–393

7. اصل حقیقت جویی: تلاش در راستای پی جویی حقیقت و وفاداری به آن و دوری از هرگونه پنهان سازی حقیقت.
8. اصل مالکیت مادی و معنوی: تعهد به رعایت کامل حقوق مادی و معنوی دانشگاه و کلیه همکاران پژوهش.
225298014351000023666452006600009. اصل منافع ملی: تعهد به رعایت مصالح ملی و در نظر داشتن پیشبرد و توسعه کشور در کلیه مراحل پژوهش.
سپاسگزاری :
مراتب سپاس و قدردانی خود را به استاد ارجمند سرکار خانم دکتر محبوبه چین‌آوه که با همکاری فراوان و راهنمایی‌های ارزنده و خردمندانه خود مرا در به انجام رساندن این تحقیق یاری نمودند تقدیم می‌دارم.
از استاد مشاور محترم سرکار خانم نادره سهرابی به پاس زحمات بی دریغشان کمال تشکر و قدردانی را دارم.

تقدیم به:
پدر و مادر عزیزم و همسر مهربانم که در تمام مراحل پشتیبان من بودند.
فهرست مطالب
عنوانصفحه
چکیده1 TOC o "1-3" h z u فصل اول: کلیات پژوهش1-1 مقدمه31-2 بیان مسئله51-3 اهمیت و ضرورت پژوهش91-4 اهداف 101-5 تعاریف نظری و عملیاتی متغیر ها10فصل دوم: ادبیات پژوهش
2-1 چارچوب نظری 142-1-1 جهت گیری هدف 142-1-2 کمال گرایی 372-1-3 مسئولیت پذیری 452-2 پیشینه پژوهش 522-3 جمع بندی 542-4 فرضیه های پژوهش 56HYPERLINK l "_Toc293430815"فصل سوم: روش پژوهش
3-1 روش پژوهش 58
3-2 جامعه، نمونه و روش نمونه گیری583-3 ابزارهای اندازه گیری 593-4 روش اجرای پژوهش 633-5 روش تجزیه و تحلیل اطلاعات 633-6 ملاحظات اخلاقی 64فصل چهارم: یافته های پژوهش
4-1 یافته های توصیفی 664-2 یافته های استنباطی 67فصل پنجم: بحث و نتیجه گیری
5-1 خلاصه پژوهش 745-2 بحث و نتیجه گیری 745-3 محدودیت ها و پیشنهادات82منابع
منابع فارسی85منابع لاتین90پیوست‌ها
پرسشنامه ها ................................................................................................................................................94
چکیده لاتین 93فهرست جداول
عنوان جدولصفحهHYPERLINK l "_Toc293430815"
جدول 4-1 میانگین و انحراف معیار متغیر های پژوهش 66جدول 4-2 ماتریس همبستگی بین متغیر ها مورد بررسی 67


جدول 4-2: نتایج تحلیل رگرسیون و پیش بینی میزان جهت گیری یادگیری بر اساس مسئولیت پذیری68
جدول 4-3: تحلیل رگرسیون و پیش بینی جهت گیری هدف عملکرد- گرایشی بر اساس مسئولیت پذیری 68 جدول 4-4: تحلیل رگرسیون و پیش بینی جهت گیری هدف عملکرد گریزی بر اساس مسئولیت پذیری69 جدول 4-5: تحلیل رگرسیون و پیش بینی بلاتکلیفی در جهت گیری هدف بر اساس مسئولیت پذیری69 جدول 4-6: تحلیل رگرسیون و پیش بینی جهت گیری یادگیری بر اساس کمال گرایی70 جدول 4-7: تحلیل رگرسیون و پیش بینی جهت گیری هدف عملکرد گرایشی بر اساس کمال گرایی71 جدول 4-8: تحلیل رگرسیون و پیش بینی جهت گیری هدف عملکرد گریزی بر اساس کمال گرایی71 جدول 4-9: تحلیل رگرسیون و پیش بینی بلاتکلیفی در جهت گیری هدف بر اساس کمال گرایی72بررسی رابطه بین مسئولیت‌پذیری و کمال‌گرایی با جهت‌گیری هدف
در دانشجویان دانشگاه آزاد اسلامی واحد ارسنجان
به وسیله: مریم سیادتان
چکیده:
پژوهش حاضر با هدف بررسی رابطه بین کمال گرایی و مسئولیت پذیری با جهت گیری هدف در بین دانشجویان دانشگاه آزاد اسلامی واحد ارسنجان انجام شد جهت انجام پژوهش از بین این دانشجویان تعداد 358 نفر بصورت نمونه گیری دردسترس انتخاب شدند و سپس با استفاده از پرسشنامه های جهت گیری هدف وندی ویل( ١٩٩٧ )، مقیاس چند بعدی کمال گرایی(فلت و هویت،1991) و مسئولیت پذیری اجتماعی(عبدل و ابراهیم، 2002) مورد ارزیابی قرار گرفته و پس از تکمیل پرسشنامه ها، با استفاده از ابزار کامپیوتری SPSS یافته های مورد ارزیابی قرار گرفته و جهت تجزیه و تحلیل اطلاعات از روش های آماری همبستگی پیرسون، تحلیل رگرسیون خطی به شیوه همزمان استفاده شد و نتایج حاکی از این بود که مسئولیت پذیری قادر به پیش بینی بخشی از واریانس جهت گیری هدف می باشد، کمال گرایی قادر به پیش بینی بخشی از واریانس جهت گیری هدف می باشد.
کلمات کلیدی: کمال گرایی- مسئولیت پذیری- جهت گیری هدف

فصل اول
کلیات پژوهش
2501660663383
1-1 مقدمه:
جهت گیری هدف از متغیرهایی است که در ارتباط با پیشرفت و موفقیت در زندگی شخصی، تحصیلی و شغلی از اهمیت بسزایی برخوردار است و در این باره نظریات بسیاری مطرح شده است. نظریه جهت گیری هدف یکی از کاربردی ترین دیدگاه های انگیزش پیشرفت محسوب می شود(پینتریچ و شانک، 2002) که به جای پرداختن به اینکه فراگیر در موقعیت پیشرفت به تلاش در موقعیت های پیشرفت را محور "چرایی" چیزی که می خواهد برسد، ادراک فراگیر از" چه" بحث قرار داده اند(اردن و ماهر،1995) هرچند که جهت گیری های هدف بصورت های مختلفی مطرح شده اند، اما هسته مفهومی همه الگوها و نظریه ها این است که چه قصد و نیتی برای فعالیت و رفتارهای مرتبط با پیشرفت وجود دارد و مفهوم جهت گیری هدف بر قصد و نیت برای پیشرفت در تکالیف تأکید دارد(پینتریچ و شانک،2002؛ ایمز ،1992) با مروری بر پیشینه تحقیقات، در ارتباط با انواع جهت گیری هدف، دو نوع جهت گیری هدف، تبحری و عملکردی را شناسایی کرده که محور بیشترین توجه بوده است. برخی از محققان چارچوب جهت گیری هدف دو بخشی، تبحری و عملکردی، را مورد بازبینی و اصلاح قرار دادند و یک چارچوب سه بخشی را مطرح کردند که در آن جهت گیری هدف عملکردی به دو بخش گرایش- عملکردی(برای نشان دادن توانایی های شخصی) و اجتناب- عملکردی (برای اجتناب از نشان دادن ناتوانی ها) تقسیم می شوند(الیوت و شلدون، 1997؛ آتنویولر و مور،2006). دانش آموزانی که جهت گیری هدف رویکرد- عملکردی را انتخاب می نمایند بر عملکردشان در مقایسه با دیگران توجه می کنند و یادگیری را وسیله ای برای رسیدن به هدفشان تلقی می کنند و دانش آموزانی که جهت گیری هدف اجتناب عملکردی را انتخاب می کنند درصدد کسب قضاوت های مثبت از سوی دیگران و همچنین باهوش نشان دادن خود، جهت اجتناب از تنبیه هستند(ریان و پنتریچ، 1997).
پژوهش های زیادی وجود دارند که تأثیر جهت گیری هدف را بر پیشرفت تحصیلی دانش آموزان بررسی کرده اند. نتایج برخی از پژوهش ها نشان داده اند که جهت گیری تبحری و رویکرد- عملکردی رابطه مستقیم و مثبتی با پیشرفت تحصیلی دارند(حاجی یخچالی، حقیقی و شکرکن،1380؛ الیوت، مک گریگور و گیبل، 1999) و جهت گیری هدف اجتناب- عملکردی به صورت منفی(خادمی و نوشادی، 1385 ؛ الیوت و همکاران،1999) با پیشرفت تحصیلی مرتبط هستند. به همین دلیل بررسی عوامل تأثیرگذار و پیش بینی کننده بر جهت گیری هدف ضروری به نظر می رسد.
از جمله متغیرهای موثر بر جهت گیری هدف می توان به کمال گرایی اشاره نمود. نیومیستر(٢٠٠۴) در تحقیقی کیفی تئوری هدف سه بخشی الیوت و کمال گرایی را در دانشجویان سرآمد دانشگاهی بررسی و حمایت هایی برای این فرضیه ها فراهم کرده است. در این تحقیق کمال گرایان خودمدار اظهار داشته اند که اهداف تبحری و عملکرد گرایشی دارند در حالیکه کمال گرایان جامعه مدار اذعان داشته اند که اهداف عملکرد گریزی و عملکرد گرایشی دارند. اگر چه وجود کمال گرایی می تواند تا حدی فرد را به جلو براند، اما کمال گرایی بیش از حد و به شکل منفی می تواند زمینه ساز اختلال وسواس شود(هاشمیان و لطیفی،1388). از طرف دیگر مقوله مسئولیت پذیری نیز ارتباط نزدیکی با جهت گیری هدف می تواند داشته باشد.
مسئولیت پذیری یک الزام و تعهد درونی از سوی فرد برای انجام مطلوب همه فعالیت هایی که بر عهده اش گذاشته شده است، می باشد و از درون فرد سرچشمه می گیرد. فردی که مسئولتی کاری را بر عهده می گیرد قبول می کند یک سری فعالیت ها و کارها را انجام دهد و یا بر انجام این کارها توسط دیگران نظارت داشته باشد. به عبارت دیگر مسئولیت پذیری تعهدی است که انسان در قبال امری می پذیرد و کسی که کاری به او واگذار شده پیامد آن به عهده اوست( آکراتو،2004؛ به نقل ازجوکار،1384). بنابر این فرد در مقابل این تعهد، ملزم می شود که اهداف مناسبی را برگزیند تا بتواند به شایستگی از عهده فعالیت ها و اموراتی که به عهده اش واگذار شده است، بر آید.
با توجه به مطالبی که در فوق به آن ها اشاره شد، شایسته است پژوهشی انجام گیرد تا رابطه بین کمال گرایی و مسئولیت پذیری با جهت گیری هدف را روشن تر نماید.
1-2 بیان مسئله:
رفتار ما عموماً با میل رسیدن به هدفی ویژه برانگیخته می شود، در واقع هر رفتاری سلسله ای از فعالیت هاست و برای پیش بینی رفتار افراد انگیزه ها یا نیاز های آنان باید شناسایی گردد. لاک و لاتهام به نقل از ریو(1381) به چهار دلیل اصلی تعیین کردن هدف، را اساسی تلقی می کند، 1. هدف ها، توجه فرد را به سمت تکلیف در دست انجام، هدایت می کنند، 2. هدف ها تلاش را به خدمت می گیرند، 3. هدف ها، استقامت و پشتکار را بیشتر می کنند، زیرا تلاش تا دستیابی به هدف ادامه می یابد، 4. هدف ها، مشوقی برای گسترش استراتژی های تازه اند. به عبارت دیگر، هدف ها ایجاد تدبیر جدید برای بهبود عملکرد را تشویق می کنند. از طرفی نوع هدفی که ما انتخاب می کنیم، مقدار انگیزش ما را برای رسیدن به آن هدف تعیین می کند. ایمز(1992) جهت گیری هدف را بیانگر الگوی منسجمی از باور های فرد می داند که سبب می شود تا فرد به شیوه های مختلف به موقعیت ها گرایش پیدا کند، در آن زمینه به فعالیت بپردازد و نهایتا پاسخی را ارائه دهد. این جهت گیری در موقعیت تحصیلی، مبین انگیزه فرد از تحصیل است و به همین دلیل تمایلات، کنش ها و پاسخ های او را در موقعیت های یادگیری تحت تأثیر قرار می دهد. جهت گیری هدف را نباید با اهداف ویژه ای که در موقعیت های آموزشی برای فعالیت ها در نظر می گیرند، یکی دانست. این گونه اهداف صرفا محرک فرد، برای یادگیری یک تکلیف ویژه در شرایط ویژه هستند. از دیگر سوی بر خلاف اهداف آموزشی که مبنای تشابهات فردی، است جهت گیری هدف مبنای تفاوت های فردی در موقعیت های تحصیلی است و بر اساس آن ها می توان میزان موفقیت فرد را در این گونه موقعیت ها، پیش بینی کرد( دویک و لی گت 1988؛ پنتریچ و شانگ به نقل از والترز و یو، 1997؛ ایمز 1992، دویک 1973). در سالهای اخیر الیوت و مک گریگور(2001) با بررسی چارچوب جهت گیری هدفی سه بخشی، دیدگاه جدیدی را ارئه کردند که در آن بازبینی بیشتری در دیدگاه دو بخشی صورت گرفته است. در این رویکرد یک آمیختگی کامل در تمایز بین رویکرد و اجتناب پیشنهاد کرده اند و جهت گیری تبحری را به دو بخش رویکرد-تبحری و اجتناب-تبحری تقسیم کرده اند. این الگوی جدید از ترکیب نظریه شناختی-اجتماعی هدف و نظریه انگیزش پیشرفت بر اساس یک الگوی چهار وجهی، چهار نوع جهت گیری هدفی را پیشنهاد می دهد.
الگوی جهت گیری هدف شامل جهت گیری هدف یادگیری، جهت گیری هدف عملکرد و جهت گیری هدف پرهیز از شکست می باشد. مطابق با این الگو در جهت گیری هدف تسلط یا یادگیری، دانشجویان در صدد افزایش تسلط بر موضوعات جدیدند و بر فهم موضوعات تأکید دارند. آن ها حتی زمانی که عملکردشان ضعیف است نیز می خواهند یاد بگیرند و بنابراین در کارهای دشوار پشتکار دارند و به استراتژی های خود تنظیمی یادگیری گرایش دارند. آن ها همچنین به دنبال وظایف چالشی هستند. هدف اولیه این گونه دانشجویان کسب دانش و مهارت هایشان است و خطاها به عنوان بخشی از فرایند یادگیری جهت کوشش بیشتر در نظر گرفته می شود و از سویی بیشتر به موضوعاتی گرایش دارند که ذاتاً برای آن ها رضایت بخش است( دویک و لی گت، 1988)، همچنین آن ها بیان مثبتی از خود دارند(داینر و دویک، 1978). این گونه افراد مسئولیت پذیرند و چنان چه در انجام کاری شکست بخورند، مسئولیت خودشان را انکار نمی کنند( سیفرت، 1996) و احساس رضایت از تحصیل بیشتری دارند( جاکاسینی و نیکولز 1984). از طرفی علاقه درونی به فعالیت های یادگیری داشته و به همین دلیل وقت بیشتری برای یادگیری صرف می کنند(باتلر 1987). در جهت گیری هدف عملکردی دانشجویان تلاش می کنند تا توانایی هایشان را با دیگران مقایسه کنند و بر این نکته تأکید دارند که دیگران درباره آن چگونه داوری می کنند. آن ها تلاش می کنند که خود را باهوش جلوه دهند و نه بی کفایت و نالایق. همچنین آن ها بوسیله اجتناب و گریز از موقعیت و شرایط چالش برانگیز مانع از آشکار شدن بی کفایتی فکری و عقلانی خود می شوند و در اینجا موضوع کمال گرایی به میان می آید.
به عبارت دیگر، از جمله مواردی که در افراد کمال گرا به وفور دیده می شود ترس از بی کفایت و نامناسب بودن است که آن ها را مجبور به تلاش های زیاد و اغلب بی نتیجه می کند. کمال گرایی منفی، درواقع باوری غیرمنطقی است که اشخاص نسبت به خود و محیط اطراف خود دارند.افرادی که کمال گرا هستند، معتقدند که خود و محیط اطرافشان باید کامل بوده و هرگونه تلاشی در زندگی باید بدون اشتباه و خطا باشد. کمال گرایی منفی به عنوان یک مشکل در افراد و بویژه در دانشجویان موجب مشکلات زیادی می شود که می توان به برخی از این مشکلات اشاره نمود، از جمله این مشکلات این مورد است که دانشجویان کمال گرا به خاطر ترس از اینکه مبادا کار آن ها بصورت صددرصد مناسب انجام نداده اند از تکمیل و تحویل آن خودداری می کنند و یا اینکه به خاطر اینکه کار بهتری را تحویل دهند، در انجام آن تعلل نموده تا بالاخره زمان تحویل آن پایان می یابد و وی مجبور می شود که کار های خود را ناتمام تحویل نموده و در زمینه تحصیلی دچار مشکل شود.
از طرف دیگر مسئولیت پذیری فرد را وادار می سازد که کارها را به اتمام رسانده و به شکلی قابل قبول ارائه نماید. مسئولیت پذیری متغیر مهمی در ایجاد عملکرد مثبت در افراد بویژه دانشجویان محسوب می گردد و می توان با ایجاد مسئولتی پذیری لازم و به موقع در دانشجویان، به بهبود جهت گیری هدف در آنها کمک کرد و از این رو به بهبود وضعیت تحصیلی و موفقیت آن ها در حیطه تحصیلی، شغلی، خانوادگی، اجتماعی و ... یاری رساند.
در رابطه با کمال گرایی و ارتباط آن با جهت گیری هدف پژوهش های اندکی صورت گرفته که از آن جمله می توان به پژوهش های هاشمی و لطیفیان (1388)، نیومیستر(٢٠٠۴)، نیومیستر و فینچ(٢٠٠۶)،زاهد بابلیان، پوربهرام، رحمانی(1389) اشاره نمود که حاکی از ارتباط بین کمال گرایی و مولفه های ان با انواع جهت گیری هدف می باشد و اما در رابطه با مسئولیت پذیری و جهت گیری هدف پژوهش های علمی یافت نشد و لذا پژوهش حاضر با توجه به کمبود های پژوهش در این زمنیه به دنبال بررسی این مسئله می باشد که کدامیک از مولفه های کمال گرایی و مسئولیت پذیری پیش بینی کننده قوی تری برای جهت گیری هدف می باشد؟
1-3 اهمیت و ضرورت تحقیق:
داشتن هدف در زندگی یکی از جمله مسائلی است که می تواند فرد را در پیشبرد اهداف و دستیابی به موفقیت یاری نماید. جهت گیری هدف بهتر نه تنها در حیطه تحصیل که در زندگی شخصی دانشجویان نیز می تواند باعث تغییرات مثبتی گردد که در عملکرد های آتی این قشر از جامعه اثرگذار می باشد، و می تواند در آینده شغلی، زندگی خانوادگی، و ... مهم و ضروری باشد. لذا شناختن و رفع موانع موجود بر سر راه جهت گیری هدف باید به عنوان یکی از مهم ترین مسائل توسعه هر جامعه ای مورد توجه واقع شود.
جهت گیری هدف متغیری است چند بعدی که تحت تأثیر عوامل فردی-اجتماعی و انگیزشی بسیاری قرار می گیرد و از سوی دیگر قادر به تحت تأثیر قرار دادن متغیر های درونی و روانشناختی بسیاری در افراد نیز میباشد، که می تواند در موفقیت یا شکست فرد دخیل باشد. پیشرفت هر فرد در جامعه در گرو داشتن هدف مشخص و واضع و همچنین داشتن معیار ها و ملاک های صحیح برای دستیابی به این اهداف می باشد. افرادی که دارای اهداف روشن و مشخصی هستند و بر اساس توانمندی ها و نقایص خود برنامه ریزی های واقع بینانه ای برای دستیابی به اهداف خود دارند اغلب از جمله افرادی هستند که در زندگی شخصی و دستیابی به موفقیت، عملکرد مناسبی دارند و از جمله افراد موفق و سرآمد جامعه محسوب می گردند و همچنین احساسات مناسبی در رابطه با خود و عملکرد های خود دارند. علاوه بر این، چنین افرادی می توانند جامعه را در دستیابی به اهداف توسعه و رسیدن به اوج پیشرفت یاری نمایند. بنابراین پرداختن به متغیر های تأثیر گذار بر میزان و نوع جهت گیری هدف از جمله مسائلی است که به افراد و همچنین جامعه کمک می کند در مسیر صحیح پیشرفت قرار گرفته و از اتلاف انرژی و زمان بویژه در دوران مهم تحصیل پیشگیری نماید. لذا به نظر می رسد از بین متغیر های موثر بر آن پرداختن به تأثیر و پیش بینی کنندگی کمال گرایی و مسئولیت پذیری به عنوان دو متغیر مهم در دستیابی به اهداف ضروری می نماید.
1-4 اهداف و فرضیه ها:
اهدافی که پژوهش حاضر به دنبال دستیابی به آن می باشد عبارتند از:
پیش بینی جهت گیری هدف بر اساس مسئولیت پذیری
پیش بینی جهت گیری هدف بر اساس کمال گرایی
سوال تحقیقاتی:
کدامیک از مولفه های کمال گرایی و مسئولیت پذیری بهترین پیش بینی را از جهت گیری هدف به عمل می آورند؟
1-5 تعریف نظری و عملیاتی متغیرها:
تعاریف نظری:
کمال گرایی: کمال گرایان افرادی با عقاید محکم و ثابت اند و سختی عقاید و انعطاف ناپذیری یکی از اولین خصوصیاتی است که درباره کمالگرایی مطرح شد. برنز و فدرا(2005) کمال گرایی به عنوان مجموعه ای از معیارهای بسیار بالا برای عملکرد است که با خودارزیابی های منفی، انتقادات و سرزنش خود همراه است(فراست، مارتن، لهارت، و روزن بلات، 1999).
مسئولیت پذیری: مسئولیت پذیری یک الزام و تعهد درونی از سوی فرد برای انجام مطلوب همه فعالیت هایی که بر عهده اش گذاشته شده است، می باشد و از درون فرد سرچشمه می گیرد. فردی که مسئولیت کاری را بر عهده می گیرد قبول می کند یک سری فعالیت ها وکارها را انجام دهد و یا بر انجام کاهار توسط دیگران نظارت داشته باشد. به عبارت دیگر مسئولیت تعهدی است که فرد در قبال امری می پذیرد و کسی که کاری به او واگذار شده پیامد آن به عهده اوست(کرتو، 2004).
جهت گیری هدف: در نظریات موجود در رابطه با جهت گیری هدف و تعاریف موجود در این باره هسته مفهومی همه الگوها و نظریه ها این است که چه قصد و نیتی برای فعالیت و رفتارهای مرتبط با پیشرفت وجود دارد و مفهوم جهت گیری هدف بر قصد و نیت برای پیشرفت در تکالیف تأکید دارد(پینتریچ و شانک،2002؛ ایمز ،1992) با مروری بر پیشینه تحقیقات، در ارتباط با انواع جهت گیری هدف، دو نوع جهت گیری هدف، تبحری و عملکردی را شناسایی کرده که محور بیشترین توجه بوده است.
تعاریف عملیاتی:
کمال گرایی: منظور از کمال گرایی نمره ای است که فرد در پرسشنامه مقیاس چند بعدی کمال گرایی، ام پی اس، (فلت و هویت، ١٩٩١) کسب می کند.
مسئولیت پذیری: منظور از مسئولیت پذیری نمره ای است که فرد در مقیاس مسئولیت پذیری اجتماعی عبدل و ابراهیم (2002) کسب می کند.
جهت گیری هدف: منظور از جهت گیری هدف نمره ای است که از پرسشنامه جهت گزینی هدف از وندی ویل (١٩٩٧) کسب می کند.
فصل دوم
چارچوب نظری و پیشینه پژوهش
26368741084949
در این قسمت از پژوهش سعی بر آن است تا در نظریات موجود در رابطه با متغیر های پژوهش از جمله کمال گرایی، مسئولیت پذیری و جهت گیری هدف به تفصیل بحث و گفتگو شود و ارتباط نظری موجود بین این متغیر ها بیان شده و در نهایت به بررسی ادبیات پژوهشی پیشین در این باره پرداخته شود.
2-1چارچوب نظری:
2-1-1 جهت گیری هدف:
بیش از دو دهه است که اکثر کارهای نظری و تجربی جهت گیری های انگیزشیبر انگیزش پیشرفت تمرکز یافته است. پیشینه پژوهش بر روی انگیزش پیشرفت در سال های اخیر به سمت چارچوب مفهومی گسترده تری برای سازماندهی مولفه های شناختی و عاطفی انگیزش جهت یافته است (ایمز،1992). تئوری جهت گیری هدف از جمله نظریه های انگیزش پیشرفت و اهداف پیشرفت آمده است یا جهت گیری های دو بخشی هستند و یا بصورت سه بخشی مطرح شده است. خاستگاه جهت گیری های انگیزشی به میزان زیادی برخاسته از کارهای دینر و دوک (1978، 1980)، ایمز و آرچر (1987، 1988)، نیکولز (1984)، دودا و نیکولز(1992)، ایمز(1992)، تورکیدسن و نیکولز(1998)، دوک و لگت(1998) و همچنین روبرتز، تریشر و کاواسانیو(1997) و مارش(1994) است.
الف: مفاهیم و تنوع جهت گیری های هدف
تئوری ها و مدل های متعددی در بحث از جهت گیری هدف مطرح شده است. اما هسته مفهومی همه آنها این است که چه قصد و نیتی برای فعالیت و رفتارهای مرتبط با پیشرفت وجود دارد. مفهوم جهت گیری هدف را باید از مفاهیمی مانند هدف گذاریو رویکرد هدف- محتویتفکیک نمود. تئوری های هدف گذاری مانند تئوری لوکی و لاتم(1990) بر دستیابی به اهداف خاص و نهایی مانند حل ده مساله بصورت صحیح تاکید دارد. لیکن تئوری جهت گیری هدف این بحث را مطرح می سازد که چرا فرد می خواهد ده مساله را صحیح حل نماید و چگونه به حل این مسایل مبادرت می ورزد. تفاوت این دو با رویکرد هدف- محتوی مانند تئوری فورد(1992) در این است که رویکرد هدف-محتوی تاکید بر اهدافی دارد که منجر به هدایت رفتار می شود. در حالی که جهت گیری هدف بر مقصد و نیت برای پیشرفت در تکالیف تاکید دارد (پنتریچ و شانک، 2002).
جهت گیری هدف الگوی یکپارچه ای از عقاید است که به گزینش روش های مختلف روی آوری و پاسخ دهی به موقعیت های پیشرفت منجر می شود (ایمز، b1992). از نظر یوردن(1997) جهت گیری هدف استدلال فرد درباره این موضوع است که چرا تکالیف پیشرفت را دنبال و پیگیری می نماید. پنتریچ (a2000، b2000،c2000) معتقد است که جهت گیری هدف تنها اهداف و استدلال های فرد برای پیشرفت را پوشش نمی دهد بلکه نوعی معیار (درونی و بیرونی) را نیز نشان می دهد که فرد بر اساس آن موفقیت یا شکست خویش را در دستیابی به آن هدف مورد قضاوت قرار می دهد. الیوت(1997) نیز جهت گیری هدف را روشی می داند که فرد بر اساس معیارهای برجسته شایستگی خویش را مورد قضاوت قرار می دهد. تعریفی که تاکید بر ماهیت استدلال ها و مقاصد برای انجام تکلیف دارد، وقتی با معیارهای ارزشیابی عملکرد تلفیق می شود- که این موضوع در تعریف جهت گیری هدف مورد استفاده قرار گرفته است- بیش از باور اهداف به تنهایی می تواند نیروزا باشد (پنتریچ و شانک،2002).
جهت گیری های هدف متنوع هستند، لیکن دو جهت گیری که اغلب در تئوری های جهت گیری اهداف مورد اشاره قرار می گیرد با عناوین اهداف یادگیری و اهداف عملکردی مشهورگشته اند (دوک و لگت،1985، الیوت و دوک،1988). این دو جهت گیری هدف با نام هایی مانند اهداف تکلیف مشغولی و من مشغولی (نیکولز،1984) یا اهداف تبحری و عملکردی(ایمز،b1992، ایمز و آرچر،1987، 1988)، اهداف تکلیف محور و توانایی محور (میهر و میگلی،1991) هم آمده است. در میان محققین در این باره که آیا سازه های مختلف مطرح در مدل های جهت گیری اهداف مشابه هستند، توافق نظر وجود ندارد (نیکولز،1990). لیکن همپوشی مفهومی بین این سازه ها به حد کافی وجود دارد تا برخی از محققین آن ها را به گونه ای مشابه مورد توجه قرار دهند (پنتریچ و شانک،2002).
در مطالعات ایمز (1992)، بونگ(1996)، دوک (1986)، لپر(1988)، مورفی و الکساندر(2000)، پنتریچ (1994)، اسنو، کورنو و جکسون(1996) نیز کم و بیش بر سازه هایی تاکید شده است که به موازات و مشابه یکدیگر هستند. این سازه ها همچنین مشابه با انگیزش درونی و انگیزش بیرونی است که بوسیله دی سی و ریان(1985) مطرح شده است. بعنوان مثال جهت گیری تکلیف مشغولی مشابه با انگیزش درونی است، این جهت گیری مشابه با اهداف یادگیری است که بوسیله دوک و لگت (1985) مطرح شده است. همچنین جهت گیری من مشغولی مشابه انگیزش بیرونی است که بوسیله دی سی و ریان (1985) و ریان و دی سی (2000) مطرح شده است. این جهت گیری ها همچنین با اصطلاح اهداف عملکردی مشابهت دارد که بوسیله دوک (1975، 1986) عنوان شده است. ریان و دی سی (2000) به این موضوع اشاره می کنند که جهت گیری من مشغولی مثالی کلاسیک از انگیزشی بیرونی است.
جهت گیری یادگیری و سازه های مشابه مانند جهت گیری تبحری با واژه ها و اصطلاحاتی مانند تمرکز بر یادگیری، تبحریابی در تکلیف بوسیله معیارهای تدوین شده بوسیله خود، افزایش مهارت های نو، رشد دهی و فزون بخشی شایستگی، کوشش برای مواجهه با مسائل چالش برانگیز و کوشش برای کسب بینش و بصیرت معرفی شده است (ایمز، b1992، دوک و لگت، 1988، میهر و میگلی،1991، میگلی و همکارانف 1998، نیکولز، 1984، هارتر، b 1981).
اهداف عملکردی معمولا در مقابل اهداف یادگیری و تبحری قرار می گیرد. این جهت گیری بر اثبات شایستگی یا توانایی تاکید دارد. محور جهت گیری عملکردی این است که چگونه توانایی فرد بوسیله دیگران مورد قضاوت قرار خواهد گرفت. برای مثال کوشش برای بهتر از دیگران بودن، کوشش برای تفوق در تناسب با معیارهای هنجاری، بکارگیری معیارهای اجتماعی برای مقایسه خود با دیگران، سعی برای برجسته بودن در گروه یا کوشش برای برتری در انجام تکالیف کلاسی، اجتناب از مورد قضاوت واقع شدن بعنوان فردی با توانایی ضعیف و یا اجتناب از مشخص شدن بعنوان فردی کند فهم و جستجوی این موضوع که فرد بعنوان شخصی دارای توانایی بالا مورد قضاوت قرار گیرد (ایمز،b1992، دوک و لگت،1988، میگلی و همکاران،1998). در برخی پژوهش ها بجای استفاده از واژه جهت گیری عملکردی یا جهت گیری من از واژه جهت گیری توانایی مرتبط استفاده شده است (نگاه شود به یوردن،1997). جهت گیری من و جهت گیری عملکردی همپوشی دارند. ذکر این نکته لازم است که در مدل ها و مطالعات آغازین تمایزی بین اهداف عملکرد گرایشی و عملکرد گریزی وجود نداشته است (برای مثال میگلی و همکاران،1998).
انواع دیگر جهت گیری هدف که همسو با جهت گیری عملکردی هستند در پژوهش های مختلف مورد مطالعه قرار گرفته است. برای مثال پنتریچ و همکاران (پنتریچ،1989، پنتریچ و دی گروت، a1990، پنتریچ و گارسیا،1991) جهت گیری هدف بیرونی را مورد ارزیابی قرار می دهند. در این جهت گیری تاکید بر کسب نمره خوب، انجام تکلیف مدرسه، کسب پاداش و دوری گزینی از شکست مطرح است. همچنین یوردن (1997) نقش جهت گیری هدف بیرونی در یادگیری و پیشرفت را مورد بحث قرار می دهد. جهت گیری هدف بیرونی مشابه با انگیزش بیرونی در تئوری دی سی و رایان (1978) است. نیکولز و همکاران (نیکولز،1989 و نیکولز و همکاران،1989) دو جهت گیری هدف دیگر با عناوین کارگریزی و بیگانگی تحصیلی را نیز مطرح می کنند. اهداف کارگریزی با احساس موفقیتی همراه است که در ان کار و تکلیف بسیار آسان است، در حالی که اهداف بیگانگی تحصیلی احساس موفقیتی است که در ان یاد گیرنده احساس می کند که می تواند اطرافیان خویش را فریب دهد و تکالیف کلاسی را انجام ندهد. بعبارتی از زیر کار در برود. میس و همکاران(1988) اهداف کار گریزی را بعنوان خواسته و میل فرد برای انجام تکالیف بدون صرف کوشش و تلاش مورد توصیف قرار می دهند.
مدل های متعددی در تئوری جهت گیری هدف مطرح شده است. لیکن این مدل ها به لحاظ مفهومی و واژگانی مشابهت هایی دارند. در برخی از پژوهش های مرتبط با این مدل ها تنها به پیامدهای جهت گیری هدف توجه شده است و در برخی دیگر هم پیش آیندها و هم پیامدهای این جهت گیری ها مورد توجه بوده است. در این مدل ها جهت گیری هدف یا بصورت دوبخشی و یا سه بخشی مطرح شده است. در ادامه به اختصار برخی از این مدل ها مورد توجه قرار خواهند گرفت. در انتخاب این مدل ها کوشش شده است که از ذکر مدل های همپوش با یکدیگر خودداری شود و به مدل هایی توجه شود که پیش زمینه ای برای طرح مدل مطرح در این پژوهش هستند.
ب: مدل نیکولز(1984)
در مدل نیکولز(1984) دو نوع جهت گیری هدف تحت عناوین جهت گیری تکلیف مشغولی و جهت گیری من مشغولی مطرح شده است. در این مدل فرض بر این است که جهت گیری هدف فرد با عقاید و باورهای وی درباره علل موفقیت رابطه تنگاتنگ دارد. نیکولز(1984) معتقد است که جهت گیری هدف فرد معیاری کلی برای داوری و قضاوت نسبت به علل موفقیت خواهد بود. بنابراین جهت گیری هدف عقاید فرد را نسبت به علل موفقیت بوسیله توجه به اسنادهای وی پیش بینی خواهد کرد. بعنوان مثال یادگیرنده ای با جهت گیری تکلیف مشغولی بر یادگیری بعنوان علت موفقیت تاکید خواهد داشت. این یادگیرنده بجای حفظ موضوع سعی در فهم مطلب خواهد داشت. اما یادگیرنده با جهت گیری من مشغولی بر توانایی و بهتر از دیگران بودن بعنوان علت موفقیت تاکید خواهد داشت. استدلال این فرد رد مورد موفقیت در مدرسه این است که در امتحان سعی داشته است، بهتر از دیگران باشد و کوشش کرده است، دیگران را پشت سر گذارد (نگاه شود به دودا و نیکولز،1992).
ت: مدل میس و همکاران (1988)
میس و همکاران (1988) در مدل خود سه نوع جهت گیری هدف با عناوین جهت گیری و تبحری، جهت گیری من اجتماعی و جهت گیری کار گریزی را مطرح می کنند. در جهت گیری تبحری پیشرفت در شکل تبحریابی و فهمیدن موضوع متجلی می شود. تاکید بر خودآموزی هسته محوری در جهت گیری تبحری در این مدل است. این جهت گیری مشابه با جهت گیری تکلیف در مدل نیکولز(1984) است. اهداف یادگیری در مدل دوک (1999)، جهت گیری تبحری در مدل ایمز (b1992)، جهت گیری تکلیف محور در مدل میگلی و همکاران (1998)، جهت گیری تبحری در مدل الیوت و چرچ (1997) با این جهت گیری تشابه دارند. در جهت گیری من اجتماعی تاکید بر کسب امتیازات بالا و بدست آوردن تایید اجتماعی است، این جهت گیری مشابه با جهت گیری من مشغولی در مدل نیکولز(1984) است. جهت گیری عملکرد گرایشی در مدل میگلی و همکاران (1998) و الیوت و چرچ(1997) با این جهت گیری تشابه دارند. هسته محوری در جهت گیری کارگریزی اجتناب از شکست است. در این جهت گیری انجام تکلیف با کمترین تلاش بعنوان پیشرفت تلقی می شود. تشابهاتی بین این جهت گیری عملکرد گریزی در مدل های میگلی و همکاران (1998) و لیوت و چرچ (1997) و الیوت و مک گریگور(2001) وجود دارد.
ث: مدل دوک (1999)
در مدل دوک (1999) دو نوع جهت گیری هدف با عناوین اهداف یادگیری و اهداف عملکردی مطرح شده است. دوک و همکاران (دوک1999، دوک و الیوت،1983) مدلی را مطرح می کنند (جدول2-1) که در آن فرض بر این است که جهت گیری هدف نتیجه دیدگاه های مختلف درباره ماهیت هوش است. در این مدل تئوری های هوشی بعنوان ادراک یادگیرنده درباره چگونگی تغییر توانایی و هوش در طول زمان تعریف می شود. در مدل دوک(1999) اعتقاد نسبت به ثبات هوش و توانایی طرحواره ای را برای تفسیر و ارزیابی اطلاعات درباره خود بوجود می آورد و این طرحواره معیار و ملاکی است که بوسیله ان اهداف، پیامدها و رفتار مورد قضاوت قرار می گیرد.
دوک (1999) فرض می کند که دیدگاه در مورد هوش موجب نوعی جهت گیری هدف می شود که یادگیرنده با آن انطباق می یابد. شواهد تجربی نیز این دیدگاه را مورد حمایت قرار داده است (دوک،1999، دوک و لگت ،1988). به نظر می رسد که پیوستگی علی بین تئوری هوش و جهت گیری هدف ان چنان که در مدل دوک آمده است، در مقابل آن چیزی قرار می گیرد که در مدل نیکولز(1984) پیشنهاد شده است.
جدول (1-1) مدل جهت گیری هدف دوک (1999، به نقل از پنتریچ و شانک ،2002)
تئوری هوش جهت گیری هدف باور نسبت به هوش الگوهای رفتار ی
-تئوری ذاتی نگر
(هوش ثابت است)
-تئوری فزونی نگر اهداف عملکردی
(کسب قضاوت مثبت)
اهداف یادگیری
(افزایش شایستگی) اگر بالا باشد
اگر پایین باشد
چه بالا و چه پایین باشد -جهت گیری تبحری
-جستجوی چالش
-پایداری بالا
-ناامیدی
-گریز از چالش
-پایداری ضعیف
-جهت گیری تبحری
-جستجوی چالش
-پایداری بالا
نیکولز(1984) معتقد است که جهت گیری هدف عقاید و اسنادهای فرد را درباره علل موفقیت تحت تاثیر قرار می دهد. در حالی که در مدل دوک فرض بر این است که اگر یادگیرنده یک تئوری ذاتی از هوش داشته باشد و این باور را داشته باشد که توانایی ثابت است، وی احتمالا در هنگام انجام تکلیف اهداف عملکردی را برخواهد گزید. این فراگیر به دلیل درک ثابت از توانایی با این موضوع مشغولیت خواهد داشت که عملکرد وی چگونه ارزیابی خواهد شد و این که چگونه با دیگران مقایسه خواهد شد. این فراگیر سعی خواهد کرد، بهتر از دیگران باشد.
تئوری فزونی نگر در مقابل تئوری ذاتی نگر قرار می گیرد. در تئوری فزونی نگر فرض بر این است که توانایی می تواند، فزونی یابد. فرد دارای این دیدگاه به احتمال زیاد بر اهداف تبحری اصرار خواهد ورزید و برای افزایش شایستگی و کفایت خویش کوشش خواهد کرد. لذا دستیابی به اهداف تبحری را ملاک قضاوت در باره خود قرار خواهد داد. معیارهای این فرد برای قضاوت مبتنی بر پیشرفت و نه مقایسه اجتماعی با دیگران است. هر چند که دوک و نیکولز واژه های مشابه ای مانند جهت گیری تکلیف/ اهداف یادگیری و جهت گیری من/اهداف عملکردی را مورد استفاده قرار می دهند. لیکن مدل های دوک و نیکولز در این باره که رابطه علی بین باورها در باره توانایی/ هوش و جهت گیری هدف چگونه است از یکدیگر متفاوت است (پنتریچ و شانک، 2002).
ج: مدل اسکالویک(1997)
جهت گیری تکلیف در مدل اسکالویک (1997) با جهت گیری تکلیف در مدل نیکولز(1984)، اهداف یادگیری در مدل دوک (1999)، جهت گیری تبحری در مدل ایمز(b1992)، جهت گیری تکلیف محور در مدل میگلی و همکاران (1998) و جهت گیری تبحری در مدل الیوت و چرچ (1997) تشابه دارد. تفاوت مدل اسکالویک و سایر مدل ها در تفکیک اهداف عملکردی است. اسکالویک و همکاران (اسکالویک،1997، اسکالویک،والاس و اس لتا،1994) دو بعد در اهداف عملکردی یا من را مورد توجه قرار می دهند. اول جهت گیری من خودافزایی است که در این جهت گیری تاکید بر برتر از دیگران بودن و اثبات برتری خود مطرح است. جهت گیری من خودافزایی مشابه با مفهومی است که از جهت گیری عملکرد گرایشی در مدل های میگلی و همکاران (1998) و الیوت و چرچ (1997)آمده است.
چ: مدل الیوت و همکاران (الیوت و چرچ،1997، الیوت و مک گریگور،2001)
یکی از رویکردهای مطرح در سال های اخیر رویکرد سه بخشی الیوت و همکاران (الیوت،1997، الیوت و چرچ،1997، الیوت و هاراکی ویکز،1996) است. این محققین چارچوب هدف دوبخشی عملکردی-تبحری را مورد بازبینی و اصلاح قرار دادند و یک چارچوب هدف سه بخشی را ارائه کردند. در این قالب جدید سازه هدفی عملکردی به دو بخش عملکرد گرایشی و عملکرد گریزی تقسیم می شود. در این مدل سه جهت گیری هدف مستقل ترسیم می شود. 1-هدف عملکرد گرایشی که تاکید بر کسب شایستگی و تایید در نزد دیگران دارد. 2-هدف عملکرد گریزی که تاکید بر دوری جویی از عدم شایستگی در نزد دیگران دارد و 3- هدف تبحری که تاکید بر افزایش کفایت و کسب مهارت در تکلیف دارد. این هدف اشاره بر یادگیری، پیشرفت و مهارت های تبحری دارد و مشابه با اهداف یادگیری و اهداف تکلیف است که بوسیله پژوهشگرانی مانند اندرمن(1997)، دوک (1986) و نیکولز(1989) مطرح شده است. در پژوهش های تحلیل عاملی استقلال این سه سازه و روایی ان ها مورد تایید قرار گرفته است (الیوت و چرچ،1997، میدلتون و میگلی،1997، اسکالویک،1997، وندی ویل،1997) و این اهداف با الگوهای متفاوتی از پی آیندها و پیامدها پیوند داده شده است (نگاه شود به الیوت،1999). استقلال این سه سازه در پژوهش های تحلیل عاملی در ایران بوسیله جوکار (1381) مورد تایید قرار گرفته است.
الیوت و مک گریگور (2001) با بررسی چارچوب هدف سه بخشی دیدگاه جدیدی را تشریح کردند که در ان بازبینی بیشتری در دیدگاه دوبخشی تبحری-عملکردی صورت می گیرد و چارچوب سه بخشی گسترش داده می شود. در چارچوب پیشین تمایز بین گرایش و گریز تنها در اهداف عملکردی صورت گرفت و اهداف تبحری دست نخورده باقی می ماند. در چارجوب جدید الیوت و مک گریگور (2001) یک آمیختگی کامل در تمایز گرایش و گریز پیشنهاد کردند و اهداف تبحری را به دو بخش اهداف تبحر گرایشیو تبحرگریزی تقسیم کردند (نگاه شود به الیوت،1999، پنتریچ، a2000، b2000).
هسته مفهومی سازه هدفی پیشرفت در نظریه الیوت و مک گری گور (2001) شایستگی است. در نظریه چارچوب هدفی پیشرفت 2×2 اهداف پیشرفت بر اساس دو بعد اصلی از یکدیگر متمایز می شود. یکی بر این پایه که چگونه شایستگی تعریف می شود و دیگر بر این اساس که شایستگی چگونه ارزش داده می شود (الیوت و مک گریگور،2001). در این مدل شایستگی بر اساس معیارهای مطلقو درون فردی و یا بر اساس معیارهای هنجاری تعریف می شود. هنگامی که شایستگی بر اساس معیارهای مطلق و درون فردی تعریف شود، فرد بدنبال فهم تکلیف یا مهارت یابی در کار است و یا در پی کسب دانش برای رشد مهارت های شخصی خویش است. الیوت و مک گریگور (2001) تعریف شایستگی بر اساس معیارهای مطلق و درون فردی را در یک مقوله مطرح می کنند. شایستگی بر پایه هنجاری نیز تعریف می شود. بدین صورت که عملکرد فرد با دیگران مورد مقایسه قرار می گیرد. در اینجا فرد بدنبال کسب تایید برای اثبات شایستگی خویش و یا دوری جویی از عدم تایید نزد دیگران خواهد بود.
بعد دیگر شایستگی ارزش است. شایستگی هم در اصطلاح مثبت (مثل موفقیت) یا منفی (مثل شکست؟) ارزش داده می شود. شواهد نشان می دهد که افراد محرک ها را در رابطه با رازش آن پردازش مکی کنند و بدون درنگ، توجه و یا آگاهی پاسخ می دهند (برق،1997، زاژنک،1998). بنابراین پردازش بر پایه ارزش بطور خودکار فرض می شود و بلادرنگ پیش نیازهای رفتاری گرایش و گریز را فرا می خواند (کاسیوپو،پریستر و برنتسون،1993، فورستر، هیگینز و آیدسون،1998). بنابراین هر دو بعد تعریف و ارزش برای سازه شایستگی بنیادی است و باید به عنوان مولفه ای الزامی هر شکل مبتنی بر شایستگی در اهداف پیشرفت مورد نظر قرار گیرد. لذا به نظر غیرممکن می آید که شکلی از نظریه جهت گیری هدف ساختاربندی شود، بدون این که به صورت تلویحی و به طور روشن اطلاعات مربوط به اینکه چگونه شایستگی تعریف می شود و چگونه ارزش داده می شود، مورد توجه قرار گیرد (الیوت و مک گریگور،2001). چهارخانه چارچوب هدفی پیشرفت 2×2 در شکل (2-1) امده است.

شکل(5-1) چارچوب هدفی پیشرفت 2×2
در این شکل تعریف و ارزش دو بعد شایستگی را نشان می دهد. معیارهای مطلق/درون فردی و هنجاری دو روشی است که شایستگی بوسیله آن تعریف می شود و منفی و مثبت دو روشی است که شایستگی بر آن اساس ارزش داده می شود.
در نظریه الیوت و مک گریگور (2001) چارچوب هدفی سه بخشی سه خانه از چهار خانه چارچوب 2×2 را شامل می شود. این سه نوع جهت گیری هدف عبارت هستند از 1-اهداف تبحر گرایشی که در آن شایستگی در اصطلاح مطلق/ درون فردی تعریف می شود و بصورت مثبت ارزش داده می شود. 2-اهداف عملکرد گرایشی که در آن شایستگی در اصطلاح هنجاری تعریف می شود و بصورت مثبت ارزش داده می شود. 3-اهداف عملکرد گریزی که در آن شایستگی در اصطلاح هنجاری تعریف می شود و بصورت منفی ارزش داده می شود. در دیدگاه سه بخشی اهداف تبحری بعنوان یک سازه واحد مفهوم سازی می شود. لیکن در دیدگاه 2×2 آن سازه بعنوان اهداف تبحر گرایشی نامیده می شود، زیرا هم در دیدگاه دو بخشی و هم در دیدگاه سه بخشی این سازه بصورت مثبت ارزش داده شده است. خانه باقیمانده از چارچوب 2×2 در برگیرنده اهداف تبحر گریزی است که در آن شایستگی در اصطلاح مطلق/ درون فردی تعریف می شود و بصورت منفی ارزش داده می شود. در این جهت گیری بر گریز از عدم فهم یا اجتناب از مهارت نیابی و گریز از عدم موفقیت در یادگیری دروس تاکید می شود (الیوت و مک گریگور، 2001، الیوت، 1999، پنتریچ، a2000،d2000). هدف تبحر گریزی چندان ملموس نیست لیکن به نظر می رسد که در برخی موقعیت های آموزشی خودش را اعمال می کند. برای مثال یادگیرندگانی که کمال گرا هستند، معیارهایی را بکار می گیرند تا از ارتکاب اشتباه و خطا و عدم انجام صحیح تکالیف اجتناب ورزند. این فراگیران از ارتکاب اشتباه پرهیز می نمایند نه به این دلیل که به مانند هدف عملکرد گریزی با دیگران مورد مقایسه قرار می گیرند بلکه معیارهای درونی خودشان در این زمینه ملاک عمل است.
ح: مدل مارش و همکاران (2000)
در بین جهت گیری های دو بخشی با نظریه هایی مواجه می شویم که سعی بر ارائه رویکردی تلفیقی به جهت گیری های انگیزشی دارند. از جمله این رویکردها نظریه مارضش و همکاران (2000) است. این پژوهشگران باور دارند که انواع جهت گیری های هدف را می توان علی رغم تفاوت میان آن ها بصورت دو جهت گیری بزرگ انگیزشی- جهت گیری یادگیری و جهت گیری عملکردی- مورد توجه قرار داد. فر این محققان این است که این دو جهت گیری انگیزشی بطور بنیادی با سازه های مشابه همپوشی دارند و شاید این موضوع ناشن دهنده این است که عوامل متفاوت در واقع دو عامل مرتبه بالاتر هستند. منطق فرضی این محققان بر پایه ارزیابی نظریه های انگیزشی و دیگری بر پایه تمثیلی از تئوری پنج عامل بزرگ شخصیت است.
این پژوهشگران با استدلال ویگینز و تراپنل(1997) توافق دارند که مدل پنج عامل بزرگ شخصیت تحولی شگرف در سازمان دهی و طبقه بندی آرایه های ناهمگون سازه های شخصیتی ایجاد نمود و اهمیت بارز این نظریه ایجاد همگرایی در بررسی مطالعه سازه های شخصیتی است که ارتباط بین محققان با رویکردهای نظری مختلف در ضخصیت را فراهم می آورد. مارش و همکاران (2000) معتقدند که تئوری دو عامل بزرگ جهت گیری های انگیزشی به گونه ای مشابه می تواند سازه هخای مختلف در جهت گیری های انگیزشی را پوشش دهد. بعبارتی بسیاری از سازه های انگیزشی در مرتبه بالاتر در این دو جهت گیری بزرگ قرار می گیرند.
مارس و همکاران (2000) مدعی نیستند که جهت گیری یادگیری و جهت گیری عملکردی کلیه سازه های مطرح در جهت گیری های انگیزشی را پوشش می دهند و بر این موضوع صحه می گذارند که جهت گیری هایی نیز وجود دارد که بطور کامل به این دو سازه ملحق نمی شوند. لیکن تاکید دارند که سازه های کلیدی در رویکردهای انگیزشی در این دو سازه متجلی می شوند. این پژوهشگران هشت نوع جهت گیری انگیزشی که در پیشینه پژوهش ها بیشتر مورد تاکید بوده است در پرسشنامه انگیزش مدرسه (SMQ) مدون می سازند. جهت گیری های تبحری، درونی، مشارکتی، فردی، من، رقابتی، کسب موفقیت و اجتناب از شکست سازه هایی مورد مطالعه در مدل مارش و همکاران (2000) بوده است. این پژوهشگران بر اساس یافت های تحلیل عوامل تصدیقی(CFA) شواهدی مبنی بر استقلال هر یک از این هشت سازه می یابند. علاوه بر این نتایج تحلیل عاملی مرتبه بالاتر نظریه دو عامل بزرگ جهت گیری انگیزشی را مورد حمایت قرار می دهد. بر اساس این دیدگاه جهت گیری های تبحری، درونی، مشارکتی و فردی بوسیله جهت گیری یادگیری و جهت گیری های من، رقابتی، کسب موفقیت و اجتناب از شکست بوسیله جهت گیری عملکردی توصیف می شوند.
خ: روند تحول مدل های جهت گیری هدف
به نظر می رسد روند تحول مدل های جهت گیری هدف دو رویکرد همسو را دنبال می نماید. در رویکرد اول سعی در ارائه طرحی کلی برای طبقه بندی جهت گیری های هدف می شود. این خط فکری در مدل هایی مانند مدل الیوت و مک گریگور (2001) و دیدگاه نظریه پردازانی مانند پنتریچ و شانک (2002) قابل مشاهده است. در این رویکرد مدل های سه بخشی که در روند تحول سازه های جهت گیری هدف از تفکیک جهت گیری عملکردی به دو سازه عملکرد گرایشی و عملکرد گریزی یا سازه های مشابه مانند من خودافزایی و من خود کاستی بوجود امده بودند، مجددا در شکلی جدید و با تغییر و تحولاتی به دیدگاه های دو بخشی تبدیل می شوند. در این طرح کلی امکان طبقه بندی دو نوع جهت گیری هدف با توجه به تمایز گرایش و گریز فراهم شده است. مدل الیوت و مک گریگور (2001) که پیش از این تشریح گردید، نوعی از این طبقه بندی است. پنتریچ (a2000، b2000) برای نشان دهی این طبقه بندی ماتریسی دو بعدی فرض می نمایند (جدول3-1). ستون جدول تمایز کلی گرایش و گریز مطرح در دیگر تئوری ها (مثل اتکینسون، 1957، الیوت،1997، مک للندف اتکینسون، کلارک و لاول، 1953) را نشان می دهد. گرایش و گریز در سال های اخیر در دیدگاه های شناختی- اجتماعی (برای مثال کاوینگتون و روبرتز،1994، هاراکی ویکز و همکاران ،1998 و هیگینز،1997) به وضوح تمایز بین گرایش و گریز یا به اصطلاح ویگینز جلو روی-ممانعت در فرایند خود تنظیمی مورد بحث قرار گرفته است. گرایش حرکت به سمت مثبت است، بعبارتی کوششی برای اینکه واقعه ای رخ دهد. در حالی که گریز حرکت به سمت منفی است، بعبارتی ممانعت از این که واقعه ای به وقوع پیوندد (هگینز ،1997).
تمایز بین گرایش و گریز در اهداف تاثیرات مهمی در یادگیرندگان باقی می گذارد. برای مثال انتظار می رود که جهت گیری گرایشی بطور کلی با شناخت، انگیزش و رفتار رابطه ای مثبت داشته باشد. در حالی که انتظار می رود جهت گیری گریز با سازه های مرطح رابطه ای منفی داشته باشد. ردیف جدول (3-1) دو هدف کلی تبحری و عملکردی را نشان می دهد. همان گونه که پیش از این اشاره شد این دو نوع جهت گیری در اکثر مدل های جهت گیری هدف مورد بحث قرار گرفته است. عناوین دیگر مدل ها برای این جهت گیری ها در پرانتزهای خانه8 های جدول آمده است. همه مدل ها بر این موضوع اتفاق نظر دارند که اهداف تبحری و نام های مشابه مانند اهداف یادگیری، تکلیف و تکلیف مشغولی بر پیشرفت در شایستگی، دانش، مهارت و یادگیری تاکید دارند، معیار قضاوت در این نوع جهت گیری نیز خود گزیده است. در همه مدل های مطرح به جز مدل الیوت و مک گریگور (2001) تنها سمت و سوی گرایشی در اهداف تبحری مورد بحث و پژوهش قرار گرفته است و بعد گریز آن مورد نظر نبوده است و این موضوع مشخص نیست که ایا از لحاظ نظری اهداف تبحر گریزی نیز وجود دارد. پژوهش های تجربی اندکی در این زمینه انجام شده است (نگاه شود به الیوت و مک گریگور،2001).

جدول (2-1) دو نوع جهت گیری هدف و شکل های گرایش و گریز این اهداف (گرفته شده از پنتریچ و شانک،2002)
اهداف گرایش گریز
-جهت گیری تبحری
-جهت گیری عملکردی -تاکید بر تبحریابی در انجام تکلیف، یادگیری، فهمیدن، کاربرد ،معیارهای خود گزیده پیشرفت و یادگیری عمیق (عناوین دیگر مدل ها، اهداف یادگیری، هدف تکلیف، تکلیف مشغولی)
-تاکید بر برتر بودن، بهتر از دیگران بودن، برجسته بودن، بهتر انجام دادن تکلیف در مقایسه با دیگران، کاربرد معیارهای هنجاری مانند کسب بهترین و بالاترین نمره، داشتن بهترین عملکرد در کلاس (عناوین دیگر مدل ها: هدف عملکردی، هدف من مشغولی، جهت گیری خود افزایی من، هدف توانایی مرتبط) -تاکید بر گریز از نفهمیدن و گریز از عدم یادگیری، کاربرد معیارهای خود گزیده برای اجتناب از خطا و اجتناب از نادرست حل کردن تکلیف (عناوین دیگر مدل ها: تبحر گریزی)
-تاکید بر گریز از حقارت و نگریسته شدن بعنوان فردی کندآموز در مقایسه با دیگران، کاربرد معیارهای هنجاری مانند عدم کسب بدترین نمره در کلاس، اجتناب از نشان دهی پایین ترین عملکرد در کلاس (عناوین دیگر مدل ها: هدف عملکردی، هدف من مشغولی، جهت گیر خود کاستی من)
دومین ردیف جدول (2-1) جهت گیری عملکردی را نشان می دهد که همه مدل ها بر وجود آن اتفاق نظر دارند. اما دو سمت گیری گرایش و گریز که در ستون های جدول امده است، امکان تمایز و جدا سازی هدف از چرایی کوشش و تلاش در اهداف عملکردی را فراهم می سازد. این تمایز بصورت متداول در کارهای هاراکی ویکز، الیوت، میگلی، اسکالویک و همکاران آن ها نشان داده شده است. مطالعات تجربی نیز نشان می دهد که بین جهت گیری عملکرد گریزی و جهت گیری عملکرد گرایشی و پیامدهای شناختی،انگیزشی و رفتاری همراه آن ها رابطه های متفاوتی وجود دارد (هاراکی ویکز و همکاران،1998، میدلتون و میگلی،1997، اسکالویک،1997).
رویکرد دوم سعی بر تلفیق مفاهیم مختلف لیکن همپوش در جهت گیری های هدف دارد. مدل مارش (2000) نمونه ای از این تلاش ها است. عموما پژوهش های جهت گیری هدف با ابزارهای ارزیابی که شامل گویه های مشابه و یا متفاوت و با نام ها و برچشب های مختلف، لیکن با مفاهیم همپوش احاطه شده است (مورفی و الکساندر،2000، پنتریچ،2000). این مساله بویژه برای پژوهشگرانی که مروری اجمالی بر تحقیقات این قلمرو انگیزشی داشته اند واضح و گاه مشکل آفرین بوده است (لپر، 1988، مورفی و الکساندر،2000، اسنو و همکاران،1996). لذا این محققین نتیجه گیری می کنند که به نظر می رسد جهت گیری های هدف با نام های مختلف بواقع سازه های مشابهی را اندازه گیری می کنند. در این میان ابهامی که وجود دارد چگونگی ارتباط دهی این سازه های متفاوت است. لذا به نظر می رسد روش هایی مانند تحلیل خوشه ای اساس این تلفیق باشد. ضرورت پژوهش در مورد چگونگی رشد مدل های مبتنی بر این رویکرد بخوبی احساس می شود بدیهی است که به سبب تعدد جهت گیری های هدف، تشکیل طبقات این مدل ها با روش هایی مانند تحلیل خوشه‌ای بیشتر مورد توجه قرار خواهد گرفت. مدل هایی که در ان هر طبقه در برگیرنده مولفه های مختلف در جهت گیری هدف باشد. از سوی دیگر این مولفه ها باید بصورت تجربی و منطقی بوسیله پیش آیند های خود توضیح داده شوند. چنین سازه هایی باید بتواند رابطه و توضیح گویایی برای بسیاری از پیامدهای شناختی، عاطفی و رفتاری فراهم آورد. در این پژوهش سعی بر ارائه مدلی در جهت گیری هدف می شود که در راستای این خط فکری باشد.
همان گونه که پیش از این مطرح شد دیدگاه های سه بخشی مانند مدل الیوت و چرچ (1999) در واقع شکلی از دیدگاه های دو بخشی هستند که در ان ها جهت گیری عملکردی به دو مولفه جهت گیری عملکرد گریزی و عملکرد گرایشی تفکیک شده است. در این مدل ها جهت گیری هایی مانند اهداف یادگیری، تبحری و تکلیف به لحاظ ماهیتی با جهت گیری عملکردی و با من متفاوت دارند. لیکن جهت گیری هایی مانند عملکرد گرایشی و عملکرد گریزی در مدل الیوت و چرچ (1999) و میگلی و همکاران (1998) و سازه هایی مانند من خودافزایی و من خودکاستی در مدل اسکالویک (1997) به لحاظ ماهیتی با یکدیگر متفاوت نیستند. در واقع به لحاظ نظری این دو جهت گیری دو مولفه از یک سازه واحد محسوب می شود که هسته اصلی آن نگرانی از قضاوت دیگران نسبت به شخص است. گاه فرد بدنبال کسب قضاوت مثبت دیگران نسبت به خود است و گاه فرد بدنبال اجتناب از قضاوت منفی دیگران نسبت به خود است.
د: جهت گیری یادگیری
جهت گیری یادگیری در مطالعات مختلف بصورت مکرر مورد تاکید قرار گرفته است (دوک،1986، ریان و دی سی،2000، هیمن و دوک،1992، باتون، ماتیو و زاجک،1996، فار و همکاران،1993، مارش و همکاران، 2000ف وندی وال، 1997). «جهت گیری یادگیری تمایل به رشد خود بوسیله کسب دانش و مهارت جدید، تسلط بر موقعیت های جدید و پیشرفت در شایستگی های فردی تعریف می شود. محوریت جهت گیری یادگیری توجه به فرآیندهایی است که به مهارت و تبحر فرد در انجام تکلیف و افزایش دانش و توجه او منجر می شود».
این سازه مشابه اهداف تبحری در مدل ایمز (a1992)، جهت گیری تکلیف محور در مدل میگلی و همکاران (1998)، جهت گیری تکلیف در مدل نیکولز (1984)، اهداف یادگیری در مدل دوک (1999)، جهت گیری تبحری در مدل میس و همکاران (1988)، جهت گیری تکلیف در مدل اسکالویک (1997؟)، جهت گیری تبحری در مدل الیوت و چرچ (1997) و جهت گیری تبحر گرایشی در مدل الیوت و مک گریگور(2001) است.
ذ: جهت گیری عملکردی
سازه دوم جهت گیری عملکردی با دو مولفه عملکرد گرایشی و عملکرد گریزی است. پژوهشگران حوزه انگیزش پیشرفت این سازه ها را مهم ترین سازه های جهت گیری اهداف معرفی کرده اند (الیوت و هاراکی ویکز، 1996، میدلتون و میگلی،1997، اسکالویک،1997، وندی وال،1997، الیوت،1977، الیوت و چرچ،1997، الیوت و مک گریگور،2001).
1- جهت گیری عملکرد گرایشی
«جهت گیری عملکرد گرایشی به تایید عملکرد و کسب قضاوت مطلوب دیگران درباره عملکردهای شخصی تعریف می شود. محوریت این جهت گیری کسب قضاوت مثبت دیگران نسبت به شخص است. هسته اصلی این جهت گیری توجه به مقایسه های اجتماعی است که در آن فرد باید از دیگری بهتر باشد و دیگران را پشت سر گذارد». جهت گیری عملکرد گرایشی مشابه جهت گیری خود افزایی در مدل اسکالویک (1997) و من اجتماعی در مدل میس و همکاران (1988) است. این جهت گیری هدف در مدل های میگلی و همکاران (1998)، الیوت و چرچ (1997) و الیوت و مک گریگور(2001) با همین عنوان مطرح شده است.
2: جهت گیری عملکرد گریزی
«جهت گیری عملکرد گریزی تمایل به اجتناب و دوری از قضاوت منفی دیگران نسبت به شخص تعریف می شود. در این جهت گیری نیز هسته اصلی توجه به مقایسه های اجتماعی است، لیکن تاکید بر گریز از حقارت و نگریسته شدن بعنوان فردی کند آموز محوریت این جهت گیری هدف است». جهت گیری عملکرد گریزی مشابه با جهت گیری خودکاستی در مدل اسکالویک (1997) و کار گریزی در مدل میس و همکاران (1988) است. این جهت گیری هدف در مدل های میگلی و همکاران (1998)، الیوت و چرچ (1997) و الیوت و مک گریگور (2001) با همین عنوان مطرح شده است.
ر: بلاتکلیفی در جهت گیری هدف
سازه سوم در پیشینه مدل های جهت گیری هدف کمتر مورد توجه بوده است. این سازه که از ان با عنوان بلاتکلیفی در جهت گیری هدف نام برده می شود در سه مطالعه مقدماتی این پژوهش در دانش اموزان و دانشجویان بخوبی قابل تشخیص بوده است شواهد تجربی حاصل از این مطالعات وجود این سازه را مورد تایید قرار داده است. «بلاتکلیفی در جهت گیری هدف به شک و تردید نسبت به ارزش فعالیت و تکلیف در فراگیران تعریف می شود. محوریت این جهت گیری تردید نسبت به این موضوع است که آیا یادگیری تکلیف منجر به دستیابی به شایستگی درونی و یا بیرونی خواهد شد». توجه به ابعادی از این سازه در کارهای سلیگمن (1975)، ورمونت (1992، 1996، 1998)، پرینس و همکاران(1998) مشاهده می شود. این سازه با سازه بی انگیزشی در مدل ریان و دی سی (2000) نزدیکی دارد. ریان و دی سی (2000) بی انگیزشی را حالت فقدان خواست برای فعالیت تعریف می کنند. از نظر این پژوهشگران هنگام بی انگیزشی رفتار فرد فاقد دلایل شخصی است. بی انگیزشی ناشی از ارزش نداشتن فعالیت (ریان، 1995) و عدم احساس شایستگی در انجام آن است و بلاتکلیفی در جهت گیری هدف تردید نسبت به ارزش فعالیت و شک در کسب شایستگی با انجام آن فعالیت است.
2-1-2 کمال گرایی:
سازه کما ل گرایی در گذشته مورد توجه نظر یه پردازان بزر گی همچون فرو ید، آدلر و مازلو بوده است (نورد بی و هال،1974) و در دهه های اخیر نیز مورد اقبال پژوهشگران بسیاری قرارگرفته است و هرکدام به فراخور دیدگاه خود تعر یف متفاوتی از آن ارائه داد ه اند. با این حال اکثر پژوهشگران، برا ین امر که معیارهای بلند مرتبه برای عملکرد، مفهوم محوری کمال گرایی است، توافق دارند.
هورنای(1950) کمال گرایی را شیوه ای از زندگی می داند که افراد برا ی رهایی از اضطراب اساسی آن را به کار می بندند و کمال گرایی را گرا یش روان رنجورانه به بی عیب و نقص بودن، کوچک ترین اشتباه خود را گناهی نابخشودنی پنداشتن و مضطربانه انتظار پیامد های شوم داشتن، تعریف می کند. هانلند (1978) بر این باور است که کمال گرایی نشان دهنده گرایش و علاقه فرد به درک محیط پیرامون خود به گونه قانون همه یا هیچ است که به موجب آن، نتا یج به شکل موفقیت ها یا شکست ها حاصل می شوند. گرچه مفهوم کمال گرایی به طور گسترده ای توجه روان شناسان را به خود جلب کرده است، اما هنوز به عنوان پدیده ای تقر یباً ناشناخته و ناسازگار تعریف شده است. سازه کمال گرایی مثبت و منفی، می تواند به صورت های به هنجار و نابه هنجار باشد(هماچک،2006).
به عقیده تری شوت و همکاران(2005) کسانی که کمال گرایی مثبت(به هنجار) دارند، معیارهایی را برای خود در نظر می گیرند، اما به جای این که ر سیدن و یا نرسیدن به آن معیارها برایشان مهم باشد، نفس تلاش کردن برا ی رسیدن به هدف در نظرشان اهمیت دارد. در واقع ا ین افراد از کار و تلاش زیاد لذت می برند و وقتی در انجام دادن یا ندادن کاری آزادند ، سعی می کنند آن را به بهترین نحوی که می توانند انجام د هند .
کمال گرایی مثبت به هنجار(نه تنها موجب مشکلی نمی شود، بلکه باعث می شود که فرد استعدادهای خویش را شکوفا سازد و به احساس رضایت شخصی بالایی دست یابد.
در مقابل، افراد کمال گرای منفی(نابه هنجار) یا روا ن رنجور، بیشتر در فکر آنند که مبادا اشتباهی از آ ن ها سر بزند؛ آن ها هیچ وقت احساس پیروزی نمی کنند. کسا نی که کمال گرایی منفی دارند ، حتی اگر از دیگران بهتر کار می کنند، بازهم احساس رضا یت نمی کنند، آن ها خود را سرزنش می کنند، هدف بالاتری را در نظر می گیرند و مدام در این زنجیره بی انتها گیر می کنند، همیشه با خودشان درگیرند و در نتیجه دچار انواع افسردگی و روان رنجورخویی می شوند.
کمالگرایی نقش مهمی در سبب شناسی، حفظ و مسیر آسیب های روانی بازی میکند؛ و با مکانیزم هایی از جمله معیارهای افراطی که باعث ایجاد قوانین انعطاف ناپذیر برای عملکرد می شود و نیز رفتارهایی همچون اجتناب و ارزیابی مکرر عملکرد، سوگیریهای شناختی همچون افکار دومقوله ای(اگان، پیک، دایک و ریز، 2007 ؛ واتسون، الفیک، دهر، استیل و ویلکچ،2010) توجه انتخابی به شکست و افزایش معیارها درمورد دستاوردها برجسته می شود(گلور، برون، فیربرن و شافران، 2007)
اروزکان، کاراکاس، آتا و آیبرک ( 2011 ) بیان میکنند کمالگرا کسی است که مجموعهای از استاندارهای سخت، غیرواقعی و بالا ایجاد میکند و هنگام ارزیابی عملکرد خود درگیر تفکر همه یا هیچ میشود. بنابراین، موفقیت تنها زمانی رخ میدهد که یک معیار بالا به دست آید و عملکرد فقط در چارچوب آن معیار بی عیب و نقص است. افراد کمالگرا تجارب شکست را بیش از حد تعمیم میدهند. بنابراین دور از انتظار نیست که پژوهشها حاکی از آن باشند که کمالگرایی با افسردگی، اضطراب، عزت نفس پایین، خودکشی، بیماری کرونری قلب و الکلیسم ارتباط داشته باشد. چرا که وقتی فرد پذیرش خود را مشروط به کسب موفقیتها و معیارها میداند، احتمالاً روند پیگیری اهداف به طورمؤثر، دچار مشکل خواهد شد و به دنبال آن، شکست و ناکامی در تحقق اهداف رخ خواهد داد، که این خود باعث ناکامی فرد در دستیابی به سایر اهداف و ایجاد شناختهای معیوب در فرد خواهد شد. بنابراین در طی این فرایند کمالگرایی مستوجب مشکلات و مسائل بسیار در فرد میشود. براساس پژوهشهایی که تاکنون در زمینه کمالگرایی انجام شده است ازجمله پژوهش استوبر، کمپ و کاف ( 2008 ) کمالگرایی پیامدهایی همچون افسردگی، اختلالهای روده ای و احساس گناه را به دنبال دارد. بنابراین به نظر میرسد لازم است این پیامدها در افراد تعدیل شوند. برخی از پژوهشگران بیان میکنند انواعی از کمالگرایی بهنجار، سازگارانه و سالم اند و این نوع کمالگرایی را میتوان از انواع روان آزرده، ناسالم و ناسازگارانه آن متمایز کرد(وینتر،2006) از نظر لی، اسکپسالیوان و کمپداش ( 2012 )، بین کمالگرایی بهنجار و روان آزرده تمایز وجود دارد . کمالگرایی بهنجار به عنوان تلاش برای معیار های معقول و واقعی تعریف شده است؛ کمالگرایی روان آزرده تمایل به تلاش برای معیارهای بسیار بالا است که با ترس از شکست و تمرکز بر مأیوس کردن دیگران ، همراه است. رویکرد دیگر برای تعریف و اندازه گیری کمالگرایی به وسیله هویت و فلت (1991) نقل از اروزکان و همکاران،2011) پایه گذاری شد. آنها نشان دادند که کمالگرایی از سه بعد جداگانه تشکیل شده است. کمالگرایی خودمدار، دیگرمدار و اجتماع مدار.
اگر کمالگرایی را به صورت یک طیف درنظر بگیریم در یک انتهای آن کمالگرایی روان آزرده، در انتهای دیگر افراد غیرکمال گرا و در جایی در این بین، کمالگرایی بهنجار و سالم قرار دارد که با معیارهای بالا، سطح بالای سازمان یافتگی و تلاش برای برتری مشخص میشود. افراد کمالگرا مستعد تجربه احساس گناه هستند. این حالت تنها در کمالگرایی ناسازگار دیده میشود، درحالیکه کمالگرایی سازگار، با تجربه احساس غرور همراه است(لی و همکاران،2012). همچنین شواهد نشان می دهد که کمالگرایی خودمدار و دیگرمدار با سطوح بالای احساس گناه آن هم به دنبال شکست در وظایف، همراه است(اگان، وید و شافران، 2011).
کمالگرایی اجتماع مدار، افراد را از تجربه احساس رضایت و غرور به هنگام دستیابی به نتایج عالی باز می دارد (استوبر و یانگ، 2010).
فروست و همکاران(1990) از شش بعد کمالگرایی یاد می کنند که عبارتند از اهداف و معیارهای شخصی، اهمیت دادن بیش از اندازه به اشتباه، انتظارات والدین، انتقادات والدین، تردید در اعمال و سازماندهی . از این میان، معیارهای شخصی و سازماندهی، تبیین کننده کمالگرایی مثبت یا سازگارانه و دیگر ابعاد تبیین کننده کمالگرایی منفی یا ناسازگارانه است.
فلت و هویت(1991) هم بر این باورند که کمالگرایی از سه بعد جداگانه که شامل کمالگرایی خودمدار، کمال گرایی دیگر مدار و کمال گرایی جامعه مدار تشکیل می شود. کمال گرایی خودمدار، یک مؤلفه انگیزشی شامل کوشش های فرد برای دستیابی به خویشتن کامل است و در این بعد افراد انگیزه قوی برای کمال، معیارهای بالای غیرواقعی و تفکر همه یا هیچ دارند. کمال گرایی دیگرمدار، یک بعد میان فردی و دربردارنده گرایش به داشتن معیارهای کمالگرایانه برای اشخاصی است که برای فرد اهمیت زیادی دارند، مانند گرایش های کمالگرایانه والدین برای فرزندانشان، در نهایت کمالگرایی جامعه مدار برداشتی شامل معیارهای کمالگرایانه یا غیرواقع بینانه تحمیلی از سوی دیگران بر فرد است و دسترسی به این معیارهای تحمیل شده اگر محال نباشد، حداقل دشوار است.
الف: کمال گرایی به عنوان سازه ای چند بعدی:
در آغاز دهه 1990 تغییری در تعریف و مفهوم بندی کمال گرایی از سازه ای تک بعدی به سازه ای چند بعدی دیده می شود.
دو گروه از محققان(فراست و همکاران،1990، هویت و فلت، 1991، 1991) کمال گرایی را به عنوان سازه ای چند بعدی تعریف کرده و به طور مستقل از هم دو مقیاس چند بعدی برای اندازه گیری آن طراحی کرده اند(ام پی سی). این دو دیدگاه در زیر مورد بررسی قرار گرفته است.
دیدگاه فراست و همکاران:
بر اساس بحث های نظری مطرح شده در زمینه کمال گرایی(هولندر،1965؛ هاماچک،1978، برنز، 1980، پاچت، 1984)، فراست و همکاران(1990) سازه ای را مطرح کرده اند که شش بعد دارد و ابزاری به نام مقیاس چند بعدی کمال گرایی برای اندازه گیری آن طراحی کردند که در بر گیرنده شش بعد می باشد: دو بعد بین فردی و چهار بعد درون فردی می باشد، این ابعاد عبارتنداز، معیار های شخصی، نگرانی درباره اشتباهات، شک درباره اعمال، انتظارات والدین، انتقادگری والدین و سازمان.
ب: معیار های شخصی:
منعکس کننده حدودی است که افراد معیار های بالایی برای خودشان بر می گزینند و خودشان را بر اساس دست یافتن به این معیار ها ارزیابی می کنند.
نگرانی درباره اشتباهات:
به حدودی گفته می شود که فرد اشتباهات را به عنوان شاخصی از شکست تعبیر می کند، به طوری منفی به اشتباهات واکنش نشان داده و فرض می کنند که دیگران نیز اشتباهات آن ها را به شکلی منفی ارزیابی می کنند.
شک درباره اعمال:
منعکس کننده حدود اطمینان فرد درباره توانایی اش در زمینه تکمیل تکالیف می باشد.
انتظارات والدین:
به ادرارک فرد از معیار های بالایی که والدین برای او در نظر گرفته اند مربوط می شود.
انتقاد گری والدین:
به ادراک فرد از ارزیابی بسیار منتقدانه والدینش در زمان ارزیابی عملکرد وی اشاره دارد.
سازمان:
به تمایل فرد به مهم دانستن نظم، ترتیب و سازمان اطلاق می شود(فراست و دی بارتلو، 2002).
پ: دیدگاه هویت و فلت:
تقریباً همزمان با فراست و همکاران(1990)، هویت و فلت (1991) با تأکید بر جنبه های درون فردی و برون فردی به ارائه رویکری چند بعدی از کمال گرایی پرداختند. به اعتقاد آنان کمال گرایی از سه جنبه تشکیل شده است. کمال گرایی خودمدار، کمال گرایی دیگر مدار، و کمال گرایی جامعه مدار. این سه بعد بر حسب تمایلات کلی و رفتاری(نظیر انگیزه برای کامل بودن، داشتن انتظارات غیر منطقی، ارزیابی های انتقادی و تند و تیز و برابر دانستن خود با عملکرد) از هم متمایز می شوند.
ت: کمال گرایی خود مدار:
به عنوان بعد درون فردی کمال گرایی تعریف شده است، که منعکس کننده رفتار های کمال گرایانه می باشد که هم از "خود" فرد ناشی می شود و به سمت " خود" جهت دارد. این بعد در بر گیرنده وضع معیار های غیر واقع بینانه برای خود، ارزیابی سختگیرانه خود با تمرکز بر نواقص و ضعف ها و تعمیم این انتظارات غیر منطقی و ارزیابی های تند و تیز به انواع حیطه های رفتاری می باشد. علاوه بر این مولفه ها، کمال گرایی خود مدار در بر گیرنده عامل انگیزشی قوی ای است که موجب می شود فرد برای بدست آوردن کمال اجتناب از شکست تلاش کند. به بیانی دیگر کمال گرایان خود مدار برای نائل شدن به هدف خود که کمال است انگیزش دارند.
ث: کمال گرایی دیگر مدار:
به عنوان جنبه بین فردی کمال گرایی توصیف می شود که در بر گیرنده انتظارات غیر واقع بینانه، سبک ارزیابی بسیار انتقادی و انگیزش قوی برای نائل شدن به کمال و اجتناب از شکست می باشد. اما موارد ذکر شده به سمت دیگران سوق دارد. این نوع کمال گرایی شامل معیار های غیر واقع بینانه برای دیگران، تأکید روی کامل بودن دیگران، و ارزیابی بسیار انتقادی از عملکرد دیگران می باشد. این افراد انتظار دارند دیگران به کمال دست یابند. کمال گرایان دیگر مدار در فرم مختلف رفتار تنبیهی افراطی درگیر می شوند.
ج: کمال گرایی جامعه مدار:
به عنوان باور ها یا ادراکاتی تعریف می شود مبنی بر اینکه دیگران انتظارت غیر واقع بینانه ای برای فرد دارند و او را بسیار سختگیرانه مورد ارزیابی قرار می دهند و به او برای کامل بودن فشار می آورند( هویت و فلت، 1991). یافته های پژوهشی در زمینه بررسی ابعاد سه گانه کمال گرایی همبستگی این سازه را با ویژگی های شخصیتی، رفتاری و مشکلات روان شناختی تأکید کرده اند. کمال گرایان خود مدار با مشخصه های خود شیفتگی، خود سرزنشگری، خود انتقاد گری، احساس گناه، سهل انگاری، و تعلل در انجام دادن کارها و افسردگی در ارتباط است.
کمال گرایی دیگر مدار با مشخصه های منفی، از جمله سرزنش دیگران، اقتدار گرایی و سلطه جویی، ویژگی های شخصیتی نمایشی، خود شیفته و ضد اجتماعی همبستگی دارد. کمال گرایی جامعه مدار با نیاز به تأیید دیگران، ترس از ارزشیابی منفی، منبع کنترل بیرونی، بیش تعمیم دهی شکست، افسردگی و اضطراب مرتبط است(بشارت، 1383).
چ: دیدگاه استوبر و همکاران:
به اعتقاد استوبر، پیچک ، بکر و استول(2002) کمال گرایی دو جنبه دارد. تلاش برای کمال و واکنش منفی به نقص. تلاش برای کمال نمایانگر جزء اصلی و بعد مثبت کمال گرایی است(استوبر و اوتو، 2006). در حالیکه واکنش منفی به نقص رابطه نزدیکی با نگرانی درباره اشتباهات و بعد منفی کمال گرایی دارد(فراست و هندرسون، 1991؛ رایس و پریسر، 2002).

—d1221

2-4-3-1-4- تئوری شبکه ایمنی52
2-4-3-1-5- الگوریتم ایمنی مصنوعی53
2-4-3-1-6- سیستم ایمنی مصنوعی و مسائل بهینه سازی چندهدفه54
2-4-3-2- الگوریتم MISA56
2-4-3-3- الگوریتم VIS61
2-4-3-4- الگوریتم NNIA64
2-5- روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه67
2-5-1- فاصله نسلی68
2-5-2- درجه توازن در رسیدن همزمان به اهداف69
2-5-3- مساحت زیر خط رگرسیون70
2-5-4- تعداد جواب‌های غیرمغلوب نهائی71
2-5-5- فاصله گذاری71
2-5-6- گسترش72
2-5-7- سرعت همگرائی73
2-5-8- منطقه زیر پوشش دو مجموعه73
2-6- جمع بندی74
فصل سوم: مدل سازی مسأله و توسعه الگوریتم‌ها76
3-1- مسأله موردتحقیق77
3-2- طراحی الگوریتم‌ها81
3-2-1- تطبیق الگوریتم‌ها با مسئله موردبررسی81
3-2-1-1- ساختار حل‌ها81
3-2-1-2- معیار توقف82
3-2-2- تطبیق الگوریتم NSGA-II برای مسئله موردبررسی83
3-2-3- تطبیق الگوریتم CNSGA-II برای مسئله موردبررسی84
3-2-4- تطبیق الگوریتم NRGA برای مسئله موردبررسی85
3-2-5- تطبیق الگوریتم MISA برای مسئله موردبررسی85
3-2-6- تطبیق الگوریتم VIS برای مسئله موردبررسی85
3-2-7- تطبیق الگوریتم NNIA برای مسئله موردبررسی86
فصل چهارم: تجزیه و تحلیل داده‌ها87
4-1- تولید مسأله نمونه88
4-2- اندازه گیری عملکرد الگوریتم‌ها براساس معیارها89
4-3- تجزیه و تحلیل نتایج92
فصل پنجم: نتیجه گیری و مطالعات آتی100
5-1- نتیجه گیری101
5-2- مطالعات آتی102
فهرست منابع و مراجع103
پیوست الف: محاسبه معیارهای هشت گانه برای الگوریتم های استفاده شده105
پیوست ب: نمودارهای بدست آمده از تجزیه و تحلیل نتایج113
پیوست ج: یک نمونه مسئله حل شده توسط الگوریتم NSGA-II118
پیوست د: کد برنامه نویسی الگوریتم NSGA-II در محیط MATLAB123

فهرست اشکال
شکل 2-1- مدل پایه‌ای صف36
شکل 2-2- مجموعه حل‌های غیرمغلوب41
شکل 2-3- نمایشی از نحوه عملکرد NSGA-II43
شکل2-4- الگوریتم NRGA47
شکل 2-5- سلول B، آنتی ژن، آنتی بادی، اپیتوپ، پاراتوپ و ادیوتوپ50
شکل 2-6- فلوچارت الگوریتم MISA57
شکل 2-7- یک شبکه تطبیقی برای رسیدگی به حافظه ثانویه60
شکل 2-8- فلوچارت الگوریتم VIS62
شکل 2-9- تکامل جمعیت NNIA65
شکل 2-10- نمایش حل‌های مناسب69
شکل 2-11- مساحت زیر خط رگرسیون70
شکل 2-12- بیشترین گسترش73
شکل 3-1- مکانیسم عملگر تقاطع83
شکل 4-1- نمودار همگرایی الگوریتم‌ها براساس شاخص MID90
شکل 4-2- نتیجه بدست آمده از آنالیز واریانس برای معیار تعداد جواب‌های غیرمغلوب94
شکل 4-3- نتیجه بدست آمده از آزمون توکی برای معیار تعداد جواب‌های غیرمغلوب95
شکل 4-4- نتیجه به دست آمده از آنالیز واریانس برای تعداد جواب‌های غیرمغلوب97

فهرست جداول
جدول 4-1- مشخصات هر نمونه88
جدول 4-2- گروه بندی الگوریتم‌ها براساس معیار تعداد جواب‌های غیرمغلوب96
جدول 4-3- مقایسه الگوریتم‌ها ازنظر معیارهای مختلف و در حالت‌های گوناگون98
جدول 4-4- متوسط معیارهای الگوریتم‌ها و رتبه بندی الگوریتم‌ها براساس آن99
4221207272
82867519050 1
00 1

تعریف مسأله

1-1- مقدمه
با رشد روز افزون معاملات تجاری در سطح جهان و در سال‌های اخیر، ظهور پدیده تجارت الکترونیک و بانکداری الکترونیک به عنوان بخش تفکیک ناپذیر از تجارت الکترونیک مطرح شد. بانکداری الکترونیک اوج استفاده از فناوری انفورماتیک و ارتباطات و اطلاعات برای حذف دو قید زمان و مکان از خدمات بانکی است. ضرورت یک نظام بانکی کارامد برای حضور در بازارهای داخلی و خارجی ایجاب می‌کند تا بانکداری الکترونیک نه به عنوان یک انتخاب، بلکه ضرورت مطرح شود. امروزه پایانه فروش، پایانه شعب، دستگاه‌های خودپرداز و ... نماد بانکداری الکترونیک است و یافتن مکان بهینه برای این پایانه‌ها و دستگاه‌ها می‌تواند نقش مهمی در حضور یک بانک یا مؤسسه در بازارهای داخلی و خارجی داشته باشد [1].
1-2- مکانیابی تسهیلات
فرض کنید که یک شرکت رسانه‌ای می‌خواهد که ایستگاه‌های روزنامه را در یک شهر ایجاد کند. این شرکت در حال حاضر جایگاه‌هایی را به صورت بالقوه در شهرهای همسایه اش مشخص کرده‌است و هزینه ایجاد و نگهداری یک جایگاه را می‌داند. همچنین فرض کنید که تقاضای روزنامه در هر شهر همسایه مشخص است. اگر این شرکت بخواهد تعدادی از این ایستگاه‌ها را ایجاد کند، باتوجه به مینیمم کردن کل هزینه‌های ایجاد و نگهداری این ایستگاه‌ها و همچنین متوسط مسافت سفر مشتریان، این ایستگاه‌ها در کجا باید واقع شوند؟
سؤال قبل یک مثال از مسأله مکانیابی تسهیلات بود. مکانیابی تسهیلات یعنی اینکه مجموعه‌ای از تسهیلات (منابع) را به صورت فیزیکی به گونه‌ای در یک مکان قراردهیم که مجموع هزینه برآورده کردن نیازها (مشتریان) باتوجه به محدودیت‌هایی که سر راه این مکانیابی قرار دارد، مینیمم گردد.
از سالهای 1960 به این طرف مسائل مکانیابی یک جایگاه ویژه‌ای را در حیطه تحقیق در عملیات اشغال کرده‌اند. آنها وضعیت‌های مختلفی را درنظر گرفته‌اند که می‌توان به موارد ذیل اشاره کرد: تصمیم گیری در مورد مکان کارخانجات، انبارها، ایستگاه‌های آتش نشانی و بیمارستان‌ها.
به طور اساسی، یک مسأله مکانیابی بوسیله چهار عنصر زیر توصیف می‌شود:
مجموعه‌ای از مکانها که در آن‌ها، تسهیلات ممکن است ایجاد یا باز شوند. برای هر مکان نیز بعضی اطلاعات درمورد هزینه ساخت یا باز نمودن یک تسهیل در آن مکان مشخص می‌شود.
مجموعه‌ای از نقاط تقاضا (مشتریان) که برای سرویس دهی به بعضی از تسهیلات اختصاص داده شوند. برای هر مشتری، اگر بوسیله یک تسهیل معینی خدمت‌رسانی شود، بعضی اطلاعات راجع به تقاضایش و درمورد هزینه یا سودش بدست می‌آید.
لیستی از احتیاجات که باید بوسیله تسهیلات بازشده و بوسیله تخصیص نقاط تقاضا به تسهیلات برآورده شود.
تابعی از هزینه یا سودهایی که به هر مجموعه از تسهیلات اختصاص پیدا می‌کند.
پس هدف این نوع مسائل، پیدا کردن مجموعه‌ای از تسهیلات است که باید باتوجه به بهینه کردن تابع مشخصی باز شوند.
مدل‌های مکانیابی در یک زمینه گسترده از کاربردها استفاده می‌شود. بعضی از این موارد شامل موارد ذیل است: مکانیابی انبار در زنجیره تأمین برای مینیمم کردن متوسط زمان فاصله تا بازار؛ مکانیابی سایت‌های مواد خطرناک برای مینیمم کردن درمعرض عموم قرار گرفتن؛ مکانیابی ایستگاه‌های راه آهن برای مینیمم کردن تغییرپذیری زمان بندی‌های تحویل بار؛ مکانیابی دستگاه‌های خودپرداز برای بهترین سرویس دهی به مشتریان بانک و مکانیابی ایستگاه‌های عملیات تجسس و نجات ساحلی برای مینیمم کردن ماکزیمم زمان پاسخ به حادثه‌های ناوگان دریایی. با اینکه این پنج مسأله توابع هدف مختلفی دارند، همه این مسائل در حوزه مکانیابی تسهیلات واقع می‌شوند. درواقع، مدل‌های مکان‌یابی تسهیلات می‌توانند در موارد ذیل متفاوت باشند: توابع هدفشان، معیارهای فاصله‌ای که به کار می‌برند، تعداد و اندازه تسهیلاتی که قرار است مکانیابی شوند و چندین معیار تصمیم گیری مختلف دیگر. بسته به کاربرد خاص هر مسأله، درنظرگرفتن این معیارهای مختلف در فرموله کردن مسأله، منتهی به مدل‌های مکانیابی بسیار متفاوتی خواهدشد.
1-3- بیان مسأله
هدف از اجرای این تحقیق، مکان‌یابی سیستم‌های خدمات رسانی ثابت با ظرفیت خدمت محدود می‌باشد. یعنی دستگاه‌های خدمت‌رسان به چه تعداد و در چه محل‌هایی استقرار یابند و چه مراکز تقاضایی به این دستگاههای خدمت‌رسان تخصیص یابند. در چنین سیستم‌هایی، زمانی که برای انجام سرویس موردنیاز است تصادفی است و همچنین تقاضای انجام خدمت در نقاط تصادفی از زمان می‌رسند که این تقاضا از جمعیت بزرگی از مشتریان سرچشمه می‌گیرد و معمولاً این سرویس‌دهی در نزدیک ترین تسهیل انجام می‌شود. چنین سیستم‌های خدمت‌رسانی، سیستم‌های صف را تشکیل می‌دهند. مدل‌های مختلفی برای حل این مسائل مکان‌یابی سیستم صف ارائه شده‌است.
دو ناحیه کاربردی وجود دارد که ما با این مدل‌ها روبه رو می‌شویم [4]: اولی در طراحی سیستم ارتباط کامپیوتری مانند اینترنت می‌باشد. در یک سیستم ارتباط کامپیوتری، ترمینال‌های مشتری (کاربران اینترنت) به کامپیوترهای میزبان (سرورهای پروکسی، سرورهای آینه) وصل می‌شوند که قابلیت پردازش بالا و/یا پایگاه داده‌های بزرگ میزبان دارند. زمانی که طول می‌کشد تا سرور درخواست را پردازش کند بستگی به سرعت پردازش سرور و و نوع درخواست دارد که آن هم تصادفی است. زمانی که مشتری برای پاسخ سرور منتظر می‌ماند نیز بستگی به تعداد و اندازه درخواست‌های داده‌ای است که در حال حاضر در صف هستند. به طور کلی، درخواست‌های مشتری‌ها به نزدیکترین سرور وصل می‌شود. این مکان و ظرفیت سرورها، پارامترهای طراحی بحرانی هستند. این انتخاب پارامترها تأثیری قابل توجه روی کیفیت خدمات دارد، به طوری که بوسیله یک مشتری درک می‌شود.
کاربرد دوم شامل طراحی یک سیستم دستگاه خودپرداز برای بانک است. مشتری‌ها به صورت تصادفی به یک دستگاه خودپرداز می‌رسند. اگر هنگامی‌که آن‌ها می‌رسند، دستگاه آزاد باشد، آن‌ها بلافاصله سرویس دهی می‌شوند. در غیر این صورت ، آن‌ها به صف می‌پیوندند یا آن جا را ترک می‌کنند. زمان تصادفی که یک مشتری در یک دستگاه سپری می‌کند بستگی به تعداد و نوع تراکنشی (مثلاً مانده حساب، دریافت وجه، انتقال وجه و غیره) دارد که او انجام می‌دهد. منبع قابل توجه دیگر زمان مشتری در یک دستگاه، شامل تأخیر ارسال در مدت شبکه ارتباط بانک است. از آن جا که دستگاه‌ها ثابت هستند، مشتری‌ها باید به یک مکان خودپرداز مراجعه کنند تا یک تراکنش را انجام دهند. گاهی اوقات، مردم در طول مسیر خود (مثلاً از خانه به محل کار) برای استفاده از یک دستگاه خودپرداز به آن مراجعه می‌کنند؛ گاهی اوقات هم، آن‌ها آن را طبق یک مسیر از پیش برنامه‌ریزی‌شده (مثلاً مسیر روزانه بین خانه و کار) استفاده می‌کنند. به طور کلی، آن‌ها از تسهیل با کمترین هزینه قابل‌دسترس استفاده می‌کنند. برای مثال، هنگامی‌که هزینه‌ها بوسیله مسافت سفر تعیین می‌شود، مشتری‌ها نزدیکترین تسهیل به محل کار/خانه یا نزدیکترین مسیر روزانه شان را انتخاب می‌کنند. ما فرض می‌کنیم که مشتری‌ها هیچ اطلاعی از تأخیرات دستگاه‌های خودپرداز ندارند و از این رو نزدیکترین تسهیل را برای درخواست سرویسشان انتخاب می‌کنند.
فرضیاتی که برای این مسأله درنظر گرفته می‌شود به شرح زیر می‌باشد:
گره مشتری وجود دارد که هر یک درخواستی را برای سرویس ایجادمی‌کند؛
تعداد درخواست‌ها در واحد زمان، یک جریان پوآسن مستقل را تشکیل می‌دهند؛
گره خدمت‌رسان بالقوه وجود دارد؛
مشتریان از مراکز تقاضا به سمت مکان این دستگاه‌ها حرکت می‌کنند؛
هر جایگاه خدمت فقط یک خدمت دهنده دارد؛
زمان سرویس یک دستگاه به صورت تصادفی و توزیع نمایی دارد؛
مکان دستگاه‌ها ثابت هستند؛
مشتری‌ها بوسیله نزدیکترین دستگاه خودپرداز خدمت‌رسانی می‌شوند؛
میزان زمان انتظار مشتریان در صف نباید از یک حد ازپیش تعیین شده، فراتر رود؛
ماکزیمم تعداد دستگاه‌های خدمت‌رسان از قبل تعریف شده‌است.
در مسائل مکان‌یابی تک هدفه، هدف مسأله معمولاً هزینه یا پوشش بوده‌است، امّا در مسائل چندهدفه، حداقل یک هدف دیگر وجود دارد که باتوجه به طبیعت این گونه مسائل، با هدف اوّلی درتضاد است.
براین اساس، ما مروری بر روی اهدافی که در مسائل مکان‌یابی چندهدفه توسعه یافته می‌کنیم. این اهداف می‌توانند به صورت زیر توصیف شوند:
هزینه: انواع مختلفی از هزینه وجود دارد. این انواع می‌توانند به دو قسمت ثابت و متغیر تقسیم شوند. هزینه‌های ثابت شامل هزینه شروع و نصب به همراه سرمایه گذاری می‌باشد. هزینه‌های متغیر می‌تواند هزینه حمل و نقل، عملیات، تولید، خدمات، توزیع، تدارکات، دفع پسماند، نگهداری و محیطی باشد. هزینه حمل و نقل بیشترین و هزینه نصب بعد از آن قرار دارد. مسائل مختلفی از یک معیار «هزینه کل» استفاده کرده‌اند که شامل همه هزینه‌ها تحت یک هدف می‌شود.
ریسک‌های محیطی: این هدف شامل ریسک حمل و نقل، ریسک طبیعی، دفع پسماند یا ریسک رفتاری، یا «اثرات نامطلوب» عمومی است که جایگاه بزرگی دارد. به هر حال نسبت ریسک محیطی در مسائل مکان‌یابی کمتر از دیگر هزینه‌هاست.
پوشش: تقریبا مجموعه کامل مسائل مکان‌یابی درباره پوشش مسافت، زمان، مبلغ و یا حتی انحراف پوشش است. اگرچه بسیاری از مسائل از مسافت و پوشش جمعیّت به عنوان هدفشان استفاده می‌کنند، اما در بعضی مسائل نیز زمان مهّم است.
مفهوم تساوی نیز در این طبقه قرار می‌گیرد، زیرا این نوع مسائل، روشی منصفانه در برخورد با مسأله پوشش دارند.
سطح و کارائی خدمت: در این طبقه، هدف سطح سرویس به همراه کارائی قرارمی‌گیرد.
سود: بعضی مسائل به سود خالص (تفاوت بین سودها و هزینه‌ها) علاقمندند.
اهداف دیگر: بعضی اهداف دیگر که در مسائل مکان‌یابی استفاده می‌شوند، مانند دستیابی به منابع به همراه ریسک‌های سیاسی و اجتماعی که نمی‌توانند در دیگر دسته‌ها قرار بگیرند.
سه هدف برای مسأله موردنظر ما درنظر گرفته شده‌است که هدف اول، مینیمم کردن متوسط تعداد مشتریان درحال سفر؛ هدف دوم، مینیمم کردن متوسط تعداد مشتریان در حال انتظار و هدف سوم، ماکزیمم کردن مجموع کارکرد دستگاه‌ها در واحد زمان می‌باشد.
1-4- روش حل
به طور کلی مسائل مکانیابی تسهیلات اصولاً NP-Hardهستند و بعید است بدون کاربرد الگوریتم‌های فراابتکاری بتوان حلّی بهینه را در زمان معقول پیدا کرد و زمان محاسباتی نیز با توجه به اندازه مسأله به صورت نمایی افزایش می یابد.
مسائل بهینه یابی چندهدفه، به طور کلی با یافتن حل‌های بهینه پارتو یا حل‌های مؤثّر کارمی‌کنند. چنین حل‌هایی غیرمغلوب هستند، یعنی هنگامی‌که همه اهداف درنظر گرفته شوند، هیچ حل دیگری برتر از آن‌ها نیست. بیشترین روش‌هایی که برای حل مسائل بهینه سازی چندهدفه به کار می‌روند، روشهای ابتکاری و فراابتکاری هستند.
برای مسائلی که در کلاس NP-Hard قرار می گیرند، تاکنون روش‌های دقیقی که بتواند در حالت کلی و در زمانی معقول به جواب دست یابد توسعه داده نشده‌است. از این رو روش‌های ابتکاری و فراابتکاری مختلفی را برای حل این دسته از مسائل به کار می برند تا به جواب‌های بهینه یا نزدیک به بهینه دست یابند.
در این تحقیق سعی شده‌است که از چندین الگوریتم بهینه سازی چندهدفه استفاده شود. الگوریتم NSGA-II به این خاطر انتخاب شده‌است که این الگوریتم در بسیاری از مقالات به عنوان الگوریتم مرجع مقایسه گردیده‌است. الگوریتم CNSGA-II نیز به این علت انتخاب شده‌است که روشی مناسب برای برخورد با محدودیت‌های حل مسأله ارائه می‌کند. چون باتوجه به ماهیت مسأله، چندین محدودیت سر راه حل مسأله ایجاد شده‌است که راهکار مناسبی برای رسیدگی به این محدودیت‌ها ایجاب می‌کند. الگوریتم NRGA نیز چون جزء جدیدترین الگوریتم‌های ارائه شده در زمینه بهینه سازی چندهدفه می‌باشد مورداستفاده قرار گرفته‌است. در سال‌های اخیر، الگوریتم‌های بهینه سازی مبتنی بر ایمنی مصنوعی بسیار مورد توجه قرار گرفته‌است که به همین علت، ما در این تحقیق سعی بر آن داریم که از کارآمدترین این الگوریتم‌ها استفاده کنیم. از میان الگوریتم‌های چندهدفه ایمنی، ما از MISA، VIS و NNIA استفاده کرده ایم که در ادامه و در بخش‌های بعدی به نتایج خوبی که دراثر استفاده از این الگوریتم‌ها بدست می‌آید، اشاره می‌کنیم.
1-5- اهمیت و ضرورت تحقیق
امروزه پایانه فروش، پایانه شعب، دستگاه‌های خودپرداز و ... نماد بانکداری الکترونیک است و یافتن مکان بهینه برای این پایانه‌ها و دستگاه‌ها می‌تواند نقش مهمی در حضور یک بانک یا مؤسسه در بازارهای داخلی و خارجی داشته باشد.
در این تحقیق سعی شده‌است که محدودیت‌ها و چالش‌های فراروی این مسأله در دنیای واقعی تا حد ممکن درنظر گرفته شود. به همین منظور محدودیت‌هایی ازقبیل ماکزیمم دستگاه خدمت‌رسانی که می‌تواند به کار گرفته شود و حدّ بالای زمان انتظار برای مشتریان منظور شده‌است. همچنین به‌دلیل اینکه یک هدف، پاسخگوی انگیزه ایجاد شده برای انجام این طرح نمی‌باشد، این مسأله به صورت یک مسأله چند هدفه درنظر گرفته شده‌است تا به دنیای واقعی هر چه نزدیکتر گردد تا در درجه اول سود بانک یا مؤسسه ازطریق انتخاب بهینه دستگاه‌های خودپرداز افزایش یابد و در درجه دوم رضایت مشتریان جلب گردد، به صورتی که هم پوشش مناسب برای خدمت‌رسانی داده شود و هم مدت زمان خدمت‌رسانی به مشتریان حداقل گردد.
1-6- اهداف تحقیق
اهدافی که برای اجرای این تحقیق درنظر گرفته شده‌است عبارتند از:
مروری بر مدل‌های مکانیابی تسهیلات به صورت کلّی
مروری بر مدل‌های مکانیابی تسهیلات با تقاضای تصادفی و تراکم
بهینه نمودن استفاده از دستگاه‌های‌های خدمت‌رسان؛ یعنی دستگاه‌های خدمت‌رسان به چه تعداد و در چه محل‌هایی استقرار یابند و چه مراکز تقاضایی به این دستگاههای خدمت‌رسان تخصیص یابند، به‌صورتی که هم رضایت مشتریان جلب شود (این هدف را به صورت کمینه کردن مجموع زمان خدمت‌رسانی به مشتریان که شامل زمان سفر مشتریان از مراکز تقاضا به مراکز خدمت‌رسانی و زمان انتظار آنها برای خدمت‌رسانی درنظر گرفته ایم) و هم مجموع کارکرد دستگاه‌ها بیشینه گردد.
تطبیق الگوریتم‌های مختلف با مسئله مورد بررسی
تجزیه و تحلیل الگوریتم‌های مختلف با استفاده از روشهای مقایسه الگوریتم‌ها
1-7- جمع بندی
مسأله مکانیابی تسهیلات در حالت کلی به عنوان یک مسأله NP-Hard شناخته می‌شود. به‌خصوص در حالتی که محدودیت‌های دیگری نظیر محدودیت انتظار مشتریان در صف و محدودیت در تعداد تسهیلات باز شده نیز مطرح باشد، پیچیدگی این مسأله چندین برابر می‌شود.
هدف اول، مینیمم کردن متوسط تعداد مشتریان درحال سفر؛ هدف دوم، مینیمم کردن متوسط تعداد مشتریان در حال انتظار و هدف سوم، ماکزیمم کردن مجموع کارکرد دستگاه‌ها در واحد زمان می‌باشد.
پایان نامه دارای ساختار زیر است: در فصل دوم برای آنکه خواننده با مفاهیمی که در این پایان‌نامه به کار گرفته شده‌است و همچنین موضوعاتی که در این تحقیق مطرح می‌شود، مروری جامع بر ادبیات موضوعات در بخش‌های مختلف اعم از مکانیابی تسهیلات به صورت کلی، مکانیابی تسهیلات باتوجه به مسأله مطرح شده و محدودیت‌های ایجاد شده به عمل آمده‌است. همچنین الگوریتم‌های چندهدفه‌ای که در این پروژه - ریسرچبه کار گرفته شده‌است به طور عمومی معرفی و تشریح می‌شوند. باتوجه به اینکه سه الگوریتم از این الگوریتم‌ها از مبحث ایمنی مصنوعی است، سعی شده‌است تا مروری مختصر بر این موضوع نیز انجام شود. در آخر نیز روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه معرفی شده‌اند.
در فصل سوم ابتدا درمورد مسئله مورد بررسی این تحقیق توضیحات کافی داده می شود و اهداف و محدودیت های فراروی آن شرح داده می شود. سپس، در قسمت طراحی الگوریتم‌ها، الگوریتم‌های درنظر گرفته شده را با مسئله مورد بررسی تطبیق می دهیم.
در فصل چهارم پس از اینکه درمورد تولید مسائل نمونه صحبت کردیم، به تجزیه و تحلیل و مقایسه الگوریتم‌ها خواهیم پرداخت که این کار را به این صورت انجام می‌دهیم که ابتدا معیارهای مختلف را برای تمامی الگوریتم‌ها اندازه گیری کرده و سپس این نتایج را باتوجه به روش‌های موجود درزمینه تحلیل واریانس، مورد تجزیه و تحلیل قرارمی‌دهیم.
در فصل پنجم نیز پس از مروری کلّی بر تحقیقی که انجام شده، چند زمینه تحقیق برای مطالعات آتی به خوانندگان پیشنهاد می‌شود.
4221207272
82867519050 2
00 2

مرور ادبیات

2-1- مقدمه
در این فصل، ابتدا به بحث درباره موضوع مکانیابی تسهیلات می پردازیم. در ابتدا، به مروری بر ادبیات این موضوع می پردازیم. در ادامه، مسائل پوشش که مهمترین و پرکاربردترین مباحث در این حوزه است را توضیح داده و مدل های دیگر مکانیابی تسهیلات را معرفی می نمائیم. سپس باتوجه به اینکه مسئله ما در حیطه مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکم می باشد، به مرور ادبیات این حیطه و خصوصیات این نوع مدل ها می پردازیم. سپس سیستم صف و مسائلی که در این حوزه و ادامه تحقیق، موردنیاز است، شرح داده می شود. همچنین الگوریتم‌های چندهدفه‌ای که در این پروژه - ریسرچبه کار گرفته شده‌است به طور عمومی معرفی و تشریح می‌شوند. باتوجه به اینکه سه الگوریتم از این الگوریتم‌ها از مبحث ایمنی مصنوعی است، سعی شده‌است تا مروری مختصر بر این موضوع نیز انجام شود. در آخر نیز روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه معرفی شده‌اند.
2-2- مکانیابی تسهیلات
2-2-1- مرور ادبیات در موضوع مکانیابی تسهیلات [5]
می‌توان استدلال نمود که تحلیل‌های مکانیابی در قرن هفدهم و با مسأله پیِر دِ فِرمَت شروع شد: فرض کنید که سه نقطه در یک صفحه وجود دارد، نقطه چهارمی را پیداکنید به صورتی که مجموع فواصلش تا سه نقطه فرض شده مینیمم گردد. اِوانجلیستا توریچلی نیز یکی از کسانی است که ساختارهای فضایی که نیاز به یافتن یک چنین میانه‌های فاصله‌ای یا «نقاط توریچلی» دارند، به آن نسبت داده شده‌است. به هر حال در قرن اخیر، با «مسأله وِبِر» از آلفرد وِبِر و بعضی از گسترش‌های بعدی اش در مسئله درِزنر و همکارانش دوران جدید تحلیلهای مکانیابی با کاربردش در مکانیابی صنعتی شروع می‌شود. مسأله وِبِر نقاطی را در یک سطح پیدا می‌کند که مجموع فواصل اقلیدسی وزن‌دهی شده آن تا یک مجموعه نقاط ثابت مینیمم گردد. این مسأله به این صورت تفسیر می‌شود که مکان یک کارخانه را به گونه‌ای پیداکنیم که کل مسافت وزن دهی شده آن از تأمین کنندگان و مشتریان مینیمم گردد، که وزن‌ها بیانگر حجم مبادلات می‌باشد، مثل وزن موادی که باید از یک تأمین‌کننده منتقل شود یا حجم محصولات نهایی که برای یک مشتری ارسال می‌شود.
تنها در دهه 60 و 70، با فراهم بودن گسترده قدرت محاسبات برای پردازش و تحلیل مقادیر بزرگی از داده‌ها بود که ما شروع واقعی بهینه سازی جدید و به همراه آن، تحقیق در مسائل مکانیابی را مشاهده می‌کنیم. این دوره را به این دلیل دوره بلوغ تحلیلهای مکانیابی می‌نامند که گرایش زیادی به مطالعه p-median کلاسیک، p-center، پوشش مجموعه، مکانیابی تأسیسات ساده و مسائل تخصیص درجه دوم و گسترش آنها پیدا شد.
در این دوره، کوپر مسأله تک تسهیلی وِبِر را گسترش داد تا مسأله تخصیص-مکانیابی چندتسهیلی را ایجاد کند. سپس مارانزانا این مسأله را از فضای پیوسته به شبکه گسترش داد. به هر حال حکیمی است که شالوده تحقیق در p-median و مسائل دیگر در یک شبکه را کامل می‌کند. مسأله p-median شبیه مسأله وِبِر در یک سطح، مکان p نقطه را در یک شبکه به گونه‌ای پیدا می‌کند که کل مسافت وزن دهی شده با تقاضا را تا نزدیکترین تسهیل مینیمم می‌کند. به علاوه حکیمی مسأله p-center اصلی را ارائه می‌کند که مکان p نقطه را در یک شبکه به گونه‌ای پیدا می‌کند که ماکزیمم مسافت تقاضا تا نزدیکترین تسهیل مینیمم گردد. نتیجه مهم قضیه حکیمی نیز مشخص است، یعنی اینکه یک حل در مسأله p-median، همیشه در گره‌های یک شبکه در مسأله واقع می‌شود، درحالیکه یک حل در مسأله p-center لزومی ندارد که در گره‌ها واقع شود. کاریف و حکیمی اثبات می‌کنند که مسائل p-center و p-median، NP-Hard هستند.
مدلهای پوشش، مسائلی را درنظر می‌گیرند که تقاضاها باید در یک مسافت مطمئنی از زمان سفر پوشش داده شوند. تورِگاس و همکارانش روش حلی را برای اینگونه مسائل که در کاربرد با نام مسأله پوشش مجموعه (LSCP) شناخته می‌شود را فرمول بندی و ارائه کردند. مکان تسهیلات برای خدمات اورژانسی از این مسأله الهام می‌شوند. چِرچ و رِوِله، مسأله مکانیابی حداکثر پوشش (MCLP) را ارائه کردند. این مسأله، مکانهای بهینه‌ای را برای تعداد معیّنی از تسهیلات پیدا می‌کند که جمعیّتی که درون یک فاصله خدمت‌رسانی مشخص، پوشش داده می‌شوند، حداکثر گردد.
دیگر مسأله بنیادی با مفهوم پوشش، مسأله تخصیص درجه دوم (QAP) می‌باشد که به دلیل طبیعت درجه دوّم فرموله کردن تابع هدفش به این نام خوانده می‌شود. تعدادی (N) تسهیل که در همان تعداد جایگاه (N) به گونه‌ای واقع می‌شوند که کل هزینه انتقال مواد درمیان آنها مینیمم گردد. هزینه حرکت مواد بین هر دو مکان بوسیله ضرب یک وزن یا جریان در فاصله بین مکان‌ها بدست می‌آید. مدل خطی آن بوسیله کوپمنس و بِکمن ارائه شد که مورد خاصی از مسأله حمل و نقل شناخته شده‌است. این مسأله NP-Hard علائق بسیاری را برای تحقیق ایجاد کرد و هنوز هم حل آن در هر اندازه ای، بسیار سخت به نظر می‌رسد.
دهه 80 و 90 تحقیقاتی را در تحلیل مکانیابی دید که به رشته‌های دیگر نیز گسترش پیدا کرد و نتایج سودمندی را از دیدگاه مدل سازی و کاربرد بدست آورد. این نوآوری‌ها تا به امروز نیز ادامه دارد.
از جمله این مدل‌ها می‌توان به مکان‌یابی رقابتی، مکان تسهیلات گسترده، مکانیابی تصادفی، مسیریابی، مکان‌یابی هاب و جلوگیری از جریان اشاره کرد. به عنوان کاربردهای جدید در این دوران می‌توان به ناحیه‌هایی ازجمله برنامه ریزی خدمات اورژانسی، کاربردهای محیط زیستی همچون تسهیلات زیان آور و ترکیب مکانیابی با مدیریت زنجیره تأمین اشاره کرد.
مدلهای مکانیابی رقابتی: حکیمی مدلهای رقابتی را درون تئوری مکانیابی وارد کرد. بیشتر نتایج در این زمینه یک فضای گسسته یا یک شبکه را درنظر می‌گیرند. اخیراً مدل‌های مکانیابی رقابتی پیوسته توسط داسکی و لاپورته ارائه شده‌است.
مدلهای مکانیابی تسهیلات گسترده: یک تسهیل اگر در مقایسه با محیطش، خیلی کوچکتر از یک نقطه به نظر برسد، گسترده نامیده می‌شود. چنین مدل‌هایی بارها در وضعیت‌های طراحی شبکه به کار گرفته شده‌است. مِسا و بوفی یک سیستم دسته بندی شامل مسائلی برای تعیین خط مسیر حمل و نقل مواد خطرناک ارائه کردند. اخیراً یک مثال بوسیله بریمبرگ و همکارانش آورده شده‌است که مسأله مکانیابی یک دایره درون یک کره را درنظر می‌گیرد، به صورتی که فاصله از تسهیلات موجود باید مینیمم گردد.
مکانیابی تصادفی: مدلهای مکانیابی تصادفی هنگامی رخ می‌دهند که داده‌های مسأله فقط به روشی احتمالی شناخته شوند. بِرمن و همکارانش مسائلی را درنظر گرفتند که ورود به تسهیلات به صورت تصادفی است و اثر تراکم نیز باید درنظر گرفته می‌شد. لوگندران و تِرِل یک مسأله LA با ظرفیت نامحدود را با تقاضاهای تصادفی حسّاس به قیمت درنظر گرفتند. بِرمن و کراس یک کلاس کلی از «مسائل مکانیابی با تقاضای تصادفی و تراکم» را ارائه کردند.
مسیریابی مکان: ترکیب تحلیلهای مکانیابی با زمینه‌های شناخته شده مسائل مسیریابی وسایل نقلیه، ناحیه جدید دیگری از مدل سازی، یعنی مسیریابی مکان را ایجاد می‌کند.
مکانیابی هاب: در چنین مسائل مکانیابی، هاب‌ها به عنوان متمرکزکننده‌ها یا نقاط سوئیچینگ ترافیک عمل می‌کنند، خواه برای مسافران خطوط هوایی باشد، خواه بسته‌های کوچک در سیستمهای سوئیچینگ. جریان بین منابع و مقاصد اساس مدل سازی این دسته از مسائل را تشکیل می‌دهد. اُکِلی اساس تحلیلهای مکانیابی هاب را بنانهاد. آن مدل‌ها به صورتی مدل سازی شد تا بهترین مکان‌ها برای متصل کردن ترمینال‌ها را باتوجه به مینیمم کردن هزینه‌های کل تراکنش‌ها، پیدا کند.
جلوگیری از جریان: در بسیاری از مسائل مکانیابی، تقاضاها فرض می‌شوند که در گره‌های یک شبکه رخ می‌دهند. یک تغییر جالب که بوسیله مسائل فرض می‌شود این است که تقاضا بوسیله جریانی از وسایل نقلیه یا پیاده‌هایی که از میان اتصالات شبکه عبور می‌کنند، ارائه می‌شوند. ازجمله کاربردهای این حیطه می‌توان به دستگاه‌های خودپرداز و ایستگاه‌های نفتی اشاره کرد. چنین مسائلی اولین بار توسط هاچسون و بِرمن و همکارانش ارائه شد.
مکانیابی یا جابجایی وسایل خدمات اورژانسی: مقدار شگرفی از تحقیقات در مطالعه مکانیابی وسایل خدمات اورژانسی ایجاد شده‌است. چَپمن و وایت اولین کار را برحسب محدودیت‌های کاربردی که در LSCP کاربرد دارد، ارائه کردند. مطالعه میرچندانی و اُدُنی زمان‌های سفر تصادفی را در مکانیابی تسهیلات اورژانس درنظر می‌گیرد. همچنین باتوجه به کاربردهای وسایل اورژانسی، مدل MEXCLP که توسط داسکین ارائه شده‌است، مدل MCLP را با محدودیت‌های احتمالی گسترش می‌دهد. رِپِده و برناردو، مدل TIMEXCLP را ارائه کردند که MEXCLP را با تغییر تصادفی در تقاضا گسترش می‌دهد.
کاربردهای مرتبط با محیط زیست: تسهیلات زیان آور و مفاهیم دیگر: بعضی از تحلیلهای مکانیابی در موضوع محیط زیست، مربوط به مکان تسهیلاتی می‌شود که برای جمعیت مجاورشان مضر یا نامطبوع هستند. گُلدمن و دیِرینگ و همچنین چِرچ و گارفینکل جزء اولین افرادی بودند که مکانیابی برای تسهیلات زیان آور یا تسهیلاتی که ترجیح می‌دهیم دور از دسترس باشند را درنظر گرفتند.
تحلیلهای مکانیابی با مدیریت زنجیره تأمین: مدیریت زنجیره تأمین (SCM) شامل تصمیمات درمورد تعداد و مکان تسهیلات و جریان شبکه در حیطه تأمین، تولید و توزیع می‌شود. در اولین کارها در برنامه ریزی پویا، بالُو از برنامه نویسی پویا برای جابجایی انبارها در طول دوره برنامه‌ریزی استفاده می‌کند. جئوفریون و پاورز محیطی یکپارچه را بین مکان و SCM درنظر می‌گیرد.
2-2-2- معیارهای دسته بندی مدلهای مکانیابی
مدلهای مکانیابی تسهیلات می‌توانند باتوجه به اهداف، محدودیتها، حل‌ها و دیگر خصوصیات دسته بندی شوند. در زیر، هشت معیار رایجی که برای دسته بندی مدل‌های مکانیابی تسهیلات سنتی استفاده می شود، آورده شده‌است ‍‍[6]:
مشخصات مکان: مشخصات مکان تسهیلات و جایگاه‌های تقاضا شامل مدل‌های مکانیابی پیوسته، مدل‌های شبکه گسسته، مدل‌های اتصال هاب و غیره می‌شود. در هر یک از این مدل‌ها، تسهیلات می‌توانند فقط در جایگاه‌هایی واقع شوند که توسط شرایط مکانی مجاز هستند.
اهداف: هدف یکی از معیارهای مهم برای دسته بندی مدل‌های مکانیابی است. هدف مدل‌های پوشش، مینیمم کردن تعداد تسهیلات برای پوشش همه نقاط تقاضا یا ماکزیمم کردن تعداد تسهیلاتی است که باید پوشش داده شوند. هدف مدل‌های p-center مینیمم کردن ماکزیمم فاصله (یا زمان سفر) بین نقاط تقاضا و تسهیلات است. آن‌ها اغلب برای بهینه کردن تسهیلات در بخش‌های عمومی همچون بیمارستان‌ها، اداره‌های پست و آتش‌نشانی‌ها استفاده می‌شوند. مدل‌های p-median سعی می‌کنند که جمع فاصله (یا متوسط فاصله) بین نقاط تقاضا و نزدیکترین تسهیلشان مینیمم گردد. شرکت‌هادر بخش‌های عمومی اغلب از مدل‌های p-median استفاده می‌کنند تا برنامه توزیع تسهیل را به گونه‌ای بریزند که مزایای رقابتشان را بهبود دهند.
روش‌های حل: روش‌های حل مختلف در مدل‌های مکانیابی مختلف همچون مدل‌های بهینه‌سازی و مدل‌های توصیفی بدست می‌آیند. مدل‌های توصیفی از رویکردهای ریاضی همچون برنامه نویسی ریاضی یا برنامه نویسی عددی استفاده می‌کنند تا حل‌های مختلف را برای سبک و سنگین کردن اکثر اهداف مهم در مقابل یکدیگر جستجو کنند. در مقابل، مدل‌های توصیفی، از شبیه سازی یا رویکردهای دیگری استفاده می‌کنند تا موفقیت دستیابی به الگوی مکانیابی را افزایش دهند تا حلی با درجه مطلوب بدست آید. روش‌های حل ترکیبی نیز بوسیله گسترش مدلهای توصیفی با تکنیک‌های بهینه سازی توسعه داده شده‌است تا مسائل مکانیابی تعاملی یا پویا (مثل سرورهای متحرک) را بسازند.
مشخصات تسهیلات: مشخصات تسهیلات نیز مدل‌های مکانیابی را به انواع مختلف تقسیم می‌کند. مثلاً، محدودیت تسهیل می‌تواند منجر به مدلی با یا بدون ظرفیت خدمت‌رسانی شود، و تکیه تسهیلات به یکدیگر می‌تواند به مدل‌هایی منجر شود که همکاری تسهیلات را به حساب آورند یا نیاورند.
الگوی تقاضا: همچنین مدل‌های مکانیابی می‌توانند براساس الگوهای تقاضا دسته بندی شوند. اگر یک مدل تقاضای انعطاف پذیر داشته باشد، پس آن تقاضا محیطی متفاوت با تصمیمات مکانیابی تسهیلات مختلف خواهد داشت؛ درحالیکه یک مدل با تقاضای غیرانعطاف پذیر، به علت تصمیمات مکانیابی تسهیلات، با آن الگوی تقاضا متفاوت نخواهد بود.
نوع زنجیره تأمین: مدل‌های مکانیابی می‌تواند بوسیله نوع زنجیره تأمینی که درنظر می‌گیرند تقسیم شوند (یعنی مدلهای تک مرحله‌ای درمقابل مدل‌های چند مرحله ای). مدل‌های تک‌مرحله‌ای بر روی سیستمهای توزیع خدمت تنها با یک مرحله تمرکز می‌کنند، درحالیکه مدل‌های چندمرحله ای، جریان خدمات را در طول چند سطح سلسله مراتبی درنظر می‌گیرند.
افق زمانی: افق زمانی، مدل‌های مکانیابی را به مدل‌های استاتیک و پویا دسته بندی می‌کند. مدل‌های استاتیک، کارایی سیستم را با درنظر گرفتن همزمان همه متغیرها بهینه می‌کند. درمقابل، مدل‌های پویا، دوره‌های زمانی مختلف را با تغییر داده‌ها درطول این دوره‌ها درنظر می‌گیرند و حل‌هایی را برای هر دوره زمانی با وفق دادن با شرایط مختلف ارائه می‌کند.
پارامترهای ورودی: روش دیگری برای دسته بندی مدل‌های مکانیابی براساس خصوصیت پارامترهای ورودی به مسأله است. در مدلهای قطعی، پارامترها با مقادیر مشخص پیش بینی می‌شوند و بنابراین، این مسأله، برای حل‌های ساده و سریع، ساده سازی می‌شود. به هر حال، برای بیشتر مسائل جهان واقعی، پارامترهای ورودی ناشناخته هستند و طبیعتاً ماهیت احتمالی/تصادفی دارند. مدل‌های مکانیابی احتمالی/تصادفی برای رسیدگی به ماهیت پیچیده مسائل جهان واقعی از توزیع احتمالی متغیرهای تصادقی استفاده می‌کنند یا مجموعه‌ای از طرحهای ممکن را برای پارامترهای نامعیّن درنظر می‌گیرند.
همچنین مدل‌های مکانیابی می‌توانند براساس مشخصات دیگری همچون مدل‌های تک محصولی درمقابل مدلهای چندمحصولی و یا مدلهای کششی درمقابل مدلهای فشاری متمایز شوند.
2-2-3- مسائل پوشش
ایده اصلی پشت مدلهای پوشش مکانیابی تسهیلات به گونه‌ای است که بعضی خدمات موردنیاز مشتریان فراهم شود. دو هدف برای مکانیابی تسهیلات وجود دارد که آیا همه مشتریان در شبکه با حداقل تسهیلات پوشش داده می‌شوند یا هر تعدادی از مشتریان که ممکن است با تعداد مشخصی از تسهیلات پوشش داده شوند. در اینجا به مسائل پوشش در شبکه می‌پردازیم [7]،[8].
2-2-3-1-مسأله پوشش مجموعه
برای ساده سازی، فرض می‌کنیم که همه مشتریان و تسهیلات در گره‌های شبکه واقع می‌شوند. در ادامه، ما از اندیس i برای اشاره به مشتریان و از اندیس j برای اشاره به تسهیلات استفاده می‌کنیم. همچنین تقاضاها (یا وزن‌ها) در گره i را با و تعداد تسهیلاتی است که باید مکانیابی شوند را با p نمایش می‌دهیم. همچنین ما را به عنوان کوتاهترین مسیر (یا زمان، هزینه یا هر عدم مطلوبیت دیگری) بین گره تقاضای و جایگاه تسهیل در گره تعیین می‌کنیم. اگر گره i بتواند بوسیله تسهیل در مکان j پوشش داده شود، قرارمی‌دهیم، درغیر اینصورت . همچنین را مجموعه همه جایگاه‌های کاندیدشده‌ای قرار می‌دهیم که می‌توانند گره تقاضای i را پوشش دهند. اینکه p تسهیل در کجا واقع شوند و کدام تسهیل باید کدام گره تقاضا را سرویس دهد، تصمیمات کلیدی در اینگونه مسائل هستند.
مسائل پوشش مجموعه در ابتدای دهه 70 ایجاد شد. هدف LSCP مکانیابی حداقل تعداد تسهیلات به گونه‌ای است که هر گره تقاضا بوسیله یک یا چند تسهیل «پوشش» داده شود. به طور کلی، تقاضا در یک گره i توسط تسهیل j پوشش داده شده نامیده می‌شود اگر فاصله (یا زمان سفر) بین گره‌ها کمتر از فاصله بحرانی D باشد. به علاوه، D به ماکزیمم فاصله یا زمان خدمتی که تصمیم‌گیرنده مشخص می‌کند اشاره می‌کند.
با این توضیحات، می‌توان مدل مکان پوشش مجموعه را که اولین بار توسط تورِگاس و همکارانش ارائه شد، به صورت زیر فرموله کرد:
(1.2)
(2.2)
(3.2)
تابع هدف (1.2) تعداد تسهیلاتی که استفاده می‌شوند را مینیمم می‌کند. محدودیت (2.2) تعیین می‌کند که برای هر نقطه تقاضای i، حداقل یک تسهیل باید در مجموعه ایجاد گردد که بتواند این گره را پوشش دهد. محدودیت‌های (3.2) محدودیت‌های تکمیلی هستند.

2-2-3-2- مسأله مکانیابی حداکثر پوشش
درمقابل مسأله پوشش مجموعه که در بالا آورده شد، مسأله مکانیابی حداکثر پوشش (MCLP) سعی نمی‌کند که همه مشتریان را پوشش دهد. تعداد p تسهیل را فرض کنید که هدف ما مکانیابی این تسهیلات به گونه‌ای است که بیشترین تعداد ممکن از مشتریان را پوشش دهیم. منظور از پوشش را نیز در بالا آوردیم.
با تعیین این محدودیت‌های مدل پوشش مجموعه، چِرچ و رِوِله مسأله مکانیابی حداکثر پوشش را به صورت زیر فرمول بندی کردند:
(4.2)
(5.2)
(6.2)(3.2)
(7.2)
که اگر گره تقاضای i پوشش داده شود، برابر یک خواهد بود، درغیر اینصورت صفر می‌شود. تابع هدف (4.2) تعداد تقاضاهایی که پوشش داده می‌شوند را ماکزیمم می‌کند. محدودیت (5.2)، متغیرهای مکان و پوشش را به همدیگر مرتبط می‌کند و نشان می‌دهد که گره تقاضای i نمی‌تواند به عنوان پوشش داده شده تلقی گردد مگر اینکه ما حداقل یک تسهیل را در یکی از جایگاه‌های کاندید شده مستقر کنیم که بتواند آن گره را پوشش دهد. محدودیت (6.2) تعداد تسهیلات را به p محدود می‌کند و محدودیت‌های (3.2) و (7.2) محدودیت‌های تکمیلی هستند.
اگر تعداد تسهیلاتی که برای پوشش تمام تقاضاها نیاز است، از منابع دردسترس بیشتر شود، یک گزینه، راحت کردن الزامات برای پوشش کامل می‌باشد.
2-2-3-3- مسائل p-center
نوع دیگری از مسائل کلاسیک پوشش، اصطلاحاً مسائل p-center نامیده می‌شود. هدف مسائل p-center ، مکانیابی تعداد معین p تسهیل به گونه‌ای است که بزرگترین فاصله بین هر مشتری و نزدیکترین تسهیلش تا حد ممکن کوچک شود. اگرچه از دیدگاه نظری، مسائل p-center متفاوت هستند، اما یک روش دوبخشی ساده می‌تواند به کار گرفته شود تا مسائل p-center را به عنوان بخشی از مسائل پوشش حل نماید. این مسأله می‌تواند به صورت زیر فرمول بندی شود که Q ماکزیمم فاصله است که باید مینیمم گردد:
(8.2)
(9.2)
(10.2)
(6.2)
(11.2)
(3.2)
(12.2)محدودیت (9.2) ما را مطمئن می‌کند که هر گره تقاضا تخصیص داده شده‌است، درحالیکه محدودیت (10.2) تصریح می‌کند که این تخصیصها می‌توانند فقط در تسهیلاتی که بهره برداری شده‌اند ایجاد شود. محدودیت (6.2) بیان می‌کند که دقیقاً p تسهیل می‌تواند ایجاد شود. محدودیت (11.2) ماکزیمم فاصله را برحسب متغیرهای تصمیم تعیین می‌کند. این محدودیت‌ها تصریح می‌کنند که Q باید بزرگتر یا مساوی با فاصله‌ای باشد که برای هر گره تقاضا تخصیص داده می‌شود.
2-2-3-4- مسائل p-median
درمقابل مسائل p-center با اهداف مینیماکسش که در قسمت قبل توضیح داده شد، مسائل p-median اهداف مینیمم مجموع دارند. به عبارت دیگر مسائل p-median ، p تسهیل را به‌گونه‌ای مکان‌یابی می‌کنند که مجموع فواصل بین همه مشتریان و نزدیکترین تسهیل مرتبطشان مینیمم گردد. رِوِله و سواین مسأله p-median را به صورت زیر فرمول بندی کردند:
(13.2)
(9.2)
(10.2)
(6.2)
(3.2)
(12.2)
تابع هدف (13.2) کل فاصله‌ای که در تقاضا ضرب شده‌است را مینیمم می‌کند. از آنجائیکه تقاضاها مشخص هستند و کل تقاضا ثابت است، این هدف در حکم مینیمم کردن متوسط فاصله ضرب در تقاضا است. به خاطر داشته باشید که این فرمول بندی خیلی شبیه به فرمول بندی مسأله p-center است مگر در تابع هدف و محدودیت شماره (11.2).

2-2-4- مسائل دیگر مکانیابی [8]
در این بخش به اختصار به انواع دیگری از مدل‌های مکانیابی که در مقالات استفاده شده‌است اشاره می‌کنیم. اولین نوع، مدل‌هایی هستند که به تسهیلات نامطلوب اشاره می‌کنند. چنین مدل‌هایی به مکانیابی تسهیلاتی همچون تأسیسات تصفیه فاضلاب، محل‌های بازیافت زباله‌ها، نیروگاه‌ها یا زندان‌ها می‌پردازند که همسایگی آنها با نواحی مسکونی نامطلوب به نظر می‌رسد.
به عنوان سیستم‌هایی که معمولاً شامل دو یا چند سطح از تسهیلات می‌شوند، از سیستمهای سلسله مراتبی استفاده می‌کنیم. بسیاری از سیستمها در طبیعت سلسله مراتبی هستند. این تسهیلات معمولاً برحسب نوع خدماتی که ارائه می‌کنند سلسله مراتبی هستند. مثلاً مراکز مراقبت‌های پزشکی را درنظر بگیرید که شامل کلینیک‌های عمومی، بیمارستان‌ها و مراکز دارویی هستند.
نوع دیگری از مدل‌ها، به مدل‌های مکانیابی می‌پردازد که اهداف «یکسان» دارند. این مدل‌ها، تسهیلات را به گونه‌ای مکانیابی می‌کنند که برای همه مشتریان به طور مساوی دردسترس باشند.
ناحیه فعال دیگر در این زمینه، مکانیابی هاب‌هاست. هاب به عنوان توپ در مرکز یک چرخ است و منظور از آن، تسهیلاتی است که به بعضی جفت‌های منبأ-مقصد به عنوان گره‌های معاوضه و حمل و نقل سرویس دهی می‌کند و در سیستمهای ترافیک و ارتباطات استفاده می‌شود.
نوع دیگر از مدل‌های مکانیابی، مدل‌های مکانیابی رقابتی است. مثالی از این نمونه به این صورت است که دو فروشنده انحصاری یک محصول را درنظر بگیرید که تسهیلی را هر کدام در یک پاره خط ایجاد می‌کنند. آنها از ابزاری مشابه استفاده می‌کنند و در مکان و قیمت رقابت می‌کنند.
در پایان، تسهیلات گسترده و مسائل جانمایی تسهیلات را درنظر بگیرید. در هر دو زمینه، به خاطر اینکه اندازه تسهیلات در قیاس با فضایی که در آن واقع شده‌اند قابل چشم پوشی نیست، تسهیلات نمی‌توانند به صورت یک نقطه بر روی نقشه نشان داده شوند و خیلی بزرگتر از آن هستند که به صورت یک نقطه درنظر گرفته شوند. به عنوان نمونه‌هایی از مسائل جانمایی، آرایش ایستگاه‌های کاری در یک اداره و قراردادن اتاق‌ها در یک بیمارستان را می‌توان نام برد.
2-2-5- مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکمما در این بخش به مسائل پیدا کردن مکان‌های بهینه برای مجموعه‌ای از تسهیلات در حضور تقاضای مشتریان تصادفی و تراکم در آن تسهیلات می‌پردازیم. ما به این گونه مسائل به عنوان «مسائل مکانیابی با تقاضای تصادفی و تراکم» (LPSDC) نگاه می‌کنیم [9]. اکثراً ما بحث درباره مسائل را به شبکه محدود می‌کنیم، حتی اگر این مدل‌ها بتواند به مکان‌های گسسته گسترش یابند.
اهمیت مشهود پرداختن به مسائل مکانیابی تسهیلات در حضور عدم قطعیت‌های گوناگون، منجر به تعداد زیادی از مقالات در این موضوع می‌شود. اصولاً مدل‌های LPSDC بر روی دو منبع از عدم قطعیت متمرکز می‌شود: (1) مقدار واقعی و مقدار زمانی که تقاضا بوسیله هر مکان مشتری تولید می‌شود و (2) از دست دادن تقاضا (یا جریمه پولی) به علت ناتوانی تسهیل در فراهم کردن سرویس مناسب به (بعضی از) مشتریان به علت تراکم در آن تسهیل.
این گونه مسائل به پیدا کردن بهترین مکان‌ها برای مجموعه‌ای از تسهیلات می‌پردازند تا ظرفیت سرویس (تعداد خدمت دهندگان) را در تسهیل j مشخص کند. نتیجه چنین سیستمی می‌تواند به صورت یک سیستم صف با M صف و سرویس دهنده مشاهده شود. حتی تحلیل‌های توصیفی چنین سیستمهایی (یعنی با فرض اینکه تصمیمات مکانیابی در حال حاضر گرفته شده‌اند) می‌تواند توانایی حال حاضر سیستم صف را گسترش دهد. چنین مسائلی، قابلیت‌های مسائل مکان‌یابی «کلاسیک» (که بیشتر آن‌ها NP-complete شناخته می‌شوند) را با پویایی پیچیده سیستم‌های صف ترکیب می‌کند. بنابراین، در ساختن یک مدل LPSDC کاربردی، بعضی فرض‌ها و تخمین‌های ساده سازی باید انجام شود تا مدل را قابل حل کند.
یک ناحیه مهم کاربرد مدل‌های LPSDC، مکان‌یابی تسهیلات خدمات اورژانسی (مانند بیمارستان‌ها)، ایستگاه‌های پلیس، ایستگاه‌های آتش نشانی و آمبولانس‌ها هستند. توانایی پاسخگویی به یک درخواست برای خدمت‌رسانی در زمان مناسب، به چنین سیستم‌هایی اختصاص دارد (مثلاً استاندارد رایج برای آمبولانس‌ها در آمریکای شمالی برای پاسخگویی به تلفن‌های با ارجحیت بالا، 3 دقیقه می‌باشد). خصوصیت پایه چنین سیستم‌هایی غیرقابل پیش بینی بودن تعداد و زمان رسیدن تلفن‌ها برای درخواست و اثری که روی کارایی سیستم تراکمی می‌گذارد است و هنگامی‌که بعضی از این تسهیلات درخواست‌های بسیاری را برای خدمت در دوره زمانی مشخصی دریافت می‌کنند، نتیجه آن مشخص می‌شود. به راستی که از لحاظ تاریخی، مسأله مکان‌یابی تسهیلات خدمات اورژانسی، محرّک اصلی برای تحقیقات بیشتر در این زمینه را فراهم کرده‌است.
دیگر ناحیه مهم کاربرد این مسائل که کمتر مورد تجزیه و تحلیل قرار گرفته‌است، مکان‌یابی خرده فروشی‌ها یا تسهیلات خدمت‌رسانی دیگر است که مقدار کل تجارت (تقاضای مشتری) در یک تسهیل ممکن است هنگامی‌که نرخ خدمت‌رسانی به علت تراکم کاهش می‌یابد، به طور معکوس عمل کند. درحالی که بعضی از مدل‌هایی که برای مکان‌یابی تسهیلات اورژانسی توسعه پیدا کرده‌اند، می‌توانند به خوبی برای تسهیلات غیراورژانسی نیز به کار روند، این دو دسته از کاربردها، خصوصیات مختلف خودشان را نیز ایجاد می‌کنند.
2-2-5-1- مرور ادبیات مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکم [10]
باتوجه به انعطاف پذیری تقاضا، دسترسی به یک تسهیل می‌تواند برحسب مجاورت با مشتریان بالقوه اش (وِرتر و لاپیِره)، به صورت کل زمان موردنیاز برای دریافت سرویس (پارکر و سرینیواسان) مدل سازی شود. در این مورد یا موارد دیگر، شکل تابع تقاضای مورداستفاده، گسترشی از انعطاف پذیری تقاضا را نشان می‌دهند. بیشتر توابع تقاضای رایج در مقالات به شکل‌های زیر هستند: تابع خطی (وِرتر و لاپیِره؛ پارکر و سرینیواسان)؛ تابع نمایی (بِرمن و پارکان؛ بِرمن و کاپلان و درِزنِر)؛ و تابع مرحله‌ای (بِرمن و کِراس).
اگر انتخاب مشتری را درنظر بگیریم ( که بدین معنی است که هر عضو این حق را دارد که خود تسهیلش را انتخاب کند و نه اینکه توسط یک مرکز به یکی اختصاص پیدا کند)، یک گروه از مقالات، انتخاب بهینه را فرض می‌کنند، یعنی، هر مشتری، تسهیلی که برحسب مزیتش بهینه است را انتخاب می‌کند. بسیاری از نویسندگان به سادگی فرض می‌کنند که مشتریان به نزدیکترین تسهیل مراجعه می‌کنند، درحالیکه پارکر و سرینیواسان فرض می‌کنند که مشتریان، تسهیلی که بیشترین منفعت را دارد انتخاب می‌کنند. درمقابل، گروه دوم مطالعات، انتخاب احتمالی را فرض می‌کنند، یعنی، انتخاب تسهیل توسط مشتری، براساس توزیع احتمالی است که از سودمندی و مجاورت هر تسهیل ایجاد می‌شود. این فرض اغلب در محیط بازار استفاده می‌شود و شاید یک کار اصولی از هاف، مؤثرترین مدل در این دسته باشد. همچنین ماریانوف و همکارانش یک مسأله مکانیابی تسهیلات با تراکم را پیشنهاد کردند که از یک مدل انتخابی احتمالی برای نشان دادن رفتار تخصیص مشتریان استفاده می‌کرد.
مسأله موردنظر ما که تا حدودی در تئوری مکان‌یابی تسهیلات، پایه‌ای به حساب می‌آید، توجّهات بسیاری را در مقالات به خود جلب کرده‌است؛ مخصوصاً اینکه تقابل جنبه‌های مکانیابی و تصادفی (صف بندی)، آن را چالش برانگیز کرده‌است [11]. این مسأله متعلق به دسته‌ای از مسائل مکانیابی با تقاضای تصادفی و تراکم و سرویس دهندگان ثابت (LPSDC) است که توسط بِرمن و کراس مرور شده‌است. مطالعه مدل‌هایی از این نوع، با ماریانوف و سِرا در سال 1998 شروع شده‌است. مقالات دیگری نیز در این زمینه نوشته شده‌است که می‌توان به مقالات بِرمن، کراس و وانگ؛ ماریانوف و ریوس؛ ماریانوف و سِرا؛ وانگ، باتا و رامپ اشاره کرد. به علت پیچیدگی باطنی مسأله، همه مقالاتی که در بالا آورده شده، ساده سازی‌های بزرگی را انجام داده‌اند: فرض می‌شود که تقاضا گسسته است، یا فرض می‌شود که تعداد یا ظرفیت تسهیلات (یا هر دو) ثابت هستند، فرض می‌شود که مکان‌های تسهیلات بالقوه گسسته و بینهایت هستند، فرض می‌شود که فرایند رسیدن تقاضا پواسن باشد و همچنین معمولاً فرض می‌شود که فرایند خدمت‌رسانی نمایی است.
ترکیب حالت تصادفی (شامل تراکم بالقوه در تسهیلات) در مدل‌های نوع پوشش تسهیلات، با مسأله مکانیابی حداکثر پوشش موردانتظار (MEXCLP) توسط داسکین شروع شد؛ و تعداد قابل ملاحظه‌ای از دیگر کاربردها نیز در ادامه آن آورده شد. اما این مدل شامل بعضی ساده سازی‌های بزرگی بود، برای مثال: احتمال اینکه یک خدمت‌رسان مشغول باشد، مستقل از هر خدمت دهنده دیگری است و این موضوع برای همه خدمت دهندگان یکسان است؛ این احتمالات نسبت به مکان و حجم کار یکسان هستند. ماریانوف و سِرا فرض کردند که: (1) تقاضای مشتریان توسط یک فرایند پواسن تولید می‌شود؛ (2) توزیع زمان خدمت نمایی است؛ (3) هر تسهیل به صورت یک سیستم صف M/M/1/a با ظرفیت محدود a عمل می‌کند؛ و (4) همه تقاضاها هنگامی‌که برای خدمت‌رسانی به سیستم می‌رسند، اگر سیستم پر باشد، فرض می‌شود که تقاضا از دست می‌رود. توسط این مدل، تقاضای مشتریان ممکن است ازبین برود، چون یا تسهیل در شعاع پوشش آن وجود ندارد و یا تسهیلات مسدود شده‌اند. هدف، قرار دادن m تسهیل به گونه‌ای است که تقاضا‌ها را هرچه بیشتر پاسخ دهد. ماریانوف و ریوس این مدل را برای مکانیابی دستگاه‌های خودپرداز به کار گرفتند. در مدل آن‌ها، دستگاه‌ها، حافظه کوچکی دارند که هر کدام می‌تواند تعداد ثابتی، b، درخواست را نگهدارند که آن به این علت است که درخواست‌های دستگاه‌ها، اندازه ثابتی (53 بایت) دارند. همچنین دستگاه‌ها به صورت یک صف M/M/1، حداکثر b درخواست در صف (یعنی حافظه) را انجام می‌دهد. اگر یک درخواست درحالی برسد که حافظه پر است، آن درخواست ازدست می‌رود (و باید دوباره فرستاده شود)، و برای اینکه مطمئن باشیم که این رویداد نادر است، یک محدودیت سطح سرویس اعمال شده‌است. به هر حال تعداد کل دستگاه‌ها،به جای اینکه به عنوان قسمتی از فرایند بهینه سازی تعیین شود، ثابت هستند. مدل LSCP این مدل توسط ماریانوف و سِرا گسترش داده شد که در آن، هدف، پیدا کردن حداقل تعداد تسهیلات به گونه‌ای است که همه مشتریان، یک تسهیل در شعاع پوششان داشته باشند و محدودیت بر روی حداکثر نسبت تقاضای از دست رفته (یا حداکثر زمان انتظار) رعایت شود. باید به یاد داشته باشیم که این مدل، فرض می‌کند که مشتریان به جای اینکه به نزدیکترین تسهیل مراجعه کنند، می‌توانند به هر تسهیل باز شده‌ای در شعاع پوشش تخصیص یابند. بنابراین، آنها به جای مکانیسم انتخاب مشتری، مکانیسم انتخاب هدایت شده را انتخاب می‌کنند.
2-2-5-2- مکانیابی تسهیلات با تقاضای تصادفی و تراکم
دو منبع بالقوه برای از دست دادن تقاضا به صورت زیر است [12]:
عدم پوشش: این مورد زمانی اتفاق می‌افتد که هیچ کدام از تسهیلات به اندازه کافی به مشتری نزدیک نیستند که سطح مناسبی از راحتی را فراهم کنند.
عدم سرویس: این مورد زمانی اتفاق می‌افتد که مشتری تصمیم می‌گیرد که یک تسهیل را ملاقات کند، اما باتوجه با سطح سرویسی که در آنجا دریافت می‌کند، ناراضی می‌شود. علت‌های زیادی ممکن است وجود داشته باشد که حادثه شکست خدمت اتفاق افتد: یکی از رایج ترین آنها (و مرتبط ترین به تصمیمات مکانیابی) تراکم (پرجمعیتی) در آن تسهیل است.
برای مدل سازی تقاضایی که به علت تراکم از دست می‌رود، ما هر تسهیل را به صورت یک صف مارکفی با ظرفیت ثابت معین درنظر می‌گیریم و فرض می‌کنیم که اگر این ظرفیت به دست آمده باشد، تقاضای مشتری هنگامی‌که درطول این دوره می‌رسد، از دست می‌رود (یعنی، مشتریان بالقوه‌ای که هنگام پر بودن سیستم می‌رسند، مسدود می‌شوند).
مدل‌های LPSDC اصولاً به تقابل چهار مجموعه از عناصر مربوط می‌شود [9]:
مشتریان: که برای انجام خدمت، درخواست می‌دهند.
تسهیلات: که به منابعی (خدمات دهندگان) که برای انجام خدمات موردنیاز است مکان می‌دهند.
خدمت دهندگان: که خدمت درخواست شده را انجام می‌دهند، و
درخواست انجام خدمت: که توسط مشتریان انجام می‌شود و بوسیله اتصال یک مشتری با یک خدمت دهنده دردسترس، رسیدگی می‌شود.
دیگر اجزاء موردنیاز برای توصیف یک مدل LPSDC به صورت زیر هستند: انواع فراهم شدن خدمت (که یا مشتریان به تسهیلات سفر می‌کنند تا به خدمت دهندگان دست یابند و یا خدمت‌دهندگان متحرّک، به مکان مشتریان سفر می‌کنند)، طبیعت و نتایج تراکم (هنگامی‌که یک تسهیل درخواست‌های بسیار زیادی برای انجام خدمت دریافت می‌کند، چه عکس العملی از خود نشان می‌دهد؟)، فرضیات رفتار مشتری (مشتریان تصمیم می‌گیرند که برای بدست آوردن خدمت، به کدام تسهیل مراجعه کنند یا یک «مرجع مرکزی» وجود دارد که مشتریان را به تسهیلات متصل می‌کند)، نوع اهداف و احتیاجات خاص دیگر مانند «استانداردهای پوشش» (که معمولاً به صورت محدودیت‌ها بیان می‌شود).
یک شبکه مشخص را فرض می‌کنیم ، که N، مجموعه گره‌ها و A مجموعه کمان‌هاست. برای از استفاده می‌کنیم که به کوتاهترین مسیر از x به y است.
مشتریان: فرض می‌شود که مشتریان در گره‌های شبکه واقع می‌شوند. نسبت را برای همه درخواست‌هایی که برای انجام خدمت از گره ایجاد می‌شود درنظر می گیریم که . معمولاً فرض می‌شود که کل تقاضای مشتریان برای خدمت‌رسانی، یک فرایند پوآسن از جنس زمان با نرخ است. همچنین فرایند درخواست خدمت برای هر گره i، یک فرایند پوآسن با نرخ می‌باشد. درحالیکه بیشتر مدل‌ها، از ساختار تقاضای مشتریانی که در بالا توضیح داده شد استفاده می‌کنند، بعضی تلاشها برای دخالت دادن امکان ازدست دادن تقاضا به علت تراکم انجام شده‌است. این می‌تواند بوسیله تعریف دوباره نرخ تقاضا در گره i به صورت تعریف شود که C، بعضی اندازه‌های هزینه تراکم است که بوسیله مشتریان اتفاق می‌افتد و یک تابع غیر افزایشی است. در ادامه این بخش، به طور عمومی فرض می‌کنیم که تحت تأثیر تراکم قرار نمی‌گیرد.
تسهیلات: ما فرض می‌کنیم که حداکثر M تسهیل وجود دارد که باید مکان‌یابی شود. ما فرض میکنیم که یک مجموعه گسسته از مکان‌های بالقوه تسهیلات X تعیین شده‌است (که ) و . این فرضیات نیز بدون از دست دادن عمومیت انجام می‌شود: باتوجه به استدلالاتی که توسط بِرمن، لارسون و چیو انجام شده‌است می‌توان نشان داد که اگر به تسهیلات اجازه دهیم که در هر جایی در طول کمان واقع شوند، یک حل بهینه در یک مجموعه گسسته از مکان‌ها بدست می‌آید که شامل گره‌های شبکه است که بوسیله بعضی نقاط داخلی در طول کمان ایجاد شده‌است. بنابراین، با تکمیل کردن مجموعه گره‌های اصلی بوسیله بعضی گره‌های «ساختگی» اضافی، می‌توان فرض کرد که X گره‌ای است.
خدمت دهندگان: هر تسهیل j می‌تواند بین 1 و K خدمت دهنده داشته باشد. بسته به ماهیت خدمتی که بوسیله این تسهیل انجام می‌شود، خدمت دهندگان یا ثابت هستند، یعنی به طور ثابت در تسهیل واقع می‌شوند، یا متحرک هستند، یعنی برای انجام خدمت به مکان مشتریان سفر می‌کنند. تعداد خدمت دهندگانی که در تسهیل j واقع می‌شوند، یک متغیرتصمیم گیری در مدل می‌باشد.
درخواست خدمت: معمولاً یک درخواست برای انجام خدمت، به یک «یارگیری» بین مشتری ایجاد کننده درخواست و یکی از خدمت دهندگان موجود در سیستم احتیاج دارد. این کار معمولاً به صورت زیر انجام می‌شود:
اول باید تعیین کنیم که آیا مکان i بوسیله سیستم پوشش داده می‌شود یا خیر؟ معمولاً برای اینکه یک مشتری پوشش داده شود فرض می‌شود که با استاندارد‌های پوشش معینی مطابقت دارد (مثلاً، تعداد خدمت دهنده کافی باید در اطراف مشتری واقع شده باشد و غیره). این استانداردهای پوشش اغلب از طریق قانونگذاری یا قوانین اجرایی ایجاد می‌شود. اگر مکان مشتری i پوشش داده نشده باشد، همه درخواست‌های خدمت که از i ایجاد می‌شود، به صورت خودکار بوسیله سیستم برگردانده می‌شود (صرفنظر از اینکه آیا سیستم در حال حاضر متراکم هست یا خیر؟). معمولاً برای از دست دادن پوشش مجموعه یک جریمه درنظر گرفته می‌شود. یک تفسیر دیگر از گسترش ندادن پوشش به یک مشتری این است که مشتری بوسیله بعضی خدمات «دیگر» یا «ذخیره» پوشش داده شود (مثلاً، یک خدمت آمبولانس غیردولتی)؛ پس جریمه پوشش ندادن، می‌تواند به عنوان حق الزحمه قرارداد فرعی تفسیر می‌شود.
زمانی که معین می‌شود که درخواست خدمت از یکی از مشتریان «پوشش داده شده» بیاید، یک ارزیابی انجام می‌شود که آیا حالت فعلی سیستم اجازه می‌دهد که فرایند درخواست انجام شود یا خیر؟ این ارزیابی معمولاً در دو مرحله اتفاق می‌افتد: اول، قوانین منطقه‌ای و مکان مشتری برای تعیین «زیرسیستم» مشتری، استفاده می‌شود، یعنی، کدام تسهیلات و خدمت دهندگان می‌توانند به طور بالقوه به این درخواست پاسخ دهند (این ممکن است شامل همه خدمت دهندگان در شبکه شود و یا فقط خدمت دهندگانی که در شعاع سفر معینی از مکان مشتری واقع شده‌اند و غیره). بعد، تعداد درخواست‌های انجام نشده در زیرسیستم ارزیابی می‌شود و تصمیم گیری می‌شود که آیا این درخواست پذیرفته شود یا رد شود؟ این تصمیم معمولاً براساس ظرفیت زیرسیستم صورت می‌پذیرد (مثلاً برای یک صف «ازدست رفته»، اگر هیچ خدمت دهنده‌ای در حال حاضر دردسترس نباشد، یک عدم پذیرش ممکن است اتفاق بیفتد؛ در موارد دیگر ممکن است این محدودیت وجود داشته باشد که چه تعداد درخواست می‌تواند در یک زمان مشخص در صف وجود داشته باشد). معمولاً یک جریمه مرتبط با قبول نکردن یک درخواست وجود دارد. باز هم تأکید می‌کنیم، برخلاف نپذیرفتن یک درخواست از مشتریانی که پوشش داده نشده‌اند که به صورت خودکار است، نپذیرفتن درخواست یک مشتری که پوشش داده شده‌است، براساس حالت سیستم است. به خاطر داشته باشید که قوانین منطقه ای، درجه همکاری بین تسهیلات گوناگون و خدمت دهندگان را در سیستم معین می‌کند.
بعد، درخواست پذیرفته شده به یکی از تسهیلات متصل می‌شود (یعنی تخصیص پیدا می‌کند). این تخصیص ممکن است به قوانین اتصال مطمئن بستگی داشته باشد، همانطور که به حالت فعلی سیستم بستگی دارد (مثلاً، یک درخواست ممکن است به نزدیکترین تسهیل متصل شود و یا ممکن است به نزدیکترین تسهیل با حداقل یک خدمت دهنده آزاد متصل شود و غیره). همچنین قوانین اتصال به فرضیات رفتار مشتریان نیز بستگی دارد، یعنی اینکه کدام تسهیل باید این درخواست را انجام دهد به مشتری بستگی دارد یا به بعضی مراجع مرکزی. ما، این مورد را که مشتری تصمیم می‌گیرد که کدام تسهیل باید به درخواستش رسیدگی کند به عنوان «انتخاب کاربر» و موردی که یک مرجع مرکزی این تصمیم را می‌گیرد به عنوان «انتخاب هدایت شده» می‌شناسیم.
معمولاً یک درخواست پذیرفته شده در یک تسهیل معین، در صف قرار می‌گیرد تا یک خدمت دهنده، دردسترس قرار گیرد. زمانی که این اتفاق می‌افتد، خدمت دهنده و مشتری «یارگیری» کرده‌اند. درمورد خدمت دهندگان متحرک، لازم است که این خدمت‌دهندگان از مکان فعلی شان به مکان مشتری سفر کنند (که متحمل هزینه سفر می‌شوند).
معمولاً مسائل مکانیابی با خدمت دهندگان متحرک، دارای مشخصات زیر هستند:
این تخصیص بستگی به حالت فعلی خدمت دهندگان در زمان ارسال دارد. برای خدمت دهندگان ثابت، این تخصیص ممکن است قبل از تصمیم گیری برای انجام خدمت اتفاق بیفتد، بنابراین ممکن است گفته شود که خدمت دهندگان متحرک ممکن است با یکدیگر همکاری کنند، درحالیکه خدمت دهندگان ثابت تمایلی به این کار ندارند.
اگر یک کاربر، درخواستی را انجام دهد و نزدیکترین خدمت دهنده مشغول باشد، خدمت دهنده دیگری ارسال می‌شود. یعنی، این تخصیص، در حالت مطلق، به نزدیکترین تسهیل اتفاق نمی‌افتد.
مسائل مکانیابی احتمالی اغلب می‌توانند به خوبی به صورت مجموعه مستقلی از سیستم‌های صف، مدل سازی شوند. این استقلال، ازطریق ابزاری ناشی می‌شود که حتی اگر زمان‌های خدمت از یک توزیع نمایی پیروی کنند، درمورد هنگامی‌که زمان سفر احتمالی است، این امر صادق نیست. بنابراین، تئوری صف M/G/m مناسب‌تر از تئوری M/M/m است.
حال به فرموله کردن مسأله می‌پردازیم. محدودیت‌های مسأله معمولاً شامل موارد ذیل است:
- یک حد بالای M بر روی کل تعداد تسهیلاتی که می‌توانند واقع شوند:
(14.2)
- یک حد بالای K بر روی کل تعداد خدمت دهندگانی که می‌تواند واقع شوند:
(15.2)
- استانداردهای پوشش: بسته به احتیاجات پوششی که استفاده می‌شود، می‌تواند شکل‌های گوناگونی به خود بگیرد. شاید ساده ترین (و قدیمی‌ترین) شکل این محدودیت‌ها، به این نیاز دارد که حداقل تعداد مشخصی از این خدمت دهندگان ،، باید در حداکثر فاصله مشخصی از هر مکان مشتری i، واقع شوند. اجازه دهید زیرمجموعه‌ای از مکان‌های تسهیلات بالقوه در فاصله موردنیاز از i باشد. پس این محدودیت می‌تواند به صورت زیر بیان شود:
(16.2)
شکل پیچیده تر این محدودیت پوشش، ممکن است احتیاجاتی احتمالی را به زمان‌های پاسخ تحمیل کند. مثلاً، یک پاسخ سه دقیقه‌ای زمان پاسخ را درنظر بگیرید که برای درخواست‌های آمبولانس با ارجحیت بالا موردنیاز است. شکل دیگری از محدودیت‌ها، ممکن است یک حد بالایی را بر روی نسبت درخواست‌هایی که برگردانده می‌شود ،، اعمال کند. به طور خلاصه، ما می‌توانیم یک محدودیت عمومی را به صورت زیر ارائه کنیم. اجازه دهید که یک متغیر تصادفی باشد که بیانگر «سطح سرویسی» است که بوسیله سیستم به نقاط تقاضای مشتری i تحویل می‌شود (مثلاً، زمان پاسخ). اجازه دهید، ، بیانگر حداقل فراوانی مطلوب این اتفاق باشد (مثلاً، 95% از این زمان). بنابراین، یک محدودیت سطح سرویس کلی می‌تواند به صورت زیر بیان شود:
(17.2)
اکنون، مسأله LPSDC عمومی می‌تواند به صورت زیر فرمول بندی شود:
(18.2)
باتوجه به محدودیت‌های (15)، (16) و (17)

بدیهی است که برای اینکه فرمول بندی بالا را ساده کنیم، به بعضی روشها احتیاج داریم تا پارامترهای کارایی سیستم گوناگونی را که در توسعه تابع هدف و محدودیت‌ها استفاده شد را ارائه کنیم (یعنی، احتمال برگرداندن ، زمان انتظار صف و غیره). متأسفانه، معمولاً بیان تحلیلی کلی برای این مقادیر دردسترس نیست. این منجر به دو رویکرد ممکن می‌شود: رویکرد اول نیاز دارد که فرضیاتی ساده سازی مطمئنی را بر روی عملیات سیستم ایجاد کنیم (مانند قوانین منطقه‌ای ساده، زمان‌های سفر قابل اغماض و غیره). دومین رویکرد شامل استفاده از تکنیک‌هایی براساس توصیف است (مثل شبیه سازی) تا اندازه‌های کارایی سیستم موردنیاز را برای مقادیر خاص بردار مکان x محاسبه کنیم. علاوه بر آن می‌توان از بعضی تکنیک‌های ابتکاری استفاده کرد.
2-3- نظریه صف
انتظار در صف هر چند بسی ناخوشایند است، اما متأسفانه بخشی از واقعیت اجتناب ناپذیر زندگی را تشکیل می‌دهد. انسان‌ها در زندگی روزمره خود با انواع مختلف صف، که به از بین رفتن وقت، نیرو و سرمایه آن‌ها می‌انجامد، روبه رو می‌شوند. اوقاتی که در صف‌های اتوبوس، ناهارخوری، خرید و نظایر آن‌ها به هدر می‌رود، نمونه‌های ملموسی از این نوع اتلاف‌ها در زندگی است. در جوامع امروزی صف‌های مهمتری وجود دارد که هزینه‌های اقتصادی و اجتماعی آن‌ها به مراتب بیش از نمونه‌های ساده فوق است.
2-3-1- مشخصات صف [13]
یک مدل صف در شکل (2-1) نشان داده شده‌است. آن می‌تواند یک مدل صف مثل ترتیب ماشین آلات یا اپراتورها باشد.

شکل 2-1- مدل پایه‌ای صف
یک مدل صف بوسیله مشخصات زیر توصیف می‌شود:
فرایند رسیدن مشتریان
معمولاً فرض می‌کنیم که زمان بین رسیدن‌ها مستقل هستند و یک توزیع رایج دارند. در بسیاری از کاربردهای عملی، مشتریان باتوجه به یک جریان پواسن (یعنی زمان بین رسیدن‌ها نمایی) می‌رسند. مشتریان ممکن است یک به یک و یا به صورت دسته‌ای برسند.
رفتار مشتریان
مشتریان ممکن است صبور باشند و راضی باشند که (برای یک مدت طولانی) منتظر بمانند. یا مشتریان ممکن است کم حوصله باشند و بعد از مدتی صف را ترک کنند.
زمان‌های رسیدن
معمولاً فرض می‌کنیم که زمان‌های رسیدن مستقل هستند و به طور یکسان توزیع شده‌اند و مستقل از زمان بین رسیدن‌ها هستند. مثلاً زمان‌های رسیدن ممکن است به صورت قطعی یا نمایی توزیع شده باشد. همچنین ممکن است که زمان‌های رسیدن، وابسته به طول صف باشد.
نظم سرویس
ترتیبی که مشتریان ممکن است به صف وارد شوند به صورت‌های زیر می‌تواند باشد:
کسی که اول می‌آید، اوّل هم سرویس دهی می‌شود، مثل ترتیب رسیدن‌ها
ترتیب تصادفی
کسی که آخر می‌آید، اول سرویس دهی می‌شود.
حق تقدّم
اشتراک پردازنده (در کامپیوتر که قدرت پردازششان را در میان کل کارها در سیستم، به طور مساوی تقسیم می‌کنند).
ظرفیت سرویس
ممکن است یک سرور تک و یا گروهی از سرورها به مشتریان کمک کنند.
اتاق انتظار
ممکن است محدودیتهایی در رابطه با تعداد مشتریان در سیستم وجود داشته باشد.
یک کد سه قسمتی برای مشخص کردن این مدل‌های به صورت a/b/c استفاده می‌شود که حرف اول توزیع زمان بین رسیدن‌ها و حرف دوم توزیع زمان سرویس را مشخص می‌کند. مثلاً برای یک توزیع عمومی از حرف G و برای توزیع نمایی از حرف M (که M بیانگر فاقد حافظه بودن است) استفاده می‌شود. حرف سوم و آخر نیز تعداد سرورها را مشخص می‌کند. این نمادسازی می‌تواند با یک حرف اضافه که دیگر مدل‌های صف را پوشش دهد، گسترش یابد. مثلاً، یک سیستم با توزیع زمان بین رسیدن و زمان سرویس دهی نمایی، یک سرور و داشتن اتاق انتظار فقط برای N مشتری (شامل یکی در سرویس) بوسیله چهار کد حرفی M/M/1/N نشان داده می‌شود.
در این مدل پایه، مشتریان یک به یک می‌رسند و همیشه اجازه ورود به سیستم را دارند، همیشه اتاق وجود دارد، هیچ حق تقدّمی وجود ندارد و مشتریان به ترتیب رسیدن سرویس دهی می‌شوند.
در یک سیستم G/G/1 با نرخ رسیدن و میانگین زمان سرویس ، مقدار کار که در واحد زمان می‌رسد برابر است. یک سرور می‌تواند به یک کار در واحد زمان رسیدگی کند. برای جلوگیری از اینکه طول صف بینهایت نشود، باید .
معمولاً از نماد زیر استفاده می‌کنند:

اگر ، نرخ اشتغال یا بکارگیری سرور نامیده می‌شود، چون کسری از زمان است که سرور، مشغول کارکردن است.
2-3-2- قانون لیتِل [13]
اگر E(L)، میانگین تعداد مشتریان در سیستم، E(S)، میانگین زمان اقامت مشتری در سیستم باشد و ، متوسط تعداد مشتریانی باشد که در واحد زمان وارد سیستم می‌شوند، قانون لیتِل، رابطه بسیار مهمی را بین این سه نماد می‌دهد و به صورت زیر بیان می‌شود:
(19.2)در اینجا فرض می‌شود که ظرفیت سیستم برای رسیدگی به مشتریان کافی است (یعنی، تعداد مشتریان در سیستم به سمت بینهایت میل نمی‌کند).
به طور حسی، این نتیجه می‌تواند به صورت زیر فهمیده شود: فرض کنید که مشتریان هنگامی‌که به سیستم وارد می‌شوند، یک دلار در واحد زمان می‌پردازند. این پول می‌تواند به دو روش گرفته شود. روش اول اینکه به مشتریان اجازه دهیم که به طور پیوسته در واحد زمان بپردازند. پس متوسط درآمدی که توسط سیستم کسب می‌شود، برابر E(L) دلار در واحد زمان است. روش دوم این است که به مشتریان اجازه دهیم که برای اقامتشان در سیستم، 1 دلار را در واحد زمان در موقع ترک سیستم بپردازند. در موازنه، متوسط تعداد مشتریانی که در واحد زمان، سیستم را ترک می‌کنند برابر متوسط تعداد مشتریانی است که به سیستم وارد می‌شوند. بنابراین سیستم، یک متوسط درآمد دلار را در واحد زمان کسب می‌کند.
با به کار بردن قانون لیتِل در صف، رابطه‌ای بین طول صف، و زمان انتظار W به دست می‌آید:
(20.2)
2-3-3- صف M/M/1
این مدل، حالتی را درنظر می‌گیرد که زمان بین رسیدن‌ها، نمایی با میانگین ، زمان‌های سرویس، نمایی با میانگین و یک سرور مشغول کار است. مشتریان به ترتیب رسیدن، سرویس دهی می‌شوند. ما نیاز داریم که:
(21.2)درغیراینصورت، طول صف منفجر خواهد شد (قسمت قبل را ببینید). مقدار ، کسری از زمان است که سرور، مشغول کار است.
میانگین تعداد مشتریان در سیستم و همچنین میانگین زمانی که در سیستم گذرانده می‌شوند به صورت زیر بیان می‌شود:
(22.2)
و با استفاده از قانون لیتِل،
(23.2)
میانگین تعداد مشتریان در صف، ، می‌تواند از E(L) و با کم کردن میانگین تعداد مشتریان در سیستم بدست آید:
(24.2)
میانگین زمان انتظار، E(W)، از E(S) و با کم کردن میانگین زمان سرویس بدست می‌آید:
(25.2)
2-4- مسائل بهینه سازی چندهدفه
بسیاری از مسائل کاربردی در جهان واقعی را مسائل بهینه سازی ترکیباتی چندهدفه تشکیل می‌دهند، زیرا متغیر‌های مجزا و اهداف متضاد به طور واقعی در ذات آنها است. بهینه سازی مسائل چندهدفه نسبت به مسائل تک هدفه متفاوت بوده، زیرا شامل چندین هدف است که باید در بهینه‌سازی به همه اهداف همزمان توجه شود. به عبارت دیگر الگوریتم‌های بهینه سازی تک هدفه، حل بهینه را با توجه به یک هدف می یابند و این در حالی است که در مسائل چندهدفه (با چندهدف مخالف و متضاد) معمولاً یک حل بهینه مجزا را نمی توان بدست آورد. بنابراین طبیعی است که مجموعه ای از حل‌ها برای این دسته از مسائل موجود بوده و تصمیم گیرنده نیاز داشته باشد که حلّی مناسب را از بین این مجموعه حل‌های متناهی انتخاب کند و در نتیجه حل مناسب، جواب‌هایی خواهد بود که عملکرد قابل قبولی را نسبت به همه اهداف داشته باشد.
2-4-1- فرمول بندی مسائل بهینه سازی چندهدفه
مسائل بهینه سازی چندهدفه را به طور کلی می‌توان به صورت زیر فرموله کرد:
(26.2)

x یک حل است و S مجموعه حل‌های قابل قبول و k تعداد اهداف در مسأله و F(x) هم تصویر حل x در فضای k هدفی و هم مقدار هر یک از اهداف است.
تعریف حل‌های غیرمغلوب: حل a حل b را پوشش می‌دهد، اگر و تنها اگر:
(27.2)
(28.2)
به عبارت دیگر، حل‌های غیرمغلوب، به حل‌های گفته می‌شود که حل‌های دیگر را پوشش داده ولی خود، توسط حل‌های دیگر پوشش داده نمی‌شوند. در شکل (2-2) چگونگی پوشش سایر حل‌ها (دایره‌های با رنگ روشن) توسط مجموعه حل‌های غیرمغلوب (دایره‌های تیره رنگ) نشان داده شده‌است. در این شکل، جبهه‌ی پارتو با خط چین نشان داده شده‌است.
هدف B
هدف A
هدف B
هدف A

شکل 2-2- مجموعه حل‌های غیرمغلوب
2-4-2- الگوریتم‌های تکاملی برای بهینه سازی مسائل چندهدفه بر مبنای الگوریتم ژنتیک
با توجه به آنکه بسیاری از مسائل بهینه سازی، NP-Hard هستند، بنابراین حل به روش‌های دقیق در یک زمان معقول غیرممکن بوده و در نتیجه، استفاده از روش‌های فراابتکاری در این موارد مناسب می باشد. درحقیقت الگوریتم‌های فراابتکاری برای زمانی که محدودیت زمانی وجود دارد و استفاده از روش‌های حل دقیق میسّر نبوده و یا پیچیدگی مسائل بهینه سازی زیاد باشد، به دنبال جواب‌های قابل قبول هستند.
اولین پیاده سازی واقعی از الگوریتم‌های تکاملی، «الگوریتم ژنتیک ارزیابی برداری» توسط دیوید اسکافر در سال 1984 انجام گرفت. اسکافر الگوریتم را به سه بخش انتخاب، ترکیب و جهش که به طور جداگانه در هر تکرار انجام می‌شدند، تغییر داد. این الگوریتم به صورت کارآمدی اجرا می‌شود، اما در برخی از حالات مانند اریب بودن اهداف، با مشکل مواجه می‌شود. درواقع هدف اول الگوریتم‌های بهینه یابی چندهدفه، یعنی رسیدن به جواب‌های بهینه پارتو، به نحو شایسته‌ای توسط این الگوریتم بدست می‌آید، ولی جواب‌های بدست آمده از گستردگی و تنوع خوبی برخوردار نیستند.
در ادامه این قسمت، به سه الگوریتم تکاملی چند هدفه که مبنای اصلی آنها، الگوریتم ژنتیک می‌باشد، می‌پردازیم. الگوریتم NSGA-II به این خاطر انتخاب شده‌است که این الگوریتم در بسیاری از مقالات به عنوان الگوریتم مرجع مقایسه گردیده‌است. الگوریتم CNSGA-II نیز به این علت انتخاب شده‌است که روشی مناسب برای برخورد با محدودیت‌های حل مسأله ارائه می‌کند؛ چون باتوجه به ماهیت مسأله، چندین محدودیت سر راه حل مسأله ایجاد شده‌است که راهکار مناسبی برای رسیدگی به این محدودیت‌ها ایجاب می‌کند. الگوریتم NRGA نیز چون جزء جدیدترین الگوریتم‌های ارائه شده در زمینه بهینه سازی چندهدفه می‌باشد مورداستفاده قرار گرفته‌است.
2-4-2-1- الگوریتم ژنتیک مرتب سازی نامغلوب
دب و همکارانش [14]، یک نخبه گرایی دسته بندی یا مرتب سازی نامغلوب را در الگوریتم‌های ژنتیک پیشنهاد دادند. در اغلب مواقع، این الگوریتم شباهتی به NSGA ندارد، ولی مبتکران نام NSGA-II را به دلیل نقطه پیدایش آن، یعنی همان NSGA، برای آن حفظ کردند.
در این روش، ابتدا جمعیت فرزندان، ، با استفاده از جمعیت والدین، ، ساخته می‌شود. در اینجا به جای پیدا کردن جواب‌های نامغلوب از ، ابتدا دو جمعیت با یکدیگر ترکیب شده و جمعیت با اندازه 2N را ایجاد می‌کنند. سپس از یک مرتب سازی نامغلوب برای دسته بندی تمام جمعیت استفاده می‌شود، البته این مرتب سازی، نسبت به مرتب سازی بر روی ، به تعداد مقایسه بیشتری نیاز دارد. در این شیوه، یک مقایسه عمومی در بین اعضای که مجموع دو جمعیت فرزندان و والدین است، انجام می‌شود و پس از ایجاد صف‌های متفاوت نامغلوب، به ترتیب اولویت (اولویت صفها نسبت به هم) جمعیت بعدی، یکی یکی از این صف‌ها پر می‌شود. پر کردن جمعیت ، با بهترین صف نامغلوب شروع شده و سپس به ترتیب با دومین صف نامغلوب و همین طور سومین و الی آخر، تا زمانی که پر شود، ادامه می‌یابد. از آنجا که اندازه برابر 2N است، تمام اعضای آن ممکن است نتوانند در قرارگیرند و به راحتی جواب‌های باقیمانده را حذف خواهیم کرد. شکل (2-3) نحوه عمل الگوریتم NSGA II را نمایش می‌دهد.

شکل 2-3- نمایشی از نحوه عملکرد NSGA-II
درمورد جواب‌هایی که در صف آخر با استفاده از عملگر نخبه گرایی ازبین می‌روند، باید مهارت بیشتری به کار برده و جواب‌هایی که در ناحیه ازدحام کمتری قراردارند را حفظ کرد. درواقع برای رعایت اصل چگالی در بین جواب‌ها، جواب‌هایی که در ناحیه ازدحامی کوچکتری هستند، برای پر کردن ، در اولویت قرار دارند.
یک استراتژی شبیه بالا در پیشرفت مراحل اولیه از تکامل الگوریتم، تأثیر زیادی نخواهد داشت، چرا که اولویت‌های زیادی در جمعیت ترکیب شده از فرزندان و والدین وجود دارد. احتمالاً جواب‌های نامغلوب زیادی وجود دارند که آماده قرارگرفتن در جمعیت قبل از آن که اندازه‌اش از N تجاوز کند، می‌باشند. یک مسأله مهم و در عین حال سخت این است که مابقی جمعیت چگونه باید پر شود؟ اگرچه درخلال مراحل بعدی شبیه سازی الگوریتم، احتمالاً بیشتر جواب‌های موجود در جمعیت با اندازه 2N، در رده جواب‌هایی با بهترین درجه نامغلوب بودن قرار می‌گیرند و تعداد آن‌ها از N متجاوز خواهد شد، اما الگوریتم بالا با یک راهکار موقعیتی انتخاب، وجود مجموعه متنوعی از جواب‌ها در جمعیت را تضمین می‌کند. با چنین راهکاری، یعنی زمانی که به‌نحوی تمام ناحیه بهینه پارتو توسط جمعیت پوشانده می‌شود، در ادامه الگوریتم، جواب‌های گسترده تری را در فضای جواب فراهم خواهدآورد.
در ادامه، الگوریتم NSGA-II را به اختصار آورده ایم [15]:
گام 1: جمعیت فرزندان و والدین را با یکدیگر ترکیب کرده و را می‌سازیم:

جمعیت حاصل را با استفاده از یک مرتب سازی نامغلوب به صفوف دسته بندی می‌کنیم.
گام 2: قرارمی‌دهیم، i=1، سپس تا زمانی که ، عملیات زیر را تکرار می‌کنیم:

گام 3: روال مرتب سازی ازدحام را اجرا کرده و با استفاده از مفهوم فاصله ازدحام، ارزشهای متفاوتی را برای از جواب‌های تعیین می‌کنیم.
گام 4: جمعیت فرزندان را از با استفاده از یک الگوریتم انتخاب مسابقه‌ای ازدحام و عملگرهای ترکیب و جهش ایجاد می‌کنیم.
گام سوم از الگوریتم بالا، مرتب سازی برحسب ازدحام جواب‌ها در صف i (منظور آخرین صفی است که احتمالاً برخی از جواب‌های موجود در آن نتوانسته‌اند در جمعیت قرار گیرند)، با بکارگیری مفهوم فاصله ازدحام انجام می‌شود. بنابراین، جمعیت به صورت نزولی تحت میزان بزرگی ارزش فاصله ازدحام مرتب شده و در گام چهارم یک عملگر انتخاب مسابقه‌ای ازدحام که مبنای مقایسه آن همان فاصله ازدحام است بکار برده می‌شود. لازم به ذکر است، مرتب سازی نامغلوب واقع در گام اول می‌تواند به همراه عمل پر کردن جمعیت به صورت موازی انجام شود. درواقع هر بار که یک صف نامغلوب، پیدا شده و تست می‌شود که ازنظر اندازه می‌تواند به جمعیت اضافه شود یا نه، درصورتی که نتواند، دیگر نیازی نیست که مرتب سازی بیشتری انجام دهیم. این موضوع، به کاهش زمان اجرا الگوریتم کمک می‌کند.
2-4-2-2- الگوریتم NSGA-II محدود شده
اگر در حین حل مسأله‌ای که باید حل شود، حل‌هایی ایجاد شود که با محدودیت‌های مسأله مغایرت داشته باشد و آن‌ها را نقض کند و درنتیجه غیرقابل قبول باشد، چگونه باید با این موضوع برخورد کرد؟ روش‌های مختلفی برای مقابله با این موضوع وجود دارد که از جمله آن‌ها می‌توان به توابع جریمه و یا نادیده گرفتن و حذف حل غیرقابل قبول ایجاد شده اشاره کرد.
الگوریتم CNSGA-II، همانند الگوریتم NSGA-II عمل می‌کند، تنها با این تفاوت که برای رسیدگی به محدودیت‌ها، روشی را برمی‌گزیند که براساس مفهوم غلبه و امتیازدهی عمل می‌کند [14].
این روش که به محدودیت رسیدگی می‌کند، از انتخاب تورنمنت دودویی استفاده می‌کند که دو حل از جمعیت، انتخاب و حل بهتر انتخاب می‌شود. باتوجه به محدودیتها، هر حل می‌تواند یا قابل قبول و یا غیرقابل قبول باشد. بنابراین، ممکن است حداکثر سه وضعیت به وجود آید:
هرد و حل قابل قبول باشند؛
یکی از حل‌ها قابل قبول و دیگری غیرقابل قبول باشد؛
هر دو حل غیر قابل قبول باشند.
برای مسائل بهینه سازی تک هدفه، از یک قانون ساده برای هر مورد استفاده می‌کنیم:
مورد 1) حلی که تابع هدف بهتری دارد را انتخاب می‌کنیم.
مورد 2) حل قابل قبول را انتخاب می‌کنیم.
مورد 3) حلی که کمترین انحراف از محدودیت‌ها را دارد انتخاب می‌کنیم. باتوجه به اینکه در هیچدام از موارد، اندازه تابع هدف و محدودیت‌ها با یکدیگر مقایسه نشده‌اند، هیچ نیازی به داشتن پارامترهای جریمه نیست، این موضوعی است که این رویکرد را مفید و جذاب کرده‌است.
درمورد مسائل بهینه سازی چندهدفه، دو مورد آخر می‌تواند همانطور که هستند استفاده شوند و مورد اول نیز می‌تواند با استفاده از اپراتور مقایسه ازدحام، حل شود. برای مقایسه کردن در این الگوریتم، تعریف «غلبه» را بین دو حل i و j تعریف می‌کنیم.
تعریف 1) حل i اگر یکی از وضعیت‌های زیر درست باشد، گفته می‌شود که از لحاظ محدودیت بر حل j غلبه دارد:
حل i قابل قبول است ولی حل j نیست.
حل i و j هر دو غیر قابل قبول می‌باشند، اما حل i انحراف از محدودیت کمتری دارد.
حل i و j قابل قبول هستند و حل i، حل j را مغلوب می‌کند.
اثر استفاده از مفهوم غلبه محدودیت این است که، هر حل قابل قبول، رتبه غیرمغلوبی بهتری از هر حل غیرقابل قبول دارد. همه حل‌های قابل قبول، باتوجه به سطح غلبه شان و براساس مقادیر توابع هدفشان رتبه بندی می‌شوند. به هر حال، از بین دو حل غیر قابل قبول، حلی که کمترین انحراف از محدودیت را دارد، دارای رتبه بهتری است. به هر حال، این اصلاح، در مفهوم غلبه، تغییری در پیچیدگی NSGA-II ندارد. بقیه فرایند CNSGA-II، همانطور که قبلاً درمورد NSGA-II توضیح داده شد، اجرا می‌شود.
2-4-2-3- الگوریتم ژنتیک رتبه بندی نامغلوب
این الگوریتم که توسط الجدان و همکارانش [16] ارائه شده، الگوریتم انتخاب چرخ رولت رتبه‌بندی شده را با الگوریتم رتبه بندی جمعیت برمبنای پارتو ترکیب می‌کند. در این الگوریتم از الگوریتم انتخاب چرخ رولتی استفاده شده‌است که به هر عضو، یک اندازه برازش برابر با رتبه اش در جمعیت، تخصیص می‌دهد؛ بالاترین رتبه، بیشترین احتمال را دارد که انتخاب شود (درمورد ماکزیمم سازی).
این احتمال به صورت معادله زیر محاسبه می‌شود:
(29.2)
که N، تعداد اعضاء این جمعیت است. در این الگوریتم، اعضاء در یک جبهه، براساس فاصله ازدحامشان و جبهه ها براساس رتبه غلبه شان رتبه می‌گیرند.
الگوریتم NRGA، همان طور که سودوکد آن را در شکل (2-4) مشاهده می کنید، به این صورت است که ابتدا، یک جمعیت تصادفی والدین، P، ایجاد می‌شود. مرتب کردن جمعیت براساس غلبه است. به هر حل، برازشی (یا رتبه ای) برابر سطح غلبه اش، تخصیص داده می‌شود (1 برای بهترین سطح، 2 برای سطح بعدی و الی آخر).
Initialize Population P
{ Generate random population-size N
Evaluate Objective Values
Assign Rank (level) Based on Pareto dominance-sort }
Generate Child Population Q
{ Ranked based Roulette Wheel Selection
Recombination and Mutation }
for i=1 to g do
for each member of the combined population do

user8344

2-2 مروری بر مطالعات انجام شده ............................................................................................................27
فصل سوم: روش اجرای تحقیق
1-3 روش پژوهش..........................................................................................................................................42
2-3 نوع پژوهش.............................................................................................................................................42
3-3 جامعه پژوهش..........................................................................................................42
3-4 نمونه گیری.............................................................................................................42
3-5 روش نمونه گیری....................................................................................................42
3-6 مشخصات واحدهای مورد پژوهش..............................................................................43
3-7 محیط پژوهش..........................................................................................................43
3-8 ابزار گرد آوری داده ها..............................................................................................43
3-9 اعتبار علمی یا روایی ابزار..........................................................................................44
3-10 روش کاربردآوری داده ها........................................................................................44
3-11 روش های تجزیه وتحلیل آماری داده ها......................................................................45
3-12 ملاحظات اخلاقی.....................................................................................................47
فصل چهارم:نتایج پژوهش:
4-1 یافته های پژوهش.....................................................................................................49
4-2جداول و نمودارها......................................................................................................50
فصل پنجم: بحث وبررسی یافته ها
5-1 تجزیه وتحلیل یافته ها...............................................................................................79
5-2 نتیجه گیری نهایی.....................................................................................................87
5-3 کاربرد یافته ها.........................................................................................................89
5-4 پیشنهادات برای پژوهش های بعدی..............................................................................90
5-6 منابع ومأخذ.............................................................................................................91
پیوست ها
فهرست جداول فصل چهار
جدول 4-1 : توزیع واحدهای مورد پژوهش بر حسب سن.......................................................50
جدول 4-2 : توزیع واحدهای مورد پژوهش بر حسب جنس.....................................................50
جدول 4-3 : توزیع واحدهای مورد پژوهش بر حسب BMI ....................................................51
جدول 4-4 : توزیع واحدهای مورد پژوهش برحسب تشخیص بیماری.......................................51
جدول 4-5 : توزیع واحدهای مورد پژوهش بر حسب مد دستگاه ونتیلاتور.................................52
جدول 4-6 : میانگین وانحراف معیار واحدهای مورد پژوهش بر حسب طول مدت بستری ، SOFA و متغیر های فشاری :......................................................................................................... 53
جدول 4-7 : میانگین وانحراف معیارIAP واحدهای مورد پژوهش بر حسب زوایای مختلف سر تخت به تفکیک دفعات اندازه گیری .............................................................................................54
جدول 4-8 : تغییرات IAP در سه وضعیت صفر ، 15 و30 درجه بر اساس درجه بندی هیپرتانسیون
داخل شکمی ...................................................................................................................56
جدول 4-9 : مقایسه میانگین وانحراف معیارIAP بر حسب گرو های سنی به تفکیک وضعیتهای مختلفسرتخت......................................................................................................................58
جدول 4-10 : مقایسه تغییرات IAP بین زوایای 15-0 و 30-0 بر حسب سن واحدهای مورد پژوهش...60
جدول 4- 11 : مقایسه میانگین وانحراف معیار IAP بر حسب جنس به تفکیک زوایای مختلف سر تخت..61
جدول 4- 12 : مقایسه متوسط تغییرات IAP بین زوایای 15-0 و 30-0 بر حسب جنس .....................63
جدول 4- 13 : مقایسه میانگین وانحراف معیار IAP بر حسب گروه های BMI به تفکیک زوایای مختلف
سرتخت...............................................................................................................................64
جدول 4-14: مقایسه متوسط تغییرات IAP بین زوایای 15-0 و 30-0 سر تخت بر حسب گروه های BMI..................................................................................................................................66
جدول 4 – 15 : مقایسه اختلاف IAP در سه زوایه مختلف سر تخت بین گرو های BMI ....................67
جدول 4 – 16 : مقایسه میانگین وانحراف معیار IAP بر حسب تشخیص بیماری به تفکیک زوایای مختلف سرتخت...............................................................................................................................68
جدول 4- 17 : مقایسه متوسط تغییرات IAP بین زوایای 15- 0 و 30 – 0 سر تخت بر حسب تشخیص بیماری................................................................................................................................70
جدول 4 – 18: مقایسه میانگین وانحراف معیار IAP بر حسب مد دستگاه ونتیلاتور به تفکیک زوایای مختلف سر تخت..................................................................................................................71
جدول 4 -19 : مقایسه تغییرات IAP بین زوایای 15- 0 و 30 -0 بر حسب مد دستگاه ونتیلاتور .........73
جدول 4 - 20 : ضریب همبستگی پیرسون متغیرهای IAP و تغییرات آن در زوایای مختلف سر تخت....74
جدول 4 – 21 : محدوده توافق و میزان خطای IAP بین زوایای مختلف سر تخت.............................75
فهرست نمودار های فصل چهار :
نمودار 4- 1 : تغییرات فشار داخل شکمی از زاویه صفر درجه به سمت زاویه 30 درجه .....................55
نمودار 4- 2 : تغییرات فشار داخل شکمی بر اساس درجه بندی هیپرتانسیون داخل شکمی در سه زاویه صفر ، 15 و 30 درجه ..........................................................................................................57
نمودار4_3 : روند و مقدار تغییرات فشار داخل شکمی در زوایای مختلف سر تخت بر حسب گروه های سنی واحدهای مورد پژوهش..................................................................................................59
نمودار 4_4 : روند ومقدار تغییرات فشار داخل شکمی در زوایای مختلف بر حسب جنس واحدهای مورد پژوهش...............................................................................................................................62
نمودار 4 _ 5 : : روند ومقدار تغییرات فشار داخل شکمی در زوایای مختلف سر تخت بر حسب گروه های BMI واحدهای مورد پژوهش................................................................................................65
نمودار 4 _ 6 : : روند ومقدار تغییرات فشار داخل شکمی در زوایای مختلف سر تخت بر حسب تشخیص بیماری واحدهای مورد پژوهش..............................................................................................69
نمودار 4 _ 7 : روند ومقدار تغییرات فشار داخل شکمی در زوایای مختلف سر تخت بر حسب مد دستگاه ونتیلاتور ............................................................................................................................72
نمودار 4 – 8 : محدوده توافق و میزان خطا بین زوایای 15 و 0 درجه سر تخت ................................76
نمودار 4 – 9 : محدوده توافق و میزان خطا بین زوایای 30 و 0 درجه سر تخت ................................77

بیان مسئله :
فشار داخل شکمی ( (IAPبه شکل فزاینده ای به عنوان یک عامل مهم فیزیولوژیکی در بیماران بخش مراقبت ویژه مورد توجه قرار گرفته است (2،1). افزایش فشار داخل شکمی یک فرایند خاموش بالینی است که تا وقتی به طور کامل پیشرفت نکند تشخیص داده نمی شود .انجمن جهانی سندرم کمپارتمان شکمی (WSACS) میزان بروز هیپرتاسیون داخل شکمی (IAH)در بیماران بخشهای مراقبت ویژه از 18درصد تا8/58 درصد و در بیماران بدحال داخلی وجراحی 65 - 4/54 درصد بیان کرده است (2 ) . این دامنه وسیع در محیط های بالینی مختلف( جراحی یا داخلی ) ، وضعیت بیمار ( تروما ، سوختگی، بیماران بعد از عمل ) ، تنوع روش های اندازه گیری IAP و نیز عددی که برای تعریف هپیرتاسیون داخل شکمی انتخاب می شود ( 25-12 میلی مترجیوه ) متفاوت است (3). از این رو IAHبه عنوان یک سندرم دیسترس حاد تنفسی ((ARDS شکمی شناخته می شود(4). افزایش فشار داخلی شکمی نتایج و اثرات مختلف و مخربی برروی بافتهای اطراف و ارگانهای دیگر بدن دارد . اثر ایسکمیک وقتی IAP به 10 میلی متر جیوه و یا بیشتر برسد رخ می دهد .اما وقتی فشار به 20 میلی متر جیوه و بالاتر رسید ، آسیب ارگانی غیر قابل برگشت رخ می دهد سندرم کمپارتمان شکمی ایجاد می گردد (4،2) .
تحقیق رین تام و همکاران نشان داد که میزان مرگ و میر درروز بیمارن مبتلا به IAH بستری در بخش مراقبت ویژه در مقایسه با بیماران بدون ابتلاء به IAH در طی 28 روز به ترتیب 9/37 در مقابل 1/19 و در طی 90 روز 7/53 در مقابل 8/35 بود ، IAH اولیه به عنوان عامل خطر مستقل مرگ و میر شناخته شده است (5).
مطالعات نشان داده است که با پایش IAP در بیماران بستری در بیمارستان وبه بخصوص بیماران بستری در بخش های مراقبت ویژه طول مدت بستری بین 10 تا 13 روز کاهش پیدا می کند و بدنبال آن روازانه 2000 دلار صرفه جویی در هزینه های درمان می گردد. با درمان و مراقبت به موقع و زود هنگام در بیماران مبتلاء به IAH به ازای هر بیمار مبتلاء 10000 تا 20000 دلار صرفه جویی خواهد شد (2).
-22669567945
00
یافتهها در مطالعه کربز نشان داد که در بیماران تحت تهویه مکانیکی، تنظیم دستگاه تهویه مکانیکی بخصوص ((PEEP باید با توجه به اثرات فشار داخل شکمی برروی قفسه سینه و کمپلیانس ریه ها انجام شود(6). از طرف دیگرفشار داخل شکمی افزایش یافته می تواند یک عامل پیش بینی کننده نارسایی ارگانی و میزان مرگ و میر در این بخش ها باشد (7،3).
اکثر بیماران بخش های مراقبت ویژه تحت تاثیر مانیتورینگ های مختلف همودینامیک مانند (CVP ( و ((CO می باشند چیزی که اغلب به آن توجه نمی گردد این مسأله است که اندازه گیری های مختلف همودینامیک تحت تاثیر عوامل دیگری مثل تهویه مکانیکی وIAP می باشند (9،7،8 ) . علیرغم شیوع بالای IAH و اهمیت ACS و کنترل آن در بیماران بستری در بخش های مراقبت ویژه ، اندازه گیری فشار داخل شکمی کمتر مورد توجه قرار گرفته است و این در حالی است که اگر سندرم کمپارتمان شکمی و عوارض شدید آن رخ دهد تنها درمان جراحی برای کاهش فشار داخل شکمی کاربرد دارد . بنابراین تشخیص زود رس برای مداخله کافی و کنترل آسیب ضروری می باشد ( 3 ) .
بررسی و اندازه گیری فشار داخل شکمی همانند سایر بررسی های پارامترهای همودینامیک از وظایف پرستار بخش مراقبت ویژه است. کسب مهارت های پرستاری به منظور تشخیص بیماران در معرض خطر IAH اساسی و ضروری می باشد تا با مداخلات غیر جراحی زود هنگام به کاهش IAP و جلوگیری از بروز ACS کمک نماید. تحقیقات نشان داده است که در 60-40 درصد موارد معاینات بالینی در تشخیص IAHدر مقایسه با اندازه گیری فشار داخل شکمی موفق نبوده است(10،11) . اندازه گیری سریال IAP برای تشخیص و درمان IAH/ACS ضروری است زیرا حساسیت معاینه بالینی تنها 60درصد می باشد (13،12).
به دلیل اهمیت IAH ، پرستاران باید به طور ویژه ای از فرایند اندازه گیری فشار داخل شکمی و جنبه های مختلف آن آگاه باشند . از طرفی اگر به این امر توجه نشود منجر به بروز اشتباه در سایر اندازه گیری همودینامیک خواهد شد ( 16،14،15).
از این رو طبق توصیه انجمن جهانی سندرم کمپارتمان شکمی ، اندازه گیری روتین در بیماران دارای دو یا چند عامل خطر مثل اتصال به تهویه مکانیکی ، ترانسفوزیون خون بیش از 10 واحد در 24 ساعت ، دریافت مایعات بیش از 5 لیتر در 24 ساعت ، پنومونی ، سپسیس و ... باید هر 6-4 ساعت تا زمان حذف عامل خطر انجام شود(17) .
معمولاً وضعیت استاندارد مورد استفاده برای اندازه گیری فشار داخل شکمی صفر درجه می باشد.اما برای بیماران بستری در بخش مراقبت ویژه این وضعیت می تواند عواقب جبران ناپذیری از جمله پنومونی ، دیسترس تنفسی و ... داشته باشد بخصوص وقتی که این اندازه گیری بصورت مداوم صورت گیرد. لذا چالشی که اغلب پرستاران بخش مراقبت ویژه با آن روبرو هستند این مسئله است که هنگام مانیتورینگ همودینامیک بیمار از جمله IAP نیاز است که بیمار حتماً در وضعیت طاقباز قرار گیرد؟(14)
پیشبرد راحتی و آسایش بیمار از طریق مداخلات پرستاری یک جزء جدایی ناپذیر از مراقبت پرستاری در بخش های ویژه است و از وظایف پرستاران می باشد. یکی از جنبههای راحتی وآسایش بیمار برقراری وضعیت مناسب و راحت برای بیمار می باشد (18 ) .
شواهدی در مقالات درباره تاثیر وضعیت بدن برروی اندازه گیری فشار داخل شکم وجود دارد ، اما تاثیر درجه ای که معمولاَ برای وضعیت های مختلف زاویه سرتخت در بیماران بخش های مراقبت ویژه استفاده می شود برروی فشار داخل شکم روشن نیست(19). اندازه گیری فشار داخل شکم در وضعیت صفر درجه که وضعیت مطلوب در بیماران بخش مراقبت ویژه نمی باشند ، باعث می شود که فشار داخل شکم کمتر از میزانی که اغلب اوقات بیماران با آن روبرو هستند ،اندازه گیری گردد( 1،13،15 ).
از سوی دیگر عدم تحمل این وضعیت دربیماران با شرایط خاص منجر به افزایش کاذب IAP خواهد شد (12،11). تحقیقات در زمینه این بیماران، که تحمل چنین وضعیتی را ندارند همانند بیماران مبتلا به نارسایی قلبی ، سندرم دیسترس تنفسی ، سپسیس یا جراحی به اندازه کافی در دسترسی نمی باشد(13). علاوه بر آن قرار گرفتن بیمار در وضعیت خوابیده به پشت بدون بالا آوردن سرتخت حتی برای مدت کوتاه با هدف اندازه گیری فشار داخل شکمی خطر پنومونی آسپراسیون را افزایش میدهد. این وضعیت برخلاف خط مشیهای توصیه شده مرکز کنترل بیماریها برای پیشگیری از این عارضه می باشد در اصول توصیه شده در بیماران بخش های مراقبت ویژه تاکید میشود تادر صورت عدم ممنوعیت درهمهزمان ها حداقل30 درجه افزایش سرتخت وجود داشته باشد . علت این امر شواهدی از کاهش پنومونی وابسته به ونتیلاتور است واینکه این وضعیت میزان بروز زخم های فشاری را کاهش می دهد (14). بنابراین درک تاثیر وضعیت بدن بر اندازه گیری فشار داخل شکمی مهم است بطوریکه اندازه های فشار داخل شکمی می تواند به شکل مناسبی تفسیر گردد (20) .
برخی از مطالعات نشان داده اند که با افزایش سر تخت بیش از 20 درجه فشار داخل شکمی به شکل معنی داری افزایش پیدا خواهد کرد (12) و نیز در مواردیکه بیمار در معرض خطر کمپارتمان شکمی قرار دارد و فشار داخل شکمی بیش از 20 میلی مترجیوه می باشد ، فشار داخل شکمی می تواند در وضعیت نیمه نشسته اندازه گیری گردد(1). همچنین تحقیقات نشان داده اند که ارتباط فشار داخل شکمی و زاویه سر تخت در مردان و بیماران با شاخص توده بدنی بالاتر معنی دار تر بوده است(19،20) .
ثبات وضعیت بیمار از یک اندازه گیری تا اندازه گیری بعدی در روش اندازه گیری متناوب فشار داخل شکمی در صحت آن برای تصمیم گیری بالینی اهمیت دارد . تغییر وضعیت های مختلف در فواصل اندازه گیری فشار داخل شکمی بر صحت میزان اندازه گیری شده تاثیر گذار است و می تواند در تصمیم گیری بالینی اختلال ایجاد نماید ( 2 ) .
مطالعات بیشتر در این زمینه این امکان را خواهد داد تا در تکنیک اندازه گیری فشار داخل شکمی در زوایای مختلف سرتخت بدون آنکه بیمار در وضعیت صاف (صفر درجه) و عوارض بالقوه آن قرار داده شود ، تصحیحی صورت گیرد و همچنین از آنجائیکه ACS برمبنای اندازه گیری فشار داخل شکمی در وضعیت صاف تعریف می شود ، برای اینکه وضعیتی غیر از صفر درجه برای اندازه گیری فشار داخل شکمی استفاده شود نیاز به مطالعات بیشتری است (11). انجمن جهانی سندرم کمپارتمان شکمی یکی از توصیه ها و پیشنهادات برای پژوهش و تحقیق درباره روش اندازه گیری فشار داخل شکمی و تاثیر وضعیت بدن بر روی اندازه گیری IAP بیان کرده است (17) .
ازآنجائیکه عوارض ناشی از وضعیت صفر درجه در برخی موارد مانع از انجام اندازه گیری IAP می شود ، لذا پژوهشهای متعددی در مورد درجه زاویه سرتخت که کمترین تفاوت را با اندازه گیری فشار داخل شکمی در وضعیت صفر درجه دارد لازم به نظر می رسد . برخی از محققین بیان می کنند که تعیین معیار های اصلاح شده فشار داخل شکمی اجازه می دهد که بتوان فشار داخل شکمی را در وضعیت های نیمه نشسته تفسیر کرد(20) . آنچه در مراقبت از بیماران مهم بوده این است که سعی شود مراقبت ها به گونهای انجام گردد که حداقل عوارض احتمالی را برای بیماران به دنبال داشته باشد و نیز در عین حال با حفظ راحتی و آسایش بیمار مانیتورینگ بیمار دقیقاً منعکس کننده وضعیت واقعی او باشد (2) .
با توجه به اینکه اندازه گیری فشار داخل شکمی به صورت استاندارد و معمول در وضعیت صفر درجه انجام می شود و از طرفی اندازه گیری فشار داخل شکمی دربیماران بخش مراقبت ویژه با داشتن عوامل خطر متعدد و اثرات آن بر روی وضعیت بیمار امری لازم الاجراء به شمار می رود و نیز عدم تحمل قرار گیری بیماران دراین وضعیت مانعی درجهت این امر به شمار می رود ، پژوهشگر به دنبال درجهای از زاویه سر تخت است که کمترین تغییر را در وضعیت بیمار و میزان فشار داخل شکمی ایجاد مینماید. این درجه با توجه به مطالب ذکر شده متفاوت است. با توجه بهاینکه همانند سایر شاخصهای همودینامیک اندازهگیری فشار داخل شکمیاز وظایف و مسئولیتهای پرستار بخش مراقبت ویژه محسوب می شود (2) و تاکنون نیزدر کشور ایران تحقیقی در این زمینه انجام نشده است لذا پژوهشگر برآن شد تا به بررسی تغییرات فشار داخل شکمی در وضعیت های مختلف پرداخته و به وضعیت مناسب برای اندازه گیری فشار داخل شکمی دست یابد تا شاید این یافته ها بتواند در ارتقاء کیفیت مراقبت بیماران در بخش های مراقبت ویژه ممورد استفاده قرار گیرد.
اهداف پژوهش:
هدف کلی پژوهش:
مقایسه تغییرات فشار داخل شکمی در وضعیت صفر ،15 و 30 درجه سر تخت در بیماران بستری در بخش های مراقبت ویژه مراکز آموزشی درمانی شهر رشت در سال 91-1390.
اهداف ویژهی پژوهش :
تعیین میانگین فشار داخل شکمی بیماران بستری در بخش های مراقبت ویژه در وضعیت صفر درجه سر تخت
تعیین میانگین فشار داخل شکمی بیماران بستری در بخش های مراقبت ویژه در وضعیت 15 درجه سر تخت
تعیین میانگین فشار داخل شکمی بیماران بستری در بخش های مراقبت ویژه در وضعیت 30 درجه سر تخت
مقایسه میانگین فشار داخل شکمی در وضعیت های صفر ، 15 و 30 درجه سر تخت با برحسب عوامل فردی ومداخله گر
تعیین محدوده توافق L.A ومیزان خطا بین گروه 15 و صفر
تعیین محدوده توافق و میزان خطا بین گروه 30 و صفر
فرضیه پژوهش :
1.میانگین فشار داخل شکمی در وضعیت های صفر و 15 درجه تفاوتی ندارد.
2.میانگین فشار داخل شکمی در وضعیت های صفر و 30 درجه تفاوتی ندارد.
سؤالات پژوهش :
میانگین فشار داخل شکمی در وضعیت صفر درجه سر تخت چقدر است؟
میانگین فشار داخل شکمی در وضعیت 15 درجه سر تخت چقدر است؟
میانگین فشار داخل شکمی در وضیت 30 درجه سر تخت چقدر است؟
میانگین فشار داخل شکمی در وضعیت های صفر ، 15 و30 درجه سر تخت بر حسب متغیرهای فردی و مداخله گر چقدر است؟
محدوده توافق و میزان خطا بین گروه صفر و15 درجه چقدر است؟
محدوده توافق و میزان خطا بین گروه صفر و 30 درجه چقدر است؟
تعاریف علمی واژه ها :
فشار داخل شکمی :
فشار داخل شکمی ، فشار نهفته ثابت در درون حفره شکم می باشد که میزان آن در افراد طبیعی 5-0 میلی متر جیوه و در بیماران بستری در بخش های مراقبت ویژه 7-5 میلی متر جیوه می باشد (20، 2 ) .
اندازه گیری فشار داخل شکمی :
فشار داخل شکمی هم به شکل مستقیم وهم به شکل غیر مستقیم قابل اندازه گیری می باشد . به شکل معمول فشار داخل شکمی به روش غیر مستقیم از طریق کاتتر فولی اندازه گیری می شود . به عبارتی فشار داخل مثانه منعکس کننده فشار داخل شکمی می باشد. به شکل استاندارد بعد از قرار دادن بیمار در وضعیت سوپاین ، با اتصال کاتتر فولی به یک مانومتر آب یا ترانسدیوسر فشار بعد از کلامپ کردن ابتدای کیسه ادراری متصل به کاتتر فولی به آهستگی حدود 25 میلی لیتر محلول نرمال سالین استریل هم دمای بدن وارد مثانه خواهد شد و بعد از 60-30 ثانیه فشار از روی مانومتر آب و یا مانیتور ترانسدیوسر در انتهای بازدم خوانده خواهد شد (2) .
تعاریف عملی واژه ها :
زاویه سر تخت:
زاویه سر تخت بیمار بوسیله ابزار اندازه گیری ارائه شده توسط سایت انجمن جهانی سندرم کمپارتمان شکمی در زوایای صفر ، 15و 30 درجه از سطح افق قرار داده می شود.
تغییرات فشار داخل شکمی:
اندازه گیری آن بر اساس تعریف علمی و با استفاده از مانومتر آب هر 8 ساعت برای هر واحد پژوهشی در زوایای صفر ، 15 و 30 درجه انجام گردید و سپس برای تعیین تغییرات فشار داخل شکمی ، پس از اندازه گیری IAP در سه زاویه ، میانگین اندازه گیری در 24 ساعت در صفر ، 15 و30 محاسبه و سپس بر اساس آزمونهای آماری میانگینIAP در زوایای 15 و30 با میانگین اندازه گیری در زاویه صفر درجه که وضعیت استاندارد می باشد ، مقایسه گردید.
محدوده توافق و میزان خطا در تغییرات فشار داخل شکمی
محدوده توافق بر اساس انجمن جهانی سندرم کمپارتمان شکم بین 4- تا 4+ و میزان خطا 1 میلی متر جیوه تعیین شده است . در این پژوهش نیز محدوده توافق و میزان خطا بین زاویه صفر و 15 و بین صفر و30 بر همین اساس مورد سنجش قرار گرفت و در صورتیکه در این محدوده قرار بگیرد تغییر ایجاد شده پذیرفته می شد.
پیش فرض های پژوهش
شیوع هیپرتانسیون داخل شکمی در بیماران بستری در بخش های مراقبت ویژه 18 تا 8/58 در صد می باشد.(8 ، 2)
معاینات بالینی تنها در60 در صد موارد قابلیت تشخیص هیپرتانسیون داخل شکمی را دارد.(2)
فشار بالاتر از 20 میلی متر جیوه می تواند منجر به ACS واختلال عمل ارگان های شکمی شود.(2)
اندازه گیری فشار داخل شکمی در تشخیص زود رس هیپرتانسیون شکمی مؤثر است.(2)
اندازه گیری فشار داخل شکمی در بیماران بخش مراقبت ویژه از اهمیت برخوردار می باشد ( 8 ، 2 )
جهت اندازه گیری فشار داخل شکمی نیاز به قرار دادن بیمار در وضعیت سوپاین می باشد.(17)
تحمل وضعیت سوپاین توسط برخی از بیماران خاص منجر با افزایش کاذب فشار داخل شکمی خواهد شد.(11،12)
قرار گرفتن بیمار در وضعیت سوپاین ممکن است منجر به بروز خطراتی مانند آسپیراسیون تنفسی ، دیسترس تنفسی و اختلالات همودینامیک و ... گردد.(21،2)
وضعیت توصیه شده برای بیماران بخش مراقبت ویژه جهت پیشگیری از پنومونی وابسته به ونتیلاتور ، زخم فشاری و... افزایش 30 درجهای زاویه سر تخت می باشد.(21،2)
حفظ راحتی وآسایش بیمار از وظایف پرستار مراقبت ویژه می باشد.(2)
یکی از وظایف پرستار اندازه گیری فشار داخل شکمی می باشد.(2)
تغییرات فشار داخل شکمی در وضعیت های مختلف قابل اندازه گیری است.
محدودیت های پژوهش :
با توجه به عدم امکان اندازه گیری دقیق وزن بیماران جهت محاسبه BMI از وزن تقریبی ثبت شده در پرونده پزشکی بیماران استفاده شد.
عدم وجود ست مخصوص اندازه گیری فشار داخل شکمی

چهارچوب پژوهش :
چهارچوب این پژوهش پنداشتی بوده و بر اساس مفهوم فشار داخل شکمی می باشد. براین اساس ، تعریف فشار داخل شکمی ، عوامل مؤثر بر آن ،هیپرتانسیون داخل شکمی و شیوع آن در ICU ، عوارض ناشی از افزایش آن ، اهمیت اندازهگیری و روشهای آن ، وضعیت بیمار حین اندازه گیری ، پیشگیری ودرمان هیپرتانسیون داخل شکمی مورد بحث قرار می گیرد.
شکم به صورت یک حفره بسته با دیواره های سخت ( دنده ها ، ستون فقرات و لگن ) و انعطاف پذیر ( دیواره شکم و دیافراگم ) است. الاستیسیته این دیواره ها و ماهیت محتویات شکم تعیین کننده فشار درون آن میباشد. بنابراین فشار داخل شکمی به صورت یک فشار ثابت و نهفته درون حفره شکم تعریف می گردد.IAP در هنگام دم (با انقباض دیافراگم ) افزایش و در هنگام بازدم (با شل شدن دیافراگم ) کاهش می یابد. همچنین IAP به صورت مستقیم تحت تاثیر حجم ارگان های جامد و یا احشایی توخالی( که ممکن است خالی یا پر شده بوسیله هوا ، مایع و یا مواد دفعی باشد.) ، آسیت ، خون یا شرایطی مثل بارداری یا وجود تومور نیز می باشد. همچنین وجود شرایطی که باز شدن دیواره شکم را محدود می کند جوشگاه های سوختگی یا ادم نیز بر روی IAP موثر است(2،21).
از آنجاییکه میزان IAP بحرانی که باعث نارسایی ارگانی شود از یک بیمار به بیمار دیگر متفاوت است و تحت تاثیر تفاوت های فیزیولوژیکی هر فرد و بیماری های همراه می باشد. تلاش های زیادی برای به دست آوردن معیارپیش گویی کننده تاثیر IAP بر روی پیش آگهی بیماران انجام شده است که در نهایت مفهوم فشار خونرسانی شکمی (APP) معرفی شد. APP نه تنها نشان دهنده IAP می باشد بلکه نشان دهنده پارامتر فیزیولوژیکی متوسط فشار شریانی که نماینده خونرسانی شکمی و ارگانی است نیز می باشد. مطالعات نشان داده است که APP بر روی IAP، PH ، کمبود باز و لاکتات شریانی در پیش گویی پیش آگهی بیمار ارجحیت دارد ( 23).
فشار خونرسانی شکمی با کم کردن IAP از متوسط فشار شریانی ( ( APP=MAP_IAP محاسبه می گردد که می تواند عامل پیشگویی کننده خونرسانی شکمی و بصورت بالقوه تعیین کننده پایان احیای مایعات باشد. میزان APP هدف حداقل 60 میلی متر جیوه است (10) .
میزان طبیعی IAP بین 5-0 میلی متر جیوه است اما شرایط خاص فیزیولوژیکی مانند چاقی مرضی یا بارداری موجب افزایش مزمن IAP بین 15-10 میلی متر جیوه می شود که فرد بدون بروز علائم پاتولوژیک با آن سازگاری پیدا می کند. در کودکان میزان IAP پایین تر می باشد. در بیماران بالغ بدحال IAP اغلب از میزان طبیعی بالاتر و بین 7-5 میلیمتر جیوه می رسد. جراحی اخیر شکم ،نارسایی ارگانی ، نیاز به تهویه مکانیکی و تغییرات در وضعیت بدن با افزایش IAP در ارتباط است. در بعضی از موارد افزایش IAP به شکل گذرا است (چند ثانیه تا چند دقیقه) اما اغلب بیشتر از این طول می کشد( چند ساعت تا چند روز ) که به طور بالقوه منجر به اختلال عملکرد و یا نارسایی ارگانی می شود (21، 19،2).
طبق تعریف ارائه شده توسط انجمن جهانی سندرم کمپارتمان شکمی، به افزایش مکرر و پاتولوژیکی 12 IAP ≥ میلی متر جیوه IAH اطلاق می گردد. شدت درجات IAH تعیین کننده درمان اورژانسی جهت کاهش فشار داخل شکمی (درمان های جراحی یا غیر جراحی ) می باشد. بر این اساس IAH به چهار درجه تقسیم بندی می گردد ؛ درجه I 15-12 میلی مترجیوه ، درجه II 20-16 میلی مترجیوه ، درجه III 25-21 میلی مترجیوه و درجه IV 25 IAP> میلی مترجیوه (20،17،2). بر اساس طول مدت نشانه ها به چهار گروه خیلی حاد ، حاد ، تحت حاد و مزمن تقسیم می گردد. در نوع خیلی حاد ، IAH در عرض چند ثانیه تا دقیقه به دنبال سرفه ، عطسه و یا هرگونه فعالیت فیزیکی و ... افزایش می یابد. افزایش IAH نوع حاد در عرض چند ساعته و بطور اولیه در بیماران که تحت عمل جراحی قرار گرفتند و یا در نتیجه آسیب یا خونریزی داخل شکمی ، اتفاق می افتد و ممکن است به سرعت منجر به سندرم کمپارتمان شکمی شود. IAH تحت حاد در طی چند روز بروز می کند و در بیماران داخلی شایعتر است. نوع مزمن در طی چند ماه ( مثل بارداری ) یا چند سال ( چاقی مرضی ، تومورهای داخل شکمی ، دیالیز صفاقی ، آسیب مزمن یا سیروز ) رخ می دهد و ممکن است بیماران را در معرض خطر نوع حاد و تحت حاد IAH قرار دهد (2).
افزایش فشار داخل شکمی به 20 میلی مترجیوه و بیشتر به همراه بروز یک نارسایی ارگانی نشانگر کمپارتمان شکمی است.( شکل2-1) ACS منجر به کاهش خطرناک جریان خون دیواره شکم و ارگان ها می گردد که منجر به ایسکمی و نکروز بافت های اطراف و سیستم عروقی می شود.ایسکمی به شکل اولیه منجر به پاسخ التهابی حاد شامل آزاد شدن سیتوکین ، تشکیل رادیکال آزاد ، کاهش تولید آدنوزین تری فسفات می شود.
این واسطه های شیمیایی باعث افزایش نفوذپذیری و ادم سلولی می گردد. کاهش ATP منجر به اختلالات الکترولیتی و خارج شدن محتویات داخل سلولی به فضای خارج سلولی می شود. از طرفی پاسخ های التهابی حاد منجر به انتقال باکتری از دستگاه گوارش به داخل خون بیماران مستعد می شود که بیماران را به سمت سپسیس و نارسایی چند ارگانی سوق خواهد داد (7،2).

شکل 2-1 سیر بروز سندرم کمپارتمان شکمی (17)
از این رو تشخیص بیماران درمعرض خطر از نظر بالینی بسیار مهم است تا با مداخله به موقع از بروز ACS جلوگیری شود و بیمار پیش آگهی بهتری داشته باشد. پرستار باید قادر باشد علائم و نشانه های ACS را در بیماران پرخطر شناسایی کند.برای این منظور آشنایی با اندازه گیری فشار داخل شکمی و فشار خونرسانی شکمی ضرورت دارد و اندازه گیری IAP باید قویاً در بیماران پرخطر انجام گردد (2) .
اخیرا اهمیت IAP در بیماران بدحال به شکل فزاینده ای مورد توجه قرار گرفته است چندین مطالعه اخیر نشان داده است که بالا رفتن میانگین IAP با بدتر شدن پیش آگهی بیماران در بخش های مراقبت ویژه در ارتباط است . پیشرفت IAH در طول دوره بستری در ICU یک عامل خطر مستقل برای مرگ و میر می باشد . شیوع IAH در بیماران بخش های مراقبت ویژه تا 50درصد نیز گزارش شده است . تاثیر IAP در بیماران بستری در در بخش های مختلف مراقبت ویژه داخلی و جراحی احتمالا متفاوت است (8) .اطلاعات بدست آمده شیوع و بروز IAH/ACS را در بیماران بخش های مختلف مراقبت ویژه تأیید می کند. در پایین میزان شیوع IAH در جمعیت های مختلف بیماران آمده است ؛
سپسیس شدید 87 -41% ( 23،24،22،7)
سوختگی وسیع 100-22% ( 25،26 )
جراحی وسیع شکم 45-32% (8)
ترومای بزرگ 5-2 % (7،10)
پانکراتیت 40-31% ( 27،28 )
بیماری احتقانی قلب و بعد از بای پس عروق کرونر 60-40% (29)
بیماران ICU داخلی 64-33% (30)
ICU کودکان 18-1% ( 31 )
مطالعات نشان داده است که اندازه گیری IAP به هیچ گروه خاصی از بیماران ، بیماری یا درمان محدود نمی شود بلکه باید به شکل روتین در همه گروههای در معرض خطر اندازه گیری انجام شود. طبق توصیه انجمن جهانی سندرم کمپارتمان شکمی در بیمارانیکه 2 یا بیشتر از 2 عامل از عوامل خطر IAH/ACS در بدو ورود به ICU داشته باشند و یا دچار یک نارسایی ارگانی جدید یا پیشرفت نارسایی ارگانی شوند IAP باید اندازه گیری گردد (33).
بیماران بستری در بخش های مراقبت ویژه دارای عوامل خطر IAH/ACS متعدد می باشند که به طور کلی این عوامل را می توان به چهار گروه اصلی تقسیم کرد:
عوامل کاهنده کمپلیانس دیواره شکم که شامل نارسایی حاد تنفسی ، جراحی شکم همراه با بستن اولیه فاشیا ، آسیب یا سوختگی وسیع ، در وضعیت دمر ، بالا بردن سر تخت بیش از 30 درجه ، BMI بالا و چاقی مرکزی
افزایش محتویات داخل لومن که شامل فلج گوارشی ،ایلئوس و انسداد کاذب کولون
افزایش محتویات شکم مانند: هموپریتوئن ، پنوموپریتوئن ، آسیت ، اختلال عملکرد کبدی
نشت مویرگی و احیای مایعات که شامل اسیدوز2/7 > PH ، هیپوتانسیون ، هیپوترمی (دمای مرکزی کمتر از 33 درجه ساتنی گراد)، کواگولوپاتی ( پلاکت کمتر ازmm3 /55000 یا PTT کمتر از 50 در صد ویا 5/1< INR ) دریافت مایعات کلوییدی یا کریستالوییدی بیش از 5 لیتر در 24 ساعت ویا اولیگوری و سپسیس (17)
بالا رفتن فشار داخل شکمی تقریباً بر همه ارگان های بدن اثرسوء دارد.IAH همراه با افزایش فشار داخل قفسه سینه منجر به کاهش برون ده قلبی علی رغم کسر تخلیه ای و حجم طبیعی می گردد. علاوه براین IAH باعث بالا رفتن فشار ورید مرکزی و فشار وج مویرگ های ریوی (PCWP) با وجود کاهش حجم مایعات بدن می شود، به طوریکه بیان شده است برای محاسبه میزان دقیق CVP و PCWPبه اندازه نیمی از IAPاندازه گیری شده باید از این فشارها کاسته شود. بنابراین بدنبال چنین تغییراتی ناشی از افزایش فشار داخل شکمی ارزیابی احیای مایعات با استفاده از PCWP وCVP می تواند گمراه کننده باشد. عدم تشخیص این مشخصه مهم بر روی عملکرد قلبی می تواند منجر به احیای ناکافی، ایسکمی مقاوم و بدتر شدن پیشآگهی گردد( 8،9،2). افزایش IAP باعث افزایش فشار پرده جنب و داخل قفسه سینه و به دنبال آن ادم ، آتلکتازی ، کاهش ظرفیت باقی مانده عملکردی ، کمپلیانس ریه و حجم باقیمانده می گردد. به صورتیکه علائم یک بیماری محدود کننده ریوی را بروز می دهد. اثرات IAP بر روی سیستم تنفسی بیشتر به صورت مکانیکی می باشد. کلاپس آلوئولی ناشی از کوچک شدن فضای داخل قفسه سینه و بالارفتن فشار داخل قفسه سینه ، باعث عدم تطابق تهویه و پرفیوژن ، هیپوکسی و اسیدوز تنفسی می شود. بنابراین فرد مراقبت کننده باید بیمار را از نظر هیپرتانسیون ریوی و انقباض عروقی ناشی از هیپوکسی تحت نظر قرار دهد.
در بیمارانیکه تحت تهویه مکانیکی هستند فشار مثبت انتهای بازدمی خودبخودی ، فشار حداکثر راه هوایی ، فشار پلاتو و متوسط فشار راه هوایی اغلب در نتیجه آسیب آلوئولی ناشی از فشار بالا می رود. علاوه بر این کمپلیانس استاتیک و دینامیک به طور واضحی کاهش پیدا می کند . افزایش ایسکمی ناشی از هیپوکسی منجر به آزاد شدن واسطههای التهابی شده و سندرم نارسایی تنفسی که در بیماران ICU شایع است بروز می کند. نارسایی تنفسی در نتیجه ترکیبی از عواملی مثل ؛ کلاپس آلوئولی ، افزایش فشار قفسه سینه و ادم بینابینی است.
اثر افزایش فشار داخل شکمی بر روی سیستم کلیوی از طریق افزایش جریان خون کلیوی ، فیلتراسیون کلیوی می باشد. در IAP15 و بالاتر علائم اولیگوریک و در بیشتر از 30 میلیمتر جیوه آنوری رخ می دهد. علت اختلال عملکرد کلیوی ناشی از چندین عامل همانند ؛ کاهش برون ده ادراری ، افزایش مقاومت عروق کلیوی و کاهش فیلتراسیون گلومرولی می باشد .کاهش برون ده ادراری ناشی از IAH منجر به افزایش مقاومت عروق سیستمیک وانقباض شریان های کلیوی میشود. این شرایط تحت تاثیر فاکتورهای هورمونی مثل آنتی دیورتیک و افزایش فعالیت رنین ، آلدوسترون پلاسما بدتر خواهد شد. افزایشIAP منجر به کاهش جریان خون احشایی به دنبال انقباض عروق مزانتر و ترشح وازوپرسین می گردد. وقتی IAP به 10 میلی متر جیوه و بیشتر برسد جریان خون ورید پورت کاهش پیدا می کند . کاهش جریان خون پورت منجر به ایسکمی کبد و بروز اختلالات انعقادی می گردد.
IAP بالا باعث ایسکمی بافتی در همه ارگانهای داخل شکمی به جزء غده آدرنال می شود. سیکل معیوب افزایش احتقان وریدی و کاهش جریان خون شریانی باعث ایسکمی و نشت مویرگی و آسیب سلولی می گردد. سپسیس و نارسایی چند ارگانی باعث می شود که سیستم گوارش دچار هیپوکسی بیشتر و دوره های ایسکمی و چرخه پاسخ های التهابی می شود.
IAH یک عامل خطر مستقل برای آسیب ثانویه مغزی می باشد که بر روی فشار داخل جمجمه اثر می کند. افزایش IAP باعث بالا رفتن دیافراگم و به دنبال آن کاهش حجم داخل قفسه سینه و افزایش فشار داخل توراسیک می گردد. بالا رفتن این فشار منجر به افزایش فشار ورید مرکزی و به تبع آن افزایش فشار در ورید ژگولار داخلی می شود. این افزایش فشار ، جریان خون وریدی را مختل و منجر به احتقان داخل جمجمه ای و کاهش فشار خونرسانی مغزی و ایسکمی مغزی می شود(2).
ارتباط IAP و (ICP) در پژوهشی که توسط دیرن وهمکارانش بر روی 11 بیمار تحت تهویه مکانیکی با آسیب غیر ترومایی مغز در سال 2005 انجام شد به اثبات رسیده است . حتی افزایش ناچیز IAP نیز منجر به افزایش ICP می گردد.(66/3 ±13/8) همچنین در این پژوهش بیان شده است IAP می تواند عامل هیپرتانسیون داخل جمجمهای ایدیوپاتیک در افراد مبتلاء به چاقی مرضی باشد و یا علت بدتر شدن وضعیت نورولوژیک در بیماران مبتلاء به آسیب چندگانه بدون آسیب آشکار عصبی باشد (33).
با توجه به اثر IAH بر روی سیستم های مختلف و عوارض ناشی از افزایش آن، تشخیص زودهنگام جهت پیشگیری وبرطرف نمودن علت زمینهای ضروری است. درصورت شناسایی به موقع IAH با مداخلات غیرجراحی قابل کنترل می باشد. برای رسیدن به این هدف باید IAH قبل از بروز علائم سندرم کمپارتمان شکمی تشخیص داده شود. شواهد جدیدتر بیان می کند که اندازه گیری IAP هریک تا دو ساعت تا ثابت ماندن IAP برای جلوگیری از افزایش سریع IAP لازم می باشد (2) .
بررسی و اندازه گیری فشار داخل شکمی همانند سایر بررسی های همودینامیک از وظایف پرستار بخش مراقبت ویژه است. تحقیقات نشان داده است که تنها در 60درصد موارد معاینات بالینی در تشخیص IAH در مقایسه با اندازه گیری فشار داخل شکمی موفق بوده است. اندازه گیری سریال IAP برای تشخیص و درمان ACS/IAH ضروری است. زیرا حساسیت معاینه بالینی تنها 60-40درصد می باشد(10،11،12). از این رو طبق توصیه انجمن جهانی سندرم کمپارتمان شکمی، اندازه گیری روتین در بیماران دارای دو یا چند عامل خطر IAH باید هر 6-4 ساعت تا زمان حذف عامل خطر انجام شود(17).
IAP به دو روش مستقیم و غیر مستقیم اندازه گیری می شود. در روش مستقیم با استفاده از یک کاتتر داخل پریتوئن که به مانومتر آب یا ترانسدیوسرفشار متصل می شود مستقیماً فشار داخل شکمی اندازه گیری می گردد. این روش به شکل اولیه در طی جراحی لاپاراتومی استفاده می گردد(34).(شکل 2-2) اما این روش برای استفاده در محیط های ICU به دلیل عوارض بالقوه آلودگی پریتوئن یا پارگی روده قابل استفاده و عملی نیست.

شکل 2-2: اندازه گیری IAP به روش مستقیم( 34)
IAP به طور غیر مستقیم بوسیله اندازه گیری فشار ارگان های خاص درون شکم نیز قابل محاسبه است. قرار دادن یک کاتتر از طریق ورید فمورال به داخل ورید اجوف تحتانی یک روش اندازه گیری غیر مستقیم IAP است. اما این روش نیز دلیل عوارضی مثل عفونت و تشکیل ترومبوز محدود می باشد. روش دوم اندازه گیری غیر مستقیم شامل اندازه گیری فشار معده از طریق لوله های گاستروستومی یا بینی _معدی است.(شکل 2-3)در نهایت روش اخیر و استاندارد، پایش IAP از طریق سوند فولی و اندازه گیری فشار داخل مثانه می باشد.(شکل 2-4) دیواره مثانه وقتی حاوی حجمی به اندازه 50 تا 100 میلی لیتر مایع می باشد به عنوان یک دیواره غیر فعال عمل می کند و از قانون پاسکال تبعیت می کند و فشار را به مانومتر آب و یا ترانسدیوسر منتقل می کند( 34، 2) .

شکل 2-3: اندازه گیری IAP از طریق معده(34)

شکل 2-4 اندازه گیری فشار داخل شکمی از طریق کاتتر فولی( روش korn) (34)
مطالعات اخیر بیان کرده است که حجم 50-25 میلی لیتر کمترین میزان خطا را از نظربالینی برای اندازه گیری IAP دارد. در اندازه گیری IAP به این روش باید متغیر هایی که برروی حرکت دیواره مثانه مؤثر باشد مثل مثانه نوروژنیک تشخیص داده شود چرا که این اثر منجر به اندازه گیری کاذب IAP خواهد شد. در صورت بروز این موارد از دیگر روش های غیر مستقیم می توان استفاده کرد.استفاده از سوند مثانه سه راهه برای این روش مناسب تر است.با این حال از سوند فولی دوراهه نیز می توان برای اندازه گیری استفاده کرد. در صورت استفاده از سوند سه راهه می توان با استفاده از پورت شستشوی مثانه بدون نیاز به دسترسی مکرر به سیستم بسته بوسیله یک سر سوزن اندازه گیری را انجام داد. در صورت استفاده از سوند دو راهه بوسیله یک سوزن شماره 18 می توان ارتباط داخل مثانه را به سیستم اندازه گیری فشار برقرار کرد. این روش یک روش غیر تهاجمی ، مناسب، ساده ودقیق است که در همه محیط های ICUقابل استفاده می باشد. روش اخیر اولین بار در سال 1984 توسط کرن معرفی شد وبوسیله چتام تعدیل گردید . شرکت های مختلفی در پی تولید دستگاهای ساده ای برای اندازه گیری IAP بوده اند. یکی از نمونه هایی که امروزه بیشتر استفاده می گردد کیت ابوایزر می باشد که خطر بالقوه انتقال عفونت را به سیستم ادراری با بسته نگه داشتن سیستم اندازه گیری کاهش می دهد. (شکل 2-5) هرچند تحقیقات انجام شده در این زمینه که توسط چتام انجام شده است میزان بروز خطر انتقال عفونت را ناچیز گزارش کرده اند (2).

شکل شماره 2- 5 : کیت Ab viser (17)
از روش های اندازه گیری دیگر استفاده از کاتتر ادراری بیمار به عنوان یک مانومتر اندازه گیری فشار می باشد که اولین بار توسط هارا هیل (روش لوله U) ارائه گردید (35 ). (شکل 2- 6 ) در این روش نیاز به ترانسدیوسر فشار یا مانیتورینگ نمی باشد بنابراین برای استفاده در محیط های غیر از ICU مناسب است. امروزه چندین شرکت تجاری در پی ساخت تجهیزاتی هستند که به صورت غیر تهاجمی و با کمترین صرف وقت کادر پرستاری قادر به اندازه گیری IAP باشد. مبنای اندازه گیری همه این وسایل از طریق فشار مثانه به عنوان عنوان فشار داخل شکمی است(2).

شکل 2-6 اندازه گیری فشار داخل شکمی به روش لوله U(35)
طبق استاندارد طلایی ارائه شده توسط انجمن جهانی سندرم کمپارتمان شکمی و سایت هیپرتانسیون داخل شکمی اندازه گیری IAP به هر کدام از روش های ذکر شده باید در وضعیت صفر درجه انجام گردد. اما به دلیل اثرات نامطلوب این وضعیت بر روی سیستم تنفسی و قلبی_عروقی در بیماران بستری در بخش های مراقبت ویژه به ندرت این بیماران قادر به تحمل این وضعیت می باشند. بنابراین پژوهشگران مطالعات زیادی در این زمینه انجام داده اند تا به وضعیت مناسبی که با حفظ راحتی و آسایش بیماران منجر به اندازه گیری دقیق تر IAP دست پیدا کنند (12،11،1).
مدیریت مناسب بیماران در معرض خطر IAH و بررسی دقیق وضعیت قلبی_ عروقی همراه با در نظر گرفتن خطاهایی است که IAP می تواند بر روی وضعیت همودینامیک داشته باشد، ضروری است(8).
تنظیم مناسب ونتیلاتور با توجه به اثرات افزایش IAP بر روی کمپلیانس دیواره قفسه سینه بسیار مهم است . مدیریت دقیق مایعات و وازوپرسورها نیز بسیار کلیدی و مهم است چرا که مایع کم ممکن است منجر به ایسکمی روده ای و تولید سایتوکین ها گردد. این جریان وقتی سندرم نفوذپذیری مویرگی رخ میدهد خیلی بدتر خواهد شد(2). جهت کمک به درمان این گونه پیچیدگیها انجمن جهانی سندرم کمپارتمان شکمی توصیه به استفاده از الگوریتم بررسی و درمان سندرم کمپارتمان شکمی و هیپرتانسیون شکمی کرده است (شکل 2-7) (37،36) .
2282825-63500اندازه گیری IAP و APP به صورت مداوم یاحداقل هر 6-4 ساعت
ادامه درمان تا حفظ IAP کمتر از mmHg 15 و APP بیش از mmHg 60
00اندازه گیری IAP و APP به صورت مداوم یاحداقل هر 6-4 ساعت
ادامه درمان تا حفظ IAP کمتر از mmHg 15 و APP بیش از mmHg 60
2879725-440690002386965-1088390mmHg 12< IAP
شروع درمان طبی تا کاهش IAP
00mmHg 12< IAP
شروع درمان طبی تا کاهش IAP

52673252768600039681152768600047498027686000156781527686000290893527686000
4648200259715بهبود جریان خون سیستمیک و منطقه ای
00بهبود جریان خون سیستمیک و منطقه ای
3420110259715مطلوب سازی تجویز مایعات
00مطلوب سازی تجویز مایعات
2278380259715بهبود کمپلیانس دیواره شکم
00بهبود کمپلیانس دیواره شکم
1019175259715خارج کردن توده های فضاگیر خل شکمی
00خارج کردن توده های فضاگیر خل شکمی
-90170259715تخلیه محتویات داخله روده ای
00تخلیه محتویات داخله روده ای

-5162552924810مرحله اول
00مرحله اول
4623435263525احیای مایعات با هدف مستقیم
00احیای مایعات با هدف مستقیم
3420110263525اجتناب از تجویز بیش از حد مایعات
00اجتناب از تجویز بیش از حد مایعات
2278380263525اطمینان از آرامبخشی و بی دردی کافی
00اطمینان از آرامبخشی و بی دردی کافی
1019175238760سونوگرافیشکمی جهت تشخیص ضایعات
ایعات
00سونوگرافیشکمی جهت تشخیص ضایعات
ایعات
-90170238760گذاشتن NGT یا رکتال تیوب
00گذاشتن NGT یا رکتال تیوب

-90170272415شروع داروهای افزایش دهنده حرکات معده روده
00شروع داروهای افزایش دهنده حرکات معده روده

3334385111125کمک به حفظ تعادل منفی مایعات برای سه روز
00کمک به حفظ تعادل منفی مایعات برای سه روز
-4667254046855مرحله دوم
00مرحله دوم
-90170111125به حداقل رساندن تغذیه روده ای
00به حداقل رساندن تغذیه روده ای
4623435111125حفظ فشار پرفیوؤن شکمی mmHg60≤APP
00حفظ فشار پرفیوؤن شکمی mmHg60≤APP
2194560111125برداشتنپانسمانها واسکارهایمحدودکننده شکم
00برداشتنپانسمانها واسکارهایمحدودکننده شکم
933450111125توموگرافی کامپیوتری شکم برای تشخیص ضایعات شکمی
00توموگرافی کامپیوتری شکم برای تشخیص ضایعات شکمی

4592955169545مانیتورینگ همودینامیک جهت احیای مایعات
00مانیتورینگ همودینامیک جهت احیای مایعات
2194560169545اجتناب از وضعیت دمر وافزایش سرتخت بیش از20 درجه
00اجتناب از وضعیت دمر وافزایش سرتخت بیش از20 درجه
3363595169545احیا با مایعات هیپرتونیک وکلوییدی
00احیا با مایعات هیپرتونیک وکلوییدی
963295270510درناژ با کاتتر از طریق پوست
00درناژ با کاتتر از طریق پوست
-90170208280تجویز انما
00تجویز انما

9563105080برداشتن ضایعات توسط جراحی
00برداشتن ضایعات توسط جراحی
459359025400تجویز داروهای وازواکتیو جهت حفظ APP>60 mmHg
00تجویز داروهای وازواکتیو جهت حفظ APP>60 mmHg
333375025400برداشتن مایعات توسط دیورتیک
00برداشتن مایعات توسط دیورتیک
211455025400وضعیت عکس ترندلنبرگ
00وضعیت عکس ترندلنبرگ
-692158255کلونوسکوپی با هدف کاهش فشار
00کلونوسکوپی با هدف کاهش فشار
-4152905200015مرحله سوم
00مرحله سوم

336359551435انجام همودیالیز / اولترافیلتراسیون
00انجام همودیالیز / اولترافیلتراسیون
211455051435تجویز بلوک کننده های عصبی-عضلانی
00تجویز بلوک کننده های عصبی-عضلانی
-3937089535قطع تغذیه روده ای
00قطع تغذیه روده ای

-4152906217285مرحله چهارم
00مرحله چهارم
-90170189865در صورت mmHg 25< IAP (و یا mmHg 60 < APP ) و وجود نارسایی یا اختلال عملکرد ارگانی جدید IAH/ACS بیمار به درمان طبی مقاوم می باشد. انجام لاپاراتومی با هدف کاهش فشار داخل شکمی به طور اکید توصیه می گردد.
00در صورت mmHg 25< IAP (و یا mmHg 60 < APP ) و وجود نارسایی یا اختلال عملکرد ارگانی جدید IAH/ACS بیمار به درمان طبی مقاوم می باشد. انجام لاپاراتومی با هدف کاهش فشار داخل شکمی به طور اکید توصیه می گردد.

شکل 2-7: الگوریتم درمان هیپرتانسیون داخل شکمی و سندرم کمپارتمان شکمی(36)
درمان های غیر جراحی شامل 5 مداخله درمانی می باشد.
1. تخلیه محتویات داخل روده ای
2. تخلیه محتویات خارج روده ای (درون شکم یا فضای رتروپریتوئن)
3. بهبود کمپلیانس دیواره شکم
4. تعدیل تجویز مایعات (به اندازه کافی ونه خیلی زیاد)
5. بهبود پرفیوژن بافتی
تخلیه محتویات داخل روده ای
حجم زیاد هوا در دستگاه گوارش و ایلئوس دو عارضه ای است که در بیماران بخش های مراقبت ویژه که تحت تهویه مکانیکی و دریافت ترکیبی از داروهای مختلف می باشند رخ می دهد. تجمع مایعات و گازهای داخل لوله گوارش حجم درون حفره شکم را افزایش می دهد و منجر به افزایش IAP و کاهش خونرسانی می گردد.یک مداخله ساده مثل ساکشن لوله بینی –معدی و درناژ رکتال تیوب اغلب اوقات برای درمان این مشکل وپایین آوردن IAP مؤثر است. تجویز داروهای محرک پروکینتیک مثل اریترومایسین و متوکلوپروماید به تخلیه مواد داخل روده ای کمک خواهد کرد. به ندرت برای کاهش فشار داخل روده ای از کلونوسکوپی کاهنده فشار یا حتی جراحی شکم نیز ممکن است استفاده گردد(38).
تخلیه فضای خارج روده ای از توده های فضاگیر
مایع آزاد در شکم ، آبسه یا هماتوم رتروپریتوئن می تواند منجر به افزایش IAP گردد. این موارد بوسیله معاینه فیزیکی ، سنوگرافی و سی تی اسکن لگن قابل تشخیص می باشد. درناژ مایعات جمع شده از طریق پوست پرفیوژن ارگانی را بهبود می بخشد و از انجام مداخله جراحی جلوگیری می کند. مطالعات اخیر نشان داده است که درناژ مایعات باعث کاهش سطح سایتوکین های التهابی هم در فضای داخل شکمی و هم در سطح سرمی می گردد (40،39)
بهبود کمپلیانس دیواره شکم
وقتی دیواره شکم بیش از حد اتساع پیدا می کنددیگر افزایش فشار داخل شکمی تحمل نخواهد شد. بویژه در بیمارانیکه تحت تهویه مکانیکی می باشند و یا درد دارند. در حقیقت نوسانات IAP در طی تهویه مکانیکی می تواند یک شاخص مفید کاهش کمپلیانس دیواره شکم باشد. اگر تفاوت زیادی بین IAP در انتهای بازدم و انتهای دم وجود داشته باشد به این معنی می باشد که بیمار به سمت IAH در حال پیشرفت است .گاهی اوقات به کاربردن مداخلات بسیار ساده مثل تجویز مسکن یا آرامبخش ها در کاهش IAP مؤثر است.با توجه به تاثیر وضعیت بدن بر روی IAP ، مداخله ساده دیگر در کاهش فشار داخل شکمی قرار دادن بیمار در وضعیتی است که شکم صاف و بدون چین خوردگی باشد به طور مثال قرار دادن بیمار دروضعیت طاقباز همراه با وضعیت ترندلنبرگ بر عکس می تواند به کاهش IAP کمک کند. قرار دادن بیمار در وضعیت خوابیده به شکم همچنین باعث افزایش IAP می گردد که در این موارد مراقبت دقیق از نظر ایسکمی روده ای باید انجام گردد. برخی از مطالعات و شواهد بالینی بیان می کند که اگر با این مداخلات همچنان IAP بیش از 20 میلی متر جیوه باشد استفاده از بلوک کننده های عصبی _عضلانی می تواند مؤثر باشد (40).
از دیگر روش های مشابه استفاده از بی دردی اپی دورال است. ها کابیان و همکارانش در مطالعه ای که بروی بیماران بعد از عمل جراحی با IAP بالای 15 میلی متر جیوه که تحت بی دردی اپی دورال قرارگرفتند به این نتیجه رسیدند که یک ساعت بعد از بی دردی اپی دورال IAP از 7/15 به 9/5 کاهش یافت . این در حالی است که کاهش متوسط فشار شریانی در این بیماران دیده نشد(41).
احیای مایعات
احیای مناسب مایعات ممکن است کار دشواری در بیماران بدحال باشد . بخصوص در حضور IAP بالا وجود IAH ممکن است تفسیر بسیاری از شاخص های همودینامیک را تحت تاثیر قرار دهد. این در حالی است که تجویز بیش از حد مایعات نیز منجر به افزایش فشار داخل شکمی و بدتر شدن نتایج درمان می گردد. پیچیدگی تداخل بین فشارهای داخل شکمی ، داخل قفسه سینه ای و داخل عروقی صحت استفاده از CVP و PCWP را در بررسی حجم مایعات بدن دچار مشکل می سازد . بررسی حجم پایان دیاستولی بوسیله اکوکاردیوگرافی روش دقیقتری برای بررسی حجم داخل عروقی می باشد که معمولاً در دسترس نمی باشد.IAP می تواند به عنوان پارامتری برای تصحیح استاندارد CVP و PCWP به کار برده شود. بیمارانیکه در خطر IAH قرار دارند نیازمند مراقبت دقیق تر از نظر تجویز مایعات می باشند. احیای مایعات در این بیماران باید با توجه به وضعیت پارامترهای قلبی ، اکسیژناسیون ، برون ده ادراری و اندازه گیری IAP انجام گردد.( 42،43)
اصلاح پرفیوژن بافتی
بدنبال احیای مطلوب مایعات ، جریان خون شکمی برقرار می گردد که این موضوع بوسیله فشار پرفیوژن شکمی قابل محاسبه است . اساس این مفهوم همانند فشار پرفیوژن مغزی است. جریان خون بافتی در ارتباط مستقیم با MAP می باشد. APP که منعکس کننده اکسیژناسیون واقعی بافتی است نسبت به اندازه گیری IAP یک معیار پیشگویی کننده دقیق تری است. بیمارانیکه به درستی در آنها احیای مایعات انجام شده است بوسیله عوامل اینوتروپیک وضعیت اکسیژناسیون بافتی بهتری خواهند داشت . به منظور اطمینان از اکسیژناسیون کافی بافتی APP نباید کمتر از 60 میلی متر جیوه باشد.(44)
MAP- IAP=APP
درمان های جراحی (لاپاراتومی کاهنده فشار)
وقتی همه راه های کاهش فشار داخل شکمی منجر به شکست می شود و بیمار از IAH به سمت ACS پیشرفت می کند نیاز به یک جراحی فوری پیدا میکند. این بیماران معمولاً از مرحله پایانی ایسکمی بافتی رنج می برندکه به سمت اختلال عملکرد سلولی و در نهایت مرگ سلولی پیش می رود. مناسب ترین درمان ، جراحی فوری کاهنده فشار از طریق تکنیک های شکم باز و یا به صورت اولیه انجام فاشیاتومی زیر پوستی است. عدم تعجیل در انجام دکمپرسیون جراحی ACS منجر به طولانی شدن زمان و افزایش شدت ایسکمی مزانتر و نیز کاهش خونرسانی ارگان های چند گانه و نهایتاً افزایش مرگ ومیر می گردد (39).
به هرحال علی رغم شیوع بالای IAH/ACS در بیماران داخلی اکثر پزشکان و پرستاران بر این باور هستند که تنها درمان IAH دکمپرسیون جراحی می باشد . در حالی که درمان غیر جراحی سنگ بنای درمان این سندرم می باشدو نقش حیاتی را در پیشگیری و درمان نارسایی ارگانی ناشی از IAH ایفا می کند. امروزه مطالعات زیادی نشان داده اند که درمان غیر جراحی نه تنها میزان بقا را بهتر می کند بلکه از پیشرفت کامل ACS نیز جلوگیری خواهد کرد و طول مدت بستری در ICU و بیمارستان را کاهش خواهد داد و از طرفی از نظر اقتصادی نیز مقرون به صرفه خواهد بود(45).
اندازه گیری IAP به هر روشی که انجام گردد حفظ راحتی وآسایش بیمار در حین اندازه گیری IAP بسیار مهم و ضروری است. یکی از جنبه های راحتی وآسایش، بیماران بخصوص بیماران بستری در بخش های مراقبت ویژه حفظ وضعیت مناسب و بی خطر آنها می باشد.از طرفی وضعیت بیمار باید به گونه ای باشد که به صحت اندازه گیری IAP و سایر پارامترهای همودینامیکی خللی وارد نکند.
مطالب ذکر شده نشان می دهد که اندازه گیری IAP می تواند در تشخیص زود هنگام IAH بسیار مفید باشد و لزوم انجام این فرایند نیاز به وضعیت ایمن و راحتی بیمار با توجه به شیوع آن دارد لذا تعیین وضعیتی از زاویه سر تخت برای اندازه گیری IAP بویژه در روش اندازه گیری مداوم جهت پیشگیری از عوارض وضعیت صفر درجه بسیار مهم می باشد از این رو این پژوهش با توجه به اهمیت مسئله مزبور انجام گردید.
مروری بر مطالعات انجام شده :
اهمیت اندازه گیری سریال IAPدر بررسی و احیای بیماران به شدت بد حال در دهه گذشته به طور فزاینده ای تشخیص داده شده است. IAP باید در بیمارانیکه عوامل خطر IAH / ACS را دارند کنترل گردد.
چتام و همکاران (2009) مطالعه ا ی کهورت آینده نگر با هدف تعیین تاثیر سه وضعیت مختلف بدن (وضعیت طاقباز یا صفر درجه ، 15 درجه و 30 درجه ) برروی فشار داخل مثانه که روش استاندارد شده برای اندازه گیری فشار داخل شکمی می باشد می باشد انجام دادند .
-296164015144751)Intra-ahdomind Prerruse
2)Su Iutya-abdominal hypertension
3)Abodmind Comartment sundrome
4) Yentilatore –Associated pneumonia
5) Supine position
6 )chcathametal
001)Intra-ahdomind Prerruse
2)Su Iutya-abdominal hypertension
3)Abodmind Comartment sundrome
4) Yentilatore –Associated pneumonia
5) Supine position
6 )chcathametal
معیارهای ورود نمونه شامل بیماران 18 سال و بالاتر دریافت داروی آرامبخش و اتصال به تهویه مکانیکی که حداقل یک عامل خطر IAH/ACS به شمار می رود. معیارهای خروج هر بیماری که نمی توانست تغییر در وضعیت بدن را تحمل کند مثل بیماران با ضایعات نخاعی ، هیپرتانسیون داخل جمجمه ای ، بی ثباتی همودینامیک را شامل می شد .
با توجه به موارد فوق تعداد 132 بیمار در مطالعه شرکت داده شدند . بعد از کسب اجازه از کمیته اخلاق و اخذ فرم رضایت ، بیماران در سه وضعیت طاقباز ، 15 درجه و 30 درجه قرار گرفتند و از خار ایلیاک به عنوان نقطه صفر اندازه گیری استفاده شد و برای کنترل تاثیر انقباض عضله دیواره شکم برروی اندازه گیری IAPبیمارانآرام میشدند به طوریکه نمرهآرامبخش و آژیتاسیون براساس معیار ریچموند (RASS ) در طی دوره اندازه گیری (4-) بود .
اندازه گیری از طریق مثانه و با تزریق 20 میلی لیترنرمال سالین به داخل مثانه با استفاده از کیت ابوایزر انجام شد . سه بار اندازه گیری در هر وضعیت ( صفر درجه ، 15 درجه و 30 درجه ) حداقل به فاصله 4 ساعت انجام شد. اندازه گیری در انتها ی بازدم و در حالیکه انقباض فعال عضله شکم وجود نداشت و بعد از حداقل 30 ثانیه برای جلوگیری از انقباض مثانه صورت گرفت. نرمال سالین تزریق شده اجازه می دهد تا مثانه برای اندازه گیری بعدی IAP به طور کامل تخلیه شود . اطلاعات فردی در نظر گرفته شده شامل : سن ، جنس ، وزن قد تشخیص زمان پذیرش یا مکانیزم آسیب و وجود عامل خطر IAP بود .-915225569851)Acute physidogy and Chronic Health Evalution Score version
2)Simlified Acute physiology Score Version
3)Seoyuential organ failure Assessment score
001)Acute physidogy and Chronic Health Evalution Score version
2)Simlified Acute physiology Score Version
3)Seoyuential organ failure Assessment score
متوسط سن بیماران 18±59 سال ، 71 درصد مرد ،متوسط شاخص توده بدنی 6±27 ، به طور متوسط تشخیص بیماران 43 درصد داخلی ، 39 درصد جراحی ، و 18 درصد تروما بود. شد .
شدت بیماری طی اندازه گیری در یک دوره 24 ساعته بوسیله نمره نارسایی ارگانی ( SOFA) ( SAPS) ، ( APACHE II) تعیین شد که متوسط این معیارها به ترتیب 6±10، 18± 45، 9± 21 بود. برای هر وضعیت متوسط فشار شریانی (MAP) و PEEP و حداکثر فشار بازدمی (PIP) ، متوسط فشار راه هوایی(MAP ) و RASS ثبت اطلاعات با ضریب اطمینان %95 گزارش گردید . از واریانس اندازه گیری مکرر ، آزمونt وپست هوک برای معنی داری بین گروه های IAP و جهت تعیین میزان خطا و حد توافق بین سه گروه وضعیت از روش بلند و آلتمن استفاده گردید. در این پژوهش طبق انجمن جهانی سندرم کمپارتمان شکمی میزان خطا کمتر از 1 میلیمتر جیوه و حد توافق بین 4- تا 4+ بیان شده است. بین همه معیار ها با 5 0/0 >P معنی دار در نظر گرفته شد . از 132 بیمار شرکت داده شده در این مطالعه 392 بار اندازه گیری IAP انجام شد . در 4 بیمار به دلیل عدم تحمل ،وضعیت سوم اندازه گیری در آنها انجام نشد .
شیوع IAH 46 درصد ، ACS 15 درصد ، متوسط فشار شریانی 83 میلی متر جیوه ، حداکثر فشار بازدمی 24 سانتی متر آب ، متوسط فشار راه هوایی 13 سانتی متر آب و متوسط فشار مثبت انتهای بازدمی 8 سانتی متر آب بود . متوسط RASS 8/3- تایید کننده صحت اندازه گیری IAPاست. 88 درصد بیماران د ر طی اندازه گیری شکم بسته داشتند و در 12درصد شکم باز شده بود . از نظر درمان هیپرتانسیون داخل شکمی 56درصد نیاز به دکمپرسیون شکمی و 44 درصد نیاز به شکم باز داشتند . 24درصد ا ز بیماران به دلایل نارسایی چند ارگانی (44درصد) ، ACS (22درصد)، خونریزی (18درصد) و سپسیس (15درصد) فوت کردند . سه سری اندازه گیری IAP در هر وضعیت بدن با آنالیز واریانس مقایسه شد .
مقایسه IAP در زاویه 15 و30 درجه در مقایسه با IAP در صفر درجه اختلاف معنی داری نشان داد. ( 0001/0>P ) میزان خطا و محدوده توافق به ترتیب بین زوایای 15-0 ، 1/5 میلیمتر جیوه و2/8- تا 5/8 ومیزان خطا و محدوده توافق به ترتیب بین زوایای 30-0 3/7 و 2/2- تا 9/6 گزارش گردید. داده ها نشان داد که وقتی فشار داخل شکمی به 20 میلیمتر جیوه و بیشتر رسید، زوایای کمتر از30درجه در افزایش فشار داخل شکمی موثر نیست . ( 01/0 > (P این نتیجه بیان می کند که IAP در بیماران بد حال در زوایای بین صفر و 30 درجه قابل اندازه گیری می باشد .
این پژوهش بیان می کند که بالا بردن سرتخت حتی به میزان کم باعث افزایش فشار داخل شکمی نسبت به وضعیت صفر درجه می گردد. این اختلافات وضعیتی اگرچه اندک به نظر می رسد اما هم از نظر آماری و هم از نظر بالینی مهم هستند و می تواند به شکل بالقوه منجر به تغییر در درمان بالینی شوند. ثبات وضعیت بیمار از یک اندازه گیری تا اندازه گیری بعدی در صحت اندازه گیری IAP برای تصمیم گیری بالینی اهمیت دارد.
این مطالعه پیشنهاد می نماید که اندازه گیریIAP در وضعیت صفر درجه انجام شود تا هم یک استاندارد سازی در تکنیک اندازه گیری بوجود آید و هم اینکه از خطاهای اندازه گیری در زوایای 15 و 30 درجه پیشگیری شود. مراقبت کنندگان باید به این مساله توجه داشته باشند که در صورت بالا بردن سر تخت در فواصل اندازه گیری جهت پیشگیری از پنومونی ممکن است میزان IAP کمتر از حد واقعی نشان داده شود(1) .
اندازه گیری فشار داخل شکمی به منظور شناسایی هیپرتانسیون داخل شکمی که ممکن است علاوه بر بروز اختلالات قلبی _عروقی ، تنفسی وکلیوی موجب اختلال گردش خون احشایی شود،استفاده می گردد. از آنجائیکه درجه ای از IAP که در آن درجه ، سندرم کمپارتمان شکمی تشخیص داده شود ، هنوز تعریف نشده است و همچنین تاثیر درجه ای که معمولا برای وضعیت سرتخت استفاده می شود، بر اندازه گیری وسنجش روشن نیست ، مطالعات زیادی در این زمینه در حال انجام است . از این روواسکویز و همکارانش در ویچیتا کانزاس مطالعه ای مقطعی آینده نگر با هدف تاثیر درجات مختلف سرتخت برروی فشار داخل شکمی که بوسیله اندازه گیری فشار داخل مثانه اندازه گیری می گردد، را انجام دادند.
در این پژوهش پس از کسب اجازه از کمیته استانداردهای اخلاقی در پژوهش های تجربی ودریافت موافقت از سازمان تحقیق پزشکی ویچیتا انجام گردید .معیارهای ورود نمو نه در این مطالعه شامل : بیماران ترومایی 18 سال به بالا که با جایگذاری کاتترادراری در ICU پذیرش می شدند بوده است . معیارهای خروج بارداری ، شکستگی همراه با جابجایی و هماتوم لگن ؛ سیستکتومی قبلی ، پارگی تروماتیک مثانه ، موارد منع وضعیت خوابیده به پشت ؛ نیمه خوابیده وضعیت به پهلو ، عدم ثبات همودینامیک ؛ مایع درمانی وسیع و وجود کاتتر سوپراپوبیک ذکر شده است .
با رعایت موارد فوق تعداد 45 نفر بیمارترومایی پذیرش شده بین مارس 2005 تا اگوست 2005 به عنوان واحدهای مورد پژوهش در نظر گرفته شد. روش کار بدین شرح بوده است که برای هر واحد مورد پژوهش سه بار در 5 وضعیت خوابیده به پشت ( صفر ، 15 ، 30 ، 45 و 30 درجه بالای خط افقی همراه با 15 درجه انحراف سرتخت) اندازه گیری فشار داخل مثانه که نمایانگر فشار داخل شکمی می باشد انجام شد . اندازه زاویه سرتخت بوسیله شاخص زاویه موجود در نرده هر تخت سنجیده شد . اندازه گیری فشار داخل مثانه درانتهای بازدم و حداقل یک دقیقه بعد از هر تغییر وضعیت بیمار جهت برقراری تعادل بدن انجام شد. بعلاوه همه اندازه گیری های واحدهای مورد پژوهش در طی یک دوره 4 ساعته جهت به حداقل رساندن تاثیر تغییرات وضعیت بالینی بر اندازه گیری فشار داخل مثانه صورت گرفت .کیت ابوایزر اندازه گیری فشار داخل شکمی از طریق کاتتر فولی به واحدهای پژوهش وصل گردید ؛ بعد از قرار دادن بیمار در اولین وضعیت و برقراری موازنه به آرامی 50 سی سی سرم نرمال سالین به داخل مثانه تزریق گردید . بعد از حداقل یک دقیقه، فشار اندازه گیری شده مثانه ثبت شد . این روش برای وضعیت های بعدی تا زمانی که فشار داخل مثانه برای هر 5 وضعیت تعیین شده اندازه گیری و ثبت شود ادامه یافت . IAP بیماران در هر 5 وضعیت سه بار اندازه گیری شد و متوسط IAP محاسبه گردید . از این رو 675 بار فشار داخل مثانه برای 45 بیما رمورد بررسی قرار گرفت جمع آوری داده ها در همه شیفت ها صورت گرفت .
بیماران انتخاب شده از نظر شاخص توده بدنی (BMI) براساس طبقه بندی سازمان بهداشت جهانی در سال 2000 در چهار گروه : وزن کمتر از حد طبیعی 5/18 >BMI ، وزن در محدوده طبیعی 99/24_5/18 ، اضافه وزن 99/29_25 و چاقی 30 <BMI طبقه بندی شدند. خصوصیات بالینی و دریافت مداخلات مختلف آنها عبارت بود از : ساکشن لوله بینی (7/26درصد) ، تغذیه لوله ای (6/15درصد) ، فلج روده ای ( 11درصد) ، لاپاراتومی (9/8درصد) ، استفاده از فلج کننده های شیمیایی (2/2درصد) ، اتصال به تهویه مکانیکی (3/33درصد) با فشار پلاتو 40-7 و متوسط کل آن 14/21 بود.
برای یکسان سازی واحدهای مورد پژوهش در گروه بندی BMI از آزمون کای اسکوئر و آزمونt زوج استفاده شد. جهت تاثیر زاویه سر تخت بر میزان فشار مثانه ، میانگین فشار داخل مثانه در وضعیت های مختلف بوسیله آزمون آنوا یک طرفه مقایسه شد که از نظر آماری در همه وضعیت های بدن تفاوت معنی دار داشت(001/0(P<.
برای همسان سازی گروههای طبیعی ، اضافه وزن و چاق بر اساس دسته بندی BMI از نظر تعداد ، خصوصیات فردی و بالینی از آزمون squre-chi و t- Test استفاده شد که تفاوت معنی دار را نشان نداد. همچنین آزمون پست هوک 4 در وضعیت صفر درجه اختلاف معنی دار را بین گروه های طبیعی ، اضافه وزن وچاق از نظر فشار داخل مثانه نشان داد. (001/0>P ( ولی بین گروه چاق و اضافه وزن اختلاف معنی دار دیده نشد. در وضعیت 15 درجه تفاوت معنی دار بین گروه طبیعی و چاقی دیده شد. (001/0 (P<
آزمون Ancova بین BMI به عنوان یک متغیر همراه تشدید کننده و فشار داخل مثانه تفاوت معنی داری را نشان داد. ( 013/0P= ) نتایج بیان کننده افزایش معنی دار در میزان فشار داخل مثانه به دنبال بالا بردن سر تخت که معمولا برای بیماران بستری درICU استفاده می شود، است. 72درصد تغییر در فشار داخل مثانه به دلیل تغییر در بالا بردن سر تخت می باشد به گونه ای که از وضعیت خوابیده یا صفر درجه (6 /1 ± 2/10 میلیمتر جیوه) به وضعیت 15 درجه( 7/1 ± 4/12 میلیمتر جیوه ) تفاوت معنی دار گزارش می شود.
علاوه بر این متوسط افزایش از وضعیت صفر درجه به وضعیت 30 درجه با انحراف 15 درجه 1/9 میلیمتر جیوه بود که بطور بالقوه فشار داخل شکمی بیمار را از درجه I (IAP بین 12 تا 15 میلیمتر جیوه) به درجه II ( IAP بین 21 تا 25 میلیمتر جیوه ) تغییر می دهد. همچنین اثر بالا بردن سر تخت در بیماران با BMI بالاتر به مراتب بیشتر است و36 -25 درصد تغییر در فشار مثانه به دلیل BMI بوده است . نتایج فوق ارتباط نسبی را بین بالا بردن سر تخت و فشار داخل مثانه شرح می دهد. توجه به فشار داخل شکمی به عنوان یک عامل فیزیولوژیک مهم در بیماران ویژه به شکل فزایند ه ای درحا ل افزایش است(12).
بالا بردن سر تخت یک وضعیت توصیه شده برای اکثر بیماران بستری در بخش های مراقبت ویژه می باشد. هیچ دلیل فیزیولوژیکی ، تکنیکی و بالینی برای عدم اندازه گیری IAP در وضعیت 30 درجه وجود ندارد. به این منظور پژوهشی آینده نگر ،تصادفی و تجربی با هدف بررسی امکان پذیر بودن اندازه گیری IAP در وضعیت 30 درجه توسط شوستر و همکارانش در بیمارستان عمومی الگنسی پنسیلوانیا بر روی 120 بیمار بستری در بخش های مختلف مراقبت ویژه انجام شد. معیارهای ورود به پژوهش شامل بیماران بالای 18 سال که از نظر بالینی نیاز به کاتتر ادراری داشته باشند بود و هر بیماریکه قادر به تحمل تغییر وضعیت نبود و یا دارای مثانه نوروژنیک ،پارگی مثانه و یا هماچوری بود از مطالعه خارج گردیدند.

user8323

2-2-5-1- مرور ادبیات مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکم26
2-2-5-2- مکانیابی تسهیلات با تقاضای تصادفی و تراکم29
2-3- نظریه صف35
2-3-1- مشخصات صف36
2-3-2- قانون لیتِل38
2-3-3- صف M/M/139
2-4- مسائل بهینه سازی چندهدفه40
2-4-1- فرمول بندی مسائل بهینه سازی چندهدفه40
2-4-2- الگوریتم‌های تکاملی برای بهینه سازی مسائل چندهدفه بر مبنای الگوریتم ژنتیک41
2-4-2-1- الگوریتم ژنتیک مرتب سازی نامغلوب42
2-4-2-2- الگوریتم NSGA-II محدود شده45
2-4-2-3- الگوریتم ژنتیک رتبه بندی نامغلوب46
2-4-3- الگوریتم‌های تکاملی برای بهینه سازی مسائل چندهدفه بر مبنای سیستم ایمنی مصنوعی49
2-4-3-1- سیستم ایمنی مصنوعی49
2-4-3-1-1- مفاهیم ایمنی49
2-4-3-1-2- ایمنی ذاتی51
2-4-3-1-3- ایمنی اکتسابی51
2-4-3-1-4- تئوری شبکه ایمنی52
2-4-3-1-5- الگوریتم ایمنی مصنوعی53
2-4-3-1-6- سیستم ایمنی مصنوعی و مسائل بهینه سازی چندهدفه54
2-4-3-2- الگوریتم MISA56
2-4-3-3- الگوریتم VIS61
2-4-3-4- الگوریتم NNIA64
2-5- روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه67
2-5-1- فاصله نسلی68
2-5-2- درجه توازن در رسیدن همزمان به اهداف69
2-5-3- مساحت زیر خط رگرسیون70
2-5-4- تعداد جواب‌های غیرمغلوب نهائی71
2-5-5- فاصله گذاری71
2-5-6- گسترش72
2-5-7- سرعت همگرائی73
2-5-8- منطقه زیر پوشش دو مجموعه73
2-6- جمع بندی74
فصل سوم: مدل سازی مسأله و توسعه الگوریتم‌ها76
3-1- مسأله موردتحقیق77
3-2- طراحی الگوریتم‌ها81
3-2-1- تطبیق الگوریتم‌ها با مسئله موردبررسی81
3-2-1-1- ساختار حل‌ها81
3-2-1-2- معیار توقف82
3-2-2- تطبیق الگوریتم NSGA-II برای مسئله موردبررسی83
3-2-3- تطبیق الگوریتم CNSGA-II برای مسئله موردبررسی84
3-2-4- تطبیق الگوریتم NRGA برای مسئله موردبررسی85
3-2-5- تطبیق الگوریتم MISA برای مسئله موردبررسی85
3-2-6- تطبیق الگوریتم VIS برای مسئله موردبررسی85
3-2-7- تطبیق الگوریتم NNIA برای مسئله موردبررسی86
فصل چهارم: تجزیه و تحلیل داده‌ها87
4-1- تولید مسأله نمونه88
4-2- اندازه گیری عملکرد الگوریتم‌ها براساس معیارها89
4-3- تجزیه و تحلیل نتایج92
فصل پنجم: نتیجه گیری و مطالعات آتی100
5-1- نتیجه گیری101
5-2- مطالعات آتی102
فهرست منابع و مراجع103
پیوست الف: محاسبه معیارهای هشت گانه برای الگوریتم های استفاده شده105
پیوست ب: نمودارهای بدست آمده از تجزیه و تحلیل نتایج113
پیوست ج: یک نمونه مسئله حل شده توسط الگوریتم NSGA-II118
پیوست د: کد برنامه نویسی الگوریتم NSGA-II در محیط MATLAB123

فهرست اشکال
شکل 2-1- مدل پایه‌ای صف36
شکل 2-2- مجموعه حل‌های غیرمغلوب41
شکل 2-3- نمایشی از نحوه عملکرد NSGA-II43
شکل2-4- الگوریتم NRGA47
شکل 2-5- سلول B، آنتی ژن، آنتی بادی، اپیتوپ، پاراتوپ و ادیوتوپ50
شکل 2-6- فلوچارت الگوریتم MISA57
شکل 2-7- یک شبکه تطبیقی برای رسیدگی به حافظه ثانویه60
شکل 2-8- فلوچارت الگوریتم VIS62
شکل 2-9- تکامل جمعیت NNIA65
شکل 2-10- نمایش حل‌های مناسب69
شکل 2-11- مساحت زیر خط رگرسیون70
شکل 2-12- بیشترین گسترش73
شکل 3-1- مکانیسم عملگر تقاطع83
شکل 4-1- نمودار همگرایی الگوریتم‌ها براساس شاخص MID90
شکل 4-2- نتیجه بدست آمده از آنالیز واریانس برای معیار تعداد جواب‌های غیرمغلوب94
شکل 4-3- نتیجه بدست آمده از آزمون توکی برای معیار تعداد جواب‌های غیرمغلوب95
شکل 4-4- نتیجه به دست آمده از آنالیز واریانس برای تعداد جواب‌های غیرمغلوب97

فهرست جداول
جدول 4-1- مشخصات هر نمونه88
جدول 4-2- گروه بندی الگوریتم‌ها براساس معیار تعداد جواب‌های غیرمغلوب96
جدول 4-3- مقایسه الگوریتم‌ها ازنظر معیارهای مختلف و در حالت‌های گوناگون98
جدول 4-4- متوسط معیارهای الگوریتم‌ها و رتبه بندی الگوریتم‌ها براساس آن99
4221207272
82867519050 1
00 1

تعریف مسأله

1-1- مقدمه
با رشد روز افزون معاملات تجاری در سطح جهان و در سال‌های اخیر، ظهور پدیده تجارت الکترونیک و بانکداری الکترونیک به عنوان بخش تفکیک ناپذیر از تجارت الکترونیک مطرح شد. بانکداری الکترونیک اوج استفاده از فناوری انفورماتیک و ارتباطات و اطلاعات برای حذف دو قید زمان و مکان از خدمات بانکی است. ضرورت یک نظام بانکی کارامد برای حضور در بازارهای داخلی و خارجی ایجاب می‌کند تا بانکداری الکترونیک نه به عنوان یک انتخاب، بلکه ضرورت مطرح شود. امروزه پایانه فروش، پایانه شعب، دستگاه‌های خودپرداز و ... نماد بانکداری الکترونیک است و یافتن مکان بهینه برای این پایانه‌ها و دستگاه‌ها می‌تواند نقش مهمی در حضور یک بانک یا مؤسسه در بازارهای داخلی و خارجی داشته باشد [1].
1-2- مکانیابی تسهیلات
فرض کنید که یک شرکت رسانه‌ای می‌خواهد که ایستگاه‌های روزنامه را در یک شهر ایجاد کند. این شرکت در حال حاضر جایگاه‌هایی را به صورت بالقوه در شهرهای همسایه اش مشخص کرده‌است و هزینه ایجاد و نگهداری یک جایگاه را می‌داند. همچنین فرض کنید که تقاضای روزنامه در هر شهر همسایه مشخص است. اگر این شرکت بخواهد تعدادی از این ایستگاه‌ها را ایجاد کند، باتوجه به مینیمم کردن کل هزینه‌های ایجاد و نگهداری این ایستگاه‌ها و همچنین متوسط مسافت سفر مشتریان، این ایستگاه‌ها در کجا باید واقع شوند؟
سؤال قبل یک مثال از مسأله مکانیابی تسهیلات بود. مکانیابی تسهیلات یعنی اینکه مجموعه‌ای از تسهیلات (منابع) را به صورت فیزیکی به گونه‌ای در یک مکان قراردهیم که مجموع هزینه برآورده کردن نیازها (مشتریان) باتوجه به محدودیت‌هایی که سر راه این مکانیابی قرار دارد، مینیمم گردد.
از سالهای 1960 به این طرف مسائل مکانیابی یک جایگاه ویژه‌ای را در حیطه تحقیق در عملیات اشغال کرده‌اند. آنها وضعیت‌های مختلفی را درنظر گرفته‌اند که می‌توان به موارد ذیل اشاره کرد: تصمیم گیری در مورد مکان کارخانجات، انبارها، ایستگاه‌های آتش نشانی و بیمارستان‌ها.
به طور اساسی، یک مسأله مکانیابی بوسیله چهار عنصر زیر توصیف می‌شود:
مجموعه‌ای از مکانها که در آن‌ها، تسهیلات ممکن است ایجاد یا باز شوند. برای هر مکان نیز بعضی اطلاعات درمورد هزینه ساخت یا باز نمودن یک تسهیل در آن مکان مشخص می‌شود.
مجموعه‌ای از نقاط تقاضا (مشتریان) که برای سرویس دهی به بعضی از تسهیلات اختصاص داده شوند. برای هر مشتری، اگر بوسیله یک تسهیل معینی خدمت‌رسانی شود، بعضی اطلاعات راجع به تقاضایش و درمورد هزینه یا سودش بدست می‌آید.
لیستی از احتیاجات که باید بوسیله تسهیلات بازشده و بوسیله تخصیص نقاط تقاضا به تسهیلات برآورده شود.
تابعی از هزینه یا سودهایی که به هر مجموعه از تسهیلات اختصاص پیدا می‌کند.
پس هدف این نوع مسائل، پیدا کردن مجموعه‌ای از تسهیلات است که باید باتوجه به بهینه کردن تابع مشخصی باز شوند.
مدل‌های مکانیابی در یک زمینه گسترده از کاربردها استفاده می‌شود. بعضی از این موارد شامل موارد ذیل است: مکانیابی انبار در زنجیره تأمین برای مینیمم کردن متوسط زمان فاصله تا بازار؛ مکانیابی سایت‌های مواد خطرناک برای مینیمم کردن درمعرض عموم قرار گرفتن؛ مکانیابی ایستگاه‌های راه آهن برای مینیمم کردن تغییرپذیری زمان بندی‌های تحویل بار؛ مکانیابی دستگاه‌های خودپرداز برای بهترین سرویس دهی به مشتریان بانک و مکانیابی ایستگاه‌های عملیات تجسس و نجات ساحلی برای مینیمم کردن ماکزیمم زمان پاسخ به حادثه‌های ناوگان دریایی. با اینکه این پنج مسأله توابع هدف مختلفی دارند، همه این مسائل در حوزه مکانیابی تسهیلات واقع می‌شوند. درواقع، مدل‌های مکان‌یابی تسهیلات می‌توانند در موارد ذیل متفاوت باشند: توابع هدفشان، معیارهای فاصله‌ای که به کار می‌برند، تعداد و اندازه تسهیلاتی که قرار است مکانیابی شوند و چندین معیار تصمیم گیری مختلف دیگر. بسته به کاربرد خاص هر مسأله، درنظرگرفتن این معیارهای مختلف در فرموله کردن مسأله، منتهی به مدل‌های مکانیابی بسیار متفاوتی خواهدشد.
1-3- بیان مسأله
هدف از اجرای این تحقیق، مکان‌یابی سیستم‌های خدمات رسانی ثابت با ظرفیت خدمت محدود می‌باشد. یعنی دستگاه‌های خدمت‌رسان به چه تعداد و در چه محل‌هایی استقرار یابند و چه مراکز تقاضایی به این دستگاههای خدمت‌رسان تخصیص یابند. در چنین سیستم‌هایی، زمانی که برای انجام سرویس موردنیاز است تصادفی است و همچنین تقاضای انجام خدمت در نقاط تصادفی از زمان می‌رسند که این تقاضا از جمعیت بزرگی از مشتریان سرچشمه می‌گیرد و معمولاً این سرویس‌دهی در نزدیک ترین تسهیل انجام می‌شود. چنین سیستم‌های خدمت‌رسانی، سیستم‌های صف را تشکیل می‌دهند. مدل‌های مختلفی برای حل این مسائل مکان‌یابی سیستم صف ارائه شده‌است.
دو ناحیه کاربردی وجود دارد که ما با این مدل‌ها روبه رو می‌شویم [4]: اولی در طراحی سیستم ارتباط کامپیوتری مانند اینترنت می‌باشد. در یک سیستم ارتباط کامپیوتری، ترمینال‌های مشتری (کاربران اینترنت) به کامپیوترهای میزبان (سرورهای پروکسی، سرورهای آینه) وصل می‌شوند که قابلیت پردازش بالا و/یا پایگاه داده‌های بزرگ میزبان دارند. زمانی که طول می‌کشد تا سرور درخواست را پردازش کند بستگی به سرعت پردازش سرور و و نوع درخواست دارد که آن هم تصادفی است. زمانی که مشتری برای پاسخ سرور منتظر می‌ماند نیز بستگی به تعداد و اندازه درخواست‌های داده‌ای است که در حال حاضر در صف هستند. به طور کلی، درخواست‌های مشتری‌ها به نزدیکترین سرور وصل می‌شود. این مکان و ظرفیت سرورها، پارامترهای طراحی بحرانی هستند. این انتخاب پارامترها تأثیری قابل توجه روی کیفیت خدمات دارد، به طوری که بوسیله یک مشتری درک می‌شود.
کاربرد دوم شامل طراحی یک سیستم دستگاه خودپرداز برای بانک است. مشتری‌ها به صورت تصادفی به یک دستگاه خودپرداز می‌رسند. اگر هنگامی‌که آن‌ها می‌رسند، دستگاه آزاد باشد، آن‌ها بلافاصله سرویس دهی می‌شوند. در غیر این صورت ، آن‌ها به صف می‌پیوندند یا آن جا را ترک می‌کنند. زمان تصادفی که یک مشتری در یک دستگاه سپری می‌کند بستگی به تعداد و نوع تراکنشی (مثلاً مانده حساب، دریافت وجه، انتقال وجه و غیره) دارد که او انجام می‌دهد. منبع قابل توجه دیگر زمان مشتری در یک دستگاه، شامل تأخیر ارسال در مدت شبکه ارتباط بانک است. از آن جا که دستگاه‌ها ثابت هستند، مشتری‌ها باید به یک مکان خودپرداز مراجعه کنند تا یک تراکنش را انجام دهند. گاهی اوقات، مردم در طول مسیر خود (مثلاً از خانه به محل کار) برای استفاده از یک دستگاه خودپرداز به آن مراجعه می‌کنند؛ گاهی اوقات هم، آن‌ها آن را طبق یک مسیر از پیش برنامه‌ریزی‌شده (مثلاً مسیر روزانه بین خانه و کار) استفاده می‌کنند. به طور کلی، آن‌ها از تسهیل با کمترین هزینه قابل‌دسترس استفاده می‌کنند. برای مثال، هنگامی‌که هزینه‌ها بوسیله مسافت سفر تعیین می‌شود، مشتری‌ها نزدیکترین تسهیل به محل کار/خانه یا نزدیکترین مسیر روزانه شان را انتخاب می‌کنند. ما فرض می‌کنیم که مشتری‌ها هیچ اطلاعی از تأخیرات دستگاه‌های خودپرداز ندارند و از این رو نزدیکترین تسهیل را برای درخواست سرویسشان انتخاب می‌کنند.
فرضیاتی که برای این مسأله درنظر گرفته می‌شود به شرح زیر می‌باشد:
گره مشتری وجود دارد که هر یک درخواستی را برای سرویس ایجادمی‌کند؛
تعداد درخواست‌ها در واحد زمان، یک جریان پوآسن مستقل را تشکیل می‌دهند؛
گره خدمت‌رسان بالقوه وجود دارد؛
مشتریان از مراکز تقاضا به سمت مکان این دستگاه‌ها حرکت می‌کنند؛
هر جایگاه خدمت فقط یک خدمت دهنده دارد؛
زمان سرویس یک دستگاه به صورت تصادفی و توزیع نمایی دارد؛
مکان دستگاه‌ها ثابت هستند؛
مشتری‌ها بوسیله نزدیکترین دستگاه خودپرداز خدمت‌رسانی می‌شوند؛
میزان زمان انتظار مشتریان در صف نباید از یک حد ازپیش تعیین شده، فراتر رود؛
ماکزیمم تعداد دستگاه‌های خدمت‌رسان از قبل تعریف شده‌است.
در مسائل مکان‌یابی تک هدفه، هدف مسأله معمولاً هزینه یا پوشش بوده‌است، امّا در مسائل چندهدفه، حداقل یک هدف دیگر وجود دارد که باتوجه به طبیعت این گونه مسائل، با هدف اوّلی درتضاد است.
براین اساس، ما مروری بر روی اهدافی که در مسائل مکان‌یابی چندهدفه توسعه یافته می‌کنیم. این اهداف می‌توانند به صورت زیر توصیف شوند:
هزینه: انواع مختلفی از هزینه وجود دارد. این انواع می‌توانند به دو قسمت ثابت و متغیر تقسیم شوند. هزینه‌های ثابت شامل هزینه شروع و نصب به همراه سرمایه گذاری می‌باشد. هزینه‌های متغیر می‌تواند هزینه حمل و نقل، عملیات، تولید، خدمات، توزیع، تدارکات، دفع پسماند، نگهداری و محیطی باشد. هزینه حمل و نقل بیشترین و هزینه نصب بعد از آن قرار دارد. مسائل مختلفی از یک معیار «هزینه کل» استفاده کرده‌اند که شامل همه هزینه‌ها تحت یک هدف می‌شود.
ریسک‌های محیطی: این هدف شامل ریسک حمل و نقل، ریسک طبیعی، دفع پسماند یا ریسک رفتاری، یا «اثرات نامطلوب» عمومی است که جایگاه بزرگی دارد. به هر حال نسبت ریسک محیطی در مسائل مکان‌یابی کمتر از دیگر هزینه‌هاست.
پوشش: تقریبا مجموعه کامل مسائل مکان‌یابی درباره پوشش مسافت، زمان، مبلغ و یا حتی انحراف پوشش است. اگرچه بسیاری از مسائل از مسافت و پوشش جمعیّت به عنوان هدفشان استفاده می‌کنند، اما در بعضی مسائل نیز زمان مهّم است.
مفهوم تساوی نیز در این طبقه قرار می‌گیرد، زیرا این نوع مسائل، روشی منصفانه در برخورد با مسأله پوشش دارند.
سطح و کارائی خدمت: در این طبقه، هدف سطح سرویس به همراه کارائی قرارمی‌گیرد.
سود: بعضی مسائل به سود خالص (تفاوت بین سودها و هزینه‌ها) علاقمندند.
اهداف دیگر: بعضی اهداف دیگر که در مسائل مکان‌یابی استفاده می‌شوند، مانند دستیابی به منابع به همراه ریسک‌های سیاسی و اجتماعی که نمی‌توانند در دیگر دسته‌ها قرار بگیرند.
سه هدف برای مسأله موردنظر ما درنظر گرفته شده‌است که هدف اول، مینیمم کردن متوسط تعداد مشتریان درحال سفر؛ هدف دوم، مینیمم کردن متوسط تعداد مشتریان در حال انتظار و هدف سوم، ماکزیمم کردن مجموع کارکرد دستگاه‌ها در واحد زمان می‌باشد.
1-4- روش حل
به طور کلی مسائل مکانیابی تسهیلات اصولاً NP-Hardهستند و بعید است بدون کاربرد الگوریتم‌های فراابتکاری بتوان حلّی بهینه را در زمان معقول پیدا کرد و زمان محاسباتی نیز با توجه به اندازه مسأله به صورت نمایی افزایش می یابد.


مسائل بهینه یابی چندهدفه، به طور کلی با یافتن حل‌های بهینه پارتو یا حل‌های مؤثّر کارمی‌کنند. چنین حل‌هایی غیرمغلوب هستند، یعنی هنگامی‌که همه اهداف درنظر گرفته شوند، هیچ حل دیگری برتر از آن‌ها نیست. بیشترین روش‌هایی که برای حل مسائل بهینه سازی چندهدفه به کار می‌روند، روشهای ابتکاری و فراابتکاری هستند.
برای مسائلی که در کلاس NP-Hard قرار می گیرند، تاکنون روش‌های دقیقی که بتواند در حالت کلی و در زمانی معقول به جواب دست یابد توسعه داده نشده‌است. از این رو روش‌های ابتکاری و فراابتکاری مختلفی را برای حل این دسته از مسائل به کار می برند تا به جواب‌های بهینه یا نزدیک به بهینه دست یابند.
در این تحقیق سعی شده‌است که از چندین الگوریتم بهینه سازی چندهدفه استفاده شود. الگوریتم NSGA-II به این خاطر انتخاب شده‌است که این الگوریتم در بسیاری از مقالات به عنوان الگوریتم مرجع مقایسه گردیده‌است. الگوریتم CNSGA-II نیز به این علت انتخاب شده‌است که روشی مناسب برای برخورد با محدودیت‌های حل مسأله ارائه می‌کند. چون باتوجه به ماهیت مسأله، چندین محدودیت سر راه حل مسأله ایجاد شده‌است که راهکار مناسبی برای رسیدگی به این محدودیت‌ها ایجاب می‌کند. الگوریتم NRGA نیز چون جزء جدیدترین الگوریتم‌های ارائه شده در زمینه بهینه سازی چندهدفه می‌باشد مورداستفاده قرار گرفته‌است. در سال‌های اخیر، الگوریتم‌های بهینه سازی مبتنی بر ایمنی مصنوعی بسیار مورد توجه قرار گرفته‌است که به همین علت، ما در این تحقیق سعی بر آن داریم که از کارآمدترین این الگوریتم‌ها استفاده کنیم. از میان الگوریتم‌های چندهدفه ایمنی، ما از MISA، VIS و NNIA استفاده کرده ایم که در ادامه و در بخش‌های بعدی به نتایج خوبی که دراثر استفاده از این الگوریتم‌ها بدست می‌آید، اشاره می‌کنیم.
1-5- اهمیت و ضرورت تحقیق
امروزه پایانه فروش، پایانه شعب، دستگاه‌های خودپرداز و ... نماد بانکداری الکترونیک است و یافتن مکان بهینه برای این پایانه‌ها و دستگاه‌ها می‌تواند نقش مهمی در حضور یک بانک یا مؤسسه در بازارهای داخلی و خارجی داشته باشد.
در این تحقیق سعی شده‌است که محدودیت‌ها و چالش‌های فراروی این مسأله در دنیای واقعی تا حد ممکن درنظر گرفته شود. به همین منظور محدودیت‌هایی ازقبیل ماکزیمم دستگاه خدمت‌رسانی که می‌تواند به کار گرفته شود و حدّ بالای زمان انتظار برای مشتریان منظور شده‌است. همچنین به‌دلیل اینکه یک هدف، پاسخگوی انگیزه ایجاد شده برای انجام این طرح نمی‌باشد، این مسأله به صورت یک مسأله چند هدفه درنظر گرفته شده‌است تا به دنیای واقعی هر چه نزدیکتر گردد تا در درجه اول سود بانک یا مؤسسه ازطریق انتخاب بهینه دستگاه‌های خودپرداز افزایش یابد و در درجه دوم رضایت مشتریان جلب گردد، به صورتی که هم پوشش مناسب برای خدمت‌رسانی داده شود و هم مدت زمان خدمت‌رسانی به مشتریان حداقل گردد.
1-6- اهداف تحقیق
اهدافی که برای اجرای این تحقیق درنظر گرفته شده‌است عبارتند از:
مروری بر مدل‌های مکانیابی تسهیلات به صورت کلّی
مروری بر مدل‌های مکانیابی تسهیلات با تقاضای تصادفی و تراکم
بهینه نمودن استفاده از دستگاه‌های‌های خدمت‌رسان؛ یعنی دستگاه‌های خدمت‌رسان به چه تعداد و در چه محل‌هایی استقرار یابند و چه مراکز تقاضایی به این دستگاههای خدمت‌رسان تخصیص یابند، به‌صورتی که هم رضایت مشتریان جلب شود (این هدف را به صورت کمینه کردن مجموع زمان خدمت‌رسانی به مشتریان که شامل زمان سفر مشتریان از مراکز تقاضا به مراکز خدمت‌رسانی و زمان انتظار آنها برای خدمت‌رسانی درنظر گرفته ایم) و هم مجموع کارکرد دستگاه‌ها بیشینه گردد.
تطبیق الگوریتم‌های مختلف با مسئله مورد بررسی
تجزیه و تحلیل الگوریتم‌های مختلف با استفاده از روشهای مقایسه الگوریتم‌ها
1-7- جمع بندی
مسأله مکانیابی تسهیلات در حالت کلی به عنوان یک مسأله NP-Hard شناخته می‌شود. به‌خصوص در حالتی که محدودیت‌های دیگری نظیر محدودیت انتظار مشتریان در صف و محدودیت در تعداد تسهیلات باز شده نیز مطرح باشد، پیچیدگی این مسأله چندین برابر می‌شود.
هدف اول، مینیمم کردن متوسط تعداد مشتریان درحال سفر؛ هدف دوم، مینیمم کردن متوسط تعداد مشتریان در حال انتظار و هدف سوم، ماکزیمم کردن مجموع کارکرد دستگاه‌ها در واحد زمان می‌باشد.
پایان نامه دارای ساختار زیر است: در فصل دوم برای آنکه خواننده با مفاهیمی که در این پایان‌نامه به کار گرفته شده‌است و همچنین موضوعاتی که در این تحقیق مطرح می‌شود، مروری جامع بر ادبیات موضوعات در بخش‌های مختلف اعم از مکانیابی تسهیلات به صورت کلی، مکانیابی تسهیلات باتوجه به مسأله مطرح شده و محدودیت‌های ایجاد شده به عمل آمده‌است. همچنین الگوریتم‌های چندهدفه‌ای که در این پروژه - ریسرچبه کار گرفته شده‌است به طور عمومی معرفی و تشریح می‌شوند. باتوجه به اینکه سه الگوریتم از این الگوریتم‌ها از مبحث ایمنی مصنوعی است، سعی شده‌است تا مروری مختصر بر این موضوع نیز انجام شود. در آخر نیز روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه معرفی شده‌اند.
در فصل سوم ابتدا درمورد مسئله مورد بررسی این تحقیق توضیحات کافی داده می شود و اهداف و محدودیت های فراروی آن شرح داده می شود. سپس، در قسمت طراحی الگوریتم‌ها، الگوریتم‌های درنظر گرفته شده را با مسئله مورد بررسی تطبیق می دهیم.
در فصل چهارم پس از اینکه درمورد تولید مسائل نمونه صحبت کردیم، به تجزیه و تحلیل و مقایسه الگوریتم‌ها خواهیم پرداخت که این کار را به این صورت انجام می‌دهیم که ابتدا معیارهای مختلف را برای تمامی الگوریتم‌ها اندازه گیری کرده و سپس این نتایج را باتوجه به روش‌های موجود درزمینه تحلیل واریانس، مورد تجزیه و تحلیل قرارمی‌دهیم.
در فصل پنجم نیز پس از مروری کلّی بر تحقیقی که انجام شده، چند زمینه تحقیق برای مطالعات آتی به خوانندگان پیشنهاد می‌شود.
4221207272
82867519050 2
00 2

مرور ادبیات

2-1- مقدمه
در این فصل، ابتدا به بحث درباره موضوع مکانیابی تسهیلات می پردازیم. در ابتدا، به مروری بر ادبیات این موضوع می پردازیم. در ادامه، مسائل پوشش که مهمترین و پرکاربردترین مباحث در این حوزه است را توضیح داده و مدل های دیگر مکانیابی تسهیلات را معرفی می نمائیم. سپس باتوجه به اینکه مسئله ما در حیطه مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکم می باشد، به مرور ادبیات این حیطه و خصوصیات این نوع مدل ها می پردازیم. سپس سیستم صف و مسائلی که در این حوزه و ادامه تحقیق، موردنیاز است، شرح داده می شود. همچنین الگوریتم‌های چندهدفه‌ای که در این پروژه - ریسرچبه کار گرفته شده‌است به طور عمومی معرفی و تشریح می‌شوند. باتوجه به اینکه سه الگوریتم از این الگوریتم‌ها از مبحث ایمنی مصنوعی است، سعی شده‌است تا مروری مختصر بر این موضوع نیز انجام شود. در آخر نیز روش‌های اندازه گیری عملکرد الگوریتم‌های چندهدفه معرفی شده‌اند.
2-2- مکانیابی تسهیلات
2-2-1- مرور ادبیات در موضوع مکانیابی تسهیلات [5]
می‌توان استدلال نمود که تحلیل‌های مکانیابی در قرن هفدهم و با مسأله پیِر دِ فِرمَت شروع شد: فرض کنید که سه نقطه در یک صفحه وجود دارد، نقطه چهارمی را پیداکنید به صورتی که مجموع فواصلش تا سه نقطه فرض شده مینیمم گردد. اِوانجلیستا توریچلی نیز یکی از کسانی است که ساختارهای فضایی که نیاز به یافتن یک چنین میانه‌های فاصله‌ای یا «نقاط توریچلی» دارند، به آن نسبت داده شده‌است. به هر حال در قرن اخیر، با «مسأله وِبِر» از آلفرد وِبِر و بعضی از گسترش‌های بعدی اش در مسئله درِزنر و همکارانش دوران جدید تحلیلهای مکانیابی با کاربردش در مکانیابی صنعتی شروع می‌شود. مسأله وِبِر نقاطی را در یک سطح پیدا می‌کند که مجموع فواصل اقلیدسی وزن‌دهی شده آن تا یک مجموعه نقاط ثابت مینیمم گردد. این مسأله به این صورت تفسیر می‌شود که مکان یک کارخانه را به گونه‌ای پیداکنیم که کل مسافت وزن دهی شده آن از تأمین کنندگان و مشتریان مینیمم گردد، که وزن‌ها بیانگر حجم مبادلات می‌باشد، مثل وزن موادی که باید از یک تأمین‌کننده منتقل شود یا حجم محصولات نهایی که برای یک مشتری ارسال می‌شود.
تنها در دهه 60 و 70، با فراهم بودن گسترده قدرت محاسبات برای پردازش و تحلیل مقادیر بزرگی از داده‌ها بود که ما شروع واقعی بهینه سازی جدید و به همراه آن، تحقیق در مسائل مکانیابی را مشاهده می‌کنیم. این دوره را به این دلیل دوره بلوغ تحلیلهای مکانیابی می‌نامند که گرایش زیادی به مطالعه p-median کلاسیک، p-center، پوشش مجموعه، مکانیابی تأسیسات ساده و مسائل تخصیص درجه دوم و گسترش آنها پیدا شد.
در این دوره، کوپر مسأله تک تسهیلی وِبِر را گسترش داد تا مسأله تخصیص-مکانیابی چندتسهیلی را ایجاد کند. سپس مارانزانا این مسأله را از فضای پیوسته به شبکه گسترش داد. به هر حال حکیمی است که شالوده تحقیق در p-median و مسائل دیگر در یک شبکه را کامل می‌کند. مسأله p-median شبیه مسأله وِبِر در یک سطح، مکان p نقطه را در یک شبکه به گونه‌ای پیدا می‌کند که کل مسافت وزن دهی شده با تقاضا را تا نزدیکترین تسهیل مینیمم می‌کند. به علاوه حکیمی مسأله p-center اصلی را ارائه می‌کند که مکان p نقطه را در یک شبکه به گونه‌ای پیدا می‌کند که ماکزیمم مسافت تقاضا تا نزدیکترین تسهیل مینیمم گردد. نتیجه مهم قضیه حکیمی نیز مشخص است، یعنی اینکه یک حل در مسأله p-median، همیشه در گره‌های یک شبکه در مسأله واقع می‌شود، درحالیکه یک حل در مسأله p-center لزومی ندارد که در گره‌ها واقع شود. کاریف و حکیمی اثبات می‌کنند که مسائل p-center و p-median، NP-Hard هستند.
مدلهای پوشش، مسائلی را درنظر می‌گیرند که تقاضاها باید در یک مسافت مطمئنی از زمان سفر پوشش داده شوند. تورِگاس و همکارانش روش حلی را برای اینگونه مسائل که در کاربرد با نام مسأله پوشش مجموعه (LSCP) شناخته می‌شود را فرمول بندی و ارائه کردند. مکان تسهیلات برای خدمات اورژانسی از این مسأله الهام می‌شوند. چِرچ و رِوِله، مسأله مکانیابی حداکثر پوشش (MCLP) را ارائه کردند. این مسأله، مکانهای بهینه‌ای را برای تعداد معیّنی از تسهیلات پیدا می‌کند که جمعیّتی که درون یک فاصله خدمت‌رسانی مشخص، پوشش داده می‌شوند، حداکثر گردد.
دیگر مسأله بنیادی با مفهوم پوشش، مسأله تخصیص درجه دوم (QAP) می‌باشد که به دلیل طبیعت درجه دوّم فرموله کردن تابع هدفش به این نام خوانده می‌شود. تعدادی (N) تسهیل که در همان تعداد جایگاه (N) به گونه‌ای واقع می‌شوند که کل هزینه انتقال مواد درمیان آنها مینیمم گردد. هزینه حرکت مواد بین هر دو مکان بوسیله ضرب یک وزن یا جریان در فاصله بین مکان‌ها بدست می‌آید. مدل خطی آن بوسیله کوپمنس و بِکمن ارائه شد که مورد خاصی از مسأله حمل و نقل شناخته شده‌است. این مسأله NP-Hard علائق بسیاری را برای تحقیق ایجاد کرد و هنوز هم حل آن در هر اندازه ای، بسیار سخت به نظر می‌رسد.
دهه 80 و 90 تحقیقاتی را در تحلیل مکانیابی دید که به رشته‌های دیگر نیز گسترش پیدا کرد و نتایج سودمندی را از دیدگاه مدل سازی و کاربرد بدست آورد. این نوآوری‌ها تا به امروز نیز ادامه دارد.
از جمله این مدل‌ها می‌توان به مکان‌یابی رقابتی، مکان تسهیلات گسترده، مکانیابی تصادفی، مسیریابی، مکان‌یابی هاب و جلوگیری از جریان اشاره کرد. به عنوان کاربردهای جدید در این دوران می‌توان به ناحیه‌هایی ازجمله برنامه ریزی خدمات اورژانسی، کاربردهای محیط زیستی همچون تسهیلات زیان آور و ترکیب مکانیابی با مدیریت زنجیره تأمین اشاره کرد.
مدلهای مکانیابی رقابتی: حکیمی مدلهای رقابتی را درون تئوری مکانیابی وارد کرد. بیشتر نتایج در این زمینه یک فضای گسسته یا یک شبکه را درنظر می‌گیرند. اخیراً مدل‌های مکانیابی رقابتی پیوسته توسط داسکی و لاپورته ارائه شده‌است.
مدلهای مکانیابی تسهیلات گسترده: یک تسهیل اگر در مقایسه با محیطش، خیلی کوچکتر از یک نقطه به نظر برسد، گسترده نامیده می‌شود. چنین مدل‌هایی بارها در وضعیت‌های طراحی شبکه به کار گرفته شده‌است. مِسا و بوفی یک سیستم دسته بندی شامل مسائلی برای تعیین خط مسیر حمل و نقل مواد خطرناک ارائه کردند. اخیراً یک مثال بوسیله بریمبرگ و همکارانش آورده شده‌است که مسأله مکانیابی یک دایره درون یک کره را درنظر می‌گیرد، به صورتی که فاصله از تسهیلات موجود باید مینیمم گردد.
مکانیابی تصادفی: مدلهای مکانیابی تصادفی هنگامی رخ می‌دهند که داده‌های مسأله فقط به روشی احتمالی شناخته شوند. بِرمن و همکارانش مسائلی را درنظر گرفتند که ورود به تسهیلات به صورت تصادفی است و اثر تراکم نیز باید درنظر گرفته می‌شد. لوگندران و تِرِل یک مسأله LA با ظرفیت نامحدود را با تقاضاهای تصادفی حسّاس به قیمت درنظر گرفتند. بِرمن و کراس یک کلاس کلی از «مسائل مکانیابی با تقاضای تصادفی و تراکم» را ارائه کردند.
مسیریابی مکان: ترکیب تحلیلهای مکانیابی با زمینه‌های شناخته شده مسائل مسیریابی وسایل نقلیه، ناحیه جدید دیگری از مدل سازی، یعنی مسیریابی مکان را ایجاد می‌کند.
مکانیابی هاب: در چنین مسائل مکانیابی، هاب‌ها به عنوان متمرکزکننده‌ها یا نقاط سوئیچینگ ترافیک عمل می‌کنند، خواه برای مسافران خطوط هوایی باشد، خواه بسته‌های کوچک در سیستمهای سوئیچینگ. جریان بین منابع و مقاصد اساس مدل سازی این دسته از مسائل را تشکیل می‌دهد. اُکِلی اساس تحلیلهای مکانیابی هاب را بنانهاد. آن مدل‌ها به صورتی مدل سازی شد تا بهترین مکان‌ها برای متصل کردن ترمینال‌ها را باتوجه به مینیمم کردن هزینه‌های کل تراکنش‌ها، پیدا کند.
جلوگیری از جریان: در بسیاری از مسائل مکانیابی، تقاضاها فرض می‌شوند که در گره‌های یک شبکه رخ می‌دهند. یک تغییر جالب که بوسیله مسائل فرض می‌شود این است که تقاضا بوسیله جریانی از وسایل نقلیه یا پیاده‌هایی که از میان اتصالات شبکه عبور می‌کنند، ارائه می‌شوند. ازجمله کاربردهای این حیطه می‌توان به دستگاه‌های خودپرداز و ایستگاه‌های نفتی اشاره کرد. چنین مسائلی اولین بار توسط هاچسون و بِرمن و همکارانش ارائه شد.
مکانیابی یا جابجایی وسایل خدمات اورژانسی: مقدار شگرفی از تحقیقات در مطالعه مکانیابی وسایل خدمات اورژانسی ایجاد شده‌است. چَپمن و وایت اولین کار را برحسب محدودیت‌های کاربردی که در LSCP کاربرد دارد، ارائه کردند. مطالعه میرچندانی و اُدُنی زمان‌های سفر تصادفی را در مکانیابی تسهیلات اورژانس درنظر می‌گیرد. همچنین باتوجه به کاربردهای وسایل اورژانسی، مدل MEXCLP که توسط داسکین ارائه شده‌است، مدل MCLP را با محدودیت‌های احتمالی گسترش می‌دهد. رِپِده و برناردو، مدل TIMEXCLP را ارائه کردند که MEXCLP را با تغییر تصادفی در تقاضا گسترش می‌دهد.
کاربردهای مرتبط با محیط زیست: تسهیلات زیان آور و مفاهیم دیگر: بعضی از تحلیلهای مکانیابی در موضوع محیط زیست، مربوط به مکان تسهیلاتی می‌شود که برای جمعیت مجاورشان مضر یا نامطبوع هستند. گُلدمن و دیِرینگ و همچنین چِرچ و گارفینکل جزء اولین افرادی بودند که مکانیابی برای تسهیلات زیان آور یا تسهیلاتی که ترجیح می‌دهیم دور از دسترس باشند را درنظر گرفتند.
تحلیلهای مکانیابی با مدیریت زنجیره تأمین: مدیریت زنجیره تأمین (SCM) شامل تصمیمات درمورد تعداد و مکان تسهیلات و جریان شبکه در حیطه تأمین، تولید و توزیع می‌شود. در اولین کارها در برنامه ریزی پویا، بالُو از برنامه نویسی پویا برای جابجایی انبارها در طول دوره برنامه‌ریزی استفاده می‌کند. جئوفریون و پاورز محیطی یکپارچه را بین مکان و SCM درنظر می‌گیرد.
2-2-2- معیارهای دسته بندی مدلهای مکانیابی
مدلهای مکانیابی تسهیلات می‌توانند باتوجه به اهداف، محدودیتها، حل‌ها و دیگر خصوصیات دسته بندی شوند. در زیر، هشت معیار رایجی که برای دسته بندی مدل‌های مکانیابی تسهیلات سنتی استفاده می شود، آورده شده‌است ‍‍[6]:
مشخصات مکان: مشخصات مکان تسهیلات و جایگاه‌های تقاضا شامل مدل‌های مکانیابی پیوسته، مدل‌های شبکه گسسته، مدل‌های اتصال هاب و غیره می‌شود. در هر یک از این مدل‌ها، تسهیلات می‌توانند فقط در جایگاه‌هایی واقع شوند که توسط شرایط مکانی مجاز هستند.
اهداف: هدف یکی از معیارهای مهم برای دسته بندی مدل‌های مکانیابی است. هدف مدل‌های پوشش، مینیمم کردن تعداد تسهیلات برای پوشش همه نقاط تقاضا یا ماکزیمم کردن تعداد تسهیلاتی است که باید پوشش داده شوند. هدف مدل‌های p-center مینیمم کردن ماکزیمم فاصله (یا زمان سفر) بین نقاط تقاضا و تسهیلات است. آن‌ها اغلب برای بهینه کردن تسهیلات در بخش‌های عمومی همچون بیمارستان‌ها، اداره‌های پست و آتش‌نشانی‌ها استفاده می‌شوند. مدل‌های p-median سعی می‌کنند که جمع فاصله (یا متوسط فاصله) بین نقاط تقاضا و نزدیکترین تسهیلشان مینیمم گردد. شرکت‌هادر بخش‌های عمومی اغلب از مدل‌های p-median استفاده می‌کنند تا برنامه توزیع تسهیل را به گونه‌ای بریزند که مزایای رقابتشان را بهبود دهند.
روش‌های حل: روش‌های حل مختلف در مدل‌های مکانیابی مختلف همچون مدل‌های بهینه‌سازی و مدل‌های توصیفی بدست می‌آیند. مدل‌های توصیفی از رویکردهای ریاضی همچون برنامه نویسی ریاضی یا برنامه نویسی عددی استفاده می‌کنند تا حل‌های مختلف را برای سبک و سنگین کردن اکثر اهداف مهم در مقابل یکدیگر جستجو کنند. در مقابل، مدل‌های توصیفی، از شبیه سازی یا رویکردهای دیگری استفاده می‌کنند تا موفقیت دستیابی به الگوی مکانیابی را افزایش دهند تا حلی با درجه مطلوب بدست آید. روش‌های حل ترکیبی نیز بوسیله گسترش مدلهای توصیفی با تکنیک‌های بهینه سازی توسعه داده شده‌است تا مسائل مکانیابی تعاملی یا پویا (مثل سرورهای متحرک) را بسازند.
مشخصات تسهیلات: مشخصات تسهیلات نیز مدل‌های مکانیابی را به انواع مختلف تقسیم می‌کند. مثلاً، محدودیت تسهیل می‌تواند منجر به مدلی با یا بدون ظرفیت خدمت‌رسانی شود، و تکیه تسهیلات به یکدیگر می‌تواند به مدل‌هایی منجر شود که همکاری تسهیلات را به حساب آورند یا نیاورند.
الگوی تقاضا: همچنین مدل‌های مکانیابی می‌توانند براساس الگوهای تقاضا دسته بندی شوند. اگر یک مدل تقاضای انعطاف پذیر داشته باشد، پس آن تقاضا محیطی متفاوت با تصمیمات مکانیابی تسهیلات مختلف خواهد داشت؛ درحالیکه یک مدل با تقاضای غیرانعطاف پذیر، به علت تصمیمات مکانیابی تسهیلات، با آن الگوی تقاضا متفاوت نخواهد بود.
نوع زنجیره تأمین: مدل‌های مکانیابی می‌تواند بوسیله نوع زنجیره تأمینی که درنظر می‌گیرند تقسیم شوند (یعنی مدلهای تک مرحله‌ای درمقابل مدل‌های چند مرحله ای). مدل‌های تک‌مرحله‌ای بر روی سیستمهای توزیع خدمت تنها با یک مرحله تمرکز می‌کنند، درحالیکه مدل‌های چندمرحله ای، جریان خدمات را در طول چند سطح سلسله مراتبی درنظر می‌گیرند.
افق زمانی: افق زمانی، مدل‌های مکانیابی را به مدل‌های استاتیک و پویا دسته بندی می‌کند. مدل‌های استاتیک، کارایی سیستم را با درنظر گرفتن همزمان همه متغیرها بهینه می‌کند. درمقابل، مدل‌های پویا، دوره‌های زمانی مختلف را با تغییر داده‌ها درطول این دوره‌ها درنظر می‌گیرند و حل‌هایی را برای هر دوره زمانی با وفق دادن با شرایط مختلف ارائه می‌کند.
پارامترهای ورودی: روش دیگری برای دسته بندی مدل‌های مکانیابی براساس خصوصیت پارامترهای ورودی به مسأله است. در مدلهای قطعی، پارامترها با مقادیر مشخص پیش بینی می‌شوند و بنابراین، این مسأله، برای حل‌های ساده و سریع، ساده سازی می‌شود. به هر حال، برای بیشتر مسائل جهان واقعی، پارامترهای ورودی ناشناخته هستند و طبیعتاً ماهیت احتمالی/تصادفی دارند. مدل‌های مکانیابی احتمالی/تصادفی برای رسیدگی به ماهیت پیچیده مسائل جهان واقعی از توزیع احتمالی متغیرهای تصادقی استفاده می‌کنند یا مجموعه‌ای از طرحهای ممکن را برای پارامترهای نامعیّن درنظر می‌گیرند.
همچنین مدل‌های مکانیابی می‌توانند براساس مشخصات دیگری همچون مدل‌های تک محصولی درمقابل مدلهای چندمحصولی و یا مدلهای کششی درمقابل مدلهای فشاری متمایز شوند.
2-2-3- مسائل پوشش
ایده اصلی پشت مدلهای پوشش مکانیابی تسهیلات به گونه‌ای است که بعضی خدمات موردنیاز مشتریان فراهم شود. دو هدف برای مکانیابی تسهیلات وجود دارد که آیا همه مشتریان در شبکه با حداقل تسهیلات پوشش داده می‌شوند یا هر تعدادی از مشتریان که ممکن است با تعداد مشخصی از تسهیلات پوشش داده شوند. در اینجا به مسائل پوشش در شبکه می‌پردازیم [7]،[8].
2-2-3-1-مسأله پوشش مجموعه
برای ساده سازی، فرض می‌کنیم که همه مشتریان و تسهیلات در گره‌های شبکه واقع می‌شوند. در ادامه، ما از اندیس i برای اشاره به مشتریان و از اندیس j برای اشاره به تسهیلات استفاده می‌کنیم. همچنین تقاضاها (یا وزن‌ها) در گره i را با و تعداد تسهیلاتی است که باید مکانیابی شوند را با p نمایش می‌دهیم. همچنین ما را به عنوان کوتاهترین مسیر (یا زمان، هزینه یا هر عدم مطلوبیت دیگری) بین گره تقاضای و جایگاه تسهیل در گره تعیین می‌کنیم. اگر گره i بتواند بوسیله تسهیل در مکان j پوشش داده شود، قرارمی‌دهیم، درغیر اینصورت . همچنین را مجموعه همه جایگاه‌های کاندیدشده‌ای قرار می‌دهیم که می‌توانند گره تقاضای i را پوشش دهند. اینکه p تسهیل در کجا واقع شوند و کدام تسهیل باید کدام گره تقاضا را سرویس دهد، تصمیمات کلیدی در اینگونه مسائل هستند.
مسائل پوشش مجموعه در ابتدای دهه 70 ایجاد شد. هدف LSCP مکانیابی حداقل تعداد تسهیلات به گونه‌ای است که هر گره تقاضا بوسیله یک یا چند تسهیل «پوشش» داده شود. به طور کلی، تقاضا در یک گره i توسط تسهیل j پوشش داده شده نامیده می‌شود اگر فاصله (یا زمان سفر) بین گره‌ها کمتر از فاصله بحرانی D باشد. به علاوه، D به ماکزیمم فاصله یا زمان خدمتی که تصمیم‌گیرنده مشخص می‌کند اشاره می‌کند.
با این توضیحات، می‌توان مدل مکان پوشش مجموعه را که اولین بار توسط تورِگاس و همکارانش ارائه شد، به صورت زیر فرموله کرد:
(1.2)
(2.2)
(3.2)
تابع هدف (1.2) تعداد تسهیلاتی که استفاده می‌شوند را مینیمم می‌کند. محدودیت (2.2) تعیین می‌کند که برای هر نقطه تقاضای i، حداقل یک تسهیل باید در مجموعه ایجاد گردد که بتواند این گره را پوشش دهد. محدودیت‌های (3.2) محدودیت‌های تکمیلی هستند.

2-2-3-2- مسأله مکانیابی حداکثر پوشش
درمقابل مسأله پوشش مجموعه که در بالا آورده شد، مسأله مکانیابی حداکثر پوشش (MCLP) سعی نمی‌کند که همه مشتریان را پوشش دهد. تعداد p تسهیل را فرض کنید که هدف ما مکانیابی این تسهیلات به گونه‌ای است که بیشترین تعداد ممکن از مشتریان را پوشش دهیم. منظور از پوشش را نیز در بالا آوردیم.
با تعیین این محدودیت‌های مدل پوشش مجموعه، چِرچ و رِوِله مسأله مکانیابی حداکثر پوشش را به صورت زیر فرمول بندی کردند:
(4.2)
(5.2)
(6.2)(3.2)
(7.2)
که اگر گره تقاضای i پوشش داده شود، برابر یک خواهد بود، درغیر اینصورت صفر می‌شود. تابع هدف (4.2) تعداد تقاضاهایی که پوشش داده می‌شوند را ماکزیمم می‌کند. محدودیت (5.2)، متغیرهای مکان و پوشش را به همدیگر مرتبط می‌کند و نشان می‌دهد که گره تقاضای i نمی‌تواند به عنوان پوشش داده شده تلقی گردد مگر اینکه ما حداقل یک تسهیل را در یکی از جایگاه‌های کاندید شده مستقر کنیم که بتواند آن گره را پوشش دهد. محدودیت (6.2) تعداد تسهیلات را به p محدود می‌کند و محدودیت‌های (3.2) و (7.2) محدودیت‌های تکمیلی هستند.
اگر تعداد تسهیلاتی که برای پوشش تمام تقاضاها نیاز است، از منابع دردسترس بیشتر شود، یک گزینه، راحت کردن الزامات برای پوشش کامل می‌باشد.
2-2-3-3- مسائل p-center
نوع دیگری از مسائل کلاسیک پوشش، اصطلاحاً مسائل p-center نامیده می‌شود. هدف مسائل p-center ، مکانیابی تعداد معین p تسهیل به گونه‌ای است که بزرگترین فاصله بین هر مشتری و نزدیکترین تسهیلش تا حد ممکن کوچک شود. اگرچه از دیدگاه نظری، مسائل p-center متفاوت هستند، اما یک روش دوبخشی ساده می‌تواند به کار گرفته شود تا مسائل p-center را به عنوان بخشی از مسائل پوشش حل نماید. این مسأله می‌تواند به صورت زیر فرمول بندی شود که Q ماکزیمم فاصله است که باید مینیمم گردد:
(8.2)
(9.2)
(10.2)
(6.2)
(11.2)
(3.2)
(12.2)محدودیت (9.2) ما را مطمئن می‌کند که هر گره تقاضا تخصیص داده شده‌است، درحالیکه محدودیت (10.2) تصریح می‌کند که این تخصیصها می‌توانند فقط در تسهیلاتی که بهره برداری شده‌اند ایجاد شود. محدودیت (6.2) بیان می‌کند که دقیقاً p تسهیل می‌تواند ایجاد شود. محدودیت (11.2) ماکزیمم فاصله را برحسب متغیرهای تصمیم تعیین می‌کند. این محدودیت‌ها تصریح می‌کنند که Q باید بزرگتر یا مساوی با فاصله‌ای باشد که برای هر گره تقاضا تخصیص داده می‌شود.
2-2-3-4- مسائل p-median
درمقابل مسائل p-center با اهداف مینیماکسش که در قسمت قبل توضیح داده شد، مسائل p-median اهداف مینیمم مجموع دارند. به عبارت دیگر مسائل p-median ، p تسهیل را به‌گونه‌ای مکان‌یابی می‌کنند که مجموع فواصل بین همه مشتریان و نزدیکترین تسهیل مرتبطشان مینیمم گردد. رِوِله و سواین مسأله p-median را به صورت زیر فرمول بندی کردند:
(13.2)
(9.2)
(10.2)
(6.2)
(3.2)
(12.2)
تابع هدف (13.2) کل فاصله‌ای که در تقاضا ضرب شده‌است را مینیمم می‌کند. از آنجائیکه تقاضاها مشخص هستند و کل تقاضا ثابت است، این هدف در حکم مینیمم کردن متوسط فاصله ضرب در تقاضا است. به خاطر داشته باشید که این فرمول بندی خیلی شبیه به فرمول بندی مسأله p-center است مگر در تابع هدف و محدودیت شماره (11.2).

2-2-4- مسائل دیگر مکانیابی [8]
در این بخش به اختصار به انواع دیگری از مدل‌های مکانیابی که در مقالات استفاده شده‌است اشاره می‌کنیم. اولین نوع، مدل‌هایی هستند که به تسهیلات نامطلوب اشاره می‌کنند. چنین مدل‌هایی به مکانیابی تسهیلاتی همچون تأسیسات تصفیه فاضلاب، محل‌های بازیافت زباله‌ها، نیروگاه‌ها یا زندان‌ها می‌پردازند که همسایگی آنها با نواحی مسکونی نامطلوب به نظر می‌رسد.
به عنوان سیستم‌هایی که معمولاً شامل دو یا چند سطح از تسهیلات می‌شوند، از سیستمهای سلسله مراتبی استفاده می‌کنیم. بسیاری از سیستمها در طبیعت سلسله مراتبی هستند. این تسهیلات معمولاً برحسب نوع خدماتی که ارائه می‌کنند سلسله مراتبی هستند. مثلاً مراکز مراقبت‌های پزشکی را درنظر بگیرید که شامل کلینیک‌های عمومی، بیمارستان‌ها و مراکز دارویی هستند.
نوع دیگری از مدل‌ها، به مدل‌های مکانیابی می‌پردازد که اهداف «یکسان» دارند. این مدل‌ها، تسهیلات را به گونه‌ای مکانیابی می‌کنند که برای همه مشتریان به طور مساوی دردسترس باشند.
ناحیه فعال دیگر در این زمینه، مکانیابی هاب‌هاست. هاب به عنوان توپ در مرکز یک چرخ است و منظور از آن، تسهیلاتی است که به بعضی جفت‌های منبأ-مقصد به عنوان گره‌های معاوضه و حمل و نقل سرویس دهی می‌کند و در سیستمهای ترافیک و ارتباطات استفاده می‌شود.
نوع دیگر از مدل‌های مکانیابی، مدل‌های مکانیابی رقابتی است. مثالی از این نمونه به این صورت است که دو فروشنده انحصاری یک محصول را درنظر بگیرید که تسهیلی را هر کدام در یک پاره خط ایجاد می‌کنند. آنها از ابزاری مشابه استفاده می‌کنند و در مکان و قیمت رقابت می‌کنند.
در پایان، تسهیلات گسترده و مسائل جانمایی تسهیلات را درنظر بگیرید. در هر دو زمینه، به خاطر اینکه اندازه تسهیلات در قیاس با فضایی که در آن واقع شده‌اند قابل چشم پوشی نیست، تسهیلات نمی‌توانند به صورت یک نقطه بر روی نقشه نشان داده شوند و خیلی بزرگتر از آن هستند که به صورت یک نقطه درنظر گرفته شوند. به عنوان نمونه‌هایی از مسائل جانمایی، آرایش ایستگاه‌های کاری در یک اداره و قراردادن اتاق‌ها در یک بیمارستان را می‌توان نام برد.
2-2-5- مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکمما در این بخش به مسائل پیدا کردن مکان‌های بهینه برای مجموعه‌ای از تسهیلات در حضور تقاضای مشتریان تصادفی و تراکم در آن تسهیلات می‌پردازیم. ما به این گونه مسائل به عنوان «مسائل مکانیابی با تقاضای تصادفی و تراکم» (LPSDC) نگاه می‌کنیم [9]. اکثراً ما بحث درباره مسائل را به شبکه محدود می‌کنیم، حتی اگر این مدل‌ها بتواند به مکان‌های گسسته گسترش یابند.
اهمیت مشهود پرداختن به مسائل مکانیابی تسهیلات در حضور عدم قطعیت‌های گوناگون، منجر به تعداد زیادی از مقالات در این موضوع می‌شود. اصولاً مدل‌های LPSDC بر روی دو منبع از عدم قطعیت متمرکز می‌شود: (1) مقدار واقعی و مقدار زمانی که تقاضا بوسیله هر مکان مشتری تولید می‌شود و (2) از دست دادن تقاضا (یا جریمه پولی) به علت ناتوانی تسهیل در فراهم کردن سرویس مناسب به (بعضی از) مشتریان به علت تراکم در آن تسهیل.
این گونه مسائل به پیدا کردن بهترین مکان‌ها برای مجموعه‌ای از تسهیلات می‌پردازند تا ظرفیت سرویس (تعداد خدمت دهندگان) را در تسهیل j مشخص کند. نتیجه چنین سیستمی می‌تواند به صورت یک سیستم صف با M صف و سرویس دهنده مشاهده شود. حتی تحلیل‌های توصیفی چنین سیستمهایی (یعنی با فرض اینکه تصمیمات مکانیابی در حال حاضر گرفته شده‌اند) می‌تواند توانایی حال حاضر سیستم صف را گسترش دهد. چنین مسائلی، قابلیت‌های مسائل مکان‌یابی «کلاسیک» (که بیشتر آن‌ها NP-complete شناخته می‌شوند) را با پویایی پیچیده سیستم‌های صف ترکیب می‌کند. بنابراین، در ساختن یک مدل LPSDC کاربردی، بعضی فرض‌ها و تخمین‌های ساده سازی باید انجام شود تا مدل را قابل حل کند.
یک ناحیه مهم کاربرد مدل‌های LPSDC، مکان‌یابی تسهیلات خدمات اورژانسی (مانند بیمارستان‌ها)، ایستگاه‌های پلیس، ایستگاه‌های آتش نشانی و آمبولانس‌ها هستند. توانایی پاسخگویی به یک درخواست برای خدمت‌رسانی در زمان مناسب، به چنین سیستم‌هایی اختصاص دارد (مثلاً استاندارد رایج برای آمبولانس‌ها در آمریکای شمالی برای پاسخگویی به تلفن‌های با ارجحیت بالا، 3 دقیقه می‌باشد). خصوصیت پایه چنین سیستم‌هایی غیرقابل پیش بینی بودن تعداد و زمان رسیدن تلفن‌ها برای درخواست و اثری که روی کارایی سیستم تراکمی می‌گذارد است و هنگامی‌که بعضی از این تسهیلات درخواست‌های بسیاری را برای خدمت در دوره زمانی مشخصی دریافت می‌کنند، نتیجه آن مشخص می‌شود. به راستی که از لحاظ تاریخی، مسأله مکان‌یابی تسهیلات خدمات اورژانسی، محرّک اصلی برای تحقیقات بیشتر در این زمینه را فراهم کرده‌است.
دیگر ناحیه مهم کاربرد این مسائل که کمتر مورد تجزیه و تحلیل قرار گرفته‌است، مکان‌یابی خرده فروشی‌ها یا تسهیلات خدمت‌رسانی دیگر است که مقدار کل تجارت (تقاضای مشتری) در یک تسهیل ممکن است هنگامی‌که نرخ خدمت‌رسانی به علت تراکم کاهش می‌یابد، به طور معکوس عمل کند. درحالی که بعضی از مدل‌هایی که برای مکان‌یابی تسهیلات اورژانسی توسعه پیدا کرده‌اند، می‌توانند به خوبی برای تسهیلات غیراورژانسی نیز به کار روند، این دو دسته از کاربردها، خصوصیات مختلف خودشان را نیز ایجاد می‌کنند.
2-2-5-1- مرور ادبیات مسائل مکانیابی تسهیلات با تقاضای تصادفی و تراکم [10]
باتوجه به انعطاف پذیری تقاضا، دسترسی به یک تسهیل می‌تواند برحسب مجاورت با مشتریان بالقوه اش (وِرتر و لاپیِره)، به صورت کل زمان موردنیاز برای دریافت سرویس (پارکر و سرینیواسان) مدل سازی شود. در این مورد یا موارد دیگر، شکل تابع تقاضای مورداستفاده، گسترشی از انعطاف پذیری تقاضا را نشان می‌دهند. بیشتر توابع تقاضای رایج در مقالات به شکل‌های زیر هستند: تابع خطی (وِرتر و لاپیِره؛ پارکر و سرینیواسان)؛ تابع نمایی (بِرمن و پارکان؛ بِرمن و کاپلان و درِزنِر)؛ و تابع مرحله‌ای (بِرمن و کِراس).
اگر انتخاب مشتری را درنظر بگیریم ( که بدین معنی است که هر عضو این حق را دارد که خود تسهیلش را انتخاب کند و نه اینکه توسط یک مرکز به یکی اختصاص پیدا کند)، یک گروه از مقالات، انتخاب بهینه را فرض می‌کنند، یعنی، هر مشتری، تسهیلی که برحسب مزیتش بهینه است را انتخاب می‌کند. بسیاری از نویسندگان به سادگی فرض می‌کنند که مشتریان به نزدیکترین تسهیل مراجعه می‌کنند، درحالیکه پارکر و سرینیواسان فرض می‌کنند که مشتریان، تسهیلی که بیشترین منفعت را دارد انتخاب می‌کنند. درمقابل، گروه دوم مطالعات، انتخاب احتمالی را فرض می‌کنند، یعنی، انتخاب تسهیل توسط مشتری، براساس توزیع احتمالی است که از سودمندی و مجاورت هر تسهیل ایجاد می‌شود. این فرض اغلب در محیط بازار استفاده می‌شود و شاید یک کار اصولی از هاف، مؤثرترین مدل در این دسته باشد. همچنین ماریانوف و همکارانش یک مسأله مکانیابی تسهیلات با تراکم را پیشنهاد کردند که از یک مدل انتخابی احتمالی برای نشان دادن رفتار تخصیص مشتریان استفاده می‌کرد.
مسأله موردنظر ما که تا حدودی در تئوری مکان‌یابی تسهیلات، پایه‌ای به حساب می‌آید، توجّهات بسیاری را در مقالات به خود جلب کرده‌است؛ مخصوصاً اینکه تقابل جنبه‌های مکانیابی و تصادفی (صف بندی)، آن را چالش برانگیز کرده‌است [11]. این مسأله متعلق به دسته‌ای از مسائل مکانیابی با تقاضای تصادفی و تراکم و سرویس دهندگان ثابت (LPSDC) است که توسط بِرمن و کراس مرور شده‌است. مطالعه مدل‌هایی از این نوع، با ماریانوف و سِرا در سال 1998 شروع شده‌است. مقالات دیگری نیز در این زمینه نوشته شده‌است که می‌توان به مقالات بِرمن، کراس و وانگ؛ ماریانوف و ریوس؛ ماریانوف و سِرا؛ وانگ، باتا و رامپ اشاره کرد. به علت پیچیدگی باطنی مسأله، همه مقالاتی که در بالا آورده شده، ساده سازی‌های بزرگی را انجام داده‌اند: فرض می‌شود که تقاضا گسسته است، یا فرض می‌شود که تعداد یا ظرفیت تسهیلات (یا هر دو) ثابت هستند، فرض می‌شود که مکان‌های تسهیلات بالقوه گسسته و بینهایت هستند، فرض می‌شود که فرایند رسیدن تقاضا پواسن باشد و همچنین معمولاً فرض می‌شود که فرایند خدمت‌رسانی نمایی است.
ترکیب حالت تصادفی (شامل تراکم بالقوه در تسهیلات) در مدل‌های نوع پوشش تسهیلات، با مسأله مکانیابی حداکثر پوشش موردانتظار (MEXCLP) توسط داسکین شروع شد؛ و تعداد قابل ملاحظه‌ای از دیگر کاربردها نیز در ادامه آن آورده شد. اما این مدل شامل بعضی ساده سازی‌های بزرگی بود، برای مثال: احتمال اینکه یک خدمت‌رسان مشغول باشد، مستقل از هر خدمت دهنده دیگری است و این موضوع برای همه خدمت دهندگان یکسان است؛ این احتمالات نسبت به مکان و حجم کار یکسان هستند. ماریانوف و سِرا فرض کردند که: (1) تقاضای مشتریان توسط یک فرایند پواسن تولید می‌شود؛ (2) توزیع زمان خدمت نمایی است؛ (3) هر تسهیل به صورت یک سیستم صف M/M/1/a با ظرفیت محدود a عمل می‌کند؛ و (4) همه تقاضاها هنگامی‌که برای خدمت‌رسانی به سیستم می‌رسند، اگر سیستم پر باشد، فرض می‌شود که تقاضا از دست می‌رود. توسط این مدل، تقاضای مشتریان ممکن است ازبین برود، چون یا تسهیل در شعاع پوشش آن وجود ندارد و یا تسهیلات مسدود شده‌اند. هدف، قرار دادن m تسهیل به گونه‌ای است که تقاضا‌ها را هرچه بیشتر پاسخ دهد. ماریانوف و ریوس این مدل را برای مکانیابی دستگاه‌های خودپرداز به کار گرفتند. در مدل آن‌ها، دستگاه‌ها، حافظه کوچکی دارند که هر کدام می‌تواند تعداد ثابتی، b، درخواست را نگهدارند که آن به این علت است که درخواست‌های دستگاه‌ها، اندازه ثابتی (53 بایت) دارند. همچنین دستگاه‌ها به صورت یک صف M/M/1، حداکثر b درخواست در صف (یعنی حافظه) را انجام می‌دهد. اگر یک درخواست درحالی برسد که حافظه پر است، آن درخواست ازدست می‌رود (و باید دوباره فرستاده شود)، و برای اینکه مطمئن باشیم که این رویداد نادر است، یک محدودیت سطح سرویس اعمال شده‌است. به هر حال تعداد کل دستگاه‌ها،به جای اینکه به عنوان قسمتی از فرایند بهینه سازی تعیین شود، ثابت هستند. مدل LSCP این مدل توسط ماریانوف و سِرا گسترش داده شد که در آن، هدف، پیدا کردن حداقل تعداد تسهیلات به گونه‌ای است که همه مشتریان، یک تسهیل در شعاع پوششان داشته باشند و محدودیت بر روی حداکثر نسبت تقاضای از دست رفته (یا حداکثر زمان انتظار) رعایت شود. باید به یاد داشته باشیم که این مدل، فرض می‌کند که مشتریان به جای اینکه به نزدیکترین تسهیل مراجعه کنند، می‌توانند به هر تسهیل باز شده‌ای در شعاع پوشش تخصیص یابند. بنابراین، آنها به جای مکانیسم انتخاب مشتری، مکانیسم انتخاب هدایت شده را انتخاب می‌کنند.
2-2-5-2- مکانیابی تسهیلات با تقاضای تصادفی و تراکم
دو منبع بالقوه برای از دست دادن تقاضا به صورت زیر است [12]:
عدم پوشش: این مورد زمانی اتفاق می‌افتد که هیچ کدام از تسهیلات به اندازه کافی به مشتری نزدیک نیستند که سطح مناسبی از راحتی را فراهم کنند.
عدم سرویس: این مورد زمانی اتفاق می‌افتد که مشتری تصمیم می‌گیرد که یک تسهیل را ملاقات کند، اما باتوجه با سطح سرویسی که در آنجا دریافت می‌کند، ناراضی می‌شود. علت‌های زیادی ممکن است وجود داشته باشد که حادثه شکست خدمت اتفاق افتد: یکی از رایج ترین آنها (و مرتبط ترین به تصمیمات مکانیابی) تراکم (پرجمعیتی) در آن تسهیل است.
برای مدل سازی تقاضایی که به علت تراکم از دست می‌رود، ما هر تسهیل را به صورت یک صف مارکفی با ظرفیت ثابت معین درنظر می‌گیریم و فرض می‌کنیم که اگر این ظرفیت به دست آمده باشد، تقاضای مشتری هنگامی‌که درطول این دوره می‌رسد، از دست می‌رود (یعنی، مشتریان بالقوه‌ای که هنگام پر بودن سیستم می‌رسند، مسدود می‌شوند).
مدل‌های LPSDC اصولاً به تقابل چهار مجموعه از عناصر مربوط می‌شود [9]:
مشتریان: که برای انجام خدمت، درخواست می‌دهند.
تسهیلات: که به منابعی (خدمات دهندگان) که برای انجام خدمات موردنیاز است مکان می‌دهند.
خدمت دهندگان: که خدمت درخواست شده را انجام می‌دهند، و
درخواست انجام خدمت: که توسط مشتریان انجام می‌شود و بوسیله اتصال یک مشتری با یک خدمت دهنده دردسترس، رسیدگی می‌شود.
دیگر اجزاء موردنیاز برای توصیف یک مدل LPSDC به صورت زیر هستند: انواع فراهم شدن خدمت (که یا مشتریان به تسهیلات سفر می‌کنند تا به خدمت دهندگان دست یابند و یا خدمت‌دهندگان متحرّک، به مکان مشتریان سفر می‌کنند)، طبیعت و نتایج تراکم (هنگامی‌که یک تسهیل درخواست‌های بسیار زیادی برای انجام خدمت دریافت می‌کند، چه عکس العملی از خود نشان می‌دهد؟)، فرضیات رفتار مشتری (مشتریان تصمیم می‌گیرند که برای بدست آوردن خدمت، به کدام تسهیل مراجعه کنند یا یک «مرجع مرکزی» وجود دارد که مشتریان را به تسهیلات متصل می‌کند)، نوع اهداف و احتیاجات خاص دیگر مانند «استانداردهای پوشش» (که معمولاً به صورت محدودیت‌ها بیان می‌شود).
یک شبکه مشخص را فرض می‌کنیم ، که N، مجموعه گره‌ها و A مجموعه کمان‌هاست. برای از استفاده می‌کنیم که به کوتاهترین مسیر از x به y است.
مشتریان: فرض می‌شود که مشتریان در گره‌های شبکه واقع می‌شوند. نسبت را برای همه درخواست‌هایی که برای انجام خدمت از گره ایجاد می‌شود درنظر می گیریم که . معمولاً فرض می‌شود که کل تقاضای مشتریان برای خدمت‌رسانی، یک فرایند پوآسن از جنس زمان با نرخ است. همچنین فرایند درخواست خدمت برای هر گره i، یک فرایند پوآسن با نرخ می‌باشد. درحالیکه بیشتر مدل‌ها، از ساختار تقاضای مشتریانی که در بالا توضیح داده شد استفاده می‌کنند، بعضی تلاشها برای دخالت دادن امکان ازدست دادن تقاضا به علت تراکم انجام شده‌است. این می‌تواند بوسیله تعریف دوباره نرخ تقاضا در گره i به صورت تعریف شود که C، بعضی اندازه‌های هزینه تراکم است که بوسیله مشتریان اتفاق می‌افتد و یک تابع غیر افزایشی است. در ادامه این بخش، به طور عمومی فرض می‌کنیم که تحت تأثیر تراکم قرار نمی‌گیرد.
تسهیلات: ما فرض می‌کنیم که حداکثر M تسهیل وجود دارد که باید مکان‌یابی شود. ما فرض میکنیم که یک مجموعه گسسته از مکان‌های بالقوه تسهیلات X تعیین شده‌است (که ) و . این فرضیات نیز بدون از دست دادن عمومیت انجام می‌شود: باتوجه به استدلالاتی که توسط بِرمن، لارسون و چیو انجام شده‌است می‌توان نشان داد که اگر به تسهیلات اجازه دهیم که در هر جایی در طول کمان واقع شوند، یک حل بهینه در یک مجموعه گسسته از مکان‌ها بدست می‌آید که شامل گره‌های شبکه است که بوسیله بعضی نقاط داخلی در طول کمان ایجاد شده‌است. بنابراین، با تکمیل کردن مجموعه گره‌های اصلی بوسیله بعضی گره‌های «ساختگی» اضافی، می‌توان فرض کرد که X گره‌ای است.
خدمت دهندگان: هر تسهیل j می‌تواند بین 1 و K خدمت دهنده داشته باشد. بسته به ماهیت خدمتی که بوسیله این تسهیل انجام می‌شود، خدمت دهندگان یا ثابت هستند، یعنی به طور ثابت در تسهیل واقع می‌شوند، یا متحرک هستند، یعنی برای انجام خدمت به مکان مشتریان سفر می‌کنند. تعداد خدمت دهندگانی که در تسهیل j واقع می‌شوند، یک متغیرتصمیم گیری در مدل می‌باشد.
درخواست خدمت: معمولاً یک درخواست برای انجام خدمت، به یک «یارگیری» بین مشتری ایجاد کننده درخواست و یکی از خدمت دهندگان موجود در سیستم احتیاج دارد. این کار معمولاً به صورت زیر انجام می‌شود:
اول باید تعیین کنیم که آیا مکان i بوسیله سیستم پوشش داده می‌شود یا خیر؟ معمولاً برای اینکه یک مشتری پوشش داده شود فرض می‌شود که با استاندارد‌های پوشش معینی مطابقت دارد (مثلاً، تعداد خدمت دهنده کافی باید در اطراف مشتری واقع شده باشد و غیره). این استانداردهای پوشش اغلب از طریق قانونگذاری یا قوانین اجرایی ایجاد می‌شود. اگر مکان مشتری i پوشش داده نشده باشد، همه درخواست‌های خدمت که از i ایجاد می‌شود، به صورت خودکار بوسیله سیستم برگردانده می‌شود (صرفنظر از اینکه آیا سیستم در حال حاضر متراکم هست یا خیر؟). معمولاً برای از دست دادن پوشش مجموعه یک جریمه درنظر گرفته می‌شود. یک تفسیر دیگر از گسترش ندادن پوشش به یک مشتری این است که مشتری بوسیله بعضی خدمات «دیگر» یا «ذخیره» پوشش داده شود (مثلاً، یک خدمت آمبولانس غیردولتی)؛ پس جریمه پوشش ندادن، می‌تواند به عنوان حق الزحمه قرارداد فرعی تفسیر می‌شود.
زمانی که معین می‌شود که درخواست خدمت از یکی از مشتریان «پوشش داده شده» بیاید، یک ارزیابی انجام می‌شود که آیا حالت فعلی سیستم اجازه می‌دهد که فرایند درخواست انجام شود یا خیر؟ این ارزیابی معمولاً در دو مرحله اتفاق می‌افتد: اول، قوانین منطقه‌ای و مکان مشتری برای تعیین «زیرسیستم» مشتری، استفاده می‌شود، یعنی، کدام تسهیلات و خدمت دهندگان می‌توانند به طور بالقوه به این درخواست پاسخ دهند (این ممکن است شامل همه خدمت دهندگان در شبکه شود و یا فقط خدمت دهندگانی که در شعاع سفر معینی از مکان مشتری واقع شده‌اند و غیره). بعد، تعداد درخواست‌های انجام نشده در زیرسیستم ارزیابی می‌شود و تصمیم گیری می‌شود که آیا این درخواست پذیرفته شود یا رد شود؟ این تصمیم معمولاً براساس ظرفیت زیرسیستم صورت می‌پذیرد (مثلاً برای یک صف «ازدست رفته»، اگر هیچ خدمت دهنده‌ای در حال حاضر دردسترس نباشد، یک عدم پذیرش ممکن است اتفاق بیفتد؛ در موارد دیگر ممکن است این محدودیت وجود داشته باشد که چه تعداد درخواست می‌تواند در یک زمان مشخص در صف وجود داشته باشد). معمولاً یک جریمه مرتبط با قبول نکردن یک درخواست وجود دارد. باز هم تأکید می‌کنیم، برخلاف نپذیرفتن یک درخواست از مشتریانی که پوشش داده نشده‌اند که به صورت خودکار است، نپذیرفتن درخواست یک مشتری که پوشش داده شده‌است، براساس حالت سیستم است. به خاطر داشته باشید که قوانین منطقه ای، درجه همکاری بین تسهیلات گوناگون و خدمت دهندگان را در سیستم معین می‌کند.
بعد، درخواست پذیرفته شده به یکی از تسهیلات متصل می‌شود (یعنی تخصیص پیدا می‌کند). این تخصیص ممکن است به قوانین اتصال مطمئن بستگی داشته باشد، همانطور که به حالت فعلی سیستم بستگی دارد (مثلاً، یک درخواست ممکن است به نزدیکترین تسهیل متصل شود و یا ممکن است به نزدیکترین تسهیل با حداقل یک خدمت دهنده آزاد متصل شود و غیره). همچنین قوانین اتصال به فرضیات رفتار مشتریان نیز بستگی دارد، یعنی اینکه کدام تسهیل باید این درخواست را انجام دهد به مشتری بستگی دارد یا به بعضی مراجع مرکزی. ما، این مورد را که مشتری تصمیم می‌گیرد که کدام تسهیل باید به درخواستش رسیدگی کند به عنوان «انتخاب کاربر» و موردی که یک مرجع مرکزی این تصمیم را می‌گیرد به عنوان «انتخاب هدایت شده» می‌شناسیم.
معمولاً یک درخواست پذیرفته شده در یک تسهیل معین، در صف قرار می‌گیرد تا یک خدمت دهنده، دردسترس قرار گیرد. زمانی که این اتفاق می‌افتد، خدمت دهنده و مشتری «یارگیری» کرده‌اند. درمورد خدمت دهندگان متحرک، لازم است که این خدمت‌دهندگان از مکان فعلی شان به مکان مشتری سفر کنند (که متحمل هزینه سفر می‌شوند).
معمولاً مسائل مکانیابی با خدمت دهندگان متحرک، دارای مشخصات زیر هستند:
این تخصیص بستگی به حالت فعلی خدمت دهندگان در زمان ارسال دارد. برای خدمت دهندگان ثابت، این تخصیص ممکن است قبل از تصمیم گیری برای انجام خدمت اتفاق بیفتد، بنابراین ممکن است گفته شود که خدمت دهندگان متحرک ممکن است با یکدیگر همکاری کنند، درحالیکه خدمت دهندگان ثابت تمایلی به این کار ندارند.
اگر یک کاربر، درخواستی را انجام دهد و نزدیکترین خدمت دهنده مشغول باشد، خدمت دهنده دیگری ارسال می‌شود. یعنی، این تخصیص، در حالت مطلق، به نزدیکترین تسهیل اتفاق نمی‌افتد.
مسائل مکانیابی احتمالی اغلب می‌توانند به خوبی به صورت مجموعه مستقلی از سیستم‌های صف، مدل سازی شوند. این استقلال، ازطریق ابزاری ناشی می‌شود که حتی اگر زمان‌های خدمت از یک توزیع نمایی پیروی کنند، درمورد هنگامی‌که زمان سفر احتمالی است، این امر صادق نیست. بنابراین، تئوری صف M/G/m مناسب‌تر از تئوری M/M/m است.
حال به فرموله کردن مسأله می‌پردازیم. محدودیت‌های مسأله معمولاً شامل موارد ذیل است:
- یک حد بالای M بر روی کل تعداد تسهیلاتی که می‌توانند واقع شوند:
(14.2)
- یک حد بالای K بر روی کل تعداد خدمت دهندگانی که می‌تواند واقع شوند:
(15.2)
- استانداردهای پوشش: بسته به احتیاجات پوششی که استفاده می‌شود، می‌تواند شکل‌های گوناگونی به خود بگیرد. شاید ساده ترین (و قدیمی‌ترین) شکل این محدودیت‌ها، به این نیاز دارد که حداقل تعداد مشخصی از این خدمت دهندگان ،، باید در حداکثر فاصله مشخصی از هر مکان مشتری i، واقع شوند. اجازه دهید زیرمجموعه‌ای از مکان‌های تسهیلات بالقوه در فاصله موردنیاز از i باشد. پس این محدودیت می‌تواند به صورت زیر بیان شود:
(16.2)
شکل پیچیده تر این محدودیت پوشش، ممکن است احتیاجاتی احتمالی را به زمان‌های پاسخ تحمیل کند. مثلاً، یک پاسخ سه دقیقه‌ای زمان پاسخ را درنظر بگیرید که برای درخواست‌های آمبولانس با ارجحیت بالا موردنیاز است. شکل دیگری از محدودیت‌ها، ممکن است یک حد بالایی را بر روی نسبت درخواست‌هایی که برگردانده می‌شود ،، اعمال کند. به طور خلاصه، ما می‌توانیم یک محدودیت عمومی را به صورت زیر ارائه کنیم. اجازه دهید که یک متغیر تصادفی باشد که بیانگر «سطح سرویسی» است که بوسیله سیستم به نقاط تقاضای مشتری i تحویل می‌شود (مثلاً، زمان پاسخ). اجازه دهید، ، بیانگر حداقل فراوانی مطلوب این اتفاق باشد (مثلاً، 95% از این زمان). بنابراین، یک محدودیت سطح سرویس کلی می‌تواند به صورت زیر بیان شود:
(17.2)
اکنون، مسأله LPSDC عمومی می‌تواند به صورت زیر فرمول بندی شود:
(18.2)
باتوجه به محدودیت‌های (15)، (16) و (17)

بدیهی است که برای اینکه فرمول بندی بالا را ساده کنیم، به بعضی روشها احتیاج داریم تا پارامترهای کارایی سیستم گوناگونی را که در توسعه تابع هدف و محدودیت‌ها استفاده شد را ارائه کنیم (یعنی، احتمال برگرداندن ، زمان انتظار صف و غیره). متأسفانه، معمولاً بیان تحلیلی کلی برای این مقادیر دردسترس نیست. این منجر به دو رویکرد ممکن می‌شود: رویکرد اول نیاز دارد که فرضیاتی ساده سازی مطمئنی را بر روی عملیات سیستم ایجاد کنیم (مانند قوانین منطقه‌ای ساده، زمان‌های سفر قابل اغماض و غیره). دومین رویکرد شامل استفاده از تکنیک‌هایی براساس توصیف است (مثل شبیه سازی) تا اندازه‌های کارایی سیستم موردنیاز را برای مقادیر خاص بردار مکان x محاسبه کنیم. علاوه بر آن می‌توان از بعضی تکنیک‌های ابتکاری استفاده کرد.
2-3- نظریه صف
انتظار در صف هر چند بسی ناخوشایند است، اما متأسفانه بخشی از واقعیت اجتناب ناپذیر زندگی را تشکیل می‌دهد. انسان‌ها در زندگی روزمره خود با انواع مختلف صف، که به از بین رفتن وقت، نیرو و سرمایه آن‌ها می‌انجامد، روبه رو می‌شوند. اوقاتی که در صف‌های اتوبوس، ناهارخوری، خرید و نظایر آن‌ها به هدر می‌رود، نمونه‌های ملموسی از این نوع اتلاف‌ها در زندگی است. در جوامع امروزی صف‌های مهمتری وجود دارد که هزینه‌های اقتصادی و اجتماعی آن‌ها به مراتب بیش از نمونه‌های ساده فوق است.
2-3-1- مشخصات صف [13]
یک مدل صف در شکل (2-1) نشان داده شده‌است. آن می‌تواند یک مدل صف مثل ترتیب ماشین آلات یا اپراتورها باشد.

شکل 2-1- مدل پایه‌ای صف
یک مدل صف بوسیله مشخصات زیر توصیف می‌شود:
فرایند رسیدن مشتریان
معمولاً فرض می‌کنیم که زمان بین رسیدن‌ها مستقل هستند و یک توزیع رایج دارند. در بسیاری از کاربردهای عملی، مشتریان باتوجه به یک جریان پواسن (یعنی زمان بین رسیدن‌ها نمایی) می‌رسند. مشتریان ممکن است یک به یک و یا به صورت دسته‌ای برسند.
رفتار مشتریان
مشتریان ممکن است صبور باشند و راضی باشند که (برای یک مدت طولانی) منتظر بمانند. یا مشتریان ممکن است کم حوصله باشند و بعد از مدتی صف را ترک کنند.
زمان‌های رسیدن
معمولاً فرض می‌کنیم که زمان‌های رسیدن مستقل هستند و به طور یکسان توزیع شده‌اند و مستقل از زمان بین رسیدن‌ها هستند. مثلاً زمان‌های رسیدن ممکن است به صورت قطعی یا نمایی توزیع شده باشد. همچنین ممکن است که زمان‌های رسیدن، وابسته به طول صف باشد.
نظم سرویس
ترتیبی که مشتریان ممکن است به صف وارد شوند به صورت‌های زیر می‌تواند باشد:
کسی که اول می‌آید، اوّل هم سرویس دهی می‌شود، مثل ترتیب رسیدن‌ها
ترتیب تصادفی
کسی که آخر می‌آید، اول سرویس دهی می‌شود.
حق تقدّم
اشتراک پردازنده (در کامپیوتر که قدرت پردازششان را در میان کل کارها در سیستم، به طور مساوی تقسیم می‌کنند).
ظرفیت سرویس
ممکن است یک سرور تک و یا گروهی از سرورها به مشتریان کمک کنند.
اتاق انتظار
ممکن است محدودیتهایی در رابطه با تعداد مشتریان در سیستم وجود داشته باشد.
یک کد سه قسمتی برای مشخص کردن این مدل‌های به صورت a/b/c استفاده می‌شود که حرف اول توزیع زمان بین رسیدن‌ها و حرف دوم توزیع زمان سرویس را مشخص می‌کند. مثلاً برای یک توزیع عمومی از حرف G و برای توزیع نمایی از حرف M (که M بیانگر فاقد حافظه بودن است) استفاده می‌شود. حرف سوم و آخر نیز تعداد سرورها را مشخص می‌کند. این نمادسازی می‌تواند با یک حرف اضافه که دیگر مدل‌های صف را پوشش دهد، گسترش یابد. مثلاً، یک سیستم با توزیع زمان بین رسیدن و زمان سرویس دهی نمایی، یک سرور و داشتن اتاق انتظار فقط برای N مشتری (شامل یکی در سرویس) بوسیله چهار کد حرفی M/M/1/N نشان داده می‌شود.
در این مدل پایه، مشتریان یک به یک می‌رسند و همیشه اجازه ورود به سیستم را دارند، همیشه اتاق وجود دارد، هیچ حق تقدّمی وجود ندارد و مشتریان به ترتیب رسیدن سرویس دهی می‌شوند.
در یک سیستم G/G/1 با نرخ رسیدن و میانگین زمان سرویس ، مقدار کار که در واحد زمان می‌رسد برابر است. یک سرور می‌تواند به یک کار در واحد زمان رسیدگی کند. برای جلوگیری از اینکه طول صف بینهایت نشود، باید .
معمولاً از نماد زیر استفاده می‌کنند:

اگر ، نرخ اشتغال یا بکارگیری سرور نامیده می‌شود، چون کسری از زمان است که سرور، مشغول کارکردن است.
2-3-2- قانون لیتِل [13]
اگر E(L)، میانگین تعداد مشتریان در سیستم، E(S)، میانگین زمان اقامت مشتری در سیستم باشد و ، متوسط تعداد مشتریانی باشد که در واحد زمان وارد سیستم می‌شوند، قانون لیتِل، رابطه بسیار مهمی را بین این سه نماد می‌دهد و به صورت زیر بیان می‌شود:
(19.2)در اینجا فرض می‌شود که ظرفیت سیستم برای رسیدگی به مشتریان کافی است (یعنی، تعداد مشتریان در سیستم به سمت بینهایت میل نمی‌کند).
به طور حسی، این نتیجه می‌تواند به صورت زیر فهمیده شود: فرض کنید که مشتریان هنگامی‌که به سیستم وارد می‌شوند، یک دلار در واحد زمان می‌پردازند. این پول می‌تواند به دو روش گرفته شود. روش اول اینکه به مشتریان اجازه دهیم که به طور پیوسته در واحد زمان بپردازند. پس متوسط درآمدی که توسط سیستم کسب می‌شود، برابر E(L) دلار در واحد زمان است. روش دوم این است که به مشتریان اجازه دهیم که برای اقامتشان در سیستم، 1 دلار را در واحد زمان در موقع ترک سیستم بپردازند. در موازنه، متوسط تعداد مشتریانی که در واحد زمان، سیستم را ترک می‌کنند برابر متوسط تعداد مشتریانی است که به سیستم وارد می‌شوند. بنابراین سیستم، یک متوسط درآمد دلار را در واحد زمان کسب می‌کند.
با به کار بردن قانون لیتِل در صف، رابطه‌ای بین طول صف، و زمان انتظار W به دست می‌آید:
(20.2)
2-3-3- صف M/M/1
این مدل، حالتی را درنظر می‌گیرد که زمان بین رسیدن‌ها، نمایی با میانگین ، زمان‌های سرویس، نمایی با میانگین و یک سرور مشغول کار است. مشتریان به ترتیب رسیدن، سرویس دهی می‌شوند. ما نیاز داریم که:
(21.2)درغیراینصورت، طول صف منفجر خواهد شد (قسمت قبل را ببینید). مقدار ، کسری از زمان است که سرور، مشغول کار است.
میانگین تعداد مشتریان در سیستم و همچنین میانگین زمانی که در سیستم گذرانده می‌شوند به صورت زیر بیان می‌شود:
(22.2)
و با استفاده از قانون لیتِل،
(23.2)
میانگین تعداد مشتریان در صف، ، می‌تواند از E(L) و با کم کردن میانگین تعداد مشتریان در سیستم بدست آید:
(24.2)
میانگین زمان انتظار، E(W)، از E(S) و با کم کردن میانگین زمان سرویس بدست می‌آید:
(25.2)
2-4- مسائل بهینه سازی چندهدفه
بسیاری از مسائل کاربردی در جهان واقعی را مسائل بهینه سازی ترکیباتی چندهدفه تشکیل می‌دهند، زیرا متغیر‌های مجزا و اهداف متضاد به طور واقعی در ذات آنها است. بهینه سازی مسائل چندهدفه نسبت به مسائل تک هدفه متفاوت بوده، زیرا شامل چندین هدف است که باید در بهینه‌سازی به همه اهداف همزمان توجه شود. به عبارت دیگر الگوریتم‌های بهینه سازی تک هدفه، حل بهینه را با توجه به یک هدف می یابند و این در حالی است که در مسائل چندهدفه (با چندهدف مخالف و متضاد) معمولاً یک حل بهینه مجزا را نمی توان بدست آورد. بنابراین طبیعی است که مجموعه ای از حل‌ها برای این دسته از مسائل موجود بوده و تصمیم گیرنده نیاز داشته باشد که حلّی مناسب را از بین این مجموعه حل‌های متناهی انتخاب کند و در نتیجه حل مناسب، جواب‌هایی خواهد بود که عملکرد قابل قبولی را نسبت به همه اهداف داشته باشد.
2-4-1- فرمول بندی مسائل بهینه سازی چندهدفه
مسائل بهینه سازی چندهدفه را به طور کلی می‌توان به صورت زیر فرموله کرد:
(26.2)

x یک حل است و S مجموعه حل‌های قابل قبول و k تعداد اهداف در مسأله و F(x) هم تصویر حل x در فضای k هدفی و هم مقدار هر یک از اهداف است.
تعریف حل‌های غیرمغلوب: حل a حل b را پوشش می‌دهد، اگر و تنها اگر:
(27.2)
(28.2)
به عبارت دیگر، حل‌های غیرمغلوب، به حل‌های گفته می‌شود که حل‌های دیگر را پوشش داده ولی خود، توسط حل‌های دیگر پوشش داده نمی‌شوند. در شکل (2-2) چگونگی پوشش سایر حل‌ها (دایره‌های با رنگ روشن) توسط مجموعه حل‌های غیرمغلوب (دایره‌های تیره رنگ) نشان داده شده‌است. در این شکل، جبهه‌ی پارتو با خط چین نشان داده شده‌است.
هدف B
هدف A
هدف B
هدف A

شکل 2-2- مجموعه حل‌های غیرمغلوب
2-4-2- الگوریتم‌های تکاملی برای بهینه سازی مسائل چندهدفه بر مبنای الگوریتم ژنتیک
با توجه به آنکه بسیاری از مسائل بهینه سازی، NP-Hard هستند، بنابراین حل به روش‌های دقیق در یک زمان معقول غیرممکن بوده و در نتیجه، استفاده از روش‌های فراابتکاری در این موارد مناسب می باشد. درحقیقت الگوریتم‌های فراابتکاری برای زمانی که محدودیت زمانی وجود دارد و استفاده از روش‌های حل دقیق میسّر نبوده و یا پیچیدگی مسائل بهینه سازی زیاد باشد، به دنبال جواب‌های قابل قبول هستند.
اولین پیاده سازی واقعی از الگوریتم‌های تکاملی، «الگوریتم ژنتیک ارزیابی برداری» توسط دیوید اسکافر در سال 1984 انجام گرفت. اسکافر الگوریتم را به سه بخش انتخاب، ترکیب و جهش که به طور جداگانه در هر تکرار انجام می‌شدند، تغییر داد. این الگوریتم به صورت کارآمدی اجرا می‌شود، اما در برخی از حالات مانند اریب بودن اهداف، با مشکل مواجه می‌شود. درواقع هدف اول الگوریتم‌های بهینه یابی چندهدفه، یعنی رسیدن به جواب‌های بهینه پارتو، به نحو شایسته‌ای توسط این الگوریتم بدست می‌آید، ولی جواب‌های بدست آمده از گستردگی و تنوع خوبی برخوردار نیستند.
در ادامه این قسمت، به سه الگوریتم تکاملی چند هدفه که مبنای اصلی آنها، الگوریتم ژنتیک می‌باشد، می‌پردازیم. الگوریتم NSGA-II به این خاطر انتخاب شده‌است که این الگوریتم در بسیاری از مقالات به عنوان الگوریتم مرجع مقایسه گردیده‌است. الگوریتم CNSGA-II نیز به این علت انتخاب شده‌است که روشی مناسب برای برخورد با محدودیت‌های حل مسأله ارائه می‌کند؛ چون باتوجه به ماهیت مسأله، چندین محدودیت سر راه حل مسأله ایجاد شده‌است که راهکار مناسبی برای رسیدگی به این محدودیت‌ها ایجاب می‌کند. الگوریتم NRGA نیز چون جزء جدیدترین الگوریتم‌های ارائه شده در زمینه بهینه سازی چندهدفه می‌باشد مورداستفاده قرار گرفته‌است.
2-4-2-1- الگوریتم ژنتیک مرتب سازی نامغلوب
دب و همکارانش [14]، یک نخبه گرایی دسته بندی یا مرتب سازی نامغلوب را در الگوریتم‌های ژنتیک پیشنهاد دادند. در اغلب مواقع، این الگوریتم شباهتی به NSGA ندارد، ولی مبتکران نام NSGA-II را به دلیل نقطه پیدایش آن، یعنی همان NSGA، برای آن حفظ کردند.
در این روش، ابتدا جمعیت فرزندان، ، با استفاده از جمعیت والدین، ، ساخته می‌شود. در اینجا به جای پیدا کردن جواب‌های نامغلوب از ، ابتدا دو جمعیت با یکدیگر ترکیب شده و جمعیت با اندازه 2N را ایجاد می‌کنند. سپس از یک مرتب سازی نامغلوب برای دسته بندی تمام جمعیت استفاده می‌شود، البته این مرتب سازی، نسبت به مرتب سازی بر روی ، به تعداد مقایسه بیشتری نیاز دارد. در این شیوه، یک مقایسه عمومی در بین اعضای که مجموع دو جمعیت فرزندان و والدین است، انجام می‌شود و پس از ایجاد صف‌های متفاوت نامغلوب، به ترتیب اولویت (اولویت صفها نسبت به هم) جمعیت بعدی، یکی یکی از این صف‌ها پر می‌شود. پر کردن جمعیت ، با بهترین صف نامغلوب شروع شده و سپس به ترتیب با دومین صف نامغلوب و همین طور سومین و الی آخر، تا زمانی که پر شود، ادامه می‌یابد. از آنجا که اندازه برابر 2N است، تمام اعضای آن ممکن است نتوانند در قرارگیرند و به راحتی جواب‌های باقیمانده را حذف خواهیم کرد. شکل (2-3) نحوه عمل الگوریتم NSGA II را نمایش می‌دهد.

شکل 2-3- نمایشی از نحوه عملکرد NSGA-II
درمورد جواب‌هایی که در صف آخر با استفاده از عملگر نخبه گرایی ازبین می‌روند، باید مهارت بیشتری به کار برده و جواب‌هایی که در ناحیه ازدحام کمتری قراردارند را حفظ کرد. درواقع برای رعایت اصل چگالی در بین جواب‌ها، جواب‌هایی که در ناحیه ازدحامی کوچکتری هستند، برای پر کردن ، در اولویت قرار دارند.
یک استراتژی شبیه بالا در پیشرفت مراحل اولیه از تکامل الگوریتم، تأثیر زیادی نخواهد داشت، چرا که اولویت‌های زیادی در جمعیت ترکیب شده از فرزندان و والدین وجود دارد. احتمالاً جواب‌های نامغلوب زیادی وجود دارند که آماده قرارگرفتن در جمعیت قبل از آن که اندازه‌اش از N تجاوز کند، می‌باشند. یک مسأله مهم و در عین حال سخت این است که مابقی جمعیت چگونه باید پر شود؟ اگرچه درخلال مراحل بعدی شبیه سازی الگوریتم، احتمالاً بیشتر جواب‌های موجود در جمعیت با اندازه 2N، در رده جواب‌هایی با بهترین درجه نامغلوب بودن قرار می‌گیرند و تعداد آن‌ها از N متجاوز خواهد شد، اما الگوریتم بالا با یک راهکار موقعیتی انتخاب، وجود مجموعه متنوعی از جواب‌ها در جمعیت را تضمین می‌کند. با چنین راهکاری، یعنی زمانی که به‌نحوی تمام ناحیه بهینه پارتو توسط جمعیت پوشانده می‌شود، در ادامه الگوریتم، جواب‌های گسترده تری را در فضای جواب فراهم خواهدآورد.
در ادامه، الگوریتم NSGA-II را به اختصار آورده ایم [15]:
گام 1: جمعیت فرزندان و والدین را با یکدیگر ترکیب کرده و را می‌سازیم:

جمعیت حاصل را با استفاده از یک مرتب سازی نامغلوب به صفوف دسته بندی می‌کنیم.
گام 2: قرارمی‌دهیم، i=1، سپس تا زمانی که ، عملیات زیر را تکرار می‌کنیم:

گام 3: روال مرتب سازی ازدحام را اجرا کرده و با استفاده از مفهوم فاصله ازدحام، ارزشهای متفاوتی را برای از جواب‌های تعیین می‌کنیم.
گام 4: جمعیت فرزندان را از با استفاده از یک الگوریتم انتخاب مسابقه‌ای ازدحام و عملگرهای ترکیب و جهش ایجاد می‌کنیم.
گام سوم از الگوریتم بالا، مرتب سازی برحسب ازدحام جواب‌ها در صف i (منظور آخرین صفی است که احتمالاً برخی از جواب‌های موجود در آن نتوانسته‌اند در جمعیت قرار گیرند)، با بکارگیری مفهوم فاصله ازدحام انجام می‌شود. بنابراین، جمعیت به صورت نزولی تحت میزان بزرگی ارزش فاصله ازدحام مرتب شده و در گام چهارم یک عملگر انتخاب مسابقه‌ای ازدحام که مبنای مقایسه آن همان فاصله ازدحام است بکار برده می‌شود. لازم به ذکر است، مرتب سازی نامغلوب واقع در گام اول می‌تواند به همراه عمل پر کردن جمعیت به صورت موازی انجام شود. درواقع هر بار که یک صف نامغلوب، پیدا شده و تست می‌شود که ازنظر اندازه می‌تواند به جمعیت اضافه شود یا نه، درصورتی که نتواند، دیگر نیازی نیست که مرتب سازی بیشتری انجام دهیم. این موضوع، به کاهش زمان اجرا الگوریتم کمک می‌کند.
2-4-2-2- الگوریتم NSGA-II محدود شده
اگر در حین حل مسأله‌ای که باید حل شود، حل‌هایی ایجاد شود که با محدودیت‌های مسأله مغایرت داشته باشد و آن‌ها را نقض کند و درنتیجه غیرقابل قبول باشد، چگونه باید با این موضوع برخورد کرد؟ روش‌های مختلفی برای مقابله با این موضوع وجود دارد که از جمله آن‌ها می‌توان به توابع جریمه و یا نادیده گرفتن و حذف حل غیرقابل قبول ایجاد شده اشاره کرد.
الگوریتم CNSGA-II، همانند الگوریتم NSGA-II عمل می‌کند، تنها با این تفاوت که برای رسیدگی به محدودیت‌ها، روشی را برمی‌گزیند که براساس مفهوم غلبه و امتیازدهی عمل می‌کند [14].
این روش که به محدودیت رسیدگی می‌کند، از انتخاب تورنمنت دودویی استفاده می‌کند که دو حل از جمعیت، انتخاب و حل بهتر انتخاب می‌شود. باتوجه به محدودیتها، هر حل می‌تواند یا قابل قبول و یا غیرقابل قبول باشد. بنابراین، ممکن است حداکثر سه وضعیت به وجود آید:
هرد و حل قابل قبول باشند؛
یکی از حل‌ها قابل قبول و دیگری غیرقابل قبول باشد؛
هر دو حل غیر قابل قبول باشند.
برای مسائل بهینه سازی تک هدفه، از یک قانون ساده برای هر مورد استفاده می‌کنیم:
مورد 1) حلی که تابع هدف بهتری دارد را انتخاب می‌کنیم.
مورد 2) حل قابل قبول را انتخاب می‌کنیم.
مورد 3) حلی که کمترین انحراف از محدودیت‌ها را دارد انتخاب می‌کنیم. باتوجه به اینکه در هیچدام از موارد، اندازه تابع هدف و محدودیت‌ها با یکدیگر مقایسه نشده‌اند، هیچ نیازی به داشتن پارامترهای جریمه نیست، این موضوعی است که این رویکرد را مفید و جذاب کرده‌است.
درمورد مسائل بهینه سازی چندهدفه، دو مورد آخر می‌تواند همانطور که هستند استفاده شوند و مورد اول نیز می‌تواند با استفاده از اپراتور مقایسه ازدحام، حل شود. برای مقایسه کردن در این الگوریتم، تعریف «غلبه» را بین دو حل i و j تعریف می‌کنیم.
تعریف 1) حل i اگر یکی از وضعیت‌های زیر درست باشد، گفته می‌شود که از لحاظ محدودیت بر حل j غلبه دارد:
حل i قابل قبول است ولی حل j نیست.
حل i و j هر دو غیر قابل قبول می‌باشند، اما حل i انحراف از محدودیت کمتری دارد.
حل i و j قابل قبول هستند و حل i، حل j را مغلوب می‌کند.
اثر استفاده از مفهوم غلبه محدودیت این است که، هر حل قابل قبول، رتبه غیرمغلوبی بهتری از هر حل غیرقابل قبول دارد. همه حل‌های قابل قبول، باتوجه به سطح غلبه شان و براساس مقادیر توابع هدفشان رتبه بندی می‌شوند. به هر حال، از بین دو حل غیر قابل قبول، حلی که کمترین انحراف از محدودیت را دارد، دارای رتبه بهتری است. به هر حال، این اصلاح، در مفهوم غلبه، تغییری در پیچیدگی NSGA-II ندارد. بقیه فرایند CNSGA-II، همانطور که قبلاً درمورد NSGA-II توضیح داده شد، اجرا می‌شود.
2-4-2-3- الگوریتم ژنتیک رتبه بندی نامغلوب
این الگوریتم که توسط الجدان و همکارانش [16] ارائه شده، الگوریتم انتخاب چرخ رولت رتبه‌بندی شده را با الگوریتم رتبه بندی جمعیت برمبنای پارتو ترکیب می‌کند. در این الگوریتم از الگوریتم انتخاب چرخ رولتی استفاده شده‌است که به هر عضو، یک اندازه برازش برابر با رتبه اش در جمعیت، تخصیص می‌دهد؛ بالاترین رتبه، بیشترین احتمال را دارد که انتخاب شود (درمورد ماکزیمم سازی).
این احتمال به صورت معادله زیر محاسبه می‌شود:
(29.2)
که N، تعداد اعضاء این جمعیت است. در این الگوریتم، اعضاء در یک جبهه، براساس فاصله ازدحامشان و جبهه ها براساس رتبه غلبه شان رتبه می‌گیرند.
الگوریتم NRGA، همان طور که سودوکد آن را در شکل (2-4) مشاهده می کنید، به این صورت است که ابتدا، یک جمعیت تصادفی والدین، P، ایجاد می‌شود. مرتب کردن جمعیت براساس غلبه است. به هر حل، برازشی (یا رتبه ای) برابر سطح غلبه اش، تخصیص داده می‌شود (1 برای بهترین سطح، 2 برای سطح بعدی و الی آخر).
Initialize Population P
{ Generate random population-size N
Evaluate Objective Values
Assign Rank (level) Based on Pareto dominance-sort }
Generate Child Population Q
{ Ranked based Roulette Wheel Selection

user8301

فهرست تصاویر و نمودارها
TOC o "1-3" h z u
HYPERLINK l "_Toc316054760" شکل(1-1):منحنی سرعت خشک شدن نسبت به رطوبت آزاد بطریق جابجایی در شرایط خارجی ثابت
6
شکل(1-2):منحنی سرعت خشک شدن بطریق جابجایی(رطوبت آزاد نسبت به زمان)6شکل(2-1):نمودار خشک کن دوار حرارت مستقیم همسو16شکل(2-2):نمودار خشک کن حرارت مستقیم ناهمسو16شکل(2-3):جریان همسو ایجاد شده توسط یک منبع خارجی17شکل(2-4):جریان همسو ایجادشده توسط یک مشعل داخلی18شکل(2-5):جریان ناهمسو ایجادشده توسط یک منبع خارجی18شکل(2-6):جریان ناهمسو ایجادشده توسط یک مشعل داخلی19شکل(2-7):یک سیستم احیا کننده حرارتی20شکل(2-8):نمودار خطی یک خشک کن دوار21شکل(2-9):پروفایل پره های رایج22شکل(2-10):توزیع حالت پایا برای رطوبت جامد و هوای خشک در جاییکه∆L=0.5m30شکل(3-1):خشک کن دوار آبشاری33شکل(3-2):حرکت آبشاری جامدات در داخل خشک کن دوار36شکل(3-3):نمایی از خشک کن دوار کارخانه تولید دی کلسیم فسفات مورد بررسی40شکل(3-4):نحوه قرارگرفتن پره ها در خشک کن41شکل(3-5):مشعل42شکل(3-6):ترمومتر43شکل(3-7):کانال مکش43شکل(3-8):موتور گیربکس44شکل(3-9):درایور اینورتر44شکل(3-10):فن مکنده45شکل(3-11):ریل راهنما45فهرست تصاویر و نمودارها

TOC o "1-3" h z u
شکل(3-12):چرخ دنده46شکل(3-13):نمودار خطی خشک کن دوار مورد بررسی با استفاده از نرم افزار اتوکد47شکل(3-14):رطوبت سنج دیجیتالیSartorius MA3549شکل(4-1): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور4/4 با تقریب مدلPageوModified Henderson & Pabis59شکل(4-2): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور5/4 با تقریب مدلTwo-TermوModified Henderson & Pabis59شکل(4-3): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور8/4 با تقریب مدل Two-Term وModified Henderson & Pabis60شکل(4-4): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور5با تقریب مدلTwo-Term وModified Henderson & Pabis61شکل(4-5): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور2/5با تقریب مدلPage وModified Henderson & Pabis62شکل(4-6): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور3/5با تقریب مدلModified Henderson and Pabis وPage63شکل(4-7): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور4/5با تقریب مدلModified Henderson and Pabis وTwo-Term63شکل(4-8): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور6/5با تقریب مدلModified Henderson and PabisوTwo-Term64شکل(4-9): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور7/5 با تقریب مدلModified Henderson and Pabis وTwo-Term65شکل(4-10): انحراف نسبت رطوبت اندازه گیری شده از خشک کن دوار به نسبت رطوبت پیش بینی شده در دور8/5با تقریب مدل Modified Henderson and Pabisو Two-Term65شکل(4-11):ساختار یک سلول عصبی69شکل(4-12):مفهوم نرون70فهرست تصاویر و نمودارها
شکل(4-13):تابع آستانه ای72شکل(4-14):تابع آستانه ای دو مقداری73شکل(4-15):تابع انتقال لگاریتمی73شکل(4-16):تابع انتقال خطی مثبت74شکل(4-17):تابع انتقال تانژانت74شکل(4-18):شبکه چند ورودی یک لایه75شکل(4-19):شبکه چند ورودی چندلایه76شکل(4-20):شبکه های بازگشتی76شکل(4-21):نمودار عملکرد شبکه عصبی76شکل(4-22):مسیرسیگنال ها در شبکه عصبی78شکل(4-23):مسیر سیگنال ها در شبکه عصبی طراحی شده برای خشک کن دی کلسیم فسفات79شکل(5-1):مقایسه ضریب تعیین7مدل برای دی کلسیم فسفات84شکل(5-2):مقایسه میانگین مربعات خطای 7 مدل برای دی کلسیم فسفات85شکل(5-3):مقایسه میانگین درصد خطای نسبی7مدل برای دی کلسیم فسفات85

مقدمه
دی کلسیم فسفات یکی از مکمل هایی است که تاثیر بسزایی در افزایش رشد و نمو، باروری و شیردهی و استخوانبندی دام و طیور را دارد و بهبود بخشیدن به کیفیت این محصول کمک شایانی به صنعت دام و طیور می کند. رطوبت موجود در دی کلسیم فسفات بر روی درصد جذب آن در بدن جاندار موثر است لذا برای رساندن رطوبت آن به حد مطلوبش (حداکثر 3 درصد) از خشک کن استفاده می شود. خشک کن مورد بررسی در اینجا خشک کن دوار می باشد.
بررسی روند خشک کردن در خشک کن دوار مورد نظر در 5 فصل انجام شده است. در فصل اول به تعریف فرایند خشک شدن می پردازیم. در فصل دوم به پیشینه بررسی های انجام شده بر روی خشک کردن و خشک کن ها نگاه اجمالی داریم. بررسی روش انجام کار و توصیف خشک کن مورد نظر در فصل سوم انجام می شود. در فصل چهارم مدل های ریاضی و مدل شبکه عصبی بر روی داده های مختلف صورت می گیرد و در نهایت در فصل پنجم جمع بندی نهایی و پیشنهادها ارائه می شود.
-82283248519فصل اول
مقدمه و کلیات
0فصل اول
مقدمه و کلیات

1-1-مقدمه
خشک کردن شاید قدیمی ترین، متداول ترین و یکی از پرکاربرد ترین عملیات در مهندسی شیمی باشد. بیش از 400 نوع از خشک کن ها در منابع گزارش شده است در صورتیکه بیشتر از 100 نوع از آنها قابلیت استفاده در صنعت را دارند. مقدار انرژی مصرفی در خشک کن ها برای فرایند های صنایع شیمیایی به 5 درصد و برای صنایع کاغذسازی به 35 درصد می رسد. خشک کردن در نتیجه تبخیر مایع توسط انتقال حرارت به مواد خامی که مرطوبند اتفاق می افتد[1].
بیش از 85 درصد از خشک کن های صنعتی از نوع همرفتی با هوای داغ یا تماس با گازهای حاصل از احتراق می باشد. بیش از 99 درصد از اهداف این عملیات حذف آب می باشد. نحوه خشک شدن جامد به مکانیزم انتقال حرارت، ماده خشک شونده و شیوه انتقال حرارت بصورت هدایت، همرفت و با تابش بستگی دارد. در بیشتر خشک کن های حرارت مستقیم مکانیزم انتقال حرارت، معمولاً همرفت است و در خشک کن های حرارت غیرمستقیم مکانیزم اصلی انتقال حرارت، هدایت می باشد. در هردو حالت امکان دارد بخش قابل توجهی از حرارت بطریق تابش منتقل شود[2].
در فرآیند خشک کردن، موادمرطوب در تماس با هوای غیراشباع قرار گرفته و در نتیجه از مقدار رطوبت کاسته و هوا مرطوب می شود. معمولاً فرآیند خشک شدن با حرارت داده هوا قبل از فرایند بهتر انجام می شود؛ بنابراین می توان فرایند خشک شدن را به دو مرحله تقسیم کرد: حرارت دادن هوا و تبخیر شدن رطوبت از مواد. بررسی جامع خشک کردن مستلزم آشنایی با عواملی است که بر روی حرکت مایع و بخار تحت شرایط حرارتی مفروض تاثیر می گذارد. این موضوع شامل بررسی ساختمان داخلی مواد جامد خواهد بود که برای محاسبه شدت جریان مایع و بخار بر اساس خواص فیزیکی و خواص سطحی مورد استفاده قرار می گیرند
در طراحی و عملکرد یک واحد خشک کن تاثیر چندین عامل را باید در نظر گرفت. همه این عوامل از درجه اهمیت یکسانی برخوردار نیستند. برخی از آنها در مرحله خشک شدن با شدت ثابت و برخی دیگر در مرحله خشک شدن با شدت نزولی اهمیت بیشتری دارند[2].
1-2-اصول خشک کردن
سینتیک خشک شدن، تغییرات زمانی مقادیرمتوسط رطوبت، درجه حرارت ماده، زمان خشک شدن، انرژی مصرفی و سایرمشخصات را تا حدامکان فقط به کمک خواص فیزیکی و شیمیایی مواد تعیین می شود در مقابل دینامیک خشک شدن تغییرات منحنی های درجه حرارت و رطوبت در بدنه خشک کن را مورد بررسی قرار میدهد.
انتقال حرارت از فضای پیرامون به مواد، موجب تبخیر رطوبت سطحی می شود. رطوبت می تواند از درون جسم به سطح منتقل و سپس تبخیر شود و یا درون محصول و در حالتی میان بخار-مایع، تبخیر و بصورت بخار به سطح محصول انتقال پیدا کند.
شدت خشک شدن تحت تاثیر پارامترهایی از فرآیند مانند درجه حرارت، رطوبت (فشار)، سرعت نسبی هوا و فشارکل می باشد. بطور کلی دوره معمولی خشک کردن شامل سه مرحله است: ماده غذایی تا دمای خشک کردن حرارت داده می شود، سپس رطوبت از سطح محصول با سرعتی مناسب با مقدار رطوبت تبخیر می شود، زمانیکه رطوبت به رطوبت بحرانی نزدیک می گردد، سرعت خشک کردن کاهش می یابد. رطوبت بحرانی تابعی از سرعت خشک کردن است، سرعت بالای خشک کردن سرعت رسیدن به نقطه رطوبت بحرانی را افزایش و سرعت پایین خشک کردن آنرا کاهش می دهد[4].
خشک کردن از طریق هدایت با خشک کردن از طریق همرفت اندکی تفاوت دارد. درحالت هدایت، موادجامد مرطوب در محفظه ای که از بیرون حرارت داده می شود، قرارگرفته و بخارهای حاصله از سوراخ های درنظر گرفته خارج می شوند. در حالت همرفت ، گاز داغ بر روی سطح مواد جامد مرطوب دمیده می شود در نتیجه هم منبع حرارتی تامین شده و هم امکان خارج نمودن بخار فراهم می گردد[2].
1-3-پدیده های انتقال در فرایند خشک کردن
همانطور که گفته شد، خشک کردن فرایند رطوبت گیری همزمان از طریق انتقال حرارت و جرم می باشد. عامل اصلی در خشک کردن، انتقال جرم از مواد جامد مرطوب می باشد. از جنبه نظری هیچگونه شناخت کمی از مکانیزم انتقال جرم از موادجامد در حال خشک شدن وجود ندارد. انتقال جرم در این حالت احتمالاً به اندازه، شکل و حالت ذرات تشکیل دهنده مواد جامد و چگونگی خروج مایعات و بخارات از منافذ و خلل و فرج داخل موادجامد و سطح خارجی آنها بستگی دارد. این حداکثر مطلبی است که در این مورد می توان اظهار داشت. در بعضی از انواع خشک کن ها (به خصوص خشک کن های هدایتی) و در بعضی مراحل معمولاً مراحل اولیه شدت خشک شدن بوسیله انتقال حرارت به ماده به جای انتقال جرم از مواد جامد در حال خشک شدن کنترل می شود. تحت این شرایط شدت خشک شدن توسط قواعد روشن انتقال حرارت تعیین می گردد و تا حدودی مستقل از خواص مواد در حال خشک شدن می باشد اما در حالت کلی، شدت خشک شدن به انتقال جرم از موادجامد در حال خشک شدن بستگی دارد[2].
با توجه به دو عامل فوق، در عمل باید به نکات زیر توجه نمود:
-تعیین کردن سرعت خشک شدن یک ماده با انجام دادن آزمایش ها ممکن است و بدست آوردن آن از لحاظ تجربی بسیار سخت می باشد.
-آزمایش ها باید بر اساس نوع خشک کن مورد استفاده، انجام شوند[5].
1-3-1-انتقال حرارت در فرایند خشک کردن
حرارت موردنیاز در خشک کردن مواد ممکن است از طریق تابش، همرفت ، هدایت و یا بوسیله جذب حجمی انرژی الکترومغناطیسی و یا بسامد موج رادیویی تامین شود. شیوه خشک شدن موادجامد، به مکانیزم انتقال حرارت به ماده خشک شونده و اینکه کدامیک از حالت های هدایت، همرفت و تابش موثرند، بستگی دارد. در بیشتر خشک کن های حرارت مستقیم، مکانیزم اصلی انتقال حرارت معمولاً همرفت است که در طی آن بوسیله عبور جریان گاز داغ از بین و یا از روی مواد، عمل خشک کردن صورت می گیرد. در خشک کن های حرارت غیرمستقیم، مکانیزم اصلی انتقال حرارت، هدایت است که در آن حرارت از طریق جداره به مواد منتقل می شود. در هر دو حالت امکان دارد بخش قابل توجهی از حرارت بطریق تابش منتقل شود.
همچنین هنگامیکه انتقال حرارت بطریق همرفت است، هدایت حرارتی نیز تا حدی تاثیر خواهد داشت و بالعکس. به ندرت اتفاق می افتد که مکانیزم انتقال حرارت در یک خشک کن فقط تابش باشد؛ بنابراین می توان خشک کردن موادجامد را بر مبنای همرفت و یا هدایت بررسی کرده و سپس اثرات انتقال حرارت به روش های دیگر را در روابط مربوط وارد نمود.
1-3-2-انتقال حرارت به طریق همرفت
در این حالت موادجامد مرطوب بر اثر عبور جریان گاز داغ از میان و روی سطح بستر مواد، خشک می شوند. گاز داغ هم به عنوان عامل انتقال حرارت از طریق همرفت و هم به عنوان عامل خارج کننده بخارات حاصل، عمل می کند. فرایند خشک کردن در دو مرحله مجزا صورت می گیرد. در ابتدا شدت خشک شدن ثابت بوده و سپس در مقداری مشخص از رطوبت، به تدریج کاهش می یابد تا هنگامی که مواد کاملاً خشک شوند. مقدار رطوبتی که در آن شدت خشک شدن شروع به تنزل می کند، مقدار رطوبت بحرانی نامیده می شود. در بعضی موارد، امکان دارد مقدار رطوبت اولیه کمتر از مقدار رطوبت بحرانی باشد، در این صورت عمل خشک کردن تماماً در مرحله شدت نزولی بوده و در هیچ مرحله ای ثابت نیست. منحنی های شدت نزولی نیز امکان دارد مقعر، محدب و یا بطور تقریبی خط راست باشند. انحنا در منحنی خشک شدن، بعلت تغییر شکل فیزیکی مواد است.
مرحله خشک شدن با شدت ثابت، در حالتی اتفاق می افتد که سطح مواد جامد بوسیله مایع مرطوب شده و خشک شدن در سطح مواد صورت پذیرد. در این حالت شدت خشک شدن بطور کامل توسط شرایط خارجی کنترل می شود که این شرایط شامل سرعت، دما و مقدار رطوبت گاز خشک کننده می باشد؛ بنابراین اگر این عوامل ثابت باشند، شدت خشک شدن نیز ثابت است. همچنین در این مرحله شدت انتقال مایع از درون مواد جامد به سطحی که درآن تبخیر صورت می گیرد به نحوی است که تداوم عمل مانعی ایجاد نمی کند. در مرحله خشک شدن با شدت نزولی میزان انتقال مایع به سطح کاهش یافته، بطوریکه به عامل تعیین کننده زمان خشک شدن تبدیل می شود. در این حالت سطح مواد دیگر کاملاً مرطوب نیست. در حالیکه شدت انتقال مایع به سطح کاهش می یابد، تاثیر شرایط خارجی به تدریج نقصان یافته و کاهش شدت خشک شدن صرفاً مربوط به کاهش شدت انتقال مایع به سطح می باشد[2].

شکل (1-1). منحنی سرعت خشک شدن نسبت به رطوبت آزاد به طریق همرفت در شرایط خارجی ثابت[2].
149034538735 شکل (1-2). منحنی سرعت خشک کردن بطریق همرفت (رطوبت آزاد نسبت به زمان)[2].
1-3-3-انتقال حرارت بطریق هدایت
در خشک کردن به طریق هدایت، موادجامد از طریق جداره حرارت داده می شوند و بدین ترتیب رطوبت آن تبخیر شده واز سیستم خارج می شود. این خشک کن ها غالباً در فشارهای پایین عمل می کنند و این موضوع موجب کاهش نقطه جوش مایع شده و در نتیجه اختلاف دمای بین منبع حرارتی و مواد افزایش می یابد[2].
دمای جامد به نقطه جوش مایع رسیده و در آن ثابت می ماند. در پایان، دمای جامد تا دمای جداره افزایش می یابد وامکان دارد توزیع درجه حرارت در رابطه با بسترهای ساکن و ضخیم موادی که دارای ضریب هدایت حرارتی پایینی می باشند، یکنواخت نباشد؛ بنابراین نظیر خشک کردن از طریق همرفت در این حالت نیز می توان دو مرحله در نظر گرفت، یک مرحله خشک شدن سریع در ایتدا و سپس مرحله خشک شدن کندتر می باشد.
شباهت موجود تصادفی است و در واقع در این حالت تفاوت محسوسی بین دو مرحله نظیر حالت همرفت وجود ندارد و مراحل، بیشتر به شرایط عمل و طرح دستگاه بستگی دارد تا به مواد خشک شونده. بطور کلی شدت خشک شدن بگونه ای یکنواخت کاهش می یابد.
1-3-4-انتقال حرارت بطریق تابش
در بعضی موارد، تابش، مکانیزم اصلی حرارت دهی در خشک کن هاست ولی معمولاً در مقایسه با انتقال حرارت هدایتی و یا همرفت بخش کوچکتری از انتقال حرارت را تشکیل می دهد؛ بنابراین تابش را می توان بعنوان یک عامل اصلاحی برای همرفت و یا هدایت در نظر گرفت. اثر تابش بر روی سطح مواد در حال خشک شدن سبب افزایش شدت خشک شدن می شود بطوریکه شدت خشک شدن از آنچه که بر اثر مکانیزم های همرفتی و یا هدایتی محاسبه می شود، زیادتر می گردد [2].
1-4-عوامل موثر در خشک کردن
عوامل موثر در خشک کردن را می توان بصورت زیر دسته بندی کرد:
الف-انتقال حرارت
انتقال حرارت از منبع حرارتی به سطح مایع
انتقال حرارت در لایه بین مایع و جامد
انتقال حرارت از جامد به مایع
انتقال حرارت از جامد به مایع از طریق لایه سطحی و از لابه لای منافذ و خلل و فرج توده جامد
ضریب هدایت حرارتی مایع
ضریب هدایت حرارتی موادجامد مرطوب
ضریب هدایت حرارتی موادجامد تقریباً خشک
گرمای نهان تبخیر مایع
گرمای هیدراسیون (هنگامیکه بایستی آب تبلور تبخیر شود)
رابطه بین دمای عمل و نقطه ذوب ماده مرطوب، برخی از مواد قبل از اینکه تمام رطوبت آن تبخیر شود ذوب می شوند
اثرات الکترولیت موجود در مایع، بر روی مشخصات خشک کردن مواد.
ب- محیط خشک کن
فشار و دمای محیط خشک کن
ترکیب گاز محیط خشک کن
سرعت نسبی محیط مجاور بستر خشک کن
درجه اشباع محیط خشک کن نسبت به بستر مواد جامد
فشار بخار موثر مایع با در نظر گرفتن تغییرات در افزایش نقطه جوش مایع در طول فرایندخشک کردن
ج-خواص فیزیکی سیستم های جامد-مایع
کشش در سطح مشترک بین جامد و مایع
ضخامت لایه سطحی بین جامد ومایع
نسبت سطح به حجم مایع در داخل منافذ
ضریب نفوذ بخار بین منافذ
مکش مویین مایع در منافذ
اختلاف غلظت مایع در منافذ
وجود مواد رشته ای یا کلوخه ای در مواد جامد
اندازه مولکول مایع در رابطه با بعضی از مایعات آلی
حداکثر مقدار ناخالصی مایع در ماده خشک
د-خواص مواد جامد
اندازه ذرات
سطح موثر موادجامد
تخلخل
حلالیت مواد جامد در مایع
سخت شدن سطح موادگلی شکل در حال خشک شدن، در حالتی که سطحی تقریباً غیر متخلخل ایجاد می شود و رابطه این پدیده با شدت خشک شدن
تشکیل کیک در حین خشک شدن و تجمع
مقاومت مواد خشک شده در مقابل ساییدگی
حداکثر مقدار مایع مجاز در محصول خشک شده[2].
1-5-انتقال جرم در فرایند خشک شدن
امروزه در صنایع غذایی و دارویی انتقال رطوبت به مواد موضوع حائز اهمیتی می باشد. تعداد مکانیزم های انتقال رطوبت، زیاد و اغلب آنها پیچیده اند. پدیده های انتقال بطور معمول بر اساس نفوذ فشاری، نفوذ حرارتی، نفوذ اجباری و نفوذ عادی تقسیم می شوند.
در متون علمی مربوط به فرایند خشک کردن، علاوه بر نفوذ تعدادی از مکانیزم های دیگر انتقال جرم نظیر نفوذ سطحی، جریان هیدرودینامیک یا جریان توده ای و جریان مویینگی بیان شده است. بدلیل اینکه امکان دارد بیش از یک مکانیسم در جریان کلی حضور داشته باشند، مدلسازی مشکل می شود و حضور مکانیزم های مختلف در هنگام فرایندخشک شدن تغییر می کند. توسعه دادن یک مدل خشک کن کارآمد به شناخت و استفاده از همه مکانیسم های موجود، نیاز دارد[6].
انواع مکانیزم های انتقال جرم داخلی در فاز مایع عبارت است از: انتشار، جریان مویینگی، نفوذسطحی و در فاز بخارعبارت است از: انتشار دوتایی، انتشار نادسن، نشت، جریان لغزشی، انتشار استفان، جریان بوسیله تبخیر و میعان.
اگر مقاومت انتقال جرم در لایه مرزی گاز بیشتر از مقاومت نفوذ رطوبت از داخل ماده به سطح آن باشد، شدت خشک شدن بیشتر به شرایط بیرونی عامل خشک کننده (هوا) بستگی داشته و تقریباًمستقل از پارامترهای جامد است.
اگر مقاومت انتقال جرم در فاز گازی و ماده مرطوب تقریباً برابر باشد، ویژگی های هوا (عامل خشک کردن) باید در نظر گرفته شود.
1-6-تعاریف در خشک کردن
برای آشنایی با نمادها و مفاهیم خشک کردن، تعاریف مختصر آنها در زیر ارائه می شوند:
الف-رطوبت مطلق در فاز گاز [4]
H=Pwp-Pw×mwmg (1-1)
در معادله بالا، H رطوبت مطلق، mw جرم مولکولی بخار مرطوب، mg جرم کل که هر دو بر حسب کیلوگرم می باشند، P فشار کل و pw فشارجزیی بخار مرطوب بر حسب پاسکال می باشد.
هنگامیکه فشارجزیی بخار در گاز با فشاربخار مایع مساوی شود، گاز در حالت اشباع قرار دارد.
Hs =Pw0P-Pw0×mwmg (1-2)
که در آن P0w فشار بخار اشباع بر حسب پاسکال است.
ب- رطوبت نسبی در فاز گاز
میزان رطوبت نسبی هوا در یک دمای معین از رابطه زیر بدست می آید:
RH=φ=PwPw0 (1-3)
که در آن RH رطوبت نسبی هوا (φ نیز نشان داده می شود) است و بیانگر نسبت فشاربخار جزیی به فشاربخار اشباع در هر دو دمای معین می باشد.
ج- دمای حباب خشکTD
دمایی است که با دماسنج معمولی اندازه گیری می شود.
ه-دمای حباب مرطوب Tw
باگذر سریع گاز از روی یک دماسنج حباب مرطوب اندازه گیری می شود. از این دما همراه دمای حباب خشک برای اندازه گیری رطوبت نسبی گاز استفاده می شود.
و-میزان رطوبت در جامد مرطوب
میزان رطوبت عبارت است از وزن آب درون جسم تقسیم بر وزن ماده جامد خشک و یا ماده جامد مرطوب.
MCwb=Ww=WdWd+1 (1-4)
MCwb : مقدار رطوبت در مبنای مرطوب.
Ww:وزن آب به ازای یک کیلوگرم ماده مرطوب
Wd:وزن آب به ازای یک کیلوگرم ماده خشک.
MCdb=Wd=Ww1-Ww (1-5)
MCdb:مقدار رطوبت در مبنای خشک
میزان رطوبت عامل مهمی در طراحی خشک کن های صنعتی است که به کمک آنها قادر به بیان سینتیک خشک شدن ماده و بررسی رفتار تعادلی آن خواهیم بود.
ز-رطوبت تعادلی
مقدار رطوبت محصول که با شرایط دما و رطوبت محیط در حالت تعادل قرار دارد را رطوبت تعادلی می گویند.
ح- رطوبت آزاد
مقدار رطوبتی است که بطور مکانیکی در فضای خالی ماده غذایی محبوس شده است و ویژگی های آن کم و بیش برابر با توده آب است.
س-رطوبت ناپیوسته
رطوبت مازاد بر مقدار رطوبت تعادلی را رطوبت ناپیوسته می گویند که برابر با رطوبت اشباع می باشد.
ش-رطوبت پیوسته
مقدار رطوبتی که بطور قوی با شبکه ماده غذایی پیوند یافته و ویژگی های آن با توده آب متفاوت است را رطوبت پیوسته گویند.
-178535135155فصل دوم
پیشینه مطالعات خشک کن دوار و مدلسازی آن
00فصل دوم
پیشینه مطالعات خشک کن دوار و مدلسازی آن

2-1-مقدمه
خشک کردن بطور معمول روند حرارتی برای از بین بردن رطوبت برای رسیدن به یک محصول مطلوب می باشد. با وجود اهمیت آن در بسیاری موارد طراحی و بهره برداری از خشک کن ها بر اساس تجربه مهندسین انجام می شود، با اینحال مشاهده بر اساس تجربه تا حد زیادی کنترل شده است[8].
فرایند خشک کردن بصورت دوار یکی از متداول ترین مراحل صنعت می باشد که در تولید بسیاری از محصولات شیمیایی، غذایی، موادمعدنی، متالوژی یا فرآوری ضایعات بکار می رود. قابلیت تصفیه مقدار زیادی از مواد، خشک کن دوار را همانند یک راکتور مناسب گاز-جامد با گرمای ویژه و انتقال جرم می سازد[14].
خشک کردن به معنای کاهش رطوبت از تولیدات و راه حل نهایی برای نگهداری می باشد، زیرا رطوبت موجود در سطح محصول اگر کاهش داده شود مانع از پوسیدگی آن می شود. در مقابل دیگر روش های نگهداری، خشک کردن مواد غذایی از نظر ارزش تغذیه ای سطح بالاتری را دارا می باشد. در مطالعات انجام شده بر روی خشک کن ها، کارشناسان در تلاش برای بدست آوردن برنامه های کاربردی تر بجای خشک کن های معمولی هستند[13].
خشک کن دوار می تواند بوسیله حرارت خارجی در تصفیه موادآلی یا حرارت داخلی برای فرآیند موادمعدنی عمل کند. معمولاً این حالت دوم همانند یک کوره کلاسیک طراحی شده است که در آن یک مشعل در ورودی به منظور آزاد کردن انرژی لازم برای عملیات حرارتی قرار داده شده است. فرایند خشک کردن عبارتست از خارج کردن رطوبت از این مواد توسط فناوری های متفاوت نظیر خشک کردن فلش، بستر سیال ، در بسیاری از بخش های مهم تولیدی (معدنی، پلیمر، کاغذ) می باشد. برای صنعت جاده سازی، خشک کن های استوانه ای دوار بیشتر به فرایندهای پیوسته به منظور رسیدن به بالاترین سرعت تزریق مصالح و انجام متوالی عملیات خشک کردن، حرارت دادن، مخلوط کردن وپوشاندن با قیر برای تولید بتن آسفالت اختصاص دارد[14].
2-2-اصول عملیات
ساده ترین نوع خشک کن های آبشاری شامل یک استوانه دوار که شیب خفیفی دارد، می شود که یک سری پره پیرامون آن برای بالا بردن، توزیع، انتقال مواد تنظیم شده است. پره ها بخصوص برای همرفت مواد که خشکی آن افزایش می یابد، طراحی می شوند.
اصول عملیات بر پایه شست و شو بصورت آبشاری مواد مرطوب با یک جریان گاز داغ می باشد. جریان جامد یا بصورت همسو و یا ناهمسو می باشد. گاز داغ رطوبت را تبخیر می کند. حرارت از ماده خارج می شود و تبخیر بخارآب بسرعت دمای گاز را کاهش می دهد بطوریکه در دمای نسبتاً کم خشک کن را ترک می کنند.
بازده خشک کن بطورعمده به اختلاف بین دمای گاز ورودی و خروجی، سرعت انتقال حرارت و همچنین رابطه بین طراحی پره ها و سرعت چرخش بستگی دارد. بهرحال صرفنظر از دمای مواد و گاز، زمان ماند یا خشک کردن ممکن است مهم باشد زیرا بوسیله سرعت نفوذ آب از درون به سطح ماده کنترل می شود.
2-3-خشک کن های مستقیم
2-3-1-خشک کن های همسو
خشک کن های همسو بطور گسترده ای مورد استفاده قرار می گیرند و بخصوص برای خشک کردن موادخیلی مرطوب که به حرارت حساس هستند، مناسب اند. مواد مرطوب در تماس با گاز داغ قرار می گیرند و بسرعت رطوبت سطح تبخیر می شود. سرعت انتقال حرارت در ابتدا بسیار بالاست که باعث افت فوری و قابل توجه در دمای گاز می شود که مانع از بیش از حد گرم شدن ماده و پوسته خشک کن می گردد. محصول نهایی در تماس با گاز در پایین ترین دما می باشد و قادر خواهد بود مقدار رطوبت را معمولاً با تنظیم دمای گاز خروجی کنترل کند.
89027017716500

شکل (2-1). نمودار خشک کن دوارحرارت مستقیم همسو[27].
2-3-2-خشک کن های ناهمسو
خشک کن های ناهمسو اغلب برای موادی مناسبند که تا حداقل میزان رطوبت بایدخشک شوند. در هرصورت تا زمانیکه محصول نهایی در تماس با گاز در دمای بسیار بالا قرار دارد، خشک کن های ناهمسو اغلب برای موادی که به حرارت حساس هستند، مناسب نیستند. استفاده از این سیستم می تواند کارآمدتر باشد و رطوبتی که در محصول می ماند را نمی توان به آسانی کنترل کرد.

شکل (2-2) .نمودار خشک کن دوار حرارت مستقیم ناهمسو[27].
2-3-3-سیستم حرارتی
در هردو سیستم همسو و ناهمسو، مواد در تماس مستقیم با گازهای خشک کننده داغ قرار می گیرند که معمولاً با انرژی ناشی از احتراق سوختهایی نظیر نفت، گاز یا سوخت کوره در محدوده 0C1000-250 موردنیاز کار می کنند. بهرحال برای کاربردهای دما پایین و حساس به حرارت یا همراه با آلودگی باید خودداری گردد. هوا بطور غیرمستقیم می تواند با جریان الکتریکی یا بخار مبدلهای نوع لوله ای گرم شوند.
خشک کن ها معمولاً با دو دمنده کار می کنند، سیستم مکش متعادل که بوسیله آن گاز ورودی کمی زیر فشار منفی است که میزان نشت هوا را به حداقل برساند. هنگامیکه موادخشک می شوند تحت تاثیر حرارت یا پرتو شعله قرار نمی گیرند، یک مشعل گازی یا نفتی می تواند آتش را بطور مستقیم وارد استوانه کند.
ترکیب دو عامل دمای بسیار بالا (0C1300-800) و تابش های ناشی از شعله، هنگامیکه اندازه خشک کن و ظرفیت سیستم گاز خروجی کاهش یابد، بالاترین بازده حرارتی را بوجود می آورد. در اینجا رقیق کردن هوا بوسیله دمنده خروجی از گرم شدن بیش از حد پوسته خشک کن جلوگیری می کند.
2-3-4-کاربردهای جریان همسو
1-خوراک تر در تماس با گاز داغ خشک کننده که توسط یک منبع خارجی آماده میگردد، قرار دارد. انتقال حرارت توسط همرفت انجام می گیرد.

شکل (2-3) .جریان همسو ایجاد شده توسط یک منبع خارجی [27].
این روش برای موادمعدنی، کودهای شیمیایی، غلیظ سازی شناوری، فسفات ها، خوراک حیوانات و... بکار می رود.
2-خوراک تر در تماس با گاز داغ خشک کننده که توسط یک مشعل داخلی آماده میگردد، قرار دارد و بازده حرارتی بالایی را ایجاد می کند و انتقال حرارت بوسیله همرفت و تابش انجام میگیرد.

شکل (2-4) .جریان همسو ایجاد شده توسط یک مشعل داخلی[27].
این روش برای کانی های سنگین، سنگ خردشده، ماسه، تفاله، موادنسوز و جداسازی سنگ آهک و خاک رس بکار می رود.
2-3-5-کاربردهای جریان ناهمسو
1-محصول نهایی در تماس با گاز داغ خشک کننده که توسط یک منبع خارجی آماده میگردد، قرار دارد. انتقال حرارت توسط همرفت انجام میگیرد.

شکل (2-5) .جریان ناهمسو ایجاد شده توسط یک منبع خارجی [27].
این روش مناسب برای سیلیکاژل، شکر، نمک های شیمیایی و محصولات کریستالی (رنج دمایی پایین)، آمونیوم نیترات، کانی ها، موادمعدنی و رنگدانه ها می باشد.
2-محصول نهایی در تماس با گاز داغ خشک کننده که توسط یک مشعل داخلی آماده میگردد، قرار دارد و بازده حرارتی بالایی را ایجاد می کندو انتقال حرارت بوسیله همرفت و تابش انجام میگیرد.
904875127000

شکل (2-6) .جریان ناهمسو ایجاد شده توسط یک مشعل داخلی [27].
این روش برای ماسه، شن، سنگ های شکسته، سنگ آهک، ترکیب کردن، خشک کردن و پیش گرم کردن و خاکسترشدن مناسب می باشد.
2-4-چرخه (بازیافت) گاز و سیستم های جامع
برای بازده گرمایی بالا یا زمانیکه مواد ذاتاً خطرناک اند، اغلب فرایند بازیافت گازخروجی بکار می رود. در سیستم های با آتش مستقیم این امکان برای بازیافت نسبت زیادی از گاز خروجی به هوای گرم فراهم می کند. رطوبت بالا یک محیط ایمن و خنثی بوسیله جابجا کردن مقدار زیادی اکسیژن توسط هوا ایجاد می کند. همچنین انرژی ذخیره شده قابل توجهی بعلت برگشت دادن گرما از خروجی خشک کن بدست می آید تا هنگامیکه حجم گاز خروجی به مقدار زیادی کاهش یابد. در نتیجه غبارگیری، گرمازایی و بوزدایی از مرطوب کردن گاز می تواند اقتصادی تر از یکپارچه سازی یک تصفیه کننده گاز مرطوب، تصفیه کننده گاز-کندانسور یا سیستم تبخیر با سیستم احیا کننده اختیاری باشد.

شکل (2-7) .یک سیستم احیا کننده حرارتی [27].
2-5-ویژگی های یک خشک کن دوار
یک خشک کن دوار شامل یک پوسته استوانه ای چرخنده بصورت افقی و با کمی شیب به سمت قسمت خروجی خوراک می باشد. مواد مرطوب از یک انتهای استوانه وارد و از انتهای دیگر محصول خشک شده خارج می شود. هنگامیکه استوانه می چرخد، پره های بالا برنده مواد جامد را بالا می برند و به داخل هوای داغ در حال جریان می پاشند و در نتیجه سطح مواد جامد بطور کامل در معرض هوای داغ قرار گرفته و عمل خشک شدن بطور موثرتری انجام می گیرد. در محل ورود مواد چند پره مارپیچی قرار دارد که به جلو راندن مواد کمک می کند تا به پره های اصلی برسند یعنی خشک کن های دوار شامل پره هایی برای حمل مواد از یکی از انتهاهای خشک کن و سپس رها کردن آن در طرف دیگر می باشد که آن هم توسط گازهایی به منظور انتقال مواد و گرما بین مواد دانه ای و فازهای گازی صورت می گیرد.

شکل (2-8) .نمودار یک خشک کن دوار [27]
2-6-طراحی یک خشک کن دوار
برای طراحی یک خشک کن دوار باید موارد زیر را لحاظ کرد:
1-طول و قطر خشک کن
2-شیب خشک کن
3-مقدارحرارت
4-مقدار هوای لازم برای عمل خشک کردن
5-جهت جریان
6-تعداد دور استوانه در واحد زمان
7-نوع و تعداد و طرح پره ها.
خشک کردن در خشک کن دوار به نوبه خود فرایند بسیار پیچیده ای است، زیرا علاوه بر خشک کردن حرارتی شامل حرکت ذرات درون خشک کن نیز می باشد. حرکت ذرات درون خشک کن توسط پره ها یا فازهای گازی درون آن صورت می گیرد.
اکثر خشک کن های دوار یک پیکربندی فازی منفرد ساده یا بعضاً پیکربندی های دیگری بعنوان مثال فازهای سه گانه یا چهارگانه ممکن است داشته باشند که پیکربندی های (وضعیت) پره های داخل آن نیز از شکل مارپیچ حلزون گرفته تا شکل مستقیم نیز تغییر پیدا می کند و به سمت مجرای خروجی خشک کن بصورت منحنی (آبشاری) بهم می پیوندند. میزان بار پره های داخل خشک کن توسط شرایط عملکردی، خواص فیزیکی مواد و وضعیت هندسی خشک کن که شامل وضعیت هندسی پره ها است تعیین می شود. قاعده کلی برای انواع خشک کن های دوار افزایش انتقال مواد و گرما بین مواد دانه ای و گاز می باشد که این شامل انتقال مواد از یکی از انتهای خشک کن در طول دیواره ها و سپس امکان تخلیه مواد از دیگر انتهای خشک کن می باشد. این افزایش تماس بین گازهای داغ واسطه و مواد دانه ای بسیار ریز منجر به بهبود انتقال مواد و گرما می گردد.
پره های خشک کن دوار بمنظور کنترل دما و حجم رطوبت بکار می رود. از آنجاییکه پره های خشک کن دوار متنوعند که گاهاً شامل واحدهای چندگانه یا واحدهای با مشخصاتی همچون پرشدن از مرکز را دارا می باشند. پره ها معمولاً هر 6-2/0 متر انحرافاتی پیدا می کنند و شکلشان تیز بستگی به خواص ذرات جامد دارد. مثلاً پره های شعاعی با لبه 90 درجه برای مواد با سیالیت بالا و پره های مسطح و تخت بدون لبه برای موادچسبناک بکار می رود. مرسوم است که در طی خشک کردن متناسب با خواص تغییر پذیر مواد، طرح های متنوع پره ها در سرتاسر طول خشک کن بکار می رود. مثلاً در انتهای تغذیه مواد، معمولاً پره های مارپیچی جهت توزیع بهتر مواد زیر شوت یا نقاله بکار می رود.
در شکل زیر چندنمونه از پره های رایج نمایش داده شده است.

شکل (2-9) .پروفایل پره های رایج [27].
پره های a، b، C و d غالباً در خشک کن های دوار آبشاری شکل بکار می رود. طرح a برای مواد چسبناک در انتهای خیس خشک کن استفاده می شودو طرح d که شکلی شبیه به دایره دارد در مقایسه با طرح b و c فرم ساختار پیچیده تری دارد. طرح e، پره توزیع زاویه ای برابر و f، پره توزیع متمایل به مرکز، برای بهبود عملکرد خشک کن پیشنهاد می شود هرچند که پروفایلشان پیچیده تر است [24].
2-7-نمونه هایی از خشک کردن در صنایع مختلف
خصوصیات انتقال حرارت در درون خشک کن استوانه ای دوار اهمیت قابل توجهی همانند دیگر کاربردهای صنعتی دارد. مشکل علمی در معلق کردن مانند پیش بینی حرکت ذرات از جمله پیوستگی، سرعت انتقال حرارت و جرم و تبادل حرارت داخلی سراسری همچنان وجود دارد. این پدیده ها به منظور بالا بردن انتقال حرارت و جرم و بهبود عملکرد کلی خشک کن استوانه ای دوار بسیارمهم هستند.
نکات مهم بر روی پدیده ای انتقال حرارت درون ذرات کوره دوار متمرکز شده است. Thammarong و همکاران بسیاری از نتایج آزمایشات موجود در کتب را به شرح و بررسی ضریب انتقال گاز-دیواره (hgw) و ضریب انتقال حرارت جامد-دیواره (hsw) اختصاص داده اند. بر اساس مدل نفوذ، سوالات زیادی در مورد پیش بینی ضریب انتقال جامد-دیواره در کوره دوار در آزمایشگاه با مواد شن و ماسه شناسایی شده‌اند[33].
Wes و همکاران برای اولین بار یک معادله نیمه تجربی از تعداد زیادی داده را معرفی کرده اند. Schlunder ضخامت فیلم گازλ برای مدلسازی نفوذ به منظور بدست آوردن دقیق انتقال حرارت از طریق سیال و محیط متخلخل را نشان داد. مدل wes و همکاران در سرعت چرخش پایین (n<<6 rpm) سازگار است [35-34].
بجز چند کار بر مبنای آنالیز کلی یا ابزار CFD، تعداد کمی از مطالعات قبلی بر روی تجزیه و تحلیل انتقال حرارت درون خشک کن استوانه ای دوار در مقیاس بزرگ انجام شده است. با وجود اختلاف سایز بین ذرات و دانه ها، که Leguen و همکاران بر روی آن کار کرده اند، نشان داده شده است که مخلوط کردن دانه های ریز در توده جریان شکل (2-10) مشابه معلق کردن ذرات در آزمایشگاه بنظر میرسد. Fernandes و همکاران از یک مدل خشک کن ساده شده از یک ضریب کلی انتقال حرارت که توسط miller و همکاران مطرح شده، استفاده کرده اند. نتایج این مدل منجر به انحراف برابر با 20 درصد در مقایسه با اندازه گیری آزمایشگاهی می شود، بهترین تخمین ضریب انتقال حرارت در این نوع مدل خشک کن مطرح می شود [38-37-36].
افراد زیادی بر روی فرایند های خشک کردن موادغذایی مطالعات تئوری و کاربردی انجام داده اند. از بین بردن آب محصولات کشاورزی فرایند ترکیبی شامل انتقال همزمان حرارت و جرم در درون جسم اتفاق می افتد. خصوصیات طبیعی مواد برای خشک شدن انتخاب کاربرد آن را محدود می سازد. رطوبت اولیه، حساسیت به دما، در معرض میکروبها قرار گرفتن و وجود یک پوسته ای که ممکن است نفوذپذیری مولکولهای آب را کم کند.
تحقیقات انجام شده بر روی کیفیت از دست رفته در طی خشک کردن دسته بعدی مطالعات را تشکیل میدهد که توسط افرادی نظیر Schadle، Mishkin و Mudahar انجام شده است[41-40-39].
نخستین کارهای نظری در مورد شبیه سازی خشک کن دوار پره دار بوسیله Seaman و Mitchell در سال 1954 انجام پذیرفت[42].
Kelly و O,donnell در سالهای 1968 و 1977 دو مدل متفاوت برای شبیه سازی خشک کن دوار پیشنهاد داده اند که دارای ریاضیات پیچیده بودند [18].
طرز عملکرد خشک کن های دوار مداوم بدین صورت است که با چرخش مداوم، مواد مرطوب در خشک کن جابجا شده و در تماس با جریان هوا که از داخل خشک کن عبور می کند، قرار می گیرد. از آنجا که خشک کن ها دارای مصرف انرژی بالایی می باشند، شبیه سازی آنها چه به منظور بهینه سازی شرایط عملیاتی و چه به منظور استفاده در روش های نوین کنترل حائز اهمیت می باشد [14].
بطور کلی هر فرایند عملیاتی می تواند توسط یک مدل بیان شود که این مدل خود می تواند کیفی، کمی و غیره باشد. مدل ریاضی نمونه ای از یک مدل کمی است که شامل معادلات جبری، دیفرانسیلی و انتگرالی می باشد.
مزیت اصلی یک مدل ریاضی این است که می تواند رفتار یک فرایند را بدون نیاز به داده های تجربی پیش بینی کند. مدل ریاضی فرایندهای شیمیایی مانند خشک کن دوار بر اساس قوانین بنیادی شیمی و فیزیک که شامل معادلات پیوستگی، بقای انرژی و مومنتم، معادلات مربوط به تعادل (شیمیایی و فازی)، معادلات سینتیک و معادلات حالت می باشند. بر اساس نیاز و هدف مدل حاکم بر یک فرایند می تواند یک مدل کلی و یا یک مدل با جزییات بیشتر باشد [14].
مدل کلی خشک کن دوار متشکل از دو مدل کوچکتر است. مدل اول جزییات رفتار جسم جامد خشک شونده را توصیف می کند و مدل دوم به تشریح پارامترهای استوانه و محفظه خشک کن می پردازد. مدل اول شامل مشخصاتی از جسم جامد به عنوان مثال سینتیک خشک شدن می باشدو مدل دوم تجهیزات، زمان ماند و نرخ انتقال حرارت را پیش بینی می کند. ازترکیب این دو مدل یک مجموعه از معادلات ریاضی حاصل می شود که حل آن منجر به شبیه سازی فرایند خشک کردن جسم جامد در خشک کن دوار می انجامد.
2-8-مدل های زمان اقامت
تحقیقات بر روی توزیع زمان اقامت مواد در خشک کن دوار نشان داده اند که حرکت ذرات جامد می توانند همانند یک حرکت پیستونی با مقداری انحراف بیان شوند [17-16].
خشک کن های دوار جدید می توانند مانند یک راکتور اختلاطی ایده آل با یک مقداری اختلاط نشان داده شوند. در نتیجه می توانیم زمان ماند را وابسته به حرکت جامدات بدانیم. میانگین زمان اقامت بصورت نسبت ذرات باقیمانده در داخل خشک کن به دبی جرمی خوراک ورودی به خشک کن بر اساس رابطه زیر بیان می شود: [18]
t=HF (2-1)
در اینجا t میانگین زمان اقامت برحسب ثانیه،H مقدار جامد باقیمانده در خشک کن برحسب کیلوگرم و F دبی جرمی جامد به درون استوانه می باشدد. Hمقدار جامد موجود در خشک کن در حالت یکنواخت می باشد.
در سال 1949، Friedman و Marshal تحقیقات بسیاری برای بدست آوردن زمان ماند مواد مختلفی مانند ماسه، پلاستیک و غیره انجام داده اند و رابطه زیر را بدست آوردند:[17]
t=0/23LDn0/9 tana (2-2)
در اینجا t میانگین زمان اقامت بر حسب ثانیه،L طول خشک کن بر حسب متر، D قطر خشک کن بر حسب متر،nتعداد دور استوانه و a زاویه خشک کن می باشد.
این رابطه برای خشک کن هایی مناسب است که 6 تا 8 پره داشته باشند.
در سال 1962، Glikin و Schofield یک مدل ریاضی دقیق تری برای حرکت آبشاری مواد ارائه کرده اند که رابطه آنها بصورت زیر می باشد:[5]
t=L(cascade length)av .(cascade time)av (2-3)
که در اینجا (cascade length)av مقدار فاصله ای است که یک یک ذره با اندازه متوسط در حرکت آبشاری طی می کند و cascade timeav مقدار زمانیست که ذره در طی حرکت آبشاری دارد. baker در سال 1983 یک بررسی کلی بر روی کارهای انجام شده قبلی و مقایسه کردن آن با یک خشک کن همسو با مشخصات زیر انجام داده که نتایج زیر بدست آمده است:[43]
این خشک کن دارای قطر خارجی 2 متر، طول 12 متر، سرعت چرخش 5 دور در دقیقه و شیب 1 درجه و سرعت جریان هوا 3 متر بر ثانیه، می باشد.
جدول (2-1) . پیش بینی زمان ماند در مدل های مختلف [43].
محاسبات نشان داده است که پیش بینی ها زیاد شبیه هم نیستند.
Wilson و kamke در سال 1986 یک مدل با استفاده از کامپیوتر برای پیش بینی زمان ماند در تمام طول استوانه و شبیه سازی تاثیرسرعت هوا، سرعت چرخش استوانه و قطرخشک کن بر روی زمان ماند ارائه داده اند [19].
Duchesne و همکارانش در سال 1996 دو مدل بر اساس محفظه های سری با اثر متقابل با توجه به فضای مرده بیان کرده اند [20].
زمان ماند در موارد زیادی بصورت تجربی بدست آمده است. در آزمایشگاه از روش زیر برای بدست آوردن زمان ماند استفاده می شود:
خوراک ورودی به یک خشک کن آزمایشگاهی را بطور ناگهانی قطع کرده و خشک کن را از زیر بار خارج کرده و وزن مواد داخل آنرا بدست می آوریم. اکنون با تقسیم کردن وزن مواد باقیمانده در داخل خشک کن بر دبی جرمی خوراک ورودی، زمان ماند را بدست می آوریم. در مقیاس بزرگ و صنعتی با استفاده از مواد ردیاب زمان ماند را بدست می آوریم.
2-9-مدل های ارائه شده برای بدست آوردن ضریب انتقال حرارت
کار مهم دیگری که برای طراحی خشک کن های دوار باید ا نجام شود، پیدا کردن رابطه ای برای پیش بینی ضریب انتقال حرارت حجمی می باشد. ضریب انتقال حرارت حجمی به معنای مقدار حرارت منتقل شده از واحد حجم استوانه تحت اثر نیروی محرکه اختلاف دما، می باشد.
میزان انتقال حرارت بین هوای داغ و مواد جامد با معادله زیر بیان می شود:
Q=UVVV∆T1m (2-4)
در اینجا Q میزان انتقال گرما بین هوا و مواد جامد بر حسب (W)، Vv حجم استوانه بر حسب متر مکعب،∆Tm اختلاف دمای لگاریتمی بین دمای هوای داغ و مواد جامد در ورودی و خروجی خشک کن بر حسب کلوین می باشد [15].
تحقیقات بسیاری بر روی بدست آوردن یک رابطه جهت پیش بینی ضریب انتقال حرارت حجمی انجام شده است. اغلب کارهای انجام شده در این زمینه را می توان با رابطه زیر خلاصه کرد:
UV=KDGn (2-5)
که در این معادله G شار جرمی هوا، D قطر داخلی استوانه، K، n ثابت های تجربی هستند که مقدارآنها وابسته به مشخصات جسم جامد، هندسه پره های بالابرنده، سرعت چرخش استوانه و مقدار جرم باقیمانده در خشک کن است. تعیین کردن مقدار این ثابت ها توسط داده های تجربی با استفاده کردن از یک خشک کن در مقیاس کوچک، امکانپذیر است[20].
Myklestand رابطه زیر را برای خشک کن های همسو که درآن ماده ای که می خواهد خشک شود نوعی سنگ خارا می باشد، پیشنهاد کرد:[21]
Uv=0/52Gn (2-6)
روابط تجربی زیادی برای محاسبه ضریب انتقال حرارت و زمان ماند ارائه شده است ولی هیچکدام مقبولیت جهانی ندارندو صرفاً برای مواد و شرایط خاص جواب داده اند؛ بنابراین بهترین منبع، داده های آزمایشگاهی برای محاسبه زمان ماند و ضریب انتقال حرارت در همان مکان و با همان شرایط در مقیاس آزمایشگاهی است.
2-10-مدل های کلی (جامع) برای خشک کن های دوار
مدل های کلی که در برگیرنده مشخصات ذرات جامد و محفظه خشک کن باشد، بصورت مجموعه ای از معادلات دیفرانسیل است که بدست آمده از موازنه جرم و انرژی بین فاز گاز و جامد می باشند و معمولاً بصورتی ساده می شوند که معادلات بصورت خطی تبدیل شوند. مدلهایی نیز وجود دارند که برای تعیین توزیع دما و رطوبت ذرات و هوای خشک کننده در جهت محوری استفاده می شوند اما میزان اعتبار آنها مشکل است به این دلیل که اندازه گرفتن رطوبت ماده و دمای داخلی خشک کن سخت می باشد. یک سری دیگر از معادلات بصورت معادله دیفرانسیل جزیی با پارامترهای توزیع شده برای هر دو کمیت دما و رطوبت ذرات و هوا می باشد.
یک نمونه از مدل ریاضی که از جامع ترین آنها می باشد در سال 2003 توسط A.Iguaz و همکاران بدست آمده است که شامل 5 معادله دیفرانسیل و تعدادی معادلات جبری می باشد[22].
شاه حسینی و همکارانش مدلی که توسط Iguaz وهمکارانش ارائه شده بود را تصحیح کردند و سپس بعنوان یک مدل کلی در محیط Matlab برای حل عددی آن استفاده کردند. فرضیاتی که آنها استفاده کردند بدین ترتیب می باشد:[22]
-ذرات تولیدی کروی می باشند و ابعاد آن در طی فرایند تغییر نمی کند.
-در طول فرایند خشک کردن سرعت خشک شدن نزولی می باشد.
-دبی هوا ثابت می باشد.
-خشک کن در شرایط بهینه بار خود کار می کند.
سرعت خشک شدن یک پارامتر مهم برای مدل می باشد و باید بصورت تجربی تعیین شود. بر اساس معادلات Baker، معادلات مربوط به سرعت خشک شدن باید شامل داده های تعادلی جامد باشد.
یک مدل می تواند برای محاسبه و تعیین پروفایل رطوبت و دمای محصول و هوا در جهت محوری استفاده شود ولی اثبات صحت و درستی این پروفایلها بسیار مشکل است زیرا اندازه گیری مقدار رطوبت و دمای درون خشک کن بسیار مشکل می باشد.
امکان شبیه سازی دینامیکی رفتار خشک کن ها نیز وجود دارد. یکی از دلایل استفاده از شبیه سازی، پیش بینی چگونگی تاثیر یک تغییر پله ای متغیرهای ورودی برروی متغیرهای خروجی است. جهت مطالعه رفتار دینامیک خشک کن ها رفتارآنها در شرایط عملکرد آن شبیه سازی می شود و هنگامیکه سیستم به حالت پایدار برسد یک آشفتگی (تغییر) در یکی از متغیرهای ورودی آن ایجاد می شود [15].
اگرچه تحقیقات زیادی در مورد مدلسازی پدیده های خشک کردن انجام شده است، نسبتاً مقدار کمی از این فعالیت ها بطور مستقیم به خشک کن های دوار مربوط می شود و ممکن است به خاطر این واقعیت باشد که خشک کن دوار یک فرایند بسیار پیچیده ای است که فقط شامل خشک شدن نمی باشد بلکه پیشرفت جامد در طی خشک کردن مطرح می باشد [25].
ساختار مدل انتقال جامد به فاز گاز گسترش یافته است. حرارت و تبخیر شدن آب بین این فازها منتقل می شود. حرارت از فاز گاز توسط همرفت و تابش به جامد منتقل می شود.
یک مدل دینامیکی چندبعدی معتبر برای خشک کن دوار بر اساس مفروضاتی همچون پیش بینی و اندازه گیری مقادیر دمای خروجی شبیه سازی شده است. به منظور تسهیل خشک شدن، موازنه انرژی فازهای جامد در داخل مدل انتقال جامد معتبر یکپارچه سازی شده است. فازگاز در مناطق پره دار و بدون پره بصورت یک سیستم جریان خزشی مدلسازی شده است. عوامل تصحیح برای مقادیر نامعین در سطح تخمینی جامد در بخش های مختلف خشک کن معرفی شده است. این عوامل تصحیح بطور دستی با پارامترهای مورد استفاده در آزمایش ها میزان رطوبت تخمین زده شده است. میزان حرارت از دست رفته از طریق پوسته با استفاده از تحلیل مقاومت آن محاسبه شده است. به منظور تطبیق دمای گاز خروجی، عوامل تصحیح حرارت از دست رفته همچنین تعریف شده است و بطور دستی هماهنگ می شود [26].
میزان رطوبت جامد و دمای هوای خشک و جامد بصورت تابعی از طول خشک کن در شکل زیر نشان داده شده است. مقادیر شبیه سازی شده برای دمای جامد، رطوبت جامد و دمای هوای خشک در خروجی خشک کن بسیار نزدیک به آن چیزی است که در آزمایش ها آمده است در حالیکه در گزارش های حالت پایدار، دمای خروجی جامدات و هوای خشک در خشک کردن همزمان بطورکلی در نزدیکی ورودی استوانه بهم رسیده اند که در آنجا انتقال حرارت سریعترین می باشد. بیشترین دمای جامد می تواند چندین درجه بیشتر از دمای خروجی نهایی جامد باشد.

شکل (2-10) .توزیع حالت پایا برای رطوبت جامد و دمای جامد و هوای خشک. در جاییکه L=0.5 m ∆ [25].
در یک مدل چندبعدی دینامیکی برای یک خشک کن دوارصنعتی توسعه یافته، فازگاز در بخش های پره دار و بدون پره خشک کن همانند یک سیستم جریان خزشی، مدلسازی شده است. فاز جامد در بخش های بدون پره همانند یک سیستم جریان خزشی محوری پراکنده سازی شده است. طبق انواع قرارداد یک قسمت از تقریب مدلسازی برای انتقال جامد در بخش های پره دار استفاده شده است. این تقریب یک فرمولسازی سری-موازی از خوب مخلوط شدن در محفظه و توزیع جامدات بین قسمت های تخمین زده شده از طریق مدلسازی هندسی و بررسی دقیق طراحی موانع بارگیری می باشد [26].
-371041286118فصل سوم
روش تحقیق
00فصل سوم
روش تحقیق

3-1-مقدمه
خشک کردن، یعنی ازبین بردن رطوبتی که در جسم موجود می باشد و یکی از فرایندهای اصلی در بسیاری از صنایع می باشد، به این دلیل که برای تولید کردن محصولاتی با کیفیت برتر و ماندگاری بالاتر، نیاز به خشک کردن افزایش می یابد.
در این پایان نامه، سعی بر بررسی عملکرد خشک کن دوار در کارخانه تولید دی کلسیم فسفات ومدلسازی ریاضی و در نهایت شبیه سازی آن داریم.
3-2-خشک کن دوار
خشک کن دوار تولید دی کلسیم فسفات باید دارای خصوصیات زیر باشد:
میزان حرارت دهی، قابل اندازه گیری و کنترل باشد.
حرارت مستقیماً با محصول برخورد ننماید.
قابلیت کاهش رطوبت محصول را تا حد استاندارد داشته باشد.
کنترل حرارت در اینجا بسیارمهم است زیرا حرارت بیش از حد سبب سرامیکی شدن محصول و کاهش قابلیت حل آن می گردد.
3-3-بررسی فرایندخشک کردن و عملکرد آن
خشک کردن غیرطبیعی با استفاده از وسیله های صنعتی (خشک کن ها) کمک می کند تا میزان رطوبت باقیمانده را در یک زمان نسبتاً کوتاهی کاهش دهیم. همرفت یکی از متداولترین روش های خشک کردن (خشک کن های مستقیم) می باشد. حرارت توسط گاز/هوای داغ بر روی سطح جامد پراکنده می شود. حرارت برای تبخیر توسط انتقال به سطح در دسترس مواد عرضه شده است. رطوبت تبخیر شده توسط سیال خشک کن حمل می شود. خشک کن های غیرمستقیم (توسط همرفت کار می کند) بیشتر برای ذرات و مواد با دانه های ریز یا برای جامدات خیلی مرطوب مناسبند در حالیکه خشک کن های تابشی با استفاده از منابع مختلف تابش الکترومغناطیسی با طول موج هایی در محدوده مادوفروسرخ تا ماکروویو کار می کنند [30].
مقدار زیادی از موادگرانولی با ذرات به ابعاد 10 میلیمتر یا بیشتر که بیش از حد شکننده اند و به حرارت حساسند و یا باعث مشکلاتی در حمل و نقل موادجامد می شوند، در خشک کن های دوار در فرایندهای صنعتی خشک می شوند. خشک کن های دوار یکی از متداولترین انواع خشک کن های صنعتی می باشد و شامل یک پوسته استوانه ای که معمولاًاز صفحه های فولادی ساخته شده است، شیب کمی دارد. بطورمعمول قطرآن 5-3/0 متر و طولش 90-5 متر و چرخش در 5-1 می باشد.
خشک کن دوار معمولاً با یک فشارداخلی منفی برای جلوگیری از فرار گرد و غبار عمل می کند. موادجامد در نظرگرفته شده، در انتهای فوقانی بسمت پایین حرکت می کنند یا تخلیه می شوند. بسته به ترتیب تماس بین گاز خشک کن و جامد، یک خشک کن می تواند به مستقیم و یا غیرمستقیم، همسو یا ناهمسو، طبقه بندی شود. یک مجموعه ای از پره های بالابرنده با شکل های مختلف در درون پوسته برای تماس مناسب بین جامد با گاز قرار داده شده است. این پره ها از حالت مارپیچ به حالت مستقیم تنظیم شده‌اند. اثرات طراحی پره ها مانند تعدادپره ها، ابعادشان و شکل آنها بر روی عملکرد خشک کن بسیار پیچیده است.
یک خشک کن دوار، دارای دو عملکرد مجزا می باشند:بعنوان یک نوارنقاله و بعنوان یک گرم کننده.
حرکت جامد از طریق خشک کن توسط مکانیسم های زیر تحت تاثیرقرار دارد:
بلندکردن اجسام، حرکت آبشاری، لغزشی و برگشتی.

شکل (3-1) .خشک کن دوار آبشاری [24].
همانطور که خشک کن می چرخد، موادجامد توسط پره ها در فواصل معینی در سراسر استوانه برداشته می شوند و از طریق هوا در یک لایه آبشاری پاشیده می شوند. اغلب فرایندخشک شدن در این زمان اتفاق می افتد، چون مواد جامد در تماس نزدیک با گاز قرار دارند. حرکت پره ها همچنین تا اندازه ای برای انتقال موادجامد از طریق استوانه مناسب است [24].
عوامل موثر بر مدل سازی خشک کن دوار را می توان به شرح زیر طبقه بندی کرد:
خصوصیات فیزیکی جامدات، مانند اندازه ذرات و شکل آنها، دانسیته و میزان رطوبت.
متغیرهای خشک کن، مانند قطر و طول استوانه و طراحی و تعداد پره های بالا برنده.
شرایط عملیاتی، مانند جریان خوراک و دما، جریان و دمای هوای خشک و شیب سرعت چرخش استوانه [24].
همه عوامل بالا بر انتقال حرارت در استوانه موثرند و همه بغیر از دمای جامد و هوای خشک یک اثری بر روی بارگیری (نگهداشتن) و زمان عبور از استوانه دارند نگهداشتن جامد تاثیرزیادی بر روی عملکرد خشک کن دارد و سرعت تولید را کاهش می دهند اما یک نگهداری جامد بزرگ، باعث غلتانیدن مواد در عمق خشک کن می شود که باعث می شود میزان رطوبت موردنیاز بدست نیاید و توان موردنیاز برای چرخاندن خشک کن افزایش یابد. یک نگهداری که 15-3%از حجم کل استوانه می باشد، با مقادیردر محدوده 12-8% رایج تر می باشد وعملیات را رضایت بخش می کند.
راندمان گرمایی خشک کن دوار به وضعیت خشک کن و تغییر آن در محدوده گسترده از 25% در یک سیستم شعله غیرمستقیم تا 85% در یک لوله بخار بستگی دارد [28].
اگرچه خشک کن های دوار برای دهه های بسیاری در بخش های صنعتی متعددی استفاده شده است، تحقیقات در مورد مدلسازی آنها و کنترلشان محدود بوده است و می توان گفت که هنوز در مراحل ابتدایی می باشد و تا حد زیادی به دلایل زیر بستگی دارد:
وضعیت کنونی:خشک کن های دوار بدون شک یکی از قدیمی ترین و متداولترین عملیات در فرایندهای صنعتی می باشد. ساعت ها کار می کند، عملکرد آنها آسان و قابل اطمینان می باشد، اما بازده انرژی نامناسب دارند و سازگار با محیط زیست نمی باشند. اغلب خشک کن های دوار، مخصوصاً انواع قدیمی آنها هنوز بصورت دستی با تکیه بر مشاهده و تجربه اپراتور، کنترل می شود.
فرایندپیچیده:درک عمیق ما از خشک کن های دوار بسیارضعیف است، زیرا فرایندبسیارپیچیده ای است که شامل حرکت جامدات علاوه بر خشک کردن حرارتی آنها می باشد. به عنوان فرایندی است که بشدت غیرخطی می باشد و به زمان و مکان بستگی دارد. مدلسازی ریاضی بسیارسخت است. بطورکلی مدل ها برآوردی خام از فرایندهای واقعی هستند و بنابراین مفیدبودن آنها، جای سوال دارد. این بدین معنی است که توسعه مدل براساس سیستم کنترل، اگرچه بهتر است زیرا طبیعت دینامیکی آرام خشک کن دوار، موردتوجه طراحان خشک کن دوار قرار گرفته است.
عدم قطعیت:مقادیر عملیات مناسب خشک کن دوار برای کیفیت محصول و بازده خشک کردن اغلب در گذشته به رسمیت شناخته نشده است.
عدم وجودتحقیقات کنترل در خشک کن دوار:علاقه کمی در حال حاضر برای توسعه توابع اندازه گیری و کنترل خشک کن دوار نشان داده شده است. در حال حاضر روش های کنترل هوشمند که بر اساس تجربه بدست آمده است و به موفقیت دست پیدا کرده است. تحقیقات در کنترل خشک کن های دوار دوباره از سرگرفته شده است، بویژه با توجه به افزایش علاقمندی، خشک کن های دوار موجود در تلاش برای بهبود عملکرد خودکار خشک کن به خشک کن هوشمند در حال تغییر می باشد [24].
3-4-عملکرد بهینه خشک کن دوار
به منظور عملکرد بهینه خشک کن دوار، لازم است که مکانیسم اتفاق افتاده درون خشک کن را درک کنیم. مکانیسم مهم انتقال که بر عملکرد خشک کن دوار موثر است، بدین ترتیب می باشد:
-انتقال جامدات
-انتقال حرارت
-انتقال جرم.
مطالعات نشان داده است که دانستن انتقال جامد برای حل کردن معادلات دیفرانسیلی انتقال جرم و انتقال حرارت که بطور کامل پروفایل دما و رطوبت را در طی خشک کن برای هم گاز و هم جامد تشریح می کند، می تواند مفید باشد. انتقال جامدات درون خشک کن می تواند از طریق توزیع زمان ماند جامد بررسی شود. زمان ماند جامد می تواند از طریق آزمایش بدست آورد.
سه درجه از بارگیری در یک خشک کن دوار وجود دارد: کمتر از باربهینه-باربهینه-بالاتر از باربهینه. در واقع نتایج بازده خشک کن ضعیف است و خشک کن اقتصادی بهینه بدست نخواهد آمد. بعنوان مثال، برآورد دقیق طراحی بارگیری به عملکرد پره های خشک کن دوار و مشخصه مهم مدل پره های خشک کن دوار بستگی دارد [25].
جریان مستقیم گاز از طریق استوانه به جامد بطور عمده از خواص غالب پردازش مواد می باشد. جریان همسو برای موادحساس به حرارت، اغلب برای دمای بسیار بالای گاز ورودی به دلیل سریع سردشدن گاز در طی تبخیر اولیه رطوبت سطح بکار می رود، در حالیکه برای دیگر مواد جریان ناهمسو به منظور گرفتن سود به بازده گرمایی بالا که می تواند از این طریق برسد، استفاده می شود. درمورد اول جریان گاز، سرعت جریان جامد را افزایش میدهد در حالیکه در مورد دوم آنرا کم می کند.
خشک کن دوار می تواند بصورت ناپیوسته و پیوسته فرایندهای خوراک تر را انجام دهد و محصول باید تخلیه شود و موادجامد باید جریان نسبتاً آزاد و گرانولی داشته باشند. اگر مواد بطور کامل جریان آزاد در شرایط خوراک نداشته باشند، یک عملیات ویژه و مخصوصی موردنیاز است که شامل برگرداندن یک بخش از محصول نهایی، یک مخلوط را با خوراک یا نگهداشتن یک بستر از محصول جریان آزاد در استوانه در پایان خوراک می باشد.
برای کاهش گرمای از دست رفته خشک کن (بویژه خشک کن های حرارت مستقیم) و تجهیزات آن باید ایزوله شوند یا خشک کن های حرارت مستقیم در دماهای بالا بکار رود. در نهایت حرارت از دست رفته از طریق پوسته باعث خنک شدن مواد و جلوگیری از بسیارداغ شدن آن می شود [26].
برای افزایش تماس بین گاز-جامد، خشک کن های حرارت مستقیم پره های موازی دارند که در طول پوسته قرار دارند و جامد را بالا می برند و یک حرکت آبشاری را ایجاد می کنند.
حمل ونقل موادجامد در استوانه صورت می پذیرد. طراحی پره ها برای بلندکردن اجسام جامد و سقوط آنها توسط جریان هوا صورت می گیرد. بنابراین طراحی خوب پره ها به منظور تماس بهتر و بیشتر گاز با جامد صورت می گیرد که برای خشک کردن یکنواخت آن ضروری می باشد.

شکل (3-2) .حرکت آبشاری جامدات در داخل خشک کن دوار [31].
3-5-تعریف دی کلسیم فسفات
دی کلسیم فسفات یک ترکیب شیمیایی سینیتیک بصورت پودر و گرانول سفیدرنگ با PH اسیدی تا خنثی به فرمول شیمیاییCaHPO4 به انواع هیدرات، مونوهیدرات و دی هیدرات است که از ترکیب اسیدارتوفسفریک و کربنات کلسیم بوجود می آید. این دو اکنش گرمازاست و در نتیجه باعث رها شدن گاز کربنیک می شود.
21761451562100(3-1) H3PO4+CaCO3 Ca(HPO4)+CO2+H2O
روش دیگر آنکه
(3-2) 24142701390650H3PO4+CaO Ca(HPO4)+H2O
(3-3) 24142701244602H3PO4+2CaO 2Ca(HPO4)+2H2O
3-5-1-مشخصات ظاهری
دی کلسیم فسفات بصورت پودر و گرانول به رنگ سفید تا خاکستری روشن و بدون بو می‌باشد.
3-5-2-موارد مصرف دی کلسیم فسفات
این ترکیب امروزه بطور وسیعی در غذای دام و طیور به عنوان مکمل فسفر و کلسیم استفاده می‌گردد. در واقع فسفر و کلسیم به عنوان دو ماده اصلی در ساختمان بدن در استخوان و رشد و نمو موثر هستند، بطوریکه در مرغ‌های صنعتی باید میزان صحیحی از درصد فسفر و کلسیم استفاده گردد زیرا ترکیب ناصحیح آن موجب تاثیر مستقیم بر روی پوسته تخم مرغ و شل شدن یا سفت شدن استخوان‌های مرغ می‌گذارد. نوع غذایی این ماده نیز با استفاده از اسید فسفریک غذایی در خمیردندان، و بخش دارویی مورد استفاده قرار می‌گیرد [44].
3-5-3-روش‌های تولید دی کلسیم فسفات
1-روش سنتی تولید دی کلسیم فسفات
اسید فسفریک تصفیه شده در حوضچه های سیمانی روی آهک پودر شده، کربنات کلسیم، پودر سنگ و یا آب آهک ریخته شده و با بیل و چنگک بهم زده می‌شود. برای بهم زدن ممکن است از همزن برقی نیز استفاده گردد.
پودر نیمه خشک حاصله پس از خشک کردن آسیاب می‌شود اگر از آب آهک استفاده شود. دی کلسیم فسفات به شکل شیر آب رقیق ایجاد می‌شود که با آبگیری اضافی و پس از خشک و آسیاب کردن بسته بندی می‌گردد.
2-روش صنعتی تولید دی کلسیم فسفات
در این روش ابتدا مواد اولیه هر یک کنترل و آماده سازی شده و سپس در شرایط استاندارد واکنش داده و به محصول تبدیل می‌شود. در این روش باید هر یک از مواد اولیه کنترل گردند که عبارتند از:
آماده سازی اسید فسفریک و آماده سازی منابع کلسیم دار.
3-5-4-فرایند تولید صنعتی دی کلسیم فسفات
اسبدفسفریک تصفیه شده در سیستم میکسر ناپیوسته با مداوم، روی کربنات کلسیم میکرونیزه اسیدی پاشیده شده و در طی زمان مناسب واکنش شیمیایی با خروج گاز کربنیک و آب و تشکیل دی کلسیم فسفات صورت می‌گیرد.
پس از واکنش اولیه این ماده با عبور از دستگاه‌های دیگر که عمل گرانول سازی را انجام می‌دهند به سیستم خشک کن دوار منتقل گردیده و با هوای گرم کنترل شده خشک شدن انجام می‌شود.
کنترل حرارت در این مرحله بسیارمهم است زیرا حرارت بیش از حد سبب سرامیکی شدن محصول و کاهش قابلیت حل آن می‌شود. دی کلسیم فسفات پس از خشک کن به خنک کن و سپس به بخش دانه بندی و بسته بندی وارد شده و در کیسه های پروپیلن لمینت بسته بندی می‌شود.
3-5-5-خواص دی کلسیم فسفات
دی کلسیم فسفات حاوی عناصر کلسیم و فسفر است که نقش مهمی را در واکنش‌های بیوشیمیایی (نظیر انعقاد خون، فعالیت فیزیولوژیکی قلب، تبادلات سلولی و فعالیت عصبی –عضلانی) و متابولیکی (نظیر شکل گیری ساختمان استخوان، دندان، تخم مرغ و فعالیت‌های صحیح دستگاه گوارش) در دام و طیور ایفا می‌کند [44].
3-5-6-مزایای وجود کلسیم و فسفر در جیره طیور
استخوان‌بندی محکم
افزایش اشتها
افزایش بازدهی تولید در طیور گوشتی و تخم گذار
کاهش میزان لمبه و شکستگی تخم مرغ
افزایش تولید جوجه در فارم های مرغ مادر [44].
3-5-7- مزایای وجود عناصر کلسیم و فسفر در جیره غذایی دام
استخوان‌بندی محکم و سلامت بدنی
افزایش تولید و شیر آوری
افزایش باروری و آبستنی
افزایش اشتها و بازدهی مناسب تولید
عملکرد متعادل دستگاه‌های عصبی، عضلانی و گوارشی [44].
3-5-8-علائم کمبود فسفر و کلسیم
فقدان کلسیم و فسفر منجر به نرمی استخوان و فلجی در جوجه‌ها، استئومالاسیا، کاهش ضخامت پوسته تخم مرغ، کاهش میزان تولید تخم مرغ و جوجه دهی می‌گردد. همچنین کمبود مذکور می‌تواند منجر به کاهش کارایی قلب و عضلات، رشد استخوان و نیز بی اشتهایی دام و طیور شود [44].
3-6-خشک کن دوار کارخانه تولید دی کلسیم فسفات
همان طور که قبلاً بیان شده است پس از واکنش اسید فسفریک و کربنات کلسیم به همراه دی کلسیم فسفات، مقداری آب و کربن دی اکسید تشکیل می‌شود. این مقدار رطوبت باید بطریقی از بین رود که در نهایت میزان رطوبت به حداکثر 3% برسد. درصورتیکه کنترل بر روی حرارت صورت نگیرد باعث بروز مشکلاتی در محصول نهایی می‌گردد. اگر میزان رطوبت نهایی بالاتر از 3% باشد، ضمن ایجاد چسبندگی و کلوخه کردن محصول سبب تجزیه تدریجی دی کلسیم فسفات به تری کلسیم فسفات و کاهش کیفیت آن می‌گردد.
.
3-6-1-ویژگی‌های خشک کن دوار مورد بررسی
خشک کن مورد بررسی در اینجا مربوط به خشک کن دوار کارخانه تولیدی نگین فسفات شمال واقع در شهرک صنعتی بندپی شرقی شهرستان بابل می باشد که برای خشک کردن دی کلسیم فسفات تولیدی بکار می رود.
این خشک کن دوار بطول 12 متر و قطر 30/1 متر و ضخامت 15 میلیمتر برای خشک کردن 2 تن در ساعت دی کلسیم فسفات طراحی شده است. بدنه این خشک کن از جنس فولاد نسوز می‌باشد.

شکل (3-3) .نمایی از خشک کن دوار کارخانه تولید دی کلسیم فسفات مورد بررسی.
این خشک کن دوار یک خشک کن نا همسو می‌باشد که حرارت مستقیم از مشعل در انتهای خشک کن وارد محفظه می‌شود.
به منظور هدایت مواد به مرحله بعدی در درون خشک کن پره‌هایی نصب شده است. این پره‌ها بصورت یک در میان زاویه دار و مستقیم هستند. زاویه پره‌ها نسبت به سطح خشک کن 90 درجه می‌باشد. در پره های زاویه دار، لبه آنها با زاویه 120 درجه نسبت به بدنه پره قرار گرفته‌اند.
فاصله بین دو پره در جهت محور استوانه 70 سانتیمتر و در جهت شعاع استوانه با زاوبه 45 درجه نسبت به سطح قرار گرفته‌اند. در شکل زیر نمایی از نحوه قرار گرفتن پره‌ها در خشک کن نشان داده شده است.

شکل(3-4).نحوه قرار گرفتن پره‌ها در خشک کن.
برای انتقال مواد جامد در حین خشک شدن از ابتدای خشک کن به انتهای آن،خشک کن باید مقداری شیب دار باشد تا مواد به راحتی جابجا شوند. در این خشک کن شیب با استفاده از رابطه زیر بدست آمد:[6]
S2=S1 tanβ (4-3)در اینجا β زاویه خشک کن و S1طول خشک کن می‌باشد که صرف نظر از طول ورودی و خروجی خشک کن 20/11 متر و S2 اختلاف ارتفاع بین ابتدا و انتهای خشک کن می‌باشد:
ارتفاع ابتدای خشک کن از سطح زمین:39/1 متر
ارتفاع انتهای خشک کن از سطح زمین:22/1 متر
S2=1/39-1/22=0/17 mtanβ=S2S1tanβ=0/1711/20=0/015178β=tan-10/015178β=0/869≈0/87بنابراین خشک کن دوار مورد بررسی با زاوبه 87/0 درجه نسبت به افق قرار گرفته است.
مدت زمانی که محصول در طول خشک کن طی می‌کند تا به انتهای آن برسد بر اساس زمان گرفته شده در حین تولید،15 دقیقه گزارش شده است.
3-6-2-اجزای بیرونی خشک کن دوار
1-مشعل

شکل(3-5).مشعل
این مشعل دوگانه سوز بوده و با دو سوخت گازوئیل و گاز کار می‌کند. حداکثر توان این مشعل 10000 کیلو کالری می‌باشد.
2-ترمومتر

شکل(3-6) .ترمومتر
این ترمومتر در ابتدا و انتهای خشک کن نصب شده است و دمای ورودی و خروجی خشک کن را نشان می‌دهد.
3-کانال خروجی هوای مرطوب شده

شکل(3-7) .کانال مکش
این کانال هوای داغی که در خشک کن جریان داشت و بعد از عبور از آن و گرفتن رطوبت مواد، آن‌را خارج می‌کند.
4-موتور گیربکس

شکل(3-8) .موتور گیربکس
این موتور گیربکس با توان 11 کیلو وات کار می‌کند.
اینورتر

شکل (3-9) .درایور اینورتر
از این دستگاه برای کنترل تعداد دور خشک کن استفاده می‌شود که سنسور مربوط به چرخش محفظه به موتور گیربکس 11KW متصل شده است و تا 20%دور را کم و زیاد می‌کند.
6-فن مکنده

شکل(3-10) .فن مکنده
این فن عمل مکش هوا را انجام می‌دهد.
7-ریل‌های راهنما

شکل(3-11).ریل راهنما
این ریل‌ها شامل یاتاقان، رینگ راهنما و بوش راهنما هستند.
8-چرخ دنده

شکل(3-12) .چرخ دنده
این چرخ دنده‌ها عمل چرخش را توسط موتور گیربکس انجام می‌دهند.
3-6-3-نمودار خطی خشک کن دوار مورد بررسی
این نمودار با استفاده از نرم افزار اتوکد با توجه به خصوصیات خشک کن دوار مورد بررسی ترسیم شده است.

شکل (3-13).نمودار خطی خشک کن مورد بررسی با استفاده از نرم افزار اتوکد.
بطور کلی خشک کن دوار مورد بررسی دارای ویژگی‌های زیر می‌باشد:
جدول (3-1).ویژگی‌های خشک کن دوار مورد بررسی.
طول قطر ضخامت تعداد پره‌ها جنس بدنه زاویه خشک کن
12 m 1/30 m 1/5 cm 80 فولاد نسوز 0/870
3-6-4-محاسبه تعداد دور خشک کن
اینورتر یک مبدل DC به Ac دو مرحله ای است که ولتاژ ورودی با دامنه و بسامد مشخص را به ولتاژ خروجی با دامنه و بسامد متغیر قابل تنظیم تبدیل می‌نماید.
یکی از روش‌های تغییر دور موتور تغییر بسامد ورودی به آن است که این عمل توسط اینورتر صورت می‌پذیرد. با استفاده از روابط زیر سرعت موتور بر حسب بسامد تعیین خواهد شد که به واسطه گیربکس این سرعت جهت چرخش خشک کن کاهش داده می‌شود.
120×fP ( 6-3) F بسامد برق می‌باشد و P تعداد قطب موتور می‌باشد. بسامد برق شهر 50 هرتز و تعداد قطب موتور در اینجا 4 است. در نتیجه تعداد دور موتور از رابطه زیر بدست می‌آید:
120×504=1500 rpmکه این سرعت به واسطه گیربکس با نسبتی ثابت به میزان 4rpm کاهش می‌یابد.
برای مثال با تغییر بسامد به 65 هرتز سرعت از رابطه زیر بدست می‌آید:
120×654=1950rpmدر نتیجه با استفاده از رابطه بالا سرعت خشک کن برابر است با:
1950×41500=5/2rpm
3-7-روش نمونه برداری
در این بررسی در دو مرحله جداگانه نمونه برداری‌ها انجام شده است. هر بار میزان رطوبت نمونه گرفته شده با استفاده از رطوبت سنج دیجیتالی Sartorius MA35 اندازه گیری می‌شود.در هربار اندازه گیری رطوبت مقدار 2گرم از دی کلسیم فسفات را در ظرف مخصوص قرار می دهیم ودر دستگاه را گذاشته و بعداز 10 دقیقه رطوبت خوانده می شود.

شکل (3-14) . رطوبت سنج دیجیتالی Sartorius MA35
نمونه برداری
نمونه برداری در دور ثابت خشک کن، با توجه به زمان ماند، هر 5 دقیقه یک‌بار از خروجی خشک کن نمونه برداری شده است.چون در این کارخانه بعلت صرفه اقتصادی و نگهداشتن کیفیت محصول فواصل دورها کم و از 4/4 تا 8/5 در نظر گرفته شده است.
میزان رطوبت آن‌را با استفاده از رطوبت سنج بدست می‌آوریم و با استفاده از رابطه زیر MR را بدست می‌آوریم که در ادامه نتایج نمونه برداری آمده است.

aslinezhad project

اندازه کاهش یافته.50
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه به روند ارائه شده در
دو بانده کردن کوپلرπ شکل ( 900MHz و 51(2400MHz
(2-3 استفاده از برنامه کامپیوتری ساده جهت بدست آوردن پارامترهای مدار دو بانده52
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محیط ( نرم افزار) مختلف و مشاهده
نتایج53
فصل چهارم: بررسی انواع مختلف DGS و اثرات آن بر روی
خطوط میکرواستریپ59
DGS (1-4 چیست60
( 2 – 4 مشخصات کلی 60 .DGS
( 3 – 4 کاربردهای 61DGS
٧
( 4 – 4 ویژگیهای 61DGS
( 5 – 4 اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ....61
( 1 – 5 – 4 الگوی .DGSدمبلی شکل و ویژگی شکاف باند63
DGS ( 2 – 5 – 4 دمبلی پریودیک قویتر64
( 3 – 5 – 4 اندازهگیریهای مربوط به DGS دمبلی شکل..66
( 6 – 4 بررسی اثرات DGSهای هلزونی در تقسیم کننده توان بر روی هارمونیکها68
-7-4مدل مداری و هندسه DGS هلزونی غیرمتقارن70
( 8 – 4 حذفهارمونیکهادر مدار مقسم توان73
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی78
( 10 – 4 مشاهده اثرات DGS برروی مدار دو بانده طراحی شده80
فصل پنجم:چگونگی استفاده از کوپلر بدست آمده در طراحی
سیرکولاتور82
(1-5طراحی سیرکولاتور83
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر83
فصل ششم:نتیجه گیری وپیشنهادات86
(1-6نتیجه گیری87
(2-6پیشنهادات88
٨
پیوست ها................................................................................................................................... 89
٩
فهرست مطالب
عنوان مطالبشماره صفحه

منابع و ماخذ. 93
سایتهای اطلاع رسانی97.
چکیده انگلیسی98
١٠
فهرست جدول ها
عنوانشماره صفحه

:(1-2)مشخصات الکتریکی وفیزیکی مدار در دو باند..47
(1-3) دو بازه فرکانسی و دو هدف مورد نظر پروژه..55
(2-3.) بازه بالا و پایین جهت optimom هدف.56
(1–4)مقایسه اثر DGSهای واحد و پریودیک با توزیع نمایی..66
١١
فهرست شکل ها
عنوانشماره صفحه

(a) ( 1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و
استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع23
(a) ( 2 – 1) سرس خطوط انتقال کوچک شده با چندین استاب
باز (b) بزرگی پاسخ.25
( 3 – 1) نمایی از نرم افزار Serenade. RTL جهت بدست آورن طول
فیزیکی و پنهای خطوط.26
( 1-2 ) ساختار T شکل خط انتقال ربع طول موج30
( 2-2 ) منحنی رسم شده حاصل از برنامه کامپیوتری θ1)بر حسب32.(θ3
( 3-2 ) مدار چاپی خط شانهای T شکل34
S11 (a) ( 4-2)،S12،S13،(b) S14 پاسخ فازی مدار Tخط شاخهای35
(5-2) ساختار کوپلر خط شاخه ای یک بانده مرسوم.38
(a) ( 6 – 2) ساختار معادل پیشنهادی (b) خط شاخهای 38. λ4

S11 ( 7-2 )،S12،S13وS14 از کوپلر بدون استاب42
( 8-2 ) پاسخ زاویهS12وS14 برای مدار بدون استاب42
( 9-2 ) ساختار کوپلر پیشنهادی با استاب مدار باز44
١٢
( 10-2 ) ساختار کوپلر پشنهادی با استاب اتصال کوتاه ........................................................ 45
11-2 ) ) نتایج شبیه سازی .................................................................................. ...(S11) 47
12-2 ) ) نتایج شبیه سازی(S12و............................................................................ .(S13 48
( ( 13-2 نتایج شبیه سازی .................................................................................... .(S14) 48
14-2 ) )نتایج شبیه سازی (پاسخ فاز مدار با استاب باز) ................................................... 49
( (a) ( 1-3 شماتیک (b) مدار چاپی ................................ (designer, hfss) ansoft 55
( S11(a) ( 2-3،S12،S13وS14 مدار شبیه سازی شده در .....................................................................ADS (c) serenade (b) ansoft (a) 57
( 3-3 ) پاسخ فازی مدار دو بانده. ....................................................................................... 58
1-4 ) ) شمای مختلف H (a) DGS شکل T ( b)شکل (c)هلزونی شکل (d) دمبلی شکل. ......................................................................................................... 60
( 2-4 ) خط میکرواستریپ با εr = 15 و ................... ................................ h = 1/575 62
( 3-4 ) پارامترهای S مدار دوپورته.. ................................................................................ 62
( 4-4 ) مدار با DGS دمبلی شکل .. ............................................................................... 63
( 5-4 ) پارامترهای S مدار با DGS دمبلی شکل ............................................................ 63
( 6-4 (a) ( نوع (b) 1 نوع (c) 24 نوع DGS 3 دمبلی شکل ...................................... 65
( 7-4 ) پارامترهای S برای DGS دمبلی با انواع مختلف سایز. ....................................... 66
( 8-4 ) مقایسه پارامترهای S مدارهای (a) DGS نوع (b) نوع (c) 2 نوع 67 ............. ..3
١٣
( 9-4 ) خط میکرواستریپ با DGS هلزونی نامتقارن برروی زمین. ............................... 70
( 10-4 ) پارامترهای انتقال خط با DGS متقارن ( A = A' = B' = 3mm و نامتقارن A = 3/4m) و ............................................................................(B = 2/6 mm 71
11-4 ) ) فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از ...................................................................................................................... .B/A 71
12-4 ) ) مدار معادل بخش DGS هلزونی نامتقارن ........................................................ 73
13-4 ) DGS (a) ( هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این ......................................................................................DGS 74
( 14-4 ) پارامترهای S مدار با DGS هلزونی بصورت EM و شبیه سازی شماتیک ........ 75
15-4 ) ) هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن....................................................................................................................... 76
( 16-4 ) نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با ....................................................................................................................... ..DGS 77
17-4 ) ) مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار...................................................................................................................... 77
( 18-4 ) نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(.......... S12 ( b) S11 (a 78
( 19-4 ) مدار T شکل با استفاده از DGS هلزونی (a) یک بعدی (b) سه بعدی.......... 79
20-4 ) (a) ( نتیجه پاسخ شبیه سازی کوپلر با استفاده از اعمال (b) DGS بدون ١۴
استفاده از 80DGS
( 21-4 ) مدار چهار پورتی T شکل دوبانده با اعمال DGS دمبلی شکل در
شاخه خطوط..81
( 22-4) پارامترهای S حاصل از بکار بستن 81DGS
(1-5)نماد ژیراتور83
( 2-5)سیرکولاتور 4 پورته متشکل از دو مدار هیبریدی و زیراتور83
(3-5) سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور84
(a)(4-5)،((b،((cو(:(dنتایج شبیه سازی سیرکولاتور85
(1-6)شبکه دو قطبی خطی. 91
١۵
چکیده:
در این پروژه سیرکولاتور دو بانده با ابعاد کوچک ارائه شـده اسـت. در طراحـی سـیرکولاتور مـورد نظـر از
کوپلر شاخه ای (BLC)1 میکرواستریپی دو بانده کوچک شده استفاده شده است . لذا در این پـروژه بیـشتر
بر روی چگونگی کوچک سازی و دو بانده کردن کوپلر شاخه ای میکرواستریپی با اسـتفاده از مـدارات T و
همچنین DGS2 متمرکز شده ایم . در کوپلر شاخه ای پیشنهادی از مدارات T در هر شاخه که دارای طـول
الکتریکی ±90 درجه در دو بانده می باشند ، استفاده شده است. از طرفی در صفحه زمـین در زیـر خطـوط
این کوپلر DGS هایی قرار دارند که با استفاده از این DGSها ، طول الکتریکی خطوط کاهش یافته و ابعاد
کوچکتر می گردند. کوپلر دو بانده کوچک شده توسط نرم افزارهایSerenadeوADS3وAnsoft تحلیـل
شده و نتایج شبیه سازی در این پروژه آورده شده اند. سپس با استفاده از کوپلرهای دو بانده کوچک شـده ،
سیرکولاتور مورد نظر طراحی گردیده است.

Branch line coupler١ Defected ground structure٢ Advance designe sys--٣
١۶
مقدمه:
امروزه تقاضا برای استفاده از عناصر دو بانده در صنعت مخابرات رو به افزایش است . سیستمهای مخابرات
با آنتن های دو بانده کاربرد زیادی دارند. سیرکولاتور یکی از عناصر اصلی در چنین سیستم هایی اسـت. بـا
استفاده از سیرکولاتور دو بانده می توان از یک تغذیه بین آنتن و سیستم مخـابراتی اسـتفاده نمـود. یکـی از
اجزای اصلی در ساخت سیرکولاتورهای چهار پورتی ، کوپلرهای هایبریدی و کوپلرهای شاخه ای((BLC
می باشند.
(BLC) از چهار خط انتقال به طول ربع طول موج مؤثر در فرکانس اصلی و هارمونیک هایی کار می کنـد.
.[1] ,[2]
معمولا این کوپلرها بزرگ هستند و سطح و فضای اشغال شده توسط آن ها زیاد است. در اکثـر کاربردهـای
امروز به خصوص در بردهای صفحه ای و میکرواستریپی ، این عیب محسوب می شود. لذا ، امـروزه روش
های مختلفی برای کوچک سازی و افزایش پهنای باند]٣[7- این کوپلرها ارائه شده است.
در مخابرات مدرن امروزی نیاز به اجزاء دو بانده بالاخص کوپلر BLC دو بانده ، می باشد تا مقدار عناصـر
مورد استفاده ،کاهش یابد.
] Hsiang٨[ از خطوط چپگرد برای دو بانده کردن کوپلر استفاده کرده است.BLC شامل خطـوط متـصل
شده به یک جفت المان موازی]١١[ گزارش شده است.
در این پروژه با استفاده از روشـهای کوچـک سـازیBLC و ترکیـب آن هـا بـا روشـهای دو بانـده سـازی
ابتداBLC با ابعاد کوچک در دو بانده 900Mhzو2400Mhz طراحی شده است سپس برای کاهش بیـشتر
سطحBLCصفحه ای ازDGS ها استفاده شده است.
١٧
گزارش ارائه شده از نمونه طراحی سیرکولاتور مورد نظر شامل قسمت های زیر می باشد:
در فصل اول کلیاتی در مورد مراحل انجام پروژه ،هدف از انجام مراحل کار ، پیشینه تحقیقهای انجـام شـده
در مورد مدارمورد نظر و روش کمی کار مورد بررسی قرار گرفته است.
در فصل دوم ابتدا نحوه افزایش پهنای باند کوپلرها ، کوچک سازی با استفاده از مدارT و استفاده از مـدارπ
بــرای دو بانــده کــردن کوپلربررســی شــده اســت. ســپس بــا اســتفاده از نــرم افزارهــای تخصــصی
مانندSerenadeوAnsoft مدارات ذکر شده تحلیل گشته و نتایج شبیه سازی آورده شده اند.
در ادامه کوپلر کوچک شده با استفاده از مدارT ، با توجه به روند ارائـه شـده در دو بانـده کـردن کـوپلر بـا
مدارπ ، در فصل سوم دو بانده شده و روابط حاصل برای دو بانده کردن آن به دست آمده است.
کوپلر به دست آمده با استفاده از نـرم افـزار ADSوSerenadeوAnsoft تحلیـل و بهینـه گـشته اسـت و
منحنی های مربوط به آن در این فصل آورده شده اند.
در فصل چهارم DGS به عنوان ابزاری برای کوچک سازی مدارات صفحه ای شرح داده شده و از آن برای
کوچکتر کردن ابعاد کوپلر دو بانده استفاده شده است . نتایج شبیه سـازی کـوپلر حاصـل ، نـشان داده شـده
است. چگونگی استفاده از کوپلر به دست آمده در طراحی سیرکولاتور در فصل پنجم شرح داده شده اسـت
و در آخر در فصل ششم نتیجه گیری و پیشنهاداتی برای ادامه کار آورده شده است.
١٨
فصل اول:
کلیات
١٩
(1-1 هدف
کوپلرهای شاخهای با بکار بستن استابها ( مدارباز – مدار کوتاه) نیزو با Cascade شدن یک سـری شـاخه
برکاستن حجم و بالا رفتن پهنای باند نقش بسازیی را دارند. همچنین المانهای فشرده به ما امکـان کـوچکتر
کردن مدار را میدهند و با عث افزایش باند میگردند منتهی برای ساخت مدار نهایی با کـاهش سـایز کلـی و
افزایش پهنای باند و بکار بردن کوپلینگ مناسب در سرهای مدار و ایزوله کردن پورتها از همدیگر مـیتـوان
از روش مناسب بکار بردن DGS و نتیجتاً افزایش اندوکتانس خطوط و در نتیجه اهداف مطلوب دسترسـی
پیدا کرد.
در این پروژه هدف کلی رسیدن به ساختار فشرده و نیز استفاده از مدار میکرواستریپی در دو بانـد فرکانـسی
دلخواه و نیز افزایش هر یک از باندهای فرکانسی می باشد. و عـلاوه بـر ایـن بـا بکـار بـستن ( defected
ground structure) DGS بر روی زمین مدار شاهد اثرات مثبت آن برروی دستیابی باند فرکانسی مورد
نظر و نتیجتاً کاهش سایز مدار و خواهیم بود.
(2-1 پیشینه تحقیق
با توجه به ساختار مدار این پروژه و هدف مورد نظـر تحقیقهـایی مـورد نظـر بـودهانـد کـه بیـشتر در بـاره
Compact و فشرده سازی المانها، افزایش پهنـای بانـد، از بـین بـردن هارمونیکهـای اضـافی و اسـتفاده از
DGS میباشد.
در[1] افزایش پهنای باند مدارهای هایبرید با استفاده از اتصال خطوط شاخهای و استفاده از اسـتابهای مـدار
λ
باز در دو انتهای خط میکرواستریپ و معادل قرار داده خط با خط انتقال 4 جهت کاهش ابعاد مورد بررسی

قرار گرفته است.
٢٠
فعالیتهای گستردهای در جهت طراحی و بکاربردن کوپلرها و سـیرکولاتورهای صـفحهای فـشرده دردو بانـد
مورد دلخواه بعنوان مثال در پروژه - ریسرچ[2]انجام گردیده است که در فصل دوم نتایج حاصل از شـبیه سـازی ایـن
گونه کوپلرها و استفاده از ماترسیهای انتقال و نوشتن برنامه کامپیوتری جهت استفاده در دو فرکانس دلخـواه
مورد بررسی خواهند گرفت.
در مورد کاهش بیشتر سایز کوپلرها در حدود 45% مقدار کوپلرهـای مرسـوم خـط شـاخه ای و بـا مـدل T
شکل فعالیتهایی در مقالات گوناگون [3] تنها در یک باند فرکانسی مطرح گردیده است که در فصل بعدی
نیز این پروژه - ریسرچو نتایج شبیه سازی آن با نرمافزارهای گوناگون مورد بررسی قرار می گیرند.
یکی از مسائل مهم در چند قطبیهای میکرواستریپ مسئله کاهش اندازه بـوده کـه بـا توجـه بـه اسـتفاده از
المانهای باند و کاهش حجم مدار نیز استفاده از (defected ground structure) DGS مـیباشـد. ایـن
کار باعث از بین بردن هارمونیکهای اضافی و نتیجتاً کاهش اندوکتانس مدار و بالا بردن پهنای باند و کاهش
سایز مدار با کم کردن المانهـای مـوازی مـیگـردد. در ایـن زمینـه نیـز فعالیـتهـای گـسترده و اسـتفاده از
DGSهای مختلف صورت گرفته است [2]و[4]و[21]و .[22]
که اثرات تک DGS و نیـز DGS دمبلـی پریـود یـک را بـر روی پارامترهـای اسـکترینگ یـک خـط
میکرواستریپ دو پورتی ،بررسی شده است.
همچنین در[21] کاربرد DGS برروی خطوط یک کوپلر و تأثیر آن برروی پاسخ شبیه سـازی بـرروی ایـن
مدار در نرمافزار Ansoft بررسی گردیده است.
علاوه[23] نیز اثرات DGS هلزونی برروی حذف هارمونیکها و پهنای باند در یک تقسیم کننده توان ویـل
کینسن را مورد بررسی قرار داده است که در این پروژه در انتهای از این نوع DGS در زیـر خطـوط کـوپلر
خط شاخه ای تک بانده استفاده گردیده و نتایج آن آورده شده است.
٢١
و اثرات شکلهای گوناگون [21]DGSو[22]و[23]و مدل کردن مداری آنها بـرروی کـوپلر، سـیرکولاتور و
تقسیم کنندههای توان و به طور کلی خطوط میکرواستریپ را بررسی میکنند که در فصلهای بعـدی در ایـن
مورد به طور مفصل توضیح داده شده و نتایج حاصل از شبیه سازی نیز آورده شده است.
( 3 – 1 روش کار و تحقیق
در این پروژه روش کار و تحقیقهای انجام شده جهت رسیدن به هدف مورد نظر یعنـی اسـتفاده از دو بانـد
فرکانسی دلخواه کاهش حجم مدار بالابردن ضریب کوپلینگ نیز بـه صـورت اسـتفاده از مراجـع و منـابع و
مشاهده نتایج حاصله از این کارها بوده و بعد از برقراری لینک مورد نظر این منبع مـورد بررسـی بـا هـدف
نهایی به آیتم بعدی پروژه - ریسرچمربوط به مرجعهای اولیه پرداخته شده است. در بخشهای بعدی این مراحل عنوان
میگردند.
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن:
در این مرحله نیز خط میکرواسـتریپ Zc4 بـا طـول الکتریکـی θ نیـز کـه در شـکل (1 – 1) (a) مـشاهده
میگردد به صورت یک خط انتقال مرسوم با المانهای توزیع شده فشرده معادل آن نیز مدل گردیده است[9]
و با بکار بردن فرمول ماتریس ABCD5 مدار معادل مشاهده شده در شکل (1 – 1) ( b) میتوانـد اسـتنباط
گردد. با معادلات ماتریس ABCD در شکل (1 – 1) به نتایج زیر دسترسی پیدا میکنیم.
(1 – 1)
JB01  J tan θ01 / Z 01

امپدانس خط معادل
ماتریس انتقال خط
٢٢
که B01 امپدانس ورودی استاب مدار باز است و٠١θ طول الکتریکی استاب مدار باز است.
و با در دست داشتن ادمیتانس ورودی استاب مدار باز شکل (b ) ( 1 – 1) به معادلات زیر میرسیم
(2 – 1) cosθs −cosθ B01  Z c sin θ (3 – 1) Zc sinθ Zs  sinθs که ≤θs≤θ≤1٠ می باشد و همانطوری که در شکل((1-1 دیـده میـشود θs طـول خـط بـین دو اسـتاب در
مدارπ است.

شکل (a ) (1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع
٢٣
ما همچنین میتوانیم فرکانس قطع برای ساختار فیلتر مانند شکل (b ) ( 1 – 1) و مـدار معـادل آن در شـکل
(c) (1-1) به صورت زیر بدست آوریم:
(4 – 1)
1 Wc  Leq Ceq
(5 – 1)
1  Wc )ZsSinθs tan(θs / 2)  Cosθs − Cosθ 2( W0 Zs Zc Sinθ
که در Wc فرکانس قطع مدار معادل نشان داده شده شکل (b ) ( 1 – 1) و Wo فرکانس کار مرکـزی مـدار
مورد نظر با المانهای فشرده معادل 7Ceq, Leq6 میباشند.
حال در اینجا برای بالا رفتن پهنای باند و عریض کردن باند فرکانسی دلخواه، با استاب مدار بـاز بـه خـوبی
طول واحد خطوط سری با یکدیگر بوده و مدل کردن خط میکرواستریپ با خطوط معـادل بـا اسـتابهـای
مدار باز سری همانطور که در شکل (2 – 1) نشان داده شده باعث کم شدن امپدانس استاب بـاز و افـزایش
فرکانس قطع (fc) میگردد.

۶ سلف ٧خازن معادل
٢۴

شکل((a) ( 2 – 1 سری خطوط انتقال کوچک شده با چندین استاب باز (b) بزرگی پاسخ
با مشاهده پارامترهای S این مدار در شکل (b ) (2 – 1) از این مدارات میتوان جهت بالا بردن باند فرکانس
و نیز استفاده مدار دو باند فرکانسی دلخواه،اسنفاده گردد.
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(:(2000/900
در اینجا نیز با ایده گرفتن از کار قبلی و استفاده از ماتریسهای ABCD که در فصل بعدی آورده شده زمینه
جهت استفاده از کوپلر خط شاخهای Tشکل با حجم کم و باند فرکانسی دو بانده کـه در فـصل سـوم آمـده
فراهم میگردد.
٢۵
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخهای T شکل
در این قسمت با ایده گرفتن از روشهای قبلـی کـه در فـصلهای بعـد توضـیح داده مـیشـود از ماتریـسهای
ABCD استفاده شده و بعد از نوشتن برنامه کامپیوتری زمینه جهت استفاده از المانهای فـشرده در دو بانـد
فرکانسی دلخواه فراهم گردیده است. از بدست آوردن مقادیر Z و θ که امپدانس مشخصه خطـوط و طـول
الکتریکی آنها هستند با استفاده از فرمولهای موجود در بازههای مختلف که در منابع مختلـف هـم آمـدهانـد
طول و پنهای خطوط چند پورتی مورد نظر بدست میآید که در این پروژه از serenade استفاده شده است
و این مقادیر با دادن فرکانس کار، مشخصه دی الکتریک مورد نظر و امپدانس و طول الکتریکی خط نیـز بـه
سادگی بدست میآیند. در شکل (3 – 1) شمای کلی این نرم افزار آمده است.

شکل :(3 – 1) شمایی از نرمافزار serenade جهت بدست آوردن طول و پنهای خطوط
٢۶
با بستن مدار فوق در نرم افزارهای مختلف نتـایج شـبیهسـازی را مـشاده و در صـورت عـدم نتیجـهگیـری
همانطور که در فصل سوم آمده آنرا optimum میکنیم. در نهایت با ایده گرفتن از کارهای انجـام شـده در
مقالات مختلف DGS های گوناگون را بکار گرفته و نتایج حاصل از آن را آوردهایم.
٢٧
فصل دوم:
تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده وTشکل
٢٨
(1-2 مدار خط شاخهای اندازه فشردهT شکل
دراینجا هدف طراحی کوپلر و در نهایت سیرکولاتور خط شاخهای بهم پیوسـته بـدون اسـتفاده از المانهـای
توده میباشد. اندازه کـوپلر پیـشنهادی تنهـا 45درصـد کوپلرهـای خـط شـاخهای مرسـوم در فرکـانس 2/4
گیگاهرتز میباشد.
اندازه المانهای این نوع کوپلر میتوانند به راحتی با استفاده از عمل قلم زنـی بـرد مـدار چـاپی بـه صـورت
واقعی کشیده شده و برای سیستمهای ارتباطی بیسیم بسیار مفید و پرکاربردند. چرا که اخیراً سیستم ارتبـاط
بیسیم در جهت اهداف کوچک کردن و پائین آوردن هزینه بـه قطعـات کـوچکتری نیـاز دارنـد. از ایـن رو
کاهش اندازه از اهداف قابل توجه در بکاربستن این طراحی میباشد. در پایینترین باند فرکانس مایکروویو،
اندازه کوپلر خط شاخهای مرسوم جهت استفاده عملی بسیار پیچیده و بزرگ است. تکنیکهای زیادی جهـت
کاهش سایز این گونه کوپلرها گزارش شده است. ترکیب خط انتقال با امپدانس بالا و خازنهای فشرده شنت
شده به آنها نیز مورد بررسی قرار گرفته اند.در این موارد خازنها با عایقهایی خاص، مورد نیاز مدارهای شنت
میباشند که در بحث بعدی جهت دو بانده کردن کوپلرهای خط شاخهای πشکل توضیح داده میشود.
مرجع[11] کوپلر خط شاخهای درخطوط میکرو استریپ تک لایه از فلز بدون هیچ گونه المان فـشرده شـده
واضافی ̦ سیمهای اتصال را پیشنهاد می کند.اندازه این گونه کوپلرها حدود 63درصـدطراحی هـای مرسـوم
میباشد. هرچند که قسمتهایی که ناپیوستگی در داخل کوپلر بوجود میآورند نیز همان ناپیوستگیهای ناشی
از اتصال مدارهای استاب شنت مدار باز یا کوتاه میباشند کـه باعـث بوجـود آمـدن مـشکل (over lap)8
میگردند. بنابراین ما در فصل بعدی روی طراحی یک کوپلر خط شـاخهای T شـکل جمـع و جـور جدیـد

٨هم پوشانی
٢٩
متمرکز خواهیم شد و در قسمت بعدی آنها را در کوپلرهای واقعی بکار برده و به تحلیـل و بهینـهسـازی آن
میپردازیم.
این نوع کوپلرها بدون استفاده از هیچ گونه المان فشرده، سـیم و قطعـه ای، مـیتواننـد بـه سـادگی بـرروی
سابستریتها ساخته شوند و در مقایسه با مدارات مرسوم طراحی شده اطلاعات را بخـوبی آشـکار مـیکننـد،
همچنین هماهنگی نزدیک و خوبی ما بین نتایج شبیهسازی و اندازه گیری شده مشاهده می گردد.
روش مرسوم ومعمولی جهت آنالیز کوپلر T شکل خط شاخهای بر روی استفاده از آنالیز مد نرمال است کـه
در اینجا ما از آن استفاده کردیم و این بدلیل ساختار هندسی آن نیز میباشد.
هر چند که خط با سایز کاهش یافته با طولی کمتر از λ / 4 اندوکتانس و ظرفیت پائینتـری را دارد، منتهـی
جبران اندوکتانس بوسیله افزایش امپدانس مشخصه خط و جبران ظرفیت نیـز بوسـیله اضـافه کـردن خـازن
شنت متصل شده [15] C میباشد. در این پـروژه خـازن C نیـز بوسـیله یـک خـط اسـتاب مـدار بـاز [9]
جایگزین گردیدهاست و معادل آنرا در مدار T شکل قرار دادهایم.

شکل(:(1-2ساختار T شکل خط انتقال ربع طول موج
ساختار T شکل معادل معمولی از یک خط کاهش یافته در شکل (1-2)نـشان داده شـده اسـت کـه در ایـن
شکل Z1،Z2،Z3وθ1،θ2وθ3 امپدانس مشخصه خطوط و همچنین طول الکتریکی آنها را نـشان مـیدهنـد.
لزومی ندارد که جایگاه خط با طول الکتریکـی((θ2 مـدارباز در وسـط خـط کـاهش انـدازه یافتـه مـا بـین
٣٠
Z1وZ2قرار داشته باشد. روابط ما بین این عناصر یعنی امپدانس مشخصه و طولهای الکتریکی را مـیتـوانیم
بوسیله ماتریس ABCD آنها تخمین بزنیم.
با استفاده از روابط قبلی برای طراحی یک کوپلر خط شاخهای πشکل مرسوم در اینجا با معـادل قـرار دادن
ماتریس آن با امپدانس مشخصه خط با طول θ = ±90° و ±ZT داریم:
3 Sinθ 3 JZ 3 Cosθ 1 0 Sinθ JZ Cosθ A B (1-2) j 1 1 1 j Cosθ3 Sinθ3 1 JB Cosθ1 Sinθ1 D  C Z3 2 Z1 (1-2) jB2  jTanθ2 / Z 2 (3-2) N Z1 Z3 (4-2) K Z1 Z 2 (5-2) M Z1 ZT از طرفی با معادل قرار دادن ماتریس فوق با ماتریس خط 90° داریم.
JZT
0(6-2)

0 JZT Sinθ j  Cosθ Z T
Cosθ B A Sinθ j  D C T Z و پس ساده سازی چهار معادله به صورت زیر خواهیم داشت:
(7-2) Cosθ1Cosθ3 − KTanθ2 Sinθ1Cosθ3 − NSinθ1 Sinθ3  0 (8-2) N Cosθ1Sinθ3 − KTanθ2Sinθ1Sinθ3  NSinθ1Cosθ3  M ٣١
(9-2) Tanθ2Cosθ1Sinθ3  Cosθ1Cosθ3  0 K Sinθ1Sinθ3 − 1 − N N (10-2) Sinθ1Cosθ3  KTanθ2Cosθ1Cosθ3  NCosθ1Sinθ3  M با ساده سازی روابط فوق دو معادله زیر را خواهیم داشت:
N 2 M 2 2 − N M 3  Tanθ Tanθ Tanθ N) ,Cotθ ) Tanθ Cotθ 2(11-2) M N N 1 3 1 3 1 (12-2) ( 2 − N 2 M 3 ( Tanθ 2  ) Tanθ 2 − N 2 M 3 ( 3  Sinθ Tanθ2Cosθ K KN MN M معادلات (11-2) و (12-2) نیز مقادیر θ1 و θ2 وθ3 را تحت شرایطی که M و N را داشـته باشـیم بـه مـا
میدهند. برای سادگی کار در اینجا Z1 را برابر Z3 در نظر میگیریم. طـول الکتریکـی θ1 بـر حـسب طـول
الکتریکی θ3 برحسب مقادیر مختلف M رسم گردیده است که در شکل (2-3) نیز آمـده اسـت. در اینجـا
نیز برنامه سادهای با نرم افزار مطلب نوشـته شـده(پیوسـت الـف-(1 و بـه ازای مقـادیر مختلـف N و M
میتوان به ازای θ1 های مختلف مقادیر θ2 و θ3 را بدست آورد.
١θ

٣θ
شکل θ1:(2-2) بر حسبθ3
٣٢
واضح است که طول الکتریکی کل خط کوچک شده( (θ= θ1 + θ3 با افزایش مقدار M نیز کاهش مییابد.
جایگاه خط استاب مدار باز شده در داخل کوپلر خط شاخهای تحـت شـرایط خـاص نیـز تحمیـل گردیـده
است. مقدار طول الکتریکی (θ2) ما بین مقادیر θ2 و θ میباشد. جهت جلـوگیری از مـشکل هـم پوشـانی

(Over lab) خط استاب باز را به انتهای خط اتصال کوتاه وصل میکنیم. θ1 و θ3 به ازای مقادیر شناخته
شده M به یکدیگر تبدیل شده در حالیکه حالت معادله (12-2) تحت N = 1 بدون نغییر باقی میماند. ایـن
نتایج به توانایی دو رابطه بدست آمده اشاره دارد. با بدست آوردن مقـادیر θ1 و θ3 و بـا داشـتن معادلـه
(12-2) مقادیر θ2 وZ2 محاسبه میگردند.
(2-2 طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن
با روشی که در بالا توضیح داده شد به سادگی میتوان انـدازه کـوپلر خـط شـاخهای مرسـوم را کـاهش داد
سابستریت مدار فوق دارای ویژگیهای زیر میباشند:
metal thickness =0 .02mm و h = 0.8mm و Tanδ  0.022 و εr  4.7
امپدانس مشخصه کوپلر خط شاخهای مرسوم 35 اهم در خط اصلی و در شاخه عمودی 50 اهم میباشند.
جهت کاهش دادن اثر افت هادی، افت تشعـشعی و جلـوگیری از مـدهای مـزاحم انتـشار نیـز پهنـای خـط
میکرواستریپ محدود شده و این امر با محدود کردن مقدار امپدانس مشخصه موثر واقع میگردد.
در ابتدا پارامترهای خط کوتاه شده اصلی ( افقی) را بـرای M=1/7 و بـا درنظـر گـرفتنθm1=17° بدسـت
میآوریم که از شکل θm3 = 48 °(2-2) حاصل میگردد. با قراردادن اطلاعات فـوق در رابطـه (12-2) و
٣٣
در نظر گرفتن k=2/6 مقدار θm2=39° (طول الکتریکی استاب باز خط اصـلی) بدسـت مـیآیـد. بـه طـور
مشابه پارامترهای خط شاخهای کاهش یافته را هم بدست میآوریم.
θb2=31 ْ θb3=58 ْ M=1/5 k=3/3 θb1=16
با در دست داشتن مقادیر فوق از نرمافزار Serenade جهت بدست آوردن ابعـاد مـدار چـاپی ) W پهنـای
خطوط) و ) L طول خطوط) اسـتفاده مـیکنـیم. بعـد از بدسـت آوردن ابعـاد فـوق، مـدار را بـا نـرمافـزار
Ansoft designer ترسیم نموده و بعد از تحلیل مدار فوق نیز نتایج اندازهگیری شده را بدست میآوریـم.
مدار چاپی آن در شکل (3-2) نشان داده شده است. و نتایج شبیهسازی در شکلهای (a) (4-2) و (b) نشان
داده شده است.

شکل :(3-2)مدار چاپی خط شانهای T شکل
٣۴

(a)

(b)
شکل S11:(a)(4-2)،S12،S13وS14 و(:(bپاسخ فازی کوپلر خط شاخه ای
مشاهده می شود S11 وS14 در فرکانس مرکزی کمتر از -20dB وS12 وS13 حدود -3dB میباشند.
حال با توجه به نتایج شبیه سازی اندازه گیری شده مستقیم و توان کوپل، افت بـالا بوسـیله سـاختار فلـزی و
افت تشعشعی دیده نمیشود . حوزه مدار کاهش یافته در مقایسه با کوپلر خط شاخهای مرسوم بـشتر از 55
درصد میباشد.
٣۵
مادر بخشهای بعدی مدار فوق را با اسـتفاده از بکـار بـستن (Defected ground structure)
DGS نیز مورد بررسی قرار خواهیم داد و اثرات DGS بر روی نتایج شبیهسازی مورد بررسی قرار خواهند
گرفت.
٢( 3 – کوپلر خط شاخهای π شکل
طراحی یک کوپلر خط شاخهای جدیدی که میتواند در دو فرکانس دلخـواه کـار کنـد از ویژگیهـای مـدار
پیشنهادی اندازه فشرده و ساختار شاخهای میباشد. فرمولهای طراحی روشن و واضـحی از ایـن مـدار بیـان
گردیده، چرا که موضوع مجهولات آن از قیبل امپدانس شاخههای خط مشخص گردیده اند.
فعالیتهایی جهت بررسی و رسیدگی نتایج شبیهسـازی شـده و انـدازه گیـری شـده از عملکـرد کـوپلر خـط
شاخهای میکرواستریپ در فرکانسهای 0/9 الی 2 گیگا هرتز انجام شده است.
کوپلرهای خط شاخهای از معروفترین مدارات پسیو استفاده شده در کاربردهای موج میلیمتری و میکرویـو
میباشند.
هایبریدهای λ / 4 طول موج [10] ,[9] مثالهای خوبی هستند که در باند فرکانسی مناسب دامنـه مـساوی و
فاز 90° در خروجی ایجادی میکنند. آنها عموماً در تقویت کنندههای بالانس شده و میکسرها برای بدسـت
آوردن یک افت برگشتی خوب استفاده شده و در جهت حذف سیگنالهای ناخواسته بوده، اگرچه بـه خـاطر
طبیعت ذاتی باند باریک ، طرح مرسوم بر روی خط انتقال λ / 4 بنا نهـاده شـده، کـاربردش در سیـستمهای
چند بانده و باند وسیع محدود گردیده است.
در سالهای اخیر، گزارشهای متفاوتی در رابطه با افزایش و بالا بردن پهنـای بانـد[11] و تکنیکهـای مـوثر در
کاهش سایز [14] ,[12] در مقالات مختلف عنوان گردیده اسـت. طراحـی کـوپلر خـط شـاخهای بـر روی
٣۶
المانهای توزیع شده فشرده بنا گردیده و همچنین برای کاربردهایی در دو باندفرکانسی نیز پیـشنهاد گردیـده
است. در [16] مولف یک ساختار صفحهای جدید را برای طراحی کوپلرهای خط شـاخهای دو بانـد عنـوان
کرده است هرچند مدار پیشنهاد شده از اشکالات زیر برخوردار می باشد:
-1 پهنای باند محدود ( کمتر از (10MHz
-2 افت داخلی و برگشتی بهینه نشده
-3 فضای اشغالی سابستریت آن خیلی بیشتر از کوپلرهای مرسوم بوده ( برخی از خطوط شاخهای، طولی به
اندازه 0/5λ را دارند)
درطرح پیشنهادی، تمام خطوط شاخهای تنها دارای طول λ / 4 بوده ( اندازه فشرده) و در فرکانس میـانی دو
تا باند فرکانسی بکار بسته شده، همچنین در مقایسه با طرح ذکر شده قبلی پهنای باند عملکرد وسیعتـری را
( > 100MHz ) ایجاد میکند، همچنین ایزولاسیون بین پورتهای بهتر و افت داخلی و برگشتی بهینـه تـری
را دارد ( بخش بعدی).
در قسمت بعد جهت آنالیزکردن، فرمولهای یک کوپلر خط شاخهای با فرمولهای واضح و روشـن نـشان داده
شده، در نهایت جهت رسیدگی و تحقیق، نتایج اندازهگیری و شبیهسازی شده ساختار کوپلر خـط شـاخهای
درباند فرکانسی (900/2000)Mhzکه با تکنولوژی میکرواستریپ ساخته شده آورده شده است.
( 4 – 2 فرموله کردن با استفاده از ماتریس خطوط انتقال
٣٧
شکل (5-2) طرح یک کوپلر خط شاخهای تک باند مرسوم توسط بخشهای خطوط انتقال بـا طـول λ / 4 را
نشان میدهد. در شکل (6-2) مدار معادل برای یـک خـط انتقـال λ / 4 پیـشنهاد شـده کـه شـامل خطـوط
شاخهای به طول الکتریکی θ و امپدانس مشخصه ZA بوده و به جفت المان موازی (jY)9 متصل گردیده.

شکل(:(5-2ساختار کوپلر خط شاخه ای یک بانده مرسوم

(a)

(b)
شکل((a):(6-2ساختار معادل پیشنهادی (b).خط شاخه ای λ / 4

٩ مقدار ادمیتانس خط
٣٨
حال جهت تحلیل ساختار پیشنهادی با در نظر گرفتن عدم افت و بکار بردن فرمـول ماتریـسها، پارامترهـای
ABCD ساختار پیشنهادی نشان داده شده در شکل((a)(6-2 بصورت زیر بیان میگردد.
(13-2) 0 jZ A Sinθ 1 0 Cosθ 1 Cosθ 1 jY 1 jYA Sinθ jY که این ماتریس در نتیجه به ذیل منتج می گردد.
jZASinθ Cosθ −ZAYSinθ (14-2) Cosθ −ZAYSinθ 2ZAYCotθ) 2 2 (1−ZA Y jYASinθ و نیز ماتریس بالا به صورت زیر خلاصه میگردد.
±jZT 0 jZASinθ 0 (15-2) 0 ±j  1 0 j Z T A Z Sinθ با معادل قرار دادن ماتریسهای بالا داریم:
Z A Sinθ ±ZT(16-2)
Cotθ
Y(17-2)
Z A
معادله (15-2) نشان میدهد که ساختار پیشنهاد شده معادل با بخشی از خط انتقـال بـا امپـدانس مشخـصه
ZT± و طول الکتریکی θ = ± 90° میباشد. مطابق با عملکرد یک مدار دو بانده (Dual – band) شـرایط
لازم ممکن است به صورت زیر داده شود.
٣٩
(18-2) Z A Sinθ1 ±ZT
(19-2) Z ASinθ2 ±ZT
کهθ1 و θ2 طولهای الکتریکی معادل شده خط شاخهای در باند فرکانسی مرکزی f1 و f2 میباشد.
روش معمولی حل معادلات (18-2) و (19-2) به صورت زیر میباشد:
3.......و2وn=1
(20-2) θ2  nπ −θ1 (21-2) f1  θ1 f2 θ2 (22-2) (1 −δ) nπ θ1  2 (23-2) (1 δ) nπ θ2  2 (24-2) f2 − f1 δ  f 2 f 1 در نتیجه طول الکتریکی خط شاخهای معادل شده در فرکانس مرکزی (θo)به صورت زیر تعیین میگردد
(θ0 ) = θ1 2θ2  n2π(25-2)

با قرار دادن معادلات (22-2) و (23-2) در معادلات (16-2) و (17-2) خواهیم داشت:
(26-2) ZT Z A  ( nδπ Cos( 2 ۴٠
nδπ ( tan( 2 f1 , f  Z A (27-2) y  nπδ ( − tan( 2 f2  , f Z A برای مقادیر 5.....و3وn=1 (28-2) ZT Z A  ( nδπ Sin( 2 nδπ ( −Cot( 2 f1  , f ZA (29-2) y  nπδ ( Cot( 2 f2 , f  ZA برای مقادیر..... 6و4وn=2 در معادلات بالا مقادیر مدار معادل داده شده بـرای دو بانـد فرکانـسی دلخـواه f1 وf2 کـه همـان y و ZA
هستند به دست میآیند.
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب
با در نظر گرفتن امپدانس خطوط عمودی zo=50Ω وخطوط افقی35 و طول الکتریکی 90درجه و نیـز قـرار
دادن آنها در serenade مقادیر طول(( L و پهنای خطوط (w) را بدست آورده و بادر نظـر گـرفتنf=1/45
و بستن مدار در قسمت شماتیک نتایج حاصل را می بینـیم.در شـکلهای((7-2 الـی (8-2) نتـایج حاصـل از
شبیه سازی کوپلر بدون استفاده از المانهای شنت در فرکانس مرکزی نشان داده شده است.
۴١

شکل(S13 ̦S12 ̦ S11:(7-2 وS 14 کوپلر بدون استاب
مشاهده می کنیم مادیرS11و S12 در فرکانس مرکزی کمتر از -20dB بوده یعنی پورت 1 از 4 ایزوله است
وS13وS12 حدوداً dB٣- می باشد .

شکل(:(8-2زاویهS 12 و S14 برای مدار بدون استاب
۴٢
(6-2 تحقق جهت دوبانده کردن مدار
دربخش قبل روش مشخصی برای طراحی یک کوپلر دو بانده (dual – band) به صورت فرمـولی تحلیـل
و تجزیه گردید. نتایج نشان میدهند روشهایی جهت انتخاب مقدار n و همچنین راههای مختلف در بدسـت
آوردن مقادیر المان شنت با ادمتیانس ورودی (Y) که در معادلات (27-2) و (29-2) توضیح داده شده بودند
وجود دارد.جهت معادل سـازی و نـشان داد ن توپولـوژی دو تـا مـدار در اینجـا مقـدار n را یـک در نظـر
میگیریم.
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)
با استفاده از معادلات (22-2) و (23-2) ادمیتانس ورودی یک استاب مدار باز بـه صـورت زیـر مـیتوانـد
باشد.
δπ ( Cot( f1 , f  2 ZΒ (30-2) yoc  ( δπ −Cot( f2 , f 2 ZΒ که در اینجا ZB نیز امپدانس مشخصه استاب مدار باز میباشد . از ایـن رو بـا ترکیـب معـادلات (27-2) و
(30-2) مقدار ZB به صورت زیر بدست میآید: (31-2) Z T ZB  δπ δπ ( )Tan( Sin( 2 2 ۴٣

شکل (9-2) ساختار کوپلر پیشنهادی با استاب مدار باز
در شکل (9-2) ساختار نهایی ( با ساده سازی بوسیله ادغام استابهای شنت موازی شده ) از یـک کـوپلر دو
بانده (dual – band) با تمام خطوط شاخهای جایگزین شده بوسیله مدار پیشنهاد شده شکل (6-2) نـشان
داده شده است و نتیجتاً مقادیر Z3, Z2, Z1 بوسیله معادلات زیر تعیین میگردند.
(32-2) 1 . Z0 Z1  ( δπ Cos( 2 2 (33-2) 1 Z2  Z0. ( δπ Cos( 2 (34-2) 1 . 0 Z Z3  δπ δπ 2 1  ( )Tan( Sin( 2 2
(2-6-2 استفاده از مدار اتصال کوتاه ( طول ( λ2

به طور مشابه ادمیتانس ورودی یک استاب اتصال کوتاه میتواند به صورت زیر بیان گردد:
۴۴
f1 , f Cotδπ Z B (35-2) ysc  Cotδπ − f2  , f Z B شکل (10-2) (مدار چاپی) Layout یک کوپلر اصلاح شده با اتصالات شنت کوتاه شده نشان میدهد کـه
امپدانس مشخصه استاب شنت به صورت زیر محاسبه میگردد.
(36-2) 1 . 0 Z Z3  δπ 2 1  )Tanδπ Sin( 2
شکل (10-2) ساختار کوپلر پیشنهادی با استاب اتصال کوتاه
در تئوری نیز کوپلر پیشنهاد شده میتواند در هر دو باند فرکانسی دلخواه عمل کرده، اما در عمل تعیین رنـج
امپدانسی ساختار کوپلر میتواند مقداری حقیقی پاشد.
۴۵
واضح است که با انتخاب مناسبی از شکل مدار برای رنجهای متفاوتی از کـسر پنهـای بانـد ( 0/2 تـا 0/3 و
همچنین 0/3 تا ( 0/5 کوپلر پیشنهاد شده ممکن است امپدانس خطوط که تنها 30 الی 90 اهم تغییر میکنـد
در آنها بکار برده شود.
( 7- 2 آنالیز(تحلیل) مدار π شکل خط شاخهای دو باند و مشاهده نتایج شبیهسازی :
جهت اثبات و تأیید عملکرد، یک کـوپلر خـط شـاخهای میکرواسـتریپ دو بانـده در فرکانـسهای 0/9 و 2
گیگاهرتز طراحی و شبیهسازی شده و روی کسری از پهنای باند محاسبه شده((δ= 0/38 بنا نهاده شدهاست.
ساختار فشرده یک استاب مدار باز با طول λ / 4 جهت بکار بستن نیز مورد استفاده قـرار گرفتـه اسـت . از
معادلات (32-2) الی (35-2) مقادیر Z3, Z2, Z1 حدود 42/7 و 60/6 و 54/4 اهم نیز بدست آمـده اسـت.
جهت بهتر کردن دقت کار، پاسخ فرکانسی ساختار کامل شـامل ناپیوسـتگی و اثـر زیـر لایـه (Substrate)
بهینه شده با استفاده از یک مدار شبیه سازی شده اشکال (11-2) الی (14-2) پاسـخ فرکانـسی شـبیهسـازی
شده مدار نهایی از یک کوپلر دو بانده را نشان میدهند. مطابق با اثر یـک اسـتاب شـنت تلفـات داخلـی در
فرکانس مرکزی (1.45GHz) صفر گردیده که به حذف هر سیگنال مداخله کننده کمک میکند. کوپلر فوق
سابستریتی با ثابت اللکتریک εr = 3/38 و ضخامت h = 0/81mm میباشد. حال با اسـتفاده از نـرم افـزار
Serenade ابتـدا مقـادیر خطـوط یعنـی پهنـای خطـوط W1 ،W2،W3و طـول آنهـا L1،L2،L 3 را در
فرکــانس مرکــز 1/45 بدســت مــیآوریــم و بــا بــستن مــدار در ایــن فــرمافــزار مقــادیر پارامترهــای
S11،S12،S13وS14را برای باند فرکانسی دوبل شبیهسازی کردهایم.
۴۶
جدول(:(1-2مشخصات الکتریکی وفیزیکی مدار در دو باند امپدانس طول الکتریکی پهنای خط طول خط Z1=42.7 θ1=90 W1=2.38mm L1=31.25mm Z2=60.4 θ2=90 W2=1.36mm L2=31.95mm Z3=54.4 θ3=90 W3=1.63mm L3=31.73mm
شکل(:(11-2نتایج شبیه سازی(افت برگشتی(S11
۴٧

شکل(:(12-2نتایج شبیه سازی(S12و(S13

شکل(:(13-2نتایج شبیه سازی((S14
پارامترهای تشعشتی در این شبکه آنالایزر روی رنج فرکانسی از 0/1 الی 4 گیگاهرتز انجام میگردد.
۴٨

شکل(:(14-2نتایج شبیه سازی(پاسخ فازمدار با استاب)
شکلهای (11-2) الی (14-2) پاسخ اندازهگیری شده کوپلر در فرکانـسهای مرکـز دو تـا بانـد عملکـرد کـه
0/9GHz و 2GHz میباشد نشان میدهند..افت برگشتی و ایزولاسیون پورت بهتر از -20dB در فرکانسی
مرکزی دو باند بدست آمده است هر چنـد تـضعیف سـیگنال بـالا تـر از 50dB جـذب شـده در فرکـانس
1/41GHz نیز میباشد.
درمقایسه با طراحی یک کوپلر تک بانده، افت داخلی اندازهگیری شده دردو پـورت خروجـی تنهـا 0/4dB
بالاتر از مقدار واقعی آن((-3db میباشدو این بـاور وجـود دارد کـه ایـن اخـتلاف اساسـاً ناشـی از وجـود
ناپیوستگیهای اتصالات و اثر انتهای باز نشان داده شده در شبیه سازی میباشد.
طراحی و بکار بستن کوپلر خط شاخهای فشرده صفحهای بالا نیز درطراحی کـوپلری بـا دو بانـد فرکانـسی
کوچک و بزرگ بکار میرود.
۴٩
فصل سوم:
طراحی مدار میکرواستریپ فشردهT شکل با اندازه کاهش
یافته در دو باند فرکانسی
۵٠
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه بـه رونـد
ارائه شده در دو بانده کردن کوپلرπ شکل ( 900MHz و (2400MHz
در این بخش ابتدا با روش دستی و استفاده از ماتریسهای ABCD کوپلرخط شاخهای و معـادل قـرار دادن
آن با ماتریس ABCD یک خط ±90°، طول الکتریکی و امپدانس مشخصه کوپلر خط شـاخهای بـا تبـدیل
θ به ' θ θ) f 2  ' (θ بوده را در حالت دو بانده معادل ساخته و در نهایت بوسیله برنامه ساده کامپیوتر که f1 بر اساس اطلاعات موجود نوشته شده، خطای موجود را در بدست آوردن θ و امپدانس مشخصههـایی کـه
برای هـر دو فرکـانس دلخـواه بـالا و پـائین 0/9GHz)و(2/4GHzصـدق کنـد بـا کمتـرین درصـد خطـا
0/4)درصد) درنظر میگیریم و با شرایط در نظر گرفته شده مقادیر θ و Z را بدست میآرویم.
همانطور که در بخش قبل نیز گفتیم با معادل سازی مدل T شکل خطوط استاب شنت متـصل شـده از نـوع
مدار باز بوده و این استاب خود باعث کاهش طول خط می گردد.
3 Sinθ' 3 jZ 3 Cosθ' 0 1 Sinθ' jZ Cosθ' A B (1-3) j − 1 1 1 j 3 Cosθ' 3 Sinθ' 1 jβ'2 Cosθ' Sinθ'  Z3 1 1 Z1 C D در بخش قبل مقادیر β2 و Z1 و Z1 ، Z1 بـا مقـادیر معـادل آن آورده شـده انـد و در اینجـا θ f2 θ' Z Z Z f 3 2 T 1 میباشد.
با معدل قرار دادن ماتریس فوق با خط -90 درجه داریم:
− jZ 0 Sinθ' jZ Cosθ' B A (2-3) T − j  T j 0 Cosθ' Sinθ'  ZT ZT C D ۵١
وبا ساده سازی روابط فوق داریم:
(3-3) Cosθ'1Cosθ'3 −kTanθ'2 Sinθ'1 Cosθ'3 −NSinθ'1 Sinθ'3  0 (4-3) N Cosθ'1 Sinθ'3 −kTanθ'2 Sinθ'1 Sinθ'3 NSinθ'1 Cosθ'3  − M (5-3) K 1 Cosθ'1 Sinθ'3 Cosθ'1 Cosθ'3  0 Tanθ'2 Sinθ'1 Sinθ'3 − − N N (6-3) Sinθ'1 Cosθ'3 KTanθ'2 Cosθ'1 Cosθ'3 NCosθ'1 Sinθ'3  −M در روابط بالا f2  θ'3 f2  θ'2 f2  θ'1 f 3 θ f 2 θ f θ 1 1 1 1 مقادیرf1 =900MHz و f2 =2400MHz می باشند. با ساده سازی روابط (3-3) و (4-3) به معادلا ت زیر میرسیم. (7-3) Cosθ'3 '1  − Sinθ M (8-3) Sinθ'3 − M Cosθ'1  N (2-3 استفاده از برنامه کامپیوتری ساده جهت بدسـت آوردن پارامترهـای مـدار دو
بانده
حال نیز برنامه ای با نرم افزار مطلب نوشتهایم و میخواهیم طولهـای الکتریکـی و امپـدانس مشخـصههـای
کوپلر و درنهایت سیرکولاتور موردنظر را در شرایطی بدست آوریم که خطاهای زیر حـاکم باشـند یعنـی در
آن واحد شرایط برای فرکانسهای بالا و همچنین پائین (استفاده از دو باند فرکانسی) موجود باشد.
۵٢
(9-3) N f 2 θ1 )Tan( f 2 Tan( 0.4 θ3 ) − M 2 f1 f1 (10-3) 0.4 θ3 ) f2 Tan( 2 − N 2 M θ2 ) − f2 Tan( f1 kN f1 (11-3) 0.4 θ3 ) f 2 Sin( M θ1 )  f 2 Cos( f1 N f1 برنامه نوشته شده در نرم افزار مطلب در پیوست الف ارئه شده است.
طول الکتریکی و امپدانس مشخصههایی که در شرایط خطای بالا بر قرار باشند جوابها میباشند کـه شـرایط
برای استفاده درحالت دو باند فرکانسی را دارند. θ1و θ2 وθ3 وZ1وZ2وZ3 در شرایط فـوق را مطـابق بـا
برنامهای که آورده شده بدست میآیند.
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محـیط ( نـرم افـزار) مختلـف و
مشاهده نتایج حاصل
با قرار دادن مقادیر بدست آمده از برنامه نوشته شده که برای استفاده در دو باند فرکانـسی دلخـواه در نظـر
گرفته شده در روابط زیر و یا با استفاده از محیط serenade طولهای Lm1و)Wm1پهنا وطول خط شاخه
اصلی)Lm3و)Wm3پهنا وطول خط متصل به Zm1 در خط اصلی)Lm2و)Wm2پهنا وطول استاب مـدار
بــاز در خــط اصــلی)Lb1 و )Wb1پهنــا وطــول خــط متــصل بــهZm2در خــط عمــودی)وLb1
،Wb1،Lb2وWb2را بدست میآوریم.
۵٣
(12-3) 4 π εr −1 1 Z 0 2(εr 1) 1 (1/ εr )Ln π )  2 (εr 1)(Ln 2  119.9  H (13-3) −1 1 1 exp H W ( − ( 4 exp H 1 8 h (14-3) −2 4 Ln 1  π )(Ln 1 εr − 1 − 1 εr  ε eff  ) ) 1 π εr 2 1 εr  2H ' 2
با در دست داشتن مقادیر فوق مدار را در نرم افزارهـای Serenade و Advance designer (ADS)
sys-- ترسیم و نتایج شبیهسازی راعلاوه در ansoft مشاهده میکنیم منتهی در نهایت مقدار پهنـای بانـد
را حدوداً در Optimom 10% کرده و نتایج حاصل در زیر آورده شده اند.
h = 0/762mmεr =3/55 Tanδ  0. 022
در شکلهای((1-3و((2-3و((3-3 شماتیک ومدارچاپی و پاسخ مـدار شـبیه سـازی شـده در نـرم افزارهـای
مختلفی نشان داده شده است.

(a)
۵۴

(b)
شکل((a ) 🙁 1-3شماتیک (b)مدارچاپی (designer,hfss)ansoft
در جدول((1-3و(2-3 )با در دست داشتن مقادیر ابتدایی از المانهای مدار که توسط روابـط((12-3 الـی(-3
(14بدست آمده اند بازهای جهت حد بالا وپایین المان ها در نظر گرفته شده است و به سمت اهدافی که در
جدول((2-3 امده optimom انجام می گردد
.جدول(:(1-3دو بازه فرکانسی ودو هدف مورد نظر پروژه 905mhz 895mhz Frange1 باند فرکانس اول
2.45ghz 2.35ghz Frange2 باند فرکانس دوم
-20db lt ms12=-3.5db w=3 ms13=-3.5db w=3 ms14 -20db lt ms11 Goals1 هدف اول
-20db lt ms12=-3.7db w=3 ms13=-3.7db w=3 ms14 -20db lt ms11 Goals2 هدف اول
۵۵
جدول(:(2-3بازه بالا وپایین جهت optimom هدف بازه بالا مقدار اپتیمم شده بازه پایین نام المان
7MM? 5.69180mm ?5mm lb1
12.5MM? 11.35000mm ?10mm lb2
41MM? 39.57900mm ?37mm lb3
11.5MM? 10.77600mm ?9.5mm lm1
16.5MM? 15.36700mm ?14.5mm lm2
40MM? 38.67200mm ?37mm lm3
0.8MM? 0.16152mm ?.08mm wb1
1.2MM? 0.95112mm ?0.6mm wb2
2.5mm? 1.45870mm ?0.8mm wb3
2.1MM? 1.65260mm ?1mm wm1
0.5MM? 0.20507mm ?0.1mm wm2
3.5MM? 2.70090mm ?2mm wm3
2.5MM? 0.20010MM ?0.1mm wp

(a)
۵۶

(b)

(c)
شکل(S 11 :(2-3، S12،S13و S14 مدار شبیه سازی شده در ADS(c) SERANADE(b) ANSOFT(a)
۵٧

شکل(:(3-3پاسخ فازی مدار 2بانده
مشاهده میگردد که مقدار پارامترهای تضعیف در 0/9 و 2/4 گیگاهرتز -3dBو -20dbمیباشند.
در بخش بعدی در مورد اثرات DGS و مشاهده تاثیرات آن بروی این کوپلر بحث میکنیم.
۵٨
فصل چهارم:
بررسی انواع مختلف DGS و اثرات آن بر روی خطوط
میکرواستریپ
۵٩
DGS (1-4 چیست؟
DGS نیز شبکهبندی قلم زده شده ای است با شکل اختیاری که بر روی صفحه زمین قـرار مـیگیـرد و در
شکلهای T ، H ،دمبلی و حلزونی و...بکار میروند.
در شکل (1-4) انواع مختلف DGS نشان داده شده است.

شکل(H(a) :(1-4 شکل T(b) شکل (c) هلزونی شکل (d) دمبلی شکل
(2-4مشخصات کلی DGS
در ساختار DGS مشخصه های زیر رامی توان عنوان کرد:
-1 تغییر اندازه شکاف باند نوری . (PBG)10
-2 دارا بودن ساختارهای پریودیک وغیر پریودیک.
-3 به سادگی نیز مدار معادل LC را میسازد.

10 Photonic band gap
۶٠
(3-4 کاربردهای DGS
-1 در تشدید کنندههای صفحهای
-2 بالا بردن امپدانس مشخصهخط انتقال
-3 استفاده در فیلتر ،کوپلر و سیرکولاتور، اسیلاتور، آنتن و تقویت کنندهها
(4-4 ویژگیهای DGS
-1 پوشش میدان روی صفحه زمین را مختل میکند.
-2 بالا بردن ضریب گذردهی موثر.
-3 بالابردن ظرفیت موثر و اندوکتانس خط انتقال
-4 از بین بردن هارمونیکهای اضافی با تک قطب کردن ویژگی ) LPF11 فرکانس قطع و تشدید)
(5-4اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ
DGS نیز بوسیله الگوی کـم کـردن قلـم زنـی، در صـفحه زمـین مـدار ایجـاد مـی گـردد.. در ابتـدا خـط
میکرواستریپی با الگوی DGS از نوع دمبلی شکل نشان داده شده است و تـأثیر شـکاف بانـد خـوبی را در
بعضی ار فرکانسهای معین نیز ایجاد می کند .[21]
DGS در طراحی مدارات امواج میلیمتری و مایکرویو خیلی زیاد بکار میرود . اخیراً DGSهای متوالی بـا
کاستن الگوهای مربعی از مدارات صفحهای کـه ویژگیهـای Slow wave و stop band بـسیار خـوبی را

11 Low pass filter


۶١
تولید میکنند مورد بررسی قرار گرفته که در تقویت کنندهها و اسیلاتورها بیشتر مورد استفاده قرار گرفتهانـد
.[23] [ ,22]
در مقایسه با DGS پریودیک قبلی [21] و [22] یک نـوع DGS پریودیـک بهتـر و قـویتـر نیـز پیـشنهاد
1
گردیده که ابعاد مربعات کاسته شده متناسب با توزیع دامنه تابع نمـایی ) e n کـه n عـدد صـحیح اسـت)

میباشد.
در شکل((2-4مدار دو پورتی بدون DGS نشان داده و پارامترهـایS حاصـل از آن بـا ansoft در شـکل
(3-4) آمده است.

شکل(:(2-4خط میکرواستریپ دو پورته باεr=10 وh=1.575

شکل(:(3-4پارامترهایSمدار شکل((2-4
۶٢
به منظور بررسی این اثرات توسط DGS پریودیک نیز یک عدد مدار DGS پریودیک متحدالـشکل و دو
تا مدار DGS پریودیک قوی شده نیز در اینجا طراحی و اندازهگیری شدهاند. اندازهها نـشان مـیدهنـد کـه
نمایشهای اخیر اجرای نقش دقیقی توسط متوقف شدن رپیل و بزرگ کردن پهنـای بانـد را ایفـا مـیکنـد.در
شکل((4-4 دو پورتی با DGS دمبلی شکل نشان داده شده و نتیجه شبیه سازی شده این خـط بـا ansoft
در شکل((5-4رسم گردیده است.

شکل(:(4-4مدا با DGS دمبلی شکل

شکل(:(5-4پارامترهایS مدار باDGS دمبلی شکل
در بالا می بینیم فرکانس قطع ومقدار تضعیف کاهش می یابند.
( 1 – 5 – 4 الگویDGSدمبلی شکل و ویژگی شکاف باند
۶٣
نمای شماتیک مدار دمبل شکی DGS در شکل (4-4) نشان داده شده است .خـط میکرواسـتریپ رو قـرار
گرفته و DGS نیز در زیر صفحه فلزی زمین قلم زده شده است. طرح DGS توسط خطوط دش مـشخص
شدهاند. پهنای خط نیز برای امپدانس مشخصه 50 اهم تعیین گردیده است. ضـخامت سابـستریت زیـر لایـه
1/575 میلیمتر و ثابت دی الکتریک εr = 10 میباشد. در [20] آمده که شـکاف قلـم زده شـده و کاسـتن
مربعی قلم زده شده با ظرفیت موثر خط و اندوکتانس خط نیز متناسب میباشد و وقتی ناحیه قلـم زده شـده
کاسته شده مربع شکل کاهش می یابد و فاصله شکاف نیز 0/6 میلیمتر نـشان داده شـده اسـت، انـدوکتانس
موثر کاهش یافته و این کاهش اندوکتانس نیز فرکانس قطع (fc) را بالا میبرد که این قضیه در شکل (7-4)
نشان داده شده است. در اینجا ما نیز این کار را با Ansoft انجام دادهایم.
( 2 – 5 – 4 ایجاد DGS دمبلی پریودیک قویتر
نمایش شماتیک DGS پریودیک با الگوهای مربعـی واحـد بـرای مـدارات صـفحهای [21] نـوع 1 نامیـده
میشود که در شکل (6-4)(a) آمده است.مدار ما در اینجا نیز خـط میکرواسـتریپ 50 اهمـی و نیـز5 عـدد
الگوهای مربع متحدالشکل با دوره یکسان d = 5mm میباشند.پهنای طرفین مربعها و فاصله شکاف هـوایی
ما بین آنها 4/5 (g) میلیمتر و 0/6 میلیمتر میباشند.
براساس نوع 1 ، متحدالشکل بودن توزیع پنج عدد الگوی مربعی توسط یک شکل غیر واحد توزیع میگردد.
حوزه المانهای مربعی نیز متناسب با توزیع دامنه تابع نمایی e1/ n میباشد.در اینجا دامنه سـوم از پـنج المـان
مربعی شکل نیز 4/5mm میباشد.پس نوع دوم بوده و دامنه المـان توزیـع شـده بـر اسـاس زیـر مـشخص
میگردند.
2/3mm2/7mm4/5mm(1-4)
۶۴

شکل (a) :(6-4) نوع1 ، (b) نوع2، (c) نوع3
استفاده از توزیع ارتفاع غیر واحد DGSهای پریودیک، نوع دوم را تشکیل می دهند که در شکل (6-4)(b)
نشان داده شده است. براساس نوع دوم، دیگر مدار DGS پریودیک قوی شـده، یـک خـط میکرواسـتریپ
جبرانی را دارد که نوع سوم نامیده میشود. در شکل (6-4)(c) آمده است.خط میکرواستریپ جبرانی شـامل
۶۵
یک خط 50 اهمی و یک خط عریض میباشد. همچنین بزرگی المانهای DGS توسط رابطه سوم مشخص
گردیده است. المانهای الگوی مربعی غیر هم شکل نیز دارای دوره مساوی d=5mm بوده و فاصـله هـوایی
ثابت d = 0/6mm دارند که در شکل (6-4) نوع دوم و سوم خطوط میکرواستریپ رو قـرار دارد و DGS
ها نیز در صفحه زمین فلزی کنده شده و توسط خطوط دش مشخص شدهاند.
(3-5-4اندازهگیریهای مربوط به DGS دمبلی شکل
سه نوع مدار DGS پریودیک که ذکر شدند مورد بررسی و اندازهگیری قرار گرفتهاند، نتایج اندازهگیری نیـز
در شکل (8-4)((a)-(c)) نشان داده شده هستند . این نتایج به طور خلاصه در جدول (1-4) آمده است.
جدول(:(1-4مقایسه DGS های واحد وپریودیک وتوزیع نمایی

شکل(:(7-4پارامترهایS برای DGS دمبلی شکل
۶۶

(a)

(b)

(c)
شکل(:(8-4 مقایسه پارامترهای S مدارهای (a) DGSنوع(b) 1نوع(c) 2 نوع3
۶٧
سابستریت این مدارات دارای h = 1/575 و εr = 10 هستند. این اندازه گیـریهـا توسـط Ansoft انجـام
شده و نشان داده شدهاند.
همان طوری که در جدول آمده، 20dB ایزولاسیون پهنای باند برای انواع 1و 2و 3 نیز در فرکانسهای 3/05
و 4/18 و 4/26 گیگاهرتز میّاشند.
مدارهای DGS پریودیک پیشنهاد شده نوع 2و 3 پهنـای بانـد ایزولاسـیون 20dB را بهتـر 37% و (39/7%
میکند.در ناحیه پائین گذر، اولین افت برگـشتی و پیـک افـت برگـشتی بـرای نـوع 3، مقـادیر -46/7dB و
-30/9dB بوده و در صورتیکه این مقادیر در نوع 1 نیز -10/8dB و -4/9dB هستند.اولین افت برگشتی و
ماکزیمم افت برگشتی نیز در 4 بار (لحظه) بهتر شده و بنابراین ر پیلها به صورت موثری از بـین رفتـهانـد و
پهنای باند موثر برای نوع سوم افزایش و فرکانس قطع 3dB به صورت مختصر و کم تغییر پیدا میکند.
(6 – 4بررسی اثرات DGS های هلزونی بر روی هارمونیکهای تقسیم کننده توان
در اینجا نشان خواهیم داد تکنیکهای موثری از حذف هارمونیک دوم و سوم برای یـک تقـسیم کننـده تـوان
ویل کینسون (WILLKINSON)با استفاده از DGS هلزونی شکل را، که ما در مدار کـوپلر از ایـن نـوع
DGS استفاده کردهایم.
شکاف باند الکترومغناطیسی و برهم زدن ساختار زمین اخیـراً نیـز کـار بردهـای متفـاوتی را در مـایکرویوو
فرکانس موج میلیمتری با شکلهای مختلف دارند [22] و [24] و DGS خط میکرواستریپ نیـز بـا بـر هـم
زدن مصنوعی صفحهای زمین در ویژگی رزونانس مشخـصه انتقـال تغیراتـی ایجـاد مـیکنـد. در یـک خـط
میکرواستریپ مطابق با اندازه DGS یا بر هم زدگی که روی صفحه زمین ایجاد میگردد، حذف باند بیـشتر
۶٨
در فرکانس رزونانس صورت میگیرد. همچنین DGS باعث بوجود آمدن اندوکتانس موثر اضـافی در خـط
انتقال میگردد. افزایش اندوکتانس موثر از ایجاد DGS باعث افزایش طول الکتریکی خط انتقال نـسبت بـه
یک خط متداول میگردد که خود نیز باعث کاهش اندازه مدارات موج میلی متر و مایکرویو میگـردد. [21]
، در طراحی فیلترها ،تقسیم کنندههای توان و تقویت کنندهها، ویژگی حذف باند و اثر موج آهـسته (Slow
wave) توسط DGS نیز بسیار مورد نظر می باشد [22]و [23]
هارمونیک های ناخواسته تولید شده با ویژگی غیر خطی مدارات اکتیو نیاز به حذف کردن دارند. در مدارات
مایکرویو و فرکانس بالا ویژگی حذف باند توسط DGS میتوانـد در متوقـف کـردن هارمونیکهـای مـورد
استفاده قرار گیرد [22] و .[23] با یـک DGS هلزونـی شـکل متقـارن، (یـک تـک ( DGS حـذف تـک
هارمونیک را خواهیم داشت، وDGS پریودیک در جهت حـذف هارمونیـک دوم و سـوم بکـار مـی رونـد.
DGS های آبشاری و پشت سرهم باعث افزایش افت داخلـی شـده و بهمـین دلیـل در مـدارات بـا انـدازه
کوچک نیز استفاده از ان محدود گردیده است. در اینجا ساختار DGS هلزونی شکل غیر متقارن نیز جهـت
حذف هارمونیکهای دوم و سوم بطور همزمان پیشنهاد گردیدهاند. به طور مـوثر یـک تـک DGS هلزونـی
غیرمتقارن باعث از بین بردن باند فرکانس دوم میگردد و نیاز به ناحیه کوچکی هم جهت نقش بـستن دارد.
تقسیم کننده توان ویل کینسن با بکار بستن یک DGS هلزونی غیـر متقـارن در خطـوط λ4 باعـث حـذف

هارمونیک دوم شده و اندازه آن نیز با اثر موج آهسته کاهش مییابد. مشاهده میگردد به دلیل ذکـر شـده در
این پروژه ما از این گونه DGS استفاده ننمودهایم. تقسیم کننده Willkinson پیشنهاد شده به خـوبی یـک
تقیسم کننده توان مرسوم، در فرکانس کار خواهد بود.
۶٩
(7-4مدل مداری و هندسه DGS هلزونی نا متقارن
در شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ که ابعـاد کنـده شـده هلزونـی
شکل در سمت راست و چپ متفاوت از یکدیگر هستند آمده است. برای هندسه این DGS نامتقارن مطابق
با کنده شدهگی سمت چپ و کندهشدگی سمت راست دوتا فرکانس عملکرد متفاوت وجود دارد. مشخـصه
انتقال خط میکرواستریپ با هندسه DGS نامتقارن ویژگی حذف باند در فرکانس تشدید را دارد.

شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ
فرکانس تشدید ممکن است با تغییر کردن ابعاد DGS عوض گردد. مقایسه مشخصه انتقال DGS هلزونـی
با ابعاد مختلف متقارن و غیرمتقارن در شکل (10-4) آمدهاست. امپدانس مشخصه خط 50 اهـم مـیباشـد.
برای هندسه هلزونی متقارون ( A=A'= 3mm و (B=B' = 3mm تنها یـک فرکـانس تـشدید (
(f=2/93GHz وجود دارد در صورتی که در یک DGS غیر متقارن فرکانس تشدید به دو فرکانس مختلـف
تبدیل میگردد. برای یک DGS نامتقارن با A = A' = 3/5mm و B = B' = 2/6mm همان طوری که در
شکل (10-4) مشاهده میگردد دو فرکانس تشدید مختلف دیده میشـودf=2/56GHz وf=4/22GHz کـه
این نتایج نشان میدهند DGS هلزونی نا متقارن با اندازههای متفاوت روی صفحه زمین در دو طرف خـط،
٧٠
فرکانسهای رزونانس مختلف را میتوانند ایجاد کنند.در هندسه نا متقارن DGS نیز میخواهیم بدانیم که بـه
چه صورتی فرکانس تشدید مطابق با بر هم زدگی چپ و راست خط با تغییـر انـدازه بـر هـم زدگـی رفتـار
میکند.

شکل(:(10-4پارامترهای انتقال خط با DGS متقارن( ( A = A' = B' = 3mm ونامتقارن A = 3/4m) و (B = 2/6 mm

شکل(:( 11-4 فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از B/A
٧١
فرکانس تشدید ناشی از بر هم زدگی سمت چپ خط و سمت راست خط در شکل (11-4) بعنوان تابعی از
اندازه بر هم زدگی سمت راست وقتی که اندازه سمت چپ ثابت باشد (A = A' = 2mm) رسم گردیـده
است. اندازه این آشفتگی هلزونی به صورت یک مربع در نظر گرفته شده (B = B' , A = A') .وقتـی کـه
اندازه برهم زدگی سمت راست از مقدار سـمت چـپ کـوچکتر اسـت (B/A<1)، فرکـانس رزونـانس در
سمت راست نیز بزرگتر از مقدار سمت چپ خواهد بود. هنگامیکه مقدار A با B برابر گردد دو تا فرکـانس
رزونانس ازهم پاشیده شده و به یک فرکانس تبدیل میگردد DGS) متقارن). باز وقتی کـه بـر هـم زدگـی
سمت راست افزایش پیدا کند B/A) زیاد شود)، فرکانس تشدید ناشی از بر هم زدگـی سـمت راسـت نیـز
کاهش مییابد. از این رو اندازه سمت چپ ثابت شده و مشاهده میگردد که فرکانس رزونانس ناشـی از بـر
هم زدگی سمت چپ تغییرات آهستهای خواهد داشت تا وقتی که B/A مقدار واحد شود.
مشخصه فرکانسی یک DGS متقارن با مدار رزوناتور RLC موازی میتواند مدل گردد. پارامترهای مـداری
معادل نیز از مشخصه انتقال شبیهسازی شده میتواند گرفته شود.
DGS نا متقارن نیز میتواند با دو تا رزوناتور RLC موازی که به صورت سدی متصل شدهاند مدل گـردد.
شکل((12-4، به همین جهـت مشخـصه انتقـال آن دو تـا فرکـانس تـشدید متفـاوت دارد. در مـدار معـادل
پارامترهای مدار اولین رزوناتور از مشخصه فرکانسی رزونانس بر هم زدگی سمت چپ گرفتـه مـیشـود در
حالیکه رزوناتور دوم بوسیله مشخصه رزونانس بر هم زدگی سمت راست مشخص می گردد. از نتـایج شـبیه
سازی پارامترهای اسکترینگ، پارامترهای مدار رزوناتور برای بر هم زدگی سمت چپ و راست بـه صـورت
زیر مشخص میگردند.
(۴-٢) C L,R W CL,R  ( 2 −W 2 (W 0 2Z C L,R 0 L,R ٧٢
(۴-٣) 1 LL,R  4π2 f02 L,R CL,R (۴-۴) 2zo RL,R  1 1 ))2 −1 − (2Z0 (W0 L,R CL,R − W0 L,R LL,R S11 (W0 L,R )2
شکل( 🙁 12-4 مدار معادل بخش DGS هلزونی نامتقارن
در اینجا اندیس R, L نیز پارامترهای برهم زدگی سمت چپ و راست را بیان می کنند. W0 فرکانس تشدید
و WC فرکانس قطع -3db را مشخص میکنند. Z0 امپدانس مشخصه خط انتقال می باشد.
(8-4حذف هارمونیکها در مدار مقسم توان
مقسم توان کاربردهای گوناگونی از قبیل توزیع توان سیگنال ورودی از آنتن و تقویت کنندههای توان بـالای
مایکرویو دارد. با قرار دادن فیلتر حذف هارمونیک در داخل مقسم توان ناحیه خروجـی فیلتـر کـاهش پیـدا
میکند .[23] جهت حذف هارمونیک نیز میتوان از استاب مدار باز در مرکز شاخههای بـا طـول λ4 مقـسم

توان استفاده نمود.
اگر DGS را بعنوان فیلتر هارمونیک اضافی استفاده کنیم میتوانیم با در نظر گرفتن کاهش سایز مقسم تـوان
که منجر به اثر (Slow – wave) میگردد نیز هارمونیک را حـذف نمـود. از ایـن رو یـک DGS متقـارن
٧٣
میتواند تنها یک سیگنال هارمونیک را حذف کند. ما نیاز به قرار دادن دو تا DGS به صـورت آبـشاری در
λ
هر شاخه ( ( 4 داریم تا هارمونیک دوم و سوم را حذف کنیم. هر چند ناحیه مقسم توان جهت گذشتن دو تا

DGS به صورت پریودیک در هر شاخه مقسم توان نیز محدود میگردد. DGS غیر متقارن هم، سـاختاری
موثر در جهت حذف هارمونیک دوم و سوم به صورت همزمان می باشد. [22]
شکل (13-4) (a) هندسه یک DGS هنرونی نامتقارن جهت حذف هارمونیـکهـای سـوم و دوم را نـشان
میدهد. در اینجا فرکانس عملکرد مقسم توان نیز 1/5 گیگاهرتز میباشد.

شکل(DGS (a): (13-4 هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این DGS
ناحیه بر هم زده شـده سـمت چـپ و راسـت رزونـانس هارمونیـک دوم و سـوم طراحـی شـدهانـد. 3) و
4.5گیگاهرتز). ابعاد طراحی شده این سـاختار D=2/4mm و A = 3 mm D' = S = G = 0/2mm و
A' = 3/2 mm، B = 2/4 mm و B' = 2/6 mm و امپدانس مشخصه خـط نیـز 70/7 Ω مـیباشـد.
٧۴
شکل (13-4) (b) مدار معادل DGS نامتقارن در شکل (13-4) (a) را نشان مـیدهـد. پارامترهـای مـدار
بوسیله پارامترهای اسکترینگ سیموله شده بوسیله روابط (2-4) تا (4-4) محاسبه میگردند.
شکل (14-4) نیز پارامترهای S محاسبه شده بوسیله شبیه سازی (EM) بـرای DGS نامتقـارن شـکل (a)
.(13-4) و محاسبه شده مدار معادل شکل (13-4)(b) را نشان میدهند. در هر دو تا شـبیه سـازی مـشاهده
میگردد که بوسیله DGS نامتقارن واحد، هارمونیکهای دوم و سـوم در فرکانـسهای 4. 5 , 3 گیگـا هرتـز
حذف میگردند.

شکل( ( 14- 4 پارامترهای S مدار با DGS هلزونی به صورت EM و شبیه سازی شماتیک
مشاهده میگردد که S12 موافق رنج فرکانسی پهن و S11 نیز در جهت حذف هارمونیک مقسم تـوان اصـلی
بکار میرود. یک مقسم توان معمولی در شکل (15-4)(a) مشاهده میگردد و نیز مقسم توان پیـشنهاد شـده
با DGS غیر متقارن در شکل (15-4)(b) آمده است. در اثر موج آهـسته (slow – wave) بـودن DGS
نیز اندازه مقسم توان پیشنهادی کاهش یافته است. اندازه L' = 17/3 mm در مقایسه L = 19mm حـدود
9/1 % کاهش یافته است.
٧۵
پارامترهای S شبیه سازی شده مقسم توان معمولی و پیشنهادی در شکل (16-4) آمده است.

شکل( ( 15- 4 هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن
در (16-4) (b)، فرو نشاندن حدود18 dB برای هارمونیک دوم و سـوم بـا وارد کـردن DGS نامتقـارن در
خط انتقال ( ( λ4 مقسم توان مشاهده میگردد. افـت برگـشتی بـرای فرکـانس 1/5 GHZ در هـر دو مـشابه

یکدیگر می باشند، حتی با وارد کردن DGS نامتقارن در مدار.
شکل (17-4) نیز قسمت رو و زیر از یک مقسم توان ویل کینسن با وارد DGS هلزونی نامتقـارن را نـشان
میدهد. در شکل (a) (18-4)، S11 اندازهگیری شـده را نـشان مـیدهـد. افـت برگـشتی در فرکـانس 1/5
گیگاهرتز – 40dB بوده. S21 نیـز در شـکل (18-4)(b) بعنـوان تـابعی از فرکـانس آمـده اسـت. توقیـف
هارمونیک دوم (3 GHZ) نیز 18dB و هارمونیک سوم در فرکانس (4/5 GH) نیز 15dB میباشد.
٧۶

شکل ( ( 16- 4 نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با DGS

شکل( ( 17-4 مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار
٧٧

شکل( ( 18- 4 نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(S12(b)S11(a
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی
ابتدا مدار شکل (3-2) را با اسـتفاده از DGS هلزونـی شـکل نیـز آنـالیز و نتـایج آن را در شـکل((19-4
مشاهده میکنیم
٧٨

شکل(:(19-4مدار بااستفاده از (a) DGSیک بعدی((bدو بعدی
در شکل (a)(20-4)و((b نتایج شبیه سازی حاصل از مدار قلم زده شده DGS و بدون استفاده از آن را
نشان میدهند.
٧٩

شکل((a):(20-4نتیجه شبیه سازی کوپلر با استفاده ار (b) DGSبدون استفاده از ((a)(3-2)) DGS
با مشاهده نتایج بالا به پایین آمدن فرکانس قطع و slow wave شدن پاسخ نیز پی می بریم.
(10-4مشاهده اثرات DGS روی مدار طراحی شده در این پروژه
در شکل (21-4) نوع DGS استفاده شده در این کوپلر آورده شده است.ونتیجـه ansoft در شـکل((22-4
مشاهده میگردد.
٨٠

شکل(:(21-4کوپلر باH DGS شکل در شاخه خطوط

شکل(:(22-4پارامتهای Sحاصل از به کار بستن DGS
٨١
فصل پنجم
چگونگی استفاده از کوپلر بدست آمده در طراحی سیرکولاتور
٨٢
(1-5 طراحی سیرکولاتور
یک سیرکولاتور 4 پورته فشرده نیز می تواند به وسیله یک کوپلر خط شاخه ای و شیفت دهنده فاز( پیوست
پ) نیز ساخته شود.این شیفت دهنده فازی همراه با ورودی و خروجی خط همواره مچینگ امپدانسی داشته
و دارای تضعیف صفر می باشد.در اینجا ما از زیراتور به عنوان شیفت دهنده فازی استفاده کرده ایمر .[26]
یکی از ترکیبات نا متقابل استاندارد ژیراتورها هستند که دارای 2 پورت بوده وشیفت فاز تفاضلی 180 درجه
ایجاد می کنند.نماد شماتیک برای یک ژیراتور در شکل (1-5)آمده است و ماتریس اسکترینگ برای یک
ژیراتور واقعی در زیر آمده است.
(1-5)

π
شکل(:(1-5نماد ژیراتور
که این ماتریس نشانه عدم افت ،مچ شده ونا متقابل بودن آن است.

s−0 11 0
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر

۴ ١
٢ π ٣
شکل(:(2-5سیرکولاتور 4پورته متشکل از دو مدار هایبریدی و ژیراتور
٨٣
استفاده ژیراتور به عنوان بنا ساخت در ترکیب با مقسم دو طرفه و کوپلرها میتواند منجر به ایجاد مدارات
مفید همچون سیرکولاتور گردد .در شکل (2-5) مدار معادل سیرکولاتور 4 پورته متشکل از دو مدار
هایبریدی و درشکل (4-5) سیرکولاتور ساخته شده با استفاده از یک ژیراتور ودو کوپلر را نشان میدهد.

شکل(-5٣):سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور
مدار پیشنهادی با ایجاد شیفت فاز 180 درجه باعث عبور از پورت 1به2،2 به3،3به4و4به1 می گردد. در
شکل (4-5) نتایج شبیه سازی مدار طراحی شده آمده است.

(a)
٨۴