا بین 5 تا 20 بار متغیر است(24).
1-8 کاربرد مارکرهای STRمارکرهایSTR کاربردهای فراوانی دارد که از مهمترین آنها تعیین هویت افراد است(25). تعیین هویت در موارد بسیاری کاربرد دارد که از جمله‏ی آنها می‌توان به موارد زیر اشاره کرد:
1- مطالعات شجره‏ای و روابط فامیلی
2- شناسایی هویت قربانیان حوادث
3- تعیین هویت در موارد جنایی
4- ردیابی تاریخ بشر و مطالعات جمعیتی(26).
1-8-1 مطالعات شجره‏ای و روابط فامیلیاز مارکرهایSTR می توان برای بررسی خویشاوندی دو یا چند نفر استفاده کرد. این نوع مطالعه را آنالیز فامیلی می‌گویند و کاربرد متداول آن در بررسی رابطه والدین ـ فرزندی است(27).
هرساله بیش از 300000 مورد تست ابویت به منظور تعیین رابطه پدر فرزندی در ایالات متحده انجام می‏شود. این تست‏ها معمولا شامل یک مادر، یک کودک و یک یا چند پدر مدعی است. همانطور که می‏دانیم هر فرد دارای دو سری آلل می‏باشد که یک سری آن را از پدر و سری دیگر را از مادر دریافت کرده است. بدین منظور آلل‏های پدر و فرزند برای یافتن تعدادی از جایگاه‏هایSTR مورد بررسی قرار می‏گیرند. اساس این تست بر این است که در فقدان جهش، آلل‏های کودک باید مطابقت کاملی با آلل‏های پدری و مادری داشته باشد(28-29-30).

شکل 1-4 آلل‏های فرزندان مجموعه‏ای از آلل‏های والدین آنها می‏باشد(26).علاوه بر این بسیاری از افراد برای شناسایی اقوام خود از مارکرهایSTR استفاده می‏کنند. برای مثال با آنالیز STR های کروموزومY می توان نسبت فامیلی میان مردان یک خانواده را مشخص کرد. زیرا همان‌طور که می‏دانید کروموزومY توارث پدری دارد و از پدر به تمام پسران به ارث می‌رسد. پس طبیعی است که تمام پسران خانواده در همه‏ی نسل‌هاSTR های یکسانی روی کروموزوم Y خود داشته باشند. آزمایشی که بدین منظور انجام می‏گیرد آزمایش Y-filer نامیده می‏شود. به کمک این آزمایش می‏توان روابط میان برادرها، عمو و برادرزاده و... را مشخص نمود(27-31).
1-8-2 شناسایی هویت قربانیان حوادثفجایع بزرگ، طبیعی یا بدست بشر، می‌تواند جان افراد بسیاری را بگیرد، تست‏‏‏هایی که برای شناسایی قربانیان حادثه انجام می‏شود، تست تعیین هویت قربانیان حادثه نامیده می‏شود. از این تست در مواردی مانند سقوط هواپیما ،آتش سوزی‏های بزرگ و حوادث تروریستی استفاده می‏شود. در این قبیل حوادث با استفاده از اسامی افراد، خانواده‏های آنها شناسایی می‏شوند و پس از مراجعه‏ی خانواده‌ها، از اعضای خانواده شامل پدر، مادر، فرزند، خواهر و برادر نمونه‏ی DNA گرفته می‏شود و نواحی STR آنها بررسی می‏شود. پس از این مرحله با استفاده از DNAبه دست آمده از بقایای اجساد پروفایل ژنتیکی آنها تهیه می‏شود و در نهایت با مقایسه‏ی پروفایل‏های تهیه شده هویت قربانیان شناسایی می‏شود(32).
1-8-3 تعیین هویت در موارد جناییتعیین هویت در موارد جنایی شامل دو بخش می‏باشد:
شناسایی افراد مجهول الهویه
ردیابی مجرمین(25).
1-8-3-1 شناسایی افراد مجهول الهویههر ساله میلیون‏ها نفر در سراسر جهان تحت شرایط مشکوکی مفقود می‏شوند. بسیاری از این افراد قربانی فعالیت‏های مجرمانه از قبیل تجاوز و قتل می‏شوند و هویت آنها ناشناس باقی می‏ماند. در این موارد هم می‏توان از مارکرهای ژنتیکی موجود در DNA افراد برای تعیین هویت آنها استفاده کرد(33).
سه دسته نمونه در مورد افراد قربانی وجود دارد:
1-نمونه مستقیم از فرد قربانی
2-نمونه خانواده قربانی
3-نمونه‌های ناشناس باقی مانده از انسان در صحنه‏ی جرم
این نمونه‏ی باقی مانده می‏تواند استخوان، دندان، بافت، تار مو، لکه ی خون و یا هر چیز دیگری باشد(34).
1-8-3-2 ردیابی مجرمینعلاوه بر این می‏توان از آنالیز DNA برای ردیابی و شناسایی مجرمین استفاده کرد. این که فردی مرتکب جرم و جنایتی بشود و نمونه‌ای از DNA خود را به جا نگذارد، تقریبا غیرممکن است. مو، لکه‌های خون و حتی اثر انگشت، مقادیر بسیار جزئی از DNA را دارند که برای مطالعه با PCR کافی هستند. این بررسی‌ها لازم نیست که بلافاصله انجام شوند، زیرا در سال‌های اخیر، با آزمایش DNA روی مواد بایگانی شده، تعدادی از جنایات گذشته ـ با عنوان پرونده‌های مختومه ـ نیز روشن شده است(35).
باید به خاطر داشته باشیم که یک پروفایل DNA به تنهایی فاقد اعتبار است و کاربردی ندارد. همیشه برای بررسی یک پروفایل DNA نیاز است که یک مقایسه‏ای انجام شود:
1-نمونه ی مورد بررسی که با Q مشخص می شود
2-نمونه شناخته شده که با K نمایش داده می شود
در موارد جنایی، نمونه ی صحنه ی جرم (Q) با نمونه ی فرد مظنون (K) و یا مظانین (K1,K2,K3,K...) مقایسه می شود . در یک مورد بدون مظنون، نمونه ی صحنه ی جرم با نمونه هایی که در اطلاعات کامپیوتری از افراد سابقه دار وجود دارد، بررسی می شود . (K1,K….,KN)(34).

شکل 1-5 شناسائی مجرمین به کمک مارکرهای STR(26).1-8-4 ردیابی تاریخ بشر و مطالعات جمعیتیباستان شناسان با بررسی و مقایسه توالی DNA انسان‌های امروزی با افراد مرده، به کشف منشأ تکاملی انسان امروزی و مسیرهای استقرار انسان در کره زمین می‌پردازند. این زمینه تحقیقاتی آرکئوژنتیک نامیده می‌شود(35).
ردیابی مهاجرت انسانی در طول تاریخ با استفاده از آنالیز DNA روش نوینی است. هدف از این کار تخمین ارتباط میان جمعیت ها بر اساس شباهت‏ها و تفاوت‏هایDNA آنها است. به همین منظور پروژه‏ی عظیمی در سال2005 به منظور ردیابی تاریخ بشر انجام شد که در آن از ده ها هزار نفر از افراد در سراسر جهان آزمایش به عمل آمد. اساس کار بر این مطلب است که اگر تکامل ژنوم‏ها به دلیل انباشتگی جهش ها رخ داده باشد، بنابراین میزان اختلاف در توالی نوکلئوتید های دو ژنوم می تواند زمان حضور جد مشترک آنها را مشخص نماید. انتظار می رود دو ژنومی که اخیرا از یکدیگر جدا شده اند در مقایسه با دو ژنومی که جد مشترک آنها قدیمی‏تر است، اختلاف کمتری داشته باشند(36).
در مطالعه روی یافتن مبدا انسان‏های امروزی و الگوی جغرافیایی مهاجرت‏های بشر از مطالعه‏ی ژن‏ها در جمعیت‏ها می‏توان استفاده کرد. بدین منظور ژن‏های انتخابی جهت بررسی باید دارای گوناگونی باشند. در صورت فقدان گوناگونی ژن‏ها، اطلاعات فیلوژنتیکی بدست نمی‏آید، زیرا همه‏ی افراد حتی اگر به جمعیت‏های مجزایی تقسیم شده باشند که تنها به صورت متناوب با یکدیگر آمیزش داشته‏اند، همچنان دارای همانندی‏های بسیاری خواهند بود. بدین معنی که توالی DNA مورد استفاده در آنالیز فیلوژنتیکی باید از متنوع ترین توالی‏های متغیر باشد(36).
در انسان از سه نوع توالی استفاده می‏شود :
ژن های چند آللی مانند اعضای خانواده‏ی HLA، که اشکال بسیار متفاوتی دارند .
ریز ماهواره‏ها که STR ها نیز جز این گروه به حساب می‏آیند .
DNA میتوکندریایی که به دلیل فقدان سیستم‏های ترمیمی موجود در هسته‌های سلول انسان که نسبتا به سرعت دچار انباشتگی نوکلئوتیدی می‏شوند. انواع مختلف DNA میتوکندریایی موجود در یک گونه را هاپلوگروه می‏نامند(36).
باید توجه نمود که آلل‌ها و هاپلوگروه‌های مختلف به طور هم‌زمان در جمعیت‌ها وجود دارند. به این ترتیب این لوکوس‏ها چند شکلی بوده و به کمک مقایسه ترکیب آلل‌ها و یا هاپلوگروه‌های آنها می‌توان اطلاعات مربوط به وابستگی بین افراد مختلف را بدست آورد. به دلیل جهش‌های ایجاد شده در سلول‏های تولید مثلی هر یک از موجودات، آلل‏ها و هاپلوگروه‏های جدیدی در جمعیت ظاهر می‏شوند. هر یک از آلل‏ها، فراوانی آللی خود را دارند که در طول زمان به دلیل انتخاب طبیعی و تغییر ژنتیکی اتفاقی تغییر می‌کند. انتخاب طبیعی به دلیل تغییر در تناسب (توانائی یک موجود جهت بقا و تولید نسل) رخ می‌دهد و بنابر نظریه‌ی داروین منجر به حفظ انواع مناسب و از بین رفتن انواع زیان آور می‏گردد. به این ترتیب انتخاب طبیعی، فراوانی آلل‏های کاهنده‏ی تناسب را کم کرده و فراوانی آلل‏های افزاینده‌‌ی تناسب را افزایش می‏دهد. در حقیقت در یک جمعیت آلل‏های اندکی ایجاد می‏شوند که تاثیر قابل توجهی بر تناسب موجود داشته باشند، اما هم‌چنان فراوانی آنها به دلیل تغییر ژنتیکی اتفاقی که جز جدا نشدنی طبیعت تولد،تولید مثل و مرگ است در حال تغییر می‏باشد. به دلیل انتخاب طبیعی یا تغییر ژنتیکی اتفاقی ممکن است یک آلل در جمعیت غالب شده و فراوانی آن به صد در صد نیز برسد، به طوریکه این آلل در جمعیت تثبیت شود. اگر یک گونه به دو جمعیت تقسیم شود به طوریکه آمیزش‌های فراوانی بین دو جمعیت رخ ندهد، فراوانی آلل در دو جمعیت به طور مختلف تغییر می‌کند. بنابراین پس از چند ده نسل این دو جمعیت ویژگی‏های ژنتیکی مجزایی را کسب می‏کنند. سرانجام جایگزینی ژنی متفاوتی در این دو جمعیت اتفاق می‏افتد ولی حتی قبل از آن نیز می‏توان از روی اختلاف فراوانی آللی در دو جمعیت، آن دو را از هم باز شناخت(36).
محققان طی سال‏ها تحقیقات در سراسر جهان با استفاده از اصول تئوری اطلاعات، پارامترهای عمومی برای هر جمعیت را به منظور تعیین مقدار اطلاعاتی که مارکرهای STR در جمعیت‏ها به ما می‏دهند، تعریف کردند. در یک نمونه‏گیری از مارکرهای افراد از سراسر جهان، مارکرهایی که بیشترین چندشکلی را در میان جمعیت‏های مختلف داشتند و منحصر به جمعیت‏های خاص بودند، انتخاب شدند .امروزه از این مارکرها برای بررسی تنوع و تفاوت میان جمعیت‏ها استفاده می‏شود(37).
1-9 سایر کاربردهای مارکرهای STRمارکرهای مختلف STR تحت عنوان کیت های تجاری مختلف در کنار تست‏های تعیین هویت کاربردهای گسترده‏ی دیگری دارند که از مهم ترین آنها می‏توان به موارد زیر اشاره کرد:
جمع آوری سلول های جنینی از خون مادر؛
بیماری های نقشه‏ی ژنومی؛
مشخص نمودن خطوط سلولی؛
تعیین هویت افراد استفاده کننده‏ی سرنگ مشترک؛
تشخیص کلون‏های موفق؛
بررسی و نظارت بر روی پیوند عضو؛
تشخیص کایمرهای ژنتیکی؛
تشخیص تومورهای سرطانی(26).
1-9-1 جمع آوری سلول های جنینی از خون مادرهنگامی که یک خانم باردار است تعدادی از سلول‌های جنینی می‏توانند از راه جفت وارد جریان خون مادر شوند. جمع‌آوری این سلول ها که تحت عنوان micro chimerism خوانده می‏شود و بررسی آنها با مارکرهای STR یک روش غیر تهاجمی برای تعیین رابطه‌ی پدر فرزندی است. همچنین با استفاده از این روش می‏توان جنسیت جنین را نیز تعیین نمود(26).
1-9-2 نقشه‏ی ژنوم بیماری‏ها
اسکن ژنوم انسان برای شناسایی نقشه ژنوم بیماری‏ها به طور معمول با استفاده از حدود چهارصد نشان‌گر STR در سراسر ژنوم در فواصل 10 سانتی مورگان انجام می‏شود. مرکز تحقیقات بیماری‏های ارثی در طول سال ها مطالعات و آزمایشات بسیاری را روی صدها نفر با استفاده از مارکرهای STR انجام داده است. هدف از این آزمایشات یافتن ارتباط میان فراوانی آللی در جمعیت های مختلف و بیماری های ژنتیکی بود. در پژوهش‌های صورت یافته ارتباط میان برخی مارکرها و بیماری‏ها مشخص شد. پس از آن از مارکر‏های مذکور می‏توان برای شناسایی تعیین دقیق محل ناشناخته‏ی ژن بیماری استفاده کرد(26).
1-9-3 تعیین هویت افراد استفاده کننده از سرنگ مشترکیکی دیگر از کاربردهای مارکرهایSTR نشان دادن به اشتراک گذاری سرنگ در میان مصرف کنندگان مواد مخدر است. با این روش و با استفاده ازجایگاه D8 آزمایشگاه قادر به تشخیص هویت فرد و یا افرادی است که از یک سرنگ مشترک برای تزریق مواد مخدر استفاده کرده‏اند. با این روش می‏توان هویت شخصی را که منشا انتقال بیماری عفونی بوده و از سرنگ مشترک با سایر افراد استفاده می‏کرده تعیین نمود(26).
1-9-4 تشخیص کلون‏های موفقهنگامی که یک موجود کلون می‏شود ازSTR Typing برای آزمایش آن موجود استفاده می‏شود. برای مثال در کلون کردن موجوداتی مانند سگ و گربه. این روش برای آزمودن میزان موفقیت در کلون کردن به کار می‏رود. اگر یک پروفایل STR یکسان میان موجود کلون شده و سلول‎های مادری اولیه مشاهده نشود، در این صورت کلون کردن موفقیت آمیز نبوده(26).
1-9-5 بررسی و نظارت روی پیوند عضواز کاربردهای دیگر مارکرهای STR، نظارت پیوند سلول‏های پیوند شده بعد از پیوند مغز استخوان است، آزمایش STR از فردی که پیوند گرفته می‏تواند در تشخیص نارسایی پیوند مفید واقع شود(26).
1-9-6 تشخیص کایمرهای ژنتیکیChimerism حضور دو خط سلولی ژنتیکی متفاوت در یک ارگانیسم است که می‏تواند از طریق پیوند سلول‏های بنیادی خونی و یا انتقال خون و یا به طور ارثی در شخص اتفاق بیفتد. در سال 2004 آزمایشی روی افراد دهنده و گیرنده‏ی پیوند انجام شد که توانایی بالای 27 نشان‌گر STR به کار گرفته شده، ازجمله نشان‌گرهای CODIS در تشخیص کایمرها شگفت انگیز بود(26).
1-9-7 مشخص نمودن خطوط سلولیدر آزمایشگاه خطوط سلولی می‏توانند با سایر خطوط سلولی آلوده شوند. در نتیجه ممکن است با هم مخلوط و یا به یکدیگر تبدیل شوند احراز هویت خط سلولی انسان در حال حاضر به وسیله ی سازمانی در آمریکا انجام شده است. به کمک مارکرهای STR می‏توان آلودگی متقاطع بین خطوط سلولی مختلف را به سرعت کشف کرد و همچنین می‏توان برای مشخص کردن خطوط سلولی انسان به عنوان یک مرجع جهانی سود جست. در طول چند سال گذشته بیش از 500 خط سلولی از انسان به کمک این روش و با استفاده از 8 جایگاه STR بدست آمده است(26).
1-9-8 تشخیص تومورهای سرطانیفقدان هتروزیگوسیتی (LOH) پدیده‏ای است که در آن حذف در یک ناحیه‏ی لوکوس منجر به عدم تکثیر در PCR می‏شود، به طوری که یک هتروزیگوت واقعی به عنوان یک هموزیگوت به نظر می رسد. این پدیده در بسیاری از افراد مبتلا به تومورهای سرطانی دیده می‏شود. بررسی روی بافت های سرطانی با بافت نرمال با استفاده از STR نشان می‏دهد که جایگاه های مختلف در بافت سالم ارتفاع بلندتری نسبت به بافت های سرطانی نشان می دهند؛چرا که LOH سبب حذف در آن ناحیه شده است(26).
1-10 روش‏های کلی شناسایی هویت افراد در سطح مولکولیدو روش کلی برای شناسایی هویت افراد در سطح مولکولی عبارتند از:
اثر انگشت ژنتیکی از طریق هیبرید کردن با DNA جستجوگر
تعیین الگوی DNA با PCR توالی‌های کوتاه تکراری(38).
1-10-1 روش انگشت‌نگاری ژنتیکی از طریق هیبرید کردن با DNA جستجوگراولین روشی که در آنالیز DNA با هدف شناسایی افراد به کار رفت، روشی بود که در اواسط دهه 1980 توسط سر آلک جفری از دانشگاه لیستر ارائه شد . این روش براساس نوع دیگری از تنوع ژنوم انسان، موسوم به توالی تکراری بسیار متغیر پراکنده بود. همانگونه که از نام این توالی‌ها بر می‌آید، این توالی‌ها عبارتند از یک توالی تکراری که در جایگاه مختلفی‌(به‌طور پراکنده) از ژنوم انسان وجود دارد. نکته کلیدی این توالی‌ها این است که جایگاه ژنتیکی آنها متنوع است و در افراد مختلف در جایگاه‌های مختلفی از ژنوم قرار دارند(38).
توالی که در ابتدا برای انگشت‌نگاری ژنتیکی بکار رفت، توالی GGGCAGGANG (N: هریک از چهار نوکلئوتید) بود. برای تهیه اثر انگشت یک نمونه، DNA آن را با آنزیم محدودگر برش می‌دهند و قطعات حاصل را با استفاده از الکتروفورز ژل آگارز از هم تفکیک کرده و با آزمون ساترن بلات مورد بررسی قرار می‌دهند. هیبریداسیون با جستجوگری که دارای این توالی بود چند سری از نوارها را مشخص کرد. هریک از این نوارها مربوط به قطعه‌ای از DNA هضم شده بود که دارای این توالی تکراری بود. به دلیل تنوع جایگاه‌های این توالی اگر این آزمون با نمونه DNA فرد دیگری تکرار شود، نتیجه متفاوتی به دست می‌آید و می‌توان نتایج حاصل را انگشت‌نگاری ژنتیک این افراد محسوب نمود . در شکل 1-6 مراحل انگشت نگاری ژنتیکی نشان داده شده است(38).

شکل 1-6 مراحل انگشت نگاری ژنتیکی(38)
1-10-1-1 محدودیت‏های روش انگشت نگاریاین روش در کارهای جنایی خود را بسیار ارزشمند نشان داد اما سه محدودیت داشت:
مقادیر بالایی از DNA برای انجام آزمون مورد نیاز است، زیرا این روش نیازمند آنالیز هیبریداسیون است. برای انگشت‌نگاری نمی‌توان از مقادیر اندک DNA موجود در مو و لکه‌های خون استفاده کرد.
بحث کردن در مورد الگوهای حاصل از انگشت‌نگاری مشکل است، زیرا نوارهای حاصل شدت و ضعف‌های متفاوتی دارند. از نظر قانونی، کوچک‌ترین اختلاف شدت در انگشت‌نگاری ژنتیکی یک متهم برای برائت او کافی است.
با وجود اینکه جایگاه‌های تکراری پراکنده بسیار متنوع هستند، اما اندک احتمالی نیز برای یکسان بودن یا حداقل تشابه الگوی حاصل از دو فرد وجود دارد. این موضوع می‌تواند منجر به برائت یک متهم شود(38).
1-10-2 روش پروفایلینگ
روش قدرتمند پروفایلینگ DNA چنین مشکلاتی را ندارد. در پروفایلینگ از توالی‌های معروف به توالی‌های چند شکلی STR استفاده می‌شود. در این روش، به وسیله PCR با پرایمرهایی که به توالی‌های جانبی STR می‌چسبند، به سرعت می‌توان مقادیر بسیار اندک DNA را افزایش داد. بعد از PCR، محصولات از نظر اندازه نوارها یا وجود نوارهایی که الل‌ یا آلل‌های موجود در نمونه DNAی مورد آزمون هستند، با الکتروفورز ژل آگارز بررسی می‌شوند. روش پروفایلینگ DNA، به دلیل استفاده از PCR بسیار حساس است و امکان انجام آزمون روی مو و دیگر نمونه‌هایی که مقادیر اندکی DNA دارند، فراهم می‌آورد. در نتایج حاصل نیز شکی وجود ندارد و مقایسه میان پروفایل‌های DNA معمولا به عنوان یک مدرک پذیرفته می‌شود. با استفاده از این روش امکان اینکه دو نفر، البته بجز دوقلوهای یکسان، دارای پروفایل‌ مشابهی باشند برابر یک در 1015 می‌باشد. با توجه به جمعیت کره زمین که حدود 109×6 می‌باشد، امکان تشابه آماری پروفایل مربوطه در دو نفر به قدری اندک است که می‌تواند غیرممکن تلقی گردد. نوع هر STR با PCR بوسیله پرایمرهایی که با فلورسنت نشاندار شده‌اند و به دو طرف نواحی تکرار شونده متصل می‌گردند، تعیین می‌شود. سپس الل‌های موجود در STRها با تعیین اندازه به وسیله ژل الکتروفورز موئینه‌ای مشخص می‌شوند. دو یا چند STR می‌تواند با PCR چندگانه مشخص گردد، مشروط به اینکه محصولات از لحاظ اندازه همپوشانی نداشته باشند یا هر جفت پرایمر با فلورسانت متفاوتی نشاندار شده باشند تا امکان تشخیص در ژل الکتروفورز موئینه را داشته باشند. در شکل 1-7 مراحل روش پروفایلینگ نشان داده شده است‌(38).

شکل 1-7 مراحل پروفایلینگ ‌DNA(36).1-11 تاریخچه استفاده از مارکرهایSTR
مارکرهای STRبرای اولین بار به عنوان ابزاری قوی در تست تعیین هویت انسانی در سال 1990 به‌کار گرفته شدند. دستگاه پزشکی قانونی ((FSS مطالعه برای شناسایی جایگاه‌های جدید و ارتباط جایگاه های شناخته شده با تنوع در جمعیت‏ها را آغاز کرد. پس از آن پلیس سلطنتی کانادا (RCMP) به همراه تعدادی از آزمایشگاه‌های اروپا تلاش‌های اولیه را در رابطه با جایگاه های STR آغاز کردند. اولین جایگاه‏های مورد استفاده شامل چهار جایگاه TH01،VWA ، FES/FPS و.F13A1 نسل دوم کیت‌ها ((SGM شامل جایگاه‌های TH01، VWA‌، FGA ،D8S1179 ،D18S51 و D21S11 بود. پایگاه داده‌های ملی DNA انگلستان ((NDNAD در سال 1995 جایگاه ژن آمیلوژنین (برای تعیین جنسیت) را به کیت SGM اضافه کرد. با توجه به تکنولوژی STR Typingو موفقیت‏هایی که در این زمینه در انگلستان به‌دست آمد، FBI درصدد برآمد که با استفاده از لوکوس‌های STR، بنیان CODIS را شکل دهد(41).
1-12 CODIS چیست؟سیستم شاخص اندیس‌دهی ترکیبی CODISشامل سیزده جایگاه STRاست. در شکل 1-8 محل قرارگیری این جایگاه‌ها روی کروموزوم‌های انسان نشان داده شده‌اند. نرم افزار CODIS در سال 1990 به عنوان نرم افزاری برای FBI تاسیس گردید. این نرم افزار در صورت اولیه برای آنالیز پروفایل‏های RFLP مورد استفاده قرار می‏گرفت که در بانک اطلاعاتی قابل جستجو بود. تکنولوژی DNA پزشکی قانونی و تکنولوژی کامپیوتری با یکدیگر ادغام گردیدند و باعث بهبود این نرم افزار شدند و این بهبود در جهت نیاز‌های پزشکی قانونی صورت گرفت. در سال 1997نرم افزار CODIS بر اساس مارکرهای STR طراحی شد. سیزده جایگاه STRکه امروزه تحت عنوان CODIS خوانده می‏شوند، عبارتند‌از:
D8S2179
D21S11
D7S820
CSF1PO
D3S1358
TH01
D13S317
D16S539
VWA
TPOX
D18S51
D5S818
FGA (42).

شکل 1-8 جایگاه‌های CODIS روی کروموزوم های انسان(25).1-13 کیت مورد استفاده در تعیین هویت
برای تعیین هویت از کیتAmp FI STR Identifiler PCR Amplification استفاده می‌شود، که حاوی 15 جایگاه تترانوکلئوتید STRبه همراه مارکر آمیلوژنین که برای تشخیص جنسیت به کار می‏رود می‏باشد. از این پانزده جایگاه، سیزده جایگاه، جایگاه‌های شناخته شده‏ی سیستم اندیس دهی ترکیبی‌(CODIS) هستند، اما علاوه بر آنها دو جایگاه دیگر هم در این کیت گنجانده شده است. جدول(۱-1) نشان دهنده‌ی نام جایگاه‏های موجود در CODIS، به همراه موقعیت کروموزومی هر یک از جایگاه‏ها و آلل‏های موجود در هر جایگاه است(43).
جدول 1-1 جایگاه‏های موجود در کیت ABIآلل‌های موجود در هر جایگاه موقعیت کروموزومی نام جایگاه
8,9,10,11,12,13,14,15,16,17,18,19 8 D8S2179
24,24.2,25,26,27,28,28.2,29,29.2,
30,30.2,31,31.2,32,32.2,33,33.2,
34,34.2,35,35.2,36,37,38 21q11.2-q21 D21S11
6,7,8,9,10,11,12,13,14,15 7q11.21-22 D7S820
6,7,8,9,10,11,12,13,14,15 5q33.3-34 CSF1PO
12,13,14,15.16,17,18,19 3p D3S1358
4,5,6,7,8,9,9.3,10,11,13.3 11p15.5 TH01
8,9,10,11,12,13,14,15 13q22-31 D13S317
5,8,9,10,11,12,13,14,15 16q24-qter D16S539
15,16,17,18,19,20,21,22,23,24,25,
26,27,28 2q35-37.1 D2S1338
9,10,11,12,12.2,13,13.2,14,14.2,15,
15.2,16,16.2,17,17.2 19q12-13.1 D19S433
11,12,13,14,15,16,17,18,19,20,21,
22,23,24 12p12-pter VWA
6,7,8,9,10,11,12,13 2p23-2per TPOX
7,9,10,10.2,11,12,13,13.2,14,14.2,
15,16,17,18,19,20,21,22,23,24,25
26,27 18q21.3 D18S51
X,Y Amelogenin
7,8,9,10,11,12,13,14,15,16 5q21-31 D5S818
17,18,19,20,21,22,23,24,25,26,26.2
27,28,29,30,30.2,31.2,32.2,33.2,
42.2,43.2,44.2,45.2,46.2,47.2,48.2
50.2,51.2 4q28 FGA
1-14 معرفی استان‏ها1-14-1 استان کرمانشاه
کرمانشاه یکی از باستانی‌ترین شهرهای ایران است و بر اساس افسانه ها توسط طهمورث دیوبند - پادشاه افسانه‌ای پیشدادیان ساخته شده است. برخی از مورخین بنای آن را به بهرام پادشاه ساسانی نسبت می‌دهند. کرمانشاه در زمان قباد اول و انوشیروان ساسانی به اوج عظمت خود رسید. در اوایل حکومت شاه اسماعیل صفوی سلطان مراد آق قویونلو با 70 هزار نفر کرمانشاه و همدان را اشغال کرد. صفویه برای جلوگیری از تجاوز احتمالی امپراطوری عثمانی این شهر را مورد توجه قرار داد. در زمان شیخ علیخان زنگنه صدر اعظم صفوی به آبادانی و رونق کرمانشاه افزوده شد. تاورنیه، جهانگرد و بازرگان فرانسوی، درباره کرمانشاه چنین نوشته‌ است: ” هم زمان با حمله افغان و سقوط اصفهان که طومار فرمانروایی خاندان صفوی در نوردیده شد، کرمانشاه به جرم قرب جوار، با تهاجم عثمانی‌ها مواجه گردید و بار دیگر شهر رو به خرابی نهاد.“ نادر شاه به منظور آمادگی در مقابل تجاوز عثمانی‌ها، به این شهر توجهی خاص مبذول داشت. در زمان نادر شاه این شهر مورد هجوم عثمانی‌ها قرار گرفت. اما نادرشاه عثمانی‌ها را به عقب راند، ولی در اواخر زندگی نادرشاه، کرمانشاه با محاصره و تاراج عثمانی‌ها مواجه شد. کرمانشاه در عهد زندیه دستخوش آشوب فراوانی گردید. به طوری‌که درکتاب ”تحفه العالم“ عبدالصیف جزایری از کرمانشاه به عنوان خرابه نام برده شده است. در دوره قاجار تا حدی از حملات عثمانی‌ها به ناحیه کرمانشاه کاسته شد. در سال 1267ه.ق، امام قلی میرزا از طرف ناصرالدین شاه به سرحدداری کرمانشاه منصوب شد و مدت 25 سال در این شهر حکومت کرد و در همین دوره بناهایی را احداث و به یادگار گذاشت. این شهر در جنبش مشروطه سهمی به سزا داشت و در جنگ جهانی اول و دوم به تصرف قوای بیگانه درآمد و پس از پایان جنگ تخلیه شد. در نتیجه جنگ تحمیلی عراق علیه ایران، این شهر خسارات زیادی دید و پس از جنگ اقدامات مؤثری در جهت بازسازی آن صورت گرفت. در حال حاضر شهر کرمانشاه، مرکز استان کرمانشاه یکی از هفت کلانشهر کشور(تهران، مشهد، اصفهان، تبریز، شیراز، کرمانشاه و اهواز) است‌(44).
1-14-1-1 موقعیت جغرافیایی
استان کرمانشاه در موقعیت ۳۴ درجه شرقی و ۴۷ درجه شمالی شمالی قرار دارد. از شمال به کردستان، از غرب به کشور عراق، از شرق به استان لرستان و همدان و از جنوب به استان ایلام محدود می گردد. شهرستان‌های این استان عبارت‌اند از: اسلام‌آباد غرب، سنقر، پاوه، صحنه، ثلاث باباجانی، قصر شیرین، جوانرود، دالاهو، روانسر، کرمانشاه، کنگاور، گیلان غرب، سر‌پل ذهاب، هرسین. در شکل1-13 استان کرمانشاه به همراه شهرستان‌های آن دیده می‌شود(44).

شکل 1-9 موقعیت جغرافیائی استان کرمانشاه)44.(1-14-2 استان یَزدیزد سرزمینی کهن با پیشینه‌ای در خور توجه، در تاریخ پر فراز و نشیب ایران است. نام یزد برای اولین بار در آثار دوره‌ی ماد‌ها (701 تا 550 قبل از میلاد) دیده می‌شود که گواهی بر قدمت سه هزار ساله‌ی این سرزمین است. در دوره‌های هخامنشی، اشکانی و ساسانی نیز در اسناد و کتیبه‌ها بار‌ها به نام یزد برمی‌خوریم(45).
حسن پیر‌نیا، در کتاب خود،"ایران باستان"،به نقل از تاریخ هرودوت، مورخ یونانی(484 تا 420 قبل از میلاد)، بر مبنای کتیبه‌های داریوش، یزد را بنا بر رسم یونانیان، به نام ایساتیس می‌خواند. وی می‌افزاید: یزد در عصر اشکانی در قلمرو حکومت مهرداد اول بود و در این شهر به نام او سکه ضرب می‌کردند. در دوره‌ی پادشاهی اردشیر بابکان، (241-224‌م) بنیان‌گذار سلسله‌ی ساسانی، یزد زیر نفوذ او بود. پس از ظهور اسلام و فروپاشی دولت ساسانی، در زمان خلافت عمر، و به روایت برخی، در دوران عثمان (دهه ی سوم هجری)، شهر یزد و نواحی آن فتح شد. از آن زمان تا پایان حکومت امویان، فرمانروایان عرب بر این ولایت حکم‌رانی می‌کردند. چنان‌که آمده است، در دوران خلافت حضرت علی(ع)، مسلم ابن زیاد، والی فارس، مالیات یزد را هم می‌گرفت. چنین بود تا هنگامی‌که به‌دست خود ایرانیان، حکومت های مستقل و نیمه مستقلی تشکیل شد و فرمانروایان ایرانی بر ولایت یزد حاکم شدند(45).
مرکز این استان، شهر یزد است. یزد منطقه‌ای خشک و بیابانی است. گروه بزرگی از زرتشتیان ایران در استان یزد و بویژه شهر یزد زندگی می‌کنند. زبان مردم استان یزد فارسی با لهجه یزدی است. آبادی نشینی در این منطقه از قدمت طولانی برخوردار است. این سرزمین از گذرگاه‌های مهم در ادوار تاریخی محسوب می‌شده‌ است. این ناحیه در دوره هخامنشیان از راه‌های معتبر موسسه‌های راهداری، مراکز پستی و چاپاری برخوردار بوده‌است. راهداری در یزد قدیم چنان اهمیتی داشت که خاندان آل مظفر از منصب راهداری ناحیه میبد به پادشاهی رسیدند. با این‌همه این استان از درگیری‌ها و جنگ‌های تاریخ کشور ایران تا حدودی ایمنی داشته‌است. سخت‌گذر بودن راه‌ها به همراه محدودیت منابع آبی مانع عمده تسخیر این منطقه توسط بعضی از حکومت های بزرگ و کوچک حاشیه و پیرامون این منطقه در طول تاریخ بوده‌است. همان طور که در شکل 1-14 دیده می شود استان یزد دارای شهرستان های ابرکوه، اردکان، بافق، بهاباد، تفت، خاتم، صدوق، طبس، مهریز، میبد و یزد می باشد که شهرستان های مهریز و تفت از آب و هوای خوبی برخوردار می باشد (45).
1-14-2-1 موقعیت جغرافیایی
استان یزد در مرکز ایران در قلمرو سلسله جبال مرکزی ایران بین عرض های جغرافیایی 29 درجه و 48 دقیقه تا 33 درجه و 30 دقیقه شمالی و طول جغرافیایی 52 درجه و 45 دقیقه تا 56 درجه و 30 دقیقه شرقی از نصف النهار مبدا قرار گرفته است. استان یزد از سرزمین‌های تاریخی است که در میان ایالت های قدیمی و بزرگ پارس، اصفهان، کرمان و خراسان قرار داشته‌است(45).

شکل 1-10 موقعیت جغرافیائی استان یزد(45).1-15 هدف از تحقیق:آنچه که باعث استفاده از مارکرهای STR در جمعیت شناسی شده است، این واقعیت است که درجه فراوانی آللی هر مارکر STR در هر جمعیت منحصر به فرد است. در حقیقت طبق مطالعات انجام شده فراوانی آلل‏های STR در نژاد‏های مختلف و حتی در مناطق جغرافیایی خاص، تفاوت‏هایی را نشان داده است. بنابراین بررسی هر یک از لوکوس های STR در هر نژاد یا جمعیت خاص برای تفسیر صحت نتایج حاصل از انجام آزمایش های تعین الگوی ژنتیکی به کمکSTR و انجام محاسبات آماری مربوطه امری ضروری است. برای بهره گیری از فواید این فناوری نوپا در زمینه‏ی تشخیص افراد، ضروری است تا فراوانی آللی لوکوس‏هایSTR مختلف در جمعیت بومی کشور مورد بررسی قرار گیرند (45).
مطالعات گذشته روی جمعیت های ایرانی، حضور تعدادی از آلل‏ها را با پلی مورفیسم بالا نشان می‏دهد‌(37-46.)
هدف از این مطالعه به دست آوردن پارامترهای جمعیتی بر اساس فراوانی آللی به دست آمده از شانزده جایگاه STR، در جمعیت‏های کرمانشاه و یزد به منظور بررسی تفاوت ژنتیکی میان این دو جمعیت و سایر جمعیت‏ها می‏باشد.

فصل دوم
2-1 نمونه‌گیریبرای نمونه‌گیری از اقوام کرد و یزد از نمونه هایی که به آزمایشگاه ژنتیک پزشکی تهران رجوع می‌کردند، استفاده شد. پس ازکسب رضایت نامه 4 میلی لیتر خون محیطی از افراد غیر خویشاوند بر اساس محل تولد و اطلاعات مربوط به سه نسل گذشته (پدری و مادری) تهیه شد و در لوله‌های حاوی ماده ضد انعقاد (EDTA) ریخته شد برای تکمیل نمونه‌های یزدی از همکاری آزمایشگاهی در یزد استفاده گردید و برای نمونه‌های کرد به استان کرمانشاه رفته و از آزمایشگاه بیمارستان طالقانی نمونه‌گیری به عمل آمد.
2-2 استخراج DNA به روش نمک اشباعاستخراج DNA با استفاده از روش استاندارد نمک اشباع طبق مراحل زیر انجام شد:
۱- ۳ میلی لیتر از نمونه‌ی خون محیطی حاوی ماده‌ی ضد انعقاد EDTA، داخل فالکون ۱۵ میلی لیتری ریخته شد و با استفاده از آب مقطر سرد به حجم ۱۰ میلی لیتر رسانده شد. سپس فالکون به شدت حرکت داده شد این کار جهت لیز بهتر گلبول‌های قرمز از طریق فرآیند تورژسانس می‌باشد. سپس نمونه را در دستگاه EBA 20 Hettich zentrifugen به مدت ۱۰ دقیقه با دور ۵۰۰۰ سانتریفیوژ شد و محلول رویی خارج گردید و رسوب انتهایی فالکون نگه داشته شد.
۲- با افزودن آب مقطر سرد به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد و مجدداً با همان شرایط ذکر شده آن را سانتریفیوژ گردید و رسوب حاصل که حاوی گلبول‌های سفید است نگه داشته شد.
۳- پس از افزودن ml10 محلول I استخراج DNA به رسوب، حجم آن به ۱۰ میلی لیتر رسانده شد. سپس در شرایط ذکر شده آن را سانتریفوژ کرده و محلول رویی آن دور ریخته شد.
جدول2-1 محلولI استخراج DNA (محلول لیز کننده گلبول‌های قرمز)غلظت مواد
10 mM Tris-Hcl: pH:7.5
0.32 mM Sacarose
5 mM MgCl2
%1 Triton X-100
4-5/۱ میلی لیتر از محلول II استخراج DNA(از قبل تهیه شده به شرح زیر)، lμ ۲۵ سدیم دو دسیل سولفات ‌ SDS و lμ ۲۰ پروتئیناز K به رسوب سفید رنگ انتهای فالکون افزوده شد.
جدول 2-2 محلول II استخراج DNA (محلول لیز کننده گلبول‌های سفید)غلظت مواد
10 mM Tris-HCl: pH:8.2
2mM EDTA: pH:8
0.45mM NaCl
۵- نمونه‌ها به مدت ۳۰ تا ۴۵ دقیقه در دمایc° ۵۶ و یا به مدت یک شب در دمایc° ۳۷ در انکوباتور قرار داده شد تا رسوب حل شود.
۶- پس از افزودن lμ ۵۰۰ نمک اشباع به نمونه، به آرامی تکان داده شد و به مدت ۱۰ دقیقه در ۴۰۰۰ دور سانتریفیوژ شد. سپس محلول رویی به یک فالکون حاوی ۲ میلی لیتر اتانول خالص (۱۰۰ درصد) انتقال یافت و به آرامی حرکت داده شد تا کلاف DNA شکل بگیرد.
۷- کلاف DNA توسط سمپلر به درون یک ویال حاوی ۱ میلی لیتر الکل ۷۰ درصد انتقال یافت تا الکل 100 خارج شود. در مرحله‌ی بعدی ویال را به مدت ۳ دقیقه در ۱۳۰۰۰ دور در دستگاه 20 Hettich zentrifugen Mikro سانتریفیوژ گشت.
۸- محلول رویی دور ریخته شد و ویال حاوی DNA به مدت ۵ دقیقه در انکوباتور قرار داده شد تا اتانول کاملاً تبخیر گردد.
۹- بر حسب میزان DNA بین ۵۰ تا ۳۰۰ ماکرولیتر TE به آن افزوده و به مدت یک شب در انکوباتور C°۳۷ قرار داده شد تا DNA به طور کامل حل شود.
جدول 2-3 ترکیبات TEغلظت محتویات
10mM Tris-Hcl, PH:7.6
1mM EDTA, PH:8
2-3 آماده‌سازی نمونه‌ها جهت انجام تست DNA Typingدر هر واکنش Multiplex PCR بهتر است از lμ ۵ نمونه‌ی DNA انسانی با غلظت ng ۱۰۰-50 استفاده شود. اگر‌چه حساسیت آنالیزی این روش در حد ng۵۰-20 از DNA می‌باشد. روش استخراج و نگهداری DNA می‌تواند روی نتایج PCR تأثیر گذار باشد. این روش نیاز به کیت خاصی برای استخراج DNA ندارد با این وجود توجه به این مسئله که در نمونه‌ها غلظت بالایی از آلودگی با نمک وجود نداشته باشد حائز اهمیت است. در این روش نباید از خون هپارینه استفاده شود زیرا هپارین می‌تواند ممانعت کننده‌ی مرحله‌ی PCR باشد. نمونه‌ی DNA را باید در TE حل کرد. pH نمونه‌ی DNA باید بین ۸ تا ۵/۸ باشد تا از دپوریناسیون در طی مرحله‌ی حرارت دادن اولیه جلوگیری شود. بهتر است در صورتی‌که قصد نگهداری طولانی مدت نمونه‌های DNA را داشته، نمونه را در دمای C°۲۰- نگهداری کرد. اگرچه DNA پس از حل شدن در TE به شدت پایدار است اما نگهداری طولانی مدت آن در دمای C °۴ ممکن است منجر به آلودگی آن با میکروارگانیسم‌ها شود .
۲-3-1 رسوب گذاری با اتانولبا توجه به این مسئله که نتایج مربوط به روش STR در نهایت با یکدیگر مقایسه می‌شوند، بهتر است نمونه‌های انتخاب شده از یک نوع بافت گرفته شوند و با روش یکسانی استخراج شوند. در مواردی که از نمونه‌های DNA قدیمی یا نمونه‌هایی با کیفیت نامناسب استفاده می‌شود و یا مواقعی که غلظت DNA مورد استفاده کمتر از ng/µl۴ است، روش‌های خالص سازی DNA مانند روش رسوب گذاری با اتانول، می‌تواند سبب بهبود کیفیت نمونه‌ها و ایجاد نتایج بهتر و مطمئن‌تری شود. استفاده از روش رسوب گذاری با اتانول آلودگی‌های ناشی از یون‌ها، نمک‌ها، اتانول و... را کاهش می‌دهد. غلظت نمک (NaCl)، نباید بیشتر از mM ۶۰ باشد تا دناتوراسیون به طور کامل انجام شود. هم‌چنین غلظت EDTA نباید بیش از mM۱ باشد زیرا EDTA به منیزیوم متصل شده و مانع انجام مرحله‌ی PCR می‌گردد. ناخالصی‌های یونی مانند آهن، اتانول و فنل نیز باعث کاهش فعالیت پلی‌مراز می‌گردند.
رسوب‌گذاری با اتانول به شیوه زیر بر روی نمونه‌ها انجام گرفت.
به میزان ۱/۰ حجم اولیه‌ی نمونه‌ی DNA استات سدیم M ۳ با 5/4:pH به نمونه‌ها اضافه شد.
به اندازه‌ی ۳ برابر حجم (پس از افزودن سدیم استات) به نمونه‌ها اتانول سرد خالص افزوده شد.
نمونه‌ها به مدت ۱ ساعت در دمای اتاق قرار گرفتند و سپس به مدت ۳۰ دقیقه در دور rpm14۰۰۰ سانتریفوژ گشتند.
محلول رویی به آرامی خارج شد و به رسوب DNA نصف حجم اتانول اولیه،اتانول ۷۰ درصد افزوده شد.
نمونه‌ها به مدت ۱۵ دقیقه در دور ۱4۰۰۰ سانتریفیوژ شدند.
محلول رویی خارج شد و پس از اینکه اتانول کاملاً تبخیر شد رسوب در مقدار مناسبی از TE حل گردید.
2-3-2 تعیین غلظت نمونه‌های DNA توسط دستگاه Nanodrop از ان جایی‌که روش DNA Typing دارای دقت و حساسیت بالایی است، بنابراین نمونه‌های DNA باید دارای کیفیت مطلوبی باشند. در این مطالعه جهت تعیین غلظت نمونه‌های DNA، از دستگاه نانودراپ c۲۰۰۰ استفاده شد. حین استفاده از این دستگاه، نیازی به رقیق سازی نمونه‌های DNA نمی‌باشد. ابتدا دستگاه را با استفاده از کنترل فاقد DNA (آب مقطر یا TE) صفر نموده، سپس 2 میکرولیتر از نمونه‌ی DNA را با استفاده از سمپلر در دستگاه قرار داده شد تا میزان جذب نوری نمونه‌ها در طول موج ۲۸۰/۲۶۰ و ۲۳۰/۲۶۰ اندازه‌گیری شود. به طور کلی اسید‌های نوکلئیک در طول موج ۲۶۰ نانومتر و پروتئین‌ها در طول موج ۲۸۰ نانومتر بیشترین میزان جذب نوری را دارند. از نسبت جذب نمونه در طول موج ۲6۰ به ۲۸۰ نانومتر جهت تعیین خلوص DNA و جهت بررسی حضور دترجنت‌هایی مانند SDS، کربوهیدرات، کلروفرم و فنل از نسبت جذب در طول موج ۲۶۰ به ۲۳۰ نانومتر استفاده شد. برای داشتن نمونه‌هایی با کیفیت مطلوب، عدد حاصل از نسبت ۲۶۰ به ۲۸۰ باید ۸/۱ یا بیشتر باشد. میزان جذب پایین‌تر از ۷/۱ نشان دهنده‌ی آلودگی نمونه‌ها با پروتئین است.
2-3-3 تهیه‌ی Working Stokeبرای انجام واکنش DNA Typing ، غلظت مناسب از نمونه‌های مورد آزمایش تهیه گردید. در این مطالعه از DNA با غلظت ng/µl70 استفاده شد.

–278

تهیه سلول های مستعد 'E. coli TOP10F به روش تیمار با کلرید کلسیم.........................................20
انتقال پلاسمید به سلول های مستعد..................................................................................................21
بررسی کلونهای نوترکیب به روش سریع..........................................................................................21
PCR بر روی کلنی های باکتریایی/مخمری......................................................................................22
استخراج پلاسمید در مقیاس کم.......................................................................................................22
استخراج پلاسمید در مقیاس زیاد.....................................................................................................23
الکتروفورز پروتئین بر روی ژل پلی اکریل آمید(SDS-PAGE)........................................................24
سنتز ژن gcsf...................................................................................................................................29
PCR اختصاصی بر روی ژن gcsf....................................................................................................30
کلون نمودن ژن gcsf در وکتور بیانی هانسونلا.................................................................................31
هضم آنزیمی وکتور pGH-gcsf.......................................................................................................32
هضم آنزیمی وکتوربیانی pHan......................................................................................................33
کلون نمودن قطعه gcsf در وکتور بیانی pHan.................................................................................33
بررسی کلون های نوترکیب pHan-gcsf...........................................................................................34
هضم آنزیمی وکتور pHan-gcsf......................................................................................................35
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf.....................................................35
PCR اختصاصی بر روی ژن مقاومت به زئوسین..............................................................................35
کلون نمودن ژن zeocin در وکتور کلونینگ pGEM-T Easy..........................................................37
بررسی کلون های نوترکیب pGEM-zeo.........................................................................................38
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf......................................................39
هضم آنزیمی وکتور pHan-gcsf و pGEM-zeo..............................................................................39
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی تیمار شده با آلکالین فسفاتاز pHan-gcsf.........40
بررسی کلونهای نوترکیب pHan-gcsf-zeocin.................................................................................41
انتقال پلاسمید نوترکیب pHan-gcsf-zeocin به سلول هانسونلا پلی مورفا.......................................41
هضم آنزیمی وکتور بیانی pHan-gcsf-zeocin.................................................................................41
الکتروپوریشن سلول های هانسونلا پلی مورفا...................................................................................42
تأیید کلونهای نوترکیب هانسونلا با روش Colony PCR اختصاصی ژن زئوسین.............................43
بیان پروتئینGCSF در هانسونلا پلی مورفا......................................................................................44
کشت سلولهای مخمری....................................................................................................................44
بررسی بیان پروتئین نوترکیب با روش SDS-PAGE........................................................................44
تزریق نمونه پروتئینی به خرگوش.....................................................................................................45
ایمونوبلاتینگ...................................................................................................................................46
فصل سوم نتایج
سنتز ژن gcsf...................................................................................................................................49
PCR اختصاصی بر روی ژن gcsf...................................................................................................49
طراحی پرایمر های اختصاصی ژن gcsf...........................................................................................49
بهینه سازی واکنش PCR برای ژن gcsf...........................................................................................50
کلون نمودن ژن gcsf در وکتور بیانی هانسونلا.................................................................................51
هضم آنزیمی وکتور کلونینگ pGH-gcsf و وکتور بیانی pHan.......................................................51
بررسی کلونهای نوترکیب pHan-gcsf.............................................................................................52


بررسی کلونها به روش سریع...........................................................................................................52
انجام PCR ژن gcsf بر روی پلاسمید نوترکیب pHan-gcsf............................................................52
هضم آنزیمی وکتور تأیید شده pHan-gcsf......................................................................................53
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf.....................................................54
PCR اختصاصی بر روی ژن مقاومت به زئوسین (Sh ble).............................................................54
کلون نمودن ژن zeocin در وکتور کلونینگ pGEM-T Easy..........................................................55
تأیید کلون های نوترکیب pGEM-zeocin.......................................................................................55
بررسی سریع کلونهای نوترکیب........................................................................................................55
هضم آنزیمی پلاسمید نوترکیب pGEM-zeo با BglII.....................................................................56
کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf......................................................57
بررسی کلونهای نوترکیب pHan-gcsf-zeocin..............................................................................57
بررسی سریع کلونهای نوترکیب........................................................................................................57
بررسی کلونها به روش Colony-PCR.............................................................................................58
برش آنزیمی وکتور نوترکیب pHan-gcsf-zeo.................................................................................58
انتقال پلاسمید نوترکیب pHan-gcsf-zeocin به سلول هانسونلا پلی مورفا.......................................59
هضم آنزیمی وکتور بیانی pHan-gcsf-zeocin و انتقال به سلول هانسونلا........................................59
تأیید کلونهای نوترکیب هانسونلا با روش Colony-PCR ژن زئوسین..............................................59
بیان پروتئینGCSF در هانسونلا پلی مورفا.....................................................................................60
تأیید پروتئین نوترکیب تولید شده با روش Immuno-Blotting.......................................................61
فصل چهارم :بحث و پیشنهادات
رویکرد کلی پژوهش........................................................................................................................63
فصل پنجم : منابع و پیوست
فهرست منابع و مواخذ......................................................................................................................66
پیوست‌ها..........................................................................................................................................75
مقدمه
تولید پروتئین های نوترکیب یک بازار میلیارد دلاری دارا می باشد. از طرف دیگر تولید یک محصول نوترکیب جدید با انتخاب یک میزبان مناسب شروع می شود. در میان سیستم های بیانی مختلف، سلولهای مخمری به عنوان تک سلولی های تولید کننده با ویژگی دستکاری های ژنتیکی ساده و داشتن مسیرهای ترشحی اختصاصی که در تولید پروتئین کامل و فعال و انتقال آن به خارج از سلول مؤثر می باشند، یکی از بهترین انواع سیستم های شناخته شده می باشند. ساکارومیسس سرویزیه، پیکیا پاستوریس و هانسونلا پلی مورفا در اکثر مطالعات به عنوان سلولهای مخمری میزبانی مورد استفاده قرار گرفته اند که دارای مسیر مشترک بیوشیمیایی در متابولیسم متانول می باشند. در حال حاضر تکنولوژی هانسونلا به دلیل میزان بیان بالا مورد توجه جهانی قرار گرفته است. از جمله اقلام دارویی تولید شده در این سلولها میتوان به واکسن هپاتیت B، انسولین و اینترفرون آلفا و بتا اشاره نمود.
هدف از این مطالعه ، استفاده از وکتور بیانی طراحی شده جهت بیان فاکتور رشد کلنی گرانولوسیتی (GCSF) نوترکیب به عنوان پروتئین کاندید می باشد.
مواد و روش ها
cDNA کد کننده ژن فاکتور محرک رشد کلونی گرانولوسیتی در وکتور بیانی طراحی شده مربوط به هانسونلا پلی مورفا که شامل پروموتر، توالی سیگنال پپتید، توالی خاتمه دهنده رونویسی و شاخص انتخابی اوکسوتروفی می باشد کلون گردید و بدین ترتیب وکتور بیانی مورد نظر ساخته شد. هضم های آنزیمی به منظور تأیید قطعات کلون شده در وکتور بیانی طراحی شده انجام شد. القاء بیان پروتئین نوترکیب در این سیستم با متانول صورت گرفت و ایمونوبلاتینگ جهت تأیید پروتئین تولید شده نوترکیب صورت گرفت.
نتایج
ماهیت توالیهای کلون شده در وکتور بیانی از طریق هضم های آنزیمی با استفاده از سایتهای طراحی شده در توالی سنتز شده و مشاهده قطعات مورد نظر در ژل آگارز ارزیابی شد. وکتور نوترکیب به فرم خطی با روش الکتروپوریشن به سلول مستعد هانسونلا پلی مورفا انتقال داده شد و القاء بیان پروتئین با متانول صورت پذیرفت. پروتئینی حدوداً 20 کیلو دالتونی بر روی ژل SDS-PAGE مشاهده گردید که با ایمونوبلاتینگ پروتئین تولید شده به عنوان GCSF تأیید شد.
بحث
پروتئین تولید شده با روش بلاتینگ تأیید گردید. در ادامه بایستی عملکرد این پروتئین در واکنشهای ایمونولوژیکی مورد بررسی قرار گیرد. از طرف دیگر عملکرد این پروتئین در مقایسه با فرم تولید شده در E. coli مقایسه شود.
کلید واژه ها
هانسونلا پلی مورفا، فاکتور محرک رشد کلونی گرانولوسیتی (GCSF)، مهندسی ژنتیک
فصل اول : مقدمه
در طول چند دهه اخیر به سه دلیل زیر مطالعات زیادی بر روی مخمر هانسونلا پلی مورفا صورت گرفته است:
رشد سریع این مخمر با مصرف متانول به عنوان تنها منبع کربن و انرژی،
تحمل دماهای بالا (توانایی رشد در دمای °C49)،
تبادل آسان محتوای ژنتیکی بین سلولهای هاپلوئید و دیپلوئید ( (Teunisson, 1960.
1-1میکروبیولوژی هانسونلا
این مخمر برای اولین بار در سال 1951 از آب پرتقال حاوی 50% قند در فلوریدای آمریکا جداسازی شد.
سلولهای هانسونلا به هر دو صورت سلولهای دیپلوئیدی و هاپلوئیدی رشد می کنند. کلنی ها بر روی محیط کشت جامد دارای طیف رنگی صورتی هستند که به علت آسکوسپورها می باشد. کلنی سلولهای هاپلوئیدی و دیپلوئیدی از نظر رنگ، اندازه، چیدمان سلولی و سایر ویژگیها با یکدیگر متفاوت می باشند.
تاکنون اطلاعاتی در مورد توانایی هانسونلا پلی مورفا در تشکیل میسلیوم کاذب پیدا نشده است (Teunisson, 1960; Wickerham, 1970).

شکل 1-1 مخمر H. polymorpha
هانسونلا پلی مورفا میتواند در دمای بالا و در °C42 رشد کند. به نظر می رسد در این مخمر سنتز تره هالوز قسمتی از پاسخ به قحطی منبع کربن و شوک حرارتی است و پیشنهاد شده که این ترکیب، فاکتور مهمی در مقاومت دمایی است (Reinders, 1999).
مطالعات انجام شده بر روی هانسونلا پلی مورفا به طور عمده به بررسی پروتئین های سلولی، ساختار سلولهای مخمر در حال رشد و یا بررسی متابولیسم مخمر پرداخته اند.
در سویه هایی از این مخمر که از متانول به عنوان منبع انرژی استفاده می کنند، آنزیمهای متانول اکسیداز و کاتالاز، به فرم کریستالی درون اندامکی به نام پراکسی زوم قرار گرفته اند (Van Dijken, 1975).
هانسونلا پلی مورفا بعنوان یک ارگانیسم متیلوتروف، یک مدل مطلوب برای تحقیق در مورد عملکرد پراکسی زم ها و تکامل حیات می باشد. همچنین به منظور بررسی ژنتیکی جنبه های مختلف متابولیسم سلولی از جمله متابولیسم متانول، جذب نیترات و مقاومت به فلزات سنگین مورد مطالعه قرار می گیرد ( (Mannazzu, 2000.
با وجود این ویژگیها، هنوز قابلیت های ژنتیکی و طبیعی سویه های مورد استفاده از این مخمر کاملاً مشخص نیست و کنترل ژنتیکی فرایندهای سلولی پایه از جمله کنترل تقسیم سلولی، تولید مثل و اسپورزایی هنوز با سؤالات زیادی مواجه می باشد.
با اینحال هانسونلا پلی مورفا به عنوان یک میزبان برای تولید پروتئین های خارجی(ترشحی به خارج از سلول) توجه زیادی را به خود جلب کرده است ( (Gellissen, 2000.
1-2مطالعات ژنتیکی
تحقیقات ژنتیکی تاکنون تنها بر روی سه سویه از این مخمر انجام شده است که شامل سویه های DL-1، CBS 4732 و NCYC 495 می باشند.
پیدایش سویه های هانسونلا پلی مورفا از سویه های جهش یافته اکسوتروف شروع شده است.این موتانت ها از سویه هایی که در بالا نام برده شد با استفاده از ترکیب شیمیایی N-متیل-N-نیترونیتروزو گوانیدین یا اتیل متان سولفونات به دنبال یک مرحله غنی سازی با نیستاتین به دست آمده اند.
از طرف دیگر اشعه ماوراء بنفش نیز یک موتاژن بسیار قوی است که طیف موتانت های ایجاد شده بوسیله آن در مقایسه با موتانت های حاصل از مواد شیمیایی متفاوت و گسترده تر می باشد (Roggenkamp, 1986).
بطور کلی فرایندهای جهش زایی متعددی در این مخمر انجام شده است که یکی از این فرایندها، جهش های ژنتیکی است که منجر به سنتز اسیدآمینه های آروماتیک می شود که به مخمر اجازه رشد در محیط غنی YPD را نمی دهند (Krappmann, 2000).
از جمله انواع جهش یافته های اکسوتروف میتوان به موارد زیر اشاره نمود:
سویه هانسونلا پلی مورفای جهش یافته ای که برای رشد بر روی محیط های معدنی الزاماً به ریبوفلاوین نیاز دارد و محدود نمودن منبع ریبوفلاوین تأثیر شدیدی بر روی سنتز مجموعه الکل اکسیداز و تکثیر پروکسی زومهای سلولی دارد (Evers, 1994).
نوع دوم جهشهای ایجاد شده در ژن FAD1 است که اسید چرب دلتا را کد می کند. کاربرد این سلولهای جهش یافته در بررسی ژنتیکی سنتز اسیدهای چرب غیراشباع می باشد ( (Anamnart, 1998.
تحقیقات اخیر نشان داده است که هانسونلا پلی مورفا میتواند برای بررسی مقاومت به فلزات سنگین مورد استفاده قرار گیرد چراکه توانایی رشد در حضور تجمع فلزات سنگین متفاوت را که برای سایر موجودات سمی است دارا می باشد (Mannazzu, 1997).
در طی رشد در محیط حاوی vanadate، سلول ها افزایش قابل توجهی از پلی فسفات های واکوئلی پیدا میکنند. احتمالاً نقش این واکوئل ها در فعال کردن مکانیسم های اتوفاژی است که شاید برای جبران کمبود مواد مغذی و یا حذف ساختارهای سلولی ناهنجار القاء شده توسط این یون فلزی لازم باشند (Mannazzu, 1998).
سلول های هانسونلا پلی مورفا در مقایسه با S. cerevisiae به یون های کادمیوم(cd2+) بسیار مقاومند )این مقاومت به شدت به ماهیت منبع کربن استفاده شده بستگی دارد. سلول ها اغلب زمانیکه بر روی محیط حاوی گلوکز رشد میکنند به کادمیم مقاومتراند اما در طی رشد بر روی محیط حاوی متانول، به عنوان منبع کربن و انرژی، به این یون بسیار حساس می باشند. سویه های جهش یافته مقاوم به کادمیوم به سه گروه cds1، cds2 و cds3 تقسیم میشوند ( (Lahtchev, unpublished data.
جهش در ژنهای کدکننده آنزیم های پراکسی زومی یا سیتوپلاسمی درگیر در متابولیسم متانول
ژن AOX1 (MOX)، کدکننده آنزیم الکل اکسیداز (AO) موجود در ماتریکس پروکسی زوم است و یکی از بهترین ژن های هانسونلا پلی مورفا در تحقیقات می باشد (Ledeboer, 1985). الکل اکسیداز یک آنزیم فلاووهومواکتامری است که اولین مرحله در متابولیسم متانول را کاتالیز میکند. مونومر این آنزیم در سیتوپلاسم سنتز شده و به صورت هومواکتامر فعال، تجمع یافته و در داخل پراکسی زوم قرار میگیرد. حدود 210 نوع جهش یافته از ژن AO وجود دارد ( (Titorenko, 1995. بیان این ژن در مرحله رونویسی تنظیم میشود.

شکل 1-2 مورفولوژی سلولهای H. polymorpha جهش یافته
در هانسونلا پلی مورفا وقایع مربوط به مهار و القاء ژنهای کد کننده آنزیم های اختصاصی متانول و یا آنزیمهای پراکسی زومی به شدت کنترل می شوند. تنظیم در سطح رونویسی با مکانیسم های کنترلی قابل ملاحظه ای انجام میشود. عناصر تنظیمی به فرم سیس در بالادست ژنهای DAS، CAT و FMD با نقش مهاری برای گلوکز شناسایی شده اند.
1-3 نقشه ژنتیکی
آنالیز تتراد در هانسونلا پلی مورفا امکان پذیر است اما اندازه کوچک اسپورها روند این آنالیز را کند می نماید. در کشت سلول های دیپلوئیدی تفکیک مندلی نرمال در مورد بیشتر مارکرهای ژنتیکی مشاهده شده است.
الکتروفورز DNA کروموزومی هانسونلا پلی مورفا به روش pulse field، 3 تا 7 باند را نشان داده است که به نوع سویه وابسته است (Mari, 1993)اما بطور کلی مشخص شده است که هانسونلا پلی مورفا حداقل 7 کروموزوم دارد که بعضی از آنها مضاعف (دو تایی) هستند (Naumov, 1992).
1-4 تولیدمثل و اسپورزایی
فاکتورهایی در تولیدمثل و اسپورزایی هانسونلا پلی مورفا درگیرند که هنوز بطور کامل شناسایی نشده اند. از القاء کننده های قوی تولیدمثل جنسی میتوان به مالتوز، گلیسرول و سوربیتول اشاره کرد (Lahtchev, unpublished data).
سلول های هاپلوئید بر اساس نوع فنوتیپشان به چهار گروه تقسیم میشوند:
سویه های گروه 1 و 2 میتوانند هیبریداسیون متقاطع داشته باشند. این سویه ها سریع الرشد و تهاجمی بوده و پس از گذشت یک روز در محیط انتخابی، دیپلوئیدی می شوند. سویه های گروه 3 توانایی جفتگیری با اعضای گروه 1 و 2 را دارند و سویه های مثبت (+) نامگذاری می شوند. سویه های گروه 4 تنها میتوانند با گروه مثبت جفتگیری کنند و گروه منفی (-) را تشکیل دهند.
1-4-1 اسپورزایی
در هانسونلا پلی مورفا سلولهای هاپلوئیدی توانایی اسپورزایی دارند. اسپورزایی هاپلوئیدها بعد از گذشت 8 روز در محیط حاوی 3% مالتوز در دماهای پائین قابل تشخیص است. اسپورزایی با ظاهر شدن کلنی های دیپلوئیدی به رنگ صورتی روشن همراه می باشد.
در اواخر دهه 1960 کشف شد که مخمرها توانایی رشد بر روی محیط حاوی متانول به عنوان منبع کربن و انرژی را دارند (Ogata, 1969). اخیراً در تحقیقات پایه، متیلوتروف ها به عنوان منبع پروتئین های تک سلولی (SCP) ((Cooney and Levine, 1976) و آنزیم های غیرمعمول و متابولیت ها توجه بسیاری را به خود جلب کرده اند. با استفاده از روشهای جدید کلونینگ، ژن های کد کننده آنزیم های کلیدی در متابولیسم متانول شناسایی شده اند (Wegner, 1990).
پروموترهای MOX و FMD بعد از القاء، بسیار قوی عمل می نمایند. این مطلب با مشاهده میزان بالای بیان محصولات تحت تأثیر این پروموترها قابل انتظار است.
این یافته ها استفاده از هانسونلا پلی مورفا، به عنوان یک میزبان مناسب برای بیان به میزان زیاد ژنهای هترولوگ با استفاده از این پروموترها، به عنوان اجزاء کنترل کننده بیان، را قابل قبول نماید (Roggenkamp, 1984; Hollenberg and Janowicz, 1988).
سیستم بیانی شامل هانسونلا پلی مورفا سویه RB11 و پلاسمیدهای حاوی توالی های URA3و HARS1 است که به دنبال هم قرار گرفته اند. استفاده از پروموترهای FMD یا MOX و ترمیناتور MOX همراه با جایگاههای برش آنزیمی کوتاه مربوط به کلونینگ (MSC) بین این دو واحد، کلونینگ و بیان ORFهای هترولوگ را ممکن ساخته است.
آنالیز سویه های بیانی، پایداری میتوزی قابل توجه پلاسمید های الحاق شده به درون ژنوم را نشان می دهد که در بعضی موارد بیانگر سرعت بیان بالای ORF هترولوگ می باشد.
از طرف دیگر، سویه RB11، اغلب دستکاری های ژنتیکی به صورت نوترکیبی را به راحتی نمی پذیرد که شاید ناشی از پایداری میتوزی فوق باشد. به نظر می رسد سویه DL-1 نسبت به سویه RB11 توانایی پذیرش بیشتری را دارد (Gellissen, 1992).
1-6 پروموترهای مورد استفاده در سیستم های بیانی هانسونلا پلی مورفا RB11
یکی از پروموترهای مورد استفاده برای تولید پروتئینهای هترولوگ در هانسونلا پلی مورفا سویه RB11، پروموتر ژن MOX می باشد که طول آن بیش از 5/1 کیلوباز بوده و در حضور منبع کربن تنظیم می شود. به این صورت که در حضور گلوکز، پروموتر MOX مهار می شود ولی در حضور متانول، القاء می گردد.
پروموتر سایر ژن های کدکننده آنزیم های کلیدی در کاتابولیسم متانول از جمله FMD، DAS و CAT نیز مشابه با پروموتر ژن MOX کنترل می شوند اما سطح تنظیمی بعضی از آنها همچون CAT مشخص نیست (Veenhuis, 1983).
اگرچه پروموترهای FMD و MOX به طور واضحی مقایسه نشده اند اما بعضی مقایسه ها نشان داده است که مزایای پروموتر FMD از پروموتر MOX بیشتر است. بعنوان مثال، هانسونلا پلی مورفا سویه RB11 بیان کننده ژن فیتاز تحت کنترل پروموتر FMD، بازده زیادی در تخمیر در شرایط قحطی گلوکز دارد.
1-6-1 HARS1
پلاسمیدهای بیانی مورد استفاده در هانسونلا پلی مورفا سویه RB11 دارای عنصر HARS1 به طول تقریبی 5/0 کیلوباز می باشند. این قطعه ژنی در سالهای اخیر در طراحی وکتورهای مناسب برای انتقال به هانسونلا پلی مورفا مورد توجه قرار گرفته است Roggenkamp, 1986)). پلاسمیدهای حامل توالی HARS1 در 30-20 نسل ابتدایی رشد سلولها به صورت اپی زومال باقی می مانند اما پس از آن در ژنوم سلول مزبان به صورت تکرارهای متوالی به تعداد زیاد الحاق می شوند. این در حالی است که ناحیه ای که این پلاسمیدها دقیقاً در ژنوم ادغام می شوند هنوز مشخص نیست Gellissen, 1990)). چهار عنصر دیگر از خانواده قطعه ژنی HARS در سویه های DL-1 به دست آمده است اما تعداد کپی آنها از تعداد عناصر HARS1 در سویه RB11 کمتر است.
جزئیات مکانیسم ادغام شدن پلاسمیدهای حاوی توالی HARS1 در ژنوم این مخمر هنوز مشخص نیست. تنها ویژگی شناخته شده، توانایی ادغام شدن به صورت توالیی تکراری و غیرتصادفی است که قسمت خاصی از ژنوم را انتخاب می کند (Sohn, 1996).

شکل 1-3 تصویر پلاسمید بیانی مخمر H. polymorpha
1-7 بیان همزمان:
با چنین سیستم هایی، مجموعه های پروتئینی هترومری تولید می شود. یک مثال قابل توجه از این نوع بیان، بیان همزمان آنتی ژن های S و Lویروس هپاتیت B است.
از دیگر موارد بیان همزمان میتوان به بیان ژن های کد کننده گلیکولات اکسیداز (GO) اسفناج و کاتالاز (CTT1) T ساکارومیسس سرویزیه در هانسونلا پلی مورفا اشاره نمود.
بیان، پردازش، تغییر و تبدیل و یا ترشح مؤثر پروتئینهای نوترکیب خاص در هانسونلا پلی مورفا ممکن است دچار تغییر شود. این محدودیت می تواند با بیان همزمان ژن مورد نظر با یک ژن دوم (یا بیش از یک ژن دیگر) برطرف شود به همراه می آورد. به عنوان مثال فرآیند پردازش نادرست اینترفرون آلفا 2a، می تواند با بیان همزمان ژن KEX2 ساکارومیسس سرویزیه بهبود یابد.
1-8 ترشح پروتئین های هترولوگ الیگومری و فعال
هانسونلا پلی مورفا مقدار کمی پروتئین درونی (خودی) ترشح می کند و در نتیجه این ویژگی، پروتئین های هترولوگ ترشح شده به محیط کشت، عموماً خالص هستند. بنابراین استفاده از این میزبان بیانی، روش مناسبی جهت تولید پروتئین های نوترکیب خارجی به فرم محلول می باشد. ترشح پروتئین ها توسط توالیهای نشانه (سیگنال) قابل جداسازی انجام می شود. اگرچه گاهاً مستقل از سیگنال ترشحی، در مواردی ترشح خودبخودی پروتئین هترولوگ نیز مشاهده شده است (Gellissen, 2000).
برای درک توانایی هانسونلا پلی مورفا در تولید و ترشح پروتئین های هترولوگ، سویه هایی از این مخمر به منظور ترشح الکل اکسیداز (AOX) مهندسی گردیدند. الکل اکسیداز، یک پروتئین هومواکتامر کوفاکتوری است که هر زیرواحد آن دارای یک مولکول FAD می باشد (van der Klei et al, 1991). زمانیکه هانسونلا پلی مورفا بر روی محیط حاوی متانول رشد می کند فعالیت پروتئین AOX در ماتریکس پراکسی زومی، جائیکه اکثر پروتئین های اصلی وجود دارند، محدود می شود.
از طرف دیگر، برای فهم چگونگی ترشح الکل اکسیداز، سویه هایی از هانسونلا پلی مورفا مهندسی گردید که ژن اندوژن AOX با ژن AOX به دنبال سیگنال ترشحی در انتهای N، جایگزین شد. به دنبال کشت این سویه در محیط کشت حاوی متانول، حضور AOX فعال شناسایی گردید که این بیان نشان می دهد هانسونلا پلی مورفا قادر به تولید و ترشح کمپلکسهای پروتئینی دارای کوفاکتور و ساختارهای الیگومری می باشد (van der Heide and Veenhuis, Unpublished results).
1-9 تولید واکسن نوترکیب
در بسیاری از کشورها واکسن های علیه هپاتیت در اوایل دهه 1980 در دسترس عموم قرار گرفت. این واکسن ها با جداسازی آنتی ژن HBs از سرم افراد ناقل تولید شده بود که اگرچه مؤثر بودند اما به دلیل مشتق شدن از سرم، گران بوده و مدت زمان کوتاهی به سیستم ایمنی عرضه می شوند. به همین دلیل، تولید آنتی ژن HBS هترولوگ در سیستم های بیانی مختلف از جمله مخمر، باکتری، سلولهای گیاهی یا جانوری و نیز حیوانات تراریخته توسعه پیدا نمود. (Billman-Jacobe, 1996, Makrides, 1996).
1-10 مخمرها به عنوان میکروارگانیسم های تولیدی
سیستم های مخمری دارای مزایایی از جمله توانایی دستکاری ژنتیکی آسان، فرآیند های پس از ترجمه یوکاریوتی با میزان بالای تولید محصول و فرآیندهای تخمیری ارزان قیمت هستند. بنابراین تعجب آور نیست که ساکارومیسس سرویزیه به عنوان یکی از میزبانهای مطلوب در تولید پروتئین های هترولوگ شناخته شده است (Hinnen et al, 1995; Barr et al, 2000).
تاکنون دو روش در سیستم بیانی هانسونلا پلی مورفا به منظور تولید زیرواحدهای adw2 و adr از آنتی ژن HBs ابداع شده است که یکی از آنها توسط سازمان بهداشت جهانی (WHO) تأیید شده است (Gregg et al, 1985; Gregg and Madden, 1987).
1-10 ساخت سویه هانسونلا پلی مورفا بیان کننده آنتی ژن HBs
به طور کلی تولید سویه های هانسونلا پلی مورفا نوترکیب نیازمند دنبال کردن پروتکل استاندارد زیر است:
تولید کاست بیانی و وکتور پلاسمیدی
انتقال وکتور طراحی شده به سلول هانسونلا پلی مورفا
جداسازی سویه های نوترکیب
1-10-1 تولید کاست بیانی و وکتور پلاسمیدی
تولید سویه H415 بیان کننده آنتی ژن HBs بوسیله گروهی از محققین یک مثال از این فرآیند است. توالی کدکننده آنتی ژن به طول 683 نوکلئوتید از پلاسمید pRIT10616 جدا گردید (Harford et al, 1987) و قطعه پروموتریMOX به عنوان سیگنال برای رونویسی از ژن MOX هانسونلا پلی مورفا مشتق شد (Ledeboer et al, 1985; Eckart 1988). این سه عنصر ترکیب شده و قطعه MOX promoter-HBsAg gene-MOX terminator را تشکیل می دهند که اساس کاست بیانی می باشند (Stinchcomb et al, 1980). سپس این کاست دارای عملکرد بیانی درون وکتور پلاسمیدی حاوی عناصر زیر قرار داده شد. ژن مقاومت به کلرامفنیکل به منظور تکثیر در باکتری E. coli، توالی همانند سازی هانسونلا پلی مورفا (HARS1) و ژن URA3 از ساکارومیسس سرویزیه به عنوان مارکر انتخابی در بررسی انتقال پلاسمید به هانسونلا پلی مورفا می باشند.
پلاسمیدهای دارای توالی HARS1 توانایی بالایی برای ادغام در ژنوم میزبان دارند. امروزه سویه هایی شناسایی شده که دارای بیش از 60 کپی از کاست بیانی خارجی اند که این مطلب به دلیل وجود این توالی می باشد.
1-11 انتقال (ترانسفرم) وکتورهای بیانی به هانسونلا پلی مورفا
1-11-1 روش پلی اتیلن گلیکول
پلاسمیدpRBS-269 با استفاده از روش پلی اتیلن گلایکول به سویه RB10 انتقال یافت و برای مشخص شدن ادغام پلاسمید به درون ژنوم، غربالگری صورت گرفت (Gregg et al, 1985).
تاکنون چندین سویه ترانسفرم شده با کاست های بیانی الحاقی بطور پایدار تولید شده است و سویه H415 یکی از این سویه هاست که برای بیان آنتی ژن HBs تحت شرایط خاص مورد آزمایش قرار گرفته است (Janowicz et al, 1991).
1-12 جداسازی سویه های نوترکیب
تشخیص بیان پروتئین با رشد سویه های ترنسفورم شده بر روی محیط های تقریباً مغذی حاوی گلوکز، گلیسرول و یا متانول بررسی می شود. در این راستا، مقدار آنتی ژنHBs تولید شده در این سیستم بیانی در مقایسه با مقدار استاندارد آنتی ژن خالص با روش ایمونوبلاتینگ کمی اندازه گیری شد. میزان تولید د ر سویه H415 در محیط کشت حاوی متانول mg100 بود. زمانیکه سلول ها در محیط حاوی گلیسرول قرار گرفتند سنتز آنتی ژن HBs 70% کاهش پیدا کرد و زمانیکه سلول ها به محیط حاوی گلوکز منتقل شدند آنتی ژنی تولید نگردید که این مطلب نشان دهنده تولید این آنتی ژن به طور طبیعی تحت کنترل ژن MOX میباشد (Rutgers et al, 1988).
1-13 تنظیم متابولیسم متانول
تنظیم آنزیم های احیاکننده به روش مهاری و نه القاء صورت می پذیرد. در طی فرایند رشد، در شرایط کمبود گلوکز این آنزیم ها افزایش پیدا می کنند (Egli, 1980). تجزیه و تحلیل منطقه پروموتر ژن کد کننده AOD نشان داده است که در H. polymorpha بیان ژن MOX نیز توسط یک مکانیسم مهاری تنظیم می شود (Roggenkamp, 1984; Sakai and Tani, 1992).
1-14 فاکتور محرک رشد کلنی گرانولوسیتی (G-CSF)
در دهه 60 میلادی، دو گروه به طور همزمان روش هایی را برای توسعه و بهبود رشد کلنی های گرانولوسیتی و مونوسیتی مغز استخوان موش و یا سلول های طحال بر روی آگار نیمه جامد مورد بررسی قرار دادند. رشد کلنی این سلولها به حضور فاکتورهایی بستگی دارد که اصطلاحاً آنها را فاکتورهای محرک رشد کلنی(CSF) می نامند. تلاش برای شناخت بیولوژیکی و بیوشیمیایی این محرکها آزمایشگاههای زیادی را تا اواسط دهه 80 میلادی درگیر کرده بود (Metcalf, 2010). این تحقیقات نشان دادند که CSF ها عملکردی اختصاصی و مجزا ندارند بلکه چهار CSF که از نظر بیوشیمیایی کاملاً متفاوت هستند با هم همکاری می کنند. این چهار CSF با توجه به نوع فعالیت شان بر روی کلنی های متفاوت، نامگذاری شدند. به طور مثال GM-CSF که محرک رشد کلنی ماکروفاژها و گرانولوسیت ها می باشد.M-CSF محرک تولید کلنی ماکروفاژها و G-CSF محرک رشد کلنی گرانولوسیتی می باشد.
1-15 ژن gcsf
این ژن بر روی کروموزوم 17 قرار گرفته و دارای 4 اینترون است. دو نوع پلی پپتید متفاوت در نتیجه پردازش های مختلف از این ژن ایجاد می شود. تفاوت این دو پلی پپتید در وجود و یا عدم وجود 3 اسید آمینه می باشد. مطالعات انجام گرفته بر روی بیان این دو نشان می دهد که هر دوی آنها دارای فعالیت های مربوط به GCSF می باشند.
1-16 پروتئین GCSF
فاکتور محرک رشد کلنی گرانولوسیتی (GCSF)که فاکتور محرک کلنی3 هم نامیده می شود، یک سیتوکین وهورمون محرک رشد و دارای 175 اسید آمینه می باشد. گلیکوپروتئین های طبیعی انسانی در دو فرم وجود دارند. 174 آمینو اسیدی و 180 آمینو اسیدی که پروتئینی طویل با وزن مولکولی 19600 دالتون می باشد. فرم 174 آمینو اسیدی بیشترین فعالیت را دارد که در محصولات دارویی به کمک تکنولوژی DNA نوترکیب ساخته می شود. این فاکتور در بافت های مختلف اثربخشی خود را از طریق تحریک مغز استخوان برای ساخت گرانولوسیت و سلولهای بنیادی انجام می دهد.GCSF همچنین توسط اندوتلیوم، ماکروفاژها و تعدادی از سلولهای ایمنی تولید می شود.

شکل 1-4 ساختار کریستالی از 3 مولکول G-CSF انسانی
1-17 عملکرد پروتئین GCSF
G-CSF مغز استخوان را برای انتشار گرانولوسیت و سلولهای بنیادی در خون تحریک می کند. این پروتئین همچنین باعث تحریک بقاء، تکثیر، تمایز و عملکرد پیش سازه های نوتروفیلی و نوتروفیل های بالغ می شود که تنظیم این واکنش ها از طریق Janus kinase (JAK)، مبدل سیگنال و فعال کننده رونویسی STAT، پروتئین کیناز میتوژنی فعال (MAPK) و فسفاتیدیل اینوزیتول-3-کیناز انجام میشود.
شکل 1-5 مکانیسم عملکرد GCSF
گیرنده های GCSF بر روی سلول های پیش ساز مغز استخوان قرار دارند و در پاسخ به GCSF تحریک می شوند و این باعث رشد و تمایز این سلول ها به گرانولوسیت بالغ می شود. این پروتئین همچنین یک القاء کننده قوی برای انتقال سلول های بنیادی خون ساز هماتوپویتیک از مغز استخوان به درون خون می باشد (Wonganu, 2008).
GCSF همچنین محرک تولید گلبولهای سفید خون نیز می باشد و در انکولوژی و هماتولوژی، در بعضی سرطان های خاص برای افزایش سرعت بهبودی افراد نوتروپنی بعد از شیمی درمانی از شکل نوترکیب آن استفاده می شود. شیمی درمانی سبب تولید سطح غیر قابل قبول (کم) سلولهای سفید خون می شود که این مورد بیماران را در مقابل حملات میکروبی و عفونت ها حساس می نماید.
به نظر میرسدGCSF برای یک بارداری امن در طی مرحله لانه گزینی مؤثر باشد که این امر در بارداری های دوم و سوم بیشتر می شود (Strife, 2013).
در کنار تاثیر بر روی سیستم خون سازی، GCSF همچنین می تواند بر روی سلول های عصبی به عنوان مثال فاکتور نوتروفیک تأثیر بگذارد. در واقع گیرنده های این گلیکوپروتئین بر روی نورون های مغز و نخاع ظاهر می شوند (Cooper, 2011).
همچنین از GCSF برای درمان تخریب بافت قلب از طریق تزریق در خون محیطی به همراهSDF stromal) (cell-derived factor استفاده می شود (Anderlini, 2005) .
امروزهGCSF نوترکیب انسانی در سیستم بیانی باکتری E. coli تولید می شود که با نام فیلگراستیم شناخته شده است. فیلگراستیم از لحاظ ساختاری تفاوت کمی با گلیکوپروتئین طبیعی GCSF دارد. فیلگراستیم (Neupogen) و فیلگراستیم پگیله شده (Neulasta) (PEG-filgrastim) دو نوع تجاری متداول فرم نوترکیب GCSF انسانی rhG-CSF هستند. فرم پگیله، نیمه عمر طولانی تری دارد و این موضوع سبب کاهش ضرورت تزریق روزانه این دارو می شود.
شکل دیگر GCSF نوترکیب انسانی در سلولهای تخمدان هامستر چینی (CHO cells) ساخته می شود که با نام لنوگراستیم شناخته می شود. از آنجا که این سیستم بیانی در سلول پستانداران می باشد، لنوگراستیم تولیدی تفاوت بسیار کمی (غیر قابل تشخیص) در 174 آمینو اسید با GCSF طبیعی انسان دارد.
برای اولین بار در سال 1999 در آکادمی بیوتکنیک چین، ژنوم انسان به عنوان رشته الگو برای کلونینگ و بیان GCSF در غدد پستانی موش استفاده شد و قطعه ای به طول 5/1 کیلوباز با PCR بدست آمد(Lu, 1999).
در سال 2009 محققین به بیان پروتئین نوترکیب GCSF در مخمرPichia Pastoris پرداختند که نتیجه این تلاش بیان این پروتئین تحت پروموتور AOX1 بوده که در نتیجه القاء با متانول میزان پروتئین شده به 2 میلی گرم در لیتر رسید (Apte-Deshpande, 2009).
در سال 1387 محققین ایرانی به جهش زایی هدفمند در فاکتور محرک رشد کلنی گرانولوسیت انسانی و کلونینگ و بیان آن در باکتری E. coli پرداختند و نتایج آنها نشان داد که پروتئین نوترکیب مورد نظر با موفقیت در سیستم پروکاریوتی کلون و بیان شده است (حامد ناقوسی، 1387).
به دلیل اهمیت بالینی بالا و نیز نیاز گسترده به GCSF در مراقبت های بهداشتی، تلاش های زیادی به منظور تولید مولکولهای مشابه با فرم طبیعی انسانی آن که دارای عملکرد باشند در حال انجام است.
در سالهای گذشته محققین ایرانی سعی در بیان آن در کاهوی تراریخته داشتنه اند چراکه در این سالها گیاهان تراریخته برای تولید انواع داروی نوترکیب و واکسن ها مورد استفاده قرار گرفته اند (مهدی شریفی تبار،1392).
فصل دوم مواد و روش ها
2-1 میکروارگانیسم های مورد استفاده
از باکتری E. coli سویه ' TOP10F به منظور کلونینگ و تکثیر پلاسمیدها و از مخمر Hansenula polymorpha سویه RB11 به عنوان میزبان بیانی مخمری استفاده شد.
2-2 محیط های کشت مورد نیاز
جهت رشد باکتری‌ E. coli از محیط کشت LB جامد یا مایع و جهت رشد مخمر از محیطهای کشت YPD جامد یا مایع، BMMY و BMGY استفاده شد (پیوست 1).
پس از آماده نمودن محیط¬های کشت میکروبی مورد نیاز، این محیط ها در دمای 121 درجه سانتیگراد به مدت 15 دقیقه در فشار یک اتمسفر اتوکلاو گردیدند. محلول‌های قندی یا محلولهای حساس به اتوکلاو با استفاده از فیلترهای 22/0 میکرون استریل شدند.
2-3 پلاسمیدهای مورد استفاده
وکتور کلونینگ pGH برای کلون نمودن ژن سنتز شده gcsf توسط شرکت مربوطه مورد استفاده قرار گرفت (شکل 3-1). وکتور بیانی مورد نیاز برای سلولهای مخمری به صورت سنتتیک و با درج عناصر ضروری جهت بیان پروتئین های هترولوگ در این سلولها با استفاده از وکتور کلونینگ pGH به عنوان وکتور اولیه ساخته شده است.

شکل 3-1. وکتور کلونینگ pGH
2-4 آنزیم ها و کیت‌ها
آنزیم Taq DNA polymerase، آنزیم های محدودالأثر، RNaseA و آنزیم T4 DNA ligase از شرکت Fermentas تهیه شدند.
کیت استخراج محصول PCR یا DNA از ژل آگارز از شرکت Roche تهیه گردید.
2-5 آنتی بیوتیکها
آنتی بیوتیک ها (آمپی سیلین، تتراسایکلین و زئوسین) با غلظت مناسب (پیوست 2) تهیه و در 20- درجه سانتیگراد نگهداری شدند.
2-6 روش های عمومی
2-6-1 الکتروفورز افقی محصول PCR و یا نمونه DNA بر روی ژل آگارز
به منظور بررسی نتایج PCR و یا کیفیت هرنوع مولکول DNA، از ژل آگارز استفاده می شود. به همین جهت ابتدا ژل آگارز با غلظت متناسب با سایز مولکول مورد بررسی تهیه می شود. با توجه به ظرفیت کاست ژل، ابتدا پودر آگارز وزن شده و سپس در حجم مشخصی از بافر TAE (پیوست 3) با رقت X1 حل می گردد. این مخلوط به مدت 10 دقیقه در دمای اتاق باقی مانده و سپس مخلوط به مدت 1 دقیقه جوشانده می شود تا به خوبی حل شده و محلول یکنواختی حاصل شود. پس از کاهش دمای محلول تا حدود °C40، به میزان لازم از محلول رنگی DNA Safety Stain به آن اضافه کرده و به آرامی به درون کاست ژل ریخته شده و شانه روی آن قرار داده می شود. پس از چند دقیقه و پس از بستن کامل ژل، شانه به آرامی و به صورت عمودی از داخل آن خارج ‌شده و ژل به همراه کاست در داخل تانک الکتروفورز افقی حاوی بافر TAE (X1) قرار داده می شود. در ادامه نمونه های DNA همراه با حجم مشخصی از بافر بارگذاری ، با ترتیب مشخص به آرامی به درون چاهک ها ریخته می شود. سپس الکترودهای تانک به منبع تغذیه متصل می شود. پس از گذشت مدت زمان مشخص با توجه به اندازه قطعه، جریان برق قطع گشته و ژل از درون کاست خارج می گردد. ژل را در معرض نور فرابنفش قرار داده و باندها را مشاهده می نماییم.
نکته: در صورتی که قرار است DNA از ژل تخلیص شود، به هیچ‌وجه نمی‌بایست به مدت طولانی در معرض اشعه فرابنفش قرار گیرد زیرا این اشعه طول موج پایینی داشته و قادر است در توالی DNA جهش ایجاد کند.
2-6-2 تخلیص محصول هضم آنزیمی با استفاده از کیت تخلیص از ژل آگارز
جهت انجام کلونینگ، تخلیص محصول هضمهای آنزیمی فوق با استفاده از کیت تخلیص از ژل (Roche) و بر اساس پروتوکل موجود در کیت به شرح زیر انجام ‌شد:
1.به ازای هر mg100 ژل آگارز بریده شده ، µl300 بافر 1 (Binding buffer) به هر تیوب اضافه گردید.
2.تیوب ها به مدت 30-15 ثانیه ورتکس شده و سپس به مدت 10 دقیقه در دمای C°56 گرماگذاری شدند.
3.در این مرحله به ازای هر mg100 ژل اولیه، µl150 ایزوپروپانول به تیوب ها اضافه شده وسپس ورتکس گردیدند.
4.محتویات هر تیوب به یکی از ستون های کیت افزوده شده و این مجموعه را با بالاترین سرعت (rpm13000) به مدت 30-60 ثانیه سانتریفوژ نمودیم.
5.مایع زیرین دور ریخته شده و سپس µl500 بافر شستشو به هر ستون اضافه گردید.
6.پس از سانتریفوژ در بالاترین سرعت به مدت 1 دقیقه، مایع زیرین دور ریخته شده و در این مرحله µl250 بافر شستشو مجدداً اضافه گردید.
7.پس از سانتریفوژ به مدت 1 دقیقه (در بالاترین سرعت)، هریک از ستون ها را به تیوب های 5/1 میلی لیتری انتقال داده و µl35 آب دیونیزه به فیلتر ستون ها اضافه کرده و پس از انکوباسیون 5 دقیقه ای در دمای اتاق، هریک از تیوبها را مشابه با مراحل قبلی سانتریفیوژ نمودیم.
2-6-3 واکنش لیگاسیون قطعات تخلیص شده
واکنش لیگاسیون پس از تعیین غلظت وکتور و قطعه الحاقی تخلیص شده از ژل آگارز، بر طبق واکنش مندرج در جداول مربوطه انجام گرفت. در نمونه کنترل منفی، وکتور خطی شده به تنهایی در یک واکنش لیگاسیون وارد گردید. به عبارت دیگر، در این واکنش به جای قطعه DNA، آب دیونیزه به مخلوط واکنش اضافه گردید. تمامی تیوب ها به مدت 16 ساعت (ON) در دمای °C4 گرماگذاری شدند. این دما کمک می‌کند تا تشکیل پیوندهای هیدروژنی بین انتهاهای چسبنده آسان‌تر و با پایداری بیشتری انجام شود و آنزیم لیگاز نیز زمان کافی برای تشکیل پیوند فسفودی‌استری را خواهد داشت.
2-6-4 تهیه سلول‌ های مستعد 'E. coli TOP10F به روش تیمار با کلرید کلسیم
باکتری مستعد، سلولی است که توانایی لازم برای وارد نمودن پلاسمید به درون خود را پیدا کرده است.
1.یک کلنی از باکتری مورد نظر به مدت 3-2 ساعت در حضور تتراسایکلین در محیط LB مایع و در دمای °C37 بر روی شیکر با سرعت rpm 150 کشت داده شد تا جذب نوری محیط کشت در طول موج nm600 (OD600nm) به 6/0-4/0 رسید.
2.محیط کشت در شرایط استریل (در کنار شعله) به میکروتیوپ استریل منتقل شده و با سرعت rpm9000 به مدت 3 دقیقه سانتریفوژ شد.
3.محیط کشت دور ریخته شده و رسوب سلولی در µl720 کلرید سدیم mM100 سرد استریل، حل شده و به مدت 20 دقیقه در یخ گذاشته شد.
4.پس از گذشت این مدت، سوسپانسیون باکتریایی با دور rpm9000 و به مدت 3 دقیقه سانتریفوژ شده و مراحل 3 و 4 تکرار شدند.
5.رسوب باکتریایی حاصل در µl300 محلول کلرید کلسیم حل گردید.
2-6-5 انتقال پلاسمید به سلول های مستعد (ترانسفورماسیون)
1.µl100 از سوسپانسیون سلول های مستعد به تیوپ استریل انتقال داده شد.
2.حجم مشخصی از پلاسمید و یا محصول لیگاسیون به سوسپانسیون باکتریایی اضافه شده و تیوب ها به مدت 30 دقیقه درون یخ قرار داده می شوند.
3.بلافاصله تیوب ها به حمام آبی دمای °C42 منتقل شده و به مدت 90 ثانیه گرماگذاری شدند. پس از اتمام این زمان سریعاً تیوب ها را به ظرف یخ منتقل نمودیم.
4.ml 1 محیط کشت مایع LB به محتویات هر یک از تیوبها اضافه کرده و به مدت 1 ساعت در °C37 گرماگذاری گردیدند.
5.100 تا 150 میکرولیتر از سوسپانسیون باکتریایی بر روی محیط کشت LB جامد حاوی آنتی بیوتیک های مناسب (آمپی سیلین، تتراسایکلین یا زئوسین) کشت داده شد و پلیت ها به مدت 16 ساعت در دمای °C37 گرماگذاری شدند.
6.پس از گذشت این مدت، از کلنی های تشکیل شده بر روی محیط کشت جامد، ماتریکس سلولی تهیه گردید.
2-6-6 بررسی کلونهای نوترکیب به روش سریع
1.مقدار µl50 از محلول EDTA(10 میلی مولار) به تیوبها اضافه کرده و حدود 70% از ماتریکس باکتریایی را در آن حل نموده و سوسپانسیون را ورتکس نمودیم.
2.مقدارµl 50 از محلول NSS (پیوست 4) را به هر تیوب افزوده و به مدت 30 ثانیه ورتکس نمودیم.
3.تیوب ها را به مدت 5 دقیقه در حمام آبی°C 70 گرماگذاری نمودیم.
4.مقدار µl 5/1 از محلول KCl (4 مولار) به تیوب ها اضافه کرده و هر تیوب به مدت 30 ثانیه ورتکس گردیده و سپس به مدت 5 دقیقه بر روی یخ قرار داده شد.
5.محتویات هر سلول در دمای 4 درجه به مدت 3 دقیقه در g3000 سانتریفوژ گردید.
6.مایع رویی هر تیوب به تیوب جدید منتقل شد و میزان µl25 از آن بر روی ژل آگارز 1% برده شد.
2-6-7 PCR بر روی کلنی های باکتریایی/ مخمری
با رعایت شرایط استریل، از کلنی های رشد یافته بر روی پلیت ماتریکس، مقداری باکتری برداشته و در مقداری آب دیونیزه استریل حل نموده و به مدت 5 دقیقه در بن ماری در حال جوش (100 درجه سانتی گراد) جوشانده و سپس از این محلول بعنوان الگوی DNA برای انجام PCR بر اساس پروتوکل مندرج در قسمت مربوطه استفاده می شود.

2-6-8 استخراج پلاسمید در مقیاس کم
1.باکتری E. coli حاوی پلاسمید مورد نظر را به لوله ml5 محیط کشت LB مایع حاوی آنتی بیوتیک مناسب تلقیح کرده و به مدت 16 ساعت (ON) درون شیکر انکوباتور در دمای C°37 با دور 140 rpm قرار می دهیم.
2.سلولهای باکتریایی را با سرعت rpm10000 به مدت 3 دقیقه جمع آوری می نماییم.
3.در این مرحله رسوب باکتریایی را می توان در دمای °C20- نگهداری نمود.
4.رسوب حاصله از مرحله 3 را در µl100 از محلول شماره 1 (پیوست 5) حل می کنیم.
5. µl200 از محلول شماره 2 (پیوست 5) را به محلول حاصل از مرحله قبل اضافه کرده و به مدت 5 دقیقه درون یخ قرار می دهیم.
6.µl150 استات سدیم به محلول فوق اضافه کرده و به مدت 5 دقیقه درون ظرف یخ نگهداری می نماییم.
7.محلول فوق را در rpm12000 به مدت 10 دقیقه سانتریفوژ می نماییم.
8.با دقت مایع رویی را به تیوپ دیگری منتقل می کنیم.
9.هم حجم مایع بدست آمده از مرحله قبل به آن مخلوط فنل، کلروفرم و ایزوآمیل الکل به نسبت 25، 24، 1 اضافه می کنیم.
10.محلول را در rpm12000 به مدت 10 دقیقه سانتریفوژ می نماییم.
11.با دقت مایع رویی را به تیوپ دیگری منتقل می کنیم.
12.به میزان ml1 اتانول 96% سرد به مایع رویی اضافه کرده و به مدت 16 ساعت (ON) در °C20- نگهداری می نماییم.
13.نمونه را در rpm12000 به مدت 10 دقیقه سانتریفوژ می نماییم.
14.به میزان µl750 اتانول 70% سرد به رسوب مرحله قبل اضافه کرده و مشابه با مرحله قبل سانتریفوژ می نماییم.
15.رسوب بدست آمده را در µl30-20 آب دیونیزه استریل حل می نماییم.
2-6-9 استخراج پلاسمید در مقیاس زیاد
برای این کار از روش لیز قلیایی استفاده شد. مراحل انجام این روش به شرح زیر می باشد:
1.میزان µl450 از محلول آنتی بیوتیکی تتراسایکلین (غلظت نهاییml / µg15) را به ml300 محیط کشت مایع LB اضافه نموده و سپس سلول E. coli TOP10F' حاوی پلاسمید مورد نظر را به این محیط تلقیح کرده و به مدت 16 ساعت (ON) بر روی شیکر انکوباتور C°37 قرار می دهیم.
2.محیط کشت به لوله های 50 میلی لیتری منتقل شده و با سرعت rpm10000 به مدت 4 دقیقه سانتریفوژ می گردد.
3.پس از انجام سانتریفوژ، محیط کشت رویی تخلیه شده و رسوب سلولی جمع آوری می گردد. در این مرحله می توان رسوب سلولی را در دمای °C 20- نگهداری نمود.
4.رسوب حاصل از مرحله 3 را در ml6 از محلول شماره 1 (پیوست 5) حل می کنیم.
5.به مقدار ml12 از محلول شماره 2 (پیوست 5) به تیوب فوق اضافه نموده و 10 دقیقه درون یخ قرار می دهیم.
6.سی میلی لیتر از محلول استات سدیم M3 (2/5pH) به محلول فوق اضافه کرده و به مدت 30 دقیقه درون یخ نگهداری می نماییم.
7.محلول را به مدت 15 دقیقه در rpm12000 در دمای 4 درجه سانتیگراد سانتریفوژ می نماییم.
8.مایع رویی را از گاز استریل عبور داده و به محلول فیلتر شده، ml16 ایزوپروپانول اضافه نموده و به مدت 10 دقیقه در دمای اتاق نگهداری می کنیم. سپس این محلول را در دمای 4 درجه به مدت 10 دقیقه در rpm12000 سانتریفوژ نموده، مایع رویی را دور ریخته و رسوب حاصله را در دمای اتاق خشک می کنیم.
9.رسوب خشک شده را در ml1 آب دیونیزه استریل حل کرده و به آن µl40 از محلول RNaseA (mg/ml10) اضافه کرده و به مدت 1 ساعت در دمای °C37 گرماگذاری می نماییم.
10. به محلول فوق به نسبت 1:1 از فنل و کلروفرم اضافه نموده و به مدت 10 دقیقه در rpm12000 سانتریفوژ می نماییم.
11.فاز رویی (فاز آبی) را به تیوپ جدید منتقل کرده و دو برابر حجم این فاز، به آن اتانول 96% سرد اضافه نموده و به مدت 16 ساعت (ON) در °C 20- قرار داده و سپس به مدت 10 دقیقه در rpm12000 سانتریفوژمی نماییم.
12.مایع رویی را دور ریخته و به رسوب حاصل ml1 اتانول 70% سرد اضافه نموده و مجدداً سانتریفوژ می نماییم.
13.مایع رویی را دور ریخته و رسوب حاصله را در دمای اتاق خشک نموده و سپس در µl150-100 آب دیونیزه حل می کنیم.
2-6-10 الکتروفورز پروتئین بر روی ژل پلی اکریل آمید (SDS-PAGE)
مقدمه
الکتروفورز در واقع همان حرکت ذرات باردار تحت تأثیر میدان الکتریکی، می باشد. خصوصیات مولکول ها (اندازه، شکل، میزان بار الکتریکی)، شرایط محیطی (قدرت یونی، pH، درجه حرارت و نوع ژل) و فاکتورهای الکتریکی (اختلاف پتانسیل، شدت جریان و ولتاژ) میتوانند در این فرایند مؤثر باشند. از متداول ترین محیط های نیمه جامد برای الکتروفورز پروتئین ها پلی اکریل آمید می باشد که پروتئین ها را در محدوده وزنی 500 تا 250000 دالتون از هم جدا می کند. این ماتریکس، پلیمری از مولکول های خطی اکریل آمید و N و N- متیلن بیس اکریل آمید می باشد. مولکول های بیس اکریل آمید پل های عرضی را بین مولکول های خطی اکریل آمید ایجاد می کنند و تشکیل یک شبکه رشته ای را می دهند که قادرند پروتئین ها را از هم جدا کنند. پلیمریزاسیون این ترکیبات در حضور آمونیوم پرسولفات آغاز می شود و به دلیل سرعت کم این واکنش، از ماده TEMED بعنوان کاتالیزور واکنش پلیمریزاسیون استفاده می شود. عامل اصلی حرکت مولکول های باردار در الکتروفورز، اختلاف پتانسیل (V) بین قطب های مثبت و منفی می باشد. در روش SDS-PAGE پروتئین ها در حضور شوینده یونی SDS، الکتروفورز می شوند. این ماده به اسید های آمینه هیدروفوب پروتئین ها متصل شده و ساختمان طبیعی پروتئین ها را واسرشته کرده و به ازای طول زنجیره پپتیدی بار منفی ثابتی به آن ها اضافه می کند. بنابر این در این نوع الکتروفورز، به دلیل خنثی شدن اثر بار پروتئین ها توسط SDS، پروتئین ها تنها بر اساس اندازه و شکل از هم جدا می شوند(Sambrook, 2001).
مواد لازم
-اکریل آمید
-N,N متیلن بیس اکریل آمید
-سدیم دو دسیل سولفات (SDS)
-تریس بازی
-TEMED
-آمونیوم پرسولفات (APS)
-آب مقطر
-رنگ کوماس بلو (شامل کوماسی بریلینت بلو G250، متانول، اسید استیک گلاسیال می باشد)
-بافر نمونه x6 ( شامل تریس بازی، گلیسرول، SDS، برومو فنل بلو و 2-مرکاپتو اتانول (2-ME) می باشد)
-بافر تانک X1 (شامل تریس، گلایسین،SDS و آب مقطر می باشد، پیوست 6).
-الکل 96%
وسایل لازم
•سیستم الکتروفورز (منبع تغذیه، تانک، شیشه ها، فضا سازها و شانه )
•سرنگ هامیلتون
روش انجام کار
روش تهیه ژل تحتانی یا جدا کننده (پیوست 6)
•ژل تحتانی بر اساس جدول (3-1) تهیه می شود. درصد ژل بستگی به وزن مولکولی پروتئین دارد. هر چه وزن مولکولی نمونه، بیشتر باشد از درصد پائین تر ژل استفاده می شود تا پروتئین بهتر بتواند در ژل حرکت کند.
•محلول ها را تا قبل از اضافه نمودن TEMED اضافه نموده و خوب مخلوط نمایید.
2-6-10-1روش تهیه ژل فوقانی (پیوست 6)
•از این ژل به منظور متراکم کردن نمونه پروتئینی استفاده می شود و عموماً از ژل 4% استفاده می شود. این ژل بر اساس مقادیر جدول(3-1) تهیه می گردد.
•محلول ها را تا قبل از اضافه نمودن TEMED اضافه و به خوبی مخلوط نمایید.
•صفحات شیشه ای را با آب و الکل 70% کاملاً تمیز کرده و دو فضا ساز بین صفحات شیشه ای قرار دهید و با گیره محکم کنید. در ظرفی جداگانه به 1 تا 2 میلی لیتر از محلول ژل تحتانی کل TEMED لازم برای ژل تحتانی را اضافه کرده وتوسط آن سریعاً اطراف قالب شیشه ای و به ویژه انتهای ژل را پوشانده تا از نشت احتمالی جلوگیری شود. قالب شیشه ای بطور عمودی روی سطح صاف قرار داده شود.
•پس از تهیه ژل تحتانی، TEMED را به آن اضافه کرده و پس از اینکه کاملاً مخلوط شد، داخل قالب شیشه ای تا ارتفاعی که حدود 3 سانتیمتر فضا برای ژل فوقانی باقی بماند، بریزید.
• سپس مقداری اتانول 96% را به گونه ای که سطح ژل بهم نخورد، به آرامی در بالای ژل ریخته و صبر کنید تا ژل ببندد.
•پس از اطمینان از بسته شدن ژل تحتانی، الکل روی ژل را خالی و سطح ژل را چند بار با آب مقطر شستشو دهید.
•شانه را بین دو شیشه در بالای ژل قرار دهید و سپس به ژل فوقانی تهیه شده، TEMED را اضافه نموده و پس از خوب مخلوط کردن بر روی ژل تحتانی بریزید.
•پس از اطمینان از بسته شدن ژل فوقانی، شانه را به آرامی خارج و داخل چاهک ها را چندین بار با آب مقطر شستشو دهید. قالب شیشه ای را با گیره به سیستم الکتروفورز وصل کرده و محفظه بالا و پائین سیستم را با بافر تانک پرکنید.

جدول 2-1 نحوه تهیه درصدهای مختلف ژل های فوقانی و تحتانی در SDS-PAGE

2-6-10-2 آماده سازی نمونه
•بر اساس نوع و غلظت نمونه، از بافر نمونه به آن اضافه کرده و به مدت 5 دقیقه در آب جوش قرار دهید.
•نمونه ها را با استفاده از سرنگ هامیلتون در داخل چاهک ها بریزید. مقدار نمونه قرار داده شده در هر چاهک بستگی به اندازه چاهک، میزان خلوص نمونه، روش رنگ آمیزی و نوع بافر نمونه (X2و X6) دارد.
•سیستم الکتروفورز را به منبع تغذیه وصل نمایید و در صورت استفاده از ولتاژ ثابت، هنگامیکه نمونه داخل ژل فوقانی است از ولتاژ V60 و بعد از ورود نمونه به داخل ژل تحتانی ولتاژ به V130 رسانده شود.
•پس از اتمام الکتروفورز (رسیدن رنگ نشانه به انتهای ژل)، منبع تغذیه را خاموش کنید. قالب شیشه ای را خارج کرده و فضا سازها بیرون آورده شود. با قرار دادن یکی از فضا سازها بین دو صفحه شیشه ای، شیشه بالایی را جدا نمایید.
• سپس ژل رنگ آمیزی گردد.
2-6-10-3 رنگ آمیزی ژل SDS-PAGE
به منظور مشاهده باندهای پروتئینی، لازم است ژل را رنگ آمیزی نمود. روشهای مختلفی برای رنگ آمیزی ژل های SDS-PAGE وجود دارد که متداولترین آنها روش رنگ آمیزی با کوماسی بلو و یا نیترات نقره می باشد. عموماً از روش کوماسی بلو استفاده می شود زیرا که یک روش سریع و ارزان بوده و ثبات رنگ طولانی است.
استفاده از کوماسی بلو
مواد لازم
-رنگ کوماسی بلو
-الکل 96% (برای رنگ بری)
-آب مقطر
روش انجام رنگ آمیزی
•ژل را در داخل ظرف رنگ آمیزی قرار می دهیم و مقداری رنگ به آن اضافه و به مدت10 دقیقه بر روی شیکر می گذاریم.
•رنگ را خالی کرده و ژل را داخل محلول رنگ بر (آب مقطر حاوی اتانول) بر روی شیکر قرار می دهیم تا زمینه ژل شفاف شده و باندهای پروتئینی آبی رنگ نمایان شوند.
2-6-10-4 رنگ آمیزی ژل به روش نیترات نقره (پیوست 7)
•قرار دادن ژل در بافر فیکساسیون به مدت 2 ساعت در دمای اتاق بر روی شیکر.
•دور ریختن بافر فیکساسیون و اضافه نمودن بافر شستشو سه بار و هر بار به مدت 20 دقیقه.
•اضافه کردن بافر sensitizing به مدت 2 دقیقه.
•دور ریختن بافر sensitizing و شستشو با آب مقطر سه بار و هر بار 5 دقیقه.
•اضافه کردن بافر رنگزا به مدت 20 دقیقه در دمای اتاق بر روی شیکر.
•شستشوی ژل در آب مقطر و اضافه کردن بافرdeveloping تا ظهور باندهای پروتئینی.
•اضافه کردن بافر متوقف کننده به مدت 15 دقیقه.
•شستشوی ژل در آب مقطر.

2-7 روشهای اختصاصی
2-7-1 سنتز ژن gcsf
توالی cDNA کد کننده پروتئین GCSF به طول bp 615 از بانک ژنومی (شماره 172219.1) استخراج و به منظور سنتز به یکی از شرکتهای فعال در این زمینه سفارش داده شد. این توالی به منظور بیان در سلولهای مخمری از نظر کدونهای مورد استفاده در سنتز پروتئین، بهینه سازی شده و پس از بررسی های نهایی از نظر جایگاه های برش آنزیم های محدودالأثر، ساخته شده و در وکتور کلونینگ pGH کلون گردید. در دو انتهای این ژن، دو جایگاه برش آنزیمی برای آنزیمهای محدودالأثر HpaI و BamHI در نظر گرفته شد تا برای جدا نمودن این قطعه و کلون کردن آن در وکتور بیانی مخمر استفاده شوند. لازم به ذکر است که جایگاه برش این آنزیم ها بر روی قطعه ژنی سنتز شده، وکتور pGH و وکتور بیانی هانسونلا وجود ندارد.
2-7-1-1 PCR اختصاصی بر روی ژن gcsf
2-7-1-1-1 طراحی پرایمرهای اختصاصی ژن gcsf
به منظور انجام PCR بر روی ژن gcsf در وکتورهای بدست آمده در مراحل مختلف، پرایمرهای اختصاصی این ژن با استفاده از برنامه genrunnr سنتز گردید (جدول 2-2).

پرایمر F 'gtagatcttgcggatccccc-3-'5
پرایمر R 'gtagatcttggtctccagcttgc-3-'5
جدول 2-2: توالی پرایمرهای ژن gcsf
2-7-1-1-2 بهینه ‌سازی واکنش PCR
با انجام گرادیان PCR بهترین دمای اتصال پرایمرها به منظور بهینه سازی شرایط این واکنش مشخص گردید. این واکنش بر اساس مواد ذکر شده در جدول2-3 و بر طبق برنامه مندرج در جدول 2-4 انجام شد.
مواد مقدار (µl)
DNA الگو (وکتور pGH-gcsf) (1:10) 2
بافر PCR (X10) 2
کلرید منیزیم (mM25) 6/0
dNTPs (mM10) 4/0
پرایمر F (mM25) 3
پرایمر R (mM25) 3
Taq DNA polymerase (units/µl5) 1/0
آب مقطر به حجم 20 میکرولیتر
جدول 2-3 مواد مورد نیاز جهت انجام واکنش gcsf PCR
مواد مقدار (µl)
DNA الگو (وکتور pGH-gcsf) (1:10) 2
بافر PCR (X10) 2
کلرید منیزیم (mM25) 6/0
dNTPs (mM10) 4/0
پرایمر F (mM25) 3
پرایمر R (mM25) 3
Taq DNA polymerase (units/µl5) 1/0
آب مقطر به حجم 20 میکرولیتر
جدول 2-4 برنامه PCR گرادیان مربوط به ژن gcsf

2-7-2 کلون نمودن ژن gcsf در وکتور بیانی هانسونلا
به منظور کلون نمودن قطعه ژنی gcsf، این قطعه با برش آنزیمی از وکتور کلونینگ حامل قطعه (pGH-gcsf) جدا شده و در وکتور بیانی برش خورده با همان آنزیمها وارد گردید.
2-7-2-1 هضم آنزیمی وکتور pGH-gcsf
با توجه به جایگاههای برشی که در دو انتهای این قطعه (ژن gcsf) در نظر گرفته شد (جایگاه برش BamHI در انتهای ´5 و جایگاه‌ برش HpaI در انتهای ´۳)، این قطعه از وکتور مورد نظر (pGH-gcsf) بر اساس واکنش مندرج در جدول 2-5 در دمای 37 درجه سانتی گراد به مدت 5 ساعت مورد هضم آنزیمی قرار گرفت.
مواد مقدار (µl)
DNA الگو (وکتور pGH-gcsf) (1:10) 2
بافر PCR (X10) 2
کلرید منیزیم (mM25) 6/0
dNTPs (mM10) 4/0
پرایمر F (mM25) 3
پرایمر R (mM25) 3
Taq DNA polymerase (units/µl5) 1/0
آب مقطر به حجم 20 میکرولیتر
جدول 2-5 واکنش هضم آنزیمی وکتور pGH-gcsf
2-7-2-2 هضم آنزیمی وکتور بیانی pHan
وکتور pHan نیز با آنزیمهای BamHI و HpaI بر طبق جدول 2-6 مورد هضم آنزیمی قرار گرفت.
مواد مقدار (µl)
DNA الگو (وکتور pGH-gcsf) (1:10) 2
بافر PCR (X10) 2
کلرید منیزیم (mM25) 6/0
dNTPs (mM10) 4/0
پرایمر F (mM25) 3
پرایمر R (mM25) 3
Taq DNA polymerase (units/µl5) 1/0
آب مقطر به حجم 20 میکرولیتر
جدول 2-6 واکنش هضم آنزیمی وکتور pHan
2-7-2-3 کلون نمودن قطعه gcsf در وکتور بیانی pHan
واکنش لیگاسیون قطعات هضم و تخلیص شده پس از تعیین غلظت، بر طبق واکنش مندرج در جدول 2-7 انجام گرفت. تیوب ها به مدت 16 ساعت در یخچال قرار گرفته و پس از آماده سازی سلولهای مستعد از E. coli TOP10F'، به این سلولها منتقل شده و بر روی پلیت های حاوی آمپی سیلین و تتراسایکلین کشت داده شدند.
مقدار (µl)
مواد واکنش اصلی واکنش کنترل
وکتور pHan خطی شده (ng/µl100) 1 1
قطعه gcsf (ng/µl15) 16 -
بافر T4 DNA ligase (10X) 2 2
T4 DNA ligase (units/µl5) 1 1
آب دیونیزه - 17
جدول 2-7 واکنش لیگاسیون ژن gcsf در وکتور بیانی pHan

کلنی های ظاهر شده بر روی پلیت ها، به صورت ماتریکس کشت داده شده و به مدت 16 ساعت در 37 درجه سانتی گراد گرماگذاری شدند.
2-7-2-4 بررسی کلون های نوترکیب pHan-gcsf
•بررسی کلون ها به روش سریع
مقداری از هر کلنی بر اساس پروتوکل موجود (2-6-6) آماده سازی شده و بر روی ژل آگارز برده شد. وکتورهای سنگین تر از وکتور بیانی pHan (بدون ژن الحاقی)، به عنوان وکتورهای مشکوک گزارش گردید.
•استخراج پلاسمید در مقیاس کم
از کلنی هایی که gcsf PCR آنها مثبت گردید، بر اساس پروتوکل2-6-8 به لوله های ml5 حاوی محیط LB مایع کشت داده و پس از گرماگذاری در °C37 به مدت 16 ساعت، استخراج پلاسمید در مقیاس کم انجام گردید.
•gcsf PCR بر روی پلاسمیدهای استخراج شده pHan-gcsf
پلاسمیدهای استخراج شده در واکنش PCR ژن gcsf بر اساس پروتوکل 2-7-1-1 وارد شده و محصول PCR بر روی ژل آگارز 1% برده شد.
•هضم آنزیمی وکتور تأیید شده pHan-gcsf
پلاسمید تأیید شده در مراحل قبل، مورد هضم آنزیمی با آنزیم های محدودالأثر BamHI، EcoRI و HpaI بر طبق جدول2-8 قرار گرفته و پس از گرماگذاری در C °37 به مدت 3 ساعت، محصول واکنشها بر روی ژل آگارز 1% برده شد.
مواد مقدار (µl)
پلاسمید pHan-gcsf 2
بافر آنزیمی (10X) 2
آنزیم محدودالأثر (units/µl10) 75/0
آب دیونیزه 25/15
جدول 2-8 واکنش هضم آنزیمی وکتور pHan-gcsf
•استخراج پلاسمید نوترکیب pHan-gcsf در مقیاس زیاد
پلاسمید تأیید شده با تست های فوق، بر اساس پروتوکل های2-6-9 منظور استفاده در مراحل بعدی، به مقیاس انبوه استخراج گردید.
2-7-3 کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf
2-7-3-1 PCR اختصاصی بر روی ژن مقاومت به زئوسین (Sh ble)
در این تحقیق، به منظور غربالگری کلونهای هانسونلا بر آن شدیم تا ژن مقاومت به زئوسین (Sh ble) را در وکتور بیانی pHan که حاوی ژن gcsf می باشد کلون نماییم. برای این منظور، توالی این ژن در وکتور pPICZα (Invitrogen, USA) موجود در بخش بیوتکنولوژی بررسی گردید و پرایمرهای لازم جهت تکثیر این ژن طراحی گردید (جدول 2-9) و جهت سنتز سفارش داده شد. پس از دریافت پرایمرها، دمای بهینه برای تکثیر این ژن، به روش PCR گرادیان، در محدوده 65-50 درجه سانتی گراد (جدول2-10) بر طبق جدول 2-11 انجام شد.
پرایمر F 5'-gtagatcttgcggatccccc-3'
پرایمر R 5'-gtagatcttggtctccagcttgc-3'
جدول 2-9 پرایمرهای طراحی شده جهت تکثیر ژن zeocin
تعداد چرخه مدت زمان (دقیقه) دما (°C)
واسرشتی اولیه 1 '5 ˚94
واسرشتی
اتصال پرایمرها
طویل شدن 35 '1
"30
"30 ˚94
60-50
˚72
طویل شدن نهایی 1 '5 ˚72
جدول 2-10 برنامه PCR گرادیان ژن zeocin
مواد مقدار (µl)
DNA الگو (پلاسمید pPICZα) (1:10) 2
بافر PCR (X10) 2
کلرید منیزیم (mM25) 6/0
dNTPs (mM10) 4/0
پرایمر F (mM25) 3
پرایمر R (mM25) 3
Taq DNA polymerase (units/µl5) 1/0
آب مقطر به حجم 20 میکرولیتر
جدول 2-11 مواد مورد نیاز جهت انجام واکنش zeocin PCR
2-7-3-2 کلون نمودن ژن zeocin در وکتور کلونینگ pGEM-T Easy
قطعه تکثیر شده zeocin با استفاده از کیت از ژل آگارز بر اساس پروتوکل 2-6-2 استخراج شده و پس از تعیین غلظت،واکنش لیگاسیون آن در وکتور کلونینگ pGEM بر طبق جدول 2-12 صورت گرفت.
مقدار (µl)
مواد واکنش اصلی واکنش کنترل
وکتور pGEM-T Easy خطی (ng/µl50) 1 1
ژن zeocin (ng/µl50) 2 -
بافر T4 DNA ligase (X4) 5 5
T4 DNA ligase (units/µl5) 1 1
آب دیونیزه 11 13
جدول 2-12 واکنش لیگاسیون ژن zeocin در وکتور pGEM-T Easy

واکنشهای فوق به صورت ON در دمایC ˚4 قرار داده شدند و پس از تهیه سلولهای مستعد از سلولهای ' E. coli TOP10F ، به این سلول ها منتقل شده و بر روی محیط LB آگار با غلظت پایین NaCl (پیوست 1) و حاوی زئوسین، تتراسایکلین، IPTG و X-gal (پیوست 5) کشت داده شد. پس از گرماگذاری در 37 درجه به مدت 16 ساعت، کلنی های سفید تشکیل شده، بر روی پلیت ماتریکس حاوی ترکیبات فوق کشت داده شدند.
2-7-3-3 بررسی کلونهای نوترکیب pGEM-Zeocin
•بررسی سریع کلونهای نوترکیب
70% هر یک از کلنی های سفید به روش quick check (پروتوکل 2-6-6) مورد بررسی قرار گرفت.
•استخراج پلاسمید pGEM-Zeo در مقیاس کم
از کلون نوترکیب تأیید شده با دو روش قبل، استخراج پلاسمید در مقیاس کم (2-6-8) انجام گردید.
•هضم آنزیمی وکتور pGEM-Zeo
هضم آنزیمی وکتور تأیید شده از مراحل قبل با آنزیم BglII به مدت 3 ساعت در دمای 37 درجه سانتی گراد بر اساس جدول 2-13 صورت گرفت.
مواد مقدار (µl)
پلاسمید pGEM-Zeo 2
بافر آنزیمی (X10) 2
BglII (units/µl10) 5/0
آب دیونیزه 5/15
جدول 2-13 واکنش هضم آنزیمی pGEM-Zeo با BglII
2-7-4 کلون نمودن ژن مقاومت به زئوسین در وکتور بیانی pHan-gcsf
2-7-4-1 هضم آنزیمی وکتور pHan-gcsf و pGEM-zeo
برای کلون نمودن قطعه ژنی مقاومت به زئوسین در وکتور pHan-gcsf، این دو وکتور با آنزیم BglII که جایگاه برش آن در دو انتهای قطعه ژنی زئوسین و نیز بر روی وکتور pHan-gcsf در نظر گرفته شده بود، مورد هضم آنزیمی قرار گرفتند (جدول 2-14).
مواد مقدار (µl)
پلاسمید 20
بافر آنزیمی (X10) 20
BglII (units/µl10) 5
آب دیونیزه 155
جدول 2-14 واکنش هضم آنزیمی pGEM-zeo و pHan-gcsf با BglII
وکتور pHan-gcsf هضم و تخلیص شده، بر اساس جدول 2-15 به مدت 1 ساعت در 37 درجه سانتی گراد تحت تیمار با آلکالین فسفاتاز قرار گرفت.
مواد مقدار (µl)
پلاسمید pHan-gcsf 60
بافر آنزیمی (X10) 8
آنزیم آلکالین فسفاتاز (units/µl10) 2
آب دیونیزه -
جدول 2-15 تیمار وکتور هضم شده pHan-gcsf با آلکالین فسفاتاز
2-7-4-2 کلون نمودن قطعه ژنی zeocin در وکتور بیانی pHan-gcsf
پس از هضم آنزیمی، قطعه مورد نظر (ژن مقاومت به زئوسین، حدوداً bp1100( از روی ژل جدا شده و پس از تخلیص با کیت، بر طبق واکنشهای لیگاسیون جدول 2-16 در درون وکتور بیانی pHan-gcsf تیمار شده با آلکالین فسفاتاز کلون گردید.
مقدار (µl)
مواد واکنش اصلی واکنش کنترل
وکتور pHan-gcsf خطی شده (ng/µl100) 5/1 5/1
قطعه zeocin (ng/µl15) 25 -
بافر T4 DNA ligase (X2) 3 3
T4 DNA ligase (units/µl5) 1 1
آب دیونیزه - 5/24
جدول 2-16 واکنش لیگاسیون ژن zeocin در وکتور بیانی pHan-gcsf
واکنش‌های فوق به صورتON در دمای C˚4 قرار داده شدند و روز بعد پس از تهیه سلولهای مستعد از E. coli TOP10F' به این سلولها منتقل شده و بر روی پلیت های LB آگار با غلظت پایین NaCl و حاوی زئوسین با غلظت µg/ml25 کشت داده شدند. پس از گذشت 16 ساعت در دمای C˚37، از کلنی های رشد یافته، پلیت ماتریکس تهیه گردید.
2-7-4-3 بررسی کلونهای نوترکیب pHan-gcsf-zeocin
•بررسی سریع کلونهای نوترکیب
کلونهای رشد یافته بر روی پلیت حاوی زئوسین به منظور بررسی الحاق قطعه ژنی مقاومت به زئوسین بر روی ژل آگارز برده شدند.
•بررسی کلونها به روش Colony-PCR
کلونهایی که با روش سریع سنگینتر تشخیص داده شدند، برای انجام PCR اختصاصی ژن زئوسین مورد استفاده قرار گرفتند.
•برش آنزیمی وکتور نوترکیب pHan-gcsf-zeocin
به منظور تأیید نهایی وکتور نوترکیب فوق، با توجه به سایت‌های برشی موجود، وکتور بر اساس جدول 2-17 با آنزیم BglII برش داده شد. مخلوط این واکنش به مدت 3 ساعت در دمای C˚37 گرماگذاری شد و سپس بر روی ژل 1% برده شد.
مواد مقدار (µl)
پلاسمید pHan-gcsf-zeocin 3
بافر آنزیمی (X10) 2
BglII (units/µl10) 5/0
آب دیونیزه 5/14
جدول 2-17 واکنش هضم آنزیمی pHan-gcsf-zeocin با BglII
2-7-5 انتقال پلاسمید نوترکیب pHan-gcsf-zeocin به سلول هانسونلا پلی مورفا
2-7-5-1 هضم آنزیمی وکتور بیانی pHan-gcsf-zeocin
پس از اطمینان از قرار گرفتن ژنهای مورد نظر در پلاسمید هانسونلا، انتقال این پلاسمید به درون میزبان مخمری (هانسونلا پلی مورفا) با روش الکتروپوریشن صورت گرفت. برای این منظور، به مولکول DNA خطی شده با غلظت بالا نیاز می باشد. برای تهیه DNA خطی، وکتور نوترکیب تأیید شده در مراحل قبل با آنزیم EcoRI بر طبق جدول 2-18 مورد هضم آنزیمی قرار گرفته و پس از استخراج از ژل، در پروسه الکتروپوریشن مورد استفاده قرار گرفت.
مواد مقدار (µl)
پلاسمید pHan-gcsf-zeocin 15
بافر آنزیمی (X1) 20
EcoRI (units/µl10) 5
آب دیونیزه 160
جدول 2-18 واکنش هضم آنزیمی pHan-gcsf-zeocin با EcoRI
2-7-5-2 الکتروپوریشن سلول های هانسونلا پلی مورفا
1.ابتدا میزان مناسبی از کلنی تازه رشد یافته مخمر را به درون ml200 محیط کشت مایع YPD تلقیح نموده و محیط را بر روی شیکر در انکوباتور 37 درجه سانتی گراد گرماگذاری میکنیم تا جذب نوری محیط در طول موج 600 نانومتر (OD600nm) به 2/1-8/0 برسد.
2.محیط کشت فوق را در rpm5000 به مدت 5 دقیقه سانتریفوژ نموده و به میزان 2/0 برابر، بافر فسفات پتاسیم mM50 ولرم (C°37( با 5/7pH و سپس DTT 1مولار با غلظت نهایی mM25 به آن اضافه نمایید.
3.سلولها را به مدت 15 دقیقه در دمای C°37 قرار می دهیم.
4.سلول ها را با سانتریفوژ در rpm5000 به مدت 5 دقیقه جمع آوری نموده و دو بار با بافر STM (پیوست 7) درحالیکه سلولها بر روی یخ قرار دارند شستشو می دهیم (بار اول به صورت هم حجم و در مرحله دوم با نصف حجم اولیه).
5.رسوب سلولی نهایی را در 005/0 حجم اولیه از بافر STM حل کرده و این سوسپانسیون سلولی مستعد را در حجم های کم در دمای C°70- نگهداری میکنیم.
6.به منظور ترانسفورم نمودن سلولهای مستعد، سوسپانسیون های سلولی (حجم µl60) را بر روی یخ ذوب نموده و µg10- ng200 از مولکول DNA خطی شده را به آن اضافه میکنیم.
7.سپس سلولها به کووت الکتروپوریشن 2 میلی متری سرد منتقل می شوند.
8.بعد از خشک نمودن کووت آن را درون دستگاه الکتروپوریشن قرار داده و به آن پالسی با مشخصات 2 کیلوولت، 25 میکروفاراد و 200 اهم وارد مینماییم.
9.بلافاصله پس از وارد نمودن پالس، ml1 محیط کشت YPD به تیوب حاوی سلولها اضافه کرده و به مدت 1ساعت در دمای °C 37 در شیکر انکوباتور قرار می دهیم.
10.محیط را سانتریفوژ نموده (rpm5000, 5دقیقه( و سلولها را بر روی محیط کشت YPD جامد حاوی زئوسین با غلظت µg/ml400 کشت داده و به مدت 5-3 روز در دمای °C37 قرار میدهیم.
11.سلولهای رشد یافته در غلظت بالای زئوسین (µg/ml400)، به صورت ماتریکس بر روی پلیت حاوی 800 و سپس µg/ml1600 کشت داده شدند.
12.پس از گذشت مدت زمان لازم (3 روز) از کلونهای رشد یافته برای انجام PCR اختصاصی ژنهای کلون شده در وکتور بیانی استفاده گردید.
2-7-5-3 تأیید کلونهای نوترکیب هانسونلا با روش Colony PCR اختصاصی ژن زئوسین
PCR اختصاصی ژن زئوسین بر روی کلونهای نوترکیب رشد یافته در مراحل قبل بر اساس پروتوکل 2-7-3-1 و جدول 2-13 انجام گردید.
2-7-6 بیان پروتئینGCSF در هانسونلا پلی مورفا
2-7-6-1 کشت سلولهای مخمری
1.سلول مخمری تأیید شده با PCR ژن زئوسین و نیز سلول مخمری فاقد پلاسمید در ml5 محیط کشت BMGY (پیوست 1) کشت داده شده و بر روی شیکر در دمای С °30 با دور rpm200 قرار داده شد تا OD600 محیط به 6-2 برسد (حدود 18-16 ساعت).
2.محیط کشت فوق را در g3000 به مدت 5 دقیقه سانتریفوژ نمودیم.
3.رسوب سلولی را در 30 میلی لیتر محیط BMMY (پیوست 1)، اختصاصی جهت بیان پروتئین های نوترکیب با اتانول حل نموده و مجدداً برای ادامه رشد در انکوباتور قرار دادیم.
4.پس از گذشت 24 ساعت، از متانول 100% به غلظت نهایی 5/0% به محیط اضافه نمودیم تا بیان پروتئین القاء گردد.
5.پس از گذشت مدت زمان 96 ساعت از شروع کشت، محیط بیانی را در دور rpm6000 به مدت 5 دقیقه سانتریفوز مینماییم.
6.محلول رویی را به تیوب جدید منتقل نموده و پس از اندازه گیری غلظت پروتئینی در 280 نانومتر، اقدام به تغلیظ این محلول به منظور بررسی با SDS-PAGE می نماییم.
7.محلول فوق را با عبور از فیلترهای Centriprep YM50 بر طبق دستورالعمل شرکت سازنده تغلیظ می نماییم.
2-7-6-2 بررسی بیان پروتئین نوترکیب با روش SDS-PAGE
•ژل SDS-PAGE 15% بر اساس روش ذکر شده در بخش2-6-10 تهیه گردید.
•پس از انجام الکتروفورز و رنگ آمیزی ژل، میزان بیان پروتئین نوترکیب با روش کوماسی بلو بر اساس شدت باند حاصله مورد بررسی قرار گرفت.
2-7-7 تزریق نمونه پروتئینی به خرگوش
تولید آنتی بادی پلی کلونال به روشهایی برای معرفی یک ایمونوژن به حیوان و خونگیری برای سنجش میزان آنتی بادی نیاز دارد. انتخاب حیوان بستگی به امکانات موجود در نگهداری حیوان، میزان آنتی سرم مورد نیاز و میزان ایمونوژن موجود، دارد. پاسخ ایمنی بهتر، عموماً زمانی بدست می آید که از یک ادجوان مناسب در اولین ایمنی زایی استفاده گردد. برای این منظور، ایمونوژن بصورت یک امولسیون آب و روغن آماده می شود که حاوی میکوباکتریوم کشته شده با حرارت می باشد که تحت عنوان آدجوان کامل فروند معرفی می گردد. استفاده از این امولسیون فرد را مطمئن می کند که آنتی ژن به آرامی در جریان خون حیوان آزاد می شود و از طرفی باکتریهای کشته شده میکوباکتریوم، سیستم ایمنی حیوان را تحریک می کنند. ایمن سازی های بعدی، برای افزایش سطح آنتی بادی لازم اند و در بافر فسفات سالین (PBS) یا در امولسیون روغنی (ادجوان ناقص فروند ) مصرف می شوند (Johnstone, 1996).
روشهای مختلفی برای تزریق ایمونوژن وجود دارد (Johnstone, 1996) که عبارتند از :
1)درون ماهیچه ای (i.m=Intra muscular)
2)درون رگی (i.v = Intra venous)
3)درون پوستی (i.d = Intra dermal)
4)درون صفاقی (i.p = Intra peritoneal)
5)زیر پوستی (s.c = Sub cutaneous)
ایمن سازی درون پوستی یک روش مؤثر در ایجاد پاسخ اولیه است. روشهای i.m و i.d و یا s.c بهتر است در چندین محل مختلف صورت گیرند.
در مورد خرگوشها، در اولین ایمن سازی به μg200-50 پروتئین در FCA نیاز است که باید به صورت درون پوستی به 8-6 جای مختلف از پشت حیوان تزریق گردد. تزریقهای بعدی با فاصله 28 روز یا بیشتر، با 200-50 میکروگرم پروتئین آماده شده در PBS یا FIA به فرم i.m یا i.v یا s.c صورت می گیرد (Johnstone, 1996).
1) اولین تزریق:
•براساس غلظت نمونه پروتئینی مورد نظر (پروتئین GCSF نوترکیب موجود در بازار دارویی (ساخت شرکت پویش دارو)، l85 از ویال (200 میکروگرم) را برداشته و با l415 از PBS استریل مخلوط کرده و آن را با μl500 ادجوان کامل فروند مخلوط کرده و با emulsifier آنقدر این دو ماده را مخلوط کردیم تا شیری رنگ و سفت شد.
•قبل از اولین تزریق،ml 1 خون از حیوان گرفته شد تا به عنوان کنترل منفی (قبل از تزریق) از آن استفاده شود.
•این نمونه در rpm1500 به مدت 5 دقیقه سانتریفوژ گردید و سرم از گلبول های قرمز جدا گردید. سرم را در تیوب جدید ریخته و در 20- درجه سانتیگراد نگهداشتیم.
•محلول آماده شده از آنتی ژن در FCA به 8 جای مختلف از پشت خرگوش به صورت درون پوستی تزریق گردید.
2) دومین تزریق:
•سی روز پس از اولین تزریق، دومین تزریق به خرگوش باμl 85 از نمونه پروتئینی (200 میکروگرم) در μl415 PBS استریل با μl 500 ادجوان ناقص فروند مجدداً به صورت درون پوستی صورت گرفت.
•30 روز بعد، ml1 خون از حیوان گرفته شد تا از نظر ایمنی زایی تزریقهای فوق با روش ایمونوبلاتینگ، مورد بررسی قرار بگیرد.
2-7-8 ایمونوبلاتینگ
برای شناسایی پروتئین های اختصاصی از طریق آنتی بادی های پلی کلونال یا مونو کلونال، از لکه گذاری ایمنی استفاده می شود. در روش لکه گذاری ایمنی نمونه های پروتئینی در حضور ماده SDS و عوامل احیاء کننده (مانند 2- مرکاپتواتانول) الکتروفورز شده و سپس از روی ژل به غشاء نیتروسلولزی یا نایلونی منتقل می گردند و با استفاده از آنتی بادی های نشاندار شده شناسایی می شوند. برای انتقال پروتئین ها از ژل به غشاء از روش هایی مانند روش تانک و یا روش نیمه خشک استفاده می شود. در روش انتقال با تانک، از بافر حاوی تریس -گلایسین و متانول استفاده می شود که متانول علاوه بر اینکه از تورم ژل جلوگیری می کند، باعث جدا شدن SDS از پروتئین ها شده و بازده اتصال پروتئین به غشاء را افزایش می دهد. در روش انتقال نیمه خشک، ساندویچ انتقال پس از خیس شدن در بافر انتقال، بین دو الکترود بزرگ گرانیتی قرار گرفته و عمل انتقال انجام می گیرد (Sambrook, 2001).
در اینجا روش انتقال با روش نیمه خشک توضیح داده می شود.
مواد لازم
-غشاء نیتروسلولز با منافذ 45/0 میکرومتری
-کاغذ واتمن
-بافر انتقال (شامل تریس بازی، گلایسین، متانول و آب مقطر می باشد، پیوست 8).
-دستگاه Semidry
-رنگ پانسوS
روش انجام کار
•نمونه پروتئینی در مجاورت مارکر پروتئینی با روش SDS-PAGE، الکتروفورز شد.
•به مدت 30 دقیقه ژل در بافر انتقال قرار داده شد تا از تغییر حجم ژل در هنگام انتقال جلوگیری شود.
•غشای نیترو سلولزی را به اندازه ژل برش زده و در بافر انتقال قرار می دهیم.
•چندین لایه کاغذ واتمن (هم اندازه با ژل) را در ظرف حاوی بافر انتقال، مرطوب کرده و سپس کاغذ ها روی صفحه گرانیتی دستگاه بلاتینگ با سیستم نیمه خشک گذاشته شد ( با غلتاندن یک میله شیشه ای حباب های احتمالی بین کاغذها خارج گردید).
•غشای نیترو سلولز خیس شده به آرامی به گونه ای که حبابی تشکیل نگردد بر روی کاغذ های واتمن قرار داده شد. سپس ژل مورد نظر را را به گونه ای که حباب تشکیل نگردد به آرامی روی کاغذ قرار دادیم.
•مجدداً چند لایه کاغذ واتمن خیس شده در بافر انتقال، روی ژل قرار داده شد و با غلتاندن میله شیشه ای، حباب های احتمالی را خارج نمودیم.
•درب دستگاه را بسته و دستگاه را به جریان برق متصل نمودیم و با توجه به اندازه پروتئین، ولتاژ ثابت و زمان انتقال دستگاه تنظیم شد.
•پس از اتمام زمان انتقال، کاغذ نیتروسلولز با رنگ پانسوS رنگ آمیزی شد تا باندهای پروتئینی ظاهر گردند. از طرفی باندهای مارکر پروتئینی نیز علامت گذاری گردیدند. سپس غشاء با آب مقطر شسته شد تا رنگ پانسوS آن از بین برود.
•غشاء نیتروسلولز به مدت 1 ساعت در دمای اتاق بر روی شیکر در بافر بلوکه کننده قرار گرفت. سپس به مدت 16 ساعت در 4 درجه سانتیگراد قرار داده شد.
نکته: به منظور بلوکه کردن غشاء در نواحی که فاقد پروتئین است می توان از شیر خشک بدون چربی و یا آلبومین سرم گاوی (BSA) محلول در بافر PBS دارای توئین20 استفاده کرد.
•آنتی بادی اولیه، سرم خرگوشی رقیق شده به نسبت 1 به 500 در PBS بود. این آنتی بادی به مدت 2 ساعت در دمای اتاق بر روی غشاء بر روی شیکر انکوبه شد.
•غشاء 5 بار 10 دقیقه ای در TTBS بر روی شیکر شسته شد.
•آنتی بادی دوم، Goat anti Rabbit IgG کونژوگه با HRP بود که به نسبت 1 به 1000 در PBS رقیق شده بود. این آنتی بادی به مدت 1 ساعت بر روی غشاء بر روی شیکر انکوبه شد.
•بعد از اتمام زمان انکوباسیون در آنتی بادی ثانویه، کاغذ پنج بار 10 دقیقه ای با PBS حاوی 05/0% توئین 20 شستشو داده شد.
•کاغذ به مدت 10 دقیقه با بافر PBS بدون توئین شستشو داده شد.
•کاغذ نیتروسلولز در محلول سوبسترای آنزیم نشاندار (DAB) گذاشته شد تا باندهای مورد نظر نمایان گردند.
•پس از نمایان شدن باندها، کاغذ با آب مقطر چند بار شستشو داده شد و سپس کاغذ را خشک کرده و در جای تاریک نگهداری گردید.
فصل سوم نتایج
3-1 سنتز ژن gcsf
cDNA کد کننده پروتئین GCSF پس از بهینه سازی کدونها برای بیان در سلول مخمری به یکی از شرکت های مرتبط سفارش داده شد و توالی سنتز شده در وکتور کلونینگ pGH به گروه تحویل داده شد (شکل 3-1).

شکل 3-1 طرح شماتیک وکتور کلونینگ حاوی ژن gcsf
3-1-1 PCR اختصاصی بر روی ژن gcsf
3-1-1-1طراحی پرایمرهای اختصاصی ژن gcsf
با توجه به این که جایگاه برش آنزیم‌های BamHΙ و HpaI در توالی ژن هدف، gcsf، و نیز وکتور بیانی طراحی شده وجود ندارد، این دو جایگاه بر روی توالی پرایمرهای F و R تعبیه شدند. طراحی پرایمرها با بررسی نکات کلیدی در زمینه عدم تشکیل فرم سنجاق سری ، دایمرهای پرایمری و سایر ساختارهای ثانویه با استفاده از نرم‌افزار genrunnr انجام شد. نتایج حاصل از بررسی پرایمرها در این نرم‌افزار در شکل‌های 3-2 الف و ب آورده شده است.

(الف) (ب)
شکل3-2 بررسی توالی پرایمرهای F (الف) و R (ب) ژن gcsf.
3-1-1-2 بهینه ‌سازی واکنش PCR
گرادیان PCR بهترین دمای اتصال پرایمرها و تکثیر ژن gcsf را 60 درجه سانتی گراد نشان داد (شکل 3-3).
17856203187708 7 6 5 4 3 2 1
008 7 6 5 4 3 2 1

–142

3-2-1 استخراج توالی ناحیه C2 پروتئیین ALCAM ............................................................................................................29
3-2-2 بهینه سازی توالی یا Optimization ........................................................................................................................29
3-3 سنتز شیمیایی DNA ناحیهC2 پروتئین ALCAM .............................................................................................................29
3-3-1 سنتز شیمیایی ژن نوترکیب ...............................................................................................................................................29
3-3-2 پایداری و شرایط نگهداری DNA سنتز شده ....................................................................................................................30
3-3-3 محلول سازی DNA لیوفیلیزه...........................................................................................................................................30
3-4 کلونینگ پلاسمید- AMP+ pBSK حاوی DNA ناحیهC2 پروتئینALCAM ......................................................30
3-4-1 آماده سازی باکتری شایسته............................................................................................................................................30
3-4-1-1 مواد و محلول ها.......................................................................................................................................................30
3-4-1-2 روش کار..................................................................................................................................................................30
3-4-2 ترانسفورماسیون پلاسمید به سلول های مستعد TOP10 E.coli.. ..........................................................................31
3-4-2-1 روش کار.................................................................................................................................................................31
3-4-3 ارزیابی کلونی ها...........................................................................................................................................................32
3-4-4 استخراج پلاسمید - AMP+ pBSK حاوی DNA ناحیه C2................................................................................33
3-4-5 تایید آنزیمی پلاسمید استخراج شده.............................................................................................................................35
3-4-5-1 هضم آنزیمی دوگانه یا Double digestion........................................................................................................35
3-4-5-2 الکتروفورز................................................................................................................................................................35
3-5 ساب کلونینگ ژن ناحیهC2 پروتئین ALCAM.............................................................................................................37
3-5-1 تخلیص DNA ناحیهC2 از ژل..................................................................................................................................37
3-5-2 لایگیشن.........................................................................................................................................................................38
3-5-3 ترانسفورماسیون.............................................................................................................................................................39
3-5-3-1 آماده سازی سلول های شایسته.................................................................................................................................39
3-5-3-2 ترانسفورماسیون سلول های شایسته E.coli BL21(DE3) با محصول لایگیشن................................................40
3-5-4 ارزیابی کلونی ها...........................................................................................................................................................40
3-5-5 استخراج پلاسمید بیانی pet-28a حاوی ژن ناحیهC2 پروتئین ALCAM..............................................................41
3-5-6 تایید آنزیمی پلاسمید استخراج شده.............................................................................................................................42
3-6 بیان پروتئین مولتی توپ EpCAM................................................................................................................................43
3-6-1 القاء بیان پروتئین...........................................................................................................................................................43
3-6-2 بررسی بیان به کمک تکنیک SDS-page...................................................................................................................43
3-6-2-1 روش ساخت محلول ها و ژل ها.............................................................................................................................44
3-6-2-2 Run کردن نمونه ها...............................................................................................................................................45
3-6-2-3 رنگ آمیزی با کوماسی G-250 کلوئیدی................................................................................................................45
فصل چهارم:نتایج
4-1 نتایج حاصل از بهینه سازی توالی ...........................................................................................................................................47
................................................................................................................50..........................C2ناحیهDNA4-2 سنتز شیمیایی
4-3کلونینگ پلاسمید AMP+ -pBSK حاویDNA ناحیهC2.................................................................................................52
4-4 ساب کلونینگ ژن ناحیه C2.................................................................................................................................................54
4-5بیان پروتئینC2 و تایید آن به کمک تکنیک SDS_page........................................................................................................57
فصل پنجم:
بحث...................................................................................................................................................................................................59
نتیجه گیری.........................................................................................................................................................................................69
منابع....................................................................................................................................................................................................71
چکیده انگلیسی...........................................................................................................................................................................................74
فهرست شکل ها:
شکل 1-1 تصویر بخش های مختلف روده بزرگ.....................................................................................................................5
شکل1-2 نمای کلی روده بزرگ، روده کوچک و معده.............................................................................................................6
شکل1-3 درصد فراوانی محل آناتومیک سرطان کولورکتال .....................................................................................................7
شکل1-4 درصد فراوانی مراحل سرطان کولورکتال.................................................................................................................12
شکل1-5 نقشه ژنتیکی پروتئین ALCAM............................................................................................................................15
شکل1-6 رنگ آمیزی ایمنوهیستوشیمیایی ALCAM در بافت توموری...............................................................................17
شکل3-1 نقشه ژنی پلاسمید Pet28a.....................................................................................................................................24
شکل3-2 دستگاه انکوباتور......................................................................................................................................................25
شکل3-3 دستگاه اتوکلاو.........................................................................................................................................................26
شکل3-4 دستگاه مولد ولتاژو تانک الکتروفورز.......................................................................................................................26
شکل3-5 شیکر انکی باتور.......................................................................................................................................................27
شکل3-6 سانتریفیوژ.................................................................................................................................................................27
شکل3-7 دستگاه تصویر ساز ژل.............................................................................................................................................27
شکل3-8 ترموسایکلر...............................................................................................................................................................28
شکل3-9 بن ماری ..................................................................................................................................................................28
شکل3-10 کیت استخراج پلاسمید..........................................................................................................................................33
شکل3-11 کیت استخراج DNA از ژل فرمانتاز.....................................................................................................................37
شکل4-1 شاخص سازی کدون. سمت راست: قبل از بهینه سازی سمت چپ: بعد از بهینه سازی.........................................48
شکل4-2 میزان فراوانی کدون های بهینه. سمت چپ: قبل از بهینه سازی سمت راست:بعد از بهینه سازی ..........................48
شکل4-3 شاخص سازی محتوای G-C سمت راست:قبل از بهینه سازی سمت چپ: بعد از بهینه سازی.............................49
شکل4-4ترادف ناحیهC2 مورد نظر پس از بهینه سازی کدون های مربوطه جهت بیان در میزبان E.coli...........................49
شکل4-5 مقایسه نوکلئوتید بصورت نظیر به نظیر در توالی های اولیه و بهینه سازی شده.......................................................50
شکل4-6 تائید اندازه ژن سنتز شده به کمک هضم آنزیمی......................................................................................................51
شکل4-7 نقشه ژنی پلاسمید حاوی DNA ناحیه C2 پروتئینALCAM...........................................................................53
شکل4-8 تائید حضور پلاسمید حاوی ژن ناحیه C2 در محصول استخراج پلاسمید.............................................................53
شکل4-9 هضم دوگانه آنزیمی پلاسمید تکثیر یافتهPBSK....................................................................................................54
شکل4-10 نقشه ژنی پلاسمید Pet28a..................................................................................................................................55
شکل4-11 باکتری های BL21(DE3) ترانسفورم شده با Pet28a حاوی ژن ناحیه C2....................................................55
شکل4-12 تائید حضور پلاسمید Pet28a حاوی ژن ناحیه C2 در باکتری ترانسفورم شده BL21(DE3) ......................56
شکل4-13 نتیجه حاصلهاز هضم آنزیمی دوگانه پلاسمید Pet28a حاوی ژن ناحیه C2......................................................57
شکل4-14 بررسی بیان پروتئین ناحیه C2 به کمک تکنیک SDS-Page...................................................................58
چکیده:
همه سرطان ها از سلول ها شروع می شوند به طور طبیعی‌، سلول ها به گونه ای که بدن به آنها نیاز دارد، رشد می کنند و تقسیم می شوند. سلول های جدید زمانی که لزومی به وجود آنها نیست، به وجود می آیند و یا سلول های پیر در زمان مرگ به حیات خود ادامه می دهند. این سلول های اضافی توده بافتی به نام تومور تشکیل می دهند.
سرطان کولورکتال یکی از شایع ترین سرطان های بدخیم در سرتاسر جهان می باشد که میزان ابتلا به آن حدود 6/0 می باشد که منجر به مرگ600 هزار نفر در سال می گردد. .CD166 به عنوان مارکر سلول های بنیادی سرطان کولورکتال شناسایی و معرفی شده است.که با توجه به بیان آن بر سطح سلول های سرطان کولورکتال در مراحل مختلف بیماری می توان از آن جهت کارهای درمانی و تشخیصی استفاده نمود.
ALCAM مارکر تشخیصی مثبتی برای بقای کلی بیماران مبتلا به سرطان کولورکتال می باشد و شناسایی آن ممکن است به بهینه سازی سیتسم مرحله بندی تشخیصی موجود کمک کند.ALCAM معمولا در سرطان کولورکتال روشن بوده و مارکر تشخیصی مستقل جدیدی می باشد که بر اهمیت ان در پیشروی تومور در سرطان کولورکتال تاکید شده است.در این مطالعه ما ابتدا سعی بر آن داشتیم توالی مورد نظر را از بانک های اطلاعاتی ژنی استخراج نماییم و سپس از طریق آنالیز بیوانفورماتیکی توالی مورد نظر را از نظر بهترین بیان در میزبان باکتریایی آماده نماییم.ژن مورد نظر از طریق شیمیایی سنتز شده و سپس با استفاده از فرایند کلونینگ، قطعه ژنی سنتز شده را به کمک پلاسمید بیانی pet-28a درون سیستم پروکاریوتی انتقال داده و تکثیرنموده. در انتها نیز بیان ناحی C2در باکتری های نوترکیب با القاگر مناسب القا می نماییم و وجود پروتئین مورد نظر را به کمک تکنیک SDS-page مورد بررسی قرار می دهیم.
ناحیه C2 می تواند به مانند پروتئین اصلی خاصیت ایمنی زائی داشته باشد. این قطعه ژنی توانایی کلون شدن در میزبان پروکاریوتی را دارا بوده و باکتری قادر است به کمک القاگر مناسب به میزان فراوانی پروتئین مورد نظر را تولید کند. از این جهت می توان از این پروتئین نوترکیب برای تهیه کیت تشخیصی سرطان کولورکتال به واسطه تکنیک الایزا استفاده برد. همچنین می توان با تزریق این پروتئین نوترکیب به عنوان واکسن، سیستم ایمنی فرد را جهت پیش گیری از ابتلا به سرطان تقویت نمود.
واژه های کلیدی:
سرطان کولورکتال، ALCAM، ناحیه C2 پروتئینALCAM ،کلونینگ
فصل اول
مقدمه
1-1سرطان چیست
اصطلاح سرطان به تومورهای اطلاق می شود که می توانند به بافت های مجاور خود که از سلولهای سالم تشکیل میشوند حمله کنند توانایی مجاورت و هجوم سلول های توموری عامل طبقه بندی تومورها به دو دسته خوش خیم و بدخیم است اگر یک تومور بدخیم به یک رگ خونی یا لنفی برسد می تواند متاستاز دهد ودر بافت های دیگری رشد کند. نئوپلاسم(که معنی آن رشد جدید است) شکل غیر طبیعی رشد سلولها است و تومور، نئپلاسمی است که با وضعیت بیمار گونه همراه است، تومور ها بیماری هایی هستند که در آنها جمعیتی از سلول های، که به لحاظ ژنتیکی هم خانواده هستند توانایی رشد نا به هنجار را کسب می کنند(نخعی سیستانی وهمکاران 1389). همه سرطان ها از سلول ها شروع می شوند که واحد سازنده بدن و اساس زندگی محسوب می شوند. سلول ها بافت را می سازند و بافت های بدن، اندام ها را تشکیل می دهند. به طور طبیعی‌، سلول ها به گونه ای که بدن به آنها نیاز دارد، رشد می کنند و تقسیم می شوند. سلول های پیر می میرند وسلول های جدید جای آنها را می گیرند. گاهی نظم مراحل رشد به هم می خورد. سلول های جدید زمانی که لزومی به وجود آنها نیست، به وجود می آیند و یا سلول های پیر در زمان مرگ به حیات خود ادامه می دهند. این سلول های اضافی توده بافتی به نام تومور تشکیل می دهند.
تومورها خوش خیم یا بد خیم می باشند.
تومورهای خوش خیم سرطانی نیستند.
این نوع تومورها به ندرت زندگی فرد را تهدید می کنند.
بیشتر تومورهای خوش خیم قابل جراحی بوده و معمولا عود نمی کنند.
تومورهای خوش خیم، به بافت های اطراف و سایر قسمت های بدن گسترش نمی یابند.
تومورهای بدخیم سرطانی هستند.
عموما این تومورها بسیار خطرناک تر از تومورهای خوش خیم بوده و زندگی فرد را تهدید می کنند.
تومورهای بدخیم قابل جراحی بوده ولی در مواردی بعد از عمل جراحی مجددا عود می کنند.
تومورهای بدخیم انتشار یافته و به بافت ها و اعضای مجاور، آسیب می رسانند.
سلول های سرطانی از بافت توموری جدا شده و با وارد شدن در جریان خون یا سیستم لنفاوی، تومورهای جدیدی درسایراعضاء بدن تشکیل می دهند. گسترش و انتشار سلول های سرطانی به سایر بافت های بدن را متاستاز می نامند.
زمانی که سرطان از بافت اصلی به سایر قسمت های بدن گسترش پیدا می کند، تومور جدید شبیه همان نوع سلول های غیر طبیعی تومور اولیه بوده و به همان اسم تومور اولیه خوانده می شود. برای مثال اگر سرطان کولورکتال به کبد متاستاز دهد سلول های سرطانی کبد همان سلول های سرطانی کولورکتال بوده و بیماری سرطان متاستاتیک کولورکتال نامیده شده و همانند سرطان کولورکتال، درمان می شود (کاظمی اسکندانی 1388).
دانش کنونی از مکانیسم های سرطان پیشنهاد کننده این مطلب است که علت ایجاد همهی سرطان ها ناشی از هر دو عامل محیطی و ژنتیکی است(clapp et at 2005).
عوامل ژنتیکی، هورمونی و ویروسی روی سرطان تاثیر می گذارند باقی ماندن تغییراتی مانند آسیب بافتی، تغییرات ژنتیکی و اپیژنتیک(مثل جهش،از دست دادن هتروزیگوسیتی و متیلاسیون پروموتور)و تغییرات ترانسکریپتوم(مثل التهاب و مسیر های آپاپتوز) در دراز مدت منجر به فعال شدن مسیر ها و عملکرد های سلولی نابجا گشته و در نهایت منجر به تغییرات پیش سرطانی می گردد(Roy et el 2008).
انکوژن ها کد کننده پروتئین های هستند که کنترل کنندهی تقسیم سلولی، آپاپتوز و یا هر دوی آنها هستند. آنها می توانند به وسیله تغییرات ساختمانی، که حاصل جهش یا اتصال ژن ها توسط کنار هم نشینی عناصر تحریک کننده و یا به وسیله تحریک فعال شوند. جا به جای و جهش می تواند به عنوان وقایع اولیه یا در طی پیشرفت تومور اتفاق بیفتد در حالی که تکثیر معمولا در طی پیشرفت اتفاق می افتد هنگامی که یک
انکوژن توسط جهش فعال می شود ساختار پروتئین کد شده توسط آن در مسیر افزایش فعالیت تغییر می کند(croce2008).
جهش های که پروتوانکوژن ها را به انکوژن ها تبدیل می کند شامل:تغییرات تک نوکلئوتیدی،تکثیر یا ازدیاد ژنی، ترکیب ژنی و سایر بازآرایی های کروموزومی است که فعالیت پروتئین های ساخته شده توسط پروتوانکوژن ها را افزایش می دهند. جهش های تغییر دهنده قالب، جهش های بی معنی و جهش هایی که در جایگاه پردازش روی می دهند عموما موجب فعال شدن انکوژن ها نمی شوند(Thomas et al 2007).
سرطان بوسیلهی تغییر در انکوژن ها، ژن های سرکوب گر تومور و ژن های microRNA ایجاد می شود
یک تغییر ژنتیکی به ندرت برای توسعه یک تومور بدخیم کافی است. بیشتر شواهد به یک فرآیند چند مرحله ای از تغییرات پی در پی در انکوژن های مختلف، ژن های سرکوب گر تومور یا ژن های microRNA در سلول های سرطانی اشاره دارند(croce 2008).
انکوژن ها شکل جهش یافتهی یک ژن طبیعی سلولی به نام پروتوانکوژن ها است که در گسترش سرطان شرکت می کند انکوژن های که اغلب در رشد و گسترش سرطان های انسانی شرکت دارند به وسیلهی ویروس ها منتقل نمی شوند بلکه در نتیجه جهش های سوماتیک در پروتوانکوژن ها ایجاد می گردند (نخعی سیستانی و همکاران1389). پروتئین های حاصل از پروتوانکوژن ها در شرایط عادی عملکرد حیاتی در پیام رسانی سلول، رشد و تمایز بر عهده دارند اما بیان غیر طبیعی آنها قادر به القای تومور زایی است(pappou 2010).
یک ژن سرکوب کننده تومور نوعی ژن است که بوسیلهی جهش های حذف عملکرد ایجاد می شود، ژن های سرکوب کننده تومور فرآیند های اصلی مسئول حفظ بخش های پایدار بافتی را کنترل می کنند این فرآیند ها شامل تمامیت ژنتیکی، پیشرفت چرخه سلولی،تمایز، برهمکنش های سلولی و مرگ می باشند. غیر فعال شدن این ژن ها موجب حذف هموستازی بافتی می شود که مشخصه یک تومور در حال گسترش است(نخی سیستانی و همکاران1389).
1-2 آناتومی روده بزرگ:
روده بزرگ از دریچه ایلئوسکال روده کوچک تا آنوس گسترش یافته است و شامل آپاندیس، کولون، رکتوم و کانال آنال می باشد بنا به موقعیت کولون به قسمت های مختلف تقسیم شده است: سکوم، کولون
صعودی، زاویهی کبدی، کولون عرضی، زاویه طحالی، کولون نوزولی و کولون سیگموئید (میبدی و همکاران 1382، ACS 2010).

شکل 1-1 تصویر و بخشهای مختلف روده بزرگ (کاظمی اسکندانی 1388)
کولون از انتهای ایلئوم شروع می شود و در پرومونتوری ساکروم جایی که تیناکولی ها حالت باند های مشخص و مجزای خود را از دست می دهند پایان می یابد.تیناکولی ها سه نوار عضله طولی هستند که در فواصل 120 درجه از هم در محیط کولون قرار گرفته اند رکنوم در سطح پرومونتوری ساکروم جایی که سه تنیا ها پخش می شوند و یک لایه عضلانی طولی صاف تشکیل می دهند شروع می شود. رکتوم به پایین تا
سطح عضلات بالابرنده مقعد ادامه پیدا می کند و طول آن از 12 تا 15 سانتی متر ادامه پیدا می کند.کانال جراحی آنال که حدودا 4 سانتی متر می باشد، قسمت انتهای روده بزرگ است که از بین عضلات بالا رونده مقعد عبور می کند و به لبه مقعد باز می شود(میبدی و همکاران 1382).
دیواره روده بزرگ شامل شش لایه است: مخاط، موسکولاریس موکوزا، زیر مخاط، موسکولاریس پروپریا، چربی زیر سروزی و سروز، رکتوم نیز بافت مشابهی دارد ولی سروز ندارد(میبدی و همکاران 1382).
1-3جنین شناسی روده بزرگ:
در طول هفته چهارم حاملگی، روده اولیه که شامل پیش روده، میان روده و پس روده می باشد تشکیل می شود. میان روده به روده کوچک(که از نقطهی ورودی مجرای صفراوی شروع می شود) و بخشی از روده بزرگ که پیش از نقطه میانی کولون عرضی قرار گرفته تبدیل می شود. خون این بخش از روده توسط شریان مزانتریک فوقانی تامین می گردد. پس روده به بخشی از روده بزرگ که پس از نقطه میانی کولون عرضی قرار گرفته نیز قسمت پرگزیمال مقعد و مجرای ادراری تناسلی تحتانی تبدیل می شود.
در طول هفته ششم حاملگی میان روده به خارج از حفره شکمی منتقل می گردد بیش از آنکه میان روده موقعیت نهایی خود را در حفره شکمی به دست آورد. در طول چهار هفتهی بعدی در خلاف جهت عقربه های ساعت حول شریان مزانتریک فوقانی 270 درجه می چرخد.
انتهای پس روده به کلواک ختم می شود که در هفته ششم توسط دیواره اتورکتال به دو بخش شکمی و پشتی یعنی سینوس ادراری تناسلی و رکتوم تقسیم می شود. تکمیل مجرای آنال در انتهای هفته هشتم است یعنی هنگامی که غشاء نازک آنال پاره می شود خط دندانه ای در قسمت تحتانی مجرای آنال مشخص کننده مرز بین پس روده اندودرمی و بافت اکتودرمی می باشد(میبدی و همکاران1382).
1-4سرطان کولورکتال:
سرطان کولون و رکتوم را سرطان کولورکتال گویند(kang et at 2011). سرطان کولورکتال سومین عامل مرگ از سرطان ها در جهان محسوب می شود(پارکین 2001 ) این بیماری در ایران به عنوان چهــارمین سرطان شایع در هر دو جنس به شمار می رود(بویل و لانگمان 2000). سرطان کولورکتال سومین سرطان شایع در بین مردان و چهارمین سرطان شایع در بین زنان در ایران می باشد(کلاهدوزان 2009).تخمین زده می شود سالانه در ایران 3641 نفر به این بیماری مبتلا می شوند(ملک زاده 2009).
سرطان کولورکتال به دو شکل عمده وجود دارد سرطان کولورکتال موردی(spo--ic) و سرطان کولورکتال ارثی(kang et at2011).

شکل1-2 نمای کلی روده بزرگ، روده کوچک و معده (کاضمی اسکندانی 1388)
سرطان کولورکتال دارای سه زیر گروه بر اساس عمده ژنتیکی یا تغییرات اپی ژنتیک است:
1.تومور با بی ثباتی کروموزومی
2.کسانی با ناپایداری میکروستلایت
3.تومورهای با جزایر CpG متیلاتور
آسیب شناسی مولکولی سرطان کولورکتال یکی از برجسته ترین موارد مطالعه در سال های اخیر بوده است(kang et al-2001) .و به دلیل اثرات جانبی شدید شیمی درمانی استراتژی های جدید بر مبنای مکانیسم های مولکولی به شدت احساس می گردد(hisayuki and Gazdar 2005).
هم چنین یکی از معظلات اساسی که برای سرطان کولورکتال در نظر گرفته شده است متاستاز آن به خصوص به بافت های کبد و ریه می باشد.

1-3درصد فراوانی محل آناتومیک سرطان کولورکتال (دکتر سید مهدی جلالی و همکاران با تحقیق بر روی بیماران از سال 1360تا 1380 )1-4-1چه کسانی در معرض خطر قرار دارند (ریسک فاکتورها یا عوامل خطر ):
علت دقیق بروز سرطان کولورکتال شناخته شده نیست. پزشکان به ندرت می توانند علت ابتلا و یا عدم ابتلای افراد به سرطان کولورکتال را بیان کنند. به هر حال آنچه مشخص است این است که این بیماری مسری نبوده و هیچ فردی این بیماری را از فرد دیگری نمی گیرد.تحقیقات نشان داده اند که افراد با عوامل خطر معین، نسبت به سایر افراد در معرض خطر بالای ابتلا به سرطان کولورکتال قرار دارند. وجود عامل خطر یا ریسک فاکتور، شانس ابتلا و پیشرفت بیماری را در یک فرد افزایش می دهد(کاظمی اسکندانی1388).
فاکتور های مختلفی در تبدیل موکوس رودهی بزرگ به سرطان دخالت دارند عوامل محیطی و ژنتیکی هر دو از عوامل مهم در ایجاد این بیماری هستند(caseito and lowitz 2001).
1-4-2عوامل محیطی:
سن بالای 50 سالگی: احتمال بروز سرطان کولورکتال در افراد مسن بیشتر است. بیش از 90% مبتلایان، بالای50 سال سن دارند و متوسط سن مبتلایان در زمان تشخیص، بالای 72 سال می باشد.
رژیم غذایی: مطالعات نشان داده است که رژیم های پر چرب (بخصوص چربی های حیوانی)، کم فیبر، کم کلسیم و کم فولات خطر ابتلا را افزایش می دهند. هم چنین خطر ابتلا به سرطان کولورکتال در افرادی که از میوه جات و سبزیجات کمتراستفاده می کنند، بیشتر است.
مصرف سیگار : خطر بروز پولیپ و سرطان کولورکتال در افراد سیگاری بیشتراست(کاظمی اسکندانی 1388).
1-4-3عوامل ژنتیکی:
کشف انکوژن ها در سال 1910 زمانی که پیتون رویس(Peyton Rous) نشان داد یک عصاره عبور داده شده از فیلتر که فاقد سلول و باکتری است می تواند باعث ایجاد فیبروسارکوما در جوجه ها شود آغاز شد(pappou 2010). بعد از آن او دریافت که سارکومای جوجه می تواند به دفعات به وسیله عصاره توموری فاقد سلول، از حیوانی به حیوان دیگر منتقل شود.عامل این بیماری در عصاره سلولی ویروسRouse sarcoma Virus بود. کشف انکوژن های ویروسی برای اولین بار باعث شد که یک عامل ایجاد کننده سرطان از منظر ژنتیک مورد مطالعه قرار گیرد(نخعی سیستانی 1389).
از دست دادن ثبات ژنومی از طریق تسهیل دستیابی به جهش های مرتبط با تومور در توسعه سرطان روده بزرگ دخالت دارد. در این بیماری بی ثباتی ژنومی اشکال مختلفی دارد که هر کدام علل متفاوتی دارند.متداول ترین بی ثباتی ژنومی در سرطان کولورکتال بی ثباتی کروموزومی است که منجر به تغییرات زیاد در تعداد رونوشت و ساختار کروموزوم می شود. بی ثباتی کروموزومی مکانیسم موثری در فقدان فیزیکی رونوشت های نوع وحشی ژن های سرکوب کننده تومور مانند APC و P53 است (Sanford and bertagnolli 2009).
1-4-4عوامل دیگر در بروز سرطان کولورکتال:
پولیپ های کولورکتال: پولیپ ها در دیواره داخلی روده بزرگ یا رکتوم رشد می کنند.
سابقه خانوادگی ابتلا به سرطان کولورکتال: سابقه ابتلا به سرطان درفامیل نزدیک ( والدین،برادران و خواهران و یا فرزندان ) به ویژه در سنین پایین، احتمال بروز سرطان را افزایش می دهد.
داشتن سابقه ابتلا به سرطان : سرطان کولورکتال ممکن است مجددا در فرد دارای سابقه ابتلای قبلی به این بیماری، بروز نماید
بیماری های التهابی روده یا بیماری کرون: خطر بروز سرطان کولون ، در فردی که سابقه بیماری های التهابی زخم شونده روده و بیماری کرون را برای چندین سال دارند، بیشتر می باشد(کاظمی اسکندانی 1388).
1-4-5علائم و نشانه ها
علائم و نشانه های شایع عبارتند از :
اسهال، یبوست
احساس عدم تخلیه کامل روده
مشاهده خون (قرمز روشن یا خیلی تیره) در مدفوع
باریک شدن بیش از حد معمول مدفوع
کاهش وزن بدون علت مشخص
احساس خستگی مداوم
تهوع و استفراغ
ناراحتی های عمومی شکم (احساس پری شکم، درد، پیچش شکم و شکم نفاخ)
در اغلب موارد، این علائم ناشی از سرطان نمی باشند. سایر بیماری ها نیز این نشانه ها را ایجاد می کنند. بایستی در صورت وجود این علائم ، جهت تشخیص و درمان هر چه سریع تر به پزشک مراجعه نمود(کاظمی اسکندانی 1388).
1-5غربالگری
بررسی های انجام شده حاکی از این است که در صورت شناسایی سرطان کولورکتال در مراحل ابتدایی شانس بهبودی کامل مبتلایان به این بدخیمی در حدود 90% می باشد ولی در صورتی که در تشخیص و درمان این سرطان تعویق ایجاد شود بدخیمی وارد مرحله پیشرفته و غیر قابل درمان می شود (ma et at 2009). غربالگری سرطان قبل از بروز علائم و نشانه های بیماری، به پزشک در شناسایی پولیپ ها یا سرطان اولیه کمک می کند. شناسایی وخارج نمودن پولیپ ها، از بروز سرطان کولورکتال پیشگیری می کند.
برای شناسایی سرطان و پولیپ در مراحل اولیه بایستی:
افراد 50 سال و به بالا، غربالگری شوند.
افرادی که احتمال بروز بیماری در آنها بیشتر است ، با پزشک خود در مورد انجام آزمایشات غربالگری قبل از 50 سالگی ، نوع آزمایشات و فواید و مضرات هرکدام از آزمایشات صحبت نمایند.
از آزمایشات غربالگری زیر برای تشخیص سرطان، پولیپ ها و سایر موارد غیر طبیعی کولون و رکتوم استفاده می شود:
وجود خون مخفی در مدفوع: اغلب اوقات سرطان ها یا پولیپ ها دچار خونریزی می شوند و این آزمایش قادر به شناسایی کمترین مقادیر خون در مدفوع می باشد. در صورت شناسایی وجود خون در مدفوع سایر آزمایشات برای شناسایی منبع خون مورد نیاز می باشد. البته لازم به ذکر است که موارد خوش خیم همانند بواسیر( هموروئید ) نیز موجب بروز خون در مدفوع می شوند.
سیگموئیدوسکپی: پزشک با سیگموئیدوسکپ ( لوله ای که در انتهای آن منبع نوری قرار دارد) داخل رکتوم و قسمت تحتانی کولون (سیگموئید) را بررسی می کند و در صورت وجود پولیپ، آنها را خارج می کند. به خارج کردن پولیپ، پولیپکتومی گفته می شود.
کولونوسکپی: پزشک با استفاده از کولونوسکپ (لوله ای که در انتهای آن منبع نوری قرار دارد) داخل کولون و رکتوم را بررسی نموده و در صورت وجود پولیپ، آنها را خارج می کند.
تنقیه با محلول باریم : پس از تنقیه بیمار با محلول باریم، هوا داخل رکتوم پمپ شده و توسط اشعه ایکس از کولون و رکتوم ، عکس برداری های متعدد انجام می شود. توسط باریم و هوا، پولیپ ها در عکس برداری مشخص می شوند.
معاینه انگشتی رکتوم : معاینه رکتوم یکی از روش های معمول معاینه بدنی است. پزشک پس از پوشیدن دستکش و مالیدن ژل، با داخل کردن انگشت داخل رکتوم نواحی غیر طبیعی موجود در قسمت های تحتانی رکتوم را بررسی می کنند (کاظمی اسکندانی1388).
1-6تعیین مرحله بیماری
زمانی که نمونه برداری نشانگر وجود سرطان کولورکتال باشد، لازم است پزشک وسعت بیماری( درجه بیماری) را بداند تا بهترین روش درمانی را طرح ریزی کند.
مرحله بیماری به تهاجم تومور به بافت های مجاور و انتشار سرطان بستگی دارد و اینکه در صورت انتشار، به کدام قسمت از بدن منتشر شده است. برای تعیین مرحله بیماری آزمایشات و اقدامات زیر انجام می شود:
آزمایشات خون: پزشک میزان CEA (آنتی ژن کارسینومای امبریونیک) و سایر مواد موجود در خون را کنترل می کند. در اغلب مبتلایان به سرطان کولورکتال، میزان CEA بالا می باشد.
کولونوسکپی: پزشک با کولونوسکپی داخل کولون و رکتوم را از نظر وجود نواحی غیرطبیعی بررسی می کند.
سونوگرافی داخل مقعدی: پروب سونوگرافی داخل رکتوم قرار داده می شود. پروب، امواج صوتی را که افراد قادر به شنیدن آن نیستند به داخل رکتوم و بافت های اطراف می فرستد. کامپیوتر با استفاده از انعکاس صوت(اکو) تصویر ایجاد می کند. تصویر ایجاد شده، نشان میدهد که تا چه عمقی تومور رکتوم رشد کرده است و همچنین انتشارسرطان به گره های لنفاوی یا سایر بافت های مجاور را نشان می دهد.
عکس برداری توسط اشعه ایکس از قفسه سینه: عکس برداری از قفسه سینه، نشان دهنده انتشار سرطان به ریه است.
سی تی اسکن: دستگاه عکسبرداری توسط اشعه ایکس که به کامپیوتر متصل می باشد، یک سری تصاویر با جزئیات بیشتر را از نواحی داخل بدن در دسترس قرار می دهد. ممکن است ماده حاجب تزریق گردد. این روش انتشار تومور به کبد، ریه ها و یا سایر نواحی بدن را نشان می دهد(کاظمی اسکندانی 1388).
مراحل سرطان کولورکتال به شرح زیر می باشد:
مرحله I : سرطان درون دیواره داخلی رکتوم و کولون رشد کرده است ولی هنوز به دیواره خارجی کولون نرسیده و یا به بیرون از کولون گسترش نیافته است .
مرحلهII : تومور به قسمت های عمقی و یا سرتاسرعمق دیواره کولون و رکتوم انتشار یافته و ممکن است بافت های مجاور را نیز درگیر کند اما سلول های سرطانی هنوز به گره های لنفاوی انتشار نیافته اند.
مرحله III : سرطان به گره های لنفاوی مجاور انتشار پیدا کرده اما به سایر قسمت های بدن منتشر نشده است.
مرحلهIV : سرطان در سایر قسمت های بدن همانند کبد و ریه ها منتشر شده است(کاظم اسکندانی 1388).
در مراحل 1و2 سرطان کولورکتال امکان درمان این سرطان با عمل جراحی وجود دارد ولی احتمال بهبودی در مرحله 4 بسیار ضعیف است(ma et at 2009).
سرطان عود کرده : سرطانی است که درمان شده است ولی پس از یک دوره زمانی مجددا عود نموده است. این بیماری ممکن است در کولون، رکتوم و یا سایر قسمت های بدن عود کند (کاظمی اسکندانی1388).

1-4 درصد فراوانی مراحل سرطان کولورکتال(دکتر سید مهدی جلالی و همکاران با تحقیق بر روی بیماران از سال 1360تا 1380 )
1-7روش های درمانی:
اساسا انتخاب نوع درمان به محل تومور در رکتوم و کولون و مرحله بیماری بستگی دارد. برای درمان سرطان کولورکتال از جراحی، رادیوتراپی (پرتودرمانی)، شیمی درمانی و یا ترکیبی از این درمان ها استفاده می شود درمان سرطان به صورت درمان موضعی یا درمان سیستمیک است(کاضمی اسکندانی 1388)..
کارامدی و موفقیت درمان سرطان در مرحله ی اول با میزان بریدن توده تومور سنجیده می شود. اما سلول های بنیادی سرطان می توانند بخش خیلی کوچکی از بقایای تومور را تشکیل دهند و با فعالیت خود تومور جدیدی بسازند. )محمدرضا نوری دلویی و همکاران ،1391).
طبق گزارشات صورت گرفته بیش از 90% مرگ و میرهای سرطانی به دلیل متاستاز رخ میدهند.تومورهای اولیه میتوانند توسط جراحی یا درمانهای مکمل شیمیایی به خوبی درمان شوند، اما سرطانهایی که به مرحله متاستاز رسیده اندبه درمان مقاوماند. این خصوصیت مقاومت، دلیل فراوانی مرگ را در میان افراد دارای
متاستاز نشان میدهد. بنابراین درمان موثر سرطان وابستگی زیادی به شناخت کامل فرایندهای ایجادکننده متاستاز و فراهم کردن راهکارهایی برای مقابله با این پدیده دارد. متاستاز به مفهوم رشد، تکثیر و تهاجم سلولهای توموری در مکانهای متفاوت بدن میباشد)محمدرضا نوری دلویی و همکاران ،1391).
1-7-1درمان موضعی:
جراحی و پرتودرمانی جزء درمان های موضعی هستند. در جراحی، تومور خارج شده و پرتودرمانی، سلول های سرطانی را نابود می کند. در صورت انتشار سرطان کولورکتال به سایر قسمت های بدن ، از درمان موضعی برای کنترل بیماری در آن مناطق خاص، استفاده می شود. (کاضمی اسکندانی 1388).
1-7-2درمان سیستمیک:
شیمی درمانی و درمان بیولوژیکی از سایر روش های درمانی سیستمیک هستند و برای کنترل سرطان، دارو وارد جریان خون می شود.
بروز عوارض جانبی به علت تاثیر درمان روی سلول ها و بافت های سالم، شایع است. عوارض جانبی به نوع و وسعت درمان بستگی داشته و در تمام افراد یکسان نمی باشد. ممکن است عوارض جانبی، در هر جلسه از درمان متفاوت باشد. (کاضمی اسکندانی 1388).
1-7-3کولونوسکپی:
یک پولیپ سرطانی کوچک موجود در کولون یا قسمت فوقانی رکتوم ممکن است توسط کولونوسکوپ خارج گردد. (کاضمی اسکندانی 1388).
1-7-4لاپاراسکپی:
ممکن است سرطان کولون در مراحل اولیه با استفاده از لاپاراسکوپ ( لوله ای که در انتهای آن منبع نوری قرار دارد ) برداشته شود. سه الی چهار برش کوچک در شکم داده می شود. جراح با لاپاراسکوپ داخل شکم را مشاهده کرده و تومور و قسمتی از نواحی سالم کولون را خارج می کند. (کاضمی اسکندانی 1388).
1-7-6جراحی باز:
رایج ترین درمان سرطان کولورکتال، جراحی است. جراح برای خارج نمودن تومور و قسمتی از نواحی سالم رکتوم و کولون، روی شکم برش بزرگی ایجاد می کند. (کاضمی اسکندانی 1388).
1-7-7شیمی درمانی
شیمی درمانی استفاده از داروهای ضد سرطان برای از بین بردن سلول های سرطانی است. داروهای شیمی درمانی وارد گردش خون شده و بر سلول های سرطانی تمام بدن اثر می کنند.
عوارض شیمی درمانی:
سلول های خونی: این سلول ها با عفونت مقابله نموده و به لخته شدن خون کمک می کنند، هم چنین اکسیژن را به تمام بافت های بدن حمل می کنند. ممکن است به علت تاثیر دارو روی سلول های خونی، عفونت و خونریزی های خودبخودی و کبودی، احساس ضعف و خستگی ایجاد شود.
سلول های ریشه مو: شیمی درمانی موجب ریزش مو می شود. باید دانست که موها مجدد رشد می کنند ولی ممکن است از نظر بافت و رنگ متفاوت باشد.
سلول های دستگاه گوارشی: شیمی درمانی موجب کاهش اشتها، تهوع و استفراغ، اسهال یا زخم های دهان و لب ها می شود. (کاضمی اسکندانی 1388).
1-7-8درمان بیولوژیکی:
.برخی از مبتلایان به سرطان کولورکتال انتشار یافته، نوعی درمان بیولوژیکی به نام آنتی بادی مونوکلونال دریافت می کنند. آنتی بادی های مونوکلونال به سلول های سرطانی کولورکتال می پیوندند و رشد و انتشار آن ها را مهار می کنند. (کاضمی اسکندانی 1388).
1-7-9پرتودرمانی ( درمان با اشعه )
دراین روش از اشعه های پرانرژی جهت از بین بردن سلول های سرطانی استفاده می شود. پرتودرمانی تنها در ناحیه تحت درمان، بر سلول های سرطانی تاثیر می گذارد. (کاضمی اسکندانی 1388).
1-7-9-1 انواع درمان با اشعه:
پرتو درمانی خارجی : دستگاهی بزرگ، اشعه هایی را به سمت موضع هدایت می کند.
پرتودرمانی داخلی: اشعه، توسط ماده رادیواکتیو قرار داده شده در لوله باریکی که مستقیما در داخل و یا نزدیک تومور کار گذاشته است، تابانده می شود.
پرتودرمانی حین جراحی: در برخی موارد، پرتو درمانی خارجی در طول جراحی داده می شود (کاضمی اسکندانی 1388).
CD166 یا ALCAM 8-1
ALCAM یا CD166 به عنوان مارکر های سلول های بنیادی سرطان کولورکتال عمل کرده و همچنین در تومور زایی سرطان کولورکتال نقش دارند و از آن می توان به عنوان یک مارکر جهت تشخیص زود هنگام و هم درمان سرطان کولورکتال استفاده کرد.دومین C2 پروتئین ALCAM یک دومین ایمونوگلوبولین می باشد که در بخش خارج سلولی قرار دارد.
همانطور که بیان شد ALCAM به عنوان مارکرسلول های بنیادی سرطان کولورکتال معرفی شده است.سلول های بنیادی سرطان زیرمجموعه کوچکی از سلول های سرطانی اند که توانایی منحصر به فردی در خود تجدیدی دارند.(یوسوکه شینوزاوا و همکاران،2013)
1- 9 ویژگی های عمومی ALCAM
ALCAM یک عضو از خانواده ایمونوگلوبولین است و بر اساس توانایی آن در باند شدن با cd6 شناسایی میشود و از سلولهای cos به همراه DNA آزمایشی استفاده میشود Bowen et al1995, Pate et al 1995)). ALCAM قادر است که واکنش متقابل هموفیلیک را همانند هتروفیلیک به کار اندازد. ژن انسانی برای ALCAM روی کروموزم 3 قرار گرفته است(3q33، 1q132) و از 16 اگزون تشکیل شده است که دارای اندازه ای بیش از kb 200 است. ALCAM یک نوع مولکول غشایی تیپ 1 است و دارای 500 اسید آمینه در ناحیه خارج سلول و 22 اسید آمینه در ناحیه گذرنده از غشا ، 34 اسید آمینه در ناحیه سیتوپلاسمیک و یک ناحیه مولکولی KDa 105 است.

شکل 1-5 نمای کلی پروتئین ALCAM (اولریج و همکاران ،2010)
1- 10 شناسایی ALCAM به عنوان یک هدف مرتبط با آنکولوژی
روشهای مختلف ژنومیک و پروتئومیک مختلف اشاره کرده اند که ALCAM به عنوان یک هدف مرتبط با آنکولوژی است. همانطور که بیان شد ALCAM به عنوان مارکرسلول های بنیادی سرطان کولورکتال معرفی شده است.سلول های بنیادی سرطان زیرمجموعه کوچکی از سلول های سرطانی اند که توانایی منحصر به فردی در خود تجدیدی دارند.(یوسوکه شینوزاوا و همکاران،2013) کارامدی و موفقیت درمان سرطان در مرحله ی اول با میزان بریدن توده تومور سنجیده می شود. اما سلول های بنیادی سرطان می توانند بخش خیلی کوچکی از بقایای تومور را تشکیل دهند و با فعالیت خود تومور جدیدی بسازند. روش های متداول شیمی درمانی سلول ها تمایز یافته یا درحال تمایز را که قسمت عمده ی توده تومور را شکل می دهند هدف قرار می دهند اما باید توجه داشت که این سلول ها تنها حجم تومور را می سازند و  قادر به تولید سلول های جدید نیستند و در پیشرفت بیماری و رشد تومور نقشی ندارند در حالیکه جمعیت سلول های سرطانی که سرطان و رشد تومور را سبب می شوند، دست نخورده و دور از چشم باقی مانده و باعث عود کردن بیماری می شوند.برخی محققان بر این باورند که در مرکز هر توموری تعداد کمی سلول های بنیادی نابهنجار قرار گرفته اند که رشد بافت های بدخیم و ناهنجار را تداوم می بخشند.اگر این نظر درست باشد، می تواند توضیح دهد که چرا تومورها اغلب حتی پس از اینکه به وسیله داروهای ضدسرطان تقریباً تخریب شده اند دوباره بازسازی می شوند. این حالت همچنین یک راهکار متفاوت برای ایجاد داروهای ضدسرطان را نشان می دهد و دال بر آن است که این داروها می بایستی برای از بین بردن سلول های بنیادی سرطانی و نه برای توانایی شان در از بین بردن هر سلولی و کوچک کردن تومورها، انتخاب شوند.چندین روش مبتنی بر روش های ژنومیکو پروتئومیکس این پروتئین را به عنوان یک هدف مرتبط با سرطان معرفی کرده اند.
این پروتئین هم چنین توسط چندین گروه به عنوان آنتی ژن سطحی سلول های بنیادی سرطان کولورکتال شناسایی شده است.(اولریچ وایدله وهمکاران ،2010 ) آنتی ژن ها مارکر های سطح سلولی اند و می توانند برای شناسایی گروه های سلولی که تشکیل دهنده یک ارگان هستند مورد استفاده قرار گیرند.این مارکرها را می توان جهت پیش بینی پاسخ به درمان ،مرتب سازی سلول های بنیادی سرطان، درمان سرطان و مرتب سازی رده های سلولی مورد استفاده قرار داد.(الوین لیو و همکاران، 2004).
این پروتئین نقش مهمی در تهاجم و پیشرفت تومور در سرطان کولورکتال دارد(جیایی وانگ و همکاران،2011).

1-6 رنگ آمیزی ایمنوهیستوشیمیایی ALCAM در بافت توموری(مرته تونه وایجر و همکاران،2010)
طبق گزارشات صورت گرفته بیش از 90% مرگ و میرهای سرطانی به دلیل متاستاز رخ میدهند.تومورهای اولیه میتوانند توسط جراحی یا درمانهای مکمل شیمیایی به خوبی درمان شوند، اما سرطانهایی که به مرحله متاستاز رسیدهاند به درمان مقاوماند. این خصوصیت مقاومت، دلیل فراوانی مرگ را در میان افراد دارای متاستاز نشان میدهد. بنابراین درمان موثر سرطان وابستگی زیادی به شناخت کامل فرایندهای ایجاد کننده متاستاز و فراهم کردن راهکارهایی برای مقابله با این پدیده دارد. متاستاز به مفهوم رشد، تکثیر و تهاجم سلولهای توموری در مکانهای متفاوت بدن میباشد)محمدرضا نوری دلویی و همکاران ،1391).هم چنین یکی از
معظلات اساسی که برای سرطان کولورکتال در نظر گرفته شده است متاستاز آن به خصوص به بافت های کبد و ریه می باشد.
در طول شکل گیری ضایعات توده ، سلول های سرطانی باید به یکدیگر متصل شوند بنابراین از مولکولهای چسبنده برای اینکه با هم بمانند استفاده می کنند.تومور می تواند از طریق افزایش حجم خود به ساختارهای مجاور به طور مستقیم هجوم برده و یا اینکه می توانند به سایت های دور متاستاز شوند.متاستاز هنگامی رخ می دهد سلول ها از تومور اولیه جدا شده و محیط خودشان را ترک کرده ، به رگ های خونی یا لمفاتیک حمله کرده و به مکان های دور مهاجرت کنند.با توجه به اهمیت این پروتئین در چسبندگی
سلول ها می توان نقش مهمی را برای این پروتئین در ایجاد متاستاز در سرطان کولورکتال قائل بود(سالمون اوفوری و جودی کینگ،2008).
مساله تحقیق:
در این مطالعه سعی بر آن داریم که با آنالیز بیوانفورماتیکی، کلونینگ و بیان یک دومین اختصاصی (دومینC2) پروتئین غشایی ALCAM که در سطح سلول های سرطانی کولورکتال است و پتانسیل موجود برای بهبود روشهای تشخیصی(تولید کیت های تشخیصی) قبل از وارد شدن به فاز بدخیمی، و گشایشی در تولید واکسن برای تقویت سیستم ایمنی فرد جهت پیش گیری از ابتلا به سرطان کولورکتال، را بررسی می کنیم.
با استفاده از فرآیند کلونینگ قطعه ژن اپتیمایز شده پروتئین ALCAM را به کمک وکتور وارد باکتری کامپتنت کرده و سپس باکتری حاوی ژن مورد نظر خود را از دیگر سلول ها جدا می کنیم و از آن ها استخراج پلاسمید انجام داده و سپس از طریق ساب کلونینگ ژن مورد نظر خود را وارد یک وکتور بیانی کرده و از سلول های ترنسفکت شده استخراج پروتئین انجام داده و سپس بیان پروتئین مورد نظر خود را بررسی می کنیم.
در این مطالعه فرضیه ای مطرح شد که مولکول دومین سنتز شده می تواند در میزبان پروکاریوتی کلون و بیان شود.
فصل 2:مروری بر تحقیقات انجام شده
کلونینگ و بیان این پروتئین در سال 1995 توسط مایک بوون و همکارانش شرح داده شد.آنها نشان دادند که آنتی بادی های CD166 به عنوان یک پروتئین ایمنوگلوبولین به CD6متصل می گردد.(مایکل بوون و همکاران ،1995؛ مایکل بوون و اروفو،1999).
CD166 نقش بسیار مهمی در تهاجم توموری دارد.(جیاجی وانگ و همکاران،2011)
چندین روش مبتنی بر روش های ژنومیک و پروتئومیکس این پروتئین را به عنوان یک هدف مرتبط با سرطان معرفی کرده اند.این پروتئین هم چنین توسط چندین گروه به عنوان آنتی ژن سطحی سلول های بنیادی سرطان کولورکتال شناسایی شده است.(اولریچ وایدله وهمکاران ،2010)
در آزمایشات صورت گرفته مرته تونه و همکارانش در شرایط آزمایشگاهی و هم چنین محیط زنده، آنتی بادی های ضد این مارکر اثر مهارکننده ایی بر سرطان کولورکتال از خود نشان دادند.در آزمایش آنها رنگ امیزی ایمنوهیستوشیمیایی برای این مارکر در تومور مثبت بود در صورتی که در اکثر تست هایی که بروی بافت های طبیعی انسان صورت گرفته بودALCAMمشاهده نشد. با توجه به منفی بودن رنگ آمیزی بافت نرمال انسان و مشاهده فعالیت ضد توموری این مارکر بر سرطان کولورکتال در داخل بدن آنتی بادی scFvیک کاندیدای بالقوه جهت درمان سرطان کولورکتال معرفی گردید(مرته تونه و همکاران، 2010).
هم چنین الگوی بیان این مارکر در بافت نرمال و توموری ، روده انسان و موش با استفاده از روش های ایمنوهیستوشیمی،فلوسیتومتری و واکنش زنجیره ایی پلی مراز ترانس کریپتاز معکوس مورد بررسی قرار
گرفت.در نهایت پس از بررسی صورت گرفته ALCAM را به عنوان یک مارکر بالقوه جهت اهداف درمانی برای سرطان کولورکتال معرفی کردند.(لوین و همکاران ،2010)
بیان ALCAM مارکر تشخیصی مثبتی برای بقای کلی بیماران مبتلا به سرطان کولورکتال می باشد و شناسایی آن ممکن است به بهینه سازی سیتسم مرحله بندی تشخیصی موجود کمک کند .افزایش بیان در تومورهای با تمایز بالا ممکن است مشخص کننده نقش بالقوه این مارکر در مراحل اولیه تومورزایی باشد،از دست دادن این پروتئین نیز ممکن است با کاهش چسبندگی سلولی همراه شود ، نتیجه پتانسل بالقوه بالای
تومور در متاستاز خواهد بود.این نتایج از طریق آنالیز ایمونوهیستوشیمیایی ALCAM که بروی نمونه بافتی بیماران تحت درمان صورت گرفته بود بدست آمد.(مایکل تاچزی و همکاران، 2010؛سالمون اوفوری و جودی کینگ،2008)
همچنین مشخص شده است که ریزش ALCAM در مراحل اولیه بیماری می تواند به عنوان یک مارکر تشخیصی دقیق برای شناسایی سریع بیمارانی که در معرض خطر پیشرفت بیماری هستند مورد استفاده قرار گیرد.(اماندا هنسن و همکاران ، 2013)
این نکته مشخص گردیده است ALCAM در دو نوع تعامل سلول –سلول هموفیلیک و هتروفیلیک به عنوان میانجی عمل می کند. مشخص شده گلیکوزیلاسیون پس از ترجمه هیچ اثری بروی خاصیت اتصالی هموفیلیک ندارد.(گیادو اسوارت،2002)
در مطالعاتی که جهت تهیه نقشه خانواده مولکلوهای ایمونوگلوبولین چسبنده سلولی ((Igfs صورت گرفته مشخص شده است که دومین های ناحیه C2 نقش بسیار مهمی در اتصال به لیگاند ایفا می کنند.) گیادو اسوارت و همکاران ،2002 ؛ کوین زن وهمکاران،1999)
تجزیه و تحلیل سلول هایی با مجموعه مولکول های سطحی EpCAMhigh/CD44+ منجر شناسایی CD166 به عنوان مارکر بیانی اضافی متفاوت، که جهت جداسازی سلول های بنیادی به شناسایی سرطان در سرطان کولورکتال مفید می باشد شد.(پیه رو دالربا و همکاران ،2006)
هم چنین پیشنهاد شده است که CD166 به همراه CD44 نیز می تواند نقش بالقوه ایی در سرطان کولورکتال انسانی ایفا کند زیرا سلول های موشی که برای هر دوی این ماکر ها مثبت بودند تومورزایی بسیار بیشتری در مقایسه با سلول هایی که تنها برای CD44 مثبت بودند داشتند.(کاترینا فانالی و همکاران ،2014)
در بیشتر مطالعاتی که اخیرا بروی بافت های سرطان کولورکتال صورت گرفته گزارش شده است که از دست دادن غشایی CD166 و CD44 استاندارد(CD44s) با تهاجم و بدتر شدن وضعیت بقا در ارتباط می باشد.(توماس برونر و همکاران ،2012)
هم چنین ترکیب مارکرهایCD166،CD44 و CD133 می تواند به طور موفق آمیزی جهت شناسایی بیمارانی که خطر متاستاز و عود بیماری در انها کم،متوسط و یا زیاد است در بیماران مبتلا به سرطان کولورکتال استفاده گردد.(یوسوکه شینوزووا و همکاران،2013)
همچنین در طی آزمایشی دیگری مشخص شد که ALCAM غالبا در سرطان کولورکتال روشن بوده و مارکر تشخیصی مستقل جدیدی می باشد ، که بر اهمیت آن در پیشروی تومور در سرطان کولورکتال تاکید شده است.( ویچرت و همکاران،2004)
بر اساس تحقیقی دیگری که بروی بیان CD166 صورت گرفت مشخص شد که موقعیت های مختلف سلولی این پروتئین ارزش تشخیصی متفاوتی دارند و بیان سیتوپلاسمی آن با نتایج تشخیصی بدتری همراه می باشد.هم چنین اینها متوجه شدند که بیان CD166 به صورت خاصی در انواع رده های توموری افزایش پیدا می کند.(چائو نی و همکاران،2013)
بیان بالای CD166 به همراه P21 در نمونه برداری های قبل درمان با عود تومور و پیش بینی ضعیف در بیماران درمان شده با 5-FU بر پایه شیمورادیوتراپی قبل عمل ارتباط داشت.البته برای تعیین نقش CD166 وP21 به عنوان نشانگرهای پیش بینی به پاسخ شیمورادیوتراپی قبل از عمل جراحی به مطالعات بزرگتر و کابردی تری در آینده نیاز می باشد.(سانگ هون سیم و همکاران،2014)
در تحقیقی بروی نمونه های کولکتومی به دست آمده از سرطان کولون به منظور بررسی ماکر CD166 صورت گرفت مشخص شد که بیش از دو سوم نمونه ها CD166 را بیان می کنند.هم چنین بیان غشایی CD166 مرتبط با سرطان کولورکتال در قسمت کولون این سرطان بیشتر می باشد. (شهریار صفایی و همکاران،2013)
فصل 3 : مواد و روش ها:
3-1 مواد مورد استفاده:
3-1-1 باکتری مورد استفاده
برای این مطالعه در مرحله کلونینگ ژن دومینC پروتئین ALCAM از باکتری E.coli سویه TOP10 و در مرحله ی ساب کلونینگ از باکتری E.coli سویه BL21(DE3)استفاده شد . این باکتری ها ابتدا بصورت لیوفیلزه بوده و سپس برای استفاده از آن، پودر باکتری را به 5 میلی لیتر محیط کشت مایع LB اضافه کرده و در دمای 37 درجه سانتیگراد به مدت یک شبانه روز کشت می دهیم.
3-1-2 آنزیم ها
از آنزیم های NcoI و XhoI که از شرکت فرمنتازخریداری و تهیه شدند و همچنین از آنزیم اتصال دهنده T4 DNA Ligase هم در مرحله ی Ligation استفاده شد. این آنزیم ها در دمایی 20- درجه سانتیگراد و در فریز نگهداری شدند.
3-1-3 پلاسمید
برای مرحله ی ساب کلونینگ از پلاسمید بیانی (pet-28a ) استفاده شد . این پلاسمید دارای جایگاه های مختلف برای انواع آنزیم های محدود کننده می باشد که می توان ژن مورد نظر را به کمک آنها وارد پلاسمید کرد. این پلاسمید دارای پارامترهای بیان کننده و همچنین جایگاه های برش آنزیمی دلخواه است و همچنین ژن مقاومت به آنتی بیوتیک کانامایسین را دارا بوده که به باکتری ترانسفورم شده امکان زنده بودن و بقاء در محیط کشت حاوی کانامایسین را می دهد. جهت بیان قطعه ژن کلون شده در آن هم دارای پارامتر های بیانی مانند پروموتر lac می باشد که در حضور القاگرIPTG شروع به بیان ژن مورد نظر می کند. نقشه ژنی پلاسمید pet-28a در شکل 3-1 نشان داده شده است.

شکل3-1 نقشه ژنی پلاسمید pet28
3-1-4 آنتی بیوتیک ها
از آنتی بیوتیک های آمپی سیلین و کانامایسین استفاده شد. که ابتدا این آنتی بیوتیک ها به غلظت مناسب رسانده شد و در تیوب های 5/1 میلی لیتری تقسیم گردید و سپس در شرایط دمایی20- درجه سانتیگراد و در فریز نگهداری شدند.
3-1-5 کیت های آزمایشگاهی
از کیت های استخراج DNA از ژل و استخراج پلاسمید که از شرکت فرمنتاز تهیه و خریداری شدند استفاده شد. که این کیت ها در شرایط دمایی 4 درجه سانتیگراد نگهداری شدند.
3-1-6 ژل الکتروفورز
برای ساختن ژل الکتروفورز از پودر آگارز Low که از شرکت هیسپانلب تهیه شد استفاده گردید و همچنین در ساختن ژل از رنگ اتیدیوم برماید و بافر TAE50X که آن را به یک ایکس رقیق نموده استفاده شد.
3-1-7 مواد شیمیایی
کلیه مواد شیمیایی از شرکت مرک آلمان با درجه ی خلوص بیولوژی مولکولی تهیه گردید و در مراحل مختلف مطالعه از جمله تولید ژل الکتروفورز (SDS-page ) مورد استفاده قرار گرفت.
3-1-8 محیط کشت باکتری
در این مطالعه از محیط کشت های آگار و محیط کشت LBآگار جهت تکثیر و رشد باکتری استفاده شد.
3-1-9 وسایل و تجهیزات آزمایشگاهی استفاده شده در این مطالعه
1- میکروتیوب های 2/0 ، 5/0 و 5/1
2- لوله ی آزمایش 160 × 16 سیماکس
3- پلیت یکبار مصرف 10 سانتیمتری
4- سمپلر در سایزهای مختلف
5- نوک سمپلر آبی، زرد، کریستالی
6- انکوباتور ساخت شرکت ممرت ایالات متحده امریکا (شکل 3-2 )

شکل3-2 دستگاه انکوباتور
7- اتوکلاو جهت ضد عفونی کردن وسایل پلاستیکی و محیط کشت ها(شکل 3-3)

شکل3-3 دستگاه اتوکلاو
8- دستگاه فور جهت ضد عفونی کردن وسایل شیشه ای
9- تانک الکتروفورز (SDS-Page )
10- تانک الکتروفوز افقی
11- دستگاه مولد ولتاژ (شکل 3-4 )

شکل3-4 دستگاه مولد ولتاژ و تانک الکتروفورز
12- شیکرانکوباتور ساخت (شکل 3-5 )

شکل 3-5 شیکر انکو باتور
14- سانتریفیوژ ساخت شرکت اپندور آلمان (شکل 3-6 )

شکل 3-6 سانتریفیوژ
14- گرماساز
16- دستگاه تصویر ساز ژل ( شکل3-7)

شکل3-7 دستگاه تصویر ساز ژل
17- انکی باتور شانزده درجه ( شکل 3-8 )

شکل3-8 انکی باتور شانزده درجه
18- بن ماری (شکل 3-9 )

شکل3-9 بن ماری
19.سانتریفیوژ یخچال دار
3-2 آنالیز بیوانفورماتیکی ناحیه C2 پروتئیینALCAM
3-2-1 استخراج توالی ناحیه C2 پروتئیین ALCAM
توالی مورد نظر از طریق سایت های Swiss-port / Uniprot KB و مرکز ملی اطلاعات ADDIN EN.CITE <EndNote><Cite Hidden="1"><Author>Online</Author><RecNum>84</RecNum><record><rec-number>84</rec-number><foreign-keys><key app="EN" db-id="vpp0ad9pgwdrfoefffjxvv9er2zwf0z0ep5z">84</key></foreign-keys><ref-type name="Online Database">45</ref-type><contributors><authors><author>Server Online</author></authors></contributors><titles><title>National Center for Biotechnology Information</title></titles><dates></dates><pub-location>www.ncbi.nlm.nih.gov</pub-location><urls><related-urls><url>www.ncbi.nlm.nih.gov</url></related-urls></urls></record></Cite></EndNote> بیوتکنولوژی (NCBI) بدست آورده شد. سپس در انتهای 3' توالی مورد نظر ، 6 اسید آمینه ی هیستیدین (His-Tag ) قرار داده شد و کدون پایان (TAA ) هم بعد از آن قرار گرفت. در انتها نیز جایگاه های برش آنزیمی برای آنزیم های محدود کننده NcoI در سر '5 توالی و جایگاه برش آنزیمی برای آنزیم محدود کننده XhoI در سر '3 توالی قرار داده شد.
3-2-2 بهینه سازی یا Optimization توالی ناحیه C2 پروتئیینALCAM
از آنجای که ثابت شده فرآیند گلیکوزیلاسیون به نحوه اتصال این پروتئین در واکنش های هموفیلیک تاثیری ندارد میزبان پروکاریوتی E.coli برای فرآیند کلونینگ انتخاب شد. برای دستیابی به بیشترین میزان بیان صحیح در E.coli توالی 792 نوکلئوتیدی ناحیه C2 پروتئیینALCAM طراحی شده توسط شرکت Genscript ایالات متحده آمریکا بهینه سازی شد.
پارامترهایی که توسط این شرکت برای فرآیند بهینه سازی در نظر گرفته شد، شامل موارد زیر می شود :
codon usage میزبان
محتوای CG
ساختار دوم mRNA پیش بینی شده .
از بین بردن نواحی برش ناخواسته .
جایگاه های آنزیمی آنزیم های محدودالاثر که ممکن است در فرآیند کلونینگ اختلال ایجاد کنند.
6.به حداقل رساندن نواحی تکرار شونده مستقیم یا غیر مستقیم.
3-3 سنتز شیمیایی DNA ناحیه C2 پروتئین ALCAM
3-3-1 سنتز شیمیایی ژن نوترکیب
توالی طراحی شده ناحیه C2 پروتئین ALCAM توسط شرکت Biomatik کانادا بصورت شیمیایی سنتز شد و درون وکتور pBSK قرار داده شد.
3-3-2 پایداری و شرایط نگهداری DNA سنتز شده
DNA لیوفیلیزه شده را می توان توسط بافر TE استریل یا آب بدون نوکلئاز در PH طبیعی و با توجه به امکانات محیط آزمایشگاه بصورت محلول در آورد. و سپس می توان آن را در دمای بین20- تا 80- درجه سانتیگراد برای مدت طولانی نگهداری کرد. DNA لیوفیلیزه شده، محلول شده به کمک بافر TE می تواند به مدت 6 ماه در دمای 4 درجه سانتیگراد نگهداری شود در صورتی که اگر از آب برای محلول سازی استفاده شود امکان نگهداری در 4 درجه سانتیگراد وجود ندارد.
3-3-3 محلول سازی DNA لیوفیلیزه
قبل از باز کردن تیوب حاوی DNA ، ابتدا بهتر است به مدت چند ثانیه تیوب را سانتریفیوژ کنیم تا DNA های متصل به دیواره جدا شوند. در صورت عدم سانتریفیوژ ممکن است مقداری از ذخیرهی DNA در هنگام برداشتن آن به دیواره های سر سمپلر بچسبد و از دسترس خارج شود.
1.استوک اصلی: µg 10 از DNA لیوفیلیزه در µl 100 از بافر TE حل شد.
2. استوک مورد استفاده: در یک میکروتیوب دیگرµl 1 از استوک اصلی در µl10 از بافر TE حل شد. ( غلظت نهایی به ng/ µl10 رسید.)
3-4 کلونینگ پلاسمید- AMP+ pBSK حاوی DNA ناحیهC2پروتئین ALCAM
3-4-1 آماده سازی باکتری شایسته
جهت آماده سازی باکتری Top 10 برای پذیرش پلاسمید ابتدا باید آن را کامپتنت یا شایسته سازی کرد.
3-4-1-1 مواد و محلول ها
- محلول کلرید کلسیم 0.1 مولار
- LB براث بدون آنتی بیوتیک
- LB براث حاوی آمپی سیلین ( پس از ساختن براث و سپس سرد شدن آن بعد از اتوکلاو کردن، آمپی سیلین به محیط کشت افزوده شد. غلظت آمپی سیلین باید حدود 100 میکروگرم در هر میلی لیتر باشد )
- LB آگار حاوی آمپی سیلین ( روش تهیه دقیقا مشابه LB براث است ).
3-4-1-2 روش کار
باکتری را در محیط کشت فاقد آمپی سیلین کشت داده.
2- برای مدت24 ساعت (over night) محیط کشت را در انکوباتور قرار داده، یک تک کلون از آن را انتخاب کرده و به 5 میلی لیتر محیط LB مایع بدون آمپی سیلین تلقیح می کنیم و سپس به مدت یک شب تا صبح در شکیرانکوباتور قرار می دهیم تا باکتری رشد کنند.
3- 400 میکرو لیتر از محیط فوق را به 5 میلی لیتر محیط LB براث تازه تلقیح نموده و مجددا آن را به مدت 2تا 3 ساعت در شیکرانکوباتور قرار می دهیم. تا محیط کدورت مناسب یعنی جذب 5/0 تا 8/0 در500 نانومتر را به ما می دهد در این حالت باکتری در فاز رشد لگاریتمی خود قرار دارد.
4- باکتری هایی که به این طریق تازه گشته و در فاز لگاریتمی تکثیر می باشند را در چند میکروتیوب استریل توزیع کرده و 5 الی 10 دقیقه روی یخ نگه می داریم.
5- میکروتیوب ها را 3 دقیقه در 9000 دور سانتریفیوژ می کنیم.
6- مایع رویی را دور ریخته و رسوب باکتری را در یک میلی لیتر محلول استریل 1/0 مولار کلرید کلسیم حل می کنیم .
7- 20 تا 30 دقیقه محلول مذکور را روی یخ انکوبه می کنیم .
8- این بار رسوب را در 600 میکرولیتر محلول کلرید کلسیم استریل 1/0 مولار حل می کنیم .
9- 20 تا 30 دقیقه محلول را روی یخ انکوبه می کنیم.
10- سپس محلول را به مدت 3 دقیقه در9000 دور سانتریفیوژ می کنیم .
11- رسوب را در 300 میکرولیتر محلول کلرید کلسیم استریل حل میکنیم.
12- به مدت 20 دقیقه محلول را بر روی یخ قرار می دهیم.
این باکتری ها تا 72 ساعت روی یخ در یخچال قابل نگهداری می باشند و می توان با افزودن گلیسرول استریل 30 درصد آن ها را در 70- درجه سانتیگراد به مدت چند ماه نگهداری کرد .
3-4-2 ترانسفورماسیون پلاسمید به سلول های مستعد TOP10 E.coli
بدین منظور از سویه E.coli Top10 که یکی از رایج ترین سویه های کلونینگ است استفاده می کنیم. این باکتری به تنهایی حساس به آمپی سیلین است و نمی تواند در محیط حاوی آمپی سیلین رشد نماید ولی وقتی وکتور را جذب کند نسبت به آنتی بیوتیک آمپی سیلین مقاوم شده و بر روی آگار حاوی آمپی سیلین رشد می کند .3-4-2-1 روش کار:
1- 50 میکرولیتر سوسپانسیون سلولی شایسته را ابتدا روی یخ ذوب می کنیم.
2- 2 میکرولیتر از پلاسمید AMP+-pBSK حاوی DNA ناحیه C2پروتئینALCAM را به آن اضافه می کنیم .
3- این مخلوط را به مدت 30 دقیقه روی یخ قرار می دهیم .
4- نمونه ها را به مدت 90 ثانیه در بن ماری 42 درجه سانتیگراد قرار می دهیم و بلافاصله به روی یخ منتقل می کنیم و 5 دقیقه اجازه می دهیم بدون حرکت روی یخ بماند.5- مخلوط فوق را به 900 میکرولیتر از محیط LB فاقد آمپی سیلین افزوده و آن را به مدت 5/1 ساعت در شیکر انکوباتور 37 درجه قرار می دهیم تا باکتری های ترانسفورم شده بتواند شروع به تکثیر نمایند.
6- مخلوط فوق را به مدت 3 دقیقه در 9000 دور سانتریفیوژ می کنیم .
7- 700 میکرولیتر از مایع رویی را دور ریخته و رسوب را در 250 میکرولیتر باقی مانده خوب حل می کنیم.
8- 100 میکرولیتر را روی یک پلیت LB آگار و150 میکرولیتر را روی یک پلیت دیگر دارای LB آگار آمپی سیلین دار ریخته و کشت سه قسمتی می دهیم ، اجازه می دهیم کاملا جذب محیط شده و سپس آن ها را به مدت 18 تا 20 ساعت در انکوباتور 37 درجه نگهداری می کنیم .
9. 100 میکرولیتر از باکتری شایسته شده که عمل ترانسفوماسیون را روی آن انجام نداده ایم برای کنترل منفی روی پلییتLB آگار کشت می دهیم به مدت 18 تا 20 ساعت در انکوباتور 37 درجه نگهداری می کنیم.
3-4-3 ارزیابی کلونی ها
پس از 18 تا 20 ساعت پلیت ها را ارزیابی می کنیم، پلیت داری باکتری ترانسفورم شده تشکیل کلونی داد و پلیت حاوی باکتری ترانسفورم نشده نباید تشکیل کلونی دهد چون ژن مقاومت به آنتی بیوتیک را دریافت نکرده است. پس از انکوباسیون در 37 درجه سانتیگراد اندازه کلونی ها به حدود 1 تا 2 میلی متر می رسد . یک تک کلونی را جدا کرده و در 5 میلی لیتر LB براث آمپی سیلین دار تلقیح می نمائیم و به مدت یک شب در 37 درجه و با سرعت مناسب شیکر انکوبه می نمائیم . با رشد باکتری در این محیط تایید می شود که باکتری، پلاسمید حاوی ژن ما را دریافت کرده است.

3-4-4 استخراج پلاسمید - AMP+ pBSK حاوی DNA ، C2 پروتئین ALCAM
اساس استخراج پلاسمید مبتنی بر لیز قلیایی و متعاقب آن جذب DNA توسط سیلیکا است و سپس جداسازی پلاسمید از ستون می باشد. برای استخراج پلاسمید از کیت تهیه شده از شرکت فرمنتاز لیتوانی استفاده شد . ( شکل 3-10 )

شکل3-10 کیت استخراج پلاسمید
روش کار :
1- از محیط کشتLB مایع حاوی باکتری ترانسفورم شده که به مدت یک شبانه روز در دمای 37 درجه انکوبه شده است و کاملا بصورت کدر درآمده است ، 5/1 میلی لیتر جدا کرده و داخل میکروتیوب 5/1 می ریزیم.
2- سپس به مدت 3 دقیقه در 9000 دور سانتریفیوژ می کنیم .
3- محیط روئی را دور ریخته و باکتری در ته میکروتیوب رسوب می کند.
نکته:
برای استخراج غلظت بالاتری از پلاسمید می توان مراحل قبل را تا اتمام محیط کشت5 میلی لیتری تکرار کرد.
4- در این مرحله 250 میکرولیتر از بافر محلول کننده که دارای RNAase است به رسوب باکتری اضافه کرده و مخلوط را کاملا هم می زنیم تا رسوبی در ته میکروتیوب باقی نماند و تمامی آن در حلال حل شود.
5- 250 میکرولیتر از محلول لیزکننده به مخلوط اضافه می کنیم سپس آن را 4 تا 6 بار سروته می کنیم تا کاملا مخلوط شود. این بافر کاملا باکتری را لیز می کند.
6- در مرحله ی بعد 350 میکرولیتر از بافر خنثی کننده به مخلوط مرحله قبل اضافه می کنیم . سپس سریعا میکروتیوب را چند بار سر و ته می کنیم تا باکتری های لیز شده به حالت ابری شکل لخته شوند.
7- سپس به مدت 5 دقیقه در 9000 دور محلول را سانتریفیوژ کرده تا قطعات باکتری رسوب کنند.
8- محلول روئی را نگه داشته و رسوب را دور می ریزیم.
9- محلول رویی به ستون استخراج پلاسمید منتقل می کنیم . این ستون حاوی سیلیکا است که پلاسمید را جذب می کند.
10- ستون حاوی محلول را به مدت 1 دقیقه در 12000 دور سانتریفیوژ می کنیم .
11- محلول روئی را دور می ریزیم.
12- به ستون 500 میکرولیتر بافر شستشو اضافه می کنیم .
13- به مدت 45 ثانیه در 000/12 دور ستون را سانتریفیوژ می کنیم .
14- مرحله12و13 را یک بار دیگر تکرار می کنیم .
15- محلول درون ستون را دور می ریزیم.
16- ستون را به مدت 1 دقیقه دیگر در 000/12 دور سانتریفیوژ می کنیم تا الکل موجود در بافر شستشو که در مرحله ی قبل مورد استفاده قرار گرفت کاملا از ستون خارج شود زیرا الکل مانع واکنش های آنزیمی می باشد.ستون را به مدت 15 دقیقه در دمای محیط قرار می دهیم تا الکل آن به طور کامل تبخیر شود.
17- ستون را درون یک میکروتیوب 5/1 قرار می دهیم و سپس بافر جدا کننده را به میزان 50 میکرولیتر به ستون اضافه می کنیم . بافر جدا کننده دقیقا باید بر روی سیلیکا ریخته شود. 2 الی 3 دقیقه در دمای اتاق ستون را نگه می داریم تا بافر کاملا به سیلیکا نفوذ کند.
18- به مدت 2 دقیقه در 000/12 دور ستون را در درون میکروتیوب5/1 سانتریفیوژ می کنیم .
19- ستون را دور ریخته و محلول درون میکروتیوب حاوی پلاسمید استخراج شده است.
3-4-5 تایید آنزیمی پلاسمید استخراج شده
بعد از استخراج پلاسمید - AMP+ pBSK که حاوی ژن C2 پروتئین ALCAM سنتز شده توسط کمپانی می باشد، با توجه به جایگاههای آنزیمی در نظر گرفته شده در ابتدا و انتهای ژن سنتز شده می توان از آن ها جهت تایید حضور ژن در پلاسمید استفاده کرد و سپس محصول هضم آنزیمی دوگانه جهت بررسی بر روی ژل آگارز برده تا قطعات مورد نظر مربوط به پلاسمید و ژن سنتز شده مشاهده شوند.
3-4-5-1 هضم آنزیمی دوگانه یا Double digestion
با توجه به سازه ی طراحی شده از دو آنزیم محدود کننده ی Nco1 و XhoI جهت تایید آنزیمی استفاده شد. مراحل انجام کار به شکل زیر است:
1- ابتدا باید بافر مناسب برای هضم دوگانه آنزیم های NcoI و XhoI را انتخاب کنیم که این کار را با کمک سایت شرکت تولید کننده آنزیم ها یعنی فرمنتاز لیتوانی انتخاب می کنیم . بهترین شرایط بافری برای این واکنش بافرx2 تانگو می باشد .
2- یک میکروتیوب 2/0 برمی داریم و محتویات واکنش که توسط سایت فرمانتاز انتخاب کردیم را به صورت زیر در آن مخلوط می کنیم .
آب استریل: 12 میکرولیتر
بافر تنگو x2 : 4 میکرولیتر
آنزیم NcoI : 1 میکرولیتر
آنزیم XhoI : 1 میکرولیتر
پلاسمید : 2 میکرولیتر
حجم نهایی واکنش:20 میکرولیتر
3- میکروتیوب را به مدت 1 الی2 ساعت در انکوباتور 37 درجه سانتیگراد ( دمای اپمتیموم واکنش آنزیم ها ) قرار می دهیم .
3-4-5-2 الکتروفورز
جهت جداسازی قطعات حاصل از هضم دو گانه آنزیمی از الکتروفورز استفاده می شود.
3-4-5-2-1 تهیه بافر 50x TAE
برای تهیه بافر TAE 50x از موارد زیر استفاده می بریم:
Tris : 5/60 گرم
EDTA 5/0 مولار ( در 8 PH = ) : 25 میلی لیتر
اسید استیک: 28/14 میلی لیتر
آب استریل: به مقداری که حجم نهایی به 250 میلی لیتر برسد.
حجم نهایی:250 میلی لیتر
نکته: برای اینکه بافر 50x TAE را به بافر TAE 1x مورد استفاده دربیاوریم آن را در حجم مناسب رقیق می کنیم .
3-4-5-2-2 تهیه ژل آگارز
برای جداسازی قطعات حاصل از هضم دوگانه آنزیمی از ژل آگارز Low استفاده می کنیم . برای تهیه ی ژل 1.5 درصد آگارز، 0.45 گرم آگارز را در 30 میلی لیتر از بافر TAE 1x حل می کنیم و با چرخاندن آرام ارلن به خوبی آن را مخلوط می کنیم . به مدت مناسب به کمک یک گرماساز آن را حرارت می دهیم تا کاملا ذوب شود. این عمل تا آستانه جوشیدن ژل ادامه می یابد ولی نباید به مرحله جوشیدن برسد. باید دقت شود که ژل به طور کامل حل شده و محلول کاملا شفاف شود.
پس از این که محلول آگارز به طور نسبی تا دمای 50 تا 60 درجه سرد شد(زمانی که دست را نسوزاند) ، رنگ گرین ویوئریا اتیدیوم برماید را به میزان 2 میکرولیتر به آن اضافه می کنیم و به ظرف مناسب شانه دار منتقل می کنیم و در دمای محیط قرار می دهیم تا ژل سفت شود و ببندد(تقریبا 15 دقیقه) . این ژل در حضور بافر TAE 1x تا یک هفته در دمای 4 درجه قابل نگه داری است.
3-4-5-2-3 Run کردن نمونه
پس از بسته شدن کامل ژل، آن را درون تانک قرار می دهیم به نحوی که چاهک ها به سمت قطب منفی قرار گیرند . تانک الکتروفورز را با بافر TAE 1x پر می کنیم تا حدی باشد که به طور کامل روی ژل را بپوشاند.
نمونه را با 2میکرولیتر (loading dye) مخلوط کرده و در درون چاهک ریخته ومقدار 2میکرولیتر از یک مارکر با وزن مولکولی kb 1 هم جهت شناسایی سایز قطعات در یکی از چاهک ها استفاده می کنیم .
تانک الکتروفورز را به منبع تولید ولتاژ وصل کرده و با ولتاژ 120 ولت و 55 آمپر الکتروفورز را انجام می دهیم .
وقتی رنگ تا حدود 3/2 ژل پیشرفت کرد تانک را از منبع نیرو جدا کرده و ژل را به کمک دستگاه Gel) (documentation مورد بررسی قرار می دهیم .
3-5 ساب کلونینگ ژن ناحیهC2 پروتئینALCAM
جهت بیان ژن ناحیهC2 پروتئین ALCAM از باکتری E.coli BL21(DE3) استفاده شد . ابتدا ژن مورد نظر از روی ژل اگارز مرحله الکتروفورز با استفاده از کیت خالص سازی شد و سپس به کمک تکنیک Ligation با پلاسمید pet-28a ترکیب شد . سپس این ترکیب به سلول های شایسته ی E.Coli BL21 ترانسفورم شد.
3-5-1 تخلیص DNA ناحیهC2 پروتئین ALCAMاز ژل
برای تخلیص از کیت استخراج DNA از ژل تولیدی شرکت فرمنتاز لیتوانی استفاده شد. (شکل 3-11 )

شکل 3-11. کیت استخراج DNA از ژل فرمنتاز
روش انجام آن بصورت زیر می باشد:
1- به کمک یک اسکالپل استریل، ناحیه ای از ژل که DNA ناحیهC2 پروتئینALCAM در آن قرار دارد را جدا کرده و به قطعات کوچک تقسیم می کنیم برای راحت ذوب شدن ژل .
2- به ژل حاوی DNA نوترکیب ، 400 میکرولیتر Binding Buffer در داخل یک میکروتیوب اضافه می کنیم.
3- مخلوط را به داخل بن ماری 55 درجه انتقال داده و به مدت 5 دقیقه انکوبه می کنیم برای سهولت در ذوب شدن کامل ژل آن را هر 2 دقیقه هم می زنیم .
4- 5 میکرولیتر سیلیکا به مخلوط اضافه می کنیم .
5- 5 دقیقه در بن ماری 55 درجه قرار می دهیم تا سیلیکا به خوبی حل شود.
6- به مدت 10 ثانیه میکروتیوب را سانتریفیوژ کرده تا سیلیکا رسوب کند . محلول رویی را دور می ریزیم.
7- 500 میکرولیتر washing buffer به میکروتیوب اضافه کرده و به کمک ورتکس به خوبی مخلوط می کنیم.
8- به مدت 10 ثانیه میکروتیوب را سانتریفیوژ کرده و محلول رویی را دور می ریزیم.
9- مرحله ی 7 و 8 را دوبار دیگر تکرار می کنیم تا تمام الکل موجود از مرحله ی قبل حذف شود ( الکل ممکن است از واکنش های آنزیمی مراحل بعدی جلوگیری کند).
10- 30 میکرولیتر بافر TE به رسوب اضافه کرده و ورتکس می کنیم تا کاملا با محتویات میکروتیوب مخلوط شود .
11- میکروتیوب را به مدت 5 دقیقه در 55 درجه قرار می دهیم.
12- به مدت 1 دقیقه میکروتیوب را در 000/15 دور سانتریفیوژ کرده تا تمامی ترکیبات جامد ته نشین شود . اینک محلول رویی حاوی DNA تخلیص شده است.
3-5-2 لایگیشن
برای اتصال DNA ناحیهC2 پروتئینALCAM استخراج شده از ژل، با پلاسمید بیانی pet-28a در آزمایشگاه از آنزیم لیگاز استفاده می شود که می تواند اتصالات فسفودی استری شکسته شده را ترمیم کند. این آنزیم از فاژ T4 استخراج شده است و انرژی لازم برای فعالیت خود را از ATP تامین می کند و می تواند هم انتهاهای صاف و هم چسبنده را به هم متصل کند.
روش انجام این عمل به شکل زیر است:
1- محتویات واکنش را بصورت زیر مخلوط می کنیم.
بافر لایگیشن x 10 : 3 میکرولیتر
آب استریل: 9 میکرولیتر
DNA لیگاز T4 : 1 میکرولیتر
پلاسمید Pet-28a : 2 میکرولیتر
Insert (DNA ناحیهC2 پروتئینALCAM) : 15 میکرولیتر
حجم نهایی: 30 میکرولیتر
نکته : در آخرین مرحله آنزیم T4، DNA لیگاز اضافه شود. چون اگر بعد از اضافه کردن آنزیم T4 ، محلول برای مدت طولانی در محیط بماند با توجه به قدرت بالای اتصال T4 اتصال های که مورد نظر ما نیست اتفاق خواهد افتاد.
2- به کمک دستگاه ترموسایکلر میکروتیوب حاوی مخلوط واکنش را به مدت 4 ساعت در 16 درجه سانتیگراد سپس به مدت یک شب در دمای 4 درجه سانتیگراد قرار می دهیم .
3-5-3 ترانسفورماسیون
برای این مرحله از سویه E.coli BL21(DE3) که یکی از رایج ترین سویه های کلونینگ است استفاده می کنیم . این باکتری به تنهایی حساس به کانامایسین است ولی وقتی وکتور pet-28a را جذب می کند نسبت به آنتی بیوتیک مقاوم شده و بر روی آگار حاوی کانامایسین رشد، و تشکیل کلونی می دهد .
3-5-3-1 آماده سازی سلول های شایسته
1- باکتری در محیط کشت فاقد کانامایسین کشت داده شد.
2- پس از 24 ساعت نگهداری در انکوباتور ، یک تک کلونی را برداشته و به 5 میلی لیتر محیط LB مایع بدون کانامایسین تلقیح می کنیم و سپس به مدت یک شب تا صبح(over night) در شکیرانکوباتور قرار می دهیم تا باکتری رشد کنند.
3- 400 میکرولیتر از محیط فوق را به 5 میلی لیتر محیط LB مایع تازه تلقیح نموده و مجددا در شیکرانکوباتور قرار می دهیم . 2 تا 3 ساعت بعد محیط کدورت مناسب یعنی جذب 5/0 تا 8/0 در500 نانومتر را به ما می دهد.در این حالت باکتری ها در مرحله فاز رشد لگاریتمی قرار دارد.
4- باکتری هایی که تازه شده و در فاز لگاریتمی تکثیر می باشند را در چند میکروتیوب استریل تقسیم کرده و 5 الی 10 دقیقه روی یخ نگه می داریم .
5- میکروتیوب ها را 3 دقیقه در 9000 دور سانتریفیوژ می کنیم.
6- مایع روئی را دور ریخته و رسوب باکتری را در یک میلی لیتر محلول استریل 1/0 مولار کلرید کلسیم حل می کنیم .
7- 20 تا 30 دقیقه محلول مذکور را روی یخ انکوبه می کنیم .
8.سپس محلول را به مدت 3 دقیقه در9000 دور سانتریفیوژ می کنیم. و محلول روی را دور ریخته
9- این بار رسوب را در 600 میکرولیتر محلول کلرید کلسیم استریل 1/0 مولار حل می کنیم .
10- 20 تا 30 دقیقه محلول را روی یخ انکوبه می کنیم.
11- سپس محلول را به مدت 3 دقیقه در9000 دور سانتریفیوژ می کنیم. و محلول روی را دور ریخته
12- رسوب را در 300 میکرولیتر محلول کلرید کلسیم استریل حل میکنیم.
13- به مدت 20 دقیقه محلول را بر روی یخ قرار می دهیم.
این باکتری ها را می توان برای مدت 72 ساعت روی یخ در یخچال نگهداری کرد و همچنین می توان با افزودن گلیسرول استریل 30 درصد آن ها را در 70- درجه سانتیگراد به مدت چند ماه نگهداری کرد .
3-5-3-2 ترانسفورماسیون سلول های شایسته E.coli BL21(DE3) با محصول لایگیشن به روش شوک حرارتی
1- ابتدا 100 میکرولیتر از سلول های مستعد E.coli BL21(DE3) را روی یخ ذوب می کنیم.
2- 30 میکرولیتر از محصول لایگیشن را به 100 میکرولیتر از سلول های مستعد اضافه می کنیم به طوری که کاملا با هم مخلوط شوند.
3- این مخلوط را به مدت 30 دقیقه بر روی یخ انکوبه می کنیم.
4- نمونه ها را به مدت 90 ثانیه در بن ماری 42 درجه سانتیگراد قرار می دهیم و بلافاصله به مدت 5 دقیقه روی یخ قرار می دهیم، بدون حرکت و کاملا ثابت.
5- مخلوط فوق را به 900 میکرولیتر از محیط LB مایع فاقد کانامایسین افزوده و آن را به مدت 5/1 ساعت در شیکر انکوباتور 37 درجه قرار می دهیم تا باکتری های ترانسفورم شده بتواند شروع به تکثیر نمایند.
6- مخلوط فوق را به مدت 3 دقیقه در 9000 دور سانتریفیوژ می کنیم .
7- 800 میکرولیتر از مایع روئی را دور ریخته و رسوب را در 230 میکرولیتر باقی مانده، به خوبی حل می کنیم .
8- 230 میکرولیتر را روی یک پلیت حاوی LB آگار کانامایسین دار ریخته و کشت سه قسمتی می دهیم ، اجازه می دهیم کاملا جذب محیط شده و سپس آن ها را به مدت 18 تا 20 ساعت در انکوباتور 37 درجه نگهداری می کنیم .
3-5-4 ارزیابی کلونی ها
پس از مدت18 تا 20 ساعت در انکوباتور باکتری BL21 بر روی محیط کشت تشکیل کلونی می دهد. یک تک کلونی را جدا کرده و در 5 میلی لیتر محیط LB براث کانامایسین دار تلقیح می نمائیم و به مدت
یک شب در 37 درجه و با سرعت مناسب در شیکر انکوباتور قرار می دهیم. با رشد باکتری در این محیط تایید می شود که باکتری Bl21(DE3) ، پلاسمید بیانی pet-28a حاوی ژن ما را دریافت کرده است.
3-5-5 استخراج پلاسمید بیانی pet-28a حاوی ژن ناحیه C2 پروتئیین ALCAM
جهت تایید وجود پلاسمید pet-28a در باکتری و عدم وجود هرگونه آلودگی در محیط کشت نیاز است که وجود پلاسمید مورد نظر تایید شود، بدین منظور از محیط کشت حاوی باکتری ترانسفورم شده BL21(DE3) استخراج پلاسمید صورت گرفت.
1- از محیط کشت حاوی باکتری ترانسفورم شده که به مدت یک شبانه روز در دمای 37 درجه انکوبه شده است و کاملا بصورت کدر درآمده است ، 5/1 میلی لیتر جدا کرده و داخل میکروتیوب 5/1 می ریزیم.
2- سپس به مدت 3 دقیقه در 9000 دور سانتریفیوژ می کنیم .
3- محیط روئی را دور ریخته و باکتری در ته میکروتیوب رسوب می کند .
نکته:


برای استخراج غلظت بالاتری از پلاسمید می توان مراحل قبل را تکرار کرد.
4- در این مرحله 250 میکرولیتر از بافر محلول کننده که دارای RNAase است به رسوب باکتری اضافه کرده و مخلوط را کاملا هم می زنیم تا رسوبی در ته میکروتیوب باقی نماند و تمامی آن در حلال حل شود.
5- 250 میکرولیتر از محلول لیزکننده به مخلوط اضافه می کنیم سپس آن را چند بار سروته می کنیم تا کاملا مخلوط شود . این بافر کاملا باکتری را لیز می کند.
6- در مرحله ی بعد 350 میکرولیتر از بافر خنثی کننده به مخلوط مرحله قبل اضافه می کنیم . سپس سریعا میکروتیوب را چند بار سر و ته می کنیم تا باکتری های لیز شده به حالت ابری شکل لخته شوند.
7- سپس به مدت 5 دقیقه در 9000 دور محلول را سانتریفیوژ کرده تا قطعات باکتری رسوب کنند.
8- محلول روئی را نگه داشته و رسوب را دور می ریزیم.
9- محلول روئی به ستون استخراج پلاسمید منتقل می کنیم . این ستون حاوی سیلیکا است که پلاسمید را جذب می کند.
10- ستون حاوی محلول را به مدت 1 دقیقه در 12000 دور سانتریفیوژ می کنیم .
11- محلول روئی را دور می ریزیم.
12- به ستون 500 میکرولیتر بافر شستشو اضافه می کنیم .
13- به مدت 45 ثانیه در 000/12 دور ستون را سانتریفیوژ می کنیم .
14- مرحله 12 و 13 را یکبار دیگر تکرار می کنیم .
15- محلول درون ستون را دور می ریزیم.
16- ستون را به مدت 1 دقیقه دیگر در 000/12 دور سانتریفیوژ می کنیم تا الکل موجود در بافر شستشو که در مرحله ی قبل مورد استفاده قرار گرفت کاملا از ستون خارج شود زیرا الکل مانع واکنش های آنزیمی می باشد.
17- ستون را درون یک میکروتیوب 5/1 قرار می دهیم و سپس بافر جدا کننده را به میزان 50 میکرولیتر به ستون اضافه می کنیم . بافر جدا کننده دقیقا باید بر روی سیلیکا ریخته شود. 2 الی 3 دقیقه در دمای اتاق ستون را نگه می داریم تا بافر کاملا به سیلیکا نفوذ کند.
18- ستون را در داخل میکروتیوپ 5/1 قرار داده و به مدت 2 دقیقه در 000/12 دور سانتریفیوژ می کنیم
19- ستون را دور ریخته و محلول درون میکروتیوب حاوی پلاسمید استخراج شده است.
3-5-6 تایید آنزیمی پلاسمید استخراج شده
بعد از استخراج پلاسمید بیانی pet-28a که حاوی ژن ناحیهC2 پروتئین ALCAM است که به کمک تکنیک لایگیشن به آن انتقال داده شده است، و برای تایید حضور ژن از جایگاه برش آنزیمی که در دو طرف، ابتدا و انتهای ژن ناحیهC2 پروتئینALCAM در نظر گرفته شده است استفاده می کنیم، برای این منظور از هضم آنزیمی دو گانه استفاده می کنیم سپس محصول هضم آنزیمی دوگانه جهت بررسی بر روی ژل آگارز برده تا قطعات مورد نظر مربوط به پلاسمید و ژن سنتز شده مشاهده شوند.

—253

عنوان صفحه

TOC h z t "زیرنویس شکل" c شکل 1-1. شماتیکی از روش‌های جذب خود مهاجرتی، خود آرایش یابندگی و لایه به لایه [13].8شکل 1-2. شماتیکی از یک سیستم لایه نشانی با لیزر پالسی [1]. PAGEREF _Toc350679917 h 11شکل 1-3. شماتیکی از پدیدۀ اصلاح سطح یک بلور، به کمک کاشت یونی [1]. PAGEREF _Toc350679918 h 12شکل 1-4. فرآیند ایجاد زبری توسط روش قلم آغشته [1]. PAGEREF _Toc350679919 h 14شکل 1-5. تصویر کامپوزیت پلی‌اتراترکتون پرتودهی شده با لیزر، در طول موج پرتودهی 308 نانومتر و شدت انرژی 1 ژول بر سانتیمتر مربع [10]. PAGEREF _Toc350679920 h 37
فصل اولپیشینه پژوهش اصلاح سطح توسط پرتودهی لیزر

1-1 پیشگفتارخواص سطحی مواد در تعیین کاربرد‌های آن‌ها مهم می‌باشد و امروزه روش‌های مختلفی برای اصلاح این خواص استفاده می‌شوند. خواص مهم مواد پلیمری از قبیل چسبندگی، اصطکاک، تر شوندگی، نفوذ پذیری و سازگاری با محیط زیست می‌باشند که در عمل، همۀ این ویژگی‌ها از خصوصیات سطحی تأثیر می‌پذیرند. اصلاح سطح فرآیندی پرکاربرد و مهم در فناوری نانو بشمار می‌رود که باعث گسترش کاربرد مواد شده است [1،2]. اصلاح سطحی عبارت است از اصلاح سطح بیرونی با هدف تأثیر گذاشتن بر خواص مختلف مورد نظر، با حفظ ویژگی‌های کلیدی فیزیکی، که اگر این گونه اصلاح سطح به طور صحیح انجام شده باشد، خواص مکانیکی و عملکرد نمونه تحت تأثیر قرار نخواهد گرفت، ولی خواص مورد نظر تغییر کرده و بهبود خواهد یافت [3].
اصلاح سطح، عملی است که برای ایجاد مشخصه‌های فیزیکی، شیمیایی و بیولوژیکی مختلف بر روی سطح مواد انجام می‌شود. اصلاح سطح معمولاً در مواد جامد و معمولاً با اهداف کنترل شکست و سایش (مانند ایجاد سختی، شکست، خستگی، مقاومت به سایش و غیره)، افزایش مقاومت در برابر خوردگی، تغییر خواص فیزیکی مانند رسانایی، مقاومت الکتریکی، انعکاس نور و غیره، تغییر زبری سطح، ایجاد قابلیت آبدوستی، ایجاد سطوحی با قابلیت ابرآبگریزی [4]، رنگبری سطحی، ایجاد خواص چسبندگی و اتصال بر روی سطح [5]، استریلیزه کردن [3]، پاک‌کنندگی سطحی [6]، خود تمیز شوندگی، ضد مه شدن و ضد برف شدن، خواص شفاف شدن یا پشت‌نما شدن [7]، ایجاد خواص حرارتی و قابلیت تأخیر در مشتعل شدن [8]، کنترل تحرک یا چسبیدن مواد زیستی [9]، افزایش قابلیت نفوذ، فیلتراسیون یا تصفیه کردن [10]، سازگاری بیولوژیکی یا عکس آن و قابلیت واکنش پذیری [6،11]، افزایش خواص رنگ پذیری، رنگرزی و چاپ [12] و افزایش قابلیت پایداری و ثبات ابعادی [5] انجام می‌شود.
اصلاح سطح پلیمر یک مبحث قدیمی است که منجر به کاربرد بیشتر مواد پلیمری مصنوعی در جوامع انسانی شده و در زمینه‌های مختلف از قبیل چسب‌ها، فیلتراسیون غشایی، پوشش‌دهی، اصطکاک و خوردگی، کامپوزیت‌ها، ابزارهای میکرو‌الکترونیکی، فناوری لایه‌ها و فیلم‌های نازک، بیومواد و غیره به کار گرفته شده است. به علت این مسائل، بهینه‌سازی و اصلاح سطح برای یک پلیمر بدون تغییر خواص تودۀ آن، موضوع تحقیقات کلاسیک سال‌ها قبل بوده است، و حتی هنوز هم تحقیقات عالی بر روی کاربرد‌های جدید مواد پلیمری به ویژه در زمینۀ بیوتکنولوژی و مهندسی پزشکی انجام می‌شود [13].
1-2 روش‌های اصلاح سطحی موادروش‌های موجود برای اصلاح سطح و ایجاد نانو یا میکروساختار‌ها، با طبقه‌بندی ماهیت تغییر و اصلاح به دو گروه فیزیکی و شیمیایی و به طور کلی به گروه‌های لایه‌برداری یا ایجاد فرسایش، رسوب‌دهی یا پوشش‌دهی، تغییر شکل از طریق کشش مکانیکی، قالب‌دهی، مخلوط کردن و خود ساخت تقسیم‌بندی می‌شوند، که هرکدام از این سیستم‌ها دارای روش‌های متفاوتی هستند [4].
تا کنون روش‌ها و فرآیندهای مختلفی برای ایجاد زبری و اصلاح سطح گزارش شده است که از روش‌های متداول تغییر و اصلاح خواص سطحی با ایجاد زبری می‌توان به موارد زیر اشاره کرد:
1-2-1 اصلاح سطح توسط فرآوری و عملکرد پلاسمافرآیند‌های تکمیل و رنگرزی در صنعت نساجی همواره با محدودیت‌های مختلفی روبرو بوده است. از روش‌های بهبود رنگ‌پذیری می‌توان به استفاده از پلاسما و کرونا اشاره کرد. این روش‌ها قادر به اصلاح سطح منسوجات، بدون تغییر در خواص درونی پلیمر در یک محیط خشک، بدون آب و مواد شیمیایی هستند [5]. در عملیات واکنش پلاسما با افزایش پلاریته، آبدوستی و بار الکتریکی سطح پلیمر می‌توان کاربرد‌های مفید مانند افزایش ترشوندگی سطحی، چسبندگی، رنگ پذیری، خون سازگاری و غیره را کسب نمود [3،13،14].
1-2-2 روش‌های عملیات شیمیایی‌تر و محلول‌هاتغییر و اصلاح شیمیایی شامل اثر یک یا چند نوع ماده بر یک سطح، جهت ایجاد سطحی با خواص فیزیکی و شیمیایی مطلوب‌تر می‌باشد. بعضی مولکول‌های پلیمر شامل گروه‌های جانبی شبیه به هیدروکسیل، کربوکسیل، آمینو، استر و غیره هستند که این نوع از پلیمر‌ها می‌توانند مستقیماً با واکنش شیمیایی دگرگون شوند. در این روش پلیمر تحت تأثیر یکسری از حلال‌های شیمیایی قرار می‌گیرد تا با ایجاد یکسری از گروه‌های خاص شیمیایی مانند آلدئید‌ها، اسیدهای کربوکسیلیک، هیدروکسیل‌ها و آمین‌های اولیه بتوان خواص عملکردی خاصی را در سطح پلیمر ایجاد کرد [13].
1-2-3 روش تجزیه حرارتی به کمک افشاندندر یک تحقیق انجام گرفته توسط تاروال و همکارانش [7]، از تکنیک تغییر ماهیت شیمیایی در اثر افشاندن مخلوطی از استات روی و آب و ایجاد شدن حرارت بر روی شیشه همراه با تولید فیلمی از اکسید روی استفاده شده، جهت دست‌یابی به خاصیت آبگریزی و قابلیت انتقال بالای نور، که در نهایت به خواص شفاف شدن یا پشت‌نما شدن، خود تمییز شوندگی، ضد مه شدن و ضد برف شدن رسیده و از آن روش در میکروچیپ‌های متحرک و میکرو‌راکتورها استفاده شده است.
1-2-4 روش سُل‌ژلفرآیند سُل‌ژل یک روش شیمیایی‌تر با استفاده از یک اکسید فلزی می‌باشد و در واقع از اصل محلول‌سازی و رسوب‌دهی جامدات در مایعات با استفاده از تغییر پارامترهایی مثل دما استفاده کرده و محصولاتی مثل پوشش و پودر را بدست می‌آورند. البته باید یادآور شد که پوشش‌هایی که از این روش تولید می‌شوند دارای تخلخل‌هایی هستند، که بعضی خواص آن‌ها را تحت تأثیر قرار می‌دهد [14].
1-2-5 روش ایجاد زبری و رسوب‌دهی پاششی توسط مگنتروناساساً یک ابزار رسوب‌دهی پاششی شامل یک هدف، که منبع مواد رسوب داده شده بوده، و یک زیرﻻیه است. رسوب‌دهی پاششی یک روش ساختارسازی است که شامل رسوب‌دهی موادی است که قبلاً از سطح هدف جدا و بر روی زیرلایه پاشیده شده‌اند. تکنیک مذکور اغلب در ساخت انواع مختلف پوشش‌های محافظ، تکنولوژی سِل‌های خورشیدی و فیلم‌های نازک ابر رسانا‌ها کاربرد دارد. همچنین در مهندسی مواد نانوساختار (به عنوان مثال نانوفیبرها، فولرن‌ها، فیلم‌های نازک نانوکریستال) استفاده می‌شود [1،14].
1-2-6 روش رسوب شیمیایی بخاراولین کاربردهای این روش به تولید لامپ‌های رشته‌ای در سال 1880 بر می‌گردد که در آن از روش رسوب شیمیایی بخار برای افزایش استحکام رشته‌های کربنی با رسوب فلز استفاده شد. فرآیندهای رسوب شیمیایی بخار انواع گوناگونی دارند، اما به طور کلی در همۀ آن‌ها از محفظه‌ای به نام رآکتور استفاده می‌شود که پیش ماده با ورود به رآکتور به صورت یک لایه نازک روی سطح زیرپایه رسوب کرده، در حالی که دچار یک سری تغییرات شیمیایی می‌شود و پوششی با ترکیب و خواص مورد نظر را ایجاد می‌کند [1].
رسوب شیمیایی بخار در مورد پلیمرها توسط عمل پلاسما انجام می‌شود و در این روش گاز مونومر مستقیماً به محفظۀ پلاسما اعمال شده و پلیمریزه می‌شود. پلیمر ابتدا در فاز گازی تولید شده، و سپس تولیدات منتج شده روی سطح منفی با دمای پایین به شکل یک لایۀ ضخیم رسوب می‌کند [13].
1-2-7 روش رسوب فیزیکی بخاراین روش شامل یک فرآیند فیزیکی مثل تبخیر دما بالا در خلاء یا کندن مواد با پلاسما می‌باشد و بر خلاف روش رسوب شیمیایی بخار پوشش‌دهی با انجام یک واکنش شیمیایی در سطح زیرپایه همراه نیست. امروزه به کمک روش رسوب فیزیکی بخار می‌توان ساختارهای لایه نازک، به ضخامت یک لایه اتمی را رسوب داد که این در نانوفناوری اهمیت ویژه‌ای دارد. از مزیت‌های روش رسوب فیزیکی بخار می‌توان به این نکات اشاره کرد که از نظر زیست محیطی نسبت به برخی فرآیند‌های مشابه از جمله رسوب شیمیایی بخار برتری داشته و آلودگی کمتری ایجاد می‌کند [1].
1-2-8 روش پرتودهی ایکس، گاما و الکترون توسط شتاب‌دهندۀ رودوتروناین پرتوها اگرچه با روش‌های مختلف تولید می‌شوند، ولی در اصل یک کار را انجام می‌دهند. انرژی منتقل شده توسط این پرتوها در فرآیند پرتودهی منجر به تغییرات فیزیکی و شیمیایی، همچنین اصلاحات سطحی و حتی داخلی می‌شود و در نهایت باعث ایجاد پلیمریزاسیون، پیوند عرضی و استریلیزاسیون می‌گردد. این نوع پرتوها از نوع پرتوهای یونیزه‌کننده می‌باشند، زیرا انرژی آن‌ها در حدی است که فقط می‌توانند الکترون‌ها را از اتم‌ها و مولکول‌ها جدا کرده و آن‌ها را به یون تبدیل کنند [22].
اختلاف عمدۀ پرتوهای ایکس، گاما و الکترون در قدرت نفوذ آن‌ها در ماده است. پرتوهای ایکس و گاما دارای قدرت نفوذ زیاد هستند، در حالی که نفوذ الکترون بستگی به انرژی الکترون‌های شتاب داده شده دارد. با یک شتاب‌دهنده الکترون دز مورد نظر به سرعت در حد ثانیه اعمال می‌گردد، ولی با پرتو گاما این کار ممکن است ساعت‌ها طول بکشد. پرتو گاما از رادیو ایزوتوپ کبالت 60 و پرتو ایکس با دستگاه‌های خاص مثل شتاب‌دهنده‌ها تولید می‌شوند [22].
1-2-9 روش لیتوگرافی یا چاپ سنگیلیتوگرافی فرآیندی است که در ساخت ریزساختارها به کار می‌رود و در آن بخشی از لایه‌ای خاص یا تکه‌ای از زیرلایه به طور انتخابی برداشته می‌شود. لیتوگرافی یک تکنیک کاملاً مجهز و پایه‌ای است که برای ایجاد ناحیۀ وسیعی از طرح‌های تکراری در اندازه‌های میکرو و نانو کاربرد دارد [4]. در این روش با به کار بردن یک نقاب نوری، طرح هندسی مورد نیاز روی لایۀ فلزی یا زیرلایه‌ای که حساس به نورند ایجاد و با انجام عملیات شیمیایی، طرح هندسی لایه‌برداری می‌شود. از معایب این روش، نیازمندیش به سطوح صاف و هموار است که ساخت قطعات با سطوح ناهموار را بسیار دشوار می‌کند [1]. جانگ و همکارانش [23] ایجاد نانوزبری بر روی پارچۀ پلی‌تری‌متیلن‌ترفتالات و پلی‌استر را توسط پرتودهی تناوبی لامپ فرابنفش گزارش داده، و روی ساختمان‌های ایجاد شده، خواص رنگ پذیری و ثبات رنگی را بررسی کردند.
1-2-10 روش پوشش فیزیکی یا مخلوط کردنشاید ساده‌ترین راه میانبر برای حرکت به جلو در راستای اصلاح هدفمند سطح پلیمر، مخلوط کردن مولکول‌های عمل گر (عامل‌های مؤثر برای رسیدن به هدف) با پلیمر‌های محلول، یا فقط پوشاندن پلیمر‌های جرمی روی پلیمر‌های سطحی باشد. اگرچه بزرگ‌ترین محدودیت این روش ناپایداری ساختار سطحی پلیمر و مخفی شدن مواد عمل گر در پلیمر است، اما اگر این تغییر ساختار آنقدر زیاد نباشد که کاربرد مواد را تحت تأثیر قرار دهد، این روش هنوز یک انتخاب خوب است، که از جمله این روش می‌توان به روش‌های خود مهاجرتی، خود آرایش یابندگی و لایه به لایه اشاره کرد. تشریح روش‌های جذب خود مهاجرتی، خود آرایش یابندگی و لایه به لایه در شکل 1-1 آورده شده است [13].

شکل 1-1. شماتیکی از روش‌های جذب خود مهاجرتی، خود آرایش یابندگی و لایه به لایه [13].در روش خود مهاجرتی، مواد عمل گر با طراحی خاص ساختار شیمیایی در میان محلول پلیمر مخلوط می‌شود و چون تمایل به سمت، رسیدن به حداقل انرژی است، مولکول‌های مواد عمل گر خود به خود به سمت سطح پلیمر حرکت نموده و سرانجام با انباشته شدن بر روی سطح پلیمر، خواص سطحی پلیمر را مشخصاً تغییر می‌دهند. در روش خود آرایش یابندگی مولکول‌های مواد عمل گر فعال، روی سطحی با بار منفی، به کمک یکسری عملیات شیمیایی، الکترواستاتیکی و ایجاد باند‌های هیدروژنی متصل و توزیع می‌شوند. در روش لایه به لایه ماکرومولکول‌های شارژ شدۀ مثبت و منفی به واسطۀ برهمکنش‌های الکترواستاتیکی و فعل و انفعالات شیمیایی قوی، به طور متناوب بر روی سطح پلیمر، اعمال می‌شوند [13].
1-2-11 روش پوشش‌دهی چرخشیپوشش‌دهی چرخشی روشی برای اعمال پوشش‌های نازک بر روی زیرپایه‌های مسطح می‌باشد. در این روش ابتدا بر اساس ضخامت مورد نظر لایه، مقدار ماده لازم به طور تقریبی تعیین می‌گردد. سپس مقداری محلول بیش از میزان لازم روی زیرپایه قرار داده می‌شود. در ادامه زیرپایه با سرعت بالا چرخانده می‌شود تا سیال بر اساس نیروی گریز از مرکز روی سطح پخش شود و نازک‌سازی لایه به انجام رسد. ماشین مورد استفاده در این روش پوشش دهنده، اسپینر نامیده می‌شود. گردش زیرپایه در حالی که محلول از لبه‌های آن بیرون می‌ریزد ادامه می‌یابد تا ضخامت مورد نظر بدست آید. حلال مورد استفاده ماده‌ای فرار است و در حین گردش تبخیر می‌شود. هر چه سرعت زاویه‌ای فرآیند بالاتر باشد فیلم ایجاد شده نازک‌تر خواهد بود [1].
1-2-12 روش الکتروریسیدر روش الکتروریسی از نیروهای الکترواستاتیکی برای ریسیدن الیاف نانومتری از یک فاز مایع استفاده می‌شود. بخش‌های مختلف یک سیستم استاندارد الکتروریسی عبارتند از یک رشته‌ساز که شامل یک سرنگ با سوزن تزریق متصل به یک منبع توان بالا (50-10 کیلوولت)، یک پمپ و یک صفحۀ جمع کننده متصل به زمین می‌باشد. رشته‌ساز به کاتد و صفحه به آند متصل است. محلول یا مایع و یا مذاب وارد سرنگ می‌شود و با فشار پمپ، تحت سرعت ثابتی تزریق می‌گردد که این عمل باعث شکل‌گیری یک قطره در نوک سوزن می‌شود. با اعمال ولتاژ، قطره به صورت مخروط تیلور کشیده می‌شود. اگر کشش بین مولکولی مایع به اندازه کافی بالا باشد، این جریان ایجاد شده گسسته نشده و یک جت مایع باردار ایجاد می‌شود. این جت بر اساس نیروی دفع الکترواستاتیک طویل شده و مسیری مارپیچ را طی می‌کند. این روند تا رسوب آن بر روی صفحه جمع کننده ادامه می‌یابد [1].
میزوکوشی و همکارانش [24] اثر زبری سطح را بر قابلیت اصلاح سطح و ترشوندگی لایه‌های الکتروریسی شده مطالعه کرده‌اند. نتایج بدست آمده نشان می‌داد که در اثر ازدیاد زبری سطح، ترشوندگی لایه‌های پلیمری با ماهیت آبدوستی افزایش می‌یابد، در حالی که افزایش زبری سطح لایه‌های پلیمری با ماهیت آبگریزی سبب کاهش ترشوندگی لایه می‌شود.
1-2-13 روش بمباران یونی یا سایش با باریکۀ یونیبه طور ساده فرآیند سایش با باریکه یونی را می‌توان یک شن‌سایی اتمی نامید که در آن یون‌ها نقش دانه‌های شن را بازی می‌کنند. یون‌های شتاب گرفته سطح نمونه‌ای را که درون یک محفظه خلاء نصب شده است، بمباران یونی می‌نمایند. عموماً سایش با باریکه یونی در آماده‌سازی نمونه برای میکروسکوپ الکترونی عبوری کاربرد دارد. هدف این است که نمونه به طور یکنواخت نازک شود و کیفیت سطح بالایی داشته باشد. از سایر کاربردها می‌توان پولیش و ریزسابی لنزهای اپتیکی را نام برد. به طور کلی هر جا لایه برداری از سطح نمونه در مقیاس اتمی و یا نازک‌سازی نمونه مطرح باشد این روش بکار می‌رود [1].
1-2-14 روش لایه نشانی با لیزر پالسیدر این روش پرتو لیزر با قدرت باﻻ به صورت متناوب با ماده هدف در حال چرخش برخورد می‌کند. مواد هدف که توسط لیزر کنده شده‌اند، منجر به کنده شدن لحظه‌ای (فرسایش) ﻻیه‌های اتمی می‌شوند که در نزدیکی سطح قرار می‌گیرند. انرژی که ضمن این فرآیند ایجاد می‌شود، منجر به تبخیر مواد و حرکت سریع آن‌ها به سمت زیرﻻیه و در نهایت رسوب‌دهی آن‌ها می‌شود. در واقع فناوری لایه نشانی با لیزر پالسی نوعی تکنیک رسوب فیزیکی بخار بشمار می‌رود که باعث تولید اولین ابررسانای سرامیکی گردید. در شکل 1-2 شماتیک یک سیستم لایه نشانی با لیزر پالسی نشان داده شده است [1].

شکل 1-2. شماتیکی از یک سیستم لایه نشانی با لیزر پالسی [1].1-2-15 روش قالب گیری حلالقالب گیری حلال یک روش ساده برای تولید داربست مهندسی بافت است. در این روش پلیمر در یک حلال مناسب حل شده و در قالب ریخته می‌شود. سپس حلال حذف گردیده و حالت پلیمر را در شکل مورد نظر حفظ می‌کند. در این شیوه می‌توان با شستن ذراتی مانند کریستال‌های نمک کاشته شده درون پلیمر که پروژن خوانده می‌شوند، داربست را به صورت متخلخل درآورد. عیب اصلی قالب گیری حلال باقی ماندن احتمالی حلال سمی درون پلیمر است [25].
1-2-16 روش کاشت یونیاصولاً فناوری کاشت یونی یک روش مهندسی سطح به شمار می‌رود. در این فرآیند، یون‌های معینی در ساختار یک جامد اصطلاحاً کاشته می‌شوند و خواص آن را تحت تأثیر قرار می‌دهند. تکنیک کاشت یونی عمدتاً در صنعت نیمه‌هادی‌ها کاربرد دارد. یون‌های کاشته شده در ماده هدف علاوه بر ایجاد تغییر شیمیایی، تغییرات ساختاری نیز به وجود می‌آورند که بر اثر آن شبکه بلوری ماده هدف می‌تواند آسیب دیده و یا حتی تخریب گردد. شکل 1-3 عملکرد پدیدۀ اصلاح سطح یک بلور، به کمک کاشت یونی را نشان می‌دهد [1].

شکل 1-3. شماتیکی از پدیدۀ اصلاح سطح یک بلور، به کمک کاشت یونی [1].1-2-17 روش کوپلیمریزاسیون پیوندیدر بین روش‌های تغییر سطح که تا کنون توسعه یافته‌اند، پیوند زدن مونومر‌ها یک روش ساده، مفید، تطبیق پذیر و با دامنۀ کاربرد وسیع برای بهبود بخشیدن خواص سطحی پلیمرها است. برای ایجاد کوپلیمریزاسیون پیوندی، باید اول رادیکال‌ها یا گروه‌هایی که قابلیت تولید رادیکال‌هایی شبیه گروه‌های پراکسید را دارند، با سطح واکنش داده شوند. برای بیشتر پلیمر‌های شیمیایی خنثی، این نیاز می‌تواند توسط پرتودهی (پرتو گاما، پرتو الکترونی، فرابنفش، لیزر و غیره)، روش پلاسما، اکسیداسیون با آب اکسیژنه یا هیدروژن پراکسید و ازن، یا اکسیداسیون توسط یون سریم انجام شود [13].
میرزاده و همکارانش [11] رفتار سلول‌های فیبروپلاست بر روی سیلیکون الاستومر پیوند شده با پلی‌اکریلیک اسید، توسط لیزر پالسی دی‌اکسید‌کربن را، برای کاربرد‌های مهندسی بافت بررسی کرده و نشان دادند که این روش برای تغییر سطح هر ماده، حتی پلیمرهای خنثی از نظر شیمیایی مانند سیلیکون‌ها کاربردی است. در یک بررسی دیگر توسط میائو و همکارانش [8] اصلاح سطحی پارچۀ پنبه‌ای با پرتو گاما برای رسیدن به خواص آبگریزی، آبدوستی توسط پیوند دادن آن با پرفلوئوروآلکیل‌فسفات‌اکریلات صورت گرفته است.
در بررسی انجام گرفته توسط کستینگ و همکارانش [26] اصلاح سطحی فیلم‌های پلی‌پروپیلنی، توسط پرتودهی لیزر اکسایمر در حضور اسید اکریلیک گزارش شده، که نشان دادند واکنش‌های ایجاد پیوند توسط لیزر اکسایمر در مونومر‌های واکنش پذیر زنجیرۀ اصلی پلیمر، دارای کارایی بیشتر نسبت به پرتودهی مستقیم پلی‌پروپیلن است. همچنین ایگور لوزینوف و همکارانش [27] تکنیک‌های ایجاد اصلاح سطحی قابل استفاده، مانند روش کوپلیمریزاسیون پیوندی و استفاده از نانو‌ذرات را برای تولید الیاف ابرآبگریز مورد بررسی قرار داده‌اند.
1-2-18 روش نانوایمپرینت یا نانوچاپایجاد زبری و الگوهای خاص توسط روش نانوایمپرینت روشی نوین در ساخت مواد نانومتری است که اولین بار در سال 1995 توسط استفان چو از دانشگاه پرینستون معرفی گردید. در این روش ایجاد زبری و الگوهای خاص با تغییر شکل مکانیکی لایۀ محافظ ایمپرینت و فرآیندهای بعدی ایجاد می‌گردد. لایۀ محافظ ایمپرینت یک مونومر یا پلیمر است که در طی فرآیند ایمپرینت با حرارت یا نور فرابنفش پخت می‌شود. پس از اینکه قالب و زیرلایه به هم فشار داده می‌شوند، پخت لایۀ محافظ با پرتو فرابنفش انجام می‌شود تا سخت گردد. پس از جداسازی قالب، الگوی حک شده با یک روش انتقال الگو به زیرلایه منتقل می‌گردد [1].
1-2-19 روش قلم آغشتهقلم آغشته روشی جدید در ایجاد نانوزبری است که اولین بار در سال 1999 در دانشگاه نورث وسترن معرفی گردید. در این روش یک پروب میکروسکوپ نیروی اتمی که با مولکول‌های یک جوهر مثل آلکانتیول پوشش داده شده است، مورد استفاده قرار می‌گیرد. وقتی نوک پروب در نزدیکی سطح قرار می‌گیرد یک قطره آب در فاصله نوک پروب و سطح چگالیده می‌شود. این فضای آبی مانند پلی برای مولکول‌های جوهر عمل می‌کند که از این طریق به سطح انتقال می‌یابند و با سطح وارد واکنش می‌شوند. شکل 1-4 شماتیک فرآیند ایجاد زبری توسط روش قلم آغشته را نشان می‌دهد [1].

شکل 1-4. فرآیند ایجاد زبری توسط روش قلم آغشته [1].1-2-20 ایجاد زبری توسط میکروسکوپ تونل‌زنی روبشیدر میکروسکوپ تونل‌زنی روبشی، ایجاد زبری نانومتری به کمک تجزیه حرارتی با الکترون انجام می‌شود. در حالت رسوب‌دهی ماده با استفاده از میکروسکوپ تونل‌زنی روبشی، نوک پروب این میکروسکوپ به عنوان یک منبع نشر عمل می‌کند. وقتی یک ولتاژ اعمال شود اتم‌ها یا نانو‌ذرات از سطح پروب به سطح ماده هدف انتقال می‌یابند. بعلاوه میکروسکوپ تونل‌زنی روبشی برای کار با تک اتم‌ها، به منظور ایجاد نانو‌ساختارها هم بکار می‌رود. توسعه این فناوری توانایی این میکروسکوپ را در ایجاد نانوزبری به بالاترین حد ممکن، یعنی قدرت تفکیک در حد چند اتم رسانده است [1].
1-2-21 ایجاد زبری به روش میکروسکوپ نیروی اتمیدر ایجاد زبری به روش میکروسکوپ نیروی اتمی محدودیت‌های کمتری نسبت به میکروسکوپ تونل‌زنی روبشی وجود دارد، چرا که در شرایط محیطی معمولی قابلیت کارکرد دارد و هر نوع ماده‌ای را نیز می‌توان با میکروسکوپ نیروی اتمی مورد بررسی قرار داد. بعلاوه در صورت استفاده از یک پروب رسانا، میکروسکوپ نیروی اتمی، عمده عملکردهای میکروسکوپ تونل‌زنی روبشی را خواهد داشت. لایه‌برداری از سطح (ایجاد فرسایش و زبری) توسط میکروسکوپ نیروی اتمی، در مقیاس نانومتری به کمک ماشینکاری یا تراش‌دهی با پروب به انجام می‌رسد. همچنین مکانیزم رسوب‌دهی مواد توسط میکروسکوپ نیروی اتمی، مشابه میکروسکوپ تونل‌زنی روبشی می‌باشد [1].
1-2-22 ایجاد فرسایش توسط لیزراین روش در اینجا به صورت اجمالی مورد بحث قرار گرفته است، توضیحات و بررسی‌های کامل در مورد این فرآیند در بخش‌های بعدی آورده شده است. اصلاح سطحی پلیمرها مبحثی با اهمیت فراوان است که منجر به کاربرد وسیع مواد، به ویژه پلیمرهای مصنوعی در جوامع انسانی شده است. تا کنون روش‌ها و فرآیندهای مختلفی برای اصلاح سطحی مواد گزارش شده و از میان آن‌ها، به منظور بهبود خواص سطحی پلیمر‌ها، روش پرتودهی بیشتر مورد توجه بوده است. از روش‌های پرتودهی قابل استفاده برای اصلاح سطحی و بهبود خواص مورد نظر بر روی پلیمر‌ها، پرتودهی با استفاده از پرتو لیزر است [3،29].
تغییرات حاصل از پرتودهی لیزر، محدود به سطح مواد بوده و خسارات احتمالی به تودۀ مواد، نسبت به پرتوهای دیگر مثل گاما و الکترونی به حداقل رسیده و خواص مکانیکی مواد حفظ شده است. با توجه به تحقیقات انجام شده در زمینۀ بهینه‌سازی فیلم‌ها و الیاف پلیمری با لیزر، مشخص شده است که فرسایش حاصل از پرتودهی لیزر بر روی سطوح، همراه با ایجاد تغییرات شیمیایی، مانند به وجود آمدن گروه‌های عاملی جدید و همچنین تغییرات فیزیکی، مانند پدیدار شدن مرفولوژی منحصر به فرد با ساختاری منظم در نواحی تابش دیده بوده، که منجر به بهبود خواص پلیمری شده است [3،29].
پرتو لیزر باعث برداشتن و یا فرسایش مواد از سطوح پلیمری می‌شود، به طوری که این پدیده به فرسایش نور تجزیه‌ای معروف است [28]. فرآیند ایجاد فرسایش توسط لیزر عبارت است از برداشتن ماده از سطح به کمک تابش یک باریکه لیزر به سطح. عموماً در این فناوری از لیزر پالسی بهره گرفته می‌شود، ولی در صورتی که شدت باریکه لیزر به حد کافی بالا باشد، امکان استفاده از موج پیوستۀ لیزر نیز وجود دارد. مزایای سایش و اصلاح سطح با استفاده از لیزر عبارتند از:
از هیچ حلالی استفاده نمی‌شود و ماده با هیچ‌گونه ترکیب شیمیایی در تماس قرار نمی‌گیرد که این از نظر زیست محیطی بسیار مناسب است.
با وجود هزینۀ سرمایه گذاری اولیه، هزینۀ کلی آن نسبت به روش‌های ساینده‌ی خشک مثل سایش با یخ خشک (دی‌اکسید‌کربن جامد) کمتر است [1].
این فرآیند ظرافت بیشتری نسبت به روش‌های دیگر سایش داشته و قابلیت اصلاح مناطق کوچک، بدون تأثیر گذاشتن بر مناطق دیگر را دارد، برای مثال الیاف کربن درون یک کامپوزیت در روش ایجاد فرسایش توسط لیزر آسیب نمی‌بینند.
آسیب‌دیدگی کمتر سطح پلیمر و نفوذ حرارتی کنترل شده
انعطاف پذیری و قابلیت عملکرد بر روی انواع مواد
سرعت و دقت بالای فرآیند و قابلیت تکرار خوب
سادگی در روش کار و عدم نیاز به کنترل شدید فرآیند
تنها مشکل این روش هزینۀ بالاتر در سرمایه گذاری اولیه، مصرف انرژی حین کار و تعمیر و نگهداری آن نسبت به بقیۀ روش‌ها می‌باشد، ولی در نهایت این روش به خاطر داشتن این مزایا به عنوان یک روش مطلوب بشمار می‌رود [10].

1-3 پیشینه پژوهش اصلاح سطحی صورت گرفته توسط پرتودهی لیزردر سال 1982 سرینیواسان و همکارانش [32] (در آمریکا) در زمینۀ خود اصلاح شوندگی با فرسایش نوری بر روی فیلم پلی‌اتیلن‌ترفتالات، توسط پرتودهی لیزر اکسایمر فرابنفش تحقیق کردند. طبق این بررسی به این نتیجه رسیدند که پرتودهی در طول موج 193 نانومتر توسط لیزر اکسایمر آرگون فلوئورید، می‌تواند باعث فرسایش سطوح فیلم پلی‌اتیلن‌ترفتالات در یک رفتار کنترل شده، بدون نیاز به هیچ‌گونه عملیات بعدی شود.
همین‌طور در سال 1982 کاوامورا و همکارانش [33] (در ژاپن) در مورد تأثیر عمیق فرسایش نور فرابنفش بر روی فیلم پلی‌متیل‌متااکریلات توسط یک لیزر اکسایمر، بررسی‌هایی را انجام دادند. در این تحقیق، نتایج حاصل از آزمایشات در فرسایش نوری پلی‌متیل‌متااکریلات به وسیلۀ لیزر اکسایمر، نشان داد که لیزر می‌تواند به عنوان یک منبع نوری اثر گذار در فرسایش توسط نور فرابنفش عمل کند.
در سال 1983 آندری و همکارانش [34] (در انگلیس) بر روی فرسایش مستقیم مواد پلیمری با استفاده از لیزر زنون کلرید تحقیقاتی را انجام دادند. در این بررسی فرسایش فیلم‌های پلی‌اتیلن‌ترفتالات، پلی‌آمید و فیلم‌های مقاوم در برابر نور، توسط لیزر زنون کلرید انجام شده و همچنین یک مدلسازی گرمایی برای تخریب و فرسایش صورت گرفته است. بر طبق این مطالعات میکرو‌ساختارهای ظاهر شده، توسط فرسایش عمیق این لیزر اکسایمر، مفید بودن آن را اثبات کرده است.
در سال 1986 لازار و همکارانش [35] (در آمریکا) بر روی خواص سطحی فیلم‌های پلی‌اتیلن‌ترفتالات اصلاح شده توسط لیزر اکسایمر آرگون فلوئورید با طول موج 193 نانومتر و 185 نانومتر با شدت انرژی پایین مطالعاتی را انجام دادند. همچنین در این بررسی گزارش شده که در پرتودهی با لیزر، از شدت انرژی 40 میلی‌ژول بر سانتیمتر مربع به بعد، اثرات فرسایش شروع می‌شود.
در سال 1993 لازار و بنت [36] در ادامۀ کارهای قبلی، مطالعۀ آمورف کردن سطح فیلم‌های میلار (نوعی پلی‌استر) به کمک پرتودهی لیزر اکسایمر را انجام دادند. در این تحقیق عمق مناطق آمورف توسط اندازه‌گیری مونوکروماتیک الیپسومتری یا بیضی سنجی یک تکفام یا یک تک رنگ، شبیه یک عملکرد تابع انرژی پالس، انجام شده بود.
در سال 1995 عترتی و دایر [37] در زمینۀ مکانیسم فرسایش پلیمرهای آلی به وسیلۀ لیزرهای اکسایمر و مادون قرمز بررسی‌هایی را انجام داده و روابطی را ارائه نمودند. طبق بررسی‌های انجام شده دریافتند که مواد حاصل از برهمکنش لیزر با پلی‌استر، دی‌اکسیدکربن، مونواکسیدکربن، گروه آلدئیدی، استالدئید، آب، استیلن و غیره می‌باشد.
در سال 1997 نیتل و همکارانش [31] ساختمان سطحی الیاف مصنوعی پرتودهی شده توسط لیزر اکسایمر را تحت بررسی قرار دادند. آن‌ها دریافتند که در مکان‌های پرتودهی شده، اصلاح فیزیکی به صورت ایجاد ساختمان‌های سطحی منظم رخ می‌دهد.
مجدداً در سال 1997 نیتل و همکارانش [38] در ادامۀ کار قبلی مدل‌ها و مکانیسم ایجاد ساختمان سطحی، در الیاف مصنوعی پرتودهی شده توسط لیزر اکسایمر را مورد مطالعه قرار دادند و دریافتند که رهاسازی تنش‌های باقیمانده در الیاف، با نوسانات دمایی بالا مرتبط است، که منجر به رفتاری گروهی برای جابجایی زنجیره‌های پلیمری می‌شوند.
در سال 1998 نیتل و اسکولمیر [26] در ادامۀ تحقیقات خود تغییرات عاملیتی یا شیمیایی ساختمان سطحی در اثر پرتودهی لیزر را بررسی کرده‌اند. در این تحقیق ترکیبات شیمیایی سطح به همراه ساختمان سطحی ایجاد شده توسط پرتودهی لیزر مواد لیفی‌شکل، از قبیل پلی‌اتیلن‌ترفتالات (پلی‌استر) مورد بحث قرار گرفته است (مانند شکل‌گیری گروه‌های کربوکسیلیک بر روی پلی‌استر و شکل‌گیری پیوند‌های کربونیل در پلی‌پروپیلن).
همچنین در سال 1998 نیتل و اسکولمیر [10] در ادامۀ کارهای قبلی مربوط به ساختمان‌های سطحی پلیمر‌های مصنوعی پرتودهی شده توسط لیزر اکسایمر، برخی از کاربرد‌های لیزر اکسایمر، در مورد اصلاح سطحی مواد نساجی را نیز مورد مطالعه قرار دادند.
در سال 2001 وونگ و همکارانش [39] اصلاح شیمیایی سطح الیاف پلی‌اتیلن‌ترفتالات را توسط پرتودهی لیزر اکسایمر در شدت‌های بالا و پایین مورد بررسی قرار دادند. تکنیک‌های آنالیز سطحی نشان می‌دادند که سطح پلی‌استر به صورت انتخابی (آبدوستی یا آبگریزی)، وابسته به رنج شدتی پرتودهی لیزر اصلاح می‌شود.
در سال 2002 ییپ و همکارانش [2] در یک تحقیق، اثر پرتودهی لیزر و پلاسما را بر روی الیاف فیلامنتی پلی‌آمیدی مورد مطالعه قرار دادند. در این تحقیق مرفولوژی ساختمان سطحی، توسط عملیات پرتودهی لیزر اکسایمر و روش پلاسما در دمای پایین، تحت بررسی قرار گرفته و اثر پارامتر‌های مختلف توسط میکروسکوپ الکترون پویشی مطالعه شده است.
همچنین در سال 2002 ییپ و همکارانش [12] مجدداً در تحقیقی دیگر، تأثیر اصلاح صورت گرفته توسط لیزر اکسایمر، بر روی خواص رنگرزی پارچه‌های پلی‌آمیدی پرتودهی شده توسط لیزر را، که توسط رنگ‌های تجاری موجود از قبیل رنگ‌های اسیدی، دیسپرس و راکتیو رنگرزی شده بودند، هم مورد بررسی قرار دادند.
همچنین در سال 2004 ییپ و همکارانش [40] در یک مطالعۀ جامع و گسترده، در مورد اصلاح سطحی الیاف پلی‌آمیدی توسط پرتودهی لیزر اکسایمر، در طول موج 193 نانومتر و با شدتی بالاتر از آستانۀ فرسایش تحقیقاتی را انجام دادند. همچنین در این مطالعه، اصلاحات شیمیایی و تغییرات توپوگرافی سطحی صورت گرفته توسط عملکرد لیزر نیز، مورد بررسی قرار گرفته است.
در سال 2005 مایرا و همکارانش [41] ارزیابی فیزیکی، شیمیایی و بیولوژیکی سطح فیلم پلی‌استر پرتودهی شده، توسط لیزر اکسایمر را انجام دادند، که هدف از این کار استفاده از این پلیمر در وسایل پزشکی بود و در نتیجۀ آن قابلیت چسبندگی سلول‌ها و زیست سازگاری آن‌ها بر روی سطوح پلی‌استر پرتودهی شده با لیزر افزایش پیدا می‌کرد.
در سال 2007 میرزاده و باقری [42،43] در دو تحقیق مرتبط با هم، افزایش زیست سازگاری سطح پلی‌استایرن، توسط پرتودهی لیزر اکسایمر آرگون فلوئورید، با طول موج 193 نانومتر و تعداد دفعات پالس‌دهی متفاوت را نسبت به عملکرد پلاسمای اکسیژن و آرگون بررسی کردند، که نتایج حاصل از کشت سلولی، نشانگر افزایش زیست سازگاری پلی‌استایرن در این سه عملکرد بود.
همچنین در سال 2009 میرزاده و همکارانش [11] در تحقیقی دیگر، مطالعۀ رفتار سلول‌های فیبروپلاست بر روی سیلیکون الاستومر پیوند شده با پلی‌اکریلیک اسید، به روش کوپلیمریزاسیون پیوندی توسط پرتودهی لیزر پالسی دی‌اکسید‌کربن را، برای کاربرد‌های مهندسی بافت بررسی کردند. آنالیز سطح نشان داد که شدت انرژی پالس لیزر، هم بر روی میزان فرسایش و هم بر روی میزان پیوند انجام شده، تأثیر گذار است.
در سال 2010 نوربخش و همکارانش [5] کاربرد لیزر در اصلاح برخی از خواص سطحی منسوجاتی از قبیل پارچه‌های پشمی، نایلونی و پلی‌استری را بررسی کردند. آن‌ها دریافتند که پرتودهی توسط لیزر اکسایمر، منجر به افزایش جذب آب در الیاف نایلون و پلی‌استر و همچنین کاهش اثرات نمدی شدن در پشم می‌شود.
در سال 2010 اسلپیکا و همکارانش [44] در یک تحقیق، سطح برخی پلیمرها را توسط پرتودهی لیزر و همچنین تخلیه الکتریکی پلاسما تحت عملکرد قرار داده و مشاهده کردند که ترکیبات و ساختمان‌های سطحی پلیمر، به طور عمیقی تغییر کرده و منجر به افزایش ترشدگی، هدایت الکتریکی و زیست سازگاری پلیمر شده است.
در سال 2011 چو و همکارانش [45] مطالعۀ فیزیکی اصلاح سطحی پارچۀ پنبه‌ای خام را، توسط پرتو‌دهی لیزر دی‌اکسید‌کربن بررسی کردند. در این روش قابلیت ترشوندگی نمونه‌ها افزایش یافته و به دلیل آسیب‌دیدگی ناشی از پرتودهی، استحکام کششی و استحکام تا حد پارگی نمونه‌ها کاهش پیدا می‌کرد.
در سال 2011 اسلپیکا و همکارانش [46] تأثیر زاویه پرتودهی لیزر، در طرح‌دهی نانومتری سطح فیلم پلی‌استر را بررسی کردند. تناوب ساختمان‌های موج شکل، به طول موج لیزر و همچنین زاویۀ بین شعاع تابش لیزر و خط عمود به صفحۀ تحت تابش قرار گرفته، وابسته هستند. با افزایش زاویه تابش در ساختمان‌های نانومتری موجی‌شکل ایجاد شده، شیار‌ها موازی‌تر، بزرگ‌تر و با پهنای بیشتر می‌شدند.
در سال 2012 نوربخش و همکارانش [47] رفتار تمیز شوندگی و جذب آلودگی‌ها، در سطح الیاف پارچۀ پلی‌استری و نایلون 66 را که توسط عملیات لیزر و پلاسما پرتودهی شده بودند، مورد بررسی قرار دادند. نتایج نشان می‌داد که مرفولوژی‌های سطحی ایجاد شده توسط عملیات لیزر و پلاسما بسیار متفاوت بودند.
1-4 ارزیابی تغییرات شیمیایی، فیزیکی و خواص ایجاد شده ناشی از پرتودهی لیزر1-4-1 واکنش پرتو لیزر و مادهواکنش پرتو لیزر و ماده، سرآغاز فرسایش لیزری است و کارآمدی انرژی لیزر منتقل شده به ماده را مشخص می‌کند. بازتابش، جذب، انتقال و همچنین پراکنده شدن در مورد الیاف، از فرآیندهای اصلی هستند، که واکنش لیزر و ماده را شرح می‌دهند. با توجه به اینکه فرآیندهای بازتابش، انتقال و پراکندگی، انرژی را به ماده منتقل نمی‌کنند، فرآیند فرسایش و حک به صورت گسترده‌ای به جذب وابسته است [3].
1-4-1-1 شرایط مورد نیاز جذب
مهم‌ترین پیش نیاز اثربخشی لیزر در ایجاد ساختمان‌ها در الیاف، یک ضریب جذب بالا وابسته به طول موج انتخابی لیزر است. به طور مثال برای پلی‌استر، با استفاده از طول موج‌های کوچک‌تر از 248 نانومتر، وارد کردن انرژی به مناطق ذوب شده، به لایه‌های سطحی در حدود 0.1 میکرومتر محدود خواهد شد، بنابراین ساختمان‌ها به شکل نازک گسترش پیدا می‌کنند. عمق نفوذ انرژی بیشتری با استفاده از طول موج 308 نانومتر نور لیزر حاصل شده و بالاتر از آن تقریباً باعث آسیب و ذوب الیاف پلیمری و همچنین ایجاد فرم ساختمان‌های وسیع می‌شود [31].
با توجه به ضریب جذب پلیمر، سرعت فرسایش و سایر مشاهدات، پلیمرها به دو دسته تقسیم می‌شوند، به طوری که دستۀ اول پلیمرهایی هستند که دارای جذب زیادی می‌باشند (مانند پلی‌استایرن، پلی‌ایمید، پلی‌استر و پلی‌سولفون‌ها). فرسایش در مورد این پلیمرها در یک شاریدگی معین انجام می‌شود که به آن شدت آستانه فرسایش می‌گویند [3]. دستۀ دوم پلیمرهایی هستند که دارای جذب کمی می‌باشند (مانند پلی‌اتیلن، پلی‌پروپیلن و پلی‌وینیلیدن‌فلوراید). فرسایش در مورد این پلیمرها به سختی انجام می‌شود و در شدت و سرعت تکرار زیاد ذوب‌شدگی رخ می‌دهد [31].
1-4-1-2 برانگیختگی و تفکیک
جذب انرژی پرتو لیزر توسط پلیمر باعث تحریک پیوندهای شیمیایی آن و رسیدن به سطوح انرژی بالاتر از انرژی تفکیک شده و موجب بریدگی زنجیره‌های پلیمری و پیوندهای شیمیایی می‌شود. جذب یک فوتون فرابنفش توسط پیوند بین دو اتم در یک مولکول می‌تواند سطح انرژی پایین (حالت پایه) آن را توسط ایجاد ارتعاش در پیوند با یک سطح خاص الکترونی، به یک سطح انرژی با سطوح الکترونی بالاتر برساند، که در این حالت هنوز پیوند برقرار بوده، اما نسبت به حالت اولیه‌اش شبه پایدار است، و در ادامه در سطوح بالاتر انرژی، انرژی پیوند افزایش یافته و بنابراین دو اتم در ارتعاش بعدی از هم جدا می‌شوند [3].
1-4-1-3 فرسایش
پرتودهی توسط لیزرهای فرابنفش باعث فرسایش مواد از سطوح پلیمرها می‌شود. این پدیده که به فرسایش نور تجزیه‌ای معروف است در سال 1982 کشف شد. عمق فرسایش ناشی از هر پالس در سطح پلیمر به ضریب جذب پلیمر بستگی دارد. هر چه ضریب جذب پلیمر بیشتر باشد، عمق فرسایش کمتر است و نور لیزر کمتر در تودۀ پلیمر نفوذ می‌کند. فرسایش نور تجزیه‌ای پلیمر توسط لیزر، ریز ساختارهای پایدار و متفاوتی را روی سطح پلیمر ایجاد می‌کند [36].
هنگامی که یک پالس از پرتو فرابنفش جذب می‌شود، قسمت جلوی پالس پرتودهی توسط یک حجمی که سرانجام تبخیر شده، بلوکه و جذب می‌شود و این حجم به صورت غیر فعال و ساکن توسط دود حاصل از فرسایش محصولات، به طور جزئی بعد از فرسایش، به شکل رسوب به سطح جدید انتقال پیدا می‌کند. بیشتر انرژی منتقل شده به سطح توسط لیزر، به گرما تبدیل شده و دما را در سطح افزایش داده و در بعضی مواقع به بالاتر از نقطۀ ذوب پلیمر (برای پلی‌استر در حدود 265 درجۀ سانتی‌گراد) می‌رساند. البته یک سرد شدن سریع هم ناشی از خصوصیات زودگذر و ناپایدار پرتودهی (به طوری که هرکدام حداقل 25 نانو‌ثانیه به طول می‌انجامد) رخ می‌دهد. به خاطر این‌گونه سرد شدن برای پلیمر‌های نیمه بلوری مانند پلی‌اتیلن‌ترفتالات، فقط این اجازه داده می‌شود که به یک حالت آمورفی برسند [36].
1-4-1-4 میزان آستانۀ شدت انرژی تأثیرگذار
نسبت برداشت یا تغییرات سطحی و عمق‌های میکرومتری متفاوتی ممکن است در پالس‌دهی لیزر پدیدار شود، که این‌ها به خواص پلیمر از قبیل خواص نوری مانند ضریب جذب، و آستانۀ فرسایش و همچنین به پارامترهای لیزر مانند تعداد پالس‌دهی، شدت لیزر و نسبت تکرار پالس لیزر نیز بستگی دارد [48].
این را می‌دانیم که وجود آستانۀ شدت انرژی تأثیرگذار، یکی از مشخصه‌های مهم لیزر اکسایمر، برای فرسایش سطح پلیمر است. همراه با افزایش ازدیاد طول الیاف (یعنی همراه با افزایش تنش‌های داخلی) آستانۀ شدت انرژی برای شکل‌گیری ساختمان‌ها کاهش پیدا می‌کند. علاوه بر اثر ضریب جذب در نظر گرفتن آستانۀ شدت انرژی تأثیرگذار، که وجود حداقل دانسیتۀ انرژی را نشان می‌دهد، مانند یک شرط دیگر مهم و تأثیرگذار برای ایجاد ساختمان‌های سطحی است. در شدت‌های بالای آستانۀ فرسایش، صداهایی شنیده می‌شود که علت عمدۀ آن حرکت ذرات تولید شده با سرعت فراصوت است [38].

1-4-2 تغییرات عوامل شیمیایی ناشی از پرتودهی سطوح توسط لیزربرای توضیح تغییرات شیمیایی ایجاد شده توسط پالس‌دهی لیزر بر روی سطح، اندازه‌گیری‌هایی توسط طیف‌سنج فوتوالکترونی پرتو ایکس صورت می‌گیرد. از نسبت‌های شدتی مطلق عناصر نسبت به همدیگر این نتیجه را می‌توان گرفت که به علت پرتودهی سطحی لیزر، محتوی عناصر سطحی چه تغییری پیدا کرده است. همچنین با توجه به اینکه ارتعاش‌های مولکولی نسبت به قدرت پیوند و پیکربندی آن‌ها حساسند، طیف‌سنج مادون قرمز تبدیل فوریه روش مناسبی برای تشخیص اصلاح خواص سطحی پلیمر‌ها با لیزر است و به خوبی تغییر پیوندهای شیمیایی و بلورینگی حاصل از تجزیه نوری را نشان می‌دهد [26،42،43].
تغییر عوامل سطحی ممکن است ناشی از شکل‌گیری لایه‌های نشست کرده، در اثر چسبیدن تعدادی از محصولات فرسایش یافته و موجود در دود و هالۀ سوختگی (سوختن به همراه فرسایش و کندگی تکه‌های خرد شدۀ مولکولی) ناشی از پرتودهی لیزر بر روی سطح باشد. هنگامی که این‌چنین نشست‌هایی از مواد، چسبندگی خوبی را از خود نشان دهند، این می‌تواند با اصلاح شیمیایی سطح مرتبط باشد. فرسایش لیزر به طور مکرر سبب نشست مواد سیاه و زرد بر روی سطوح عمل شده می‌شود، که دبریس یا خرده مواد باقیمانده نامیده می‌شوند. منشأ اینچنین خرده مواد باقیمانده‌ای، می‌تواند سوختگی ناقص محصولات حاصل از فرسایش، در درون گرد و دود سفید رنگ ناشی از پرتودهی و برگشت مجدد آن‌ها، از میان گرد و دود به سطح ساختمان فرسایش یافته باشد [26].
روش‌هایی برای جلوگیری از ایجاد خرده مواد باقیمانده ابداع شده‌اند که در روش اول از احاطه کردن محیط عملکرد، توسط یک جریان سنگین گاز با هدایت گرمایی بالا مانند گاز هلیوم، بر روی ناحیه‌ای از پلیمر که تحت پرتودهی قرار می‌گیرد، استفاده شده است. روش دوم به راحتی برای منسوجات قابل استفاده است، که شامل اشباع سازی منسوجات توسط مایعات در طی پرتودهی است. نمونه‌های عمل شده با لیزر توسط آغشته سازی، باز هم همان ساختمان‌های سطحی مارپیچ‌شکل را، مانند آنچه که در قبل مشاهده شده است نشان می‌دهند [26]. واکنش‌های شیمیایی اساسی ایجاد شده، در هنگامی‌که پلیمری تابشی را دریافت می‌کند، در جدول 1-1 ارائه شده است [13].
جدول 1-1. واکنش‌های شیمیایی اساسی ایجاد شده، بعد از پرتودهی پلیمر [13].فعال سازی P (polymer) Ir--iation P* (activated)
تولید رادیکال و فعل انفعالات برشی P* P+• + e (electron)
P* P• + X• (X=H or Cl, etc.)
P* R1• + R2•
عملیات اتصالات عرضی R• + P (R-P) • (Cross Linked Molecule)
P+• + P' (P-P')+ • (Cross Linked Molecule)
P• + P' (P-P') • (Cross Linked Molecule)
تشکیل گروه‌های پراکسید P• +O2 P-O-O•
P-O-O• + P' POOH + P'•
POOH R'1+R'2
تجزیۀ گروه‌های پراکسید و ایجاد رادیکال POOH PO• + HO•
کوپلیمریزاسیون پیوندی R• (--ical) + M (monomer)
RM1• +M RM2• +M ... +M RMn•
PO• (or HO•) + M (monomer) POM•
+M POM2• +M ... +M POMn•

1-4-3 تغییرات فیزیکی و مرفولوژیکی ناشی از پرتودهی سطوح توسط لیزرفرسایش لیزر در تعدادی از پلیمر‌ها از قبیل پلی‌استر، پلی‌اتراترکتون، پلی‌آمیدها، پلی‌اکریل‌آمید، پلی‌اتیلن، ترکیب بیسفنول‌پلی‌کربنات و پلی‌متیل‌متا‌اکریلات، ترکیب پلی‌کربنات و پلی‌متیل‌متا‌اکریلات و پلی‌بوتیل‌ترفتالات باعث ایجاد بافت‌هایی مارپیچ‌شکل می‌شود [49]. فقط ابریشم طبیعی به طور واضحی در مقابل پرتودهی لیزر در طول موج پرتودهی برابر با 193 نانومتر، جوابگو بوده و ساختمان‌های سطحی شبیه به ساختمان‌های سطحی پلی‌آمید‌های مصنوعی را از خود نشان می‌دهد [31]. بر طبق کارهای الیسون ساجس، اصلاح سطحی ایجاد شده بر روی پلی‌متیل‌متا‌اکریلات و پلی‌تترا‌فلوئورو‌اتیلن به صورت بافت‌شکل مشاهده می‌شد، در حالی که پلی‌اتیلن‌ترفتالات ترکیب شده با گلایکول ساختمان مارپیچ‌شکل ویژه‌ای را نشان می‌داد [49].
چو و همکارانش [45] مطالعۀ فیزیکی اصلاح سطحی پارچۀ پنبه‌ای خام را، توسط پرتو‌دهی لیزر بررسی کردند. در این روش از لیزر دی‌اکسید‌کربن استفاده شده و نمونه‌ها به طور مستقیم پرتودهی شده بودند. نمونه‌ها بعد از پرتودهی، ساختاری به شکل اسفنج پیدا می‌کردند. افزایش قدرت لیزر باعث آسیب بیشتر، به این ساختمان‌ها می‌شد. استحکام کششی نمونه‌ها کاهش پیدا کرده و قابلیت ترشوندگی آن‌ها افزایش یافته است. بنابراین به دلیل آسیب‌دیدگی ناشی از پرتودهی، استحکام کاهش پیدا کرده است.
در مورد تأثیر هر پالس لیزر بر روی شکل‌گیری ساختمان‌ها در الیاف پلی‌استر یک بررسی صورت گرفته است، که در آن با افزایش تعداد پالس‌ها در پرتودهی لیزر، یکسانی و مشابهت ساختمان‌های ایجاد شده بر روی لیف، در طول موج 248 نانومتر افزایش پیدا می‌کند. افزایش تعداد پالس‌های لیزر که به نوعی یعنی همان افزایش شدت انرژی ورودی، منجر به ایجاد ساختمان‌هایی با زبری و زمختی بیشتر شده و همچنین با ترکیب شدن پالس‌ها با یکدیگر ساختمان‌های مارپیچ‌شکل نازک‌تری ایجاد می‌شود [31].
نمودار 1-1 ترکیب شدن تپه‌های سطحی و وسیع‌تر شدن میانگین فاصلۀ بین تپه‌ها یا ساختمان‌های مارپیچ‌شکل را، با افزایش تعداد پالس‌دهی به همراه افزایش شدت انرژی لیزر نشان می‌دهد. بعلاوه با توجه به مشاهدات، تغییر دادن تعداد پالس‌ها به مقدار بیشتر نمی‌تواند به کار برده شده شود. در نهایت ادامه عملکرد لیزر به تقسیم شدن الیاف به بخش‌های بیضی‌شکل و در نهایت متلاشی شدن آن‌ها می‌انجامد [31].


نمودار 1-1. تغییر شکل ساختمان سطحی مونو فیلامنت‌های پلی‌استر (دارای 320 درصد ازدیاد طول) با افزایش شدت انرژی و تعداد پالس‌دهی لیزر، در طول موج پرتودهی 248 نانومتر و فرکانس پالس 2 هرتز [31].1-4-3-1 تأثیر آرایش مولکولی درون لیفی بر ساختمان سطحی ایجاد شده توسط لیزر
ابعاد ساختمان‌های سطحی پرتودهی شده بر روی مواد لیفی‌شکل، با حالات مرفولوژی درونی الیاف و نوع الیاف مرتبط است، که این بدین معنی است که ابعاد ساختمانی، به آرایش یافتگی یا آرایش نیافتگی و نوع زنجیره‌های مولکولی وابسته هستند [38]. لیزر‌های اکسایمر می‌توانند شکل سطحی بسیاری از الیاف و فیلم‌های پلیمری را تغییر دهند، ولی این تغییرات در سطح پلیمر‌های نیمه بلوری مانند پلی‌اتیلن‌ترفتالات شدید تر است. تغییر ساختار پلی‌اتیلن‌ترفتالات نیمه بلوری و جهت یافته، بعد از قرار گرفتن در معرض پرتو لیزر، به طور مشخص‌تری در مقایسه با فیلم پلی‌استری آمورف‌شکل و جهت نیافته انجام می‌شود [28،50].
در ساختمان سطحی مواد کولاری با درجۀ بلورینگی بالا (بالاتر از 98 درصد) بعد از پرتودهی لیزر، مارپیچ‌هایی نسبتاً کم دوام آشکار می‌شود اما این ساختمان‌های سطحی روی متاآرامید نومکس و کوپلیمر تکنورا بیشتر مشخص هستند. این حقیقت ممکن است به انعطاف پذیری نوع زنجیره‌های متا آرامیدی پلیمر یا نوع کوپلیمر آن مربوط باشد [31].
1-4-3-2 تأثیر میدان‌های تنشی داخلی و خارجی بر ایجاد ساختمان‌های سطحی
میدان‌های تنشی به کار برده شدۀ خارجی (به وسیلۀ نیروی ازدیاد طولی که از بیرون به لیف وارد می‌شود)، باعث آرایش بیشتر زنجیره‌های پلیمری (کاهش آنتروپی) و ایجاد تنش‌های باقیمانده در الیاف می‌شود. کشیدن الیاف پلی‌استر آرایش نیافته در شرایط سرد، یک حالت گلویی شدن در قسمت‌های مختلف لیف ایجاد می‌کند (که بستگی به رفتار نیرو - ازدیاد طول مواد دارد). با پرتودهی لیف پس از کشیده شدن، مشاهده می‌شود که ساختمان‌ها فقط روی مناطق کشیده شده (که آرایش یافتگی در آنجا رخ داده است) ایجاد شده و گسترش پیدا می‌کند و قسمت کمری حالت گلویی و قسمت‌های کشیده نشده، تقریباً بدون ساختار باقی می‌مانند. چنین رفتار مشابهی در بررسی‌های صورت گرفته بر روی الیاف الاستومر هم مشاهده شده است [31،38].
در طی کشش سرد، نواحی تنش یافته در منطقۀ گلویی شده گسترش پیدا کرده، زیرا ماکرومولکول‌ها مجبورند بر خلاف همدیگر حرکت کنند که در نتیجه، آن نواحی لاغر شده و تقریباً دارای آرایش یافتگی کاملی می‌شوند. بخشی از انرژی مصرف شده برای کشش، در بین مواد کشیده شده ذخیره می‌شود [38]. همچنین ییپ و همکارانش [40] نشان دادند که در الیاف پلی‌آمیدی که کشیده شده و بعد تحت عملکرد لیزر قرار گرفته‌اند، ساختمان‌ها به صورت واضح‌تر و با میانگین فاصلۀ بیشتر بین مارپیچ‌ها تشکیل شده بود.
1-4-3-3 تغییر آرایش یافتگی ناشی از پرتودهی لیزر
با توجه به اینکه ارتعاش‌های مولکولی نسبت به قدرت پیوند و پیکربندی آن‌ها حساسند، طیف‌سنجی مادون قرمز روش مناسبی برای تشخیص اصلاح خواص سطحی پلیمر‌ها با لیزر است و تغییر شکل ساختمانی و ساختار حاصل از تجزیه نوری را به خوبی نشان می‌دهد. بر اساس این مشاهدات در اثر پرتودهی لیزر دی‌اکسید‌کربن و لیزر اکسایمر، کاهش بلورینگی و افزایش نواحی آمورف، در سطح پلیمر پلی‌اتیلن‌ترفتالات نیمه بلوری مشهود است [28،50].
بر اثر پرتودهی لیزر در اکثر پلیمر‌های بلوری از قبیل پلی‌اتیلن‌ترفتالات، آمورفی شدن سطح مشاهده می‌شود. بسته به شدت پرتودهی، مواد سطحی ممکن است گرم شده و به دمای ذوبشان برسند. بسته به مدت زمان پرتودهی و زمان سرد شدن، سطح ذوب شدۀ مواد ممکن است قبل از آنکه فرصت تشکیل بلور به پلیمر داده شود، سریع سرد شود، که این عمل به طور عمده یک حالت آمورفی در سطح ایجاد می‌کند و در غیر این صورت اگر به آن اجازه داده شود تا به آرامی سرد شود، بیشتر حالت شبیه به نیمه بلوری‌ها به وجود می‌آید [49].
1-4-3-4 اصل گرمایی ناشی از پرتودهی لیزر
انرژی وارده توسط پرتودهی لیزر، به ناحیۀ سطحی یک پلیمر با جذب بالا (از قبیل پلی‌استر در طول موج 248 نانومتر و یا پلی‌آمید‌ها در طول موج 193 نانومتر)، حداقل در طی یک مقیاس زمانی پالس‌دهی لیزر، به یک حجم کم محدود خواهد بود. این انرژی وارده به خاطر زمان آسایش برای یک تغییر حالت الکترونی (انرژی فوتون‌ها) به ارتعاشی گرمایی (تقریباً 11-10 ثانیه جهت تبدیل انرژی به گرما)، بیشتر منجر به گرم شدن پلیمر در آن نقطۀ مورد نظر شده، تا اینکه صرف انتشار و انتقال گرما به درون تودۀ پلیمر شود (که تقریباً در حدود 7-10- 5-10 ثانیه زمان برای انتقال گرما نیاز دارد). بنابراین دما‌های نقاط سطحی مورد نظر، ممکن است به مقادیری بالاتر از 1000 کلوین برسد [38].
1-4-4 خواص و کاربرد‌های سطوح اصلاح شده توسط پرتودهی لیزرپرتودهی پلیمر‌ها توسط لیزر اکسایمر می‌تواند باعث به وجود آمدن اصلاح و بهبود در خواص متفاوت سطحی، در نواحی تحت اثر پرتودهی شود. برای مثال سطوح صاف الیاف مصنوعی می‌تواند توسط این تکنیک غیر تماسی، اصلاح و تبدیل به یک ساختمان منظم مارپیچ‌شکل شود، که تأثیر بزرگی بر روی خواص عمومی الیاف از قبیل چسبندگی سطحی، پوشش‌دهی، قابلیت تر شدن، جلوۀ نوری و غیره دارد [10].
1-4-4-1 آبدوستی و آبگریزی انتخابی
زاویه تماس قطرۀ آب با سطح فیلمی که در معرض تابش لیزر اکسایمر قرار گرفته است، نسبت به تغییر تعداد پالس لیزر بررسی شده است، به طوری که مسیر اولیۀ کاهش زاویه تماس شبیه تابش‌دهی با لیزر دی‌اکسید‌کربن است، ولی با افزایش تعداد پالس، زاویه تماس به تدریج کم می‌شود و با رسیدن به 10 پالس بر مقدار آن افزوده می‌شود. به عبارت دیگر آبدوستی سطح فیلم ابتدا افزایش و سپس کاهش می‌یابد. جالب توجه اینکه با پرتودهی لیزری در طول موج فرابنفش در شرایط متفاوت می‌توان به دو حد آبدوستی و آبگریزی بر روی فیلم‌های پرتودهی شده نسبت به فیلم شاهد رسید که این خود نوعی مزیت پرتودهی با لیزر در مقایسه با منابع نوری دیگر است [28،50].
نوربخش و همکارانش [5] کاربرد لیزر در اصلاح برخی از خواص سطحی پارچه‌های نایلونی و پلی‌استری را بررسی کرده‌اند، به طوری که بر اثر پرتودهی توسط لیزر اکسایمر، جذب آب در الیاف نایلون و پلی‌استر افزایش یافته است. نتایج طیف‌سنجی مادون قرمز در پارچۀ نایلونی پرتودهی شده توسط لیزر، افزایش گروه‌های انتهایی اسیدی و در پارچۀ پلی‌استری تغییرات اتصالات شیمیایی، به همراه ایجاد گروه‌های کربوکسیل را در این الیاف نشان می‌دهد، که دلیلی بر افزایش جذب آب است.
1-4-4-2 خاصیت چسبندگی، ابرآبگریزی و خود تمیز شوندگی
برای ایجاد ابرآبگریزی، فقط روش تغییر هندسه و توپوگرافی سطح (بدون نیاز به پوشش‌دهی سطح توسط مواد شیمیایی فلوئوردار برای کاهش کشش سطحی) به اندازه کافی مؤثر است، زیرا مواد آلی عموماً برای آب زاویه تماس بزرگ‌تر از 90 درجه را نشان می‌دهند. به عنوان نمونه در طبیعت، برگ بعضی از گیاهان نظیر برگ درخت سدر (کُنار) فقط به وسیله عوامل هندسی ابرآبگریزی از خود نشان می‌دهد. سطح برگ از نظر مهندسی زبر است اما از نظر شیمیایی دارای مومی است که ترکیبات آن عمدتاً استرهای اسیدهای چرب و الکل‌ها می‌باشد. پاهای حشره واتر‌-‌استرایدر (حشره‌ای که بر روی آب راه می‌رود) نیز به وسیله عوامل هندسی، ابرآبگریزی از خود نشان می‌دهد [18].