Neda Bathaei

7-1 تفاوت بین UWB و طیف گسترده ................................ ....................................................................... 15
1-7-1 رشتهی پیوستهی طیف گسترده ................................................................................ (DSSS) 15
2-7-1 جهش فرکانسی طیف گسترده .................... ................................................................(FHSS) 15
3-7-1 تفاوتهای اساسی بین UWB و طیف گسترده ......................................................................... 15
8-1 روشهای پیاده سازی سیستم فراپهن باند ................................ ............................................................ 16
1-8-1 سیستم ............................................(Code Division Multiple Access) CDMA 16
2-8-1 سیستم .......... (Orthogonal Frequency Division Multiplexing) OFDM 18
.2 فصل دوم: مخلوطکنندههای فرکانسی ..........................................................MIXER 19
1-2 تاریخچه ................................................................ ...................................................................................... 20
2-2 انواع میکسر ................................................................ ................................................................................ 21

و
1-2-2 میکسرهای غیر فعال ................................................................................................ 22 .........................
2-2-2 میکسر گیلبرت ................................................................................................................................... 24
3-2 کاربرد میکسر ............................................................................................................................................. 28
4-2 عملکرد میکسر ........................................................................................................................................... 29
1-4-2 میکسر به عنوان یک ضرب کننده .................................................................................................. 29
2-4-2 عملکرد میکسر به کمک یک سوئیچ .............................................................................................. 30
.3 فصل سوم: بررسی میکسرهای توزیع شدهی فراپهن باند ............................................................ 32
1-3 مقدمه .......................................................................................................................................................... 33
2-3 مدارات توزیع شده ..................................................................................................................................... 34
3-3 بررسی عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی ............................... 35
4-3 میکسر سلول گیلبرت توزیع شده ........................................................................................................... 39
1-4-3 بهرهی تبدیل ...................................................................................................................................... 40
2-4-3 تکنیک تزریق جریان ......................................................................................................................... 40
3-4-3 تکنیک پیکینگ سلفی ...................................................................................................................... 42
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده ............................................................................... 44
1-5-3 ساختار میکسر .....................................................................................................................[18] 1 44
2-5-3 ساختار میکسر .....................................................................................................................[12] 2 45
3-5-3 ساختار میکسر .....................................................................................................................[19] 3 45
4-5-3 ساختار میکسر .....................................................................................................................[20] 4 46
5-5-3 ساختار میکسر .....................................................................................................................[21] 5 47
6-5-3 ساختار میکسر .....................................................................................................................[22] 6 48
7-5-3 ساختار میکسر .....................................................................................................................[23] 7 49
8-5-3 مقایسه ساختار های متفاوت میکسرهای فراپهن باند ................................................................ 51
.4 فصل چهارم: تحلیل اعوجاج و نویز در میکسر فراپهن باند .......................................................... 52
1-4 مقدمه .......................................................................................................................................................... 53
2-4 میکسر یک عنصر غیر خطی .................................................................................................................... 53
3-4 مدل غیر خطی گیرنده ............................................................................................................................. 54
4-4 اثرات اعوجاج در سیستمهای فراپهن باند ............................................................................................. 54
1-4-4 تولید هارمونیک .................................................................................................................................. 55
2-4-4 فشردگی بهره ...................................................................................................................................... 55
3-4-4 اینترمدولاسیون .................................................................................................................................. 56
4-4-4 اینترمدولاسیون مرتبهی دوم .......................................................................................................... 56
ز
5-4-4 اینترمدولاسیون مرتبهی سوم ......................................................................................................... 57
6-4-4 اعوجاج در سیستمهای متوالی ........................................................................................................ 59
7-4-4 مشخصات خطی گیرنده ................................................................................................................... 59
5-4 بررسی نویز میکسر به عنوان یک عنصر غیر خطی .............................................................................. 60
1-5-4 پردازش نویز متغیر با زمان .............................................................................................................. 60
2-5-4 نویز طبقهی راهانداز (طبقهی ................................................................................................(RF 61
3-5-4 نویز طبقهی سوئیچ (طبقهی ................................................................................................(LO 62
4-5-4 نویز طبقهی ..................................................................................................................................IF 63
.5 فصل پنجم: مدار پیشنهادی، طراحی مخلوط کنندهی فرکانسی فراپهن باند توزیع شده .......... 64
1-5 مقدمه .......................................................................................................................................................... 65
2-5 مدل المانهای مورد استفاده ................................................................................................................... 65
3-5 تحلیلگرهای استفاده شده در نرمافزار .....................................................................................ADS 67
1-3-5 تحلیلگر ..............................................................................HARMONIC BALANCE 68
2-3-5 تحلیلگر ............................................................................................................................... LSSP 68
4-5 طراحی میکسر توزیع شده با سلولهای میکسر تک بالانس .............................................................. 69
1-4-5 طراحی میکسر .................................................................................................................................... 69
2-4-5 بایاس مدار ........................................................................................................................................... 70
3-4-5 پارامترهای قابل تغییر و طراحی ..................................................................................................... 71
4-4-5 تحلیل و شبیهسازی .......................................................................................................................... 72
5-5 طراحی میکسر توزیع شده با سلولهای میکسر سلول گیلبرت ......................................................... 74
1-5-5 طراحی میکسر .................................................................................................................................... 74
2-5-5 بایاس مدار ........................................................................................................................................... 75
3-5-5 تحلیل و شبیهسازی .......................................................................................................................... 76
6-5 طراحی میکسر توزیع شده با سلولهای میکسر گیلبرت و با استفاده از تکنیک پیکینگ سلفی.. 78
1-6-5 تکنیک پیکینگ سلفی ...................................................................................................................... 78
2-6-5 بایاس مدار ........................................................................................................................................... 80
3-6-5 طراحی میکسر توزیع شدهی نهایی ................................................................................................ 80
4-6-5 مقادیر المانهای مدار میکسر پس از طراحی .............................................................................. 84
5-6-5 تحلیل و شبیه سازی ......................................................................................................................... 86
7-5 نتیجهگیری و مقایسه ............................................................................................................................... 90
.6 فصل ششم: نتیجهگیری و پیشنهادات ........................................................................................... 92
1-6 نتیجهگیری ................................................................................................................................................. 93
ح
2-6 پیشنهادات .................................................................................................................................................. 94
.7 فصل هفتم: منابع و ماخذ ................................................................................................................ 95
منابع لاتین ..................................................................................................................................................................... 96
چکیده انگلیسی: ................................................................................................................................................................ 98
ط
فهرست جدول ها:
عنوانشماره صفحه

جدول 1- 1 قابلیت UWB در مقایسه با سایر استانداردهای 14..[2] IEEE
جدول 1- 3 مقایسهی ساختارهای مختلف میکسرهای فراپهن باند51
جدول 1- 5 مقادیر سلفهای مدار نهایی85
جدول 2- 5 عرض ترانزیستورهای مدار نهایی85
جدول 3- 5 مقادیر پارامترهای DC ترانزیستورهای میکسر توزیع شده نهایی85
جدول 4-5 مقدار نشت پورت های مختلف میکسر پیشنهادی در یکدیگر بعد از مدل سازی اثر عدم تطبیـق ابعـاد
ترانزیستورها، روی ولتاژ آستانه88
جدول 5- 5 مقایسهی سه ساختار به دست آمده طول طراحی90
جدول 6- 5 مشخصات مدار میکسر توزیع شدهی پیشنهادی90
جدول 7- 5 مقایسه میکسر طراحی شده در این پایان نامه با کارهای انجام شدهی قبلی91
ی
فهرست شکلها:
عنوانشماره صفحه

شکل 1-1 تاریخچهی تکنولوژی فراپهن باند6
شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس 7[3]
شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس8
شکل 4-1 یک پالس با Duty Cycle کم8
شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس9
شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی 10RF
شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنال های بانـد باریـک
(c) اثر پدیدهی چند مسیره بر سیگنالهای باند فرا پهن11
شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک13
شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند14
شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و (c) فراپهن باند در حوزههای زمان و فرکانس .. 16
شکل 11-1 روش دسترسی 16TDMA
شکل 12-1 عملیات کد کردن در 17[5] DS-CDMA
شکل 13-1 نحوهی استفاده از پهنای باند در سیستم 17DS-CDMA
شکل 14-1 گروه بندی طیف فرکانسی 18MB-OFDM
شکل 15-1 طیف فرکانسی 18[7] MB-OFDM
شکل 1-2 ساختار گیرنده سوپر هترودین20
شکل 2-2 میکسر به عنوان یک عنصر سه دهانه21
شکل 3-2 میکسر غیرفعال با تعادل دوگانه با 22..CMOS
شکل 4-2 میکسر گیلبرت ساده24
شکل 5-2 میکسر گیلبرت با تعادل دوگانه25
شکل 6-2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه26
شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان 27DC
شکل 8-2 میکسر به عنوان یک ضرب کننده 29[3]
شکل 9-2 میکسر با ساختار تکی31
شکل 10-2 میکسر با ساختار متوازن تکی31
شکل 1-3 بلوک دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی33[11]
شکل 2-3 مدل خطوط انتقال مصنوعی34
شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال35
شکل 4-3 میکسر گیلبرت 36CMOS
شکل 5-3 یک میکسر فعال CMOS با تعادل تکی36
ک
شکل 6-3 شکل موجهای p0(t) و 38p1 (t)
شکل 7-3 مدار معادل خط انتقال40
شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان41
شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل41
شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری43
شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شـبکهی پسـیو اضـافه شـده بـرای ایزولـه کـردن
خازنهای پارازیتی (c) پیاده سازی این شبکه با سلف43
شکل 12-3 مدار میکسر ساختار 441
شکل 13-3 مدار میکسر ساختار 452
شکل 14-3 مدار میکسر ساختار 463
شکل 15-3 مدار میکسر ساختار 474
شکل 16-3 مدار تطبیق UWB برای سیگنال ورودی 47RF
شکل 17-3 مدار میکسر ساختار 485
شکل 18-3 مدار میکسر ساختار 496
شکل 19-3 مدار میکسر ساختار 507
شکل 1-4 طیف فرکانسی MB-OFDM به همراه سیستمهای تداخلی داخل و خارج باند 53[7]
شکل (a) 2-4 مدار سوئیچ ساده (b) سیستم غیر خطی متغیر با زمان (c) سیستم خطی متغیر با زمان54
شکل 3-4 طیف خروجی سیستم غیرخطی با درجهی دو و سه54
شکل 4-4 نقطه تراکم 561dB
شکل 5-4 مولفههای اینترمدولاسیون در خروجی یک سیستم غیرخطی درجهی 562
شکل 6-4 نحوهی تداخل اینترمدولاسیون مرتبهی 2 با سیگنال مطلوب 57[7]
شکل 7-4 مولفههای اینترمدولاسیون در خروجی یک سیستم با خاصیت غیرخطی مرتبهی سوم58
شکل 8-4 تداخل اینترمدولاسیون مرتبهی 3 با سیگنال مطلوب 58[7]
شکل (a) 9-4 دامنهی نقطه تقاطع مرتبهی سوم ورودی (b) نقطه تقاطع مرتبـهی سـوم ورودی و خروجـی بـه
صورت لگاریتمی 59[5] (IIP3,OIP3)
شکل 10-4 میکسر فعال تک بالانس 61CMOS
شکل 11-4 شکل موج 62p1 (t)
شکل 1-5 بلوک دیاگرام مدار توزیع شده (a)خطوط انتقال واقعی (b) پیاده سازی با مدارات LC (خـط انتقـال
مصنوعی)65
شکل 2-5 مدل ترانزیستور 66TSMC
شکل 3-5 مدل مدار معادل برای یک ترانزیستور 66[26] RF nMOS
شکل 4-5 مدل سلف 67TSMC
شکل 5-5 نمای Layout سلف در تراشه67
شکل 6-5 مدار معادل یک سلف استاندارد 67[26]
ل
شکل 7-5 تحلیلگر HARMONIC BALANCE در نرم افزار 68ADS
شکل 8-5 تحلیلگر LSSP در نرم افزار 68ADS
شکل 9-5 ساختار میکسر توزیع شدهی تک بالانس69
شکل 10-5 شماتیک میکسر توزیع شدهی تک بالانس در نرم افزار 70ADS
شکل 11-5 مدار بایاس طبقهی 70RF
شکل 12-5 مدار بایاس گیت ترانزیستورهای طبقهی 71LO
شکل 13-5 مدار بایاس درین ترانزیستورهای طبقهی 71LO
شکل 14-5 روابط به کار رفته در نرمافزار ADS برای محاسبهی 72IIP3
شکل 15-5 نمودار عدد نویز میکسر طراحی شده با سلول تک بالانس72
شکل 16-5 نمودار IIP3 میکسر طراحی شده با سلول تک بالانس73
شکل 17-5 نمودار IIP2 میکسر طراحی شده با سلول تک بالانس73
شکل 18-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول تک بالانس73
شکل 19-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول تک بالانس74
شکل 20-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول تک بالانس74
شکل 21-5 ساختار میکسر توزیع شدهی گیلبرت75
شکل 22-5 شماتیک میکسر توزیع شدهی گیلبرت در نرم افزار 75ADS
شکل 23-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول گیلبرت76
شکل 24-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول گیلبرت77
شکل 25-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول گیلبرت77
شکل 26-5 نمودار عدد نویز میکسر طراحی شده با سلول گیلبرت77
شکل 27-5 نمودار IIP3 میکسر طراحی شده با سلول گیلبرت78
شکل 28-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی79
شکل 29-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی در نرم افزار 79ADS
شکل 30-5 مدار بایاس درین ترانزیستورهای طبقهی 80LO
شکل 31-5 نمودار جریان مصرفی میکسر بر حسب تغییرات عرض ترانزیستورها81
شکل 32-5 نمودار تطبیق ورودی میکسر بر حسب تغییرات عرض ترانزیستورها در فرکانس 8210 GHz
شکل 33-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات عرض ترانزیستورها82
شکل 34-5 نمودار IIP3 میکسر بر حسب تغییرات عرض ترانزیستورها83
شکل 35-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس83
شکل 36-5 بهرهی تبدیل میکسر بر حسب فرکانس و مقادیر مختلف سلفهای پیکینگ84
شکل 37-5 نمودار IIP3 میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس84
شکل 38-5 نمودارضرایب انعکاس ورودی و خروجی میکسر توزیع شدهی پیشنهادی86
شکل 39-5 نمودار بهره میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی86
شکل 40-5 نمودار نشت پورت LO در 87RF
م
شکل 41-5 نمودار نشت پورت LO در 87IF
شکل 42-5 نمودار نشت پورت RF در 87LO
شکل 43-5 نمودار نشت پورت RF در 88IF
شکل 44-5 عدد نویز میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی88
شکل 45-5 نقطه تقاطع مرتبه سوم ورودی (IIP3) میکسر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
پیکینگ سلفی89
شکل 46-5 نقطه تقاطع مرتبه دوم ورودی (IIP2) میکسـر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک
پیکینگ سلفی89
شکل 47-5 نمودار P1dB میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی90
ن
فهرست رابطهها:
عنوانشماره صفحه

رابطهی 81- 1
رابطهی 92- 1
رابطهی 103-1
رابطهی 114-1
رابطهی 125-1
رابطهی 221-2
رابطهی 232-2
رابطهی 233-2
رابطهی 234-2
رابطهی 235-2
رابطهی 256-2
رابطهی 267-2
رابطهی 268-2
رابطهی 279-2
رابطهی 2710-2
رابطهی 2811-2
رابطهی 2912-2
رابطهی 2913-2
رابطهی 2914-2
رابطهی 351-3
رابطهی 362-3
رابطهی 373-3
رابطهی 374-3
رابطهی 375-3
رابطهی 376-3
رابطهی 377-3
رابطهی 378-3
رابطهی 379-3
رابطهی 3710-3
رابطهی 3811-3
س
رابطهی 3812-3
رابطهی 3813-3
رابطهی 3814-3
رابطهی 3915-3
رابطهی 3916-3
رابطهی 4017-3
رابطهی 4018-3
رابطهی 4119-3
رابطهی 4120-3
رابطهی 4221-3
رابطهی 4222-3
رابطهی 4223-3
رابطهی 4224-3
رابطهی 4225-3
رابطهی 4226-3
رابطهی 4327-3
رابطهی 4428-3
رابطهی 541-4
رابطهی 552-4
رابطهی 563-4
رابطهی 564-4
رابطهی 575-4
رابطهی 576-4
رابطهی 577-4
رابطهی 588-4
رابطهی 599-4
رابطهی 5910-4
رابطهی 6011-4
رابطهی 6112-4
رابطهی 6113-4
رابطهی 6114-4
رابطهی 6115-4
رابطهی 6216-4
رابطهی 6217-4
ع
رابطهی 6218-4
رابطهی 6219-4
رابطهی 6220-4
رابطهی 6321-4
رابطهی 6322-4
رابطهی 6323-4
رابطهی 6324-4
رابطهی 6325-4
رابطهی 6326-4
رابطهی 691-5
رابطهی 812-5
رابطهی 853-5
رابطهی 854-5
رابطهی 865-5
ف
چکیده:
رشد سریع تکنولوژی و پیشرفت موفق تجاری مخابرات بی سیم روی زنـدگی روزمـره ی مـا تـاثیر قابل توجهی گذاشته است. امروزه بهکار بردن میکسرهای فرکانس بالا در سیستم های ارتباطاتی بیسـیم، دارای اهمیت خاصی میباشد. میکسرها یکی از اجزای اساسـی گیرنـده در مخـابرات بـیسـیم محسـوب میشوند. اجرای میکسرهای پایین آورنده1 در گیرنده ها به لحاظ وجود نویز و تضعیف در سیگنال دریافتی از اهمیت بیشتری برخوردار است.
هدف اصلی این پایان نامه، تحلیل و طراحـی میکسـر بـرای کـاربرد در بانـد فرکانسـی فـراپهن (UWB) و با استفاده از تکنولوژی CMOS می باشد. ابتدا عملکرد یک میکسر توزیع شده بررسی شده، سپس مدار میکسر پیشنهادی توزیع شده، ارایه می گردد. میکسر پیشنهادی دارای بهـره ی تبـدیل 3dB، IIP3 برابر 5/5dBm، عدد نویز 7dB، پهنـای بانـد 3 تـا 10 گیگـاهرتز و تـوان مصـرفی 52 میلـی وات میباشد. میکسر فراپهن باند توزیع شدهی پیشنهادی با استفاده از تکنولوژی CMOS 0/18μm با منبع تغذیه 1/8 ولت طراحی شده است.

1 down conversion
1
مقدمه:
رشد سریع تکنولوژی و گذار از مخابرات آنالوگ به دیجیتال، ترقی سیستم های رادیویی بـه نسـل سوم و چهارم و جانشینی سیستم های سیمی با Wi-Fi و Bluetooth مشـتریان را قـادر مـی سـازد بـه گستره ی عظیمی از اطلاعات از هرجا و هر زمان دسترسی داشته باشند. مخابرات UWB برای اولین بـار در دهــهی 1960 معرفــی شــد و در ســال 2002، FCC1 رنــج فرکانســی 3.1~10.6GHz را بــرای کاربردهای UWB معرفی و توان انتقال آنرا به -41.3dBm محدود کرد، بدین معنا کـه سیسـتمهـای
UWB روی فراهم کردن: توان کم، قیمت کم و عملکرد باند وسیع در مساحت کوتـاه تمرکـز کردنـد. در مقایسه با کاربردهای باند باریک طراحی المانها در سیستمهای UWB بسیار متفاوت و مشکل است.
یکی از بلوکهای مهم در گیرندههای UWB میکسرها هستند کـه بـرای تبـادل اطلاعـات بـین تعداد زیادی کانال مشابه UWB نقش کلیدی دارند. اهمیـت عملکـرد میکسـر بـه عنـوان یـک مبـدل فرکانس، در تامین فرکانسهای کاری مناسب با پایداری و نـویز مطلـوب اسـت. میکسـر مـیبایسـتی: (1
بهرهی تبدیل بالا، که اثرات نویز در طبقات بعدی را کاهش دهـد، (2 عـددنویز کوچـک، کـه LNA را از داشتن یک بهرهی بالا راحت کند و (3 خطی بودن بالا، که رنج دینامیک گیرنده را بهبود بخشد و سطوح اینترمدولاسیون2 را کاهش دهد. هر کارایی بایستی توسط مصالحه در طراحی میکسر بهدست آید. میکسر سلول گیلبرت با برخی تغییرات در ساختار آن نتایج قابل قبـولی بـرای کـاربرد در سیسـتمهـای UWB
بهدست میدهد.
دستیابی همزمان به بهره ی تبدیل و خطی بودن بـالا کـه افـزایش یکـی باعـث کـاهش دیگـری می گردد یکی از چالش های طراحی میکسر می باشد، در کارهایی کـه تـا کنـون انجـام شـده تمرکـز روی دستیابی یکی از این دو بوده به طوریکه یا میکسری غیر فعال با خطی بودن قابل قبـول و یـا میکسـری فعال با خطی بودن کم ارائه شده است. تطبیق امپدانس در کل رنج فرکانسی 7 گیگا هرتـزی و همچنـین عدد نویز پایین از دیگر پارامترهای مهم طراحی میکسر میباشد.
 اهداف پایان نامه
در این پایان نامه با بررسی میکسرهای فراپهن باند و مقایسهی آنها از نظر ساختار، بهرهی مدار، عدد نویز، تطبیق در ورودی و خروجی و خطی بودن، سـاختار مناسـب بـرای یـک میکسـر فـراپهن بانـد پیشنهاد شده و از لحاظ کارکرد در سیستمهای UWB بررسی گشته است.

Federal Communications Commission inter-modulation

1
2
2
بر خلاف کارهایی که تا کنون در این زمینه صورت گرفته که بر بهبود یکی از پارامترهای بهـره ی تبدیل یا خطی بودن میکسر تاکید شده، در اینجا سعی شـده اسـت تـا ضـمن دسـتیابی بـه هـر دو ایـن پارامترها در اندازههای قابل قبول برای گیرندهها، کل پهنای باند سیستمهای UWB پوشش داده شود.
بر این اساس در فصل اول سیستم های فراپهن باند بطور کامل معرفـی و بررسـی مـی گـردد، در فصل دوم به بررسی انواع میکسر، نحوهی عملکرد و کاربرد آنها پرداختـه شـده، در فصـل سـوم سـاختار میکسرهای توزیع شده، مشخصات و تکنیکهای بهبود کارایی آنها و در فصل چهارم اعوجـاج و نـویز در میکسر بررسی گردیدهاند. در فصل پنجم ساختار میکسر فراپهن باند طراحی شده بـه طـور مفصـل شـرح داده شده است. در فصل ششم نتیجهگیری و پیشنهادات و فصل هفتم نیز منابع و مأخذ مورد استفاده بـه تفکیک درج شدهاند.
3
.1 فصل اول: سیستمهای فراپهن باند (UWB)
4
1-1 تاریخچه تکنولوژی فراپهن باند UWB
در طول دهههای اخیر پیشرفت سریع ارتباطات باعث ایجاد تقاضا برای قطعات بهتـر و ارزانتـر و همچنین تکنولوژیهای پیشرفتهتر شده است. افزایش تقاضا برای انتقال سریع و افزایش نرخ اطلاعـات در عین مصرف کم توان تاثیرات شگرفی را بر تکنولوژی ارتباطات ایجاد کرده است. در هر دو بخش مخابرات بیسیم و سیمی این گرایش منجر به استفادهی هرچه بیشتر از مدولاسیونهایی با استفادهی بهینـهتـر از طیف فرکانسی و یا افزایش پهنای کانالها گشته است. این روشها به همـراه روشهـای مهندسـی بـرای کاهش توان، به منظور تولید تراشه های ارزان و با مصرف توان کم در صنعت استفاده میشود.
افزایش و گسترش استانداردها نه تنها باعث شده که سیستمها با طیفهای شلوغتری از لحاظ فرکانسی روبرو باشند بلکه باعث شده است تا سیستمها به سوی چند استاندارده بودن سوق داده شده و قابلیت انطباق با استانداردهای مختلف را داشته باشند. در حقیقت این پیشرفت تکنولوزی منجر به طراحی و تولید دستگاههایی شده است که قابلیت کارکرد در باندهای وسیعتری را داشته باشند، مانند تکنولوژی فرا پهن باند . (UWB)
تکنولوژی فراپهن باند (UWB) در دهه های اخیر بسیار مورد توجه قرار گرفتـه اسـت. مـیتـوان گفت که شروع استفاده از دانش UWB مربوط به انتهای قرن نوزدهم می باشد. اولین سیستم بی سیم که توسط گاگلیرمو مارکونی1 در سال 1987 نمایش داده شد، خصوصیات رادیوی فـراپهن بانـد را دارد. رادیـو ساخته شده توسط مارکونی از پهنای باند وسیعی برای انتقال اطلاعات بهره می گرفت. اولین فرستنده های جرقه ای مارکونی فضای زیادی از طیف (از فرکانس هـای بسـیار پـایین تـا فرکـانس هـای بـالا) را اشـغال می کردند. همچنین این سیستم ها به طور غیراتوماتیک از پردازش زمان اسـتفاده مـی نمودنـد. چـون کـد مورس توسط اپراتورهای انسانی ارسال و دریافت می شد. پس از آن مفهوم UWB مجدداً در دهـه 1960
برای ساخت رادارهای ایمن در برابر تداخل با مصرف توان کم مورد توجه قرار گرفت .[1]
در اوایل پیدایش ، UWB به نامهای Carrier free ، باند پایه یا ضربه رایج بود که در حقیقت متضمن این نکته بود که استراتژی تولید سیگنال نتیجه یک پالس با Rise time بسیار سریع و یـا یـک ضربه میباشد که یک آنتن باند پهن را تحریک میکند. در اوایل سال 2002 میلادی تکنولوژی باند بسیار پهن (UWB) برای کاربردهای تجاری تصویب شد. این تکنولوژی جدید شـیوه ی جدیـدی در ارتباطـات بدون سیم ابداع کرد:"استفاده از حوزه زمان به جای حوزه فرکانس".
تکنولوژی فرا پهن باند (UWB) به شیوهی کاملاً متفاوتی از سایر تکنولوژی ها از بانـد فرکانسـی استفاده میکند. این سیستمها از پالسهای باریک و پـردازش سـیگنال در حـوزهی زمـانی بـرای انتقـال

1 Guglielmo Marconi
5
اطلاعات استفاده میکنند، بدین صورت سیستمهـای فـرا پهـن بانـد (UWB) قادرنـد در بـازهی زمـانی مشخص اطلاعات بیشتری را نسبت به سیستمهای قدیمیتر منتقل کنند زیرا حجـم انتقـال اطلاعـات در سیســتمهــای مخــابراتی بــه صــورت مســتقیم بــا پهنــای بانــد تخصــیص یافتــه و لگــاریتم SNR (Signal to Noise Ratio) متناسب است. استفاده از یک پهنای بانـد خیلـی وسـیع چنـدین مزیـت دارد: ظرفیت بالا، مخفی بودن، مقاومت در برابر مسدود شدن و همزیستی با سایر سیستم های رادیویی.
پایه و اساس سیستم های نوین فراپهن باند در دهه 80 توسط راس و با کار انجـام شـده در مرکـز تحقیقاتی Sperry بنیان گذاشته شد. تأکید بر استفاده از UWB بـه عنـوان یـک ابـزار تحلیلـی بـرای کشف خصوصیات شبکه های مایکروویو و خصوصیات ذاتی مـواد بـود. ایـن تکنیـک هـا بـه طـور منطقـی گسترش یافتند تا تحلیل و تولید تجربی المان های آنتن را انجام دهند. موفقیـتهـای اولیـه باعـث تولیـد سیستمی خانگی شد تا خصوصیات پاسخ ضربه اهداف یا موانع را اندازهگیری کند.
با افزایش درخواست کاربران برای ظرفیت بالاتر، سرویس های سریعتر و مخابرات بی سیم امن تـر، تکنولوژی های جدید مجبورند جایگاه خود را در طیف فوق العاده شلوغ و امن رادیـویی بیابنـد. بـه دلیـل اینکه هر تکنولوژی رادیویی یک بخش خاص از طیف را اشغال میکند و با معرفی سـرویس هـای جدیـد رادیویی محدودیت دسترسی طیف RF سخت گیرانه تر شده است. در این شرایط تکنولـوژی UWB یـک راه حل نوید بخش برای محدودیت دسترسی به طیف RF با اجازه به سرویس های جدید برای هم زیستی با سیستمهای رادیویی جاری با تداخل حداقل یا بدون تداخل است.
در فوریه ی سال 2002، FCC اولین طراحی و استاندارد مربوط بـه بانـدها و تـوان مجـاز بـرای کاربران UWB را صادر کرد. بدین ترتیب باند فرکانسی 3.1GHz تا 10.6GHz به UWB اختصـاص یافت. در همین زمان FCC مجوزی صادر کرد که حدود و میزان تشعشع عمدی یا سهوی دسـتگاه هـای مخابراتی در باندهای مختلف را مشخص نمود. این تشعشع مجاز در باندهای مورد استفاده، مبنـایی بـرای طراحی دستگاه های UWB شد. با گسترش تحقیقات در این زمینه، IEEE کمیتـه ی مخصوصـی بـرای استاندارد سازی این سیسـتم هـا تحـت عنـوان 802.15.3.x تشـکیل داد. شـکل 1-1 تاریخچـه ی ایـن تکنولوژی را به اختصار نشان میدهد .[2]

شکل 1-1 تاریخچهی تکنولوژی فراپهن باند
6
در اولین گام FCC توان خروجی سیستم های UWB را به -41.3dBm/MHz محدود کرد، این محدودیت این امکان را برای سیستم های UWB ایجاد میکند که بدون اینکه توان سیگنال خروجی آنها توسط سیستمهای باند باریک مجاور احساس شود از پهنای باند وسیعی برای انتقال اطلاعات خود استفاده کنند. محدودیت هایی که برای توان انتشار این سیستم ها ایجاد شد ، عمدتاً محدودیتهایی بودند که برای حفاظت از سیستم GPS و سایر سیستم های دولتی که در باند فرکانسی 690MHZ~1610MHz کار میکنند مطرح شده بود. همانطور که در شکل 2-1 نشان داده شده است این ماسک توان همچنین برای سایر سیستمهای دولتی که عملکرد آنها در فاصلهی 3.1GHz~10.6GHz
یعنی باندی که برای کاربرد داخلی UWB تعریف شده است نیز کاربرد دارد.

شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس [3]
بنا به تعریف FCC پهنای باند -10dB یک سیگنال UWB بزرگتر از %25 فرکانس مرکزی یا بزرگتر از 1.5GHz میباشد. سیستمهای فرا پهـن بانـد بـا عـرض بانـد بـیش از 7GHz در بـازه فرکانسـی
3.1GHz~10.6GHz با سطح توان مجاز -41.3dBm/MHz فعالیت مـیکننـد. هـر کانـال رادیـویی در ایـن سیستمها بسته به فرکانس مرکزی خود میتواند عرض بانـدی بـیش از 500MHz داشـته باشـد. طـرح
انتقال OFDM1 به عنوان اولین کاندیـدا بـرای UWB در مـارچ 2003 در جلسـهی گروهـی IEEE 802.15.3a مطرح شد.

1 Orthogonal Frequency-Division Multiplexing
7
2-1 مفهوم UWB
سیستم های مخابراتی باند باریک متـداول سـیگنال هـای RF مـوج پیوسـته (CW)1 را بـا یـک فرکانس حامل خاص برای ارسال و دریافت اطلاعات مدوله می کنند. یک موج پیوسته یک انرژی سـیگنال تعریف شده در باند فرکانسی بانـد باریـک دارد کـه آن را بـرای آشکارسـازی و نفـوذ خیلـی آسـیب پـذیر میسازد. شکل 3-1 سیگنال باند باریک را در حوزههای زمان و فرکانس نشان میدهد.

شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس
سیستمهای UWB از پالسهای کوتاه بدون حامل (پیکو ثانیه تا نانو ثانیـه ) بـا Duty Cycle خیلی کم (کمتر از (%5 برای انتقال اطلاعات استفاده میکنـد. یـک تعریـف سـاده بـرای Duty Cycle
نسبت زمان حضور پالس به کل زمان انتقال است. (رابطهی (1-1

شکل 4-1 یک پالس با Duty Cycle کم رابطهی 1-1 T T Duty Cycle T Duty Cycle کم، متوسط توان انتقالی خیلی کمی در سیستمهـای UWB ایجـاب مـیکنـد.
متوسط توان انتقالی یک سیستم UWB در حد میکرو وات است، یعنی هزار بـار کمتـر از تـوان انتقـالی تلفن موبایل. به هر حال پیک یا توان لحظه ای پالس های UWB مستقل می تواند نسبتاً بزرگ باشـد، امـا چون آنها برای یک زمان خیلی کوتاه انتقال می یابند (Ton<1ns) توان متوسط به طـور قابـل ملاحظـه ای کم میشود، در نتیجه ادوات UWB به توان انتقال کم در اثر کنترل روی Duty Cycle نیاز دارند، کـه مستقیماً روی طول عمر باتری در تجهیزات قابل حمل تاثیر دارد.
از آنجایی که فرکانس با زمان نسبت عکس دارد پالس های UWB کوتاه مـدت، انـرژی را روی رنج عریضی از فرکانس ها، از نزدیک DC تا چندین گیگاهرتز با چگالی طیف توان (PSD)2 خیلـی کـم، پخش میکنند. شکل 5-1 پالس UWB را در حوزههای زمان و فرکانس نشان میدهد.

1 Continous Waveform 2 Power Spectral Density
8

شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس
3-1 تعریف سیستم فراپهن باند
به طور کلی به سیستمی فراپهن باند (UWB) اطلاق میگردد که پهنای بانـد مـورد اسـتفادهی آن برای انتقال اطلاعات بیشتر از 500MHz باشد و یا پهنای باند نسبی آن در تمام زمانها بیشـتر از %20
باشد. پهنای باند کسری معیاری برای طبقهبندی سیگنال ها به بانـد باریـک، بانـد پهـن و فـرا پهـن بانـد می باشد و به وسیله ی نسبت پهنای باند در نقاط -10dB به فرکانس مرکزی توسط رابطهی 2-1 تعریـف میشود .[4]
رابطهی 2-1 100% f L fH 100% BW fL 2 fH fC با استفاده از این پهنای باند وسیع، چگالی طیف توان ارسالی این سیستم بسیار پایین اسـت و در نتیجه در مقابل شنود دارای مصونیت بالایی می باشـد. بـه منظـور جلـوگیری از تـاثیر نـامطلوب سیسـتم
UWB بر سیستم هایی که قبلاً در این باند وجود داشته اند، همان طور که قبلاً عنوان شـد FCC ماسـک مربوط به چگالی طیف توان این سیستمها را با سطح توان مجاز -41.3dBm/MHz مشخص نمود.
4-1 مزایای تکنولوژی فراپهن باند UWB
1-4-1 توانایی اشتراک طیف توانی
FCC سطح توان مجاز سیستم هـای UWB را -41.3dBm/MHz برابـر بـا 75nWatt/MHz تعریـف کرده و آنها را در ردهی تشعشعات غیر عمدی گذاشته است، چنین محـدودیت تـوانی بـه سیسـتم هـای
UWB اجازه می دهد که زیر سطح نویز یک گیرنده ی باند باریک نوعی قرار گیرند و سـیگنال UWB را قادر می سازد که با سرویس های رادیویی کنونی بدون تداخل و یا با تداخل حداقل همزیستی داشته باشد.
شکل 6-1 سطح توان مجاز تکنولوژیهای مختلف روی طیف فرکانسیRF را نشان میدهد .[2]
9

شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی RF
2-4-1 ظرفیت بالای کانال
ظرفیت کانال یا میزان تغییرات داده ها، به صورت مینیمم میزان داده هایی که مـی تواننـد در هـر ثانیه روی یک کانال مخابراتی انتقال یابند تعریف می شود. فرمول هارتلی-شنون)1رابطـهی (3-1 ظرفیـت بالای کانال برای سیستم UWB را نشان میدهد .[2]
رابطهی 3-1 1 log C بیشترین ظرفیت کانال می باشد و به صورت خطی با پهنای باند (B) افـزایش مـی یابـد. پـس داشتن چندین گیگا هرتز پهنای باند برای سیگنال های UWB، نرخ انتقال داده ها در حد چند گیگا بیت بر ثانیه می تواند مورد انتظار باشد. در نتیجه ی محدودیت توان اعمال شـده از طـرف FCC بـرای انتقـال داده های UWB، این نرخ بالای انتقال داده فقط در فواصل کوتاه (تا 10 متر) در دسـترس اسـت، و ایـن باعث می شود سیستم های UWB کاندید مناسبی برای کاربردهای بی سـیم فواصـل کوتـاه و نـرخ بـالای اطلاعات مانند شبکه های WPAN باشند.
3-4-1 توانایی کار با SNR پایین
فرمول هارتلی-شنون برای ظرفیت حداکثر همچنین نشان میدهد که ظرفیت کانـال بـه صـورت لگاریتمی به SNR وابسته است، پس سیستم های مخابراتی UWB قابلیت کار در کانال هـای مخـابراتی خشن با SNR پایین را دارند و هنوز ظرفیت کانال بالایی در نتیجه پهنای باند بزرگ خود ارایه میدهند.
4-4-1 احتمال تشخیص و آشکارسازی کم
به دلیل میانگین توان انتقال پایین سیستم های UWB، این سیستم ها مصونیت ذاتی نسبت بـه تشخیص دارند. پالس های UWB در زمان با کدهای منحصر به فرد بـرای هـر جفـت فرسـتنده-گیرنـده

1 Hartley-Shannon
10
مدوله شدهاند. زمان مدولاسـیون پـالس هـای خیلـی باریـک بـه امنیـت انتقـال UWB مـی افزایـد زیـرا آشکارسازی پالسهای پیکو ثانیهای بدون دانستن اینکه چه زمانی میرسند غیر ممکن است.
5-4-1 مقاومت در برابر مسدود شدن
برخلاف طیف فرکانسی باند باریک شناخته شده، طیـف UWB رنـج وسـیعی از فرکـانس هـا از نزدیک DC تا چند گیگا هرتز را پوشش می دهد و بهره ی پردازش بالا برای سـیگنال هـای UWB ارایـه می کند. بهره ی پردازش (PG) یک معیار مقاومت سیستم ها در برابـر مسـدود شـدهگـی اسـت و توسـط رابطهی 4-1 تعریف میشود.
رابطهی 4-1

6-4-1 کارایی بالا در کانالهای چند مسیره
پدیده ی چند مسیره در کانال های مخابرات بی سیم اجتناب ناپذیر است و به علـت انعکـاس هـای چندگانه ی سیگنال انتقالی از سطوح متفاوت مانند ساختمان ها، درخـت هـا و غیـره روی مـی دهـد. خـط مستقیم بین فرستنده و گیرنده LOS و سیگنال های انعکاسی از سطوح NLOS هسـتند (شـکل (7-1،
اثر چند مسیره بر روی سیگنال های باند باریک نسبتاً شدید است که باعث تخریب سـیگنال تـا 40dB بـه خاطر ناهمفازی شکل موج های LOS و NLOS می شود. اما پالس های UWB خیلی کوتاه مدت کمتـر به اثر چند مسیره حساسند زیرا طول پالس های UWB کمتر از نانو ثانیه است و سیگنال بازتابی شـانس خیلی کمی برای برخورد با سیگنال LOS و تخریب آن دارد .[2]

شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنالهای باند باریک (c) اثر
پدیدهی چند مسیره بر سیگنالهای باند فرا پهن
11
5-1 چالشهای تکنولوژی فراپهن باند UWB
1-5-1 انحراف شکل پالس
پالس های UWB ضعیف و کم توان با انتقال می تواننـد بـه طـور قابـل تـوجهی تخریـب شـوند، میتوانیم این مطلب را با فرمول انتقال فریس1 (رابطهی (5-1 نشان دهیم.
رابطهی P PG G 4πdf5-1

که Pt و Pr به ترتیب توان های ارسالی و دریافتی، Gt و Gr به ترتیب بهرهی آنتنهای فرستنده و گیرنده، C سرعت نور و f فرکانس است. ملاحظه می شود که تـوان سـیگنال دریـافتی بـا مربـع فرکـانس کاهش می یابد. در سیستم های باند باریک که تغییر در فرکانس کم است، تغییـرات تـوان دریـافتی قابـل صرفه نظر است. اما به دلیل طیف فرکانسی وسیع سیستم های UWB تغییرات توان شدید بـوده و شـکل پالس را خراب می کند، که این امر کارایی گیرنده های UWB، که با پالس های دریافتی بـا یـک قالـب از پیش تعریف شده مثل فیلترهای تطبیق کلاسیک همبستگی دارد را محدود میکند.
2-5-1 تخمین کانال
تخمین کانال یک مبحث اساسی برای طراحی سیستم های مخابرات بی سیم اسـت. انـدازه گیـری همه ی مشخصات کانال مانند تضعیف و تاخیر مسیر انتشار، در میدان غیر ممکن است. اکثر گیرنـده هـای
UWB سیگنال دریافتی را با یک قالب سیگنال از پیش تعریف شده مرتبط میکننـد. اطلاعـات قبلـی از پارامترهای کانال بی سیم برای پیشگویی شکل قالب سیگنال، که سیگنال دریافتی را تطبیق میدهـد لازم است. به هرحال به خاطر پهنای باند زیاد و کاهش انرژی سیگنال، پالس های UWB دسـتخوش اعوجـاج شده، پس تخمین کانال در سیستمهای مخابرات UWB پیچیده است .[2]
3-5-1 تطبیق2 فرکانس بالا
انطباق زمانی یکی از چالش های اساسی در سیستم های مخابرات UWB است. نمونـه بـرداری و انطباق پالس های نانو ثانیه ای یک محدودیت اساسی در طراحی سیستم های UWB اسـت. بـرای نمونـه برداری این پالسهای باریک ADC(Analog-to-Digital converter) خیلـی سـریع در حـد گیگـا هرتز لازم است، به علاوه محدودیت های توان شدید و طول پالس کوتاه کارایی سیستم های UWB را بـه شدت به خطاهای زمانی حساس میکند.

1 Friis 2 Synchronization
12
4-5-1 تداخل دستیابی چندگانه1
در سیستم مخابره ی چند کـاربره یـا دسـتیابی چندگانـه، چنـدین کـاربر اطلاعـات را مسـتقل و همزمان روی یک خط واسط انتقال اشتراکی (مثل هوا در مخابرات بی سیم) می فرستند. در انتهـا یـک یـا چند گیرنده بایستی قادر به جداکردن و آشکارسازی اطلاعـات کاربرهـا از هـم باشـند. تـداخلات از سـایر کاربران با کاربر مورد علاقه تداخل دستیابی چندگانه (MAI) نامیده می شـود کـه یـک فـاکتور محـدود کننده ی ظرفیت کانال و کارایی گیرنده است، به علاوه MAI به همراه نویز غیر قابل پیشـگیری کانـال و تداخل باند باریک می تواند به طور موثری پالسهای کم توان UWB را تنزل دهد و مراحل آشکار سـازی را خیلی سخت کند.
UWB 6-1 در مقایسه با سایر استانداردهای IEEE
شکل 8-1 مقایسه ای بین مخابرات فراپهن باند و باند باریـک در حـوزه هـای زمـان و فرکـانس را نشان می دهد. همان طور که ملاحظه می شود سیستم های UWB مبتنی بر مدولاسیون پالسـی در زمـان دارای پالس های بسیار باریک می باشـد کـه در حـوزه ی فرکـانس، بانـد فرکانسـی 3-10GHz را اشـغال می کنند در حالیکه سیستم های باند باریک که در زمان دارای شکل موج پیوسته مـی باشـند در حـوزه ی فرکانس، باند فرکانسی بسیار کوچکتری را به خود اختصاص میدهند.

شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک
در جدول 1-1 مقایسه ای بین مخابرات UWB و سایر اسـتانداردهای IEEE از نظـر بیشـترین نرخ داده ها، فاصله ی عملکرد و فرکانس کاری را نشان می دهد. می توان دید که UWB بـه دلیـل پهنـای

1 Multiple-Access Interference
13
باند وسیعی که دارد قابلیت انتقال نرخ بالایی از اطلاعات را در هر ثانیه در مقایسه با سـایر اسـتانداردهای
این جدول دارا میباشد.
جدول 1-1 قابلیت UWB در مقایسه با سایر استانداردهای [2] IEEE
استاندارد IEEE WLAN Bluetooth WPAN UWB
802.11a 802.11b 802.11g 802.15.1 802.15.3 802.15.3a
فرکانس کاری 5GHz 2.4GHz 2.4GHz 2.4GHz 2.4GHz 3.1-10.6GHz
بیشترین نرخ داده 54Mbps 11Mbps 54Mbps 1Mbps 55Mbps >100Mbps
حداکثر فاصله 100m 100m 100m 10m 10m 10m
به دلیل پهنای باند وسیع سیستم فراپهن باند، گیرنده های این سیسـتم بایسـتی قابلیـت کـار در محیط های پر تداخل را دارا باشند. در یک محیط کار معمولی سیستم های بی سیم مختلفی در حـال کـار هستند. گیرنده ی فراپهن باند همواره در معرض تـداخل و مسـدود شـده گـی توسـط سـایر سیسـتمهـای مخابراتی بی سیم که در باند فرکانسی 3-10GHz و یـا نزدیـک بـه آن قـرار دارنـد ماننـد Bluetooth، WLAN و غیره همانطور که در شکل 9-1 ملاحظه میشود قرار دارد.

شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند
14
7-1 تفاوت بین UWB و طیف گسترده1
تعداد زیادی از افراد، مخابرات UWB را بـا تکنیـک هـای طیـف گسـترده ی پهـن بانـد اشـتباه می گیرند، هرچند هر دو خاستگاه مخابرات امن نظامی دارند لازم است تا یک تفاوت اساسـی میـان آن دو را روشن کنیم. برای این منظور لازم است تا دو روش متداول تکنیک طیف گسترده را معرفی کنیم.
1-7-1 رشتهی پیوستهی طیف گسترده(DSSS) 2
در DSSS یک کد شبه تصادفی برای گسترده کردن هر بیت از اطلاعـات بـا اسـتفاده از تعـداد زیادی از بیت ها که به مراتب کوچکتر از بیت اصـلی هسـتند اسـتفاده مـی شـود ایـن کـدها پهنـای بانـد اطلاعات را به پهنای باند بزرگتری گسترش میدهند.
2-7-1 جهش فرکانسی طیف گسترده(FHSS) 3
تکنیک FHSS در مفهوم شبیه DSSS است ولی در این روش گسترده کردن انـرژی سـیگنال در حوزهی فرکانس صورت میگیرد و مزایایی از مخابرات پهن باند را ارایه میدهد. به هر حال پهنای بانـد زیاد نتیجهی گسترده کردن اطلاعات مانند تکنیک DSSS نیست.
3-7-1 تفاوتهای اساسی بین UWB و طیف گسترده
هر دو تکنیک DSSS و FHSS منجر به وسیع شدن طیف فرکانس میگردند و مزایایی نسـبت به مخابرات باند باریک مانند چگالی طیف توان کمتر، ناهمپوشانی، تنوع فرکانسی بـرای کـارایی بهتـر در کانال های چند مسیره و مقاومت در برابر مسدود شده گی عمـدی و غیـر عمـدی دارنـد. امـا تفـاوت بـین
UWB و طیف گسترده چیست؟ هرچند هر دو تکنیک UWB و طیف گسترده همان مزایـای گسـترده کردن پهنای باند را دارند، روش دستیابی به پهنای باند بزرگ تفاوت اصلی بین این دو تکنیک است.
در تکنیک های متداول طیف گسترده سیگنال ها موج های سینوسی پیوسته اند که بایک فرکـانس حامل ثابت مدوله شده اند. در مخابرات UWB فرکانس حاملی وجـود نـدارد، پـالس هـای UWB کوتـاه مستقیماً پهنای باند گسترده تولید می کنند. فاکتور اختصاصی دیگر در UWB پهنای باند خیلـی بـزرگ است. در حالیکه تکنیک های طیف گسترده پهنای باند مگاهرتزی عرضه می کنند، UWB چندین گیگـا هرتز پهنای باند دارد. شکل 10-1سیگنال های باند باریک، پهن بانـد و UWB را در حـوزه هـای زمـان و فرکانس نشان میدهد .[2]

1 Spread Spectrum 2 Direct-Sequence Spread Spectrum 3 Frequency-Hopping Spread Spectrum
15

شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و (c) فراپهن باند در حوزههای زمان و فرکانس
8-1 روشهای پیاده سازی سیستم فراپهن باند
در حال حاضر دو روش برای پیاده سازی سیستم های فراپهن باند در باندهای اختصاص داده شده توسط FCC وجود دارد که در ادامه پس از معرفـی آنهـا بـه بررسـی نحـوهی بـه کـار گیـری آنهـا در سیستمهای فراپهن باند میپردازیم.
1-8-1 سیستم (Code Division Multiple Access) CDMA
در روش های قبلی مانند FDMA باند فرکانسی موجود به تعداد زیادی کانال تقسیم و هر کـدام به یک کاربر اختصاص می یافت. در روش TDMA همان مقدار باند فرکانسی برای هر کـاربر وجـود دارد ولی در زمان های متفاوت TDMA به تناوب یکی از فرستنده-گیرنـده هـا را بـه مـدت TSL ثانیـه فعـال می کند. کل پریود شامل تمام مقطع های زمانی را قاب (فریم) TF میگویند. در هر TF ثانیه هر کـاربر بـه اندازهی TSL ثانیه به کانال دسترسی دارد. شکل 11-1 این مطلب را نشان میدهد.

شکل 11-1 روش دسترسی TDMA
16
ولی در روش CDMA که برای استفاده ی بهینه تر از باند فرکانسی به کار می رود، سیگنال ها هم می توانند در فرکانس و هم در زمان با هم همپوشانی داشته باشند ولی با استفاده از پیـام هـای متعامـد از تداخل جلوگیری می شود. در شروع ارتباط به هر زوج فرستنده- گیرنـده یـک کـد معـین اختصـاص داده می شود و هر بیت اطلاعات باند پایه قبل از مدولاسیون با آن کد تغییر می کند (شـکل .(12-1 عمـل کـد کردن پهنای باند طیف داده را به اندازه ی تعداد پالس های موجود در کد افزایش می دهد ولی از آنجـا کـه
CDMA امکان می دهد طیف گسترده کاربران روی یک باند فرکانسی بیفتنـد، پـس CDMA ظرفیـت بالقوهی بیشتری نسبت به دو روش قبل دارد.

شکل 12-1 عملیات کد کردن در [5] DS-CDMA1
شکل 13-1 شیوه ی استفاده از باند فرکانسی UWB را توسط سیستم DS-CDMA که یکـی از پرکاربردترین انواع CDMA می باشد و بر مبنای انتشار سیگنال ها از- به کاربران مختلف بـا کـدهـای متفاوت می باشد را نشان می دهد. همان طور که ملاحظه می شود از دو باند فرکانسی بالا و پـایین اسـتفاده می کند. باند پایین از 3/1GHz تا 5/15GHz را می پوشاند و باند بـالا از 5/825GHz تـا 10/6GHz را در برمی گیرد. به دلیل تداخل با سیسـتم 802.11a از فاصـله ی فرکانسـی 5/15GHz تـا 5/825GHz
استفاده نمیشود.

شکل 13-1 نحوهی استفاده از پهنای باند در سیستم DS-CDMA

1 Direct -Sequence Code Division Multiple Access
17
2-8-1 سیستم (Orthogonal Frequency Division Multiplexing) OFDM
در سیستمهای چند حاملی قدیمی، پهنای باند به N زیر کانـال نـاهم پوشـان تقسـیم مـیشـد و اطلاعات باند پایه روی هر حامل مدوله می گردید. فاصله ی فرکانسی بین حامل ها کـه بـرای جلـوگیری از تداخل در نظر گرفته می شود سبب از بین رفتن مقداری از پهنای بانـد مـی شـود. در OFDM اطلاعـات ارسالی به تعدادی زیر باند تقسیم شده و پس از محاسبهی عکس تبدیل فوریه اطلاعات روی مجموعـه ای از زیر حامل ها ارسال می گردد و از آنجایی که این حامل ها بر هم عمودند به فاصله ی فرکانسی کمـی نیـاز دارند. خرد کردن سیگنال در زیر باندها مقاومت سیستم در برابر محو سیگنال و از بین رفتن اطلاعـات را افزایش میدهد. در گیرنده با تبدیل فوریه بیتهای هر زیر باند استخراج میگردد.
سیسـتم MB-OFDM1 کـل بانـد فرکانسـی UWB را بـه 4 گـروه و 14 بخـش 528MHz
تقسیم میکند .[6] شکل 14-1 این تقسیم بندی فرکانسی را نشان میدهد.

شکل 14-1 گروه بندی طیف فرکانسی MB-OFDM
همان طور که در شکل 15-1مشاهده می شود هر باند 528MHz از 128 زیر حامل بـا فاصـله ی فرکانسی 4/125MHz تشکیل میشود.

شکل 15-1 طیف فرکانسی [7] MB-OFDM

1 Multiband OFDM
18
.2 فصل دوم: مخلوطکنندههای فرکانسی
Mixer
19
1-2 تاریخچه
مبدع مخلوط کنندهی فرکانسـی (Frequency Mixer) دانشـمند بـزرگ مخـابرات رادیـویی ادوین آرمسترانگ1 میباشد. قبل از او تلاشهایی برای انتقال مستقیم فرکانس به باند پایه2 صورت گرفتـه بود، اما چون نوسان کنندههای محلی از پایداری (Stability) کافی برخوردار نبودند موفقیت چندانی در برنداشت. ایدهی آرمسـترانگ در اسـتفاده از فرکـانس واسـطه( IF) 3 کـه منجـر بـه طـرح گیرنـده هـای سوپرهترودین شکل 1-2 گردید امروزه در بسیاری از گیرندههای رادیویی مورد استفاده است.

شکل 1- 2 ساختار گیرنده سوپر هترودین
آرمسترانگ با استفاده از واسطهی لامپ خلاء (Vacuum Tube) مخلوطکنندهای سـاخت کـه فرکانس رادیویی RF را به یک فرکانس واسطه IF انتقال مـی داد در ایـن فرکـانس واسـطه، سـیگنال بـا کیفیت خوب، بهرهی زیاد و نویز کم، تقویت شده و در نهایت دمودله میگردید.
تا قبل از سال 1940 کارهای تئوری اندکی بر روی میکسـرها (کـه تـا آن زمـان از نـوع دیـودی بودند) انجام گرفته بود. دیودهای به کار رفته در این میکسرها از کیفیت و دقت پـایینی برخـوردار بودنـد.
در مدت کمتر از ده سال پیشرفت های زیادی در طراحی میکسرها و افزایش کیفیت دیودهـای مـایکروویو انجام گرفته به طوریکه افت تبدیل4 در میکسرهای مایکروویو از 20dB در 1940 بـه 10dB در 1945 بهبود یافت و در 1950 به حول و حوش 6dB رسید. امروزه با پیشرفت هایی که در ایـن زمینـه صـورت گرفته علاوه بر بهبود در افت تبدیل میتوان از بهرهی تبدیل5 میکسرها بهرهمند شد .[8]
امروزه بهکار بردن میکسرهای فرکانس بالا در سیسـتمهـای ارتباطـاتی بـدون سـیم، از اهمیـت خاصی برخورداراست. طراحی، ساخت و اندازهگیری مشخصات میکسرهای فرکانس بالا، باند مـایکروویو و باند میلیمتری، جزء تجربه های جدید مدارات مایکروویو بهشمار میآید.

1 Major Edwin Armstrong 2 Base Band 3 Intermediate Frequency 4 Conversion Loss 5 Conversion Gain
20
2-2 انواع میکسر
میکسرهای مایکروویو غیرفعال1 به طور معمول با دیودهای شاتکی صورت می پـذیرد. اسـتفاده از عناصر فعال نظیر ترانزیستورهای اثر میدانی برای ساخت میکسرها می توانـد سـبب بهبـود افـت تبـدیل و حتی ایجاد بهره ی تبدیل گردد. چنین میکسرهایی در مقایسه بـا میکسـرهای غیرفعـال سـاخته شـده بـا دیودهای شاتکی دارای معایبی نیز می باشند از جمله: احتمال ناپایداری و پیچیدگی مـدار میکسـر اشـاره کرد. چنانچه از ناحیه ی مقاومتی ترانزیستور اثر میدانی برای ساخت میکسر استفاده شود علاوه بر اینکـه مدارهای بایاس ساده تر شده احتمال ناپایداری نیز بسیار کاهش می یابد، از طرف دیگر به علت اسـتفاده از خاصیت غیرخطی ضعیف مقاومت کانال ترانزیستور، چنـین میکسـرهایی از مولفـه هـای اینترمدولاسـیون ضعیف توان اشباع 1dB بالا و درنتیجه محدودهی دینامیکی وسیعی برخوردار میباشند .[9]
میکسر، در واقع یک مبدل فرکانس است که در مدارات مخابراتی وظیفهی تبدیل (و یا ترکیـب)
سیگنال از یک فرکانس به فرکانس (های) دیگر را به عهده دارد. اهمیت ایـن عملکـرد در تهیـه و تـامین فرکانسهای کاری مناسب با پایداری و نویز مطلوب است. بنابراین باید تلف تبدیل کم و سطح نویز پایین سیگنال تولید شده را از مشخصات مطلوب و مورد نظر در طراحی دانست (هرچند تحقق همزمان ایـن دو مهم در طراحی و ساخت میکسر عملاً کار چندان سادهای نمی باشد.) میکسر را می توان یک مـدار سـه دهانه شامل دهانهی پمپ2 و یا همـان نوسـان کننـدهی محلـی (LO)، دهانـهی سـیگنال ورودی RF و
دهانهی سیگنال IF دانست. (شکل (2-2

شکل 2- 2 میکسر به عنوان یک عنصر سه دهانه
عمل ترکیب سیگنالها را عنصر غیر خطی (مانند دیود ویا ترانزیستور) انجام میدهد. بر همـین اساس میکسرها به دوگروه میکسرهای غیرفعال و فعال تقسیم مـیشـوند. تفـاوت مشخصـات میکسـرها بهطور عمده وابسته به عملکرد عنصر غیرخطی آنهاست. وظیفـه سـیگنال LO کـه معمـولاًدارای تـوان بالاتری نسبت به سیگنال RF است راهاندازی3 عنصر غیرخطی مدار میکسر است تا عملکـرد متغییـر بـا

1 Pasive 2 Pump 3 Driving
21
زمان میکسر را تامین کند. فرکانس سیگنال خروجی IF ترکیبی از هارمونیکهـای سـیگنالهـای RF و LO است که میتوان آنرا بهصورت mfRF+nfLO=fIF نوشت که m و n اعداد صحیح هستند.
1-2-2 میکسرهای غیر فعال
میکسرهای پسیو ساده ترین، شناخته شده ترین و اولین مدارات میکسر هستند. یک ترانسفورماتور و دو دیود، ساده ترین میکسرهای غیر فعال را تشکیل می دهند. ایـن نـوع از میکسـرها دارای ایزولاسـیون خوب بین LO و RF و نیز بین LO و IF می باشند اما سیگنال RF را مستقیماً به خروجی IF می برند. چون سوییچ می تواند با یک MOSFET ساده تحقق یابد میکسر غیر فعال می تواند با مـدارات CMOS
اجرا شود. (شکل ( 3- 2

شکل 3-2 میکسر غیرفعال با تعادل دوگانه1 با CMOS
با توجه به دامنهی مثبت و منفی LO سیگنال RF از مسیرهای مختلف بـه پـورت خروجـی IF
می رسد. با تولید سیگنال مخلوط شده ی IF هارمونیک های دیگری نیز در خروجی ظاهر می شوند. در یک طراحی متعادل تمامی هارمونیکهای زوج حذف میشوند.
بهرهی تبدیل
به صورت توان یا ولتاژ خروجی IF تقسیم بر توان یا ولتاژ ورودی RF تعریف میشود.
رابطهی ,1-2یا , AP

,,
خروجی این میکسر پایین آورندهی غیرفعال میتواند توسط رابطهی 2-2 بهدست آید.

1 Double Balanced
22
رابطهی 2-2 . . . رابطهی 3-2

که در روابط بالا gT(t) رسانایی معادل تونن متغییر با زمان دیده شده از سر خروجـی IF ، m(t)
تابع میکس (رابطهی (3-2 و TLO دوره تناوب سیگنال LO است .[10]
در این میکسر درایو بزرگ LO لازم است تـا ترانزیسـتورهای پسـیو بتواننـد متناوبـاً خـاموش و روشن شوند. توان DC بالایی مصرف می کند که این توان در خود میکسر مصرف نمیشـود ولـی مـدارات درایو LO مقدار زیادی توان برای فراهم کردن سویینگ کافی LO مصرف میکنند.
نویز:
چون قبل از میکسر LNA قرار دارد پس عدد نویز (NF) مـورد نیـاز میکسـر خیلـی بیشـتر از
LNA است زیرا عدد نویز LNA با NF کل مستقیماً جمع میشود ولی NF میکسر بـر بهـرهی LNA
تقسیم میشود. (رابطهی ( 4- 2
رابطهی 4-2 1 NFM 1 NFLNA 1 ALNA در یک قطعهی غیر فعال NF به افت توان نزدیک است.
خطی بودن:
خطی بودن یکی از مشخصات اصلی میکسر پایین آورنده است، سیگنال اصـلی و تـداخل هـردو قبل از ورود به میکسر توسط LNA تقویت می شوند. خیلی از تداخل ها بیش از اندازه به سـیگنال اصـلی نزدیک هستند که توسط فیلتر داخل چیپ فیلتر شوند و این تداخل ها می توانند خیلی قوی تر از سـیگنال مطلوب باشند، بنابراین میکسر به خطی بودن خیلی بیشتری از LNA نیاز دارد. همانطور که در رابطهی
5-2 دیده می شود اعوجاج سهیم شده توسط میکسر به انـدازه ی بهـره ی LNA از اعوجـاج سـهیم شـده توسط LNA بزرگتر است.
رابطهی 5-2 ALNA 1 1 IIP3M IIP3LNA IIP3 اگر سوئیچ های میکسر ایده آل باشند هیچ اعوجاجی توسط میکسر تولید نمی شود. به هر حال بـه خاطر مقاومت سوئیچ ها که نه تنها به ولتاژ درایو LO بلکه به ولتاژ ورودی نیز وابستهاند، سـیگنال توسـط سوئیچها دچار اعوجاج میشود.
23
2-2-2 میکسر گیلبرت
این میکسر به جای تبدیل سیگنال RF به ولتاژ، سیگنال RF را به جریان تبدیل می کنـد. یـک ترانزیستور وظیفه ی تبدیل سیگنال RF را به جریان را به عهـده دارد و سـپس یـک جفـت دیفرانسـیلی جریان را به خروجی های IF متمم در هر دوره ی تناوب LO تبدیل مـی کنـد. در ایـن میکسـر چـون بـه سوئینگ بزرگ بین گیت های جفت دیفرانسیلی برای تبدیل جریـان نیـاز نیسـت درایـو LO مـورد نیـاز کاهش قابل ملاحظهای مییابد.
میکسـر گیلبـرت سـاده (شـکل (4-2 نسـبت بـه میکسـر غیـر فعـال ایزولاسـیون بهتـری بـین سیگنال های RF و LO دارد، زیرا هیچ مسیر مستقیمی بین RF و LO وجود ندارد، اما هنوز نشت LO
به پورت IF از طریق خازنهای پارازیتی بین گیت و درین سوئیچها هست.

شکل 4-2 میکسر گیلبرت ساده
شکل 5-2 یک میکسر با تعادل دوگانه در تکنولوژی CMOS را نشان می دهـد. ایـن میکسـر از سه بخش زیر تشکیل شده است:
مبدل ولتاژ به جریان (ترارسانا)
ترانزیستورهای ضرب کننده (سوئیچها)
مبدل جریان به ولتاژ (بار)
این میکسر مشکل فوق را با اتصال سیگنال هـای LO دیفرانسـیلی بـه همـان خروجـی IF حـل کرده است، هر طرف خروجی IF به دو سوئیچ با سیگنالهای LO با 180˚ اختلاف فاز متصل اسـت پـس
24
نشت LO از دو سوئیچ یکدیگر را خنثی می کنند پس تنها میکس سیگنال هـای RF و LO در خروجـی
IF ظاهر میشود.

شکل 5-2 میکسر گیلبرت با تعادل دوگانه
بهرهی تبدیل:
بهره ی تبدیل میکسر گیلبرت شامل سه جزء )Asw (2 gm,rf (1بهره یا افـت سـوئیچ هـا) RO (3
(امپدانس خروجی)
رابطهی 6-2 , که در رابطهی Asw 6-2 تـابع شـیب و دامنـهی ولتـاژ درایـو LO و ولتـاژ over drive جفـت
سوئیچ هاست . (Vod,sw ) اگر سیگنال LO موج مربعی باشد و دامنهی آن بیشـتر از Vod,sw باشـد، آنگـاه -3.9dB یا Asw=2/π است، اگر سیگنال LO سینوسی باشد و دامنه ی آن به اندازه ی کـافی بزرگتـر از
Vod,sw باشد آنگاه Asw نزدیک به مقدار آن در مورد موج مربعی اسـت. شـکل 6-2 بهـره ی سـوئیچینگ میکسر گیلبرت با تعادل دوگانه ی نوعی را نمایش می دهد. Asw تابع دامنه ی ولتاژ LO اسـت وقتـی کـه دامنهی ولتاژ LO کوچکتر از ولتاژ over drive است، و مقدار ثابتی کمـی کـوچکتر از 2/π (بـه خـاطر افت پارازیتیک) دارد وقتی که دامنهی ولتاژ LO به اندازهی کافی بزرگ است.
25

شکل 6- 2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه
ولتـاژ over drive ترانزیسـتورهای سـوئیچ بـه جریـان دریـن ترانزیسـتور ورودی RF و ابعـاد ترانزیستورهای سوئیچ وابسته است. Vod,sw می تواند با رابطه ی I-V یک قطعه ی کانال بلند تخمـین زده شود. (رابطهی (7-2
,

رابطهی ,7-2

وقتی کانال ترانزیستورهای سوئیچ به اندازه ی کـافی کوتـاه باشـد معادلـه ی کانـال کوتـاه اعمـال میگردد. (رابطهی (8-2
2 1 2 V , ,
رابطهی 8-2 ρ ρ که در رابطهی 8-2، ρ0 برابر است با:
ρ V ,

به هر حال درایو LO بزرگ می تواند بهره ی سوئیچ Asw بزرگتری فراهم کند. درایو LO خیلـی بزرگ بهره ی تبدیل را کاهش میدهد. هارمونیک بزرگ LO میتوانـد ولتـاژ دریـن ترانزیسـتور ورودی را کاهش دهد و نهایتاً به ناحیهی ترایود هدایت کند.
به جای افزایش درایو LO، کاهش ولتاژ over drive جفت دیفرانسیلی میتواند بهرهی تبـدیل را افزایش دهد. برای این منظور از یک منبع جریان DC که به سورس مشـترک ترانزیسـتورهای سـوئیچ وصل می شود تا بخشی از جریان DC از درین ترانزیستور ورودی را بکشد، استفاده مـی شـود و درنتیجـه
26
ولتاژ over drive کاهش مییابد. تکنیک تزریق جریـان DC در شـکل 7-2 بـا دوایـری بـه دور منـابع جریان مشخص شده است .[10]

شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان DC
نویز:
سه منبع اساسی نویز در میکسر پایین آورنده داریم: (1 نویز تولید شده در ترانزیستور ورودی RF
(2 نویز سوئیچینگ
(3 نویز بارهای خروجی
نویز ترانزیستور ورودی RF شامل دو بخش است: (1 نویز گرمایی درین
رابطهی 9-2 , 8 , i و (2 نویز القایی گیت که تا حدودی به نویز گرمایی درین وابسته است. kTg 3 رابطهی 10-2 4 i , جفت دیفرانسیلی جریان RF را بین دو ترانزیستور با فرکانس LO سوئیچ می کنـد، کـه نـویز را نیز در مسیر سیگنال شرکت می دهد. یکی از سـهم هـای نـویز از افـت سـوئیچ هـا و دیگـری از نـویز روی سیگنال های LO است. نویز در گیت جفت دیفرانسیلی شامل نویز فاز و نویز حرارتـی روی سـیگنالهـای LO و نویز القایی گیت است. وقتی دامنهی LO خیلی بزرگتر از ولتاژ over drive جفـت دیفرانسـیلی باشد ( به این مفهوم که فاصله ای که هر دو ترانزیستور جفت دیفرانسیلی روشنند خیلی کـوچکتر از دوره تناوب LO باشد) هر دو نویز حرارتی LO و نویز القایی گیت شدت خیلی کمتری از نویز فاز LO دارند.
27
خطی بودن
خطی بودن میکسر گیلبرت با gm ترانزیستورهای ورودی RF محدود می شـود. یکـی از راه هـای افزایش خطی بودن میکسر گیلبرت بدون کاهش بهره ی تبدیل آن، افزایش جریان دریـن ترانزیسـتورهای ورودی RF و سپس ربودن جریان DC غیر ضروری از مسیر سیگنال است. (شکل (7-2
ادوات سوئیچ کننده خیلی در اعوجاج خروجی شرکت نمی کنند. میکسر گیلبرت بـه جـای ولتـاژ جریان را سوئیچ میکند، هنگامیکه ولتاژ درایو LO خیلـی بزرگتـر از ولتـاژ over drive باشـد، جفـت دیفرانسیلی جریان را به طور کامل سوئیچ میکند و در نتیجـه بهـرهی تبـدیل روی جریـان ورودی ثابـت است. به هر حال با چنین هدایت ناگهانی جریان، سیگنالهای RF با هارمونیکهای مراتب بلاتـر LO در خروجی میکسر تولید میشوند. فرکانسهای سیگنال خروجی میتواند توسط رابطهی 11-2 بیان گردد.
رابطهی 11-2 : , | | یک فیلتر پایین گذر بعد از میکسـر فرکـانس هـای تولیـد شـده ی بـالاتر از ǀfRF±fLOǀ را حـذف می کند. در یک میکسر گیلبرت با تعدل دوگانه همه ی هارمونیـک هـای زوج هـر دو سـیگنال RF و LO
حذف میشوند.
3-2 کاربرد میکسر
همانطور که گفته شد از میکسرها جهت انتقال فرکانس موج حامل به پایین یعنی از RF به IF
در گیرنده ها استفاده می شود، تا سیگنال حاصله با کیفیت خوب و نویز کم قابل پردازش و تقویـت باشـد.
در این انتقال فرکانسی هیچ تغییری در نوع مدولاسیون موج حامل ایجاد نمی شود، به ایـن معنـی کـه در دامنه، فاز یا انحراف فرکانس لحظه ای موج نباید تغییـری بـه وجـود آیـد. عـلاوه بـر ایـن از میکسـرها در فرستنده ها جهت انتقال فرکانس موج حامل به بالا یعنی از IF به RF استفاده می شـود. بـر ایـن اسـاس میکسرهایی که عمل انتقال فرکانس از بالا به پایین را انجام میدهند (پـایین برنـده(1 و میکسـرهایی کـه فرکانس پایین را به بالا انتقال میدهند (بالا برنده(2 نامیده میشوند.
غیر از پارامترهای تلف (و یا گین) و سطح نویز، حداکثر ایزولاسیون بین دهانههـا و فیلترکـردن مناسب برای انتخاب هارمونیک مـورد نظـر (از بـین هارمونیـکهـای تولیـد شـده) در خروجـی، حـذف سیگنالهای ناخواسته، حذف فرکانس تصویر و تطبیق امپدانسی دهانهها (بهویژه در میکسرهای فعال) از سایر مشخصاتی است که در طراحی میکسر مورد نظر است. نخستین گـام در طراحـی میکسـر، انتخـاب مناسب عنصر غیرخطی برای داشتن عملکرد مناسب در باند فرکانسی مورد نظر است.

1 Down Convert 2 Up Convert
28
بر همین اساس برای طراحی و ساخت میکسر در باند فرکانسی خـاص و بـا مشخصـات مطلـوب، ملاحظات تئوری و عملی زیادی باید در نظرگرفته شوند.
4-2 عملکرد میکسر
هرگاه یک سیگنال سینوسی به ورودی یک مدار خطی اعمال شـود شـکل مـوج خروجـی شـبیه شکل مـوج ورودی خواهـد بـود، ولـی اگـر سـیگنال سینوسـی بـه یـک مـدار غیـر خطـی اعمـال شـود هارمونیک های ورودی در خروجی ظاهر می شوند. حال اگر دو سیگنال بـا فرکـانس هـای f1,f2 بـه ورودی یک مدار غیر خطی اعمال شوند نه تنها هارمونیک های هریک از فرکانس های بلکه هارمونیک های دیگـری به شکل m) mf1+nf2وn اعداد صحیح هستند) در خروجی خواهیم داشت.
مشخصه ی یک مدار غیر خطی را با اسـتفاده از تـوان سـری بـه صـورت رابطـهی 12-2 در نظـر میگیریم:
رابطهی 12-2
با فرض ورودی V=V1+V2 خواهیم داشت:
رابطهی 13-2
از بسط رابطهی 13-2 میتوان نوشت:
رابطهی
14-2 3 3 2 در رابطـهی 14-2، V1m تولیـد کننـدهی فرکـانس mf1 و V2n تولیدکننـدهی فرکـانس nf2 و V1mV2n تولیدکنندهی فرکانسهای mf1+nf2 هستند. با توجـه بـه روابـط بـالا معلـوم اسـت کـه یـک مشخصهی غیرخطی میتواند فرکانس های خیلی زیادی تولید کند، که در تحلیل کلی دو دسـته فرکـانس خواهیم داشت، یکی از هارمونیکهای دو فرکانس اعمال شـده و دیگـری یـک دسـته مجمـوع و تفاضـل هارمونیکهای فرکانسهای اعمال شده است.
1-4-2 میکسر به عنوان یک ضرب کننده
به طور کلی میتوان یک میکسر را به عنوان یک ضربکننده در نظرگرفت. (شکل (8-2

شکل 8-2 میکسر به عنوان یک ضرب کننده [3]
29
در این شکل یک ضربکنندهی ایدهآل با دو ورودی RF و LO دیده میشود شامل یـک Tone
حامل در فرکانس ωRF و یک شکل موج مدوله شدهARF 1 میباشد، ورودی دیگری که بـه دهانـهی LO
اعمال میشود یک سینوسی خالص در فرکانس ωLO است.
با ضرب دو سیگنال سینوسی و تبدیل آن به مجموع دو سینوسی که یکی حاصل جمع و دیگری تفاضل دو فرکانس را میدهد، فرکانس مجموع را فیلتر کرده و فقط سیگنال تفاضـل بـاقی مـیمانـد کـه حاصل مخلوط کردن دو فرکانس میباشد، در واقع سیگنال خارج شده از فیلتر شکل موج ARF است کـه اکنون بر Tone حاصل دو فرکانس ωRF-ωLO سوار میباشد.
اگرچه ضربکنندهی ایدهآل دردسترس نیست اما هر عنصـر غیـر خطـی دارای خاصـیت ضـرب کنندهگی است. عملکرد عناصر غیرخطی از آن جهت با ضربکنندهی ایدهآل متفاوت است که این عناصر هارمونیکهای مختلف RF و LO و ترکیب آنها را تولید کرده و خروجیهایی با این هارمونیکها ایجـاد میکنند، حال اگر ورودی مدوله شده ی RF از ورودی غیر مدوله شدهی LO خیلی کوچکتـر باشـد کـه در عمل چنین نیز هست خروجی میکسر شامل ترم های فرکانسی زیر است:
ωn =ωRF+nωLO
پس در خروجی IF فرکانس ωRF به علاوه ی هارمونیکهای مختلف LO را خواهیم داشـت کـه خروجی دلخواه بهوسیلهی فیلتر در دسترس خواهد بود.
2-4-2 عملکرد میکسر به کمک یک سوئیچ
میکسر را میتوان به عنوان یک سوییچ نیز مطرح نمود که با فرکانس LO قطع و وصل میگردد.
شکل 9-2 یک میکسر با ساختار تکی2 را نشان میدهد که به صورت یک سوئیچ مدل شده است.
سیگنال IF حاصلضرب سیگنال RF در شکل موج سوئیچ شدهی S(t) میباشد. در برخی مـوارد ممکـن است شکل موج سوئیچ شده دارای زمان قطع و وصل% 50 3 نباشـد، بـه هرحـال همـهی هارمونیـکهـای فرکانس اصلی به علاوهی یک جـزء DC حاصـل مـیشـود. بنـابراین سـیگنال IF شـامل تعـداد زیـادی هارمونیکهای ناخواسته میباشد که با فیلتر کردن میتوان آنها را جدا ساخت.

1 Modulation Waveform 2 Single ended 3 Duty Cycle
30

شکل 9- 2 میکسر با ساختار تکی
شکل 10-2 نشان دهندهی نوع دیگری از ساختار میکسر است که به آن سـاختار متـوازن تکـی1 گفته میشود، که با استفاده از شکل موج دیگری برای S(t) مدل شدهاست.
در اینجا بهجای قطع و وصل سادهی سیگنال RF قطبهای مثبت و منفی سیگنال بـا فرکـانس سوئیچینگ LO عوض میشوند. مزیت اصلی این حالت حذف ترم DC در شکل موج S(t) اسـت (البتـه به شرط آنکه Duty Cycle، %50 داشته باشیم) و به تبع آن، دیگـر در طیـف خروجـی IF از فرکـانس
RF اثری نخواهد بود، در نتیجه یک ایزولاسیون ذاتی بین دریچههای RF و LO وجـود خواهـد داشـت
.[8]

شکل 10-2 میکسر با ساختار متوازن تکی

1 Single Balanced
31
.3 فصل سوم: بررسی میکسرهای توزیع شدهی
فراپهن باند
32
1-3 مقدمه
توپولوژی توزیع شده در ترکیب خطوط انتقال1 در ابتدا توسط گینزتون2 پیشنهاد شد.[11] به علـت عـدم پیشرفت تکنولوژی در طراحی و ساخت مدارت توزیع شده، اسـتفاده از ایـن مـدارات بـرای مـدت زیـادی متوقف شد. این مدارات دوباره در سال 1980 با پروسههای مختلفی شروع شد که از جمله آنها GsAs و
اخیراً تکنولوژی CMOS را میتوان نام برد. شروع دوباره به کارگیری مدارات توزیع شده اساساً ناشـی از قابلیت طراحی خطوط انتقال روی تراشه3 و سلفهای high-Q بود.
شکل 1-3 بلوک دیاگرام کلی شامل خطوط انتقال و طبقات بهره که روی خطوط انتقال توزیـع شـدهانـد، میباشد که هر طبقه میتواند یک ساختار مشخص میکسر در تکنولوژی دوقطبی4 باشـد. خطـوط انتقـال نیز میتوانند مطابق شکل (a)1-3 توسط موجبرهای هم محور یا مطابق شـکل (b) 1-3 توسـط مـدارات
LC تحقق یابند. در این شکل Ci خازنهای پارازیتی ورودی طبقه به اضـافهی همـه خـازنهـای خـارجی میباشد. همچنین Co خازنهای پارازیتی خروجی طبقات به اضافهی همه خازنهای خارجی میباشد.

شکل 1-3 بلوک دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی[11]
یکی از مشخصات بارز مدارات مجتمع این است که خطوط انتقـال روی تراشـه را بـرای افـزایش پهنای باند به کار میگیرند. در حوزهی فرکانس، خازنهای پارازیتی ترانزیستورها که در شـکل 1-3 دیـده می شود، جذب ثابتهای خطوط انتقال میشوند. بنابراین پهنای باند مدار توسـط فرکـانس قطـع خطـوط انتقال تعیین میشود.

1 Transmission Line 2 Ginzton 3 On chip 4 bipolar
33
نکتهی مهم در خصوص توپولوژی توزیع شده در مقایسه با سایر توپولوژیها، توان مصرفی بـالا و سطح اشغالی زیاد آنها است. توان مصرفی و سطح اشغالی با افزایش تعداد طبقات زیاد میشوند. بهتـرین راه، ایجاد مصالحه بین توان مصرفی و حاصلضرب بهره در پهنای باند یعنی 1GBW میباشد.
توان مصرفی مدارات توزیع شده با n طبقه، n برابر توان مصـرفی یـک مـدار یـک طبقـه اسـت.
مدرارت توزیع شده نسبت به مدارات فشرده مصـالحه ی بهتـری بـین تـوان مصـرفی و عـدد نـویز برقـرار میکنند.
2-3 مدارات توزیع شده
در ساختارهای توزیع شده که اخیراً استفاده از آنها در طراحی سیستمهای فـرا پهـن بانـد رشـد چشمگیری داشته است، معمولاً از چند سلول یکسان که بصورت موازی بین دو خط انتقال (بـا امپـدانس ذاتی معادل 50 اهم) ورودی و خروجی قرار گرفتهاند، استفاده می گردد. این خطوط انتقال مجازی کـه در شکل 2-3 ملاحظه می شوند، از مدل T معادل خط انتقال ناشی شده و اساساً دربرگیرندهی تعدادی سلف میباشند که در کنار خازنهای پارازیتیک ترانزیسـتور، تشـکیل خـط انتقـال بـا امپـدانس مـورد نظـر را میدهند .[12]

شکل 2-3 مدل خطوط انتقال مصنوعی
یکی از نکات مهم در استفاده از ساختار توزیع شده، در نظر گرفتن اختلاف فاز بین سیگنالهـای رسیده از هر کدام از سلولها با یکدیگر در خروجی میباشد. بدین معنی که اگر سـاختار توزیـع شـده بـا چهار سلول را به صورت شکل 3-3 در نظر بگیریم، آنگـاه مـثلاً سـیگنال ورودی A1 پـس از طـی مسـیر مشترک L1 به ورودی اولین سـلول رسـیده، سـپس بـا طـی مسـیرهای L4, L3, L2 و L5 بـه خروجـی میرسد. از طرف دیگر سیگنال A2 از مسیر دیگر بـا طـی مسـیر L1 وL2 بـه ورودی سـلول 2 رسـیده و سپس با طی مسیرهای L3 ، L4 و L5 به خروجی میرسد که این مساله به همین نحو برای سایر سلولها نیز ادامه دارد. با توجه به این که سلولها کاملاً یکسان میباشند، بنـابراین بایـد اخـتلاف فـاز طـی شـده

1 gain-bandwidth
34
توسط سیگنال عبوری از هر یک سلولها از ورودی تا خروجی تا حد ممکن یکسان باشد که در غیـر ایـن صورت باعث تاثیر منفی سیگنالهای سلولها بر یکدیگر و کاهش بازدهی از مقدار ایدهآل میشود. به این منظور باید مقادیر سلف های موجود در خط انتقال ورودی و خروجی و خـازنهـای پارازیتیـک بـه نحـوی انتخاب شوند که علاوه بر تامین امپدانس 50 اهم برای رسیدن به ضریب انعکاس قابل قبـول در ورودی و خروجی، بتوانند این هماهنگی در اختلاف فاز را نیز میسر سازند .[11]

شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال
3-3 بررسی عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی
در شکل 4-3 یک سلول گیبرت که به طور گسترده به عنوان میکسر مورد استفاده قرار می گیـرد و یک میکسر با تعادل دوگانه1 است مشاهده می شود. تعادل دوگانه به این مفهـوم کـه اگـر فقـط یکـی از سیگنال های ورودی یا LO اعمال شود، خروجی به طور ایـده آل صـفر مـی گـردد. در ایـن تحلیـل فـرض می کنیم که سیگنال خروجی به طور ایده آل هیچ جزئی در فرکانس LO و هارمونیـک هـایش نـدارد، کـه وجود ایزولاسیون بالای پورت به پوررت بین پایانه های ورودی، LO و خروجـی ایـن خواسـته را بـرآورده می کند. سلول گیلبرت شامل طبقهی ترارسانایی یا راهانداز، که یک جفت دیفرانسـیلی اسـت کـه در یـک نقطه کار ثابت بایاس شده است، دو جفت سوئیچ که با سیگنال قوی LO راه می افتند و بارهای مقـاومتی یا مدارات تانک در خروجی است.
رابطهی 1- 3 I I I I IO IO
1 Double Balanced
35

شکل 4-3 میکسر گیلبرت CMOS
نصف سلول گیلبرت خودش یک میکسر تک بالانس است که در شکل 5-3 نمـایش داده شـده و بدین گونه درنظر گرفتن آن، به تحلیل مدار کمک میکند.

شکل 5-3 یک میکسر فعال CMOS با تعادل تکی
هنگامی که ولتاژ ac سیگنال بزرگ به سوئیچ ها اعمال می شـود، بایـاس M1 و M2 ثابـت نیسـت ولی به صورت متناوب با زمان تغییر می کند. وقتی ولتاژ دیفرانسیلی بزرگتر از مقدار مطمـئن Vx، کـه در شکل 6-3 آمده، بین گیت های ترانزیستورها اعمال می شود یکی از آن ها خـاموش مـی شـود، ولـی وقتـی مقدار مطلق ولتاژ لحظه ای VLO کمتر از Vx باشد، جریان طبقه ی راه انداز بین دو قطعه تقسیم می شـود.
میخواهیم جریان درین هر ترانزیستور را برای یک مقدار VLO و جریان بایاس طبقهی راهانداز بدانیم.
رابطهی 2- 3 V k VG V 36 ID 1 θ VGS
در رابطــهی 2-3 کــه رابطــهی جریــان-ولتــاژ ترانزیســتور MOS کانــال کوتــاه مــیباشــد،
θ فــــــــاکتور تنــــــــزل1 قابلیــــــــت حرکــــــــت میــــــــدان نرمــــــــال و k برابــــــــر است .[13]
ترانزیستور M3 را با یک منبع جریان ایده آل مدل می کنیم و فرض می کنیم ترانزیستورهای M1
و M2 در ناحیه ی اشباع باقی مـی ماننـد. در قسـمتی از دوره تنـاوب LO کـه ایـن ترانزیسـتورها روشـن هستند، رفتار سیگنال بزرگ جفت سوئیچها با روابط زیر مدل بیان میشود.
رابطهی 3- 3 I V VGS k V V VGS k و V 1 θ VGS 1 θ VGS IB رابطهی 4- 3 - نرمال میکنیم. GS که جریان و ولتاژ VLO را به صورت رابطهی 5 3 VLO VGS رابطهی -5-3 - θVLO - ULO IB- θ JB و در نتیجه رابطهی 3 3 و رابطهی 4 3 به صورت رابطهی 6 3 و رابطهی 7 3 درkمیآیند. و رابطهی 6- 3 JB U U 1 U U 1 رابطهی 7- 3
هنگامیکه همهی جریان بایاس از M1 میگذرد داریم:
JB 4 2 θ
رابطهی 8- 3 JB JB
gm ترانزیستورها نیاز می شود و می تواند از مشتق I نسبت به V یا در فرم نرمال شده می تواند از مشتق J نسبت به U محاسبه شود. رفتار جفت سوئیچ ها از Vt مستقل است و این به ما اجازه میدهد که gmbs را حذف کنیم. اگر از اثر خازنی صرفه نظر شود جریان خروجی میکسـر تـک بـالانس (شـکل (5-3
تابعی از ولتاژ پیوستهی LO و جریان طبقهی راهانداز است.
رابطهی 9- 3 , I I IO بسط اول تیلور رابطهی 9-3، رابطهی 10-3 را نتیجه میدهد:
رابطهی 10-3 . , , IO که میتوان آنرا به صورت زیر نوشت:

1 Degeneration
37
رابطهی 11-3 . در رابطهی p0(t) 11-3 و p1(t) توابع پریودیک هستند که در شکل 6-3 ملاحظه میشوند.

شکل 6-3 شکل موجهای p0(t) و p1(t)
در ساختار دوبل بالانس با تطبیق خوب تابع p0(t) حذف میشود.
در فاصله زمانی که -Vx<VLO<Vx است هر دو ترانزیستور سوئیچ روشن هسـتند و p0(t) و p1(t) به VLO و IB و مشخصات I-V ترانزیستورها وابستهاند. جریان سیگنال کوچـک در هـر شـاخه بـه وسیلهی تقسیم جریان تعیین میشود و به صورت رابطهی 12-3 دیده میشود .[14]
رابطهی 12-3

مطابق رابطهی 11-3 یک جزء سیگنال is(t) که آن را با x(t) نشان مـی دهـیم، در شـکل مـوج
p1(t) ضرب میشود پس طیف فرکانسی خروجی به صورت رابطهی 13-3 در میآید.
رابطهی 13-3 , که fLO فرکانس LO، p1,n سری فوریه ی p1(t) و X(f) طیف فرکانسی x(t) است. p1(t) فقط مولفههای فرکانسی فرد را دارا میباشد. (p1(t)= -p1(t+TLO/2)) توجه کنیم که ترمهای شـامل n=1
یا n=-1 بهره را معرفی می کنند و در این صورت رابطهی 14-3 بهره ی تبدیل جفت سوئیچ ها به تنهـایی را نشان میدهد.
رابطهی 14-3 , | . | 38
از آنجاییکه x(t)=gm3vin(t) که در آن vin(t) سیگنال ولتاژ ورودی در گیت ترانزیستور M3 و
gm3 ترارسانایی ترانزیستور M3 است، بهره ی تبدیل میکسر تک بالانس در فرم ترارسانایی رابطهی 15-3
است.
رابطهی g .15-3
برای دامنه های بزرگ LO، p1(t) به صورت مـوج مربعـی درمـی آیـد و c بـه 2/π مـیرسـد. در
شرایطی که VO>Vx است یعنی حالتی که برای کارکرد میکسر لازم است و بـا فـرض p1(t) یـک خـط مستقیم رابطهی 16-3 به عنوان تقریب خوبی برای c حاصل میشود .[14]
2 sin ∆
رابطهی 16-3


و برای LO سینوسی داریم: πΔfLO=arcsin(Vx/VO)
4-3 میکسر سلول گیلبرت توزیع شده
میکسر سلول گیلبرت توزیع شده تعداد یکسانی از ایـن میکسـرها مـی باشـد، کـه ترمینـالهـای ورودی و خروجی هر میکسر به نقاط اتصال وسط1 خطوط انتقال مصنوعی وصل شده است. اگر ثابت فـاز خطوط انتقال مصنوعی به درستی طراحی شده باشد خروجی IF هر سلول با سایر اجزاء IF کـه از سـایر سلولها میآیند هم فاز2 خواهد بود. این میکسر به یک بهرهی تبدیل بهتر در طول رنج فرکانسی پهـن در مقایسه با میکسر گیلبرت متداول دست مییابد.
مدارات با خطوط انتقال تاخیر انتشار را فدای پهنای باند سیگنال می کنند، در سیستم هـای بانـد وسیع تاخیر از پهنای باند محدود قابل تحمل تر است زیرا می تواند توسط مدارات پیشبینی تاخیر کالیبره گردد، که استفاده از مدارات توزیع شده در این کاربرد را توجیح مـی کنـد. پهنـای بانـد ایـن مـدارات بـه خصوص در پورت های RF و LO توسط ثابت زمانی RC محدود می شود. در حوزه ی فرکانس، یک منبع محدودیت پهنای باند در مدارات آنالوگ متداول، هنگامیکه فرکانس افزایش مـییابـد افـت در امپـدانس ورودی مدار است. در یک مدار توزیع شده که از شبکهی نردبانی LC بـرای بهبـود پهنـای بانـد اسـتفاده می شود، خازن ورودی ترانزیستور در داخل خطوط انتقال جذب (کشیده) میشود، از اینرو تـا زمـانیکـه فرکانس قطع خطوط انتقال نزدیک شود امپدانس ورودی و پهنای باند تا یک درجهی مطمئن ثابت بـاقی میمانند.
در اثر استفاده از خطوط انتقال مصنوعی بهبود تخت بودن بهره به دست میآید، هرچند طبیعـت مکانیسم اضافه کردن سلف در توپولوژی توزیع شده بهرهی تبدیل میکسر فعال را کاهش میدهد.

tap point in-phase

1
2
39
1-4-3 بهرهی تبدیل
با فرض رفتار سوئیچ جریان ایده آل برای طبقه ی سوئیچ جریان تفاضـلی خروجـی مـی توانـد بـه عنوان نتیجه ی ضرب جریان درین M1 با یک موج مربعی با دامنه ی واحد در نظر گرفته شود. هنگامی که دامنه ی جزء اصلی موج مربعی 4/π برابر دامنه ی موج مربعی است، ترارسـانایی کـل بـه صـورت رابطـهی
17-3 بیان میشود. در این رابطه 2/π به جای 4/π آمـده اسـت زیـرا سـیگنال IF بـین اجـزا مجمـوع و
تفاضل به طور مساوی تقسیم میشود .[15]
2
رابطهی G πg17-3
حال برای میکسر توزیع شده با n سلول بیشترین بهره ی تبدیل به صورت رابطهی 18-3 تعریـف
میشود.
رابطهی 18-3

برای افزایش بهره ی تبدیل می توان تعداد طبقات n، یا ترارسانایی gmRF را افزایش داد که هر دو موجب مصرف توان اضافی می شوند. راه دیگر افزایش ZIF است هنگامی که فرکانس قطع خـط انتقـال IF
) ) حفظ شود. شکل 7-3 مدار معادل خطوط انتقال IF را نشان می دهد که i2 تا
in مدل تاخیری i1 هستند .[11]

شکل 7-3 مدار معادل خط انتقال
2-4-3 تکنیک تزریق جریان
از رابطهی 18-3 نتیجه می شود که بهره ی تبدیل میکسر گیلبرت قویاً به بارهای مقاومتی وابسته است و برای بهره ی تبدیل بالا، مقاومت بار بزرگ نیاز است. با توجه به شکل 8-3، برای یـک جریـان ISS

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

مشخص خطی بودن میکسر ناشی از اضافه ولتاژ افت کرده روی RL رو به کاهش میگذارد. با ایجـاد یـک مسیر جریان بای پس IB جریان بایاس از مسیر RL به طور موثری کاهش می یابـد، هنگـامی کـه جریـان
DC کافی برای طبقهی ترارسانایی حفظ میشود.
40

شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان
تزریق جریان با یک مقاومت موازی یا منبع جریان فعال پیاده سازی میشود. برای تقویت بیشـتر ترارسانایی برای بهره ی تبدیل کمکی بدون مصرف جریان اضافی، یـک توپولـوژی تزریـق جریـان بـا یـک طبقه ی ترارسانایی مکمل که در شکل 9-3 ملاحظه می شود به کـار مـی بـریم. در ایـن توپولـوژی جفـت تفاضلی pMOS با ترارسانایی ورودی ترکیب شده اند. با انتخاب نسبت جریـان طبقـات مکمـل ماننـد α بهرهی تبدیل توسط رابطهی 19-3 داده میشود .[12]
αISS L µ C L I SS µ C CG 2 π RL
رابطهی 19-3 W W
شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل
می خواهیم خطی بودن مدار جدید را بررسی کنیم. معادله ی جریان سیگنال کوچک دریـن را بـه صورت رابطهی 20-3 مینویسیم:
رابطهی 20-3
41
و اگر -VOD VGS‐Vt باشد، آنگاه رابطهی 21-3 تا رابطهی 23-3را برای ضرایب g داریم. رابطهی 21 3 kVOD 2 θVOD ∂ID و θVOD 1 ∂VGS رابطهی 22-3 k 1 ∂ ID 1 و θVOD 2!∂VGS رابطهی 23-3 kθ 1 ∂ ID 1 θVOD 3!∂VGS بر اساس روابط بالا اینترمدولاسیونهای مرتبهی دوم و سوم به صورت زیر تعریف میشوند .[16]
رابطهی , ,24- 3

,,
رابطهی , ,25- 3

,,

4

3
از رابطهی 24-3 واضح است که با تکنیک تزریق جریان پیشنهادی بـرای میکسـر IIP2 بزرگتـر به دست می آید. هرچند به هرحال در نتیجه ی استفاده از طبقه ی ترارسانایی pMOS، IIP3 ممکن است کاهش یابد. بنابراین تعامل بین IIP3 و CG برای کارایی بهتر میکسر بایستی به دست آید.
3-4-3 تکنیک پیکینگ سلفی1
محدودیت دیگر پهنای باند کاری میکسر بانـد وسـیع خـازن هـای پـارازیتی در گـره ی خروجـی طبقه ی ترارسانایی هستند مخصوصاً وقتی که تکنیک تزریق جریان برای بالا بردن بهره استفاده می شـود.
یک مدل مدار ساده که در شکل (a)10-3 ملاحظه می شود برای تحلیل به کار رفته و تابع رابطهی 26-3
بهدست میآید.
رابطهی 26-3

1

1 Inductive Peaking
42

شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری
برای کم کردن تاثیر قطب فرکانس پایین اضافی در پهنای باند کـاری میکسـر تکنیـک پیکینـگ سری که در اصل برای تقویت کننده های باند وسیع ایجاد شده به کار می رود. شکل (b)10-3 یـک مـدل ساده ی پیکینگ سلفی سری را نشان می دهد. اعمال یک سلف سری Lm بین طبقات ترارسانایی و سوئیچ برای جداکردن خازن های پارازیتی، با وارد کردن یک شبکه ی غیر فعال بـا مشخصـات پهـن بانـد صـورت میگیرد.

شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شبکهی پسیو اضافه شده برای ایزوله کردن خازنهای
پارازیتی (c) پیاده سازی این شبکه با سلف
یک شبکه ی دو پورتی غیر فعال می تواند بین اجزاء ترانزیسـتور (R1,C1) و بـار (R2,C2) بـرای افزایش پهنای باند وارد شود(شکل .((b)11-3 اگر GBW1 شکل (a)11- 3 با رابطهی 27-3 بیان شود.
رابطهی 27-3

2

1 Gain-Bandwidth
43
GBW برای شکل (b)11-3 یا (c) که شبکه ی غیـر فعـال اعمـال شـده و در نتیجـه C1 تنهـا خازنی است که در پورت ورودی شبکه روی GBW اثر دارد، بنابراین برای این حالت GBW با رابطهی
28-3 محاسبه میشود .[17]
g
رابطهی GBW28-3
π
ملاحظه میشود که این تکنیک پهنای باند مدار را به طور قابل ملاحظهای افزایش میدهد.
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده
در این قسمت شماتیک مدار چندین ساختار میکسر پهن باند، که از بـه روزتـرین سـاختارها بـه شمار میروند، مرور شده است. در پایان بخش، این ساختارها از لحاظ فرکانس کار، بهـره ی تبـدیل، عـدد نویز و خطی بودن در یک جدول مقایسه شدهاند.
1-5-3 ساختار میکسر [18] 1
شماتیک مدار در شکل 12-3 دیده میشود. در طراحـی ایـن میکسـر از توپولـوژی توزیـع شـده استفاده شده و تعداد طبقات به طور دلخواه چهار انتخاب شده است. هر سلول یـک میکسـر تـک بـالانس است. ترانزیستورهای طبقه ی ترارسانایی (M31-M34) به طور یکسان تطبیق یافتـهانـد. در ایـن میکسـر خطوط انتقال مصنوعی در طول خطوط LO,RF وIF با شبکه ی نردبانی LC تحقق یافتهاند، که سلفها با استفاده از ماپیچهای داخل چیپ اجرا شدهاند و خازنها، خـازنهـای پـارازیتی ترانزیسـتورهای MOS
هستند که به خطوط تاخیر LC متصل شدهاند، امپدانس بار با امپدانس مشخصـه ی خطـوط تـاخیر LC
تطبیق یافتهاند.
پارامترهای بهره، عدد نویز، IIP3 این مدار در جدول 1-3 آمده است.

payanneme

۴‐١‐ از تبدیل فوریه تا تبدیل موجک.................................................................................................... ٢٨
۴‐٢‐ سه نوع تبدیل موجک................................................................................................................... ٣٣
۴‐٢‐١‐تبدیل موجک پیوسته............................................................................................................ ٣٣
۴‐٢‐٢‐ تبدیل موجک نیمه گسسته.................................................................................................. ٣۵
۴‐٣‐ انتخاب نوع تبدیل موجک......................................................................................................... ۷۳
۴‐۴‐ آنالیز مالتی رزولوشن و الگریتم DWT سریع ........................................................................... ۷۳
۴‐۴‐١‐ آنالیز مالتی رزولوشن ....................................................................................................... ٣٧
۴‐۵‐ زبان پردازش سیگنالی ............................................................................................................... ۴٠
۴‐۶‐ شبکه عصبی .............................................................................................................................. ۴۵
۴‐۶‐١‐ مقدمه .................................................................................................................................. ۴۵
۴‐۶‐٢‐ یادگیری رقابتی................................................................................................................. ۴۶
۴‐۶‐٢‐١‐روش یادگیری کوهنن ................................................................................................. ۴٧
۴‐۶‐٢‐٢‐ روش یادگیری بایاس .................................................................................................. ۴٨
۴‐٧‐ نگاشت های خود سازمانده ..................................................................................................... ۵٠
۴‐٨‐ شبکه یادگیری کوانتیزه کننده برداری ...................................................................................... ۵٢
۴‐٨‐١‐ روش یادگیری ................................................................................................... LVQ1 ۵٣
۴‐٨‐٢‐ روش یادگیری تکمیلی..................................................................................................... ۵۵
۴‐٩‐ مقایسه شبکه های رقابتی ........................................................................................................ ۵۵
فصل پنجم: جمعآوری اطلاعات ................................................................................................ ۵٧
۵‐١‐ نحوه بدست آوردن سیگنالها......................................................................................................... ۵٨
۵ ‐١‐١‐ بدست آوردن سیگنالهای فرورزونانس................................................................................. ۵٨
۵‐١‐٢‐ انواع کلیدزنیها و انواع سیم بندی در ترانسفورماتورها............................................................. ۵٩
۵ ‐١‐٣‐ اثر بار بر فرورزونانس .......................................................................................................... ۶۴
۵ ‐١‐۴‐ اثر طول خط......................................................................................................................... ۶۵
۵‐١‐۵‐ بدست آوردن سیگنالهای سایر حالات گذرا............................................................................. ۶۶
فصل ششم: پیاده سازی الگوریتم و نتایج شبیه سازی .............................................................. ٧۴
۶‐١‐ مقدمه ........................................................................................................................................ ٧۵
۶‐٢‐ تعیین کلاسها و تعداد الگوهای هر کلاس ................................................................................ ٧۵
۶‐٣‐ اعمال تبدیل موجک و استخراج ویژگیها ................................................................................. ٧۵
۶‐۴‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی ................................................................LVQ ٨١
۶‐۵‐ پیاده سازی الگوریتم با استفاده از شبکه عصبی رقابتی.............................................................. ٨٨
فصل هفتم: نتیجه گیری و پیشنهادات........................................................................................ ٩۵
٧‐١‐ نتیجه گیری................................................................................................................................ ٩۶
٧‐٢‐ پیشنهادات ................................................................................................................................. ٩٨
فهرست منابع........................................................................................................................... ١٠٠
فهرست جدولها عنوان صفحه
جدول ۵‐۲. اطلاعات بارها ................................................................................................ ........................ ۹۵
جدول۵‐۳.مشخصات ترانسفورماتورها ....................................................................................................... ۹۵
جدول۶‐۱ در صد تشخیص شبکه LVQ با موجک ............................................................................ Db ۴۸
جدول ۶‐۲ در صد تشخیص شبکه LVQ با موجک ....................................................................... dmey ۴۸
جدول ۶‐۳ در صد تشخیص شبکه LVQ با موجک ....................................................................... haar ۵۸
جدول۶‐۴ در صد تشخیص شبکه رقابتی با موجک ............................................................................ Db ۱۹
جدول ۶‐۵ در صد تشخیص شبکه رقابتی با موجک ..................................................................... dmey ۱۹
جدول ۶‐۶ در صد تشخیص شبکه رقابتی با موجک ....................................................................... haar ۲۹
فهرست شکلها عنوان صفحه
۱‐۳. مدار معادل پدیده فرورزونانس............................................................................................................ ۰۲
۲‐۳ حل ترسیمی مدار LC غیر خطی.......................................................................................................... ۱۲
۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس............................................................................. ۹۲

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. ................................................................................................ ۱۳
۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس زمان....................... ۳۳
۴‐۴‐ تشریح CWT طبق معادله۴ ................................................................................................................ ۴۳
۴‐۵ مثالی از آنالیزموجک پیوسته. در بالا سیگنال مورد نظر نمایش داده شده است. ............................... ۵۳
۴‐۶ طرح الگوریتم کد کردن زیر باند ......................................................................................................... ۱۴
۴‐۷ نمایش تجزیه توسط موجک................................................................................................................. ۳۴
۴‐۸ مثالیاز تجزیه .DWT سیگنال اصلی، سیگنال تقریب (AP) وسیگنالهای جزئیات CD1) تا ..................................................................................................................................................... (CD6 ۴۴
۴‐۹ معماری شبکه رقابتی............................................................................................................................ ۶۴
۴‐ ۰۱نمایش همسایگی................................................................................................................................ ۱۵
۴‐۱۱ معماری شبکه ......................................................................................................................... LVQ ۲۵
۵‐۱. فیدر .......................................................................................................................................... 20kV ۸۵
۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۹۵
۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۹۵
۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۰۶
۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۰۶
۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز.......................................................................................... ۱۶
۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز.......................................................................................... ۱۶
۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۱۶
۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۱۶
۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۲۶
۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۲۶
۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز ................................................................................... ۲۶
۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز........................................................................................ ۳۶
۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز........................................................................................ ۳۶
۵‐۸۱ ولتاﮊ ثانویه فاز a در اثر افزایش بار................................................................................................ ...۴۶
۵‐۹۱ ولتاﮊ ثانویه فاز a در اثر قطع تعدادی از بارها ................................ ...................................................۶۴
۵‐۰۲ ولتاﮊ فاز a ثانویه ترانس با کاهش طول خط................................ ......................................................۶۵
۵‐۱۲.ولتاﮊ فاز a ثانویه ترانس با افزایش طول خط................................ .....................................................۵۶
۵‐۲۲.پیکربندی فازها و اطلاعات مکانیکی................................................................ .................................۷۶
۵‐٢٣مدل فرکانسی بار CIGRE در ................................................................ EMTP ...............................۷۶
۵‐٢۴یک نمونه از منحنی مغناطیس شوندگی ترانسفورماتورها................................ ....................................٧٠
۵‐۵۲ . سه نمونه از سیگنالهای کلیدزنی خازنی................................................................ ...........................۰۷
۵‐۶۲. سه نمونه از سیگنالهای کلیدزنی بار ................................................................ ..................................۱۷
۵‐۷۲. سه نمونه از سیگنالهای کلیدزنی ترانسفورماتور ................................ ...............................................۱۷
۶ ‐۸ یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1 تا (CD6 با
استفاده از تبدیل موجک ................................................................ Daubechies ....................................۸۷
۶‐۹. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Daubechies .................................۸۷
۶‐۰۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................Daubechies .................................................۸۷
۶‐۱۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا
(CD6 با استفاده از تبدیل موجک ................................................................ Daubechies .....................۸۷
۶‐۲۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................ Haar .............................۹۷
۶‐۳۱. یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ Haar .................................................۹۷
۶‐۴۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با استفاده از
تبدیل موجک ................................................................................................ Haar .................................۹۷
۶‐۵۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ Haar .............................................۹۷
۶‐۶۱یک الگوی فرورزونانس، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۷۱یک الگوی کلیدزنی خازنی، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6 با
استفاده از تبدیل موجک ................................................................ DMeyer ...........................................۰۸
۶‐۸۱ یک الگوی کلیدزنی بار، سیگنال تقریب((AP و سیگنالهایجزئیات(CD1تا (CD6 با استفاده
از تبدیل موجک ................................................................................................DMeyer ........................۰۸
۶‐۹۱یک الگوی کلیدزنی ترانسفورماتور، سیگنال تقریب((AP و سیگنالهای جزئیات(CD1تا (CD6
با استفاده از تبدیل موجک ................................................................ DMeyer ........................................۰۸
۶‐۰۲ الگوریتم ارائه شده ................................................................................................ ............................۱۸
۶‐۱۲‐ انرﮊی لحظه ای یک نمونه از جریان فاز دوم سیگنالها......................................................................۶۸
۶‐۲۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها........................................................................۶۸
۶‐۳۲ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies1 بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده...........................................۷۸
۶‐۴۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده..............................................۷۸
۶‐۵۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک 1
Daubechies بر روی جریان فاز دوم چهار سیگنال بصورت نرمالیزه شده. ............................................۲۹
۶‐۶۲‐ مقایسه میانگین مولفه های متناظر بردارهای ویژگی استخراج شده توسط تبدیل موجک
Daubechies2 بر روی ولتاﮊ فازسوم چهار سیگنال بصورت نرمالیزه شده ............................................۳۹
۶‐۷۲‐ انرﮊی لحظه ای یک نمونه از ولتاﮊ فاز سوم سیگنالها ......................................................................۳۹
۶‐۸۲‐ انرﮊی لحظه ای یک نمونه از جریان فازدوم سیگنالها ......................................................................۴۹
چکیده
یکــی از عوامــل ســوختن و خرابــی ترانــسفورماتورها در سیــستم هــای قــدرت، وقــوع پدیــده
فرورزونانس است. با توجه به اثرات مخرب این پدیده، تشخیص آن از سایر پدیده هـای گـذرا از
اهمیت ویژه ای برخوردار است که در این پایان نامه کارکرد دو شـبکه عـصبی یـادگیری کـوانتیزه
کننده برداری((LVQ١ و شبکه عصبی رقابتی در دسته بندی دو دسته سیگنال کـه دسـته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشد، با استفاده از ویژگیهای استخراج شده توسط تبدیل موجک٢ خانواده Daubechies تا شش
سطح مورد بررسی قرار گرفته است. نقش شبکه های عصبی مذکور بعنـوان طبقـه بنـدی کننـده،
جدا سازی پدیده فرورزونانس از سایر پدیده های گذرا است. سیگنالهای مذکور بـا شـبیه سـازی
توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی بدست آمده اند. بـرای اسـتخراج ویژگیهـا،
کلیه موجکهای موجود در جعبه ابزار Wavelet نرم افزار MATLAB بررسی شده اسـت کـه تبـدیل
موجک خانواده Daubechies بعنوان مناسبترین موجک تشخیص داده شد. به منظـور اسـتخراج هـر
چه بهتر ویژگیها سیگنالها، الگوها نرمالیزه (مقیاسبنـدی) شـدهانـد سـپس انـرﮊی شـش سـیگنال
جزئیات حاصل از اعمال تبدیل موجک به عنوان ویژگیهای استخراج شده از الگوها، برای آموزش
و امتحان دو شبکه عصبی مذکور بکار رفتهاست. به کمک این الگوریتم تفسیر برخـی از رخـدادها
که احتمال بروز پدیده فرورزونانس در آنها وجود دارد قابل انجام بوده، همچنین میتوان نسبت بـه
ساخت رله هایی برای مقابله با پدیده فرورزونانس کمک نماید. عناوین روشهای ارایه شده در این
پایان نامه به شرح زیر میباشند:

1 -Learning Vector Quantizer (LVQ)
2- Wavelet Transform
١) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی LVQ
٢) شناسایی فرورزونانس با استفاده از تبدیل موجک و شبکه عصبی رقابتی
نتایج حاصل از این روشها بیانگر موفقیت بسیار هر دو روش در شناسـایی فرورزونـانس از سـایر
پدیده های گذرا می باشد.
کلید واﮊه: شبکه عصبی LVQ، شبکه عصبی رقابتی، تبدیل موجک، پدیده فرورزونانس, نـرم
افزار EMTP ، نرم افزار MATLAB

١
مقدمه
امروزه انرﮊی الکتریکی نقش عمدهای در زمینههای مختلف جوامـع بـشری ایفـا مـیکنـد و جـزﺀ
لاینفک زندگی است. بدیهی است که مانند سایر خـدمات اندیـسها و معیارهـایی جهـت ارزیـابی
کیفیت برق تولید شده مورد توجه قرار گیرد. اما ارزیابی میزان کیفیت برق از دید افراد مختلـف و
در سطوح مختلف سیستم قدرت بکلی متفاوت است. به عنوان مثال شرکتهای توزیع، کیفیت بـرق
مناسب را به قابلیت اطمینان سیستم برقرسانی نسبت میدهنـد و بـا ارائـه آمـار و ارقـام قابلیـت
اطمینان یک فیدر را مثلاﹰ ٩٩% ارزیابی میکنند سازندگان تجهیـزات الکتریکـی بـرق بـا کیفیـت را
ولتاﮊی میدانند که در آن تجهیزات الکتریکی به درسـتی و بـا رانـدمان مطلـوب کـار مـیکننـد و
بنابراین از دید سازندگان آن تجهیزات، مشخصات مطلوب ولتاﮊ شبکه بکلی متفاوت خواهد بـود.
اما آنچه که مسلم است آنست که موضوع کیفیت برق، نهایتـاﹰ بـه مـشترکین و مـصرف کننـدگان
مربوط میشود و بنابراین، تعریف مصرفکنندگان اهمیت بیشتری دارد.
بروز هر گونه اشکال یا اغتشاش در ولتاﮊ، جریان یا فرکانس سیستم قدرت کـه باعـث خرابـی یـا
عدم عملکرد صحیح تجهیزات الکتریکی مشترکین گردد به عنوان یک مشکل در کیفیت برق، تلقی
میگردد.
واضح است که این تعریف نیز از دید مشترکین مختلـف، معـانی متفـاوتی خواهـد داشـت. بـرای
مشترکی که از برق برای گرم کردن بخاری استفاده میکند، وجود هارمونیکها در ولتاﮊ یا انحراف
فرکانس از مقدار نامی هیچ اهمیتی ندارد، در حـالی کـه تغییـر انـدکی در فرکـانس شـبکه، بـرای
مشترکی که فرکانس برق شهر را به عنوان مبنای زمانبندی تجهیزات کنترلی یک سیـستم بـه کـار
گرفته است،میتواند به طور کلی مخرب باشد.
٢
یکی از مواردی که بعنوان یک مشکل در کیفیت برق تلقی می گردد، پدیده فرورزونانس است. در
اثر وقوع این پدیده و اضافه ولتاﮊ و جریان ناشی از آن، موجب داغ شدن و خرابی
ترانسفورماتورهای اندازه گیری و ترانسفورماتور های قدرت می گردد که میتوانند بر حسب
شرایط اولیه، ولتاﮊ و فرکانس تحریک و مقادیر مختلف پارامترهای مدار (کاپاسیتانس وشکل
منحنی مغناطیسی)، مقادیر متفاوتی پیدا کنند، بنابراین بایستی محدودیت هایی بر پارامترهای
سیستم اعمال کرد تا از وقوع چنین پدیده ناخواسته جلوگیری نمود.
با توجه به اهمیت شناسایی پدیده فرورزونانس از سایر حالتهای گذرا دراین پایان نامه تلاش شد
تا سیستمی هوشمند جهت تشخیص این پدیده از سایر حالتهای گذرای کلیدزنی ارائه گردد. در
طراحی این سیستم هوشمند اولاﹰ از جدیدترین روش های تجزیه و تحلیل و پردازش سیگنالهای
الکتریکی برای پردازش دادهها استفاده گردید. ثانیاﹰ از طبقهبندی کنندههای پیشرفته با توانایی بالا
در دستهبندی دادهها بهره گرفته شد. به منظور مقایسه نتایج حاصل از فرورزونانس با سایر
سیگنالهای گذرای شبکه توزیع، تعدادی از حالتهای گذرا نظیر کلیدزنی بار، کلیدزنی خازنی و
کلید زنی ترانسفورماتور توسط نرم افزار EMTP بر روی یک فیدر توزیع واقعی شبیه سازی شد.
در فصل دوم به مروری بر کارهای انجام شده در زمینه پـردازش سـیگنال در سیـستمهای قـدرت
پرداخته، در فصل سوم به معرفی پدیده فرورزونانس خـواهیم پرداخـت. در فـصل چهـارم مبـانی
علمی روشهای پیشنهادی، در فصل پنجم نحوه جمع آوری اطلاعات و سیگنالها بررسی مـی شـود
و درفصل ششم نحوه پیاده سازی روشهای پیشنهادی بررسی مـی شـود و نهایتـا نتیجـه گیـری و
پیشنهادات پایان بخش مطالب خواهند بود.
٣

۴
۲‐۱‐ مقدمه
با دستهبندی دقیق مسائل، همچنین میتوان منابع تولید هر دسته از مشکلات را نیز شناسـایی و در
دستهبندی فوق جـای داد. بـه ایـن ترتیـب پـس از شناسـایی نـوع اغتـشاش از روی پارامترهـای
اندازهگیری شده اقدام برای بهبود کیفیت برق نیز تا حدودی آسانتر خواهد شد. در ضمن میتـوان
اغتشاشهای بوجود آمده در هر دسته را با اندیسها و مشخصههای مربوط به خودش تعریف کرد و
بنابراین توصیف کاملی از انحرافات بوجود آمده در شکل مـوج ولتـاﮊ نـسبت بـه حالـت ایـدهآل
بدست آورد.
به منظور تشخیص پدیده های تصادفی در سیستم های قدرت, سـیگنالهای مختلفـی مـورد توجـه
قرار گرفته اند. از این سیگنالها می توان به سیگنالهای کیفیت توان و سـیگنالهای خطـای امپـدانس
بالا و سیگنالهای فرورزونانس اشاره کرد که در ادامه مـروری بـر روشـهای شناسـایی سـیگنالهای
کیفیت توان و سیگنالهای خطای امپدانس بالا شده است. لازم به ذکر است با توجـه بـه اینکـه در
زمینه شناسایی سیگنالهای فرورزونانس از سایر سیگنالهای گذرا، مقالـه یـا کـار تحقیقـاتی وجـود
ندارد در این پایان نامه روشهای شناسایی این پدیده بررسی شده است.
٢‐٢‐ مروری بر روشهای شناسایی اغتشاشات کیفیت توان
در این بخش قبل از بررسی کامل روشهای گوناگون شناسایی اغتشاشات کیفیت توان لازم دیـدیم
که با توجه به کاربرد وسیع روشهای پردازش سیگنال در بحث کیفیت توان نکات چندی را خـاطر
نشان سازیم. در وهله اول، با توجه به توضیحات قسمت قبل، لزوم جداسازی اغتشاشات و تعیـین
نوع آنها هرچه بیشتر اهمیت مییابد. در ضمن با مرور کارهـای گذشـته و انجـام شـده در بحـث
کیفیت توان روشهای مختلف پردازش سیگنال به صورت عمده در سه بخش زیـر مـورد اسـتفاده
۵
قرار گرفتهاند:
١‐ کاربرد پردازش سیگنال و تکنیکهای آن در فشردهسازی اطلاعات و شکل موجهـا و کـاربرد
آن در کیفیت توان
٢‐ استفاده از تکنیکهای مختلف پردازش سیگنال و سیستمهای خبره در جداسازی اغتشاشات
٣‐ استفاده از تکنیکهای مختلف پردازش سیگنال در تشخیص نوع اغتشاش بوجود آمده
١. سیستمهای هوشمند در طبقهبندی اغتشاشات
در این قسمت تشخیص دو موضوع عمده ضروری است. اول آنکه کدام یک از روشهای پردازش
سیگنال اعم از تبدیل فوریه، موجک و … جهت تجزیه و تحلیل و استخراج ویژگیهای مربوط بـه
هر یک از اغتشاشات به کار گرفته شدهاند و در مرحله دوم دستهبندی کننده موردنظر جـزﺀ کـدام
یک از سیستمهای هوشمند مانند شبکههای عصبی، فازی و … بوده است.
الف) تکنیک مورد استفاده در پردازش شکل موجهای مربوط به اغتشاشات
تکنیکهای مورد استفاده در طبقهبندی اغتشاشات کیفیت توان در چهار دسته زیر قرار می گیرند:
۱. تکنیکهای مطرح شده با استفاده از تبدیل فوریه (FFT, STFT)
٢. تکنیکهای مطرح شده با استفاده از تبدیل موجک (DWT, CWT)
۳. تکنیکهای ترکیبی
۴. تکنیکهای نوین مطرح شده در حوزه پردازش سیگنال
اگر قرار باشد به سراغ کارهای قدیمی در حوزه پردازش سیگنال بـرویم آنگـاه تبـدیل فوریـه بـه
عنوان یک ابزار قوی در این زمینه مطرح میگردد. تبدیل فوریه سریع و تبدیل فوریه زمان کوتاه از
جمله تکنیکهایی هستند که در این قسمت مورد استفاده قرار گرفتهاند] ۱.[
ابزار جدید مطرح شده در حوزه پردازش سـیگنال تبـدیل موجـک مـیباشـد. بـا توجـه بـه آنکـه
۶
تکنیکهای گسسته پردازش سیگنال امروزه فراگیر شدهاند، اکثریت قریب به اتفـاق کارهـای انجـام
شده با استفاده از تبدیل موجک به DWT یا همان تبدیل موجک گسسته برمیگـردد. نمونـه هـای
فراوانی از کاربردهای این تبدیل را در کارهای قبلی می توان مشاهده کرد]۲.[
عدهای از محققان روشهای ترکیبی را جهت استخراج ویژگیهایی اغتـشاشات بـه کـار بـردهانـد. از
جمله این روشها میتوان به ترکیب تبدیل فوریه و تبدیل والش در ]۳[ و ترکیب تبـدیل فوریـه و
موجک در ]۴[ اشاره کرد. از طرفی با پیشرفتهای بدست آمده در حوزه پردازش سـیگنال مـیتـوان
نمونههایی از به کارگیری تبدیلهای جدید مانند S Transform را در بحث طبقهبنـدی اغتـشاشات
درمراجع یافت] ۵.[
آنچه که در تمامی این تحقیقات بیش از همه به چشم می آید عدم وجود یک شـبکه واقعـی اسـت
که نتایج این روشها را همچنان در هالهای از ابهام نگه میدارد.
ب) سیستمهای خبره به کار گرفته شده
تحت عنوان طبقهبندی کننده اغتشاشات کیفیت توان قبل از بـه کـارگیری یـک سیـستم هوشـمند
جهت تشخیص اغتشاشات موردنظر در یک بازه زمانی خاص لازم است ویژگیهایی جهت هر یک
از اغتشاشات استخراج شود. این ویژگیها میتوانند مجموع ضرایب، مجمـوع قـدرمطلق ضـرایب،
ماکزیمم ضرایب، انحراف معیار ضرایب یا هرچیز دیگـر باشـند. در ادامـه ضـمن معرفـی سیـستم
هوشمند در هر تحقیق ویژگیهای استفاده شده در آن تحقیق را بررسی می کنیم.
شبکه های موجک: شبکههای موجک نوع خاصی از شبکههای عصبی مـیباشـند کـه در آنهـا توابع متداول شبکه های عصبی با توابع موجک مادر جایگزین مـیشـوند. ایـن شـبکههـا بـه خصوص در سالهای اخیر توانایی خاصی از خود در تقریب توابع نشان دادهاند. این شـبکههـا به همراه دوره اغتشاشی سیگنال جهت طبقـهبنـدی اغتـشاشات کیفیـت تـوان بـه کـار گرفتـه
٧
شدهاند]۶.[
شبکه های عصبی: شبکههای عصبی مورد اسـتفاده در طبقـهبنـدی اغتـشاشات بیـشتر از نـوع شبکههای عصبی چند لایه پرسپترون یا همان MLP بوده، البته کارهایی از شبکههـای عـصبی احتمالی (PNN) و شبکههای عصبی خودسازمانده تطبیقی را در این بحث مـیتـوان مـشاهده کرد. ویژگیهای موردنظر جهت آموزش این شبکهها مشتمل بر انحراف معیار ضـرایب، انـرﮊی سیگنال در سطوح مختلف فرکانسی، ماکزیمم ضرایب سیگنالها در سطوح مختلف فرکانسی، متوسط و واریانس آنها و مینیمم آنها بوده اند]۷.[
منطق فازی: در استفاده از منطق فازی، تحقیقات انجام شده براساس قوانین – مبتنی بر ویژگیهای استخراج شده استوار بوده است. به عنوان مثال انرﮊی سیگنال در سطوح مختلف فرکانسی یک بردار ویژگی میسازد که مولفههای این بردار بسته به نوع اغتشاش دارای شدت یا ضعف خواهند بود. این شدت یا ضعف انرﮊی سـیگنال در سـطوح مختلـف فرکانـسی بـه همراه استنتاج فازی سیستم هوشمندی را میسازد که توانایی آن در دستهبندی اغتشاشات قابل ملاحظه است]۸.[
مدل مخفی مارکوف: این مدل که براساس نظریه مارکوف و نظریه احتمالات بنا نهـاده شـده است و در سالهای اخیر با منطق فازی نیز ترکیب شده علـیرغـم داشـتن توانـایی مناسـب در بحث طبقهبندی از پیچیدگیهای خاصی برخوردار است]۹.[
درخت تصمیمگیری: درخت تصمیمگیری از مباحـث مطـرح شـده در Machine Learning میباشد. این دستهبندی کننده به همراه ویژگیهای استخراج شده از تبـدیل موجـک بـه عنـوان یک دستهبندی کننده توانمند در حوزه کیفیت توان مطرح شده است]۰۱.[
٨
فیلتر کالمن: فیلتر کالمن بویژه فیلتر کالمن غیرخطی در سالهای اخیر به عنوان یک ابزار قـوی جهت تجزیه و تحلیل سیگنالهای مختلف به کار گرفته شده است. اگر شکل موج اغتشاشی به عنوان ورودی این فیلتر به کار رود. خروجی فیلتر مـیتوانـد نـوع اغتـشاش بوجـود آمـده را شناسایی کند]۱۱.[
٢‐٣‐ مروری بر روشهای شناسایی خطای امپدانس بالا
این روشها مبتنی بر تجزیه و تحلیل ولتاﮊها و جریانهای ابتدای فیـدر مـی باشـند و در یـک طبقـه
بندی کلی به چهار گروه تقسیم می شوند.
١. روشهای ارائه شده در حوزه زمان
٢. روشهای ارائه شده در حوزه فرکانس
٣. روشهای ارائه شده در حوزه زمان‐ فرکانس
١. روشهای ارائه شده در حوزه زمان:
این روشها بر اساس اطلاعات زمانی سیگنالها اقدام به شناسایی خطاهای امپدانس بالا مـی نماینـد
تعدادی از آنها عبارتند از:
الف) الگوریتم رله تناسبی
برای سیستمهایی که در چند نقطه زمین شده اند زاویه و دامنه جریان عدم تعـادل بـار( ( IO ثابـت
نیستند و جریان خطا نیز متغیر است. در نتیجه رله های اضافه جریان را نمی توان حساس ساخت.
٩
اگر رله ای بتواند فقط جریان خطا را حس کند، حساسیت آن بالا مـی رود. در رلـه پیـشنهادی بـا
توجه به سهولت اندازه گیری جریان عـدم تعـادل بـار( IO )، جریـان سیـستم نـول( I N )، جریـان
خطا( ( It طبق رابطه ١‐٢ محاسبه و موجب عملکرد رله می گـردد]۲۱.[
(۱‐۲)
It  K1 IO  K2 I N
که در آن IO و I N به ترتیب جریان عدم تعادل بار و جریان سیم نـول و K1 و K2 ثابـت مـی
باشند.
ب) الگوریتم رله نسبت به زمین
این رله به خاطر غلبه بر اثر تغییرات بار بر روی حساسیت رله هـای اضـافه جریـان سـاخته شـده
است و گشتاور عملکرد آن بطور اتوماتیک بار تغییر می کند] ۳۱.[
ج) استفاده از رله های الکترومکانیکی
در این رابطه برای شناسایی خطاهای امپدانس بالا بر روی شبکه های چهـار سـیمه شـرکت بـرق
پنسیلوانیا با همکاری شرکت وستینگهاوس اقدام به ساخت رلـه ای نمـوده انـد کـه بـا اسـتفاده از
نسبت جریان باقیمانده( (3 IO به جریان مولفه مثبت( ( I1 عمل می کند. اگر نسبت 3 IO از مقـدار
تنظیم شده رله فراتر رفت رله عمل خواهد کرد.] ۴۱.[
د) الگوریتم تغییرات جریان
در یکی از روشهای ارائه شده با توجه به تغییرات ملایم جریان به هنگام کلیـدزنی بـار از سـرعت
١٠
تغییرات جریان برای شناسایی خطاهای امپدانس بالا استفاده شـده اسـت]۵۱.[ ایـن روش کـارایی
خود را هنگامیکه جریانهای خطا دارای تغییرات اولیـه سـریع نیـستند از دسـت میدهـد. در روش
دیگر از تغییرات لحظه ای دامنه جریان برای آشکارسازی خطا استفاده شده اسـت]۶۱.[ هـر چنـد
خطاهای امپدانس بالا رفتار تصادفی دارند ولی سطح جریان همه آنها برای چند سـیکل زیـاد مـی
شود(لحظه وقوع جرقه) و بعد به میزان جریان بار می رسد. با توجه به این تغییـرات کـه در سـایر
کلیدزنیها وجود ندارد اقدام به شناسایی آنها گردیده اسـت. در روش دیگـری از تغییـرات بوحـود
آمده در نیم سیکل مثبت و منفی شکل موج جریان برای آشکارسازی استفاده شده است]۷۱.[
برای فیدرهایی که از طریق ترانسهای ∆ − ∆ تغذیه می شوند افزایش دامنـه جریـان و پـیش فـاز
شدن آن برای شناسایی خطای امپدانس بالا استفاده شده است] ۸۱.[
٢. روشهای ارائه شده در حوزه فرکانس:
این روشها بر اساس اطلاعات حوزه فرکانس سیگنالها عمل می کننـد و در آنهـا عمـدتا از تبـدیل
فوریه برای نگاشت سیگنالهای حوزه زمان به حوزه فرکانس استفاده می شود که در ادامه تعـدادی
از روشهای حوزه فرکانس ارائه می گردند
الف) استفاده از هارمونیک دوم و سوم جریان برای شناسایی خطاهای امپدانس بالا
برخورد هادی انرﮊی دار با زمین باعث ایجاد جرقه می گردد. این جرقه ها باعث ایجاد ناهماهنگی
و عدم تقارن شکل موج جریان می شوند که این عدم تقارن تولید هارمونیک های دوم و سـوم در
جریان خطا می کند و تعدادی از روشهای آشکارسازی بر این اساس ارائـه شـده انـد. در یکـی از
روشها نسبت دامنه مولفه دوم جریان به مولفه اصلی آن برای هـر سـه فـاز بعنـوان معیـاری بـرای
١١
شناسایی معرفی شده اند] ۹۱ .[ در روش دیگری از نسبت دامنه هارمونیک سوم جریان بـه مولفـه
اصلی برای شناسایی استفاده شده است] ۰۲.[
در روش دیگر با استفاده از مولفه هـای صـفر و منفـی هارمونیکهـای دوم، سـوم و پـنجم بعنـوان
ویژگیهای مناسب و روشی درست اقدام به جداسازی خطای امپدانس بالا از سایر حالتهـای گـذرا
همچون کلیدزنی بار، کلیدزنی خازنها و جریان هجـومی ترانـسها گردیـده اسـت] ۱۲ .[ همچنـین
انرﮊی سیگنال در یک فرکانس یـا محـدوده فرکانـسی بعنـوان ویژگیهـای مناسـبی بـرای ارزیـابی
خطاهای امپدانس بالا در نظر گرفته شده اند]۲۲.[
ب) استفاده از مولفه های فرکانس بالا جهت شناسایی خطاهای امپدانس بالا
٩۵% خطاهای امپدانس بالا با جرقه توام هستند و این جرقه ها ایجـاد نوسـانات فرکـانس بـالا در
محدوده kHz١٠‐ ٢ می نمایند. حد پایین به منظور عدم تداخل با فرکانسهای پایین که در شـرایط
معمولی وجود دارند، تعیین گ
ردیده و حد بالا به علت کاهش انرﮊی سیگنال در فرکانسهای بسیار بالا انتخاب شـده انـد. نتـایج
عملی نشان می دهند که این مولفه ها برای شناسایی مناسب هستند. هر چند اگر دامنه جریان کـم
و یا بانکهای خازنی بزرگ در شبکه وجود داشته باشند موجب حذف این مولفه ها مـی گردنـد و
عمل آشکارسازی را با مشکل مواجه می سازد] ۳۲ .[
ج) شناسایی خطاهای امپدانس بالا به کمک مولفه های بین هارمونیکی
علاوه بر هارمونیک های فرکانس پایین و فرکانس بالا مولفه های بین هـارمونیکی بـرای فرکـانس
پایه ۵٠ هرتز عبارتند از:٢۵،٧۵ و ١٢۵ هرتز و بـرای فرکـانس پایـه ۶٠ هرتـز، ٣٠،٩٠، ١۵٠، ٢١٠
١٢
هرتز می باشند] ۴۲،۵۲.[ این فرکانـسها تغییـرات دامنـه و زاویـه زیـادی در هنگـام وقـوع خطـای
امپدانس بالا از خود نشان می دهند و با حذف فرکانسهای پایه و بعضی از هارمونیک ها به کمـک
فیلتر کردن جریان می توان به آنها دست یافت و برای آشکار سازی از آنها اسـتفاده کـرد. مـشکل
عمده این روشها ساخت فیلتر هایی است که مولفه های بین هارمونیک را از خود عبور دهند] ۴۲
.[استفاده از انرﮊی این مولفه ها نیز بعنوان روشی برای جداسازی خطاهای امپـدانس بـالا از سـایر
حالات مطرح شده است] ۵۲ .[
د) آشکارسازی به کمک فیلتر کالمن
تبدیل فوریه برای سیگنالهای ایستان که دامنه آنهـا بـا زمـان تغییـر نمـی کنـد مناسـب هـستند در
صورتیکه خطاهای امپدانس بالا دارای ماهیت غیر ایستان می باشند و استفاده از تبدیل فوریه برای
تجزیه و تحلیل آنها روش بهینه ای نیست. یکی از روشـهایی کـه بـرای بررسـی سـیگنالهای غیـر
ایستان بکار می رود فیلتر کالمن است، در این روش هم مولفه اصلی و هم هارمونیک هـا بررسـی
می شوند. فیلتر کالمن برآورد مناسبی برای تغییرات زمانی فرکانس اصلی و هارمونیک ها ارائه می
کند و خطاهای مربوط به فیلترهای کلاسیک و فوریه را ندارد] ۶۲ .[
٣.روشهای ارائه شده در حوزه زمان‐ فرکانس
در این روشها از تبدیل موجک برای تجزیه و تحلیل سیگنالها استفاده می شود. با توجه به مزیـت
این تبدیل نسبت به تبدیل فوریه اخیرا در پردازش سیگنالها از جمله سیگنالهای ناشی از خطاهـای
امپدانس بالا تبدیل موجک بعنوان تبدیلی کارآمد مورد توجه قرار گرفته است. مقالاتی که در ایـن
ارتباط ارائه شده اند عبارتند از:
١٣
الف) اولین کاربرد موجک برای شناسایی خطاهای امپدانس بالا مربوط به خطاهایی اسـت کـه در
آنها از یک مقاومت زیاد بعنوان مدل خطا استفاده شده است. شبکه بررسی شـده یـک شـبکه سـه
شینه، kV۴٠٠ بوده و با استفاده از برنامه EMTP شـبیه سـازی شـده و اطلاعـات مـورد نیـاز بـا
فرکانس نمونه برداری kHZ ۴ ثبت گردیده و سه سیکل از شکل موج ولتاﮊ برای پردازش اسـتفاده
شده است. کاهش دامنه ضرایب بعنوان معیاری برای شناسایی خطا استفاده گردیده است] ۷۲ .[
ب) کاربرد دیگر تبدیل موجـک اسـتفاده از موجـک Spline و قـدر مطلـق ضـرایب سـطوح ۱و۲
سیگنالهای جریان تجزیه شده برای شناسایی خطاهای امپدانس بـالا مـی باشـد. اطلاعـات لازم بـا
شبیه سازی یک فیدر kV۱۱ با استفاده از برنامه EMTP ثبت شده اند و سه سیکل از سـیگنالهای
جریان پردازش شده اند] ۸۲. [
١۴

١۵
۳‐۱‐ مقدمه
فرورزونانس اصطلاحی است که بمنظور توصیف پدیده رزونانس در مداری که حداقل دارای یک
عنصر غیر خطی اندوکتیو است، بکار برده می شود. مداری که شامل ترکیب سری یک اندوکتانس
قابل اشباع و مقاومت خطی وخازن است، مدار فرورزونانس نامیده می شود.
رزونانسی که در مدار شامل راکتور خطی رخ می دهد به رزونانس خطی سری و رزونانسی که در
مدار شامل راکتور قابل اشباع رخ می دهد به فرورزونانس یا رزونانس جهشی موسوم است.
بواسطه مشخصه غیر خطی راکتور، مقدار اندوکتانس در ناحیه اشباع تابعی از درجه اشباع هسته
مغناطیسی که خود وابسته به ولتاﮊ دو سر راکتور است، می باشد و از این رو در ناحیه اشباع
اندوکتانس می تواند مقادیر متعددی را به خود اختصاص دهد که ممکن است در هر یک از این
مقادیر تحت شرایط خاصی پدیده فرورزونانس تحقق یابد.
در حقیقت پدیده فرورزونانس مورد خاصی از رزونانس جهشی است که در آن غیر خطی بودن،
مربوط به هسته مغناطیسی راکتور است. رزونانس جهشی به این معناست که هر گاه در سیستمی
که توسط منبع سینوسی تحریک می شود، در اثر افزایش مقدار یا فرکانس ورودی و یا مقدار یکی
از پارامترهای سیستم، یک جهش ناگهانی در مقدار یکی از سیگنالهای دیگر سیستم پیش آید. این
جهش می تواند در ولتاﮊ یا جریان و یا فلوی مغناطیسی یا در تمامی آنها ایجاد گردد.
هنگامیکه در اثر اشباع هسته مغناطیسی و تحت شرایط خاصی چنین پدیده ای رخ می دهد ولتاﮊ
زیادی در دو سر راکتور ظاهر شده و جریان مغناطیس کننده در نقاطی که ولتاﮊ تغییر جهت می
دهد به شکل پالس به مقدار زیادی افزایش می یابد.
١۶
۳‐۲‐ تاریخچه فرورزونانس
تحقیقات در مورد پدیده فرورزونانس سابقه هشتاد ساله دارد. کلمه فرورزونانس در مقالات علمی
دهه ١٩٢٠ دیده شد. علایق عملی در سال ١٩٣٠ زمانی به وجود آمد که استفاده از خازنهای سـری
برای تنظیم ولتاﮊ در سیستمهای توزیع آن زمان، باعث بروز اضافه ولتاﮊ در شبکه توزیع می گـردد
]۹۲.[ از آن زمان تاکنون بیشتر تحقیقات در این زمینه بر مـدل سـازی دقیـق تـر ترانـسفورماتور و
مطالعه پدیده فرورزونانس در سطح سیستم متمرکـز بـوده اسـت. اصـولا فرورزونـانس پدیـده ای
غیرخطی است. بنابراین بسیاری از روشهای بکار برده شده جهت بررسـی ایـن پدیـده مبتنـی بـر
حوزه زمان و با بکار بردن نرم افزار EMTP می باشد
٣‐٣‐ موارد وقوع فرورزونانس در سیستم های قدرت
در سیستم های قدرت الکتریکی مواردی که در آنها احتمال وقوع فرورزونانس وجود دارد عبارتند
از :
الف‐ ترانسفورماتورهای ولتاﮊ (CVT, VT)
ب‐ خطوط انتقال موازی EHV جابجا نشده
ج‐ سیستم توزیع انرﮊی
این پدیده معمول بواسطه اثر متقابل ترانسفورماتور (بدون بار یا بار کم) با کاپاسیتانس سیستم
بوجود می آید.
مثلا اگر ولتاﮊی در نقطه صفر شکل موج آن به ترانسفورماتور بدون بار اعمال شود، یک جریان
زیادی از مقدار عبور می کند زیرا، فلوی مغناطیسی تمایل دارد که در سیکل اول مقدارش را دو
١٧
برابر نماید و در نتیجه هسته به میزان زیادی اشباع می گردد، این جریان زیاد تا چند سیکل ادامه
می یابد و در شرایط ماندگار جریان تحریک به مقدار معمولش تنزل می یابد.
اما اگر چنانچه ترانسفورماتور از طریق یک خازن سری انرﮊی دار گردد این جریان غیرعادی
درشرایط ماندگار نیز ادامه می یابد، این جریان حتی از جریان بار نیز بزرگتر است و در این حالت
شکل موج جریان و ولتاﮊ دو سر ترانسفورماتور اعوجاج یافته اند و پدیده فرورزونانس تحقق
یافته است.
٣‐۴‐ شروع فرورزونانس
پدیده فرورزونانس همواره پس از وقوع یک اغتشاش فاحش، رخ میدهد. اغتشاش وارده به
سیستم ممکن است منجر به تغییر افزایشی در مقدار فرکانس ورودی سیستم یا مقادیر پارامترهای
سیستم گردد.در سیستم های قدرت، معمولا اغتشاش ناشی از قطع خط ترانسفورماتور بدون بار و
شرایط سوئیچینگ نامطلوب، احتمال وقوع فرورزونانس را افزایش می دهد. اغلب این پدیده در
سیستم قدرتی که دارای تلفات کم است آغاز می گردد.
٣‐۴‐١ شرایط ادامه یافتن فرورزونانس
وقوع فرورزونانس در سیستم های قدرت به شرایط اولیه مخصوصا به انرﮊی اولیه ذخیره شده
سیستم در زمان پس از اغتشاش وابسته است اگر این انرﮊی کافی باشد اندوکتانس با هسته آهنی
را به اشباع می برد.
اگر برای تغذیه تلفات سیستم بقدر کافی انرﮊی از منبع تغذیه انتقال یابد پدیده فرورزونانس ادامه
می یابد، البته مکانیزم انتقال انرﮊی در موارد مختلف، متفاوت خواهد بود.
١٨
مثلا در خطوط دوبل EHV وقتی یک از مدارها قطع می شود و خط دیگر انرﮊی دار می گردد،
انتقال توان از طریق کاپاسیتانس کوپلاﮊ بین دو خط از خط انرﮊی دار صورت می گیرد.
نتایج نشان می دهد که با وارد کردن مقاومت بزرگ در مدار امکان وقوع فروزونانس کاهش
مییابد که از آن می توان برای جلوگیری فروزونانس درترانسفورماتور ولتاﮊ استفاده نمود.
داغ شدن ترانسفورماتور قدرت عایقی آن را تضعیف کرده و منجر به شکست عایق تحت تنشهای
الکتریکی می شود. در صورت عدم توقف این پدیده ترانسفورماتور شدیدا آسیب دیده و ممکن
است باعث اتصال کوتاه و با انفجار و یا حتی آتش سوزی شود.
اضافه ولتاﮊهای ناشی از پدیده فرورزونانس می تواند تا حدود ۵ پریونیت افزایش یابد. بدیهی
است چنین اضافه ولتاﮊهایی به راحتی می توانند به سیم پیچی ترانسفورماتور آسیب برسانند. با
توجه به مسائل و مشکلات فوق شبیه سازی و تفهیم پدیده فرورزونانس موضوع بسیاری از
مقالات بوده است.
۳‐۵‐ اثرات نامطلوب فرورزونانس] ۰۳[
به وجود آمدن ولتاﮊها و جریانهای بزرگ ماندگار یا موقت در سیستم
ایجاد اعوجاج در شکل موجهای ولتاﮊ جریان
تولید صداهای گوش خراش پیوسته در ترانسفورماتورها و راکتورها
تخریب تجهیزات الکتریکی به علت گرمای زیاد یا شکست الکتریکی
عملکرد ناخواسته رله ها
گرم شدن ترانسفورماتور (در حالت بی باری)
١٩
به علت اشباع هسته ترانسفورماتور و عبور جریانهای لحظه ای بزرگ در سیم پیچهای
ترانسفورماتور در زمان وقوع این پدیده، ترانسفورماتور داغ می شود.
٣‐۶‐ مبانی پدیده فرورزونانس
به منظور تفهیم هر چه بهتر پدیده فرورزونانس مدار شکل (١‐٣) را در نظر بگیرید که در آن
سلف دارای مشخصه غیر خطی است. هر گاه منبع ولتاﮊ سینوسی باشد، می توان KVL را طبق
رابطه (١‐٣) نوشت :
L

C
R
E
شکل ۱‐۳. مدار معادل پدیده فرورزونانس
R ≈ 0 (١‐٣) jI ) V  E  − j E  I ( jwL  wC wC با توجه به شکل (٢‐٣) مشخص است که به تناسب مقدار ظرفیت خازنی، یک یا سه نقطه تقاطع
بین منحنی سلف غیرخطی و راکتانس خازنی وجود دارد. نقطه تقاطع (٢) ناپایدار می باشد. و
فقط در حالتهای گذرا چنین نقطه ای به وجود می آید. همچنین واضح است که اگر نقطه
تقاطع(۳) نقطه کار باشد در آن صورت ولتاﮊ و جریانهای بسیار بزرگی به وجود می آیند.
در مقادیر کم ظرفیت خازنی، نقطه کار فقط، نقطه سوم بوده و چون در این حالت راکتانس
خازنی بزرگ است، موجب جریان پیشفاز در سیستم و ولتاﮊ بزرگتر روی سلف می شود. با
٢٠
افزایش مقدار ظرفیت خازنی نقطه تقاطع دیگری به وجود می آید که تمایل سیستم به نقطه تقاطع
که دارای حالت سلفی با جریان پسفاز است. بیشتر می باشد.
هر گاه مقدار ولتاﮊ اعمالی به اندازه کمی تغییر نماید آنگاه نقطه کار (١) حذف و نقطه کار به نقطه

(٣) پرش خواهدکرد.
voltage
2
1
current
3
شکل۲‐۳ حل ترسیمی مدار LC غیر خطی
در این حالت جریان بسیار زیادی از سلف می گذرد و طبیعی است که با عبور این جریان بزرگ،
ولتاﮊ دوباره کاهش یافته و دبواره نقطه کار (١) به وجود می آید. و بدین ترتیب نقطه کار بین (١)
و (٣) پرش خواهد کرد. در این صورت ولتاﮊ و جریانهای به وجود آمده کاملا تصادفی و غیر
قابل پیش بینی می باشند.
در سیستمهای توزیع، پدیده فرورزونانس زمانی اتفاق می افتد که بانک خازنی و یا طولی از کابل
با مشخصه مغناطیسی ترانسفورماتور و یک منبع ولتاﮊ بطور سری قرار بگیرد. برای کابلهای با
طول کم فقط یک نقطه کار در ناحیه سوم وجود دارد و بنابراین شکل موج ولتاﮊ و جریان ناشی
از فرورزونانس دارای پریودی برابر پریود شبکه میباشد. با افزایش ظرفیت خازنی قله این اضافه
٢١
ولتاﮊها روی منحنی اشباع مدام بالا می رود تا جائیکه اندازه ولتاﮊ بسیار بیشتر از حالت عادی می
شود. با افزایش بیشتر ظرفیت خازنی نقطه کار (١) نیز فعال می شود و به تناسب نوع حالت
گذاری پیش آمده، اضافه ولتاﮊهای به وجود آمده در دو سر اندوکتانس غیرخطی، ممکن است
دارای پریود پایدار و یا شکل موج آشفته باشند.
با افزایش دوباره ظرفیت خازنی زمانی فرا می رسد که نقطه تقاطع سوم حذف می شود و در
حالت عادی در ناحیه فرورزونانس نخواهیم بود. اما حالتهای گذرا نظیر کلید زنی می توانند باعث
به وجود آوردن چنین نقطه کاری در ناحیه سوم شوند.
٣‐٧‐ فرورزونانس در ترانسفورماتورهای توزیع] ۱۳[
با گسترش خطوط کابلی زیر زمینی و همچنین تمایل روزافزون استفاده از ترانسفورماتورهای با
تلفات کم، مخصوصا ترانسفورماتور های ساخته شده از ورقه های فولاد حاوی سیلیکان، احتمال
وقوع فرورزونانس در این ترانسفورماتورها بیشتر شده است. این مشکل زمانی رخ می دهد که
ترانسفورماتور بی بار تغذیه شده از طریق خط کابلی (و یا متصل شده به بانک خازنی) تحت کلید
زنی تک فاز و یا دو فاز قرار می گیرد. همچنین در خطوط انتقال توزیع طولانی نیز، این مشکل
می تواند اتفاق بیافتد.
البته در رده توزیع خوشبختانه تمامی کلیدهای قدرت دارای قطع سه فاز بوده و این مسئله زیاد
جدی نمی باشد. اما در حالتهایی که از وسایل قطع تک فاز مانند کات آوت فیوزاستفاده می شود
امکان وقوع چنین شرایطی بسیار مهیا است. در این حالت مدار فرورزونانس شامل ولتاﮊ القایی
(ولتاﮊ القا شده از فازهای دیگر ترانسفورماتور به فاز قطع شده) و مشخصه مغناطیسی هسته
ترانسفورماتور و ظرفیت خازنی بین کابل (یا خط انتقال) و زمین می باشد. در این حالت ولتاﮊ
٢٢
ظاهر شده در فاز قطع شده ترانسفورماتور به تناسب مقدار ظرفیت خازنی کابل متصل به آن و
سایر پارامترها می تواند از چند پریونیت تجاوز نماید. شکل هسته ترانسفورماتور و منحنی
مشخصه آن در رفتار ترانسفورماتور بسیار با اهمیت می باشد.
فرورزونانس زمانی اتفاق می افتد که در هنگام بی باری و یا کم باری ترانسفورماتور در نقطه ای
دور از آن قطع تک فاز و یا دو فاز انجام شود. به تناسب پارامترهای مقدار امکان دارد که
فرورزونانس دارای دو حالت مختلف به شرح زیر میباشد:
٣‐٧‐١‐ فرورزونانس پایدار
در این حالت اضافه ولتاﮊهای فرورزونانس تا زمانی که فاز قطع شده بی برق بماند، پایدار می
باشند. این اضافه ولتاﮊها ممکن است که دارای قله بسیار بزرگی نباشند ولی به دلیل پایدار بودن
می توانند باعث صدمات جدی به برقگیرها و حتی انفجار آنها در عرض چند دقیقه شوند.
٣‐٧‐٢‐ فرورزونانس ناپایدار
در این حالت نقاط کار سیستم در حالت پایدار در محدوده فرورزونانس نمی باشند، اما حالتهای
گذرا نظیر کلید زنی می توانند نقاط کار سیستم را برای مدت کوتاهی به این محدوده وارد نمایند.
در این حالت اضافه ولتاﮊهای فرورزونانس برای مدت کوتاهی بعد از کلید زنی پدیدار شده ولی
به زودی میرا می شوند.
٢٣
٣‐٨‐ تاثیر نوع سیم بندی ترانسفورماتور
یکی از مزیتهای مدلسازی دوگانی ترانسفورماتورهای قدرت که در این مطالعه استفاده شده است،
این است که بدون تغییر در مدل هسته ترانسفورماتور، می توان سیم بندی ترانسفورماتور را
تعویض نمود] ۲۳.[
در ظرفیتهای خازنی مساوی، اضافه ولتاﮊهای فرورزونانس در ترانسفورماتور مورد نظر در حالت
اتصال ستاره با نوترال زمین شده بسیار کمتر است. با قطع نوترال ترانسفورماتور مورد نظر و قطع
تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتری حاصل می شوند که حتی از حالت اتصال
مثلث‐ ستاره بزرگتر می باشند
۳‐۹‐ تاثیر بار بر اضافه ولتاﮊهای فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم باری ترانسفورماتور
به وجود می آید. شبیه سازیها نشان می دهد که در مقادیر پایین ظرفیت خازنی مقدار بار لازم
برای حذف پدیده فرورزونانس بسیار کم است ولی با اضافه شدن ظرفیت خازنی مقدار بار لازم
برای قطع تک فاز و دو فاز بیشتر می شود. اضافه ولتاﮊهای فرورزونانس در ترانسفورماتورهای با
اولیه زمین شده کمتر هستند.
فازهای مختلف ترانسفورماتور دارای رفتار مساوی درمقابل اضافه ولتاﮊهای فرورزونانس نیستند.
با افزایش ظرفیت خازنی، میزان بارلازم برای حذف اضافه ولتاﮊهای فرورزونانس افزایش می یابد.
باری در حدود ۵ % بار نامی ترانسفورماتور در بیشتر حالات، قادر به حذف اضافه ولتاﮊهای
فرورزونانس می باشد.
٢۴
٣‐١٠‐ طبقه بندی مدلهای فرورزونانس
مدل پایه
در این حالت ولتاﮊ و جریان پریودیک می باشند و پریود آنها با پریود سیستم برابر است.
مدل زیر هارمونیک
در این حالت ولتاﮊ و جریان با پریودی نوسان می کنند که ضریبی از پریود منبع می باشند. این
حالت به زیر هارمونیک n ام معروف است که حالت فرورزونانس زیر هارمونیک فرد می باشد.
مدل شبه پریودیک
در این نوع فرورزونانس نوسانات کاملا اتفاقی و غیر پریودیک می باشند
٣‐١١‐ شناسایی فرورزونانس
بروز فرورزونانس با اثرات وعلایمی به شرح زیر همراه است:
اضافه ولتاﮊهای با دامنه زیاد و دائمی بصورت فاز به فاز و فاز به زمین اضافه جریانها با دامنه زیاد و دائمی اعوجاجها با دامنه زیاد و دائمی در شکل موج ولتاﮊ و جریان جابجایی ولتاﮊ نقطه صفر افزایش دمای ترانس در حالت بی باری
افزایش بلندی نویز ترانسها و راکتورها تریپ بی موقع تجهیزات حفاظتی
البته بعضی از این علایم مختص این پدیده نیست بطور مثال جابجایی نقطه صفر در شبکه هایی
که نقطه صفر آنها زمین نشده است می تواند بدلیل وقوع اتصال فاز به زمین رخ دهد.
٢۵
٣‐١١‐١ شرایط لازم برای بروز پدیده فرورزونانس
۱‐ حضور همزمان خازن با راکتور غیر خطی در سیستم
۲‐ وجود حداقل یک نقطه از سیستم که دارای ولتاﮊ ثابت نباشد
۳‐ وجود اجزا سیستم با بار کم مانند ترانسهای قدرت یا ترانسهای ولتاﮊ بدون بار یا منابع انرﮊی
با اتصال کوتاه پایین مانند ﮊنراتورهای اضطراری
در صورتیکه هر کدام از این سه شرط برقرار نباشد احتمال وقوع فرورزونانس بسیار ضعیف است
در غیر این صورت باید تحقیقات گسترده ای به عمل آورد.
٢۶

٢٧
۴‐۱‐ از تبدیل فوریه٣ تا تبدیل موجک ]۳۳[
در قرن نوزدهم، ﮊان پاپتیست فوریه، ریاضی دان فرانسوی، نشان داد که هر تابع متناوب را میتـوان
به صورت حاصل جمعی نامحدود از توابع نمایی مختلط متناوب نمایش داد. سالها بعـد از عنـوان
شدن این خاصیت مهم، ایده او به نمایش سیگنالهای نامتناوب و سپس سیگنالهای گسسته متناوب
و نامتناوب گسترش یافت. بعد از این عمومیت بـه حـوزه گسـسته، تبـدیل فوریـه در محاسـبات
کامپیوتری بسیار موثر واقع گردید. در سال ۵۶۹۱، الگوریتم جدیدی به نـام تبـدیل فوریـه سـریع۴
عنوان شد، که نسبت به الگوریتم های قبلی تبدیل فوریه بیشتر به کار گرفته شد.
FFT چنین تعریف میشود
(۴‐ ۱) ∞∫ f (t )e − jwt dt F (w)  − ∞ (۴‐ ۲) f (t)  ∞∫F(w)e jwt dw −∞ اطلاعات حاصل از انتگرال، مربوط به تمام زمانها میباشد، چرا کـه انتگـرال گیـری از زمـان منفـی
بینهایت تا مثبت بینهایت انجام میشود. به همین علت، اگر سیگنال شامل فرکانسهای متغییر با زمان
باشد، یعنی سیگنال ثابت نباشد، تبدیل فوریه مناسب نخواهد بود. این بـدان معناسـت کـه تبـدیل
فوریه تنها مشخص میکند که آیا یک مولفه فرکانسی بخصوص در یک سیگنال وجود دارد یـا نـه،
و اطلاعاتی در مورد زمان ظاهر شدن این فرکانس به ما نمی دهد.

3-Fourier Transform 4-Fast Fourier Transform
٢٨
به همین دلیل، یک نمایش فرکانسی‐ زمانی به نام تبدیل فوریه زمان کوتاه۵ معرفی شد. در STFT،
سیگنال به قطعات زمانی به اندازه کافی کوتاه تقسیم میسود، بطوری که میتوان این قسمتهای کوتاه
را سیگنال ثابت فرض کرد. برای رسیدن به این هدف، یک تابع پنجره انتخاب میشود. پهنـای ایـن
پنجره باید با طولی از سیگنال که میتوان آنرا فرایند ثابت در نظر گرفت، برابر باشد. نمـایش STFT
به شکل زیر تمام مطالب ذکر شده در این مورد را خلاصه میکند:

(۴‐۳)
که w تابع پنجره میباشد.
نکته مهم در STFT پهنای پنجره بکار رفته میباشد. این پهنا را تکیه گاه پنجره نیز مینامند. هر چقدر
پهنای پنجره را کاهش دهیم، رزولوشن زمانی بهتر، و فرض فراینـد ثابـت محکمتـر میـشود ولـی
رزولوشن فرکانسی ضعیفتر خواهد شد، و بر عکس‐ شکل۴‐۱ راببینید.

شکل۴‐۱ نمایش پهن و باریک پنجرهای طرح زمان‐ فرکانس

5-Short Time Fourier Transform
٢٩
مشکل STFT را میتوان به وسیله اصل عدم قطعیت هایزنبرگ۶ مطرح کرد. ایـن اصـل معمـولاﹲبرای
مقدار جنبش و موقعیت مکانی ذرات در حال حرکت به کار میرود، با این حال میتوان آنـرا بـرای
اطلاعات حوزه زمانی‐فرکانسی بکار ببریم. بطور مختصر، ایـن اصـل مـیگویـد کـه نمـیتـوانیم
تشخیص دهیم که در هر لحظه زمانی کدام فرکانس وجود دارد. آنچه که ما میتـوانیم بفمـیم ایـن
است که در هر بازه زمانی کدام باندهای فرکانسی وجود دارند.
بنابراین، مساله انتخاب یک تابع پنجره، واستفاده از آن در تمام آنالیز میباشد. جـواب ایـن مـساله
بستگی به کاربرد دارد. اگر اجزاﺀ فرکانسی در سیگنال اصلی به خوبی از هم تفکیک شـده باشـند،
میتوانیم رزولوشن فرکانسی را در یک انـدازه مناسـب در نظـر بگیـریم و آنگـاه بـه طراحـی یـک
رزولوشن زمانی خوب بپردازیم، چرا که مولفههای طیفی قبلاﹲ از هم تفکیک شدهاند. در غیـر ایـن
صورت، پیدا کردن یک تابع پنجره مناسب بسیار مشکل خواهد بود.
اگر چه مشکل رزولوشن فرکانسی و زمانی از یک پدیده فیزیکی (اصل عـدم قطعیـت هـایزنبرگ)
ناشی میشود، و همواره برای هر تبدیل بکار رفته وجود دارد، میتوان سـیگنال را بـا یـک تبـدیل
دیگر بنام تبدیل موجک (WT) آنالیز کنیم
تبدیل موجک سیگنال را در فرکانسهای مختلف با رزولوشنهای مختلف آنالیز میکنـد. و بـا
تمام اجزاﺀ فرکانسی به صورت یکسان، آنطور که در STFT عمل میشد، برخورد نمیشود.
تبدیل موجک طوری طراحی شده است که در فرکانسهای بالا رزولوشن زمانی خوب و رزولوشن
فرکانسی ضعیف، و در فرکانسهای پایین، رزولوشن فرکانسی خوب و رزولوشـن زمـانی ضـعیف
داشته باشد. این خاصیت هنگامی که سیگنال تحت بررسـی دارای فرکانـسهای بـالا در بـازههـای

6-Heisenberg 's Uncertainty Principle
٣٠
زمانی کوتاه و فرکانسهای پایین برای زمانهای طولانی میباشد. دو تفاوت عمده بین STFT و CWT
عبارتند از
۱_ تبدیل فوریه سیگنال حاصل از اعمال تابع پنجره، گرفته نمیشود.
۲_ هنگامی که تبدیل برای یک جزﺀ طیفی محاسبه میشود، طول پنجره تغییر میکند. احتمالاﹲ ایـن
مهمترین مشخصه تبدیل موجک میباشد.
تبدیل موجک پیوسته (CWT) بصورت زیر تعریف میشود(:(Daubechies92
(۴‐۴)

که

(۴‐۵)
یک تابع پنجره است که موجک مادر٧ نامیده میشود، a یک مقیاس و b یک انتقال است.

شکل۴‐۲‐ چند خانواده مختلف ازتبدیل موجک. عدد بعد از نام موجک معرف تعداد لحظات محو شدن
است

7-Mother Wavelet
٣١
اصطلاح موجک به معنی موج کوچک میباشد. کوچکی برای شرایطی تعریف شده است که تـابع
پنجره طول محدود داشته باشد. موج هم برای شرایطی تعریف شده است کـه ایـن تـابع نوسـانی
باشد. اصطلاح مادر بر این نکته دلالت دارد که توابع بـا نـواحی مختلـف کـارایی، کـه در تبـدیل
استفاده میشوند، از یک تابع اصلی یا تابع مادر یک نمونه اصلی بـرای تولیـد سـایر توابـع پنجـره
میباشد. یک نمونه ازموجک مادر را در شکل۴‐۲ مشاهده میکنیم
اصطلاح انتقال به همان نحو که برای STFT بکار میرفت، در اینجا استفاده میشود. این اصـطلاح
به مکان پنجره، هنگامی که در امتداد سیگنال شیفت مییابد، دلالت میکند. واضح اسـت کـه ایـن
اصطلاح به اطلاعات زمانی در حوزه تبدیل مربوط میشود. با ایـن وجـود، مـا پـارامتر فرکانـسی،
آنطور که برایSTFT داشتیم، برای تبدیل موجک نداریم. در عوض در اینجا یـک مقیـاس موجـود
میباشد. مقیاس دهی همانند یک تبدیل ریاضی، به معنی گسترده یا فشرده کردن سیگنال میباشد.
مقیاسهای کوچکتر به معنی سیگنالهای گستردهتر و مقیاسهای بزرگتر به معنی سیگنالهای فشردهتـر
میباشد. از آنجا که در مبحث موجک پارامتر مقیاس دهی در مخرج بکار میرود، عکـس عبـارت
فوق در اینجا صادق خواهد بود.
رابطه بین مقیاس و فرکانس این است که مقیاسهای پایین مربوط به فرکانـسهای بـالا و مقاسـهای
بالا مربوط به فرکانسهای پایین میباشد. با توجه به بحث ذکر شده، ما تا بحال طرح زمـان‐مقیـاس
داریم. توصیف شکل۴‐۳ معمولاﹲ در توضیح اینکه چگونه رزولوشنهای زمانی و فرکانسی تفسیر
شوند، بکار میرود.
٣٢

شکل۴‐۳‐ دو عمل اساسی موجک‐ مقیاس و انتقال ‐ برای پر کردن سطح نمودار مقیاس‐ زمان
هر مستطیل در شکل۴‐۳ مربوط به یک مقدار تبدیل موجک در صفحه زمـان‐مقیـاس مـیباشـد.
توجه کنید که مستطیلها یک مساحت غیر صفر مشخص دارند، که این بدان معناسـت کـه مقـدار
یک نقطه بخصوص در طرح زمان‐مقیاس قابل تشخیص نیـست. اگـر ابعـاد جعبـههـا را در نظـر
نگیریم، مساحت جعبهها، در STFT و WTبـا هـم برابـر هـستند و بـا نامـساوی هـایزنبرگ تعیـین
میشوند. خلاصه، مساحت مستطیلها برای تابع پنجره (STFT) و (WT) ثابت است. همچنین، تمام
مساحتها دارای حد پایین محدود شده به ۴π/ هستند. یعنی، طبـق اصـل عـدم قطعیـت هـایزنبرگ
نمیتوانیم مساحت جعبهها را هر اندازه که بخواهیم، کاهش دهیم.
۴‐۲‐سه نوع تبدیل موجک ]۳۳[
ما سه نوع تبدیل در اختیار داریم: پیوسته، نیمه گسسته٨ و گسسته در زمان. اختلاف انـواع مختلـف
تبدیل موجک مربوط به روشی است که مقیاس وشیفت را پیاده سازی میکند. در این بخـش ایـن
سه نوع مختلف را ریزتر بررسی خواهیم کرد.

8-Semidiscrete
٣٣
۴‐۲‐۱‐ تبدیل موجک پیوسته
برای CWT پارامترها به صورت پیوسته تغییر میکنند. این موضـوع باعـث حـداکثر آزادی در
انتخاب موجک مناسب برای آنالیز خواهد شد. تنها لازم است که تبدیل موجـک شـرط (۴‐۷)، و
مخصوصاﹲ مقدار متوسط صفر را داشته باشد. این شرط برای اینکه CWT معکـوس پـذیر باشـد،
لازم است. تبدیل عکس به صورت زیر تعریف میشود:
(۴‐۶)

که Ψ شرط لازم زیر را باید ارضا کند

(۴‐۷)
که Λψ تبدیل فوریه Ψ است.
بطور شهودی واضح است که CWT بر محاسبه "ضریب همبـستگی" بـین سـیگنال وموجـک
اصرار دارد. شکل۴ را ببینید

شکل۴‐۴‐ تشریح CWT طبق معادله۴
الگوریتم CWT را میتوان به شکل زیر توصیف کرد‐شکل۴‐۴ را ببینید.
۱_ یک موجک در نظر بگیرید و آنرا با با قسمتی از ابتدای سیگنال اصلی مقایسه کنید.
٣۴
۲_ ضریب c(a,b) که نمایانگر میزان ارتباط موجک با این قـسمت از سـیگنال اسـت را محاسـبه
کنید. هر چقدر c بیشتر باشد، شباهت بیشتر است. توجه کنید که نتیجه به شکل موجک انتخـاب
شده دارد.
۳_موجک را به سمت راست شیفت دهید و مراحل ۱و ۲ را تا رسیدن بـه انتهـای سـیگنال تکـرار
کنید.
۴_موجک را به سمت راست شیفت دهید و مراحل ۱ تا ۳ را تکرار کنید.
یک مثال از ضرایب CWT مربوط به سیگنال استاندارد در شکل۴‐۵ نشان داده شده است.

شکل۴‐۵ مثالی از آنالیزموجک پیوسته. در شکل بالا سیگنال مورد نظر نمایش داده شده است.
شکل پایین ضرایب موجک مربوطه را نشان میدهد.
٣۵
۴‐۲‐۲ تبدیل موجک نیمهگسسته
در عمل، محاسبه تبدیل موجک برای بعضی مقادیر گسسته a و b بسیار متداولتر است. برای مثـال، بکارگیری مقیاسهای a 2j dyadic و شـیفتهای صـحیح b  2j k بـا (j, k) z2 راتبـدیل
موجک نیمه گسسته (SWT) مینامیم.
در صورتی که مجموعه متناظر با الگوها، یک قالب موجـک را تعریـف کنـد، تبـدیل عکـسپـذیر
خواهد بود. به عبارت دیگر، موجک باید طوری طراحی شود که

(۴‐۸)
در اینجا A و B دو ثابت مثبت، ملقب به حدود قالب هستند. که ما باید برای بدستآوردن ضرایب
موجک انتگرالگیری انجام دهیم، چرا که f(t) هنوز یک تابع پیوسته است.
۴‐۲‐۳ ‐ تابع موجک گسسته
در اینجا، تابع گسسته f(n) و تعریف موجک (DWT) داده شده بـه صـورت زیـر را در اختیـار
داریم:
(۴‐۹)

که ψj,x یک موجک گسسته تعریف شده به شکل زیر میباشد:

(۴‐۰۱)
پارامترهای a و b به شکل a2j و b  2jkتعریف میشوند. عکس تبدیل به شـکلی مـشابه،
چنین تعریف میشود:
٣۶

(۴‐۱۱)
اگر حدود قالب در معادله۴‐٨ A=B=1 باشد، آنگـاه تبـدیل عمـودی خواهـد بـود. ایـن تبـدیلهـا
میتوانند با یک آنالیز چند بعدی، که در بخش بعد بحث خواهد شد، شروع شوند.
۴‐۳‐ انتخاب نوع تبدیل موجک
چه موقع آنالیز پیوسته از آنالیز گسسته مناسبتر است؟ هنگامی که انرﮊی سیگنال محدود است، اگر
از یک تبدیل موجک مناسب استفاده کنیم، تمام مقادیر یک تجزیه برای بازسازی شکل موج اصلی
لازم نخواهد بود. در این شرایط، یک سیگنال پیوسته را میتوان بوسیله تبـدیل گسـسته آن کـاملاﹰ
مشخص کرد. بنابراین آنالیز گسسته کافی است و آنالیز پیوسته اضافی خواهـد بـود. هنگـامی کـه
سیگنال بصورت پیوسته یا یک شبکه زمانی ریز ثبت میشود، هر دو نوع آنالیز، امکانپذیر خواهـد
بود. کدامیک باید استفاده شود؟ جواب این است: هر یک مزایای مربوط به خود را دارد.
آنالیز پیوسته معمولاﹰ برای تفسیر آسانتر اسـت، چـرا کـه اضـافات آن، تمایـل بـه تقویـت ویژگیها دارد و و اطلاعات را بسیار واضحتر خواهد کرد. این موضوع بـرای بـسیاری از ویژگیهای مفید درست است. آنالیز پیوسته تفسیر را راحتر، و خوانایی را بیشتر مـی کنـد، در عوض حجم بیشتری برای زخیره لازم دارد.
آنالیز گسسته حجم ذخیره سازی را کاهش میدهد و برای بازسازی کافی است.
٣٧
۴‐۴‐ آنالیز مالتی رزولوشن٩ و الگوریتم DWT سریع
برای اینکه تبدیل موجک مفید باشد، باید آنرا با الگوریتمهای سریع به منظور استفاده در ماشینهای
محاسباتی، پیادهسازی کنیم. یعنی روشی مثل FFT که هم ضرایب تبدیل wavwlet را بدست آورد و
هم بازسازی تابعی را که نمایش میدهد، انجام دهد.
۴‐۴‐۱‐آنالیز مالتی رزولوشن (MRA)
آنالیز مالتیرزولوشن Mallat را که خیلی عمومیت دارد، توضیح میدهیم. با فضایl2 که شامل تمام
توابع جمعپذیر مربعی است، شروع میکنیم، یعنی: f در فضای l2 (s) است، اگرMRA . ∫f 2  ∞
s
یک سری افزایشی از زیر فضای بسته {vj}jzاسـت، کـه l2 (R)را تخمـین میزنـد. شـروع کـار،
انتخاب یک تابع مقیاسدهی مناسـبΦ اسـت. تـابع مقیـاسدهـی بـه منظـور ارضـاﺀ پیوسـتگی،
یکنواختی و بعضی شرایط لازم بعدی انتخاب شده است. اما نکته مهمتر این اسـت کـه، مجموعـه
{φ(x − k), k z} یک اساس درست برای فضای مرجع v0 ایجاد میکند. رابطههای زیر آنالیز را
توصیف میکنند:
(۴‐۲۱)...v-1 v0 v1
فضاهایvj به صورت تودرتو قرار گرفتهاند. فضای l2 (R) اشتراک تمامvj را شامل مـیشـود. بـه
عبارت دیگر j z vj در(l2 (R متراکم شده است. اشتراک همهvj ها تهی است.
(۴‐۳۱)

9-Multiresolution
٣٨
فضاهای vj وvj1 مشابه هستند. اگر فضایvj دارای فاصـلههـای خـالی(φ1,k (x ، k z باشـد،
آنگـــاه فـــضایij1 دارای فاصـــلههـــای(φ1,k (x ، k z اســـت. فاصـــلهvj1 بوســـیله تـــابع
، که تولید میشود.
حالا شکلگیری موجک را توضـیح مـیدهـیم. چـون v0 v1 ، هـر تـابعی در v0 را مـیتـوانیم
بصورت ترکیبی از توابع پایه 2φ(x − k) ازv1 بنویسیم. مخصوصاﹰΦ باید معادلات دو بعـدی ۴۱

و ۵۱ را برآورده کند:
(۴‐۴۱)2φ (x − k) (φ (x)  ∑h(k

k
ضرایب h(k) بصورت((2Φ(x − k h(k)  (Φ(x), تعریف شـدهانـد. حـال بـه عـضو عمـودی

wj از vj برvj1 ،vj1  vj wj را در نظر بگیرید. این بدان معناست که تمام اعضایvj بـر
اعضای wj عمود هستند. ما لازم داریم که

تعریف زیر را ارائه میدهیم:
(۴‐۵۱)2∑(−1)k h(−k  1)φ (x − k) ψ (x) 

k
ما میتوانیم نشان دهیم کـه2{ψ(x − k), k z} یـک اسـاس درسـت بـرایw1 اسـت. دوبـاره، خاصیت تشابه MRI عنوان میکند که2j{ψ( 2jx − k), k z} یک اساس بـرایwj اسـت. از

آنجــــا کــــه v  wدر l2 (R) متمرکــــز اســــت، خــــانواده داده شــــده
jj z jj z
2j{ψ( 2jx − k), k z} یک اساس بـرای l2 (R) اسـت. بـرای یـک تـابع داده شـده f l2 (R)

٣٩
میتوان N را طوری بیابیم که f N vj ، f را بالاتر از دقت تعیین شده، تقریب بزند. اگـرgi wi
و f i vi آنگاه

(۴‐١۶)
معادله (۴‐١۶) تجزیه موجک تابع f است.
۴‐۵ ‐ زبان پردازش سیگنالی]۳۳و۴۳[
ما مراحل آنالیز مالتیرزولوشنی را با زبان پردازش سیگنالی تکرار میکنیم. آنالیز مالتی رزولوشـن
waveletبا الگوریتم کد کردن زیرباند یا محوطهای در پردازش سیگنال در ارتباط اسـت. همچنـین،
فیلترهای آینهای مربعی هم در الگوریتم مالتی رزولوشـن Mallat قابـل تـشخیص اسـت. در نتیجـه
نمایش زمان‐ مقیاس یک سیگنال دیجیتال با اسـتفاده از روشـهای فیلتـر کـردن دیجیتـال حاصـل
میشود.
معادلات۴‐۴۱ و۴‐۵۱ را از بخش قبل به خاطر بیاورید. سـریهای{h(k), k z} و {g(k), k z}
در اصطلاح پردازش سیگنال، فیلترهای آیینهای مربعی هستند. ارتباط بین h و g چنین است:
(۴‐۷۱)g(k)  (−1)n h(1 − n)
h(k) فیلتر پایین گذر و g(k) فیلتر بالا گذر است. این فیلتر با خانواده فیلترهای بـا پاسـخ ضـزبه
محدود (FIR) تعلق دارند. خواص زیر را میتوان با استفاده از تبدیل فوریه و عمـود بـودن اثبـات
کرد:
(۴‐۸۱) ∑g(k)  0 ∑h(k)  2
k k

۴٠
عملیات تجزیه با عبور سیگنال (دنباله) از یک فیلتر پایین گذر نیم باند دیجیتال با پاسخ ضربه h(n)
شروع میشود. فیلتر کردن یک سیگنال معادل با عملیات ریاضی کانولوشن سیگنال با پاسخ ضـربه
فیلتر میباشد. یک فیلتر پایین گذر نـیم بانـد تمـام فرکانـسهایی را کـه بـالاتر از نـصف بیـشترین
فرکانس سیگنال قرار دارند را حذف میکند
اگر سیگنال با نرخ نایکویست (که دو برابر بیشترین فرکانس در سیگنال است) نمونهبرداری شـده
باشد، بالاترین فرکانس که در سیگنال وجود داردπرادیان است. یعنـی، فرکـانس نایکویـست در
حوزه فرکانسی گسسته مطابق با π(--/s) میباشد. بعد از عبور سیگنال از یک فیلتر پایین گذر نـیم
باند، طبق روش نایکویست میتوان نصف نمونهها را حذف کـرد، چـرا کـه حـال سـیگنال دارای
حداکثر فرکانس(π/2(--/s میباشد. به این ترتیب سیگنال حاصل دارای طـولی بـه انـدازه نـصف
طول سیگنال اولیه میباشد.

شکل۴‐۶ طرح الگوریتم کد کردن زیر باند(قسمت بالا تجزیه و قسمت پایین ترکیب را نمایش میدهد)
۴١
حال مقیاس سیگنال دو برابر شده است. توجه کنید فیلتـر پـایینگـذر، اطلاعـات فرکـانس بـالای
سیگنال را حذف کرده است، اما مقیاس را بدون تغییر گذاشته است. این تنها کاهش تعداد نمونهها
است که مقیاس را تغییر میدهد. از طرف دیگر رزولوشن که به میزان اطلاعلت موجود در سیگنال
ارتباط دارد، توسط فیلتر کردن تغییر کرده است. فیلتر پـایین گـذر نـیم بانـد نـصف، فرکانـسها را
حذف کرده است، که میتوان این عمل را به نصف شدن اطلاعات تفـسیر کـرد. توجـه کنیـد کـه
کاهش نمونهها بعد از فیلتر کردن تاثیری در میزان رزولوشن ندارد، چرا کـه بعـد از فیلتـر کـردن
نصف نمونهها اضافی خواهد بود. پس نصف کردن نمونههـا باعـث حـذف هیچگونـه اطلاعـاتی
نمیشود. خلاصه، فیلتر کردن اطلاعات را نصف میکند، ولی مقیـاس را تغییـر نمـیدهـد. سـپس
سیگنال با نرخ دو نمونه برداری میشود، چرا که حال نصف نمونهها اضـافی اسـت. ایـن عمـل ،
مقیاس را دو برابر میکند. عملیات توصیف شده در شکل۴‐۶ نشان داده شده است.
یک روش بسیار مختصر برای توصیف این عملیات و همچنین عملیات موثر برای تعیین ضـرایب
موجک نمایش عملکرد فیلترها است. برای یک دنبالـه، f  {f n} نمایـانگر سـیگنال گسـستهای
است که باید تجزیه شود و G وH بوسیله روابط هممرتبه زیر تعریف می شوند:
(۴‐۹۱)

(۴‐۰۲)
معادلات ۴‐۹۱و ۴‐۰۲ فیلتر کردن سیگنال با فیلترهای دیجیتال h(k) و g(k) که معـادل عملگـر
ریاضی کانولوشن با پاسخ ضربه فیلترها میباشد، را نمایش میدهد. فاکتور 2k کاهش نمونههـا را
نمایش میدهد.
۴٢
عملگرهای G و H مربوط به گام اول در تجزیه موجک میباشند. تنها تفاوت این است که روابط با
از ضریب 2 معادلات ۴‐١٣و۴‐١۴ چشمپوشی کرده است. بنابراین تبـدیل موجـک گسـسته را

میتوان در یک خط خلاصه کرد‐ شکل ۴‐۷ را ببینید:

(۴‐۱۲)
(0)0(j 1)(j 2)(1)
که ما میتوانیم d  ,d  ,..., d ,d را جزئیات ضرایب و cرا تقریب ضرایب بنامیم.
جزئیات و ضرایب با روش تکرار حاصل می شوند:

شکل۴‐۷ نمایش تجزیه توسط موجک
برای مقایسه این روش با SWT، بیایید دنباله x(k) حاصـل از ضـرب داخلـی سـیبگنال پیوسـته
u(t) با انتقالهای صحیح تابع مقیاس دهی را تعریف کنیم

(۴‐۲۲)
حال، ما میتوانیم SWT را با استفاده از DWT طبق رابطه زیر بدست آوریم
(۴‐۳۲)

که برای هر عدد صحیح j ≥ 0 و هر عدد صحیح k درست است.
۴٣
عملیات بازسازی مشابه عملیات تجزیه است. تعداد نمونههای سـیگنال در هـر سـطحی دو برابـر
− −− −
میشود، از فیلترهای ترکیب کننده نشان داده شده بـا H و G عبـو داده مـیشـود، و سـپس جمـع
− −− −
H و G را طبق روابط زیر تعریف میکنیم

(۴‐۴۲)
(۴‐۵۲)
AP Signal 4 10 x 10 2 5 0 15 10 5 00 0.4 0.3 0.2 0.1 0 -2 CD5 5 CD6 0.5 0 0 30 20 CD3 10 -50 15 10 CD4 5 0 -0.5 0.5 1 0 0 80 60 40 20 -0.50 40 30 20 10 0 -1 CD1 0.2 CD2 0.5 0 0 400 300 200 100 -0.20 200 150 100 50 0 -0.5
شکل۴‐۸ مثالی از تجزیه .DWT سیگنال اصلی، سیگنال تقریب((AP
و سیگنالهای جزئیات(CD1تا (CD6
با استفاده مکرر از روابط بالا داریم

(۴‐۶۲)
۴۴
که در حوزه زمانی
(۴‐۷۲)

Dj و cجزئیات و تقریب نامیده میشوند. یک مثـال از تجزیـه در شـکل۸ ، همـراه بـا تقریـب و
جزئیات و سیگنال اصلی نشان داده شده است.
۴‐۶‐ شبکه عصبی
۴‐۶‐۱ مقدمه]۵۳[
خودسازماندهی١٠ شبکهها یکی از موضوعات بـسیار جالـب در شـبکههـای عـصبی میباشـد. ایـن
شبکهها میتوانند انتظام و ارتباط موجود در ورودی خود را تشخیص و به ورودیهـای دیگـر طبـق
این انتظام پاسخ دهند. نرونهای شبکه های عـصبی رقـابتی طـرز تـشخیص گـروه هـای مـشابه از
بردارهای ورودی را یاد میگیرند. نگاشـتهای خـود سـازمانده طـرز تـشخیص گـروه هـای مـشابه
بردارهای ورودی را به این شکل یاد میگیرند که نرونهـای مجـاور هـم از لحـاظ مکـانی در لایـه
نرونی، به بردارهای ورودی مشابه پاسخ می دهند.
یادگیری کوانتیزه نمودن برداری (LVQ) روشی است که از ناظر برای یادگیری شبکه هـای رقـابتی
استفاده میکند. یک لایه رقابتی خود به خود طبقه بندی بردارهای ورودی را یـاد میگیـرد. بـا ایـن
وجود، کلاسهایی که لایه رقابتی پیدا می کند، تنها به فاصله بردارهای ورودی ارتباط دارد. اگـر دو
بردار ورودی خیلی به هم شبیه باشند، احتمالآ لایه رقابتی آن دو را در یک کلاس قرار مـی دهـد.
در شبکه های عصبی رقابتی، روشی یرای تشخیص اینکه آیا دو نمونه بردار ورودی در یک طبقـه

10-Self Organizing
۴۵
قرار می گیرند یا نه، وجود ندارد. با این وجود، شبکه های طبقـه بنـدی بردارهـای ورودی را در
طبقه هایی که توسط خود کاربر تعیین می شوند، انجام می دهد.
۴‐۶‐۲‐ یادگیری رقابتی١١
نرونها در یک لایه رقابتی طوری توزیع می شوند که بتوانند بردارهای ورودی را تـشخیص دهنـد.
معماری یک شبکه رقابتی در شکل(۴‐۹) نشان داده شده است.
جعبه ||dist|| بردار ورودی p و ماتریس وزن ورودی IW1,1 را بـه عنـوان ورودی دریافـت مـی
کند، و برداری شامل s1 عنصر تولید می کنـد. ایـن عناصـر، منفـی فاصـله بـین بـردار ورودی و
بردارهای j IW1,1 تشکیل شده از سطر های ماتریس وزن ورودی، می باشند.

شکل۴‐۹معماری شبکه رقابتی
ورودی خالص١٢ n1 یک لایه رقابتی، با جمع کردن بایاس b با فاصله هـای بردارهـای ورودی از
سطرهای ماتریس وزن، محاسبه میشوند. اگر بایاسها صفر باشند، بیشترین مقداری که یـک ورودی
خالص میتواند داشته باشد، صفر خواهد بود. این هنگامی اتفاق می افتد که بردار ورودی p برابر با
یکی از بردارهای وزن شبکه باشد.

-Competitive Learning -Net Weight

11
12
۴۶
تابع تبدیل رقابتی یک بردار وزن خالص را دریافت می کند، و خروجی صفر را برای همه نرونهـا،
به غیر از نرون برنده (نرون دارای کمترین فاصله)، که همـان نـرون مربـوط بـه بزرگتـرین عنـصر
ورودی خالصn1 میباشد، تولید می کند، و نـرون برنـده دارای خروجـی ۱ خواهـد بـود. فوائـد
استفاده از جمله بایاس در هنگام بحث از آموزش شبکه روشن خواهد شد.
۴‐۶‐۲‐۱ روش یادگیری کوهنن١٣ (learnk)
وزنهای نرون برنده (یک سطر در ماتریس وزن ورودی) با روش یادگیری کوهنن تنظیم می شـود.
فرض کنید که i امین نرون برنده شـود، آنگـاه عناصـر i امـین سـطر از مـاتریس وزن ورودی بـه
صورت زیر تنظیم میشود.
(۴‐۸۲)j IW1,1 (q) j IW1,1 (q − 1)  α ( p(q)− jIW1,1(q−1))
روش یادگیری کوهنن باعث میشود که وزنهای نرون یک بردار ورودی را یـاد بگیرنـد، و بـه ایـن
دلیل در کاربردهای تشخیص الگو مفید می باشد.
به این ترتیب نرونی که بردار وزن آن از همه نرونهای دیگـر بـه ورودی نزدیکتـر اسـت، طـوری
تغییر میکند که بیشتر به ورودی نزدیکتر شود. نتیجه این تغییـر ایـن خواهـد بـود کـه در صـورت
عرضه کردن ورودی مشابه ورودی قبلی بـه شـبکه، نـرون برنـده در رقابـت قبلـی، دارای شـانس
بیشتری برای برنده شدن مجدد خواهد داشت.
هر چقدر ورودیهای بیشتری به شبکه عرضه شود، هر نرونی که بـه ایـن ورودیهـا نزدیکتـر باشـد
بردار وزن آن طوری تنظیم میشود که به این ورودیها نزدیک ونزدیکتر شود. در نتیجه، اگـر تعـداد
نرونها به اندازه کافی باشد، هر خوشه از ورودیهای مشابه، یک نرون خواهد داشـت کـه خروجـی

13-Kohonen Learning Rule
۴٧
آن با عرضه کردن یک بردار از این خوشه یک و در غیر این صورت صـفر خواهـد بـود. بـه ایـن
ترتیب شبکه یاد گرفته است که بردارهای ورودی عرضه شده را طبقه بندی کند.
۴‐۶‐۲‐۲ روش یادگیری بایاس١۴ (learncon)
یکی از محدودیتهای شبکه های رقابتی این است که یک نرون ممکن است هرگز تنظیم نشود. بـه
عبارت دیگر، بعضی از بردارهای وزن نرونی ممکن است در آغاز از هر بردار ورودی دور باشـند،
و هر چند آموزش را ادامه دهیم هرگز در رقابت پیروز نشوند. نتیجـه ایـن اسـت وزن هـای آنهـا
تنظیم نمیشود و هرگز در رقابت پیروز نمی شوند. این نرون های نا مطلـوب، کـه بـه نـرون هـای
مرده اطلاق می شوند، هرگز عمل مفیدی انجام نمی دهند.
برای جلوگیری از روی دادن این مورد، بایاسهایی اعمال میشود تا اینکه نرونهـایی کـه بـه نـدرت
برنده میشوند، احتمال برنده شدن را دررقابتهای بعدی داشته باشند. یک با یـاس مثبـت بـه منفـی
فاصله اضافه می شود، به این ترتیب احتمال برنده شدن نرون دورتر بیشتر می شود.
به این منظور، یک متوسط از خروجی نرونها نگهداری میشود. این مقادیر نمایانگر درصـد برنـده
شدن نرونها در رقابتهای قبلی می باشد. و از آنها برای تنظیم با یاس های نرونها استفاده می شوند
به این ترتیب که با یاس نرونهای غالبا برنده کاهش و بر عکس با یاس نرونهایی که بندرت برنـده
می شود، افزایش می یابد.
برای اطمینان از درستی متوسطهای خروجی، نرخ یادگیری learncon بسیار کمتر از learnk انتخـاب
می شود. نتیجه این است که بایاس نرونهایی که اغلب بازنده اند در مقابل نرون هـای غالبـا برنـده
افزایش مییابد. هنگامی که بایاس نرونهای غالباﹰ بازنده افزایش می یابد، فضای ورودی که نرون بـه

14-Bias Learning Rule
۴٨
آن پاسخ می دهد نیز گسترش می یابد. هر چقـدر فـضای ورودی افـزایش بیابـد، نرونهـای غالبـاﹰ
بازنده، به ورودیهای بیشتری پاسخ میدهند. سرانجام این نرون نـسبت بـه سـایر نرونهـا بـه تعـداد
برابری از ورودیها پاسخ خواهد داد
این امر، دو نتیجه خوب دارد. اول اینکـه، اگـر یـک نـرون بـه علـت دوری وزنهـای آن از همـه
ورودیها هرگز برنده نشود، بایاس آن عاقبت به حدی بزرگ خواهد شد که این نرون بتواند برنـده
شود. وقتی که این اتفاق ( برنده شدن نرون ) روی داد، این نرون به سمت دسته هـایی از ورودی
حرکت خواهد کرد. هنگامی که وزن یک نرون در بازه یک دسته از ورودیها قـرار گرفـت، بایـاس
آن به سمت صفر کاهش خواهد یافت به این ترتیب مشکل نرون بازنده حل خواهد شد.
فایده دوم استفاده از بایاس این است که آنها نرونها را وادار می کننـد کـه هـر کـدام درصـدهای
یکسانی از ورودیها را طبقه بندی کنند. بنابراین، اگـر یـک ناحیـه از فـضای ورودی دارای تعـداد
بیشتری از بردارهای ورودی نسبت به سـایر مکانهـا باشـد، ناحیـه بـا چگـالی بیـشتر در ورودی،
نرونهای بیشتری جذب خواهد کرد. و در نتیجه این ناحیه بـه زیـر گروههـای کـوچکتری تقـسیم
خواهد شد.
۴‐۷‐ نگاشت های خود سازمانده١۵ (SOM)
نگاشت های خود سازمانده یاد می گیرند کـه بردارهـای ورودی را آنطـور کـه در فـضای ورودی
طبقه بندی شده اند، طبقه بندی کنند. تفاوت آنها با لایه های رقابتی این است که نرونهای مجـاور
نگاشت خود سازمانده، قسمتهای مجاور از فضای ورودی را تشخیص می دهند.

15-Self Organizing Maps
۴٩
بنابراین، نگاشتهای خود سازمانده هم توزیع( مثل لایه ها رقابتی) و هم موقعیت مکانی بردارهای
ورودی آموزشی را یاد می گیرند. در اینجا یک شبکه نگاشت خود سازمانده نرون برنـده i* را بـه
روشی مشابه لایه رقابتی تعیین می کند. اما به جای اینکه تنها نرون برنده تنظیم شود، تمام نرونهـا
در یک همسایگی مشخص N (d) از نرون برنده با استفاده از قانون کوهنن تنظیم می شوند. یعنی،
i*
ما تمام نرونهای i Ni* (d) را طبق رابطه زیر تنظیم می کنیم
(۴‐۹۲)i W (q)i W (q − 1)  α ( p(q)−i IW (q−1))
یا
(۴‐٣٠i W (q) (1−α) i W (q − 1)  αp(q)(
در اینجا همسایگی N (d) شامل آندیس تمام نرونهایی است کـه در شـعاع d بـه مرکزیـت نـرون
i*
برنده i* قرار دارند.
(۴‐۱۳)Ni* (d)  {j,dij≤d}
بنابراین، هنگامی که بردار p به شبکه عرضه میشود، وزنهای نرون برنده و همسایه های نزدیک آن
به سمت p حرکت خواهد کرد. در نتیجه، بعد از آزمونهای پی در پی فـراوان، نرونهـای همـسایه،
نمایانگر بردارهای مشابه هم خواهند بود.
برای توضیح مفهوم همسایگی، شکل ۴‐۰۱ را در نظر بگیرید. شکل سمت چـپ یـک همـسایگی
دو بعدی به شعاع d=1 را حول نرون 13 نشان میدهد. دیاگرام سمت راست یـک همـسایگی بـه
شعاع d=2 را نشان میدهد. این همسایگی ها را میتوان به صورت زیر نوشت:
N13 (1)  {8,12,13,14,18}
و
۵٠
N13 (2)  {3,7,8,9,11,12,13,14,15,17,18,19,23}

شکل۴‐۰۱نمایش همسایگی
میتوان نرونها را در یک فضای یک بعدی، دو بعدی، سه بعدی یا حتـی بـا ابعـاد بیـشتر نیـز قـرار
دهیم. برای یک شبکه SOM یک بعدی ، یک نرون تنها دو همسایه (یا اگر نرونها در انتها باشـند
یک همسایه) در شعاع یک خواهد داشت.
۴‐۸‐ شبکه یادگیری کوانتیزه کننده برداری١۶]۵۳[
معماری شبکه عصبی LVQ در شکل۴‐۱۱ نشان داده شده است. یـک شـبکه LVQ در لایـه اول از
یک شبکه رقابتی و در لایه دوم از یک شبکه خطی تـشکیل شـده اسـت. لایـه رقـابتی بردارهـای
ورودی را به همان روش لایه های رقابتی ذکر شده، طبقه بندی میکند. لایه خطـی نیـز کلاسـهای
لایه رقابتی را بصورت کلاسهای مورد نظر کاربر طبقه بندی میکند. ما کلاسهایی کـه لایـه رقـابتی
جدا کرده است را زیر کلاس و کلاسهایی را که لایـه خطـی مـشخص میکنـد، کلاسـهای هـدف
مینامیم.

16-Learning Vector Quantization Networks
۵١

شکل۴‐۱۱ معماری شبکه LVQ
هر دوی لایه های رقابتی و خطی دارای تنها یک نرون بـرای هـر زیـر کـلاس یـا کـلاس هـدف
هستند. به همین دلیل لایه رقابتی میتواند S1 کلاس را یاد بگیرد. در مرحله بعد این S1 کـلاس در
S2 کلاس توسط لایه خطی طبقه بندی خواهد شد.( S1 همیشه از S2 بزرگتر است.)
برای مثال فرض کنید که نرونهای ١،٢و٣ در لایهرقابتی، زیر کلاسهایی از ورودی را یـاد میگیرنـد
که به کلاس هدف شماره ٢ لایه خطی تعلق دارند. آنگـاه نرونهـای رقـابتی ١،٢و٣ دارای وزنهـای
Lw2,1 برابر یک در نرون n2 لایهخطی، و وزنهای صفر برای بقیه نرونهای لایه خطی خواهند بود.
بنابراین این نرون لایه خطی ( ( n2 در صورت برنده شدن هر یک از نرونهای ١،٢و٣ لایـه رقـابتی،
یک ١ در خروجی ایجاد خواهد کرد. به این ترتیب زیر کلاسهای لایه رقابتی بـصورت کلاسـهای
هدف ترکیب خواهند شد.
خلاصه، یک ١ در iامین ردیف از a1 (بقیه عناصر a1 صفر خواهد بود)، iامـین ردیـف از Lw2,1
را به عنوان خروجی شبکه انتخاب میکند. این ستون شامل یک ١ که نمایانگر یـک کـلاس هـدف
است، خواهد بود را تعیین کنیم. اما ما باید با استفاده از یک عملیات آموزشی به لایه اول بفهمانیم،
که هر ورودی را در زیر کلاس مورد نظر طبقه بندی کند.
۵٢
۴‐٨‐١ روش یاد گیری (learnlv1) LVQ1
یادگیری LVQ در لایه رقابتی بر اساس یک دسته از جفتهای ورودی/ هدف میباشد.
(۴‐۲۳){ p1 ,t1},{ p2 ,t2},...,{ pQ ,tQ}
هر بردار هدف شامل یک ١ میباشد. بقیه عناصر صفر هستند. عدد ١ نمایانگر طبقه بردار ورودی
میباشد. برای نمونه، جفت آموزشی زیر را در نظر بگیرید.
0 2 (۴‐٣٣) 0 − 1 ,  t1 p1 1 0 0 در اینجا ما بردارهای ورودی سه عنصری داریم، و هر بردار ورودی باید به یکی از چهـار کـلاس
تعلق گیرد. شبکه باید طوری آموزش یابد که این بردار ورودی را در سومین کـلاس طبقـه بنـدی
کند.
به منظور آموزش شبکه، یک بردار ورودی p ارائه میشود، و فاصله از p بـرای هـر ردیـف بـردار
وزن ورودی Iw1,1 محاسبه میشود. نرونهای مخفی لایه اول به رقابت می پردازند. فرض کنیـد کـه
iامین عنصر از n1 مثبت ترین است، و نرون i* رقابت را می برد. آنگاه تابع تبدیل رقابتی یک ۱ را
به عنوان i* عنصر از a1 تولید می کند. تمام عناصر دیگرa1 صفر هستند. هنگـامی کـهa1 در وزنهـای
لایه دوم یعنیLw2,1 ضرب میشود، یک موجود در a1 کلاس k* مربوطه راانتخاب میکنـد. بـه ایـن
ترتیب، شبکه بردار ورودی p را در کلاس k* قرار داده و a2 یک شـده اسـت. البتـه ایـن تعیـین
k*
کلاس بردار p توسط شبکه بسته به اینکه آیا ورودی در کلاس k* است یا نه، میتواند درسـت یـا
غلط باشد.
۵٣
اگر تشخیص شبکه درست باشد سطر i* ام ازIw1,1 را طوری تصحیح میکنیم کـه ایـن سـطر بـه
بردار ورودی نزدیکتر شود، وبرعکس، در صورت غلـط بـودن تـشخیص ، تـصحیح بـه گونـه ای
صورت میگیرد که این سطر ماتریس وزن Iw1,1 از ورودی دورتر میشود. بنابراین اگـر p درسـت
طبقه بندی شود، یعنی
(۴‐٣۴( a2k*  tk*  1)(
ما مقدار جدید i* امین ردیف ازIw1,1 را چنین تنظیم میکنیم:
(۴‐٣۵) IW1,1 (q)i*IW1,1α(p(q)−i*IW1,1(q−1))
از طرفی، اگر طبقه بندی اشتباه باشد،
(۴‐٣۶) a2k*  1 ≠ tk*  0
مقدار جدیدi* امین ردیف را Iw1,1 را طبق رابطه زیر تغییر میدهیم
(۴‐۷۳) IW1,1 (q)i*IW1,1−α(p(q)−i*IW1,1(q−1))
این تصحیحات موجب میشود که نرون مخفی به سوی برداری کـه در کـلاس مربوطـه قـرار دارد
حرکت کند و از طرفی از سایر بردارها فاصله بگیرد.
۴‐۸‐۲ روش یادگیری تکمیلی١٧ LVQ21
روش یادگیری که در اینجا توضیح میدهیم را میتوانیم بعد از استفاده از 1 بکار ببریم. بکـارگیری
این روش ممکن است نتایج یادگیری اولیه را بهبود بخشد.
اگر نرون برنده در لایه میانی، بردار ورودی را به درستی طبقه بندی ننمود، بردار وزن آن نـرون را
طوری تنظیم میکنیم که از بردار ورودی فاصله بگیرد و به طور همزمان بردار وزن متناظر با نرونی

17-Supplemental Learning Rule
۵۴
را که بیشترین نزدیکی را به بردار ورودی دارد، طوری تنظیم میکنیم کـه بـه سـمت بـردار ورودی
حرکت نماید(به بردار ورودی نزدیکتر گردد).
زمانی که شبکه بردار ورودی را به درستی طبقه بندی نمود، تنها بردار وزن یـک نـرون بـه سـمت
بردار ورودی نزدیک میشود. اما اگر بردار ورودی بطور صحیح طبقـه بنـدی نـشد، بـردار وزن دو
نرون تنظیم میشود، یکی به سمت بـردار ورودی نزدیـک میـشود و دیگـری از بـردار ورودی دور
میشود.
۴‐۹‐ مقایسه شبکههای رقابتی
یک شبکه رقابتی طرز طبقه بندی بردار ورودی را یاد میگیرد. اگر تنها هدف ایـن باشـد کـه یـک
شبکه عصبی طبقه بندی بردارهای ورودی را یاد بگیرد، آنگاه یک شـبکه رقـابتی مناسـب خواهـد
بود. شبکه های عصبی رقابتی همچنین توزیع ورودیها را نیز با اعطای نرونهای بیشتر بـرای طبقـه
بندی قسمتهایی از فضای ورودی دارای چگالی بیشتر، یاد میگیرنـد. یـک نگاشـت خودسـازمانده
طبقه بندی بردارهای ورودی را یاد میگیرد. همچنین توضیع بردارهای ورودی را نیـز یـاد میگیـرد.
این نگاشت نرونهای بیشتری را برای قسمتهایی از فضای ورودی که بردارهای بیشتری را به شبکه
اعمال میکند، در نظر میگیرد.
نگاشت خودسازمانده، همچنین توپولوﮊی بردارهای ورودی را نیز یـاد خواهـد گرفـت. نرونهـای
همسایه در شبکه به بردارهای مشابه جواب میدهنـد. لایـه نرونهـا را میتـوان بـه فـرم یـک شـبکه
لاستیکی کشیده شده در نواحی از فضای ورودی که بردارها را به شبکه اعمال کرده است، تـصور
کرد.
۵۵
در نگاشت خودسازمانده تغییرات بردارهای خروجی نسبت به شبکه های رقابتی بسیار ملایـم تـر
خواهد بود.
شبکه عصبی LVQ بردارهای ورودی را در کلاسهای هدف به وسیله یک لایـه رقـابتی بـرای پیـدا
کردن زیر کلاسهای ورودی، و سپس با ترکیب آنها در کلاسهای هدف، طبقه بندی میکنند.
بر خلاف شبکه های پرسپترون که تنها بردارهای مجزا شده خطی را طبقه بنـدی میکننـد، شـبکه
های LVQ میتواند هر دسته از بردارهای ورودی را طبقه بندی کند. تنها لازم است که لایـه رقـابتی
به اندازه کافی نرون داشته باشد، تا به هر طبقه تعداد کافی نرون تعلق بگیرد.
۵۶

۵٧
۵‐۱‐ نحوه بدست آوردن سیگنالها
در این پایان نامه ۴ نوع سیگنال داریم که عبارتند از سـیگنالهای فرورزونـانس، کلیـدزنی خـازنی،
کلیدزنی بار، کلیدزنی ترانسفورماتور. سیگنالها را به دو دسته تقسیم می کنیم که دسته اول شـامل
انواع فرورزونانس و دسته دوم شامل انواع کلیدزنی خازنی، کلیدزنی بار، کلیـدزنی ترانـسفورماتور
می باشند. سیگنالها، با شبیه سازی بر روی فیدر توزیع واقعی توسط نرم افزار EMTP بدست آمـده
است که نحوه بدست آوردن سیگنالها در زیر توضیح داده شده است.
۵‐۱‐۱‐ سیگنالهای فرورزونانس
از آنجائیکه در وقوع پدیده فرورزونانس پارامترهای مختلف از جمله انواع کلید زنیها، نوع اتـصال
ترانسفورماتور، پدیده هیسترزیس، خاصیت خازنی خـط، طـول خـط و بـار مـوثر هـستند، انـواع
سیگنالهای فرورزونانس با بررسی اثرات هر یک از خواص بر روی شبکه واقعی بدست آمده انـد.
برای بدست آوردن این سیگنالها، بخشی از یک فیدر 20kV جزیره قشم کـه در شـکل ۵‐۱ نـشان
داده شده است انتخاب شده است] ۶۳.[

U

315 500 315 250 315 100 800 250
1250

315 315 500 315 1250 630 500 315 500 800 630 800 100 630 250
شکل۵‐۱. فیدر 20kV
۵٨
۵‐١‐٢‐ انواع کلید زنیها و انواع سیم بندی درترانسفورماتورها
عملکرد غیر همزمان کلیدهای قدرت و تغذیه ترانسفورماتور بی بار یا کم بار توسط یک فاز یا دو
فاز خط انتقال، شرایط بسیار مساعدی برای تحقق فرورزونانس مهیا می کند. عملکرد غیر همزمان
کلیدهای قدرت که در اثر قطع فاز یا گیر کردن کنتاکتهای بریکر در شبکه اتفاق می افتد را میتـوان
به دو نوع کلیدزنی تکفاز و دوفاز تقسیم بندی کرد. در این قسمت تاثیر انواع سیم بندیهای ترانس
20/0.4kv ابتدای فیدر را در اثر کلیدزنی تکفاز و دوفاز بررسی می کنیم.
الف)ترانس Yزمین شده ∆ /

شکل۵‐۲ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۵٩
ب)ترانس Yزمین نشدهY/ زمین شده

شکل۵‐۴ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ﭖ)ترانس Yزمین شدهY/ زمین شده

شکل۵‐۶ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٠
ت)ترانس ∆/∆

شکل۵‐۸ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۹ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ث)ترانس Y/∆ زمین شده:

شکل۵‐۰۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

۶١
شکل۵‐۱۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
ج)ترانس Yزمین نشدهY/ زمین نشده

شکل۵‐۲۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۳۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
چ )ترانس Yزمین نشده ∆ /

شکل۵‐۴۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۵۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
۶٢
ح )ترانسفورماتور Y/∆ زمین نشده:

شکل۵‐۶۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی تکفاز

شکل۵‐۷۱ ولتاﮊ فاز a ثانویه ترانس در کلیدزنی دوفاز
همانطور که ملاحظه می شود سوئیچینگ تکفاز که بدترین حالت کلیدزنی است باعـث بـه اشـباع
رفتن سریع هسته می شود. در این نوع کلیدزنی اضافه ولتاﮊهایی بصورت دائم و با دامنـه بـیش از
۲ برابر ولتاﮊ سیستم خواهد بود. در کلید زنی دوفاز نوسانات پایه یا زیر هارمونیک دائـم بـا دامنـه
۵,۱ تا ۷,۱ برابر خواهد بود. زمین کردن نقطه ستاره ترانس اگرچه احتمال فرورزونـانس را از بـین
نمی برد ولی احتمال آن را کمتر و دامنه اضافه ولتاﮊهای ناشی از این پدیده را کمتـر مـی کنـد. در
حالت کلید زنی دوفاز این احتمال بسیار پایین می آید و وقوع آن به شرایط دیگر سیـستم بـستگی
دارد و در صورت وقوع، سیستم دارای هـر چـه مقاومـت نـوترال یـا زمـین کمتـر باشـد احتمـال
۶٣
فرورزونــانس کمتــر اســت. در ظرفیتهــای خــازنی مــساوی، اضــافه ولتاﮊهــای فرورزونــانس
درترانسفورماتور مورد نظر در حالت اتصال ستاره با نوترال زمین شده بسیار کمتر اسـت. بـا قطـع
نوترال ترانسفورماتور مورد نظر و قطع تک فاز و دو فاز اضافه ولتاﮊهای بسیار بزرگتـری حاصـل
می شوند که حتی از حالت اتصال مثلث‐ ستاره بزرگتر می باشـند. همچنـین بـا توجـه بـه شـبیه
سازیهای انجام شده، فازهای مختلف ترانسفورماتور دارای رفتار مساوی در مقابل اضافه ولتاﮊهای
فرورزونانس نیسستند.
۵‐۱‐۳‐ اثر بار بر فرورزونانس
همچنانکه می دانیم اضافه ولتاﮊهای فرورزونانس در هنگام بی باری و یا کم بـاری ترانـسفورماتور
به وجود می آید. با افزایش بار اضافه ولتاﮊهای ناشی از فرورزونـانس بـسیار کـم اسـت ولـی بـا
تعدادی از بارها اضافه ولتاﮊهای ناشی از فرورزونانس بسیار زیاد می شود

شکل ۵‐۸۱ ولتاﮊ ثانویه فاز a در اثر افزایش بار
۶۴

شکل ۵‐۹۱ ولتاﮊ ثانویه فاز a در اثر قطع تعدادی از بارها
۵‐۱‐۴‐ اثر طول خط
با کاهش طول خط، در حالت کلیدزنی تکفاز که بدترین نوع کلیـد زنـی اسـت، اضـافه ولتاﮊهـای
بسیار زیادی بوجود می آید ولی با افزایش طول خـط، اضـافه ولتاﮊهـا بـسیارکمتر میـشود کـه در
شکلهای زیر مشاهده می شود. پس هر چه طول خط کمتر باشد احتمال وقوع فرورزونانس بیـشتر
است.
20 [kV] 15 10 5 0 -5 -10 [s] -15 0.30 0.25 0.20 0.15 0.10 0.05 0.00 (f ile f er71.pl4; x-v ar t) v :X0107B
شکل۵‐۰۲ ولتاﮊ فاز a ثانویه ترانس با کاهش طول خط
۶۵
5000 [V] 4000 3000 2000 1000 0 -1000 -2000 [s] -3000 0.30 0.25 0.20 0.15 0.10 0.05 0.00 v :X0107A (f ile f er71.pl4; x-v ar t)

pdf

پیوستها( برنامه های .................................................(MATLAB ۲۱۱
منابع و مآخذ منابع فارسی......................................................................... ۴۲۱
مانبع غیر فارسی.................................................................... ۵۲۱
چکیده انگلیسی...................................................................... ۶۲۱
فهرست جدول ها
عنوان صفحه
جدول ۱-۱. نسبت سیگنال به نویز واحتمال آشکارسازی و احتمال خطاﺀ...................... ۶۱
جدول ۱-۲. مثالی از سطح مقطعهای راداری در فرکانس ماکروویو................................. ۳۲
جدول ۳-۱. مقایسه رادارهای با PRFهای مختلف و ابهامات آنها.................................... ۴۶
جدول ۳-۲. محاسبه داپلر واقعی از روی داپلرهای مبهم............................................. ۴۷
جدول ۳-۳. مقادیر بدست آمده از معادلات ۳-۶۱برای برد .................................70Km ۱۸
جدول ۳-۴. مقادیر بدست آمده از معادلات ۳-۶۱برای برد .................................20Km ۶۸
جدول۳-۵. مقایسه مدلهای مختلف TMSها از نظر سرعت و مقدار حافظه هایشان................. ۳۰۱
جدول۳-۶. حجم محاسبات برای یک بافر........................................................... ۴۰۱
فهرست شکلها
عنوان صفحه
شکل ۱-۱. سیگنال دریافتی در مجاورت نویز......................................................... ۳
شکل۱-۲. آشکار ساز پوش............................................................................ ۸
شکل ۱-۳. پوش خروجی گیرنده برای تشریح آﮊیرهای غلط در اثر نویز............................ ۰۱
شکل ۱-۴. زمان متوسط بین آﮊیرهای غلط بر حسب سطح آستانه V وپهنای باند گیرنده.......... B ۱۱
شکل۱-۵. تابع چگالی احتمال برای نویز به تنهایی و سیگنال همراه با نویز.......................... ۴۱
شکل ۱-۶. احتمال آشکارسازی یک سیگنال سینوسی آغشته به نویز.................................. ۵۱
شکل۱-۷. تلفات جمع بندی بر حسب تعداد پالسها....................................................... ۸۱
شکل۱-۸. احتمال آشکار سازی بر حسب سیگنال به نویز واحتمال خطاﺀ .......................10−9 ۰۲
شکل۱-۹. سطح مقطع راداری کره ای به شعاع a و طول موج ................................... λ ۲۲
شکل۱-۰۱. نسبت سیگنال به نویز دریافتی بر حسب برد هدف........................................ ۳۲
شکل۱-۱۱. انعکاس با زمان حدود چند پریود وابهام در فاصله........................................ ۸۲
شکل۱-۲۱. مقدار نسبت سیگنال به نویزبر حسب برد هدف........................................... ۹۲
شکل ۲-۱. بلاک دیاگرام یک رادار پالسی ساده....................................................... ۲۳
شکل ۲-۲. قطار پالسهای ارسالی و دریافتی........................................................... ۲۳
شکل ۲-۳. توضیح فاصله مبهم........................................................................ ۴۳
شکل ۲-۴. تحلیل اهداف در راستای عمود و افق...................................................... ۵۳
شکل ۲-۵. .aدو هدف غیر قابل تفکیک .b دو هدف قابل تفکیک.................................... ۷۳
شکل ۲-۶. تاثیر هدف متحرک در جبهه موج همفاز ارسالی.......................................... ۹۳
شکل ۲-۷. شرح چگونگی فشردگی یک هدف متحرک برای یک پالس تنها........................... ۰۴
شکل ۲-۸. شرح چگونگی تاثیرات هدف متحرک بر روی پالسهای رادار............................. ۱۴
شکل ۲-۹. فرکانس دریافتی یک رادار مربوط به اهداف دور و نزدیک شونده.................... ....۳۴
شکل ۲-۰۱. نمایه سه هدف با سرعتهای برابر ولی سرعتهای شعاعی متفاوت......................... ۳۴
شکل ۲-۱۱. سرعت شعاعی متناسب است با زاویه هدف در راستاهای عمود وافق..................... ۴۴
شکل ۲-۲۱. خروجی حاصله از برنامه lprf_req.m برای سه مقدار از ........................... np ۷۴
شکل ۲-۳۱. نمودار نسبت سیگنال به نویز به ازاﺀ تعداد پالسهای همزمان............................. ۸۴
شکل ۲-۴۱. نمودار سیگنال به نویز بر حسب برد برای رادار ........................... HighPRF ۰۵
شکل ۲-۵۱. شمای پترن یک آنتن بسیار ساده شده..................................................... ۲۵
شکل ۲-۶۱. تلفات فروپاشی............................................................................ ۴۵
شکل ۳-۱. مقایسه فاصله هامونیکها در LPRF و ..........................................HPRF ۹۵
عنوان صفحه
شکل ۳-۲. مقایسه بین تعداد پاسهای دریافتی درLPRFو....................................HPRF ۰۶
شکل ۳-۳. نحوه تاثیر فیلترهای MTI بر روی کلاتر دریافتی....................................... ۳۶
شکل ۳-۴. بلاک دیاگرام یک رادار پالسی........................................................... ۵۶
شکل ۳-۵. نمودار توان بر حسب فرکانس برای قسمت های مختلف یک رادار...................... ۶۶
شکل ۳-۶. پاسخ فرکانسی سیگنال ارسالی با مد نظر قرار دادن ...............................PRF ۸۶
شکل ۳-۷. طیف فرکانسی سیگنالهای فرستاده شده و دریافتی و بانک فیلترها....................... ۹۶
شکل ۳-۸. رفع ابهام در برد......................................................................... ۱۷
شکل ۳-۹. برگشتیهای حاصل از PRF3 و PRF1 برای برد ..............................70Km ۲۸
شکل ۳-۰۱. نمایی از برگشتیها در خلال PRF1 برای برد .................................70Km ۲۸
شکل ۳-۱۱. مقاسیه پالسهای دریافتی در طول ارسال PRF برای برد .......................70Km ۳۸
شکل ۳-۲۱. پالسهای دریافتی در طول PRFهای ارسالی و نتیجه نهایی............................. ۴۸
شکل ۳-۳۱. برگشتیهای حاصل در خلال ارسال PRF1 برای برد ..........................20Km ۶۸
شکل ۳-۴۱. برگشتیها در خلالPRF1 و فاصله از آخرین پالس ارسالی در برد...............20Km ۷۸
شکل ۳-۵۱. مقاسیه پالسهای دریافتی در طول ارسال ...................................PRF1,2,3 ۷۸
شکل ۳-۶۱. پالسهای دریافتی در طول PRFهای ارسالی و نتیجه نهایی مقایسه پالسها................ ۸۸
شکل ۳-۷۱. نحوه استفاده از توان بالای ارسالی و دریافتی دریک رادار.....................MPRF ۰۹
شکل ۳-۸۱. بهبود سیگنال به نویز با کمک تعداد زیاد پالسهای دریافتی.............................. ۱۹
شکل ۳-۹۱. بهبود در پاسخ با استفاده از Integration به ازای۶ و ۲۱ بار تجمع.................. ۳۹
شکل ۳-۰۲. تاثیر جمع پذیری همفاز بر روی سیگنالهای برگشتی در۰۱ مرتبه جمع کردن........... ۴۹
شکل ۳-۱۲. افزایش SNR با تجمع همفاز و بهره کامل .................................................. ۵۹
شکل ۳-۲۲. کاهش اثر تجمع همفاز در اثر تغییر فاز سیگنالهای دریافتی...................................... ۶۹
شکل ۳-۳۲. ضریب بهبود آشکار سازی برحسب تعداد پالسها........................................ ۸۹
شکل ۳-۴۲. نمای یک رادار مولتی PRF با قابلیت جمع پذیری...................................... ۰۰۱
شکل ۳-۵۲. چگونگی ارتباط TMS با سیستم مولد ............................................PRF ۲۰۱
شکل ۳-۶۲. الگوریتم تعیین برد هدف برای یک رادار .....................................MPRF ۷۰۱
چکیده:
در رادارها پالسی، با بالا رفتن فرکانس تکرار پالس رادار، برد غیر مبهم کاهش می یابـد.
چنانکه در پروﮊه نیز دیده شد، با افزایش فرکانس تکرار پالس از 1KHz به 50KHz برد
غیر مبهم از 150Km به 3Km کاهش یافت ولی در عوض توانستیم اهدافی با سرعت تـا
750m/s را آشکارسازی کنیم. این در حالی است که به ازای فرکانس تکرار پالس اولیـه،
ما فقط قادر به آشکار سازی صحیح اهداف با سرعتهای تا 15m/s بودیم! همچنین توانستیم
با کم کردن τ، متناسب با افزایش PRF ، قدرت تفکیک را از 3000m به 60m برسـانیم که یک پارامتر مناسب برای آشکارسازی اهداف نزدیک به هم می باشد. همچنـین نشـان دادیم با بالا بردن فرکانس تکرار پالس و افزایش در تعداد پالسهای ارسالی و دریـافتی در
طول ارسال یک PRF ، در مقایسه با رادارهای LPRF مقدار بسیار زیادی توان حاصـل شد ، که با استفاده از روشی خاص ، از این پالسهای دریافتی برای بالا بردن نسبت سیگنال
به نویز تا 15dB وحتی بیشتر برای PRFهای بالاتر استفاده شد که ایـن امـر مـا را در آشکار سازی بهتر یاری خواهد داد. همچنین نشان دادیم که با تجمـع بـر روی پالسـهای
دریافتی در طول ارسال چند PRF می توان باز هم نسبت سیگنال به نویز را افـزایش داد.
و فرضا با توجه به زمان ارسال هر PRF اگر هدف ۰۳ برابر این زمان در پتـرن آنـتن
رادار ما قرار گیرد برای هر کدام از PRFها می توان تا 10dB نسبت سیگنال به نویز را افزایش داد. و در انتها بحث کلاترها که با بالا بردن فرکانس تکرار پالس می توان اثـرات
منفی آنها را بهبود بخشید، ولی با استفاده از چند PRF قادر خواهیم بود تا اثرات آنرا بـه حداقل برسانیم و از طرفی همانطور که نشان داده شد ، توانستیم برد واقعی هـدف را بـا
استفاده از PRF های مرتبط با هم از روی مقایسه دریافتیهایشان بدست آوریم.
I
مقدمه:
در این پروﮊه گردآوری و شبیه سازی روی رادارهای پالسی انجام شده است. رادارهـای پالسی خود به چند گونه تقسیم می شوند که یکی از مهمترین آن تقسیمات ، مربوط به میزان فرکانس تکرار پالس می باشد که به دو و یا سـه دسـته تقسـیم مـی شـوند. دسـته اول
LowPRF و دسته دوم Medium PRF و دسته سوم HighPRF ها. در حالت کلی و با در نظر گرفتن دسته اول و سوم ،در میابیم که هرکدام دارای مزایایی هسـتند. مهمتـرین مزیت رادارهای با فرکانس تکرار پالس کم ساده بودن طراحی و برد مبهم زیاد است. ولی در قبال این وضعیت ما دچار مشکلاتی در شناسایی فرکانس داپلر خواهیم بـود و ..... .
برای رادارهای با فرکانس تکرار پالس بالا در قبال برد مبهم کم ، ما به شناسایی بهتری از تغییر فرکانس داپلر دست خواهیم یافت . البته این سیستم پیچیده تر است. ولی با توجه بـه آنکه با بالا رفتن فرکانس تکرار پالس می توان چرخه کار را کاهش داد ، لذا پدیده اخفـاﺀ کمتر پیش می آید از طرف دیگر چنانکه در فصل دوم هم نشان داده شـده ، بیشـینه بـرد رادار با توان میانگین نسبت مستقیم دارد که سبب می شود به نسبت رادارهای LowPRF
، توان میانگین بیشتری در رادارهای HighPRF انتقال یابد و این خود سبب بـالا رفـتن نسبت سیگنال به نویز و برد آشکار سازی رادار می شود. اما برد مبهم کـم ایـن گونـه
رادارها این مزیت را از بین می برد. لذا می توان با ترکیب چند (Multi PRF) PRF که نزدیک به هم هستند و بر هم قابل قسمت نیز نمی باشند ، برد مبهم رادار را افزایش داد که این کار سبب پیچیده تر شدن هرچه بیشتر رادار می شود ولی در قبال این پیچیدگی ما هـم قادر به آشکارسازی هرچه بهتر فرکانس داپلر هستیم ، برد مبهم رادار زیاد مـی شـود و
نسبت سیگنال به نویز نیز افزایش می یابد و .... . مقایسه کامل بین رادارهای LowPRF
وHighPRF در فصل ۳ ارائه شده است.
II
فصل اول
بررسی معادله رادار:
مقدمه:
به طور کلی با استفاده از معادله رادار می توان حداکثر برد رادار را بدست آورد. حداکثر برد رادار بر حسب پارامترهای رادار به صورت زیر بدست می آید.
14 P GA σ Rmax  ۱-۱) e t 2 (4π) Smin
که در آن :
= Pt توان ارسالی بر حسب وات؛
= G بهره آنتن؛
= Ae سطح موثر آنتن بر حسب متر مربع؛
=σ سطح مقطع راداری هدف بر حسب متر مربع؛
= Smin حداقل توان سیگنال قابل آشکار سازی بر حسب وات؛
از پارامترهای فوق تمام گزینه ها به جز سطح مقطع راداری هدف ، تقریبا دراختیار طراح رادار است. معادله رادار نشان می دهد که برای بردهای زیاد ، توان ارسالی باید زیاد باشد
١
و انرﮊی تششع شده دریک شعاع باریک متمرکز باشد به معنی اینکه بهره آنتن زیاد باشد و گیرنده نسبت به سیگنالهای ضعیف حساس باشد.
در عمل برد محاسبه شده از یک چنین معادله ای شاید به نصف هم نرسد! علت آن است که پارامترها و تضعیفات بسیاری بر سر سیگنال منتشر شده قرار خواهند گرفت کـه مقـدار بسیاری از توان ارسالی را تلف خواهد کرد و ما در ادامه به این پارامترهاو پارامترهـای ارائه شده در فرمول فوق می پردازیم تا به یک مقدار توان مناسب بـرای ۰۵۱ کیلـومتر برای رادار موردنظر برسیم.
البته اگر تمام پارامترهای موثر در برد رادار معین بودند ، پیش بینی دقیـق از عملکـرد رادار امکان پذیر بود ولی در واقع اکثر این مقادیر دارای ماهیت آماری می باشند و ایـن کار را برای یک طراح رادار بسیار سخت می کند. پس به ناچار همیشه یک مصالحه بین آنچه که انسان می خواهد و آنچه عملا با کوشش معقول می توان بدست آورد لازم اسـت، که این مطلب به طور کامل در طول این فصل حس خواهد شد.
البته اطلاعات کامل و مفصل در مورد این عوامل خارج از محدوده این پروﮊه می باشد .
لذا ما به اندازه ای و نه عمیق بر بعضی از مهمترین این عوامل خـواهیم پرداخـت و در نهایت یک معادله را که شبیه به معادله ۱-۲ است ولی پارامترهای زیادی بـه آن اضـافه شده است را ارائه خواهیم کرد که با استفاده از آن فرمول می توان مقـدار نهـایی تـوان ارسالی برای برد مورد نظر را محاسبه کرد.
۱-۱) حداقل سیگنال قابل آشکار سازی:
توانایی گیرنده رادار برای آشکارسازی یک سیگنال برگشتی ضعیف ، توسط انرﮊی نـویز موجود در باند فرکانسی انرﮊی سیگنال محدود می شود. ضعیف ترین سیگنالی که گیرنـده
می تواند آشکار نماید ، حداقل سیگنال قابل آشکار سازی یا آسـتانه (Threshold) نامیـده
٢
می شود. تعیین مشخصه حداقل سیگنال قابل آشکار سازی معمولا به علت ماهیت آماری آن و بخاطر فقدان معیاری بسیار مشکل است.
آشکار سازی بر اساس ایجاد یک سطح آستانه در خروجی گیرنده اسـت. اگـر خروجـی گیرنده بیشتر ازآستانه باشد ، فرض می شود که سیگنال وجود دارد و در غیر این صورت سیگنال آشکار نشده نویز می باشد. به این روش آشکار سازی آستانه ای گویند. خروجـی یک رادار نمونه را برحسب زمان ، اگر به صورت شکل ۱-۱ در نظر بگیـریم ، پـوش سیگنال دارای تغییرات نامنظمی است که در اثر تصادفی بودن نویز حاصل می شود.

Square with Gaussian Noise Signal With Noise A C B Time
شکل ۱-۱) سیگنال دریافتی در مجاورت نویز
اگر در نقطه A در این شکل دامنه بزرگی داشته باشیم و این دامنه از پیکهـای نویزهـای مجاور بیشترباشد،می توان آنرا بر حسب دامنه آشکار ساخت.اگر سطح آشکار سـازی را بالا ببریم ممکن است احتمال آشکار سازی پایین بیاید کما اینکه در آینده نیز به این نتیجـه
خواهیم رسید. برای مثال اگر در نظر بگیرید که نقاط B وC نیز سیگنال ارسالی از یـک هدف واقعی باشند ، در این صورت ممکن است بالا بردن سطح آشکار سـازی مـانع از بدست آمدن اطلاعات درست شود و اگر سطح آشکار سازی را برای بالا بـردن احتمـال آشکارسازی پایین ببریم در این صورت احتمال خطا بالا می رود. یعنی ممکن است جـایی
٣
نویز بجای سیگنال واقعی آشکار سازی شود.انتخاب سطح آستانه مناسب یـک مصـالحه است که بستگی به این موضوع دارد که اهمیت یک اشتباه در هر یک از موارد (۱) یعنی از دست دادن یک هدف که وجود دارد و یا (۲) نشان دادن اشتباهی یک هدف که وجـود ندارد ، چقدر است.
فرض کنیم که پوش سیگنال شکل مورد نظر خروجی فیلتر تطبیق شده باشـد.یـک فیلتـر تطبیق شده به شکلی عمل می کند که نسبت پیک سیگنال خروجی بـه متوسـط نـویز را حداکثر کند. فیلتر تطبیق شده ایده ال عملا موجود نیست ولی می توان در عمل تا حـدودی سیستم را به آن نزدیک کرد.این چنین فیلتری برای راداری که پـالس مسـتطیل شـکل را
ارسال می کند ، دارای پهنای باند B است که برابر معکوس τ ، یا زمان ارسال سـیگنال در طول یک پریود ، می باشد. خروجی سیگنال از یک فیلتر تطبیقی دارای شـکل مـوج ورودی نمی باشد.
نسبت سیگنال به نویز لازم برای آشکارسازی مناسب، یکی از پارامترهای مهم اسـت کـه برای محاسبه حداقل سیگنال قابل آشکارسازی لازم است مشخص گردد.به طور کلی تصمیم گیری در این مورد بر اساس اندازه گیریهایی در خروجی ویدئو انجام می شود ، ولی ساده
تر است حداکثر نسبت توان سیگنال به نویز در خروجی تقویت کننده IF مـد نظـر قـرار گیرد.
۱-۲) نویز گیرنده:
چون نویز یکی از عوامل اصلی محدود کننده حساسیت گیرنده است ، لذا لازم اسـت بـه وسیله ای به صورت مقادیر کمی مورد بررسی قرار گیرد.نویز در واقـع یـک انـرﮊی الکترومغناطیسی ناخواسته است که با انرﮊی مورد نظر و خواسته ما کـه بـرای آشـکار
۴
سازی هدف استفاده می شود تداخل می نماید. نویز می تواند در قسمت آنتن گیرنده یـا در داخل خود گیرنده به خصوص زمان تقویت سیگنال ، با سیگنال اصلی ما جمـع شـود. در صورتی که اگر تمام المانهای هم به صورت ایده آل عمل می کردند باز هم مقداری نـویز در اثر حرکت حرارتی الکترونها در طبقات ورودی گیرنده ایجاد خواهد شدکه به آن نـویز حرارتی یا جانسون گویند. این گونه نویز به طور مستقیم با دما و پهنای باند گیرنده متناسب است. توان نویز حاصل شده توسط گیرنده با پهنای باندBn (بـر حسـب هرتـز) و درجـه
حرارت T (درجه کلوین) ایجاد می شود و برابر است با:
۱-۲) Availablethermal − Noise Power  kTBn
که در آن k ، ثابت بولتزمن است و اگر درجه حرارت را دمای محیط در نظر بگیریم یعنی همان ۰۹۲ درجه کلوین در این صورت مقدار kT برابر خواهد بود بـا . 4 ×10−21W / Hz
البته این مقدار با تغییر دما می تواند کم یا زیاد شود.
برای رادارهای سوپر هیترودین که دارای کاربرد بسیاری هستند ، پهنای باند گیرنده تقریبا
با پهنای باند طبقات فرکانس میانی IF برابر است. البته پهنای باند ۳ دسیبل یا نیم توان که توسط مهندسین الکترونیک استفاده می شود متفاوت است و از رابطه زیر بدست می آید:
2 df H ( f ) ∞∫ ۱-۳) −∞ Bn  2 H ( f ) در رابطه فوق وقتی که H(f) نرمالیزه شود، به طوری که حداکثر آن در مرکز باند برابر واحد گردد، پهنای باندBn پهنای باند نویز نامیده می شود که در واقع پهنای باند یک فیلتـر
مستطیلی معادل است. و پهنای باند فاصله بین دو نقطه است که پاسخ برابـر بـا ۷۰۷/۰
مقدار ماکزیمم در وسط باند شود. به طور کلی مشخصه بسیاری از گیرنده های رادارهای
۵
عملی به گونه ایست که پهنای باند ۳ دسیبل و نویز تفاوت قابل ملاحظه ای باهم ندارنـد و می توان پهنای باند ۳ دسیبل را به جای پهنای باند نویز به کار برد.
اگر حداقل سیگنال قابل آشکارسازیSmin برابر مقدارSi مربوط به حداقل سیگنال به نـویز
خروجی (S0 N0 )min در خروجی IF که برای آشکار سازی لازم اسـت باشـد، در ایـن

صورت :
S0 ۱-۴الف) Smin  kT0 Bn Fn min N0 که در این رابطه F0 عدد نویز مربوط به تقویت کننده می باشد و می توان آن را به شـکل
ساده زیر معرفی کرد : نسبت سیگنال به نویز ورودی تقویت کننده وبه نسبت سیگنال بـه نویز خروجی تقویت کننده.
Si
۱-۴ب)Fn  So Ni
No
با جایگذاری رابطه بالا در رابطه ۱-۲ معادله رادار را برای بیشترین برد آن بدست مـی آوریم وخواهیم داشت:
۱-۵) Pt GAσ R4 max  F (So ( (4π)2 kT B min No n n 0 البته به غیر از این پارامتر عوامل زیادی هستند که در کاهش نسبت سیگنال به نویز موثر خواهند بود که در انتهای فصل به مهمترین آنها اشاره می کنیم.
۶
۱-۳) نسبت سیگنال به نویز:
در این بخش نتایج تئوری آماری نویز برای بدست آوردن نسبت سیگنال به نـویز لازم در
خروجی تقویت کننده IF برای ایجاد یک احتمال آشکارسازی معین به کار گرفته می شـود به طوری که از یک احتمال خطای معین (احتمال آﮊیر غلط) تجاوز نکنیم. برای این کـار نسبت سیگنال به نویز خروجی در معادله ۱-۶ جایگزین می شود تا حداقل سـیگنال قابـل آشکار سازی بدست آید که بنوبه خود در معادله حداکثر برد رادار به کار می رود.
یک تقویت کننده IF با پهنای باند BIF را در نظر بگیرید که خروجی آن به یک آشکارساز
ثانویه و تقویت کننده ویدئویی با پهنای باند BV وصل شده است( همانند شکل ۱-۳). نقـش
آشکارساز و تقویت کننده ویدئو عبارتست از ایجاد یک آشکارساز پوش. این مدار فرکانس
حامل یا همان carrier را حذف کرده و پوش مدوله شده را عبور می دهد. برای استخراج پوش مدولاسیون پهنای ویدئو باید به اندازه ای پهن باشد که بتواند مولفه های فرکانس پائین ایجاد شده توسط آشکارساز ثانویه را عبور دهد ولی نباید آنقدر هم پهن باشد که مولفه های
نزدیک فرکانس IF راعبور دهد.به طور کلی پهنای باند BV بایستی بزرگتر از BIF باشد تا
کلیه مدولاسیونهای ویدئو را عبور دهد.
نویز ورودی به فیلتر IF به صورت گوسی وارد می شود که دارای تابع چگـالی احتمـال زیر است:
۱-۶) 2 υ 1 P(υ)  exp − 0 2ψ 2πψ0
که p(v)dv احتمال یافتن ولتاﮊ نویز v در فاصله v و v+dv ونماد ψ واریانس یـا مقـدار
متوسط مربع ولتاﮊ نویز است و مقدار متوسط v ، صفر در نظر گرفته شده است.
٧
اگر نویز گوسی از یک فیلتر IF با پهنای باند باریک عبور نماید ، چگالی احتمـال پـوش ولتاﮊ نویز خروجی توسط تابع رایس به صورت زیر داده می شود.
2 R R ۱-۷) P(R)  exp − ψ0 2ψ0 که R دامنه پوش خروجی IF است.احتمال اینکه پوش ولتاﮊ نویز بزرگتر از مقدار ولتـاﮊ آستانه VT باشد برابر است با:
2 R R ∞ Pr obability[VT  R  ∞]  ∫ ۱-۸) dR exp − 2ψ0 0 V ψ T V 2 ۱-۹) Pfa T exp − 2ψ0 وقتی پوش سیگنال بیشتر از ولتاﮊ آستانه گردد، آشکارسازی یک هدف طبق تعریف انجـام می شود.چون احتمال آﮊیر غلط عبارتست از احتمال اینکه نویز از آستانه بیشتر شود. لـذا معادله فوق احتمال آﮊیر خطا را بدست می آورد.

شکل۱-۲) آشکار ساز پوش
٨
فاصله زمانی متوسط بین نویزهایی که از آستانه بیشتر می شود را زمان آﮊیر غلط یا خطا گویند که با Tfa نشان داده می شود و از رابطه زیر بدست می آید:
Tfa  lim 1 N∑TK

N →∞ N k 1
که TK عبارتست از زمان بین عبورهای پوش نویز از آستانه VT وقتیکه ضریب زاویه عبور
مثبت باشد. احتمال آﮊیر غلط را می توان همچنین به صورت نسبت فاصله زمانی که پوش بالای آستانه است به کل زمانی که پوش می تواند بالای آستانه باشد تعریف کرد:

که tK و TK در شکل ۱-۳ تعریف شده اند . فاصله زمانی متوسط یک پالس نویز تقریبـا
برابر است با معکوس پهنای باند، که در این حالت آشکارسازی پوش برابر BIF اسـت. از
برابری دو معادله آخر می توان نتیجه گرفت که:
V 2 1 ۱-۰۱) T exp Tfa  2ψ0 BIF نمودار معادله ۱-۹ در شکل ۱-۴ بر حسب VT 2 2ψ0 به عنوان محور افقی رسم شده است.

برای مثال اگر پهنای باند IF برابر MHz ۱ باشد و زمان متوسط آﮊیر قابل تحمل برابـر
۵۱ دقیقه باشد در این صورت احتمال آﮊیر غلط برابر 1.11×10−9 می باشد وطبق معادلـه
بالا ولتاﮊ آستانه لازم برای این زمان آﮊیر غلط برابر با ۵۴/۶ برابر مقدار مـوثر ولتـاﮊ نویز است.
٩

شکل ۱-۳) پوش خروجی گیرنده برای تشریح آﮊیرهای غلط در اثر نویز
البته مشخصه زمان آﮊیرغلط قابل تحمل بستگی به نیازهای مصرف کننـده و البتـه نـوع کاربرد مورد نظر دارد. رابطه نمایی بین زمان آﮊیر غلط و سطح آستانه باعث می شود که زمان آﮊیر غلط نسبت به تغییرات و یا ناپایداری سطح آستانه حساس باشد. به این معنی که
اگر پهنای باند یک مگا هرتز باشد مقداری برابر 10log(VT 2 2ψ0 ) 12.95dB باعث ایجاد یک

زمان آﮊیر غلط متوسط ۶ دقیقه خواهد شد ولی اگر این مقدار به ۲۷/۴۱ دسی بـل برسـد زمان آﮊیر غلط برابر ۰۰۰۱ ساعت خواهد بود! یعنی افزایش ۷۷/۱ دسی بلی در سـطح آستانه باعث تغییرات زمانی برابر با توان پنج می شود!
این طبیعت نویز گوسی است ، بنابراین در عمل سطح آستانه ممکن است کمـی بیشـتر از مقدار محاسبه شده از رابطه ۱-۰۱ انتخاب گردد به طوری که ناپایـداریهایی کـه باعـث کاهش سطح آستانه در سطح پایین می گردد ، باعث تغییرات زیادی در آﮊیر غلط نشوند.
١٠

شکل ۱-۴) زمان متوسط بین آﮊیرهای غلط بر حسب سطح آستانه V و
پهنای باند گیرنده[1] B
اگر گیرنده برای مدت زمان کوتاهی خاموش گردد احتمال آﮊیر غلط به نسبت زمـانی کـه گیرنده خاموش است افزایش می یابد، البته به شرط آنکه متوسط آﮊیر غلط ثابت بماند.ولی در غالب موارد این موضوع اهمیتی ندارد زیرا تغییرات کم در احتمال آﮊیر غلـط باعـث ایجاد تغییرات کمتری در سطح آستانه می گردد ، چون معادله ۱-۰۱ حالت نمایی دارد.
تاکنون یک گیرنده با ورودی نویز تنها بحث شد.اکنون می خواهیم یک موج سینوسـی بـا
دامنه A همراه با نویز به ورودی فیلتر IF برسد. فرکانس سیگنال فـوق برابـر فرکـانس
میانی IF یعنی FIF می باشد. در این صورت خروجی آشکارساز پوش دارای یـک تـابع
چگالی احتمال به صورت زیر است:
١١
RA 2 A  2 R R ۱-۱۱) I0 − Ps (R)  exp 2ψ ψ0 ψ0 0 که در آن( I0 (Z تابع اصلاح شده بسل مرتبه صفر با متغیر Z می باشد. بـرای مقـدار Z
بسط مجانب( I0 (Z به صورت زیر است:
 1 e z I0 (Z ) ≈ ... 8Z 1  2πZ وقتی که سیگنال وجود نداشته باشد A=0 و رابطه ۱-۱۱ به شکل رابطه ۱-۷ یعنی تابع
چگالی احتمال برای نویز تنها ، خلاصه می شود. احتمال آنکه سیگنال تشخیص داده شـود برابر است با احتمال اینکه پوش R از ولتاﮊ آستانه معین VT بیشتر گردد. بنابراین احتمـال آشکار سازی Pd برابر است با:
RA 2 A  2 R R ∞ Pd  ∫ ۱-۲۱) dR I0 2ψ exp − ψ0 0 0 V ψ T انتگرال بالا با روش ساده قابل محاسبه نیست و باید تکنیکهای عددی با تقریبهای سریها به
کاربرده شود . یک تقریب سری در حالتی که R − A A  ،1 RA باشد، با صرف نظر 0 ψ کردن از یک سری پارامترهای اضافی به شرح زیر در می آید. ۱-۳۱)
١٢
که در آن تابع خطا به صورت زیر تعریف می گردد:
z 2 ∫e−u2 du erf (Z )  0 π
شکل ۱- ۵ یک تشریح ترسیمی از فرایند آشکارسازی آستانه را نشان می دهـد. در ایـن
شکل چگالی احتمال نویز به تنهایی و یک بار همراه با سیگنال با 0.5  3 A نشـان داده 0 ψ شده است. یک ولتاﮊ آستانه0.5  2.5 A نشان داده شده است ومنطقه هاشور خورده سـمت 0 ψ
راست سطح تریشلد زیر منحنی سیگنال همراه با نویز احتمال آشکار سازی را نشان مـی دهد و ناحیه دوبار هاشور خورده زیر منحنی نویز به تنهایی مشخص کننده احتمـال آﮊیـر غلط است. اگر ما مقدار سطح آستانه را بالا ببریم تا احتمال آﮊیر غلط کـم شـود ناچـار احتمال آشکار سازی نیز کم خواهد شد. معادله ۱-۳۱ را می توان برای رسم یـک دسـته منحنی در ارتباط با احتمال آشکار سازی نسبت به ولتاﮊ آستانه و نسبت به دامنـه سـیگنال سینوسی بکار برد.اگرچه طراح گیرنده ترجیح میدهد که با ولتاﮊ کار کنـد ، ولـی بـرای مهندسان رادار مناسبتر است که با توان کار کنند و روابط توانی را داشته باشند. لـذا بـا جایگذاری نسبت سیگنال به ولتاﮊ موثر نویز با رابطه زیر ، می توان معادله ۱-۳۱ را به روابط توانی تبدیل نمود:
2s 12  signal 12  signal amplitude  A 2 N noise rms noise 1 ψ 2 0
همچنین به جای 2ψ VT 2 مقدار آن 1P را از رابطه ۱-۹ قرار خواهیم داد. با استفاده از
0 fa

روابط بالا ، احتمال آشکار سازی بر حسب نسبت سیگنال به نویز با احتمال آﮊیر غلط بـه عنوان یک پارامتر در شکل ۱-۷ نشان داده شده است.
١٣

شکل۱-۵) تابع چگالی احتمال برای نویز به تنهایی و سیگنال همراه با نویز برای تشریح عملکرد آشکارسازی آستانه
هر دو مقدار زمان آﮊیر غلط و احتمال آشکار سازی با توجه به نیاز سیستم مشخص مـی گردند. طراح رادار احتمال آﮊیر غلط را محاسبه کرده و از منحنی ۱-۵ نسبت سیگنال به نویز لازم را برای آشکار سازی بدست می آورد. این مقدار نسبت سیگنال به نویزی است که در رابطه حداقل سیگنال آشکار سازی معادله ۱-۶ به کار می رود. البته ایـن مقـدار برای یک پالس رادار می باشد. مثلا برای زمان آﮊیر غلط معادل با۵۱ دقیقه و پهنای بانـد
۱ مگا هرتز است در این شرایط احتمال آﮊیر غلط برابر با 1.11×10−9 خواهد بود.
همچنین از شکل می توان در یافت که نسبت سیگنال به نویز ۱/۳۱ دسی بل برای احتمـال آشکار سازی ۵/۰ و ۷/۶۱ دسی بل برای احتمال آشکار سازی ۹/۰ لازم است.
۴١

شکل ۱-۶) احتمال آشکارسازی یک سیگنال سینوسی آغشته به نویز به نسبت توان سیگنال به نویز و احتمال آﮊیر غلط
چندین نکته مهم در شکل ۱-۶ قابل بیان است: در نگاه اول ممکن است به نظر برسد کـه نسبت سیگنال به نویز لازم برای آشکارسازی ، بیشتر از مقداری است که به طور مسـتقیم حس شده است و البته بیان شده.حتی برای آشکار سازی با احتمـال ۵/۰ ! ممکـن اسـت اظهار شود که مادامی که سیگنال از نویز بیشتر باشد آشکار سازی انجام می پذیرد. ایـن نوع استدلال زمانیکه احتمال آﮊیر غلط در نظر گرفته شود می تواند صحیح نباشد. مطلـب مهمی دیگری که در شکل ۱-۶ نشان داده شده است ، این است که یک تغییر ۴/۳ دسی بل به معنی اختلاف بین آشکارسازی قابل قبول ۹۹۹۹/۰ و مرز آشکار سـازی ۵/۰ اسـت!
۵١
همچنین نسبت سیگنال به نویز لازم برای آشکار سازی ، تابع حساسی از زمان آﮊیر غلـط نمی باشد.برای مثال یک رادار با عرض باند ۱ مگا هرتز احتیاج به نسبت سیگنال به نویز ۷/۴۱ دسی بل برای احتمال آشکارسازی ۹/۰ و زمان آﮊیر غلط ۵۱ دقیقه دارد. اگر زمان آﮊیر غلط به ۴۲ ساعت برسد ، نسبت سیگنال به نویز باید به ۴/۵۱ دسی بل برسد و برای زمان آﮊیر غلط معادل با یک سال ، احتیاج به نسبت سیگنال به نویز برابر با ۲/۶۱ دسـی بل می باشد.

جدول ۱-۱) نسبت سیگنال به نویز واحتمال آشکارسازی و احتمال خطاﺀ
۶١
۱-۴) جمع بندی پالسهای رادار:
رابطه بین نسبت سیگنال به نویز ، احتمال آشکارسازی و احتمال آﮊیر غلط کـه در شـکل ۱-۷ رسم شده است ، فقط برای یک تک پالس می باشد. در هر مرور رادار معمولا تعداد زیادی پالس از هدف معین بر می گردد که برای بهبود آشکار سازی می تواند به کار رود.
تعداد پالسهایی که از یک هدف نقطه ای در حین مرور آنتن در محـدوده پهنـای شـعاع تششعی آن بر می گردد از رابطه زیر بدست می آید:
۱-۴۱) θB f p  θB f p nB  6ωm θ&s که در آن:
=θB پهنای شعاع تششعی آنتن بر حسب درجه
= f p فرکانس تکرار پالس بر حسب هرتز
=θs سرعت مرور آنتن رادار بر حسب درجه بر ثانیه
= ωm سرعت مرور آنتن بر حسب دور بر دقیقه
فرایند جمع کردن کلیه پالسهای برگشتی از هـدف در یـک مـرور آنـتن بـرای بهبـود آشکارسازی را جمع بندی گویند. برای این کـار روشـهای گونـاگونی وجـود دارد کـه معمولترین آنها روش جمع بندی رادار نمایشگر با خصوصیات جمع بنـدی چشـم و مغـز اپراتور باشد. البته بحث در این قسمت ، مقدمتا در رابطه با جمع بندی عناصر الکترونیکی است که در آنها آشکارسازی به طور خودکار و بر اساس عبور از آستانه می باشد.
جمع بندی در سیستم رادار ممکن است قبل از دومین آشکار سازی یعنـی در قسـمت IF
انجام پذیرد ، که به آن همدوس گفته می شود یا بعد از آن در قسمت ویدئویی کـه بـه آن ناهمدوس گفته می شود. جمع بندی همدوس نیاز به حفظ فاز سیگنال برگشتی دارد تا بتواند
١٧
استفاده کامل را از فرآیند جمع کردن ممکن سازد. در جمع بندی ناهمدوس فاز سـیگنال از بین می رود و به طور کلی جمع بندی آسانتر است ولی راندمان پایین تری دارد.
اگر n پالس همه با نسبت سیگنال به نویز یکسان توسط یک جمع کننـده ایـده آل قبـل از
آشکارسازی جمع گردند، نسبت سیگنال به نویز حاصل دقیقا n برابر نسبت سیگنال به نویز
یک تک پالس خواهد بود. اگر همان n پالس با یک جمع کننده ایده آل پس از آشکار سازی
جمع شود، نسبت سیگنال به نویز حاصل کمتر از n برابر نسبت سیگنال به نویز یک تـک پالس خواهد بود. این افت راندمان در اثر عملکرد غیرخطی آشکار ساز دوم است، زیـرا در این فرایند مقداری از انرﮊی سیگنال به انرﮊی نویز تبدیل می شود.
مقایسه دو جمع بندی قبل و بعد از آشکاری را می توان چنین خلاصه کرد: اگرچـه جمـع بندی پس از آشکار سازی به اندازه جمع بندی پیش آشکارسازی کارایی ندارد ولی در عمل آن بسیار آسان تر است و لذا جمع بندی در عمل ترجیح داده می شود.

۱-۷) تلفات جمع بندی بر حسب تعداد پالسها
١٨
پارامتر متغیر n f در منحنی های شکل ۱-۷ عبارتست از عدد آﮊیر غلط که ایـن متغیـر
برابر معکوس احتمال آﮊیر غلط است. بعضی از مهندسین رادار ترجیح می دهند از احتمال و بعضی دیگر از عدد آﮊیر غلط استفاده کنند. به طور متوسط از هر n f تصمیم ، ممکـن
است در زمان آﮊیر غلط Tfa یک تصمیم غلط وجود داشته باشد. اگر τ پهنای پـالس وTp
زمان تناوب تکرار پالس و f p  1Tp فرکانس تکرار پالس باشد، در این صـورت تعـداد

تصمیمات n f در زمان Tfa برابر است با تعدادعرض پالسها در یک زمـان تنـاوب پـالس
ضربدر تعداد زمان تناوبهای پالس درf p ثانیه ضربدر زمان آﮊیر غلط. بنـابراین تعـداد
تصمیمات ممکن برابر است با n f  Tfa f pη  Tp /τ و B τ ≈ 1 است که B پهنـای بانـد است ، بنابراین عدد آﮊیر نویز برابر است با 1P n f  Tfa B  .معادله رادار با n پالس fa را می توان به شکل زیر نوشت: ۱-۵۱) Pt GAσ R4 max  ( F (S n N (4π)2 kT B n n 0
پارامترها در معادله فوق نظیر پارامترهای معادله ۱-۷ می باشند ، بجـز اینکـه نسـبت
سیگنال به نویز یکی از n پالس معادل است که با هم جمع شده اند تا احتمال آشکار سازی مورد لزوم برای یک احتمال آﮊیر غلط معین ایجاد نماید. برای استفاده از این نوع معادلـه
رادار بایستی یک سری منحنی نظیر منحنی های شکل ۱-۶ به ازاﺀ هر مقـدار n رسـم شود. البته با اینکه چنین منحنیهایی در دسترس هستند ولی نیازی به آنها نیست! و می توان از شکلهای ۱-۶ و ۱-۷ استفاده کرد . و در نهایت به معادله ۱-۶۱ دست یافت.
١٩
۱-۶۱) Pt GAσEi (n) R4 max  ( N F (S (4π)2 kT B 1 n n 0 مقدار)1 N (S از شکل ۱-۶ و مقدار(nEi (n از شکل ۱-۷ بدست می آید.
شکل ۱-۸) احتمال آشکار سازی بر حسب سیگنال به نویز واحتمال خطاﺀ10−9
۱-۵) سطح مقطع راداری اهداف:
در واقع تمام انرﮊی تابیده شده به هدف ، به سمت رادار بازتابیده نمی شود و بسته به نوع و اندازه هدف درصدی از آن بازتابیده مناسب خواهد شد. سطح مقطع راداری یک هـدف، سطحی فرضی است که هر مقدار توان به آن تابیده شود( به آن برسد) به طور مساوی در همه جهات پراکنده خواهد کرد وبه این شکل فقط درصدی از توان رسیده شده به هدف بـه رادار باز تابیده می شود. به عبارت دیگر:
۱-۷۱) 2 Er lim 4πR2 power reflected toward source / unit solid angle σ  Ei R→∞ incident power density / 4π ٢٠
که در آن:
= R فاصله بین هدف ورادار
= Er شدت میدان برگشتی از هدف روی رادار
= Ei شدت میدان تابشی به هدف
این رابطه معادل با رابطه برد رادار که در ابتدا ارائه شد می باشـد. بـرای بسـیاری از هدفهای راداری نظیر هواپیماها ، کشتیها ، سطح زمین وسطح مقطع راداری ضرورتا تابع ساده ای از سطح فیزیکی نیست و تنها می توان گفت هرچه اندازه هدف بزرگتر باشد سطح مقطع راداری آن نیز بزرگتر خواهد بود.
پراکندگی و پراش گونه های متفاوتی از یک فرایند فیزیکی یکسان هستند. وقتی که جسمی موج الکترومغناطیسی را پراکنده می کند، میدان پراکنده شده برابر تفاوت میـدان کـل در حضور جسم و میدانی که بدون حضور جسم وجود دارد ، تعریف میگردد. با فرض تغییر نکردن منابع ، از طرف دیگر میدان پراش عبارتست از میدان کل در حضور جسم. البتـه می توان با معادلات ماکسول و شرایط مرزی مناسب مقدار سطح مقطـع را بدسـت آورد ولی این شیوه برای اشکال هندسی بسیار ساده استفاده می شود و برای شکلهای پیچیده تـر همانند بدنه یک هواپیما و یا کشتی و .... کاربرد ندارد. در عمل برای محاسبه سطح مقطع اجسامی از این قبیل نمونه کوچک آنرا در اتاقهای خاصی قرار می دهند ومقدار باز تـابش تششع مغناطیسی آنرا محاسبه می کنند. سطح مقطع راداری یک کره ساده به عنوان تـابعی از محیط آن نسبت به طول موج 2πa λ در شکل ۱-۹ رسم شده است. ناحیه ای که انـدازه

کره نسبت به طول موج کوچک است را ناحیه رایلی گویند. ناحیه ای را که در آن ابعـاد کره نسبت به طول موج بزرگ باشد ناحیه نوری گویند. ناحیه بین این دو قسـمت را کـه سطح مقطع نسبت به فرکانس رزونانس دارد ناحیه رزونانس گویند. نمودارهـای شـکلهای
٢١
زیر بر اساس تابع "مای" که سطح مقطع یک کره را بر اساس قطر آن و همچنین فرکـانس
سیگنال رادار مشخص می کند ، نشان می دهد.
5 0 -5 dB- RCS -10 sphere Normalized -15 -20 15 14 13 12 11 10 9 8 7 6 5 4 3 2 -25 1 Sphere circumference in wavelengths 2 1.8 1.6 1.4 RCS 1.2 sphere 1 Normalized 0.8 0.6 0.4 0.2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 Sphere circumference in wavelengths شکل ۱-۹) خروجیهای برنامه .rcs-sphere سطح مقطع راداری کره ای به شعاع a و طول موج λ
لذا با توجه به این توضیحات هیچ گاه راداری را نمی توان پیدا کرد کـه در فرکـانس ۲۲
گیگا هرتز کار کند ، چون در این فرکانس ذرات آب ودیگر ذرات معلق در هوا در اندازه
های بسیار بزرگتر در دید رادار خواهند بود و تمام انرﮊی تابیده شده را باز تاب می کننـد
٢٢
و لذا رادار همیشه در اشباع خواهد بود! البته پارامترهای دیگری هم وجود دارنـد کـه در سطح مقطع تاثیر گذار است مثل زاویه دید که فرضا برای یک لوله دراز و باریک بسته به زاویه دید می تواند تغییرات بسیاری داشته باشد. در زیر مقادیر نمونه برای سطح مقطـع راداری اهداف مختلف در یک فرکانس ماکروویو نشان داده شده است.

جدول ۱-۲) مثالی از سطح مقطعهای راداری در فرکانس ماکروویو
default RCS 100 RCS-rcsdelta1 RCS-rcsdelta2 80 60 40 dB- SNR 20 0 150 100 50 -200 Detection range - Km
شکل ۱-۰۱) خروجی برنامه .--ar_eq نسبت سیگنال به نویز دریافتی بر حسب برد هدف با توجه به مقدار سطح مقطع هدف
٢٣
۱-۶) پارامترهای آنتن:
تقریبا تمام آنتنها از انتهای سمتگرا برای گیرنده وفرستنده استفاده مـی کننـد. در حالـت فرستندگی ، آنتن سمتگرا انرﮊی را به شعاع باریک ارسال می کند تا تمرکـز انـرﮊی در
محدوده هدف را افزایش دهد. بهره آنتن G معیاری برای اندازه گیری توان تششعی یـک آنتن سمت گرا در یک جهت خاص نسبت به توان ایجاد شده در همان جهت توسط یک آنتن بدون سمت گرایی با راندمان صد در صد است . به طور دقیق تر ، بهره توان یک آنتن در حالت فرستندگی برابر است با:
۱-۸۱)
توجه شود که بهره آنتن تابعی از جهت می باشد. اگر بهره در جهاتی بزرگتر از واحد باشد ، لزوما در جهاتی دیگر باید کمتر از یک گردد. اصل اولیه انتنها اصل هم پاسخی است که می گوید:خصوصیت آنتنها در حالت فرستندگی با گیرندگی کاملا یکسان می باشند.
اشکال شعاع آنتنهایی که اغلب در رادارها استفاده می شود مدادی یا بادبزنی است. پتـرن مدادی دارای تقارن محوری یا لااقل نزدیک به محوری می باشد. پهنای پترن یک انتن بـا شعاع مدادی می تواند در حدود یا کمتر از چند درجه باشد وعموما در مـواردی کـاربرد دارند که دقت اندازه گیری در فضا برای ما مهم باشد.اگرچه در صورت نیاز با یک شعاع باریک می توان یک قطاع بزرگ و یا حتی یک نیمکره را مرور کرد، ولی اغلب این کار در عمل مورد نظر نیست. معمولا نیازهای عملی بر حداکثر زمان مرور ، محدودیتهایی را ایجاد می کند به طوری که رادار روی هر سلول تقسیم شده صفحه نمایشگر نمـی توانـد زمان زیادی بایستد. این موضوع خصوصا اگر سلول های تفکیک که باید جسـتجو شـوند زیاد باشند، بیشتر مسئله ساز می شود. لذا می توان با جایگزینی یک آنتن با پترن بادبزنی که در آن یک بعد وسیع ودیگر بعد بسیار باریک است ، زمان اسکن فضای مورد نظر را
۴٢
کاهش داد. در واقع بسیاری از رادارهای زمینی دور برد از یک شعاع بـادبزنی کـه در صفحه افق باریک ولی در راستای عمود پهن هستند برای آشکارسازی اهداف با سـرعت اسکن بالا بکار گرفته می شوند. سرعت اسکن یک پارامتر مصلحتی بین سرعت داده ها و قدرت آشکار سازی اهداف ضعیف است . فرضا سرعت مرور برای رادارهای دیده بـان عملی بین ۱ تا ۰۶ دور در دقیقه می باشد ولی این مقدار برای رادارهای تجسـس هـوایی دور برد ۵ تا ۶ دور در دقیقه می باشد. پوشش یک شعاع بادبزنی ساده برای دیدن هدفهای با ارتفاع زیاد و نزدیک انتن معمولا کافی نیست. چون در این حالت آنتن انرﮊی کمـی را در این جهت منتشر می کند. ولی ، می توان پرتو را اصلاح نموده به طوری که انـرﮊی بیشتری در زوایای بزرگتر منتشر کند. یک روش برای دست یابی به چنین هدفی ، به کار گیری یک پترن بادبزنی با شکل مناسب ، و با مربع کسکانت زاویه عمودی می باشـد. در آنتن مربع کسکانتی ، بهره به صورت تابعی از زاوِه عمودی به صـورت زیـر داده مـی
شود: ۱-۹۱) 0  φ  φm φ csc2 (φ) 0 ) G(φ)  G(φ 0 ) csc2 (φ که(G(φ بهره آنتن نسبت به زاویه عمودی φ می باشد.خاصیت مهم آنتنهای مربع کسـکانت
این است که توان برگشتی از یک هدف با مقطع ثابت Pr در ارتفـاع ثابـت h مسـتقل از
فاصله هدف تا رادار R می گردد. با جایگذاری بهره آنتن مربع کسکانتی در معادله سـاده رادار می توان نوشت:
2 K csc4 (φ) K1 ) csc4 (φ)λ2σ 0 P G 2 (φ Pr  ۱-۰۲)  t h4 R4 (4π)3 csc4 (φ0 )R4 کهK1 مقدار ثابتی است. اگر ارتفاع نیز ثابت فرض شود، چون cscφ  R h ثابت می باشد،

و نیزK2 نیز مقدار ثابتی خواهد بود. در عمل ، توان دریافتی توسط گیرنده از یک آنـتن
مربع کسکانتی واقعا مستقل از فاصله نمی باشد. سطح مقطع با زاویه دید تغییر می کند، و
۵٢
عوامل دیگری همچون نا همواری زمین و.... می توان علل این تغییر باشند.در فصل بعد نکات بیشتری از آنتنهای رادار بخصوص برای کاربرد مورد نظر ما ارائه خواهد شد.
۱-۷) توان فرستنده:
توان Pt در معادله ۱-۷ توسط مهندسین رادار به عنوان توان پیک نامیده می شود. تـوان
پیک پالسی در معادله رادار با توان پیک لحظه ای یک موج سینوسی تفـاوت دارد. ایـن توان عبارتست از توان متوسط در یک تناوب فرکانس حامل که در حداکثر پالس توان اتفاق می افتد. توان پیک به طور کلی معمولا نصف توان لحظه ای است. اغلب توان متوسط که باPav نشان داده می شوددر رادار مد نظر است ، که عبارتست از توان متوسط فرستنده در
یک دوره تناوب تکرار پالس. اگر موج ارسالی قطاری از پالسهای ارسالی با پهنـای τ و
دوره تناوب تکرار پالسی برابر با Tp  1 f p باشد ، در این صورت رابطه توان متوسط با

توان حداکثر به صورت زیر در خواهد آمد:
۱-۱۲) Ptτfp Ptτ Pav  Tp نسبت τ fp را نسبت زمانی یا چرخه کار گویند. مقدار نمونه نسبت زمـانی بـرای یـک
رادار پالسی به منظور آشکارسازی یک هواپیما ۱۰۰/۰ می باشد. در صورتی کـه یـک
رادار CW که به طور پیوسته سیگنال ارسال می کند نسبت زمانی واحد است. با نوشـتن معادله رادار برحسب توان متوسط بجای توان پیک رابطه زیر به دست می آید:
۱-۲۲) Pav GAσnEi (n) R4max  p f 1 ( N τ)(S (4π)2 kT F (B n 0 n
پهنای باند و عرض پالس با یکدیگر به کار می روند زیرا معمولا حاصلضرب ایـن دو در بیشتر کاربردهای رادار پالسی برابر واحد است . در صورتی که شکل پالسها مستطیلی
۶٢
نباشد مناسبتر است که معادله بر حسب انرﮊی موجود در شکل موج ارسالی نوشته شود:
۱-۳۲) Eτ GAσnEi (n) R4max  Pav  Eτ ( N τ)(S (4π)2 kT F (B f p 1 n 0 n
که در آن Eτ  Pav f p می باشد. در این فرم ، فاصله به طور مشخص و جداگانه بـه طـول

موج و فرکانس تکرار پالس بستگی ندارد. پارامترهای مهم موثر برد رادار عبارتند از کل
انرﮊی فرستنده nEτ ، بهره آنتن فرستندگی G ، سـطح مـوثر گیرنـدهAe و عـدد نـویز
گیرنده. Fn فرکانس تکرار پالس در درجه اول توسط حداکثر فاصله که در آن انتظار هدف
وجود دارد تعیین می شود. اگر prf خیلی زیاد گردد احتمال دریافت انعکاسهای ناشـی از انتقال غلط پالسها افزایش می یابد. سیگنالهای برگشتی پس از یـک زمـان بـیش از دوره تناوب تکرار پالسها را انعکاسهای با زمان محدود چند پریود گویند و می توانند سبب خطا
یا سردرگمی در اندازه گیری برد شود.سه هدف A و B وC را مطابق شـکل ۱-۱۱ در
نظر بگیرید. هدف A در ناحیه حداکثر فاصله بدون ابهـام رادار ، هـدف B در فاصـله
بزرگتر از حداکثر فاصله بدون ابهام و هدف C در فاصله بین دو برابر تا سه برابر حداکثر فاصله بدون ابهام قرار دارند. ظهور ۳ هدف روی یک اسکوﭖ در شکل ۱-۱۱ب نشـان
داده شده است. انعکاسهای با زمان حدود چند پریود روی اسکوﭖ-A از انعکاسهای صحیح هدف که واقعا در حداکثر فاصل بدون ابهام قرار دارند قابل تشخیص نمـی باشـند. فقـط
فواصل اندازه گیری شده برای هدف A صحیح است و بـرای هـدفهای B و C صـحیح نیست. یک راه برای تشخیص انعکاسهای با زمان حدود پریود از برگشتهای بدون ابهـام ،
استفاده از یک فرکانس تکرار پالس prf متغیر می باشد.
٢٧

شکل۱-۱۱) انعکاس با زمان حدود چند پریود که باعث افزایش ابهام در فاصله می شود
سیگنال برگشتی از یک هدف در فاصله بدون ابهام روی اسکوﭖ A در هر مـورد بـدون
توجه به مدوله شدن prf در یک محل ظاهر می شوند ، و این در حالی است که برگشـتی از هدف با زمان حدود چند پریود مطابق شکل ۱-۱۱ج در یک زمان محدود گسترده می
شود. Prf را می توان به صورت پیوسته بین دو حد معین و یا به صورت گسسته بین چند مقدار معین تغییر داد. تعداد فرکانسهای تکرار پالس مجزا ، بستگی به درجه هـدفهای بـا زمان حدود چند پریود دارد. برای مثال هدفهای با زمان برگشت مضاعف فقط نیاز بـه دو
فرکانس تکرار مجزا دارند.به جای مدوله کردن prf ، به روشهای دیگری از جمله تغییـر دامنه ، عرض ، فرکانس و فاز و .... می توان پرداخت. سیگنال برگشتی با زمان حـدود چند پریود را می توان تشخیص داد. معمولا این روشها در عمل به مقدار لازم موفق نیستند لذا کاربرد چندانی ندارند. یکی از محدودیتهای اساسی ، رویهم افتادگی هدفهای نزدیک بـه هم می باشند ، یعنی هدفهای قوی زمینه ( زمین و کوه های اطراف) می تواند بـه قـدری بزرگ باشند که هدفهای کوچکتر و مورد نظر مارا مخفی کنند. همچنین زمان لازم بـرای
٢٨
پردازش سیگنال برای رفع ابهامات بیشتر می شود.به طورکلی و تئوری ، ابهامات را مـی توان با مشاهده تغییرات سیگنال برگشتی بر حسب زمان ( فاصله) بر طرف نمود. لیکن این دو روش همواره عملی نیست بدلایل زیادی چون دامنه سیگنال برگشتی به غیر از تغییـر
فاصله می تواند تغییر کند. در عوض ابهامات فاصله در یک رادار با چند prf را می توان با استفاده از تئوری باقیمانده چینی یا روشهای عددی محاسباتی دیگر مرتفع نمود وفاصـله واقعی را بدست آورد.مطالب ارائه شده در این فصل ، مقدمه ای بود کوچک بـر رادار و پارامترهای آن ، برای آنکه دانشجویی که اطلاعات کاملی در مورد سیستمهای رادار ندارد در هنگام مواجه با مطالب فصل ۲ و بخصـوص ۳ دچـار سـردرگمی نشـود. برنامـه
--ar_eq همچنین می تواند نسبت سیگنال به نویز را بر حسب برد هدف برای ما آشکار سازد. شکل زیر نمونه ای از خروجی این برنامه است ، که به ازای سه مقدار متفاوت از توان لحظه ای ورودی و همچنین سایر پارامترهای رادار از قبیل بهره آنتن و ... ، مقادیر
نسبت سیگنال به نویز را در رنجهای متفاوت تا 150Km نشان می دهد. خروجیهای ایـن
برنامه برای راداری با توان لحظه ای 1.5MWatt و 0.1 و 0.01 آن بدست آمده است.
default power 100 .ptpercent1*pt ptpercent2*pt 80 60 40 dB- SNR 20 0 150 100 50 -200 Detection range - Km
شکل ۱-۲۱) خروجی برنامه .--ar_eq مقدار نسبت سیگنال به نویز بر حسب برد هدف به ازای ۳ مقدار از توان ورودی
٢٩
فصل دوم
مشخصات رادار پالسی:
مقدمه:
رادارهای پالسی که در این پروﮊه به آنها پرداخته می شود دارای ۲مد هستند، مد فرستندگی
مدگیرندگی. در مد فرستندگی رادار فقط امواج الکترومغناطیسی را ارسال مـی کنـد و قسمت گیرندگی به طور کامل از کار می افتد و در مد گیرندگی رادار در حـال دریافـت امواج الکترومغناطیسی است که قبلا به هدف ارسال شده و بازتابش یافته اند. این عملکـرد دارای یک حسن بزرگ و یک عیب است که می توان آنرا تا حدودی رفع کرد. به طـور کلی در رادار های CW که به طور بیوسته در حال ارسال و دریافـت هسـتند ، مسـئله ایزولاسیون بین آنتن فرستنده و گیرنده بحث بسیار مهمی است و تلاش مهندسان رادار بـر آن است که این ایزولاسیون را تا حد امکان بالا ببرند. در رادارهای پالسی چون فرسـتنده در حال کار گیرنده خاموش است و بلعکس ، لذا این ایزولیشن برابر است با بینهایت! امـا یک عیب نسبتا بزرگی که در رادارهای پالسی موجود است آنست که اگر سیگنال برگشتی از هدف در مد فرستندگی رادار به رادار برسد ، کل سیگنال از بـین مـی رود و هـدف آشکار نخواهد شد. در شرایط دیگر ممکن است که قسمتی از سیگنال دریافتی دریافت شود
قسمت دیگر بدلیل عوض شدن مد رادار از گیرندگی به فرستندگی از دست برود . که در
٣٠
این صورت چگالی توان سیگنال دریافتی کاهش می یابد و احتمال آشکارسازی هدف نیـز
کم خواهد شد. در این قسمت می توان با بالا بردن PRF رادارهای پالسـی و کـم کـردن ضریب کار آنها این احتمال را به حداقل کاهش داد.
۲-۱) برد:
شکل ۲-۱ بلوک دیاگرام رادار پالسی را نشان می دهد. کنترل کننده زمان ، سـیگنالهای زمانی همزمان مورد نیاز سرتاسر سیستم را تولید می کند. یک سیگنال مدوله شده در دامنه تولید می شود و به وسیله بلاک مدوله کننده فرستنده به آنتن فرستاده می شود. سوئیچ کردن
آنتن بین حالتهای فرستندگی و گیرندگی توسط Duplexer انجام می شود.Duplexer سبب می شود که آنتن بتواند به عنوان فرستنده و گیرنده مورد استفاده قـرار گیـرد. در طـول
فرستندگی Duplexer انرﮊی الکترومغناطیسی را به طور مستقِم به سمت آنتن هدایت مـی
کند . متناوبا در زمان گیرندگی Duplexer انرﮊی منعکس شده از هدف را که توسط آنتن دریافت می شود به سمت گیرنده انتقال می دهد. گیرنده رادار سیگنال دریـافتی را تقویـت کرده و آنرا برای پردازش آماده می سازد. استخراج اطلاعات هدف توسط بلاک پردازشگر
سیگنال صورت می پذیرد. فاصله هدف ،R، توسط اندازه گیری تاخیر زمـانی سـیگنال و ، محاسبه می شود. یک پالس از سمت رادار به سمت هدف فرستاده می شود و برمی گردد. اگر موج الکترومغناطیسـی بـا سـرعت نـور در هـوا منتشـر شـود ، یعنـی
s 8 m c  3×10 ، پس خواهیم داشت: ۲-۱) c∆t R  2
که R بر حسب متر است و بر حسب ثانیه و ضریب 0.5 یا همان 2 در مخرج به دلیل آن است که موج مسیر بین رادار تا هدف را دو بار طی کرده است ، یک بار هنگام تابش
٣١
از رادار تا هدف رفته است و بار دیگر هنگام باز تابش از هدف به سمت رادار آن مسـیر را طی می کند.

شکل ۲-۱) بلاک دیاگرام یک رادار پالسی ساده معمولا رادارهای پالسی یک قطار از پالسها را همانگونه که در شکل ۱-۲ نشان داده شده
است به سمت هدف می فرستند و سپس دریافت خواهند کرد.T مدت زمان تکـرار پـالس
است و τ پهنای پالس می باشد. IPP یا همان مدت تکرار پالس به PRI اشاره مـی کنـد.

معکوس PRI ، PRF است که توسط نشان داده می شود. ۲-۲) 1  1 fr  T PRI
شکل ۲-۲) قطار پالسهای ارسالی و دریافتی
در طول هر PRI رادار فقط به مدت τ انرﮊی الکترومغناطیسی ساطع می کند و در طول
بقیه PRI منتظر امواج دریافتی از هدف می شود.
٣٢
ضریب dt که Duty cycle فرستندگی رادار است با نسبت d  τ T مشخص می شـود.

توسط انرﮊی فرستاده شده متوسط رادار که باPav مشخص می شود از فرمول زیر بدسـت
می آید:
۲-۳)Pav  Pt ×dt
که Pt نشان دهنده مقدار ماکزیمم توان انتشار یافته توسط رادار می باشد. و انرﮊی پالسـی
برابر با :
EP  Ptτ  pavT  Pav fr

برد متناظر با تاخیر زمانی T به عنوان برد غیر مبهم رادار معرفی می شود. و باRu نشان

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

داده می شود. نمونه ای راکه در شکل ۱-۳ نشان داده شـده اسـت را در نظـر بگیـریم
برگشتی 1 نشان دهنده برگشتی رادار از هدفی در فاصله 2R1  c∆t است که حاصـله از
پالس 1 است. در برگشتی 2 می تواند نشان دهنده برگشتی رادار حاصل از فرستاده شـدن
پالس 2 باشد و یا اگر هدف فاصله اش از رادار بسیار زیاد باشد امکان دارد که برگشتی از
پالس شماره 1 باشد که در این صورت احتمال خطا وجود دارد.
۲-۴) c(T  ∆t) R2  or c∆t R2  2 2 به روشنی فاصله غیر مبهم با برگشتی 2 مرتبط است. بنابراین زمانی که پالسـی فرسـتاده می شود، یک مدت زمان کافی منتظر بماند. آنقدر که پالس مـنعکس شـده از هـدف در بیشترین برد ، قبل از آنکه پالس بعدی فرستاده شود دریافت شود. نتیجه آنکه ماکزیمم بـرد
غیر مبهم با نصف PRI مرتبط است:
۲-۵) c  T Ru  c 2 fr 2 ٣٣

شکل ۲-۳) توضیح فاصله مبهم
برای مثال اگر یک رادار هوایی را در نظر بگیریم که رادار توان پیـک اسـت و از دو
PRF استفاده می کند ، . fr1 10KHz, fr 2  30KHz پهنای پالس مورد نیاز برای هرکدام
از PRFها دارای توان متوسط برابر با هم و مقدار 1500Watts باشند در ایـن صـورت انرﮊی برای هر مورد برابر است با:
dt  10 ×1500103  0.15

به طور دقیق خواهیم داشت.
1 0.1ms T1  3 10 ×10 1 0.0333ms T  3 10 30 × 2 در نتیجه پهنای نهایی برای هر پالس برابر است با:
τ1  0.15 ×T1 15s τ1  0.15 ×T2  5s
−6 4 0.15joules 10 15 × × 10 p1  Ptτ1  E ×5×10−60.05joules 104 Pτ 2 p2 E t ۴٣
۲-۲) میزان تفکیک پذیری:
تفکیک برد ( ( range resolution که با نشان داده می شود، یـک پـارامتر رادار است که بیان کننده تواننایی آشکارسازی اهدافی است که در نزدیکی هم قرار دارند. معمولا سیستمهای راداری برای کار کردن در یک محدوده حداقل و حداکثر ( ( Rmax , Rmin طراحی
می شوند. محدوده بین این حداقل و حداکثر به m قسمت تقسیم می شوند. که هر کدام آنهـا دارای یک پهنای می باشند:
۲-۶) Rmax − Rmin M  ∆R در اینصورت اهداف با رنجهای حداقل تفکیک می شوند و این امر سبب می شود که کاملا از هم قابل شناسایی باشند. این امر در شکل ۱-۸ نشان داده شده است .

شکل ۲-۴) تحلیل اهداف در راستای عمود و افق
اهدافی که در داخل یک محدوده تشخیص برد قرار دارند را می توان بـا بکـارگیری تکنیکهای پردازش سیگنال در راستای عمود از هم شناسایی شوند.
۵٣
دو هدف که در فواصلR1 وR2 قرار دارند. در نظر بگیرید. در این صورت تاخیر زمانی
متناظر با هر کدام از این اهداف برابر سیگنال برگشتی برابر است باt1 و. t2 را باید
به عنوان تفاوت برد میان دو هدف در نظر گرفت که در این صورت داریم:
۲-۷) δ . t c t2 −t1 ∆R  R2 − R1  c 2 2 حالت سوال زیر را مطرح می کنیم و به آن پاسخ می دهیم . کمترین فاصله زمانی کـه
می توان هدف شماره 1 را در فاصلهR1 و هدف شماره 2 را در فاصلهR2 از هم تشخیص
داد چه مقداری است؟ به بیان دیگر کمترین مقدار چه مقداری است؟
در ابتدا فرض کنید ، که دو هدف با cτ 4 از همدیگر تفکیک می شوند که τ پهنای پالس

می باشد. در این شرایط وقتی لبه عقبی پالس به هدف 2 برخورد کند ، لبه جلـویی پـالس مسافت Cτ را به سمت رادار بازگشته است. وپالس برگشتی ممکن که بـا سـایر امـواج
برگشتی از اهداف دیگر ترکیب شود. همانطور که در شکل ۱-۹.a نشان داده شده اسـت.
به هر حال اگر دو هدف به اندازه cτ 2 با هم فاصله داشته باشند. هنگامی که عقبی پـالس

برگشتی از هدف اول به رادار رسید لبه جلویی پالس برگشتی از هدف دوم هم به رادار می
رسد. در نتیجه دو پالس برگشتی همانند شکل ۱-۹.b نشان داده خواهد شد بنـابراین
باید بزرگتر و یا برابر با cτ 2 باشد. و چون پهنای باند رادار که B نشان داده می شـود

برابر است با 1 پس: τ ۲-۸) c  cτ ∆R  2B 2
معمولا طراحان رادار همانند استفاده کنندگان آن در پی کاهش این فاصله هستند به منظـور افزایش عملکرد رادار می باشند. همانطور که در شکل ۱-۸ توصیه شد، به منظور رسیدن
۶٣
به یک تفکیک برد مناسب باید پهنای پالس را کاهش دهیم و این بدین معنی است که توان متوسط انتشار یافته نیز کاهش یافته است و برعکس پهنای باند افزایش.
برای رسیدن به درجه تفکیک پذیری مناسب برای آنکه توان متوسـط انتشـار در سـطح مناسب نگه داشته شود ، می توان از تفکیک فشردگی پالس استفاده کرد.

شکل ۲-۵) .aدو هدف غیر قابل تفکیک .b دو هدف قابل تفکیک
می توان مثالی در زمینه ارائه داد تا درک بهتری از قضیه داشت. یک رادار را بـا بـرد
مبهم 100Km در نظر بگیرید که دارای پهنای باند 0.5MHz اسـت. مقـادیر PRF ،
PRI، ∆R و τ به ترتیب زیر بدست می آیند.
1500Hz 8 10 3×  C PRF  105 2 × 2R u 0.6667ms 1  1 PRI  1500 PRF ٣٧
300m 8 3×10  c ∆R  106 2 ×0.5 × 2B 2s 2 ×300  2∆R τ  c 3×108 ۲-۳) فرکانس داپلر:
رادارها از تغییر فرکانس داپلر برای استخراج سرعت نسبی هدف یا همان تغییـر فاصـله هدف نسبت به رادار استفاده می کنند. همچنین برای آنکه اهداف متحرک و ثابت و همچنین اشیاﺀ ثابت را از هم تفکیک کنند ، از فرکانس داپلر استفاده می کنند. پدیده داپلر تغییـر در فرکانس مرکزی یک موج به خاطر برخورد با یک هدف متحرک است.
تغییر فرکانس بنا بر جهت حرکت هدف می تواند مثبت ویـا منفـی باشـد. شـکل مـوج برخوردی به هدف دارای جبهه موجهای همفازی است که به اندازه λ همان طول مـوج ، از هم فاصله دارند. یک هدف نزدیک شونده سبب می شود جبهه موجهای همفاز برگشـتی به همدیگر نزدیگتر شوند وطول موج کوتاهتر یا فرکانس بالاتری را نتیجه می دهد. متناوبا هدفی که در حال دور شدن از رادار است سبب می شود جبهه موجهای همفاز برگشتی از هم باز شوند و طول موج بلندتر ویا فرکانس پایین تری را حاصل کند. این امر در شـکل ۲-۶ نشان داده شده است.
پالسی را با پهنای پالس τ که با هدفی که دارای سرعت υ و در حال نزدیـک شـدن بـه
راداراست برخورد می کند ، همانطور که در شکل ۱-۱۱ نشان داده شده است. فاصله d
برحسب متر است که هدف در فاصله بین 2 پالس ارسالی به سمت هدف طی کرده است.
۲-۹)d  v∆t
٣٨

شکل ۲-۶) تاثیر هدف متحرک در جبهه موج همفاز ارسالی
که ∆t برابر است با مدت زمان بین برخورد لبه پیشرو و لبه عقبی پالس با هدف. اگر پالس
با سرعت نور در فضا منتشر شود لبه عقبی به اندازه cτ − d حرکت داده می شود ، پـس خواهیم داشت:
۲-۰۱) cτ − d ∆t  c با ادغام کردن معادلات ۲-۰۱ و ۲-۱۱ داریم: ۲-۱۱) τ vc d  v  c لبه عقبی پالس با توجه به تغییر زمانی بین لبه جلویی و عقبی پالس به اندازه ∆t در راستای
رادار به اندازه s تغییر می کند.
۲-۲۱)s  c∆t
٣٩

شکل ۲-۷) شرح چگونگی فشردگی یک هدف متحرک برای یک پالس تنها
بنابراین پهنای پالس برگشتیτ′ برحسب ثانیه و یا برحسب متر به صورت L خواهد بود:
۲-۳۱) L  cτ′  s − d با قرار دادن معادلات ۲-۱۱ و ۲-۲۱ در معادله ۲-۳۱ خواهیم داشت: vc ′ ۲-۴۱) c∆t−vcτ cτ
۲-۵۱)
۲-۶۱) τ c − v τ′  c  v در عمل ضریب به عنوان ضریب انبساط زمانی معرفی می شود. توجه
داشته باشید که اگر v=0 باشد در این صورتτ τ′ خواهد بود و به طرز مشابه اگر هدف ما یک هدف دور شونده باشد در این صورت :
۲-۷۱) τ v  c τ′  c − v ٠۴
برای بدست آوردن یک عبارت در مورد فرکانس داپلر توضیحات نشان داده شده در شکل
۲-۸ را در نظر بگیرید. لبه جلویی پالس 2 در مدت زمان ∆t فاصـله بـه سمت هدف می رود و با آن برخورد می کند.
در طی فاصله زمانی مشابه لبه جلویی پالس 1 یک فاصله متناظر با c∆t را طی می کند.
۲-۸۱) d  v∆t ۲-۹۱) − d  c∆t c fr
شکل ۲-۸) شرح چگونگی تاثیرات هدف متحرک بر روی پالسهای رادار
با حل کردن دو معادله برای بدست آوردن ∆t خواهیم داشت:
۲-۰۲)
۲-۱۲)
حال فاصله پالسهای برگشتی برابر است با

frv∆t  cc

fr ∆t  cv c v

s-d و PRF جدیدfr ′ خواهد بود:
۲-۲۲) cv fr c∆t− c s − d  c  v f ′
١۴
این امر نشان می دهد که PRF جدید با PRF اصلی و اولیه به صورت زیر رابطه دارد:
۲-۳۲) fr c  v fr ′  c − v اگرچه مقدار Cycle تغییر نمی کند ، ولی فرکانس سیگنال برگشتی با یک ضریب مشـابه
بالا خواهد رفت و فرکانس fo′ را خواهد داد که از رابطه زیر بدست می آید:
۲-۴۲) f0 c  v f0′  c − v که fo فرکانس سیگنال برخوردی ( سیگنالی که به سمت هدف می رود ) است و فرکانس
داپلر حاصله از سرعت هدف که با fd نشان داده می شود ، و برابر است بـاf0′ − f0 بـه
طور دقیق از رابطه زیر بدست می آید:
۲-۵۲) f0 2v f0 − f0  c  v f0′ − f0  fd  c − v c − v برای زمانهایی که سرعت هدف بسیار کوچکتر از سرعت نور است ، که همیشه این چنین
نیز هست! ، و با توجه به آنکه c  λf0 است ، معادله فوق را می توان به صـورت زیـر بازنویسی کرد. ۲-۶۲) 2v f0  2v ≈ fd λ c این معادله را می توان برای یک هدف دور شونده نیز نوشت که در این صورت تغییـرات
فرکانس داپلر برابر است با . fd  − 2λv توضیحات مربوط به اهداف نزدیـک شـونده و

دور شونده به طور کامل در شکل ۲-۹ نشان داده شده اند.
٢۴

شکل ۲-۹) فرکانس دریافتی یک رادار مربوط به اهداف دور و نزدیک شونده
در معادله ۱-۶۲ سرعت نسبی هدف نسبت به رادار با υ نشان داده شده است ، امـا یـک اصل همیشگی نیست . در واقع ، میزان تغییر فرکانس داپلر به قسمتی از سرعت هدف که در راستای رادار باشد ، بستگی دارد. این سرعت نسبی را سرعت شعاعی هدف نسبت به رادار می نامند.
شکل ۲-۰۱ سه هدف را که با زوایای مختلف نسبت به راستای رادار در حـال حرکـت هستند نشان می دهد. هدف ۱ دارای تغییر داپلر صفر است. هدف ۲ ( همـانطور کـه در معادله ۱-۶۲ نشان داده شد) دارای بالاترین داپلر است ( داپلر ماکزیمم). ولـی هـدف ۳
دارای فرکانس داپلری متناظر با λfd  2v cosθ است . که v cosθ سـرعت شـعاعی
هدف می باشد . در واقع θ زاویه بین خط رادار تا هدف و مسیر هدف است.

شکل ۲-۰۱) نمایه سه هدف با سرعتهای برابر ولی سرعتهای شعاعی متفاوت
٣۴
بنابراین ، یک تعریف کلی برای fd با توجه به زاویه مطلق بین هدف و رادار به صـورت
زیر می باشد:
۲-۷۲) cosθ 2v  fd λ و برای اهداف دور شونده خواهیم داشت: ۲-۸۲) cosθ − 2v  fd λ که cosθ  cosθe cosθa است . که زوایای θa وθe به زوایای رادار با هدف در جهتهـای
افق و عمود اشاره داردبرای درک بهتر قضیه به شکل ۲-۱۱ توجه کنید.

۲-۱۱) سرعت شعاعی متناسب است با زاویه هدف در راستاهای عمود وافق
برای درک بهتر قضیه با یک مثال این قسمت را به پایان می بریم هدفی را درنظر بگیرید
که دارای سرعت s 175 m می باشد حال اگر رادار ما دارای سرعت s 250 m باشد و طول
۴۴
موج کاری رادار ما برابر باشد با0.03m در این صورت می توان فرکانس داپلر را بـرای سیگنال دریافتی توسط رادار بدست آورد. در صورتی که هدف یک هدف نزدیک شـونده باشد ، پس سرعت هواپیمای هدف و رادار ما با هم جمع می شود و طبـق رابطـه ۱-۶۲ تغییر فرکانس داپلر برابر خواهد شد با:
fd  2 (250 175)  28.3KHz 0.03

ولی در صورتی که هدف در حال دور شدن از رادار ما باشد ( مسیر حرکتش در جهـت مسیر حرکت رادار ما باشد ) لذا سرعتها از هم کم می شوند و تغییر داپلر برابر خواهد بود با:
5KHz (250 −175) 2 fd 0.03 ۲-۴) معادلات رادار با PRF کم:
در فصل قبل به طور کامل بر روی معادلات رادار بحث شـد و همچنـین هـر کـدام از پارامترهای آن نیز به صورت جداگانه مورد بررسی و تحلیل قرار گرفت. در این قسـمت
سعی ما بر آن است که معادلات رادار برای PRFهای کم و زیاد را بر حسـب حساسـیت آنها از هم تفکیک نماییم و مورد بررسی قرار دهیم. در این قسمت ابتدا روی رادارهای با
PRF کم پرداخته می شود.
یک رادار با پهنای پالس τ و تناوب ارسال پالس برابر با PRI که برابر است بـا T را در نظر بگیرید. این رادار دارای حداکثر توان تششعی لحظه ای Pt است. در چنین شـرایطی
توان میانگین تششعی رادار همانطور که در فصل قبل هم به آن اشاره شد برابر است با :
Pav  Pt dt
۵۴
که dt  τ T برابر است با ضریب چرخه کار رادار ویا همان نسبت انتقال به کـل طـول

تناوب رادار. می توان ضریب چرخه کار دریافت راdr در نظر گرفت ، که:
۲-۹۲) 1−τ.fr T −τ dr  T بنابر این برای رادار با PRF کم T τ ضریب چرخه کار دریافت برابر است با. dr ≈1
Ti را بعنوان زمان هدف ( زمانی که هدف توسط بیم رادار آشکار می شود) در نظر مـی
گیریم ، یعنی:
۲-۰۳) np  Ti . fr np Ti  fr که در معادله فوق np تعداد پالسهایی است که با هدف برخورد می کنـد و fr همـان PRF
رادار می باشد. حال یک رادار با PRF کم را در نظر بگیرید. با توجه به توضیحات فوق ، معادله یک رادار تک پالسی به صورت زیر داده می شود:
۲-۱۳) P G 2 λ2σ (SNR)1  (4π)3 R4 kT BFL t e برای پالسهای هم زمان ، به تعداد np خواهیم داشت:
p P G 2 λ2σ.n ۲-۲۳) t (SNR)np  (4π)3 R4 kT BFL e با استفاده از معادله ۲-۰۳ و رابطه همیشه برقرار B  τ1 می توان معادله رادارهـای بـا

PRF کم را به صورت کلی زیر بیان کرد:
τ P G 2 λ2σT f (SNR)np  ۲-۳۳) r i t (4π)3 R4 kT FL e ۶۴
تابع مطلب مربوط به مشخص کردن نسبت سیگنال به نویز برای یک رادار با PRF کم با
نام lprf_req.m ، در انتهای پروژه - ریسرچارائه شده است که می توان با دادن ورودیهای دلخـواه نسبت سیگنال به نویز را برای بردهای مختلف هدف بدست آورد. در شکل ۲-۲۱ نتیجـه حاصله از ورودیهای ارائه شده در انتها ( همراه با برنامه) نشان داده شده است. اما مطلب قابل استنتاج و مهم که در این قسمت باید برداشت شود نسبت سیگنال به نویز برای ۳ مقدار مختلف از یک پارامتر می باشد.
np = 1 120 np1 np2 100 80 60 dB- SNR 40 20 150 100 50 00 Range - Km
شکل ۲-۲۱) خروجی حاصله از برنامه lprf_req.m برای سه مقدار از np
در ورودی تابع مطلب ۳ مقـدار بـرای np در نظـر گرفتـه شـد ،np 1 وnp 1 10
و. np 2  30 همانطور که مشاهده می کنید هرچه تعداد پالسهای همزمان بـر روی هـدف
بیشتر باشد نتیجه حاصله مقدار بیشتری از نسبت سیگنال به نویز است. تابع مطلـب ذکـر شده علاوه بر این نمودار تابع دیگری را نیز در اختیار ما قـرار مـی دهـد و آن نسـبت
٧۴
سیگنال به نویز به ازاﺀ تعداد پالسهای همزمان دریافتی ازهدف می باشد کـه بـه ازاﺀ دو مقدار دلخواه از توان در اختیار ما قرار می دهدو درشکل ۲-۳۱ نشان داده شده است.
25

20
15
10
5
default power pt * percent
00 50 45 40 35 30 25 20 15 10 5 Number of coherently integrated pulses
dB-SNR
شکل ۲-۳۱) نمودار نسبت سیگنال به نویز به ازاﺀ تعداد پالسهای همزمان اما نکته مهم که در اینجا باید به آن پرداخته شود آنست که بالا رفتن خطی تعداد پالسـهای
همزمان برگشتی به معنی بالا رفتن خطی نسبت سیگنال به نویز نیست بلکه همانطور که از شکل ۲-۳۱ نیز مشاهده می شود ، در ابتدا بالا رفتن تعداد پالسهای همزمان دریافتی فرضا از ۱ به ۰۱ تاثیر زیادی در نسبت سیگنال به نویز دارد ولی برای رسیدن به تآثیری برابر با ۲ برابر همان مقدار به طور مجدد ، نیاز به بالا بردن تعداد پالسهای هم زمان دریـافتی برابر با ۰۰۱ می باشد ، که این امر به طور کامل در نمودار شکل ۲-۳۱ نشان داده شـده است.
٨۴
۲-۵) معادلات رادار با PRF زیاد:
در این قسمت به مهم بخش این فصل می رسیم که مربوط به استنتاج معادلـه رادار بـرای یک رادار با PRF بالا می باشد. معادله رادار از آن جهت مهم است که با توجه به اینکـه
PRF ارئه شده در پروﮊه باید در حدود 50KHz باشد لذا معادلات جدید تا حد قابل قبولی بر آن بر قرار خواهند بود.
حال یک رادار با PRF زیاد را در نظر بگیرید. سیگنال فرستاده شده قطـار سـریعی از پالسهای ارسالی خواهد بود. همانند قبل پهنای پالس را τ در نظر گرفته و تناوب آنـرا T
مشخص سازید. این قطار پالس را می توان با استفاده از تبدیل فوریه نمایی نمایش داد. خط طیف توان مرکزی ( جزﺀ ( DC این سری به طور عمده شامل توان سیگنال اسـت کـه
2 τ مقدار آن است و برابر است با توان دوم ضـریب چرخـه فرسـتندگی . در چنـین T شرایطی معادله رادار پالس واحد برای رادارهای با PRF بالا عبارتست از:
۲-۴۳) P G 2 λ2σ.d 2 SNR  (4π)3 R4 kT BFLd t t r e که در چنین شرایطی احتیاج به در نظر گرفتن تفاوت طول پالس ارسالی با طـول پـالس
دریافتی نیست ، در واقع . dr ≈ dt τfr بعلاوه پهنای باند رادارهای عملیاتی بـا زمـان
هدف ( ( time on target مشابه خواهد بود یعنی 1 . B  این امر بیانگر آن است که: T i λ2σ T G 2 Pτ. f SNR  ۲-۵۳) r i t (4π)3 R4 kT FL e و در انتها داریم :
٩۴
P T G 2 λ2σ SNR  ۲-۶۳) av i (4π)3 R4 kT FL e که در اینجاPav به جایPtτ. fr استفاده خواهد شد. توجه داشته باشید که PavTi خود از جنس
انرﮊی خواهد بود ، که نشان می دهد ، رادارهای با PRF بالا می توانند با استفاده از یک توان نسبی کم و زمان یکیسازی طولانی تر قابلیت آشکارسازی را بالا ببرند. واین اصـلی است که ما برای بالا بردن برد رادار بدون بالا بردن توان منبع به طور غیر متعـادل ، از آن استفاده می کنیم.
در انتهای پروژه - ریسرچهمانند قبل برنامه مطلب مربـوط بـه یـک رادارHigh-PRF بـا نـام
hprf_eq.m ارائه شده است که شکل خروجی آنرا که همان نسبت سیگنال به نـویز بـر واحد رنج می باشد ارائه شده است.
50 dt dt1 40 dt2 30 20 10 dB- SNR 0 -10 -20 150 100 50 -300 Range - Km
شکل ۲-۴۱) نمودار سیگنال به نویز بر حسب برد برای رادار HighPRF
٠۵
در ورودی تابع مطلب dt0 = 4 و dt1 =0.4 و dt2 =0.04 می باشد. همچنـین توجـه داشته باشید که یا dt نیاز است و یا باید fr و τ ، هردو را به ورودی برنامه داد. در ایـن
برنامه وقتی کاربر از مقدارdt اطمینان دارد باید مقادیر fr و τ را برابر صفر قرار دهد و همچنین وقتی مقادیر τ و fr در اختیار است بایدdt را برابر صفر قرار دهد.
۲-۶) تلفات رادار:
همانطور که با کمک معادلات رادار نشان داده شد ، نسبت سیگنال به نویز دریافتی با تلفات رادار نسبت معکوس دارد. بنابراین هرگونه افزایش در تلفات سبب کاهش نسبت سیگنال به نویز می شود. واین خود سبب کاهش احتمال آشکارسازی می گردد.
تفاوت اصلی بین عملکرد یک رادار با طراحی خوب و یک رادار بـا طراحـی ضـعیف مربوط به تلفات آن رادار است. تلفات رادار شامل تلفات اهمیـک ( مقـاومتی ) و تلفـات آشکارسازی می شود. در این بخش به طور کوتاه تلفات رادار را خلاصه وار بیان می کنیم و در انتها مقادیر معمول برای مهمترین آنها را به صورت تیتروار ارائه خواهیم کرد.
۲-۶-۱) تلفات ارسال و دریافت :
این تلفات شامل یکی از مهمترین ها می باشد که عبارتند از تلفات دریافت و ارسـال بـین ورودی آنتن فرستنده و خود فرستنده رادار و همچنین بین خروجی آنـتن گیرنـده و خـود
گیرنده. چنین افتهایی را معمولا به عنوان تلفات لوله کشـی ( (Plumbing معرفـی مـی
شوند. معمولا افت چنین تلفاتی بین 1 تا 2 دسی بل می باشد.
۲-۶-۲) افت الگوی آنتن و افت بررسی:
قبلا وقتی در معادلات رادار استدلال و استنتاج داشتیم فرض ما بر آن بود که بهـره آنـتن رادار برابر با ماکزیمم ان باشد . این امر وقتی صادق است که هدف در راستای بیم اصلی
١۵
آنتن رادار قرار داشته باشد . ولی وقتی رادار هدف را اسکن می کند ، بهره آنتن در جهت هدف همانطور که با پترن انتشار آنتن در درس آنتن محرض شده است ، کمتر از مقـدار ماکزیمم است.
تلفات در نسبت سیگنال به نویز به خاطر در اختیار نبودن ماکزیمم بهره آنتن در راسـتای
هدف برای تمام زمانها ، افت الگوی آنتن نامیده مـی شـود( . ( Antenna pattern loss
زمانیکه یک آنتن برای یک رادار انتخاب می شود، میزان افت الگوی آنتن را می توان به صورت ریاضی محاسبه کرد.
2 2.776θ ۲-۷۳) G(θ)  exp − 2 θ3dB برای مثال تششع یک آنتن فرستنده کاملا ساده را به صورت sin x در نظر بگیرید هماننـد x شکل ۲-۵۱ .

222222222

انرﮊی نفت12
فصل دوم:
انواع تولید پراکنده 14.............................................................................
مقدمه15
7
انواع تولید پراکنده16
توربینهای گازی احتراقی16
توربینهای کوچک17
سلولهای سوختی19
توربینهای بادی20
شبکه های فتوولتاییک22
وسایل ذخیره انرﮊی23
نیروگاههای انرﮊی جزر و مد24
نیروگاههای ترمو الکتریک24
نیروگاههای ترمیونیک24
نیروگاههای بیوماس25
نیروگاه های مبدل انرﮊی خورشیدی – حرارتی – الکتریکی26
نیروگاه تولید همزمان برق، گرما و سرما27
نیروگاههای آبی کوچک28
دیزل ﮊنراتور28
چرخ لنگر28
موتورهای رفت و برگشتی28
تعاریف مربوط به تولید پراکنده29
مکان تولید پراکنده29
هدف تولید پراکنده29
میزان تولید در تولید پراکنده29
محدودیتهای عملکردی تولید پراکنده29
کاربردهای تولید پراکنده31
نحوه اتصال منابع تولید پراکنده به شبکه31
تقسیم بندی های مختلف تولید پراکنده32
تلفات توان در شبکه های توزیع شعاعی34
نتیجه گیری34
فصل سوم:
تقسیم بندی اقلیمی ایران و انتخاب ده شهر نمونه35
مقدمه36
تقسمیات اقلیمی در جهان36
تقسیمات اقلیمی در ایران37
8
روش اولگی40
بحث و نتیجهگیری..41
فصل چهارم:
تعیین تابع هدف47
مقدمه48
دسترسی تجاری48
هزینه های اولیه ونصب49
ضریب کارکرد50
محاسبه مقدار قدرت الکتریکی تولیدی توسط پنلهای خورشیدی و ضریب کارکرد50
مقدمه50
تشعشعات خورشید بیرون از محیط زمین51
ثابت خورشیدی52
مقدار شدت تابش خورشید در خارج از اتمسفر زمین و برروی سطح افقی 52................................................
زاویه انحراف53
متوسط ضریب صافی ماهیانه53
ضریب صافی لحظهای53
تابش پراکنده و مستقیم53
تابش خورشید توسط صفحه ای که با شیب β که رو به جنوب نصب شده است54
محاسبه ضریب کارکرد در توربین بادی54
متوسط سرعت باد55
واریانس.55
پارامترهای K و 55C
تولید متوسط قدرت توربین56
ضریب کارکرد56
هزینه های بهره برداری ‐ تعمیر – نگهداری57
هزینه سوخت57
هزینه برق و بیان تابع هدف57
فصل پنجم:
الگوریتم و فلوچارت برنامه59
فلوچارت محاسبه ضریب کارکرد در سیستم فتو ولتائیک60
فلوچارت محاسبه ضریب کارکرد در سیستم توربین بادی62
9
فلوچارت محاسبه 64COE
نتایج حاصل از تابع هدف66
فصل ششم:
اصول مدلسازی سیستمهای قدرت کوچک توسط 73......HOMER
مقدمه ای بر مدلسازی سیستمهای قدرت کوچک 1 توسط 74HOMER
شبیه سازی.75
بهینه سازی...79
تحلیل حساسیت.83
بررسی عدم قطعیت ها.84
تحلیل حساسیت مجموعه اطلاعات ساعت به ساعت...85
مدلسازی اقتصادی.86
فصل هفتم:
شبیه سازی با استفاده از نرم افزار homer برای شهر نمونه تهران 89....................................
فصل هشتم:
نتیجه گیری و ارائه پیشنهادات101
پیوست :1
اصول همسان سازی هزینه ها و فایده ها 104.........
پیوست:2
آمار هواشناسی108
پیوست :3
نرم افزار برنامه..119
منابع و ماخذ124
چکیده انگلیسی 128...............................................................................................................................

1 Micropower sys-- modeling
10
ردیف جدول عنوان صفحه 1‐1 ذخایر قابل استحصال گاز طبیعی کشور در سال 1381 10 2‐1 مقدار شبکه گذاری انجام شده توسط شرکتهای گازرسانی استانی 12 3‐1 ذخایر هیروکربوری مایع ایران 14 4‐1 میزان ذخایر و شاخص جایگزینی ذخایر به تولید کشور در سالهای 80‐81 14 2‐1 تقسیم بندی تولید پراکنده 32 2‐2 تقسیم بندی تولید پراکنده 33 2‐3 دسته بندی تولید پراکنده بر اساس مصرف سوخت 33 3‐1 تقسیمات نه گانه اقلیمی در ایران 41 3‐2 مشخصات شهرهای انتخاب شده 41 3‐3 شرایط اقلیمی شهر اصفهان در ماههای مختلف سال 42 3‐4 شرایط اقلیمی شهر اهواز در ماههای مختلف سال 42 3‐5 شرایط اقلیمی شهر بندر عباس در ماههای مختلف سال 43 3‐6 شرایط اقلیمی شهر تبریز در ماههای مختلف سال 43 3‐7 شرایط اقلیمی شهر تهران در ماههای مختلف سال 44 3‐8 شرایط اقلیمی شهر رشت در ماههای مختلف سال 44 3‐9 شرایط اقلیمی شهر شیراز در ماههای مختلف سال 45 3‐10 شرایط اقلیمی شهر کرمان در ماههای مختلف سال 45 3‐11 شرایط اقلیمی شهر مشهد در ماههای مختلف سال 46 3‐12 شرایط اقلیمی شهر همدان در ماههای مختلف سال 46 4‐1 دسترسی تجاری انواع تکنولوﮊی DG 48 4‐2 مشخصات انواع DG مورد مطالعه 58 11
ردیف شکل عنوان صفحه 2‐1 سیستم بازیافت حرارت 17 2‐2 شکل ساده یک میکرو توربین 18 2‐3 مراحل عملکرد پیلهای سوختی 19 2‐4 اجزاﺀ توربین بادی 20 2‐5 نحوه عملکرد سیستمهای فتوولتائیک 22 2‐6 مراحل عملکردی موتورهای رفت و برگشتی 29 2‐7 شبکه شعاعی معمولی 34 4‐2 زمین در گردش سالانه خودش بدور خورشید 51 4‐2 نمودار تغییرات Gon بر حسب روزهای سال 52 4‐3 c به ازاﺀ پارامتر K 55 u 5‐1 فلوچارت محاسبه cf در فتوولتائیک 61 5‐2 فلوچارت محاسبه ضریب کارکرد توربینهای بادی 63 5‐3 فلوچارت محاسبه هزینه COE 65 5‐4 مقدار COE انواع DG در شهر اصفهان 66 5‐5 مقدار COE انواع DG در شهر اهواز 66 5‐6 مقدار COE انواع DG در شهر بندرعباس 67 5‐7 مقدار COE انواع DG در شهر تبریز 67 5‐8 مقدار COE انواع DG در شهر تهران 68 5‐9 مقدار COE انواع DG در شهر رشت 68 5‐10 مقدار COE انواع DG در شهر شیراز 69 5‐11 مقدار COE انواع DG در شهر کرمان 69 5‐12 مقدار COE انواع DG در شهر مشهد 70 5‐13 مقدار COE انواع DG در شهر همدان 70 5‐14 مقایسه COE باد در ده شهر نمونه 71 5‐15 مقایسه COE فتوولتائیک در ده شهر نمونه 71 5‐16 مقایسه CF توربین بادی در ده شهر نمونه 72 5‐17 مقایسه CF فتوولتائیک در ده شهر نمونه 72 6‐1 ارتباط بین ارکان مختلف نرم افزار HOMER 75 6‐2 نمونه هایی از سیستم های قدرت کوچک شبیه سازی شده با HOMER 77 6‐3 نتایج نمونه از تحلیل ساعتی 79 6‐4 سیستم بادی‐ دیزلی 80 6‐5 فضای جست و جو که شامل 140 حالت مختلف است 81 6‐6 نتایج کلی شبیه سازی که طبق NPC مرتب شده اند 82 6‐7 نتایج دسته بندی شده بهینه سازی 82 12
6‐8 نمونه ای از تحلیل حساسیت 84 6‐9 نتایج تحلیل حساسیت با قیمت متغیر برای سوخت 85 6‐10 نوع سیستم بهینه 86 7‐1 انتخاب بار‐ دستگاهها و حالت شبکه 89 7‐2 ورود اطلاعات ساعتی بار در روزهای هفته به تفکیک ماههای مختلف 89 7‐3 ورود اطلاعات ساعتی بار روز تعطیل آخر هفته 90 7‐4 انتخاب نوع سوخت مصرفی 90 7‐5 شماتیک نرم افزار بعد از وارد کردن مشخصات دستگاهها 91 7‐6 ورود اطلاعات ضریب صافی آسمان به تفکیک ماه برای شهر تهران 91 7‐7 ورود اطلاعات سرعت باد به تفکیک ماه برای شهر تهران 92 7‐8 قیمت دیزل بر حسب دلار بر لیتر(0.1دلار بر لیتر) 92 7‐9 0.0025 دلار بر متر مکعب) 92 قیمت گاز بر حسب دلار بر متر مکعب ( 7‐10 اجرای نرم افزارتوسط دکمه CALCULATE 93 7‐11 نتایج شبیه سازی اولین انتخاب بهینه 93 7‐12 قدرت خروجی ساعتی توسط دستگاه میکروتوربین در روز اول ماه 94 7‐13 قدرت خروجی ساعتی توسط دستگاه دیزل ﮊنراتور در روز اول ماه 94 7‐14 قدرت خروجی ساعتی توسط دستگاه موتور احتراق درونی در روز اول ماه 94 7‐15 قدرت خروجی ساعتی توسط سه دستگاه در روز اول ماه 95 7‐16 نتیجه شبیه سازی استفاده از تمام دستگاههای ) DG بدترین انتخاب بهینه) 95 7‐17 قدرت خروجی ساعتی توسط دستگاه PV در روز اول ماه 96 7‐18 قدرت خروجی ساعتی توسط دستگاه توربین بادی در روز اول ماه 96 7‐19 قدرت خروجی ساعتی توسط دستگاه میکرو توربین در روز اول ماه 96 7‐20 قدرت خروجی ساعتی توسط دستگاه دیزل ﮊنراتور در روز اول ماه 97 7‐21 قدرت خروجی ساعتی توسط دستگاه موتور احتراق درونی در روز اول ماه 97 7‐22 قدرت خروجی ساعتی توسط دستگاه باطری در روز اول ماه 97 7‐23 حساسیت نسبت به تغییرات گاز و دیزل 98 7‐24 حساسیت نسبت به تغییرات سرعت باد و قیمت دیزل با تابش خورشید برابر6kwh/m2/d 98 7‐25 حساسیت نسبت به تغییرات سرعت باد و قیمت دیزل با تابش خورشید برابر4.55kwh/m2/d 98 7‐26 حساسیت نسبت به تغییرات قیمت دیزل و تابش خورشید 99 7‐27 حساسیت نسبت به تغییرات قیمت گاز طبیعی و تابش خورشید 99 13
چکیده
از زمانی که بحث مولدهای پراکنـده در نقـاط مختلـف دنیـا رواج یافتـه، تـاکنون مباحـث زیـادی در ایـن خصوص مفتوح مانده است. سازندگان اصلی این نوع مولدها همواره به دنبال کاهش هزینه های مربوط به طراحـی، ساخت و خدمات پس از فروش بوده اند. در حال حاضر بدلیل بکارگیری تکنولوﮊیهای جدید، برخی از انـواع ایـن مولدها همچنان دارای سرمایه گذاری پایه اولیه بالایی بوده و قیمت تمام شده برق تولیدی آنها قابل رقابت بـا رویـه های جاری نیست. در حال حاضر در کشور ما بدلیل ارزان بودن قیمت سوخت، علاوه بر عدم ارزش انرﮊی گرمائی تولیدی برای واحدها و مصارف مختلف، مصرف انرﮊی هنـوز جایگـاه واقعـی خـود را پیـدا نکـرده اسـت. هزینـه تجهیزات برای تکنولوﮊیهای DG اغلب بر حسب هزینه آنهـا در هـر کیلـووات از بـرق تولیـدی، قیمـت گـذاری می گردد. در این پروژه - ریسرچ، ابتدا هزینه تولید برق انواع نیروگاههای تولید پراکنده با توجه به پتانسیل انـرﮊی موجـود در
مناطق مختلف جغرافیایی کشور تعیین و سپس به اصـول شـبیه سـازی سیـستمهای قـدرت کوچـک بـا اسـتفاده از نرم افزار HOMER برای شهر نمونه تهران پرداخته می شود. و نتایج حاصل از شـبیه سـازی بـا نتـایج پـروﮊه
مقایسه می گردد. از نتایج مشاهده می گردد که در بین انواع نیروگاههای تولید پراکنده موتورهای احتراق درونـی در تمامی شهرها دارای هزینه تولید انرﮊی کمتری نسبت به دیگر نیروگاههای تولید پراکنده دارا می باشد و همچنین بـا توجه به منابع گاز طبیعی فراوان در کشور ایران استفاده از نیروگاههای تولید پراکنده که با سوخت گاز کار می کننـد دارای هزینه تولید برق کمتری می باشند.
1
مقدمه
از زمانی که بحث مولدهای پراکنده در نقاط مختلف دنیا رواج یافته، تاکنون مباحث زیادی در این خصوص مفتوح مانده است و با توجه به جدید بودن ایده بکارگیری گسترده از این واحدها و نحوه مشارکت بخشهای غیر دولتی و همچنین نحوه حمایت دولت برای بهره برداری از آنها این بحث هنوز بصورت قـانونی مـدون اسـتخراج نگردیـده است. سازندگان اصلی این نوع مولدها همواره به دنبال کاهش هزینه های مربوط بـه طراحـی، سـاخت و خـدمات پس از فروش بوده اند. در حال حاضر بدلیل بکارگیری تکنولوﮊیهای جدید، برخی از انـواع ایـن مولـدها همچنـان دارای سرمایه گذاری پایه اولیه بالایی بوده و قیمت تمام شده برق تولیدی آنها قابل رقابـت بـا رویـه هـای جـاری نیست. بایستی توجه داشت که این مولدها دارای امکانات و مشخصات ویژه ای هستند که قیـاس آنهـا را بـا سـایر واحدهای تأمین کننده برق امکان پذیر می سازد. در حال رشدی معادل 4/7 درصد برای مصرف انرﮊی برق (بطور متوسط) در اکثر کشورهای جهان تعیین شده است. که البته طبق اظهار نظر مسؤلان این روند در کشور، دارای رشد حدود %8 سالیانه است. با توجه به راندمان حدود %50 نیروگاهها (سیکل ترکیبی) و مد نظر قراردادن این موضـوع که تلفات ناشی از انتقال انرﮊی و توزیع آن رقمی معادل 10 الی 15 درصد را در بردارد تأمین مازاد نیاز انـرﮊی بـه معنای استفاده فراوان از منابع انرﮊی فسیلی است.
جهت رفع این نقیصه استفاده از انرﮊیهای نو و تجدید پذیر1 و همچنین ایجاد یک الگوی مصرف مناسب به همراه تجدید ساختار در صنعت برق با بهره گیری از مولدهای پراکنده، راهکارهای با ارزش و مهم محسوب میـشوند. در اکثر کشورهای جهان که بهای انرﮊی دارای ارزش واقعی نیست مـصرف بـی رویـه از آن هزینـه هـای فراوانـی در بردارد. در حال حاضر در کشور ما بدلیل ارزان بودن قیمت سوخت، علاوه بر عدم ارزش انـرﮊی گرمـائی تولیـدی برای واحدها و مصارف مختلف، مصرف انرﮊی هنوز جایگاه واقعی خود را پیدا نکرده است. مولدهای پراکنـده ای که در ادامه از آنها صحبت به میان خواهد آمد علاوه بر حفظ منابع انرﮊی و جلوگیری از اتـلاف آن، بـدون داشـتن آلاینده های زیست محیطی و صوتی شرایط حفظ محیط زیست را نیز فراهم می سازند.
از لحاظ بعد تاریخی تولید کننده های برق به صورت پراکنده بودند و به طور محلی مورد استفاده قرار می گرفتند.
بعدها به دلایل اقتصادی و تکنیکی تمرکز تولید بیشتر شد، تا بـه حالـت امـروزی در آمـد. در عـصرحاضر بـدلایل متعددی تولید در حال تغییر ماهیت به تولید پراکنده می باشد. طبق پیش بینی انسیتیتو تحقیقـات بـرق آمریکـا2 تـا سال 2010 حدود %25 تولید به صورت تولید پراکنده خواهد بود و نیز طبق پیش بینی مؤسسه گاز طبیعی آمریکـا تا سال 2010 حدود %30 تولید به صورت پراکنده خواهد بود.

1 - Renewable Energy 2 - EPRI
2
در ادامه ما به بحث شرایط اقلیمی کشور ایران می پردازیم. کشور ایران 1648195 کیلومتر مربع وسعت دارد و در غرب قاره آسیا واقع شده و جزﺀ کشورهای خاورمیانه محسوب می شود. در مجموع محیط ایـران 8731 کیلـومتر می باشد. حدود 90 درصد خاک ایران در محدوده فلات ایران واقع شده است. بنابراین ایران کـشوری کوهـستانی محسوب می شود. بیش از نیمی از مساحت ایران را کوهها و ارتفاعات، یـک چهـارم را صـحراها و کمتـر از یـک چهارم را اراضی قابل کشت تشکیل می دهند. ایران دارای آب و هوای متنوع و متفاوت اسـت و بـا مقایـسه نقـاط کشور این تنوع را بخوبی می توان مشاهده کرد. میزان تفاوت و ترکیب گوناگون عوامل اقلیمی کـه خـود ناشـی از تفاوت موقعیت جغرافیایی مناطق مختلف است، حوزههـای اقلیمـی متفـاوتی در جهـان پدیـد آورده کـه هـر یـک ویژگیهای خاصی دارد. محیط زیست، شهرها و حتی بناهای مربوط به این حوزههای اقلیمی، ویژگیهای خاصـی متناسب با شرایط اقلیمی خود به دست آوردهاند. بدین منظور، نخست به تقسیمات اقلیمی در سطح جهان و ایـران اشاره نموده و سپس به انتخاب ده شهر در مناطق مختلف اقلیمی ایران پرداخته می شود.
در ادامه به تعیین هزینه تولید برق از یک نیروگاه تولید پراکنده می پردازیم که یکی از عوامل مهم به هنگام اسـتفاده از یک تکنولوﮊی DG، هزینه می باشد. بهرحال تعیین هزینه یک تکنولوﮊی DG اغلب پیچیده می باشد. علاوه بـر هزینه یا سرمایه اولیه تجهیزات، نیروی کار و دیگر مخارج مربوط به نصب، بهره برداری و تعمییرات تجهیزات نیـز وجود دارد. همچنین هزینه برق تولیدی توسط تکنولوﮊی DG می تواند برآورد و با قیمت موجـود پرداخـت شـده برای برق شبکه قدرت مقایسه شود. هزینه تجهیزات برای تکنولوﮊیهای DG اغلب بـر حـسب هزینـه آنهـا در هـر کیلووات از برق تولیدی و یا دلار بر کیلووات، قیمت گـذاری مـی گـردد. بـرای انتخـاب یکـی از انـواع مختلـف نیروگاههای تولید پراکنده عوامل مختلفی وجود دارد تا مشخص شود کدام نیروگاه برای وضعیت ویژه مناسـب تـر می باشد. که این عوامل در فصل چهارم به تفصیل تشریح گردیده است. در پایان با استفاده از نرم افـزار HOMER
به مدلسازی سیستمهای تولید پراکنده کوچک می پردازیم که این نرم افزار قابلیت انتخاب بهینه هیبرید انواع تولیـد پراکنده را دارا می باشد.
3

فصل اول:
بررسی انرﮊیهای تجدید پذیر و تجدیدناپذیر مورد استفاده در نیروگاههای تولید پراکنده((DG

4
انرﮊیهای مورد استفاده در نیروگاههای تولید پراکنده به دو نوع تقسیم می شود : [1]-[10]
الف‐ تجدید پذیر
ب‐ تجدید ناپذیر
انرﮊیهای تجدید پذیر:
انرﮊی باد
انرﮊی خورشید
انرﮊی باد
انرﮊی باد یکی از انواع اصلی انرﮊی های تجدید پذیر می باشد که از دیرباز ذهن بشر را به خود معطوف کرده بـود بطوریکه وی همواره به فکر کاربرد این انرﮊی در صنعت بوده است. بشر از انرﮊی باد بـرای بـه حرکـت در آوردن قایقها و کشتی های بادبانی و آسیابهای بادی استفاده می کرده است. در شرایط کنونی نیز با توجـه بـه مـوارد ذکـر شده و توجیه پذیری اقتصادی انرﮊی باد در مقایسه با سایر منابع انرﮊیهای نو، پرداختن به انرﮊی باد امری حیـاتی و ضروری به نظر می رسد. در کشور ما ایران، قابلیتها و پتانسیلهای مناسبی جهت نصب و راه اندازی توربینهای بـرق بادی وجود دارد، که با توجه به توجیه پذیری آن و تحقیقات، مطالعات و سرمایه گذاری که در این زمینـه صـورت گرفته، توسعه و کاربرد این تکنولوﮊی، چشم انداز روشنی را فرا روی سیاستگذاران بخـش انـرﮊی کـشور در ایـن زمینه قرار داده است.
انرﮊی باد نظیر سایر منابع انرﮊی تجدیدپذیر از نظـر جغرافیـایی گـسترده و در عـین حـال بـه صـورت پراکنـده و غیرمتمرکز و تقریبا همیشه دردسترس می باشد. انرﮊی باد طبیعتی نوسانی و متناوب داشـته و وزش دائمـی نـدارد.
هزاران سال است که انسان با استفاده از آسیابهای بادی، تنها جزﺀ بسیار کوچکی از آن را استفاده می کند.
این انرﮊی تا پیش از انقلاب صنعتی بعنوان یک منبع انرﮊی، بطور گسترده ای مورد استفاده قرار می گرفت ولـی در دوران انقلاب صنعتی، استفاده از سوختهای فسیلی بدلیل ارزانی و قابلیت اطمینان بالا، جایگزین انرﮊی باد گردیـد.
در این دوره، توربینهای بادی قدیمی دیگر از نظر اقتصادی قابل رقابت با بازار انرﮊیهای نفت و گاز نبودند. تا اینکه در سالهای 1973 و 1978 دو شوک بزرگ نفتی، ضربه بزرگی به اقتـصاد انرﮊیهـای حاصـل از نفـت و گـاز وارد آورد. به این ترتیب هزینه انرﮊی تولید شده بوسیله توربینهای بادی در مقایسه با نرخ جهـانی قیمـت انـرﮊی بهبـود یافت. پس از آن مراکز و موسسات تحقیقاتی و آزمایـشگاهی متعـددی در سراسـر دنیـا بـه بررسـی تکنولوﮊیهـای مختلف جهت استفاده از انرﮊی باد بعنوان یک منبع بزرگ انـرﮊی پرداختنـد. بـه عـلاوه ایـن بحـران باعـث ایجـاد تمایلات جدیدی در زمینه کاربرد تکنولوﮊی انرﮊی باد جهت تولید برق متصل به شبکه، پمپاﮊ آب و تـامین انـرﮊی الکتریکی نواحی دورافتاده شد. همچنین در سالهای اخیر، مشکلات زیست محیطی و مسائل مربوط به تغییـر آب و هوای کره زمین بعلت استفاده از منابع انرﮊی فسیلی بر شدت این تمایلات افزوده است. از سال 1975 پیشرفتهای
5
شگرفی در زمینه توربینهای بادی در جهت تولید برق بعمل آمده است. در سال 1980 اولـین تـوربین بـرق بـادی متصل به شبکه سراسری نصب گردید. بعد از مدت کوتاهی اولین مزرعه برق بادی چند مگاواتی در آمریکا نـصب و به بهره برداری رسید. در پایان سال 1990 ظرفیت توربینهای برق بادی متصل به شبکه در جهان بـه 200MV
رسید که توانایی تولید سالانه 3200 GWh برق را داشته که تقریبا تمام این تولیـد مربـوط بـه ایالـت کالیفرنیـا آمریکا و کشور دانمارک بود. امروزه کشورهای دیگر نظیر هلند، آلمان، بریتانیا، ایتالیا و هندوستان برنامه های ملـی و ویژه ای را در جهت توسعه و عرضه تجاری انرﮊی باد آغاز کرده اند. در طی دهه گذشته، هزینه تولید انـرﮊی بـه کمک توربینهای بادی بطور قابل ملاحظه ای کاهش یافته است.
در حال حاضر توربینهای بادی از کارائی و قابلیت اطمینان بیشتری در مقایسه با 15 سال پیش برخوردارند. با ایـن همه استفاده وسیع از سیستمهای مبدل انرﮊی باد((wecs هنوز آغاز نگردیده است. در مباحث مربوط به انـرﮊی
باد، بیشتر تاکیدات بر توربینهای بادی مولد برق جهت اتصال به شبکه است زیرا این نوع از کاربرد انرﮊی بـاد مـی تواند سهم مهمی در تامین برق مصرفی جهان داشته باشد. بر اساس برنامه سیاسـتهای جـاری (cp)، تخمـین زده می شود که سهم انرﮊی باد در تامین انرﮊی جهان در سال 2020 تقریبا برابر با 375 twh در سال خواهـد بـود.
این میزان انرﮊی با استفاده از توربینهای بادی، به ظرفیت مجموع 180Gw تولیـد خواهـد گردیـد. امـا در قالـب برنامه ضرورتهای زیست محیطی (ed) سهم این انرﮊی در سال 2020 بالغ بـر ( 970 twh) در سـال خواهـد بود که با استفاده از توربینهای بادی به ظرفیت مجموع 470 Gw تولید خواهد شد. بطور کلی با استفاده از انرﮊی باد به عنوان یک منبع انرﮊی در دراز مدت می توان دو برابر مصرف انرﮊی الکتریکی فعلی جهان را تامین کرد.
منشاﺀ باد هنگامی که تابش خورشید بطور نامساوی به سطوح ناهموار زمین می رسد سبب ایجاد تغییرات در دما و فشار مـی
گردد و در اثر این تغییرات باد بوجود می آید. همچنن اتمسفر کره زمین به دلیل حرکت وضعی زمـین، گرمـا را از مناطق گرمسیری به مناطق قطبی انتقال می دهد که این امر نیز باعث بوجود آمدن باد می گردد. جریانات اقیانوسـی نیز به صورت مشابه عمل نموده و عامل %30 انتقال حـرارت کلـی در جهـان مـی باشـد. در مقیـاس جهـانی ایـن جریانات اتمسفری به صورت یک عامل قوی جهت انتقال حرارت و گرما عمل می نمایند. دوران کره زمین نیز می تواند در برقراری الگوهای نیمه دائم جریانات سیاره ای در اتمسفر، انرﮊی مضاعف ایجاد نماید.
پس همانطوریکه عنوان شد باد یکی از صورتهای مختلف انرﮊی حرارت خورشیدی می باشد که دارای یک الگوی جهانی نیمه پیوسته می باشد. تغییرات سرعت باد، ساعتی، روزانه و فصلی بوده و متاثر از هوا و توپـوگرافی سـطح زمین می باشد. بیشتر منابع انرﮊی باد در نواحی ساحلی وکوهستانی واقع شده اند.
توزیع جهانی باد بطورکلی جریان باد در جهان دارای دو نوع توزیع می باشد:
6
الف‐ جریان چرخشی هادلی1
بین عرضهای جغرافیایی 30 درجه شمالی و 30 درجه جنوبی، هوای گرم شـده در اسـتوا بـه بـالا صـعود کـرده و هوای سردتری که از شمال و جنوب می آید جایگزین آن می شود. این جریـان را چـرخش هـادلی مـی نامنـد. در سطح کره زمین این جریان بدین معنی است که بادهای سرد به طرف استوا می وزند و از طرف دیگر هوایی کـه در
30 درجه شمالی و 30 درجه جنوبی به پایین می آید خیلی خشک است و بدلیل آنکه سرعت دوران زمین در ایـن عرضهای جغرافیایی به مراتب کمتر از سرعت دوران زمین در استوا است، به سمت شرق حرکت می کنـد. معمـولا در این عرضهای جغرافیایی نواحی بیابانی مانند صحرا قرار دارند.
ب‐ جریان چرخشی راسبی2
بین عرضهای جغرافیایی 30 درجه شمالی(جنوبی) و 70 درجه شمالی (جنوبی) عمـدتا بادهـای غربـی در جریـان هستند. این بادها تشکیل یک چرخش موجی را می دهند و هوای سرد را به جنوب و هوای گرم را به شمال انتقال می دهند. این الگو را جریان راسبی می نامند.
اندازه گیری پتانسیل انرﮊی باد پتاسیل انرﮊی باد به عنوان یک منبع قدرت در مناطق مختلف و بر اساس اطلاعات موجود در مورد منابع بـاد قابـل
دسترس در هر منطقه مورد مطالعه قرار گرفته است. پتانسیل مربوط به منابع باد به طور کلی به پـنج دسـته تقـسیم می شود:
‐1 پتانسیل هواشناسی: این پتانسیل بیانگر منبع انرﮊی باد در دسترس می باشد.
‐2 پتانسیل محلی: این پتانسیل بر مبنای پتانسیل هواشناسی بنا شده ولی محدود به محلهایی است کـه از نظـر جغرافیایی برای تولید انرﮊی در دسترس هستند.
‐3 پتانسیل فنی: این پتانسیل با در نظر گرفتن نـوع تکنولـوﮊی دردسـترس (کـارایی، انـدازه تـوربین و... ) از پتانسیل محلی محاسبه می شود.
‐4 پتانسیل اقتصادی: این پتانسیل، استعداد بالقوه فنی است کـه بـه صـورت اقتـصادی و بـر پایـه سیاسـتهای اقتصادی قابل تحقق و اجرا است.
‐5 پتانسیل اجرایی: این پتانسیل با در نظر گرفتن محدودیتها و عوامل تشویقی برای تعیین ظرفیـت توربینهـای بادی قابل اجرا در یک محدوده زمانی خاص تعیین می شود. مانند تعرفه های تشویقی که طبـق سیاسـت‐ های دولتهای مختلف به تولیدکنندگان انرﮊی برق بادی حاصل از توربینهای بادی تخصیص داده می شود.
قدرت باد انرﮊی جنبشی باد همواره متناسب با توان دوم سرعت باد است. هنگامی که باد به یک سطح برخورد می کند انرﮊی
جنبشی آن به فشار (نیرو) روی آن سطح تبدیل می شود. حاصلضرب نیروی باد در سرعت باد مساوی قـدرت بـاد

1 - hadly 2 - Rossby
7
می شود. نیروی باد متناسب با مربع سرعت باد است پس قدرت باد متناسب با مکعـب سـرعت بـاد خواهـد بـود.
بنابراین هرچه سرعت باد بیشتر باشد قدرت آن نیز بیشتر خواهد شد. به عنوان مثال اگر سرعت باد دو برابـر شـود قدرت آن هشت برابر و اگر سرعت باد سه برابر گردد قدرت باد بیست و هفت برابر خواهد شد.
مزایای بهره برداری از انرﮊی باد
‐1 عدم نیاز توربینهای بادی به سوخت، که در نتیجه از میزان مصرف سوختهای فسیلی می کاهد.
‐2 رایگان بودن انرﮊی باد
‐3 توانایی تامین بخشی از تقاضای انرﮊی برق
‐4 کمتر بودن نسبی قیمت انرﮊی حاصل از باد نسبت به انرﮊیهای فسیلی
‐5 کمتر بودن هزینه های جاری و هزینه های سرمایه گذاری انرﮊی باد در بلند مدت
‐6 تنوع بخشیدن به منابع انرﮊی و ایجاد سیستم پایدار انرﮊی
‐7 قدرت مانور زیاد جهت بهره برداری در هر ظرفیت و اندازه ( از چند وات تا چندین مگاوات)
‐8 عدم نیاز به آب
‐9 عدم نیاز به زمین زیاد برای نصب
‐10 نداشتن آلودگی محیط زیست نسبت به سوختهای فسیلی پتانسیل باد در ایران
کشور ایران 1648195 کیلومتر مربع وسعت دارد و در غرب قاره آسیا واقع شـده و جـزﺀ کـشورهای خاورمیانـه محسوب می شود. در مجموع محیط ایران 8731 کیلومتر می باشد. حـدود 90 درصـد خـاک ایـران در محـدوده فلات ایران واقع شده است. بنابراین ایران کشوری کوهستانی محسوب می شود. بیش از نیمی از مساحت ایـران را کوهها و ارتفاعات، یک چهارم را صحراها و کمتر از یک چهارم را اراضی قابـل کـشت تـشکیل مـی دهنـد. ایـران دارای آب و هوای متنوع و متفاوت است و با مقایسه نقاط کشور این تنوع را بخوبی می توان مشاهده کرد.
ارتفاع کوههای شمالی، غربی و جنوبی به قدری زیاد است که از تاثیر بادهای دریای خزر، دریای مدیترانه و خلیج فارس در نواحی داخلی ایران جلوگیری می کند. به همین سبب دامنه های خارجی این کوههـا دارای آب و هـوای مرطوب بوده و دامنه های داخلی آن خشک است. در رابطه با بادهای ایران می توان گفـت کـه ایـران بـا موقعیـت جغرافیایی که دارد، در آسیا بین شرق و غرب و نواحی گرم جنوب و معتدل شمالی واقـع شـده اسـت و در مـسیر جریانهای عمده هوایی بین آسیا، اروپا، آفریقا، اقیانوس هند و اقیانوس اطلس است که تـاکنون آنچـه مـسلم اسـت قرار گرفتن ایران در مسیر جریانهای مهم هوایی زیر می باشد:
‐1 جریان مرکز فشار آسیای مرکزی در زمستان
‐2 جریان مرکز فشار اقیانوس هند در تابستان
‐3 جریان غربی از اقیانوس اطلس و دریای مدیترانه مخصوصا در زمستان
8
‐4 جریان شمال غربی در تابستان توربینهای بادی و انواع آن
از نظر عملکردی در توربینهای بادی انرﮊی جنبشی باد به انـرﮊی مکـانیکی و سـپس بـه انـرﮊی الکتریکـی تبـدیل میگردد.
انواع توربینهای بادی:
‐1 توربینهای بادی با محور چرخش عمودی
‐2 توربینهای بادی با محور چرخش افقی انواع کاربرد توربینهای بادی الف – کاربردهای غیر نیروگاهی الف( 1 ‐ پمپهای بادی آبکش
الف( 2 ‐ کاربرد توربینهای کوچک بعنوان تولیدکننده برق الف( 3 ‐ شارﮊ باتری ب – کاربردهای نیروگاهی
کاربردهای نیروگاهی توربینهای برق بادی شامل کاربردهای متصل به شبکه برق رسانی است که عبارتنداز:
ب(1‐ توربینهای بادی منفرد ب(2‐ مزارع بادی
انرﮊی خورشید
خورشید نه تنها خود منبع عظیم انرﮊی است، بلکه سـر آغـاز حیـات و منـشا تمـام انرﮊیهـای دیگـر اسـت. طبـق برآوردهای علمی در حدود 6000 میلیون سال از تولد این گوی آتشین می گذرد و در هر ثانیه 4.2 میلیون تـن از جرم خورشید به انرﮊی تبدیل می شود. با توجه به وزن خورشید که حدود 333 هزار برابر وزن زمین اسـت، ایـن کره نورانی را مـی تـوان بعنـوان منبـع عظـیم انـرﮊی تـا 5 میلیـارد سـال آینـده بـه حـساب آورد. قطـر خورشـید
1/39*10^6 کیلومتر است و از گازهایی نظیر هیدروﮊن 86/8) درصد)، هلیوم 3) درصد) و 63 عنصر دیگـر کـه مهمترین آنها اکسیژن، کربن، نئون و نیتروﮊن می باشد، تشکیل شده است. میزان دما در مرکز خورشید حدود 10 تا
14 میلیون درجه سانتیگراد می باشد که از سـطح آن بـا حرارتـی نزدیـک بـه 5600 درجـه و بـه صـورت امـواج الکترومغناطیسی در فضا منتشر می شود.
زمین در فاصله 150 میلیون کیلومتری خورشید واقع است و 8 دقیقه و 18 ثانیه طول می کشد تا نور خورشید بـه
1
زمین برسد. بنابراین سهم زمین در دریافت انرﮊی از خورشید حدود 2 109 از کل انرﮊی تابشی آن می باشد.

جالب است بدانید که سوختهای فسیلی ذخیره شده در اعماق زمین، انرﮊیهای باد، آبشار، امـواج دریاهـا و بـسیاری موارد دیگر از جمله نتایج همین مقدار انرﮊی دریافتی زمین از خورشید می باشد.
9
کاربردهای انرﮊی خورشیدی در عصر حاضر از انرﮊی خورشیدی توسط سیستمهای مختلف و برای مقاصد متفاوت استفاده و بهـره گیـری مـی شود که عبارتنداز:
الف) استفاده از انرﮊی حرارتی خورشیدی برای مصارف خانگی، صنعتی و نیروگاهی ب ) تبدیل مستقیم پرتوهای خورشید به الکتریسیته بوسیله تجهیزاتی به نام فتوولتائیک کاربردهای نیروگاهی:
‐1 نیروگاههایی که گیرنده آنها آینه های سهموی ناودانی هستند(شلجمی باز)
‐2 نیروگاههایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه های بزرگـی بـه نـام هلیوستات به آن منعکس می شود.(دریافت کننده مرکزی)
‐3 نیروگاههایی که گیرنده آنها بشقابی سهموی (دیش) می باشد(شلجمی بشقابی)
کاربردهای غیر نیروگاهی:
‐1 آبگرمکن و حمام خورشیدی
‐2 گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی
‐3 آب شیرین کن خورشیدی
‐4 خشک کن خورشیدی
‐5 اجاقهای خورشیدی
‐6 کوره خورشیدی
‐7 خانه های خورشیدی مصارف و کاربردهای فتوولتائیک:
‐1 مصارف فضانوردی و تامین انرﮊی مورد نیاز ماهواره ها جهت ارسال پیام
‐2 روشنایی خورشیدی
‐3 سیستم تغذیه کننده یک واحد مسکونی
‐4 سیستم پمپاﮊ خورشیدی
‐5 سیستمهای تغذیه کننده ایستگاههای مخابراتی و زلزله نگاری
‐6 ماشین حساب، ساعت، رادیو، ضبط صوت و هر وسیله ای که تاکنون با باطری خشک کار می کرده است
‐7 نیروگاههای فتوولتائیک
‐8 یخچالهای خورشیدی
‐9 سیستم تغذیه کننده پرتابل یا قابل حمل
10
انرﮊی های تجدیدناپذیر
گاز
دیزل
انرﮊی گاز
ذخایر و میادین گاز طبیعی بزرگترین ذخایر گازی شناخته شده جهان متعلق به کشور روسیه می باشد و میلیونها انـشعاب در اروپـا، بـه منـابع
گازی این کشور متصل است. ایران نیز بعد از روسیه، دارای عظیم ترین ذخـایر گـاز طبیعـی در جهـان مـی باشـد.
حدود 17/2 درصد از کل ذخایر گاز طبیعی دنیا و 47/72 درصد از ذخایر خاورمیانه به ایران تعلق دارد.
میزان ذخایر کل قابل استحصال گاز طبیعی کشور در پایان سال 1381، بالغ بر 26/75 تریلیون متر مکعب بـرآورد گردیده است.
وجود پشتوانه عظیم گاز طبیعی در ایران، به همراه جهت گیری سیاسـت انـرﮊی کـشور بـه سـمت افـزایش رونـد جایگزین گاز طبیعی، موجب شده که در دهه های اخیر، سرعت نفوذ گاز طبیعی در سبد انرﮊی کـشور از افـزایش قابل ملاحظه ای برخوردار شود. به طوری که هم اکنون، حدود 40 درصد از انـرﮊی مـصرفی کـشور توسـط گـاز طبیعی تامین می گردد.
جدول((1‐1 ذخایر قابل استحصال گاز طبیعی کشور در سال 1381

شبکه گذاری گاز طبیعی در ایران توسعه عملیات شبکه گذاری گاز طبیعی در راستای سیاست افزایش سهم گـاز در سـبد مـصرف انـرﮊی در داخـل
کشور، از طریق جایگزینی مصرف فراورده های نفتی با گاز طبیعـی بـوده اسـت. بطوریکـه عملیـات مـذکور طـی سالهای دهه 1360 شدت بیشتری گرفته است. در طی این سالها، تا پایان سال 1381، بسیاری از مناطق روسـتایی که در مجاورت شبکه انتقال خطوط انتقال سراسری قرار داشتند، مجهز به سیستم های انتقال، توزیع و مصرف گـاز طبیعی شده اند، بطوریکه سایر استانهای کشور از این شبکه بهره مند گردیده اند. طی دوره مورد بحث، میزان شبکه گذاری گاز طبیعی در کل کشور به 79000 کیلومتر تا پایان سال 1381 رسیده است. از کـل شـبکه گـذاری گـاز کشور تا پایان سال 1381، حدود 17 درصد آن در استان تهران واقع شده و کمترین میـزان برخـورداری از شـبکه گاز رسانی به استانهای کهگیلویه و بویراحمد و کردستان، به ترتیـب بـا 1/04 و 1/22 درصـد تعلـق دارد. بعـد از
11
استان تهران با درصد تمرکز 10/68 درصد، استانهای مازندران، اصفهان، آذربایجان شرقی، فارس، خراسان، گـیلان و کرمان به ترتیب با درصد تمرکز 03/60،8/9،8/02، 6/95،6/53،6/07 قرار داشته اند. نمـودار((1‐1 خلاصـه ای از حجم شبکه گذاری انجام شده توسط شرکت گاز رسانی استانی را نشان می دهد.
نمودار((1‐1 مقدار شبکه گذاری انجام شده در استانها تا پایان سال 1381

قابل ذکر است تا سالهای اولیه دهه هفتاد هجری شمسی، عمده شبکه های توزیع گاز طبیعی به صورت لولـه هـای فولادی بوده که دارای فشاری بالغ بر 60‐250 پوند براینچ مربع می باشند. تجارب موفق بکارگیری لوله های پلی اتیلن با فشار زیاد موجب شده که اخیرا بخش قابل توجهی از شبکه گذاری با استفاده از لوله های پلی اتیلن انجـام گیرد.
انشعابات و مصرف کنندگان گاز طبیعی مجموع انشعابات در کل کشور تا پایان سال 1381 به 4183 هزار انشعاب رسیده است که از ایـن میـزان، حـدود
460 هزار انشعاب در سال 1381 صورت گرفته است. 99/8 درصد کل انشعابات صورت گرفته در سـال مزبـور به انشعابات بخش خانگی و تجاری تعلق داشته و مراکز صنعتی، دارای سهم ناچیزی از انشعابات گازرسانی بودند.
البته، افزایش تعداد انشعابات بخش صنعت طی سالهای اخیر از روند مطلوبی برخودار بوده، بطوریکه با ادامه رونـد موجود، در سالهای نزدیک، اکثر مراکز عمده صنعتی کشور به گاز طبیعی مجهز مـی گردنـد. جـدول (2‐1) تعـداد انشعابات نصب شده توسط شرکتهای گازرسانی را نشان می دهند.
12
جدول((2‐1 تعداد انشعابات نصب شده توسط شرکتهای گاز رسانی تا پایان سال 1381

ا
انرﮊی نفت
بخش نفت در ابعاد ملی و بین المللی، از اهمیت فوق العاده ای برخوردار است. از بعد اقتـصاد ملـی، نفـت نقـشی مهم در تولید ناخالص داخلی، تجارت خارجی، تشکیل سرمایه ملی، اشتغال زایی، تامین بودجـه و گـسترش زمینـه صادرات غیر نفتی دارد. ایران در مقام دومین تولیدکننده نفت اوپک قرار دارد. مجموع ذخایر قابل استحـصال نفـت خام و میعانات گازی در آغاز سال 1382 حدود 130/8 میلیارد بشکه بوده است. تاریخ اتمام ذخـایر، در صـورت کشف نشدن ذخایر جدید و برداشت سالانه معادل سال 1381 برای نفت خام و میعانات گـازی حـدود 93 سـال است. با توجه به جدول((3‐1، ذخایر واقع در دریا و خشکی به ترتیب حدود 21/5 و 78/6 درصد کـل ذخـایر
13
قابل استحصال هیدروکربوری مایع کشور را تشکیل می دهد. این در حالی اسـت کـه 91/1 درصـد از کـل تولیـد انباشتی از میادین خشکی و تنها 8/9 درصد آن از میادین دریایی صورت گرفته است.
جدول((3‐1 ذخایر هیدروکربوری مایع ایران

جدول((4‐1 میزان ذخایر قابل استحصال جدید و شاخص جایگزینی ذخایر به تولید را نشان می دهد.
جدول((4‐1 میزان ذخایر و شاخص جایگزینی ذخایر به تولید کشور در سالهای 80‐81

14

فصل دوم:
انواع تولید پراکنده
(Distributed Generation)

15
مقدمه
برخی دلایل گرایش تولید به سمت تولید پراکنده عبارتند از:[48]
– 1 محدودیتهای محیطی و جغرافیایی تولید
– 2 مسایل تکنیکی شبکه همچون پایداری، قابلیت اطمینان و...
– 3 روند رو به رشد بار در شبکه توزیع و نیاز به احداث نیروگاههای جدید و توسعه شبکه تولید پراکنده
– 4 گرایش به سمت انرﮊیهای پاک و سازگاز با محیط زیست
– 5 قطع وابستگی به سوختهای فسیلی به دلیل نوسانات قیمت سوخت
– 6 تلفات کمتر نسبت به نیروگاههای بزرگ
– 7 جاگذاری و نصب آسانتر
– 8 جاگذاری نزدیک مصرف کننده که این باعث کاهش هزینه توزیع و انتقال و تلفات ناشی از آنها میگردد.[15]
و همچنین دارای معایبی به شرح ذیل است:
– 1 هزینه اولیه گران
– 2 پیچیده بودن ساختار
– 3 نیاز به سیستم های ذخیره برق، حرارت تولید پراکنده را با اسامی مختلفی مانند زیر خطاب میکنند:[49],[18]
Embedded Generation - 1
Distributed Generation - 2
Dispersed Generation - 3

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

Power Distribution - 4
Distributed Resources - 5
اصطلاحا تولید پراکنده را DG هم می گویند. در اکثر موارد تولید پراکنده در شبکه های توزیع جایگذاری میـشود.
وارد کردن تولید پراکنده در شبکه های توزیع، مزایا و معایبی دارد. مزایای استفاده از تولید پراکنده عبارتند از:
‐1 اصلاح کیفیت توان
‐2 اصلاح قابلیت اطمینان
‐3 کم کردن تلفات
‐4 بالا بردن قابلیت اعتماد معایب استفاده از تولید پراکنده عبارتند از:
‐1 پیچیده شدن شبکه و ضرورت توسعه سیستم حفاظت شبکه
‐2 پیچیده شدن بهره برداری و کنترل شبکه مولدهای پراکنده دارای انواع مختلفی بوده که در ذیل به بررسی اجمالی آنها پرداخته شود.
16
انواع تولید پراکنده
تولید پراکنده دارای انواع گوناگونی می باشد، که از مهمترین آنها می توان به موتورهای احتراق درونی، توربینهـای گازی احتراقی1، توربینهای کوچک2، وسایل ذخیره انرﮊی3، توربینهای بادی4، انرﮊی بیوماس5، سلولهای سـوختی6 و سلولهای خورشیدی7 را نام برد.[17],[21]
این تولیدات پراکنده را می توان از دید تکنولوﮊی به سه دسته عمده تقسیم نمود که عبارتند از:
‐1 تکنولوﮊی گازی
‐2 تکنولوﮊی های انرﮊی نو
‐3 وسایل ذخیره انرﮊی که در آن تکنولوﮊی گازی شـامل توربینهـای احتراقـی گـازی، توربینهـای کوچـک و سـلولهای سـوختی میباشـد.
تکنولوﮊی های انرﮊی نو شامل انرﮊی نهفته طبیعی، توربینهـای کوچـک بـادی، سـلولهای فتوولتائیـک مـی باشـند.
وسایل ذخیره انرﮊی شامل باتری، 8SMES، سوپرخازنها، سدهای ذخیره آب و 9CAES می باشند.
توربینهای گازی احتراقی تکنولوﮊی توربینهای گازی سالهاست که مورد استفاده قرار می گیرد هم اکنـون در شـبکه انتقـال ایـران توربینهـای
گازی زیادی با توان خروجی بالا در حال سرویس دهی می باشند. توربینهای گـازی مـورد بحـث در اینجـا خیلـی کوچکتر از توربینهای گازی به کار رفته در شبکه انتقال بوده و توان خروجی پایین تری دارند.
در این نوع توربینها مطابق شکل (2‐1) هوا با عبور از کمپرسور فشرده شده سپس با سوخت ترکیب مـی گـردد و پس از احتراق، باعث گردش توربین و در نهایت توسط ﮊنراتور باعث تولید توان می شود. این توان تولید شده هم توسط مبدل های توان به شبکه تحویل داده می شود. در این فرآیند می توان از حرارت تولید شـده در تـوربین کـه مورد استفاده نیست جهت سیستم گرمایش یا هر هدف دیگری استفاده نمود. توربینهای گازی احتراقی دارای مزایـا و معایبی هستند که در زیر شرح داده شده اند.

1- Combustion Gas turbine 2- Micro Turbine 3- Enegy Storage Devices 4- Wind Turbine 5- Biomass Power 6- Fuel Cells 7- Photovoltaic Arrays
8- Superconducting Magnetic Energy Storage 9- Compressed Air Energy Storage
کمپرسور

جعبه دنده
گاز خروجی
17
بخارورودی توربین
محفظه احتراق
گاز خروجی
شکل (2‐1) سیستم بازیافت حرارت
مزایا:
‐1 راندمان بالا و هزینه پایین
‐2 توانایی تولید دمای بالا
‐3 مشتری های زیاد در بازار برق
‐4 نسبت توان به وزن بالا
‐5 در دسترس بودن و قابل اطمینان بودن
‐6 رنج بهره برداری وسیع از توان خروجی معایب:
‐1 کاهش راندمان با کاهش بار
‐2 حساسیت به شرایط محیطی (دما، ارتفاع)
‐3 هزینه و راندمان واحدهای کوچک آن به اندازه واحدهای بزرگ قابل قبول نیست.
توربینهای گازی احتراقی از جمله تولید کننده های انرﮊی است که به راحتی در هر نقطه ای قابل نصب بـوده ولـی دارای فاکتور آلوده کنندگی هوا می باشند، که به نظر می رسد نقش آنها را در آینده کم رنگ نماید.
توربینهای کوچک تکنولوﮊی توربینهای کوچک دارای آینده درخشانی است این نوع توربینها، توربینهای احتراقی با ظرفیـت کـم مـی
باشند که می توانند از گاز طبیعی پروپان و سوخت مایع استفاده نمایند. مطابق شـکل (2‐2) در یـک نگـاه سـاده، توربینهای کوچک دارای کمپرسور، محفظه احتراق، توربین کوچک و ﮊنراتور می باشـد. توربینهـای کوچـک دارای حجم کوچکی به اندازه 1– 0/004 m3 و تولیـدی بـه انـدازه 500‐20KW دارنـد. بـرخلاف توربینهـای احتراقـی
18
معمولی، توربینهای کوچک در دما و فشار کمتر و سرعت بیشتری (100000rpm) که بیشتر اوقات به هـیچ جعبـه دنده ای نیاز ندارند، کار می کنند. انواع تجاری موجود دارای قیمت پایین، قابلیت اطمینان خـوب، سـرعت بـالامی باشند. این نوع تولید پراکنده در رنج تولید توان75‐30 KW در شـمال غربـی آمریکـا و غـرب کانـادا و آرﮊانتـین توسط کمپانی Honeywell نصب شده اند. قسمتهای مختلف یک توربین کوچک در شکل (2‐2) نشان داده شـده است. با توجه به شکل (2‐2) هوا با عبور از فیلتر و کمپرسور در محفظه احتراق با سوخت ترکیب شده و واکنش نشان می دهد و سپس توربین به گردش درآمده و ﮊنراتور تولید توان می نمایـد. تـوان تولیـد شـده هـم از طریـق مبدلهای توان به شبکه تزریق می گردد.

جعبه دندهبخارورودی توربین
سیستم بازیافت
محفظه احتراق
دود خروجی
شکل (2‐2) شکل ساده یک میکرو توربین
توربینهای کوچک در بهره برداری و استفاده دارای مزایا و معایبی هستند که به ترتیب در زیر شرح داده شده اند.
مزایای توربینهای کوچک عبارتند از:
‐1 قطعات گردنده کم، سایز کوچک و وزن کم
‐2 راه اندازی ساده و سریع و دارای مشخصات هماهنگ با بار
‐3 راندمان بالا در استفاده دوگانه گرمایی‐ الکتریکی و دوره های تعمیر بلند مدت
‐4 مواد زاید خروجی کم و استفاده مجدد سوخت مصرف نشده معایب توربینهای کوچک عبارتند از:
‐1 نسبت نامناسب سوخت به راندمان الکتریکی
‐2 درجه حرارت بالای محیط وارتفاع بر تلفات توان خروجی و راندمان اثر منفی دارد
19
استفاده وسیع از توربینهای کوچک به دلیل حجم کم و راه اندازی سریع و مواد زاید پایین به سرعت درحـال رشـد است و آینده ای روشن برای آن پیش بینی می شود.
سلولهای سوختی سلول سوختی وسیله ای است که توان الکتریکی و انرﮊی حرارتـی را از انـرﮊی شـیمیایی از طریـق واکـنش هـای
الکتروشیمیایی تولید و تا زمانی که سوخت ورودی تامین گردد تولید الکتریسیته ادامه می یابد. برخلاف باطریها در سلولهای سوختی نیازی نیست که در حین عملیات الکتروشیمیایی، تا زمانی که سوخت ورودی تـامین مـی گـردد، شارﮊ گردد. تکنولوﮊی سلولهای سوختی از سال 1960 شناخته شده است ظرفیت سلولهای سوختی از کیلووات تـا مگاوات برای واحد قابل حمل و ثابت در حـال تغییـر اسـت، ایـن وسـیله در کاربردهـای مختلـف بـا اسـتفاده از سوختهای گازی و مایع، توان و گرمای پاک و سازگار، با محیط تولید مـی نمایـد، سـلولهای سـوختی مـی تواننـد سوختهایی همچون سوخت هیدورﮊن سنگین، گاز طبیعی، بیوگاز و پروپان مصرف نمایند.[11]
سلول سوختی دارای قسمت های مختلفی همچون مبدل سوخت، کاتالیزور آند، الکترولیت پلیمری، کاتالیزور کاتـد و مبدل توان الکتریکی می باشد. هیدروﮊن سوخت با عبور از مبدل سوخت اسـتخراج شـده و وارد کاتـالیزور آنـد میگردد، با عبور از آند الکترون آن گرفته شده و هیدروﮊن یونیزه شده از الکترولیت پلیمری عبور می کند و در کاتد با اکسیژن ترکیب شده و آب و گرما می دهد. بدینوسیله گرما و الکتریسیته تولید می شود. الکتریسیته تولید شده از طریق مبدل توان به شبکه تزریق مـی گـردد. در شـکل((2‐3 مراحـل عملکـرد پیلهـای سـوختی نـشان داده شـده است. [19]

شکل (2‐3) مراحل عملکرد پیلهای سوختی
مزایا و معایب استفاده از بهره برداری از سلولهای سوختی به شرح زیر آمده است.
مزایا:
‐1 راندمان الکتریکی بالا
‐2 نبود قسمتهای متحرک در حین کارکرد سلول سوختی‐ به غیر از پمپها و دمنده های سلول سوختی کـه باعـث کاهش آلودگی صوتی و محیطی می گردد.
20
‐3 نبود احتراق در سلولهای سوختی باعث کاهش قابل ملاحظه مواد زاید خروجی و ماهیت سازگاری بـا طبیعـت را به سلول سوختی داده است.
‐4 با توجه به راندمان بالای سلول سوختی درحالت الکتروگرمایی روز بـه روز سـلولهای سـوختی کـوچکتری بـا مقیاس تجاری و قیمت مناسب ساخته می شود.
معایب:
‐1 قیمت بالا
‐2 نیاز به یک مبدل توان الکترونیک قدرت جهت تنظیم ولتاﮊ خروجی باتوجه به راندمان بالا و سازگاری با محیط زیست و نیز پایین آمدن هزینه سلول سوختی با پیشرفت علم پیش بینی می شود که میزان زیادی از تولید به سمت سلول سوختی متمایل گردد.
توربینهای بادی انرﮊی بادی، انرﮊی است که از هزاران سال پیش مورد استفاده های متعدد داشته است. و از جمله انرﮊیهای متغیر با
زمان و مکان است. چگالی توان تولیدی بر حسب وات بر واحد سطح، یک تابع درجه سوم از سـرعت بـاد اسـت.
در اینصورت یک افزایش کوچک در سرعت باد، افزایش زیادی در توان را در بر خواهد داشت. بادها به دسته های خوب، عالی و شدید تقسیم بندی می شوند که معادل بـا سـرعتهای 13، 16 و 19 مایـل برسـاعت اسـت. توسـط توربینهای بادی ( ایروتوربین ) حرکت رانشی باد به انرﮊی مکانیکی دورانی تبدیل می شود که آن نیز به نوبه خـود توسط یک ﮊنراتور به انرﮊی الکتریکی تبدیل می گردد. ضریب تـوان یـک ایروتـوربینCP شـاخص نـشان دهنـده اصطکاک شفت ایروتوربین می باشد.
یک توربین بادی شامل یک رتور، پره های توربین، ﮊنراتور، وسایل مکانیکی مبدل سرعت و نیرو، شفت و درایـور ﮊنراتور می باشد. توربین های بادی مدرن می توانند به تنهایی یا به صورت مزرعه های بادی و دسته جمعی انرﮊی الکتریکی را تولید نمایند. پره های توربین بادی عموما دو یا سه پره می باشد که هر کدام حدود m 30‐ 10 طـول دارد.

شکل((2‐4 اجزاﺀ توربین بادی
21
انواع مختلفی ایروتوربین در دسترس هستند. آنها می توانند دارای محورهای افقی یا عمودی باشند. تعداد پـره هـا، ثابت یا متحرک بودن آنها و کنترل پره ها بستگی به نوع ایروتـوربین دارد. توربینهـای بـا محـور عمـودی بـا دارای
سیستم خود راه انداز نیستند و نیاز به مکانیسم راه انداز دارند.
توربینهای با محور افقی با دو تا یا بیشتر پره متداولترند. توان الکتریکی خروجی از رابطه زیر بدست می آید:
Pc  η gηm ACp KV 3(2‐1)
که در اینجا ηm و η g به ترتیب بازده های مکانیکی و الکتریکی ﮊنراتـور مـی باشـند. بـه همـین ترتیـب A سـطح جاروب شده، K یک ثابت و V سرعت برخورد باد به توربین می باشد.
اگر سرعت باد تغییر کند، با کنترل گام پره ها، توربین در یک سرعت ثابت عمل می کنـد و یـک ماشـین سـنکرون معمولی برای تولید فرکانس ac ثابت بکار گرفته می شود.
معمولا یک ﮊنراتور القایی با منبع قابل تغییر استفاده می گردد. در این حالت، توربین در یک سرعت نسبتا ثابت کار می کند. انتخاب سرعت متغیر موجب می شود که بازده توربین در رنج وسـیعی از سـرعتهای بـاد بهینـه گـردد در نتیجه خروجی افزایش می یابد. در آینده انتظار می رود که توربینهای پیشرفته در مد سرعت متغیر عمل نموده و از الکترونیک قدرت برای تبدیل خروجی فرکانس متغیر به فرکانس ثابت با اغتـشاشات هـارمونیکی حـداقل در آنهـا استفاده گردد.
اگرچه تبدیل انرﮊی باد به انرﮊی برق اثرات زیست محیطی حداقل دارد ولی ساختارهای بزرگ آنها مقـداری نـویز تولید نموده و از لحاظ زیباسازی هم مشکل ساز خواهد بود. با جایابی سیستمهای باد، تا حد امکان دور از مراکـز مسکونی، این تاثیرات حداقل می گردد. [12]
با توجه به تحقیقات انجام شده توربینهای بادی دارای مزایا و معایبی است که در زیر آورده شده اند.
مزایا:
‐1 انرﮊی تولید شده از توربین بادی می تواند ارزان شود.
‐2 هزینه تولید انرﮊی پائین
‐3 توربین بادی هیچ ماده زاید خروجی نداشته و هیچ سوختی هم نیاز ندارد.
‐4 استفاده بهینه از زمین: زمین مورد استفاده آن می تواند برای کشاورزی یا غذا دادن به حیوانـات مـورد اسـتفاده قرار گیرد.
معایب:
‐1 توان خروجی متغیر در ازای تغییرات سرعت باد
‐2 مکان های مناسب جهت نصب توربین بادی محدود می باشد.
‐3 اثر روحی روانی نیروگاه بادی به دلیل بزرگی آن بر روی مردم مجاور آن
‐4 کشتار پرندگان که از محدوده آن می گذرند
22
‐5 نیروگاه بادی بدلیل تولید انرﮊی پاک و نیز بدلیل پایین آمدن هزینه تمام شده انرﮊی توسط آنها بـه مـرور زمـان درآینده متقاضی بیشتری خواهند داشت.
شبکه های فتوولتاییک پدیده فتوولتائیک: به پدیده ای که در اثر تابش بدون استفاده از مکانیزمهای محرک، الکتریـسیته تولیـد کنـد پدیـده فتوولتائیک می گویند.
شبکه های فتوولتائیک مجموعه ای از سلولهای فتوولتاییک می باشند که انرﮊی خورشید را بطور مستقیم به انـرﮊی الکتریکی تبدیل می نمایند. سلولهای فتوولتائیک می توانند به صورت مربعی یا گرد باشند.
این سلولهای به گونه ای به هم متصل شده اند تا ردیفهای قابل حملی را تشکیل دهند. بـا اتـصال ایـن ردیفهـا بـه صورت سری موازی1 (امروزه این گونه سلولها عموما از ماده سیلیسیوم و سیلیسیوم مورد نیاز از شن و ماسه تهیـه می شود که در مناطق کویری کشور، به فراوانی یافت می گردد) می توان انرﮊی مورد نیاز خود را تامین نمود.
سیستمهای فتوولتائیک را می توان به طور کلی به سه بخش اصلی تقسیم نمود:
‐1 پنلهای خورشیدی: این بخش در واقع مبدل انرﮊی تابـشی خورشـید بـه انـرﮊی الکتریکـی بـدون واسـطه مکانیکی می باشد. جریان و ولتاﮊ خروجی از این پنلها ) DC مستقیم )می باشد.
‐2 تولید توان مطلوب یا بخش کنترل: این بخش در واقـع کلیـه مشخـصات سیـستم را کنتـرل کـرده و تـوان ورودی پنلها را طبق طراحی انجام شده و نیاز مصرف کننده به بار یا باتری تزریق یا کنترل می کند. در این بخش مشخصات و عناصر تشکیل دهنده با توجه به نیازهای بار الکتریکی و مصرف کننـده و نیـز شـرایط آب و هوایی محلی تغییر می کند.
‐3 مصرف کننده یا بار الکتریکی: با توجه به خروجی DC پنلهای فتوولتائیک، مصرف کننده می تواند دو نوع
DC یا AC باشد. همچنین با آرایشهای مختلف پنلهای فتوولتائیک می توان نیاز مصرف کننـدگان مختلـف را با توانهای متفاوت تامین نمود.
مجموعه یک شبکه فتوولتائیک تولید انرﮊی در شکل (2‐5) نشان داده شده است. در شـکل دیـده مـی شـود کـه انرﮊی خورشید از طریق شبکه فتوولتاییک به انرﮊی الکتریکی تبدیل و توسط یک مبدل تـوان بـه بـرق مـورد نیـاز شبکه تبدیل می گردد. با استفاده از یک ﮊنراتور پشتیبان می توان انرﮊی الکتریکی دائمی به شبکه تحویل داد.

شکل((2‐5 نحوه عملکرد سیستمهای فتوولتائیک[20]

1- Panel
23
بکارگیری شبکه های فتوولتائیک مزایا و معایبی دارند که در زیر شرح داده شده اند:
مزایا:
‐1 جهت نقاط دور دست کاربرد فراوانی دارد
‐2 نیاز به تعمیر آنها خیلی کم است
‐3 طبیعت دوست هستند معایب:
‐1 شرایط جوی و جغرافیایی محیط و میزان نور خورشید تاثیر مستقیم بر تولید توان در این وسیله دارند
‐2 این سلولها توان خروجی کمی تولید می نمایند
‐3 هزینه زمین در جاهایی که PV نصب می شود گران است و نسبت زمین مصرفی به توان خروجـی در آن کـم می باشد.
تحقیقات وسیعی در زمینه سلولهای خورشیدی درحال انجام است و با توجه به کاهش روز افزون ذخـایر سـوخت فسیلی و خطرات ناشی از بکارگیری نیروگاههای اتمی و با توجه به طبیعت دوست بودن این وسیله امید است کـه در آینده بعنوان جایگزین مناسب و بی خطر برای سوختهای فسیلی و نیروگاههای اتمی توسـط بـشر بکـار گرفتـه شود. [13]
وسایل ذخیره انرﮊی این وسایل با ذخیره انرﮊی در ساعات خاص و سپس پس دادن انرﮊی در ساعات تعیین شده به عنـوان منبـع تـوان
تولید پراکنده در شبکه توزیع شناخته شده اند. وسایل ذخیره انرﮊی شامل باتری، SEMS، سـوپر خازنهـا، سـدهای ذخیره آب و CAES می باشند. این وسایل معمولا با انواع دیگر تولید پراکنده ترکیب می شوند تا در زمان پیک بار مورد استفاده قرار گیرند.
بکارگیری این وسایل مزایا و معایبی دارد که در زیر شرح داده شده اند.
مزایا:
‐1 اصلاح کیفیت توان و قابلیت اطمینان
‐2 کاهش اندازه تولیدات پراکنده
‐3 صرفه جویی انرﮊی / تقاضا از تقسیم بندی بار
‐4 کاهش دادن احداث تجهیزات جدید در شبکه انتقال و توزیع معایب:
‐1 هزینه بالای سیستم ذخیره در مدت طولانی
‐2 تلفات توان کنار سایت جهت حفظ انرﮊی شارﮊ شده
‐3 نرخ تعمیرات بالا
24
با بکارگیری وسایل ذخیره انرﮊی می توان از اضافه توان شبکه در زمان پیک بار استفاده نمود و شبکه ای با قابلیت مانور بالایی داشت.
نیروگاههای انرﮊی جزر و مد انرﮊی جزر و مد حاصل نیروی گرانش ماه است که ناشی از تغییرات دوره ای انرﮊی پتانسیل آب در نقطه از سطح
زمین است. این تغییرات بوسیله ویژگیهای جغرافیایی مثل شکل و اندازه مصب رودخانه ها زیادتر می شود. نـسبت بین ماکزیمم خیز جزر و مد و مینمم مقدار آن می تواند برابر 3 به 1 باشد. در مصب رودخانه ها، دامنه جزر و مـد می تواند به بزرگی 10 تا 15 متر باشد. توان تولید شده از جزر و مد با ایجاد یک آبگیر و یک سـد در یـک نقطـه مفید در طول مصب تولید می شود. با نصب توربین در نقاط مناسب امکان تولید برق هم در زمـان جـزر و هـم در زمان مد وجود دارد. در شکل دو آبگیره، تولید می تواند در زمانهای مختلف انجـام شـود. بـه ایـن ترتیـب کـه در ساعات پیک عرضه از آبگیره دوم استفاده می گردد. استفاده از انرﮊی حاصل از جزر و مد، نیاز به محل های خاص دارد. بزرگترین این نیروگاهها از نوع یک آبگیره است کـه در انگلـستان و فرانـسه وجـود دارنـد. تـوان نـامی ایـن نیروگاهها 240 مگا وات است که از 24 توربین افقی پره ای استفاده می کنند که توان نامی هر کدام 10 مگا ولـت آمپر است. این نیروگاهها از سال 1966با فناوری خوبی آغاز به کار کرده و بطور متوسط حـدود 500 گیگـا وات ساعت، انرﮊی خالص در هر سال تولید نموده است. [12]
نیروگاههای ترمو الکتریک ترمو الکتریک با استفاده از تاثیرات ترموالکتریکی مواد، انرﮊی حرارتی را مستقیما به انرﮊی برق تبدیل می کننـد کـه
نیمه هادیها بهترین انتخاب برای ترموکوبلها هستند.
در یک ﮊنراتور ترموالکتریکی، ولتاﮊ سیبک تولید شده که تحت اختلاف دما بوجود میآید و یـک جریـان مـستقیم
DC را از طریق مدار باز راهاندازی میکند. [11]
نیروگاههای ترمیونیک تبدیل مستقیم گرما به برق که ادیسون به آن نایل گشت، آزاد شدن الکترونهـا از یـک جـسم داغ اسـت کـه تـابش
ترمیونیک نامیده میشود.گرمای ورودی، انرﮊی کافی به الکترونهایی که در کاتد هستند را میدهـد کـه ایـن باعـث گسیل شدن این الکترونها میگردد. اگر این الکترونها با استفاده از یک جمع کننده (آند) جمع شـوند و یـک مـسیر بسته از طریق یک بار برای کامل کردن مدار برگشتشان به کاتد برقدار گردد، خروجی الکتریکـی بدسـت مـیآیـد.
مبدلهایی که با گازهای قابل یونیزه مثل بخار سدیم در فضای بین دو الکترود پر میشوند. چگالی تـوان بـالاتری را بخاطر بیبار کردن فضای بار موجب میگردند. وقتی این شـاخص کـاهش مـییابـد، کاربردهـای بیـشتری عملـی میگردند. یک نمونه از این تکنولوﮊی 1TFE است که ترکیبی از مبدل و سوخت هستهای بوده و تـوان تولیـدی آن در مقیاس کیلووات تا مگاوات است و برای دورههای زمانی طولانی 7) تا 10 سال) میباشد.

1 - Thermal Fuel Element
25
مبدل دیگر دیگ بخار تولید همزمان برق و گرما، یک دیگ بخار با دمای بالاست که با مبـدلهای ترمیونیـک مجهـز شده است. خروجی الکتریکی آن 50 کیلووات در برابر یک مگاوات خروجی گرمایی است. [17]
نیروگاههای بیوماس بیوماس نوعی ماده آلی است که به وسیله گیاهان اعم از گیاهان خاکی ( که در زمین می رویند ) و گیاهان آبی ( که
در آب می رویند ) و مشتقات آنها تولید می شود. بیوماس شامل گیاهان جنگلی و پسمانده های آنها، گیاهـانی کـه به خاطر محتوای انرﮊی شان در " مزارع انرﮊی " کاشته می شوند، و کود حیوانی نیز مـی شـود. بـر خـلاف زغـال سنگ، نفت و گاز طبیعی که در طی میلیون ها سال بوجود می آیند، بیوماس را می توان منبع انـرﮊی تجدیـد پـذیر تلقی کرد زیرا عمر گیاه تجدید می شود و هر سال به مقدار آن اضافه می شود. بیوماس را می توان شکلی از انرﮊی خورشیدی تصور کرد چون که در واقع این انرﮊی در نتیجه فتوسنتز و رشد گیاهان حاصل می شود.
بیوماس، علاوه بر پسماند های چوبی و تفاله مواد گیاهی که در بالا به آنها اشاره شد، برخی مواد دیگر را نیز شامل می شود. انواع مختلف بیوماس به صورتی هستند که حجم را اشغال می کنند و محتوی مقدار زیادی آب هـستند (
50 تا 90 درصد ). از این رو، انتقال آنها تا مسافتهای دور اقتصادی نیست، بلکه تبدیل آنها به صورت انرﮊی قابـل استفاده باید در نزدیکی محل تولید که محدود به مناطق خاصی است، صورت گیرد. با وجود ایـن، بیومـاس را مـی توان به سوختهای گازی و مایع تبدیل کرد که بدین وسیله چگالی انرﮊی آن افزایش می یابد و انتقال آن بـه منـاطق دور عملی می شود.
تبدیل بیوماس به صورتهای گوناگون انجام می گیرد:
‐1 احتراق مستقیم مانند سوزاندن تفاله و پسماندهای چوبی
‐2 تبدیل گرما شیمیایی
‐3 تبدیل زیست شیمیایی
تبدیل گرما شیمیایی به دو شکل صورت می گیرد:
‐1 تهیه گاز
‐2 تهیه مایع
تهیه گاز با گرمایش بیوماس و با استفاده از اکسیژن محدود عملی می شود که در نتیجه آن گـاز، بـا ارزش گرمـایی پایین تولید می شود، یا اینکه بیوماس با بخار آب و اکسیژن در فشار و دمای بالا به طور شیمیایی ترکیب می شـود که حاصل آن تولید گاز با ارزش گرمایی متوسط است. این گاز را می توان مستقیما به عنوان سوخت مصرف کـرد آن را به متانول ( متیل الکل ( CH 3 OH یا اتانول ( اتیل الکل ( CH 3 CH 2 OH که سوختهای مایع هستند تبـدیل کرد و یا اینکه آن را به صورت گاز، با ارزش گرمایی بالا در آورد. تبدیل زیست شیمیایی به دو صورت انجـام مـی گیرد: تجزیه ناهوازی و تخمیر. تجزیه ناهوازی مستلزم تجزیه میکروبی بیومـاس اسـت. موجـود نـاهوازی موجـود
26
ریزی است که بدون نیاز به هوا یا اکسیژن می تواند زندگی کند. این موجود می تواند اکسیژن مورد نیاز خـود را از تجزیه ماده ای که در آن است به دست آورد. این نوع موجودات در تجزیه پسمانده های حیـوان دخالـت دارنـد و می توان در تجزیه سایر انواع بیوماس نیز از آنها استفاده کرد. این فرایند در دما های پایین تا 65 درجـه سـانتیگراد صورت می گیرد و حداقل به رطوبتی معادل 80 درصد نیاز دارد. در این فرایند گازی، گه عمدتا شامل دی اکـسید کربن و متان است تولید می شود و گاز محتوی حداقل ناخالصی های ممکن مانند سولفید هیدروﮊن است. این گاز را می توان مستقیما سوزانده یا با جدا کردن CO2 و دیگر ناخالصی ها، آن را به گـاز طبیعـی سـنتزی کـه کیفیـت بالاتری دارد تبدیل کرد. پسمانده های این فرایند شامل لجن و ماده مایع زایدی است که اولی دارای مقـدار زیـادی پروتئین است که از آن می توان به عنوان خوراک حیوانی استفاده کرد و دومـی را مـی تـوان بـه کمـک تکنیکهـای استاندارد زیست شناسی به خاک تبدیل کرد.
تخمیر عبارت است از تجزیه مولکولهای پیچیده به مولکولهـای عـالی در اثـر مخمـری ماننـد خمیرمایـه، بـاکتری، آنزیمها و غیره. تخمیر یک تکنولوﮊی کاملا جا افتاده و بطور وسیع پذیرفته شده برای تبدیل شکر و جو بـه اتـانول است. در سال 1979 در حدود شصت میلیون گالن اتانول در ایالات متحده تولید شد و پیشبینی میشود که مقدار آن در سال 1985 با استفاده از غلات اضافی به پانصد میلیون گالن برسد. در نظـر اسـت کـه اتـانول را بـا بنـزین مخلوط کنند و گاز و هول 90) درصد بنزین و 10 درصد اتانول) بدست آورنـد. ایـن طـرح در سـالهای اول دهـه
1980 به دلیل بالا بودن هزینه تولید و نیاز به انرﮊی زیاد در فرآیند تولید بـا موفقیـت بزرگـی روبـرو نـشد. طـرح دیگری که برای کاهش هزینه تولید اتانول به روش تخمیر تحت مطالعه است، پیـدا کـردن غـلاب یـا مـواد قنـدی ارزانتر و استفاده از روشهای تولیدی است که به انرﮊی کمتری نیاز داشته باشند. برای این منظور، گلوکز تولید شده ناشی از هیدرولیز پلیمر کربوهیدرات که بسیار فراوان هم است، و لیگنوسلولوز نامیده میشـود، مـورد توجـه قـرار گرفته است. مطالعات نشان دادهاند که استفاده از انرﮊی بیوماس را میتوان با انجام طرحهای جنگلکاری وسـیع در مناطقی که برای تولید مواد غذایی مساعد نیستند، عملی کرد. بدین وسیله میتوان از هر جریب (حدود 4000 متـر مربع) در هر سال ده تا بیست تن چوب جنگلی بدست آورد. وسعت جنگل ممکن است به 130 کیـومتر مربـع تـا
520 کیلومترمربع برسد. درختان با بکارگیری ادوات خودکار بریده میشوند و آنگـاه پـس از خـرد شـدن و پـودر شدن، آماده احتراق در نیروگاهی که در میانه جنگل قرار میگیرد میشوند. نیروگاههایی که با بیوماس سوختدهـی میشوند در مقیاسهای کم (کمتر از 100 مگاوات) بارهای پایه و بارهای میانی را در ایالات متحده تغذیه میکننـد.
این منابع قابل تجدید بوده و انتشار دی اکسید کربن را کاهش میدهند. خاکستر حاصل از این نیروگاهها هم دوباره بازیافت شده و بعنوان کود شیمیایی مورد استفاده قرار میگیرد.[17]
نیروگاه های مبدل انرﮊی خورشیدی – حرارتی – الکتریکی ویژگی انرﮊی گرمایی مورد نیاز واحدهای تولید پراکنده که از تبدیل نور و گرما به برق استفاده می کنند وابسته بـه ایجاد نور متمرکز شده، می باشد.
27
بشقابهای سهموی شکل و گیرنده های مرکزی برای تولید دما در رنج 400 تا 500، 800 تا 900 و بیشتر از 500
درجه سانتیگراد استفاده می شوند. بزرگترین ظرفیت نصب ( نزدیک 400 مگا وات ) می باشد. نیروگاه خورشیدی
– حرارتی – الکتریکی از جمع کننده های سهموی و از روغن برای انتقال انرﮊی حرارتی به یک مکـان مرکـزی از طریق سیکل بخار رانکین استفاده می کنند و اضافه بر این، دارای یک آتشدان گـاز طبیعـی بـرای عملکـرد ترکیبـی است. این تکنولوﮊی با نام اختصاری SEGS عرضه شده است و بیشتر از 90 درصد انرﮊی بـرق خورشـیدی را در جهان شامل می شود. این تکنولوﮊی از گاز طبیعی برای جبران تغییرات موقتی انرﮊی تابشی خورشید و بهبود تـوان عرضه شده سیستم، استفاده می کند. این جبران در سـاعات 7 تـا 11 شـب در تابـستان و 8 شـب تـا 5 صـبح در زمستان صورت می گیرد. [14],[4]
مزایای نیروگاههای خورشیدی
‐1 تولید برق بدون مصرف سوخت
‐2 عدم احتیاج به آب زیاد
‐3 عدم آلودگی محیط زیست
‐4 امکان تامین شبکه های کوچک و ناحیه ای
‐5 استهلاک کم و عمر زیاد
‐6 عدم احتیاج به متخصص
نیروگاه تولید همزمان برق، گرما و سرما :1(CHCP)
با استفاده از یک سوخت یا ترکیبی ازسوختهای متفاوت میتوان توسط مجموعه موتور‐ مولـد (یـا مجموعـههـای مبتنی بر توربین) برق تولید کرد. بخش بزرگی از کل گرمای اتلافی حاصل از فرآیند تولید برق را میتـوان توسـط مبدلهای گرمایی بازیافت کرد تا برای مصارف تامین گرمایش فضا، آبگـرم مـصرفی، بخـار مـورد نیـاز فرآینـدهای کارخانهها و... بکار برد. با استفاده از یک چیلر جذبی میتوان از بخشی از گرمای بازیافت شده بـرای تولیـد سـرما بهره گرفت. در نتیجه بطور همزمان میتوان هر سه نوع انرﮊی الکتریکی، گرمایی و سرمایی را تولید کـرد کـه ایـن پدیده بنام تولید همزمان برق، گرما و سرما شناخته میشود. از یک بویلر کمکی نیز مـیتـوان بـرای جبـران کمبـود گرمای مورد نیاز بارهای گرمایی و از یک منبع ذخیره گرما برای ذخیره گرما در مواقعی کـه بـار گرمـایی از میـزان خروجی گرما کمتر است استفاده کرد.
تولید متداول قدرت به طور میانگین تنها %35 بازده دارد، تا حدود %65 ظرفیت انرﮊی بصورت گرمای اتلافی آزاد میشود. جدیدترین تولید سیکل ترکیبی میتواند این بازده را صرفنظر از اتلاف انتقال و توزیع برق، تا %55 بهبـود بخشد. تولید همزمان، این اتلاف را با استفاده گرما در بخـشهای صـنعت، تجـارت و گرمـایش و سـرمایش منـزل کاهش میدهد. تولید همزمان عبارتست از تولید گرما و برق که هردوی آنها مورد استفاده قرار میگیرند. این تولیـد

1- Combined heat and cold and power
28
شامل گسترهای از فناوریها است، ولی معمولا شامل یک مولد برق و یـک سیـستم بازیافـت گرمـایی اسـت. تولیـد همزمان، نیز بعنوان »ترکیب برق و گرما «(CHP) و »انرﮊی کل« شناخته میشود.
در تولید متداول برق، تلفات بیشتر در حدود 5 تا %10 ناشی از انتقال و توزیع برق از نیروگاههای نسبتا دور افتاده تا شبکه برق است. هنگامیکه برق به کوچکترین مشتریان تحویل داده میشود، این تلفات بیشترین مقدار اسـت. بـا بهرهبرداری از گرما، بازده دستگاه تولید همزمان میتواند به %90 یا بیشتر برسد. بعـلاوه، بـرق تولیـد شـده توسـط دستگاه تولید همزمان معمولا بطور محلی استفاده میشود و تلفـات انتقـال و توزیـع قابـل صـرفنظر خواهـد بـود.
بنابراین صرفهجویی پیشنهادی توسط تولید همزمان در مقایسه با تامین برق و گرما توسـط نیروگاههـا و بویلرهـای متداول، در حدود 15 تا %40 خواهد بود.
ازآنجاییکه انتقال برق در مسیرهای طولانی آسانتر و ارزانتر از انتقال گرماست، دستگاه تولید همزمان معمولا هرچـه نزدیکتر به محل مصرف گرما نصب میشود و درحالت ایدهآل ظرفیت آنها را بگونهای درنظر میگیرنـد کـه تـامین کننده نیازهای گرمایی محل باشد. در غیر اینصورت یک بویلر اضافی مورد نیاز است و درنتیجه بخـشی از مزایـای زیست محیطی برآورده نخواهد شد. این بنیادی ترین اصل تولید همزمان میباشد.
هنگامیکه برق کمتر از حد نیاز تولید شود، لازم است تا باقیمانده آنرا خریداری کرد. با این وجود هنگامیکه ظرفیت دستگاه برمبنای نیاز گرمایی است، معمولا برق بیشتری نسبت به نیاز تولید میشود. برق اضافی را میتوان به شـبکه برق فروخت یا از راه شبکه توزیع، به مشتری دیگری تحویل داد. [17]
نیروگاههای آبی کوچک به طور کلی واحدهای آبی کوچک به دو دسته میکرو هیدرو و مینی هیدرو تقسیم می شوند.
در عمل تولید توان الکتریکی برای واحدهای میکروهیدرو در محدوده 5 تا 100 کیلو وات و برای مینی هیدرو در محدوده 500 کیلو وات تا 10 مگا وات می باشد. ارتفاع آب برای چنین واحدهایی می تواند در گستره ای از 1.5
تا 400 متر با محدوده دبی صدها لیتر تا دهها متر مکعب بر ثانیه باشد. [16]
دیزل ﮊنراتور این منابع سالهاست که در تولید برق ضروری مورد استفاده قرار می گیرند. سوخت اصلی آنها مازوت یـا گازوئیـل
است. در نوع جدید از گاز طبیعی به عنوان سوخت استفاده می شود. [16]
چرخ لنگر چرخ لنگر سیستم ذخیره انرﮊی الکترومکانیکی است که انرﮊی را به صورت انرﮊی جنبشی در یـک جـسم گـردان
ذخیره می کند. این سیستمها معمولا به دو صورت روتورهای فولادی و روتورهـایی از جـنس رزیـن سـاخته مـی شوند. در هر دو نوع سیستم، روتور در خلاﺀ می چرخد. در سیستمهای با روتور فولادی، بیشتر بـر ممـان اینرسـی روتور برای ذخیره انرﮊی تاکید دارند و در سیستمهایی با روتور مرکب بیشتر بر سرعت روتور برای ذخیـره انـرﮊی تاکید می کنند. [16]
29
موتورهای رفت و برگشتی موتورهای رفت وبرگشتی، بیشتر از 100 سال سابقه دارند و در واقع اولین مدل از تکنولوﮊی بـا سـوخت فـسیلی
هستند. و در تمامی بخشهای اقتصادی نتایج قابل قبولی داشته اند و انواع مختلف این موتورها از واحـدهای بـسیار کوچک با توان درحد کسری از اسب بخار تا واحدهای بزرگ 60 مگاواتی نیروگاهی ساخته شده اند. تقریبا تمامی موتورهایی که برای تولید انرﮊی بکار گرفته می شوند چهار زمانه هستند و در چهار سیکل عمل می کنند:
ورود ( مکش )
فشرده سازی
احتراق
تخلیه
در شکل زیر مراحل عملکردی موتورهای رفت و برگشتی نشان داده شده است.

شکل (2‐6) مراحل عملکردی موتورهای رفت و برگشتی
تعاریف مربوط به تولید پراکنده
با توجه به وسعت بهره برداری از تولید پراکنده توسط کشورهای مختلف مقررات متفاوتی در هر کـشور بـر تولیـد پراکنده اعمال می شود. بنابراین باید مقررات حاکم بر عملکرد مربوط به تولید پراکنده که در ایـن پـروﮊه در شـبیه سازیها بر تولید پراکنده اعمال شده است بیان شود. این تعاریف و مقررات در زیر شرح داده شده اند.
مکان تولید پراکنده: تولید پراکنده به شبکه توزیع و یا به سایت مصرف کننده متصل است.
هدف تولید پراکنده: تولید پراکنده جهت تولید قسمتی از توان مصرف کننده به صورت آمـاده بـه کـار مـورد بهـره برداری قرار می گیرد.
میزان تولید در تولید پراکنده: هر واحد تولید پراکنده باید حداکثر MW 1/5 تولید نمایـد، در مـورد مزرعـه هـای بادی تولید هر کدام از نیروگاههای بادی نیز از این قاعده پیروی میکنند.
محدودیتهای عملکردی تولید پراکنده دراین تحقیق ما تولید پراکنده را در حالت ماندگار و شبکه توزیع را بدون هیچ خطایی فرض کرده ایم.
30
تولید پراکنده را می توان بر اساس محدودیتهای تولید توان، نوع توان تولیـدی وعوامـل مـوثر در تولیـد تـوان بـه قسمتهای مختلفی تقسیم کرد که در زیر به تفضیل شرح داده شده است.
توربینهای گازی احتراقی، توربینهای کوچک این نوع تولید کننده ها را در صورتی که قابلیت اعمال پخش توان را داشته باشـند، مـی تـوان ماننـد نیروگاههـای
تولید متمرکز که دارای قابلیت پخش توان هـستند مـدل کـرد، ولـی در عـوض دارای محـدودیتهای متفـاوت زیـر میباشند.
الف) تولید توان خروجی: تولید توان خروجی این نوع تولید پراکنده دارای محدودیتهای تـوان مـاکزیمم و مینـیمم می باشد.
pg min ≤ pg ≤ pg max(2-2)
ب) تاخیر تولید: تاخیر تولید، تاخیری طبیعی می باشد و زمانی رخ می دهد که بخواهیم درمدت زمان خاصی تولید توان را افزایش دهیم. تغییرتوان در مدت زمان خاصی دارای محدودیتی است که عبارتنداز:
(2‐3) ∆pgt ≤ ∆pglim it
که در آن ∆Pgt میزان افزایش توان تولیدی خروجی از زمـان t‐1 و t مـی باشـد و ∆pglim it محـدودیت افـزایش
تولید توان می باشد. تولید کننده های انرﮊی نو این نوع تولید کننده ها شامل توربینهای بادی و شبکه های فتوولتاییک می باشند مشخـصه اصـلی ایـن نـوع تولیـد کننده ها این است که در موقعیت های اضطراری قابل پخش توان نیستند و توان خروجی آنها به شدت تحت تـاثیر اثرات محیط می باشد. در بسیاری از انواع این تولید پراکنده توان خروجـی تولیـد پراکنـده، تـابعی از ولتـاﮊ( ( v و
فرکانس ( ( f سیستم، در باسی که تولید پراکنده به آن وصل شده است می باشند. (2‐4)
pg ε( f ,v)
وسایل ذخیره انرﮊی وسایل ذخیره انرﮊی مانند باطری، قابلیت ذخیره وپس دهی انرﮊی را به شبکه در مدت زمان محدود و مـشخص را
دارند. این نوع از تولید پراکنده قابلیت پخش توان و کنترل میزان و مدت تولید توان خروجـی را دارنـد. مـی تـوان مشخصه ریاضی آنها را به طور کلی به صورت زیر تعریف کرد:
2 5 ) ∑pgt .T ≤ E ‐ ) t1: j که در آن؛ pgt ، مقدار توان آزاد شده در مدت زمان T می باشد ؛ E، انرﮊی قابل ذخیره می باشـد؛ و T زمـان آزاد سازی انرﮊی می باشد.
سلولهای سوختی
31
این نوع از تولید پراکنده فقط تولید توان حقیقی می نمایند. بنابراین توان راکتیو مورد نیاز را به طرفی بـا اسـتفاده از وسایل جانبی به کار رفته درشبکه مانند خازنهـای ثابـت، خازنهـای قابـل کنتـرل بـا ضـریب تـوان ثابـت و ادوات الکترونیک قدرت تامین نمود.
کاربردهای تولید پراکنده
تکنولوﮊیهای مختلف کاربردهای مختلفی در شبکه های توزیع دارند. این کاربردها بر اساس نیازمندیهای بار متغیـر است. این کاربردها در انتخاب تولید پراکنده مورد استفاده موثر است. درادامه تعدادی از ایـن کاربردهـا شـرح داده شده اند.
تولید پراکنده آماده به کار تولید پراکنده را می توان به صورت آماده به کار جهت تغذیه توان مورد نیاز بارهـای حـساس بـه کـار بـرد. ماننـد
بیمارستانها و کارخانه ها زمانی که شبکه خارج از سرویس است.
تقسیم پیک بار هزینه توان الکتریکی بر اساس منحنی تقاضای بار و تولید انتظاری موجود در یک زمان، تغییر می نماید. در نتیجـه،
تولیدات پراکنده می توانند جهت تغذیه بارها در زمانهای پیک بار مورد استفاده قرار گیرنـد. بدینوسـیله مـی تـوان هزینه الکتریسیته را برای مصرف کننده های صنعتی که باید هزینه زمان مصرف برق را پرداخت کنند، کاهش داد.
کاربردهای محلی و مناطق دوردست تولید پراکنده می تواند به طور مستقل برای تامین توان مناطق دوردست که دسترسی به شـبکه بـرق ندارنـد مـورد
استفاده قرار گیرد. کاربردهای آن عبارتند از روشنائی، گرمایش، سرمایش، مخابرات و کارگاههای تولیدی کوچـک.
ضمنا تولیدات پراکنده قابلیت پشتیبانی و تنظیم ولتاﮊ در کاربردهای محلی (بارهای حـساس) را هنگـام اتـصال بـه شبکه دارند.
تهیه گرما و الکتریسیته ترکیبی (CHP)
تولیدات پراکنده ای که قابلیت تهیه گرما و الکتریسیته ترکیبی را دارنـد، در مجمـوع دارای رانـدمان انـرﮊی بـالایی هستند. گرمای تولید شده از پروسه تبدیل سوخت به انرﮊی الکتریکی، در خود سایت رنج وسـیعی از کاربردهـا را دارا می باشد، مثل گرم کردن بیمارستانها و مراکز تجاری بزرگ و پروسه های صنعتی.
بار پایه شرکت دارنده تولید پراکنده، معمولا تولید پراکنده را برای تغذیه بار پایه جهت تهیه قسمتی از توان مورد نیاز شبکه مورد استفاده قرار می دهد با این عمل باعث بهبود پروفیل ولتـاﮊ شـبکه، کـاهش تلفـات تـوان و بهبـود کیفیت توان می شود.
نحوه اتصال منابع تولید پراکنده به شبکه
‐1 مستقل از شبکه سراسری برق:
32
برای تامین انرﮊی الکتریکی مورد نیاز مناطق دور از شبکه سراسری برق از این نوع نیروگاهها استفاده می شـود کـه بازده توانی این سیستمها از چند صدوات تا چندین مگاوات متغیر، قابل نصب و راه اندازی می باشـد. کـه ممکـن است یک منبع تولید پراکنده بصورت تنهایی استفاده شود و یا اینکه برای افزایش قابلیت اطمینان از دو یا چند منبع بصورت موازی با هم استفاده گردد.
‐2متصل به شبکه سراسری برق
تقسیم بندی های مختلف تولید پراکنده
تولید پراکنده را می توان از دیدگاههای متفاوتی بررسی کرد. این تقسیم بندی ها بر اساس کاربرد هـای مختلـف و محدودیت های تولید پراکنده و نیز روش استفاده از آنها مطرح می شود. در ذیل این روشها به تفـصیل شـرح داده شده است.
دوره تغذیه و انواع توان تولیدی دوره تولید توان خروجی در تولید پراکنده به طور عمده مطابق اندازه تولید پراکنده نوع و کاربرد آن تغییر مـی کنـد
دوره تغذیه تولید پراکنده می تواند دروه دراز مدت تغذیه انرﮊی الکتریکی در بار پایه باشد، حالـت گـذاری تغذیـه انرﮊی الکتریکی که شامل تولید کننده های انرﮊی نو می باشد و دوره کوتاه مدت تغذیه انرﮊی الکتریکی که جهـت پشتیبانی از تغذیه شبکه مورد استفاده قرار می گیرد. با یک ساده سازی مطابق میزان تولیـد تـوان الکتریکـی دوره و نوع آن می توان مطابق جدول((2‐1 تقسیم بندی از تولید پراکنده بوجود آورد.
جدول((2‐1 تقسیم بندی تولید پراکنده دوره تغذیه توان نوع تولید پراکنده نکات توربین های گازی وسلولهای سوختی ‐ تولیــد تــوان حقیقــی و موهــومی بــه غیــر از بلند مدت سلولهای سوختی که تولید توان حقیقی تنهـا مـی نمایند. ‐ بعنوان بار پایه مورد استفاده قرار می گیرند. تغذیه غیر دائم سیــستم هــای انــرﮊی نو،نیروگاههــای ‐ وابسته به شرایط محیطی ‐ فقط توان حقیقی تولید میکنند. PVوWT ‐ در جاهای دور دست استفاده می شوند. کوتاه مدت باطریها، سلولهایPV، واحدهای ذخیره ‐ برای تضمین تداوم تغذیه به کار می روند. انرﮊی ‐ ذخیره انرﮊی برای استفاده کوتاه مدت 33
ظرفیت های تولید پراکنده
تولیدات پراکنده را مطابق جدول (2‐2) به چهار دسته از نظر ظرفیت تولید تقسیم نموده ایم. این ظرفیت ها دارای رنج تغییرات وسیعی از یک واحد کوچک تا تعداد زیادی واحدهای بهم پیوسته در حالت ماﮊولار می باشند.
جدول((2‐2 تقسیم بندی تولید پراکنده

مقدار ظرفیت تولید پراکنده

5KW-1W Micro
5MW-5KW Small
5MW-50MW Medium
50MW-300MW Large

نوع توان تولید شده جریان الکتریسیته خروجی می تواند هم مستقیم و هم متناوب باشـد. سـلولهای سـوختی، سـلولهای فتوولتائیـک و
باطریها جریان مستقیم تولید می نمایند، که برای بارهای DC مناسب است. همچنین می تـوانیم بوسـیله مبـدلهایی الکترونیک قدرت این جریان مستقیم را به جریان متناوب و قابل تزریق به شبکه تبـدیل نمـود. انـواع دیگـر تولیـد پراکنده، همچون توربینهای کوچک و توربینهای بادی تولید جریان متناوب می نمایند که در بسیاری از مـوارد بایـد توسط کنترل کننده های مدرن الکترونیک قدرت به گونه ای کنترل شوند که ولتاﮊ خروجی تنظـیم شـده ای داشـته باشند.
تکنولوﮊی روش دیگر دسته بندی تولیدات پراکنده می تواند مطابق نوع سوخت مصرفی آنها باشد. ایـن سـوختها مـی تواننـد
فسیلی یا غیر فسیلی باشند. دسته بندی ذکر شده مطابق جدول((2‐3 بر تولیدات پراکنده اعمال شده است.
جدول((2‐3 دسته بندی تولید پراکنده بر اساس مصرف سوخت
تولید پراکنده تکنولوﮊی توربین های کوچک و سلول های سوختی تکنولوﮊی سوختهای فسیلی وسایل ذخیره انرﮊی و تولید کننده های انرﮊی نو تکنولوﮊی مبتنی بر منابع غیر فسیلی 34
تلفات توان در شبکه های توزیع شعاعی[17]
در شکل (2‐7) یک شبکه شعاعی نشان داده شده است که در طرف بار آن یک تولید پراکنده وصـل شـده اسـت.
تلفات توان را بدون تولید پراکنده در این شبکه ها به سادگی می توان با جمع کردن توان تلف شده در هر خط بـه دست آورد. توان تلف شده در هر خط به صورت زیر محاسبه می شود:

Text of Final Project -فایل پروژه - ریسرچ-.Pdf)

-1-4-2 پارامترهای اساسی29
-2-4-2 پارامترهای عملیاتی 30........................................
-3-4-2 پارامترهای دینامیکی31
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای اساسی
ماشین31
-1-5-2 محاسبه راکتانسهای ماشین 33..................................................................................
-2-5-2 محاسبه ثابت زمانی های ماشین35
5
-6-2 مراتب مختلف مدلهای ماشین سنکرون بر اساس مدل دو محوری پارک37
فصل سوم: بررسی روشهای شناسایی پارامترهای دینامیکی ژنراتور سنکرون..39
-1-3 مروری بر پیشینه شناسایی پارامترهای ژنراتورهای سنکرون 40..............................
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون 42................................
-1-2-3 روشهای کلاسیک اندازه گیری پارامترهای دینامیکی ژنراتورهای شبکه42
-2-2-3 روشهای جدید تعیین پارامترهای دینامیکی ژنراتورهای سنکرون43
فصل چهارم: شناسایی بلادرنگ پارامترهای ژنراتور سنکرون با استفاده از شبکه عصبی
مصنوعی ....45
-1-4 کلیات و اصول کارشبکه های عصبی 46....................................
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها46
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی.48
-2-2-4 تست شبکه عصبی تخمینگر50
-3-4 نتایج 51...................................................................
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر53
-2-3-4 بررسی تحلیلی نتایج .89
فصل پنجم: نتیجهگیری و پیشنهادات ...97
ضمیمهها100
ضمیمهالف- طرحهای بکار گرفته شده برای شبیهسازی ژنراتور سنکرون101
ضمیمهب- نمودار پارامترهای بکار گرفته شده در شبیهسازی ژنراتور سنکرون..105
منابع و ماخذ.110
6
فهرست جدول ها
عنوان شماره صفحه
1-2 : مراتب مختلف مدلهای ژنراتور سنکرون 24
1-4 : فهرست پارامترهای دینامیکی ژنراتورهای سنکرون 38
2-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه فراوانی خطا 81
3-4 : نتایج شبکه عصبی در دوره آموزش و تست از دیدگاه دامنه خطا 82

7
فهرست شکلها
عنوان شماره صفحه
: 1-1 نمای کلی فرایند ارزیابی و بهبود سیستمهای قدرت 3
: 1-2 مدارهای استاتور و روتور ماشین سنکرون 9
:2-2 مدار معادل ماشین بر اساس تئوری پارک 13
:3-2 توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار 18
:4-2 مدار معادل ژنراتور سنکرون در حالت ماندگار 19
:5-2 مدار معادل ماشین سنکرون در دوره گذرا 20
:6-2 مدار معادل ماشین سنکرون طی دوره زیر گذرا 20
:7-2 مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز 21
: 8-2 مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز 22
: :1-4 طرح کلی سلول عصبی انسان 32
:2-4 شکل کلی سلول عصبی مصنوعی 33
:3-4 ساختار شبکه عصبی توسعه یافته 33
:4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون 35
:5-4 آلگوریتم آموزش شبکه عصبی 36
:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی 37
:7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd" 39
:8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 39
:9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 40
:10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 40
:11-4 هیستوگرام خطای شبکه عصبی در مرحله تست 41
:12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 41
:13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 42

8
:14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 42
:15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 43
:16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 43
:17-4 هیستوگرام خطای شبکه عصبی در مرحله تست 44
:18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 44
:19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd" 45
:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 45
:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 46
:22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd" 46
:23-4 هیستوگرام خطای شبکه عصبی در مرحله تست 47
:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 47
:25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq" 48
:26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 48
:27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 49
:28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 49
:29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 50

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

:30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 50
:31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 51
:32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 51
:33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 52
:34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq" 52
:35-4 هیستوگرام خطای شبکه عصبی در مرحله تست 53
:36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 53
:37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq" 54
:38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 54
:39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 55
9
:40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq" 55
:41-4 هیستوگرام خطای شبکه عصبی در مرحله تست 56
:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 56
:43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td" 57
:44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 57
:45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 58
:46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 58
:47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 59
:48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 59
:49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 60
:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 60
:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 61
:52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 61
:53-4 هیستوگرام خطای شبکه عصبی در مرحله تست 62
:54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 62
:55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td" 63
:56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 63
:57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 64
:58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td" 64
:59-4 هیستوگرام خطای شبکه عصبی در مرحله تست 65
:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 65
:61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq" 66
:62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 66
:63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 67
:64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 67
:65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 68
10
:66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 68 :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 69 :68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 69 :69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش 70 :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq" 70 :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست 71 :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 71 :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq" 72 :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش 72 :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش 73 :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq" 73 :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست 74 :78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست 74 ض-:1 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 88 ناگهانی تحریک ض-:2 طرح شبیه سازی ژنراتور سنکرون متـصل بـه شـین بینهایـت بـا اغنـشاش 89 اتصالکوتاه درترمینال ژنراتور ض-:3 طرح شبیه سازی ژنراتور سنکرون متصل به شین بینهایت با اغتشاش تغییر 90 ناگهانی توان ورودی ض-:4 تغییرات مقادیر Xd بکار گرفته شده 92 ض-:5 تغییرات مقادیر Xd' بکار گرفته شده 92 ض-:6 تغییرات مقادیر Xd" بکار گرفته شده 92 ض-:7 تغییرات مقادیر Xq بکار گرفته شده 93 ض-:8 تغییرات مقادیر Xq" بکار گرفته شده 93 ض-:9 تغییرات مقادیر Xl بکار گرفته شده 93 ض-:10 تغییرات مقادیر Td' بکار گرفته شده 94 ض-:11 تغییرات مقادیر Td" بکار گرفته شده 94 11
ض-:12 تغییرات مقادیر Tq" بکار گرفته شده 94
ض-:13 تغییرات مقادیر Rs بکار گرفته شده 95
ض-:14 تغییرات مقادیر WR بکار گرفته شده 95
ض-:15 تغییرات مقادیر H بکار گرفته شده 95
12
چکیده پایاننامه:
این پروژه روشی نو را برای بکارگیری رؤیتگرهای شبکه عـصبی در جهـت شناسـایی و تعیـین پارامترهـای دینامیکی ژنراتورهای سنکرون با استفاده از اطلاعات بهرهبرداری ارائه کرده است. اطلاعات بهـرهبـرداری از طریق اندازهگیریهای بلادرنگ بعمل آمده در قبال اغتشاشات حوزه بهرهبرداری فراهم مـیشـود. دادههـای آموزشی مورد نیاز شبکه عصبی از طریق شبیهسازیهای غیرهمزمـان بهـرهبـرداری از ژنراتـور سـنکرون در محیط یک ماشین متصل به شین بینهایت فراهم شده است. مقـادیر نمونـه ژنراتورهـای سـنکرون در مـدل مذکور بکار گرفته شدهاند. شبکه آموزش دیده در قبال اندازهگیریهای بلادرنگ شبیهسازی شـده در جهـت تخمین پارامترهای دینامیکی ژنراتورهای سنکرون تست شده است. مجموعه نتایج بدست آمده نشان دهنـده قابلیتهای نوید بخش شبکه عصبی مصنوعی در حوزه تخمین پارامترهای دینامیکی ژنراتورهـای سـنکرون، بصورت بلادرنگ و با استفاده از اطلاعات بهرهبرداری میباشد. اگرچه برای دست یـابی بـه خطـای تخمـین قابل قبول در مسیر شناسایی کلیه پارامترهای دینامیکی ژنراتورهای سنکرون، پارهای اصلاحات ضروری بـه نظر میرسد. در نگاه کلّی این اقدامات تکامل بخش را میتوان به دو مجموعه: پیشنهادات مربوط به اصـلاح شبکه عصبی رؤیتگر در حوزه شبیهسازی و آموزش و بخش دیگر را به عنوان گامهای تکاملی تلقی نمود، که سازماندهی این گامها در مبادی ورودی و خروجی شبکه عصبی، زمینه مناسبتـری را بـرای بهـرهگیـری از قابلیتهای آن فراهم خواهد کرد.
کلید واژه:
ژنراتور سـنکرون، پارامترهـای دینـامیکی، شناسـایی بلادرنـگ، شـبکههـای عـصبی مـصنوعی، اطلاعـات بهرهبرداری
13
14
مقدمه:
در سالهای اخیر با پیشرفت سیستمهای کامپیوتری, سیستمهای هوش مصنوعی نیز متولد شده و رشد کرده است. یکی از سیستمهای هوش مصنوعی, شبکه های عصبی مصنوعی هستند. این شبکه ها به علت عواملی چون قطعیت در پاسخ, سادگی در اجرا, قابلیت انعطاف بالا و .... جایگاه ویژه ای را به خود اختصاص داده اند. با توجه به ساختار و کارکرد شبکه های عصبی مصنوعی و اهمیت تعیین پارامترهای دینامیکی اجزاء سیستمهای قدرت از جمله ژنراتورهای سنکرون, بهره گیری از شبکه های عصبی مصنوعی در این حوزه قابل طرح است. از طرف دیگی نتایج ارائه شده از بکار گیری این شبکه ها در حوزه های مشابه, کارکردهای نوید بخشی را نشان می دهد. با توجه به مراتب فوق این پروژه بر آنست تا با طراحی و اجرای طرح شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون با استفاده از شیکه عصبی مصنوعی, قابلیت های این سیستم را در حوزه شناسایی بلادرنگ پارامترهای دینامیکی ژنراتورهای سنکرون نیز بیازماید.
15
فصلاول:

کلیات
16
سیستم های قدرت متشکلند از مجموعه ای از مراکز تولید(نیروگاهها) که توسط شبکه های انتقال و توزیع و تجهیزات حفاظتی و کنترل آن به مراکز مصرف متصل می گردند. وظیفه اصلی یک سیستم قـدرت تولیـد و تامین انرژی الکتریکی مورد نیاز مصرف کنندگان با حفظ شرایط سه گانه:
-1 ارزانی قیمت انرژی
-2 کیفیت بالا
-3 امنیت تامین انرژی میباشد. مراد از امنیت، پیوستگی و تداوم در تولید و تامین انرژی می باشد. عوامل مؤثر در امنیـت عبارتنـد از:
-1 سرمایه گذاری اولیه (تجهیزات سیستم ) -2 روشها و امکانات نگهداری و تعمیرات سیستم قدرت.
همانگونه که در کلیه وسایل و سیستم های غیرالکتریکی همواره دو ویژگی ارزانـی و بـالا بـودن کیفیـت-
امنیت با یکدیگر متعارض و متقابل می باشند در مقوله انرژی الکتریکی و سیستم هـای قـدرت نیـز بهمـان گونه خواهد بود. امنیت یک سیستم قدرت در حقیقت درجه و میدان توانایی آن سیستم در مواجهه با حـوادث
اغتشاشات می باشد . امنیت کلی یک سیستم به دو زیر شاخه:
امنیت دینامیکی
امنیت استاتیکی
قابل تقسیم است. از توانایی سیستم قدرت برای حفظ و نگهداری خود در دوره وقوع اختلال (که خود از سـه دامنه فوق گذرا-گذرا-دینامیک تشکیل شده است) با عنوان امنیت دینامیکی تعبیر مـی گـردد. بـا توجـه بـه اهمیت بسیار زیاد امنیت سیستمهای قدرت، فرایند ارزیابی وبهبود آن همواره مورد توجه مهندسـین طـراح و بهرهبردار بوده، به قسمی که عملیات ارزیابی و بهبود امنیت سیستم های قدرت یکی از وظایف بسیار مهـم و اساسی مراکز کنترل و بهره برداری شبکه های قدرت می باشد. شکل کلی فرایند ارزیـابی و بهبـود سیـستم های قدرت در شکل1-1 بیان شده است. باتوجه به اهمیت امنیت در سیستم های قدرت و همچنین تغییرات مستمری که در حین عملیات بهره برداری 24 ساعته در شبکه اتفاق می افتد ضرورت دارد که دائماً از طرف بهره بردار، عملیات بهره برداری به شکلهای مختلف بر روی سیستم های قدرت اعمال گردد،اما با توجه بـه ویژگی بالا بودن امنیت نباید این عملیات بگونه ای باشدکه سبب بروز اغتشاش در رفتار سیستم و در نتیجـه نقض غرض گردد. از طرفی سیستم قدرت هر کشور منحصر بفرد بوده به قسمی که نمونه دومی نمی تـوان برای آن ایجاد نمود. بنابر این با توجه به ویژگی منحصر بفرد بودن سیستمهای قدرت و ضـرورت اجتنـاب از عملیات بهره برداری بررسی نشده، برای ارزیابی اولیه از نتایج عملیات بهره برداری و یا طراحی ضرورتاً مـی باید از یک نمونه مشابه سیستم قدرت استفاده نمود تا بتوان ابتداً نتایج مانورهای طراحی یا بهـره بـرداری را برآن آزمایش و در صورت اطمینان از بی خطر بودن، نتایج آن مانورها را بر شبکه واقعی اعمال نمود.
17

نمونه مشابه سیستم قدرت را شبیه ساز1 و عملیات آزمایشی بـرروی نمونـه مـشابه را محاسـبات و مطالعـات شبیه سازی2 گویند. فرایند شبیه سازی سیستمهای قدرت فارغ از اینکه دیجیتال باشد یـا آنـالوگ از مراحلـی بدین ترتیب تشکیل شده است:
_1 شناسایی اجزاء سیستم قدرت
_2 ساخت و یا استخراج معادلات حاکم بر اجزاء
_3 ترکیب اجزاء و یا معادلات آنها
_4 حل معادلات با روشهای ریاضی بوسیلهکامپیوتر
_5 استخراج نتایج که در این میان مدلسازی اجزاء سیستم قدرت که همان شناسایی و استخراج معـادلات حـاکم بـر اجـزاء آن
است یکی از قدم های اصلی این فرایند بشمار میرود. به بیان دیگر یک متخـصص شـبکه در روش کـاری خود اولویت بندی هایی دارد که اولین آنها رساندن انرژی الکتریکی تولیدی به مصرف کننده است، در مرحله
دوم به تامین امنیت شبکه اهتمام می ورزد. و نهایتاً تلاش خویش را در جهت بهبود هر چـه بیـشتر کیفیـت انرژی که به مصرف کننده تحویل داده می شود مصروف می دارد. اگر چه بسیاری از اقداماتی که در جهـت امنیت سیستم های قدرت انجام می شود کیفیت توان را نیز ارتقاء می دهد. تامین امنیت سیستم خود شـامل مراحل و اولویتهایی است که اولین گام آن را مقاوم سازی و پایدار سازی شبکه در حالت های گذرا می باشد

1-simulator 2-simulation
18
و دومین گام شامل پایدار سازی دینامیکی شبکه می شود. از دیدگاه فرکانسی می توان حالت هـای گـذرا در شبکه را با نوسانات فرکانس بالا و حالت های دینامیکی آن را با نوسانات فرکانس پایین معرفی کرد. در اکثر شبکه های دنیا خاصه با پیچیده شدن شبکه ها پدیده نوسانات فرکانس پایین مشاهده شده است. ژنراتورهـا به عنوان تولید کننده نقش اصلی در ارتباط با این نوسانات دارند. اینها از نوع نوسان در پارامترها هستند و با اغتشاشات حالتهای گذرا متفاوتند. گاه این اغتشاشات بدون رخ دادن هیچ واقعهای در طی کار معمول شـبکه بوجود می آیند مثلاً با تغییر تپ ترانس درکم باری و مواردی از این قبیل. اگرچه در مرحله بعد از حالت هـای گذرای شبکه (از دیدگاه زمانی) نیز چنین بحثی مطرح می شود. بایـد توجـه داشـت کـه ایـن نوسـانات را در مقایسه با فرکانس شبکه، فرکانس پایین نام نهاده اند. دامنه فرکانسی مطرح از کسر یک تا چند هرتـز اسـت که بطور معمول بازه 0.5-2.5HZ را در بر می گیرند و در موارد حدی 0.1-4HZ می باشد. این نوسانات را به انواع :
-1 محلی
-2 بین ناحیه ای تقسیم کرده اند. که نوسانات یک ماشین نسبت به شبکه بزرگ یا شین بی نهایت متّصل به آن را محلّی نـام
نهاده اند. نوسانات بین ناحیه ای نمونه هایی مانند دو ژنراتور که با خطوطی به هم متصل هستند یا مجموعه دو ناحیه با یکدیگر را در برمی گیرد. از دیدگاه فرکانسی نیز این دو نوع نوسانات دینامیکی باهم تفاوت دارند.
ثابت می شود عامل این نوسانات، مد مکانیکی توربوژنراتور است. همانگونه کـه پـیشتـر توضـیح داده شـد تامین امنیت سیستم های قدرت در برابر نوسانات دینامیکی مانند سایر شاخه ها نیازمند شبیه سازی شبکه از این زاویه دید میباشد. مقادیر پارامترهای دینامیکی اجزاء در این شبیه سازی دارای نقش کلیدی هـستند. بـا توجه به نقش ژنراتور در میان اجزاء شبکه از دیدگاه نوسانات دینامیکی تعیین پارامترهـای آن بـسیار مهـم و تعیین کننده خواهد بود. صحت و دقّت تعیین این پارامترها وابسته است به روش بکار گرفته شده برای بـرای تعیین آنها . این مطالب موجب پیدایش روشهای گوناگون برای تعیین این پارامترها شده است. از طرف دیگـر این پارامترها برای هر ژنراتور مقدار ثابتی نیستند و بخـاطر عـواملی چـون پیرشـدن ژنراتـور، ایجـاد بعـضی خطاهای داخلی و ..... تغییر می کنند. این شرایط موجـب طـرح روشـهای بلادرنـگ1 در تعیـین پارامترهـای دینامیکی ژنراتور سنکرون شده است. از جهت دیگر روش بکارگیری و تبعات عملی یک تکنیک شناسـایی و ملزومات آن نیز حائز اهمیت است. گروهی از این روشها اگر چه نتایج نسبتاً دقیق و قابل اعتمادی نیز فراهم می آورند لیکن به علت خطر های ناشـی از تـست هـای مطـرح در آنهـا (ماننـد آزمـایش اتـصال کوتـاه2 و
باربرداری( 3 و یا ملزوماتشان چون جداسازی ژنراتور از شبکه چندان مطلـوب نیـستند. بعـضی از اجـزاء ایـن گروه روشها به مرور مطرود شده اند. مقالات جدید ارائه شده در سایر اجزاء این گروه با هـدف بهبـود آنهـا و حذف مشکلات مذکور شکل گرفتهاند. دسته دیگر این روشها نمونههـایی هـستند کـه بـا چنـین مـشکلاتی

3-On-Line 4-Short Circuit 5-Load Rejection
19
مواجه نیستند(مانند استفاده از تخمینگر شبکه عصبی مصنوعی.(1 کارهای انجام شده درباره ایـن روشـها در راستای بهبود هرچه بیشتر آنها و یا اطمینان از نتایج حاصله توسط آنها شکل گرفته اند. با توجه بـه مقدمـه ذکر شده ابتداً لازم است کلیات روشهای مدل سازی ژنراتور سنکرون مورد بررسی قرارگیـرد تـا درگـام بعـد نسبت به بررسی روشهای شناسایی پارامترهای آن اقدام شود.

6- Artificial-Neural Network
20
فصل دوم:

مدل سازی ماشین سنکرون
21
-1-2 پیشگفتار:
شبیه سازی رفتار ژنراتورهای سنکرون برای انجام مطالعات گوناگون دینامیکی در سیستمهای قدرت، مستلزم انتخاب یک مدل مناسب جهت مدلسازی ماشین میباشد. مدل ارائه شده برای هر سیستم شامل یک ساختار و تعدادی پارامتر میباشد که جهت پیشگویی رفتار آن سیستم در حالتهای مورد نظر بکار گرفته میشود. مدل مورد استفاده برای یک سیستم باید به سادگی قابل فهم بوده، بکارگیری آن سهل باشد و در عین حال بتواند رفتار سیستم را با دقت و صحت قابل قبولی برای یک محدوده مشخص پیشگویی نماید.
بعبارت بهتر رفتار پیشبینی شده سیستم بواسطه شبیهسازی براساس مدل ارائه شده تا حد قابل قبولی به رفتار واقعی سیستم نزدیک باشد. هر چند این دو خاصیت از مدل یعنی سادگی و واقعی بودن همواره در تضاد با یکدیگر هستند، (یعنی مدلهای واقعی به ندرت ساده هستند و مدلهای ساده به ندرت میتوانند واقعی باشند)، اما میتوان جهت رسیدن به پاسخ دلخواه مصالحهای منطقی مابین این دو خاصیت برقرار کرد. مدل دو محوری پارک از معمولترین و پذیرفتهترین مدلهای ماشین سنکرون میباشد. در این فصل ابتدا اصول مدلسازی ماشین سنکرون براساس تئوری دو محوری پارک به اختصار بررسی میشود، سپس پارامترهای ماشین سنکرون معرفی شده و نحوه محاسبه پارامترها براساس مدل دو محوری پارک و همچنین نحوه مدلسازی ماشین با داشتن پارامترهای آن بررسی میگردد. همچنین در این فصل ارتباط میان مرتبههای مختلف مدل پارک با نوع ژنراتور و نوع مطالعه مورد نظر تشریح میشود.
-2-2 ساختار فیزیکی ماشین سنکرون:
-1-2-2 ساختار روتور و استاتور:
بزرگترین و شاید متداولترین ماشین های الکتریکی که با سرعت سنکرون می چرخند، ماشین های سنکرون سه فاز میباشند. اگرچه ساخت ماشین های سنکرون سه فاز پر هزینه میباشد، اما بازده بالای این ماشینها در قدرتهای بالا بزرگترین مزیت آنها میباشد.
استاتور ماشینهای سنکرون معمولاً متشکل از یک هسته مورق فرومغناطیس با شیارهایی جهت قرار گیری سیم پیچیهای سه فاز گسترده میباشد. روتور ماشین نیز میتواند بصورت قطب برجسته یا قطب صاف ساخته شود. ماشینهای قطب برجسته اغلب به عنوان ژنراتورهای آبی جهت تطبیق سرعت پائین توربین-
های آبی با سرعت سنکرون استفاده میشوند. قطبهای روتور این نوع ماشین به صورت جداگانه ساخته شده و سپس بر روی یک استوانه سوار میشوند. ساختار روتور گرد یا قطب صاف نیز برای کاربردهای سرعت بالا مناسب است. ماشینهای سنکرون با روتور گرد با دو یا چهار قطب به عنوان ژنراتورهای واحدهای بخاری جهت تطابق با سرعت بالای توربین به کار میروند. همچنین در این ماشینها میتوان نسبت قطر به طول روتور را به منظور محدود کردن تنش های مکانیکی ناشی از نیروهای گریز از مرکز کوچک گرفت.
22
-2-2-2 سیمبندیهای ماشین
ماشین سنکرون سه فاز معمولاً متشکل از یک سیم پیچی سه فاز به عنوان آرمیچر و یک سیم پیچی تحریک میباشد که بنام سیم پیچی میدان نیز نامیده میشود. سیمپیچی آرمیچر معمولاً در ولتاژی بسیار بالاتر از ولتاژ تحریک کار میکند و از این رو نیازمند فضایی بیشتر برای عایقبندی مناسب میباشد.
همچنین با توجه به اینکه جریانهای گذرای شدیدی از این سیمپیچیها عبور می کند، باید قدرت مکانیکی کافی داشته باشند. از این رو معمول است که سیمپیچی آرمیچر را بر روی استاتور ماشین قرار دهند. از نظر فضایی سیمپیچیهای سه فاز آرمیچر، 120º با یکدیگر اختلاف مکان دارند و این موضوع سبب میشود که با چرخش یکنواخت روتور و به تبع آن چرخش یکنواخت میدان تحریک، در این سیمپیچیها ولتاژهایی القا شود که از نظر زمانی 120º با یکدیگر اختلاف فاز دارند. سیم پیچی تحریک یا میدان معمولاً بر روی روتور قرار داده میشود. در ماشینهای قطب برجسته معمولاً میله های مسی یا برنجی در سطح قطب جای می-
گیرند که عموماً این میلهها در دوانتها به وسیله حلقههایی به یکدیگر متصل میشوند تا یک قفس سنجابی شبیه آنچه در یک موتور القایی وجود دارد، ساخته شود. مجموعه این میلهها و حلقهها به عنوان سیم پیچی میراکننده میباشند.
روتور ژنراتورهای قطب صاف بصورت استوانهای است که از فولاد یکپارچه ساخته میشود. سیم پیچیهای میدان در این گونه روتورها بصورت یکنواخت در شکافهای بدنه روتور توزیع شدهاند که معمولاً به کمک گوههایی در جای خود محکم میشوند. اغلب در چنین ماشینهایی سیم پیچی میراکننده وجود ندارد، زیرا که روتور یکپارچه فلزی اجازه عبور جریانهای گردابی را فراهم می آورد که تاثیری مشابه جریانهای سیمپیچی-
های میراکننده دارد. برخی از سازندگان تاثیر میرایی بیشتر و قابلیت عبور جریان مولفه منفی را با استفاده از گوههای فلزی مستقر در شکافهای سیمپیچی تحریک (که در انتها به یکدیگر متصل شدهاند) یا با استفاده از میلههای مسی مستقل زیر گوههای نگه دارنده، فراهم میآورند.
-3-2 توصیف ریاضی ماشین سنکرون
-1-3-2 معادلات ریاضی حاکم بر ماشین سنکرون
در این قسمت مدل ریاضی ماشین سنکرون بر اساس تئوری دو محوری بصورت خلاصه پارک تشریح می-
شود. شکل (1-2) مدارهای در نظر گرفته شده برای استاتور و روتور ماشین را نشان میدهد. مدار استاتور شامل یک سیم پیچی سه فاز است و روتور نیز یک سیم پیچی تحریک و یک سیمپیچی میراکننده بر روی محور d و دو سیم پیچی میراکننده بر روی محور q دارد. تعداد سیم پیچیهای میراکننده در نظرگرفته شده به عوامل متعددی از جمله نوع ژنراتور بستگی دارد که در قسمتهای بعدی به آن اشاره خواهد شد. مدل نشان داده شده در شکل (1-2) مدل 2-2 براساس استاندارد IEEE Std 1110 میباشد.
23
i fd d ωr a e fd q ib i1d ikq Ψb Ψa θ eb i1q b a ia ea ec
c

Ψc
ic

شکل :(1-2) مدارهای استاتور و روتور ماشین سنکرون
:c , b, a سیم پیچی های سه فاز استاتور : fd سیم پیچی تحریک

: 1d سیم پیچی میرا کننده محور d

1q و : 2q سیم پیچی های میراکننده محور q : ωr سرعت زاویه ای روتور برحسب رادیان بر ثانیه
: θ زاویه مابین محور مغناطیسی روتور و محور مرجع (محور مغناطیسی فاز (a
در بدست آوردن معادلات ماشین سنکرون برای ساده سازی فرضیات زیر درنظر گرفته میشود:
الف ) شکافهای موجود بر روی سطح داخلی استاتور تاثیر قابل توجهی بر اندوکتانسهای روتور درحال حرکت ندارند.
) پسماند مغناطیسی آهن استاتور و روتور قابل صرف نظر کردن است.
) از نظر تاثیر متقابل استاتور و روتور، سیم پیچیهای استاتور بصورت سینوسی در امتداد فاصله هوایی
توزیع شدهاند.
هر چند در مدل ارائه شده اثر اشباع مستقیماً منظور نشدهاست، اما با تصحیح راکتانسهای دو محور با استفاده از ضرایب اشباع و یا با داخل کردن مولفههای جبرانکننده درتحریک میدان اصلی، پدیده اشباع نیز لحاظ میشود.
با فرض حالت ژنراتوری معادلات ولتاژ مربوط به سیم بندی های استاتور و روتور را میتوان به شکل روابط
(1-2) و (2-2) نوشت.
Ψs d vs  −is Rs  dt (1-2) d vr  −ir Rr  Ψr dt که در آن :
24
vs  v a vb vc t vr  v f v1d v1q v2q t is  i a ib ic t ir  i f i1d i1q i2q t Ys  Ya Yb Yc t Yr  Y f Y1d Y1q Y2q t Ra 0 0 0 Rb Rs  0 0 0 Rc Rf 0 0 0 R1d Rr  0 0 0 0 0 R1q 0 0 0 0 R2q :درک نایب ریز لکش هب ناوت یم ار روتور و روتاتسا یاهرودراش تلاداعم Ψs  Lssis  Lsrir (2-2) Ψ  Lt .i  L i r sr srr r : نآ رد هک
Lss  − −

Lls  L0 − Lms cos 2θr 1 L0 − Lms cos 2(θr − π 1 L0 − Lms cos 2(θr  π − 3 ) − 3 ) 2 2 1 π 2π 1 2 L0 − Lms cos 2(θr − 3 ) Lls  L0 − Lms cos 2(θr − 3 ) − 2 L0 − Lms cos 2(θr −π) 1 L0 − Lms cos 2(θr  π 1 L0 − Lms cos 2(θr  π) Lls  L0 − Lms cos 2(θr  2π ) − ) 2 3 2 3 25
0 0 L f 1d Llf  L f 0 0 L L L  L 1d l1d 1df L1q 2q Ll1q  L1q 0 0 rr Ll 2q  L2q L2q1q 0 0 Ls 2q cosθr Ls1q cosθr 2π Ls 2q cos(θr − 2π ) ( cos(θr − 3 3 2π Ls 2q cos(θr  2π ) 3 ( 3 cos(θr 
s1q
s1q

L L

Ls1d sin θr
Ls1d sin(θr − 23π )

Ls1d sin(θr  23π )

Lsf sin θr 2π t ( − r sin(θ sf L  rs L sr L 3 ( 2π sin(θr  Lsf 3 با استفاده از دسته معادلات (2-1) و((2-2 میتوان بطور کامل ماشین سنکرون را بررسی نمود. اما همچنانکه در این معادلات نیز دیده میشود، معادلات دارای عباراتی هستند که با θ تغییر میکنند. با توجه به اینکه θ نیز تابعی از زمان میباشد، این موضوع سبب پیچیدهتر شدن تحلیل ماشینهای سنکرون می-
شود. میتوان با تبدیل مناسبی متغیرهای استاتور را به شکل سادهتری درآورد. این تبدیل به نام تبدیل پارک معروف است. تبدیل پارک به صورت رابطه (3-2) میباشد.
2π cos(θ  Sa ) 3 (3-2) Sb ) 2π −sin(θ  3 1 Sc 2
( 2π − cos(θ cosθ 3 2 2π 3 ) −sin(θ − 3 −sinθ 1 1 2 2
Sd
Sq S0
که S میتواند هر کدام از متغیرهای ولتاژ، جریان یا شاردور ماشین باشد. عکس تبدیل پارک نیز بصورت رابطه (4-2) بیان میشود.
1 −sinθ Sd 2 (4-2) Sq 1 ( 2π −sin(θ − 2 3 S0 1 ( 2π −sin(θ  2 3
cosθ 2π 2 ( cos(θ − 3 3 ( 2π cos(θ  3
Sa
Sb Sc
با اعمال تبدیل، معادلات حاکم بر ماشین و متغیرهای متناظر بسیار ساده میشوند. این ساده شدن در دو مفهوم کلیدی زیر ریشه دارد:
الف: با اعمال این تبدیل در شرایط بهرهبرداری عادی و حالت ماندگار تمامی جریانها و شارهای سیم-
پیچیهای استاتور و روتور دارای مقدار ثابتی خواهند بود.
26
ب: با انتخاب دو محور d و q که 90درجه اختلاف فاز دارند، شارهای تولید شده توسط جریانها بر روی یک محور هیچ پیوندی با شارهای محور دیگر نخواهند داشت. بنابراین دو دسته متغیر متعامد بدست خواهد آمد که این موضوع باعث ساده سازی بسیاری خواهد شد، زیرا هم باعث ساده سازی مقادیر راکتانسها میشود و هم می توان مدار معادل ماشین را بصورت دو مدار مستقل از هم در نظر گرفت.
معادلات نهایی پریونیت شده در دستگاه مرجع روتور به شکل روابط (5-2) و (6-2) میباشند. جزئیات بدست آوردن این معادلات در مراجع مختلف تشریح شدهاست و در اینجا از تکرار مجدد آن خودداری می-
شود. باداشتن روابط فوق، رفتار الکتریکی ماشین شبیه سازی می شود.
(5-2)
(6-2)

Yd 1 d Yq + wr V d = - i d Ra - w0 dt w0 Y d 1 Y + wr + a R q = - i q V q w0 dt d w0 Yfd 1 d efd = i fd Rfd + w0 dt Y d 1 + 1d R 1d 0 = i 1d w0 dt Y d 1 + 1q R 1q 0 = i 1q w0 dt Y2q d 1 0 = i 2q R 2q + w0 dt id Xad Xad Xl  Xad 1 Yd i fd Xad Xlf  Xad Xad  Yfd Xad Xad W0 Xl1q  Xad i1d Y1d i Xaq Xaq Xl  Xaq Yq i q Xaq Xl1q  Xaq Xaq 1  Y1q W 1q Xaq Xaq 0 Xl2q  Xaq i2q Y 2q x 0i 0 1 Y0 = - w0 براساس روابط ولتاژ و شار ارائه شده میتوان مدار معادل ماشین سنکرون را بدست آورد. این مدار درشکل
(2-2) نشان داده شده است.
27

الف: محور طولی،

ب: محور عرضی، q
xl i 0 R0
+
V 0
ج: محور صفر

-
شکل :(2-2) مدار معادل ماشین بر اساس تئوری پارک
-2-3-2 معادلات حرکت
معادلات حرکت معادلاتی هستند که اهمیت اساسی در مطالعات پایداری سیستمهای قدرت دارند. این معادلات که بعنوان معادلات لختی چرخشی نیز نامیده میشوند، تاثیر عدم تعادل بین گشتاور الکترومغناطیسی و گشتاور مکانیکی ماشین سنکرون را بیان مینمایند. در این بخش نیز معادلات حاکم بدون ذکر جزئیات بیان میشوند که برای دسترسی به جزئیات کامل میتوان به مراجع مختلف موجود مراجعه نمود.
زمانی که عدم تعادل بین گشتاورهای اعمال شده بر روی روتور وجود داشته باشد، گشتاور خالص اعمال شده، باعث شتاب گرفتن (یا کندشدن حرکت) روتور میشود. این گشتاور برابر است با:
Ta  Tm −Te(5-2)
: Ta گشتاور شتاب دهنده برحسب N.m
28
: Tm گشتاور شتاب مکانیکی برحسبN.m : Te گشتاور الکترومغناطیسی برحسب N.m معادله حرکت نیز به صورت رابطه (6 - 2) میباشد: (6-2) TaTm−Te dωr J dt در شبیه سازیهای ماشین سنکرون معمولاً شارها به عنوان متغیرهای حالت فرض میشوند. در این صورت توان الکتریکی ماشین در مبنای واحد به شکل رابطه (7-2) خواهد بود.
Pe ωr (ψd iq −ψqid )(7-2)
با تقسیم رابطه توان الکتریکی بر سرعت مکانیکی روتور، رابطه گشتاور الکترومغناطیسی به شکل رابطه -2) (7 در میآید :
Te ψd iq −ψqid(8-2)
-4-2 پارامترهای ماشین سنکرون
در معادلات حاکم بر ماشین سنکرون که در قسمت 3-2 ارائه شد، اندوکتانسها و مقاومتهای مدارهای استاتور و روتور به صورت پارامتر ظاهر شدند. این پارامترها موسوم به پارامترهای اصلی یا اساسی ماشین هستند و بصورت اجزای مدارهای معادل دو محور d و q در شکل (2-2) قابل تشخیص هستند. هر چند این پارامترها بطور کامل مشخصههای الکتریکی ماشین را بیان میکنند، اما آنها را نمیتوان از عکسالعملهای قابل اندازهگیری ماشین مستقیماً بدست آورد. از اینرو، روش مرسوم در تعیین اطلاعات ماشین این است که آنها را برحسب پارامترهایی بیان میکنند که از رفتار قابل مشاهده ماشین در پایانههای آن قابل تشخیص بوده و تحت آزمایشهای مناسب، قابل اندازهگیری هستند. در این قسمت انواع پارامترهای ماشین و ارتباط آن با پارامترهای اساسی مورد بررسی قرار میگیرد.
-1-4-2 پارامترهای اساسی ماشین
پارامترهای اساسی ماشین یا پارامترهای مدار معادل، از اعمال تبدیل پارک بر روی معادلات حوزه زمان ماشین سنکرون بدست میآیند و مشخص کننده عناصر مدارهای معادل محورهای طولی و عرضی ماشین هستند. تعداد این پارامترها با مرتبه مدل تغییر میکنند. از مشکلات عمده کار با این پارامترها، مشخص نبودن دقیق مقدار همگی آنها است. بعبارت دیگر روشی برای تعیین مقادیر دقیق این پارامترها بصورت یک-
جا وجود ندارد و روشهای موجود همگی مقادیر تقریبی مربوط به این پارامترها را بدست می دهند.
29
بعنوان نمونه اگر مدل 2-2 استاندارد IEEE Std1110 که در شکل (1-2) نشان داده شدهاست را درنظر بگیریم، کلیه عناصر مداری که در شکل نشان داده شدهاند، پارامترهای مدار معادل بوده و به راحتی قابل محاسبه و اندازهگیری نمیباشند. حتی بعضی از آنها مخصوصاً بعضی از پارامترهای برخی از شاخههای مدار محور q وجود فیزیکی خارجی نداشته و صرفاً جهت مدل سازی رفتار ماشین در نظر گرفته میشوند.
-2-4-2 پارامترهای عملیاتی
همانگونه که از نام این پارامترها پیداست، پارامترهای عملیاتی، ماشین سنکرون را از دید سیستمی بیان می-
کنند و معین کننده رابطه ورودی و خروجی ماشین سنکرون هستند. در این حالت تغییرات شار محور طولی و عرضی، تغییرات جریان محورهای طولی و عرضی و تغییرات ولتاژ سیستم تحریک بعنوان ورودی یا خروجیهای سیستم در نظرگرفته شده و با استفاده از پارامترهای عملیاتی این ورودیها و خروجیها به یکدیگر مرتبط میشوند.
در شکل عملیاتی, معادلات روتور را میتوان به صورت سیستمی با پارامترهای گسترده محسوب کرد. این پارامترها را می توان از طریق محاسبات طراحی و یا آسانتر از طریق آزمایش پاسخ فرکانسی بدست آورد.
زمانیکه تعداد محدودی مدار برای روتور در نظر گرفته شود، می توان این پارامترها را بصورت نسبت دو چند جملهای برحسب S (عملگر لاپلاس) بیان نمود. درجه چند جملهای مخرج حداکثر برابر تعداد مدارهای فرض شده بر روی روتور است. پارامترهای عملیاتی نسبت به پارامترهای مدار معادل کاربرد بیشتری داشته و به ماشین وجهه سیستمی میدهند. این پارامترها درحقیقت مشخصههای فرکانسی ماشین سنکرون هستند و عبارتند از یک دسته منحنیهای مشخصه یا روابط تحلیلی که رابطه بین امپدانس مختلط (یا عکس آن) را نسبت به لغزش در فرکانس نامی مشخص مینمایند. در زیر سه مشخصه فرکانسی مهم ماشین معرفی می شوند .
الف ) امپدانس عملیاتی محور طولی ( ( Zd(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی و ماندگار ولتاژ آرمیچر (ناشی از مولفه محور طولی جریان آرمیچر) به دامنه مولفه اصلی و مختلط این جریان که بصورت تابعی از فرکانس بیان میشود، تعریف شده و آن را Zd(s) مینامند. این مشخصه را در حالتی که سیم بندی میدان اتصال کوتاه گردیده است، برای فرکانسهای مختلف اندازهگیری مینمایند.
ب) امپدانس عملیاتی محور عرضی ( ( Zq(s)
این مشخصه بصورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر تولید شده توسط شار مغناطیسی محور عرضی ناشی از مولفه جریان آرمیچر در جهت محور عرضی به دامنه مولفه اصلی این جریان تعریف شده و بر حسب تابعی از فرکانس(لغزش) بیان میگردد.
ج) مشخصه فرکانسی G(s) بین سیم بندی میدان و آرمیچر
30
این مشخصه به صورت نسبت بین دامنه مولفه اصلی ولتاژ آرمیچر ناشی از جریان سیمبندی میدان در فرکانسهای مختلف به دامنه مولفه اصلی ولتاژ اعمالی در سیم بندی میدان تعریف میگردد.
-3-4-2 پارامترهای دینامیکی
این پارامترها به لحاظ سابقه، اهمیت و کاربرد فراوان آنها پارامترهای استاندارد ماشین نامیده میشوند، اما از آنجائیکه بیشتر حالتهای گذرا و دینامیکی ژنراتور را مدنظر دارند، به آنها پارامترهای دینامیکی نیز اطلاق می شود. یکی از دلایل اهمیت این پارامترها، قابلیت تشخیص و اندازهگیری آنها میباشد. این پارامترها را میتوان با استفاده از آزمایشهای خاصی که بعضی استانداردها نیز به آن اشاره دارند، مستقیماً بدست آورد. با استفاده از این پارامترها میتوان ژنراتور سنکرون را بویژه در حالات گذرا و دینامیکی تحلیل نمود. آزمایشات مربوط به استخراج این پارامترها سابقه نسبتاً زیادی دارد. تقسیم بندی این پارامترها که شامل اندوکتانسها و ثابت زمانیها هستند، به صورت پارامترهای دینامیکی محور طولی،محور عرضی همچنین پارامترهای
تندگذر و کندگذر میباشند که بسته به نوع تحلیل، جهت بررسی یک پدیده، پارامترهای مورد نیاز متفاوت
خواهد بود. این پارامترها بطور خلاصه شامل راکتانسهای سنکرون ( X q , X d )، راکتانسهای تندگذر و کندگذر محورهای طولی و عرضی( ( X ′q′, X ′d′, X ′q , X ′d ثابت زمانیهای کندگذر و تندگذر مدار باز محورهای طولی و عرضی ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do و ثابت زمانیهای کندگذر و تندگذر اتصال کوتاه محورهای طولی و عرضی ( ( Tq′′,Td′′,Tq′,Td′ می باشند.
-5-2 محاسبه پارامترهای دینامیکی ماشین سنکرون بر اساس پارامترهای
اساسی ماشین
در محاسبه مقادیر اولیه شارهای گذرا در مدارهای تزویج شده از تئوری ثابت بودن شار دور استفاده میشود.
این تئوری بطور خلاصه عبارتست از اینکه شاردور مدار القائی با مقاومت و emf کوچک نمیتواند بطور لحظهای تغییر یابد. در حقیقت اگر emf یا مقاومتی در مدار موجود نباشد، شاردور آن ثابت خواهد ماند. این تئوری را میتوان در محاسبه جریانها بلافاصله بعد از تغییر شرایط مدار برحسب جریانهای قبل از تغییر استفاده کرد. هنگامی که یک اغتشاش همانند اتصال کوتاه در سمت استاتور ماشین اتفاق میافتد، شار استاتور تغییر میکند. پاسخ ماشین به اغتشاش براساس نحوه تغییرات جریانها و شارها عموماً به سه دوره زیرگذرا، دوره گذرا و ماندگار تقسیم میشود. در دوره زیرگذرا تغییر در جریان سیمپیچیهای میراکننده مانع از نفوذ شار ایجاد شده توسط استاتور به روتور میگردد. با کاهش جریان سیم پیچیهای میراکننده، دوره گذرا آغاز میشود که در آن تغییر جریانهای سیمپیچی میدان همان اثر را، اما ضعیفتر خواهد داشت. در نهایت در حالت ماندگار شار ایجاد شده استاتور به داخل روتور نفوذ خواهد کرد. شکل (3-2) توزیع شار در دورههای زیر گذرا، گذرا و ماندگار ماشین پس از وقوع یک اغتشاش سمت استاتور را نشان میدهد که بر اساس مسیر شار در هر یک از این حالتها میتوان راکتانسهای سنکرون، گذرا و زیرگذرای ماشین را تعریف کرد.
31

دوره زیرگذرا

دوره گذرا

حالت ماندگار

25%

25%

90 9090

90 9090

25%
25%
شکل (3-2) توزیع شار در ماشین سنکرون طی دورههای زیرگذرا، گذرا و ماندگار
در این قسمت نحوه محاسبه پارامترهای دینامیکی ماشین سنکرون برحسب پارامترهای اساسی یا همان پارامترهای مدار معادل ماشین تشریح میشود. همچنین مدار معادل ماشین برای هر یک حالتهای ماندگار، گذرا و زیرگذرا ارائه میشود. مدل در نظر گرفته شده برای ژنراتور بر اساس استاندارد IEEE Std1110،
32
مدل 2-2 میباشد. در صورت استفاده از مدلهایی با مرتبه متفاوت، رابطه پارامترهای دینامیکی تغییر یافته اما نحوه محاسبه آنها بصورت مشابه میباشد.
-1-5-2 محاسبه راکتانسهای ماشین
الف – راکتانسهای سنکرون
معمولاً اندوکتانس را به عنوان نسبت شاردور به جریان تعریف می کنند. وقتی که قله mmf گردان در امتداد محور d قرار گرفت، نسبت شاردور استاتور به جریان استاتور اندوکتانس محور (Ld) d نامیده میشود.
با بدست آمدن اندوکتانسها بدیهی است که راکتانسهای متناظر نیز به سادگی قابل محاسبه هستند.
همچنین وقتی قله mmf گردان در امتداد محور q قرار بگیرد، نسبت شاردور استاتور به جریان آن، اندوکتانس سنکرون محور (Lq) q خواهد بود. شکل (4-2) مدار معادل ماشین در شرایط حالت ماندگار را نشان می دهد.
x fd xl x1q xl i fd i1q  0 x1d X d → x2q X q → xad xaq 0 i i2q  0 1d الف-مدار معادل محور d ب-مدار معادل محورq شکل :(4-2) مدار معادل ژنراتور سنکرون در حالت ماندگار
در حالت ماندگار، راکتانسهای سنکرون محور d و q به ترتیب با توجه به شکل (4-2) محاسبه می شوند.
مقادیر این راکتانس ها در روابط (9-2) و (10-2) ارائه شده است.
(9-2) X d  xl  xad
(10-2) X q  xl  xaq
ب- راکتانسهای گذرا
برای محور مستقیم، با توجه به اینکه مقاومت سیمپیچیهای میراکننده معمولاً بزرگتر از مقاومت سیم بندی میدان میباشد، جریان القایی در این سیم پیچیها بسیار سریعتر از جریانهای القایی در سیم بندی میدان میرا میشود. برای دوره گذرا فرض میشود که حالت گذرای میراکننده با میرایی فوقالعاده زیاد تمام شده است، در حالیکه جریانهای القایی در سیم بندی میدان هنوز برای مخالفت با تغییر شاردور ناشی از جریان-

های استاتور تغییر میکنند. مدارهای معادل ماشین در دوره گذرا مطابق شکل (5-2) می باشد. مدار معادل محور q نیز به طریق مشابه قابل توجیه است.

33
x fd xl Vfd x1d X ′d → xad i1d  0 الف-مدار معادل محور d ب-مدار معادل محورq
شکل :(5-2) مدار معادل ماشین سنکرون در دوره گذرا
براساس مدارهای معادل بدست آمده، راکتانس های گذرای محورهای d و q به شکل روابط (11-2) و(-2 (12 محاسبه می گردند.
(11-2) xad x fd x fd xl  X ′d  xl  xad xad  x fd (12-2) xaq x1q x1q xl  X ′q  xl  xaq x aq x 1q ج-راکتانس های زیر گذرا
در دوره زیرگذرا، جریانهای گذرای القا شده در سیم بندیهای روتور سعی دارند تا شاردور هر یک از مدارهای روتور را در ابتدا ثابت نگه دارند. براین اساس مدارهای معادل محورهای d و q ماشین سنکرون در این حالت مطابق شکل (6-2) میباشد.

الف-مدار معادل محور dب-مدار معادل محورq
شکل :(6-2) مدار معادل ماشین سنکرون طی دوره زیر گذرا
در این حالت برای محور d راکتانس دیده شده معادل سه راکتانس موازی xad ، x fd و x1d میباشد که با xl سری شده است. راکتانس زیر گذرای مدار باز محور q نیز مشابه محور d محاسبه میشود. براساس مدار معادل های ارائه شده، این راکتانس ها طبق روابط (13-2) و (14-2) محاسبه میشوند.
(13-2) xad x fd x1d xl x fd  x1d X ′d′  xl  xad xad x fd  xad x1d  x fd x1d 34
(14-2) xad x fd x1d xl x1d x fd  X ′d′  xl  xad x x x ad x fd x ad x fd 1d 1d -2-5-2 محاسبه ثابت های زمانی ماشین
حضور دو مجموعه سیم بندی برروی روتور، دو مجموعه ثابت زمانی مختلف را سبب شدهاست. مجموعه با مقادیر بزرگتر مربوط به ثابت زمانیهای گذرا و مجموعه با مقادیر کوچکتر مربوط به ثابت زمانیهای زیرگذرا هستند. معمولاً سیم بندیهای میراکننده که مقاومت بیشتری نسبت به سیم بندیهای میدان دارند، با ثابت زمانیهای زیرگذرا متناظرند.
ثابت زمانیهای گذرا و زیرگذرا بر روی محورهای d و q معمولاً در دو حالت تعریف میشوند. در یک حالت که استاتور مدار باز است و ثابت زمانیهای مدار باز تعریف میشود، ( ( T ′′qo ,T ′′do ,T ′qo ,T ′do، و درحالت دیگرسیم پیچی استارتور بصورت اتصال کوتاه فرض می شود( .( Tq′′,Td′′,Tq′,Td′ میتوان نشان داد که نسبت ثابت زمانی گذرای محور d با استاتور اتصال کوتاه به ثابت زمانی گذرای محور d با استاتور مدار باز برابر است با نسبت راکتانس ظاهری که جریان استاتور با سیم بندی میدان اتصال کوتاه شده می بیند، به راکتانسی که جریان استاتور با سیم بندی میدان مدار باز میبیند.
الف -ثابت زمانی های گذرا
مدار معادل ماشین جهت استخراج ثابت زمانیهای گذرای مدار باز محور d و q در شکل (7-2) نمایش داده شدهاست.

Rfd
′ T do ← R1d
i1q=0
xfd
Rsxl
x1d
xad
الف :
محور dب: محورq
شکل :(7-2) مدار معادل ماشین جهت استخراج ثابت زمانی های گذرای مدار باز
براساس فرضیات فوق و مدارمعادل شکل (7-2) ثابت زمانیهای مدارباز ماشین بصورت روابط (15-2) و
(16-2) بدست می آیند. (15-2) xfdxad 1 T ′do  ω0 R fd (16-2) x1qxaq 1 T ′qo  R ω 0 1q 35
همچنین مقادیر ثابت زمانیهای گذرا با استاتور اتصال کوتاه شده بر اساس روابط (17-2) و (18-2) محاسبه میشوند.
(17-2) x′d  Td′ xd T ′do (18-2) x′q  Tq′ xq T ′qo ب- ثابت زمانیهای زیر گذرا
ثابت زمانی زیرگذرای مدار باز محور d عبارتست از زمان لازم برای کاهش مولفه d جریان به مقدار 1e ام مقدار اولیه خود، هنگامی که در ترمینال ماشینی که با سرعت نامی می چرخد، بطور ناگهانی اتصال کوتاهی رخ دهد. بعبارت دیگر این ثابت زمانی عبارتست از ثابت زمانی جریان سیمبندی میراکننده d وقتی سیمبندی میدان اتصال کوتاه شده و سیمبندیهای استاتور مدار باز باشند. از مقاومت سیم بندی میدان در این دوره کاهش ولتاژ صرف نظر میشود. ثابت زمانی های زیر گذرای مدار باز محور q نیز به طریق مشابه تعریف میشوند. مدار معادل ماشین جهت استخراج ثابت زمانیهای زیرگذرای مدار باز مطابق شکل (8-2) میباشد.

براساس فرضیات فوق و مدار معادلهای ماشین در دوره زیرگذرا و ثابت زمانیهای زیرگذرای مدار باز ماشین بر اساس روابط (19-2) و (20-2) محاسبه میگردند.

الف : محورdب:محورq
شکل :(8-2) مدارمعادل ماشین جهت استخراج ثابت زمانی های زیر گذرای مدار باز
(19-2)
(20-2)

 x fd xad x fd  xad x1q xaq  aq x x 1q
1 1 ′′ xad  ω x1dxfd x1d R R 0 Tdo  ω 1d 0 1d 1 1 ′′ xaq  ω x2qx1q x2q 2q R 0 R 0 Tqo  ω 2q 36
-6-2 مراتب مختلف مدلهای ژنراتور سنکرون براساس مدل دو محوری پارک
روابط ارائه شده در قسمت (3-2) تا حدود قابل قبولی عملکرد الکتریکی دینامیکی یک ماشین سنکرون را بیان می کنند. اما گاهی این روابط را نمی توان بطور مستقیم برای مطالعات سیستمهای قدرت بزرگ بکار برد. از طرفی برخی از اوقات نیز لازم است رفتار ماشین سنکرون با جزئیات بیشتری مدل شود. در مدل دو محوری پارک همانگونه که قبلاً هم تشریح شد، مقادیر استاتور به دو سری مقادیر در دو جهت تبدیل می-
شوند که یکی در راستای محور مغناطیسی سیم پیچی میدان بوده (محور (d و دیگری با 90 درجه اختلاف با محور d عمود بر محور مغناطیسی سیم پیچی میدان میباشد (محور .(q محور d روتور شامل سیم پیچی میدان و سیم پیچیهای میراکننده میباشد. محور q نیز شامل سیم پیچیهای میراکننده این محور است.
باتوجه به تعداد سیم پیچیهای درنظر گرفته شده برای محور d و q روتور، مراتب مختلفی برای مدل ژنراتور سنکرون متصور است. براساس استاندارد IEEE Std 1110، مدل ژنراتور بایک شماره دورقمی Model AB مشخص میشود که A تعداد سیم پیچیهای درنظر گرفته شده برای محور d روتور و B

تعداد سیمپیچیهای منظور شده برای محور q روتور میباشد. جدول (1-2) مراتب مختلف ژنراتور سنکرون را نشان میدهد. نوع مدل انتخاب شده برای ژنراتور سنکرون وابسته به پارامترهای مختلفی از جمله نوع ژنراتور و ساختار فیزیکی روتور و انواع مطالعه مورد نظر است که در قسمتهای بعدی تشریح میشود.
37
جدول :(1-2) مراتب مختلف مدلهای ژنراتور سنکرون

فصل سوم:

بررسی روشهای شناسایی پارامترهای
دینامیکی ژنراتورهای سنکرون
39
-1-3 مروری بر پیشینه شناسایی پارامترهای دینامیکی ژنراتور سنکرون:
بحث پارامترهای دینامیکی ماشین سنکرون و یا به عبارت دیگر این مطلب کـه بـرای بیـان رفتـار ماشـین سنکرون در حالتهای گذرا از راکتانسهای مربوط به حالت دائم نمیتوان استفاده کرد، برای اولین بار در سـال
1920 با طرح مفهوم راکتانس اتصال کوتاه مطرح گردید. بعدها این ایده بعنوان پایه و اسـاس اولیـه تئـوری
"ثابت بودن شاردور در برگیرنده" قرار گرفت و در مقالاتی توسط دوهرتی1 درسال 1923 و بیـولی2 در سـال
1929 دوباره عنوان گردید.
آقای کری3 این مطلب را به این صورت طرح کرد که در هر مدار بسته بلافاصله بعد از هر تغییر بوجود آمـده در جریان، ولتاژ ویا موقعیت فیزیکی این مدار نسبت به موقعیت مدارات دیگـر کـه بـا آن بطـور مغناطیـسی درگیر میباشند، شار دور در برگیرنده ثابت باقی خواهد ماند . با توجه به مقاومت موجود در سیم پیچی میدان و دیگر سیم پیچیهای روتور (دمپرها) و در نتیجه تغییرات حاصله در شاردور در بر گیرنده در طی مدت زمان بعد از وقوع تغییرات ناگهانی، لزوم معرفی ثابت زمانیهای گوناگون ماشین نیز بعدها بـرای تحلیـل دقیـق تـر مورد ملاحظه قرار گرفت.
بر این اساس پارک4 و روبیرتسون5 در سال 1928 راکتانسهای دیگری از قبیل راکتانسها و ثابـت زمانیهـای محور عرضی و محور طولی را برای رژیم های تندگذر و کندگذر و به همین صورت مفاهیم دیگری همچون حالات کندگذر و تندگذر را در شارها، ولتاژها و جریانها نیز مطرح نمودند. گام بعدی در همین رونـد معرفـی مدار معادل ماشین بود. بسط منطقی این طریقه تحلیـل رفتـار ماشـین (بعـد از هـر تغییـر ناگهـانی) معرفـی مدارهای مربوط به محورهای طولی و عرضی ماشین با این فرض بود که بتوان یک اندوکتانس متقابل بـین سیم بندیهای موجود در روتور و استاتور تعریف نمود. بدین ترتیب و با در نظر گرفتن یک اندوکتانس متقابـل برای کوپلاژ بین سیم بندیهای روتور و استاتور و همچنین انتساب یک اندوکتانس پراکندگی به هـر کـدام از سیم بندیها (استاتور، میدان وبدنه روتور) مدار معادل مربوط به محور طولی ماشین. در سال 1931،کیلگوری6
در طی یک پروژه - ریسرچفاکتورهای مؤثر در محاسبات مربوط به بدست آوردن راکتانسهای ماشین سـنکرون را کـه مبنای خواص فیزیکی و ابعاد هندسی ماشین(استاتور، روتور و سیم پیچی میدان) میباشند بیان نمود. در ایـن مسیر در سال 1929، پارک نیز ایده محورهای طولی و عرضی برای ماشین را که قبلا توسط خـود او مطـرح شده بود به تبدیلات d-q که طی آن کمیات مربوط به سه فاز به متغیرهای q-d مرتبط می گردیـد بـسط داده و به این ترتیب پایه معادلات ماشین بر مبنای تئوری دو محوری بنا نهاده شد.

1-Doherty 2- Biowly 3- Cary 4- Park 5- Robertson 6- Kilgore
40
در سال 1931، شروین1 روابط لازم جهت بدست آوردن پارامترهای ماشین سنکرون را بـرای حالـت دائـم و گذرا، از طریق نتایج آزمایش ارائه نمود و این در حقیقت اولین روش پذیرفته شده بطور عام برای آزمایشهای ماشین سنکرون بود.که در سال 1945 میلادی توسط کمیته مربوط به ماشین سنکرون AIEE چاپ گردید.
از لحاظ تاریخی کمیته ماشینهای الکتریکی و استاندارد شماره 115 مربوط به IEEE ماحصل همان کمیتـه و همان روش آزمایشی ارائه شده در طی سالهای بعدی می باشد.
در طی اوائل دهه 60 میلادی به همان صورت که ابزار و تکنیکهای محاسباتی کـه در تحلیـل سیـستمهای قدرت بکار می رفت از لحاظ ابعاد و سرعت با روند رو به رشدی روبرو بود نیاز به مـدلهای دقیـقتـر ماشـین سنکرون جهت مطالعات پایداری نیز محسوس شده و بـرای ایـن خـاطر روشـهای کلاسـیک بدسـت آوردن پارامترهای ماشین سنکرون نیز دوباره مورد توجه بیشتر و دقیقتر قرار گرفت. در طی ایـن سـالها عـلاوه بـر مقالات متعددی که در این رابطه به چاپ رسید، استانداردهایی نظیر اسـتانداردBS, IEC, IEEE مربـوط به بخش ماشین نیز به دفعات متعدد چاپ و مورد تجدید نظر قـرار گرفتنـد. ایـن اسـتانداردها از میـان انـواع روشهای متفاوت و گوناگونی که ارائه میگردیدند و با توجه به رعایت نکات عملی و تکنیکهای انـدازهگیـری در طی جلسات متعدد کمیتههای ماشینهای الکتریکی، آنهایی را که تا حدی قابل قبول تشخیص مـی دادنـد انتخاب کرده و در استانداردها به عنوان روشهای کلاسیک مطرح و مورد تایید قرار می دادنـد. از مشخـصات مهم آزمایشات کلاسیک مربوط به قبل از دهه 80 تاکید روی آزمایش اتصال کوتاه سه فاز ناگهـانی و سـعی در بدست آوردن پارامترهای ماشین بـا اسـتفاده از چنـین آزمایـشی بـود کـه در حـال حاضـر هنـوز هـم در مشخصات ارائه شده در نیروگاهها نتایج حاصل از آزمایش اتصال کوتاه ناگهانی ارائه می گردد.
از جمله نکات محدودکننده اینگونه آزمایشها عدم دسترسی به پارامترهای مربـوط بـه محـور عرضـی، عـدم صرفه اقتصادی و قابلیت انجام آن در محل نیروگاهها و در تحت ولتاژ نامی بود. در حقیقت تـا قبـل از سـال
1983 روشهای دسترسی به پارامترهای مربوط به محور q در استانداردها مسکوت گذارده شده بود.
در طی سالهای 1960 الـی 1980 آزمایـشات گونـاگونی جهـت پاسـخگویی بـه سـؤالاتی از قبیـل اهمیـت پارامترهای مربوط به محور عرضی و همچنین درجه دقّت مورد لزوم برای پارامترهای ماشین و یا درجه مدل بکار رفته برای ماشین مطرح شده است. آزمایشات نیروگاه نورث فلیت2 در سال 1969 و تحقیقات انجام شده مؤسساتی چون EPRI, NPCC & Ontario-Hydro از این دسـتهانـد. ایـن مجموعـه فعالیـتهـا نتایجی از این قبیل را به همراه داشت:
در شبیه سازی دینامیکی رفتار ماشینهای الکتریکی، اطلاع دقیـق از پارامترهـای ماشـین بـه انـدازه درجه مدل انتخابی اهمیت دارد. این اهمیت در باب پارامترهای محور عرضی بارزتر است.
در تعیین پارامترهای ماشین همواره آزمایشاتی که منجر به تغییرات کوچک(بزرگ) در مقادیر ولتاژ و جریانهای ماشین گردند، اطلاعات مناسبی از پارامترها برای مطالعات مربوط بـه اغتـشاشات بـزرگ (کوچک) را در اختیار قرار نمیدهد.

7- Shervin 8- North Fleet
41
با توجه به این نکته پارامترها باید بسته به نوع مطالعه تصحیح و بهینه سازی شوند.
ارزش پارامترهای محور عرضی در شبیه سازی رفتار توربوژنراتورهای با روتـور یکپارچـه بـه حـدی است که انجام آزمایشهای جداگانه در این جهت راتوجیه میکند.
بدین ترتیب در سالهای بعد از 1980 آزمایشهای جدیدتری چون میرائی شار1 جایگاه ویژهای در حوزه تعیـین پارامترهای دینامیکی ماشینهای سنکرون پیدا کردند.
-2-3 انواع روشهای تعیین پارامترهای دینامیکی ژنراتور سنکرون:
به طور کلی آزمایشهای موجود در حوزه تعیین پارامترهای دینامیکی ژنراتور سنکرون را می توان به دو دسته :
روشهای کلاسیک
روشهای جدید
تقسیم بندی کرد. روشهای کلاسیک، آزمایشهایی محدود را تشکیل میدهند که عموماَ از نظر زمانی نیز، بـر روشهای جدید تقدم دارند. مهمترین معیارهای مطرح در انتخاب روشهای مورد استفاده عبارتنداز:
انجام آزمایش در آن کشور ممکن باشد و به ابزار پیچیده نیاز نداشته باشد.
استانداردهای معتبر آن را تایید کند.
با بکارگیری آن تعداد بیشتری از کمیتها را بتوان شناسایی کرد.
آن روش قادر به اندازهگیری پارامترهای محور عرضی نیز باشد.
-1-2-3 روشهای کلاسیک اندازهگیری پارامترهای دینامیکی ژنراتور سنکرون:
روشهای کلاسیک روشهایی محدود هستند که عموما قبل از دهه 80 میلادی ابداع شدهاند و بـا انجـام آنهـا تنها یک یا چند پارامتر شناسایی میشود. این روشها برروی هر ژنراتـوری قابـل اجـرا بـوده و بـه تجهیـزات پیشرفته و پیچیده نیاز ندارد. تغییرات این روشها در خلال این سالها عموما از جنس اصلاح روابط محاسـباتی میباشد. اغلب آنها استاندارد شدهاند، ولی متاسفانه با انجام هر یک از این آزمایشها تنهـا تعـداد محـدودی از پارامترها بدست میآیند. از نقاط ضعف این روشها مساله تعیین پارامترهای محور q اسـت. از معایـب عمـده دیگر بعضی از این روشها مخرب بودن آنهاست. با این شرایط مجوز استفاده از این روشها علیرغم اسـتاندارد بودن آنها صادر نمیگردد.
به عنوان نمونه آزمایش اتصال کوتاه سهفاز اگر چه نتایج خوبی را از جهت تعیین پارامترها در بر داشته باشد، به علت آثار مخرب الکتریکی و مکانیکی جبران ناپذیر آن چندان مورد توجـه نیـست. اغلـب کمیتهـایی کـه توسط آزمایشهای کلاسیک تعیین میشود بر پایه مدل استاندارد IEEE تبیین شـدهانـد بـا یـک سـیمپـیچ میرایی محور طولی و عرضی. بسیاری از این روشها در تعیین پارامترها برای مدلهایی از مرتبـه بـالاتر ناکـام خواهند بود.

9- dc decay
42
-2-2-3 روشهای جدید در تعیین پارامترهای دینامیکی ژنراتورهای سنکرون:
همگام با رشد سیستمهای کـامپیوتری، توسـعه تجهیـزات انـدارهگیـری و پدیـد آمـدن سیـستمهای هـوش مصنوعی، مجموعه جدیدی از روشها برای شناسایی پارامترهای دینامیکی ژنراتورهای سنکرون پدیـد آمدنـد.
بطور کلی در این روشها با اعمال ورودیهای مناسب در وضعیتهای متفاوت روتور(ایـستا یـا متحـرک) و ثبـت خروجیها، توابع انتقال ماشین شناسایی شده است. سپس با فرض یک مدل خاص بـرای ماشـین مـیتـوان پارامترهای ماشین را با روشهای مناسبی تخمین زد. اخیرا مدلهایی با مرتبه بالاتر نیز در اسـتانداردها مطـرح شدهاند. شناسایی پارامترهای دیگری که همگام با رشد درجه مدل مطرح شدهاند را صرفا میتوان با اسـتفاده از روشهای جدید تعیین پارامترهای دینامیکی ژنراتور سنکرون شناسایی کرد، اگر چه توانایی روشهای مذکور در تعیین این پارامترها متفاوت است. در مجموع روشهای جدید را میتوان تلاشـهایی بـرای دسـتیـابی بـه اهداف زیر دانست:
أ- دستیابی به روشهای بلادرنگ در تخمین پارامترها ب- استفاده از اطلاعات بهره برداری برای شناسایی پارامترها ت- شناسایی پارامترها با دقت هرچه بیشتر ث- تلاش در سادهسازی مکانیزم تخمین
به عنوان نمونه از مهمترین روشهای مطرح در این دسته به موارد زیر میتوان اشاره کرد: (1 روشهای بنا شده برپایه سیستمهای هوش مصنوعی:
(a تخمین پارامترهای دینامیکی با استفاده از شبکه عصبی (b تخمین پارامترهای دینامیکی با استفاده از الگوریتم ژنتیک
(2 روشهای بنا شده بر پایه تکنیکهای معادلات معادلات جزئی: (a تعیین پارامترها با استفاده از تکنیک اجزاء محدود
(3 شناسایی پارامترها ماشین سنکرون با استفاده از تست پاسخ فرکانسی
(4 شناسایی پارامترها با استفاده از دامنه وسیع تحریک
(5 شناسایی پارامترها با استفاده از اطلاعات تست باربرداری
(6 شناسایی پارامترها با استفاده از اطلاعات میرایی شار
(7 شناسایی پارامترها با اطلاعات بدست آمده از اغتشاشات بهره برداری (a تخمین پارامترها با استفاده از اغتشاشات بزرگ بهره برداری (b تخمین پارامترها با استفاده از اغتشاشات کوچک بهره برداری
عموم این روشها غیر مخرب بوده و نتایج خوبی را در تخمین پارامترها نشان داده اند. از نکات قابـل توجـه در این روشها توانایی آنها در تعیین پارامترهای محور عرضی علاوه بر محور طولی و همچنـین امکـان تخمـین پارامترها، متناظر مدلهایی با درجههای مختلف است. البته این به معنی توانایی برابر این روشها برای تخمین
43
و شناسایی پارامترها در جهات مختلف نیست. البته همه این روشـها در حـال تکامـل و بهبـود مـیباشـند و
بسیاری از آنها هنوز استاندارد نشدهاند.
44
فصل چهارم:

شناسایی بلادرنگ پارامترهای
دینامیکی ژنراتورهای سنکرون با
استفاده از رویتگر شبکه عصبی
45
-1-4 اصول کار شبکه های عصبی:
یکی از روشهای مشهور در حوزه هوش مصنوعی شبکه عصبی مصنوعی است. شبکههای عصبی مـصنوعی الهام گرفته از شبکه عصبی انسان هستند که توانایی بالایی در تقلید رفتار توابـع غیـر خطـی از خـود نـشان دادهاند. انسان با استفاده از تجربیاتی که از وقایع پیرامون خود دارد و ارتباطی که بین آن وقایع و عوامل مؤثر بر آنها برقرار میکند، نسبت به تخمین وقایع آتی بر پایه وضـعیت عوامـل مـؤثر اقـدام مـینمایـد. براسـاس تحلیلهای موجود شبکه عصبی مغز انسان از لایههای مختلفی تشکیل شده که لایه خـارجی آن(کـورتکس)
متصل به مجاری ورودی است. این ورودیها در انسان حواس او هستند. تجربیات ما به صورت تفاوت قوت و ضعف نقاط اتصال سلولهای عصبی به یکدیگر(سیناپسها) بروز مـیکنـد. هـر یـک از نـرونهـا پیونـدهای متعددی با سلولهای لایه بعد دارند.

شکل:1-4 طرح کلی سلول عصبی انسان
مسلم است که هرچه تعداد پیوندهای عرضی بیشتر باشد شبکه توانایی بیشتری در آموزش رفتـار توابـع غیـر خطی خواهد داشت.
-2-4 اصول کار شبکه عصبی تخمین گر پارامترها:
با درنظر گرفتن مبادی ذکر شده، مراحل شبیهسازی شبکههای عصبی بدین صورت خواهد بود:
ساخت نرون مصنوعی
ساختاربندی آن در قالب لایههای مختلف
تهیه بانک اطلاعات لازم برای آموزش شبکه عصبی
آموزش شبکه عصبی
تست شبکه
46

شکل :2-4 شکل کلی سلول عصبی مصنوعی
لایههای شبکه عصبی را به سه دسته لایه ورودی، لایه خروجی، و لایه (لایههای) مخفی تقسیم مـیکننـد.
تعداد عناصر لایه ورودی و خروجی باید برابر تعداد ورودی، خروجیهای در نظـر گرفتـه شـده بـرای شـبکه باشند. افزایش تعداد لایههای مخفی در شبکه عصبی دو اثر متضاد را به همراه دارد. از یک طرف تقلیـد هـر چه بهتر رفتار هر تابع غیر خطی را امکان پذیر می سـازد و از طـرف دیگـر مـشکلات شـبیه سـازی و مـدت آموزش را افزایش میدهد. در عمل باید بسته به شرایط، بین این دو عامل بهینهسازی شود. در عمل در طـی تحقیقات متعدد انجام شده شبکه عصبی با یک لایه مخفی به عنوان حالت بهینه مطرح شده است.

شکل:3-4 ساختار شبکه عصبی توسعه یافته
همانگونه که پیشتر مطرح شد تعداد نرونهای لایه خروجی شبکه عصبی برابـر تعـداد خروجـیهـای در نظـر گرفته شده برای آن شبکه است. در این طرح، شبکه عصبی با یک خروجی در نظر گرفته شده است. بنابراین برای تخمین هر یک از پارامترهای مورد نظر باید یک شبکه مستقل تـشکیل شـده، آمـوزش دیـده و مـورد استفاده قرار گیرد. این روش اگرچه مشکلاتی را در تشکیل و آموزش شبکههای متعدد به همـراه دارد لـیکن گامی در جهت دستیابی به حداکثر قابلیت شبکههای عصبی در تخمین پارامترهـای دینـامیکی ژنراتورهـای سنکرون بر اساس دادههای بهرهبرداری است. همانگونه که همواره بهینهسازیهای تک هدفه نتایج بهتـری از جهت دستیابی به نتیجه مورد نظر دارند، با توجه به تشابه ساختاری این معنی در باب شـبکههـای عـصبی نیز صادق است. تعداد نرونهای لایه ورودی نیز برابر تعداد ورودیهای در نظر گرفته شده برای شبکه عـصبی
47
است. تعداد شش ورودی برای شبکه مورد نظر در نظر گرفته شده است. تعداد ورودیها در این طرح با توجه به مجموعه پارامترهای قابل اندازهگیری در خروجی ژنراتورهای سنکرون انتخاب شده است. البته انتخـاب و ترتیب آرایش این پارامترها برپایه رؤیت پذیری پارامترهای دینامیکی ژنراتور سنکرون در رفتار دینـامیکی آن شکل گرفته است. این بحث در طی مطالعات پیشین انجام شـده در مرکـز مطالعـات دینامیـک ایـران مـورد بررسی قرار گرفته است.
-1-2-4 دادههای آموزشی و آموزش شبکه عصبی تخمینگر:
از نکات بسیار مهم در تشکیل شبکه عصبی مـصنوعی، بانـک اطلاعـات آموزشـی مـورد اسـتفاده اسـت. در تجربیات گذشته که در حوزه استفاده از شبکههای عصبی مصنوعی مطرح است، گاه اصلاح مکانیزم تهیـه و تغییر دامنه دادههای آموزشی، یک شبکه عصبی با نتایج ضعیف را به شبکهای بـا نتـایج قابـل قبـول تبـدیل کرده است. شاید بتوان مهمترین نکته در گردآوری اطلاعات آموزشـی را شـمول و فراگیـری آن نـسبت بـه حالتهای مختلف رفتاری مطرح در حوزه مورد نظر دانست. اگرچه این شمول را نباید با بزرگی ابعـاد اشـتباه گرفت. عامل مهم نگاه ریشهای و بنیادین به حالات مطرح در آن حوزه است. از آنجا که این شبکه بر آنـست تا بر پایه اطلاعات بهرهبرداری نسبت به تخمین پارامترهای دینامیکی ژنراتور سنکرون اقدام نماید، لـذا بایـد بانک اطلاعات لازم برای آموزش شبکه عصبی در این حوزه فراهم شود. مجموعه اغتـشاشاتی کـه در طـی بهرهبرداری از ژنراتورها رخ میدهد را میتوان به سه دسته عمده تقسیم کرد:
اغتشاشاتی که در حوزه تحریک رخ می دهند
اغتشاشاتی که در حوزه توان ورودی رخ میدهند
اغتشاشاتی که در شبکه تحت تغذیه رخ میدهند
بدین ترتیب از هر یک از این حوزههای سهگانه یک نمونه شایع به عنوان نماینده آن گروه بـدین ترتیـب در
نظر گرفته شده است:
تغییر ناگهانی %10 در تحریک ژنراتور
تغییر ناگهانی %10 در توان ورودی ژنراتور
وقوع اتصال کوتاه سهفاز 10-5)میلی ثانیه) در خروجی ژنراتور
48

شکل :4-4 شکل کلی روش تهیه اطلاعات بهرهبرداری ژنراتورهای سنکرون
(برای آموزش و تست شبکه عصبی)
60 مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون به عنوان مقـادیر پایـه در تـشکیل بانـک اطلاعات آموزشی شبکه عصبی در نظر گرفته شده است. این مجموعه از دادههایی مربوط به:
واحدهای بخاری- فسیلی
واحدهای بخاری-فسیلی با پیوند عرضی
واحدهای بخاری- هستهای
واحدهای آبی
واحدهای با توربین احتراقی
تشکیل شده است. برای هر مجموعه از این پارامترها دو گام افزایشی و دو مرحله کاهش در نظر گرفته شده
است. هر یک از این مراحل تغییرات %10 پارامترها را بهمراه خواهد داشت. مجموعه نهایی دربرگیرنـده 225
مجموعه از مقادیر نمونه پارامترهای دینامیکی ژنراتور سنکرون میباشد. مجموعه یک ژنراتور متصل به شین
بینهایت برای شبیه سازی رفتار ژنراتور سنکرون در نظر گرفته شده است. برای این که آثـار تفـاوت سـاختار
شبکه در رفتار ژنراتور نیز لحاظ شده باشد در هر مرحله از شبیهسازی بصورت همگام با تغییرات پارامترهـای
ژنراتور، تغییراتی در حوزه پارامترهای شبکه نیز در نظر گرفته شده است. در هر دوره شبیه سازی از خروجـی
ژنراتور 1000 نمونهگیری با فاصله زمانیهایی برابر0,01 ثانیه بعمل آمده است. 20 نمونه از اندازهگیری های
انجام شده و پارامترهای متناظر با آن به عنـوان مجموعـه اطلاعـات آموزشـی در نظـر گرفتـه شـده اسـت.
نمونههای منتخب از میان اندازهگیریهای انجام شده با گامهای متغیر و قابل کنترل گزینش شـدهانـد، ایـن
رویکرد امکان تهیه تصویری بهتر از رفتار دینامیکی ژنراتور سنکرون در قبال یک اغتـشاش را بـا رعایـت دو
مشخصه حداقل حجم اطلاعات و حفظ حداکثر مشخصات رفتاری فراهم میآورد.
49

شکل:5-4 آلگوریتم آموزش شبکه عصبی
آموزش شبکه بر پایه الگوریتم پسانتشار و با استفاده از راهبرد مارکوئیس_لونبرگ انجام شده است. برای هر یک از انواع سهگانه اغتشاشات ذکر شده بانک اطلاعات آموزشی مستقلی در نظـر گرفتـه شـده اسـت. ایـن روش امکان مقایسه بین نتایج اخذ شده در قبال هر یک از انواع اغتشاشات را فـراهم مـیآورد. ایـن راهبـرد امکان مقایسه درجه قابلیت اطمینان نتایج حاصل از تخمین پارامترهای گوناگون در قبال اغتشاشات مختلـف را نیز فراهم میĤورد.
-2-2-4 تست شبکه عصبی تخمینگر:
تست شبکه عصبی با استفاده از اطلاعات بهره برداری که در مجموعه آموزشی لحـاظ نـشده، شـکل گرفتـه است. بدین ترتیب تصویر واقعگرایانهتری از قابلیتهای شبکه مذکور خواهیم داشت. برای تحقق این معنـی اطلاعات مربوط به 75 ژنراتور سنکرون متفاوت با نمونه های مطـرح شـده در مجموعـه آموزشـی، دادههـای حاصل از اندازهگیریهای بعمل آمده در قبال رفتار دینامیکی آنهـا و مقـادیر حقیقـی پارامترهـای دینـامیکی متناظر با آن به عنوان مجموعه دادههای تست شبکه عصبی در نظر گرفته شده است. طرح کلی روش تست و بهرهبرداری شبکه عصبی مذکور در شکل4-6 بیان شده است. هریک از مراحـل آمـوزش و تـست شـبکه عصبی تخمینگر با مشخصات ذکر شده در قبال سه اغتشاش نمونه مطرح در نظر گرفته شده است.
50

شکل:6-4 طرح کلی روش تست و بهرهبرداری از شبکه عصبی
-3-4 نتایج:
مجموعه نتایج در سه بخش سازماندهی شده است. هربخش در برگیرنده نتایج آموزش و تست شبکه عصبی بر پایه یکی از انواع سهگانه اغتشاش میباشد. این طریقه بررسی امکان مقایسه بهتر نتایج را فراهم سـاخته، شاهدی بر رؤیت پذیری پارامترهای دینامیکی ژنراتورهای سنکرون در ازای اغتشاشات مختلف مـیباشـد. از طرف دیگر بررسی مقایسهای نتایج درجه دقـت شـبکه عـصبی در تخمـین پارامترهـای دینـامیکی بـر پایـه اطلاعات مختلف بهرهبرداری را نیز بیان میکند. برداشتهای مقایسهای امکان تعیین بهتر قابلیتهای شبکه عصبی را بدور از آثار ناشی از الگوی آموزشی فراهم میآورد، زیرا ابعاد و مکانیزم تشکیل مجموعـه آموزشـی در تخمین همه این پارامترها مشابه بوده است.
برای بررسی رفتار هر شبکه عصبی دو معیار اصلی دامنه و توزیع فراوانی خطا در نظر گرفتـه شـده اسـت. در تحلیل بر اساس توزیع فراوانی خطا، درصد فراوانی غالب و دامنه خطای متناظر با آن بیان شدهاند. با توجه به حجم زیاد مجموعه نتایج، چند نمونه از شبکههای تخمینگر و دادههای بدست آمده از طریق آنها در مرحلـه آموزش و تست ارائه شده است. این مجموعه به سه حوزه آموزش و تست بر اساس اطلاعـات بهـرهبـرداری شکل گرفته برپایه تغییر ناگهانی تحریک، تغییر ناگهانی تـوان ورودی و اغتـشاش حـوزه شـبکه متـصل بـه ژنراتور تقسیم شده است. برای فراهم سازی امکان مقایسه بیشتر، نتایج متناظر هر پارامترکه با استفاده از هر یک از بانکهای اطلاعاتی سهگانه مذکور بدست آمده اسـت در اختیـار خواننـده محتـرم قـرار گرفتـه اسـت.
پارامترهای دینامیکی مطرح برای ژنراتورهای سنکرون _در نگاه اشتراکی بین انواع مختلف آن _کـه مـا بـه تخمین آنها همت گماشته ایم مجموعهای بدین صورت را تشکیل خواهد داد:
51
جدول( (1-4 ردیف نام پارامتر مشخصه واحد
1 راکتانس سنکرون محور d Xd pu
2 راکتانس حالت گذرا محور d Xd' Pu
3 راکتانس فوق گذرا محور d Xd" Pu
4 راکتانس سنکرون محور q Xq pu
5 راکتانس فوق گذرا محور q Xq" Pu
6 راکتانس پوتیه Xl pu
7 ثابت زمانی محور d در دوره گذرا Td' s
8 ثابت زمانی محور d در دوره فوق گذرا Td" s
9 ثابت زمانی محور q در دوره فوق گذرا Tq" s
10 ثابت اینرسی H s
52
-1-3-4 نمونههایی از نتایج شبکه عصبی تخمینگر:
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :7-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xd"

شکل :8-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
53

شکل :9-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :10-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
54

شکل :11-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :12-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
55
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :13-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل :14-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
56

شکل :15-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :16-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
57

شکل :17-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :18-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
58
پارامتر مورد تخمین: X"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :19-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xd"

شکل:20-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
59

شکل:21-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :22-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xd"
60

شکل :23-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:24-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
61
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :25-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین xq"

شکل :26-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
62

شکل :27-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :28-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
63

شکل :29-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :30-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
64
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :31-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :32-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
65

شکل :33-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :34-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین xq"
66

شکل :35-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :36-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
67
پارامتر مورد تخمین: X"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :37-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین xq"

شکل :38-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
68

شکل :39-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :40-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین xq"
69

شکل :41-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:42-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
70
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :43-4 نمودار خروجی شبکه عصبی درفرایند برای تخمین Td"

شکل :44-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
71

شکل :45-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :46-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
72

شکل :47-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :48-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
73
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :49-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل:50-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
74

شکل:51-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :52-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
75

شکل :53-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :54-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
76
پارامتر مورد تخمین: T"d
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :55-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Td"

شکل :56-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
77

شکل :57-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :58-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Td"
78

شکل :59-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:60-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
79
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی تحریک

شکل :61-4 نمودار خروجی شبکه عصبی درفرایند آموزش برای تخمین Tq"

شکل :62-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
80

شکل :63-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :64-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
81

شکل :65-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش

شکل :66-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش
82
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: وقوع اتصال کوتاه در شبکه متصل به ژنراتور

شکل :67-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

.
شکل:68-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
83

شکل:69-4 نمودار خطای تخمین شبکه عصبی در مرحلهآموزش

شکل :70-4 نمودار خروجی شبکه عصبی تحت تست برای تخمین Tq"
84

شکل :71-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل :72-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
85
پارامتر مورد تخمین: T"q
اغتشاش مورد استفاده: تغییر ناگهانی توان ورودی

شکل :73-4 نمودار خروجی شبکه عصبی در فرایند آموزش برای تخمین Tq"

شکل :74-4 هیستوگرام خطای شبکه عصبی در مرحله آموزش
86

شکل :75-4 نمودار خطای تخمین شبکه عصبی در مرحله آموزش

شکل :76-4 نمودار خروجی شبکه عصبی در فرایند تست برای تخمین Tq"
87

شکل :77-4 هیستوگرام خطای شبکه عصبی در مرحله تست

شکل:78-4 نمودار خطای تخمین شبکه عصبی در مرحله تست
88
-2-3-4 بررسی تحلیلی نتایج:
در طی این پروژه، شبیه سازیهای مربوطه در جهت تخمین کلیه پارامترهای مذکور انجام شده و بـر اسـاس اغتشاش بکار گرفته شده در تهیه دادههای بهرهبرداری تقسیم بندی و مقایسه شـده اسـت. بررسـی تحلیلـی نتایج در قالب شاخصبندیهای زیر ارائه شده است:
.1 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره آموزش:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحلـه آمـوزش، شـکل گرفتـه است. در مسیر تخمین هر یک از پارامترها نتایج سهگانه بدست آمده به ترتیب بر اساس برازندگی از دیدگاه حداقل خطا مرتب شده است. این نتایج برپایه اغتشاش متناظر با آنها نام گذاری و در جـدول
2-4 جای گرفتهاند.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شـاخص حـداکثر خطـا ارزیـابی و اولویت بندی شدهاند. نتایج این تحلیل به ترتیب بیان شده در گام قبل نامگذاری و در قالـب جـدول
3-4 در اختیار قرار گرفته است.
.2 بررسی مقایسهای رفتار شبکه عصبی تخمینگر در دوره تست:
.A تحلیل نتایج بدست آمده بر پایه توزیع فراوانی خطا:
این بررسی بر پایه توزیع فراوانی خطای شبکه عصبی تخمینگر در مرحله تست، شکل گرفته است.
در مسیر تخمین هر یک از پارامترها، نتایج سهگانه بدست آمده بر اساس برازندگی از دیدگاه حداقل خطا ترتیب یافته است. این نتایج برپایه اغتشاش متناظر با آنها نام گـذاری و در جـدول 2-4 جـای گرفتهاند. به علّت اهمیت خاص نتایج حاصل در این بخش، علاوه بر تحلیلهای فوق شاخص خطای متناظر با فراوانی غالب و درصد فراوانی مربوطه در بهترین حالت نیز ارزیابی و در جدول 2-4 ارائـه شده است.
.B تحلیل نتایج بدست آمده بر پایه حداکثر دامنه خطا:
89
نتایج سهگانه بدست آمده در تخمین هریک از پارامترها بر اساس شاخص حداکثر خطا ارزیابی و بـر اساس برازندگی مرتب شده است. نتایج این تحلیل به همان صورت نامگذاری و در جدول 3-4 ارائه شده است.
درباب عملکرد شبکه عصبی در تخمین :Xd
با مقایسه نتایج بدست آمده با استفاده اغتشاشات مختلف هیستوگرام خطای شبکه در مرحله آموزش بهتـرین توزیع فراوانی را در وقوع قبال اتصال کوتاه در ترمینال ژنراتور نشان میدهـد نتـایج حاصـله بـر پایـه تغییـر ناگهانی تحریک و تغییر توان ورودی در مراتب بعدی قرار میگیرند.
از نظر دامنه خطا نیز در این مرحله بهترین نتایج به ترتیب در قبال نتایج حاصله از وقوع اتصال کوتاه, تغییـر توان ورودی و تغییر ناگهانی تحریک شکل گرفته اند.
در مرحله تست بهترین توزیع فراوانی در مرحله اول مربوط به نتـایج حاصـل از تغییـر ناگهـانی تحریـک، در مرحله دوم مربوط به نتایج حاصله بر پایه وقوع اتصال کوتاه و نهایتًا از تغییر توان ورودی بدست میآید.
کمترین دامنه خطا به ترتیب متعلق به تخمین برپایه نتایج حاصل از وقوع اتصال کوتاه، تغییر تـوان ورودی و نهایتًا تغییر تحریک میباشد.
در مرحله تست محدودترین دامنه خطا مربوط به وقوع اتصال کوتاه است. نتایج حاصل از تغییر تـوان ورودی و تغییر ناگهانی تحریک در مراتب بعدی قرار دارند.
%73,3 از نتایج دارای خطای کمتر از %9,2 دامنه تغییرات Xd هستند.
درباب عملکرد شبکه عصبی در تخمین :X'd
هیستوگرام خطای شبکه در مرحله آموزش نتایجی بدین ترتیب را در بر داشته است: در مرحلـه اول بهتـرین نتایج همراستا با تغییر ناگهانی تحریک شکل گرفته است، در مرحله دوم با تغییـر تـوان ورودی و در مرحلـه سوم با استفاده از وقوع اتصال کوتاه در خروجی ژنراتور.
کمتریم دامنه خطا در مرحله آموزش مربوط به وقوع اتصال کوتاه در ترمینال ژنراتور و در مرحله دوم و سـوم
مربوط به تغییر ناگهانی تحریک و توان ورودی ژنراتور میباشد.
در مرحله تست نمودار خطای شبکه نتایج مشابهی را در قبال اغتشاشهای سهگانه بجای گذاشته است و بـه سختی میتوان بین آنها تمایز قائل شد. شاید بتوان نتایج مربوط به تغییر توان ورودی، و در گامهـای بعـدی مربوط به تغییر ناگهانی تحریک و وقوع اتصال کوتاه در خروجی ژنراتور دانست.

projct-fi

فصل دوم : رابطه تلفات و افت ولتاژ در تجهیزات با ولتاژکاری و ارائه تابع هزینه 13
.1-2 مقدمه 14
.2-2 تعاریف و ضرایب کاربردی 15
.3-2 اجزاء تلفات و رابطه آنها با سطح ولتاژ 16
.4-2 اجزاء موثر درافت ولتاژ و رابطه آنها با ولتاژ کاری 26
2ـ.5 ارائه توابع هزینه با در نظر گرفتن ضوابط اقتصادی 30
2ـ.6 نتیجه گیری 33
فصل سوم : شبکه های توزیع برق با ولتاژمیانی 34
.1-3 مقدمه 35
.2-3 شبکه نوع اول 36
.1-2-3 بررسی تلفات شبکه نوع اول 37
.2-2-3 بررسی افت ولتاژ شبکه نوع اول 43
.3-3 شبکه نوع دوم 48
.1-3-3 بررسی تلفات شبکه نوع دوم 49
.2-3-3 بررسی افت ولتاژ شبکه نوع دوم 52
.4-3 شبکه نوع سوم 56
.1-4-3 بررسی افت ولتاژ شبکه نوع سوم 58
.2-4-3 بررسی تلفات شبکه نوع سوم 59
.5-3 شبکه نوع چهارم 62
.1-5-3 بررسی افت ولتاژ شبکه نوع چهارم 63
.2-5-3 بررسی تلفات شبکه نوع چهارم 66
.6-3 مقایسه شبکه نوع دوم و سوم 68
.7-3 نتیجه گیری 69
فصل چهارم : تجهیزات سیستم توزیع با ولتاژمیانی 71
.1-4 مقدمه 72
.2-4 تجهیزات سیستم توزیع مرسوم 73
۵
فهرست مطالب عنوان مطالب شماره صفحه
.3-4 تجهیزات سیستم توزیع با ولتاژ میانی 78
.4-4 جداول هزینه سیستم توزیع با ولتاژ میانی و فشار ضعیف 86
.5-4 نتیجه گیری 88
فصل پنجم : انتخاب سطح ولتاژمیانی بهینه 89
5ـ.1 مقدمه 90
5ـ.2 تعریف سطح ولتاژ میانی و بررسی استانداردهای مختلف 91
5ـ.3 بررسی هزینه تجهیزات متأثراز سطح ولتاژ و ارائه جداول و توابع 93
5ـ.4 بررسی تلفات تجهیزات خط متأثر از سطح ولتاژ میانی 100
5ـ.5 انتخاب سطح ولتاژ میانی مناسب برای شبکههای نوع اول ، دوم ، سوم 102
5ـ.6 انتخاب سطح ولتاژ میانی برای شبکه نوع چهارم 106
.7-5 نتیجه گیری 109
فصل ششم : حریم خطوط هوایی شبکه های توزیع با ولتاژ میانی 110
6ـ.1 مقدمه 111
6ـ.2 طبقه بندی سطوح ولتاژ میانی جهت تعیین حریم 112
6ـ.3 تعاریف 112
6ـ.4 حریم خط هوایی از ریل راهآهن 114
6ـ. 5 حریم راهها 114
6ـ.6 حریم خطوط مخابرات و تلفن 115
6ـ.7 حریم خطوط نفت و گاز 116
6ـ. 8 حریم دو خط انتقال با ولتاژ مختلف 116
6ـ.9 فاصله آزاد سیمها از ساختمان و ابنیه 117
.10-6 فواصل مجاز هادیها از یکدیگر 118
.11-6 نتیجه گیری 119
فصل هفتم : انتخاب شبکه نمونه واقعی و پیاده سازی شبکه ولتاژ میانی 120
.1-7 مقدمه 121
.2-7 پیادهسازی شبکه ولتاژ میانی نوع اول روی شبکه نمونه واقعی 122
7ـ.3 شبکه نمونه واقعی برای شبکه ولتاژ میانی نوع دوم 130
7ـ.4 شبکه نمونه واقعی برای شبکه ولتاژ میانی نوع چهارم 133
7ـ. 5 بررسی افت ولتاژروی شبکه های نمونه 136
۶
فهرست مطالب عنوان مطالب شماره صفحه
فصل هشتم : نتیجهگیری و پیشنهادات 139
نتیجهگیری 140
پیشنهادات 142
منابع ومĤخذ 143
فهرست منابع فارسی 144
فهرست منابع لاتین 145
سایتهای اطلاع رسانی 146
چکیده انگلیسی 147
٧
فهرست جدول ها عنوان شماره صفحه
: 1-1 ولتاژهای میانی و فرکانس تغذیه در تعدادی از کشورها 7
: 1-4 لیست تجهیزات سیستم توزیع مرسوم 86
: 2-4 لیست تجهیزات سیستم توزیع با ولتاژمیانی نوع اول 87
: 3-4 لیست تجهیزات شبکه نوع چهارم 88
: 1-5 ولتاژهای نامی سیستم در استانداردIEEE std 141 91
: 2-5 سطوح ولتاژ در رده زیر1kVدر استانداردIEC 38 92
: 3-5 سطوح ولتاژ بین35 kV تا 1kVدر استانداردIEC 38 92
: 4-5 سطوح ولتاژ در استاندارد کانادا 92
: 5-5 تجهیزات خط ولتاژ میانی متأثر از ولتاژ خط باسیم هوایی یا کابل خودنگهدار 99
: 6-5 لیست تجهیزات مربوط به ترانس سه فاز و تکفاز مشترک بین مصرفکنندگان 100
: 7-5 لیست تجهیزات مربوط به ترانس تکفاز نصب در محل مشترکین 100
: 8-5 تلفات مربوط به المانهای متأثرازولتاژ شبکه 101
: 9-5 تلفات وافت ولتاژ درخط با سیم هوایی به طول 1 کیلومتر 103
: 10-5 تلفات وافت ولتاژ درخط با کابل خودنگهدار به طول 1 کیلومتر 104
: 11-5 تلفات وافت ولتاژ در کابل زمینی از پست تا خط به طول 70 متر 104
: 12-5 هزینه احداث خط با سیم هوایی به طول 1 کیلومتربرحسب 104
: 13-5 هزینه احداث خط با کابل خود نگهدار به طول 1 کیلومتر بر حسب 104
: 14-5 هزینه کل ناشی از تلفات و احداث خط با سیم هوایی 105
: 15-5 هزینه کل ناشی از تلفات و احداث خط با کابل خودنگهدار 105
: 16-5 فاصله بین هر هادی با بدنه تیر و اتریه 106
: 17-5 فاصله مجاز عایقی بین هادیهای خط 107
: 1-6 حریم خطوط توزیع وزارت نیرو 113
: 2-6 حریم مربوط به جاده ها وراهها 114
: 3-6 حداقل ارتفاع سیم ( فاصله مجاز قائم هادیها ) از سطح جاده 115
: 4-6 فاصله عمودی دو خط انتقال با ولتاژ مختلف 116
: 5-6 فاصله مجازبین هادیهای خط برای سطوح ولتاژمیانی 118
: 6-6 فاصله مجازهر هادی خط ازبدنه برای سطوح ولتاژمیانی 119
: 1-7 جدول تلفات توان درخط برای نقاط مختلف نصب ترانس در شبکه نوع اول 126
: 2-7 جدول مقایسه تلفات وهزینه برای مکان وظرفیت نهایی ترانسها 127
: 3-7 لیست تجهیزات محذوف از شبکه توزیع فشار ضعیف و هزینه مربوطه 128
: 4-7 لیست تجهیزات و هزینه شبکه ولتاژ میانی 127
: 5-7 هزینه احداث خط برای ولتاژ میانی6/6 kV 130
٨
فهرست جدول ها عنوان شماره صفحه
6-7 : هزینه احداث خط فشار متوسط20kV 131
7-7 : تلفات توان خط, برای نقاط مختلف نصب ترانس شبکه نوع چهارم 135
: 8-7 ارزش آتی هزینه تلفات و احداث برای هر یک از حالات ترانس گذاریC 135

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

: 9-7 مقایسه درصد افت ولتاژ برای شبکه ولتاژ میانی وفشارضعیف 136
: 10-7 مقایسه درصد افت ولتاژدر شبکه نوع دوم وفشار متوسط20 کیلوولت 137
: 11-7 مقایسه درصد افت ولتاژدرشبکه نوع چهارم برای نصب ترانس تکفازدرمحل مشترکین 137
: 12-7 مقایسه درصدافت ولتاژدرشبکه نوع چهارم برای انشعاب ترانس سه فاز 138
٩
فهرست شکل ها عنوان شماره صفحه
: 1-1 سیستم تکفاز تک سیمه استرالیا 8
: 2-1 سیستم تکفاز تک سیمه برزیلی 9
: 3-1 سیستم توزیع1 kV در نپال 10
: 1-2 انشعاب ترانس سه فاز از خط 23
: 2-2 انشعاب ترانس تکفاز از خط 24
: 3-2 فیدر شعاعی ساده 29
: 1-3 دیاگرام تک خطی شبکه نوع اول 36
: 2-3 دیاگرام تک خطی شبکه نوع اول جهت محاسبه تلفات کل شبکه 37
: 3-3 دیاگرام تک خطی جهت مقایسه تلفات خط فشار میانی وفشارضعیف 38
: 4-3 دیاگرام تک خطی جهت محاسبه افت ولتاژ 44
: 5-3 دیاگرام تک خطی جهت مقایسه افت ولتاژ شبکه ولتاژمیانی و فشارمتوسط 46
: 6-3 دیاگرام تک خطی شبکه نوع دوم 48
: 7-3 دیاگرام تک خطی جهت بررسی تلفات شبکه نوع دوم 49
: 8-3 دیاگرام تک خطی شبکه نوع دوم جهت بررسی افت ولتاژ 52
: 9-3 دیاگرام تک خطی جهت مقایسه شبکه ولتاژمیانی وفشارضعیف 55
: 10-3 شبکه ولتاژ میانی نوع سوم 56
: 11-3 امپدانس از دید اولیه ترانس 58
: 12-3 دیاگرام تک خطی شبکه نوع چهارم 63
: 1-6 فاصله آزاد سیمها از ساختمان و ابنیه 117
: 1-7 شبکه توزیع فشار ضعیف شهرک کشت وصنعت مغان 123
: 2-7 محل اولیه نصب ترانسها در شبکه نمونه برای شبکه نوع اول 125
: 3-7 فیدر خروجی پست20 کیلوولت طاووسیه غرب تهران 132
: 4-7 شبکه نمونه برای شبکه نوع چهارم 133
١٠
چکیده :
در سیستم توزیع ایران ازدو سطح ولتاژ400V و 20kV جهت توزیع انرژی بـرق بـین مـشترکین اسـتفاده می شود. استفاده ازاین دوسطح ولتاژ به تنهایی, باعث گسترش بیشترشبکه 20kV شده وهزینـه احـداث زیادی را تحمیل می کند. از طرفی گسترش شبکه 400V نیزباعث تلفات وافت ولتاژ بیـشتر در سیـستم توزیع معمول می شود.
دراین پروژه سطوح ولتاژاستاندارد مورد تأیید وزارت نیرو بین دوسطح ولتاژ مذکور انتخـاب و سـطوح ولتاژ استاندارد انتخابی به دو رده فشار ضعیف وفشار میانی تقسیم شده اند. با توجـه بـه دو رده ولتـاژی,
برای هرکدام شبکه توزیع متناسب با سطح ولتاژ آن ارائه شده اسـت. کـه شـبکه هـای نـوع اول , دوم و سوم برای رده فشارمیانی وشبکه نوع چهارم برای رده فشار ضعیف درنظرگرفته شده است. که هرکـدام از نظرتلفات وافت ولتاژ با سیستم توزیع معمول مقایسه شـده وروابـط لازم جهـت طراحـی بهینـه شـبکه ولتاژ میانی ارائه شده است. ازبین سطوح ولتاژ استاندارد انتخابی برای هر رده وبرای هرنوع شـبکه ارائـه شده , سطح ولتاژمیانی بهینه ازنظر کمترین مجمـوع ارزش آتـی هزینـه تلفـات واحـداث انتخـاب شـده است. استفاده از سطح ولتاژمیـانی درشـبکه توزیـع فعلـی باعـث کـاهش طـول شـبکه 20kV ونیزتعـداد پستهای زمینی فشارمتوسط خواهد شد. ازطرفی هزینه ناشی ازتلفات نیز بدلیل کاهش طول شـبکه فـشار ضعیف , کاهش می یابد. باتوجه به بررسیهای انجام شده سطح ولتاژ 6/6 kV به عنوان سطح ولتاژ بهینـه برای شبکه های نوع اول , دوم وسوم و سطح ولتاژ 1 kV برای شبکه نوع چهارم انتخاب شده انـد. پـس ازانتخاب این دوسطح ولتاژ, انواع شبکه ولتاژمیانی روی شبکه نمونه واقعـی, پیـاده سـازی شـده ونتـایج لازم بدست آمده است.
١
مقدمه :
در سیستم توزیع معمول , پستهای فوق توزیع از طریق شبکه فشار متوسط20kV پستهای فشار متوسط واقع در سطح منطقه را تغذیه میکنند. این پستهابا تبدیل سـطح ولتـاژ فـشار متوسـط بـه فـشار ضـعیف ، انرژی بـرق را بـا سـطح ولتـاژ قابـل اسـتفاده در اختیـار مـصرفکننـدههـا قـرار مـیدهنـد. در برخـی از مناطق, اغلب در حواشی شهرها و مناطق روستایی مستقیماً از سطح ولتاژ فشار متوسط استفاده شده و در نقاط بار ترانسهای 20 / 0/4 kV تعبیه و مصرفکنندگان تغذیه میشوند.
انتخاب سطح ولتاژ برای یک خط به پارامترهای مختلفی وابسته است که از جمله آنها میتوان بـه طـول فیدر ، قدرت انتقالی ، هزینه احداث ، تلفات ، حریم و غیره اشاره نمود. در صورتی کـه از سـطح ولتـاژ بالاتری استفاده شود ظرفیت آزاد اضافی در خطوط ایجاد خواهد شد. که در اینـصورت هزینـه اضـافی برای احداث ظرفیت آزاد خط پرداخت می شود. از طرفی اگر این سطح ولتاژ نـسبت بـه طـول فیـدر و قدرت انتقالی آن پایین تر از حد استاندارد انتخاب شودتلفات و افـت ولتـاژ بیـشتر و حتـی بـیش از حـد مجاز خواهد بود. که ارزشآتی تلفات احتمالاً بیشتر از هزینه احداث اضافی خواهد بود که باید صـرف احداث خط با سطح ولتاژ بالاتر میشد.
در طراحی سیستم توزیع پس از برآورد بار و تعیین مراکز چگـالی بـار ، عمـل جایـابی پـستهای 20kV
صورت میگیرد. پس از آن از طریق کابل زمینی یا خط هوایی فشارمتوسط این پستها تغذیه می شـوند.
که پس ازتبدیل یکباره سطح ولتاژ فشار متوسط به فشارضعیف انرژی برق دراختیار مصرف کننده گان قرار میگیرد.اما سوالی که اینجا مطرح میشود این است که اگرازیک سطح ولتاژ بین400V و 20 kV
استفاده شودچه اتفاقی میافتد. به عبارتی دیگر بـه جـای اینکـه از فیـدرهای 20kV بـا طـول نـسبتاً زیـاد استفاده شود از یک سطح ولتاژمیانی بین 400V و 20kV اسـتفاده کـرده و بـدین ترتیـب هزینـه شـبکه
20kV و همچنین طول آنرا کاهش داده و این سطح ولتاژ میانی تا نزدیکتـرین نقطـه بـه بارهـای انتهـایی منتقــل شــود در ایــن صــورت منــافع احتمــالی زیــادی خواهــد داشــت. زیــرا پــستهای زمینــی حــذف خواهندشدویاحداقل تعدادآن به نصف کاهش پیدا میکند. ازطرفی طول فیدرهای20kV نیـز کوتـاهتـر خواهندشد. از سوی دیگر چون ازشبکه هوایی فشارضعیف اغلب بـرای توزیـع اسـتفاده مـیشـود وایـن شبکه باشبکه توزیع فشارمیانی بطورمشترک برروی یک تیر احـداث خواهندشـد هزینـه احـداث شـبکه ولتاژمیانی کاهش می یابد. در مناطق خارج شهر یا مناطق روستایی و ویلایی که بارها در فواصـل نـسبتاً طولانی از یکدیگر قرار دارند. در سیستم توزیع فعلی همـانطور کـه در بـالا ذکـر شـد از خطـوط فـشار متوسط 20kV برای توزیع انرژی استفاده میشود.
٢
هزینه احداث خط وپستهای 20kV زیاد وقابل توجه اسـت. مخصوصاًدرپـستهای هـوایی هزینـه تـرانس پست وابسته به سطح ولتاژ آن میباشد. درصورتیکه ازیک سطح ولتاژمیانی مناسب جهت توزیع انـرژی برق استفاده شودقطعاً هزینه احداث کاهش پیدا خواهدکردبا این فرض که خروجی پستهای فوق توزیع دارای چنین سطح ولتاژ میانی باشند. ازطرفی تلفات درخط, درصورتیکه ظرفیـت یاقـدرت توزیـع شـده بزرگ ویا فیدرطولانی باشد نسبت به شبکه فشار متوسط بیشترخواهد بود. در موارد خاص هزینه خط با سطح ولتاژ میانی علاوه بر تلفات بدلیل افزایش سطح مقطع هادی جهت داشتن ولتاژ مجاز دربارانتهـایی وهمچنین قدرت کششی قابل تحمل توسط تیرها وکنسولها هزینـه احـداث آن بیـشتراز هزینـه احـداث شبکـه فشارمتوسط می باشد. بنابراین لـزوم بررسی حالتهای مختلف ضـروریست. در سیستمهای توزیـع انرژی برق ایران مناطق توزیع انرژی را میتوان به دوقسمت تقسیم نمودکه عبارتند از :
مناطق شهری
مناطق روستایی و حومه
با توجه به دو طبقهبندی فوق ، محل و چگالی بارها , هر یک از شبکه های ولتاژ میانی باید برای هـر دو مورد متناسب با آن طراحی شود. که این کار به طور کامل و با جزئیات صورت گرفته و تلفـات و افـت ولتاژ وروابط مربوط به هر کدام جهت طراحی بهینه ارائه شدهانـد. در اسـتفاده از شـبکه ولتـاژ میـانی در مناطق شهری نکته بسیار مهم و اساسی وجود دارد که باید به آن پرداخته شود و آن نحـوه تبـدیل ولتـاژ فشار متوسط20kV به فشار میانی میباشد. در صورتیکه خروجی پستهای فوق توزیع دارای فیـدر ولتـاژ میانی باشد مشکل احداث پست زمینی و هوایی فشار متوسـط بـه فـشارمیانی بـرای فیـدرهای بـا طـول و قدرت انتقالی پایین حل خواهد شد. درصورتیکه طول فیدر طولانی و بارسنگین باشد. طوری که انتقـال آن با سطح ولتاژ میانی مقدور نباشد از سطح ولتاژ فشار متوسط استفاده می شود ودرنقـاط مختلـف نیـاز به پستهای هوایی فشار متوسط به میانی خواهد بود. در احداث پستهای هـوایی محـدودیتهـایی وجـود دارد ازجمله برای پستهای تا 400kVA میتوان به راحتی پست هوایی احداث و بهرهبـرداری نمـود.امـا برای ظرفیتهای500kVA و 630 kVA نیاز به مجوز بوده و احداث این پستها بـا مـشکل اجرایـی همـراه است.[2] این محدودیت در اجرای پـستهای هـوایی باعـث محـدود شـدن طـول فیـدرهای ولتـاژ میـانی خواهد شد. بنابراین در صورتی که ظرفیـت پـست بـالاتر از ایـن مقـدار باشـد یـا بایـد دو پـست هـوایی احداث یا اینکه پست زمینی بررسی شود. اما آنچه بدیهی به نظـر مـیرسـد احـداث پـست زمینـی فـشار متوسط به فشارمیانی و در ادامه احداث پستهای هوایی فشارمیانی به فشار ضـعیف, هزینـه بـیش از پـیش افزایش یافته و ارزش آتی هزینه اضافی را که برای احداث پستها پرداخت می شود بـیش ازارزش آتـی تلفات کاهش یافته خواهد بود. در این پروژهبا توجه به توضیحات ارائه شده در فوق آرایشهای مناسـب
٣
برای خطوط ولتاژ میانی ارائه و همچنین سطح ولتاژ میانی مناسب با در نظـر گـرفتن نـوع منطقـه اعـم از شهری یا روستائی بودن آن انتخاب و روی یک شبکه نمونه واقعی پیادهسازی خواهد شد.
مسئله مهم دیگرحریم خطوط میباشد. شبکه ولتاژ میانی زمانی اقتصادیتر خواهد بود که از خط با سیم هوایی استفاده شود. زیرا در غیر اینصورت باید از کابل خود نگهدار و یا کابل زمینـی اسـتفاده شـودکه این خود در مواردی باعث غیر اقتصادی شدن طرح خواهد شد. بنابراین بررسی حریم خطـوط یکـی از مباحث این پروژه را تشکیل میدهد.
در این پروژه ابتدا به بررسی تلفات و افت ولتاژ در تجهیزات سیستم توزیع و رابطه افـت ولتـاژ و تلفـات آنها با سطح ولتاژکاری و همچنین مقایسه تلفات ترانس سه فاز و تکفاز برای قدرتهای مساوی پرداختـه شده است. سپس در ادامه تابع هزینه و روابط مربوطه جهت محاسبه ارزش آتی هزینـه تلفـات وسـرمایه گذاری ارائه می شوند. درفصل بعد انواع آرایشهای شبکه توزیع با ولتاژ میـانی ارائـه و از نظـر تلفـات و افت ولتاژ مورد بررسی قرار میگیرند. در فصل چهارم تجهیزات مربوط به شبکه ولتاژ میانی بحث شـده و درفصل پنجم انواع استانداردهای بینالمللی در مورد سطوح ولتاژ بررسی و با توجه به انوع آرایشهای خط, سطح ولتاژ میانی مناسب انتخاب شده است. در فصل ششم حریم خطوط برای شـبکه ولتـاژ میـانی تعریف و فواصل هادیها برای خطوط ولتاژمیانی ازیکدیگروتأسیـسات اطـراف آن بررسـی شـده اسـت.
در فصل هفتم شبکه نمونه با توجه به نوع شبکه ولتاژ میانی انتخاب و روی آن پیاده سازی شده و نتـایج بدست آمده بررسی و پیشنهادات لازم ارائه شده است.
۴

فصل اول
کلیات
۵
.1-1 هدف :
همانطوریکه در مقدمه ذکر شد درایـن پـروژه یـک سـطح ولتـاژ میـانی بهینـه انتخـاب و از نظـر فنـی و اقتصادی تأثیر این سطح ولتاژ در سیستم توزیع ارزیابی می شود. بررسی فنی شامل :
تلفات
افت ولتاژ
بررسی اقتصادی شـامل بدسـت آوردن ارزش آتـی تلفـات کـاهش یافتـه احتمـالی و همچنـین هزینـه احداث اضافی برای پیادهسازی شبکه ولتاژ میانی و در نهایت بدست آوردن هزینه فایده میباشد. قبل از انجام پروژه قطعاً نمیتوان اظهار نظرکردکه افت ولتاژ و تلفات کاهش مییابند یا خیر و یا اینکـه هزینـه احداث افزایش خواهد یافت و یا بالعکس. زیرا با اعمال شبکه ولتاژ میانی پستهای زمینـی20kV حـذف خواهند شد. همچنین طول خط فشار متوسط نیز کاهش خواهد یافت. از طرفی یک هزینه اضافی جهت احداث خطوط فشار میانی صرف خواهدشد. بنابراین اظهار نظر در مورد کاهش یا افزایش هزینه قبل از انجام پروژه خالی از اشکال نمیباشد.
در مورد کاهش یا افزایش تلفات و افت ولتاژ در خط نیز همین وضعیت حاکم است. تـرانس بـه عنـوان وسیلهای که تقریباً تلفات قابل توجهی را در سیستم توزیع داشته و افزایش تعداد این دستگاه در سیـستم توزیع نشانه افزایش تلفات می باشد. بنابراین انتخاب محل , ظرفیت و تعـداد تـرانس چـه از نظـر هزینـه وتلفات تعیین کننده خواهد بود. همچنین ترانس بدلیل امپدانس سیمپیچی اولیه و ثانویه آن اگر ظرفیـت و محل آن بطور صحیح انتخاب نشودباعث افت ولتاژ بیش ازحد مجازدرثانویه آن خواهد شد چه برسد به اینکه سطح ولتاژ از طریق خط فشارضعیف و کابل سرویس بدست مشترکین برسد. بنابراین بـا توجـه به مطالب فوق هدف ازانجام این پروژه درگام اول انتخاب مناسبترین و بهینهترین سطح ولتاژ میانی بـا توجه به سیستم توزیع ایران و در گام بعدی بررسی تـأثیر اسـتفاده از ایـن سـطح ولتـاژ میـانی درتلفـات، افت ولتاژ و همچنین ارزش آتی هزینه کاهش یا افزایش یافته تلفات واحداث خط فشار میانی می باشد.
۶
.2-1 پیشینه تحقیق :
سطح ولتاژمیانی درشبکه توزیع برق درکشورهای مختلف ازسالها قبل مورد استفاده قـرار گرفتـه اسـت.
جدول( 1 ـ ( 1 بطور خلاصه سطوح ولتاژ زیر22 kV جهت تغذیه بارها و همچنین فرکانس نامی شـبکه رادرکشورهای مختلف نشان می دهد.[15] در کشور ما نیز این تحقیقات بطـور محـدود و در برخـی از برق منطقهایها انجام شده و مقالاتی نیز در این زمینه ارائه شده است. در ادامه این بخش بـه تعـدادی از تجربیات و تحقیقات کشورها در جهت تغییر سطح ولتاژ موجـود و اسـتفاده از یـک سـطح ولتـاژ میـانی دیگر و همچنین تجربیاتی در جهت تغییر ساختار سیستم توزیع و آرایش جدید شبکه پرداخته میشود.
جدول ( 1 ـ : ( 1 ولتاژهای میانی و فرکانس تغذیه در تعدادی از کشورها
ولتاژتغذیه ( ( kV فرکانس ( ( HZ کشور
13/2 و 6/88 50 آرژانتین
11 و 6/6 و 19/1 50 استرالیا
12/5 و 7/2 و 0/6 60 کانادا
11/2 و 13/8 50 و60 برزیل
10 و 6 و 0/66 50 آلمان
6/6 50 و60 ژاپن
3 و 1 و 11 50 نپال
.1-2-1 تغییر سطح ولتاژ از 10 kV به 17/3 kV در ایرلند[16]
پروژه فوق در جهت تغییر سطح ولتاژ10kV شبکه روستایی به 17/3 kV انجام شده که ظرفیـت سیـستم را بدون هیچگونه تغییری در شبکه 1/73 برابر افزایش میدهد. مناطق روسـتایی در جمهـوری ایرلنـد بـا مساحت70000 کیلومترمربع توسط66000 کیلومترخطـوط هـوایی 10kV تغذیـه مـیشـوند. ایـن شـبکه بصورت سه فاز سه سیمه بوده وتغذیه تکفاز آن دو سیمه (فاز به فـاز) مـیباشـد. سیـستم فـوق از لحـاظ اقتصادی جهت تغذیه مناطق روستایی پراکنده و با بار کم طراحی شده و به مدت 30 سال بدون اشـکال کارکرده است. با افزایش بار مصرفی و تغذیه مصارف بین ( 500 kVA تا ( 1000kVA شـبکه فـوق بـا مشکلاتی چون افت ولتاژ و افزایش تلفـات مواجـه گردیـد. از جملـه راهحلهـایی کـه بـرای ایـن شـبکه پیشنهادگردید تغییر سطح ولتاژ از10kV به17/3 kV بود. بدین ترتیب با افزودن زمین به سیستم سـه فـاز
(چهار سیمه) و با توجه به طراحی شبکه موجود ، تغییری در سطح عایقی ایجاد نخواهدشـد. در سیـستم تکفاز نیز آرایش فاز به فاز بصورت فاز زمین تغییر کـرده تـا هیچگونـه تغییـری در شـبکه تکفـاز ایجـاد
٧
نشود. پس از پیادهسازی این روش, از لحاظ اقتصادی طرح فوق با توجه به افزایش ظرفیت ایجـاد شـده
(1/73) برابر, دارای هزینهای معادل نصف هزینه احداث یک خط10 kVجدید میباشد.
.2-2-1 استفاده از سیستم تکفاز تک سیمه در آفریقای جنوبی[18]
به دلایل زیر برقرسانی با روش تکفاز( تک سیمه )با استفاده ازولتاژمیانی به مناطق با بـارکم و روسـتایی درآفریقای جنوبی مورد توجه و بررسی بوده است :
ضریب استفاده از شبکههای روستایی بین 10% تا 30% میباشد.
مشتریان قادر به بازپرداخت هزینههای توسعه و سرمایهگذاری نیستند.
بدین لحاظ بررسیهای مختلفی درجهت کاهش هزینهها و اسـتفاده مناسـبتـر از شـبکه صـورت گرفتـه است. که ازآن جمله استفاده از سیستم تکفاز و تک سیمه با استفاده ازولتاژمیانی میباشد. ایـن روش بـا توجه به تجربیات کشورهای مختلف ازجمله استرالیا و برزیل دراین زمینه به دو شکل انجام میشود.
الف) سیستم استرالیایی :
در این روش توسط ترانس، شبکه تکفاز تک سیمه از شبکه فشارمتوسط مجزا میگردد. شکل 1) ـ ( 1
نمایـی از سیستم فوق را نشان میدهد.

ترانس مجزاکننده
22kV

220V
ترانس توزیع
شکل ( 1 ـ : ( 1 سیستم تکفازوتک سیمه استرالیایی
از مزایای این سیستم عدم تأثیرشبکه تکفاز روی حفاظت اتصال کوتاه شبکه فشارمتوسط مـیباشـد و از معایب این سیستم میتوان به هزینه ترانس مجزا کننده اشاره نمود.
ب) سیستم برزیلی :
دراین روش که درشکل ( 1 ـ ( 2 نشان داده شـده اسـت ، شـبکه تکفازمـستقیماً بـه شـبکه فـشارمتوسط متصل میشود.
٨

12/7kV

220V
ترانس توزیع
شکل ( 1 ـ : ( 2 سیستم تکفازوتک سیمه برزیلی
عمده مزیت این روش اتصال کم هزینه آن به شبکه سنتی میباشد و عیب عمده آن تأثیر روی حفاظـت اتصال کوتاه زمین و انتقال جریان نامتعادلی بارها به شبکه اصلی میباشد. در منـاطقی کـه از تـراکم بـار بالاتری برخوردار هستند به دلیل اینکه امکـان متعـادلسـازی بـار وجـود دارد از روش برزیلـی اسـتفاده مــیشــود. پــروژههــای ابتــدایی در ســطح ولتــاژ 1kV تکفــاز بــا ( بــار ( 16 kVA و 1/73 kV ســه فــاز با (بار ( 25 kVA با سیستم تک فاز تک سیمه به مرحله اجرا گذاشـته شـد. مطالعـات انجـام شـده نـشان میدهد که استفاده ازاین سیستم در فیدرهای با طول بسیارکم با صرفه اقتصادی همـراه اسـت و سیـستم تکفاز تک سیمه با روش استرالیایی نیز در مسافتهای بیش از 8/5 کیلومتر مناسب است.
.3-2-1 سیستم توزیع ولتاژمیانی در نپال[19]
سیستم توزیع درنپال باسطح ولتاژ میانی1 kV و هادیها ACSR وافت ولتـاژ % 5 طراحـی شـده اسـت.
شکل ( 1 ـ ( 3 نمایی از سیستم توزیع 1kV در نپال را نـشان مـیدهـد. در ایـن سیـستم در بخـشهایی از کابل هوایی ( خودنگهدار ) علیرغم اینکه گران تـر ازهادیهـای هـوایی اسـت اسـتفاده شـده اسـت. از جمله دلایل اینکار میتوان به موارد زیر اشاره نمود :
فاصله عایقی کمتر
دکلهای کوچکتر ( یا حتی استفاده از درختان به جای دکل )
عدم نیاز به مقره
بالا رفتن ایمنی
طراحی و ساخت لوازم جانبی سیستم فوق توسط صنایع محلی
چشم انداز بهتر از دیدگاه توریستی
کاهش دزدی برق از سیستم توزیع
٩

33kV
33 / 1kV
1kV / 220V
1kV / 400V
شکل ( 1 ـ : ( 3 سیستم توزیع 1kV در نپال
با توجه به اینکه در مناطق روستایی میزان بار بسیار کم در حدود 100W برای هر مشترک , بدلیل اینکه عمده مصرف برق جهت روشنایی استفاده میشـود. اسـتفاده از ولتـاژ فـشار ضـعیف حـداکثر تـا شـعاع
2کیلومتر را میتواند تغذیه نماید و لیکن استفاده از سطح ولتاژ میانی 1kV این امکان را میدهد که این محدوده تا شعاع 5کیلومتر افزایش یابد.
مزایای استفاده از این سیستم که قبلاً در نروژ پیاده شده است عبارتست از :
افت ولتاژ پایینتر
استفاده از سیستم سه سیمه به جای چهار سیمه
خریداری اقتصادی ترانسهای ولتاژ بالاتر از لحاظ انـدازه و سـاخت داخلـی تـرانسهـای ولتـاژ میـانی
( این ترانسها با قدرت1kVA ، 2kVA و5 kVA برای تکفاز و10kVA و25kVA برای سه فاز بصورت خشک ساخته میشوند )
کاهش خطرات اتصال کوتاه با کاهش سطح ولتاژ
کاهش دزدی برق از سیستم توزیع
١٠
.3-1 روش کار و تحقیق :
در این پروژه که هدف انتخاب سطح ولتاژمیانی بهینه برای شبکه توزیع ایران وپیاده سازی آن می باشد.
روشی که دراین پروژه برای انجام آن انتخاب شده روش علمی مبتنی بـر واقعیتهـای عملـی موجـود در شبکه توزیع ایران است. به عبارتی ضمن انجام محاسبات علمی شرایط عملـی واجرایـی نیزدرنظرگرفتـه می شود. زیرا زمانی طـرح علمـی قابـل اجـرا مـی باشـد کـه محـدودیتها و شـرایط عملـی واجرایـی در نظرگرفته شود. با توجه به اهداف پروژه مبنی برانتخاب سطح ولتاژ میانی بهینه و همچنین بررسی فنـی و اقتصادی استفاده از ولتاژمیانی , پروژه در چهار مرحله جهت انجام قالب بندی شده است.
در مرحله اول المانها وتجهیزات مختلف سیستم توزیع که در افت ولتاژوتلفـات موثرانـد مـورد بررسـی قرارمی گیرند. اهمیت این مرحله بخاطر استفاده از نتایج حاصـله ازآن بـرای انتخـاب سـطح ولتاژمیـانی بهینه درمرحله سوم وبررسی تلفات وافت ولتاژدر مرحله دوم است. درایـن مرحلـه المانهـایی کـه نقـش اصلی در تلفات و افت ولتاژدرسیستم توزیع دارند مورد بررسی قرار می گیرند که ازآن جمله می تـوان به ترانس اشاره نمود. تلفات خود ترانس واینکه ازترانس سه فـاز ویـا تکفـاز بـا قـدرت معـادل بـاآن در پست استفاده شود و رابطه افت ولتاژ ترانس با سطح ولتاژکاری آن بررسی می شود. درادامه این مرحلـه ارزش آتــی تلفــات وهزینــه احــداث مــورد بررســی قــرار گرفتــه وروابــط مربوطــه ارائــه شــده انــد. ایــن بخش, نقش تعیین کننده ای را درانتخاب سطح ولتاژمیانی وهمچنـین مقایـسه سیـستم توزیـع معمـول بـا سیستم توزیع با استفاده از ولتاژمیانی دارد. دراین مرحله تابع هزینه ای معرفی شده که ازدو مولفه هزینـه تلفات و هزینه احداث تشکیل شده است.
( 1 – 1 )ارزش آتی هزینه تلفات + ارزش آتی هزینه سرمایه گذاری F =
مجموع این دو مولفه در مقایسه دو سیـستم توزیـع مـذکور و انتخـاب سـطح ولتـاژ میـانی تعیـین کننـده خواهد بود. وکمترین مقدار برای تابع فوق , بهینه ترین حالت می باشد. تفاضل تابع هزینه بـرای سیـستم توزیع با ولتاژ میانی و سیستم توزیع مرسوم مقدار هزینه فایده را خواهدداد.
در مرحله دوم بادرنظرگرفتن شرایط فیزیکی مناطق مختلف درایران شبکه های ولتاژمیانی متناسب با آن ارائه می شوند. درادامه, بررسی تلفات و افت ولتاژ برای این شبکه ها انجام شده وبا شبکه توزیع معمول مقایسه و روابط لازم جهت طراحی بهینه شبکه ولتاژ میانی ارائه می شوند.
در مرحله سوم با توجه به نوع شبکه ارائه شده درمرحله دوم, تجهیزات سیستم توزیع با ولتاژمیانی تعیـین می شود. سپس سطح ولتاژمیانی درگام اول از بین سطوح ولتاژ استاندارد ودرگام دوم بـا در نظرگـرفتن چند ظرفیت انتقالی با توجه به شبکه توزیع ایران وطول فیدر1کیلومتری وبااسـتفاده از تـابع هزینـه ارائـه شده درمرحله دوم ونتایج بدست آمده ازمرحله اول انتخاب می شود. در این مرحله با توجـه بـه طـول و
١١
قدرتهای مختلف که بطور مفصل علت انتخاب آنها بحث خواهد شد و با استفاده از تابع هزینـه , سـطح ولتاژی که کمترین هزینه را از نظر مجموع ارزش آتی تلفات وسرمایه گذاری دارد انتخاب می شود.
در مرحله چهارم با توجه به انواع شبکه های ولتاژمیانی ارائـه شـده درمرحلـه دوم , شـبکه نمونـه واقعـی متناسب با آن انتخاب و شبکه ولتاژمیـانی روی آن پیـاده سـازی مـی شـود. درنهایـت شـبکه ولتاژمیـانی طراحی شده با شبکه توزیع مرسوم مقایسه و نتایج حاصله ارائه خواهد شد.
١٢

فصل دوم
رابطه تلفات وافت ولتاژدرتجهیزات سیستم
توزیع باولتاژکاری و ارائه تابع هزینه
١٣
.1-2 مقدمه :
در این فصل ابتدا ضرایب و تعاریف مهم ارائه سپس به بررسی اجزاء مهم تلفات ازقبیل ترانس ، خطوط و ... پرداخته می شود. هدف اصلی از این فصل بررسی تلفات اجزائی که نقش مهمی در تلفـات شـبکه توزیع دارند و اینکه تلفات در آنها تابعی از سطح ولتاژ خط می باشد. چون در فصول آینده نیاز بـه ایـن است که تلفات چه تجهیزاتی با سطح ولتاژ آن رابطه دارد. به همین دلیل نیاز به بررسی آن در این فصل ضروری به نظر می رسد. همچنین با توجه به نیاز برای مقایـسه تلفـات در تـرانس سـه فـاز و تکفـاز ایـن مقایسه انجام می شود. در بخشهای بعدی این فصل افت ولتاژ در ترانس ، خط و اجزائی که افـت ولتـاژ درآنها با سطح ولتاژ کاری متناسـب اسـت بررسـی مـی شـود. ایـن بـه خـاطر وجـود تجهیـزات اضـافی درسیستم توزیع با ولتاژمیانی است. که مهمترین آنها ترانس می باشدکه نقش عمده ای را درافـت ولتـاژ شبکه دارد. درانتهای فصل تابع هزینه با توجه به تلفات و هزینه سرمایه گذاری ارائه شده است. این تـابع جهت انتخاب سطح ولتاژمیانی و همچنین مقایسه شبکه توزیع مرسوم با شـبکه ولتاژمیـانی و نیـز بدسـت آوردن هزینه فایده بکارمی رود.
١۴
.2-2 تعاریف و ضرایب کاربردی :
تعریف تلفات :
آن بخش از انرژی الکتریکی که به کار مفید تبدیل نشود، تلفات نام دارد.
تلفات انرژی :
مقدار متوسط تلفات توان در دوره مورد مطالعه می باشد. که از رابطه زیر به دست می آید :
 T  PLossmax  FLS( 1 - 2) تلفات انرژی
که :
: PLossmax تلفات توان ماکزیمم ( ( kW
: FLs ضریب تلفات
: T دوره زمانی ( ساعت )
ضریب بار :
ضریب بار شاخص دیگری است که بـرای بررسـی مـصارف مـی توانـد مـورد اسـتفاده قـرار گیـرد. در حقیقت این ضریب تابعی است از انرژی و توان انتقالی ،که مقدار آن درهر مصرف کننده ازرابطـه زیـر به دست می آید: [7]
( 2 - 2 ) انرژی در دوره T  ضریب بار (پیک بار) T  رابطه ( 2 - 2) را می توان بصورت رابطه زیر نوشت : ( 3 - 2 ) Pav  ضریب بار P max ضریب تلفات :
شاخص دیگری که در مطالعات بار مورد اسـتفاده قـرار مـی گیـرد ، ضـریب تلفـات مـی باشـد. کـه در حقیقت از نسبت تلفات انرژی دردوره مورد مطالعه به حداکثر تلفات توان ( یا تلفات در بار ماکزیمم )
به دست می آید .[7] این تعریف را می توان بـه صـورت نـسبت تلفـات تـوان متوسـط بـه تلفـات تـوان ماکزیمم بصورت زیر نشان داد :
( 4 - 2 ) av ( P Loss ضریب تلفات max P Loss رابطه ضریب بار و ضریب تلفات :
در حالت کلی همواره برای ضریب تلفات و توان رابطه زیرصدق می کند.[7]
F 2Ld  FLs  FLd( 5 - 2 )
١۵
که :
: FLd ضریب بار
: FLs ضریب تلفات
بر اساس برخی مطالعات تجربی رابطه زیر برای این دو ضریب ارائه شده است .[7]
FLs 0 .3 FLd 0.7F 2Ld( 6 - 2 )
.3-2 اجزاء تلفات و رابطه آنها با سطح ولتاژ :
در این بخش تلفات تجهیزاتی از سیستم توزیع بررسی می شود که نقش عمـده ای را در تلفـات دارنـد.
همچنین رابطه تلفات این تجهیزات با افت ولتاژ مورد بررسی قرار می گیرد.
.1-3-2 تلفات ترانس
تلفات درترانس توزیع شامل دو مؤلفه است :
الف) تلفات مسی :
تلفات مسی یا تلفات ژول که در سیم پیچیهای ترانسفورماتورها ایجاد میگردد ، یکـی از عوامـل اصـلی تلفات در ترانسفورماتورها می باشد. و عملاً درصد عمده ای را به خود اختصاص می دهد. بـا توجـه بـه اینکه این بخش ازتلفات مستقیماً به جریان عبوری از ترانس بستگی دارد. در بی باری مقـدار آن تقریبـاً معادل صفر و در حالتیکه توان عبوری ازآن برابر توان اسمی باشـد مقـدار تلفـات بـارداری نیـز بـه حـد اسمی خود می رسد. در حالت کلی تلفات بارداری در بار دلخـواه S را مـی تـوان بـه صـورت تـابعی از مقادیر اسمی و مطابق رابطه زیر نشان داد.[5]
LL  LL n ( SS ) 2( 7 – 2 )

n
که :
: Sn قدرت اسمی ترانس ( ( kVA
: LL تلفات بارداری ترانس در بار دلخواه ( ( kW
S: بار انتقالی از ترانس ( ( kVA
: LLn تلفات بارداری ترانس در بار نامی ( ( kW
ب) تلفات بی باری :
تلفات بی باری ترانس ناشی از دو مولفه می باشدکه عبارتند از :
جریان مربوط به تلفات هسته
جریان مغناطیس کننده
برآیند این دو جریان, تلفاتی را در ترانس ایجاد می کند که به تلفات بی باری موسوم است. لازم به
١۶
ذکر است که جریان مغناطیس کننده فقط باعث تلفات مسی می شودکه از آن صرفنظر می شود.
تلفات توان درآهن از رابطه زیر به دست می آید: [1]
PFe  K e B 2m f 2  K h Bm 2 fW Kg( 8 - 2 )
که :
: Bm چگالی شار هسته ترانس ( Wb ) m 2 f : فرکانس شبکه ( ( Hz : K e ضریب تلفات فوکو : K h ضریب تلفات هیسترزیس عبارت اول سمت راست رابطه ( ( 8 - 2 مربوط به تلفـات فوکـو و عبـارت دوم آن مربـوط بـه تلفـات هیسترزیس است. این تلفات برای هرترانس چه در طول بی باری و بارداری تـرانس مقـدارثابتی بـوده و در هنگام محاسبه با ضریب تلفات FLS = 1 لحاظ خواهند شد.
ج) مجموع تلفات انرژی در ترانس :
کل تلفات انرژی در ترانس ها در اثر دو عامل تلفات بارداری و بی باری به وجود می آید ، کـه مقـدار آنرا درحالت کلی به صورت زیر می توان نشان داد :
( 9 - 2 ) W Loss  T [ PNL  PFL . K 2 . F Ls ] 2 ) ( 10 - S K  Sn که : : FLs ضریب تلفات
: PFL تلفات مسی ترانس در بار نامی ( ( kW
T: تعداد ساعات مؤثر سالیانه که ترانس تحت اعمال ولتاژ است ( ساعت )
: PNL تلفات بی باری ترانس ( ( kW
: K نسبت بار کشیده شده از ترانس به ظرفیت نامی آن
.2-3-2 رابطه تلفات ترانس با سطح ولتاژ کاری
دراین بخش رابطه تلفات ترانس برای قدرت ثابت با سطح ولتاژ آن بررسی مـی شـود. نتیجـه ای کـه از این بخش حاصل می شود. درانتخاب سطح ولتاژ میانی مورد استفاده قرارمی گیرد.
.1-2-3-2 رابطه تلفات مسی ترانس با سطح ولتاژ
تعداد دورسیم پیچی های اولیه و یـا ثانویـه تـرانس از رابطـه زیرکـه نـسبت ولتاژفـاز بـه ولتـاژ روی هـر حلقه است محاسبه می شود.[1]
( 11 - 2 ) VS TS  Et ١٧
که :
: VS ولتاژ فاز ( ( kV
: Et ولت بر دور هر فاز ( ( kV
: TS تعداد دور فاز
ولت دور یا Et از رابطه ( ( 12 - 2 به دست می آید.[1]
Q( 12 - 2 ) Et  K

که :
: Q قدرت ظاهری ترانس( ( kVA
: K ضریب ثابت
بــا جایگــذاری رابطــه ( ( 12 – 2 در رابطــه ( ( 11 - 2 و همچنــین جــایگزینی ولتــاژ VS فــاز بــا ولتــاژ خط Vm رابطه زیر بدست می آید :
( 13 - 2 ) Vm TS  K 3 Q جریان هر فاز ترانس با رابطه ( ( 14 - 2 معادل است : IS  Q ( 14 - 2 ) 3
3Vm

که :
: Q قدرت ظاهری سه فاز ترانس( ( kVA : Vm ولتاژ خط میانی( ( kV
سطح مقطع سیم پیچی از رابطه نسبت جریان فاز به چگالی جریان سیم بدست می آید.
( 15 - 2 ) IS aS  δ : a S سطح مقطع سیم پیچی(( mm2 : δ چگالی جریان هادی ( A ) mm 2 با جایگذاری رابطه ( ( 14 - 2 در رابطه ( ( 15 - 2 رابطه زیر بدست می آید : ( 16 - 2 ) Q a S  3Vm δ
مقاومت اسمی سیم پیچی ازرابطه زیربدست می آید :
( 17 - 2 ) T S L mts ρ R S a S که : : ρ مقاومت ویژه سیم ( ( Ω mm 2 m ١٨
: TS تعداد دور سیم پیچی
: a S سطح مقطع سیم پیچی ( mm2) : Lmts طول حلقه سیم پیچی ( m)
تلفات مسی سیم پیچی از رابطه ( ( 18 - 2 به دست می آید :
PLoss  3 RS I 2S( 18 -2 )
بــا جایگــذاری روابــط ( ( 17 - 2 و ( ( 14 - 2 در رابطــه ( ( 18 - 2 و پــس از ســاده ســازی رابطــه زیــر بدست می آید :
( 19 - 2 ) Q δLmts PLoss  ρ K همانطوری که از رابطه ( ( 19 - 2 مشاهده می شود تلفات مسی مستقل از سطح ولتاژ خط بوده و تـابعی از ظرفیت آن است.
.2-2-3-2 رابطه تلفات آهن با سطح ولتاژ
تلفات توان آهن ترانس از رابطه زیر به دست می آید :
PFe  Kh fB2m  Ke f 2 B 2mW Kg( 20 - 2 )

رابطه ( ( 20 - 2 تلفات توان درآهن ترانس را نشان می دهد که تابعی از چگالی شـار، فرکـانس و وزن آهن می باشد. از طرفی ولت بر دور هر فاز نیز رابطه ای با فرکانس , چگالی شـار و سـطح مقطـع هـسته داردکه با ثابت فرض کردن E t ولتاژ روی هردور فاز, رابطه زیر برای E t بصورت زیرمی باشد.[1]
( 21 - 2) Et  4.44 fBm A با جایگذاری E t با رابطه ( ( 12 - 2 برای سطح مقطع آهن رابطه زیر بدست می آید : ( 22 - 2 ) K Q A  4.44* f * Bm با بررسی رابطه ( ( 20 - 2 استنباط می شود که تلفات آهن تابعی از فرکانس شـبکه وچگـالی شـار آن است. با فرض فرکانس ثابت شبکه واینکه چگالی شار تابعی از ظرفیت ترانس است سطح مقطـع هـسته نیز تابعی ازظرفیت آن بوده و هیچ وابستگی به سـطح ولتـاژ آن نـدارد. بنـابراین تلفـات آهـن تـرانس بـا ظرفیت ثابت هیچ رابطه ای با سطح ولتاژکـاری آن نـدارد. بـا توجـه بـه مباحـث صـورت گرفتـه معلـوم می شودکه تلفات ترانس فقط تابعی از ظرفیت آن بوده وهیچ رابطه ای با سطح ولتاژ آن ندارد.
.3-3-2 مقایسه تلفات ترانس سه فاز با ترانس تکفاز با قدرت مساوی
با توجه به دو مؤلفه تلفات مسی و آهنی ترانس دراین بخـش نیـز هـر دو مـورد بـرای هـر دو تـرانس بـا ظرفیت مساوی مقایسه و نتیجه گیری خواهد شد.
١٩
.1-3-3-2 مقایسه تلفات مسی برای ترانس سه فاز و تکفاز با قدرت مساوی
تلفات مسی کل سیم پیچ ترانس سه فاز از رابطه زیر به دست می آید :
( 23 - 2 ) 2 2 n1 RS )I P ( 3(RP  ( PCu3ϕ  n2 که : IP : جریان فاز بر حسب ( ( A : RS مقاومت اهمی سیم پیچی ثانویه( ( Ω : RP مقاومت اهمی سیم پیچی اولیه ( ( Ω n1 : نسبت تبدیل ترانس n 2 جریان فاز اولیه ترانس از رابطه زیر بدست می آید ( اتصال ترانس ستاره - ستاره می باشد ) : ( 24 - 2 ) ( Q I P  ( 3Vm : Q قدرت ظاهری ترانس ( ( kVA : Vm ولتاژ خط ( ( kV IP : جریان فاز ترانس ( ( A سطح مقطع سیم پیچی اولیه از رابطه زیر بدست می آید : ( 25 – 2 ) I P aP  δ که : ( A mm 2 : δ چگالی جریان سیم پیچی ( : I P جریان فاز اولیه بر حسب ( ( A مقاومت سیم پیچی فاز از رابطه زیربدست می آید.[1] ρL T ( 26 - 2 ) Pmtp RP  aP بـا جایگــذاری روابــط ( ( 25 - 2 و ( ( 24 - 2 ورابطــه ( ( 11 - 2 در رابطــه( ( 26 - 2 و پــس از ســاده سازی رابطه زیر بدست خواهد آمد :
( 27 - 2 ) V m 3ϕ L mtp ρδ  R P Q 3 K 3ϕ I P : RP مقاومت اهمی سیم پیچی فاز اولیه ( ( Ω ρ : مقاومت ویژه هادی سیم پیچی ( ( Ω mm 2 A m 3ϕ : δ چگالی جریان ( ) mm 2
٢٠
: IP جریان اولیه فاز ( ( A
Q: قدرت سه فاز ( ( kVA
: Lmtp طول حلقه متوسط فاز اولیه ( m) : Vm ولتاژ خط ( kV )
: K3 φ ضریب ثابت ترانس سه فاز
از رابطه ( ( 27 - 2 برای سیم پیچی ثانویه رابطه زیر بدست می آید : ( 28 - 2 )

VLV 3ϕ Lmts ρδ RS Q 3K 3ϕ I S
با جایگذاری روابط ( ( 28 - 2 و ( ( 27 - 2 و ( ( 24 - 2 در رابطـه ( ( 23 - 2 و پـس از سـاده سـازی رابطه زیر بدست می آید :
( 29 - 2 ) ) Q Lmtp3φ L mts3φ ρδ3ϕ( PCu3ϕ K 3ϕ : PCu3 ϕ تلفات مسی ترانس ( ( kW
اگر محاسبات مشابه برای ترانس تکفاز نیز انجام شود تلفات کل مس برای ترانس تکفاز برابر است با :
( 30 - 2 ) ) Q 1φ Lmts 1φ Lmtp ρδ PCu 1ϕ  1ϕ ( K 1ϕ اگر نسبت رابطه( ( 29 - 2 به ( 30 - 2 )محاسبه شود با فرض قدرت یکـسان بـرای هردوتـرانس رابطـه زیر بدست می آید :
( 31 - 2 ) ( 3 ϕ L mts  3 ϕ L mtp )  3 ϕ δ  1 ϕ K  3 ϕ PCu 1 ϕ L mts  1 ϕ L mtp 1 ϕ δ 3 ϕ K 1 ϕ PCu با دقت در رابطه ( ( 31 - 2 با مساوی در نظر گرفتن چگالی جریان سیم پیچـی هـای سـه فـاز و تکفـاز رابطه ( ( 31 - 2 تابعی از نسبت ضریب ثابت ترانس تکفاز به ترانس سه فاز کـه بـستگی بـه سـتونی یـا زرهی بودن ترانس ها داشته و ایـن نـسبت بـرای تـرانس زرهـی کوچکترازیـک وبـرای تـرانس سـتونی بزرگتر یا مساوی یک می باشد. با توجه به اینکه اکثر ترانسفورماتورهای توزیع از نوع ستونی می باشـند بنابراین نسبت ضریب ثابت ترانس تکفاز به ترانس سه فازبزرگتر یا مساوی یک خواهـد بـود. در مـورد نسبت طول متوسط حلقه ها نیز بستگی به نوع سیم پیچی های آن دارد. اما در مجموع حاصلـضرب ایـن دو مقادیرنزدیک عدد 1 بوده و نشان دهنده تساوی تلفات مسی ترانس سه فاز و تکفاز است. با مراجعـه به جداول اطلاعات مربـوط بـه مشخـصات ترانـسهای تکفـاز و سـه فازسـاخت شـرکت ایـران ترانـسفو,
مشاهده می شودکه این تلفات برای هر دو ترانس برای اکثر ظرفیتها با سطح ولتـاژ برابـر، مـساوی بـوده وفقط برای برخی از ظرفیتها تلفات مسی ترانس سه فازبزرگتر از تلفات مسی ترانس تکفاز می باشد.
بنابراین می توان نتیجه گرفت که :
PLoss cu 3 φ ≥ PLoss cu 1φ( 32 - 2 )
٢١
رابطه ( ( 32 - 2 نشان می دهدکه تلفات مس ترانس سه فاز بزرگتر یا مساوی تلفات مس ترانس تکفاز
با ظرفیت مساوی با آن است.
.2-3-3-2 مقایسه تلفات آهن ترانس سه فاز با تلفات آهن ترانس تکفـاز بـا
قدرت مساوی
با مراجعه به رابطه ( ( 20 - 2 این فصل تلفات آهن در تـرانس بـا فرکـانس، چگـالی شـار و وزن هـسته متناسب است. اگر فرکانس برای هر دو ترانس یکسان در نظرگرفته شود و چگـالی شـارنیز متناسـب بـا ظرفیت ترانس انتخاب شود تنها متغیرها سطح مقطع هسته و طول آهـن تـرانس مـی باشـند. بـا توجـه بـه رابطه ( ( 22 - 2 اگر نسبت سطح مقطع هسته ترانس سه فاز به ترانس تکفاز نوشته شود :
( 33 -2 ) 3ϕ K  A 3 ϕ K 1ϕ A 1ϕ با دقت در رابطه ( ( 33 - 2 نسبت ضریب ثابت ترانس سه فاز به ترانس تکفاز بـا توجـه بـه نـوع تـرانس تعیین می شود. این نسبت برای ترانس ستونی, کوچکتر یا مساوی عدد 1 و برای ترانس زرهـی بزرگتـر ازعدد 1است. با توجه به اینکه اکثرترانسفورماتورهای توزیـع ازنـوع سـتونی مـی باشـند بنـابراین سـطح مقطع ترانس سه فاز بایدکوچکتر یا مساوی ترانس تکفاز باشـد. درحالیکـه ایـن نـسبت, بـسته بـه طـراح ترانس دارد و با توجه به بازه موجود برای انتخاب این ضـریب بـرای تـرانس تکفـاز, هـر دو ضـریب را می توان مساوی در نظر گرفته و بیان کرد که سطح مقطع هسته برای ترانس سه فـاز وتکفـاز بـا ظرفیـت مساوی معادل هم اند. با در نظرگرفتن حجم آهن, با توجه به طول آهن بزرگترترانس سـه فازنـسبت بـه تکفاز, حجم آهن در ترانس سه فاز بزرگتر بوده و تلفات آهن ترانس سه فاز بزرگتـر از تـرانس تکفـاز خواهد بود. بنابراین تلفات آهن ترانس سه فاز بزرگتر یا مساوی ترانس تکفاز است.
PLoss Fe 3 φ ≥ PLoss Fe 1φ( 34 - 2 )
با مراجعه به جدول مربوط به مشخصات ترانس سه فـاز و تکفـاز سـاخت شـرکت ایـران ترانـسفو بـرای سطوح ولتاژ مساوی, تلفات آهن برای ظرفیتهای 100 kVA و 10kVAبرای ترانس سـه فـاز بزرگتـر از ترانس تکفاز است. بنابراین تلفات ترانس تکفاز کوچکتر و یا مساوی ترانس سه فـاز هـم قـدرت بـا آن است. اما اختلاف تلفات ترانس سه فاز و تکفاز تقریباً کم بوده و می شـود تلفـات آن دو را یکـسان در نظر گرفت.
.4-3-2 مقایسه تلفات ترانس سه فاز با n ترانس با مجموع ظرفیت معادل آن
بهترین روش برای انجام این مقایسه, از روی جدول مربوط به تلفات ترانس است. با مراجعه بـه جـدول مشخصات ترانس سه فاز وتکفاز ساخت شرکت ایران ترانسفو مشاهده می شودکه تلفات ترانس سه فاز کمتر از تلفات n ترانس تکفاز با مجموع ظرفیت معادل با ظرفیت ترانس سه فازاست.
٢٢
.5-3-2 مقایسه تلفات خط ناشی از بکارگیری ترانس سه فاز و ترانس تکفاز
تلفات درکابل وخط عکس مجذورولتاژخط است. یعنی باافزایش ولتاژ خط به اندازه دوبرابر برای یک
قدرت وطول فیدر ثابت, تلفات آن 1 حالت قبلی خواهد شد. درانشعاب ترانس سه فاز از خط با فـرض
4
متعادل بودن بارهای انشعابی درفازهای ترانس, تلفات خطی با توجه به شکل( 1 - 2 )بدست میآید.

R
S
T
∆/Y

T
Load 3phas
شکل ( : ( 1 - 2 انشعاب ترانس سه فاز از خط
اگر مقاومت هر فازخط معادل و برابر با r باشد، جریان خط با توجه به بار سه فاز برابر با :
( 35 - 2 ) S3φ I L  3Vm که: : S3φ قدرت مصرفی بار سه فاز ( ( kVA : Vm اندازه ولتاژ خط ( ( kV : IL اندازه جریان خط ( ( A
رابطه تلفات برای خط سه فاز برابر است با : ( 36 - 2 )
با جایگذاری رابطه ( ( 35 - 2 در ( ( 36 - 2 رابطه زیر بدست میآید :

2
L

PLoss 3 φ  3 rI
( 37 - 2 ) 2 ( S 3 φ r ( PLoss 3 φ  V m در انشعاب ترانس تکفاز از خط بین فاز و نول تلفات خط با توجه به شکل ( ( 2 - 2 بدست می آید.
٢٣

R

S
T
N
∆/Y

T
Load 1phas
شکل ( : ( 2 - 2 انشعاب ترانس تکفاز از خط
اگر مقاومت سیم نول معادل باسیم فاز وبرابر r باشد. جریان خط با توجه به بارتکفاز, درسـیم فـاز برابـر خواهد بود با :
I L  S( 38 - 2 )
VP
رابطه ( ( 38 - 2 معادل با جریان خط در سیم فاز است که :
: S قدرت مصرفی بار ( ( kVA
: VP ولتاژ فازسمت اولیه ترانس ( ( kV
: IL جریان خط بر حسب ( ( A
جریان سیم نول معادل با مجموع جریان عبوری سایر فازها ازاین سیم است.
( 39 - 2 ) S * ( n ... * V P : Si قدرت مصرفی بار تکفاز ( ( kVA n : VPi ولتاژ فازاولیه ترانس ( ( kV
* S * S I n 2  1 ( * V * V P P 2 1 تلفات در خط شامل تلفات سیم فاز ونول است که بـا اسـتفاده ازروابـط ( ( 38 - 2 و ( ( 39 - 2 رابطـه زیر بدست میآید :
2 n S *K 2 S ( 40 - 2 ) ( K ∑1  PLoss1φ  r( VK* VP رابطه ( ( 40 - 2 تلفات در خط ناشی از انشعاب ترانس تکفاز را نشان می دهد.
: r مقاومت اهمی سیم فاز و نول ( ( Ω
: S قدرت ظاهری هر ترانس ( ( kVA
: VP ولتاژ فازسر ترانس بر حسب ( kV )
: Vk ولتاژ فاز سراولیه ترانس های منشعب ازخط ( kV )
٢۴
با بدست آوردن نسبت رابطه ( ( 37 - 2 به ( ( 40 - 2 رابطه زیر بدست می آید :
2 ( S r ( PLoss 3φ ( 41 - 2 ) Vm  2 * n 2 S PLoss 1φ ( S K ∑  r ( * VP VK K 1 با فرض اینکه VP ولتاژ فاز با فرض عدم تعادل خط باز با V m برابر خط معـادل باشـد. بـا سـاده سـازی رابطه ( ( 41 - 2 رابطه زیر بدست می آید : 3 2 * S k n 3S ∑ r ) 2 r ( PLoss 1φ * ( 42 - 2 ) k V k 1  Vm  2 S r 2 S r PLoss 3φ Vm Vm 2 * S n k k ∑1 PLoss 1φ ( 43 - 2 ) * k V 3 2 S PLoss 3φ Vm
با دقت در رابطه ( ( 43 - 2 مشاهده می شود که تلفات در خط بـا انـشعاب تـرانس تکفـاز, حـداقل سـه
برابرآن در استفاده از ترانس سه فاز است. در صورتیکه ترانس تکفاز بین دو فازخط قرارگیرد با توجـه
به رابطه ( ( 42 - 2 تلفات خط در این حالت برای استفاده از ترانس تکفاز معادل یـا بزرگتـر از تلفـات خط در حالت استفاده از ترانس سه فاز خواهد بود.
P Loss Line 1 φ ≥ PLoss Line 3 φ( 44 - 2 )
.6-3-2 سایر اجزاء تلفات
همانطوریکه دربخشهای قبلی بحث شد اجزائی که بیشترین تلفات رابه خوداختصاص می دهنـداز قبیـل ترانس وخط مورد بررسی قرارگرفتند. دراین بخش سایراجزاء تلفات نیزموردبررسی قرار می گیرند.
- 1 کلیدها :
این نوع تجهیزات جهت قطع و وصل و حفاظت در سیستم توزیع مورد استفاده قرارمی گیرنـد. باتوجـه به اینکه کنتاکت کلیدها ازموادی ساخته می شوندکه قابلیت هدایت بالایی داشته باشـند، بنـابراین افـت ولتاژ و تلفات ناچیزی داشته و می توان ازآنها صرفنظر کرد.
- 2 فیوز :
این المان جهت حفاظت دربرابراتصال کوتاه مورداسـتفاده قرارمـی گیردوباتوجـه بـه تعدادانـدک آنهـا درسیستم توزیع می توان ازتلفات آنهاصرفنظرکرد. تلفات این وسیله برای قدرتهای بـسیاربالازیر100W
می باشد.[3]
٢۵
- 3 ترانسفورماتورهای اندازه گیری :
این تجهیزات در داخل پستهای اصلی و زمینی جهت اندازه گیری بکـار مـی رونـد. بـا توجـه بـه تعـداد اندک آن و همچنین ظرفیت نامی آنهـا کـه در حـدود 60VA اسـت، مـی تـوان از تلفـات آن کـه زیـر
100W می باشد صرفنظر نمود.[3]
- 4 مقره ها و برقگیر :
این تجهیزات جهت نگه داشتن هادیهای خطوط و ایزولاسیون آنهـا از یکـدیگر و یـا حفاظـت خـط در برابر صاعقه به کار می روند. با توجه بـه اینکـه تلفـات در ایـن نـوع تجهیـزات از نـوع خزشـی و نـشتی می باشد، می توان از تلفات مقره و برقگیرها صرفنظر نمود.
- 5 کات اوت :
این وسیله جهت قطع و وصل اولیه ترانس در پستهای هـوایی مـورد اسـتفاده قرارمـی گیـرد. باتوجـه بـه خاصیت هدایت خوب کنتاکتهای آن می توان ازتلفات این وسیله نیزصرفنظر نمود.
.4-2 اجزاء موثر درافت ولتاژ و رابطه آنها با ولتاژ کاری :
.1-4-2 ترانس و رابطه افت ولتاژ آن با ولتاژ کاری
در شبکه های ولتاژ میانی که در فصول آینده مورد بررسی قرار می گیرند، نقش این وسیله درافت ولتاژ قابل توجه است و بخش عمـده ای از افـت ولتـاژ رابـه خوداختـصاص مـی دهـد. درشـبکه بااسـتفاده از ولتاژمیانی, دوترانس، یکی جهـت تبـدیل سـطح ولتـاژ فـشارمتوسط بـه فـشارمیانی و دیگـری درسـمت مشترکین جهت تبدیل ولتاژ میانی به فشار ضعیف بکارمی روند. افت ولتاژ شامل دو مؤلفه است :
افت ولتاژ روی مقاومت سیم پیچی
افت ولتاژ روی راکتانس سیم پیچی
با توجه به اینکه هر کدام از این دو مؤلفه در سـیم پیچـی اولیـه و ثانویـه آن وجـود دارد. بنـابراین بـرای هرسیم پیچی بایدروابط افت ولتاژناشی ازهردومولفه محاسبه شود.
- 1 افت ولتاژ روی مقاومت سیم پیچی :
VR افت ولتاژکل روی مقاومت سیم پیچیهای اولیه و ثانویه ترانس می باشد :
VR  VR p  VRs( 45 - 2 )
: VR P افت ولتاژ روی مقاومت سیم پیچی اولیه ( V )
: VR S افت و لتاژ روی مقاومت سیم پیچی ثانویه ( V )
اگر مقاومت اولیه rP و مقاومت ثانویه آن rS باشد و مقاومت ثانویه با نسبت تبدیل ترانس به اولیه منتقل
شود رابطه ( ( 46 - 2 را می توان نوشت.
٢۶
( 46 - 2 )
که :
: r P مقاومت اولیه ترانس ( ( Ω
: rS مقاومت ثانویه ترانس ( ( Ω
: RP مقاومت کل از دید اولیه ترانس ( ( Ω
: T P نسبت تبدیل ترانس
TS
افت ولتاژ روی مقاومت ترانس برابر با رابطه زیر است : ( 47 - 2 )
مقادیر rP و rS سیم پیچها برابرند با :
( 48 - 2 )
( 49 - 2 )
که :
: δ چگالی جریان هادی سیم پیچی ( A )
2mm

2 p T * rs rp R P Ts VR  RP IP
T P L mtp ρδ  rP I P ρδ T S L mts  rS I S : ρ مقاومت ویژه هادی سیم پیچی ( ( Ωmm2
m
: I P جریان فاز ( A )
: TP تعداد دور اولیه ترانس
: Lmtp طول حلقه متوسط سیم پیچی ( ( m
با جایگذاری روابط ( 48 - 2 )، ( ( 49 - 2 و ( ( 46 - 2 در ( ( 47 - 2 رابطه زیر بدست می آید :
( 50 - 2 ) ( ρδ T P L mtp 2 P T L S ρδ T I P   mtS  V R I p I S T S باساده سازی رابطه ( 50 - 2 ) و جایگذاری مقدار IS با IP و با در نظر گرفتن ضریب تبدیل ( TP ) : T ( 51 - 2 ) Lmts T P L mtp S ρδ V R که مقدار TP یا تعداد دور برابر با رابطه زیر می باشد : V ( 52 - 2 ) p T P  Q K با جایگذاری رابطه ( 52 - 2 ) در ( ( 51 - 2 رابطه زیر بدست می آید : ( 53 - 2 ) ( ( Lmtp ρδ  L mts V R  V P  Q k
٢٧
با دقت در رابطه ( 53 - 2 )استنباط می شود که افت ولتاژ روی مقاومت اهمی ترانس تـابعی از عکـس ظرفیت ترانس است. یعنی با افزایش ظرفیت, افت ولتاژ اهمی کاهش می یابد و تابعی از سطح ولتاژ نیـز می باشد. به این دلیل که با افزایش سطح ولتاژ برای یک قدرت ثابت تعداد دور سـیم پیچـی افـزایش و سطح مقطع آن به خاطر کاهش جریان کاهش می یابد، بنابراین مقاومت افزایش خواهد یافت. افـزایش مقاومت باعث افت ولتاژ بیشتر می شود. تغییرات افت ولتاژ بستگی به پارامترهای اجرایی از جمله طـول متوسط حلقه سیم پیچیهای اولیه و ثانویه نیز دارد.
-2 افت ولتاژ روی راکتانس سیم پیچی :
افت ولتاژ در راکتانس نیز از دو مؤلفه تشکیل شده که عبارتند از :
افت ولتاژ روی راکتانس سیم پیچی اولیه VX P
افت ولتاژ روی راکتانس سیم پیچی ثانویه VXS
VX افت ولتاژ روی راکتانس کل ترانس می باشد :
VX  V x p  Vx s( 54 - 2 )
راکتانس اولیه و ثانویه ترانس از دو رابطه زیر به دست می آید: [1]
p b 55 - 2 ) ) 3 s b 56 - 2 ) ) 3
a L mt  * 2 L c a mt L  2 * L c
* 2 2πfμ  X P 0 T p * 2 2 πfμ  X s 0 T s راکتانس ترانس از دید اولیه آن معادل است با :
p b b L 2 T s a  * * T 2 2πfμ x x X ( 57 - 2 ) mt P 3 L T 0 p s p P c s افت ولتاژ نسبی روی راکتانس کل ترانس برابر با : ( 58 - 2 ) VX  IP X P از طرفی تعداد دور TP سیم پیچی اولیه ترانس برابر است با : VP ( 59 - 2 ) TP  Q K با جایگذاری روابط ( ( 57 - 2 و ( ( 59 - 2 در ( ( 58 - 2 رابطه زیر به دست می آید : b s  b p mt L 2 V p ( 60 - 2 ) a  * * 2πfμ 0 p I V x  3 L Q k c
٢٨
با جایگذاری جریان فاز در رابطه ( ( 60 - 2 رابطه زیر به دست می آید :
bs  b p mt L 2 V p Q ( 61 - 2 ) a  * * 2πfμ  V 3 3V c L 0 k Q p x با ساده سازی رابطه ( ( 61 - 2 رابطه نهایی زیر به دست می آید :
bs  bp mt L 2 ( 62 - 2 ) πfμ0 * Vx  2 *V p 3 a  * Lc 3k با دقت در رابطه ( ( 62 - 2 استنباط می شود که افت ولتاژ روی راکتانس سیم پیچـی تـرانس وابـسته بـه سطح ولتاژ و پارامترهای طراحی ترانس بوده و مستقل از ظرفیت ترانس می باشد.
.2-4-2 خط و رابطه افت ولتاژآن با سطح ولتاژ شبکه

PROJE

سپاس خدای مهربان را که اندیشهام داد.
حمد و ستایش بیقیاس خدای را سزاست کـه از الطـاف خـود در انـسان دمیـد و او را اشـرف مخلوقات خود قرار داد. حال که به لطف او توفیق تحصیل علـم و کـسب دانـش را پیـدا نمـودم، از خداوند متعال میخواهم که قدمهایم را در راه خدمت به جامعه استوار گرداند تا بتوانم از آنچـه در این سالها آموختهام در مسیر پیشرفت و آبادانی کشور عزیزم استفاده نمایم.
در پایان بر خود لازم می دانم از زحمات استاد ارجمند جناب آقای دکتر حدادنیا کـه در طـول اجرای پایان نامه با راهنماییهای بی دریغ خویش راه را بر من هموار کردند، صمیمانه سپاسـگزاری نمایم. همچنین از جناب آقای دکتر طبری، مشاور اینجانب و مـدیر محتـرم گـروه بـرق دانـشکده تحصیلات تکمیلی دانشگاه آزاد اسلامی واحد تهران جنوب، نیز کمال تشکر را دارم.
ه
فهرست مطالب عنوان مطالب شماره صفحه
چکیده 1
مقدمه 2
فصل اول : کلیات 3
(1-1 هدف 4
(2-1پیشینه تحقیق 6
(3-1روش کار و تحقیق 8
فصل دوم : نظریه جریان ترافیک و اصول زمانبندی چراغهای تقاطع 11
(1-2مقدمه 12
(2-2روابط تحلیلی پدیده ترافیک 12
(3-2معرفی پارامترهای ترافیکی 13
(4-2مدلهای احتمالاتی 15
(5-2کنترل چراغ راهنمایی 18
(6-2تحلیل عملکرد تقاطع 19
(7-2چراغهای هوشمند سازگار با ترافیک 22
(8-2کنترل هماهنگ چراغها در شبکه 25
(9-2فازبندی 26
(10-2زمانبندی چراغ 28
(11-2چراغهای پیش زمانبندی شده 30

و
فهرست مطالب
عنوان مطالب شماره صفحه
فصل سوم : کنترل کنندههای فازی – عصبی 32
(1-3مقدمه 33
(2-3سیستم های فازی 33
(3-3شبکه های عصبی RBF 38
(4-3الگوریتم های آموزشی در شبکه عصبی RBF 40
(5-3سیستم های نرو-فازی 44
(6-3شبکه عصبی RBF و کنترل کننده فازی 46
فصل چهارم : الگوریتم آموزشی FHLA 48
(1-4مقدمه 49
(2-4طراحی ساختار شبکه RBF و مقداردهی اولیه به آن 49
(3-4مشخص نمودن تعداد نرونهای لایه RBF 54
(4-4تنظیم پارامترهای شبکه RBF 55
(5-4پروسه تنظیم پارامترهای شبکه 58
(6-4حساسیت الگوریتم FHLA نسبت به الگوهای آموزشی 59
فصل پنجم : اصول پردازش تصویر 61
(1-5مقدمه 62
(2-5مفاهیم اولیه در پردازش تصویر 62
(3-5روشهای استخراج پارامترهای ترافیکی 63
(4-5نظارت مبتنی بر ناحیه ثابت 64

ز
فهرست مطالب
عنوان مطالب شماره صفحه
(5-5 نظارت مبتنی بر ردگیری 66
فصل ششم : شبیهسازی کنترل کننده هوشمند ترافیک 73
(1-6مقدمه 74
(2-6طراحی سیستم کنترلرفازی 77
(3-6پیادهسازی نرم افزاری الگوریتم آموزشی FHLA 79
(4-6مدل سازی تقاطع ایزوله 82
(5-6کنترل کننده پیش زمانبندی شده 83
(6-6پردازش تصویر 84
(7-6نتایج شبیه سازی 88
فصل هفتم : نتیجهگیری و پیشنهادات 101
نتیجهگیری 102
پیشنهادات 103
منابع و ماخذ 104
فهرست منابع فارسی 105
فهرست منابع لاتین 106
چکیده انگلیسی 109

ح
فهرست جدول ها
عنوان شماره صفحه
: 1-2 معرفی پارامترهای حاکم بر پدیده ترافیک 13
: 1-4 اندیسهای اعتباری خوشهای 56
: 1-6 پایگاه دانش قوانین فازی 79
: 2-6 میانگین ورود وسایل نقلیه در طی 3 روز متوالی 80
: 3-6 مقادیر تابع هزینه با تغییر تعداد نرونهای لایه میانی 81
: 4-6 خطای نهایی آموزش و تست شبکه عصبی 82
5-6 : نرخ جریان اشباع در هر یک از ورودیهای تقاطع 83
: 6-6 نتایج حاصل از زمان بندی چراغ تقاطع به روش کنترل کلاسیک 84
7-6 : متوسط سطح اشباع در هر یک از ورودیهای تقاطع 89
8-6 : متوسط تاخیر تقاطع با دو روش کنترل چراغ تقاطع 90

ط
فهرست نمودارها
عنوان شماره صفحه
: 1-6 نرخ ورود وسایل نقلیه به تقاطع در24 ساعت 77
: 2-6 منحنی تغییرات تابع هزینه 81
: 3-6 روند آموزش شبکه عصبی 82
: 4-6 مقایسه آمار شمارش دستی و شمارش هوشمند در 15 دقیقه 88
: 5-6 نرخ ورود وسایل نقلیه به تقاطع در 100 مرحله تکرار الگوریتم 91
: 6-6 روند تغییرات چرخه 92
: 7-6 روند تغییرات طول زمان سبز چراغ در هریک از فازها 92
: 8-6 متوسط تاخیر تقاطع در هر مرحله اجرای الگوریتم با دو روش کنترل 93
: 9-6 روند تغییرات تاخیر تقاطع با در نظرگرفتن تغییرات متوسط شار ورودی 94
: 10-6 تغییرات شار ورودی شمالی (کنترلر هوشمند) 95
: 11-6 تغییرات شار ورودی شمالی (کنترلر کلاسیک) 95
: 12-6 تغییرات شار ورودی جنوبی (کنترلر هوشمند) 96
: 13-6 تغییرات شار ورودی جنوبی (کنترلر کلاسیک) 96
: 14-6 تغییرات شار ورودی شرقی (کنترلر هوشمند) 97
: 15-6 تغییرات شار ورودی شرقی (کنترلر کلاسیک) 97
: 16-6 تغییرات درجه اشباع در ورودی شمالی (کنترلر هوشمند) 98
: 17-6 تغییرات درجه اشباع در ورودی شمالی (کنترلر کلاسیک) 98
: 18-6 تغییرات درجه اشباع در ورودی جنوبی (کنترلر هوشمند) 99
: 19-6 تغییرات درجه اشباع در ورودی جنوبی (کنترلر کلاسیک) 99
: 20-6 تغییرات درجه اشباع در ورودی شرقی (کنترلر هوشمند) 100
: 21-6 تغییرات درجه اشباع در ورودی شرقی (کنترلر کلاسیک) 100

ی
فهرست شکلها
عنوان شماره صفحه
: 1-2 منحنی حجم-ترافیک به صورت تابعی از تراکم 15
: 2-2 بررسی مدل احتمالی ترافیک 16

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

: 3-2 فرآیند تحلیل تقاطعهای چراغدار 19
: 4-2 ساختار روش کنترل سازگار با ترافیک 23
: 5-2 نحوه عملکرد کنترل کننده سازگار با ترافیک 24
: 6-2 طرح چراغ دوفازه 27
: 7-2 طرح چراغ سه فازه 27
: 8-2 طرح چراغ چهار فازه 28
: 9-2 نمودار تخلیه تقاطع در طول یک فاز چراغ راهنمایی 29
: 1-3 ساختار سیستم کنترل کننده فازی 34
: 2-3 دی فازی ساز مرکز ثقل 36
: 3-3 بلوک دیاگرام کنترل کننده فازی ترافیک 37
: 4-3 ساختار شبکه عصبی RBF 38
: 5-3 ساختار نوع خاصی از شبکه نرو- فازی 45
: 1-4 فلوچارت طراحی مقادیر اولیه شبکه عصبی RBF 51
: 1-5 چرخه به روز رسانی در تخمین بردار حالت 71
: 1-6 تقاطع ایزوله دوفازه 76
: 2-6 انتخاب تصویر زمینه و پنجره ثابت 87
: 3-6 عبور وسیله نقلیه از پنجره ثابت در یک فریم 87

ک
فهرست شکلها
عنوان شماره صفحه
4-6 : اختلاف پنجره ثابت در تصویر زمینه و فریم خوانده شده وتبدیل به باینری 87
5-6 : حذف عناصر اضافی از تصویر 87
: 6-6 به هم چسباندن اجزای گسسته شده 87
7-6 : شمارش اشیاء برچسب گذاری شده 87

ل
چکیده:
دراین پایان نامه یک تکنیک موثر بر مبنای سیستمهای عصبی- فازی برای کنترل چراغهای راهنمایی و بر اساس پردازش هوشمند تصاویر ترافیکی دریافتی از دوربینهای نصب شده در یک تقـاطع ایزولـه، ارائـه شـده است. هدف از کنترل ترافیک در خیابانهای منتهی به یک تقـاطع ایزولـه آن اسـت کـه در یـک بـازه زمـانی مشخص، از ایجاد اشباع در هریک از بازوها جلوگیری کرده و همچنـین بتـوان زمـان انتظـار وسـایل نقلیـه در پشت چراغ قرمز را به حداقل رساند تا نهایتا ترافیکی روان و مطلوب، همراه بـا ایمنـی در سـطح تقـاطع ایجـاد گردد. به این منظور قوانین فازی مدل کننده تقاطع ایزوله که ساختار کنترلر فازی را تشکیل دادهاند، بر مبنـای درجه اشباع که نشان دهنده میزان تقاضا به ظرفیت هریـک از ورودیهـای تقـاطع میباشـد، طراحـی شـدهانـد.
اساس کار، بر استفاده از شبکه عصبی RBF١، به همراه یک روش پیشنهادی آموزش مبتنـی بـر فـازی خواهـد بود. در الگوریتم یادگیری 2FHLA، علاوه بر تعیین وزنهای ارتباطی بین لایه مخفـی و خروجـی، پارامترهـای لایه RBF شامل تعداد نرون، مرکز نرون و عرض آن نیز در طول فرایند آموزش تعیین میگردند. مقادیر اولیه پارامترها با استفاده از منطق فازی و روشهای خوشه یابی فازی و به کمک تکنیک 3FCM به دست مـی آینـد.
همچنین از میزان تعلق هر الگوی ورودی به خوشهها و فاصله الگو تا مرکـز هـر خوشـه جهـت محاسـبه میـزان عدم شباهت استفاده شده وسپس این فاصله مینیمم میگـردد. بـرای تعیـین مقـادیر نهـایی پارامترهـا و وزنهـای ارتباطی، از ترکیب روشهای 4LLS و گرادیان5 به عنوان روش بهینهسازی استفاده میشود. نتایج شبیهسازی بر روی بانک اطلاعاتی موجود و مقایسه نتایج کاربرد این الگوریتم با سـایر روشـهای کلاسـیک کـه در کنتـرل تقاطعهای ایزوله معمول هستند، نشان دهنده میزان قابلیت این تکنیک می باشد.
کلمات کلیدی: پردازش تصویر، تقاطع ایزوله، شبکه عصبی، کنترل ترافیک، کنترل فازی

1−Radial Basis Function 2−Fuzzy Hybrid Learning Algoritm 3−Fuzzy-C-Mean 4−Linear Least Squared 5−G--ient
1
مقدمه:
امروزه با افزایش سریع کلان شهرها و افزایش تعداد خودروها، اهمیت داشتن مدیریت ترافیک موثر و کارآمد بر کسی پوشیده نیست. تـاکنون روشـهای کنتـرل ترافیـک بیـشتر مبتنـی بـر روشـهای کنترلـی کلاسیک بوده است که با مسائلی همچون سطح پایین هوشمندی در مواجه با شرایط پیچیـده ترافیکـی و عدم مدلسازی مناسب، مواجه میباشند. در این پایان نامه سعی برآن است کـه بـا بـه کـارگیری تکنیـک آموزشی FHLA که بر مبنای شبکههای عصبی RBF و روش خوشه یابی فـازی عمـل مـینمایـد، نـوعی کنترل هوشمند برای تنظیم پارامترهای یک تقاطع ایزوله ارائه شود، به طوری کـه در نهایـت بـه کـاهش تاخیر وسایل نقلیه در عبور از تقاطع و جلوگیری از ایجاد اشباع در هر یک از ورودیهـای تقـاطع منتهـی گردد. به این منظور برای جمع آوری اطلاعات آماری از سطح تقاطع، برای ارزیابی وضعیت ترافیکی در هر لحظه، از روشهای پردازش تصاویر حاصل از دوربینهای نصب شده در تقاطع ایزوله، استفاده شده است. در این پایان نامه و در فصل اول کلیاتی راجع به روشهای مختلف کنترل ترافیک، و تحقیقات صـورت گرفتـه در این زمینه ارئه شده است. در فصل دوم به معرفی نظریه جریان کنترل ترافیـک و روابـط حـاکم بـر آن پرداخته شده است. فصل سوم به معرفی مختصری از اصول کنتـرل فـازی و برخـی از روشـهای آموزشـی شبکههای عصبی و معرفی کنترل کنندههای نرو- فازی اختصاص دارد. در فـصل چهـارم، ارائـه الگـوریتم پیشنهادی FHLA و روش پیادهسازی آن صورت میپذیرد و در فصل پنجم به بررسی روشهای اسـتخراج اطلاعات آماری ترافیک از تصاویر ویدئویی پرداخته میشود. در فصل ششم کنترلر نـرو- فـازی طراحـی و پس از شبیه سازیهای لازم در محیط برنامـه نویـسی MATLAB، تـاثیر بـه کـارگیری کنتـرل کننـده هوشمند با استفاده ازتکنیک FHLA و به کارگیری نوعی کنترل کلاسیک پیش زمانبندی شده، بر میزان سطح تاخیر و سطح اشباع ورودیهای تقاطع بررسی و مقایسه شده است.فصل هفتم نیز بـه ارائـه نتیجـه گیری وچند پیشنهاد اختصاص دارد.
2
فصل اول
کلیـات
3
فصل اول: کلیات
(1-1 هدف
امروزه با افزایش سریع کلان شهرها، افزایش تعداد خودروهـا، افـزایش بهـای سـوخت، مـساله محـیط زیست، استفاده مفید از ظرفیت جادههای موجود و...، اهمیت داشتن مدیریت ترافیک موثر و کارآمد بر کـسی پوشیده نیست.
در گذشته طراحان ترافیک تنها به نحوه حرکت وسایل نقلیه، به طـوری کـه در تقاطعهـا تـصادفی رخ ندهد، به عنوان مساله اصلی در مدیریت ترافیک توجه داشتند. امروزه مسائل عمده دیگـری نیـز مـورد توجـه میباشد که از جمله میتوان به کاهش تاخیر، کاهش توقفات، کاهش مصرف سـوخت، کـاهش طـول صـفهای پشت چراغ قرمز، حذف اثرات نویز، افزایش توجه به مسائل عابران پیاده وحرکت وسایل نقلیه سـنگین، اشـاره نمود. تاکنون روشهای کنترل ترافیک بیشتر مبتنی بر روشهای کنترلی کلاسیک بوده است. در این روشـها بـا استفاده از روشهای آماری و منحنیهای به دست آمده تجربی و نهایتا با تخمین برخی از متغیرهای مـوثر بـر ترافیک سعی بر آن است که پارامترهای مورد نظر درآن سطح خـاص کنترلـی، بـه گونـهای مطلـوب تنظـیم شود.[4]
تاکنون در جهت رفع این نیاز سیستمهای کنترل ترافیک متعددی توسط مراکز حمل ونقل کشورهای مختلف توسعه یافتهاند که تا حدی پاسخگوی نیازهای موجود بوده است. البته این حد پاسخگویی سیستمهای کلاسیک در ازای پیچیدگیهای بالای ساختار (شامل بخشهای کنترل، مخابرات و کامپیوتر) و هچنین حجـم بالای هزینههای پیاده سازی، (به علت تجهیزات به کار رفته) و نگهداری به دست آمدهاند. از دیدگاه کنترلـی، سیستمهای کلاسیک موجود از الگوریتمهای مختلف برنامه ریزی ریاضی (از جمله الگوریتمهای برنامـه ریـزی خطی صحیح و الگوریتمهای برنامه ریزی دینامیکی) استفاده میکنند که خود معمولا مشکلات متعددی مانند حجم بالای محاسباتی و مشکل پیادهسازی را به دنبال دارند. همچنین از جمله نواقص مطرح شده در کنتـرل سنتی ترافیک میتوان به مسائلی همچون برخورداری از سطح پایین هوشمندی در مواجه بـا شـرایط پیچیـده ترافیکی، عدم مدلسازی مناسب و واقع بینانه از ابهامات موجود در بحث کنتـرل ترافیـک (تعیـین پارامترهـا و مدلسازی رفتار رانندگان و عابران پیاده)، عدم وجود ویژگی خود سازماندهی، در طراحی استراتژیهای ترافیک، غیر قابل پیش بینی بودن شرایط ترافیکی حتی برای چند لحظه آینده و عدم دسترسی به جزئیات ایجاد شده مانند تعیین نوع خودرو و یا تغییرات سرعت آنها، اشاره نمود.
سیستمهای مورد بررسی در کنترل ترافیک میتوانند شامل موارد زیر باشد :[5]
-1 کنترل تقاطع ایزوله: کنترل جریان ترافیک تقاطع مجهز به چراغ بـدون در نظـر گـرفتن تـاثیر جریانهـای ترافیکی تقاطهای مجاور. .(isolated intersection control)
-2 کنترل تقاطعهای شریانی با شبکه باز: کنترل تعدادی تقاطع مجهز به چراغ وابسته به یکدیگر در طول یک شریان اصلی که وضعیت ترافیکی هریک بر تقاطع مجاور تاثیر دارد. (arterial intersection control)
-3 کنترل گسسته: کنترل روی تمام تقاطعهای مجهز به چراغ درکل شبکه شهری و یا بخشی از آن.
(areawide sys-- control)
4
-4 کنترل ترافیک بزرگراه: کنترل روی جریان مسیرهای ورودی و مسیرهای خروجی با هدف کنترل ترافیـک روان در مسیر اصلی. (expressway control)
-5 کنترل عابران پیاده: کنترل عبور پیاده از خیابان با هدف تامین امنیت و کاهش زمان انتظـار.( pedestrian (control
اصولا سه نوع روش کنترلی برای تقاطعها مورد استفاده میباشد:
-1 کنترل زمان ثابت (fixed-time) :در این روش کنترلی، زمان تغییر چراغها از پیش تعیین شده و هیچگونه انعطافی در برابر شرایط ایجاد شده مانند وقوع تصادفات، ایجاد شـرایط خـاص مثـل تعطیلـی مـدارس، عبـور آمبولانس و... ندارد.
-2 کنترل از پیش زمانبندی شده : (pre-time control) در این نوع کنترل بر اساس الگوهای متعددی که از وضعیت یک خیابان به دست آمده است، زمانبندی چراغها صورت میپذیرد. مثلا در هر ساعت خاصی از شبانه روز مانند ساعات تعطیلی مدارس یا ساعات پیک تردد، مدت زمان سبز وقرمز بودن چراغها به گونهای متناسب تنظیم میشود، اما باز هم در برابر شرایط اضطراری غیر قابل انعطاف هستند.
-3 کنترل هوشمند : (intelligent control) در این نوع کنترل تغییر وضعیت چراغها کاملا به شرایط موجود و میزان درخواست بار ترافیکی بستگی دارد.
با مطرح شدن کنترل هوشمند در مهندسی کنترل و موفقیت این روشها در سیستمهای عملی، کاربرد روشهای کنترل هوشمند درمبحث ترافیک نیز مطرح گردیده است.
به دلیل ویژگیهای خاص سیستم کنترل ترافیک شهری و از آنجا که رفتارهای پیچیده انسان از عوامـل موثر بر شرایط ترافیکی ایجاد شونده در این سیستم میباشد، کاربرد روشهای هوشمند کنترل به جای روشهای سنتی ضروری به نظر میرسد. به طور عمده مسائل اصلی در کنترل چراغ راهنمایی در یک تقاطع ایزوله توجه به کاهش تاخیر وسایل نقلیه و کاهش میزان توقفات و همچنین افزایش ظرفیت خیابانها میباشـد. در میـان ابزارهای مختلفی که برای برقراری ایمنی راه و حفظ نظام در جریان ترافیک موجود میباشد، ماننـد تابلوهـای راهنمایی، خط کشی ها، و سایر ابزار و وسایل نصب شده در خیابانهـا، موجـود میباشـد، زمانبنـدی چراغهـای راهنمایی برای کمینه کردن تاخیر و افزایش ظرفیت تقاطعها در منطق کنتـرل کـاربرد فراوانـی دارد. دریـک تقاطع ایزوله دو حالته که در این طرح مورد بررسی میباشد، تنها با دو فاز عملیاتی کار میشود، وقتی که چراغ در دو خیابان روبرو به هم سبز باشند، در دو خیابان مجاور قرمز میشود و برعکس. در یک کنترل هوشمند، بر اساس میزان درخواست ترافیکی در خیابان مورد کنترل، تغییرات چراغ و رفتن به فاز دیگر، صورت میگیـرد و مدت زمان مناسب برای سبز بودن یک چراغ تعیین میشود.
با توجه به قابلیتهای متنوع روشهای هوشمند (شامل هوش مصنوعی , منطق فازی و شبکه عصبی)، به ویژه در پوشش دهی و پاسخگویی مناسب به موارد فوق، پیشنهاد استفاده از روشهای هوشمند، جهت پوشش دهی مشکلات فعلی، به عنوان یک راه حل جدید مطلوب خواهد بود. با توجه بـه قابلیتهـای متنـوع روشـهای هوشمند انتظار میرود که روشهای فوق در حوزههای مختلف کنترل ترافیک شامل بـرآورد وتعبیـر و پـردازش اطلاعات مختلف جمع آوری شده، برخورد و مدلسازی مناسب پارامترها و شـرایط مـبهم موجـود در پروسـه کنترل، پیشگویی آینده، افزایش قدرت یادگیری سیستم و بالاخره افزایش هوشمندی سیستم، بسیار پر کاربرد بوده و نتایج قابل قبولی را به دنبال خواهد داشت.
5
در این پروژه پس از شناخت و تحلیل روابط حاکم بر متغیرهای ترافیکی، درجه اشباع هـر ورودی کـه نشان دهنده نسبت میزان درخواست بار ترافیکی به میزان ظرفیت آن ورودی میباشد، به عنوان پارامتر ورودی کنترل کننده در نظر گرفته شده و با روشهای مبتنی بر بینایی ماشین اندازه گیری میشود. کنتـرل کننـده در هر مرحله نمونه برداری و در پایان زمان سیکل جاری، وضعیت همه ورودی را ارزیابی کرده و طـول چرخـه و طول زمان سبز اختصاص داده شده به هریک از خیابانها را در مرحله بعدی تعیین میکند تـا درجـه اشـباع در همه ورودی نسبتا یکسان و در سطح مناسبی قرار بگیرد. پس از طراحی ساختار قوانین کنترل کننده براساس پارامترهای فازی، الگوریتم آموزش مربوط به شبکه عصبی اجرا میگردد.
(2-1 پیشینه تحقیق
به طو کلی نظریه کنترل ترافیک شهری از سال 1950 ارائه گردید. بخش عمدهای از روشهایی کـه تـا کنون ارائه شدهاند براساس روشهای کلاسیک و مبتنی بر اطلاعات آماری و منحنیهای به دست آمده تجربـی میباشد. در زمینه کنترل زمان ثابت در یک تقاطع ایزوله ،Webster، در سال 1958 رابطهای ریاضـی را بـرای کنترل بهینه چرخه ارائه داد. پس از آن روشهای کنترلی دیگری نیز بر اساس مدل بهینهسازی ریاضی توسـط Miller در سال 1963، Bang درسال 1976، و Davidsson در سال 1996، ارائه گردید.[5]
به طور همزمان، با معرفی تئوری فازی در سال 1965توسط دکتر زاده کـاربرد ایـن نظریـه در کنتـرل ترافیک تقاطعها آغازشد. نخستین کنترلر فازی توسط Pappis و Mamdani در سال 1974 با کاربرد مقدماتی منطق فازی برای یک تقاطع مستقل بـا خیابانهـای یـک طرفـه، ارائـه گردیـد.[6] بـرای کنتـرل شـبکهای از تقاطعهای وابسته به یکدیگر با خیابانهای دو جهته، Chiu در سال 1992 روشی را با کاربرد منطق فازی ارائـه داد.[11] همچنین روشهایی نیز بر اساس نظریه فازی برای کنترل حجم یک معبر، کنترل تقاطعها با در نظـر گرفتن حرکات گردشی با اهداف مختلف کنترلی ارائه گردیده است. به طور رسمی پروژه 1FUSICO از سـال 1996 در دانشگاه Helsinki برای توسعه روشهای کنترل فازی چراغهای یـک تقـاطع آغـاز شـده اسـت کـه تاکنون نیز این تحقیقات ادامه دارد.
از جمله سیستمهای کنترلی طراحی شده میتوان به سیستم 2UTCS اشاره نمود که از حدود سـالهای
1970 رواج یافته و تا به امروز با آنکه تغییرات و پیشرفتهای وسیعی روی آن صورت گرفتـه، بـاز هـم مبنـای بسیاری از سیستمهای کنترل زمانبندی شده میباشد .این سیستم یک برنامه زمانبنـدی خـارج از خـط بـر اساس میانگین شرایط ترافیکی برای یک دوره زمانی خاص از طول روز در کامپیوتر مرکزی ارائـه میدهـد کـه معمولا بر اساس به حداقل رساندن شاخص بی نظمی که نشان دهنده میزان تاخیر وتوقف و یا ماکزیمم کردن ظرفیت باند میباشد، عمـل میکنـد. UTCS مجموعـهای از الگـوریتم هـایی میباشـد کـه تحـت پارامترهـای
3FHWA استاندارد شده است و امروزه با کاربرد مدلسازی میکروسکوپی، استانداردهای دیگـری نیـز عملکـرد این سیستم را توصیف میکنند8] ،.[7

1−Fuzzy Signal Control 2−Urban Traffic Control Sys-- 3−Federal Highway Administration
6
با ایجاد قابلیت کاربرد میکروپروسسورها که استفاده از آنها نیـز سـاده و کـم هزینـه میباشـد، چنـدین سیستم کنترل ترافیک روی خط1 از اواخر دهه70 و اوایل دهه80 در جهت پاسخگویی به تغییرات ایجاد شده برای افزایش عملکرد بهینهسازی ارائه گردیده است. از جمله این سیستمها میتوان به سیـستم 2SCATS کـه در استرالیا وسیستم 3SCOOT که در انگلیس ارائه شدهاند اشاره نمود9]،.[10 در مجموع میتـوان گفـت کـه این دو سیستم در جهت افزایش بهینهسازی پارامترهایی همچون چرخه4، تسهیم5، آفست6 عمل میکننـد. در کشور ما حدودا از سال 1377 طرح کاربرد نرم افزار SCATS به مرحله اجرا در آمد و هم اکنـون حـدود 320
تقاطع شهر تهران به این سیستم مجهز شدهاند. سیستمهای دیگری نیز در سالهای اخیر مورد توجـه کـاربران قرار گرفته است که نمونه هایی از این سیستمها عبارتنـد از: سیـستم7PLIDENT، سیـستم 8EQUISAT و سیستم .9FLEXIPROG کاربرد شبکههای عصبی به عنـوان یـک روش هوشـمند در سیـستمهـای کنتـرل ترافیک در سالهای اخیر اهمیت ویژهای یافته اسـت. سیـستم 10S-TRAC توسـط Spall در سـال1997 کـه نمونهای از سیستمهای مبتنی بر شبکه عصبی میباشد، ارائه گردید. در سال1992، Dongling الگوریتمی بـه منظور کاربرد همزمان شبکههای عصبی و سیستمهای فازی برای بهبود استنتاجات فازی در کنتـرل ترافیـک ارائه داد. همچنین الگوریتم 11FDP نیز برای اصلاح سرعت محاسبات با ترکیب روشهای فازی وعصبی در سال 1998 توسط j.j.Henry ارائه شده است که کاربردهای فراوانی دارد. Liu.Zhiyong در سال 2003 یـک نـوع روش کنترلی پیشگویی کننده با استفاده از شبکههای عصبی برای کنترل چراغ در یـک شـبکه شـهری ارائـه داد.وی همچنین در سال 2005 یک نوع روش کنترلی بر اساس شبکههای عصبی هاپفیلد و مبتنی بر تئوری آشوب12 برای کنترل یک تقاطع ایزوله پیـشنهاد داد. Guojiang نیـز در سـال 2004 مطالعـاتی را در زمینـه کاربرد سیستمهای نرو- فازی در یک شبکه ترافیکی شامل چندین تقاطع انجام داد12]،.[11
به طور کلی سیستمهای عصبی به شکلهای مختلفی در کنترل ترافیک به کار گرفته شدهاند. در برخی موارد شبکه عصبی به تنهایی مدلسازی، آموزش و کنترل سیستم ترافیکی مورد نظر را انجام میدهد. همچنین ممکن است شبکه عصبی بر مبنای سایر روشهای کنترلی به کار رود، ماننـد بـه کـارگیری شـبکه عـصبی بـه منظور اصلاح وبهبود تصمیمات کنترلر فازی ترافیک.در برخی موارد نیز برای کنترل ترافیـک، شـبکه عـصبی میتواندبا سایر روشهای کنترلی مانند کنترل فازی، کنترل پیشبین و...ترکیب و قابلیتهای آنها را بهبود بخشد.

1−On-Line 2−Sydney Coordinated Adaptive Traffic Sys-- 3−Split Cycle Offset Optimision Technique 4−Cycle Time 5−Phase Split 6−Offset
7−Platoon Identification 8−Equal Saturation 9−Flixible Progressive Linking of Vehicle Actuated Signals
10−Sys-- Wide Trrafic adaptive control 11−Fuzzy Dynamic Programming 12−chaos
7
(3-1 روش کار و تحقیق
جمع آوری اطلاعات آماری به روشهای مختلف و با استفاده از انواع حسگرها صورت میپذیرد که برخی از آنها به شرح زیر میباشد:[2]
-1حسگرهای مکانیکی مانند آشکار سازهای هیدرولیکی یا پیزوالکتریکی.
-2آشکارسازهای آلتراسونیک و حسگرهای مادون قرمز که با ارسال امواج به سطح خیابان و مقایـسه اخـتلاف زمان بین امواج منعکس شده از سطح وسایل نقلیه و سطح خیابان، وسیله نقلیه را تشخیص میدهد. -3کاربرد رادار که با استفاده از تغییرات ایجاد شده در فرکانس امواج منتشره از سطح خودروها، سرعت آنها را تشخیص میدهد.
-4حلقههای آشکار ساز مغناطیسی و حلقههای اندوکتانس که بر اساس تشخیص تغییرات انرژی در اثر وجـود خودرو کار میکند.
-5حسگرهای تشخیص نور مانند دوربین ویدئویی و چشم الکترونیکی.
نصب یک دوربین از نصب سایر آشکارسازها بسیار ساده تر بوده و علاوه بر آن یک دوربـین بـه تنهـایی میتوان وضعیت محدوده وسیعی را زیر نظر داشته و اطلاعات آماری دقیق تر و با جزئیات قابل درک بیـشتری را در اختیار کنترلر قرار دهد و به طور کلی یک سیستم آشکارساز مبتنی بربینـایی، میتوانـد کنترلـی مـشابه کنترل یک انسان را فراهم نماید.
هدف از کنترل یک تقاطع ایزوله در این پایان نامه، بهبود وضعیت ترافیکی و ایجاد روانی نسبی حرکت در تمام مسیرهای منتهی به این تقاطع، در ساعات مختلف شبانه روز میباشد. برای رسیدن به ایـن هـدف، از حسگرهای ویدئویی برای جمع آوری اطلاعات آماری تقاطع و ازیک الگوریتم فـازی – عـصبی اسـتفاده شـده است. یکی از مهمترین پارامترهایی که در بازدهی شبکههای عصبی و بهویژه شبکههـای عـصبی RBF نقـش مهمی را ایفا مینماید، الگوریتم یادگیری و دقت آن میباشد. شبکههای RBF یکی از انواع شبکههای عـصبی جلوسو میباشندکه در بسیاری از کاربردهای مهندسی جذابیت و کاربرد گستردهای دارند. وجود این ویژگی را میتوان در عوامل متعددی جستجو نموداز جمله اینکه شبکههای RBF میتوانند تقریباً کلیه توابع عمـومی را تخمین بزنند، ساختار بسیار ساده و فشردهای دارند و سرعت الگوریتم آموزشی آنها سـریع مـیباشـد. در ایـن پروژه و برای اولین بار یک الگوریتم آموزشی برای شبکههای عصبی RBF مبتنی بـر منطـق فـازی و ترکیـب روشهای LLS و گرادیان با حفظ کاربری آن برای کنترل یک تقاطع ایزوله ارائه مـی گـردد. روش پیـشنهادی
FHLA برای طراحی و آموزش شبکه عصبی RBF شامل دو مرحله میباشد: -1 طراحی ساختار شبکه RBF و مقداردهی اولیه به پارامترهای آن.
-2 تنظیم پارامترهای شبکه براساس الگوهای آموزشی.
اساس کار، بر استفاده از شبکه عصبی فازی RBF به همراه یک روش پیـشنهادی آمـوزش مبتنـی بـر فازی خواهد بود. در الگوریتم یادگیری FHLA پیشنهادی، علاوه بر تعیین وزنهای ارتباطی بین لایه مخفـی و لایه خروجی، پارامترهای لایه RBF شامل تعداد نرون، مرکز نرون و عرض آن نیـز در طـول فراینـد آمـوزش تعیین میگردند. مقادیر اولیه پارامترها با استفاده از منطق فازی و روشـهای خوشـه یـابی فـازی و بـه کمـک تکنیک FCM بدست میآیند. در این روش تابع هزینه عدم شباهت، محاسبه و مینـیمم مـیگـردد. از میـزان
8
تعلق هر الگوی ورودی به خوشهها و فاصله الگو تا مراکز خوشه جهت محاسبه میـزان عـدم شـباهت اسـتفاده میگردد. برای تعیین مقادیر نهایی پارامترها و وزنهای ارتباطی، از ترکیب روش LLS و گرادیان به عنوان روش بهینهسازی استفاده میشود.
یک سیستم کنترلی مبتنی بر بینایی ماشین، شامل یک دوربین دیجیتـالی اسـت کـه بـر روی مـسیر حرکت خودروها نصب شده فیلم حاصل از آن توسط الگوریتمهای پردازشی مناسـب بـرای تـشخیص خـودرو استفاده میشود و نهایتا اطلاعات آماری لازم از آن استخراج میگردد.
بنابراین با ترکیب دو ابزار قدرتمند شبکههای عـصبی و سیـستمهـای فـازی همـراه بـا یـک سیـستم آشکارساز مبتنی بر بینایی ماشینها، سیستمی طراحی خواهد شد کـه عـلاوه بـر در نظـر گـرفتن جنبـههـای مختلف تردد شهری، بتواند بهینهسازی الگوریتم کنترل ترافیک را نیزتضمین نماید. نتایج شبیهسازی بـر روی بانک تصاویر ترافیکی تقاطعهای موجود و مقایسه کاربرد این الگوریتم با سایر روشهای کلاسیک که در کنترل تقاطعهای ایزوله معمول میباشد، نشان دهنده میزان قابلیت این تکنیک میباشد.
در این پایان نامه پس از معرفی نظریه جریان کنترل ترافیک و همچنین معرفی متغیرهـای ترافیکـی و روابط حاکم بر آنها پرداخته وپروسه کنترل ترافیک از دیدگاه میکروسکوپیک و ماکروسـکوپیک و مـد لـسازی مناسب فرایندهای مختلف آماری موجود در این زمینه مورد بررسی قرار میگیرد. در بررسی پدیده ترافیـک دو دسته پارامترهای گسسته و پیوسته وجود دارند که هریک از آنهـا از توزیـعهـای احتمـالاتی مناسـب پیـروی میکنند. همچنین در این بخش برخی از روشهای مدلـسازی کلاسـیک پدیـده ترافیـک و نحـوه زمـان بنـدی چراغهای راهنمایی و اصول حاکم بر نحوه فازبندی در یک تقاطع ارائه میشود.
از آنجا که منطق فازی بهترین روش برای مدلسازی فرایندهایی است که با استدلالات انسانی سرو کـار دارد، استفاده از کنترل کننده فازی، نوعی کنترل ترافیک انعطاف پذیر را ایجاد میکند. از این رو در این پایـان نامه ضمن معرفی شبکههای عـصبی و بـه طـور خـاص شـبکه عـصبیRBF برخـی از روشـهای آموزشـی در شبکههای عصبی معرفی و شرایط معادل بودن عملکرد سیستمهای فـازی و شـبکههـای عـصبیRBF مـورد بررسی قرار میگیرد.
پس از آشنایی مختصر با سیستمهای نرو- فازی به ارائه الگوریتم پیشنهادی FHLA که برای نخستین بار جهت کنترل ترافیک تقاطع ایزوله استفاده میشود، پرداخته شده است. به این منظور مراحـل پیـادهسـازی تکنیک FCM برای مقداردهی اولیه مراکز و عرض نرونها و نحوه تعیین تعداد نرونهای لایه میانی با اسـتفاده از اندیسهای اعتباری خوشـهای بیـان شـده اسـت. همچنـین مـاتریس تقریبـی بـردار ضـرایب وزن تعیـین و بهینهسازی پارامترها و تعیین مقادیر دقیق آنها صورت میپذیرد.
از آنجا که قرار است اطلاعات لازم جهت کنترل از طریق پردازش تصاویر ویـدئویی صـورت پـذیرد، در بخشی نیز به مباحث موجود در پردازش تـصویر و شناسـایی و ردیـابی اجـسام متحـرک و بررسـی روشـهای استخراج اطلاعات آماری ترافیک از تصاویر ویدئویی پرداخته میشود.
در نهایت مدلسازی رفتار دینامیکی یک تقاطع ایزوله شهری، صورت گرفته و سـپس کنترلـر عـصبی-
فازی طراحی و به مدل شبیهسازی شده اعمال میگردد. همچنین یکی از روشهای شـمارش وسـایل نقلیـه در تصاویر ویدئویی انتخاب و برروی فیلمهای تهیه شده از تقاطع موردنظر پیاده میشود و نتایج حاصـل شـده بـا آمار واقعـی مقایـسه شـده انـد. همچنـین تـاثیر بـه کـارگیری کنتـرل کننـده عـصبی – فـازی بـا اسـتفاده
9
ازتکنیک FHLA و کنترل کلاسیک پیش زمانبندی شده، بر میزان سطح تاخیر و سـطح اشـباع ورودیهـای تقاطع بررسی شده است. کلیه برنامه های مدلسازی توسط برنامه نویسی در محیط نرم افزار MATLAB بوده و نتایج شبیهسازی قابلیتهای به کار گیری الگوریتم پیشنهادی را نشان میدهد.
10
فصل دوم
نظریه جریان ترافیک و اصول زمانبندی
چراغهای تقاطع
11
فصل دوم: نظریه جریان ترافیک و اصول زمانبندی چراغهای تقاطع
(1-2 مقدمه
تئوری ترافیک دانشی است که به منظور برقراری روابط تحلیلی پدیده ترافیـک و بـسط آنهـا اسـتفاده میشود. این فرآیند شامل تحلیل ریاضی و مدل سـازی، اسـتفاده از تکنیـکهـای مهندسـی کنتـرل سیـستم وشبیهسازی کامپیوتری میباشد. نظریه جریان ترافیک و بررسی مـدلهای جریـان ترافیـک پرداختـه و روابـط تحلیلی مربوط به پارامترهای مختلف که ممکن است از مدلهای احتمالاتی گسسته و یـا مـدلهای احتمـالاتی پیوسته تابعیت کنند، در ادامه مورد بحث قرار میگرند. به این ترتیب با شناخت متغیرهای مختلف ترافیکـی و آشنایی با نحوه اندازه گیری هریک از آنها، میتوان در تحلیل وضعیت ترافیکی یک تقاطع، پارامترهای مناسـب را انتخاب نمود. زیرا اندازه گیری بسیاری از شاخصههای تاثیر گذار بر جریان ترافیک ممکن با مـشکل مواجـه شود.
(2-2 روابط تحلیلی پدیده ترافیک
یکی از مدلهای اساسی جهت بررسی پدیده ترافیک مدل خودرو به دنبال هم می باشد که عبارت است از رابطهای ریاضی که حرکت یک وسیله نقلیه را به حرکت وسایل نقلیه دیگر که به دنبال آن میباشد ارتبـاط داده و با تعمیم آن میتوان به رابطهای که جریان کامل ترافیک را توضیح میدهد، رسید.یک نمونه از معـادلات
ریاضی مربوطه به صورت زیر میباشد:[3]
(1-2) Vn (t −T ) −Vn−1(t −T ) dVn (t) A dt X n (t −T ) − X n−1(t −T ) که در آن Vi سرعت خودروی i ام، Xi موقعیت خودروی i ام و T عقب مانـدگی یـا تـاخیر در عکـس العمـل میباشد. این رابطه نشان میدهد که شتاب خودروی n ام به وسیله اختلاف بین سرعت او و سـرعت خـودروی جلویی (n-1) و همچنین به ثابت A و به فاصله بین دو وسیله نقلیه بستگی دارد. هرچه فاصله بین دو وسـیله نقلیه کمتر باشد، این وابستگی بیشتر است. آزمایشات مناسب بودن این مدل توصیفی را نشان میدهند. مـدل خودرو به دنبال هم که در رابطه (1-1) نشان داده شده است، در مقیاس کوچک بوده و میتوان با کمی تغییـر از این معادله به رابطهای مناسب در مقیاس بزرگ دست یافت. برای نشان دادن این رابطه در مقیـاس بـزرگ، معادله (1-1) را برای شرایطی که فاصله همه وسایل نقلیه و سرعت آنها یکسان باشد، در نظر گرفته می شود.
با توجه به اینکه v سرعت، v∆ اختلاف سرعت و x ∆ فاصله است، آنگاه:
(2-2) ∆v A dv ∆x dt با تغییر دیفرانسیلی در سرعت رابطه زیر برقرار میباشد.: (3-2) d (∆x) dv  A ∆x 12
و نهایتا برای هرزوج اطلاعات معلوم (v0,x0) میتوان نوشت (4-2) d (∆x) v∫dv  A ∆∫x ∆x v0 ∆x0 k0 ALn ∆x ALn v v − k ∆x0 0 که در این رابطه k عبارت است از چگالی و k=1/∆x که با نشان دادن تردد به صورت q و با توجه به اینکـه در چگالی تراکم kj (حالت اشباع) v=0 میباشد، ازمعادله (4-1) میتوان نوشت :
(5-2) k j q  AkLn k باید توجه داشت که عموما فـرض بـر آن اسـت کـه چگـالی جریـان (k) یـک متغیـر مـستقل اساسـی بـوده وپارامترهایی همچون سرعت (v)و تردد (q) به آن وابسته هستند.
(3-2 معرفی پارامترهای ترافیکی
در این بخش به طور مختصر به معرفی برخی پارامترهایی که در تئوری جریان ترافیـک نقـش مـوثری دارند بررسی میشوند. به طور کلی روابط میان پارامترهای مختلف در پدیده ترافیک را میتوان به صورت جدول
1-2 توصیف نمود:
جدول (1-2) معرفی پارامترهای حاکم بر پدیده ترافیک
علامت نام توضیح واحد q حجم (تردد) تعداد وسیله نقلیه که در واحد زمان تعدادوسیله نقلیه بر از یک نقطه میگذرد. ساعت k تراکم(فشردگی) تعداد وسیله نقلیه که واحد طول یک راه تعدادوسیله نقلیه بر را به طور همزمان اشغال میکنند. کیلومتر s فاصله مکانی مسافت بین دو وسیله نقلیه متوالی متر یا کیلومتر h فاصله زمانی فاصله زمانی بین عبور دو وسیله ثانیه نقلیه از یک مکان m واحد زمان سفر زمانی که یک وسیله نقلیه واحد دقیقه بر کیلومتر طول را طی میکند u سرعت مشتق مسافت نسبت به زمان کیلومتر بر ساعت u s میانگین مکانی سرعت میانگین سرعت وسایل نقلیه گذرنده کیلومتر بر ساعت از یک مسیر در یک لحظه معین 13
روابط فوق قابل اثبات بوده و رابطه آنها را میتوان به صورت ذیر بیان نمود:
حجم ترافیک: میانگین مکانی سرعت × تراکم
(6-2)
میانگین مکانی سرعت = حجم × فاصله مکانی
(7-2)
تراکم: حجم × واحد زمان سفر
(8-2)
فاصله مکانی = میانگین مکانی سرعت × فاصله زمانی
(9-2)
فاصله زمانی = واحد زمان سفر × فاصله مکانی
(10-2)
واحد زمان سفر= تراکم × فاصله زمانی
(11-2)

q  us k
us  qs  kq

k  qm  q
us
s  ush  uqs

h  ms  1q

m  kh  1
us
با استفاده از روابط فوق و ترکیب آنها میتوان سیستم ترافیک را به طور کامل مورد تجزیه و تحلیل قرار داد. همچنین واضح است که حجم و تراکم مناسبترین زوج متغیرها بـرای توصـیف جریـان ترافیـک و نتـایج نظری آن هستند. همچنین این تعاریف نشان میدهد که به هنگام تراکم صفر، حجم نیز باید صفر باشد و برای تراکم حداکثر یعنی وقتی وسایل نقلیه سپر به سپر قرار میگیرند نیز حجم صفر است. معمولا پیش از رسـیدن تراکم به یک مقدار ماکزیمم، حجم کاهش مییابد. شکل 1-2 دیاگرام اساسی ترافیک نامیده میشود که رابطه میان حجم و تراکم را نشان میدهد.
14

شکل((1-2 منحنی حجم-ترافیک به صورت تابعی از تراکم
(4-2 مدلهای احتمالاتی
استفاده از مدلهای احتمالاتی هم به صورت ساده و هم به صورت خاص (کـاربرد تئـوری صـف) بخـش مهمی از نظریه جریان ترافیک میباشد. در این بخش به طور مختصر به توصیف احتمالاتی برخی پارامترهـای موثر بر جریان ترافیک و رابطه میان آنها پرداخته میشود.
(1-4-2 مدل احتمالی رابطه چگالی و تردد
برای بررسی و به دست آوردن عناصری مانند رابطه چگالی و تردد، یکی از روشها آن اسـت کـه رابطـه جبری q=q(k) را برای تردد محاسبه شود، به طوری که چگالی k رابه عنوان یک متغیر تـصادفی بـا میـانگین k و واریانس σ 2 در نظر گرفت. با معلوم بودن این مقادیر، مقدار میانگین جریان، q ، و سـایر معیـارهـای احتمالاتی نیز معین میشود. روش بهتر این است که جریان q طوری در نظر گرفته شود که دارای یک مولفـه وابسته به چگالی و یک مولفه تصادفی باشد که این مولفه تصادفی به مولفه قبلی اضافه گردد.
(12-2) q  q fix (k)  qrandom
فرض کنید که (q=Ak(k0-k) و (13-2) qE(q)E[Ak(k0−k)]Ak0E(k)−AE(k2)
σx2  E(x2 ) −[E(x)]2
qAk0k−A(σk2k2)
یا به عبارتی دیگر (14-2) qq(k)−Aσk2
15
که در این رابطه، ( q(k از جایگذاری k در رابطه تعریف شده ( q  AK (q − q0 به دست آمده است.به ازای یک KK خاص، نوسانات موجود در چگالی ترافیک به حداقل و نرخ تردد به حـداکثر مقـدار خـود میرسد.

شکل (2-2) بررسی مدل احتمالی ترافیک
(2-4-2 مدلهای احتمالی گسسته
برخی از مدلهای احتمالی که در توصیف پارامترهای گسسته به کـار میـرود، بـه طـور مختـصر بـه صورت زیر میباشد:
-1 توزیع دو جملهای: از این مدل احتمالی در توصیف حرکات گـردش بـه چـپ و راسـت در یـک بازوی تقاطع و فرآیند ورود وسایل نقلیه به یک بازو در جریان ترافیکی متـراکم کـه نـسبت میـانگین بـه واریانس تعداد وسایل نقلیه از یک بزرگتر باشد، استفاده میشود.
-2 توزیع دو جملهای منفی : این توزیع در توصیف پدیـدههـای خـاص مثـل عبـور وسـایل نقلیـه سنگین مانند کامیون در جریان ترافیک استفاده میگردد، به این ترتیب که عبور یک وسیله نقلیه سنگین به عنوان پیروزی و عبور بقیه وسایل نقلیه به عنوان شکست در نظر گرفتـه میـشود. ضـمن آنکـه از ایـن توزیع، زمانی استفاده میشود که نسبت میانگین به واریانس وسایل نقلیه از یک کمتر باشد.
-3 توزیع پواسن: از توزیع پواسن برای توصیف رفتار وقـایعی کـه ذاتـا تـصادفی هـستند، اسـتفاده میشود. از نظر تاریخی، این توزیع، اولین توزیع به کار رفته برای آنالیز جریان وسایل نقلیه میباشد. از ایـن توزیع برای شمارش پدیدهها استفاده میشود و احتمال ورود وسایل نقلیه در ضـمن یـک پریـود زمـانی را مشخص میکند. همچنین تنها پارامتری که باید از روی اطلاعات آماری و تحلیل آنها به دسـت آیـد نـرخ ورود وسایل نقلیه به خیابان مورد نظر میباشد. همچنـین از ایـن توزیـع در زمـانی کـه وضـعیت ترافیـک معمولی بوده و نسبت میانگین به واریانس در حدود یک باشد استفاده میشود.
-4 توزیع هندسی : این توزیع که احتمال تعداد آزمایش برای رسـیدن بـه اولـین پیـروزی را دارد، نقش عمدهای در مدلسازی فرآیند صفبندی ترافیکی را ایفا میکند. پارامترهایی کـه در ایـن توزیـع بایـد مشخص باشند، نرخ ورود ونرخ ترک صف بوده و زمان انتظار برای برای اولین موفقیت (خروج) و یا تعـداد وسایل نقلیه منتظر در صف با این توزیع، تعیین میشوند.
16
(3-4-2 مدلهای احتمالی پیوسته
برای توصیف برخی پارامترهایی که ماهیت پیوسته دارند نیـز معمـولا از توزیـعهـای زیـر اسـتفاده میشود:
-1توزیع نرمال: این توزیع برای توصیف سرعتهای نقطهای در محاسبات مهندسی ترافیک کاربرد دارد. -2توزیع نمایی(نمایی منفی): کاربرد این توزیع در مدلسازی شکاف زمانی بین ورودیهای متوالی در یـک پروسه میباشد. در به کارگیری این تابع توزیع، نرخ متوسط جریان ترافیک وسـایل نقلیـه در واحـد زمـان باید مشخص باشد.
(4-4-2 مدل احتمالی تئوری صف
از جمله پارامترهای مورد توجه در مدلسازی صف عبارتنـد از: تعـداد واحـدهـای موجـود در صـف،
احتمال عدم وجود واحدی در صف، زمان متوسط انتظار هر واحد و غیره. برای پیشگویی مشخـصات یـک سیستم صف، لازم است که مشخصات الگوی ورودی مانند متوسط نرخ ورود، توزیع آماری شـکاف زمـانی ورود وسایل نقلیه و همچنین مشخصات سیستم سرویس دهنده شامل نرخ متوسط سرویس، توزیع آماری زمان سرویس وتعداد کانالهای سرویس دهنده، مشخص باشند.
با فرض نرخ ورود λ،شکاف متوسط ورود برابر 1/ λ خواهد بود. همچنین اگـر نـرخ سـرویس را بـا
نمایش دهیم، پس متوسط زمان سرویس برابر با 1/  خواهد بود. نسبت P  λ /  (شـدت ترافیـک)
برای پایداری صف باید از یک کمتر باشد.
برای مدلسازی صف تک کاناله از روابط زیر استفاده میشود:
-1تعداد واحدهای موجود در سیستم: این پارامتر شامل تعداد واحـدهـای منتظـر در صـف بعـلاوه تعـداد واحدهای در حال سرویس میباشد
-2احتمال خالی بودن سیستم:
(15-2) p(0) 1 − p -3احتمال وجود n واحد در سیستم برابر است با (16-2) p(n)  pn(0) -4طول متوسط صف: تعداد متوسط واحد منتظر در صف: (17-2) E(m)  p2 /(1 − p)  λ2 /  /( − λ) -5تعداد متوسط واحد موجود در صف: E(n)  p /(1 − p)  λ /( − λ) (18-2) -6زمان متوسط انتظار قبل از سرویس دهی: (19-2) E(v) 1/( − λ) 17
-7زمان متوسط صرف شده در سیستم:
(20-2) 1/  /( − λ) E(w)  (5-2 کنترل چراغ راهنمایی
زمان سفر و مشخصههای تاخیر میتواند به عنوان معیار مناسبی بـرای کـارایی جریـان ترافیـک در تقاطعهای چراغ دار مورد استفاده قرار گیرد. به طورکلی زمان سفر و زمان تاخیر با یکدیگر رابطـه عکـس دارند. با مطالعات مربوط به میزان تاخیر میتوان مقدار، علت، موقعیت، مدت و فراوانی تاخیرها و همچنین سرعتهای کلی سفر وحرکت را تعیین کرد.
تاخیر عبارت است از زمان از دست رفتهای که باعث کند شدن جریان ترافیـک میگـردد. از جملـه عوامل موثر بر تاخیر تقاطع میتواند شامل مواردی همچون عوامل فیزیکی مانند تعداد خطوط عبور، شیب ها، مسیر دهی ترافیک و ایستگاههای حمل ونقل ترافیک،عوامـل ترافیکـی ماننـد حجـم ترافیـک در هـر رویکرد تقاطع، حرکات گردشی، عابران پیاده وطبقهبندی وسایل نقلیه و کنترل کنندههای ترافیکی ماننـد زمانبندی چراغ راهنمایی، تابلوهای ایست و احتیاط، باشد.
برای به دست آوردن روشی برای غیر اشباعسازی تقاطع باتوزیع ورودی پواسـن، احتمـال اینکـه x
وسیله نقلیه در طی یک چرخه((c وارد تقاطع شوند برابر است با :
e−λc(λc)x
p(x) (21-2) x

که در این رابطه λ برابر است با متوسط نرخ ورود وسایل نقلیه در طی یک دوره مشخص برای حالت غیـر اشباع تقاطع.
مثلا اگر لازم باشد اتومبیل هایی که در چرخهای بـه انـدازه c وارد میـشود در طـی مـدت g سـبز موجود، در حداقل 95 درصد مواقع قادر به عبور باشند، تعداد وسایل نقلیهای که باید وارد تقاطع شـوند از رابطه زیر قابل محاسبه میباشد:
x (λc) −λc e N (22-2) ≥ 0.95 Pr (x ≤ N )  ∑ x x0 که در این رابطه pr(x≤n) نشان دهنده احتمال آن است که x وسـیله نقلیـه کمتـر یـا مـساوی بـا N وارد تقاطع شوند که N کوچکترین عددی است که در این رابطه صدق میکند.
یکی دیگر از پارامترهای موثر بر جریان ترافیک، زمان سفر متوسط می باشـد.زمـان متوسـط سـفر برای برای یک جریان ترافیک یک طرفه توسط رابطه زیر تعریف میشود:
(23-2) 60(On − Pn ) Tn  Tn − Vn که در آن Tn زمان سفر متوسط برای تمام ترافیک در جهت شمالی n) به معنای جهت حرکت بـه سـمت شمال مسیر میباشد.)
18
و مقدار ( (On − Pn نشان دهنده تصحیح این مساله است که ممکن است وسیله نقلیـه مـورد بررسـی بـا سرعت متوسط در مسیر حرکت نکند.
پارامتر دیگر سرعت متوسط مکانی وی باشد که برای جریان یکطرفه، با رابطه زیر تعیین میشود:
(24-2) 60d Sn  T n که در آن Sn سرعت متوسط مکانی در جهت شمال و d طول مسیر مورد آزمایش میباشد. (6-2 تحلیل عملکرد تقاطع
مراحل تحلیل عملکرد تقاطع ها، اعم از چراغدار، بدون چراغ و میدان شامل تهیه اطلاعـات ورودی، تحلیل ظرفیت و تعیین سطح خدمات میباشد. اطلاعات ورودی شامل اطلاعات مـورد نیـاز بـرای تحلیـل عملکرد تقاطع مانند مشخـصات هندسـی، ترافیکـی، کنترلـی و محیطـی تقـاطع اسـت. تحلیـل عملکـرد تقاطعهای چراغدار به صورت سیستماتی ک مطابق شکل3-2 صورت میگیرد:[1]

شکل (3-2) فرآیند تحلیل تقاطعهای چراغدار
(1-6-2 اصطلاحات رایج در تقاطعهای چراغدار
پیش از هرچیز، تعاریف مفاهیم و اصطلاحات مرتبط با تقاطعهای چراغ دار ارائه میگردد:[1] -1 چرخه: عبارت است از یک دوره کامل از حالتهای چراغ راهنمایی.
-2 طول چرخه: عبارت است از زمان لازم برای طی شدن یک چرخه چراغ راهنمایی که معمولا بـر حسب ثانیه بیان میشود.
-3 فاز(دوره): بخشی از یک چرخه چراغ راهنمایی است که به عبور یک یا چنـد حرکـت ترافیکـی همزمان اختصاص یافته است..
-4 فرجه: مدت زمانی است که در طول آن، وضعیت کلیه چراغهای تقاطع ثابت است.
-5 فرجه تمام قرمز: مدت زمانی است که به منظور ایمنی و تسهیل تخلیه تقاطع، در همه جهت ها چراغ قرمز میشود.
19
-6 فرجه زرد: مدت زمانی است که در میان علائـم سـبز و قرمـز چـراغ راهنمـایی در نظـر گرفتـه میشود تا وسایل نقلیهای که به علت سرعت زیاد قادر به توقف نیستند، بتوانند بـا ایمنـی از تقـاطع عبـور کنند.
-7 زمان تخلیه: مدت زمانی است که در پایان زمان سبز یک حرکت ترافیکی تا شروع زمـان سـبز حرکت بعدی در نظر گرفته میشود و برابر است با فرجه زرد بعلاوه فرجه تمام قرمز.
-8 زمان سبز موثر: بخشی از یک فاز میباشد که به طور موثر توسط حرکت مربوطه مورد اسـتفاده قرار میگیرد و برابر است با زمان سبز بعلاوه زمان تخلیه منهای زمان هدر رفته برای آن فاز.
-9 نسبت سبز: عبارت است از نسبت زمان سبز موثر یک فاز به طول چرخه. -10 ورودی(رویکرد): عبارت است از هریک از مسیرهای منتهی به تقاطع.
-11 گردش حمایت شده: حرکت گردشی که دریک فـاز جداگانـه و بـدون برخـورد بـا جریانهـای ترافیکی مزاحم مانند ترافیک روبرو یا عابرین پیاده انجام میشود.
-12 گردش حمایت نشده: حرکت گردشی است که به طور همزمان با جریانهای ترافیکی مخـالف و از بین آنها صورت میگیرد.
انواع چراغهای کنترل ترافیک تقاطعهای مجزا دارای تکنولـوژیهـا و کـاراییهـای بـسار متفـاوتی هستند. اما این چراغها از نظر نحوه زمانبندی به دو دسته چراغهای پیش زمـانبنـدی شـده و چراغهـای سازگار با ترافیک تقسیم شدهاند. کرد:.هریک از این روشها دارای مزایای ویژهای بوده و میتـوان بـه طـرق مختلف کارایی و انعطاف پذیری آنها را بهبود بخشید. در ادامه نحوه عملکرد این چراغها مورد بررسی قـرار میگیرد.
(2-6-2 ظرفیت
ظرفیت در تقاطعهای چراغدار عبارت است از حداکثر جریان وسایل نقلیـه گذرنـده از تقـاطع کـه متاثر از شرایط ترافیکی و هندسی ورودیهای تقاطع و نحوه زمانبندی چراغ میباشد.
جریان اشباع عبات است از حداکثر جریانی که میتواند از یک ورودی تقاطع، تحـت شـرایط حـاکم هندسی وترافیکی، و با این فرض که صد در صد زمان سبز موثر برای آن ورودی وجود داشته باشد، عبـور کند. جریان اشباع برای فاز i ام با نماد si نشان داده شده و بر حسب واحد " تعداد وسـیله نقلیـه برزمـان سبز موثر("(vphg بیان میشود.رابطه ظرفیت با جریان اشباع به صورت زیر میباشد:[1]
(25-2) ( gi Ci  Si ( c که در آن Ci ظرفیت ورودی iام تقاطع(وسیله نقلیه در ساعت)، Si جریان اشباع ورودی i ام تقاطع
(وسیله نقلیه در ساعت سبز موثر)،c طول چرخه چراغ (ثانیه)و gi زمان سبز موثر برای ورودی i ام تقاطع میباشد.
مفهوم جریان اشباع در تقاطعهای چراغدار بر این فرض استوار است که هیچگونه زمان هدررفتهای در تقاطع وجود نداشته و تقاطع به صورت یک نوع تسهیلات ترافیکی با جریان غیر منقطع عمل میکند.
20
تحلیل ظرفیت هر خط یا گروه معمولا بر اساس پارامتر "درجه اشباع" انجام میشود. این پـارامتر از نسبت حجم تقاضای حرکت (یا گروه خط) به ظرفیت آن vi/ci بـه دسـت میĤیـد. در صـورتی کـه درجـه
اشباع یک خط از یک بالاتر باشد، آن گروه خط نمیتواند پاسخگوی حجم ورودی به آن باشد.
تحلیل ظرفیت کل تقاطع نیز با استفاده از پارامتر "درجه اشـباع بحرانـی" صـورت میگیـرد کـه از
رابطه زیر حاصل میشود: (26-2) X (DS) Vi / Ci
که در رابطه فوق، Ci ظرفیت ورودی i ام تقاطع (وسیله نقلیه بر ساعت)، vi میزان جریان واقعـی
(وسیله نقلیه بر ساعت) و (X(DS) درجه اشباع میباشد. نرخ جریان اشباع را نیز میتوان با استفاده از روشهای محاسباتی به دسـت آورد. در اکثـر روشـهای معرفی شده یک مقدار پایه تحت عنوان "نرخ جریان اشباع ایـده آل " بـرای نـرخ جریـان اشـباع تعریـف میشود که بیانگر شرایطی است که عوامل هندسی و ترافیکی موثر در جریان اشباع همگـی حالـت بهینـه داشته و از هر ورودی در هر ساعت سبز موثر حداکثر جریان ترافیـک عبـور داده شـود. در بیـشتر مـوارد پارامترهایی همچون پهنای خط (یا خطـوط) عبـور در ورودی، شـیب ورودی، نـوع وسـایل نقلیـه، حجـم ترافیک چپگرد، حجم ترافیک راستگرد وحجم تردد عابر پیاده، در تعیین میزان نرخ جریـان اشـباع مـوثر میباشد. دستور العملهای مختلفی برای تخمین ظرفیت و تاخیر در تقاطعها موجـود میباشـد کـه در آنهـا پارامتر اصلی S که نشان دهنده جریان اشباع میباشد، دخالت دارند. رابطه زیر یـک دسـتورالعمل کلـی را برای محاسبه جریان اشباع به دست میدهد که تاثیر هریک از عوامل مورد نظر به صورت یـک ضـریب در آن اعمال شده است:
S=S0 (N) (fw) (fhv) (fg) (fp) (fa) (fbb) (flu) (frt) (flpd) (frpd)( 27-2)
که در آن عوامل تاثیر گذار به صورت زیر تعریف میشود:
:S0 میزان جریان اشباع ایده آل برای هر لاین که معمولاٌ (veh/h/In)1900 در نظر گرفته میشود.
:N تعداد لاینها در گروه لاین.
:fhv ضریب تنظیم برای وسائط نقلیه سنگین در جریان ترافیک. :fw ضریب تنظیم برای عرض لاین
:fp برای تنظیم برای وجود لاین پارکینگ نزدیک به گروه لاین و کیفیت پارکینگ در آن لاین :fg ضریب تنظیم برای شیب ورودی
:fa ضریب تنظیم برای نوع منطقه
:fbb ضریب تنظیم برای مسدود کردن اتوبوسهای محلی که در منطقه تقاطع توقف کردهاند. :flu ضریب تنظیم برای مطلوبیت لاین
:frt ضریب تنظیم برای گردش به راستها در لاین :flt ضریب تنظیم برای گردشهای به چپ
:flpd ضریب تنظیم عابر پیاده برای حرکتهای گردش به چپ
21
:frpd ضریب تنظیم عابر پیاده برای حرکتهای گردش به راست
در روشهای مختلفی که برای تعیین جریان اشباع معرفی شدهاند، میتـوان اثـر برخـی پارامترهـای مختلف را نادیده در نظر گرفت و عوامل موردنظر را به صورت یک ضریب در این رابطه گنجاند.
(3-6-2 سطح خدمات
برای محاسبه نحوه کارکرد تسهیلات ترافیکی، از شاخصی به نام سـطح خـدمات اسـتفاده میـشود.
سطح خدمات نشانگر میزان کارایی تقاطعهای چراغدار است.
تاخیر مهمترین معیار کارایی تقاطعهای چراغدار میباشد. در حقیقت، تاخیر زمان تلف شده خـارج از کنترل رانندگان بوده و ناشی از عامل اساسی زیر میباشد:
-1تاخیرعملیاتی که در نتیجه تداخل بین جریانهای مختلف ترافیک به وجود میاید.
-2تاخیر ثابت که به علت وجود سیستم کنترل چراغ راهنمایی بر وسایل نقلیه تحمیل میگردد. -3تاخیر زمان توقف: مدت زمانی که یک خودرو بدون حرکت در جای خود میایستد. -4تاخیر زمان سفر: تاخیری که بر اساس افزایش و کاهش شتاب صورت میگیرد.
برای محاسبه تاخیر کل ورودی که مجموع تاخیر اتفاقی و تاخیر یکنواخت میباشـد، از رابطـه زیـر استفاده میشود:[1]
(28-2) 25g / C X 2 1/ 3 − 0.65(C /V X 2  C(1 − g / C)2 d  ( 2V (1 − X ) 2[1 − (g / C)] در این رابطه C طول چرخه چراغ و g زمان سبز موثر فاز مربوطه،V حجم جریان ورودی و X نـرخ جریان اشباع میباشد.
در رابطه فوق تاخیر اتفاقی و تاخیر یکنواخت با یکـدیگر جمـع میـشود و چـون متوسـط تـاخیر را حدودا 5تا15 درصد بیش از مقدار واقعی برآورد میکند، جمله سوم حدودا 10 درصد میزان تـاخیر را کـم میکند و باعث تصحیح مقدار آن میشود.
(7-2 چراغهای هوشمند سازگار با ترافیک
در شرایطی که نوسانات ترافیک، نامنظم و غیر قابل پیش بینی بـوده و یـا حجـم تقاضـای تقـاطع پایین تر از شرایط اشباع قرار داشته باشد، تنها راه حل ممکن استفاده از چراغهای سازگار با ترافیک است.
این چـراغهـا بـه دلیـل تطـابقی کـه بـا تغییـرات جریـان ترافیـک دارنـد، دارای مزایـایی بـه شـرح زیـر هستند،14]،13،:[1
-1 در تقاطعهایی که تغییرات جریان ترافیک در آنها زیاد و غیر قابل پیش بینی است، نسبت به چراغهای پیش زمانبندی شده ارجحیت دارند.
-2 در تقاطعهای پیچیده که حجم ترافیک در بعضی از حرکتها نـا مـنظم اسـت، اسـتفاده از ایـن روش مناسب میباشد.
22
روشهای هوشمند کنترل ترافیک دارای آشکارسازهایی هستند که به وسیله آنها برخی پارامترهـای شاخص شرایط ترافیک در محل اندازه گیری میشوند. کنترل کننده دارای پردازندهای است که بـر مبنـای مقادیر این شاخصها و با توجه به روش عملکرد تعیین شده، در مورد مدت زمان هر فاز چراغ راهنمایی و یا شکل فازبندی تصمیم میگیرند. در شکل4-2 نحوه عملکرد یک روش کنترل سـازگار بـا ترافیـک ارائـه شده است.
شاخصهای ترافیک، مقادیر اندازه گیری یا برآورد شدهای هـستند کـه مبنـای سـنجش و تـصمیم گیری در روشهای کنترل سازگار با ترافیک مورد استفاده قرار میگیرد. این پارامترها معمولا شامل: حـضور خودرو، حجم ویا تردد وسایل نقلیه، نرخ اشغال و چگالی، سرعت، شکاف و طول صف میباشند.
چراغهای سازگار با ترافیک ممکن است به صورت نیمه سازگار ویا تمام سازگار عمل نمایند.

شکل((4-2 ساختار روش کنترل سازگار با ترافیک
چراغهای نیمه سازگار، در تقاطع مسیرهای فرعی با مسیرهای اصلی مورد استفاده قـرار میگیرنـد.
این چراغها میتوانند با استفاده از یک یا چند آشکارساز که در مسیر فرعی نصب میـشوند، عمـل نماینـد.
عملکرد آنها به این ترتیب است که در حالت عادی، چراغ مسیر اصلی سبز و چراغ مسیر فرعی قرمز بـوده و با حضور یک یا چند خودرو در در مسیر فرعی، به مسیر فرعی چراغ سبز داده میشود.
چراغهای تمام سازگار در تقاطعهای دو فازه و چند فازه مورد استفاده قـرار میگیرنـد. در ایـن نـوع کنترل در کلیه ورودیهای که نقش تعیین کنندهای در زمانبندی تقاطع دارند، آشـکار سـازهای وسـایل نقلیه نصب میشوند. روش عملکرد به این ترتیب است که برای هر فاز، یک حداقل زمان سبز، یک حداکثر
23
زمان سبز، یک حداکثر فاصله مجاز بین وسایل نقلیه یا فرجـه تمدیـد تعریـف میـشود، شـکل5-2 نحـوه عملکرد کنترل کنندههای سازگار را نشان میدهد.
هدف از تعریف مقادیر حداقل و حداکثر زمان سـبز، حفـظ ایمنـی در تقـاطع میباشـد و اینکـه در صورت بروز اشکال در عملکرد شناساگرهای وسایل نقلیه، عملکرد تقاطع مختل نگردد. نحوه تنظیم زمـان هر فاز به این ترتیب است که با سبز شدن چراغ و سپری شدن حداقل زمان سبز مربوطه، ادامه ویا خاتمه زمان سبز، وایسته به فاصله بین وسایل نقلیه در حال عبور از روی شناسـاگر اسـت. در تقـاطع هـایی کـه میزان تردد و در نتیجه نسبت حجم به ظرفیت تقاطع کم است، برای هر خـودرویی کـه پـیش از سـپری شدن حداکثر فاصله مجاز بین وسایل نقلیه به حوزه شناسگر برسد، چراغ به اندازه فرجه تمدید، سبز نگـه داشته میشود تا این خودرو بتواند از چراغ عبور کند. برای جلوگیری از تحمیل تاخیر بیش از حد بروسایل نقلیه سایر ورودی ها، فاصله مجاز وسایل نقلیه حداکثر 3 تا 4 ثانیه در نظر گرفته میشود.
با گسترش کاربرد ریزپردازنده ها، کنترل کنندههای سازگار با ترافیک از قالبهای غیر قابل انعطاف خارج شده و به سخت افزارهایی قابل برنامه ریزی تبـدیل شـدهانـد. در ایـن کنتـرل کننـدههـا چگـونگی عملکرد سیستم توسط یـک نـرم افـزار خـاص تعیـین میـشود. بـا توجـه بـه اطلاعـات دریافـت شـده از شناساگرهای وسایل نقلیه و عابران پیاده و سایر ورودی ها، امکان تصمیم گیری راجـع بـه زمـانبنـدی و فازبندی وجود دارد.

شکل((5-2 نحوه عملکرد کنترل کننده سازگار با ترافیک
(1-7-2 سیستم SCATS
یک سیستم کنترل کننده هوشمند ترافیکـی SCATS از جملـه سیـستمهـای کنترلـی روی خـط میباشد که در اواخر دهه 70 در کشور استرالیا ارائه و تا کنون در تعداد بسیار زیادی از تقاطعهای بـزرگ دنیا نصب و راه اندازی شده است. این سیستم هوشمند درکنترل شبکههای ترافیکی کـه تعـدادی تقـاطع متصل به یکدیگر را در بر دارد، کاربرد گستردهای یافته است. در میان تقاطعهای یک شبکه تحت کنترل،
24
معمولا یکی از تقاطعها به عنوان تقاطع بحرانی انتخاب میشود و سایر تقاطعهـا نیـز بـا سـهیم شـدن در پارامترهای تقاطع بحرانی، هماهنگ با آن عمل کرده و به این ترتیب نوعی کنترل تطبیقی را روی شـبکه ترافیکی اعمال میکنند.
معیار اساسی در تصمیم گیری سیستم SCATS، همان درجه اشباع یعنی نسبت حجم به ظرفیـت میباشد که با رابطه (26-1) بیان شده است.
در این سیستم پس از دریافت اطلاعات آماری از وضعیت هر یک از ورودیهای تقاطع، مقـدار DS
(درجه اشباع) را برای هریک از آنها به دست آورده و از بین آنها مقـدار درجـه اشـباع بحرانـی را انتخـاب میکند. برای تعیین چرخه یک حد مینیمم و یک حد ماکزیمم با توجه به شرایط خاص آن ورودی در نظر گرفته میشود. پس از تعیین چرخه، درصد تخصیص فاز سبز به هر رویکـرد بـر اسـاس الگوهـای از پـیش تعریف شدهای که برای سیستم مشخص میباشد، صورت میپذیرد، به این ترتیب که بـالاترین زمـان سـبز بودن چراغ به رویکردی که بالاترین درجه اشباع بحرانی را دارد، اختصاص میابد.
البته باید توجه داشت که در عین هوشمند بودن سیستم SCATS ، نقش اپراتور انسانی در نظارت بر عملیات کنترلی بی تاثیر نخواهد بود. وضعیت حجم ترافیکی مسیرها توسط دوربینهای نصب شـده در تقاطع توسط اپراتورها بررسی و در صورت نیاز، سیستم کنترل را حالت هوشمند خارج میشود و بـا توجـه به تصمیم اپراتور، میزان زمان سبز اختصاص داده شده به هر فاز را تعیین میگردد.
در هر صورت هدف از به کارگیری این سیستم کنترلی نیـز ماننـد بـسیاری دیگـر از سیـستمهـای هوشمند، کاهش زمان تاخیر و کاهش زمان توقف و همچنین کاهش زمان سفر میباشد که تا حـد بـسیار مطلوبی نیز در این زمینه موفق عمل نموده است.
(8-2 کنترل هماهنگ چراغها در شبکه
حداکثر کارایی جریان ترافیک در شبکه، صرفا با ایجاد بهترین نوع فاز بنـدی، زمـانبنـدی و طـول چرخه بهینه برای هریک از تقاطعها به دست نمی آید بلکه وضعیت تقاطعهای مجاور نیز به میـزان قابـل توجهی بر عملکرد شبکه موثر است.
هدف از هماهنگی چراغهای راهنمایی، فراهم آوردن شرایطی برای عبور هرچه بیشتر وسایل نقلیـه از یک مسیر با حداقل توقف و تاخیر است. در شرایط کاملا ایده آل انتظار میرود هر وسیله نقلیه کـه وارد سیستم میشود، بدون هیچ توقفی بتواند از آن خارج شود.
در شبکه حمل و نقل شهری معمولا فاصله تقاطعهای مجاور به اندازهای است که عملکرد آنهـا بـر یکدیگر تاثیر میگذارد. در این حالت، جریان ورودی تقاطعها حالت نوسانی پیدا میکند. باسبز شدن چـراغ در تقاطع بالا دست، یک دسته وسایل نقلیه با یکدیگر به حرکت درآمده و تقریبا بـه صـورت گروهـی بـه تقاطع بعدی میرسند. اگر همزمان با رسیدن این وسایل نقلیه، چراغ مربـوط بـه ایـن تقـاطع سـبز باشـد، مجموع تاخیر و توقفات وسایل نقلیه کاهش چشمگیری یافته و کارایی تقاطع شدیدا افزایش میابـد. بـرای دستیابی به این هدف، به جای کنترل مجزای تقاطعها از کنترل هماهنگ استفاده میشود.
معمولا در تقاطع هایی که به صورت هماهنگ با یکـدیگر اداره میـشوند، لازم اسـت طـول چرخـه یکسان ویا مـضرب صـحیحی از یکـدیگر بـوده و فاصـله زمـانی میـان آغـاز چـراغ سـبز در تقـاطع هـای
25
مجاور((offset نیز مقدار مشخصی باشد. عوامل موثر در کنتـرل هماهنـگ تقـاطعهـا شـامل نحـوه رفتـار رانندگان و میزان رعایت نظـم، فاصـله تقـاطع هـا، میـزان پراکنـدگی وسـایل نقلیـه و حجـم تـردد بـین تقاطعهای مجاور میباشد.
ایجاد هماهنگی بین کنترل کنندههای سیستم کنترل هماهنگ، به عهـده یـک کـامپیوتر مرکـزی میباشد. سخت افزار مورد نیاز بر اساس وسعت شبکه، حجم اطلاعات و تحلیـلهـای مـورد نیـاز متفـاوت خواهد بود. در شبکههای کوچک متشکل از چند تقاطع، میتوان کنترل مرکزی را به عهده یکی از کنتـرل کنندههای تقاطع واگذار کرد. درحالیکه در شبکههای بزرگتـر، کنتـرل مرکـزی بـه عهـده یـک یـا چنـد کامپیوتر خواهد بود.
برای شبیهسازی کامپیوتری ترافیک شبکه، مدلهای مختلفی در سطح دنیا وجود دارد کـه ازجملـه آنها میتوان به سیستم SCATS,SCOOT,PASSER,TRANSYT,SIGOP,NETSIM و... اشـاره نمـود.
این مدلها با دریافت اطلاعات حجم، نرخ جریان اشباع و همچنـین مشخـصات فیزیکـی مـسیرها، کـارایی شبکه را برای ترکیبهای مختلف چرخه، آفست، فازبندی و زمانبندی تقاطعها محاسبه نماید. همچنـین الگوریتمهای متعددی بر اساس شبکههای عصبی برای کنترل مرکزی در شبکههای ترافیکی ارائه شدهانـد
16]،.[15
سیستمهای کنترل هماهنگ ممکن است شامل کنتـرل در یـک شـبکه بـاز یـا کنتـرل هماهنـگ شریانی باشد که در این حالت تنها به پیشروی ترافیک در یک مسیر اصـلی (شـریان) توجـه میـشود ویـا شامل کنترل شبکهای باشد که هدف آن تامین موج سبز برای کلیه مسیرها است که البتـه دسـتیابی بـه این هدف در بسیاری از حالات امکان پذیر نمی باشد.
(9-2 فازبندی
هدف از فازبندی چراغهای راهنمایی، افزایش ایمنی تردد از طریق جداسازی حرکـتهـای وسـایل نقلیه از یکدیگر و از عابرین پیاده میباشد، به طوری که این امر منجر به حداقل اثرات منفی در ظرفیـت و تاخیر تقاطع گردد.
تعداد فازهای چراغ بستگی به طرح هندسی تقاطع (شامل تعداد ورودیهای تقاطع، مشخصات خطوط هـر یک از آنها و وجود خطوط گردشی)، حجم و جهت حرکـت وسـایل نقلیـه و نیازهـای عـابران پیـاده دارد.
معمولا با افزایش تعداد فازهای چراغ، کل تاخیر وسایل نقلیـه افـزایش یافتـه و از کـارایی تقـاطع کاسـته میشود. با این وجود، ممکن است در برخی موارد با افزایش تعداد فازها و حذف حرکات متقاطع، تـاخیر و ظرفیت تقاطع بهبود یابد.
در طرح فازبندی چراغ یک تقاطع، باید تجزیه و تحلیل اطلاعـات ترافیکـی و طـرح هندسـی بـه صـورت همگام صورت پذیرد تا ساده ترین طرح با حداقل تعداد فاز، جهت پاسخگویی بـه حجـم ترافیـک موجـود وآتی به دست آید.
26
(1-9-2 انواع فازبندی
-1 چراغ دو فازه : این نوع فازبندی در تقاطع هایی با حجم ترافیک گردشـی متوسـط و تـردد کـم عابرین پیاده مورد استفاده قرار میگیرد. نمونه هایی از طرحهای دوفـازه در شـکل 6-2 ملاحظـه میـشود.
طرح چراغ دو فازه ممکن است به صورت همپوشا، سبز تقدمی یا تاخیری و یا ترکیـب تقـدمی– تـاخیری باشد. در حالت طرح سبز تقدمی یا تاخیری، یک فاز سبز جداگانه بـرای حرکـت در یـک جهـت در نظـر گرفته میشود که سبب طولانی تر شدن زمان سبز حرکت در آن جهت نسبت به جهت مقابل میگردد.

شکل (6-2) طرح چراغ دوفازه

MS Thesis

-3-2روشهای مختلف تشخیص عیب21
-4-2عیوب مرسوم در ترانسفور ماتور ها22
-3 اصول و مبانی روش آنالیز پاسخ فرکانسی25
-1-3 روشهای مختلف شناسائی عیوب مکانیکی. 26
-2-3 تئوری روش آنایز پاسخ فرکانسی27
-3-3 روش اندازه گیری در ترانسفورماتورها28
-1-3-3 روش جاروی فرکانسی30
-2-3-3 روش ولتاژ ضربه31
-3-3-3 مزایا و معایب روش جاروی فرکانسی و ولتاژ ضربه31
-4-3 انواع روشها برای مقایسه نتایج حاصل از اندازه گیریها32
-5-3 مراحل پیشرفت روش تابع تبدیل برای پایش ترانسفورماتورها36
-1-5-3 تابع تبدیل برای آزمایش ترانسفورماتورهای بزرگ36
-2-5-3 تابع تبدیل برای پایش38
-1-2-5-3 تابع تبدیل برای پایش به صورت همزمان با بهرهبرداری و در حالت خروج از مدار39
-2-2-5-3 تابع تبدیل به عنوان یک روش تشخیص عیب مقایسهای39
-6-3 عوامل کلیذی موثر بر اندازه گیری های 41FRA
فهرست مطالب

عنوان مطالبشماره صفحه
-1-6-3 تاثیر مقدار امپدانس موازی 41................................
-2-6-3 تاثیر بو شینگهای فشار قوی 43................................
-3-6-3 تاثیر اتصال نقطه خنثی سیم پیچ فشار قوی 44................................
-4-6-3 تاثیر سیمهای رابط اندازه گیری 45................................
-7-3 دقت پردازش سیگنال در روش زمانی 47................................

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

-1-7-3 فرکانس نمونه برداری 47................................
-2-7-3 مدت زمان نمونه برداری 48................................
-3-7-3 تبدیل آنالوگ به دیجیتال 50................................
-4 انواع روشهای مدلسازی ترانسفورماتورها51
-1-4 روشهای مدلسازی جعبه سیاه52
-2-4 بررسی روشهای مدلسازی فیزیکی53
-1-2-4 مدل خط انتقال چند فازه54
-2-2-4 مدل مشروح 55................................
-1-2-2-4 مدلسازی براساس اندوکتانسهای خودی و متقابل 56................................
-3-4 مدل هایبرید 62................................
-4-4 انتخاب مدل مناسب برای مانیتورینگ63
-5 مدل فرکانس بالای سیم پیچ ترانسفور ماتور65
-1-5 مدل ترانسفور ماتوربر پایه ساختار فیزیکی سیم پیچ 66................................
-2-5 مدل مشروح ترانسفور ماتور68
-1-2-5 محاسبه ظرفیتهای الکتریکی 69................................
-1-1-2-5 تخمین ظرفیت طولی یک سیمپیچ بشقابی واژگون71
-2-1-2-5 تخمین ظرفیت الکتریکی بین دو سیمپیچ و یا بین یک سیمپیچ و زمین 74................................
-2-2-5 محاسبه اندوکتانسهای خودی و متقابل75
-1-2-2-5 محاسبه اندوکتانس متقابل 76................................
-2-2-2-5 محاسبه اندوکتانس خودی77
-3-2-5 محاسبه مقاومتهای عایقی موازی78
-4-2-5 محاسبه مقاومتهای اهمی سری79
فهرست مطالب

عنوان مطالبشماره صفحه
-6 نتایج شبیه سازی انواع عیوب ترانسفور ماتور81
-1-6 بررسی جابجائی محوری سیم پیچها نسبت بهم83
-2-6 نتایج آنالیز حساسیت توابع تبدیل نسبت به تغییر شکل شعاعی 88..................................
-3-6 تاثیر اتصال کوتاه بین حلقه ها روی پارمترهای مدل مشروح92
-7 تشخیص نوع عیوب ترانسفورماتوربه کمک شبکه عصبی95
-1-7 استخراج ویژگیها97
-2-7 شبکه های عصبی مصنوعی98
-1-2-7 ساختار شبکه های عصبی 99................................
-2-2-7 شبکه های عصبی پرسپترون چند لایه100
-3-7 بکار گیری شبکه عصبی جهت شناسائی نوع عیب ترانسفور ماتور102
-8 نتیجهگیری و پیشنهادات108
منابع111
چکیده انگلیسی116
فهرست جداول

عنوانشماره صفحه
جدول -1-3 فرکانس fmax که در آن طیف یک ولتاژ ضربه صاعقه استاندارد در نویز لبریز میشود، به
صورت تابعی از تفکیکپذیری مبدل 50(A/D)
جدول -1-6 تغییرات فرکانسهای تشدید در اثر جابجائی محوری سیمپیچ87
جدول -2-6 تغییرات فرکانسهای تشدید در اثر تغییر شکل شعاعی سیمپیچ91
جدول -1-7 انواع حالتهای خطا و کد خروجی شبکه برای آن نوع خطا 103................................
جدول -2-7 بردار ورودی متناسب با نوع خطای مربوطه جهت آزمایش103
جدول -3-7 داده های خروجی شبکه و کد خطای مربوطه103
جدول 4-7 بردار ورودی 3 ×16 متناظر بانوع خطای مربوطه جهت آزمایش 105.................................
جدول -5-7 بردار خروجی شبکه ونوع خطای مربوطه 106................................
فهرست شکلها

عنوانشماره صفحه
شکل -1-2 ارتباط بخشهای مختلف یک سیستم پایش18
شکل -2-2 ساختار مدیریت بهربرداری19
شکل -3-2 نتایج آماری از انواع عیبهای مرسوم در ترانسفورماتور23
شکل -1-3 ترانسفورماتور بصورت شبکه دو قطبی خطی27
شکل -2-3 اندازه گیری تابع انتقال در حوزه فرکانس29
شکل -3-3 اندازه گیری تابع انتقال در حوزه زمان29
شکل -4-3 مدار اندازه گیری تابع انتقال در روش جاروی فرکانس30
شکل -5-3 روشهای مختلف مقایسه توابع انتقال33
شکل -6-3 مقایسه بین فازها برای ترانسفورماتور34
شکل -7-3 مقایسه بین فازها برای ترانسفورماتور با ثانویه زیگزاگ35
شکل -8-3 اثر مقاومت شنت روی پاسخ فرکانسی تا 4210MHZ
شکل -9-3 اندازه گیریهای FRAدر بالا وپایین بوشینگ44
شکل -10-3 اثر وضعیت نقطه خنثی در اندازه گیریها( دردو حالت شناور و زمین شده).45
شکل -11-3 مقایسه اثرسیمهای رابط کوتاه و بلند در اندازه گیریها تا 4610MHZ
شکل -1-4 نمایش ترانسفورماتور به صورت یک چهار قطبی52
شکل -2-4 مدل یک ترانسفورماتور تشکیل شده از یک سیمپیچ بشقابی و یک سیمپیچ لایهای
براساس اندوکتانسهای خودی و متقابل58
شکل -1-5 ساختار فیزیکی سیم پیچی دیسکی ترانسفورماتور ومدل هر دیسک از آن67
شکل -2-5 مدل مداری معادل هر دیسک RLC) معادل).. 68
شکل (a -3-5 زوج دیسک واژگون، (b زوج دیسک درهم70
شکل -4-5 نمایش ظرفیتهای بین بشقابها و پتانسیل زمین و یا سیمپیچ مجاور71
شکل -5-5 توزیع ظرفیتهای الکتریکی در یک سیمپیچ بشقابی واژگون71
شکل -6-5 لایه های مختلف عایقی بین دو سیمپیچ75
شکل -7-5 دو حلقه موازی76
شکل -8-5 تعریف پارامترهای یک حلقه77
فهرست شکلها

عنوانشماره صفحه
شکل -1-6 مدار بررسی شده با شرایط پایانههای سیمپیچ فشارقوی و سیمپیچ فشارضعیف84
شکل -2-6 تأثیرات تغییرات جابجائی محوری سیمپیچها روی پارامترهای مدل مشروح84
شکل -3-6 مقایسه نتایج شبیه سازی حالت سالم و معیوب توابع تبدیل ولتاژ خروجی نسبت به ولتاژ
ورودی در حوزه زمان ، به منظور بررسی توابع تبدیل نسبت به جابجائی محوری85
شکل -4-6 مقایسه نتایج شبیه سازی حالت سالم و معیوب توابع تبدیل ولتاژخروجی نسبت به ولتاژ
ورودی در حوزه فرکانس ، به منظور بررسی حساسیت نسبت به جابجائی محوری86
شکل -5-6 نما از بالای سیمپیچ فشارقوی (HV) تغییر شکل یافته و سیمپیچ فشارضعیف((LV در اثر
نیروی مکانیکی شعاعی در چهار جهت88
شکل -6-6 تأثیرات تغییرات مکانیکی سیمپیچها روی پارامترهای مدل مشروح دررابطه با تغییر شکل
مکانیکی89
شکل -7-6 اثر ماتریس اندوکتانس روی توابع تبدیل جریان زمین نسبت به ولتاژ ورودی در خصوص
تغییر شکل شعاعی89
شکل -8-6 مقایسه نتایج محاسبات توابع تبدیل ولتاژ خروجی به ولتاژ ورودی در حوزه زمان، به
منظور بررسی حساسیت توابع تبدیل نسبت به تغییر شکل مکانیکی شعاعی سیم پیچ90
شکل -9-6 مقایسه نتایج محاسبات توابع تبدیل ولتاژ انتقالی حوزه فرکانس در ، به منظور بررسی
حساسیت توابع تبدیل نسبت به تغییر شکل مکانیکی شعاعی سیم پیچ90
شکل -10-6 درنظرگرفتن اتصال کوتاه بین حلقهها در مدل مشروح93
شکل -11-6 تابع تبدیل ولتاژ انتقالی برای یک اتصال کوتاه بین انشعابهای 22و9323
شکل -12-6 تأثیر اتصال کوتاه بین حلقههای73 و 74 سیمپیچ روی تابع تبدیل ولتاژ انتقالی94
شکل -1-7 مراحل عیب یابی ترانسفورماتور96
شکل -2-7 مراحل محاسبه ویژگی زمانی98
شکل -3-7 ساختار و ارتباطات نرون99
شکل -4-7 فرم ساده شبکه پرسپترون با دو لایه میانی 101................................
شکل -5-7 نمودار دو بعدی کلاسهای تشخیص داده شده توسط شبکه 104................................
شکل -6-7 متوسط مجذور خطا برای داده های آموزشی106
چکیده
ترانسفورماتورها به تعداد زیاد در شبکههـای بـرق بـرای انتقـال و توزیـع انـرژی الکتریکـی در
مسافتهای طولانی مورد استفادهقرارمیگیرند.قابلیت اطمینان ترانسفوماتورها در این میان نقشی اساسی
در تغذیه مطمئن انرژی برق بازی میکند. بنابراین شناسائی هر چه سریعترعیبهای رخ داده در داخـل
یک ترانسفورماتورضروری به نظر می رسد.یکیازچنین عیبهائی که به سختی قابـل تـشخیص اسـت،
تغییرات مکانیکی در ساختار سیمپیچهای ترانسفورماتور است. اندازهگیـری تـابع تبـدیل تنهـا روش
کارامدی است که در حال حاضـر بـرای شناسـائی ایـن عیـب معرفـی شـده و بحـث روز محققـین
میباشد.استفاده روش مذکور با محدودیتها و مشکلاتی روبرو می باشـد کـه تـشخیص انـواع عیـوب
مختلف را به روشهای متداول و مرسوم محدود ساخته اسـت.از ایـن رو امـروزه تحقیقـات بـر روی
استفاده از الگوریتمها و روشهای هوشمندی متمرکز شده است که بتواند یـک تفکیـک پـذیری نـسبتا
خوبی بین انـواع عیـوب و صـدمات وارده بـه ترانـسفورماتور را فـراهم سـازد. در ایـن پایـان نامـه
سیمپیچهای ترانسفورماتور به منظورپایش با روش تابع تبدیل مطالعه و شبیهسازی شدهاند. برای ایـن
کار مدل مشروح سیمپیچها مورد استفاده قرار گرفته و نشان داده شده که این مدل قادر به شبیهسـازی
عیبهائی (اتصال کوتاه بین حلقهها، جابجائی محوری وتغییر شکل شعاعی) است که توسط روش تابع
تبدیل قابل شناسائی میباشند. شبیهسازیهای مربوطه توسط مدل مشروح نشان میدهند که بـه کمـک
این مدل میتوان به طور رضایتبخش توابع تبدیل محاسبه شده در محدوده از چند کیلـوهرتز تـا یـک
١
مگاهرتز را ارائه نمود. این مدل مشخصههای اساسی توابع تبدیل (فرکانسهای تـشدید و دامنـههـا در
فرکانسهای تشدید) را به طور صحیح نتیجه میدهد. مقادیر عناصر مدار معادل از روی ابعـاد هندسـی
سیمپیچها و ساختار عایقی مجموعه محاسبه میشوند. با محاسبه و تخمین این مقادیر در حالتهائی که
تغییراتی در ساختار سیمپیچ بوجود آمده اند، اثرات عیبهای مکانیکی در مـدل درنظرگرفتـه شـدهانـد.
دقت مدل مشروح علاوه بر تعداد عناصر آن به دقت محاسبات پارامترهای آن نیز بستگی دارد. ارتباط
بین عیبهای بررسی شده (اتصال کوتاه بین حلقـههـا، جابجـائی محـوری و تغییـر شـکل شـعاعی) و
تغییرات ناشی از آنها در توابع تبدیل به خوبی توسـط مـدل نتیجـه مـیشـوند. تغییـر نـسبی مقـادیر
فرکانسهای تشدید در حوزه فرکانس وزمان فرونشست1 درحوزه زمان در یک تابع تبـدیل بـه عنـوان
معیار تغییرات در تابع تبدیل در اثر یک عیب مورد اسـتفاده قـرار گرفتـهانـد. ارزیـابی توابـع تبـدیل
محاسبه شده برای شناسایی عیب، به کمک توابع تبدیل گوناگون تعریف شـده درمقـالات مختلـف ،
منجر به حصول نتایج زیر شدهاند:
•نتایج محاسبات تغییرات یکسانی را در توابع تبدیل در اثر هر کدام از عیبهای فوقالذکر نشان
میدهند.
•نتایج محاسبات در خصوص آنالیز حساسیت جابجائی محوری نشان میدهد که اثـر جابجـائی
محوری روی تابع تبدیل در محدوده فرکانسی بالاتر از 100 کیلوهرتز به طورواضح بیشتر ازمحـدوده
کمتر از 100 کیلوهرتز میباشد.

1 Setteling Time
٢
نتایج محاسبات برای آنالیز تغییر شکل شعاعی سیم پیچ نشان می دهد که تغییر شکل شعاعی روی کل محدوده فرکانسی تابع تبدیل تأثیر تقریباً یکسانی می گذارد.
بعضی از فرکانسهای تشدید در یک تابع تبدیل درمقایسه با سایر فرکانـسهای تـشدید در اثـر
بروز یک عیب حساستر میباشند.
برای بدست آوردن نتایج بیشتر در مورد وابستگیهای بین مدل مشروح و تغییرات محاسـبه شـده
در توابع در اثریک عیب، اثرات پارامترهای مدل روی توابع تبدیل بـه طـور مجـزا بررسـی و تحلیـل
شدهاند. این تحلیلها نشان میدهند که:
تغییرات ظرفیتهای خازنی بـین دو سـیمپـیچ در اثـر جابجـائی محـوری قابـل چـشم پوشـی میباشند.
تغییرات توابع تبدیل در اثر تغییر شکل شعاعی عمدتاً از تغییرات ظرفیتهـا ناشـی مـیشـوند. درنظرگرفتن تغییرات اندوکتانسها در اینحالت ضروری نمیباشند.
چشم پوشیهای فوق باعث کاهش قابل ملاحظهای در زمان محاسـباتی مـیشـوند و اعمـال آنهـا
درپایش ترانسفورماتورها مفید است.
٣
مقدمه
از آنجائیکه قدرت شبکههای برق همواره در حال افزایش بوده و بایـستی تاحـد ممکـن تغذیـه
انرژی برق مطمئن انجام شود، بالا بودن قابلیت اطمینان، طول عمروکیفیت تکتک عناصر وتجهیزات
موجود در شبکه ضروری است. ترانسفورماتورهای مـرتبط کننـده سـطوح ولتـاژمختلف درشـبکه از
مهمترین عناصر شبکهاند که خروج از مدار آنها به قابلیت اطمینان توزیـع انـرژی آسـیب جـدی وارد
کردهو باعثهدررفتن هزینه زیادی میشود. برای افزایش قابلیت اطمینان تغذیه انرژی برق، شناسـایی
سریع عیبهای رخ داده در ترانسفورماتورها الزامی میباشد. بر این اساس در پا یان نامـه مـذکور ابتـدا
مقدمه ای بر روشهای مختلف عیب یابی وپایش ترانسفورماتورهای قدرت بیان شده است.در ادامه در
فصل سوم،روش آنالیز پاسخ فرکانسی به عنوان روش جدید در عیبیابی ترانسفورماتورهـا معرفـی و
اصول و مبانی آن تشریح میگردد.به منظور تحلیل انواع عیوب متداول وارده به ترانسفور مـاتور (کـه
معمولا در حالت کار عادی برای ترانسفور ماتور قدرت اتفاق می افتد)سـیم پـیچترانـسفور مـاتور بـا
روش تابع تبدیل مطالعه و شبیه سـازی شـده اسـت.ایـن مطالعـه بـا تمرکـز بـر روی مـدل مـشروح
ترانسفورماتور انجام پذیرفته است که جزئیات آن در فصول چهارو پنج ارائـه شـده انـد.فـصل شـش
نتایج حاصل از شبیه سازی یک ترانسفورماتور قدرت30MVA, 63/20 kV را نشان مـی دهـد و
حالتهای مختلف صدمات فیزیکی ترانسفورماتور و اثرات آن بر روی تابع انتقال را مورد بررسی قـرار
میدهد. نتایج حاصل از شبیه سازیها ، این امکان را فراهم ساخته است تا الگوهای مناسبی متنـاظر بـا
۴
خطاها و عیوب مختلف ترانسفورماتور استخراج گـردد. نهایتـا در فـصل هفـت یـک شـبکه عـصبی
هوشمند ارائه شده است که می تواند با استفاده از الگوهـای اسـتخراج شـده مـذکور ، یـک راهکـار
مناسب برای تشخیص دقیق و مطمئن از خطای وارد شده بدست دهد.
۵
فصل 1
کلیات
۶
-1-1 پیشینه موضوع
وظیفه یک سیستم تشخیص عیب مدرن این است کـه بـا تعیـین وضـعیت کـار ترانـسفورماتور،
استفاده بهینه آنرا با درنظرگرفتن قدرت انتقالی و مدت کارکرد تضمین کند، بدون آنکه قابلیت اطمینان
ترانسفورماتور تحت تأثیر قرار گیرد. برای انجام این کـار روشـهای مختلفـی همچونپـایش حرارتـی،
تجزیه و تحلیل گازهای حل شده در روغن، اندازهگیریهای تخلیه جزئی (الکتریکی، صـوتی)، تحلیـل
تابع تبدیل، اندازهگیری ولتاژ بازگشتی و غیره مورد بررسی و تحقیق قرار گرفتهاند. هـر کـدام از ایـن
روشها دارای خواص خصوص به خود بوده و قادر به شناسائی نوع به خصوصی از عیب مـیباشـند.
روش تابع تبدیل امروزه برای تشخیص تغییرات مکانیکی در سیمپیچ مورد بحث میباشد. تحقیقـات
عملی نشان میدهند که جابجائی محوری و تغییر شکل شعاعی سیمپیچها روی توابع تبدیل تأثیر مـی
گذارند .[4] بایستی با انجام تحقیقات بیشتر مشخص کرد که تا چه اندازهای میتوان چنین عیبهائی را
تشخیص داده و محل بروز آنهارا تخمین زد. روش تابع تبـدیل یـک روش مقایـسهای اسـت، یعنـی
اندازهگیریهای جدید را باید با اندازهگیریهای مرجعی در کنار هم قرار داد. کنتـرل مـنظم تـابع تبـدیل
پایش2 پیوستهای را امکان پذیر میسازد که میتوان به تغییرات بوجود آمده در کارکرد ترانـسفورماتور
به موقع پی برد. اگر انحرافات قابل ملاحظهای در نتایج اندازهگیریها مشاهده شد، باید این انحرافـات
را مورد بررسی و تحلیل قرار داد که آیا ممکن است عیبی رخ داده باشد. همچنین اگر عیبی روی داده
است، آیا میتوان نوع و محل آنرا برآورد کرد.

2 Monitoring
٧
-2-1 وضعیت کنونی موضوع
تا به امروز روش تابع تبدیل برای ترانسفورماتورها در حالت کلی به کمـک نتـایج انـدازهگیـری
انجام شده است. به منظور تقویت روشهای اندازهگیری توصیف شده و تحقیق نظـری رفتارفرکانـسی
ترانسفوماتورها، شبیهسازی سیمپیچهای ترانسفورماتور ضروری است.
مدلسازی ساختار پیچیدهای مثل قسمت فعال ترانسفورماتورها یک مصالحه بین هزینه محاسبات
و دقت آنها را میطلبد. تعداد عناصر قابل تعریف در مدل و لذا دقت مدلسازی محدود است. درمیان
روشهای زیاد مدلسازی، مدلهای زیر بیشتر مطرح میباشند:
مدلهای جعبه سیاه (Black-Box)
مدلهای فیزیکی:
(1 مدل خط انتقال n فازه
(2 مدل مشروح:
الف) مدلسازی بر پایه اندوکتانسهای خودی و متقابل
ب) مدلسازی بر اساس اندوکتانسهای نشتی
ج) مدلسازی به کمک اصل دوگانی
د) مدلسازی با استفاده از تحلیل میدانهای الکترومغناطیسی
- مدل هایبرید:
٨
ترکیبی از مدلهای فیزیکی و جعبه سیاه
برای مدلسازی تغییرات بوجود آمده در سیمپیچها، مدلهای جعبه سیاه مناسـب نمـیباشـند. زیـرا
برای چنین مدلسازی بایستی وابستگی بین قطبها و صفرهای سیستم و ساختار سیمپیچ ترانسفورماتور
معلوم باشد. در حالی که مدل جعبه سیاه از روی نتایج اندازهگیری شده در پایانههای ترانـسفورماتور
ساخته میشود.
در مدلسازی فیزیکی، ابعاد هندسی سیمپیچهـا بـرای توصـیف محاسـباتی ترانـسفورماتور مـورد
استفاده قرارمیگیرند. مدلهای فیزیکی که به صورت مدار معادل میباشـند، در محـدوده مشخـصی از
حوزه فرکانسی معتبر میباشند .[5]
با مدلسازی سیمپیچها به صورت یک مدار RLCM (مدل مشروح) مـیتـوان مقـادیر جریانهـا و
ولتاژها را توسط نرم افزارهای مرسوم برای حل مدارهای الکتریکی (به عنوان مثـال 3ATP، Pspice،
...) محاسبه کرد. بر خلاف مدل خط انتقال چند فازه، میتوان توسط مدل مـشروح پدیـدههـای غیـر
خطی (هیسترزیس، اشباع) و وابسته به فرکـانس (تلفـات جریانهـای فوکـو، تلفـات عـایقی) را وارد
محاسبه کرد. علاوه بر این بهکارگیری مدل مشروح نـشان داده اسـت کـه سـاختارهای سـیمپیچهـای
پیچیدهتر با تعداد سیمپیچهای بیشتر را میتوان تا حد قابل قبولی شبیهسازی نمود.
با توجه به مطالعات انجام شده در [6] دیده میشود که از میان مدلهای مشروح ذکر شـده، مـدل
متکی براندوکتانسهای خودی و متقابل سادهتر و مفیدتر میباشد. گرچه ممکن است نتوان عناصر مدار

3 Alternative Transients Program
٩
معادل را کاملاً دقیـق تعیـین کـرد، بیـشتر شـبیهسـازیهای انجـام شـده توسـط ایـن مـدل محاسـبات
رضایتبخشی را نتیجه دادهاند. بنابراین مدل مشروح متکی براندوکتانـسهای خـودی و متقابـل در ایـن
پایان نامه مورد توجه قرار گرفته است.
-3-1 هدف پروژه
نیاز روز افزون به انرژی برق ساخت ترانسفورماتورهای با قدرت و ولتاژ بالاتر را ایجاب میکند.
مسائل مربوط به چنـین ترانـسفورماتورهائی همچـون اطمینـان کـارکرد، وزن بـالای حمـل ونقـل و
نیازمنـدی بـه مـواد بیـشتر یکپـایش کامـل از ترانـسفوماتورها را ضـروری مـیکنـد تـا بتـوان ایـن
ترانسفورماتورهای گران قیمت را از بروز صدمات شدید محافظت کرده و هزینههای ناشی از آنهـا را
تاحد ممکن پائین نگاه داشت. به ویژه اینکه میتوان صدمات وارد برسـیمپیچهـای ترانـسفورماتور را
بوسیله روش تابع تبدیل شناسائی کرد. برای اینکه از آزمایشهای عملی پرهزینه اجتناب شود میتـوان
از نتایج شبیهسازیهای کامپیوتری برای بدسـت آوردن اطلاعـات مـوردنظر لازم اسـتفاده نمـود. ایـن
اطلاعات را میتوان برای هر کدام از اهداف زیر مورد استفاده قرار داد:
• اگر هیچگونه نتیجه اندازهگیری از ترانسفورماتور در حالت سالم موجـود نباشـد، مـیتـوان
نتایج محاسباتی را به عنوان مرجع برای مقایسه با نتایج اندازهگیری جدید مورد اسـتفاده قـرار
داد.
١٠
• میتوان اثرات عیبهای شناخته شده روی توابـع تبـدیل را بـه کمـک شـبیهسـازیها بررسـی
وتحلیل کرد.
• با استفاده از آموزش شبکه عصبی هوشمند میتوان نوع عیب را در یک ترانسفورماتور
معیوب تعیین کرد.
برای حصول این اهداف، کارهای زیر به ترتیب انجام داده شدهاند:
شبیهسازی سیمپیچهای ترانسفورماتور درحالت سالم برای ارزیابی دقت مدل.
مدلسازی یک سیمپیچ که بین چند حلقه آن اتصال کوتاه شده، به منظـور تعیـین تغییـرات ناشی از اتصال کوتاه.
محاسبه توابع تبدیل یک ترانسفورماتور که دو سیمپیچ آن را مـیتـوان نـسبت بـه هـم در جهت محوری جابجا کرد. بوسیله این محاسبات حساسیت اثر جابجائی محوری روی توابـع تبدیل مورد تحلیل قرار گرفته و همچنین تغییرات توابع تبدیل و پارامترهـای مـدل مطالعـه و بررسی شدهاند.
تعیین اثرات تغییر شکل شعاعی روی توابـع تبـدیل و پارامترهـای مـدل بـه کمـک نتـایج شبیهسازیها.
استخراج ویژگیها و پارامترهای مناسب و مرتبط با عیوب مختلف به منظور آمـوزش شـبکه عصبی هوشمند
١١
فصل 2
مفاهیم کلی عیب یابی و حفاظت
ترانسفورماتور
١٢
ترانسفورماتورهای بزرگ به عنوان عناصر ارتباطی بین نیروگاهها وشبکههای توزیع انرژی یا بین
شبکهها با سطوح ولتاژمختلف مورد استفاده قرارمیگیرند تا انرژی الکتریکی به طور اقتصادی توزیـع
شود. لذا همواره در دسترس و سالم بودن آنها پایه و اساس یک توزیع انرژی مطمئن میباشد.
با افزایش تواناییهای سیستمهای اندازهگیری و کامپیوترها و پیـشرفت نـرم افزارهـای کـامپیوتری
بهبود روشهای تشخیص عیب نیز امکان پذیر میشود. به عنوان نمونهای از آن میتوان بـه محاسـبه و
تحلیل تابع تبدیل از روی سیگنالهای گذرائی کـه در طـول بهـرهبـرداری و عملکـرد ترانـسفورماتور
اندازهگیری میشوند اشاره کرد. این تابع تبدیل دربرگیرنده اطلاعاتی از وضعیت داخل ترانسفورماتور
میباشد. وجود اختلاف بین توابع تبدیل اندازهگیری شده در زمانهـای مختلـف نـشان دهنـده وجـود
تغییراتی در ساختار ترانسفورماتور میباشد که میتوانند باعث عملکرد نامطلوب ترانسفورماتورشوند.
در حال حاضر روش قابل اطمینانی وجود ندارد که بتوان توسط آن خطاهای مکانیکی و تغییـرات در
ساختار سیمپیچهای ترانسفورماتور را تشخیص داد. چنین خطاهایی میتوانند بـه عنـوان مثـال تغییـر
شکل مکانیکی و جابجائی سیمپیچها باشند کـه در اثـر نیروهـای وارده بـر سـیمپـیچ در اثـر اتـصال
کوتاههای رخ داده در نزدیکی ترانسفورماتور ایجاد میشوند. تغییر شکل و یـا جابجـائی سـیمپیچهـا
باعث تغییر در ظرفیتها واندوکتانسهای ترانسفورماتور میشود. بنابراین محاسبات تـابع تبـدیل روش
مناسبی برای شناسایی چنین عیبهایی میباشد. با ترکیب نتـایج حاصـل از روشـهای تـشخیص عیـب
١٣
گوناگون میتوان قابلیت اطمینان سیستمهای پایش1 ترانسفورماتورها(عیـب یـابی) را بـه میـزان قابـل
توجهی افزایش داد.
-1-2 اهداف کلی پایش ترانسفورماتورها
پایش ترانسفورماتورها با گذشت زمان تکامل یافته و با پیشرفت صنعت وتکنولوژی انتظارات از
سیستمهای پایش نیز افزایش یافتهاند. با مطالعات انجام یافته میتوان اهداف زیر را برای یک سیـستم
تشخیص عیب نتیجه گیری کرد :[7]
اهداف اجتماعی:
کاهش خطرات و صدمات در محیط زیست با شناخت به موقع عیبهایی که خود به خود به وجود آمده اند،
بدست آوردن اطلاعات فنی با انجام عملیات آگاهانه برای پیشگیری ازافزایش عیب،
افزایش ایمنی کارکنان سیستم،
کاهش اضطراب ونگرانی کارکنان سیستم.
اهداف اقتصادی:
کاهش هزینههای کارکرد توسط مراقبت منظم و دقیق،
کاهش تعداد کارکنان مراقبت،

1 Monitoring
١۴
کاهش هزینههای خروج از مدار با برنامهریزی بهتر قطع مدار برای مراقبت،
برنامهریزی صحیح برای جایگزینی عنصر نو با توجه به شناخت وضعیت عنصر موجود در شبکه (تخمین میزان عمر باقیمانده عنصر موجود).
اهداف فنی:
بهینهسازی عملکرد عنصر و سیستم با توجه به شناخت بارگذاریهای موجود روی عنـصر و شبکه،
بدست آوردن رفتار عیبهای مختلف به طور مجزا از طریق سیستم تشخیص عیب پیوسته،
بدست آوردن اطلاعات کمی در مورد نحوه تغییر ورفتار کمیتهای قابل اندازهگیری مشخص
مشخص کردن وابستگیهای بین کمیات قابل انـدازهگیـری و فواصـل زمـانی مناسـب بـین اندازهگیریها.
در حقیقت وظیفه اصلی سیستم پایش ترانسفورماتور ها،آشکار سـازی علائـم اولیـه یـک عیـب
جدید به وجود آمده در ترانسفورماتور می باشد. لذا چنین سیستمی مانع توسـعه عیبهـای کوچـک و
ایجاد عیبهای بزرگ شده و به افزایش عمر ترانسفورماتور کمک می نماید. یک خطا یـا عیـب بـزرگ
ممکن است باعث انفجار یا آتش سوزی شده و منجر به صدمات جانی و مالی جبران ناپذیری گردد.
همچنین با بکارگیری یک سیستم تشخیص عیب،خروج از مدارهای مربوط به حفاظت ،غیر ضروری
شده و لذا دسترس پذیری ترانسفورماتور افزایش می یابد. گذشته از اینها تشخیص عمـر باقیمانـده و
برنامه ریزی مناسب بارگذاری ونیز امکان اضافه بارگذاری ترانسفورماتور میسر می شود.
١۵
یک سیستم تشخیص عیب و پایش ترانسفورماتورها باید بتواند پارامترهای مهم و مشخص برای
توصیف رفتار حرارتی، الکتریکی و مکانیکی را ثبت کرده و با دادههای معمولی همچون مـدت زمـان
عملکرد، منحنی بار بر حسب زمان، وضعیت تپ چنجر، دامنههای جریانهـای اتـصال کوتـاه و غیـره
ارتباط دهد. علاوه بر این انتظار می رود که توسط یک سیستم پایش بتوان عملکـرد ترانـسفورماتوررا
از نظر اقتصادی بهبود داد. برای تحلیل اقتـصادی بایـستی هزینـه کـل طـول عمـر ترانـسفورماتور را
درنظرگرفت. هزینه کل طول عمر ترانسفورماتور مجموعی از هزینههای زیر میباشد :[2]
هزینههای تهیه و نصب
هزینههای مراقبتهای برنامهریزی شده
هزینههای تعمیر
هزینههای معمولی بهرهبرداری
هزینههای خروج از مدار
هزینههای مربوط به دور انداختن ترانسفورماتور از کارافتاده در محیط زیست
با تدابیر مختلفی تلاش میشود که این هزینهها بهینه شود. به خصوص در ارتباط با تجهیزاتی که
روی آنها سرمایه گذاری زیاد انجام میشود، پایش و ارزیابی عایقی میتواند بیشتر مثمر ثمر باشد.
– 2-2 ساختار کلی سیستم پایش
همانطور که ذکر شد با سیستم تشخیص وضعیت داخلی ترانسفورماتور مـی تـوان دسـترس پـذیری و عمـر
ترانسفورماتور را افزایش داد، خروج از مدار آن را کاهش داد، از تعمیر های گران قیمت پرهیز کرد و ایمنـی
١۶
کارکنان را افزایش داد. جمع آوری و ثبت پیوسته کمیات و سیگنالهای مهم می تواند به دو صـورت همزمـان
با بهره برداری و یا موقع خروج از مدار انجام شود. در روش همزمان بـا بهـره بـرداری، ترانـسفورماتور در
حین بهره برداری در پست و نیروگاه مورد آزمایش قرار می گیرد و با دسترسی به اطلاعات لازم بـه بررسـی
وضعیت ترانسفورماتور بدون اختلال در انتقال انرژی صورت می گیرد، ایـن روش در حـال حاضـر جایگـاه
ویژه ای پیدا کرده است. در حالیکه منظور از روش پایش موقـع خـروج از مـدار، انـدازه گیـری و آزمـایش
ترانسفورماتور و اجزاء آن در هنگام عدم اتصال آن به شبکه از نظر الکتریکی است. این نوع آزمـایش ممکـن
است در آزمایشگاه یا در سایت به هنگام خارج بودن ترانسفورماتور از سرویس انجام شود. بـا توجـه بـه در
دسترس بودن کلیه پایانه های ترانسفورماتور و عدم بروز خطرات فشار قوی پیاده سازی این روش ساده تـر
است. از مرحله جمع آوری و ثبت کمیات تا مرحله ارزیابی و تخمین وضعیت داخلـی ترانـسفورماتور و در
نهایت تصمیم گیری برای انجام عملیات مناسب، ممکن است مراحل میانی مختلفی لازم شود. جزئیات کلیـه
این مراحل ونیز جوانب و روشهای تشخیص عیب امروزه با علاقه زیادی از طرف محققین مطالعه و بررسـی
می شوند.[8] در بیشتر قسمتهای یک سیستم عیب یابی تجربه نقش بسیار مهمی را بـازی مـی کنـد. تحلیـل
داده های ثبت شده و حصول یک تصمیم مناسب نیازمند یک سری داده های تجربی از عملیات پیشین است.
شکل( (1-2 قسمتهای مختلف یک سیستم پایش را نشان میدهد. ابتدا بایستی کلیه داده ها و سیگنالهای قابل
اندازه گیری و دسترس پذیر جمع آوری شوند. این داده ها عمدتا توسـط مـدلهای مناسـب بـه پارامترهـایی
تبدیل می شوند که تحلیل آنها و ابراز نظر در خصوص آنها راحتترمی باشد. این پارامترها بـه همـراه مقـادیر
مرزی و آستانه ای کمیاب و نیز اطلاعات جمع آوری شده از شرایط کار عادی ترانسفورماتور در طول بهـره
برداری، برای تجزیه و تحلیل وضعیت داخلی ترانسفورماتور لازم می باشند. بعـد از تکمیـل کلیـه اطلاعـات
١٧
ممکن قابل حصول، ارزیابی حالت و وضعیت کیفی دستگاه به کمک روشهای هوشمند همچون شبکه عصبی
و بررسی تغییرات به وجود آمده در کمیات انجام می شود. سپس بـا لحـاظ کـردن اولویـت هـای مـد نظـر
اپراتور، محدودیت های موجود در شبکه قدرت و پیش آمد خطرات محتمل سعی می شود که یـک تـصمیم
نهایی اتخاذ گردد.

شکل (1-2) ارتباط بخشهای مختلف یک سیستم پایش [9]
از آنجاییکه همواره داده های زیادی جمع آوری میشوند، به عنوان مثال حتی وضعیت موجودی انبار، ذخیره
کردن همه داده های مربوط به یک عنصر در یک بانک داده در فواصل زمانی مـشخص ضـروری مـیباشـد.
شکل((2-2 طرحی از مدیریت بهره برداری را نشان میدهد. همانگونه که از این شکل بر میآیـد، داده هـای
حاصل از پایش به صورت همزمان با بهره برداری مهم میباشند، در مدیریت بهـرهبـرداری نقـش بـازی مـی
کنند. بسته به میزان اهمیت یک کمیت یا سیگنال بخصوص در تـشخیص وضـعیت ترانـسفورماتور و هزینـه
١٨
های مربوط به پایش به صورت همزمان با بهره برداری و موقع خروج از مدار مـی تـوان در خـصوص نـوع
جمعآوری داده ها تصمیم گرفت. به عنوان مثال امروزه پایش حرارتی، به صورت همزمان با بهـره بـرداری و
تـشخیص عیـب سـیمپـیچ هـا بـا اسـتفاده از تـابع تبـدیل، موقـع خـروج از مـدار تـرجیح داده مـیشـوند.

شکل (2-2) ساختار مدیریت بهرهبرداری
لازم به ذکر است که علاوه بر تقسیم بندی سیستم پایش به دو نوع به صورت همزمان با بهره برداری و موقع
خروج از مدار، محققین یک نوع تقسیم بندی دیگر را نیز برای سیستم تشخیص عیب عنـوان مـیکننـد. ایـن
نوع تقسیمبندی در حقیقت به اجزاء مختلف سیستم پایش ارتباط داشته و بـر اسـاس ماهیـت سـیگنال و یـا
کمیت اندازه گیری تنظیم میگردد.
١٩
3-2 روشهای مختلف تشخیص عیب
از آنجاییکه داخل یک ترانسفورماتور قدرت مواد مختلف با خواص کاملا متفـاوتی همچـون آهـن، روغـن،
کاغذ، مس و ... وجود داشته و متعلقات گوناگونی مثل تپ چنجر، بوشـینگ و ... بـه آن اضـافه مـیشـوند،
پدیده های مختلفی از جمله مکانیکی، الکتریکی،شیمیایی، حرارتی و مغناطیسی در عملکرد آن نقش داشته و
در نتیجه امکان وقوع انواع مختلفی از عیوب در ترانسفورماتور وجود دارد. یـک سیـستم پـایش جـامع بایـد
بتواند این عیوب با ماهیت های مختلف را جداگانه تشخیص داده و حتـی میـزان عیـب را مـشخص نمایـد.
روش تشخیص هر نوع عیب به ماهیت آن عیب بستگی داشته و لذا روشهای مختلفی در سیستم پایش وجود
دارندکه از ترکیب آنها یک سیستم جامع تشخیص عیب حاصـل مـی شـود. گرچـه ایـن روشـها کـه توسـط
محققین توسعه یافتهاند، کاملا متنوع میباشند[10]،ولی آنها را می توان به صورت زیر در شش روش جا داد:
-1 اندازه گیری و آنالیز پاسخ فرکانسی2
-2 اندازه گیری و آنالیز تخلیه جزئی3
-3 تجزیهو تحلیل گازهای حل شده در روغن4
-4 اندازهگیری حرارتی5
-5 تحلیل پاسخ دی الکتریک6
-6 پایش متعلقات ترانسفورماتور7

2 . Frequency response analysis 3 . Partial discharge analysis 4 . Dissolved gas in oil analysis 5 .Thermal measuring 6 .Dielectric response analysis 7 .Accessories monitoring
٢٠
در هر کدام از این روشها، جهت حصول نتایج مناسب، ابزار نظری و عملی مختلفـی همچـون سیـستم هـای
خبره، شبکه های عصبی و مدلسازی مورد استفاده قرار گرفته اند. در حقیقت روشهای هوشمند نقش مـوثری
در تکمیل سیستم پایش داشته و روز به روز بر اهمیت آنها در سیستم تشخیص عیب افزوده میشود.
لازم به ذکر است که بعضی از روشهای تشخیص وضعیت ترانسفورماتور میتوانند هم بـه طـور همزمـان بـا
بهره برداری و هم موقع خروج از مدار انجام شوند. در این صورت هـر چنـد مـدار آزمـایش در دو حالـت
متفاوت است اما اصول اندازه گیری مشترک است. با رشد و پیشرفت تکنولـوژی بـالاخص در زمینـه پـایش
کامپیوتری پارامترهای زیادی از ترانسفورماتور، امکانپذیر است. ولی هزینه بالای چنین پایشی را باید در نظر
گرفت. لذا انجام یک مصالحه و تعادل بین عملیات مورد نظر سیستم پایش و هزینه ومیزان قابلیـت اطمینـان
آن ضروری میباشد. انجام چنین مصالحهای بایستی بـر اسـاس آمـار عیبهـای روی داده و ترانـسفورماتورها
ونتیجه نهایی این عیوب باشد.
4-2 عیوب مرسوم در ترانسفورماتورها
اگر بخواهیم یک تقسیم بندی ساده از عیوب ممکن ترانسفورماتورها داشته باشیم، می توانیم آنهـا را بـا سـه
نوع زیر ذکر کنیم: [9]
-1 عیوبی کهدر اثر هر نوع شکست الکتریکی بین قسمتهای مختلف داخلترانسفورماتور نتیجه میشوند.
-2 عیوبی که در اثر هر گونه افزایش دمای داخلی بوجود میایند.
-3 عیوبی که در اثر هر نوع تنش مکانیکی روی میدهند.
در واقع میتوان گفت که امکان ممانعت از رشد عیب برای دو نوع اول عیـوب فـوق الـذکر همـواره وجـود
داشتهوباپایش صحیح می توان از گسترش عیب جلوگیری کرد. در حالیکه وجود عیب نوع سوم ممکن است
٢١
پایان عمرترانسفورماتور تلقی شود.تقسیم بندی ظریفتر عیوب توسط محققین مختلف انجام شده اسـت.از آن
جمله میتوان به تقسیم بندی زیر اشاره کرد: [10]
-1 عیب هسته
-2 عیب سیم پیچها
-3 نقص در عملکرد تپ چنجر
-4 اشکال در مخزن و روغن
-5 عیب در پایانه ها
-6 نقص در متعلقات
برای حصول یک سیستم تشخیص عیب با هزینه کم درنظرگرفتن نتایج آماری عیبهای مرسوم در
ترانسفورماتورها مفید خواهد بود. شکل (3-2) یکی از چنین نتایجی را در مورد میزان انواع عیبها در
ترانسفورماتور نشان میدهد. دیده میشودکه در حدود %41 عیبها در تپ چنجر ترانـسفورماتور روی
میدهند. درصورتیکه تپ چنجر جزءمتعلقات ترانسفورماتور محـسوب مـیشـود، عیـب مربـوط بـه
متعلقات %53 خواهـد شـد.در حالیکـه عیبهـایی کـه در سـیمپیچهـا روی مـیدهنـد در حـدود %19
میباشند.بر اساس این نتایج آماری می توان عنوان کرد که مهمترین قسمتهای که باید مـانیتور شـوند،
سیمپیچ ها، عایقاصلی و تپچنجر میباشند. این نتایج در انتخاب پارامترهای مؤثر در سیـستم پـایش
قابل استفاده می باشند.
٢٢
نصب وراهاندازی
%12

تجهیزات جانبی
%12
تپ چنجر
%41
تانک و روغن
%13
هسته
%3

پیچها
%19
شکل -3-2 نتیجه آماری از انواع عیبهای مرسوم درترانسفورماتور[10]
در یک کار تحقیقاتی دیگر [12] چند نوع عیب در ترانسفورماتورهایی کـه ولتاژشـان بـین 88 و
765 کیلوولت و قدرتشان بین 20 و 800 مگاولـت آمپـر قـرار دارنـد مـورد بررسـی و مطالعـه قـرار
گرفتهاند. تحلیل نتایج نشان میدهد که عیبهای رخ داده در ترانـسفورماتورهای کوچـک بـا پیرشـدن
ترانسفورماتور در ارتباط میباشند. در ترانسفورماتورهای متوسط اغلـب عیبهـا در تـپ چنجـر روی
میدهند. در ترانسفورماتورهای بزرگ ناهماهنگی عایقی دلیل اصلی عیبهایی است که در اولـین سـال
کارکرد ترانسفورماتور رخ میدهند.تقسیم بندی عیوب به همراه میزان بروز آنهـا ،در ایـن مرجـع بـه
صورت زیر می باشد:
-1 خطاهای حاصله در اثر ولتاژهای صاعقه وکلید زنی،%12
-2 عیوب مربوط به هسته،%16
-3 نقص تپ چنجر،%23
٢٣
-4 خطاهای حاصله در اثر اتصال کوتاه های مختلف،%8
-5 عیوب ناشی از پیری ترانسفورماتور،%30
-6 سایر عیوب،%11
بر اساس این نتایج، پیری ترانسفورماتورو تپ چنجر مهمتـرین عیـوب بـوده و خطـای هـسته و
عیوب ناشی از ولتاژهای بالا در رده دوم قرار دارند.
٢۴
فصل 3
اصول ومبانی روش آنالیز پاسخ فرکانسی
25
از یک ترانسفورماتور ممکن است در طول بهره برداری جریان های اتصال کوتاه شدیدی ناشی از خطا هـای
مختلف شبکه قدرت عبور نماید. نیروهای ناشی از این جریان ها بسته به شدت خطا قادر به جابجـایی و یـا
تغییرشکل مکانیکی سیمپیچها میباشند.درعمل استحکام مکانیکی عایق هـا افـزایش مـییابـد. حمـل و نقـل
ترانسفورماتور نیز عامل دیگر ایجاد خطاهای مکانیکی در داخل آن می باشد.[13]با این وجود در بیشتر حالت
ها جابجایی و یا تغییـر شـکل مکـانیکی سـیم پیچهـا مـانع انتقـال انـرژی نـشده و باعـث خـروج از مـدار
ترانسفورماتور نمیشود. اما این خطر وجود خواهد داشت که ضربه مکانیکی وارده به عایق سیم پـیچ باعـث
فشردگی یا سـاییدگی آن شـده و در نهایـت باعـث یـک شکـست عـایقی در اثـر اضـافه ولتاژهـای بعـدی
گردد.بنابراین شناسایی جابجاییو خطاهای مختلف سیم پیچها به کمک آزمایـشهای مناسـب اهمیـت زیـادی
دارد. با انجام چنین آزمایشهایی نیاز به باز کردن ترانسفورماتور و بازرسی داخل آن (که پر هزینه و زمـان بـر
است) نمیباشد. معروفترین این آزمایشها روش اندازهگیـری و تحلیـل پاسـخ فرکانـسی (FRA) کـه روش
اندازه گیری تابع تبدیل (TF) نیز نامیده می شود، میباشد. جزئیات کامل این روش در این فصل مورد بحث
و بررسی قرار میگیرد.
1-3 روشهای مختلف شناسایی عیبهای مکانیکی
همانگونه که ذکر شد، استحکام مکانیکی ترانسفورماتورها مخصوصا موقع حمل و نقل و یا به وقوع پیوستن
اتصال کوتاه کاهش مییابد.برای تشخیص عیب تغییر شکل و یا جابجایی سیمپیچها ونیز اتـصال کوتـاه بـین
حلقه ها در سیم پیچها ، به صورت همزمان با بهرهبرداری و یا موقع خروج از مدار ترانسفورماتور روشـهای
مختلفی مورد استفاده قرار میگیرند. از مهمترین این روشها میتوان به موارد زیر اشاره کرد:
26
-1 اندازه گیری تغییرات امپدانس در فرکانس قدرت
-2 اندازه گیری نسبت تبدیل
-3 آزمایش ضربه فشار ضعیف((LVI
-4 اندازهگیری و ارزیابی تابع تبدیل
کار تحقیقاتی مرجع [14] نشان می دهد کـه روش تـابع تبـدیل حـساسترین روش بـرای تـشخیص عیبهـای
مکانیکی در سیمپیچ بوده و روشهای اندازه گیری دیگر حـساسیت کـافی بـرای آشـکارسـازی جابجاییهـای
کوچک سیمپیچرا ندارد.از اینرو تابع تبدیل از میان روشهای فوق جایگاه ویـژه ای در سیـستم پـایش جهـت
تشخیص عیوب مکانیکی پیدا کرده است.
-2-3 تئوری روش آنالیز پاسخ فرکانسی[15]
اساس روش transfer function، تئوری شبکه دو قطبی میباشد.

شکل(.(1-3ترانسفور ماتور بصورت شبکه دو قطبی خطی
دراین مدل، ترانسفورماتورها بصورت یک شبکه خطی، مختلط وپسیو میباشند. این تئوری، امکان
اعمال یک ورودی و بدست آوردن خروجیهای متفاوت را میدهد. (شکل(.((1-3هرسیگنال خروجی تعریف
شده (ولتاژهای خروجی UAV وجریانهای خروجی IAV و(V=1..n یک تابع بصورت زیر تولید میکند:
27
(1-3) A,u ( f ) U : توابع انتقال ولتاژ Au,V ( f )  TF E ( f ) U (2-3) A,u ( f ) I Ai,V ( f )  TF :توابع ادمیتانس E ( f ) U FFT1ولتاژهای خروجی : UAV(f) FFT جریانهای خروجی : IA,v(f) FFT ولتاژ ورودی : UE (f) نکته قابل توجه آن است که حساسیت توابع تبدیل بـه تغییـرات وعیـوب واقـع شـده در ترانـسفورماتورهـا
متفاوت می باشد و برخی از آنها نسبت به دیگری قابلیتهای آشکار سازی بیشتری دارند.
3-3 روش اندازهگیری تابع انتقال درترانسفورماتورها [15]
بدست آوردن تابع انتقال ترانسفورماتور هم با اعمال پالس ضربه وانـدازه گیـری خروجـی وهـم بـا اعمـال
ورودیهای سینوسی با فرکانسهای مختلف، امکانپذیر است. تعیین تابع انتقال با اعمـال سینوسـی هـای تـک
فرکانس، بصورتی که در شکل (2-3) مشاهده میشـود، انجـام مـیگیـرد. فرکـانس ولتـاژ ورودی سینوسـی
میتواند در یک رنج وسیع فرکانسی تغییرکند. با اندازهگیری خروجی میتوان تابع انتقـال مخـتلط را بدسـت
آورد. (بصورت دامنه و فاز). این روش، "روش جاروی فرکانسی" نامیده می شود.
بااعمال یک تک پالس واندازه گیری خروجی هم میتوان تابع انتقال را مطابق آنچـه در شـکل (3-3) نـشان
داده شده است، بدست آورد. بدین صورت که ترانسفورماتور بوسیله یک ولتاژ ضربه (معمـولا بـین 100 تـا
2000 ولت) تحریک میشود. سپس ورودیهاوخروجیهای گذرا اندازهگیری شده و آنالیز میشوند. طیف

1 .Fast Fourier Transform
28

شکل((2-3اندازه گیری تابع انتقال در حوزه فرکانس
فرکانسی سیگنالهای اندازهگیری شده درحوزه زمـان، بوسـیله FFT محاسـبه شـده و از تقـسیم خروجـی بـر
ورودی، تابع انتقال درحوزه فرکانس بدست میآید. معمولاً ایـن روش،"ولتاژضـربه پـایین" نـام دارد.شـرح
کاملتر روشهای فوق در اندازه گیری تابع انتقال ، در ادامه بیان شده است.

شکل((3-3اندازه گیری تابع انتقال در حوزه زمان
29
-1-3-3 روش جاروی فرکانسی( SFM) 2
دراین روش که به آن روش جاروی فرکانسی نیز گفته میشود، یک موج سینوسی با فرکانس مشخص در
رنج وسیعی از فرکانس که قبلا تنظیم شده، توسط دستگاهی به نامNetwork Analyzer به سیمپیچ اعمـال و
خروجی حاصل از آن اندازه گیری میشود.به علت ساختار دستگاه، در هر بار اندازهگیری فقط یک تابع انتقال
قابل محاسبه میباشد. مدار اندازهگیری دراین روش، درشکل((4-3 نشان داده شده اسـت.S سـیگنال ترزیـق
شده ،R وT به ترتیب اندازهگیریهای مرجع و تست میباشند. Zs امپدانس منبع و ZT امپدانس سیمپیچ تحـت
تست است که امپدانس منبع Network Analyzer معمولاً 50Ω می باشد. مدت زمانی کـه Analyzer بـرای
جاروی فرکانس در رنج فرکانسی مورد نظر نیاز دارد، به میزان فیلترینگ اعمال شده بستگی دارد. معمولاً این
زمان ازکمی کمتر از یک دقیقه تا حدود چند دقیقه متغیراست. در این حالت، نتیجـه انـدازهگیـری بـصورت
دامنه یا فاز قابل بیان میباشد. باتوجه به شکل (4-3) دامنه و فاز بصورت زیر بیان میگردند.

شکل((4-3مدار اندازه گیری تابع انتقال در روش جاروی فرکانس (3-3) K  20log10 (T / R) ϕ  tan−1(T R)
2 .Sweep Frequency Method
30
در رابطه (3-3) ، K و ϕ بترتیب معرف دامنه و فاز تابع تبدیل می باشند.همچنین T وR نیز بترتیـب بیـانگر
سیگنال اندازه گیری شده و سیگنال ورودی اعمال شده می باشند.[4]
-2-3-3 روش ولتاژ ضربه(LVI) 3
در این روش یک ولتاژ ضربه با مشخصات مناسب، بطوریکه بتواند در یـک محـدوده وسـیع فرکـانس،
قطبهای سیستم را به نوسان وادارد، به یکی از ترمینالهای ترانسفورماتور اعمـال مـیگـردد. همزمـان، جریـان
عبوری از این ترمینال یا ولتاژ ترمینال دیگر و یا جریان هر سیمپیچدیگری بـه عنـوان خروجـی انـدازهگیـری
میشود. در اندازهگیریهای ولتاژ کم، دامنه ضربه معمولاً بین 100-2000 ولت میباشد. پهنای باند ورودی هم
تا حد ممکن باید بزرگ باشد. مقادیر متداول برای ضربه ورودی، زمان پیـشانی 200ns تـا 1μs و نـیم زمـان
پشت 40μs تا 200μs میباشند.[16] سیگنالهای اندازهگیری شده در حوزه زمـان، بعـداز فیلترشـدن ونمونـه
برداری به صورت دادههایی در حوزه زمان ذخیره میشوند. سپس به حوزه فرکانس منتقل شده ،تـابع انتقـال
ترانسفورماتور محاسبه میگردد.
-3-3-3 مزایا و معایب روشهای LVI وSFM
روش LVI دارای معایب زیر میباشد[17]
دقت فرکانسی ثابت.این امر موجب مشکل شدن آشکارسازی خطاها در فرکانسهای پایین میشود.
فیلتر کردن نویز سفید مشکل است.
تجهیزات اندازهگیری متعدد موردنیاز است (فانکشن ژنراتور،اسکوپ دیجیتال).

3 . Low Voltage Impulse
31
روش LVI دارای مزایای مهمی میباشد.
توابع انتقال مختلف (تابع ادمیتانس،تابع ولتاژ و... )میتوانند بطور همزمان اندازهگیری شوند.
زمان مورد نیاز برای هر بار اندازهگیری حدود یک دقیقه میباشد.
روش SFM دارای معایب اساسی زیر است
در هر بار اندازهگیری، فقط یک تابع انتقال قابل اندازهگیری است.
زمان موردنیاز برای هر بار اندازهگیری معمولاً چند دقیقه به طول می انجامد.
روش SFM دارای مزایای زیر میباشد.
نسبت سیگنال به نویز بالا( بخاطر فیلترینگ نویز سفید بوسیله .(Network Analyzer
یک محدوده وسیع فرکانسی میتواند اسکن شود.
دقت فرکانسی خوب در فرکانسهای پایین. همچنین دقت فرکانس میتواند متناسب با محدوده فرکانس
اندازهگیری تغییر کند.
+ فقط یک دستگاه اندازهگیری مورد نیاز است(.(Network Analyzer
-4-3 انـــواع روشـــها بـــرای مقایـــسه نتـــایج حاصـــل از
اندازهگیریها[18]
پس از اندازهگیری و انجام محاسبات، نهایتا تابع انتقال بصورت دامنه یا فاز بـر حـسب فرکـانس نمـایش
داده میشود. از آنجا که فاز تابع انتقال هیچگونه اطلاعات اضافیتـری نـسبت بـه دامنـه تـابع انتقـال نـدارد،
استفاده از دامنه تابع انتقال، معمولا برحسب لگاریتم ، مرسوم می باشد. اساس روش تابع انتقال، مقایسه تـابع
32
انتقال اندازهگیری شده فعلی با یک تابع انتقال مبنا می باشد. بر این اسـاس سـه روش شـناخته شـده، بـرای
مقایسه بین نتایج حاصل ازاندازه گیری توابع انتقال وجود دارد.
-1 مقایسه مبتنی بر زمان4
-2 مقایسه مبتنی بر ساختارترانسفورماتور5
-3 مقایسه مبتنی بر نوع ترانسفورماتور6
شکل((5-3 اساس این مقایسهها را نشان میدهد. روش time based از بهترین دقت برخوردار اسـت. در
این روش، اطلاعات اندازهگیری شده بـا اطلاعـات قبلـی کـه درمـورد ترانـسفورماتور وجـود دارد، مقایـسه
میگردد. (البته در شرایط تست کاملاً یکسان). این روش در مورد انواع ترانسفورماتورها کاربرد دارد. معمولاً
این اطلاعات قبلی، هنگام ساخت ترانسفورماتور و در شرایط مـشخص بدسـت مـیآیـد. هرگونـه تغییـر در
مقایسه نتایج، دال بروجود مشکلی در ترانسفورماتور میباشد. اما ازآنجا که اطلاعات مربوط به اندازهگیریهای
قبلی، برای بسیاری از ترانسفورماتورهای درحال کار وجود ندارد، باید روش مناسب دیگـری بـرای مقایـسه
بکارگرفته شود.

شکل(.(5-3 روشهای مختلف مقایسه توابع انتقال

4. Time Based 5 . Construction Based 6 . Type Based
33
یکی از این روشها، استفاده از خاصیت تقارن بکار رفته در طراحی وساخت ترانسفورماتور میباشد. این
روش Construction based نام دارد.

شکل(.(6-3 مقایسه بین فازها یا construction based برای ترانسفورماتور . (150MVA ,220/110/10 kv)
a )دامنه تابع انتقال ادمیتانسb )دامنه تابع انتقال ولتاژ
این روش وسیلهای برای مقایسه توابع انتقال بدست آمده در فازهای مختلف ترانسفورماتور میباشـد. بـرای
هر سه فاز، یک رفتار انتقالی شبیه به هم وجود دارد. تست جداگانه فازها نشان میدهد که برای فرکانـسهای
34
تقریباً بالاتر از 10KHZ ، مشخصات فرکانسی فازهای ترانسفورماتور کاملاً یکسان است. یک نمونه مقایـسه
انجام شده در فازهای ترانسفورماتور در شکل((6-3 نشان داده شده است.[18]

شکل .(7-3) مقایسه بین فازها یا construction based برای ترانس با ثانویه زیگزاگی . (150KVA ,10kv/ 400V)
a )دامنه تابع انتقال ادمیتانسb )دامنه تابع انتقال ولتاژ
دو محدودیت در استفاده از این روش مقایسه وجود دارد. یکی اینکه این روش فقط برای ترانسفورماتورهای
سه فاز ویا بانک ترانسفورماتوری کاربرد دارد. دیگری آنکه، نتایج اندازهگیریهای متعـدد نـشان مـیدهـد کـه
استفاده از این روش درفازهای با سیمپیچیزیگزاگی، برای انجام مقایسه به منظور تـشخیص عیـب ، مناسـب
35
نیست. یک نمونه از این اندازهگیریها در شکل (7-3) نشان داده شده است. روش سوم بـرای مقایـسه type
based نام دارد. در این روش نتایج بدست آمده از ترانسفورماتورهای با ساختار یکسان(معمولاً محصول یک
سازنده هستند)، مبنای مقایسه مـی باشـد. اصـطلاحاً بـه ایـن ترانـسفورماتورها، ترانـسفورماتورهای خـواهر
میگویند. تابع انتقال برای این ترانسفورماتورها، دارای تغییرات خیلی کمـی نـسبت بـه یکـدیگر مـیباشـند.
بنابراین میتواند به عنوان مبنا، برای اندازهگیریهای انجام شده، در نظر گرفته شود.البته با توجه به اینکه هـیچ
دو ترانسفورماتوری ازنظر جزئیات ساخت کاملا یکسان نیستند، این روش ممکن است عیـب یـابی را دچـار
اشکال کند.
-5-3 مراحل پیشرفت روش تابع تبدیل برای پایش
ترانسفورماتورها
تبدیل فوریه پاسخ ضربه یک سیستم خطی نامتغیر با زمان تابع تبدیل یا پاسخ فرکانـسی سیـستم
نامیده میشود. با استفاده از سیگنال تحریک و یا به عبارت دیگـر سـیگنال ورودی و سـیگنال پاسـخ
مربوط به آن میتوان تابع تبدیل را محاسبه کرد. تابع تبـدیل همـراه بـا آزمـایش ترانـسفورماتورهای
بزرگ و نیز به عنوان روشی برای پایش ترانسفورماتورها مورد استفاده قرار میگیرد.
-1-5-3 تابع تبدیل برای آزمایش ترانسفورماتورهای بزرگ
سالهای زیادی است که توابع تبدیل همراه با صنعت آزمـایش ترانـسفورماتورها مـورد اسـتفاده قـرار
میگیرند و با روشهای آزمایش مختلف از نتایج اندازهگیریها تعیین شده و به عنوان وسیلهای برای
36
کنترل کیفیت و نیز تعیین مشخصههای مهم ترانسفورماتور به کار گرفته میشوند.
برای نشان دادن استحکام مکانیکی سـاختار سـیمپیچهـای ترانـسفورماتور مـیتـوان آزمایـشهای
ضربهای را روی آنها انجام داد. به خاطر هزینههای بالای چنین آزمایشهایی تنهـا در برخـی حالتهـای
نادر و یا درصورت درخواست مشتری این گونه آزمایشها انجام داده میشوند. برای تعیین تغییر شکل
مکانیکی سیمپیچها مشخصههای نوسانی بین اندازهگیریهـای قبـل و بعـد از آزمایـشهای ضـربهای بـا
همدیگر مقایسه میشوند. یکی از چنین روشهایی که مدتهای طولانی است مـورد اسـتفاده قـرار مـی
گیرد روش آزمایش ضربه فشارضعیف (LVI) میباشد .[19] در این روش ترانسفورماتور قبل و بعـد
از آزمایش توسط یک ضربه ولتاژ پایین تحریک میشود. مقایسه سیگنال پاسخ ثبت شده قبل و بعد از
آزمایش تغییرات مکانیکی احتمالی در ساختار سیمپیچ را مشخص میکند. یـک روش دیگـر تحلیـل
پاسخ فرکانسی( FRA) 7 میباشد. در اینحالت پاسخ فرکانسی قبل و بعـد از آزمـایش تعیـین میـشود.
پاسخ فرکانسی را میتوان توسط یک آنالایزر شبکه8 مستقیماً در حوزه فرکانس اندازهگیری کرد و یـا
به کمک تبدیل فوریه سریع( FFT) 9 از نتایج اندازهگیریها در حوزه زمان محاسبه کرد (جزئیات مربوط
به روشهای بدست آوردن پاسخ فرکانسی در بخش (2-3) داده شدهاند).
تابع تبدیل یک مدار الکتریکی خطی تغییر ناپذیر با زمان ، یک توصیف کـاملی از مـدار را ارائـه
کرده و به طور نظری مستقل از سیگنال تحریک میباشد. برای حالتهای گذرای ناشی از ضربه صاعقه

7 Frequency Response Analyse 8 Network Analyser 9 Fast Fourier Transformation
37
میتوان ترانسفورماتورها را خطی درنظرگرفت. بنابراین تغییر شکل ولتاژ ضربه تحریـک، حـداقل بـه
طور نظری، تأثیری روی تابع تبدیل نـدارد. بنـابراین بایـستی مقایـسه توابـع تبـدیل بدسـت آمـده از
ولتاژهای ضربه کامل و بریده به عنوان تحریک امکان پذیر باشد .[20]
-2-5-3 تابع تبدیل برای پایش
برای سازندههای ترانسفورماتورها شناخت شکستها و عیبهای عایقی کـه در ترانـسفورماتورها در
اثر ولتاژهای گذرا روی میدهند دارای اهمیت میباشد، چرا که این شناخت برای تعیین ابعاد عـایقی
سیمپیچها لازم است. به همین دلیل در گذشته همواره ولتاژهای کلیـد زنـی در شـبکه انتقـال انـرژی
اندازهگیری شدهاند .[21]
میتوان سیگنالهای گذرایی را که در اثر کلید زنی ترانسفورماتورها و کلیدزنیها در جاهای دیگری
از شبکه ایجاد شده و بر روی ولتاژها و جریانهای کار عادی ترانـسفورماتور سـوار مـیشـوند، بـرای
محاسبه یک تابع تبدیل مورد استفاده قرار داد. با مقایسه توابع تبدیل انـدازهگیـری شـده در زمانهـای
مختلف میتوان وجود تغییر احتمالی در وضعیت عایقی ترانسفورماتور را تشخیص داد. اگر تغییراتـی
در تابع تبدیل مشاهده شوند میتوان وجود یک تغییر ولذا یک عیب را در ترانـسفورماتوراحتمال داد.
اگر توابع تبدیل اندازهگیری شده در زمانهای مختلف یکسان باشند، میتوان نتیجه گرفت که وضعیت
و حالت ترانسفورماتور در فاصله زمانی بین دواندازهگیری هیچگونه تغییری نداشته است.
38
-1-2-5-3 تابع تبدیل برای پایش به صورت همزمان با
بهرهبرداری و در حالت خروج از مدار
پایش وضعیت عایقی ترانسفورماتورها در محل نصب را میتوان اساساً در وضعیت خارج بـودن
از مدار و یا به صورت همزمان با بهرهبرداری انجام داد .[22] برای پایش در وضعیت خارج بـودن از
مدار، طرف ولتاژ بالای ترانسفورماتور از شبکه جدا میشـود تـا انـدازهگیریهـای لازم انجـام شـوند.
درحالیکه در پایش به صورت همزمان با بهرهبرداری، سیگنالهای گذرایی مورد استفاده قرار میگیرنـد
که در طول عملکرد ترانسفورماتور در اثرکلیـدزنیهای ضـروری درشـبکه بـرق ایجـاد مـیشـوند. بـا
اندازهگیریهای در وضعیت خارج بودن از مدار همواره میتوان براحتی آزمایشها را تکرار کرد، چونکه
کلید قدرت تکتک فازها همزمان قطع و وصل نمیشود و شرایط حاکم بعد از کلید زنی کاملاً پایدار
است. با پایش به صورت همزمان با بهرهبرداری، ترانسفورماتور در ارتباط با سایر تجهیزات شـبکه در
حال کار میباشد و به دلیل تزویج الکترومغناطیسی در سیستم سهفاز، یک تحریک گـذرا همـواره بـه
صورت همزمان به تمام پایانههای یک مجموعه از سیمپیچها اعمال میشود.
-2-2-5-3 تـابع تبـدیل بـه عنـوان یـک روش تـشخیص عیـب
مقایسهای
39
در دیدگاه اولیه، روش تابع تبدیل برای پایش ترانسفورماتور یک روش مقایسهای میباشـد. اگـر
اندازهگیریهایی روی یک ترانسفورماتور انجام میگیرند، بایستی نتایج این اندازهگیریها با نتایج مرجعی
مقایسه شوند. برای مقایسه نتایج اندازهگیریها در مرجع [23] سه روش پیشنهاد شده اند:
نتایج اندازهگیریها در زمانهای مختلف، مشخصههای متـشابه سـاقههـای ترانـسفورماتور و نتـایج
اندازهگیریهای ترانسفورماتورهای یکسان طرح شده.
در روش مقایسه نتایج اندازهگیریها در زمانهای مختلف، نتایج جدید با نتایج حاصله در زمانهـای
قبل مقایسه میشوند .[24] چنین نتایج ثبت شده در زمانهای پـیش اغلـب موجـود نمـیباشـند و یـا
نمیتوان شرایط و یا نحوه آزمایش زمانهای قبل را مجدداً تکرار کرد. لذا این روش را میتوان تنها در
مورد ترانسفورماتورهای محدودی بکار برد. تغییرات مکانیکی قاعدتاً همزمان و به یک میزان در تمام
سـتونهای ترانـسفورماتور روی نمـیدهنـد. لـذا مـیتـوان بـه طـور متـوالی فازهـای T, S, R یـک
ترانسفورماتور سهفازه را مورد اندازهگیری قرار داده و نتایج حاصله از فازهای مختلف را با همـدیگر
مقایسه نمود. بسته به ساختمان قسمت فعال ترانسفورماتور، تشابه بین توابع تبدیل اندازهگیری شده از
سه ستون ترانسفورماتور متفاوت میباشد. لذا آشکارسازی تغییر مکانیکی احتمالی همیـشه نمـیتوانـد
حاصل شود. روش مقایسهای سوم که امکان پذیر است مرجـع قـرار دادن نتـایج انـدازهگیـری یـک
ترانسفورماتور هم نوع و هم طرح میباشد. این روش مقایـسهای نـشان مـیدهـد کـه توابـع تبـدیل
ترانسفورماتورهای یکسان در اغلب موارد مشابه میباشند. این مطلب بـه خـصوص در مـواردی کـه
سازنده و سال ساخت یکسان میباشند کاملاً معتبر است.[25]
40
-6-3 عوامل کلیدی موثر بر اندازه گیریهای [17] FRA
نتایج تست FRA فقط به شرایط سیمپیچ ترانسفورماتور بستگی ندارد و از سیستمهای اندازهگیری نیـز بـه
شدت تاثیر میپذیرد. عواملی نظیرمقدارامپدانس موازی، ترکیب سیمهای رابط(طول ونحـوه اتـصال) وغیـره
میتواند اندازهگیریها را تحت تاثیر قرار دهد که در ادامه مورد بحث قرار میگیرد.
1-6-3 تاثیر مقدار امپدانس موازی
در اندازه گیریهـای FRA ، بـرای انـدازهگیـری جریـان پاسـخ از یـک مقاومـت شـنت اسـتفاده میـشود.
اندازهگیریها در یک رنج وسیع فرکانسی انجام میشود که در آن اندازهگیریهای مرتبط با جابجاییهای خیلـی
کوچک سیمپیچ ،که در فرکانسهای بـالاتر((>1MHz آشـکار مـیگـردد، اهمیـت خاصـی پیـدا مـیکنـد. در
فرکانسهای کمتر امپدانس موازی (معمولاً 50 اهم) در مقایسه با امپدانس ترانسفورماتور چندان مهـم نیـست.
اما در فرکانسهای خیلی بالاتر، امپدانس موازی نسبت به امپدانس ترانسفورماتور قابل ملاحظه خواهد بود. در
FRA-S امپدانس موازی معمولاً 50 Ω میباشد که امپدانس ورودی اسپکتروم آنالایزر می باشد. برای ارزیابی
اثر امپدانس شنت روی اندازهگیری های FRA تحقیقات روی یـک ترانـسفورماتور توزیـع و بـا سـه مقـدار
مقاومت موازی 50و10و1 اهم انجام شده است. دو مقدار اول، مقادیر معمول برای تستهایFRA مـیباشـند.
شکل (8-3) اثرات مقاومت موازی را در محدوده فرکانسی 1-10MHz نشان میدهد. واضح است که بـرای
جابجاییهای کوچکتر در سیمپیچ، منحنیهای تابع ادمیتانس با مقاومت موازی کوچکتر، بیشتر تغییر میکنـد.
البته حساسیت نسبی آشکارسازی به اندازه و نوع ترانسفورماتور نیز بـستگی دارد. باتوجـه بـه شـکل (8-3)،
تابع ادمیتانس ورودی در محدوده 2-10MHz فرکانسهای رزونانس مختلفی دارد که این با برخی از مدلهای
41

شکل(.(8-3 اثر مقاومت شنت روی پاسخ فرکانسی تا [17]10MHZ
فرکانس بالای ترانسفورماتور که بصورت خالص خازنی است ، درتعارض میباشد. دریک اندازهگیری عملی
FRA ، تابع انتقال اندازهگیری شده، نه تنها شامل تابع شبکه ترانسفورماتور بلکـه شـامل مقاومـت مـوازی و
امپدانسهای سیمها نیز میباشد. به عبارتی مقاومت موازی علاوه بر اینکه حـساسیت انـدازهگیـری را کـاهش
میدهد، رزونانسهای مدار را نیز فرو مینشاند. این اثر میتواند خیلی مهـم باشـد. ایـن تـاثیر همچنـین بـه
)Qضریب کیفیت) مدار بستگی دارد. شبکهای با Q بالاتر، حساسیت بیشتری نسبت به تغییرات سیمپیچ دارد.
هنگامیکه جریان مقاومت موازی کوچک است، مقدار Q مدار نسبتاً بالاست کـه ایـن مـورد در شـکل (8-3)
دیده میشود. بنابراین، میتوان نتیجه گرفت که حساسیت آشکارسـازی FRA، بـا افـزایش مقاومـت مـوازی
بطور قابل ملاحظهای کاهش مییابد و ماکزیمم محدوده فرکانسی که به تغییرات سیم پیچ حـساس اسـت بـا
کاهش مقاومت موازی افزایش مییابد.
42
-2-6-3 تاثیر بوشینگ فشار قوی
یک ترانسفورماتور توزیع،که بوشینگ اصلی آن با یک بوشینگ از نوع کاغذ روغنـی 27 KV جـایگزین
شده است، برای مطالعه اثر بوشینگ روی نتایج تستهای FRA بکارگرفته شده است. انـدازهگیـری در بـالای
بوشینگ (top) به مفهوم اندازهگیریهای FRA در ترمینال ورودی بوشینگ میباشـد. در انـدازهگیـری پـایین
(Bottom) ، اندازهگیریهای FRA مستقیماً در سرسیمپیچ فشار قوی درون ترانسفورماتور انجام مـیشـود. در
هر دوحالت پالس ورودی به بالای بوشینگ فشار قوی اعمال میشود. جریان کوپل شده به سیمپیچ ثانویه نیز
بوسیله یک مقاومت شنت اندازهگیری میشود. تنها تفاوت در نقطه اندازهگیری ولتاژ است که یکی در بـالای
بوشینگ ودیگری در پایین بوشینگ انجام میشود. تابع تبدیل ادمیتانس در دو حالـت در شـکل (9-3) آمـده
است. نتایج نشان میدهد که ادمیتانس اندازهگیری شده در سرسـیمپـیچ فـشار قـوی((Bottom ، کـوچکتر از
اندازهگیری در ترمینال بالای بوشینگ (top) است. در فرکانسهای بالاتر از 3MHz اندوکتانس سیم بوشـینگ،
ولتاژ خازن معادل سیمپیچ را کاهش میدهد. بنابراین ادمیتانس اندازهگیری شده در بـالای بوشـینگ بزرگتـر
میشود.
I/V(top)>I/V(Bottom):V(top)<3MHz<9MHz
ادمیتانـسهای انـدازهگیـری شـده تـا فرکـانس 3MHz ، تقریبـاً یکـسان هـستند. بـرای بـالاتر از 3MHz
اندازهگیریهای top با Bottom بطور قابل ملاحظهای تفاوت مییابند. این امر نشان میدهد که نتایج به شرایط
تست از قبیل مکان اندازهگیری و ترکیب سیمهای رابط بستگی دارد. نکته بسیار مهم اینجاست که همـه ایـن
اندازهگیریها با سیمهای رابط خیلی کوتاه انجام شدهاند. درحالیکه در یک اندازه گیری on site مخـصوصاً در
ترانسفورماتورهای قدرت بزرگ، ابعاد فیزیکی مساله ساز میگردد. برای یک بوشینگ فشار قوی که
43

شکل(.(9-3اندازه گیریهای FRAدر بالا وپایین بوشینگ[17]
5 متر طول دارد سیگنالهای اعمالی باید این طول سیمرا طی کرده تا به بوشـینگ و سـپس بـه سـیمپـیچ
اعمال شوند. مولفههای فرکانس بالای سیگنال منبع بوسـیله خازنهـای بوشـینگ زمـین مـیشـوند. همچنـین
اندوکتانسهای سیم و بوشینگ درمقایسه با امپـدانس ترانـسفورماتور در فرکانـسهای بـالا قابـل ملاحظـه مـی
گردند. این بدان معناست که امپدانس سیمو بوشینگ میتواند تغییرات مورد انتظار در امپدانس ترانسفورماتور
را بپوشاند.بنابراین میتوان نتیجه گرفت که اندازهگیریهـای FRA تـا حـدود فرکـانس 3 MHz تحـت تـاثیر
بوشینگ فشار قوی و سیمرابط نیست اما در فرکانسهای بالاتر از 3 MHz این امپدانسها شروع به اثر گـذاری
کرده و در فرکانسهای بالای 4 MHz این اثرات قابل ملاحظه می گردند.
-3-6-3 تاثیر اتصال نقطه خنثای سیمپیچ فشار قوی
44
چگونگی اتصال نقطه خنثای ترانسفورماتور فشار قـوی، مـیتوانـد روی نتـایج انـدازهگیریهـای FRA تـاثیر
بگذارد. نتیجه تست انجام شده روی یک ترانسفورماتور توزیـع در دو حالـت در شـکل (11-3) نـشان داده
شده است. دریک حالت نقطه نوترال سیمپیچ فشار قوی معلق میباشد. درحالت دیگرنیـز بـه تانـک تـرانس
متصل شده است (زمین شده است). ولتاژ ورودی به یک سربوشینگ اعمـال شـده و جریـان کوپـل شـده از
طریق یک مقاومت شنت 1Ω که بین سیم پیچ فشار ضعیف و تانک قرار دارد، انـدازهگیـری شـده اسـت. بـا
توجه به شکل((10-3، می توان گفت که نتایج از نوع اتصال نوترال تاثیرپذیر است. برای فرکانسهای کمتر از
1/5 MHz این تاثیر اصلاًمهم نیست ونتایج در دو حالت کـاملاً یکـسان اسـت. امـا در فرکانـسهای بـالاتر از
2 MHz ، مقداری تفاوت وجوددارد. بنابراین در تست برای آشکارسازی تغییرات کوچک در سـیمپـیچ ایـن
نکته حائز اهمیت است که در مقایسه منحنیهای تابع انتقال ، شرایط اتصال زمین باید کاملاً یکسان باشد.
-4-6-3 تاثیر سیمهای رابط اندازهگیری

شکل(.(10-3 اثر وضعیت نقطه خنثی در اندازه گیریها( دردو حالت شناور و زمین شده) .[17]
45
اثرات سیمهای رابط فشار قوی و زمین با استفاده از دو سری از کابلهای کواکسیال مختلف بررسی
مـیگــردد. یکـی ســیمهای رابـط اسـتاندارد بــا طولهـای مناســب کـه بـرای انــدازهگیریهــای FRA در
ترانسفورماتورهای قدرت میباشد. و دیگری سیمهای رابـط خیلـی کوتـاه کـه در مـورد ترانـسفورماتورهای
توزیع به کار میرود. درشکل (11-3) تابع انتقال ادمیتانس یک ترانسفورماتور توزیع برای دو نوع سیم رابـط
کوتاه واستاندارد نشان داده است. این سیمها شامل سیمهای زمین پروب وسیگنال ژنراتـور و سـیمهای رابـط
بین بوشینگ و وسیله اندازهگیری بودهاند. این نکته قابل توجه است که دوتابع ادمیتـانس در رنـج فرکانـسی
0- 0/4MHz تقریباً یکسان هستند. بین 0/4MHzتا 2MHz ادمیتانـسها کمـی اخـتلاف دارنـد. ولـی بـرای
فرکانسهای بالای 2MHz اختلاف زیاد میگردد. این امر بیانگر آن است که پیکربندی بـا سـیمهای کوتـاه، در
مقایسه با سیمهای استاندارد امپدانس خیلی کوچکتری(درفرکانسهای بالاتر از (2MHz از خود نشان میدهد.
بنابراین پیکربندی با سیمهای کوتاه ،حساسیت خیلی بیشتری نسبت به تغییرات فرکـانس بـالای سـیم پیچـی
ترانسفورماتور از خودنشان میدهد. همچنین هنگام استفاده از سیمهای بلند برای فرکانسهای بالاتر از

شکل(.(11-3 مقایسه اثرسیمهای رابط کوتاه و بلند در اندازه گیریها تا 10MHZ
46
0/5MHz ادمیتانس اندازهگیری شده قابل مقایسه با ادمیتانس سیمرابط است. لـذا حـساسیت نـسبت بـه
تغییرات در سیمپیچ ترانسفورماتور به شدت کاهش مییابد.
بنابرایندر یک دستهبندی میتوان گفت که اندازهگیریهای با سیمهای بلند تـا فرکـانس 0/5MHz وانـدازه
گیریهای با سیمهای استاندارد تا فرکانس 2/3MHz تا حدود زیادی معتبرند.[26]عوامل متعدد دیگـری ماننـد
موقعیــت تــپ چنجر،دمــا، الگــوریتم نــرم افــزاری بکــار گرفتــه شــده، پیــری عــایق و... روی نتــایج اثــر
گذارند.توضیحات بیشتر در این زمینه در مرجع[27]آمده است.
-7-3 دقت پردازش سیگنال در روش زمانی
برای یک سیستم اندازهگیری دیجیتال ، فرکانس نمونهبرداری، مدت زمان نمونهبرداری وتفکیـک پـذیری10
مبـدل آنـالوگ بـه دیجیتـال، پارامترهـای بـسیار مهـم و تعیـین کننـدهای بـرای بدسـت آوردن تـابع تبـدیل
ترانسفورماتور میباشند.
-1-7-3 فرکانس نمونهبرداری
هیچکدام از طیفهای فرکانسی سیگنال نمونـهبـرداری شـده نبایـد در اثـر نمونـهبـرداری، در آن محـدوده
فرکانسی که مورد استفاده قرار میگیرند روی هـم بیفتنـد. بنـابراین طبـق تئـوری نایکوئیـست11 ، مـاکزیمم
فرکانس معتبری از اطلاعات که میتواند ذخیره شود، برابراست با fNyquist که:
(4-3) f sample f Nyquist  2 فرکانسهای بالاتر از fNyquist ، در هنگام باز تولید سیگنال، دارای مولفههای کذایی خواهند بود.

Resolution ١٠ 11 .Nyquist Theory
47
معمولا در اندازهگیریها به منظور حذف اثر نویزها و مولفه های فرکـانس بـالای غیرضـروری، سـیگنال از
یک فیلتر پایین گذر عبور داده می شود.حداقل فرکانس نمونه برداری لازم fmin را میتـوان بـا توجـه بـه بـه
کمک فرکانسهایf0 وfD به صورت زیر محاسبه کرد:
fmin= fD+ f0( 5-3)
که f0 فرکانسی است که طیف مورد نظر تا آن فرکانس محاسـبه مـی گـردد و fD فرکـانس قطـع فیلتـر
پائینگذر میباشد. با اینحال برای تضمین اجتناب از تداخل فرکانسی بایـستی فرکـانس نمونـهبـرداری از دو
برابر فرکانسfD بیشتر باشد.
fmin ≥ 2 fD(6-3)
با انتخاب یک فرکانس نمونهبرداری بالاتر (f2) از فرکانس نمونهبرداری لازمی که شرط رابطـه (6-3)
را برآورده میکند، (f1)، میتوان نویز کوانتیزهکردن12 را کاهش داد. انتخـاب چنـین فرکـانس نمونـهبـرداری
بالاتر، باعث بهبود در نسبت سیگنال به نویز به میزان زیر میشود.[16]
(7-3)

SNR 10 log f2 f1

-2-7-3مدت زمان نمونهبرداری
مدت زمان نمونهبرداری از سیگنالهای اندازه گیری شونده باید بگونـه ای باشـد کـه تفکیـکپـذیری
فرکانسی طیف محاسبه شده توسط FFT مناسب بوده وافزایش انرژی نویز کوانتیزه نیز در نظر گرفته شود که
در ادامه به آنها اشاره می شود.

12 .Quantization
48
با انتقال سیگنالهای اندازه گیری شده به حوزه فرکانس، تفکیکپذیری فرکانس از رابطـه زیـر و بوسـیله
مدت زمان نمونهبرداری T تعیین میشود.
(8-3) 1 f  T برای اینکه بتوان فرکانسهای تشدید و دامنهها در فرکانسهای تشدید یک تابع تبـدیل را تـا حـد ممکـن
صحیح محاسبه کرد، بایستی تفکیکپذیری فرکانس بهتر از ده کیلوهرتز باشد. درنتیجه حـداقل مـدت زمـان
نمونهبرداری باید 100 μs باشد. همچنین با توجه به سیگنالهای میـرا شـوندهای کـه از ضـربه ورودی ظـاهر
میشوند، میتوان یک انرژی سیگنال تعریف و محاسـبه کـرد. متوسـط انـرژی نـویز بـا ضـرب پـراش نـویز
کوانتیزهکننده که مقداری ثابت میباشد در مدت زمان نمونهبرداری حاصل میشود. بنـابراین متوسـط انـرژی
نویز، هم با افزایش مدت زمان نمونهبرداری و هم با افزایش سطح کوانتیزهکردن q مطابق رابطه زیـر افـزایش
می یابد.
(9-3) 2 q Eqf 12 T انتخاب یک مدت زمان نمونهبرداری بیشتر T2 درمقایسه با T1 نیز موجب کاهش نـسبت سـیگنال بـه
نویز با رابطه زیر میشود:
(10-3) T1 SNR 10 log T2 برای اینکه بتوان اثر نویز کوانتیزهکردن را تا حد ممکن کوچک نگه داشت، بایستی وقتی که سـیگنالها
تا اندازه کافی تضعیف شدند ثبت سیگنالها متوقف شود. از طرف دیگر اگر محاسبه صحیح دامنه فرکانـسهای
مشخصی، حتی آنهایی که در محدوده چند کیلوهرتز قرار دارند، مد نظر میباشـد، بایـستی ثبـت سـیگنال تـا
49
میرائی کامل این فرکانسها ادامه یابد. به عنوان یک مصالحه خوب مقدار مدت زمان نمونـهبـرداری برابـر μs
200 انتخاب میشود.[28]
-3-7-3 تبدیل آنالوگ به دیجیتال
تبدیل یک سیگنال زمان پیوسته به صورت دنبالهای از کلمات باینری رمزشده عـددی بـا اسـتفاده از
مبدل آنالوگ به دیجیتال صورت میپذیرد. فرآیند نمـایش یـک متغیـر بـا دسـتهای از مقـادیر متمـایز را نیـز
کوانتیزهکردن مینامند. به دلیل محدود بودن مقادیر کوانتیزهشده خطایی تحت عنوان خطای کوانتیزهکردن رخ
میدهد. این خطا خـود را تحـت عنـوان نـویز کـوانتیزهکـردن در حـوزه فرکـانس نـشان مـیدهـد. خطـای
کوانتیزهکردن به ظرافت سطح کوانتیزهکردن، یعنی به تفکیکپذیری مبـدل A/D بـستگی دارد. اگـر k تعـداد
بیتهای ADC13 باشد ، دقت دامنه سیگنال بصورت زیر تعریف میشود.
a  2−k 1(11-3)
با افزایش تعداد بیتهای ADC نسبت سیگنال به نویز افزایش پیدا کرده و ماکزیمم فرکانسی که به ازای آن
طیف سیگنال در نویزوارد می شود ، افزایش می یابد.جدول((1-3 مقایسه بین دو مبدل 8 و 10 بیتی را برای
ولتاژ ضربه صاعقه استاندارد نشان میدهد.[28]
جدول(fmax.(1-3 که در آن طیف یک ولتاژ ضربه صاعقه استاندارد در نویز لبریز میشود، به صورت تابعی از تفکیکپذیری مبدل (A/D)

13 .Analog to Digital Convertor
50
فصل 4
انــــــواع روشــــــهای مدلــــــسازی
ترانسفورماتورها
51
یـک ترانـسفورماتور را مـیتـوان بـه صـورت چهـار قطبـی نـشان داده شـده در شـکل (1-4)
درنظرگرفت. برای این چهار قطبی باید مدار معادلی بدست آورد که به عنوان مثال رفتار فرکانسی آن
براساس نتایج اندازهگیری شده باشد. پارامترهای چنین مدار معادلی را میتوان به طرق مختلف تعیین
کرد. یک روش ممکن محاسبه پارامترها، بر پایه ابعاد هندسی ساختمان ترانسفورماتور میباشد. روش
ممکن دیگر روش تحلیلمـدال اسـت کـه در آن پارامترهـای تعریـف شـده در مـدل از روی نتـایج
اندازهگیریهای انجام شده روی ترانسفورماتور محاسبه میشوند.
I2(t)

U2(t) ترانسفورماتور

I1( t)
(U1(t
شکل-1-4 نمایش ترانسفورماتور به صورت یک چهار قطبی
بنابراین میتوان یک ترانسفورماتور را بـسته بـه اینکـه رفتـار ترانـسفورماتور در پایانـههـای آن
موردنظر باشد و یا توزیع ولتاژ و رفتار فرکانسی داخلی آن مورد علاقه باشد مدلسازی کرد. روشهای
مدلسازی را میتوان در سه گروه عمده تقسیم بندی کرد که در زیر توضیح داده میشوند.
-1-4 روشهای مدلسازی جعبه سیاه
اگر تأثیرات متقابل ترانسفورماتور و شبکه تغذیه کننـده مـورد علاقـه باشـد، ترانـسفورماتور بـه
صورت یک جعبه سیاه درنظرگرفته میشود. این مدل وقتی مورد استفاده قرار میگیـرد کـه حالتهـای
گذرا و اضافه ولتاژها در شبکه قدرت مطالعه و تحقیق میشوند.
52
هدف مدلسازی جعبه سیاه این است کـه از مـدل غیرپـارامتری ترانـسفورماتور، بـه فـرم پاسـخ
فرکانسی آن، به یک مدل پارامتری به شکل یک تابع تبدیل و یا به شکل یک مدار معادل [29] برسد.
با توجه به رفتار خطی ترانسفورماتور برای فرکانسهای بزرگتر از 10 kHz میتوان آن را یـک سیـستم
خطی نامتغیر با زمان( LTI) 1 دانست و روند مذکور برآن اعمال نمود. این روش میتواند هم بر مبنای
اندازهگیریهای حوزه فرکانس باشد و هم بر مبنای اندازهگیریهای حوزه زمـان . پاسـخ پلـه یـا ضـربه
اندازهگیری شده و همچنین تحریک ورودی در حوزه زمان به کمک FFT بـه حـوزه فرکـانس منتقـل
میگردند و نهایتاً از آنها تابع تبدیل سیستم مشتق میگردد. تابع تبدیل حاصله مـیتوانـد بـه صـورت
قسمتهای حقیقی و موهومی و یا به صورت تابع دامنه و تابع فاز بیان شود.
تعداد فرکانسهای تشدید در مورد ترانسفورماتورها بسیار متغیر است و میتواند بیش از 20 عـدد
نیز گردد. درنتیجه، روشهای مدلسازی با ساختار ثابت به عنوان یـک مـدل جعبـه سـیاه، آنچنـان در
مدلسازی در حوزه فرکانسی گسترده موفق نخواهند بود. بنابراین بیشتر باید روشهایی موردنظر باشـند
که دارای ساختار متغیراند.
-2-4 بررسی روشهای مدلسازی فیزیکی
در این دیدگاه، موضوع اصلی، رفتار نوسانی ترانسفورماتور و تنشهای الکتریکی بوجود آمـده در
داخل سیمپیچهاست. این روش مشاهده مربوط به مهندس طراح ترانسفورماتور است. مهندس طراح

1 Linear Time-Invariant Sys--
53
باید در مرحله طراحی در مورد عایق بندی سیمپیچها تصمیم بگیرد .[30] این تصمیمگیری بر مبنـای
شبیهسازیهای انجام شده برروی مدلهای فیزیکی است. ساختاراین مدل به صورت یک مدار است کـه
حتی الامکان باید مفاهیم فیزیکی اساسی ترانسفورماتور را دربربگیرد.
در داخل سیمپیچ امکان بروز حالتهای گذرای سریع و خیلی سریع همیشه مطرح است. علت این
پدیده میتواند برخورد صاعقه به خطوط انتقال، کلیدزنی و اغتشاشات دیگر در شـبکه ماننـد اتـصال
کوتاه یا اتصال ترانسفورماتورهای بیبار باشد . در صورت تطابق یکی از فرکانسهای تحریک با یکـی
ازفرکانسهای طبیعی ترانسفورماتور امکان بروز پدیده تشدید در داخل سیمپیچ فراهم مـیگـردد. ایـن
پدیده میتواند عایق سیمپیچ را به طور موضعی تحت تنش الکتریکی قرار دهـد و باعـث خرابـی آن
گردد. البته حفاظتهای معمول ترانسفورماتور مانند برقگیر در جلوگیری از بروز ایـن پدیـده بـیتـأثیر
نیستند. برای اینکه بتوان اضافه ولتاژهای داخلی سیمپـیچ را مطالعـه کـرده و براسـاس آن همـاهنگی
عایقی داخل ترانسفورماتور را درست طراحی کرد بایستی سیمپیچ را به کمک یک مدل پـارامتری بـه
صورت فیزیکی مورد تحلیل و ارزیابی قرار داد. در رابطه با این موضوع دو روش جهت مدلـسازی و
بررسی وجود دارد که در زیر مورد بحث قرار خواهند گرفت.
-1-2-4 مدل خط انتقال چند فازه
درنظرگیری سیمپیچ به عنوان یک خط انتقـال همگـن بـا پارامترهـای گـسترده مـیتوانـد نتـایج
ارضاکنندهای را در مورد سیمپیچ لایهای وهمگن ارائه دهد. مدلسازی سـیمپـیچ بـه صـورت خطـوط
54
انتقال سری شده که از لحاظ مکانی با یکدیگر موازی هستند بر اساس تئوری خط انتقـال چنـد فـازه
n)فازه) است. این تئوری بر ماشینهای الکتریکی و ترانسفورماتورها اعمال شده است. در این روش
پارامترهای سیمپیچ بصورت گسترده درنظرگرفته میشوند و رفتار سیمپیچ توسط معادلات خط انتقال

aslinezhad project

مقدمه17
فصل اول: کلیات19
(1-1 هدف. 20
(2-1 پیشینه تحقیق20
(3-1روش کارو تحقیق22
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن22
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(25(900/2000Mhz
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخه ای T شکل26
فصل دوم: تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده πو T شکل28
(1-2مدار خط شاخهای اندازه فشرده T شکل29
(2-2طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن33
(3-2 کوپلر خط شاخهای36
(4-2 فرموله کردن با استفاده از ماتریس خطوط انتقال37
۶
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب41
(6-2 تحقق جهت دو بانده کردن مدار43
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)43
λ
(2-6-2 استفاده از مدار اتصال کوتاه ( طول 44( 2

(7-2 آنالیز(تحلیل) مدار π شکل خط شاخهای دوبانده و مشاهده نتایج شبیهسازی46
فصل سوم: طراحی مدار میکرواستریپ فشردهT شکل دوبانده با
اندازه کاهش یافته.50
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه به روند ارائه شده در
دو بانده کردن کوپلرπ شکل ( 900MHz و 51(2400MHz
(2-3 استفاده از برنامه کامپیوتری ساده جهت بدست آوردن پارامترهای مدار دو بانده52
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محیط ( نرم افزار) مختلف و مشاهده
نتایج53
فصل چهارم: بررسی انواع مختلف DGS و اثرات آن بر روی
خطوط میکرواستریپ59
DGS (1-4 چیست60
( 2 – 4 مشخصات کلی 60 .DGS
( 3 – 4 کاربردهای 61DGS
٧
( 4 – 4 ویژگیهای 61DGS
( 5 – 4 اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ....61
( 1 – 5 – 4 الگوی .DGSدمبلی شکل و ویژگی شکاف باند63
DGS ( 2 – 5 – 4 دمبلی پریودیک قویتر64
( 3 – 5 – 4 اندازهگیریهای مربوط به DGS دمبلی شکل..66
( 6 – 4 بررسی اثرات DGSهای هلزونی در تقسیم کننده توان بر روی هارمونیکها68
-7-4مدل مداری و هندسه DGS هلزونی غیرمتقارن70
( 8 – 4 حذفهارمونیکهادر مدار مقسم توان73
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی78
( 10 – 4 مشاهده اثرات DGS برروی مدار دو بانده طراحی شده80
فصل پنجم:چگونگی استفاده از کوپلر بدست آمده در طراحی
سیرکولاتور82
(1-5طراحی سیرکولاتور83
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر83
فصل ششم:نتیجه گیری وپیشنهادات86
(1-6نتیجه گیری87
(2-6پیشنهادات88
٨
پیوست ها................................................................................................................................... 89
٩
فهرست مطالب
عنوان مطالبشماره صفحه

منابع و ماخذ. 93
سایتهای اطلاع رسانی97.
چکیده انگلیسی98
١٠
فهرست جدول ها
عنوانشماره صفحه

:(1-2)مشخصات الکتریکی وفیزیکی مدار در دو باند..47
(1-3) دو بازه فرکانسی و دو هدف مورد نظر پروژه..55
(2-3.) بازه بالا و پایین جهت optimom هدف.56
(1–4)مقایسه اثر DGSهای واحد و پریودیک با توزیع نمایی..66
١١
فهرست شکل ها
عنوانشماره صفحه

(a) ( 1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و
استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع23
(a) ( 2 – 1) سرس خطوط انتقال کوچک شده با چندین استاب
باز (b) بزرگی پاسخ.25
( 3 – 1) نمایی از نرم افزار Serenade. RTL جهت بدست آورن طول
فیزیکی و پنهای خطوط.26
( 1-2 ) ساختار T شکل خط انتقال ربع طول موج30
( 2-2 ) منحنی رسم شده حاصل از برنامه کامپیوتری θ1)بر حسب32.(θ3
( 3-2 ) مدار چاپی خط شانهای T شکل34
S11 (a) ( 4-2)،S12،S13،(b) S14 پاسخ فازی مدار Tخط شاخهای35
(5-2) ساختار کوپلر خط شاخه ای یک بانده مرسوم.38
(a) ( 6 – 2) ساختار معادل پیشنهادی (b) خط شاخهای 38. λ4

S11 ( 7-2 )،S12،S13وS14 از کوپلر بدون استاب42
( 8-2 ) پاسخ زاویهS12وS14 برای مدار بدون استاب42
( 9-2 ) ساختار کوپلر پیشنهادی با استاب مدار باز44
١٢
( 10-2 ) ساختار کوپلر پشنهادی با استاب اتصال کوتاه ........................................................ 45
11-2 ) ) نتایج شبیه سازی .................................................................................. ...(S11) 47
12-2 ) ) نتایج شبیه سازی(S12و............................................................................ .(S13 48
( ( 13-2 نتایج شبیه سازی .................................................................................... .(S14) 48
14-2 ) )نتایج شبیه سازی (پاسخ فاز مدار با استاب باز) ................................................... 49
( (a) ( 1-3 شماتیک (b) مدار چاپی ................................ (designer, hfss) ansoft 55
( S11(a) ( 2-3،S12،S13وS14 مدار شبیه سازی شده در .....................................................................ADS (c) serenade (b) ansoft (a) 57
( 3-3 ) پاسخ فازی مدار دو بانده. ....................................................................................... 58
1-4 ) ) شمای مختلف H (a) DGS شکل T ( b)شکل (c)هلزونی شکل (d) دمبلی شکل. ......................................................................................................... 60
( 2-4 ) خط میکرواستریپ با εr = 15 و ................... ................................ h = 1/575 62
( 3-4 ) پارامترهای S مدار دوپورته.. ................................................................................ 62
( 4-4 ) مدار با DGS دمبلی شکل .. ............................................................................... 63
( 5-4 ) پارامترهای S مدار با DGS دمبلی شکل ............................................................ 63
( 6-4 (a) ( نوع (b) 1 نوع (c) 24 نوع DGS 3 دمبلی شکل ...................................... 65
( 7-4 ) پارامترهای S برای DGS دمبلی با انواع مختلف سایز. ....................................... 66
( 8-4 ) مقایسه پارامترهای S مدارهای (a) DGS نوع (b) نوع (c) 2 نوع 67 ............. ..3
١٣
( 9-4 ) خط میکرواستریپ با DGS هلزونی نامتقارن برروی زمین. ............................... 70
( 10-4 ) پارامترهای انتقال خط با DGS متقارن ( A = A' = B' = 3mm و نامتقارن A = 3/4m) و ............................................................................(B = 2/6 mm 71
11-4 ) ) فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از ...................................................................................................................... .B/A 71
12-4 ) ) مدار معادل بخش DGS هلزونی نامتقارن ........................................................ 73
13-4 ) DGS (a) ( هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این ......................................................................................DGS 74
( 14-4 ) پارامترهای S مدار با DGS هلزونی بصورت EM و شبیه سازی شماتیک ........ 75
15-4 ) ) هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن....................................................................................................................... 76
( 16-4 ) نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با ....................................................................................................................... ..DGS 77
17-4 ) ) مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار...................................................................................................................... 77
( 18-4 ) نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(.......... S12 ( b) S11 (a 78
( 19-4 ) مدار T شکل با استفاده از DGS هلزونی (a) یک بعدی (b) سه بعدی.......... 79
20-4 ) (a) ( نتیجه پاسخ شبیه سازی کوپلر با استفاده از اعمال (b) DGS بدون ١۴
استفاده از 80DGS
( 21-4 ) مدار چهار پورتی T شکل دوبانده با اعمال DGS دمبلی شکل در
شاخه خطوط..81
( 22-4) پارامترهای S حاصل از بکار بستن 81DGS
(1-5)نماد ژیراتور83
( 2-5)سیرکولاتور 4 پورته متشکل از دو مدار هیبریدی و زیراتور83
(3-5) سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور84
(a)(4-5)،((b،((cو(:(dنتایج شبیه سازی سیرکولاتور85
(1-6)شبکه دو قطبی خطی. 91
١۵
چکیده:
در این پروژه سیرکولاتور دو بانده با ابعاد کوچک ارائه شـده اسـت. در طراحـی سـیرکولاتور مـورد نظـر از
کوپلر شاخه ای (BLC)1 میکرواستریپی دو بانده کوچک شده استفاده شده است . لذا در این پـروژه بیـشتر
بر روی چگونگی کوچک سازی و دو بانده کردن کوپلر شاخه ای میکرواستریپی با اسـتفاده از مـدارات T و
همچنین DGS2 متمرکز شده ایم . در کوپلر شاخه ای پیشنهادی از مدارات T در هر شاخه که دارای طـول
الکتریکی ±90 درجه در دو بانده می باشند ، استفاده شده است. از طرفی در صفحه زمـین در زیـر خطـوط
این کوپلر DGS هایی قرار دارند که با استفاده از این DGSها ، طول الکتریکی خطوط کاهش یافته و ابعاد
کوچکتر می گردند. کوپلر دو بانده کوچک شده توسط نرم افزارهایSerenadeوADS3وAnsoft تحلیـل
شده و نتایج شبیه سازی در این پروژه آورده شده اند. سپس با استفاده از کوپلرهای دو بانده کوچک شـده ،
سیرکولاتور مورد نظر طراحی گردیده است.

Branch line coupler١ Defected ground structure٢ Advance designe sys--٣
١۶
مقدمه:
امروزه تقاضا برای استفاده از عناصر دو بانده در صنعت مخابرات رو به افزایش است . سیستمهای مخابرات
با آنتن های دو بانده کاربرد زیادی دارند. سیرکولاتور یکی از عناصر اصلی در چنین سیستم هایی اسـت. بـا
استفاده از سیرکولاتور دو بانده می توان از یک تغذیه بین آنتن و سیستم مخـابراتی اسـتفاده نمـود. یکـی از
اجزای اصلی در ساخت سیرکولاتورهای چهار پورتی ، کوپلرهای هایبریدی و کوپلرهای شاخه ای((BLC
می باشند.
(BLC) از چهار خط انتقال به طول ربع طول موج مؤثر در فرکانس اصلی و هارمونیک هایی کار می کنـد.
.[1] ,[2]
معمولا این کوپلرها بزرگ هستند و سطح و فضای اشغال شده توسط آن ها زیاد است. در اکثـر کاربردهـای
امروز به خصوص در بردهای صفحه ای و میکرواستریپی ، این عیب محسوب می شود. لذا ، امـروزه روش
های مختلفی برای کوچک سازی و افزایش پهنای باند]٣[7- این کوپلرها ارائه شده است.
در مخابرات مدرن امروزی نیاز به اجزاء دو بانده بالاخص کوپلر BLC دو بانده ، می باشد تا مقدار عناصـر
مورد استفاده ،کاهش یابد.
] Hsiang٨[ از خطوط چپگرد برای دو بانده کردن کوپلر استفاده کرده است.BLC شامل خطـوط متـصل
شده به یک جفت المان موازی]١١[ گزارش شده است.
در این پروژه با استفاده از روشـهای کوچـک سـازیBLC و ترکیـب آن هـا بـا روشـهای دو بانـده سـازی
ابتداBLC با ابعاد کوچک در دو بانده 900Mhzو2400Mhz طراحی شده است سپس برای کاهش بیـشتر
سطحBLCصفحه ای ازDGS ها استفاده شده است.
١٧
گزارش ارائه شده از نمونه طراحی سیرکولاتور مورد نظر شامل قسمت های زیر می باشد:
در فصل اول کلیاتی در مورد مراحل انجام پروژه ،هدف از انجام مراحل کار ، پیشینه تحقیقهای انجـام شـده
در مورد مدارمورد نظر و روش کمی کار مورد بررسی قرار گرفته است.
در فصل دوم ابتدا نحوه افزایش پهنای باند کوپلرها ، کوچک سازی با استفاده از مدارT و استفاده از مـدارπ
بــرای دو بانــده کــردن کوپلربررســی شــده اســت. ســپس بــا اســتفاده از نــرم افزارهــای تخصــصی
مانندSerenadeوAnsoft مدارات ذکر شده تحلیل گشته و نتایج شبیه سازی آورده شده اند.
در ادامه کوپلر کوچک شده با استفاده از مدارT ، با توجه به روند ارائـه شـده در دو بانـده کـردن کـوپلر بـا
مدارπ ، در فصل سوم دو بانده شده و روابط حاصل برای دو بانده کردن آن به دست آمده است.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

کوپلر به دست آمده با استفاده از نـرم افـزار ADSوSerenadeوAnsoft تحلیـل و بهینـه گـشته اسـت و
منحنی های مربوط به آن در این فصل آورده شده اند.
در فصل چهارم DGS به عنوان ابزاری برای کوچک سازی مدارات صفحه ای شرح داده شده و از آن برای
کوچکتر کردن ابعاد کوپلر دو بانده استفاده شده است . نتایج شبیه سـازی کـوپلر حاصـل ، نـشان داده شـده
است. چگونگی استفاده از کوپلر به دست آمده در طراحی سیرکولاتور در فصل پنجم شرح داده شده اسـت
و در آخر در فصل ششم نتیجه گیری و پیشنهاداتی برای ادامه کار آورده شده است.
١٨
فصل اول:
کلیات
١٩
(1-1 هدف
کوپلرهای شاخهای با بکار بستن استابها ( مدارباز – مدار کوتاه) نیزو با Cascade شدن یک سـری شـاخه
برکاستن حجم و بالا رفتن پهنای باند نقش بسازیی را دارند. همچنین المانهای فشرده به ما امکـان کـوچکتر
کردن مدار را میدهند و با عث افزایش باند میگردند منتهی برای ساخت مدار نهایی با کـاهش سـایز کلـی و
افزایش پهنای باند و بکار بردن کوپلینگ مناسب در سرهای مدار و ایزوله کردن پورتها از همدیگر مـیتـوان
از روش مناسب بکار بردن DGS و نتیجتاً افزایش اندوکتانس خطوط و در نتیجه اهداف مطلوب دسترسـی
پیدا کرد.
در این پروژه هدف کلی رسیدن به ساختار فشرده و نیز استفاده از مدار میکرواستریپی در دو بانـد فرکانـسی
دلخواه و نیز افزایش هر یک از باندهای فرکانسی می باشد. و عـلاوه بـر ایـن بـا بکـار بـستن ( defected
ground structure) DGS بر روی زمین مدار شاهد اثرات مثبت آن برروی دستیابی باند فرکانسی مورد
نظر و نتیجتاً کاهش سایز مدار و خواهیم بود.
(2-1 پیشینه تحقیق
با توجه به ساختار مدار این پروژه و هدف مورد نظـر تحقیقهـایی مـورد نظـر بـودهانـد کـه بیـشتر در بـاره
Compact و فشرده سازی المانها، افزایش پهنـای بانـد، از بـین بـردن هارمونیکهـای اضـافی و اسـتفاده از
DGS میباشد.
در[1] افزایش پهنای باند مدارهای هایبرید با استفاده از اتصال خطوط شاخهای و استفاده از اسـتابهای مـدار
λ
باز در دو انتهای خط میکرواستریپ و معادل قرار داده خط با خط انتقال 4 جهت کاهش ابعاد مورد بررسی

قرار گرفته است.
٢٠
فعالیتهای گستردهای در جهت طراحی و بکاربردن کوپلرها و سـیرکولاتورهای صـفحهای فـشرده دردو بانـد
مورد دلخواه بعنوان مثال در پروژه - ریسرچ[2]انجام گردیده است که در فصل دوم نتایج حاصل از شـبیه سـازی ایـن
گونه کوپلرها و استفاده از ماترسیهای انتقال و نوشتن برنامه کامپیوتری جهت استفاده در دو فرکانس دلخـواه
مورد بررسی خواهند گرفت.
در مورد کاهش بیشتر سایز کوپلرها در حدود 45% مقدار کوپلرهـای مرسـوم خـط شـاخه ای و بـا مـدل T
شکل فعالیتهایی در مقالات گوناگون [3] تنها در یک باند فرکانسی مطرح گردیده است که در فصل بعدی
نیز این پروژه - ریسرچو نتایج شبیه سازی آن با نرمافزارهای گوناگون مورد بررسی قرار می گیرند.
یکی از مسائل مهم در چند قطبیهای میکرواستریپ مسئله کاهش اندازه بـوده کـه بـا توجـه بـه اسـتفاده از
المانهای باند و کاهش حجم مدار نیز استفاده از (defected ground structure) DGS مـیباشـد. ایـن
کار باعث از بین بردن هارمونیکهای اضافی و نتیجتاً کاهش اندوکتانس مدار و بالا بردن پهنای باند و کاهش
سایز مدار با کم کردن المانهـای مـوازی مـیگـردد. در ایـن زمینـه نیـز فعالیـتهـای گـسترده و اسـتفاده از
DGSهای مختلف صورت گرفته است [2]و[4]و[21]و .[22]
که اثرات تک DGS و نیـز DGS دمبلـی پریـود یـک را بـر روی پارامترهـای اسـکترینگ یـک خـط
میکرواستریپ دو پورتی ،بررسی شده است.
همچنین در[21] کاربرد DGS برروی خطوط یک کوپلر و تأثیر آن برروی پاسخ شبیه سـازی بـرروی ایـن
مدار در نرمافزار Ansoft بررسی گردیده است.
علاوه[23] نیز اثرات DGS هلزونی برروی حذف هارمونیکها و پهنای باند در یک تقسیم کننده توان ویـل
کینسن را مورد بررسی قرار داده است که در این پروژه در انتهای از این نوع DGS در زیـر خطـوط کـوپلر
خط شاخه ای تک بانده استفاده گردیده و نتایج آن آورده شده است.
٢١
و اثرات شکلهای گوناگون [21]DGSو[22]و[23]و مدل کردن مداری آنها بـرروی کـوپلر، سـیرکولاتور و
تقسیم کنندههای توان و به طور کلی خطوط میکرواستریپ را بررسی میکنند که در فصلهای بعـدی در ایـن
مورد به طور مفصل توضیح داده شده و نتایج حاصل از شبیه سازی نیز آورده شده است.
( 3 – 1 روش کار و تحقیق
در این پروژه روش کار و تحقیقهای انجام شده جهت رسیدن به هدف مورد نظر یعنـی اسـتفاده از دو بانـد
فرکانسی دلخواه کاهش حجم مدار بالابردن ضریب کوپلینگ نیز بـه صـورت اسـتفاده از مراجـع و منـابع و
مشاهده نتایج حاصله از این کارها بوده و بعد از برقراری لینک مورد نظر این منبع مـورد بررسـی بـا هـدف
نهایی به آیتم بعدی پروژه - ریسرچمربوط به مرجعهای اولیه پرداخته شده است. در بخشهای بعدی این مراحل عنوان
میگردند.
( 1 – 3 – 1 بررسی هایبرید خط شاخهای فشرده باند پهن:
در این مرحله نیز خط میکرواسـتریپ Zc4 بـا طـول الکتریکـی θ نیـز کـه در شـکل (1 – 1) (a) مـشاهده
میگردد به صورت یک خط انتقال مرسوم با المانهای توزیع شده فشرده معادل آن نیز مدل گردیده است[9]
و با بکار بردن فرمول ماتریس ABCD5 مدار معادل مشاهده شده در شکل (1 – 1) ( b) میتوانـد اسـتنباط
گردد. با معادلات ماتریس ABCD در شکل (1 – 1) به نتایج زیر دسترسی پیدا میکنیم.
(1 – 1)
JB01  J tan θ01 / Z 01

امپدانس خط معادل
ماتریس انتقال خط
٢٢
که B01 امپدانس ورودی استاب مدار باز است و٠١θ طول الکتریکی استاب مدار باز است.
و با در دست داشتن ادمیتانس ورودی استاب مدار باز شکل (b ) ( 1 – 1) به معادلات زیر میرسیم
(2 – 1) cosθs −cosθ B01  Z c sin θ (3 – 1) Zc sinθ Zs  sinθs که ≤θs≤θ≤1٠ می باشد و همانطوری که در شکل((1-1 دیـده میـشود θs طـول خـط بـین دو اسـتاب در
مدارπ است.

شکل (a ) (1 – 1) خط انتقال مرسوم (b) خط انتقال معادل با سری شدن یک خط و استاب (c) مدل معادل المانهای فشرده برای محاسبه فرکانس قطع
٢٣
ما همچنین میتوانیم فرکانس قطع برای ساختار فیلتر مانند شکل (b ) ( 1 – 1) و مـدار معـادل آن در شـکل
(c) (1-1) به صورت زیر بدست آوریم:
(4 – 1)
1 Wc  Leq Ceq
(5 – 1)
1  Wc )ZsSinθs tan(θs / 2)  Cosθs − Cosθ 2( W0 Zs Zc Sinθ
که در Wc فرکانس قطع مدار معادل نشان داده شده شکل (b ) ( 1 – 1) و Wo فرکانس کار مرکـزی مـدار
مورد نظر با المانهای فشرده معادل 7Ceq, Leq6 میباشند.
حال در اینجا برای بالا رفتن پهنای باند و عریض کردن باند فرکانسی دلخواه، با استاب مدار بـاز بـه خـوبی
طول واحد خطوط سری با یکدیگر بوده و مدل کردن خط میکرواستریپ با خطوط معـادل بـا اسـتابهـای
مدار باز سری همانطور که در شکل (2 – 1) نشان داده شده باعث کم شدن امپدانس استاب بـاز و افـزایش
فرکانس قطع (fc) میگردد.

۶ سلف ٧خازن معادل
٢۴

شکل((a) ( 2 – 1 سری خطوط انتقال کوچک شده با چندین استاب باز (b) بزرگی پاسخ
با مشاهده پارامترهای S این مدار در شکل (b ) (2 – 1) از این مدارات میتوان جهت بالا بردن باند فرکانس
و نیز استفاده مدار دو باند فرکانسی دلخواه،اسنفاده گردد.
( 2 – 3 – 1 بررسی کوپلر خط شاخهای دو بانده(:(2000/900
در اینجا نیز با ایده گرفتن از کار قبلی و استفاده از ماتریسهای ABCD که در فصل بعدی آورده شده زمینه
جهت استفاده از کوپلر خط شاخهای Tشکل با حجم کم و باند فرکانسی دو بانده کـه در فـصل سـوم آمـده
فراهم میگردد.
٢۵
( 3 – 3 – 1 شبیه سازی کوپلر دو بانده خط شاخهای T شکل
در این قسمت با ایده گرفتن از روشهای قبلـی کـه در فـصلهای بعـد توضـیح داده مـیشـود از ماتریـسهای
ABCD استفاده شده و بعد از نوشتن برنامه کامپیوتری زمینه جهت استفاده از المانهای فـشرده در دو بانـد
فرکانسی دلخواه فراهم گردیده است. از بدست آوردن مقادیر Z و θ که امپدانس مشخصه خطـوط و طـول
الکتریکی آنها هستند با استفاده از فرمولهای موجود در بازههای مختلف که در منابع مختلـف هـم آمـدهانـد
طول و پنهای خطوط چند پورتی مورد نظر بدست میآید که در این پروژه از serenade استفاده شده است
و این مقادیر با دادن فرکانس کار، مشخصه دی الکتریک مورد نظر و امپدانس و طول الکتریکی خط نیـز بـه
سادگی بدست میآیند. در شکل (3 – 1) شمای کلی این نرم افزار آمده است.

شکل :(3 – 1) شمایی از نرمافزار serenade جهت بدست آوردن طول و پنهای خطوط
٢۶
با بستن مدار فوق در نرم افزارهای مختلف نتـایج شـبیهسـازی را مـشاده و در صـورت عـدم نتیجـهگیـری
همانطور که در فصل سوم آمده آنرا optimum میکنیم. در نهایت با ایده گرفتن از کارهای انجـام شـده در
مقالات مختلف DGS های گوناگون را بکار گرفته و نتایج حاصل از آن را آوردهایم.
٢٧
فصل دوم:
تقریبی برای طراحی و بکار بستن کوپلر خط شاخهای
تک بانده و دو بانده وTشکل
٢٨
(1-2 مدار خط شاخهای اندازه فشردهT شکل
دراینجا هدف طراحی کوپلر و در نهایت سیرکولاتور خط شاخهای بهم پیوسـته بـدون اسـتفاده از المانهـای
توده میباشد. اندازه کـوپلر پیـشنهادی تنهـا 45درصـد کوپلرهـای خـط شـاخهای مرسـوم در فرکـانس 2/4
گیگاهرتز میباشد.
اندازه المانهای این نوع کوپلر میتوانند به راحتی با استفاده از عمل قلم زنـی بـرد مـدار چـاپی بـه صـورت
واقعی کشیده شده و برای سیستمهای ارتباطی بیسیم بسیار مفید و پرکاربردند. چرا که اخیراً سیستم ارتبـاط
بیسیم در جهت اهداف کوچک کردن و پائین آوردن هزینه بـه قطعـات کـوچکتری نیـاز دارنـد. از ایـن رو
کاهش اندازه از اهداف قابل توجه در بکاربستن این طراحی میباشد. در پایینترین باند فرکانس مایکروویو،
اندازه کوپلر خط شاخهای مرسوم جهت استفاده عملی بسیار پیچیده و بزرگ است. تکنیکهای زیادی جهـت
کاهش سایز این گونه کوپلرها گزارش شده است. ترکیب خط انتقال با امپدانس بالا و خازنهای فشرده شنت
شده به آنها نیز مورد بررسی قرار گرفته اند.در این موارد خازنها با عایقهایی خاص، مورد نیاز مدارهای شنت
میباشند که در بحث بعدی جهت دو بانده کردن کوپلرهای خط شاخهای πشکل توضیح داده میشود.
مرجع[11] کوپلر خط شاخهای درخطوط میکرو استریپ تک لایه از فلز بدون هیچ گونه المان فـشرده شـده
واضافی ̦ سیمهای اتصال را پیشنهاد می کند.اندازه این گونه کوپلرها حدود 63درصـدطراحی هـای مرسـوم
میباشد. هرچند که قسمتهایی که ناپیوستگی در داخل کوپلر بوجود میآورند نیز همان ناپیوستگیهای ناشی
از اتصال مدارهای استاب شنت مدار باز یا کوتاه میباشند کـه باعـث بوجـود آمـدن مـشکل (over lap)8
میگردند. بنابراین ما در فصل بعدی روی طراحی یک کوپلر خط شـاخهای T شـکل جمـع و جـور جدیـد

٨هم پوشانی
٢٩
متمرکز خواهیم شد و در قسمت بعدی آنها را در کوپلرهای واقعی بکار برده و به تحلیـل و بهینـهسـازی آن
میپردازیم.
این نوع کوپلرها بدون استفاده از هیچ گونه المان فشرده، سـیم و قطعـه ای، مـیتواننـد بـه سـادگی بـرروی
سابستریتها ساخته شوند و در مقایسه با مدارات مرسوم طراحی شده اطلاعات را بخـوبی آشـکار مـیکننـد،
همچنین هماهنگی نزدیک و خوبی ما بین نتایج شبیهسازی و اندازه گیری شده مشاهده می گردد.
روش مرسوم ومعمولی جهت آنالیز کوپلر T شکل خط شاخهای بر روی استفاده از آنالیز مد نرمال است کـه
در اینجا ما از آن استفاده کردیم و این بدلیل ساختار هندسی آن نیز میباشد.
هر چند که خط با سایز کاهش یافته با طولی کمتر از λ / 4 اندوکتانس و ظرفیت پائینتـری را دارد، منتهـی
جبران اندوکتانس بوسیله افزایش امپدانس مشخصه خط و جبران ظرفیت نیـز بوسـیله اضـافه کـردن خـازن
شنت متصل شده [15] C میباشد. در این پـروژه خـازن C نیـز بوسـیله یـک خـط اسـتاب مـدار بـاز [9]
جایگزین گردیدهاست و معادل آنرا در مدار T شکل قرار دادهایم.

شکل(:(1-2ساختار T شکل خط انتقال ربع طول موج
ساختار T شکل معادل معمولی از یک خط کاهش یافته در شکل (1-2)نـشان داده شـده اسـت کـه در ایـن
شکل Z1،Z2،Z3وθ1،θ2وθ3 امپدانس مشخصه خطوط و همچنین طول الکتریکی آنها را نـشان مـیدهنـد.
لزومی ندارد که جایگاه خط با طول الکتریکـی((θ2 مـدارباز در وسـط خـط کـاهش انـدازه یافتـه مـا بـین
٣٠
Z1وZ2قرار داشته باشد. روابط ما بین این عناصر یعنی امپدانس مشخصه و طولهای الکتریکی را مـیتـوانیم
بوسیله ماتریس ABCD آنها تخمین بزنیم.
با استفاده از روابط قبلی برای طراحی یک کوپلر خط شاخهای πشکل مرسوم در اینجا با معـادل قـرار دادن
ماتریس آن با امپدانس مشخصه خط با طول θ = ±90° و ±ZT داریم:
3 Sinθ 3 JZ 3 Cosθ 1 0 Sinθ JZ Cosθ A B (1-2) j 1 1 1 j Cosθ3 Sinθ3 1 JB Cosθ1 Sinθ1 D  C Z3 2 Z1 (1-2) jB2  jTanθ2 / Z 2 (3-2) N Z1 Z3 (4-2) K Z1 Z 2 (5-2) M Z1 ZT از طرفی با معادل قرار دادن ماتریس فوق با ماتریس خط 90° داریم.
JZT
0(6-2)

0 JZT Sinθ j  Cosθ Z T
Cosθ B A Sinθ j  D C T Z و پس ساده سازی چهار معادله به صورت زیر خواهیم داشت:
(7-2) Cosθ1Cosθ3 − KTanθ2 Sinθ1Cosθ3 − NSinθ1 Sinθ3  0 (8-2) N Cosθ1Sinθ3 − KTanθ2Sinθ1Sinθ3  NSinθ1Cosθ3  M ٣١
(9-2) Tanθ2Cosθ1Sinθ3  Cosθ1Cosθ3  0 K Sinθ1Sinθ3 − 1 − N N (10-2) Sinθ1Cosθ3  KTanθ2Cosθ1Cosθ3  NCosθ1Sinθ3  M با ساده سازی روابط فوق دو معادله زیر را خواهیم داشت:
N 2 M 2 2 − N M 3  Tanθ Tanθ Tanθ N) ,Cotθ ) Tanθ Cotθ 2(11-2) M N N 1 3 1 3 1 (12-2) ( 2 − N 2 M 3 ( Tanθ 2  ) Tanθ 2 − N 2 M 3 ( 3  Sinθ Tanθ2Cosθ K KN MN M معادلات (11-2) و (12-2) نیز مقادیر θ1 و θ2 وθ3 را تحت شرایطی که M و N را داشـته باشـیم بـه مـا
میدهند. برای سادگی کار در اینجا Z1 را برابر Z3 در نظر میگیریم. طـول الکتریکـی θ1 بـر حـسب طـول
الکتریکی θ3 برحسب مقادیر مختلف M رسم گردیده است که در شکل (2-3) نیز آمـده اسـت. در اینجـا
نیز برنامه سادهای با نرم افزار مطلب نوشـته شـده(پیوسـت الـف-(1 و بـه ازای مقـادیر مختلـف N و M
میتوان به ازای θ1 های مختلف مقادیر θ2 و θ3 را بدست آورد.
١θ

٣θ
شکل θ1:(2-2) بر حسبθ3
٣٢
واضح است که طول الکتریکی کل خط کوچک شده( (θ= θ1 + θ3 با افزایش مقدار M نیز کاهش مییابد.
جایگاه خط استاب مدار باز شده در داخل کوپلر خط شاخهای تحـت شـرایط خـاص نیـز تحمیـل گردیـده
است. مقدار طول الکتریکی (θ2) ما بین مقادیر θ2 و θ میباشد. جهت جلـوگیری از مـشکل هـم پوشـانی

(Over lab) خط استاب باز را به انتهای خط اتصال کوتاه وصل میکنیم. θ1 و θ3 به ازای مقادیر شناخته
شده M به یکدیگر تبدیل شده در حالیکه حالت معادله (12-2) تحت N = 1 بدون نغییر باقی میماند. ایـن
نتایج به توانایی دو رابطه بدست آمده اشاره دارد. با بدست آوردن مقـادیر θ1 و θ3 و بـا داشـتن معادلـه
(12-2) مقادیر θ2 وZ2 محاسبه میگردند.
(2-2 طراحی و بکار بستن مدار T شکل و رسم منحنی مشخصه آن
با روشی که در بالا توضیح داده شد به سادگی میتوان انـدازه کـوپلر خـط شـاخهای مرسـوم را کـاهش داد
سابستریت مدار فوق دارای ویژگیهای زیر میباشند:
metal thickness =0 .02mm و h = 0.8mm و Tanδ  0.022 و εr  4.7
امپدانس مشخصه کوپلر خط شاخهای مرسوم 35 اهم در خط اصلی و در شاخه عمودی 50 اهم میباشند.
جهت کاهش دادن اثر افت هادی، افت تشعـشعی و جلـوگیری از مـدهای مـزاحم انتـشار نیـز پهنـای خـط
میکرواستریپ محدود شده و این امر با محدود کردن مقدار امپدانس مشخصه موثر واقع میگردد.
در ابتدا پارامترهای خط کوتاه شده اصلی ( افقی) را بـرای M=1/7 و بـا درنظـر گـرفتنθm1=17° بدسـت
میآوریم که از شکل θm3 = 48 °(2-2) حاصل میگردد. با قراردادن اطلاعات فـوق در رابطـه (12-2) و
٣٣
در نظر گرفتن k=2/6 مقدار θm2=39° (طول الکتریکی استاب باز خط اصـلی) بدسـت مـیآیـد. بـه طـور
مشابه پارامترهای خط شاخهای کاهش یافته را هم بدست میآوریم.
θb2=31 ْ θb3=58 ْ M=1/5 k=3/3 θb1=16
با در دست داشتن مقادیر فوق از نرمافزار Serenade جهت بدست آوردن ابعـاد مـدار چـاپی ) W پهنـای
خطوط) و ) L طول خطوط) اسـتفاده مـیکنـیم. بعـد از بدسـت آوردن ابعـاد فـوق، مـدار را بـا نـرمافـزار
Ansoft designer ترسیم نموده و بعد از تحلیل مدار فوق نیز نتایج اندازهگیری شده را بدست میآوریـم.
مدار چاپی آن در شکل (3-2) نشان داده شده است. و نتایج شبیهسازی در شکلهای (a) (4-2) و (b) نشان
داده شده است.

شکل :(3-2)مدار چاپی خط شانهای T شکل
٣۴

(a)

(b)
شکل S11:(a)(4-2)،S12،S13وS14 و(:(bپاسخ فازی کوپلر خط شاخه ای
مشاهده می شود S11 وS14 در فرکانس مرکزی کمتر از -20dB وS12 وS13 حدود -3dB میباشند.
حال با توجه به نتایج شبیه سازی اندازه گیری شده مستقیم و توان کوپل، افت بـالا بوسـیله سـاختار فلـزی و
افت تشعشعی دیده نمیشود . حوزه مدار کاهش یافته در مقایسه با کوپلر خط شاخهای مرسوم بـشتر از 55
درصد میباشد.
٣۵
مادر بخشهای بعدی مدار فوق را با اسـتفاده از بکـار بـستن (Defected ground structure)
DGS نیز مورد بررسی قرار خواهیم داد و اثرات DGS بر روی نتایج شبیهسازی مورد بررسی قرار خواهند
گرفت.
٢( 3 – کوپلر خط شاخهای π شکل
طراحی یک کوپلر خط شاخهای جدیدی که میتواند در دو فرکانس دلخـواه کـار کنـد از ویژگیهـای مـدار
پیشنهادی اندازه فشرده و ساختار شاخهای میباشد. فرمولهای طراحی روشن و واضـحی از ایـن مـدار بیـان
گردیده، چرا که موضوع مجهولات آن از قیبل امپدانس شاخههای خط مشخص گردیده اند.
فعالیتهایی جهت بررسی و رسیدگی نتایج شبیهسـازی شـده و انـدازه گیـری شـده از عملکـرد کـوپلر خـط
شاخهای میکرواستریپ در فرکانسهای 0/9 الی 2 گیگا هرتز انجام شده است.
کوپلرهای خط شاخهای از معروفترین مدارات پسیو استفاده شده در کاربردهای موج میلیمتری و میکرویـو
میباشند.
هایبریدهای λ / 4 طول موج [10] ,[9] مثالهای خوبی هستند که در باند فرکانسی مناسب دامنـه مـساوی و
فاز 90° در خروجی ایجادی میکنند. آنها عموماً در تقویت کنندههای بالانس شده و میکسرها برای بدسـت
آوردن یک افت برگشتی خوب استفاده شده و در جهت حذف سیگنالهای ناخواسته بوده، اگرچه بـه خـاطر
طبیعت ذاتی باند باریک ، طرح مرسوم بر روی خط انتقال λ / 4 بنا نهـاده شـده، کـاربردش در سیـستمهای
چند بانده و باند وسیع محدود گردیده است.
در سالهای اخیر، گزارشهای متفاوتی در رابطه با افزایش و بالا بردن پهنـای بانـد[11] و تکنیکهـای مـوثر در
کاهش سایز [14] ,[12] در مقالات مختلف عنوان گردیده اسـت. طراحـی کـوپلر خـط شـاخهای بـر روی
٣۶
المانهای توزیع شده فشرده بنا گردیده و همچنین برای کاربردهایی در دو باندفرکانسی نیز پیـشنهاد گردیـده
است. در [16] مولف یک ساختار صفحهای جدید را برای طراحی کوپلرهای خط شـاخهای دو بانـد عنـوان
کرده است هرچند مدار پیشنهاد شده از اشکالات زیر برخوردار می باشد:
-1 پهنای باند محدود ( کمتر از (10MHz
-2 افت داخلی و برگشتی بهینه نشده
-3 فضای اشغالی سابستریت آن خیلی بیشتر از کوپلرهای مرسوم بوده ( برخی از خطوط شاخهای، طولی به
اندازه 0/5λ را دارند)
درطرح پیشنهادی، تمام خطوط شاخهای تنها دارای طول λ / 4 بوده ( اندازه فشرده) و در فرکانس میـانی دو
تا باند فرکانسی بکار بسته شده، همچنین در مقایسه با طرح ذکر شده قبلی پهنای باند عملکرد وسیعتـری را
( > 100MHz ) ایجاد میکند، همچنین ایزولاسیون بین پورتهای بهتر و افت داخلی و برگشتی بهینـه تـری
را دارد ( بخش بعدی).
در قسمت بعد جهت آنالیزکردن، فرمولهای یک کوپلر خط شاخهای با فرمولهای واضح و روشـن نـشان داده
شده، در نهایت جهت رسیدگی و تحقیق، نتایج اندازهگیری و شبیهسازی شده ساختار کوپلر خـط شـاخهای
درباند فرکانسی (900/2000)Mhzکه با تکنولوژی میکرواستریپ ساخته شده آورده شده است.
( 4 – 2 فرموله کردن با استفاده از ماتریس خطوط انتقال
٣٧
شکل (5-2) طرح یک کوپلر خط شاخهای تک باند مرسوم توسط بخشهای خطوط انتقال بـا طـول λ / 4 را
نشان میدهد. در شکل (6-2) مدار معادل برای یـک خـط انتقـال λ / 4 پیـشنهاد شـده کـه شـامل خطـوط
شاخهای به طول الکتریکی θ و امپدانس مشخصه ZA بوده و به جفت المان موازی (jY)9 متصل گردیده.

شکل(:(5-2ساختار کوپلر خط شاخه ای یک بانده مرسوم

(a)

(b)
شکل((a):(6-2ساختار معادل پیشنهادی (b).خط شاخه ای λ / 4

٩ مقدار ادمیتانس خط
٣٨
حال جهت تحلیل ساختار پیشنهادی با در نظر گرفتن عدم افت و بکار بردن فرمـول ماتریـسها، پارامترهـای
ABCD ساختار پیشنهادی نشان داده شده در شکل((a)(6-2 بصورت زیر بیان میگردد.
(13-2) 0 jZ A Sinθ 1 0 Cosθ 1 Cosθ 1 jY 1 jYA Sinθ jY که این ماتریس در نتیجه به ذیل منتج می گردد.
jZASinθ Cosθ −ZAYSinθ (14-2) Cosθ −ZAYSinθ 2ZAYCotθ) 2 2 (1−ZA Y jYASinθ و نیز ماتریس بالا به صورت زیر خلاصه میگردد.
±jZT 0 jZASinθ 0 (15-2) 0 ±j  1 0 j Z T A Z Sinθ با معادل قرار دادن ماتریسهای بالا داریم:
Z A Sinθ ±ZT(16-2)
Cotθ
Y(17-2)
Z A
معادله (15-2) نشان میدهد که ساختار پیشنهاد شده معادل با بخشی از خط انتقـال بـا امپـدانس مشخـصه
ZT± و طول الکتریکی θ = ± 90° میباشد. مطابق با عملکرد یک مدار دو بانده (Dual – band) شـرایط
لازم ممکن است به صورت زیر داده شود.
٣٩
(18-2) Z A Sinθ1 ±ZT
(19-2) Z ASinθ2 ±ZT
کهθ1 و θ2 طولهای الکتریکی معادل شده خط شاخهای در باند فرکانسی مرکزی f1 و f2 میباشد.
روش معمولی حل معادلات (18-2) و (19-2) به صورت زیر میباشد:
3.......و2وn=1
(20-2) θ2  nπ −θ1 (21-2) f1  θ1 f2 θ2 (22-2) (1 −δ) nπ θ1  2 (23-2) (1 δ) nπ θ2  2 (24-2) f2 − f1 δ  f 2 f 1 در نتیجه طول الکتریکی خط شاخهای معادل شده در فرکانس مرکزی (θo)به صورت زیر تعیین میگردد
(θ0 ) = θ1 2θ2  n2π(25-2)

با قرار دادن معادلات (22-2) و (23-2) در معادلات (16-2) و (17-2) خواهیم داشت:
(26-2) ZT Z A  ( nδπ Cos( 2 ۴٠
nδπ ( tan( 2 f1 , f  Z A (27-2) y  nπδ ( − tan( 2 f2  , f Z A برای مقادیر 5.....و3وn=1 (28-2) ZT Z A  ( nδπ Sin( 2 nδπ ( −Cot( 2 f1  , f ZA (29-2) y  nπδ ( Cot( 2 f2 , f  ZA برای مقادیر..... 6و4وn=2 در معادلات بالا مقادیر مدار معادل داده شده بـرای دو بانـد فرکانـسی دلخـواه f1 وf2 کـه همـان y و ZA
هستند به دست میآیند.
(5-2 نتایج شبیهسازی مدار π شکل بدون استفاده از استاب
با در نظر گرفتن امپدانس خطوط عمودی zo=50Ω وخطوط افقی35 و طول الکتریکی 90درجه و نیـز قـرار
دادن آنها در serenade مقادیر طول(( L و پهنای خطوط (w) را بدست آورده و بادر نظـر گـرفتنf=1/45
و بستن مدار در قسمت شماتیک نتایج حاصل را می بینـیم.در شـکلهای((7-2 الـی (8-2) نتـایج حاصـل از
شبیه سازی کوپلر بدون استفاده از المانهای شنت در فرکانس مرکزی نشان داده شده است.
۴١

شکل(S13 ̦S12 ̦ S11:(7-2 وS 14 کوپلر بدون استاب
مشاهده می کنیم مادیرS11و S12 در فرکانس مرکزی کمتر از -20dB بوده یعنی پورت 1 از 4 ایزوله است
وS13وS12 حدوداً dB٣- می باشد .

شکل(:(8-2زاویهS 12 و S14 برای مدار بدون استاب
۴٢
(6-2 تحقق جهت دوبانده کردن مدار
دربخش قبل روش مشخصی برای طراحی یک کوپلر دو بانده (dual – band) به صورت فرمـولی تحلیـل
و تجزیه گردید. نتایج نشان میدهند روشهایی جهت انتخاب مقدار n و همچنین راههای مختلف در بدسـت
آوردن مقادیر المان شنت با ادمتیانس ورودی (Y) که در معادلات (27-2) و (29-2) توضیح داده شده بودند
وجود دارد.جهت معادل سـازی و نـشان داد ن توپولـوژی دو تـا مـدار در اینجـا مقـدار n را یـک در نظـر
میگیریم.
(1 -6-2 استفاده از استاب مدار باز ( ربع طول موج)
با استفاده از معادلات (22-2) و (23-2) ادمیتانس ورودی یک استاب مدار باز بـه صـورت زیـر مـیتوانـد
باشد.
δπ ( Cot( f1 , f  2 ZΒ (30-2) yoc  ( δπ −Cot( f2 , f 2 ZΒ که در اینجا ZB نیز امپدانس مشخصه استاب مدار باز میباشد . از ایـن رو بـا ترکیـب معـادلات (27-2) و
(30-2) مقدار ZB به صورت زیر بدست میآید: (31-2) Z T ZB  δπ δπ ( )Tan( Sin( 2 2 ۴٣

شکل (9-2) ساختار کوپلر پیشنهادی با استاب مدار باز
در شکل (9-2) ساختار نهایی ( با ساده سازی بوسیله ادغام استابهای شنت موازی شده ) از یـک کـوپلر دو
بانده (dual – band) با تمام خطوط شاخهای جایگزین شده بوسیله مدار پیشنهاد شده شکل (6-2) نـشان
داده شده است و نتیجتاً مقادیر Z3, Z2, Z1 بوسیله معادلات زیر تعیین میگردند.
(32-2) 1 . Z0 Z1  ( δπ Cos( 2 2 (33-2) 1 Z2  Z0. ( δπ Cos( 2 (34-2) 1 . 0 Z Z3  δπ δπ 2 1  ( )Tan( Sin( 2 2
(2-6-2 استفاده از مدار اتصال کوتاه ( طول ( λ2

به طور مشابه ادمیتانس ورودی یک استاب اتصال کوتاه میتواند به صورت زیر بیان گردد:
۴۴
f1 , f Cotδπ Z B (35-2) ysc  Cotδπ − f2  , f Z B شکل (10-2) (مدار چاپی) Layout یک کوپلر اصلاح شده با اتصالات شنت کوتاه شده نشان میدهد کـه
امپدانس مشخصه استاب شنت به صورت زیر محاسبه میگردد.
(36-2) 1 . 0 Z Z3  δπ 2 1  )Tanδπ Sin( 2
شکل (10-2) ساختار کوپلر پیشنهادی با استاب اتصال کوتاه
در تئوری نیز کوپلر پیشنهاد شده میتواند در هر دو باند فرکانسی دلخواه عمل کرده، اما در عمل تعیین رنـج
امپدانسی ساختار کوپلر میتواند مقداری حقیقی پاشد.
۴۵
واضح است که با انتخاب مناسبی از شکل مدار برای رنجهای متفاوتی از کـسر پنهـای بانـد ( 0/2 تـا 0/3 و
همچنین 0/3 تا ( 0/5 کوپلر پیشنهاد شده ممکن است امپدانس خطوط که تنها 30 الی 90 اهم تغییر میکنـد
در آنها بکار برده شود.
( 7- 2 آنالیز(تحلیل) مدار π شکل خط شاخهای دو باند و مشاهده نتایج شبیهسازی :
جهت اثبات و تأیید عملکرد، یک کـوپلر خـط شـاخهای میکرواسـتریپ دو بانـده در فرکانـسهای 0/9 و 2
گیگاهرتز طراحی و شبیهسازی شده و روی کسری از پهنای باند محاسبه شده((δ= 0/38 بنا نهاده شدهاست.
ساختار فشرده یک استاب مدار باز با طول λ / 4 جهت بکار بستن نیز مورد استفاده قـرار گرفتـه اسـت . از
معادلات (32-2) الی (35-2) مقادیر Z3, Z2, Z1 حدود 42/7 و 60/6 و 54/4 اهم نیز بدست آمـده اسـت.
جهت بهتر کردن دقت کار، پاسخ فرکانسی ساختار کامل شـامل ناپیوسـتگی و اثـر زیـر لایـه (Substrate)
بهینه شده با استفاده از یک مدار شبیه سازی شده اشکال (11-2) الی (14-2) پاسـخ فرکانـسی شـبیهسـازی
شده مدار نهایی از یک کوپلر دو بانده را نشان میدهند. مطابق با اثر یـک اسـتاب شـنت تلفـات داخلـی در
فرکانس مرکزی (1.45GHz) صفر گردیده که به حذف هر سیگنال مداخله کننده کمک میکند. کوپلر فوق
سابستریتی با ثابت اللکتریک εr = 3/38 و ضخامت h = 0/81mm میباشد. حال با اسـتفاده از نـرم افـزار
Serenade ابتـدا مقـادیر خطـوط یعنـی پهنـای خطـوط W1 ،W2،W3و طـول آنهـا L1،L2،L 3 را در
فرکــانس مرکــز 1/45 بدســت مــیآوریــم و بــا بــستن مــدار در ایــن فــرمافــزار مقــادیر پارامترهــای
S11،S12،S13وS14را برای باند فرکانسی دوبل شبیهسازی کردهایم.
۴۶
جدول(:(1-2مشخصات الکتریکی وفیزیکی مدار در دو باند امپدانس طول الکتریکی پهنای خط طول خط Z1=42.7 θ1=90 W1=2.38mm L1=31.25mm Z2=60.4 θ2=90 W2=1.36mm L2=31.95mm Z3=54.4 θ3=90 W3=1.63mm L3=31.73mm
شکل(:(11-2نتایج شبیه سازی(افت برگشتی(S11
۴٧

شکل(:(12-2نتایج شبیه سازی(S12و(S13

شکل(:(13-2نتایج شبیه سازی((S14
پارامترهای تشعشتی در این شبکه آنالایزر روی رنج فرکانسی از 0/1 الی 4 گیگاهرتز انجام میگردد.
۴٨

شکل(:(14-2نتایج شبیه سازی(پاسخ فازمدار با استاب)
شکلهای (11-2) الی (14-2) پاسخ اندازهگیری شده کوپلر در فرکانـسهای مرکـز دو تـا بانـد عملکـرد کـه
0/9GHz و 2GHz میباشد نشان میدهند..افت برگشتی و ایزولاسیون پورت بهتر از -20dB در فرکانسی
مرکزی دو باند بدست آمده است هر چنـد تـضعیف سـیگنال بـالا تـر از 50dB جـذب شـده در فرکـانس
1/41GHz نیز میباشد.
درمقایسه با طراحی یک کوپلر تک بانده، افت داخلی اندازهگیری شده دردو پـورت خروجـی تنهـا 0/4dB
بالاتر از مقدار واقعی آن((-3db میباشدو این بـاور وجـود دارد کـه ایـن اخـتلاف اساسـاً ناشـی از وجـود
ناپیوستگیهای اتصالات و اثر انتهای باز نشان داده شده در شبیه سازی میباشد.
طراحی و بکار بستن کوپلر خط شاخهای فشرده صفحهای بالا نیز درطراحی کـوپلری بـا دو بانـد فرکانـسی
کوچک و بزرگ بکار میرود.
۴٩
فصل سوم:
طراحی مدار میکرواستریپ فشردهT شکل با اندازه کاهش
یافته در دو باند فرکانسی
۵٠
(1-3 دوبانده کردن مدار T شکل خط شاخهای کوچک شده با توجه بـه رونـد
ارائه شده در دو بانده کردن کوپلرπ شکل ( 900MHz و (2400MHz
در این بخش ابتدا با روش دستی و استفاده از ماتریسهای ABCD کوپلرخط شاخهای و معـادل قـرار دادن
آن با ماتریس ABCD یک خط ±90°، طول الکتریکی و امپدانس مشخصه کوپلر خط شـاخهای بـا تبـدیل
θ به ' θ θ) f 2  ' (θ بوده را در حالت دو بانده معادل ساخته و در نهایت بوسیله برنامه ساده کامپیوتر که f1 بر اساس اطلاعات موجود نوشته شده، خطای موجود را در بدست آوردن θ و امپدانس مشخصههـایی کـه
برای هـر دو فرکـانس دلخـواه بـالا و پـائین 0/9GHz)و(2/4GHzصـدق کنـد بـا کمتـرین درصـد خطـا
0/4)درصد) درنظر میگیریم و با شرایط در نظر گرفته شده مقادیر θ و Z را بدست میآرویم.
همانطور که در بخش قبل نیز گفتیم با معادل سازی مدل T شکل خطوط استاب شنت متـصل شـده از نـوع
مدار باز بوده و این استاب خود باعث کاهش طول خط می گردد.
3 Sinθ' 3 jZ 3 Cosθ' 0 1 Sinθ' jZ Cosθ' A B (1-3) j − 1 1 1 j 3 Cosθ' 3 Sinθ' 1 jβ'2 Cosθ' Sinθ'  Z3 1 1 Z1 C D در بخش قبل مقادیر β2 و Z1 و Z1 ، Z1 بـا مقـادیر معـادل آن آورده شـده انـد و در اینجـا θ f2 θ' Z Z Z f 3 2 T 1 میباشد.
با معدل قرار دادن ماتریس فوق با خط -90 درجه داریم:
− jZ 0 Sinθ' jZ Cosθ' B A (2-3) T − j  T j 0 Cosθ' Sinθ'  ZT ZT C D ۵١
وبا ساده سازی روابط فوق داریم:
(3-3) Cosθ'1Cosθ'3 −kTanθ'2 Sinθ'1 Cosθ'3 −NSinθ'1 Sinθ'3  0 (4-3) N Cosθ'1 Sinθ'3 −kTanθ'2 Sinθ'1 Sinθ'3 NSinθ'1 Cosθ'3  − M (5-3) K 1 Cosθ'1 Sinθ'3 Cosθ'1 Cosθ'3  0 Tanθ'2 Sinθ'1 Sinθ'3 − − N N (6-3) Sinθ'1 Cosθ'3 KTanθ'2 Cosθ'1 Cosθ'3 NCosθ'1 Sinθ'3  −M در روابط بالا f2  θ'3 f2  θ'2 f2  θ'1 f 3 θ f 2 θ f θ 1 1 1 1 مقادیرf1 =900MHz و f2 =2400MHz می باشند. با ساده سازی روابط (3-3) و (4-3) به معادلا ت زیر میرسیم. (7-3) Cosθ'3 '1  − Sinθ M (8-3) Sinθ'3 − M Cosθ'1  N (2-3 استفاده از برنامه کامپیوتری ساده جهت بدسـت آوردن پارامترهـای مـدار دو
بانده
حال نیز برنامه ای با نرم افزار مطلب نوشتهایم و میخواهیم طولهـای الکتریکـی و امپـدانس مشخـصههـای
کوپلر و درنهایت سیرکولاتور موردنظر را در شرایطی بدست آوریم که خطاهای زیر حـاکم باشـند یعنـی در
آن واحد شرایط برای فرکانسهای بالا و همچنین پائین (استفاده از دو باند فرکانسی) موجود باشد.
۵٢
(9-3) N f 2 θ1 )Tan( f 2 Tan( 0.4 θ3 ) − M 2 f1 f1 (10-3) 0.4 θ3 ) f2 Tan( 2 − N 2 M θ2 ) − f2 Tan( f1 kN f1 (11-3) 0.4 θ3 ) f 2 Sin( M θ1 )  f 2 Cos( f1 N f1 برنامه نوشته شده در نرم افزار مطلب در پیوست الف ارئه شده است.
طول الکتریکی و امپدانس مشخصههایی که در شرایط خطای بالا بر قرار باشند جوابها میباشند کـه شـرایط
برای استفاده درحالت دو باند فرکانسی را دارند. θ1و θ2 وθ3 وZ1وZ2وZ3 در شرایط فـوق را مطـابق بـا
برنامهای که آورده شده بدست میآیند.
(3-3 آنالیز(تحلیل) مدار T شکل دو بانده در چند محـیط ( نـرم افـزار) مختلـف و
مشاهده نتایج حاصل
با قرار دادن مقادیر بدست آمده از برنامه نوشته شده که برای استفاده در دو باند فرکانـسی دلخـواه در نظـر
گرفته شده در روابط زیر و یا با استفاده از محیط serenade طولهای Lm1و)Wm1پهنا وطول خط شاخه
اصلی)Lm3و)Wm3پهنا وطول خط متصل به Zm1 در خط اصلی)Lm2و)Wm2پهنا وطول استاب مـدار
بــاز در خــط اصــلی)Lb1 و )Wb1پهنــا وطــول خــط متــصل بــهZm2در خــط عمــودی)وLb1
،Wb1،Lb2وWb2را بدست میآوریم.
۵٣
(12-3) 4 π εr −1 1 Z 0 2(εr 1) 1 (1/ εr )Ln π )  2 (εr 1)(Ln 2  119.9  H (13-3) −1 1 1 exp H W ( − ( 4 exp H 1 8 h (14-3) −2 4 Ln 1  π )(Ln 1 εr − 1 − 1 εr  ε eff  ) ) 1 π εr 2 1 εr  2H ' 2
با در دست داشتن مقادیر فوق مدار را در نرم افزارهـای Serenade و Advance designer (ADS)
sys-- ترسیم و نتایج شبیهسازی راعلاوه در ansoft مشاهده میکنیم منتهی در نهایت مقدار پهنـای بانـد
را حدوداً در Optimom 10% کرده و نتایج حاصل در زیر آورده شده اند.
h = 0/762mmεr =3/55 Tanδ  0. 022
در شکلهای((1-3و((2-3و((3-3 شماتیک ومدارچاپی و پاسخ مـدار شـبیه سـازی شـده در نـرم افزارهـای
مختلفی نشان داده شده است.

(a)
۵۴

(b)
شکل((a ) 🙁 1-3شماتیک (b)مدارچاپی (designer,hfss)ansoft
در جدول((1-3و(2-3 )با در دست داشتن مقادیر ابتدایی از المانهای مدار که توسط روابـط((12-3 الـی(-3
(14بدست آمده اند بازهای جهت حد بالا وپایین المان ها در نظر گرفته شده است و به سمت اهدافی که در
جدول((2-3 امده optimom انجام می گردد
.جدول(:(1-3دو بازه فرکانسی ودو هدف مورد نظر پروژه 905mhz 895mhz Frange1 باند فرکانس اول
2.45ghz 2.35ghz Frange2 باند فرکانس دوم
-20db lt ms12=-3.5db w=3 ms13=-3.5db w=3 ms14 -20db lt ms11 Goals1 هدف اول
-20db lt ms12=-3.7db w=3 ms13=-3.7db w=3 ms14 -20db lt ms11 Goals2 هدف اول
۵۵
جدول(:(2-3بازه بالا وپایین جهت optimom هدف بازه بالا مقدار اپتیمم شده بازه پایین نام المان
7MM? 5.69180mm ?5mm lb1
12.5MM? 11.35000mm ?10mm lb2
41MM? 39.57900mm ?37mm lb3
11.5MM? 10.77600mm ?9.5mm lm1
16.5MM? 15.36700mm ?14.5mm lm2
40MM? 38.67200mm ?37mm lm3
0.8MM? 0.16152mm ?.08mm wb1
1.2MM? 0.95112mm ?0.6mm wb2
2.5mm? 1.45870mm ?0.8mm wb3
2.1MM? 1.65260mm ?1mm wm1
0.5MM? 0.20507mm ?0.1mm wm2
3.5MM? 2.70090mm ?2mm wm3
2.5MM? 0.20010MM ?0.1mm wp

(a)
۵۶

(b)

(c)
شکل(S 11 :(2-3، S12،S13و S14 مدار شبیه سازی شده در ADS(c) SERANADE(b) ANSOFT(a)
۵٧

شکل(:(3-3پاسخ فازی مدار 2بانده
مشاهده میگردد که مقدار پارامترهای تضعیف در 0/9 و 2/4 گیگاهرتز -3dBو -20dbمیباشند.
در بخش بعدی در مورد اثرات DGS و مشاهده تاثیرات آن بروی این کوپلر بحث میکنیم.
۵٨
فصل چهارم:
بررسی انواع مختلف DGS و اثرات آن بر روی خطوط
میکرواستریپ
۵٩
DGS (1-4 چیست؟
DGS نیز شبکهبندی قلم زده شده ای است با شکل اختیاری که بر روی صفحه زمین قـرار مـیگیـرد و در
شکلهای T ، H ،دمبلی و حلزونی و...بکار میروند.
در شکل (1-4) انواع مختلف DGS نشان داده شده است.

شکل(H(a) :(1-4 شکل T(b) شکل (c) هلزونی شکل (d) دمبلی شکل
(2-4مشخصات کلی DGS
در ساختار DGS مشخصه های زیر رامی توان عنوان کرد:
-1 تغییر اندازه شکاف باند نوری . (PBG)10
-2 دارا بودن ساختارهای پریودیک وغیر پریودیک.
-3 به سادگی نیز مدار معادل LC را میسازد.

10 Photonic band gap
۶٠
(3-4 کاربردهای DGS
-1 در تشدید کنندههای صفحهای
-2 بالا بردن امپدانس مشخصهخط انتقال
-3 استفاده در فیلتر ،کوپلر و سیرکولاتور، اسیلاتور، آنتن و تقویت کنندهها
(4-4 ویژگیهای DGS
-1 پوشش میدان روی صفحه زمین را مختل میکند.
-2 بالا بردن ضریب گذردهی موثر.
-3 بالابردن ظرفیت موثر و اندوکتانس خط انتقال
-4 از بین بردن هارمونیکهای اضافی با تک قطب کردن ویژگی ) LPF11 فرکانس قطع و تشدید)
(5-4اثر DGS دمبلی شکل بر روی خطوط میکرواستریپ
DGS نیز بوسیله الگوی کـم کـردن قلـم زنـی، در صـفحه زمـین مـدار ایجـاد مـی گـردد.. در ابتـدا خـط
میکرواستریپی با الگوی DGS از نوع دمبلی شکل نشان داده شده است و تـأثیر شـکاف بانـد خـوبی را در
بعضی ار فرکانسهای معین نیز ایجاد می کند .[21]
DGS در طراحی مدارات امواج میلیمتری و مایکرویو خیلی زیاد بکار میرود . اخیراً DGSهای متوالی بـا
کاستن الگوهای مربعی از مدارات صفحهای کـه ویژگیهـای Slow wave و stop band بـسیار خـوبی را

11 Low pass filter
۶١
تولید میکنند مورد بررسی قرار گرفته که در تقویت کنندهها و اسیلاتورها بیشتر مورد استفاده قرار گرفتهانـد
.[23] [ ,22]
در مقایسه با DGS پریودیک قبلی [21] و [22] یک نـوع DGS پریودیـک بهتـر و قـویتـر نیـز پیـشنهاد
1
گردیده که ابعاد مربعات کاسته شده متناسب با توزیع دامنه تابع نمـایی ) e n کـه n عـدد صـحیح اسـت)

میباشد.
در شکل((2-4مدار دو پورتی بدون DGS نشان داده و پارامترهـایS حاصـل از آن بـا ansoft در شـکل
(3-4) آمده است.

شکل(:(2-4خط میکرواستریپ دو پورته باεr=10 وh=1.575

شکل(:(3-4پارامترهایSمدار شکل((2-4
۶٢
به منظور بررسی این اثرات توسط DGS پریودیک نیز یک عدد مدار DGS پریودیک متحدالـشکل و دو
تا مدار DGS پریودیک قوی شده نیز در اینجا طراحی و اندازهگیری شدهاند. اندازهها نـشان مـیدهنـد کـه
نمایشهای اخیر اجرای نقش دقیقی توسط متوقف شدن رپیل و بزرگ کردن پهنـای بانـد را ایفـا مـیکنـد.در
شکل((4-4 دو پورتی با DGS دمبلی شکل نشان داده شده و نتیجه شبیه سازی شده این خـط بـا ansoft
در شکل((5-4رسم گردیده است.

شکل(:(4-4مدا با DGS دمبلی شکل

شکل(:(5-4پارامترهایS مدار باDGS دمبلی شکل
در بالا می بینیم فرکانس قطع ومقدار تضعیف کاهش می یابند.
( 1 – 5 – 4 الگویDGSدمبلی شکل و ویژگی شکاف باند
۶٣
نمای شماتیک مدار دمبل شکی DGS در شکل (4-4) نشان داده شده است .خـط میکرواسـتریپ رو قـرار
گرفته و DGS نیز در زیر صفحه فلزی زمین قلم زده شده است. طرح DGS توسط خطوط دش مـشخص
شدهاند. پهنای خط نیز برای امپدانس مشخصه 50 اهم تعیین گردیده است. ضـخامت سابـستریت زیـر لایـه
1/575 میلیمتر و ثابت دی الکتریک εr = 10 میباشد. در [20] آمده که شـکاف قلـم زده شـده و کاسـتن
مربعی قلم زده شده با ظرفیت موثر خط و اندوکتانس خط نیز متناسب میباشد و وقتی ناحیه قلـم زده شـده
کاسته شده مربع شکل کاهش می یابد و فاصله شکاف نیز 0/6 میلیمتر نـشان داده شـده اسـت، انـدوکتانس
موثر کاهش یافته و این کاهش اندوکتانس نیز فرکانس قطع (fc) را بالا میبرد که این قضیه در شکل (7-4)
نشان داده شده است. در اینجا ما نیز این کار را با Ansoft انجام دادهایم.
( 2 – 5 – 4 ایجاد DGS دمبلی پریودیک قویتر
نمایش شماتیک DGS پریودیک با الگوهای مربعـی واحـد بـرای مـدارات صـفحهای [21] نـوع 1 نامیـده
میشود که در شکل (6-4)(a) آمده است.مدار ما در اینجا نیز خـط میکرواسـتریپ 50 اهمـی و نیـز5 عـدد
الگوهای مربع متحدالشکل با دوره یکسان d = 5mm میباشند.پهنای طرفین مربعها و فاصله شکاف هـوایی
ما بین آنها 4/5 (g) میلیمتر و 0/6 میلیمتر میباشند.
براساس نوع 1 ، متحدالشکل بودن توزیع پنج عدد الگوی مربعی توسط یک شکل غیر واحد توزیع میگردد.
حوزه المانهای مربعی نیز متناسب با توزیع دامنه تابع نمایی e1/ n میباشد.در اینجا دامنه سـوم از پـنج المـان
مربعی شکل نیز 4/5mm میباشد.پس نوع دوم بوده و دامنه المـان توزیـع شـده بـر اسـاس زیـر مـشخص
میگردند.
2/3mm2/7mm4/5mm(1-4)
۶۴

شکل (a) :(6-4) نوع1 ، (b) نوع2، (c) نوع3
استفاده از توزیع ارتفاع غیر واحد DGSهای پریودیک، نوع دوم را تشکیل می دهند که در شکل (6-4)(b)
نشان داده شده است. براساس نوع دوم، دیگر مدار DGS پریودیک قوی شـده، یـک خـط میکرواسـتریپ
جبرانی را دارد که نوع سوم نامیده میشود. در شکل (6-4)(c) آمده است.خط میکرواستریپ جبرانی شـامل
۶۵
یک خط 50 اهمی و یک خط عریض میباشد. همچنین بزرگی المانهای DGS توسط رابطه سوم مشخص
گردیده است. المانهای الگوی مربعی غیر هم شکل نیز دارای دوره مساوی d=5mm بوده و فاصـله هـوایی
ثابت d = 0/6mm دارند که در شکل (6-4) نوع دوم و سوم خطوط میکرواستریپ رو قـرار دارد و DGS
ها نیز در صفحه زمین فلزی کنده شده و توسط خطوط دش مشخص شدهاند.
(3-5-4اندازهگیریهای مربوط به DGS دمبلی شکل
سه نوع مدار DGS پریودیک که ذکر شدند مورد بررسی و اندازهگیری قرار گرفتهاند، نتایج اندازهگیری نیـز
در شکل (8-4)((a)-(c)) نشان داده شده هستند . این نتایج به طور خلاصه در جدول (1-4) آمده است.
جدول(:(1-4مقایسه DGS های واحد وپریودیک وتوزیع نمایی

شکل(:(7-4پارامترهایS برای DGS دمبلی شکل
۶۶

(a)

(b)

(c)
شکل(:(8-4 مقایسه پارامترهای S مدارهای (a) DGSنوع(b) 1نوع(c) 2 نوع3
۶٧
سابستریت این مدارات دارای h = 1/575 و εr = 10 هستند. این اندازه گیـریهـا توسـط Ansoft انجـام
شده و نشان داده شدهاند.
همان طوری که در جدول آمده، 20dB ایزولاسیون پهنای باند برای انواع 1و 2و 3 نیز در فرکانسهای 3/05
و 4/18 و 4/26 گیگاهرتز میّاشند.
مدارهای DGS پریودیک پیشنهاد شده نوع 2و 3 پهنـای بانـد ایزولاسـیون 20dB را بهتـر 37% و (39/7%
میکند.در ناحیه پائین گذر، اولین افت برگـشتی و پیـک افـت برگـشتی بـرای نـوع 3، مقـادیر -46/7dB و
-30/9dB بوده و در صورتیکه این مقادیر در نوع 1 نیز -10/8dB و -4/9dB هستند.اولین افت برگشتی و
ماکزیمم افت برگشتی نیز در 4 بار (لحظه) بهتر شده و بنابراین ر پیلها به صورت موثری از بـین رفتـهانـد و
پهنای باند موثر برای نوع سوم افزایش و فرکانس قطع 3dB به صورت مختصر و کم تغییر پیدا میکند.
(6 – 4بررسی اثرات DGS های هلزونی بر روی هارمونیکهای تقسیم کننده توان
در اینجا نشان خواهیم داد تکنیکهای موثری از حذف هارمونیک دوم و سوم برای یـک تقـسیم کننـده تـوان
ویل کینسون (WILLKINSON)با استفاده از DGS هلزونی شکل را، که ما در مدار کـوپلر از ایـن نـوع
DGS استفاده کردهایم.
شکاف باند الکترومغناطیسی و برهم زدن ساختار زمین اخیـراً نیـز کـار بردهـای متفـاوتی را در مـایکرویوو
فرکانس موج میلیمتری با شکلهای مختلف دارند [22] و [24] و DGS خط میکرواستریپ نیـز بـا بـر هـم
زدن مصنوعی صفحهای زمین در ویژگی رزونانس مشخـصه انتقـال تغیراتـی ایجـاد مـیکنـد. در یـک خـط
میکرواستریپ مطابق با اندازه DGS یا بر هم زدگی که روی صفحه زمین ایجاد میگردد، حذف باند بیـشتر
۶٨
در فرکانس رزونانس صورت میگیرد. همچنین DGS باعث بوجود آمدن اندوکتانس موثر اضـافی در خـط
انتقال میگردد. افزایش اندوکتانس موثر از ایجاد DGS باعث افزایش طول الکتریکی خط انتقال نـسبت بـه
یک خط متداول میگردد که خود نیز باعث کاهش اندازه مدارات موج میلی متر و مایکرویو میگـردد. [21]
، در طراحی فیلترها ،تقسیم کنندههای توان و تقویت کنندهها، ویژگی حذف باند و اثر موج آهـسته (Slow
wave) توسط DGS نیز بسیار مورد نظر می باشد [22]و [23]
هارمونیک های ناخواسته تولید شده با ویژگی غیر خطی مدارات اکتیو نیاز به حذف کردن دارند. در مدارات
مایکرویو و فرکانس بالا ویژگی حذف باند توسط DGS میتوانـد در متوقـف کـردن هارمونیکهـای مـورد
استفاده قرار گیرد [22] و .[23] با یـک DGS هلزونـی شـکل متقـارن، (یـک تـک ( DGS حـذف تـک
هارمونیک را خواهیم داشت، وDGS پریودیک در جهت حـذف هارمونیـک دوم و سـوم بکـار مـی رونـد.
DGS های آبشاری و پشت سرهم باعث افزایش افت داخلـی شـده و بهمـین دلیـل در مـدارات بـا انـدازه
کوچک نیز استفاده از ان محدود گردیده است. در اینجا ساختار DGS هلزونی شکل غیر متقارن نیز جهـت
حذف هارمونیکهای دوم و سوم بطور همزمان پیشنهاد گردیدهاند. به طور مـوثر یـک تـک DGS هلزونـی
غیرمتقارن باعث از بین بردن باند فرکانس دوم میگردد و نیاز به ناحیه کوچکی هم جهت نقش بـستن دارد.
تقسیم کننده توان ویل کینسن با بکار بستن یک DGS هلزونی غیـر متقـارن در خطـوط λ4 باعـث حـذف

هارمونیک دوم شده و اندازه آن نیز با اثر موج آهسته کاهش مییابد. مشاهده میگردد به دلیل ذکـر شـده در
این پروژه ما از این گونه DGS استفاده ننمودهایم. تقسیم کننده Willkinson پیشنهاد شده به خـوبی یـک
تقیسم کننده توان مرسوم، در فرکانس کار خواهد بود.
۶٩
(7-4مدل مداری و هندسه DGS هلزونی نا متقارن
در شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ که ابعـاد کنـده شـده هلزونـی
شکل در سمت راست و چپ متفاوت از یکدیگر هستند آمده است. برای هندسه این DGS نامتقارن مطابق
با کنده شدهگی سمت چپ و کندهشدگی سمت راست دوتا فرکانس عملکرد متفاوت وجود دارد. مشخـصه
انتقال خط میکرواستریپ با هندسه DGS نامتقارن ویژگی حذف باند در فرکانس تشدید را دارد.

شکل (9-4) هندسه DGS هلزونی روی صفحه زمین خط میکرواستریپ
فرکانس تشدید ممکن است با تغییر کردن ابعاد DGS عوض گردد. مقایسه مشخصه انتقال DGS هلزونـی
با ابعاد مختلف متقارن و غیرمتقارن در شکل (10-4) آمدهاست. امپدانس مشخصه خط 50 اهـم مـیباشـد.
برای هندسه هلزونی متقارون ( A=A'= 3mm و (B=B' = 3mm تنها یـک فرکـانس تـشدید (
(f=2/93GHz وجود دارد در صورتی که در یک DGS غیر متقارن فرکانس تشدید به دو فرکانس مختلـف
تبدیل میگردد. برای یک DGS نامتقارن با A = A' = 3/5mm و B = B' = 2/6mm همان طوری که در
شکل (10-4) مشاهده میگردد دو فرکانس تشدید مختلف دیده میشـودf=2/56GHz وf=4/22GHz کـه
این نتایج نشان میدهند DGS هلزونی نا متقارن با اندازههای متفاوت روی صفحه زمین در دو طرف خـط،
٧٠
فرکانسهای رزونانس مختلف را میتوانند ایجاد کنند.در هندسه نا متقارن DGS نیز میخواهیم بدانیم که بـه
چه صورتی فرکانس تشدید مطابق با بر هم زدگی چپ و راست خط با تغییـر انـدازه بـر هـم زدگـی رفتـار
میکند.

شکل(:(10-4پارامترهای انتقال خط با DGS متقارن( ( A = A' = B' = 3mm ونامتقارن A = 3/4m) و (B = 2/6 mm

شکل(:( 11-4 فرکانس روزنانس ناشی از بر هم زدگی سمت چپ و راست خط بر حسب تابعی از B/A
٧١
فرکانس تشدید ناشی از بر هم زدگی سمت چپ خط و سمت راست خط در شکل (11-4) بعنوان تابعی از
اندازه بر هم زدگی سمت راست وقتی که اندازه سمت چپ ثابت باشد (A = A' = 2mm) رسم گردیـده
است. اندازه این آشفتگی هلزونی به صورت یک مربع در نظر گرفته شده (B = B' , A = A') .وقتـی کـه
اندازه برهم زدگی سمت راست از مقدار سـمت چـپ کـوچکتر اسـت (B/A<1)، فرکـانس رزونـانس در
سمت راست نیز بزرگتر از مقدار سمت چپ خواهد بود. هنگامیکه مقدار A با B برابر گردد دو تا فرکـانس
رزونانس ازهم پاشیده شده و به یک فرکانس تبدیل میگردد DGS) متقارن). باز وقتی کـه بـر هـم زدگـی
سمت راست افزایش پیدا کند B/A) زیاد شود)، فرکانس تشدید ناشی از بر هم زدگـی سـمت راسـت نیـز
کاهش مییابد. از این رو اندازه سمت چپ ثابت شده و مشاهده میگردد که فرکانس رزونانس ناشـی از بـر
هم زدگی سمت چپ تغییرات آهستهای خواهد داشت تا وقتی که B/A مقدار واحد شود.
مشخصه فرکانسی یک DGS متقارن با مدار رزوناتور RLC موازی میتواند مدل گردد. پارامترهای مـداری
معادل نیز از مشخصه انتقال شبیهسازی شده میتواند گرفته شود.
DGS نا متقارن نیز میتواند با دو تا رزوناتور RLC موازی که به صورت سدی متصل شدهاند مدل گـردد.
شکل((12-4، به همین جهـت مشخـصه انتقـال آن دو تـا فرکـانس تـشدید متفـاوت دارد. در مـدار معـادل
پارامترهای مدار اولین رزوناتور از مشخصه فرکانسی رزونانس بر هم زدگی سمت چپ گرفتـه مـیشـود در
حالیکه رزوناتور دوم بوسیله مشخصه رزونانس بر هم زدگی سمت راست مشخص می گردد. از نتـایج شـبیه
سازی پارامترهای اسکترینگ، پارامترهای مدار رزوناتور برای بر هم زدگی سمت چپ و راست بـه صـورت
زیر مشخص میگردند.
(۴-٢) C L,R W CL,R  ( 2 −W 2 (W 0 2Z C L,R 0 L,R ٧٢
(۴-٣) 1 LL,R  4π2 f02 L,R CL,R (۴-۴) 2zo RL,R  1 1 ))2 −1 − (2Z0 (W0 L,R CL,R − W0 L,R LL,R S11 (W0 L,R )2
شکل( 🙁 12-4 مدار معادل بخش DGS هلزونی نامتقارن
در اینجا اندیس R, L نیز پارامترهای برهم زدگی سمت چپ و راست را بیان می کنند. W0 فرکانس تشدید
و WC فرکانس قطع -3db را مشخص میکنند. Z0 امپدانس مشخصه خط انتقال می باشد.
(8-4حذف هارمونیکها در مدار مقسم توان
مقسم توان کاربردهای گوناگونی از قبیل توزیع توان سیگنال ورودی از آنتن و تقویت کنندههای توان بـالای
مایکرویو دارد. با قرار دادن فیلتر حذف هارمونیک در داخل مقسم توان ناحیه خروجـی فیلتـر کـاهش پیـدا
میکند .[23] جهت حذف هارمونیک نیز میتوان از استاب مدار باز در مرکز شاخههای بـا طـول λ4 مقـسم

توان استفاده نمود.
اگر DGS را بعنوان فیلتر هارمونیک اضافی استفاده کنیم میتوانیم با در نظر گرفتن کاهش سایز مقسم تـوان
که منجر به اثر (Slow – wave) میگردد نیز هارمونیک را حـذف نمـود. از ایـن رو یـک DGS متقـارن
٧٣
میتواند تنها یک سیگنال هارمونیک را حذف کند. ما نیاز به قرار دادن دو تا DGS به صـورت آبـشاری در
λ
هر شاخه ( ( 4 داریم تا هارمونیک دوم و سوم را حذف کنیم. هر چند ناحیه مقسم توان جهت گذشتن دو تا

DGS به صورت پریودیک در هر شاخه مقسم توان نیز محدود میگردد. DGS غیر متقارن هم، سـاختاری
موثر در جهت حذف هارمونیک دوم و سوم به صورت همزمان می باشد. [22]
شکل (13-4) (a) هندسه یک DGS هنرونی نامتقارن جهت حذف هارمونیـکهـای سـوم و دوم را نـشان
میدهد. در اینجا فرکانس عملکرد مقسم توان نیز 1/5 گیگاهرتز میباشد.

شکل(DGS (a): (13-4 هلزونی نامتقارن برای حذف هارمونیک دوم و سوم (b) مدار معادل ساختار این DGS
ناحیه بر هم زده شـده سـمت چـپ و راسـت رزونـانس هارمونیـک دوم و سـوم طراحـی شـدهانـد. 3) و
4.5گیگاهرتز). ابعاد طراحی شده این سـاختار D=2/4mm و A = 3 mm D' = S = G = 0/2mm و
A' = 3/2 mm، B = 2/4 mm و B' = 2/6 mm و امپدانس مشخصه خـط نیـز 70/7 Ω مـیباشـد.
٧۴
شکل (13-4) (b) مدار معادل DGS نامتقارن در شکل (13-4) (a) را نشان مـیدهـد. پارامترهـای مـدار
بوسیله پارامترهای اسکترینگ سیموله شده بوسیله روابط (2-4) تا (4-4) محاسبه میگردند.
شکل (14-4) نیز پارامترهای S محاسبه شده بوسیله شبیه سازی (EM) بـرای DGS نامتقـارن شـکل (a)
.(13-4) و محاسبه شده مدار معادل شکل (13-4)(b) را نشان میدهند. در هر دو تا شـبیه سـازی مـشاهده
میگردد که بوسیله DGS نامتقارن واحد، هارمونیکهای دوم و سـوم در فرکانـسهای 4. 5 , 3 گیگـا هرتـز
حذف میگردند.

شکل( ( 14- 4 پارامترهای S مدار با DGS هلزونی به صورت EM و شبیه سازی شماتیک
مشاهده میگردد که S12 موافق رنج فرکانسی پهن و S11 نیز در جهت حذف هارمونیک مقسم تـوان اصـلی
بکار میرود. یک مقسم توان معمولی در شکل (15-4)(a) مشاهده میگردد و نیز مقسم توان پیـشنهاد شـده
با DGS غیر متقارن در شکل (15-4)(b) آمده است. در اثر موج آهـسته (slow – wave) بـودن DGS
نیز اندازه مقسم توان پیشنهادی کاهش یافته است. اندازه L' = 17/3 mm در مقایسه L = 19mm حـدود
9/1 % کاهش یافته است.
٧۵
پارامترهای S شبیه سازی شده مقسم توان معمولی و پیشنهادی در شکل (16-4) آمده است.

شکل( ( 15- 4 هندسیای از (a) مقسم توان ویل کنیسن معمولی (b) مقسم توان با DGS نامتقارن
در (16-4) (b)، فرو نشاندن حدود18 dB برای هارمونیک دوم و سـوم بـا وارد کـردن DGS نامتقـارن در
خط انتقال ( ( λ4 مقسم توان مشاهده میگردد. افـت برگـشتی بـرای فرکـانس 1/5 GHZ در هـر دو مـشابه

یکدیگر می باشند، حتی با وارد کردن DGS نامتقارن در مدار.
شکل (17-4) نیز قسمت رو و زیر از یک مقسم توان ویل کینسن با وارد DGS هلزونی نامتقـارن را نـشان
میدهد. در شکل (a) (18-4)، S11 اندازهگیری شـده را نـشان مـیدهـد. افـت برگـشتی در فرکـانس 1/5
گیگاهرتز – 40dB بوده. S21 نیـز در شـکل (18-4)(b) بعنـوان تـابعی از فرکـانس آمـده اسـت. توقیـف
هارمونیک دوم (3 GHZ) نیز 18dB و هارمونیک سوم در فرکانس (4/5 GH) نیز 15dB میباشد.
٧۶

شکل ( ( 16- 4 نتایج شبیه سازی (a) پارامتر S مقسم توان معمولی S (b) برای مقسم توان با DGS

شکل( ( 17-4 مقسم توان willkinson با DGS هلزونی نامتقارن (a) روی مدار (b) پشت مدار
٧٧

شکل( ( 18- 4 نتیجه شبیه سازی مقسم توان با DGS هلزونی نامتقارن(S12(b)S11(a
( 9 – 4 مشاهده اثرات DGS برروی کوپلر T شکل در یک باندفرکانسی
ابتدا مدار شکل (3-2) را با اسـتفاده از DGS هلزونـی شـکل نیـز آنـالیز و نتـایج آن را در شـکل((19-4
مشاهده میکنیم
٧٨

شکل(:(19-4مدار بااستفاده از (a) DGSیک بعدی((bدو بعدی
در شکل (a)(20-4)و((b نتایج شبیه سازی حاصل از مدار قلم زده شده DGS و بدون استفاده از آن را
نشان میدهند.
٧٩

شکل((a):(20-4نتیجه شبیه سازی کوپلر با استفاده ار (b) DGSبدون استفاده از ((a)(3-2)) DGS
با مشاهده نتایج بالا به پایین آمدن فرکانس قطع و slow wave شدن پاسخ نیز پی می بریم.
(10-4مشاهده اثرات DGS روی مدار طراحی شده در این پروژه
در شکل (21-4) نوع DGS استفاده شده در این کوپلر آورده شده است.ونتیجـه ansoft در شـکل((22-4
مشاهده میگردد.
٨٠

شکل(:(21-4کوپلر باH DGS شکل در شاخه خطوط

شکل(:(22-4پارامتهای Sحاصل از به کار بستن DGS
٨١
فصل پنجم
چگونگی استفاده از کوپلر بدست آمده در طراحی سیرکولاتور
٨٢
(1-5 طراحی سیرکولاتور
یک سیرکولاتور 4 پورته فشرده نیز می تواند به وسیله یک کوپلر خط شاخه ای و شیفت دهنده فاز( پیوست
پ) نیز ساخته شود.این شیفت دهنده فازی همراه با ورودی و خروجی خط همواره مچینگ امپدانسی داشته
و دارای تضعیف صفر می باشد.در اینجا ما از زیراتور به عنوان شیفت دهنده فازی استفاده کرده ایمر .[26]
یکی از ترکیبات نا متقابل استاندارد ژیراتورها هستند که دارای 2 پورت بوده وشیفت فاز تفاضلی 180 درجه
ایجاد می کنند.نماد شماتیک برای یک ژیراتور در شکل (1-5)آمده است و ماتریس اسکترینگ برای یک
ژیراتور واقعی در زیر آمده است.
(1-5)

π
شکل(:(1-5نماد ژیراتور
که این ماتریس نشانه عدم افت ،مچ شده ونا متقابل بودن آن است.

s−0 11 0
(2-5مدار معادل برای سیرکولاتور با استفاده از یک ژیراتور و دو کوپلر

۴ ١
٢ π ٣
شکل(:(2-5سیرکولاتور 4پورته متشکل از دو مدار هایبریدی و ژیراتور
٨٣
استفاده ژیراتور به عنوان بنا ساخت در ترکیب با مقسم دو طرفه و کوپلرها میتواند منجر به ایجاد مدارات
مفید همچون سیرکولاتور گردد .در شکل (2-5) مدار معادل سیرکولاتور 4 پورته متشکل از دو مدار
هایبریدی و درشکل (4-5) سیرکولاتور ساخته شده با استفاده از یک ژیراتور ودو کوپلر را نشان میدهد.

شکل(-5٣):سیرکولاتور ساخته شده با استفاده از دو کوپلر و یک ژیراتور
مدار پیشنهادی با ایجاد شیفت فاز 180 درجه باعث عبور از پورت 1به2،2 به3،3به4و4به1 می گردد. در
شکل (4-5) نتایج شبیه سازی مدار طراحی شده آمده است.

(a)
٨۴

(b)

(c)

(d)