sad9

مبحث سوم- خاستگاه تاریخی مسئولیت مدنی
مبحث چهارم- مبانی نظری مسئولیت مدنی
گفتار اول-نظریه تقصیر
بند اول- تقصیر مدنی
بند دوم-تقصیر کیفری
گفتار دوم- نظریه مسئولیت بدون تقصیر
گفتار سوم- مبانی فقهی مسئولیت مدنی
بند اول- اتلاف
بند دوم-تسبیب
بند سوم- تسبیب در رویه قضایی
بند چهارم- لاضرر
بند پنجم- قاعده من له غرم فعلیه الغرم
بخش دوم-تعاریف و مفاهیم راجع به وسائل نقلیه
مبحث اول-مفهوم وسیله نقلیه
مبحث دوم-مفهوم وسائل موتوری
مبحث سوم-تاریخچه مربوط به وسیله نقلیه موتوری زمینی
بخش سوم-تصادم و شرایط آن
مبحث اول-ماهیت حقوقی تصادم
مبحث دوم-نقش وسیله نقلیه در ایجاد خسارت
مبحث سوم-میزان مسئولیت متصادمین
مبحث چهارم- شرایط تصادم
مبحث پنجم-مقایسه تصادم با حوادث مشابه
بخش چهارم-مفهوم شناسی دارنده وسیله نقلیه
مبحث اول-مالک وسیله نقلیه
گفتار اول-تعریف مالکیت
بند اول-مالک رسمی
بند دوم-مالک عادی
فصل دوم-بررسی مبانی مسئولیت دارندگان وسائل نقلیه موتوری زمینی
بخش اول- تعریف و مفهوم مبانی
بخش دوم-فرض تقصیر
مبحث اول-نقش تقصیر در حوادث رانندگی
مبحث دوم-تصادم بدون تقصیر
مبحث سوم-تصادم در نتیجه تقصیر یکی از دو راننده
مبحث چهارم-تصادم در نتیجه تقصیر هر دو طرف
بخش سوم-کاربرد قاعده تسبیب در حوادث رانندگی
مبحث اول-انتساب در تسبیب
مبحث دوم-نظریه ایجاد خطر
بخش چهارم-مبنای مسئولیت از منظر قانون موضوعه
مبحث اول-مبنای مسئولیت در قانون مسئولیت مدنی
گفتار اول-قانون مدنی
گفتار دوم-مبنای مسئولیت در قواعد خاص
گفتار سوم-مبنای مسئولیت از قانون مسئولیت مدنی تا قانون 1347
مبحث دوم-مبنای مسئولیت از قانون مجازات اسلامی تا اصلاحیه 1387 قانون بیمه اجباری
گفتار اول-قانون حمایت از مصرف کنندگان خودرو
گفتار دوم-اوصاف و احکام مسئولیت دارنده
گفتار سوم-مبنای مسئولیت ناشی از تولید و عرضه و تعمیر
فصل سوم -ارکان مسئولیت دارندگان وسائل نقلیه موتوری زمینی
بخش اول-فعل زیانبار
مبحث اول-ضرر
مبحث دوم-شرایط ضرر قابل جبران
گفتار اول-مسلم بودن
گفتار دوم-مستقیم بودن
گفتار سوم-قابل پیش بینی بودن ضرر
بخش دوم-پرداخت خسارت
مبحث اول-رویه قضایی در مورد پرداخت خسارت
مبحث دوم-افزایش نقش دولت (ترمیم نقص نظریه تقصیر در خصوص وسائل نقلیه موتوری زمینی)
گفتار اول-استفاده از سازوکار بیمه
گفتار دوم-بیمه مسئولیت
گفتار سوم-الزام به قبول تعهدات
بخش سوم-قلمرو اجرای قانون بیمه اجباری
مبحث اول-مفهوم دارنده
گفتار اول- مفهوم عمومی دارنده
گفتار دوم- دارنده در رویه قضایی
بخش چهارم-تاثیر عوامل بیرونی در رابطه سببیت و مسئولیت دارنده
مبحث اول-قوه قاهره
مبحث دوم- قوه قاهره از منظر رویه قضایی
مبحث سوم-نقش قوه قاهره در نفی مسوولیت
مبحث چهارم-موضع قانونگذار نسبت به قوه قاهره
مبحث پنجم-برتری نسبی قانون بر قرارداد
نتیجه گیری و پیشنهاد ها
فهرست منابع و ماخذ

فهرست علائم اختصاری
قانون اصلاحی بیمه اجباری مسئولیت ق.ا.ب.ا.م
قانون ایمنی راه ها و راه آهن ق.ا.ر.و.ر.
قانون آیین دادرسی کیفری ق.آ.د.ک
قانون آیین دادرسی مدنی ق.آ.د.م
قانون بیمه اجباری دارندگان وسائل نقلیه موتوری زمینی ق.م.م.د.و
قانون دیات ق.د.
قانون مجازات اسلامی ق.م.ا
قانون مدنی ق.م
قانون مسئولیت مدنی. ق.م.م.
چکیده
مسئولیت ناشی از تصادم وسیله نقلیه موتوری زمینی با تاکید بر قانون بیمه اجباری وسائل نقلیه موتوری زمینی اصلاحیه 1387 موضوعی است که در این پایان نامه مورد تحلیل و ارزیابی قرار گرفته است. از این رو نگارنده با تبیین توصیفی و تحلیلی موضوع درصدد بررسی این موضوع از حیث قانون و رویه قضایی است. با توجه به آنکه بیشتر نظام های مهم حقوقی مسئولیت مدنی ناشی از وسائل نقلیه موتوری زمینی را به موجب قوانین خاص و مبتنی بر نظریه خطر دانسته اند نظام حقوقی ایران نیز تقریبا از نیم قرن گذشته تا به امروز شاهد تحولاتی در این زمینه بوده است. بیشتر این تحولات در راستای جبران خسارت های عمومی از شهروندانی است که در معرض تهدید های مکانیکی ناشی از این وسائل قرار گرفته اند. با توجه به آنکه نظریه تقصیر به تنهایی نمی تواند پاسخگوی نیازهای جامعه صنعتی باشد بیشتر گرایش ها به سمت نظریه خطر پیش رفته است. در این پایان نامه با روش توصفی تحلیلی درصدد تبیین این موضوع در حقوق ایران خواهیم بود. از سوی دیگر با ورود همگانی و اجباری شدن بیمه برخی سخن از حذف مسئولیت مدنی رانده اند که در جای خود قابل تامل می باشد. در هر صورت توسعه سازوکارهای جبران خسارت در پرتو قوانین مدرن و انسان مدار می تواند سرآغاز حرکت به سوی یک نظام پاسخگو در زمینه مسئولیت مدنی در رابطه با خطرات ناشی از وسائل نقلیه موتوری زمینی باشد. در این پایان نامه تاکید نگارنده در مجموع بر شفاف سازی هر چه بیشتر این سازوکارها بوده است.
واژگان کلیدی: وسائل نقلیه، مسئولیت مدنی، جبران خسارت، تقصیر، خطر
مقدمه
1-بیان مسئله
هدف از مسئولیت مدنی، جبران خسارت زیان دیده است نه مجازات شخص مسئول، متأسفانه در حقوق ایران، قواعد مسئولیت مدنی، نه تنها متناسب با فعالیتهای جامعه ی ماشینی و تحولات روابط اجتماعی نبوده بلکه اصولا رویه ی قضایی در برخورد با مسائل مسئولیت مدنی، چنان عمل می کند که گویا قانون مسئولیت مدنی، قانونی منسوخ یا حداقل متروک است در حالی که در اکثر کشورهای پیشرفته، اهمیت عملی قواعد مسئولیت مدنی بیش از پیش آشکار شده و قانونگذاری در این کشورها به یاری رویه قضایی و عقاید علمای حقوق در تدوین مقررات پویا و نوین گامهای بلندی برداشتهاند.
در ابتدا نظام حاکم بر مسئولیت مدنی ناشی از این وسایل تابع قواعد سنتی اثبات تقصیر بود و پیچیدگی خاصی نداشت؛ اما رشد روزافزون این وسائل و استفاده بی رویه از آنها موجب بروز حوادث پیچیده ای شد که قواعد سنتی پاسخگوی آنها نبود. توسل به قواعد سنتی موجب عدم امکان اثبات تقصیر و بدون جبران ماندن بسیاری از خسارات زیان دیدگان می شد. همین امر نظام های مختلف را به فکر چاره ای تازه سوق داد. در این راستا برخی کشورها به نفع قربانیان این حوادث برای دارندگان وسائل نقلیه مسئولیت خاص ایجاد کردند و برخی نیز با روی آوردن به مسئولیت جمعی با حمایتهای مالی ویژه خصوصاً بیمه اجباری، جبران خسارت زیان دیدگان راتضمین نموده اند. اما نیازهای مشترک موجب شد این نظام ها با وجود تفاوتهایی که در شیوه و مبانی مسئولیت با هم دارند به راه حل های چنان یکسانی برسند که حقوقدانان هر یک از آنها را از مطالعه کتابهای حقوقی نظام دیگر احساس بیگانگی نکنند.
همچنین باتوجه به اینکه امروزه وسایل نقیله ی موتوری زمینی در حمل و نقل نقش عمده ای داشته و روز به روز گسترش مییابد و به موازات این گسترش تصادفات ناشی از آن رو به افزایش است و منجر به خسارات هنگفت مالی و جانی میگردد، از این رو بخش عمده از دعاوی مطالبه خسارت و دعاوی کیفری مربوط به حوادث ناشی از وسائط نقلیه بوده و آراء صادره توسط مراجع قضایی مبتنی بر نظریات کارشناسان تصادفات راهنمایی و رانندگی میباشد، لذا تجزیه و تحلیل سوانح رانندگی از نظر حقوقی به انضمام اطلاعات فنی و کارشناسی به کارشناسان امکان ارائه نظریات دقیق و منطبق با مبانی قانونی، مسئولیت را فراهم آورده و مانع اعمال سلایق شخصی می گردد. مسئولیت در سوانح رانندگی به دو دسته کیفری و مدنی تقسیم می گردد. مقررات مسئولیت کیفری در این مورد در قانون مجازات اسلامی تحت عنوان جرائم ناشی از تخلفات رانندگی (مواد 714 الی 725) پیش بینی و تصویب گردیده است ولی تاکنون مقرراتی واحد تحت عنوان مسئولیت مدنی ناشی از تصادفات رانندگی وضع نگرددیده است. هر چند در این مورد، موادی به صورت پراکنده در قوانین مختلف از جمله، بیمه ی اجباری مسئولیت مدنی دارندگان وسایل نقلیه موتوری زمینی در مقابل شخص ثالث، قانون مدنی، قانون مجازات اسلامی، قانون ایمنی راهها و راهآهن و قانون نحوه رسیدگی به تخلفات و اخذ جرایم وجود دارد. لذا برای بررسی و مطالعه مسئولیت مدنی در این زمینه باید از قواعد عمومی مسئولیت کمک گرفت. با توجه به اینکه برقراری و ایجاد نظامی عادلانه و منطقی حاکم، بر مسئولیت مدنی در این مورد می تواند در اصلاح رفتار رانندگان و نهادهای مسئول و کلیه اشخاص مرتبط تأثیر زیادی داشته و نقش بازدارنده ایفا نماید و از به هدر رفتن سرمایههای انسانی و مالی کشور جلوگیری نماید. این نظم منطقی صرفا از راه تعیین و تفسیر صحیح ضوابط و معیارهای قانونی و پیشنهادات اصلاحی مقدور و ممکن میباشد. همچنین لازم است مقررات حقوقی در خصوص تعیین روابط ایجاد کننده خسارت و زیاندیده در این مورد بیش از پیش متحول گردد و حقوقدانان نیز به دنبال راه حلهای جامع، پیشگیرانه و منصفانه برای تعیین مسئولیت مدنی ناشی از حوادث رانندگی باشند.
2-اهداف تحقیق
اهداف این پژوهش را می توان به دو دسته اهداف عملی و نظری تقسیم بندی کرد. از حیث نظری توسعه علمی موضوع هدف اصلی آن است و از حیث عملی بررسی مسئولیت مدنی جبران خسارت در مورد واسائل نقلیه موتوری زمینی مد نظر می باشد. با توجه به مراتب فوق و نقشی که وسائل نقلیه موتوری زمینی در جامعه دارد و با عنایت به زیان های ناشی از آن، در این تحقیق تلاش شده تا با تجزیه و تحلیل مقررات مختلف به ویژه قانون اصلاح قانون بیمه اجباری برای پرسشهای مطرح شده پاسخ مناسبی ارائه شود تا زوایای مسئولیت دارنده وسیله نقلیه شناسایی شود تا به مقصود اصلی که ترغیب دارندگان آنها به مراقبت از وسائل خود و تضمین جبران خسارت وارد بر ثالث در اثر کنش این وسایل و در نهایت کاهش خسارات ناشی از فعالیت این گونه وسائل دارند نائل شویم.
3-روش تحقیق
روش پژوهش به صورت کتابخانه ای و استفاده از منابع موجود نوشته از جمله کتابها، مقالات، پایان نامهها و ... می باشد. همچنین در صورت نیاز از منابع معتبر اینترنتی نیز بهره خواهیم برد. نوع روش تحقیق به صورت استقرایی است. بدین صورت که از مطالب و دسته بندی جزیی به نتیجه نهایی خواهیم رسید.
در این روش پس از پلان بندی کامل موضوع تحقیق و در واقع ارائه پلان پیشنهادی نمای کلی تحقیق را مشخص می سازیم. پس از آن با رجوع به منابع مختلف درصدد کامل سازی پلان مزبور خواهیم بود. جمع بندی مطالب از طریق طبقه بندی در فیش های فرم کتابخانه ای و یا با جمع آوری در فایل های کامپیوتری انجام خواهد شد. از آنجا که موضوع به مقولههای گوناگون علوم انسانی مربوط است حجم و دامنه منابع متنوع و متکثر خواهد بود. بنابراین باید برای یکسان سازی و ارتباط موضوعی مطالب با یکدیگر از تحلیل های شخصی نیز استفاده گردد.
4-ضرورت تحقیق
اهمیت وسائل نقلیه موتوری زمینی و به ویژه نقشی که در زندگی بشر و تحول آن داشته اند بر کسی پوشیده نیست. اما با وجود تمام مزایایی که این وسائل در زندگی بشر داشته اند، پیامدهای ناگواری نیز برای انسان به همراه داشته اند. به طوری که حوادث ناشی از این وسائل در زمره سرگرمی های اسفبار زندگی انسان قرار گرفته و یکی از مهمترین عوامل مرگ و میر در سطح جهانی به ویژه در کشورهای کمتر توسعه یافته مانند ایران است.
5- سوال های تحقیق
1-اساس مسئولیت مالک در مورد وسائل نقلیه موتوری زمینی چیست؟
2-خسارت ها در مورد وسائل نقلیه موتوری زمینی شامل چه مواردی می شود.؟
6- فرضیه های تحقیق
1-مسئولیت مالک به خاطر سلطه ای است که بر مال دارد و به طور معمول مالک در مال خود سلطه دارد و اوست که باید در انتفاع از وسیله نقلیه احتیاط کند و به دیگران ضرر نرساند.
2-منظور از خسارت در تصادف اتومبیل، خسارت مالی و جانی است و گویا خسارت معنوی هم شامل این خسارت ها می شود.
۷-سوابق تحقیق
در خصوص این موضوع در کتاب های مختلف تحقیقاتی انجام شده است ولی بیشتر موارد مورد پژوهش به صورت پروژه - ریسرچبوده که پس از تصویب قانون جدید به نقد و بررسی موضوع پرداخته شده است. نویسندگان حقوقی بیشتر در کتاب هایی که در مورد مسئولیت مدنی نوشته اند صفحاتی را به مسئولیت مدنی ناشی از حوادث وسائل نقلیه اختصاص داده اند و بعضی از نویسندگان به تفصیل در این زمینه بحث کرده اند و بعضی فقط اشاره ای به این نوع از مسئولیت کرده اند.
برای مثال آقای حمید بهرامی احمدی در کتاب مسئولیت مدنی خود مبحثی مختصر در حدود ده صفحه را به این موضوع اختصاص داده اند. پس مطالب طرح شده جامع و مانع به نظر نمی رسند. آقای دکتر غلامعلی زاده در کتاب مسئولیت مدنی ناشی از سوانح رانندگی به موضوع از حیث حقوق تطبیقی بیشتر نظر داشته و موانع آن را از منظر حقوق داخلی کمتر مورد بررسی قرار داده اند. همچنین آقای بختیار عباسلو به لایحه پرداخته زیرا در زمان نگارش کتاب ایشان هنوز متن قانون به تصویب نرسیده بود. پس به نظر می رسد تحقیقات انجام شده کافی به نظر نمی رسد.
8-مشکلات و موانع تحقیق
موضوع پیش رو با توجه به این که از منظر قانونگذاری تحولات نوینی را وارد در عرصه قانونگذاری در ایران کرده است و به هر حال هنوز حقوقدانان در حال بحث و بررسی در مورد آن می باشند فاقد منابع لازم تحلیلی است. از این رو می توان گفت فقد منابع کامل را می توان مهمترین مشکل دانست.
9-سازماندهی تحقیق
این پژوهش از سه فصل تشکیل شده است. در فصل اول به ذکر کلیاتی راجع به موضوع اشاره شده است. در فصل دوم بررسی مبانی مسئولیت دارندگان وسائل نقلیه موتوری زمینی مد نظر قرار گرفته و در نهایت در سومین فصل ارکان مسئولیت مدنی تحلیل شده اند.
فصل اول-کلیات و مفاهیم
در این فصل کلیات و مفاهیم راجع به موضوع مورد بحث و بررسی قرار خواهند گرفت. از آنجا که موضوع این نوشتار مسئولیت مدنی مرتبط با دارندگان وسائل نقلیه موتوری زمینی است باید به شرح و توصیف عناصر مرتبط با موضوع پرداخته شود.
1-1-کلیات راجع به مسئولیت مدنی
1-1-1-تعریف لغوی مسئولیت
مسئولیت از «سَال یَسال» به معنی «موظف بودن به انجام دادن امری» است.منظور در واقع امر مورد مواخذه قرار گرفتن بوده و این مفهوم فرع بر وجود وظیفه و تعهد قبلی است.بشر این مفهوم عهده دار بودن چیزی را در خود حس می کند .به عقیده برخی احساس مسئولیت پدیدار شدن نوعی عکس العمل در انسان است که حاصل آن کوششی است فعالانه خواه ذهنی و خواه عملی.
احساس مسئولیت از انسان جدا نمی گردد،زیرا انسان در هر لحظه زندگی باید تصمیم اتخاذ کند.حتی عدم تصمیم گیری در امری خود نوعی تصمیم است و این دال بر وظیفه وی و احساس این وظیفه است.بی قید و بند ترین افراد نیز خود را در قید این احساس می دانند،زیرا حیات بشر همواره مستلزم انتخاب راهی از میان طرق مختلف است،و هر اندازه انسان جبرگرا باشد هر زمان در مقابل مسائلی قرار می گیرد که باید به نوعی به آنها پاسخ دهد و راهی را برگزیند و این خود احساس مسئولیت است.
مسئولیت به معنای پاسخگو بودن نسبت به تعهد و تکلیف و از نظر حقوقی عبارت است از «تعهد یا الزامی که به دستور قانون برای رفع تجاوز متجاوز مقرر شده است.»در برابر واژه مسئولیت در زبان بیگانه دو واژه «responsibility» و «liability» به کار می رود که هر دو به معنای حالت پاسخگو بودن فرد نسبت به یک تعهد است ولی واژه نخست کاربرد بیشتری دارد.در این مفهوم مسئولیت به معنای تعهد برای پاسخگویی در برابر عملی که انجام یافته و جبران خسارتی که به دیگران وارد شده آمده است.
هرگاه شخصی ملزم به جبران خسارت وارد شده به دیگری باشد، عرفا در مقابل او مسئولیت دارد.معنی لغوی واژه مسئولیت نیز همین است؛زیرا در لغت کسی را که از وی سوال و بازخواست کنند و وی در مقابل پاسخگو باشد،او را مسئول می نامند.معنی اصطلاحی هم به همین مفهوم نزدیک است،چرا که در جامعه نیز مسئول بودن و مسئولیت به این معنی است که شخص باید پاسخگوی برخی از اعمال خویش باشد و در هر مورد که بر اثر تقصیر یا بی مبالاتی شخصی،ضرر و زیانی به دیگری وارد آید و عامل این ضرر و زیان،مکلف به جبران خسارت باشد،می گویند که در برابر وی مسئولیت مدنی دارد و یا به عبارتی دیگر،ضامن خسارت وارد شده می باشد و باید آن را تدارک ببیند.
1-1-1-1-مفهوم مسئولیت مدنی
حقوق دانان ایرانی نیز به تعریف مسئولیت مدنی در آثار خود پرداخته اند. باری مثال دکتر ناصر کاتوزیان می‌نویسد:
«بر مبنای مسئولیت مدنی رابطه دینی وِیژه ای بین زیان دیده و مسئول به وجود می آید؛زیان دیده طلبکار و مسئول،بدهکار می شود و موضوع بدهی جبران خسارت است که به طور معمول با دادن پول انجام می‌شود...»
دکتر محمد جعفر جعفری لنگرودی مسئولیت مدنی را چنین تعریف می کند:
«مسئولیت در مقام خسارتی که شخص (یا کسی که تحت مراقبت یا اداره شخص است) یا اشیاء تحت حراست وی به دیگری وارد می کند و همچنین مسئولیت شخص بر اثر تخلف از انجام تعهدات ناشی از قرارداد.مسئولیت مدنی در مقابل مسئولیت کیفری استعمال می شود و....»
در تعریف دیگر آمده است:«لزوم جبران ضررهای وارده به یک شخص را مسئولیت مدنی می گویند.»
دیگر تعریف بیان می دارد:
«مسئولیت مدنی، عبارت از مسئولیتی است که از قابلیت ارزیابی به مال برخوردار باشد، مانند آنکه شخصی مال متعلق به غیر را اتلاف می کند که ضامن آن خواهد بود.»
در آخرین تعریف از سوی یکی از حقوقدانان مسئولیت مدنی چنین تشریح شده است:
«هر کس به بدن یا سلامتی یا احساسات و عواطف یا لا اموال و حقوق مالی دیگری از هر طریقی اعم از عدم اجرای قرارداد و یا نقض قواعد عام و هنجارهای عرفی و یا نقض قانون و یا به مناسبت انجام جرم لطمه وارد نماید، باید خساراتی را که وارد آورده جبران نماید و زیان دیده حق دارد از عامل زیان، ای خسارات را مطالبه نماید.»
در مجموع می توان گفت تنظیم رفتار افراد و نظم جامعه اقتضا دارد مقنن قواعد و دستورالعمل هایی را به عنوان تکالیف و الزامات بر شهروندان تحمیل نماید و برای آنها ضمانت اجرا قرار داده و کسانی را که از این تکالیف و مقررات طفره می روند مورد بازخواست قرار دهند. با این وجود همه مقررات دارای ضمانت اجرای واحد نیستند؛ زیرا این مقررات بر مبانی ارزشی متنوعی استوار است؛ هرجا نقض قاعده ای باعث ضرر به پیکره اجتماع شود ضمانت اجرای شدید تری لازم است که مسئولیت کیفری می باشد اما جایی که ضرر از روابط شهروندان فراتر نرفته و به جامعه ضرری نزند مسئولیت مدنی محقق می شود. بنابراین ضمانت اجرای نقض قواعد و مقرراتی که باعث اضرار به شهروندان گردد مسئولیت مدنی است. به عبارتی تعهد و الزام به جبران خسارت وارده به دیگران را مسئولیت مدنی نامند.
1-1-2-خاستگاه تاریخی مسئولیت مدنی
تا آنجا که تاریخ فرضیه های حقوقی نشان می دهد نخستین تجلی فرضیه مسئولیت به صورت وظیفه بوده است. بدین شرح که کسی که خود او یا اشیاء و افراد واقع در اختیار او به دیگری زیان رسانده است موظف است که به نوعی آتش خشم و انتقام زیان دیده را فرونشاند. کسی که به دیگری زیانی می رساند یا با حمایت از خویشاوند و طفل و حیوانی اهلی که به دیگری زیانی رسانده است، مانع گرفتن انتقام از آنها می شود یا باید دیه این جرایم را بپردازد یا برای مقابله با خشم و انتقام زیان دیده آمده شود، چون مصلحت جامعه در آرامش و نظم یعنی امنیت عمومی در ابتدایی ترین معنی آن، با تنظیم روابط خصمانه و سرانجام آشتی دادن دو خصم بهتر و موثر تر تامین می شود.


مسئولیت مدنی در عصر حاضر یکی از بخش های مهم حقوق مدنی است که در اهمیت روز افزونی یافته است و توجه دانشمندان حقوق و دادرسات و قانونگذاران کشورهای پیشرفته را به خصوص در مسائل جدید به خود جلب کرده است و حتی گرایش به آن دارد که در هر زمینه به صورت یک رشته مستقل حقوقی محسوب شود. در این زمینه چه بسا، قانونگذار، حتی در کشورهای حقوق نوشته، نقش اول را ایفا نمی کند؛ زیرا تحولات به اندازه ای سریع است که نظام قانونگذاری با پیچ و خم هایی که دارد، نمی تواند پاسخگوی مسائل سریع روز باشد. از این رو دادگاه ها نیز نقش سازنده ای را ایفا می کنند و قواعد جدیدی را پدید می آورند که گاهی قانونگذار، آنها را تایید و تثبیت و به صورت موارد قانونی تدوین می کند.
در ایران متاسفانه قوانین ما در این خصوص پراکنده و ناقص و ناهناهنگ است. بخشی از قواعد مسئولیت مدنی در قانون مدنی آمده که ریشه فقهی و سنتی دارد. سپس در سال 1339 قانون مسئولیت مدنی به تصویب رسیده که مقررات قانون مدنی را تکمیل کرده و قواعدی با الهام از حقوق غربی آورده که برخی از آنها در عمل، چنانکه باید اجرا نمی شود و برخی دیگر به بازنگری نیاز دارد. افزون بر موارد یاد شده قانون مجازات اسلامی موادی در مورد مسئولیت مدنی دارد. این مواد نیز از فقه اقتباس شده و علاوه بر اینکه مبانی نظری بعضی از آنها روشن نیست، بین مواد قانون از یک سو و بین مواد قانون مسئولیت مدنی هماهنگی دیده نمی شود. این چالش بحث در باب مسئولیت مدنی در فضای سایبر را نیز دشوار می سازد که با آن در جای خود اشاره خواهیم کرد.
1-1-3-مبانی نظری مسئولیت مدنی
1-1-3-1-نظریه تقصیر
این نظریه در قرن 18 و در اواخر حکومت روم رایج شد. براساس این نظریه فاعل زیان زمانی باید خسارت های وارده را جبران کند که مرتکب تقصیری شده باشد و زیان دیده، باید تقصیر او را ثابت نماید، لذا در صورت عدم اثبات تقصیر، مسئولیتی قابل تصور نیست. برای مثال در نظام حقوقی ایران مسئولیت ناشی از فعل حیوان و خسارت ناشی از ساختمان (مواد 334 و 333 قانون مدنی) براساس این نظریه توجیه می شود. البته همان طور که اشاره شد با لحاظ ماده ی 1 قانون مسئولیت مدنی، در نظام حقوقی ایران اصل بر نظریه تقصیر می باشد اما نمی توان آن را مبنای مطلق مسئولیت تلقی کرد، زیرا با در نظر گرفتن نظریه مارالذکر به عنوان مبنای منحصر مسئولیت مدنی، بسیاری از ضررها بدون جبران باقی می ماند، مثلاً امروزه با ظهور وسایل خطر آفرین مانند خودرو و استفاده از آن ،صاحب وسیله از امتیازاتی برخوردار می شود و دیگران را در معرض خطر قرار می دهد و لذا ممکن است زیان دیده نتواند نقصیر صاحب وسیله را اثبات کند و زیان وارده بر وی بدون جبران باقی ماند که این امری است که با عدالت و انصاف چندان سازگاری ندارد، بر این اساس لازم است تا نظریات دیگری درکنار نظریهی اصلی (نظریه تقصیر) مطرح گردد.
1-1-3-2-تقصیر مدنی
گاهی تقصیر مدنی موجب حادثه رانندگی می شود. به عنوان مثال فردی که مواد لغزنده ای را در جاده ریخته یا چاله ای را حفر نموده یا سازمان هایی که وظیفه مراقبت و نگهداری راهها را بر عهده دارند وظیفه خود را انجام نداده و موجب حادثه رانندگی شوند این تصادف را نمی توان ناشی از تخلفات رانندگی دانست، بلکه ناشی از تخلفات عمومی است. به موجب تبصره 3 ماده 14 قانون رسیدگی به تخلفات رانندگی:
«در صورتی که بر اساس نظر کارشناسان تصادفات نقص را یا وسیله نقلیه موثر در علت تصادفات باشد حسب مورد متصدیان ذی ربط مسئول جبران خسارت وارده بوده و با آنان برابر قانون رفتار خواهد شد.»
نقص مقرر د تبصره فوق ممکن است ناشی از اهمال و کوتاهی متصدیان امر باشد که در این صورت بر اساس ماده ذکر شده اگر موجب فوت گردد منجر به مسئولیت کیفری و مدنی آنها و اگر ناشی از اهمال آنها نباشد. به عنوان مثال اگر در راهی حفره ای ایجاد شده باشد و مدت زیادی از آن گذشته باشد و سازمان متصدی در این مورد اهمال نموده باشد تقصیر مذکور کیفری و اگر فرصت کافی برای اقدام لازم در این مورد را نداشته باشد تقصیرمدنی محسوب می شود.
1-1-3-3-تقصیر کیفری
مقررات و قواعد حقوقی برای کنترل رفتار اجتماعی است. هر جامعه بر حسب مذهب،اخلاق، فرهنگ سیاسی و دیگر عوامل گوناگون محیطی و اجتماعی دارای ارزش های خاص خود می باشد که شکستن و زیر پا گذاشتن این ارزش ها نوعی نا هنجاری محسوب شده و در نتیجه بی پاسخ از سوی اجتماع نخواهد ماند.بخشی از قواعد حقوق که به بررسی و تعیین ارزش های مهم جامعه و تعیین خطا ها و افعال مجرمانه و ضمانت اجرای آن ها می پردازد حقوق کیفری نام دارد.
مقررات و قواعد کیفری تعهدات و تکالیفی را که مربوط به حفظ ارزش های مهم جامعه است بر افراد تحمیل می نماید که با نقض و رعایت نکردن یکی از این قوانین شخص مورد بازخواست قرار می گیرد که در اصطلاح مسئولیت کیفری نامند. مسئولیت کیفری قوی ترین ضمانت اجرای نقض قواعد و مقررات حقوقی است و گاه می تواند به مجازات هایی منجر شود که شدید ترین محرومیت های اجتماعی را به ارمغان آورد. مسئولیت کیفری سزای ارتکاب تقصیر جزایی است که برای جوامع به عنوان یک حق شناخته شده است؛ که با عنوان حق مجازات مجرم از آن یاد می شود. به نوعی باید گفت قابلیت شخص مجرم برای تحمل تبعات جزایی رفتار مجرمانه خود است.
در توجیه این نوع مسئولیت برخی معتقد اند :می توان با اعمال مجازات که در نتیجه باعث ارعاب در بین مردم جامعه است، باعث برچیده شدن ریشه جرم شد، در مقابل برخی دیگر بر این باورند که مجرم بیمار است و کیفر داروی شفا بخش و اصلاح کننده اوست. اما تمامی این توجیهات مورد ایراد قرار گرفته است: انتقاد اول این است که جامعه حق ندارد تقوی و فضیلت را به زور بر کسی تحمیل کند همانگونه که اخلاق ضمانت اجرای مادی ندارد. در توجیه دوم می توان گفت در برخی از کیفر ها اصلاح معنی ندارد، برای مثال در مجازات اعدام دیگر اثری از شخص باقی نمی ماند پس نمی توان گفت این اقدام باعث اصلاح فرد در جامعه خواهد شد. و در پایان باید گفت هدف مسئولیت کیفری اگر ارعاب دیگران باشد نکوهیده است. زیرا چگونه می توان شخصی را برای ارعاب دیگران که آن ها هم مثل این شخص جایز الخطا هستند مجازات کرد؟ به علاوه اینکه ارعاب گاه مجرمین را به احتیاط بیشتری وادار می نماید. همچنین کسانی را می‌هراساند که احتمال منطقی در خصوص تعقیب و دستگیری آن ها باشد. به علاوه اگر جرم عملی ضد اجتماعی باشد و هدف ارعاب دیگران و اصلاح مجرم باشد برخی از مجازات ها مانند حبس نه تنها سبب ارعاب عده ای نیست بلکه مطلوب مجرمان بی سرپناه است. همچنان که اثر اصلاحی هم ندارد زیرا دور نگه داشتن مجرم از جامعه به غیر اجتماعی کردن وی منجر می شود.
1-1-3-4-نظریه مسئولیت بدون تقصیر
مسئولیت بدون تقصیر، چنانکه از نام آن‏ پیداست، الزام قانونی عامل زبان به جبران خسارت‏ بدون لحاظ بی‏تقصیری اوست و در مواردی که‏ چنین مسئولیتی مقرر است،صرف انجام فعل‏ زیانبار و احراز رابطه سببیت میان آن و خسارت‏ وارد شده کفایت می‏کند.این نوع مسئولیت که‏ مسئولیت عینی نیز نامیده می‏شود، در راستای‏ حفظ منافع و مصالح اجتماعی و رعایت حقوق‏ متقابل افراد پیش بینی شده و فلسفه وضع آن‏ در نظام‏های حقوقی چیزی جز آن نیست. ژوسران‏ حقوقدان فرانسوی، در دفاع از وجود این مسئولیت می نویسد:«هر جا فاعل فعل‏ زیانبار بی‏تقصیر است، تحمیل زیانها بر متضرر و زیان دیده که هیچ گونه نقشی در پدید آمدن‏ آن نداشته،یک نوع بی‏عدالتی است و زیان‏ زننده باید جبران آن را به عهده بگیرد».
مسئولیت بدون تقصیر که به دلیل توجه‏ خاص به زیان دیده، در اکثر نظام‏های حقوقی، استثنایی بر اصل احراز و اثبات تقصیر است؛ در عین حال، خود نیز متضمن استثنایی مبتنی‏ بر رفع مسئولیت کسی است که وجود قوه قاهره‏ اعم از پدیده‏های طبیعی و سماوی و نیز تقصیر ثالث یا زیان دیده را ثابت نماید.
البته در صورتی که ثابت شود مصادیق فوق، علت منحصر در وقوع حادثه بوده،رافع ضمان‏ خواهد بوده،والاّ مسئولیت عامل زیان همچنان‏ باقی است و تنها متضمن این فایده است که‏ دخالت دو عامل در تحقق خسارت را ثابت نموده‏ و موجب تقسیم مسئولیت میان طرفین‏ می‏شود.فرضا اگر راننده بتواند تا این حد را ثابت‏ کند که عابر زیان دیده ناگهان به وسط خیابان پریده‏ و در وقوع تصادف مؤثر و مقصر بوده است،با وی در تحمل خسارت سهیم و شریک خواهد گردید.
1-1-4-مبانی فقهی مسئولیت مدنی
1-1-4-1-اتلاف
قاعده اتلاف که از آن به من اتلف مال الغیر فهوله ضامن تعبیر می شود و قاعده ای است متفق علیه بین فریقین.البته این عبارت خود متن حدیث نیست ولی از بعضی آیات شریفه قرآن :«من اعتدی علیکم فاعتدوا علیه بمثل ما اعتدی علیکم» و احادیث بسیار که در کتب فقهی ذکر شده اصطیاد شده است و لذا آن را قاعده مصطاده گویند.
حالی که اتلاف عرفا مستند به عمل مانع باشد شکی در ضمان مانع باقی نمی ماند یا جایی که فردی مانع می شود تا مالکی متاع خویش را بفروشد و در نتیجه قیمت آن کسر گردد زیرا سبب کسر قیمت عمل مانع بوده است.اما در مواردی که رابطه سببیت اثبات نشود یا تلف آن در اثر آفات سماوی باشد ضمانی بر آن بار نیست.
1-1-4-2-تسبیب
قاعده تسبیب که یکی از قواعد متقنه فقه است و بر مبانی و اساس آن هیچ گونه ایراد و اشکالی وارد نیست عبارت از این است که هر کسی سبب تلف و خسارت گردد ضامن است هر چند که خود مباشرت به اتلاف و توجه ضرر نداشته باشد و باید مال تلف شده را جبران نماید.
بحث تسبیب در ذیل عنوان اتلاف مطرح می شود، زیرا در حقیقت تسبیب نوعی از اتلاف است به این تعبیر که در اتلاف شخص مستقیما و بالمباشره باعث اتلاف مالی می گردد، ولی در تسبیب، عمل مسبب مع الواسطه سبب می شود که مال غیر از بین برود.
قاعده تسبیب در مباحث مختلفی از فقه مانند کتاب غصب، وقصاص و دیات (بحث موجبات ضمان) مطرح شده است. اگر چه مصادیق تسبیب در کتب فقهی ذکر شده است، اما اصطلاح تسبیب از قرن پنجم هجری به بعد در کتب فقها مانند "مبسوط" شیخ طوسی و "سرائر" ابن ادریس به صورت اجمال مطرح شده است. ولی در کتب قرن هفتم با مسئله تسبیب و مباشرت به شکلی کلی و مفصل تر روبرو می شویم.
1-1-4-3-تسبیب در رویه قضایی
در رویه قضایی توجه چندانی به رابطه سببیت بین تخلف راننده یا سایر افراد و حوادث رانندگی نمی شود. به عنوان نمونه می توان به رای شماره 82-12/46 هیئت عمومی دیوان عالی کشور اشاره کرد:
وقتی دوچرخه سواری بدون داشتن گواهینامه رانندگی دوست خود را بر ترک دوچرخه سوار می کند و در اثر انحراف ناگهانی، راننده اتومبیل را که در حال عبور از خیابان بوده است عصبانی می کند راننده اتومبیل به سمت دوچرخه سوار می راند و چنان به سمت راست خود می رود که دوچرخه سوار به جوی می افتد و در اثر اصابت شکم دوست خود را که بر ترک دوچرخه سوار بوده است به جدول سیمانی جوی برخورد و موجب پارگی طحال و مرگ او می شود. هیئت عمومی هم نظر به مسئولیت هر دو می‌دهد. رای مزبور با توجه به مقررات کنونی قابل توجیه نیست؛ زیرا اولاً در اجتماع سبب و مباشر، مسئولیت متوجه مباشر است، مگر اینکه سبب قوی تر باشد و ثانیاً به فرض آنکه حکم به مسئولیت هر دو داده شود میزان مسئولیت آنها در مقررات کنونی مساوی است. این رای واجد این اشکال مهم است که مبنای حقوقی رای مشخص نشده است، به عبارت دیگر فقط علل مادی مورد توجه قرار گرفته و در حالی که علل حقوقی و قانونی نیز باید مورد توجه قرار می گرفت.
علاوه بر مورد ذکر شده هیئت عمومی در مورد زیر نیز به رابطه سببیت توجهی نکرده است:
خلاصه جریان پرونده:
«آقای اسد که رانندگی اتوبوس شرکت واحد را بر عهده داشته است در تاریخ 30/5/64 قبل از اینکه اتوبوس را به کنار بزند و به علت اینکه درب اتوبوس باز بود، احد از سرنشینان آن به نام نوروز پایین افتاده و مجروح و سپس در تاریخ 2/6/64 فوت کرده است. افسر کاردان فنی ضمن ترسیم کروکی در گزارش جریان حادثه قید نموده است هنگامی که قصد توقف جهت یک نفر از سرنشینان خود را داشته قبل از توقف کامل، سرنشین از دب جلو اتوبوس خود را به پایین پرتاب می کند و طبق اظهارات شاهدین در محل و راننده در نتیجه با زمین برخورد نموده و از قسمت سر مجروح می شود. ولی در پایان گزارش علت تامه تصادف را بی احتیاطی راننده اتوبوس واحد به علت بازکردن درب وسیله نقلیه قبل ازتوقف کامل تشخیص داده است. متهم تحقیق و وی اظهار داشته من می خواستم بزنم کنار که نامبرده روی صندلی جلو نشسته بود یک دفعه دیدم پایین افتاد، سرعت ماشین هم تقریباً 10 کیلومتر بود و درب جلو باز بود. فرزند متوفی و همسرش اظهار داشته اند: در صحنه تصادف نبودیم و اطلاعی نداریم. برای تحقیق از مجروح مامور به بیمارستان رفته و گزارش نموده است در حالت بیهوشی به سر میبرد و قادر به بازجویی دادن نبود. در گزارش معاینه جسد به وسیله پزشکی قانونی علت فوت، ضربه جمجمه و خونریزی مغزی در نتیجه برخورد با جسم سخت تعیین گردیده است. متهم نزد بازپرس اظهار داشت که من به ایستگاه رسیدم ولی هنوز ایست کامل نکرده بودم که متوفی خود از اتوبوس در حال پیاده شدن بود و ایشان در پیاده شدن عجله کرد و افتاد و ایشان مقصر است و من خود را مقصر نمی دانم و ایشان بود که در واقع در اثر عجله در پیاده شدن افتاد. با اعلام شکایت اولیاء دم وتکمیل تحقیقات معموله و صدور قرار مجرمیت متهم به شرح کیفرخواست، دادسرای عمومی تهران آقای اسد به اتهام ایراد صدمه غیرعمدی منتهی به فوت آقای نوروز ناشی از بی احتیاطی و عدم رعایت مقررات در امر رانندگی را تحت تعقیب قرار داد.
شعبه 140 دادگاه کیفری یک تهران در وقت مقرر دفاعیات متهم و شکایت اولیاء دم را که عبارتند از همسر متوفی و فرزندان نامبرده، استماع و پس از کسب نظر مشاور قضایی به شرح زیر متهم را محکوم به پرداخت دیه کامله به اضافه ثلث آن از جهت وقوع قتل در ماه حرام ذیحجه الحرام اظهار نظر و متهم را به تحمل سه ماه زندان محکوم و سپس به مدت دو سال تعلیق نموده است. دادگاه صادر کننده رای پرونده را به دیوان عالی کشور ارسال که به شعبه بیستم ارجاع گردیده است، به موجب دادنامه 470/20 مورخ 21/5/65 دیوان عالی کشور نظر دادگاه را به جهت عدم انتساب قتل به متهم تنفیذ نکرده است، زیرا صرف بی احتیاطی متهم به علت باز کردن درب اتوبوس قبل از توقف کامل نمی توانست استناد قتل را به متهم توجیه نماید. دادگاه صادر کننده رای با بقاء بر عقیده قبلی خود پرونده را نزد معاونت کل دادگاه‌ها جهت ارجاع به شعبه دیگر کیفری ارسال کرده است. پرونده در شعبه 144 دادگاه کیفری یک تهران مطرح می شود، پس از تعیین وقت رسیدگی و استماع دفاعیات متهم و اظهارات اولیاء دم و کسب نظر مشاور قضایی به شرح نظر مورخ 15/11/65 به این استدلال عمل راننده که قبل از توقف کامل، درب اتوبوس را باز کرد جزءالعله بوده و عمل متوفی نیز که بدون رعایت احتیاط کامل در حین پیاده شدن پایش لغزیده و سرش به جدول اصابت کرده، جزء دیگر علت می باشد و درباره متهم به پرداخت نصف دیه کامله به اضافه ثلث آن در حق اولیاء دم مستنداً به بند ب ماده 2 قانون دیات اظهارنظر و نیز متهم را تحلل چهار ماه حبس تعزیری محکوم و سپس آن را به مدت دو سال تعلیق نموده است و پرونده را به دیوان عالی کشور ارسال داشته که به لحاظ سبق ارجاع به این شعبه ارسال گردیده است.
هیئت شعبه در تاریخ بالا تشکیل شد، پس از قرائت گزارش آقای و اوراق پرونده متعاقب شعبه 140 دادگاه کیفری یک تهران این شعبه را قبول نکرده است، معتقدم پرونده جهت طرح به هیئت عمومی دیوان عالی کشور ارسال می شود. با تاریخ روز سه شنبه 28/6/68 جلسه فوق العاده هیئت عمومی دیوان عالی کشور به ریاست حضرت آیت الله رییس دیوان عالی کشور و با حضور جناب آقای نماینده دادتان محترم کل کشور و جنابان آقایان روسا و اعضاء معاون شعب کیفری دیوان عالی کشور به شرح ذیل تشکل شد. پس از طرح موضوع و قرائت گزارش و بررسی اوراق پرونده و استماع عقیده جناب آقای نماینده دادستان محترم کل کشور مبنی بر، نظریه به اینکه متوفی در ایجاد حادثه خود مقصر بوده، زیرا هنگام پیاده شدن از اتوبوس عجله کرده و قبل از توقف کامل اقدام به پیاده شده نموده و در نتیجه به زمین خورد و فوت نموده است و باز کردن درب اتوبوس قبل از توقف کامل آن از طرف راننده نمی تواند موجب اتهام قتل به راننده باشد، لذا نظریه شعبه بیستم دیوان عالی کشور تایید می شود، مشاوره نموده و اکثریت بدین شرح رای داده اند. رای هیئت عمومی دیوان عالی کشور نظر شعبه 140 دادگاه کیفری یک تهران را در مورد اتهام اسد دایر به قتل غیرعمدی نوروز در اثر بی احتیاطی در امر رانندگی به پرداخت دیه کامله یک مرد مسلمان به اضافه ثلث دیه مزبور و محکومیت متهم به سه ماه زندان تعلیقی به مدت دو سال تنفیذ و پرونده را برای انشاء حکم به دادگاه مزبور اعاده می نماید. در حالیکه نظر نماینده دادستان کل کشور در هیئت عمومی از این قرار بوده است؛ نظر به اینکه متوفی در ایجاد حادثه خود مقصر بوده، زیرا هنگام پیاده شدن از اتوبوس عجله کرده و قبل از توقف کامل، اقدام به پیاده شدن نموده و در نتیجه به زمین خورد و فوت می کند و باز کردن درب اتوبوس قبل از توقف کامل آن از طرف راننده نمی‌تواند موجب توجه اتهام قتل راننده باشد.»
اشکالی که در این رای اصراری هیئت عمومی دیوان به نظر می رسد، عدم توجه به شرایط تحقق مسئولیت مدنی می باشد، زیرا یکی از ارکان لازم برای تحقق مسئولیت، لزوم رابطه سببیت بین تقصیر و حادثه می باشد. در حادثه موضوع بحث اقدام راننده اتوبوس مبنی بر باز کردن درب اتوبوس قبل از ایستگاه به عنوان تقصیر تلقی و با توجه به اینکه اقدام نامبرده مستقیماً موجب حادثه نشده هر چند به طور غیرمستقیم تاثیر داشته است، زیرا باز کردن درب موجب افتادن متوفی نشده است، بلکه پس از باز شدن درب نامبرده در هنگام پیاده شدن به هر دلیل به زمین خورده است که ارتباطی با تقصیر راننده نداشته در نتیجه فوت او را نمی توان ناشی ازتقصیر راننده دانست، به تعبیر دیگر، فوت متوفی به صورت بلاواسطه ناشی از تقصیر خوانده نمی باشد هر چند با واسطه پیاده شدن متوفیریال تاثیر داشته است. پس سببیت بین تقصیر خوانده و فوت متوفی وجود ندارد.
1-1-4-4- لاضرر
یکی از قواعد فقهی، قاعده لاضرر است که برگرفته از حدیث نبوی (لاضرر و لاضرار فی الاسلام ) است. در مورد این مفهوم در بین علما اختلافات زیادی وجود دارد. به طور قطع این برداشت از حدیث که هیچ ضرری در عالم خارج نیست نادرست است چرا که در زندگی اجتماعی نه تنها مصادیق مختلفی از ضرر به وجود می آید بلکه بعضی از آنها حتی لازمه روابط انسانی می باشند. از این رو نظرات مختلفی ارائه شده است که مقصود شارع به درستی و مطابق با واقعیت فهمیده شود .
فقها در مفهوم ضرر نظرات مختلفی را بیان کرده اند، گروهی چون شیخ انصاری گفته اند: حکم ضرری نفی شده یعنی هیچ حکمی در شرع وجود ندارد که باعث ضرر شود.
عده ای چون مرحوم شریعت اصفهانی، نهی از اضرار را از حدیث استنباط می کند. بعضی چون مرحوم نراقی می گویند ضرر غیر متدارک را نمی توان ضرر نامید، لذا مقصود شارع این بوده است که هر ضرری باید جبران شود. همهی این نظرات طرفدارانی دارند اما نظر شیخ انصاری که حکم ضرری را نفی کرده طرفداران بیشتری دارد.
در معنای لغوی ضرر و ضرار بحث های زیادی شده است.در این که معنای حدیث و مدلول فقهی آن چه می باشد،از سوی علماء نظریاتی ابراز شده است. بعضی آن را نهی از اضرار می دانند و بعضی گفته اند بدین وسیله حکم ضرری نفی شده یعنی هیچ حکمی در شرع وجود ندارد که باعث ضرر شود .بعضی می گویند هیچ ضرر تدارک شده ای وجود ندارد و هر ضرری باید جبران شود و بعضی از راه نفی موضوع،نفی حکم کرده اند.
در خصوص ناهیه و یا نافیه بودن لا در لاضرر بین فقهاء اختلاف نظر وجود دارد.قائلیین به ناهیه بودن لا در لاضرر، معتقدند که لای مزبور لای نهی است که دلالت بر حرمت و ممنوعیت اضرار به دیگران دارد و هیچ دلالتی بر حکم وضعی ضمان ندارد.از سوی دیگر قائلین به نافیه بودن لا در لاضرر،معتقدند که حدیث لاضرر به معنای حقیقی خود یعنی لای نفی استعمال شده است.در زیر به شرح و تحلیل موضوع خواهیم پرداخت.
مطابق نظر این گروه از فقیهان، لا، در حدیث لاضرر، به معنای لای نهی است که دلالت بر حرمت و ممنوعیت اضرار به دیگران دارد و هیچ دلالتی بر حکم وضعی (ضمان) ندارد. این عده خود به دو گروه تقسیم می شوند: عده ای نهی را نهی تشریعی و عده ای دیگر آن را نهی حکومتی می دانند.یکی از طرفرداران نهی تشریعی شیخ الشریعه اصفهانی است.وی معتقد است ، مفاد حدیث لاضرر، این است که ضرر زدن به دیگران، شرعا حرام و مستوجب عقوبت است.
وی شواهدی از کتاب و سنت می آورد که، لا، به معنای نهی آمده است. مثل آیه شریفه «فلارفث و لافسوق و لاجدال فی الحج» که به معنای نهی از بدکاری و آمیزش با زنان و ستیزه جویی در حج است.
دسته دیگر از نهی حکومتی سخن گفته اند.طرفداران این نظریه معتقدند که، مفاد حدیث لاضرر، نهی از اضرار به دیگران از باب نهی حکومتی است و نه تشریعی. به این معنا که، پیامبر اکرم (ص) در مقام حاکم جامعه اسلامی، نه در مقام قانونگذاری و تشریع، از هر گونه ضرر رسانیدن به دیگران نهی نموده است. گروهی از فقیهان بر این باورند که، لا، در حدیث لاضرر به معنای حقیقی خود یعنی، لای نفی، استعمال شده است. اما، از آن جا که، در عالم خارج ضرر وجود دارد، باید، چیزی در تقدیر گرفته شود. برای تبیین این موضوع چند نظر ابراز شده است که به شرح ذیل است:
نظر اول نفی حکم ضرریبه نظر این دسته ، مراد از لاضرر، نفی حکم ضرری است. چنانکه ملاحظه می شود طبق نظریه مزبور، در حدیث لاضرر واژه حکم در تقدیر گرفته شده است. یعنی شارع حکمی وضع نمی کند که موجب ضرر به مردم شود. نظر دوم نفی حکم از طریق نفی موضوع طبق این نظر مراد از لاضرر، نفی حکم به لسان نفی موضوع است.
اگر عناوین اولیه موضوعاتی که شارع برای آنها حکمی وضع نموده است، موجب ضرر گردد، حکم آنها منتفی می شود. به عنوان مثال، حکم اولیه عقد بیع لزوم است، اگر بیعی موجب ضرر شود، حکم لزوم بر آن مترتب نمی شود.  فرق بین دو نظر مزبور، این است که در نظریه دوم آنچه که برداشته شده است، متعلق حکم و به عبارت دیگر، خود موضوع است، ولی طبق نظر اول، حکم برداشته می شود.اما سومین نظر در این دسته نفی ضرر جبران نشده به نظر برخی فقیهان، مراد از قاعده لاضرر، نفی ضرر جبران نشده است. یعنی، ضرر جبران نشده در اسلام وجود ندارد و در نتیجه هر کس موجب اضرار به دیگری شود باید آن را جبران نماید.
با توجه به این که حدیث لاضرر، یک جمله اسمیه است و در جمله اسمیه، معنای حقیقی لا، نفی است نه نهی و تا زمانی که استعمال حقیقی ممکن باشد، نباید معنای مجازی را اخذ نمود، قاعده لاضرر دلالت بر نهی ندارد، بلکه به معنای نفی است و در نتیجه، دو نظر اول که مبتنی بر معنای نهی بوده است، صحیح نمی باشد.
نظریه ضرر غیر متدارک نیز درست نیست.زیرا، چنانکه برخی نوشته اند، لا، در حدیث لاضرر به معنای نفی که معنای حقیقی است، استعمال شده است و این سخن وقتی درست است که ضرر در خارج، حقیقتا از طرف ضرر زنندگان تدارک شده باشد، تا آنگاه بگوییم ضرر غیرمتدارک در خارج نیست. نه این که از حکم شارع، به وجوب تدارک ضرر نتیجه بگیریم که در خارج ضرر غیر متدارک نیست. نظریه نفی حکم ضرری، فارغ از اشکالهای مذکور در فوق است.
اما در صورتی می تواند، موجب اثبات ضمان گردد که قاعده لاضرر، شامل امور عدمی نیز بشود. چنانکه برخی فقیهان و مؤلفان حقوقی، گفته اند: وقتی عدم تشریع احکام ضرری، بر شارع واجب باشد، جعل احکامی که از عدم آنها احکام ضرری به وجود می آید نیز واجب است. زیرا عدم حکم به ضرر مستلزم وجود حکم موجب ضرر است. برای مثال، چنانچه منفعتی از بین برود و در اثر فوت منفعت بر کسی ضرر وارد آید و فرض این باشد که در این مورد، حکمی برای ضمان و جبران خسارت وجود ندارد، معنایش این است که مراجعه زیان دیده، به عامل زیان، جهت مطالبه ضرر حرام است. یعنی، عدم حکم مستلزم حرمت مراجعه و مطالبه خسارت است که به نوبه خود، این حرمت مراجعه، حکم وجودی می باشد. این امر وجودی مستلزم ضرر است و چنین حکمی در شرع مقدس، نفی گردیده است. بنابراین، لازمه نفی حرمت مراجعه و مطالبه خسارت، این است که اجازه جبران ضرر وارده، داده شود.
به هر حال یکی از اصول تمدن این است که کسی به کسی ضرر نرساند و ضررهای وارده را باید جبران کرد. اسلام به عنوان دین کامل از این امر غافل نمانده و آن را به صورت قاعده ای بیان داشته است:«لا ضَرَرَ و لا ضِراَر فی اِلاسلام».در قرآن مجید این آیه به چشم می خورد که «لا تُضارَّ والده بِوَلَدها وَ لا مُولودُ بِولَده » در مورد سنت نیز به حدیث شریف «لا ضرر و لا ضرار» استناد می شود. «تنها هدفی که می‌توانقدرت را به حق، علیه عضوی از اعضای جامعه متمدن، بر خلاف اراده اش، اعمال کرد عبارت از بازداشتن او از اضرار به غیر است.» میل به این اصل را در زمینۀ دفاع از نقشی محدود برای حکومت، در الزام به اخلاق می‌توان مطرح کرد. در این زمینه، توجیه دخالت دولت در رفتار خصوصی بر مبنای منع ورود ضرر به دیگران، با توجیه دخالت بر اساس الزام اخلاق یا حمایت ازافراد در مقابل انتخابهای مضر به خودشان مقایسه می شود.
1-1-4-5- قاعده من له غرم فعلیه الغرم
مطابق این قاعده، هر کس از کاری سود ببرد، غرامت آن را هم باید بپردازد. مسئولیت ناشی از این قاعده، کاملاً اخلاقی است و بر خلاف آنچه تصور شده، مسئولیت اخلاقی نیاز به تقصیر ندارد. عدالت اجتماعی اقتضاء می‌کندثروتمند به همان میزان که کسب سرمایه می کند، متقبل مضرات عمل خویش نیز باشد، هر چند تقصیری نکرده باشد. از این رو امروزه شرکت های بزرگی که در قالب اشخاص حقوقی در حجم وسیع به فعالیت های اقتصادی از جمله تولید کالا می پردازند، در مقابل ضررهای حاصل از تولیدات خود مسئوول بوده و بدون نیاز به احراز تقصیر، صرفا به لحاظ محیط سودآوری که ایجاد نموده اند، ملزم به پاسخگویی، به صورت جبران خسارت یا تحمل مجازات می‌باشند. مسئولیت مدیران شرکت های تولیدی در قبال تخلفات کارگران که با تولید کالای معیوب سبب ایراد خسارت به مصرف‌کننده می شوند نیز در چارچوب این قاعده قابل بررسی است.
1-2-تعاریف و مفاهیم راجع به وسائل نقلیه
1-2-1-مفهوم وسیله نقلیه
وسلیه در لغت به معنای آنچه یا آنکه به واسطه وجود او کاری انجام می شود، ابزاری که به کمک آن بتوان کاری را انجام داد؛ واسطه، میانجی و مجازاً به معنای سبب و عامل آمده است. نقلیه نیز ویژگی وسائلی است که برای حمل و نقل به کار می رود. در بند 99 ماده 1 آیین نامه راهنمایی و رانندگی مسافر یا بار مصوب 18/3/1384 هیات وزیران وسیله نقلیه چنین تعریف شده است:
«وسائل موتوری و غیرموتوری و موتور سیکلت که برای جابجایی انسان و کالا به کار می رود.» در این ماده خصیصه وسیله نقلیه این است که برای جابجایی انسان یاکالا به کار می رود.
به نظر می رسد منظور از وسیله نقلیه، وسیله ای است که اولا خود قابلیت جابجایی داشته باشد و این استعداد و توانایی بالقوه در آن وجود داشته باشد که بتواند با استفاده از نیروی محرکه حرکت نماید و ثانیاً قابلیت وتوانایی حمل دیگری را داشته باشد. چنانچه وسیله ای این دو خصیصه را با هم نداشته باشد از شمول تعریف وسیبه نقلیه خارج خواهد بود.
1-2-1-1-مفهوم وسائل موتوری
تعریف جامع ومانعی از وسائل موتوری وجود ندارد و اذهان عمومی بیشتر بین وسائل موتوری و خودرو قائل به مشابهت و یکسانی مفهومی شده اند. اذهان عمومی با برخی مصادیق آن که وسیله حمل بار و سرنشین هستند آشناست و درباره خودرو بودن، اتوبوس، مینی بوس و ... تردیدی وجود ندارد. اما وسائل موتوری دیگری نیز وجود دارند که الزاماً در حال رفت و آمد نبوده و ممکن است مصادیق متنوعی از این موضوع را در بر گیرند. مقررات قانون بیمه اجباری مسئولیت مدنی دارندگان وسایل نقلیه موتوری زمینی در مقابل شخص ثالث مصوب 1347 حسب عنوان خود تنها وسائل نقلیه موتوری را در بر می گیرد. ماده 2 آیین نامه این قانون در تعریف وسیله نقلیه موتوری بیان داشته است:
«منظور از وسیله نقلیه موتوری زمینی هر نوع وسیله ای است که با قدرت موتور روی زمین یا ریل حرکت می کند.» به نظر می رسد به دلیل نداشتن قید نقلیه حرکت در این تعریف با تعریفی که ما از وسیله نقلیه داشتیم نیاز نباشد.
وسایل نقلیه انواع مختلف دارد، بعضی با قدرت موتور در روی زمین حرکت می‌کند، بعضی در هوا و برخی در آب حرکت می‌کنند. اما وسیله نقلیه مورد بحث ما بنا به تعریف ماده 1 قانون بیمه اجباری مسؤولیت عبارتست از: «وسایل نقلیه موتوری زمینی، انواع تریلر و یدک کش متصل به این وسایل و قطارهای راه آهن» و به موجب ماده 2 آیین نامه اجرایی قانون مذکور«منظور از وسیله نقلیه موتوری زمینی، هر نوع وسیله‌ای است که با قدرت موتوری زمینی یا ریل حرکت می‌کند». بنابراین وسایل نقلیه دریایی، هوایی یا وسایل نقلیه غیر موتوری زمینی، مانند دوچرخه و چرخ دستی از شمول قانون و موضوع بحث ما خارج است.
بر خلاف حقوق ایران، در قانون 5 ژوییه 1985 فرانسه، قطارهای راه آهن از شمول قانون مربوط به حوادث رانندگی‌خارج شده‌اند.
لازم به ذکر است که تریلر و یدک‌کش، هنگامی که متصل به وسیله موتوری باشند، مشمول قانون بیمه اجباری هستند؛ بنابراین هر گاه مثلاً بر اثر حرکت یدک کشی که از وسیله نقلیه جدا شده  و در کناری متوقف است، زیانی به بار آید، قواعد عمومی مسؤولیت مدنی حاکم است نه قانون بیمه اجباری. در حالیکه بر عکس، اگر این یدک کش متصل به وسیله نقلیه باشد (ولو وسیله در حال حرکت نباشد) و از آن جدا شده و خسارتی به بار آید، خسارت وارده، بر اساس قانون بیمه اجباری جبران می‌شود. به بیان دیگر وسایل متصل به وسیله موتوری، مستقلا وسیله موتوری محسوب نمی‌شوند بلکه اتصال آن‌ها به وسیله نقلیه موتوری است که آن‌ها را مشمول قانون قرار داده است. علاوه بر این، خسارات ناشی از محمولات وسایل نقلیه نیز، با استفاده از قانون مذکور جبران می‌شود؛ مثل خسارات ناشی از پرتاب آجر از کامیون حامل آن.
لازم نیست وسیله نقلیه موتوری در حال حرکت باشــد، بلکه زیانهای ناشی از وسایل نقلیه متوقف نیز، مشمول همین قانون است. به عبارت دیگــر، خسارت باید عرفاً منسوب به وسیله نقلیه باشد؛ مثلا هر گاه بر اثر سر ریز شدن نفت از تانکــر حمل نفت، آتش‌سوزی ایجاد شود، این حادثه منسوب به وسیله نقلیه است، هر چند تانکر در حال حرکت نباشد.
1-2-1-2- تاریخچه مربوط به وسیله نقلیه موتوری زمینی
دنیای پیوسته کنونی که دهکده جهانی نامیده می شود، همه را به گونه ای در مسیر خود می برد. هیاهوی اتومبیل و رانندگی و حمل و نقل سرانجام به کشور ما نیز رخنه کرده و کم و بیش همان نیازهای جوامع صنعتی غرب را به وجود آورد. در حقوق ما نیز در ابتدا مسئولیت ناشی از این وسائل تابع قواعد سنتی اتلاف و تسبیب بود اما همان اقتضائات زندگی ماشینی موجب شد تا برای نخسیتن بار «لایحه قانونی بیمه خسارت اشخاص ثالث ناشی از واسائط نقلیه موتوری» مصوب 8/8/1331 و لایحه متمم آن مصوب 8/11/1331 مالک وسیله نقلیه که از بیمه مسئولیت ناشی از آن خودداری می کرد را شخصاً مسئول خسارات ناشی از وسیله نقلیه اعلام کند.
پس از آن به موجب قانون بیمه اجباری مسئولیت مدنی دارندگان وسائل نقلیه موتوری زمینی در مقابل شخص ثالث مصوب 26/9/1347 برای دارندگان وسائل نقلیه موتوری زمینی مسئولیت نوعی و بدون تقصیر ایجاد شد. بدین ترتیب سه شخص در مقابل زیان دیده ثالث مسئول بودند؛ الف راننده، مطابق قواعد مسئولیت مدنی؛ ب- دارنده به موجب ماده یک قانون بیمه اجباری و ج- بیمه گر و صندوق تامین خسارتهای بدنی به موجب قراراد بیمه و قانون بیمه اجباری
اما در عمل به ویژه پس از انقلاب با تصویب قانون دیات و قانون مجازات اسلامی، این قانون به بوته فراموشی سپرده شد و به ندرت مورد استناد دادگاه ها قرار می گرفت، حتی برخی محاکم آن را قانونی متروک و منسوخ می دانستند. در محافل حقوقی نیز به جز در آثار استاد کاتوزیان و تحقیق تطبیقی که زیر نظر ایشان در موسسه حقوق تطبیقی دانشگاه تهران انجام شده بحثی در مورد آن نشده است، بلکه آثاری که نگاشته شده، در مورد حوادث رانندگی بوده که بیشتر به بحث در مورد مسئولیت راننده و بیمه‌گر می پردازد و اگر بحثی از مسئولیت دارنده وسیله ایجاد شده است در خلال بحث مسئولیت دیگر مسئولین و به طور گذرا و بدون طرح و بررسی جوانب کامل مسئولیت دارنده بوده است.
در سال 1387 قانونگذار دست به اصلاح قانون بیمه اجباری زد و به بحث پیشین در مورد منسوخ بودن آن خط بطلان کشید. اما با وجود نوآوریهایی که این قانون در مورد مسئولیت بیمه گر برای تضمین جبران خسارت زیان دیده دارد عبارت «مسئول جبران خسارات بدنی و مالی هستند که در اثر حوادث وسائل نقلیه مزبور و یا محمولات آنها به اشخاص ثالث وارد شود» از متن ماده یک حذف گردیده که موجب ابهام در مسئولیت دارنده وسیله نقلیه شده است.
1-3-تصادم
تصادم کلمه ایست عربی بر وزن تفاعل و باب تفاعل برای بیان مشارکت، آن هم هنگامی که دو نفر در انجام کاری مشارکت داشته باشند به کار برده می شود. تصادم از نظر لغوی به معنی دو سوار خود را به یکدیگر کوفتند و بنابراین قانون گذار کلمه تصادم را با توجه به معنی لغوی آن به کار گرفته است و از نظر حقوقی به حادثهای تصادم گفته می شود که دو وسیله نقلیه درایجادحادثه مشارکت داشته باشند و با توجه به آنچه ازعبارت «هرگاه دراثر برخورد دو سوار» مندرج درماده 336 قانون مجازات اسلامی 1370 استنباط می شد موثر بودن برخورد دو وسیله نقلیه که از جمله شرایط آن در حال حرکت بودن هر دو وسیله نقلیه و داشتن نقش فعال آن دو میباشد و اگر یکی از آنها نقش فعال و دیگری نقش انفعالی داشته باشد نمی توان آن را تصادم تلقی نمود.
تصادم دو وسیله نقلیه موضوع مواد 336 و 337 قانون مجازات اسلامی 1370 بدین شرح بود.
«ماده 336- هرگاه در اثر برخورد دو سوار، وسیله نقلیه آن ها مانند اتومبیل خسارت ببیند در صورتی که تصادم و برخورد به هر دو نسبت داده شود و هر دو مقصر باشند یا هیچ کدام مقصر نباشند هر کدام نصف خسارت وسیله نقلیه دیگری را ضامن خواهد بود خواه آن دو وسیله از یک نوع باشند و خواه میزان تقصیر آن ها مساوی یا متفاوت باشد و اگر یکی از آن ها مقصر باشد فقط مقصر ضامن است.»
«تبصره: تقصیر اعم است از بی احتیاطی ، بی مبالاتی، عدم مهارت ، عدم رعایت نظامات دولتی»
«ماده 337- هر گاه دو وسیله نقلیه در اثر برخورد با هم باعث کشته شدن سرنشینان گردند در صورت شبه عمد، راننده هر یک از دو وسیله نقلیه ضامن نصف دیه تمام سرنشینان خواهد بود و در صورت خطاء محض عاقله هر کدام عهده دار نصف دیه تمام سرنشینان می باشد و اگر برخورد یکی از آن دو شبه عمد و دیگری خطاء محض باشد ضمان بر حسب مورد پرداخت خواهد شد.»
در ماده 528 قانون مجازات اسلامی1392 همان عبارات بدین شکل منعکس شده اند:
«هر گاه در اثر برخورد دو وسیله نقلیه زمینی، آبی یا هوایی، راننده یا سرنشینان آن ها کشته شوند یا آسیب ببینند در صورت انتساب برخورد به هر دو راننده، هر یک مسئول نصف دیه‌ی راننده مقابل و سرنشینان هر دو وسیله نقلیه است و چنانچه سه وسیله نقلیه با هم برخورد کنند هر یک از رانندگان مسئول یک سوم دیه راننده های مقابل و سرنشینان هر سه وسیله نقلیه می باشد و به همین صورت در وسائل نقلیه بیشتر، محاسبه می شود و هر گاه یکی از طرفین مقصر باشد به گونه ای که برخورد به او مستند باشد، فقط او ضامن است.»
در تفسیر و اجرای این مواد تحت عنوان تصادم، دو دیدگاه می توان مطرح نمود:
الف- تصادم مانند تصادف کلمه ایست که قانون گذار آن را بدون توجه به معنی لغوی آن که ایراد خسارت دو جانبه به یکدیگر است به کار گرفته است و می توان آن را در کلیه حوادث رانندگی که دو وسیله نقلیه با یکدیگر برخورد نموده اند صرف نظر از نحوه و مکان برخورد آن ها و در صورت داشتن تقصیر هر دو، صرف نظر از میزان تقصیر و یا صرفا انتساب حادثه به آن دو بدون تقصیر آن ها، هر یک از رانندگان را ضامن نصف خسارات مالی وسیله نقلیه دیگر و دیه سرنشینان هر دو وسیله نقلیه تلقی کرد. بر اساس این نظر می توان از این مبنای قانونی به عنوان یک قاعده کلی درکلیه تصادفاتی که حداقل دو وسیله نقلیه در آن دخالت دارند، استفاده نمود.
علاوه بر این از نظر فقهی که مبنای مواد مذکور در قانون مجازات اسلامی می باشد، اگر یکی از طرفین تصادم دارای حرکت کند باشد به نحوی که صدق تصادم بر آن نگردد بلکه گفته شود یکی از آن ها به دیگری صدمه وارد نمود بر مصدوم ضمانی نیست، ولی اگر اتومبیل کوچکی با اتومبیل بزرگ تصادم نماید حکمش همان است که گفته شد. پس در دیه و خسارت بین آن ها تقاص و تهاتر صورت میگیرد و اگر ارزش یکی بیشتر باشد نسبت به مازاد به دیگری مراجعه می نماید. بر اساس نظریه مذکور نیز ملاحظه می گردد اگر حادثه ناشی از فعل یکی از وسایل نقلیه باشد بر آن صدق تصادم نمی گردد پس تصادم حالتی خاص و استثنایی در حوادث رانندگی میباشد.برای اینکه بتوان به مواد مذکور، در حوادث رانندگی استناد نمود، باید شرایط تصادم جمع باشد؛ بنابراین نمیتوان از این دو ماده در تصادفات رانندگی به عنوان یک قاعده کلی استفاده نمود بلکه آن را می توان به عنوان حکمی استثنایی در صورتی که شرایط لازم وجود داشته باشد اعمال نمود.
برای مثال منظور از تصادم مذکور در ماده 528قانون مجازات اسلامی 1392، نیز برخورد خسارت زای دو وسیله نقلیه با هم در نتیجه حرکت دو وسیله می باشد. بنابراین در صورتی که در اثر برخورد یک وسیله در حال حرکت به یک وسیله نقلیه در حال توقف خسارتی وارد آید مشمول حکم ماده مزبور نمی شود.

dad89

فصل ششم58
ترموالکتریک در صنعت خوردو و کاهش مصرف سوخت1-6 تاریخپه59
2-6● بهبود راندمان61
3-6● تلفیق دو راهکار62
6-4● تئوری در مرحله اجرا63
6-5 مواردی برای درک مطلب 70
فصل هفتم72
موارد تکمیلی ودیدگاها
1-7 نتیجه گیری73
2-7 چالش ها74
3-7 سنجش میران تاثیر :75
4- 7وضعیت رقابت تکنولوژی ترموالکتریک76
5-7سوالات مورد نظر77
6-7 اهداف:77
7-7 پیشنهادات:78
8-8نتیجه گیری کلی: 82
فصل هشتم:83
موارد پیگیری برای انجام این طرح:
فصل نهم:89
چکیده مقالات مربوت به ترموالکتریک و فناوری نانو
فصل دهم:102
منابع ومأخذ
منابع103
پیوست ها103
مشخصات پژوهش وپژوهش گر105
اطلاعات مربوط به پژوهشگر سرپرست106
تشکر و قدر دانی
از همه کسانی که مرا در این راه یاری رساندند کمال تشکر را دارم.
حرفی با خوانندگان:
و این چنین است که تعداد اندکی انسان متفکر و دانشمند ، اندیشه دور پرداز خود را با زرادخانه علم ودانش مجهز میکنند. تا از یک طرف ، بکشف بسیار بزرگ کیهانی بپردازند و در این کاوش علمی ستارگانی را کشف کند. که بیست میلیارد سال نوری با کره زمین فاصله داشته باشد .واز طرفی دیگر به دنیای بی نهایت کوچک اتم حمله می کنند تا اسرار آنرا دریابند و انرژی عظیمی را که در دل آن نهفته است مهار کنند.
و که دانشمندان از زمزه قلیل رهروانند که صخره های بلند و صحراهای هموار روح و اندیشه را در نوردیدند. در این مقدمه ،مرا با ادبیات و شعر و اندیشه های سیاسی و غیره سیاسی کاری نیست. زیرا ،این پژوهش حاوی مطالب کاملا علمی و منعکس کننده پیشرفته ترین دانش و تکنیک بشر در زمان ماست.
وبا لااخص که:
اندیشه و مسلک های موجود ، آشفته بازاری را ماند که در آن ایدئولوژی ها ( از راستترین و چپ ترین و از تندرو ترینش و تا متعادل ترین آنها) بنحوه ناجور و نا مناسب و نا هماهنگی کنار هم چیده شده اند و به فراخان رنگ ظاهرین، ونه محتوی، ارباب رجوع و مشتری می تلبید.آشفتگی به حدی است که گاهی عرضه کننده کالا دارای دو جنس متناقض با هم،و یا کسی که هیچ صلاحیتی برای عرضه چنین جنسی را ندارد و سردر گمی کامل خریدار را سبب میگردد . مشتریان هم دلال و واسته مانند که چنین کالاهای نا هماهنگی وناجور وحتی در تضاد با واقعیت را به تنها مشتری ومصرف کننده یعنی ملت میرسانند.
مروری ،حتی مختصر، بر ویترین کتاب فروشی ها و فروشندگان دوره گرد حاشیه خیابان ، نمایان گر صحت این مدعا ست . و اما از نظر علمی که مورد نظر این مقدمه است ، نظری هرچند کوتاه،بر تاریخچه زندگی علمی ملت ها و فعالیت و کوشش آنان در رشته های خاص، یعنی انرژی های مختلف و کاربرد بهتر و ساده تر و ارزان تر، است، که خواننده گرامی می توانند بکتب مربوط مراجعه و کسب علم کنند.
بلااخص که در دوره رنسانس و جهش علمی کشور های غربی و به دنبال آن انقلاب اکتبر وکوشش خستگی نا پزیر شرق در پیشرفت علم و تکنولوژی ، و می تواند راه گشا و حاوی درس حتی عبرت برای کشور هایی باشد که خواهان استقلال واقعی و عدم وابستگی به شرق و غربند.
در این مقدمه به ذکر اساسی ترین مسایل مورد نیاز در بهره گیری از این پژوهش می پرداریم.
سیری مختصر در تاریخ علوم ، نشان می دهد که انسان ها از گذشته ای دور و حتی از دوران کهن و نا شناخته غارنشینی در جستجو و کشف اسرار طبیعت و استفاده بهتر از مواهب آن بوده است.
بین راهورد های مختلفی که طبیعت به انسان عرضه کرده است ، انرژی مقام اول را دارا است و بسیاری از شاخه های علم فیزیک مانند ترمودینامیک ، و مکانیک ، ئیدرولیک،...... و قسمتی از علم شیمی اختصاص به این رشته خواص و حیاتی دارد.
پس از کشف آتش ، مواد سوختنی از قبیل چوبی و فسیلی از نوع نفت و گاز و.... تنها منبع انرزی حرارتی (بغیر از انرژی خورشیدی ) در زندگی انسان بوده است . سپس با کشف نیروی برق و تولید آن به کمک انرژی حرارتی و نیروی حاصل از آب سد ها، انسان توانست حوزه فعالیت علمی خود را گسترده ترکرده وتصویر نمونه بسیاری کوچک از بازده این انرژی معجزه گر است.
تحولی که از دوران استفاده از گرمای چوب ، تا وسایل حرارتی مدرن امروز به وقوع پیوسته است که چون اهرمی سازنده در دست انسان در کاربرد بهتر انرژی و استفاده اصولی تر از انرژی های عظیمی که در اطراف ما نهفته است.
سخن از تکامل تسلیحات جنگی ، به کمک انرژی حرارتی ، که در همه زمان مورد نیاز انسان ستیز گر بوده است ، امری زائد و خارج از بحث ماست . زیرا مسیر تحول این بخش از تکنیک واز زمانی که بشر با تیر و کمان به قتل همنوعش پرداخت، تا کنون که موشکهای چند پیکانه حامل بمب ئیدروژنه و کباتریا، در زرادخانه خود آماده پرواز دارد، امری اجتناب ناپزیر و همیشه انسانهایی آگاه با تاثر تاظر کشتار ها و قتل عامهای دیگر بوده اند .
اکنون نیز انبار تسلیحات اتمی،نه تنها حیات بشر ، بلکه کره زمین و احیانامنظومه شمسی را تهدید می کند که خود محتاج بحث جدا گانه ایست که به ناچار اندیشه و سلیقه سیاسی و غیر سیاسی ملتها در تحلیل آن دخالتی تام دارد. ومن،همانطور که در ابتدای این پروژه - ریسرچمذکور افتاد، از تحلیل این مسئله اسف بار و درد ناک خود را معذورو معاف کردم.
و اما سهم ما در این کوشش عظیم علم و دانش بشری،متاسفانه هیچ و در اصطلاح علم ریاضی صفر بوده است. صفر غم انگیزی که پیامد های شوم فراوانی بدنبال داشته که مهم ترین آنها جهل علمی و پس از آن وابستگی علمی و فنی تا مرز دریوزه گی بوده است. صفریکه نمایانگر آنستکه ما فقط مصرف کننده کالا نبوده ایم،زیرا قدرت تولید آن را نداشته ایم . گاهی نیز برای تسلی خاطر و رفع ملال به صنایع مونتاژ رو کرده ایم ، که نه تنها درمان درد نبوده بلکه وابستگی اجتناب ناپذیر و چند جانبه دیگر ما را نیز بدنبال داشته است.
چرا چنین بوده است؟
محقق و پژوهشگر به هیچ کشور و مسلکی متعلق نیست ، زیرا علم و دانش نیز حد و مرز نمی شناسد. محقق در هر نقطه از کره زمین که زندگی کند،احتیاج بفضای کاملا باز و عاری از هر نوع قید وبند دارد،تا بتوان مرغ دور پرواز اندیشه علمی خود را در تمام جهات برای کشف مسائل ناشناخته به پرواز در آورد. نگهداری اجباری وی در قفس اندیشه های خاص ، مرگ علمی وی را به دنبال دارد که پی آوردش رکود و سپس محو و نابودی علم و دانش و تحقیق وبه دنبال آن تکنولوژی و صنعت است.
در گذشته ای دور، شاهد ظهور دانشمندان و محققین ، بنامی چون شیخ ابوعلی سینا، محمد زکریای رازی،... در این سرزمین بوده ایم که شناخت زندگی گالیله وار آنها بیانگر واقعیت تلخ بالاست. نتیجه که حتی بهترین شاگردان این استادان علم و دانش ، حوصله و جرأت آنکه زندگی علمی استادان را دنبال کنند، نداشته اند و اینگونه بود که زندگی علمی و تحقیقی ما از قرن پیش دچار رکود و افسردگی و دل مردگی خاصی شد.
در دورانی که غرب جهش علمی خود را در دوره رنسانس آغاز کرد و شرق ، پس از انقلاب اکتبر، به خانه تکانی لازم برای هموار کردن راه پیشرفت علم و دانش و تکنولوژی پرداخت. کشور ما اسیر سلاطین و وزیرانی آنچنانی بود که مواردی چون ساخت بدون کوچکترین تغییر 30 ساله پیکان در ایران و خروج 90% نخبگان و رتبه های اول کنکور از کشور و جذب شدن توست ابر قدرت های علمی دنیا و مثال های دیگری که داستان کشورداری آنها چون قصه های طنز آمیز ملا نصردین ، بظاهر خنده آور و به باطن کوله باری از غم را بر دل آگاهان می نهد.
و که در میان این مرداب وار در سکون مطلق شاهد و نظاره گر پیشرفت علمی دیگران و راویان قصه های رفته از یاد زندگی های رفته بر باد بودیم.
در این پژوهش که نتیجه جمع آوری چند ساله اینجانب می باشد سعی شده است که سیر تحول و شناخت فناوری ترموالکتریک و بهره برداری و کاربرد آن در زمینه های مختلف بررسی شود که علاوه بر اطلاعات لازم در این زمینه خواننده می تواند چگونگی روش تحقیق علمی را ، نه تنها در این زمینه بلکه در کلیه زمینه های علمی دیگر علم ها ،بشناسد و ارزیابی کند.مسائلی خاص که در این پژوهش بررسی شده دورنمایی از قسمتی از دانش بشریست که هم آینده بس امیدبخشی را نوید می دهد و هم بیانگر زوال هر نوع زندگی و تمدن موجود در کره زمین می باشد.
این پژوهش ریگی را ماند بر مرداب سکون و جمود علمی ما افکنده شود. امید است که ناظر افکندن ریگها و حتی سنگ های دیگر بر این مرداب باشیم تا به خروش آید و نهال خشکیده علم و تکنولوژی ما را در این زمینه سیراب و همتی که این خلاء عظیم را که میراث شوم گذشته است را پر کند.
مطالعه این مطالب نه تنها، اطلاعات لازم را در کوشش همه جانبه و ایثار بی پایان دانشمندان جهان در راه کشف مواد جدید و موارد استفاده فناوری ترموالکتریک و کاربرد های آن را می دهد، بلکه ارزیابی منصفانه آن می تواند روشنگر تاریکی های باشد که ما را از مسیر علم و دانش و تحقیق ، منحرف و دست نیاز مان را به سوی دیگران دراز کرده است.ترموالکتریک با بسیاری از فرایند های دیگر ارتباط دارد و همچنین درک این فناوری به صورت عمیق تر به حل یک سری مسائل و انتگرال های پیشرفته و آشنایی کامل با علم شیمی وریاضیات و همچبین متالوژی و الکتریسیته و مواد سرامیکی وخواص مواد سرامیکی از جمله فروالکتریک وخواص دیر گدازی وجدیدا لیتوگرافی و مواد پلیمری جدید با خواص مواد ترمو الکتریکی و همچنین فناوری نانو و برخی از نتایج کاربرد های خواص فناوری ترموالکتریک می باشد، که برای دست یابی به مطالب مطلوب در این زمینه به آزمایشگاه های پیشرفته و هزینه بالا و دورنگری می باشد که از دست شخص و یا حتی گروه های کوچک بر نمی آید و احتیاج به کمک، همه جانبه علمی و دولتی دارد. بخاطر بسپارید که این مطالب مقدمه ای خلاصه و به ناچار ناقص در باره ترموالکتریک میباشد برای آشنایی خوانندگان با این فناوری رو به پیشرفت ، موثرمی باشد. که به همراه این مطالب فایلی با فرمت فلش و همچنین فایل هایppt وpdfوword پیوست می شود برای خوانندگان علاقه مند و متخصص که باید زمینه علمی لازم را دارا باشند تا به درک بیشتری در باره این فناوری دست یابند و در پایان از دوستانی که این مطالب را مطالعه کرده اند وبه اهمیت این موضوع پی برده اند خواهشمندم در صورت امکان برای پیشرفت این علم در کشور راه ها و راهنمایی های لازم را در صورت امکان به ایمیل این جانب و شماره من که به هم راه پیشنهادیه در این فایل موجود میباشد ارسال نمایید.
کار یز درون جان تو می باید کز عار یه ها ترا دری نکشاید
یک کوزه آب در درون خانه به از رودی که کز برون می آید

( حکیم سنایی)
فصل اول:
معرفی پژوهش
عنوان:مواد پیشرفته ترموالکتریکی و تولید انرژی
استاد راهنما:مهندس میلاد اسئدی
تهیه کننده:مهدی باقری مهارلویی
مقدمه:
TEG طرح تولید انرژی از اختلاف دمای بین دو محیط ،
تحقیقات انجام شده در کشور های توسعه یافته بر روی این زمینه جدید این نتیجه را حصول میکند که کشور ایران با توجه به رویکرد های آینده نگر برای گسترش و بومی سازی علم وفناوری های نو از جمله دانش هسته ای،صنایع نظامی ، صنعت خودرو ، وموارد خاص دیگر نیاز مبرمی به ساخت وتعمیم این فناوری دارد.
چکیده:
افزایش راندمان مولد های ترمو الکتریکی TEG همواره به عنوان یکی از اهداف مهندسی مطرح بوده است و استفاده از اصل سیبک،اصل پیلیته واصل تامسون وMEMS ترموشیمی ونانو سیم های سیلیکونی و همچنین ساخت قطعات و وسایل الکتریکی که با ولتاژ کمتر از 200Mv کار کنند به عنوان چند راه برای برای رسیدن به این اهداف مطرح شوده است. از اهداف اصلی این پژوهش تولید مواد ترموالکتریکی پیشرفته و نیز بالا بردن راندمان و توسعه آن در کشور میباشد،همچنین اندازه گدری و نوصیف خواص اخنتصاصی موادTE ،نحوه اتصال ،قدرت خروجی و بررسی مواد ln4se3،in4Te3،مس-Se-Ge،skutterudites(شکل 1) وهزینه ها و اقتصادی بودن طرح است.


شکل 1
حداقل دو سوم انرژی تولید شده حاصل از احتراق سوخت های فسیلی مانند بنزین و گازوییل در خودرو ها و کامیون ها به هدر رفته و به عنوان ضایعات حرارتی از اگزوز خودرو خارج می شود. ترموالکتریک ها مواد نیمه هادی و نیمه رسانایی هستند که حرارت و گرما را به انرژی الکتریکی تبدیل می کنند، می توانند حرارت و گرمای هدر رفته را دریافت  و از آن مجددأ استفاده کرده و نیاز به سوخت در خودروها را تا حدودی کاهش دهند و به میزان 5 درصد باعث صرفه جویی در هزینه های سوخت خودرو می شوند. اما راندمان پایین در ازای هزینه های بالا و گران قیمت بودن، مواد ترموالکتریک موجود و متداول را از ورود عملی و کاربردی به دستگاه ها و وسایل دور نگه داشته است. Combustion30% EngineVehicle Operation100%40% Exhaust Gas30%Coolant5% Friction & Radiated25%Mobility & AccessoriesGasolineGasolinegasoline
اما حالا محققان در حال مونتاژ اولین نمونه اولیه از ژنراتورهای ترموالکتریک هستند که آن را در خودروهای تجاری و خودروهای شاسی بلند SUV بتوانند مورد آزمایش قرار دهند.این دستگاه ها اوج پیشرفت هایی هستند که مرکز ساخت تجهیزات ترموالکتریک شرکت BSST در آیرویندل کالیفرنیا و مرکز A&D کمپانی جنرال موتورز واقع در وارن میشیگان ساخته می شوند. هر دو شرکت قصد دارند نمونه های اولیه ساخته شده خود را در اواخر تابستان امسال برای آزمایش بر روی خودروها نصب و راه اندازی کنند. شرکت BSST این کار را بر روی خودروهای فورد و بی.ام.و و شرکت جنرال موتوز این سیستم را بر روی خودروهای SUV شورلت آزمایش می کنند.
1-1 تاریخچه:
کشف اساس اولیه فناوری ترموالکتریک را می توان به یک فیزیکدان آلمانی به نام توماس ج.سی بک نسبت داد. سی بک کشف کرد که اگر با اتصال دوفلز مختلف یک مدار الکتریکی ایجاد شود و یکی از اتصالات حرارت داده شود درمدار حاصله جریان الکتریکی تولید می شود(شکل 2). سی بک از این آزمایش خود به این نتیجه میرسید که با این کار جریان در مدار القا میشود ولی چون موضوع به این صورت مورد نظر وی قرار نگرفته بود . این کشف سال ها راکد ماند (1) Thomas j. seebeck

درسال 1834 ژان پلتیه (1) دریافت که اگرجریانی از محل اتصال دو فلز مخطلف عبور نماید محل اتصال گرم یا سرد می شود. شکل (3)پیلیته هم مانند سی بک از درک اهمیت این مطلب در مورد فناوری ترمو الکتریک عاجز ماند

شکل 2 شکل 3
در سال 1837امیل لنز بطور وضوح اهمیت کشف پلتیه وسی بک را با قراردادن قطره ای آب در محل اتصال دو فلز و کزراندن جریان مستقیم از مدار نشان داد. موقعی که جریان دریک جهت ادامه پیدا می کرد آب منجمد می گردید و در اثر معکوس کردن جریان یخ آب می شد با تمام این ها لنز نیز از درک اهمیت کشف خود غافل ماند و این دانش برای 100 سال دیگر بعلت عدم وجود نیمه هادی ها راکد ماند.فقط در دهه 1930 بود که مواد نیمه هادی توسه یافت وامکان کاربرد کشف سی بک و پلتیه در سرد کردن موضعی را ایجاد نمود درسال 1930و1960 پیشرفت ترموالکتریک به آزمایشگاههای علمی محدود می شد. در سالهای اول دهه 1960 بسیاری از کمپانی ها با تحرک شدیدی در راه ساخت وسایل سرد کننده ترموالکتریکی اقدام کردند.

فصل دوم
تعاریف
1-2 اجزاء یک اتم

شکل 4
مفهوم الکتریسیته با عناصر پایه ی سازنده مواد یعنی اتم اغاز می شود . هسته ی یک اتم از پروتون ها و نوترون ها تشکیل شده است . پروتون ها یک بار مثبت دارند و نوترون ها خنثی می باشند .الکترون ها با بار منفی به دور هسته در گردش ا ند .(فقط الکترون ها و پرتون ها در شکل(4) نشان داده شده ا ند .قسمت های آبی رنگ هسته ، نوترون ها را نشان میدهند .)
2-2 الکترون های آزاد

شکل 5
الکترون ها ی خارجی ترین لایه می توا نند بوسیله ی یک نیروی خارجی مثل میدان مغناطیسی ،اصطکاک و یا واکنش های شیمیایی از مدارشان خارج شوند .
در این صورت « الکترون های آزاد» نامیده می شوند . مبنای الکتریسیته حرکت این الکترون های آزاد است. در شکل (5) مشخص است.
3-2 هادی ها
شکل 6
جریان الکتریکی هنگامی ایجاد می شود که الکترون های آزاد از یک اتم به اتم دیگر منتقل شوند. شکل(6). ماده ای که به الکترون ها اجازه حرکت آزادانه را می دهد هادی (رسانا) نامیده می شود .
مس ،نقره ،الومینیوم ،روی ، آهن از جمله هادی های خوب می باشند .
4-2 نارساناها
موادی که به تعداد کمی از الکترون ها اجازه ی حرکت می دهند ، نارسانا (عایق) نامیده می شوند .شکل 7
پلاستیک ، لاستیک ، شیشه ، میکا و سرامیک نارسا نا می باشند

شکل 7
5-2 کاربرد هادی و عایق در کنار هم
بسیاری از قطعات الکتریکی مثل کابل ، ترکیبی از هادی ها و عایق ها هستند . عایق دور کابل رسانا ، به جریان اجازه میدهد که تنها در هادی جاری شود .شکل 8
شکل 8
6-2 جریان

جریان ، شارش الکترون های آزاد در یک ماده از یک اتم به اتم بعدی و در یک جهت مشخص می باشد( شکل 9)که آن را با نماد « I» نشان می دهند، و با واحد آمپر سنجیده می شود .

شکل 10
بعضی دانشمندان بین شارش الکترون و شارش جریان تمایز قائل می شوند .تئوری شارش جریان قرار دادی شارش الکترون را رد می کند و اظهار می دارد که جریان از مثبت به منفی شارش می یابد( شکل 10) برای جلوگیری از اشتباه ، این دوره نظریه ی شارش الکترون را به کار می برد که اظهار می دارد الکترون ها از منفی به مثبت شارش می یابند
7-2 جریان متناوب

در جریان متناوب الکترون ها ابتدا در یک جهت و سپس در جهت دیگر جاری می شود . جریان و ولتاژ هر دو به طور مداوم تغییر می کنند . شکل نمودار جریان متناوب (AC) ، به صورت موج سینوسی می باشد که جریان یا ولتاژ را نشان می دهد ..(شکل 11) دو محور برای موج سینوسی رسم می شود .محور عمودی دامنه و جهت جریان یا ولتاژ را نشان می دهد . محور افقی زمان یا زاویه چرخش را نشان می دهد . هنگامی که شکل موج بالای محور زمان است ، گوییم جریان در جهت مثبت جاری است ، وقتی شکل موج زیر محور زمان است گوییم جریان در جهت منفی جاری است .یک سیکل کامل در 360 درجه اتفاق می افتد که نیمی مثبت و نیمی منفی است .
7-2 ضریب توان

ضریب توان نسبت توان حقیقی به توان ظاهری می باشد که رابطه ای است برای اندازه گیری مقدار توانی که مصرف می شود و مقدار توانی که به منبع برگشت داده می شود . ضریب توان اهمیت زیادی دارد زیرا روی راندمان سیستم های توزیع توان اثر می گذارد .
ضریب توان توسط رابطه ی فازی بین ولتاژ و جریان تعیین می شود و در حقیقت ، کسینوس زاویه بین آنها می باشد. در یک مدار مقاومتی محض ، که جریان و ولتاژ هم فاز هستند اختلاف فاز صفر می باشد . کسینوس صفر درجه یک است . بنابر این ، ضریب توان یک می باشد و این بدان معنی است که همه انرژی تولیدی منبع ، توسط مدار مصرف می شود .
در مدار راکتیو همیشه مقداری اختلاف فاز بین ولتاژ و جریان وجود دارد . به عنوان مثال اگر این زاویه ˚45 باشد ، ضریب توان 0.707 خواهد بود که همان کسینوس ˚45 می باشد .
فصل سوم
تعاریف کاربردی
مقدمه:
برای آشنای و درک بهتر در مورد ترموالکتریک در ابتدا باید با موارد کلیدی و مربوطه آشنا شود. در این فصل سعی شده است که به صورت روان مواردی را معرفی کرد تا کمکی برای درک فصل های بعد باشد.
نیمه هادی ها
3-1 مقدمه ای درمورد نیمه هادی ها:
همانطور که هادی ها در صنعت امروزی به خصوص در زمینه های حرارتی و برودتی کاربردی ویژه یافته اند عناصر نیمه هادی نیز اهمیت زیادی در صنعت الکترونیک و ساخت قطعات پیدا کرده اند. هدف اصلی که در الکترونیک آنالوگ دنبال می شود تقویت سیگنالها بدون تغییر شکل آن سیگنال است. همین هدف بشر را به سمت استفاده از نیمه هادی ها در ساخت قطعات تقویت کننده پیش برده است. اما آن چیزی که عملکرد این قطعات را رقم می زند چگونگی حرکت الکترون ها و حفره ها در ساختار کریستالی این عناصر می باشد.و این مقدمه ای ست برای پیدایش قطعاتی نظیر ترانزیستور ها –دیود ها و... عامل موثر بر چگونگی حرکت الکترون ها و حفرها چیزی نیست جز درجه حرارت. به طوری که گفته شد درجه حرارت صفر مطلق ساختمان کریستالی نیمه هادی هایی نظیر ژرمانیوم و سیلسکن را تحت تاثیر خود قرار می دهد. یعنی در این درجه حرارت الکترون ها کاملا در باند ظرفیت قرار گرفته و نیمه هادی نظیر یک عایق عمل می کند.
اگر درجه حرارت افزایش یابد الکترون های لایه ظرفیت انرژی کافی کسب کرده و پیوند کو والانسی خود را شکسته وارد باند هدایت می شوند.به مراتب این جابه جایی باعث تولید حفره ناشی از عبور الکترونهای می گردد.
انرژی لازم برای شکستن چنین پیوندی در سیلسکن 1.1(الکترون ولت) و در ژرمانیوم 0.72 (الکترون ولت) می باشد. اهمیت حفره در این است که نظیر الکترون حامل جریان الکتریکی بوده و و نظیر الکترون آزاد عمل می نماید. حال آنکه تا چندی پیش دانشمندان حفره ها را حامل جریام نمی دانستند!
3-2نیمه هادی چیست.؟
در میان عناصر گروهی هستند که نه فلز کامل ونه غیر فلز کامل هستند به همین ترتیب این عناصر نه رسانای خوب ونه نارسانای خوب هسستند از اینرو به آنها نیمه رسانا یا نیمه هادی می گویند رسانائی این عناصر که در گروه چهارم جدول تناوبی قرار دارند با اندکی ناخالصی از عناصر گروه سوم و پنجم جدول تناوبی تقویت می شود.به علت اینکه سیلیسیم و ژرمانیوم در مدار آخر خود چهار الکترون دارند ، تمایل دارند که مدار آخر خود را کامل کرده و به حالت پایدار برسند . برای این منظور هر اتم با هر یک از چهار اتم مجاور خود یک الکترون به اشتراک می گذارد . این نوع پیوند بین اتم ها را پیوند اشتراکی یا کووالانسی می گویند . در شکل پیوندهای کووالانسی بین اتم های سیلیسیم نمایش داده شده است
به علت اینکه سیلیسیم و ژرمانیوم در مدار آخر خود چهار الکترون دارند ، تمایل دارند که مدار آخر خود را کامل کرده و به حالت پایدار برسند . برای این منظور هر اتم با هر یک از چهار اتم مجاور خود یک الکترون به اشتراک می گذارد . این نوع پیوند بین اتم ها را پیوند اشتراکی یا کووالانسی می گویند . در( شکل1) پیوندهای کووالانسی بین اتم های سیلیسیم نمایش داده شده است

شکل1
چون تعداد الکترونهای آزاد و حفره های ایجاد شده در کریستال های سیلیسیم و ژرمانیوم در اثر انرژی گرمایی به اندازه کافی زیاد نیست این کریستال ها قابلیت هدایت الکتریکی خوبی ندارند . برای افزایش قابلیت هدایت الکتریکی این نیمه هادی ها به آنها ناخالصی اضافه می کنند .اضافه کردن ناخالصی به نیمه هادی ها به دو شکل صورت می گیرد/
N نوعP نوع
3-3 نوع P
ناخالص کردن کریستال نیمه هادی با اتم پنج ظرفیتی : در این روش عناصر پنج ظرفیتی مانند آرسنیک (As) ، آنتیموان (Sb) و یا فسفر (P) را که در لایه ظرفیت خود پنج الکترون دارند به کریستال سیلیسیم یا ژرمانیوم اضافه می کنند . به عنوان مثال در شکل (2) عنصر پنج ظرفیتی آرسنیک به کریستال سیلیسیم اضافه شده است
شکل2
در یک بلور سیلیسیم یا ژرمانیوم ، در دمای صفر مطلق به علت اینکه تمامی پیوندهای کووالانسی بین اتم ها برقرار است و هیچ الکترون آزادی وجود ندارد بلور سیلیسیم یا ژرمانیوم یک عایق کامل می باشد . اما با افزایش دما جنبش الکترونهای والانس افزایش یافته و بعضی از پیوندهای کووالانسی بین اتم ها شکسته شده و الکترونهایی آزاد می شوند و به این ترتیب هدایت الکتریکی در کریستال های سیلیسیم و ژرمانیوم افزایش می یابد . هر چه دما بیشتر افزایش یابد پیوندهای کووالانسی بیشتری شکسته شده و تعداد الکترونهای آزاد بیشتر می شود و در نتیجه هدایت الکتریکی کریستال افزایش می یابد . به ازای جدا شدن هر الکترون از یک اتم ، یک جای خالی الکترون در آن اتم ایجاد می شود که به آن حفره می گویند . در شکل (3)نحوه ایجاد یک حفره نمایش داده شده است

شکل 3
4-3 نوع N
ناخالص کردن کریستال نیمه هادی با اتم سه ظرفیتی : هرگاه یک عنصر سه ظرفیتی مانند آلومینیوم (Al) ، گالیم (Ga) و یا ایندیم (In) را که در مدار ظرفیت خود سه الکترون دارند به کریستال سیلیسیم یا ژرمانیوم خالص اضافه کنیم الکترونهای مدار آخر عنصر ناخالصی مانند آلومینیوم با الکترونهای والانس اتم های مجاور خود تشکیل پیوند کووالانسی می دهند . به این ترتیب در مدار آخر اتم ناخالصی هفت الکترون در حال گردش هستند که در نتیجه یک جای خالی یا حفره ایجاد می شود.شکل 4

شکل 4
عنا صر چهارم (مانند سیلسیوم ویا یاژرمانیوم ) در لایه آخر خود 4الکترون دارند عناصر گروه پنجم (مانند آرسنیک ) وارد شود موجب تولید الکترونهای آزاد می شود به ماده حاصل نیمه هادی نوع N می گویند زیرا این الکترونها هستند که مسئولیت هادی بودن ماده را دارند اگر همین عمل با عناصر گروه 3مانند آلومینیوم یا گالیم تکرار شود حاصل یک نیمه هادی نوع Pاست که در این نوع مواد حفره ها الکترونی یا اصطلاحا بار مثبت مسئولیت هادی بودن ماده هستند
5-3 جدول تناوبی
periodgroupns2np6
فصل چهارم
تعاریف اصول اولیه فناوری ترموالکتریک
1-4 مقدمه ای (ترموالکتریک)برای درک مطلب ترموالکتریک لازم است که با مفهوم های زیر آشنا شویم
تعاریف
2-4قانون دوم ترمودینامیک:
مفهوم جامع قانون دوم ترمو دینامیک متضمن است که یک فرایند فقط در یک جهت معین پیش پیش میرود ولی در جهت خلاف،قابل قبول نیست.یک فنجان قهوه داغ با انتقال حرارت به محیط ،سرد می شود ولی حرارت نمی توان در جهت خلاف و از محیط سرد تر به فنجان قهوه ی داغ تر ، منتقل شود.در هنگام بالا رفتن خودرو از تپه،بنزیل مصرف می شود ولی پایین امدن آزادانه خودرو از تپه،موجب برگشتن بنزیل مصرف شده به به سطح اولیه نمی شود.این گونه مشاهدات نشان گره ارزش قانون دول نرمودینامیک است. شکل 1 قانون دوم را در پمپ گرمایی و یخچال ها نشان میدهد.

شکل 1
3-4یخچال ها و سیستم های تبرید:
پمپ گرمایی:با پمپ حرارتی میتوان سیستمی داشت که در یک سیکل کار می کند و مقدار خالص انتقال حرارت و کار آن مثبت است. در پمپ گرمایی سیستمی خواهیم داشت که در یک سیکل کار میکند و حرارت از یک جسم درج حرارت پایین به سیستم منتقل می شود و از سیستم به جسم با درجه حرارت بالا منتقل می شود و مقداری کار برای انجام این فرایند لازم است.در ادامه چند پمپ حرارتی و یخچال یا سیکل تبرید همراه با سیکل وشماتیک فرایند ها به صورت شکل نشان داده شده است که برای چون در این جا مطلب مورد نحث ترموالکتریک است برای اطلاعات بیشتر می توان به کتابهای ترمودینامیک مراجه کرد.
4-4یخچال:

امروزه دستگاههای ترموالکتریک در تکنولوژی مدرن فلزات و نیمه هادی ها و در کل مواد نیمه های جایگزین فلزات گوناگون شد و در آزمایشات ترموالکتریک مورد استفاده قرار می گیرند . «سیبک» ، «پولتیر» و «تامسون» با چندین وقایع ، شکل ابتدایی عملکرد نمونه های ترموالکتریک را ارائه کردند بدون اینکه به جزئیات اشاره شود . برخی از این اثرات بنیادی ترموالکتریک را بیان می کنیم .
5-4 اثر سیبک :پیوست
6-4 اثر «پلتیر» :پیوست
7-4 اثرتامسون :
وقتی جریان الکتریکی از رسانا می گذرد که دما افت حرارتی بیشتر از طولش داشته باشد و گرما از طریق رسانا جذب یا خارج شود و در اینجا این سوال پیش می آید که آیا گرمای جذب شده یا به بیرون انتقال داده شده بستگی به جریان الکتریکی و دمایی که افت حرارت در آن ایجاد شده است یا خیر ؟ این اتفاق توسط تامسون صورت گرفت که اصول کلی را در بر
می گیرد اما نقش چندان مهمی در عملکرد نمونه های عملی ترموکوپل ندارد به این دلیل به رسمیت شناخته نشده است .
8-4 اصول کلی نمونه های ترموالکتریک مواد :
مواد ترموالکتریکی :
اغلب مواد نیمه رسانای ترموالکتریک در دستگاههای خنک کننده TE امروزی آلیاژ بیسموت تلورید که به طور مناسب بخش های تک یا عناصری که خصوصیات جدا N و P را دارد بکار برده می شوند . اغلب مواد ترموالکتریک با متبلور کردن فلز یا فشار به پودر فلزکاری تشکیل شده اند . هر روش ساخت دارای مزایای خاص خودش است اما زمانی که تحت هدایت هستند این مواد رشد می کنند و به رشدی بیش از حد معمول می رسند . علاوه بر   ، مواد ترموالکتریکی دیگری موجود است مانند   ، سیلیکون ، ژرمانیوم   و (Bi-Sb )  آلیاژهایی که شاید در موقعیت های خاص بکار برده شده باشند .
حداکثر   در میان دمای محدود بسیار مناسب و بیشتر از عملکردهای خنک سازی است .
مواد    :
متبلور کردن مواد   دارای چندین ویژگی است که مزایای آن در اینجا بحث خواهد شد که ناشی از ساختار بلوری کردن   به مقدار خیلی زیاد است که در طبیعت سرد می شوند . این نتایج در مواد الکتریکی سبب ایجاد مقاومت ویژه ای که تقریباً بزرگتر از محور رشد بلور (C-axis) است به نسبت حالت عمودی است . علاوه بر این قابلیت رسانایی گرما حدوداً 2 برابر بزرگتر از محور C در جهت عمودی است از زمانی که مقاومت این حالت بیشتر از قابلیت رسانایی گرما است بیشترین کار در این حالت رخ می دهد به این دلیل عناصر ترموالکتریک در نمونه خنک سازی جمع می شوند ، بنابراین محور رشد بلور موازی طول یا بلندی هر ماده است . بنابراین محور عمودی  لایه سفال می باشد . یکی دیگر از ویژگی های جالب   این است که مربوط به ساختار بلوری مواد می شود . بلورهای   در لایه هایی که اتم مشابه دارد ، درست می شود . و زمانی که لایه های   با هم نگه داشته می شوند توسط قیدهم ظرفیت که مربوط به نزدیک بودن لایه ها است . در نتیجه با متبلور کردن   این لایه ها را جدا می کنند .    که رفتاری 0بسیار شبیه به ورقه های میکاست . خوشبختانه ورقه ورقه کردن صفحات بطور کلی موازی به محور C است و مواد کاملاً محکم هستند . زمانی که در نمونه خنک سازی ترموالکتریک به هم متصل می شود . مواد   توسط متبلورکردن فلز تولید می شوند  و به نوعی در قالب ساخته می شوند یا شکل می گیرند و سپس به ورقه هایی با ضخامت های گوناگون تقسیم می شوند . بعد از اینکه منابع به طور درست آماده شد آنگاه به قطعات کوچکتقسیم می شود که شاید نمونه هایی از خنکسازی ترموالکتریک باشند . بخش هایی از مواد   که معمولاً به آن عناصر یا قطعات کوچک بریده شده نیز می گویند . همچنین با فشردن پودر فلزکاری ساخته می شود .
9-4 نمونه های خنک سازی ترموالکتریک :
دستگاه خنک سازی ترموالکتریک دارای دو یا چند مواد نیمه رسانا که به طور الکتریکی به مجموعه ها و از نظر حرارتی با هم برابرند مربوط می شود . این عناصر ترموالکتریک و اتصالات داخلشان به نوعی میان دو ظرف سفالی است که این لایه ها سبب می شود که ساختار سرتاسری با هم از نظر مکانیکی نگه داشته شوند و اجزاء هر یک را به طور الکتریکی و از سطوح خارجی جدا شده ، از هم جدا می کنند . بعد از اینکه بخش ها و اجزاء گوناگون نمونه درست شد ، نمونه های دیگری از ترموالکتریک تقریباً   (  تا   اینچ ) اندازه شان و   (  تا   اینچ) بلند ساخته می شوند . هر دو نمونه N وP   مواد ترموالکتریک در دستگاه خنک سازی ترموالکتریک بکار برده می شوند . این قرارگیری سبب می شود گرما از دستگاه خنک کننده حرکت کند و زمانی که جریان الکتریکی بر می گردد و متناوباً میان لایه های بالا و پایین از میان عناصر N و P قرار می گیرد . از مواد  نوع N الکترون های زیادی عبور می کنند (بیشتر الکترون ها در ساختار مولکولی موجودند ) بطوریکه در مواد نوع N الکترون های کمتری عبور می کند (الکترون های کمتری در ساختار مشبک موجود است ) بیشتر الکترون ها در مواد N و حفره ها هستند که در نتیجه آن الکترون های کمتری در مواد P وجود دارد که انرژی گرمایی از میان مواد ترموالکتریک عبور می دهند .  دستگاه خنک کننده ترموالکتریک با گرما حرکت می کند و در نتیجه جریان الکتریکی را بیشتر از نمونه های خنک سازی ترموالکتریک ساخته شده با تعدادی از عوامل نوع P و N در جایی که N و P شکل گرفته اند جفت می کند  که دارای دو جفت P و N است و به اصطلاح به آن مدل به هم پیوسته نیز می گویند . شکل2

شکل2
تغییرات پی در پی گرما (گرمایی که فعالانه پمپ می شود از میان نمونه ترموالکتریک) به نسبت بزرگی در جریان الکتریکی DC بکار می روند . گوناگونی بازده از صفر به بیشترین حد می رسد و ممکن است باعث تعدیل آن شود که میزان جریان گرما و دما را کنترل می کند .
10-4 موارد مورد توجه
عملکرد در هر گرایشی :
TE ها در هر جهتی و در هر محیطی که جاذبه زمین صفر است بکار برده می شوند بنابراین در بسیاری از فضاهای ماوراء جو مورد استفاده قرار می گیرند .راه درست تهیه کردن نیرو :
مدل TE بطور مستقیم از منبع نیروی DC  کار می کند و این نمونه ها دارای ولتاژ زیاد و جریاناتی هستند که این نوسان وسیع جریان (PWM) در بسیاری از موارد مورد استفاده قرار می گیرند .
محل خنک سازی :
بادستگاه خنک کننده TE ممکن است بتوان یک منطقه یا ترکیب خاص را خنک کرد در نتیجه آن اغلب لازم به خنک کردن ، بسته بندی یا محدوده بندی نیست .
قابلیت تولید نیروی الکتریکی :
در عمل بصورت معکوس بکار برده می شود با بکار بردن دمای گوناگون برای دستگاه خنک کننده TE ممکن است که مقدار کمی نیروی DC  تولید کند .
شرایط مساعد از لحاظ محیطی :
سیستم های خنک سازی به طور قراردادی ساخته نمی شوند و بدون استفاده از کلروفلوروکاربن یا مواد شیمیایی دیگر که برای محیط زیست مضر است و در دیگر شیوه های ترموالکتریک بکار برده نمی شود یا ممکن است یک نوع گاز دیگر تولید شود .
دستگاه خنک کننده ترموالکتریک.
، گاهی اوقات به آن ترموالکتریک یا دستگاه خنک کننده «پلیتر» نیز می گویند . که نیمه رسانای است که دارای اجزا و ترکیبات الکترونیکی است که عملکردهایی مانند گرم کردن با پمپ را در بر می گیرد .منبع نیرو با ولتاژ پایین DC با مدل TE کار می کند . گرما از آن محدوده به طرف دیگر حرکت خواهد کرد ، بنابراین . یک طرف خنک می شود وقتی که هنوز طرف دیگر همزمان گرم است ، مهم است به خاطر داشته باشید زمانی که این اتفاق معکوس می شود که به موجب آن قطبش نیز تغییر
می کند. (مثبت و منفی) و ولتاژ DC سبب می شود که گرما به طرف دیگر برود، در نتیجه ، ترموالکتریک به کار برده می شود برای گرم سازی و خنک سازی در نتیجه بسیار مناسب است برای کنترل دقیق دمای مورد استفاده قرار می گیرد .
11-4 نظریه تبدیل حرارت اتلافی به نیروی محرکه در خودروها
در اواخر تابستان امسال یک ماده ترموالکتریک جدید برای گرفتن انرژی از حرارت و گرمای اتلافی در موتورها بر روی خودروهای بی.ام.و ، فورد و شورولت آزمایش خواهد شد.
حداقل دو سوم انرژی تولید شده حاصل از احتراق سوخت های فسیلی مانند بنزین و گازوییل در خودرو ها و کامیون ها به هدر رفته و به عنوان ضایعات حرارتی از اگزوز خودرو خارج می شود. ترموالکتریک ها مواد نیمه هادی و نیمه رسانایی هستند که حرارت و گرما را به انرژی الکتریکی تبدیل می کنند، می توانند حرارت و گرمای هدر رفته را دریافت  و از آن مجددأ استفاده کرده و نیاز به سوخت در خودروها را تا حدودی کاهش دهند و به میزان 5 درصد باعث صرفه جویی در هزینه های سوخت خودرو می شوند. اما راندمان پایین در ازای هزینه های بالا و گران قیمت بودن، مواد ترموالکتریک موجود و متداول را از ورود عملی و کاربردی به دستگاه ها و وسایل دور نگه داشته است.اما حالا محققان در حال مونتاژ اولین نمونه اولیه از ژنراتورهای ترموالکتریک هستند که آن را در خودروهای تجاری و خودروهای شاسی بلند SUV بتوانند مورد آزمایش قرار دهند.این دستگاه ها اوج پیشرفت هایی هستند که مرکز ساخت تجهیزات ترموالکتریک شرکت BSST در آیرویندل کالیفرنیا و مرکز A&D کمپانی جنرال موتورز واقع در وارن میشیگان ساخته می شوند. هر دو شرکت قصد دارند نمونه های اولیه ساخته شده خود را در اواخر تابستان امسال برای آزمایش بر روی خودروها نصب و راه اندازی کنند. شرکت BSST این کار را بر روی خودروهای فورد و بی.ام.و و شرکت جنرال موتوز این سیستم را بر روی خودروهای SUV شورلت آزمایش می کنند. شکل 3

شکل 3

شرکت BSST از مواد جدید تلورید بیسموت که یک ماده ترموالکتریک متداول است و دارای تلوریوم گران قیمت بوده و فقط در دماهایی بالاتر از 250 درجه سانتی گراد کار می کند به طور متداول استفاده می کند. این درحالیست که ژنراتورهای ترموالکتریک می توانند به دمای 500 درجه سانتی گراد برسند. بنابراین شرکت BSST از خانواده دیگری از ترکیبات ترموالکتریک که شامل هافنیوم و زیرکنیوم هستند و در دماهای بالا کارایی بهتری دارند برای این پروژه استفاده می کند که این مواد می توانند راندمان و کارایی ژنراتور را به میزان 40 درصد افزایش دهند.در شرکت جنرال موتور محققان در حال مونتاژ مراحل نهایی نمونه اولیه ژنراتور ترموالکتریک هستند اما با نوید یک کلاس و رده جدید از ترموالکتریک ها بنام اسکاترادیتس که نسبت به تلورید ها ارزانتر هستند و در دماهای بالا کارکرد بهتری دارند. مدلسازی های کامپیوتری شرکت نشان می دهد که در خودروی مورد آزمایش که یک دستگاه شورلت ساباربان SUV می باشد، این دستکاه می تواند 350 وات انرژی تولیدکرده و به میزان 3 درصد مصرف سوخت را بهبود ببخشد.جورجی میسنز یکی از دانشمندان و محققان جنرال موتورز می گوید ساخت و تولید اسکاترادیتس که شامل عناصر کمیاب و نادری مانند کبالت و آرسنید می باشد دارای پروسه و روند پیچیده ای است و ترکیب کردن آنها درون وسایل و دستگاه ها بسیار مشکل است و چالش بسیار مهم ایجاد تماس و ارتباط الکتریکی و گرمایی خوب و مناسب است چراکه تغییرات گرمایی بزرگ در طول دستگاه تنش ها و فشارهای مکانیکی بر روی محل های تماس ترموالکتریکی وارد می آورد که باعث تنزل عملکرد دستگاه می شود و ما با انتخاب مناسب مواد می توانیم مقاومت را تحت تاثیر قرار دهیم و به این مشکل فائق آییم. چالش کلیدی دیگر ادغام و یکپارچه کردن دستگاه درون خودرو ها و وسایل نقلیه است. محققان در حال حاضر یک ژنراتور تلورید بیسموت را در یک SUV آزمایش کرده اند.میسنز هم چنین اضافه می کند که در حقیقت دستگاه درون سیستم اگزوز خودرو جای می گیرد. یک مقطع از لوله اگزوز برش داده شده و دستگاه که شبیه به یک انباره یا صدا خفه کن است در آنجا قرار می گیرد. هدف از طراحی بهینه این است که بتوان طراحی را به سمتی پیش برد که سیستم های خودرو د هم ادغام شوند نه اینکه به عنوان یک سیسم جداگانه فضایی برای خود اشغال کنند و این نکته در طراحی این سیستم رعایت شده است.محققان دو شرکت جنرال موتورز و BSST هم چنین نیاز دارند راه هایی را برای ساخت و تولید حجم بالتری از مواد جدید و ارزان پیدا کنند. میسنز پیش بینی می کند که دست کم 4 سال دیگر ژنراتور های ترموالکتریک را می توان در تولید خودروها مورد استفاده قرار داد.
اساسی برای کاربران درباره تونایی دستگاه خنک کننده ترموالکتبیک داده شده است که با ارائه این نمونه ، مفید است . یک نوع مرحله ترموالکتریک در یک مخزن گرمایی است که دمای اتاق را نگه می دارد و سپس به یا باطری مناسب متصل می شود . یا به دیگر منابع نیروی DC متصل می گردد . طرف سرد نمونه تقریباً به دمای   می رسد . در این لحظه نمونه بدون گرما پمپ می شود و به بیشترین میزان ولتاژ T  می رسد . اگر گرما به تدریج به طرف سرد نمونه اضافه شود ، قسمت سرد دمایش بالا می رود و سرانجام برابر قسمت گرما می شود . در این هنگام دستگاه خنک کننده TE به بیشترین میزان گرما می رسد .دستگاههای خنک کننده ترموالکتریک به یخچالهای مکانیکی کنترل کنند با همان قوانین بنیادی ترمودینامیک و سیستم های سردسازی اگرچه به طور قابل ملاحظه ای در فرم متفاوت هستند عملکردشان به یک صورت می باشد . در سیستم های سردسازی مکانیکی دستگاه فشار برای فشردن هوا به مایع فشار می آورد در میان سیستم سرما راپخش می کند . فضای تبخیر کننده یا منجمد کننده که به نقطه جوش می رسد طی مراحل تدریجی مداوم تبخیر می شود . دستگاه سرد کننده گرما را می گیرد (جذب می کند) به همین علت است که دستگاه سرد
می شود . گرمای جذب شده توسط دستگاه سرد کننده به طرف دستگاه منقبض کننده حرکت می کند . در جایی که سردکننده تراکم را به محیط انتقال می دهد در سیستم سردسازی ترموالکتریک پیش بینی می شود که یک نوع نیمه هادی جای مایع سرد کننده را می گیرد و منقبض کننده جایگزین قسمت گرمایی می شود . دستگاه فشردن هوا جایگزین منبع نیروی DC می شود .
استفاده از نیروی DC  در ترموالکتریک به این علت است که الکترون ها به طرف مواد نیمه هادی حرکت می کنند . در انتهای قسمت سردکننده مواد نیمه هادی گرما را جذب می کنند توسط حرکت الکترون ها و از میان مواد حرکت می کنند و قسمت انتهایی گرم کننده از آن خارج می شود تا زمانی که قسمت انتهایی گرم کننده مواد بطور فیزیکی به مخزن گرما متصل شده است گرما از مواد به طرف مخزن می رود و سپس در عوض به محیط انتقال داده می شود . قائده کلی فیزیکی به روی دستگاههای خنک کننده سرماساز ترموالکتریک جدید نزدیک به سال 1800 بر می گردد . اگرچه نمونه های TE تجاری تا سال 1960 در دسترس نبوده اند اولین کشف مهم مربوط به ترموالکتریسیتی در سال 1821 رخ داد . زمانی که یک دانشمند آلمانی به نام توماس سیبک پی برد که جریان الکتریکی در مدار جریان دارد که از دو فلز مختلف درست شده است که نقطه اتصال فلزات در دو دمای گوناگون می باشد . سیبک واقعاً متوجه نشد هرچند که مقدمات علم برای کشفش کافی نبود و اشتباه فرض می کرد که جریان گرما همانند جریان الکتریکی اثر مشابه دارد . در سال 1834 یک ساعت ساز فرانسوی و یک فیزیک دان به نام جین پولتیر بعد از بررسی اثر تحقیقات سیبک پی بردند که برعکس این اتفاق رخ می دهد وقتی که انرژی گرمایی در نقطه اتصال دو فلز گوناگون جذب شده و در نقطه برخورد دیگر زمانی که جریان الکتریکی در میان محدوده بسته ای جریان دارد ، تخلیه می شود . 20 سال پیش ویلیام تامسون توضیحی برای درک بهتر سیبک و پولتیر و روابطشان داد . هرچند حالا این اتفاق تنها در آزمایشگاه از روی کنجکاوی صورت می گیرد و بدون اینکه کاربرد عملی داشته باشد . در سال 1930 که یک داشمند روسی مطالعاتش را درباره برخی از کاربردهای ترموالکتریک شروع کرده بود و تلاش کرد نیرویی در ژنراتورها ایجاد کند که در محل هایی خارج از زمین مورد استفاده قرار گیرند . سرانجام این دانشمند روسی به نمونه های عملی ترموالکتریک توسعه یافته پی برد .
فصل پنجم
مصارف فن آوری ترموالکترک

1-5 مصارف فن آوری ترموالکترک:
یخچال ترمو الکتریکی
مولد ترمو الکتریکی
2-5 فرایند های ترموالکتریکی:
مقدمه:
فرایند ترموالکتریکی یکی از آخرین پیشرفت های رشته تبرید است که در آن برای گرفتن حرارت از یک محل وجا گذاشتن آن در محل دیگر، بجای استفاده از ماده سرما زا از انرژی الکتریکی به عنوان حامل گرما استفاده می شود. و کاربرد عمده آن در زمینه سرد کننده های قابل حمل،آب سرد کن ها و سرد کن دستگاههای علمی مورد مصرف در تحقیقات فضای است.در شکل بعد نمای از یک سیستم ترموالکتریکی را مشاهده میکنید.شکل 1

شکل 1

سیستم پلیته از یک رشته نیمه هادی تشکیل گردیده است و به گونه ای تعبیه شده اند که یک نوع از حاملهای بار (مثبت یا منفی) بخش زیادی از جریان را حمل نمایند.زوجهای به گونه ای شکل داده شده اند که از نظر الکتریکی با هم سری ولی از نظر گرمای با هم موازی می باشند .(شکل 2).لایه های بیرونی سرامیکی آنها فلزی شده تا بتواند هم گرما وهم جریان الکتریکی را منتقل کنند0

شکل 2
وقتی ولتاژ به سیستم ترمو الکتریک اعمال می شود حامل های بار منفی و مثبت در رشته قرص ها انرژی گرمای را از یک سطح لایه خروجی دریافت و آن را در سطح طرف دیگر آزاد می کنند. سطحی که انرژی گرمای از آن جذب می شود سرد میگردد و سطح مخالف که انرژی گرمای را دریافت می کند گرم می شود. با استفاده از این روش ساده ” تلمبه گرمای “: فن آوری ترمو الکتریکی از قبیل خنک کننده های دیودی کوچک ،یخچال های قابل حمل ، سرد کننده های مایع و غیره استفاده می شود. بسیاری از این واحد ها همچنین می توانند برای تولید توان الکتریکی در شرایطی استفاده کرد.کاربرد های جدید و اغلب جالب ترمو الکتریکی هر روز در حال پیشرفت است.
3-5 نمای کسترده واحد ترمو الکتریکی . شکل 3

شکل 3
4-5 یخپال ترموالکتریکی
مقدمه
در (شکل4) بعد یک واحد ترمو الکتریکی ساده که یک قطب به طرز خاصی عمل آورده می شود که نسبت به قطب دیگرالکترون ها را با سرعت بیشتری از خود عبور دهد.نشان داده شده است.

شکل 4
5-5 طرز کار سیستم ترموالکنریکی شکل 4 قبل:

شکل 5
بخاطر تمرکز الکترونها در ساختمان ملکول(P مثبت وN منفی) جریان که از طریق P بهN میرود احتیاج به انرژی دارد بنابراین هنگام عبور انرژی لازم را از فلز رابط گرفته و آن را سرد میکند (گرمای آنرا می گیرد ).هنگامی که در یک مجموعه ترموالکتریکی این فعل وانفعال پیش میاید بخش سرد سیستم گرمای فزای را که باید سرد شود را به خود می گیرد و مطابق (شکل 4) انرا در بخش گرم رها می کند. اگر قطب منفی یک منبع الکتریکی جریان مستقیم به ماده نوع P وصل شود (جای که کمبود الکترون دارد) صفحه مسی رابط PوNسرد شده وگرمای محیط را میگیرد (مانند سیستم ابتدای تبرید ترموالکتریکی( شکل 5) جریان الکتریکی از باطری واز طریق Pگه کمبود الکترون داردصورت میگیرد وگرمای سطح سرد بالای را گرفته وانرا به سطح سرد زیرین انتقال میدهد.در شکل های بعد می توان اندازه و چگونگی محاسبه ولتاژ را مشاهده کرد.

6-5 مقایسه سیستم های مختلف تبرید:
انتقال گرما توسط حامل های بار در یک سیستم ترموالکتریک خیلی شبیه به روشی است که خنک کننده های کمپرسی،گرما را در یک سیستم مکانیکی انتقال می دهند.در سیستم خنک کننده کمپرسی،مایعات گردشی گرما را از بار گرمایی به تبخیر کننده ای که گرما در آن میتواند پخش شود منتقل می کند.
7-5 مزایای سیستم ترمو الکتریک:
انتخاب فناوری سرمایشی خنک کننده های ترموالکتریکی به نیاز های خاص هر کاربرد بستگی دارد،اما خنک کننده های ترمو الکتریکی مزایای متفاوتی در مقایسه با سایر فن آوریها دارند.
خنک کننده های ترموالکتریکیTE هیچ قسمت متحرکی ندارند و بنابراین مراقبت کمتری لازم دارد.
آزمایش طول عمر نشان داده که طول عمر وسایل ترموالکتریکی TEبیش از هزار ساعت در شرایط کار پایدار است.
خنک کننده های ترموالکتریکی TEمحتوی کلرو فلورواید کربن یا موارد دیگری نیستند که نیاز به پر کردن مداوم داشته باشد
کنترل دما تا جزیی ترین درجه به راحتی با سیستم ترموالکتریکی TEممکن است .
خنک کننده های ترموالکتریکیTE در محیط هایی که خیلی مهم وخیلی حساس یا بسیار کوچک قابل استفاده هستند.
عملکرد خنک کننده های TEبستگی به محل وموقعیت هندسی ندارد.
جهت تخلیه گرما در یک سیستم TE کاملا قابل برگشت است. تغیر پلاریته منبع DC باعث می شود که گرما در جهت دیگری تخلیه شود.به این ترتیب یک خنک کننده نیز میتواند ماننده یک گرما زا عمل کند.
خنک کننده های ترموالکتریکیTE در محیط هایی که خیلی مهم وخیلی حساس یا بسیار کوچک
8-5 مولد ترمو الکتریکی( شکل 6)

( شکل 6)

از طرف دیگر با استفاده از فناوری ترموالکتریکی جریان مستقیم گردشی،گرما را از بار گرمای به گرما گیرهایی که گرما را به محیط بیرون انتقال می هند حمل می کند.هر طرح سیستم ترموالکتریک به تنهایی ظرفیت منحصر به فردی برای انتقال گرما بر حسب وات یا بی تی یو بر ساعت دارد این ظرفیت می توان تحت تاثیر عوامل بسیاری قرار گیرد .مهمترین متغیر ها دماهای محدوده،و مشخصه های الکتریکی وفیزیکی طرح ترموالکتریک به کار برده شده و بازده سیستم پخش گرما هستند.از کاربرد های معمولی ترموالکتریکی پمپ بارهای گرمای در محدوده ای از چندین میلی ولت تا صدها وات می باشد.
فصل ششم
ترموالکتریک در صنعت خوردو و کاهش مصرف سوخت ترموالکتریک در صنعت خوردو و کاهش مصرف سوخت1-6 تاریخپه
دانشمندی به نام «سی بک» در سال ۱۸۲۳ دریافت اگر محل اتصال دو فلز ناهمانند دارای اختلاف دمایی باشد، افت ولتاژ ایجاد می شود. بعدها این پدیده به نام «پدیده سی بک» شناخته شد. حالت معکوس این پدیده آن است که اگر افت ولتاژی در محل اتصال این دو فلز حفظ شود، یکی از آنها گرم و دیگری سرد می شود که به آن «پدیده Peltier» می گویند. در سال های بعد دانشمندان دیگری نشان دادند وقتی قطره آبی در محل اتصال سیم های فلزی ساخته شده از آنتیموان و بیسموت ریخته و جریان الکتریسیته اعمال شود، این قطره آب یخ خواهد زد و زمانی که جریان معکوس می شود، یخ ذوب می شود. این موضوع از اصول سرمایش ترموالکتریکی به شمار می رود. علت این پدیده آن است که الکترون ها حامل انرژی گرمایی هستند و می توانند توسط اعمال ولتاژ از باتری، از انتهای سرد به انتهای گرم حرکت کنند. بر این اساس حدود دو دهه بعد موضوع ساخت یخچال های ترموالکتریکی برای خانه ها مطرح شد که در آنها از نیمه هادی ها بهره گرفته شد. بعدها این موضوع به علت محدودیت در سرمایش توسعه چندانی نیافت ولی مثلاً در خودرو برای خنک کردن نوشابه مورد استفاده قرار گرفت. امروزه با توجه به افزایش قیمت حامل های انرژی در سطح جهان، دانشمندان در پی آن هستند که با بهره گیری از مواد ترموالکتریک بتوانند حرارت های ناخواسته را به این مواد اعمال کرده و الکتریسیته تولید کنند. یکی از مشهورترین این حرارت های ناخواسته همانا حرارت خروجی از اگزوز خودرو است که گروه های زیادی از محققان سعی در بهره برداری از این حرارت دارند.
خودروی شما بین ۷۰- ۶۰ درصد از انرژی ورودی را به صورت گرما هدر می دهد. این در حالی است که با افزایش کارایی مواد ترموالکتریک می توان این شرایط را تغییر داده و این حرارت را به الکتریسیته تبدیل کرد. همان طور که می دانید در موتورهای بخار از حرارت برای تولید بخار جهت به حرکت درآوردن تجهیزات استفاده می شود. همان طور که بیان شد، در تجهیزات ترموالکتریکی نیز به طریق مشابه می توان از حرارت برای حرکت الکترون ها در مسیر مورد نیاز بهره جست. از آنجایی که در اکثر تجهیزات مکانیکی و الکتریکی حرارت غیرمفید تولید می شود، می توان با بهره گیری از مواد ترموالکتریک از این حرارت مقادیر زیادی انرژی مفید به دست آورد. مطالب فوق بدان معنی است که با قرار دادن قطعات کوچکی از مواد ترموالکتریک در سطوح گرم یا داغ(مثل اگزوز خودروها یا پروسسور کامپیوترها)، می توان انرژی تولید کرد. البته مشکل اینجا است که مواد ترموالکتریک کنونی دارای راندمان پایینی هستند. این راندمان توسط عدد ZT (ZT figure) تعریف می شود. باید گفت به رغم چندین دهه پژوهش هنوز بهترین مواد ترموالکتریک دارای عدد ZT نزدیک به یک هستند و فقط زمانی که بتوان این عدد را به حدود ۳ تا ۴ رساند، می توان این روش را با دیگر روش های تولید برق مقایسه کرد. (پیوست 1)
Combustion30% EngineVehicle Operation100%40% Exhaust Gas30%Coolant5% Friction & Radiated25%Mobility & AccessoriesGasolineGasolinegasoline
2-6 بهبود راندمان
یکی از متغیرهای عدد ZT، مقدار حرارتی است که یک قطعه مشخص از مواد ترموالکتریک می تواند در یک لحظه به برق تبدیل کند. امروز به اثبات رسیده است که می توان این خاصیت را بهبود بخشید. جوزف هرمانس و ولادیمیر یوویچ از دانشگاه ایالتی اهایو روشی را برای تغییر این خاصیت در ماده تلورید سرب(مرسوم ترین ماده ترموالکتریک) یافته اند. اساساً درون ماده تلورید سرب تعداد معدودی الکترون با امکان دارا بودن انرژی کافی برای تبدیل حرارت به الکتریسیته وجود دارد. اصطلاحاً به این انرژی، انرژی یا سطح فرمی گفته می شود. افراد فوق الذکر در آزمایش های خود دریافتند با افزودن مقادیر کمی تالیم به ترکیب تلورید سرب می توان الکترون های بیشتری را به این سطح از انرژی رساند. این موضوع به دلیل رزونانس(تشدید) مناسب بین الکترون های موجود در تالیم با ماده تلورید سرب است.شکل 1

—d1174

جدول 4-3: نتایج کمی نمونه های موردی اجراشده حمل ونقل جادهای در پروژه UNITE ..... 108
جدول 4-4: ارتباط هزینه های زمان و سوخت دوگروه وسایل نقلیه.............................................. 109
جدول 4-5: نحوه محاسبه متوسط ارزش زمان سفر اتومبیل های شخصی ...................................109
جدول 4-6: ارزش زمان سفر اتومبیل ها در کشورهای اروپایی در هر کیلومتر ........................... 110
جدول 4-7: نتایج محاسباتی هزینه نهایی تراکم برخی از آزادراه های اروپا در سال 2001 ....... 110
جدول 5-1 : ارزش زمان سفر وسایل نقلیه در کشور ایران در سال 1387 بر حسب تومان ......... 133
جدول 5-2: ظرفیت هر خط عبور آزادراهها برحسب کیفیت ترافیک و سرعت طرح .................. 134
جدول 5-3 : مقدار ضرایب بهینه تابع تردد خودروها .................................................................... 138
جدول 5-4 : نتایج حاصل از طراحی شبکه ..................................................................................... 144
جدول 5-5 : خلاصه مدل رگرسیون خطی ...................................................................................... 147
جدول 5-6 : خلاصه نتایج آزمون فرضیات ......................................................................................148
فهرست شکل ها
عنوان صفحه
شکل 2-1 : عملکرد هزینه های حمل و نقل ...................................................................................... 14
شکل 2-2 : روند تحلیلی هزینه های ثابت بر حسب میزان بهره برداری ........................................ 16
شکل 2-3: عملکرد هزینه های ثابت بر حسب تن-مسافت ............................................................ 17
شکل 2-4: هزینه های متغیر بر حسب عملکرد حمل و نقل ............................................................ 19
شکل 2-5: تعادل عرضه بنزین با احتساب هزینه های آلوده سازی محیط زیست ......................... 21
شکل 2-6: اجزای اصلی یک شبکه عصبی بیولوژیک ...................................................................... 27
شکل 2-7: مدل نرون تک ورودی ..................................................................................................... 33
شکل 2-8: توابع مورد استفاده در مدل سلول عصبی ..................................................................... 35
شکل 2-9: مدل چند ورودی یک نرون ............................................................................................. 36
شکل 2-10: فرم ساده شده نرون با R ورودی ................................................................................... 37
شکل 2-11: شبکه تک لایه با S نرون ................................................................................................ 38
شکل 2-12: شبکه پیشخور سه لایه ................................................................................................ 39
شکل 2-13: نرون شبکه پرسپترون .................................................................................................. 40
شکل 2-14: بلوک تاخیر زمانی .......................................................................................................... 41
شکل 2-15: شبکه تک لایه برگشتی .................................................................................................41
شکل 4-1 : نمودار سرعت بر حسب تراکم ........................................................................................ 79
شکل 4-2 : نمودار سرعت بر حسب جریان ...................................................................................... 80
شکل 4-3 : نمودار زمان سفر بر حسی تقاضا ....................................................................................82
شکل 4-4 : نمودار تقاضا بر حسب عرضه ......................................................................................... 89
عنوان صفحه
شکل 4-5: نمودار هزینه متوسط و جانبی ....................................................................................... 92
شکل 4-6 : جریان ترافیک در چند روز مختلف در طول شبانه روز ............................................... 96
شکل 4-7 : نحوه ارتباط سرعت، جریان و چگالی در توابع جریان ترافیک ................................... 100
شکل 4-8 : نمونه جریان ترافیک در بزرگراه ها .............................................................................. 101
شکل 4-9 : نمودار سرعت – تقاضا در مدل ویکری ........................................................................ 103
شکل 4-10 : نمودار هزینه حاشیه ای و هزینه تراکم ....................................................................... 104
شکل 4-11 : ساختار مدل پیشنهادی برای پیش بینی جریان ترافیک .......................................... 117
شکل 4-12 مراحل ساخت مدل پیش بینی حجم ترافیک ............................................................. 118
شکل 4-13: رگرسیون خطی ساده .................................................................................................. 121
شکل 5-1: انواع هزینه های حمل و نقل .......................................................................................... 131
شکل 5-2 : نمودار ترافیک عبوری خودروها را در بازه زمانی یک ساعت .....................................137
شکل 5-3 : نمودار ترافیک عبوری خودروها ...................................................................................137
شکل 5-4 : نمودار مبلغ تراکم در ساعت های مختلف ....................................................................139
شکل 5-5: ارتباط مابین تقاضا، عرضه و حجم ترافیک ...................................................................139
شکل 5-6: مدل چهار مرحلهای برنامه ریزی حمل ونقل ............................................................... 140
شکل 5-7 : خروجی Train شبکه عصبی ........................................................................................144
شکل 5-8: خروجی مربوط به اعتبار سنجی شبکه عصبی .............................................................144
شکل 5-9 : خروجی مربوط به آزمایش شبکه عصبی ......................................................................145
شکل 5-10: تعداد epochهای مورد استفاده توسط الگوریتم یادگیری شبکه .............................145
شکل5-11 : مقایسه خروجی شبکه عصبی با اطلاعات موجود ........................................................146
شکل5-12 : مقایسه خروجی مدل رگرسیون با اطلاعات موجود ....................................................151

فهرست نشانه های اختصاری
TDNN = Time delay neural network
BOT = Build-operate-transfer
PCI = Pavement Condition Index
PSI = Present Serviceability Index
MLF = Multi-layer feed forward
TTI = Texas Transportation Institute
BPR = Bureau of Public Roads
VOTT = Value of Travel Time
HCM = Highway Capacity Manual
BP = Back Propagation
فصل اول
مقدمه و طرح مسئله
1- مقدمه1-1- مقدمهبخش حمل ونقل نیز به عنوان یکی شاهرگ اصلی اقتصاد، نقش بسزایی در شکوفایی و توسعه جامعه ایفا می کند. در کشور ما تاکنون این بخش نتوانسته به جایگاه واقعی خود دست یابد. شاید به جرأت بتوان گفت که امروزه ملاک توسعه یافتگی کشورها پس از صنعت، مربوط به توسعه ارتباطات ریلی، جاده ای، هوایی و دریایی است. بنابراین حمل و نقل را می توان به شریانی تشبیه کرد که موجب پویایی و شکوفایی اقتصاد کشورها می شود.
اگر امروز در جهان از خدمات حمل ونقل تحت عنوان صنعت یاد می شود بخاطر گستردگی و اهمیت این خدمات به عنوان حلقه اتصال صنایع با یکدیگر و عامل ارتباط میان بازارهای تولید و مصرف است . بدین خاطر است که بین نظام حمل ونقل و فرآیند توسعه اقتصادی و اجتماعی جوامع همبستگی شدیدی وجود دارد و اقتصاد دانان، صنعت حمل ونقل را به عنوان نیروی محرکه توسعه می دانند و کارآمدی و توانمندی آن را زمینه ساز توسعه پایدار می شناسند. لذا چنانچه این بخش از اقتصاد، مورد بی مهری و بی توجهی برنامه ریزان اقتصادی قرار گیرد یا به دلیل سیاستگذاری های نامناسب کارایی لازم را نداشته باشد، خواسته یا ناخواسته اقتصاد کشورها را با مشکلات جدی مواجه خواهد کرد.
کشور ایران به دلیل موقعیت جغرافیایی و دسترسی به آبهای آزاد، از موقعیت ویژه ای در حمل ونقل منطقه برخوردار است. اینکه ایران موقعیت طلایی برای ترانزیت و عبور کالا را دارد بر کسی پوشیده نیست ولی متأسفانه طی دهه اخیر، علیرغم گنجاندن این مهم در راهبردهای اقتصادی و برنامه های توسعه کشور، عملاً شاهد تحقق بهره برداری از این پتانسیل نبوده ایم. یکی از مهم ترین عوامل زیربنایی برای توسعه هر کشوری، وجود یک شبکه کارا و مناسب جهت رفع نیازهای حمل ونقلی آن است. بطور کلی حمل ونقل به جهت رفع نیازهای مختلف اقتصادی، اجتماعی و دسترسی صورت می گیرد و تقاضای آن ناشی از تقاضا برای سایر بخش ها است (صفارزاده،هدایتی،1378).
بین صنعت حمل ونقل و سایر بخش های صنعتی از منظر اقتصاد تفاوت هایی وجود دارد . فعالیت های حمل ونقل دارای هزینه ثابت بسیار بالا هستند که بیشتر صرف زیرساخت های حمل ونقل می شود و برای ساخت زیرساخت های حمل ونقل نیاز به سرمایه گذاری بلند مدت است. این دو خصیصه از جمله ویژگی های بارزی هستند که حمل ونقل را از نظر اقتصادی، از دیگر صنایع جدا می کند. بر همین اساس تامین منابع مالی و جذب سرمایه گذاری در این بخش در مقایسه با دیگر بخش های اقتصادی با مشکلات بیشتری همراه است.
حمل ونقل جاده ای به دلیل خصوصیات ویژه ای که داراست (از جمله انعطاف پذیری در انتخاب مسیر، میزان بار، زمان سفر، دسترسی به نقاط مختلف، عدم نیاز به تجهیزات بارگیری و تخلیه) به عنوان متداول ترین شیوه حمل ونقل در کشورهای مختلف محسوب می شود. در ایران نیز علاوه بر ویژگی های خاص حمل ونقل جاده ای، موقعیت ویژه جغرافیایی، عدم پوشش گسترده شبکه ریلی در سطح کشور، فقدان مقررات محدود کننده در خصوص آثار منفی حمل ونقل جاده ای همچون مسائل زیست محیطی، سبب گشته تا درصد بسیار بالایی از حمل ونقل کالا و مسافر توسط این زیربخش صورت گیرد، بطوریکه هم اکنون بیش از 90 % کل حمل بار و مسافر در کشور توسط جاده انجام می شود(سازمان راهداری و حمل و نقل جاده ای، 1383).
در حالیکه فعالیت های حمل و نقل بیش از 9% از تولید ناخالص ملی کشور را در بر می گیرد و در حدود 5/7 میلیون نفر از شاغلان کشور در این حوزه فعالیت می کنند و همچنین بر اساس برآوردهای کارشناسان در صورتی که تمام فعالیتهای مستقیم و غیر مستقیم حمل ونقل به حساب این بخش منظور شود، ارزش افزوده آن بالغ بر 20 % از تولید ناخالص داخلی را تشکیل خواهد داد (سایت اینترنتی بانک مرکزی جمهوری اسلامی ایران، 1389).


ضرورت توجه به حمل ونقل در کشور دو چندان نمایان می شود. در برنامه چهارم توسعه و در ماده 28 آن بطور مشخص اقداماتی در این خصوص پیش بینی شده است که بر اساس آن دولت موظف شده است اقداماتی را به منظور تقویت اقتصاد حمل و نقل، بهره برداری مناسب از موقعیت جغرافیایی کشور، افزایش ایمنی و سهولت حمل ونقل بار و مسافر انجام دهد.
علاوه بر این موارد، افزایش جمعیت، روند رو به رشد اقتصاد کشور و گذر از درحال توسعه به توسعه یافته و استعداد ترانزیت بین المللی، لزوم توسعه و ساخت هر چه بیشتر زیرساخت های حمل ونقل را بیشتر نمایان می کند. اما محدودیت منابع مالی و سرمایه، اکثر کشورهای جهان و ازجمله ایران را به فکر یافتن راه حلی جهت تامین سرمایه مورد نیاز توسعه زیرساخت های حمل ونقل انداخته است . کشورهای مختلف خط مشی های متنوعی برای تامین سرمایه در پروژه های راهسازی در پیش گرفته اند. از روش های متداول اتخاذ شده از سوی دولت ها می توان به وضع مالیات بر سوخت و سایر کالاهای مرتبط با حمل ونقل، مالیات بر خودرو و دریافت عوارض از رانندگان وسایل نقلیه اشاره نمود. معمولاً هزینه های دوره بهره برداری زیربناها نیز از محل اخذ عوارض از کاربران راهها تامین می شود (پژوهشکده حمل و نقل،1389).
در دهه های 80 و 90 میلادی، در سطح دنیا تمایل بسوی ساخت زیربناهای حمل ونقل با مشارکت بخش غیردولتی به جای زیربناهایی عمومی و رایگان صددرصد دولتی، بسیار افزایش یافت . ساخت و توسعه راهها از طریق مشارکت بخش غیردولتی به دلیل استحصال فواید و نتایج مطلوبی همچون کمک به جبران کمبود بودجه عمومی جهت ساخت و نگهداری راهها، پاسخگویی به رشد تقاضا و نیز ارتقا کیفیت و مطلوبیت خدمات حمل ونقل فراگیر شده است. همچنین قیمت گذاری راهها به عنوان فرآیندی مناسب جهت بازگشت سرمایه و هزینه های مدیریت و نگهداری راهها، از سوی کشورها پذیرفته شده و در بیشتر آنها به اجرا درآمده است (Heggie,1995).
بنابراین باید اذعان داشت که امروزه قیمت گذاری راهها به یکی از اولویت های کاری در رئوس سیاست های حمل ونقل در سراسر جهان تبدیل شده است . بیشتر کارشناسان و اقتصاددانان حمل ونقل و همچنین سیاست مداران متقاعد شده اند که قیمت گذاری راه، و هزینه های جانبی مربوط به آنها، راهکار مؤثری برای کسب و جذب منابع مالی جهت توسعه و بهبود سیستم های حمل ونقل و همچنین مدیریت تقاضا و کنترل ازدحام روی راهها است.
در مجموع با بررسی اجمالی وضعیت خدمات راهسازی و راهداری در ایران می توان گفت: کشور ایران از نظر توسعه زیرساخت ها و بهبود شبکه راههای خود دارای نیاز زیادی است. تامین منابع مالی و سرمایه از مشکلات اصلی کنونی برای رفع نیازهای زیرساختی است. همچنین در صورت عدم ایجاد فضای منطقی و هدفمند برای ساخت آزادراهها با مشارکت بخش غیردولتی، مشکلات تقاضای برآورده نشده دوچندان شده و آثار نامناسبی بر اقتصاد خواهد گذاشت. علاوه براین، در صورتیکه حتی بخش غیر دولتی نیز به مشارکت بخش دولتی بیاید اما ساز و کار مناسب برای بازگشت سرمایه به سرمایه گذاران در نظر گرفته نشود، مشکلات بیشتری به دولت و سیستم حمل ونقل وارد شده و بار مالی زیادی به بودجه عمومی وارد می شود.
قیمت گذاری راه مفهوم جدیدی نیست. عوارض روی جاده ها و پلها از اواخر قرن هیجدهم یعنی سال 1790 میلادی در آمریکا رایج بوده است. این دوران با شکوفایی اقتصاد آمریکا مقارن بود . در آن موقع حمل ونقل بهتر به معنی آزادراههای بهتر بود. ایالت ها و دولت های محلی بودجه و منابع مالی محدودی در اختیار داشتند که پاسخگوی نیازهای حمل ونقل نبود . بهمین دلیل آزادراههای خصوصی با فاینانس شرکت های سهامی احداث شد و سهام آن در بازارهای بورس معامله می شد. صاحبان سهام از محل دریافت عوارض و مالیات های بزرگراهها، سود سهام خود را دریافت می کردند (Durenberger,1981).
به این طریق راههای خصوصی و سیستم عوارضی در این راهها تا اواسط قرن نوزدهم ادامه داشت و در آن سا لها به اوج خود رسید. توسعه ریل رقابت شدیدی را بین ریل و جاده به وجود آورد که منجر به کم رنگ شدن اهمیت جاده شد. در نتیجه بیشتر بزرگراهها یا به دولت واگذار شدند یا به صورت نیمه دولتی درآمدند. از آن زمان یعنی اواسط قرن نوزدهم تا اواسط قرن بیستم مردم آمریکا رغبت چندانی به قیمت گذاری راهها نشان داده و با آن مخالفت ورزیده اند . از اوایل سال های 1960 سیستم عوارض سنتی برچیده شد و بجای آن سیستم پرداخت فوری جایگزین شد و در دهه های60، 70 و 80 میلادی مورد استفاده قرار گرفت (پژوهشکده حمل و نقل، 1389).
در کشور انگلیس از سال 1964 تاکنون با هدف کم کردن بار ترافیکی راهها و کمک به تامین اعتبارات برای ساخت و توسعه راهها، استراتژی های مختلفی برای قیمت گذاری راهها اجرا شده است. از سال 2003 به بعد در شهر لندن سیاست های سخت گیرانه تر و همراه با نرخ های بالاتر با هدف کاهش هرچه بشتر بارترافیک اعمال شده است.
یکی از موفق ترین تجربه های قیمت گذاری راهها را کشورهای هنگ کنگ(Ison, Rye,2005) و سنگاپور(Goh,2002) از اواسط دهه 70 میلادی تا کنون داشته اند. هنگ کنگ در خلال سال های 80 و 90 میلادی علیرغم رشد جمعیت و تقاضای حمل و نقل توانست 20 % از بارترافیکی درون پایتخت بکاهد. همچنین سنگاپور نیز در مدیریت ترافیک توفیق زیادی داشته و دو دهه است اخذ الکترونیکی عوارض را تجربه می کند.
در کشور نروژ از سال 1930 تا 1980 5% کل بودجه ساخت و توسعه زیرساخت های حمل ونقل از ، محل قیمت گذاری راهها تامین شده است . اما در دو دهه 80 و 90 میلادی تحولات زیادی در سیستم قیمت گذاری راهها به وجود آمد و در نتیجه 26 % کل بودجه ساخت زیربناهای حمل ونقل کشور نروژ در دو دهه مذکور از محل قیمت گذاری راهها تامین گردید. در سال 1997 تعداد پروژه های راهسازی با استفاده از درآمد های حاصل از قیمت گذاری راهها به 30 پروژه رسید(Odeck, Bråthen,1997).
در کشور ایران تا کنون قیمت گذاری سیستماتیک و جامعی روی شبکه راههای کشور انجام نشده است و تنها در چند آزادراه کشور سیستم اخذ عوارض سنتی وجود دارد که البته بیشتر درآمدهای آن صرف پوشش هزینه های ساخت آزادراههای مذکور می شود. در واقع این آزادراهها با سرمایه بخش خصوصی یا بانک ها ساخته شده و در قالب قراردادهای ساخت-عملیات-واگذاری احداث شده اند و تا دوره ی مشخصی با نظارت دولت مجازند کابران این راهها را شارژ کنند.
بطور کلی در بیشتر کشورهای دنیا در سه دهه اخیر، قیمت گذاری راهها به عنوان منبعی مکمل جهت تامین اعتبارات و منابع مالی بخش حمل ونقل، همچنین مشوقی جهت همکاری و تعامل توأم بخش خصوصی و دولتی برای ساخت و توسعه راههای جدید، مدیریت تقاضا و کنترل ترافیک روی شبکه راهها، مورد نگاهی ویژه قرار گرفته است(پژوهشکده حمل و نقل،1389).
1-2- اهداف قیمت گذاری راههااهدافی زیادی برای قیمت گذاری راهها ذکر شده است. در اینجا به ۴ هدف اشاره می شود که در زیرآمده اند.
1. از مشهورترین و مهمترین اهداف قیمت گذاری راهها، هدف مالی و سرمای های است.قیمت گذاری راهها به عنوان منبعی برای کسب درآمد جهت بهسازی و توسعه زیر ساخت های حمل ونقل عمل می کند. شکاف موجود بین نیازهای زیرساختی حمل ونقل و درآمدهای موجود یکی از محرک های اصلی قیمت گذاری است. جمع آوری منابع مالی از این طریق برای پوشش دادن و جبران هزینه های ساخت راه، توسعه راههای فعلی و ساخت زیرساخت های جدید حمل ونقل صورت می گیرد. در بیشتر کشورهای دنیا بخش زیادی از این منابع از محل مالیات بر سوخت، مالیات بر وسائل نقلیه تامین می گردد. با توجه به تحولات تکنولوژیکی و ورود وسائل نقلیه با سوخت های نوین مانند باطری های خورشیدی، پیل های سوختی و امثالهم، که جایگزین وسایل با سوخت فسیلی می شوند ، انتظار می رود بخش حمل ونقل با کاهش مالیات بر سوخت و در نتیجه کاهش منابع مالی مواجه شود. لذا اهمیت قیمت گذاری راهها به عنوان محلی برای تامین منابع مالی مذکور بیشتر می شود . البته به دلیل اینکه در کشور ایران مالیات بر سوخت گرفته نمی شود، این نگرانی بدین صورت برای کشور ما وجود ندارد؛ بلکه بیشتر کمبود منابع مالی برای ساخت و توسعه شبکه راهها دغدغه اصلی محسوب میشود. قابل ذکر است این هدف بیشتر در قیمت گذاری راههای بین شهری در کشور ما و نیز دیگر کشورها دنبال میشود. (پژوهشکده حمل و نقل،1389).
2. هدف دوم ارائه مکانیزمی برای مدیریت تقاضای حمل ونقل است. با تغییر تعرفه ها در طول شبانه روز (که گاهی قیمت گذاری تراکم یا قیمت گذاری ارزش نامیده می شود ) استفاده کنندگان بگونه ای ترغیب می شوند که در طول ساعات شلوغ و پرتردد از سفر پرهیز کنند و سفرهای خود را در ساعات کم تردد انجام دهند. بدین طریق جریان ترافیک تعدیل شده و تقاضای سفر بگونه ای در طول ساعات روز توزیع می شود که کمتر بار ترافیکی شدید به وجود آید. علاوه بر توزیع تقاضا در ساعات مختلف، با تقسیم شبکه راهها به بخش های مختلف و تخصیص تعرفه های متفاوت به هر کدام به توزیع مناسب تقاضا روی کل شبکه پرداخته و از ترافیک شدید جلوگیری می کنند. طبیعی است با کاهش ترافیک، شاخص دسترسی پذیری افزایش یافته و کارایی حمل ونقل بهبود می یابد(May,1992). البته این هدف، بیشتر در مناطق شهری و درون شهرها مدنظر قرار می گیرد. امروزه در بیشتر شهرهای بزرگ و شلوغ دنیا از جمله شهر تهران این هدف دنبال می شود.
3. هدف سوم کاهش آثار زیان آور زیست محیطی است. معمولاً فعالیت های حمل ونقل اعم ازاحداث راهها و حرکت وسایل نقلیه، موجب وارد شدن آسیب هایی به محیط زیست می شو ند. هزینه های محیط زیستی مربوط به زیرساخت های حمل و نقل، شامل مواردی چون تصرف زمین و اراضی، تغییر مناظر و زیباییهای طبیعی، تخریب زیست گاههای وحوش، آسیب رسانی به منابع و ذخایر زمینی، آلاینده های جوی و غیره است(بیضایی،1382). لذا قیمت گذاری بگونه ای انجام می شود که بخشی از قیمت صرف جبران خسارات وارده به محیط زیست شود.
4. هدف چهارم که بیشتر در مناطق خارج از شهر و روستایی دنبال می شود، شارژ مستقیم کسانی است که از راهها، استفاده های مخاطره آمیز می کنند. مثلاً، ادوات سنگین کشاورزی و عمرانی، ممکن است سبب وارد کردن خساراتی به راهها شوند. تصادفات جاده ای نیز به دلیل تحمیل هزینه به اجتماع و البته بخش حمل ونقل، می تواند شامل این مورد باشد که در این صورت، شرکت های بیمه ای باید هزینه ها و عوارض مربوطه را بپردازند . علاوه بر این موارد، استفاده از وسایل غیراستاندارد و فرسوده که بیش از وسایل استاندارد به راهها آسیب می رسانند، مشمول این نوع قیمت گذاری می شوند. در کشور ایران، فرسود گی زیاد ناوگان حمل ونقل از جمله عوامل فرساینده راه بشمار رفته و اصولاً این دسته از وسایل حمل ونقل باید قیمت بیشتری را بابت استفاده ار راهها بپردازند. پیگیری این هدف می تواند به بهبودی وضع ناوگان و کاهش فرسودگی کمک کند(پژوهشکده حمل و نقل،1389).
برحسب اهداف در نظر گرفته شده برای قیمت گذاری راهها، استراتژی های قیمت گذاری نیز متفاوت خواهد بود. بطور مثال، قیمت گذاری در شهرهای کشورهای سنگاپور و هنگ کنگ بیشتر با هدف کاهش تراکم و مدیریت تقاضا است (Olszewski, Xie,2005) و در شهر لندن این کار بیشتر با هدف کاهش آلودگی های زیست محیطی و البته کاهش تراکم صورت می گیرد(Mitchell,2005) در حالیکه در کشور نروژ قیمت گذاری راه با هدف اصلی ساخت و توسعه شبکه راهها انجام می شود(Odeck, Bråthen,2002). در حوزه فعالیت وزارت راه و ترابری در کشور ایران، قیمت گذاری راهها، بیش از آنکه برای کاهش بار ترافیکی مورد نظر باشد، با هدف ساخت و توسعه شبکه راهها و جبران هزینه های ساخت راههای موجود، انجام می گیرد.
1-3- جمع بندی و نتیجه گیریحمل ونقل جاده ای به دلیل خصوصیات ویژه ای که داراست (از جمله انعطاف پذیری در انتخاب مسیر، میزان بار، زمان سفر، دسترسی به نقاط مختلف، عدم نیاز به تجهیزات بارگیری و تخلیه) به عنوان متداول ترین شیوه حمل ونقل در کشورهای مختلف محسوب می شود. در ایران نیز علاوه بر ویژگی های خاص حمل ونقل جاده ای، موقعیت ویژه جغرافیایی، عدم پوشش گسترده شبکه ریلی در سطح کشور، فقدان مقررات محدود کننده در خصوص آثار منفی حمل ونقل جاده ای همچون مسائل زیست محیطی، سبب گشته تا درصد بسیار بالایی از حمل ونقل کالا و مسافر توسط این زیربخش صورت گیرد. بنابراین باید اذعان داشت که امروزه قیمت گذاری راهها به یکی از اولویت های کاری در رئوس سیاست های حمل ونقل در سراسر جهان تبدیل شده است . بیشتر کارشناسان و اقتصاددانان حمل ونقل و همچنین سیاست مداران متقاعد شده اند که قیمت گذاری راه، و هزینه های جانبی مربوط به آنها، راهکار مؤثری برای کسب و جذب منابع مالی جهت توسعه و بهبود سیستم های حمل ونقل و همچنین مدیریت تقاضا و کنترل ازدحام روی راهها است.

فصل دوم
مبانی نظری
2- مبانی نظری تحقیق2-1- مقدمهحمل و نقل یا جابجایی انسان و کالا از نقطه ای به نقطه دیگر، از جمله خصایص ذاتی و کهن ماندگار انسان ها است. در جوامع ابتدایی به فرم معیشتی نیز، حرکت جزو اساسی ترین الزامات روزانه به شمار می رود و برای تولطد و یا جابجایی هر محصول غیر اقتصادی لازم است حجم معینی از حرکات از محل تولید تا مصرف صورت پذیرد تا کالای مورد نیاز به مصرف کننده برسد.
چنین فرایندی از حرکت از حرکت در یک جامعه توسعه یافته مبادلاتی، ابعاد وسیع تری دارد و اشکال مختلفی از حرکت و جابجایی را پدید می آورد. بنابراین حرکت و جابجایی یکی از عمده الزامات انسانی است که نتایج اقتصادی به دنبال دارد. در علم اقتصاد، مجموعه خدماتی که سبب انتقال و جابجایی منابع تولید می گردد دارای ارزش اقتصادی است و بخشی از جریان تولید محسوب می شود. از این رو حمل و نقل از جمله ضروریات اقتصادی است و تقاضا برای حمل و نقل مشتق از سایر فعالیت های اقتصادی و اجتماعی است و لذا محصول حمل و نقل در عین حال که یک تولید پیچیده و مرکب است، تابع تغییرات تقاضا در نقاط و یا بخش های دیگر اقتصاد نیز می باشد(محمودی،1389)
حمل و نقل به گونه سایر فعالیت های اقتصادی بدون هزینه نیست و حرکت در ابعاد فضایی، همانند هر تولید دیگری دارای هزینه می باشد. تفاوت های ساختاری در عملکرد هزینه های انواع مختلف حمل و نقل میدان کاربری وسیعی را برای برنامه ریزی حمل و نقل فراهم می آورد.
روند توسعه در افزایش تسهیلات حمل و نقل جهانی مبین یک روند فزاینده در تقاضا برای سرمایه گذاری در زیر ساخت های حمل و نقل می باشد و به همین دلیل است که سرمایه گذاری در زیر ساخت های حمل و نقل اهمیت یافته و جزو لاینفک برنامه های توسعه ملی گردیده است. در بسیاری از کشورهای توسعه یافته تامین مالی حمل و نقل بخصوص از این جهت اهمیت دارد که حمل و نقل بزرگترین جزء سرمایه گذاری این کشورها را تشکیل می دهد.
به دلیل بالا بودن هزینه های اجرایی طرح های زیر بنایی حمل و نقل و همچنین به خاطر مسئولیت های مالی دولت ها و ضرورت های توزیع در سطح ملی لازم است دولت ها به سرمایه گذاری در زیر ساخت های حمل و نقل توجه عمده ای مبذول دارند.
2-2- هزینه های حمل ونقلعملکردهای زیانبخش فاصله و محدود ساختن ابعاد حرکت در واقع ناشی از هزینه های حرکت است که بر اثر غلبه بر فاصله به وجود می آید. زیرا عملا هر مصرف کننده ای در حرکت بسوی گردآوری منابع مورد نیاز و یا بمنظور مبادله مقداری از درآمد خود با کالا و خدمات، ضرورتا مقادیر مشخصی از منابع کمیاب (پول، وقت و انرژی فیزیکی ) را به مصرف می رساند تا هزینه مسافت را از میان بردارد. بنابراین وقتی از موانع ناشی از مسافت و سنجش آن با واحدهای پولی صحبت می کنیم، در واقع اشاره به عملکرد خدمات حمل و نقل در غلبه بر مسافت و ساخت هزینه های حرکت و بهای مربوط به آن است که بر پایه ذخایر مالی قرار دارد.
ولی روند غلبه بر هزینه های مسافت همیشه بر اساس مبادلات پولی استوار نیست. مثلا قدم زدن تا فروشگاه برای خرید کالای مورد نیاز، پرداخت هزینه ای را شامل می شود که صرفا جنبه فعالیت بدنی داشته و می توان آنرا از طریق محاسبه واحد کالری مصرفی اندازه گیری نمود. در حالی که استفاده از وسایل ارتباطی محتاج مبادله پولی است و روند چنین مبادله ای بر اساس میزان سرمایه گذاری، نوع خدمات و هزینه های ناشی از آن بسیار متنوع است.
از این رو، برای تجزیه و تحلیل هزینه های حمل و نقل ضرورتا باید شناخت وسیعی از ماهیت هزینه های حمل و نقل داشت.حمل و نقل نوع ویژه ای از تولید است که بر خلاف اصول جاری در تولید کالاهای اقتصادی، در یک نقطه مشخص مکانی مستقر نیست ، بلکه عوامل تولید در چنین شیوه ای در طول یک خط معین و یا در امتداد مسیرهای مختلف ترکیب یافته وشکل می گیرند. بنابراین، از لحاظ اقتصادی، ساخت موقعیتی حمل و نقل با موضوعات مورد مطالعه در سایر فعالیت های اساسی دارد. این وضع زاییده اختلاف های بنیادی بین اهمیت و نقش تولیدی خطوط و گذرگاه ها در مقایسه با سایر فعالیت های اقتصادی است که خود مسائل ویژه ای را در موقعیت مکانی پدیده های تولید مطرح می کند. اهمیت بنادر، ایستگاه های راه آهن و سایر ترمینال ها به عنوان کانون فعالیت های حمل و نقل در واقع نتیجه مستقیم ارتباط های زنجیره ای این نقاط با پاره ای از نقاط دیگر است که هرگز به تنهایی حاوی ارزش های اقتصادی بالقوه ای نیستند. ارزش و اعتبار چنین مراکزی یا بر اساس شاخص هایی مانند تعداد مسافران و وزن کالاهای حمل شده و درآمدهای حاصله از آن تعیین می شود و یا ارزیابی آن ها بر پایه معیارهای فیزیکی دیگری قرار دارد. در هر حال، وسایل حمل و نقل و موسسات مربوط به آن عملا کالاهایی را عرضه نمی کنند و درآمد آن ها ناشی از خدماتی است که در مقطع زمانی و مکانی مشخصی ارائه شده است(محمودی،1389).
در هندسه فرض بر این است که هر خطی از به هم پیوستن بی انقطاع مجموعه ای از نقاط هندسی تشکیل می شود که عملکرد هر یک از نقاط مفروض در ساخت این خط برابر و یکسان است. خطوط ارتباطی را از بسیاری جهات همانند عملکرد نقاط در تشکیل خط می توان فرض کرد و ثابت کرد که تولید در طول چنین خطوطی و بر سر هر نقطه ای می تواند احتمال وقوع داشته باشد. بنابراین، سهمی که هر یک از این نقاط در حرکت دادن مسافر . کالا دارند از طریق محاسبه ای ساده (نرخ کالا هنگام صدور از مبدا منهای ارزش آن در زمان ورود به مقصد) می توان تعیین کرد. ولی کیفیت این گونه استدلال ها انسان را متقاعد می سازد که این نوع محاسبات تقریبا غیر عملی است و کمتر با واقعیت های موجود در حمل یک کالا مطابقت دارد. زیرا حمل و نقل هر محموله ای از ایستگاه مبدا علاوه بر هزینه های خدماتی عملا متضمن پاره ای هزینه های سرمایه ای نیز هست. بنابراین ، اگر از تطبیق این فرضیه که قسمت های مختلف یک خط را نقاط هندسی تشکیل می دهند صرف نظر کنیم و حرکت فرضی یک کالا را با ابعاد محدودتر، در طول یک راه آهن در نظر بگیریم در زمینه ترکیب هزینه های حمل و نقل به نتایج بهتری دست خواهیم یافت.
هزینه هایی که در طول راه آهن خیالی ما به واسطه انتقال کالاهای فرضی پدید می آید، نتیجه محاسبه و جمع زدن هزینه هایی مانند دستمزد، اجاره بها، بهره و غیره است. بسیاری از این هزینه ها به خدمات انجام شده در ادارات مرکزی متعلق می گیرد و برخی دیگر به خدمات انجام شده در ایستگاه های بین راه مربوط است و سایر هزینه ها به طول مسیر طی شده مربوط می شود. بدین ترتیب، سود حاصله از این خدمات برخی به بخش های ویژه ای از دارایی راه آهن و برخی دیگر به قسمت های واقع در طول راه مربوط خواهد بود.
حسابداران و متخصصان نرخ گذاری در بررسی توزیع درآمدهای حاصله، روش های ویژه ای دارند که بر حسب این روش ها، نخست هزینه های اداره مرکزی و سایر اقلام مربوط به آن معین می شود، سپس دستمزدها و هزینه های عملیاتی شهرهایی که ایستگاه ها در آنجا واقع شده اند و در آخر، بخش های ویژه ای از مسیر که به طریقی به نظام ارتباطی مربوط اند تعیین می شوند. چنین روشی را در مورد حمل و نقل های زمینی، دریایی و هوایی نیز می توان تعمیم داد و به کار بست. ولی یک اصل عمده در چنین شیوه ای از برنامه ریزی این است که حجم عمده ای از درآمد تقریبا در ترمینال ها جای گرفته و چنین به نظر می رسد که راه هایی که این ترمینال ها را به هم متصل می کنند بدون هزینه نگهداری می شوند، در حالی که چنین نیست و در واقع ساخت هزینه ها در انواع مختلف حمل و نقل سبب و نتیجه عملکرد هزینه های ثابت و هزینه های متغیر است که از سرمایه گذاری در طول مسیر حاصل آمده است. شکل (2-1) توجیه ساده ای از این مطلب است.

شکل 2-1 : عملکرد هزینه های حمل و نقل
به این ترتیب، حمل و نقل نوعی تولید است که در یک فرایند فضایی شکل یافته و در مقایسه با سایر تولیدات اقتصادی غیر قابل ذخیره است و مصرف آتی دارد. مهم تر از همه آنکه تولید حمل و نقل نسبت به مقیاس دارای بازده صعودی است و با افزایش بهره برداری «طول مسیر، وسایط نقلیه، زمان بهره برداری» ، مقدار تولید افزایش می یاید و از این رو عملکرد هزینه ها « ثابت، متغیر» در تولید تسهیلات حمل و نقل دارای وجوه ویژه ای است.
2-2-1- هزینه های ثابتهزینه های ثابت عبارت است از هزینه هایی که در اثر استهلاک فنی سرمایه های اولیه وسایط نقلیه، مخارج ساخت و نگه داری ترمینال ها و راه ها ، پرداخت مالیات های مختلف و عوارض گمرکی پدید می آید. هزینه های ثابت را معمولا غیر مستقیم، هزینه های مکمل، هزینه های اضافی و یا هزینه های سربار می نامند که تابع آن را به شکل زیر می توان نوشت.
TFX=k=0npi viدر رابطه فوق Vi مقادیر عوامل تولید ثابت و Pi قیمت های آن ها فرض شده است.
کوپر هزینه های ثابت را بر حسب کیفیت آن ها به دو قسمت تقسیم می کند. نخست، هزینه های ثابت سرمایه ای که خود شامل سرمایه گذاری مجدد و هزینه های استهلاک و فرسودگی وسایل نقلیه و ساختمان های مربوط به آن می شود و دوم، هزینه های ثابت روزمره که مشتمل بر دستمزدها، هزینه های انبارداری، گمرکات، بازرسی، مدیریت و غیره است. در هر حال، تاثیر پذیری چنین هزینه هایی در ساخت هزینه های کلی حمل و نقل تا حدودی ثابت است. زیرا این هزینه ها نه تنها ارتباط مستقیمی با سطوح مختلف حرکت ندارند، بلکه به آسانی نیز می توان آن ها را به مصرف کنندگان ویژه ای تحمیل کرد، مگر آنکه افزایش استفاده از تسهیلات ترمینال ها و تجهیزات اصلی آنها، مانند کامیون ها، قطارها و خودروها، موجب تقلیل حد متوسط هزینه های ثابت شود. مثلا در خصوص ارتباط دو نقطه از طریق یک سیستم مجهز راه آهن که در آن میلیارها ریال سرمایه گذاری شده است، تاثیر هزینه های ثابت در بهای تمام شده نرخ حمل و نقل به میزان بهره برداری از آن بستگی خواهد داشت. اگر میزان بهره برداری تا حد مشخصی افزایش یابد، سهم هزینه های ثابت در نرخ حمل و نقل به همان نسبت تقلیل می یابد و منحنی آن مانند شکل(2-2) می باشد. بدین ترتیب، اگر شبکه ارتباطی oq که هزینه های ثابت معینی در ساختمان آن به کار رفته است، در فاصله زمانی مشخص، Z مرتبه بهره برداری شود، تاثیر هزینه های ثابت در بهای تمام شده حمل و نقل، به مراتب کمتر از میزان بهره برداری به مقادیر x و y خواهد بود.
اگر چنانکه هزینه های ثابت بر حسب هر تن کالای حمل شده در طول مسافت بیان شود، فرم عمومی عملکرد هزینه های ثابت به گونه ای خواهد بود که با افزایش عملکرد، هزینه های ثابت به ازای هر تن در مسافت طی شده کاهش خواهد یافت و نتیجتا به کاهش نسبی هزینه های متوسط کل منجر خواهد شد (شکل 2-2).

شکل 2-2 : روند تحلیلی هزینه های ثابت بر حسب میزان بهره برداری

شکل 2-3: عملکرد هزینه های ثابت بر حسب تن-مسافت
معمولا هزینه های نیروی کار و تاسیسات ترمینال ها بخش مهمی از هزینه های ثابت حمل و نقل را تشکیل می دهند و در ترمینال های راه آهن و بنادر کشتیرانی، شاخص بهره دهی بر حسب رابطه بین این هزینه ها به ازای هر تن کالای حمل شده ارزیابی می شود.
برآورد میزان واقعی هزینه های ثابت و نحوه عملکرد آن در ساخت کلی هزینه های حمل و نقل همیشه براحتی میسر نیست و بر حسب میزان سرمایه گذاری، از سیستمی به سیستم دیگر تغییر می کند. معمولا هزینه واقعی عمل حمل و نقل بیش از مبلغی است که از ضریب نرخ باربری در تن – کیلومتر به دست می آید. زیرا در غالب کشورها بخش مهمی از هزینه های ثابت به اقتصاد عمومی تحمیل می شود و دولت به منظور تقلیل هزینه های حمل و نقل برای مصرف کننده مقداری از هزینه های ثابت را به صورت کمک های مالی مستقیم و یا غیر مستقیم تعهد می کند. بوریر به نقل از پرفسور پیرات نشان داده است که در کشور آلمان استفاده مجانی از راهها بویژه در سالهای گذشته برای کامیون ها حداقل به منزله کمک مالی معادل 15 الی 20 درصد بهای تمام شده حمل و نقل بوده است. رساندن چنین کمک های مالی و اعتباری از عمده ترین دلایل علاقمندی دولت ها به تشویق تخصص های منطقه ای و ایجاد رفاه و اشتغال در سطح ملی است. البته بازگشت چنین هزینه های از طرف دولت معمولا از طریق اخذ عوارض و مالیات های مختلف بر سوخت و تاسیسات تامین می شود.
بنابراین در هر شرایطی هدف اساسی سیاست دولت از کمک به حمل و نقل عمومی انجام یکسری خدمات در سطح ملی و تسریع فرایند مبادلات به ویژه توزیع مکانی واحدهای تولیدی است تا از تمرکز فعالیت های اقتصادی در قطب های مشخص جلوگیری به عمل آید و استعدادهای نهفته در نقاط دیگر به کار گرفته شوند.
2-2-2- هزینه های جاری یا متغیرهزینه های جاری یا خدماتی مشتمل بر مجموع هزینه هایی است که در ترمینال ها و یا ضمن حرکت در طول مسیر از انجام خدمات لازم پدید می آید. هزینه های متغیر را گاهی هزینه های دسته اول و یا هزینه های مستقیم می خوانند و تابع آن را به شکل زیر می توان نوشت :
Tvc=i=1npj vjدر رابطه فوق Vj مقادیر عوامل متغیر تولید و Pj قیمت آن ها است.
این گونه هزینه ها اصولا بر حسب کیفیت ساختمانی کالا و سیستم حمل و نقل تغییر می کند و به تناسب ظرفیت وسیله نقلیه و ترمینال ها متفاوت است. در هر حال عملکرد آن تابع مجموع هزینه هایی است که از ایستگاه مبدا تا مقصد صرف می شود. اصولا مخارج استاندارد و بسته بندی کالا در نظام های مختلف حمل و نقل متفاوت اند و غالبا میزان آن در حمل و نقل های درازمدت مانند حمل و نقل دریایی بیش از مبالغی است که در حمل و نقل های کوتاه مدت نظیر حمل و نقل هوایی وجود دارد. نرخ بیمه نیز معمولا در حمل و نقل های درازمدت زمینی و دریایی به جهت طول زمانی حمل و نقل و آسیب پذیری کالا بیش از حمل و نقل هوایی است.
علاوه بر هزینه های بارگیری و تخلیه در ایستگاههای مبدا و مقصد هزینه های بارگیری مجدد بین راه را نیز می توان از جمله هزینه های جاری و یا متغیر به حساب آورد. گاهی ممکن است کالایی پیش از حرکت از ایستگاه مبدا و قبل از رسیدن به ایستگاه مقصد چندین مرحله جابجایی را به همراه داشته باشند که هر یک از آنها هزینه های متفاوتی را بر سطح هزینه های خدماتی وارد می کنند.
در مواردی ممکن است انتقال کالا از یک نوع وسیله نقلیه به نوع دیگر، علاوه بر هزینه های فنی و بارگیری مجدد، مخارج انبارداری و احیانا ایجاد ضایعات و گاهی تاخیر زمانی تحویل کالا را به همراه آورد که هر یک در نوع خود متضمن هزینه های متغیر است.
به هر حال هزینه های متغیر را بر حسب نوع آنها در دو گروه مشخص می توان طبقه بندی کرد.
الف) هزینه های متغیر که بطور مطلق با مسافت طی شده رابطه نسبی دارند
ب) هزینه های متغیری که رابطه مطلق با مسافت طی شده ندارند. مانند پرداخت عوارض گمرکی و هزینه استفاده از ترمینال ها (شکل 2-4)

شکل 2-4: هزینه های متغیر بر حسب عملکرد حمل و نقل
هزینه های متغیر به طور کلی بسیار متنوعند و از یک نوع حمل و نقل به نوع دیگر دارای تفاوت های زیادی می باشند. به همین دلیل گاهی اوقات تفکیک کردن هزینه ها کار بسیار پیچیده ای می باشد. با این حال در اقتصاد حمل و نقل ضرورت دارد که کار تحلیل هزینه ها به دقت انجام پذیرد(محمودی،1389).
2-2-3- هزینه های خارجیهزینه هایی که از عملکرد بنگاه حمل و نقل به محیط زیست تحمیل شده است ولی بابت آن مبلغی پرداخت نمی شود هزینه های خارجی یا در مواردی هزینه های چرخه حیات نامیده می شوند. در مدل تعادل عمومی چنین فرایندی دارای پیامد خارجی است و اثرات زیانباری را از طریق عملکرد یک بنگاه اقتصادی بر منافع یا هزینه های فرد و یا بنگاه دیگری اعمال می کند.
از نظر اقتصاد دانان، آلودگی در محیط زیست ابعاد وسیع تری را شامل می شود و اثرات آن زنجیره وسیعی را در چرخه حیات تحت تاثیر خود قرار می دهد. کلیه هزینه های تباهی و خسارت پذیری محیط زیست چه در قالب هزینه های بازسازی و چه بصورت هزینه های اجتناب از خسارت از آثار تخریب و آلودگی محیط زیست به شمار می روند.
بازتاب تخریب در حوزه حمل و نقل بسیار وسیع است. نتایج مطالعات انجام شده(محمودی،1383) مشخصا به چهار نوع از انواع هزینه های خارجی که بر عملکرد سیستم های مختلف حمل و نقل تاثیر می گذارند اشاره دارد. این نوع هزینه ها در ساده ترین شکل خود عبارتند از هزینه های خارجی ناشی از :
آلودگی صدا
آلودگی هوا
اثرات هزینه ای ناشی از تراکم
هزینه های حاصل از تصادفات
نتایج مطالعات انجام شده در سال 1991 در هفده کشور اروپایی نشان می دهد که 92 درصد هزینه های خارجی مربوط به حمل و نقل جاده ای، 9/5 درصد مربوط به حمل و نقل هوایی، 7/1 درصد مربوط به راهآهن و فقط 3/0 درصد آن به حمل و نقل آبی تعلق دارد.
یک مثال ساده برای شناخت نحوه عملکرد این هزینه ها وضعیت موجود در ترافیک شهری است که مترادف با حجم بالایی از آلاینده ها می باشد. مطالعات موردی نشان داده است که مصرف بنزین و سایر سوخت های فسیلی، مواد آلاینده ای از نوع منو اکسید کربن،هیدرو کربورها، اکسیدهای ازت و غیره را به مقدار زیادی در محیط های شهری پراکنده می کند، در حالی که هزینه های تخریب آن عملا پرداخت نمی شود.
بنابراین لازم است رانندگان شهری علاوه بر پرداخت بهای بنزین هزینه ای نیز بابت تخریب حاصل از مصرف آن که در قیمت بنزین مستتر شده است را پرداخت نمایند. این عمل در نوع خود سبب خواهد شد مصرف بنزین با کاهش قابل ملاحظه ای مواجه شود.

شکل 2-5: تعادل عرضه بنزین با احتساب هزینه های آلوده سازی محیط زیست
در نمودار فوق منحنی تقاضا PP و منحنی عرضه SS است. قیمت بنزین در نقطه تلاقی این دو منحنی یعنی EM به قیمت PM می باشد. با افزایش هزینه های خارجی ناشی از مصرف بنزین منحنی عرضه SS به S’S’ انتقال پیدا کرده است که این منحنی تابع تقاضا را در نقطه E’ قطع می کند. در چنین شرایطی اگر چه بنزین در مقدار کمتری عرضه می شود ولی بدلیل اینکه با قیمت بیشتری بفروش می رسد موجبات کاهش مصرف را فراهم می آورد. همچنین در نمودار فوق تفاضل PM’ و PM نشان دهنده هزینه های خارجی هستند که مصرف کنندگان از پرداخت آن خودداری می کنند.
روش داخلی کردن هزینه های خارجی اگرچه در موارد بسیاری ممکن نیست، ولی برای پیشگیری از اثرات نامطلوب زیست محیطی، لازم است با ایجاد ضوابط و مقرراتی روش هایی برای پرداخت اینگونه هرینه ها اعمال گردند.
2-3- قیمت گذاری حمل ونقلدر تئوری اقتصاد، قیمت ها دارای دو نقش اساسی هستند. نخست تخصیص بهینه خدمات و کالاها میان مصرف کنندگان و دوم انگیزه برای تولید کنندگان و حفظ منافع آنان. هدف یک گرداننده حمل و نقل در سیاست قیمت گذاری به حداکثر رساندن درآمد است. این کار به دو طریق ممکن می شود(محمودی،1389) :
گسترش اندازه بازار
جذب مشتریان جدید و افزایش سهم خود در بازار
یکی از مسائلی که در قیمت گذاری حمل و نقل می بایست مد نظر قرار داده شود هزینه های خارجی است که از مهمترین آنها هزینه تراکم ناشی از سنگینی ترافیک می باشد، که اغلب از سوی افراد و یا شرکت های حمل و نقل در نظر گرفته نمی شوند.
2-4- قیمت گذاری بر اساس هزینه خارجیاگرچه اصول قیمت گذاری بخش عمومی و وضع مالیات و عوارض امر شناخته شده ای است ولی به هر حال طرح و اجرای آن در مسائل حمل و نقل بخصوص در حمل و نقل جاده ای مشکلات و ویژگی های خاص خود را دارد. اصولا به دلیل مشکلات گردآوری عوارض از استفاده کنندگان محلی جاده های برون شهری، مخارج مستقیم مربوط به استفاده از این تاسیسات، پایه مهمی برای تامین مالی این زیر ساخت ها نمی باشد. از سوی دیگر هزینه های جانبی ناشی از استفاده از این تاسیسات، بسط و توسعه عملیات حمل و نقل بر روی آنها نیز به دلیل ضعیف بودن بنیان مالیاتی و یا به دلیل توسعه نیافتگی سیستم های مالی دارای عملکرد درستی نبوده و توزیع بهینه خدمات را با مشکل مواجه می کند.
به منظور ایجاد یک پیوند مفید اقتصادی و محیطی لازم است هزینه های مصرف کنندگان تاسیسات حمل و نقل در رابطه با افزایش درآمد طوری تنظیم شود که اولا از ظرفیت موجود استفاده موثر به عمل آید و ثانیا تامین هزینه های جانبی آنها فراهم شود.
مساله کارایی را می توان از طریق انتخاب بهینه در وسایط نقلیه و سوخت، افزایش کارایی میان قسمت های مختلف حمل و نقل و اعمال سیاست های مناسب در نگاه داری و مدیریت زیر ساخت های حمل و نقل تعمیم داد. امروزه با استفاده از روش های مختلف اخذ عوارض و مالیات که معمولا از طریق نصب باجه های مخصوص در محل های معین صورت می گیرد، موجب پیدایش یک درآمد دائمی شده و در نهایت موجب بوجود آمدن تشویق کننده ای برای استفاده کنندگان و متصدیان امور حمل و نقل گردیده است. افزایش کارایی منابع به خدمت گرفته شده در زیر ساخت های حمل و نقل و همچنین تخصیص بهینه منابع میان اشکال مختلف حمل و نقل نتایج مستقیم اینگونه تصمیمات می باشد. اینگونه اقدامات که سیاست های قیمت گذاری خاصی را می طبید، در نوع خود می تواند هزینه ها را کاراتر سازد و اساس و بنیان مالی بهتری را برای تدارک و نگاه داری تاسیسات حمل و نقل بوجود بیاورد.
در محتوای بهینه سازی هزینه ها این حقیقت وجود دارد که رفت و آمد در جاده ها چندین نوع آثار بیرونی از جمله ایجاد تراکم، آلوده سازی محیط زیست، تخریب سطوح جاده و غیره را به دنبال دارد که هر یک در نوع خود متضمن هزینه های جانبی است.
اثرات خارجی این عوامل و سطح اصطکاک آن در جاده ها به مقدار و نوع سوخت مصرفی وفناوری که در کاربرد این مواد انتخاب شده بستگی دارد. امروزه اخذ عوارض در محدوده نواحی پرتراکم جاده ها موجب شده است بخشی از هزینه های فوق تامین شود. گزارش بانک جهانی حاکی از آن است که اعمال این سیستم در بازگرداندن بخشی از هزینه های جانبی در سنگاپور بسیار موثر بوده است.
اخذ مالیات بابت بنزین و سایر سوخت های فسیلی به علت قابلیت آن در کاربردهای مختلف جانشین مناسبی برای کنترل آلوده سازی محیط زیست بشمار می رود. البته علیرغم آنکه مالیات بر بنزین نقش چندان مهمی را نمی تواند در محدود ساختن تراکم اعمال نماید ولی در بسیاری از کشورها تنها ابزاری است که به منظور رعایت کنترل ترافیک بکار برده می شود.
برای ایجاد فرایندی در فرموله کردن قیمت ابتدا لازم است اجزای تشکیل دهنده قیمت به خوبی شناخته شوند و سپس با استفاده از تجربیات جهانی و در نظر گرفتن قوانین، ضوایط قیمت تعیین شود. در مورد سوخت های فسیلی جامعه جهانی تقریبا به رعایت اصول فوق توافق دارد :
هزینه های منابع سوخت در حد قیمت های جهانی تعیین شود
هزینه های خارجی ناشی از مصرف سوخت در کلیه سطوح اعمال شود
هرگونه مالیات و یا عوارض برای مصرف و یا تعدیل مخارج باید بگونه ای تنظیم شود که تغییر در الگوی مصرف را به حداقل برساند.
تاکید دستور العمل فوق این است که هر گاه هزینه های جانبی و مخارج استفاده از تاسیسات زیربنایی حمل و نقل به طور مستقیم تامین نمی شود، مالیات بر سوخت و اخذ هزینه های خارجی می تواند هزینه های مربوط به زیر ساخت های حمل و نقل و برخی از هزینه های محیطی را بپوشاند. هر چند قیمت سوخت یک جانشین خیلی ضعیف برای تامین هزینه های حمل و نقل به شمار می رود ولی در شرایطی که حمل و نقل به طور سیستماتیک در طول روز جریان دارد می تواند به عنوان بهترین جانشین انتخاب شود. به دنبال تمهیدات فوق انتخاب یک روش مناسب برای قیمت گذاری خدمات حمل و نقل با مشکلاتی همراه می باشد زیرا اکثر منازعات بر سر قیمت به تخصیص هزینه های مشترک کل مربوط می شود. بنابراین بهتر است ابتدا یک محاسبه کلی از هزینه های زیر بنایی و همچنین هزینه های خارجی به عمل آورده و سپس در قیمت تعمیم داده شود.
بهترین مثال در چگونگی انجام این امر شامل مطالعاتی است که توسط گرانائو در سال 1994 و وینوبری در سال 1988 در کشورهای غنا، زیمباوه و تونس برای بانک جهانی انجام شده است. در این مطالعات چنین راهکار مناسب برای هزینه یابی و اعمال سیاست های مالیاتی در سیستم قیمت گذاری حمل و نقل نشان داده شده است. اساسی ترین نکته این مطالعات تاکید بر روی هزینه های جانبی است که از طریق تخریب جاده ها و افزایش تراکم توسط وسایل نقلیه سنگین و اتوبوسها ایجاد می شود.اگر چه بخش عمده از این خرابی ها به شرایط جغرافیایی مناطق مربوط می شود ولی نقش عمده وسایل نقلیه سنگین را نمی توان از نظر دور داشت. توصیه لازم در این زمینه این است که اولا هزینه های سرمایه ای در حساب مخارج گنجاند شود ثانیا مالیات سوخت بر حسب مسافت و میزان بارگیری اخذ شود. به طور مثال در برخی از کشورها مالیات سالانه برای وسایط نقلیه سنگین و خودروهای سواری با توجه به نوع خودرو متفاوت می باشد. مقدار مالیات در این شرایط به طور قابل ملاحظه ای به ظرفیت های بارگیری وسایل نقلیه بستگی دارد. این مسئله موجب برطرف شدن تخصیص هزینه های خارجی و توزیع آنها نمی شود ولی تاثیر بسزایی در بهبود آنها ایجاد می کند. الیته باید توجه داشت در انتخاب سیستهای اخذ مالیات و عوارض اولا باید بسیار محتاطانه عمل کرد و از اتخاذ روشهای نا معقول که ممکن است به آشفتگی بازار بینجامد اجتناب نمود، ثانیا افزایش درآمد عاملی برای توسعه دادن عرضه بشمار می رود و از این رو لازم است درآمدهای حاصله از منابع فوق به بهبود ساختار حمل و نقل اختصاص داده شود.
2-5- پیش بینی حجم ترافیکطی دهه اخیر پیشرفت و گسترش شناسگرهای ترافیکی، امکانات جدیدی را برای مدیریت ترافیک و شبکه معابر فراهم کرده است. شناسگرهای ترافیکی در سطح شبکه معابر نصب شده و به صورت لحظه ای پارامترهای ترافیکی را برداشت می کنند. اطلاعات برداشت شده توسط شناسگرها به کمک بستر مخابراطی به مرکز کنترل ترافیک – مرکز شهری و یا جاده ای – منتقل می شوند. یکی از وظایف مرکز کنترل ترافیک استفاده بهنگام از این اطلاعات برای مدیریت ترافیک است. مدل پیش بینی حجم ترافیک در کوتاه مدت یکی از بخش هایی است که از این اطلاعات استفاده می کند. این مدل با بکارگیری اطلاعات شناسگرهای ترافیکی هر معبر، حجم عبوری از یک معبر در لحظات پیش رو را پیش بینی می کند. از این اطلاعات برای مدیریت پیشگیرانه ترافیک استفاده می شود (افندی زاده، کیانفر،1387).
مدل های مرسوم پیش بینی، مقدار حجم ترافیک را برای سال های آینده و یا برای سناریوهای مختلف پیش بینی می کنند. این پیش بینی با استفاده از مدل های آینده و یا برای سناریوهای مختلف پیش بینی می کنند. این پیش بینی با استفاده از مدل های چهار مرحله ای و یا مدل های مستقیم انجام می شود. نتایج حاصل از این پیش بینی در حوزه برنامه ریزی حمل و نقل بکار گرفته می شود.
شبکه های عصبی از اجزای هوش مصنوعی هستند که در حوزه های کاربردی مختلف با موفقیت استفاده شده اند. یکی از روش پیشنهادی در اینجا، بکارگیری تکنیک های هوش مصنوعی می باشد.در ادامه از روش آماری رگراسیون جهت پیش بینی حجم تردد استفاده گردیده است و در انتها به مقایسه دو روش می پردازیم.
2-6- کلیات شبکههای عصبی مصنوعی تفاوت انسان با سایر موجودات زنده دیگر در توانایی تصمیمگیری و اراده اوست که به ساختار پیچیده مغز و سلسله اعصاب او بر می گردد. از دیرباز دانشمندان و محققین زیادی علاقمند به شناخت ساختمان مغز انسان و چگونگی انجام محاسبات و پردازشها در آن بودهاند آنچه باعث توجه گسترده به این موضوع شده اموری است که مغز آنها را در کسری از ثانیه انجام میدهد (مثل شناسایی چهره آشنا) در حالی که رایانههای دیجیتال برای انجام آنها نیاز به زمان زیادی دارند، بنابراین مغز برای محاسبات خود اساسا از ساختاری کاملا مغایر با ساختار رایانههای متداول برخوردار میباشد.
احساس نیاز بشر برای دستیابی به هوش مصنوعی به منظور نزدیکتر کردن ارتباط انسان و ماشین و دستیابی به ماشینهای هوشمندی که بتواند از عهده وظایف پیچیدهتر برآیند انگیزه اصلی تحقیقات گسترده بر روی سیستم عصبی انسان و دیگر موجودات زنده و تلاش در جهت شبیهسازی مصنوعی آن بوده است. شبکه عصبی مصنوعی (ANN)  ایدهای است برای پردازش اطلاعات که از سیستم عصبی زیستی الهام گرفته شده و مانند مغز به پردازش اطلاعات میپردازد . عنصر کلیدی این ایده ، ساختار جدید سیستم پردازش اطلاعات است.
2-7- نرون بیولوژیکی
همانطورکه گفته شد شبکههای عصبی مصنوعی الهام گرفته از سیستمهای بیولوژیکی هستند. اما اختلافهای عمدهای بین معماری و قابلیت شبکههای عصبی مصنوعی و طبیعی وجود دارد.
مغز انسان به عنوان یک سیستم پردزاش اطلاعاتی با ساختار موازی از 100 تریلیون (1011) نرونهای به هم مرتبط با تعداد کل (1016) ارتباط میباشد که این نرونها از طریق شبکهای از آکسونها و سیناپسها با چگالی تقریبی10 هزار سیناپس در هر نرون ، با هم ارتباط دارند.
محیط عملکرد این نرونها یک محیط شیمیایی است. گیرندههای حسی تحریکات را هم از محیط و هم از داخل بدن دریافت میکند. این تحریکات که به صورت ایمپالسهای الکتریکی هستند اطلاعات را به شبکه نرون ها وارد میکنند. سیستم عصبی مرکزی، اطلاعات دریافتی را پردازش میکند و با کنترل انگیزندهها پاسخ انسان را به صورتهای مختلف بروز میکند.

شکل 2-6: اجزای اصلی یک شبکه عصبی بیولوژیکسلول عصبی یا نرون که عنصر اساسی شبکه عصبی است در شکل 2-6 نشان داده شده است اجزا این سلول عبارتند از : بدنه سلول ، اکسون ، دندریت ، سیناپس
2-8- شبکههای عصبی مصنوعیشبکههای عصبی، نظیر انسانها، با مثال یاد میگیرند . یک ANN برای انجام وظیفههای مشخص، مانند شناسایی الگوها و دستهبندی اطلاعات، در طول یک پروسه یادگیری، تنظیم میشود . در سیستمهای زیستی یادگیری با تنظیماتی در اتصالات سیناپسی که بین اعصاب قرار دارد همراه است. این روش آموزش ANN ها نیز میباشد.
در این قسمت شبکههای عصبی را بر اساس ساختار شبکههای عصبی بیولوژیکی که مطرح شد معرفی میکنیم. اما قبل از آن شباهتهای بین این دو شبکه را عنوان میکنیم.
بلوکهای ساختاری در هر شبکه دستگاههای محاسباتی خیلی سادهای هستند و مضاف بر این نرونهای مصنوعی از سادگی بیشتری برخوردار میباشند.
ارتباطات بین نرونها عملکرد شبکه را تعیین میکند.
اما با وجود اینکه نرونهای بیولوژیکی از نرونهای مصنوعی که توسط مدارات الکتریکی ساخته میشوند بسیار کندتر هستند (یک میلیون بار)، عملکرد مغز خیلی سریعتر از عملکرد یک رایانه معمولی است. علت این پدیده بیشتر به دلیل ساختار کاملا موازی نرونها میباشد و این یعنی اینکه همه نرونها معمولا به طور همزمان کار میکنند و پاسخ میدهند از آنجائی که شبکههای عصبی مصنوعی هم دارای ساختار موازی هستند اما توسط رایانههای سری پیادهسازی میشوند و این مسأله باعث افت سرعت شدید در این شبکهها میشود.
با وجود این که شبکههای عصبی مصنوعی با سیستم عصبی طبیعی قابل مقایسه نیستند ویژگیهایی دارند که آنها را در بعضی از کاربردها مانند تفکیک الگو ، رباتیک ، کنترل و به طور کلی در هر جا که نیاز به یادگیری یک نگاشت خطی یا غیر خطی باشد ممتاز مینمایند. این ویژگی ها به شرح زیر هستند:
قابلیت یادگیری: استخراج نتایج تحلیلی از نگاشت غیر خطی که با چند مثال مشخص شده کار ساهای نیست. چون میدانیم که یک نرون یک دستگاه غیر خطی است در نتیجه یک شبکه عصبی که از اجتماع این نرونها تشکیل میشود هم یک سیستم کاملا پیچیده و غیرخطی خواهد بود. به علاوه خاصیت غیرخطی عناصر پردازش در کل شبکه توزیع می گردد هنگام پیاده سازی این نتایج با یک الگوریتم معمولی وبدون قابلیت یادگیری نیاز به دقت و مراقبت زیادی دارد درچنین حالتی سیستمی که بتواند خود این رابطه را استخراج کند بسیار سودمند به نظر میرسد . خصوصاً اینکه افزودن مثالهای اجتماعی در آینده به یک سیستم با قابلیت یادگیری، به مراتب آسانتر از انجام آن در یک سیستم بدون چنین قابلیتی است.
قابلیت یادگیری یعنی توانایی تنظیم پارمترهای شبکه (وزنهای سیناپتیکی) در مسیر زمان که محیط شبکه تغییر میکند و شبکه شرایط جدید را تجربه میکند، با این هدف که اگر شبکه برای یک وضعیت خاص آموزش دید و تغییر کوچکی در شریط محیطی شبکه رخ داد، شبکه بتواند با آموزش مختصر برای شریط جدید نیز کارآمد باشد. دیگر اینکه اطلاعات در شبکههای عصبی در سیناپسها ذخیره و هر نرون در شبکه، به صورت بالقوه ازکل فعالیت سایر نرونها متأثر میشود. در نتیجه، اطلاعات از نوع مجزا از هم نبوده، بلکه متأثر از کل شبکه میباشد.
2- پراکندگی اطلاعات: آنچه که شبکه فرا میگیرد و یا به عبارت دیگراطلاعات یا دانش، در وزنهای سیناپسی مستتر میباشد و رابطه یک به یک بین ورودیها و وزنهای سیناپتیکی وجود ندارد. میتوان گفت که هر وزن سیناپسی مربوط به همه ورودیها است ولی به هیج یک از آنها به طور منفرد مربوط نیست به عبارت دیگر هر نرون در شبکه از کل فعالیت سایر نرونها متأثر میباشد در نتیجه اطلاعات به صورت زمینهای توسط شبکههای عصبی پردازش میشود.
3- قابلیت تعمیم: پس از آنکه مثالهای اولیه به شبکه آموزش داده شد شبکه می تواند در مقابل یک ورودی آموزش داده نشده قرار می گیرد و یک خروجی مناسب ارائه نماید. این خروجی بر اساس مکانسیم تعیمم که همانا چیزی جز پروسه درونیابی نیست بدست می آید.
4- پردازش موازی: هنگامیکه شبکه عصبی در قالب سخت افزار پیاده می شود سلول هایی که در یک تراز قرار می گیرند میتواننند به طور همزمان به ورودی های ان تراز پاسخ دهند. این ویژگی باعث افزایش سرعت پردازش می شود در واقع در چنین سیستمی ، وظیفه کلی پردازش ، بین پردازنده های کوچکتر مستقل از یکدیگر توزیع می گردد.
5- مقاوم بودن: در یک شبکه عصبی ، هر سلول به طور مستقل عمل می کند و رفتار کلی شبکه برآیند رفتارهای محلی سلول های متعددی است. این ویژگی باعث می شود تا خطاهای محلی از چشم خروجی نهایی دور بمانند. به عبارت دیگر سلول ها در یک روند همکاری، خطاهای محلی یکدیگر را تصحیح می کنند این خصوصیت باعث افزایش قابلیت مقاوم بودن در سیستم می گردد.
2-9- تاریخچه شبکههای عصبی مصنوعی
گرچه برخی از پیش زمینههای شبکههای عصبی در اوائل قرن بیستم و اواخر قرن نوزدهم در فیزیک، روانشناسی و نروفیزیولوژی مطرح گردید، ولی دیدگاه جدید شبکههای عصبی در دهه 40 قرن بیستم شروع شد. در سال 1943 اولین مدل نرون بر مبنای ساختمان نرون بیولوژیکی توسط McCulloch و Pitts ارائه شد که به نرون M-P مشهور است . در این نرون وزنها به دو دسته تحریک (1+) و بازدارنده (1-) تقسیم میشوند. ورودیها و خروجی نرون تنها میتواند مقادیر باینری صفر و یک را بگیرند. نرون وقتی فعال است که میزان کلی تحریک از یک مقدار یا حد آستانه بیشتر شود. با این مدل میتوان عملیات منطقی نظیر AND ، OR و NOT را انجام داد.
در سال 1949، اولین قانون یادگیری به نام قانون یادگیری Hebb ارائه شد. هب در کتاب مشهور خود بیان کرد که ارتباط بین نرونهای مغز همراه با یادگیری تغییر میکند. بر طبق نظریه هب، تحریک مکرر یک نرون توسط نرونی دیگر از طریق یک ارتباط خاص، هدایت آن ارتباط را افزایش میدهد. در سال 1958، Rosenblat یک شبکه عصبی موسوم به پرسپترون را معرفی کرد که شبکهای متشکل از نرون های M-P بود. پرسپترون متشکل از یک لایه ورودی بود که به وسیله وزنهایی قابل تنظیم به نرونها متصل میشد. قاعده یادگیری پرسپترون بر مبنای تحصیح وزن در یک روش تکراری است که قویتر از قاعده یادگیری هب است.
در اوایل دهه 60 Widrow و شاگردش Hoff یک قاعده یادگیری که به نام ویدرو – هوف یا قاعده دلتا نامیده میشود، ارائه دادند که مشابه قاعده یادگیری پرسپترون بود.
قاعده دلتا وزنها را برای کاهش خطای مابین ورودی به نرون خروجی و خروجی مطلوب تصحیح میکند این شبکه به نام آدلاین نامیده میشود بعدها شبکههای چند لایه از آدلاین به نام مادلاین به وجود آمدند.
این شبکهها کاربرد گستردهای در زمینه مخابرات شناسایی الگو و مسائل کنترل داشتند. اما در سال 1969 ،Minsky و Papert محدودیتهای پرسپترون را در تمایز گذاشتن بین برخی الگوهای ساده نشان دادند و متذکر شدند که یک نرون M-Pنمیتواند عنصر محاسباتی کاملی باشد. همچنین نبود رایانههای سریع به این مشکل دامن میزند از اینجا دوران رکود در شبکههای عصبی شروع شد که این رکود تا اواسط دهه 80 ادامه داشت.
در اواسط دهه 80 رشد تکنولوژی VLSI از دو جهت باعث رشد عملی شبکههای عصبی شد. با پیشرفت تکنولوی VLSI قدرت و سرعت میکروپروسسورها به درجهای رسید که میتوانستند شبکههای چند لایه بزرگ را شبیهسازی کنند، تکنولوژی VLSI برای پیادهسازی سختافزاری شبکههای عصبی به منظور بهره بردن از خواص موازی بالای آنها مناسب به نظر میرسید. از طرف دیگر نظریههای جدید نیز باعث رشد تئوریک این شبکههای شدند. استفاده از مکانیزم تصادفی جهت توضیح عملکرد یک طبقه وسیع از شبکههای برگشتی که میتوان آنها را جهت ذخیره سازی اطلاعات استفاده نمود. این ایده توسط Hopfield فیزیکدان آمریکایی در سال 1982 مطرح شد دومین ایده مهم که کلید توسعه شبکههای عصبی در دهه 80 مطرح شد الگوریتم پس انتشار خطا میباشد که توسط Rummelhurt در سال 1986 مطرح گردید. با بروز این دو ایده شبکههای عصبی متحول شدند.
در ده سال اخیر هزاران پروژه - ریسرچنوشته شده است و شبکههای عصبی کاربردهای زیادی در رشتههای مختلف علوم پیدا کردهاند. شبکههای عصبی در هر دو جهت توسعه تئوریک و عملی در حال رشد میباشند. بیشتر پیشرفتها در شبکههای عصبی به ساختارهای نوین و روشهای یادگیری جدید مربوط میشود آنچه که در مورد آینده میتوان گفت این است که شبکههای عصبی جایگاه مهمی به عنوان یک ابزار علمی که بتواند برای حل مسائل خاص مورد استفاده قرار گیرد خواهند داشت.
2- 10- مدلهای شبکههای عصبی مصنوعی
برای مدل کردن آسانتر سیستم عصبی بیولوژیکی، در شبکههای عصبی مصنوعی فرض بر این است که اطلاعات در اتصالات مابین نرونها و توابع انتقالی آنها قرار دارد بسته به نوع کاربرد شکبههای عصبی با ساختارهای مختلف وجود دارند درکل میتوان شبکههای را از سه جهت دستهبندی کرد.
ساختمان و عملکرد هر نرون

user8307

شکل 4-3 : نمودار زمان سفر بر حسی تقاضا ....................................................................................82
شکل 4-4 : نمودار تقاضا بر حسب عرضه ......................................................................................... 89
عنوان صفحه
شکل 4-5: نمودار هزینه متوسط و جانبی ....................................................................................... 92
شکل 4-6 : جریان ترافیک در چند روز مختلف در طول شبانه روز ............................................... 96
شکل 4-7 : نحوه ارتباط سرعت، جریان و چگالی در توابع جریان ترافیک ................................... 100
شکل 4-8 : نمونه جریان ترافیک در بزرگراه ها .............................................................................. 101
شکل 4-9 : نمودار سرعت – تقاضا در مدل ویکری ........................................................................ 103
شکل 4-10 : نمودار هزینه حاشیه ای و هزینه تراکم ....................................................................... 104
شکل 4-11 : ساختار مدل پیشنهادی برای پیش بینی جریان ترافیک .......................................... 117
شکل 4-12 مراحل ساخت مدل پیش بینی حجم ترافیک ............................................................. 118
شکل 4-13: رگرسیون خطی ساده .................................................................................................. 121
شکل 5-1: انواع هزینه های حمل و نقل .......................................................................................... 131
شکل 5-2 : نمودار ترافیک عبوری خودروها را در بازه زمانی یک ساعت .....................................137
شکل 5-3 : نمودار ترافیک عبوری خودروها ...................................................................................137
شکل 5-4 : نمودار مبلغ تراکم در ساعت های مختلف ....................................................................139
شکل 5-5: ارتباط مابین تقاضا، عرضه و حجم ترافیک ...................................................................139
شکل 5-6: مدل چهار مرحلهای برنامه ریزی حمل ونقل ............................................................... 140
شکل 5-7 : خروجی Train شبکه عصبی ........................................................................................144
شکل 5-8: خروجی مربوط به اعتبار سنجی شبکه عصبی .............................................................144
شکل 5-9 : خروجی مربوط به آزمایش شبکه عصبی ......................................................................145
شکل 5-10: تعداد epochهای مورد استفاده توسط الگوریتم یادگیری شبکه .............................145
شکل5-11 : مقایسه خروجی شبکه عصبی با اطلاعات موجود ........................................................146
شکل5-12 : مقایسه خروجی مدل رگرسیون با اطلاعات موجود ....................................................151

فهرست نشانه های اختصاری
TDNN = Time delay neural network
BOT = Build-operate-transfer
PCI = Pavement Condition Index
PSI = Present Serviceability Index
MLF = Multi-layer feed forward
TTI = Texas Transportation Institute
BPR = Bureau of Public Roads
VOTT = Value of Travel Time
HCM = Highway Capacity Manual
BP = Back Propagation
فصل اول
مقدمه و طرح مسئله
1- مقدمه1-1- مقدمهبخش حمل ونقل نیز به عنوان یکی شاهرگ اصلی اقتصاد، نقش بسزایی در شکوفایی و توسعه جامعه ایفا می کند. در کشور ما تاکنون این بخش نتوانسته به جایگاه واقعی خود دست یابد. شاید به جرأت بتوان گفت که امروزه ملاک توسعه یافتگی کشورها پس از صنعت، مربوط به توسعه ارتباطات ریلی، جاده ای، هوایی و دریایی است. بنابراین حمل و نقل را می توان به شریانی تشبیه کرد که موجب پویایی و شکوفایی اقتصاد کشورها می شود.
اگر امروز در جهان از خدمات حمل ونقل تحت عنوان صنعت یاد می شود بخاطر گستردگی و اهمیت این خدمات به عنوان حلقه اتصال صنایع با یکدیگر و عامل ارتباط میان بازارهای تولید و مصرف است . بدین خاطر است که بین نظام حمل ونقل و فرآیند توسعه اقتصادی و اجتماعی جوامع همبستگی شدیدی وجود دارد و اقتصاد دانان، صنعت حمل ونقل را به عنوان نیروی محرکه توسعه می دانند و کارآمدی و توانمندی آن را زمینه ساز توسعه پایدار می شناسند. لذا چنانچه این بخش از اقتصاد، مورد بی مهری و بی توجهی برنامه ریزان اقتصادی قرار گیرد یا به دلیل سیاستگذاری های نامناسب کارایی لازم را نداشته باشد، خواسته یا ناخواسته اقتصاد کشورها را با مشکلات جدی مواجه خواهد کرد.
کشور ایران به دلیل موقعیت جغرافیایی و دسترسی به آبهای آزاد، از موقعیت ویژه ای در حمل ونقل منطقه برخوردار است. اینکه ایران موقعیت طلایی برای ترانزیت و عبور کالا را دارد بر کسی پوشیده نیست ولی متأسفانه طی دهه اخیر، علیرغم گنجاندن این مهم در راهبردهای اقتصادی و برنامه های توسعه کشور، عملاً شاهد تحقق بهره برداری از این پتانسیل نبوده ایم. یکی از مهم ترین عوامل زیربنایی برای توسعه هر کشوری، وجود یک شبکه کارا و مناسب جهت رفع نیازهای حمل ونقلی آن است. بطور کلی حمل ونقل به جهت رفع نیازهای مختلف اقتصادی، اجتماعی و دسترسی صورت می گیرد و تقاضای آن ناشی از تقاضا برای سایر بخش ها است (صفارزاده،هدایتی،1378).
بین صنعت حمل ونقل و سایر بخش های صنعتی از منظر اقتصاد تفاوت هایی وجود دارد . فعالیت های حمل ونقل دارای هزینه ثابت بسیار بالا هستند که بیشتر صرف زیرساخت های حمل ونقل می شود و برای ساخت زیرساخت های حمل ونقل نیاز به سرمایه گذاری بلند مدت است. این دو خصیصه از جمله ویژگی های بارزی هستند که حمل ونقل را از نظر اقتصادی، از دیگر صنایع جدا می کند. بر همین اساس تامین منابع مالی و جذب سرمایه گذاری در این بخش در مقایسه با دیگر بخش های اقتصادی با مشکلات بیشتری همراه است.
حمل ونقل جاده ای به دلیل خصوصیات ویژه ای که داراست (از جمله انعطاف پذیری در انتخاب مسیر، میزان بار، زمان سفر، دسترسی به نقاط مختلف، عدم نیاز به تجهیزات بارگیری و تخلیه) به عنوان متداول ترین شیوه حمل ونقل در کشورهای مختلف محسوب می شود. در ایران نیز علاوه بر ویژگی های خاص حمل ونقل جاده ای، موقعیت ویژه جغرافیایی، عدم پوشش گسترده شبکه ریلی در سطح کشور، فقدان مقررات محدود کننده در خصوص آثار منفی حمل ونقل جاده ای همچون مسائل زیست محیطی، سبب گشته تا درصد بسیار بالایی از حمل ونقل کالا و مسافر توسط این زیربخش صورت گیرد، بطوریکه هم اکنون بیش از 90 % کل حمل بار و مسافر در کشور توسط جاده انجام می شود(سازمان راهداری و حمل و نقل جاده ای، 1383).
در حالیکه فعالیت های حمل و نقل بیش از 9% از تولید ناخالص ملی کشور را در بر می گیرد و در حدود 5/7 میلیون نفر از شاغلان کشور در این حوزه فعالیت می کنند و همچنین بر اساس برآوردهای کارشناسان در صورتی که تمام فعالیتهای مستقیم و غیر مستقیم حمل ونقل به حساب این بخش منظور شود، ارزش افزوده آن بالغ بر 20 % از تولید ناخالص داخلی را تشکیل خواهد داد (سایت اینترنتی بانک مرکزی جمهوری اسلامی ایران، 1389).
ضرورت توجه به حمل ونقل در کشور دو چندان نمایان می شود. در برنامه چهارم توسعه و در ماده 28 آن بطور مشخص اقداماتی در این خصوص پیش بینی شده است که بر اساس آن دولت موظف شده است اقداماتی را به منظور تقویت اقتصاد حمل و نقل، بهره برداری مناسب از موقعیت جغرافیایی کشور، افزایش ایمنی و سهولت حمل ونقل بار و مسافر انجام دهد.
علاوه بر این موارد، افزایش جمعیت، روند رو به رشد اقتصاد کشور و گذر از درحال توسعه به توسعه یافته و استعداد ترانزیت بین المللی، لزوم توسعه و ساخت هر چه بیشتر زیرساخت های حمل ونقل را بیشتر نمایان می کند. اما محدودیت منابع مالی و سرمایه، اکثر کشورهای جهان و ازجمله ایران را به فکر یافتن راه حلی جهت تامین سرمایه مورد نیاز توسعه زیرساخت های حمل ونقل انداخته است . کشورهای مختلف خط مشی های متنوعی برای تامین سرمایه در پروژه های راهسازی در پیش گرفته اند. از روش های متداول اتخاذ شده از سوی دولت ها می توان به وضع مالیات بر سوخت و سایر کالاهای مرتبط با حمل ونقل، مالیات بر خودرو و دریافت عوارض از رانندگان وسایل نقلیه اشاره نمود. معمولاً هزینه های دوره بهره برداری زیربناها نیز از محل اخذ عوارض از کاربران راهها تامین می شود (پژوهشکده حمل و نقل،1389).
در دهه های 80 و 90 میلادی، در سطح دنیا تمایل بسوی ساخت زیربناهای حمل ونقل با مشارکت بخش غیردولتی به جای زیربناهایی عمومی و رایگان صددرصد دولتی، بسیار افزایش یافت . ساخت و توسعه راهها از طریق مشارکت بخش غیردولتی به دلیل استحصال فواید و نتایج مطلوبی همچون کمک به جبران کمبود بودجه عمومی جهت ساخت و نگهداری راهها، پاسخگویی به رشد تقاضا و نیز ارتقا کیفیت و مطلوبیت خدمات حمل ونقل فراگیر شده است. همچنین قیمت گذاری راهها به عنوان فرآیندی مناسب جهت بازگشت سرمایه و هزینه های مدیریت و نگهداری راهها، از سوی کشورها پذیرفته شده و در بیشتر آنها به اجرا درآمده است (Heggie,1995).
بنابراین باید اذعان داشت که امروزه قیمت گذاری راهها به یکی از اولویت های کاری در رئوس سیاست های حمل ونقل در سراسر جهان تبدیل شده است . بیشتر کارشناسان و اقتصاددانان حمل ونقل و همچنین سیاست مداران متقاعد شده اند که قیمت گذاری راه، و هزینه های جانبی مربوط به آنها، راهکار مؤثری برای کسب و جذب منابع مالی جهت توسعه و بهبود سیستم های حمل ونقل و همچنین مدیریت تقاضا و کنترل ازدحام روی راهها است.
در مجموع با بررسی اجمالی وضعیت خدمات راهسازی و راهداری در ایران می توان گفت: کشور ایران از نظر توسعه زیرساخت ها و بهبود شبکه راههای خود دارای نیاز زیادی است. تامین منابع مالی و سرمایه از مشکلات اصلی کنونی برای رفع نیازهای زیرساختی است. همچنین در صورت عدم ایجاد فضای منطقی و هدفمند برای ساخت آزادراهها با مشارکت بخش غیردولتی، مشکلات تقاضای برآورده نشده دوچندان شده و آثار نامناسبی بر اقتصاد خواهد گذاشت. علاوه براین، در صورتیکه حتی بخش غیر دولتی نیز به مشارکت بخش دولتی بیاید اما ساز و کار مناسب برای بازگشت سرمایه به سرمایه گذاران در نظر گرفته نشود، مشکلات بیشتری به دولت و سیستم حمل ونقل وارد شده و بار مالی زیادی به بودجه عمومی وارد می شود.
قیمت گذاری راه مفهوم جدیدی نیست. عوارض روی جاده ها و پلها از اواخر قرن هیجدهم یعنی سال 1790 میلادی در آمریکا رایج بوده است. این دوران با شکوفایی اقتصاد آمریکا مقارن بود . در آن موقع حمل ونقل بهتر به معنی آزادراههای بهتر بود. ایالت ها و دولت های محلی بودجه و منابع مالی محدودی در اختیار داشتند که پاسخگوی نیازهای حمل ونقل نبود . بهمین دلیل آزادراههای خصوصی با فاینانس شرکت های سهامی احداث شد و سهام آن در بازارهای بورس معامله می شد. صاحبان سهام از محل دریافت عوارض و مالیات های بزرگراهها، سود سهام خود را دریافت می کردند (Durenberger,1981).
به این طریق راههای خصوصی و سیستم عوارضی در این راهها تا اواسط قرن نوزدهم ادامه داشت و در آن سا لها به اوج خود رسید. توسعه ریل رقابت شدیدی را بین ریل و جاده به وجود آورد که منجر به کم رنگ شدن اهمیت جاده شد. در نتیجه بیشتر بزرگراهها یا به دولت واگذار شدند یا به صورت نیمه دولتی درآمدند. از آن زمان یعنی اواسط قرن نوزدهم تا اواسط قرن بیستم مردم آمریکا رغبت چندانی به قیمت گذاری راهها نشان داده و با آن مخالفت ورزیده اند . از اوایل سال های 1960 سیستم عوارض سنتی برچیده شد و بجای آن سیستم پرداخت فوری جایگزین شد و در دهه های60، 70 و 80 میلادی مورد استفاده قرار گرفت (پژوهشکده حمل و نقل، 1389).
در کشور انگلیس از سال 1964 تاکنون با هدف کم کردن بار ترافیکی راهها و کمک به تامین اعتبارات برای ساخت و توسعه راهها، استراتژی های مختلفی برای قیمت گذاری راهها اجرا شده است. از سال 2003 به بعد در شهر لندن سیاست های سخت گیرانه تر و همراه با نرخ های بالاتر با هدف کاهش هرچه بشتر بارترافیک اعمال شده است.
یکی از موفق ترین تجربه های قیمت گذاری راهها را کشورهای هنگ کنگ(Ison, Rye,2005) و سنگاپور(Goh,2002) از اواسط دهه 70 میلادی تا کنون داشته اند. هنگ کنگ در خلال سال های 80 و 90 میلادی علیرغم رشد جمعیت و تقاضای حمل و نقل توانست 20 % از بارترافیکی درون پایتخت بکاهد. همچنین سنگاپور نیز در مدیریت ترافیک توفیق زیادی داشته و دو دهه است اخذ الکترونیکی عوارض را تجربه می کند.
در کشور نروژ از سال 1930 تا 1980 5% کل بودجه ساخت و توسعه زیرساخت های حمل ونقل از ، محل قیمت گذاری راهها تامین شده است . اما در دو دهه 80 و 90 میلادی تحولات زیادی در سیستم قیمت گذاری راهها به وجود آمد و در نتیجه 26 % کل بودجه ساخت زیربناهای حمل ونقل کشور نروژ در دو دهه مذکور از محل قیمت گذاری راهها تامین گردید. در سال 1997 تعداد پروژه های راهسازی با استفاده از درآمد های حاصل از قیمت گذاری راهها به 30 پروژه رسید(Odeck, Bråthen,1997).
در کشور ایران تا کنون قیمت گذاری سیستماتیک و جامعی روی شبکه راههای کشور انجام نشده است و تنها در چند آزادراه کشور سیستم اخذ عوارض سنتی وجود دارد که البته بیشتر درآمدهای آن صرف پوشش هزینه های ساخت آزادراههای مذکور می شود. در واقع این آزادراهها با سرمایه بخش خصوصی یا بانک ها ساخته شده و در قالب قراردادهای ساخت-عملیات-واگذاری احداث شده اند و تا دوره ی مشخصی با نظارت دولت مجازند کابران این راهها را شارژ کنند.
بطور کلی در بیشتر کشورهای دنیا در سه دهه اخیر، قیمت گذاری راهها به عنوان منبعی مکمل جهت تامین اعتبارات و منابع مالی بخش حمل ونقل، همچنین مشوقی جهت همکاری و تعامل توأم بخش خصوصی و دولتی برای ساخت و توسعه راههای جدید، مدیریت تقاضا و کنترل ترافیک روی شبکه راهها، مورد نگاهی ویژه قرار گرفته است(پژوهشکده حمل و نقل،1389).
1-2- اهداف قیمت گذاری راههااهدافی زیادی برای قیمت گذاری راهها ذکر شده است. در اینجا به ۴ هدف اشاره می شود که در زیرآمده اند.
1. از مشهورترین و مهمترین اهداف قیمت گذاری راهها، هدف مالی و سرمای های است.قیمت گذاری راهها به عنوان منبعی برای کسب درآمد جهت بهسازی و توسعه زیر ساخت های حمل ونقل عمل می کند. شکاف موجود بین نیازهای زیرساختی حمل ونقل و درآمدهای موجود یکی از محرک های اصلی قیمت گذاری است. جمع آوری منابع مالی از این طریق برای پوشش دادن و جبران هزینه های ساخت راه، توسعه راههای فعلی و ساخت زیرساخت های جدید حمل ونقل صورت می گیرد. در بیشتر کشورهای دنیا بخش زیادی از این منابع از محل مالیات بر سوخت، مالیات بر وسائل نقلیه تامین می گردد. با توجه به تحولات تکنولوژیکی و ورود وسائل نقلیه با سوخت های نوین مانند باطری های خورشیدی، پیل های سوختی و امثالهم، که جایگزین وسایل با سوخت فسیلی می شوند ، انتظار می رود بخش حمل ونقل با کاهش مالیات بر سوخت و در نتیجه کاهش منابع مالی مواجه شود. لذا اهمیت قیمت گذاری راهها به عنوان محلی برای تامین منابع مالی مذکور بیشتر می شود . البته به دلیل اینکه در کشور ایران مالیات بر سوخت گرفته نمی شود، این نگرانی بدین صورت برای کشور ما وجود ندارد؛ بلکه بیشتر کمبود منابع مالی برای ساخت و توسعه شبکه راهها دغدغه اصلی محسوب میشود. قابل ذکر است این هدف بیشتر در قیمت گذاری راههای بین شهری در کشور ما و نیز دیگر کشورها دنبال میشود. (پژوهشکده حمل و نقل،1389).
2. هدف دوم ارائه مکانیزمی برای مدیریت تقاضای حمل ونقل است. با تغییر تعرفه ها در طول شبانه روز (که گاهی قیمت گذاری تراکم یا قیمت گذاری ارزش نامیده می شود ) استفاده کنندگان بگونه ای ترغیب می شوند که در طول ساعات شلوغ و پرتردد از سفر پرهیز کنند و سفرهای خود را در ساعات کم تردد انجام دهند. بدین طریق جریان ترافیک تعدیل شده و تقاضای سفر بگونه ای در طول ساعات روز توزیع می شود که کمتر بار ترافیکی شدید به وجود آید. علاوه بر توزیع تقاضا در ساعات مختلف، با تقسیم شبکه راهها به بخش های مختلف و تخصیص تعرفه های متفاوت به هر کدام به توزیع مناسب تقاضا روی کل شبکه پرداخته و از ترافیک شدید جلوگیری می کنند. طبیعی است با کاهش ترافیک، شاخص دسترسی پذیری افزایش یافته و کارایی حمل ونقل بهبود می یابد(May,1992). البته این هدف، بیشتر در مناطق شهری و درون شهرها مدنظر قرار می گیرد. امروزه در بیشتر شهرهای بزرگ و شلوغ دنیا از جمله شهر تهران این هدف دنبال می شود.
3. هدف سوم کاهش آثار زیان آور زیست محیطی است. معمولاً فعالیت های حمل ونقل اعم ازاحداث راهها و حرکت وسایل نقلیه، موجب وارد شدن آسیب هایی به محیط زیست می شو ند. هزینه های محیط زیستی مربوط به زیرساخت های حمل و نقل، شامل مواردی چون تصرف زمین و اراضی، تغییر مناظر و زیباییهای طبیعی، تخریب زیست گاههای وحوش، آسیب رسانی به منابع و ذخایر زمینی، آلاینده های جوی و غیره است(بیضایی،1382). لذا قیمت گذاری بگونه ای انجام می شود که بخشی از قیمت صرف جبران خسارات وارده به محیط زیست شود.
4. هدف چهارم که بیشتر در مناطق خارج از شهر و روستایی دنبال می شود، شارژ مستقیم کسانی است که از راهها، استفاده های مخاطره آمیز می کنند. مثلاً، ادوات سنگین کشاورزی و عمرانی، ممکن است سبب وارد کردن خساراتی به راهها شوند. تصادفات جاده ای نیز به دلیل تحمیل هزینه به اجتماع و البته بخش حمل ونقل، می تواند شامل این مورد باشد که در این صورت، شرکت های بیمه ای باید هزینه ها و عوارض مربوطه را بپردازند . علاوه بر این موارد، استفاده از وسایل غیراستاندارد و فرسوده که بیش از وسایل استاندارد به راهها آسیب می رسانند، مشمول این نوع قیمت گذاری می شوند. در کشور ایران، فرسود گی زیاد ناوگان حمل ونقل از جمله عوامل فرساینده راه بشمار رفته و اصولاً این دسته از وسایل حمل ونقل باید قیمت بیشتری را بابت استفاده ار راهها بپردازند. پیگیری این هدف می تواند به بهبودی وضع ناوگان و کاهش فرسودگی کمک کند(پژوهشکده حمل و نقل،1389).
برحسب اهداف در نظر گرفته شده برای قیمت گذاری راهها، استراتژی های قیمت گذاری نیز متفاوت خواهد بود. بطور مثال، قیمت گذاری در شهرهای کشورهای سنگاپور و هنگ کنگ بیشتر با هدف کاهش تراکم و مدیریت تقاضا است (Olszewski, Xie,2005) و در شهر لندن این کار بیشتر با هدف کاهش آلودگی های زیست محیطی و البته کاهش تراکم صورت می گیرد(Mitchell,2005) در حالیکه در کشور نروژ قیمت گذاری راه با هدف اصلی ساخت و توسعه شبکه راهها انجام می شود(Odeck, Bråthen,2002). در حوزه فعالیت وزارت راه و ترابری در کشور ایران، قیمت گذاری راهها، بیش از آنکه برای کاهش بار ترافیکی مورد نظر باشد، با هدف ساخت و توسعه شبکه راهها و جبران هزینه های ساخت راههای موجود، انجام می گیرد.
1-3- جمع بندی و نتیجه گیریحمل ونقل جاده ای به دلیل خصوصیات ویژه ای که داراست (از جمله انعطاف پذیری در انتخاب مسیر، میزان بار، زمان سفر، دسترسی به نقاط مختلف، عدم نیاز به تجهیزات بارگیری و تخلیه) به عنوان متداول ترین شیوه حمل ونقل در کشورهای مختلف محسوب می شود. در ایران نیز علاوه بر ویژگی های خاص حمل ونقل جاده ای، موقعیت ویژه جغرافیایی، عدم پوشش گسترده شبکه ریلی در سطح کشور، فقدان مقررات محدود کننده در خصوص آثار منفی حمل ونقل جاده ای همچون مسائل زیست محیطی، سبب گشته تا درصد بسیار بالایی از حمل ونقل کالا و مسافر توسط این زیربخش صورت گیرد. بنابراین باید اذعان داشت که امروزه قیمت گذاری راهها به یکی از اولویت های کاری در رئوس سیاست های حمل ونقل در سراسر جهان تبدیل شده است . بیشتر کارشناسان و اقتصاددانان حمل ونقل و همچنین سیاست مداران متقاعد شده اند که قیمت گذاری راه، و هزینه های جانبی مربوط به آنها، راهکار مؤثری برای کسب و جذب منابع مالی جهت توسعه و بهبود سیستم های حمل ونقل و همچنین مدیریت تقاضا و کنترل ازدحام روی راهها است.

فصل دوم
مبانی نظری
2- مبانی نظری تحقیق2-1- مقدمهحمل و نقل یا جابجایی انسان و کالا از نقطه ای به نقطه دیگر، از جمله خصایص ذاتی و کهن ماندگار انسان ها است. در جوامع ابتدایی به فرم معیشتی نیز، حرکت جزو اساسی ترین الزامات روزانه به شمار می رود و برای تولطد و یا جابجایی هر محصول غیر اقتصادی لازم است حجم معینی از حرکات از محل تولید تا مصرف صورت پذیرد تا کالای مورد نیاز به مصرف کننده برسد.
چنین فرایندی از حرکت از حرکت در یک جامعه توسعه یافته مبادلاتی، ابعاد وسیع تری دارد و اشکال مختلفی از حرکت و جابجایی را پدید می آورد. بنابراین حرکت و جابجایی یکی از عمده الزامات انسانی است که نتایج اقتصادی به دنبال دارد. در علم اقتصاد، مجموعه خدماتی که سبب انتقال و جابجایی منابع تولید می گردد دارای ارزش اقتصادی است و بخشی از جریان تولید محسوب می شود. از این رو حمل و نقل از جمله ضروریات اقتصادی است و تقاضا برای حمل و نقل مشتق از سایر فعالیت های اقتصادی و اجتماعی است و لذا محصول حمل و نقل در عین حال که یک تولید پیچیده و مرکب است، تابع تغییرات تقاضا در نقاط و یا بخش های دیگر اقتصاد نیز می باشد(محمودی،1389)
حمل و نقل به گونه سایر فعالیت های اقتصادی بدون هزینه نیست و حرکت در ابعاد فضایی، همانند هر تولید دیگری دارای هزینه می باشد. تفاوت های ساختاری در عملکرد هزینه های انواع مختلف حمل و نقل میدان کاربری وسیعی را برای برنامه ریزی حمل و نقل فراهم می آورد.
روند توسعه در افزایش تسهیلات حمل و نقل جهانی مبین یک روند فزاینده در تقاضا برای سرمایه گذاری در زیر ساخت های حمل و نقل می باشد و به همین دلیل است که سرمایه گذاری در زیر ساخت های حمل و نقل اهمیت یافته و جزو لاینفک برنامه های توسعه ملی گردیده است. در بسیاری از کشورهای توسعه یافته تامین مالی حمل و نقل بخصوص از این جهت اهمیت دارد که حمل و نقل بزرگترین جزء سرمایه گذاری این کشورها را تشکیل می دهد.
به دلیل بالا بودن هزینه های اجرایی طرح های زیر بنایی حمل و نقل و همچنین به خاطر مسئولیت های مالی دولت ها و ضرورت های توزیع در سطح ملی لازم است دولت ها به سرمایه گذاری در زیر ساخت های حمل و نقل توجه عمده ای مبذول دارند.
2-2- هزینه های حمل ونقلعملکردهای زیانبخش فاصله و محدود ساختن ابعاد حرکت در واقع ناشی از هزینه های حرکت است که بر اثر غلبه بر فاصله به وجود می آید. زیرا عملا هر مصرف کننده ای در حرکت بسوی گردآوری منابع مورد نیاز و یا بمنظور مبادله مقداری از درآمد خود با کالا و خدمات، ضرورتا مقادیر مشخصی از منابع کمیاب (پول، وقت و انرژی فیزیکی ) را به مصرف می رساند تا هزینه مسافت را از میان بردارد. بنابراین وقتی از موانع ناشی از مسافت و سنجش آن با واحدهای پولی صحبت می کنیم، در واقع اشاره به عملکرد خدمات حمل و نقل در غلبه بر مسافت و ساخت هزینه های حرکت و بهای مربوط به آن است که بر پایه ذخایر مالی قرار دارد.
ولی روند غلبه بر هزینه های مسافت همیشه بر اساس مبادلات پولی استوار نیست. مثلا قدم زدن تا فروشگاه برای خرید کالای مورد نیاز، پرداخت هزینه ای را شامل می شود که صرفا جنبه فعالیت بدنی داشته و می توان آنرا از طریق محاسبه واحد کالری مصرفی اندازه گیری نمود. در حالی که استفاده از وسایل ارتباطی محتاج مبادله پولی است و روند چنین مبادله ای بر اساس میزان سرمایه گذاری، نوع خدمات و هزینه های ناشی از آن بسیار متنوع است.
از این رو، برای تجزیه و تحلیل هزینه های حمل و نقل ضرورتا باید شناخت وسیعی از ماهیت هزینه های حمل و نقل داشت.حمل و نقل نوع ویژه ای از تولید است که بر خلاف اصول جاری در تولید کالاهای اقتصادی، در یک نقطه مشخص مکانی مستقر نیست ، بلکه عوامل تولید در چنین شیوه ای در طول یک خط معین و یا در امتداد مسیرهای مختلف ترکیب یافته وشکل می گیرند. بنابراین، از لحاظ اقتصادی، ساخت موقعیتی حمل و نقل با موضوعات مورد مطالعه در سایر فعالیت های اساسی دارد. این وضع زاییده اختلاف های بنیادی بین اهمیت و نقش تولیدی خطوط و گذرگاه ها در مقایسه با سایر فعالیت های اقتصادی است که خود مسائل ویژه ای را در موقعیت مکانی پدیده های تولید مطرح می کند. اهمیت بنادر، ایستگاه های راه آهن و سایر ترمینال ها به عنوان کانون فعالیت های حمل و نقل در واقع نتیجه مستقیم ارتباط های زنجیره ای این نقاط با پاره ای از نقاط دیگر است که هرگز به تنهایی حاوی ارزش های اقتصادی بالقوه ای نیستند. ارزش و اعتبار چنین مراکزی یا بر اساس شاخص هایی مانند تعداد مسافران و وزن کالاهای حمل شده و درآمدهای حاصله از آن تعیین می شود و یا ارزیابی آن ها بر پایه معیارهای فیزیکی دیگری قرار دارد. در هر حال، وسایل حمل و نقل و موسسات مربوط به آن عملا کالاهایی را عرضه نمی کنند و درآمد آن ها ناشی از خدماتی است که در مقطع زمانی و مکانی مشخصی ارائه شده است(محمودی،1389).
در هندسه فرض بر این است که هر خطی از به هم پیوستن بی انقطاع مجموعه ای از نقاط هندسی تشکیل می شود که عملکرد هر یک از نقاط مفروض در ساخت این خط برابر و یکسان است. خطوط ارتباطی را از بسیاری جهات همانند عملکرد نقاط در تشکیل خط می توان فرض کرد و ثابت کرد که تولید در طول چنین خطوطی و بر سر هر نقطه ای می تواند احتمال وقوع داشته باشد. بنابراین، سهمی که هر یک از این نقاط در حرکت دادن مسافر . کالا دارند از طریق محاسبه ای ساده (نرخ کالا هنگام صدور از مبدا منهای ارزش آن در زمان ورود به مقصد) می توان تعیین کرد. ولی کیفیت این گونه استدلال ها انسان را متقاعد می سازد که این نوع محاسبات تقریبا غیر عملی است و کمتر با واقعیت های موجود در حمل یک کالا مطابقت دارد. زیرا حمل و نقل هر محموله ای از ایستگاه مبدا علاوه بر هزینه های خدماتی عملا متضمن پاره ای هزینه های سرمایه ای نیز هست. بنابراین ، اگر از تطبیق این فرضیه که قسمت های مختلف یک خط را نقاط هندسی تشکیل می دهند صرف نظر کنیم و حرکت فرضی یک کالا را با ابعاد محدودتر، در طول یک راه آهن در نظر بگیریم در زمینه ترکیب هزینه های حمل و نقل به نتایج بهتری دست خواهیم یافت.
هزینه هایی که در طول راه آهن خیالی ما به واسطه انتقال کالاهای فرضی پدید می آید، نتیجه محاسبه و جمع زدن هزینه هایی مانند دستمزد، اجاره بها، بهره و غیره است. بسیاری از این هزینه ها به خدمات انجام شده در ادارات مرکزی متعلق می گیرد و برخی دیگر به خدمات انجام شده در ایستگاه های بین راه مربوط است و سایر هزینه ها به طول مسیر طی شده مربوط می شود. بدین ترتیب، سود حاصله از این خدمات برخی به بخش های ویژه ای از دارایی راه آهن و برخی دیگر به قسمت های واقع در طول راه مربوط خواهد بود.
حسابداران و متخصصان نرخ گذاری در بررسی توزیع درآمدهای حاصله، روش های ویژه ای دارند که بر حسب این روش ها، نخست هزینه های اداره مرکزی و سایر اقلام مربوط به آن معین می شود، سپس دستمزدها و هزینه های عملیاتی شهرهایی که ایستگاه ها در آنجا واقع شده اند و در آخر، بخش های ویژه ای از مسیر که به طریقی به نظام ارتباطی مربوط اند تعیین می شوند. چنین روشی را در مورد حمل و نقل های زمینی، دریایی و هوایی نیز می توان تعمیم داد و به کار بست. ولی یک اصل عمده در چنین شیوه ای از برنامه ریزی این است که حجم عمده ای از درآمد تقریبا در ترمینال ها جای گرفته و چنین به نظر می رسد که راه هایی که این ترمینال ها را به هم متصل می کنند بدون هزینه نگهداری می شوند، در حالی که چنین نیست و در واقع ساخت هزینه ها در انواع مختلف حمل و نقل سبب و نتیجه عملکرد هزینه های ثابت و هزینه های متغیر است که از سرمایه گذاری در طول مسیر حاصل آمده است. شکل (2-1) توجیه ساده ای از این مطلب است.

شکل 2-1 : عملکرد هزینه های حمل و نقل
به این ترتیب، حمل و نقل نوعی تولید است که در یک فرایند فضایی شکل یافته و در مقایسه با سایر تولیدات اقتصادی غیر قابل ذخیره است و مصرف آتی دارد. مهم تر از همه آنکه تولید حمل و نقل نسبت به مقیاس دارای بازده صعودی است و با افزایش بهره برداری «طول مسیر، وسایط نقلیه، زمان بهره برداری» ، مقدار تولید افزایش می یاید و از این رو عملکرد هزینه ها « ثابت، متغیر» در تولید تسهیلات حمل و نقل دارای وجوه ویژه ای است.
2-2-1- هزینه های ثابتهزینه های ثابت عبارت است از هزینه هایی که در اثر استهلاک فنی سرمایه های اولیه وسایط نقلیه، مخارج ساخت و نگه داری ترمینال ها و راه ها ، پرداخت مالیات های مختلف و عوارض گمرکی پدید می آید. هزینه های ثابت را معمولا غیر مستقیم، هزینه های مکمل، هزینه های اضافی و یا هزینه های سربار می نامند که تابع آن را به شکل زیر می توان نوشت.
TFX=k=0npi viدر رابطه فوق Vi مقادیر عوامل تولید ثابت و Pi قیمت های آن ها فرض شده است.
کوپر هزینه های ثابت را بر حسب کیفیت آن ها به دو قسمت تقسیم می کند. نخست، هزینه های ثابت سرمایه ای که خود شامل سرمایه گذاری مجدد و هزینه های استهلاک و فرسودگی وسایل نقلیه و ساختمان های مربوط به آن می شود و دوم، هزینه های ثابت روزمره که مشتمل بر دستمزدها، هزینه های انبارداری، گمرکات، بازرسی، مدیریت و غیره است. در هر حال، تاثیر پذیری چنین هزینه هایی در ساخت هزینه های کلی حمل و نقل تا حدودی ثابت است. زیرا این هزینه ها نه تنها ارتباط مستقیمی با سطوح مختلف حرکت ندارند، بلکه به آسانی نیز می توان آن ها را به مصرف کنندگان ویژه ای تحمیل کرد، مگر آنکه افزایش استفاده از تسهیلات ترمینال ها و تجهیزات اصلی آنها، مانند کامیون ها، قطارها و خودروها، موجب تقلیل حد متوسط هزینه های ثابت شود. مثلا در خصوص ارتباط دو نقطه از طریق یک سیستم مجهز راه آهن که در آن میلیارها ریال سرمایه گذاری شده است، تاثیر هزینه های ثابت در بهای تمام شده نرخ حمل و نقل به میزان بهره برداری از آن بستگی خواهد داشت. اگر میزان بهره برداری تا حد مشخصی افزایش یابد، سهم هزینه های ثابت در نرخ حمل و نقل به همان نسبت تقلیل می یابد و منحنی آن مانند شکل(2-2) می باشد. بدین ترتیب، اگر شبکه ارتباطی oq که هزینه های ثابت معینی در ساختمان آن به کار رفته است، در فاصله زمانی مشخص، Z مرتبه بهره برداری شود، تاثیر هزینه های ثابت در بهای تمام شده حمل و نقل، به مراتب کمتر از میزان بهره برداری به مقادیر x و y خواهد بود.
اگر چنانکه هزینه های ثابت بر حسب هر تن کالای حمل شده در طول مسافت بیان شود، فرم عمومی عملکرد هزینه های ثابت به گونه ای خواهد بود که با افزایش عملکرد، هزینه های ثابت به ازای هر تن در مسافت طی شده کاهش خواهد یافت و نتیجتا به کاهش نسبی هزینه های متوسط کل منجر خواهد شد (شکل 2-2).

شکل 2-2 : روند تحلیلی هزینه های ثابت بر حسب میزان بهره برداری

شکل 2-3: عملکرد هزینه های ثابت بر حسب تن-مسافت
معمولا هزینه های نیروی کار و تاسیسات ترمینال ها بخش مهمی از هزینه های ثابت حمل و نقل را تشکیل می دهند و در ترمینال های راه آهن و بنادر کشتیرانی، شاخص بهره دهی بر حسب رابطه بین این هزینه ها به ازای هر تن کالای حمل شده ارزیابی می شود.


برآورد میزان واقعی هزینه های ثابت و نحوه عملکرد آن در ساخت کلی هزینه های حمل و نقل همیشه براحتی میسر نیست و بر حسب میزان سرمایه گذاری، از سیستمی به سیستم دیگر تغییر می کند. معمولا هزینه واقعی عمل حمل و نقل بیش از مبلغی است که از ضریب نرخ باربری در تن – کیلومتر به دست می آید. زیرا در غالب کشورها بخش مهمی از هزینه های ثابت به اقتصاد عمومی تحمیل می شود و دولت به منظور تقلیل هزینه های حمل و نقل برای مصرف کننده مقداری از هزینه های ثابت را به صورت کمک های مالی مستقیم و یا غیر مستقیم تعهد می کند. بوریر به نقل از پرفسور پیرات نشان داده است که در کشور آلمان استفاده مجانی از راهها بویژه در سالهای گذشته برای کامیون ها حداقل به منزله کمک مالی معادل 15 الی 20 درصد بهای تمام شده حمل و نقل بوده است. رساندن چنین کمک های مالی و اعتباری از عمده ترین دلایل علاقمندی دولت ها به تشویق تخصص های منطقه ای و ایجاد رفاه و اشتغال در سطح ملی است. البته بازگشت چنین هزینه های از طرف دولت معمولا از طریق اخذ عوارض و مالیات های مختلف بر سوخت و تاسیسات تامین می شود.
بنابراین در هر شرایطی هدف اساسی سیاست دولت از کمک به حمل و نقل عمومی انجام یکسری خدمات در سطح ملی و تسریع فرایند مبادلات به ویژه توزیع مکانی واحدهای تولیدی است تا از تمرکز فعالیت های اقتصادی در قطب های مشخص جلوگیری به عمل آید و استعدادهای نهفته در نقاط دیگر به کار گرفته شوند.
2-2-2- هزینه های جاری یا متغیرهزینه های جاری یا خدماتی مشتمل بر مجموع هزینه هایی است که در ترمینال ها و یا ضمن حرکت در طول مسیر از انجام خدمات لازم پدید می آید. هزینه های متغیر را گاهی هزینه های دسته اول و یا هزینه های مستقیم می خوانند و تابع آن را به شکل زیر می توان نوشت :
Tvc=i=1npj vjدر رابطه فوق Vj مقادیر عوامل متغیر تولید و Pj قیمت آن ها است.
این گونه هزینه ها اصولا بر حسب کیفیت ساختمانی کالا و سیستم حمل و نقل تغییر می کند و به تناسب ظرفیت وسیله نقلیه و ترمینال ها متفاوت است. در هر حال عملکرد آن تابع مجموع هزینه هایی است که از ایستگاه مبدا تا مقصد صرف می شود. اصولا مخارج استاندارد و بسته بندی کالا در نظام های مختلف حمل و نقل متفاوت اند و غالبا میزان آن در حمل و نقل های درازمدت مانند حمل و نقل دریایی بیش از مبالغی است که در حمل و نقل های کوتاه مدت نظیر حمل و نقل هوایی وجود دارد. نرخ بیمه نیز معمولا در حمل و نقل های درازمدت زمینی و دریایی به جهت طول زمانی حمل و نقل و آسیب پذیری کالا بیش از حمل و نقل هوایی است.
علاوه بر هزینه های بارگیری و تخلیه در ایستگاههای مبدا و مقصد هزینه های بارگیری مجدد بین راه را نیز می توان از جمله هزینه های جاری و یا متغیر به حساب آورد. گاهی ممکن است کالایی پیش از حرکت از ایستگاه مبدا و قبل از رسیدن به ایستگاه مقصد چندین مرحله جابجایی را به همراه داشته باشند که هر یک از آنها هزینه های متفاوتی را بر سطح هزینه های خدماتی وارد می کنند.
در مواردی ممکن است انتقال کالا از یک نوع وسیله نقلیه به نوع دیگر، علاوه بر هزینه های فنی و بارگیری مجدد، مخارج انبارداری و احیانا ایجاد ضایعات و گاهی تاخیر زمانی تحویل کالا را به همراه آورد که هر یک در نوع خود متضمن هزینه های متغیر است.
به هر حال هزینه های متغیر را بر حسب نوع آنها در دو گروه مشخص می توان طبقه بندی کرد.
الف) هزینه های متغیر که بطور مطلق با مسافت طی شده رابطه نسبی دارند
ب) هزینه های متغیری که رابطه مطلق با مسافت طی شده ندارند. مانند پرداخت عوارض گمرکی و هزینه استفاده از ترمینال ها (شکل 2-4)

شکل 2-4: هزینه های متغیر بر حسب عملکرد حمل و نقل
هزینه های متغیر به طور کلی بسیار متنوعند و از یک نوع حمل و نقل به نوع دیگر دارای تفاوت های زیادی می باشند. به همین دلیل گاهی اوقات تفکیک کردن هزینه ها کار بسیار پیچیده ای می باشد. با این حال در اقتصاد حمل و نقل ضرورت دارد که کار تحلیل هزینه ها به دقت انجام پذیرد(محمودی،1389).
2-2-3- هزینه های خارجیهزینه هایی که از عملکرد بنگاه حمل و نقل به محیط زیست تحمیل شده است ولی بابت آن مبلغی پرداخت نمی شود هزینه های خارجی یا در مواردی هزینه های چرخه حیات نامیده می شوند. در مدل تعادل عمومی چنین فرایندی دارای پیامد خارجی است و اثرات زیانباری را از طریق عملکرد یک بنگاه اقتصادی بر منافع یا هزینه های فرد و یا بنگاه دیگری اعمال می کند.
از نظر اقتصاد دانان، آلودگی در محیط زیست ابعاد وسیع تری را شامل می شود و اثرات آن زنجیره وسیعی را در چرخه حیات تحت تاثیر خود قرار می دهد. کلیه هزینه های تباهی و خسارت پذیری محیط زیست چه در قالب هزینه های بازسازی و چه بصورت هزینه های اجتناب از خسارت از آثار تخریب و آلودگی محیط زیست به شمار می روند.
بازتاب تخریب در حوزه حمل و نقل بسیار وسیع است. نتایج مطالعات انجام شده(محمودی،1383) مشخصا به چهار نوع از انواع هزینه های خارجی که بر عملکرد سیستم های مختلف حمل و نقل تاثیر می گذارند اشاره دارد. این نوع هزینه ها در ساده ترین شکل خود عبارتند از هزینه های خارجی ناشی از :
آلودگی صدا
آلودگی هوا
اثرات هزینه ای ناشی از تراکم
هزینه های حاصل از تصادفات
نتایج مطالعات انجام شده در سال 1991 در هفده کشور اروپایی نشان می دهد که 92 درصد هزینه های خارجی مربوط به حمل و نقل جاده ای، 9/5 درصد مربوط به حمل و نقل هوایی، 7/1 درصد مربوط به راهآهن و فقط 3/0 درصد آن به حمل و نقل آبی تعلق دارد.
یک مثال ساده برای شناخت نحوه عملکرد این هزینه ها وضعیت موجود در ترافیک شهری است که مترادف با حجم بالایی از آلاینده ها می باشد. مطالعات موردی نشان داده است که مصرف بنزین و سایر سوخت های فسیلی، مواد آلاینده ای از نوع منو اکسید کربن،هیدرو کربورها، اکسیدهای ازت و غیره را به مقدار زیادی در محیط های شهری پراکنده می کند، در حالی که هزینه های تخریب آن عملا پرداخت نمی شود.
بنابراین لازم است رانندگان شهری علاوه بر پرداخت بهای بنزین هزینه ای نیز بابت تخریب حاصل از مصرف آن که در قیمت بنزین مستتر شده است را پرداخت نمایند. این عمل در نوع خود سبب خواهد شد مصرف بنزین با کاهش قابل ملاحظه ای مواجه شود.

شکل 2-5: تعادل عرضه بنزین با احتساب هزینه های آلوده سازی محیط زیست
در نمودار فوق منحنی تقاضا PP و منحنی عرضه SS است. قیمت بنزین در نقطه تلاقی این دو منحنی یعنی EM به قیمت PM می باشد. با افزایش هزینه های خارجی ناشی از مصرف بنزین منحنی عرضه SS به S’S’ انتقال پیدا کرده است که این منحنی تابع تقاضا را در نقطه E’ قطع می کند. در چنین شرایطی اگر چه بنزین در مقدار کمتری عرضه می شود ولی بدلیل اینکه با قیمت بیشتری بفروش می رسد موجبات کاهش مصرف را فراهم می آورد. همچنین در نمودار فوق تفاضل PM’ و PM نشان دهنده هزینه های خارجی هستند که مصرف کنندگان از پرداخت آن خودداری می کنند.
روش داخلی کردن هزینه های خارجی اگرچه در موارد بسیاری ممکن نیست، ولی برای پیشگیری از اثرات نامطلوب زیست محیطی، لازم است با ایجاد ضوابط و مقرراتی روش هایی برای پرداخت اینگونه هرینه ها اعمال گردند.
2-3- قیمت گذاری حمل ونقلدر تئوری اقتصاد، قیمت ها دارای دو نقش اساسی هستند. نخست تخصیص بهینه خدمات و کالاها میان مصرف کنندگان و دوم انگیزه برای تولید کنندگان و حفظ منافع آنان. هدف یک گرداننده حمل و نقل در سیاست قیمت گذاری به حداکثر رساندن درآمد است. این کار به دو طریق ممکن می شود(محمودی،1389) :
گسترش اندازه بازار
جذب مشتریان جدید و افزایش سهم خود در بازار
یکی از مسائلی که در قیمت گذاری حمل و نقل می بایست مد نظر قرار داده شود هزینه های خارجی است که از مهمترین آنها هزینه تراکم ناشی از سنگینی ترافیک می باشد، که اغلب از سوی افراد و یا شرکت های حمل و نقل در نظر گرفته نمی شوند.
2-4- قیمت گذاری بر اساس هزینه خارجیاگرچه اصول قیمت گذاری بخش عمومی و وضع مالیات و عوارض امر شناخته شده ای است ولی به هر حال طرح و اجرای آن در مسائل حمل و نقل بخصوص در حمل و نقل جاده ای مشکلات و ویژگی های خاص خود را دارد. اصولا به دلیل مشکلات گردآوری عوارض از استفاده کنندگان محلی جاده های برون شهری، مخارج مستقیم مربوط به استفاده از این تاسیسات، پایه مهمی برای تامین مالی این زیر ساخت ها نمی باشد. از سوی دیگر هزینه های جانبی ناشی از استفاده از این تاسیسات، بسط و توسعه عملیات حمل و نقل بر روی آنها نیز به دلیل ضعیف بودن بنیان مالیاتی و یا به دلیل توسعه نیافتگی سیستم های مالی دارای عملکرد درستی نبوده و توزیع بهینه خدمات را با مشکل مواجه می کند.
به منظور ایجاد یک پیوند مفید اقتصادی و محیطی لازم است هزینه های مصرف کنندگان تاسیسات حمل و نقل در رابطه با افزایش درآمد طوری تنظیم شود که اولا از ظرفیت موجود استفاده موثر به عمل آید و ثانیا تامین هزینه های جانبی آنها فراهم شود.
مساله کارایی را می توان از طریق انتخاب بهینه در وسایط نقلیه و سوخت، افزایش کارایی میان قسمت های مختلف حمل و نقل و اعمال سیاست های مناسب در نگاه داری و مدیریت زیر ساخت های حمل و نقل تعمیم داد. امروزه با استفاده از روش های مختلف اخذ عوارض و مالیات که معمولا از طریق نصب باجه های مخصوص در محل های معین صورت می گیرد، موجب پیدایش یک درآمد دائمی شده و در نهایت موجب بوجود آمدن تشویق کننده ای برای استفاده کنندگان و متصدیان امور حمل و نقل گردیده است. افزایش کارایی منابع به خدمت گرفته شده در زیر ساخت های حمل و نقل و همچنین تخصیص بهینه منابع میان اشکال مختلف حمل و نقل نتایج مستقیم اینگونه تصمیمات می باشد. اینگونه اقدامات که سیاست های قیمت گذاری خاصی را می طبید، در نوع خود می تواند هزینه ها را کاراتر سازد و اساس و بنیان مالی بهتری را برای تدارک و نگاه داری تاسیسات حمل و نقل بوجود بیاورد.
در محتوای بهینه سازی هزینه ها این حقیقت وجود دارد که رفت و آمد در جاده ها چندین نوع آثار بیرونی از جمله ایجاد تراکم، آلوده سازی محیط زیست، تخریب سطوح جاده و غیره را به دنبال دارد که هر یک در نوع خود متضمن هزینه های جانبی است.
اثرات خارجی این عوامل و سطح اصطکاک آن در جاده ها به مقدار و نوع سوخت مصرفی وفناوری که در کاربرد این مواد انتخاب شده بستگی دارد. امروزه اخذ عوارض در محدوده نواحی پرتراکم جاده ها موجب شده است بخشی از هزینه های فوق تامین شود. گزارش بانک جهانی حاکی از آن است که اعمال این سیستم در بازگرداندن بخشی از هزینه های جانبی در سنگاپور بسیار موثر بوده است.
اخذ مالیات بابت بنزین و سایر سوخت های فسیلی به علت قابلیت آن در کاربردهای مختلف جانشین مناسبی برای کنترل آلوده سازی محیط زیست بشمار می رود. البته علیرغم آنکه مالیات بر بنزین نقش چندان مهمی را نمی تواند در محدود ساختن تراکم اعمال نماید ولی در بسیاری از کشورها تنها ابزاری است که به منظور رعایت کنترل ترافیک بکار برده می شود.
برای ایجاد فرایندی در فرموله کردن قیمت ابتدا لازم است اجزای تشکیل دهنده قیمت به خوبی شناخته شوند و سپس با استفاده از تجربیات جهانی و در نظر گرفتن قوانین، ضوایط قیمت تعیین شود. در مورد سوخت های فسیلی جامعه جهانی تقریبا به رعایت اصول فوق توافق دارد :
هزینه های منابع سوخت در حد قیمت های جهانی تعیین شود
هزینه های خارجی ناشی از مصرف سوخت در کلیه سطوح اعمال شود
هرگونه مالیات و یا عوارض برای مصرف و یا تعدیل مخارج باید بگونه ای تنظیم شود که تغییر در الگوی مصرف را به حداقل برساند.
تاکید دستور العمل فوق این است که هر گاه هزینه های جانبی و مخارج استفاده از تاسیسات زیربنایی حمل و نقل به طور مستقیم تامین نمی شود، مالیات بر سوخت و اخذ هزینه های خارجی می تواند هزینه های مربوط به زیر ساخت های حمل و نقل و برخی از هزینه های محیطی را بپوشاند. هر چند قیمت سوخت یک جانشین خیلی ضعیف برای تامین هزینه های حمل و نقل به شمار می رود ولی در شرایطی که حمل و نقل به طور سیستماتیک در طول روز جریان دارد می تواند به عنوان بهترین جانشین انتخاب شود. به دنبال تمهیدات فوق انتخاب یک روش مناسب برای قیمت گذاری خدمات حمل و نقل با مشکلاتی همراه می باشد زیرا اکثر منازعات بر سر قیمت به تخصیص هزینه های مشترک کل مربوط می شود. بنابراین بهتر است ابتدا یک محاسبه کلی از هزینه های زیر بنایی و همچنین هزینه های خارجی به عمل آورده و سپس در قیمت تعمیم داده شود.
بهترین مثال در چگونگی انجام این امر شامل مطالعاتی است که توسط گرانائو در سال 1994 و وینوبری در سال 1988 در کشورهای غنا، زیمباوه و تونس برای بانک جهانی انجام شده است. در این مطالعات چنین راهکار مناسب برای هزینه یابی و اعمال سیاست های مالیاتی در سیستم قیمت گذاری حمل و نقل نشان داده شده است. اساسی ترین نکته این مطالعات تاکید بر روی هزینه های جانبی است که از طریق تخریب جاده ها و افزایش تراکم توسط وسایل نقلیه سنگین و اتوبوسها ایجاد می شود.اگر چه بخش عمده از این خرابی ها به شرایط جغرافیایی مناطق مربوط می شود ولی نقش عمده وسایل نقلیه سنگین را نمی توان از نظر دور داشت. توصیه لازم در این زمینه این است که اولا هزینه های سرمایه ای در حساب مخارج گنجاند شود ثانیا مالیات سوخت بر حسب مسافت و میزان بارگیری اخذ شود. به طور مثال در برخی از کشورها مالیات سالانه برای وسایط نقلیه سنگین و خودروهای سواری با توجه به نوع خودرو متفاوت می باشد. مقدار مالیات در این شرایط به طور قابل ملاحظه ای به ظرفیت های بارگیری وسایل نقلیه بستگی دارد. این مسئله موجب برطرف شدن تخصیص هزینه های خارجی و توزیع آنها نمی شود ولی تاثیر بسزایی در بهبود آنها ایجاد می کند. الیته باید توجه داشت در انتخاب سیستهای اخذ مالیات و عوارض اولا باید بسیار محتاطانه عمل کرد و از اتخاذ روشهای نا معقول که ممکن است به آشفتگی بازار بینجامد اجتناب نمود، ثانیا افزایش درآمد عاملی برای توسعه دادن عرضه بشمار می رود و از این رو لازم است درآمدهای حاصله از منابع فوق به بهبود ساختار حمل و نقل اختصاص داده شود.
2-5- پیش بینی حجم ترافیکطی دهه اخیر پیشرفت و گسترش شناسگرهای ترافیکی، امکانات جدیدی را برای مدیریت ترافیک و شبکه معابر فراهم کرده است. شناسگرهای ترافیکی در سطح شبکه معابر نصب شده و به صورت لحظه ای پارامترهای ترافیکی را برداشت می کنند. اطلاعات برداشت شده توسط شناسگرها به کمک بستر مخابراطی به مرکز کنترل ترافیک – مرکز شهری و یا جاده ای – منتقل می شوند. یکی از وظایف مرکز کنترل ترافیک استفاده بهنگام از این اطلاعات برای مدیریت ترافیک است. مدل پیش بینی حجم ترافیک در کوتاه مدت یکی از بخش هایی است که از این اطلاعات استفاده می کند. این مدل با بکارگیری اطلاعات شناسگرهای ترافیکی هر معبر، حجم عبوری از یک معبر در لحظات پیش رو را پیش بینی می کند. از این اطلاعات برای مدیریت پیشگیرانه ترافیک استفاده می شود (افندی زاده، کیانفر،1387).
مدل های مرسوم پیش بینی، مقدار حجم ترافیک را برای سال های آینده و یا برای سناریوهای مختلف پیش بینی می کنند. این پیش بینی با استفاده از مدل های آینده و یا برای سناریوهای مختلف پیش بینی می کنند. این پیش بینی با استفاده از مدل های چهار مرحله ای و یا مدل های مستقیم انجام می شود. نتایج حاصل از این پیش بینی در حوزه برنامه ریزی حمل و نقل بکار گرفته می شود.
شبکه های عصبی از اجزای هوش مصنوعی هستند که در حوزه های کاربردی مختلف با موفقیت استفاده شده اند. یکی از روش پیشنهادی در اینجا، بکارگیری تکنیک های هوش مصنوعی می باشد.در ادامه از روش آماری رگراسیون جهت پیش بینی حجم تردد استفاده گردیده است و در انتها به مقایسه دو روش می پردازیم.
2-6- کلیات شبکههای عصبی مصنوعی تفاوت انسان با سایر موجودات زنده دیگر در توانایی تصمیمگیری و اراده اوست که به ساختار پیچیده مغز و سلسله اعصاب او بر می گردد. از دیرباز دانشمندان و محققین زیادی علاقمند به شناخت ساختمان مغز انسان و چگونگی انجام محاسبات و پردازشها در آن بودهاند آنچه باعث توجه گسترده به این موضوع شده اموری است که مغز آنها را در کسری از ثانیه انجام میدهد (مثل شناسایی چهره آشنا) در حالی که رایانههای دیجیتال برای انجام آنها نیاز به زمان زیادی دارند، بنابراین مغز برای محاسبات خود اساسا از ساختاری کاملا مغایر با ساختار رایانههای متداول برخوردار میباشد.
احساس نیاز بشر برای دستیابی به هوش مصنوعی به منظور نزدیکتر کردن ارتباط انسان و ماشین و دستیابی به ماشینهای هوشمندی که بتواند از عهده وظایف پیچیدهتر برآیند انگیزه اصلی تحقیقات گسترده بر روی سیستم عصبی انسان و دیگر موجودات زنده و تلاش در جهت شبیهسازی مصنوعی آن بوده است. شبکه عصبی مصنوعی (ANN)  ایدهای است برای پردازش اطلاعات که از سیستم عصبی زیستی الهام گرفته شده و مانند مغز به پردازش اطلاعات میپردازد . عنصر کلیدی این ایده ، ساختار جدید سیستم پردازش اطلاعات است.
2-7- نرون بیولوژیکی
همانطورکه گفته شد شبکههای عصبی مصنوعی الهام گرفته از سیستمهای بیولوژیکی هستند. اما اختلافهای عمدهای بین معماری و قابلیت شبکههای عصبی مصنوعی و طبیعی وجود دارد.
مغز انسان به عنوان یک سیستم پردزاش اطلاعاتی با ساختار موازی از 100 تریلیون (1011) نرونهای به هم مرتبط با تعداد کل (1016) ارتباط میباشد که این نرونها از طریق شبکهای از آکسونها و سیناپسها با چگالی تقریبی10 هزار سیناپس در هر نرون ، با هم ارتباط دارند.
محیط عملکرد این نرونها یک محیط شیمیایی است. گیرندههای حسی تحریکات را هم از محیط و هم از داخل بدن دریافت میکند. این تحریکات که به صورت ایمپالسهای الکتریکی هستند اطلاعات را به شبکه نرون ها وارد میکنند. سیستم عصبی مرکزی، اطلاعات دریافتی را پردازش میکند و با کنترل انگیزندهها پاسخ انسان را به صورتهای مختلف بروز میکند.

شکل 2-6: اجزای اصلی یک شبکه عصبی بیولوژیکسلول عصبی یا نرون که عنصر اساسی شبکه عصبی است در شکل 2-6 نشان داده شده است اجزا این سلول عبارتند از : بدنه سلول ، اکسون ، دندریت ، سیناپس
2-8- شبکههای عصبی مصنوعیشبکههای عصبی، نظیر انسانها، با مثال یاد میگیرند . یک ANN برای انجام وظیفههای مشخص، مانند شناسایی الگوها و دستهبندی اطلاعات، در طول یک پروسه یادگیری، تنظیم میشود . در سیستمهای زیستی یادگیری با تنظیماتی در اتصالات سیناپسی که بین اعصاب قرار دارد همراه است. این روش آموزش ANN ها نیز میباشد.
در این قسمت شبکههای عصبی را بر اساس ساختار شبکههای عصبی بیولوژیکی که مطرح شد معرفی میکنیم. اما قبل از آن شباهتهای بین این دو شبکه را عنوان میکنیم.
بلوکهای ساختاری در هر شبکه دستگاههای محاسباتی خیلی سادهای هستند و مضاف بر این نرونهای مصنوعی از سادگی بیشتری برخوردار میباشند.
ارتباطات بین نرونها عملکرد شبکه را تعیین میکند.
اما با وجود اینکه نرونهای بیولوژیکی از نرونهای مصنوعی که توسط مدارات الکتریکی ساخته میشوند بسیار کندتر هستند (یک میلیون بار)، عملکرد مغز خیلی سریعتر از عملکرد یک رایانه معمولی است. علت این پدیده بیشتر به دلیل ساختار کاملا موازی نرونها میباشد و این یعنی اینکه همه نرونها معمولا به طور همزمان کار میکنند و پاسخ میدهند از آنجائی که شبکههای عصبی مصنوعی هم دارای ساختار موازی هستند اما توسط رایانههای سری پیادهسازی میشوند و این مسأله باعث افت سرعت شدید در این شبکهها میشود.
با وجود این که شبکههای عصبی مصنوعی با سیستم عصبی طبیعی قابل مقایسه نیستند ویژگیهایی دارند که آنها را در بعضی از کاربردها مانند تفکیک الگو ، رباتیک ، کنترل و به طور کلی در هر جا که نیاز به یادگیری یک نگاشت خطی یا غیر خطی باشد ممتاز مینمایند. این ویژگی ها به شرح زیر هستند:
قابلیت یادگیری: استخراج نتایج تحلیلی از نگاشت غیر خطی که با چند مثال مشخص شده کار ساهای نیست. چون میدانیم که یک نرون یک دستگاه غیر خطی است در نتیجه یک شبکه عصبی که از اجتماع این نرونها تشکیل میشود هم یک سیستم کاملا پیچیده و غیرخطی خواهد بود. به علاوه خاصیت غیرخطی عناصر پردازش در کل شبکه توزیع می گردد هنگام پیاده سازی این نتایج با یک الگوریتم معمولی وبدون قابلیت یادگیری نیاز به دقت و مراقبت زیادی دارد درچنین حالتی سیستمی که بتواند خود این رابطه را استخراج کند بسیار سودمند به نظر میرسد . خصوصاً اینکه افزودن مثالهای اجتماعی در آینده به یک سیستم با قابلیت یادگیری، به مراتب آسانتر از انجام آن در یک سیستم بدون چنین قابلیتی است.
قابلیت یادگیری یعنی توانایی تنظیم پارمترهای شبکه (وزنهای سیناپتیکی) در مسیر زمان که محیط شبکه تغییر میکند و شبکه شرایط جدید را تجربه میکند، با این هدف که اگر شبکه برای یک وضعیت خاص آموزش دید و تغییر کوچکی در شریط محیطی شبکه رخ داد، شبکه بتواند با آموزش مختصر برای شریط جدید نیز کارآمد باشد. دیگر اینکه اطلاعات در شبکههای عصبی در سیناپسها ذخیره و هر نرون در شبکه، به صورت بالقوه ازکل فعالیت سایر نرونها متأثر میشود. در نتیجه، اطلاعات از نوع مجزا از هم نبوده، بلکه متأثر از کل شبکه میباشد.
2- پراکندگی اطلاعات: آنچه که شبکه فرا میگیرد و یا به عبارت دیگراطلاعات یا دانش، در وزنهای سیناپسی مستتر میباشد و رابطه یک به یک بین ورودیها و وزنهای سیناپتیکی وجود ندارد. میتوان گفت که هر وزن سیناپسی مربوط به همه ورودیها است ولی به هیج یک از آنها به طور منفرد مربوط نیست به عبارت دیگر هر نرون در شبکه از کل فعالیت سایر نرونها متأثر میباشد در نتیجه اطلاعات به صورت زمینهای توسط شبکههای عصبی پردازش میشود.

user8325

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 2: تیر ترکدار به طول L ، ارتفاع h، عمق ترک hc و طول دهانه doبرای قسمت ابتدایی تیر یعنی از ابتدای تیر تا ابتدای ترک:

(2-1)
با معرفی پارامترهای بی بعد و روش جداسازی متغیرها، معادله حرکت و شکل مد قسمت اول برابر است با:
(2-2)
(2-3)
(2-4)
برای قسمت ترکدار تیر، معادلات حرکت به صورت زیر است:

(2-5)
با معرفی پارامترهای بی بعد و روش جداسازی متغیرها، معادله حرکت و شکل مد قسمت دوم برابر است با:
(6-2)
(7-2)
(8-2)
برای قسمت انتهایی تیر یعنی از انتهای ترک تا انتهای تیر:
(2-9)
(2-10)
با معرفی پارامترهای بی بعد و روش جداسازی متغیرها معادله حرکت و شکل مد قسمت سوم برابر است با:
(2-11)
(2-12)
(2-13)
پارامترهای بی بعد برای پیدا کردن فرکانس طبیعی برای هر قسمت تیر برابر است با:
(2-14)
با توجه به برابر بودن فرکانس طبیعی برای تیر، رابطه بین پارامترهای بی بعدو برابر است با:
(2-15)
(2-16)
(2-17)
گشتاور خمشی و نیروی برشی طبق تئوری اویلر – برنولی اینگونه تعریف می شود:
(2-18) EId2wdx2:خمشی گشتاور (2-19) EId3wdx3 : برشی نیروی شرایط پیوستگی در دو سمت ترک به ترتیب از برابری جابجایی، شیب، گشتاور خمشی و نیروی برشی بدست می آید:
برابری جابجایی:
(2-20)
برابری شیب:
(2-21)
برابری گشتاور خمشی:
(2-22)
برابری نیروی برشی:
(2-23)
که برای تیر با یک ترک خواهد بود.
با اعمال شرایط پیوستگی 8 ثابت از 12 ثابت موجود محاسبه می شود، 4 ثابت باقیمانده از شرط مرزی ابتدا و انتهای تیر بدست می آید. در قسمت بعد مسئله را برای شرایط مرزی مختلف بررسی می کنیم.
تیر دو سر گیردارتیر دو سرگیردار با یک ترک، در موقعیت نشان داده شده، مانند شکل2-3 در نظر می گیریم:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 3 تیر دو سر گیر داربرای پیدا کردن فرکانس طبیعی و ثابت های مجهول، ماتریس ضرایب را با استفاده از شرایط مرزی و شرایط پیوستگی بدست می آوریم. برای تیر دو سرگیردار در ابتدا و انتهای تیر، جابجایی و شیب برابر صفر می باشد.
شرط مرزی ابتدای تیر :
(2-24)
(2-25)
(2-26)
با اعمال شرایط پیوستگی در دو طرف ترک و استفاده از روابط (2-20) تا (2-23)، در سمت چپ ترک، یعنی در موقعیت خواهیم داشت:
برابری جابجایی:
(2-27)
برابری شیب:
(2-28)
برابری گشتاور خمشی:
(2-29)
برابری نیروی برشی:
(2-30)
در سمت راست ترک، یعنی در موقعیت نیز روابط زیر را خواهیم داشت:
برابری جابجایی:
(2-31)
برابری شیب:
(2-32)
برابری گشتاور خمشی:
(2-33)
برابری نیروی برشی:
(2-34)
برای قسمت انتهایی تیر، یعنی خواهیم داشت:
(2-35)
(2-36)
بنابراین ماتریس ضرایب عبارتند از:

معادله فرکانسی، همان دترمینان ماتریس ضرایب می باشد و از برابر صفر قرار دادن دترمینان ماتریس ضرایب و جایگذاری روابط بین و فرکانس طبیعی بدست خواهد آمد.
برای سایر شرایط مرزی تنها شرایط مرزی ابتدا و انتهای تیر، یعنی دو سطر اول و دو سطر آخر در ماتریس ضرایب تغییر خواهد کرد.
تیر یک سر گیردار- یک سر آزادبرای تیر یکسر گیردار مانند شکل 2-4 شرایط مرزی ابتدا و انتهای تیر به صورت زیر خواهد بود:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 4: تیر یک سر گیر دار – یک سر آزاددر ابتدای گیردار مانند معادلات (2-25) و (2-26)، جابجایی و شیب برابر صفر است، و در انتهای آزاد نیز گشتاور خمشی و نیروی برشی برابر صفر می باشد.
(2-37)
(2-38)
تیر دو سرلولابرای دو سرلولا، مانند شکل 2-5 شرایط مرزی ابتدا و انتهای تیر به صورت زیر خواهد بود:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 5 تیر دو سر لولادر ابتدای تیر، جابجایی طبق معادله (2-25) و گشتاور خمشی برابر صفر است:
(2-39)
در انتهای تیر، جابجایی طبق معادله (2-35) و گشتاور خمشی با معادله (2-37)، برابر صفر است.
تیر گیردار- مفصل برشیبرای تیر گیردار- مفصل برشی مانند شکل 2-6 شرایط مرزی ابتدا و انتهای تیر به صورت زیر خواهد بود:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 6: تیر گیردار – مفصل برشی (در مفصل برشی، شیب و نیروی برشی صفر است.)در ابتدای گیردار، جابجایی و شیب، مانند معادلات (2-25) و (2-26) برابر صفر است. در انتهای مفصل برشی، شیب و نیروی برشی برابر صفر است:
(2-40)
(2-41)
در فصل بعد به ارائه نتایج با تغییر پارامترهای موثر و مختلف ترک و مقایسه آنها با یکدیگر می پردازیم.
تئوری تیموشنکودر این قسمت با استفاده از همان مدل سازی قبلی، به بررسی معادلات حرکت و بررسی شرایط مرزی مختلف با استفاده از تئوری تیموشنکو می پردازیم. تفاوت این قسمت با قسمت قبلی این است که در تئوری تیموشنکو، معادلات حرکت و تعاریف مربوط به شیب، گشتاور خمشی و نیروی برشی متفاوت است. روند کار مشابه قسمت قبل است یعنی با استفاده از دترمینان ماتریس ضرایب و معادله فرکانسی، فرکانس های طبیعی بدست می آید. به دلیل آنکه در تئوری تیموشنکو، اثر تغییر شکل برشی و تنش برشی در نظر گرفته می شود، فرکانس طبیعی بدست آمده از تئوری اویلر – برنولی کمتر است.
معادله یک تیر تیموشنکو به صورت زیر است[70]:
(2-42)
(2-43)
با شرایط در نظر گرفته شده مانند شکل 1، به دلیل آنکه صلبیت خمشیEI برای هر قسمت تیر ثابت است، معادله بالا، به شکل زیر خواهد بود:
(2-44)
(2-45)
که در رابطه بالا k، تعداد ترک و i مربوط به هر قسمت تیر می باشد.
با معرفی پارامترهای بی بعد زیر و استفاده از معادلات بالا، به پیدا کردن X, ϕ, ω می پردازیم:
(2-46)
(2-47)
(2-48)
(2-49)
(2-50)
(2-51)
(2-52)
با در نظر گرفتن یک حل پریودیک و روش جداسازی متغیرها و استفاده از دو معادله آخر داریم:
(2-53)
(2-54)
(2-55)
از معادله فوق نسبت به پارامتر بی بعد ξ، مشتق می گیریم:
(2-56)
مقدار را از معادله (2-54)، در معادله (2-56) جایگذاری می کنیم:
(2-57)
با مرتب کردن جملات معادله فوق، به معادله دیفرانسیل مرتبه 4، بر حسب X می رسیم:
(2-58)
با در نظر گرفتن یک حل به صورت زیر، معادله دیفرانسیل مرتبه 4 بالا را حل می کنیم:
(2-59)
(2-60)
(2-75)
(2-61)
(2-62)
همان طور که نشان داده شد عبارت زیر رادیکال، همواره مثبت است؛ با فرض آنکه
(2-63)
بنابراین، جواب های بدست آمده برای λ2 به ترتیب مثبت و منفی می باشد، که جواب های مثبت به صورت هیپربولیکی و جواب های منفی به صورت سینوسی و کسینوسی نمایش داده می شود.
(2-64)
(2-65)
بنابراین :
(2-66)
اندیس i، پاسخ مربوط به هر قسمت تیر می باشد.
با توجه به معادله و جایگذاری Χ بدست آمده از معادله قبلی و انتگرال گیری بر حسب ξ، رابطه ϕ اینگونه بدست می آید:
(2-67)
(2-68)
همان طور که قبلا بیان کردیم، رابطه گشتاور خمشی و نیروی برشی در تئوری تیموشنکو و اویلر – برنولی با یکدیگر متفاوت است. نیروی برشی و گشتاور خمشی برای هر قسمت تیر، در تئوری تیموشنکو به صورت زیر تعریف می شود:
(2-69) kAiGdXidξ-Φi→برشی نیروی (2-70) EIidΦidξ→خمشی گشتاور شرط پیوستگی در موقعیت ترک از نظر مفهوم، همان برابری جابجایی، شیب، گشتاور و نیروی برشی است، تنها تعاریف و روابط مربوط به آنها تغییر می کند.
شرایط پیوستگی در موقعیت ترک برابر است با:
برابری جابجایی:
(2-71)

برابری شیب:
(2-72)

برابری گشتاور خمشی:
(2-73)

برابری نیروی برشی:
(2-74)

که برای تیر با یک ترک می باشد.
در ماتریس ضرایب، جملات مربوط به شرایط پیوستگی برای هر شرط مرزی ثابت بوده، و تنها شرایط مرزی ابتدا و انتهای تیر تغییر می کند.
تیر دو سر گیرداربرای مثال تیر ترکدار دو سرگیردار مانند شکل 2-3 را در نظر بگیرید، در ابتدای گیردار جابجایی و شیب صفر است:
(2-75)
(2-76)
در انتهای گیردار نیز، جابجایی و شیب صفر است:
(2-77)
(2-78)

بنابراین ماتریس ضرایب برای تیر دو سر گیردار به صورت زیر است:

که از حل دترمینان ماتریس فوق برابر صفر، فرکانس های طبیعی سیستم بدست می آید. در ادامه به بررسی سایر شرایط مرزی می پردازیم، و در فصل بعد نتایج مربوط به آنها را نمایش خواهیم داد.
تیر یک سر گیردار -یک سر آزاد
تیر یک سر گیردار – یک سر آزاد مانند شکل 2-4 را در نظر می گیریم، شرایط پیوستگی مربوط به دو طرف ترک مانند تیر دو سرگیردار تغییری نمی کند، و تنها شرایط مرزی ابتدا و انتهای تیر در ماتریس ضرایب تغییر خواهد کرد. در ابتدای گیردار، جابجایی و شیب صفر است که همان معادلات (2-75) و (2-76) می باشد، اما در انتهای آزاد، گشتاور و نیروی برشی، صفر خواهد بود:
(2-79)
(2-80)
تیر دو سرلولابرای تیر دو سرلولا مانند شکل 2-5، در ابتدا و انتهای تیر، جابجایی و گشتاور خمشی برابر صفر است. معادلات مربوط به جابجایی، معادلات (2-75) و (2-77) بوده و معادلات مربوط به گشتاور، معادلات زیر می باشند:
(2-81)
(2-82)
تیر گیردار- مفصل برشیبرای تیر گیردار- مفصل برشی مانند شکل 2-6، شرط مرزی ابتدای تیر، معادلات (2-75) و (2-76) بوده و شرط مرزی انتهای تیر بدین صورت خواهد بود که در مفصل برشی، شیب و نیروی برشی برابر صفر است:
(2-83)
(2-84)
در فصل بعد به ارائه نتایج مربوط به این مدل سازی با تغییر در پارامترهای موثر و مختلف ترک پرداخته و آنها را با یکدیگر مقایسه می کنیم.
در ادامه این فصل به بررسی و مدل سازی تیر ترکدار با شکل های هندسی مختلف ترک می پردازیم:
بررسی تیر شامل چند ترکدر قسمت های قبلی، تیر بررسی شده شامل یک ترک بود، در این قسمت با همان مدل سازی، یک تیر شامل چند ترک را مورد بررسی قرار می دهیم. شکل2-7 یک تیر با دو ترک و شکل2-8 یک تیر با سه ترک را نشان می دهد. با فرض اینکه ترک از نوع باز (open crack) بوده و با استفاده از مدل سازی انجام شده در بخش قبل، هر ترک را با به صورت یک تیر با گشتاور دوم سطح متفاوت مدل سازی می کنیم. تنها تفاوت این بخش با بخش قبلی، بیشتر شدن تعداد ثابت ها و معادلات مربوط به شرایط پیوستگی می باشد. معادلات حاکم و شرایط پیوستگی، برای هر تئوری همان معادلات قبلی برای هر قسمت تیر می باشد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 7 : تیر به طول ,شامل دو ترک به عمق وارتفاعو طول دهانه ترک

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 8 تیر به طول ,شامل سه ترک به عمقوارتفاعو طول دهانه ترک
تئوری اویلر- برنولیبرای تئوری اویلر – برنولی، معادلات را با رابطه کلی، به صورت اندیس دار به شکل زیر می توان نشان داد، (با فرض آنکه، عمق همه ترک ها با یکدیگر برابر باشد):
برای قسمت های بدون ترک :
(2-85)
(2-86)
(2-87)
(2-88)
تعداد ترک می باشد.
برای قسمت های ترکدار:
(2-89)
(2-90)
(2-91)
شرایط پیوستگی در دو طرف ترک، همان برابری جابجایی، شیب، گشتاور و نیروی برشی می باشد.
برای سمت چپ ترک:
(2-92)
(2-93)
(2-94)
(2-95)

برای سمت راست ترک:
(2-96)
(2-97)
(2-98)
(2-99)
(2-100)
تئوری تیموشنکوبرای تئوری تیموشنکو نیز مانند معادلات اویلر – برنولی، معادلات را با رابطه کلی، به صورت اندیس دار با فرض آنکه، عمق همه ترک ها با یکدیگر برابر باشد به صورت زیر می توان نشان داد:
برای قسمت های بدون ترک:

(2-101)
(2-102)


(2-103)
تعداد ترک می باشد
برای قسمت های ترکدار:

(2-104)
(2-105)
(2-106)
شرایط پیوستگی در دو طرف ترک، همان برابری جابجایی، شیب، گشتاور و نیروی برشی می باشد.
برای سمت چپ ترک:
(2-107)
(2-108)
(2-109)
(2-110)

برای سمت راست ترک:
(2-111)
(2-112)
(2-113)
(2-114)
(2-115)
در فصل بعد، به ارائه نتایج برای تیر شامل دو و سه ترک، طبق تئوری اویلر – برنولی و تیموشنکو می پردازیم.
ترک با شکل های هندسی مختلف:در قسمت قبل، به مدل سازی تیر ترکدار با ترک مستطیلی، با فرض باز بودن ترک پرداختیم. در این قسمت برای ترک، شکل های هندسی مختلف فرض شده است؛ مانند ترک مثلثی، بیضوی و سهموی. هدف این قسمت آن است که نشان دهیم با ارائه همان مدل می توانیم ترک های با شکل های هندسی مختلف را نیز مدل سازی کرده و نتایج را بدست آوریم. با توجه به مدل سازی صورت گرفته، که ترک را با یک المان تیر، که گشتاور دوم سطح متفاوت دارد، مدل کرده بودیم، در این قسمت با همان مدل سازی به بررسی ترک با شکل های بیان شده می پردازیم. نکته مهم در مورد این ترک ها، این است که گشتاور دوم سطح آنها مانند ترک مستطیلی در طول ترک ثابت نمی باشد. یعنی با توجه به موقعیت در طول ترک، گشتاور دوم سطح آنها نسبت به موقعیت قبلی، ثابت نیست. در ناحیه ترکدار، رابطه برای ارتعاش آزاد تیر صادق است. به دلیل ثابت نبودن برای این معادله حل تحلیلی وجود ندارد. بنابراین باید از روش های تقریبی یا نیمه تحلیلی استفاده کرد. با استفاده از روش گالرکین و روش متعامدسازی ابتدا ماتریس های جرمی و سفتی را بدست آورده و با استفاده از مقادیر ویژه این دو ماتریس، فرکانس طبیعی تیر را بدست می آوریم. تئوری استفاده شده در این قسمت، تئوری اویلر – برنولی می باشد، ضمن اینکه در روش گالرکین نیاز به استفاده از یک تابع برای شکل مد است که شرایط مرزی هندسی را برآورده کند. برای بدست آوردن این تابع شکل مد، از شکل مد تیر سالم برای هر شرط مرزی استفاده می کنیم.
حل ارتعاش آزاد برای یک تیر با استفاده از تئوری اویلر– برنولی به صورت زیر است:
(2-116)
با استفاده از روش متعامد سازی:
(2-117)
با جایگذاری در معادله فوق خواهیم داشت:
(2-118)
با دو بار انتگرال گیری جز به جز، جمله اول معادله فوق به معادله زیر تبدیل می شود:
(2-119)
بنابراین خواهیم داشت:
(2-120)
در بازه انتگرال گیری اول ، و سوم، ، به دلیل ثابت بودن مقطع، عبارت نیز ثابت می باشد، اما در بازه، به دلیل وجود ترک با شکل هندسی بیان شده عبارات تابعی از می باشد.
بنابراین :
(2-121)
معادله در ناحیه ترکدار با توجه به هندسه ترک و تابع با توجه به شرط مرزی تیر مشخص خواهد شد، که با جایگذاری در معادله قبلی، در نهایت به فرم زیر می رسیم:
(2-122)
که مقادیر ویژه ماتریس فوق، فرکانس طبیعی تیر را نتیجه می دهد.
در ادامه شکل های هندسی مختلف ترک، بررسی شده و روابط حاکم بر را نشان می دهیم. اما عبارت کلی در ناحیه ترکدار این گونه خواهد بود:
برای ترک دو طرفه:
(2-123)
(2-124)
برای ترک یک طرفه:
(2-125)
(2-126)
ترک مثلثی شکل
برای ترک مثلثی مانند شکل2-9 ناحیه ترکدار را به صورت زیر تقسیم بندی کرده و در هر قسمت رابطه مربوط به آن را در نظر می گیریم:

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 9 : تیر به طول ,و ارتفاع ، شامل یک ترک مثلثی به عمق و طول دهانه ترک
(2-127)
(2-128)
ترک بیضی شکل
معادله یک بیضی به مرکز و قطرهای برابر است با:
(2-129)
ترک نشان داده شده در شکل 2-10 به مرکز و قطرهای می باشد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 10 : تیر به طول ,و ارتفاع ، شامل یک ترک بیضوی به عمق و طول دهانه ترک
معادله این ترک به صورت زیر است:
(2-130)
لازم به ذکر است به دلیل آنکه نیمه پایینی ترک، مد نظر می باشد از علامت منفی در پشت رادیکال استفاده شده است.
ترک سهمی شکل
معادله یک سهمی عمودی، که راس آن در نقطه و فاصله راس تا کانون آن a باشد، به صورت زیر است:
(2-131)
اگر سهمی، ماکسیمم داشته باشد، علامت آن مثبت، و اگر مینیمم داشته باشد علامت آن منفی می باشد.
معادله یک سهمی عمودی، مانند شکل 2-11 که راس آن در نقطه و با فرض آنکه کانون این سهمی در نقطه قرار داشته باشد :
(2-132)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 11 : تیربه طول , وارتفاع ، شامل یک ترک سهموی به صورت عمودی به عمق و طول دهانه ترک
معادله یک سهمی افقی که راس آن در نقطه و فاصله راس تا کانون آن a باشد، به صورت زیر است:
(2-133)
اگر دهانه سهمی به سمت راست باشد علامت آن مثبت و اگر به سمت چپ باشد، علامت آن منفی می باشد.
معادله یک سهمی افقی، مانند شکل2-20 که راس آن در نقطه و با فرض آنکه کانون این سهمی در نقطه قرار داشته باشد :
(2-134)
علامت منفی به دلیل آنست که قسمت پایینی سهمی مورد نظر می باشد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 12 : تیر به طول , وارتفاع ، شامل یک ترک سهموی به صورت افقی به عمق و طول دهانه ترک
در فصل بعد به ارائه نتایج مربوط به این قسمت پرداخته ایم، ضمن اینکه در قسمت پیوست ها توابع شکل مد مورد استفاده برای هر شرط مرزی آمده است.
مدل سازی ترک باز و بسته شوندهدر این قسمت به مدل سازی غیرخطی تیر ترکدار می پردازیم. بر خلاف قسمت قبل که فرض می شد ترک در حین ارتعاش همواره باز باقی می ماند، در این قسمت، فرض بر این است که ترک در حین ارتعاش باز و بسته می شود، یعنی ترک از یک حالت کاملا باز به یک حالت کاملا بسته تغییر می کند. این فرض باعث ایجاد ترمهای غیرخطی در معادلات شده که در ادامه بررسی می شود. برای حل این معادلات غیر خطی از روش میانگین گیری استفاده می کنیم.و نتایج را برای حالتهای تک مود و دو مود نشان خواهیم داد.
مدل سازی ترک ساختار منحنیدر این قسمت ترکی با ساختار منحنی شکل مطابق شکل2-21 را مورد بررسی قرار می‌دهیم. زاویه ترک منحنی شکل در وضعیت اولیه θ0 است که در حین ارتعاش این زاویه بتدریج تغییر می‌نماید. عمق ترک برابر h0 و طول وجه ترک برابر lc است. فرض کنید که ترک با شکل منحنی دارای شعاع انحنای ρ است. اگر برای مثال ترک به صورت قسمتی از دایره با شعاع ρ در نظر گرفته شود، نقاط ابتدایی و انتهایی ترک و از آنجا مقدار گشودگی دهانه به صورت زیر خواهد بود:
(2-135)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 13 : تیر ترکدار با ترک منحنی شکل با شعاع انحناهای متفاوت، عمق و طول وجه

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 14 ترک با ساختار منحنی دایره ای شکل به شعاع انحنایدر دو طرف و زاویه اولیه و طول دهانه
در این صورت در اثر نیروها و حرکت حاصله زاویه ترک و گشودگی دهانه مربوطه تغییر می‌کند. این تغییرات موجب می‌گردد که سطوح منحنی‌ها بر روی هم غلتیده و از طول وجه اولیه lc ترک و یا گشودگی اولیه دهانه کاسته شود، مانند شکل2-15، اگر که ترک در جهت بسته‌شدن دچار تغییر زاویه شود. به این ترتیب اگر شیب منحنی خیز تیر در نقطه وسط ترک برابر باشد، در این صورت زاویه مابین بصورت زیر خواهد بود.
(2-136)
و سطحی از ترک که بر روی هم می‌غلتد نیز به صورت زیر خواهد بود.
(2-137)
این میزان از غلتش سطوح بر روی هم از عمق اولیه به همین میزان خواهد کاست. در نتیجه میزان عمق ترک در حین بسته شدن در نقطه ترک xc به صورت زیر تغییر خواهد کرد.
(2-138)
و محدوده ترک بصورت زیر تغییر خواهد کرد.
(2-139)
مقدار گشودگی دهانه ترک نیز به صورت زیر تعیین خواهد شد.
(2-140)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 15 : موقعیت نقاط ابتدا و انتهای ترک و نیز تغییرات هندسه ترک در حین ارتعاشطول وجه ترک نیز بصورت زیر تعیین خواهد شد:
(2-141)
که برای ترک دایره‌ای با شعاع ثابت ρ به صورت زیر درخواهد آمد
(2-142)
(2-143)
(2-144)
طول وجه ترک نیز برابر خواهد شد با:
(2-145)
عمق ترک در هر نقطه به صورت زیر در خواهد آمد:
(2-146)
(2-147)
در ادامه ساختار ترک را نسبت به موقعیت میانی ترک متقارن در نظر گرفته می‌شود. اگر زاویه ترک کوچک باشد و شعاع انحنای ترک نسبت به ضخامت تیر بزرگ باشد، در این صورت ترک را می‌توان در هر لحظه بتقریب به صورت V شکل به صورت معادله (2-136) در نظر گرفت، در ادامه از این فرض ساده‌کننده برای حل استفاده خواهد شد. با این فرض محدوده ترک بصورت زیر تغییر خواهد کرد:
(2-148)
(2-149)
نقاط گوشه‌ای ترک به صورت زیر می‌باشند:
(2-150)
در این معادله خطی که برای تقریب وجوه در هر لحظه استفاده می‌شود، بصورت زیر تعیین می‌گردد.
(2-151)
در این صورت ارتفاع دهانه باز ترک برابر است با:
(2-152)
انرژی جنبشی تیر به صورت زیر می‌باشد.
(2-153)
با جایگذاری رابطه (2-152) در رابطه (2-153)، انرژی جنبشی برابر است با:
(2-154)
به همین ترتیب انرژی پتانسیل برابر است با:
(2-155)
با جایگذاری رابطه (2-152) در رابطه (2-155)، انرژی پتانسیل برابر است با:
(2-156)

با قرار دادن در معادلات زیر داریم:
(2-157)

(2-158)

(2-159)

با تعریف روابط زیر :
(2-160)
(2-161)
(2-162)
(2-163)
(2-164)
(2-165)
در حالت واقعی محدوده ترک کوچک می‌باشد، لذا انتگرال‌های مربوطه را می‌توان بصورت‌های زیر تقریب زد:
(2-166)
(2-167)
(2-168)

(2-169)

(2-170)

(2-171)

کمیت های بی بعد را به صورت زیر تعریف می کنیم:
(2-172)
با قرار دادن روابط (2-160) تا (2-171) در معادله (2-159) و قرار دادن روابط (2-160) تا (2-162) در معادله (2-158) و قراردادن روابط (2-163) تا (2-165) در رابطه (2-157) و جایگذاری روابط بدست آمده در معادله لاگرانژ، و وارد کردن کمیت های بی بعد تعریف شده در رابطه بدست آمده از این جایگذاری ها و ساده سازی، معادله حرکت بدست می آید:
(2-173)

بررسی ترک v- شکلدر قسمت قبل معادله حرکت را برای ترک دایره ای شکل بدست آوردیم، در این قسمت معادله حرکت را برای ترک -v شکل بدست خواهیم آورد. زاویه ترک V شکل در وضعیت اولیه θ0 است که در حین ارتعاش این زاویه بتدریج تغییر می‌نماید. عمق ترک برابر h0 و طول وجه ترک برابر lc است که . در این صورت گشودگی دهانه ترک در وضعیت اولیه برابر خواهد بود. در این صورت محدوده اولیه ترک بصورت زیر مشخص می‌گردد.

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 16 ترک با ساختار v-شکل و مشخصات هندسی (2-174)
(2-175)
در اثر نیروها و حرکت حاصله زاویه ترک و گشودگی دهانه مربوطه تغییر می‌کند و مقدار گشودگی دهانه ترک نیز به صورت زیر تعیین خواهد شد.
(2-176)

شکل STYLEREF 1 s ‏2 SEQ شکل_ * ARABIC s 1 17 : ترک با ساختار v- شکل در حین ارتعاش در هنگام بسته شدن.در این صورت زاویه ترک در حین ارتعاش از رابطه بدست خواهد آمد و محدوده ترک بصورت زیر تغییر خواهد کرد.
(2-177)
(2-178)
وجه ترک به صورت یک خط با رابطه‌ای به صورت زیر است:
(2-179)
در این صورت ارتفاع دهانه باز ترک برابر است با:
(2-180)
با استفاده از رابطه (2-154) انرژی جنبشی برابر است با:
(2-181)
به همین ترتیب انرژی پتانسیل با استفاده از رابطه (2-155) برابر است با:
(2-182)
حال جابجایی تیر را به صورت در نظر می‌گیریم،در این صورت با استفاده از معادلات لاگرانژ داریم:
(2-183)
(2-184)
(2-185)
(2-186)
(2-187)
در این صورت معادلات حرکت بصورت زیر خواهند بود:
(2-188)

در حالت واقعی محدوده ترک کوچک می‌باشد، لذا انتگرال‌های مربوطه را می‌توان بصورت‌های زیر تقریب زد.
(2-189)
(2-190)
(2-191)
(2-192)
(2-193)
که با جایگذاری در معادله خواهیم داشت:
(2-194)
تفاوت معادلات بدست آمده برای ترک دایره ای شکل و ترک V- شکل نشان دهنده این است که مدل ارائه شده نسبت به پارامتر شکل ترک حساس است، یعنی مدل ارائه شده با تغییر شکل ترک تغییر می کند.
حل مسئله با روش میانگین گیریمعادله حرکت بدست آمده در قسمت قبل غیرخطی می باشد. برای حل معادلات غیرخطی روش های مختلفی مانند پرتوربیشن، میانگین گیری و... وجود دارد در این قسمت با استفاده از روش میانگین گیری به حل معادله بدست آمده در قسمت قبل می پردازیم، با فرض یک مد، معادله (2-194) بصورت زیر تبدیل می‌گردد:
(2-195)
برای تعیین نحوه تغییر دامنه و فرکانس با زمان، با استفاده از روش میانگین‌گیری، حلی به صورت زیر در نظر گرفته می‌شود.
(2-196)
که
(2-197)
در این صورت با مشتق‌گیری از رابطه (2-196) داریم:
(2-198)
برای اینکه معادله فوق دارای حل پریودیک باشد، عبارت زیر باید برابر صفر باشد:
(2-200)
بنابراین:
(2-201)
با مشتق‌گیری از داریم:
(2-202)
که با جایگذاری رابطه (2-196)، (2-201) و (2-202) ، در معادله (2-195)، معادله حرکت به فرم زیر تبدیل می‌گردد:
(2-203)
برای پیداکردن دامنه و فاز حرکت از رابطه زیر استفاده می کنیم:
(2-204)
با قراردادن رابطه( 2-203 )در معادله ( 2-204)، تابع F1τ,ω0,ϕ,a را به صورت زیر بدست می آوریم:
(2-205)
با استفاده از روابط (2-200) و (2-204) دامنه و فاز حرکت بصورت زیر تعیین می‌شوند:
(2-206)
(2-207)
از حل معادلات دیفرانسیل فوق مقادیر در بازه زمانی مشخص بدست می آید.
برای ترک دایره ای شکل نیز با فرض یک مود، به روشی مشابه ترک V- شکل معادله بدست آمده برابر است با:
(2-208)

که مشابه روش قسمت قبل، برابر است با:
(2-209)

در فصل بعد نتایج مربوط به این مدل سازی و تغییرات فرکانس زاویه ای و زاویه ترک را در حین ارتعاش به صورت شکل های مختلف برای هر شرط مرزی نشان می دهیم.

نتایج مدل سازی
مقدمهدر این فصل با استفاده از روابط فصل دوم و مدل سازی انجام شده به ارائه نتایج می پردازیم. نتایج این فصل در بخش های مختلف ارائه می شود. ابتدا در قالب جداول، نتایج مربوط به ترک باز ساده، سپس نتایج مربوط به تیر چند ترکه و در انتها، نتایج مربوط به شکل های هندسی مختلف ترک ارائه گردیده است. در ادامه نتایج مربوط به ترک باز و بسته شونده در قالب شکل های مختلف ارائه می شود.
نتایج ترک باز ساده
در این قسمت به ارائه نتایج مربوط به ترک باز ساده می پردازیم. این نتایج برای شرایط مرزی مختلف، عمق های مختلف ترک، موقعیت های مختلف ترک و طول دهانه های مختلف ترک نشان داده می شود و اثر هر کدام از این پارامترها را روی فرکانس طبیعی بررسی می کنیم، و همچنین برای بررسی درستی نتایج، آنها را با نتایج مربوط از روش ارائه شده در مرجع [67] مقایسه می کنیم.
ویژگی های هندسی و مکانیکی تیر مورد نظر به صورت زیر است:

تیر با نسبت های مختلف عمق ترک:در این بخش به ارائه نتایج برای نسبت های مختلف عمق ترک می پردازیم. پارامتر بی بعد عمق ترک را برای مقادیر مختلف در نظر گرفته و نتایج بدست آمده از روش ارائه شده را با روش متعارف [67] یعنی روشی که در آن با استفاده از روابط مکانیک شکست در موقعیت ترک، فنر گذاشته می شود، مقایسه می کنیم. در همه جداول ستونی مربوط به سه فرکانس طبیعی اول تیر سالم (بدون ترک) برای هر شرط مرزی آورده شده است، که برای نشان دادن این مطلب است که فرکانس طبیعی تیر ترکدار همواره از تیر بدون ترک کمتر است زیرا سفتی تیر ترکدار از تیر سالم کمتر است.
در جدول3-1 فرکانس های طبیعی بی بعد، مربوط به سه مود اول ارتعاشی را برای شرط مرزی گیردار-گیردار با موقعیت ترک و طول دهانه ترک، را برای تیر اویلر- برنولی و تیر تیموشنکو نشان می دهیم. همان طور که از نتایج جداول پیداست با افزایش عمق ترک، سفتی تیر کاهش پیدا کرده و در نتیجه فرکانس طبیعی تیر نیز کاهش می یابد. همچنین نتایج این روش با روش متعارف نزدیکی و تطابق بسیار خوبی دارد.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 1 : فرکانس های طبیعی مربوط به تیر دو سر گیردار با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه نتایج با روش متعارف و تیر سالمhchتیر سالم تیر ترکدار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 22.373 22.276 22.329 22.233 22.360 22.264
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 120.579 118.506 120.770 118.691
0.2 22.373 22.276 22.205 22.111 22.333 22.237
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 119.682 117.644 120.540 118.47
0.3 22.373 22.276 21.993 21.901 22.282 22.187
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 118.185 116.204 120.138 118.045
0.4 22.373 22.276 21.670 21.582 22.185 22.091
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 116.016 114.113 119.416 117.39
0.5 22.373 22.276 21.225 21.142 21.992 21.9012
61.672 61.062 61.672 61.062 61.672 61.062
120.90 118.818 113.223 111.417 118.049 116.0748
0.6 22.373 22.276 20.676 20.599 21.578 21.491
61.672 61.062 61.672 61.062 61.672 61.06
120.90 118.818 110.075 108.369 115.314 113.4377
0.7 22.373 22.276 20.076 20.007 20.610 20.5349
61.672 61.062 61.672 61.062 61.672 61.057
120.90 118.818 106.978 105.363 109.718 108.0231
در جداول 3-2 تا 3-4، سه فرکانس طبیعی بی بعد اول را، برای شرایط مرزی مختلف به ازای عمق های ترک از تا و موقعیت ترک و طول دهانه ترک ، برای تیر اویلر – برنولی و تیر تیموشنکو نشان داده شده است. در بالای هر جدول، شرط مرزی مربوط به آن تیر نشان داده شده است، ضمن آنکه مانند جدول قبل به ازای افزایش عمق ترک، فرکانس طبیعی تیر کمتر شده و همچنین فرکانس تیر ترکدار از تیر سالم کمتر می باشد. از نتایج پیداست که تطابق خوبی بین نتایج روش ارائه شده و روش متعارف وجود دارد.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 2 : فرکانس های طبیعی مربوط به تیر یکسر گیردار با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه نتایج با روش متعارف و تیر سالمتیر ترکدار یکسرگیردار تیر سالم hchروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 3.514 3.515 3.512 3.513 # "0.00%" 3.513 3.5142 3.5160 0.1
21.946 22.022 21.899 21.974 21.9582 22.0344 61.192 61.697 61.192 61.697 61.1927 61.6972 3.513 3.5148 3.506 3.507 3.5142 3.5160 0.2
21.924 22.000 21.732 21.806 21.9582 22.0344 61.192 61.697 61.192 61.697 61.1927 61.6972 3.511 3.5134 3.495 3.496 3.5142 3.5160 0.3
21.887 21.962 21.445 21.517 21.9582 22.0344 61.192 61.697 61.191 61.697 61.1927 61.6972 3.509 3.510 3.477 3.478 3.5142 3.5160 0.4
21.816 21.891 21.007 21.076 21.9582 22.0344 61.192 61.696 61.190 61.696 61.1927 61.6972 3.503 3.505 3.450 3.452 3.5142 3.5160 0.5
21.677 21.751 20.399 20.464 21.9582 22.0344 61.191 61.696 61.188 61.694 61.1927 61.6972 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 3 : فرکانس های طبیعی مربوط به تیر گیردار- مفصل برشی با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه نتایج با روش متعارف و تیر سالمتیر ترکدار گیردار-مفصل برشی تیر سالم hchروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 5.5896 5.5944 5.586 5.5930 5.5872 5.5933 0.1
30.081 30.214 30.031 30.163 30.0926 30.2258 73.906 74.632 73.882 74.608 73.9131 74.6389 5.5890 5.5939 5.586 5.5922 5.5872 5.5933 0.2
30.06 30.193 29.859 29.989 30.0926 30.2258 73.895 74.613 73.797 74.523 73.9131 74.6389 5.5882 5.5931 5.584 5.590 5.5872 5.5933 0.3
30.022 30.154 29.563 29.690 30.0926 30.2258 73.875 74.601 73.651 74.376 73.9131 74.6389 5.5872 5.5927 5.582 5.588 5.5872 5.5933 0.4
29.950 30.082 29.113 29.234 30.0926 30.2258 73.839 74.565 73.431 74.155 73.9131 74.6389 5.5861 5.5915 5.579 5.585 5.5872 5.5933 0.5
29.807 29.937 28.494 28.607 30.0926 30.2258 73.767 74.494 73.130 73.854 73.9131 74.6389 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 4: فرکانس های طبیعی مربوط به تیر دو سر لولا با عمق های مختلف و موقعیت ترک و طول دهانه و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار دو سر لولا تیر سالم hchروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 9.853 9.864 9.833 9.843 9.8591 9.8696 0.1
39.3125 39.478 39.3125 39.478 39.3125 39.4784 87.947 88.778 87.764 88.590 87.9946 88.8264 9.844 9.854 9.758 9.769 9.8591 9.8696 0.2
39.3125 39.478 39.3125 39.478 39.3125 39.4784 87.865 88.693 87.125 87.936 87.9946 88.8264 9.827 9.837 9.630 9.64 9.8591 9.8696 0.3
39.3124 39.478 39.3125 39.478 39.3125 39.4784 87.719 88.544 86.05 86.835 87.9946 88.8264 9.796 9.806 9.430 9.439 9.8591 9.8696 0.4
39.3123 39.478 39.3125 39.478 39.3125 39.4784 87.450 88.268 84.869 85.221 87.9946 88.8264 9.734 9.744 9.147 9.156 9.8591 9.8696 0.5
39.312 39.478 39.3125 39.478 39.3125 39.4784 86.921 87.727 82.4 83.106 87.9946 88.8264 تیر با نسبت های مختلف طول دهانه ترک:در این قسمت نتایج را به ازای تغییر در طول دهانه ترک نشان خواهیم داد. همان گونه که قبلا بیان شد، مزیت روش ارائه شده نسبت به روش های دیگر این است که در روش ارائه شده، فرکانس طبیعی با تغییر در طول دهانه ترک تغییر می کند، اما نتایج روش متعارف، نسبت به تغییر طول دهانه ترک ثابت است.
جدول 3-5، سه فرکانس طبیعی بی بعد مربوط به سه مود اول ارتعاش تیر ترکدار گیردار-گیردار را به ازای عمق ترک ثابت و موقعیت ترک و طول های مختلف دهانه ترک از تا نشان می دهد.
در جداول 3-6 تا 3-8، فرکانس های طبیعی بی بعد مربوط به سه مود اول را برای شرایط مرزی مختلف به ازای طول های مختلف دهانه ترک از تا و موقعیت ترک و عمق ترک ، برای تیرهای اویلر – برنولی و تیر تیموشنکو نشان داده شده است. همان طور که از نتایج پیداست با افزایش طول دهانه ترک، فرکانس طبیعی تیر کاهش می یابد. ضمن اینکه به دلیل آنکه روش متعارف نسبت به پارامتر طول دهانه ترک حساسیتی ندارد نتایج مربوط به روش متعارف به ازای تغییر این پارامتر تغییر نمی کند.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 5: فرکانس های طبیعی تیر دو سر گیردار با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمdoLتیر سالم تیر ترکدار دو سر گیردار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.001 22.373 22.276 22.329 22.233 22.3699 22.273
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.869 118.786
0.002 22.373 22.276 22.329 22.233 22.3667 22.270
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.836 118.754
0.004 22.373 22.276 22.329 22.233 22.3600 22.263
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.770 118.691
0.005 22.373 22.276 22.329 22.233 22.3568 22.260
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.737 118.659
0.008 22.373 22.276 22.329 22.233 22.3470 22.251
61.672 61.062 61.672 61.062 61.6728 61.063
120.90 118.818 120.579 118.506 120.640 118.566
0.01 22.373 22.276 22.329 22.233 22.3406 22.244
61.672 61.062 61.672 61.062 61.6726 61.063
120.90 118.818 120.579 118.506 120.576 118.505
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 6 : فرکانس های طبیعی مربوط به تیر یکسر گیردار با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار تیر سالم doLروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 3.509 3.510 3.450 3.452 3.5142 3.5160 0.001
21.816 21.891 20.399 20.464 21.9582 22.0344 61.192 61.696 61.188 61.694 61.1927 61.6972 3.503 3.505 3.450 3.452 3.5142 3.5160 0.002
21.677 21.751 20.399 20.464 21.9582 22.0344 61.191 61.696 61.188 61.694 61.1927 61.6972 3.498 3.500 3.450 3.452 3.5142 3.5160 0.003
21.542 21.615 20.399 20.464 21.9582 22.0344 61.190 61.696 61.188 61.694 61.1927 61.6972 3.493 3.495 3.450 3.452 3.5142 3.5160 0.004
21.412 21.484 20.399 20.464 21.9582 22.0344 61.189 61.696 61.188 61.694 61.1927 61.6972 3.483 3.485 3.450 3.452 3.5142 3.5160 0.006
21.161 21.232 20.399 20.464 21.9582 22.0344 61.187 61.695 61.188 61.694 61.1927 61.6972 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 7: فرکانس های طبیعی مربوط به تیر گیردار- مفصل برشی با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار تیر سالم doLروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 5.584 5.591 5.579 5.585 5.5872 5.5933 0.001
29.947 30.079 28.494 28.607 30.0926 30.2258 73.8391 74.5649 73.130 73.854 73.9131 74.6389 5.583 5.590 5.579 5.585 5.5872 5.5933 0.002
29.807 29.937 28.494 28.607 30.0926 30.2258 73.767 74.494 73.130 73.854 73.9131 74.6389 5.582 5.588 5.579 5.585 5.5872 5.5933 0.003
29.672 29.799 28.494 28.607 30.0926 30.2258 73.699 74.425 73.130 73.854 73.9131 74.6389 5.580 5.586 5.579 5.585 5.5872 5.5933 0.004
29.540 29.667 28.494 28.607 30.0926 30.2258 73.632 74.359 73.130 73.854 73.9131 74.6389 5.580 5.585 5.579 5.585 5.5872 5.5933 0.006
29.290 29.413 28.494 28.607 30.0926 30.2258 73.506 74.234 73.130 73.854 73.9131 74.6389 جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 8: فرکانس های طبیعی مربوط به تیر دو سر لولا با طول های مختلف دهانه ترک و موقعیت ترک و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمتیر ترکدار تیر سالم doLروش ارائه شده روش متعارف[67] تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی 9.796 9.806 9.147 9.156 9.8591 9.8696 0.001
39.312 39.478 39.312 39.478 39.3125 39.4784 87.445 88.263 82.398 83.106 87.9946 88.8264 9.734 9.744 9.147 9.156 9.8591 9.8696 0.002
39.312 39.478 39.312 39.478 39.3125 39.4784 86.921 87.727 82.398 83.106 87.9946 88.8264 9.673 9.683 9.147 9.156 9.8591 9.8696 0.003
39.312 39.478 39.312 39.478 39.3125 39.4784 86.423 87.217 82.398 83.106 87.9946 88.8264 9.614 9.624 9.147 9.156 9.8591 9.8696 0.004
39.312 39.478 39.312 39.478 39.3125 39.4784 85.95 86.732 82.398 83.106 87.9946 88.8264 9.499 9.508 9.147 9.156 9.8591 9.8696 0.006
39.312 39.478 39.312 39.478 39.3125 39.4784 85.065 85.827 82.398 83.106 87.9946 88.8264 بررسی اثر تغییر موقعیت ترکدر این قسمت، موقعیت ترک را از قسمت های ابتدایی تیر تا قسمت های انتهایی تیر، به ازای عمق و طول دهانه ثابت تغییر می دهیم و نتایج را نشان می دهیم. نکته قابل توجه در این قسمت این است که، تنها در حالت شرط مرزی تیر یک سر گیردار با تغییر موقعیت ترک از ابتدا تا انتها، فرکانس طبیعی مربوط به مود اول، افزایش می یابد و در مورد شرایط مرزی دو سر گیردار و دو سر لولا به علت تقارن، در فاصله های برابر از تکیه گاه ها، فرکانس های طبیعی یکسان است. برای حالت دوسر لولا با نزدیک کردن موقعیت ترک به میانه تیر فرکانس طبیعی اول کاهش پیدا کرده و بعد از آن افزایش می یابد. در مورد بقیه شرایط مرزی، نظم خاصی وجود ندارد. نتایج مربوط به هر دو روش ارائه شده و روش متعارف نشان دهنده این موضوع می باشد. ضمن اینکه تطابق و نزدیکی خوبی بین نتایج دو روش وجود دارد.
در جداول 3-9 تا 3-12، نتایج مربوط به بررسی اثر موقعیت ترک به ازای و نشان داده شده است. شرط مرزی هر تیر نیز در بالای جدول مربوط به آن آورده شده است.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 9: فرکانس های طبیعی مربوط به تیر دو سر گیردار با موقعیت های مختلف ترک و طول دهانه و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمLCLتیر سالم تیر ترکدار دو سر گیردار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 22.373 22.276 21.572 21.484 22.202 22.107
61.672 61.062 61.289 60.695 61.594 60.986
120.90 118.818 120.862 118.774 120.899 118.839
0.2 22.373 22.276 22.343 22.247 22.372 22.275
61.672 61.062 60.304 59.721 61.454 60.848
120.90 118.818 114.532 112.712 119.971 117.678
0.3 22.373 22.276 22.133 22.039 22.341 22.245
61.672 61.062 58.111 57.586 61.016 60.423
120.90 118.818 118.575 116.619 120.445 118.385
0.4 22.373 22.276 21.516 21.430 22.231 22.137
61.672 61.062 59.761 59.200 61.318 60.718
120.90 118.818 119.153 117.113 120.577 118.498
0.5 22.373 22.276 21.225 21.142 22.177 22.082
61.672 61.062 61.672 61.063 61.672 61.062
120.90 118.818 113.224 111.417 119.397 117.371
0.6 22.373 22.276 21.516 21.430 22.231 22.137
61.672 61.062 59.761 59.200 61.318 60.718
120.90 118.818 119.153 117.113 120.577 118.498
0.7 22.373 22.276 22.133 22.039 22.341 22.245
61.672 61.062 58.111 57.586 61.016 60.423
120.90 118.818 118.575 116.619 120.445 118.385
0.8 22.373 22.276 22.343 22.247 22.372 22.275
61.672 61.062 60.304 59.721 61.454 60.848
120.90 118.818 114.532 112.712 119.971 117.678
0.9 22.373 22.276 21.572 21.484 22.202 22.107
61.672 61.062 61.289 60.695 61.594 60.986
120.90 118.818 120.862 118.774 120.899 118.839
همان طور که از نتایج جدول فوق مشخص است در فاصله های برابر از تکیه گاه ها، مثلا در موقعیت ترک و به علت تقارن فرکانس های طبیعی بدست آمده برابر می باشد.
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 10: فرکانس های طبیعی مربوط به تیر یک سر گیردار با موقعیت های مختلف ترک و طول دهانه و عمق ترک و مقایسه نتایج با روش متعارف و تیر سالمLCLتیر سالم تیر ترکدار یک سر گیردار
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 3.5160 3.5142 3.156 3.155 3.445 3.443
22.0344 21.9582 21.288 21.221 21.874 21.799
61.6972 61.1927 61.309 60.821 61.618 61.115
0.2 3.5160 3.5142 3.250 3.248 3.465 3.463
22.0344 21.9582 22.019 21.943 22.035 21.959
61.6972 61.1927 60.345 59.857 61.481 60.979
0.3 3.5160 3.5142 3.332 3.331 3.482 3.480
22.0344 21.9582 21.714 21.639 21.986 21.910
61.6972 61.1927 58.189 57.758 61.051 60.561
0.4 3.5160 3.5142 3.400 3.399 3.495 3.494
22.0344 21.9582 20.950 20.881 21.846 21.771
61.6972 61.1927 59.864 59.413 61.358 60.864
0.5 3.5160 3.5142 3.452 3.450 3.505 3.503
22.0344 21.9582 20.463 20.399 21.751 21.677
61.6972 61.1927 61.693 61.188 61.696 61.191
0.6 3.5160 3.5142 3.486 3.484 3.512 3.510
22.0344 21.9582 20.543 20.478 21.767 21.693
61.6972 61.1927 59.451 58.972 61.266 60.766
0.7 3.5160 3.5142 3.505 3.503 3.516 3.514
22.0344 21.9582 21.091 21.022 21.867 21.794
61.6972 61.1927 57.024 56.592 60.800 60.310
0.8 3.5160 3.5142 3.513 3.512 3.52 3.517
22.0344 21.9582 21.711 21.637 21.978 21.902
61.6972 61.1927 58.228 57.781 61.091 60.597
0.9 3.5160 3.5142 3.515 3.514 3.521 3.519
22.0344 21.9582 22.003 21.927 22.041 21.965
61.6972 61.1927 61.165 60.667 61.613 61.109
جدول STYLEREF 1 s ‏3 SEQ جدول * ARABIC s 1 11: فرکانس های طبیعی مربوط به تیر دو سر لولا با موقعیت های مختلف ترک و طول دهانه و عمق ترک و مقایسه این نتایج با روش متعارف و تیر سالمLCLتیر سالم تیر ترکدار دو سر لولا
روش متعارف[67] روش ارائه شده
اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو اویلر- برنولی تیموشنکو
0.1 9.8696 9.8591 9.793 9.783 9.857 9.847
39.4784 39.31251 38.395 38.240 39.302 39.138
88.8264 87.9946 84.441 83.705 88.084 87.269
0.2 9.8696 9.8591 9.602 9.592 9.825 9.815
39.4784 39.31251 36.931 36.790 39.026 38.865
88.8264 87.9946 83.902 83.176 87.841 87.032
0.3 9.8696 9.8591 9.381 9.372 9.786 9.776
39.4784 39.31251 37.095 36.952 39.032 38.871
88.8264 87.9946 88.274 87.445 88.721 87.890
0.4 9.8696 9.8591 9.216 9.207 9.755 9.745
39.4784 39.31251 38.539 38.382 39.307 39.142
88.8264 87.9946 86.727 85.942 88.442 87.618
0.5 9.8696 9.8591 9.156 9.147 9.744 9.734
39.4784 39.31251 39.478 39.312 39.478 39.312
88.8264 87.9946 83.106 82.398 87.727 86.922
0.6 9.8696 9.8591 9.216 9.207 9.755 9.745
39.4784 39.31251 38.539 38.382 39.307 39.142
88.8264 87.9946 86.727 85.942 88.442 87.618
0.7 9.8696 9.8591 9.381 9.372 9.786 9.776
39.4784 39.31251 37.095 36.952 39.032 38.871

user8301

شکل(3-12):چرخ دنده46شکل(3-13):نمودار خطی خشک کن دوار مورد بررسی با استفاده از نرم افزار اتوکد47شکل(3-14):رطوبت سنج دیجیتالیSartorius MA3549شکل(4-1): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور4/4 با تقریب مدلPageوModified Henderson & Pabis59شکل(4-2): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور5/4 با تقریب مدلTwo-TermوModified Henderson & Pabis59شکل(4-3): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور8/4 با تقریب مدل Two-Term وModified Henderson & Pabis60شکل(4-4): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور5با تقریب مدلTwo-Term وModified Henderson & Pabis61شکل(4-5): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور2/5با تقریب مدلPage وModified Henderson & Pabis62شکل(4-6): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور3/5با تقریب مدلModified Henderson and Pabis وPage63شکل(4-7): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور4/5با تقریب مدلModified Henderson and Pabis وTwo-Term63شکل(4-8): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور6/5با تقریب مدلModified Henderson and PabisوTwo-Term64شکل(4-9): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور7/5 با تقریب مدلModified Henderson and Pabis وTwo-Term65شکل(4-10): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور8/5با تقریب مدل Modified Henderson and Pabisو Two-Term65شکل(4-11):ساختار یک سلول عصبی69شکل(4-12):مفهوم نرون70فهرست تصاویر و نمودارها
شکل(4-13):تابع آستانه ای72شکل(4-14):تابع آستانه ای دو مقداری73شکل(4-15):تابع انتقال لگاریتمی73شکل(4-16):تابع انتقال خطی مثبت74شکل(4-17):تابع انتقال تانژانت74شکل(4-18):شبکه چند ورودی یک لایه75شکل(4-19):شبکه چند ورودی چندلایه76شکل(4-20):شبکه های بازگشتی76شکل(4-21):نمودار عملکرد شبکه عصبی76شکل(4-22):مسیرسیگنال ها در شبکه عصبی78شکل(4-23):مسیر سیگنال ها در شبکه عصبی طراحی شده برای خشک کن دی کلسیم فسفات79شکل(5-1):مقایسه ضریب تعیین7مدل برای دی کلسیم فسفات84شکل(5-2):مقایسه میانگین مربعات خطای 7 مدل برای دی کلسیم فسفات85شکل(5-3):مقایسه میانگین درصد خطای نسبی7مدل برای دی کلسیم فسفات85

مقدمه
دی کلسیم فسفات یکی از مکمل هایی است که تاثیر بسزایی در افزایش رشد و نمو، باروری و شیردهی و استخوانبندی دام و طیور را دارد و بهبود بخشیدن به کیفیت این محصول کمک شایانی به صنعت دام و طیور می کند. رطوبت موجود در دی کلسیم فسفات بر روی درصد جذب آن در بدن جاندار موثر است لذا برای رساندن رطوبت آن به حد مطلوبش (حداکثر 3 درصد) از خشک کن استفاده می شود. خشک کن مورد بررسی در اینجا خشک کن دوار می باشد.
بررسی روند خشک کردن در خشک کن دوار مورد نظر در 5 فصل انجام شده است. در فصل اول به تعریف فرایند خشک شدن می پردازیم. در فصل دوم به پیشینه بررسی های انجام شده بر روی خشک کردن و خشک کن ها نگاه اجمالی داریم. بررسی روش انجام کار و توصیف خشک کن مورد نظر در فصل سوم انجام می شود. در فصل چهارم مدل های ریاضی و مدل شبکه عصبی بر روی داده های مختلف صورت می گیرد و در نهایت در فصل پنجم جمع بندی نهایی و پیشنهادها ارائه می شود.
-82283248519فصل اول
مقدمه و کلیات
0فصل اول
مقدمه و کلیات

1-1-مقدمه
خشک کردن شاید قدیمی ترین، متداول ترین و یکی از پرکاربرد ترین عملیات در مهندسی شیمی باشد. بیش از 400 نوع از خشک کن ها در منابع گزارش شده است در صورتیکه بیشتر از 100 نوع از آنها قابلیت استفاده در صنعت را دارند. مقدار انرژی مصرفی در خشک کن ها برای فرایند های صنایع شیمیایی به 5 درصد و برای صنایع کاغذسازی به 35 درصد می رسد. خشک کردن در نتیجه تبخیر مایع توسط انتقال حرارت به مواد خامی که مرطوبند اتفاق می افتد[1].
بیش از 85 درصد از خشک کن های صنعتی از نوع همرفتی با هوای داغ یا تماس با گازهای حاصل از احتراق می باشد. بیش از 99 درصد از اهداف این عملیات حذف آب می باشد. نحوه خشک شدن جامد به مکانیزم انتقال حرارت، ماده خشک شونده و شیوه انتقال حرارت بصورت هدایت، همرفت و با تابش بستگی دارد. در بیشتر خشک کن های حرارت مستقیم مکانیزم انتقال حرارت، معمولاً همرفت است و در خشک کن های حرارت غیرمستقیم مکانیزم اصلی انتقال حرارت، هدایت می باشد. در هردو حالت امکان دارد بخش قابل توجهی از حرارت بطریق تابش منتقل شود[2].
در فرآیند خشک کردن، موادمرطوب در تماس با هوای غیراشباع قرار گرفته و در نتیجه از مقدار رطوبت کاسته و هوا مرطوب می شود. معمولاً فرآیند خشک شدن با حرارت داده هوا قبل از فرایند بهتر انجام می شود؛ بنابراین می توان فرایند خشک شدن را به دو مرحله تقسیم کرد: حرارت دادن هوا و تبخیر شدن رطوبت از مواد. بررسی جامع خشک کردن مستلزم آشنایی با عواملی است که بر روی حرکت مایع و بخار تحت شرایط حرارتی مفروض تاثیر می گذارد. این موضوع شامل بررسی ساختمان داخلی مواد جامد خواهد بود که برای محاسبه شدت جریان مایع و بخار بر اساس خواص فیزیکی و خواص سطحی مورد استفاده قرار می گیرند
در طراحی و عملکرد یک واحد خشک کن تاثیر چندین عامل را باید در نظر گرفت. همه این عوامل از درجه اهمیت یکسانی برخوردار نیستند. برخی از آنها در مرحله خشک شدن با شدت ثابت و برخی دیگر در مرحله خشک شدن با شدت نزولی اهمیت بیشتری دارند[2].
1-2-اصول خشک کردن
سینتیک خشک شدن، تغییرات زمانی مقادیرمتوسط رطوبت، درجه حرارت ماده، زمان خشک شدن، انرژی مصرفی و سایرمشخصات را تا حدامکان فقط به کمک خواص فیزیکی و شیمیایی مواد تعیین می شود در مقابل دینامیک خشک شدن تغییرات منحنی های درجه حرارت و رطوبت در بدنه خشک کن را مورد بررسی قرار میدهد.
انتقال حرارت از فضای پیرامون به مواد، موجب تبخیر رطوبت سطحی می شود. رطوبت می تواند از درون جسم به سطح منتقل و سپس تبخیر شود و یا درون محصول و در حالتی میان بخار-مایع، تبخیر و بصورت بخار به سطح محصول انتقال پیدا کند.
شدت خشک شدن تحت تاثیر پارامترهایی از فرآیند مانند درجه حرارت، رطوبت (فشار)، سرعت نسبی هوا و فشارکل می باشد. بطور کلی دوره معمولی خشک کردن شامل سه مرحله است: ماده غذایی تا دمای خشک کردن حرارت داده می شود، سپس رطوبت از سطح محصول با سرعتی مناسب با مقدار رطوبت تبخیر می شود، زمانیکه رطوبت به رطوبت بحرانی نزدیک می گردد، سرعت خشک کردن کاهش می یابد. رطوبت بحرانی تابعی از سرعت خشک کردن است، سرعت بالای خشک کردن سرعت رسیدن به نقطه رطوبت بحرانی را افزایش و سرعت پایین خشک کردن آنرا کاهش می دهد[4].
خشک کردن از طریق هدایت با خشک کردن از طریق همرفت اندکی تفاوت دارد. درحالت هدایت، موادجامد مرطوب در محفظه ای که از بیرون حرارت داده می شود، قرارگرفته و بخارهای حاصله از سوراخ های درنظر گرفته خارج می شوند. در حالت همرفت ، گاز داغ بر روی سطح مواد جامد مرطوب دمیده می شود در نتیجه هم منبع حرارتی تامین شده و هم امکان خارج نمودن بخار فراهم می گردد[2].
1-3-پدیده های انتقال در فرایند خشک کردن
همانطور که گفته شد، خشک کردن فرایند رطوبت گیری همزمان از طریق انتقال حرارت و جرم می باشد. عامل اصلی در خشک کردن، انتقال جرم از مواد جامد مرطوب می باشد. از جنبه نظری هیچگونه شناخت کمی از مکانیزم انتقال جرم از موادجامد در حال خشک شدن وجود ندارد. انتقال جرم در این حالت احتمالاً به اندازه، شکل و حالت ذرات تشکیل دهنده مواد جامد و چگونگی خروج مایعات و بخارات از منافذ و خلل و فرج داخل موادجامد و سطح خارجی آنها بستگی دارد. این حداکثر مطلبی است که در این مورد می توان اظهار داشت. در بعضی از انواع خشک کن ها (به خصوص خشک کن های هدایتی) و در بعضی مراحل معمولاً مراحل اولیه شدت خشک شدن بوسیله انتقال حرارت به ماده به جای انتقال جرم از مواد جامد در حال خشک شدن کنترل می شود. تحت این شرایط شدت خشک شدن توسط قواعد روشن انتقال حرارت تعیین می گردد و تا حدودی مستقل از خواص مواد در حال خشک شدن می باشد اما در حالت کلی، شدت خشک شدن به انتقال جرم از موادجامد در حال خشک شدن بستگی دارد[2].
با توجه به دو عامل فوق، در عمل باید به نکات زیر توجه نمود:
-تعیین کردن سرعت خشک شدن یک ماده با انجام دادن آزمایش ها ممکن است و بدست آوردن آن از لحاظ تجربی بسیار سخت می باشد.
-آزمایش ها باید بر اساس نوع خشک کن مورد استفاده، انجام شوند[5].
1-3-1-انتقال حرارت در فرایند خشک کردن
حرارت موردنیاز در خشک کردن مواد ممکن است از طریق تابش، همرفت ، هدایت و یا بوسیله جذب حجمی انرژی الکترومغناطیسی و یا بسامد موج رادیویی تامین شود. شیوه خشک شدن موادجامد، به مکانیزم انتقال حرارت به ماده خشک شونده و اینکه کدامیک از حالت های هدایت، همرفت و تابش موثرند، بستگی دارد. در بیشتر خشک کن های حرارت مستقیم، مکانیزم اصلی انتقال حرارت معمولاً همرفت است که در طی آن بوسیله عبور جریان گاز داغ از بین و یا از روی مواد، عمل خشک کردن صورت می گیرد. در خشک کن های حرارت غیرمستقیم، مکانیزم اصلی انتقال حرارت، هدایت است که در آن حرارت از طریق جداره به مواد منتقل می شود. در هر دو حالت امکان دارد بخش قابل توجهی از حرارت بطریق تابش منتقل شود.
همچنین هنگامیکه انتقال حرارت بطریق همرفت است، هدایت حرارتی نیز تا حدی تاثیر خواهد داشت و بالعکس. به ندرت اتفاق می افتد که مکانیزم انتقال حرارت در یک خشک کن فقط تابش باشد؛ بنابراین می توان خشک کردن موادجامد را بر مبنای همرفت و یا هدایت بررسی کرده و سپس اثرات انتقال حرارت به روش های دیگر را در روابط مربوط وارد نمود.
1-3-2-انتقال حرارت به طریق همرفت
در این حالت موادجامد مرطوب بر اثر عبور جریان گاز داغ از میان و روی سطح بستر مواد، خشک می شوند. گاز داغ هم به عنوان عامل انتقال حرارت از طریق همرفت و هم به عنوان عامل خارج کننده بخارات حاصل، عمل می کند. فرایند خشک کردن در دو مرحله مجزا صورت می گیرد. در ابتدا شدت خشک شدن ثابت بوده و سپس در مقداری مشخص از رطوبت، به تدریج کاهش می یابد تا هنگامی که مواد کاملاً خشک شوند. مقدار رطوبتی که در آن شدت خشک شدن شروع به تنزل می کند، مقدار رطوبت بحرانی نامیده می شود. در بعضی موارد، امکان دارد مقدار رطوبت اولیه کمتر از مقدار رطوبت بحرانی باشد، در این صورت عمل خشک کردن تماماً در مرحله شدت نزولی بوده و در هیچ مرحله ای ثابت نیست. منحنی های شدت نزولی نیز امکان دارد مقعر، محدب و یا بطور تقریبی خط راست باشند. انحنا در منحنی خشک شدن، بعلت تغییر شکل فیزیکی مواد است.
مرحله خشک شدن با شدت ثابت، در حالتی اتفاق می افتد که سطح مواد جامد بوسیله مایع مرطوب شده و خشک شدن در سطح مواد صورت پذیرد. در این حالت شدت خشک شدن بطور کامل توسط شرایط خارجی کنترل می شود که این شرایط شامل سرعت، دما و مقدار رطوبت گاز خشک کننده می باشد؛ بنابراین اگر این عوامل ثابت باشند، شدت خشک شدن نیز ثابت است. همچنین در این مرحله شدت انتقال مایع از درون مواد جامد به سطحی که درآن تبخیر صورت می گیرد به نحوی است که تداوم عمل مانعی ایجاد نمی کند. در مرحله خشک شدن با شدت نزولی میزان انتقال مایع به سطح کاهش یافته، بطوریکه به عامل تعیین کننده زمان خشک شدن تبدیل می شود. در این حالت سطح مواد دیگر کاملاً مرطوب نیست. در حالیکه شدت انتقال مایع به سطح کاهش می یابد، تاثیر شرایط خارجی به تدریج نقصان یافته و کاهش شدت خشک شدن صرفاً مربوط به کاهش شدت انتقال مایع به سطح می باشد[2].

شکل (1-1). منحنی سرعت خشک شدن نسبت به رطوبت آزاد به طریق همرفت در شرایط خارجی ثابت[2].
149034538735 شکل (1-2). منحنی سرعت خشک کردن بطریق همرفت (رطوبت آزاد نسبت به زمان)[2].
1-3-3-انتقال حرارت بطریق هدایت
در خشک کردن به طریق هدایت، موادجامد از طریق جداره حرارت داده می شوند و بدین ترتیب رطوبت آن تبخیر شده واز سیستم خارج می شود. این خشک کن ها غالباً در فشارهای پایین عمل می کنند و این موضوع موجب کاهش نقطه جوش مایع شده و در نتیجه اختلاف دمای بین منبع حرارتی و مواد افزایش می یابد[2].
دمای جامد به نقطه جوش مایع رسیده و در آن ثابت می ماند. در پایان، دمای جامد تا دمای جداره افزایش می یابد وامکان دارد توزیع درجه حرارت در رابطه با بسترهای ساکن و ضخیم موادی که دارای ضریب هدایت حرارتی پایینی می باشند، یکنواخت نباشد؛ بنابراین نظیر خشک کردن از طریق همرفت در این حالت نیز می توان دو مرحله در نظر گرفت، یک مرحله خشک شدن سریع در ایتدا و سپس مرحله خشک شدن کندتر می باشد.
شباهت موجود تصادفی است و در واقع در این حالت تفاوت محسوسی بین دو مرحله نظیر حالت همرفت وجود ندارد و مراحل، بیشتر به شرایط عمل و طرح دستگاه بستگی دارد تا به مواد خشک شونده. بطور کلی شدت خشک شدن بگونه ای یکنواخت کاهش می یابد.
1-3-4-انتقال حرارت بطریق تابش
در بعضی موارد، تابش، مکانیزم اصلی حرارت دهی در خشک کن هاست ولی معمولاً در مقایسه با انتقال حرارت هدایتی و یا همرفت بخش کوچکتری از انتقال حرارت را تشکیل می دهد؛ بنابراین تابش را می توان بعنوان یک عامل اصلاحی برای همرفت و یا هدایت در نظر گرفت. اثر تابش بر روی سطح مواد در حال خشک شدن سبب افزایش شدت خشک شدن می شود بطوریکه شدت خشک شدن از آنچه که بر اثر مکانیزم های همرفتی و یا هدایتی محاسبه می شود، زیادتر می گردد [2].
1-4-عوامل موثر در خشک کردن
عوامل موثر در خشک کردن را می توان بصورت زیر دسته بندی کرد:
الف-انتقال حرارت
انتقال حرارت از منبع حرارتی به سطح مایع
انتقال حرارت در لایه بین مایع و جامد
انتقال حرارت از جامد به مایع
انتقال حرارت از جامد به مایع از طریق لایه سطحی و از لابه لای منافذ و خلل و فرج توده جامد
ضریب هدایت حرارتی مایع
ضریب هدایت حرارتی موادجامد مرطوب
ضریب هدایت حرارتی موادجامد تقریباً خشک
گرمای نهان تبخیر مایع
گرمای هیدراسیون (هنگامیکه بایستی آب تبلور تبخیر شود)
رابطه بین دمای عمل و نقطه ذوب ماده مرطوب، برخی از مواد قبل از اینکه تمام رطوبت آن تبخیر شود ذوب می شوند
اثرات الکترولیت موجود در مایع، بر روی مشخصات خشک کردن مواد.
ب- محیط خشک کن
فشار و دمای محیط خشک کن
ترکیب گاز محیط خشک کن
سرعت نسبی محیط مجاور بستر خشک کن
درجه اشباع محیط خشک کن نسبت به بستر مواد جامد
فشار بخار موثر مایع با در نظر گرفتن تغییرات در افزایش نقطه جوش مایع در طول فرایندخشک کردن
ج-خواص فیزیکی سیستم های جامد-مایع
کشش در سطح مشترک بین جامد و مایع
ضخامت لایه سطحی بین جامد ومایع
نسبت سطح به حجم مایع در داخل منافذ
ضریب نفوذ بخار بین منافذ


مکش مویین مایع در منافذ
اختلاف غلظت مایع در منافذ
وجود مواد رشته ای یا کلوخه ای در مواد جامد
اندازه مولکول مایع در رابطه با بعضی از مایعات آلی
حداکثر مقدار ناخالصی مایع در ماده خشک
د-خواص مواد جامد
اندازه ذرات
سطح موثر موادجامد
تخلخل
حلالیت مواد جامد در مایع
سخت شدن سطح موادگلی شکل در حال خشک شدن، در حالتی که سطحی تقریباً غیر متخلخل ایجاد می شود و رابطه این پدیده با شدت خشک شدن
تشکیل کیک در حین خشک شدن و تجمع
مقاومت مواد خشک شده در مقابل ساییدگی
حداکثر مقدار مایع مجاز در محصول خشک شده[2].
1-5-انتقال جرم در فرایند خشک شدن
امروزه در صنایع غذایی و دارویی انتقال رطوبت به مواد موضوع حائز اهمیتی می باشد. تعداد مکانیزم های انتقال رطوبت، زیاد و اغلب آنها پیچیده اند. پدیده های انتقال بطور معمول بر اساس نفوذ فشاری، نفوذ حرارتی، نفوذ اجباری و نفوذ عادی تقسیم می شوند.
در متون علمی مربوط به فرایند خشک کردن، علاوه بر نفوذ تعدادی از مکانیزم های دیگر انتقال جرم نظیر نفوذ سطحی، جریان هیدرودینامیک یا جریان توده ای و جریان مویینگی بیان شده است. بدلیل اینکه امکان دارد بیش از یک مکانیسم در جریان کلی حضور داشته باشند، مدلسازی مشکل می شود و حضور مکانیزم های مختلف در هنگام فرایندخشک شدن تغییر می کند. توسعه دادن یک مدل خشک کن کارآمد به شناخت و استفاده از همه مکانیسم های موجود، نیاز دارد[6].
انواع مکانیزم های انتقال جرم داخلی در فاز مایع عبارت است از: انتشار، جریان مویینگی، نفوذسطحی و در فاز بخارعبارت است از: انتشار دوتایی، انتشار نادسن، نشت، جریان لغزشی، انتشار استفان، جریان بوسیله تبخیر و میعان.
اگر مقاومت انتقال جرم در لایه مرزی گاز بیشتر از مقاومت نفوذ رطوبت از داخل ماده به سطح آن باشد، شدت خشک شدن بیشتر به شرایط بیرونی عامل خشک کننده (هوا) بستگی داشته و تقریباًمستقل از پارامترهای جامد است.
اگر مقاومت انتقال جرم در فاز گازی و ماده مرطوب تقریباً برابر باشد، ویژگی های هوا (عامل خشک کردن) باید در نظر گرفته شود.
1-6-تعاریف در خشک کردن
برای آشنایی با نمادها و مفاهیم خشک کردن، تعاریف مختصر آنها در زیر ارائه می شوند:
الف-رطوبت مطلق در فاز گاز [4]
H=Pwp-Pw×mwmg (1-1)
در معادله بالا، H رطوبت مطلق، mw جرم مولکولی بخار مرطوب، mg جرم کل که هر دو بر حسب کیلوگرم می باشند، P فشار کل و pw فشارجزیی بخار مرطوب بر حسب پاسکال می باشد.
هنگامیکه فشارجزیی بخار در گاز با فشاربخار مایع مساوی شود، گاز در حالت اشباع قرار دارد.
Hs =Pw0P-Pw0×mwmg (1-2)
که در آن P0w فشار بخار اشباع بر حسب پاسکال است.
ب- رطوبت نسبی در فاز گاز
میزان رطوبت نسبی هوا در یک دمای معین از رابطه زیر بدست می آید:
RH=φ=PwPw0 (1-3)
که در آن RH رطوبت نسبی هوا (φ نیز نشان داده می شود) است و بیانگر نسبت فشاربخار جزیی به فشاربخار اشباع در هر دو دمای معین می باشد.
ج- دمای حباب خشکTD
دمایی است که با دماسنج معمولی اندازه گیری می شود.
ه-دمای حباب مرطوب Tw
باگذر سریع گاز از روی یک دماسنج حباب مرطوب اندازه گیری می شود. از این دما همراه دمای حباب خشک برای اندازه گیری رطوبت نسبی گاز استفاده می شود.
و-میزان رطوبت در جامد مرطوب
میزان رطوبت عبارت است از وزن آب درون جسم تقسیم بر وزن ماده جامد خشک و یا ماده جامد مرطوب.
MCwb=Ww=WdWd+1 (1-4)
MCwb : مقدار رطوبت در مبنای مرطوب.
Ww:وزن آب به ازای یک کیلوگرم ماده مرطوب
Wd:وزن آب به ازای یک کیلوگرم ماده خشک.
MCdb=Wd=Ww1-Ww (1-5)
MCdb:مقدار رطوبت در مبنای خشک
میزان رطوبت عامل مهمی در طراحی خشک کن های صنعتی است که به کمک آنها قادر به بیان سینتیک خشک شدن ماده و بررسی رفتار تعادلی آن خواهیم بود.
ز-رطوبت تعادلی
مقدار رطوبت محصول که با شرایط دما و رطوبت محیط در حالت تعادل قرار دارد را رطوبت تعادلی می گویند.
ح- رطوبت آزاد
مقدار رطوبتی است که بطور مکانیکی در فضای خالی ماده غذایی محبوس شده است و ویژگی های آن کم و بیش برابر با توده آب است.
س-رطوبت ناپیوسته
رطوبت مازاد بر مقدار رطوبت تعادلی را رطوبت ناپیوسته می گویند که برابر با رطوبت اشباع می باشد.
ش-رطوبت پیوسته
مقدار رطوبتی که بطور قوی با شبکه ماده غذایی پیوند یافته و ویژگی های آن با توده آب متفاوت است را رطوبت پیوسته گویند.
-178535135155فصل دوم
پیشینه مطالعات خشک کن دوار و مدلسازی آن
00فصل دوم
پیشینه مطالعات خشک کن دوار و مدلسازی آن

2-1-مقدمه
خشک کردن بطور معمول روند حرارتی برای از بین بردن رطوبت برای رسیدن به یک محصول مطلوب می باشد. با وجود اهمیت آن در بسیاری موارد طراحی و بهره برداری از خشک کن ها بر اساس تجربه مهندسین انجام می شود، با اینحال مشاهده بر اساس تجربه تا حد زیادی کنترل شده است[8].
فرایند خشک کردن بصورت دوار یکی از متداول ترین مراحل صنعت می باشد که در تولید بسیاری از محصولات شیمیایی، غذایی، موادمعدنی، متالوژی یا فرآوری ضایعات بکار می رود. قابلیت تصفیه مقدار زیادی از مواد، خشک کن دوار را همانند یک راکتور مناسب گاز-جامد با گرمای ویژه و انتقال جرم می سازد[14].
خشک کردن به معنای کاهش رطوبت از تولیدات و راه حل نهایی برای نگهداری می باشد، زیرا رطوبت موجود در سطح محصول اگر کاهش داده شود مانع از پوسیدگی آن می شود. در مقابل دیگر روش های نگهداری، خشک کردن مواد غذایی از نظر ارزش تغذیه ای سطح بالاتری را دارا می باشد. در مطالعات انجام شده بر روی خشک کن ها، کارشناسان در تلاش برای بدست آوردن برنامه های کاربردی تر بجای خشک کن های معمولی هستند[13].
خشک کن دوار می تواند بوسیله حرارت خارجی در تصفیه موادآلی یا حرارت داخلی برای فرآیند موادمعدنی عمل کند. معمولاً این حالت دوم همانند یک کوره کلاسیک طراحی شده است که در آن یک مشعل در ورودی به منظور آزاد کردن انرژی لازم برای عملیات حرارتی قرار داده شده است. فرایند خشک کردن عبارتست از خارج کردن رطوبت از این مواد توسط فناوری های متفاوت نظیر خشک کردن فلش، بستر سیال ، در بسیاری از بخش های مهم تولیدی (معدنی، پلیمر، کاغذ) می باشد. برای صنعت جاده سازی، خشک کن های استوانه ای دوار بیشتر به فرایندهای پیوسته به منظور رسیدن به بالاترین سرعت تزریق مصالح و انجام متوالی عملیات خشک کردن، حرارت دادن، مخلوط کردن وپوشاندن با قیر برای تولید بتن آسفالت اختصاص دارد[14].
2-2-اصول عملیات
ساده ترین نوع خشک کن های آبشاری شامل یک استوانه دوار که شیب خفیفی دارد، می شود که یک سری پره پیرامون آن برای بالا بردن، توزیع، انتقال مواد تنظیم شده است. پره ها بخصوص برای همرفت مواد که خشکی آن افزایش می یابد، طراحی می شوند.
اصول عملیات بر پایه شست و شو بصورت آبشاری مواد مرطوب با یک جریان گاز داغ می باشد. جریان جامد یا بصورت همسو و یا ناهمسو می باشد. گاز داغ رطوبت را تبخیر می کند. حرارت از ماده خارج می شود و تبخیر بخارآب بسرعت دمای گاز را کاهش می دهد بطوریکه در دمای نسبتاً کم خشک کن را ترک می کنند.
بازده خشک کن بطورعمده به اختلاف بین دمای گاز ورودی و خروجی، سرعت انتقال حرارت و همچنین رابطه بین طراحی پره ها و سرعت چرخش بستگی دارد. بهرحال صرفنظر از دمای مواد و گاز، زمان ماند یا خشک کردن ممکن است مهم باشد زیرا بوسیله سرعت نفوذ آب از درون به سطح ماده کنترل می شود.
2-3-خشک کن های مستقیم
2-3-1-خشک کن های همسو
خشک کن های همسو بطور گسترده ای مورد استفاده قرار می گیرند و بخصوص برای خشک کردن موادخیلی مرطوب که به حرارت حساس هستند، مناسب اند. مواد مرطوب در تماس با گاز داغ قرار می گیرند و بسرعت رطوبت سطح تبخیر می شود. سرعت انتقال حرارت در ابتدا بسیار بالاست که باعث افت فوری و قابل توجه در دمای گاز می شود که مانع از بیش از حد گرم شدن ماده و پوسته خشک کن می گردد. محصول نهایی در تماس با گاز در پایین ترین دما می باشد و قادر خواهد بود مقدار رطوبت را معمولاً با تنظیم دمای گاز خروجی کنترل کند.
89027017716500

شکل (2-1). نمودار خشک کن دوارحرارت مستقیم همسو[27].
2-3-2-خشک کن های ناهمسو
خشک کن های ناهمسو اغلب برای موادی مناسبند که تا حداقل میزان رطوبت بایدخشک شوند. در هرصورت تا زمانیکه محصول نهایی در تماس با گاز در دمای بسیار بالا قرار دارد، خشک کن های ناهمسو اغلب برای موادی که به حرارت حساس هستند، مناسب نیستند. استفاده از این سیستم می تواند کارآمدتر باشد و رطوبتی که در محصول می ماند را نمی توان به آسانی کنترل کرد.

شکل (2-2) .نمودار خشک کن دوار حرارت مستقیم ناهمسو[27].
2-3-3-سیستم حرارتی
در هردو سیستم همسو و ناهمسو، مواد در تماس مستقیم با گازهای خشک کننده داغ قرار می گیرند که معمولاً با انرژی ناشی از احتراق سوختهایی نظیر نفت، گاز یا سوخت کوره در محدوده 0C1000-250 موردنیاز کار می کنند. بهرحال برای کاربردهای دما پایین و حساس به حرارت یا همراه با آلودگی باید خودداری گردد. هوا بطور غیرمستقیم می تواند با جریان الکتریکی یا بخار مبدلهای نوع لوله ای گرم شوند.
خشک کن ها معمولاً با دو دمنده کار می کنند، سیستم مکش متعادل که بوسیله آن گاز ورودی کمی زیر فشار منفی است که میزان نشت هوا را به حداقل برساند. هنگامیکه موادخشک می شوند تحت تاثیر حرارت یا پرتو شعله قرار نمی گیرند، یک مشعل گازی یا نفتی می تواند آتش را بطور مستقیم وارد استوانه کند.
ترکیب دو عامل دمای بسیار بالا (0C1300-800) و تابش های ناشی از شعله، هنگامیکه اندازه خشک کن و ظرفیت سیستم گاز خروجی کاهش یابد، بالاترین بازده حرارتی را بوجود می آورد. در اینجا رقیق کردن هوا بوسیله دمنده خروجی از گرم شدن بیش از حد پوسته خشک کن جلوگیری می کند.
2-3-4-کاربردهای جریان همسو
1-خوراک تر در تماس با گاز داغ خشک کننده که توسط یک منبع خارجی آماده میگردد، قرار دارد. انتقال حرارت توسط همرفت انجام می گیرد.

شکل (2-3) .جریان همسو ایجاد شده توسط یک منبع خارجی [27].
این روش برای موادمعدنی، کودهای شیمیایی، غلیظ سازی شناوری، فسفات ها، خوراک حیوانات و... بکار می رود.
2-خوراک تر در تماس با گاز داغ خشک کننده که توسط یک مشعل داخلی آماده میگردد، قرار دارد و بازده حرارتی بالایی را ایجاد می کند و انتقال حرارت بوسیله همرفت و تابش انجام میگیرد.

شکل (2-4) .جریان همسو ایجاد شده توسط یک مشعل داخلی[27].
این روش برای کانی های سنگین، سنگ خردشده، ماسه، تفاله، موادنسوز و جداسازی سنگ آهک و خاک رس بکار می رود.
2-3-5-کاربردهای جریان ناهمسو
1-محصول نهایی در تماس با گاز داغ خشک کننده که توسط یک منبع خارجی آماده میگردد، قرار دارد. انتقال حرارت توسط همرفت انجام میگیرد.

شکل (2-5) .جریان ناهمسو ایجاد شده توسط یک منبع خارجی [27].
این روش مناسب برای سیلیکاژل، شکر، نمک های شیمیایی و محصولات کریستالی (رنج دمایی پایین)، آمونیوم نیترات، کانی ها، موادمعدنی و رنگدانه ها می باشد.
2-محصول نهایی در تماس با گاز داغ خشک کننده که توسط یک مشعل داخلی آماده میگردد، قرار دارد و بازده حرارتی بالایی را ایجاد می کندو انتقال حرارت بوسیله همرفت و تابش انجام میگیرد.
904875127000

شکل (2-6) .جریان ناهمسو ایجاد شده توسط یک مشعل داخلی [27].
این روش برای ماسه، شن، سنگ های شکسته، سنگ آهک، ترکیب کردن، خشک کردن و پیش گرم کردن و خاکسترشدن مناسب می باشد.
2-4-چرخه (بازیافت) گاز و سیستم های جامع
برای بازده گرمایی بالا یا زمانیکه مواد ذاتاً خطرناک اند، اغلب فرایند بازیافت گازخروجی بکار می رود. در سیستم های با آتش مستقیم این امکان برای بازیافت نسبت زیادی از گاز خروجی به هوای گرم فراهم می کند. رطوبت بالا یک محیط ایمن و خنثی بوسیله جابجا کردن مقدار زیادی اکسیژن توسط هوا ایجاد می کند. همچنین انرژی ذخیره شده قابل توجهی بعلت برگشت دادن گرما از خروجی خشک کن بدست می آید تا هنگامیکه حجم گاز خروجی به مقدار زیادی کاهش یابد. در نتیجه غبارگیری، گرمازایی و بوزدایی از مرطوب کردن گاز می تواند اقتصادی تر از یکپارچه سازی یک تصفیه کننده گاز مرطوب، تصفیه کننده گاز-کندانسور یا سیستم تبخیر با سیستم احیا کننده اختیاری باشد.

شکل (2-7) .یک سیستم احیا کننده حرارتی [27].
2-5-ویژگی های یک خشک کن دوار
یک خشک کن دوار شامل یک پوسته استوانه ای چرخنده بصورت افقی و با کمی شیب به سمت قسمت خروجی خوراک می باشد. مواد مرطوب از یک انتهای استوانه وارد و از انتهای دیگر محصول خشک شده خارج می شود. هنگامیکه استوانه می چرخد، پره های بالا برنده مواد جامد را بالا می برند و به داخل هوای داغ در حال جریان می پاشند و در نتیجه سطح مواد جامد بطور کامل در معرض هوای داغ قرار گرفته و عمل خشک شدن بطور موثرتری انجام می گیرد. در محل ورود مواد چند پره مارپیچی قرار دارد که به جلو راندن مواد کمک می کند تا به پره های اصلی برسند یعنی خشک کن های دوار شامل پره هایی برای حمل مواد از یکی از انتهاهای خشک کن و سپس رها کردن آن در طرف دیگر می باشد که آن هم توسط گازهایی به منظور انتقال مواد و گرما بین مواد دانه ای و فازهای گازی صورت می گیرد.

شکل (2-8) .نمودار یک خشک کن دوار [27]
2-6-طراحی یک خشک کن دوار
برای طراحی یک خشک کن دوار باید موارد زیر را لحاظ کرد:
1-طول و قطر خشک کن
2-شیب خشک کن
3-مقدارحرارت
4-مقدار هوای لازم برای عمل خشک کردن
5-جهت جریان
6-تعداد دور استوانه در واحد زمان
7-نوع و تعداد و طرح پره ها.
خشک کردن در خشک کن دوار به نوبه خود فرایند بسیار پیچیده ای است، زیرا علاوه بر خشک کردن حرارتی شامل حرکت ذرات درون خشک کن نیز می باشد. حرکت ذرات درون خشک کن توسط پره ها یا فازهای گازی درون آن صورت می گیرد.
اکثر خشک کن های دوار یک پیکربندی فازی منفرد ساده یا بعضاً پیکربندی های دیگری بعنوان مثال فازهای سه گانه یا چهارگانه ممکن است داشته باشند که پیکربندی های (وضعیت) پره های داخل آن نیز از شکل مارپیچ حلزون گرفته تا شکل مستقیم نیز تغییر پیدا می کند و به سمت مجرای خروجی خشک کن بصورت منحنی (آبشاری) بهم می پیوندند. میزان بار پره های داخل خشک کن توسط شرایط عملکردی، خواص فیزیکی مواد و وضعیت هندسی خشک کن که شامل وضعیت هندسی پره ها است تعیین می شود. قاعده کلی برای انواع خشک کن های دوار افزایش انتقال مواد و گرما بین مواد دانه ای و گاز می باشد که این شامل انتقال مواد از یکی از انتهای خشک کن در طول دیواره ها و سپس امکان تخلیه مواد از دیگر انتهای خشک کن می باشد. این افزایش تماس بین گازهای داغ واسطه و مواد دانه ای بسیار ریز منجر به بهبود انتقال مواد و گرما می گردد.
پره های خشک کن دوار بمنظور کنترل دما و حجم رطوبت بکار می رود. از آنجاییکه پره های خشک کن دوار متنوعند که گاهاً شامل واحدهای چندگانه یا واحدهای با مشخصاتی همچون پرشدن از مرکز را دارا می باشند. پره ها معمولاً هر 6-2/0 متر انحرافاتی پیدا می کنند و شکلشان تیز بستگی به خواص ذرات جامد دارد. مثلاً پره های شعاعی با لبه 90 درجه برای مواد با سیالیت بالا و پره های مسطح و تخت بدون لبه برای موادچسبناک بکار می رود. مرسوم است که در طی خشک کردن متناسب با خواص تغییر پذیر مواد، طرح های متنوع پره ها در سرتاسر طول خشک کن بکار می رود. مثلاً در انتهای تغذیه مواد، معمولاً پره های مارپیچی جهت توزیع بهتر مواد زیر شوت یا نقاله بکار می رود.
در شکل زیر چندنمونه از پره های رایج نمایش داده شده است.

شکل (2-9) .پروفایل پره های رایج [27].
پره های a، b، C و d غالباً در خشک کن های دوار آبشاری شکل بکار می رود. طرح a برای مواد چسبناک در انتهای خیس خشک کن استفاده می شودو طرح d که شکلی شبیه به دایره دارد در مقایسه با طرح b و c فرم ساختار پیچیده تری دارد. طرح e، پره توزیع زاویه ای برابر و f، پره توزیع متمایل به مرکز، برای بهبود عملکرد خشک کن پیشنهاد می شود هرچند که پروفایلشان پیچیده تر است [24].
2-7-نمونه هایی از خشک کردن در صنایع مختلف
خصوصیات انتقال حرارت در درون خشک کن استوانه ای دوار اهمیت قابل توجهی همانند دیگر کاربردهای صنعتی دارد. مشکل علمی در معلق کردن مانند پیش بینی حرکت ذرات از جمله پیوستگی، سرعت انتقال حرارت و جرم و تبادل حرارت داخلی سراسری همچنان وجود دارد. این پدیده ها به منظور بالا بردن انتقال حرارت و جرم و بهبود عملکرد کلی خشک کن استوانه ای دوار بسیارمهم هستند.
نکات مهم بر روی پدیده ای انتقال حرارت درون ذرات کوره دوار متمرکز شده است. Thammarong و همکاران بسیاری از نتایج آزمایشات موجود در کتب را به شرح و بررسی ضریب انتقال گاز-دیواره (hgw) و ضریب انتقال حرارت جامد-دیواره (hsw) اختصاص داده اند. بر اساس مدل نفوذ، سوالات زیادی در مورد پیش بینی ضریب انتقال جامد-دیواره در کوره دوار در آزمایشگاه با مواد شن و ماسه شناسایی شده‌اند[33].
Wes و همکاران برای اولین بار یک معادله نیمه تجربی از تعداد زیادی داده را معرفی کرده اند. Schlunder ضخامت فیلم گازλ برای مدلسازی نفوذ به منظور بدست آوردن دقیق انتقال حرارت از طریق سیال و محیط متخلخل را نشان داد. مدل wes و همکاران در سرعت چرخش پایین (n<<6 rpm) سازگار است [35-34].
بجز چند کار بر مبنای آنالیز کلی یا ابزار CFD، تعداد کمی از مطالعات قبلی بر روی تجزیه و تحلیل انتقال حرارت درون خشک کن استوانه ای دوار در مقیاس بزرگ انجام شده است. با وجود اختلاف سایز بین ذرات و دانه ها، که Leguen و همکاران بر روی آن کار کرده اند، نشان داده شده است که مخلوط کردن دانه های ریز در توده جریان شکل (2-10) مشابه معلق کردن ذرات در آزمایشگاه بنظر میرسد. Fernandes و همکاران از یک مدل خشک کن ساده شده از یک ضریب کلی انتقال حرارت که توسط miller و همکاران مطرح شده، استفاده کرده اند. نتایج این مدل منجر به انحراف برابر با 20 درصد در مقایسه با اندازه گیری آزمایشگاهی می شود، بهترین تخمین ضریب انتقال حرارت در این نوع مدل خشک کن مطرح می شود [38-37-36].
افراد زیادی بر روی فرایند های خشک کردن موادغذایی مطالعات تئوری و کاربردی انجام داده اند. از بین بردن آب محصولات کشاورزی فرایند ترکیبی شامل انتقال همزمان حرارت و جرم در درون جسم اتفاق می افتد. خصوصیات طبیعی مواد برای خشک شدن انتخاب کاربرد آن را محدود می سازد. رطوبت اولیه، حساسیت به دما، در معرض میکروبها قرار گرفتن و وجود یک پوسته ای که ممکن است نفوذپذیری مولکولهای آب را کم کند.
تحقیقات انجام شده بر روی کیفیت از دست رفته در طی خشک کردن دسته بعدی مطالعات را تشکیل میدهد که توسط افرادی نظیر Schadle، Mishkin و Mudahar انجام شده است[41-40-39].
نخستین کارهای نظری در مورد شبیه سازی خشک کن دوار پره دار بوسیله Seaman و Mitchell در سال 1954 انجام پذیرفت[42].
Kelly و O,donnell در سالهای 1968 و 1977 دو مدل متفاوت برای شبیه سازی خشک کن دوار پیشنهاد داده اند که دارای ریاضیات پیچیده بودند [18].
طرز عملکرد خشک کن های دوار مداوم بدین صورت است که با چرخش مداوم، مواد مرطوب در خشک کن جابجا شده و در تماس با جریان هوا که از داخل خشک کن عبور می کند، قرار می گیرد. از آنجا که خشک کن ها دارای مصرف انرژی بالایی می باشند، شبیه سازی آنها چه به منظور بهینه سازی شرایط عملیاتی و چه به منظور استفاده در روش های نوین کنترل حائز اهمیت می باشد [14].
بطور کلی هر فرایند عملیاتی می تواند توسط یک مدل بیان شود که این مدل خود می تواند کیفی، کمی و غیره باشد. مدل ریاضی نمونه ای از یک مدل کمی است که شامل معادلات جبری، دیفرانسیلی و انتگرالی می باشد.
مزیت اصلی یک مدل ریاضی این است که می تواند رفتار یک فرایند را بدون نیاز به داده های تجربی پیش بینی کند. مدل ریاضی فرایندهای شیمیایی مانند خشک کن دوار بر اساس قوانین بنیادی شیمی و فیزیک که شامل معادلات پیوستگی، بقای انرژی و مومنتم، معادلات مربوط به تعادل (شیمیایی و فازی)، معادلات سینتیک و معادلات حالت می باشند. بر اساس نیاز و هدف مدل حاکم بر یک فرایند می تواند یک مدل کلی و یا یک مدل با جزییات بیشتر باشد [14].
مدل کلی خشک کن دوار متشکل از دو مدل کوچکتر است. مدل اول جزییات رفتار جسم جامد خشک شونده را توصیف می کند و مدل دوم به تشریح پارامترهای استوانه و محفظه خشک کن می پردازد. مدل اول شامل مشخصاتی از جسم جامد به عنوان مثال سینتیک خشک شدن می باشدو مدل دوم تجهیزات، زمان ماند و نرخ انتقال حرارت را پیش بینی می کند. ازترکیب این دو مدل یک مجموعه از معادلات ریاضی حاصل می شود که حل آن منجر به شبیه سازی فرایند خشک کردن جسم جامد در خشک کن دوار می انجامد.
2-8-مدل های زمان اقامت
تحقیقات بر روی توزیع زمان اقامت مواد در خشک کن دوار نشان داده اند که حرکت ذرات جامد می توانند همانند یک حرکت پیستونی با مقداری انحراف بیان شوند [17-16].
خشک کن های دوار جدید می توانند مانند یک راکتور اختلاطی ایده آل با یک مقداری اختلاط نشان داده شوند. در نتیجه می توانیم زمان ماند را وابسته به حرکت جامدات بدانیم. میانگین زمان اقامت بصورت نسبت ذرات باقیمانده در داخل خشک کن به دبی جرمی خوراک ورودی به خشک کن بر اساس رابطه زیر بیان می شود: [18]
t=HF (2-1)
در اینجا t میانگین زمان اقامت برحسب ثانیه،H مقدار جامد باقیمانده در خشک کن برحسب کیلوگرم و F دبی جرمی جامد به درون استوانه می باشدد. Hمقدار جامد موجود در خشک کن در حالت یکنواخت می باشد.
در سال 1949، Friedman و Marshal تحقیقات بسیاری برای بدست آوردن زمان ماند مواد مختلفی مانند ماسه، پلاستیک و غیره انجام داده اند و رابطه زیر را بدست آوردند:[17]
t=0/23LDn0/9 tana (2-2)
در اینجا t میانگین زمان اقامت بر حسب ثانیه،L طول خشک کن بر حسب متر، D قطر خشک کن بر حسب متر،nتعداد دور استوانه و a زاویه خشک کن می باشد.
این رابطه برای خشک کن هایی مناسب است که 6 تا 8 پره داشته باشند.
در سال 1962، Glikin و Schofield یک مدل ریاضی دقیق تری برای حرکت آبشاری مواد ارائه کرده اند که رابطه آنها بصورت زیر می باشد:[5]
t=L(cascade length)av .(cascade time)av (2-3)
که در اینجا (cascade length)av مقدار فاصله ای است که یک یک ذره با اندازه متوسط در حرکت آبشاری طی می کند و cascade timeav مقدار زمانیست که ذره در طی حرکت آبشاری دارد. baker در سال 1983 یک بررسی کلی بر روی کارهای انجام شده قبلی و مقایسه کردن آن با یک خشک کن همسو با مشخصات زیر انجام داده که نتایج زیر بدست آمده است:[43]
این خشک کن دارای قطر خارجی 2 متر، طول 12 متر، سرعت چرخش 5 دور در دقیقه و شیب 1 درجه و سرعت جریان هوا 3 متر بر ثانیه، می باشد.
جدول (2-1) . پیش بینی زمان ماند در مدل های مختلف [43].
محاسبات نشان داده است که پیش بینی ها زیاد شبیه هم نیستند.
Wilson و kamke در سال 1986 یک مدل با استفاده از کامپیوتر برای پیش بینی زمان ماند در تمام طول استوانه و شبیه سازی تاثیرسرعت هوا، سرعت چرخش استوانه و قطرخشک کن بر روی زمان ماند ارائه داده اند [19].
Duchesne و همکارانش در سال 1996 دو مدل بر اساس محفظه های سری با اثر متقابل با توجه به فضای مرده بیان کرده اند [20].
زمان ماند در موارد زیادی بصورت تجربی بدست آمده است. در آزمایشگاه از روش زیر برای بدست آوردن زمان ماند استفاده می شود:
خوراک ورودی به یک خشک کن آزمایشگاهی را بطور ناگهانی قطع کرده و خشک کن را از زیر بار خارج کرده و وزن مواد داخل آنرا بدست می آوریم. اکنون با تقسیم کردن وزن مواد باقیمانده در داخل خشک کن بر دبی جرمی خوراک ورودی، زمان ماند را بدست می آوریم. در مقیاس بزرگ و صنعتی با استفاده از مواد ردیاب زمان ماند را بدست می آوریم.
2-9-مدل های ارائه شده برای بدست آوردن ضریب انتقال حرارت
کار مهم دیگری که برای طراحی خشک کن های دوار باید ا نجام شود، پیدا کردن رابطه ای برای پیش بینی ضریب انتقال حرارت حجمی می باشد. ضریب انتقال حرارت حجمی به معنای مقدار حرارت منتقل شده از واحد حجم استوانه تحت اثر نیروی محرکه اختلاف دما، می باشد.
میزان انتقال حرارت بین هوای داغ و مواد جامد با معادله زیر بیان می شود:
Q=UVVV∆T1m (2-4)
در اینجا Q میزان انتقال گرما بین هوا و مواد جامد بر حسب (W)، Vv حجم استوانه بر حسب متر مکعب،∆Tm اختلاف دمای لگاریتمی بین دمای هوای داغ و مواد جامد در ورودی و خروجی خشک کن بر حسب کلوین می باشد [15].
تحقیقات بسیاری بر روی بدست آوردن یک رابطه جهت پیش بینی ضریب انتقال حرارت حجمی انجام شده است. اغلب کارهای انجام شده در این زمینه را می توان با رابطه زیر خلاصه کرد:
UV=KDGn (2-5)
که در این معادله G شار جرمی هوا، D قطر داخلی استوانه، K، n ثابت های تجربی هستند که مقدارآنها وابسته به مشخصات جسم جامد، هندسه پره های بالابرنده، سرعت چرخش استوانه و مقدار جرم باقیمانده در خشک کن است. تعیین کردن مقدار این ثابت ها توسط داده های تجربی با استفاده کردن از یک خشک کن در مقیاس کوچک، امکانپذیر است[20].
Myklestand رابطه زیر را برای خشک کن های همسو که درآن ماده ای که می خواهد خشک شود نوعی سنگ خارا می باشد، پیشنهاد کرد:[21]
Uv=0/52Gn (2-6)
روابط تجربی زیادی برای محاسبه ضریب انتقال حرارت و زمان ماند ارائه شده است ولی هیچکدام مقبولیت جهانی ندارندو صرفاً برای مواد و شرایط خاص جواب داده اند؛ بنابراین بهترین منبع، داده های آزمایشگاهی برای محاسبه زمان ماند و ضریب انتقال حرارت در همان مکان و با همان شرایط در مقیاس آزمایشگاهی است.
2-10-مدل های کلی (جامع) برای خشک کن های دوار
مدل های کلی که در برگیرنده مشخصات ذرات جامد و محفظه خشک کن باشد، بصورت مجموعه ای از معادلات دیفرانسیل است که بدست آمده از موازنه جرم و انرژی بین فاز گاز و جامد می باشند و معمولاً بصورتی ساده می شوند که معادلات بصورت خطی تبدیل شوند. مدلهایی نیز وجود دارند که برای تعیین توزیع دما و رطوبت ذرات و هوای خشک کننده در جهت محوری استفاده می شوند اما میزان اعتبار آنها مشکل است به این دلیل که اندازه گرفتن رطوبت ماده و دمای داخلی خشک کن سخت می باشد. یک سری دیگر از معادلات بصورت معادله دیفرانسیل جزیی با پارامترهای توزیع شده برای هر دو کمیت دما و رطوبت ذرات و هوا می باشد.
یک نمونه از مدل ریاضی که از جامع ترین آنها می باشد در سال 2003 توسط A.Iguaz و همکاران بدست آمده است که شامل 5 معادله دیفرانسیل و تعدادی معادلات جبری می باشد[22].
شاه حسینی و همکارانش مدلی که توسط Iguaz وهمکارانش ارائه شده بود را تصحیح کردند و سپس بعنوان یک مدل کلی در محیط Matlab برای حل عددی آن استفاده کردند. فرضیاتی که آنها استفاده کردند بدین ترتیب می باشد:[22]
-ذرات تولیدی کروی می باشند و ابعاد آن در طی فرایند تغییر نمی کند.
-در طول فرایند خشک کردن سرعت خشک شدن نزولی می باشد.
-دبی هوا ثابت می باشد.
-خشک کن در شرایط بهینه بار خود کار می کند.
سرعت خشک شدن یک پارامتر مهم برای مدل می باشد و باید بصورت تجربی تعیین شود. بر اساس معادلات Baker، معادلات مربوط به سرعت خشک شدن باید شامل داده های تعادلی جامد باشد.
یک مدل می تواند برای محاسبه و تعیین پروفایل رطوبت و دمای محصول و هوا در جهت محوری استفاده شود ولی اثبات صحت و درستی این پروفایلها بسیار مشکل است زیرا اندازه گیری مقدار رطوبت و دمای درون خشک کن بسیار مشکل می باشد.
امکان شبیه سازی دینامیکی رفتار خشک کن ها نیز وجود دارد. یکی از دلایل استفاده از شبیه سازی، پیش بینی چگونگی تاثیر یک تغییر پله ای متغیرهای ورودی برروی متغیرهای خروجی است. جهت مطالعه رفتار دینامیک خشک کن ها رفتارآنها در شرایط عملکرد آن شبیه سازی می شود و هنگامیکه سیستم به حالت پایدار برسد یک آشفتگی (تغییر) در یکی از متغیرهای ورودی آن ایجاد می شود [15].
اگرچه تحقیقات زیادی در مورد مدلسازی پدیده های خشک کردن انجام شده است، نسبتاً مقدار کمی از این فعالیت ها بطور مستقیم به خشک کن های دوار مربوط می شود و ممکن است به خاطر این واقعیت باشد که خشک کن دوار یک فرایند بسیار پیچیده ای است که فقط شامل خشک شدن نمی باشد بلکه پیشرفت جامد در طی خشک کردن مطرح می باشد [25].
ساختار مدل انتقال جامد به فاز گاز گسترش یافته است. حرارت و تبخیر شدن آب بین این فازها منتقل می شود. حرارت از فاز گاز توسط همرفت و تابش به جامد منتقل می شود.
یک مدل دینامیکی چندبعدی معتبر برای خشک کن دوار بر اساس مفروضاتی همچون پیش بینی و اندازه گیری مقادیر دمای خروجی شبیه سازی شده است. به منظور تسهیل خشک شدن، موازنه انرژی فازهای جامد در داخل مدل انتقال جامد معتبر یکپارچه سازی شده است. فازگاز در مناطق پره دار و بدون پره بصورت یک سیستم جریان خزشی مدلسازی شده است. عوامل تصحیح برای مقادیر نامعین در سطح تخمینی جامد در بخش های مختلف خشک کن معرفی شده است. این عوامل تصحیح بطور دستی با پارامترهای مورد استفاده در آزمایش ها میزان رطوبت تخمین زده شده است. میزان حرارت از دست رفته از طریق پوسته با استفاده از تحلیل مقاومت آن محاسبه شده است. به منظور تطبیق دمای گاز خروجی، عوامل تصحیح حرارت از دست رفته همچنین تعریف شده است و بطور دستی هماهنگ می شود [26].
میزان رطوبت جامد و دمای هوای خشک و جامد بصورت تابعی از طول خشک کن در شکل زیر نشان داده شده است. مقادیر شبیه سازی شده برای دمای جامد، رطوبت جامد و دمای هوای خشک در خروجی خشک کن بسیار نزدیک به آن چیزی است که در آزمایش ها آمده است در حالیکه در گزارش های حالت پایدار، دمای خروجی جامدات و هوای خشک در خشک کردن همزمان بطورکلی در نزدیکی ورودی استوانه بهم رسیده اند که در آنجا انتقال حرارت سریعترین می باشد. بیشترین دمای جامد می تواند چندین درجه بیشتر از دمای خروجی نهایی جامد باشد.

شکل (2-10) .توزیع حالت پایا برای رطوبت جامد و دمای جامد و هوای خشک. در جاییکه L=0.5 m ∆ [25].
در یک مدل چندبعدی دینامیکی برای یک خشک کن دوارصنعتی توسعه یافته، فازگاز در بخش های پره دار و بدون پره خشک کن همانند یک سیستم جریان خزشی، مدلسازی شده است. فاز جامد در بخش های بدون پره همانند یک سیستم جریان خزشی محوری پراکنده سازی شده است. طبق انواع قرارداد یک قسمت از تقریب مدلسازی برای انتقال جامد در بخش های پره دار استفاده شده است. این تقریب یک فرمولسازی سری-موازی از خوب مخلوط شدن در محفظه و توزیع جامدات بین قسمت های تخمین زده شده از طریق مدلسازی هندسی و بررسی دقیق طراحی موانع بارگیری می باشد [26].
-371041286118فصل سوم
روش تحقیق
00فصل سوم
روش تحقیق

3-1-مقدمه
خشک کردن، یعنی ازبین بردن رطوبتی که در جسم موجود می باشد و یکی از فرایندهای اصلی در بسیاری از صنایع می باشد، به این دلیل که برای تولید کردن محصولاتی با کیفیت برتر و ماندگاری بالاتر، نیاز به خشک کردن افزایش می یابد.
در این پایان نامه، سعی بر بررسی عملکرد خشک کن دوار در کارخانه تولید دی کلسیم فسفات ومدلسازی ریاضی و در نهایت شبیه سازی آن داریم.
3-2-خشک کن دوار
خشک کن دوار تولید دی کلسیم فسفات باید دارای خصوصیات زیر باشد:
میزان حرارت دهی، قابل اندازه گیری و کنترل باشد.
حرارت مستقیماً با محصول برخورد ننماید.
قابلیت کاهش رطوبت محصول را تا حد استاندارد داشته باشد.
کنترل حرارت در اینجا بسیارمهم است زیرا حرارت بیش از حد سبب سرامیکی شدن محصول و کاهش قابلیت حل آن می گردد.
3-3-بررسی فرایندخشک کردن و عملکرد آن
خشک کردن غیرطبیعی با استفاده از وسیله های صنعتی (خشک کن ها) کمک می کند تا میزان رطوبت باقیمانده را در یک زمان نسبتاً کوتاهی کاهش دهیم. همرفت یکی از متداولترین روش های خشک کردن (خشک کن های مستقیم) می باشد. حرارت توسط گاز/هوای داغ بر روی سطح جامد پراکنده می شود. حرارت برای تبخیر توسط انتقال به سطح در دسترس مواد عرضه شده است. رطوبت تبخیر شده توسط سیال خشک کن حمل می شود. خشک کن های غیرمستقیم (توسط همرفت کار می کند) بیشتر برای ذرات و مواد با دانه های ریز یا برای جامدات خیلی مرطوب مناسبند در حالیکه خشک کن های تابشی با استفاده از منابع مختلف تابش الکترومغناطیسی با طول موج هایی در محدوده مادوفروسرخ تا ماکروویو کار می کنند [30].
مقدار زیادی از موادگرانولی با ذرات به ابعاد 10 میلیمتر یا بیشتر که بیش از حد شکننده اند و به حرارت حساسند و یا باعث مشکلاتی در حمل و نقل موادجامد می شوند، در خشک کن های دوار در فرایندهای صنعتی خشک می شوند. خشک کن های دوار یکی از متداولترین انواع خشک کن های صنعتی می باشد و شامل یک پوسته استوانه ای که معمولاًاز صفحه های فولادی ساخته شده است، شیب کمی دارد. بطورمعمول قطرآن 5-3/0 متر و طولش 90-5 متر و چرخش در 5-1 می باشد.
خشک کن دوار معمولاً با یک فشارداخلی منفی برای جلوگیری از فرار گرد و غبار عمل می کند. موادجامد در نظرگرفته شده، در انتهای فوقانی بسمت پایین حرکت می کنند یا تخلیه می شوند. بسته به ترتیب تماس بین گاز خشک کن و جامد، یک خشک کن می تواند به مستقیم و یا غیرمستقیم، همسو یا ناهمسو، طبقه بندی شود. یک مجموعه ای از پره های بالابرنده با شکل های مختلف در درون پوسته برای تماس مناسب بین جامد با گاز قرار داده شده است. این پره ها از حالت مارپیچ به حالت مستقیم تنظیم شده‌اند. اثرات طراحی پره ها مانند تعدادپره ها، ابعادشان و شکل آنها بر روی عملکرد خشک کن بسیار پیچیده است.
یک خشک کن دوار، دارای دو عملکرد مجزا می باشند:بعنوان یک نوارنقاله و بعنوان یک گرم کننده.
حرکت جامد از طریق خشک کن توسط مکانیسم های زیر تحت تاثیرقرار دارد:
بلندکردن اجسام، حرکت آبشاری، لغزشی و برگشتی.

شکل (3-1) .خشک کن دوار آبشاری [24].
همانطور که خشک کن می چرخد، موادجامد توسط پره ها در فواصل معینی در سراسر استوانه برداشته می شوند و از طریق هوا در یک لایه آبشاری پاشیده می شوند. اغلب فرایندخشک شدن در این زمان اتفاق می افتد، چون مواد جامد در تماس نزدیک با گاز قرار دارند. حرکت پره ها همچنین تا اندازه ای برای انتقال موادجامد از طریق استوانه مناسب است [24].
عوامل موثر بر مدل سازی خشک کن دوار را می توان به شرح زیر طبقه بندی کرد:
خصوصیات فیزیکی جامدات، مانند اندازه ذرات و شکل آنها، دانسیته و میزان رطوبت.
متغیرهای خشک کن، مانند قطر و طول استوانه و طراحی و تعداد پره های بالا برنده.
شرایط عملیاتی، مانند جریان خوراک و دما، جریان و دمای هوای خشک و شیب سرعت چرخش استوانه [24].
همه عوامل بالا بر انتقال حرارت در استوانه موثرند و همه بغیر از دمای جامد و هوای خشک یک اثری بر روی بارگیری (نگهداشتن) و زمان عبور از استوانه دارند نگهداشتن جامد تاثیرزیادی بر روی عملکرد خشک کن دارد و سرعت تولید را کاهش می دهند اما یک نگهداری جامد بزرگ، باعث غلتانیدن مواد در عمق خشک کن می شود که باعث می شود میزان رطوبت موردنیاز بدست نیاید و توان موردنیاز برای چرخاندن خشک کن افزایش یابد. یک نگهداری که 15-3%از حجم کل استوانه می باشد، با مقادیردر محدوده 12-8% رایج تر می باشد وعملیات را رضایت بخش می کند.
راندمان گرمایی خشک کن دوار به وضعیت خشک کن و تغییر آن در محدوده گسترده از 25% در یک سیستم شعله غیرمستقیم تا 85% در یک لوله بخار بستگی دارد [28].
اگرچه خشک کن های دوار برای دهه های بسیاری در بخش های صنعتی متعددی استفاده شده است، تحقیقات در مورد مدلسازی آنها و کنترلشان محدود بوده است و می توان گفت که هنوز در مراحل ابتدایی می باشد و تا حد زیادی به دلایل زیر بستگی دارد:
وضعیت کنونی:خشک کن های دوار بدون شک یکی از قدیمی ترین و متداولترین عملیات در فرایندهای صنعتی می باشد. ساعت ها کار می کند، عملکرد آنها آسان و قابل اطمینان می باشد، اما بازده انرژی نامناسب دارند و سازگار با محیط زیست نمی باشند. اغلب خشک کن های دوار، مخصوصاً انواع قدیمی آنها هنوز بصورت دستی با تکیه بر مشاهده و تجربه اپراتور، کنترل می شود.
فرایندپیچیده:درک عمیق ما از خشک کن های دوار بسیارضعیف است، زیرا فرایندبسیارپیچیده ای است که شامل حرکت جامدات علاوه بر خشک کردن حرارتی آنها می باشد. به عنوان فرایندی است که بشدت غیرخطی می باشد و به زمان و مکان بستگی دارد. مدلسازی ریاضی بسیارسخت است. بطورکلی مدل ها برآوردی خام از فرایندهای واقعی هستند و بنابراین مفیدبودن آنها، جای سوال دارد. این بدین معنی است که توسعه مدل براساس سیستم کنترل، اگرچه بهتر است زیرا طبیعت دینامیکی آرام خشک کن دوار، موردتوجه طراحان خشک کن دوار قرار گرفته است.
عدم قطعیت:مقادیر عملیات مناسب خشک کن دوار برای کیفیت محصول و بازده خشک کردن اغلب در گذشته به رسمیت شناخته نشده است.
عدم وجودتحقیقات کنترل در خشک کن دوار:علاقه کمی در حال حاضر برای توسعه توابع اندازه گیری و کنترل خشک کن دوار نشان داده شده است. در حال حاضر روش های کنترل هوشمند که بر اساس تجربه بدست آمده است و به موفقیت دست پیدا کرده است. تحقیقات در کنترل خشک کن های دوار دوباره از سرگرفته شده است، بویژه با توجه به افزایش علاقمندی، خشک کن های دوار موجود در تلاش برای بهبود عملکرد خودکار خشک کن به خشک کن هوشمند در حال تغییر می باشد [24].
3-4-عملکرد بهینه خشک کن دوار
به منظور عملکرد بهینه خشک کن دوار، لازم است که مکانیسم اتفاق افتاده درون خشک کن را درک کنیم. مکانیسم مهم انتقال که بر عملکرد خشک کن دوار موثر است، بدین ترتیب می باشد:
-انتقال جامدات
-انتقال حرارت
-انتقال جرم.
مطالعات نشان داده است که دانستن انتقال جامد برای حل کردن معادلات دیفرانسیلی انتقال جرم و انتقال حرارت که بطور کامل پروفایل دما و رطوبت را در طی خشک کن برای هم گاز و هم جامد تشریح می کند، می تواند مفید باشد. انتقال جامدات درون خشک کن می تواند از طریق توزیع زمان ماند جامد بررسی شود. زمان ماند جامد می تواند از طریق آزمایش بدست آورد.
سه درجه از بارگیری در یک خشک کن دوار وجود دارد: کمتر از باربهینه-باربهینه-بالاتر از باربهینه. در واقع نتایج بازده خشک کن ضعیف است و خشک کن اقتصادی بهینه بدست نخواهد آمد. بعنوان مثال، برآورد دقیق طراحی بارگیری به عملکرد پره های خشک کن دوار و مشخصه مهم مدل پره های خشک کن دوار بستگی دارد [25].
جریان مستقیم گاز از طریق استوانه به جامد بطور عمده از خواص غالب پردازش مواد می باشد. جریان همسو برای موادحساس به حرارت، اغلب برای دمای بسیار بالای گاز ورودی به دلیل سریع سردشدن گاز در طی تبخیر اولیه رطوبت سطح بکار می رود، در حالیکه برای دیگر مواد جریان ناهمسو به منظور گرفتن سود به بازده گرمایی بالا که می تواند از این طریق برسد، استفاده می شود. درمورد اول جریان گاز، سرعت جریان جامد را افزایش میدهد در حالیکه در مورد دوم آنرا کم می کند.
خشک کن دوار می تواند بصورت ناپیوسته و پیوسته فرایندهای خوراک تر را انجام دهد و محصول باید تخلیه شود و موادجامد باید جریان نسبتاً آزاد و گرانولی داشته باشند. اگر مواد بطور کامل جریان آزاد در شرایط خوراک نداشته باشند، یک عملیات ویژه و مخصوصی موردنیاز است که شامل برگرداندن یک بخش از محصول نهایی، یک مخلوط را با خوراک یا نگهداشتن یک بستر از محصول جریان آزاد در استوانه در پایان خوراک می باشد.
برای کاهش گرمای از دست رفته خشک کن (بویژه خشک کن های حرارت مستقیم) و تجهیزات آن باید ایزوله شوند یا خشک کن های حرارت مستقیم در دماهای بالا بکار رود. در نهایت حرارت از دست رفته از طریق پوسته باعث خنک شدن مواد و جلوگیری از بسیارداغ شدن آن می شود [26].
برای افزایش تماس بین گاز-جامد، خشک کن های حرارت مستقیم پره های موازی دارند که در طول پوسته قرار دارند و جامد را بالا می برند و یک حرکت آبشاری را ایجاد می کنند.
حمل ونقل موادجامد در استوانه صورت می پذیرد. طراحی پره ها برای بلندکردن اجسام جامد و سقوط آنها توسط جریان هوا صورت می گیرد. بنابراین طراحی خوب پره ها به منظور تماس بهتر و بیشتر گاز با جامد صورت می گیرد که برای خشک کردن یکنواخت آن ضروری می باشد.

شکل (3-2) .حرکت آبشاری جامدات در داخل خشک کن دوار [31].
3-5-تعریف دی کلسیم فسفات
دی کلسیم فسفات یک ترکیب شیمیایی سینیتیک بصورت پودر و گرانول سفیدرنگ با PH اسیدی تا خنثی به فرمول شیمیاییCaHPO4 به انواع هیدرات، مونوهیدرات و دی هیدرات است که از ترکیب اسیدارتوفسفریک و کربنات کلسیم بوجود می آید. این دو اکنش گرمازاست و در نتیجه باعث رها شدن گاز کربنیک می شود.
21761451562100(3-1) H3PO4+CaCO3 Ca(HPO4)+CO2+H2O
روش دیگر آنکه
(3-2) 24142701390650H3PO4+CaO Ca(HPO4)+H2O
(3-3) 24142701244602H3PO4+2CaO 2Ca(HPO4)+2H2O
3-5-1-مشخصات ظاهری
دی کلسیم فسفات بصورت پودر و گرانول به رنگ سفید تا خاکستری روشن و بدون بو می‌باشد.
3-5-2-موارد مصرف دی کلسیم فسفات
این ترکیب امروزه بطور وسیعی در غذای دام و طیور به عنوان مکمل فسفر و کلسیم استفاده می‌گردد. در واقع فسفر و کلسیم به عنوان دو ماده اصلی در ساختمان بدن در استخوان و رشد و نمو موثر هستند، بطوریکه در مرغ‌های صنعتی باید میزان صحیحی از درصد فسفر و کلسیم استفاده گردد زیرا ترکیب ناصحیح آن موجب تاثیر مستقیم بر روی پوسته تخم مرغ و شل شدن یا سفت شدن استخوان‌های مرغ می‌گذارد. نوع غذایی این ماده نیز با استفاده از اسید فسفریک غذایی در خمیردندان، و بخش دارویی مورد استفاده قرار می‌گیرد [44].
3-5-3-روش‌های تولید دی کلسیم فسفات
1-روش سنتی تولید دی کلسیم فسفات
اسید فسفریک تصفیه شده در حوضچه های سیمانی روی آهک پودر شده، کربنات کلسیم، پودر سنگ و یا آب آهک ریخته شده و با بیل و چنگک بهم زده می‌شود. برای بهم زدن ممکن است از همزن برقی نیز استفاده گردد.
پودر نیمه خشک حاصله پس از خشک کردن آسیاب می‌شود اگر از آب آهک استفاده شود. دی کلسیم فسفات به شکل شیر آب رقیق ایجاد می‌شود که با آبگیری اضافی و پس از خشک و آسیاب کردن بسته بندی می‌گردد.
2-روش صنعتی تولید دی کلسیم فسفات
در این روش ابتدا مواد اولیه هر یک کنترل و آماده سازی شده و سپس در شرایط استاندارد واکنش داده و به محصول تبدیل می‌شود. در این روش باید هر یک از مواد اولیه کنترل گردند که عبارتند از:
آماده سازی اسید فسفریک و آماده سازی منابع کلسیم دار.
3-5-4-فرایند تولید صنعتی دی کلسیم فسفات
اسبدفسفریک تصفیه شده در سیستم میکسر ناپیوسته با مداوم، روی کربنات کلسیم میکرونیزه اسیدی پاشیده شده و در طی زمان مناسب واکنش شیمیایی با خروج گاز کربنیک و آب و تشکیل دی کلسیم فسفات صورت می‌گیرد.
پس از واکنش اولیه این ماده با عبور از دستگاه‌های دیگر که عمل گرانول سازی را انجام می‌دهند به سیستم خشک کن دوار منتقل گردیده و با هوای گرم کنترل شده خشک شدن انجام می‌شود.
کنترل حرارت در این مرحله بسیارمهم است زیرا حرارت بیش از حد سبب سرامیکی شدن محصول و کاهش قابلیت حل آن می‌شود. دی کلسیم فسفات پس از خشک کن به خنک کن و سپس به بخش دانه بندی و بسته بندی وارد شده و در کیسه های پروپیلن لمینت بسته بندی می‌شود.
3-5-5-خواص دی کلسیم فسفات
دی کلسیم فسفات حاوی عناصر کلسیم و فسفر است که نقش مهمی را در واکنش‌های بیوشیمیایی (نظیر انعقاد خون، فعالیت فیزیولوژیکی قلب، تبادلات سلولی و فعالیت عصبی –عضلانی) و متابولیکی (نظیر شکل گیری ساختمان استخوان، دندان، تخم مرغ و فعالیت‌های صحیح دستگاه گوارش) در دام و طیور ایفا می‌کند [44].
3-5-6-مزایای وجود کلسیم و فسفر در جیره طیور
استخوان‌بندی محکم
افزایش اشتها
افزایش بازدهی تولید در طیور گوشتی و تخم گذار
کاهش میزان لمبه و شکستگی تخم مرغ
افزایش تولید جوجه در فارم های مرغ مادر [44].
3-5-7- مزایای وجود عناصر کلسیم و فسفر در جیره غذایی دام
استخوان‌بندی محکم و سلامت بدنی
افزایش تولید و شیر آوری
افزایش باروری و آبستنی
افزایش اشتها و بازدهی مناسب تولید
عملکرد متعادل دستگاه‌های عصبی، عضلانی و گوارشی [44].
3-5-8-علائم کمبود فسفر و کلسیم
فقدان کلسیم و فسفر منجر به نرمی استخوان و فلجی در جوجه‌ها، استئومالاسیا، کاهش ضخامت پوسته تخم مرغ، کاهش میزان تولید تخم مرغ و جوجه دهی می‌گردد. همچنین کمبود مذکور می‌تواند منجر به کاهش کارایی قلب و عضلات، رشد استخوان و نیز بی اشتهایی دام و طیور شود [44].
3-6-خشک کن دوار کارخانه تولید دی کلسیم فسفات
همان طور که قبلاً بیان شده است پس از واکنش اسید فسفریک و کربنات کلسیم به همراه دی کلسیم فسفات، مقداری آب و کربن دی اکسید تشکیل می‌شود. این مقدار رطوبت باید بطریقی از بین رود که در نهایت میزان رطوبت به حداکثر 3% برسد. درصورتیکه کنترل بر روی حرارت صورت نگیرد باعث بروز مشکلاتی در محصول نهایی می‌گردد. اگر میزان رطوبت نهایی بالاتر از 3% باشد، ضمن ایجاد چسبندگی و کلوخه کردن محصول سبب تجزیه تدریجی دی کلسیم فسفات به تری کلسیم فسفات و کاهش کیفیت آن می‌گردد.
.
3-6-1-ویژگی‌های خشک کن دوار مورد بررسی
خشک کن مورد بررسی در اینجا مربوط به خشک کن دوار کارخانه تولیدی نگین فسفات شمال واقع در شهرک صنعتی بندپی شرقی شهرستان بابل می باشد که برای خشک کردن دی کلسیم فسفات تولیدی بکار می رود.
این خشک کن دوار بطول 12 متر و قطر 30/1 متر و ضخامت 15 میلیمتر برای خشک کردن 2 تن در ساعت دی کلسیم فسفات طراحی شده است. بدنه این خشک کن از جنس فولاد نسوز می‌باشد.

شکل (3-3) .نمایی از خشک کن دوار کارخانه تولید دی کلسیم فسفات مورد بررسی.
این خشک کن دوار یک خشک کن نا همسو می‌باشد که حرارت مستقیم از مشعل در انتهای خشک کن وارد محفظه می‌شود.
به منظور هدایت مواد به مرحله بعدی در درون خشک کن پره‌هایی نصب شده است. این پره‌ها بصورت یک در میان زاویه دار و مستقیم هستند. زاویه پره‌ها نسبت به سطح خشک کن 90 درجه می‌باشد. در پره های زاویه دار، لبه آنها با زاویه 120 درجه نسبت به بدنه پره قرار گرفته‌اند.
فاصله بین دو پره در جهت محور استوانه 70 سانتیمتر و در جهت شعاع استوانه با زاوبه 45 درجه نسبت به سطح قرار گرفته‌اند. در شکل زیر نمایی از نحوه قرار گرفتن پره‌ها در خشک کن نشان داده شده است.

شکل(3-4).نحوه قرار گرفتن پره‌ها در خشک کن.
برای انتقال مواد جامد در حین خشک شدن از ابتدای خشک کن به انتهای آن،خشک کن باید مقداری شیب دار باشد تا مواد به راحتی جابجا شوند. در این خشک کن شیب با استفاده از رابطه زیر بدست آمد:[6]
S2=S1 tanβ (4-3)در اینجا β زاویه خشک کن و S1طول خشک کن می‌باشد که صرف نظر از طول ورودی و خروجی خشک کن 20/11 متر و S2 اختلاف ارتفاع بین ابتدا و انتهای خشک کن می‌باشد:
ارتفاع ابتدای خشک کن از سطح زمین:39/1 متر
ارتفاع انتهای خشک کن از سطح زمین:22/1 متر
S2=1/39-1/22=0/17 mtanβ=S2S1tanβ=0/1711/20=0/015178β=tan-10/015178β=0/869≈0/87بنابراین خشک کن دوار مورد بررسی با زاوبه 87/0 درجه نسبت به افق قرار گرفته است.
مدت زمانی که محصول در طول خشک کن طی می‌کند تا به انتهای آن برسد بر اساس زمان گرفته شده در حین تولید،15 دقیقه گزارش شده است.
3-6-2-اجزای بیرونی خشک کن دوار
1-مشعل

شکل(3-5).مشعل
این مشعل دوگانه سوز بوده و با دو سوخت گازوئیل و گاز کار می‌کند. حداکثر توان این مشعل 10000 کیلو کالری می‌باشد.
2-ترمومتر

شکل(3-6) .ترمومتر
این ترمومتر در ابتدا و انتهای خشک کن نصب شده است و دمای ورودی و خروجی خشک کن را نشان می‌دهد.
3-کانال خروجی هوای مرطوب شده

شکل(3-7) .کانال مکش
این کانال هوای داغی که در خشک کن جریان داشت و بعد از عبور از آن و گرفتن رطوبت مواد، آن‌را خارج می‌کند.
4-موتور گیربکس

شکل(3-8) .موتور گیربکس
این موتور گیربکس با توان 11 کیلو وات کار می‌کند.
اینورتر

شکل (3-9) .درایور اینورتر
از این دستگاه برای کنترل تعداد دور خشک کن استفاده می‌شود که سنسور مربوط به چرخش محفظه به موتور گیربکس 11KW متصل شده است و تا 20%دور را کم و زیاد می‌کند.
6-فن مکنده

شکل(3-10) .فن مکنده
این فن عمل مکش هوا را انجام می‌دهد.
7-ریل‌های راهنما

شکل(3-11).ریل راهنما
این ریل‌ها شامل یاتاقان، رینگ راهنما و بوش راهنما هستند.
8-چرخ دنده

شکل(3-12) .چرخ دنده
این چرخ دنده‌ها عمل چرخش را توسط موتور گیربکس انجام می‌دهند.
3-6-3-نمودار خطی خشک کن دوار مورد بررسی
این نمودار با استفاده از نرم افزار اتوکد با توجه به خصوصیات خشک کن دوار مورد بررسی ترسیم شده است.

شکل (3-13).نمودار خطی خشک کن مورد بررسی با استفاده از نرم افزار اتوکد.
بطور کلی خشک کن دوار مورد بررسی دارای ویژگی‌های زیر می‌باشد:
جدول (3-1).ویژگی‌های خشک کن دوار مورد بررسی.
طول قطر ضخامت تعداد پره‌ها جنس بدنه زاویه خشک کن
12 m 1/30 m 1/5 cm 80 فولاد نسوز 0/870
3-6-4-محاسبه تعداد دور خشک کن
اینورتر یک مبدل DC به Ac دو مرحله ای است که ولتاژ ورودی با دامنه و بسامد مشخص را به ولتاژ خروجی با دامنه و بسامد متغیر قابل تنظیم تبدیل می‌نماید.
یکی از روش‌های تغییر دور موتور تغییر بسامد ورودی به آن است که این عمل توسط اینورتر صورت می‌پذیرد. با استفاده از روابط زیر سرعت موتور بر حسب بسامد تعیین خواهد شد که به واسطه گیربکس این سرعت جهت چرخش خشک کن کاهش داده می‌شود.
120×fP ( 6-3) F بسامد برق می‌باشد و P تعداد قطب موتور می‌باشد. بسامد برق شهر 50 هرتز و تعداد قطب موتور در اینجا 4 است. در نتیجه تعداد دور موتور از رابطه زیر بدست می‌آید:
120×504=1500 rpmکه این سرعت به واسطه گیربکس با نسبتی ثابت به میزان 4rpm کاهش می‌یابد.
برای مثال با تغییر بسامد به 65 هرتز سرعت از رابطه زیر بدست می‌آید:
120×654=1950rpmدر نتیجه با استفاده از رابطه بالا سرعت خشک کن برابر است با:
1950×41500=5/2rpm
3-7-روش نمونه برداری
در این بررسی در دو مرحله جداگانه نمونه برداری‌ها انجام شده است. هر بار میزان رطوبت نمونه گرفته شده با استفاده از رطوبت سنج دیجیتالی Sartorius MA35 اندازه گیری می‌شود.در هربار اندازه گیری رطوبت مقدار 2گرم از دی کلسیم فسفات را در ظرف مخصوص قرار می دهیم ودر دستگاه را گذاشته و بعداز 10 دقیقه رطوبت خوانده می شود.

شکل (3-14) . رطوبت سنج دیجیتالی Sartorius MA35
نمونه برداری
نمونه برداری در دور ثابت خشک کن، با توجه به زمان ماند، هر 5 دقیقه یک‌بار از خروجی خشک کن نمونه برداری شده است.چون در این کارخانه بعلت صرفه اقتصادی و نگهداشتن کیفیت محصول فواصل دورها کم و از 4/4 تا 8/5 در نظر گرفته شده است.
میزان رطوبت آن‌را با استفاده از رطوبت سنج بدست می‌آوریم و با استفاده از رابطه زیر MR را بدست می‌آوریم که در ادامه نتایج نمونه برداری آمده است.
MR=MeMiکه در اینجاMe رطوبت مطلق جامد بر مبنای خشک در هر لحظه وMi رطوبت مطلق اولیه بر مبنای خشک می باشد.
3-7-1-نتایج نمونه برداری
1-تعداد دور خشک کن=4/4

user8271

تلاش برای درک ماهیت اساسی ماده را به فیلسوفان یونان باستان، بویژه دموکرتیوس، نسبت می‌دهند. دموکریتوس که در قرن چهارم پیش از میلاد می‌زیست، اعتقاد داشت که هر نوع ماده را می‌توان به اجزای کوچک و کوچک‌تر تقسیم کرد، تا این که به ذره‌ای برسیم که دیگر تجزیه آن امکان پذیر نباشد. او این جزء کوچک ماده را که با چشم قابل دیدن نبود، ذره بنیادی سازنده ماده می‌دانست. این تفکر سال‌ها به صورت اندیشه‌ای فلسفی باقی ماند، تا اینکه در ابتدای قرن نوزدهم، دانشمندان علوم تجربی در این زمینه به تحقیق پرداختند، و آن تفکر فلسفی به یک نظریه علمی برجسته تبدیل شد. دالتون، آواگادرو و فاراده از جمله شیمیدانان برجسته‌ای بودند که به پیشگامان این تفکر علمی معروف شدند. در نهایت شیمیدان‌ها با تعیین جدول تناوبی مندلیف این تفکر علمی را به یک فکر سازمان یافته تبدیل کردند. از طرفی مطالعه خواص بنیادی تک تک اتم‌های عناصر مختلف را گروه دیگری از دانشمندان دنبال کردند که امروزه به شاخه فیزیک اتمی معروف است. این مطالعات در سال 1896 توسط بکرل با کشف خاصیت رادیواکتیو در برخی اتم‌ها، و سپس در سال 1898 توسط پیر و ماری کوری با شناسایی مواد رادیواکتیو دیگری ادامه پیدا کرد. در ادامه نوبت به رادرفورد رسید که از خواص این پرتوها استفاده کرده تا برعکس بتواند ساختار اتم‌ها را مطالعه و بررسی کند. در خلال همین پژوهش و تحقیق‌ها رادرفورد توانست در سال 1911 وجود هسته را در اتم اعلام کند. تایید فرضیه وجود هسته از طریق آزمایش‌های گایگر و مارسدن شاخه جدیدی از فیزیک به نام فیزیک هسته‌ای را بنا نهاد. نهایتاً در سال 1932 با کشف نوترون توسط چادویک، فیزیک هسته‌ای جایگاه مستحکم و روشن خود را در جهان پیدا کرد. به هر حال امروز پس از گذشت یک قرن هنوز تحقیق و پژوهش در زمینه فیزیک هسته‌ای آنقدر از نظر کاربردی شیرین و جذاب می‌باشد که ذهن تعداد زیادی از پژوهشگران دنیای علم و صنعت را به خود مشغول کرده است.
1-4- ذرات بنیادی و مدل استاندارداز دیرباز شناخت جهان و اجزای آن یکی از اهداف مهم هر مکتب علمی بوده است. اما امروزه تحقیقات در زمینه شناخت جهان به شاخه‌های مختلفی تقسیم شده است که هر کدام از منظری خاص ساختار عالم و اجزای آن را مورد کنکاش قرار می‌دهند.
کیهان شناسان با توجه به نظریه مهبانگ تشکیل کهکشان‌ها و ماده تاریک را بررسی می‌کنند. دانشمندان ذرات بنیادی چگونگی تشکیل سوپ کوارک- گلئونی حاصل از مهبانگ و تشکیل هادرون ها را مطالعه می‌کنند. دانشمندان هسته‌ای مکانیسم هسته سازی را بعد از تشکیل پروتون‌ها و نوترون‌ها، خواص هسته‌ها و کاربردهای آن‌ها در زندگی بشر را دنبال می‌کنند. در ادامه خط سیر تشکیل و تکامل عالم هستی، مسئولیت اتم شناسان اهمیت پیدا می‌کند، که جهان چگونه و به چه نسبتی از اتم‌های مختلف تشکیل شده است.

شکل (1- SEQ شکل_(1-_ * ARABIC 1 ): تحولات زمانی و دمایی علم از ابتدا تا کنوننمودار شکل (1-1)، یک خط زمانی از ابتدای جهان، که به اصطلاح مهبانگ نامیده می‌شود، را نشان می‌دهد و می‌رساند که چگونه و طی چه مراحلی جهان سرد شده تا به دنیای کنونی رسیده‌ایم. با نگاه به اولین لحظات جهان، مشاهده می‌شود که در لحظه ابتدایی پس از مهبانگ و در دماهای بالاتر از 1012 درجه کلوین، حالتی از ماده شامل کوارک ها و گلئون ها به صورت یک پلاسمای کوارک- گلئونی به نام پلاسمای کوارک- گلئونی وجود داشته است.این حالت ناپایدار کوارک- گلئونی در مدت بسیار کوتاهی سرد شده و پروتون‌ها و نوترون‌ها (هادرون سازی )، سپس هسته‌ها (هسته سازی ) و به دنبال آن اتم‌ها ایجاد شده‌اند. در نهایت این اتم‌ها در کنار یکدیگر مولکول‌ها را تشکیل داده و دنیای کنونی را که در آن زندگی می‌کنیم به وجود آورده‌اند.
اما به نظر می‌رسد، با توجه به سیر تشکیل عالم هستی، برای آگاهی از شناخت هسته‌ها و خواص آن‌ها باید اطلاعات و شناخت کافی از مرحله قبل از تشکیل هسته‌ها، یعنی دوره وجود سوپ کوارک- گلئونی و تشکیل هادرون ها داشته باشیم. امروزه تحقیقات فیزیک ذرات نمایانگر جاه‌طلبانه‌ترین و هماهنگ‌ترین تلاش انسان برای پاسخ به این سوال است که جهان از چه ساخته شده است [2,1]؟
بی شک شناخت کافی از مرحله قبل از تشکیل هسته‌ها و نظریه ذرات بنیادی می‌تواند شناخت بهتری از هسته‌ها و تشکیل آن‌ها برای ما به همراه داشته باشد. با اطمینان می‌توان گفت ذرات بنیادی سنگ بنای تشکیل ساختارهای کوچک و بزرگ جهان می با شد. بهترین تئوری ذرات بنیادی که تاکنون شناخته شده است، مدل استاندارد است. بنا بر این مدل تمام مواد از سه نوع ذره بنیادی ساخته شده‌اند. کوارک ها، لپتون ها و واسطه‌ها.
این تعداد ذرات به اصطلاح بنیادی به صورتی نسبتاً سر راست، راه را به سمت ساختار داخلی نوکلئون ها، یعنی کوارک ها هموار کرد. همچنین مزون پایون و تمام هادرون های دیگر از کوارک ساخته شده‌اند. الکترون و نوترینو، نیروی قوی هسته‌ای را احساس نمی‌کنند و بنابراین هادرون نیستند. آن‌ها گروه مجزایی از ذرات به نام لپتون ها را تشکیل می‌دهند. نوترینو ها تنها در برهم کنش ضعیف شرکت می‌کنند، اما الکترون که بار نیز دارد می‌تواند برهم کنش الکترومغناطیسی را نیز حس کند. لپتون ها مانند کوارک ها مرکب نیستند و بنابراین مستقیماً به همراه کوارک ها به عنوان ذرات بنیادی نقطه‌ای در جدول (1-1) وارد شده‌اند.

جدول (1- SEQ جدول_(1- * ARABIC 1): اجزای بنیادی جهان و مشخصات آنCharge
(Q) Lepton
Number
(L) Baryon
Number
(B) Spin
(S) Name +2/3 0 1/3 1/2 u (up) -1/2 0 1/3 1/2 d(down) +2/3 0 1/3 1/2 s(strange) -1/2 0 1/3 1/2 c(charm) Quarks
+2/3 0 1/3 1/2 t(top) -1/2 0 1/3 1/2 b(bottom) -1 1 0 1/2 e(electron) 0 1 0 1/2 νe(e-noutrino) -1 1 0 1/2 μ(muon) 0 1 0 1/2 νμ(μ-noutrinoLeptons
-1 1 0 1/2 τ(tau) 0 1 0 1/2 ντ(τ-noutrino) 0 0 0 1 γ(photon) ±1,0 0 0 1 w±,z0(weak boson Gauge
boson
0 0 0 1 gi(i=1,…,8 gluons) تعداد شش لپتون وجود دارد که بر حسب بار الکتریکی و عدد لپتونی دسته بندی می‌شوند. همچنین شش آنتی لپتون وجود دارد که علامت آن‌ها بر عکس لپتون ها است.
بنا بر این مدل شش طعم کوارک با اسپین 12 وجود دارد. که بالا (u)، پایین (d)، شگفتی (s)، افسون (c)، زیبایی (b) و حقیقت (t) نام دارند که هر کدام دارای یک آنتی کوارک می‌باشند. ضمنا هر کدام از کوارک ها و آنتی کوارک ها دارای سه رنگ (آبی- قرمز- سبز) هستند.
و در نهایت هر بر هم کنشی واسطه مخصوص خود را دارد. چهار نیروی اصلی و بنیادی در طبیعت وجود دارد قوی، الکترومغناطیس، ضعیف و جاذبه. نیروی جاذبه در مدل استاندارد بررسی نمی‌شود. فوتون ها واسطه نیروهای الکترومغناطیس هستند و به همین دلیل به آن‌ها حاملان نیرو می‌گویند و چون فوتون ها ذراتی بدون جرم هستند، نیروهای الکترومغناطیسی برد بالایی دارند. بوزون های باردار+ w و w- و بوزون خنثی z واسطه نیروهای ضعیف هستند، به این بوزون ها حاملان بار ضعیف می‌گویند و به علت جرم زیاد ذرات واسطه، بر هم کنش ضعیف کوتاه برد است. گلئون ها که بدون جرم اند و از نظر بار الکتریکی خنثی هستند، واسطه نیروهای قوی هستند و به آن‌ها حاملان رنگ گفته می‌شود. بر هم کنش قوی نیز به علت بدون جرم بودن گلئون ها، برد بالایی دارند اما نسبت به بر هم کنش الکترومغناطیس برد محدودتری دارند.
centercenterفصل دوم
00فصل دوم

2- مدل‌های هسته‌ای2-1- مقدمهبرهمکنش متقابل میان نوکلئون ها هنگامی که برای تشکیل هسته‌های سنگین و متوسط متراکم می‌شوند، برای مدت طولانی مورد تجزیه و تحلیل قرار گرفته‌اند. مفهوم نیروی بین هسته‌ای و محاسبه خصوصیات هسته‌ای بسیار پیچیده است و برای شناخت هسته و خصوصیات آن، تنها راه ساده سازی، شبیه سازی و استفاده از مدل‌های هسته‌ای خاص و نیروهای هسته‌ای ساده شده است.
در هر هسته حالتی با کم‌ترین انرژی، حالت پایه نامیده می‌شود و حالت‌هایی با انرژی بالاتر را، حالت‌های برانگیخته می‌نامند. بسیاری از خصوصیات نیروهای هسته‌ای را می‌توان از بررسی هسته در حالت پایه بدست آورد، در برسی های دقیق‌تر ویژگی‌های معینی ظاهر می‌شوند. مدل‌های هسته‌ای برای توضیح این ویژگی‌ها توسعه داده شده‌اند. در غیاب یک تئوری دقیق تعدادی از مدل‌های هسته‌ای توسعه یافته‌اند. برای این کار فرضیات بسیاری برای ساده سازی روابط به کار رفته‌اند. هر مدل تنها قادر به توضیح بخشی از دانش تجربی ما راجع به هسته است.
در حالت کلی مدل‌های هسته‌ای به دو گروه تقسیم می‌شوند: مدل‌های ذره مستقل (IPM) که در آن نوکلئون ها به طور مستقل در یک پتانسیل هسته‌ای معمولی حرکت می‌کنند. گروه دیگر، مدل‌های برهم کنش قوی (SIM) که در آن نوکلئون ها به طور قوی با یکدیگر جفت شده‌اند. ساده‌ترین مدل برهم کنش قوی، مدل قطره مایع است و ساده‌ترین مدل ذره مستقل، مدل گاز فرمی است.
2-2- مدل قطره مایعی و فرمول نیمه تجربی جرمنظریه مفصل بستگی هسته‌ای، مبتنی بر روش‌های ریاضی و مفاهیم فیزیکی پیچیده، توسط بروکنر و همکارانش (از 1954 تا 1961) ابداع شده است. مدل بسیار ساده شده‌ای نیز در سال 1935 توسط وایس زکر با پیشنهاد بور بدست آمد. در این مدل از بعضی ویژگی‌های ظریف‌تر نیروهای هسته‌ای صرف نظر شده است، ولی بر جاذبه قوی بین نوکلئونی تاکید می‌کند. در این مدل فرض می‌شود که نوکلئون ها با همسایه‌های نزدیک خود فعل و انفعال متقابل دارند، درست همان گونه که مولکول‌ها در یک قطره آب با هم برهم کنش دارند [5,4,3].
فرض‌های اساسی به قرار زیرند:
1- هسته از ماده غیر قابل تراکم تشکیل شده است، به طوری که R∝A1/3.
2- نیروی هسته‌ای برای هر نوکلئون یکسان است و به نوع آن بستگی ندارد.
3- نیروی هسته‌ای اشباع می‌شود.
آثار کولومبی و مکانیک کوانتومی را به طور جداگانه بررسی می‌کنیم. طبق فرض‌های 2 و 3، در یک هسته نامتناهی با A نوکلئون، انرژی بستگی اصلی متناسب با A است. اما چون هسته‌های واقعی متناهی هستند، معمولاً یک شکل کروی برای آن در نظر می‌گیرند. از این رو نوکلئون های سطحی، به اندازه آنچه هم اکنون تخمین زدیم، تحت جاذبه یکسان از طرف دیگر نوکلئون ها قرار نمی‌گیرند و از این رو باید جمله‌ای متناسب با تعداد نوکلئون های سطحی یا متناسب با مساحت سطح را از تخمین مبتنی بر هسته‌ی نا متناهی، کم کرد. از طرفی نیروی دافعه کولومبی که بین تمام جفت پروتون‌ها برقرار است، از انرژی بستگی کم خواهد کرد. (نیروی کولومبی دارای برد زیاد است و اشباع نمی‌شود). علاوه بر این، جمله‌ای را باید معرفی کنیم که به هسته‌های با N=Z، بیشترین بستگی را نسبت دهد. این جمله، پیامد مستقیمی از رفتار مکانیک کوانتومی نوترون‌ها و پروتون‌ها می‌باشد. بالاخره، باید جملات تصحیحی لازمی را معرفی کنیم که بیشترین بستگی را برای هسته‌های زوج- زوج و کمترین بستگی را برای هسته‌های فرد- فرد به دست بدهند و آثار پوسته‌ای را منعکس کنند.
اهمیت این مدل در این حقیقت نهفته است که جنبه‌های علمی داده‌های جرم هسته‌ای را تبیین می‌کند. این امر تایید کننده آن است که جمله انرژی بستگی اصلی، که متناسب با A می‌باشد، باید تصحیح شود. چون این جمله در بین فرض‌های دیگر به فرض "استقلال از بار" نیروهای هسته‌ای بستگی دارد، می‌توان نتیجه گرفت که بر هم کنش‌های هسته‌ای n-n، p-p، p-n یکسان هستند.
انرژی بستگی، B، یک هسته عبارت است از اختلاف انرژی بین جرم هسته و جرم کل پروتون‌ها (Z پروتون) و نوترون‌های تشکیل دهنده آن (N نوترون) که به صورت زیر نوشته می‌شود.
(2- SEQ (2- * ARABIC 1)B={Zmp+Nmn-mX-Zme}رابطه انرژی بستگی کل یک هسته را می‌توان به صورت زیر نوشت.
(2- SEQ (2- * ARABIC 2)BA,Ztot=avA-asA23-acZZ-1A-13-aa(N-Z)2A-1±δ+ηکه در آن
avA جمله حجمی
asA23 جمله سطحی متناسب با مساحت سطح کره(4πr2).
±δ جمله انرژی زوجیت، که برای هسته‌های با A ی فرد برابر صفر است، برای هسته‌های (N زوج - Aزوج) علامت (+) و برای هسته‌های (N فرد – Aفرد) علامت (-) را به کار می‌بریم و ???? جمله پوسته‌ای، که اگر N یا Z یک عدد جادویی باشد مثبت است.
aa(N-Z)2A-1/3 جمله انرژی عدم تقارن و acZZ-1A-13 جمله انرژی کولنی هستند.
2-2-1- انرژی عدم تقارنجمله عدم تقارن نتیجه مستقیم رفتار کوانتوم مکانیکی پروتون‌ها و نوترون‌ها است و بیشترین بستگی را به هسته‌هایی با N=Z، بیشترین بستگی را نسبت می‌دهد.
طبق اصل طرد پائولی در هر طراز فقط یک نوکلئون می‌تواند وجود داشته باشد و فرض می‌کنیم ترازها در فاصله یکسان ∆ از هم قرار داشته باشند، انرژی عدم تقارن عبارت است از اختلاف بین انرژی هسته-ای یک هسته با اعداد نوترونی و پروتونی N و Z با انرژی ایزوباری که در آن اعداد نوترونی و پروتونی، هردو، مساوی A2 است. اگر بخواهیم هسته اول را از هسته دوم بسازیم باید v پروتون به نوترون تبدیل شود، یعنی
N=12A+v و Z=12A-v → v=12(N-Z) و انرژی لازم برای این کار v2∆ است. و با قرار دادن 1A به جای ∆، جمله انرژی عدم تقارن بدست می‌آید.
2-2-2- انرژی کولنیما در فرض‌های اولیه، دافعه کولنی بین پروتون‌ها را در نظر نگرفتیم، این نیرو دارای برد بلند است و اشباع نمی‌شود، برای محاسبه این نیرو، هسته را به صورت یک کره با بار Ze و شعاع R در نظر بگیریم، آنگاه انرژی کولنی با توجه به روابط زیر محاسبه می‌شود:
(2- SEQ (2- * ARABIC 3)Eکولنی=0ZeQ(r)rdQاز طرفی
(2- SEQ (2- * ARABIC 4)Qr=Ze(rR)3(2- SEQ (2- * ARABIC 5)dQ=3Zer2R3drبا جایگذاری دو عبارت بالا در عبارت اول داریم:
(2- SEQ (2- * ARABIC 6) Eکولنی=0R3(Ze)2rr5R6dr=35(Ze)2Rعبارت بالا شامل یک جمله خود انرژی 3e25R برای هر پروتون است (که با قرار دادن Z=1 پیدا می‌شود)، که اضافه محاسبه شده است، و باید این جمله برای Z پروتون از جمله بالا کسر گردد.
(2- SEQ (2- * ARABIC 7): Ec=35Z(Z-1)e2A13نمودار انرژی بستگی هسته‌ها بر حسب داده‌های تجربی و فرمول نیمه تجربی جرم در شکل‌های .(2-1) و (2-2) نشان داده شده است.

شکل(2- SEQ شکل(2- * ARABIC 1): انرژی بستگی هسته‌ها که به صورت تجربی به دست آمده‌اند.
شکل(2- SEQ شکل(2- * ARABIC 2): انرژی بستگی هسته‌ها براساس فرمول نیمه تجربی جرمهر چند که مدل قطره مایعی را بیشتر بر حالت‌های پایه اعمال می‌کنند، ولی می‌توان آن را برای حالت‌های برانگیخته نیز به کار برد. این حالت‌ها می‌توانند توسط نوسان‌های سطحی قطره‌ی هسته، یا توسط چین و شکن‌هایی که بر روی سطح آن حرکت می‌کنند، ایجاد شوند. این عقیده مخصوصاً در توجیه بعضی از جنبه‌های شکافت هسته‌ای موفق بوده است. مدل قطره مایعی بر آثار جمعی بین نوکلئون های متعدد موجود در هسته نیز تایید دارد و پیشقراول مدل‌های جمعی ساختار هسته‌ای است. آنچه در این مدل صراحت دارد تقسیم سریع انرژی بین نوکلئون هاست که مبنای نظری بوهر را در مورد شکل بندی هسته مرکب در واکنش‌های هسته‌ای تشکیل می‌دهد [6].
2-3- مدل پوسته‌ای هسته2-3-1- مقدمهنظریه اتمی با استفاده از مدل پوسته‌ای توانسته است به طور کاملاً روشن جزئیات پیچیده ساختار اتم‌ها را توضیح دهد. به همین دلیل متخصصان فیزیک هسته‌ای، به امید آنکه بتوانند به توصیف روشنی از خواص هسته‌ها دست یابند، سعی کردند در بررسی ساختار هسته‌ای از نظریه مشابهی استفاده کنند. در مدل پوسته‌ای اتم‌ها، پوسته‌ها را با الکترون‌هایی که انرژی‌شان به ترتیب افزایش می‌یابد پر می‌کنیم، و این آرایش الکترونی به گونه‌ای است که اصل طرد پائولی در آن رعایت می‌شود. بدین ترتیب، هر اتم متشکل است از: یک ناحیه مرکزی خنثی که پوسته‌های پر دارد، و چند الکترون ظرفیت که در پوسته‌ای خارج از این ناحیه مرکزی قرار می‌گیرند. در این مدل، فرض بر این است که عمدتاً همین الکترون‌های ظرفیت هستند که خواص اتم‌ها را تعیین می‌کنند. هنگامی که پیش بینی‌های این مدل را با بعضی از خواص اندازه گیری شده سیستم‌های اتمی مقایسه می‌کنیم، آن‌ها را به خوبی یا هم سازگار می‌یابیم. بویژه مشاهده می‌کنیم که تغییرات خواص اتمی در محدوده هر زیر پوسته تدریجی و کم است، در حالی که وقتی از یک زیر پوسته به زیر پوسته دیگر می‌رویم تغییرات خواص ناگهانی و زیاد است.
هنگامی که سعی می‌کنیم تا این مدل را به قلمرو هسته‌ای هم گسترش دهیم، از همان آغاز کار با چند مانع روبرو می‌شویم. در مورد اتم‌ها، پتانسیل حاکم را میدان کولنی هسته تأمین می‌کند. یعنی یک عامل خارجی زیر پوسته‌ها (یا مدارها) را سازمان می‌دهد. اما در مورد هسته هیچ عامل خارجی وجود ندارد، و نوکلئون ها در پتانسیلی که خودشان به وجود می‌آورند در حرکت اند. یکی دیگر از جنبه‌های جالب توجه نظریه پوسته‌ای اتم‌ها وجود مدارهای فضایی است. خواص اتم‌ها را اغلب بر حسب مدارهای فضایی الکترون‌ها توصیف می‌کنیم. الکترون‌ها می‌توانند نسبتاً آزادانه در این مدارها حرکت کنند، بدون اینکه برخوردی با الکترون‌های دیگر داشته باشند. قطر نوکلئون ها در مقایسه با اندازه هسته نسبتاً بزرگ است. در حالی که هر نوکلئون منفرد در خلال حرکتش در هر مدار می‌تواند برخوردهای متعددی با نوکلئون های دیگر داشته باشد، چگونه می‌توان نوکلئون ها را در مدارهای کاملاً مشخص در حرکت تصور کرد. در مدل پوسته‌ای، مسئله پتانسیل هسته‌ای را با بیان این فرض بنیادی حل می‌کنیم: حرکت هر نوکلئون منفرد را تحت تأثیر پتانسیل واحدی که نوکلئون های دیگر همه در تولید آن شرکت دارند، در نظر می‌گیریم. اگر هر یک از نوکلئون ها را به این نحو مورد بررسی قرار دهیم، آنگاه برای تمامی نوکلئون های موجود در هسته می‌توانیم ترازهای انرژی متناظر به زیر پوسته‌ها را به دست آوریم. وجود مدارهای فضایی مشخص را اصل طرد پائولی تعیین می‌کند. فرض می‌کنیم که در یک هسته سنگین، تقریباً در ته چاه پتانسیل، برخوردی بین دو نوکلئون صورت می‌گیرد و نوکلئون ها هنگام برخورد با هم انرژی تولید می‌کنند، اما اگر تمامی ترازهای انرژی تا تراز نوکلئون های ظرفیت پر شده باشد، هیچ راهی برای کسب انرژی نوکلئون نمی‌ماند؛ مگر آنکه مقدار انرژی به اندازه‌ای باشد که نوکلئون را به تراز ظرفیت برساند. سایر ترازهای نزدیک‌تر به تراز اولیه نوکلئون همگی پر هستند و نمی‌توانند یک نوکلئون اضافی را بپذیرند. انرژی لازم برای این انتقال که از ترازی نزدیک به تراز پایه به نوار ظرفیت انجام می‌شود، بیشتر از مقداری است که معمولاً در برخورد بین دو نوکلئون از یکی از آن‌ها به دیگری منتقل می‌شود. از این رو، چنین برخوردی بین نوکلئون ها نمی‌تواند صورت گیرد، و گویی نوکلئون ها در حرکت مداری شان با هیچ گونه ممانعتی از طرف نوکلئون های درون هسته روبرو نمی‌شوند [7].

2-3-2- پتانسیل مدل پوسته‌اینخستین گام در ارائه مدل پوسته‌ای، انتخاب پتانسیل هسته‌ای مناسب است. در آغاز دو نوع پتانسیل چاه نا متناهی و نوسانگر هماهنگ را در نظر می‌گیریم. همچنانکه در فیزیک اتمی دیدیم، واگنی هر تراز را تعداد نوکلئون هایی که می‌توانند در آن قرار بگیرند تعیین می‌کند. به عبارت دیگر، واگنی هر تراز برابر 2(l+1) می‌شود که در آن عامل (l+1) از طریق واگنی ml و عامل 2 از طریق واگنی ms حاصل شده است. نوترون‌ها و پروتون‌ها، چون ذرات نایکسان هستند، به طور جداگانه شمرده می‌شوند. بنابراین در تراز 1s علاوه بر 2 نوترون، 2 پروتون هم می‌تواند قرار گیرد. ظهور اعداد جادویی 2، 8 و 20 در هر دو نوع پتانسیل دل گرم کننده است، ولی در ترازهای انرژی بالاتر هیچ گونه ارتباطی با اعداد جادویی تجربی به چشم نمی خورد. به عنوان اولین گام در اصلاح مدل، سعی می‌کنیم پتانسیل واقع بینانه تری را انتخاب کنیم. چاه نا متناهی، بنابر دلایلی، تقریب خوبی برای پتانسیل هسته‌ای نیست: برای جدا کردن یک نوترون یا پروتون از هسته، با صرف انرژی کافی باید بتوانیم آن را از چاه خارج کنیم.دراین صورت،عمق چاه نمی نواند بی نهایت باشد. بعلاوه،لبه پتانسیل هسته‌ای نباید تیز باشد بلکه مثل توزیع بار و جرم هسته‌ای، مقدار پتانسیل بعد از شعاع میانگین، R، باید به آهستگی به سوی صفر میل کند. از طرف دیگر، پتانسیل نوسانگر هماهنگ هم لبه اش به اندازه کافی تیز نیست و انرژی جدایی آن نیز بی نهایت می‌شود. از این رو شکل واقع بینانه تر پتانسیل را به صورت بینابینی
(2- SEQ (2- * ARABIC 8)Vr=-V01+exp⁡[(r-R)a]انتخاب می‌کنیم که منحنی نمایش آن در شکل (2- SEQ شکل(2- * ARABIC 3):رسم شده است. پارامترهای R و a به ترتیب شعاع میانگین و ضخامت پوسته هستند، که مقادیرشان تقریباً برابر است با: R=1.25A13fm و a=0.524fm. عمق چاه V0چنان تنظیم می‌شود که برای انرژی‌های جدایی که از مرتبه 50Mev است، مقادیر مناسبی به دست می‌آید. ترازهای انرژی حاصل در شکل (2-4) نشان داده شده است. نتیجه پتانسیل جدید، در مقایسه با نوسانگر هماهنگ این است که واگنی l را در پوسته‌های جدید برطرف می‌کند. هر چه به طرف انرژی‌های بالاتر پیش می‌رویم، فاصله ایجاد شده در این مورد بیشتر می‌شود، به طوری که سرانجام این فاصله بن فاصله بین ترازهای نوسانگر هماهنگ قابل مقایسه خواهد شد. وقتی پوسته‌های حاصل را به ترتیب با 2(l+1) نوکلئون پر می‌کنیم، باز هم اعداد جادویی 2، 8 و 20 را به دست می‌آوریم، ولی اعداد جادویی بالاتر را نمی‌توان با این محاسبات پیدا کرد.

شکل(2- SEQ شکل(2- * ARABIC 4): پتانسیل هسته‌ای بین نوکلئون های هسته به همراه پتانسیل کولنی.2-3-3- پتانسیل اسپین- مداراین پتانسیل را چگونه می‌توانیم اصلاح کنیم تا همه اعداد جادویی را از آن بدست آوریم؟ چون نمی- خواهیم محتوای فیزیکی این مدل را از بین ببریم، مسلماً نمی‌توانیم تغییر زیادی در پتانسیل وارد کنیم. دلایل توجیهی معادله (2- SEQ (2- * ARABIC 9) را به عنوان یک حدس خوب پتانسیل هسته‌ای قبلاً ارائه کردیم. بنابراین، برای بهبود محاسبات لازم است که جمله‌های مختلفی به معادله (2- SEQ (2- * ARABIC 10) افزوده شود. در دهه 1940 تلاش‌های نافرجام زیادی برای یافتن این جمله تصحیحی صورت گرفت و سرانجام مایر، هاکسل، سوئس و جنسن در سال 1949 موفق شدند که با افزودن یک پتانسیل اسپین- مدار فاصله‌های مناسبی بین زیر پوسته‌ها به دست آورند [9,8].
در اینجا بار دیگر به فیزیک اتمی روی می‌آوریم، یکی دیگر از مفاهیم آن را به کار می‌گیریم. برهم کنش اسپین- مدار در فیزیک اتمی که مولد ساختار ریز مشاهده شده در خطوط طیفی است، از برهم کنش الکترومغناطیسی بین گشتاور مغناطیسی الکترون و میدان مغناطیسی ناشی از حرکت الکترون به دور هسته حاصل می‌شود. اثر این برهم کنش نوعاً خیلی کوچک و شاید از مرتبه یک قسمت از 105 قسمت فاصله بین ترازهای اتمی است.
هیچ برهم کنش الکترومغناطیسی از این نوع نخواهد توانست تغییرات محسوسی را در فواصل تراز هسته‌ای ایجاد و اعداد جادویی را باز تولید کند. با وجود این، در اینجا مفهوم نیروی اسپین- مدار هسته‌ای را به همان صورت نیروی اسپین- مدار اتمی، ولی نه از نوع الکترومغناطیسی آن، در نظر می‌گیریم. در واقع، به توجه به آزمایش‌های پراکندگی شواهدی قوی در دست است که حاکی از وجود نیروی اسپین- مدار در برهم کنش نوکلئون- نوکلئون است.
برهم کنش اسپین مدار را به صورت Vsorl∙s در نظر می‌گیریم، ولی شکل Vsor خیلی مهم نیست. این عامل l∙s است که باعث تجدید سازمان ترازها می‌شود. همچنان که در فیزیک اتمی دیدیم، حالت‌ها را در حظور برهم کنش اسپین- مدار بایر با تکانه زاویه‌ای کل j=l+s نشانه گذاری می‌کنیم. عدد کوانتومی اسپین هر نوکلئون برابر s=12 است، پس مقادیر ممکن برای عدد کوانتومی تکانه زاویه‌ای کل عبارت اند از j=l+12 و j=l-12 ( البته به استثنای مورد l=0 که در آن فقط مقدار j=12 مجاز است). مقدار انتظاری l∙s را با استفاده از یک شگرد متداول می‌توان محاسبه کرد. نخست مقدار j2=(l+s)2 را به دست می‌آوریم.
(2- SEQ (2- * ARABIC 11)j2=l2+2l∙s+s2(2- SEQ (2- * ARABIC 12)l∙s=12(j2-l2-s2)با قرار دادن مقادیر انتظاری در این معادله، رابطه زیر حاصل می‌شود.
(2- SEQ (2- * ARABIC 13)l∙s=12[jj+1-ll+1-ss+1]اکنون تراز 1f (l=3) را که دارای واگنی 2(l+1)=14 است را در نظر می‌گیریم. مقادیر ممکی برای j در این تراز عبارتند از l∓12=52, 72 بنابراین، ترازهای مورد نظر به صورت 1f52 و 1f72 خواهند بود. واگنی هر تراز برابر (2j+1) است که از مقادیر mj حاصل می‌شود. ( در حضور برهم کنش اسپین- مدار، ms و ml دیگر اعداد کوانتومی «خوب» به حساب نمی آیند و نمی‌توان آن‌ها را برای نمایاندن حالت‌ها یا شمردن وگنی ها به کار برد.) در این صورت، ظرفیت نوکلئونی تراز 1f52 برابر 6 و ظرفیت 1f72 برابر 8 می‌شود که از جمع آن‌ها مجددا 14 حالت به دست می‌آید ( تعداد حالت‌های ممکن باید حفظ شود، فقط نحوه دسته بندی آن‌ها را تغییر داده ایم ). فاصله انرژی بین حالت‌های 1f52 و 1f72 که زوج اسپین مدار یا دوتایه نامیده می‌شوند، متناسب با مقدار l∙s است. در واقع می‌توان اختلاف انرژی هر زوج حالتی را که در آن l>0 باشد را محاسبه کرد.
(2- SEQ (2- * ARABIC 14)l∙sj=l+12-l∙sj=l-12=12(2l+1)شکافتگی (یا فاصله) انرژی بین حالت‌ها با افزایش j افزایش می‌یابد. حال اگر اثر Vsor را به صورت منفی در نظر بگیریم، عضوی از زوج، که مقدار j در آن بزرگتر است در سطح پایین‌تر قرار خواهد گرفت. اثر این شکافتگی در نمودار شکل (4-2) نشان داده شده است. در اینجا، تراز 1f72 در فاصله (یا گاف) بین پوسته‌های دوم و سوم قرار می‌گیرد. ظرفیت این تراز برابر 8 نوکلئون است، بدین سان عدد جادویی 28 از آرایش جدید حاصل خواهد شد. شکافتگی های d و p به اندازه‌ای نیستند که تغییرات مهمی در دسته بندی ترازها به وجود آورند.) اثر مهم بعدی ناشی از جمله تصحیحی اسپین- مدار را در تراز 1g می‌بینیم. حالت 1g9/2 آنقدر به پایین رانده می‌شود که در پوسته اصلی پایین‌تر قرار می‌گیرد، و وقتی ظرفیت 10 نوکلئونی آن به پوسته 40 نوکلئونی قبلی افزوده می‌شود، عدد جادویی 50 به دست می‌آید. این اثر روی پوسته‌های اصلی دیگر نیز تکرار می‌شود. در هر یک از این موارد، عضو کم انرژی تر زوج اسپین- مدار از پوسته بعدی به پوسته قبلی تنزل می‌کند، و بدین ترتیب باقیمانده اعداد جادویی هم طبق انتظار به دست می‌آید.
مدل پوسته‌ای با وجود سادگی‌اش، در توضیح اسپین و پاریته حالت پایه تقریباً تمام هسته‌ها موفق بوده است، و آن‌ها را به خوبی باز تولید می‌کند. برای گشتاورهای دوقطبی مغناطیسی و چهار قطبی الکتریکی آن‌ها نیز توضیحی نسبتاً موفق (و رضایت بخش) به دست می‌دهد. کاربرد خاصی از مدل پوسته‌ای را که در اینجا در نظر گرفتیم، مدل ذره‌ای خیلی مستقل می‌گویند. فرضیه اساسی مدل ذره‌ی خیلی مستقل این است که به استثنای یکی از نوکلئون ها، بقیه نوکلئون های موجود در هسته تزویج شده‌اند و خواص هسته از همین نوکلئون تزویج نشده منفرد ناشی می‌شود. روشن است که چنین برخوردی مسئله را بیش از حد ساده می‌کند، و بهتر است که در تقریب بعدی تمام ذرات موجود در زیر پوسته پر نشده را در نظر بگیریم [7].
32258005924179c0c
22771105925449b0b
14839955914126a0a

شکل(2- SEQ شکل(2- * ARABIC 5): ترازهای انرژی هسته‌ها. (a با در نظرگرفتن پتانسیل نوسانگر هماهنگ ساده . (b با در نظر گرفتن چاه پتانسیل با لبه‌های گرد شده. (c چاه پتانسیل با لبه گرد شده همراه با برهم کنش اسپین- مدار.
centercenterفصل سوم
00فصل سوم

3- فرایند تبدیل داخلی3-1- خواص دینامیک هسته‌هاهمان طوریکه اتم‌ها جدول مندلیف را با نظم خاصی پر می‌کنند و می‌توانند حالت‌های برانگیخته داشته باشند، پیش بینی می‌شد که هسته‌ها هم بتوانند دارای ترازهای انرژی و حالت‌های برانگیخته باشند. با این تفاوت که هسته‌ها در هنگام گذار از حالت‌های برانگیخته به حالت پایه پرتوهای گاما تابش می‌کنند. از طرفی هسته‌ها می‌توانند با گسیل ذرات آلفا و بتا یا از طریق بمباران و یا سایر واکنش‌های هسته‌ای به یکدیگر تبدیل شوند. خواص دینامیک هسته‌ها را می‌توان با گذار از یک حالت اولیه به حالت نهایی مشخص کرد.
با مطالعه گسیل گاما و فرایند رقیب آن یعنی تبدیل داخلی، تعیین اسپین و پاریته حالات برانگیخته امکان پذیر می‌شود. یک هسته برانگیخته همواره می‌تواند با گسیل تابش الکترومغناطیسی یا تبدیل داخلی به حالت‌های کم انرژی تر واپاشی کند. از طرفی هسته‌ها می‌توانند با گسیل ذرات α و β، یا از طریق بمباران و یا سایر واکنش‌های هسته‌ای به یک دیگر تبدیل شوند. در تمام برهم کنش‌های بالا، اصول پایستگی انرژی، اندازه حرکت خطی، اندازه حرکت زاویه‌ای، بار الکتریکی و تعداد نوکلئون ها برقرار است. اصول پایستگی فوق توانسته است در کشف مجهولات به دانشمندان کمک شایانی کند. مانند کشف نوترینو که وجود آن به کمک پایستگی انرژی و اندازه حرکت خطی پیش بینی و در آزمایشگاه تایید شد.

3-1-1- واپاشی آلفاییتا کنون بیش از 1000 هسته تولید شده و در آزمایشگاه مورد مطالعه قرار گرفته است. هر چند فقط کمتر از 300 تا از این هسته‌ها پایدارند و بقیه آن‌ها رادیواکتیو هستند. هسته‌های پایدار فقط در یک باند بسیار کوچک در نمودار N-Z اتفاق می‌افتد.
ذرات آلفا به عنوان کم نفوذترین تابش‌هایی که از مواد طبیعی گسیل می‌شود، شناسایی شده‌اند.
در سال 1909 رادرفورد نشان داد همانطور که حدس زده می‌شد، ذرات آلفا واقعاً از هسته‌های هلیم تشکیل شده‌اند. تعداد زیادی از هسته‌های سنگین، مخصوصاً هسته‌های مربوط به سری‌های رادیواکتیو طبیعی با گسیل آلفا واپاشی می‌کنند. گسیل هر نوع نوکلئون دیگر در فرایند واپاشی رادیواکتیو خود به خود به ندرت اتفاق می‌افتد. به عنوان مثال گسیل دوتریوم در فرایند واپاشی های طبیعی ملاحظه نشده است. بنابراین باید دلیل خاصی برای انتخاب گسیل آلفا نسبت به سایر مدهای واپاشی وجود داشته باشد. واپاشی آلفایی در هسته‌های سنگین به طور فزاینده‌ای اهمیت پیدا می‌کند، زیرا آهنگ افزایش نیروی دافعه کولنی که به صورت تابعی از z2 افزایش می‌یابد از نیروی بستگی هسته که تقریباً متناسب با A افزایش می‌یابد بیشتر است.
ذره آلفا به دلیل ساختار بسیار پایدار و نسبتاً مقیدش، در مقایسه با اجزای تشکیل دهنده‌اش، جرم نسبتاً کمی دارد. بنابراین در مواردی که امیدواریم محصولات فروپاشی تا جایی که امکان دارد سبک و انرژی آزاد شده حداکثر مقدار را داشته باشد، باید گسیل این ذره را انتظار داشته باشیم. اغلب هسته‌های با A>190 (و بسیاری از هسته‌ها با 150<A<190) از لحاظ انرژی در برابر گسیل آلفا ناپایدارند ولی فقط نیمی از آن‌ها بقیه شرایط را نیز دارا هستند [10].
3-1-2- واپاشی بتازاواپاشی بتا متداول‌ترین نوع واپاشی پرتوزا است. در هسته‌های سبک‌تر احتمال واپاشی α بسیار کم است. این هسته‌ها برای رسیدن به پایداری یک یا چند شکل از واپاشی بتا را متحمل می‌شوند. گسیل الکترون‌های منفی معمولی از هسته، یکی از اولین پدیده‌های واپاشی رادیواکتیوی بود که مشاهده شد. فرایند معکوس گیراندازی الکترون مداری توسط هسته، تا سال 1938 مشاهده نشده بود در این سال آلوارز پرتوهای x مشخصه گسیل شده در اثر پر شدن جای خالی الکترون‌های گیراندازی شده را آشکارسازی کرد. در سال 1934 ژولیو- کوری برای اولین بار فرایند گسیل الکترون مثبت (پوزیترون) در فرایند رادیواکتیو را، دو سال پس از کشف پوزیترون در پرتوهای کیهانی، مشاهده کردند. سه فرایند فوق ارتباط نردیک با هم دارند و تحت عنوان مشترک واپاشی بتازا رده بندی می‌شوند [11].
3-1-3- واپاشی گامابیشتر واپاشی های آلفازا و بتازا، و در حقیقت بیشتر واکنش‌های هسته‌ای، هسته نهایی را در حالت برانگیخته باقی می‌گذارند. این حالات برانگیخته با گسیل یکی دو پرتو گاما که همان فوتون های تابش الکترومغناطیس مانند پرتوهای x یا نور مرئی هستند، به سرعت به حالت پایه واپاشیده می‌شوند. انرژی پرتوهای گاما در گسترهMev 0.1 تاMev 10 هستند. محدوده طول موج آن‌ها بین 104 تا fm 100 است. واپاشی گامازا علاوه بر اینکه تایید کننده مدل لایه‌ای برای هسته‌ها است، اطلاعات خوبی از ساختار هسته و طیف‌های انرژی آن نیز در اختیار ما قرار می‌دهد. این پرتوها به دلیل قدرت نفوذ بالا و جذب و پراکندگی ناچیز در هوا به خوبی قابل آشکارسازی هستند. انرژی پرتوهای گاما با دقت زیادی قابل اندازه گیری هستند. به علاوه مطالعه گسیل گاما و فرایند رقیب آن یعنی تبدیل داخلی، تعیین اسپین و پاریته حالات برانگیخته را امکان پذیر می‌سازد [12].
3-1-4- تبدیل داخلیفرایند تبدیل داخلی یک فرایند الکترومغناطیسی است که با گسیل γ رقابت می‌کند. در این مورد، میدان‌های چند قطبی الکترومغناطیسی هسته سبب گسیل فوتون نمی‌شوند، بلکه برهم کنش میدان‌ها با الکترون‌های اتمی باعث گسیل یکی از الکترون‌های اتم می‌شود (در این حالت هسته با الکترون از طریق فوتون های مجازی بجای فوتون های واقعی برهم کنش دارد). بر خلاف واپاشی بتازا، الکترون در فرایند واپاشی خلق نمی‌شود، بلکه الکترونی است که از قبل در یکی از مدارهای اتم وجود داشته است. به این دلیل، آهنگ واپاشی تبدیل داخلی با تغییر محیط شیمیایی و در نتیجه تغییر مدارهای اتمی می‌تواند اندکی تغییر کند. اما باید توجه کرد که این فرایند دو مرحله‌ای نیست که در آن ابتدا فوتون توسط هسته گسیل شود و سپس الکترون اتمی را با فرایندی مشابه پدیده فوتوالکتریک بیرون براند، احتمال چنین فرایندی بسیار ناچیز است.
در این حالت انرژی هسته‌ای ∆E=Ei-Ef به یک الکترون اتمی منتقل می‌شود و آنرا با انرژی جنبشی:
(3- SEQ (3- * ARABIC 1)Te=Ei-Ef-Bnبیرون می‌اندازد، که در آن Bn انرژی بستگی الکترون در لایه اتمی است که الکترون از آن بیرون انداخته شده است. به علت اینکه انرژی بستگی الکترون از مداری به مدار دیگر فرق می‌کند، حتی برای یک گذار معین ∆E هم الکترون‌های تبدیل داخلی دارای انرژی‌های متفاوتی خواهند بود. بدین سان، طیف الکترون چشمه ای که یک گامای منفرد گسیل می‌کند از مولفه های مختلف تشکیل شده است؛ و این مولفه ها بر خلاف الکترون‌هایی که در واپاشی بتازا گسیل می‌شوند انرژی‌های گسسته ای دارند. بیشتر چشمه های رادیواکتیو، هم الکترون‌های واپاشی بتازا و هم الکترون‌های تبدیل داخلی گسیل می‌کنند، و جدا کردن قله های ناپیوسته الکترون‌های تبدیل داخلی که روی طیف پیوسته β قرار دارند کار نسبتاً آسانی است. شکل (3-1).

شکل(3- SEQ شکل(3- * ARABIC 1): نمونه‌ای از طیف الکترون که ممکن است از یک چشمه رادیواکتیو گسیل شود. چند قله ناپیوسته تبدیل داخلی روی زمینه ناپیوسته واپاشی بتازا قرار دارند.طبق معادله (3- SEQ (3- * ARABIC 2) ، فرایند تبدیل داخلی انرژی آستانه‌ای برابر انرژی بستگی در یک مدار خاص دارد؛ در نتیجه الکترون‌های تبدیل با توجه به پوسته الکترونی که از آن سرچشمه گرفته‌اند با K و L و M و ... مشخص می‌شوند که متناظر با اعداد کوانتومی اصلی n=1,2,3,… هستند. بعلاوه اگر توان تفکیک بسیار زیاد باشد، حتی زیر ساختارهای متناظر با تک تک الکترون‌های هر پوسته را ملاحظه خواهیم کرد. برای مثال پوسته L (n=2 ) دارای اربیتال های اتمی 2s1/2، 2p1/2 و 2p3/2 است؛ الکترون‌های ناشی از این پوسته‌ها به ترتیب الکترون‌های تبدیل LI، LII و LIII نامیده می‌شوند.
پس از فرایند تبدیل، جای الکترون گسیل شده در یکی از پوسته‌های اتم خالی می‌ماند که آن را تهیجا می‌گویند. این تهیجا به سرعت توسط الکترون‌های پوسته‌های بالاتر پر می‌شود، و در نتیجه گسیل پرتوx مشخصه را نیز همراه الکترون‌های تبدیل داخلی مشاهده می‌کنیم.
شکل (3-2)، طیف الکترون 203Hg را نشان می‌دهد. در این شکل طیف پیوسته β و خطوط الکترونی، در انرژی‌های محاسبه شده، قابل مشاهده‌اند.
یکی از نکاتی که در این شکل کاملاً مشهود است، شدت متغیر الکترون‌های تبدیل در واپاشی است. این تغییرات به خصوصیت چند قطبی میدان تابش بستگی دارد؛ در حقیقت اندازه گیری احتمالات نسبی گسیل الکترون تبدیلی یکی از راه‌های اصلی تعیین مشخصات چند قطبی است.
در بعضی موارد، تبدیل داخلی بر تابش گاما ارجحیت دارد؛ در بقیه موارد ممکن است در مقایسه با گسیل گاما کاملا˝ ناچیز باشد. به عنوان یک قانون کلی، در محاسبه احتمال واپاشی گاما باید تصحیح تبدیل داخلی انجام شود. یعنی اگر نیمه عمر (t12∝1λ) یک تراز خاص را بدانیم، احتمال واپاشی کل λt ( برابر0.693t12 ) دارای دو مولفه است، یکی (λγ) ناشی از گسیل گاما و دیگری (λe) ناشی از تبدیل داخلی
(3- SEQ (3- * ARABIC 3)λt=λe+(λγ)واپاشی تراز از طریق فرایند ترکیبی (گسیل گاما و تبدیل داخلی) خیلی سریع‌تر از گسیل گاما به تنهایی خواهد بود. ضریب تبدیل داخلی α را به صورت زیر تعریف می‌کنیم:
(3- SEQ (3- * ARABIC 4)α=λeλγضریب تبدیل داخلی α، احتمال گسیل الکترون را نسبت به گسیل گاما نشان می‌دهد، که بزرگی آن از مقادیر بسیار کوچک (تقریباً صفر) تا مقادیر بسیار بزرگ تغییر می‌کند. بدین ترتیب، احتمال کلی واپاشی به صورت زیر است
(3- SEQ (3- * ARABIC 5)λt=λγ(1+α)
شکل(3- SEQ شکل(3- * ARABIC 2): طیف الکترون حاصل از واپاشی 203Hg در تصویر بالا، طیف پیوسته بتا همراه با خطوط تبدیل K، L و M تفکیک نشده قابل مشاهده است. در تصویر میانی طیف تبدیل با تفکیک بیشتر نشان داده شده است؛ خطوط L و M به خوبی جدا شده اند و حتی L III نیز تفکیک شده است. در تفکیک خیلی بهتر شکل پایینی، خطوط LI وLII به خوبی از هم جدا شده‌اند.اگر α را ضریب تبدیل داخلی کل بدانیم، آنگاه می‌توانیم ضریب‌های جزئی مربوط به پوسته‌های اتمی مختلف را به صورت زیر در نظر می‌گیریم:
(3- SEQ (3- * ARABIC 6)λt=λγ(1+αK+αL+αM+…)و در نتیجه
(3- SEQ (3- * ARABIC 7)α=αK+αL+αM+…که با در نظر گرفتن زیر پوسته‌ها، می‌توانیم آن را به صورت زیر بنویسیم:
(3- SEQ (3- * ARABIC 8)αL=αLI+αLII+αLIIIو برای سایر پوسته‌ها هم می‌توانیم روابط مشابهی را بنویسیم.
اهمیت تبدیل داخلی در مطالعات مربوط به ساختار هسته در این واقعیت نهفته است که به ازای یک اختلاف انرژی مفروض Ei-Ef و عدد اتمی Z هسته واپاشنده، ضریب تبدیل محسوسا˝ به نوع و مرتبه قطبیت گذار الکترومغناطیسی متناظر بستگی دارد [14,13].
3-2- محاسبه ضریب تبدیل داخلیهمانطور که گفته شد فرایند تبدیل داخلی یک فرایند الکترومغناطیسی است که در آن هسته با بیرون انداختن یک الکترون اتمی به جای گسیل گاما از حالت برانگیخته خارج می‌شود. الکترون‌هایی را که به این صورت بیرون انداخته شده را الکترون‌های تبدیل می‌نامند. ضریب تبدیل داخلی به عدد اتمی هسته ، انرژی و خصوصیات چند قطبی بودن گذار بستگی دارد. بنابراین مطالعه ما کمک بزرگی در بررسی سطوح انرژی هسته است.
در اینجا یکی از ساده‌ترین موارد را بررسی می‌کنیم. فرض می‌کنیم هسته در یک حالت برانگیخته است که می‌تواند با گسیل تابش E1 به حالت پایه برود. هسته را می‌توان با یک دوقطبی الکتریکی با فرکانس ω مقایسه کرد. حضور این دوقطبی ممکن است باعث القای گذارهایی از حالت پایه اتم به حالت برانگیخته شود. به طور خاص، الکترون‌های K، که در حالت 1S هستند، می‌توانند با تابش دو قطبی به حالت p بروند. برای محاسبه احتمال این گذار از قانون طلایی فرمی استفاده می‌کنیم.
احتمال این گذار طبق قانون دوم فرمی به صورت زیر است:
(3- SEQ (3- * ARABIC 9)w=2πℏMif2ρ(Ef)می‌خواهیم المان‌های ماتریسی Mif و چگالی حالت‌های نهایی قابل دسترس ρ(Ef) را محاسبه کنیم.
تابع موج اولیه الکترون در حالت 1s.
(3- SEQ (3- * ARABIC 10)ᴪi(r,t)=ui(r)exp⁡(-iEiℏt)و ویژه تابع حالت نهایی الکترون به صورت زیر است:
(3- SEQ (3- * ARABIC 11)ᴪf(r,t)=uf(r)⁡exp(-iEfℏt)گذار از حالت اولیه به حالت نهایی توسط میدان الکتریکی هسته القا می‌شود، که به وسیله ممان دوقطبی الکتریکی P که در راستای محور z و با فرکانس ω با زمان تغییر می‌کند توصیف می‌شود. پتانسیل الکتریکی این دو قطبی به صورت زیر است:
(3- SEQ (3- * ARABIC 12)Vr,t=p0cosθr2cos ωt=p0cosθr212(eiωt+e-iωt)در اینجا θ زاویه بین r و محور z است. المان‌های ماتریسی گذارهای القا شده به این صورت است:
(3- SEQ (3- * ARABIC 13)Mif=eᴪf*(r,t)Vᴪi(r,t)dτMif دارای بزرگی قابل توجهی است، فقط اگر
(3- SEQ (3- * ARABIC 14)Ei-EF=ℏω(3- SEQ (3- * ARABIC 15)uf=Ncos θkr12j32(kr)و برای kr بزرگ
(3- SEQ (3- * ARABIC 16)uf=-N cosθ2πk2r212coskrبا در نظر گرفتن سیستم در یک کره بسیار بزرگ به شعاع R می‌توانیم ویژه تابع آن را تعیین می‌کنیم.
(3- SEQ (3- * ARABIC 17)N=k(34R)1/2برای تابع موج اولیه، تابع موجی شبیه به تابع موج هیدروژن را در نظر می‌گیریم:
(3- SEQ (3- * ARABIC 18)ui=1π1/2(za0)3/2exp-zra0 with a0=ℏ2me2سپس المان ماتریسی به صورت زیر است:
(3- SEQ (3- * ARABIC 19)Mif=p0cosωtek34R121π12za032×0∞exp-zra0 cosθr2 J32krkr12cosθdτ=p0cosωt(ωt)1/2ek(za0)3/2I
با
(3- SEQ (3- * ARABIC 20)I=0∞exp-zra0 J32krkr12drچگالی حالت‌های نهایی باید فقط به حالت‌های p محدود باشد. از شرط ufR=0، شرط کوانتیزیشن به صورت زیر است:
(3- SEQ (3- * ARABIC 21)kR=(n+12)πو n عدد انتگرال گیری است. بنابراین در فاصله k تا ∆k داریم:
(3- SEQ (3- * ARABIC 22)R∆kπ=∆Nو از این معادله داریم:
(3- SEQ (3- * ARABIC 23)ρ=dNdE=Rℏπϑبا ترکیب معادلات (3- 19) و (3- 23) برای دو تا الکترون‌های K بدست می‌آوریم:
(3- SEQ (3- * ARABIC 24)λe=14πℏp02e2k23(za0)3I2ϑℏاز طرفی دیگر λγ با این معادله داده می‌شود:
(3- SEQ (3- * ARABIC 25)λγ=13p02ω3ℏc3با توجه به معادله (3-4) ضریب تبدیل داخلی به صورت زیر است:
(3- SEQ (3- * ARABIC 26)α=4πℏk2e2ϑ(za0)3c3ω3I2از a0z≫1k، این به این معنی است که انرژی گذار در مقایسه با انرژی بستگی الکترون خیلی بزرگ است. همچنین فرض می‌کنیم الکترون خارج شده نسبیتی نیست. برای سازگاری فرض می‌کنیم که برای الکترون mv22≅(ℏk)22m≅ℏω.
انتگرال I با در نظرگرفتن این فرض که e-zra0=1 و داریم:
(3- SEQ (3- * ARABIC 27)I=0∞J32krdrkr12=(2πk2)1/2با جایگذاری در معادله (3- SEQ (3- * ARABIC 28) و با در نظر گرفتن تقریب ذکر شده در بالا داریم:
(3- SEQ (3- * ARABIC 29)αk=8ℏe2m12(2ℏω)12za03c3ω3(3- SEQ (3- * ARABIC 30) =12z3(e2ℏc)4(2mc2ℏω)7/2این فرمول تحت فرضیه‌های ذکر شده برای تابش دوقطبی است، و برای تابش El، به صورت زیر بدست می‌آید:
(3- SEQ (3- * ARABIC 31)αkl=z3(e2ℏc)4ll+1(2mc2ℏω)l+(5/2)ضریب تبدیل داخلی α به عدد اتمی، اتمی که فرایند در آن رخ می‌دهد، انرژی گذار و چند قطبی بودن آن بستگی دارد. به طور کلی نتایج زیر برای چند قطبی‌های الکتریکی (E) و مغناطیسی (M) بدست می‌آید.
(3- SEQ (3- * ARABIC 32)αEL≅Z3n3LL+1e24πℏε0c42mec2EL+52(3- SEQ (3- * ARABIC 33)αML≅Z3n3e24πℏε0c42mec2EL+32در این روابط Z عدد اتمی مربوط به اتمی است که در آن تبدیل داخلی صورت گرفته است و n عدد کوانتومی اصلی تابع موج الکترون مقید است؛ عامل (Zn)3 ناشی از جمله ᴪi.e(0)2 است که در آهنگ تبدیل ظاهر می‌شود. عامل بی بعد e24πε0ℏc همان ثابت ساختار ریز با مقداری نزدیک به 137 / 1 است.
این نحوه برخورد با ضرایب تبدیل تقریبی است، زیرا الکترون را باید نسبیتی در نظر گرفت ( انرژی‌های گذار نوعاً از مرتبه 0.5 تا Mev1 هستند). اما همین معادلات تعدادی از خصوصیات ضرایب تبدیل را مشخص می‌کند.
1- این ضرایب متناسب با z3 افزایش می‌یابند، و در نتیجه فرایند تبدیل در هسته‌های سنگین مهم‌تر از هسته‌های سبک است.
2- ضریب تبدیل با افزایش انرژی گذار به سرعت کاهش می‌یابد.( برعکس، احتمال گسیل γ که با افزایش انرژی به سرعت افزایش می‌یابد.)
3- ضرایب تبدیل با افزایش مرتبه چند قطبی به سرعت افزایش می‌یابند. در حقیقت، برای مقادیر زیادتر L، گسیل الکترون تبدیل ممکن است بسیار محتمل‌تر از گسیل γ باشد.
4- ضرایب تبدیل برای پوسته‌های اتمی بالاتر ( 1n> ) متناسب با 1/n3 کاهش می‌یابد. بنابراین، برای گذار معین به تقریب می‌توان انتظار داشت αKαL≅8 باشد.
بنابراین انتظار داریم که در هسته‌های سنگین برای گذارهای کم انرژی و چند قطبی‌های مرتبه بالا با ضرایب تبدیل نسبتاً بزرگ پوسته K، و در سایر موارد( پوسته‌های اتمی بالاتر، انرژی‌های گذار بیشتر، هسته‌های سبک‌تر و چند قطبی‌های مرتبه پایین‌تر) با مقادیر کوچک‌تر روبرو شویم.
باید متذکر شد که ضرایب مربوط به گذارهای الکتریکی و مغناطیسی به طور قابل ملاحظه‌ای با هم تفاوت دارند؛ بنابراین با اندازه گیری α می‌توانیم پاریته نسبی حالات هسته‌ای را تعیین کنیم. در یک کاربرد دیگر هم استفاده از تبدیل داخلی مهم است، و آن مشاهده گذارهای E0 است که از طریق تابش الکترومغناطیسی ممنوع اند. گذار E0 مخصوصاً در واپاشی های از حالات اولیه 0+ به حالات نهایی 0+ که با هیچ فرایند مستقیم دیگری امکان پذیر نیست، حائز اهمیت است[16,15] .
البته باید توجه داشت که برای همه گذارها از حالت اولیه به حالت نهایی یک فرایند الکترومغناطیسی دیگر نیز امکان پذیر است که در آن هسته برانگیخته به شکل یک زوج الکترون- پوزیترون ظاهر می‌شود که به آن تولید زوج می‌گویند. اما احتمال این فرایند بسیار کم و از مرتبه 10-4 گسیل گاما است.
centercenterفصل چهارم
00فصل چهارم

4- مدل کوارکی و نگرشی جدید به فرایند تبدیل داخلی4-1- مقدمهدر مدل ساختار جمعی هسته‌ها، هسته مانند یک جسم واحد در نظر گرفته شده، مانند یک قطره مایع، بعضی از خواص هسته‌ها نیز بر اساس همین فرض استخراج شده است، که در فصل دوم به آن‌ها اشاره شد. از طرفی در مدل پوسته‌ای اجزاء تشکیل دهنده هسته‌ها یعنی پروتون‌ها و نوترون‌ها نیز در نظر گرفته شده است. این مدل با در نظر گرفتن برهم کنش هسته‌ای بین نوکلئونها در توجیه بعضی خواص هسته‌ای به خوبی موفق بوده است. مدل‌های هسته‌ای دیگری در طی سالیان اخیر، به منظور توصیف جنبه‌های متفاوت هسته‌ها، توسط گروه‌های متعددی ارائه شده است. مانند مدل آلفا- ذره‌ای هسته‌ای. یکی دیگر از این مدل‌ها، مدل شبه کوارکی است.
مدل شبه کوارکی علاوه بر اینکه پروتون‌ها و نوترون‌ها را در تشکیل هسته در نظر می‌گیرد، کوارکهای سازنده نوکلئونها را نیز در نظر می‌گیرد. با توجه به نزدیکی بسیار زیاد نوکلئونها در هسته‌ها، قطعاً کوارکهای سازنده آن‌ها نیروی شدیدی به همدیگر وارد می‌سازند، که باعث می‌شود نوکلئونها، به صورت لحظه‌ای هم که باشد، فروپاشیده شوند و سپس نوکلئونهای جدید تشکیل گردند. این پروسه می‌تواند مکرراً در هسته در حال اتفاق باشد. گرچه در این شرایط محیط هسته را نمی‌توان یک محیط با کوارکهای آزاد در نظر گرفت. با این حال فرض می‌شود که هسته را بتوان با تقریب یک محیط کوارکی در نظر گرفت که شدیداً با هم برهمکنش دارند. گرچه در این مدل نظریه واحدی که بتواند برخی از خواص هسته‌ها را یکجا ارائه دهد وجود ندارد، با این حال با استفاده از این مدل می‌توان اعداد جادویی هسته را بدست آورد. همچنین در این مدل فرمولی برای انرژی بستگی هسته‌ها ارائه شده که هم زمان هم کوارکهای سازنده هسته و هم نوکلئونهای سازنده هسته را در نظر گرفته است.
4-1-1- پلاسمای کوارک- گلئونی و سرچشمه اعداد جادوییدر فیزیک هسته‌ای یک عدد جادویی تعداد نوکلئونهایی ( پروتون‌ها و نوترون‌ها ) است که درون پوسته‌های کامل مربوط به هسته‌های اتمی قرار می‌گیرند. این اعداد و وجود آن‌ها اولین بار توسط السیسر در سال 1933 [17] مورد توجه قرار گرفته است. چیزی که باعث جادویی بودن این اعداد می‌شود، خواصی است که هسته‌ها با این تعداد پروتون‌ها و نوترون‌ها دارا می‌باشند. از جمله این خواص می‌توان به پایداری هسته‌های جادویی، فراوانی بیشتر هسته‌های جادویی در عالم و اینکه جرم هسته‌های جادویی از مقدار پیش بینی شده توسط فرمول نیمه تجربی جرم به طور قابل توجهی کمتر است، اشاره نمود.
در این مدل فرض بر این است که در محیط ترمودینامیکی پلاسمای کوارک- گلئونی، کوارکهای تقریباً مجزا سعی در تشکیل نوکلئونها دارند؛ و اگر بپذیریم که بیشینه بی نظمی و بیشترین مقدار ترکیب‌ها رخ می‌دهد، آنگاه با در نظر گرفتن سیستم‌های جداگانه‌ای شامل یک کوارک مرکزی و تعداد 2، 3، 4، 5، 6، 7 و نهایتاً 8 کوارک اطراف به حالت‌های بیشینه‌ای برابر با اعداد جادویی می‌رسیم [19,18]. اگر پلاسمای کوارک- گلئونی را به عنوان یک محیط ترمودینامیکی فرض نماییم، بایستی تحقیق نمود این محیط ترمودینامیکی که همانند هر محیط دیگر از این نوع به سمت بیشینه بی نظمی پیش می‌رود، چگونه به تعادل نزدیک می‌شود. حالت ترمودینامیکی از کوارکها را در نظر می‌گیریم که این کوارکها تقریباً آزادانه در حال حرکت می‌باشند. اگر دقیق‌تر به محیط پلاسمای کوارک- گلئونی نگاه کنیم، می‌بینیم که در سوپ کوارک- گلئونی آزادی محض وجود ندارد.

شکل(4- SEQ شکل(4- * ARABIC 1): محیط یک پلاسمای کوارک- گلئونی
در شکل (4-1) یک محیط پلاسمای کوارک- گلئونی فرضی رسم شده است، که کوارکها همانند ذرات یک گاز ایده آل در فضا پراکنده‌اند. در این محیط فرضی یک کوارک را در نظر بگیرید که جهت تشکیل یک پروتون یا نوترون تلاش می‌کند. هر کوارک با گیر انداختن دو کوارک دیگر تشکیل یک نوکلئون می‌دهد. در این فضای رقابتی میان کوارک ها حالات مختلفی از تشکیل یک نوکلئون می‌تواند روی دهد. به عنوان مثال به شکل پایین توجه کنید.

شکل(4- SEQ شکل(4- * ARABIC 2): شبکه مکعبی پلاسمای کوارک- گلئونیدر شکل (4-2) کوارکها همانند یک محیط شبکه‌ای در اطراف یکدیگر قرار دارند. کوارک u مرکزی برای تشکیل یک نوترون در حال تلاش است، و برای این امر باید دو کوارک d را گیر اندازد. اگر اینطور فرض کنیم که از تمام کوارکهای اطراف این کوارک u دو کوارک d باشد، آنگاه رقابت دو کوارک رقابت ساده‌ای است. در نگاه اول یک حالت ممکن بیشتر وجود ندارد و آن هم حالت udd است. در نگاه دقیق‌تر دو حالت وجود دارد، یعنی u قرمز به همراه d1 آبی و d2 سبز یا u قرمز به همراه d1 سبز و d2 آبی. پس دو حالت به دست می‌آید. حال شرایطی را در نظر بگیرید که سه کوارک d در اطراف کوارک u جهت گیوند با آن رقابت می‌کنند. در چنین شرایطی ترکیبات ممکن عبارتند از: ud1d2، ud1d3 و ud2d3. اگر رنگ کوارک ها را هم منظور کنیم 6 حالت ممکن به وجود می‌آید که از این 6 حالت با 2 حالت قبل روی هم 8 حالت را نشان می‌دهد. ذکر این نکته ضروری است که هر کدام از این حالت‌ها می‌تواند تشکیل نوکلئون بدهد ولی حداکثر حالاتی که می‌تواند با 3 کوارک اتفاق بیفتد 8 حالت است. مشابه حالت 3 کوارکی عدد به دست آمده برای حالت 4 کوارکی برابر 20 می‌باشد. با در نظر گرفتن 5 کوارک d اطراف کوارک مرکزی با استدلالی مشابه استدلال بالا 20 حالت جدید به دست خواهد آمد که با مجموع قبلی عدد 40 برای عدد جادویی بعدی بدست خواهد آمد، در حالی که عدد جادویی بعدی 28 خواهد بود. از آنجا که شرایط محیط کوارک – گلئونی بیشتر به یک سوپ کوارک- گلئونی شبیه است، مطابق تلاش‌های صورت گرفته در نظریه کرمودینامیک کوانتومی شبکه‌ای این امر تقریباً محرز است که نیروی جاذبه بین کوارکها کاملاً از بین نمی‌رود. بنابراین اگر هر کوارک d ( اطراف کوارک u مرکزی) را نزدیک به کوارکهای دیگر فرض کنیم، آنگاه به عنوان مثال اگر کوارک d2 توسط u جذب شود. ناگزیر کوارک پنجمی که بیشترین نیروی جاذبه با d2 را دارد و نام آن را d2َ می گذاریم، وارد کار می‌شود که آن را کوارک "تحمیل شده" می نامیم. پس هر 4 کوارک d هنگام جذب توسط کوارک u مرکزی می‌توانند کوارکی را در سطحی فراتر از کوارک های اولیه به واسطه فاصله نزدیک و یا اینکه بازنشدگی کامل از هم، به سیستم تحمیل نمایند، که این حالت جدید را چنین می نویسیم:
ud1d1َ , ud2َ , ud3d3َ , ud4d4َ
که به همراه رنگ‌های مختلف آن 8 حالت جدید به وجود می‌آید. این 8 حالت و 20 حالت قبل 28 حالت در اختیار ما می‌گذارد. این موضوع که توسط 4 کوارک d دو عدد مجزای 20 حالته و 28 حالته تولید شده است. به طور مشابه برای 5، 6 و 7 کوارک d اعداد 50، 82 و 126 و نهایتاً با 8 کوارک عدد 184 به دست می‌آید. شواهدی مبنی بر وجود چنین عدد جادویی وجود دارد [20]. کار با بیش از 8 کوارک مستلزم عبور از سطح اول به سطح دوم است (چون در یک شبکه مکعبی تنها 8 کوارک در یک فاصله برابر از کوارک مرکزی قرار دارند)، که این موضوع یعنی جاذبه‌ای که سطح اول و دوم را کاملاً تحت تأثیر قرار می‌دهد و حالت‌های اجباری و تحمیلی، سطح سوم را نیز ایجاد می‌نماید و یا می‌توان از شبکه‌های هندسی دیگری با بیش از 8 کوارک استفاده کرد.

4-1-2- انرژی بستگی هسته‌ها از دیدگاه مدل شبه کوارکیدر مدل پلاسمای کوارک- گلئونی ارائه شده [22,21] دیدگاه جدیدی برای هسته ارائه شده است. در این دیدگاه، هسته شامل پلاسمای سوپ مانند از کوارکها و گلئونها می‌باشد که می‌توان خواص هسته‌ها را با توجه به کوارکهای محتوی به جای نوکلئونها بدست آورد.
به منظور به دست آوردن انرژی بستگی هسته‌ای، با توجه به نگاه شبه کوارکی به نکات زیر توجه می‌کنیم:
1- برای تشکیل هسته‌ها باید انرژی بستگی مثبت باشد.
2- انرژی بستگی مثبت از مرتبه یک درصد انرژی جرم سکون کوارک های درون هسته mqc2 می‌باشد که q نشان دهنده کوارکهای بالا و پایین است.
3- در این مدل انرژی بستگی با حجم پلاسمای کوارک- گلئونی متناسب است. با توجه به اینکه هر نوکلئون از سه کوارک تشکیل شده است، لذا به ازای عدد جرمی A برای هسته، انرژی بستگی متناسب با A3 است.
4- با توجه به عدم تقارن بین تعداد پروتون‌ها و نوترون‌ها، به خصوص در هسته‌های سنگین و در نظر گرفتن نیروی کولنی می‌توان این عدم تقارن و تصحیح کولنی را مابین کوارکهای بالا و پایین موجود در پلاسمای کوارک- گلئونی درون هسته را به صورت N2-Z2Z در نظر گرفت.
با در نظر گرفتن نکات فوق فرمول زیر برای محاسبه انرژی بستگی هسته‌ها ارائه شده است.
(4- SEQ (4- * ARABIC 1)BA,Z=A-N2-Z2+δN-Z3Z+3×mNc2α A>5(4- SEQ (4- * ARABIC 2) δN-Z=1N=Z0N≠Zدر فرمول بالا α = 90 – 100 است.
در مقایسه با مدل قطره مایعی که شامل هفت جمله در انرژی بستگی می‌باشد، این مدل شامل دو جمله است که وابسته به Z و N است که حاکی از سادگی بیشتر و دید جامع‌تری نسبت به هسته است. در این مدل، ذرات هسته‌ای محتوایی آزاد در یک محیط پلاسما مانند چگالی بررسی می‌شود [24,23].
4-2- ضریب تبدیل داخلی بر اساس مدل کوارکی هسته‌هادر مدل شبه کوارکی، هسته شامل پلاسمایی سوپ مانند از کوارکها و گلئونها است که می‌توان خواص هسته‌ها را با توجه به کوارکهای محتوایی به جای نوکلئونها بدست آورد. در فرمول زیر با در نظر گرفتن کوارکهای سازنده نوکلئونها ضریب تبدیل داخلی را بررسی کرده‌ایم. در فرمول زیر شاخص L تابش را به گونه‌ای تعریف می‌کنیم که 2L مرتبه چند قطبی باشد ( برای دو قطبی L=1، برای چار قطبی L=2 و ....). با تخصیص E برای خواص الکتریکی و M برای خواص مغناطیسی فرمول ضریب تبدیل داخلی با توجه به نگاه شبه کوارکی به صورت زیر ارائه شده است.
با در نظر گرفتن پروتون‌ها ضریب تبدیل داخلی برای گذارهای الکتریکی:
(4- SEQ (4- * ARABIC 3)αEL≅Z3n3LL+1e24πℏε0c4((23)3+(23)3+(13)3) 2mec2EL+52و ضریب تبدیل داخلی برای گذارهای مغناطیسی به صورت زیر ارائه شده است
(4- SEQ (4- * ARABIC 4)αML≅Z3n3e24πℏε0c4((23)3+(23)3+(13)3) 2mec2EL+32و اگر علاوه بر پروتون‌ها نوترون‌ها را هم در تابش گاما موثر بدانیم [25]، فرمول‌های زیر به ترتیب برای گذارهای الکتریکی و مغناطیسی ارائه می‌شود:
(4- SEQ (4- * ARABIC 5)αEL≅Z3n3LL+1e24πℏε0c4(233+233+133+233+133+133) 2mec2EL+52≅Z3n3LL+1e24πℏε0c4 2mec2EL+52(4- SEQ (4- * ARABIC 6)
αML≅Z3n3e24πℏε0c4233+233+133+233+133+1332mec2EL+32≅Z3n3e24πℏε0c42mec2EL+32به منظور بررسی فرمول‌های ارائه شده ضریب تبدیل داخلی برای دوازده عدد اتمی، ده چند قطبی E1-E5 و M1-M5 و 8 مقدار انرژی گاما محاسبه و با مقادیر تئوری و تجربی مقایسه شده است [26].
در جدول‌های (4-1) تا (4-39)، ستون اول مقادیر آزمایشگاهی، ستون دوم مقادیر تئوری محاسبه شده با استفاده از فرمول ضریب تبدیل داخلی و ستون سوم، مقادیر محاسبه شده با در نظر گرفتن کوارکهای سازنده پروتون‌ها را نشان می‌دهند. با توجه به معادلات (4-5) و (4-6)، نتایج حاصل از در نظر گرفتن کوارکهای سازنده پروتون‌ها و نوترون‌ها در تابش گاما با مقادیر عددی ستون دوم برابر است.

جدول (4- SEQ جدول_(4- * ARABIC 1): EB =5.50 E-02k shellz=3Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 6.55 E-02 10.00 E-02 6.30 E-02
15 E2 5.65 E+00 9.08 E+00 5.72 E +00
E3 4.10 E+02 6.96 E+02 4.38 E+02
E4 2.83 E+04 5.06 E+04 3.18 E+04
E5 1.92 E+06 3.59 E+06 2.26 E+06
20 E1 2.48 E-02 3.65 E-02 2.30 E-02
E2 1.63 E+00 2.49 E+00 1.56 E+00
E3 8.99 E+01 14.36 E+01 9.04 E+01
E4 4.72 E+03 7.80 E+03 6.91 E+03
E5 2.43 E+05 4.15 E+05 2.61 E+05
32 E1 5.06 E-03 7.05 E-03 4.44 E-03
E2 2.12 E-01 3.00 E-01 1.90 E-01
E3 7.50 E+00 10.79 E+00 6.80 E+00
E4 2.52 E+02 3.67 E+02 2.31 E+02
E5 8.29 E+03 12.23 E+03 7.80 E+03
50 E1 1.11 E-03 1.47 E-03 0.92 E-03
E2 3.07 E-02 4.03 E-02 2.53 E-02
E3 7.12 E-01 9.27 E-01 5.84 E-01
E4 1.57 E+01 2.02 E+01 1.27 E+01
E5 3.39 E+02 4.30 E+02 2.70 E+02
80 E1 2.26 E-04 2.85 E-04 1.79 E-04
E2 4.03 E-03 4.86 E-03 3.08 E-03
E3 6.05 E-02 6.99 E-02 4.40 E-02
E4 8.64 E-01 9.52 E-01 7.00 E-01
E5 1.21 E+01 1.26 E+01 0.80 E+01
120 E1 5.77 E-05 6.90 E-05 4.37 E-05
E2 7.12 E-04 7.84 E-04 4.94 E-04
E3 7.42 E-03 7.51 E-03 4.73 E-03
E4 7.35 E-02 6.82 E-02 4.29 E-02
E5 7.12 E-01 6.05 E-01 3.89 E-01
200 E1 4.41 E-08 3.65 E-08 2.29 E-08
E2 6.99 E-08 2.48 E-07 1.56 E-07
E3 1.08 E-07 1.43 E-05 0.90 E-05
E4 1.66 E-07 0.78 E-05 0.50 E-05
E5 2.55 E-07 0.41 E-05 0.25 E-05
جدول (4- SEQ جدول_(4- * ARABIC 2): EB =2.84 E-01k shellz=6Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 4.38 E-01 8.00 E-01 5.04 E-01
15 E2 3.51 E+01 7.27 E+01 4.58 E+01
E3 2.36 E+03 5.57 E+03 3.50 E+03
E4 1.52 E+05 4.05 E+05 2.55 E+05
E5 9.63 E+06 28.74 E+06 14.47 E+06
20 E1 1.71 E-01 2.92 E-01 1.83 E-01
E2 1.05 E+01 1.99 E+01 1.25 E+01
E3 5.45 E+03 11.45 E+03 6.21 E+03
E4 2.69 E+04 6.24 E+04 3.93 E+04
E5 1.31 E+06 3.32 E+06 2.09 E+06
32 E1 3.62 E-02 5.64 E-02 3.55 E-02
E2 1.45 E+00 2.40 E+00 1.51 E+00
E3 4.87 E+01 8.63 E+01 5.43 E+01
E4 1.56 E+03 2.94 E+03 1.85 E+03
E5 4.90 E+04 9.78 E+04 6.16 E+04
50 E1 8.21 E-03 11.83 E-03 7.45 E-03
E2 2.18 E-01 3.22 E-01 2.02 E-01
E3 4.87 E+00 7.41 E+00 4.46 E+00
E4 1.03 E+02 1.61 E+02 1.01 E+02
E5 2.15 E+03 3.44 E+03 2.16 E+03
80 E1 1.71 E-03 2.28 E-03 1.43 E-03
E2 2.97 E-02 3.89 E-02 2.45 E-02
E3 4.33 E-01 5.59 E-01 3.52 E-01
E4 5.99 E+00 7.62 E+00 4.81 E+00
E5 8.13 E+01 10.14 E+01 6.81 E+01


120 E1 4.46 E-04 5.52 E-04 3.51 E-04
E2 5.38 E-03 6.27 E-03 4.01 E-03
E3 5.48 E-02 6.01 E-02 3.93 E-02
E4 5.24 E-01 5.46 E-01 3.50 E-01
E5 5.01 E+00 4.84 E+00 2.82 E+00
200 E1 8.43 E-05 9.24 E-05 5.92 E-05
E2 6.53 E-04 6.30 E-04 4.00 E-04
E3 4.30 E-03 3.62 E-03 2.38 E-03
E4 2.70 E-02 1.97 E-02 1.24 E-02
E5 1.65 E-01 1.05 E-01 0.66 E-01

جدول (4- SEQ جدول_(4- * ARABIC 3): EB =8.67 E-01k shellz=10Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 1.05 E+00 3.70 E+00 2.33 E+00
15 E2 1.11 E+02 3.36 E+02 2.11 E+02
E3 6.67 E+03 25.80 E+03 14.25 E+03
E4 3.83 E+05 18.75 E+05 11.02 E+05
E5 2.18 E+07 13.30 E+07 8.01 E+07
20 E1 6.24 E-01 13.53 E-01 8.42 E-01
E2 3.51 E+01 9.22 E+01 5.40 E+01
E3 1.65 E+03 5.30 E+03 3.15 E+03
E4 7.40 E+04 28.90 E+04 15.05 E+04
E5 3.29 E+06 15.38 E+06 8.60 E+06
32 E1 1.38 E-01 2.61 E-01 1.64 E-01
E2 5.17 E+00 11.12 E+00 6.89 E+00
E3 1.61 E+02 3.99 E+02 2.51 E+02
E4 4.81 E+03 13.69 E+03 8.42 E+03
E5 1.41 E+05 4.53 E+05 2.85 E+05
50 E1 3.26 E-02 5.47 E-02 3.66 E-02
E2 8.21 E-01 14.93 E-01 8.82.50 E01
E3 1.73 E+01 3.43 E+01 2.09 E+01
E4 3.47 E+02 7.48 E+02 4.58 E+02
E5 6.80 E+03 15.94 E+03 9.45 E+03
80 E1 7.02 E-03 10.57 E-03 6.65 E-03
E2 1.17 E-01 1.80 E-01 1.13 E-01
E3 1.63 E+00 2.58 E+00 1.62 E+00
E4 2.16 E+01 3.52 E+01 2.21 E+01
E5 2.81 E+02 4.69 E+02 2.59 E+02
120 E1 1.87 E-03 2.55 E-03 1.60 E-03
E2 2.19 E-02 2.90 E-02 1.85 E-02
E3 2.15 E-01 2.78 E-01 1.80 E-01
E4 2.01 E+00 2.52 E+00 1.60 E+00
E5 1.48 E+01 2.24 E+01 1.41 E+01
200 E1 3.63 E-04 4.28 E-04 2.75 E-04
E2 2.74 E-03 2.91 E-03 1.89 E-03
E3 1.76 E-02 1.67 E-02 1.10 E-02
E4 1.07 E-01 0.91 E-01 0.60 E-01
E5 6.42 E-01 4.86 E-01 3.19 E-01
جدول (4- SEQ جدول_(4- * ARABIC 4): EB =1.83 E+00k shellz=14Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 3.30 E+00 10.16 E+00 6.01 E+00
15 E2 2.09 E+02 9.23 E+02 5.67 E+02
E3 1.09 E+04 7.08 E+04 4.21 E+04
E4 9.49 E+05 51.45 E+05 32.01 E+05
E5 2.75 E+07 36.51 E+07 22.08 E+07
20 E1 1.30 E+00 3.71 E+00 2.33 E+00
E2 6.92 E+01 25.30 E+01 15.33 E+01
E3 2.91 E+03 14.55 E+03 9.16 E+03
E4 1.17 E+05 7.93 E+05 4.80 E+05
E5 4.70 E+06 42.21 E+06 26.34 E+06
32 E1 3.15 E-01 7.17 E-01 4.41 E-01
E2 1.09 E+01 3.53 E+01 2.22 E+01
E3 3.13 E+02 10.97 E+02 6.35 E+02
E4 8.64 E+03 37.37 E+03 12.96 E+03
E5 2.36 E+05 12.43 E+05 7.56 E+05
50 E1 7.65 E-02 15.03 E-02 9.40 E-02
E2 1.82 E+00 4.09 E+00 2.25 E+00
E3 3.60 E+01 9.42 E+01 5.67 E+01
E4 6.81 E+02 20.54 E+02 12.06 E+02
E5 1.27 E+04 4.37 E+04 2.75 E+04
80 E1 1.70 E-02 2.90 E-02 1.82 E-02
E2 2.71 E-01 4.94 E-01 3.08 E-01
E3 3.60 E+00 7.10 E+00 4.41 E+00
E4 4.50 E+01 9.68 E+01 6.06 E+01
E5 5.68 E+02 12.88 E+02 7.95 E+02
120 E1 4.63 E-03 7.02 E-03 4.42 E-03
E2 5.23 E-02 7.97 E-02 5.02 E-02
E3 4.94 E-01 7.63 E-01 4.80 E-01
E4 4.45 E+00 6.93 E+00 4.36 E+00
E5 3.93 E+01 6.15 E+01 3.88 E+01
200 E1 9.19 E-04 11.74 E-04 7.39 E-04
E2 6.77 E-03 8.00 E-03 5.04 E-03
E3 4.22 E-02 4.60 E-02 2.92 E-02
E4 2.51 E-01 2.50 E-01 1.57 E-01
E5 1.40 E+00 1.33 E+00 0.83 E+00
جدول (4- SEQ جدول_(4- * ARABIC 5): EB =2.47 E+00k shellz=16Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 4.37 E+00 15.17 E+00 9.13 E+00
15 E2 2.56 E+02 13.78 E+02 8.01 E+02
E3 1.24 E+04 10.56 E+02 6.30 E+02
E4 5.25 E+05 56.80 E+05 30.20 E+05
E5 2.67 E+07 34.51 E+07 21.07 E+07
20 E1 1.83 E+00 5.54 E+00 3.49 E+00
E2 8.73 E+01 37.70 E+01 21.68 E+01
E3 3.44 E+03 21.71 E+03 13.04 E+03
E4 1.31 E+05 11.83 E+05 6.93 E+05
E5 4.94 E+06 63.01 E+06 34.69 E+06
32 E1 4.29 E-01 10.70 E-01 6.34 E-01
E2 1.42 E+01 4.55 E+01 2.67 E+01
E3 3.92 E+02 16.37 E+02 10.00 E+02
E4 1.03 E+04 5.57 E+04 3.38 E+04
E5 2.70 E+05 18.55 E+05 11.34 E+05
50 E1 1.06 E-01 2.24 E-01 1.41 E-01
E2 2.44 E+00 6.11 E+00 3.84 E+00
E3 467 E+01 14.06 E+01 8.19 E+01
E4 8.55 E+02 30.66 E+02 17.64 E+02
E5 1.55 E+04 6.52 E+04 4.04 E+04
80 E1 2.38 E-02 4.33 E-02 2.72 E-02
E2 3.71 E-01 7.37 E-01 4.54 E-01
E3 4.81 E+00 10.60 E+00 6.31 E+00
E4 5.94 E+01 14.45 E+01 8.92 E+01
E5 7.24 E+02 19.23 E+02 12.11 E+02
120 E1 6.56 E-03 10.48 E-03 6.60 E-03
E2 7.27 E-02 11.90 E-02 7.49 E-02
E3 6.74 E-01 11.40 E-01 7.18 E-01
E4 5.95 E+00 10.39 E+00 6.73 E+00
E5 5.16 E+01 9.19 E+01 5.73 E+01
200 E1 1.32 E-03 1.75 E-03 1.10 E-03
E2 9.57 E-03 11.94 E-03 7.52 E-03
E3 5.89 E-02 6.86 E-02 4.32 E-02
E4 3.44 E-01 3.74 E-01 2.35 E-01
E5 1.98 E+00 1.99 E+00 1.25 E+00
جدول (4- SEQ جدول_(4- * ARABIC 6): EB =4.03 E+00k shellz=20Eγ(Kev) EL α (exp) α (TE) α (QM)
E1 6.78 E+00 29.64 E+00 18.28 E+00
15 E2 3.35 E+02 26.92 E+02 16.38 E+02
E3 1.33 E+04 20.64 E+04 11.07 E+04
E4 5.12 E+05 15.001E+05 9.45 E+05
E5 1.98 E+07 10.60E+07 6.67 E+07
20 E1 2.90 E+00 10.83 E+00 6.82 E+00
E2 1.21 E+02 7.37 E+02 4.06 E+02
E3 4.13 E+03 42.42 E+03 26.46 E+03
E4 1.36 E+05 23.12 E+05 14.49 E+05
E5 4.46 E+06 123.07E+06 7.56 E+06
32 E1 7.05 E-01 20.90 E-01 12.60 E-01
E2 2.13 E+1 8.90 E+1 5.04 E+1
E3 5.31 E+02 31.98 E+02 19.53 E+02
E4 1.27 E+04 10.89 E+04 6.30 E+04
E5 3.02 E+05 36.24 E+05 22.68 E+05
50 E1 1.79 E-01 4.38 E-01 2.69 E-01
E2 3.85 E+00 11.94 E+00 6.93 E+00
E3 6.85 E+1 27.47 E+1 10.45 E+1
E4 1.17 E+03 5.98 E+03 3.71 E+03
E5 1.97 E+04 12.75 E+04 7.56 E+04
80 E1 4.13 E-02 8.46 E-02 5.06 E-02
E2 6.11 E-01 14.41 E-01 8.82 E-01
E3 7.51 E+00 20.71 E+00 12.40 E+00
E4 8.80 E+1 28.22 E+1 16.64 E+1
E5 1.02 E+03 3.75 E+03 2.36 E+03
120 E1 1.16 E-02 2.04 E-02 1.28 E-02
E2 1.23 E-01 2.32 E-01 1.40 E-01
E3 1.10 E+00 2.22 E+00 1.36 E+00
E4 9.29 E+00 20.23 E+00 12.06 E+00
E5 7.74 E+01 17.94 E+01 10.78E+01
200 E1 2.38 E-03 3.42 E-03 2.15 E-03
E2 1.68 E-02 2.33 E-02 1.46 E-02
E3 1.10 E-01 1.34 E-01 0.84 E-01
E4 5.67 E-01 7.31 E-01 4.60 E-01
E5 3.16 E+00 3.89 E+00 2.45 E+00
جدول (4- SEQ جدول_(4- * ARABIC 7): EB =4.96 E+00k shellz=22Eγ (Kev) EL α (exp) α (TE) α (QM)
E1 8.97 E+00 39.45 E+00 24.00 E+00
15 E2 3.59 E+02 35.84 E+02 22.05 E+02
E3 1.27 E+04 27.47 E+04 17.01 E+04
E4 4.34 E+05 199.67E+05 11.91 E+05
E5 1.49 E+07 141.71E+07 10.08 E+07
20 E1 3.50 E+00 14.41 E+00 8.82 E+00
E2 1.35 E+02 9.82 E+02 5.67 E+02
E3 4.22 E+03 56.46 E+03 35.02 E+03
E4 1.27 E+05 30.77 E+05 18.90 E+05
E5 3.86 E+06 163.81E+06 10.08 E+06
32 E1 8.63 E-01 27.82 E-01 17.01 E-01
E2 2.48 E+01 11.84 E+01 6.93 E+01
E3 5.83 E+02 42.56 E+02 26.46 E+02
E4 1.32 E+04 14.50 E+04 8.82 E+04
E5 2.38 E+05 48.24 E+05 30.24 E+05
50 E1 2.22 E-01 5.83 E-01 3.67 E-01
E2 4.60 E+00 15.90 E+00 8.86 E+00
E3 7.87 E+01 36.56 E+01 22.68 E+01
E4 1.29 E+03 7.97 E+03 4.43 E+03
E5 2.10 E+04 16.97 E+04 10.10 E+04
80 E1 5.18 E-02 11.26 E-02 6.93 E-02
E2 7.47 E-01 19.18 E-01 11.98 E-01
E3 8.91 E+00 27.56 E+00 17.01 E+00
E4 1.02 E+02 3.75 E+02 2.36 E+02

user6-758

علی دهقانی
در گرانش لاولاک تلاشهایی برای فهمیدن نقش جملات خمش مراتب بالا از دیدگاههای مختلف، به ویژه در زمینهی فیزیک سیاهچالهها، شده است. در این پایاننامه با در نظر گرفتن گرانش لاولاک مرتبه سوم در حضور کلاسهای نمائی و لگاریتمی الکترودینامیک غیرخطی، دو نوع جدید از جوابهای سیاهچالهای توپولوژیکی در ابعاد 1+6 بُعد و بالاتر را که شاملِ سیاهچالههای باردارِ استاتیک مجانباً تخت، و لایههای سیاه باردارِ چرخانِ مجانباً آنتی دوسیته میباشد معرفی میکنیم. تأثیرات میدانهای الکترومغناطیسی غیرخطی را بر جوابها بررسی میکنیم و خواهیم دید که به ازای مقادیر مناسب برای پارامترهای متریک، این جوابها میتوانند به عنوان سیاهچاله (لایه سیاه)هایی با دو اُفق رویداد، یک اُفق اکستریم و یا یک تکینگی عُریان تفسیر شوند. کمیتهای پایای ترمودینامیکی از قبیل دما، آنتروپی، جرم، بار الکتریکی و ... را برای جوابها محاسبه کرده و نشان میدهیم که قانون اول ترمودینامیک برای سیاهچالههای باردارِ استاتیک مجانباً تخت و لایههای سیاه باردارِ چرخانِ مجانباً آنتی دوسیته برقرار است. در ادامه تحلیل پایداری ترمودینامیکی را برای سیاهچالههای باردارِ استاتیک مجانباً تخت با محاسبه دترمینان ماتریس هسیان در دو آنسامبل کانونی و کانونی بزرگ انجام داده و نشان میدهیم که پایداری سیاهچالهها در گرانش لاولاک مرتبه سوم میتواند به نوع آنسامبل انتخابی بستگی داشته باشد، بدین معنی که جملات خمش مراتب بالا روی پایداری سیاهچالهها تأثیر میگذارد. در این بین نتایجی به دست میآید که نشان میدهد حضور میدانهای الکترومغناطیسی غیرخطی تأثیر یکسانی در رفتار آنسامبلهای متفاوت دارد. در پایان تحلیل پایداری ترمودینامیکی را برای لایههای سیاه باردارِ چرخانِ مجانباً آنتی دوسیته انجام داده و نشان میدهیم که حضور جملات خمش مراتب بالا و میدانهای الکترومغناطیسی غیرخطی تأثیر یکسانی در پایداری لایههای سیاه در آنسامبلهای کانونی و کانونی بزرگ دارد. همچنین نشان میدهیم که لایههای سیاه فیزیکی (با دمای مثبت) دارای رفتار ترمودینامیکی پایداری هستند.
کلمات کلیدی : گرانش اینشتین، گرانش لاولاک، خمش مراتب بالا، سیاهچالههای توپولوژیکی، ترمودینامیک سیاهچالهها، الکترودینامیک غیرخطی.
فهرست
عنوان صفحه
TOC o "1-3" h z u فصل اول1
مقدمه1
1-1 قراردادِ یکایی1
1-2 معرفی مفاهیم ارجاعی: ذرات نقطه‌ای، ریسمان‌ها و لایه‌ها3
1-3 انگیزه، هدف و ساختار تحقیق10
فصل دوم17
گرانش در ابعاد بالا17
2-1 بُعد چهارم و نظریه نسبیت عام اینشتین17
2-2 نظریه میدان‌های کلاسیکی: فرمول‌بندی لاگرانژی میدان‌های گرانشی25
2-3 کُنشِ مرزی نظریه نسبیت عام27
2-4 ایزومتری و میدان‌های برداری کیلینگ28
2-5 جواب‌های نظریه نسبیت عام29
2-5-1 فضازمانِ آنتی دوسیته در بُعد30
2-5-2 حل استاتیک باردار بُعدی معادلات میدان اینشتین در حضور ثابت کیهان‌شناسی31
2-6 گرانش لاولاک: گسترش استاندارد نسبیت عام به ابعاد بالا32
2-7 کُنش مرزی در گرانش لاولاک مرتبه سوم36
2-8 روش کانترترم و رفع واگرایی در محاسبه کمیت‌های پایا37
فصل سوم42
نظریهی الکترودینامیک غیرخطی42
3-1 الکترودینامیک ماکسول43
3-1-1 جرم الکترومغناطیسی و مسئلهی واگرائی خودانرژی بارهای نقطهای45
3-1-2 اصل برهمنهی خطی در نظریه ماکسول47
3-2 نظریه الکترودینامیک غیرخطی48
3-2-1 معادلات میدان در نظریه الکترودینامیک غیرخطی51
3-2-2 محاسبه‌ی شدت میدان مطلق 55
3-2-3 معادلاتِ موج در نظریههای الکترودینامیک غیرخطی56
3-3 جمعبندی58
فصل چهارم60
ترمودینامیک سیاه‌چاله‌ها در گرانش لاولاک60
4-1 ترمودینامیک سیستمها در طبیعت61
4-2 ترمودینامیک سیاهچالهها64
4-3 ترمودینامیک سیاهچالهها در گرانش خمش مراتب بالا68
4-4 کمیتهای ترمودینامیکی70
4-4-1 بار الکتریکی70
4-4-2 پتانسیل الکتریکی71
4-4-2 سرعت زاویه‌ای71
فصل پنجم73
ترمودینامیک جوابهای گرانش لاولاک مرتبه سوم در حضور کلاسهای نمائی و لگاریتمی نظریه الکترودینامیک غیرخطی73
5-1 کُنش و معادلات میدان گرانش لاولاک مرتبه سوم در حضور میدانهای الکترومغناطیسی غیرخطی74
5-2 جوابهای سیاهچالههای باردار استاتیک در گرانش لاولاک مرتبه سوم در حضور شکلهای نمائی و لگاریتمی الکترودینامیک غیرخطی75
5-2-1 جوابهای باردار استاتیک 1+6 بُعدی79
5-2-2 معرفی جرمِ هندسی در گرانش لاولاک مرتبه سوم82
5-2-3 خصوصیات فضازمانِ جوابهای باردار استاتیک 1+6 بُعدی83
5-2-4 جوابهای سیاهچالههای باردار استاتیک بُعدی91
5-3 بررسی ترمودینامیک سیاهچالههای لاولاک مرتبه سوم در حضور میدانهای الکترومغناطیسی غیرخطی94
5-4 طبیعتِ پایداری سیاه‌چاله‌ها در آنسامبل‌های کانونی و کانونی بزرگ99
5-4-1 بررسی پایداری ترمودینامیکی سیاهچالههای باردار مجانباً تخت در آنسامبل کانونی100
5-4-2 بررسی پایداری ترمودینامیکی سیاهچالههای باردار مجانباً تخت در آنسامبل کانونی بزرگ105
5-5 لایههای سیاهِ چرخانِ باردار مجانباً در گرانش لاولاک مرتبه سوم در حضور شکلهای نمائی و لگاریتمی الکترودینامیک غیرخطی110
5-6 بررسی ترمودینامیک لایههای سیاه چرخانِ باردار مجانباً گرانشِ لاولاک مرتبه سوم در حضور میدانهای الکترومغناطیسی غیرخطی114
5-7 طبیعتِ پایداری لایههای سیاه در آنسامبل‌های کانونی و کانونی بزرگ120
5-7-1 بررسی پایداری ترمودینامیکی لایههای سیاه چرخانِ باردار مجانباً در آنسامبل کانونی120
5-7-2 بررسی پایداری ترمودینامیکی لایههای سیاه چرخانِ باردار مجانباً در آنسامبل کانونی بزرگ123
فصل ششم127
نتیجهگیری و پیشنهادات127
پیوست الف132
پیوست ب134
پیوست ج135
مراجع137

فهرست شکلها
شکل 1- SEQ شکل_1- * ARABIC 1: نظریه به عنوان نظریه مادر برای پنج نظریه اَبرریسمان 10 بُعدی و نظریه اَبرگرانش 11 بُعدی ............................................................................................................................................................................................................. 8
شکل 2-1: شکل سمت چپ تقسیم فضای فیزیکی به صفحاتِ زمان ثابت در چارچوبِ 4 مختصهای فضا و زمان در نظریه نیوتن. یک نقطه در این چارچوب یک رویداد نامیده میشود و مسیر یک ذره در فضا و زمان توسط پیوستاری یک بُعدی از رویدادها، تحت عنوان جهانخط، مشخص میشود. شکل سمت راست لایه‌بندی فضازمان در نظریه نسبیت خاص را نشان میدهد ................................................................... .................................................................................19
شکل 2-2: دستگاه مختصات یک نگاشت از خمینه به فضای اقلیدسی است ..................................................................22
شکل 2-3: یک تبدیل مختصات بین دو مجموعه مختصات ...................................................................................23
شکل 3-1: تغییرات بر حسب. شکل سمت چپ به ازای مقادیر و . شکل میانی به ازای مقادیر و ؛ دیده میشود که با افزایش سه مدل در فاصلهی مکانی خیلی کوچک برهم منطبق میشوند. شکل سمت راست رفتار در نزدیکی مبدأ به ازای مقادیر و را نشان میدهد ....................................55
شکل 5-1: مقایسه رفتار تابعهای متریک (لگاریتمی، نمائی و ماکسولی) برای فضازمانهای مجانباً تخت . به ازای مقادیر ............................................................................................................86
شکل 5-2: مقایسه رفتار تابعهای متریک (لگاریتمی، نمائی و ماکسولی) برای فضازمانهای مجانباً. به ازای مقادیر .................................................................................................86
شکل 5-3: تغییرات تابع متریک نسبت به برای کلاسهای (شکل مشکی رنگ) و (شکل آبی رنگ) برای حالتهای متفاوت پارامترِ جرم. به ازای مجموعه مقادیر............................................................................................................................................................................................................88
شکل 5-4: تغییرات تابع متریک نسبت به برای کلاسهای(شکل مشکی رنگ) و (شکل آبی رنگ) به ازای مقادیر،، و . در شکل خطوط باریک مربوط به حالت (سیاهچاله با یک اُفق)، خطوط پررنگ مربوط به حالت (سیاهچاله با دو اُفق)، خطوط نقطهای مربوط به حالت (سیاهچاله با اُفق اکستریم) و خطوط خط-نقطهای مربوط به حالت (تکینگی عریان) هستند...............................................................................................................................................................................................90
شکل 5-5: برای کلاس- تغییرات دما بر حسب (شکل سمت چپ) و تغییرات دما بر حسب (شکل سمت راست). به ازای مقادیر ........................................................................................................................102
شکل 5-6: برای کلاس- تغییرات ظرفیت گرمایی بر حسب. شکل سمت چپ تغییرات در دامنههای کوچک را نشان میدهد. شکل سمت راست تغییرات در مقادیر بزرگتر را نشان میدهد. به ازای مقادیر .............................................................................................................................................................................103
شکل 5-7: برای کلاس- تغییرات دما بر حسب (شکل سمت چپ) و تغییرات دما بر حسب (شکل سمت راست). به ازای مقادیر ......................................................................................................................104
شکل 5-8: برای کلاس- تغییرات ظرفیت گرمایی بر حسب. به ازای مقادیر ........................................................................................................................................................................................................104
شکل 5-9: برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما، ظرفیت گرمایی و دترمینان ماتریس هسیان (در آنسامبل کانونی بزرگ) بر حسب. به ازای مقادیر .........................................................................................................................................................................................................107
شکل 5-10: برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما، ظرفیت گرمایی و دترمینان ماتریس هسیان (در آنسامبل کانونی بزرگ) بر حسب. به ازای مقادیر .........................................................................................................................................................................................................108
شکل 5-11: برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما و ظرفیت گرمایی بر حسب. به ازای مقادیر .........................................................................................................................122
شکل 5-12: : برای کلاس- از چپ به راست به ترتیب تغییرات جرم، دما و ظرفیت گرمایی بر حسب. به ازای مقادیر ...........................................................................................................................122
شکل 5-13: تغییرات دترمینان ماتریس هسیان در آنسامبل کانونی بزرگ . شکل سمت چپ مربوط به کلاس و شکل سمت راست برای کلاس. به ازای مقادیر .........................................................................................................................................................................................................124

فصل اولمقدمه1-1 قراردادِ یکاییبرای کاربردهای بعدی، ابتدا مشخص می‌کنیم که در چه یکایی از یکاهای فیزیکی کار می‌کنیم. در این پایان‌نامه از واحدهای طبیعی استفاده می‌کنیم به جز مواردی که خلاف آن ذکر شود. در واحدی که کار میکنیم ثانیه به طور دقیق برابر است با متر. بنابراین برای سرعت نور خواهیم داشت و برای گذردهی الکتریکی و تراویی مغناطیسی خلأ مقدار را اختیار می‌کنیم. در نتیجه ثابت کولن برابر به دست می‌آید. علاوه بر این برای ثابت پلانک و ثابت بولتزمن نیز مقدار واحد را انتخاب می‌کنیم:

بنابراین در واحدهای طبیعی داریم:

و برای سادگی انتخاب می‌کنیم:

بنابراین با مختصر نویسی داریم . از آن‌جایی که کُنشِ، بنا به تعریف، انتگرالِ زمانی یک لاگرانژین (با واحدِ انرژی) است بنابراین تمام کُنش‌ها بدون بُعد خواهند بود یعنی . در نتیجه برای عنصرِ حجم خواهیم داشت:

و برای داشتن یک کُنش بدون بُعد لازم است که چگالی لاگرانژی دارای یکای

باشد. برای مثال با این تحلیل پارامتر غیرخطی در فصل سوم (نظریه الکترودینامیک غیرخطی) دارای یکای جرم خواهد بود.
ثابتِ گرانشِ اینشتین ، که در معادلاتِ میدانِ اینشتین ظاهر می‌شود، برحسبِ ثابتِ گرانش نیوتن در چهار بُعد فضازمانی به صورت

است و آن را نیز، در هر بُعدی از فضازمان، برابر با واحد انتخاب می‌کنیم. ثابت گرانش نیوتن در ابعاد بالا به صورتِ زیر در می‌آید

و بنابراین ثابتِ گرانشِ اینشتین در هر بُعد برحسب ثابتِ گرانشِ نیوتن در همان بُعد نوشته می‌شود که مقدار آن، همان‌طور که ذکر شد، برابر واحد اختیار می‌شود.
1-2 معرفی مفاهیم ارجاعی: ذرات نقطه‌ای، ریسمان‌ها و لایه‌ها
بنیادی‌ترین ذرات در طبیعت به صورت ذراتِ نقطه‌ای فرض می‌شوند زیرا بدون ساختارند و نمی‌توان برای آن‌ها بُعدی در نظر گرفت. یک نقطه در فضایبُعدی، بدون بُعد است. می‌توان ذره‌ی نقطه‌ای را درون یک فضازمان بُعدی (که بُعد اضافی زمان است) توصیف کرد. با وجودِ مفهوم زمان، حرکت برای ذره‌ی نقطه‌ای معنی پیدا می‌کند. حرکت ذره در فضازمان بُعدی یک خط 1+0 بُعدی است، یعنی بدون بُعد مکانی. به این موجود 1 بُعدی جهان‌خط می‌گوییم. با گسترش نظری ایده‌ی ذره به ریسمان، به‌عنوان مولدهای احتمالی ذرات بنیادی و رد ایده‌ی نقطه‌ای بودن آن‌ها، می‌توان برای ریسمان‌ها در فضازمان بُعدی یک جهان‌سطح 1+1 بُعدی در نظر گرفت. بنابراین فضازمانی که یک ریسمان تجربه می‌کند یک جهان‌صفحه است. بر اساس نظریه ریسمان اجزای تشکیل دهنده‌ی ماده، نه ذرات، بلکه ریسمان‌ها هستند. مطابق با این دیدگاه یک الکترون در حقیقت ریسمانی‌ست دارای ارتعاش و چرخش، اما در مقیاسی بسیار کوچک، بنابراین در مقیاس انرژی شتاب‌دهنده‌های امروزی به صورت ذره احساس می‌شوند. این نظریه برای تکامل به لایه‌ها احتیاج دارد. لایه‌ها گسترش ایده‌ی ریسمان‌ها هستند و برخلاف ریسمان‌ها اشیائی چند-بُعدی هستند. لایه شئ‌ای شبیه ریسمان اما با ابعاد دلخواه است. ریسمان را می‌توان یک لایه در نظر گرفت. ذره‌ی نقطه‌ای لایه است. یک پوسته که در هر لحظه از زمان به شکل یک رویه باشد یک لایه است و به همین ترتیب لایه، لایه، لایه (دو نوع)، لایه الی لایه را داریم. این لایه‌ها می‌توانند کل فضای حجمی یک فضازمان را پر کنند. نوع خاصی از لایه‌ها تحت عنوان لایه‌ها وجود دارند که می‌توانند در فضازمان‌های با ابعاد بالا غوطه‌ور باشند و نقش شرایط مرزی دیریکله را در نظریه اَبرریسمان بازی کنند. لایه‌ها ذرات نقطه‌ای هستند. لایه‌ها مشابه ریسمان‌ها و اشیائی یک بُعدی هستند. دو انتهای آن‌ها می‌تواند بر روی هم قرار گرفته و تشکیل یک حلقه دهند و همانند ریسمان‌ها می‌توانند در تمامی جهات حرکت کنند. به همین دلیل می‌توانند ارتعاش داشته باشند و دارای نوسانات کوانتومی هستند. لایه شئ گسترده شده در بُعد فضایی است و بنابراین در ادامه‌ی امتداد ایده‌ی جهان‌خط و جهان‌صفحه می‌توان برای آن‌ها جهان‌حجم‌هایی بُعدی در نظر گرفت. این‌ها تعمیم ذره‌ی نقطه‌ای بدون ساختار داخلی به ابعاد بالا هستند. ویژگی بارز آن‌ها این است که مکان‌هایی در فضا هستند که انتهای ریسمان‌ها بر روی آن‌ها قرار می‌گیرد.لایه‌ها دارای جرم مشخصی هستند و با استفاده از این واقعیت که انتهای ریسمان‌ها می‌تواند بر روی آن‌ها قرار گیرد می‌توان جرم‌شان را حساب کرد. با ضعیف‌تر شدن اندرکُنش ریسمان‌ها جرم لایه افزایش می‌یابد. در مطالعه‌ی جهان‌صفحه‌ی ریسمان‌ها از فرض ضعیف بودن اندرکنش ریسمان‌ها استفاده می‌شود. در نتیجه لایه‌ها اجسام بسیار سنگینی هستند به گونه‌ای که حرکت دادن آن‌ها بسیار دشوار بوده و از این لحاظ به سختی می‌توان آن‌ها را اشیائی پویا در نظریه ریسمان محسوب کرد. دلیل اصلی شکل‌گیری انقلابِ مربوط به ورود لایه‌ها به حوزه‌ی فیزیک نظری، اَبرگرانش 11-بُعدی است. این نظریه بر پایه‌ی دو ایده شکل گرفت: اَبَرتقارن و نسبیت عام. این نظریه با نظریه‌های اَبرگرانشی مستخرج از نظریه‌ی ریسمان نیز مرتبط است و نظریه‌پردازان از این ارتباط، قبل از انقلاب دوم ریسمان به خوبی آگاه بودند. اما ارتباط آن با جهان‌صفحه نظریه ریسمان ناشناخته بود. بدتر از همه این‌که این نظریه هیچ همگونی با مکانیک کوانتومی نداشت. به همین دلیل نظریه‌پردازان ریسمان با تردید به آن نگاه می‌کردند، زیرا بر این باور بودند که مکانیک کوانتومی و گرانش کاملاً به یک‌دیگر وابسته هستند. با گسترش یافتن این ایده‌ها بین نظریه‌پردازان طی چند سال، مسیر این نظریه در اواسط دهه‌ی 90 به ناگاه عوض شد. با این‌که هنوز هم ریسمان‌ها اشیائی مهم به شمار می‌رفتند اما وجود لایه‌ها با ابعاد مختلف در این نظریه ضروری به نظر می‌رسید و گاه در بعضی موارد حتی دارای اهمیتی به اندازه خود ریسمان‌ها بودند. در مواردی هم لایه‌ها به عنوان سیاه‌چاله‌های دمای صفر توصیف می‌شدند.
فرض اولیه در نظریه ریسمان این است که ذرات اشیائی نقطه‌گونه نیستند بلکه مدهای نوسانی از ریسمان‌ها هستند. ریسمان‌ها بی‌نهایت باریک هستند و بر اساس فرضیات نظریه ریسمان دارای طولی بسیار کوچک در حدود هستند [1,4]. جرم کل ریسمان به سه بخش تقسیم می‌شود:
جرم سکون ریسمان که بین دو لایه قرار گرفته است.
انرژی ارتعاشی مربوط به هر مُد ثانویه ریسمان، که از طریق رابطه‌ی این انرژی به عنوان جرم تعبیر می‌شود.
نوسانات کمینه مربوط به عدم قطعیت کوانتومی (تحت عنوانِ انرژی نقطه صفر کوانتومی).
برخلاف انرژی نوسانی، سهم مربوط به انرژی نقطه‌ی صفر قابل حذف نیست. سهم انرژی نقطه صفر در جرم مقداری منفی است. تمام اثرات مربوط به جرم سکون، انرژی‌های ارتعاشی و انرژی نقطه صفر جمع می‌شوند تا مجذور جرم کل حاصل شود و اگر انرژی نقطه صفر بر بقیه‌ی سهم‌ها چیره شود این مجذور جرم است که منفی می‌شود. یک ریسمان نسبیتی در پایین‌ترین حالت انرژی کوانتومی خود دارای جرم منفی است. ریسمان در این حالت تاکیون نامیده می‌شود. دیدگاه کنونی در مورد تاکیون‌ها این‌ست که آن‌ها نشانه‌ی بی‌ثباتی نظریه هستند. انرژی نوسانی سبب کاهش اثر منفی نوسانات کوانتومی در جرم می‌شود. در نتیجه کوچک‌ترین افزایش در سهم انرژی نوسانی مجاز، بر اساس مکانیک کوانتومی، سبب می‌شود مجذور جرم کل صفر شود که نتیجهای رضایتبخش است. زیرا ذرات بدون جرم مانند فوتون، و تا‌به‌حال از لحاظ نظری گراویتون، در طبیعت وجود دارند. کم‌ترین مقدار انرژی حاصل از نوسانات، ارتباطی به ابعاد فضا ندارند. اما نوسانات کوانتومی نقطه صفر این‌گونه نیستند. وقتی چیزی نوسان می‌کند، به عنوان مثال راستای ارتعاش ریسمان پیانو، دارای راستای معینی برای مثال به سمت بالا و پایین است. اما نوسانات کوانتومی ممکن در تمامی جهات رخ می‌دهد. هر بُعد جدیدی که تعریف شود، راستای جدیدی را در اختیار نوسانات کوانتومی جهت ارتعاش قرار می‌دهد. راستای بیشتر به معنای نوسانات نقطه‌ی صفر بیشتر و در نتیجه سهم منفی بیشتر است. آن‌چه باقی می‌ماند، توضیح نحوه‌ی برقراری تعادل بین نوسانات ریسمان و نوسانات اجتناب‌ناپذیر کوانتومی نقطه صفر است. نظریه‌پردازان ریسمان با محاسبه دریافته‌اند که کمینه‌ی ابعاد لازم، جهت حذف اثر نوسانات کوانتومی توسط نوسانات ریسمان، 1+25 بُعد است که منجر به ایجاد حالات ریسمانی بدون جرم می‌شود که مطلوب ماست. در مقیاس‌های فاصله‌ای بزرگ‌تر از طول ریسمان‌ها، هر مد نوسانی منطبق بر ذراتی متفاوت است که با خواصی هم‌چون جرم، بار و ویژگی‌های دیگری که توسط دینامیک ریسمان‌ها تعیین می‌شود. شکاف و ترکیب ریسمان‌ها متناظر است با انتشار و جذبِ ذرات که به معنی برهم‌کُنش بین ذرات است و بنابراین سازوکار انواع نیروها در بنیادی‌ترین سطح فیزیک، با فرض وجودِ احتمالی ابعاد اضافی، توصیف می‌شود.
در نظریه ریسمان یکی از مدهای نوسانی ریسمان‌ها متناظر با یک ذره‌ی بدون جرم با اسپین 2 (همان گراویتون پیش‌بینی شده در نسبیت عام) است و بنابراین این ذره مسئول نیروی گرانشی خواهد بود. در نتیجه نظریه ریسمان یک نظریه مکانیک کوانتومی خودسازگار ریاضیاتی‌ست، که وجود گراویتون به عنوان یکی از محصولات این نظریه در آن ایجاب می‌کند که آن را به عنوان نظریه گرانش کوانتومی احتمالی به حساب آوریم. نظریه ریسمان شامل دو گونه ریسمان، ریسمان‌های باز و ریسمان‌های بسته، است. این دو نوع ریسمان ذرات متفاوتی را در بر می‌گیرند. برای مثال تمام نظریه‌های ریسمان شامل ریسمان‌های بسته‌ای با مد نوسانی گراویتون هستند، درحالی‌که فقط ریسمان‌های باز می‌توانند متناظر با ذراتی چون فوتون‌ها باشند. دلیل این امر آن است که دو انتهای ریسمان‌های باز همیشه می‌توانند به یکدیگر متصل شوند و یک ریسمان بسته تشکیل دهند بنابراین تمامی این نظریه‌ها شامل گراویتون نیز می‌شوند و گرانش به صورت طبیعی ظاهر می‌شود. در نتیجه‌ی بررسی این‌که "چطور می‌توان یک نظریه ریسمان شامل فرمیون‌ها داشت" اَبرتقارن، به عنوان ارتباطی ریاضی بین بوزون‌ها و فرمیون‌ها، ابداع شد. نظریه‌های ریسمان شامل ارتعاشات فرمیونی تحت عنوان نظریه‌های اَبرریسمان شناخته می‌شوند. انواع متفاوتی از نظریه‌های اَبرریسمان وجود دارند که به عنوان حدهای متفاوت یک نظریه مادر، تحت عنوان نظریه، شناخته می‌شوند.

شکل 1- SEQ شکل_1- * ARABIC 2 نظریه به عنوان نظریه مادر برای پنج نظریه اَبرریسمان 10 بُعدی و نظریه اَبرگرانش 11 بُعدی
از آن‌جایی که نظریه اَبرریسمان تمامی سازوکارهای بنیادی طبیعت را شامل می‌شود بسیاری از فیزیک‌دانان معتقدند که مناسب‌ترین کاندید برای نظریه‌ی همه چیز احتمالی‌ست. نظریه اَبرریسمان در کنار اَبرتقارن، که فرض می‌کند به ازای هر ذره‌ی بوزونی یک ذره‌ی فرمیونی وجود دارد، تعداد ابعاد نظریه را به 1+9 بُعد کاهش می‌دهد. در حال حاضر پنج نظریه‌ی اَبرریسمانِ نوع ، نوع ، نوع ، نوع و نوع وجود دارند که می‌توانند توصیف‌گر طبیعت باشند. برای مثال نظریه‌های اَبرریسمان نوع دارای لایه‌های با شماره‌های زوج است: ، ، ، و هم‌چنین لایه‌های سالیتونی و اشیای پیچیده دیگر. در مقابل مدل دارایلایه‌هایی با شماره‌های فرد است: ، ، ،لایه‌های سالیتونی و تعدادی لایه‌های دیگر که بسیار پیچیده‌اند. یک شبکه پیوسته از دوگانگی‌ها در نظریه ریسمان وجود دارد به طوری که با شروع از یک لایه دلخواه و اِعمال چند دوگانگی و تغییر شکل ناشی از آن‌ها به نوع دیگری از لایه دست می‌یابیم. در واقع بین نظریه‌های اَبرریسمان به ظاهر متفاوت می‌توان ارتباط برقرار کرد. دوگانگی نوعِ مقیاس‌های فاصله‌ای بلند و کوتاه در نظریه‌های اَبرریسمان را به هم مرتبط می‌سازد، در حالی‌که دوگانگی نوعِ شدت جفت‌شدگی‌های قوی و ضعیف را در نظریه‌ها به هم مربوط می‌سازد. دوگانگی نوعِ نیز دوگانگی‌های و را به یک‌دیگر مربوط می‌سازد. برای مثال دوگانگی نوعِ می‌تواند نظریه‌های اَبرریسمان مدل و را به هم مربوط سازد. اگر یک لایه را تماماً به دور بُعد دایروی شکل بپیچانیم از دید ناظری فاقد دستگاهی جهت تشخیص ابعاد دقیق بُعد دایره‌ای شکل،لایه را به شکل یک نقطه‌ی بی‌بُعد می‌بیند: یکلایه. بنابراین اگر یکی از 10 بُعد موجود در مدل را تا کرده و به شکل دایره در آوریم، و اگر این دایره آن‌قدر کوچک باشد که نتوان آن را مشاهده کرد، در این حالت نظریه ریسمان 9 بُعدی به نظر می‌رسد. در جهان 9 بُعدی جدیدی که بدین شکل ساخته می‌شود دیگر نمی‌توان تفاوتی میان مدل‌های و قائل شد. می‌توان این فشرده‌سازی برای سایر ابعاد را نیز ادامه داد و به 1+3 بُعد فیزیکی رسید. در نظریه ریسمان ابعاد اضافی از نوع ابعاد فشرده هستند. به منظور درک ابعاد فشرده، برای نمونه می‌توان یک استوانه بینهایت دراز دو بعدی را در نظر گرفت. موجودی که روی این سطح در راستای طولی استوانه حرکت می‌کند به جای خود باز نمی‌گردد، اما در عوض اگر به سمت چپ یا راست حرکت عرضی کند به جای اول خود باز می‌گردد. به بُعدی که در راستای طولی استوانه است بُعد نافشرده و به بُعد عرضی استوانه بُعد فشرده می‌گوییم. در پارادایم فکری نظریه ریسمان، ابعاد بالا از نوع بُعد فشرده هستند. اگر بُعد عرضی این استوانه مانند یک نخ بسیار باریک باشد برای ما یک رویه‌ی یک بُعدی (خط) خواهد بود. یک فضای دو بُعدی فشرده مانند کره نیز می‌توانیم داشته باشیم و با گسترش منطق ریاضی می‌توان اَبرکره کاملاً فشرده در ابعاد بالا داشت. این موضوع که "آیا ابعاد اضافی به خودی‌خود در ارتباط احتمالی بین نظریه‌های فیزیکی در ابعاد بالا (به ویژه نظریه اَبرریسمان) با جهان واقعی نقشی دارند یا نه"، هنوز واضح نیست، در واقع بسیار مبهم و پیچیده است.
1-3 انگیزه، هدف و ساختار تحقیقرفتار قوانینِ طبیعت تاکنون در چهار نیروی بنیادی خلاصه شده است: گرانش، الکترومغناطیس، نیروی ضعیف و نیروی قوی. در مکانیک کلاسیک یا دیدگاه کلاسیکی فیزیک، قوانینی برای پدیدههای طبیعت نوشته شده است که توصیف کنندهی رفتار آن پدیدهها هست ولی چیزی دربارهی ماهیت و سازوکار این رفتار نمیگوید. برای مثال قانون پایستگی انرژی و قانون گرانشی نیوتن. در اینجا میتوان با روابط ریاضی مربوط به این قوانین کار کرد، کمیات را در آنها قرار داد و به یک نتیجه و رفتار رسید. فیزیک مدرن به سطح عمیقتر پدیدهها نگاه میکند، برای مثال با گلوئونها سازوکار برهمکُنش قوی را توضیح میدهند، بوزونهای و را مسئول نیروها در برهمکُنش ضعیف میدانند و فوتونها مسئولیت برهمکُنشهای الکترومغناطیسی را بر عهده دارند. اما تاکنون هیچ چیز و سازوکاری پیدا نشده است که ماهیت گرانش را توضیح دهد. یعنی هیچ توضیح رضایتبخشی برای گرانش بر حسب نیروهای دیگر یا ذرات بنیادی وجود ندارد. تنها توصیفی که تاکنون توانسته است سازوکار گرانش را توسطِ اجزایی بنیادی توضیح دهد نظریه‌ی بحث‌برانگیز ریسمان است که حیاتش منوط به وجودِ ابعادِ اضافی در فضازمان است [1].
از دید یک نظریه ریسمان، رفتار هندسی فضازمانِ توصیف شده توسط نظریه نسبیت عام حد کلاسیکی یک نظریه گرانش کوانتومی‌ست که به واسطه‌ی مقیاس‌های عظیم انرژی از دنیای ماکروسکوپیک ما جدا شده است، و این رفتار به عنوان تجلی‌ای از خمشِ فضازمان توسط ما درک می‌شود. بنابراین با کارکردن در پارادایم میدان‌های کلاسیکی گرانشی در ابعاد بالا می‌توانیم به رفتارهای حدی نظریه‌های منتج‌شده از ریسمان دست پیدا کنیم. در نتیجه با محدود کردن خود در پارادایم میدان‌های کلاسیکی گرانشی در ابعاد بالا، در حضور خمش مراتب بالا، انتظار می‌رود ویژگی‌هایی از جمله "انواع فضازمان‌های مشابه جواب‌های نظریه نسبیت عام (گسترش یافته شده به ابعاد بالا)" ، "وجود تکینگی در فضازمان" و "اُفق رویداد"، دوباره ولی با پیچیدگی‌های بیشتر، ظهور کنند. در این بین می‌توان از یک نظریه گرانشی خمش مراتب بالا بدون فرضِ اَبرتقارن استفاده کرد. این نظریه گرانشی در ابعاد بالا می‌تواند، به منظور داشتن ویژگی‌های نظریه نسبیت عام، گسترش استاندارد نظریه نسبیت عام در ابعاد بالا باشد. در این بین حل‌های سیاه‌چاله‌ای گرانش در ابعاد بالا می‌تواند نقش مهمی را در ارتباط بین گرانش و اَبرریسمان (کاندیدای نظریه گرانش کوانتومی احتمالی) ایفا کند. در اولین قدم، سیاه‌چاله‌ها به عنوان سیستم‌هایی که می‌توان آن‌ها را به صورت نیمه کلاسیکی، یعنی با لحاظ کردن بعضی ملاحظات کوانتومی، در نظر گرفت می‌توانند مهم‌ترین نقش را ایجاد ارتباطِ هم‌زمانِ مفاهیمی هم‌چون خمش مراتبِ بالا، گرانش کوانتومی، ابعاد بالا و ترمودینامیک سیاه‌چاله‌ها داشته باشند. از سوی دیگر از طریق مطالعهی لایهها در نظریه ریسمان است [2,4] که کُنشی غیرخطی برای میدان‌های الکترومغناطیسی از نوع کُنش بورن-اینفلد، که قبلاً به طور مستقل برای تعمیم کلاسیکی نظریه الکترومغناطیس ماکسول پیشنهاد شده بود، پیدا می‌شود [4]. این لایه‌های چند بُعدی از یک دینامیک غیرخطی برای میدانهای الکترومغناطیسی مانند الکترودینامیک نظریه بورن-اینفلد تبعیت میکنند. همانند سیاه‌چاله‌ها، مفهومی تحت عنوان لایه‌های سیاه را می‌توان وارد حوزه‌ی نظری بررسی‌ها کرد، که نام لایه‌ی سیاه اشاره به اُفق‌های توپولوژیکی با شکل‌های کاملاً منحصربه‌فرد دارد. لایه‌های سیاه همانند سیاه‌چاله‌ها نقشی کلیدی در درکِ مفاهیمی هم‌چون خمش مراتب بالا، گرانش کوانتومی، ابعاد بالا و ترمودینامیکِ اُفق‌شان دارند. بنابراین انگیزه‌های لازم برای یافتن جواب‌های نظریه گرانش خمش مراتب بالا در حضور یک دینامیک غیرخطی از میدان‌های الکترومغناطیسی به دست می‌آید.
در حال حاضر باور عمومی فیزیک‌دانان بر این است که نظریه‌ی گرانشی اینشتین حد انرژی‌های پایین یک نظریه‌ی گرانش کوانتومی است. بنابراین صرف‌نظر از طبیعت بنیادی گرانش کوانتومی، باید یک کُنش مؤثر در انرژی‌های پایین وجود داشته باشد که گرانش را در سطحی کلاسیکی توصیف کند. این کُنش مؤثر شامل کُنش اینشتین-هیلبرت به علاوه‌ی جملات خمش مراتب بالا می‌شود. ظهور جملات خمش مراتب بالا در بازبهنجارش نظریه میدان‌های کوانتومی در فضازمان‌های خمیده [6] و یا در ساختن کُنش‌های مؤثر انرژی پایین در نظریه ریسمان دیده می‌شود .[7] در کیهان‌شناسی جهان‌لایه‌ای (که با نظریه ریسمان سازگار است) نیز فرض بر این است که ماده و میدان‌های پیمانه‌ای در یک لایه جایگزیده و درون یک فضازمان با ابعاد بالاتر محصور شده‌اند و میدان گرانشی می‌تواند در سرتاسر این فضازمان با ابعاد بالا منتشر شود. این‌ها دلایلی هستند که نیاز به بررسی گرانش در ابعاد بالا را مهم و بنیادی جلوه می‌دهند. در این راستا چارچوبی که برای بررسی گرانش در ابعاد بالا، از یک کُنش مؤثر کلاسیکی، انتخاب می‌کنیم چارچوبی‌ست که فرضیات اینشتین در نسبیت عام را نگه دارد و در عین حال در ابعاد بالا در انرژی‌های پایین نظریه اَبریسمان سازگار باشد. چنین چارچوبی مدل گرانش لاولاک است [8,9]. از آن‌جایی که تنها کُنش‌های مؤثری که شامل جملات مراتب بالا از مشتقات مرتبه دوم متریک هستند بدون شبح می‌باشند [10]، و گرانش لاولاک از چنین خاصیتی برخوردار است، بنابراین مناسب‌ترین کُنش برای برای بررسی گرانش در ابعاد بالا به نظر می‌رسد. در نتیجه به نظر لازم می‌آید که اثرات خمش مراتب بالا را در ویژگی‌ها و ترمودینامیکِ جواب‌های سیاه‌چاله‌ای بررسی نماییم. در این پایان‌نامه گرانش لاولاک را تا چهار جمله اول بررسی می‌کنیم که آن را تحتِ عنوانِ گرانش لاولاک مرتبه سوم ارجاع می‌دهیم (اولین جمله در کُنش لاولاک با شماره‌ی صفر مشخص می‌شود). از سوی دیگر در حد انرژیهای پایین نظریههای ریسمان کُنشی غیرخطی از نوع کُنش بورن-اینفلد ظاهر میشود [11-14]. در این کُنش یک لاگرانژی جدید به جای لاگرانژی ماکسول قرار میگیرد که مشکل نامتناهی شدن خود انرژی ذراتِ باردار نقطهای را، به صورت کلاسیکی، حل میکند[15]. این کُنش می‌تواند به عنوان تصحیحات ریسمانی بر روی نظریه ماکسول در نظر گرفته شود. بنابراین طبیعی به نظر می‌رسد که، با توجه به مطالب گفته شده، به دنبال جواب‌های سیاه‌چاله‌ای و همچنین لا‌یه‌های سیاه در ابعاد بالا باشیم. هنوز فهم دقیق و کاملی در مورد ارتباط بین چارچوبهای نظریِ گرانشِ خمش مراتب بالا، نظریه ریسمان، فیزیکِ سیاهچالهها، و مفهومِ ابعاد بالاتر از 1+3 بُعد بدست نیامده است و به همین دلیل تاکنون گرانش لاولاک نقش یک آزمایشگاه را برای فیزیکدانان در ابعاد بالا داشته است. سیاه‌چاله‌ها و لایه‌های سیاه در ابعاد بالا نقطه برخورد مفاهیمی هم‌چون خمش مراتبِ بالا، گرانش کوانتومی، ابعاد بالا و ترمودینامیکِ اُفق‌شان هستند و از این حیث پیدا کردن چنین جواب‌هایی ضروری می‌باشد. بنابراین انگیزه‌ای علمی ایجاد می‌شود که سیاه‌چاله‌ها و لایه‌های سیاه مربوط به گرانش خمش مراتب بالا، در حضور یک دینامیک غیرخطی برای میدان‌های الکترومغناطیسی، پیدا و بررسی شوند. تاکنون گرانش لاولاک مرتبه سوم فقط در حضور دینامیک غیرخطی بورن-اینفلد برای میدانهای الکترومغناطیسی مورد بررسی قرار گرفته است [16]. هدف این تحقیق پیدا کردن جواب‌های گرانش مرتبه سوم در حضورِ کلاس‌های نمائی و لگاریتمی از نظریه الکترودینامیک غیرخطی (به عنوان کُنش‌های بورن-اینفلد گونه) و بررسی ترمودینامیک اُفق جواب‌ها است.
در این راستا چنین طرحی برای ساختار پایان‌نامه در نظر گرفته‌ایم:
ابتدا در فصل دوم نظریه نسبیت عام اینشتین را با تأکید بر روی بُعد چهارم زمان مرور می‌کنیم و به بررسی اصول و مهم‌ترین نتایج این نظریه می‌پردازیم. در این بین، مفاهیمی را که برای بحث در ابعاد بالا به آن‌ها نیازمندیم ابتدا در حوزه نسبیت عام مطرح می‌کنیم، بنابراین تعمیم آنها به ابعاد بالا سرراستتر خواهد بود. در ادامه گرانش لاولاک مرتبه سوم را، به عنوان امتداد استاندارد نظریه نسبیت عام به ابعاد بالا، معرفی می‌کنیم.
در فصل سوم به مطالعه‌ی نظریه الکترودینامیک غیرخطی به عنوان تعمیمی از نظریه ماکسول می‌پردازیم. در این بین دو انگیزه‌ی مهم نظری وجود دارد: رفع مشکل نامتناهی شدن خودانرژی بارهای نقطه‌ای در نظریه ماکسول و پیروی کردن میدان‌های الکترومغناطیسی در جهان‌حجم‌های -لایه‌ها از یک دینامیک غیرخطی برای میدان‌های الکترومغناطیسی، نظیر الکترودینامیکِ شبه بورن-اینفلد. در ادامه مشکل نظری معادلات ماکسول و ناسازگاری درونی نظریه را خاطر نشان می‌سازیم و به معرفی نظریه الکترودینامیک غیرخطی، به منظور رفع این ناسازگاری می‌پردازیم. در پایان با به دست آوردن میدان‌های الکتروستاتیکی مقایسه‌هایی بین کلاس‌های نمائی، لگاریتمی و بورن-اینفلد انجام می‌دهیم و سپس ایده‌ی اصل برهم‌نهی غیرخطی برای میدان‌ها را، با توجه به معادلات موج نظریه، ارائه می‌دهیم.
در فصل چهارم نیز به منظور ورود به بحث ترمودینامیک سیاه‌چاله‌ها ابتدا به بیان قوانین مرسوم ترمودینامیک برای سیستم‌ها در طبیعت می‌پردازیم. سپس در تناظر با قوانین ترمودینامیک مرسوم، قوانین ترمودینامیک مربوط به سیاه‌چاله‌ها را مرور می‌کنیم و سپس این بحث را به سیاه‌چاله‌های ابعاد بالا می‌کشانیم.
در فصل پنجم، که مهم‌ترین فصل این تحقیق محسوب می‌شود، با توجه به انگیزه‌های گفته شده جواب‌های سیاه‌چاله‌ها و لایه‌های سیاه گرانش لاولاک را در حضور دو کلاس نمائی و لگاریتمی از نظریه الکترودینامیک غیرخطی را پیدا می‌کنیم. سپس جواب‌ها را به تمام ابعاد گسترش می‌دهیم. در این بین شاهد خصوصیات جدیدی از گرانش خمش مراتب بالا خواهیم بود که نظیر آن در گرانش اینشتین دیده نمی‌شود. در ادامه به بررسی ترمودینامیک و محاسبه کمیت‌های پایای ترمودینامیکی برای جواب‌ها خواهیم پرداخت. در انتها نیز تحلیلی از پایداری ترمودینامیکی سیاه‌چالهها و لایههای سیاه ارائه خواهیم داد.


در نهایت فصل ششم را با جمع‌بندی نتایج و مرور کار انجام شده و ارائه چند طرح پیشنهادی به پایان می‌رسانیم.

فصل دومگرانش در ابعاد بالاابتدا در بخش اول، نظریهی نسبیت عامِ اینشتین را به عنوان چارچوبی که در آن به مفاهیمی چون فضا، زمان و گرانش میاندیشیم مرور میکنیم. در این نظریه زمان به منزلهی بُعد چهارم، به عنوان یک اِلزام و نه یک فرض، در نظر گرفته میشود. سپس به مطالعهی مهمترین رئوس نظریه نسبیت عام و مفاهیم استخراج شده از آن میپردازیم. در ادامه گرانش لاولاک که گسترش استاندارد نظریه نسبیت عام به ابعاد بالا است را با توجه به انگیزه‌های گفته شده در فصل مقدمه معرفی می‌کنیم.
2-1 بُعد چهارم و نظریه نسبیت عام اینشتیندر یک دستگاه مختصات متعامدِ تختِ دو بُعدی، عنصر ناوردای فاصله بینهایت کوچک توسط رابطهی فیثاغورث تعیین میشود. گسترش این رابطه به یک دستگاه مختصات متعامدِ تخت سه بُعدی به رابطهی ناوردای میانجامد. از لحاظ منطق ریاضیاتی میتوان این گسترشِ مختصاتِ متعامدِ تخت را همچنان ادامه داد. به این دستگاههای مختصاتی، چارچوبهای دکارتی میگوئیم. یک چارچوب دکارتی 3 بُعدی، که آن را با نشان می‌دهیم، میتواند موقعیت و فاصلهی تمام اجسام در فضای فیزیکی را تعیین کند. میتوان مختصهی چهارمی، تحت عنوانِ زمان، به چارچوب دکارتی 3 بُعدی اضافه کرد که موقعیت و فاصلهی اجسام را در فضا و زمانِ فیزیکی نمایش دهد. در این چارچوب 1+3 مختصهای دو جسم میتوانند در یک مکان باشند ولی در زمانهای متفاوت؛ و در یک زمان میتوان دو جسم در مکانهای متفاوت داشت. در این چارچوب، صفحاتِ زمان ثابت، فضای فیزیکی را به صورتِ صفحاتی تخت لایهبندی میکند (شکل 1-1). این ترسیم تفکر نیوتنی از فضا و زمانِ مطلق است. در نظریه نیوتنی دو رویداد میتوانند، به طرز کاملاً خوشتعریف و بدون ابهامی، همزمان رخ دهند؛ یعنی فرضِ همزمانی مطلق. در آن تعیین زمان مستقل از انتخاب فضای مرجع است، یعنی برای هر دو چارچوبِ دکارتی لختی گذر زمان یکسان است و این مبنایی نظری برای تبدیل گالیلهای است. برای انجام یک تحلیل همزمانی بین دو رویداد باید تأخیر زمانی در رسیدن اطلاعات به ناظر نیز لحاظ شود. چنین الزامی ناشی از وجود یک ثابت جهانی برای سرعت انتشار نور است. اینشتین این تحلیل را ابتدا با معرفی اصل ثابت بودن سرعت نور در تمام چارچوبهای لخت ارائه داد: "اصلِ ثابت بودن سرعت نور : نور همیشه در فضای تهی با یک سرعت ثابت c منتشر میشود که مستقل از چگونگی حرکت جسمِ تابشکننده است. این قانون پیامد طبیعی داشتن یک نظریه برای پدیدههای الکترومغناطیسی به شکل کنونیاش است. قوانین باید طوری اصلاح شوند که تأخیر در رسیدن اطلاعات در نظریه لحاظ شده باشد". با تحلیل مسئلهی همزمانی، و با توجه به این واقعیت تجربی که سرعت نور یک ثابت جهانیست، میتوان دریافت که حتی یک مورد همزمانی مطلق برای ناظرهای لخت مختلف نمیتوان یافت. این پیامدی اساسی از ثابتِ جهانی بودنِ سرعتِ نور است[17] . تنها چیزی که میتوان یافت یک تعریف قراردادی همزمانی رویدادها برای ناظریست که نسبت به دو رویداد ساکن است و همچنین از لحاظ موقعیت مکانی در فاصلهی یکسانی از دو رویداد قرار دارد. از آنجا که به دلیل عدم هرگونه هم‌زمانی مطلق هیچ تفکیک معقول عینی از پیوستار فضازمان به یک فضای 3 بُعدی به همراه یک بُعد زمانی وجود ندارد، قوانین طبیعت باید قابل قبولترین شکل خود را هنگامی اختیار کنند که به صورتِ
شکل 2-1 : شکل سمت چپ تقسیم فضای فیزیکی به صفحاتِ زمان ثابت در چارچوبِ 4 مختصهای فضا و زمان در نظریه نیوتن. یک نقطه در این چارچوب یک رویداد نامیده میشود و مسیر یک ذره در فضا و زمان توسط پیوستاری یک بُعدی از رویدادها، تحت عنوان جهانخط، مشخص میشود. شکل سمت راست لایه‌بندی فضازمان در نظریه نسبیت خاص را نشان میدهد.
قوانینی در پیوستار فضازمان بیان شوند. بنابراین دستگاه مختصات متعامد تخت 3 بُعدی را به پیوستار 1+3 بُعدی از فضازمان گسترش میدهیم. برای اینکه بتوانیم زمان را وارد عنصر دیفرانسیلی فاصله کنیم لازم است که از یک ثابت جهت برگرداندن اندازهگیریهای زمانی به مکانی استفاده کنیم. در واقع در طبیعت تنها یک ثابت جهانی برای سرعت وجود دارد که همان سرعت نور در شرایط خلأ است و همین ثابت است که منجر به تعریف یک فاصلهی ناوردا در پیوستار فضازمانی میشود. بنابراین برای عنصر ناوردای فاصلهی فضازمانی خواهیم داشت: . علامت منفی از این واقعیت ناشی میشود که سرعت نور در یک چارچوب مفروض کمیتی مثبت است. ضرایب مختصه‌های این عنصر ناوردای طول همان ضرایب متریک برای یک سطح شبه‌اقلیدسی هستند و آن را با نمادگذاری نمایش می‌دهیم. از آن‌جایی که طبق تعریف‌مان این عنصر طول در هر چارچوب لَختی ناورداست بنابراین از این ناوردایی در بین دو چارچوب، تبدیلات لورنتس به عنوان تنها تبدیلات خطی استخراج میشوند، و به تبع آن اثرات اتساع زمان و انقباض طول پیشبینی میشوند. تحت تبدیلات لورنتس، الکترودینامیک ماکسول در همهی چارچوبهای لخت دارای شکل یکسانی خواهد بود و برای اجسام متحرک باردار به جوابهای فیزیکی صحیحی میانجامد. در واقع این تبدیلات همارزی تمام دستگاههای مختصات لخت را نشان میدهد که تحت عنوان اصل نسبیت خاص شناخته میشود. اصل نسبیت خاص نتیجهی عدم آشکارسازی هرگونه ناهمارزی برای چارچوبهای لخت است [17]. همهی آنچه که گفته شد اساس نظریهی نسبیت خاص است که برای چارچوبهای لخت مختصاتی تدوین شده است، و بنابراین نظریهایست برای فضازمان 4-بُعدی تخت که تحت عنوانِ فضای مینکوفسکی شناخته میشود.
لایه‌بندی‌ای که نظریه نسبیت خاص برای فضازمان فیزیکی ارائه می‌دهد به صورت مخروط‌های نوری برای هر ناظر (یا رویداد) مفروضی در فضازمان است (شکل 1-1). بنابراین در نسبیت خاص (یا پیکربندی مینکوفسکی برای فضازمان) هیچ مفهوم خوش تعریفی برای دو رویدادِ جدا که در یک زمان اتفاق میاُفتند وجود نخواهد داشت. ولی چه دلیلی برای قبول چنین لایه‌بندی‌ای از فضازمان در دست داریم؟ تاکنون تمامی آزمایشات چنین ساختاری از فضازمان را در کره‌ی زمین تأیید کرده‌اند. فرض چنین ساختاری برای فضازمان فیزیکی بسیاری از مشکلاتِ فیزیک پیش‌نسبیتی را حل می‌کند. ولی مواردی وجود دارد که نشان می‌دهند چنین ساختاری از فضازمان (پیکربندی مینکوفسکی) فقط بخشی از واقعیت را تفسیر می‌کند و نمی‌تواند اثراتی ناشی از بازتاب فضازمان مانند "حرکت تقدیمی حضیض عطارد"، "خم شدن مسیر نور در مجاورت اجرام سنگین" و "انتقال به سرخ گرانشی" را توضیح دهد. پیکربندی مینکوفسکی از فضازمان معادل با هموردایی قوانین فیزیک برای تمامی ناظرهای چسبیده به چارچوب لخت است. در این‌جا می‌توان پرسید یک ناظر غیرلخت فضازمان را چگونه لایه‌بندی می‌کند یا قوانین فیزیک را به چه شکل می‌بیند؟ اگر هم‌ارزی همه دستگاه‌های مختصات را برای تدوین قوانین طبیعت به منزله‌ی یک اصل ارتقا دهیم به نظریه نسبیت عام دست می‌یابیم به شرط آن‌که قانون ثابت بودن سرعت نور، یا فرضیه‌ی وجود عینی متریک مینکوفسکی را، دست‌کم در نواحی بی‌نهایت کوچکی از فضای چهار بُعدی حفظ کنیم. در چنین تعمیمی از اصل نسبیت خاص به اصل هموردایی عام از اصلِ هم‌ارزی استفاده شده است. این اصل محصولِ واقعیتِ تجربی برابری جرم لختی و جرم گرانشی است. حد خطی بودن نسبت میان جرم‌های گرانشی و لختی چیزی نزدیک به یک در است (براساس آزمایشات دیکه در 1964 و براجینسکی در 1971) [19]. یعنی با دقت بسیار بالایی جرم گرانشی با جرم لختی برابر است. این یعنی وجود رابطه‌ای میان حرکت‌های شتاب‌دار و میدان‌های گرانشی. معادل بودن این دو پدیده اینشتین را به سمت ایجاد یک اصل فیزیکی به نام اصل هم‌ارزی سوق داد. بیان اصل هم‌ارزی به صورت قوی: "در هر نقطه از فضازمان در یک میدان گرانشی می توان یک «دستگاه مختصات لخت موضعی» انتخاب کرد به طوری که در ناحیه به قدر کافی کوچک در اطراف آن نقطه قوانین فیزیکی به همان شکل قوانین در دستگاه مختصات بدون شتاب در غیاب گرانش باشند."
این اصل دلالت بر این دارد که یک «دستگاه مختصات جهانی» وجود ندارد و در هر نقطه در فضازمان چهار بُعدی می‌توان یک مجموعه چهار مختصه‌ی پیدا کرد که مبدأ آن در قرار داشته باشد و متریک به صورت موضعی لورنتسی باشد؛ یعنی . در این دستگاه مختصات لخت موضعی روابط زیر برقرارند:
(2-1-1)
این شرط از لحاظ ریاضی مطابق با وجودِ یک ناحیه‌ی شبه‌اقلیدسی (یا فضازمان مینکوفسکی) در هر ناحیه‌ی بسیار کوچکی از یک خمینه‌ی عام‌تر (خمینه‌ی ریمانی) است. بنابراین زبان ریاضیاتی مربوط به نظریه نسبیت عام زبان هندسه‌ی دیفرانسیل تانسوری خواهد بود. برای کاربرد‌های بعدی بهتر است تعریف دقیق‌تری از خمینه‌ها داشته باشیم. خمینه چیزی بیشتر از فضای پیوسته‌ای از نقاط که ممکن است به طور سرتاسری خمیده (دارای خمش) باشند، نیست. اما این خمینه‌ها به طور موضعی (یعنی در ناحیه محدودی از سطح‌شان) مانند صفحه در فضای تخت هستند. فرض می‌شود یک خمینه به دفعات مشتق‌پذیر است. خمینه یک سازهی ریاضی است که برای توصیف فضازمان به کار میرود، حال آنکه نظریه نسبیت خاص نوع ویژهای از فضازمان را در بر میگیرد، فضازمانی که نه خمشی دارد و در نتیجه نه گرانشی، بنابراین خمینهی مربوط به آن شبهاقلیدسی خواهد بود. بر طبق اصل هم‌ارزی در هر نقطه‌ای از فضازمان هر ناظری می‌تواند دستگاه مختصاتی را بیابد که متریک آن به صورت لورنتسی (مینکوفسکی) باشد، در مورد خمینه‌ها هم می‌توانیم بگوییم که در هر ناحیه‌ی کوچکی از خمینه می‌توان آن ناحیه را موضعاً اقلیدسی در نظر گرفت. متریک لورنتسی یک متریک شبه اقلیدسی است. این متریک در هر ناحیه از فضا – زمان موضعاً برقرار است که این خود ناشی از موضعی بودن نظریه نسبیت خاص در مقابل نظریه نسبیت عام است. به طور عام یک خمینه نمی‌تواند توسط یک سیستم مختصاتی یکتا و سرتاسری پوشانده شود. یعنی هیچ نگاشتی از کل خمینه به فضای وجود ندارد و مجبوریم خمینه را تکه تکه کنیم (یعنی به تکه‌های باز تقسیم کنیم). این بازه‌های باز را می‌نامیم و هر بازه می‌تواند به فضای تخت اقلیدسی نگاشته شود.

شکل 2-2 : دستگاه مختصات یک نگاشت از خمینه به فضای اقلیدسی است.
بر طبق تعریف در خمینه نگاشت‌های وجود دارد که یک ناحیه (بازه) باز در است. اگر یک نقطه در باشد بنابراین یک بردار در خواهد بود. چنین نگاشتی یک «دستگاه مختصات» نامیده می‌شود و ناحیه‌ی (بازه) مختصاتی است. یک دستگاه مختصات شامل مجموعه‌ای از نگاشت‌ها است. دستگاه مختصات نماینده‌ی نقاط در است که توسط علائم نمایش داده می‌شود. خمینه‌ها دارای این خاصیت هستند که ضرب مستقیم دو خمینه‌ی و با ابعادِ و یک خمینه با بُعد ، شامل جفت نقاط مرتب با و است. به طور کلی فرض می‌کنیم کلیه خمینه‌های مورد بحث، ریمانی هستند. خمینه‌‌های ریمانی دسته‌ای از خمینه‌ها هستند که برای توصیف فضازمان‌های نسبیت عامی از آنها استفاده می‌کنیم.
بنابراین با توجه به توضیحات داده شده متریک یک فضازمان عام ریمانی را می توان به صورت

شکل 2-3 : یک تبدیل مختصات بین دو مجموعه مختصات
6882491683385مشخص کرد که در آن مؤلفه های دستگاه مختصات و خمش فضا را تعیین می‌کنند. اطلاعات مربوط به یک فضازمان خمیده و چگونگی انحراف آن از رابطهی فیثاغورث در تانسور متریک کُدگذاری میشود. عناصر متریک دستگاه‌های مختصات عام توسط دستور به یکدیگر مربوط میشوند. به زبان خمینه‌ها اگر دو ناحیه و دارای فصل مشترک باشند که و به ترتیب دارای مختصه‌هایو هستند می‌توانیم یک تبدیل مختصات وارون‌پذیر به صورت در تعریف کنیم. آنگاه بیان ریاضی اصل نسبیت عام این میشود که دستگاه‌های معادلاتی که «قوانین عام طبیعت» را بیان می کنند در دستگاه‌های مختصات ریمانی یکسانند. قضاهایی که گفته شدند به هندسه ریمانی موسوم هستند و از این پس فرض می کنیم که فضاهای مورد بحث ریمانی (خمینه‌های ریمانی) هستند. با در نظر گرفتن وجود چنین لایه‌بندی‌ای برای فضازمانِ فیزیکی 1+3 بُعدی پدیده‌های "حرکت تقدیمی حضیض عطارد"، "انتقال به سرخ گرانشی" و "خم شدن مسیر نور در مجاورت اجرام سنگین و به تبع آن اتساع زمانی گرانشی" پیش‌بینی یا تفسیر می‌شوند. اثر اتساع زمانی گرانشی به ما می‌گوید که اجسام از مکان‌هایی که گذر زمان در آن‌جا سریع‌تر است به مکان‌هایی که گذر زمان کمتر است سقوط می‌کنند. فرض چنین ساختارِ هندسی برای فضازمان باید در حد میدان‌های گرانشی ضعیف به نظریه گرانشی نیوتن برسد. در این‌جا، با توجه به فرمالیزم ریاضیاتی به کار رفته شده، می‌توان اصلی با عنوان اصل تطابق تعریف کرد. مطابق این اصل داریم:
"در میدان‌های گرانشی ضعیف پیکربندی ریمانی فضازمان به یک پیکربندی مینکوفسکی میل می‌کند. در حد سرعت‌های پایین و میدان‌های گرانشی ضعیف نیز پیکربندی ریمانی فضازمان به یک پیکربندی اقلیدسی از فضا و زمان میل می‌کند."
معادله پواسون برای پتانسیل گرانشی نیوتن به صورت است که در آن توزیع جرم ماده است. در طرف چپ این معادله عملگر لاپلاسی، که تولید کننده‌ی مشتقات مرتبه دوم است، وجود دارد و در طرف راست اندازه‌ای از توزیع جرم. یک تعمیم نسبیت عامی از این معادله، با توجه به نوع لایه‌بندی ارائه شده توسط اصلِ هم‌ارزی و ورود بُعد زمان به عنصر ناوردای فاصله، باید ارتباطی از نوع تانسوری بین دو طرف این معادله برقرار کند تا در تمام چارچوب‌ها شکلی یکسان، مطابق با اصل هوردایی عام، داشته باشد. چنین تعمیمی توسط اینشتین در سال 1915 به صورت زیر ارائه شد [18]:
(2-1-1)
که همان ثابت عددی موسوم به ثابت گرانش اینشتین است. طرف چپ این رابطه تانسور اینشتین نام دارد و برآوردی از خمشِ فضازمان است، طرف راست موسوم به تانسور انرژی-تکانه نیز انرژی و تکانهی ماده و میدان را اندازه میگیرد که نقش چشمه گرانشی را بازی می‌کنند. معادلات میدان اینشتین توضیح می‌دهد که چطور خمشِ فضازمان به حضور تکانه-انرژی ماده و میدان واکنش نشان می‌دهد که در تطابق با فرم ضعیف اصلِ ماخ به صورتِ "توزیع ماده شکل هندسه را تعیین می‌کند" است. اصل ماخ در فرم قوی‌اش به صورت "ماده وجود هندسه را تعیین می‌کند، در صورت نبود ماده هندسه‌ای نیز وجود نخواهد داشت" با نسبیت عام سازگار نیست. به طور خلاصه می‌توان نظریه نسبیت عام را، مطابق با رهیافت اینشتین، از پنج اصلِ زیر به دست آورد:
فرم ضعیف اصل ماخ
اصل هم‌ارزی
اصل هموردایی عام
اصل تطابق
اصل جفت‌شدگی گرانشی کمینه
آخرین اصل، که توسط اینشتین به صورت ضمنی استفاده شد، بیان می‌کند که در تعمیم روابط نسبیت خاص به نسبیت عام نباید جملاتی که به صورت صریح شامل تانسور انحنای ریمان هستند به معادلات اضافه گردند.
2-2 نظریه میدان‌های کلاسیکی: فرمول‌بندی لاگرانژی میدان‌های گرانشیدر مکانیک کلاسیک کُنش به صورت تعریف می‌شود که در آن لاگرانژین سیستم است. کمینه کردن تابع با استفاده از حساب وردشی به اصل کمترین کُنش یا اصل هامیلتون منجر می‌شود. در مکانیک کلاسیک با تعریف اختلاف انرژی جنبشی و پتانسیل به عنوان لاگرانژین، برای یک ذره‌ی نقطه‌ای، قانون دوم نیوتن بدست می‌آید. نظریه میدان کلاسیکی بر اساس اصل کمترین کُنش تعریف می‌شود. تنها تفاوت در جابجا شدن مختصه‌های با یک مجموعه از میدان‌های وابسته به فضازمان ، است و در نتیجه کُنش نهایی تابعی از این میدان‌ها خواهد شد. در نظریه میدان‌ها، می‌توان لاگرانژین را به عنوانِ انتگرالِ فضایی یک چگالی لاگرانژی ، که تابعی‌ست از میدان‌های و مشتق‌های به صورت تعریف کرد و بنابراین کُنش، در گذار به یک فضازمان خمیده، یعنی یک پیکربندی ریمانی 1+3 بُعدی (خمینه‌ی )، به صورت زیر خواهد شد
(2-2-1)
که در آن اشاره بر دترمینان متریک فضازمان مورد نظر دارد. وقتی که یک گذار از نظریه نسبیت خاص به نسبیت عام انجام می‌دهیم متریک به میدانِ دینامیکی تانسوری تحول پیدا می‌کند [20]. با انتخاب یک میدان اسکالر به صورت و وردش کوچک روی ها به معادلات میدان اینشتین در فضای تهی، با فرض بی‌نهایت بودن امتداد فضازمان (معادل با فرض بی‌نهایت بودنِ خمینه‌ی )، دست پیدا می‌کنیم:
(2-2-2)
به این جمله کُنش اینشتین-هیلبرت گفته میشود. می‌توان معادلات عام‌تر میدان گرانشی اینشتین را، با احتساب ثابت کیهان‌شناسی و در حضور یک توزیع پیوسته ماده باردار و برهم‌کُنش آن با میدان‌های الکترومغناطیسی و گرانشی، یک‌جا با تعریف کُنش عام به صورت
(2-2-3)
به دست آورد که آثار ماده و میدان در جمله‌ی کُنش توسط کُنش ماده‌ی لحاظ شده است. تانسور انرژی-تکانه نیز از وردش و مرتب کردن آن مطابق رابطه‌ی
(2-2-4)
به دست می‌آید [19].
2-3 کُنشِ مرزی نظریه نسبیت عامبا وردش دادنِ کُنش (2-2-3) نسبت به تانسور متریک، برای یک فضازمان متناهی، عبارت خوشتعریفی به دست نمیآید. در واقع جملاتی مربوط به مرز فضازمان در معادلات میدان نهایی ظاهر میشوند. بنابراین برای یک فضازمان متناهی، متناظر با پیکربندی ریمانی با مرزِ ، کُنش اینشتین-هیلبرت بنیادی‌ترین کُنش محسوب نمی‌شود. زیرا در وردش این کُنش نسبت به تانسور متریک در یک فضازمان دارای مرز جمله‌ای دارای انتگرال سطحی که شامل مشتق نرمالِ است ظاهر می‌شود که فقط در بی‌نهایت تأثیر این جمله‌ی سطحی از بین می‌رود. بنابراین برای خوش تعریف کردن کُنش، باید یک انتگرال مرزی به کُنش حجمی اضافه کنیم تا معادلات میدان گرانشی اینشتین به دست آید. این جمله اثری در معادلات میدان عام گرانشی ایجاد نمی‌کند و تابعی از هندسه‌ی مرزی فضازمان است. این جمله اولین بار توسط گیبونز و هاوکینگ به صورت زیر ارائه شد[21] :
(2-3-1)
که در آن دترمینان متریک مرزِاست و ردِ انحنای خارجی مرز می‌باشد. بنابراین این کُنش مرزی در کنار جمله‌ی کُنش اینشتین-هیلبرت، در فضازمان‌های دارای مرز متناهی، معادلات میدان اینشتین را به دست می‌دهد.
2-4 ایزومتری و میدان‌های برداری کیلینگیک خمینه (که توصیف ریاضی‌وار فضازمان نسبیت عامی است) دارای یک تقارن است اگر هندسه آن تحت یک تبدیل مشخص –که خمینه را به خودش می‌نگارد– یکسان باقی بماند. این یعنی وقتی از نقطه‌ای به نقطه‌ی دیگر می‌رویم متریک تغییری نکند. چنین تقارن‌هایی در متریک را ایزومتری می‌نامیم. مستقل بودن مؤلفه‌های متریک از یک یا چند مختصه شرط وجود داشتن ایزومتری را تضمین می‌کند (ولی عکس این مطلب صحیح نیست). بنابراین یک فضازمان می‌تواند دارای تقارن باشد. برای مثال اگر در یک دستگاه مختصات (مثلاً در کاربردهای کیهان‌شناسی) مؤلفه‌های متریک مستقل از زمان باشند می‌گوییم که فضازمان دارای تقارن زمان گونه است و پایا است. به یک متریک ناوردای شکل می‌گویند هر گاه تحت تبدیل مختصات ، متریک تبدیل یافته‌ی دارای شکل یکسانی، از لحاظ وابستگی به شناسه‌هایش ، نسبت به متریک اولیه‌اش باشد، که برای تمامیها به صورت
(2-4-1)
نشان می‌دهیم. مؤلفه‌های متریک توسط روابط
(2-4-2)

تبدیل می‌شوند. در صورت معتبر بودن دستور (2-4-1) می‌توانیم را با عوض کنیم و خواهیم داشت:
(2-4-3)
هر تبدیل مختصات که شرط (2-4-3) را برقرار نماید، یک ایزومتری نامیده می‌شود. حال برای به دست آوردن شرطی برای وجود ایزومتری‌ها می‌توانیم ایزومتری‌های بی‌نهایت کوچک را در نظر بگیریم که برای آنها حرکت نقاط کوچک هستند. با تغییر مختصات بی نهایت کوچک
(2-4-4)
و با قراردادن آن در دستور (2-4-3) تا مرتبه‌ی اول بر حسب رابطه‌ی زیر را، به شکل هموردا، به دست خواهیم آورد
(2-4-5)
ها را بردارهای کیلینگ می نامیم. دستور (2-4-5) معادله‌ی کیلینگ خوانده می‌شود و هر میدان برداری که در این معادله صدق کند بردارهای کیلینگ نامیده می‌شود [19]. حال مسئله تعیین کردن تمام ایزومتری‌های بی نهایت کوچک به مسئله پیدا کردن بردارهای کیلینگ متریک تبدیل می‌شود. هر ترکیب خطی از بردارهای کیلینگ با ضرایب ثابت هنوز هم یک بردار کیلینگ است. هر بردار کیلینگی وجود یک کمیت پایسته مرتبط با خطوط ژئودزیک را تضمین می‌کند، این یعنی متریک در راستای بردار کیلینگ تغییر نمی‌کند.
2-5 جواب‌های نظریه نسبیت عامدر این بخش ابتدا به معرفی حلِ (آنتی)دوسیته در بُعد می‌پردازیم. در ادامه، با توجه به نوع قراردادی که در انتخاب یکاها اختیار کردیم، با استفاده از نرم‌افزار میپل تانسور اینشتین را در می‌نویسیم و سپس حل ایستای باردار بُعدی معادلات میدان اینشتین را برای کاربردهای بعدی می‌یابیم.
2-5-1 فضازمانِ آنتی دوسیته در بُعددر اینجا برای کاربردهای بعدی فضازمان (آنتی)دوسیته را معرفی می‌کنیم. این متریک را دوسیته در سال 1917 در رابطه با کیهان‌شناخت کشف کرد و فرم بُعدی آن به صورت
(2-5-1)
است که در آن نوع هندسه مرز را مشخص میکند. فضاهای هندسی (آنتی) دوسیته یا حل معادلات میدان تهی اینشتین با ثابت کیهانشناسی هستند که تعداد ابعاد فضازمان است و هم شعاع انحنای این فضا است. فضای توسط فرم درجه دو
(2-5-2)
تعریف می شودکه دریک فضای بامتریک
(2-5-3)
غوطه ور است. یک فضای تخت شبه اقلیدسی است که دارای دو مؤلفه ی زمانی و مؤلفهی فضایی است. این فضا را می توان با اضافه کردن یک مؤلفه ی زمانی به (فضای مینکوفسکی بُعدی با مؤلفهی فضایی و یک مؤلفهی زمانی) بدست آورد یعنی. پس به صورت

تعریف می شود. فضای دارای توپولوژی میباشد. این فضا دارای گروه تقارنی است. این متریک یک حل دقیق معادلات میدان اینشتین در دنیای تهی با ثابت کیهانشناسی مثبت است. می‌بینیم که در اینجا فضای دوسیته جانشین فضای مینکوفسکی در دنیای تهی می‌شود، اسکالر ریچی ثابت و برابر ِ است. هر فضا با (اسکالر ریچی ثابت و منفی) را فضای آنتی دوسیته می‌نامیم.
2-5-2 حل استاتیک باردار بُعدی معادلات میدان اینشتین در حضور ثابت کیهان‌شناسی با نوشتن معادلات میدان اینشتین در بُعد در حضور میدان‌های الکترومغناطیسی و حل کردن این معادلات به جواب زیر دست پیدا می‌کنیم
(2-5-4)
که در آن ، که نوع تقارن به کار رفته در فضازمان را مشخص میکند، متریکِ یک اَبَرسطح بُعدی با خمشِ ثابتِ مثبت، منفی و یا صفر با حجمِ میباشد. تابع متریکِ به صورت زیر است
(2-5-5)
که در آن ثابت کیهان‌شناسی در هر بُعد دلخواه به صورتِ تعریف می‌شود. واضح است که این متریک در حد مجانباً (آنتی)دوسیته است. جواب‌های گرانش مشتقات بالا در حد میدان‌های ضعیف در هر بُعدی باید به این جواب میل کنند. بنابراین این جواب معیاری از درستی جواب‌هایمان در نظریه‌های گرانشی مشتقات بالا خواهد بود.
2-6 گرانش لاولاک: گسترش استاندارد نسبیت عام به ابعاد بالاتانسور گرانشی اینشتین () به همراه یک جملهی کیهانشناسی() ، در هر بُعد، تنها تانسور متقارن و پایستهای () است که میتوان از مشتقاتِ مرتبهی اول و دوم متریک تشکیل داد به طوری که این تانسور نسبت به مشتقاتِ مرتبه دومِ متریک خطی باشد[22,23]. اینشتین رابطه تانسوری را به عنوان معادلاتِ عامِ تعیین کنندهی میدانِ گرانشی معرفی کرد که در آن ثابت گرانش اینشتین است. بنا به فرضهای اینشتین، طرف چپ معادله چنین خواصی دارد:
الف) تانسور سمت چپ این معادله (–موسوم به تانسور اینشتین) به مشتقهای مرتبه اول و دوم ِمتریکِ فضا-زمان محدود میشود.
ب) تانسور اینشتین باید نسبت به مشتقهای مرتبه دوم خطی باشد، یعنی جملات مربعی میتوانند فقط از ترکیب دو مشتقِ مرتبه اولِ متریک تشکیل شوند.
ج) همچنین به دلیل قانون بقای انرژی-تکانه (که سمت راستِ معادلات میدان به طرف چپ تحمیل میکند) دیورژانس باید همواره صفر شود.
د) باید متقارن باشد (این تقارن را نیز سمت راست معادلات میدان به طرف چپ تحمیل میکند).
با این مفروضات تانسور به شکل بهدست میآید. بهطور کلی پذیرفتن کامل این فرضیاتِ اینشتین بحثبرانگیز است. اینشتین دو شرط اول را بهطور طبیعی از معادلهی پواسون استخراج کرده است (یعنی وقتی میخواهیم در تقریب مرتبه اول از معادلات میدان اینشتین به معادلات کلاسیکی نیوتن برسیم معادله پواسون ظاهر میشود). به دلایل نظری، در صورت نپذیرفتن کامل فرضهای اعمالی اینشتین بر روی تانسورِ میتوان نظریه را طوری تغییر داد که جملات دیگری در طرف چپ این معادلهی تانسوری ظاهر شود. در این صورت به معادلاتی دست پیدا میکنیم که در حالتهای حدی، بسته به نوع تغییری که بر فرضهای اولیه اعمال میکنیم، به معادلات میدان اینشتین کاهش پیدا میکنند. به چنین نظریههایی، نظریههای گرانشیِ "تعمیم یافته یا اصلاح شده" گفته میشود. نظریههای گرانشی و تئوری لاولاک نمونهای از این نظریههای گرانشی اصلاح شده هستند. کُنش ارائه شده برای این نظریهها کلیتر و پیچیدهتر از کُنش اینشتین-هیلبرت است و طبیعتاً جوابهای معادلاتِ میدان جدید نیز پیچیدهتر از جوابهای معادلات میدان اینشتین خواهد بود. در بین سالهای 72-1970 لاولاک، طی یک دورهی تحقیقاتی، شرط وابستگی خطی تانسور اینشتین به مشتقات مرتبهی دوم (شرطِ ب) را کنار گذاشت و عامترین تانسور اینشتین را –که دیگر شرایط را ایجاب کند- یافت [8,9]. خصوصیت مهم لاگرانژی لاولاک این است که این لاگرانژی نسبت به تانسور ریمان غیرخطی است و تفاوتِ معادلاتِ میدانِ ناشی از این لاگرانژی لاولاک با معادلاتِ میدانِ اینشتین تنها در فضا-زمانهای بالاتر از 4 بُعد مشخص میشود، یعنی در 4 بُعد جوابهای معادلاتِ میدانِ لاولاک به جوابهای گرانشِ اینشتین کاهش پیدا میکنند. بنابراین با وضعیتی روبرو هستیم که میتوان آن را طبیعیترین تعمیمِ نسبیت عام به ابعاد بالاتر دانست [22]. همان‌طور که در مقدمه گفته شد اینکه ممکن است فضا-زمان ابعادی بالاتر از 1+3 بُعد داشته باشد به نظریههای میدان وحدت یافته و یا حتی به عنوان شرطی اجباری در نظریه ریسمان، برمیگردد. روش لاولاک یک فرمالیزم ریاضیاتی‌ست که با انجام روند تکرار طی یک دستورالعمل منجر به ساخت لاگرانژی لاولاک، مطابق با فرضیات اینشتین، در ابعاد دلخواه می‌شود. بنابراین تمام اصولی که برای رسیدن به نظریه نسبیت عام باید لحاظ شوند در این‌جا نیز به قوت خود باقی می‌مانند. بنابراین نسبیت عام حالت حدی گرانش لاولاک در 1+3 بُعد و هم‌چنین حد میدان‌های گرانشی ضعیف است. در این‌جا از آوردن روش لاولاک خودداری می‌کنیم (برای جزئیات بیشتر به [8] مراجعه شود). لاگرانژی لاولاک به صورت
(2-6-1)
نوشته میشود، که در آن بُعد فضازمان را مشخص میکند و یک ثابت اختیاری است که دارای ابعاد میباشد و بر طبق نتیجهای که از نظریه ریسمان به دست میآید این ضرایب باید مثبت باشند [60]. علامت اشاره به قسمتِ جزء صحیحِ حدِ بالای علامتِ مجموع دارد. به شکل
(2-6-2)
است که در آن تانسور انحنای ریمان در بُعد و دلتای کرونکر پادمتقارنِ تعمیم یافته، به صورتِ است. به ازای خواهیم داشت ، که با احتساب یک ثابت مناسب در لاگرانژی نهایی یک جملهی کیهانشناسی در معادلات میدان حاصل میگردد. به ازای خواهیم داشت ، که همان لاگرانژین اینشتین-هیلبرت است. به ازای، جملات مرتبه دوم تئوری لاولاک حاصل میشود که، وقتی مطالعات محدود به مرتبه دوم گرانش لاولاک باشند، به گرانش گاوس-بونه معروف است. لاگرانژی گاوس-بونه به صورت زیر معرفی میشود
(2-6-3)
تأثیراتِ گرانش گاوس-بونه (جملات مرتبه دومِ گرانش لاولاک) در فضازمانهای 1+4 بُعد به بالا ظاهر میشود. به ازای جملاتِ مرتبه سومِ تئوری لاولاک حاصل میشود که به صورت زیر است
(2-6-4)
تأثیرات این جملات در فضا-زمانهای 1+6 بُعد به بالا ظاهر میشود، و با ترکیب کردن این جمله مرتبه سوم با جملات قبلی، معادلات میدان اینشتین بسیار پیچیدهتر از قبل خواهند شد. در این تحقیق گرانش لاولاک را تا چهار جمله‌ی اول (با احتساب ثابت کیهان‌شناسی) مورد بررسی قرار می‌دهیم و جواب‌های معادلات میدان این گرانش را در ابعاد دلخواه، در حضور میدان‌های الکترومغناطیسی غیرخطی، به دست می‌آوریم. جوابهای گرانش لاولاک مرتبه سوم در حضور یک تانسور انرژی-تکانه دارای خصوصیاتی است که در گرانش اینشتین و گرانش گاوس-بونه مشاهده نمیشود. این خصوصیات در فصل پنجم بررسی میشوند. در یک فضازمان تهی وردش کُنش لاولاک تا مرتبه سوم منجر به تولید معادلاتِ میدانِ تهی لاولاک به صورتِ
(2-6-5)
می‌شود که در آن همان تانسور اینشتین است، و و به ترتیب تانسورهای مرتبه دوم و سوم لاولاک هستند و به صورت زیر به دست می‌آیند
(2-6-8)

2-7 کُنش مرزی در گرانش لاولاک مرتبه سومبا توجه به توضیحات مربوط به گرانش لاولاک کُنش گرانشی لاولاک به صورت زیر نوشته می‌شود
(2-7-1)
و همان‌طور که دیده می‌شود این کُنش در یک فضازمان بُعدی نوشته می‌شود. همان‌طور که برای فضازمان‌های 1+3 بُعدی در نظریه نسبیت عام توانستیم یک مرز نسبت دهیم، و با اضافه کردن یک جمله مرزی در کُنش معادلات میدان اینشتین را تولید کنیم، در این‌جا نیز به کُنش لاولاک می‌توان یک جمله‌ی مرزی اضافه کرد بدون این‌که تأثیری در معادلات میدان لاولاک ایجاد شود. وظیفه‌ی این کُنش مرزی این‌ست که برای خمینه‌های متناهی جمله‌ای متناسب با انتگرال سطحی که شامل مشتق نرمالِ است و در وردش کُنش لاولاک ایجاد می‌شود را حذف نماید. یعنی ایده‌ی گیبونز-هاوکینگ را به گرانش مشتقات بالا گسترش دهیم. این جمله اثری در معادلات میدان عام گرانشی لاولاک ایجاد نمی‌کند و تابعی از هندسه‌ی مرزی فضازمان است. بنابراین برای خوش‌تعریف کردن کُنش باید جملاتی مرزی متناظر با جملات مرتبه دوم و سوم لاولاک به کُنش اولیه اضافه گردند. جمله‌ی مرزی کُنش در گرانش لاولاک مرتبه سوم شکل پیچیده‌ای دارد و به صورت زیر می‌باشد [26]
(2-7-2)
که در آن دترمینان متریک مرزِاست و ردِ انحنای خارجی مرز می‌باشد. در رابطه‌ی بالا جمله‌ی اول در براکت همان جمله‌ی گیبونز-هاوکینگ و دو جمله‌ی دیگر به ترتیب مربوط به جملات مرتبه دوم و سوم کُنش لاولاک هستند. کمیت‌های و نیز به صورت زیر تعریف می‌شوند
(2-7-3)

در این روابط و به ترتیب تانسورهای بُعدی اینشتین و لاولاک مرتبه دوم برای متریک مرزِ هستند. و نیز معرف ردِ عبارت‌های زیر می‌باشند
(2-7-4)

2-8 روش کانترترم و رفع واگرایی در محاسبه کمیت‌های پایادر کُنش‌های گرانشی (2-2-3) و (2-7-1) معرفی شده برای هر دو گرانش اینشتین و لاولاک (به همراه جمله‌ی مرزی کُنش) یک مشکل اساسی وجود دارد: این کُنش‌ها برای فضازمان‌هایی که رفتار مجانبی تخت یا دارند بی‌نهایت می‌شوند. هم‌چنین در محاسبه کمیت‌های پایا از قبیل جرم به مشکل بر می‌خوریم و برای فضازمان جرمی معادل بی‌نهایت می‌یابیم. در مرجع [24] واگرایی‌های کُنش گرانشی برای فضازمان‌های مجانباً تخت و مجانباً بررسی شده است. برای رفع این واگرایی‌ها از تکنیکی موسوم به روش کانترترم استفاده می‌شود. در این روش جمله‌ای به کُنش اصلی اضافه می‌گردد که وظیفه آن حذف واگرایی‌هاست. در نتیجه با داشتن جمله‌ی کانترترم در کُنش نهایی، واگرایی‌ها از بین می‌روند و بیان‌های خوش‌تعریفی برای تانسور انرژی-تکانه و کُنشِ گرانشی خواهیم داشت. جمله‌ی کانترترم باید به صورتی باشد که تحت تبدیلات مختصات ناوردا باشد و در معادلاتِ حرکتِ ناشی از کُنشِ حجمی تأثیری نگذارد. پس باید تابعی از هندسه‌ی مرز فضازمان باشد که در تقارن‌ها و معادلات میدان حجم تأثیری نگذارد. در نتیجه جمله‌ی کانترترم فقط تابعی از ناورداهای انحنای مرز به صورت زیر خواهد بود
(2-8-1)
از روی این کُنش دیده می‌شود که ساختِ کانترترم برای فضازمان‌های مجانباً یکتاست. زیرا در آن فقط مقیاس انحنای مطابق رابطه‌ی (2-8-1) دیده می‌شود. در نتیجه با یک بار ساختن آن، می‌توان آن را برای تمام فضازمان‌های مجانباً و هم‌چنین در تمام دستگاه‌های مختصات به کار برد. در این تحقیق چون به بررسی فضازمان‌های مجانباً نیز علاقه‌مند هستیم از جمله‌ی کانترترم نیز در کنار کُنش اصلی برای این فضازمان‌ها استفاده می‌کنیم. کُنش اصلی در این تحقیق، کُنش لاولاک به علاوه‌ی کُنش مرزی‌ست. با توجه به این‌که تاکنون روش کانترترم برای گرانش لاولاک ابداع نشده است ولی می‌توان برای فضازمان‌های با مرزِ تخت، مطابق رابطه (2-8-1) کانترترم مناسب را پیدا کرد. برای فضازمان‌های با مرزِ تخت، انحنای مرز است، و می‌توان نشان داد که برای گرانش‌های مختلف، از جمله گرانش اینشتین و لاولاک مرتبه سوم، کانترترم یکسانی به دست می‌آید که به صورتِ زیر می‌باشد
(2-8-2)
که در آن فاکتور مقیاس طول بوده و به مقیاس انحنای و ضرایب لاولاک بستگی دارد و در حالتِ خواهیم داشت . بنابراین کُنش نهایی محدود برای گرانش لاولاک مرتبه سوم با مرز تخت به صورت زیر خواهد بود
(2-8-3)
با توجه به تعریف ارائه شده توسط براون و یورک [25] برای تانسور انرژی-تکانه‌ی مرز داریم
(2-8-4)
که برای گرانش لاولاک مرتبه سوم به نتیجه‌ی زیر می‌رسیم
(2-8-5)
سه جمله‌ی اول در رابطه‌ی بالا نتیجه‌ی وردشِ کُنشِ مرزی نسبت به است و آخرین جمله نیز از وردشِ نسبت به به دست می‌آید. برای محاسبه کردن کمیت‌های پایای فضازمان، یک سطح فضاگونه در با متریکِ انتخاب می‌کنیم و متریک مرز را به فرم به صورت زیر می‌نویسیم
(2-8-6)
که در آن مختصه‌های متغیرهای زاویه‌ایِ پارامتریزه کننده‌ی ابرسطوحِ ثابت حولِ مبدأ هستند. هرگاه یک میدان برداری کیلینگِ روی مرز وجود داشته باشد، کمیت‌های پایای موضعی متناظر با تانسور انرژی-تکانه (رابطه‌ی) می‌تواند به صورت زیر نوشته شود
(2-8-7)
که در آن دترمینان متریک است، و بردار زمان‌گونه واحد عمود بر میباشد. برای فضازمان‌هایی با میدان‌های برداری کیلینگ زمان‌گونه‌ی و دورانیِ می‌توان جرم و تکانه‌ی زاویه‌ای را به صورت زیر به دست آورد
(2-8-8)

و بنا به فرض اولیه تمامی این کمیت‌های پایا توسط سیستمی با مرزِ محصور شده‌اند. این کمیت‌ها همگی به موقعیتِ مرزِ در فضازمان بستگی دارند، گرچه هر کدام از آن‌ها مستقل از نوع انتخاب خاصِ لایه‌بندی درون سطحِ است [26].

فصل سومنظریهی الکترودینامیک غیرخطیانگیزه‌ی مهم برای مطالعه‌ی نظریه الکترودینامیک غیرخطی در بین فیزیکدانان نظری به نظریه‌ی اَبرریسمان برمی‌گردد. -لایه‌ها می‌توانند حامل میدان‌های الکتریکی و مغناطیسی باشند. ریسمان‌های باز در دو سر انتهایی‌شان با این میدان‌های الکترومغناطیسی جفت می‌شوند. با استفاده از دوگانگی نشان داده‌اند که یک -لایه با یک میدان الکتریکی عملاً با یک -لایه متحرک بدون میدان الکتریکی معادل است. قید وجود یک کران بالایی سرعت، معادل با سرعت نور، برای -لایه‌ها ایجاب می‌کند که شدت میدان الکتریکی نمی‌تواند از یک مقدار بیشینه تجاوز کند. وجود یک بیشینه‌ی میدان الکتریکی در دینامیک میدان‌ الکترومغناطیسی تأثیرات غیرخطی می‌گذارد که با دینامیکی که توسط نظریه ماکسول توصیف می‌شود تفاوت دارد. در واقع نشان داده شده است که میدان‌های الکترومغناطیسی در جهان‌رویه‌های-لایه‌ها توسط نظریه بورن-اینفلد (یا شبه بورن-اینفلد) توصیف می‌شوند. در واقع جالب است که لاگرانژی نظریه بورن-اینفلد که صرفاً برای رفع مشکلات نظریه ماکسول طراحی شده بود در حد پایین انرژی نظریه اَبرریسمان ظاهر می‌شود. در این فصل ابتدا به بررسی مهم‌ترین نتایج نظریه خطی الکترودینامیک ماکسول می‌پردازیم. در ادامه با معرفی مسئله‌ی واگرایی خودانرژی برای ذرات باردار نقطه‌ای در مجموعه معادلاتِ میدان ماکسول، و به منظور رفع آن، به بررسی نظریه الکترودینامیک غیرخطی به عنوان تعمیمی از نظریه خطی ماکسول می‌پردازیم. در اینجا سه کلاس از نظریههای الکترودینامیک غیرخطی را، که دارای ویژگیهایی از قبیل متناهی شدن مقدار خودانرژی الکتروستاتیکی بارهای نقطهای و انحراف از قانون کولن هستند، بررسی می‌کنیم. خصوصیات معادلات میدان، میدان‌های الکتروستاتیکی و معادلات موج را برای سه کلاس متفاوت از نظریه‌های الکترودینامیک غیرخطی به دست می‌آوریم و به تحلیل جواب‌ها می‌پردازیم.
3-1 الکترودینامیک ماکسولبه بیان ساده، نظریه الکترودینامیک ماکسول، توصیفیست کلاسیکی از میدانهای الکتریکی و مغناطیسی، تولید میدانها توسط بارهای ساکن و جریانهای الکتریکی، و نحوهی انتشارشان به صورت موج و واکنش آنها نسبت به ماده. این نظریه با توزیعی ماکروسکوپی از بار و جریان الکتریکی سروکار دارد. این بدین معنی‌ست که مفاهیمِ "بار و جریان جایگزیده"، اعتبارِ فرایندهای حدگیری حساب دیفرانسیل را بدیهی فرض میکنند. در این فرایندهای حدگیری احتمال اینکه توزیع بار و جریان در ناحیهی بسیار کوچکی از فضا جایگزیده باشند لحاظ میشود. در سرتاسر این فصل از چنین فرایندهای حدگیری، تحت عنوان حد کلاسیکی، استفاده میکنیم. یعنی با دید صرفاً کلاسیکی به ذرات باردار و میدانها نگاه میکنیم. معادلات میدان ماکسول، معادلات حاکم بر پدیدههای الکترومغناطیسی هستند که از یک کُنش به شکل زیر
(3-1-1)

–384

چکیده
هیدرات های گازی دسته ای از ترکیبات میزبان جامد هستند که نقش مهمی در فرآیندهای متعددی همچون ذخیره، انتقال و جداسازی گاز، کاتالیزهای ناهمگن و تصفیه آب دارند. این بلورها در دمای بالاتر از نقطه انجماد آب و فشار بالا تشکیل میشود. برای محاسبه اختلاف انرژی آزاد روشهای مختلفی وجود دارد: 1) اختلال 2) تدریجی 3) انتگرالگیری ترمودینامیکی، در این تحقیق، از روش انتگرالگیری ترمودینامیکی برای محاسبه اختلاف انرژی آزاد فرآیندهای مختلف جانشینی مهمان هیدروژن سولفید به جای مهمان متان در قفسهای بزرگ و کوچک هیدرات گازی sI به کار میرود. در محاسبه اختلاف انرژی آزاد با استفاده از روش انتگرالگیری ترمودینامیکی برای این فرآیندها، سهم جداگانه واندروالس و الکتروستاتیک محاسبه شده است. همچنین خواص ساختاری که شامل تابع توزیع شعاعی، وابستگی دمایی حجم، ضریب انبساط گرمایی خطی و ضریب تراکمپذیری همدما، هیدرات گازی sI متان و هیدرات گازی مختلف دوتایی sI (متان + هیدروژن سولفید) بررسی شده است.
فهرست مطالب
عنوان صفحه
TOC o "1-3" h z u فصل اول:هیدرات گازی1-1- هیدرات گازی PAGEREF _Toc412554758 h 21-2- هیدرات‌های گازی در گذر زمان PAGEREF _Toc412554759 h 31-3- ساختار هیدرات‌های گازی PAGEREF _Toc412554760 h 41-3-1- ساختار sI PAGEREF _Toc412554761 h 51-3-2- ساختار sII PAGEREF _Toc412554762 h 61-3-3- ساختار sH PAGEREF _Toc412554763 h 61-3-4- نکاتی مربوط به ساختار‌های هیدرات PAGEREF _Toc412554764 h 71-4- مشخصات مولکول مهمان PAGEREF _Toc412554765 h 81-5- هیدراتهای گازی در طبیعت PAGEREF _Toc412554766 h 81-6- اهمیت هیدرات‌های گازی PAGEREF _Toc412554767 h 101-6-1- مزایای هیدرات گازی PAGEREF _Toc412554768 h 111-6-1-1- انتقال گاز طبیعی PAGEREF _Toc412554769 h 111-6-1-2- منبع انرژی PAGEREF _Toc412554770 h 121-6-1-3- جداسازی دیاکسیدکربن PAGEREF _Toc412554771 h 121-6-1-4- هیدرات‌های گازی در صنعت غذایی PAGEREF _Toc412554772 h 131-6-1-4-1- تغلیظ آب میوهها PAGEREF _Toc412554773 h 131-6-1-4-2- شیرینسازی آب دریا PAGEREF _Toc412554774 h 131-6-1-4-3- جداسازی آنزیمها PAGEREF _Toc412554775 h 141-6-2- مضرات هیدرات گازی PAGEREF _Toc412554776 h 141-7- بازدارندهها PAGEREF _Toc412554777 h 151-7-1- بازدارنده‌های ترمودینامیکی PAGEREF _Toc412554778 h 151-7-2- بازدارنده‌های غیرترمودینامیکی PAGEREF _Toc412554779 h 161-7-3- معیار‌های بازدارنده PAGEREF _Toc412554780 h 161-8- جذب PAGEREF _Toc412554781 h 17فصل دوم:شبیه سازی دینامیک مولکولی2-1- تاریخچهی شبیهسازی PAGEREF _Toc412554784 h 202-2- شبیه سازی دینامیک مولکولی PAGEREF _Toc412554785 h 212-3- سامانه های مدل و پتانسیل های برهمکنش PAGEREF _Toc412554786 h 212-4- معرفی مدل پتانسیل برای برهمکنش بین مولکول های سازندهی سامانه PAGEREF _Toc412554787 h 232-5- معرفی مدل پتانسیل برای برهمکنش بین سیستم و محیط PAGEREF _Toc412554788 h 232-5-1- شرایط مرزی دورهای PAGEREF _Toc412554789 h 242-5-2- قطع پتانسیل و قرارداد نزدیکترین تصویر PAGEREF _Toc412554790 h 252-6- الگوریتم انتگرالگیری زمانی PAGEREF _Toc412554791 h 252-6-1- الگوریتم ورله PAGEREF _Toc412554792 h 262-6-2- الگوریتم جهشی ورله PAGEREF _Toc412554793 h 272-6-3- الگوریتم ورله سرعتی PAGEREF _Toc412554794 h 282-7- اولین گام در شبیه سازی دینامیک مولکولی PAGEREF _Toc412554795 h 292-7-1- تعیین مکانهای اولیه ی ذرات PAGEREF _Toc412554796 h 292-7-2- تعیین سرعتهای اولیه ی ذرات PAGEREF _Toc412554797 h 302-8- دومین گام در شبیهسازی دینامیک مولکولی PAGEREF _Toc412554798 h 302-9- سومین گام در شبیهسازی دینامیک مولکولی اندازه گیری خواص ترمودینامیکی PAGEREF _Toc412554799 h 312-10- چهارمین گام در شبیهسازی دینامیک مولکولی: تحلیل نتایج PAGEREF _Toc412554800 h 322-11- انواع مجموعه ها در شبیهسازی دینامیک مولکولی PAGEREF _Toc412554801 h 322-12- انواع خطاها در شبیهسازی دینامیک مولکولی PAGEREF _Toc412554802 h 332-12-1- خطاهای آماری PAGEREF _Toc412554803 h 332-12-2- خطاهای سیستماتیک PAGEREF _Toc412554804 h 332-13- محدودیتهای شبیهسازی دینامیک مولکولی PAGEREF _Toc412554805 h 342-13-1- اثرات کوانتومی PAGEREF _Toc412554806 h 342-13-2- تعیین پتانسیلهای برهمکنش PAGEREF _Toc412554807 h 34فصل سوم: محاسبات انرژی آزاد گیبس3-1- انواع خواص ترمودینامیکی PAGEREF _Toc412554810 h 363-1-1- توابع ترمودینامیکی ساده PAGEREF _Toc412554811 h 363-1-1-1- انرژی داخلی PAGEREF _Toc412554812 h 363-1-1-2- فشار PAGEREF _Toc412554813 h 373-1-1-3- میانگین مجذور نیرو PAGEREF _Toc412554814 h 373-1-2- توابع ترمودینامیکی پاسخ PAGEREF _Toc412554815 h 383-1-3- خواص وابسته به انتروپی PAGEREF _Toc412554816 h 393-1-3-1- انتگرال گیری ترمودینامیکی PAGEREF _Toc412554817 h 403-1-3-2- روش ذرهی آزمایشی PAGEREF _Toc412554818 h 403-1-4- انرژی آزاد PAGEREF _Toc412554819 h 413-2- انواع روشها برای محاسبه ی اختلاف انرژی آزاد PAGEREF _Toc412554820 h 433-2-1- اختلال ترمودینامیکی PAGEREF _Toc412554821 h 433-2-1-1- محاسبهی اختلاف انرژی آزاد حلال پوشی بازهای نیتروژندار با روش اختلال ترمودینامیکی PAGEREF _Toc412554822 h 443-2-1-2- محاسبهی اختلاف انرژی آزاد هشت لیگاند مربوط به پروتئین پیوندی FK506 با FKBP12 به روش اختلال ترمودینامیکی PAGEREF _Toc412554823 h 463-2-2- روش تدریجی PAGEREF _Toc412554824 h 503-2-3- خط سیر چند مرحله ای PAGEREF _Toc412554825 h 503-2-4- انتگرالگیری ترمودینامیکی PAGEREF _Toc412554826 h 533-3- کاربرد روشهای محاسبه ی اختلاف انرژی آزاد PAGEREF _Toc412554827 h 533-3-1- چرخههای ترمودینامیکی PAGEREF _Toc412554828 h 533-3-2- محاسبهی انرژی آزاد مطلق PAGEREF _Toc412554829 h 55فصل چهارم:محاسبات انرژی آزاد گیبس برای تعویض مهمان در هیدرات گازی sI با استفاده از شبیهسازی دینامیک مولکولی4-1- روش انتگرالگیری ترمودینامیکی PAGEREF _Toc412554832 h 584-2- سابقه تحقیق PAGEREF _Toc412554833 h 594-3- مشخصات مولکول هیدروژن سولفید PAGEREF _Toc412554834 h 674-4- نرم افزارشبیه سازی و فایلهای ورودی در این تحقیق PAGEREF _Toc412554835 h 684-4-1- فایلهای ورودی نرمافزار PAGEREF _Toc412554836 h 684-4-1-1- فایل ساختار اولیه ذرات (CONFIG) PAGEREF _Toc412554837 h 694-4-1-2- فایل تعیین پارامترهای کنترل شبیهسازی (CONTROL) PAGEREF _Toc412554838 h 714-4-1-3- تهیهی فایل ورودی (FIELD) PAGEREF _Toc412554839 h 724-4-2- فایلهای خروجی نرم افزار PAGEREF _Toc412554840 h 734-4-2-1- فایل ساختار نهایی ذرات (REVCON) PAGEREF _Toc412554841 h 744-4-2-2- فایل خروجی اصلی شبیهسازی (OUTPUT) PAGEREF _Toc412554842 h 744-4-2-3- فایل اطلاعات روند شبیهسازی به زبان ماشین (REVIVE) PAGEREF _Toc412554843 h 744-5- محاسبه ی انرژی آزاد جانشینی های مختلف هیدروژن سولفید به جای متان در هیدراتهای گازی sI PAGEREF _Toc412554844 h 754-6- محاسبهی خواص ساختاری و ترمودینامیکی PAGEREF _Toc412554845 h 834-6-1- تابع توزیع شعاعی PAGEREF _Toc412554846 h 844-6-2- بررسی وابستگی حجم سلول واحد به دما PAGEREF _Toc412554847 h 924-6-3- بررسی ضریب انبساط گرمایی خطی PAGEREF _Toc412554848 h 974-6-4- بررسی ضریب تراکمپذیری هم دما PAGEREF _Toc412554849 h 105مراجع PAGEREF _Toc412554857 h 109

فهرست شکل ها
عنوان صفحه
TOC h z c "شکل 1-" شکل (1- 1) رشد پروژه - ریسرچ‌های مربوط به هیدرات‌های گازی در قرن بیستم. PAGEREF _Toc409100848 h 4شکل (1- 2) انواع قفس‌های موجود در ساختار‌های هیدرات گازی: (الف) دوازده وجهی پنج ضلعی (512)؛ (ب) چهارده وجهی (51262)، (ج) شانزده وجهی (51264)، و (د) بیست وجهی (51268) PAGEREF _Toc409100849 h 4شکل (1- 3) سلول واحد (الف) ساختار sI ، (ب) ساختار sII، و (ج) ساختار sH PAGEREF _Toc409100850 h 5 شکل (1- 4) شکل حفره ها در ساختار sI PAGEREF _Toc409100851 h 6شکل (1- 5) شکل حفره ها در ساختار sII PAGEREF _Toc409100852 h 6شکل (1- 6) شکل حفره ها درساختار sH PAGEREF _Toc409100853 h 7شکل (1- 7) توزیع کربن آلی در منابع زمین ) بجز در صخره ها( برحسب گیگا تن PAGEREF _Toc409100854 h 10شکل (1- 8) منابع پیش بینی شده و کشف شده ی هیدراتهای گازی در کره ی زمین PAGEREF _Toc409100855 h 10 TOC h z c "شکل 2-"
شکل 2- 1- شرایط مرزی دورهای PAGEREF _Toc412209181 h 24 TOC h z c "شکل 3-"
شکل 3- 1 - فرمول ساختاری هشت لیگاندی که در محاسبات مورد استفاده قرار گرفت PAGEREF _Toc412209182 h 48شکل 3- 2- چرخه ترمودینامیکی برای اتصال لیگاندهای L1و L2 به گیرنده R. PAGEREF _Toc412209183 h 54شکل 3- 3- یک چرخهی ترمودینامیکی برای اجتماع L و R و تشکیل یک کمپلکس LR در دو فاز گازی و محلول PAGEREF _Toc412209184 h 55 TOC h z c "شکل 4-"
شکل (4- 1) نسبت برای مقدارهای مختلف λ برای جانشینی در هیدارت گازی PAGEREF _Toc412554992 h 60شکل (4- 2)وابستگی برحسب σ و ε (a) σ ثابت در Ǻ 5/5 PAGEREF _Toc412554993 h 62شکل (4- 3) وابستگی بر حسب σ و ε (b) ε ثابت در kJ/mol 930/2 PAGEREF _Toc412554994 h 63شکل (4- 4) وابستگی و بر حسب σ PAGEREF _Toc412554995 h 63شکل (4- 5) مدل سه جایگاهی SPC/E (سمت راست) و چهار جایگاهی TIP4P (سمت چپ) مولکول آب PAGEREF _Toc412554996 h 69شکل (4- 6) پیدا کردن موقعیت سه جایگاه مدلTIP4P از مختصات اولیه اتم های مدل SPC/E PAGEREF _Toc412554997 h 70شکل (4- 7) قسمتی از فایل CONFIG هیدرات گازی sIمدل TIP4P آب PAGEREF _Toc412554998 h 71شکل (4- 8) فایل CONTROL هیدرات گازی sI در دمای K100 PAGEREF _Toc412554999 h 72شکل (4- 9) نمودار Gبرحسب λ واکنش جانشینی یک مولکول مهمان هیدروژن سولفید به جای یک مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50 کلوین PAGEREF _Toc412555000 h 77شکل (4- 10) نمودار Gبرحسب λ در واکنش جانشینی دو مولکول مهمان هیدروژن سولفید به جای دو مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50 کلوین PAGEREF _Toc412555001 h 78شکل 4- 11- نمودار Gبرحسب λ در واکنش جانشینی سه مولکول مهمان هیدروژن سولفید به جای سه مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50 کلوین PAGEREF _Toc412555002 h 79شکل 4- 12- نمودار Gبرحسب λ در واکنش جانشینی پنج مولکول مهمان هیدروژن سولفید به جای پنج مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50 کلوین PAGEREF _Toc412555003 h 80شکل 4- 13- نمودار برحسب λ ،در واکنش جانشینی شش مولکول مهمان هیدروژن سولفید به جای شش مولکول متان در قفس بزرگ هیدرات گازی sI در دمای 50، 70 و 100 کلوین PAGEREF _Toc412555004 h 81شکل 4- 14- نمودار G برحسب λ در واکنش جانشینی یک مولکول مهمان هیدروژن سولفید به جای یک مولکول متان در قفس کوچک هیدرات گازی sI در دمای 50 کلوین PAGEREF _Toc412555005 h 82شکل 4- 15- نمودار G برحسب λ در واکنش جانشینی دو مولکول مهمان هیدروژن سولفید به جای دو مولکول متان در قفس کوچک هیدرات گازی sI در دمای 50 کلوین PAGEREF _Toc412555006 h 83شکل 4- 16- نمودار توزیع اتم ها در اطراف یک اتم PAGEREF _Toc412555007 h 84شکل 4- 17- نمودار RDF برحسب r برای یک مایع PAGEREF _Toc412555008 h 84 شکل 4- 18- RDF برای اتم کربن متان در قفس بزرگ (Cl) و اتم کربن متان در قفس کوچک (Cs) با اتم اکسیژن آب (OW) در دمای K50 با مدل TIP4P PAGEREF _Toc412555009 h 86شکل 4- 19- RDF برای اتم کربن متان در قفس بزرگ (Cl) و اتم کربن متان در قفس کوچک (Cs) با اتم اکسیژن آب (OW) در دمای K275 با مدل TIP4P PAGEREF _Toc412555010 h 86شکل 4- 20- RDF برای اتم کربن متان در قفس بزرگ (Cl) و اتم کربن متان در قفس کوچک (Cs) با اتم اکسیژن آب (OW) با مدل SPC/E آب در دمای K50 با مدل SPC/E PAGEREF _Toc412555011 h 87شکل 4- 21- RDF برای اتم کربن متان در قفس بزرگ (Cl) و اتم کربن متان در قفس کوچک (Cs) با اتم اکسیژن آب (OW) با مدل SPC/E آب در دمای K275 با مدل SPC/E PAGEREF _Toc412555012 h 87شکل 4- 22- RDF برای اتم گوگرد هیدروژن سولفید در قفس بزرگ (Sl) و اتم گوگرد هیدروژن سولفید در قفس کوچک (Ss) با اتم اکسیژن آب (Ow) در دمای K 50 با مدل TIP4P PAGEREF _Toc412555013 h 88شکل 4- 23-RDF برای اتم گوگرد هیدروژن سولفید در قفس بزرگ (Sl) و اتم گوگرد هیدروژن سولفید در قفس کوچک (Ss) با اتم اکسیژن آب (Ow) در دمای K100 با مدل TIP4P PAGEREF _Toc412555014 h 89شکل 4- 24- RDFاتم گوگرد مولکول هیدروژن سولفید در قفس بزرگ (Sl) هیدرات گازی sI و اتم کربن مولکول متان در قفس کوچک (Cs) با اتم اکسیژن آب (OW) در دمای 50 کلوین PAGEREF _Toc412555015 h 90شکل 4- 25- RDF اتم گوگرد مولکول هیدروژن سولفید در قفس بزرگ (Sl) هیدرات گازی sI و اتم کربن مولکول متان در قفس کوچک (Cs) با اتم اکسیژن آب (OW) در دمای 100 کلوین PAGEREF _Toc412555016 h 90شکل 4- 26- RDF اتم گوگرد مولکول هیدروژن سولفید در قفس کوچک (Ss) هیدرات گازی sI و اتم کربن مولکول متان در قفس بزرگ (Cl) با اتم اکسیژن آب (OW) در دمای 50 کلوین PAGEREF _Toc412555017 h 91شکل 4- 27- RDF اتم گوگرد مولکول هیدروژن سولفید در قفس کوچک (Ss) هیدرات گازی sI و اتم کربن مولکول متان در قفس بزرگ (Cl) با اتم اکسیژن آب (OW) در دمای 125 کلوین PAGEREF _Toc412555018 h 91شکل 4- 28- نمودار حجم جعبه شبیه سازی بر حسب دما برای هیدرات گازی sI متان با مدل آب SPC/E PAGEREF _Toc412555019 h 93شکل 4- 29- نمودار حجم جعبه شبیه سازی بر حسب دما برای هیدرات گازی sI متان با مدل آب TIP4P PAGEREF _Toc412555020 h 93شکل 4- 30- نمودار حجم جعبه شبیه سازی برحسب دما برای سامانه هیدرات گازی sI هیدروژن سولفید PAGEREF _Toc412555021 h 94شکل 4- 31- نمودار حجم جعبه شبیه سازی برحسب دما برای سامانه هیدرات [6L-CH4,2S-H2S] PAGEREF _Toc412555022 h 94شکل 4- 32- نمودار حجم جعبه شبیه سازی برحسب دما برای سامانه هیدرات [6L-H2S,2S-CH4] PAGEREF _Toc412555023 h 95شکل 4- 33- نمودار حجم جعبه شبیه سازی برحسب دما برای سامانه هیدرات [1L-H2S,5L-CH4,2S-H2S] PAGEREF _Toc412555024 h 95شکل 4- 34- نمودار حجم جعبه شبیه سازی برحسب دما برای سامانه هیدرات [2L-H2S,4L-CH4,2S-H2S] PAGEREF _Toc412555025 h 96شکل 4- 35- نمودار حجم جعبه شبیهسازی بر حسب دما برای سامانه هیدرات [3L-H2S,3L-CH4,2S-H2S] PAGEREF _Toc412555026 h 96شکل 4- 36- نمودار حجم جعبه شبیه سازی برحسب دما برای سامانه هیدرات [4L-H2S,2L-CH4,2S-H2S] PAGEREF _Toc412555027 h 97شکل 4- 37- محاسبه وابستگی دمایی بردار شبکه برای هیدرات گازی sI متان با مدل SPC/E آب در فشار 1 بار PAGEREF _Toc412555028 h 98شکل 4- 38- محاسبه وابستگی دمایی بردار شبکه برای هیدرات گازی sI ، متان با مدل TIP4P آب در فشار 1 بار PAGEREF _Toc412555029 h 99شکل 4- 39- محاسبه وابستگی دمایی بردار شبکه برای هیدرات گازی دوتایی sI که در هر قفس بزرگ یک مولکول هیدروژن سولفید و در هر قفس کوچک مولکول متان وجود دارد با مدل آب TIP4P در فشار 1 بار PAGEREF _Toc412555030 h 99شکل 4- 40- محاسبه وابستگی دمایی بردار شبکه برای هیدرات گازی sI که در هر قفس کوچک هیدروژن سولفید و در هر قفس بزرگ متان وجود دارد با مدل TIP4P آب در فشار 1 بار PAGEREF _Toc412555031 h 100شکل 4- 41- پارامتر شبکه برای دماهای مختلف هیدرات گازی sI، که در هر قفس کوچک یک مولکول هیدروژن سولفید و در هر قفس بزرگ مولکول متان وجود دارد براساس معادله (4-21) PAGEREF _Toc412555032 h 101شکل 4- 42- پارامتر شبکه برای دماهای مختلف برای هیدرات گازی sI که دریکی از قفسهای بزرگ یک مولکول هیدروژن سولفید ودر هر قفس کوچک متان وجود دارد براساس معادله (4-20) PAGEREF _Toc412555033 h 102شکل 4- 43- پارامتر شبکه برای دماهای مختلف برای هیدرات گازی sI متان با مدل SPC/Eآب PAGEREF _Toc412555034 h 103شکل 4- 44- پارامتر شبکه برای دماهای مختلف برای هیدارت گازی sI متان با مدل TIP4Pآب PAGEREF _Toc412555035 h 104شکل 4- 45- نمودار فشاربرحسب حجم سلول واحد برای هیدرات گازی sI متان در دمای K 200 PAGEREF _Toc412555036 h 105شکل 4- 46- نمودار فشار برحسب حجم سلول واحد برای هیدرات گازی sI هیدروژن سولفید در دمای K 100 PAGEREF _Toc412555037 h 106

116205028575000
فهرست جداول
عنوان صفحه
TOC h z c "جدول 3-" جدول (3- 1) تفاوتهای انرژی آزاد محاسبه شده PAGEREF _Toc409101051 h 45جدول (3- 2) نتایج محاسبات برای هشت لیگاند با مقادیر تجربی و همچنین با نتایج محاسبات FEPMD گسترده توسط پاند PAGEREF _Toc409101052 h 49جدول (3- 3) انرژی آزاد اتصال برای کمپلکس های گالکتین-1/دیساکارید مختلف PAGEREF _Toc409101053 h 53 TOC h z c "جدول 4-"
جدول (4- 1) انرژی آزاد گیبس جانشینی برای هر مهمان بر حسب kJ/mol در هیدارت گازی sI در دمای200 ، 273 کلوین PAGEREF _Toc409101425 h 61جدول(4- 2) مقدارهای ???????????? ∆ بر حسب kJ/molبرای جانشینی همه مهمانها در همهی قفسهای هیدرات گازی sI PAGEREF _Toc409101426 h 61جدول (4- 3) داده های انتگرال گیری ترمودینامیکی برای مدل SPC/E آب در دمایK 270 و فشار MPa 5 PAGEREF _Toc409101427 h 65جدول (4- 4) داده های انتگرال گیری ترمودینامیکی برای مدل TIP5P آب در دمای K 270 و فشار MPa 5 PAGEREF _Toc409101428 h 66جدول (4- 5)مشخصات و پارامترهای مدلهایSPC/E و TIP4P PAGEREF _Toc409101429 h 69جدول (4- 6) پارامترهای لناردجونز و بارهای اتمی جزئی برای مولکول سولفیدهیدروژن PAGEREF _Toc409101430 h 73جدول (4- 7)پارامترهای لناردجونز و بارهای اتمی جزئی برای مولکول متان PAGEREF _Toc409101431 h 73جدول (4- 8)انرژی آزاد گیبس بر حسب در جانشینی با در شش قفس بزرگ هیدرات گازی sI در دمای 50،70 و 100 کلوین. PAGEREF _Toc409101432 h 81جدول (4- 9) ضریب معادله (4-19) برای هیدرات گازی دوتایی sI.(CH4+H2S) PAGEREF _Toc409101433 h 102جدول (4- 10) ضریب انبساط گرمایی خطی برای هیدرات گازی sI که در هر قفس کوچک یک مولکول هیدروژن سولفید و در هر قفس بزرگ مولکول متان وجود دارد با مدل TIP4P آب PAGEREF _Toc409101434 h 102جدول (4- 11) ضریب انبساط گرمایی خطی برای هیدرات گازی sIکه در هر قفس بزرگ یک مولکول هیدروژن سولفید و در هرقفس کوچک مولکول متان وجود دارد با مدلTIP4P آب PAGEREF _Toc409101435 h 102جدول (4- 12) ضرایب معادله (4-19) برای هیدرات گازی sI متان با مولکول آبTIP4P, SPC/E PAGEREF _Toc409101436 h 104جدول (4- 13) ضریب انبساط گرمایی خطی (K-1) -برای هیدرات گازی sI متان با مولکول آب TIP4P, SPC/E PAGEREF _Toc409101437 h 104جدول (4- 14) ضرایب معادله (4-19) برای هیدرات های مختلف sI با مدل TIP4P آب PAGEREF _Toc409101438 h 107جدول (4- 15) ضرایب تراکم پذیری هم دما () برای هیدرات sI متان با مدل TIP4P آب در دمای K200 PAGEREF _Toc409101439 h 107جدول (4- 16) ضرایب تراکم پذیری هم دما () برای هیدرات sI هیدروژن سولفید با مولکول آب TIP4Pدر دمای K100 PAGEREF _Toc409101440 h 107
فصل اولهیدرات گازی1303232319891700
1-1- هیدرات گازیهیدرات گازی، یک جامد بلوری است که در آن، مولکول‌های گاز توسط مولکول‌های آب احاطه شدهاند. گاز‌های زیادی هستند که ساختار مناسبی برای تشکیل هیدرات دارند که میتوان به کربندیاکسید، هیدروژنسولفید و هیدروکربنها با تعداد کم کربن اشاره نمود. بیش از 70 سال است که هیدراتهای گازی بهعنوان یک مشکل در خطوط انتقال گاز مطرح گردیدهاند. لذا اکثر تحقیقات اولیه در این زمینه مربوط به شرایط عملیاتی تشکیل هیدرات و تأثیر استفاده از مواد بازدارنده در جلوگیری از تشکیل آن میباشد. امروزه توجه به پدیده هیدرات گازی و جنبههای مفید و کاربردی آن، لزوم انجام تحقیق بیشتر در این زمینه را نشان میدهد. از چند دهه پیش تاکنون وجود مقادیر بسیار زیادی از گاز طبیعی ذخیره در هیدراتهای گازی موجود در بستر اقیانوسها و مناطق قطبی به اثبات رسیده است. تخمین زده میشود که هر متر مکعب هیدرات بیشتر از 170 متر مکعب گاز متان در شرایط استاندارد دارد[1].
باتوجه به منابع محدود سوختهای فسیلی، اکتشاف منابع هیدرات گازی به منظور تأمین انرژی، ممکن است در آینده مورد توجه قرار بگیرد. قابلیت زیاد هیدرات گازی در ذخیرهسازی گاز طبیعی، باعث ایجاد جذابیت در خصوص استفاده از آن برای مقاصد ذخیرهسازی و حمل ونقل گاز طبیعی و دیگر گازها بهعنوان رقیبی برای روشهای مایعسازی و متراکمکردن میشود. از هیدراتهای گازی در فرایندهای جداسازی نیز میتوان استفاده کرد. هیدراتهای گازی فقط با تعداد محدودی از مواد قابل تشکیل هستند. اگر قصد داشته باشیم که یک ماده را از یک مخلوط جدا کنیم می توان از قابلیت تشکیل یا عدم تشکیل هیدرات آن و یا سایر مواد موجود در مخلوط نمک کمک گرفت. بهعنوان مثال، میتوان به تهیهی آب آشامیدنی و یا جداسازی جریانهای گاز اشاره کرد. متأسفانه، در مورد ذخایر طبیعی هیدراتهای گازی نگرانیهایی در خصوص پایداری آنها در هنگام تغییر شرایط فشار و دما وجود دارد. به عقیدهی برخی از محققین وقتی که در اثر پدیده گلخانهای دمای کرهی زمین افزایش مییابد، ممکن است که هیدرا تها ناپایدار و تجزیه شوند و در نتیجه مقادیر زیادی گاز وارد اتمسفر شده و باعث تشدید اثر پدیدهی گلخانهای شود.
از شرایط لازم برای تشکیل هیدرات میتوان به دمای مناسب، فشار، وجود مولکول‌های آب و وجود مولکول‌های گاز اشاره کرد.
در هیدرات‌های گازی، مولکول‌های آب بهعنوان میزبان عمل کرده و مولکول‌های گاز را در داخل حفره‌ی خود جای میدهند. همه‌ی مولکول‌های گازی قادر به تشکیل هیدرات نیستند و تنها مولکول‌هایی قادر به ایجاد هیدرات هستند که غیرقطبی بوده یا قطبیت کمی داشته باشند و از نظر اندازه کوچک بوده و در این حفرهها بتوانند قرار بگیرند.
1-2- هیدرات‌های گازی در گذر زمانتاریخچه‌ی هیدرات گازی به سه دوره‌ی اصلی تقسیم میشود:
دوره‌ی اول: این دوره از زمان کشف آن در سال 1810 آغاز شده و تا به حال ادامه دارد و مربوط به جالببودن پدیده‌ی تشکیل هیدرات گازی از نظر علمی است، چرا که تجمع آب و گاز در یک فاز جامد (هیدرات)، از نظر علم قابل توجه است.


دوره‌ی دوم: تقریباً از سال 1934 با بیان این که تشکیل هیدرات باعث گرفتگی خطوط انتقال گاز طبیعی میباشد، شروع شده و تاکنون ادامه دارد. در این دوره، هیدرات عمدتاً بهعنوان مشکلی برای تولیدکنندگان گاز طبیعی در نظر گرفته میشود.
دوره‌ی سوم: با کشف ذخایر هیدرات گاز طبیعی ارتباط دارد. وجود هیدرات‌های گاز در طبیعت در دهه‌ی 1960 توسط ماکوگون اثبات شد که بعد از آن تلاش‌های زیادی جهت کشف و توسعه‌ی ذخایر هیدرات صورت گرفت. بدون شک، مشکلات پیش روی تولید از ذخایر عظیم هیدرات گازی، یکی از چالش‌های مهم صنعت انرژی در قرن بیستویکم است. اولین تولید تجاری از ذخایر هیدرات گاز طبیعی، در سیبری اتفاق افتاد [1]. شکل (1-1) تعداد مقالات مربوط به هیدرات‌های گازی در قرن بیستم را نشان میدهد.

شکل (1- SEQ شکل_1- * ARABIC 1) رشد پروژه - ریسرچ‌های مربوط به هیدرات‌های گازی در قرن بیستم [2].1-3- ساختار هیدرات‌های گازیهیدراتهای گازی ترکیبات جامد بلوری هستند که در اثر همجواری مولکولهای آب و بعضی از گازها در دما و فشار خاصی به وجود میآیند. مولکولهای آب بهوسیله پیوند هیدروژنی ساختارهای بلوری ناپایداری با چندین قفس تشکیل میدهند. مولکولهای گاز میتوانند قفسهای بلور را اشغال کرده و هنگامی که تعداد قفسهای اشغال شده به حداقل لازم برسد، ساختار بلوری پایدار خواهد شد و هیدرات گازی جامد شکل خواهد گرفت.
امروزه، سه ساختار عمده برای هیدرات‌های گازی شناخته شده است که بر اساس نوع قفس و نسبت قفس‌های با اندازه‌های متفاوت از هم متمایز میشوند. هر ساختار، حداقل شامل دو نوع قفس چندوجهی است که واحد سازنده‌ی اصلی همه‌ی آنها، یک دوازدهوجهی است که هر وجه آن پنجضلع دارد. در شکل (1-2) انواع قفس‌هایی که در ساختار هیدرات‌های گازی بهکار رفته، نشان داده شده است [2].

شکل (1- SEQ شکل_1- * ARABIC 2) انواع قفس‌های موجود در ساختار‌های هیدرات گازی: (الف) دوازدهوجهی پنجضلعی (512)؛ (ب) چهاردهوجهی (51262)، (ج) شانزدهوجهی (51264)، و (د) بیستوجهی (51268) [2].در اواخر دهه‌ی 1940 و اوایل دهه‌ی 1950، واناستکلبرگ و همکارانش با آزمایش‌های پراش اشعه‌ی X، هیدرات‌های گازی را جمعآوری و مطالعه کردند. تفسیر نتایج آزمایش‌های پراش توسط واناستکلبرگ، کلوسن، پائولینگ و مارش [4] منجر به تعیین دو ساختار بلوری هیدرات، ساختار sI و ساختار sII شد. وجود سومین ساختار هیدرات، ساختار sH، در سال 1987 توسط ریمپستر و همکارانش کشف شد [5]. این ساختارها در شکل (1-3) نشان داده شده است. در ادامه به بررسی جزئیات این سه ساختار پرداخته شده است.

شکل (1- SEQ شکل_1- * ARABIC 3) سلول واحد (الف) ساختار sI ، (ب) ساختار sII، و (ج) ساختار sH ]3[1-3-1- ساختار sIسلول واحد ساختار sI، یک مکعب با ابعاد Å12 است که شامل دو نوع قفس کوچک و بزرگ میباشد. دو قفس کوچک، دوازدهوجهی پنجضلعی هستند، در حالی که شش قفس بزرگتر، بهصورت چهاردهوجهی هستند که دوازده وجه آن، پنجضلعی و دو وجه آن، ششضلعی میباشند که این دو وجه ششضلعی روبهروی هم قرار دارند. حفره‌های کوچک با شعاع Å 5/3 تقریباً کُروی و حفره‌های بزرگ با شعاع Å 33/4 تخممرغ شکل میباشند[3].
شکل (1- SEQ شکل_1- * ARABIC 4) شکل حفرهها در ساختار sI ]3[1-3-2- ساختار sIIسلول واحد ساختار sII شامل یک مکعب به ابعاد Å3/17 میباشد که هر واحد ساختمانی آن از 136 مولکول آب و 24 حفره برای مولکول‌های گاز (کوچک و بزرگ) تشکیل شده است. 16 حفره‌ی کوچک 12 وجه پنج ضلعی و 8 حفره‌ی بزرگ شانزده وجهی هستند که شامل 4 وجه ششضلعی و 12 وجه پنج ضلعی میباشند[3].

شکل (1- SEQ شکل_1- * ARABIC 5) شکل حفرهها در ساختار sII [3]1-3-3- ساختار sHسلول واحد این ساختار، یک شبکه‌ی شش وجهی است که هر واحد ساختمانی آن از 34 مولکول آب و 6 حفره برای مولکول‌های گاز (حفره‌ی کوچک، بزرگ، متوسط) تشکیل شده است. 3 حفره‌ی کوچک 12 وجه 5 ضلعی است که ساختار‌های قبلی نیز آن را دارا میباشند، و یک حفره‌ی بزرگ 12 وجه 5 ضلعی و 8 وجه شش ضلعی است و دو حفره با اندازه‌ی متوسط و کمی بزرگتر از حفره‌ی کوچک، که یک 12 وجهی (3 وجه چهارضلعی، 6 وجه پنج ضلعی و 3 وجه شش ضلعی) میباشد [3].

شکل (1- SEQ شکل_1- * ARABIC 6) شکل حفرهها درساختار sH [3]برخلاف sI، sII که معمولاً بهسهولت یک مهمان در قفس بزرگ و یا قفس کوچک میپذیرند، تمام هیدرات‌های گازی sH حداقل دارای دو نوع مهمان هستند. همچنین تحقیقات آزمایشگاهی پیشبینی میکند که هیدرات‌های گازی sH میتوانند در دما‌های بالاتر و فشار کمتری در مقایسه با sI و sII تشکیل شوند، که باعث اهمیت این ساختار میشود[3].
1-3-4- نکاتی مربوط به ساختار‌های هیدراتهیدرات‌های گازی طبیعی، بهطور معمول در ساختار مکعبی sI، ساختار مکعبی sII یا در ساختار sH تشکیل میشوند.
پیوند هیدروژنی اساس برهمکنش‌های پیوند مولکول‌های آب در ساختار چهارضلعی شبیه به یخ است. خوشه‌های آب پنج و ششضلعی به وسیله‌ی پیوند هیدروژنی تشکیل میشوند که بارها در آب یافت میشوند. خوشه‌های مربع در فواصل کمتر وجود دارند[6].
یک حفره‌ی مشترک ساختار‌های هیدرات، دوازدهوجهی پنجضلعی است.
فضا‌های بین حفره‌های 512 بزرگتر از حفره‌های 51262 در ساختار sI، یا حفره‌های 51264 در ساختار sII هستند. در ساختار sH، هر دو حفره‌ی بزرگ (51268) و حفره‌های متوسط (435663) بین لایه‌های حفره‌های 512 شکل گرفتهاند.
مولکول‌های کوچک علاوه بر اشغال کردن حفره‌های کوچک، حفره‌های بزرگ را نیز اشغال میکنند. مولکول‌های بزرگ تنها با اشغال حفره‌های بزرگ میتوانند ساختار‌های sI و یا sII را پایدار کنند. در ساختار H لازم است که هر دو حفره‌ی بزرگ و کوچک اشغال شوند.
اشغال حفره‌های هیدرات و ساختار هیدرات به میزان زیادی توسط اندازه‌ی مهمان در ساختار sI و sII تعیین میشود. در ساختار sH، اندازه و شکل برای مولکول مهمان ضروری است. برهمکنش‌های دافعه‌ی بین مهمان و میزبان باعث پایداری ساختار هیدرات میشود. نسبت اندازه‌ی مهمان به حفره یک راهنمای کلی برای تعیین ساختار‌های بلوری و اشغال قفس است [6].
1-4- مشخصات مولکول مهمانهیدرات‌های گازی بر اساس مولکول مهمان نیز تقسیم شدهاند. این تقسیمبندی بر اساس دو عامل ماهیت پیوند شیمیایی مولکول مهمان و اندازه و شکل آن صورت میگیرد [7]. جفری با این بیان که مولکول‌های مهمان نمیتوانند شامل یک یا تعدادی از گروه‌هایی با پیوند هیدروژنی نسبتاً قوی باشند، آنها را بر اساس ماهیت شیمیایی طبقهبندی کرد. مولکول‌های ترکیبات گاز طبیعی دارای پیوند هیدروژنی نیستند و بنابراین ماهیت شیمیایی آنها یک محدودکننده نمیباشد. در یک بررسی مروری از مولکول‌های مهمان در هیدرات‌های گازی، دیویدسون بیان کرد در صورتی که محدودیت‌های ماهیت شیمیایی رعایت شود، تمام مولکول‌هایی که بین اندازه‌ی آرگون Å (8/3) و سیکلو بوتان Å (5/6) قرار میگیرند، میتوانند هیدرات‌های sI و sII تشکیل دهند [8].
1-5- هیدراتهای گازی در طبیعتدانشمندان روسی با بهرهگیری از روشهای نظری در سال 1970 محاسبه کردند که باید رسوبات طبیعی هیدراتهای گازی در سطح زمین وجود داشته باشند. هنگامی که در سال 1980 نمونههای هیدرات گازی از کف دریا توسط کشتیهای روسی و همچنین در فلات قارهی آمریکا توسط کشتیهای حفاری بازیافت گردید، این تئوری تأیید شد. در اواخر قرن بیستم، برخی مباحث مهم و جهانی و بسیاری از کشورها را بر این داشت که برنامه تحقیقاتی بین المللی برای تحقیقات در زمینهی هیدراتهای گازی طرح نمایند. مهمترین این اقدامات توسط کشورهای ژاپن، کانادا، آمریکا و هند انجام شد[16]. تخمینهای بسیار متنوعی در مورد میزان منابع جهانی هیدراتهای وجود دارد و اغلب پیشبینی میکنند که هیدراتهای گازی با سایر منابع گاز طبیعی، بهصورت ترکیب شده وجود دارند.
پیشبینیهای اخیر از مقدار حجم گازی که در هیدراتهای گازی محبوس شده است، در محدوده صد هزار تا یک میلیون تریلیون فوت مکعب خبر میدهد. اگر فقط 5 درصد از مخازن گازی هیدراته قابل برداشت باشند، مقدار آن به مقدار گازهای پیشبینی شده قابل برداشت از منابع گازی غیرهیدراته خواهد رسید. در شکل (1-7) منابع هیدراتهای گازی نسبت به سایر منابع هیدروکربنی نشان داده شده است[16].
هیدراتهای گازی دورتادور کرهی زمین، خارج از رسوبات پوستهای قارهها، در اعماق بیش از 500 متر و در جاهایی که دما فقط چند درجه بالاتر از نقطه انجماد آب است و همچنین در بسترهای قطبی یافت میشوند. منطقه پایداری هیدرات گازی، یعنی محلی که هیدراتهای گازی پایدار هستند، بستگی به دما، فشار، تغییرات گرمایی، حجم و ترکیب درصد گاز دارد. عوامل فوق، محدودهای که منطقه پایداری هیدرات گازی تشکیل میشود، را هم کنترل میکنند. در شکل (1-8) منابع پیشبینی شده و کشفشدهی هیدراتهای گازی در کرهی زمین نشان داده شده است[16].
هیدرات متان یکی از بالقوهترین منابع گازطبیعی در آینده نزدیک است زیرا مقادیر عظیمی از مخازن آن به شکل هیدراتهای گازی در رسوبات دریایی و مناطق لجنی سراسر دنیا وجود دارد. هر چند هیدراتهای گازی هیدروکربنهایی دارند که تمام آنها بیرنگ نیستند. بعضی از هیدراتهای گازی اعماق خلیج مکزیک در طیفهای زرد، نارنجی، و حتی قرمز، به شدت رنگی هستند[15].

شکل (1- SEQ شکل_1- * ARABIC 7) توزیع کربن آلی در منابع زمین ) بجز در صخرهها( برحسب گیگا تن [16]
شکل (1- SEQ شکل_1- * ARABIC 8) منابع پیشبینی شده و کشف شدهی هیدراتهای گازی در کرهی زمین [16]1-6- اهمیت هیدرات‌های گازیتشکیل هیدرات، چه بهعنوان یک پدیده‌ی مضر در خطوط انتقال گاز و چه کاربرد‌های آن در نگهداری و انتقال یا جداسازی مواد گوناگون مدّ نظر محققان است.
1-6-1- مزایای هیدرات گازیاز مزایای هیدرات‌های گازی میتوان به انتقال گاز طبیعی، منبع مهم انرژی و کاربرد آن در صنعت غذایی اشاره کرد.
1-6-1-1- انتقال گاز طبیعیدر طول 20 سال اخیر منابع اثبات شدهی گاز طبیعی در حدود دو برابر افزایش یافته است. ولی بیشتر میادین گاز طبیعی در جهان به طور معمول در نقاطی واقع شدهاند که از بازار مصرف دور هستند. همچنین هزینههای مربوط به تولید، فراوری و مهمتر از آن انتقال گاز طبیعی زیاد است و به صورت عاملی بازدارنده ظاهر میشود.
گاز طبیعی به طور عمده از متان تشکیل شده است، بنابراین بررسی شرایط تشکیل هیدرات متان به شرایط هیدرات گاز طبیعی بسیار نزدیک است. بهترین گزینه برای ذخیرهسازی بیشترین حجم متان ساختار sIاست که میزان ذخیرهسازی آن 224 متر مکعب به ازای هر متر مکعب هیدرات متان در شرایط استاندارد است. زیرا متان میتواند هر دو قفس کوچک و بزرگ این ساختار را اشغال کند ولی برای تشکیل هیدرات متان خالص به این صورت، نیاز به فشار زیادی است. از طرفی، وجود گازهایی مانند پروپان که ترکیب گاز طبیعی وجود دارند منجر به پیدایش ساختار sII خواهد شد، بنابراین به منظور کاهش فشار بسیار بالای تشکیل هیدرات گازی متان میتوان با یک افزودنی مناسب که توانایی نشستن در قفسهای بزرگ این ساختار را دارد، فشار تشکیل هیدرا ت گازی را کاهش داد. این افزودنیهای مناسب میتواند برای مثال اتیلناکسید برای ساختار sIو تتراهیدروفوران برای ساختار sII باشد که توانایی اشغال قفسهای بزرگ این ساختار را دارند و متان نیز در قفسهای کوچک تر این ساختارها مینشیند. به این ترتیب فشار تشکیل هیدرات گازی کاهش مییابد[9].
بعد از کشف هیدرات، استفاده از هیدرات جهت ذخیرهسازی و انتقال گاز بهصورت جدی مطرح گردید. این خاصیت به هیدرات اجازه میدهد که در فشار پایینتر از فشار تشکیل آن پایدار بماند. بعد از تشکیل هیدرات در فشار بالا آن را تا زیر صفر درجه‌ی سانتیگراد سرد میکنند و فشار را به فشار اتمسفر کاهش میدهند. در این صورت، اگر به آن گرما نرسد (شرایط آدیاباتیک) هیدرات تجزیه نمیشود. در واقع از سطح هیدرات تجزیه میگردد. آبِ بهوجود آمده یخ میزند و مانند لایه محافظی اطراف آن را میپوشاند و مانع تجزیه‌ی بیشتر آن میگردد [9].
1-6-1-2- منبع انرژیامروزه مخازن بزرگ هیدرات حاوی متان کشف شده که میتواند بهعنوان منبع جدید انرژی در آینده استفاده گردد. هیدرات گازی میتواند مقدار بسیار زیادی از گاز را در خود حبس کند. پیشبینی میشود هیدرات گازی کشفشده در دنیا، حدود 100 گیگا تُن کربن میباشد که این مقدار به تقریب دو برابر مقدار کل کربن موجود در سوخت‌های فسیلی در کره‌ی زمین است [10].
1-6-1-3- جداسازی دیاکسیدکربنحدود 64 درصد از اثر افزایش گاز‌های گلخانهای به دلیل انتشار دیاکسیدکربن است که بیش از 6 گیگا تن برسال است و به فعالیت‌های انسانی نسبت داده شده است. با توجه به این که اثر گلخانهای باعث گرم شدن کره‌ی زمین میشود، کاهش مقدار دیاکسید کربن منتشر شده در داخل جو چالش عمده‌ی محیط زیست است. دیاکسیدکربن را میتوان تا حدودی با استفاده از روش‌های مختلفی همچون جذب شیمیایی در آمین یا جداسازی در لایه‌ی میانی زمین و اقیانوسها به دام انداخت. این قبیل روشها را میتوان با انتشار دیاکسیدکربن در آب و با استفاده از یک فرآیند سازگار، با تزریق به عمق آب انجام داد. دیاکسیدکربن تا عمق 400 متری به آب تزریق میشود و پس از آن با انحلال در آب به دام افتاده میشود. در عمق بین 1000 و 2000 متر، دیاکسیدکربن میتواند در آب دریا بهطور غنی ظاهر شود و سپس با توجه به چگالی خود، در اعماق دریا تهنشین شود، که در اینجا دیاکسید کربن به مدت طولانی ثابت میماند. جداسازی دیاکسیدکربن دریایی در حال حاضر در مرحله‌ی آزمایش است و تحقیقات بیشتر در زمینه‌ی حلالیت دیاکسیدکربن، سرعت تشکیل هیدرات‌های دیاکسیدکربن و ثبات هیدرات دیاکسیدکربن در حال انجام است [11].
1-6-1-4- هیدرات‌های گازی در صنعت غذاییبلور‌های هیدرات گازی فقط شامل آب خالص و مولکول مهمان هستند و ترکیب مواد تشکیلدهنده‌ی هیدرات گازی در بلور با مخلوط اولیه متفاوت است و این بهعنوان پایه‌ی جداسازی مواد قرار میگیرد. تشکیل بلور‌های هیدرات در دمای بالاتر از نقطه‌ی انجماد نرمال آب صورت میگیرد که این مسئله باعث صرفهجویی انرژی میشود. در نهایت مواد بلورشده بهطور فیزیکی توسط سانتریفیوژ‌های سبدی از محلول تغلیظشده جدا میشوند. در نهایت بلور‌های جدا شده با بالابردن دما و یا کاهش فشار یا ترکیب این دو عامل به آب و گاز تجزیه شده و گاز برای تشکیل هیدرات گازی بعدی وارد خط تولید خواهد شد.
1-6-1-4-1- تغلیظ آب میوههااز هیدرات گازی برای تغلیظ آب میوه‌هایی نظیر سیب، پرتقال، گوجهفرنگی تا گرفتن آب به میزان 80 درصد استفاده میگردد. تغلیظ محلول‌های عصاره‌ی قهوه، نیشکر، نمک طعام با تشکیل هیدرات گازی بهوسیله‌ی اکسیداتیلن، تریکلروفلوئورمتان، اکسیدپروپیلن، دیاکسیدفلوئور و متیلکلراید صورت میگیرد. همچنین در صنایع قند و شکر این فرآیند میتواند جایگزین فرآیند تبخیر که انرژی بالایی دارد، شود.
1-6-1-4-2- شیرینسازی آب دریادر فرآیند شیرینسازی آب دریا با هیدرات گازی، گاز در فشار بالا به آب دریای نسبتاً سرد تزریق میشود. مولکول‌های آب و گاز ساختار شبکه‌ای قفس مانندی را به وجود میآورد که ناخالصیها و نمک به آن نمیتواند وارد شوند. بلور‌های هیدرات گازی از آب نمک باقی مانده جدا میشوند. این بلورها برای جداسازی آب نمک چسبیده به آنها شسته میشوند. سپس بلور‌ها ذوبشده و گاز برای تزریق دوباره به اول خط برگردانده میشود[12]
1-6-1-4-3- جداسازی آنزیمهااز هیدرات گازی میتوان در جداسازی آنزیمها از محلول استفاده کرد. برای این کار از گاز‌هایی شامل کلرودیفلوئورمتان که یک گاز آبدوست است و پروپان که یک گاز آبگریز است، استفاده میشود. آنزیم‌هایی که مورد بررسی قرار گرفتند شامل آنزیم سیتوکروم که آبگریز است و از قلب اسب گرفته میشود، و α-سیتوتیپسین است که آبدوست بوده و از پانکراس گاو گرفته میشود.
گاز با فشار بالا به محلول شامل آنزیم رانده میشود. واکنش هیدرات گازی به دلیل فوق اشباع محلول، باعث تهنشین شدن آنزیم میشود [13].
هیدرات‌های گازی علاوه بر فوایدی که دارند، دارای مضراتی هم هستند که در بخش بعدی به آنها پرداخته شده است.
1-6-2- مضرات هیدرات گازیتشکیل هیدرات گازی در خطوط لوله‌ی انتقال گاز باعث جلوگیری از انتقال گاز و انسداد خطوط لوله میشود. لذا باید از تشکیل هیدرات‌های گازی جلوگیری شود، زیرا هزینه‌های گرفتگی به سبب تشکیل هیدرات، بالا و فرآیند کار طولانی مدت است. از دیگر مضرات هیدرات میتوان به اثرات اقلیمی اشاره کرد، بدون وجود فشار نسبتاً زیاد و دمای کم،هیدراتهای گازی تجزیه شده وگاز متان را وارد اتمسفر میکند. از آن جایی که اثر گلخانهای گاز متان ده برابر گاز دیاکسیدکربن است، نقش این گاز در گرم شدن کرهی زمین باید کاملاً جدی گرفته شود. امروزه دانشمندان سعی میکنند برخی از علل تغییرات آب و هوایی را که تا بهحال ناشناخته باقی مانده است، با هیدراتهای گازی توضیح دهند. بنا به نظر محققین پایین آمدن سطح آب دریاها باعث شد که فشار ایجاد شده توسط آب برروی رسوبهای حاوی هیدراتهای گازی که خارج از ناحیه قطب قرار داشتند کم شود. در این صورت متان آزاد شد و به اتمسفر راه یافت و باعث شدت یافتن اثر گلخانهای و در نتیجه گرم شدن آب و هوا شد. نقش هیدراتهای گازی در تغییرات آب و هوایی به ما امکان میدهد که بتوانیم علت پایان گرفتن سریع برخی از دوران یخبندان را توضیح دهیم.
1-7- بازدارندههاتشکیل هیدراتهای گازی در خطوط لوله انتقال گاز باعث جلوگیری از انتقال گاز و انسداد خطوط لوله می شود. از آن جا که هزینههای گرفتگی لوله توسط هیدراتهای گازی زیاد است و این فرآیند مرتباً تکرار میشود، لذا باید از تشکیل آنها جلوگیری شود.
برای جلوگیری از تشکیل هیدرات چهار روش وجود دارد:
1-کنترل فشار: هر چه فشار کم باشد امکان تشکیل هیدرات کم میشود ولی در خطوط انتقال گاز به علت تقویت فشار جهت انتقال آن، این امر غیر ممکن است.
2-کنترل دما: با گرم شدن سیستم توسط حرارت الکتریکی از رسیدن به نقطه تشکیل هیدرات جلوگیری میشود.
3-تزریق بازدارندههای شیمیایی: این بازدارندهها جلوی تشکیل هیدرات گازی را میگیرند و نسبت به سایر راههای موجود از اولویت برخوردارند و بهصورت گسترده در صنایع گاز استفاده میشوند. بازدارندههای شیمیایی را به دو دسته مهم به نام بازدارندههای ترمودینامیکی و بازدارندههای غیرترمودینامیکی تقسیم میکنند.
4- نمزدایی از گاز: بخار آب موجود در خطوط لوله را توسط هیدراته کردن حذف میکنند با این وجود، در یک عملیات میدان صنعتی، از لحاظ اقتصادی، آّب را فقط تا فشار بخار خاصی میتوان حذف کرد[14].
1-7-1- بازدارنده‌های ترمودینامیکیبازدارنده‌های ترمودینامیکی به این صورت عمل میکنند که عوامل مورد نیاز برای تشکیل هیدرات را یا حذف کرده یا کنترل میکنند که این عوامل عبارتند از حضور مولکول‌های مهمان تشکیلدهنده هیدرات، حضور آب، فشار بالا و دمای پایین. مولکول‌های سنگینتر مثل n-بوتان، سیکلوپنتان و سیکلوهگزان فقط در حضور گاز‌های کمککننده از تشکیل هیدرات جلوگیری میکنند [14]. از پرمصرفترین بازدارنده‌های ترمودینامیکی، اتیلنگلیکول، دیاتیلنگلیکول و متانول میباشد. این بازدارندهها گران و برای محیط زیست مخرب هستند و همچنین سمّی و فرّار میباشند.
1-7-2- بازدارنده‌های غیرترمودینامیکیبه طور کلی، بازدارنده‌های غیرترمودینامیکی رشد بلورها و به دامافتادن هیدروکربنها در شبکه‌ی بلوری هیدرات گازی را به تأخیر میاندازند. زمان تأخیر، زمان جریان گاز در خط لوله تا لحظه‌ی تشکیل هیدرات گازی میباشد. اثر آنها به این شکل است که روی مولکول‌های آب جذب سطحی میشوند و جلوی تشکیل پیوندشیمیایی مولکول‌های گازی با آب را میگیرند. این بازدارندهها با غلظت پایین به خطوط لوله اضافه میشوند. از معروفترین بازدارنده‌های غیرترمودینامیکی میتوان به پلیوینیلپیرولیدین، پلیوینیلکاپرولاکتام و پلیمتیلوینیللاکتامید اشاره کرد. این بازدارندهها هزینه‌ی کمتری نسبت به بازدارنده‌های ترمودینامیکی داشته و سمّی هم نیستند [14].
1-7-3- معیار‌های بازدارندهبرای انتخاب بازدارنده باید ابتدا وابستگی آن به سیال‌هایی که باید انتقال یابد معین شود. مواد شیمیایی باید از نظر محیطی مسئلهساز نباشند و بتوانند در محدودهی معین از غلظت مؤثر باشند. مواد باید تا بالاترین دمایی که در سیستم مواجه میشوند، قابل حل باشند. این دما ممکن است 100-9 درجه‌ی سانتیگراد باشد. مواد نباید ویسکوز باشند، چون تزریق آنها با مشکل مواجه میشود [14].
یکی دیگر از راه‌های جلوگیری از تشکیل هیدرات، استفاده از فرآیند جذب است که در بخش بعدی به آن پرداخته شده است.
1-8- جذبدر هیدراتزدایی در روش جذب، آبگیری از گاز با استفاده از تماس گاز با یک مایع خاص صورت میگیرد. عموماً گلیکول بهعنوان این مایع مورد استفاده قرار میگیرد. هیدراتزدایی بهوسیله‌ی جذب با استفاده از گلیکول از لحاظ اقتصادی مقرونبهصرفه است[14].
گلیکول‌هایی که برای هیدراتزدایی گاز طبیعی مورد استفاده قرار میگیرند، اتیلنگلیکول، دیاتیلنگلیکول، تریاتیلنگلیکول و تتراگلیکولاست. بهطور معمول از یک نوع گلیکول خالص در هیدراتزداها استفاده میشود. از میان گلیکولها تریاتیلن گلیکول، بهطور جهانی بهخاطر تنزل نقطه‌ی شبنم، هزینه‌های عملیات، قابلیت اطمینان عملیات در هنگام استفاده، قابل قبولتر و پراستفادهتر از سایرین است. افزایش ویسکوزیته‌ی گلیکول، ممکن است باعث مشکلاتی در گاز‌هایی با دمای پایین شود. از جهتی، حرارت دادن گاز طبیعی نیز مطلوب نیست، چرا که جریان‌های خیلی داغ از گاز باعث تبخیر تریاتیلنگلیکول میشوند، بنابراین این جریان دما را ابتدا در یک فرآیند سرد میکنند[14].

744220700045100
فصل دومشبیهسازی دینامیک مولکولی15233651561677001256665236876200
شبیهسازی رایانهای یکی از بهترین روشهای موجود برای بررسی ساختار مواد است. شبیهسازیهای رایانهای روشی مناسب برای بررسی سامانهها میباشد و معمولاً نتایج به دست آمده از آن دارای تطابق خوبی با نتایج تجربی است. تعداد روشهای شبیهسازی زیاد است که بهعنوان مثال میتوان به روشهای دینامیک مولکولی، مونتکارلو، دینامیک تصادفی، مونتکارلوی کوانتومی، دینامیک مولکولی آغازین، نظریهی تابعی چگالی و ... اشاره کرد [17].
2-1- تاریخچهی شبیهسازیروش دینامیک مولکولی ابتدا توسط آلدر و وینرایت [19،18] در اواخر دههی 1950 میلادی به منظور مطالعهی برهمکنشهای مدلی از کرات سخت معرفی شد. از این مطالعه، ایدههای بسیار مهمی دربارهی رفتار مایعات ساده حاصل شد. پیشرفت عمدهی بعدی در سال 1964 میلادی زمانی حاصل گردید که رحمان [20] نخستین شبیهسازی را با استفاده از پتانسیل لنارد- جونز برای آرگون انجام داد.
اولین شبیهسازی روی پروتئین توسط مککامن [21] و همکاران در سال 1997 میلادی روی بازدارندههای تیپسین در لوزالمعدهی گاو انجام شد. امروزه نمونههای زیادی از شبیهسازی روی پروتئینهای حلشده، کمپلکسهای پروتئین-DNA و سامانههای لیپیدی در پروژه - ریسرچها یافت میشود که شامل بررسی ترمودینامیکی پیوند لیگاند و تاخوردگی پروتئینهای کوچک میباشند. شبیهسازی رایانهای با معرفی روشهای تعادلی در تعیین خواص انتقالی و با در نظر گرفتن اثرات مکانیک کوانتومی توسعه یافته است.
2-2- شبیهسازی دینامیک مولکولیدینامیک مولکولی شکلی از شبیهسازی رایانهای است که در آن اتمها و مولکولها اجازه دارند برای یک بازهی زمانی معین تحت قوانین خاص باهم برهمکنش داشته باشند و طرحی از حرکت اتمها را ارائه کنند.
دینامیک مولکولی روشی مناسب برای محاسبهی خواص تعادلی و انتقالی سامانهها میباشد. در شبیهسازی دینامیک مولکولی قوانین مکانیک کلاسیک به ویژه قوانین نیوتن برای بررسی تحول زمانی اتمها به کار برده میشود. در این شبیهسازی، ابتدا نمونهی اولیه تهیه شده یا به زبان شبیهسازی، مکانها و سرعتهای اولیهی ذرات سامانه مشخص میشود. سپس مدل پتانسیل برای محاسبهی نیروی وارد بر ذرات موجود در سامانهی Nذرهای انتخاب میشود. پس از حل معادلات حرکت که در مورد سامانههای کلاسیکی میتواند معادلهی نیوتن باشد، مکانها و سرعتهای جدید سامانه محاسبه میشود و این کار تا زمانی ادامه دارد که سامانه به تعادل برسد. پس از رسیدن به تعادل، اندازهگیریهای واقعی برروی سامانه انجام میشود. نکتهای که باید به آن توجه داشت این است که شبیهسازی دینامیک مولکولی نیز مانند سایر روشها با خطا همراه است. برای کاهش میزان خطای آماری، زمان شبیهسازی و یا تعداد اندازهگیریها برای عمل متوسطگیری باید افزایش یابد.
2-3- سامانههای مدل و پتانسیلهای برهمکنشبزرگترین جزء سازنده در یک شبیهسازی، مدلی است که برای یک سامانهی فیزیکی مورد مطالعه بهکار میرود. در شبیهسازی دینامیک مولکولی، واقعیت با یک مدل بیان میشود. هر چند یک سامانهی واقعی بسیار پیچیده است، اما در یک شبیهسازی با سادهسازی و استفاده از تقریبها و به بیان دیگر با ارائهی یک مدل میتوان نتایجی نزدیک به واقعیت بهدست آورد. یک مدل از دو قسمت تشکیل شده است:
برهمکنش بین مولکولهای سازندهی سامانه
برهمکنش بین مولکولها و محیط اطراف
هدف در شبیهسازی دینامیک مولکولی، محاسبهی موقعیت و اندازه حرکت مولکولها در مدل است. ایدهی اصلی در این محاسبات، بررسی حرکت مولکولهای سازندهی سامانه یعنی موقعیتها، سرعتها و تغییرات آنها است. بنابراین میتوان گفت مهمترین مرحله در دینامیک مولکولی، طرح یک مدل مناسب برای توصیف سامانه است. برای شبیهسازی یک سامانهی فیزیکی این نکته به معنی انتخاب یک پتانسیل پیکربندی مناسب است. پتانسیل پیکربندی، پتانسیل حاکم بر ذرات موجود در سامانه است، وقتی که آن ذرات پیکربندی ویژهای دارند. در واقع اهمیت اساسی در بررسی یک سامانه، شناخت حالت سامانه است. در مکانیک کلاسیک، حالت سامانه با آگاهی کامل از موقعیت و اندازهحرکت آن تعیین میشود. اگر موقعیت و اندازهحرکت ذرهای مشخص باشد، آیندهی آن معین خواهد بود. با دانستن پتانسیل پیکربندی، میتوان نیروهای حاکم برسامانه را با استفاده از معادلهی حرکت نیوتن محاسبه کرد:
(2-1) Fit=mrit=-∂V(rN)∂ri
در معادله (2-1) ، Fi نیروی وارد شده بر ذرهی iام در یک سامانهی Nذرهای، توسط N-1 ذرهی دیگر است. m جرم ذره، r بردار مکان، V پتانسیل پیکربندی و rN نمایندهی مجموعه بردارهای مکانی مرکز جرم اتمها است: rN={r1, r2, r3, …, rN}. در واقع، rN پیکربندی سامانه را مشخص میکند. با استفاده از انتگرالگیری از معادلهی (2-1) میتوان مکان و اندازهحرکت هر ذرهی سازندهی سامانه را با گذشت زمان به دست آورد.
سادهترین روش برای استفاده از پتانسیل پیکربندی V، استفاده از تقریب جمعپذیر جفتگونه است:
(2-2) Vr1,r2,…,rn=ij>iϕri-rj
که براساس معادلهی (2-2) ، V حاصل جمع پتانسیلهای جفتهای موجود در سیستم و ϕ پتانسیل جفت است.
2-4- معرفی مدل پتانسیل برای برهمکنش بین مولکولهای سازندهی سامانهبهطور معمول در مدلهای مکانیک مولکولی، یک مولکول را بهصورت مجموعهای از گلولهها (اتمها) و میلهها (پیوندها) نمایش میدهند. میدان نیرو تابعی ریاضی شامل مجموعهای از پارامترهای بینمولکولی و درونمولکولی است که تابع انرژی پتانسیل سامانهی U(r,N) توسط آنها بیان میشود. بهطور کلی، تابع انرژی پتانسیل در سامانهی مولکولی را میتوان بهصورت معادله (2-3) خلاصه کرد:
(2-3)
UtotrN=bondskb(r-req)2+angleskθθ-θeq2 +dihedralsi=13Vi21+-1i-1cosiΦ+i=1N-1j>1N4εijσijrij12-σijrij6+qiqj4πε0rijسه جملهی اول برهمکنشهای پیوندی درونمولکولی را شامل میشوند و بهترتیب سهمهای انرژی مربوط به کشش پیوندی، خمش زاویهای و حرکت پیچشی (چرخش حول پیوندهای ساده) را نشان میدهند.
برهمکنشهای بینمولکولی (ناپیوندی) نیز در جملهی انتهایی مشخص شده است که شامل دو سهم انرژی برهمکنش واندروالسی با پتانسیل لنارد- جونز و انرژی برهمکنشهای الکتروستاتیک با پتانسیل کولنی است. پتانسیل مورد استفاده، پتانسیل لنارد- جونز میباشد که این پتانسیل دارای جاذبهای با برد بلند و یک نقطهی کمینه در حوالی σ122/1 است. جملهی دافعهای r-12 در فواصل کم غالب و جملهی جاذبهی r-6 در فواصل زیاد غالب است.
2-5- معرفی مدل پتانسیل برای برهمکنش بین سامانه و محیطقسمت دوم مدل در شبیهسازی شامل شرایط مرزی است که توصیفکنندهی چگونگی برهمکنش مولکولها با محیط اطراف آنها میباشد. ویژگی شرایط مرزی به طور عمده تحت تأثیر شرایط فیزیکی سامانهای است که شبیهسازی روی آن انجام میشود.
2-5-1- شرایط مرزی دورهایبه کمک شرایط مرزی دورهای میتوان با استفاده از تعداد نسبتاً کمی از ذرهها یک شبیهسازی را به گونهای انجام داد که نیروهای وارد بر ذرهها مشابه شرایط تودهی یک سیال واقعی باشد. یک جعبهی مکعبی محتوی ذرهها را در نظر بگیرید که تا بینهایت در تمام جهات فضا تکرار شده و یک آرایهی متناوب را تولید کرده است. در شکل (2-1) یک جعبهی دوبعدی نشان داده شده است[23] که، هر جعبه با 8 جعبهی همسایه احاطه شده و در حالت سهبعدی، هر جعبه دارای 26 همسایهی نزدیک است. مختصات ذرهها در جعبههای مجازی را میتوان بهسادگی با اضافه-کمکردن مضربهای صحیحی از ابعاد جعبه بهدست آورد. بنابراین، نیازی به ذخیرهکردن تمام این مختصات (که تعداد آنها بینهایت است) وجود ندارد. اگر در حین شبیهسازی ذرهای جعبه را ترک کند، یک ذره مجازی از وجه مقابل جعبه وارد و جایگزین این جعبه میشود؛ بنابراین، تعداد ذرهها (یا دانسیتهی تعداد) در جعبهی مرکزی ثابت میماند شکل (2-1).

شکل (2- SEQ شکل_2- * ARABIC 1) شرایط مرزی دورهای [23]سلول مکعبی سادهترین سیستم متناوب است که تجسم و برنامهسازی آن بهراحتی امکانپذیر است. با این حال، ممکن است یک شبیهسازی خاص، مستلزم استفاده از شکل دیگری از سلول متناوب باشد. این امر بهویژه در شبیهسازی سیستمهای متشکل از یک مولکول و یا کمپلکسهای بینمولکولی که با حلال احاطه شدهاند، اهمیت دارد. در چنین سیستمهایی معمولاً رفتار مولکول حلشونده مرکزی است که بیشترین اهمیت را دارد [17]. 2-5-2- قطع پتانسیل و قرارداد نزدیکترین تصویراعمال شرایط مرزی دورهای در شبیهسازی سلول مکعبی به طول L، تعداد همسایهها را به نسبت 4πrc33L3 کم میکند و باعث صرفهجویی در زمان میشود. این امر مشخصکننده قرارداد حداقل تصویر برای بهدست آوردن نیروها است. براساس این قرارداد، به ازای هر ذرهی i از بین ذرهی j و همهی تصاویر آن، نزدیکترین ذره انتخاب میشود و بقیهی ذرات کنار گذاشته میشوند. در حقیقت، فقط نزدیکترین ذره برای برهمکنش در نظر گرفته میشود. اعمال این شرایط اجرای برنامهی دینامیک مولکولی را فوقالعاده ساده میکند [22].
پتانسیلهای جفتی کوتاهبرد با افزایش فاصلههای بینمولکولی سریعاً از بین میروند. برای پتانسیل لنارد- جونز در فاصلههای بیشتر از σ5/2 سریعاً به صفر میرسد. میتوان از برهمکنش جفتی مربوط به فاصلههای بزرگتر از σ5/2 در پتانسیل لنارد- جونز صرفنظر کرد. فاصلهی σ5/2 را فاصله قطع مینامند و با rc نمایش میدهند. فاصلهی قطع فاصلهای است که در فواصل بیشتر از آن، جفت ذرات یکدیگر را نمیبینند. فاصلهی قطع نباید بیشتر از L2 باشد (L طول جعبهی شبیهسازی است)، تا با قرارداد حداقل تصویر سازگاری داشته باشد [22].
2-6- الگوریتم انتگرالگیری زمانیاساس محاسبات دینامیک مولکولی، بر پایهی الگوریتم انتگرالگیری زمانی از معادلهی حرکت است. در واقع، براساس این الگوریتم، از معادلهی حرکت، بر حسب زمان انتگرالگیری و مسیرها (موقعیت و اندازهحرکت) محاسبه میشود. الگوریتم انتگرالگیری زمانی بر پایهی روش «اختلاف ناچیز» است که در آن زمان، به شبکههای کوچک و محدود قسمت میشود. یک گام زمانی Δt فاصلهی بین دو نقطهی متوالی در شبکه است. به این ترتیب اگر اطلاعات موقعیت و دیگر خصوصیات وابسته به زمان در لحظهی t مشخص باشد، میتوان با انتگرالگیری از معادلهی حرکت، مقادیر مشابه را برای زمان بعدی t+Δt محاسبه کرد. با ادامهی این محاسبه، میتوان تحول زمانی سامانه را در یک زمان طولانی بررسی و دنبال کرد.
2-6-1- الگوریتم ورلهالگوریتم ورله، متداولترین روش انتگرالگیری از معادلههای حرکت در شبیهسازیهای مولکولی است. این روش با استفاده از r(t)، a(t) و r(t-δt) موقعیتهای جدید بعدی، r(t+δt) را محاسبه میکند. این کار با استفاده از معادلهی (2-4) انجام میشود:
(2-4) rt+δt=2rt-rt-δt+δt2at
همانطور که مشاهده میشود، سرعتها بهطور مستقیم در این الگوریتم وارد نمیشوند. سرعتها هنگام جمعکردن معادلههای حاصل از بسط تیلور حول r(t) در دو جهت مختلف حذف میشود:
(2-5) rt+δt=rt+δtvt+12δt2at+… rt-δt=rt-δtvt+12δt2at+…

محاسبهی سرعتها برای محاسبهی مسیرها لازم نیست. اما برای تخمین انرژی جنبشی و در نتیجه، انرژی کل مفید است. با استفاده از معادلهی (2-6) میتوان سرعتها را بهدست آورد:
(2-6) vt=rt+δt-r(t-δt)2δt
خطا در معادلهی (2-4)، از مرتبهی δt4 و برای سرعتها معادلهی (2-6) از مرتبهی δt2 است. مشکلی که در ارتباط با محاسبهی سرعت وجود دارد، آن است که قبل از دانستن موقعیت در زمان بعدی t+δt نمیتوان سرعت در زمان t را محاسبه کرد. نکتهی دوم در ارتباط با الگوریتم ورله آن است که این الگوریتم کاملاً متمرکز است یعنی r(t-δt) و r(t+δt) در معادلهی (2-4) نقش متقارنی دارند و این سبب برگشتپذیری زمانی آن میشود. سوم آن که پیشروی موقعیتها در یک مرحله انجام میشود (در بعضی از الگوریتمها برای این کار دو مرحله لازم است). حافظهی رایانهی مورد نیاز الگوریتم ورله 9N کلمه حافظه است و این سبب کمحجم شدن الگوریتم و سادگی برنامهنویسی آن میشود. مزیت دیگر این الگوریتم آن است که حتی برای گامهای زمانی بزرگ، بقای انرژی به خوبی در آن رعایت میشود. بهعلاوه با پایسته بودن نیروها میتوان مطمئن بود که بقای اندازهحرکت خطی نیز برقرار است[17].
2-6-2- الگوریتم جهشی ورلهبه منظور رفع کمبودهای الگوریتم ورله، اصلاحاتی در آن ایجاد شده است. یکی از این اصلاحات، روش جهش قورباغهای نیمگاه هاکنی است. علت انتخاب این نام با توجه به معادلههای این الگوریتم روشن میشود:
(2-7) rt+δt=rt+δtvt+12δt
(2-8) vt+12δt=vt-12δt+δta(t)
کمیتهایی که باید ذخیرهشوند، موقعیتهای r(t)، شتابهای a(t) و سرعتها در v(t-1/2δt) هستند. ابتدا معادلهی (2- 8) اجرا میشود و سرعتها از فراز مختصات جهش میکنند و مقادیر سرعت در نیمگام بعدی، v(t+1/2δt) را نتیجه میدهند. طی این فرآیند میتوان سرعتهای جاری را نیز محاسبه کرد:
(2-9) vt=vt+12δt+v(t-12δt)/2
این کار برای محاسبهی انرژی (H=K+U) و سایر خواصی که نیازمند دانستن همزمان مختصات و سرعتها هستند، در زمان t لازم است. سپس با استفاده از معادلهی (2-7) دوباره موقعیتها از سرعتها پیش میافتند. اکنون، میتوان شتابها را محاسبه کرده و مرحلهی بعدی را آغاز کرد. با حذف سرعتها از این معادلهها میتوان نشان داد که این روش از نظر جبری با الگوریتم ورله معادل است. برنامهنویسی برای معادلههای روش جهشی مزیتهایی نسبت به روش اصلی ورله دارد، اما از آنجا که سرعتها بهطور صریح ظاهر میشوند (البته نه در زمان t)، معمولاً تنظیم انرژی شبیهسازی از طریق مقیاسکردن مناسب سرعتها انجام میشود. مزیتهای عددی این روش ناشی از آن است که در هیچ مرحلهای، تفاضل دو کمیت بزرگ را به منظور محاسبهی کمیتی کوچک محاسبه نمیکند و همین امر، کاهش دقت در یک رایانه را به حداقل میرساند[17].
2-6-3- الگوریتم ورله سرعتیهمانطور که از معادلهی (2-9) مشخص است، روش جهشی نیز در ارتباط با سرعتها به صورت کاملاً رضایتبخشی عمل نمیکند. یک الگوریتم معادل ورله که موقعیتها، سرعتها و شتابها، هر سه را در یک زمان t ذخیره میکند و خطاهای گردکردن را به حداقل میرساند، الگوریتم ورلهی سرعتی نام دارد، که توسط سوپ و همکارانش پیشنهاد شده است:
(2-10) rt+δt=rt+δtvt+12δt2atvt+δt=vt+12δtat+at+tδمجدداً با حذف سرعتها میتوان الگوریتم ورله را بهدست آورد. این الگوریتم فقط مستلزم ذخیرهی r، v و a است. برای استفاده از این الگوریتم نیز باید ابتدا موقعیتها در زمان t+δt را با استفاده از معادلهی اول (2-10) محاسبه کرد، سپس با استفاده از معادلهی (2-11) سرعتها را در نیمگام بهدست آورد:
(2-11) vt+12δt=vt+12δta(t)

–238

سپاس از حضور گرمتان در تمامی مراحل زندگیم که نعمت وجودتان مسبب آرامش روح و روانم می باشد.
تقدیم به عشقم
همراه و همرازم، مونس و همدم مهربانم
همسر عزیزم علیرضا
آرام جانم سپاس از وجود پر مهرت که لحظه لحظه عاشقانه کنارم هستی.
تقدیم به عزیز دلم
برادر دوست داشتنیم محسن


حامی مهربانم سپاس از بودنت در کنارم
فهرست مطالب
عنوان صفحه
TOC o "1-3" h z u چکیده PAGEREF _Toc379122424 h 1فصل اول : مقدمه1-1 پیش گفتار PAGEREF _Toc379122427 h 41-2 هدف کلی PAGEREF _Toc379122428 h 51-2-1 اهداف جزئی PAGEREF _Toc379122429 h 62-2 فرضیه ها PAGEREF _Toc379122430 h 61-3 گیاه سنجد PAGEREF _Toc379122431 h 71-3-1 مشخصات گیاه PAGEREF _Toc379122433 h 71-3-2 ترکیبات موجود در گیاه سنجد PAGEREF _Toc379122434 h 81-3-3 خواص و کاربرد: PAGEREF _Toc379122435 h 81-3-4 درمان با داروهای گیاهی رایج در طب سنتی PAGEREF _Toc379122436 h 91-4 معرفی حیوان PAGEREF _Toc379122437 h 101-4-1 علت انتخاب موش صحرایی نر PAGEREF _Toc379122438 h 101-4-2 دستگاه تناسلی موش صحرایی نر PAGEREF _Toc379122439 h 101-4-3 مایع انزالی (Semen) PAGEREF _Toc379122440 h 121-4-4 ساختمان ومورفولوژی اسپرم موش صحرایی نر PAGEREF _Toc379122441 h 131-5 اسپرماتوژنز(spermatogenesis) PAGEREF _Toc379122442 h 13عنوان صفحه
1-5-1 اسپرمیوژنز(Spermiogenesis) PAGEREF _Toc379122443 h 151-6 Busulfan (Myleran) PAGEREF _Toc379122444 h 151- 7 Wi-Fi PAGEREF _Toc379122445 h 161-7-1 تابش یونیزاسیون غیر مستقیم PAGEREF _Toc379122446 h 171-7-2 دستگاه WI-FI PAGEREF _Toc379122447 h 19فصل دوم : روش کار2-1 انتخاب حیوان PAGEREF _Toc379122450 h 222-1-1 گروه بندی حیوان PAGEREF _Toc379122452 h 232-1-2 وزن کردن حیوان PAGEREF _Toc379122453 h 242-2 عصاره سنجد PAGEREF _Toc379122454 h 242-2-1دستگاه های مورد استفاده جهت عصاره گیری PAGEREF _Toc379122455 h 242-2-2 روش تهیه عصاره هیدرو الکلی سنجد PAGEREF _Toc379122459 h 272-2-3 روش دادن عصاره PAGEREF _Toc379122460 h 272-2-4 مبنای انتخاب دوز عصاره PAGEREF _Toc379122461 h 282-3 روش آماده کردن داروی بوسولفان PAGEREF _Toc379122462 h 282-3-1 دوز داروی مورد استفاده PAGEREF _Toc379122463 h 282-3-2 روش دادن دارو PAGEREF _Toc379122464 h 292-4 روش دادن تابش اشعه Wi-Fi PAGEREF _Toc379122465 h 29عنوان صفحه
2-4-1 دستگاه های استفاده شده جهت دادن تابش PAGEREF _Toc379122466 h 292-4-2 طرز چیدمان موش ها جهت دریافت اشعه Wi-Fi PAGEREF _Toc379122467 h 302-6 روش جمع آوری اسپرم و خون گیری PAGEREF _Toc379122469 h 322-6-1 روش تهیه اسمیر PAGEREF _Toc379122471 h 342-6-2 طرز تهیه محلول HBSS PAGEREF _Toc379122472 h 342-6-3 روش استخراج سرم PAGEREF _Toc379122473 h 342-8 پاساژ (Passage) یا گردش بافتی ( Processing) PAGEREF _Toc379122474 h 352-9 شمارش اسپرم PAGEREF _Toc379122475 h 362-10 روش رنگ آمیزی اسمیر های تهیه شده از اسپرم PAGEREF _Toc379122476 h 362-11 مواد و وسایل PAGEREF _Toc379122477 h 37فصل سوم : یافتههای پژوهش3-1- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر تعداد اسپرمها PAGEREF _Toc379122483 h 413-2- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشرونده سریع (GI) PAGEREF _Toc379122486 h 433-3- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای با حرکت درجا (GII) PAGEREF _Toc379122488 h 46عنوان صفحه
3-4- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشرونده با حرکت آهسته (GIII) PAGEREF _Toc379122491 h 483-5- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای بدون حرکت (GIV) PAGEREF _Toc379122494 h 513-6- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر وزن بیضه موشها PAGEREF _Toc379122497 h 543-7- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر میزان هورمون تستوسترون PAGEREF _Toc379122500 h 563-8- یافتههای مربوط به بررسی تأثیر امواج WiFi و اثر حفاظتی عصارهی هیدروالکلی سنجد بر تعداد اسپرمها PAGEREF _Toc379122503 h 583-9- یافتههای مربوط به بررسی تأثیر امواج WiFi و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشرونده سریع (GI) PAGEREF _Toc379122506 h 603-10- یافتههای مربوط به بررسی تأثیر امواج WiFi و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای با حرکت درجا (GII) PAGEREF _Toc379122509 h 623-11- یافتههای مربوط به بررسی تأثیر امواج WiFi و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشرونده با حرکت آهسته (GIII) PAGEREF _Toc379122512 h 643-12- یافتههای مربوط به بررسی تأثیر امواج WiFi و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای بدون حرکت (GIV) PAGEREF _Toc379122515 h 66عنوان صفحه
3-13- یافتههای مربوط به بررسی تأثیر امواج WiFi و اثر حفاظتی عصارهی هیدروالکلی سنجد بر وزن بیضه موشها PAGEREF _Toc379122518 h 673-14- یافتههای مربوط به بررسی تأثیر امواج WiFi و اثر حفاظتی عصارهی هیدروالکلی سنجد بر میزان هورمون تستوسترون PAGEREF _Toc379122521 h 693-15 یافته های مربوط به بررسی تاثیر امواج Wi-Fi، داروی بوسولفان و اثر حفاظتی عصاره هیدرو الکلی سنجد بر بافت بیضه PAGEREF _Toc379122524 h 70فصل چهارم : بحث و نتیجه گیری4-1 عصاره سنجد PAGEREF _Toc379122530 h 754-2 داروی بوسولفان PAGEREF _Toc379122531 h 764-2-1 تاثیر داروی بوسولفان بر تعداد، تحرک اسپرم ها و وزن بیضه موش و اثر حفاظتی عصاره سنجد بعد از تزریق داروی بوسولفان PAGEREF _Toc379122532 h 764-2-2 تاثیر بوسولفان بر هورمون تستوسترون و اثر حفاظتی عصاره سنجد PAGEREF _Toc379122533 h 774-2-3 تاثیر بوسولفان بر بافت بیضه و اثر حفاظتی عصاره سنجد PAGEREF _Toc379122534 h 784-3 Wi-Fi PAGEREF _Toc379122535 h 814-3-1 تاثیر اشعه Wi-Fi بر تعداد و تحرک اسپرم و وزن بیضه در موش و اثر حفاظتی عصاره سنجد در برابر تابش Wi-Fi PAGEREF _Toc379122536 h 814-3-2 تاثیر امواج Wi-Fi بر هورمون تستوسترون و اثر حفاظتی عصاره سنجد بر آن PAGEREF _Toc379122537 h 834-3-3 تاثیر امواج Wi-Fi بر بافت بیضه موش و اثر حفاظتی عصاره سنجد بر آن PAGEREF _Toc379122538 h 83عنوان صفحه
پیشنهادها PAGEREF _Toc379122539 h 85فهرست منابع و مأخذمنابع فارسی PAGEREF _Toc379122542 h 87منابع انگلیسی PAGEREF _Toc379122543 h 88Abstract PAGEREF _Toc379122544 h 100فهرست جدولها
عنوان صفحه
جدول 2-1: لیست وسایل مصرفی PAGEREF _Toc379122478 h 37جدول 2-2: لیست مواد مصرفی PAGEREF _Toc379122479 h 38جدول 2-3: لیست ابزارها و دستگاه های مورد استفاده PAGEREF _Toc379122480 h 39جـدول 3-1: میانگین و خطای معیار میانگین () تعداد اسپرمها (میلیون بر میلیلیتر) در گروههای مختلف PAGEREF _Toc379122484 h 42جـدول 3-2: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده سریع در گروههای مختلف PAGEREF _Toc379122487 h 44جـدول 3-3: میانگین و خطای معیار میانگین () درصد اسپرمهای با حرکت درجا در گروههای مختلف PAGEREF _Toc379122489 h 47جـدول 3-4: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده با حرکت آهسته در گروههای مختلف PAGEREF _Toc379122492 h 49جـدول 3-5: میانگین و خطای معیار میانگین () درصد اسپرمهای بدون حرکت در گروههای مختلف PAGEREF _Toc379122495 h 52جـدول 3-6: میانگین و خطای معیار میانگین () وزن بیضه موشها در گروههای مختلف PAGEREF _Toc379122498 h 55جـدول 3-7: میانگین و خطای معیار میانگین () هورمون تستوسترون در گروههای مختلف PAGEREF _Toc379122501 h 57جـدول 3-8: میانگین و خطای معیار میانگین () تعداد اسپرمها (میلیون بر میلیلیتر) در گروههای مختلف PAGEREF _Toc379122504 h 58عنوان صفحه
جـدول 3-9: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده سریع در گروههای مختلف PAGEREF _Toc379122507 h 60جـدول 3-10: میانگین و خطای معیار میانگین () درصد اسپرمهای با حرکت درجا در گروههای مختلف PAGEREF _Toc379122510 h 62جـدول 3-11: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده با حرکت آهسته در گروههای مختلف PAGEREF _Toc379122513 h 64جـدول 3-12: میانگین و خطای معیار میانگین () درصد اسپرمهای بدون حرکت در گروههای مختلف PAGEREF _Toc379122516 h 66جـدول 3-13: میانگین و خطای معیار میانگین () وزن بیضه موشها در گروههای مختلف PAGEREF _Toc379122519 h 68جـدول 3-14: میانگین و خطای معیار میانگین () هورمون تستوسترون در گروههای مختلف PAGEREF _Toc379122522 h 69جدول 3-15: PAGEREF _Toc379122525 h 71فهرست نمودارها
عنوان صفحه
نمودار 3-1: میانگین و خطای معیار میانگین () تعداد اسپرمها در گروههای مختلف PAGEREF _Toc379122485 h 43نمودار 3-3: میانگین و خطای معیار میانگین () درصد اسپرمهای با حرکت درجا در گروههای مختلف PAGEREF _Toc379122490 h 48نمودار 3-4: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده با حرکت آهسته در گروههای مختلف PAGEREF _Toc379122493 h 50نمودار 3-5: میانگین و خطای معیار میانگین () درصد اسپرمهای بدون حرکت در گروههای مختلف PAGEREF _Toc379122496 h 53نمودار 3-6: میانگین و خطای معیار میانگین () وزن بیضه موشها در گروههای مختلف PAGEREF _Toc379122499 h 56نمودار 3-7: نمودار باکس- ویسکر (box-and-whisker plots) برای هورمون تستوسترون در گروههای مختلف PAGEREF _Toc379122502 h 57نمودار 3-8: میانگین و خطای معیار میانگین () تعداد اسپرمها در گروههای مختلف PAGEREF _Toc379122505 h 59نمودار 3-9: نمودار باکس- ویسکر (box-and-whisker plots) برای درصد اسپرمهای پیشرونده سریع در گروههای مختلف PAGEREF _Toc379122508 h 61نمودار 3-10: نمودار باکس- ویسکر (box-and-whisker plots) برای درصد اسپرمهای با حرکت درجا در گروههای مختلف PAGEREF _Toc379122511 h 63نمودار 3-11: نمودار باکس- ویسکر (box-and-whisker plots) برای درصد اسپرمهای پیشرونده با حرکت آهسته در گروههای مختلف PAGEREF _Toc379122514 h 65عنوان صفحه
نمودار 3-12: نمودار باکس- ویسکر (box-and-whisker plots) برای درصد اسپرمهای بدون حرکت در گروههای مختلف PAGEREF _Toc379122517 h 67نمودار 3-13: میانگین و خطای معیار میانگین () وزن بیضه موشها در گروههای مختلف PAGEREF _Toc379122520 h 68نمودار 3-14: میانگین و خطای معیار میانگین () هورمون تستوسترون در گروههای مختلف PAGEREF _Toc379122523 h 70فهرست شکلها
عنوان صفحه
شکل 1-1: درخت سنجد PAGEREF _Toc379122432 h 7شکل 2-1: نمایی از اتاق حیوانات دانشکده علوم پزشکی شیراز PAGEREF _Toc379122451 h 22شکل 2-2: دستگاه دسیکاتور PAGEREF _Toc379122456 h 24شکل 2-3: دستگاه روتاری PAGEREF _Toc379122457 h 25شکل 2-4: دستگاه پرکولاتور PAGEREF _Toc379122458 h 26شکل 2-5: طرز چیدمان موش ها داخل مقید کننده در اطراف مودم Wi-Fi PAGEREF _Toc379122468 h 31شکل 2-6: تشریح موش صحرایی PAGEREF _Toc379122470 h 33شکل 4-1: تصاویر میکروسکوپی مطالعات بافت شناسی گروه های آزمایشی 1 تا 9 PAGEREF _Toc379122526 h 72شکل 4-2: تصاویر میکروسکوپی اسمیرهای اسپرم با رنگ آمیزی ائوزین گروه های آزمایشی 1 تا 9 PAGEREF _Toc379122527 h 73
بررسی مقایسه ای اثر حفاظتی عصاره هیدرو الکلی میوه سنجد بر اسپرماتوژنز موش های سفید بزرگ آزمایشگاهی نر در حضور اشعه ی Wi-Fi و یا تیمار با داروی بوسولفان
بهوسیلهی: زهره حسینی زاده
چکیدهدر این مطالعه تاثیرات داروی بوسولفان و امواج Wi-Fi را بر روند اسپرماتوژنز، بافت بیضه و هورمون تستسترون موش سفید بزرگ آزمایشگاهی نر از نژاد اسپراگوداولی مورد بررسی قرار گرفت و همچنین از عصاره هیدروالکلی میوه سنجد به عنوان یک داروی محافظت کننده در برابر اثرات بوسولفان و امواج Wi-Fi استفاده شد و به صورت مقایسه ای این مطالعه صورت گرفت.برای انجام این تحقیق 100سر موش سفید بزگ آزمایشگاهی نر با وزن 200-250 گرم انتخاب و در شرایط نوری و غذایی مناسب مورد آزمایش قرار گرفتند. موش ها بر حسب متغیر های تزریق بوسولفان، تابش امواج Wi-Fi و دریافت عصاره سنجد به صورت گاواژ، به طور تصادفی به 10 گروه 10 تایی تقسیم شدند.
گروه 1 به عنوان گروه کنترل حقیقی(هیچ دارو و اشعه ای دریافت نکردند)، گروه 2 به عنوان گروه شم (2ml/kg آب مقطر به صورت گاواژ به مدت 48 روز دریافت کردند)، گروه 3 به عنوان گروه تجربی 1 (2ml/kg عصاره هیدرو الکلی سنجد به صورت گاواژ به مدت 48 روز دریافت کردند)، گروه4 به عنوان گروه تجربی 2(یک دوز 5ml/kg بوسولفان به صورت)Intraperitoneal (Ip)داخل صفاقی) دریافت کردند و سپس به مدت 48 روز آب و غذای روزانه دریافت کردند)، گروه5 به عنوان گروه تجربی 3 (یک دوز5mg/kg بوسولفان به صورت (Ip)داخل صفاقی دریافت کردند و سپس به مدت 48 روز 2ml/kg عصاره سنجد، به صورت گاواژ دریافت کردند) گروه 6 به عنوان گروه تجربی 4 (یک دوز 15mg/kg بوسولفان به صورت Ip دریافت کردند و سپس به مدت 48 روز آب و غذای روزانه دریافت کردند )، گروه 7 به عنوان گروه تجربی 5(یک دوز 15mg/kg بوسولفان به صورت Ip دریافت کردند سپس به مدت 48 روز عصاره هیدرو الکلی سنجد2ml/kg)) به صورت گاواژ در یافت کردند)، گروه 8 به عنوان گروه تجربی 6( موش ها در داخل مقیدکننده(Restrainer) قرار داده و روزانه 4ساعت به مدت 48 روز در معرض تابش اشعه Wi-Fi قرار گرفتند). گروه 9 به عنوان گروه تجربی 7 ( موش ها میزان 2ml/kg عصاره هیدرو الکلی سنجد به صورت گاواژ دریافت نموده سپس موش ها داخل مقیدکننده(Restrainer) قرار داده شدند و روزانه 4ساعت به مدت 48 روز در معرض تابش اشعه Wi-Fi قرار داده شدند)، گروه 10 به عنوان گروه کنترل Wi-Fi (موش ها روزانه به مدت 4 ساعت داخل مقیدکننده(Restrainer) به مدت 48 روز بدون دریافت هیچ تابشی قرار داده شدند.)
در روز 50(48 روز پس از تجویز عصاره و تابش Wi-Fi و 49 روز پس از دادن بوسولفان) کلیه موش ها تحت بی هوشی با کلروفرم قرار گرفتند و در ابتدا خون گیری از قلب صورت گرفت برای اندازه گیری هورمون تستوسترون، سپس موش تشریح شده و از یک سانتی متر انتهایی مجرای دفران چپ اسپرم گیری به عمل آمد و ابتدا وضعیت تحرک سپس شمارش اسپرم ها انجام شد. از اسپرم های مزبور اسمیر تهیه شد که با رنگ ائوزین رنگ آمیزی شدند. بافت بیضه چپ نیز جهت مطالعه بافت شناسی برداشته شدند.
نتیجه مطالعات هورمونی کاهش یا افزایش معنا دار سطح تستوسترون را در هیچ کدام گروه ها مشاهده نشد. نتیجه روند اسپرماتوژنز در گروه هایی که بوسولفان دریافت کرده اند، کاهش معنا دار د تعداد اسپرم، وزن بیضه و و تحرک اسپرم ها مشاهده شد و نشان داده شد که هر چه دوز بوسولفان بالاتر رود اثرات تخریبی آن نیز بالا می رود. در بافت بیضه نیز شاهد کاهش اسپرماتوزوا و اسپرماتید بودیم. استفاده از عصاره سنجد با عث بهبود کیفیت اسپرم شده و نیز در مطالعه بافت شناسی گروهی که دوز 5mg/kg بوسولفان دریافت کرده بودند دادن عصاره سنجد باعث شد که مقدار خیلی کمی از اسپرماتید ها باقی بمانند ولی دوز بالتر بوسولفان عصاره سنجد نتوانست کاری در جهت کنترل تخریب انجام دهد. و اما گروه هایی که امواج Wi-Fi دریافت کرده بودند، امواج روی تعداد اسپرم، وزن بیضه، هورمون تستوسترون و بافت بیضه تاثیری نداشته اما باعث کاهش معنا دار تحرک اسپرم های بارور شد و استفاده از عصاره سنجد میتواند اثر حفاظتی در برابر این امواج داشته باشد.با توجه به نتایج این تحقیق می توان این احتمال را داد که عصاره سنجد با ترکیبات آنتی اکسیدانی که دارد میتواند جلوی آثار مخرب امواج که باعث ایجاد رادیکال های آزاد می شود را بگیرد و با داشتن ویتامین C باعث افزایش وزن بیضه و دارا بودن ویتامین E باعث بهبود کیفیت اسپرم می شود.
کلمات کلیدی: اسپرماتوژنز، بوسولفان، امواج Wi-Fi، میوه سنجد
فصل اولمقدمهcenter0400000
1-1 پیش گفتارناباروری مردان، یک وضعیت پریشان آور معمول و رایج است که از میان هر 20 مرد یک نفر را به خود مبتلا می کند(9). در اکثر موارد، مردان، سلولهای اسپرم کافی برای باروری و لقاح تولید می کنند، اما در این سلول ها نقص های وجود دارد که از لقاح آنها با سلول ماده جلوگیری می کند(10).
عوامل شیمی درمانی اختلالات زیادی در روند اسپرماتوژنز ایجاد می کنند و در بین این عوامل، دارو هایی که دارای خاصیت آلکیله کنندگی هستند، بیشترین آثار سوء را بر بیضه دارند(11). بنابر این اختلالات ایجاد شده در باروری به دنبال شیمی درمانی از نظر بالینی اهمیت بالایی دارد. هر چند که حفظ مایع منی به صورت منجمد قبل از شروع شیمی درمانی، روش قابل اطمینانی برای حفظ باروری است، اما کیفیت اسپرم پس از ذوب کردن مایع منی تغییر می کند. از جمله عوامل شیمی درمانی می توان بوسولفان را نام برد که دارای خاصیت آلکیله کنندگی بوده و برای درمان لوسمی مزمن، سرطان تخمدان و همچنین قبل از پیوند مغز استخوان در بیماران سرطانی استفاده می شود(12). مصرف این دارو پس از یک یا دو تزریق داخل صفاقی، عمده اسپرماتوگونی ها را از بین می برد(13)؛ ضمن اینکه بازگشت باروری در موش های تحت درمان با بوسولفان به صورت موءثر صورت نمی گیرد زیرا، بافت بیضه و لوله های سمی نفروس و سلول های زایا به شدت آسیب می بینند(14).
علاوه بر عوامل شیمی درمانی که باعث اختلال در اسپرماتوژنز می شود در تحقیق حاضر اثر امواج الکترومغناطیسی که اثرات سوءیی بر اسپرماتوژنز دارد نیز مورد بررسی قرار گرفته است. امروزه وجود میادین الکترومغناطیس با شدت های گوناگون اجتناب ناپذیر شده است. این میادین در نتیجه حرکت ذرات باردار در محیط رسانا و خلاء به وجود می آیند و دارای نوعی انرژی هستند که بر اتم ها و مولکول ها بر هم کنشی ایجاد می کنند و منجر به جذب یا باز تابش امواج الکترو مغناطیسی می شود. اثرات این میادین بر وظایف و اعمال بیولوژی موجودات زنده، خطر وسیعی را نشان می دهد که در سلامت زندگی بشری محسوس است(15).
اسپرماتوزوئید هادر برابر تنش های اکسیداسیونی بسیار حساس می باشند و علت آن هم دو چیز است: 1- سوبسترا ها، برای حمله رادیکال های آزاد بسیار قابل دسترس هستند. 2- فضای سیتوپلاسمی برای جای دادن آنزیم های آنتی اکسیدانی کم و محدود است(10).
امواج Wi-Fi نیز جزء امواج الکترومغناطیسی غیر یونیزان هستند که امروزه استفاده فراوانی دارد و در این تحقیق می خواهیم اثرات این امواج را بر روی اسپرماتوژنز بررسی کنیم.
بر طبق کتب طب سنتی ایران، برخی از گیاهان می توانند در درمان ناباروری موءثر واقع شوند(16). از جمله آنها می توان به گیاه سنجد اشاره کرد(19و20و21و22و23). این گیاه یک گیاه تثبیت کننده نیتروژن و متعلق به خانواده الگانسه است. میوه های سنجد غنی از ویتامین ها و به ویژه ویتامین C هستند و حاوی روغن گیاهی غنی از ویتامین E و K، همچنین دارای کاروتنوئید ها، فلاونوئید ها، تانن، پروتئین ها و اسیدهای چرب می باشد(24و25و26). در این تحقیق از عصاره هیدرو الکلی میوه سنجد به عنوان یک محافظت کننده در برابر تاثیر داروی بوسولفان و امواج Wi-Fi استفاده شده است که در بخش های بعدی مفصل توضیح داده خواهد شد.
1-2 هدف کلی:بررسی مقایسه ای اثر حفاظتی عصاره هیدرو الکلی میوه سنجد بر اسپرماتوژنز در حضور اشعه Wi-Fi و یا تیمار با داروی بوسولفان.
1-2-1 اهداف جزئی:1-تعیین اثر محافظتی عصاره ی هیدروالکلی میوه سنجد بر روی اسپروماتوژنز
2-تعیین اثر اشعه ی Wi-Fi بر روی اسپرماتوژنز
3- تعیین اثر محافظتی عصاره ی سنجد و اشعه ی Wi-Fi بر روی اسپرماتوژنز
4-تعیین اثر داروی بوسولفان بر روی اسپرماتوژنز
5-تعیین اثر محافظتی عصاره ی سنجد و داروی بوسولفان بر روی اسپرماتوژنز
2-2 فرضیه ها:1-- میدان الکترو مغناطیسی ناشی از اشعه Wi-Fi باعث کاهش تعداد اسپرم ها می شود.
2- میدان الکترومغناطیسی ناشی از اشعه Wi-Fiباعث کاهش تحرک اسپرم ها می شود.
3- میدان الکترو مغناطیسی ناشی از اشعه Wi-Fi باعث کاهش سلولهای اسپرماتوگونی می شود.
4- امواج الکترومغناطیس ناشی از اشعهWi-Fi اثرات سوء خود را روی هورمون های جنسی نر ا ایجاد می کنند.
5- میدان الکترو مغناطیس ناشی از اشعه Wi-Fi بر مرفولوژی اسپرماتوژنز اثرات سوء دارد.
6- عصاره میوه سنجداز بروز اثرات سوء میدان الکترومغناطیس ناشی از اشعه Wi-Fi بر روی اسپرماتوژنز جلوگیری می نماید.
7- داروی بوسولفان باعث تخریب اسپرماتوژنز می شود.
8- عصاره میوه سنجداز بروز اثرات سوء ناشی از داروی بوسولفان بر روی اسپرماتوژنز جلوگیری می نماید.
1-3 گیاه سنجد:درختی است از خانواده خانواده Elaeagnaceae از جنس Elaeagnus که نام علمی آن Elaeagnus angastifolial میباشد. (شکل 1-1)
این گیاه بومی نواحی شمال آسیا تا هیمالیا و اروپا است و در تهران و اطراف آن، قزوین، خراسان، جنوب شرقی ایران ، شیراز ،غرب ایران از جمله باختران ، همدان ، کاشان ، اصفهان ، آذربایجان و ارومیه می روید.
سنجد در مناطق مختلف ایران دارای نام های محلی است، در کردستان آن را سرین چک در آذربایجان ایده-ایکده ودر اطراف تهران پستانک در اصفهان غبیره بادام گفته میشود(1و2و17).

شکل 1-1: درخت سنجد1-3-1 مشخصات گیاه:درخت سنجد که به صورت درختچه بزرگ یا درخت کوچکی دیده میشود. دارای برگهای بیضی شکل نیزه ای است روی برگ ها نقره ای کبود و پشت آن نقره ای است .دارای ساقه های خار دار یا بی خار به ارتفاع 2تا 7 متر میباشد . گل های آن کوچک زرد رنگ معطر با عطر قوی که بوی آن تا فاصله ی زیادی منتشر میشود و اغلب ایجاد حساسیت مینماید . میوه آن به شکل و ابعاد زیتون ، گوشتدار،پوست نازک میوه به رنگ قرمز نارنجی و گوشت آن سفید نخودی با طعمی کمی شیرین و قابض وقابل خوردن است(1و2و3).
1-3-2 ترکیبات موجود در گیاه سنجد:از نظر ترکیبات شیمیایی در پوست آن آلکالوئید Eeagnine و یک آلکالوئید چسبناک روغنی دیگر وجود دارد و از اعضای گیاه و گل آن کمی اسانس روغنی جدا گردیده است.(معارف گیاهی). برگ گیاه دارای فلانوئید ، تانن ها و اسیدهای کلروژنیک و میوه آن دارای مقادیر زیاد کربوهیدراتها است که در برگ نیز دیده میشوند ، همچنین یک ماده رنگی قهوه ای و مواد روغنی و مقادیر زیادی تانن دارد(1و2).
1-3-3 خواص و کاربرد:برگ آن در بیماری های دهان و لثه و همچنین زخم های ناشی از آفت ، اثر بیحس کننده موضعی دارد . ابن سینا سنجد را به دلیل آثار قابض آن در بند آوردن خونریزی توصیه کرده است(1و4و5). در هند از روغن هسته آن شربت غلیظی درست میکنند که در نزله ها و التهاب غشاءهای مخاطی همراه با ترشح، موارد زکام و همچنین در موارد عفونت های برونش ها مصرف مینمایند. در اسپانیا از شیره گل سنجد برای قطع تبهای مهلک و خطرناک استفاده میشود . میوه سنجد از نظر طبیعت طبق نظر حکمای طب سنتی، سرد وخشک است و از نظر خواص عقیده داشتند که مقوی و مفرح است و برای سرفه های گرم مفید است و نیز مقوی معده می باشد. آشفتگی را تسکین میدهد و صفرا را قطع و قمع می نماید و مانع ریختن مواد به معده می باشد. سنجد خصوصا خام آن برای بند آوردن اسهال نافع است. گل سنجد طبق نظر حکمای طب سنتی گرم و خشک وخیلی معطر است . از نظر خواص، مهیج و شهوت آور خصوصا در مورد زنان و دختران جوان می باشد(2).
1-3-4 درمان با داروهای گیاهی رایج در طب سنتی:استفاده از محصولات و اجزاء مختلف گیاه برای درمان مردان نابارور ، از زمان باستان رایج بوده است و معمولا محصولات و گیاهان مورد استفاده در طب سنتی که سرشار از استرول ، مواد آنتی اکسیدان و ویتامین ها هستند میتوانند بر روی اسپرماتوژنز موءثر باشند. که بعضی از آنها عبارتند از :
باقاله، برنج، رازک، جو دوسر، سیب و سبزیها، انار و گیاهان روغنی (Palma oil and soy oil)(18).
داروها یی که ادعا میشوند واکنش سلولها به پرتوها را تعدیل می کنند، محافظت کننده نامیده می شوند(19). تحقیقات جدید معلوم ساخته که اثر محافظت کننده بعضی گیاهان دارویی به خاطر وجود مقدار نسبتا کمی از ترکیبات شیمیایی به نام مواد موثره می باشد که گیاه تولید می کند. برای مثال بعضی از گیاهان دارای انواع مختلف ترکیبات مثل آنتی اکسیدانت ها هستند که باعث کنترل علائم پاتو فیزیولوژیک، رادیکالهای آزاد و یا بیماریهای مرتبط با آنها و غلبه بر تاثیرات منفی محیط می شوند. بسیاری از این گیاهان خواص محافظت کننده در مقابل اشعه را نشان می دهند از جمله آنها می توان به گیاه سنجد اشاره کرد(20و21و22و23و24). این گیاه یک گیاه تثبیت کننده نیتروژن ومتعلق به خانواده الگانسه است. میوه های سنجد غنی از ویتامین ها و به ویژه ویتامین C هستند و حاوی روغن گیاهی غنی از ویتامین E و K می باشند . همچنین دارای کاروتنوئید ها، فلاونوئید ها، تانن، پروتئین ها و اسیدهای چرب می باشد(25و26و27). وجود فلانوئید های پلی فنولی و تانن و فعالیت جذب رادیکال آزاد ممکن است مسئول اثر محافظت کننده رادیو اکتیوی در عصاره سنجد باشد (22). با وجود تحقیقات بسیار، هنوز هم مواد موثره تعداد قابل توجهی از گیاهان ناشناخته مانده است(2).
میوه سنجد دارای اثراتی چون حفظ مقاومت مویرگی، گشادکننده عروق کرونر، آتمی، هیپولیپیدمیک، کنتراسپتیو و اثرات فوق العاده ضد میکروبی است(3).
1-4 معرفی حیوان:موش صحرائی ، اشاره به گروه زیادی از حیوانات خانواده جوندگان (rodentia) دارد که جایگاه اصلی این حیوانات ، جلگه های آسیا بود اما همراه انسان در سراسر دنیا پراکنده شدند. متوسط طول عمر موش های صحرائی 5/3-5/2 سال ، وزن موش صحرایی ماده به طور متوسط 300گرم و وزن موش صحرایی نر 500-400 گرم است.موش صحرایی نر در سن 60-40 روزگی به بلوغ میرسد(28).
1-4-1 علت انتخاب موش صحرایی نر:به علت تشابه زیاد بین دستگاه تولید مثل موش صحرایی نر با انسان ، از نظر آناتومی بافت شناسی و فیزیولوژی(28و29و30)، اسپرماتوژنز(31)، موش صحرایی نر جهت این آزمایش انتخاب شد و با توجه به شباهت های فوق ، نتایج حاصله را میتوان به انسان تعمیم داد.
1-4-2 دستگاه تناسلی موش صحرایی نر :دستگاه تناسلی موش صحرایی نر شامل: بیضه ها ، مجاری ، آلت تناسلی و غدد همراه است(شکل2-3).
بیضه ها(Testis) یک جفت هستند که مانند بیشتر پستانداران در کیسه اسکروتوم قرار دارند. جایگاه آنها در جلو مقعد (anus) و طرفین مجاری ادراری است. بیضه ها بین روز های 40-30 بعد از تولد پایین می آیند ودردو کیسه مجزا قرار می گیرند . کانال اینگوینال در سراسر زندگی باز می ماند. شریان بیضه ای و شبکه نیلوفری به وسیله توده ای از چربی احاطه می شود(32).
کیسه اسکروتوم در تماس با بدن باقی می ماند هر بیضه به وسیله پوششی به نام سفید پرده(Tunica albugina) پوشیده میشود و حاوی لوله های پیچیده می باشدکه به وسیله بافت همبند احاطه می شود.
بیضه ها ، به عنوان غدد درون ریز (Endocrine) و برون ریز(Exocrine) عمل می کنند در نتیجه اسپرم و هورمون های مردانه(Androgen) را به داخل لوله ها رها می کنند. سلولهای برون ریز در داخل بافت همبند پراکنده اند وسلولهای زایا طی پدیده اسپرماتوژنز، اسپرم تولید می کنند. بیضه ها از طریق یک سری لوله ها با پیشابراه ارتباط دارند که این لوله ها شامل :
شبکه بیضه(Rete testis)، اپیدیدیم ومجاری دفران می باشند.
لوله های منی ساز(Seminefrous tubules)، نزدیک ناف بیضه، مستقیم شده وتشکیل یک شبکه به نام، شبکه بیضه می دهند که از آن چند لوله وابران خارج می شود ای لوله ها سفید پرده را سوراخ کرده وسپس به یکدیگر متصل شده وتشکیل یک لوله منفرد به نام اپیدیدیم می دهند که خود به سه قسمت به نام سر، تنه و دم تقسیم می شود.
مجرای دفران از ناحیه دم اپیدیدیم خارج شده و قبل از ورود به دیواره پشتی آلت تناسلی، در ناحیه آمپولا متسع میگردد. پیشابراه موش صحرایی نر از مثانه تا راس آلت تناسلی امتداد داشته و به یک قسمت غشائی و یک قسمت آلتی تقسیم می شود.
مجرای غشائی دارای دیواره نازک و از مثانه تا کمربند لگنی امتداد دارد. قسمت آلتی به وسیله یک چین پوستی (Prepuce or Foreskin) پوشیده می شود.
سه توده بافت نعوذی (یکی کورپوس کاورنوزوم حاوی پیشابراه و دو تا کورپوس کاورنوزوم) تشکیل آلت می دهند که این سه توده داخل یک غشاء از بافت همبند قرار می گیرند.
کیسه منیSeminal Vesicle)): تعداد آنها یک جفت، دارای اندازه بزرگ و به رنگ سفید می باشند. که هر کدام حاوی یک مجرای پهن هستند و همراه با آمپولای دفران، در راس یک برجستگی (Colliculus seminalis) نزدیک گردن مثانه، از طریق دیواره پشتی پیشابراه، وارد مجرا می گردد.
غده آمپولا(Ampullary gland): یک جفت می باشند که لوله ای و منشعب بوده و در قاعده مجرای دفران قرار می گیرند و به طور مستقیم به داخل وستیبول آمپولا تخلیه می شوند.
غده کوپر(Bulbourethral gland) در محل اتصال مجرای غشایی به آلت قرار می گیرد(32).
پروستات: سه قسمت دارد که عبارتند از :
الف) پروستات اولیه (Primary) یا غده Coagulating: اولین جفت غده پروستات می باشد، دارای ظاهری شفاف و چسبیده به لبه مقعر کیسه منی می باشد و از کیسه منی قابل تشخیص است. هر غده دارای دو مجرا است که وارد پیشابراه می شود.
ب) پروستات شکمی(Ventral) : یک جفت می باشد که صورتی رنگ و قابل دید است. این غده ها حاوی چند مجرا می باشند که وارد پیشابراه میگردند.
پ) پروستات پشتی (Dorsal): یک جفت می باشد که در ناحیه پشتی پیشابراه قرار می گیرد و از کنار جانبی پیشابراه وارد مجرا میگردند.
1-4-3 مایع انزالی (Semen):
مایع انزالی طبیعی انسان*، معمولا به رنگ سفید یا خاکستری و گهگاه زرد رنگ است. مایع قرمز یا صورتی رنگ نشانه وجود خون در مایع انزالی است. مایع انزالی از دو بخش تشکیل شده است بخشی از آن سلولهای مایع انزالی (اسپرم، گلبولهای سفید، سلولهای اپیتلیال مجاری تناسلی و....) و بخش دیگر را پلاسمای مایع انزالی تشکیل میدهد که حاصل ترشحات چندین غدد ضمیمه دستگاه تولید مثلی است.
مایع بلافاصله پس از انزال لخته می شود سپس تشکیل مایع چسبنده ژل مانند می دهد. مایع انزالی حاصل ترشح بیضه و اپیدیدیم و چندین غده می باشد که فقط 5% آن، حاصل ترشح بیضه ؟اپیدیدیم است و بقیه از ترشح غدد ضمیمه به وجود می آید که این غدد عبارتند از :
کیسه منی: 46-8% مایع انزالی.
پروستات: 33-13% مایع انزالی.
غددبولبویورترال وغدد مجاری ادراری: 5-2% مایع انزالی.
1-4-4 ساختمان ومورفولوژی اسپرم موش صحرایی نر: سر اسپرم شبیه قلاب (Hook) است. هسته متراکم (Dense) و یک آکروزوم (Acrosome) دارد. قطعه میانی (Middle-peice)، حاوی سانتریولها و یک صفحه مارپیچی از میتوکندری است (Mitochondrial material). دم، حاوی یک فیلامنت محوری دراز است که برای دوره کوتاهی متحرک است(33).
1-5 اسپرماتوژنز(spermatogenesis):اسپرماتوژنز هنگام بلوغ از یک سلول زایای اولیه موسوم به اسپرماتوگونی(Spermatogonium) آغاز می شود ، که سلولی نسبتا کوچک و مدور با قطری حدود 12میکرومتر است. این سلولها در قاعده اپیتلیوم نزدیک غشاء پایه قرار گرفته اند، و مراحل گوناگون تکامل آنها عمدتا از روی شکل و خواص رنگ پذیری هسته هایشان تشخیص داده می شوند.
اسپرماتوگونی های واجد هسته های تیره ی بیضوی به صورت سلول های بنیادی عمل می کنند؛ آنها به ندرت تقسیم می شوند و هم سلولهای بنیادی جدید و هم سلولهای با هسته های کمرنگتر بیضوی ایجاد می کنند که به صورت سلولهای افزاینده بنیادی (Transit amplifying cell: منظور سلولهایی که با سرعت زیاد تقسیم شده و از یک مرحله تکثیر می گذرند.) می باشند این اسپرماتوگونی های نوع A هر یک چندین تقسیم دودمانی را از سر می گذرانند، به صورت یک سنسیتیوم متصل به هم باقی می مانند، و اسپرماتوگونی عای نوع B را تشکیل می دهند که هسته های کروی تر رنگ پریده ای دارند.
هر اسپرماتوگونی نوع B سپس دستخوش یک تقسیم میتوزی نهایی می شود ودو سلول به وجود می آورد که افزایش اندازه می یابند و به اسپرماتوسیت های اولیه تبدیل می شوند، که سلول های کروی با هسته های یوکاریوت هستند. اسپرماتوسیت های اولیه DNAی خود را تکثیر می دهند (به نحوی که هر کرومزوم محتوی کروماتید های مضاعف است) و وارد مرحله تقسیم میوز می شوند که طی آن کرومزوم های مشابه (هومولوگ) در روند سیناپس کنار هم قرار می گیرند، نوترکیبی DNA روی می دهد و دو تقسیم سلولی سریع سلول های هاپلوئید ایجاد می کنند. اسپرماتوسیت های اولیه بزرگترین سلولهای دودمان اسپرماتوژنز هستند، و علامت مشخصه آنها وجود کرومزوم های تا حدی تراکم یافته در مراحل مختلف سیناپس و نو ترکیبی است.
کرومزوم های هومولوگ در نخستین تقسیم میوزی از هم جدا می شوند و بدین ترتیب سلول های کوچکتری به نام اسپرماتوسیت های ثانویه(Secondary spermatocytes) حاصل می شوند؛ اسپرماتوسیت های ثانویه در برش های بیضه به ندرت یافت می شوند، زیرا این سلول ها دارای عمر کوتاه هستند و فقط مدت زمان بسیار کوتاهی در مرحله انترفاز باقی مانده و به سرعت وارد تقسیم دوم میوزی می شوند. با تقسیم هر اسپرماتوسیت ثانویه کروماتید های هر کرومزوم از هم جدا می شوند و دو سلول هاپلوئید به نام اسپرماتید به وجود می آید(7).
1-5-1 اسپرمیوژنز(Spermiogenesis)اسپرمیوژنز مرحله نهایی تولید اسپرم و فرآیندی است که طی آن اسپرماتید ها به اسپرماتوزوئید ها تبدیل می شوند. هیچ گونه تقسیم سلولی در خلال این فرآیند روی نمی دهد.
اسپرماتید ها را می توان به کمک اندازه کوچک آنها، هسته هاپلوئید با کروماتین بسیار متراکم، و موقعیت آنها در نزدیکی مجرای لوله های منی ساز تشخیص داد(7).
1-6 Busulfan (Myleran)بوسولفان یک داروی تجزیه کننده DNA (Alkylating agent) است که نام شیمیایی آن1-4-btanoedioldimethanesulfonate می باشد و فرمول ساختمانی آن CH3SO2(CH2)4OSO2CH3 است. بوسولفان برای درمان Chronic leukemia ( کم خونی مزمن میلوسیتی و گرانولوسیتی) به کار می رود.
بوسولفان یک داروی هسته دوست (Nucleophilic) است که این خاصیت غیر اختصاصی است. به نظر می رسد آلکیلاسیون DNA، یک مکانیسم بیولوژیک مهم برای اثر توکسیک بوسولفان است.
بوسولفان با اثر بر روی اسپرماتوژنز، باعث نازایی، فقدان اسپرم و تحلیل رفتن بیضه ها می گردد(34).
بوسولفان باعث رشد گناد ها، کاهش تعداد سلولهای زایا (Germ cell)، توقف تقسیم میوزی اسپرماتوگونی ها، افزایش استرادیول و کاهش تستوسترون می گردد(35).
1- 7 Wi-Fiناباروری یک مسئله شایع در سر تاسر جهان است که حدود 70ملیون زوج در سن باروری به آن دچار می باشند(36). چنین اظهار شده است که طی چندین دهه اخیر ناباروری در مردان افزایش یافته است(37). و این مسئله به قرار گیری مستقیم یا غیر مستقیم در معرض عوامل محیطی خاص مانند امواج الکترو مغناطیسی ، فرکانس های رادیویی (فرکانس های بالا) یا RF-EMW (Radio frequency electromagnetic waves) نسبت داده می شود(38).
امواج الکترو مغناطیس به طور قابل ملاحضه ای در تشخیص و درمان به کار گرفته می شوند و استفاده از آنها مستلزم چگونگی کاربرد محتوای انرژی آنها می باشد و می توان گفت امواج با طول موج کوتاه ،انرژی بیشتری با خود دارند وبیشتر نفوذ می کنند و می توانند صدمات بیشتری برسانند(39).
تشعشع ها را می توان به دو دسته یونیزاسیون مستقیم و غیر مستقیم تقسیم بندی کرد .ذرات بار دار مانند پروتون و پوزیترون پرتوهای یونیزاسیون مستقیم هستند که می توانند ساختمان اتمی ماده جاذب را بشکنند و از آن عبور کنند و تغییر شیمیایی و بیولوژیکی در آن ایجاد کنند ، ولی تشعشع های الکترو مغناطیس پرتوهای یونیزاسیون غیر مستقیم هستند. این پرتو ها خود ایجاد صدمات شیمیایی و بیولوژیکی نمی کنند بلکه در حین عبور از ماده جاذب، انرژی جنبشی خود رااز دست داده و تولید ذرات باردار می کنند(40). بسیاری از این ذرات قادر به یونیزه کردن اتم های ماده جاذب و شکستن باند های شیمیایی حیاتی هستند و وقایع زنجیره ای را شروع می کنند که منتهی به صدمات بیولوژیکی می شود(41). وقتی پرتو جذب مواد حیاتی می شود، انرژی در بافت ها و سلولها ذخیره می گردد، این انرژی به علت تولید رادیکال های آزاد می تواند یک باند شیمیایی را بشکند و زنجیره ای از وقایع بیولوژیکی از جمله موتاسیون آسیب در غشاء ها را شروع نماید.(42).
زنجیره وقایع از جذب تشعشع تا آخرین مرحله یعنی ظهور آسیب بیولوژیکی را می توان به صورت زیر خلاصه کرد:
جذب تشعشع منتهی به ایجاد ذرات باردار سریع می گردد.
ذرات بار دار در حین عبور از مواد بیولوژیکی تولید تعدادی جفت یون می کنند. این جفت یون ها رادیکال های آزاد (R₀ ) را به وجود می آورند که دارای عمر بسیار کوتاهی در حدود 105ثانیه هستند. این رادیکال های آزاد به علت داشتن یک والانس الکترون تنها، مولکولهای بسیار فعالی می باشند و تا حد وسیعی منجر به پاره شدن باند های شیمیایی شده و موجب تغییرات شیمیایی می شوند که خود باعث شروع زنجیره ای از وقایع می گردندکه نتیجه نهایی آن ظهور آسیب بیولوژیک است.
اگر اکسیژن حضور داشته باشد ، با رادیکال های آزاد (R0) ترکیب شده و در نتیجه این ترکیب ROO2 تولید می شود که یک پراکسید ارگانیک و یک ماده غیر قابل برگشت است، بدون حضور اکسیژن این واکنش روی نمی دهد و بسیاری از مولکول های یونیزه شده مورد هدف می توانند خودشان را ترمیم و قابلیت عمل طبیعی خود را نیز باز یابند. از طرفی مهمتر اینکه اکسیژن موجب تثبیت ضایعات حاصل از تابش اشعه می شود. بدون حضور اکسیژن این واکنش روی نمی دهد و بسیاری از مولکول های یونیزه شده هدف، می توانند خودشان را ترمیم و قابلیت عمل طبیعی خود را باز یابند(43).
1-7-1 تابش یونیزاسیون غیر مستقیم:تا قبل از پایان جنگ جهانی دوم توجه چندانی به خطرات ناشی از تابش های یونیزاسیون غیر مستقیم نمی شد. تا آن زمان درباره صدمات وارده به چشم بر اثر رویت مستقیم کسوف، نور فرابنفش جوشکاری، و انرژی فرو سرخ در کارهای شیشه سازی و فولاد کاری تجربیات زیادی جمع آوری شده بود. همچنین شواهدی مبنی بر صدمات پوستی ناشی از تابش های فرابنفش و فروسرخ در دسترس بود. اما ترقی سریع الکترونیک و ارتباطات در سالهای پس از جنگ که مبنی بر بخش میکرو موج طیف تابش الکترو مغناطیس بود، و به دنبال آن کاربرد فراگیر جنبه های تاثیر احتمالی تابش های یونیزاسیون غیر مستقیم به ویژه تابش های ناشی از این دو چشمه را بر بهداشت عمومی در کانون توجه قرار داد(8).
با وجود اینکه مرزها و حد و حدود های امنی برای حفاظت از ارتباطات در مقابل پرتودهی امواج رادیویی موجود است، اما نگرانی های عمومی در این باره همواره رو به افزایش است(44و45)، به همین دلیل سازمان سلامت جهانی توصیه کرده است که تحقیقاتی در این زمینه انجام گیرد. مطالعات بر روی حیوانات ( در واقع بر روی موش ها ) به منظور تحلیل و آنالیز تاثیرات سیگنال های WI-FI بر پارامتر های سلامتی و نشان گرهای استرس طراحی شده است.
طی سالهای اخیر استفاده از کامپیوترهای قابل حمل (لپ تاپ های که به اینترنت به صورت وایرلس متصل شده اند به عنوان WI-FI شناخته می شوند.) بسیار افزایش یافته است. این روز ها لپ تاپ ها به دلیل قابل حمل بودن و انعطاف پذیری خود تبدیل به یک وسیله لازم وضروری در زندگی روزمره شده اند. افرادی که از سیستم های WI-FI استفاده می کنند در معرض امواج رادیویی قرار خواهند گرفت و برخی از این امواج ساطع شده از طریق بدنشان جذب می شود. لپ تاپ ها معمولا بر روی پاهای فرد نشسته قرار می گیرد(46و47) و به دین تر تیب ناحیه دستگاه تناسلی این افراد در معرض امواج الکترو مغناطیسی، فرکانس های رادیویی و دمای بالا قرار می گیرد(47و48).
میدان های مغناطیسی با فرکانس های بسیار پایین می توانند باعث شروع برخی تغییرات فزیولوژیک و شیمیایی در سیستم های بیولوژیکی گونه های مختلف شوند(49و50). بسیاری از این تاثیرات مرتبط با تولید رادیکال های آزاد است(51و52). رادیکال های آزاد عواملی هستند که باعث ایجاد آسیب اکسیداتیو در ساختار های سلولی و مولکولی مانند لیپید ها، پروتئین ها و اسید های نوکلئیک می شوند(53).
اسپرماتوزوئید ها به طور منحصر به فرد در برابر تنش اکسیداتیو حساس هستند. علت مربوط به این مسئله به صورت زیر می باشد:
اولین دلیل این سلول ها بطور عمده عاری از سیتو پلاسم هستند و سیتو پلاسم هم در سلول های سوماتیک محلی است برای ذخیره و نگهداری آنزیم های آنتی اکسیدان که اولین خط دفاعی در برابر حمله رادیکال های آزاد، می باشند. بنابر این این سلول ها به علت نداشتن سیتوپلاسم و در نتیجه آنزیم های آنتی اکسیدان به راحتی در معرض حمله رادیکال های آزاد قرار می گیرند(54).
دومین دلیل این سلول ها، دارای هدف های مناسب بسیاری برای ایجاد آسیب پراکسداتیو می باشند. از جمله این هدف ها ، می توان به اسید های چرب غیر اشباعی و DNA اشاره کرد(54و55).
سومین دلیل این سلول ها تولید کننده های حرفه ای گو نه های واکنش پذیر اکسیژن هستند که به نظر می رسد به طور وسیعی از میتوکندری های اسپرم و NADPHاکسیداز غشای پلاسمایی منشا می گیرند(56و57).
1-7-2 دستگاه WI-FI:دستگاه Wireless 8.2.Hg یا محیطی که به نام دستگاه Wi-Fi است ، وسیله بی سیم فراهم کننده امکان دسترسی به اینترنت است کهWIADنیز نامیده می شود. او به طور معمول دارای محدوده فرکانس بالاتر و زمان پرتو دهی طولانی تری نسبت به تلفن های بدون سیم است(58). بدین ترتیب، سطح مخاطره سلامت که مربوط به دستگاه های Wi-Fi می باشد نسبت به تلفن های همراه هم متفاوت است و احتمالا بیشتر هم می باشد. به علاوه دستگاه های Wi-Fi به طور معمول کل بدن را در معرض پرتو های خود قرار می دهند، در حالی که تلفن های همراه تنها بخش هایی از بدن را در معرض پرتو دهی قرار می دهند و بیشتر از همه جمجمه هست که مورد آسیب واقع می شود. قرار گیری حیوانات در معرض پرتو های الکترو مغناطیسی امواج رادیویی یا RFEMR (Radio ferequency electromagnetic --iation) منجر به تغییرات گوناگونی در بافت ها می شود. تغییرات مشاهده شده بسته به خصوصیات و ویژگی های پرتو های ساطع شده از دستگاه Wireless، در گونه های مورد مطالعه و متدلوژی آسیب شناسی بافت مورد استفاده برای کشف این اثرات، متفاوت می باشند(59و60).
فصل دومروش کارcenter0400000
2-1 انتخاب حیوان:جهت این آزمایش ، در تاریخ 19/1/91، تعداد 100 عدد موش سفید بزرگ آزمایشگاهی نر از نژاد اسپراگو-داولی(Sprague-Dawley)، با وزن 200- 250گرم، به روش تصادفی ساده، از مرکز حیوانات آزمایشگاهی دانشگاه علوم پزشکی شیراز خریداری شد.

شکل 2-1: نمایی از اتاق حیوانات دانشکده علوم پزشکی شیراز2-1-1 گروه بندی حیوان:موش ها به طور تصادفی به 10 گروه 10تایی تقسیم و در قفس های به ابعاد 40ₓ20ₓ15 سانتی متر، به ازای هر قفس 5 موش جای داده شدند. به گونه ای که هر گروه دوقفس پنج تایی داشتند. همه موش ها وزن و شماره گذاری شدند. در تمام طول آزمایش شرایط نوری 12 ساعت روشنایی(6صبح تا 6 عصر) و 12 ساعت تاریکی و درجه حرارت23±2 درجه سانتی گراد رعایت شد. تمام گروه ها از غذای یکسان استفاده کردند.

2-1-2 وزن کردن حیوان:برای وزن کردن موش ها، از ترازوی دیجیتالی(spo51)، استفاده شد. برای اینکار ابتدا ترازو را کالیبره کرده سپس توزین موش ها انجام شد.
2-2 عصاره سنجد:2-2-1 دستگاه های مورد استفاده جهت عصاره گیری:1)دستگاه دیسیکاتور(Descicator)
این دستگاه از یک مخزن شیشه ای و یک پمپ خلاء تشکیل شده است:
الف) مخزن شیشه ای: در قسمت پایین مخزن، مواد جاذب رطوبت ،کلسیم کلراید و در قسمت بالای آن ماده مورد نظر قرار می گیرد. این مخزن، دارای یک سرپوش شیر دار است که شیر آن به پمپ خلا وصل می شود. (شکل2-2)

شکل 2-2: دستگاه دسیکاتورب)پمپ خلاء: این پمپ برای ایجاد خلاء در مخزن شیشه ای استفاده می شود.
2)دستگاه روتاری(Rotary)
این دستگاه شبیه دستگاه تقطیر است. بدین صورت که مواد مورد نظر در داخل مخزن قرار می گیرد. این مخزن، در داخل یک ظرف آب گرم به گردش در می آید در نتیجه آب و رطوبت موجود در ماده، تبخیر شده، و وارد یک فیلتر می گردد. فیلتر در انتهای مخزن قرار دارد. خلاء لازم در داخل مخزن به وسیله یک پمپ، ایجاد می شود. (شکل 2-3)

شکل 2-3: دستگاه روتاری3)دستگاه پرکولاتور(Percolator)
دستگاه عصاره گیری است که با استفاده از فشار کار می کند. این دستگاه حاوی یک مخزن شیشه ای دهان گشاد می باشد که در پایین حاوی شیر کنترل است. مواد مورد نظر در داخل مخزن قرار می گیرد و به علت فشاری که به آن وارد می شود حلال، قطره قطره از آن خارج می شود. (شکل 2-4)

شکل 2-4: دستگاه پرکولاتور2-2-2 روش تهیه عصاره هیدرو الکلی سنجد:سنجدی که از بازار تهیه کردیم (سنجد خراسان) به آزمایشگاه منتقل شد، میوه با هسته آن آسیاب شده بعد به مقدار معینی(100gr) از سنجد آسیاب شده را برداشته و در 700cc هیدروالکل مخلوط کرده و به وسیله دستگاه پرکولاسیون به مدت 3روز (72 ساعت) در هوای آزمایشگاه نگه داری کرده بعد از 3 روز عصاره را به وسیله شیر زیر دستگاه گرفته شد. در ضمن برای اینکه گیاه خشک نشود و عصاره بیشتری به دست بیاید همان اندازه که قطره قطره از شیر دستگاه عصاره خارج می شود به همان اندازه حلال مورد نظر که همان هیدرو الکل می باشد، از بالای دستگاه اضافه کرده تا مادامی که عصاره از پایین دستگاه گرفته می شود دیگر رنگی نداشته باشد. عصاره به دست آمده را به وسیله دستگاه روتاری و یا بن ماری غلیظ کرده تا تمام هیدرو الکل عصاره گرفته شود سپس برای اینکه عصاره رطوبتی نداشته باشد در دستگاه دیگری به نام دیسیکاتور که خلاء قوی ایجاد می کند به مدت 24 ساعت نگه داری کرده راندمان 100gr گیاه پودر شده که برداشتیم 51gr عصاره غلیظ سنجد می باشد .
2-2-3 روش دادن عصاره :یک روز پس از تزریق داروی بوسولفان، تجویز عصاره آغاز و به مدت 48 روز (طول مدت اسپرماتوژنز در موش صحرایی نر)، به گروه های آزمایش 6و7 به صورت گاواژ داده شدو همچنین گروه آزمایش 9 همراه با دریافت اشعه Wi-Fi عصاره نیز به مدت 48 روز و به صورت گاواژ دریافت کردند. گروه آزمایش 3 به مدت 48 روز فقط عصاره به صورت گاواژ داده شد و هیچ دارو و اشعه ای دریافت نکردند. گروه های مزبور، روزانه 70mg به ازای هر یک کیلو گرم دریافت کردند. قابل ذکر است که دوز مزبور در 2 سی سی آب مقطر حل شده بود. گروه شم (گروه2) در تمام مدت آزمایش معادل حجم محلول تجویز شده برای گروه های آزمایش آب مقطر دریافت کرده و گروه کنترل حقیقی (گروه 1) و گروه کنترل Wi-Fi (گروه10)، هیچ گونه دارو، عصاره و اشعه ای دریافت نکردند.
2-2-4 مبنای انتخاب دوز عصاره:با توجه به اختلافات مربوط به پارامتر های قلبی- عروقی و متابولیسم کبدی و میزان بیان شده در کتاب طب سنتی(28) بین انسان و موش صحرایی نر دوز مزبور انتخاب شد.
2-3 روش آماده کردن داروی بوسولفان:الف) طرز تهیه حلال بوسولفان: برای تهیه حلال باید به ازای هر 3/3 گرم N-N-Dimethylacetamid، 7/6 گرم، Polyethylenglycol-400 استفاده شود. در این آزمایش 33/13 گرم ماده اول با 66/26 گرم ماده دوم مخلوط شده و حجم به 40 سی سی رسانده شد.
ب) روش تهیه دارو:
به ازای هر 5mg بوسولفان، نیاز به 2cc حلال است. در این آزمایش 100mg بوسولفان در 40cc حلال حل شد.
2-3-1 دوز داروی مورد استفاده:
با توجه به اینکه دوزهای 10mg/kg و بیشتر از آن، باعث تخریب زیاد سلول های اسپرماتوژنیک می شود(35و61) و در این آزمایش نیاز به ایجاد عقیمی نسبی موش های صحرایی نر بود، بنابراین از دوز 5mg/kg استفاده شد. و برای بررسی مقایسه ای اثر عصاره سنجد از یک دوز بالاتر بوسولفان برای ایجاد تخریب زیاد سلول های اسپرماتوژنیک دوز 15mg/kgبوسولفان استفاده شد. با توجه به محاسبه فوق، برای دادن 5mg دارو، نیاز به تزریق 2ml/kg از محلول حاوی دارو بود. بنابراین برای موشهای با وزن 250gr نیم سی سی از محلول فوق، استفاده شد. و همچنین برای دادن 15mg دارو، نیاز به تزریق 6ml/kg از محلول حاوی دارو بود. به همین دلیل موشهای وزن 250gr یک و نیم سی سی از محلول فوق را دریافت نمودند.
2-3-2 روش دادن دارو:به موش های گروه آزمایش تجربی 4-5-6-7 فقط یک دوز دارو به صورت داخل صفاقی(Ip) ، با رعایت اصول اخلاقی و به صورت استریل، داده شد. گروه های شم و کنترل حقیقی بوسولفان دریافت نکردند.
2-4 روش دادن تابش اشعه Wi-Fi:2-4-1 دستگاه های استفاده شده جهت دادن تابش:الف) دستگاه دوزیمتر :
دستگاه EMF(Electro Magnetic Field) یا دوزیمتر استفاده شده در این آزمایش از شرکت Holaday ومدل HI-3604 بود. از این دستگاه برای اندازه گیری و ثبت میدان های الکتریکی و مغناطیسی محیط استفاده شد.
ب) مودم Wi-Fi :
برای انجام این آزمایش از مودم وایمکس رومیزی ایرانسل(مودم داخلی با امکانات Wi-Fi) مدل WIXFMM-130 استفاده شد. وایمکس سیستم دیجیتال ارتباط بی سیم است که با استفاده از منطقه بسیار وسیع تحت پوشش دکل های وایمکس، کل شهر و شهرک های صنعتی و مناطق راهبردی را پوشش می دهد و اینترنت پر سرعت را برای سازمان ها و موسسات و شرکت های تجاری و همچنین منازل مسکونی و کلیه افراد در هر نقطه ای از مکان های تحت پوشش فراهم می آورد.
ج)لپ تاپ:
در این آزمایش از یک دستگاه لپ تاپ ASUS مدل N43J استفاده شد . از لپ تاپ برای استفاده از اینترنت و دانلود هنگام تابش اشعه Wi-Fi استفاده شد.
2-4-2 طرز چیدمان موش ها جهت دریافت اشعه Wi-Fi:قبل از چیدمان موش ها بایستی میزان امواج الکتریکی و مغناطیسی محیط توسط دستگاه دوزیمتر ثبت شود که چون این آزمایش در مرکز حیوانات آزمایشگاهی دانشکده علوم پزشکی شیراز انجام می شد دستگاه به مرکز منتقل وامواج به قرار زیر ثبت گردید:
Background محیط قبل از روشن کردن مودم وایمکس و لپ تاپ:
میدان مغناطیسی : 14mA/m و میدان الکتریکی: 0.5V/m
لپ تاپ روشن، مودم خاموش:
میدان مغناطیسی: 15mA/m و میدان الکتریکی: 10V/m
لپ تاپ روشن بدون دانلود واستفاده از اینترنت، مودم روشن:
میدان مغناطیسی: 19mA/m و میدان الکتریکی: 11.5V/m
لپ تاپ روشن هنگام دانلود، مودم روشن:
میدان مغناطیسی: 67mA/m و میدان الکتریکی: 17.4V/m
چون امواج به صورت کروی در محط پخش می شوند، دستگاه مودم را در مرکز قرار داده و موشها را داخل مقید کننده گذاشته و به صورت دایره وار دور مودم چیده شد وچون 2 گروه را باید تابش می دادیم (گروه 8و9) یک گروه در زیر وگروه دیگر روی آن قرار داده شد، همانطور که در شکل می بینید وچون مدت تابش 4 ساعت در روز بود بس از گذشت 2 ساعت گروه ها جا به جا کردیم تا به طور مساوی امواج را دریافت کنند. (شکل 2-5)

شکل 2-5: طرز چیدمان موش ها داخل مقید کننده در اطراف مودم Wi-Fi2-5 روش بی هوش کردن حیوان:
در روز 50(48 روز بعد از دادن عصاره وتابش Wi-Fi و 49 روز پس از دادن بوسولفان)، ابتدا موش ها به وسیله ترازوی دیجیتالی، وزن شدند و سپس به طریق زیر تحت عمل بی هوشی قرار گرفتند:
در یک ظرف شیشه ای دهان گشاد در پوش دار، مقداری پنبه تمیز ریخته شد و به پنبه ها، 3-4 سی سی اتر اضافه گردید. سپس هر موش به طور انفرادی داخل شیشه قرار گرفت و درب شیشه پوشانده شد. پس از بیهوشی، موش ها به طریق زیر تشریح و ارگان های لازم برداشته شد لازم به ذکر است که در تمام مدت تشریح، عمل بیهوشی بوسیله یک پنبه آغشته به اتر کنترل می شد.
2-6 روش جمع آوری اسپرم و خون گیری: هر موش پس از بیهوشی، روی یک تخته که از قبل بدین منظور تعبیه شده بود ثابت گردید. به منظور تهیه سرم جهت آزمایشات هورمونی (تستوسترون) با سرنگ 2 سی سی، مقدار 2 سی سی خون از قلب حیوان گرفته و درشیشه کلات ریخته شد (شیشه ها از قبل برچسب زده و شماره گذاری شده بود). بعد از آن ناحیه شکم به وسیله پنبه الکل ضد عفونی گردید. سپس یک برش عمودی (Vertical) در خط وسط پوست شکم داده شد. و با قیچی، عضلات جدار شکم را باز کرده تا حفره شکمی در معرض دید قرار گیرد.(شکل 2-6) به منظور تهیه اسپرم، یک سانتی متر انتهای مجرای دفران چپ را جدا کرده در محلول HBSS(Hank,s Balanced Salt Solution) قرار داده شد و در نهایت بافت بیضه چپ به منظور مطالعه بافت شناسی برداشته و داخل فرمالین 10% قرار داده شد.

شکل 2-6: تشریح موش صحرایی2-6-1 روش تهیه اسمیر:پس از گذشت 5 دقیقه و خروج اسپرم ها از مجرای دفران، با استفاده از سمپلر، یک قطره از محلول HBSS که حاوی اسپرم بود بر روی لام گذاشته و بالبه لام دیگر با زاویه 45 درجه روی آن کشیده شد سپس اسلاید ها در هوای اتاق خشک شدند.
2-6-2 طرز تهیه محلول HBSS :برای تهیه 500 سی سی محلول HBSS، مواد زیر با دوز های مشخص شده استفاده شد.
Cacl2.2H2o: 92/5mg
Kcl: 200mg
KH2PO4: 30mg
Mgso4.7H2o: 100mg
Nacl: 4g
NaHco3: 175mg
Dextrose: 550mg
Distilled water: 500cc
2-6-3 روش استخراج سرم:لوله های کلات حاوی خون، داخل دستگاه سانتریفیوژ قرار داده و به مدت 10 دقیقه با دور200G در دقیقه سانتریفوژ شدند. سپس توسط سمپلر، سرم جدا شده خون را برداشته و در لوله های اپندورف ریخته شد. سرم ها تا زمان انجام آزمایشات هورمونی در حالت فریز (دمای 20- درجه سانتیگراد ) نگهداری شدند.
2-7 روش اندازه گیری هورمون تستوسترون:
این اندازه گیری توسط دستگاه Elecsysمدل 2010 انجام شد. پس از جدا سازی سرم آنهه را در cup های مخصوص دستگاه ریخته و نتایج توسط دستگاه خوانده شد.
2-8 پاساژ (Passage) یا گردش بافتی ( Processing)از بافت بیضه چپ، طی مراحل زیر اسلاید تهیه شد:
الف) مرحله تثبیت: بافت های فوق در فرمالین 10% فیکس شد و با فاصله 2، 4، 8، 12، 24، 48 ساعت از نقطه شروع، فرمالین آنها تعویض شد. مقدار فرمالین استفاده شده برای هر ظرف 50 برابر حجم بافت بود.
ب) مرحله آب گیری (Dehydration): این عمل با الکل های 70، 80، 96 وسه ظرف الکل 100درصد، هر کدام به مدت 2 ساعت انجام شد.
پ) مرحله الکل گیری و شفاف کردن(Clearing): برای این منظور از دو ظرف گزیلل-زیلول)، هر کدام به مدت یک ساعت استفاده شد تا گزیلل-زیلول جانشین الکل شود. شایان ذکر است که دو مرحله اخیر توسط دستگاه اتوتکنیکون لایکا (LEICA TP 1010) به طور اتوماتیک انجام شد.
ت) مرحله جایگزینی: بافت ها در دو ظرف پارافین مذاب با درجه حرارت 65 درجه سانتی گراد و با حجمی معادل 50 برابر حجم نمونه بافتی، قرار داده شده تا پارافین جایگزین گزیلل =زیلول شود مدت زمان در نظر گرفته شده برای هر ظرف 2 ساعت بود.
ث) مرحله قالب گیری: ابتدا یک لایه نازک از پارافین مذاب بر روی شیشه و قالب های روی آن چسبانده شد، سپس قالب ها را با پارافین مذاب پر کرده و بافت ها را در داخل آنها قرار داده شد پس از سرد شدن در دمای اتاق، بلوک ها را از قالب ها جدا کرده و در سرد خانه یخچال نگهداری شدند.
ج) برش بافتی یا مقطع گیری: برای این منظور از میکروتوم لایکا استفاده شد و برش های 5 میکرونی از بافت تهیه شد.
چ)مرحله رنگ آمیزی: در این مطالعه از رنگ آمیزی هماتوکسیلین-ائوزین،(H&E ) استفاده شد.
2-9 شمارش اسپرم:برای شمارش اسپرم ابتدا یک سانتیمتر انتهایی مجران دفران را جدا کرده و در 5/2 سی سی محلول HBSS با حرارت 37 درجه سانتی گراد قرار داده شد سپس به روش Jennifer (51)، یک قطره از محلول فوق را روی لام نئوبار ریخته و پس از قرار دادن لامل روی آن از خانه های شماره، 9،7،3،1(خانه های مربوط به شمارش گلبول سفید) جهت شمارش اسپرم استفاده شد. پس از شمارش، میانگین اعداد حاصل از خانه های مزبور محاسبه گردید. به منظور محاسبه تعداد اسپرم موجود در یک میلی لیتر محلول HBSS، میانگین به دست آمده در ضرایب زیر ضرب گردید:
با توجه به اینکه عمق لام نئوبار 0.1 میلی لیتر می باشد جهت محاسبه تعداد اسپرم در یک میلی لیتر مکعب، میانگین تعداد اسپرم در عدد 10 ضرب شد. همچنین جهت محاسبه تعداد اسپرم در واحد میلی لیتر، تعداد اسپرم به دست آمده در یک میلی متر مکعب در عدد 1000 ضرب گردید. با توجه به اینکه مجرای دفران در 5/2 سی سی (فاکتور رقت) محلول HBSS قرار داده شده بود عدد حاصله در عدد 5/2 ضرب گردید.
2-10 روش رنگ آمیزی اسمیر های تهیه شده از اسپرم:اسمیر های تهیه شده توسط رنگ ائوزین، رنگ آمیزی شدند.
2-11 مواد و وسایلجدول 2-1: لیست وسایل مصرفیشماره نام وسایل شرکت سازنده کشور
1 لامل M.MG آلمان
2 لام Menzel آلمان
3 آپندروف 5/1 گروه صنعتی حقیقت ایران
4 دستکش جراحی سوپا ایران
5 سرنگ 2cc سوپا ایران
6 سرنگ 5cc سوپا ایران
7 ماسک سه لایه یکبار مصرف آرمان ماسک ایران
8 گاز - ایران
9 پنبه - ایران
10 برچسب - ایران
11 دستکش یکبار مصرف - ایران
12 سرم فیزیولوژی داروسازی شهید قاضی ایران
جدول 2-2: لیست مواد مصرفیکشور شرکت سازنده نام مواد شماره
آلمان Merck اسید سیتریک 1
آلمان Merck الکل متانول مطلق 2
آلمان Merck الکل اتانول مطلق 3
آلمان Merck فرمالین 10% 4
آلمان Merck گلیسیرین 5
آلمان Merck هماتوکسیلین 6
آلمان Merck گزیلل 7
آلمان Merck پارافین 8
آلمان زیگما بوسولفان 9
ایران پارسیان الکل 96 درجه 10
انگلستان BDH ائوزین 11
ایران لانه حیوانات دانشگاه علوم پزشکی شیراز موش صحرایی نر 12
ایران از درختان استان خراسان میوه سنجد 13
جدول 2-3: لیست ابزارها و دستگاه های مورد استفادهکشور نام شرکت سازنده نام دستگاه شماره
آلمان فاکسل ست جراحی 1
ایران - دستگاه عصاره گیری 2
ایران - دستگاه سانتریفیوژ 3
ژاپن Niko میکروسکوپ نوری E200 4
ژاپن Sony CCDcamera 5
آلمان Spo51 ترازو دیجیتالی 6
ایران - سمپلر 7
ایران - بشر مدرج 8
ایران - پیپت 9
سوئد Heraeus دستگاه آب گرم (Water Bath) 10
آلمان Leica 820 میکروتوم Leica 11
آلمان Profile-c تیغه میکروتوم Leica 12
آلمان Zeis میکروسکوپ نوری 13
ایران - لوله کلات 14
آلمان - نیدل گاواژ 15
چین هووایی مودم Wi-Fi 16
چین ایسوس لپ تاپ 17
فصل سومیافتههای پژوهشcenter0400000
یافتههای پژوهش
در این فصل، نتایج تحلیلهای آماری مربوط به آزمایشات انجام شده آورده شده است. دادهها با استفاده از آمارههای توصیفی میانگین، انحراف استاندارد، نمودار میلهای و آمارههای استنباطی t مستقل، t همبسته و تجزیه و تحلیل واریانس یکطرفه (ANOVA) به همراه آزمون پیگیری LSD مورد تجزیه و تحلیل واقع شدند. همچنین لازم به ذکر است که در کلیه تحلیلها مرز استنتاج آماری در سطح معناداری 05/0>P در نظر گرفته شده است.
3-1- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر تعداد اسپرمها
جهت بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر تعداد اسپرمها از روش آماری تحلیل واریانس یکطرفه (ANOVA) به همراه آزمون پیگیری LSD استفاده شد. در جدول 3-1 میانگین و خطای معیار میانگین () تعداد اسپرمها در گروههای مختلف ارائه شده است. نتایج نشان میدهند که بین میانگین تعداد اسپرمها در گروههای شاهد، تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروه تجربی1 (عصاره هیدروالکلی سنجد) با گروههای تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد.
جـدول 3-1: میانگین و خطای معیار میانگین () تعداد اسپرمها (میلیون بر میلیلیتر) در گروههای مختلفخطای معیار میانگین±میانگین تعداد اسپرمها
گـــروههای مختلف
81/0±13/12 کنتـرل
*65/0±22/8 شاهد
99/0±16/11 تجربی1 (عصاره هیدروالکلی سنجد)
*21/1±54/8 تجربی2 (بوسولفان mg/kgBW5)
,#**69/0±31/2 تجربی3 (بوسولفان mg/kgBW15)
34/1±34/9 تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5)
**71/0±60/4 تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15)
* نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه کنترل میباشد.** نشان دهنده تفاوت معنادار در سطح 0005/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 001/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.همانگونه که در نمودار 3-1 ملاحظه میگردد، بین میانگین تعداد اسپرمها در گروههای شاهد، تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروه تجربی1 (عصاره هیدروالکلی سنجد) با گروههای تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) تفاوت معناداری مشاهده میگردد.

* نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه کنترل میباشد.** نشان دهنده تفاوت معنادار در سطح 0005/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 001/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.نمودار 3-1: میانگین و خطای معیار میانگین () تعداد اسپرمها در گروههای مختلف3-2- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشرونده سریع (GI)
جهت بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشرونده سریع (GI) از روش آماری غیرپارامتری کروسکال- والیس و در صورت معنیدار بودن از آزمون یو من- ویتنی استفاده شد. در جدول 3-2 میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده سریع (GI) در گروههای مختلف ارائه شده است. نتایج نشان میدهند که بین گروههای شاهد، تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه کنترل و بین گروه تجربی1 (عصاره هیدروالکلی سنجد)، تجربی2 (بوسولفان mg/kgBW5) و تجربی3 (بوسولفان mg/kgBW15) نسبت به گروه شاهد و بین گروههای تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه تجربی1 تفاوت معناداری مشاهده میگردد.
جـدول 3-2: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده سریع در گروههای مختلفخطای معیار میانگین±میانگین درصد اسپرمهای پیشرونده سریع
گـــروههای مختلف
20/2±32/13 کنتـرل
*92/1±29/5 شاهد
##36/2±90/16 تجربی1 (عصاره هیدروالکلی سنجد)
$,##,**38/0±38/0 تجربی2 (بوسولفان mg/kgBW5)
$,#,**0±0 تجربی3 (بوسولفان mg/kgBW15)
55/5±26/15 تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5)
$,*76/0±28/1 تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15)
* نشان دهنده تفاوت معنادار در سطح 05/0>P و ** نشان دهنده تفاوت معنادار در سطح 005/0>P با گروه کنترل میباشد.
## نشان دهنده تفاوت معنادار در سطح 005/0>P و # نشان دهنده تفاوت معنادار در سطح 05/0>P با گروه شاهد میباشد.
$ نشان دهنده تفاوت معنادار در سطح 005/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.
همانگونه که در نمودار 3-2 ملاحظه میگردد، بین گروههای شاهد، تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه کنترل و بین گروه تجربی1 (عصاره هیدروالکلی سنجد)، تجربی2 (بوسولفان mg/kgBW5) و تجربی3 (بوسولفان mg/kgBW15) نسبت به گروه شاهد و بین گروههای تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه تجربی1 تفاوت معناداری مشاهده میگردد.

* نشان دهنده تفاوت معنادار در سطح 05/0>P و ** نشان دهنده تفاوت معنادار در سطح 005/0>P با گروه کنترل میباشد.
## نشان دهنده تفاوت معنادار در سطح 005/0>P و # نشان دهنده تفاوت معنادار در سطح 05/0>P با گروه شاهد میباشد.
$ نشان دهنده تفاوت معنادار در سطح 005/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.
نمودار 3-2: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده سریع در گروههای مختلف
3-3- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای با حرکت درجا (GII)
جهت بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای با حرکت درجا (GII) از روش آماری تحلیل واریانس یکطرفه (ANOVA) به همراه آزمون پیگیری LSD استفاده شد. در جدول 3-3 میانگین و خطای معیار میانگین () درصد اسپرمهای با حرکت درجا (GII) در گروههای مختلف ارائه شده است. نتایج نشان میدهند که بین میانگین درصد اسپرمهای با حرکت درجا (GII) در گروه تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروه تجربی1 (عصاره هیدروالکلی سنجد) با گروه تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) تفاوت معناداری مشاهده میگردد.
جـدول 3-3: میانگین و خطای معیار میانگین () درصد اسپرمهای با حرکت درجا در گروههای مختلفخطای معیار میانگین±میانگین درصد اسپرمهای با حرکت درجا
گروههای مختلف
54/3±76/18 کنتـرل
79/4±86/27 شاهد
37/2±88/18 تجربی1 (عصاره هیدروالکلی سنجد)
69/2±14/9 تجربی2 (بوسولفان mg/kgBW5)
98/5±98/5 تجربی3 (بوسولفان mg/kgBW15)
,#*41/5±20/33 تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5)
50/9±84/17 تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15)
* نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.همانگونه که در نمودار 3-3 ملاحظه میگردد، بین میانگین درصد اسپرمهای با حرکت درجا (GII) در گروه تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروه تجربی1 (عصاره هیدروالکلی سنجد) با گروه تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) تفاوت معناداری مشاهده میگردد.

* نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.نمودار 3-3: میانگین و خطای معیار میانگین () درصد اسپرمهای با حرکت درجا در گروههای مختلف3-4- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشرونده با حرکت آهسته (GIII)
جهت بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای پیشروند با حرکت آهسته (GIII) از روش آماری تحلیل واریانس یکطرفه (ANOVA) به همراه آزمون پیگیری LSD استفاده شد. در جدول 3-4 میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده با حرکت آهسته (GIII) در گروههای مختلف ارائه شده است. نتایج نشان میدهند که بین میانگین درصد اسپرمهای پیشرونده با حرکت آهسته (GIII) در گروههای تجربی2 (بوسولفان mg/kgBW5) و تجربی3 (بوسولفان mg/kgBW15) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروه تجربی1 (عصاره هیدروالکلی سنجد) با گروههای تجربی2 (بوسولفان mg/kgBW5) و تجربی3 (بوسولفان mg/kgBW15) تفاوت معناداری مشاهده میگردد.
جـدول 3-4: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده با حرکت آهسته در گروههای مختلفخطای معیار میانگین±میانگین درصد اسپرمهای پیشرونده با حرکت آهسته
گـــروههای مختلف
09/4±83/27 کنتـرل
67/6±48/38 شاهد
83/3±32/35 تجربی1 (عصاره هیدروالکلی سنجد)
,#**52/8±58/54 تجربی2 (بوسولفان mg/kgBW5)
, ##*98/5±98/5 تجربی3 (بوسولفان mg/kgBW15)
72/4±92/21 تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5)
00/5±31/16 تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15)
* نشان دهنده تفاوت معنادار در سطح 05/0>P بین گروه مورد نظر با گروه کنترل میباشد.** نشان دهنده تفاوت معنادار در سطح 005/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.## نشان دهنده تفاوت معنادار در سطح 005/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.همانگونه که در نمودار 3-4 ملاحظه میگردد، بین میانگین درصد اسپرمهای پیشرونده با حرکت آهسته (GIII) در گروههای تجربی2 (بوسولفان mg/kgBW5) و تجربی3 (بوسولفان mg/kgBW15) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروه تجربی1 (عصاره هیدروالکلی سنجد) با گروههای تجربی2 (بوسولفان mg/kgBW5) و تجربی3 (بوسولفان mg/kgBW15) تفاوت معناداری مشاهده میگردد.

* نشان دهنده تفاوت معنادار در سطح 05/0>P بین گروه مورد نظر با گروه کنترل میباشد.** نشان دهنده تفاوت معنادار در سطح 005/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.## نشان دهنده تفاوت معنادار در سطح 005/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.نمودار 3-4: میانگین و خطای معیار میانگین () درصد اسپرمهای پیشرونده با حرکت آهسته در گروههای مختلف3-5- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای بدون حرکت (GIV)
جهت بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر درصد اسپرمهای بدون حرکت (GIV) از روش آماری غیرپارامتری کروسکال- والیس و در صورت معنیدار بودن از آزمون یو من- ویتنی، استفاده شد. در جدول 3-5 میانگین و خطای معیار میانگین () درصد اسپرمهای بدون حرکت (GIV) در گروههای مختلف ارائه شده است. نتایج نشان میدهند که بین میانگین درصد اسپرمهای بدون حرکت (GIV) در گروههای شاهد، تجربی3 (بوسولفان mg/kgBW15) و تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروههای تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه شاهد و همچنین نسبت به گروه تجربی1 تفاوت معناداری مشاهده میگردد.
جـدول 3-5: میانگین و خطای معیار میانگین () درصد اسپرمهای بدون حرکت در گروههای مختلفخطای معیار میانگین±میانگین درصد اسپرمهای بدون حرکت گروههای مختلف
52/4±40/39 کنتـرل
*05/2±36/28 شاهد
66/1±91/28 تجربی1 (عصاره هیدروالکلی سنجد)
31/9±91/35 تجربی2 (بوسولفان mg/kgBW5)
,##,$*95/11±04/88 تجربی3 (بوسولفان mg/kgBW15)
*92/3±62/29 تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5)
#,$91/13±56/64 تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15)
* نشان دهنده تفاوت معنادار در سطح 05/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 05/0>P و ## نشان دهنده تفاوت معنادار در سطح 005/0>P با گروه شاهد میباشد.$ نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.
همانگونه که در نمودار 3-5 ملاحظه میگردد، بین میانگین درصد اسپرمهای بدون حرکت (GIV) در گروههای شاهد، تجربی3 (بوسولفان mg/kgBW15) و تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروههای تجربی3 (بوسولفان mg/kgBW15) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه شاهد و همچنین نسبت به گروه تجربی1 تفاوت معناداری مشاهده میگردد.

* نشان دهنده تفاوت معنادار در سطح 05/0>P بین گروه مورد نظر با گروه کنترل میباشد.# نشان دهنده تفاوت معنادار در سطح 05/0>P و ## نشان دهنده تفاوت معنادار در سطح 005/0>P با گروه شاهد میباشد.$ نشان دهنده تفاوت معنادار در سطح 01/0>P بین گروه مورد نظر با گروه تجربی1 میباشد.
نمودار 3-5: میانگین و خطای معیار میانگین () درصد اسپرمهای بدون حرکت در گروههای مختلف3-6- یافتههای مربوط به بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر وزن بیضه موشهاجهت بررسی تأثیر داروی بوسولفان و اثر حفاظتی عصارهی هیدروالکلی سنجد بر وزن بیضه موشها از روش آماری تحلیل واریانس یکطرفه (ANOVA) به همراه آزمون پیگیری LSD استفاده شد. در جدول 3-6 میانگین و خطای معیار میانگین () وزن بیضه موشها در گروههای مختلف ارائه شده است. نتایج نشان میدهند که بین میانگین وزن بیضه موشها در گروههای تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15)، تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15) نسبت به گروه کنترل تفاوت معناداری مشاهده میگردد. همچنین نتایج نشان میدهند که بین گروه تجربی1 (عصاره هیدروالکلی سنجد) با گروههای تجربی2 (بوسولفان mg/kgBW5)، تجربی3 (بوسولفان mg/kgBW15)، تجربی4 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW5) و تجربی5 (عصاره هیدروالکلی سنجد+بوسولفان mg/kgBW15)، تفاوت معناداری مشاهده میگردد.

جـدول 3-6: میانگین و خطای معیار میانگین () وزن بیضه موشها در گروههای مختلفخطای معیار میانگین±میانگین وزن بیضه موشها (in gr) گروههای مختلف
07/0±48/1 کنتـرل
06/0±54/1 شاهد