–283

2-2- روش تحقیق .....................................................................................................................................................22
2-2-1- مطالعات کتابخانهای و اقدامات اولیه ......................................................................................................22
2-2-2- تهیه نقشه پارامترهای موثر در ایجاد رواناب .........................................................................................23
2-2-2-1- خطوط توپوگرافی و تهیه نقشه DEM منطقه ................................................................................23
2-2-2-2- نقشه ارتفاع از سطح دریا......................................................................................................................23
2-2-2-3- نقشه شیب................................................................................................................................................24
2-2-2-4- نقشه جهت شیب ..................................................................................................................................25
2-2-2-5- تهیه و تکمیل نقشه همباران و همدما ..............................................................................................26
الف- بارش ....................................................................................................................................................................26
ب- رابطه ارتفاع- بارش و متوسط بارش منطقه ...................................................................................................27
ج- رژیم حراتی ............................................................................................................................................................28
د- رابطه ارتفاع- درجه حرارت و میانگین دمای سالانه ......................................................................................28
2-2-3- مقدار بارندگی در دوره بازگشتهای مختلف ........................................................................................28
2-2-3-1- مقدار بارش .............................................................................................................................................28
2-2-3-2- حداکثر بارش 24 ساعته ......................................................................................................................29
2-2-3-3- شدت بارندگی .......................................................................................................................................29
2-2-3-4- رابطه ارتفاع و شدت بارش....................................................................................................................30
2-2-4- شرح تیپهای اراضی ..................................................................................................................................31
2-2-5- تهیه و تکمیل نقشه سنگشناسی و حساسیت سازند به فرسایش....................................................31
2-2-5-1- چینهشناسی واحدهای رسوبی حوزه آبخیز سمبورچای ................................................................31
2-2-5-1-1- نهشتههای قبل از کرتاسه ...............................................................................................................31
2-2-5-1-2- نهشتههای کرتاسه ...........................................................................................................................32
2-2-5-1-3- نهشتههای پالئوسن- میوسن .........................................................................................................32
2-2-5-1-4- نهشتههای الیگوسن- میوسن ........................................................................................................32
2-2-5-1-5- نهشتههای کوارترنر ..........................................................................................................................34
2-2-6- تعیین نفوذپذیری خاک .............................................................................................................................34
2-2-7- گروه هیدرولوژیکی خاک ...........................................................................................................................36
2-2-7-1- تعیین گروههای اصلی خاک به روش SCS .....................................................................................36
2-2-8- تهیه نقشه شاخص پوشش گیاهی ..........................................................................................................37
2-2-9- نقشه نوع استفاده از اراضی .......................................................................................................................38
2-2-10- تقسیمبندی حوزه به واحدهای هیدرولوژیکی و واحد کاری مناسب ............................................38
2-2-11- تعیین مساحت حوزه آبخیز سمبورچای و واحدهای هیدرولوژیک آن .........................................39
2-2-12- رتبهبندی آبراهههای حوزه آبخیز .........................................................................................................40
2-2-13- طول آبراهه اصلی .....................................................................................................................................41
2-2-14- تعیین ضریب شکل زیرحوزههای مورد مطالعه...................................................................................41
2-2-15- تعیین رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال
و 10 سال ......................................................................................................................................................................41
2-2-16- برآورد مقادیر رواناب در هر یک از واحدهای هیدرولوژیک .............................................................42
2-2-16-1- رابطه جاستین .....................................................................................................................................43
2-2-17- برآورد حجم رواناب فصلی و سالانه حوزه آبخیز سمبورچای...........................................................44
2-2-18- محاسبه زمان تمرکز ................................................................................................................................44
2-2-19- نیمرخ طولی آبراهه اصلی و شیب آبراهه اصلی حوزه........................................................................46
2-2-20- برآورد دبی پیک سیلاب .........................................................................................................................46
2-3- بررسی صحت و دقت نقشهها ........................................................................................................................47
2-4- تحلیل دادهها.....................................................................................................................................................47
2-4-1- مدل وزنی طبقهبندی شده .......................................................................................................................47
2-4-2- روش مقایسه زوجی سلسله مراتبیAHP ..............................................................................................48
2-5- مکانیابی عرصههای مناسب استحصال رواناب .........................................................................................51
2-6- مکانیابی عرصههای مناسب استحصال رواناب با استفاده از الگوی سطح منبع متغیر .....................51
فصل سوم: نتایج
3- نتایج تحقیق و بحث در مورد آنها ....................................................................................................................53
3-1- طبقهبندی اقلیمی ...........................................................................................................................................53
3-2- نقشه پارامترهای موثر در ایجاد رواناب .......................................................................................................53
3-3- مقدار بارندگی در دوره بازگشتهای مختلف .............................................................................................60
3-3-1- مقدار بارش ..................................................................................................................................................60
3-3-2- حداکثر بارش 24 ساعته ..........................................................................................................................60
3-3-3- شدت بارندگی ..............................................................................................................................................61
3-4- نتایج مطالعات شدت بارش ............................................................................................................................62
3-5- تیپهای اراضی .................................................................................................................................................65
3-6- نقشههای سنگشناسی و حساسیت سازندها به فرسایش .......................................................................65
3-7- نتایج مطالعات نفوذپذیری خاک ...................................................................................................................67
3-8- تعیین گروههای اصلی خاک به روش SCS ...............................................................................................71
3-9- نقشه شاخص پوشش گیاهی .........................................................................................................................72
3-10- نتایج بررسی واحدهای کاری مناسب .......................................................................................................73
3-11- تهیه نقشه رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10
سال و مقادیر آن در هر واحد هیدرولوژیکی ..........................................................................................................76
3-12- رواناب تولیدی از واحدهای هیدرولوژیکی ...............................................................................................78
3-13- زمان تمرکز ....................................................................................................................................................80
3-14- دبی پیک سیلاب ..........................................................................................................................................81
3-15- وزندهی به پارامترها ...................................................................................................................................82
3-16- معیار الویتبندی دادهها ...............................................................................................................................82
3-17- مکانیابی عرصههای مناسب برای استحصال رواناب .............................................................................85
3-18- حجم رواناب فصلی و سالانه حوزه آبخیز سمبور چای ..........................................................................87
3-19- نقشه رواناب خالص تولیدی در منطقه ...................................................................................................89
فصل چهارم: بحث و نتیجهگیری
4-1- بحث و نتیجهگیری .........................................................................................................................................91
4-2- محدودیتهای پژوهش....................................................................................................................................94
4-3- نتیجهگیری کلی ..............................................................................................................................................95
4-5- پیشنهادات...........................................................................................................................................................96
منابع ..............................................................................................................................................................................98
پیوست ........................................................................................................................................................................103
فهرست اشکال
عنوان اشکالصفحه
شکل 3-1: نقشه مدل رقومی ارتفاعی54شکل 3-2: نقشه کلاسهبندی شیب55شکل 3-3: نقشه کلاسهبندی ارتفاعی56شکل 3-4: نقشه جهت طبقه بندی شده در 5 طبقه57شکل 3-5: نقشه کاربری اراضی58شکل 3-6: نقشه مدل رقومی بارش59شکل3-7: نقشه طبقات بارش در 5 کلاس ............................................................................................................59
شکل 3-8: نقشه مدل رقومی دمای متوسط سالانه60شکل 3-9: نقشه طبقات دمایی در 3 کلاس .........................................................................................................60
شکل 3-10: منحنی شدت- مدت- فراوانی ایستگاه برزند61شکل 3-11: نقشه طبقات شدت بارش نیم ساعته با دوره بازگشت 2 سال الف62شکل 3-12: نقشه کلاسهبندی شدت بارش نیم ساعته با دوره بازگشت 2 سال شکل ب ..........................62
شکل 3-13: نقشه طبقات شدت بارش یک ساعته با دوره بازگشت 2 سال الف63شکل 3-14: نقشه کلاسهبندی شدت بارش یک ساعته با دوره بازگشت 2 سال ب ....................................63
شکل 3-15: نقشه طبقات شدت بارش نیم ساعته با دوره بازگشت 10 سال الف63شکل 3-16: نقشه کلاسهبندی شدت بارش نیم ساعته با دوره بازگشت 10 سال ب ..................................63
شکل 3-17: نقشه طبقات شدت بارش یک ساعته با دوره بازگشت 10 سال الف64شکل 3-18: نقشه کلاسهبندی شدت بارش یک ساعته با دوره بازگشت 10 سال ب .................................64
شکل 3-19: نقشه سازند زمین شناسی حوزه آبخیز سمبورچای67شکل 3-20: منحنی تغییرات سرعت نفوذ نسبت به زمان70شکل 3-21: سرعت نفوذ طبقهبندی شده در حوزه آبخیز سمبورچای71شکل 3-22: نقشه گروهبندی هیدرولوژیکی خاک در حوزه آبخیز سمبورچای72شکل 3-23: نقشه مقادیر NDVI در حوزه آبخیز سمبورچای73
شکل 3-24: نقشه زیر حوزهها و اطلاعات کلی حوزه آبخیز سمبورچای74شکل 3-25: نقشه رواناب حاصل از شدت بارش نیم ساعته با دوره بازگشت 2 سال شکل الف76
شکل 3-26: نقشه رواناب حاصل از شدت بارش یک ساعته با دوره بازگشت 2 سال شکل ب ..................76
شکل 3-27: نقشه رواناب حاصل از شدت بارش نیم ساعته با دوره بازگشت 10 سال شکل الف77شکل 3-28: نقشه رواناب حاصل از شدت بارش یک ساعته با دوره بازگشت 10 سال شکل ب ..............77
شکل 3-29: پروفیل طولی آبراهه اصلی حوزه آبخیز سمبورچای80شکل 3-30، منحنی هیستوگرام جهت طبقه بندی پتانسیل تولید رواناب86شکل 3-31: طبقه بندی اراضی برای استحصال رواناب87شکل 3-32، نقشه حجم رواناب تولیدی در هر زیرحوزه88شکل3-33: نقشه رواناب خالص89فهرست جداول
عنوان جدولصفحه
جدول (2-1): طبقهبندی اقلیمها در روش دومارتن اصلاح شده.......................................................................22
جدول (2-2): مشخصات ایستگاههای بارانسنجی........................................................................................26
جدول (2-3): میانگین بارندگی سالانه ایستگاههای بارانسنجی......27
جدول (2-4): مقیاسی برای مقایسه زوجی (مالکوسکی، 1999).......49
جدول 3-1: ضرایب خشکی دومارتن و نوع اقلیم درچند ایستگاه حوزه آبخیز سمبورچای53جدول 3-2: متوسط شیب درهر زیر حوزه به درصد55جدول 3-3: متوسط ارتفاع زیرحوزهها56جدول 3-4: مساحت کاربریهای مختلف اراضی58جدول 3-5: متوسط بارش سالانه در هر زیرحوزه به میلیمتر59جدول 3-6: درجه حرارت متوسط سالانه زیرحوزههابه درجه سانتیگراد60جدول (3-7)، محاسبه متوسط بارش سالانه ایستگاهها و مقادیر آنها در دوره بازگشتهای مختلف با استفاده از توزیع پیرسون III103جدول (3-8) محاسبه حداکثر بارش 24 ساعته ایستگاهها و مقادیر آنها در دوره بازگشتهای مختلف با استفاده از توزیع گمبل I104جدول 3-9: محاسبه عددی رابطه شدت- مدت- فراوانی ایستگاه برزند61جدول 3-10: شرح تیپهای اراضی حوزه آبخیز سمبورچای65جدول 3-11: راهنمای نقشه زمینشناسی و ضریب مقاومت سنگها به فرسایش66جدول 3-12: مقادیر رطوبت اولیه خاک در محل نمونهبرداری68جدول 3-13: مقادیر سرعت نفوذ لحظهای در آقامحمدبیگلو69جدول 3-14: متوسط سرعت ثابت نفوذ در زیرحوزهها بر حسب سانتیمتر بر ساعت70جدول 3-15: گروههای هیدرولوژیکی خاک در منطقه مورد مطالعه72جدول 3-16: مقادیر متوسط NDVI در هر زیرحوزه73جدول 3-17:پراکنش وسعت واحدهای کاری حوزه سمبورچای74جدول 3-18: رده آبراههها و طول آبراهه اصلی در هر زیرحوزه75جدول 3-19: مقادیر ضریب گراویلیوس در زیرحوزه75جدول 3-20: مقدار رواناب حاصل از شدت بارشهای نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10 سال77جدول 3-21: مقادیر حداکثر، حداقل و متوسط رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10 سال در حوزه آبخیز سمبورچای78جدول 3-22: متوسط بارش سالانه و فصلی حوزه آبخیز سمبورچای به میلیمتر78جدول 3-23: متوسط بارش سالانه و فصلی در زیرحوزههای منطقه مورد مطالعه79جدول 3-24: ارتفاع رواناب فصلی حوزه آبخیز سمبورچای بر حسب سانتیمتر79جدول 3-25: ارتفاع رواناب سالانه زیر حوزههای منطقه مورد مطالعه بر حسب سانتیمتر79جدول 3-26: ارتفاع رواناب فصلی زیر حوزههای منطقه مورد مطالعه بر حسب سانتیمتر80جدول 3-27: زمان تمرکز حوزه آبخیز سمبورچای81جدول 3-28: زمان تمرکز زیرحوزههای حوزه آبخیز سمبورچای81جدول 3-29: برآورد دبی پیک سیلاب با استفاده از روش دیکن81جدول 3-30: برآورد ضریب هر یک ازپارامترها درAHP82جدول 3-31: برآورد رابطه رگرسیونی بین جفت پارامترها83جدول 3-32: نتایج همبستگی مقایسه زوجی پارامترهای موثر در استحصال رواناب85جدول (3-33): مساحت و درصد طبقات87جدول 3-34: حجم رواناب سالانه و فصلی برای حوزه آبخیز سمبورچای بر حسب مترمکعب88جدول 3-35: حجم رواناب سالانه زیرحوزهها بر حسب مترمکعب88جدول 3-36: حجم رواناب فصلی زیرحوزهها بر حسب مترمکعب .........................................................89 فصل اول
مقدمه و مروری بر تحقیقات گذشته

1-1- مقدمه
مراتع یکی از مهمترین و با ارزشترین منابع طبیعی تجدیدشونده میباشند که نقش بسیار مهمی در حفاظت خاک، تولید آب، تولید گوشت و مواد لبنی دارند. علاوه بر آن محصولات فرعی مرتع همچون محصولات دارویی، صنعتی، خوراکی، حفظ حیاتوحش، تلطیف هوا، پایداری محیط زیست و نیز ذخیره ژنهای گیاهی از جمله استفادههای دیگری است که ارزش حاصل از آنها به مراتب از ارزش تولید علوفه‌ بیشتر بوده است (مقدم، 1377). بنابراین توجه به استفادههای چندگانه آن از طریق افزایش تولید و کاهش تخریب مراتع با بهرهبرداری صحیح و انجام عملیات اصلاح و احیاء امری ضروری و اجتنابناپذیر است.
به دلیل واقع شدن ایران در مناطق خشک و نیمهخشک کره زمین، تأمین آب شیرین سالم و کافی همواره مشکل بوده است. این واقعیت، سختی زندگی مرتعداران و مدیریت دام و بازدهی پایین تولید علوفه در مراتع را به دنبال داشته است. در مراتع مناطق جغرافیایی خشک و نیمهخشک دسترسی به آب مهم‌ترین اولویت است. این اهمیت فقط برای مصرف گلههای دامی نیست بلکه به خاطر زیستن و بقاء مرتع داران در این مناطق جغرافیایی نیز میباشد. مالکیت و حق استفاده از منابع آبی در این مناطق حداقل به اندازه حق بهرهبرداری از مراتع دارای اهمیت است. به همین دلیل آب اساسیترین نیاز بهرهبرداران از مراتع در مناطق خشک و نیمهخشک است (ایفاد، 2004).
در مراتع و به خصوص مراتع قشلاقی کشور، بحران کمبود آب برای مصرف انسان و شرب دام همیشه وجود داشته است. به طوری که بیان میشود ظرفیت مراتع برای تغذیه احشام در بسیاری از مراتع نقاط خشک بیشتر به علت کمبود آب آشامیدنی محدود میشود تا کمبود علوفه (آکادمی ملی علوم واشنگتن، 1364). استحصال آب تمیز از بارندگیهای خیلی کم و همچنین ذخیره کردن آب جمع آوری شده در یک منبع، از مزایای روش جمعآوری رواناب به شمار میآید (پیترسون، 1366). برخی دیگر نیز به کارگیری آب باران را برای رسیدن به توسعه پایدار منابع آب لازم میدانند و استفاده از آن را یک فنآوری کوچک مقیاس اقتصادی و کاربردی میدانند که در مناطق خشک و نیمهخشک به طور معنیداری به حفظ طبیعت و اکولوژی نیز کمک میکنند (اندرو، 2000). کشور ایران در منطقهای واقع است که متوسط بارندگی سالانه آن کمتر از یک سوم میزان بارندگی سالیانه جهان است و میزان آن 250 میلی‌متر گزارش شده است (کردوانی، 1379؛ محسنی ساروی، 1376).
رواناب آبخیزهای مرتعی از چند جهت دارای اهمیت میباشند. رواناب وقتی که در مخازن ذخیرهای جمع میشود، آب مصرفی دام را تأمین میکند. همچنین منبع آبی برای مناطق پاییندست یا مصارف محلی، صنعتی و کشاورزی در خارج از حوزه آبخیز را فراهم مینماید. رواناب به دلیل اینکه موجب شروع فرسایش، انتقال رسوب و مواد حل شدنی در درون رودخانه یا سد میباشد دارای اهمیت است. بنابراین، رواناب بیشترین آلودگی وارد شده به مسیر آب را تولید مینماید (محسنی ساروی، 1387).
جمعآوری آب باران، با اهداف و انگیزههای گوناگونی صورت میگیرد که هدف اصلی آن، بهینهسازی و مدیریت بهرهبرداری از آب باران بر اساس نیاز و مصرف است. بدین معنی که چون باران همواره و هر روز نمیبارد و یا بارش ناکافی است، از آن بهره برد. بدین ترتیب هر جامعه و هر کشوری که در این زمینه قدمهای بزرگ‌تر و مؤثرتری بردارد، موفقتر و آبادتر خواهد بود (طهماسبی و همکاران، 1385). جمعآوری آب باران نه تنها برای تأمین آب در ایام و روزهای بدون باران است، بلکه برای کنترل جریان رودخانهها و جلوگیری از آسیب رساندن به نواحی مسکونی و زراعتی پاییندست هم صورت میگیرد. همچنین برای تولید انرژی (برق) یا پرورش آبزیان جمعآوری میشود. در بسیاری از مناطق خشک و نیمهخشک با جمعآوری آب باران و تنظیم آن در بالادست حوزههای آبخیز، برای تقویت و بهبود عملکرد محصولات دیمکاری برنامهریزی میشود. بخشی از طرحهای آبخیزداری با همین هدف و نیز حفاظت آب و خاک صورت میگیرد. به این ترتیب امکان کوتاه کردن دورههای خشک به وجود میآید و دوره خشک سه ماهه، به دو ماه یا کمتر تقلیل مییابد و صدمه وارد شده به محصول یا هر نوع پوشش گیاهی کاهش پیدا میکند (طهماسبی و همکاران، 1384). امکان دارد جمعآوری آب باران برای تغذیه سفرههای آب زیرزمینی، چشمهها و قناتها باشد. برای این کار، در بالادست قنوات و چشمهها در آبراههها، با احداث بندهای کوتاه، ولی متعدد از حرکت و خروج سریع رواناب جلوگیری میشود. این سیلابها به تدریج در زمین نفوذ میکنند و باعث افزایش آب‌دهی قناتها و چشمهها میشوند و در نتیجه، از تبخیر آب و آلودگی آب جلوگیری میکنند. به علاوه افت سطح ایستایی را، که امروزه مسئله مبتلا به اکثر دشتهای کشور ما است را تا حدودی جبران میکند (طهماسبی و همکاران، 1384). استحصال آب عبارتست از جمعآوری و ذخیره نمودن بارش در زمینی که در آن به منظور افزایش رواناب تغییراتی اعمال شده است (مایرز، 1964).کوریر (1973) جمعآوری آب را فرآیند جمعآوری بارش طبیعی از آبخیزها برای استفاده مفید تعریف کردند.
مفاهیم هیدرولوژیکی قرار دادی نخستین بار در سالهای 1930 و 1940 زمانی که منابع جریان بالادست رودخانهها به عنوان عاملی موثر بر جریانهای پایین دست مورد توجه قرار گرفته بودند، توسعه یافته است. از آنجایی که اغلب فعالیتهای مربوط به کاربری اراضی با سوء استفاده از منابع و اثرات منفی بر پایین دست رودخانهها همراه میباشد لذا یک مبنای مناسب برای تصمیمگیری ضروری به نظر میرسد. مفهوم سطح منبع متغیر محدوده کاملی از جریانات دامنهای را در بر میگیرد. واقعیت این است که این مفهوم یک سیستم پویا و دینامیک است که دارای تغییرات زمانی و مکانی بسیاری میباشد و در شرایط بحرانی مختلف، وضعیتهای متفاوتی را در مسیرهای متنوع ارائه مینماید. پویایی جریانهای سیلابی تابعی از طول شیب و موقعیت گذرگاهها است. همچنین تراکم زهکشهای پویا در سطح حوزه در این امر بیتاثیر نخواهد بود به طوری که در طول یک بارش سنگین، تراکم زهکشی و طول شیب نقش فعالی را ایفا مینماید. تمام قسمتهای سطح یک حوزه آبخیز به طور مساوی در ایجاد رواناب دخالت ندارند. بسیاری از محققین درباره مفهوم سطح منبع متغیر تولید جریان رودخانهای، گزارشهای بسیاری را ارائه نمودهاند. در واقع این مفهوم فرض میکند که مناطق خاصی از سطح آبخیز در ایجاد رواناب دخالت دارند در صورتی که مناطق دیگر به عنوان مناطق تغذیه کننده و ذخیره کننده عمل میکنند (هولت، 1974). عوامل مهمی که در تعیین سطح تولید کننده رواناب دخالت دارند شامل وضعیت فیزیکی آبراهه، خصوصیات خاک و رگبار میباشد. کف درهها عموماً مناطقی هستند که در تولید رواناب دخالت دارند در حالی که سر یالها مناطق تغذیه کننده میباشند. مناطق بین کف درهها و سر یالها اغلب به عنوان مناطق دینامیکی مطرح میباشند که ممکن است در تولید رواناب یا در تغذیه آن شرکت نمایند. این مسأله بستگی به مقدار و خصوصیات موقتی رگبار، رطوبت قبلی و خصوصیات خاک منطقه دارد. میتوان گفت مناطق منبع، مناطقی هستند که پتانسیل بالایی برای تولید رواناب حتی با مقدار کمی بارش را دارند که میتوان با استفاده از سطح منبع متغیر، مناطق منبع یا مناطق تولید کننده رواناب را شناسایی و برای کنترل آلودگیها، استحصال رواناب، کودپاشی و دفع فاضلاب و مواد زائد کشاورزی استفاده کرد. همانطور که میدانیم برای حفظ کیفیت خاک در مراتع و تولید خوب علوفه نیاز به کودپاشی همواره احساس میگردد. با مشخص کردن مناطق تولید کننده رواناب میتوان مدیریت درست و اصولی را برای کودپاشی در نظر بگیریم و مناطق مورد نظر را با اطمینان با کاربرد کود زیاد مورد بهرهبرداری قرار داد و مناطقی که چنین اطمینانی وجود ندارد مشخص کند. همچنین یکی از عوامل اصلی تخریب مراتع و چرای بیش از حد مراتع، کمبود منابع آب در مراتع نمیباشد بلکه عدم توزیع یکنواخت منابع آبی در سطح مراتع میباشد که پس از مشخص شدن عرصههای تولید رواناب میتوان مدیریت جامعی را برای توزیع آبشخوار در مراتع انجام داد. از اهمیت دیگر تعیین سطح منبع متغیر جلوگیری از آلودگی در پایین دست حوزه آبخیز میباشد که با شناسایی مناطق منبع میتوان رواناب را در بالا دست حوزه آبخیز کنترل کرد. با دانستن این موضوع آبخیزدار قادر خواهد بود مناطقی را که میتوان با اطمینان با کاربرد کود زیاد مورد بهرهبرداری قرار داد و مناطقی که در آن‌ها چنین اطمینانی وجود ندارد مشخص کند. با همین روش مناطق مطمئن برای ریختن آشغال و فاضلاب، مواد زائد کشاورزی و دفن به آسانی انتخاب میشوند (محسنی ساروی، 1387).
1-2- هدف و ضرورت تحقیق:
امروزه تلاشهای بسیاری در جهت کاهش زمان و هزینههای مربوط به مکانیابی و تعیین مناطق بالقوه برای معرفی تکنیکهای جمعآوری در نواحی که نیازمند این فرآیند است مانند اکوسیستمهای کشاورزی آبی و دیم صورت پذیرفته است. سیستم اطلاعات جغرافیایی (GIS)، رویکرد مناسبی را ارائه مینماید، زیرا این سامانه قابلیت پردازش ساختارهایی برای جمعآوری، ذخیرهسازی، تحلیل و تبدیل دادههای مکانی و زمانی را به منظور اهداف خاص را دارا میباشد (پادماواتی و همکاران،1993؛کوسکان و موساگلو،2004). پیشرفت تکنولوژیهای کامپیوتری و بستههای GIS ای، امکان ارزیابی و درونیابی دادهها را در محدودههای تخصصی به منظور مدیریت مکانی و آنالیز دادهها را برای کاربران فراهم میسازد. بنابراین ترکیبی از خصوصیات مکانی حوزهها، راندمان بالاتری را در پردازش هیدرولوژیکی منطقه به همراه دارد. بدین ترتیب پتانسیل کاربرد GIS برای مدل‌سازی هیدرولوژیکی به ویژه هنگامی که دقت و صحت مدلسازی توسط برآوردهای توزیع مکانی و زمانی پارامترهای منابع آبی تحت تأثیر قرار گرفته باشد قابل ارزیابی میباشد (کلارک و گانگوداگامگ، 2001).
برای مشخص کردن مکان مناسب اجرای برنامههای مختلف با استفاده از GIS لازم است به شرایط مورد نیاز برای هر برنامه توجه شود و سپس نقشههای مختلف را با هم تلفیق کرد تا مکان مناسب اجرای طرحها مشخص شود. از اینرو انجام این پژوهش میتواند دستورالعمل مناسبی را در اختیار مرتعداران جهت تأمین آب از طریق روشهای استحصال آب باران قرار دهد. استفاده از GIS علاوه بر افزایش دقت، سبب افزایش سرعت انجام کار، تنوع و کیفیت بهتر ارائه نتایج، کاهش هزینهها، بایگانی و تکثیر راحتتر آن‌ها میگردد. بنابراین این پژوهش با اهداف زیر صورت گرفته است:
1- کارآیی GIS در مدیریت منابع طبیعی برای ذخیره ، تجزیه و تحلیل ، تلفیق دادهها و ارائه نتایج حاصل از اطلاعات، با تأکید بر ذخیره نزولات آسمانی در سطح مراتع.
2- مکانیابی عرصههای مناسب برای استحصال آب باران در سطح حوزه آبخیز.
3- توزیع و مدیریت مناسب آب باران با استفاده از الگوی سطح منبع متغیر.
1-3- تعریف استحصال رواناب و اهمیت بررسی آن
در نظر عامه استحصال آب به صورت زیر تعریف میشود: جمعآوری روانابها از سطح بامها، زمینها و همچنین آبهای گذران فصلی جهت استفاده از روانابها.
جمعآوری آب باران عبارت است از مجموعه اقدامات و عملیات و فعالیتهایی که به ذخیره شدن روانابهای سطحی ناشی از بارش در داخل بانکتها، سطح تراسها و درون حوضچهها و استخرهای ذخیرهی آب برای مصارف گوناگون منجر میشود. این آب برای آبیاری محصولات و مصارف خانگی و ... ذخیره میشود تا در ایام بیباران، کمبود آب حدالامکان جبران شود (طهماسبی و همکاران ، 1385).
در تعریف جمعآوری آب باران بین متخصصان آبشناسی و آبیاری اختلاف نظر وجود دارد. بعضی از این کارشناسان حتی احداث سدهای مخزنی را هم در زمرهی کارهای جمعآوری آب باران میدانند (کلاف،1979). بسیاری از تحقیقات در هند و پاکستان و فلسطین اشغالی نشان میدهد که تلاش اصلی در این جهت است که مردم ساکنان مناطق خشک و نیمهخشک، با فناوری و روشهایی آشنا شوند که از بارندگی موجود با ایجاد رواناب بیشتر، جمعآوری مناسب، ذخیرهی سریع‌تر و عملیتر و محافظت در مقابل تبخیر و هدررفت، به آب بیشتری دسترسی پیدا کنند و امکان استمرار زندگی آن‌ها با حفظ الگوی کشاورزی و دامپروری محقق گردد (حسینی ابریشمی، 1373).
باید توجه داشت در اکثر مناطقی که آب به اندازهی کافی وجود ندارد، به دلیل تراکم کم جمعیت، زمینهای بسیاری وجود دارد، در نتیجه حداقل 5 تا 20 برابر آنچه که میتوان با آب باران موجود و آب زیرزمینی و ... به زیر کشت برد، زمین موجود است. بنابراین امکان تخصیص بخشی از اراضی برای جمعآوری رواناب و سیلاب در بسیاری از این مناطق وجود دارد (طهماسبی و همکاران، 1385).
جمعآوری آب باران به روشهای گوناگونی انجام میشود. در مناطق خشک و نیمهخشک، کمبود آب با جمعآوری آب باران تا حدودی قابل جبران است، این کار شامل ایجاد رواناب، جمعآوری و ذخیره و حفاظت از آب ذخیرهشده است تا به مصرف گیاه و محصول مورد نظر برسد، یعنی از یک طرف در حد امکان در عمق ریشه و در دسترس ریشه ذخیره شود و از طرف دیگر در سطح خاک خیلی راکد باقی نماند که تبخیر شود (طهماسبی و همکاران، 1385).
جمعآوری آب باران در مفهوم گسترده، کلیه روشهای مربوط به متمرکز کردن، ذخیرهسازی و جمعآوری رواناب حاصل از آب باران را به منظور مصارف خانگی و کشاورزی را دربر میگیرد (راکشتورم، 2000؛ شودرلند و فن، 2000). این سیستمها میتوانند در سه گروه عمده طبقهبندی شوند: 1- حفظ رطوبت در مکان (حفاظت آب و خاک) 2- تمرکز رواناب به منظور کشت محصولات در سطح زمین 3- جمعآوری و ذخیره رواناب از سقفها و سطح زمین (در ساختارهای مختلف به منظور مصارف خانگی و کشاورزی) (فالکن مارک و راکشتورم، 2004).
استفاده تولیدی نیز شامل تأمین آب شرب و ذخیره آن، تمرکز روانابها برای گیاهان، درختچهها و درختان و یک استفاده کمتر متداول یعنی پرورش ماهی و اردک میباشد.
واژه استحصال آب برای اولین بار توسط گدس (1963) به کار برده شد، اگر چه این واژه یک واژهی هیدرواگرونومی است، اما هنگامی که برای مهار رواناب سطحی به کار برده شود، میتوان آن را جزو واژگان هیدرولوژی به حساب آورد. علت این امر مبتنی بر توان بالقوه استحصال آب در تأمین و حفاظت آب، مهار سیلابها و فرسایش خاک است. مایرز (1975) و پاسی و کالیس (1986) بر اساس تعریف گدس، "جمعآوری و ذخیره هر نوع رواناب سطحی برای مصرف در کشاورزی" را استحصال آب نامیدهاند.
تعاریف فوق هر چند دارای مفهوم گستردهای است اما بیانگر تعریف کاملی از استحصال آب نمیباشد، زیرا جمعآوری و ذخیره روانابهای سطحی تنها نمیتواند با هدف مصرف آب برای کشاورزی و محدود به آن باشد. از این رو متخصصین زیادی سعی در ارائه‌ی تعاریف جامعتر و گویاتر بعد از تعریف ارائه شده توسط گدس نمودند. به نحوی که هر یک با هدف ویژه مورد نظر خود تعاریفی را بیان داشتهاند (اسمعلی و عبداللهی، 1389).
پاسی و کالیس (1986) با محدود کردن موضوع استحصال آب به جمعآوری آب باران و روانابهای ناشی از آن از طریق احداث سطوح آبگیر کوچک مقیاس که نزولات جوی مستقیما بر آن‌ها نازل میشود، به صورت "جمعآوری و ذخیره آب باران در محل نزول، جهت تأمین آب برای مصارف مختلف" تعریف کردهاند.
مایرز (1964) بیان داشت "به فرآیند جمعآوری و ذخیره بارش از زمینی که به منظور افزایش رواناب حاصل از باران و ذوب برف دست‌کاری شده باشد" را استحصال آب گویند.
هادسون (1981) با ارائه تعریف مشابه، استحصال آب در محل نزول ریزشهای جوی و در اولین مراحل تشکیل روانابهای سطحی را به عنوان استحصال آب برای تأمین و حفاظت آب تلقی نموده است.
با توجه به تعاریف فوق استحصال آب مشتمل بر جمعآوری ذخیره و بهرهبرداری از آبهای جمعآوری شده است که منشأ آبهای استحصالی نیز بارشهای جوی و روانابهای ناشی از آن‌ها در اولین مراحل تشکیل و قبل از پیوستن به رودخانههای دائمی است.
الگوهای بارش در نواحی نیمهخشک از لحاظ پراکنش مکانی و زمانی، غیرقابل پیشبینی هستند. بنابراین برای دستیابی به یک مدیریت موفق، کنترل رواناب از اهمیت بسیار بالایی برخوردار میباشد (امبیلینی و همکاران، 2000). گذشته از این، با توجه به اینکه در چنین مناطقی، حجم اندکی از بارندگی به ناحیه ریشه میرسد، تولید ضعیف محصول و حتی در برخی موارد، عدم موفقیت محصول میتواند از جمله عوامل محدود کننده در چنین مناطقی باشد که استحصال آب از رواناب باران می‌تواند به مشکل کم آبی در منطقه کمک کند (راکشتورم ،2000). مورد دیگر مربوط به توزیع بارندگی میباشد. توزیع بارندگی فرآیندی در خصوص تکرار بارش در فصل خشک میباشد که در چنین مناطقی قابلیت دسترسی آب در خاک در طول فصل رشد، ضعیف میباشد (راکشتورم، 2000). این امر موجب کاهش پتانسیل تولید محصول و در شدتهای زیاد موجب افزایش خطر نابودی محصول میگردد. به این ترتیب کنترل و جمعآوری رواناب در این مناطق از اهمیت زیادی برخوردار است، زیرا حجم رواناب دریافتی میتواند به طور موثری برای حمایت از محصولات کشاورزی طی یک روش محیطی و اقتصادی مناسب، بهرهبرداری گردد (زیادت و همکاران، 2006).
این واقعیت که بارش باران در مناطق خشک و نیمهخشک بسیار ناچیز است و یک میلی‌متر آب ذخیره شده برابر یک لیتر در مترمربع است. اهمیت ذخیرهی آب، جدا از مقدار آب جمعآوری شده، مشخص میشود. از میان سه عامل خاک، آب و انرژی خورشیدی، آب مهمترین عامل محدود کننده تولیدات گیاهی در مناطق خشک است. در بسیاری از نقاط کشور به علت عدم وجود منابع با کیفیت مناسب آب، زندگی و حیات عدهی زیادی از مردم به بهرهبرداری از رواناب و استحصال آب بستگی دارد. به عنوان مثال در منطقه چابهار جمعیتی معادل 338407 نفر از طریق استفاده از رواناب و سیل که با مشارکت اهالی احداث شده، به حیات خود ادامه میدهند (ازکیا، 1374). در شهرستان بیرجند، 82 هزار هکتار اراضی دیم گندم با استفاده از آب باران و بندسار به وجود آمده است. در گناوه حوزه آبخیز درهی گپ، با استفاده از بندسارها به کشت خرما اشتغال دارند (صفاری، 1383). در کل منافعی که مردم از جمعآوری آب دارند، بر زندگی اجتماعی و اقتصادی آن‌ها موثر است و نقش کلیدی در احیا و جلوگیری از تخریب زمینها توسط فرسایش آبی و بادی و ایجاد زمینهای بایر دارد.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

هنگامی که استحصال آب برای ذخیرهسازی آن در توده خاک مد نظر باشد، در این صورت سهولت دسترسی گیاهان به آب را دنبال خواهد داشت. نتایج تحقیقات انجام شده بر این نکته تاکید دارند که میزان آب موجود در پروفیل خاک، به ویژه در عمق سطحی خاک، تابعی از رطوبت موجود در عمقهای زیرین است و استحصال ریزشهای جوی در محل نزول، عامل اصلی در افزایش رطوبت مورد نیاز گیاهان در محل استقرار آن‌ها تلقی میشود. این موضوع در شرایطی که میزان بارندگی در فصل رشد گیاهان کافی نباشد، از اهمیت بیشتری برخوردار بوده و ذخیره رطوبت در خاک در فصول پرباران تا حد قابل توجهی نیاز گیاهان را تأمین میکند (راویتز و همکاران، 1981).
در انتخاب روش، قبل از هر چیز جنبههای فرهنگی و اجتماعی باید مورد توجه قرار گیرد، زیرا در موقعیت و شکست فنآوریها اثر میگذارد. از این رو باید به خواستها و علائق مردم و همچنین هزینههای لازم توجه خاص به عمل آید. علاوه بر ملاحظات اقتصادی، اجتماعی و فرهنگی، در یک برنامه استحصال آب رعایت جنبههای فنی که باعث پایداری میشود، از اهمیت والایی برخوردار است و باید مورد توجه قرار گیرد.
با توجه به اهمیت جمعآوری آب باران در ایران و استفاده از آن در کشاورزی و شرب به چند نکته اشاره میکنیم:
1- هدر رفتن 40 تا 50 میلیارد متر مکعب در سال از آبهای سطحی کشور.
2- فروکش کردن سطح سفره آب زیرزمینی و ضرورت تغذیه بیشتر آن.
3- شور شدن اراضی در بعضی از مناطق مثل خوزستان که رواناب کشور به دلیل جمعآوری نشدن در بالا دست، به آن مناطق سرریز و باعث شور شدن اراضی میشود.
4- ضرورت ایجاد اشتغال در حوزه کشاورزی و منابع طبیعی کشور و تأمین آب در حکم اولین عامل مورد نیاز و اولین عامل امکانسنجی.
5- ضرورت افزایش سرانه پوشش جنگلی که در جهان 7/0 تا 8/0 هکتار برای هر نفر و در ایران 2/0 یا کمتر از آن برای هر نفر است.
6- حفاظت خاک و حفظ حجم مفید مخازن سدهای ساخته شده و در دست احداث.
7- عقب بودن سیستم شبکههای آبیاری و زهکشی، به طوری که از حدود 26 میلیارد مترمکعب جمعآوری شده به کمک سدها، تنها 6 میلیارد مترمکعب در سیستمهای مهندسی آبیاری و زهکشی جریان مییابد.
8- وسعت کشور و اهمیت حفاظت آن در همه مناطق مستعد از نظر بهرهبرداری و مسائل امنیتی.
9- اهمیت سرمایهگذاریهای کوچک با جمعآوری آب باران، به خصوص در مناطق محروم.
10- اهمیت جمعآوری آب از نظر مسائل زیست محیطی تا بسیاری از آلودگیهای وارد شده به سدها را کنترل کند. مثال بارز این آلودگی، سد قشلاق سنندج است که در اثر جریانهای فصلی، آلوده شدهاست.
11- کنترل و مهار رواناب برای کنترل سیلاب و کاهش خسارتهای وارد شده به اراضی کشاورزی، مناطق مسکونی و ساختمانها و تأسیسات راهها.
1-4- مزایای بهرهگیری از سیستمهای استحصال آب
تحقیقات نشان داده است که اگر از سیستمهای بومی موجود استفاده شود و اطلاعات جدید به استفادهکنندگان انتقال یابد و انجام روشها هدفمند باشد، به بهینهسازی مصرف آب کمک میکند (اسمعلی و عبداللهی، 1389) به طوری که:
برای بیابانزدایی نیازمند به برنامهریزی دراز مدت است. با احیا و توسعهی سیستمهای استحصال آب، بین مقابله با بیابانزایی و توسعه استفاده از منابع آب، هماهنگی به وجود میآید.
باعث هماهنگی بین منافع اکولوژیکی، اقتصادی و اجتماعی میشود. زیرا که به افزایش پوشش گیاهی، بهبود وضع معیشتی و ایجاد مشارکت و همدلی بین مردم میانجامد.
با اجرای این شیوه یک مدیریت تدریجی در منابع حاصل میشود.
انجام پروژه به خودکفایی و احیای اقتصادی منجر و باعث تداوم برنامهها و مدیریت بیشتر میشود.
از تخریب مراتع و فرسایش خاک جلوگیری میشود.
راندمان استفاده از منابع افزایش مییابد.
اراضی تخریب یافته و زمینهایی که منشا رسوباند، با هزینه کمی احیا میشوند.
برداشت از سفرههای زیرزمینی کاهش یافته و بین برداشت و تغذیه هماهنگی به وجود میآید و روند شوری کاهش مییابد (به واسطهی استفاده از آب با کیفیت بالا).
1-5- سیستم اطلاعات جغرافیایی (GIS)
برنامهریزی جهت انجام هر کاری نیازمند داشتن اطلاعات مربوط به آن است که این نیازمندی برای استفادههای انسان از سرزمین نیز صادق است. بدون داشتن اطلاعات مربوط به منابع اکولوژیکی اساساً نمی‌توان بخشهای دیگر فرآیند برنامهریزی استفاده از سرزمین را انجام داد. گردآوری اطلاعات در ابتدا با آماربرداری و نمونهبرداری از منابع انجام میشد، اما برنامهریزی دقیق و بهتر نیازمند اطلاعات مکانی از منابع یا اطلاعات فضایی منابع میباشد که آن را برنامهریزی با نقشه میگویند. سیستم اطلاعات جغرافیایی در دهه 1970 برای فراهم آوردن قدرت تجزیه و تحلیل مقادیر زیادی از دادههای جغرافیایی توسعه یافتند. مرور علمی بر به کارگیری GIS در جهان نشان میدهد که طراحی و توسعه این سامانه در سال 1963 در کانادا آغاز شد و در سال 1965 به صورت اجرایی در آمد. اولین نمونه GIS در کشور کانادا تحت عنوان CGIS نامیده شد. در حال حاضر این سیستم در بسیاری از کشورهای جهان به طور گستردهای مورد استفاده قرار میگیرد. گستردگی مفهوم و زمینههای کاربرد این سامانه موجب شده است تا واژهGeo Information Sys-- نیز به آن اطلاق و به طور روزافزونی در منابع علمی مورد استفاده قرار میگیرد. لازمه استفاده از GIS داشتن دانش کافی از مبانی، اصول و سازماندهی آن است و نیز آگاهی از قابلیتها و محدودیتهای آن میباشد (مخدوم، 1380).
1-5-1- تعریف GIS
برای GIS تعاریف مختلفی ارایه شده است که به برخی از آن‌ها اشاره میگردد:
مجموعهای از ابزارهای قوی برای گردآوری، ذخیرهسازی، بازخوانی، تغییر شکل و نمایش دادههای مکانی مربوط به جهان واقعی و برای اهداف مشخص میباشد (بوروغ، 1996).
GIS یک سیستم کامپیوتری برای ورود، ذخیرهسازی، بازیابی، آنالیز و نمایش دادههای مکانی است (کلارک، 1986).
به طور کلی GIS برای جمعآوری و تجزیه و تحلیل دادههایی استفاده میشود که موقعیت جغرافیایی آن‌ها یک مشخصه اصلی و مهم محسوب میشود. وظایف یک GIS در چهار گروه کلی شامل کسب، نگهداری، تجزیه و تحلیل و تصمیمگیری میباشد. GIS میتواند به عنوان ابزار سودمند و مفید در جهت نیل به اهداف خاص مورد استفاده قرار بگیرد، همچنین این سامانه میتواند به عنوان واسطه و پلی بین اطلاعات خام و مدلهای جمعآوری رواناب جهت خروج مطمئن دادهها و پردازش آن‌ها به کار گرفته شود، که این سامانهها دارای دو ویژگی هستند:
- ایجاد ارتباط دو طرفه بین اجزای نقشه و دادههای مربوط به آن‌ها در پایگاه دادهها.
- انجام تحلیل بر اساس دادههای موجود و اجرای مدلهای مختلف در منطقه مورد بررسی و کمک به پژوهشگران در ایجاد مدلهای نوین و منطبق با ویژگیهای محل.
1-5-2- مزایای استفاده از GIS
با استفاده از محیط GIS و امکانات نرمافزاری و سختافزاری این سیستم و همچنین با پیاده کردن راهحلهای ریاضی و منطقی در GIS میتوان مدلهای تجربی را به صورت رقومی در یک چارچوب قابل پردازش ارائه کرد.
ویژگی بارز و با ارزشی که GIS را از دیگر سیستمهای اطلاعاتی جدا میسازد، توانایی به کارگیری توأم دادههای مکانی و توصیفی است. توانایی مدیریت عوارض جغرافیایی با مقیاسهای مختلف، از ابزارهای دیگر GIS است که در علوم مختلف کاربرد فراوان دارد.
از نکتههای بسیار مهم در به کارگیری GIS، محاسبه ارزشهای وزنی برای عوامل مختلف حوزه آبخیز است. علاوه بر این GIS به هنگامسازی دادههای وارد شده را در هر زمان امکانپذیر میسازد. بدین ترتیب در صورت هر گونه تغییر در سیمای طبیعی زیرحوزهها، با دخالت آن‌ها میتوان نتایج جدیدتر را اخذ کرد.
1-6- مرور منابع
آکادمی ملی علوم واشنگتن (1985) نشان داد که بهبود منابع تأمین آب شرب در مراتع نیمهخشک یا نقاط دوردست حوزه آبخیز، ارزش چراگاهی آن‌ها را بالا میبرد و استفاده کاملتر از علوفه آن‌ها را امکانپذیر میسازد.
ریسزوو همکاران (1991) نسبتهای مختلف سطح جمعآوری کننده آب باران به سطح زیر کشت را مورد بررسی قرار داده و نتیجه گرفتند عملکرد محصول با نسبت 1 به 1 در مقایسه با شاهد 71/1 برابر عملکرد محصولات غلات شده است.
بور (1994) با انجام آزمایشاتی در پاکستان، سیستم جمعآوری آب باران برای درخت پسته، سطح مناسب جمعآوری کننده رواناب باران را برای منطقهای با بارش متوسط سالانه 240 میلی‌متر، 40 متر مربع ذکر کرده است.
گوپتا (1994) اثر اقدامات و عملیات استحصال آب باران را برای گیاه Neem در مناطق بیابانی هند را مورد بررسی قرار داده و نتیجه گرفت که تولید بیوماس گیاه Neem تا 4 برابر و از 69/1 تن در هکتار به 3/6 تن در هکتار رسید.
بور و بنعاشر (1996) تحقیقات مشابه را در فلسطین اشغالی و نیجر برای محصولات مختلف انجام دادهاند و سطح مناسب جمعآوری کننده رواناب و مقدار تلفات نفوذ عمقی در سالهای پرباران، با باران متوسط را محاسبه کردهاند.
اسچیتکاک و همکاران (2004) تأثیر تکنیکهای جمعآوری آب با حفظ آب و خاک در جنوب استرالیا را مورد مطالعه قرار دادند و به این نتیجه رسیدند که به ویژه در سالهای خشک در حوزه ایمپلوویوم میتوان آب مورد نیاز برای آبیاری تکمیلی را برای کشت درخت زیتون فراهم کنند به شرط آنکه با توجه به بارش متوسط 235 میلی‌متر، نسبت حوزه آبخیز به تراسهای جمعآوری کننده رواناب حداقل 4/7 باشد.
وینار و همکاران (2005) به بررسی پتانسیل حوزه آبخیز توکلا در جنوب آفریقا برای جمعآوری آب باران از طریق GIS پرداختند و به این نتیجه رسیدند که 18 درصد از منطقه پتانسیل بالایی برای تولید رواناب دارد.
ذاکاری و همکاران (2007) به مقایسه مدل ارزیابی آب و خاک (SWAT) و مدل ابزار یا ارزیابی آب و خاک با سطح منبع متغیر (SWAT-VSA) به پیشبینی رواناب در منطقه کانونسویل در شمال نیومکزیکو پرداختند. آنها همچنین رواناب لحظهای، رواناب سطحی و سفره آب زیرزمینی که در سطح بالاتر از دیگر سفرههای آب زیرزمینی قرار گرفتند را نیز با استفاده از دو مدل فوق مورد بررسی قرار داده و به این نتیجه رسیدند که مدل تلفیقی SWAT-VSA پیشبینی بهتری را انجام میدهد. آنها همچنین نتیجه گرفتند که مدل SWAT-VSA جهت ارزیابی و راهنمایی و مدیریت منابع آبی کاربردیتر است و میتواند به طور دقیقتری پیشبینی کند که رواناب از کجا آغاز میشود تا به صورت بحرانی تحت مدیریت قرار بگیرد.
شیائو و همکاران (2006) اثر جمعآوری آب باران و آبیاری تکمیلی را برای کشت گندم در بهار در هایونچین را مورد ارزیابی قرار داده و نشان دادند که استفاده از آب ذخیره شده برای آبیاری تکمیلی برای کشت در فاروهای بین خطالرأسها 5/5 تا 8/5 درصد بوده است ولی در کشت در گودالهای بر روی خطالرأسها 4/9 تا 6/9 درصد بوده است. آن‌ها به این نتیجه رسیدند که با استفاده از آب باران جمعآوری شده میتوان میزان آب استفاده شده در روش کشت در گودالهای بر روی خطالرأسها را 40/4 درصد در مقابل کشت در فاروها بهبود بخشید.
امبیلینی و همکاران (2007) به مکانیابی مناطق دارای پتانسیل خوب برای جمعآوری آب باران پرداختند و به این نتیجه رسیدندکه 6/23 درصد از حوزه آبخیز ماکانیا در منطقه کلیمانجارو تانزانیا بسیار مناسب برای جمعآوری آب باران میباشد.
ونگ کاهیندا و همکاران (2007) اثر جمعآوری آب باران و آبیاری تکمیلی به منظور افزایش بهرهوری کشاورزی وابسته به باران در مناطق نیمهخشک زیمباوه را بررسی و نتیجه گرفتند که آبیاری تکمیلی ریسک ناشی از شکست کامل محصول از 20 درصد را به 7 درصد کاهش داده و تولید آب از رواناب باعث افزایش تولید محصول از 75/1 کیلوگرم در مترمکعب به 3/2 کیلوگرم در مترمکعب با توجه به کاهش بارندگی درون فصلی شده است.
استورم و همکاران (2009) اقتصادی بودن برداشت آب باران به عنوان منبع آب جایگزین در سایت روستایی در شمال نامبیا را مورد بررسی قرار دادند. در این تحقیق که سقف آهنی موجدار پشت بامها به عنوان مناطق جمعآوری آب باران استفاده شده به این نتیجه رسیدند که این سیستمها از نظر اقتصادی امکانپذیر میباشند.
اسماعیلی (1997) اثر روشهای مختلف استحصال آب باران در عرصههای منابع طبیعی تجدید شونده در آذربایجان شرقی را مطالعه کرده و نتیجه گرفت که این روشها باعث افزایش سبز شدن بذور مرتعی تا میزان 5 برابر شده است.
گازریپور (1997) جمعآوری آب باران برای کشت درخت بادام در منطقهای با بارندگی سالانه 200 میلی‌متر را بررسی کرده و نتیجه گرفت در حوضچههایی با شیب 2 تا 5 درصد، عملکرد بادام تا 40 درصد نسبت به سطح شاهد افزایش داشته است.
طهماسبی و همکاران (1384) رابطه مشخصات اقلیمی، خاک و نیاز آبی ذرت علوفهای (SC 704) در منطقه لشگرک برای طراحی سیستم جمعآوری آب باران در مناطق خشک و نیمهخشک را مورد بررسی قرار دادند و با توجه به دوره رشد گیاه، نیاز آبی، عمق خاک و عمق ریشه نسبت سطح جمعآوری کننده رواناب به حجم مخزن یا استخرهای سرپوشیده مورد نظر برای تأمین حداقل یک سوم تا حدود دو سوم آب مورد نیاز گیاه به ترتیب در سالهای خشک و سالهای پرباران را محاسبه کردهاند.
طهماسبی و رجبیثانی (1385) جمعآوری آب باران در عرصههای طبیعی را راهحلی برای رفع مشکل کم آبی در مناطق خشک و نیمهخشک دانسته و بر اساس مطالعهای که در حوزه آبخیز لتیان انجام داد مناسبترین سطح جمعآوری کننده رواناب برای گیاهان مختلف و نیاز آبی معین را بدست آورد و با انجام پژوهشی مشخص شد چنانچه بخشی از آب باران در استخری ذخیره شود امکان توسعه سطح زیر کشت درختان در مناطق خشک و نیمهخشک وجود دارد.
صادقی و همکاران (1385) به مقایسه دیمزارها و مراتع فقیر در تولید رواناب و رسوب در تابستان و زمستان را با استفاده از بارانساز مصنوعی در حوزه گرگک در استان چهار محال بختیاری انجام دادند و به این نتیجه رسیدند که میزان رواناب و رسوب در فصل تابستان در مراتع فقیر در سطح اعتماد 99 درصد بیشتر از دیمزارها میباشد در صورتی که در فصل زمستان تولید رواناب و رسوب در دیمزارها در سطح اعتماد مشابه بیشتر از مراتع فقیر میباشد.
مدیریت منابع تجدیدشونده و توسعه پایدار امروزه نیازمند مناسبترین و سریعترین روش تهیه و تلفیق اطلاعات جهت مدیریت بهینه و برنامه‌ریزی‌های خود میباشد. در این زمینه سیستم اطلاعات جغرافیایی (GIS) میتواند این نقش را به خوبی به عهده گیرد (نامجویان، 1381).
1-7- طبقهبندی روشهای استحصال آب باران و سامانه سطوح آبگیر
با توجه به منشأ اصلی آب، سامانههای سطوح آبگیر باران به چهار گروه به شرح زیر تقسیم میشوند (ریج و همکاران، 1987):
الف- سامانه ویژهی استحصال آب رودخانههای دائمی و فصلی.
ب- سامانه ویژه استحصال آب از منابع زیرزمینی و روانابهای زیر قشری.
ج- سامانههای ویژه استحصال مستقیم آب باران در محل نزول و یا در اولین مراحل تشکیل روانابهای سطحی و ورقهای شکل.
د- سامانه ویژهی استحصال تندآبها و سیلابها به صورت روانابهای سطحی متلاطم و متمرکز در پای دامنههای شیب‌دار، خشکهرودها، آبراههها و مسیلها.
افزون براین، سامانههای سطوح آبگیر باران را میتوان از لحاظ موقعیت محل استقرار، نوع تیمارهای مصنوعی در سطوح آبگیر، شکل ظاهری، چگونگی عملکرد، کاربرد و نوع رواناب (از لحاظ عمق و حجم جریان آب) به شرح زیر طبقهبندی کرد (اسمعلی و عبداللهی، 1389):
الف- سامانههای سطوح آبگیر باران با سطح تیمار شده (مصنوعی)، شامل:
الف-1- سامانههای جمعآوری آب باران برای ذخیرهی آب جهت مصارف شرب و خانگی.
الف-2- سامانههای جمعآوری آب باران برای ذخیره رطوبت در پروفیل خاک جهت زراعت، درختکاری و احیای پوشش گیاهی در مراتع از طریق استحصال مستقیم ریزشهای جوی در محل نزول و یا روانابهای سطحی و ورقهای.
ب- سامانههای سطوح آبگیر باران با سطح آبگیر طبیعی شامل:
ب-1- سامانههای جمعآوری آب باران و روانابهای نسبتاً متلاطم برای آبیاری تکمیلی و یا زراعت سیلابی از طریق ذخیره رطوبت در پروفیل خاک و یا تغذیه مصنوعی آبخوانهای نیمهعمیق و استحصال آب از طریق چاههای دستی.
ب-2- سامانههای جمعآوری آب باران و روانابهای متلاطم از طریق ذخیره آب در حوضچهها و مخازن سطحی، جهت تأمین آب شرب دامها و آبیاری تکمیلی.
ب-3- سامانههای جمعآوری آب باران و روانابهای متلاطم پرحجم با هدف پخش سیلاب جهت زراعت نیمهدیم، احیای پوشش گیاهی در مراتع، ایجاد مراتع مشجر و جنگلکاری در مناطق خشک و نیمهخشک.
ب-4- سامانههای جمعآوری آب باران و روانابهای سطحی با سطوح آبگیر تلفیقی (مصنوعی و طبیعی) جهت ذخیره رطوبت در پروفیل خاک برای زراعت، احیای مراتع، تغذیه آبخوانهای نیمه عمیق و یا ذخیرهسازی آب جهت مصارف مورد نظر.
ج- سامانههای سطوح آبگیر باران زیرزمینی، شامل:
ج-1- سامانههای کاریز یا قنات.
ج-2- سامانه چاه افقی.
علاوه براین، برخی از متخصصین استحصال آب، سامانههای سطوح آبگیر باران را از نظر شکل و کاربرد به گروههای متفاوتی تقسیم کردهاند. به نحوی که در این خصوص مهمترین تقسیمبندی انجام شده شامل موارد زیر است(اسمعلی و عبداللهی، 1389):
1- سامانههای سطوح آبگیر باران مصنوعی جهت جمعآوری آب برای تأمین آب شرب انسان و دام و مصارف خانگی.
2- سامانههای سطوح آبگیر مصنوعی و تیمار شده جهت جمعآوری آب برای تأمین آب کشاورزی و ذخیره رطوبت در پروفیل خاک با هدف احیای پوشش گیاهی در مراتع و جنگلکاری در مناطق خشک و نیمهخشک.
لازم به توضیح است که منظور از سطوح آبگیر تیمار شده، سطوح آبگیری هستند که با انجام یک سری اقدامات نظیر تسطیح، جمعآوری سنگریزه و بقایای گیاهی، کوبیدن و فشردن خاک، سنگفرش و ایجاد سطح غیرقابل نفوذ با استفاده از مواد شیمیایی، سیمان، مالچهای نفتی و ... آماده میشوند.
1-8- انواع سازههای استحصال آب
به طور کلی انواع سازههای استحصال آب باران را میتوان به شرح زیر بیان کرد (اسمعلی و عبداللهی، 1389):
1- بند مخزنی: روش جمعآوری آب به وسیله بند به شکل گسترده در بسیاری از مناطق کشور رواج دارد. با وجود این، متاسفانه آموزش افراد بومی در مهارتهای تکنیکی همگام با اجرای این فن پیش نرفته است، در نتیجه نگهداری و بهرهبرداری از مخازن بیشتر به عهدهی سازمان مرکزی حکومت است.
2- بند رسوبگیر و تنظیمکننده: ثابت شده است در نواحی خیلی خشک، رسوبگیرها موثرتر و قابل اعتمادتر از سیستمهای دیگر جمعآوری آب هستند. با وجود این، کم بودن حجم ذخیره رسوبگیرها ممکن است مانعی برای استفاده از این روش در کشاورزی روی زمینهای وسیع باشد.
3- حفیره: حفیره را میتوان به آسانی طراحی و ساخت. به طوری که این گونه مخازن قادرند با غرقاب کردن زمین، حجم نسبتا زیادی آب را ذخیره کنند. در مناطق نیمهخشک استفاده از حفیره به خاطر سهولت احداث و به کارگیری آن در سیستمهای یکپارچه برای محصولات و کاشت گیاهان مرتعی مناسبتر است.
4- هوتک: هوتکها در اساس پشته خاکی کوچکی است که در قسمتهایی که سیلاب جاری میشود ساخته میشود (کوثر، 1374).
5- خوشاب: در بخش جنوبشرقی ایران این سیستم سنتی به منظور زراعت سیلابی به کار گرفته شده است.
6- سازههای مهندسی: این سازهها دایرههای کوچک یا مربع در روی زمیناند که با ملات آهک و یا سیمان و آهک و ماسه معمولی و ... ساخته میشوند و با به کارگیری آهن و شبکههای آهنی، ورودی و خروجی آنها محافظت میشوند.
7- سازههای تراوشی: یک روش بینظیر ذخیره آب و حفظ رطوبت در پروفیل عمیق و مناسب خاک است که توسط موانع طبیعی حوزهی آبخیز احاطه شدهاند. در این سیستم، رواناب بالادست و سطوح سنگی، در پایین درهها و موانع متوالی جمع میشود و برای ایجاد زراعت در سطح آنها استفاده میشود.
8- سازههای عرضی: که شامل احداث سازههای عمود بر جهت جریان است که یک مقطع خاکریزی همراه با سرریز بوده و برای نگهداشت آب به منظور غرقاب کردن اراضی بالادست در طی فصل بارانی به کار میرود.
9- آهار: در واقع مجموعهای از خاکریزهای به ارتفاع 3 مترند که در اراضی با شیب بسیار کم بر روی خطوط تراز احداث میشوند و طول خاکریزها در برخی موارد به چندین کیلومتر میرسد.
10- آبانبار: روشی برای دسترسی و استفادههای مستقیم از آبهای زیرزمینی است. در آبانبار به جای اینکه با احداث چاه، آب را توسط وسایلی به سطح زمین برسانند با احداث پلههای زیرزمینی، مستقیما به سراغ آن میروند.
11- تورکینست: یک نوع سازهی آبخیزداری است که عموما برای مناطق کم شیب به منظور ذخیره و جمعآوری آب باران و سیلاب احداث میشود. شکل معمول تورکینست دایرهای متمایل به بیضی است.
فصل دوم
مواد و روشها
2- مواد و روشها
2-1- منطقه مورد مطالعه
2-1-1- توپوگرافی و فیزیوگرافی
حوزه آبخیز سمبورچای با مساحت 3/748 کیلومترمربع درشمال استان اردبیل و به دلیل وسعت زیاد، به مقدار 94/72 درصد برابر 07/544 کیلومترمربع در محدوده شهرستان گرمی (مغان)، 68/19 درصد برابر 92/147کیلومترمربع از جنوب در محدوده شهرستان مشگینشهر و 37/7 درصد آن برابر 29/56 کیلومترمربع از شمال در محدوده شهرستان بیلهسوار قرار گرفته است و از نظر موقعیت جغرافیایی بین 14،19،47 تا 59،55،48 طول شرقی (E) و 18،6،37 تا 39،42،39 عرض شمالی (N) واقع شدهاست.
حداکثر ارتفاع حوزه آبخیز 2244 متر در جنوب غربی و حداقل ارتفاع در خروجی آن برابر 320 متر از سطح دریا می‌باشد که به رودخانه دره رود منتهی میشود.
2-1-2- هوا و اقلیم شناسی
این منطقه دارای آب و هوای نیمهخشک است. بارشهای سالانه ایستگاههای موجود در منطقه، در یک دوره مشترک 12 ساله مورد تجزیه و تحلیل قرار گرفتهاند. به منظور تجزیه و تحلیل بارش منطقه، از آمار بارش ایستگاههای اطراف حوزه آبخیز استفاده شده است که در نهایت 12 ایستگاه بارندگی از سازمان هواشناسی کشور را شامل میشود. بر اساس مجموعه آمار ایستگاههای موجود، متوسط بارندگی سالانه 236 میلی‌متر است که از 291 تا 386 میلی‌متر تغییر میکند. در این تحقیق صرفاً از آمار بارش سازمان هواشناسی کشور استفاده شد که این امر به دلیل طول مناسب دوره آماری، همگن بودن و کیفیت خوب آن‌ها میباشد. در بررسی اقلیم منطقه از روش دومارتن اصلاح شده استفاده شده است. جدول 2-1، طبقهبندی اقلیم را در روش دومارتن اصلاح شده نشان میدهد.
رابطه 2-1 A= PT+10که در آن: Ai، شاخص خشکی (ضریب خشکی)؛ P، متوسط بارش سالانه (میلی‌متر)؛ T، متوسط دمای سالانه (درجه سانتیگراد) میباشند.
جدول 2-1: طبقهبندی اقلیمها در روش دومارتن اصلاح شده
>55 55- 33 33- 28 28- 24 24- 20 20- 10 10- 0 مقادیر Ai
بسیار مرطوب ب بسیار مرطوب الف مرطوب نیمه مرطوب مدیترانه‎ای نیمه‎خشک خشک اقلیم
2-2- روش تحقیق
2-2-1- مطالعات کتابخانهای و اقدامات اولیه
جمعآوری اطلاعات، گزارشهای مطالعاتی و پژوهشهای قبلی انجام یافته در رابطه با موضوع تحقیق و مطالعه و بررسی آن‌ها:
1- در این مرحله اقدام به جمعآوری پژوهشهای قبلی گردید و نیز دادههای پایه با استفاده از مطالعات انجام شده توسط سازمانها و ادارات مربوطه تهیه شد. جمعآوری آمار و اطلاعات مختلف حوزه آبخیز از جمله: شدت بارندگی، دمای هوا و ارتفاع از طریق اداره هواشناسی استان اردبیل صورت گرفت.
2- بررسی موقعیت، وضعیت عمومی، زمینی و اقلیمی منطقه مورد مطالعه.
شناخت منطقه یکی از موارد مهم در مطالعات استحصال رواناب است که قبل از انجام مطالعات، موقعیت جغرافیایی، وضعیتهای عمومی پستی و بلندی، زمینی و نیز اقلیمی مورد بررسی قرار گرفت.
3- انتخاب و تهیه نقشههای پایه از منطقه تحقیق شامل توپوگرافی، زمینشناسی، کاربری اراضی، خاکشناسی و قابلیت اراضی با توجه به نیاز ضروری انجام طرح.
نقشههای توپوگرافی مورد نیاز طرح، با توجه به وسعت منطقه و دقت مورد نیاز با مقیاس 50000 :1 سازمان جغرافیایی نیروهای مسلح و نقشههای زمینشناسی با مقیاس 100000 :1 سازمان زمینشناسی کشور تهیه گردید. به علت عدم وجود سایر نقشههای مورد نظر طرح، اقدام به تهیه آن‌ها از روی عکسهای هوایی و تصاویر ماهوارهای گردید.
4- تهیه و تامین عکسهای هوایی و تصاویر ماهوارهای منطقه و انجام مطالعات سنجش از دور برای کسب اطلاعات مورد نیاز و تهیه نقشههای ضروری مورد نیاز طرح.
عکسهای هوایی 20000 :1 سال 1347 از طریق سازمان نقشهبرداری کشور و سازمان جغرافیایی نیروهای مسلح و نیز تصاویر ماهوارهای لندست TM و ETM+ مربوط به سالهای 1988 و 2002 از طریق سازمان فضایی کشور تهیه شدند.
2-2-2- تهیه نقشههای پارامترهای مؤثر در ایجاد رواناب
2-2-2-1- خطوط توپوگرافی و تهیه نقشه DEM منطقه
برای بررسی وضعیت توپوگرافی در منطقه از طریق GIS، اقدام به رقومیسازی خطوط توپوگرافی از روی نقشههای توپوگرافی شده و با تهیه نقشهی مدل رقومی ارتفاع، عمدتاً در قالب سه بحث عمده شیب، جهت و ارتفاع بررسیهای لازم صورت میگیرد.
برای تهیه نقشه DEM، ابتدا خطوط تراز منطقه از روی نقشه توپوگرافی50000: 1 وارد کامپیوتر شده و با اندازه پیکسل 20×20 متر (قدرت تفکیک زمینی 20 متری) رقومی شده است. در ایران سیستم تصویری UTM یکی از معمولترین روشها بوده و در این تحقیق نیز از این سیستم استفاده شده است (منطقه مورد مطالعه در داخل زون 39 شمالی بود، بنابراین تمامی مطالعات با در نظر گرفتن این زون زمین مرجع شده است). هر خط تراز در حین رقومی کردن، ارزشهای واقعی خود را میگیرند و بدین ترتیب در نقشه نهایی تهیه شده نیز ارزش هر خط تراز بیانگر ارتفاع از سطح دریای آن خط به متر میباشد (عبداللهی، 1381).
در این تحقیق نقشه DEM، خطوط تراز رقومی شده باید از طریق یک نرمافزار GIS مناسب درونیابی شود. برای تهیه نقشه DEM در نرمافزار ArcGIS 9.3 از طریق گزینه Topo to raster (3D) تهیه گردید.
2-2-2-2- نقشه ارتفاع از سطح دریا
عامل ارتفاع از سطح دریا در حوزه آبخیز سمبورچای از آن جهت حائز اهمیت است که تاثیر ارتفاع در ایجاد رواناب به صورت غیر مستقیم و از طریق تبدیل نوع بارش از بارندگی به برف عمل میکند، چرا که از ارتفاع معینی به بالا، اغلب بارش به صورت برف میباشد و همانطوریکه میدانیم برف از طریق ذوب و نفوذ تدریجی، به طور متفاوتی نسبت به باران در ایجاد رواناب عمل میکند. برای تهیه نقشه طبقات ارتفاعی از نقشه DEM استفاده شد. به منظور کلاسهبندی نقشه ارتفاع به طبقات مختلف، منحنی تجمعی ارتفاع برای نقشه DEM تهیه شد.
2-2-2-3- نقشه شیب
مهم‌ترین عوامل توپوگرافی موثر در ایجاد رواناب منطقه شامل شیب، جهت و ارتفاع از سطح دریا میباشد. در صورت یکسان بودن سایر شرایط، هر چه مقدار شیب افزایش یابد رواناب ایجاد شده بیشتر خواهد بود که دلیل آن کاهش پایداری خاک خواهد بود. بسیاری از پارامترهای اقلیمی مانند بارش و دما با ارتفاع تغییر میکند. ارتفاع بر روی نوع و ویژگیهای نزولات تاثیر دارد. هرگاه ارتفاع از حد معینی تجاوز کند بارندگی به صورت برف نازل میشود. همچنین با افزایش ارتفاع، مقدار شیب دامنهها بیشتر میشود و رخسارههای بیرونزده و توده سنگی بیشتر مشاهده شده و سنگها ناتراواتر میشوند (سراجزاده، 1375). اختلاف ارتفاع بین نقاط مختلف در یک حوزه‌ آبریز، ناهمواریهای اراضی آن حوزه را نشان می‌دهد. نسبت اختلاف ارتفاع دو نقطه به فاصله آن‌ها تحت عنوان شاخص شیب معرفی می‌گردد برای شناخت ناهمواری اراضی و شیب از معیارهای متفاوتی استفاده می‌شود. شیب حوزه‌های آبخیز اثر بسیار زیادی در واکنش هیدرولوژیک حوزه‌ها دارد. سرعت جریان‌های سطحی به طور مستقیم به شیب بستگی دارد. افزایش سرعت آب نیروی جنبشی آب و در نتیجه قدرت تخریبی و حمل آن را افزایش می‌دهد همچنین میزان نفوذ آب در خاک با افزایش شیب کاهش می‌یابد و نهایتاً حجم سیلاب و جریانهای سطحی مستقیماً به شیب حوزه بستگی دارد.
جهت برآورد و تعیین میزان شیب حوزه‌های آبریز روشها و روابط متعددی ارائه گردیده که برخی از آن‌ها عبارتند از روش شبکهبندی، روش هورتون، رابطه جاستین، روش شمارش خطوط تراز و .... در مطالعه حاضر با استفاده از GIS نقشه کلاس‌های شیب در مقیاس 50000 :1 و مشتمل بر 5 کلاس سطح حوزه آبخیز تهیه گردیده. برای تهیه نقشه شیب حوزه آبخیز، از نقشه DEM در محیط نرمافزار ArcGIS با استفاده از گزینهSpatial Analyst استفاده گردید. در این نرمافزار نقشه شیب را می‌توان به دو صورت درجه و درصد شیب تهیه کرد و قابلیت آن در این زمینه بسیار بالا بوده و از دقت زیادی برخوردار است (البته دقت نقشه تهیه شده به پارامترهای دیگری از قبیل قدرت تفکیک زمینی و دقت رقومیسازی نیز بستگی دارد). برای منطقه مورد مطالعه با توجه به نوع وهدف کار، مساحت زیرحوزهها، نقشه شیب به درصد تهیه شد.
برای محاسبه متوسط شیب زیرحوزهها، نقشه پلیگونی زیرحوزهها را با نقشه رستری شیب حوزه آبخیز سمبورچای در محیط نرمافزار ArcGIS با استفاده از نوار ابزار Spatial Analyst و سپس ابزار Zonal Statistics قطع داده شد و متوسط شیب برای هر زیر حوزه به دست آمد.
2-2-2-4- نقشه جهت شیب
جهت شیب جهتی است که اگر از بالای شیب به پائین نگاه کنیم سطح شیب به آن جهت متوجه است و در واقع جهتی است که از آن می‌توان خط عمود فرضی به خطوط تراز سطح شیب رسم کرد. مهمترین اثر جهت شیب در میزان دریافت نور خورشید و اثرات ناشی از آن جمله پیدایش اقالیم محلی یا موضعی است. در نیمکره شمالی زمین جهات رو به جنوب و غرب از جهات رو به شمال و شرق برای مدت طولانی‌تری در معرض تابش نور خورشید قرار می‌گیرند و به همین دلیل نیز گرم‌ترند. اثر تابش بیشتر و گرمای زیادتر جهت رو به جنوب و شرق موجب افزایش تبخیر و تعرق سالیانه و در نتیجه کاهش رطوبت خاک می‌شود و به همین علت نیز در جهات رو به جنوب و شرق وضعیت پوشش گیاهی ار نظر تراکم و نوع گیاهان نسبت به سایر جهات تفاوت دارد و اغلب از تراکم کمتری برخوردار است و نتیجتاً فرسایش خاک و تولید رواناب در این جهات بیشتر است (مهدوی، 1378).
اثر مهم دیگر شیب در ذوب شدن برف است. در جهات رو به جنوب و شرق به دلیل گرمای بیشتر، سرعت ذوب برف شدیدتر است. در این مناطق برف کمتری بر روی زمین میماند و ذوب آن به تدریج در زمستان و اوایل بهار انجام میگیرد. به همین دلیل جریان زمستانی رودخانهها در این مناطق بیشتر و جریانهای آن یکنواختتر است. در حالی که در حوزههای آبخیز با جهات رو به شمال و غرب دوام برف در زمستان بیشتر است و عمق و تراکم آن نیز بالاتر است (مهدوی، 1378).
برای تهیه نقشه جهات جغرافیایی نیز از ویژگی‌های خطوط منحنی میزان و خطوط رودخانه‌ها‌، نهرها و آبراهه‌ها و خطوط یالها و نحوه ارتباط یال و قله بر روی نقشه توپوگرافی استفاده می‌شود. تعیین جهت جغرافیایی بدین صورت می‌باشد که جهت هر یک از دامنه‌ها ( یعنی حد پایین یال و دره ) را نسبت به شمال جغرافیایی مشخص می‌نمایند. همانطور که میدانیم مقدار آزیموت از صفر تا 360 درجه تغییر میکند و برای مناطق مسطح، آزیموتی تعریف نمیشود که به همین خاطر در نقشه جهت تهیه شده، ارزش سلولهای مناطق مسطح به طور خاص (مثلا 1- و یا ؟) نشان داده میشود. در نقشه جهت تهیه شده، ارزش هر پیکسل بیانگر آزیموت آن میباشد.
برای کلاسهبندی نقشه جهت میتوان به صورت زیر عمل کرد (درویشصفت، 1379)، به طوری که:
1= شمال، آزیموت بین صفر تا 5/22 و نیز 5/337 تا 360 درجه.
2= شمالشرق، آزیموت بین 5/22 تا 5/67 درجه.
3= شرق، آزیموت بین 5/67 تا 5/112 درجه.
4= جنوبشرق، آزیموت بین 5/112 تا 5/157 درجه.
5= جنوب، آزیموت بین 5/157 تا 5/202 درجه.
6= جنوبغرب، آزیموت بین 5/202 تا 5/247 درجه.
7= غرب، آزیموت بین 5/247 تا 5/292 درجه.
8= شمالغرب، آزیموت بین 5/292 تا 5/337 درجه.
9 = اراضی مسطح با ارزش ویژه.
نقشه جهت توضیح داده شده به روش فوق، برای کلاسهبندی نقشه جهت به نه طبقه (با یک طبقه مسطح) میباشد که در صورت لزوم میتوان طبقات فوق را با هم تلفیق کرده و نقشه جهت چهار یا پنج طبقهای (با یک طبقه اضافی مسطح) تهیه کرد. برای تهیه نقشه جهت حوزه نیز از نقشه DEM در نرمافزار ArcGIS با دستور Spatial Analysis و انتخاب گزینه Aspect تهیه شدهاست. در نقشه جهت تهیه گردید.
2-2-2-5- تهیه و تکمیل نقشه همباران و همدما
الف- بارش
در منطقه مورد تحقیق، مقدار بارش سالانه تحت تاثیر ارتفاع از سطح دریا، فصول مختلف سال و توپوگرافی منطقه میباشد. در بررسی مقدار و وضعیت بارش منطقه، از ایستگاههای اطراف حوزه آبخیز استفاده شده است. جداول 2-2 و 2-3 به ترتیب مشخصات کلی ایستگاهها و میانگین بارش سالانه را نشان میدهند.
جدول 2-2: مشخصات ایستگاههای بارانسنجی
برزند اصلاندوز انگوت پارسآباد مشکین اردبیل ایستگاه
´53-◦47 ´25-◦74 ´45-◦47 ´46-◦47 ´41-◦47 ´20 -◦48 طول جغرافیایی
´57-◦38 ´26-◦39 ´03-◦39 ´39-◦36 ´23-◦38 ´13-◦38 عرض جغرافیایی
1085 153 466 6/72 1561 1335 ارتفاع (متر)
جعفرلو مرادلو جعفرآباد قوشه قرهخان بیگلو گرمی ایستگاه
´43-◦47 ´45-◦47 ´05-◦48 ´56-◦47 ´39-◦47 ´05-◦48 طول جغرافیایی
´52-◦38 ´45-◦38 ´26-◦39 ´44-◦38 ´05-◦39 ´03-◦39 عرض جغرافیایی
1280 1380 174 1246 596 759 ارتفاع (متر)
جدول 2-3: میانگین بارندگی سالانه ایستگاههای بارانسنجی
جعفرآباد مرادلو جعفرلو قوشه قرهخانبیگلو گرمی به رزند اصلاندوز انگوت مشگینشهر پارسآباد اردبیل ایستگاه
4/277 8/272 9/304 8/258 6/296 3/353 344 1/285 4/319 6/353 6/265 6/278 متوسط بارش سالانه
ب-رابطه ارتفاع- بارش و متوسط بارش منطقه
برای محاسبه رابطه ارتفاع- بارش، از آمار بارندگی ایستگاههای موجود و همچنین ارتفاع از سطح دریای ایستگاهها استفاده شد که در ابتدا نواقص آماری رفع شده و در نرمافزار Excel با وارد کردن ارقام بارش و ارتفاع در دو ستون مجزا، به نحوی که بارش در محور y و ارتفاع در محور x قرار گیرد، رابطه رگرسیونی این دو پارامتر از طریق نرمافزار Excel محاسبه شد (سعدی مسگری و قدس، 1384). رابطه رگرسیونی ارتفاع از سطح دریا- بارش (گرادیان بارندگی منطقه)، در منطقه تحقیق به صورت زیر به دست آمده است:
رابطه 2-2 P=0.050H+275.2 R²=0.625
که در آن: P، میزان درجه حرارت متوسط سالانه بر حسب سانتیگراد؛ H، ارتفاع از سطح دریا به متر میباشد.
برای بدست آوردن بارش متوسط حوزه آبخیز، از نقشه مدل رقومی بارش استفاده گردید. نحوه تهیه مدل رقومی بارش بدین شکل بوده که بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- بارش در Excel، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، DEM منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه همباران حوزه تهیه شده است. پس از تهیه نقشه مدل رقومی بارش، از طریق دستور Reclassify، اقدام به کلاسهبندی نقشه مدل رقومی بارش به 5 کلاس بارش شد. ج- رژیم حرارتی
رژیم حرارتی یک منطقه عبارت از تغییرات متوسط درجه حرارت هوا بر حسب زمان و در مدت یکسان است. هدف از بررسی درجه حرارت در محدوده طرح، تعیین رابطه گرادیان درجه حرارت و تعیین میانگین حرارتی منطقه بر اساس آمار ایستگاههای موجود بوده است.
د- رابطه ارتفاع- درجه حرارت و میانگین دمای سالانه
با بررسی آمار درجه حرارت ایستگاههای ثبت درجه حرارت در منطقه، مشابه روش تهیه مدل رقومی بارش، برای تهیه نقشه درجه حرارت متوسط نیز، بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- درجه حرارت در Excel، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، مدل رقومی ارتفاع منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه همدما حوزه تهیه شده است. رابطه ارتفاع از سطح دریا- درجه حرارت (گرادیان درجه حرارت) در منطقه تحقیق به صورت زیر به دست آمده است همانند بارندگی:
رابطه 2-3 T=-0.003H+15.14 R²=0.824
که در آن:T، میزان درجه حرارت متوسط سالانه بر حسب سانتیگراد؛ H، ارتفاع از سطح دریا به متر.میباشد.
2-2-3- مقدار بارندگی در دوره بازگشتهای مختلف
2-2-3-1- مقدار بارش
مقدار بارندگی یک متغیر تصادفی بوده و میتوان دادههای موجود را بررسی و طبق قوانین توزیع آماری هنگامی که برازش مناسب وجود داشته باشد، حداکثر یا حداقل بارندگی را با دوره بازگشت مورد نظر تعیین نمود. فرم کلی معادلات مورد استفاده معمولا به صورت زیر است:
رابطه 2-4 PT=P+K.Sکه در آن: PT، حداکثر و یا حداقل بارندگی با دوره بازگشت معین T سال؛ P، میانگین بارندگی؛ K، ضریب فراوانی (ضریب تناوبی)؛ S، انحراف معیار دادهها میباشد.
در منطقه تحقیق، با استفاده از توزیع پیرسون تیپ III، مقادیر متوسط بارندگی سالانه در دورهبازگشتهای 2 و 10 سال محاسبه شد.
2-2-3-2- حداکثر بارش 24 ساعته
در منطقه تحقیق، با استفاده از توزیع گمبل نوع I، که در تجزیه و تحلیل مقادیر حد بهکار گرفته میشود، مقادیر حداکثر بارش 24 ساعته در دورهبازگشتهای 2 و 10 ساله محاسبه شد.
2-2-3-3- شدت بارندگی
به طور کلی هر چه مدت بارش کوتاه باشد، شدت آن زیاد خواهد بود و برعکس بارانهای دراز مدت از شدت کمتری برخوردار میباشند. از طرف دیگر مسلم است که هر چه دوره بازگشت یک رگبار طولانیتر باشد، شدت آن نیز بیشتر خواهد بود.با پیدا کردن حداکثر شدت بارندگی در پایههای زمانی مختلف در طول مدت آماری، میتوان دادههای مربوط به هر یک از پایههای زمانی را با یک توزیع مناسب برازش داده و سپس شدتهای مربوط به زمانهای بازگشت متفاوت را روی محور مختصات و بر حسب پایههای زمانی مختلف رسم نمود.
با بررسیهای انجام شده روی منحنیهای شدت، مدت و فراوانی، فرمولهای تجربی متعددی ارائه شده که در این تحقیق از فرمول قهرمان (1366- به نقل از علیزاده، 1379) که برای ایران ارائه شده است، استفاده شد. قهرمان روی دادههای باران نگارهای ایستگاههای ایران مطالعه و مقدار باران یک ساعته با دوره بازگشت 10 ساله را به صورت زیر برای نقاط مختلف ایران قابل محاسبه دانسته است (علیزاده، 1380):
رابطه 2-5 P1060=e0.8153 .X11.1374.X2-0.3072که در آن: X1، متوسط حداکثر بارش 24 ساعته بر حسب میلی‌متر؛ X2، متوسط بارش سالانه منطقه بر حسب میلی‌متر میباشد.
بنابراین با داشتن مقدار میتوان مقدار PTt (مقدار بارش در زمان و دوره بازگشتهای مختلف) و سپس شدت باران t دقیقهای را با دوره بازگشت T سال محاسبه کرده و منحنی شدت، مدت و فراوانی را رسم کرد.
رابطه 2-6 PTt= [0.4524 + 0.247 ln (T – 0.6)](0.3710 + 0.6184t0.4484)P1060شدت بارندگی (I) نیز عبارتست از نسبت بارندگی (P) به زمان (T). یعنی:
رابطه 2-7 I=Pt2-2-3-4- رابطه ارتفاع- شدت بارشبرای تهیه نقشه شدت بارش، همانند نقشه همدما و همبارش، ابتدا رابطه رگرسیونی بین ارتفاع از سطح دریای ایستگاههای انتخاب شده و میزان شدت بارش نیم ساعته و یک ساعته با دروه بازگشت 2 سال و 10 سال در Exel به صورت زیر تهیه شد. بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- بارش ، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، DEM منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه شدت بارش حوزه تهیه شده است. پس از تهیه نقشه مدل رقومی شدت بارش، از طریق دستور Reclassify، اقدام به کلاسهبندی نقشه مورد نظر به 5 کلاس شد.
رابطه 2-8 I230=-0.003H+19.99 R2=0.627

—116

2-2-2-2- نقشه ارتفاع از سطح دریا......................................................................................................................23
2-2-2-3- نقشه شیب................................................................................................................................................24
2-2-2-4- نقشه جهت شیب ..................................................................................................................................25
2-2-2-5- تهیه و تکمیل نقشه همباران و همدما ..............................................................................................26
الف- بارش ....................................................................................................................................................................26
ب- رابطه ارتفاع- بارش و متوسط بارش منطقه ...................................................................................................27
ج- رژیم حراتی ............................................................................................................................................................28
د- رابطه ارتفاع- درجه حرارت و میانگین دمای سالانه ......................................................................................28
2-2-3- مقدار بارندگی در دوره بازگشتهای مختلف ........................................................................................28
2-2-3-1- مقدار بارش .............................................................................................................................................28
2-2-3-2- حداکثر بارش 24 ساعته ......................................................................................................................29
2-2-3-3- شدت بارندگی .......................................................................................................................................29
2-2-3-4- رابطه ارتفاع و شدت بارش....................................................................................................................30
2-2-4- شرح تیپهای اراضی ..................................................................................................................................31
2-2-5- تهیه و تکمیل نقشه سنگشناسی و حساسیت سازند به فرسایش....................................................31
2-2-5-1- چینهشناسی واحدهای رسوبی حوزه آبخیز سمبورچای ................................................................31
2-2-5-1-1- نهشتههای قبل از کرتاسه ...............................................................................................................31
2-2-5-1-2- نهشتههای کرتاسه ...........................................................................................................................32
2-2-5-1-3- نهشتههای پالئوسن- میوسن .........................................................................................................32
2-2-5-1-4- نهشتههای الیگوسن- میوسن ........................................................................................................32
2-2-5-1-5- نهشتههای کوارترنر ..........................................................................................................................34
2-2-6- تعیین نفوذپذیری خاک .............................................................................................................................34
2-2-7- گروه هیدرولوژیکی خاک ...........................................................................................................................36
2-2-7-1- تعیین گروههای اصلی خاک به روش SCS .....................................................................................36
2-2-8- تهیه نقشه شاخص پوشش گیاهی ..........................................................................................................37
2-2-9- نقشه نوع استفاده از اراضی .......................................................................................................................38
2-2-10- تقسیمبندی حوزه به واحدهای هیدرولوژیکی و واحد کاری مناسب ............................................38
2-2-11- تعیین مساحت حوزه آبخیز سمبورچای و واحدهای هیدرولوژیک آن .........................................39
2-2-12- رتبهبندی آبراهههای حوزه آبخیز .........................................................................................................40
2-2-13- طول آبراهه اصلی .....................................................................................................................................41
2-2-14- تعیین ضریب شکل زیرحوزههای مورد مطالعه...................................................................................41
2-2-15- تعیین رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال
و 10 سال ......................................................................................................................................................................41
2-2-16- برآورد مقادیر رواناب در هر یک از واحدهای هیدرولوژیک .............................................................42
2-2-16-1- رابطه جاستین .....................................................................................................................................43
2-2-17- برآورد حجم رواناب فصلی و سالانه حوزه آبخیز سمبورچای...........................................................44
2-2-18- محاسبه زمان تمرکز ................................................................................................................................44
2-2-19- نیمرخ طولی آبراهه اصلی و شیب آبراهه اصلی حوزه........................................................................46
2-2-20- برآورد دبی پیک سیلاب .........................................................................................................................46
2-3- بررسی صحت و دقت نقشهها ........................................................................................................................47
2-4- تحلیل دادهها.....................................................................................................................................................47
2-4-1- مدل وزنی طبقهبندی شده .......................................................................................................................47
2-4-2- روش مقایسه زوجی سلسله مراتبیAHP ..............................................................................................48
2-5- مکانیابی عرصههای مناسب استحصال رواناب .........................................................................................51
2-6- مکانیابی عرصههای مناسب استحصال رواناب با استفاده از الگوی سطح منبع متغیر .....................51
فصل سوم: نتایج
3- نتایج تحقیق و بحث در مورد آنها ....................................................................................................................53
3-1- طبقهبندی اقلیمی ...........................................................................................................................................53
3-2- نقشه پارامترهای موثر در ایجاد رواناب .......................................................................................................53
3-3- مقدار بارندگی در دوره بازگشتهای مختلف .............................................................................................60
3-3-1- مقدار بارش ..................................................................................................................................................60
3-3-2- حداکثر بارش 24 ساعته ..........................................................................................................................60
3-3-3- شدت بارندگی ..............................................................................................................................................61
3-4- نتایج مطالعات شدت بارش ............................................................................................................................62
3-5- تیپهای اراضی .................................................................................................................................................65
3-6- نقشههای سنگشناسی و حساسیت سازندها به فرسایش .......................................................................65
3-7- نتایج مطالعات نفوذپذیری خاک ...................................................................................................................67
3-8- تعیین گروههای اصلی خاک به روش SCS ...............................................................................................71
3-9- نقشه شاخص پوشش گیاهی .........................................................................................................................72
3-10- نتایج بررسی واحدهای کاری مناسب .......................................................................................................73
3-11- تهیه نقشه رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10
سال و مقادیر آن در هر واحد هیدرولوژیکی ..........................................................................................................76
3-12- رواناب تولیدی از واحدهای هیدرولوژیکی ...............................................................................................78
3-13- زمان تمرکز ....................................................................................................................................................80
3-14- دبی پیک سیلاب ..........................................................................................................................................81
3-15- وزندهی به پارامترها ...................................................................................................................................82
3-16- معیار الویتبندی دادهها ...............................................................................................................................82
3-17- مکانیابی عرصههای مناسب برای استحصال رواناب .............................................................................85
3-18- حجم رواناب فصلی و سالانه حوزه آبخیز سمبور چای ..........................................................................87
3-19- نقشه رواناب خالص تولیدی در منطقه ...................................................................................................89
فصل چهارم: بحث و نتیجهگیری
4-1- بحث و نتیجهگیری .........................................................................................................................................91
4-2- محدودیتهای پژوهش....................................................................................................................................94
4-3- نتیجهگیری کلی ..............................................................................................................................................95
4-5- پیشنهادات...........................................................................................................................................................96
منابع ..............................................................................................................................................................................98
پیوست ........................................................................................................................................................................103
فهرست اشکال
عنوان اشکالصفحه
شکل 3-1: نقشه مدل رقومی ارتفاعی54شکل 3-2: نقشه کلاسهبندی شیب55شکل 3-3: نقشه کلاسهبندی ارتفاعی56شکل 3-4: نقشه جهت طبقه بندی شده در 5 طبقه57شکل 3-5: نقشه کاربری اراضی58شکل 3-6: نقشه مدل رقومی بارش59شکل3-7: نقشه طبقات بارش در 5 کلاس ............................................................................................................59
شکل 3-8: نقشه مدل رقومی دمای متوسط سالانه60شکل 3-9: نقشه طبقات دمایی در 3 کلاس .........................................................................................................60
شکل 3-10: منحنی شدت- مدت- فراوانی ایستگاه برزند61شکل 3-11: نقشه طبقات شدت بارش نیم ساعته با دوره بازگشت 2 سال الف62شکل 3-12: نقشه کلاسهبندی شدت بارش نیم ساعته با دوره بازگشت 2 سال شکل ب ..........................62
شکل 3-13: نقشه طبقات شدت بارش یک ساعته با دوره بازگشت 2 سال الف63شکل 3-14: نقشه کلاسهبندی شدت بارش یک ساعته با دوره بازگشت 2 سال ب ....................................63
شکل 3-15: نقشه طبقات شدت بارش نیم ساعته با دوره بازگشت 10 سال الف63شکل 3-16: نقشه کلاسهبندی شدت بارش نیم ساعته با دوره بازگشت 10 سال ب ..................................63
شکل 3-17: نقشه طبقات شدت بارش یک ساعته با دوره بازگشت 10 سال الف64شکل 3-18: نقشه کلاسهبندی شدت بارش یک ساعته با دوره بازگشت 10 سال ب .................................64
شکل 3-19: نقشه سازند زمین شناسی حوزه آبخیز سمبورچای67شکل 3-20: منحنی تغییرات سرعت نفوذ نسبت به زمان70شکل 3-21: سرعت نفوذ طبقهبندی شده در حوزه آبخیز سمبورچای71شکل 3-22: نقشه گروهبندی هیدرولوژیکی خاک در حوزه آبخیز سمبورچای72شکل 3-23: نقشه مقادیر NDVI در حوزه آبخیز سمبورچای73
شکل 3-24: نقشه زیر حوزهها و اطلاعات کلی حوزه آبخیز سمبورچای74شکل 3-25: نقشه رواناب حاصل از شدت بارش نیم ساعته با دوره بازگشت 2 سال شکل الف76
شکل 3-26: نقشه رواناب حاصل از شدت بارش یک ساعته با دوره بازگشت 2 سال شکل ب ..................76
شکل 3-27: نقشه رواناب حاصل از شدت بارش نیم ساعته با دوره بازگشت 10 سال شکل الف77شکل 3-28: نقشه رواناب حاصل از شدت بارش یک ساعته با دوره بازگشت 10 سال شکل ب ..............77
شکل 3-29: پروفیل طولی آبراهه اصلی حوزه آبخیز سمبورچای80شکل 3-30، منحنی هیستوگرام جهت طبقه بندی پتانسیل تولید رواناب86شکل 3-31: طبقه بندی اراضی برای استحصال رواناب87شکل 3-32، نقشه حجم رواناب تولیدی در هر زیرحوزه88شکل3-33: نقشه رواناب خالص89فهرست جداول
عنوان جدولصفحه
جدول (2-1): طبقهبندی اقلیمها در روش دومارتن اصلاح شده.......................................................................22
جدول (2-2): مشخصات ایستگاههای بارانسنجی........................................................................................26
جدول (2-3): میانگین بارندگی سالانه ایستگاههای بارانسنجی......27
جدول (2-4): مقیاسی برای مقایسه زوجی (مالکوسکی، 1999).......49
جدول 3-1: ضرایب خشکی دومارتن و نوع اقلیم درچند ایستگاه حوزه آبخیز سمبورچای53جدول 3-2: متوسط شیب درهر زیر حوزه به درصد55جدول 3-3: متوسط ارتفاع زیرحوزهها56جدول 3-4: مساحت کاربریهای مختلف اراضی58جدول 3-5: متوسط بارش سالانه در هر زیرحوزه به میلیمتر59جدول 3-6: درجه حرارت متوسط سالانه زیرحوزههابه درجه سانتیگراد60جدول (3-7)، محاسبه متوسط بارش سالانه ایستگاهها و مقادیر آنها در دوره بازگشتهای مختلف با استفاده از توزیع پیرسون III103جدول (3-8) محاسبه حداکثر بارش 24 ساعته ایستگاهها و مقادیر آنها در دوره بازگشتهای مختلف با استفاده از توزیع گمبل I104جدول 3-9: محاسبه عددی رابطه شدت- مدت- فراوانی ایستگاه برزند61جدول 3-10: شرح تیپهای اراضی حوزه آبخیز سمبورچای65جدول 3-11: راهنمای نقشه زمینشناسی و ضریب مقاومت سنگها به فرسایش66جدول 3-12: مقادیر رطوبت اولیه خاک در محل نمونهبرداری68جدول 3-13: مقادیر سرعت نفوذ لحظهای در آقامحمدبیگلو69جدول 3-14: متوسط سرعت ثابت نفوذ در زیرحوزهها بر حسب سانتیمتر بر ساعت70جدول 3-15: گروههای هیدرولوژیکی خاک در منطقه مورد مطالعه72جدول 3-16: مقادیر متوسط NDVI در هر زیرحوزه73جدول 3-17:پراکنش وسعت واحدهای کاری حوزه سمبورچای74جدول 3-18: رده آبراههها و طول آبراهه اصلی در هر زیرحوزه75جدول 3-19: مقادیر ضریب گراویلیوس در زیرحوزه75جدول 3-20: مقدار رواناب حاصل از شدت بارشهای نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10 سال77جدول 3-21: مقادیر حداکثر، حداقل و متوسط رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10 سال در حوزه آبخیز سمبورچای78جدول 3-22: متوسط بارش سالانه و فصلی حوزه آبخیز سمبورچای به میلیمتر78جدول 3-23: متوسط بارش سالانه و فصلی در زیرحوزههای منطقه مورد مطالعه79جدول 3-24: ارتفاع رواناب فصلی حوزه آبخیز سمبورچای بر حسب سانتیمتر79جدول 3-25: ارتفاع رواناب سالانه زیر حوزههای منطقه مورد مطالعه بر حسب سانتیمتر79جدول 3-26: ارتفاع رواناب فصلی زیر حوزههای منطقه مورد مطالعه بر حسب سانتیمتر80جدول 3-27: زمان تمرکز حوزه آبخیز سمبورچای81جدول 3-28: زمان تمرکز زیرحوزههای حوزه آبخیز سمبورچای81جدول 3-29: برآورد دبی پیک سیلاب با استفاده از روش دیکن81جدول 3-30: برآورد ضریب هر یک ازپارامترها درAHP82جدول 3-31: برآورد رابطه رگرسیونی بین جفت پارامترها83جدول 3-32: نتایج همبستگی مقایسه زوجی پارامترهای موثر در استحصال رواناب85جدول (3-33): مساحت و درصد طبقات87جدول 3-34: حجم رواناب سالانه و فصلی برای حوزه آبخیز سمبورچای بر حسب مترمکعب88جدول 3-35: حجم رواناب سالانه زیرحوزهها بر حسب مترمکعب88جدول 3-36: حجم رواناب فصلی زیرحوزهها بر حسب مترمکعب .........................................................89 فصل اول
مقدمه و مروری بر تحقیقات گذشته

1-1- مقدمه
مراتع یکی از مهمترین و با ارزشترین منابع طبیعی تجدیدشونده میباشند که نقش بسیار مهمی در حفاظت خاک، تولید آب، تولید گوشت و مواد لبنی دارند. علاوه بر آن محصولات فرعی مرتع همچون محصولات دارویی، صنعتی، خوراکی، حفظ حیاتوحش، تلطیف هوا، پایداری محیط زیست و نیز ذخیره ژنهای گیاهی از جمله استفادههای دیگری است که ارزش حاصل از آنها به مراتب از ارزش تولید علوفه‌ بیشتر بوده است (مقدم، 1377). بنابراین توجه به استفادههای چندگانه آن از طریق افزایش تولید و کاهش تخریب مراتع با بهرهبرداری صحیح و انجام عملیات اصلاح و احیاء امری ضروری و اجتنابناپذیر است.
به دلیل واقع شدن ایران در مناطق خشک و نیمهخشک کره زمین، تأمین آب شیرین سالم و کافی همواره مشکل بوده است. این واقعیت، سختی زندگی مرتعداران و مدیریت دام و بازدهی پایین تولید علوفه در مراتع را به دنبال داشته است. در مراتع مناطق جغرافیایی خشک و نیمهخشک دسترسی به آب مهم‌ترین اولویت است. این اهمیت فقط برای مصرف گلههای دامی نیست بلکه به خاطر زیستن و بقاء مرتع داران در این مناطق جغرافیایی نیز میباشد. مالکیت و حق استفاده از منابع آبی در این مناطق حداقل به اندازه حق بهرهبرداری از مراتع دارای اهمیت است. به همین دلیل آب اساسیترین نیاز بهرهبرداران از مراتع در مناطق خشک و نیمهخشک است (ایفاد، 2004).
در مراتع و به خصوص مراتع قشلاقی کشور، بحران کمبود آب برای مصرف انسان و شرب دام همیشه وجود داشته است. به طوری که بیان میشود ظرفیت مراتع برای تغذیه احشام در بسیاری از مراتع نقاط خشک بیشتر به علت کمبود آب آشامیدنی محدود میشود تا کمبود علوفه (آکادمی ملی علوم واشنگتن، 1364). استحصال آب تمیز از بارندگیهای خیلی کم و همچنین ذخیره کردن آب جمع آوری شده در یک منبع، از مزایای روش جمعآوری رواناب به شمار میآید (پیترسون، 1366). برخی دیگر نیز به کارگیری آب باران را برای رسیدن به توسعه پایدار منابع آب لازم میدانند و استفاده از آن را یک فنآوری کوچک مقیاس اقتصادی و کاربردی میدانند که در مناطق خشک و نیمهخشک به طور معنیداری به حفظ طبیعت و اکولوژی نیز کمک میکنند (اندرو، 2000). کشور ایران در منطقهای واقع است که متوسط بارندگی سالانه آن کمتر از یک سوم میزان بارندگی سالیانه جهان است و میزان آن 250 میلی‌متر گزارش شده است (کردوانی، 1379؛ محسنی ساروی، 1376).
رواناب آبخیزهای مرتعی از چند جهت دارای اهمیت میباشند. رواناب وقتی که در مخازن ذخیرهای جمع میشود، آب مصرفی دام را تأمین میکند. همچنین منبع آبی برای مناطق پاییندست یا مصارف محلی، صنعتی و کشاورزی در خارج از حوزه آبخیز را فراهم مینماید. رواناب به دلیل اینکه موجب شروع فرسایش، انتقال رسوب و مواد حل شدنی در درون رودخانه یا سد میباشد دارای اهمیت است. بنابراین، رواناب بیشترین آلودگی وارد شده به مسیر آب را تولید مینماید (محسنی ساروی، 1387).
جمعآوری آب باران، با اهداف و انگیزههای گوناگونی صورت میگیرد که هدف اصلی آن، بهینهسازی و مدیریت بهرهبرداری از آب باران بر اساس نیاز و مصرف است. بدین معنی که چون باران همواره و هر روز نمیبارد و یا بارش ناکافی است، از آن بهره برد. بدین ترتیب هر جامعه و هر کشوری که در این زمینه قدمهای بزرگ‌تر و مؤثرتری بردارد، موفقتر و آبادتر خواهد بود (طهماسبی و همکاران، 1385). جمعآوری آب باران نه تنها برای تأمین آب در ایام و روزهای بدون باران است، بلکه برای کنترل جریان رودخانهها و جلوگیری از آسیب رساندن به نواحی مسکونی و زراعتی پاییندست هم صورت میگیرد. همچنین برای تولید انرژی (برق) یا پرورش آبزیان جمعآوری میشود. در بسیاری از مناطق خشک و نیمهخشک با جمعآوری آب باران و تنظیم آن در بالادست حوزههای آبخیز، برای تقویت و بهبود عملکرد محصولات دیمکاری برنامهریزی میشود. بخشی از طرحهای آبخیزداری با همین هدف و نیز حفاظت آب و خاک صورت میگیرد. به این ترتیب امکان کوتاه کردن دورههای خشک به وجود میآید و دوره خشک سه ماهه، به دو ماه یا کمتر تقلیل مییابد و صدمه وارد شده به محصول یا هر نوع پوشش گیاهی کاهش پیدا میکند (طهماسبی و همکاران، 1384). امکان دارد جمعآوری آب باران برای تغذیه سفرههای آب زیرزمینی، چشمهها و قناتها باشد. برای این کار، در بالادست قنوات و چشمهها در آبراههها، با احداث بندهای کوتاه، ولی متعدد از حرکت و خروج سریع رواناب جلوگیری میشود. این سیلابها به تدریج در زمین نفوذ میکنند و باعث افزایش آب‌دهی قناتها و چشمهها میشوند و در نتیجه، از تبخیر آب و آلودگی آب جلوگیری میکنند. به علاوه افت سطح ایستایی را، که امروزه مسئله مبتلا به اکثر دشتهای کشور ما است را تا حدودی جبران میکند (طهماسبی و همکاران، 1384). استحصال آب عبارتست از جمعآوری و ذخیره نمودن بارش در زمینی که در آن به منظور افزایش رواناب تغییراتی اعمال شده است (مایرز، 1964).کوریر (1973) جمعآوری آب را فرآیند جمعآوری بارش طبیعی از آبخیزها برای استفاده مفید تعریف کردند.
مفاهیم هیدرولوژیکی قرار دادی نخستین بار در سالهای 1930 و 1940 زمانی که منابع جریان بالادست رودخانهها به عنوان عاملی موثر بر جریانهای پایین دست مورد توجه قرار گرفته بودند، توسعه یافته است. از آنجایی که اغلب فعالیتهای مربوط به کاربری اراضی با سوء استفاده از منابع و اثرات منفی بر پایین دست رودخانهها همراه میباشد لذا یک مبنای مناسب برای تصمیمگیری ضروری به نظر میرسد. مفهوم سطح منبع متغیر محدوده کاملی از جریانات دامنهای را در بر میگیرد. واقعیت این است که این مفهوم یک سیستم پویا و دینامیک است که دارای تغییرات زمانی و مکانی بسیاری میباشد و در شرایط بحرانی مختلف، وضعیتهای متفاوتی را در مسیرهای متنوع ارائه مینماید. پویایی جریانهای سیلابی تابعی از طول شیب و موقعیت گذرگاهها است. همچنین تراکم زهکشهای پویا در سطح حوزه در این امر بیتاثیر نخواهد بود به طوری که در طول یک بارش سنگین، تراکم زهکشی و طول شیب نقش فعالی را ایفا مینماید. تمام قسمتهای سطح یک حوزه آبخیز به طور مساوی در ایجاد رواناب دخالت ندارند. بسیاری از محققین درباره مفهوم سطح منبع متغیر تولید جریان رودخانهای، گزارشهای بسیاری را ارائه نمودهاند. در واقع این مفهوم فرض میکند که مناطق خاصی از سطح آبخیز در ایجاد رواناب دخالت دارند در صورتی که مناطق دیگر به عنوان مناطق تغذیه کننده و ذخیره کننده عمل میکنند (هولت، 1974). عوامل مهمی که در تعیین سطح تولید کننده رواناب دخالت دارند شامل وضعیت فیزیکی آبراهه، خصوصیات خاک و رگبار میباشد. کف درهها عموماً مناطقی هستند که در تولید رواناب دخالت دارند در حالی که سر یالها مناطق تغذیه کننده میباشند. مناطق بین کف درهها و سر یالها اغلب به عنوان مناطق دینامیکی مطرح میباشند که ممکن است در تولید رواناب یا در تغذیه آن شرکت نمایند. این مسأله بستگی به مقدار و خصوصیات موقتی رگبار، رطوبت قبلی و خصوصیات خاک منطقه دارد. میتوان گفت مناطق منبع، مناطقی هستند که پتانسیل بالایی برای تولید رواناب حتی با مقدار کمی بارش را دارند که میتوان با استفاده از سطح منبع متغیر، مناطق منبع یا مناطق تولید کننده رواناب را شناسایی و برای کنترل آلودگیها، استحصال رواناب، کودپاشی و دفع فاضلاب و مواد زائد کشاورزی استفاده کرد. همانطور که میدانیم برای حفظ کیفیت خاک در مراتع و تولید خوب علوفه نیاز به کودپاشی همواره احساس میگردد. با مشخص کردن مناطق تولید کننده رواناب میتوان مدیریت درست و اصولی را برای کودپاشی در نظر بگیریم و مناطق مورد نظر را با اطمینان با کاربرد کود زیاد مورد بهرهبرداری قرار داد و مناطقی که چنین اطمینانی وجود ندارد مشخص کند. همچنین یکی از عوامل اصلی تخریب مراتع و چرای بیش از حد مراتع، کمبود منابع آب در مراتع نمیباشد بلکه عدم توزیع یکنواخت منابع آبی در سطح مراتع میباشد که پس از مشخص شدن عرصههای تولید رواناب میتوان مدیریت جامعی را برای توزیع آبشخوار در مراتع انجام داد. از اهمیت دیگر تعیین سطح منبع متغیر جلوگیری از آلودگی در پایین دست حوزه آبخیز میباشد که با شناسایی مناطق منبع میتوان رواناب را در بالا دست حوزه آبخیز کنترل کرد. با دانستن این موضوع آبخیزدار قادر خواهد بود مناطقی را که میتوان با اطمینان با کاربرد کود زیاد مورد بهرهبرداری قرار داد و مناطقی که در آن‌ها چنین اطمینانی وجود ندارد مشخص کند. با همین روش مناطق مطمئن برای ریختن آشغال و فاضلاب، مواد زائد کشاورزی و دفن به آسانی انتخاب میشوند (محسنی ساروی، 1387).
1-2- هدف و ضرورت تحقیق:
امروزه تلاشهای بسیاری در جهت کاهش زمان و هزینههای مربوط به مکانیابی و تعیین مناطق بالقوه برای معرفی تکنیکهای جمعآوری در نواحی که نیازمند این فرآیند است مانند اکوسیستمهای کشاورزی آبی و دیم صورت پذیرفته است. سیستم اطلاعات جغرافیایی (GIS)، رویکرد مناسبی را ارائه مینماید، زیرا این سامانه قابلیت پردازش ساختارهایی برای جمعآوری، ذخیرهسازی، تحلیل و تبدیل دادههای مکانی و زمانی را به منظور اهداف خاص را دارا میباشد (پادماواتی و همکاران،1993؛کوسکان و موساگلو،2004). پیشرفت تکنولوژیهای کامپیوتری و بستههای GIS ای، امکان ارزیابی و درونیابی دادهها را در محدودههای تخصصی به منظور مدیریت مکانی و آنالیز دادهها را برای کاربران فراهم میسازد. بنابراین ترکیبی از خصوصیات مکانی حوزهها، راندمان بالاتری را در پردازش هیدرولوژیکی منطقه به همراه دارد. بدین ترتیب پتانسیل کاربرد GIS برای مدل‌سازی هیدرولوژیکی به ویژه هنگامی که دقت و صحت مدلسازی توسط برآوردهای توزیع مکانی و زمانی پارامترهای منابع آبی تحت تأثیر قرار گرفته باشد قابل ارزیابی میباشد (کلارک و گانگوداگامگ، 2001).
برای مشخص کردن مکان مناسب اجرای برنامههای مختلف با استفاده از GIS لازم است به شرایط مورد نیاز برای هر برنامه توجه شود و سپس نقشههای مختلف را با هم تلفیق کرد تا مکان مناسب اجرای طرحها مشخص شود. از اینرو انجام این پژوهش میتواند دستورالعمل مناسبی را در اختیار مرتعداران جهت تأمین آب از طریق روشهای استحصال آب باران قرار دهد. استفاده از GIS علاوه بر افزایش دقت، سبب افزایش سرعت انجام کار، تنوع و کیفیت بهتر ارائه نتایج، کاهش هزینهها، بایگانی و تکثیر راحتتر آن‌ها میگردد. بنابراین این پژوهش با اهداف زیر صورت گرفته است:
1- کارآیی GIS در مدیریت منابع طبیعی برای ذخیره ، تجزیه و تحلیل ، تلفیق دادهها و ارائه نتایج حاصل از اطلاعات، با تأکید بر ذخیره نزولات آسمانی در سطح مراتع.
2- مکانیابی عرصههای مناسب برای استحصال آب باران در سطح حوزه آبخیز.
3- توزیع و مدیریت مناسب آب باران با استفاده از الگوی سطح منبع متغیر.
1-3- تعریف استحصال رواناب و اهمیت بررسی آن
در نظر عامه استحصال آب به صورت زیر تعریف میشود: جمعآوری روانابها از سطح بامها، زمینها و همچنین آبهای گذران فصلی جهت استفاده از روانابها.
جمعآوری آب باران عبارت است از مجموعه اقدامات و عملیات و فعالیتهایی که به ذخیره شدن روانابهای سطحی ناشی از بارش در داخل بانکتها، سطح تراسها و درون حوضچهها و استخرهای ذخیرهی آب برای مصارف گوناگون منجر میشود. این آب برای آبیاری محصولات و مصارف خانگی و ... ذخیره میشود تا در ایام بیباران، کمبود آب حدالامکان جبران شود (طهماسبی و همکاران ، 1385).
در تعریف جمعآوری آب باران بین متخصصان آبشناسی و آبیاری اختلاف نظر وجود دارد. بعضی از این کارشناسان حتی احداث سدهای مخزنی را هم در زمرهی کارهای جمعآوری آب باران میدانند (کلاف،1979). بسیاری از تحقیقات در هند و پاکستان و فلسطین اشغالی نشان میدهد که تلاش اصلی در این جهت است که مردم ساکنان مناطق خشک و نیمهخشک، با فناوری و روشهایی آشنا شوند که از بارندگی موجود با ایجاد رواناب بیشتر، جمعآوری مناسب، ذخیرهی سریع‌تر و عملیتر و محافظت در مقابل تبخیر و هدررفت، به آب بیشتری دسترسی پیدا کنند و امکان استمرار زندگی آن‌ها با حفظ الگوی کشاورزی و دامپروری محقق گردد (حسینی ابریشمی، 1373).
باید توجه داشت در اکثر مناطقی که آب به اندازهی کافی وجود ندارد، به دلیل تراکم کم جمعیت، زمینهای بسیاری وجود دارد، در نتیجه حداقل 5 تا 20 برابر آنچه که میتوان با آب باران موجود و آب زیرزمینی و ... به زیر کشت برد، زمین موجود است. بنابراین امکان تخصیص بخشی از اراضی برای جمعآوری رواناب و سیلاب در بسیاری از این مناطق وجود دارد (طهماسبی و همکاران، 1385).
جمعآوری آب باران به روشهای گوناگونی انجام میشود. در مناطق خشک و نیمهخشک، کمبود آب با جمعآوری آب باران تا حدودی قابل جبران است، این کار شامل ایجاد رواناب، جمعآوری و ذخیره و حفاظت از آب ذخیرهشده است تا به مصرف گیاه و محصول مورد نظر برسد، یعنی از یک طرف در حد امکان در عمق ریشه و در دسترس ریشه ذخیره شود و از طرف دیگر در سطح خاک خیلی راکد باقی نماند که تبخیر شود (طهماسبی و همکاران، 1385).
جمعآوری آب باران در مفهوم گسترده، کلیه روشهای مربوط به متمرکز کردن، ذخیرهسازی و جمعآوری رواناب حاصل از آب باران را به منظور مصارف خانگی و کشاورزی را دربر میگیرد (راکشتورم، 2000؛ شودرلند و فن، 2000). این سیستمها میتوانند در سه گروه عمده طبقهبندی شوند: 1- حفظ رطوبت در مکان (حفاظت آب و خاک) 2- تمرکز رواناب به منظور کشت محصولات در سطح زمین 3- جمعآوری و ذخیره رواناب از سقفها و سطح زمین (در ساختارهای مختلف به منظور مصارف خانگی و کشاورزی) (فالکن مارک و راکشتورم، 2004).
استفاده تولیدی نیز شامل تأمین آب شرب و ذخیره آن، تمرکز روانابها برای گیاهان، درختچهها و درختان و یک استفاده کمتر متداول یعنی پرورش ماهی و اردک میباشد.
واژه استحصال آب برای اولین بار توسط گدس (1963) به کار برده شد، اگر چه این واژه یک واژهی هیدرواگرونومی است، اما هنگامی که برای مهار رواناب سطحی به کار برده شود، میتوان آن را جزو واژگان هیدرولوژی به حساب آورد. علت این امر مبتنی بر توان بالقوه استحصال آب در تأمین و حفاظت آب، مهار سیلابها و فرسایش خاک است. مایرز (1975) و پاسی و کالیس (1986) بر اساس تعریف گدس، "جمعآوری و ذخیره هر نوع رواناب سطحی برای مصرف در کشاورزی" را استحصال آب نامیدهاند.
تعاریف فوق هر چند دارای مفهوم گستردهای است اما بیانگر تعریف کاملی از استحصال آب نمیباشد، زیرا جمعآوری و ذخیره روانابهای سطحی تنها نمیتواند با هدف مصرف آب برای کشاورزی و محدود به آن باشد. از این رو متخصصین زیادی سعی در ارائه‌ی تعاریف جامعتر و گویاتر بعد از تعریف ارائه شده توسط گدس نمودند. به نحوی که هر یک با هدف ویژه مورد نظر خود تعاریفی را بیان داشتهاند (اسمعلی و عبداللهی، 1389).
پاسی و کالیس (1986) با محدود کردن موضوع استحصال آب به جمعآوری آب باران و روانابهای ناشی از آن از طریق احداث سطوح آبگیر کوچک مقیاس که نزولات جوی مستقیما بر آن‌ها نازل میشود، به صورت "جمعآوری و ذخیره آب باران در محل نزول، جهت تأمین آب برای مصارف مختلف" تعریف کردهاند.
مایرز (1964) بیان داشت "به فرآیند جمعآوری و ذخیره بارش از زمینی که به منظور افزایش رواناب حاصل از باران و ذوب برف دست‌کاری شده باشد" را استحصال آب گویند.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

هادسون (1981) با ارائه تعریف مشابه، استحصال آب در محل نزول ریزشهای جوی و در اولین مراحل تشکیل روانابهای سطحی را به عنوان استحصال آب برای تأمین و حفاظت آب تلقی نموده است.
با توجه به تعاریف فوق استحصال آب مشتمل بر جمعآوری ذخیره و بهرهبرداری از آبهای جمعآوری شده است که منشأ آبهای استحصالی نیز بارشهای جوی و روانابهای ناشی از آن‌ها در اولین مراحل تشکیل و قبل از پیوستن به رودخانههای دائمی است.
الگوهای بارش در نواحی نیمهخشک از لحاظ پراکنش مکانی و زمانی، غیرقابل پیشبینی هستند. بنابراین برای دستیابی به یک مدیریت موفق، کنترل رواناب از اهمیت بسیار بالایی برخوردار میباشد (امبیلینی و همکاران، 2000). گذشته از این، با توجه به اینکه در چنین مناطقی، حجم اندکی از بارندگی به ناحیه ریشه میرسد، تولید ضعیف محصول و حتی در برخی موارد، عدم موفقیت محصول میتواند از جمله عوامل محدود کننده در چنین مناطقی باشد که استحصال آب از رواناب باران می‌تواند به مشکل کم آبی در منطقه کمک کند (راکشتورم ،2000). مورد دیگر مربوط به توزیع بارندگی میباشد. توزیع بارندگی فرآیندی در خصوص تکرار بارش در فصل خشک میباشد که در چنین مناطقی قابلیت دسترسی آب در خاک در طول فصل رشد، ضعیف میباشد (راکشتورم، 2000). این امر موجب کاهش پتانسیل تولید محصول و در شدتهای زیاد موجب افزایش خطر نابودی محصول میگردد. به این ترتیب کنترل و جمعآوری رواناب در این مناطق از اهمیت زیادی برخوردار است، زیرا حجم رواناب دریافتی میتواند به طور موثری برای حمایت از محصولات کشاورزی طی یک روش محیطی و اقتصادی مناسب، بهرهبرداری گردد (زیادت و همکاران، 2006).
این واقعیت که بارش باران در مناطق خشک و نیمهخشک بسیار ناچیز است و یک میلی‌متر آب ذخیره شده برابر یک لیتر در مترمربع است. اهمیت ذخیرهی آب، جدا از مقدار آب جمعآوری شده، مشخص میشود. از میان سه عامل خاک، آب و انرژی خورشیدی، آب مهمترین عامل محدود کننده تولیدات گیاهی در مناطق خشک است. در بسیاری از نقاط کشور به علت عدم وجود منابع با کیفیت مناسب آب، زندگی و حیات عدهی زیادی از مردم به بهرهبرداری از رواناب و استحصال آب بستگی دارد. به عنوان مثال در منطقه چابهار جمعیتی معادل 338407 نفر از طریق استفاده از رواناب و سیل که با مشارکت اهالی احداث شده، به حیات خود ادامه میدهند (ازکیا، 1374). در شهرستان بیرجند، 82 هزار هکتار اراضی دیم گندم با استفاده از آب باران و بندسار به وجود آمده است. در گناوه حوزه آبخیز درهی گپ، با استفاده از بندسارها به کشت خرما اشتغال دارند (صفاری، 1383). در کل منافعی که مردم از جمعآوری آب دارند، بر زندگی اجتماعی و اقتصادی آن‌ها موثر است و نقش کلیدی در احیا و جلوگیری از تخریب زمینها توسط فرسایش آبی و بادی و ایجاد زمینهای بایر دارد.
هنگامی که استحصال آب برای ذخیرهسازی آن در توده خاک مد نظر باشد، در این صورت سهولت دسترسی گیاهان به آب را دنبال خواهد داشت. نتایج تحقیقات انجام شده بر این نکته تاکید دارند که میزان آب موجود در پروفیل خاک، به ویژه در عمق سطحی خاک، تابعی از رطوبت موجود در عمقهای زیرین است و استحصال ریزشهای جوی در محل نزول، عامل اصلی در افزایش رطوبت مورد نیاز گیاهان در محل استقرار آن‌ها تلقی میشود. این موضوع در شرایطی که میزان بارندگی در فصل رشد گیاهان کافی نباشد، از اهمیت بیشتری برخوردار بوده و ذخیره رطوبت در خاک در فصول پرباران تا حد قابل توجهی نیاز گیاهان را تأمین میکند (راویتز و همکاران، 1981).
در انتخاب روش، قبل از هر چیز جنبههای فرهنگی و اجتماعی باید مورد توجه قرار گیرد، زیرا در موقعیت و شکست فنآوریها اثر میگذارد. از این رو باید به خواستها و علائق مردم و همچنین هزینههای لازم توجه خاص به عمل آید. علاوه بر ملاحظات اقتصادی، اجتماعی و فرهنگی، در یک برنامه استحصال آب رعایت جنبههای فنی که باعث پایداری میشود، از اهمیت والایی برخوردار است و باید مورد توجه قرار گیرد.
با توجه به اهمیت جمعآوری آب باران در ایران و استفاده از آن در کشاورزی و شرب به چند نکته اشاره میکنیم:
1- هدر رفتن 40 تا 50 میلیارد متر مکعب در سال از آبهای سطحی کشور.
2- فروکش کردن سطح سفره آب زیرزمینی و ضرورت تغذیه بیشتر آن.
3- شور شدن اراضی در بعضی از مناطق مثل خوزستان که رواناب کشور به دلیل جمعآوری نشدن در بالا دست، به آن مناطق سرریز و باعث شور شدن اراضی میشود.
4- ضرورت ایجاد اشتغال در حوزه کشاورزی و منابع طبیعی کشور و تأمین آب در حکم اولین عامل مورد نیاز و اولین عامل امکانسنجی.
5- ضرورت افزایش سرانه پوشش جنگلی که در جهان 7/0 تا 8/0 هکتار برای هر نفر و در ایران 2/0 یا کمتر از آن برای هر نفر است.
6- حفاظت خاک و حفظ حجم مفید مخازن سدهای ساخته شده و در دست احداث.
7- عقب بودن سیستم شبکههای آبیاری و زهکشی، به طوری که از حدود 26 میلیارد مترمکعب جمعآوری شده به کمک سدها، تنها 6 میلیارد مترمکعب در سیستمهای مهندسی آبیاری و زهکشی جریان مییابد.
8- وسعت کشور و اهمیت حفاظت آن در همه مناطق مستعد از نظر بهرهبرداری و مسائل امنیتی.
9- اهمیت سرمایهگذاریهای کوچک با جمعآوری آب باران، به خصوص در مناطق محروم.
10- اهمیت جمعآوری آب از نظر مسائل زیست محیطی تا بسیاری از آلودگیهای وارد شده به سدها را کنترل کند. مثال بارز این آلودگی، سد قشلاق سنندج است که در اثر جریانهای فصلی، آلوده شدهاست.
11- کنترل و مهار رواناب برای کنترل سیلاب و کاهش خسارتهای وارد شده به اراضی کشاورزی، مناطق مسکونی و ساختمانها و تأسیسات راهها.
1-4- مزایای بهرهگیری از سیستمهای استحصال آب
تحقیقات نشان داده است که اگر از سیستمهای بومی موجود استفاده شود و اطلاعات جدید به استفادهکنندگان انتقال یابد و انجام روشها هدفمند باشد، به بهینهسازی مصرف آب کمک میکند (اسمعلی و عبداللهی، 1389) به طوری که:
برای بیابانزدایی نیازمند به برنامهریزی دراز مدت است. با احیا و توسعهی سیستمهای استحصال آب، بین مقابله با بیابانزایی و توسعه استفاده از منابع آب، هماهنگی به وجود میآید.
باعث هماهنگی بین منافع اکولوژیکی، اقتصادی و اجتماعی میشود. زیرا که به افزایش پوشش گیاهی، بهبود وضع معیشتی و ایجاد مشارکت و همدلی بین مردم میانجامد.
با اجرای این شیوه یک مدیریت تدریجی در منابع حاصل میشود.
انجام پروژه به خودکفایی و احیای اقتصادی منجر و باعث تداوم برنامهها و مدیریت بیشتر میشود.
از تخریب مراتع و فرسایش خاک جلوگیری میشود.
راندمان استفاده از منابع افزایش مییابد.
اراضی تخریب یافته و زمینهایی که منشا رسوباند، با هزینه کمی احیا میشوند.
برداشت از سفرههای زیرزمینی کاهش یافته و بین برداشت و تغذیه هماهنگی به وجود میآید و روند شوری کاهش مییابد (به واسطهی استفاده از آب با کیفیت بالا).
1-5- سیستم اطلاعات جغرافیایی (GIS)
برنامهریزی جهت انجام هر کاری نیازمند داشتن اطلاعات مربوط به آن است که این نیازمندی برای استفادههای انسان از سرزمین نیز صادق است. بدون داشتن اطلاعات مربوط به منابع اکولوژیکی اساساً نمی‌توان بخشهای دیگر فرآیند برنامهریزی استفاده از سرزمین را انجام داد. گردآوری اطلاعات در ابتدا با آماربرداری و نمونهبرداری از منابع انجام میشد، اما برنامهریزی دقیق و بهتر نیازمند اطلاعات مکانی از منابع یا اطلاعات فضایی منابع میباشد که آن را برنامهریزی با نقشه میگویند. سیستم اطلاعات جغرافیایی در دهه 1970 برای فراهم آوردن قدرت تجزیه و تحلیل مقادیر زیادی از دادههای جغرافیایی توسعه یافتند. مرور علمی بر به کارگیری GIS در جهان نشان میدهد که طراحی و توسعه این سامانه در سال 1963 در کانادا آغاز شد و در سال 1965 به صورت اجرایی در آمد. اولین نمونه GIS در کشور کانادا تحت عنوان CGIS نامیده شد. در حال حاضر این سیستم در بسیاری از کشورهای جهان به طور گستردهای مورد استفاده قرار میگیرد. گستردگی مفهوم و زمینههای کاربرد این سامانه موجب شده است تا واژهGeo Information Sys-- نیز به آن اطلاق و به طور روزافزونی در منابع علمی مورد استفاده قرار میگیرد. لازمه استفاده از GIS داشتن دانش کافی از مبانی، اصول و سازماندهی آن است و نیز آگاهی از قابلیتها و محدودیتهای آن میباشد (مخدوم، 1380).
1-5-1- تعریف GIS
برای GIS تعاریف مختلفی ارایه شده است که به برخی از آن‌ها اشاره میگردد:
مجموعهای از ابزارهای قوی برای گردآوری، ذخیرهسازی، بازخوانی، تغییر شکل و نمایش دادههای مکانی مربوط به جهان واقعی و برای اهداف مشخص میباشد (بوروغ، 1996).
GIS یک سیستم کامپیوتری برای ورود، ذخیرهسازی، بازیابی، آنالیز و نمایش دادههای مکانی است (کلارک، 1986).
به طور کلی GIS برای جمعآوری و تجزیه و تحلیل دادههایی استفاده میشود که موقعیت جغرافیایی آن‌ها یک مشخصه اصلی و مهم محسوب میشود. وظایف یک GIS در چهار گروه کلی شامل کسب، نگهداری، تجزیه و تحلیل و تصمیمگیری میباشد. GIS میتواند به عنوان ابزار سودمند و مفید در جهت نیل به اهداف خاص مورد استفاده قرار بگیرد، همچنین این سامانه میتواند به عنوان واسطه و پلی بین اطلاعات خام و مدلهای جمعآوری رواناب جهت خروج مطمئن دادهها و پردازش آن‌ها به کار گرفته شود، که این سامانهها دارای دو ویژگی هستند:
- ایجاد ارتباط دو طرفه بین اجزای نقشه و دادههای مربوط به آن‌ها در پایگاه دادهها.
- انجام تحلیل بر اساس دادههای موجود و اجرای مدلهای مختلف در منطقه مورد بررسی و کمک به پژوهشگران در ایجاد مدلهای نوین و منطبق با ویژگیهای محل.
1-5-2- مزایای استفاده از GIS
با استفاده از محیط GIS و امکانات نرمافزاری و سختافزاری این سیستم و همچنین با پیاده کردن راهحلهای ریاضی و منطقی در GIS میتوان مدلهای تجربی را به صورت رقومی در یک چارچوب قابل پردازش ارائه کرد.
ویژگی بارز و با ارزشی که GIS را از دیگر سیستمهای اطلاعاتی جدا میسازد، توانایی به کارگیری توأم دادههای مکانی و توصیفی است. توانایی مدیریت عوارض جغرافیایی با مقیاسهای مختلف، از ابزارهای دیگر GIS است که در علوم مختلف کاربرد فراوان دارد.
از نکتههای بسیار مهم در به کارگیری GIS، محاسبه ارزشهای وزنی برای عوامل مختلف حوزه آبخیز است. علاوه بر این GIS به هنگامسازی دادههای وارد شده را در هر زمان امکانپذیر میسازد. بدین ترتیب در صورت هر گونه تغییر در سیمای طبیعی زیرحوزهها، با دخالت آن‌ها میتوان نتایج جدیدتر را اخذ کرد.
1-6- مرور منابع
آکادمی ملی علوم واشنگتن (1985) نشان داد که بهبود منابع تأمین آب شرب در مراتع نیمهخشک یا نقاط دوردست حوزه آبخیز، ارزش چراگاهی آن‌ها را بالا میبرد و استفاده کاملتر از علوفه آن‌ها را امکانپذیر میسازد.
ریسزوو همکاران (1991) نسبتهای مختلف سطح جمعآوری کننده آب باران به سطح زیر کشت را مورد بررسی قرار داده و نتیجه گرفتند عملکرد محصول با نسبت 1 به 1 در مقایسه با شاهد 71/1 برابر عملکرد محصولات غلات شده است.
بور (1994) با انجام آزمایشاتی در پاکستان، سیستم جمعآوری آب باران برای درخت پسته، سطح مناسب جمعآوری کننده رواناب باران را برای منطقهای با بارش متوسط سالانه 240 میلی‌متر، 40 متر مربع ذکر کرده است.
گوپتا (1994) اثر اقدامات و عملیات استحصال آب باران را برای گیاه Neem در مناطق بیابانی هند را مورد بررسی قرار داده و نتیجه گرفت که تولید بیوماس گیاه Neem تا 4 برابر و از 69/1 تن در هکتار به 3/6 تن در هکتار رسید.
بور و بنعاشر (1996) تحقیقات مشابه را در فلسطین اشغالی و نیجر برای محصولات مختلف انجام دادهاند و سطح مناسب جمعآوری کننده رواناب و مقدار تلفات نفوذ عمقی در سالهای پرباران، با باران متوسط را محاسبه کردهاند.
اسچیتکاک و همکاران (2004) تأثیر تکنیکهای جمعآوری آب با حفظ آب و خاک در جنوب استرالیا را مورد مطالعه قرار دادند و به این نتیجه رسیدند که به ویژه در سالهای خشک در حوزه ایمپلوویوم میتوان آب مورد نیاز برای آبیاری تکمیلی را برای کشت درخت زیتون فراهم کنند به شرط آنکه با توجه به بارش متوسط 235 میلی‌متر، نسبت حوزه آبخیز به تراسهای جمعآوری کننده رواناب حداقل 4/7 باشد.
وینار و همکاران (2005) به بررسی پتانسیل حوزه آبخیز توکلا در جنوب آفریقا برای جمعآوری آب باران از طریق GIS پرداختند و به این نتیجه رسیدند که 18 درصد از منطقه پتانسیل بالایی برای تولید رواناب دارد.
ذاکاری و همکاران (2007) به مقایسه مدل ارزیابی آب و خاک (SWAT) و مدل ابزار یا ارزیابی آب و خاک با سطح منبع متغیر (SWAT-VSA) به پیشبینی رواناب در منطقه کانونسویل در شمال نیومکزیکو پرداختند. آنها همچنین رواناب لحظهای، رواناب سطحی و سفره آب زیرزمینی که در سطح بالاتر از دیگر سفرههای آب زیرزمینی قرار گرفتند را نیز با استفاده از دو مدل فوق مورد بررسی قرار داده و به این نتیجه رسیدند که مدل تلفیقی SWAT-VSA پیشبینی بهتری را انجام میدهد. آنها همچنین نتیجه گرفتند که مدل SWAT-VSA جهت ارزیابی و راهنمایی و مدیریت منابع آبی کاربردیتر است و میتواند به طور دقیقتری پیشبینی کند که رواناب از کجا آغاز میشود تا به صورت بحرانی تحت مدیریت قرار بگیرد.
شیائو و همکاران (2006) اثر جمعآوری آب باران و آبیاری تکمیلی را برای کشت گندم در بهار در هایونچین را مورد ارزیابی قرار داده و نشان دادند که استفاده از آب ذخیره شده برای آبیاری تکمیلی برای کشت در فاروهای بین خطالرأسها 5/5 تا 8/5 درصد بوده است ولی در کشت در گودالهای بر روی خطالرأسها 4/9 تا 6/9 درصد بوده است. آن‌ها به این نتیجه رسیدند که با استفاده از آب باران جمعآوری شده میتوان میزان آب استفاده شده در روش کشت در گودالهای بر روی خطالرأسها را 40/4 درصد در مقابل کشت در فاروها بهبود بخشید.
امبیلینی و همکاران (2007) به مکانیابی مناطق دارای پتانسیل خوب برای جمعآوری آب باران پرداختند و به این نتیجه رسیدندکه 6/23 درصد از حوزه آبخیز ماکانیا در منطقه کلیمانجارو تانزانیا بسیار مناسب برای جمعآوری آب باران میباشد.
ونگ کاهیندا و همکاران (2007) اثر جمعآوری آب باران و آبیاری تکمیلی به منظور افزایش بهرهوری کشاورزی وابسته به باران در مناطق نیمهخشک زیمباوه را بررسی و نتیجه گرفتند که آبیاری تکمیلی ریسک ناشی از شکست کامل محصول از 20 درصد را به 7 درصد کاهش داده و تولید آب از رواناب باعث افزایش تولید محصول از 75/1 کیلوگرم در مترمکعب به 3/2 کیلوگرم در مترمکعب با توجه به کاهش بارندگی درون فصلی شده است.
استورم و همکاران (2009) اقتصادی بودن برداشت آب باران به عنوان منبع آب جایگزین در سایت روستایی در شمال نامبیا را مورد بررسی قرار دادند. در این تحقیق که سقف آهنی موجدار پشت بامها به عنوان مناطق جمعآوری آب باران استفاده شده به این نتیجه رسیدند که این سیستمها از نظر اقتصادی امکانپذیر میباشند.
اسماعیلی (1997) اثر روشهای مختلف استحصال آب باران در عرصههای منابع طبیعی تجدید شونده در آذربایجان شرقی را مطالعه کرده و نتیجه گرفت که این روشها باعث افزایش سبز شدن بذور مرتعی تا میزان 5 برابر شده است.
گازریپور (1997) جمعآوری آب باران برای کشت درخت بادام در منطقهای با بارندگی سالانه 200 میلی‌متر را بررسی کرده و نتیجه گرفت در حوضچههایی با شیب 2 تا 5 درصد، عملکرد بادام تا 40 درصد نسبت به سطح شاهد افزایش داشته است.
طهماسبی و همکاران (1384) رابطه مشخصات اقلیمی، خاک و نیاز آبی ذرت علوفهای (SC 704) در منطقه لشگرک برای طراحی سیستم جمعآوری آب باران در مناطق خشک و نیمهخشک را مورد بررسی قرار دادند و با توجه به دوره رشد گیاه، نیاز آبی، عمق خاک و عمق ریشه نسبت سطح جمعآوری کننده رواناب به حجم مخزن یا استخرهای سرپوشیده مورد نظر برای تأمین حداقل یک سوم تا حدود دو سوم آب مورد نیاز گیاه به ترتیب در سالهای خشک و سالهای پرباران را محاسبه کردهاند.
طهماسبی و رجبیثانی (1385) جمعآوری آب باران در عرصههای طبیعی را راهحلی برای رفع مشکل کم آبی در مناطق خشک و نیمهخشک دانسته و بر اساس مطالعهای که در حوزه آبخیز لتیان انجام داد مناسبترین سطح جمعآوری کننده رواناب برای گیاهان مختلف و نیاز آبی معین را بدست آورد و با انجام پژوهشی مشخص شد چنانچه بخشی از آب باران در استخری ذخیره شود امکان توسعه سطح زیر کشت درختان در مناطق خشک و نیمهخشک وجود دارد.
صادقی و همکاران (1385) به مقایسه دیمزارها و مراتع فقیر در تولید رواناب و رسوب در تابستان و زمستان را با استفاده از بارانساز مصنوعی در حوزه گرگک در استان چهار محال بختیاری انجام دادند و به این نتیجه رسیدند که میزان رواناب و رسوب در فصل تابستان در مراتع فقیر در سطح اعتماد 99 درصد بیشتر از دیمزارها میباشد در صورتی که در فصل زمستان تولید رواناب و رسوب در دیمزارها در سطح اعتماد مشابه بیشتر از مراتع فقیر میباشد.
مدیریت منابع تجدیدشونده و توسعه پایدار امروزه نیازمند مناسبترین و سریعترین روش تهیه و تلفیق اطلاعات جهت مدیریت بهینه و برنامه‌ریزی‌های خود میباشد. در این زمینه سیستم اطلاعات جغرافیایی (GIS) میتواند این نقش را به خوبی به عهده گیرد (نامجویان، 1381).
1-7- طبقهبندی روشهای استحصال آب باران و سامانه سطوح آبگیر
با توجه به منشأ اصلی آب، سامانههای سطوح آبگیر باران به چهار گروه به شرح زیر تقسیم میشوند (ریج و همکاران، 1987):
الف- سامانه ویژهی استحصال آب رودخانههای دائمی و فصلی.
ب- سامانه ویژه استحصال آب از منابع زیرزمینی و روانابهای زیر قشری.
ج- سامانههای ویژه استحصال مستقیم آب باران در محل نزول و یا در اولین مراحل تشکیل روانابهای سطحی و ورقهای شکل.
د- سامانه ویژهی استحصال تندآبها و سیلابها به صورت روانابهای سطحی متلاطم و متمرکز در پای دامنههای شیب‌دار، خشکهرودها، آبراههها و مسیلها.
افزون براین، سامانههای سطوح آبگیر باران را میتوان از لحاظ موقعیت محل استقرار، نوع تیمارهای مصنوعی در سطوح آبگیر، شکل ظاهری، چگونگی عملکرد، کاربرد و نوع رواناب (از لحاظ عمق و حجم جریان آب) به شرح زیر طبقهبندی کرد (اسمعلی و عبداللهی، 1389):
الف- سامانههای سطوح آبگیر باران با سطح تیمار شده (مصنوعی)، شامل:
الف-1- سامانههای جمعآوری آب باران برای ذخیرهی آب جهت مصارف شرب و خانگی.
الف-2- سامانههای جمعآوری آب باران برای ذخیره رطوبت در پروفیل خاک جهت زراعت، درختکاری و احیای پوشش گیاهی در مراتع از طریق استحصال مستقیم ریزشهای جوی در محل نزول و یا روانابهای سطحی و ورقهای.
ب- سامانههای سطوح آبگیر باران با سطح آبگیر طبیعی شامل:
ب-1- سامانههای جمعآوری آب باران و روانابهای نسبتاً متلاطم برای آبیاری تکمیلی و یا زراعت سیلابی از طریق ذخیره رطوبت در پروفیل خاک و یا تغذیه مصنوعی آبخوانهای نیمهعمیق و استحصال آب از طریق چاههای دستی.
ب-2- سامانههای جمعآوری آب باران و روانابهای متلاطم از طریق ذخیره آب در حوضچهها و مخازن سطحی، جهت تأمین آب شرب دامها و آبیاری تکمیلی.
ب-3- سامانههای جمعآوری آب باران و روانابهای متلاطم پرحجم با هدف پخش سیلاب جهت زراعت نیمهدیم، احیای پوشش گیاهی در مراتع، ایجاد مراتع مشجر و جنگلکاری در مناطق خشک و نیمهخشک.
ب-4- سامانههای جمعآوری آب باران و روانابهای سطحی با سطوح آبگیر تلفیقی (مصنوعی و طبیعی) جهت ذخیره رطوبت در پروفیل خاک برای زراعت، احیای مراتع، تغذیه آبخوانهای نیمه عمیق و یا ذخیرهسازی آب جهت مصارف مورد نظر.
ج- سامانههای سطوح آبگیر باران زیرزمینی، شامل:
ج-1- سامانههای کاریز یا قنات.
ج-2- سامانه چاه افقی.
علاوه براین، برخی از متخصصین استحصال آب، سامانههای سطوح آبگیر باران را از نظر شکل و کاربرد به گروههای متفاوتی تقسیم کردهاند. به نحوی که در این خصوص مهمترین تقسیمبندی انجام شده شامل موارد زیر است(اسمعلی و عبداللهی، 1389):
1- سامانههای سطوح آبگیر باران مصنوعی جهت جمعآوری آب برای تأمین آب شرب انسان و دام و مصارف خانگی.
2- سامانههای سطوح آبگیر مصنوعی و تیمار شده جهت جمعآوری آب برای تأمین آب کشاورزی و ذخیره رطوبت در پروفیل خاک با هدف احیای پوشش گیاهی در مراتع و جنگلکاری در مناطق خشک و نیمهخشک.
لازم به توضیح است که منظور از سطوح آبگیر تیمار شده، سطوح آبگیری هستند که با انجام یک سری اقدامات نظیر تسطیح، جمعآوری سنگریزه و بقایای گیاهی، کوبیدن و فشردن خاک، سنگفرش و ایجاد سطح غیرقابل نفوذ با استفاده از مواد شیمیایی، سیمان، مالچهای نفتی و ... آماده میشوند.
1-8- انواع سازههای استحصال آب
به طور کلی انواع سازههای استحصال آب باران را میتوان به شرح زیر بیان کرد (اسمعلی و عبداللهی، 1389):
1- بند مخزنی: روش جمعآوری آب به وسیله بند به شکل گسترده در بسیاری از مناطق کشور رواج دارد. با وجود این، متاسفانه آموزش افراد بومی در مهارتهای تکنیکی همگام با اجرای این فن پیش نرفته است، در نتیجه نگهداری و بهرهبرداری از مخازن بیشتر به عهدهی سازمان مرکزی حکومت است.
2- بند رسوبگیر و تنظیمکننده: ثابت شده است در نواحی خیلی خشک، رسوبگیرها موثرتر و قابل اعتمادتر از سیستمهای دیگر جمعآوری آب هستند. با وجود این، کم بودن حجم ذخیره رسوبگیرها ممکن است مانعی برای استفاده از این روش در کشاورزی روی زمینهای وسیع باشد.
3- حفیره: حفیره را میتوان به آسانی طراحی و ساخت. به طوری که این گونه مخازن قادرند با غرقاب کردن زمین، حجم نسبتا زیادی آب را ذخیره کنند. در مناطق نیمهخشک استفاده از حفیره به خاطر سهولت احداث و به کارگیری آن در سیستمهای یکپارچه برای محصولات و کاشت گیاهان مرتعی مناسبتر است.
4- هوتک: هوتکها در اساس پشته خاکی کوچکی است که در قسمتهایی که سیلاب جاری میشود ساخته میشود (کوثر، 1374).
5- خوشاب: در بخش جنوبشرقی ایران این سیستم سنتی به منظور زراعت سیلابی به کار گرفته شده است.
6- سازههای مهندسی: این سازهها دایرههای کوچک یا مربع در روی زمیناند که با ملات آهک و یا سیمان و آهک و ماسه معمولی و ... ساخته میشوند و با به کارگیری آهن و شبکههای آهنی، ورودی و خروجی آنها محافظت میشوند.
7- سازههای تراوشی: یک روش بینظیر ذخیره آب و حفظ رطوبت در پروفیل عمیق و مناسب خاک است که توسط موانع طبیعی حوزهی آبخیز احاطه شدهاند. در این سیستم، رواناب بالادست و سطوح سنگی، در پایین درهها و موانع متوالی جمع میشود و برای ایجاد زراعت در سطح آنها استفاده میشود.
8- سازههای عرضی: که شامل احداث سازههای عمود بر جهت جریان است که یک مقطع خاکریزی همراه با سرریز بوده و برای نگهداشت آب به منظور غرقاب کردن اراضی بالادست در طی فصل بارانی به کار میرود.
9- آهار: در واقع مجموعهای از خاکریزهای به ارتفاع 3 مترند که در اراضی با شیب بسیار کم بر روی خطوط تراز احداث میشوند و طول خاکریزها در برخی موارد به چندین کیلومتر میرسد.
10- آبانبار: روشی برای دسترسی و استفادههای مستقیم از آبهای زیرزمینی است. در آبانبار به جای اینکه با احداث چاه، آب را توسط وسایلی به سطح زمین برسانند با احداث پلههای زیرزمینی، مستقیما به سراغ آن میروند.
11- تورکینست: یک نوع سازهی آبخیزداری است که عموما برای مناطق کم شیب به منظور ذخیره و جمعآوری آب باران و سیلاب احداث میشود. شکل معمول تورکینست دایرهای متمایل به بیضی است.
فصل دوم
مواد و روشها
2- مواد و روشها
2-1- منطقه مورد مطالعه
2-1-1- توپوگرافی و فیزیوگرافی
حوزه آبخیز سمبورچای با مساحت 3/748 کیلومترمربع درشمال استان اردبیل و به دلیل وسعت زیاد، به مقدار 94/72 درصد برابر 07/544 کیلومترمربع در محدوده شهرستان گرمی (مغان)، 68/19 درصد برابر 92/147کیلومترمربع از جنوب در محدوده شهرستان مشگینشهر و 37/7 درصد آن برابر 29/56 کیلومترمربع از شمال در محدوده شهرستان بیلهسوار قرار گرفته است و از نظر موقعیت جغرافیایی بین 14،19،47 تا 59،55،48 طول شرقی (E) و 18،6،37 تا 39،42،39 عرض شمالی (N) واقع شدهاست.
حداکثر ارتفاع حوزه آبخیز 2244 متر در جنوب غربی و حداقل ارتفاع در خروجی آن برابر 320 متر از سطح دریا می‌باشد که به رودخانه دره رود منتهی میشود.
2-1-2- هوا و اقلیم شناسی
این منطقه دارای آب و هوای نیمهخشک است. بارشهای سالانه ایستگاههای موجود در منطقه، در یک دوره مشترک 12 ساله مورد تجزیه و تحلیل قرار گرفتهاند. به منظور تجزیه و تحلیل بارش منطقه، از آمار بارش ایستگاههای اطراف حوزه آبخیز استفاده شده است که در نهایت 12 ایستگاه بارندگی از سازمان هواشناسی کشور را شامل میشود. بر اساس مجموعه آمار ایستگاههای موجود، متوسط بارندگی سالانه 236 میلی‌متر است که از 291 تا 386 میلی‌متر تغییر میکند. در این تحقیق صرفاً از آمار بارش سازمان هواشناسی کشور استفاده شد که این امر به دلیل طول مناسب دوره آماری، همگن بودن و کیفیت خوب آن‌ها میباشد. در بررسی اقلیم منطقه از روش دومارتن اصلاح شده استفاده شده است. جدول 2-1، طبقهبندی اقلیم را در روش دومارتن اصلاح شده نشان میدهد.
رابطه 2-1 A= PT+10که در آن: Ai، شاخص خشکی (ضریب خشکی)؛ P، متوسط بارش سالانه (میلی‌متر)؛ T، متوسط دمای سالانه (درجه سانتیگراد) میباشند.
جدول 2-1: طبقهبندی اقلیمها در روش دومارتن اصلاح شده
>55 55- 33 33- 28 28- 24 24- 20 20- 10 10- 0 مقادیر Ai
بسیار مرطوب ب بسیار مرطوب الف مرطوب نیمه مرطوب مدیترانه‎ای نیمه‎خشک خشک اقلیم
2-2- روش تحقیق
2-2-1- مطالعات کتابخانهای و اقدامات اولیه
جمعآوری اطلاعات، گزارشهای مطالعاتی و پژوهشهای قبلی انجام یافته در رابطه با موضوع تحقیق و مطالعه و بررسی آن‌ها:
1- در این مرحله اقدام به جمعآوری پژوهشهای قبلی گردید و نیز دادههای پایه با استفاده از مطالعات انجام شده توسط سازمانها و ادارات مربوطه تهیه شد. جمعآوری آمار و اطلاعات مختلف حوزه آبخیز از جمله: شدت بارندگی، دمای هوا و ارتفاع از طریق اداره هواشناسی استان اردبیل صورت گرفت.
2- بررسی موقعیت، وضعیت عمومی، زمینی و اقلیمی منطقه مورد مطالعه.
شناخت منطقه یکی از موارد مهم در مطالعات استحصال رواناب است که قبل از انجام مطالعات، موقعیت جغرافیایی، وضعیتهای عمومی پستی و بلندی، زمینی و نیز اقلیمی مورد بررسی قرار گرفت.
3- انتخاب و تهیه نقشههای پایه از منطقه تحقیق شامل توپوگرافی، زمینشناسی، کاربری اراضی، خاکشناسی و قابلیت اراضی با توجه به نیاز ضروری انجام طرح.
نقشههای توپوگرافی مورد نیاز طرح، با توجه به وسعت منطقه و دقت مورد نیاز با مقیاس 50000 :1 سازمان جغرافیایی نیروهای مسلح و نقشههای زمینشناسی با مقیاس 100000 :1 سازمان زمینشناسی کشور تهیه گردید. به علت عدم وجود سایر نقشههای مورد نظر طرح، اقدام به تهیه آن‌ها از روی عکسهای هوایی و تصاویر ماهوارهای گردید.
4- تهیه و تامین عکسهای هوایی و تصاویر ماهوارهای منطقه و انجام مطالعات سنجش از دور برای کسب اطلاعات مورد نیاز و تهیه نقشههای ضروری مورد نیاز طرح.
عکسهای هوایی 20000 :1 سال 1347 از طریق سازمان نقشهبرداری کشور و سازمان جغرافیایی نیروهای مسلح و نیز تصاویر ماهوارهای لندست TM و ETM+ مربوط به سالهای 1988 و 2002 از طریق سازمان فضایی کشور تهیه شدند.
2-2-2- تهیه نقشههای پارامترهای مؤثر در ایجاد رواناب
2-2-2-1- خطوط توپوگرافی و تهیه نقشه DEM منطقه
برای بررسی وضعیت توپوگرافی در منطقه از طریق GIS، اقدام به رقومیسازی خطوط توپوگرافی از روی نقشههای توپوگرافی شده و با تهیه نقشهی مدل رقومی ارتفاع، عمدتاً در قالب سه بحث عمده شیب، جهت و ارتفاع بررسیهای لازم صورت میگیرد.
برای تهیه نقشه DEM، ابتدا خطوط تراز منطقه از روی نقشه توپوگرافی50000: 1 وارد کامپیوتر شده و با اندازه پیکسل 20×20 متر (قدرت تفکیک زمینی 20 متری) رقومی شده است. در ایران سیستم تصویری UTM یکی از معمولترین روشها بوده و در این تحقیق نیز از این سیستم استفاده شده است (منطقه مورد مطالعه در داخل زون 39 شمالی بود، بنابراین تمامی مطالعات با در نظر گرفتن این زون زمین مرجع شده است). هر خط تراز در حین رقومی کردن، ارزشهای واقعی خود را میگیرند و بدین ترتیب در نقشه نهایی تهیه شده نیز ارزش هر خط تراز بیانگر ارتفاع از سطح دریای آن خط به متر میباشد (عبداللهی، 1381).
در این تحقیق نقشه DEM، خطوط تراز رقومی شده باید از طریق یک نرمافزار GIS مناسب درونیابی شود. برای تهیه نقشه DEM در نرمافزار ArcGIS 9.3 از طریق گزینه Topo to raster (3D) تهیه گردید.
2-2-2-2- نقشه ارتفاع از سطح دریا
عامل ارتفاع از سطح دریا در حوزه آبخیز سمبورچای از آن جهت حائز اهمیت است که تاثیر ارتفاع در ایجاد رواناب به صورت غیر مستقیم و از طریق تبدیل نوع بارش از بارندگی به برف عمل میکند، چرا که از ارتفاع معینی به بالا، اغلب بارش به صورت برف میباشد و همانطوریکه میدانیم برف از طریق ذوب و نفوذ تدریجی، به طور متفاوتی نسبت به باران در ایجاد رواناب عمل میکند. برای تهیه نقشه طبقات ارتفاعی از نقشه DEM استفاده شد. به منظور کلاسهبندی نقشه ارتفاع به طبقات مختلف، منحنی تجمعی ارتفاع برای نقشه DEM تهیه شد.
2-2-2-3- نقشه شیب
مهم‌ترین عوامل توپوگرافی موثر در ایجاد رواناب منطقه شامل شیب، جهت و ارتفاع از سطح دریا میباشد. در صورت یکسان بودن سایر شرایط، هر چه مقدار شیب افزایش یابد رواناب ایجاد شده بیشتر خواهد بود که دلیل آن کاهش پایداری خاک خواهد بود. بسیاری از پارامترهای اقلیمی مانند بارش و دما با ارتفاع تغییر میکند. ارتفاع بر روی نوع و ویژگیهای نزولات تاثیر دارد. هرگاه ارتفاع از حد معینی تجاوز کند بارندگی به صورت برف نازل میشود. همچنین با افزایش ارتفاع، مقدار شیب دامنهها بیشتر میشود و رخسارههای بیرونزده و توده سنگی بیشتر مشاهده شده و سنگها ناتراواتر میشوند (سراجزاده، 1375). اختلاف ارتفاع بین نقاط مختلف در یک حوزه‌ آبریز، ناهمواریهای اراضی آن حوزه را نشان می‌دهد. نسبت اختلاف ارتفاع دو نقطه به فاصله آن‌ها تحت عنوان شاخص شیب معرفی می‌گردد برای شناخت ناهمواری اراضی و شیب از معیارهای متفاوتی استفاده می‌شود. شیب حوزه‌های آبخیز اثر بسیار زیادی در واکنش هیدرولوژیک حوزه‌ها دارد. سرعت جریان‌های سطحی به طور مستقیم به شیب بستگی دارد. افزایش سرعت آب نیروی جنبشی آب و در نتیجه قدرت تخریبی و حمل آن را افزایش می‌دهد همچنین میزان نفوذ آب در خاک با افزایش شیب کاهش می‌یابد و نهایتاً حجم سیلاب و جریانهای سطحی مستقیماً به شیب حوزه بستگی دارد.
جهت برآورد و تعیین میزان شیب حوزه‌های آبریز روشها و روابط متعددی ارائه گردیده که برخی از آن‌ها عبارتند از روش شبکهبندی، روش هورتون، رابطه جاستین، روش شمارش خطوط تراز و .... در مطالعه حاضر با استفاده از GIS نقشه کلاس‌های شیب در مقیاس 50000 :1 و مشتمل بر 5 کلاس سطح حوزه آبخیز تهیه گردیده. برای تهیه نقشه شیب حوزه آبخیز، از نقشه DEM در محیط نرمافزار ArcGIS با استفاده از گزینهSpatial Analyst استفاده گردید. در این نرمافزار نقشه شیب را می‌توان به دو صورت درجه و درصد شیب تهیه کرد و قابلیت آن در این زمینه بسیار بالا بوده و از دقت زیادی برخوردار است (البته دقت نقشه تهیه شده به پارامترهای دیگری از قبیل قدرت تفکیک زمینی و دقت رقومیسازی نیز بستگی دارد). برای منطقه مورد مطالعه با توجه به نوع وهدف کار، مساحت زیرحوزهها، نقشه شیب به درصد تهیه شد.
برای محاسبه متوسط شیب زیرحوزهها، نقشه پلیگونی زیرحوزهها را با نقشه رستری شیب حوزه آبخیز سمبورچای در محیط نرمافزار ArcGIS با استفاده از نوار ابزار Spatial Analyst و سپس ابزار Zonal Statistics قطع داده شد و متوسط شیب برای هر زیر حوزه به دست آمد.
2-2-2-4- نقشه جهت شیب
جهت شیب جهتی است که اگر از بالای شیب به پائین نگاه کنیم سطح شیب به آن جهت متوجه است و در واقع جهتی است که از آن می‌توان خط عمود فرضی به خطوط تراز سطح شیب رسم کرد. مهمترین اثر جهت شیب در میزان دریافت نور خورشید و اثرات ناشی از آن جمله پیدایش اقالیم محلی یا موضعی است. در نیمکره شمالی زمین جهات رو به جنوب و غرب از جهات رو به شمال و شرق برای مدت طولانی‌تری در معرض تابش نور خورشید قرار می‌گیرند و به همین دلیل نیز گرم‌ترند. اثر تابش بیشتر و گرمای زیادتر جهت رو به جنوب و شرق موجب افزایش تبخیر و تعرق سالیانه و در نتیجه کاهش رطوبت خاک می‌شود و به همین علت نیز در جهات رو به جنوب و شرق وضعیت پوشش گیاهی ار نظر تراکم و نوع گیاهان نسبت به سایر جهات تفاوت دارد و اغلب از تراکم کمتری برخوردار است و نتیجتاً فرسایش خاک و تولید رواناب در این جهات بیشتر است (مهدوی، 1378).
اثر مهم دیگر شیب در ذوب شدن برف است. در جهات رو به جنوب و شرق به دلیل گرمای بیشتر، سرعت ذوب برف شدیدتر است. در این مناطق برف کمتری بر روی زمین میماند و ذوب آن به تدریج در زمستان و اوایل بهار انجام میگیرد. به همین دلیل جریان زمستانی رودخانهها در این مناطق بیشتر و جریانهای آن یکنواختتر است. در حالی که در حوزههای آبخیز با جهات رو به شمال و غرب دوام برف در زمستان بیشتر است و عمق و تراکم آن نیز بالاتر است (مهدوی، 1378).
برای تهیه نقشه جهات جغرافیایی نیز از ویژگی‌های خطوط منحنی میزان و خطوط رودخانه‌ها‌، نهرها و آبراهه‌ها و خطوط یالها و نحوه ارتباط یال و قله بر روی نقشه توپوگرافی استفاده می‌شود. تعیین جهت جغرافیایی بدین صورت می‌باشد که جهت هر یک از دامنه‌ها ( یعنی حد پایین یال و دره ) را نسبت به شمال جغرافیایی مشخص می‌نمایند. همانطور که میدانیم مقدار آزیموت از صفر تا 360 درجه تغییر میکند و برای مناطق مسطح، آزیموتی تعریف نمیشود که به همین خاطر در نقشه جهت تهیه شده، ارزش سلولهای مناطق مسطح به طور خاص (مثلا 1- و یا ؟) نشان داده میشود. در نقشه جهت تهیه شده، ارزش هر پیکسل بیانگر آزیموت آن میباشد.
برای کلاسهبندی نقشه جهت میتوان به صورت زیر عمل کرد (درویشصفت، 1379)، به طوری که:
1= شمال، آزیموت بین صفر تا 5/22 و نیز 5/337 تا 360 درجه.
2= شمالشرق، آزیموت بین 5/22 تا 5/67 درجه.
3= شرق، آزیموت بین 5/67 تا 5/112 درجه.
4= جنوبشرق، آزیموت بین 5/112 تا 5/157 درجه.
5= جنوب، آزیموت بین 5/157 تا 5/202 درجه.
6= جنوبغرب، آزیموت بین 5/202 تا 5/247 درجه.
7= غرب، آزیموت بین 5/247 تا 5/292 درجه.
8= شمالغرب، آزیموت بین 5/292 تا 5/337 درجه.
9 = اراضی مسطح با ارزش ویژه.
نقشه جهت توضیح داده شده به روش فوق، برای کلاسهبندی نقشه جهت به نه طبقه (با یک طبقه مسطح) میباشد که در صورت لزوم میتوان طبقات فوق را با هم تلفیق کرده و نقشه جهت چهار یا پنج طبقهای (با یک طبقه اضافی مسطح) تهیه کرد. برای تهیه نقشه جهت حوزه نیز از نقشه DEM در نرمافزار ArcGIS با دستور Spatial Analysis و انتخاب گزینه Aspect تهیه شدهاست. در نقشه جهت تهیه گردید.
2-2-2-5- تهیه و تکمیل نقشه همباران و همدما
الف- بارش
در منطقه مورد تحقیق، مقدار بارش سالانه تحت تاثیر ارتفاع از سطح دریا، فصول مختلف سال و توپوگرافی منطقه میباشد. در بررسی مقدار و وضعیت بارش منطقه، از ایستگاههای اطراف حوزه آبخیز استفاده شده است. جداول 2-2 و 2-3 به ترتیب مشخصات کلی ایستگاهها و میانگین بارش سالانه را نشان میدهند.
جدول 2-2: مشخصات ایستگاههای بارانسنجی
برزند اصلاندوز انگوت پارسآباد مشکین اردبیل ایستگاه
´53-◦47 ´25-◦74 ´45-◦47 ´46-◦47 ´41-◦47 ´20 -◦48 طول جغرافیایی
´57-◦38 ´26-◦39 ´03-◦39 ´39-◦36 ´23-◦38 ´13-◦38 عرض جغرافیایی
1085 153 466 6/72 1561 1335 ارتفاع (متر)
جعفرلو مرادلو جعفرآباد قوشه قرهخان بیگلو گرمی ایستگاه
´43-◦47 ´45-◦47 ´05-◦48 ´56-◦47 ´39-◦47 ´05-◦48 طول جغرافیایی
´52-◦38 ´45-◦38 ´26-◦39 ´44-◦38 ´05-◦39 ´03-◦39 عرض جغرافیایی
1280 1380 174 1246 596 759 ارتفاع (متر)
جدول 2-3: میانگین بارندگی سالانه ایستگاههای بارانسنجی
جعفرآباد مرادلو جعفرلو قوشه قرهخانبیگلو گرمی به رزند اصلاندوز انگوت مشگینشهر پارسآباد اردبیل ایستگاه
4/277 8/272 9/304 8/258 6/296 3/353 344 1/285 4/319 6/353 6/265 6/278 متوسط بارش سالانه
ب-رابطه ارتفاع- بارش و متوسط بارش منطقه
برای محاسبه رابطه ارتفاع- بارش، از آمار بارندگی ایستگاههای موجود و همچنین ارتفاع از سطح دریای ایستگاهها استفاده شد که در ابتدا نواقص آماری رفع شده و در نرمافزار Excel با وارد کردن ارقام بارش و ارتفاع در دو ستون مجزا، به نحوی که بارش در محور y و ارتفاع در محور x قرار گیرد، رابطه رگرسیونی این دو پارامتر از طریق نرمافزار Excel محاسبه شد (سعدی مسگری و قدس، 1384). رابطه رگرسیونی ارتفاع از سطح دریا- بارش (گرادیان بارندگی منطقه)، در منطقه تحقیق به صورت زیر به دست آمده است:
رابطه 2-2 P=0.050H+275.2 R²=0.625
که در آن: P، میزان درجه حرارت متوسط سالانه بر حسب سانتیگراد؛ H، ارتفاع از سطح دریا به متر میباشد.
برای بدست آوردن بارش متوسط حوزه آبخیز، از نقشه مدل رقومی بارش استفاده گردید. نحوه تهیه مدل رقومی بارش بدین شکل بوده که بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- بارش در Excel، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، DEM منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه همباران حوزه تهیه شده است. پس از تهیه نقشه مدل رقومی بارش، از طریق دستور Reclassify، اقدام به کلاسهبندی نقشه مدل رقومی بارش به 5 کلاس بارش شد. ج- رژیم حرارتی
رژیم حرارتی یک منطقه عبارت از تغییرات متوسط درجه حرارت هوا بر حسب زمان و در مدت یکسان است. هدف از بررسی درجه حرارت در محدوده طرح، تعیین رابطه گرادیان درجه حرارت و تعیین میانگین حرارتی منطقه بر اساس آمار ایستگاههای موجود بوده است.
د- رابطه ارتفاع- درجه حرارت و میانگین دمای سالانه
با بررسی آمار درجه حرارت ایستگاههای ثبت درجه حرارت در منطقه، مشابه روش تهیه مدل رقومی بارش، برای تهیه نقشه درجه حرارت متوسط نیز، بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- درجه حرارت در Excel، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، مدل رقومی ارتفاع منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه همدما حوزه تهیه شده است. رابطه ارتفاع از سطح دریا- درجه حرارت (گرادیان درجه حرارت) در منطقه تحقیق به صورت زیر به دست آمده است همانند بارندگی:
رابطه 2-3 T=-0.003H+15.14 R²=0.824
که در آن:T، میزان درجه حرارت متوسط سالانه بر حسب سانتیگراد؛ H، ارتفاع از سطح دریا به متر.میباشد.
2-2-3- مقدار بارندگی در دوره بازگشتهای مختلف
2-2-3-1- مقدار بارش
مقدار بارندگی یک متغیر تصادفی بوده و میتوان دادههای موجود را بررسی و طبق قوانین توزیع آماری هنگامی که برازش مناسب وجود داشته باشد، حداکثر یا حداقل بارندگی را با دوره بازگشت مورد نظر تعیین نمود. فرم کلی معادلات مورد استفاده معمولا به صورت زیر است:
رابطه 2-4 PT=P+K.Sکه در آن: PT، حداکثر و یا حداقل بارندگی با دوره بازگشت معین T سال؛ P، میانگین بارندگی؛ K، ضریب فراوانی (ضریب تناوبی)؛ S، انحراف معیار دادهها میباشد.
در منطقه تحقیق، با استفاده از توزیع پیرسون تیپ III، مقادیر متوسط بارندگی سالانه در دورهبازگشتهای 2 و 10 سال محاسبه شد.
2-2-3-2- حداکثر بارش 24 ساعته
در منطقه تحقیق، با استفاده از توزیع گمبل نوع I، که در تجزیه و تحلیل مقادیر حد بهکار گرفته میشود، مقادیر حداکثر بارش 24 ساعته در دورهبازگشتهای 2 و 10 ساله محاسبه شد.
2-2-3-3- شدت بارندگی
به طور کلی هر چه مدت بارش کوتاه باشد، شدت آن زیاد خواهد بود و برعکس بارانهای دراز مدت از شدت کمتری برخوردار میباشند. از طرف دیگر مسلم است که هر چه دوره بازگشت یک رگبار طولانیتر باشد، شدت آن نیز بیشتر خواهد بود.با پیدا کردن حداکثر شدت بارندگی در پایههای زمانی مختلف در طول مدت آماری، میتوان دادههای مربوط به هر یک از پایههای زمانی را با یک توزیع مناسب برازش داده و سپس شدتهای مربوط به زمانهای بازگشت متفاوت را روی محور مختصات و بر حسب پایههای زمانی مختلف رسم نمود.
با بررسیهای انجام شده روی منحنیهای شدت، مدت و فراوانی، فرمولهای تجربی متعددی ارائه شده که در این تحقیق از فرمول قهرمان (1366- به نقل از علیزاده، 1379) که برای ایران ارائه شده است، استفاده شد. قهرمان روی دادههای باران نگارهای ایستگاههای ایران مطالعه و مقدار باران یک ساعته با دوره بازگشت 10 ساله را به صورت زیر برای نقاط مختلف ایران قابل محاسبه دانسته است (علیزاده، 1380):
رابطه 2-5 P1060=e0.8153 .X11.1374.X2-0.3072که در آن: X1، متوسط حداکثر بارش 24 ساعته بر حسب میلی‌متر؛ X2، متوسط بارش سالانه منطقه بر حسب میلی‌متر میباشد.
بنابراین با داشتن مقدار میتوان مقدار PTt (مقدار بارش در زمان و دوره بازگشتهای مختلف) و سپس شدت باران t دقیقهای را با دوره بازگشت T سال محاسبه کرده و منحنی شدت، مدت و فراوانی را رسم کرد.
رابطه 2-6 PTt= [0.4524 + 0.247 ln (T – 0.6)](0.3710 + 0.6184t0.4484)P1060شدت بارندگی (I) نیز عبارتست از نسبت بارندگی (P) به زمان (T). یعنی:
رابطه 2-7 I=Pt2-2-3-4- رابطه ارتفاع- شدت بارشبرای تهیه نقشه شدت بارش، همانند نقشه همدما و همبارش، ابتدا رابطه رگرسیونی بین ارتفاع از سطح دریای ایستگاههای انتخاب شده و میزان شدت بارش نیم ساعته و یک ساعته با دروه بازگشت 2 سال و 10 سال در Exel به صورت زیر تهیه شد. بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- بارش ، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، DEM منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه شدت بارش حوزه تهیه شده است. پس از تهیه نقشه مدل رقومی شدت بارش، از طریق دستور Reclassify، اقدام به کلاسهبندی نقشه مورد نظر به 5 کلاس شد.

21

7-2-2- دهستان 20
8-2-2- توزیع فضایی (پراکندگی) 21
9-2-2- آموزش و پرورش 23
10-2-2- سیستم اطلاعات جغرافیایی (GIS) 24
3-2- نظریه ها و دیدگاهها 26

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

1-3-2- نظریه ها و دیدگاه های فضایی 27
2-3-2- سازمان فضایی و سطح بندی روستاها 34
4-2- نظریه سرمایه انسانی 36
1-4-2- تعریف و مفهوم سرمایه انسانی 37
2-4-2-سرمایه گذاری در سرمایه انسانی 37
3-4-2- تشکیل سرمایه انسانی از طریق آموزش و پرورش 38
5-2- نظام آموزش و پرورش ایران 39
6-2- مقاطع تحصیلی آموزش و پرورش در ایران 42
1-6-2- دوره ابتدایی 42
2-6-2- دوره راهنمایی تحصیلی (متوسطه اول) 42
3-6-2- دوره متوسطه عمومی 43
4-6-2- دوره پیش دانشگاهی 43
7-2- ضوابط و استانداردهای مربوط به خدمات آموزشی 44
1-7-2- استانداردهای آموزشی و تعداد دانش آموزان در مدارس ابتدایی و راهنمایی 45
8-2- مدرسه هوشمند 47
1-8-2- پیشینه هوشمندسازی مدارس 48
2-8-2- اهداف ایجاد مدارس هوشمند 49
3-8-2- پیش نیازها جهت اجرای مدارس هوشمند 50
فصل سوم:
مواد و روش ها 1-3 - پیش درآمد 52
2-3- موقعیت، حدود و وسعت منطقه مورد مطالعه 54
3-3- ویژگیهای طبیعی منطقه 55
1-3-3- زمین شناسی و ژئومورفولوژی 55
2-3-3- آب وهوا‌( اقلیم) 56
1-2-3-3- بادهای 120 روزه سیستان 62
3-3-3- منابع آب 62
4-3-3- خاکهای منطقه 64
5-3-3- وضعیت پوشش گیاهی 65
6-3-3- زندگی جانوری 65
4-3- ویژگیهای جغرافیای انسانی 66
1-4-3- بررسی وضعیت جمعیت منطقه 66
2-4-3- ترکیب جنسی جمعیت 68
3-4-3- وضعیت سواد 68
4- 4 – 3- کشاورزی 69
5-4-3- صنایع و معادن 70
6-4-3- فعالیت های عمرانی و خدماتی 71
1-6-4-3 مساکن روستایی 71
2-6-4-3- معابر و شبکه حمل ونقل 72
3-6-4-3- تأمین آب شرب 73
4-6-4-3- برق رسانی 73
5-6-4-3- خدمات بهداشتی و درمانی 73
6-6-4-3- سایر خدمات 74
7-4-3- ویژگی های فرهنگی و اجتماعی 74
8-4-3- جغرافیای تاریخی سیستان 75
9-4-3- آثار تاریخی منطقه 76
5-3- روش تحقیق 79
1-5-3- روشها و مراحل تحقیق 79
2-5-3- جامعه آماری 80
3-5-3-روش و ابزار گرد آوری داده ها 81
4-5-3- شاخص های مورد مطالعه 82
5-5-3- روش تجزیه و تحلیل اطلاعات 83
فصل چهارم
یافته های تحقیق 1-4- پیش درآمد 85
2-4- یافته های توصیفی و تحلیلی 85
1-2-4- تغییرات مربوط به تعداد جمعیت و خانوار روستاهای مورد مطالعه 88
2-2-4- مراکز آموزشی مقطع ابتدایی 91
1-2-2-4- پراکندگی و دسترسی به مدارس ابتدایی در دهستان محمدآباد 92
2-2-2-4- درجه بندی مدارس ابتدایی دهستان در مقایسه با استانداردهای آموزشی 98
3-2-2-4- تراکم دانش آموز در کلاس های مدارس ابتدایی در مقایسه با استانداردهای آموزشی 100
4-2-2-4- وضعیت فضاها و تجهیزات آموزشی مدارس ابتدایی دهستان در مقایسه با استانداردهای آموزشی 101
5-2-2-4- بررسی وضعیت کادر آموزشی و سایر کارکنان مدارس ابتدایی دهستان 105
3-2-4- مراکز آموزشی مقطع راهنمایی 108
1-3-2-4- پراکندگی و دسترسی به مدارس راهنمایی در دهستان محمدآباد 108
2-3-2-4-درجه بندی مدارس راهنمایی دهستان در مقایسه با استانداردهای آموزشی 116
3-3-2-4- تراکم دانش آموز در کلاس های مدارس راهنمایی دهستان در مقایسه با استانداردهای آموزشی 117
4-3-2-4- وضعیت فضاها و تجهیزات آموزشی در مقایسه با استانداردهای آموزشی 118
5-3-2-4- بررسی وضعیت کادر آموزشی و سایر کارکنان مدارس راهنمایی دهستان 123
4-2-4- مراکز آموزشی مقطع متوسطه 124
1-4-2-4- پراکندگی و دسترسی به مراکز آموزشی متوسطه در دهستان محمدآباد 126
2-4-2-4- تراکم دانش آموز در کلاس های مراکز آموزشی متوسطه دهستان در مقایسه با استانداردهای آموزشی 133
3-4-2-4- وضعیت فضاها و تجهیزات آموزشی در مقایسه با استانداردهای آموزشی 134
4-4-2-4- بررسی وضعیت کادر آموزشی و سایر کارکنان مدارس متوسطه دهستان 136
3-4- آزمون فرضیات 137
1-3-4- آزمون فرضیه نخست 138
2-3-4- آزمون فرضیه دوم 139
فصل پنجم
جمع بندی، نتیجه گیری و پیشنهادات 1-5- جمع بندی 143
2-5- نتیجه گیری 144
3-5- پیشنهادات 147
منابع 152
فهرست جداول
عنوان صفحه
جدول 1-1- مراکز آموزشی مورد مطالعه 14
جدول 1-2 -استانداردهای آموزشی و تعداددانش آموزان آنها در مدارس ابتدایی 46
جدول 2-2 -استانداردهای آموزشی و تعداد دانش آموزان آنها در مدارس راهنمایی 46
جدول 3-2-استانداردها و ضوابط خدمات آموزشی در مناطق روستایی کشور 47
جدول 1-3- مساحت دهستانهای شهرستان هامون در سال 1391 54
جدول 2-3- وضع جوی منطقه سیستان بر حسب ماه: سال 1389 58
جدول 3-3- ویژگیهای عناصر اقلیمی منطقه سیستان 59
جدول 4-3- آمار تعدادی از عناصر اقلیمی ایستگاه سینوپتیک زابل طی سالهای 90-1380 60
جدول 5-3- تعداد جمعیت و خانوار شهرستان هامون در سالهای 1385 ، 1390 67
جدول 6-3- وسعت و تراکم جمعیت دهستانهای شهرستان هامون در سال 1390 67
جدول 7-3- تعداد حانوار وجمعیت از نظر جنسیت در شهرستان هامون و دهستان محمدآباد در سال 1385 68
جدول 8-3- تعداد افراد باسواد و بی سواد بر حسب جنس در شهرستان هامون 69
جدول 9-3-طول محور های روستایی آسفالته شهرستان هامون در سال 1390 72
جدول 10-3- مراحل انجام تحقیق 80
جدول 1-4- طرح اتصال مدیریت آموزش و پرورش شهرستان هامون در سال تحصیلی 92-1391 88
جدول 2-4- تعداد خانوار و جمعیت روستاهای مورد مطالعه دهستان محمد آباد در سالهای 1385 و 1390 89
جدول 3-4-مقایسه تعداد آموزشگاهها و تعداد دانش آموزان مقطع ابتدایی سال 92-1391 94
جدول 4-4- آمار مدارس ابتدایی روستاهای مورد مطالعه در دهستان 97
جدول 5-4- وضعیت مدارس ابتدایی دهستان محمدآباد در سال تحصیلی 92-91 از حیث درجه استاندارد آموزشی 98
جدول 6-4- مقایسه فضاهای آموزشی مقطع ابتدایی دهستان ازنظر محوطه و زیربنا با استانداردهای آموزشی درسالتحصیلی 92-91 101
جدول 7-4- توزیع کارکنان مدارس ابتدایی دهستان محمد آباد از لحاظ جنسیت در سال تحصیلی 92-1391 107
جدول 8-4 مقایسه تعداد آموزشگاهها و تعداد دانش آموزان مقطع راهنمایی در سال تحصیلی 92-1391 112
جدول 9-4- آمار مدارس راهنمایی روستاهای مورد مطالعه در دهستان محمد آباد در سال تحصیلی 92-1391 115
جدول 10-4- مقایسه فضاهای آموزشی مدارس راهنمایی دهستان محمدآباد در سال تحصیلی 92-1391 121
جدول 11-4- آمار مدارس مراکز آموزشی متوسطه دهستان محمدآباد در سال تحصیلی 92-1391 131
جدول 12-4- مقایسه سرانه فضاهای آموزشی زیر بنا در مدارس متوسطه دهستان محمدآباد در سال تحصیلی 92-1391 (متر مربع) 135
فهرست اشکال
عنوان صفحه
شکل 1-2-اجزای یک پایگاه اطلاعاتی مبتنی بر GIS 25
شکل 2-2- مدل فون تانن 29
شکل 3-2- سلسله مراتب مکانهای مرکزی کریستالر 30
شکل 4-2 -سلسله مراتب مرکزی براساس اصول بازار یابی، ترابری و اداری 32
شکل 5-2- سطح بندی سکونتگاههای روستایی 36
شکل 1-3-نقشه تقسیمات سیاسی استان سیستان و بلوچستان 53
شکل 2-3- منحنی آمبروترمیک منطقه سیستان 57
شکل3-3- نمودار خلاصه پارامترهای محاسباتی دمای هوا در ایستگاه زابل 61
شکل 1-4- نمودار ستونی تعداد آموزشگاههای مدیریت آموزش و پرورش شهرستان هامون در سال تحصیلی 92-91 86
شکل 2-4- نمودار ستونی تعداد دانش آموزان مدیریت آموزش و پرورش شهرستان هامون در سال تحصیلی 92-91 86
شکل3-4- نمودار دایره ای درصد کارکنان مدیریت آموزش و پرورش شهرستان هامون از لحاظ مدرک تحصیلی در سال تحصیلی 92-91 87
شکل 4-4- نمودار ستونی جمعیت سالهای 1385 و 1390 روستاهای مورد مطالعه در دهستان محمدآباد 90
شکل 5-4- نقشه پراکندگی مدارس ابتدایی دهستان محمد آباد در سال تحصیلی 92-1391 93
شکل 6-4- نقشه دسترسی دانش آموزان روستایی به مدارس ابتدایی دهستان محمد آباد در سال تحصیلی 92-1391 95
شکل 7-4- نمودار ستونی درجه بندی مدارس ابتدایی دهستان محمد آباد در سال تحصیلی 92-91 در مقایسه با استانداردهای آموزشی 99
شکل8-4- نمودار دایره ای درصد کارکنان (آموزشی،اداری و خدماتی) مقطع ابتدایی دهستان محمدآباد در سال تحصیلی 92-91 106
شکل 9-4- نقشه پراکندگی مدارس راهنمایی دهستان محمد آباد در سال تحصیلی 92-91 110
شکل 10-4- نقشه دسترسی دانش آموزان روستایی دهستان محمدآباد به مدارس راهنمایی در سال تحصیلی 92-91 113
شکل11-4- نقشه پراکندگی مراکز آموزشی متوسطه دهستان محمدآباد در سال تحصیلی 92-91 127
شکل 12-4- نمودار ستونی مقایسه جمعیت دانش آموزی مدارس متوسطه دهستان محمدآباد به تفکیک رشته تحصیلی در سال تحصیلی 92-91 128
شکل13-4- نقشه دسترسی دانش آموزان روستایی به مراکز آموزشی متوسطه دهستان محمدآباد در سال تحصیلی 92-91 129
فصل اول
مقدمه و کلیات تحقیق

1-1- مقدمه
لفظ آموزش وپرورش در مفهومی وسیع به کلیه فرآیندهایی اطلاق می شود که زندگی فرهنگی را برای انسان تأمین می کند (جرالد ال،1389،11).
آموزش و پرورش فرآیندی زگهواره تا گور است که در هر جامعه ایی وجود داشته و اشکال گوناگونی دارد، از یادگیری براساس تجربه های زندگی تا آموزش و پرورش آموزشگاهی، از اجتماعات صنعتی تا غیر صنعتی، از محیط های روستایی تا شهری، بنابراین آموزش و پرورش یک پدیده اجتماعی است (علاقه بند، 1372، 4) .
آموزش رسمی نهاد مهمی برای انتقال دانش و فرهنگ از نسلی به نسل دیگر و پرورش آن دسته از خصایص آدمی است که به بازده اقتصادی، ثبات اجتماعی و ایجاد دانش های جدید کمک می کند، بخشی از این دانش همان نظری است که جامعه نسبت به خود نظام مدرسه پیدا می کند، برای آنکه یک نهاد نقش مهمی در جامعه ایفا کند لازم است مشروع باشد یعنی مردمی که از آن استفاده می کنند، باید معتقد باشند که این نهاد در خدمت منافع و نیازهای آنان است (کانوی، 1367، 13).
امروزه بسیاری از متفکران و متخصصان تعلیم و تربیت که طرفدار برداشتی نو و دیدی تازه در زمینه اصلاحات آموزشی هستند، بر این باورند که برنامه ریزی اصلاحات به منظور تجدید نظر اساسی در عملکرد گذشته و کنونی نظام های تعلیم و تربیت هر کشور باید در پرتو بررسی پیشینه تاریخی تحولات آموزش و پرورش و تحلیل وضعیت کنونی نظام آموزشی صورت گیرد، زیرا در این صورت می توان با دیدی تازه و جامع عواملی را که موجب رکود فعالیتهای فرهنگی و علمی
و شکل گیری دشواریهای کنونی نظام آموزشی شده است، شناسایی کرد (کانل ، 1373، 694).
اصولاً ساختار نظام آموزش و پرورش در ابعاد دوگانه بررسی می شود که عبارتند از:
1- بعد عمودی نظام که شامل مراحل تحصیلات رسمی با توجه به سن ورود به مدرسه و تعداد سالهای تحصیل در هر مرحله تحصیلی است.
2- بعد افقی نظام آموزش و پرورش که به تقسیمات درونی هر یک از مراحل تحصیلی یا دوره های آموزشی که شامل شاخه ها و رشته های تحصیلی است، اطلاق می شود مانند رشته های نظری و فنی و حرفه ایی در دوره متوسطه (آقازاده، 1388، 23).
مسئولان برنامه های اصلاحی آموزش و پرورش ممالک موفق معتقدند که اصلاح کمی و کیفی آموزش و پرورش باید از مقاطع تحصیلی پایین تر آغاز گردد تا بتوان شرایط تحول برای مقاطع بالاتر را مهیا ساخت، آنان تأکید دارند که بازسازی و اصلاح آموزش و پرورش فرآیندی نیست که بتوان آن را با اقدام ضربتی آن هم از رأس و قلّه ی هرم آموزشی آغاز کرد، بلکه اقدام اصلاحی متناسب و سنجیده باید از قاعده هرم آموزشی یعنی از سطح آموزش قبل از دبستان و آموزش ابتدایی شروع گردد تا بتوان آن را به صورت فرآیندی فراگیر و همه جانبه به سطوح بالای آموزشی (دوره متوسطه و آموزش عالی) هدایت کرد.اما متأسفانه این توصیه کارشناسان در فرهنگ برنامه ریزی کشور ما جایگاه شناخته شده ایی ندارد (همان،1388، 221-220).
با توجه به اینکه در اصل سوم قانون اساسی جمهوری اسلامی ایران به مسئله آموزش و پرورش و تربیت بدنی رایگان برای همه در تمام سطوح تأکید شده است و همچنین سطح بالای آموزش و سواد از ملاک های توسعه انسانی کشورها محسوب می شود لذا دسترسی جوامع روستایی و شهری به خدمات آموزشی و پراکنش مناسب مراکز آموزشی از اهمیت زیادی برخوردار است.
در این پژوهش وضعیت دسترسی دانش آموزان دهستان محمد آباد شهرستان هامون در منطقه سیستان به مراکز آموزشی ابتدایی، راهنمایی و متوسطه با استفاده از روش تحلیل فضایی و نرم افزار سیستم اطلاعات جغرافیایی GIS مورد بررسی قرار می گیرد.
چارچوب اصلی این پژوهش ابتدا در فصل اول تحت عنوان مقدمه وکلیات تحقیق شامل بیان مسئله، سئوالات تحقیق، فرضیات تحقیق، اهمیت و ضرورت انجام تحقیق، اهداف تحقیق ، پیشینه ی تحقیق (مطالعات داخلی و خارجی) محدوده ی موضوعی، زمانی و مکانی تحقیق می باشد.
فصل دوم شامل مبانی نظری تحقیق است که در آن پیش در آمد، تعاریف و مفاهیم و دیدگاه ها و نظریه ها ذکر می گردد.
در فصل سوم این پژوهش بعد از پیش در آمد ابتدا کلیات جغرافیایی منطقه مورد مطالعه در قالب ویژگی های طبیعی و انسانی و سپس به بیان مواد و روش ها، جامعه آماری و روش ها و ابزار گردآوری داده ها و روش تجزیه و تحلیل اطلاعات پرداخته شده است.
فصل چهارم شامل یافته های تحقیق به صورت پیش درآمد و یافته های توصیفی بدست آمده از بررسیهای میدانی در سه مقطع ابتدایی، راهنمایی و متوسطه و آزمون فرضیات می باشد.
و فصل پنجم به جمع بندی ، نتیجه گیری و ارائه پیشنهادات می پردازد.
2-1- بیان مسئله
انسان موجودی است تغییر پذیر با توانایی های بالقوه نامحدود که این توانایی ها می تواند تحت نظام و برنامه ریزی آموزشی و پرورشی به فعل تبدیل شود و جوامع انسانی را از مواهبی بسیارگران برخوردار نماید، بهبود در نحوه انجام وظیفه، امکان استفاده بیشتر از منابع محدود داخلی، کاهش هزینه ها و سرانجام تحقق هر چه بهتر هدف های سازمانی آنگاه میسر است که قابلیتها و مهارتهای منابع انسانی براثر آموزش و بهسازی تقویت شوند تا بتوانند نقش و سهم خود را در تلاشهای توسعه ایفا کنند (میر سپاسی، 1372، 297).
در قرن اخیر گرایش شدید به آموزش و پرورش رسمی، گسترش قابل ملاحظه مراکز آموزشی را سبب گردید و برداشت جامعه را درباره ی رسالت و مسئولیت مدرسه به کلی دگرگون کرد (معیری، 1381، 23).
مربیان، مدیران و معلمان بر کارکرد مدرسه در جهت تنویر افکار تأکید می کنند، اینها مدعی اند که آموزش رسمی جز مهمی از فرآیند مادام العمر آموزش و پرورش است که نه تنها شناخت پدیده های مهم بلکه خود فرآیند یادگیری را نیز به جوانان می آموزد، کار فرمایان، مدرسه را وسیله ایی برای فراهم آوردن مهارتها و آماده ساختن جوانان برای کارکردهای اقتصادی در جامعه ای که مرتباً تکنولوژی پیچیده تر می شود، می دانند (کانوی. 1367، 13).
امروزه گروه عظیمی از مردم کشور ما نیز تحصیل و در نتیجه پیشرفت را یکی از نیازهای اساسی خود می دانند. اکنون تعداد زیادی از انسان ها بایستی از حداقل دانش روز برخوردار باشند که این حداقل از مجموع چندین برابر حداکثر چند قرن گذشته بسیار بزرگتر و بیشتر و دارای کیفیتی کاملاً متفاوت است. لازم به یادآوری است، هر چه بر تعداد جمعیت دانش آموزی افزوده می شود از کیفیت تدریس و برنامه های آموزش و پرورش کاسته می شود، از طرف دیگر بدلیل عدم توجه به خصوصیات فردی فراگیران، تعدادی از آنها درس و مدرسه را رها کرده و جزء افراد کم سواد در می آیند، لذا باید متناسب با افزایش تعداد دانش آموزان توجه به آموزش متناسب، صورت گیرد. از نقطه نظر هزینه و مخارج این حقیقت مسلمی است که بایستی هر ساله مبلغ قابل توجهی بر بودجه آموزش و پرورش افزود و اگر دخالت کشورهای استعمارگر در امور سایر کشورها نبود معقول این بود که رقم اول بودجه هر کشور به جای امور نظامی به آموزش و پرورش اختصاص یابد. در جامعه اسلامی ما توجه به آموزش و پرورش منبعث از تأکید دین اسلام و قرآن کریم و سنت و سیره پیامبر و ائمه اطهار است، لذا پرورش نیروی انسانی خلاق و هماهنگ با معنویات حکومت اسلامی رسالتی است که بر دوش دستگاه تعلیم و تربیت قراردارد و تحقق آن ضامن موفقیت سایر سازمانها و نهادهای اجرایی کشور می باشد، به عبارتی دیگر توسعه اقتصادی و اجتماعی یک کشور مرهون توسعه آموزشی و فرهنگی است (عسکری و محسنی نیا، 1373، 48) .
باتوجه به اینکه در بعضی موارد عدم ساماندهی و عدم توزیع مناسب مراکز آموزشی در دهستان محمد آباد مشاهده می شود و در برخی از روستاها کمبود فضای آموزشی وجود دارد و در برخی دیگر از روستاها، فضاهای آموزشی ساخته شده بلا استفاده باقی مانده است و همچنین در بعضی از روستاها وضعیت مدارس از استانداردهای آموزشی فاصله دارد و این موارد باعث افت تحصیلی، ترک تحصیل و بازماندن دانش آموزان از تحصیلات بالاتر می شود لذا تحقیق حاضر تحت عنوان (تحلیل فضایی دسترسی به مراکز آموزشی دهستان محمد آباد شهرستان هامون) صورت گرفته است.
3-1- سئوالات تحقیق
1- آیا پراکنش مراکز آموزشی دهستان محمد آباد از نظر فضایی، متناسب با جمعیت روستایی می باشد؟
2- بین وضعیت فضاهای آموزشی موجود دهستان ازنظرتعداددانش آموز وتجهیزات با استانداردهای آموزشی چه ارتباطی وجود دارد؟
4-1- فرضیات تحقیق
1- آرایش فضایی متناسبی بین پراکندگی مراکز آموزشی با جمعیت روستایی دهستان وجود ندارد.
2- هماهنگی زیادی بین وضعیت فضاهای آموزشی موجود دهستان ازنظرتعداددانش آموز وتجهیزات با استانداردهای آموزشی وجود ندارد.
5-1- اهمیت و ضرورت تحقیق
کارکرد آموزشی در هر سرزمین زیر بنای توسعه اقتصادی - اجتماعی می باشد، جامعه ایی که از نظر سطح سواد و تخصص از موقعیتهای مناسب برخوردار نباشد، امکان ارتقاء کیفی برای جمعیت آن وجود ندارد، بنابراین گسترش خدمات آموزشی در ایجاد زمینه های مناسب برای توسعه اقتصادی - اجتماعی نواحی روستایی لازم است (مطیعی لنگرودی، 1390، 118- 117).
یکی از ابزارهای مهم برنامه ریزی در اختیار داشتن اطلاعات و آمار از وضع موجود می باشد که به برنامه ریز این امکان را می دهد تا با بررسی مسائل و تنگناها و تجزیه و تحلیل داده های آماری امکان تدوین برنامه ایی منطبق با مقتضیات زمان و مکان را فراهم آورد. از میان انواع برنامه ریزیها، برنامه ریزی آموزشی اساسی ترین و بنیادی ترین آنها می باشد، از عناصر مهم در فرآیندهای آموزشی وجود امکانات فیزیکی نظیرساختمان، تأسیسات و تجهیزات مربوطه می باشد که تأمین آن بویژه در کشورهای در حال توسعه بدلیل محدودیت منابع مالی تنگناهایی را در امر آموزش ایجاد می نماید، در کشور ما توجه به این امر مستلزم مکان گزینی مناسب فضاهای آموزشی است تا از این طریق ضمن بهره برداری کامل از فضا و امکانات، بازدهی مطلوب از سرمایه گذاری در این بخش حاصل آید و با توجه به اینکه تحقیق علمی اساسی ترین وسیله برای کنترل، اصلاح، تغییر و توسعه تعلیم و تربیت می باشد، لذا با انجام چنین پژوهش هایی می توان بعضی از مشکلات و نارساییهای موجود در بخش آموزش و پرورش مناطق روستایی را شناسایی کرد و در جهت حل این مشکلات راهکارهایی ارائه نمود.
به عنوان مثال بررسی امکانات موجود آموزش و پرورش در کشور نشان می دهد که این نوع امکانات در روستاهای کشور کمتر از امکانات موجود در شهرها است و این مسئله از زمان های گذشته تا کنون در روند مهاجرت روستاییان به نقاط شهری تأثیر گذار بوده است.
6-1- اهداف تحقیق
1- شناسایی توزیع فضایی مراکز آموزشی موجود در دهستان محمد آباد.
2- تعیین ارتباط بین وضعیت فضاهای آموزشی موجود با استانداردهای آموزشی جهت تصمیم گیری برای آینده.
7-1- پیشینه تحقیق
بطور طبیعی هر پژوهشی در تداوم پژوهش های پیشین به انجام می رسد، هم از دوباره کاریها در آن اجتناب می شود و هم از داده های تحقیقات پیشین برخوردار می گردد، ارتقا دانش نیز به همین تداوم وابسته است. (ساروخانی، 1385، 146).
بررسیهای بعمل آمده نشان می دهد که در زمینه تحلیل فضایی و مکانی دسترسی به مراکز آموزشی پژوهش هایی انجام گرفته است که نمونه هایی از مطالعات داخلی و خارجی عبارتند از:
1-7-1- مطالعات داخلی
- ناصری وجی واد (1384) تحلیل توزیع مکانی مراکز آموزشی با استفاده ازGISرا انجام دادند، نتیجه اینکه: کاربریهای عمومی در بسیاری از شهرها قادر به ارائه خدمات مطلوب به شهروندان نمی باشند، دستیابی به چنین هدفی منوط به شناخت معیارها و ضوابطی است که در مکان یابی مراکز خدماتی مورد استفاده قرار می گیرد، براین اساس اهم مشخصه ها: سازگاری، مطلوبیت و ظرفیت است که هر یک در زیر مجموعه خود به ضوابط کمی منتهی می شود و بدین لحاظ سیستم اطلاعات جغرافیایی یا GIS مورد استفاده قرار گرفته و با استفاده از توابع تحلیل مکانی و براساس ترکیب عوامل و لایه های اطلاعاتی وضعیت موجود استقرار مدارس به لحاظ تناسب یا عدم تناسب با سایر کاربریهای شهر مورد استفاده قرار می گیرد.
- احد نژاد روشتی و همکاران (1391) در تحلیل پراکنش فضایی مراکز آموزشی منطقه 8 تبریز اعلام کردند که در این تحقیق با استفاده از روش های تحلیل نزدیک ترین همسایه و شاخص موران و با توجه به نتایج بدست آمده از مدل های ارزیابی چند معیاری و تحلیل سلسله مراتبی و ترسیم نقشه GIS مشخص شده است که بیشترین پراکنش های فضایی آموزشی در قسمت جنوب و جنوب غربی این منطقه قرار دارد و الگوی منظمی ندارد.
- غفاری گیلانی و همکاران (1390) در مطالعه مکان گزینی مدارس راهنمایی شهر آستارا به این نتیجه رسیدند که استفاده توام قواعد چند معیاری و قابلیت های GIS در انتخاب مسیر مناسب در روند ساماندهی مراکز آموزشی مؤثر است.
- محمدی و همکاران (1391) در مطالعه مکان یابی مدارس راهنمایی شهر کازرون به این نتیجه رسیدند که در شهر کازرون کمبود مدارس راهنمایی و توزیع ناعادلانه آنها به شدت احساس می شود و با استفاده از سامانه اطلاعات جغرافیایی GIS و مدل همپوشانی شاخص ها بهترین مکان ها برای احداث مدارس راهنمایی پیشنهاد شده و اولویت بندی نیز صورت گرفته است.
- فرج زاده اصل و رستمی (1383) توزیع مراکز آموزشی در سطح شهرک معلم کرمانشاه را با استفاده از GIS برای مدارس ابتدایی، راهنمایی و دبیرستان به تفکیک پسرانه و دخترانه ارائه کردند، نتایج نشان می دهد شهرک معلم کرمانشاه با کمبود فضای آموزشی مواجه است و نیازمند مکان های جدید برای احداث مدارس است.
- معصومی و فرج زاده در سال 1385 تحلیل فضایی کتابخانه های عمومی منطقه 12 تهران را با استفاده از GIS انجام دادند، نتیجه اینکه: با وجود کم بودن جمعیت منطقه 12 تهران نسبت به سایر مناطق، ولی تعدادکتابخانه ها از فراوانی بیشتری برخوردار است و کتابخانه های موجود، توزیع فضایی مناسبی ندارند و دسترسی به کتابخانه ها نیز در وضعیت مطلوبی قرار ندارد.
- نسترن (1382) در پژوهشی تعادل فضایی و پراکندگی نماگرهای آموزشی در مناطق شهری اصفهان را تبیین کرده و ضمن به تصویر کشیدن عدم تعادل در توزیع فضایی شاخص های آموزشی شهر اصفهان، راهکارهای دستیابی به وضع مطلوب و توزیع بهینه شاخص ها و زمینه های مناسب محرومیت زدایی را مورد بحث قرار داده است.
- اکبری (1390) در تحلیل فضایی و برنامه ریزی نارسائی های مراکز خدمات شهری یاسوج به این نتیجه رسید که شهر یاسوج به تناسب شدت گیری توسعه ی کالبدی و افزایش جمعیت از نظر ارائه خدمات شهری دچار نارسایی است و نتیجه این نوع توسعه کالبدی شتاب انحراف از استاندارد شاخص های خدماتی بوده است.
- کریمیان بستانی (1390) روند توزیع مراکز آموزشی در شهر زاهدان با تأکید بر عدالت اجتماعی را طی سال های 88-1380 بررسی نمود، نتایج تحقیق نشان می دهد: توزیع کنونی مراکز آموزشی در شهر زاهدان نه تنها در مناطق سه گانه متفاوت است بلکه طی سال های 88-1380 از روند نابرابری تبعیت نموده است، رشد ناموزون شهر نشینی در شهر زاهدان زمینه ساز نابرابری اجتماعی بویژه در امکانات آموزشی در بین شهروندان بوده است. همچنین، روند توزیع امکانات آموزشی به سوی عدم تعادل و تمرکزگرایی در منطقه2 است زیرا ضریب جینی در سال مبدأ محاسبه 985% و در سال مقصد 978% می باشد که حاکی از بیشتر شدن شکاف برخورداری از خدمات آموزشی بین مناطق شهری زاهدان است و با این روند شهر به سوی عدم تعادل پیش می رود و در نهایت دستیابی به مقدمات عدالت اجتماعی و توسعه پایدار در این شهر مشکل خواهد بود.
2-7-1- مطالعات خارجی
Moller (1998) مکان یابی مراکز آموزشی را در شهر کپنهاک دانمارک تحلیل کرده است. وی در این تحقیق الگویی برای مکان یابی فضاهای آموزشی ارائه کرده که بر مبنای محدوده بندی ثبت نامی فضاها با توجه به مسیرهای انتخابی صورت گرفته است.
Kucerova and kucera ( 2012 ) در تحقیقی با عنوان تغییرات در توزیع فضایی مدارس ابتدایی و اثر آنها بر جوامع روستایی به این نتیجه رسیدند که مدارس روستایی سازمان هایی فرهنگی، اجتماعی و آموزشی کاملی می باشند که از بسیاری از جهات با مدارس شهری متفاوت می باشند، نزدیکی و دسترسی به آنها اثرات فراوانی بر عملکردهای جوامع روستایی و زندگی روستاییان دارد، در نتیجه تغییر کلی جامعه، بهبود در حمل و نقل و کاهش جمعیت در مناطق خارج از شهر، تعداد مدارس ابتدایی همراه با متراکم شدن آنها در مناطق پرجمعیت تر کاهش می یابد. تأثیر نزدیکی مدارس بر زندگی روزانه در جوامع روستایی در مناطق خارج از شهر در مقایسه با وضعیت شهرهایی که در طی دوره مشاهده به صورت دموکراتیک اداره شدند تغییراتی نشان نداد.
Wang and Luo ( 2005) ارزیابی عوامل فضایی و غیر فضایی برای دسترسی به خدمات بهداشتی و سطح بهداشت را انجام دادند، نتیجه آنکه اوضاع نامساعد اجتماعی، اقتصادی، آموزشی و موانع فرهنگی مثل کمبود مدرسه در مناطقی که از لحاظ دسترسی به خدمات بهداشتی و درمانی ضعیف هستند می تواند موثر باشد.
در مطالعه سازمان یونسکو (1996)، سطح بندی حوزه نفوذ هر یک از مدارس در نقاط شهری براساس فاصله و زمان انجام شده است، در این پژوهش، مناطق کمبود و مازاد مدارس با استفاده از سیستم اطلاعات جغرافیایی تعیین و با تحلیل های شبکه مسیرهای بهینه برای دسترسی به فضاهای آموزشی مشخص شده است.
Gordon and Monastiriotis ( 2006 ) در تحقیقی با عنوان (آموزش، مکان ، آموزش: تحلیلی فضایی از نتایج آزمون مدارس راهنمایی انگلیسی) به این نتیجه رسیدند که رابطه بین جغرافیا و مدرسه ارتباطی دو جانبه می باشد، از یک طرف گمان می رود که نرخ رتبه های بالای امتحانی در سطح منطقه ایی مرتبط با ترکیب عالی و مناسب مسکونی، اجتماعی و همچنین مرتبط با عملکرد اقتصادی قوی تر می باشد، از طرف دیگر، ترکیب جمعیت منطقه ایی، فشارهای بازار کار و سیاستهای آموزشی منطقه ایی هم بر نرخ موفقیت مدرسه و هم بر شرایطی که تحت آن مدارس عمل می کنند تاثیر می گذارد.
Oakes (2006) در پروژه - ریسرچای تحت عنوان ( استراتژی های فرهنگی و توسعه: مفاهیمی برای مناطق روستایی چین) به این نتیجه رسید که استراتژی توسعه فرهنگی و آموزشی در روستاهای چین نشانه ی توسعه اقتصادی است.
Muleya (2006) طی تحقیقی که در مناطق روستایی زامبیا انجام داده است، مشکلات سکونتگاههای روستای را در مسائلی از قبیل دسترسی به مراکز و تسهیلات آموزشی، بهداشتی، مقاومت ساختمانها، حمل و نقل و زیست محیطی یافته است، در این راستا فرآیند برنامه ریزی را از دو بعد کاربری اراضی و برنامه ریزیهای اقتصادی، اجتماعی و آموزشی دانسته است.
8-1- محدوده موضوعی، زمانی و مکانی تحقیق
آموزش و سواد، دو مقوله اساسی در توسعه فرهنگی و زمینه ساز دستیابی به توسعه پایدار انسانی به شمار می روند، سواد و آموزش بالاتر زمینه دستیابی به شغل بهتر، شرایط بهتر زندگی و انسانی تر کردن زندگی را فراهم می سازد و اجتماعی معقول تر و فضای متعادل را فراهم می آورد. نابسامانی در توزیع مناسب مراکز آموزشی و فقدان یک منطقه بندی مناسب در توزیع امکانات آموزشی و فاصله از استانداردهای آموزشی باعث دوری سکونتگاهها از عدالت اجتماعی خواهد شد، بر این اساس این تحقیق در صدد شناسایی توزیع مراکز آموزشی و بررسی ارتباط بین وضعیت فضاهای آموزشی با استاندارد های آموزشی در روستاهای دهستان محمد آباد شهرستان هامون می باشد. در بررسی موضوع این پژوهش بعد از تصویب طرح پیشنهادی در خرداد ماه 1392، عملیات بررسی منابع مکتوب و جمع آوری داده ها و اطلاعات مرتبط با موضوع از همان خردادماه شروع شد و پس از تدوین کلیات تحقیق و مبانی نظری موضوع تحقیق در قالب فصول 1 و 2 از شهریورماه هم مطالعات میدانی و حضور در روستاها برای جمع آوری اطلاعات مربوط به شاخص های تحقیق و توزیع فضایی مراکز آموزشی انجام گرفته است. مکان های مورد مطالعه عبارتند از کلیه مراکز آموزشی دهستان محمد آباد شهرستان هامون به تفکیک مدارس ابتدایی، راهنمایی و متوسطه که اسامی روستاهای دارنده این مراکز در جدول شماره 1-1 ذکر شده است.
جدول 1-1- مراکز آموزشی مورد مطالعه
ابتدایی
تمبکا، فیروزه ای، باغک، کیخا، دهکول، بهرام آباد، دهمیر، دک دهمرده، ابراهیم آباد، عباسیه، حمزه آباد، ذوالفقاری، شهرک بزرگ، چهارخمی، گزموم، پل اسبی، ده رضا، کوشه سفلی، کوشه علیا، سدکی، آخوند غلامی، توتی، دولت آباد، دیوانه و محمد آباد
راهنمایی فیروزه ای، کیخا، بهرام آباد، ابراهیم آباد، ذوالفقاری، شهرک، کوشه سفلی، سدکی، شهریاری، آخوند غلامی، توتی، دولت آباد، چهار خمی و محمدآباد
متوسطه سدکی، توتی، دولت آباد، تمبکا و محمد آباد
فصل دوم
مبانی نظری تحقیق

1-2- پیش درآمد
در راستای تبیین و ارائه چارچوب نظری تحقیق، این فصل به دو بخش جداگانه تقسیم شده است بخش اول تعاریف و مفاهیم: در این بخش محقق بر آن است تا به تعریف مهمترین واژه ها و مفاهیم مرتبط با موضوع از جمله فضا، فضای جغرافیایی، تحلیل فضایی، دسترسی، روستا، جامعه روستایی، دهستان، توزیع فضایی، آموزش و پرورش و سیستم اطلاعات جغرافیایی (GIS) بپردازد.
و بخش دوم دیدگاهها و نظریه ها: در این بخش سعی بر آن است تا به تحلیل دیدگاهها و نظریه های ارائه شده در راستای موضوع تحقیق پرداخته شود.
2-2 تعاریف و مفاهیم
1-2-2- فضا
فضا یکی از پیچیده ترین واژه های علمی است که در بین علوم مختلف با برداشتهای متفاوتی مصطلح بوده و در قلمرو هر علم تعریف خاصی از آن ارائه شده است. مفهوم فضا درابعاد وسیع و جامع خود، تجلی گاه رابطه میان تمام فعالیتهای انسانی است. واژه نامه نوین جغرافیایی فضا را پهنه ای از سرزمین تلقی می کند که در صحنه آن نظام های جریانی و فعالیتی، صورت بندیهای خاص خود را خلق می کنند. تعریف دیگر فضا عبارت است از گستره ی پیوسته ایی که در آن اشیاء و پدیده ها قرار گرفته و حرکت می کنند (آسایش و مشیری، 1389، 70) .
برخی از نویسندگان مانند اولمن فضا را مترادف با واژه ی موقعیت یعنی جایی که رابطه ی بین مکان ها را ممکن می سازد تعریف کرده است (رضوانی، 1391، 87).
2-2-2- فضای جغرافیایی
در جغرافیا، مفهوم فضا، به صورت علمی تقریباً از دهه ی 1950، با پروژه - ریسرچفرد کورت شیفر در مورد استثناگرایی در جغرافیا وارد ادبیات جغرافیایی شد. در جغرافیا، مفهوم فضا به دو صورت بکار گرفته می شود:
1- فضای مطلق که دارای کیفیت عینی، واقعی، مشخص و طبیعی می باشد.
2- فضای نسبی که بطور مداوم در اثر نیازهای اجتماعی، اقتصادی و شرایط تکنولوژیک در وسعت و فرم تغییر می یابد (شکویی، 1386، 286).
فضای جغرافیایی، فضایی است که مکان آن در زمین قابل تعیین است و از مجموعه ایی از مناسبات ترکیب پذیرفته و متحول می شود. فضای جغرافیایی فضایی است که مرحله ایی از دگرگونی را پشت سر نهاده و وجه مرئی آن را چشم انداز تشکیل می دهد، در جغرافیا، فضای جغرافیایی شامل فرآیندهای طبیعی تغییر یافته بوسیله انسان، شرایط اجتماعی تولید و تقسیم اجتماعی کار در یک مجموعه نظام یافته می باشد. بطور کلی فضای جغرافیایی ، تجلی گاه رابطه تمام فعالیتهای انسانی و مبین سطوح توسعه یافتگی جوامع می باشد (آسایش و مشیری، 1389، 71 -70).
3-2-2- تحلیل فضایی
روشی است برای تحلیل و تفسیر پدیده ها و نقاط که در مکان ها و فضاها پراکنده اند. یکی از ابزارهای تحلیل فضایی سیستم اطلاعات جغرافیایی (GIS) است.
جغرافیای انسانی را می توان به عنوان نوعی هندسه یعنی دانش فضایی به شمار آورد، فضایی که در آن نقاط، ساکنان و واقعیتهای جغرافیایی پراکنده شده اند و با چنین برداشتی می توان به تحلیل فواصل، تصاویر، ثابتها و متغیرها پرداخت، در تحلیل فضایی از داده های آماری استفاده می شود و فرجام کار آن به تمهید الگوهایی می انجامد که در نهایت، در امر سازماندهی یک سرزمین به کار می آیند (دروئو،1371،61).
4-2-2- روش تحلیل فضایی
در روش تحلیل فضایی ارتباط بسیار قوی میان انسان و محیط او برقرار می گردد. این تکنیک و روش های متداول آن به محققان کمک می نمایند، تا عناصر فضایی تشکیل دهنده محیط را شناسایی نموده و ضمن برقراری ارتباط متقابل میان عناصر، تحلیل جامعی از محیط به عمل آورند. مهمترین بعد فضایی، استفاده از رویکرد مطالعه انسان و پدیده های فیزیکی محاط بر آن است. با این روش، می توان به مکان رخداد پدیده ها آگاهی پیدا کرده و به چرایی این رویداد پاسخ داده شود: تحلیل فضایی در حقیقت مجموعه ایی از ابزارها، فنون و روش شناسی است که از طریق علم اطلاعات جغرافیایی انجام می پذیرد. در این تحلیل مجموعه ای فضایی از رفتار انسان مورد توجه قرار گفته، و امکان مطالعه در توزیع فضایی، الگوها و فرآیندهای مرتبط با پدیده های اجتماعی، اقتصادی، جمعیتی و جغرافیایی مهیا می گردد. مهمترین ابزارهایی که در تحلیل فضایی به کار گرفته می شوند، سیستم های اطلاعات جغرافیایی، سیستم های تعیین موقعیت جهانی، سنجش از دور و آمار فضایی است (ذاکری، 1383، 93).
5-2-2- دسترسی
وجود یک تعریف قابل قبول برای دسترسی مشکل است زیرا دسترسی توسط برخی عوامل تحت تأثیر قرار می گیرد. دسترسی به مفهوم کاهش فاصله مکانی بین محل زندگی و تمرکز تسهیلات و خدمات و محل کار است، یعنی افراد متقاضی در کوتاهترین فاصله مکانی- زمانی (فضایی) به تسهیلات عمومی دسترسی داشته باشند که این امر به طور طبیعی مسأله عدالت اجتماعی و فضایی را در سطح مناطق مختلف برقرار می سازد. بطور کلی دسترسی به عنوان آزادی یا توانایی مردم برای برآوردن نیازهای اساسی به خاطر حفظ کیفیت زندگی تعریف شده است (رهنما و ذبیحی، 1390، 7).
در تحلیل سهولت دسترسی، عامل زمان- فاصله در دسترسی به خدمات تعیین می شود و برنامه ریزان و جغرافیدانان می توانند ضعف یا فقدان یا گسترش خدمات را در توسعه ی روستایی در یابند، همچنین ظرفیت سرمایه گذاری در بخش های ویژه برای افزایش سهولت دسترسی خانواده های روستایی و کاهش شکاف در عرضه ی خدمات بین خرده نواحی داخل ناحیه بخوبی مشخص می گردد (شکویی، 1373، 325).
6-2-2- روستا و جامعه روستایی
عدد جمعیت، نوع معیشت، وجود شهرداری، ساخت اجتماعی و اقتصادی از شاخص هایی هستند که می توانند مبنای تعریف روستا محسوب گردند. و در بعضی از منابع در تعریف روستا آمده است، روستا به جایی گفته می شود که شغل اکثریت مردم کشاورزی است در تعریف دیگر که امروزه ملاک تمایز شهر از روستا در ایران محسوب می شود وجود شهرداری است و براین اساس به سکونتگاههایی که شهرداری نداشته باشند روستا اطلاق می شود (وثوقی، 1369، 11).
در سال 2002، ویلیام وکاتچین، بیان کرده اند که نباید روستا را به سادگی در قالب دسته ایی از امور قابل مشاهده و توصیفی تعریف کرد. تعریف روستا باید شامل یک کلیت، محلی بودن و فعال بودن باشد که نشان دهنده ی ترکیب منحصر به فردی از نمایش جهانی است. تعاریف روستا بر پایه ویژگی محلی و مکانی قرار دارد که اثر آن در ساختارهای اصلی در سطح محلی از قبیل نمایش اجتماعی وجود دارد(Williams and Cutchin, 2002, 112-113).
جامعه روستایی به گروهی از انسان ها اطلاق می شود که دارای نحوه زندگی مشابه، زبان، آداب و رسوم و مقتضیات اجتماعی مشترکند. شیوه زندگی افراد در جامعه روستایی، عموما غیر رسمی است و چنین جوامعی دارای آداب و رسوم قوی و پایداری هستند (اشرفی، 1388، 115).
7-2-2- دهستان
دهستان از به هم پیوستن چند روستا، مکان و مزرعه ی همجوار در یک محدوده ی جغرافیایی معین تشکیل می شود که از لحاظ محیط طبیعی و انسانی همگن بوده و امکان خدمات رسانی و برنامه ریزی در سیستم و شبکه واحدی را فراهم می نماید. حداقل جمعیت دهستان با در نظر گرفتن وضع پراکندگی و اقلیمی کشور به سه درجه ی تراکمی زیاد (8000 نفر)، متوسط (6000 نفر) و کم (4000 نفر) تقسیم می گردد. مرکز دهستان، روستایی از همان دهستان است که مناسبترین مرکز خدمات روستایی آن محدود ه باشد (با در نظر گیری موقعیت یک نقطه از همان مجموعه با رعایت سهولت دسترسی و میزان جمعیت). برای ایجاد سهولت در خدمات رسانی و دسترسی، ارگان های ذیربط موظف اند نسبت به جذب تدریجی مزارع و مکان ها و روستاهای کوچک و همجوار که چندان آباد نیستند، در مراکز دهستانها و یا روستاهای بزرگ اقدام نمایند. در تعیین محدوده ی دهستان شاخص های اوضاع طبیعی منطقه از جمله حوضه آبخیز، پستی و بلندی و آب و هوا باید رعایت گردد (رهنمائی، 1369، 50-49).
دهستان قسمتی از تقسیمات کشوری است که معمولاً از چند روستا یا ده تشکیل می شود و خود قسمتی از یک بخش است و دهستان بوسیله ی دهدار اداره می گردد (جعفری، 1363، 61).
8-2-2- توزیع فضایی (پراکندگی)
چگونگی قرارگیری عناصر، پدیده ها ، نقاط و مکان ها بر روی سطح زمین، پراکندگی یا توزیع فضایی نامیده می شود. پراکندگی جغرافیایی از ارکان مهم و عمده ی مطالعات جغرافیایی بوده، به فهم و ادراک و بررسی خصوصیات موقعیت های جغرافیایی کمک می کند. به طور معمول جغرافیدانان از نقشه ها برای نشان دادن توزیع جغرافیایی پدیده ها در روی سطح زمین یا قسمتی از آن استفاده می کنند. جغرافیا، پدیده ها و فرآیندهایی را که به شکل همسان بر سطح زمین پراکنده نشده اند، مطالعه می کند. شرایط خاص مکان ها به شکل شگفت آوری بر پراکندگی مردم بر سطح زمین تأثیر می گذارد.پراکندگی انسان ها بر فعالیتهای اقتصادی و اجتماعی هم اثر گذاشته است. علت پیدایش جغرافیا این است که ویژگی های محیط کره زمین و مردمی که درآن زندگی می کنند، از جایی به جای دیگر تفاوت دارد. بنابراین جغرافیا بر گونه گونی سطح زمین تأکید می ورزد و به مطالعه پراکندگی عواملی می پردازد که سبب تمایز یک قطعه زمین، از قطعه دیگری می شوند. درک پراکندگی عوامل جغرافیایی در روی سطح زمین، پیش نیاز درک کره زمین و انسان های ساکن آن است، زیرا این پراکندگی شرایط متفاوتی را ایجاد می کند که بر حیات در مکان های خاص تأثیر می گذارند. جوهر یک عامل جغرافیایی ایجاب می کند که آن عامل به صورت بی قاعده ایی روی سطح زمین، توزیع شده باشد ، به طرقی که سبب تمایز سطح زمین شود. یک مفهوم بنیادی از جغرافیا این است که برای دریافت پدیده ها و فرآیندها در هر مکان، به این تفاوتها یک ویژگی بارز ببخشد. این امر که برخی از مکان ها نسبت به مکان های دیگر برای مقاصد خاصی، بهتر است، برای مردمی که روی زمین زندگی می کنند، اهمیت خاصی دارد. به طور معمول توزیع فضایی دارای سه ویژگی است:
الف- تراکم نسبی: شامل تعداد پدیده ها و عناصر مورد مطالعه، تقسیم بر مساحت منطقه مورد مطالعه است.
ب- تفرق: بر خلاف تمرکز، شاخصی است که مقدار پخش یک پدیده و میزان پراکندگی یا تمرکز آن را در یک منطقه یا مکان نشان می دهد.
ج- بافت: طرز قرارگیری هندسی عناصر و پدیده ها را در فضا، بافت گویند که از جمله آنها می توان بافت خطی، بافت متمرکز و بافت متفرق را نام برد (پور احمد، 1388، 103-101).
عوارض طبیعی و پدیده های انسانی بطور یکسان و یکنواخت در نواحی جغرافیایی دیده نمی شوند بلکه پراکندگی آنها از نظر نوع و شکل به صورت نامساوی انجام می گیرد بطوری که در بعضی نواحی وجود پاره ایی از عوامل طبیعی و انسانی در سطوح گسترده تر و در بعضی دیگر به صورت محدودتر ظاهر می شوند. گاهی نیز ناحیه ایی فاقد یک یا چند پدیده ی طبیعی و انسانی است، علل پیدایش، ظهور، تکوین و همچنین عدم وجود آنها در مقیاسهای ناحیه ایی مورد مطالعه ی جغرافیا است (شکویی، 1364، 44).
9-2-2- آموزش و پرورش
برای واژه آموزش و پرورش تعاریف زیادی در منابع مختلف ذکر شده است اما در ذیل 3 مورد از این تعاریف ذکر شده است:
جان دیویی: آموزش و پرورش دوباره ساختن یا سازمان دادن تجربه است، به منظور اینکه معنای تجربه گسترش پیدا کند و برای هدایت و کنترل تجربیات بعدی، فرد را بهتر قادر سازد.
ژان ژاک روسو: آموزش و پرورش هنر یا فنی است که به صورت راهنمایی یا حمایت نیروهای طبیعی و استعدادهای فراگیر (متربی) و با رعایت قوانین رشد طبیعی و با همکاری خود او برای زیستن تحقق می پذیرد.
امیر حسین آریان پور: آموزش و پرورش عبارت است از فرآیند هدایت و جهت دهی عمدی تجارب انسانی.
10-2-2- سیستم اطلاعات جغرافیایی (GIS)
تمامی علومی که به نحوی با GIS در اتباط هستند ، نظیر جغرافیا،برنامه ریزی شهری، عمران، کشاورزی، جنگلداری، محیط زیست، زمین شناسی و... هر کدام تعاریفی ازGISدارند، اما در اینجا چند تعریف از نظر علوم جغرافیایی ذکر شده است:
سیستم اطلاعات جغرافیایی (GIS) سیستمی است برای جمع آوری، ذخیره سازی، کنترل، ادغام، پردازش، تحلیل و نمایش داده هایی که مرجع آنها زمین می باشد. سیستم اطلاعات جغرافیایی، یک فناوری اطلاعاتی است که داده های فضایی و غیر فضایی را ذخیره، تحلیل و نمایش می دهد. سیستم اطلاعات جغرافیایی، یک سیستم مدیریت پایگاه اطلاعات برای وارد کردن، ذخیره، بازیافت، تحلیل و نمایش اطلاعات فضایی (بعد مکانی) می باشد. آنچه از همه ی این تعریف استنباط می شود این است که GIS اولاً یک سیستم است که شامل اجزای منسجمی است که برای هدف خاصی تنظیم شده اند. ثانیاً نیاز به داده ها دارد که این داده ها فضایی و غیر فضایی هستند و می توانند نگهداری و بازیابی شوند.ثالثاً قدرت تحلیل دارد و می تواند بین داده های فضایی و غیر فضایی ارتباط منطقی برقرار کند(آسایش ومشیری،1389،277).
اهداف یک پایگاه اطلاعاتی مبتنی بر GISعبارتند از:1- گسترش بهره وری در به کارگیری نقشه ها و اطلاعات جغرافیایی2- بهبود مدیریت اطلاعات جغرافیایی3- ایجاد شیوه های راهبردی برتر در استفاده از اطلاعات جغرافیایی به منظور تقویت فرآیند تصمیم گیری(همان،1389،288).
امکانات سیستم اطلاعات جغرافیایی عبارتند از:1- انجام عملیات فضایی: بوسیله این سیستم امکان تحلیل همگانی و فضایی عوارض و روابط میان آنها براساس مختصات جغرافیایی وجود دارد2- ارتباط و پیوند بین انواع اطلاعات: در این سیستم، امکان ذخیره انواع اطلاعات و انواع نقشه های شماتیک به شکل فایلهای رایانه ایی وجود دارد. یک سیستم اطلاعات جغرافیایی می تواند پنج عمل اصلی زیر را بر روی داده های مکانی و غیر مکانی انجام دهد: دریافت، ذخیره، پردازش، تحلیل و خروجی.

مهمترین استفاده و کاربردGISربط داده های کمّی و کیفی به مکان و فهم رابطه های موجود بین مکان ها است. اجزای یک پایگاه اطلاعاتی مبتنی برGISمانند سه رأس یک مثلث هستند که با نبود هر یک از آنها مثلث پایگاه اطلاعاتی ناقص خواهد شد. این اجزا که در شکل 1-2 دیده می شوند عبارتند از موقعیت مطلق، موقعیت نسبی و ویژگیها(همان،1389،279).
شکل 1-2- اجزای یک پایگاه اطلاعاتی مبتنی بر GIS

منظور از موقعیت مطلق مختصات جغرافیایی x و yاست، و منظور از موقعیت نسبی، موقعیت توپولوژیک عارضه است یعنی موقعیت عارضه مورد نظر نسبت به سایر عوارض مجاور و منظور از ویژگیها چیستی آن عارضه است. این اطلاعات، معمولاً به صورت نقشه های مختلفی که نشانگر شرایط توپوگرافی، منابع آب، نوع خاک، جنگل، مراتع، اقلیم، زمین شناسی، جمعیت، املاک، تقسیمات کشوری و پدیده های زیر بنایی می باشد و به وسیله قابلیتهای انطباق و ترکیب اطلاعات فضایی و غیر فضایی GIS ارائه می گردد. این سیستم ابزار ایده آلی برای تجزیه و تحلیل داده های جغرافیایی، محیطی و فضایی و پیوند آنها با اطلاعات اجتماعی و اقتصادی محسوب می شود (همان،1389،280).
3-2- نظریه ها و دیدگاهها
نظریه (تئوری) در لغت به معنای اندیشیدن و تحقیق آمده است که از تئوریای یونانی گرفته شده است. با گسترش علوم، مفهوم این واژه نیز توسعه یافته و به اندیشیدن و تحقیق درباره ی هر مسئله ایی اطلاق شده است (توسلی، 1373، 204).
نظریه، مجموعه ایی از گفتارهایی است که بر مبنای قواعد منطبق با یکدیگر در ارتباط باشد و مبین بخشی از واقعیت گردد. در این تعریف، تأکید بر چند نکته زیر موضوع بحث را روشن می سازد:الف- نوع خاصی از گفتارها به عنوان عنصر اساسی نظریه ب- ارتباط میان این گفتارها بر مبنای قواعد منطبق (قیاس) ج- تبیین واقعیت (از راه قیاس) به عنوان هدف د- تطبیق نظریه با واقعیت (شکویی، 1364، 89).
البته شکی نیست که هر نظریه ایی در پی کشف حقیقت و قراردادن آن در حیطه عمل و تجربه است تا بتوان صحت و سقم آن را مشخص کرد، چرا که نظر و عمل مکمل یکدیگر هستند، هر چند برخی تعاریف بر نظری یا عملی بودن صرف آن تأکید می نماید (پاپلی یزدی و ابراهیمی، 1381، 12).
دیدگاه را می توان بر مبنای تفکرات افراد یا گروهها طبقه بندی کرد. گروه های ذینفع، طبقات اجتماعی، پیروان فرهنگ ها و خرده فرهنگها، هر یک از دیدگاه خاصی تبعیت می کنند. افتراق در ادراکات، اعتقادات و نگرشها، در شکل گیری دیدگاهها، نقش عمده ایی دارند. از آن میان در مفهوم دیدگاه ، دو عامل بیش از همه مهم به نظر می رسد:1- طبقات اجتماعی2- فرهنگها (شکویی، 1386، 122).
1-3-2- نظریه ها و دیدگاه های فضایی
دیدگاههای فضایی یکی از مهمترین مباحثی است که از نیمه دوم قرن بیستم به صورت گسترده ایی در مطالعات جغرافیایی رواج یافته است. از دهه 1950، جغرافیا به عنوان علم فضایی ، ابتدا در دانشگاه واشنگتن واقع در سیاتل آمریکا مورد توجه قرار می گیرد . این مکتب جغرافیایی می گوید : ابعاد فضایی سطح سیاره زمین موضوع مهم در علم جغرافیا است و در جهت تحلیل آن، به آمارها، نظریه ها، کامپیوتر، ساخت مدلهای جغرافیایی و ریاضی، نظریه مکان مرکزی، نظریه های اقتصادی، روش های کمی و بلاخره به تحلیل سیستمی نیازمندیم. در تحلیل فضایی، الگوهای سکونتگاهی، تدوین نظام فضایی در میزان جمعیت به وسعت مکان شهرها ، شهرکها و روستاها، محلات و مراکز ناحیه ای مورد تأکید قرار می گیرد(خانی،1371،100).
فرد کورت شیفر یکی از پیشگامان مهم مکتب تحلیل فضایی می گوید: در جغرافیا، باید تأکید بیشتر روی آرایش و انتظام پدیده ها در یک مکان صورت گیرد و توجه کمتری به خود پدیده ها معمول گردد (همان، 1371، 102).
یکی از نظریه ها و دیدگاههای فضایی مربوط به موضوع این تحقیق پراکندگی فضایی است: از نظر دیویدهاروی ، به تعداد عملکردهای انسانی و فرآیندهای اجتماعی فضاهای نسبی وجود دارد، در دیدگاه علم فضایی، مردم در فضاهای نسبی زندگی می کنند. پراکندگی فضایی، مجموعه ایی از واقعیتهای عینی است. هر یک از این واقعیتهای عینی، دارای محل استقرار ویژه و یک سطح مشخص می باشد. پراکندگی فضایی واقعیتهای عینی، بد انسان آرایش یافته است که می توان از نظر تراکم، الگویابی و پخش آنها به تحلیل و تدوین قوانین مربوطه پرداخت. در اغلب موارد، در شناخت پراکندگی فضایی، تنها روی یک پدیده ی واحد تأکید می کنند تا در جستجوی قوانین و صورتبندی پراکندگی فضایی پدیده، توفیق یابند. تصمیم گیری، ساز و کار اساسی در همه مسائل جغرافیایی است، در جغرافیا تصمیم گیری تأثیرات خود را در پراکندگی فضایی فعالیتهای انسانی، به صورت نمودی عینی ظاهر می سازد. مثلاً تصمیم گیری در مورد کاربری زمین در مزارع، چهره های مختلف جغرافیایی خلق می کند. از این رو، حاصل تصمیم گیری، بوسیله ی گروهها، افراد و سازمانهای دولتی، شکل گیری مجدد جغرافیایی است. روشن است که تصمیم گیریهای گروهی، فردی و دولتی، در زمینه محل استقرار فعالیتهای انسانی و یا کاربری زمین، در خلأ فکری صورت نمی گیرد، بلکه هر تصمیم گیری از یک سیاست یا ایدئولوژی و تفکر خاص تأثیر می پذیرد، یعنی در هر تصمیم گیری، همه ی شرایط محیطی، فرهنگی واقتصادی که تصمیم گیرندگان در داخل آن عمل می کنند تأثیر گذار می باشد. پراکندگی پدیده های جغرافیایی یا فعالیتهای اقتصادی، در سراسر سطح زمین و یا در داخل یک ناحیه، تحت شرایطی، شکل گیری الگوها را امکان پذیر می سازد. در سطح زمین، هر الگوی فضایی، غالباً از سه فرم هندسی نقاط (گره ها)، خطوط و حوزه ها و یک سطح جغرافیایی تشکیل می شود و محصول فرآیند فضایی ساختار فضایی است که در آن ، فضا بوسیله فرآیندهای اجتماعی، اقتصادی و طبیعی سازمان می یابد. این سازمان یابی از محل استقرار عناصر و اجزاء داخلی یک پراکندگی فضایی تأثیر می پذیرد. محل استقرار هر جزئی نسبت به هر یک از اجزا دیگر و جایگاه هر جزئی نسبت به همه ی اجزا، با هم و توام سازمان یابی فضایی را شکل می دهند. در واقع، ساختار فضایی، از آرایش و سازمان یابی پدیده ها که نتیجه ی فرآیندهای طبیعی، اجتماعی و اقتصادی است بوجود می آید (شکویی، 1386، 295-289).
نظریه و دیدگاه فضایی دیگری که مرتبط با موضوع این تحقیق می باشد نظریه مکان های مرکزی است نخستین تلاش برای شرح الگوهای مکانی را فون تانن با انتشار کتاب سرزمین منفرد به عنوان یکی از بانیان تئوری مکانی مطرح می سازد. وی فاصله محل زندگی کشاورزان را نسبت به یک بازار مرکزی براساس بهره موقعیتی در یک مدل دوایر متحمدالمرکز تشریح می نماید. شهر بزرگی را تصویر می کند که با دشتی بزرگ با حاصلخیزی یکنواخت، احاطه شده است. این شهر محدوده روستایی خود را از نظر کالا و خدمات تأمین می کند و برای عرضه مازاد تولیدات کشاورزی نواحی روستایی، بازار فراهم می سازد، در مدل فون تانن هزینه های حمل و نقل اهمیت بسیاری دارند. در نتیجه، کالاهای حجیم و سنگین و کالاهایی که هزینه حمل و نقل آنها بالاست در مجاورت شهر تولید می شوند و کالاهای سبک و کم حجم یا با هزینه حمل و نقل پایین در مکان های دورتر تولید می شوند. بدین ترتیب نظامی از دایره هایی هم مرکز، پیرامون شهر مرکزی بوجود می آیند. وی از طریق این مدل به دنبال بدست آوردن مناسب ترین محصول و کاربری زمین در یک ناحیه روستایی و اقتصاد کشاورزی است (شکل 2-2)(جمعه پور، 1385، 119).

شکل 2-2- مدل فون تانن
در عین حال اصطلاح مکان مرکزی با نام والتر کریستالر و کار پیشگامانه او با عنوان مکانهای مرکزی جنوب آلمان پیوند دارد. مرکزیت عبارت است از نقشی که یک مکان در رابطه با نقاط دیگر بر عهده دارد. مفاهیم کلیدی نظریه مکان مرکزی، دامنه کالا و ارزش آستانه هستند که به طور ضمنی به سلسله مراتب زیستگاهها و مرکزیت یک مکان ویژه دلالت می کنند. دامنه کالا در واقع مسافتی است که مردم برای تأمین خدمات و کالاهای معینی حاضر به طی آن می شوند. حداقل مجموع قدرت خرید لازم به منظور ایجاد تقاضای کافی برای عرضه کالا و خدمات خاص، ارزش آستانه را تشکیل می دهد. براساس مدل کریستالر سکونتگاهها را می توان در سطح ملی به مکانهای مرکزی رده بالاتر، رده پایین تر، پایین ترین رده و مکان های مرکزی معین طبقه بندی کرد. مرکزیت یک مکان براساس جایگاهی که در طبقه بندی به دست می آورد منعکس می شود (شکل 3-2)(همان،1385،121).

شکل 3-2 - سلسله مراتب مکانهای مرکزی کریستالر
مدل اصلی کریستالر متکی بر اصل بازاریابی است. نتیجه کاربرد این اصل پدید آمدن روابط متقابل سلسله مراتبی بین مکان های مرکزی است. توزیع مکان های مرکزی در فضای ناحیه ایی به گونه ای است که هر مکان در مرتبه خاص خود کالاها و خدمات مراکز فرودست خود را عرضه می کند. در این سلسله مراتب بازاری میدان برد کالا با سطح سلسله مراتب مکان مرکز و امکانات و قدرت خرید خریداران و شکل و ماهیت خدمات و تولید در رابطه است کریستالر معتقد بود که سلسله مراتب مرکزی می تواند براساس هر یک از اصول زیر ایجاد شود:
الف) اصل بازاریابی یا عرضه:در این حالت برای هر مرکز فرعی حداکثر حق انتخاب مراکز اصلی وجود دارد. در این نوع سلسله مراتب هر مکان مرکزی یک سوم هر شش مرکز فرعی تابعه خود به اضافه خود مرکز اصلی را زیر نفوذ دارد که معادل 3 مرکز می شود، کریستالر این مقدار را ارزشK می نامد که معادل شمارکل سکونتگاه های سطح معینی است که توسط یک مکان مرکزی متعلق به سطح بالاتر، خدمت داده می شود.
ب) اصل ترابری: در سلسله مراتبی که براساس این اصل شکل می گیرد، فاصله بین مراکز اصلی و فرعی به حداقل می رسد. در این حالت مراکز تا حد بیشتری در مسیر ترافیک بین مراکز اصلی قرار می گیرند. از آنجا که مراکز فرعی در مسیر بین مراکز اصلی واقع شده اند، وابستگی دوگانه دارند، بنابراین مطابق اصل ترابری ارزشKچهار است، یعنی هر مرکز اصلی نصف 6 مرکز فرعی به اضافه خود را زیر پوشش می گیرد.
ج) اصل اداری:اگر سکونتگاه ها مطابق این اصل استقرار یافته باشند هر مرکز، کنترل کامل 6 مرکز فرعی خود را بر عهده می گیرد و وابستگی تقسیم شده مراکز فرعی وجود ندارد، در نتیجه در این حالت ارزش K مساوی V خواهد بود یعنی 6 مرکز زیر نفوذ به اضافه خود مرکز اصلی است. (شکل 4-2)

شکل 4-2 - سلسله مراتب مرکزی براساس اصول بازار یابی، ترابری و اداری
کریستالر معتقد است که الگوی استقرار براساس اصل بازاریابی بیشترین کارآیی را برای مصرف کنندگان روستایی و توزیع فرآورده های روستایی دارد، در حالی که الگوی ترابری کاراترین الگوی استقرار برای عرضه کنندگان شهری و الگوی اداری کاراترین الگو برای بوروکراتهای شهری است. این سه نوع نظم غیر قابل جمع نیستند و مناطق بزرگ می توانند ترکیبی از چند شکل فضایی را با هم داشته باشند. از میان همه مدل های تعیین استقرار فضایی، نظریه مکان مرکزی احتمالاً از همه پخته تر و مشهورتر است. اهمیت این نظریه درباره استقرار محل های سکونت، بسیار است، اما از آنجا که تنها با بخش خدمات سروکار دارد، تبیینی که ارائه می دهد جزئی است و کل ساختار فضایی را تبیین نمی کند. نظریه مکان مرکزی الگوی کاملی از سلسله مراتب سکونتگاهی در سطح نواحی را عرضه می دارد.مهمترین انتقاد وارد بر الگوی مکان مرکزی کریستالر این است که از ناحیه، برداشتی ذهنی و آرمانی بدون توجه به تفاوتهای طبیعی نواحی و رفتارهای انسانی کرده است.(همان،1385 ،123-119).
علاوه بر کریستالر، معروف ترین مدل ها در رابطه با ساختار سازمانی سکونتگاههای روستایی و سلسله مراتب مکان مرکزی، مدل لوش و گالپین است. تجزیه و تحلیل لوش مبتنی بر شبکه روستاهای کشاورزی است که در یک دشت زراعی به شکل مثلث پراکنده شده اند. گالپین و پیروانش مکان های مرکزی را از دیدگاه روستایی تجزیه و تحلیل کردند و از این راه سلسله مراتب عملکردی را به صورت تجربی به دست آوردند. به طور کلی تمامی نظریه های مکان مرکزی بر چهار اصل استوارند:1- یکسانی چشم انداز فرهنگی و فیزیکی2- نواحی واحد نامحدود3- قابلیت دسترسی یکسان مکان های مرکزی در تمام جهات 4- رفتار منطقی مصرف کننده. البته چنین شرایطی در سیستم های فضایی واقعی وجود ندارد و مهمترین انتقادی که بر این الگوها وارد شده است، نیز برهمین اصول است (همان، 1385، 124).
به این ترتیب در یک منطقه باید نظامی از آبادیهای مرکزی در مقیاس ها و اندازه های مختلف براساس بعد و کشش عرصه ی خدماتی و نوع فعالیتهای مستقر در آنها وجود داشته باشد. مقایسه ی اصول تئوری های مرکزیت مکانی و به ویژه تئوری کریستالر، با کیفیت خاص پراکندگی مراکز جمعیتی در ایران به عنوان نقطه ی شروع، می تواند زمینه ایی برای شکل گیری تئوریهای مربوط به توضیح چگونگی پراکندگی مراکز جمعیتی در ایران باشد (معصومی اشکوری، 1385، 98).
مکانهای مرکزی، مراکزی کانونی هستند که در آنها کالاها (بویژه کالاهای خدماتی و کشاورزی) و خدمات گوناگون (مانند آموزش وخدمات بهداشتی - درمانی) برای برآوردن نیازهای سکونتگاههای کوچک تر پیرامونی ارائه می شود. بنابراین می توان سکونتگاههای روستایی را براساس کارکردهای خدماتی آنها رده بندی کرد و با توجه به جایگاه هر یک از روستاها در ارائه خدمات و کالاها، آنها را در سطح معینی جای داده، به سطح بندی خدماتی سکونتگاهها پرداخت (سعیدی، 1390، 119).
2-3-2- سازمان فضایی و سطح بندی روستاها
در برنامه ریزی توسعه مناطق روستایی تعیین درست مراکز روستایی و مکان های توزیع خدمات اهمیت بسیاری دارد. ایجاد سازمان فضایی مناسب و ساخت مکانی مطلوب اهداف اصلی برنامه های توسعه مناطق روستایی را تشکیل می دهد. منظور از سازمان فضایی ساختار سلسله مراتبی سکونتگاهها، شبکه های ارتباطی که آنها را به هم وصل می کند و جریانهای برقرار بین آنها است. منظور از ساخت فضایی نیز ترکیب این عوامل یا ترتیب مکانها، شبکه یا خطوط پیوند و روابط یا کارکردهاست. سازمان فضایی مناسب، دارای ساخت سلسله مراتبی است که هر مرتبه براساس جایگاهی که اشغال کرده کارکردهای خود را در سیستم ایفا می کند (جمعه پور،1385 ،181).
الگوی روابط متقابل بین سکونتگاهها در صورتی که شرایط اقتصادی، اجتماعی، فرهنگی و سیاسی یکسانی برای همه آنها تصور شود، می تواند براساس این دو اصل تفسیر شود:1- اصولا مردم برای دستیابی به خدمات یا رفع نیازهای خود براساس قانون کمترین تلاش، مسیرهایی را انتخاب می کنند که با پیمودن حداقل فاصله حداکثر نیازهای خود را برآورده سازند.2- مردم مستقر در سطح پایین تر مکان های مرکزی همیشه برای رفع نیازهای خود به سوی سطح بالاتر سکونتگاهها حرکت می کنند. البته به شرط اینکه سکونتگاه بالاتر جاذبه کافی برای جذب مردم سکونتگاه پایین تر را از نظر ارائه کارکردهای مختلف داشته باشد. این دو شرط تعیین کننده چهارچوب جریان روابط متقابل بین نقاط مختلف در سلسله مراتب سکونتگاهی است (Maurya, 1991,67) .
هر چند ملاحظات اجتماعی، فرهنگی و سیاسی نیز در کنار رفتارهای اقتصادی در انتخاب مکان تأمین نیازهای خدماتی یا برآورده ساختن سایر نیازها توسط مردم اثر می گذارد، اگر به این اصل توجه داشته باشیم که همه روستاهای کوچک و بزرگ از نظر اجتماعی، اقتصادی، فرهنگی و دیگر عوامل نمی توانند تمامی نیازهایشان را با اتکا به خود برطرف نمایند، این مسئله روشن می شود که ارتباط بین سکونتگاهها در زمینه پوشش دادن نیازهای همدیگر به عنوان یک سیستم فضایی واحد اجتناب ناپذیر است. ساماندهی این ارتباط و جریانهای بین سکونتگاههاست که نیاز به برنامه ریزی فضایی را برای نواحی روستایی ایجاد می کند. در انتخاب مراکز روستایی در مراتب مختلف سکونتگاهی برای انتخاب درست مکان های استقرار خدمات و کارکردها به چند نکته باید توجه کرد که این نکات شامل موارد زیر است:1- انتخاب نقاط در هر سطح از سکونتگاهها که صورت گیرد، باید به گونه ایی باشد که مناسب ترین ارتباط سلسله مراتبی را برقرار سازند، بطوری که هر کدام از نقاط به بهترین شکل نقش خود را ایفا کند.2- الگوی ارتباط بین نقاط با در نظر داشتن پیمودن حداقل فاصله دسترسی به خدمات و کارکردهای مختلف تعریف شود.3- انتخاب مراکز توزیع خدمات یا کارکردها در مناطقی که هنوز هیچگونه الگویی از توزیع خدمات بویژه در سطوح پایین سکونتگاهها شکل نگرفته است به مراتب آسان تر از وقتی است که الگوی نامناسب و ناکارآمد شکل گرفته باشد.4-در شرایط مساوی سکونتگاههایی که نقشها و کارکردهای بیشتری بر عهده دارند یا جاذبه کارکردی بیشتری دارند از قابلیت بالاتری برای انتخاب به عنوان مرکز در مقایسه با نقاط هم سطح برخوردارند (Solanki and Dikit, 1991,173).
در سطح بندی روستاها، می توان به منظور خدمات رسانی، روستاهای کوچکتر رابه روستاهای بزرگتر و همجوار خود پیوند داد. (به طور مثال دو یا سه روستای سطح اول به یکی از روستاهای سطح دو، و مجموعه چند روستای سطح یک و دو را به روستایی در سطح سه ارتباط
داد، و بدین ترتیب، پیوند بین روستاهای سطوح پایین تر را با روستاهای سطوح بالاتر ایجاد نمود. در چنین شرایطی، هر گاه مجموعه ایی از روستاهای سطوح یک، دو و سه که از نظر تعداد جمعیت در حد ارزش آستانه (حداقل مجموع قدرت خرید لازم به منظور ایجاد تقاضای کافی برای عرضه ی کالا و خدمات خاص می باشد) برای ارائه یک نهاد خدماتی باشند، می توان روستای سطح سه را برای استقرار نهاد خدماتی مورد نیاز سایر روستاها انتخاب نمود(شکل5-2) (مطیعی لنگرودی، 1390، 122).

شکل 5-2 - سطح بندی سکونتگاههای روستایی
4-2- نظریه سرمایه انسانی
یکی از نظریه های مرتبط با آموزش و پرورش نظریه سرمایه انسانی است. پژوهش های متعدد پیرامون رابطه ی آموزش و بهره وری از همبستگی فراوان آنها خبر می دهند یعنی اثرهای مثبت سرمایه گذاری در زمینه ی سرمایه های انسانی بر توسعه منطقه ایی مشهود است، بدین ترتیب پدیده ی رسیدن به سرمایه گذاری در سرمایه ی انسانی و باز بودن درهای تبادل فضایی از عوامل تعیین کننده ی توسعه منطقه ایی می باشد (معصومی اشکوری، 1367، 77).
1-4-2- تعریف و مفهوم سرمایه انسانی
تعریف سرمایه انسانی عبارت است از: «ارتقاء و بهبود ظرفیت تولید افراد» هنگامی که از تشکیل سرمایه انسانی صحبت می شود، زمانی است که سرمایه گذاریهای مالی (چه به صورت مخارج تحصیلی و چه به صورت فداکاری و هزینه فرصتهای از دست رفته) صورت پذیرفته تا تغییرات و تحولاتی در افکار و افعال فرد به وجود آورد. این تغییرات و تحولات که در درون افراد متبلور شده و غیرقابل انفکاک می باشد و آنان را قادر می سازد تا:1- کالاها و خدمات بیشتر و یا بهتری تولید کنند.2- درآمدهای پولی بالاتری تحصیل کنند.3- درآمدهای خود را عاقلانه مصرف کنند.4- از زندگی لذت بیشتری ببرند. می توان از موارد زیر به عنوان مثال های جامعی برای چهار نوع ظرفیتی که همه ناشی از سرمایه گذاری در آموزش و پرورش می باشد. یاد کرد:1- تربیت یک برنامه ریز کامپیوتر که تواناییهای توسعه یافته او موجب افزایش تولید و ارتقاء تولید ملی می شود.2- استفاده های پولی و مالی ناشی از اخذ یک مدرک تحصیلی که در شرایط متعارف افرادی که از تحصیلات بیشتر و مدارک بالاتری برخوردارند، دارای درآمد بیشتری نیز می باشند.3- ذکاوت مصرف کننده در بودجه بندی و انتخاب مناسب و اولویت دادن به انتخابها.4- لذت بردن از نمایشنامه ها و استفاده و بهره برداری از کتابهای تاریخ و دیوان اشعار (عمادزاده، 1369، 77-76).
2-4-2-سرمایه گذاری در سرمایه انسانی
تحصیل علم و دانش چه از طریق نظام آموزشی (دبستان، دبیرستان و دانشگاه) و چه از طریق آموزش ضمن کار و خدمت، نمونه هایی از سرمایه گذاری در سرمایه انسانی به شمار می آید. سرمایه انسانی نه تنها از طریق تراکم و انباشت آموزش و پرورش، بلکه از راههای بی شمار دیگری نیز بوجود می آید، لیکن متداولترین انواع سرمایه گذاری در سرمایه انسانی عبارتند از:
1- آموزشهای قبل از مدرسه 2- دبستان، راهنمایی، دبیرستان، مدارس فنی و حرفه ایی و تحصیلات عالی3- آموزش های بعد از دانشگاه و فارغ التحصیلی 4- مهاجرت برای مشاغل و درآمدهای بالاتر5- مراقبت از تندرستی و بهداشت عمومی6- به دست آوردن اطلاعات کافی از عرضه و تقاضای کار و خدمات.سرمایه انسانی نیز مانند سرمایه مادی بایستی نگهداری و در صورت لزوم، تعمیر، ترمیم و تعویض شود تا بیکار نشده یا مورد اتلاف واقع نشود,21) Beker, 1975).
3-4-2- تشکیل سرمایه انسانی از طریق آموزش و پرورش
آموزش و پرورش تنها در دبستان، دبیرستان و دانشگاه نیست بلکه هر نوع آموزش و یادگیری، چه به صورت رسمی و یا غیر رسمی در داخل و یا خارج از این محل ها را نیز شامل می شود. هزینه های تحصیلات اضافی و آموزش ضمن خدمت به عنوان سرمایه گذاری و تشکیل سرمایه انسانی تلقی می شوند، زیرا چنین سرمایه گذاریهایی در آینده منبع بازده اقتصادی خواهند بود. بازده اقتصادی آموزش و پرورش برای کسانی که در این مورد سرمایه گذاری و هزینه های گوناگون را تقبل می کنند تا حد بسیار زیادی مسلم است. سرمایه گذاری آموزش و پرورش یا از طریق هزینه های دولتی و یا از طریق بخش خصوصی چه به صورت اعطا وامهای بلاعوض و چه به صورت مشارکت در هزینه ها و پرداخت شهریه توسط والدین یا خود دانشجویان انجام می پذیرد.
سرمایه گذاری در سرمایه انسانی دارای دو نوع بازده است، بازده پولی و درآمدی و بازده غیر پولی یا غیر درآمدی، افرادی که از تحصیلات بالاتری برخوردارند، در شرایط متعارف، درآمد بیشتری کسب می کنند، اندازه گیری بازده غیر پولی سرمایه گذاری در آموزش و پرورش گرچه مشکل است لیکن دارای اهمیت ویژه ایی است و آثار مهمتری دارد(عمادزاده،1369،81).

—d1924

1-5- سیستم اطلاعات جغرافیایی GIS..................................................................................................................11
1-5-1- تعریف GIS...................................................................................................................................................12
1-5-2- مزایای استفاده از GIS...............................................................................................................................12
1-6- مرور منابع .........................................................................................................................................................13
1-7- طبقهبندی روشهای استحصال آب باران و سامانه سطوح آبگیر............................................................16
1-8- انواع سازههای استحصال آب .........................................................................................................................18
فصل دوم: مواد و روش تحقیق
2- مواد و روش تحقیق .............................................................................................................................................21
2-1- منطقه مورد مطالعه ........................................................................................................................................21
2-1-1- توپوگرافی و فیزیوگرافی ...........................................................................................................................21
2-1-2- هوا و اقلیمشناسی ......................................................................................................................................21
2-2- روش تحقیق .....................................................................................................................................................22
2-2-1- مطالعات کتابخانهای و اقدامات اولیه ......................................................................................................22
2-2-2- تهیه نقشه پارامترهای موثر در ایجاد رواناب .........................................................................................23
2-2-2-1- خطوط توپوگرافی و تهیه نقشه DEM منطقه ................................................................................23
2-2-2-2- نقشه ارتفاع از سطح دریا......................................................................................................................23
2-2-2-3- نقشه شیب................................................................................................................................................24
2-2-2-4- نقشه جهت شیب ..................................................................................................................................25
2-2-2-5- تهیه و تکمیل نقشه همباران و همدما ..............................................................................................26
الف- بارش ....................................................................................................................................................................26
ب- رابطه ارتفاع- بارش و متوسط بارش منطقه ...................................................................................................27
ج- رژیم حراتی ............................................................................................................................................................28
د- رابطه ارتفاع- درجه حرارت و میانگین دمای سالانه ......................................................................................28
2-2-3- مقدار بارندگی در دوره بازگشتهای مختلف ........................................................................................28
2-2-3-1- مقدار بارش .............................................................................................................................................28
2-2-3-2- حداکثر بارش 24 ساعته ......................................................................................................................29
2-2-3-3- شدت بارندگی .......................................................................................................................................29
2-2-3-4- رابطه ارتفاع و شدت بارش....................................................................................................................30
2-2-4- شرح تیپهای اراضی ..................................................................................................................................31
2-2-5- تهیه و تکمیل نقشه سنگشناسی و حساسیت سازند به فرسایش....................................................31
2-2-5-1- چینهشناسی واحدهای رسوبی حوزه آبخیز سمبورچای ................................................................31
2-2-5-1-1- نهشتههای قبل از کرتاسه ...............................................................................................................31
2-2-5-1-2- نهشتههای کرتاسه ...........................................................................................................................32
2-2-5-1-3- نهشتههای پالئوسن- میوسن .........................................................................................................32
2-2-5-1-4- نهشتههای الیگوسن- میوسن ........................................................................................................32
2-2-5-1-5- نهشتههای کوارترنر ..........................................................................................................................34
2-2-6- تعیین نفوذپذیری خاک .............................................................................................................................34
2-2-7- گروه هیدرولوژیکی خاک ...........................................................................................................................36
2-2-7-1- تعیین گروههای اصلی خاک به روش SCS .....................................................................................36
2-2-8- تهیه نقشه شاخص پوشش گیاهی ..........................................................................................................37
2-2-9- نقشه نوع استفاده از اراضی .......................................................................................................................38
2-2-10- تقسیمبندی حوزه به واحدهای هیدرولوژیکی و واحد کاری مناسب ............................................38
2-2-11- تعیین مساحت حوزه آبخیز سمبورچای و واحدهای هیدرولوژیک آن .........................................39
2-2-12- رتبهبندی آبراهههای حوزه آبخیز .........................................................................................................40
2-2-13- طول آبراهه اصلی .....................................................................................................................................41
2-2-14- تعیین ضریب شکل زیرحوزههای مورد مطالعه...................................................................................41
2-2-15- تعیین رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال
و 10 سال ......................................................................................................................................................................41
2-2-16- برآورد مقادیر رواناب در هر یک از واحدهای هیدرولوژیک .............................................................42
2-2-16-1- رابطه جاستین .....................................................................................................................................43
2-2-17- برآورد حجم رواناب فصلی و سالانه حوزه آبخیز سمبورچای...........................................................44
2-2-18- محاسبه زمان تمرکز ................................................................................................................................44
2-2-19- نیمرخ طولی آبراهه اصلی و شیب آبراهه اصلی حوزه........................................................................46
2-2-20- برآورد دبی پیک سیلاب .........................................................................................................................46
2-3- بررسی صحت و دقت نقشهها ........................................................................................................................47
2-4- تحلیل دادهها.....................................................................................................................................................47
2-4-1- مدل وزنی طبقهبندی شده .......................................................................................................................47
2-4-2- روش مقایسه زوجی سلسله مراتبیAHP ..............................................................................................48
2-5- مکانیابی عرصههای مناسب استحصال رواناب .........................................................................................51
2-6- مکانیابی عرصههای مناسب استحصال رواناب با استفاده از الگوی سطح منبع متغیر .....................51
فصل سوم: نتایج
3- نتایج تحقیق و بحث در مورد آنها ....................................................................................................................53
3-1- طبقهبندی اقلیمی ...........................................................................................................................................53

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

3-2- نقشه پارامترهای موثر در ایجاد رواناب .......................................................................................................53
3-3- مقدار بارندگی در دوره بازگشتهای مختلف .............................................................................................60
3-3-1- مقدار بارش ..................................................................................................................................................60
3-3-2- حداکثر بارش 24 ساعته ..........................................................................................................................60
3-3-3- شدت بارندگی ..............................................................................................................................................61
3-4- نتایج مطالعات شدت بارش ............................................................................................................................62
3-5- تیپهای اراضی .................................................................................................................................................65
3-6- نقشههای سنگشناسی و حساسیت سازندها به فرسایش .......................................................................65
3-7- نتایج مطالعات نفوذپذیری خاک ...................................................................................................................67
3-8- تعیین گروههای اصلی خاک به روش SCS ...............................................................................................71
3-9- نقشه شاخص پوشش گیاهی .........................................................................................................................72
3-10- نتایج بررسی واحدهای کاری مناسب .......................................................................................................73
3-11- تهیه نقشه رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10
سال و مقادیر آن در هر واحد هیدرولوژیکی ..........................................................................................................76
3-12- رواناب تولیدی از واحدهای هیدرولوژیکی ...............................................................................................78
3-13- زمان تمرکز ....................................................................................................................................................80
3-14- دبی پیک سیلاب ..........................................................................................................................................81
3-15- وزندهی به پارامترها ...................................................................................................................................82
3-16- معیار الویتبندی دادهها ...............................................................................................................................82
3-17- مکانیابی عرصههای مناسب برای استحصال رواناب .............................................................................85
3-18- حجم رواناب فصلی و سالانه حوزه آبخیز سمبور چای ..........................................................................87
3-19- نقشه رواناب خالص تولیدی در منطقه ...................................................................................................89
فصل چهارم: بحث و نتیجهگیری
4-1- بحث و نتیجهگیری .........................................................................................................................................91
4-2- محدودیتهای پژوهش....................................................................................................................................94
4-3- نتیجهگیری کلی ..............................................................................................................................................95
4-5- پیشنهادات...........................................................................................................................................................96
منابع ..............................................................................................................................................................................98
پیوست ........................................................................................................................................................................103
فهرست اشکال
عنوان اشکالصفحه
شکل 3-1: نقشه مدل رقومی ارتفاعی54شکل 3-2: نقشه کلاسهبندی شیب55شکل 3-3: نقشه کلاسهبندی ارتفاعی56شکل 3-4: نقشه جهت طبقه بندی شده در 5 طبقه57شکل 3-5: نقشه کاربری اراضی58شکل 3-6: نقشه مدل رقومی بارش59شکل3-7: نقشه طبقات بارش در 5 کلاس ............................................................................................................59
شکل 3-8: نقشه مدل رقومی دمای متوسط سالانه60شکل 3-9: نقشه طبقات دمایی در 3 کلاس .........................................................................................................60
شکل 3-10: منحنی شدت- مدت- فراوانی ایستگاه برزند61شکل 3-11: نقشه طبقات شدت بارش نیم ساعته با دوره بازگشت 2 سال الف62شکل 3-12: نقشه کلاسهبندی شدت بارش نیم ساعته با دوره بازگشت 2 سال شکل ب ..........................62
شکل 3-13: نقشه طبقات شدت بارش یک ساعته با دوره بازگشت 2 سال الف63شکل 3-14: نقشه کلاسهبندی شدت بارش یک ساعته با دوره بازگشت 2 سال ب ....................................63
شکل 3-15: نقشه طبقات شدت بارش نیم ساعته با دوره بازگشت 10 سال الف63شکل 3-16: نقشه کلاسهبندی شدت بارش نیم ساعته با دوره بازگشت 10 سال ب ..................................63
شکل 3-17: نقشه طبقات شدت بارش یک ساعته با دوره بازگشت 10 سال الف64شکل 3-18: نقشه کلاسهبندی شدت بارش یک ساعته با دوره بازگشت 10 سال ب .................................64
شکل 3-19: نقشه سازند زمین شناسی حوزه آبخیز سمبورچای67شکل 3-20: منحنی تغییرات سرعت نفوذ نسبت به زمان70شکل 3-21: سرعت نفوذ طبقهبندی شده در حوزه آبخیز سمبورچای71شکل 3-22: نقشه گروهبندی هیدرولوژیکی خاک در حوزه آبخیز سمبورچای72شکل 3-23: نقشه مقادیر NDVI در حوزه آبخیز سمبورچای73
شکل 3-24: نقشه زیر حوزهها و اطلاعات کلی حوزه آبخیز سمبورچای74شکل 3-25: نقشه رواناب حاصل از شدت بارش نیم ساعته با دوره بازگشت 2 سال شکل الف76
شکل 3-26: نقشه رواناب حاصل از شدت بارش یک ساعته با دوره بازگشت 2 سال شکل ب ..................76
شکل 3-27: نقشه رواناب حاصل از شدت بارش نیم ساعته با دوره بازگشت 10 سال شکل الف77شکل 3-28: نقشه رواناب حاصل از شدت بارش یک ساعته با دوره بازگشت 10 سال شکل ب ..............77
شکل 3-29: پروفیل طولی آبراهه اصلی حوزه آبخیز سمبورچای80شکل 3-30، منحنی هیستوگرام جهت طبقه بندی پتانسیل تولید رواناب86شکل 3-31: طبقه بندی اراضی برای استحصال رواناب87شکل 3-32، نقشه حجم رواناب تولیدی در هر زیرحوزه88شکل3-33: نقشه رواناب خالص89فهرست جداول
عنوان جدولصفحه
جدول (2-1): طبقهبندی اقلیمها در روش دومارتن اصلاح شده.......................................................................22
جدول (2-2): مشخصات ایستگاههای بارانسنجی........................................................................................26
جدول (2-3): میانگین بارندگی سالانه ایستگاههای بارانسنجی......27
جدول (2-4): مقیاسی برای مقایسه زوجی (مالکوسکی، 1999).......49
جدول 3-1: ضرایب خشکی دومارتن و نوع اقلیم درچند ایستگاه حوزه آبخیز سمبورچای53جدول 3-2: متوسط شیب درهر زیر حوزه به درصد55جدول 3-3: متوسط ارتفاع زیرحوزهها56جدول 3-4: مساحت کاربریهای مختلف اراضی58جدول 3-5: متوسط بارش سالانه در هر زیرحوزه به میلیمتر59جدول 3-6: درجه حرارت متوسط سالانه زیرحوزههابه درجه سانتیگراد60جدول (3-7)، محاسبه متوسط بارش سالانه ایستگاهها و مقادیر آنها در دوره بازگشتهای مختلف با استفاده از توزیع پیرسون III103جدول (3-8) محاسبه حداکثر بارش 24 ساعته ایستگاهها و مقادیر آنها در دوره بازگشتهای مختلف با استفاده از توزیع گمبل I104جدول 3-9: محاسبه عددی رابطه شدت- مدت- فراوانی ایستگاه برزند61جدول 3-10: شرح تیپهای اراضی حوزه آبخیز سمبورچای65جدول 3-11: راهنمای نقشه زمینشناسی و ضریب مقاومت سنگها به فرسایش66جدول 3-12: مقادیر رطوبت اولیه خاک در محل نمونهبرداری68جدول 3-13: مقادیر سرعت نفوذ لحظهای در آقامحمدبیگلو69جدول 3-14: متوسط سرعت ثابت نفوذ در زیرحوزهها بر حسب سانتیمتر بر ساعت70جدول 3-15: گروههای هیدرولوژیکی خاک در منطقه مورد مطالعه72جدول 3-16: مقادیر متوسط NDVI در هر زیرحوزه73جدول 3-17:پراکنش وسعت واحدهای کاری حوزه سمبورچای74جدول 3-18: رده آبراههها و طول آبراهه اصلی در هر زیرحوزه75جدول 3-19: مقادیر ضریب گراویلیوس در زیرحوزه75جدول 3-20: مقدار رواناب حاصل از شدت بارشهای نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10 سال77جدول 3-21: مقادیر حداکثر، حداقل و متوسط رواناب حاصل از شدت بارش نیم ساعته و یک ساعته با دوره بازگشت 2 سال و 10 سال در حوزه آبخیز سمبورچای78جدول 3-22: متوسط بارش سالانه و فصلی حوزه آبخیز سمبورچای به میلیمتر78جدول 3-23: متوسط بارش سالانه و فصلی در زیرحوزههای منطقه مورد مطالعه79جدول 3-24: ارتفاع رواناب فصلی حوزه آبخیز سمبورچای بر حسب سانتیمتر79جدول 3-25: ارتفاع رواناب سالانه زیر حوزههای منطقه مورد مطالعه بر حسب سانتیمتر79جدول 3-26: ارتفاع رواناب فصلی زیر حوزههای منطقه مورد مطالعه بر حسب سانتیمتر80جدول 3-27: زمان تمرکز حوزه آبخیز سمبورچای81جدول 3-28: زمان تمرکز زیرحوزههای حوزه آبخیز سمبورچای81جدول 3-29: برآورد دبی پیک سیلاب با استفاده از روش دیکن81جدول 3-30: برآورد ضریب هر یک ازپارامترها درAHP82جدول 3-31: برآورد رابطه رگرسیونی بین جفت پارامترها83جدول 3-32: نتایج همبستگی مقایسه زوجی پارامترهای موثر در استحصال رواناب85جدول (3-33): مساحت و درصد طبقات87جدول 3-34: حجم رواناب سالانه و فصلی برای حوزه آبخیز سمبورچای بر حسب مترمکعب88جدول 3-35: حجم رواناب سالانه زیرحوزهها بر حسب مترمکعب88جدول 3-36: حجم رواناب فصلی زیرحوزهها بر حسب مترمکعب .........................................................89 فصل اول
مقدمه و مروری بر تحقیقات گذشته

1-1- مقدمه
مراتع یکی از مهمترین و با ارزشترین منابع طبیعی تجدیدشونده میباشند که نقش بسیار مهمی در حفاظت خاک، تولید آب، تولید گوشت و مواد لبنی دارند. علاوه بر آن محصولات فرعی مرتع همچون محصولات دارویی، صنعتی، خوراکی، حفظ حیاتوحش، تلطیف هوا، پایداری محیط زیست و نیز ذخیره ژنهای گیاهی از جمله استفادههای دیگری است که ارزش حاصل از آنها به مراتب از ارزش تولید علوفه‌ بیشتر بوده است (مقدم، 1377). بنابراین توجه به استفادههای چندگانه آن از طریق افزایش تولید و کاهش تخریب مراتع با بهرهبرداری صحیح و انجام عملیات اصلاح و احیاء امری ضروری و اجتنابناپذیر است.
به دلیل واقع شدن ایران در مناطق خشک و نیمهخشک کره زمین، تأمین آب شیرین سالم و کافی همواره مشکل بوده است. این واقعیت، سختی زندگی مرتعداران و مدیریت دام و بازدهی پایین تولید علوفه در مراتع را به دنبال داشته است. در مراتع مناطق جغرافیایی خشک و نیمهخشک دسترسی به آب مهم‌ترین اولویت است. این اهمیت فقط برای مصرف گلههای دامی نیست بلکه به خاطر زیستن و بقاء مرتع داران در این مناطق جغرافیایی نیز میباشد. مالکیت و حق استفاده از منابع آبی در این مناطق حداقل به اندازه حق بهرهبرداری از مراتع دارای اهمیت است. به همین دلیل آب اساسیترین نیاز بهرهبرداران از مراتع در مناطق خشک و نیمهخشک است (ایفاد، 2004).
در مراتع و به خصوص مراتع قشلاقی کشور، بحران کمبود آب برای مصرف انسان و شرب دام همیشه وجود داشته است. به طوری که بیان میشود ظرفیت مراتع برای تغذیه احشام در بسیاری از مراتع نقاط خشک بیشتر به علت کمبود آب آشامیدنی محدود میشود تا کمبود علوفه (آکادمی ملی علوم واشنگتن، 1364). استحصال آب تمیز از بارندگیهای خیلی کم و همچنین ذخیره کردن آب جمع آوری شده در یک منبع، از مزایای روش جمعآوری رواناب به شمار میآید (پیترسون، 1366). برخی دیگر نیز به کارگیری آب باران را برای رسیدن به توسعه پایدار منابع آب لازم میدانند و استفاده از آن را یک فنآوری کوچک مقیاس اقتصادی و کاربردی میدانند که در مناطق خشک و نیمهخشک به طور معنیداری به حفظ طبیعت و اکولوژی نیز کمک میکنند (اندرو، 2000). کشور ایران در منطقهای واقع است که متوسط بارندگی سالانه آن کمتر از یک سوم میزان بارندگی سالیانه جهان است و میزان آن 250 میلی‌متر گزارش شده است (کردوانی، 1379؛ محسنی ساروی، 1376).
رواناب آبخیزهای مرتعی از چند جهت دارای اهمیت میباشند. رواناب وقتی که در مخازن ذخیرهای جمع میشود، آب مصرفی دام را تأمین میکند. همچنین منبع آبی برای مناطق پاییندست یا مصارف محلی، صنعتی و کشاورزی در خارج از حوزه آبخیز را فراهم مینماید. رواناب به دلیل اینکه موجب شروع فرسایش، انتقال رسوب و مواد حل شدنی در درون رودخانه یا سد میباشد دارای اهمیت است. بنابراین، رواناب بیشترین آلودگی وارد شده به مسیر آب را تولید مینماید (محسنی ساروی، 1387).
جمعآوری آب باران، با اهداف و انگیزههای گوناگونی صورت میگیرد که هدف اصلی آن، بهینهسازی و مدیریت بهرهبرداری از آب باران بر اساس نیاز و مصرف است. بدین معنی که چون باران همواره و هر روز نمیبارد و یا بارش ناکافی است، از آن بهره برد. بدین ترتیب هر جامعه و هر کشوری که در این زمینه قدمهای بزرگ‌تر و مؤثرتری بردارد، موفقتر و آبادتر خواهد بود (طهماسبی و همکاران، 1385). جمعآوری آب باران نه تنها برای تأمین آب در ایام و روزهای بدون باران است، بلکه برای کنترل جریان رودخانهها و جلوگیری از آسیب رساندن به نواحی مسکونی و زراعتی پاییندست هم صورت میگیرد. همچنین برای تولید انرژی (برق) یا پرورش آبزیان جمعآوری میشود. در بسیاری از مناطق خشک و نیمهخشک با جمعآوری آب باران و تنظیم آن در بالادست حوزههای آبخیز، برای تقویت و بهبود عملکرد محصولات دیمکاری برنامهریزی میشود. بخشی از طرحهای آبخیزداری با همین هدف و نیز حفاظت آب و خاک صورت میگیرد. به این ترتیب امکان کوتاه کردن دورههای خشک به وجود میآید و دوره خشک سه ماهه، به دو ماه یا کمتر تقلیل مییابد و صدمه وارد شده به محصول یا هر نوع پوشش گیاهی کاهش پیدا میکند (طهماسبی و همکاران، 1384). امکان دارد جمعآوری آب باران برای تغذیه سفرههای آب زیرزمینی، چشمهها و قناتها باشد. برای این کار، در بالادست قنوات و چشمهها در آبراههها، با احداث بندهای کوتاه، ولی متعدد از حرکت و خروج سریع رواناب جلوگیری میشود. این سیلابها به تدریج در زمین نفوذ میکنند و باعث افزایش آب‌دهی قناتها و چشمهها میشوند و در نتیجه، از تبخیر آب و آلودگی آب جلوگیری میکنند. به علاوه افت سطح ایستایی را، که امروزه مسئله مبتلا به اکثر دشتهای کشور ما است را تا حدودی جبران میکند (طهماسبی و همکاران، 1384). استحصال آب عبارتست از جمعآوری و ذخیره نمودن بارش در زمینی که در آن به منظور افزایش رواناب تغییراتی اعمال شده است (مایرز، 1964).کوریر (1973) جمعآوری آب را فرآیند جمعآوری بارش طبیعی از آبخیزها برای استفاده مفید تعریف کردند.
مفاهیم هیدرولوژیکی قرار دادی نخستین بار در سالهای 1930 و 1940 زمانی که منابع جریان بالادست رودخانهها به عنوان عاملی موثر بر جریانهای پایین دست مورد توجه قرار گرفته بودند، توسعه یافته است. از آنجایی که اغلب فعالیتهای مربوط به کاربری اراضی با سوء استفاده از منابع و اثرات منفی بر پایین دست رودخانهها همراه میباشد لذا یک مبنای مناسب برای تصمیمگیری ضروری به نظر میرسد. مفهوم سطح منبع متغیر محدوده کاملی از جریانات دامنهای را در بر میگیرد. واقعیت این است که این مفهوم یک سیستم پویا و دینامیک است که دارای تغییرات زمانی و مکانی بسیاری میباشد و در شرایط بحرانی مختلف، وضعیتهای متفاوتی را در مسیرهای متنوع ارائه مینماید. پویایی جریانهای سیلابی تابعی از طول شیب و موقعیت گذرگاهها است. همچنین تراکم زهکشهای پویا در سطح حوزه در این امر بیتاثیر نخواهد بود به طوری که در طول یک بارش سنگین، تراکم زهکشی و طول شیب نقش فعالی را ایفا مینماید. تمام قسمتهای سطح یک حوزه آبخیز به طور مساوی در ایجاد رواناب دخالت ندارند. بسیاری از محققین درباره مفهوم سطح منبع متغیر تولید جریان رودخانهای، گزارشهای بسیاری را ارائه نمودهاند. در واقع این مفهوم فرض میکند که مناطق خاصی از سطح آبخیز در ایجاد رواناب دخالت دارند در صورتی که مناطق دیگر به عنوان مناطق تغذیه کننده و ذخیره کننده عمل میکنند (هولت، 1974). عوامل مهمی که در تعیین سطح تولید کننده رواناب دخالت دارند شامل وضعیت فیزیکی آبراهه، خصوصیات خاک و رگبار میباشد. کف درهها عموماً مناطقی هستند که در تولید رواناب دخالت دارند در حالی که سر یالها مناطق تغذیه کننده میباشند. مناطق بین کف درهها و سر یالها اغلب به عنوان مناطق دینامیکی مطرح میباشند که ممکن است در تولید رواناب یا در تغذیه آن شرکت نمایند. این مسأله بستگی به مقدار و خصوصیات موقتی رگبار، رطوبت قبلی و خصوصیات خاک منطقه دارد. میتوان گفت مناطق منبع، مناطقی هستند که پتانسیل بالایی برای تولید رواناب حتی با مقدار کمی بارش را دارند که میتوان با استفاده از سطح منبع متغیر، مناطق منبع یا مناطق تولید کننده رواناب را شناسایی و برای کنترل آلودگیها، استحصال رواناب، کودپاشی و دفع فاضلاب و مواد زائد کشاورزی استفاده کرد. همانطور که میدانیم برای حفظ کیفیت خاک در مراتع و تولید خوب علوفه نیاز به کودپاشی همواره احساس میگردد. با مشخص کردن مناطق تولید کننده رواناب میتوان مدیریت درست و اصولی را برای کودپاشی در نظر بگیریم و مناطق مورد نظر را با اطمینان با کاربرد کود زیاد مورد بهرهبرداری قرار داد و مناطقی که چنین اطمینانی وجود ندارد مشخص کند. همچنین یکی از عوامل اصلی تخریب مراتع و چرای بیش از حد مراتع، کمبود منابع آب در مراتع نمیباشد بلکه عدم توزیع یکنواخت منابع آبی در سطح مراتع میباشد که پس از مشخص شدن عرصههای تولید رواناب میتوان مدیریت جامعی را برای توزیع آبشخوار در مراتع انجام داد. از اهمیت دیگر تعیین سطح منبع متغیر جلوگیری از آلودگی در پایین دست حوزه آبخیز میباشد که با شناسایی مناطق منبع میتوان رواناب را در بالا دست حوزه آبخیز کنترل کرد. با دانستن این موضوع آبخیزدار قادر خواهد بود مناطقی را که میتوان با اطمینان با کاربرد کود زیاد مورد بهرهبرداری قرار داد و مناطقی که در آن‌ها چنین اطمینانی وجود ندارد مشخص کند. با همین روش مناطق مطمئن برای ریختن آشغال و فاضلاب، مواد زائد کشاورزی و دفن به آسانی انتخاب میشوند (محسنی ساروی، 1387).
1-2- هدف و ضرورت تحقیق:
امروزه تلاشهای بسیاری در جهت کاهش زمان و هزینههای مربوط به مکانیابی و تعیین مناطق بالقوه برای معرفی تکنیکهای جمعآوری در نواحی که نیازمند این فرآیند است مانند اکوسیستمهای کشاورزی آبی و دیم صورت پذیرفته است. سیستم اطلاعات جغرافیایی (GIS)، رویکرد مناسبی را ارائه مینماید، زیرا این سامانه قابلیت پردازش ساختارهایی برای جمعآوری، ذخیرهسازی، تحلیل و تبدیل دادههای مکانی و زمانی را به منظور اهداف خاص را دارا میباشد (پادماواتی و همکاران،1993؛کوسکان و موساگلو،2004). پیشرفت تکنولوژیهای کامپیوتری و بستههای GIS ای، امکان ارزیابی و درونیابی دادهها را در محدودههای تخصصی به منظور مدیریت مکانی و آنالیز دادهها را برای کاربران فراهم میسازد. بنابراین ترکیبی از خصوصیات مکانی حوزهها، راندمان بالاتری را در پردازش هیدرولوژیکی منطقه به همراه دارد. بدین ترتیب پتانسیل کاربرد GIS برای مدل‌سازی هیدرولوژیکی به ویژه هنگامی که دقت و صحت مدلسازی توسط برآوردهای توزیع مکانی و زمانی پارامترهای منابع آبی تحت تأثیر قرار گرفته باشد قابل ارزیابی میباشد (کلارک و گانگوداگامگ، 2001).
برای مشخص کردن مکان مناسب اجرای برنامههای مختلف با استفاده از GIS لازم است به شرایط مورد نیاز برای هر برنامه توجه شود و سپس نقشههای مختلف را با هم تلفیق کرد تا مکان مناسب اجرای طرحها مشخص شود. از اینرو انجام این پژوهش میتواند دستورالعمل مناسبی را در اختیار مرتعداران جهت تأمین آب از طریق روشهای استحصال آب باران قرار دهد. استفاده از GIS علاوه بر افزایش دقت، سبب افزایش سرعت انجام کار، تنوع و کیفیت بهتر ارائه نتایج، کاهش هزینهها، بایگانی و تکثیر راحتتر آن‌ها میگردد. بنابراین این پژوهش با اهداف زیر صورت گرفته است:
1- کارآیی GIS در مدیریت منابع طبیعی برای ذخیره ، تجزیه و تحلیل ، تلفیق دادهها و ارائه نتایج حاصل از اطلاعات، با تأکید بر ذخیره نزولات آسمانی در سطح مراتع.
2- مکانیابی عرصههای مناسب برای استحصال آب باران در سطح حوزه آبخیز.
3- توزیع و مدیریت مناسب آب باران با استفاده از الگوی سطح منبع متغیر.
1-3- تعریف استحصال رواناب و اهمیت بررسی آن
در نظر عامه استحصال آب به صورت زیر تعریف میشود: جمعآوری روانابها از سطح بامها، زمینها و همچنین آبهای گذران فصلی جهت استفاده از روانابها.
جمعآوری آب باران عبارت است از مجموعه اقدامات و عملیات و فعالیتهایی که به ذخیره شدن روانابهای سطحی ناشی از بارش در داخل بانکتها، سطح تراسها و درون حوضچهها و استخرهای ذخیرهی آب برای مصارف گوناگون منجر میشود. این آب برای آبیاری محصولات و مصارف خانگی و ... ذخیره میشود تا در ایام بیباران، کمبود آب حدالامکان جبران شود (طهماسبی و همکاران ، 1385).
در تعریف جمعآوری آب باران بین متخصصان آبشناسی و آبیاری اختلاف نظر وجود دارد. بعضی از این کارشناسان حتی احداث سدهای مخزنی را هم در زمرهی کارهای جمعآوری آب باران میدانند (کلاف،1979). بسیاری از تحقیقات در هند و پاکستان و فلسطین اشغالی نشان میدهد که تلاش اصلی در این جهت است که مردم ساکنان مناطق خشک و نیمهخشک، با فناوری و روشهایی آشنا شوند که از بارندگی موجود با ایجاد رواناب بیشتر، جمعآوری مناسب، ذخیرهی سریع‌تر و عملیتر و محافظت در مقابل تبخیر و هدررفت، به آب بیشتری دسترسی پیدا کنند و امکان استمرار زندگی آن‌ها با حفظ الگوی کشاورزی و دامپروری محقق گردد (حسینی ابریشمی، 1373).
باید توجه داشت در اکثر مناطقی که آب به اندازهی کافی وجود ندارد، به دلیل تراکم کم جمعیت، زمینهای بسیاری وجود دارد، در نتیجه حداقل 5 تا 20 برابر آنچه که میتوان با آب باران موجود و آب زیرزمینی و ... به زیر کشت برد، زمین موجود است. بنابراین امکان تخصیص بخشی از اراضی برای جمعآوری رواناب و سیلاب در بسیاری از این مناطق وجود دارد (طهماسبی و همکاران، 1385).
جمعآوری آب باران به روشهای گوناگونی انجام میشود. در مناطق خشک و نیمهخشک، کمبود آب با جمعآوری آب باران تا حدودی قابل جبران است، این کار شامل ایجاد رواناب، جمعآوری و ذخیره و حفاظت از آب ذخیرهشده است تا به مصرف گیاه و محصول مورد نظر برسد، یعنی از یک طرف در حد امکان در عمق ریشه و در دسترس ریشه ذخیره شود و از طرف دیگر در سطح خاک خیلی راکد باقی نماند که تبخیر شود (طهماسبی و همکاران، 1385).
جمعآوری آب باران در مفهوم گسترده، کلیه روشهای مربوط به متمرکز کردن، ذخیرهسازی و جمعآوری رواناب حاصل از آب باران را به منظور مصارف خانگی و کشاورزی را دربر میگیرد (راکشتورم، 2000؛ شودرلند و فن، 2000). این سیستمها میتوانند در سه گروه عمده طبقهبندی شوند: 1- حفظ رطوبت در مکان (حفاظت آب و خاک) 2- تمرکز رواناب به منظور کشت محصولات در سطح زمین 3- جمعآوری و ذخیره رواناب از سقفها و سطح زمین (در ساختارهای مختلف به منظور مصارف خانگی و کشاورزی) (فالکن مارک و راکشتورم، 2004).
استفاده تولیدی نیز شامل تأمین آب شرب و ذخیره آن، تمرکز روانابها برای گیاهان، درختچهها و درختان و یک استفاده کمتر متداول یعنی پرورش ماهی و اردک میباشد.
واژه استحصال آب برای اولین بار توسط گدس (1963) به کار برده شد، اگر چه این واژه یک واژهی هیدرواگرونومی است، اما هنگامی که برای مهار رواناب سطحی به کار برده شود، میتوان آن را جزو واژگان هیدرولوژی به حساب آورد. علت این امر مبتنی بر توان بالقوه استحصال آب در تأمین و حفاظت آب، مهار سیلابها و فرسایش خاک است. مایرز (1975) و پاسی و کالیس (1986) بر اساس تعریف گدس، "جمعآوری و ذخیره هر نوع رواناب سطحی برای مصرف در کشاورزی" را استحصال آب نامیدهاند.
تعاریف فوق هر چند دارای مفهوم گستردهای است اما بیانگر تعریف کاملی از استحصال آب نمیباشد، زیرا جمعآوری و ذخیره روانابهای سطحی تنها نمیتواند با هدف مصرف آب برای کشاورزی و محدود به آن باشد. از این رو متخصصین زیادی سعی در ارائه‌ی تعاریف جامعتر و گویاتر بعد از تعریف ارائه شده توسط گدس نمودند. به نحوی که هر یک با هدف ویژه مورد نظر خود تعاریفی را بیان داشتهاند (اسمعلی و عبداللهی، 1389).
پاسی و کالیس (1986) با محدود کردن موضوع استحصال آب به جمعآوری آب باران و روانابهای ناشی از آن از طریق احداث سطوح آبگیر کوچک مقیاس که نزولات جوی مستقیما بر آن‌ها نازل میشود، به صورت "جمعآوری و ذخیره آب باران در محل نزول، جهت تأمین آب برای مصارف مختلف" تعریف کردهاند.
مایرز (1964) بیان داشت "به فرآیند جمعآوری و ذخیره بارش از زمینی که به منظور افزایش رواناب حاصل از باران و ذوب برف دست‌کاری شده باشد" را استحصال آب گویند.
هادسون (1981) با ارائه تعریف مشابه، استحصال آب در محل نزول ریزشهای جوی و در اولین مراحل تشکیل روانابهای سطحی را به عنوان استحصال آب برای تأمین و حفاظت آب تلقی نموده است.
با توجه به تعاریف فوق استحصال آب مشتمل بر جمعآوری ذخیره و بهرهبرداری از آبهای جمعآوری شده است که منشأ آبهای استحصالی نیز بارشهای جوی و روانابهای ناشی از آن‌ها در اولین مراحل تشکیل و قبل از پیوستن به رودخانههای دائمی است.
الگوهای بارش در نواحی نیمهخشک از لحاظ پراکنش مکانی و زمانی، غیرقابل پیشبینی هستند. بنابراین برای دستیابی به یک مدیریت موفق، کنترل رواناب از اهمیت بسیار بالایی برخوردار میباشد (امبیلینی و همکاران، 2000). گذشته از این، با توجه به اینکه در چنین مناطقی، حجم اندکی از بارندگی به ناحیه ریشه میرسد، تولید ضعیف محصول و حتی در برخی موارد، عدم موفقیت محصول میتواند از جمله عوامل محدود کننده در چنین مناطقی باشد که استحصال آب از رواناب باران می‌تواند به مشکل کم آبی در منطقه کمک کند (راکشتورم ،2000). مورد دیگر مربوط به توزیع بارندگی میباشد. توزیع بارندگی فرآیندی در خصوص تکرار بارش در فصل خشک میباشد که در چنین مناطقی قابلیت دسترسی آب در خاک در طول فصل رشد، ضعیف میباشد (راکشتورم، 2000). این امر موجب کاهش پتانسیل تولید محصول و در شدتهای زیاد موجب افزایش خطر نابودی محصول میگردد. به این ترتیب کنترل و جمعآوری رواناب در این مناطق از اهمیت زیادی برخوردار است، زیرا حجم رواناب دریافتی میتواند به طور موثری برای حمایت از محصولات کشاورزی طی یک روش محیطی و اقتصادی مناسب، بهرهبرداری گردد (زیادت و همکاران، 2006).
این واقعیت که بارش باران در مناطق خشک و نیمهخشک بسیار ناچیز است و یک میلی‌متر آب ذخیره شده برابر یک لیتر در مترمربع است. اهمیت ذخیرهی آب، جدا از مقدار آب جمعآوری شده، مشخص میشود. از میان سه عامل خاک، آب و انرژی خورشیدی، آب مهمترین عامل محدود کننده تولیدات گیاهی در مناطق خشک است. در بسیاری از نقاط کشور به علت عدم وجود منابع با کیفیت مناسب آب، زندگی و حیات عدهی زیادی از مردم به بهرهبرداری از رواناب و استحصال آب بستگی دارد. به عنوان مثال در منطقه چابهار جمعیتی معادل 338407 نفر از طریق استفاده از رواناب و سیل که با مشارکت اهالی احداث شده، به حیات خود ادامه میدهند (ازکیا، 1374). در شهرستان بیرجند، 82 هزار هکتار اراضی دیم گندم با استفاده از آب باران و بندسار به وجود آمده است. در گناوه حوزه آبخیز درهی گپ، با استفاده از بندسارها به کشت خرما اشتغال دارند (صفاری، 1383). در کل منافعی که مردم از جمعآوری آب دارند، بر زندگی اجتماعی و اقتصادی آن‌ها موثر است و نقش کلیدی در احیا و جلوگیری از تخریب زمینها توسط فرسایش آبی و بادی و ایجاد زمینهای بایر دارد.
هنگامی که استحصال آب برای ذخیرهسازی آن در توده خاک مد نظر باشد، در این صورت سهولت دسترسی گیاهان به آب را دنبال خواهد داشت. نتایج تحقیقات انجام شده بر این نکته تاکید دارند که میزان آب موجود در پروفیل خاک، به ویژه در عمق سطحی خاک، تابعی از رطوبت موجود در عمقهای زیرین است و استحصال ریزشهای جوی در محل نزول، عامل اصلی در افزایش رطوبت مورد نیاز گیاهان در محل استقرار آن‌ها تلقی میشود. این موضوع در شرایطی که میزان بارندگی در فصل رشد گیاهان کافی نباشد، از اهمیت بیشتری برخوردار بوده و ذخیره رطوبت در خاک در فصول پرباران تا حد قابل توجهی نیاز گیاهان را تأمین میکند (راویتز و همکاران، 1981).
در انتخاب روش، قبل از هر چیز جنبههای فرهنگی و اجتماعی باید مورد توجه قرار گیرد، زیرا در موقعیت و شکست فنآوریها اثر میگذارد. از این رو باید به خواستها و علائق مردم و همچنین هزینههای لازم توجه خاص به عمل آید. علاوه بر ملاحظات اقتصادی، اجتماعی و فرهنگی، در یک برنامه استحصال آب رعایت جنبههای فنی که باعث پایداری میشود، از اهمیت والایی برخوردار است و باید مورد توجه قرار گیرد.
با توجه به اهمیت جمعآوری آب باران در ایران و استفاده از آن در کشاورزی و شرب به چند نکته اشاره میکنیم:
1- هدر رفتن 40 تا 50 میلیارد متر مکعب در سال از آبهای سطحی کشور.
2- فروکش کردن سطح سفره آب زیرزمینی و ضرورت تغذیه بیشتر آن.
3- شور شدن اراضی در بعضی از مناطق مثل خوزستان که رواناب کشور به دلیل جمعآوری نشدن در بالا دست، به آن مناطق سرریز و باعث شور شدن اراضی میشود.
4- ضرورت ایجاد اشتغال در حوزه کشاورزی و منابع طبیعی کشور و تأمین آب در حکم اولین عامل مورد نیاز و اولین عامل امکانسنجی.
5- ضرورت افزایش سرانه پوشش جنگلی که در جهان 7/0 تا 8/0 هکتار برای هر نفر و در ایران 2/0 یا کمتر از آن برای هر نفر است.
6- حفاظت خاک و حفظ حجم مفید مخازن سدهای ساخته شده و در دست احداث.
7- عقب بودن سیستم شبکههای آبیاری و زهکشی، به طوری که از حدود 26 میلیارد مترمکعب جمعآوری شده به کمک سدها، تنها 6 میلیارد مترمکعب در سیستمهای مهندسی آبیاری و زهکشی جریان مییابد.
8- وسعت کشور و اهمیت حفاظت آن در همه مناطق مستعد از نظر بهرهبرداری و مسائل امنیتی.
9- اهمیت سرمایهگذاریهای کوچک با جمعآوری آب باران، به خصوص در مناطق محروم.
10- اهمیت جمعآوری آب از نظر مسائل زیست محیطی تا بسیاری از آلودگیهای وارد شده به سدها را کنترل کند. مثال بارز این آلودگی، سد قشلاق سنندج است که در اثر جریانهای فصلی، آلوده شدهاست.
11- کنترل و مهار رواناب برای کنترل سیلاب و کاهش خسارتهای وارد شده به اراضی کشاورزی، مناطق مسکونی و ساختمانها و تأسیسات راهها.
1-4- مزایای بهرهگیری از سیستمهای استحصال آب
تحقیقات نشان داده است که اگر از سیستمهای بومی موجود استفاده شود و اطلاعات جدید به استفادهکنندگان انتقال یابد و انجام روشها هدفمند باشد، به بهینهسازی مصرف آب کمک میکند (اسمعلی و عبداللهی، 1389) به طوری که:
برای بیابانزدایی نیازمند به برنامهریزی دراز مدت است. با احیا و توسعهی سیستمهای استحصال آب، بین مقابله با بیابانزایی و توسعه استفاده از منابع آب، هماهنگی به وجود میآید.
باعث هماهنگی بین منافع اکولوژیکی، اقتصادی و اجتماعی میشود. زیرا که به افزایش پوشش گیاهی، بهبود وضع معیشتی و ایجاد مشارکت و همدلی بین مردم میانجامد.
با اجرای این شیوه یک مدیریت تدریجی در منابع حاصل میشود.
انجام پروژه به خودکفایی و احیای اقتصادی منجر و باعث تداوم برنامهها و مدیریت بیشتر میشود.
از تخریب مراتع و فرسایش خاک جلوگیری میشود.
راندمان استفاده از منابع افزایش مییابد.
اراضی تخریب یافته و زمینهایی که منشا رسوباند، با هزینه کمی احیا میشوند.
برداشت از سفرههای زیرزمینی کاهش یافته و بین برداشت و تغذیه هماهنگی به وجود میآید و روند شوری کاهش مییابد (به واسطهی استفاده از آب با کیفیت بالا).
1-5- سیستم اطلاعات جغرافیایی (GIS)
برنامهریزی جهت انجام هر کاری نیازمند داشتن اطلاعات مربوط به آن است که این نیازمندی برای استفادههای انسان از سرزمین نیز صادق است. بدون داشتن اطلاعات مربوط به منابع اکولوژیکی اساساً نمی‌توان بخشهای دیگر فرآیند برنامهریزی استفاده از سرزمین را انجام داد. گردآوری اطلاعات در ابتدا با آماربرداری و نمونهبرداری از منابع انجام میشد، اما برنامهریزی دقیق و بهتر نیازمند اطلاعات مکانی از منابع یا اطلاعات فضایی منابع میباشد که آن را برنامهریزی با نقشه میگویند. سیستم اطلاعات جغرافیایی در دهه 1970 برای فراهم آوردن قدرت تجزیه و تحلیل مقادیر زیادی از دادههای جغرافیایی توسعه یافتند. مرور علمی بر به کارگیری GIS در جهان نشان میدهد که طراحی و توسعه این سامانه در سال 1963 در کانادا آغاز شد و در سال 1965 به صورت اجرایی در آمد. اولین نمونه GIS در کشور کانادا تحت عنوان CGIS نامیده شد. در حال حاضر این سیستم در بسیاری از کشورهای جهان به طور گستردهای مورد استفاده قرار میگیرد. گستردگی مفهوم و زمینههای کاربرد این سامانه موجب شده است تا واژهGeo Information Sys-- نیز به آن اطلاق و به طور روزافزونی در منابع علمی مورد استفاده قرار میگیرد. لازمه استفاده از GIS داشتن دانش کافی از مبانی، اصول و سازماندهی آن است و نیز آگاهی از قابلیتها و محدودیتهای آن میباشد (مخدوم، 1380).
1-5-1- تعریف GIS
برای GIS تعاریف مختلفی ارایه شده است که به برخی از آن‌ها اشاره میگردد:
مجموعهای از ابزارهای قوی برای گردآوری، ذخیرهسازی، بازخوانی، تغییر شکل و نمایش دادههای مکانی مربوط به جهان واقعی و برای اهداف مشخص میباشد (بوروغ، 1996).
GIS یک سیستم کامپیوتری برای ورود، ذخیرهسازی، بازیابی، آنالیز و نمایش دادههای مکانی است (کلارک، 1986).
به طور کلی GIS برای جمعآوری و تجزیه و تحلیل دادههایی استفاده میشود که موقعیت جغرافیایی آن‌ها یک مشخصه اصلی و مهم محسوب میشود. وظایف یک GIS در چهار گروه کلی شامل کسب، نگهداری، تجزیه و تحلیل و تصمیمگیری میباشد. GIS میتواند به عنوان ابزار سودمند و مفید در جهت نیل به اهداف خاص مورد استفاده قرار بگیرد، همچنین این سامانه میتواند به عنوان واسطه و پلی بین اطلاعات خام و مدلهای جمعآوری رواناب جهت خروج مطمئن دادهها و پردازش آن‌ها به کار گرفته شود، که این سامانهها دارای دو ویژگی هستند:
- ایجاد ارتباط دو طرفه بین اجزای نقشه و دادههای مربوط به آن‌ها در پایگاه دادهها.
- انجام تحلیل بر اساس دادههای موجود و اجرای مدلهای مختلف در منطقه مورد بررسی و کمک به پژوهشگران در ایجاد مدلهای نوین و منطبق با ویژگیهای محل.
1-5-2- مزایای استفاده از GIS
با استفاده از محیط GIS و امکانات نرمافزاری و سختافزاری این سیستم و همچنین با پیاده کردن راهحلهای ریاضی و منطقی در GIS میتوان مدلهای تجربی را به صورت رقومی در یک چارچوب قابل پردازش ارائه کرد.
ویژگی بارز و با ارزشی که GIS را از دیگر سیستمهای اطلاعاتی جدا میسازد، توانایی به کارگیری توأم دادههای مکانی و توصیفی است. توانایی مدیریت عوارض جغرافیایی با مقیاسهای مختلف، از ابزارهای دیگر GIS است که در علوم مختلف کاربرد فراوان دارد.
از نکتههای بسیار مهم در به کارگیری GIS، محاسبه ارزشهای وزنی برای عوامل مختلف حوزه آبخیز است. علاوه بر این GIS به هنگامسازی دادههای وارد شده را در هر زمان امکانپذیر میسازد. بدین ترتیب در صورت هر گونه تغییر در سیمای طبیعی زیرحوزهها، با دخالت آن‌ها میتوان نتایج جدیدتر را اخذ کرد.
1-6- مرور منابع
آکادمی ملی علوم واشنگتن (1985) نشان داد که بهبود منابع تأمین آب شرب در مراتع نیمهخشک یا نقاط دوردست حوزه آبخیز، ارزش چراگاهی آن‌ها را بالا میبرد و استفاده کاملتر از علوفه آن‌ها را امکانپذیر میسازد.
ریسزوو همکاران (1991) نسبتهای مختلف سطح جمعآوری کننده آب باران به سطح زیر کشت را مورد بررسی قرار داده و نتیجه گرفتند عملکرد محصول با نسبت 1 به 1 در مقایسه با شاهد 71/1 برابر عملکرد محصولات غلات شده است.
بور (1994) با انجام آزمایشاتی در پاکستان، سیستم جمعآوری آب باران برای درخت پسته، سطح مناسب جمعآوری کننده رواناب باران را برای منطقهای با بارش متوسط سالانه 240 میلی‌متر، 40 متر مربع ذکر کرده است.
گوپتا (1994) اثر اقدامات و عملیات استحصال آب باران را برای گیاه Neem در مناطق بیابانی هند را مورد بررسی قرار داده و نتیجه گرفت که تولید بیوماس گیاه Neem تا 4 برابر و از 69/1 تن در هکتار به 3/6 تن در هکتار رسید.
بور و بنعاشر (1996) تحقیقات مشابه را در فلسطین اشغالی و نیجر برای محصولات مختلف انجام دادهاند و سطح مناسب جمعآوری کننده رواناب و مقدار تلفات نفوذ عمقی در سالهای پرباران، با باران متوسط را محاسبه کردهاند.
اسچیتکاک و همکاران (2004) تأثیر تکنیکهای جمعآوری آب با حفظ آب و خاک در جنوب استرالیا را مورد مطالعه قرار دادند و به این نتیجه رسیدند که به ویژه در سالهای خشک در حوزه ایمپلوویوم میتوان آب مورد نیاز برای آبیاری تکمیلی را برای کشت درخت زیتون فراهم کنند به شرط آنکه با توجه به بارش متوسط 235 میلی‌متر، نسبت حوزه آبخیز به تراسهای جمعآوری کننده رواناب حداقل 4/7 باشد.
وینار و همکاران (2005) به بررسی پتانسیل حوزه آبخیز توکلا در جنوب آفریقا برای جمعآوری آب باران از طریق GIS پرداختند و به این نتیجه رسیدند که 18 درصد از منطقه پتانسیل بالایی برای تولید رواناب دارد.
ذاکاری و همکاران (2007) به مقایسه مدل ارزیابی آب و خاک (SWAT) و مدل ابزار یا ارزیابی آب و خاک با سطح منبع متغیر (SWAT-VSA) به پیشبینی رواناب در منطقه کانونسویل در شمال نیومکزیکو پرداختند. آنها همچنین رواناب لحظهای، رواناب سطحی و سفره آب زیرزمینی که در سطح بالاتر از دیگر سفرههای آب زیرزمینی قرار گرفتند را نیز با استفاده از دو مدل فوق مورد بررسی قرار داده و به این نتیجه رسیدند که مدل تلفیقی SWAT-VSA پیشبینی بهتری را انجام میدهد. آنها همچنین نتیجه گرفتند که مدل SWAT-VSA جهت ارزیابی و راهنمایی و مدیریت منابع آبی کاربردیتر است و میتواند به طور دقیقتری پیشبینی کند که رواناب از کجا آغاز میشود تا به صورت بحرانی تحت مدیریت قرار بگیرد.
شیائو و همکاران (2006) اثر جمعآوری آب باران و آبیاری تکمیلی را برای کشت گندم در بهار در هایونچین را مورد ارزیابی قرار داده و نشان دادند که استفاده از آب ذخیره شده برای آبیاری تکمیلی برای کشت در فاروهای بین خطالرأسها 5/5 تا 8/5 درصد بوده است ولی در کشت در گودالهای بر روی خطالرأسها 4/9 تا 6/9 درصد بوده است. آن‌ها به این نتیجه رسیدند که با استفاده از آب باران جمعآوری شده میتوان میزان آب استفاده شده در روش کشت در گودالهای بر روی خطالرأسها را 40/4 درصد در مقابل کشت در فاروها بهبود بخشید.
امبیلینی و همکاران (2007) به مکانیابی مناطق دارای پتانسیل خوب برای جمعآوری آب باران پرداختند و به این نتیجه رسیدندکه 6/23 درصد از حوزه آبخیز ماکانیا در منطقه کلیمانجارو تانزانیا بسیار مناسب برای جمعآوری آب باران میباشد.
ونگ کاهیندا و همکاران (2007) اثر جمعآوری آب باران و آبیاری تکمیلی به منظور افزایش بهرهوری کشاورزی وابسته به باران در مناطق نیمهخشک زیمباوه را بررسی و نتیجه گرفتند که آبیاری تکمیلی ریسک ناشی از شکست کامل محصول از 20 درصد را به 7 درصد کاهش داده و تولید آب از رواناب باعث افزایش تولید محصول از 75/1 کیلوگرم در مترمکعب به 3/2 کیلوگرم در مترمکعب با توجه به کاهش بارندگی درون فصلی شده است.
استورم و همکاران (2009) اقتصادی بودن برداشت آب باران به عنوان منبع آب جایگزین در سایت روستایی در شمال نامبیا را مورد بررسی قرار دادند. در این تحقیق که سقف آهنی موجدار پشت بامها به عنوان مناطق جمعآوری آب باران استفاده شده به این نتیجه رسیدند که این سیستمها از نظر اقتصادی امکانپذیر میباشند.
اسماعیلی (1997) اثر روشهای مختلف استحصال آب باران در عرصههای منابع طبیعی تجدید شونده در آذربایجان شرقی را مطالعه کرده و نتیجه گرفت که این روشها باعث افزایش سبز شدن بذور مرتعی تا میزان 5 برابر شده است.
گازریپور (1997) جمعآوری آب باران برای کشت درخت بادام در منطقهای با بارندگی سالانه 200 میلی‌متر را بررسی کرده و نتیجه گرفت در حوضچههایی با شیب 2 تا 5 درصد، عملکرد بادام تا 40 درصد نسبت به سطح شاهد افزایش داشته است.
طهماسبی و همکاران (1384) رابطه مشخصات اقلیمی، خاک و نیاز آبی ذرت علوفهای (SC 704) در منطقه لشگرک برای طراحی سیستم جمعآوری آب باران در مناطق خشک و نیمهخشک را مورد بررسی قرار دادند و با توجه به دوره رشد گیاه، نیاز آبی، عمق خاک و عمق ریشه نسبت سطح جمعآوری کننده رواناب به حجم مخزن یا استخرهای سرپوشیده مورد نظر برای تأمین حداقل یک سوم تا حدود دو سوم آب مورد نیاز گیاه به ترتیب در سالهای خشک و سالهای پرباران را محاسبه کردهاند.
طهماسبی و رجبیثانی (1385) جمعآوری آب باران در عرصههای طبیعی را راهحلی برای رفع مشکل کم آبی در مناطق خشک و نیمهخشک دانسته و بر اساس مطالعهای که در حوزه آبخیز لتیان انجام داد مناسبترین سطح جمعآوری کننده رواناب برای گیاهان مختلف و نیاز آبی معین را بدست آورد و با انجام پژوهشی مشخص شد چنانچه بخشی از آب باران در استخری ذخیره شود امکان توسعه سطح زیر کشت درختان در مناطق خشک و نیمهخشک وجود دارد.
صادقی و همکاران (1385) به مقایسه دیمزارها و مراتع فقیر در تولید رواناب و رسوب در تابستان و زمستان را با استفاده از بارانساز مصنوعی در حوزه گرگک در استان چهار محال بختیاری انجام دادند و به این نتیجه رسیدند که میزان رواناب و رسوب در فصل تابستان در مراتع فقیر در سطح اعتماد 99 درصد بیشتر از دیمزارها میباشد در صورتی که در فصل زمستان تولید رواناب و رسوب در دیمزارها در سطح اعتماد مشابه بیشتر از مراتع فقیر میباشد.
مدیریت منابع تجدیدشونده و توسعه پایدار امروزه نیازمند مناسبترین و سریعترین روش تهیه و تلفیق اطلاعات جهت مدیریت بهینه و برنامه‌ریزی‌های خود میباشد. در این زمینه سیستم اطلاعات جغرافیایی (GIS) میتواند این نقش را به خوبی به عهده گیرد (نامجویان، 1381).
1-7- طبقهبندی روشهای استحصال آب باران و سامانه سطوح آبگیر
با توجه به منشأ اصلی آب، سامانههای سطوح آبگیر باران به چهار گروه به شرح زیر تقسیم میشوند (ریج و همکاران، 1987):
الف- سامانه ویژهی استحصال آب رودخانههای دائمی و فصلی.
ب- سامانه ویژه استحصال آب از منابع زیرزمینی و روانابهای زیر قشری.
ج- سامانههای ویژه استحصال مستقیم آب باران در محل نزول و یا در اولین مراحل تشکیل روانابهای سطحی و ورقهای شکل.
د- سامانه ویژهی استحصال تندآبها و سیلابها به صورت روانابهای سطحی متلاطم و متمرکز در پای دامنههای شیب‌دار، خشکهرودها، آبراههها و مسیلها.
افزون براین، سامانههای سطوح آبگیر باران را میتوان از لحاظ موقعیت محل استقرار، نوع تیمارهای مصنوعی در سطوح آبگیر، شکل ظاهری، چگونگی عملکرد، کاربرد و نوع رواناب (از لحاظ عمق و حجم جریان آب) به شرح زیر طبقهبندی کرد (اسمعلی و عبداللهی، 1389):
الف- سامانههای سطوح آبگیر باران با سطح تیمار شده (مصنوعی)، شامل:
الف-1- سامانههای جمعآوری آب باران برای ذخیرهی آب جهت مصارف شرب و خانگی.
الف-2- سامانههای جمعآوری آب باران برای ذخیره رطوبت در پروفیل خاک جهت زراعت، درختکاری و احیای پوشش گیاهی در مراتع از طریق استحصال مستقیم ریزشهای جوی در محل نزول و یا روانابهای سطحی و ورقهای.
ب- سامانههای سطوح آبگیر باران با سطح آبگیر طبیعی شامل:
ب-1- سامانههای جمعآوری آب باران و روانابهای نسبتاً متلاطم برای آبیاری تکمیلی و یا زراعت سیلابی از طریق ذخیره رطوبت در پروفیل خاک و یا تغذیه مصنوعی آبخوانهای نیمهعمیق و استحصال آب از طریق چاههای دستی.
ب-2- سامانههای جمعآوری آب باران و روانابهای متلاطم از طریق ذخیره آب در حوضچهها و مخازن سطحی، جهت تأمین آب شرب دامها و آبیاری تکمیلی.
ب-3- سامانههای جمعآوری آب باران و روانابهای متلاطم پرحجم با هدف پخش سیلاب جهت زراعت نیمهدیم، احیای پوشش گیاهی در مراتع، ایجاد مراتع مشجر و جنگلکاری در مناطق خشک و نیمهخشک.
ب-4- سامانههای جمعآوری آب باران و روانابهای سطحی با سطوح آبگیر تلفیقی (مصنوعی و طبیعی) جهت ذخیره رطوبت در پروفیل خاک برای زراعت، احیای مراتع، تغذیه آبخوانهای نیمه عمیق و یا ذخیرهسازی آب جهت مصارف مورد نظر.
ج- سامانههای سطوح آبگیر باران زیرزمینی، شامل:
ج-1- سامانههای کاریز یا قنات.
ج-2- سامانه چاه افقی.
علاوه براین، برخی از متخصصین استحصال آب، سامانههای سطوح آبگیر باران را از نظر شکل و کاربرد به گروههای متفاوتی تقسیم کردهاند. به نحوی که در این خصوص مهمترین تقسیمبندی انجام شده شامل موارد زیر است(اسمعلی و عبداللهی، 1389):
1- سامانههای سطوح آبگیر باران مصنوعی جهت جمعآوری آب برای تأمین آب شرب انسان و دام و مصارف خانگی.
2- سامانههای سطوح آبگیر مصنوعی و تیمار شده جهت جمعآوری آب برای تأمین آب کشاورزی و ذخیره رطوبت در پروفیل خاک با هدف احیای پوشش گیاهی در مراتع و جنگلکاری در مناطق خشک و نیمهخشک.
لازم به توضیح است که منظور از سطوح آبگیر تیمار شده، سطوح آبگیری هستند که با انجام یک سری اقدامات نظیر تسطیح، جمعآوری سنگریزه و بقایای گیاهی، کوبیدن و فشردن خاک، سنگفرش و ایجاد سطح غیرقابل نفوذ با استفاده از مواد شیمیایی، سیمان، مالچهای نفتی و ... آماده میشوند.
1-8- انواع سازههای استحصال آب
به طور کلی انواع سازههای استحصال آب باران را میتوان به شرح زیر بیان کرد (اسمعلی و عبداللهی، 1389):
1- بند مخزنی: روش جمعآوری آب به وسیله بند به شکل گسترده در بسیاری از مناطق کشور رواج دارد. با وجود این، متاسفانه آموزش افراد بومی در مهارتهای تکنیکی همگام با اجرای این فن پیش نرفته است، در نتیجه نگهداری و بهرهبرداری از مخازن بیشتر به عهدهی سازمان مرکزی حکومت است.
2- بند رسوبگیر و تنظیمکننده: ثابت شده است در نواحی خیلی خشک، رسوبگیرها موثرتر و قابل اعتمادتر از سیستمهای دیگر جمعآوری آب هستند. با وجود این، کم بودن حجم ذخیره رسوبگیرها ممکن است مانعی برای استفاده از این روش در کشاورزی روی زمینهای وسیع باشد.
3- حفیره: حفیره را میتوان به آسانی طراحی و ساخت. به طوری که این گونه مخازن قادرند با غرقاب کردن زمین، حجم نسبتا زیادی آب را ذخیره کنند. در مناطق نیمهخشک استفاده از حفیره به خاطر سهولت احداث و به کارگیری آن در سیستمهای یکپارچه برای محصولات و کاشت گیاهان مرتعی مناسبتر است.
4- هوتک: هوتکها در اساس پشته خاکی کوچکی است که در قسمتهایی که سیلاب جاری میشود ساخته میشود (کوثر، 1374).
5- خوشاب: در بخش جنوبشرقی ایران این سیستم سنتی به منظور زراعت سیلابی به کار گرفته شده است.
6- سازههای مهندسی: این سازهها دایرههای کوچک یا مربع در روی زمیناند که با ملات آهک و یا سیمان و آهک و ماسه معمولی و ... ساخته میشوند و با به کارگیری آهن و شبکههای آهنی، ورودی و خروجی آنها محافظت میشوند.
7- سازههای تراوشی: یک روش بینظیر ذخیره آب و حفظ رطوبت در پروفیل عمیق و مناسب خاک است که توسط موانع طبیعی حوزهی آبخیز احاطه شدهاند. در این سیستم، رواناب بالادست و سطوح سنگی، در پایین درهها و موانع متوالی جمع میشود و برای ایجاد زراعت در سطح آنها استفاده میشود.
8- سازههای عرضی: که شامل احداث سازههای عمود بر جهت جریان است که یک مقطع خاکریزی همراه با سرریز بوده و برای نگهداشت آب به منظور غرقاب کردن اراضی بالادست در طی فصل بارانی به کار میرود.
9- آهار: در واقع مجموعهای از خاکریزهای به ارتفاع 3 مترند که در اراضی با شیب بسیار کم بر روی خطوط تراز احداث میشوند و طول خاکریزها در برخی موارد به چندین کیلومتر میرسد.
10- آبانبار: روشی برای دسترسی و استفادههای مستقیم از آبهای زیرزمینی است. در آبانبار به جای اینکه با احداث چاه، آب را توسط وسایلی به سطح زمین برسانند با احداث پلههای زیرزمینی، مستقیما به سراغ آن میروند.
11- تورکینست: یک نوع سازهی آبخیزداری است که عموما برای مناطق کم شیب به منظور ذخیره و جمعآوری آب باران و سیلاب احداث میشود. شکل معمول تورکینست دایرهای متمایل به بیضی است.
فصل دوم
مواد و روشها
2- مواد و روشها
2-1- منطقه مورد مطالعه
2-1-1- توپوگرافی و فیزیوگرافی
حوزه آبخیز سمبورچای با مساحت 3/748 کیلومترمربع درشمال استان اردبیل و به دلیل وسعت زیاد، به مقدار 94/72 درصد برابر 07/544 کیلومترمربع در محدوده شهرستان گرمی (مغان)، 68/19 درصد برابر 92/147کیلومترمربع از جنوب در محدوده شهرستان مشگینشهر و 37/7 درصد آن برابر 29/56 کیلومترمربع از شمال در محدوده شهرستان بیلهسوار قرار گرفته است و از نظر موقعیت جغرافیایی بین 14،19،47 تا 59،55،48 طول شرقی (E) و 18،6،37 تا 39،42،39 عرض شمالی (N) واقع شدهاست.
حداکثر ارتفاع حوزه آبخیز 2244 متر در جنوب غربی و حداقل ارتفاع در خروجی آن برابر 320 متر از سطح دریا می‌باشد که به رودخانه دره رود منتهی میشود.
2-1-2- هوا و اقلیم شناسی
این منطقه دارای آب و هوای نیمهخشک است. بارشهای سالانه ایستگاههای موجود در منطقه، در یک دوره مشترک 12 ساله مورد تجزیه و تحلیل قرار گرفتهاند. به منظور تجزیه و تحلیل بارش منطقه، از آمار بارش ایستگاههای اطراف حوزه آبخیز استفاده شده است که در نهایت 12 ایستگاه بارندگی از سازمان هواشناسی کشور را شامل میشود. بر اساس مجموعه آمار ایستگاههای موجود، متوسط بارندگی سالانه 236 میلی‌متر است که از 291 تا 386 میلی‌متر تغییر میکند. در این تحقیق صرفاً از آمار بارش سازمان هواشناسی کشور استفاده شد که این امر به دلیل طول مناسب دوره آماری، همگن بودن و کیفیت خوب آن‌ها میباشد. در بررسی اقلیم منطقه از روش دومارتن اصلاح شده استفاده شده است. جدول 2-1، طبقهبندی اقلیم را در روش دومارتن اصلاح شده نشان میدهد.
رابطه 2-1 A= PT+10که در آن: Ai، شاخص خشکی (ضریب خشکی)؛ P، متوسط بارش سالانه (میلی‌متر)؛ T، متوسط دمای سالانه (درجه سانتیگراد) میباشند.
جدول 2-1: طبقهبندی اقلیمها در روش دومارتن اصلاح شده
>55 55- 33 33- 28 28- 24 24- 20 20- 10 10- 0 مقادیر Ai
بسیار مرطوب ب بسیار مرطوب الف مرطوب نیمه مرطوب مدیترانه‎ای نیمه‎خشک خشک اقلیم
2-2- روش تحقیق
2-2-1- مطالعات کتابخانهای و اقدامات اولیه
جمعآوری اطلاعات، گزارشهای مطالعاتی و پژوهشهای قبلی انجام یافته در رابطه با موضوع تحقیق و مطالعه و بررسی آن‌ها:
1- در این مرحله اقدام به جمعآوری پژوهشهای قبلی گردید و نیز دادههای پایه با استفاده از مطالعات انجام شده توسط سازمانها و ادارات مربوطه تهیه شد. جمعآوری آمار و اطلاعات مختلف حوزه آبخیز از جمله: شدت بارندگی، دمای هوا و ارتفاع از طریق اداره هواشناسی استان اردبیل صورت گرفت.
2- بررسی موقعیت، وضعیت عمومی، زمینی و اقلیمی منطقه مورد مطالعه.
شناخت منطقه یکی از موارد مهم در مطالعات استحصال رواناب است که قبل از انجام مطالعات، موقعیت جغرافیایی، وضعیتهای عمومی پستی و بلندی، زمینی و نیز اقلیمی مورد بررسی قرار گرفت.
3- انتخاب و تهیه نقشههای پایه از منطقه تحقیق شامل توپوگرافی، زمینشناسی، کاربری اراضی، خاکشناسی و قابلیت اراضی با توجه به نیاز ضروری انجام طرح.
نقشههای توپوگرافی مورد نیاز طرح، با توجه به وسعت منطقه و دقت مورد نیاز با مقیاس 50000 :1 سازمان جغرافیایی نیروهای مسلح و نقشههای زمینشناسی با مقیاس 100000 :1 سازمان زمینشناسی کشور تهیه گردید. به علت عدم وجود سایر نقشههای مورد نظر طرح، اقدام به تهیه آن‌ها از روی عکسهای هوایی و تصاویر ماهوارهای گردید.
4- تهیه و تامین عکسهای هوایی و تصاویر ماهوارهای منطقه و انجام مطالعات سنجش از دور برای کسب اطلاعات مورد نیاز و تهیه نقشههای ضروری مورد نیاز طرح.
عکسهای هوایی 20000 :1 سال 1347 از طریق سازمان نقشهبرداری کشور و سازمان جغرافیایی نیروهای مسلح و نیز تصاویر ماهوارهای لندست TM و ETM+ مربوط به سالهای 1988 و 2002 از طریق سازمان فضایی کشور تهیه شدند.
2-2-2- تهیه نقشههای پارامترهای مؤثر در ایجاد رواناب
2-2-2-1- خطوط توپوگرافی و تهیه نقشه DEM منطقه
برای بررسی وضعیت توپوگرافی در منطقه از طریق GIS، اقدام به رقومیسازی خطوط توپوگرافی از روی نقشههای توپوگرافی شده و با تهیه نقشهی مدل رقومی ارتفاع، عمدتاً در قالب سه بحث عمده شیب، جهت و ارتفاع بررسیهای لازم صورت میگیرد.
برای تهیه نقشه DEM، ابتدا خطوط تراز منطقه از روی نقشه توپوگرافی50000: 1 وارد کامپیوتر شده و با اندازه پیکسل 20×20 متر (قدرت تفکیک زمینی 20 متری) رقومی شده است. در ایران سیستم تصویری UTM یکی از معمولترین روشها بوده و در این تحقیق نیز از این سیستم استفاده شده است (منطقه مورد مطالعه در داخل زون 39 شمالی بود، بنابراین تمامی مطالعات با در نظر گرفتن این زون زمین مرجع شده است). هر خط تراز در حین رقومی کردن، ارزشهای واقعی خود را میگیرند و بدین ترتیب در نقشه نهایی تهیه شده نیز ارزش هر خط تراز بیانگر ارتفاع از سطح دریای آن خط به متر میباشد (عبداللهی، 1381).
در این تحقیق نقشه DEM، خطوط تراز رقومی شده باید از طریق یک نرمافزار GIS مناسب درونیابی شود. برای تهیه نقشه DEM در نرمافزار ArcGIS 9.3 از طریق گزینه Topo to raster (3D) تهیه گردید.
2-2-2-2- نقشه ارتفاع از سطح دریا
عامل ارتفاع از سطح دریا در حوزه آبخیز سمبورچای از آن جهت حائز اهمیت است که تاثیر ارتفاع در ایجاد رواناب به صورت غیر مستقیم و از طریق تبدیل نوع بارش از بارندگی به برف عمل میکند، چرا که از ارتفاع معینی به بالا، اغلب بارش به صورت برف میباشد و همانطوریکه میدانیم برف از طریق ذوب و نفوذ تدریجی، به طور متفاوتی نسبت به باران در ایجاد رواناب عمل میکند. برای تهیه نقشه طبقات ارتفاعی از نقشه DEM استفاده شد. به منظور کلاسهبندی نقشه ارتفاع به طبقات مختلف، منحنی تجمعی ارتفاع برای نقشه DEM تهیه شد.
2-2-2-3- نقشه شیب
مهم‌ترین عوامل توپوگرافی موثر در ایجاد رواناب منطقه شامل شیب، جهت و ارتفاع از سطح دریا میباشد. در صورت یکسان بودن سایر شرایط، هر چه مقدار شیب افزایش یابد رواناب ایجاد شده بیشتر خواهد بود که دلیل آن کاهش پایداری خاک خواهد بود. بسیاری از پارامترهای اقلیمی مانند بارش و دما با ارتفاع تغییر میکند. ارتفاع بر روی نوع و ویژگیهای نزولات تاثیر دارد. هرگاه ارتفاع از حد معینی تجاوز کند بارندگی به صورت برف نازل میشود. همچنین با افزایش ارتفاع، مقدار شیب دامنهها بیشتر میشود و رخسارههای بیرونزده و توده سنگی بیشتر مشاهده شده و سنگها ناتراواتر میشوند (سراجزاده، 1375). اختلاف ارتفاع بین نقاط مختلف در یک حوزه‌ آبریز، ناهمواریهای اراضی آن حوزه را نشان می‌دهد. نسبت اختلاف ارتفاع دو نقطه به فاصله آن‌ها تحت عنوان شاخص شیب معرفی می‌گردد برای شناخت ناهمواری اراضی و شیب از معیارهای متفاوتی استفاده می‌شود. شیب حوزه‌های آبخیز اثر بسیار زیادی در واکنش هیدرولوژیک حوزه‌ها دارد. سرعت جریان‌های سطحی به طور مستقیم به شیب بستگی دارد. افزایش سرعت آب نیروی جنبشی آب و در نتیجه قدرت تخریبی و حمل آن را افزایش می‌دهد همچنین میزان نفوذ آب در خاک با افزایش شیب کاهش می‌یابد و نهایتاً حجم سیلاب و جریانهای سطحی مستقیماً به شیب حوزه بستگی دارد.
جهت برآورد و تعیین میزان شیب حوزه‌های آبریز روشها و روابط متعددی ارائه گردیده که برخی از آن‌ها عبارتند از روش شبکهبندی، روش هورتون، رابطه جاستین، روش شمارش خطوط تراز و .... در مطالعه حاضر با استفاده از GIS نقشه کلاس‌های شیب در مقیاس 50000 :1 و مشتمل بر 5 کلاس سطح حوزه آبخیز تهیه گردیده. برای تهیه نقشه شیب حوزه آبخیز، از نقشه DEM در محیط نرمافزار ArcGIS با استفاده از گزینهSpatial Analyst استفاده گردید. در این نرمافزار نقشه شیب را می‌توان به دو صورت درجه و درصد شیب تهیه کرد و قابلیت آن در این زمینه بسیار بالا بوده و از دقت زیادی برخوردار است (البته دقت نقشه تهیه شده به پارامترهای دیگری از قبیل قدرت تفکیک زمینی و دقت رقومیسازی نیز بستگی دارد). برای منطقه مورد مطالعه با توجه به نوع وهدف کار، مساحت زیرحوزهها، نقشه شیب به درصد تهیه شد.
برای محاسبه متوسط شیب زیرحوزهها، نقشه پلیگونی زیرحوزهها را با نقشه رستری شیب حوزه آبخیز سمبورچای در محیط نرمافزار ArcGIS با استفاده از نوار ابزار Spatial Analyst و سپس ابزار Zonal Statistics قطع داده شد و متوسط شیب برای هر زیر حوزه به دست آمد.
2-2-2-4- نقشه جهت شیب
جهت شیب جهتی است که اگر از بالای شیب به پائین نگاه کنیم سطح شیب به آن جهت متوجه است و در واقع جهتی است که از آن می‌توان خط عمود فرضی به خطوط تراز سطح شیب رسم کرد. مهمترین اثر جهت شیب در میزان دریافت نور خورشید و اثرات ناشی از آن جمله پیدایش اقالیم محلی یا موضعی است. در نیمکره شمالی زمین جهات رو به جنوب و غرب از جهات رو به شمال و شرق برای مدت طولانی‌تری در معرض تابش نور خورشید قرار می‌گیرند و به همین دلیل نیز گرم‌ترند. اثر تابش بیشتر و گرمای زیادتر جهت رو به جنوب و شرق موجب افزایش تبخیر و تعرق سالیانه و در نتیجه کاهش رطوبت خاک می‌شود و به همین علت نیز در جهات رو به جنوب و شرق وضعیت پوشش گیاهی ار نظر تراکم و نوع گیاهان نسبت به سایر جهات تفاوت دارد و اغلب از تراکم کمتری برخوردار است و نتیجتاً فرسایش خاک و تولید رواناب در این جهات بیشتر است (مهدوی، 1378).
اثر مهم دیگر شیب در ذوب شدن برف است. در جهات رو به جنوب و شرق به دلیل گرمای بیشتر، سرعت ذوب برف شدیدتر است. در این مناطق برف کمتری بر روی زمین میماند و ذوب آن به تدریج در زمستان و اوایل بهار انجام میگیرد. به همین دلیل جریان زمستانی رودخانهها در این مناطق بیشتر و جریانهای آن یکنواختتر است. در حالی که در حوزههای آبخیز با جهات رو به شمال و غرب دوام برف در زمستان بیشتر است و عمق و تراکم آن نیز بالاتر است (مهدوی، 1378).
برای تهیه نقشه جهات جغرافیایی نیز از ویژگی‌های خطوط منحنی میزان و خطوط رودخانه‌ها‌، نهرها و آبراهه‌ها و خطوط یالها و نحوه ارتباط یال و قله بر روی نقشه توپوگرافی استفاده می‌شود. تعیین جهت جغرافیایی بدین صورت می‌باشد که جهت هر یک از دامنه‌ها ( یعنی حد پایین یال و دره ) را نسبت به شمال جغرافیایی مشخص می‌نمایند. همانطور که میدانیم مقدار آزیموت از صفر تا 360 درجه تغییر میکند و برای مناطق مسطح، آزیموتی تعریف نمیشود که به همین خاطر در نقشه جهت تهیه شده، ارزش سلولهای مناطق مسطح به طور خاص (مثلا 1- و یا ؟) نشان داده میشود. در نقشه جهت تهیه شده، ارزش هر پیکسل بیانگر آزیموت آن میباشد.
برای کلاسهبندی نقشه جهت میتوان به صورت زیر عمل کرد (درویشصفت، 1379)، به طوری که:
1= شمال، آزیموت بین صفر تا 5/22 و نیز 5/337 تا 360 درجه.
2= شمالشرق، آزیموت بین 5/22 تا 5/67 درجه.
3= شرق، آزیموت بین 5/67 تا 5/112 درجه.
4= جنوبشرق، آزیموت بین 5/112 تا 5/157 درجه.
5= جنوب، آزیموت بین 5/157 تا 5/202 درجه.
6= جنوبغرب، آزیموت بین 5/202 تا 5/247 درجه.
7= غرب، آزیموت بین 5/247 تا 5/292 درجه.
8= شمالغرب، آزیموت بین 5/292 تا 5/337 درجه.
9 = اراضی مسطح با ارزش ویژه.
نقشه جهت توضیح داده شده به روش فوق، برای کلاسهبندی نقشه جهت به نه طبقه (با یک طبقه مسطح) میباشد که در صورت لزوم میتوان طبقات فوق را با هم تلفیق کرده و نقشه جهت چهار یا پنج طبقهای (با یک طبقه اضافی مسطح) تهیه کرد. برای تهیه نقشه جهت حوزه نیز از نقشه DEM در نرمافزار ArcGIS با دستور Spatial Analysis و انتخاب گزینه Aspect تهیه شدهاست. در نقشه جهت تهیه گردید.
2-2-2-5- تهیه و تکمیل نقشه همباران و همدما
الف- بارش
در منطقه مورد تحقیق، مقدار بارش سالانه تحت تاثیر ارتفاع از سطح دریا، فصول مختلف سال و توپوگرافی منطقه میباشد. در بررسی مقدار و وضعیت بارش منطقه، از ایستگاههای اطراف حوزه آبخیز استفاده شده است. جداول 2-2 و 2-3 به ترتیب مشخصات کلی ایستگاهها و میانگین بارش سالانه را نشان میدهند.
جدول 2-2: مشخصات ایستگاههای بارانسنجی
برزند اصلاندوز انگوت پارسآباد مشکین اردبیل ایستگاه
´53-◦47 ´25-◦74 ´45-◦47 ´46-◦47 ´41-◦47 ´20 -◦48 طول جغرافیایی
´57-◦38 ´26-◦39 ´03-◦39 ´39-◦36 ´23-◦38 ´13-◦38 عرض جغرافیایی
1085 153 466 6/72 1561 1335 ارتفاع (متر)
جعفرلو مرادلو جعفرآباد قوشه قرهخان بیگلو گرمی ایستگاه
´43-◦47 ´45-◦47 ´05-◦48 ´56-◦47 ´39-◦47 ´05-◦48 طول جغرافیایی
´52-◦38 ´45-◦38 ´26-◦39 ´44-◦38 ´05-◦39 ´03-◦39 عرض جغرافیایی
1280 1380 174 1246 596 759 ارتفاع (متر)
جدول 2-3: میانگین بارندگی سالانه ایستگاههای بارانسنجی
جعفرآباد مرادلو جعفرلو قوشه قرهخانبیگلو گرمی به رزند اصلاندوز انگوت مشگینشهر پارسآباد اردبیل ایستگاه
4/277 8/272 9/304 8/258 6/296 3/353 344 1/285 4/319 6/353 6/265 6/278 متوسط بارش سالانه
ب-رابطه ارتفاع- بارش و متوسط بارش منطقه
برای محاسبه رابطه ارتفاع- بارش، از آمار بارندگی ایستگاههای موجود و همچنین ارتفاع از سطح دریای ایستگاهها استفاده شد که در ابتدا نواقص آماری رفع شده و در نرمافزار Excel با وارد کردن ارقام بارش و ارتفاع در دو ستون مجزا، به نحوی که بارش در محور y و ارتفاع در محور x قرار گیرد، رابطه رگرسیونی این دو پارامتر از طریق نرمافزار Excel محاسبه شد (سعدی مسگری و قدس، 1384). رابطه رگرسیونی ارتفاع از سطح دریا- بارش (گرادیان بارندگی منطقه)، در منطقه تحقیق به صورت زیر به دست آمده است:
رابطه 2-2 P=0.050H+275.2 R²=0.625
که در آن: P، میزان درجه حرارت متوسط سالانه بر حسب سانتیگراد؛ H، ارتفاع از سطح دریا به متر میباشد.
برای بدست آوردن بارش متوسط حوزه آبخیز، از نقشه مدل رقومی بارش استفاده گردید. نحوه تهیه مدل رقومی بارش بدین شکل بوده که بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- بارش در Excel، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، DEM منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه همباران حوزه تهیه شده است. پس از تهیه نقشه مدل رقومی بارش، از طریق دستور Reclassify، اقدام به کلاسهبندی نقشه مدل رقومی بارش به 5 کلاس بارش شد. ج- رژیم حرارتی
رژیم حرارتی یک منطقه عبارت از تغییرات متوسط درجه حرارت هوا بر حسب زمان و در مدت یکسان است. هدف از بررسی درجه حرارت در محدوده طرح، تعیین رابطه گرادیان درجه حرارت و تعیین میانگین حرارتی منطقه بر اساس آمار ایستگاههای موجود بوده است.
د- رابطه ارتفاع- درجه حرارت و میانگین دمای سالانه
با بررسی آمار درجه حرارت ایستگاههای ثبت درجه حرارت در منطقه، مشابه روش تهیه مدل رقومی بارش، برای تهیه نقشه درجه حرارت متوسط نیز، بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- درجه حرارت در Excel، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، مدل رقومی ارتفاع منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه همدما حوزه تهیه شده است. رابطه ارتفاع از سطح دریا- درجه حرارت (گرادیان درجه حرارت) در منطقه تحقیق به صورت زیر به دست آمده است همانند بارندگی:
رابطه 2-3 T=-0.003H+15.14 R²=0.824
که در آن:T، میزان درجه حرارت متوسط سالانه بر حسب سانتیگراد؛ H، ارتفاع از سطح دریا به متر.میباشد.
2-2-3- مقدار بارندگی در دوره بازگشتهای مختلف
2-2-3-1- مقدار بارش
مقدار بارندگی یک متغیر تصادفی بوده و میتوان دادههای موجود را بررسی و طبق قوانین توزیع آماری هنگامی که برازش مناسب وجود داشته باشد، حداکثر یا حداقل بارندگی را با دوره بازگشت مورد نظر تعیین نمود. فرم کلی معادلات مورد استفاده معمولا به صورت زیر است:
رابطه 2-4 PT=P+K.Sکه در آن: PT، حداکثر و یا حداقل بارندگی با دوره بازگشت معین T سال؛ P، میانگین بارندگی؛ K، ضریب فراوانی (ضریب تناوبی)؛ S، انحراف معیار دادهها میباشد.
در منطقه تحقیق، با استفاده از توزیع پیرسون تیپ III، مقادیر متوسط بارندگی سالانه در دورهبازگشتهای 2 و 10 سال محاسبه شد.
2-2-3-2- حداکثر بارش 24 ساعته
در منطقه تحقیق، با استفاده از توزیع گمبل نوع I، که در تجزیه و تحلیل مقادیر حد بهکار گرفته میشود، مقادیر حداکثر بارش 24 ساعته در دورهبازگشتهای 2 و 10 ساله محاسبه شد.
2-2-3-3- شدت بارندگی
به طور کلی هر چه مدت بارش کوتاه باشد، شدت آن زیاد خواهد بود و برعکس بارانهای دراز مدت از شدت کمتری برخوردار میباشند. از طرف دیگر مسلم است که هر چه دوره بازگشت یک رگبار طولانیتر باشد، شدت آن نیز بیشتر خواهد بود.با پیدا کردن حداکثر شدت بارندگی در پایههای زمانی مختلف در طول مدت آماری، میتوان دادههای مربوط به هر یک از پایههای زمانی را با یک توزیع مناسب برازش داده و سپس شدتهای مربوط به زمانهای بازگشت متفاوت را روی محور مختصات و بر حسب پایههای زمانی مختلف رسم نمود.
با بررسیهای انجام شده روی منحنیهای شدت، مدت و فراوانی، فرمولهای تجربی متعددی ارائه شده که در این تحقیق از فرمول قهرمان (1366- به نقل از علیزاده، 1379) که برای ایران ارائه شده است، استفاده شد. قهرمان روی دادههای باران نگارهای ایستگاههای ایران مطالعه و مقدار باران یک ساعته با دوره بازگشت 10 ساله را به صورت زیر برای نقاط مختلف ایران قابل محاسبه دانسته است (علیزاده، 1380):
رابطه 2-5 P1060=e0.8153 .X11.1374.X2-0.3072که در آن: X1، متوسط حداکثر بارش 24 ساعته بر حسب میلی‌متر؛ X2، متوسط بارش سالانه منطقه بر حسب میلی‌متر میباشد.
بنابراین با داشتن مقدار میتوان مقدار PTt (مقدار بارش در زمان و دوره بازگشتهای مختلف) و سپس شدت باران t دقیقهای را با دوره بازگشت T سال محاسبه کرده و منحنی شدت، مدت و فراوانی را رسم کرد.
رابطه 2-6 PTt= [0.4524 + 0.247 ln (T – 0.6)](0.3710 + 0.6184t0.4484)P1060شدت بارندگی (I) نیز عبارتست از نسبت بارندگی (P) به زمان (T). یعنی:
رابطه 2-7 I=Pt2-2-3-4- رابطه ارتفاع- شدت بارشبرای تهیه نقشه شدت بارش، همانند نقشه همدما و همبارش، ابتدا رابطه رگرسیونی بین ارتفاع از سطح دریای ایستگاههای انتخاب شده و میزان شدت بارش نیم ساعته و یک ساعته با دروه بازگشت 2 سال و 10 سال در Exel به صورت زیر تهیه شد. بعد از بهدست آوردن رابطه رگرسیونی ارتفاع- بارش ، رابطه فوق به ArcGIS منتقل شد و با استفاده از تابع الحاقی Spatial Analyst نرمافزار ArcGIS 9.3 در منوی Spatial Analyst و در زیر منوی Raster Calculator، DEM منطقه به جای H (عامل ارتفاع) در معادله گرادیان قرار داده شد و نقشه شدت بارش حوزه تهیه شده است. پس از تهیه نقشه مدل رقومی شدت بارش، از طریق دستور Reclassify، اقدام به کلاسهبندی نقشه مورد نظر به 5 کلاس شد.
رابطه 2-8 I230=-0.003H+19.99 R2=0.627
که در آن: I230، شدت بارش نیم ساعته با دوره بازگشت دو سال؛ H، ارتفاع از سطح دریا به متر میباشد.

user8614

8-2-2- توزیع فضایی (پراکندگی) 21
9-2-2- آموزش و پرورش 23
10-2-2- سیستم اطلاعات جغرافیایی (GIS) 24
3-2- نظریه ها و دیدگاهها 26
1-3-2- نظریه ها و دیدگاه های فضایی 27
2-3-2- سازمان فضایی و سطح بندی روستاها 34
4-2- نظریه سرمایه انسانی 36
1-4-2- تعریف و مفهوم سرمایه انسانی 37
2-4-2-سرمایه گذاری در سرمایه انسانی 37
3-4-2- تشکیل سرمایه انسانی از طریق آموزش و پرورش 38
5-2- نظام آموزش و پرورش ایران 39
6-2- مقاطع تحصیلی آموزش و پرورش در ایران 42
1-6-2- دوره ابتدایی 42
2-6-2- دوره راهنمایی تحصیلی (متوسطه اول) 42
3-6-2- دوره متوسطه عمومی 43
4-6-2- دوره پیش دانشگاهی 43
7-2- ضوابط و استانداردهای مربوط به خدمات آموزشی 44
1-7-2- استانداردهای آموزشی و تعداد دانش آموزان در مدارس ابتدایی و راهنمایی 45
8-2- مدرسه هوشمند 47
1-8-2- پیشینه هوشمندسازی مدارس 48
2-8-2- اهداف ایجاد مدارس هوشمند 49
3-8-2- پیش نیازها جهت اجرای مدارس هوشمند 50
فصل سوم:
مواد و روش ها 1-3 - پیش درآمد 52
2-3- موقعیت، حدود و وسعت منطقه مورد مطالعه 54
3-3- ویژگیهای طبیعی منطقه 55
1-3-3- زمین شناسی و ژئومورفولوژی 55
2-3-3- آب وهوا‌( اقلیم) 56
1-2-3-3- بادهای 120 روزه سیستان 62
3-3-3- منابع آب 62
4-3-3- خاکهای منطقه 64
5-3-3- وضعیت پوشش گیاهی 65
6-3-3- زندگی جانوری 65
4-3- ویژگیهای جغرافیای انسانی 66
1-4-3- بررسی وضعیت جمعیت منطقه 66
2-4-3- ترکیب جنسی جمعیت 68
3-4-3- وضعیت سواد 68
4- 4 – 3- کشاورزی 69
5-4-3- صنایع و معادن 70
6-4-3- فعالیت های عمرانی و خدماتی 71
1-6-4-3 مساکن روستایی 71
2-6-4-3- معابر و شبکه حمل ونقل 72
3-6-4-3- تأمین آب شرب 73
4-6-4-3- برق رسانی 73
5-6-4-3- خدمات بهداشتی و درمانی 73
6-6-4-3- سایر خدمات 74
7-4-3- ویژگی های فرهنگی و اجتماعی 74
8-4-3- جغرافیای تاریخی سیستان 75
9-4-3- آثار تاریخی منطقه 76
5-3- روش تحقیق 79
1-5-3- روشها و مراحل تحقیق 79
2-5-3- جامعه آماری 80
3-5-3-روش و ابزار گرد آوری داده ها 81
4-5-3- شاخص های مورد مطالعه 82
5-5-3- روش تجزیه و تحلیل اطلاعات 83
فصل چهارم
یافته های تحقیق 1-4- پیش درآمد 85
2-4- یافته های توصیفی و تحلیلی 85
1-2-4- تغییرات مربوط به تعداد جمعیت و خانوار روستاهای مورد مطالعه 88
2-2-4- مراکز آموزشی مقطع ابتدایی 91
1-2-2-4- پراکندگی و دسترسی به مدارس ابتدایی در دهستان محمدآباد 92
2-2-2-4- درجه بندی مدارس ابتدایی دهستان در مقایسه با استانداردهای آموزشی 98
3-2-2-4- تراکم دانش آموز در کلاس های مدارس ابتدایی در مقایسه با استانداردهای آموزشی 100
4-2-2-4- وضعیت فضاها و تجهیزات آموزشی مدارس ابتدایی دهستان در مقایسه با استانداردهای آموزشی 101
5-2-2-4- بررسی وضعیت کادر آموزشی و سایر کارکنان مدارس ابتدایی دهستان 105
3-2-4- مراکز آموزشی مقطع راهنمایی 108
1-3-2-4- پراکندگی و دسترسی به مدارس راهنمایی در دهستان محمدآباد 108
2-3-2-4-درجه بندی مدارس راهنمایی دهستان در مقایسه با استانداردهای آموزشی 116
3-3-2-4- تراکم دانش آموز در کلاس های مدارس راهنمایی دهستان در مقایسه با استانداردهای آموزشی 117
4-3-2-4- وضعیت فضاها و تجهیزات آموزشی در مقایسه با استانداردهای آموزشی 118
5-3-2-4- بررسی وضعیت کادر آموزشی و سایر کارکنان مدارس راهنمایی دهستان 123
4-2-4- مراکز آموزشی مقطع متوسطه 124
1-4-2-4- پراکندگی و دسترسی به مراکز آموزشی متوسطه در دهستان محمدآباد 126
2-4-2-4- تراکم دانش آموز در کلاس های مراکز آموزشی متوسطه دهستان در مقایسه با استانداردهای آموزشی 133
3-4-2-4- وضعیت فضاها و تجهیزات آموزشی در مقایسه با استانداردهای آموزشی 134
4-4-2-4- بررسی وضعیت کادر آموزشی و سایر کارکنان مدارس متوسطه دهستان 136
3-4- آزمون فرضیات 137
1-3-4- آزمون فرضیه نخست 138
2-3-4- آزمون فرضیه دوم 139
فصل پنجم
جمع بندی، نتیجه گیری و پیشنهادات 1-5- جمع بندی 143
2-5- نتیجه گیری 144
3-5- پیشنهادات 147
منابع 152
فهرست جداول
عنوان صفحه
جدول 1-1- مراکز آموزشی مورد مطالعه 14
جدول 1-2 -استانداردهای آموزشی و تعداددانش آموزان آنها در مدارس ابتدایی 46
جدول 2-2 -استانداردهای آموزشی و تعداد دانش آموزان آنها در مدارس راهنمایی 46
جدول 3-2-استانداردها و ضوابط خدمات آموزشی در مناطق روستایی کشور 47
جدول 1-3- مساحت دهستانهای شهرستان هامون در سال 1391 54
جدول 2-3- وضع جوی منطقه سیستان بر حسب ماه: سال 1389 58
جدول 3-3- ویژگیهای عناصر اقلیمی منطقه سیستان 59
جدول 4-3- آمار تعدادی از عناصر اقلیمی ایستگاه سینوپتیک زابل طی سالهای 90-1380 60
جدول 5-3- تعداد جمعیت و خانوار شهرستان هامون در سالهای 1385 ، 1390 67
جدول 6-3- وسعت و تراکم جمعیت دهستانهای شهرستان هامون در سال 1390 67
جدول 7-3- تعداد حانوار وجمعیت از نظر جنسیت در شهرستان هامون و دهستان محمدآباد در سال 1385 68
جدول 8-3- تعداد افراد باسواد و بی سواد بر حسب جنس در شهرستان هامون 69
جدول 9-3-طول محور های روستایی آسفالته شهرستان هامون در سال 1390 72
جدول 10-3- مراحل انجام تحقیق 80
جدول 1-4- طرح اتصال مدیریت آموزش و پرورش شهرستان هامون در سال تحصیلی 92-1391 88
جدول 2-4- تعداد خانوار و جمعیت روستاهای مورد مطالعه دهستان محمد آباد در سالهای 1385 و 1390 89
جدول 3-4-مقایسه تعداد آموزشگاهها و تعداد دانش آموزان مقطع ابتدایی سال 92-1391 94
جدول 4-4- آمار مدارس ابتدایی روستاهای مورد مطالعه در دهستان 97
جدول 5-4- وضعیت مدارس ابتدایی دهستان محمدآباد در سال تحصیلی 92-91 از حیث درجه استاندارد آموزشی 98
جدول 6-4- مقایسه فضاهای آموزشی مقطع ابتدایی دهستان ازنظر محوطه و زیربنا با استانداردهای آموزشی درسالتحصیلی 92-91 101
جدول 7-4- توزیع کارکنان مدارس ابتدایی دهستان محمد آباد از لحاظ جنسیت در سال تحصیلی 92-1391 107
جدول 8-4 مقایسه تعداد آموزشگاهها و تعداد دانش آموزان مقطع راهنمایی در سال تحصیلی 92-1391 112
جدول 9-4- آمار مدارس راهنمایی روستاهای مورد مطالعه در دهستان محمد آباد در سال تحصیلی 92-1391 115
جدول 10-4- مقایسه فضاهای آموزشی مدارس راهنمایی دهستان محمدآباد در سال تحصیلی 92-1391 121
جدول 11-4- آمار مدارس مراکز آموزشی متوسطه دهستان محمدآباد در سال تحصیلی 92-1391 131
جدول 12-4- مقایسه سرانه فضاهای آموزشی زیر بنا در مدارس متوسطه دهستان محمدآباد در سال تحصیلی 92-1391 (متر مربع) 135
فهرست اشکال
عنوان صفحه
شکل 1-2-اجزای یک پایگاه اطلاعاتی مبتنی بر GIS 25
شکل 2-2- مدل فون تانن 29
شکل 3-2- سلسله مراتب مکانهای مرکزی کریستالر 30
شکل 4-2 -سلسله مراتب مرکزی براساس اصول بازار یابی، ترابری و اداری 32
شکل 5-2- سطح بندی سکونتگاههای روستایی 36
شکل 1-3-نقشه تقسیمات سیاسی استان سیستان و بلوچستان 53
شکل 2-3- منحنی آمبروترمیک منطقه سیستان 57
شکل3-3- نمودار خلاصه پارامترهای محاسباتی دمای هوا در ایستگاه زابل 61
شکل 1-4- نمودار ستونی تعداد آموزشگاههای مدیریت آموزش و پرورش شهرستان هامون در سال تحصیلی 92-91 86
شکل 2-4- نمودار ستونی تعداد دانش آموزان مدیریت آموزش و پرورش شهرستان هامون در سال تحصیلی 92-91 86
شکل3-4- نمودار دایره ای درصد کارکنان مدیریت آموزش و پرورش شهرستان هامون از لحاظ مدرک تحصیلی در سال تحصیلی 92-91 87
شکل 4-4- نمودار ستونی جمعیت سالهای 1385 و 1390 روستاهای مورد مطالعه در دهستان محمدآباد 90
شکل 5-4- نقشه پراکندگی مدارس ابتدایی دهستان محمد آباد در سال تحصیلی 92-1391 93
شکل 6-4- نقشه دسترسی دانش آموزان روستایی به مدارس ابتدایی دهستان محمد آباد در سال تحصیلی 92-1391 95
شکل 7-4- نمودار ستونی درجه بندی مدارس ابتدایی دهستان محمد آباد در سال تحصیلی 92-91 در مقایسه با استانداردهای آموزشی 99
شکل8-4- نمودار دایره ای درصد کارکنان (آموزشی،اداری و خدماتی) مقطع ابتدایی دهستان محمدآباد در سال تحصیلی 92-91 106
شکل 9-4- نقشه پراکندگی مدارس راهنمایی دهستان محمد آباد در سال تحصیلی 92-91 110
شکل 10-4- نقشه دسترسی دانش آموزان روستایی دهستان محمدآباد به مدارس راهنمایی در سال تحصیلی 92-91 113
شکل11-4- نقشه پراکندگی مراکز آموزشی متوسطه دهستان محمدآباد در سال تحصیلی 92-91 127
شکل 12-4- نمودار ستونی مقایسه جمعیت دانش آموزی مدارس متوسطه دهستان محمدآباد به تفکیک رشته تحصیلی در سال تحصیلی 92-91 128
شکل13-4- نقشه دسترسی دانش آموزان روستایی به مراکز آموزشی متوسطه دهستان محمدآباد در سال تحصیلی 92-91 129
فصل اول
مقدمه و کلیات تحقیق

1-1- مقدمه
لفظ آموزش وپرورش در مفهومی وسیع به کلیه فرآیندهایی اطلاق می شود که زندگی فرهنگی را برای انسان تأمین می کند (جرالد ال،1389،11).
آموزش و پرورش فرآیندی زگهواره تا گور است که در هر جامعه ایی وجود داشته و اشکال گوناگونی دارد، از یادگیری براساس تجربه های زندگی تا آموزش و پرورش آموزشگاهی، از اجتماعات صنعتی تا غیر صنعتی، از محیط های روستایی تا شهری، بنابراین آموزش و پرورش یک پدیده اجتماعی است (علاقه بند، 1372، 4) .
آموزش رسمی نهاد مهمی برای انتقال دانش و فرهنگ از نسلی به نسل دیگر و پرورش آن دسته از خصایص آدمی است که به بازده اقتصادی، ثبات اجتماعی و ایجاد دانش های جدید کمک می کند، بخشی از این دانش همان نظری است که جامعه نسبت به خود نظام مدرسه پیدا می کند، برای آنکه یک نهاد نقش مهمی در جامعه ایفا کند لازم است مشروع باشد یعنی مردمی که از آن استفاده می کنند، باید معتقد باشند که این نهاد در خدمت منافع و نیازهای آنان است (کانوی، 1367، 13).
امروزه بسیاری از متفکران و متخصصان تعلیم و تربیت که طرفدار برداشتی نو و دیدی تازه در زمینه اصلاحات آموزشی هستند، بر این باورند که برنامه ریزی اصلاحات به منظور تجدید نظر اساسی در عملکرد گذشته و کنونی نظام های تعلیم و تربیت هر کشور باید در پرتو بررسی پیشینه تاریخی تحولات آموزش و پرورش و تحلیل وضعیت کنونی نظام آموزشی صورت گیرد، زیرا در این صورت می توان با دیدی تازه و جامع عواملی را که موجب رکود فعالیتهای فرهنگی و علمی
و شکل گیری دشواریهای کنونی نظام آموزشی شده است، شناسایی کرد (کانل ، 1373، 694).
اصولاً ساختار نظام آموزش و پرورش در ابعاد دوگانه بررسی می شود که عبارتند از:
1- بعد عمودی نظام که شامل مراحل تحصیلات رسمی با توجه به سن ورود به مدرسه و تعداد سالهای تحصیل در هر مرحله تحصیلی است.
2- بعد افقی نظام آموزش و پرورش که به تقسیمات درونی هر یک از مراحل تحصیلی یا دوره های آموزشی که شامل شاخه ها و رشته های تحصیلی است، اطلاق می شود مانند رشته های نظری و فنی و حرفه ایی در دوره متوسطه (آقازاده، 1388، 23).
مسئولان برنامه های اصلاحی آموزش و پرورش ممالک موفق معتقدند که اصلاح کمی و کیفی آموزش و پرورش باید از مقاطع تحصیلی پایین تر آغاز گردد تا بتوان شرایط تحول برای مقاطع بالاتر را مهیا ساخت، آنان تأکید دارند که بازسازی و اصلاح آموزش و پرورش فرآیندی نیست که بتوان آن را با اقدام ضربتی آن هم از رأس و قلّه ی هرم آموزشی آغاز کرد، بلکه اقدام اصلاحی متناسب و سنجیده باید از قاعده هرم آموزشی یعنی از سطح آموزش قبل از دبستان و آموزش ابتدایی شروع گردد تا بتوان آن را به صورت فرآیندی فراگیر و همه جانبه به سطوح بالای آموزشی (دوره متوسطه و آموزش عالی) هدایت کرد.اما متأسفانه این توصیه کارشناسان در فرهنگ برنامه ریزی کشور ما جایگاه شناخته شده ایی ندارد (همان،1388، 221-220).
با توجه به اینکه در اصل سوم قانون اساسی جمهوری اسلامی ایران به مسئله آموزش و پرورش و تربیت بدنی رایگان برای همه در تمام سطوح تأکید شده است و همچنین سطح بالای آموزش و سواد از ملاک های توسعه انسانی کشورها محسوب می شود لذا دسترسی جوامع روستایی و شهری به خدمات آموزشی و پراکنش مناسب مراکز آموزشی از اهمیت زیادی برخوردار است.
در این پژوهش وضعیت دسترسی دانش آموزان دهستان محمد آباد شهرستان هامون در منطقه سیستان به مراکز آموزشی ابتدایی، راهنمایی و متوسطه با استفاده از روش تحلیل فضایی و نرم افزار سیستم اطلاعات جغرافیایی GIS مورد بررسی قرار می گیرد.
چارچوب اصلی این پژوهش ابتدا در فصل اول تحت عنوان مقدمه وکلیات تحقیق شامل بیان مسئله، سئوالات تحقیق، فرضیات تحقیق، اهمیت و ضرورت انجام تحقیق، اهداف تحقیق ، پیشینه ی تحقیق (مطالعات داخلی و خارجی) محدوده ی موضوعی، زمانی و مکانی تحقیق می باشد.
فصل دوم شامل مبانی نظری تحقیق است که در آن پیش در آمد، تعاریف و مفاهیم و دیدگاه ها و نظریه ها ذکر می گردد.
در فصل سوم این پژوهش بعد از پیش در آمد ابتدا کلیات جغرافیایی منطقه مورد مطالعه در قالب ویژگی های طبیعی و انسانی و سپس به بیان مواد و روش ها، جامعه آماری و روش ها و ابزار گردآوری داده ها و روش تجزیه و تحلیل اطلاعات پرداخته شده است.
فصل چهارم شامل یافته های تحقیق به صورت پیش درآمد و یافته های توصیفی بدست آمده از بررسیهای میدانی در سه مقطع ابتدایی، راهنمایی و متوسطه و آزمون فرضیات می باشد.
و فصل پنجم به جمع بندی ، نتیجه گیری و ارائه پیشنهادات می پردازد.
2-1- بیان مسئله
انسان موجودی است تغییر پذیر با توانایی های بالقوه نامحدود که این توانایی ها می تواند تحت نظام و برنامه ریزی آموزشی و پرورشی به فعل تبدیل شود و جوامع انسانی را از مواهبی بسیارگران برخوردار نماید، بهبود در نحوه انجام وظیفه، امکان استفاده بیشتر از منابع محدود داخلی، کاهش هزینه ها و سرانجام تحقق هر چه بهتر هدف های سازمانی آنگاه میسر است که قابلیتها و مهارتهای منابع انسانی براثر آموزش و بهسازی تقویت شوند تا بتوانند نقش و سهم خود را در تلاشهای توسعه ایفا کنند (میر سپاسی، 1372، 297).
در قرن اخیر گرایش شدید به آموزش و پرورش رسمی، گسترش قابل ملاحظه مراکز آموزشی را سبب گردید و برداشت جامعه را درباره ی رسالت و مسئولیت مدرسه به کلی دگرگون کرد (معیری، 1381، 23).
مربیان، مدیران و معلمان بر کارکرد مدرسه در جهت تنویر افکار تأکید می کنند، اینها مدعی اند که آموزش رسمی جز مهمی از فرآیند مادام العمر آموزش و پرورش است که نه تنها شناخت پدیده های مهم بلکه خود فرآیند یادگیری را نیز به جوانان می آموزد، کار فرمایان، مدرسه را وسیله ایی برای فراهم آوردن مهارتها و آماده ساختن جوانان برای کارکردهای اقتصادی در جامعه ای که مرتباً تکنولوژی پیچیده تر می شود، می دانند (کانوی. 1367، 13).
امروزه گروه عظیمی از مردم کشور ما نیز تحصیل و در نتیجه پیشرفت را یکی از نیازهای اساسی خود می دانند. اکنون تعداد زیادی از انسان ها بایستی از حداقل دانش روز برخوردار باشند که این حداقل از مجموع چندین برابر حداکثر چند قرن گذشته بسیار بزرگتر و بیشتر و دارای کیفیتی کاملاً متفاوت است. لازم به یادآوری است، هر چه بر تعداد جمعیت دانش آموزی افزوده می شود از کیفیت تدریس و برنامه های آموزش و پرورش کاسته می شود، از طرف دیگر بدلیل عدم توجه به خصوصیات فردی فراگیران، تعدادی از آنها درس و مدرسه را رها کرده و جزء افراد کم سواد در می آیند، لذا باید متناسب با افزایش تعداد دانش آموزان توجه به آموزش متناسب، صورت گیرد. از نقطه نظر هزینه و مخارج این حقیقت مسلمی است که بایستی هر ساله مبلغ قابل توجهی بر بودجه آموزش و پرورش افزود و اگر دخالت کشورهای استعمارگر در امور سایر کشورها نبود معقول این بود که رقم اول بودجه هر کشور به جای امور نظامی به آموزش و پرورش اختصاص یابد. در جامعه اسلامی ما توجه به آموزش و پرورش منبعث از تأکید دین اسلام و قرآن کریم و سنت و سیره پیامبر و ائمه اطهار است، لذا پرورش نیروی انسانی خلاق و هماهنگ با معنویات حکومت اسلامی رسالتی است که بر دوش دستگاه تعلیم و تربیت قراردارد و تحقق آن ضامن موفقیت سایر سازمانها و نهادهای اجرایی کشور می باشد، به عبارتی دیگر توسعه اقتصادی و اجتماعی یک کشور مرهون توسعه آموزشی و فرهنگی است (عسکری و محسنی نیا، 1373، 48) .
باتوجه به اینکه در بعضی موارد عدم ساماندهی و عدم توزیع مناسب مراکز آموزشی در دهستان محمد آباد مشاهده می شود و در برخی از روستاها کمبود فضای آموزشی وجود دارد و در برخی دیگر از روستاها، فضاهای آموزشی ساخته شده بلا استفاده باقی مانده است و همچنین در بعضی از روستاها وضعیت مدارس از استانداردهای آموزشی فاصله دارد و این موارد باعث افت تحصیلی، ترک تحصیل و بازماندن دانش آموزان از تحصیلات بالاتر می شود لذا تحقیق حاضر تحت عنوان (تحلیل فضایی دسترسی به مراکز آموزشی دهستان محمد آباد شهرستان هامون) صورت گرفته است.
3-1- سئوالات تحقیق
1- آیا پراکنش مراکز آموزشی دهستان محمد آباد از نظر فضایی، متناسب با جمعیت روستایی می باشد؟
2- بین وضعیت فضاهای آموزشی موجود دهستان ازنظرتعداددانش آموز وتجهیزات با استانداردهای آموزشی چه ارتباطی وجود دارد؟
4-1- فرضیات تحقیق
1- آرایش فضایی متناسبی بین پراکندگی مراکز آموزشی با جمعیت روستایی دهستان وجود ندارد.
2- هماهنگی زیادی بین وضعیت فضاهای آموزشی موجود دهستان ازنظرتعداددانش آموز وتجهیزات با استانداردهای آموزشی وجود ندارد.
5-1- اهمیت و ضرورت تحقیق
کارکرد آموزشی در هر سرزمین زیر بنای توسعه اقتصادی - اجتماعی می باشد، جامعه ایی که از نظر سطح سواد و تخصص از موقعیتهای مناسب برخوردار نباشد، امکان ارتقاء کیفی برای جمعیت آن وجود ندارد، بنابراین گسترش خدمات آموزشی در ایجاد زمینه های مناسب برای توسعه اقتصادی - اجتماعی نواحی روستایی لازم است (مطیعی لنگرودی، 1390، 118- 117).
یکی از ابزارهای مهم برنامه ریزی در اختیار داشتن اطلاعات و آمار از وضع موجود می باشد که به برنامه ریز این امکان را می دهد تا با بررسی مسائل و تنگناها و تجزیه و تحلیل داده های آماری امکان تدوین برنامه ایی منطبق با مقتضیات زمان و مکان را فراهم آورد. از میان انواع برنامه ریزیها، برنامه ریزی آموزشی اساسی ترین و بنیادی ترین آنها می باشد، از عناصر مهم در فرآیندهای آموزشی وجود امکانات فیزیکی نظیرساختمان، تأسیسات و تجهیزات مربوطه می باشد که تأمین آن بویژه در کشورهای در حال توسعه بدلیل محدودیت منابع مالی تنگناهایی را در امر آموزش ایجاد می نماید، در کشور ما توجه به این امر مستلزم مکان گزینی مناسب فضاهای آموزشی است تا از این طریق ضمن بهره برداری کامل از فضا و امکانات، بازدهی مطلوب از سرمایه گذاری در این بخش حاصل آید و با توجه به اینکه تحقیق علمی اساسی ترین وسیله برای کنترل، اصلاح، تغییر و توسعه تعلیم و تربیت می باشد، لذا با انجام چنین پژوهش هایی می توان بعضی از مشکلات و نارساییهای موجود در بخش آموزش و پرورش مناطق روستایی را شناسایی کرد و در جهت حل این مشکلات راهکارهایی ارائه نمود.
به عنوان مثال بررسی امکانات موجود آموزش و پرورش در کشور نشان می دهد که این نوع امکانات در روستاهای کشور کمتر از امکانات موجود در شهرها است و این مسئله از زمان های گذشته تا کنون در روند مهاجرت روستاییان به نقاط شهری تأثیر گذار بوده است.
6-1- اهداف تحقیق
1- شناسایی توزیع فضایی مراکز آموزشی موجود در دهستان محمد آباد.
2- تعیین ارتباط بین وضعیت فضاهای آموزشی موجود با استانداردهای آموزشی جهت تصمیم گیری برای آینده.
7-1- پیشینه تحقیق
بطور طبیعی هر پژوهشی در تداوم پژوهش های پیشین به انجام می رسد، هم از دوباره کاریها در آن اجتناب می شود و هم از داده های تحقیقات پیشین برخوردار می گردد، ارتقا دانش نیز به همین تداوم وابسته است. (ساروخانی، 1385، 146).
بررسیهای بعمل آمده نشان می دهد که در زمینه تحلیل فضایی و مکانی دسترسی به مراکز آموزشی پژوهش هایی انجام گرفته است که نمونه هایی از مطالعات داخلی و خارجی عبارتند از:
1-7-1- مطالعات داخلی
- ناصری وجی واد (1384) تحلیل توزیع مکانی مراکز آموزشی با استفاده ازGISرا انجام دادند، نتیجه اینکه: کاربریهای عمومی در بسیاری از شهرها قادر به ارائه خدمات مطلوب به شهروندان نمی باشند، دستیابی به چنین هدفی منوط به شناخت معیارها و ضوابطی است که در مکان یابی مراکز خدماتی مورد استفاده قرار می گیرد، براین اساس اهم مشخصه ها: سازگاری، مطلوبیت و ظرفیت است که هر یک در زیر مجموعه خود به ضوابط کمی منتهی می شود و بدین لحاظ سیستم اطلاعات جغرافیایی یا GIS مورد استفاده قرار گرفته و با استفاده از توابع تحلیل مکانی و براساس ترکیب عوامل و لایه های اطلاعاتی وضعیت موجود استقرار مدارس به لحاظ تناسب یا عدم تناسب با سایر کاربریهای شهر مورد استفاده قرار می گیرد.
- احد نژاد روشتی و همکاران (1391) در تحلیل پراکنش فضایی مراکز آموزشی منطقه 8 تبریز اعلام کردند که در این تحقیق با استفاده از روش های تحلیل نزدیک ترین همسایه و شاخص موران و با توجه به نتایج بدست آمده از مدل های ارزیابی چند معیاری و تحلیل سلسله مراتبی و ترسیم نقشه GIS مشخص شده است که بیشترین پراکنش های فضایی آموزشی در قسمت جنوب و جنوب غربی این منطقه قرار دارد و الگوی منظمی ندارد.
- غفاری گیلانی و همکاران (1390) در مطالعه مکان گزینی مدارس راهنمایی شهر آستارا به این نتیجه رسیدند که استفاده توام قواعد چند معیاری و قابلیت های GIS در انتخاب مسیر مناسب در روند ساماندهی مراکز آموزشی مؤثر است.
- محمدی و همکاران (1391) در مطالعه مکان یابی مدارس راهنمایی شهر کازرون به این نتیجه رسیدند که در شهر کازرون کمبود مدارس راهنمایی و توزیع ناعادلانه آنها به شدت احساس می شود و با استفاده از سامانه اطلاعات جغرافیایی GIS و مدل همپوشانی شاخص ها بهترین مکان ها برای احداث مدارس راهنمایی پیشنهاد شده و اولویت بندی نیز صورت گرفته است.
- فرج زاده اصل و رستمی (1383) توزیع مراکز آموزشی در سطح شهرک معلم کرمانشاه را با استفاده از GIS برای مدارس ابتدایی، راهنمایی و دبیرستان به تفکیک پسرانه و دخترانه ارائه کردند، نتایج نشان می دهد شهرک معلم کرمانشاه با کمبود فضای آموزشی مواجه است و نیازمند مکان های جدید برای احداث مدارس است.
- معصومی و فرج زاده در سال 1385 تحلیل فضایی کتابخانه های عمومی منطقه 12 تهران را با استفاده از GIS انجام دادند، نتیجه اینکه: با وجود کم بودن جمعیت منطقه 12 تهران نسبت به سایر مناطق، ولی تعدادکتابخانه ها از فراوانی بیشتری برخوردار است و کتابخانه های موجود، توزیع فضایی مناسبی ندارند و دسترسی به کتابخانه ها نیز در وضعیت مطلوبی قرار ندارد.
- نسترن (1382) در پژوهشی تعادل فضایی و پراکندگی نماگرهای آموزشی در مناطق شهری اصفهان را تبیین کرده و ضمن به تصویر کشیدن عدم تعادل در توزیع فضایی شاخص های آموزشی شهر اصفهان، راهکارهای دستیابی به وضع مطلوب و توزیع بهینه شاخص ها و زمینه های مناسب محرومیت زدایی را مورد بحث قرار داده است.
- اکبری (1390) در تحلیل فضایی و برنامه ریزی نارسائی های مراکز خدمات شهری یاسوج به این نتیجه رسید که شهر یاسوج به تناسب شدت گیری توسعه ی کالبدی و افزایش جمعیت از نظر ارائه خدمات شهری دچار نارسایی است و نتیجه این نوع توسعه کالبدی شتاب انحراف از استاندارد شاخص های خدماتی بوده است.
- کریمیان بستانی (1390) روند توزیع مراکز آموزشی در شهر زاهدان با تأکید بر عدالت اجتماعی را طی سال های 88-1380 بررسی نمود، نتایج تحقیق نشان می دهد: توزیع کنونی مراکز آموزشی در شهر زاهدان نه تنها در مناطق سه گانه متفاوت است بلکه طی سال های 88-1380 از روند نابرابری تبعیت نموده است، رشد ناموزون شهر نشینی در شهر زاهدان زمینه ساز نابرابری اجتماعی بویژه در امکانات آموزشی در بین شهروندان بوده است. همچنین، روند توزیع امکانات آموزشی به سوی عدم تعادل و تمرکزگرایی در منطقه2 است زیرا ضریب جینی در سال مبدأ محاسبه 985% و در سال مقصد 978% می باشد که حاکی از بیشتر شدن شکاف برخورداری از خدمات آموزشی بین مناطق شهری زاهدان است و با این روند شهر به سوی عدم تعادل پیش می رود و در نهایت دستیابی به مقدمات عدالت اجتماعی و توسعه پایدار در این شهر مشکل خواهد بود.
2-7-1- مطالعات خارجی
Moller (1998) مکان یابی مراکز آموزشی را در شهر کپنهاک دانمارک تحلیل کرده است. وی در این تحقیق الگویی برای مکان یابی فضاهای آموزشی ارائه کرده که بر مبنای محدوده بندی ثبت نامی فضاها با توجه به مسیرهای انتخابی صورت گرفته است.
Kucerova and kucera ( 2012 ) در تحقیقی با عنوان تغییرات در توزیع فضایی مدارس ابتدایی و اثر آنها بر جوامع روستایی به این نتیجه رسیدند که مدارس روستایی سازمان هایی فرهنگی، اجتماعی و آموزشی کاملی می باشند که از بسیاری از جهات با مدارس شهری متفاوت می باشند، نزدیکی و دسترسی به آنها اثرات فراوانی بر عملکردهای جوامع روستایی و زندگی روستاییان دارد، در نتیجه تغییر کلی جامعه، بهبود در حمل و نقل و کاهش جمعیت در مناطق خارج از شهر، تعداد مدارس ابتدایی همراه با متراکم شدن آنها در مناطق پرجمعیت تر کاهش می یابد. تأثیر نزدیکی مدارس بر زندگی روزانه در جوامع روستایی در مناطق خارج از شهر در مقایسه با وضعیت شهرهایی که در طی دوره مشاهده به صورت دموکراتیک اداره شدند تغییراتی نشان نداد.
Wang and Luo ( 2005) ارزیابی عوامل فضایی و غیر فضایی برای دسترسی به خدمات بهداشتی و سطح بهداشت را انجام دادند، نتیجه آنکه اوضاع نامساعد اجتماعی، اقتصادی، آموزشی و موانع فرهنگی مثل کمبود مدرسه در مناطقی که از لحاظ دسترسی به خدمات بهداشتی و درمانی ضعیف هستند می تواند موثر باشد.
در مطالعه سازمان یونسکو (1996)، سطح بندی حوزه نفوذ هر یک از مدارس در نقاط شهری براساس فاصله و زمان انجام شده است، در این پژوهش، مناطق کمبود و مازاد مدارس با استفاده از سیستم اطلاعات جغرافیایی تعیین و با تحلیل های شبکه مسیرهای بهینه برای دسترسی به فضاهای آموزشی مشخص شده است.
Gordon and Monastiriotis ( 2006 ) در تحقیقی با عنوان (آموزش، مکان ، آموزش: تحلیلی فضایی از نتایج آزمون مدارس راهنمایی انگلیسی) به این نتیجه رسیدند که رابطه بین جغرافیا و مدرسه ارتباطی دو جانبه می باشد، از یک طرف گمان می رود که نرخ رتبه های بالای امتحانی در سطح منطقه ایی مرتبط با ترکیب عالی و مناسب مسکونی، اجتماعی و همچنین مرتبط با عملکرد اقتصادی قوی تر می باشد، از طرف دیگر، ترکیب جمعیت منطقه ایی، فشارهای بازار کار و سیاستهای آموزشی منطقه ایی هم بر نرخ موفقیت مدرسه و هم بر شرایطی که تحت آن مدارس عمل می کنند تاثیر می گذارد.
Oakes (2006) در پروژه - ریسرچای تحت عنوان ( استراتژی های فرهنگی و توسعه: مفاهیمی برای مناطق روستایی چین) به این نتیجه رسید که استراتژی توسعه فرهنگی و آموزشی در روستاهای چین نشانه ی توسعه اقتصادی است.
Muleya (2006) طی تحقیقی که در مناطق روستایی زامبیا انجام داده است، مشکلات سکونتگاههای روستای را در مسائلی از قبیل دسترسی به مراکز و تسهیلات آموزشی، بهداشتی، مقاومت ساختمانها، حمل و نقل و زیست محیطی یافته است، در این راستا فرآیند برنامه ریزی را از دو بعد کاربری اراضی و برنامه ریزیهای اقتصادی، اجتماعی و آموزشی دانسته است.
8-1- محدوده موضوعی، زمانی و مکانی تحقیق
آموزش و سواد، دو مقوله اساسی در توسعه فرهنگی و زمینه ساز دستیابی به توسعه پایدار انسانی به شمار می روند، سواد و آموزش بالاتر زمینه دستیابی به شغل بهتر، شرایط بهتر زندگی و انسانی تر کردن زندگی را فراهم می سازد و اجتماعی معقول تر و فضای متعادل را فراهم می آورد. نابسامانی در توزیع مناسب مراکز آموزشی و فقدان یک منطقه بندی مناسب در توزیع امکانات آموزشی و فاصله از استانداردهای آموزشی باعث دوری سکونتگاهها از عدالت اجتماعی خواهد شد، بر این اساس این تحقیق در صدد شناسایی توزیع مراکز آموزشی و بررسی ارتباط بین وضعیت فضاهای آموزشی با استاندارد های آموزشی در روستاهای دهستان محمد آباد شهرستان هامون می باشد. در بررسی موضوع این پژوهش بعد از تصویب طرح پیشنهادی در خرداد ماه 1392، عملیات بررسی منابع مکتوب و جمع آوری داده ها و اطلاعات مرتبط با موضوع از همان خردادماه شروع شد و پس از تدوین کلیات تحقیق و مبانی نظری موضوع تحقیق در قالب فصول 1 و 2 از شهریورماه هم مطالعات میدانی و حضور در روستاها برای جمع آوری اطلاعات مربوط به شاخص های تحقیق و توزیع فضایی مراکز آموزشی انجام گرفته است. مکان های مورد مطالعه عبارتند از کلیه مراکز آموزشی دهستان محمد آباد شهرستان هامون به تفکیک مدارس ابتدایی، راهنمایی و متوسطه که اسامی روستاهای دارنده این مراکز در جدول شماره 1-1 ذکر شده است.
جدول 1-1- مراکز آموزشی مورد مطالعه
ابتدایی
تمبکا، فیروزه ای، باغک، کیخا، دهکول، بهرام آباد، دهمیر، دک دهمرده، ابراهیم آباد، عباسیه، حمزه آباد، ذوالفقاری، شهرک بزرگ، چهارخمی، گزموم، پل اسبی، ده رضا، کوشه سفلی، کوشه علیا، سدکی، آخوند غلامی، توتی، دولت آباد، دیوانه و محمد آباد
راهنمایی فیروزه ای، کیخا، بهرام آباد، ابراهیم آباد، ذوالفقاری، شهرک، کوشه سفلی، سدکی، شهریاری، آخوند غلامی، توتی، دولت آباد، چهار خمی و محمدآباد
متوسطه سدکی، توتی، دولت آباد، تمبکا و محمد آباد
فصل دوم
مبانی نظری تحقیق

1-2- پیش درآمد
در راستای تبیین و ارائه چارچوب نظری تحقیق، این فصل به دو بخش جداگانه تقسیم شده است بخش اول تعاریف و مفاهیم: در این بخش محقق بر آن است تا به تعریف مهمترین واژه ها و مفاهیم مرتبط با موضوع از جمله فضا، فضای جغرافیایی، تحلیل فضایی، دسترسی، روستا، جامعه روستایی، دهستان، توزیع فضایی، آموزش و پرورش و سیستم اطلاعات جغرافیایی (GIS) بپردازد.
و بخش دوم دیدگاهها و نظریه ها: در این بخش سعی بر آن است تا به تحلیل دیدگاهها و نظریه های ارائه شده در راستای موضوع تحقیق پرداخته شود.
2-2 تعاریف و مفاهیم
1-2-2- فضا
فضا یکی از پیچیده ترین واژه های علمی است که در بین علوم مختلف با برداشتهای متفاوتی مصطلح بوده و در قلمرو هر علم تعریف خاصی از آن ارائه شده است. مفهوم فضا درابعاد وسیع و جامع خود، تجلی گاه رابطه میان تمام فعالیتهای انسانی است. واژه نامه نوین جغرافیایی فضا را پهنه ای از سرزمین تلقی می کند که در صحنه آن نظام های جریانی و فعالیتی، صورت بندیهای خاص خود را خلق می کنند. تعریف دیگر فضا عبارت است از گستره ی پیوسته ایی که در آن اشیاء و پدیده ها قرار گرفته و حرکت می کنند (آسایش و مشیری، 1389، 70) .
برخی از نویسندگان مانند اولمن فضا را مترادف با واژه ی موقعیت یعنی جایی که رابطه ی بین مکان ها را ممکن می سازد تعریف کرده است (رضوانی، 1391، 87).
2-2-2- فضای جغرافیایی
در جغرافیا، مفهوم فضا، به صورت علمی تقریباً از دهه ی 1950، با پروژه - ریسرچفرد کورت شیفر در مورد استثناگرایی در جغرافیا وارد ادبیات جغرافیایی شد. در جغرافیا، مفهوم فضا به دو صورت بکار گرفته می شود:
1- فضای مطلق که دارای کیفیت عینی، واقعی، مشخص و طبیعی می باشد.
2- فضای نسبی که بطور مداوم در اثر نیازهای اجتماعی، اقتصادی و شرایط تکنولوژیک در وسعت و فرم تغییر می یابد (شکویی، 1386، 286).
فضای جغرافیایی، فضایی است که مکان آن در زمین قابل تعیین است و از مجموعه ایی از مناسبات ترکیب پذیرفته و متحول می شود. فضای جغرافیایی فضایی است که مرحله ایی از دگرگونی را پشت سر نهاده و وجه مرئی آن را چشم انداز تشکیل می دهد، در جغرافیا، فضای جغرافیایی شامل فرآیندهای طبیعی تغییر یافته بوسیله انسان، شرایط اجتماعی تولید و تقسیم اجتماعی کار در یک مجموعه نظام یافته می باشد. بطور کلی فضای جغرافیایی ، تجلی گاه رابطه تمام فعالیتهای انسانی و مبین سطوح توسعه یافتگی جوامع می باشد (آسایش و مشیری، 1389، 71 -70).
3-2-2- تحلیل فضایی
روشی است برای تحلیل و تفسیر پدیده ها و نقاط که در مکان ها و فضاها پراکنده اند. یکی از ابزارهای تحلیل فضایی سیستم اطلاعات جغرافیایی (GIS) است.
جغرافیای انسانی را می توان به عنوان نوعی هندسه یعنی دانش فضایی به شمار آورد، فضایی که در آن نقاط، ساکنان و واقعیتهای جغرافیایی پراکنده شده اند و با چنین برداشتی می توان به تحلیل فواصل، تصاویر، ثابتها و متغیرها پرداخت، در تحلیل فضایی از داده های آماری استفاده می شود و فرجام کار آن به تمهید الگوهایی می انجامد که در نهایت، در امر سازماندهی یک سرزمین به کار می آیند (دروئو،1371،61).
4-2-2- روش تحلیل فضایی
در روش تحلیل فضایی ارتباط بسیار قوی میان انسان و محیط او برقرار می گردد. این تکنیک و روش های متداول آن به محققان کمک می نمایند، تا عناصر فضایی تشکیل دهنده محیط را شناسایی نموده و ضمن برقراری ارتباط متقابل میان عناصر، تحلیل جامعی از محیط به عمل آورند. مهمترین بعد فضایی، استفاده از رویکرد مطالعه انسان و پدیده های فیزیکی محاط بر آن است. با این روش، می توان به مکان رخداد پدیده ها آگاهی پیدا کرده و به چرایی این رویداد پاسخ داده شود: تحلیل فضایی در حقیقت مجموعه ایی از ابزارها، فنون و روش شناسی است که از طریق علم اطلاعات جغرافیایی انجام می پذیرد. در این تحلیل مجموعه ای فضایی از رفتار انسان مورد توجه قرار گفته، و امکان مطالعه در توزیع فضایی، الگوها و فرآیندهای مرتبط با پدیده های اجتماعی، اقتصادی، جمعیتی و جغرافیایی مهیا می گردد. مهمترین ابزارهایی که در تحلیل فضایی به کار گرفته می شوند، سیستم های اطلاعات جغرافیایی، سیستم های تعیین موقعیت جهانی، سنجش از دور و آمار فضایی است (ذاکری، 1383، 93).
5-2-2- دسترسی
وجود یک تعریف قابل قبول برای دسترسی مشکل است زیرا دسترسی توسط برخی عوامل تحت تأثیر قرار می گیرد. دسترسی به مفهوم کاهش فاصله مکانی بین محل زندگی و تمرکز تسهیلات و خدمات و محل کار است، یعنی افراد متقاضی در کوتاهترین فاصله مکانی- زمانی (فضایی) به تسهیلات عمومی دسترسی داشته باشند که این امر به طور طبیعی مسأله عدالت اجتماعی و فضایی را در سطح مناطق مختلف برقرار می سازد. بطور کلی دسترسی به عنوان آزادی یا توانایی مردم برای برآوردن نیازهای اساسی به خاطر حفظ کیفیت زندگی تعریف شده است (رهنما و ذبیحی، 1390، 7).

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

در تحلیل سهولت دسترسی، عامل زمان- فاصله در دسترسی به خدمات تعیین می شود و برنامه ریزان و جغرافیدانان می توانند ضعف یا فقدان یا گسترش خدمات را در توسعه ی روستایی در یابند، همچنین ظرفیت سرمایه گذاری در بخش های ویژه برای افزایش سهولت دسترسی خانواده های روستایی و کاهش شکاف در عرضه ی خدمات بین خرده نواحی داخل ناحیه بخوبی مشخص می گردد (شکویی، 1373، 325).
6-2-2- روستا و جامعه روستایی
عدد جمعیت، نوع معیشت، وجود شهرداری، ساخت اجتماعی و اقتصادی از شاخص هایی هستند که می توانند مبنای تعریف روستا محسوب گردند. و در بعضی از منابع در تعریف روستا آمده است، روستا به جایی گفته می شود که شغل اکثریت مردم کشاورزی است در تعریف دیگر که امروزه ملاک تمایز شهر از روستا در ایران محسوب می شود وجود شهرداری است و براین اساس به سکونتگاههایی که شهرداری نداشته باشند روستا اطلاق می شود (وثوقی، 1369، 11).
در سال 2002، ویلیام وکاتچین، بیان کرده اند که نباید روستا را به سادگی در قالب دسته ایی از امور قابل مشاهده و توصیفی تعریف کرد. تعریف روستا باید شامل یک کلیت، محلی بودن و فعال بودن باشد که نشان دهنده ی ترکیب منحصر به فردی از نمایش جهانی است. تعاریف روستا بر پایه ویژگی محلی و مکانی قرار دارد که اثر آن در ساختارهای اصلی در سطح محلی از قبیل نمایش اجتماعی وجود دارد(Williams and Cutchin, 2002, 112-113).
جامعه روستایی به گروهی از انسان ها اطلاق می شود که دارای نحوه زندگی مشابه، زبان، آداب و رسوم و مقتضیات اجتماعی مشترکند. شیوه زندگی افراد در جامعه روستایی، عموما غیر رسمی است و چنین جوامعی دارای آداب و رسوم قوی و پایداری هستند (اشرفی، 1388، 115).
7-2-2- دهستان
دهستان از به هم پیوستن چند روستا، مکان و مزرعه ی همجوار در یک محدوده ی جغرافیایی معین تشکیل می شود که از لحاظ محیط طبیعی و انسانی همگن بوده و امکان خدمات رسانی و برنامه ریزی در سیستم و شبکه واحدی را فراهم می نماید. حداقل جمعیت دهستان با در نظر گرفتن وضع پراکندگی و اقلیمی کشور به سه درجه ی تراکمی زیاد (8000 نفر)، متوسط (6000 نفر) و کم (4000 نفر) تقسیم می گردد. مرکز دهستان، روستایی از همان دهستان است که مناسبترین مرکز خدمات روستایی آن محدود ه باشد (با در نظر گیری موقعیت یک نقطه از همان مجموعه با رعایت سهولت دسترسی و میزان جمعیت). برای ایجاد سهولت در خدمات رسانی و دسترسی، ارگان های ذیربط موظف اند نسبت به جذب تدریجی مزارع و مکان ها و روستاهای کوچک و همجوار که چندان آباد نیستند، در مراکز دهستانها و یا روستاهای بزرگ اقدام نمایند. در تعیین محدوده ی دهستان شاخص های اوضاع طبیعی منطقه از جمله حوضه آبخیز، پستی و بلندی و آب و هوا باید رعایت گردد (رهنمائی، 1369، 50-49).
دهستان قسمتی از تقسیمات کشوری است که معمولاً از چند روستا یا ده تشکیل می شود و خود قسمتی از یک بخش است و دهستان بوسیله ی دهدار اداره می گردد (جعفری، 1363، 61).
8-2-2- توزیع فضایی (پراکندگی)
چگونگی قرارگیری عناصر، پدیده ها ، نقاط و مکان ها بر روی سطح زمین، پراکندگی یا توزیع فضایی نامیده می شود. پراکندگی جغرافیایی از ارکان مهم و عمده ی مطالعات جغرافیایی بوده، به فهم و ادراک و بررسی خصوصیات موقعیت های جغرافیایی کمک می کند. به طور معمول جغرافیدانان از نقشه ها برای نشان دادن توزیع جغرافیایی پدیده ها در روی سطح زمین یا قسمتی از آن استفاده می کنند. جغرافیا، پدیده ها و فرآیندهایی را که به شکل همسان بر سطح زمین پراکنده نشده اند، مطالعه می کند. شرایط خاص مکان ها به شکل شگفت آوری بر پراکندگی مردم بر سطح زمین تأثیر می گذارد.پراکندگی انسان ها بر فعالیتهای اقتصادی و اجتماعی هم اثر گذاشته است. علت پیدایش جغرافیا این است که ویژگی های محیط کره زمین و مردمی که درآن زندگی می کنند، از جایی به جای دیگر تفاوت دارد. بنابراین جغرافیا بر گونه گونی سطح زمین تأکید می ورزد و به مطالعه پراکندگی عواملی می پردازد که سبب تمایز یک قطعه زمین، از قطعه دیگری می شوند. درک پراکندگی عوامل جغرافیایی در روی سطح زمین، پیش نیاز درک کره زمین و انسان های ساکن آن است، زیرا این پراکندگی شرایط متفاوتی را ایجاد می کند که بر حیات در مکان های خاص تأثیر می گذارند. جوهر یک عامل جغرافیایی ایجاب می کند که آن عامل به صورت بی قاعده ایی روی سطح زمین، توزیع شده باشد ، به طرقی که سبب تمایز سطح زمین شود. یک مفهوم بنیادی از جغرافیا این است که برای دریافت پدیده ها و فرآیندها در هر مکان، به این تفاوتها یک ویژگی بارز ببخشد. این امر که برخی از مکان ها نسبت به مکان های دیگر برای مقاصد خاصی، بهتر است، برای مردمی که روی زمین زندگی می کنند، اهمیت خاصی دارد. به طور معمول توزیع فضایی دارای سه ویژگی است:
الف- تراکم نسبی: شامل تعداد پدیده ها و عناصر مورد مطالعه، تقسیم بر مساحت منطقه مورد مطالعه است.
ب- تفرق: بر خلاف تمرکز، شاخصی است که مقدار پخش یک پدیده و میزان پراکندگی یا تمرکز آن را در یک منطقه یا مکان نشان می دهد.
ج- بافت: طرز قرارگیری هندسی عناصر و پدیده ها را در فضا، بافت گویند که از جمله آنها می توان بافت خطی، بافت متمرکز و بافت متفرق را نام برد (پور احمد، 1388، 103-101).
عوارض طبیعی و پدیده های انسانی بطور یکسان و یکنواخت در نواحی جغرافیایی دیده نمی شوند بلکه پراکندگی آنها از نظر نوع و شکل به صورت نامساوی انجام می گیرد بطوری که در بعضی نواحی وجود پاره ایی از عوامل طبیعی و انسانی در سطوح گسترده تر و در بعضی دیگر به صورت محدودتر ظاهر می شوند. گاهی نیز ناحیه ایی فاقد یک یا چند پدیده ی طبیعی و انسانی است، علل پیدایش، ظهور، تکوین و همچنین عدم وجود آنها در مقیاسهای ناحیه ایی مورد مطالعه ی جغرافیا است (شکویی، 1364، 44).
9-2-2- آموزش و پرورش
برای واژه آموزش و پرورش تعاریف زیادی در منابع مختلف ذکر شده است اما در ذیل 3 مورد از این تعاریف ذکر شده است:
جان دیویی: آموزش و پرورش دوباره ساختن یا سازمان دادن تجربه است، به منظور اینکه معنای تجربه گسترش پیدا کند و برای هدایت و کنترل تجربیات بعدی، فرد را بهتر قادر سازد.
ژان ژاک روسو: آموزش و پرورش هنر یا فنی است که به صورت راهنمایی یا حمایت نیروهای طبیعی و استعدادهای فراگیر (متربی) و با رعایت قوانین رشد طبیعی و با همکاری خود او برای زیستن تحقق می پذیرد.
امیر حسین آریان پور: آموزش و پرورش عبارت است از فرآیند هدایت و جهت دهی عمدی تجارب انسانی.
10-2-2- سیستم اطلاعات جغرافیایی (GIS)
تمامی علومی که به نحوی با GIS در اتباط هستند ، نظیر جغرافیا،برنامه ریزی شهری، عمران، کشاورزی، جنگلداری، محیط زیست، زمین شناسی و... هر کدام تعاریفی ازGISدارند، اما در اینجا چند تعریف از نظر علوم جغرافیایی ذکر شده است:
سیستم اطلاعات جغرافیایی (GIS) سیستمی است برای جمع آوری، ذخیره سازی، کنترل، ادغام، پردازش، تحلیل و نمایش داده هایی که مرجع آنها زمین می باشد. سیستم اطلاعات جغرافیایی، یک فناوری اطلاعاتی است که داده های فضایی و غیر فضایی را ذخیره، تحلیل و نمایش می دهد. سیستم اطلاعات جغرافیایی، یک سیستم مدیریت پایگاه اطلاعات برای وارد کردن، ذخیره، بازیافت، تحلیل و نمایش اطلاعات فضایی (بعد مکانی) می باشد. آنچه از همه ی این تعریف استنباط می شود این است که GIS اولاً یک سیستم است که شامل اجزای منسجمی است که برای هدف خاصی تنظیم شده اند. ثانیاً نیاز به داده ها دارد که این داده ها فضایی و غیر فضایی هستند و می توانند نگهداری و بازیابی شوند.ثالثاً قدرت تحلیل دارد و می تواند بین داده های فضایی و غیر فضایی ارتباط منطقی برقرار کند(آسایش ومشیری،1389،277).
اهداف یک پایگاه اطلاعاتی مبتنی بر GISعبارتند از:1- گسترش بهره وری در به کارگیری نقشه ها و اطلاعات جغرافیایی2- بهبود مدیریت اطلاعات جغرافیایی3- ایجاد شیوه های راهبردی برتر در استفاده از اطلاعات جغرافیایی به منظور تقویت فرآیند تصمیم گیری(همان،1389،288).
امکانات سیستم اطلاعات جغرافیایی عبارتند از:1- انجام عملیات فضایی: بوسیله این سیستم امکان تحلیل همگانی و فضایی عوارض و روابط میان آنها براساس مختصات جغرافیایی وجود دارد2- ارتباط و پیوند بین انواع اطلاعات: در این سیستم، امکان ذخیره انواع اطلاعات و انواع نقشه های شماتیک به شکل فایلهای رایانه ایی وجود دارد. یک سیستم اطلاعات جغرافیایی می تواند پنج عمل اصلی زیر را بر روی داده های مکانی و غیر مکانی انجام دهد: دریافت، ذخیره، پردازش، تحلیل و خروجی.

مهمترین استفاده و کاربردGISربط داده های کمّی و کیفی به مکان و فهم رابطه های موجود بین مکان ها است. اجزای یک پایگاه اطلاعاتی مبتنی برGISمانند سه رأس یک مثلث هستند که با نبود هر یک از آنها مثلث پایگاه اطلاعاتی ناقص خواهد شد. این اجزا که در شکل 1-2 دیده می شوند عبارتند از موقعیت مطلق، موقعیت نسبی و ویژگیها(همان،1389،279).
شکل 1-2- اجزای یک پایگاه اطلاعاتی مبتنی بر GIS

منظور از موقعیت مطلق مختصات جغرافیایی x و yاست، و منظور از موقعیت نسبی، موقعیت توپولوژیک عارضه است یعنی موقعیت عارضه مورد نظر نسبت به سایر عوارض مجاور و منظور از ویژگیها چیستی آن عارضه است. این اطلاعات، معمولاً به صورت نقشه های مختلفی که نشانگر شرایط توپوگرافی، منابع آب، نوع خاک، جنگل، مراتع، اقلیم، زمین شناسی، جمعیت، املاک، تقسیمات کشوری و پدیده های زیر بنایی می باشد و به وسیله قابلیتهای انطباق و ترکیب اطلاعات فضایی و غیر فضایی GIS ارائه می گردد. این سیستم ابزار ایده آلی برای تجزیه و تحلیل داده های جغرافیایی، محیطی و فضایی و پیوند آنها با اطلاعات اجتماعی و اقتصادی محسوب می شود (همان،1389،280).
3-2- نظریه ها و دیدگاهها
نظریه (تئوری) در لغت به معنای اندیشیدن و تحقیق آمده است که از تئوریای یونانی گرفته شده است. با گسترش علوم، مفهوم این واژه نیز توسعه یافته و به اندیشیدن و تحقیق درباره ی هر مسئله ایی اطلاق شده است (توسلی، 1373، 204).
نظریه، مجموعه ایی از گفتارهایی است که بر مبنای قواعد منطبق با یکدیگر در ارتباط باشد و مبین بخشی از واقعیت گردد. در این تعریف، تأکید بر چند نکته زیر موضوع بحث را روشن می سازد:الف- نوع خاصی از گفتارها به عنوان عنصر اساسی نظریه ب- ارتباط میان این گفتارها بر مبنای قواعد منطبق (قیاس) ج- تبیین واقعیت (از راه قیاس) به عنوان هدف د- تطبیق نظریه با واقعیت (شکویی، 1364، 89).
البته شکی نیست که هر نظریه ایی در پی کشف حقیقت و قراردادن آن در حیطه عمل و تجربه است تا بتوان صحت و سقم آن را مشخص کرد، چرا که نظر و عمل مکمل یکدیگر هستند، هر چند برخی تعاریف بر نظری یا عملی بودن صرف آن تأکید می نماید (پاپلی یزدی و ابراهیمی، 1381، 12).
دیدگاه را می توان بر مبنای تفکرات افراد یا گروهها طبقه بندی کرد. گروه های ذینفع، طبقات اجتماعی، پیروان فرهنگ ها و خرده فرهنگها، هر یک از دیدگاه خاصی تبعیت می کنند. افتراق در ادراکات، اعتقادات و نگرشها، در شکل گیری دیدگاهها، نقش عمده ایی دارند. از آن میان در مفهوم دیدگاه ، دو عامل بیش از همه مهم به نظر می رسد:1- طبقات اجتماعی2- فرهنگها (شکویی، 1386، 122).
1-3-2- نظریه ها و دیدگاه های فضایی
دیدگاههای فضایی یکی از مهمترین مباحثی است که از نیمه دوم قرن بیستم به صورت گسترده ایی در مطالعات جغرافیایی رواج یافته است. از دهه 1950، جغرافیا به عنوان علم فضایی ، ابتدا در دانشگاه واشنگتن واقع در سیاتل آمریکا مورد توجه قرار می گیرد . این مکتب جغرافیایی می گوید : ابعاد فضایی سطح سیاره زمین موضوع مهم در علم جغرافیا است و در جهت تحلیل آن، به آمارها، نظریه ها، کامپیوتر، ساخت مدلهای جغرافیایی و ریاضی، نظریه مکان مرکزی، نظریه های اقتصادی، روش های کمی و بلاخره به تحلیل سیستمی نیازمندیم. در تحلیل فضایی، الگوهای سکونتگاهی، تدوین نظام فضایی در میزان جمعیت به وسعت مکان شهرها ، شهرکها و روستاها، محلات و مراکز ناحیه ای مورد تأکید قرار می گیرد(خانی،1371،100).
فرد کورت شیفر یکی از پیشگامان مهم مکتب تحلیل فضایی می گوید: در جغرافیا، باید تأکید بیشتر روی آرایش و انتظام پدیده ها در یک مکان صورت گیرد و توجه کمتری به خود پدیده ها معمول گردد (همان، 1371، 102).
یکی از نظریه ها و دیدگاههای فضایی مربوط به موضوع این تحقیق پراکندگی فضایی است: از نظر دیویدهاروی ، به تعداد عملکردهای انسانی و فرآیندهای اجتماعی فضاهای نسبی وجود دارد، در دیدگاه علم فضایی، مردم در فضاهای نسبی زندگی می کنند. پراکندگی فضایی، مجموعه ایی از واقعیتهای عینی است. هر یک از این واقعیتهای عینی، دارای محل استقرار ویژه و یک سطح مشخص می باشد. پراکندگی فضایی واقعیتهای عینی، بد انسان آرایش یافته است که می توان از نظر تراکم، الگویابی و پخش آنها به تحلیل و تدوین قوانین مربوطه پرداخت. در اغلب موارد، در شناخت پراکندگی فضایی، تنها روی یک پدیده ی واحد تأکید می کنند تا در جستجوی قوانین و صورتبندی پراکندگی فضایی پدیده، توفیق یابند. تصمیم گیری، ساز و کار اساسی در همه مسائل جغرافیایی است، در جغرافیا تصمیم گیری تأثیرات خود را در پراکندگی فضایی فعالیتهای انسانی، به صورت نمودی عینی ظاهر می سازد. مثلاً تصمیم گیری در مورد کاربری زمین در مزارع، چهره های مختلف جغرافیایی خلق می کند. از این رو، حاصل تصمیم گیری، بوسیله ی گروهها، افراد و سازمانهای دولتی، شکل گیری مجدد جغرافیایی است. روشن است که تصمیم گیریهای گروهی، فردی و دولتی، در زمینه محل استقرار فعالیتهای انسانی و یا کاربری زمین، در خلأ فکری صورت نمی گیرد، بلکه هر تصمیم گیری از یک سیاست یا ایدئولوژی و تفکر خاص تأثیر می پذیرد، یعنی در هر تصمیم گیری، همه ی شرایط محیطی، فرهنگی واقتصادی که تصمیم گیرندگان در داخل آن عمل می کنند تأثیر گذار می باشد. پراکندگی پدیده های جغرافیایی یا فعالیتهای اقتصادی، در سراسر سطح زمین و یا در داخل یک ناحیه، تحت شرایطی، شکل گیری الگوها را امکان پذیر می سازد. در سطح زمین، هر الگوی فضایی، غالباً از سه فرم هندسی نقاط (گره ها)، خطوط و حوزه ها و یک سطح جغرافیایی تشکیل می شود و محصول فرآیند فضایی ساختار فضایی است که در آن ، فضا بوسیله فرآیندهای اجتماعی، اقتصادی و طبیعی سازمان می یابد. این سازمان یابی از محل استقرار عناصر و اجزاء داخلی یک پراکندگی فضایی تأثیر می پذیرد. محل استقرار هر جزئی نسبت به هر یک از اجزا دیگر و جایگاه هر جزئی نسبت به همه ی اجزا، با هم و توام سازمان یابی فضایی را شکل می دهند. در واقع، ساختار فضایی، از آرایش و سازمان یابی پدیده ها که نتیجه ی فرآیندهای طبیعی، اجتماعی و اقتصادی است بوجود می آید (شکویی، 1386، 295-289).
نظریه و دیدگاه فضایی دیگری که مرتبط با موضوع این تحقیق می باشد نظریه مکان های مرکزی است نخستین تلاش برای شرح الگوهای مکانی را فون تانن با انتشار کتاب سرزمین منفرد به عنوان یکی از بانیان تئوری مکانی مطرح می سازد. وی فاصله محل زندگی کشاورزان را نسبت به یک بازار مرکزی براساس بهره موقعیتی در یک مدل دوایر متحمدالمرکز تشریح می نماید. شهر بزرگی را تصویر می کند که با دشتی بزرگ با حاصلخیزی یکنواخت، احاطه شده است. این شهر محدوده روستایی خود را از نظر کالا و خدمات تأمین می کند و برای عرضه مازاد تولیدات کشاورزی نواحی روستایی، بازار فراهم می سازد، در مدل فون تانن هزینه های حمل و نقل اهمیت بسیاری دارند. در نتیجه، کالاهای حجیم و سنگین و کالاهایی که هزینه حمل و نقل آنها بالاست در مجاورت شهر تولید می شوند و کالاهای سبک و کم حجم یا با هزینه حمل و نقل پایین در مکان های دورتر تولید می شوند. بدین ترتیب نظامی از دایره هایی هم مرکز، پیرامون شهر مرکزی بوجود می آیند. وی از طریق این مدل به دنبال بدست آوردن مناسب ترین محصول و کاربری زمین در یک ناحیه روستایی و اقتصاد کشاورزی است (شکل 2-2)(جمعه پور، 1385، 119).

شکل 2-2- مدل فون تانن
در عین حال اصطلاح مکان مرکزی با نام والتر کریستالر و کار پیشگامانه او با عنوان مکانهای مرکزی جنوب آلمان پیوند دارد. مرکزیت عبارت است از نقشی که یک مکان در رابطه با نقاط دیگر بر عهده دارد. مفاهیم کلیدی نظریه مکان مرکزی، دامنه کالا و ارزش آستانه هستند که به طور ضمنی به سلسله مراتب زیستگاهها و مرکزیت یک مکان ویژه دلالت می کنند. دامنه کالا در واقع مسافتی است که مردم برای تأمین خدمات و کالاهای معینی حاضر به طی آن می شوند. حداقل مجموع قدرت خرید لازم به منظور ایجاد تقاضای کافی برای عرضه کالا و خدمات خاص، ارزش آستانه را تشکیل می دهد. براساس مدل کریستالر سکونتگاهها را می توان در سطح ملی به مکانهای مرکزی رده بالاتر، رده پایین تر، پایین ترین رده و مکان های مرکزی معین طبقه بندی کرد. مرکزیت یک مکان براساس جایگاهی که در طبقه بندی به دست می آورد منعکس می شود (شکل 3-2)(همان،1385،121).

شکل 3-2 - سلسله مراتب مکانهای مرکزی کریستالر
مدل اصلی کریستالر متکی بر اصل بازاریابی است. نتیجه کاربرد این اصل پدید آمدن روابط متقابل سلسله مراتبی بین مکان های مرکزی است. توزیع مکان های مرکزی در فضای ناحیه ایی به گونه ای است که هر مکان در مرتبه خاص خود کالاها و خدمات مراکز فرودست خود را عرضه می کند. در این سلسله مراتب بازاری میدان برد کالا با سطح سلسله مراتب مکان مرکز و امکانات و قدرت خرید خریداران و شکل و ماهیت خدمات و تولید در رابطه است کریستالر معتقد بود که سلسله مراتب مرکزی می تواند براساس هر یک از اصول زیر ایجاد شود:
الف) اصل بازاریابی یا عرضه:در این حالت برای هر مرکز فرعی حداکثر حق انتخاب مراکز اصلی وجود دارد. در این نوع سلسله مراتب هر مکان مرکزی یک سوم هر شش مرکز فرعی تابعه خود به اضافه خود مرکز اصلی را زیر نفوذ دارد که معادل 3 مرکز می شود، کریستالر این مقدار را ارزشK می نامد که معادل شمارکل سکونتگاه های سطح معینی است که توسط یک مکان مرکزی متعلق به سطح بالاتر، خدمت داده می شود.
ب) اصل ترابری: در سلسله مراتبی که براساس این اصل شکل می گیرد، فاصله بین مراکز اصلی و فرعی به حداقل می رسد. در این حالت مراکز تا حد بیشتری در مسیر ترافیک بین مراکز اصلی قرار می گیرند. از آنجا که مراکز فرعی در مسیر بین مراکز اصلی واقع شده اند، وابستگی دوگانه دارند، بنابراین مطابق اصل ترابری ارزشKچهار است، یعنی هر مرکز اصلی نصف 6 مرکز فرعی به اضافه خود را زیر پوشش می گیرد.
ج) اصل اداری:اگر سکونتگاه ها مطابق این اصل استقرار یافته باشند هر مرکز، کنترل کامل 6 مرکز فرعی خود را بر عهده می گیرد و وابستگی تقسیم شده مراکز فرعی وجود ندارد، در نتیجه در این حالت ارزش K مساوی V خواهد بود یعنی 6 مرکز زیر نفوذ به اضافه خود مرکز اصلی است. (شکل 4-2)

شکل 4-2 - سلسله مراتب مرکزی براساس اصول بازار یابی، ترابری و اداری
کریستالر معتقد است که الگوی استقرار براساس اصل بازاریابی بیشترین کارآیی را برای مصرف کنندگان روستایی و توزیع فرآورده های روستایی دارد، در حالی که الگوی ترابری کاراترین الگوی استقرار برای عرضه کنندگان شهری و الگوی اداری کاراترین الگو برای بوروکراتهای شهری است. این سه نوع نظم غیر قابل جمع نیستند و مناطق بزرگ می توانند ترکیبی از چند شکل فضایی را با هم داشته باشند. از میان همه مدل های تعیین استقرار فضایی، نظریه مکان مرکزی احتمالاً از همه پخته تر و مشهورتر است. اهمیت این نظریه درباره استقرار محل های سکونت، بسیار است، اما از آنجا که تنها با بخش خدمات سروکار دارد، تبیینی که ارائه می دهد جزئی است و کل ساختار فضایی را تبیین نمی کند. نظریه مکان مرکزی الگوی کاملی از سلسله مراتب سکونتگاهی در سطح نواحی را عرضه می دارد.مهمترین انتقاد وارد بر الگوی مکان مرکزی کریستالر این است که از ناحیه، برداشتی ذهنی و آرمانی بدون توجه به تفاوتهای طبیعی نواحی و رفتارهای انسانی کرده است.(همان،1385 ،123-119).
علاوه بر کریستالر، معروف ترین مدل ها در رابطه با ساختار سازمانی سکونتگاههای روستایی و سلسله مراتب مکان مرکزی، مدل لوش و گالپین است. تجزیه و تحلیل لوش مبتنی بر شبکه روستاهای کشاورزی است که در یک دشت زراعی به شکل مثلث پراکنده شده اند. گالپین و پیروانش مکان های مرکزی را از دیدگاه روستایی تجزیه و تحلیل کردند و از این راه سلسله مراتب عملکردی را به صورت تجربی به دست آوردند. به طور کلی تمامی نظریه های مکان مرکزی بر چهار اصل استوارند:1- یکسانی چشم انداز فرهنگی و فیزیکی2- نواحی واحد نامحدود3- قابلیت دسترسی یکسان مکان های مرکزی در تمام جهات 4- رفتار منطقی مصرف کننده. البته چنین شرایطی در سیستم های فضایی واقعی وجود ندارد و مهمترین انتقادی که بر این الگوها وارد شده است، نیز برهمین اصول است (همان، 1385، 124).
به این ترتیب در یک منطقه باید نظامی از آبادیهای مرکزی در مقیاس ها و اندازه های مختلف براساس بعد و کشش عرصه ی خدماتی و نوع فعالیتهای مستقر در آنها وجود داشته باشد. مقایسه ی اصول تئوری های مرکزیت مکانی و به ویژه تئوری کریستالر، با کیفیت خاص پراکندگی مراکز جمعیتی در ایران به عنوان نقطه ی شروع، می تواند زمینه ایی برای شکل گیری تئوریهای مربوط به توضیح چگونگی پراکندگی مراکز جمعیتی در ایران باشد (معصومی اشکوری، 1385، 98).
مکانهای مرکزی، مراکزی کانونی هستند که در آنها کالاها (بویژه کالاهای خدماتی و کشاورزی) و خدمات گوناگون (مانند آموزش وخدمات بهداشتی - درمانی) برای برآوردن نیازهای سکونتگاههای کوچک تر پیرامونی ارائه می شود. بنابراین می توان سکونتگاههای روستایی را براساس کارکردهای خدماتی آنها رده بندی کرد و با توجه به جایگاه هر یک از روستاها در ارائه خدمات و کالاها، آنها را در سطح معینی جای داده، به سطح بندی خدماتی سکونتگاهها پرداخت (سعیدی، 1390، 119).
2-3-2- سازمان فضایی و سطح بندی روستاها
در برنامه ریزی توسعه مناطق روستایی تعیین درست مراکز روستایی و مکان های توزیع خدمات اهمیت بسیاری دارد. ایجاد سازمان فضایی مناسب و ساخت مکانی مطلوب اهداف اصلی برنامه های توسعه مناطق روستایی را تشکیل می دهد. منظور از سازمان فضایی ساختار سلسله مراتبی سکونتگاهها، شبکه های ارتباطی که آنها را به هم وصل می کند و جریانهای برقرار بین آنها است. منظور از ساخت فضایی نیز ترکیب این عوامل یا ترتیب مکانها، شبکه یا خطوط پیوند و روابط یا کارکردهاست. سازمان فضایی مناسب، دارای ساخت سلسله مراتبی است که هر مرتبه براساس جایگاهی که اشغال کرده کارکردهای خود را در سیستم ایفا می کند (جمعه پور،1385 ،181).
الگوی روابط متقابل بین سکونتگاهها در صورتی که شرایط اقتصادی، اجتماعی، فرهنگی و سیاسی یکسانی برای همه آنها تصور شود، می تواند براساس این دو اصل تفسیر شود:1- اصولا مردم برای دستیابی به خدمات یا رفع نیازهای خود براساس قانون کمترین تلاش، مسیرهایی را انتخاب می کنند که با پیمودن حداقل فاصله حداکثر نیازهای خود را برآورده سازند.2- مردم مستقر در سطح پایین تر مکان های مرکزی همیشه برای رفع نیازهای خود به سوی سطح بالاتر سکونتگاهها حرکت می کنند. البته به شرط اینکه سکونتگاه بالاتر جاذبه کافی برای جذب مردم سکونتگاه پایین تر را از نظر ارائه کارکردهای مختلف داشته باشد. این دو شرط تعیین کننده چهارچوب جریان روابط متقابل بین نقاط مختلف در سلسله مراتب سکونتگاهی است (Maurya, 1991,67) .
هر چند ملاحظات اجتماعی، فرهنگی و سیاسی نیز در کنار رفتارهای اقتصادی در انتخاب مکان تأمین نیازهای خدماتی یا برآورده ساختن سایر نیازها توسط مردم اثر می گذارد، اگر به این اصل توجه داشته باشیم که همه روستاهای کوچک و بزرگ از نظر اجتماعی، اقتصادی، فرهنگی و دیگر عوامل نمی توانند تمامی نیازهایشان را با اتکا به خود برطرف نمایند، این مسئله روشن می شود که ارتباط بین سکونتگاهها در زمینه پوشش دادن نیازهای همدیگر به عنوان یک سیستم فضایی واحد اجتناب ناپذیر است. ساماندهی این ارتباط و جریانهای بین سکونتگاههاست که نیاز به برنامه ریزی فضایی را برای نواحی روستایی ایجاد می کند. در انتخاب مراکز روستایی در مراتب مختلف سکونتگاهی برای انتخاب درست مکان های استقرار خدمات و کارکردها به چند نکته باید توجه کرد که این نکات شامل موارد زیر است:1- انتخاب نقاط در هر سطح از سکونتگاهها که صورت گیرد، باید به گونه ایی باشد که مناسب ترین ارتباط سلسله مراتبی را برقرار سازند، بطوری که هر کدام از نقاط به بهترین شکل نقش خود را ایفا کند.2- الگوی ارتباط بین نقاط با در نظر داشتن پیمودن حداقل فاصله دسترسی به خدمات و کارکردهای مختلف تعریف شود.3- انتخاب مراکز توزیع خدمات یا کارکردها در مناطقی که هنوز هیچگونه الگویی از توزیع خدمات بویژه در سطوح پایین سکونتگاهها شکل نگرفته است به مراتب آسان تر از وقتی است که الگوی نامناسب و ناکارآمد شکل گرفته باشد.4-در شرایط مساوی سکونتگاههایی که نقشها و کارکردهای بیشتری بر عهده دارند یا جاذبه کارکردی بیشتری دارند از قابلیت بالاتری برای انتخاب به عنوان مرکز در مقایسه با نقاط هم سطح برخوردارند (Solanki and Dikit, 1991,173).
در سطح بندی روستاها، می توان به منظور خدمات رسانی، روستاهای کوچکتر رابه روستاهای بزرگتر و همجوار خود پیوند داد. (به طور مثال دو یا سه روستای سطح اول به یکی از روستاهای سطح دو، و مجموعه چند روستای سطح یک و دو را به روستایی در سطح سه ارتباط
داد، و بدین ترتیب، پیوند بین روستاهای سطوح پایین تر را با روستاهای سطوح بالاتر ایجاد نمود. در چنین شرایطی، هر گاه مجموعه ایی از روستاهای سطوح یک، دو و سه که از نظر تعداد جمعیت در حد ارزش آستانه (حداقل مجموع قدرت خرید لازم به منظور ایجاد تقاضای کافی برای عرضه ی کالا و خدمات خاص می باشد) برای ارائه یک نهاد خدماتی باشند، می توان روستای سطح سه را برای استقرار نهاد خدماتی مورد نیاز سایر روستاها انتخاب نمود(شکل5-2) (مطیعی لنگرودی، 1390، 122).

شکل 5-2 - سطح بندی سکونتگاههای روستایی
4-2- نظریه سرمایه انسانی
یکی از نظریه های مرتبط با آموزش و پرورش نظریه سرمایه انسانی است. پژوهش های متعدد پیرامون رابطه ی آموزش و بهره وری از همبستگی فراوان آنها خبر می دهند یعنی اثرهای مثبت سرمایه گذاری در زمینه ی سرمایه های انسانی بر توسعه منطقه ایی مشهود است، بدین ترتیب پدیده ی رسیدن به سرمایه گذاری در سرمایه ی انسانی و باز بودن درهای تبادل فضایی از عوامل تعیین کننده ی توسعه منطقه ایی می باشد (معصومی اشکوری، 1367، 77).
1-4-2- تعریف و مفهوم سرمایه انسانی
تعریف سرمایه انسانی عبارت است از: «ارتقاء و بهبود ظرفیت تولید افراد» هنگامی که از تشکیل سرمایه انسانی صحبت می شود، زمانی است که سرمایه گذاریهای مالی (چه به صورت مخارج تحصیلی و چه به صورت فداکاری و هزینه فرصتهای از دست رفته) صورت پذیرفته تا تغییرات و تحولاتی در افکار و افعال فرد به وجود آورد. این تغییرات و تحولات که در درون افراد متبلور شده و غیرقابل انفکاک می باشد و آنان را قادر می سازد تا:1- کالاها و خدمات بیشتر و یا بهتری تولید کنند.2- درآمدهای پولی بالاتری تحصیل کنند.3- درآمدهای خود را عاقلانه مصرف کنند.4- از زندگی لذت بیشتری ببرند. می توان از موارد زیر به عنوان مثال های جامعی برای چهار نوع ظرفیتی که همه ناشی از سرمایه گذاری در آموزش و پرورش می باشد. یاد کرد:1- تربیت یک برنامه ریز کامپیوتر که تواناییهای توسعه یافته او موجب افزایش تولید و ارتقاء تولید ملی می شود.2- استفاده های پولی و مالی ناشی از اخذ یک مدرک تحصیلی که در شرایط متعارف افرادی که از تحصیلات بیشتر و مدارک بالاتری برخوردارند، دارای درآمد بیشتری نیز می باشند.3- ذکاوت مصرف کننده در بودجه بندی و انتخاب مناسب و اولویت دادن به انتخابها.4- لذت بردن از نمایشنامه ها و استفاده و بهره برداری از کتابهای تاریخ و دیوان اشعار (عمادزاده، 1369، 77-76).
2-4-2-سرمایه گذاری در سرمایه انسانی
تحصیل علم و دانش چه از طریق نظام آموزشی (دبستان، دبیرستان و دانشگاه) و چه از طریق آموزش ضمن کار و خدمت، نمونه هایی از سرمایه گذاری در سرمایه انسانی به شمار می آید. سرمایه انسانی نه تنها از طریق تراکم و انباشت آموزش و پرورش، بلکه از راههای بی شمار دیگری نیز بوجود می آید، لیکن متداولترین انواع سرمایه گذاری در سرمایه انسانی عبارتند از:
1- آموزشهای قبل از مدرسه 2- دبستان، راهنمایی، دبیرستان، مدارس فنی و حرفه ایی و تحصیلات عالی3- آموزش های بعد از دانشگاه و فارغ التحصیلی 4- مهاجرت برای مشاغل و درآمدهای بالاتر5- مراقبت از تندرستی و بهداشت عمومی6- به دست آوردن اطلاعات کافی از عرضه و تقاضای کار و خدمات.سرمایه انسانی نیز مانند سرمایه مادی بایستی نگهداری و در صورت لزوم، تعمیر، ترمیم و تعویض شود تا بیکار نشده یا مورد اتلاف واقع نشود,21) Beker, 1975).
3-4-2- تشکیل سرمایه انسانی از طریق آموزش و پرورش
آموزش و پرورش تنها در دبستان، دبیرستان و دانشگاه نیست بلکه هر نوع آموزش و یادگیری، چه به صورت رسمی و یا غیر رسمی در داخل و یا خارج از این محل ها را نیز شامل می شود. هزینه های تحصیلات اضافی و آموزش ضمن خدمت به عنوان سرمایه گذاری و تشکیل سرمایه انسانی تلقی می شوند، زیرا چنین سرمایه گذاریهایی در آینده منبع بازده اقتصادی خواهند بود. بازده اقتصادی آموزش و پرورش برای کسانی که در این مورد سرمایه گذاری و هزینه های گوناگون را تقبل می کنند تا حد بسیار زیادی مسلم است. سرمایه گذاری آموزش و پرورش یا از طریق هزینه های دولتی و یا از طریق بخش خصوصی چه به صورت اعطا وامهای بلاعوض و چه به صورت مشارکت در هزینه ها و پرداخت شهریه توسط والدین یا خود دانشجویان انجام می پذیرد.
سرمایه گذاری در سرمایه انسانی دارای دو نوع بازده است، بازده پولی و درآمدی و بازده غیر پولی یا غیر درآمدی، افرادی که از تحصیلات بالاتری برخوردارند، در شرایط متعارف، درآمد بیشتری کسب می کنند، اندازه گیری بازده غیر پولی سرمایه گذاری در آموزش و پرورش گرچه مشکل است لیکن دارای اهمیت ویژه ایی است و آثار مهمتری دارد(عمادزاده،1369،81).
مشارکت آموزش و پرورش در کارایی و بهره وری تولید را می توان به سه عامل و یا سه اثر متفاوت تقسیم بندی کرد:1-اثرکاری که عبارتست از توانایی ایی که براثر آموزش و پرورش و یا آموزش ضمن خدمت در نیروی کار بوجود می آید.2- توانایی تخصیصی که عبارتست از توانایی انتخاب بهترین متغیرهای مناسب و ممکن.3- توانایی ابداع: از طریق سیستم آموزشی، قدرت ابداع و خلاقیت و اعتماد به نفس در افراد ارتقا می یابد. از طرف دیگر دانش تنها موردی نیست که در مدرسه و دانشگاه تحصیل می شود، بلکه تعهد، تقید، وفاداری، مسئولیت در برابر جامعه، نظم و انضباط، کوشا و ساعی بودن، وقت شناسی، وظیفه شناسی، اتکا به نفس، قابلیت تطابق، منتقد بودن و بلاخره میهن پرست بودن از جمله مواردی هستند که جامعه انتظار دارد در مدرسه به نوجوانان و جوانان بیاموزند و ضمن ارزیابی و سنجش دانش آموزان و دانشجویان به موارد فوق نیز توجه کنند (عمادزاده، 1369، 82-81).
اقتصاددانانی که طرفدار توزیع عادلانه تر درآمدها از طریق سرمایه انسانی هستند، معتقدند که تنها تئوری توضیح دهنده چگونگی توزیع درآمد، تئوری سرمایه انسانی است و دولتها بایستی از طریق کاهش تبعیض در ارائه خدمات آموزشی در جهت متعادل ساختن درآمدها تلاش کنند (Mincer, 1958,292).
5-2- نظام آموزش و پرورش ایران
بررسی تحولات آموزش و پرورش در ایران از هزاره پیشین تا عصرکنونی، بازگو کننده ی این واقعیت است که نهاد آموزش و پرورش در ایران باستان به ویژه در دوره هخامنشیان و ساسانیان متأثر از دو عامل حکومت و خاستگاه اجتماعی اقتدار طلبان جامعه بوده و خصلتی طبقاتی داشته است. نگاهی تحلیلی به وضعیت آموزش و پرورش از صدر اسلام تا قرن چهارم هجری نیز حکایت از آن دارد که در ایران همانند سایر ممالک جهان طی دوره نخستین نهادهای آموزش عمومی در جوار مساجد دایره بوده است، دوره ی آموزش در مکاتب و مدارس آن روزگار بستگی به وضع مالی خانواده و میزان معلومات معلم و استعداد و توانایی کودکان داشته و بدین سان تعمیم امر آموزش برای همه فرزندان ایران زمین میسر نبوده است. در قرون پنجم و ششم تا عصر صفویه به سبب وسعت خرابیها و تخریب مدارس و مراکز علمی و از بین بردن استادان و اربابان علم و ادب، امکان برقراری و توسعه کانونهای آموزشی مورد نیاز عامه میسر نشد. در دوره صفویه فرآیند تعلیم و تربیت تحت الشعاع مراجع و عقاید مذهبی که در آن عصر نیرومندترین عامل وحدت و یگانگی فرهنگ بود، قرار گرفت و گروه قلیلی از کودکان می توانستند در مکتب خانه ها درس بخوانند و ادامه تحصیل در مدارس بالاتر مستلزم ترک خانه و خانواده بود که برای اکثر فرزندان طبقه متوسط جامعه ممکن نبود.در دوره افشاریه، زندیه واوایل قاجاریه نیز به دلیل کشورگشایی و آشفتگی اوضاع سیاسی و اجتماعی به فرهنگ و تعلیم و تربیت عامه توجه نشد. با تأسیس دارالفنون در 1268 قمری یعنی 13 روز پس از قتل امیر کبیر که بانی و طراح آن بود گام مؤثری در توسعه آموزش و پرورش نوین ایران برداشته شد، همچنین ازآن زمان به بعد دولت مرکزی ایران مسئولانه در امر توسعه تعلیم و تربیت کشور اهتمام ورزید. باآغاز حکومت مشروطه و تشکیل قوه مقننه، تأسیس مدارس دولتی و ملی در حوزه وظایف دولت قرار گرفت و قانون تحصیل اجباری برقرار گردید. در سال 1300 شمسی قانون شورای عالی فرهنگ به تصویب مجلس رسید و عهده دار تنظیم امور مدارس از قبیل برنامه ریزی آموزشی، برگزاری امتحانات و صدور گواهینامه تحصیلی گردید. در سال 1312 شمسی قانون تربیت معلم به تصویب رسید و به موجب آن 25 دانشسرای مقدماتی برای تربیت معلمان دوره ابتدایی در سراسر کشور دایر گردید و مقرر شد دانشسرای عالی تهران به تربیت و آماده سازی دبیران متوسطه اقدام کند. در سال 1322 شمسی قانون آموزش اجباری به تصویب مجلس شورای ملی وقت رسید و به موجب آن مقرر شد طی دو سال در تمام کشورآموزش ابتدایی به صورت اجباری و همگانی به اجرا در آید. در سال 1328 برنامه آموزش ابتدایی برای روستاها 4 ساله و برای شهرها 6 ساله تعیین گردید. در سال 1330 دوره آموزش ابتدایی برای روستاها و شهرها به مدت شش سال و سن ورود هم شش سال تعیین شد.در برنامه های عمرانی اول و دوم به آموزش حرفه ایی و فنی توجه شد و در برنامه سوم عمرانی به برنامه ریزی آموزشی هم توجه شد. در سال 1339 به موجب قانون استخدام معلمان فنی به دولت اجازه داده شد تا فارغ التحصیلان دانشسراهای کشاورزی و هنرستانها را با پایه آموزگاری و مهندسان کشاورزی و صنایع را با پایه دبیری استخدام کند، در مهرماه 1341 به منظور تأمین معلمان مدارس دوره ابتدایی بویژه در مناطق روستایی مقرر شد که دولت هر سال عده ای از مشمولان دیپلم قانون نظام وظیفه را در قالب سپاه دانش مأمور آموزش در روستاها کند. در سال 1346 و زارت فرهنگ تقسیم شد و وزارت آموزش و پرورش عهده دار آموزش عمومی شد. در نظام جدید آموزش و پرورش، آموزش همگانی از شش سال به هشت سال شامل دو دوره پنج ساله و سه ساله تحصیلی با عنوان آموزش ابتدایی و راهنمایی مشخص شد، همچنین در طرح مذکور دوره آموزش متوسطه چهار سال تعیین شد. در سال 1358 شمسی پس از پیروزی انقلاب اسلامی، مطالعات گسترده ایی در زمینه مشکلات آموزش و پرورش آغاز و طرح های اصلاحی متعددی پیشنهاد شد مثلاً در سال 1361 طرح کاد (کار و دانش) در کلیه رشته های نظری دوره متوسطه اجرا شد و براساس آن دانش آموزان دوره متوسطه موظف بودند یک روز در هفته در مراکز و محیطهای واقعی کار مستقر در خارج از مدرسه به کسب مهارتهای مفید و مورد علاقه خود بپردازند. در سال 1364 به پیشنهاد وزارت آموزش و پرورش، شورایی به نام شورای تغییر بنیادی نظام آموزش و پرورش مأمور انجام بررسیهای لازم و ارائه ی طرح بنیادی آموزش و پرورش براساس قانون اساسی جمهوری اسلامی ایران شد. در سال 1370 طرح های آزمایشی نظام جدید آموزش متوسطه به صورت نیمسالی واحدی به مرحله اجرا در آمد و در سال 1373 این طرح در سال های اول و دوم و سوم در کلیه رشته ها عملی شد و تا سال 1377 به تدریج تعمیم کامل اجرای طرح متوسطه جدید صورت گرفت و بعداً بدلیل مشکلات اجرای طرح نیمسال واحدی، طرح سال واحدی در مدارس متوسطه اجرا شد که اکنون نیز ادامه دارد (آقازاده، 1388، 40-30).

user8327

امضاء دانشجو:
تاریخ:
بسمه تعالی

* mergeformat
تاسیس 1307
دانشگاه صنعتی خواجه نصیرالدین طوسی حق طبع و نشر و مالکیت نتایج شماره:
تاریخ:
1- حق چاپ و تکثیر این پایان‌نامه متعلق به نویسنده آن می‌باشد. هرگونه کپی برداری بصورت کل پایان‌نامه یا بخشی از آن تنها با موافقت نویسنده یا کتابخانه دانشکده ............................................ دانشگاه صنعتی خواجه نصیرالدین طوسی مجاز می‌باشد.
ضمناً متن این صفحه نیز باید در نسخه تکثیر شده وجود داشته باشد.
2- کلیه حقوق معنوی این اثر متعلق به دانشگاه صنعتی خواجه نصیرالدین طوسی می‌باشد و بدون اجازه کتبی دانشگاه به شخص ثالث قابل واگذاری نیست.
همچنین استفاده از اطلاعات و نتایج موجود در پایان نامه بدون ذکر مراجع مجاز نمی‌باشد.
* توجه:
این فرم می‌بایست پس از تکمیل، در نسخ تکثیر شده قرار داده شود.
در آغاز از استاد عزیزم جناب آقای دکتر مهران میرشمس که مرا در تدوین این پایان نامه و نیز سیر مراحل آن یاری کرده و مشاوری ارزشمند بودند ، متشکرم . ایشان که مرا در آغاز مراحل تحصیلاتم بسیار یاری فرمودند و بنده را در رسیدن به بلوغ فکری بین دانشجویان فنی مهندسی یاری کردند .

چکیده
.
.
.
.
لغات کلیدی
شبیه ساز میدان مغناطیسی، مگنتورکر ،تجهیزات تست آزمایشگاهی ،حلقه های هلمهولتز ،گشتاور دوقطبی مغناطیسی ،زیرسیستم تعیین و کنترل وضعیت ،شبیه ساز میدان مغناطیسی فضایی ، کنترل اتوماتیک شبیه ساز میدان مغناطیسی
TOC o "1-6" u 1-مقدمه PAGEREF _Toc408530999 h 17
2-مروری بر مدلهای ژئومغناطیسی PAGEREF _Toc408531000 h 19
3-معرفی مدل مغناطیسی جهانی آمریکایی/انگلیسی برای سال 2005-2010 (WMM) PAGEREF _Toc408531001 h 21
1-1تکنیک مدلسازی PAGEREF _Toc408531002 h 21
1-2اطلاعات بدست آمده از داده ها و کنترل کیفیت PAGEREF _Toc408531003 h 28
1-2-1-داده های ماهواره PAGEREF _Toc408531004 h 28
3-1-1-Orsted PAGEREF _Toc408531005 h 30
3-1-1-1-مغناطیس سنج ها PAGEREF _Toc408531006 h 31
3-1-1-2-ابزار جمع آوری داده ها[data products] PAGEREF _Toc408531007 h 31
3-1-2-CHAMP PAGEREF _Toc408531008 h 32
3-1-2-1-مغناطیس سنج ها PAGEREF _Toc408531009 h 32
3-1-2-2-وسایل جمع آوری داده ها PAGEREF _Toc408531010 h 32
3-1-3-SAC-C PAGEREF _Toc408531011 h 34
3-2داده های پایش PAGEREF _Toc408531012 h 34
3-3تامین تجهیزات PAGEREF _Toc408531013 h 35
3-4جمع آوری داده ها و کنترل کیفیت PAGEREF _Toc408531014 h 36
3-5انتخاب داده برای WMM2005 PAGEREF _Toc408531015 h 38
3-6انتخاب و پیش پردازش برای مدل ها PAGEREF _Toc408531016 h 40
3-7انتخاب برای توانایی پیشگویی پیشرو تا 2010 PAGEREF _Toc408531017 h 40
3-8روشهای مدلسازی PAGEREF _Toc408531018 h 41
3-9پیشبینی تغییرات ارضی PAGEREF _Toc408531019 h 41
3-10تکنیکهای وزندهی به دادهها PAGEREF _Toc408531020 h 41
3-11قطب مغناطیسی و محل دوقطبی خارج از مرکز PAGEREF _Toc408531021 h 42
3-12پارامتریسازی مدل PAGEREF _Toc408531022 h 43
3-13ضرایب مدل PAGEREF _Toc408531023 h 46
1-معادلات به کار گرفته شده PAGEREF _Toc408531024 h 52
1-1مؤلفه های شتاب جاذبه را بصورت زیرمی باشد: PAGEREF _Toc408531025 h 52
1-2مدل باد خورشیدی پارکر به صورت زیر محاسبه می گردد. PAGEREF _Toc408531026 h 53
1-3برای محاسبه پارامتر های میدان مغناطیسی، مؤلفههای برداری میدان X'، Y'و Z'در مختصات ژئودزی به صورت ذیل محاسبه میشوند: PAGEREF _Toc408531027 h 55
1-4پارامترهای ناشی از اتمسفر زمین PAGEREF _Toc408531028 h 57
1-میدان مغناطیسی چیست ؟ PAGEREF _Toc408531029 h 63
2-مبانی فیزیکی پیچه هلمهولتز PAGEREF _Toc408531030 h 64
2-1میدان مغناطیسی حلقه PAGEREF _Toc408531031 h 65
2-2پیچه هلمهولتز و میدان مغناطیسی آن PAGEREF _Toc408531032 h 67
2-3ویژگی و کاربردهای حلقه های هلمهولتز PAGEREF _Toc408531033 h 69
2-4تغییرات میدان تولیدی توسط حلقه های هلمهولتز در فضای بین حلقه ها PAGEREF _Toc408531034 h 70
2-4-1-جابجایی در راستای محور حلقه ها PAGEREF _Toc408531035 h 70
2-4-2-جابجایی عمود بر راستای محور حلقه ها : PAGEREF _Toc408531036 h 78
2-4-2-1-نحوه محاسبه مؤلفه های مغناطیسی در یک نقطه از فضا PAGEREF _Toc408531037 h 78
2-4-2-2-میدان تولیدی توسط دوجفت حلقه PAGEREF _Toc408531038 h 93
2-5القاء و القاء متقابل PAGEREF _Toc408531039 h 94
2-6شار میدان مغناطیسی : PAGEREF _Toc408531040 h 96
2-7اصل القاء PAGEREF _Toc408531041 h 98
2-8نیروی محرکه الکتریکی : PAGEREF _Toc408531042 h 98
2-9قانون القاء فارادی PAGEREF _Toc408531043 h 99
2-10قانون لنز PAGEREF _Toc408531044 h 100
2-11پدیده خود القایی و ضریب خود القایی PAGEREF _Toc408531045 h 100
2-12القاء متقابل PAGEREF _Toc408531046 h 101
2-13فرمول نویمن PAGEREF _Toc408531047 h 103
2-14تاریخچه حلقه های هلمهولتز PAGEREF _Toc408531048 h 105

TOC c "تصویر" تصویر 1-1- شمایی از خطوط میدان مغناطیسی زمین PAGEREF _Toc408488972 h 21
تصویر 2- شمای جریان پلاسما در اطراف زمین PAGEREF _Toc408488973 h 23
تصویر 3- نمای ماهواره اورستد PAGEREF _Toc408488974 h 28
تصویر 4-نمای روبروی ماهواره چمپ PAGEREF _Toc408488975 h 30
تصویر 5- ماهواره SAC-C در مدار PAGEREF _Toc408488976 h 32
تصویر 6-مناطق پایش گر در نقاط مختلف زمین PAGEREF _Toc408488977 h 34
تصویر 7- میدان تولیدی ت.سط سیم حامل جریان PAGEREF _Toc408488978 h 62
تصویر 8- میدان در نقطه ای روی محور تک حلقه PAGEREF _Toc408488979 h 64
تصویر 9- حلقه های هلمهولتز PAGEREF _Toc408488980 h 65

TOC h z c "جدول" جدول 1- معرفی مدل های مختلف ژئومغناطیسی و مشخصات آنها PAGEREF _Toc408489035 h 19جدول 2-دامنه تغییرات اجزاء مغناطیسی و GV در سطح زمین PAGEREF _Toc408489036 h 27جدول 3- حل مثال عددی برای مدل شتاب ناشی از میدان جاذبه زمین PAGEREF _Toc408489037 h 52جدول 4- مدل پارامتر های ناشی از میدان مغناطیسی زمین PAGEREF _Toc408489038 h 56جدول 5- مدل پارامتر های ناشی از اتمسفر زمین PAGEREF _Toc408489039 h 58

مقدمه
ماهواره ها ابزار و تجهیزاتی بودند که انسان با دستیابی به آنها توانست به امکانات و توانایی هایی دست یابد که تا آن زمان فقط آنها را در رویا و خیال می دید . در واقع انسان توانست به چشم ها و بازوهایی دست یابد که به وسیله آنها بتواند در محیطهایی حضور یابد که امکان حضور فیزیکی اش در آنها وجود نداشت . به سرعت این تکنولوژی جدید جای خود را در زندگی بشر پیدا کرد و توانست به عاملی تعیین کننده در امور زندگی بشر از فرهنگی و اقتصادی گرفته تا نظامی و سیاسی ، تبدیل شود .
با آغاز به کار اولین ماهواره مباحث جدیدی نیز مطرح شد که اهمیت و ارزشی کمتر از خود ماهواره نداشت . اکتشاف درباره محیط فضا و یافتن عوامل تأثیر گذار بر سامانه های فضایی ، نحوه تأثیر پذیری سامانه های فضایی از این عوامل مؤثر ، چگونگی مقابله و کنترل این عوامل و در صورت امکان استفاده مفید از آنها ، راهکارهای افزایش طول عمر سامانه های فضایی و بالا بردن قابلیت اطمینان آنها ؛ از مهمترین موضوعاتی بودند که ذهن دانشمندان را به خود مشغول کردند . البته علاوه بر جنبه های علمی نمی توان انکار کرد مسائل مادی و هزینه بسیار بالای ساخت یک سامانه فضایی ( و با توجه به شرایط و نیازهای فعلی کشور ما ماهواره ) از مهمترین انگیزه هایی استکه به این مسائل ارزش می بخشید . در اینجا بود که برای نخستین بار بحث آزمایش و تست پیش از پرتاب ماهواره ها ( با دیدی جامع تر سامانه های فضایی ) و شبیه سازی محیط فضا و عوامل تأثیرگذار آن بر ماهواره مطرح شد .از دید اینجانب عوامل تأثیر گذار فضایی را می توان در دو دسته تقسیم بندی کرد ؛ دسته اول عبارتند از عواملی که اساساً ماهیت مادی دارند و بدنه ماهواره در مقابل تأثیر گذاری آنها مانند سدی عمل می کند . ریز اجرام فضایی و شهابها ، ذرات سنگین و پرانرژی حاصل از تابشهای خورشیدی (بادهای خورشیدی ) ، غلظت محیط و بحث اصطکاک و تولید پسا در ارتفاعات پایین از دسته عواملی هستند که تأثیری مادی و اصطلاحاً مکانیکی بر ماهواره می گذارند .
اما دسته دوم عبارتند از عواملی که ماهیت غیر مادی داشته و بدنه ماهواره بر عمق تأثیر آنها بی تأثیر است . در واقع این عوامل کل ماهواره از بدنه گرفته تا زیرسیستمهای داخلی را یکجا تحت تأثیر قرار می دهند . از مهمترین این عوامل میدان گرانش زمین و دیگر اجرام آسمانی و نیز میدان مغناطیسی زمین ( به دلیل اینکه ماهواره در فضای مغناطیسی زمین قرار دارد ) هستند .
هرچند که میدان مغناطیسی به عنوان یکی از تاثیر گذارترین عوامل خارجی در تعیین طول عمر و قابلیت اطمینان ماهواره ها ( تا حدودی دیگر سامانه های فضایی ) در پاسخگویی به نیازهای مأموریتی بسیار مؤثر است اما اطلاعات ما درباره آن بسیار اندک است . حتی ما درباره اینکه آیا در اطراف کرات آسمانی دیگر در منظومه ما و یا در اطراف کرات منظومه های دیگر میدان مغناطیسی وجود دارد یا نه اطلاعات مستدلی نداریم . ولی از آنجاییکه دانشگاهها و مؤسسات تحقیقاتی در دنیا در حال تدوین نقشه مغناطیسی فضا هستند ، جای امید وجود دارد . این در واقع گام آغازین در راه تحقیقات الکترومغناطیس فضایی است که البته از سالها پیش بخش مطالعاتی آن آغاز شده است .
همانطور که بیان شد میدان مغناطیسی یکی از مهمترین عوامل تأثیر گذار بر ماهواره محسوب می شود که به واسطه ماهیت غیر مادی اش تمام اجزاء ماهواره از بارمحموله گرفته تا زیرسیستمهای مختلف را یکجا تحت تأثیر قرار می دهد ؛ به عنوان نمونه میدان مغناطیسی بر اجزاء مخابراتی ماهواره ( چه به عنوان بارمحموله ماهواره های مخابراتی و چه به عنوان زیرسیستم مخابرات) تأثیر گذار است ؛ همین میدان با تغییر خطوط میدان مغناطیسی در داخل موتورهای حالت گاز و اصطلاحاً الکتریکی یا یونی بر میزان تراست و ضربه ویژه قابل استحصال از آنها تأثیر می گذارد ؛ میدانهای مغناطیسی با توان بالا این پتانسیل را دارند که بر دوربینها و سنسورهایی که به عنوان بارمحموله مورد استفاده قرار می گیرند تأثیر گذارده و راندمان کاری آنها را کاهش دهند . از سوی دیگر این میدان مغناطیسی
است که بر ذرات بار دار پر انرژی اثر می کند و خط سیر آنها را مشخص کرده و به آنها انرژی مضاعف می دهد و با انرژی و تکانه بسیار آنها را بر بدنه ماهواره ، آرایه های خورشیدی و دیشها و آنتنها می کوبد و به شدت موجب افت در کارایی آنها و کاهش طول عمر آنها و به دنبال آن کاهش طول عمر ماهواره می شود . برای مثال برای آرایه های سیلیکونی در مدار LEO افت راندمان سالانه به 3.75% می رسد که 2.50% آن ناشی از برخورد ذرات باردار پر انرژی است]2 [.
از سوی دیگر یکی از با سابقه ترین ابزارهای کنترلی ماهواره ها مگنتورکرها هستند . مگنتورکرها با اندرکنش با میدان مغناطیسی زمین این توانایی را دارند تا ماهواره را در راستای دو محور کنترل کرده و یا پایدار کنند و یا از روی چرخهای مومنتومی بار برداری کنند . دوپل مغناطیسی تولیدی برای مگنتورکرها مهمترین و برای کنترل ماهواره تعیین کننده ترین فاکتور است . تاکنون هیچ راه مستقیمی برای تست بزرگی دوپل تولیدی مگنتورکرها ارائه نشده است ]5 [. در این پایان نامه بعد از تأکید بر تمامی تواناییهای شبیه ساز میدان مغناطیسی ، نگاهی ویژه به اندرکنش بین شبیه ساز و مگنتورکر شده و الگوریتم و روشی برای تعیین دوپل تولیدی مگنتورکر مفروض با استفاده از " شبیه ساز میدان مغناطیسی " ارائه شده است .
آنچه ذکر شد دلایلی است که مقوله بررسی میدان مغناطیسی را به مقوله ای ارزشمند و قابل سرمایه گذاری مالی و زمانی تبدیل می کند . در عین حال به مسئله انجام تست و آزمایش اندرکنشهای اجزاء مختلف ماهواره با میدان مغناطیسی ، ارزش و اهمیتی صد چندان می دهد .
اما بدیهی است که برای تست عملکرد اجزاء تحت تأثیر میدان مغناطیسی ، باید بتوانیم میدانی قابل کنترل و در عین حال قابل پیش بینی بسازیم . بنابر آنچه در فصل اول تحت عنوان " ماهیت و ذات میدان مغناطیسی و روابط حاکم بر آن " مورد بحث و بررسی قرار می گیرد ؛ خواهیم دید که میدان مغناطیسی کمیتی برداری و در عین حال بسیار حساس است که با تغییر مکانی جزئی ، اندازه و راستای آن به شدت تغییر می کند و همین مسئله کار با آن را دشوار و در عین حال ظریف می سازد . در علم فیزیک ( در حال حاضر و در دنیای مواد نرمال ) تنها یک وسیله وجود دارد که این توانایی را دارد که میدانی یکنواخت و قابل پیش بینی در محدوده ای کوچک از فضا را تولید کند که " پیچه های هلمهولتز " خوانده می شود . به بیان دیگر چنین می توان گفت که :
برای تست تأثیرگذاری میدان بر ماهواره در وحله اول باید میدانی قابل کنترل و پیش بینی تولید کرد که با توجه به نیاز ما قابل تغییر باشد .
در وحله دوم برای تولید میدانی که در بالا توصیفات آن ذکر شد نیاز است تا پیچه های هلمهولتز ساخته شود .
در واقع بررسی میدان مغناطیسی زمین ، شبیه سازی آن و بررسی تأثیرات آن بر ماهواره نیازهایی بودند که به عنوان مبنای اصلی بحث این پایان نامه مطرح هستند . عواملی که موجب شدند تا عنوان "طراحی و ساخت شبیه ساز میدان مغناطیسی" برای پایان نامه پیش روی شما انتخاب و تصویب شود .

شاید اگر بگویم دو ترم آغازین در مقطع کارشناسی ارشد سخت ترین دوران تحصیلم بوده است گزاف نگفته باشم اما اکنون با تمام وجود می بینم و احساس می کنم که انتخاب اشتباهی نکرده ام .

خط سیر و روال فصول گزارش پایان نامه
در مورد یک کار عملیاتی المانهای مختلفی وارد بحث می شوند که گاه نیاز به بررسی مطالعاتی و یا نیاز به کار عملیاتی و گاه نیاز به هر دو این موارد دارند . در این گزارش نیز چنین نگاهی حاکم است و سعی شده تا تک تک المانهای مؤثر در انجام پروژه تک تک تفکیک شده و بررسی های تئوریک و کارهای عملیاتی انجام شده بر آن به تفصیل شرح داده شوند و در صورت ضرورت تصاویر ، نقشه ها و جداولی نیز به جهت افزایش توانایی انتقال مطالب به کار گرفته شوند . در نهایت نیز تستها و آزمایشاتی که از دستگاه نهایی گرفته شده است ارائه شده است .
در فصل اول با عنوان " ماهیت میدان مغناطیسی و حلقه های هلمهولتز " به بررسی ذات میدان مغناطیسی ، حلقه های هلمهولتز و روابط حاکم بر آنها خواهیم پرداخت در انتهای این فصل شرحی از سیر تاریخی شبیه سازی میدان ارائه خواهد شد . در فصل دوم با عنوان " نشط میدان مغناطیسی در فضا و مگنتورکر " به بررسی روابط گسترش میدان مغناطیسی در فضا و تأثیرات آن بر محیط مادی و اندرکنش میدان با مگنتورکر به عنوان محیطی مادی خواهیم پرداخت . در نهایت نیز به توصیف الگوی حرکتی مگنتورکر تحت تأثیر میدان خارجی خواهیم پرداخت و سعی می کنیم تا رابطه ای برای توصیف حرکت آن استخراج کنیم . فصل سوم با عنوان " سنسور و مدار راه انداز دو المان دیگر شبیه ساز میدان " فصلی است کم حجم که به بررسی و توصیف دو المان اختیاری و قابل انتخاب برای شبیه ساز می پردازد . فصل چهارم با عنوان " فرایند و نقشه های ساخت شبیه ساز میدان مغناطیسی " قلب پایان نامه است که در آن به بررسی مراحل و نقشه های ساخت شبیه ساز خواهیم پرداخت . فصل پنجم تحت عنوان " نتایج تستهای شبیه ساز میدان مغناطیسی " به توصیف نتایج تستهای گسترده ای که برای کالیبراسیون شبیه ساز انجام شده است ؛ می پردازد . در فصل ششم با عنوان " الگوریتم کاری شبیه ساز میدان مغناطیسی " به توصیف روش و ساختار برنامه ای خواهیم پرداخت که بر مبنای آن و با استفاده از دستگاه شبیه ساز میدان مغناطیسی می توان برای اولین بار ، دوپل مغناطیسی مگنتورکر را به شکل مستقیم استخراج کرد. در انتهای این فصل شرح آزمایشی که مگنتورکر نانوساختار NSFe99.99-1 پشت سر گذاشته است و نتایج حاصل از تست آن با استفاده از سامانه شبیه ساز میدان مغناطیسی (سامانه کوثر100) ارائه شده است.
همانطور که گفتیم در فصل پنج نتایج تست "سامانه شبیه ساز میدان مغناطیسی" ارائه شده است. لازم بود تا صحت این نتایج مورد تأیید قرار گیرد و برای این منظور از نرم افزار شبیه ساز Vizimag استفاده شد. در ضمیمه الف، شبیه ساز مذکور و نتایج حاصل از استفاده آن ارائه شده است.

36474401184275400000328422019050فصل اول
00فصل اول

-79565523495مدلهای رایج شبیه سازی
میدان مغناطیسی زمین
00مدلهای رایج شبیه سازی
میدان مغناطیسی زمین

مقدمهیکی پدیده های بسیار مهم که در این بخش بررسی می شود، میدان مغناطیسی زمین است. منشاء به وجود آمدن میدان مغناطیسی زمین سه عامل مهم است. در حدود 99 درصد این عوامل ناشی از میدان های درونی زمین بوده که به صورت خاص شامل مواد موجود در هسته زمین و همچنین مواد مغناطیسی موجود در قسمت های سخت زمین است. تغییرات میدان مغناطیسی زمین بسیار کند و آهسته بوده و 05/0 در صد در سال است، یعنی در هر 100 سال فقط 5 در صد تغییر می یابد .
هر میدان مغناطیسی دارای دو قطب است که قطب های میدان مغناطیسی زمین در سیبری و جنوب استرالیا قرار دارند.مینیمم اندازه میدان مغناطیسی در اطراف استوا بوده که برابر با تسلا و بیشترین اندازه آن نیز در اطراف قطب ها برابر با تسلا است.
بدین ترتیب مشخص می شود که میدان مغناطیسی زمین دارای دو بیشینه در قطب ها و دو کمینه در استوا است.کمترین مقدار میدان مغناطیسی در ناحیه ای محصور بین آمریکای جنوبی، آفریقای جنوبی و قطب جنوب است. توفان های ژئومغناطیسی نیز سبب تغییری برابر در میدان مغناطیسی زمین می شوند. هنگامی که بادهای خورشیدی به سمت سیاره های منظومه شمسی میوزند، میدان مغناطیسی این سیاره ها در برابر باد های خورشیدی عکس العمل نشان می دهد. خطوط میدان مغناطیسی زمین در اثر بادهای خورشیدی در راستای وزش باد متراکم شده و ناحیه وسیع متراکمی را در مقابل آن ها ایجاد می کند که مگنتوسفیر نامیده می شود. ناحیه مگنتوسفیر به صورت ناحیه ای قطره ای شکل در اطراف زمین ایجاد می شود. آثار ناشی از پدیده مگنتوسفیر نیز 1 در صد علل وجود میدان مغناطیسی زمین را شامل می شود.در بحث میدان مغناطیسی زمین، نیاز به شناختن عامل دیگری به نام یونوسفر داریم که در فصول آتی به معرفی مدل مربوطه خواهیم پرداخت. این ناحیه از اهمیت کاربردی خاصی برخوردار بوده زیرا بر امواج رادیویی تاثیر گذار است.

مروری بر مدلهای ژئومغناطیسیدر سال 1600 گیلبرت، شدت میدان مغناطیسی زمین را کشف نمود و در سال 1634، گلیبراند دریافت که این میدان با زمان تغییر میکند. این پدیده در ابتدا در سامانه های ناوبری دریائی و هوائی به کار گرفته شد. در سال 1830 مشاهدات ژئومغناطیسی به طور پیوسته بازبینی شد که گزارش این بررسی ها هر 5-10 سال انجام گرفت. در سالهای 1590 الی 1990 یک ساختار پیوسته کاربردی از مدل میدان مغناطیسی در قالب 365694 مشاهده تهیه گردید.
در 20 سال اخیر مشاهدات ماهواره ها دقت این مطالعات را بالا برده، به صورتی که یک پوشش جهانی درست و اطلاعات کامل میدانی با دقتی معادل 5 تا 10 نانو تسلا تهیه میکنند.
در جدول1 به نمونه هایی از این مدل ها و دامنه کاربرد آنها اشاره می کنیم:
نام مدل دامنه کاربرد درجه مدل ساختار مدل محدودیت سنجش(Km)
NGDC-720 شدت میدان های مگنتوسفریک و میدان های پوسته و اصلی 16 تا720 هارمونیک های کروی 56 الی2500
IGRF اعماق درونی زمین، پوسته، یونوسفر و مگنتوسفر است 13 هارمونیک های کروی تا 700
EMAG3 نقشه مغناطیسی دیجیتالی جهانی - اطلاعات ماهواره ها و زیردریاییها و نمونه گیری های مغناطیس زمینی ارتفاع 5
EEJM1 محاسبه جریان الکتریکی قوی در طول استوائی و در منطقه E لایه یونوسفر - هارمونیک های کروی -
MF6و
MF5 تعیین مسیر مغناطیسی اقیانوس-تخمین عمر پوسته های اقیانوسی 120 هارمونیک های کروی تا 333
POMME4 شدت میدان های اصلی زمین 720 ترکیبی از مدل های MF5 و NGDC-720 1000
WMM شدت میدان های اصلی زمین 12 هارمونیک های کروی تا 700
جدول SEQ جدول * ARABIC 1- معرفی مدل های مختلف ژئومغناطیسی و مشخصات آنهادر بخش بعد به مدل مغناطیسی جهانی (WMM) می پردازیم:

معرفی مدل مغناطیسی جهانی آمریکایی/انگلیسی برای سال 2005-2010 (WMM)این مدل مشتمل بر یک بررسی کامل از داده های مورد استفاده، تکنیک های مدلسازی به کار رفته و نتایج بدست آمده در تولید مدل مغناطیسی جهانی(WMM) برای سال 2005 است. این مدل که تا سال 2010 معتبر است، برای استفاده در سیستم های جستجوی هوایی و دریایی استفاده می شود. WMM مدلی از میدان مغناطیسی اصلی زمین است یعنی همان قسمت از میدان که در هسته زمین تولید می شود.
مدل مغناطیس جهانی یک محصول از آژانس زمین و فضای ملیNGA ایالات متحده است. WMM توسط مرکز داده های زمین فیزیک ملی NGDC ایالات متحده و سرویس زمین شناسی بریتانیا BGS به کمک اطالاعات و سرمایه گذاری NGA ایالات متحده و آژانس تصویر نگاری جغرافیایی وزارت دفاع DGIA بریتانیا تولید شده است.
مدل مغناطیسی جهانی، مدل استاندارد مورد قبول در سازمان دفاع ایالات متحده، وزارت دفاع بریتانیا، سازمان پیمان آتلانتیک شمالیNATO)) و استاندارد مورد استفاده در سیستم های ناوبری و تعیین وضعیت اداره آبنگاری جهان (WHO) است. این مدل در سیستم های ناوبری عمرانی نیز به صورت گسترده استفاده می شود.
تکنیک مدلسازیمیدان مغناطیسی زمین،B ، یک مقدار برداری است که با توجه به مکانr و زمان t تغییر می کند. آن میدان مغناطیسی زمین که توسط یک سنسور مغناطیسی بر روی زمین و یا بالای سطح زمین اندازه- گیری می شود، در واقعیت یک ترکیب از میدان های مغناطیسی مختلف است که توسط چندین منبع مختلف تولید شده است. این میدان ها بر روی هم می افتند و از طریق فرایند القا با هم اندرکنش دارند. اهم این منابع ژئومغناطیسی عبارتند از:
الف) میدان اصلی(تصویر1-1)، که در لایه بیرونی هسته مذاب و هادی زمین تولید می شود.Bm
ب) میدان پوسته ای ناشی از منتلِ (قشر زیر پوسته و حول هسته زمین) یا بالای زمین.Bc
ج) میدان ترکیبی مزاحم ناشی از جریانهای الکتریکی که در ارتفاع بالای جو و مگنتوسفیر جاری بوده و باعث القای جریانهای الکتریکی در زمین و دریا می شوند.Bd
بدینسان، میدان مغناطیسی مورد بحث به صورت حاصل جمع این میدانها خواهد شد.
(1-1) Br,t=Bmr,t+Bcr,t+Bdr,tBm قسمت دائم میدان است، که 95% از کل قدرت میدان را در سطح زمین به خود اختصاص می دهد. تغییرات مستقل تغیییر آرام در زمان Bm است. میدان ناشی از صخره های کروستال مغناطیسیBc، نسبت به فضا تغییر میکند ولی با توجه به مقیاس زمانی که در اینجا در نظر گرفته می شود، نسبت به زمان ثابت فرض می شود.

تصویر SEQ تصویر * ARABIC 1-1- شمایی از خطوط میدان مغناطیسی زمینبا توجه به شکل1-1 میدان مغناطیسی اصلی ناشی از جریانهای مذاب در لایه بیرونی هسته.خطوط میدان تقریباً غیر قطبی شده، بالای سطح زمین، در جنوبی ترین قسمت همیوسفر به سمت بیرون و در شمالی ترین قسمت آن به سمت داخل هستند.
Bc از نظر مقدار غالباً خیلی کوچکتر ازBm است. میدان کروستال نسبت به مقیاس های زمانی مورد نظر در این مطالعه، ثابت است. میدان ناشی از جریانهای یونوسفر و مگنتوسفیر و جریانهای القایی منتجه آنها در منتل و کراست زمین،Bd، هم نسبت به مکان و هم نسبت به زمان تغییر می کند. WMM فقط میدان مغناطیسی اصلی زمین را نشان می دهدBm)). برای ایجادکردن یک مدل دقیق از میدان مغناطیسی اصلی، لازم است که اطلاعات کافی با یک پوشش جهانی مناسب و حداقل سطح اغتشاشات در دست داشت. مجموعه اطلاعات ماهواره دنیش اورستد و جرمن چمپاین نیازمندیها را تامین می کند. هر دو ماهواره اطلاعات برداری و اسکالر دارای کیفیت بالایی را در تمام طول ها و عرض های جغرافیایی تامین می کنند. اما این عمل در طول کل دوره های زمانی مورد نیاز برای مدلسازی انجام نمی گیرد. بر این اساس این اطلاعات ماهواره ای با اطلاعات متوسط ساعتی از پایش زمینی که تقریباً در تمام بازه زمانی مورد دلخواه به صورت پیوسته در دسترس است، دائماً افزایش می یابد. هرچند که فضای پوشش ضعیفی بدست دهد. بدینسان اطلاعات بدست آمده از پایش، قیود با ارزشی را برای زمان تغییر میدان مغناطیسی زمین فراهم می کنند. استفاده همزمان از اطلاعات بدست آمده از پایش زمینی و همچنین اطلاعات دریافتی از ماهواره، یک مجموعه اطلاعات دارای کیفیت قابل قبول برای مدلسازی رفتار میدان مغناطیسی اصلی نسبت به زمان و مکان برای ما تامین می کند.
Bc دارای تغییرات فضایی در دامنه چندین متر تا چندین هزار کیلومتر است و نمی توان آن را با مدل های هارمونیک کروی دارای درجه پایین، به طور کامل مدل کرد. بر همین اساس، WMM شامل تاثیر هم مرز کراستنیست جز برای آن قسمت با طول موج بسیار بالا.Bc عموماً در دریا کوچکتر از خشکی است و با افزایش ارتفاع، کاهش می یابد. مغناطیسی شدن صخره در اثرBc، می تواند یا به صورت القایی(بوسیله میدان مغناطیسی اصلی) یا دائمی و یا یک ترکیب از هر دو باشد.
اصل این پدیده این است که جو در نور روز در ارتفاع های 100-130 کیلومتر ، در اثر تشعشع خورشید یونیزه شده و توسط باد و جزر و مد در میدان اصلی زمین به حرکت در می آید و بدینسان شرایط لازم برای فعالیت یک دینام (حرکت یک هادی در یک میدان مغناطیسی) فراهم می شود. دیگر تغییرات روزانه و سالیانه، در اثر چرخش زمین در میدان مگنتوسفر خارجیدر یک مرجع خورشید آهنگ ایجاد می شود. تغییرات بی قاعده ناشی از توفان های مغناطیسی و ریز توفانها است. توفانهای مغناطیسی در حالت کلی دارای سه فاز هستند: فاز اولیه – اغلب همراه با یک شروع ناگهانی و افزایش میدان افقی در عرض های جغرافیایی میانی -یک فاز اصلی و یک فاز احیاء. فاز اصلی حاوی یک تشدید از جریان حلقه(شکل1-2) از صفحه پلاسما است.

تصویر SEQ تصویر * ARABIC 2- شمای جریان پلاسما در اطراف زمیندر شکل1-2 سیستم جریان مگنتوسفری(قرمز) یک میدان مغناطیسی تقریبا یکنواخت، نزدیک به زمین تولید می کند. جریانهای همخط با میدان (زرد)، جریانهای مگنتوسفری را با جریانهای یونوسفر نزدیک زمین جفت می کنند. [افتر کیولسون و راسل 1995]
در طول فاز احیاء، جریان حلقه به حالت نرمال در مدت چند روز و ریز توفانهای زیر مجاور مرتبط باز می گردد. طوفان مغناطیسی و اثرات ریز توفانها در عرض جغرافیایی بزرگ مغناطیس زمین عموماً شدیدتر هستند. چرا که در آنجا، منطقه یونیزه قسمتهای بالایی جو(یونوسفر)توسط جریانهای هم خط میدان، با مگنتوسفیر جفت شده اند و در نتیجه بشدت از میدان مغناطیسی درون سیاره ای و سیستم های جریان در دنباله مغناطیسی تاثیر می پذیرند. هم تغییرات میدان مزاحم با قاعده و هم بی قاعده، هر دو با فصل و چرخه فعالیت مغناطیسی خورشید مدوله می شوند. میدان مزاحم اولیه اغلب به عنوان میدان خارجی شناخته می شود، چراکه منابع اصلی آن-یونوسفر و مگنتوسفر-خارج از سطح زمین که اندازه گیریهای مغناطیس زمین به صورت سنتی در آن انجام می شود، هستند. با اینحال این جمله می تواند گمراه کننده باشد و در هنگام استفاده از داده های ماهواره ای از آن صرفنظر می کنیم. چرا که یونوسفر پایین تر از ارتفاعی قرار دارد که این اطلاعات می آیند و بر همین اساس به صورت کامل در بطن این سطح پایش قرار گرفته است. برای اطلاعات بیشتر در مورد کراستال و میدانهای مزاحم (و اطلاعات کلی راجع به مغناطیس زمین) مریل و همکاران 1996 و پارکینسون1983 را ببینید.
بردار میدان مغناطیسی زمین B با 7 جزء مشخص می شود. این اجزاء عبارتند از:
– مولفه های قائمX (با شدت شمالی )
Y (با شدت شرقی)
Z (شدت عمودی-مثبت به سمت پایین)
F شدت کل، Hشدت افقی
I شیب مغناطیسی (زاویه میل، زاویه بین صفحه افقی و بردار میدان-مثبت اندازه گیری به سمت پایین)
D انحراف مغناطیسی(زاویه انحراف، زاویه افقی بین شمال حقیقی و بردار میدان- راستای مثبت اندازه گیری به سمت شرق).
GV، تغییرات شبکه
را می توان از روی مولفه های قائم با استفاده از رابطه های 1-16به دست آورد. جدول 2دامنه مقادیر مورد انتظار برای مولفه های مغناطیسی و GV در سطح زمین را نشان می دهد.
WMM برای 2005 تا 2010 یک مدل از میدان اصلی کروی-هارمونیک با درجه و مرتبه 12 برای 2005 را با یک مدل متغیر پیشگوی مستقل کروی-هارمونیک با درجه و مرتبه 8 برای دوره 2005 تا 2010 مقایسه می کند.
مدل برنامه کامپیوتری در نظر گرفته شده، مولفه های X،Y ،Z ،F ،D ، I،H و GV در مختصات زمین شناختیرا محاسبه می کند.
دامنه در سطح زمین
واحد Max Min نام جانشین نام جزء
nT 42،000 17،000- شدت شمالی مولفه شمالی X
nT 18،000 18،000- شدت شرقی مولفه شرقی Y
nT 61،000 67،000- مولفه پایین Z
nT 42،000 0 کل میدان شدت افقی H
nT 67،000 22،000 شیب مغناطیسی شدت کل F
درجه 90 90- تغییرات مغناطیسی زاویه میل I
درجه 180 180- انحراف مغناطیسی D
درجه 180 180- تغییرات مغناطیسی شبکه تغییرات شبکه GV
جدول SEQ جدول * ARABIC 2-دامنه تغییرات اجزاء مغناطیسی و GV در سطح زمیناطلاعات بدست آمده از داده ها و کنترل کیفیتداده های ماهوارهاساسی ترین مشخصه داده های ماهواره پوشش جهانی آنها است که غالباً در یک بازه نسبتاً کوچک زمانی بدست می آید. زاویه اینکلینیشن مدار (زاویه بین صفحه مداری مسیر گردش ماهواره و صفحه استوای زمین) دامنه طول جغرافیایی تحت پوشش را نشان می دهد. یک زاویه 90 درجه، پوشش 100% به دست می دهد. یک زاویه کمی کمتر یا بیشتر از 90 درجه، در مناطق کوچکی حول قطبهای جغرافیایی، فواصلی را ایجاد می کند که هیچ پوشش اطلاعاتی ندارد. مشخصه مهم دیگر داده های ماهواره این است که میدان کراستال به علت فاصله ماهواره از پوسته زمین، به شدت ضعیف شده است.
یک ماهواره با زاویه میل بالا نسبت به زمان وضعی در حالی که زمین زیر آن می چرخد، ثبوت کمتر و یا بیشتری دارد. بدینسان در مدت 24 ساعت، یک تصویر خام از زمین به دست می دهد. در این مدت زمان، ماهواره حدود 15 دور حول مدارش می گردد. با یک فاصله طولی در حدود 24 درجه. یک نقص این مدار خورشید آهنگ، این است که کل پایش در شب در یک عرض جغرافیاییمورد نظر، برای یک دوره زمانی طولانی، تقریباً زمان وضعی مشابهی دارد. در نتیجه، مدلسازی میدان های خارجی که وابسته به زمان وضعی می باشد، از روی یک چنین داده هایی می تواند مشکل باشد. ماهوارۀ مگ ست، که به مدت 7 ماه در زمستان 1979/1980 یک نقشه برداری (مساحی) دقیق بردار مغناطیسی انجام داد، یک مثال از یک مدار کاملاً خورشید آهنگ با نقص و کمبود زمان وضعی مشابه آنچه گفته شد، است. به صورت مشابه، ماهوارهSAC-C بر روی یک مدار ثابت ظهر/نیمروز قرار دارد. در حالیکه اورستد و چمپ به آرامی در زمان وضعی حرکت آرام می شوند.
حرکت آرام زمان وضعی وابسته به زاویه میل مدار است. که معمولاً به صورتی انتخاب می شود که از تضریب فرکانس های سالیانه جلوگیری کند تا قادر به تفکیک اثر هر یک از میدان مغناطیسی خارجی وابسته به سال و وابسته به زمان وضعی باشد. چون ارتباط بین ستاره نگار و مغناطیس سنج برداری درSAC-Cدارای خطاست، فقط داده های اورستد و چمپ برای تولید WMM2005 استفاده شده اند.
در ذیل به معرفی این ماهواره ها و نحوه عملکرد آنها اشاره می کنیم.
Orstedماهواره دانمارکی اورستد ماهواره ای است که برای مدل سازی میدان مغناطیسی زمین اختصاص داده شده است و داده ها را با کیفیت بالا جمع آوری و ارسال می کند و نقصی در عملکرد آن مشاهده نشدهاست.

تصویر SEQ تصویر * ARABIC 3- نمای ماهواره اورستدمغناطیس سنج هادر ساکت ترین موقعیت، نوک بوم 8 متری، مغناطیس متر اورهویزر(OVM) شدت میدان مغناطیسی را اندازه می گیرد(بدون وابستگی به راستا) و تا نیم تسلا دقت دارد. کاربرد اصلی آن، کالیبراسیون دقیق(مطلق) مقادیر اندازه گیری شده توسط ابزار CSC (سیم پیچ کروی فشرده) است. برای جلوگیری از تداخل جزئی مغناطیس مترها، در فاصله معینی از OVM، بردار میدان مغناطیسی، توسط یک مغناطیس سنج حساس CSC اندازه گیری میشود و شدت و راستا و راستای آن تعیین میگردد. این وسیله تا بازه های زمانی چند روزه تا حدود 5/0 نانو تسلا پایدار است.
ابزار جمع آوری داده ها[data products]ابزار جمع آوری داده ها برای مدلسازی میدان اصلی عبارتند ازMAG-F برای اندازه گیری شدت میدان (مقادیر اسکالر) و MAG-L برای میدان برداری.

CHAMPماهواره کوچک تحقیقاتی چمپ یک ماهواره آلمانی با ماموریت بهبود مدلهای میدان مغناطیسی و جاذبه زمین می باشد. در ابتدا ماموریت برای 5 سال در نظر گرفته شده بود ولی تا سال 2008 تمدید شد. مدار چمپ دوبار برای طولانی تر کردن مدت ماموریت، افزایش داده شده است.
ابزار مغناطیسی چمپ بسیار مشابه با ابزار اورستد است. چمپ همان ابزار مغناطیس سنج برداری و اسکالر را حمل میکند.
مغناطیس سنج هادر فاصله چهار متری از سر بوم، یک مغناطیس سنج اورهیزر با دقت پروتن یکبار در هر ثانیه،کل شدت میدان مغناطیسی را اندازه می گیرد. این وسیله، دارای دقت مطلق 5/0 نانو تسلا است.

تصویر SEQ تصویر * ARABIC 4-نمای روبروی ماهواره چمپوسایل جمع آوری داده هاوسایل علمی استاندارد چمپ از سطح 0 تا سطح 4 شماره بندی شده اند. بسته به میزان پیش پردازش که توسط آنها بر روی داده های اصلی انجام می شود، تجهیزات علمی از ابزار سطح 2 شروع می شوند که با مدارهای دقیق کالیبره، نشانه گذاری و ترکیب شده اند و به عنوان فایل های روزانه درCDF (فرمت داده های روزانه)ذخیره شده اند. تجهیزات سطح 3 آخرین اطلاعات تجزیه و تحلیل شده، اصلاح شده و کالیبره شده را مقایسه می کند.

SAC-Cفضاپیمای SAC-C آرژانتین، برای مطالعه ساختار و دینامیک جو زمین، یونوسفر و میدان مغناطیسی زمین طراحی شده بود.

تصویر SEQ تصویر * ARABIC 5- ماهواره SAC-C در مدارمغناطیس سنج برداری و ستاره نگار بسیار با نمونه های به کار رفته در اورستد شبیه هستند. داده های رسیده از این ماهواره خیلی مفید هستند چونSAC-C در یک مدار زمانی موضعی ثابت قرار گرفته است. و تکمیل کننده حرکت آرام مدارهای اورستد وچمپ می باشد. بدلیل عدم وجود کالیبراسیون دقیق، از داده های SAC-C نمی توان برایWMM2005 استفاده کرد.
داده های پایشیکی از مشخصه های اصلی پایش، پوشش زمانی طولانی و پیوسته آن در زمان، در منطقه ای که قرار است WMM استفاده شود، است. این بدین معنی است که پیش بینی میدان مغناطیسی برای سالهای متمادی در آینده چنان که مورد نیاز WMM باشد، مقدور است و اینکه تغییرات با قاعده و بی قاعده در میدان خارجی می تواند دسته بندی و اثر آنها در WMM به حداقل رسانده شود. توزیع فضایی پایش به طور اعم توسط موقعیت مورد نظر و با توجه به تبحر محلی، بودجه، تامین انرژی و وقتهای پراکنده بدست آمده است و در برخی از موقعیت ها، تا حد منطقی نسبت به زمان ثابت است.
تامین تجهیزاتسه نوع تجهیزات در یک پایش وجود دارد. اولین گزینه متغیر سنج ها را مقایسه می کند که اندازه گیری های پیوسته از بردار مغناطیسی میدان زمین انجام می دهد. هم متغیر مترهای دیجیتال و هم آنالوگ، هر دو نیاز به محیط کنترل شده دمایی و سکوهای کاملاً ثابت دارند. ولی می تواند عموماً بدون دخالت دست کار کند. عادی ترین و ساده ترین نوع متغیر مترهای امروزی، مغناطیس متر سه محوره است. دومین گزینه، شامل ابزار دقیق است که می توانند از میدان مغناطیسی زمین بر مبنای واحد های پایه ای فیزیکی دقیق و یا ثابت های فیزیکی عمومی، اندازه گیری نمایند.
ساده ترین نوع ابزار دقیق، شاردروازه های اندازه گیری زاویه است. برای اندازه گیری D و I و مغناطیس مترهای با دقت پروتون برای اندازه گیریF.
در ابزار اول، واحد اندازه گیری زاویه است. برای تعیین این زوایا از سنسور شار ورودی که بر روی تلسکوپ یک زاویه سنج غیر مغناطیسی نصب شده است، استفاده می شود تا زمان عمود شدن آن بر بردار میدان مغناطیسی باشد ردیابی گردد.

تصویر SEQ تصویر * ARABIC 6-مناطق پایش گر در نقاط مختلف زمینبرای تعیین D,I شمال واقعی با مراجعه به یک علامت ثابت در یک ارتفاع مشخص تعیین می شود. این کار با پایش نجومی انجام می گیرد. اندازه گیری توسط یک شاردروازه زاویه سنج تنها به صورت دستی انجام می گیرد. در حالیکه، یک مغناطیس متر پروتونی می تواند به صورت خودکارکار کند.
سومین گزینه مقادیر اندازه گیری شده نیمه دقیق را مقایسه می کند. این ها ابزار هایی هستند که انحراف از یک میدان که به صورت با قاعده و با استفاده از یک ابزار دقیق تعیین شده اند.
جمع آوری داده ها و کنترل کیفیتBGSو NGDCاطلاعات و داده های پایش را از طریق مشارکت فعالانه خود در سیستم مرکزی دادههای دنیا جمعآوری می کند .
آنها اطلاعات و داده های مناسب برای مدلسازی میدان مغناطیسی را نگه می دارند. با سازمانهایی که داده های پایش مغناطیسی را به کار می برند در تماس اند و با سایر WDC ها همکاری دارند.
هر سال BGS درخواست خود راجع به دریافت آخرین داده ها و سایر اطلاعات وابسته را به همه سازمانهایی که در حوزه پایش دادهها کار میکنند میفرستد. WDC ها در ادینبورگ BGS و بولدرNGDC مقادیر متوسط سالیانه یکسانی را برآورد می کنند.WDC ها در کپنهاگ و بولدر نیز مقادیر متوسط ساعتی یکسانی را بر آورد می کنند. مقادیر متوسط ساعتی که برای WMM استفاده می شوند، از سایت WDC کپنهاگن دریافت می شوند.
BGS نیز فعالانه داده های پایش جهانی را از طریق مشارکت خود در اینترمگنت (بین مغناطیسی) جمع آوری می کند. کار اینتر مگنت ایجاد یک شبکه جهانی از پایش گره های مغناطیسی مرتبط به منظور هماهنگ کردن مشخصات استاندارد مدرن برای تجهیزات اندازه گیری و ثبت و ضبط داده ها است. اینکه بتواند از این طریق تبادل داده ها را تسهیل کرده و تولید ابزار مغناطیس سنج زمین را به زمان واقعی نزدیک کند.
کیفیت داده ای که یک پایشگر تولید می کند، بستگی به مسئولیت پذیری اپراتور دارد. مهمترین جنبه مدلسازی جهانی پایداری خطوط پایه است. یک خط پایه عبارت است از اختلاف بین داده های متغیر متری کالیبره شده، و پایش های دقیق. یک خط پایه با نقاط بسیار، پراکندگی پایین، حرکت آرام و جابجایی کم نشانه ای از یک کیفیت عالی است. نقشه های خطوط پایه برای پایش های اینتر مگنت بر رویCD های سالیانه ای از داده های تعیین شده آورده شده اند. اطمینان از کیفیت و کنترل اندازه ها، به غیر از آنچه که توسط کاربر پایش گری انجام می گیرد، توسط اینتر مگنت از طریق برنامه استانداردسازی پایشگری آن انجام می گیرد. مراکز داده های جهانی، و با شرکت بسیاری از کاربران پایشگر در کارگاه های پایشگری بین المللی مرتبط با مغناطیس زمین آخرین پروسه کنترل کیفیت پایش از اجرای WMM توسط BGS انجام می گیرد. برای متوسط های ساعتی، این عمل شامل رسم کلیه داده ها برای تشخیص خطا های توپوگرافیک و پرش ها و رسم اختلاف بین داده ها و مدل های جهانی اولیه برای تشخیص حرکت های آرام است.
انتخاب داده برای WMM2005WMM میدان اصلی (Bm) و تغییرات آرام آن با زمان را مدل می کند (تغییرات سکیولار برای 2005 تا 2010). با این وجود، میدان مغناطیسی زمین آنچنان که بر روی سطح زمین اندازه گیری می شود و یا در ماهواره ، عرض جغرافیایی یک ترکیب از چندین میدان مغناطیسی است. ریسک بایاس کردن مدل Bm بسیاری از میدانهای تولید شده در خارج از زمین بسیار متغیر است و نسبت به زمان و مدلسازی آنها مشکل است. پروسه انتخاب داده ها از این رو به منظور کمینه کردن سهم این میدان ها و اثرت القا شده آنها در زمین است. سه گزینه استاندارد وجود دارد:
1- اطلاعات فقط در نیمه شب زمین انتخاب شده اند
2- داده فقط در دوره های آرام مغناطیسی انتخاب شده است
3-فقط داده های اسکالر در عرض های جغرافیایی بالا انتخاب شده اند.
اولین استاندارد برای کمینه کردن توزیع سهم میدان مغناطیسی تولید شده در یونوسفر بسیار موثر است. چون هدایت یونوسفر تنها در نیمه روز زمین بالا است. دوره های آرام مغناطیسی شامل آن بازه های زمانی است که میدانهای خارجی به شدت ضعیف هستند و زمانیکه آنها نسبت به زمان تغییرات اضافی ندارند. شناخت دوره های آرام مبتنی بر اندیس های DST واست. (محاسبه از داده های پایشگری) از قدرت و راستای اندازه گیری شده میدان مغناطیسی درون سیاره ای( IMF ) و سرعت بادهای خورشیدی خواهد بود. داده های اسکالر در ارتفاع بالا انتخاب شده است تا اثرات سیستم های جریانی موجود را در این مناطق به کمترین مقدار ممکن برساند؛ این مناطق به نوبه خود باعث تولید نویز بسیار زیادی در داده های برداری می شوند.
اندیسkp صفحه ای بر مبنای اندیس K است. یک اندیس موضعی از دامنه ای سه ساعتی در فعالیت مغناطیسی دو مولفه افقی میدان x,y نسبت به یک منحنی مفروض و روز آرام برای پایش مغناطیس زمین درجه اغتشاشات موضعی با اندازه گیری در بازه های زمانی 3 ساعته برای بسیاری از مولفه های میدان مغناطیسی دچار اغتشاش شده انجام می گیرد. سپس این دامنه، با استفاده از یک محور لگاریتمی شده که متعلق به وضعیت معلوم است، به یک اندیس K موضعی تبدیل می شود. این کار تلاشی برای نرمال کردن فرکانس حدوث اغتشاشات با اندازههای مختلف است. اندیس Kp سه ساعته (میانگین مقدار K از 13 مورد انتخاب شده از میان مشاهدات ایستگاههای لرویک، اسکدالمیور و هارتلند) که در مقیاس سه تایی ارائه شدهاست (28 مقدار).
ذرات بارداری که توسط میدان مغناطیسی زمین در حرکت های آرام مگنتوسفر حول زمین در فاصلهای معادل 3 تا 8 برابر شعاع زمین به دام افتاده اند، یک حلقه جریان الکتریکی در راستای غرب ایجاد می کنند. که میدان آن با میدان مغناطیسی اصلی زمین مخالفت می کند. قدرت این میدان از مرتبه 10 هاnT در دوره های زمانی آرام و چندین صد nT در زمان بادهای مغناطیسی است. جریان وقفه مغناطیسی، دم و حلقه جزئی موجب اغتشاشات اضافی می شوند و باعث عدم تقارن در میدان می شوند که در مدت طوفانهای مغناطیسی افزایش یافته اند. قسمت متقارن این میدان مزاحم مرکب توسط DST بررسی شده است. زمان طوفان مزاحم برای 4 مورد پایش و اندازه گیری در ارتفاع پایین به دست آمده است.
از آنجایی که WMM با اهداف تحقیقاتی مورد استفاده قرار میگیرد، باید بتواند به صورت دقیق مقادیر میدان مغناطیسی را برای یک بازه زمانی 5 ساله محاسبه کند. بر این اساس، توانایی در محاسبه تغییرات ارضی، خیلی مهم است و داده های بازه های زمانی طولانی در این مرحله به کار می آید.
انتخاب و پیش پردازش برای مدل ها
مجموعه داده های ماهواره ای اورستد و چمپ نیازمندی های WMM را برطرف می کنند. چمپ پایین تر از دو ماهواره قرار دارد و از اینرو در معرض سطح آلودگی بیشتری است. این آلودگی ناشی از سیگنال میدان پوسته و همچنین سیستم های جریان الکتریکی که بین سطح زمین و مسیر ماهواره در جریان است، می باشد. از سوی دیگر، داده های چمپ که در ارتفاع پایین به دست آمده قید های بهتری را بر روی طول موج های کوچک مدل میدان مغناطیسی داخلی، تامین می کند.
هر دو ماهواره، داده های برداری و اسکالر با کیفیت بسیار بالا در تمام عرض ها و طول های جغرافیایی تأمین می کنند. گپ ها کاملاً در اتصالات بین مجموعه داده های متوسط ساعتی پایش شده تقریباً در کل دوره مورد نظر پیوسته است. هرچندکهپوشش فضایی ضعیفاستشکل1ضمیمه (الف) داده های پایشی از اینرو قید های خوبی را در مدت زمان تغییرات میدان مغناطیسی زمین به دست می دهد. سطح نویز در داده های پایش بیشتر از داده های ماهواره ای است. که علت آن نزدیکی پایشگرها به اجسام هادی در پوستهاست.میدان هایخارجیمتغیر بازمان،جریان هایالکتریکی را به اینهادی ها القا می کند و باعث تولید تزاحم مغناطیسی در پایشگرها می شود.
مقادیر اندازه گیری شده مغناطیسی ماهواره چمپ بدلیل اثر دیا مغناطیسی محیط پلاسمای اطراف، تحت تأثیر قرار می گیرد و باعث کاهش توانایی خواندن میدان مغناطیسی می شود. این اثر در مرتبه یک چندnT بوده و در نزدیکی استوای مغناطیسی در ساعت های پیش از نیمه شب قوی تر است. با استفاده از چگالی الکترون و دماهای خوانده شده توسط پراب(سنجنده) لانگمور چمپ، یک اصلاح دیا مغناطیسی ساده بر روی داده های چمپ اعمال می شود.
انتخاب برای توانایی پیشگویی پیشرو تا 2010پیشگویی تغییرات سکیولار تا 2010 تا حدودی وابسته به مجموعه طولانی از پایش های متوسط سالیانه در X،Y،Z از آنجایی که داده های ماهواره و داده های متوسط ساعتی پایش فقط حدود 5 سال را پوشش می دهند. این شامل انتخاب موضوعی بر مبنای پیوستگی و طول مجموعه های زمانی و توانایی پایش و رسم داده ها برای شناسایی، پرش های تعیین نشده و اولین قسمت های ضبط شده که نویزی بوده اند. هر عدم پیوستگی شناخته شده به عنوان مثال ناشی از تغییر موضع ستون، پایه- های پایش مطلق به کار گرفته شده است. لیست پایشگرهای استفاده شده و پوشش زمانی در جدول 6 ضمیمه (ب) آمده است.
روشهای مدلسازیابتدا یک مدل اصلی بر اساس تمامی دادههای موجود تشکیل داده میشود، تا به منظور سنتز مقادیر میدان مغناطیسی در خلال (1999-2000 الی 2004-2005) مورد استفاده قرار گیرد.
پیشبینی تغییرات ارضیپیشبینی تغییرات آتی میدان مغناطیسی، از روی دادههای میانگین سالیانه مشاهده شده بلندمدت و نیز برونیابی چند جملهای مدل اصلی و بر اساس دادههای ماهوارهای و مقادیر میانگین ساعتی مشاهده شده انجام میگیرد. دادههای میانگین با استفاده از تعیین و اعمال فیلترهای خطی پیشبینی کننده بر سری تفاضلی مرتبه اول پردازش میشوند و حاصل تقریبی از تغییرات ارضی تا سال 2010 (مک میلان و کوئین 2000) قابل استفاده می باشد.
تکنیکهای وزندهی به دادههایکی از عمدهترین مسایل در حین مدلسازی میدان ژئومغناطیسی، برآورد وزنی است که باید به هر یک از دسته دادهها اعمال گردد و در هر دسته از دادهها، وزنی که باید به هر یک از دادهها اعمال گردد. در اصل دادهها را باید با معکوس واریانس خطای اندازهگیری وزن دهی کرد، اما این واریانس نیز به نوبه خود اغلب مجهول است. علاوه بر این، مدل های میدان مغناطیسی، تمامی منابع میدان مغناطیسی اندازهگیری شده را مدل نمیکنند بنابراین وزن دادهها باید تأثیر این سیگنال های مدل نشده را نیز در خود بگنجانند. به منظور حفظ اثرات چگالی در نزدیکی قطبین و افزایش میزان نویز در عرض جغرافیایی بالا، به دادههای حاصل از ماهوارهها در این محدودهها وزن کاهیده اعمال میشود. روند مشابهی در بکارگیری دادههای مشاهداتی مورد استفاده قرار میگیرد که توزیع آنها در اروپای غربی و آمریکای شمالی زیاد است و در نیمکره جنوبی کم است.
لایه یونوسفر در عرض جغرافیایی بالا، همواره در معرض بارش ذرات بارداری است که باعث میشوند رسانایی آن حتی در شرایط تاریکی مطلق بالا باشد. تأثیر میدانهای مغناطیسی مگنتوسفیر در یونوسفر قطبی ظاهر میشود و سیستم های مختلف جریان از آن مشتق میشوند. این سیستم جریانها خیلی متغیر هستند اما حتی در دورههای سکوت مغناطیسی نیز وجود دارند. بنابراین دادههای جمعآوری شده در این نواحی باید به دلیل وجود نویز بالا با وزن کاهیده در سری دخالت داده شوند. به همین منوال، دادههای برداشت شده در طلوع و غروب خورشید از آنهایی که در نیمهشب برداشت میشوند خیلی نویزدارتر هستند؛ علیالخصوص در ارتفاعات بالا این مسئله جدیتر است و وزندهی باید به نحوی صورت گیرد که این نکته را در خود لحاظ کند. چگالی بالای داده بَرداری ماهوارهای در عرض جغرافیایی بالا، و شکافی که در دادههای مربوط به قطبین وجود دارد، از خصوصیات مدار ماهواره ناشی میشود. سایر نامنظمیهای پوشش دادههای فضایی از ارجح بودن انتخاب دادههای مربوط به دوره سکوت ناشی میشود. جهت جبران معضل ناشی از دادههای نامساوی، تعداد دادهها در نواحی مساوی شمرده میشود و دادههای هر یک از نواحی در معکوس تعداد دادههای همان ناحیه ضرب میشود.
قطب مغناطیسی و محل دوقطبی خارج از مرکزقطبهای ژئومغناطیسی، که از آنها تحت عنوان دو قطبی نیز یاد میشود را میتوان از طریق 3 ضریب نخست گاوسی مورد محاسبه قرار داد. با استفاده از ضرایب WMM2005 که در سال 2005 برای قطب مغناطیسی شمالی محاسبه شدهاست، این قطب در طول جغرافیایی 78/71 درجه غربی و عرض جغرافیایی ژئودزی 74/79 درجه شمالی قرار دارد؛ و قطب جنوب ژئومغناطیسی در طول جغرافیایی 22/108 درجه شرقی و عرض جغرافیایی 79/74 درجه جنوبی قرار دارد.
قطبهای مغناطیسی که با عنوان قطبهای فرورفته نیز شناخته میشوند، از تمامی ضرایب گاوسی و با استفاده از یک روش تکراری محاسبه میشوند. در سال 2005 قطب مغناطیسی شمالی در طول جغرافیایی 23/118درجه غربی و عرض جغرفیایی ژئودزی 21/83 درجه شمالی قرار داشت و قطب جنوب مغناطیسی در طول جغرافیایی 86/137 درجه شرقی و عرض جغرافیایی 53/64 درجه جنوبی قرار داشت. در عمل، میدان ژئومغناطیسی در این قطبین فرورفته کاملاً قائم است، اما در طول روز مسیر هایی به صورت بیضیگون را طی میکند که از روزی به روز دیگر تغییرات چشمگیری دارد و تقریباً در مرکز موقعیت فرورفتگی قرار دارد.
موقعیت مرکز دوقطبی خارج از مرکز که از آن با عنوان مرکز مغناطیسی نیز یاد میشود، با استفاده از 8 ضریب اول گاوسی محاسبه میشود که در سال 2005 تقریباً بودهاست.
پارامتریسازی مدلمیدان هندسی اندازهگیری شده در سطح زمین یا در مدار ماهواره، حاصلجمع میدانهای حاصل از منابع داخلی یا خارجی کره زمین است. برخلاف منابعش، میدان مغناطیسی داخلی B یک میدان پتانسیل است و بنابراین میتوان آن را به صورت منفی گرادیان یک کمیت اسکالر نوشت. این پتانسیل برحسب ترمهای هارمونیک کروی به صورت ذیل نوشته میشود:
(2-1)
که در آن a (2/6371 کیلومتر) شعاع مرجع میدان مغناطیسی استاندارد زمین است، عرض جغرافیایی، طول جغرافیایی و شعاع در یک دستگاه مختصات مرجع کروی ژئوسنتریک است وضرایب گاوسی وابسته به زمان از درجه n و مرتبه m است که منشاءهای داخلی میدان را توصیف میکند.توابع لژاندر شبه نرمال اشمیت هستند.[ضمیمه الف]
در این توابع تعداد n = 36جمله مورد استفاده قرار داده شده و از باقی جملات صرفنظر شدهاست. فرض آن است که ضرایب داخلی گاوسی[جدول 1 ضمیمه ب] از درجه 1 تا 8 چندجملهای درجه 2 نسبت به زمان هستند،
(3-1)

در سمت چپ معادله 3-2، وتوابع متغیر با زمان هستند ودر سمت راست معادله نماینده ثوابت هستند. زمان بر حسب سال دهدهی داده شده است و t0 تاریخ مرجع مدل است و تقریباً در نقطه میانی گستره زمانی ماهواره و مقادیر میانگین ساعتی مشاهده انتخاب شدهاند. از درجه 9 تا 12 وابستگی ضرایب گاوسی داخلی به زمان، به صورت خطی در نظر گرفته میشود، و در درجات بالاتر نسبت به زمان ثابت فرض میشود. این عدد، آخرین عددی است که در آن میتوان ضرایب را بدون اثر دمپینگ به صورت روباست تعیین کرد.
مدلی که در معادله 2-2 ارائه شده است، صرفاً در مواردی که منشاء داخل کره زمین است کاربرد دارد؛ نظیر میدان پوسته زمین و میدان داخلی اصلی زمین. برای میدانهای خارجی ناشی از جریانات یونوسفر و مگنتوسفیر، یک نمایش هارمونیک کروی نظیر معادله 2-1 مناسب است. با این حال، میدانهای خارجی معمولاً در دستگاه مختصات مرجع متصل به خورشید بیان میشوند. مدل فعلی ما، نوعی مدل پارامتری مگنتوسفیری درجه 2 ثابت است که در دستگاه مختصات مرجع خورشیدی بیان میشود. برای مشاهده کننده مدوری که به زمین متصل شدهاست، این میدان تغییرات منظم روزانه و فصلی دارد.
جابجاییهای جزر و مدی آب دریا از طریق میدان مغناطیسی زمین، میدانها و جریانهای الکتریکی القایی و میدانهای مغناطیسی ثانویپدید میآورد که تا حدود 7 نانو تسلا در سطح اقیانوسو 3 نانو- تسلا در مدار ماهوارهای میرسد. این میدانها به خوبی از دادههای ماهوارهای قابل استخراج و تجزیه و تحلیل هستند و با پیشبینیهای مربوط به جریانهای اقیانوسی جذر و مدی اشتراکاتی دارند (تایلر و دیگران، 2003).
در نهایت وقتی مجموعه دادهها شامل دادههای میانگین مشاهدات ساعتی باشد، جابجایی عددی در هر یک از جایگاههای ناظر نیز باید لحاظ گردد تا اثر میدانهای محلی که اکثراًً در پوسته زمین تولید میشوند و به وسیله مدل قابل توصیف نیستند نیز تفکیک گردد. سپس در جایگاه مشاهده، میدان مغناطیسی B به صورت:
(4-1)
خواهد بود. که بردار جابجایی عددی، که با عنوان انحراف پوستهای نیز خوانده میشود، نسبت به زمان ثابت میماند.
پارامتریسازی فوق برای برازش مجموعه دادههای منتخب از اندازهگیریهای ماهوارهای و مقادیر میانگین ساعتی مشاهده شده مورد استفاده قرار میگیرد.
نوع دیگری از دستگاه محورهای مختصات که در حوزه مدلسازی میدان مغناطیسی بکار میرود، سیستم مختصات ژئومغناطیسی است. لازم به ذکر است در نرم افزار طراحی شده ما، کاربر اطلاعات مربوط به طول و عرض جغرافیایی را وارد میکند و برنامه این اطلاعات را به مختصات ژئو مغناطیسی بر میگرداند. این سیستم مختصات در بدست آوردن WMM2005 برای شناسایی مکان دادهها در یک باند عرض جغرافیایی از استوای ژئومغناطیسی که در آن مقادیر دادههای برداری مورد نیاز هستند بکار میرود و بر مبنای میدان دوقطبی داخلی مرکزی شده قرار دارد و با سه ضریب اول میدان اصلی در یک مدل هارمونیکی کروی جهانی بیان میشود. محور مرجع آن همراستا با محور دوقطبی قرار دارد که از محور گردش زمین حدود 11 درجه انحراف داشته و سطح زمین را در قطبهای ژئومفناطیسی قطع میکند. استوای ژئومغناطیسی، دایره عظیمهای است که نسبت به قطبین ژئومغناطیسی در موقعیت 90 درجه قرار دارد و عرض جغرافیایی ژئومغناطیسی بین صفر درجه در استوای ژئومغناطیسی تا 90 درجه در قطبین ژئومغناطیسی متغیر است.[ضمیمه الف]
ضرایب مدلضرایب مدل، که از آنها با عنوان ضرایب گاوسی نیز یاد میشود، تصویر دقیق و مناسبی از میدان مغناطیسی اصلی زمین ارائه میکند. مقادیر مربوط به آنها در جدول 1 ضمیمه (الف) ارائه شدهاست. این ضرایب برای محاسبه مقادیر المانهای میدان و نرخ سالیانه آنها در نقاط مختلف نزدیک سطح زمین و در هر تاریخی در خلال سالهای 2005 الی 2010 مورد استفاده قرار میگیرند.
9-2 معادلات مربوط به محاسبه عناصر میدان مغناطیسی
روشی گام به گام برای محاسبه عناصر میدانهای مغناطیسی در یک مکان و زمان مشخص ارائه گردیدهاست. که در آن h ارتفاع جغرافیایی، و طول و عرض ژئودزی و t زمان برحسب سنوات دهدهی است.
در نخستین گام، مختصات ژئودزی بیضیگون بوسیله تبدیل زیر به مختصات کروی ژئوسنتریک منتقل میشود:
(5-2)
(6-2)
که در آن A = 6378.137 km محور شبهاصلی (شعاع استوایی) بیضیگون وB = 6356.75231 kmمحور شبه فرعی بیضیگون مرجع WGS84 است.
در قدم بعدی، ضرایب گاوسی درجه n و مرتبه m در زمان مشخصی تعیین میشوند. این کار از طریق تنظیم ضرایبمیدان در زمان 2005 برای تغییرات ارضی خطی انجام میگیرد:
(7-2)

که در آن زمان داده شده بر حسب سال دهدهی است و t0 = 2005زمان مرجع مدل است.
در گام سوم، مؤلفههای برداری میدان X'،Y' و Z' در مختصات ژئودزی به صورت ذیل محاسبه می شوند
(8-1)
(9-1)
(10-1)
در این نقطه، میتوان تغییرات ارضی مؤلفه های میدان را نیز به صورت زیر محاسبه کرد
(11-1)
(12-1)
(13-1)
در گام چهارم، مؤلفههای برداری X'، Y' و Z' به دستگاه مختصات ژئودزی برگردانده میشوند.
(14-1)

که در آن اختلاف میان عرضهای جغرافیایی ژئوسنتریک و ژئودتیک است و در گام 1 محاسبه شده است. به روش مشابه، مشتقات زمانی مؤلفههای برداری با استفاده از رابطه 15-1 محاسبه میشوند.
(15-1)

در گام بعدی، المانهای مغناطیسی H، F، D، Iو تغییرات شبکه GV به طرق زیر از روی مؤلفههای برداری محاسبه میشود
(16-1)

که در آن arctan(a, b)، tan-1(a/b) است. با در نظر داشتن ربع زاویهای، و اجتناب از تقسیم آن بر صفر که منجر به کاهش در بازه 180- درجه تا 180 درجه و افزایش در بازه 90- تا 90 خواهد شد؛ در H = 0 کاهش، تعریف نشده خواهد بود.
تغییرات ارضی این المانها با استفاده از
(17-1)
انجام میگیرد که در آن بر حسب درجه بر سال هستند. در اینجا، عاملاز رادیان به درجه تغییر میکند. این ضریب تبدیل در معادله 16-1 حضور نخواهد داشت، البته با این فرض که تابع arctan برحسب درجه خواهد بود.
بنابراین با توجه به اطلاعات به روز شده ماهواره های چمپ و اورستد و تعیین ضرایب مدل، به مدل- سازی میدان مغناطیسی زمین بپردازیم.

328422078105فصل دوم
00فصل دوم
36474401184275400000
-662305243205 تبدیل معادلات استخراج شده
به
مدل قابل استفاده
00 تبدیل معادلات استخراج شده
به
مدل قابل استفاده

معادلات به کار گرفته شده
در این بخش به معرفی معادلات به کار گرفته شده در الگوریتم ها می پردازیم. لازم به ذکر است که اثبات این معادلات در فصل قبلی آورده شده است.
مؤلفه های شتاب جاذبه را بصورت زیرمی باشد:
(1-2)
که در آنU، تابع پتانسیل جاذبه، ، فاصله از مرکز زمین،، عرض جغرافیایی زمین مرکزی و، طول جغرافیایی بوده و ،و بترتیب مولفه های بردار شتاب جاذبه در راستای ، و هستند .
حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل شتاب ناشی از میدان جاذبه زمین ارتفاعm 1500
عرض جغرافیاییDegree 20 -9.8084
طول جغرافیاییDegree 85
درجه مدل تا 360 20
جدول SEQ جدول * ARABIC 3- حل مثال عددی برای مدل شتاب ناشی از میدان جاذبه زمینمدل باد خورشیدی پارکر به صورت زیر محاسبه می گردد.(2-2)

r فاصله مرکز خورشید تا نقطه مورد نظر وشعاع بحرانی( ) و سرعت صوت() می باشد.( پارامتر گرانشی خورشید و T دمای تاج خورشیدی و )
برای محاسبه دمای الکترون و پروتون در هنگام روز و شب از [ جدول 3 ضمیمه ب] و رابطه زیر استفاده می کنیم:
(3-2)
که در آن دمای لایه i ام و ارتفاع لایه i ام و نرخ نیواری دما (تغییرات دما بر حسب ارتفاع،) در لایه i می باشد.
مطابق جدول [2 ضمیمه ب]، عدد لکه خورشیدی(R) بر اساس F10.7
(4-2)
که در آن F10.7، شار خورشیدی در طول موج 7/10 سانتی متر می باشد.
رابطه باد خورشیدی با فعالیت های ژئومغناطیسی در 1AU
(5-2)
که در آن نمایه ‍ ژئومغناطیسی دامنه روزانه سیاره ای است.
حل مثال عددی:
نام مدل ورودی ها خروجی ها
مدل باد خورشیدی ارتفاعm
(1AU for solar wind)
زمانyear(1996-2017)
ماه(1-12)
روز یا شب 300000 71/310 4/18
1300 4/13
2008 800 5/9
10 36/493 87/106
* 92/449 53/42
53/411 76/6
7/151 3/96 7/68 برای محاسبه پارامتر های میدان مغناطیسی، مؤلفههای برداری میدان X'، Y'و Z'در مختصات ژئودزی به صورت ذیل محاسبه میشوند:(6-2)

مؤلفههای برداری X'، Y' و Z' به دستگاه مختصات ژئودزی برگردانده میشوند
(7-2)

که در آن اختلاف میان عرضهای جغرافیایی ژئوسنتریک و ژئودتیک است.
المانهای مغناطیسی H، F، D،I و تغییرات شبکه GV به طرق زیر از روی مؤلفههای برداری محاسبه میشود:
(8-2)

حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل پارامتر های ناشی از میدان مغناطیسی زمینارتفاعm 2000 31 52/0
زمانyear(2005-2010) 20 7/87 7/47
عرض جغرافیاییDegree 30 7/33594 5/30-
طول جغرافیاییDegree 10 1/306 8/36973-
8/36973 7/33594-
1/33596 1/306
6/49957 جدول SEQ جدول * ARABIC 4- مدل پارامتر های ناشی از میدان مغناطیسی زمینپارامترهای ناشی از اتمسفر زمیندر مدل سازی اتمسفر برای ارتفاع های زیر 86 کیلومتر با استفاده از [جدول 4 ضمیمه ب] داریم:
T0 = 288.16 (k) ,P0 = 1.01325e5 (pa), = 1.225 (kg/m^3)
(9-2)

به ترتیب ارتفاع، فشار، دماوچگالیدرلایه میباشد و n عدد مربوطبه لایه میباشد و λ > 0 (λ، نرخ نیواری دما) به معنای افزایش دما با ارتفاع می باشد.
بدین ترتیب دما و فشار و چگالی بدست آمد. برای محاسبه سرعت صوت از رابطه:
(10-2)
استفاده می کنیم که:
= 1.4 نرخ گرمای ویژه
R = 287(J/kg-K)ثابت هوا
برای ارتفاع های بالاتر از 86 کیلومتر که اتمسفر تحت تاثیر فعالیت های خورشیدی و پارامتر F10.7می باشد از [جدول 5 ضمیمه ب] استفاده می کنیم.
حل مثال عددی
نام مدل ورودی ها خروجی ها
مدل پارامتر های ناشی از اتمسفر زمینارتفاعm 90000 54/193
6/179
5/182
18/0
17/0
18/0

8/278
67/268
85/270
جدول SEQ جدول * ARABIC 5- مدل پارامتر های ناشی از اتمسفر زمین
328422078105فصل سوم
00فصل سوم
36474401184275400000
-662305243205 توصیف نرم افزار شبیه ساز
میدان مغناطیسی
00 توصیف نرم افزار شبیه ساز
میدان مغناطیسی

299466078105فصل چهارم
00فصل چهارم
36474401184275400000
-662305243205 ماهیت میدان مغناطیسی
و
شبیه ساز کوثر100
00 ماهیت میدان مغناطیسی
و
شبیه ساز کوثر100

میدان مغناطیسی چیست ؟میدان عبارتست از فضایی اطراف المانی فرضی چون A که در آن محدوده المان غالب و تعیین کننده شرایط همان المان A است . حال اگر المان A دارای خاصیت مغناطیسی باشد ، میدان اطراف آن میدان مغناطیسی خواهد بود . در این صورت اگر ذره متحرک بار داری با بار q و سرعت V وارد فضای میدان مغناطیسی به بزرگی B شود ، بر آن نیرویی به بزرگی F وارد خواهد شد . در واقع میدان عامل این انحراف از مسیر اولیه ذره است . میزان این انحراف تابع میزان و راستای نیروی F است که از رابطه زیر قابل حصول است .
( 4- 1 ) F=q V×Bدر رابطه بالا F بر حسب نیوتن و q بر حسب کلون و V نیز برحسب متر بر ثانیه است . در این صورت میدان مغناطیسی مولد این نیرو دارای واحد تسلا خواهد بود . واحد میدان مغناطیسی در دستگاه SI تسلا است ( هرتسلا معادل نیوتن-ثانیه بر کولن- متر است ) و هر تسلا عبارتست از بزرگی میدانی که به ذره ای یک کولنی که با سرعت یک متر بر ثانیه عمود بر راستای میدان درحال حرکت است ، نیرویی یک نیوتنی وارد کند .
(1- 2 ) then T=N.sC.mB=FqVاما هر تسلا مقدار بزرگی است برای رفع این مشکل در مصارف آزمایشگاهی واحد دیگری به نام گوس مورد استفاده قرار می گیرد و بین گوس و تسلا رابطه زیر برقرار است .
1 تسلا = 10000 گوس

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

مبانی فیزیکی پیچه هلمهولتزاساس کارکرد پیچه هلمهولتز ، قانون و رابطه بیو و ساوار است . البته در مراجع اصلی فیزیک این رابطه با دو فرم دیفرانسیلی و غیردیفرانسیلی ذکر شده که در ادامه در قالب روابط 1-4 و 1-5 ارائه شده اند . در واقع این روابط میدان مغناطیسی حاصل از المان مبدل میدان را به صورت جزئی ( دیفرانسیلی ) از میدان مغناطیس نهایی در نظر گرفته و با انتگرال گیری از آن در تمام طول جریان به میدان نهایی می رسد . فرم کلی این روابط به شکل روابط 1-4 و 1-5 است .
(4- 4 )* dBr2=μ04π×IdI×(r2-r1)r2-r13(4- 5 )* Br2=μ04πIdI×(r2-r1)r2-r13
تصویر SEQ تصویر * ARABIC 7- میدان تولیدی ت.سط سیم حامل جریان*پارامتر هایی که به صورت پر رنگ نوشته شده اند ، بردار هستند .
19761203402965تصویر 1-1 ) میدان تولیدی توسط سیم حامل جریان
00تصویر 1-1 ) میدان تولیدی توسط سیم حامل جریان
در رابطه و تصویر فوق جنس متغیر ها به قرار زیراست :
: *I جریان مبدل میدان مغناطیسی بر حسب آمپر (A)
r2 : موقعیت نقطه ای که میدان در آن خواسته شده نسبت به مرجعی مطلوب
r1 : موقعیت المان مبدل میدان نسبت به مرجعی مطلوب
0µ : ضریب گذردهی مغناطیسی خلاء برابر با 4.10-7 (N.s2/C2)
B: میدان مغناطیسی تولیدی
* : باید توجه کرد که شدت جریان کمیتی برداری نیست و در روابطی مانند رابطه های 4-4 و 4-5 که در آنها لازم است I نقش بردار را بازی کند ؛ برداری فرضی در رابطه مورد استفاده قرار می گیرد که دارای بزرگی و جهت شدت جریان و راستای سیم حامل جریان است .
در انتهای این بحث باید این مطلب را ذکر کرد که بر اساس روابط 4-4 و 4-5 شدت میدان مغناطیسی در هر نقطه از فضا اولاً به موقعیت آن نقطه و سپس به شدت جریانی که از مدار می گذرد بستگی دارد . اما باید توجه کرد که در بحت پیچه ها شدت جریان گذرا از پیچه ها بر اثر عواملی چون القاء متقابل پیچه ها و دیگری پدیده خود القایی با جریانی که توسط منبع به پیچه ها اعمال می شود ( و البته در محدوده ای بسیار کوتاه از زمان ) متفاوت است و برای ثبت نتایج در آزمایش حلقه های هلمهولتز یا باید صبر شود تا این محدوده زمانی بگذرد و ثبت نتایج صورت گیرد و یا در صورت انجام آزمایش در این محدوده زمانی باید انواع پدیده های القاء وارد روابط شده و روابط اصلاح شوند ( مطالب مذکور در بخش القاء در انتهای همین فصل به طور کامل مورد بررسی قرار خواهد گرفت ) .
میدان مغناطیسی حلقه
میدان مغناطیسی حاصل از یک حلقه هلمهولتز به شعاع a ، در نقطه ای منطبق بر محور مرکزی آن و در فاصله z از مرکز حلقه ( مانند تصویر شماره 1-2 ) با استفاده از قانون بیو و ساوار با استفاده از روش زیر محاسبه می شود :

تصویر SEQ تصویر * ARABIC 8- میدان در نقطه ای روی محور تک حلقه (4- 6 ) dI=adθ(-i Sinθ+j Cosθ) (4- 7 ) r2-r1=-ia Cosθ-j aSinθ+kz(4- 8 ) r2-r1=a2+z21/2از قرار دادن روابط فوق در رابطه 4-5 خواهیم داشت :
(4- 9 ) Bz=μ04πI02πi za Cosθ+j zaSinθ+ka2a2+z23/2 dθنتیجه انتگرال دو جمله اول صفر می شود و آنچه باقی می ماند عبارتست از :
(4- 10 )* Bz=μ0I2a2a2+z23/2k* iو j و k ، بردارهای واحد دستگاه دکارتی هستند .
پیچه هلمهولتز و میدان مغناطیسی آنپیچه هلمهولتز از دو پیچه مستدیر با شعاعهای مساوی و محور مشتورک تشکیل شده که جریانی همسو از آنها می گذرد . فاصله میان دو صفحه پیچه طوری انتخاب می شود که مشتق دوم میدان مغناطیسی در نقطه ای واقع بر محور و به فاصله مساوی از پیچه ها صفر شود . تصویر 1-3 چنین دستگاهی را نشان می دهد .

تصویر SEQ تصویر * ARABIC 9- حلقه های هلمهولتزمیدان مغناطیسی در نقطه P عبارتست از :
(4- 11 ) BKz=Nμ0Ia221a2+z23/2 +12b-z2+a23/2عدد N در رابطه بالا مربوط است به حالتی که در آن هر یک از پیچه ها N دور سیم پیچ دارند . مشتق اول Bz نسبت به z عبارتست از :
(4- 12 ) dBdz=Nμ0Ia22-322za2+z25/2 -322(z-2b)2b-z2+a25/2در نقطه z=b مقدار این مشتق صفر است و مشتق دوم تابع میدان نسبت به Z به شکل زیر است
(4-13)
d2Bdz2=-3Nμ0Ia221a2+z252-522z2a2+z272+12b-z2+a252-522z-2b22b-z2+a272 و در نقطه z=b مقدار آن برابر است با :
(4- 14 ) d2Bdz2z=b=-3Nμ0Ia22b2+a2-5b2+b2+a2-5b2b2+a27/2که به ازاء a2-4b2=0 صفر می شود . پس انتخاب مناسب برای b عبارتست از :
2b=aیعنی فاصله بین دو پیچه باید برابر با شعاع پیچه ها باشد . با این شرط و با استفاده از رابطه 4-11 بزرگی میدان در نقطه وسط حلقه ها برابر است با :
(4- 15 ) B(T)=Nμ0Ia853/2 =8.992×10-7NIaدر رابطه بالا شدت جریان بر حسب آمپر و شعاع حلقه بر حسب متر وارد معادله شده تعداد دور سیم نیز بدون بعد است . در نهایت میدان مغناطیسی تولیدی در مرکز فاصله بین دو پیچه بر حسب تسلا خواهد بود .
برای سهولت می توان رابطه 4-15 را به شکل زیر بازنویسی کرد :
(4- 16 ) B(G)=32πN532a*I10در رابطه 4-16 بزرگی میدان مغناطیسی بر حسب گاوس ، شعاع بر حسب سانتیمتر و شدت جریان نیز بر حسب آمپر هستند .
ویژگی و کاربردهای حلقه های هلمهولتزبنابر آنچه گفتیم میدان مغناطیسی به واسطه ذاتی که دارد چه از نظر بزرگی و چه راستا به شدت تابع موقعیت و فاصله نسبت به مولد میدان مغناطیسی است . ویژگی و معجزه حلقه های هلمهولتز تولید میدانی یکنواخت ( چه جهت و چه اندازه ) و درعین حال قابل پیش بینی در محدوده ای از فضاست . همین توانایی حلقه ها ، این حلقه ها را به سامانه های پرکاربرد در زمینه انجام تست و کالیبراسیون محصولات دیگر مرتبط با میدان مغناطیسی تبدیل کرده است . از آنجا که میدانهای الکترومغناطیس در امروزه بسیار پر کاربرد هستند ، حلقه های هلمهولتز اهمیتی صدچندان پیدا می کند .
حلقه های هلمهولتز در تست ابزارهای سنجش بزرگی میدان های الکترومغناطیس مانند اسیلوسکوپها ، تست رادارها و سونارها ، تعیین میزان پاسخگویی سطوح در مقابل میدانهای خارجی ، تعیین ضرایب گذردهی و پذیرفتاری مغناطیسی سطوح با جنس مختلف ( مخصوصاً مواد نانو و نوترکیب ) و ... کاربرد دارد . در عرصه هوافضا نیز هر جا میدان مغناطیسی مطرح است ( در مقدمه از اهمیت میدان مغناطیسی صحبت کرده ایم ) می توان از شبیه ساز میدان مغناطیسی نیز استفاده کرد . تست و تعیین دوپل مغناطیسی مگنتورکرها ، تست و تعیین میزان حساسیت سنسورها و آنتنها نسبت به امواج الکترومغناطیس و میدانهای مغناطیسی ، سمت و سو دادن و هدایت پرتوهای ذرات باردار و سنگین در دستگاههای شبیه ساز محیط تابشی فضا ؛ کاربردهای شبیه ساز میدان مغناطیسی یا حلقه های هلمهولتز است .
تغییرات میدان تولیدی توسط حلقه های هلمهولتز در فضای بین حلقه ها
پیچه های هلمهولتز نقش مهمی در تحقیق علمی دارند و غالباً برای تولید یک میدان مغناطیسی نسبتاً یکنواخت در ناحیه کوچکی از فضا به کار می روند . اما نکته دیگری نیز مطرح است و آن اینکه در چه محدوده ای از فضا می توان میدان را با تقریب خوبی یکنواخت انگاشت یا در دستگاه مختصات دکارتی و در راستای سه بعد از نقطه مرکزی تا چه فاصله ای می توان جابجا شد در عین اینکه میدان مغناطیسی تولیدی با تقریب خوبی ثابت بماند . برای بحث و بررسی این مطلب دو حالات زیر مورد برررسی قرار گرفته اند .
جابجایی در راستای محور حلقه ها
بحث تحلیل نحوه تغییرات مؤلفه های میدان عمود بر محورهای مختصات و نیز در راستای محورهای مختصات از این رو مطرح است که ، جسمی که به عنوان مورد آزمایش در داخل پیچه ها قرار می گیرد دارای ابعاد بوده و در واقع دارای طولی است که در راستای محور مختصاتی و سطحی است که عمود بر محور گسترده شده اند . در این قسمت بحث مربوط به تغییرات مؤلفه های میدان در راستای محورهای مختصات و در بخش آتی بحث مربوط به بررسی تغییرات مؤلفه ها در راستای عمود بر محورها به طور کامل مورد بررسی قرار خواهد گرفت .
به منظور بررسی این موضوع کافیست بسط تیلور میدان حول نقطه مرکزی دو پیچه را تا جمله مرتبه چهارم بنویسیم
(4- 17 ) Bz=Ba2+z-a2∂B∂za2+12z-a22∂2B∂z2a2+…در رابطه بالا Z همان فاصله از یکی از حلقه هاست مانند آن فاصله ای که در تصویر 1-3 نشان داده شده است . چون سه مشتق اول تابع در مرکز دو حلقه صفر است . با محاسبه مشتق چهارم تابع چنین می توان نوشت :
(4- 18 ) Bz=Ba2+124z-a24∂4B∂z4a2+…(4- 19 ) Bz≈Ba21-144125z-a2a4حال برای نقطه ای به فاصله از مرکز دو حلقه رابطه 1-18 و 19 چنین قابل نوشتن است :
(4- 20 )Ba2+ε≈Ba21-144125a2+ε-a2a4(4- 21 ) Ba2+ε-Ba2=-Ba2.144125εa4رابطه 4-20 همان رابطه 4-19 است که در آنa/2 + جایگزین Z شده است در این صورت با تغییر ، بزرگی میدان مغناطیسی در فاصله از مرکز حلقه محاسبه می شود . اما رابطه 4-21 نیز بیانگر اختلاف بزرگی میدان در نقطهa/2 + با نقطه مرکزی حلقه است که این اختلاف تابع بزرگی میدان در مرکز پیچه هاست .
حال اگر به اختلاف میدان در نقاطa/2 + و a/2مقدار دهیم ، می توانیم ماکسیمم فاصله ای را که در آن اختلاف به آن مقدار مفروض می رسد را بدست آوریم :
→110= 144125εa4Ba2+ε-Ba2=110Ba2⇒ε=0.543a→1100= 144125εa4Ba2+ε-Ba2=1100Ba2⇒ε=0.305a→11000= 144125εa4Ba2+ε-Ba2=11000Ba2⇒ε=0.172aنمودار تصویر 10 نشان دهنده تغییرات بزرگی میدان در نقطه مرکزی فاصله بین حلقه ها با فاصله گرفتن از نقطه مرکزی فاصله ، واقع بر خط واصل مرکز دو حلقه است .
برای رسم نمودار 10 فرضیات زیر در نظر گرفته شده است ( فرضیات مربوط به نمونه مورد آزمایش یا همان مدل 6402 شرکت ETS.LINDGREN است ) .
a=30.5 cm
N=36
I=20 A

–409

پوشش گیاهی عبارت از انواع درختان، بوته‌ها و علوفه و چمن و سبزی که در سطح زمین استقرار می‌یابد به عبارتی هرگونه سرسبزی در سطح زمین را سطح پوشش گیاهی نامند (‌جنگل، مرتع، زراعت) فقدان پوشش گیاهی در سطح زمین از عوامل عمده تخریب سطح خاک توسط باران می‌باشد. پوشش گیاهی مانعی است در مقابل باران که به سطح خاک برخورد می‌نماید. برخورد باران به سطح خاک باعث جابجایی خاکدانه‌ها و فرسایش خاک می‌شود. فرسایش خاک حاصلخیز فقر پوشش و نابودی آن‌را در پی دارد‌. عدم وجود پوشش گیاهی نیز نابودی خاک را در پی دارد. به عبارتی پوشش گیاهی و خاک برای حفظ خود مکمل یکدیگرند‌. عدم وجود یکی باعث نابودی دیگری می‌شود. این ارتباط حیاتی به حیات بشر و موجودات زنده ارتباط دارد.
2- اُت اکولوژی
الف) مطالعه و شناخت روابط و چگونگی رفتار جمعیت یک گونه در رویشگاه و تعامل با اجزاء آن است، که در مدیریت علمی رویشگاه‌‌های یک گونه به منظور حفظ، احیاء و اصلاح آنها حائز اهمیت می‌باشد (مهاجر 1385).
ب) شاخه‌ای از علم اکولوژی که روابط بین یک ارگانیسم یا گونه را با محیط زنده و غیر زنده (رویشگاه آن) مورد مطالعه قرار میدهد.
3- رویشگاه
مجموعه عوامل اقلیمی، خاکی و پستی بلندی که در یک محل وجود دارد و شرایط لازم و کافی را برای استقرار و رشد و توسعه درختان بوجود میآورد. رویشگاه مترادف پایگاه به کار برده میشود (مهاجر 1385).
4- شرایط اکولوژیکی
دامنه پراکنش گونه‌‌های درختی در جنگل‌‌های زاگرس متفاوت بوده و هر گونه دارای نیاز رویشگاهی خاصی می‌باشد. در منطقه اکولوژیک زاگرس گونه‌‌های مختلفی انتشار دارند که در فرم‌‌های مختلف زمین، در جهت‌‌های جغرافیایی مختلف، در ارتفاعات مختلف از سطح دریا، بر روی خاک‌‌های مختلف با خصوصیات فیزیکی و شیمیایی مختلف دارای گسترش‌گاه ویژه‌ای هستند (زهره‌وندی و همکاران 1390).
5- ذخیرهگاه جنگلی
ذخیره‌گاه جنگلی عرصه‌ای جنگلی است که به دلایل اکولوژیک و یا دخالت‌‌های انسانی دچار آسیب شده و با خطر انقراض یک یا چند گونه جنگلی روبه رو است. با توجه به این که چنین پدید‌های نابودی تنوع زیستی را در زیست کره به دنبال خواهد داشت لازم است با هدف جلوگیری از چنین اتفاقی، برنام‌های را برای حفاظت از این مناطق و به منظور استمرار زادآوری اجرا کرد.
6- بادام کوهی
پراکنش جنس بادام از نظر تقسیم بندی‌های جغرافیای گیاهی در منطقه ایرانوـ تورانی است و از حوزه دریای مدیترانه تا آسیا گسترش دارد. پراکنش اصلی آن در جنوب غرب آسیا و خاورمیانه است؛ اما تعداد بسیار کمی از گونه‌ها در چین و مغولستان وهمین طور جنوب شرق اروپا رویش دارند. بررسی‌های تکاملی نشان داده است که تکامل بادام در مناطق استپی خشک، بیابان‌ها و مناطق کوهستانی تحت شرایط سخت صورت پذیرفته و این جنس با زیسگاه‌های خشک و نیمه خشک سازگار شده است. بادام در ارتفاعات و بر روی دامنه‌‌های صخره ای، سنگی، سنگریزه‌ای و یا بستر‌های شنی یا رسی رشد می‌کند. این جنس نیازمند مناطق نورگیر باز است و هم چنین در استپ‌ها و استپ ـ جنگل‌ها می‌روید.
جنس Amygdalus به خانواده Rosaceae گل سرخیان تعلق دارد. در حال حاضر این تیره تقریباً دارای 90 جنس و 3000 گونه می‌باشد و در ایران دارای 4 زیرتیره، 30 جنس و تقریباً 27 گونه و 7 طایفه است. بادام کوهی درختچه‌ای است خاردار شاخه‌‌های آن در ابتدا صاف و قهوه‌ای روشن است پس از چندی رنگ آن به خاکستری روشن یا تیره تبدیل می‌شود. گل بادام روی شاخه‌‌های یکساله به صورت جانبی و انفرادی پدیدار می‌شود. گسترش اصلی جنس بادام در منطقه ایرانی- تورانی است و معمولاً در نواحی جنوب غربی آسیا پراکنده اند. گونه‌‌های بادام در شرایط متفاوتی از جمله در شیب جنوبی رشته کوه‌‌های البرز تا شیب شمالی کوه‌های مکران در جنوب ایران گسترش دارد و رشد می‌کند (وفادار و دیگران 2008). گونه A. arabica در غرب ایران پراکنده است که دارای شاخه‌های شیاردار و دمبرگ 7 میلی‌متری است. این گونه به دلیل اهمیت اقتصادی، دارویی و کشاورزی از زمان‌‌های بسیار دور مورد توجه بوده و در برابر فرسایش از خاک نگهداری می‌کنند و به دلیل وجود اسید‌های چرب غیراشباع و آمیگدالین مصارف دارویی بالایی دارد (شنگ مین 2003).
بلندی درخت بادام به 6 ‌تا10 متر می‌رسد. ریشه آن قوی است و به طور عمودی تا 3 متر در زمین فرو می‌رود و به همین دلیل نسبت به خشکی و کم‌آبی مقاوم است. تنه درختان بادام در جوانی به رنگ خاکستری شفاف و صاف که به‌ تدریج رنگ آن تیره‌تر می‌شود. برگ بادام کشیده و نوک‌تیز و چرمی و کلفت است و بنابراین در هوای گرم و خشک مقاوم است.
از نظر اکولوژیکی، دما مهم‌ترین فاکتور اقلیمی برای گونه بادام است. بادام برای جوانه زنی یکنواخت در بهار، به سرمای زمستانه متوسطی نیاز دارد. درخت بادام سرمای زمستان را در حد متوسطی تحمل می‌کند ولی به علت زود باز شدن گل‌‌های آن تحمل این درخت نسبت به سرمای بهاره کمتر است. نیاز سرمایی برای باز شدن عادی جوانه‌ها بسته به نوع دما متفاوت بوده و از 100 تا 700 ساعت پائین‌تر از 2/7 درجه سانتی‌گراد متغیر است. خواب جوانه‌ها به علت وجود غلظت زیاد قند در آنها می‌باشد. درخت بادام سرمای زمستانه را تا 20- درجه سانتی گراد تحمل می‌کند. در صورتی که سرما بیش از این حد باشد و سرد شدن هوا نیز به تدریج صورت گرفته باشد، درخت بادام مقاومت بیش‌تری به سرما خواهد داشت. عامل محدود کننده کاشت بادام سرمای بهاره بخصوص در زمان گل یا بلافاصله پس از تشکیل میوه است. شیب‌های جنوبی برای کاشت بادام خیلی مطلوب است و زمین‌های هموار نیز در صورتی که دارای هوای ملایمی باشند می‌توانند مورد استفاده قرار گیرد. در مناطقی که سرمای بهاره متداول است باید از ارقام دیر گلده استفاده شود. بنابراین نسبت به سرمای دیررس بهاره بسیار حساس هستند بادام برای رساندن میوه خود نیاز به 8-6 ماه فصل رشد دارد و در تابستان خواهان هوای گرم و خشک می‌باشد و در مناطقی که متوسط بارندگی کمتر از 250 میلی‌لیتر در سال دارد، به خوبی رشد می‌کند (خاتم‌ساز 1371).
مناسب‌‌ترین خاک برای بادام خاک‌‌های لومی می‌باشند، اما با توجه به این‌که درختان بادام اغلب در خاک‌‌های غیر حاصلخیز کاشته می‌شوند، بنابراین قبل از کاشت برای تعیین میزان کمبود مواد غذایی باید تجزیه خاک صورت گیرد. تجزیه برگی نیز برای تشخیص مقدار و نوع عناصر غذایی خاک مفید است.
درخت بادام بی برگ در جنگل‌‌های زاگرسی به عنوان گونه پرستار و پیش‌آهنگ شناخته شده و یکی از مقاوم‌‌ترین درختان به خشکی و گرما در میان درختان و درختچه‌‌های جنگلی شناخته می‌شود. با توجه به اینکه کشور ما یکی از کشور‌های دارای آب و هوای خشک بوده و کمبود آب در کشاورزی و باغبانی مطرح می‌باشد توسعه‌ی کشت و کار گونه‌‌های مختلف بادام در مناطق مناسب ضروری می‌نماید (شکل 1-1).

شکل 1-1- نمایی از درختچه بادام کوهی در منطقه مورد مطالعه (ذخیره‌گاه بادام کلم بدره)7- تیپ‌های گیاهی منطقه
الف) تیپ Amygdalus arabica- Annual grasses
این تیپ در شیب شمالی منطقه در محدوده طول شرقی 25. 1 54 46 تا 22. 2 59 46 و عرض شمالی 6. 5 2233 تا 15. 2 24 33 واقع شده است. به علت شرایط اکولوژیکی و فشار چرای دام، گرایش پوشش گیاهی منطقه منفی است. گونه‌های علفی منطقه مورد مطالعه نیز شامل گراس و فورب یکساله می‌باشند و گیاهان بوته‌ای به صورت محدود وجود دارند. خاک این تیپ عمیق و دارای املاح گچ و آهک و مارن می‌باشد. بافت خاک متوسط تا سنگین دارای ساختمان توده‌ای، مقدار خلل و فرج متوسط با تعداد زیاد و ریشه‌های ریز با تعداد متوسط واکنش در برابر HCL زیاد، هدایت الکتریکی 74/0 دسی‌زیمنس بر متر و اسیدیته آن برابر 78/7 می‌باشد. از نظر پایداری خاکدانه‌ها بسیار سخت و درصد اشباع آن برابر 48 درصد و مقدار کربنات کلسیم در این افق 48 درصد است. میزان لاشبرگ 5 درصد می‌باشد و در این تیپ 29 درصد سنگریزه دیده می‌شود میزان خاک لخت 1/31 درصد می‌باشد. پوشش گیاهی در این تیپ دارای 5/9 درصد تاج پوشش می‌باشد. لیست گیاهان موجود در این تیپ در جدول1-1 ارائه شده است.
جدول 1-1- لیست گیاهان شناسایی شده در تیپ Amygdalusarabica- Annual grassesردیف نام فارسی نام علمی خانواده شکل زیستی
1 گاوزبان خارک‌دار Anchusa strigosa Labill Boraginaceae He
2 گون Astragalu neomozafarina ina Papilionaceae Ch
3 بارهنگ Plantago psylium Plantaginaceae He
4 دانه تسبیح Aegilo pscrassa Gramineae Th
5 جو هرز (قلطاس) Hordeum glaucum Gramineae Th
6 بادامک Amygdalus lycioides Rosaceae Ph
7 گلرنگ زرد Carthamus oxycanthalis Compositae Th
8 شکر تیغال مشهدی Echinops ritroides Bunge Compositae He
9 دگر گل گندمی Hetheranthelium piliferum Gramineae Th
10 زنگوله ای شرقی Onosma heliotropium Boraginaceae He
11 سدابی زگیل دار Haplophylumtuberculatum Rutaceae He
12 طوسک ایتالیایی Scabiosa rotate Dipsacaceae Th
13 ترشک Rumexephedroides Polygonaceae Th
14 بهمن Stipa capensis Thunb Gramineae Th
15 ختمی Alceaaucheri Malvaceae He
16 سوزن چوپان Erodium ciconium Geraniceae Th
17 بادام کوهی Amygdalus Arabica olive Rosaceae Ph
18 خنجوک Pistachia khinjuk Anacardiaceae Ph
19 چچم شکننده Loliumrigidum Gramineae Th
20 شبدر Trifolium campester Papilionaceae Th
21 شکر تیغال Echinopsritroides Compositae He
22 گوش بره Phlomis persica Bioss Labiatae He
23 کنگر Gundelia tournefortii Compositae He
24 علف جارو Bromus danthonia Gramineae Th
25 جارو علفی بامی Bromus tectorum Gramineae Th
26 مریم گلی Salvia bracteata Labiatae He
27 گچ دوست Gypsophila pallida Caryophyllaceae He
28 بله جی جی Astragalus fasciculifolius Papilionaceae Ch
شکل زیستی: تروفیت :Th، همیکریپتوفیت :He، کامفیت :Ch، فانروفیتPh
ب) تیپ Quercus brantii- Amygdalus arabica
این تیپ در قسمت شمال غربی منطقه قرار گرفته است و در بین طول شرقی 2. 2 53 46 تا 28. 6 57 46 و عرض شمالی 16. 9 21 33 تا 36 23 33 واقع شده است. این تیپ دارای شیب زیاد و عمق خاک کم تا متوسط بوده و سنگ بستر در بعضی قسمت‌‌های آن نمایان شده است. پوشش گیاهی درختی بیش‌تر از نوع بلوط ایرانی همراه با پایه‌‌های پراکند‌های از بنه است. بافت خاک متوسط تا سنگین دارای ساختمان توده‌ای، مقدار خلل و فرج زیاد با اندازه متوسط و بدون ریشه و واکنش در برابر HCL زیاد، هدایت الکتریکی 76/0 دسی‌زیمنس بر متر و اسیدیته آن برابر 65/7 می‌باشد. از نظر پایداری خاکدانه‌ها سخت و درصد اشباع آن برابر 2/32 درصد و مقدار کربنات کلسیم در این افق 5/68 درصد است. میزان لاشبرگ 5 درصد می‌باشد و در این افق 7/26 درصد سنگریزه دیده می‌شود و خاک لخت 35 درصدد می‌باشد. درصد پوشش گیاهی این تیپ 49/20 درصد می‌باشد.
جدول 1-2 لیست گیاهان شناسایی شده در AmygdalusarabicQuercusbrantii-ردیف نام فارسی نام علمی خانواده شکل زیستی
1 جارو علفی هرز Bromus danthonia Gramineae Th
2 گلرنگ زرد Carthamu soxycanthalis Compositae Th
3 جاشیر Ferulago macrocarpa Umbelliferae He
4 بابونه Anthemis altissima Compositae Th
5 کنگر Gundeliatournefortii Compositae He
6 دانه گنجشکی Helianthemum salisifolim Cistaceae Th
7 شیرپنیر موئین Galium setaceum Rosaceae Th
8 دم روباهک Lophocloaphleoides Gramineae Th
9 خشخاش هرز Papaverdubium Papaveraceae Th
10 لعل کوهستان Olivier adecombens Umbelliferae Th
11 بادام کوهی Amygdalus arabica Rosaceae Ph
12 دانه تسبیح Aegilopscrassa Gramineae Th
13 جو وحشی Hordeum glaucum Gramineae Th
14 طوسک ایتالیایی Scabiosa rotate Dipsacaceae Th
15 بارهنگ کتانی Plantago psyllium Plantaginaceae He
16 بلوط ایرانی Quercus brantii Fagaceae Ph
17 شکر تیغال Echinopsritroides Compositae He
18 بله جی جی Astragalus fasciculifolius Papilionaceae Ch
19 زوال Eryngium billardieri Umbelliferae He
20 شبدر Trifolium campester Papilionaceae Th
شکل زیستی: تروفیت :Th، ژئوفیت :GE، همیکریپتوفیت :He، کامفیت :Ch، فانروفیتPh
8- خواص دارویی
بادام ملین بوده و روغن بادام ضد یبوست است مخصوصاً می‌توان از روغن بادام رفع یبوست بچه‌ها استفاده کرد.
بادام برای درمان زخم روده‌ها و مثانه و اسهال مفید است.
بادام تقویت کننده نیروی جنسی است و تولید اسپرم را زیاد می‌کند، بادام آسیاب شده و با عسل مخلوط شده، برای درد کبد و سرفه مفید است.
شکوفه بادام را دم نموده و به عنوان مسهل برای اطفال می‌توان استفاده کرد.
دم کرده پوست قهوه‌ای رنگ مغز بادام بهترین دارو برای تسکین درد و التهاب مجاری تنفسی است.
روغن بادام خواب آور است و بی خوابی را از بین می برد.
مالیدن روغن بادام برروی پوست التهاب را رفع کرده و سوختگی را درمان می‌کند.
ریشه درخت بادام برای درمان انواع دردها مفید است و برای پاک کردن طحال، کلیه و دفع کرم رود به کار می رود.
1-6- جمع بندی و جنبه جدید بودن و نوآوری در تحقیقبا توجه به گسترش رویشگاهی وسیع گونه بادام کوهی در کشور متاسفانه در ارتباط با بررسی رویشگاهی این گونه تحقیقات در داخل کشور اندک می‌باشد و بجز چند توده بادام کوهی در استان‌های کرمان و چهارمحال بختیاری در دیگر مناطق مطالعه جامعی صورت نگرفته است. در استان ایلام گونه درختچه‌ای بادام کوهی منطقه کلم شهرستان بدره به عنوان ذخیره‌گاه از سوی سازمان جنگل‌ها، مرتع و آبخیزداری کشور معرفی شده است که تاکنون هیچگونه مطالعه‌ای در مورد بررسی خصوصیات رویشگاهی آن صورت نگرفته است. به همین دلیل و به منظور شناخت و کسب اطلاعات و نیز به دلیل اینکه این گونه از گونه‌هایی با ارزش ژنتیکی و اقتصادی بالاست و رویشگاه آن در استان به عنوان ذخیرهگاه معرفی شده است، مطالعات در خصوص این گونه ضروری احساس شده و هدف این مطالعه نیز بررسی شرایط رویشگاهی گونه بادام کوهی ذخیرهگاه جنگلی کلم بدره می‌باشد.

فصل دوممروری بر ادبیات و پیشینه تحقیق1903095284480000
2-1- مرور منابع2-1-1- بررسی پژوهش‌های انجام شده در داخل کشورپیری (1391)، مطالعه شرایط رویشگاهی لرگ در دره لارت شهرستان بدره استان ایلام پرداخت عرصه تحت پوشش توده لرگ پس از ثبت موقعیت تمام پایه های لرگ در، آماربرداری صدرصد از مشخصه های کمی و کیفی انجام شد خاک منطقه دارای بافت رسی – لومی تا شنی – رسی – لومی با میانگین اسیدیته برابر 34/7 بوده است نتایج نشان داد که حداقل و حداکثر قطر پایه ها به ترتیب 7 و 91 سانتی متر بوده حداقل و حداکثر ارتفاع درختان بترتیب5/0 و20 متر می باشد میانگین ارتفاع درختان به روش لوری 34/14 متر محاسبه گردید تجدید حیات درختان به طور متوسط برابر 5/770 اصله در هکتار و جنگل ناهمسال و نامنظم می باشد.
قربانی (1391)، بررسی برخی از خصوصیات اکولوژی گونه مورد را در سه ذخیره گاه جنگلی تنوره آبدانان، زرآب زرین آباد، و روستای مورد از توابع بخش چوار در استان ایلام پرداخت نتایج نشان داد که محدوده ارتفاعی مورد بین 826 تا 1100 متر ارتفاع از سطح دریا بوده و بیشترین پارامتر ارتفاع و قطر به ترتیب 02/3، 88/3 مربوط به ذخیره گاه زرین آباد از نظر پارامتر شادابی و تعداد زادآوری ذخیرگاه چوار اختلاف معنی داری نسبت به دو ذخیرگاه دیگر می باشد . خاک رویشگاه چوار سیلتی – لومی و دو رویشگاه دیگر رسی – لومی بوده . نتایج همبستگی بین متغیرها نشان داد که در هر سه رویشگاه بین قطر تاج و ارتفاع پایه ها همبستگی مثبت وجود دارد . در رویشگاه چوار زاداوری درختان با میزان کربن آلی و پتاسیم خاک دارای همبستگی مثبت و دررویشگاه آبدانان بین ارتفاع پایه ها و میزان اسیدیته خاک همبستگی منفی بسیار قوی وجود دارد .
گودرزی و همکاران (1391)، در تحقیقی تأثیر فیزیوگرافی و برخی خصوصیات فیزیکی و شیمیایی خاک را بر روی پراکنش گونه بادامک در چهار منطقه از استان مرکزی مورد مطالعه قرار دادند. در این پژوهش پس از جنگل گردشی و بررسی مقدماتی منطقه و با توجه به متغیر‌هایی مانند جهت جغرافیایی، ارتفاع از سطح دریا و شیب اقدام به پیاده نمودن 61 قطعه با استفاده از دستگاه GPS در چهار منطقه جلایر ساوه، نیمور محلات، جفتان تفرش و سرآبادان تفرش گردید. نتایج به دست آمده از آزمون تجزیه واریانس یک طرفه نشان داد که بیش‌‌ترین ارتفاع از سطح دریا، شیب، آهک، هدایت الکتریکی و فسفر در منطقه نیمور محلات، بیش‌‌ترین مقدار درصد شن و سطح مقطع تاج در هکتار در مناطق جلایر ساوه و سرآبادان تفرش، بیش‌‌ترین تعداد درخت در هکتار در منطقه سرآبادان تفرش و کم ‌ترین ارتفاع از سطح دریا و سیلت در منطقه جلایر ساوه وجود دارد. همچنین تحلیل مولفه‌‌های اصلی بیانگر آن است که همه مشخصه‌‌های رویشی در جهت مثبت محور اول پراکنده شدهاند. منطقه جلایر ساوه بیش ‌ترین همبستگی مثبت را با محور اول و نیمور محلات با محور دوم نشان می‌دهد. در ربع اول و در مناطق سرآبادان و جلایر ساوه درصد شن و ازت کل و در ربع دوم و در منطقه نیمور محلات ارتفاع از سطح دریا، شیب و فسفر و در ربع چهارم و در منطقه جفتان تفرش کربن آلی از مهم ‌ترین عوامل تأثیرگذار بر پراکنش بادامک میباشند.
صیادی و همکاران (1391)، در مطالعه خود به بررسی اثر توپوگرافی و خصوصیات خاک بر خصوصیات کمی و کیفی بادام کوهی در ذخیرهگاه رحمت آباد شهرستان آبیک استان قزوین پرداختند. آماربرداری از پایه‌‌های بادام کوهی و ثبت مشخصات کمی و کیفی به صورت صد در صد انجام گرفت. مشخصه‌های مورد نظر از لحاظ جنگل‌شناسی شامل تعداد درختان، ارتفاع کامل، قطر متوسط تاج، قطر یقه (مجموع جست‌‌های تشکیل دهنده تنه) و مشخصه‌های کیفی شامل فرم تنه، وضعیت شادابی و سلامت تاج، سلامت تنه، انحنا و پیچیدگی تنه مورد سنجش قرار گرفت. برداشت نمونه‌های خاک از عمق 20-0 سانتیمتری به صورت انتخابی، در نقاطی که وضعیت پوشش گیاهی و توپوگرافی به طور واضحی تغییر می‌کرد با در نظر گرفتن قطعه نمونه‌‌هایی صورت گرفت. نتایج تحقیق نشان داد که بین تعداد پایه در هکتار بادام و ارتفاع از سطح دریا، شیب و جهت اختلاف معنیداری وجود دارد. همچنین در این تحقیق معلوم شد که از بین خصوصیات فیزیکی خاک تنها درصد سنگریزه و درصد تخلخل با برخی از خصوصیات کمی بادام کوهی همبستگی دارد.
میرآزادی و همکاران (1391)، تحقیقی را در ارتباط با بررسی وضعیت رویشگاه‌‌های طبیعی درختچه مورد در استان لرستان و چگونگی حفاظت از آنها انجام دادند. هدف از پژوهش آنها بررسی رویشگاه‌‌های درختچه مورد در استان لرستان و بررسی میزان تخریب این رویشگاه‌ها بود، به این منظور 31 رویشگاه عمده این درختچه در استان لرستان شناسایی گردید و پس از مراجعه به این مناطق ویژگی‌های رویشگاهی و خاکی آنها مورد اندازهگیری قرار گرفت، نتایج این تحقیق نشان داد که رویشگاه‌‌های مورد در استان لرستان به شدت تخریب یافته بوده و روند نزولی و قهقرایی طی میکنند، با توجه به نتایج به دست آمده این محققان آنچه بیش از هر عامل دیگری امروزه در زمینه حفظ منابع طبیعی به ویژه در سطح ملی می‌تواند تأثیرات مثبت داشته باشد، افزایش معرفت و آگاهی جامعه در زمینه منابع طبیعی و شناخت مسایل و مشکلات زیست محیطی است.
فیروزبخت و همکاران (1391)، مطالعه‌ای را تحت عنوان ارزیابی و تعیین شرایط رویشگاهی بنه atlantica Pistacia در جنگل‌‌های زاگرس مرکزی انجام دادند. در این تحقیق خصوصیات گیاه شناسی، اقلیمی، رویشگاهی، خاک شناسی، زمین شناسی، مورفولوژیک، فیزیولوژیک، جنگل‌شناسی و پوشش‌های همراه بنه در زاگرس مرکزی و ایران مورد بررسی و مطالعه قرارگرفت. همچنین اهمیت جنگل‌‌های بنه در اکوسیستم زاگرس مورد نقد قرارگرفته و یکسری پیشنهادها برای حفظ جنگل‌‌های بنه ارائه گردیده است.
توکلی نکو و همکاران (1390)، در بررسی رویشگاه‌‌های بادامک در استان قم دریافتند که تراکم درختچه‌‌های بادامک در دامنه‌ها بیش‌تر است. از نظر ارتفاع، قطر تاج، مساحت تاج پوشش و مساحت تاج پوشش در واحد سطح، درختچه‌های موجود در درهها وضعیت بهتری داشتند و مقادیر آن برای دامنه بیش‌تر از یال‌ها بود. از نظر رشد سالانه درختچه‌ها، با اندازه‌گیری فاصله میان گره‌ها و محاسبه رشد طولی شاخه در سال جاری، بیش‌‌ترین مقادیر در دره‌ها و پس از آن در دامنه‌ها و یال‌ها مشاهده شد. همچنین جهت جغرافیایی نقش مهمی در پراکنش بادامک نشان داد، به طوری که بیش‌‌ترین تراکم درختچه‌ها در شیب‌‌های جنوبی و شرقی و کم‌ترین مقدار آن در شیب‌‌های شمالی و غربی مشاهده گردید. همچنین از دیگر عوامل موثر بر پراکنش بادامک شرایط خاک و به ویژه بافت خاک بود که در مواردی که خاک با بافت متوسط تا سبک همراه با سنگریزه وجود داشت، تراکم درختچه‌‌های بادامک بیش‌‌ترین مقدار بود.
رجبی نوفاب (1390)، در پایاننامه کارشناسی ارشد خود به برآورد ترسیب کربن در دو گیاه بادام کوهی و مو و بررسی امکان واسنجی مدل‌های ترسیب کربن (مطالعه موردی ایستگاه حسین آباد استان فارس) پرداخت و نتایج وی نشان داد که مقدار کربن آلی ترسیب شده در خاک تحت درختچه‌های بادامکوهی و مو به ترتیب 1/354 و 4/227 تن در هکتار است. هدایت الکتریکی از مهم‌ترین عوامل خاکی تأثیرگذار بر میزان کربن آلی خاک در درختچه بادام است در حالی که در گونه مو اسیدیته از جمله فاکتور‌های مهم تأثیرگذار بر میزان ترسیب کربن است. همچنین بیان کردند که با توجه به نتایج این تحقیق، ضروری به نظر میرسد اقدامات لازم در جهت افزایش پتانسیل ترسیب کربن در عرصه‌های مختلف کشور انجام گیرد تا قدمی در راستای کاهش غلظت کربن در جو به منظور کاهش تغییر اقلیم برداشته شود.
روانبخش و همکاران (1389)، در مطالعه خود تحت عنوان بررسی کمی و کیفی ذخیرهگاه جنگلی ارس- شیرخشت اوشان در البرز مرکزی، نشان دادند که این توده دو تیپ جنگلی اصلی شیرخشت- ارس و شیر خشت – راناس دارد. گونه‌های این توده در اشکوب درختی شامل ارس، بنه، پلاخور و تا بوده و در اشکوب درختچه‌ای، شیرخشت، راناس، تنگرس، نسترن و زرشک دیده میشوند. توده دارای ساختار ناهمسال نامنظم بوده است. همچنین تجدید حیات توده در بخش انبوه 7 برابر بیش از بخش تنک است. شادابی و سلامت توده با رتبه دهی به 7 گونه اصلی، مورد بررسی قرار گرفت.
الوانینژاد (1387)، در مطالعه خود جهت بررسی عوامل مؤثر بر پراکنش گونه بادام کوهی در دو منطقه مختلف استان فارس دریافت که عامل جهت جغرافیایی نقش مهمی در پراکنش گونه بادام کوهی ایفا میکند به طوریکه این گونه بیش‌تر در جهت‌های جنوبی، شرقی و جنوب شرقی که آفتابگیر هستند ظاهر میشود. در منطقه دشت موک بیش‌‌ترین پراکنش مربوط به ارتفاع 2150-1900 متر و در منطقه دربک 1870-1600 می‌باشد. همچنین ایشان بیان کردند که از لحاظ آب و هوایی رویشگاه‌‌های بادام اغلب در مناطق نیمه خشک، مدیترانه ای گرم و خشک حتی مناطق مرطوب و خشک میتوانند مشاهده شوند.
سالاریان و همکاران (1387)، در بررسی نیاز رویشگاهی گونه بادامک در جنگل‌‌های زاگرس (استان چهارمحال و بختیاری) به این نتیجه رسیدند که جهت جغرافیایی عامل بسیار مهمی در پراکنش بادامک می‌باشد، به طوری که میانگین ارتفاع، تعداد جست، قطر یقه، قطر تاج و درصد تاج پوشش این گونه در جهت جنوبی بیش‌تر از جهت شمالی بوده است. همچنین طبقه ارتفاعی 1800 تا 1900 متر از سطح دریا بهترینمحدوده رویشی برای گونه بادامک در منطقه مورد مطالعه در استان چهارمحال و بختیاری است.
سهرابی و همکاران (1387) مطالعه‌ای تحت عنوان بررسی خصوصیات رویشگاهی و جنگل‌شناسی توده لرگ در استان لرستان انجام دادند. در بررسی به‌عمل آمده مشخص شد که شرایط اقلیمی رویشگاه لرگ در شول‌آباد نیمه‌مرطوب سرد و محل استقرار این توده تراس کوچک رودخانه‌ای با بافت خاک لومی رسی می‌باشد که به مرور زمان در اثر ته‌نشینی رسوبات آن به ‌وجود آمده است. درختان در حاشیه رودخانه دائمی مستقر شده‌اند و سنگ بستر آن دارای سازند آهکی است. حداقل و حداکثر قطر درختان لرگ به ‌ترتیب 2 و 128 سانتی‌متر، میانگین رویش قطری سالانه‌ درختان این توده برابر با 8/3 میلی‌متر و موجودی سرپا در توده مورد مطالعه برابر 5/389 سیلو در هکتار تعیین شد. حداکثر و حداقل ارتفاع درختان لرگ در رویشگاه به ترتیب 28 و 3/2 متر برآورد شد.
مهدی‌فر و ثاقب طالبی (1385)، مطالعه‌ای با عنوان بررسی مشخصات کمی کیفی و خصوصیات رویشگاهی دارمازو به منظور شناخت خصوصیات رویشگاهی گونه دارمازو انجام دادند. نتایج حاصل نشان می‌دهد که مساحت رویشگاه این گونه در منطقه 5751 هکتار بوده. پراکنش آن از ارتفاع 1200 تا 2400 متر از سطح دریا می‌باشد که در محدوده ارتفاعی 1200 تا 2000 متر از سطح دریا منطقه مورد مطالعه تشکیل تیپ داده و از 2000 تا 2400 متر به صورت پراکنده در منطقه حضور دارد. بافت خاک رویشگاه مورد مطالعه متوسط (لومی)، نسبتاً سنگین (لومی رسی) تا سنگین (رسی) می‌باشد و اسیدیته آنها از 4/7 تا 8 متغیر است که نشان دهنده‌ی آهکی بودن این خاک‌هامی‌باشد. ماده آلی در خاک نسبتاً خوب است. در مجموع جهت‌های شمالی و فرم‌های دره و دامنه در محدوده ارتفاعی 1200 تا 1600 متر بالاتر از سطح دریا رویشگاه‌‌های مناسبی از نظر خصوصیات کمی و کیفی درختان دارمازو هستند. از نظر خصوصیات کیفی نیز مشخص شد که بهترینوضعیت شاخه دهی (درختان بدون شاخه) در فرم دامنه (6/74 %) و در طبقه ارتفاعی 1200تا 1600 متر (7/73 %) قرار دارند.
رحمانی و همکاران (1382)، اثر تنش شوری بر رشد دو گونه وحشی و دو ژنوتیپ از گونه اهلی بادام را مورد مطالعه قرار دادند و دریافتند که طول و قطر نهال‌ها، وزن خشک برگ، ساقه و ریشه با افزایش شوری کاهش پیدا نمود. اثر شوری با سوختگی حاشیه برگ آغاز شده، بعد به داخل برگ توسعه یافته و در نهایت خشکی برگ و ریزش آنها را به دنبال داشت. غلظت بیش از 1200 میلیگرم در لیتر نمک در ابتدای رشد، سبب آسیب جدی و کاهش شدید رشد شده و در نهایت خشکی تمام ژنوتیپها را به دنبال داشت. در غلظت پایین نمک، بادام‌های اهلی رشد بیش‌تری نسبت به ژنوتیپ‌های وحشی داشته، ولی در غلظت 1200 میلیگرم در لیتر نمک، بادام لیسیوئیدس نسبت به ژنوتیپ‌های اهلی بادام رشد بیش‌تری نشان داد.
ایران نژاد پاریزی (1374)، در بررسی اکولوژیکی جوامع گیاهی گونه‌‌های طبیعی بادام در استان کرمان، مشخص کرد که گونه بادام کوهی بیش‌‌ترین پراکنش را در استان کرمان داشته است. این گونه در اغلب مناطق کوهستانی و تپه ماهوری این استان، با درجات انبوهی و فرم حیاتی مختلف دیده میشود.
2-1-2- بررسی پژوهش‌های انجام شده در خارج از کشوررئوستا و دیگران (2013) در برآورد میزان ترسیب کربن گونه بادامک (Amygdalus scoparia) به این نتیجه رسیدند که ارزش اقتصادی ترسیب کربن این گونه در هر هکتار 871/12 دلار امریکا می‌باشد و با توجه به ارزش اقتصادی این گونه از لحاظ حفاظت آب و خاک آن را برای پروژه‌های جنگل‌کاری در مناطق خشک و نیمه خشک پیشنهاد کردند.
دوگان و دیگران (2011) طی تحقیقی به مطالعه‌ تعیین بعضی از خصوصیات اکولوژیکی و اهمیت اقتصادی گونه پنج انگشت با نام علمی Vitex agnus-castus که یک گونه مدیترانه‌ای است و از گونه‌های همراه درختچه مورد می‌باشد، پرداختند. نتایج آنها نشان داد که این گونه در منطقه مورد مطالعه (ترکیه) در خاک‌های با بافت لومی و کمی قلیایی رشد میکند و مناطق با درصد کربنات کلسیم پائین، میزان مواد آلی بالا و خاک‌های غنی از نیتروژن و فسفات را ترجیح میدهد.
آرخی و دیگران (2010) در مطالعه خود گزارش کردند که ارتفاع از سطح دریا بر پراکنش گونه Amygdalus orientalis تأثیر گذار است.
گورتاپه و دیگران (2006) گسترشگاه و مناطق اکولوژیک 11 گونه بادام را مورد مطالعه قرار دادند و نشان دادند که جنس بادام در مناطق بین 7/39 و 36 درجه عرض جغرافیایی و بیش‌تر در دامنه‌های ارتفاعی 1100 تا 2300 متر از سطح دریا با خاک با بافت سبک و متوسط رشد میکند و بر اثر بهرهبرداری غیر اصولی، این جنس در معرض خطر قرار گرفته است.
خِرسات و دیگران (2006) بیان کردند که مقدار شوری بر مشخصه‌های کمی و کیفی بادامک تأثیر منفی داشته است که احتمالاً افزایش آن موجب افزایش خشکی محیط، افزایش فشار اسمزی محلول خاک، سمیت یونها، عدم امکان جذب آب از سوی ریشه‌ی گیاه و اختلال در جذب برخی از عناصر غذایی می‌شود.
بادانو و دیگران (2005) در تحقیق خود در ارتباط با بررسی تأثیر جهت دامنه بر روی الگوی پراکنش گونه بادام، نتیجه گرفتند که عوامل رویشی این گونه در جهت جنوبی وضعیت مناسب‌تری نسبت به جهت شمالی دارد.
فلامینی و دیگران (2004) طی مطالعه‌ای بیان کردند که رشد و عملکرد درختچه‌های مورد در اکوسیستمها تحت تأثیر عوامل مختلفی نظیر نوع گونه، اقلیم منطقه، نوع خاک، ارتفاع از سطح دریا و موقعیت جغرافیایی می‌باشد. ویژگی‌های مختلف خاک بر چگونگی رشد و نمو و نیز بر میزان مواد مؤثره این گونه تأثیر دارند. هر یک از این عوامل میتوانند تأثیر به سزایی بر کمیت و کیفیت محصول گیاهان داشته باشند.
اسمیت (1996) در پژوهش خود بیان میکند هر رویشگاهی که تنوع زیستی بیش‌تری داشته باشد، پایداری اکولوژیکی و حاصلخیزی بیش‌تری را خواهد داشت و یک اکوسیستم پایدار و پویا خواهد بود. و از بین مهم‌ترین عوامل تأثیرگذار بر تنوع یک رویشگاه می‌توان به عوامل مختلف خاکی و فیزیوگرافی اشاره کرد.
بروایس و زوهاری (1995) در تحقیقی بر روی 26 گونه مختلف بادام، ارتفاع از سطح دریا را به عنوان عامل محدودکننده پراکنش گونه‌های بادام معرفی کردند.
دنیسوف (1982) در بررسی پراکنش و تغییر پذیری بادام‌های وحشی در کشور آذربایجان بیان کرد که ارتفاع از سطح دریا به عنوان عامل محدود کننده در پراکنش این گونهها میتواند مد نظر قرار گیرد و دو فرم بوته‌ای در دامنه زانگ زوار در آذربایجان گزارش شده است که برای برنامه‌های اصلاح نژاد میتوان از آنها استفاده کرد.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

آلبرجینا (1978) در مطالعه‌ای که در قسمت جنوب غربی سیسیل ایتالیا بر روی گونه بادام Amygdalus Webbii داشت، بیان میکند که این گونه بر روی انواع خاک‌های آهکی تا آتشفشانی رشد نموده و از نظر ارتفاعی در ارتفاع 900 متر از سطح دریا پراکنش دارد.

فصل سوممواد و روش‌ها1865630194246500
3-1- مواد و روش‌ها3-1-1- مواد3-1-1-1- رویشگاه زاگرسرویشگاه زاگرس بخش وسیعی از رشته کوه زاگرس را شامل می‌شود که از شمال‌غربی کشور یعنی شهرستان پیرانشهر در آذربایجان غربی شروع و تا حوالی شهرستان فیروزآباد در فارس امتداد می‌یابد و محدوده ای به طول 1300 و عرض متوسط 200 کیلومتر را می‌پوشاند. جنگل‌‌های زاگرس که تحت عنوان جنگل‌‌های نیمه خشک طبقه‌بندی شدند، با وسعت 5 میلیون هکتار، 40% کل جنگل‌‌های ایران را به خود اختصاص داده‌اند. این منطقه بیش‌‌ترین تأثیر را در تامین آب، حفظ خاک، تعدیل آب و هوا و تعدیل اقتصادی و اجتماعی در کل کشور دارد. از مهم‌‌ترین گونه‌‌های درختی و درختچه‌ای حوزه زاگرس می‌توان به گونه‌‌هایی از قبیل بلوط ایرانی، مازودار، ویول، کیکم، بنه، کلخونک، بادامک، داغداغان، دافنه، ارس و گلابی اشاره نمود.
3-1-1-2- زیست بوم استان ایلاماستان ایلام با حوضه جغرافیایی و سیاسی به ابعاد 20150 کیلومتر مربع، حدود 2/1 درصد از مساحت کشور را تشکیل داده است (شکل 3-1). این استان در غرب رشته کوه‌‌های زاگرس بین 4540 تا 4803 طول شرقی و 3203 تا 3402 عرض شمالی قرار گرفته است. شهر ایلام (مرکز استان) در قسمت شمالی استان و در فاصله 745 کیلومتری جنوب غربی تهران واقع شده است. این استان از جنوب به استان خوزستان و کشور عراق، از شرق با استان لرستان، از شمال و شمال غرب با استان کرمانشاه همسایه بوده و از سمت غرب دارای 425 کیلومتر مرز مشترک با کشور عراق است. حدود طبیعی این استان 220 کیلومتر طول و حدود 100 کیلومتر عرض دارد و از شمال به کوه قلاجه تا رود سیمره در شرق و از جنوب به رودخانه دویرج و از غرب به کشور عراق توسط سلسه جبال حمرین محدود شده است (سازمان جغرافیایی نیرو‌های مسلح 1386).
3-1-1-3- منطقه مورد مطالعهمنطقه مورد مطالعه بنام ذخیرهگاه بادام کلم در شهرستان بدره و در استان ایلام واقع شده و در تقسیم بندی کلی هیدرولوژی استان جزء حوزه آبریز سیمره می‌باشد. عرصه طرح ذخیره‌گاه بادام کلم به مساحت 64/63 هکتار در استان ایلام، شهرستان دره شهر، بخش بدره، دهستان دوستان و در غرب روستای کلم قرار گرفته و در محدوده جغرافیایی 33 درجه، 22 دقیقه و 41 ثانیه تا 33 درجه، 23دقیقه و 33 ثانیه عرض شمالی و 46 درجه، 53 دقیقه و4 ثانیه تا 46درجه، 55 دقیقه و 11ثانیه شرقی در استان ایلام واقع شده است (شکل 3-1). نوع گونه‌‌های جنگلی همراه در این رویشگاه شامل بادامک، زالزالک، بنه، بلوط ایرانی و انواع گونه‌‌های علفی یکساله و چند ساله شامل: انواع گون، جو دوسر – گلرنگ زرد- گوش بره – مریم نخودی-چچم – هندوانه ابوجهل و ... می‌باشد.
گونه اصلی و حفاظتی در این ذخیره‌گاه بادام کوهی (Amygdalus arabica) می‌باشد که دارای وضعیت ساختاری نسبتاٌ ناهمسال می‌باشد و زادآوری در این گونه به خوبی مشاهده میشود. حداقل و حداکثر ارتفاع از سطح دریا به ترتیب 900 و 1200 متر می‌باشد. در حاشیه ذخیره‌گاه دو روستای کلم بالا و پایین وجود دارد که سامان عرفی دامداران این دو روستا می‌باشد. با توجه به مشکلات اجتماعی و تقسیمات عرفی برخی تخلفات و تجاوز به عرصه در سال‌های ابتدایی وجود داشت که به مرور مرتفع گردید.

شکل 3-1- موقعیت منطقه مورد مطالعه در کشور، استان و شهرستان
3-1-1-4- اقلیمایستگاه هواشناسی ایلام طی دوره‌ی آماری (1392-1370) که متوسط بارندگی سالیانه در این منطقه 6/667 میلی‌متر بوده که از این میزان 1/20 درصد در فصل بهار، 1/0 درصد در فصل تابستان، 9/31 درصد در فصل پاییز و 9/47 درصد در فصل زمستان می‌باشد. بارندگی‌ها عمدتاً در فصل زمستان و بعد از آن در فصل پاییز و سپس بهار ‌تداوم دارند تابستان فصل خشک منطقه می‌باشد و از خرداد تا اواسط آبان‌ماه اوقات خشک سال هستند. بعلت ورود سامانه‌‌های بارش‌زا و ویژگی فصل بهار‌، عمدتاً بارش‌ها در این فصل رگباری بوده و به دلیل عدم پوشش‌گیاهی مناسب اکثراً سیلابی هستند‌. حداکثر مطلق دما که تا کنون در این ایستگاه به ثبت رسیده است 4/41 درجه سانتی‌گراد بوده است. میانگین دمای سالانه در ایستگاه فوق الذکر 8/16 درجه سانتیگراد می‌باشد. حداقل مطلق دمای ثبت شده در طول دوره آماری 6/13- درجه سانتی‌گراد بوده است. پایین‌‌ترین دما‌های ثبت شده در این ایستگاه مربوط به بهمن ماه می‌باشد یعنی بهمن ماه سرد‌ترین ماه سال است. اما گرم‌‌ترین ماه سال مرداد ماه بوده که حداکثر مطلق دما‌های ثبت شده مربوط به اواخر تیر ماه و مرداد ماه می‌باشد. این ایستگاه دارای 11روز یخبندان می‌باشد. روز یخبندان از نظر هواشناسی به روزی اطلاق می‌شود که حداقل دما صفر و کمتر از آن است. براین اساس در دوره آماری دما‌های صفر و زیر صفر استخراج و پس از بررسی ‌نهایی مشخص گردید، ایستگاه فوق‌الذکر به طور متوسط دارای 35 روز یخبندان است‌. یکی دیگر از پارامتر‌های اقلیمی میزان ساعات آفتابی در سال است. که میانگین آن در سال 2857 ساعت می‌باشد ابرناکی آسمان از دیگر پارامتر‌های اقلیمی است که مشخص کننده دمای زمین و انرژی رسیده به زمین می‌باشد و رابطه مستقیمی با میزان بارندگی دارد‌. به طور متوسط ایستگاه دارای 42 روز در سال ابرناکی است. از دیگر پارامتر‌های مورد بررسی رطوبت هوا است. رطوبت نسبی تأثیر بسزایی در اقلیم، پوشش گیاهی و غیره دارد‌. متوسط رطوبت در این ایستگاه 40 درصد بوده که متوسط حداکثر 55 و متوسط حداقل 25 درصد است. بیش‌‌ترین میزان رطوبت نسبی ماهانه در بهمن ماه با 62 درصد و کم‌ترین میزان رطوبت نسبی در مرداد ماه 19 درصد است. تبخیر از مهم‌ترین پارامتر‌های اقلیمی مخصوصاًدر مناطق خشک است. میزان متوسط تبخیر سالانه 2/1892 میلی متر است. بیش‌‌ترین مقدار تبخیر در تیرماه به میزان 5/367 میلی متر و کم‌ترین میزان 0 میلی متر در زمستان است. باد غالب در منطقه غربی و باد نایب غالب جنوب‌شرقی است. بررسی گلباد سالانه نشان می‌دهد که وزش‌‌های باد، بالای 2 متر بر ثانیه هستند. حداکثر بادی که تاکنون در منطقه به ثبت رسیده است 25 متر بر ثانیه بوده که از جنوب‌غرب به سمت شمال شرق وزش داشته است. جدول فراوانی باد سالانه نشان می‌دهد که بیش‌‌ترین بادها، بین 2 تا 4 متر بر ثانیه سرعت داشته است‌. در گلباد فروردین ماه مشاهده می‌شود که در این ماه باد غالب جنوبی و نایب غالب غربی است. در اردیبهشت ماه نیز باد غالب غربی و باد نایب غالب جنوب‌شرق است‌. در خردادماه‌ تا مهر‌ماه غالب غربی و نایب غالب شمال‌غربی است. اما در آبانماه باد غالب غربی و نایب غالب جنوب‌شرقی است. در آذرماه تا اسفند ماه باد غالب جنوب‌شرقی و باد نایب غالب شرقی است‌. محاسبه فرمول‌‌های مربوط به تعیین اقلیم نشان می‌دهد در روش آمبرژه نوع اقلیم مرطوب معتدل و در روش دومارتن نوع اقلیم نیمه مرطوب است. در روش گوسن (آمبروترمیک) فصل خشک منطقه از اواسط اردیبهشت ماه آغاز و تا اواسط مهر‌ماه ادامه دارد (شکل 3-2). یعنی تقریباً 5 ماه از سال منحنی درجه حرارت در بالای منحنی بارندگی قرار دارد و فقط 5 ماه از سال فصل مرطوب منطقه محسوب می‌شود.
شکل 3-2- آمبروترمیک حوزه کلم (ایستگاه هواشناسی ایلام طی دوره‌ی آماری 1392-1370)3-1-1-5- زمین‌شناسیذخیرهگاه کلم شهرستان بدره در زون ساختاری زاگرس چین خورده قرار می‌گیرد. عمده سنگ‌‌های منطقه را، واحدهای آهکی و شیلی مربوط به مزوزوییک و سنوزوییک تشکیل داده‌اند. سازند گچساران با لیتولوژی انیدریت و مارن و میان لایه آهکی بیش‌ترین وسعت را در منطقه دارد. سایر واحدهای سنگی موجود در حوزه عبارتند از سازند آهکی سروک سازند ایلام با لیتولوژی سنگ آهک و میان لایه شیل، سازند پابده با تناوب شیل و آهک و مارن، سازند شیلی گورپی، سازند آسماری، بخش آهکی امام حسن و سازند انیدریتی گچساران. از نظر ساختاری مهم‌ترین ساختار موجود در حوزه چین‌ها هستند (مطالعات تفصیلی- اجرایی حوزه آبخیز کلم دره‌شهر، 1390). در حوزه کلم با توجه به لیتولوژی واحدهای سنگی، پوشش گیاهی خوب و شرایط آب و هوایی، هوازدگی فیزیکی، زیستی و شیمیایی قابل مشاهده است. همچنین با استناد بر آمار و اطلاعات هواشناسی، تعیین اقلیم ذخیرهگاه بادام منطقه نشان داد که در روش آمبرژه نوع اقلیم مرطوب معتدل و در روش دومارتن نوع اقلیم نیمه مرطوب است. این گونه اغلب در اقلیمهای نیمهمرطوب با زمستانهای نسبتاً سرد مستقر میشود. سالاریان و همکاران (1387) نیز اذغان نمودند که گونه بادام کوهی اغلب در اقلیم‌های نیمهمرطوب مستقر میشوند.
3-2- روش انجام تحقیقاین مطالعه از نوع مطالعات تحلیلی بوده و برای جمعآوری اطلاعات از سه روش کتابخانه‌ای، میدانی و آزمایشگاهی استفاده شده است. در این تحقیق ابتدا برای تعیین مبانی نظری و پیشینه‌ی تحقیق از شیوه کتابخانه‌ای اقدام گردیده و پس از مطالعه کتابخانه‌ای و جستجوی الکترونیکی و به موازات مطالعات مستمر نظری بخشی از اطلاعات مورد نیاز نیز با استفاده از فرم‌‌های آماربرداری در منطقه تهیه و جمع آوری گردید.
ابتدا در منطقه، محدوده ذخیرهگاه بادامک، شناسایی و پلیگون آن به‌صورت رقومی (به ‌وسیله دستگاه GPS در سیستم مختصات UTM با بیضوی WGS84) بسته شد. در داخل محدوده‌‌های مشخص شده شبکه آماربرداری به ابعاد 200×200 متر به‌ صورت منظم- تصادفی (سیستماتیک) طراحی و برای اندازه‌گیری درختچهها و آماربرداری از قطعات نمونه دایره‌ای شکل با مساحتی که به روش حداقل سطح به دست آمده و با توجه به تراکم درختچه‌‌های بادامک حداقل 10 تا 15 پایه در هر قطعه نمونه قرار گیرد، استفاده گردید.
در این قطعات نمونه مشخصه‌های کمی و کیفی همچون تعداد درختچه، ارتفاع و دو قطر عمود بر هم تاج درختچهها، تعداد جست، درجه شادابی درختچهها، میزان ابتلا به آفت و بیماری آنها و زادآوری اندازهگیری گردید. همچنین در هر قطعه نمونه با توجه به طول و عرض جغرافیایی، وضعیت فیزیوگرافی و توپوگرافی (ارتفاع منطقه و میزان و جهت شیب دامنه نیز ثبت میشود) نیز ثبت گردید.
ابزار‌های اندازهگیری مشخصات کمی و کیفی درختچه‌های بادامک شامل موارد ذیل است: دستگاه GPS برای تعیین مرکز قطعه نمونه و یافتن موقعیت، شاخص (ژالن) درجهبندی شده یا دستگاه سونتو برای اندازه گیری گردید. ارتفاع درختچهها، متر نواری برای اندازه گیری قطر تاج درختان و ارتفاع تاج.
3-2-1- تهیه نقشه‌های عوامل فیزیوگرافیپس از مشخص شدن محدوده رویشگاه بر روی نقشه توپوگرافی 1:25000، بمنظور کنترل و نحوه قرار گیری قطعات نمونه در ارتباط با مشخصه‌‌های فیزیوگرافی، توسط نرم افزار Arc GIS 10 نقشه منطقه رقومی شده و از ابزار Topo to Raster برای تهیه نقشه‌های DEM و پس از آن نقشه‌‌های ارتفاع از سطح دریا، شیب و جهت دامنه استفاده شد. سه طبقه ارتفاع از سطح دریا ( 900-1000، 1000 تا 1100 و 1100 تا 1200 متر)، پنج طبقه شیب (0-20، 20-40، 40-60، 60-80 و بیش‌تر از 80 درصد) و پنج جهت جغرافیای (شمال، جنوب، شرق، غرب و بدون جهت) در محدوده مورد مطالعه مشخص شد.
3-2-2- نمونهبردای خاکبرای بررسی وضعیت خاک رویشگاه مورد مطالعه، برخی مشخصه‌‌های فیزیکی و شیمیایی خاک از قبیل بافت خاک، ماده آلی، کربن آلی، اسیدیته (pH)، نیتروژن کل، وزن مخصوص ظاهری و هدایت الکتریکی (Ec) در مرکز هر قطعه نمونه مورد اندازهگیری و مطالعه قرار گرفت. برای این منظور در مرکز هر قطعه نمونه با حفر پروفیل خاک تا عمق ممکنه که با توجه به صخر‌های بودن منطقه کمتر از 20 سانتیمتر بود، نمونه‌های خاک برداشت شد (شکل 3-3). نمونه‌های خاک پس از طی مراحل اولیه آماده سازی برای انجام مطالعات خاکشناسی به آزمایشگاه منتقل شدند.
شکل 3-3- نمایی از نمونهبرداری خاک در رویشگاه مورد مطالعه3-2-2-1- آزمایشات خاکدر محیط آزمایشگاه نمونهها در هوای آزاد خشک گردید و بعد از خرد نمودن کلوخهها، جدا کردن ریشه‌ها، سنگ و سایر ناخالصیها، از الک 2 میلی‌متری عبور داده شدند (هرناندز و همکاران 2004).
بافت خاک با استفاده از روش دانسیمتری بایکاس (زرین کفش 1371) و وزن مخصوص ظاهری به روش کلوخه بر حسب گرم بر سانتیمتر مکعب مطالعه شد (بلیک و‌ هارتج 1986). ماده آلی و کربن آلی با استفاده از روش سرد بر مبنای اکسیداسیون کربن آلی به کمک بیکرمات پتاسیم (K2Cr2O) در محیط کاملاً اسیدی H2SO4)) اندازگیری گردید (آلیسون 1975).
خصوصیات اندازه‌گیری شده خاک در این مطالعه شامل PH خاک، EC خاک، وزن مخصوص ظاهری، مقدار ماده آلی و نیتروژن بود. در این مطالعه از روش مبتنی بر برآورد درصد کربن آلی خاک استفاده شد. کربن آلی به طور متوسط 58% ماده آلی را تشکیل میدهد و درصد ماده آلی را می‌توان با ضرب کردن کربن آلی در عامل وان-بنون لن یا 724/1 به دست آورد.
3-2-3- جامعه آماری، روش نمونه‏گیری و حجم نمونهجامعه آماری مورد مطالعه در این تحقیق ذخیرهگاه گونه بادام کوهی واقع در منطقه کلم شهرستان بدره می‌باشد که آماربرداری از درختچه‌های بادام کوهی به صورت نمونه‌ای بوده و حجم نمونه بستگی به تعداد قطعات نمونه و تعداد درختان قرار گرفته در هر قطعه نمونه دارد.
3-2-4- متغیر‌های مورد بررسی
در این مطالعه اطلاعات کمی و کیفی درختچه‌های بادام کوهی شامل قطر تاج، ارتفاع، تعداد درختچه، تعداد جست گروه و مشخصه کیفی شامل شادابی در رویشگاه کلم بدره برداشت شد. برای تعیین شادابی چهار طبقه سرسبزی تاج درختچه‌ها در نظر گرفته شد (پاور و دیگران 1995) که شامل درجه 1: بیش از 75، درجه 2: بین 50 تا 75، درجه 3: بین 25 تا 50 و درجه 4: کمتر از 25 درصد تاج سرسبز بودند.
سطح تاج با اندازه‌گیری سطح سایه انداز تاج درختان (منظور سطحی است که تصویر تاج درختان به هنگامی که نور خورشید عمود میتابد بر روی سطح زمین ایجاد می‌کند که با اندازه گیری قطر بزرگ و کوچک تاج درخت تعیین میگردد).
برای برداشت متغیر‌های مورد بررسی از ابزار و لوازم فنی کار مانند متر نواری، GPS و اسپری رنگی جهت نشانهگذاری استفاده شد. همچنین در این ذخیرهگاه در مراکز قطعه نمونهها، نمونه‌های خاک از عمق 0 تا 20 سانتیمتری جهت آزمایش‌های فیزیک و شیمی خاک برداشت شد.
3-2-5- روش‌ها و ابزار تجزیه و تحلیل داده‏هابه منظور تجزیه تحلیل دادهها ابتدا پس از تعیین نرمال بودن دادهها به وسیله آزمون کای اسکور و همگن بودن دادهها بوسیله آزمون لون برای مشخصه‌های کمی مانند قطر تاج، از آزمون تجزیه واریانس و برای مقایسه میانگین‌ها از آزمون دانکن استفاده شد. برای داده‌های کیفی مانند شادابی که به صورت رتبه‌ای بودند از آزمون‌های ناپارامتری، برای مقایسه‌‌های کلی از آزمون کروسکال -والیس و برای مقایسه میانگین‌ها از آزمون من ویتنی استفاده گردید. برای تجزیه و تحلیل دادهها از نرم افزار‌های آماری همچون Excel و SPSS استفاده شد.

فصل چهارمنتایج1739265290957000
4-1- نتایج4-1-1- تهیه نقشه عوامل فیزیوگرافیبرای بررسی تأثیر عوامل فیزیوگرافی بر مشخصات کمی و کیفی درختچه‌‌های بادام کوهی در منطقه مورد مطالعه، نقشه‌‌های مشخصه‌‌های شیب، جهت و ارتفاع از سطح دریا در محیط GIS تهیه شد.
برای تهیه نقشه‌های فیزیوگرافی ابتدا مدل رقومی ارتفاع با استفاده از خطوط توپوگرافی با منحنی میزان‌‌ 20 متری تهیه گردید (4-1) و سپس نقشه‌های شیب، جهت دامنه و ارتفاع از سطح دریا تهیه و کلاسهبندی شدند. اشکال 4-2، 4-3 و 4-4 نقشه‌های فیزیوگرافی مورد استفاده در این تحقیق را نشان می‌دهند.

شکل 4-1- نقشه مدل رقومی ارتفاعی (DEM) منطقه مورد مطالعهشکل 4-2- نقشه طبقات ارتفاع از سطح دریا در منطقه مورد مطالعه

شکل 4-3- نقشه کلاسه‌های شیب در منطقه مورد مطالعه
شکل 4-4- نقشه جهات جغرافیایی در منطقه مورد مطالعه4-2- تهیه نقشه شبکه آماربرداریهمان طور که در فصل مواد و روش‌ها توضیح داده شد پس از تهیه نقشه محدوده مورد مطالعه و بازدید میدانی از منطقه مورد مطالعه و با توجه به تراکم مناسب گونه بادام کوهی در سطح منطقه تصمیم به طراحی شبکه آماربرداری 200 * 200 گرفته شد و برای طراحی و پیاده کردن پلات‌ها در روی نقشه از نرم افزار GIS 10 و اکستنشن ET Geo Wizards استفاده شد. پس از طراحی شبکه و پیاده کردن آن بر روی نقشه محدوده مورد مطالعه مشخص شد که تعداد 19 پلات دایره‌ای در منطقه قرار گرفته است (شکل 4-5 و 4-6). برای انجام مراحل بعدی کار مختصات جغرافیایی (UTM) این نقاط و محدوده وارد دستگاه GPS شد.

شکل 4-5- شبکه آماربرداری 200×200 متر و نحوه قرارگیری پلاتها
شکل 4-6- جانمایی قطعات نمونه آماربرداری بر روی تصاویر ماهوار‌ه‌ای Google Earth4-3- پوشش گیاهیپس از آن لیست فلورستیک گیاهان منطقه مطالعاتی بر حسب خانواده، جنس، گونه، شکل رویشی و دیرزیستی تهیه گردید. در ذخیره‌گاه بادام کلم شهرستان بدره گونه غالب، درختچه بادام کوهی می‌باشد. لیست فلورستیک گیاهان شناسایی شده در کل سطح ذخیره‌گاه در جدول (4-1) ارائه شده است.
جدول 4-1- لیست فلورستیک گونه‌های گیاهی منطقه مطالعاتیردیف نام فارسی نام علمی خانواده شکل رویشی دیرزیستی موارد استفاده
1 ون Pistacia Atlantica Anacardiaceae درخت چندساله حفاظت خاک- صنعتی
2 گل گاوزبان Anchusa Italica Boraginaceae فورب چند‌ساله دارویی‌- مرتعی
3 آفتاب پرست Heliotropium Dolosum Boraginaceae فورب یکساله مرتعی
4 زنگوله ای Onosma Asperrimum Boraginaceae فورب چند ساله مرتعی
5 گچ دوست Gypsophila Pilosa Caryophyllaceae فورب چند ساله مرتعی
6 خارکو Noaea Mucronata Chenopodiaceae فورب چند ساله مرتعی
7 دانه گنجشکی Helianthemum Salicifolium Cistaceae فورب یکساله مرتعی
8 بابونه Anthemis SP Compositae فورب یکساله مرتعی
9 همیشه بهار Calendula Persica Compositae فورب یکساله مرتعی
10 گلرنگ وحشی Carthomus Oxycantha Compositae فورب یکساله مرتعی
11 گل گندم Centurea Bruguieriana Compositae فورب یکساله مرتعی
12 ریش گوشی Crepis Kotschyana Compositae فورب یکساله مرتعی
13 شکر تیغال Echinops Ritroides Compositae فورب یکساله مرتعی
14 کنگر Gundelia Tournefortii Compositae فورب چند ساله مرتعی
15 ماهوی وحشی Lactca Orientalis Compositae فورب چند ساله مرتعی
16 پیچک Convolvulus Chondrilloides Convolvulaceae فورب چندساله مرتعی
17 کیسه کشیش Capsella Bur*astoris Cruciferae فورب یکساله مرتعی
18 منداب Eruca Sativa Cruciferae فورب یکساله مرتعی
19 موچه Lepidium Latifolium Cruciferae فورب یکساله مرتعی
20 شب بو Longipetalo Matthiola Cruciferae فورب یکساله مرتعی
21 آجیل مزرعه Neslia Apiculata Cruciferae فورب یکساله مرتعی
22 رعنا زیبا Scobiosa Rotata Dipsaceae فورب یکساله مرتعی
23 شیر شگ Euphorbia Denticulata Euphorbiaceae فورب چندساله حفاظت خاک
24 سوزن چوپان (نوک‌لک‌لکی) Erodium Ciconium Geraniaceae فورب یکساله مرتعی
4-4- مشخصات رویشی توده مورد مطالعهدر این مطالعه رویشگاه هدف به صورت تصادفی سیستماتیک آماربرداری شد و مشخصه‌‌های تراکم تعداد، قطر تاج، ارتفاع، شادابی و تعداد جست اندازه‌گیری شدند. میانگین تعداد درختچهها در هکتار 240 اصله به دست آمد. بر این اساس بیش‌‌ترین تعداد در هکتار 298 اصله بوده و کم‌ترین تعداد نیز 130 اصله بوده است. با توجه به اندازهگیری‌های به عمل آمده، قطر تاج بادام در منطقه مورد مطالعه از 25/0 تا 85/5 متر متغیر است و میانگین آن 61/1 متر می‌باشد. از نظر ارتفاع، داده‌های اندازهگیری شده بین 3/0 تا 2/4 در نوسان بوده و میانگین آن 77/1 متر بدست آمد. از نظر میزان شادابی درختان بادام، میانگین شادابی توده 69/1 بدست آمد. نتایج این مطالعه نشان داد که به‌طور میانگین هر درخت بادام دارای 77/7 جست بوده که نتایج نشان داد که بیش‌‌ترین تعداد جست 40 عدد و کم‌ترین مقدار آن 1 عدد می‌باشد. (جدول 4-2).
جدول 4-2- نتایج اندازه‌گیری مشخصه‌‌های رویشی توده بادام کوهیمیانگین انحراف معیار بیشنه کمینه
تعداد در هکتار 240 32/10 298 130
قطر تاج 61/1 35/1 85/5 25/0
ارتفاع 77/1 02/1 2/4 3/0
تعداد جست 77/7 65/8 40 1
شادابی 69/1 75/0 1 3
به منظور شناخت بهتر ساختمان توده‌های جنگلی آگاهی از ساختمان افقی و عمودی جنگل بسیار ضروری می‌باشد. در جنگل‌‌های بادام منطقه، ساختار جنگل به دلیل استفاده و وابستگی جنگل نشینان تحت تأثیر قرار گرفته است. برای مدیریت این منابع جنگلی کسب اطلاعات ساختار افقی و عمودی توده بادام منطقه امری ضروری به نظر میرسد که مورد بررسی قرار گرفته است. به منظور بررسی ساختار افقی و ساختار توده از لحاظ همسال، ناهمسالی، مسن و جوانی ساختار میتوان از نمودار اشکوب بندی جنگل و پراکنش درختان در طبقات قطری استفاده کرد.
نتایج نمودار تعداد در هکتار، تعداد در طبقات ارتفاعی و تعداد در طبقات قطری تاج توده بادام کوهی در منطقه مورد مطالعه نشان میدهد که توده مورد نظر تقریباً یک توده همسال منظم می‌باشد. در کل میتوان نتیجه گیری کرد که جنگل فوق دارای ساختار همسال و جوان می‌باشد (اشکال 4-7 تا 4-9).

شکل4-7- تعداد در هکتار گونه بادام کوهی در قطعات نمونه منطقه مورد مطالعه
شکل4-8- تعداد در طبقات قطری تاج گونه بادام کوهی در منطقه مورد مطالعه
شکل 4-9- تعداد در طبقات ارتفاعی گونه بادام کوهی در منطقه مورد مطالعه4-4-1- آنالیز همبستگی میان خصوصیات رویشینتایج نشان داد که در ذخیره‌گاه بادام کوهی بین قطر تاج با ارتفاع درختان و تعداد جست با ارتفاع با قطر تاج همبستگی وجود دارد و بین شادابی و سایر خصوصیات رویشی همبستگی قابل قبولی دیده نشد. در جدول 4-3 آنالیز همبستگی میان عناصر رویشی گونه بادام کوهی با هم آمده است. براساس نتایج حاصله در رویشگاه بین قطر تاج و ارتفاع در سطح 99 درصد و نیز بین تعداد جست و قطر تاج و ارتفاع در سطح 95 درصد همبستگی وجود دارد (جدول 4-3). بر این اساس رابطه رگرسیونی بین قطر تاج و ارتفاع درختچه‌‌های بادام کوهی رسم شد (شکل 4-10).جدول 4-3- آنالیز همبستگی میان پارامتر‌های رویشی بادام کوهی منطقه مورد مطالعهپارامتر قطر ارتفاع شادابی تعداد جست
قطر 1 . 67** -. 18 . 42*
ارتفاع . 67** 1 -. 05 . 35*
شادابی -. 18 -. 05 1 -. 19
تعداد جست . 42* . 35* -. 19 1
**. معنی‌داری در سطح 01/0
*. معنی‌داری در سطح 05/0

شکل 4-10- رابطه رگرسیونی بین قطر تاج و ارتفاع درختچه‌های بادام کوهی در منطقه مورد مطالعه4-5- بررسی مشخصه‌های کمی و کیفی بادام کوهی تحت تأثیر عوامل فیزیوگرافی:4-5-1- ارتفاع از سطح دریانتایج تجزیه واریانس اثر فاکتور‌های فیزیوگرافی بر مشخصه‌های کمی گونه بادام کوهی در رویشگاه مورد مطالعه نشان میدهد که در ارتباط با عامل ارتفاع از سطح دریا، تعداد درختچهها و شادابی با افزایش ارتفاع از سطح دریا کاهش یافته به طوریکه درختچه‌های نزدیک به داخل دره که ارتفاع از سطح دریای کمتری داشتند از وضعیت شادابی بهتر و تعداد در هکتار بیش‌تری برخوردار بودند و این وضعیت در مقایسه با طبقات ارتفاعی بالاتر دارای اختلاف معنیدار و قابل مشاهد‌ه‌ای در سطح احتمال 95 درصد بود (جدول 4-2). در مورد مشخصه‌های کمی ارتفاع درختچهها و قطر تاج درختچهها نیز اختلاف معنیدار بین ارتفاعات مختلف دیده شده، اما این اختلاف در جهت عکس و منفی بود، بعبارتی با کاهش ارتفاع از سطح دریا در منطقه مورد مطالعه از ارتفاع درختچهها و قطر تاج آنها به طور معنیداری کاسته میشود. در مورد مشخصه تعداد جست گروه هیچ‌گونه اختلاف معنیدار و قابل توجهی در ارتفاعات مختلف منطقه دیده نشد (جدول 4-4).
جدول 4-4- نتایج تجزیه و تحلیل مشخصه‌های رویشی بادام کوهی در ارتباط با طبقات مختلف ارتفاعیردیف مشخصه‌‌های کمی و کیفی بادام کوهی نتایج تجزیه واریانس
df F p
1 تعداد در هکتار 2 *42/4 018/0
2 ارتفاع درختچه 2 *03/1 02/0-
3 قطر تاج 2 *362/3 026/0-
4 تعداد جست گروه 2 ns39/0 68/0
5 وضعیت شادابی 2 *18/3 031/0
نتایج مقایسه میانگین‌ها در ارتباط با مشخصه ارتفاع از سطح دریا نشان داد که در ارتفاعات پائین منطقه مورد مطالعه که اکثراً در داخل دره واقع شده بودند (طبقه ارتفاعی 1000 -900 متر)، تعداد درختچهها، تعداد جستها و وضعیت شادابی دارای میانگین بیش‌تری بوده و برعکس در ارتفاعات بالاتر (طبقه ارتفاعی 1200 - 1100 متر) میانگین ارتفاع درختچهها و قطر تاج بیش‌تر بوده است (جدول 4-5).
جدول 4-5- مقایسه‌ی میانگین تأثیر عامل ارتفاع از سطح دریا بر مشخصه‌های کمی بادام کوهی
متغیر مشخصه
کلاسه تعداد ارتفاع (m) قطر تاج (m2) تعداد جست شادابی
ارتفاع از سطح دریا 1000-900 a25 b62/1 b52/1 a9 a95/1
1100-1000 b23 b68/1 b5/1 a8 b7/1
1200-1100 b15 a95/1 a7/1 a8 b6/1

نمودار 4-1- مقایسه‌ی میانگین تأثیر عامل ارتفاع از سطح دریا بر مشخصه‌های کمی بادام کوهی4-5-2- جهت‌های جغرافیایینتایج تجزیه واریانس در ارتباط با مشخصه جهت دامنه نشان دهنده اختلاف معنی دار آماره‌های تعداد در هکتار درختچهها، تعداد جست گروهها، ارتفاع درختچهها و وضعیت شادابی می‌باشد، به طوریکه در جهت‌‌های شرقی تراکم بادام کوهی، ارتفاع آنها و تعداد جست گروه‌ها بیش‌تر از سایر جهتها بود که این اختلاف از لحاظ آماری نیز معنی دار بوده است. در مورد تأثیر جهت دامنه بر وضعیت شادابی تاج نیز اختلاف معنی دار دیده شد، اما در مورد قطر تاج درختچه‌های بادام اختلاف معنی دار از لحاظ آماری دیده نشد (جدول 4-6).
جدول 4-6- نتایج تجزیه و تحلیل مشخصه‌های رویشی بادام کوهی در ارتباط با جهت‌های جغرافیاییردیف مشخصه‌‌های کمی و کیفی بادام کوهی نتایج تجزیه واریانس
df F p
1 تعداد در هکتار 4 *42/3 018/0
2 ارتفاع درختچه 4 *08/3 02/0
3 قطر تاج 4 ns59/0 66/0
4 تعداد جست گروه 4 *162/4 12/0
5 وضعیت شادابی 4 *28/4 081/0
نتایج مقایسه میانگین‌ها در ارتباط با عامل فیزیوگرافی جهت دامنه نشان داد که در جهت‌های شرقی منطقه مورد مطالعه، تعداد درختچهها، تعداد جستها و ارتفاع و قطر تاج آنها دارای میانگین بیش‌تری بوده و در جهت‌های شمالی وضعیت شادابی درختچهها نسبت به دیگر جهت‌ها بهتر بوده است (جدول 4-7).
جدول 4-7- مقایسه‌ی میانگین تأثیر عامل جهت دامنه بر مشخصه‌های کمی بادام کوهیمتغیر مشخصه
کلاسه تعداد ارتفاع (m) قطر تاج (m2) تعداد جست شادابی
جهت جغرافیایی شمال b14/17 b72/1 a58/1 b4/7 a85/1
جنوب b85/21 b75/1 a61/1 b71/7 b67/1
شرق a25/23 a89/1 a66/1 a55/8 b79/1
غرب b14/15 b65/1 a63/1 b51/7 b63/1

نمودار 4-2- مقایسه‌ی میانگین تأثیر عامل جهت دامنه بر مشخصه‌های کمی بادام کوهی4-5-3- شیب دامنهاز نظر مشخصه درصد شیب تنها تعداد درختچهها و تعداد جست گروها از نظر آماری اختلاف معنیدار را در سطح احتمال 95 درصد نشان دادند، به طوریکه با افزایش درصد شیب در منطقه مورد مطالعه تعداد درختچه‌ها و جست گروها به طور قابل توجهی افزایش مییابد (جدول 4-8).
جدول 4-8- نتایج تجزیه و تحلیل مشخصه‌های رویشی بادام کوهی در ارتباط با درصد شیبردیف مشخصه‌‌های کمی و کیفی بادام کوهی نتایج تجزیه واریانس
df F p
1 تعداد در هکتار 4 *37/8 018/0
2 ارتفاع درختچه 4 ns33/1 02/0
3 قطر تاج 4 ns29/1 66/0
4 تعداد جست گروه 4 *03/7 12/0
5 وضعیت شادابی 4 ns53/0 081/0
نتایج بررسی خصوصیات کمی و کیفی بادام کوهی در شیب‌های مختلف نشان داد که در طبقات شیب 45-60 درصد بیش‌‌ترین تعداد درختچه و تعداد جست گروه دیده میشود و در مناطق کم شیب از تعداد درختچه کاسته میشود. در کلاسه‌‌های شیب 30-45 ارتفاع، قطر تاج و وضعیت شادابی درختچه‌های بادام کوهی از میانگین بالاتری برخوردار است (جدول 4-9).
جدول 4-9- مقایسه‌ی میانگین تأثیر عامل شیب بر مشخصه‌های کمی بادام کوهیمتغیر مشخصه کلاسه تعداد ارتفاع (m) قطر تاج (m2) تعداد جست شادابی
درصد شیب 15-0 b5/15 a67/1 a51/1 b8 a6/1
30-15 b4/23 a9/1 a71/1 b31/7 a7/1
45-30 b25/31 a9/1 a76/1 b6/7 a2
60-45 a38 a53/1 a5/1 a25/8 a93/1
حروف نامشابه در هر ردیف نشان دهنده اختلاف معنی داری در سطح 5 در صد است.

نمودار 4-3- مقایسه‌ی میانگین تأثیر عامل شیب بر مشخصه‌های کمی بادام کوهی4-6- وضعیت خاک منطقه مورد مطالعه4-6-1- بررسی وضعیت خاک در طبقات مختلف ارتفاعیمقایسه مشخصه‌‌های خاک در طبقات مختلف ارتفاعی در جدول 4-11 ارائه شده است. همانگونه که ملاحظه می‌گردد هدایت الکتریکی خاک (EC)، کربن (C)، نیتروﮊن کل (N) و ماده آلی (OM) در طبقه ارتفاعی 1100 تا 1200 متر از سطح دریا بیش‌تر از سایر طبقات می‌باشد. pH خاک در کلیه طبقات ارتفاعی تقریباً مشابه (بیش از 7) بوده است. مقایسه آماری مشخصه‌های خاک در ارتباط با ارتفاع از سطح دریا نشان داد که اختلاف معنیداری بین کربن و ماده آلی در سطح پنج درصد و نیتروﮊن کل در سطح یک درصد با ارتفاع از سطح دریا وجود دارد. در مورد سایر مشخصه‌های خاک اختلاف معنی دار از لحاظ آماری مشاهده نشد (جدول 4-10).
جدول 4-10- مقایسه مشخصه‌های خاک در طبقات مختلف ارتفاعی طبقه ارتفاعی
مشخصه 1000-900 1100-1000 1200-1100
pH 12/7 16/7 13/7
EC 51/1 64/1 93/1
C *24/1 *30/1 *56/1
N **10/0 **11/0 **13/0
ماده آلی (OM) *13/2 *25/1 *69/2
** معنی داری در سطح 1 درصد، * معنی داری در سطح 5 درصد، ns عدم معنی داری

نمودار 4-4- مقایسه مشخصه‌های خاک در طبقات مختلف ارتفاعی4-6-2- بررسی وضعیت خاک در جهت‌های مختلف جغرافیاییجدول 4-12 مقایسه مشخصه‌‌های خاک را در جهت‌های مختلف جغرافیایی نشان میدهد. همان طور که ملاحظه میشود میانگین مشخصه‌های pH و EC خاک در جهت‌های شرقی بیش‌تر بوده (pH در تمام جهات قلیایی بوده است) و میانگین مشخصه‌های کربن، نیتروﮊن و ماده آلی در جهت‌‌های جنوبی بیش‌تر از سایر جهات می‌باشد. همچنین نتایج نشان داد که تنها کربن و ماده آلی دارای اختلاف معنی‌دار در سطح احتمال 95 درصد با جهات مختلف جغرافیایی دارند.
جدول 4-11- مقایسه مشخصه‌های خاک در جهات جغرافیایی جهت
مشخصه شمال جنوب شرق غرب
pH 036/7 05/7 26/7 12/7
EC 44/1 85/1 89/1 23/1
C 26/1 *72/1 13/1 53/1
N 106/0 14/0 09/0 08/0
ماده آلی (OM) 16/2 *96/2 96/1 62/2