—d1896

4-14. نمودارهای لانگمیر الف) 10%، ب) 15% و ج) 20%69
4-15. نمودارهای BET الف) 10%، ب) 15% و ج) 20%71
4-16. جذب و واجذب الف) 10%، ب) 15% و ج) 20%.72
4-17. حلقه پسماند نمونه‌ها قبل از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.74
4-18. حلقه پسماند نمونه‌ها بعد از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.75

فهرست جداول
عنوان صفحه
فصل سوم - ساخت آئروژل و کاربردهای آن
3-1. کاربردهای مختلف آئروژل‌ها48
TOC o "1-3" h z u
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. میزان گرم و لیتر مواد مورد نیاز51
4-2. نتایج حاصل از XRD63
لیست علایم و اختصارات
برونر، امت، تلر(Brunauer, Emmett, Teller) BET
پراش پرتو ایکس (X-Ray Diffraction) XRD
مغناطیسسنج نمونهی ارتعاشی (Vibrating Sample Magnetometer) VSM
میکروسکوپ الکترونی گسیل میدانی (Field Emission Scanning Electron Microscopy) FE-SEM
میکروسکوپ الکترونی عبوری (Transmission Electron Microscopy) TEM
آنگسترم (Angestrom) Å
اورستد (Oersted) Oe
نانومتر (Nanometer) nm
واحد مغناطیسی (Electromagnetic Units) emu
فصل اولمفاهیم اولیه1854668136024
مقدمهاز اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.
در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شدهاست. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتیمتر به اندازه‌هایی در حدود یک دهم نانومتر یا کمتر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [1].
1-1 شاخه‌های فناوری نانوتفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهمترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و میتوانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعهای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [4].
1-2 روش‌های ساخت نانوساختارهاتولید و بهینهسازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [6 و5]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی و رشد خود به خودی. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:
 چگالش بخار
 سنتز شیمیایی
 فرآیندهای حالت جامد (خردایشی)
 استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
 استفاده از امواج ماکروویو و امواج مافوق صوت
 استفاده از باکتری‌هایی که میتوانند نانوذرات مغناطیسی و نقره‌ای تولید کنند
پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکشدهی یا اصلاح شیمیایی نیز استفاده کرد [7].
1-3 کاربردهای نانوساختارهایکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.
با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشهها، عمر آن‌ها را نیز چندین برابر نمودهاست .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوششهای سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با استفاده از نانوذرات تولید شده‌اند.
وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیشماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفته‌اند. هاروتا و تامسون اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [7].
1-4 مواد نانومتخلخلمواد نانو متخلخل دارای حفره‌هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن‌ها را فضای خالی تشکیل می‌دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی زیاد، گزینشپذیری خوب و مقاومت گرمایی و صوتی از ویژگی‌های مهم آن‌ها می‌باشد. با توجه به ویژگی‎‌های ساختاری، این به عنوان تبادل‌گر یونی، جدا کننده، کاتالیزور، حس‌گر، غشا و مواد عایق استفاده می‌شود.
نسبت حجمی فضای خالی ماده‌ی متخلخل به حجم کل ماده‌ تخلخل نامیده میشود. به موادی که تخلخل آن‌ها بین 2/0 تا 95/0 باشد نیز مواد متخلخل می‌گویند. حفره‌ای که متصل به سطح آزاد ماده است حفره‌ی باز نام دارد که برای صاف کردن غشا، جداسازی و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی (جداسازی مواد با استفاده از رنگ آن‌ها) مناسب است. به حفره‌ای که دور از سطح آزاد ماده است حفره‌ی بسته می‌گویند که وجود آن‌ها تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره‌ها دارای اشکال گوناگونی همچون کروی، استوانهای، شیاری، قیفی شکل و یا آرایش شش گوش هستند. همچنین تخلخل‌ها می‌توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [7].
بر اساس دستهبندی که توسط آیوپاک صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفره‌ها، مواد سازنده و نظم ساختار به سه گروه تقسیمبندی میشوند که در شکل 1-1 نشان داده شده است:
الف) دسته بندی بر اساس اندازهی حفره:
میکرومتخلخل: دارای حفرههایی با قطر کمتر از 2 نانومتر.
مزومتخلخل: دارای حفرههایی با قطر 2 تا 50 نانومتر.
right59626500ماکرومتخلخل: دارای حفرههایی با قطر بیش از 50 نانومتر.
center1720850شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].
0شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].

بر اساس شکل و موقعیت حفره‌ها نسبت به یکدیگر در داخل مواد متخلخل، حفره‌ها به چهار دسته تقسیم می‌شود: حفره‌های راه به راه، حفره‌های کور، حفره‌های بسته و حفره‌های متصل به هم که در شکل (2-1) به صورت شماتیک این حفره‌ها را نشان داده شده است.

شکل 1-2 نوع تخلخل‌ها بر اساس شکل و موقعیت [8].
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل را برای موادی که دارای حفرههایی با قطر کمتر از 100 نانومتر هستند به کار می‌برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.
ب) دستهبندی بر‌اساس مواد تشکیل دهنده:
مواد نانومتخلخل آلی
مواد نانومتخلخل معدنی
تقسیمبندی مواد نانومتخلخل آلی
1) مواد کربنی: کربن فعال، کربنی است که حفره‌های بسیار زیاد دارد و مهم‌ترین کربن از دسته مواد میکرومتخلخل است.
2) مواد بسپاری: مواد نانو متخلخل بسپاری به دلیل ساختار انعطاف‌پذیر خود، حفره‌های پایداری ندارند و تنها چند ترکیب محدود از این نوع وجود دارد [8].
تقسیم بندی مواد نانومتخلخل معدنی
1) مواد میکرومتخلخل
زئولیت‌ها: مهم‌ترین ترکیبات میکرومتخلخل بوده که دارای ساختار منظم بلوری و حفره‌دار با بار ذاتی منفی می‌باشند. در اکثر موارد ساختار زئولیتی از قطعات چهار وجهی با چهار اتم اکسیژن و یک اتم مرکزی مثل آلومینیوم، سیلیکون، گالیم یا فسفر تشکیل شده‌اند که با کاتیون‌ها خنثی می‌شوند [8].
چارچوب فلزی-آلی: از واحد‌های یونی فلزی یا خوشه‌ی معدنی و گروه‌های آلی به عنوان اتصالدهنده تشکیل شده است که اتصال آن‌ها به هم، حفره‌ای با شکلی معین مانند کره یا هشت وجهی به وجود می‌آورد. ویژگی بارز این ترکیبات، چگالی کم و سطح ویژه‌ی بالای آن‌هاست [9].
هیبرید‌های آلی-معدنی: از قطعاتی معدنی تشکیل شده‌اند که توسط واحد‌های آلی به هم متصل هستند [10].
2) مواد مزومتخلخل:
سیلیکا: ترکیبات MCM، معروف‌ترین سیلیکای مزومتخلخل هستند.
اکسید فلزات و سایر ترکیبات مزومتخلخل: اکسیدهای نانومتخلخل فلزات مثل تیتانیوم دی اکسید، روی اکسید، زیرکونیوم دی اکسید و آلومینا، فعالیتی بیشتر از حالت معمولی خود دارند. ترکیبات سولفید و نیترید هم میتوانند ساختار مزومتخلخل داشته باشند.
3) مواد ماکرومتخلخل:
بلور کلوییدی: از مجموعه کره‌هایی مانند سیلیکا ساخته می‌شود که فضای بین آن‌ها خالی است. در بلور کلوییدی معکوس کره‌ها توخالی و فضای بین آن‌ها پر است [10].
آئروژل‌ها مواد مزومتخلخل با سطح ویژه و حجم تخلخل بالا هستند که در فصل بعد به آن‌ها می‌پردازیم.
1-5 کامپوزیت‌هاکامپوزیت‌ها (مواد چند رسانهای یا کاهگل‌های عصر جدید) رده‌ای از مواد پیشرفته هستند که در آن‌ها از ترکیب مواد ساده به منظور ایجاد مواد جدیدی با خواص مکانیکی و فیزیکی برتر استفاده شده است. اجزای تشکیلدهنده ویژگی‌های خود را حفظ کرده، در یکدیگر حل نشده و با هم ترکیب نمی‌شوند.
استفاده از این مواد در طول تاریخ مرسوم بوده است. از اولین کامپوزیت‌ها یا چندسازه‌های ساخت بشر می‌توان به آجرهای گلی که در ساخت آن‌ها از کاه استفاده شده است اشاره کرد. هنگامی که این دو با هم مخلوط بشوند، در نهایت آجر پخته بهدست می‌آید که بسیار ماندگار‌تر و مقاوم‌تر از هر دو ماده اولیه، یعنی کاه و گل است. شاید هم اولین کامپوزیت‌ها را مصری‌ها ساخته باشند که در قایق‌هایشان به چوب بدنه قایق مقداری پارچه می‌آمیختند تا در اثر خیس شدن، آب توسط پارچه جذب شده و چوب باد نکند. قایق‌هایی که سرخپوستان با فیبر و بامبو می‌ساختند و تنورهایی که از گل، پودر شیشه و پشم ساخته می‌شدند از نخستین کامپوزیت‌ها هستند [11].
1-5-1 کامپوزیت یا مواد چندسازهچندسازه‌ها به موادی گفته می‌شود که از مخلوط دو یا چند عنصر با فازهای کاملا متمایز ساخته شده باشند. در مقیاس ماکروسکوپیک فازها غیر قابل تشخیص‌اند. اما در مقیاس‌های میکروسکوپیک فازها کاملا مجزا هستند و هر فاز خصوصیات عنصر خالص را نمایش می‌دهد. در چندسازه‌ها، نه تنها خواص هر یک از اجزاء باقی مانده بلکه در نتیجهی پیوستن آن‌ها به یکدیگر، خواص جدیدتر و بهتر بهدست می‌آید [11].
1-5-2 ویژگی‌های مواد کامپوزیتیمواد زیادی می‌توانند در دسته‌بندی مواد کامپوزیتی قرار بگیرند، در واقع موادی که در مقیاس میکروسکوپی قابل شناسایی بوده و دارای فازهای متفاوت و متمایز باشند در این دسته‌بندی قرار می‌گیرند. امروزه کامپوزیت‌ها به علت وزن کم و استحکام بالا در صنایع مختلف، به طور گستره‌ای مورد استفاده واقع می‌شوند. کامپوزیت‌ها با کاهش وزن و ویژگی‌های فیزیکی بسیار عالی، گزینه‌ای مناسب برای استفاده در تجهیزات ساختاری می‌باشند. علاوه بر ‌این، کامپوزیت‌ها جایگزین مناسب برای مواد سنتی در کاربردهای صنعتی، معماری، حمل و نقل و حتی در کاربردهای زیر بنایی می‌باشد [12].
یکی از ویژگی‌های بارز کامپوزیت‌ها، حضور فاز تقویـتکننده مجزا از فاز زمینه می‌باشد. ویژگی‌های اختصاصی این دو فاز، در ترکیب با یکدیگر، ویژگی‌های یکسانی را به کل کامپوزیت می‌بخشد. در یک دسته‌بندی ویژه، کامپوزیت‌ها همواره به دو فاز زمینه و تقویتکننده تقسیم می‌شوند. می‌توان گفت در واقع زمینه مانند چسبی است که تقویتکننده‌ها را به یکدیگر چسبانده و آن‌ها را از آثار محیطی حفظ می‌کند.


1-5-3 مواد زمینه کامپوزیتزمینه با محصور کردن فاز تقویت کننده، باعث افزایش توزیع بار بر روی کامپوزیت می‌گردد. در واقع زمینه، برای اتصال ذرات تقویتکننده، انتقال بارها به تقویتکننده، تهیه یک ساختار شبکه‌ای شکل از آن‌ها و حفظ تقویتکننده از آثار محیطی ناسازگار به کار گرفته می‌شود.
1-5-4 تقویتکننده‌هادسته‌ای از مواد معمولی که به عنوان فاز تقویت کننده به کار گرفته می‌شوند، عبارتند از شیشه‌ها، فلزات، پلیمرها و گرانیت. تقویتکننده‌ها در شکل‌های مختلفی از جمله فیبرهای پیوسته، فیبرهای کوتاه یا ویسکرها و ذرات تولید می‌شوند (شکل3-3). تقویت کننده‌ها باعث ایجاد ویژگی‌های مطلوبی از جمله استحکام و مدول بالا، وزن کم، مقاومت محیطی مناسب، کشیدگی خوب، هزینه کم، در دسترسپذیری مناسب و سادگی ساخت کامپوزیت می‌گردند [12].
1-5-5 نانو کامپوزیتنانو کامپوزیت‌ها مواد مرکبی هستند که ابعاد یکی از اجزای تشکیلدهنده آن‌ها در محدوده نانو‌متری باشد. نانوکامپوزیت‌ها هم، در دو فاز تشکیل می‌شود. در فاز اول، ساختار بلوری در ابعاد نانو ساخته می‌شود که زمینه کامپوزیت به شمار می‌رود. در فاز دوم هم ذراتی در مقیاس نانو به عنوان تقویت کننده برای بهبود ویژگی‌ها به فاز زمینه افزوده می‌شود. توزیع یکنواخت این فاز در ماده زمینه باعث می‌شود که فصل مشترک ماده تقویت کننده با ماده زمینه در واحد حجم، مساحت بالایی داشته باشد [13].

شکل 1-3 نمایشی از انواع مختلف تقویت کننده‌ها در کامپوزیت [12].
1-6 خلاصهدر این فصل به بیان بعضی مفاهیم اولیه پرداختهشد. خلاصه کوتاهی از فناوری نانو، نانوساختارها و روش‌های ساخت آن‌ها گفته شد. بعد از آن مواد متخلخل بررسی شد و در نهایت مختصری در مورد کامپوزیت‌ها، ویژگی‌ها و نانوکامپوزیت‌ها بیان شد.
فصل دومآئروژلها و مروری بر خواص مغناطیسی15418474142773
2-1 تاریخچهحوزهی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص دادهاست.
اولین بار ساموئل استفان کیستلر در سال 1931 با ایدهی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارجکرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبهکند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیمقرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].
در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطهی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیهی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].
این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلیگرم بر سانتیمتر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].
آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آیندهی محیط زیست توسط گاز‌های گلخانهای تولید شده بهدست بشر را تأیید می‌کند. آیندهی انرژی‌های قابل دسترس به خاطر کمشدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازدهی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریبنشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعهی بیشتری نیاز دارد [17].
2-2 شیمی سطح آئروژلسیلیکا آئروژل حاوی ذرات نانومتری هستند. این ترکیبات دارای نسبت سطح به حجم بالا و مساحت سطح ویژهی زیادی هستند. شیمی سطح داخلی در آئروژل‌ها نقش اساسی را در بروز رفتار‌های بی‌نظیر فیزیکی و شیمیایی آن‌ها، ایفا می‌کند. ماهیت سطح آئروژل‌ها تا حد زیادی به شرایط تهیهی آن‌ها بستگی دارد. انتخاب فرآیند مربوط به ترکیبات شیمیایی و ویژگی‌های مورد نظر مشخص برای نانوذرات وابسته است. دو روش پایه برای تولید نانوذرات استفاده می‌شود:
روش از بالا به پایین
اشاره به خردکردن مکانیکی مواد با استفاده از فرآیند آسیابکاری دارد. در این فرآیند مواد اولیه به بلوک‌های پایهی بیشتری شکسته می‌شوند.
روش پایین به بالا
اشاره به ساخت سیستم پیچیده به وسیله ترکیب اجزای سطح اتم دارد. در این فرآیند ساختارها به وسیله فرآیندهای شیمیایی ساخته می‌شوند.
روش پایین به بالا بر پایه ویژگی‌های فیزیکی و شیمیایی اتمی یا مولکولی خود تنظیم می‌شوند. این روش به دلیل ساختار پیچیده اتم یا مولکول، کنترل بهتر اندازه و شکل آن‌ها انتخاب شد. روش پایین به بالا شامل فرآیندهای آئروسل، واکنش‌های بارش و فرآیند سل-ژل است [18].
مرحله اول ساختن آئروژل تولید ژل خیس است که بهترین روش برای ساخت آن استفاده از پیشماده الکوکسید سیلیکون، مانند TEOS است. شیمی ساخت Si(OCH2CH3)TEOS است که با اضافه کردن آب، واکنش شیمیایی زیر صورت می‌گیرد [19] :
Si(OCH2CH3)4(liq)+2(H2O)(liq)→SiO2solid+4(HOCH2CH3)liq
اتم سلیکون به دلیل داشتن بار جزئی مثبت کاهشیافته (+) نسبت به دیگر انواع آئروژل بیشتر مورد مطالعه قرار گرفت. در Si(OEt)+ حدود 32/0 است. این بار مثبت جزئی کاهش یافته، روند ژل شدن پیشماده سیلیکا را آهسته می‌کند.
پیشمادهی الکوکسید M(OR) هستندکه اولین بار توسط امبلن برای سنتز سیلیکا آئروژل استفاده شد. در این ترکیب M نشان دهندهی گروه فلزی، OR گروه الکوکسید و R تعیینکنندهی گروه الکلی هستند. الکوکسیدها معمولا در محلول منبع الکلی خود موجود هستند و امکان خشک کردن این ژل‌ها را در چنین محلول‌هایی فراهم می‌کند [20].
اگر آئروژل از طریق خشک کردن به وسیله الکل تهیه گردد، گروه‌های آلکوکسی (OR) تشکیل دهنده سطح آن است و در این سطح آئروژل خاصیت آبگریزی پیدا می‌کند. اگر تهیه آئروژل از طریق فرآیند دی اکسید کربن باشد آنگاه سطح آئروژل را گروه‌های هیدروکسید (OH) فرا می‌گیرد و خاصیت آب‌دوست پیدا خواهدکرد و مستقیما می‌تواند رطوبت هوا را جذب نماید. البته با حرارت دادن می‌توان رطوبت جذب شده را از ساختار آئروژل حذف نمود. شکل 1-2 به خوبی خاصیت آب‌دوست و آبگریزی را در ساختار آئروژل‌های با گروه‌های عاملی مختلف نشان می‌دهد [21].

شکل 2-1 برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست [18].
2-3 تئوری فیزیکیاتصال شبکه نانو مقیاس سیلیکای جامد آئروژل‌های پایه سیلیکا، ویژگی‌های منحصر به فردی را به آن‌ها می‌دهد. کسر یونی پیوند کووالانت قطبی برای اکسیدهای فلزی مختلف از رابطهی زیر نتیجه می‌شود:
Fionic=1-exp⁡(-0.25 XM-XO2)که XO و XM الکترون‌خواهی O و M را نشان می‌دهد. 2SiO مقدار Fionic 54/0 دارد که طیف مقدار زاویه Si-O-Si را گسترده کرده و شبکه تصادفی را می‌دهد. چهار اکسید دیگر زاویه یونی بزرگ‌تر و مقدار کوچک‌تر زاویه پیوند را سبب می‌شوند. به این معنی که پیوند تصادفی فقط روی ماکرومقیاس‌های بیشتر با ذرات کلوییدی بزرگ‌تر و متراکم‌تر اتفاق می‌افتد، در این صورت، ژل به جای شکلگرفتن شبکهی تصادفی اتصالات به صورت ذره تشکیل می‌شود [14]. شبکهی اتصالات سیلیکا برای وزن نسبی‌اش یک جامد محکم را ایجاد می‌کند.
2-4 خاصیت مغناطیسی مواد2-4-1 منشأ خاصیت مغناطیسی موادیکی از مهمترین ویژگی‌های مواد، خاصیت مغناطیسی آن‌هاست که از زمآن‌های نسبتا دور مورد توجه بوده و هم اکنون نیز در طیف وسیعی از کاربردهای صنعتی قرار گرفته است.
منشأ خاصیت مغناطیسی در جامدها، الکترون‌های متحرک می‌باشند. گرچه بعضی از هسته‌های اتمی دارای گشتاور دو قطبی مغناطیسی دائمی هستند ولی اثر آن‌ها چنان ضعیف است که نمی‌تواند آثار قابل ملاحظه‌ای داشته باشد؛ مگر در تحت شرایط خاص مانند اینکه نمونه در زیر دمای یک درجهی کلوین قرار گیرد یا وقتی که تحت میدان الکترومغناطیسی با بسامدی قرار گیرد که حرکت تقدیمی هسته را تشدید نماید. در بدو ظهور نظریات مغناطیس آزمایش‌های زیادی نشان داد که اندازه حرکت زاویهای کل یک الکترون و گشتاور مغناطیسی وابسته به آن بزرگ‎تر از مقداری است که به حرکت انتقالی آن نسبت داده می‌شد. بنابراین یک سهم اضافی که از خصوصیت ذاتی با یک درجه آزادی داخلی ناشی می‌شد، به الکترون نسبت داده شد و چون این خصوصیت دارای اثر مشابه چرخش الکترون حول محورش بود اسپین نامیده گردید [22].
2-4-2 فازهای مغناطیسیبه طورکلی مواد در میدان مغناطیسی خارجی رفتارهای متفاوتی از خود نشان می‌دهند و با توجه به جهت‌گیری مغناطش، به پنج گروه تقسیم می‌شوند که به بیان آن‌ها می‌پردازیم.
2-4-2-1 مواد دیامغناطیسدر این مواد الکترون‌ها به صورت جفت بوده و اتمها دارای گشتاور مغناطیسی دائمی نیستند و با قرارگرفتن در میدان مغناطیسی خارجی دارای گشتاور مغناطیسی القایی در خلاف جهت میدان خارجی می‌شوند و آن را تضعیف می‌کند. پذیرفتاری مغناطیسی χ چنین موادی منفی و خیلی کم است. خاصیت دیامغناطیس ظاهراً در تمام انواع مواد یافت می‌شود، اما اثر آن غالباً به وسیله‌ی آثار قویتر پارامغناطیس یا فرومغناطیس که می‌توانند با این خاصیت همراه باشند، مخفی می‌شود. خاصیت دیامغناطیسی خصوصاً در موادی بارز است که کلاً اتمها یا یونهایی با پوسته‌های بسته‌ی الکترونی تشکیل شده باشند، زیرا در این مواد تمام تأثیرات پارامغناطیسی حذف می‌شوند.
2-4-2-2 مواد پارامغناطیسمواد پارامغناطیس، موادی هستند که برخی از اتمها یا تمامی آن‌ها گشتاور دو قطبی دائمی دارند، به عبارت دیگر گشتاور دو قطبی در غیاب میدان مغناطیسی، غیرصفر است. این دو قطبیهای دائمی رفتاری مستقل از هم داشته که در نهایت جهت‌گیری تصادفی دارند و در میدان‌های کوچک رقابتی بین اثر هم‌خط‌سازی میدان و بی‌نظمی گرمایی وجود دارد، اما به طور متوسط تعداد گشتاورهای موازی با میدان بیشتر از گشتاورهای پادموازی با میدان است. پذیرفتاری در این مواد مثبت است و با افزایش دما، که در اثر آن بی‌نظمی گرمایی زیاد می‌شود، کاهش مییابد. منگنز، پلاتین، آلومینیوم، فلزخاکی قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت از جمله مواد پارامغناطیس‌اند.
2-4-2-3 مواد فرومغناطیس
در برخی از مواد مغناطیسی، گشتاورهای مغناطیسی کوچک به طور خودبهخود با گشتاورهای مجاور خود هم‌خط می‌شوند. اینگونه مواد را فرومغناطیس می‌نامند. در عمل، همه‌ی حوزه‌های مغناطیسی در یک ماده‌ی مغناطیسی در یک راستا قرار ندارند، بلکه این مواد از حوزه‌های بسیار کوچکی با ابعاد خیلی کمتر از میلیمتر تشکیل شده‌اند، به طوری که گشتاورهای مغناطیسی هر حوزه با حوزه‌های مجاور آن تفاوت دارد.
ممکن است سمتگیری و اندازه‌ی حوزه‌های مغناطیسی در یک ماده‌ی فرو مغناطیس به گونه‌ای باشد که در کل اثر یکدیگر را خنثی کنند و ماده در مجموع فاقد مغناطش است. اعمال میدان مغناطیسی خارجی بر حوزه‌های مغناطیسی سبب می‌شود که گشتاورهای مغناطیسی هر حوزه تحت تأثیر میدان قرار گرفته و جهت آن‌ها در جهت میدان خارجی متمایل شود. علاوه بر این حوزههایی که با میدان همسویند، رشد میکنند، یعنی حجم آن‌ها زیاد می‌شود و در نتیجه، حوزه‌هایی که سمتگیری آن‌ها نسبت به میدان مناسب نیست کوچک می‌شوند، مرز بین این حوزه‌ها جابجا می‌شود و در نتیجه ماده در مجموع خاصیت مغناطیسی پیدا می‌کند . پذیرفتاری مغناطیسی این مواد مثبت است. آهن، کبالت، نیکل و چندین عنصر قلیایی خاکی جز فرومغناطیس‌ها می‌باشند [23].
مواد فرومغناطیس دارای چند مشخصه‌ی اصلی به صورت زیر می‌باشند:
الف) مغناطش خودبه‌خودی و مغناطش در حضور میدان
ب) حساسیت مغناطش به دما
ج) مغناطش اشباع
د) منحنی پسماند
2-4-2-4 مواد پادفرومغناطیس
در مواد پادفرومغناطیس گشتاورهای مغناطیسی مجاور به صورت موازی، برابر و غیرهم راستا جهتگیری
می‌کنند. این مواد در غیاب میدان مغناطیسی دارای گشتاور صفرند. کروم و اکسیدهای آن ، جز مواد پادفرومغناطیس می‌باشند. چنین موادی معمولاً در دماهای پایین پادفرومغناطیساند. با افزایش دما ساختار نواحی مغناطیسی شکسته شده و ماده پارامغناطیسی می‌شود. این رفتار در مواد فرومغناطیس نیز اتفاق می‌افتد به این ترتیب که در این مواد پذیرفتاری مغناطیسی مواد مغناطیسی با افزایش دما به تدریج کاهش می‌یابد تا زمانی که ماده پادفرومغناطیس شود .
پذیرفتاری مغناطیسی این مواد عدد مثبت بسیار کوچک و نزدیک به صفر است. به دمایی که در آن ماده از حالت پادفرومغناطیس به فرومغناطیس گذار می‌کند، دمای نیل می‌گویند.
χ= CT+TN
که C ثابت کوری و TN دمای نیل است.
2-4-2-5 مواد فریمغناطیس
فریمغناطیس شکل خاصی از پادفرومغناطیس است که در آن گشتاورهای مغناطیسی در جهت موازی و عکس یکدیگر قرار گرفته‌اند، اما با یکدیگر برابر نیستند و به صورت کامل یکدیگر را حذف نمی‌کنند. در مقیاس ماکروسکوپی، مواد فریمغناطیس همانند فرومغناطیس بوده و دارای مغناطش خودبه‌خودی در زیر دمای کوری بوده و دارای منحنی پسماند می‌باشند[23و24]. شکل 2-2 فازهای مغناطیسی را نشان می‌دهد.

شکل 2-2 فازهای مغناطیسی، الف) پارامغناطیس، ب) فرومغناطیس، ج) پادفرومغناطیس، د) فری مغناطیس [24].
دو خاصیت مهم و کلیدی مواد مغناطیسی دمای کوری و هیستروسیس مغناطیسی است. جفت شدگی ‏تبادلی و بنابراین انرژی تبادلی هیسنبرگ مستقیماً با دمای کوری ‏‎(Tc)‎‏ مواد فرو و فریمغناطیس در ‏ارتباط است. در کمتر از دمای ‏Tc، ممان مغناطیسی همان جهت بلوروگرافی ویژه‌ی محور صفر این ‏مواد است. این محور در ‏نتیجه‌ی جفت‌شدگی این اسپین الکترون و ممنتوم زاویهای اوربیتال الکترون ایجاد می‌شود.
‏از آنجایی که مواد فرومغناطیسی مواد جالبی بر حسب کاربردهایشان هستند، خواص آن‌ها باید به ‏طور کمی اندازه‌گیری شود و حلقهی پسماند خواص مغناطیسی جالبی را در این مواد آشکار ‏می‌کند. یک حلقه‌ی پسماند را می‌توان با قراردادن نمونه در یک مغناطیس‌سنج و پاسخ ماده ‏‎(M,)‎‏ ‏به میدان مغناطیسی اعمالی ‏‎(H)‎‏ اندازه‌گیری کرد. چندین کمیت ممکن است از روی حلقه‌ی پسماند ‏به‌دست آید. ‏
اشباع مغناطیسی ‏‎(Ms)‎‏ یا اشباع مغناطیسی ویژه (‏s‏) مواردی‌اند که مقدار مغناطیسشدگی را وقتی ‏که همه دوقطبی‌ها در جهت میدان مغناطیسی اعمالی مرتب شده‌اند نشان می‌دهد.‏
مغناطیس باقیمانده ‏‎(Mr)‎‏ مغناطیسشدگی نمونه در میدان مغناطیسی صفر است و نیروی ‏بازدارندگی ‏‎(Hc)‎، نیرویی از میدان مغناطیسی است که برای تغییر مغناطیسشدگی باقیمانده نیاز است. ‏تغییر بایاس میدان ‏‎(HE)‎، مقدار جابجایی از مرکز حلقهی پسماند را نشان می‌دهد.‏
2-4-5 حلقه پسماندوقتی به یک ماده مغناطیسی، میدان مغناطیسی اعمال شود، مغناطش محیط سریع افزایش می‌یابد، با افزایش مقدار میدان اعمالی، شتاب افزایش و مغناطش کاهش می‌یابد، این کاهش شتاب ادامه می‌یابد تا مغناطش به مقدار اشباع خود Ms برسد [25].
تغییرات مغناطش مواد مغناطیسی در هنگام کاهش میدان، از رفتار قبلی خود تبعیت نمی‌کند، بلکه به خاطر ناهمسانگردی مغناطیسی در محیط، مقداری انرژی را در خود ذخیره می‌کنند. بنابراین وقتی میدان اعمالی در محیط صفر شود، مغناطش در ماده صفر نشده و دارای مقدار خاصی است که به آن مغناطش پسماند Mr گفته می‌شود. با کاهش بیشتر میدان به سمت مقادیر منفی، خاصیت مغناطیسی القا شده به تدریج کاهش می‌یابد و با رسیدن شدت میدان به یک مقدار منفی خواص مغناطیسی ماده کاملا از بین می‌رود. این میدان مغناطیس‌زدا را با Hc نشان می‌دهند و به نیروی ضد پسماند یا وادارندگی مغناطیسی معروف است. پسماند یا نیروی وادارنده عبارتست از میدان معکوسی که برای کاهش مغناطش به صفر نیاز است. با کاهش بیشتر شدت میدان، القای مغناطیسی منفی می‌شود و در نهایت به مقادیر اشباع منفی خود می‌تواند برسد. افزایش مجدد شدت میدان به سمت مقادیر مثبت، حلقه پسماند را مطابق شکل 2-3 کامل می‌کند. مغناطیس‌های دائمی غالبا در ربع دوم حلقه پسماند خود، مورد استفاده قرار می‌گیرند [26].

شکل 23 حلقه پسماند ماده فرو مغناطیس [26].
مواد مغناطیسی از نظر رفتار آن‌ها در میدان مغناطیس دو گروه تقسیم می‌شوند:
الف) مواد مغناطیس نرم
مواد مغناطیسی نرم با اعمال میدان مغناطیسی کوچک به راحتی مغناطیده می‌شود و با قطع میدان سریعاً گشتاور مغناطیسی خود را از دست می‌دهند. به عبارتی این مواد دارای نیروی وادارندگی پایین، اشباع مغناطیسی بالا و گشتاور پسماند پایین هستند.
مواد مغناطیس نرم در جاهایی که به تغییر سریع گشتاور مغناطیسی با اعمال میدان مغناطیسی کوچک نیاز است مانند موتورها، حسگرها، القاگرها و فیلترهای صوتی مورد استفاده قرار می‌گیرد.
ب) مواد مغناطیس سخت
مواد مغناطیس سخت موادی‌اند که به راحتی مواد مغناطیس نرم، مغناطیده نمی‌شوند و به میدان مغناطیسی اعمالی بزرگ‌تری جهت مغناطیده کردن آن‌ها نیاز است. این مواد گشتاور مغناطیسی را تا مدت‌ها پس از قطع میدان حفظ می‌کنند. همچنین دارای اشباع مغناطیسی، گشتاور پسماند و نیروی وادارندگی بالایی هستند. ساخت یا پخت این مواد در میدان مغناطیسی، ناهمسانگردی مغناطیسی را در این مواد افزایش می‌دهد که حرکت دیواره حوزه‌ها را سخت‌تر می‌کند و نیروی وادارندگی را افزایش می‌دهد. این امر می‌تواند تولید مادهی سخت مغناطیسی بهتری را تضمین کند. کاربرد این مواد در آهن‌رباهای دائمی و حافظه‌های مغناطیسی است [26].

شکل 24 حلقه پسماند در مواد فرومغناطیس نرم و سخت[26].
2-5 فریتفریت به آن دسته از مواد مغناطیسی اطلاق می‌شود که جزء اصلی تشکیل دهندهی آن‌ها اکسید آهن است و دارای خاصیت فریمغناطیس می باشند (آرایشی از فرومغناطیس) و پارامترهای مغناطیسی مطلوبی نظیر ضریب نفوذپذیری مغناطیسی بالا از جمله اصلی‌ترین خصیصه‌های آن‌ها به شمار می‌رود. بدین جهت کاربردهای بسیار وسیعی را در زمینه صنایع برق، الکترونیک، مخابرات، کامپیوتر و… به خود اختصاص داده‌اند.
یکی از انواع فریت‌ها نوع اسپینلی آن است، فریت‌های اسپینلی با فرمول عمومی 2-o2+A3+B که در آن 2+A و 3+B به ترتیب کاتیون‌های دو و سه ظرفیتی می‌یاشند.
فریت‌ها دارای خاصیت فریمغناطیس می‌باشند نظم مغناطیسی موجود در فریمغناطیس‌ها ناشی از برهم‌کنش‌های دو قطبی‌های مغناطیسی نیست بلکه ناشی از برهم‌کنش تبادلی است در برهمکنش تبادلی هم‌پوشانی اوربیتال‌های اتمی مد نظر می‌باشد در فریت‌ها برهم‌کنش تبادلی ناشی از هم‌پوشانی الکترون‌های اوربیتال d3 یون‌های A و B و الکترون‌های اوربیتالP 2 یون‌‎های اکسیژن است. و قدرت این بر‌هم‌کنش تبادلی است که خاصیت مغناطیسی نمونه را رقم می‌زند.
2-6 خلاصهدر این فصل به شیمی آئروژل و دو روش بالا به پایین و پایین به بالای تولید نانوذرات اشاره شد. سپس خاصیت مغناطیسی مواد و فاز‌های مغناطیسی ممکن برای مواد مغناطیسی بررسی شد. پس از آن توضیح کوتاهی در مورد حلقهی پسماند و موارد قابل اندازه‌گیری از آن گفته شد و در نهایت مختصری از مواد فریتی بیان گردید.
فصل سومساخت آئروژل و کاربردهای آن19509215088990
مقدمهسیلیکا آئروژل‌ها به دلیل ویژگی‌های منحصر به فرد، هم در علم و هم در تکنولوژی توجه زیادی را به خود اختصاص داده‌اند. آئروژل‌ها از پیشماده مولکولی با روش‌های مختلف و تکنیک‌های خشک کردن متفاوت برای جایگزینی منافذ مایع با گاز همراه با حفظ شبکهی جامد، تهیه می‌شوند. [27]
علی‌رغم تمامی تلاش‌های قابل توجهی که در این زمینه صورت گرفته است، چالش‌های اصلی تحت کنترل عوامل یکنواختی(همگنی)، بارگذاری، اندازه و توزیع نانوذرات در شبکه‌ی میزبان آلی باقی ماندهاست، در عوض این شبکه‌ی میزبان به طور مستقیم ویژگی‌های الکتریکی، نوری، مغناطیسی و کاتالیزوری مواد نانوکامپوزیت را حفظ می‌کند.
3-1 سنتز آئروژل با فرآیند سل-ژلتفاوت در ویژگی‌های شیمیایی پیش‌ماده‌ها برای فاز نانو (معمولاً نمک فلزی) و برای ماتریس آلی (عموماً الکوکسید‌ها) موضوع مهمی هستند، چرا که پارامترهای فرآیند سل-ژل بر روی هیدرولیز و چگالش هر کدام از این پیشماده‌ها تأثیر متفاوتی دارد [28]. هر چند این موضوع مساله‌ی مهمی در طراحی هر نانوکامپوزیت سل-ژل است اما در رابطه با آئروژل‌ها حیاتی‌تر می‌باشد، زیرا نیازمند جایگزین شدن حلال موجود در ژل (معمولاً اتانول یا متانول در الکوژل و آب در آکوژل) با تغییر حلال و در نهایت حذف کردن به وسیلهی استخراج حلال فوق بحرانی است. مرحله خشک کردن فوق بحرانی، بسته به این که الکل یا کربن دی اکسید به صورت فوق بحرانی تخلیه شود (به ترتیب نیازمند حرارتی در حدود 350 و 40 درجهی سانتیگراد است). این مرحله مسائل دیگری درباره حلالیت پیشماده‌ها و پایداری حرارتی در شرایط خشک کردن فوق بحرانی را مطرح می‌کند [29]. استراتژی‌های مختلف اتخاذ شده برای سنتر نانوکامپوزیت‌های آئروژل، بسته به اینکه فاز نانو (یا پیش‌مادهی آن) در حین یا بعد از فرآیند سل-ژل اضافه شود، دو رویکرد کلی دارند.
روش اول شامل هیدرولیز و ژل شدن نانوذرات و ماتریس پیشماده و ژل شدن ماتریس پیش‌ماده به همراه شکل‌گیری نانوذرات است. مزیت این روش تولید موادی با بارگذاری نانوذرات قابل کنترل است. از طرفی، چندین اشکال در مورد آن مطرح است. برای بهدست آوردن ژل دارای چند ترکیب همگن شرایط سنتز باید به صورت دقیق انتخاب شود و پیشماده‌های نانوذرات و همچنین عوامل پوشش دهی موردنیاز در شکل‌گیری نانوذرات کلوئیدی ممکن است بر سنتز سل-ژل ماتریس تأثیر بگذارد.
روش دوم شامل روش‌های مبتنی بر اضافه کردن فاز نانو بعد از فرآیند سل-ژل است و باید ساختار متخلخل و مورفولوژی ماتریس را حفظ کند. این روش‌ها شامل تلقیح فاز نانو با اشباع، ته‌نشینی و روش رسوبگذاری بخار شیمیایی می‌باشد. طرح‌واره روش‌های مختلف برای شیمی سنتز نانوکامپوزیت آئروژل در شکل 3-1 نشان داده شده است.
هرچند این روشها نیز دارای دو اشکال عمده هستند: یکی همگنی ضعیف ترکیب نانوکامپوزیت تولیدشده، دیگری ترد و شکننده بودن آئروژل‌ها. اتصال فلز در یک ماتریس با گروه‌های هماهنگ اصلاح شده است و غوطه‌ور کردن الکوژل و آکوژل در محلول قبل از خشک کردن فوق بحرانی، به ترتیب به عنوان راهحلهایی برای غلبه بر کاستی‌های گفته شده است. رسوب نانوذرات از فاز بخار، بر خلاف روش‌های تلقیح مرطوب، ماتریس متخلخل را تغییر نمیدهد و تضمین میکند که فاز مهمان در سراسر ماتریس توزیع خواهد شد [30].

شکل 3-1 طرح‌واره‌ای از روش‌های مختلف برای شیمی سنتز نانوکامپوزیت [33].
3-2 شکل‌گیری ژل خیسژل‌های سیلیکا به طور عمومی با هیدرولیز و واکنش چگالش پیشماده سیلیکا به‌دست می‌آیند. ماتریس سیلیکای نهایی متخلخل است و حفره‌های ژل با حلال جانبی هیدرولیز و واکنش پلیمریزه شدن پر شده است. اگر ترکیب محلول بهتواند از ژل خیس بدون سقوط قابل ملاحظه ساختار خارج شود، آئروژل شکل می‌گیرد [31].
روش سل-ژل شامل یک یا چند پیشماده سیلیکون است که متداول‌ترین آن‌ها TEOS و TMOS می‌باشند و داراری چهار گروه الکوکسید شناخته شده در آرایش چهار وجهی در اطراف اتم سیلیکون مرکزی است. واکنش هیدرولیز در چهار جهت اتفاق می‌افتد و منجر به پیوند Si-O-Si می‌شود و یک مادهی کپهای که ترکیبی از 2SiO را می‌دهد. اگر یکی از شاخه‌های الکوکسید اتم سیلیکون توسط گروه عاملی مختلفی که قادر نیست تحت واکنش چگالش قرار گیرد، جایگزین شود گروه عاملی با پیوند کووالانسی به اتم سیلیکون درون ماتریس ژل باقی خواهد ماند. الکوکسیدهای فلزی به راحتی با آب واکنش می‌دهد و بر حسب میزان آب و حضور کاتالیست، عمل هیدرولیز ممکن است کامل انجام شود.
ملکول‌های شکلگرفته آلی-فلزی به مرور زمان بزرگ می‌شوند و به صورت یک ساختار پیوسته در داخل مایع در می‌آیند. این ساختار پیوسته که حالت الاستیک دارد، ژل گفته می‌شود [32].
به طور کلی شکل‌گیری محلول پایدار الکوکسید یا پیشماده‌های فلزی حل شده مرحله اول فرآیند تهیه آئروژل است. این محلول همگن به‌دست آمده در مرحله دوم به علت وجود آب هیدرولیز شده و سل یکنواختی را ایجاد می‌کند. در مرحله سوم واکنش بسپارش ادامه پیدا می‌کند تا سل به ژل تبدیل شود. این مرحله، پیرسازی نیز گفته می‌شود. پس از آن مرحلهی نهایی که خشک کردن است باقی می‌ماند.
3-3 خشک کردن آلکوژلبعد از شکل‌گیری ژل توسط هیدرولیز و واکنش چگالش، شبکه Si-O-Si شکل می‌گیرد. بخش پیرسازی به تشدید شبکه ژل اشاره دارد؛ ممکن است چگالش بیشتر، تجزیه، و ته‌نشینی ذرات سل یا تبدیل فاز داخل فاز جامد یا مایع صورت گیرد. این نتایج در یک جامد متخلخل که حلال در آن گیر افتاده است اتفاق می‌افتد. فرآیند حذف حلال اصلی از ژل (که معمولاً آب و الکل است) را خشککردن می‌گویند. در طول فرآیند خشککردن، ترکخوردگی اتفاق می‌افتد به این دلیل که نیروی مویینگی در گذار مایع-گاز در داخل منافذ ریز وجود دارد. معادله لاپلاس در اینجا به کار می‌رود، هر چه شعاع مویینگی کوچک‌تر باشد، ارتفاع مایع بیشتر و فشار هیدروستاتیک بالاتر خواهد بود. هنگامی که انرژی سطح باعث بالا رفتن ستون مایع داخل مویرگ‌ها می‌شود، مقدار فشار سطحی داخل مویرگ قابل محاسبه است.
قطر حفره در ژل از مرتبهی نانومتر است، به طوری که مایع ژل فشار هیدروستاتیک بالایی را باید اعمال کند. هلال داخل حفره‌ها و نیروهای کشش سطحی سعی می‌کند تا ذرات را به عنوان مایع در حفره‌ها تبخیر کند. این نیروها می‌توانند به گونه‌ای عمل کنند که باعث سقوط حفره و ساختار شوند. بنابراین ژل‌ها با حفره‌های ریز زیاد تمایل به انقباض و ترک خوردن دارند [33]. سل ژلهایی که شیمی سطح آن‌ها اصلاح نشده (شکل3-2) و در شرایط محیط خشک شدند به علت این فروپاشی منافذ تا حدود یک هشتم حجم اولیهی خود کوچک میشوند؛ ماده حاصل زیروژل نامیده میشود. اگر این فرآیند خشککردن به آرامی رخ دهد، زیروژل یکپارچه سالم میتواند تولید شود. اما برای تولید یک آئروژل، باید از عبور از مرز فاز بخار-مایع اجتناب کرد.

شکل 3-2 اصلاح شیمی سطح ژل [34].
روشهای کنونی برای پرهیز از فروپاشی منافذ درساخت آئروژل را میتوان در سه تکنیک کلی دستهبندی کرد. هرکدام از این تکنیکها طراحی شدهاند تا نیروهای مویینگی ناشی از اثرات کشش سطحی را کاسته و یا حذف نمایند. این تکنیکها الف) خشک کردن در شرایط محیط پس از اصلاح سطح، ب) خشک کردن انجمادی و ج) خشک کردن فوق بحرانی است [34]. توضیح کلی درباره هرکدام از این تکنیکها در ادامه آمده است.
3-3-1 فرآیند‌های خشککردن در شرایط محیطاین تکنیکهای خشک کردن طراحی شدهاند تا ژل خیس را در فشار محیط خشک کنند. این روشها نیازمند فرآیندهای شیمیایی با تعویض طولانی مدت حلال برای کاهش نیروهای مویینگی وارد بر نانوساختار یا برای افزایش توانایی نانوساختار در تحمل این نیروهاست (یا با قویتر کردن ساختار و یا با منعطف‌تر ساختن آن). تغییر شیمی سطح ژل خیس بر پایه TEOS برای ارتقاع انقباض قابل برگشت با استفاده از تبادل حلال با هگزان به وسیله اصلاح سطح با فرآیند کاهش گروه سیلانولی با TMCS [35و36]. همچنین استفاده از پیری ژل در محلول الکل یا الکوکسید برای سفت شدن میکرو ساختار به منظور جلوگیری از فروپاشی منافذ است [37]. به علاوه ترکیبکردن شاخه‌های متقاطع سیلیکا آئروژل است که می‌تواند نیروهای مویینگی در حین خشک کردن تحت فشار محیط را تحمل نماید [38].
3-3-2 خشککردن انجمادیخشککردن انجمادی یک ژل خیس منجر به تولید کریوژل میشود. خشککردن انجمادی باعث تولید پودر آئروژل کدر می‌شود [39]. این تکنیک حلال اضافی را با تصعید حذف میکند. ژل خیس منجمد میشود و سپس حلال در فشار پایین تصعید میشود [40]. میکروبلور‌های منجمد که حین فرآیند خشککردن انجمادی شکل می‌گیرند منجر به آئروژل‌های ماکروحفره‌تری در مقایسه با روش استخراج فوق بحرانی میشوند [41].
3-3-3 خشک کردن فوق بحرانیروشهای استخراج فوق بحرانی از مرز بین مایع و بخار با بردن حلال به بالاتر از نقطه فوق بحرانی آن اجتناب می‌کند و سپس از ماتریس سل-ژل به عنوان یک مایع فوق بحرانی حذف می‌شود. در این حالت هیچ مرز مایع-بخاری وجود ندارد، بنابراین هیچ فشار مویینگی دیده نمی‌شود. شکل 3-3 چرخه فشار-دما در طول فرآیند فوق بحرانی را نشان می‌دهد. در عمل انواع متعددی از روشهای استخراج فوق بحرانی وجود دارد که شامل تکنیک‌هایی با دمای بالا، دمای پایین و سریع است.

شکل 3-3 چرخه فشار-دما در حین فرآیند خشک کردن فوق بحرانی [42].
تکنیک‌های استخراج فوق بحرانی الکل دمای بالا، ژل خیس را به حالت فوق بحرانی حلال (معمولاً متانول یا اتانول) در یک اتوکلاو و یا هر مخزن فشار دیگری می‌برد. این مستلزم فشارهای بالا حدود Mpa 8 و دماهای بالا حدود 260 درجهی سانتیگراد می‌باشد [42]. شکل 3-4 شماتیکی از دستگاه خشککن فوق بحرانی اتوکلاو را نشان می‌دهد.

شکل 3-4 شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو [42].
تکنیکهای استخراج فوق بحرانی دمای پایین بر اساس استخراج 2CO است که دمای نقطه بحرانی پایین‌تری نسبت به مخلوط الکل باقیمانده در منافذ سل-ژل بعد از پلیمریزاسیون دارد. این روش به تبادل حلال به طور سری نیازمند است، ابتدا حلال غیرقطبی و سپس با کربن دیاکسید مایع پیش از استخراج فوق بحرانی که می‌تواند در نقطه فوق بحرانی 2CO اتفاق بیافتد [43]. مزایای این تکنیک دمای بحرانی پایین‌تر و حلال پایدارتر است؛ هرچند مراحل اضافه شده به فرآیند سبب طولانی‌تر شدن زمان آمادهسازی آئروژل می‌شود. از آنجائیکه فشار بحرانی مورد نیاز نسبت به روشهای فوق بحرانی دما بالا تغییری چندانی ندارد (فشار بحرانی 2CO مشابه متانول و اتانول است)، این فرآیند نیز نیاز به استفاده از مخازن فشار دارد. به علاوه روند انتشار تبادل حلال وابسته به اندازهی ژل است.
تکنیکهای استخراج فوق بحرانی سریع از یک قالب محدود استفاده می‌کند، چه در مخزن فشار و چه در یک فشار داغ هیدرولیک قرار بگیرند. این تکنیکها فرآیندهای تک مرحله‌ای پیش‌ماده به آئروژل هستند و آئروژل را در کمتر از 3 ساعت بهدست می‌آورند. در این روش پیشماده‌های شیمیایی مایع و کاتالیست در یک قالب دو قسمتی ریخته می‌شوند سپس به سرعت گرم می‌شوند [44]. در ابتدا فشار با بستن دو بخش قالب با هم یا با اعمال فشار هیدروستاتیکی خارجی به جای مخازن فشار بزرگ‌تر یا با ترکیبی از این دو تنظیم می‌شود. زمانیکه نقطه فوق بحرانی الکل فرارسید، اجازه داده میشود تا مایع فوق بحرانی خارج شود [45]. برای مثال گوتیه و همکارانش [46] در روند انجام این فرآیند از یک فشار داغ هیدرولیکی برای مهروموم کردن و گرم کردن قالب حاوی مخلوط پیشماده آئروژل استفاده کردند. مخلوط مایع از پیشماده‌های آئروژل در یک قالب فلزی ریخته شد و سپس در فشار داغ قرار گرفت. در طول اجرا، فشار داغ برای مهروموم کردن ترکیب به جای قالب استفاده شد و یک نیروی باز دارندهی فشاری را فراهم کرد. سپس قالب و مخلوط به بالای دما و فشار فوق بحرانی متانول برده شد. در مدت زمان این فرآیند گرم کردن، پیشمادههای آئروژل واکنش نشان داده و یک ژل خیس نانوساختاری متخلخل را تشکیل داد. زمانیکه به حالت بحرانی رسید، فشار کاهش داده شد و مایع فوق بحرانی رها شد.
3-3-4 مقایسه روش‌هاهر یک از روش‌های ساخت آئروژل شرح داده شده در بالا، نقاط قوت و محدودیت‌هایی دارند. مقایسه مستقیم تکنیک‌های مختلف خشک کردن به علت دستورالعمل‌های پیشماده متفاوت، شرایط ژل شدن مختلف، و زمان پیر سازی، به خوبی روش‌های استخراج متفاوت هستند. برای مثال خشککردن فوق بحرانی دما پایین نیاز به زمان پیرسازی کافی دارد، به طوری که ژل‌ها می‌توانند از ظرف اولیه برای استخراج و تبادل حلال خارج شوند.
در فرآیند خشککردن سریع، عموما زمان پیرسازی کوتاه است؛ گرچه، دمای بالا در این فرآیند اثر مشخصی را روی روند واکنش چگالش دارد.
مزیت اصلی تکنیک‌های خشک کردن در فشار محیط، عدم نیاز به تجهیزات فشار بالا می باشد که گران قیمت و به طور بالقوه خطرناک است؛ اگرچه به مراحل پردازش چندگانه با تبادل حلال نیاز دارند. تا به حال مطالعات اندکی در رابطه با استفاده از روش‌های خشککردن انجمادی شده است. این تکنیک‌ها نیاز به تجهیزات خاصی برای رسیدن به دمای پایین لازم برای تصعید حلال و منجر شدن به پودر آئروژل، دارند.
محدودیت اصلی تکنیکهای فوق بحرانی دما بالا، رسیدن به دماهای بالای مورد نیاز برای دست یافتن به نقطه بحرانی حلال الکل و نیز ملاحظات ایمنی در بکار بردن مخزن فشار در این شرایط است.
روش استخراج دما پایین به طور گسترده در تولید آئروژل‌های یکپارچه کوچک تا بسیار بزرگ استفاده شده است، اگرچه می‌تواند روزها تا هفته‌ها تولید آن طول بکشد و مراحل چندگانه تبادل حلال مورد نیاز، آن را تبدیل به فرآیندی پیچیده کند و اتلاف قابل ملاحظه‌ای از حلال و 2CO ایجاد می‌کند. تکنیک‌های خشککردن سریع ساده‌تر و سریع‌تر است. تمامی فرآیند، بر خلاف مراحل چندگانه و مقیاس‌های زمانی در ابعاد روزها و ماهها در سایر روش‌ها، در یک مرحله انجام شده و می‌تواند در چند ساعت تکمیل شود. همچنین این روش‌ها اتلاف کمتری را به وجود می‌آورند. یک ایراد روش‌های خشککردن سریع، نیاز به دما و فشار بالاست [47].
3-4 مروری بر کارهای انجام شدهاگرچه میدانیم که این گزارش‌های جامعی از مقالات مرتبط با نانوکامپوزیت‌های آئروژل نیست، اما تأکید بر این مطلب است که چگونه ترکیب نانوذرات ممکن است احتمال استفاده از آئروژل‌ها را به عنوان مواد جدید افزایش دهد و چگونه مسیر آماده سازی مورد اطمینان برای به‌دست آوردن نانوکامپوزیت‌های آئروژل برای کاربرد خاص را انتخاب نماییم.
پس از آنکه کیستلر در سال 1931 برای اولین بار بدون درهم شکستن ساختار ژل، فاز مایع را از آن جدا کرد، در سال 1938 به مطالعه روی رسانایی گرمایی آئروژل و در سال 1943 درباره سطح ویژه آن‌ها به مطالعه پرداخت [48]. بعد از آن حدود نیمقرن دانشمندان علاقه‌ای به آئروژل‌ها نشان ندادند تا در اویل 1980 آئروژل به عرصه پژوهش بازگشت.
در سال 1992تیلسون و هاربش از TEOS به عنوان پیشمادهی سیلیکا ژل استفاده کردند و از میکروسکوپ الکترونی روبشی برای مشخصه‌یابی آن‌ها استفاده نمودند [49] و سپس هر ساله تحقیقات زیادی روی آئروژل‌ها صورت می‌گیرد.
در سال 2001 کاساس و همکارانش نانوکامپوزیت مغناطیسی را با ورود ذرات اکسید آهن در سیلیکا آئروژل میزبان سنتز کردند. این سنتز که به روش سل-ژل و با خشککردن فوق بحرانی متانول انجام شد، دو نمک آهن استفاده شد: O2H9.(3ON)Fe و O2H2.(EDTA)FeNa. در این پژوهش ارتباط واضحی بین پیشماده، آب و تخلخل و سطح ویژه آئروژل حاصل وجود داشت. استفاده از ترکیب EDTA به عنوان پیش‌مادهی نانوذرات، قطر میانگین حفره‌ها را افزایش داد، گرچه قابلیت حل پایین نمک EDTA در محلول یک مانع بزرگ برای رسیدن به آهن در این روش بود. مساحت سطح ویژه‌ی نمونه‌های کاساس بین /g2m 200 و /g2m 619 بهدست آمد و برخی نمونه‌ها رفتار پارامغناطیس و برخی دیگر رفتار مغناطیس نرم از خود نشان دادند [50].
در سال 2002 واگنر و همکارانش ذرات سیلیکا با هستهی مغناطیسی را با روش ته‌نشینی به‌دست آوردند [51]. و چند سال بعد در سال 2006 ژانگ و همکارانش ذرات پوسته‌ای هسته‌دار را با روش سل-ژل تهیه کردند. این ذرات شامل هستهی مغناطیسی فریت کبالت و پوستهی سیلیکا بودند که از TEOS به عنوان پیشمادهی سیلیکا استفاده کردند. پس از آنکه ژل‌ها به‌دست آمدند، در 110 درجهی سانتیگراد برای 4 ساعت در خلاء خشک شدند زیرا اگر در هوا خشک شوند احتمال ته‌نشینی بلور‌های اکسید وجود داشت. سپس به مدت 2 ساعت در دماهای مختلف برای به‌دست آوردن نانو بلور پراکنده در ماتریس سیلیکا حرارت داده شد. برای نمونه‌ی آن‌ها شکل‌گیری فاز فریت کبالت در دمای 800 درجهی سانتیگرادکامل شد و خوشه‌های فریت کبالت به سمت نانو بلوری شدن پیش رفتند، زمانی که برهم‌کنش بین خوشه‌های فریت کبالت با ماتریس سیلیکا شکسته شد پیوندهای Si-O-Fe ناپدید شدند. بر طبق گزارش آن‌ها اشباع مغناطیسی نانوکامپوزیت‌ها با افزایش غلظت بیشتر فریت در ماتریس افزایش یافت تا مقدار بیشینه emu/g 98/66 برای نمونه با نسبت مولی 1:1 (wt% 80 فریت کبالت) به‌دست آمد [52].
سیلوا و همکارانش در سال 2007 کامپوزیت ذرات فریت کبالت پخش شده در ماتریس سیلیکا را به روش سل-ژل تهیه کردند. آن‌ها از TEOS به عنوان پیشماده سیلیکا و از نیترات به عنوان پیش‌ماده فریت استفاده کردند. پس از گذشت زمان پیرسازی، نمونه برای 12 ساعت در 110 درجهی سانتیگراد خشک شدند و ذرات فریت کبالت در ماتریس سیلیکا شکل گرفتند. پس از آن عملیات حرارتی برای 2 ساعت در دماهای 300، 500، 700 و 900 درجهی سانتیگراد انجام شد که باعث افزایش در اندازهی ذرات شد. رسوب ذرات خوشه‌ای فریت در دیواره‌های منافذ زیروژل با افزایش دما بیشتر شد و در دماهای بالاتر از 700 درجهی سانتیگراد بلورهای بزرگ‌تر کبالت داخل منافذ ماتریس شکل گرفتند و افزایش در مغناطش اشباع و پسماند مغناطیسی را باعث شدند [53].
در همان سال فرناندز و همکارانش نانو کامپوزیت سیلیکا آئروژل/ آهن اکسید را با فرآیند سل-ژل و تبخیر فوق بحرانی حلال سنتز کردند. آن‌ها نمونه‌ها با پیشماده‌های TEOS و TMOS را با تبخیر فوق بحرانی اتانول و متانول خشک کردند. ذرات مغناطیسی با اندازهی متوسط nm 6 با TEOS و متانول سنتز شدند در حالی که فری‌هیدرات‌ها از TMOS و اتانول به‌دست آمدند. بعضی نمونه‌های آن‌ها رفتار ابر پارامغناطیس از خود نشان دادند [54].
دو سال بعد ژنفا زی و همکارانش نانوذرات فریت کبالت را به روش هم‌نهشت شیمیایی و خشک شدن در هوا در دمای80 درجهی سانتیگراد تهیه کردند. اندازهی قطر نانوذرات سنتز شده nm 20 تا nm 30 بود و دمای کوری در فرآیند افزایش دما کمتر از فرآیند کاهش دما بود. مقدار اشباع مغناطیسی این ذرات emu/g 77/61 بهدست آمد که نسبت که مقدار کپه آن کوچک‌تر بود. در این پژوهش مقدار پایین نیروی وادارندگی به دو دلیل اتفاق می‌افتد: ذرات فریت ممکن است ساختار چند دامنه داشته باشند. شکل‌گیری چند دامنه‌ها و حرکت دیوارهای دامنه می‌تواند کاهش دامنه را نتیجه دهد. همچنین اگر اندازهی بحرانی ذرات [55] بهدست آمده بزرگ‌تر از قطر میانگین ذرات باشد، رفتار تک دامنه را از خود نشان می‌دهند. آن‌ها گزارش کردند که کاهش وادارندگی نمونه‌ها به رفتار وابسته به اندازهی ذرات بستگی دارد [56].
بلازینسکی و همکارانش در پژوهشی که در سال 2013 انجام دادند، سیلیکا آئروژل را با روش سل-ژل و فرآیند فوق بحرانی تهیه کردند. آن‌ها دریافتند که روش خشک کردن فوق بحرانی مؤثرترین روش برای بهدست آوردن بهترین ویژگی این محصولات است. بدین منظور آن‌ها دستگاه خشک کن فوق بحرانی را برای خود ساختند که فشار و دما به طور دستی تنظیم می‌شد و مرحله مهم در آمادهسازی سیلیکا آئروژل‌ها بود. به این ترتیب آن‌ها سیلیکا آئروژل‌های شفاف با مساحت سطح ویژه بالا به‌دست آوردند [57].
در گزارشی دیگر در سال 2014 ساجیا و همکارانش پودر آمورف فریت کبالت را به روش سل-ژل تهیه کردند و این روش را بهترین روش تهیه نانوذرات عنوان کردند. آن‌ها دریافتند که عملیات حرارتی برای تجزیه کامل مقدار مواد آلی و نیترات حاضر در پودر آمورف لازم است. در این فرآیند برای جلوگیری از ته‌نشینی یا رسوبگذاری این واکنش اسید سیتریک به آن اضافه کردند و سپس مراحل خشک کردن و عملیات حرارتی انجام شد. پارامترهای عملیات حرارتی، مرحله نهایی در آماده‌سازی نانوذرات فریت کبالت بودند که بررسی شدند. ساختار اسپینل در همهی نمونه‌های آن‌ها شکل گرفته بود و هنگامی که ذرات شروع به رشد کردند ناخالصی‌ها حذف شد. ویژگی مغناطیسی مرتبط با رفتار فریمغناطیس این نمونه‌ها مقدار emu/g 62 برای اشباع مغناطیسی را نشان می‌دهد [58].
در جدیدترین پژوهشی که دربارهی آمادهسازی و ارزیابی نانوکامپوزیت سیلیکا آئروژل/فریت در سال 2014 صورت گرفته است، کاتاگر و همکارانش نانوذرات فریت را به روش ته‌نشینی آماده کردند و سپس TMOS را به آن اضافه نمودند. برای این کار آن‌ها O2H6. 2NiCl، O2H6. 3FeCl و 2ZnCl را با اضافه کردن آب مقطر حل کردند. PH محلول در رفلاکس 110 درجهی سانتیگراد به مدت 24 ساعت 13 تنظیم شده بود. با حذف NaOH که برای PH اضافه شده بود، و شستن مکرر با آب مقطر و اتانول نانوذرات نتیجه شدند. بعد از بهدست آمدن نانوذرات به طور مستقیم به TMOS اضافه شدند و 3NH و آب دیونیزه به عنوان کاتالیست برای تهیه سل همگن اضافه گردیدند. برای مرحله پیر سازی قالب‌های حاوی سل را در اتانول به مدت 2 ساعت و دمای 50 درجهی سانتیگراد پیرسازی کردند و در نهایت ژل خیس را با خشک کردن فوق بحرانی کربن دی اکسید بهدست آوردند. تحقیقات آن‌ها نشان داد که زمان ژل شدن با افزایش نسبت مولی اتانول/TMOS افزایش یافت. همچنین به دلیل کشش سطحی اتانول، نمونه‌ها منقبض می‌شوند یا ترک می‌خورند. نانوکامپوزیت به‌دست آمده ساختار اسکلت شبکه‌ی سه بعدی را حفظ کرد. مساحت سطح ویژه با افزایش مقدار فریت از /g2m 700 تا /g2m 300 تغییر کرد. به علاوه ویژگی مغناطیسی فریت در ساختار نانو کامپوزیت تغییر نکرد [59].
3-5 برخی از کاربردهای آئروژل3-5-1 آئروژل‌ها به عنوان کامپوزیتهمانطور که پیشمادهی الکوکسید سیلیکون برای شکل‌گیری شبکه‌ی ژل با اکسیدهای فلزی دیگر به اندازه‌ی کافی واکنشی است، مطالعات زیادی در زمینه سنتز سیلیکا آئروژل برای کاربردهای مختلف صورت گرفته است [1].
3-5-2 آئروژل‌ها به عنوان جاذبآئروژل‌های فوق آبگریز و انعطافپذیر برای در جذب حلال‌های معدنی و روغن‌ها سنتز شدند. ونکاتشوارا رائو و همکارانش چگالی جذب و واجذب سیلیکا آئروژل‌های فوق آبگریز را با استفاده از یازده حلال و سه روغن بررسی کردند [60].
3-5-3 آئروژل‌ها به عنوان حسگرآئروژل‌ها تخلخل بالا، حفره‌های در دسترس، و سطح در معرض بالا دارند. از این رو کاندیداهای خوبی برای استفاده به عنوان حسگر هستند.بر اساس مطالعه وانگ و همکارانش روی آئروژل لایه‌ی نازک نانوذرات سیلیکا آئروژل نشان داد که مقاومت الکتریکی به طور قابل ملاحظه‌ای با افزایش رطوبت کاهش یافت. زیروژل همان مواد حساسیت کم‌تری را نشان داد. آئروژل‌هایی که اصلاح سطح شدند در مقایسه با آئروژل‌های آب‌گریز کمتر تحت تأثیر رطوبت قرار گرفتند و می‌توانند به عنوان ضد زنگ و عوامل آب‌گریز مورد استفاده قرار بگیرند [61].
چن و همکارش آئروژل‌هایی را برای کاربرد حسگرهای زیستی مطالعه کردند. در مطالعه آن‌ها، آئروژل‌های مزوحفره به وسیله پلیمریزاسیون سل-ژل با یک مایع یونی به عنوان حلال تهیه کردند. نتایج نشان می‌دهدکه آئروژل آماده شده می‌تواند به عنوان یک بسترشناسایی برای اسید نوکلوئیدها به کار رود [62].
3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایینلایه نازک‌های آئروژل 2SiO توجه خاصی را به خود اختصاص داد، به دلیل ثابت دی الکتریک خیلی پایین، تخلخل و پایداری حرارتی بالا. پارک و همکارانش لایه نازک سیلیکا آئروژل را برای لایهی داخلی دی الکتریک مورد بررسی قرار دادند و ثابت دی الکتریک را تقریبا 9/1 اندازه‌گیری کردند. آن‌ها ثابت دی الکتریک بسیار پایین فیلم‌های آئروژل را برای لایهی داخلی مواد دی الکتریک تولید کردند. فیلم های سیلیکا آئروژل به ضخامت Å 9500، % 5/79 تخلخل، و ثابت دی الکتریک پایین 2 با روش فرآیند خشک کردن محیط با استفاده از n-هپتان به عنوان حلال خشک کن به‌دست آوردند [63].
3-5-5 آئروژل به عنوان کاتالیزورمساحت سطح ویژه‌ی بالای آئروژل‌ها منجر به کاربردهای زیادی می‌شود، از جمله جاذب شیمیایی برای پاکسازی نشتی. این ویژگی کاربرد زیادی را به عنوان کاتالیزور یا حامل کاتالیزور به همراه دارد. آئروژل‌ها در کاتالیست‌های همگن مناسب هستند، زمانی که واکنش‌دهنده‌ها هم در فاز مایع و هم در فاز گاز هستند [27].
3-5-6 آئروژل به عنوان ذخیره سازیتخلخل بالا و مساحت سطح زیاد سیلیکا آئروژل‌ها می‌تواند برای کاربردهایی مثل فیلترهای گازی، جذب رسانهای برای کنترل اتلاف، محصور سازی، ذخیره سوخت هیدروژن به کار رود. آئروژل‌ها می‌توانند در مقابل تنش گذار مایع/گاز مقاومت کنند زیرا بافت آنها در طول پخت تقویت شد به عنوان مثال در ذخیره سازی، انتقال مایعات چون سوخت موشک‌ها کار برد دارد. به علاوه وزن پایین آئروژل‌ها بزرگ‌ترین مزیت است که در سیستم حمل دارو به دلیل ویژگی زیست سازگار آن‌ها مورد استفاده است [64]. کربن آئروژل‌ها در ساخت الکتروشیمی ابر خازن دو لایه کوچک استفاده شد. ابر خازن‌های آئروژل مقاومت ظاهری پایینی در مقایسه با ابر خازن‌های معمولی دارد و می‌تواند جریان بالا را تولید یا جذب کند.
3-5-7 آئروژل‌ها به عنوان قالبفیلم‌های سیلیکا آئروژل برای سلول‌های خورشیدی رنگ حساس استفاده شدند. مساحت سطح ویژه‌ی فیلم‌های آئروژل روی فیلم‌های شیشه‌ای رسانا تهیه شدند. نشست لایه اتمی برای پوشش قالب آئروژل با ضخامت‌های مختلف 2TiO با دقت کمتر از نانومتر انجام شد. غشاء آئروژل پوشش داده شده با 2TiO در سلول خورشیدی رنگ حساس گنجانیده شد. طول نفوذ شارژ با افزایش ضخامت 2TiO افزایش یافت که منجر به افزایش جریان شد [65].
3-5-8 آئروژل به عنوان عایق گرماجدای از تخلخل بالا و چگالی پایین یکی از جذاب‌ترین ویژگی‌های آئروژل رسانندگی گرمایی پایین آن‌ها است، علاوه بر این، از یک شبکه‌ی سه بعدی با ذرات ریز متصل شده تشکیل شده‌اند. بنابراین انتقال گرما از میان بخش جامد آئروژل‌ها از طریق مسیر پر پیچ و خمی است. فضای اشغال نشده در یک جامد توسط آئروژل به طور معمول با هوا پر شده مگر آن که تحت خلاء مهروموم شده باشد. این گازها می‌توانند انرژی حرارتی را از طریق آئروژل انتقال دهند. حفره‌های آئروژل باز هستند و اجازه عبور گاز از میان مواد را می‌دهند [27].
3-5-9 آئروژل‌ها در کاربرد فضاییناسا از آئروژل‌ها برای به دام انداختن ذرات گرد و غبار روی فضاپیما استفاده کرد. ذرات در برخورد با جامد اسیر شده، گازها تبخیر می‌شوند و ذرات در آئروژل به دام می‌افتند [27].
جدول 3-1 کاربردهای مختلف آئروژل‌ها را به طور مختصر نشان می‌دهد.
3-6 خلاصهدر این فصل پس از مقدمه‌ی کوتاه، اندکی در مورد سنتز آئروژل با روش سل-ژل گفته شد. پس از آن فرآیند‌های لازم برای شکل‌گیری ژل بیان شد و سپس تکنیک‌های مختلف خشک کردن و شرایط لازم برای این کار با مختصری توضیح نوشته شد. بعد مروری کوتاه به برخی از تلاش‌های انجام شده در این زمینه داشتیم و در آخر برخی از کاربردهای مختلف آئروژل‌ها را با ذکر مثال درج شد.
جدول 3-1 کاربردهای مختلف آئروژل‌ها [27].
خاصیت ویژگی کاربرد
رسانایی الکتریکی بهترین جامد عایق
شفاف
مقاومت در برابر درجه حرارت بالا
سبک ساخت و ساز ساختمآن‌ها و عایقبندی لوازم خانگی
ذخیره سازی
ماشین، وسیله نقلیه فضایی
دستگاه‌های خورشیدی
چگالی/تخلخل سبک‌ترین جامد مصنوعی
سطح ویژه_ی بالا
کامپوزیت‌های چندگانه کاتالیزور
حسگر
ذخیرهی سوخت
تبادل یون
فیلترهای آلاینده‌های گازی
اهداف ICF
حامل رنگ‌دانه
قالب
اپتیکی شفافیت
شاخص بازتاب پایین
کامپوزیت‌های چندگانه اپتیک سبک وزن
آشکارسازهای چرنکوف
راهنماهای نوری
عایق صوتی سرعت صوت پایین اتاق‌های ضد صدا
تطبیق مقاومت ظاهری صوتی در التراسونیک
مکانیکی الاستیک
سبک جاذب انرژی
تله برای ذرات سرعت بالا
الکتریکی ثابت دی الکتریک پایین
قدرت دی الکتریک بالا

user8290

4-16. جذب و واجذب الف) 10%، ب) 15% و ج) 20%.72
4-17. حلقه پسماند نمونه‌ها قبل از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.74
4-18. حلقه پسماند نمونه‌ها بعد از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.75

فهرست جداول
عنوان صفحه
فصل سوم - ساخت آئروژل و کاربردهای آن
3-1. کاربردهای مختلف آئروژل‌ها48
TOC o "1-3" h z u
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. میزان گرم و لیتر مواد مورد نیاز51
4-2. نتایج حاصل از XRD63
لیست علایم و اختصارات
برونر، امت، تلر(Brunauer, Emmett, Teller) BET
پراش پرتو ایکس (X-Ray Diffraction) XRD
مغناطیسسنج نمونهی ارتعاشی (Vibrating Sample Magnetometer) VSM
میکروسکوپ الکترونی گسیل میدانی (Field Emission Scanning Electron Microscopy) FE-SEM
میکروسکوپ الکترونی عبوری (Transmission Electron Microscopy) TEM
آنگسترم (Angestrom) Å
اورستد (Oersted) Oe
نانومتر (Nanometer) nm
واحد مغناطیسی (Electromagnetic Units) emu
فصل اولمفاهیم اولیه1854668136024
مقدمهاز اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.
در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شدهاست. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتیمتر به اندازه‌هایی در حدود یک دهم نانومتر یا کمتر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [1].
1-1 شاخه‌های فناوری نانوتفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهمترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و میتوانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعهای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [4].
1-2 روش‌های ساخت نانوساختارهاتولید و بهینهسازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [6 و5]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی و رشد خود به خودی. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:
 چگالش بخار
 سنتز شیمیایی
 فرآیندهای حالت جامد (خردایشی)
 استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
 استفاده از امواج ماکروویو و امواج مافوق صوت
 استفاده از باکتری‌هایی که میتوانند نانوذرات مغناطیسی و نقره‌ای تولید کنند
پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکشدهی یا اصلاح شیمیایی نیز استفاده کرد [7].
1-3 کاربردهای نانوساختارهایکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.
با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشهها، عمر آن‌ها را نیز چندین برابر نمودهاست .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوششهای سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با استفاده از نانوذرات تولید شده‌اند.
وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیشماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفته‌اند. هاروتا و تامسون اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [7].
1-4 مواد نانومتخلخلمواد نانو متخلخل دارای حفره‌هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن‌ها را فضای خالی تشکیل می‌دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی زیاد، گزینشپذیری خوب و مقاومت گرمایی و صوتی از ویژگی‌های مهم آن‌ها می‌باشد. با توجه به ویژگی‎‌های ساختاری، این به عنوان تبادل‌گر یونی، جدا کننده، کاتالیزور، حس‌گر، غشا و مواد عایق استفاده می‌شود.
نسبت حجمی فضای خالی ماده‌ی متخلخل به حجم کل ماده‌ تخلخل نامیده میشود. به موادی که تخلخل آن‌ها بین 2/0 تا 95/0 باشد نیز مواد متخلخل می‌گویند. حفره‌ای که متصل به سطح آزاد ماده است حفره‌ی باز نام دارد که برای صاف کردن غشا، جداسازی و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی (جداسازی مواد با استفاده از رنگ آن‌ها) مناسب است. به حفره‌ای که دور از سطح آزاد ماده است حفره‌ی بسته می‌گویند که وجود آن‌ها تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره‌ها دارای اشکال گوناگونی همچون کروی، استوانهای، شیاری، قیفی شکل و یا آرایش شش گوش هستند. همچنین تخلخل‌ها می‌توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [7].
بر اساس دستهبندی که توسط آیوپاک صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفره‌ها، مواد سازنده و نظم ساختار به سه گروه تقسیمبندی میشوند که در شکل 1-1 نشان داده شده است:
الف) دسته بندی بر اساس اندازهی حفره:
میکرومتخلخل: دارای حفرههایی با قطر کمتر از 2 نانومتر.
مزومتخلخل: دارای حفرههایی با قطر 2 تا 50 نانومتر.
right59626500ماکرومتخلخل: دارای حفرههایی با قطر بیش از 50 نانومتر.
center1720850شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].
0شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].

بر اساس شکل و موقعیت حفره‌ها نسبت به یکدیگر در داخل مواد متخلخل، حفره‌ها به چهار دسته تقسیم می‌شود: حفره‌های راه به راه، حفره‌های کور، حفره‌های بسته و حفره‌های متصل به هم که در شکل (2-1) به صورت شماتیک این حفره‌ها را نشان داده شده است.

شکل 1-2 نوع تخلخل‌ها بر اساس شکل و موقعیت [8].
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل را برای موادی که دارای حفرههایی با قطر کمتر از 100 نانومتر هستند به کار می‌برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.
ب) دستهبندی بر‌اساس مواد تشکیل دهنده:
مواد نانومتخلخل آلی
مواد نانومتخلخل معدنی
تقسیمبندی مواد نانومتخلخل آلی
1) مواد کربنی: کربن فعال، کربنی است که حفره‌های بسیار زیاد دارد و مهم‌ترین کربن از دسته مواد میکرومتخلخل است.
2) مواد بسپاری: مواد نانو متخلخل بسپاری به دلیل ساختار انعطاف‌پذیر خود، حفره‌های پایداری ندارند و تنها چند ترکیب محدود از این نوع وجود دارد [8].
تقسیم بندی مواد نانومتخلخل معدنی
1) مواد میکرومتخلخل
زئولیت‌ها: مهم‌ترین ترکیبات میکرومتخلخل بوده که دارای ساختار منظم بلوری و حفره‌دار با بار ذاتی منفی می‌باشند. در اکثر موارد ساختار زئولیتی از قطعات چهار وجهی با چهار اتم اکسیژن و یک اتم مرکزی مثل آلومینیوم، سیلیکون، گالیم یا فسفر تشکیل شده‌اند که با کاتیون‌ها خنثی می‌شوند [8].
چارچوب فلزی-آلی: از واحد‌های یونی فلزی یا خوشه‌ی معدنی و گروه‌های آلی به عنوان اتصالدهنده تشکیل شده است که اتصال آن‌ها به هم، حفره‌ای با شکلی معین مانند کره یا هشت وجهی به وجود می‌آورد. ویژگی بارز این ترکیبات، چگالی کم و سطح ویژه‌ی بالای آن‌هاست [9].
هیبرید‌های آلی-معدنی: از قطعاتی معدنی تشکیل شده‌اند که توسط واحد‌های آلی به هم متصل هستند [10].
2) مواد مزومتخلخل:
سیلیکا: ترکیبات MCM، معروف‌ترین سیلیکای مزومتخلخل هستند.
اکسید فلزات و سایر ترکیبات مزومتخلخل: اکسیدهای نانومتخلخل فلزات مثل تیتانیوم دی اکسید، روی اکسید، زیرکونیوم دی اکسید و آلومینا، فعالیتی بیشتر از حالت معمولی خود دارند. ترکیبات سولفید و نیترید هم میتوانند ساختار مزومتخلخل داشته باشند.
3) مواد ماکرومتخلخل:
بلور کلوییدی: از مجموعه کره‌هایی مانند سیلیکا ساخته می‌شود که فضای بین آن‌ها خالی است. در بلور کلوییدی معکوس کره‌ها توخالی و فضای بین آن‌ها پر است [10].
آئروژل‌ها مواد مزومتخلخل با سطح ویژه و حجم تخلخل بالا هستند که در فصل بعد به آن‌ها می‌پردازیم.
1-5 کامپوزیت‌هاکامپوزیت‌ها (مواد چند رسانهای یا کاهگل‌های عصر جدید) رده‌ای از مواد پیشرفته هستند که در آن‌ها از ترکیب مواد ساده به منظور ایجاد مواد جدیدی با خواص مکانیکی و فیزیکی برتر استفاده شده است. اجزای تشکیلدهنده ویژگی‌های خود را حفظ کرده، در یکدیگر حل نشده و با هم ترکیب نمی‌شوند.
استفاده از این مواد در طول تاریخ مرسوم بوده است. از اولین کامپوزیت‌ها یا چندسازه‌های ساخت بشر می‌توان به آجرهای گلی که در ساخت آن‌ها از کاه استفاده شده است اشاره کرد. هنگامی که این دو با هم مخلوط بشوند، در نهایت آجر پخته بهدست می‌آید که بسیار ماندگار‌تر و مقاوم‌تر از هر دو ماده اولیه، یعنی کاه و گل است. شاید هم اولین کامپوزیت‌ها را مصری‌ها ساخته باشند که در قایق‌هایشان به چوب بدنه قایق مقداری پارچه می‌آمیختند تا در اثر خیس شدن، آب توسط پارچه جذب شده و چوب باد نکند. قایق‌هایی که سرخپوستان با فیبر و بامبو می‌ساختند و تنورهایی که از گل، پودر شیشه و پشم ساخته می‌شدند از نخستین کامپوزیت‌ها هستند [11].
1-5-1 کامپوزیت یا مواد چندسازهچندسازه‌ها به موادی گفته می‌شود که از مخلوط دو یا چند عنصر با فازهای کاملا متمایز ساخته شده باشند. در مقیاس ماکروسکوپیک فازها غیر قابل تشخیص‌اند. اما در مقیاس‌های میکروسکوپیک فازها کاملا مجزا هستند و هر فاز خصوصیات عنصر خالص را نمایش می‌دهد. در چندسازه‌ها، نه تنها خواص هر یک از اجزاء باقی مانده بلکه در نتیجهی پیوستن آن‌ها به یکدیگر، خواص جدیدتر و بهتر بهدست می‌آید [11].
1-5-2 ویژگی‌های مواد کامپوزیتیمواد زیادی می‌توانند در دسته‌بندی مواد کامپوزیتی قرار بگیرند، در واقع موادی که در مقیاس میکروسکوپی قابل شناسایی بوده و دارای فازهای متفاوت و متمایز باشند در این دسته‌بندی قرار می‌گیرند. امروزه کامپوزیت‌ها به علت وزن کم و استحکام بالا در صنایع مختلف، به طور گستره‌ای مورد استفاده واقع می‌شوند. کامپوزیت‌ها با کاهش وزن و ویژگی‌های فیزیکی بسیار عالی، گزینه‌ای مناسب برای استفاده در تجهیزات ساختاری می‌باشند. علاوه بر ‌این، کامپوزیت‌ها جایگزین مناسب برای مواد سنتی در کاربردهای صنعتی، معماری، حمل و نقل و حتی در کاربردهای زیر بنایی می‌باشد [12].
یکی از ویژگی‌های بارز کامپوزیت‌ها، حضور فاز تقویـتکننده مجزا از فاز زمینه می‌باشد. ویژگی‌های اختصاصی این دو فاز، در ترکیب با یکدیگر، ویژگی‌های یکسانی را به کل کامپوزیت می‌بخشد. در یک دسته‌بندی ویژه، کامپوزیت‌ها همواره به دو فاز زمینه و تقویتکننده تقسیم می‌شوند. می‌توان گفت در واقع زمینه مانند چسبی است که تقویتکننده‌ها را به یکدیگر چسبانده و آن‌ها را از آثار محیطی حفظ می‌کند.
1-5-3 مواد زمینه کامپوزیتزمینه با محصور کردن فاز تقویت کننده، باعث افزایش توزیع بار بر روی کامپوزیت می‌گردد. در واقع زمینه، برای اتصال ذرات تقویتکننده، انتقال بارها به تقویتکننده، تهیه یک ساختار شبکه‌ای شکل از آن‌ها و حفظ تقویتکننده از آثار محیطی ناسازگار به کار گرفته می‌شود.
1-5-4 تقویتکننده‌هادسته‌ای از مواد معمولی که به عنوان فاز تقویت کننده به کار گرفته می‌شوند، عبارتند از شیشه‌ها، فلزات، پلیمرها و گرانیت. تقویتکننده‌ها در شکل‌های مختلفی از جمله فیبرهای پیوسته، فیبرهای کوتاه یا ویسکرها و ذرات تولید می‌شوند (شکل3-3). تقویت کننده‌ها باعث ایجاد ویژگی‌های مطلوبی از جمله استحکام و مدول بالا، وزن کم، مقاومت محیطی مناسب، کشیدگی خوب، هزینه کم، در دسترسپذیری مناسب و سادگی ساخت کامپوزیت می‌گردند [12].
1-5-5 نانو کامپوزیتنانو کامپوزیت‌ها مواد مرکبی هستند که ابعاد یکی از اجزای تشکیلدهنده آن‌ها در محدوده نانو‌متری باشد. نانوکامپوزیت‌ها هم، در دو فاز تشکیل می‌شود. در فاز اول، ساختار بلوری در ابعاد نانو ساخته می‌شود که زمینه کامپوزیت به شمار می‌رود. در فاز دوم هم ذراتی در مقیاس نانو به عنوان تقویت کننده برای بهبود ویژگی‌ها به فاز زمینه افزوده می‌شود. توزیع یکنواخت این فاز در ماده زمینه باعث می‌شود که فصل مشترک ماده تقویت کننده با ماده زمینه در واحد حجم، مساحت بالایی داشته باشد [13].

شکل 1-3 نمایشی از انواع مختلف تقویت کننده‌ها در کامپوزیت [12].
1-6 خلاصهدر این فصل به بیان بعضی مفاهیم اولیه پرداختهشد. خلاصه کوتاهی از فناوری نانو، نانوساختارها و روش‌های ساخت آن‌ها گفته شد. بعد از آن مواد متخلخل بررسی شد و در نهایت مختصری در مورد کامپوزیت‌ها، ویژگی‌ها و نانوکامپوزیت‌ها بیان شد.
فصل دومآئروژلها و مروری بر خواص مغناطیسی15418474142773
2-1 تاریخچهحوزهی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص دادهاست.
اولین بار ساموئل استفان کیستلر در سال 1931 با ایدهی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارجکرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبهکند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیمقرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].
در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطهی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیهی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].
این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلیگرم بر سانتیمتر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].
آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آیندهی محیط زیست توسط گاز‌های گلخانهای تولید شده بهدست بشر را تأیید می‌کند. آیندهی انرژی‌های قابل دسترس به خاطر کمشدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازدهی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریبنشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعهی بیشتری نیاز دارد [17].
2-2 شیمی سطح آئروژلسیلیکا آئروژل حاوی ذرات نانومتری هستند. این ترکیبات دارای نسبت سطح به حجم بالا و مساحت سطح ویژهی زیادی هستند. شیمی سطح داخلی در آئروژل‌ها نقش اساسی را در بروز رفتار‌های بی‌نظیر فیزیکی و شیمیایی آن‌ها، ایفا می‌کند. ماهیت سطح آئروژل‌ها تا حد زیادی به شرایط تهیهی آن‌ها بستگی دارد. انتخاب فرآیند مربوط به ترکیبات شیمیایی و ویژگی‌های مورد نظر مشخص برای نانوذرات وابسته است. دو روش پایه برای تولید نانوذرات استفاده می‌شود:
روش از بالا به پایین
اشاره به خردکردن مکانیکی مواد با استفاده از فرآیند آسیابکاری دارد. در این فرآیند مواد اولیه به بلوک‌های پایهی بیشتری شکسته می‌شوند.
روش پایین به بالا
اشاره به ساخت سیستم پیچیده به وسیله ترکیب اجزای سطح اتم دارد. در این فرآیند ساختارها به وسیله فرآیندهای شیمیایی ساخته می‌شوند.
روش پایین به بالا بر پایه ویژگی‌های فیزیکی و شیمیایی اتمی یا مولکولی خود تنظیم می‌شوند. این روش به دلیل ساختار پیچیده اتم یا مولکول، کنترل بهتر اندازه و شکل آن‌ها انتخاب شد. روش پایین به بالا شامل فرآیندهای آئروسل، واکنش‌های بارش و فرآیند سل-ژل است [18].
مرحله اول ساختن آئروژل تولید ژل خیس است که بهترین روش برای ساخت آن استفاده از پیشماده الکوکسید سیلیکون، مانند TEOS است. شیمی ساخت Si(OCH2CH3)TEOS است که با اضافه کردن آب، واکنش شیمیایی زیر صورت می‌گیرد [19] :
Si(OCH2CH3)4(liq)+2(H2O)(liq)→SiO2solid+4(HOCH2CH3)liq
اتم سلیکون به دلیل داشتن بار جزئی مثبت کاهشیافته (+) نسبت به دیگر انواع آئروژل بیشتر مورد مطالعه قرار گرفت. در Si(OEt)+ حدود 32/0 است. این بار مثبت جزئی کاهش یافته، روند ژل شدن پیشماده سیلیکا را آهسته می‌کند.
پیشمادهی الکوکسید M(OR) هستندکه اولین بار توسط امبلن برای سنتز سیلیکا آئروژل استفاده شد. در این ترکیب M نشان دهندهی گروه فلزی، OR گروه الکوکسید و R تعیینکنندهی گروه الکلی هستند. الکوکسیدها معمولا در محلول منبع الکلی خود موجود هستند و امکان خشک کردن این ژل‌ها را در چنین محلول‌هایی فراهم می‌کند [20].
اگر آئروژل از طریق خشک کردن به وسیله الکل تهیه گردد، گروه‌های آلکوکسی (OR) تشکیل دهنده سطح آن است و در این سطح آئروژل خاصیت آبگریزی پیدا می‌کند. اگر تهیه آئروژل از طریق فرآیند دی اکسید کربن باشد آنگاه سطح آئروژل را گروه‌های هیدروکسید (OH) فرا می‌گیرد و خاصیت آب‌دوست پیدا خواهدکرد و مستقیما می‌تواند رطوبت هوا را جذب نماید. البته با حرارت دادن می‌توان رطوبت جذب شده را از ساختار آئروژل حذف نمود. شکل 1-2 به خوبی خاصیت آب‌دوست و آبگریزی را در ساختار آئروژل‌های با گروه‌های عاملی مختلف نشان می‌دهد [21].

شکل 2-1 برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست [18].
2-3 تئوری فیزیکیاتصال شبکه نانو مقیاس سیلیکای جامد آئروژل‌های پایه سیلیکا، ویژگی‌های منحصر به فردی را به آن‌ها می‌دهد. کسر یونی پیوند کووالانت قطبی برای اکسیدهای فلزی مختلف از رابطهی زیر نتیجه می‌شود:
Fionic=1-exp⁡(-0.25 XM-XO2)که XO و XM الکترون‌خواهی O و M را نشان می‌دهد. 2SiO مقدار Fionic 54/0 دارد که طیف مقدار زاویه Si-O-Si را گسترده کرده و شبکه تصادفی را می‌دهد. چهار اکسید دیگر زاویه یونی بزرگ‌تر و مقدار کوچک‌تر زاویه پیوند را سبب می‌شوند. به این معنی که پیوند تصادفی فقط روی ماکرومقیاس‌های بیشتر با ذرات کلوییدی بزرگ‌تر و متراکم‌تر اتفاق می‌افتد، در این صورت، ژل به جای شکلگرفتن شبکهی تصادفی اتصالات به صورت ذره تشکیل می‌شود [14]. شبکهی اتصالات سیلیکا برای وزن نسبی‌اش یک جامد محکم را ایجاد می‌کند.
2-4 خاصیت مغناطیسی مواد2-4-1 منشأ خاصیت مغناطیسی موادیکی از مهمترین ویژگی‌های مواد، خاصیت مغناطیسی آن‌هاست که از زمآن‌های نسبتا دور مورد توجه بوده و هم اکنون نیز در طیف وسیعی از کاربردهای صنعتی قرار گرفته است.
منشأ خاصیت مغناطیسی در جامدها، الکترون‌های متحرک می‌باشند. گرچه بعضی از هسته‌های اتمی دارای گشتاور دو قطبی مغناطیسی دائمی هستند ولی اثر آن‌ها چنان ضعیف است که نمی‌تواند آثار قابل ملاحظه‌ای داشته باشد؛ مگر در تحت شرایط خاص مانند اینکه نمونه در زیر دمای یک درجهی کلوین قرار گیرد یا وقتی که تحت میدان الکترومغناطیسی با بسامدی قرار گیرد که حرکت تقدیمی هسته را تشدید نماید. در بدو ظهور نظریات مغناطیس آزمایش‌های زیادی نشان داد که اندازه حرکت زاویهای کل یک الکترون و گشتاور مغناطیسی وابسته به آن بزرگ‎تر از مقداری است که به حرکت انتقالی آن نسبت داده می‌شد. بنابراین یک سهم اضافی که از خصوصیت ذاتی با یک درجه آزادی داخلی ناشی می‌شد، به الکترون نسبت داده شد و چون این خصوصیت دارای اثر مشابه چرخش الکترون حول محورش بود اسپین نامیده گردید [22].
2-4-2 فازهای مغناطیسیبه طورکلی مواد در میدان مغناطیسی خارجی رفتارهای متفاوتی از خود نشان می‌دهند و با توجه به جهت‌گیری مغناطش، به پنج گروه تقسیم می‌شوند که به بیان آن‌ها می‌پردازیم.
2-4-2-1 مواد دیامغناطیسدر این مواد الکترون‌ها به صورت جفت بوده و اتمها دارای گشتاور مغناطیسی دائمی نیستند و با قرارگرفتن در میدان مغناطیسی خارجی دارای گشتاور مغناطیسی القایی در خلاف جهت میدان خارجی می‌شوند و آن را تضعیف می‌کند. پذیرفتاری مغناطیسی χ چنین موادی منفی و خیلی کم است. خاصیت دیامغناطیس ظاهراً در تمام انواع مواد یافت می‌شود، اما اثر آن غالباً به وسیله‌ی آثار قویتر پارامغناطیس یا فرومغناطیس که می‌توانند با این خاصیت همراه باشند، مخفی می‌شود. خاصیت دیامغناطیسی خصوصاً در موادی بارز است که کلاً اتمها یا یونهایی با پوسته‌های بسته‌ی الکترونی تشکیل شده باشند، زیرا در این مواد تمام تأثیرات پارامغناطیسی حذف می‌شوند.
2-4-2-2 مواد پارامغناطیسمواد پارامغناطیس، موادی هستند که برخی از اتمها یا تمامی آن‌ها گشتاور دو قطبی دائمی دارند، به عبارت دیگر گشتاور دو قطبی در غیاب میدان مغناطیسی، غیرصفر است. این دو قطبیهای دائمی رفتاری مستقل از هم داشته که در نهایت جهت‌گیری تصادفی دارند و در میدان‌های کوچک رقابتی بین اثر هم‌خط‌سازی میدان و بی‌نظمی گرمایی وجود دارد، اما به طور متوسط تعداد گشتاورهای موازی با میدان بیشتر از گشتاورهای پادموازی با میدان است. پذیرفتاری در این مواد مثبت است و با افزایش دما، که در اثر آن بی‌نظمی گرمایی زیاد می‌شود، کاهش مییابد. منگنز، پلاتین، آلومینیوم، فلزخاکی قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت از جمله مواد پارامغناطیس‌اند.
2-4-2-3 مواد فرومغناطیس
در برخی از مواد مغناطیسی، گشتاورهای مغناطیسی کوچک به طور خودبهخود با گشتاورهای مجاور خود هم‌خط می‌شوند. اینگونه مواد را فرومغناطیس می‌نامند. در عمل، همه‌ی حوزه‌های مغناطیسی در یک ماده‌ی مغناطیسی در یک راستا قرار ندارند، بلکه این مواد از حوزه‌های بسیار کوچکی با ابعاد خیلی کمتر از میلیمتر تشکیل شده‌اند، به طوری که گشتاورهای مغناطیسی هر حوزه با حوزه‌های مجاور آن تفاوت دارد.
ممکن است سمتگیری و اندازه‌ی حوزه‌های مغناطیسی در یک ماده‌ی فرو مغناطیس به گونه‌ای باشد که در کل اثر یکدیگر را خنثی کنند و ماده در مجموع فاقد مغناطش است. اعمال میدان مغناطیسی خارجی بر حوزه‌های مغناطیسی سبب می‌شود که گشتاورهای مغناطیسی هر حوزه تحت تأثیر میدان قرار گرفته و جهت آن‌ها در جهت میدان خارجی متمایل شود. علاوه بر این حوزههایی که با میدان همسویند، رشد میکنند، یعنی حجم آن‌ها زیاد می‌شود و در نتیجه، حوزه‌هایی که سمتگیری آن‌ها نسبت به میدان مناسب نیست کوچک می‌شوند، مرز بین این حوزه‌ها جابجا می‌شود و در نتیجه ماده در مجموع خاصیت مغناطیسی پیدا می‌کند . پذیرفتاری مغناطیسی این مواد مثبت است. آهن، کبالت، نیکل و چندین عنصر قلیایی خاکی جز فرومغناطیس‌ها می‌باشند [23].
مواد فرومغناطیس دارای چند مشخصه‌ی اصلی به صورت زیر می‌باشند:
الف) مغناطش خودبه‌خودی و مغناطش در حضور میدان
ب) حساسیت مغناطش به دما
ج) مغناطش اشباع
د) منحنی پسماند
2-4-2-4 مواد پادفرومغناطیس
در مواد پادفرومغناطیس گشتاورهای مغناطیسی مجاور به صورت موازی، برابر و غیرهم راستا جهتگیری
می‌کنند. این مواد در غیاب میدان مغناطیسی دارای گشتاور صفرند. کروم و اکسیدهای آن ، جز مواد پادفرومغناطیس می‌باشند. چنین موادی معمولاً در دماهای پایین پادفرومغناطیساند. با افزایش دما ساختار نواحی مغناطیسی شکسته شده و ماده پارامغناطیسی می‌شود. این رفتار در مواد فرومغناطیس نیز اتفاق می‌افتد به این ترتیب که در این مواد پذیرفتاری مغناطیسی مواد مغناطیسی با افزایش دما به تدریج کاهش می‌یابد تا زمانی که ماده پادفرومغناطیس شود .
پذیرفتاری مغناطیسی این مواد عدد مثبت بسیار کوچک و نزدیک به صفر است. به دمایی که در آن ماده از حالت پادفرومغناطیس به فرومغناطیس گذار می‌کند، دمای نیل می‌گویند.
χ= CT+TN
که C ثابت کوری و TN دمای نیل است.
2-4-2-5 مواد فریمغناطیس
فریمغناطیس شکل خاصی از پادفرومغناطیس است که در آن گشتاورهای مغناطیسی در جهت موازی و عکس یکدیگر قرار گرفته‌اند، اما با یکدیگر برابر نیستند و به صورت کامل یکدیگر را حذف نمی‌کنند. در مقیاس ماکروسکوپی، مواد فریمغناطیس همانند فرومغناطیس بوده و دارای مغناطش خودبه‌خودی در زیر دمای کوری بوده و دارای منحنی پسماند می‌باشند[23و24]. شکل 2-2 فازهای مغناطیسی را نشان می‌دهد.

شکل 2-2 فازهای مغناطیسی، الف) پارامغناطیس، ب) فرومغناطیس، ج) پادفرومغناطیس، د) فری مغناطیس [24].
دو خاصیت مهم و کلیدی مواد مغناطیسی دمای کوری و هیستروسیس مغناطیسی است. جفت شدگی ‏تبادلی و بنابراین انرژی تبادلی هیسنبرگ مستقیماً با دمای کوری ‏‎(Tc)‎‏ مواد فرو و فریمغناطیس در ‏ارتباط است. در کمتر از دمای ‏Tc، ممان مغناطیسی همان جهت بلوروگرافی ویژه‌ی محور صفر این ‏مواد است. این محور در ‏نتیجه‌ی جفت‌شدگی این اسپین الکترون و ممنتوم زاویهای اوربیتال الکترون ایجاد می‌شود.
‏از آنجایی که مواد فرومغناطیسی مواد جالبی بر حسب کاربردهایشان هستند، خواص آن‌ها باید به ‏طور کمی اندازه‌گیری شود و حلقهی پسماند خواص مغناطیسی جالبی را در این مواد آشکار ‏می‌کند. یک حلقه‌ی پسماند را می‌توان با قراردادن نمونه در یک مغناطیس‌سنج و پاسخ ماده ‏‎(M,)‎‏ ‏به میدان مغناطیسی اعمالی ‏‎(H)‎‏ اندازه‌گیری کرد. چندین کمیت ممکن است از روی حلقه‌ی پسماند ‏به‌دست آید. ‏
اشباع مغناطیسی ‏‎(Ms)‎‏ یا اشباع مغناطیسی ویژه (‏s‏) مواردی‌اند که مقدار مغناطیسشدگی را وقتی ‏که همه دوقطبی‌ها در جهت میدان مغناطیسی اعمالی مرتب شده‌اند نشان می‌دهد.‏
مغناطیس باقیمانده ‏‎(Mr)‎‏ مغناطیسشدگی نمونه در میدان مغناطیسی صفر است و نیروی ‏بازدارندگی ‏‎(Hc)‎، نیرویی از میدان مغناطیسی است که برای تغییر مغناطیسشدگی باقیمانده نیاز است. ‏تغییر بایاس میدان ‏‎(HE)‎، مقدار جابجایی از مرکز حلقهی پسماند را نشان می‌دهد.‏
2-4-5 حلقه پسماندوقتی به یک ماده مغناطیسی، میدان مغناطیسی اعمال شود، مغناطش محیط سریع افزایش می‌یابد، با افزایش مقدار میدان اعمالی، شتاب افزایش و مغناطش کاهش می‌یابد، این کاهش شتاب ادامه می‌یابد تا مغناطش به مقدار اشباع خود Ms برسد [25].
تغییرات مغناطش مواد مغناطیسی در هنگام کاهش میدان، از رفتار قبلی خود تبعیت نمی‌کند، بلکه به خاطر ناهمسانگردی مغناطیسی در محیط، مقداری انرژی را در خود ذخیره می‌کنند. بنابراین وقتی میدان اعمالی در محیط صفر شود، مغناطش در ماده صفر نشده و دارای مقدار خاصی است که به آن مغناطش پسماند Mr گفته می‌شود. با کاهش بیشتر میدان به سمت مقادیر منفی، خاصیت مغناطیسی القا شده به تدریج کاهش می‌یابد و با رسیدن شدت میدان به یک مقدار منفی خواص مغناطیسی ماده کاملا از بین می‌رود. این میدان مغناطیس‌زدا را با Hc نشان می‌دهند و به نیروی ضد پسماند یا وادارندگی مغناطیسی معروف است. پسماند یا نیروی وادارنده عبارتست از میدان معکوسی که برای کاهش مغناطش به صفر نیاز است. با کاهش بیشتر شدت میدان، القای مغناطیسی منفی می‌شود و در نهایت به مقادیر اشباع منفی خود می‌تواند برسد. افزایش مجدد شدت میدان به سمت مقادیر مثبت، حلقه پسماند را مطابق شکل 2-3 کامل می‌کند. مغناطیس‌های دائمی غالبا در ربع دوم حلقه پسماند خود، مورد استفاده قرار می‌گیرند [26].

شکل 23 حلقه پسماند ماده فرو مغناطیس [26].
مواد مغناطیسی از نظر رفتار آن‌ها در میدان مغناطیس دو گروه تقسیم می‌شوند:
الف) مواد مغناطیس نرم
مواد مغناطیسی نرم با اعمال میدان مغناطیسی کوچک به راحتی مغناطیده می‌شود و با قطع میدان سریعاً گشتاور مغناطیسی خود را از دست می‌دهند. به عبارتی این مواد دارای نیروی وادارندگی پایین، اشباع مغناطیسی بالا و گشتاور پسماند پایین هستند.
مواد مغناطیس نرم در جاهایی که به تغییر سریع گشتاور مغناطیسی با اعمال میدان مغناطیسی کوچک نیاز است مانند موتورها، حسگرها، القاگرها و فیلترهای صوتی مورد استفاده قرار می‌گیرد.
ب) مواد مغناطیس سخت
مواد مغناطیس سخت موادی‌اند که به راحتی مواد مغناطیس نرم، مغناطیده نمی‌شوند و به میدان مغناطیسی اعمالی بزرگ‌تری جهت مغناطیده کردن آن‌ها نیاز است. این مواد گشتاور مغناطیسی را تا مدت‌ها پس از قطع میدان حفظ می‌کنند. همچنین دارای اشباع مغناطیسی، گشتاور پسماند و نیروی وادارندگی بالایی هستند. ساخت یا پخت این مواد در میدان مغناطیسی، ناهمسانگردی مغناطیسی را در این مواد افزایش می‌دهد که حرکت دیواره حوزه‌ها را سخت‌تر می‌کند و نیروی وادارندگی را افزایش می‌دهد. این امر می‌تواند تولید مادهی سخت مغناطیسی بهتری را تضمین کند. کاربرد این مواد در آهن‌رباهای دائمی و حافظه‌های مغناطیسی است [26].

شکل 24 حلقه پسماند در مواد فرومغناطیس نرم و سخت[26].
2-5 فریتفریت به آن دسته از مواد مغناطیسی اطلاق می‌شود که جزء اصلی تشکیل دهندهی آن‌ها اکسید آهن است و دارای خاصیت فریمغناطیس می باشند (آرایشی از فرومغناطیس) و پارامترهای مغناطیسی مطلوبی نظیر ضریب نفوذپذیری مغناطیسی بالا از جمله اصلی‌ترین خصیصه‌های آن‌ها به شمار می‌رود. بدین جهت کاربردهای بسیار وسیعی را در زمینه صنایع برق، الکترونیک، مخابرات، کامپیوتر و… به خود اختصاص داده‌اند.
یکی از انواع فریت‌ها نوع اسپینلی آن است، فریت‌های اسپینلی با فرمول عمومی 2-o2+A3+B که در آن 2+A و 3+B به ترتیب کاتیون‌های دو و سه ظرفیتی می‌یاشند.
فریت‌ها دارای خاصیت فریمغناطیس می‌باشند نظم مغناطیسی موجود در فریمغناطیس‌ها ناشی از برهم‌کنش‌های دو قطبی‌های مغناطیسی نیست بلکه ناشی از برهم‌کنش تبادلی است در برهمکنش تبادلی هم‌پوشانی اوربیتال‌های اتمی مد نظر می‌باشد در فریت‌ها برهم‌کنش تبادلی ناشی از هم‌پوشانی الکترون‌های اوربیتال d3 یون‌های A و B و الکترون‌های اوربیتالP 2 یون‌‎های اکسیژن است. و قدرت این بر‌هم‌کنش تبادلی است که خاصیت مغناطیسی نمونه را رقم می‌زند.
2-6 خلاصهدر این فصل به شیمی آئروژل و دو روش بالا به پایین و پایین به بالای تولید نانوذرات اشاره شد. سپس خاصیت مغناطیسی مواد و فاز‌های مغناطیسی ممکن برای مواد مغناطیسی بررسی شد. پس از آن توضیح کوتاهی در مورد حلقهی پسماند و موارد قابل اندازه‌گیری از آن گفته شد و در نهایت مختصری از مواد فریتی بیان گردید.
فصل سومساخت آئروژل و کاربردهای آن19509215088990
مقدمهسیلیکا آئروژل‌ها به دلیل ویژگی‌های منحصر به فرد، هم در علم و هم در تکنولوژی توجه زیادی را به خود اختصاص داده‌اند. آئروژل‌ها از پیشماده مولکولی با روش‌های مختلف و تکنیک‌های خشک کردن متفاوت برای جایگزینی منافذ مایع با گاز همراه با حفظ شبکهی جامد، تهیه می‌شوند. [27]
علی‌رغم تمامی تلاش‌های قابل توجهی که در این زمینه صورت گرفته است، چالش‌های اصلی تحت کنترل عوامل یکنواختی(همگنی)، بارگذاری، اندازه و توزیع نانوذرات در شبکه‌ی میزبان آلی باقی ماندهاست، در عوض این شبکه‌ی میزبان به طور مستقیم ویژگی‌های الکتریکی، نوری، مغناطیسی و کاتالیزوری مواد نانوکامپوزیت را حفظ می‌کند.
3-1 سنتز آئروژل با فرآیند سل-ژلتفاوت در ویژگی‌های شیمیایی پیش‌ماده‌ها برای فاز نانو (معمولاً نمک فلزی) و برای ماتریس آلی (عموماً الکوکسید‌ها) موضوع مهمی هستند، چرا که پارامترهای فرآیند سل-ژل بر روی هیدرولیز و چگالش هر کدام از این پیشماده‌ها تأثیر متفاوتی دارد [28]. هر چند این موضوع مساله‌ی مهمی در طراحی هر نانوکامپوزیت سل-ژل است اما در رابطه با آئروژل‌ها حیاتی‌تر می‌باشد، زیرا نیازمند جایگزین شدن حلال موجود در ژل (معمولاً اتانول یا متانول در الکوژل و آب در آکوژل) با تغییر حلال و در نهایت حذف کردن به وسیلهی استخراج حلال فوق بحرانی است. مرحله خشک کردن فوق بحرانی، بسته به این که الکل یا کربن دی اکسید به صورت فوق بحرانی تخلیه شود (به ترتیب نیازمند حرارتی در حدود 350 و 40 درجهی سانتیگراد است). این مرحله مسائل دیگری درباره حلالیت پیشماده‌ها و پایداری حرارتی در شرایط خشک کردن فوق بحرانی را مطرح می‌کند [29]. استراتژی‌های مختلف اتخاذ شده برای سنتر نانوکامپوزیت‌های آئروژل، بسته به اینکه فاز نانو (یا پیش‌مادهی آن) در حین یا بعد از فرآیند سل-ژل اضافه شود، دو رویکرد کلی دارند.
روش اول شامل هیدرولیز و ژل شدن نانوذرات و ماتریس پیشماده و ژل شدن ماتریس پیش‌ماده به همراه شکل‌گیری نانوذرات است. مزیت این روش تولید موادی با بارگذاری نانوذرات قابل کنترل است. از طرفی، چندین اشکال در مورد آن مطرح است. برای بهدست آوردن ژل دارای چند ترکیب همگن شرایط سنتز باید به صورت دقیق انتخاب شود و پیشماده‌های نانوذرات و همچنین عوامل پوشش دهی موردنیاز در شکل‌گیری نانوذرات کلوئیدی ممکن است بر سنتز سل-ژل ماتریس تأثیر بگذارد.
روش دوم شامل روش‌های مبتنی بر اضافه کردن فاز نانو بعد از فرآیند سل-ژل است و باید ساختار متخلخل و مورفولوژی ماتریس را حفظ کند. این روش‌ها شامل تلقیح فاز نانو با اشباع، ته‌نشینی و روش رسوبگذاری بخار شیمیایی می‌باشد. طرح‌واره روش‌های مختلف برای شیمی سنتز نانوکامپوزیت آئروژل در شکل 3-1 نشان داده شده است.
هرچند این روشها نیز دارای دو اشکال عمده هستند: یکی همگنی ضعیف ترکیب نانوکامپوزیت تولیدشده، دیگری ترد و شکننده بودن آئروژل‌ها. اتصال فلز در یک ماتریس با گروه‌های هماهنگ اصلاح شده است و غوطه‌ور کردن الکوژل و آکوژل در محلول قبل از خشک کردن فوق بحرانی، به ترتیب به عنوان راهحلهایی برای غلبه بر کاستی‌های گفته شده است. رسوب نانوذرات از فاز بخار، بر خلاف روش‌های تلقیح مرطوب، ماتریس متخلخل را تغییر نمیدهد و تضمین میکند که فاز مهمان در سراسر ماتریس توزیع خواهد شد [30].

شکل 3-1 طرح‌واره‌ای از روش‌های مختلف برای شیمی سنتز نانوکامپوزیت [33].
3-2 شکل‌گیری ژل خیسژل‌های سیلیکا به طور عمومی با هیدرولیز و واکنش چگالش پیشماده سیلیکا به‌دست می‌آیند. ماتریس سیلیکای نهایی متخلخل است و حفره‌های ژل با حلال جانبی هیدرولیز و واکنش پلیمریزه شدن پر شده است. اگر ترکیب محلول بهتواند از ژل خیس بدون سقوط قابل ملاحظه ساختار خارج شود، آئروژل شکل می‌گیرد [31].


روش سل-ژل شامل یک یا چند پیشماده سیلیکون است که متداول‌ترین آن‌ها TEOS و TMOS می‌باشند و داراری چهار گروه الکوکسید شناخته شده در آرایش چهار وجهی در اطراف اتم سیلیکون مرکزی است. واکنش هیدرولیز در چهار جهت اتفاق می‌افتد و منجر به پیوند Si-O-Si می‌شود و یک مادهی کپهای که ترکیبی از 2SiO را می‌دهد. اگر یکی از شاخه‌های الکوکسید اتم سیلیکون توسط گروه عاملی مختلفی که قادر نیست تحت واکنش چگالش قرار گیرد، جایگزین شود گروه عاملی با پیوند کووالانسی به اتم سیلیکون درون ماتریس ژل باقی خواهد ماند. الکوکسیدهای فلزی به راحتی با آب واکنش می‌دهد و بر حسب میزان آب و حضور کاتالیست، عمل هیدرولیز ممکن است کامل انجام شود.
ملکول‌های شکلگرفته آلی-فلزی به مرور زمان بزرگ می‌شوند و به صورت یک ساختار پیوسته در داخل مایع در می‌آیند. این ساختار پیوسته که حالت الاستیک دارد، ژل گفته می‌شود [32].
به طور کلی شکل‌گیری محلول پایدار الکوکسید یا پیشماده‌های فلزی حل شده مرحله اول فرآیند تهیه آئروژل است. این محلول همگن به‌دست آمده در مرحله دوم به علت وجود آب هیدرولیز شده و سل یکنواختی را ایجاد می‌کند. در مرحله سوم واکنش بسپارش ادامه پیدا می‌کند تا سل به ژل تبدیل شود. این مرحله، پیرسازی نیز گفته می‌شود. پس از آن مرحلهی نهایی که خشک کردن است باقی می‌ماند.
3-3 خشک کردن آلکوژلبعد از شکل‌گیری ژل توسط هیدرولیز و واکنش چگالش، شبکه Si-O-Si شکل می‌گیرد. بخش پیرسازی به تشدید شبکه ژل اشاره دارد؛ ممکن است چگالش بیشتر، تجزیه، و ته‌نشینی ذرات سل یا تبدیل فاز داخل فاز جامد یا مایع صورت گیرد. این نتایج در یک جامد متخلخل که حلال در آن گیر افتاده است اتفاق می‌افتد. فرآیند حذف حلال اصلی از ژل (که معمولاً آب و الکل است) را خشککردن می‌گویند. در طول فرآیند خشککردن، ترکخوردگی اتفاق می‌افتد به این دلیل که نیروی مویینگی در گذار مایع-گاز در داخل منافذ ریز وجود دارد. معادله لاپلاس در اینجا به کار می‌رود، هر چه شعاع مویینگی کوچک‌تر باشد، ارتفاع مایع بیشتر و فشار هیدروستاتیک بالاتر خواهد بود. هنگامی که انرژی سطح باعث بالا رفتن ستون مایع داخل مویرگ‌ها می‌شود، مقدار فشار سطحی داخل مویرگ قابل محاسبه است.
قطر حفره در ژل از مرتبهی نانومتر است، به طوری که مایع ژل فشار هیدروستاتیک بالایی را باید اعمال کند. هلال داخل حفره‌ها و نیروهای کشش سطحی سعی می‌کند تا ذرات را به عنوان مایع در حفره‌ها تبخیر کند. این نیروها می‌توانند به گونه‌ای عمل کنند که باعث سقوط حفره و ساختار شوند. بنابراین ژل‌ها با حفره‌های ریز زیاد تمایل به انقباض و ترک خوردن دارند [33]. سل ژلهایی که شیمی سطح آن‌ها اصلاح نشده (شکل3-2) و در شرایط محیط خشک شدند به علت این فروپاشی منافذ تا حدود یک هشتم حجم اولیهی خود کوچک میشوند؛ ماده حاصل زیروژل نامیده میشود. اگر این فرآیند خشککردن به آرامی رخ دهد، زیروژل یکپارچه سالم میتواند تولید شود. اما برای تولید یک آئروژل، باید از عبور از مرز فاز بخار-مایع اجتناب کرد.

شکل 3-2 اصلاح شیمی سطح ژل [34].
روشهای کنونی برای پرهیز از فروپاشی منافذ درساخت آئروژل را میتوان در سه تکنیک کلی دستهبندی کرد. هرکدام از این تکنیکها طراحی شدهاند تا نیروهای مویینگی ناشی از اثرات کشش سطحی را کاسته و یا حذف نمایند. این تکنیکها الف) خشک کردن در شرایط محیط پس از اصلاح سطح، ب) خشک کردن انجمادی و ج) خشک کردن فوق بحرانی است [34]. توضیح کلی درباره هرکدام از این تکنیکها در ادامه آمده است.
3-3-1 فرآیند‌های خشککردن در شرایط محیطاین تکنیکهای خشک کردن طراحی شدهاند تا ژل خیس را در فشار محیط خشک کنند. این روشها نیازمند فرآیندهای شیمیایی با تعویض طولانی مدت حلال برای کاهش نیروهای مویینگی وارد بر نانوساختار یا برای افزایش توانایی نانوساختار در تحمل این نیروهاست (یا با قویتر کردن ساختار و یا با منعطف‌تر ساختن آن). تغییر شیمی سطح ژل خیس بر پایه TEOS برای ارتقاع انقباض قابل برگشت با استفاده از تبادل حلال با هگزان به وسیله اصلاح سطح با فرآیند کاهش گروه سیلانولی با TMCS [35و36]. همچنین استفاده از پیری ژل در محلول الکل یا الکوکسید برای سفت شدن میکرو ساختار به منظور جلوگیری از فروپاشی منافذ است [37]. به علاوه ترکیبکردن شاخه‌های متقاطع سیلیکا آئروژل است که می‌تواند نیروهای مویینگی در حین خشک کردن تحت فشار محیط را تحمل نماید [38].
3-3-2 خشککردن انجمادیخشککردن انجمادی یک ژل خیس منجر به تولید کریوژل میشود. خشککردن انجمادی باعث تولید پودر آئروژل کدر می‌شود [39]. این تکنیک حلال اضافی را با تصعید حذف میکند. ژل خیس منجمد میشود و سپس حلال در فشار پایین تصعید میشود [40]. میکروبلور‌های منجمد که حین فرآیند خشککردن انجمادی شکل می‌گیرند منجر به آئروژل‌های ماکروحفره‌تری در مقایسه با روش استخراج فوق بحرانی میشوند [41].
3-3-3 خشک کردن فوق بحرانیروشهای استخراج فوق بحرانی از مرز بین مایع و بخار با بردن حلال به بالاتر از نقطه فوق بحرانی آن اجتناب می‌کند و سپس از ماتریس سل-ژل به عنوان یک مایع فوق بحرانی حذف می‌شود. در این حالت هیچ مرز مایع-بخاری وجود ندارد، بنابراین هیچ فشار مویینگی دیده نمی‌شود. شکل 3-3 چرخه فشار-دما در طول فرآیند فوق بحرانی را نشان می‌دهد. در عمل انواع متعددی از روشهای استخراج فوق بحرانی وجود دارد که شامل تکنیک‌هایی با دمای بالا، دمای پایین و سریع است.

شکل 3-3 چرخه فشار-دما در حین فرآیند خشک کردن فوق بحرانی [42].
تکنیک‌های استخراج فوق بحرانی الکل دمای بالا، ژل خیس را به حالت فوق بحرانی حلال (معمولاً متانول یا اتانول) در یک اتوکلاو و یا هر مخزن فشار دیگری می‌برد. این مستلزم فشارهای بالا حدود Mpa 8 و دماهای بالا حدود 260 درجهی سانتیگراد می‌باشد [42]. شکل 3-4 شماتیکی از دستگاه خشککن فوق بحرانی اتوکلاو را نشان می‌دهد.

شکل 3-4 شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو [42].
تکنیکهای استخراج فوق بحرانی دمای پایین بر اساس استخراج 2CO است که دمای نقطه بحرانی پایین‌تری نسبت به مخلوط الکل باقیمانده در منافذ سل-ژل بعد از پلیمریزاسیون دارد. این روش به تبادل حلال به طور سری نیازمند است، ابتدا حلال غیرقطبی و سپس با کربن دیاکسید مایع پیش از استخراج فوق بحرانی که می‌تواند در نقطه فوق بحرانی 2CO اتفاق بیافتد [43]. مزایای این تکنیک دمای بحرانی پایین‌تر و حلال پایدارتر است؛ هرچند مراحل اضافه شده به فرآیند سبب طولانی‌تر شدن زمان آمادهسازی آئروژل می‌شود. از آنجائیکه فشار بحرانی مورد نیاز نسبت به روشهای فوق بحرانی دما بالا تغییری چندانی ندارد (فشار بحرانی 2CO مشابه متانول و اتانول است)، این فرآیند نیز نیاز به استفاده از مخازن فشار دارد. به علاوه روند انتشار تبادل حلال وابسته به اندازهی ژل است.
تکنیکهای استخراج فوق بحرانی سریع از یک قالب محدود استفاده می‌کند، چه در مخزن فشار و چه در یک فشار داغ هیدرولیک قرار بگیرند. این تکنیکها فرآیندهای تک مرحله‌ای پیش‌ماده به آئروژل هستند و آئروژل را در کمتر از 3 ساعت بهدست می‌آورند. در این روش پیشماده‌های شیمیایی مایع و کاتالیست در یک قالب دو قسمتی ریخته می‌شوند سپس به سرعت گرم می‌شوند [44]. در ابتدا فشار با بستن دو بخش قالب با هم یا با اعمال فشار هیدروستاتیکی خارجی به جای مخازن فشار بزرگ‌تر یا با ترکیبی از این دو تنظیم می‌شود. زمانیکه نقطه فوق بحرانی الکل فرارسید، اجازه داده میشود تا مایع فوق بحرانی خارج شود [45]. برای مثال گوتیه و همکارانش [46] در روند انجام این فرآیند از یک فشار داغ هیدرولیکی برای مهروموم کردن و گرم کردن قالب حاوی مخلوط پیشماده آئروژل استفاده کردند. مخلوط مایع از پیشماده‌های آئروژل در یک قالب فلزی ریخته شد و سپس در فشار داغ قرار گرفت. در طول اجرا، فشار داغ برای مهروموم کردن ترکیب به جای قالب استفاده شد و یک نیروی باز دارندهی فشاری را فراهم کرد. سپس قالب و مخلوط به بالای دما و فشار فوق بحرانی متانول برده شد. در مدت زمان این فرآیند گرم کردن، پیشمادههای آئروژل واکنش نشان داده و یک ژل خیس نانوساختاری متخلخل را تشکیل داد. زمانیکه به حالت بحرانی رسید، فشار کاهش داده شد و مایع فوق بحرانی رها شد.
3-3-4 مقایسه روش‌هاهر یک از روش‌های ساخت آئروژل شرح داده شده در بالا، نقاط قوت و محدودیت‌هایی دارند. مقایسه مستقیم تکنیک‌های مختلف خشک کردن به علت دستورالعمل‌های پیشماده متفاوت، شرایط ژل شدن مختلف، و زمان پیر سازی، به خوبی روش‌های استخراج متفاوت هستند. برای مثال خشککردن فوق بحرانی دما پایین نیاز به زمان پیرسازی کافی دارد، به طوری که ژل‌ها می‌توانند از ظرف اولیه برای استخراج و تبادل حلال خارج شوند.
در فرآیند خشککردن سریع، عموما زمان پیرسازی کوتاه است؛ گرچه، دمای بالا در این فرآیند اثر مشخصی را روی روند واکنش چگالش دارد.
مزیت اصلی تکنیک‌های خشک کردن در فشار محیط، عدم نیاز به تجهیزات فشار بالا می باشد که گران قیمت و به طور بالقوه خطرناک است؛ اگرچه به مراحل پردازش چندگانه با تبادل حلال نیاز دارند. تا به حال مطالعات اندکی در رابطه با استفاده از روش‌های خشککردن انجمادی شده است. این تکنیک‌ها نیاز به تجهیزات خاصی برای رسیدن به دمای پایین لازم برای تصعید حلال و منجر شدن به پودر آئروژل، دارند.
محدودیت اصلی تکنیکهای فوق بحرانی دما بالا، رسیدن به دماهای بالای مورد نیاز برای دست یافتن به نقطه بحرانی حلال الکل و نیز ملاحظات ایمنی در بکار بردن مخزن فشار در این شرایط است.
روش استخراج دما پایین به طور گسترده در تولید آئروژل‌های یکپارچه کوچک تا بسیار بزرگ استفاده شده است، اگرچه می‌تواند روزها تا هفته‌ها تولید آن طول بکشد و مراحل چندگانه تبادل حلال مورد نیاز، آن را تبدیل به فرآیندی پیچیده کند و اتلاف قابل ملاحظه‌ای از حلال و 2CO ایجاد می‌کند. تکنیک‌های خشککردن سریع ساده‌تر و سریع‌تر است. تمامی فرآیند، بر خلاف مراحل چندگانه و مقیاس‌های زمانی در ابعاد روزها و ماهها در سایر روش‌ها، در یک مرحله انجام شده و می‌تواند در چند ساعت تکمیل شود. همچنین این روش‌ها اتلاف کمتری را به وجود می‌آورند. یک ایراد روش‌های خشککردن سریع، نیاز به دما و فشار بالاست [47].
3-4 مروری بر کارهای انجام شدهاگرچه میدانیم که این گزارش‌های جامعی از مقالات مرتبط با نانوکامپوزیت‌های آئروژل نیست، اما تأکید بر این مطلب است که چگونه ترکیب نانوذرات ممکن است احتمال استفاده از آئروژل‌ها را به عنوان مواد جدید افزایش دهد و چگونه مسیر آماده سازی مورد اطمینان برای به‌دست آوردن نانوکامپوزیت‌های آئروژل برای کاربرد خاص را انتخاب نماییم.
پس از آنکه کیستلر در سال 1931 برای اولین بار بدون درهم شکستن ساختار ژل، فاز مایع را از آن جدا کرد، در سال 1938 به مطالعه روی رسانایی گرمایی آئروژل و در سال 1943 درباره سطح ویژه آن‌ها به مطالعه پرداخت [48]. بعد از آن حدود نیمقرن دانشمندان علاقه‌ای به آئروژل‌ها نشان ندادند تا در اویل 1980 آئروژل به عرصه پژوهش بازگشت.
در سال 1992تیلسون و هاربش از TEOS به عنوان پیشمادهی سیلیکا ژل استفاده کردند و از میکروسکوپ الکترونی روبشی برای مشخصه‌یابی آن‌ها استفاده نمودند [49] و سپس هر ساله تحقیقات زیادی روی آئروژل‌ها صورت می‌گیرد.
در سال 2001 کاساس و همکارانش نانوکامپوزیت مغناطیسی را با ورود ذرات اکسید آهن در سیلیکا آئروژل میزبان سنتز کردند. این سنتز که به روش سل-ژل و با خشککردن فوق بحرانی متانول انجام شد، دو نمک آهن استفاده شد: O2H9.(3ON)Fe و O2H2.(EDTA)FeNa. در این پژوهش ارتباط واضحی بین پیشماده، آب و تخلخل و سطح ویژه آئروژل حاصل وجود داشت. استفاده از ترکیب EDTA به عنوان پیش‌مادهی نانوذرات، قطر میانگین حفره‌ها را افزایش داد، گرچه قابلیت حل پایین نمک EDTA در محلول یک مانع بزرگ برای رسیدن به آهن در این روش بود. مساحت سطح ویژه‌ی نمونه‌های کاساس بین /g2m 200 و /g2m 619 بهدست آمد و برخی نمونه‌ها رفتار پارامغناطیس و برخی دیگر رفتار مغناطیس نرم از خود نشان دادند [50].
در سال 2002 واگنر و همکارانش ذرات سیلیکا با هستهی مغناطیسی را با روش ته‌نشینی به‌دست آوردند [51]. و چند سال بعد در سال 2006 ژانگ و همکارانش ذرات پوسته‌ای هسته‌دار را با روش سل-ژل تهیه کردند. این ذرات شامل هستهی مغناطیسی فریت کبالت و پوستهی سیلیکا بودند که از TEOS به عنوان پیشمادهی سیلیکا استفاده کردند. پس از آنکه ژل‌ها به‌دست آمدند، در 110 درجهی سانتیگراد برای 4 ساعت در خلاء خشک شدند زیرا اگر در هوا خشک شوند احتمال ته‌نشینی بلور‌های اکسید وجود داشت. سپس به مدت 2 ساعت در دماهای مختلف برای به‌دست آوردن نانو بلور پراکنده در ماتریس سیلیکا حرارت داده شد. برای نمونه‌ی آن‌ها شکل‌گیری فاز فریت کبالت در دمای 800 درجهی سانتیگرادکامل شد و خوشه‌های فریت کبالت به سمت نانو بلوری شدن پیش رفتند، زمانی که برهم‌کنش بین خوشه‌های فریت کبالت با ماتریس سیلیکا شکسته شد پیوندهای Si-O-Fe ناپدید شدند. بر طبق گزارش آن‌ها اشباع مغناطیسی نانوکامپوزیت‌ها با افزایش غلظت بیشتر فریت در ماتریس افزایش یافت تا مقدار بیشینه emu/g 98/66 برای نمونه با نسبت مولی 1:1 (wt% 80 فریت کبالت) به‌دست آمد [52].
سیلوا و همکارانش در سال 2007 کامپوزیت ذرات فریت کبالت پخش شده در ماتریس سیلیکا را به روش سل-ژل تهیه کردند. آن‌ها از TEOS به عنوان پیشماده سیلیکا و از نیترات به عنوان پیش‌ماده فریت استفاده کردند. پس از گذشت زمان پیرسازی، نمونه برای 12 ساعت در 110 درجهی سانتیگراد خشک شدند و ذرات فریت کبالت در ماتریس سیلیکا شکل گرفتند. پس از آن عملیات حرارتی برای 2 ساعت در دماهای 300، 500، 700 و 900 درجهی سانتیگراد انجام شد که باعث افزایش در اندازهی ذرات شد. رسوب ذرات خوشه‌ای فریت در دیواره‌های منافذ زیروژل با افزایش دما بیشتر شد و در دماهای بالاتر از 700 درجهی سانتیگراد بلورهای بزرگ‌تر کبالت داخل منافذ ماتریس شکل گرفتند و افزایش در مغناطش اشباع و پسماند مغناطیسی را باعث شدند [53].
در همان سال فرناندز و همکارانش نانو کامپوزیت سیلیکا آئروژل/ آهن اکسید را با فرآیند سل-ژل و تبخیر فوق بحرانی حلال سنتز کردند. آن‌ها نمونه‌ها با پیشماده‌های TEOS و TMOS را با تبخیر فوق بحرانی اتانول و متانول خشک کردند. ذرات مغناطیسی با اندازهی متوسط nm 6 با TEOS و متانول سنتز شدند در حالی که فری‌هیدرات‌ها از TMOS و اتانول به‌دست آمدند. بعضی نمونه‌های آن‌ها رفتار ابر پارامغناطیس از خود نشان دادند [54].
دو سال بعد ژنفا زی و همکارانش نانوذرات فریت کبالت را به روش هم‌نهشت شیمیایی و خشک شدن در هوا در دمای80 درجهی سانتیگراد تهیه کردند. اندازهی قطر نانوذرات سنتز شده nm 20 تا nm 30 بود و دمای کوری در فرآیند افزایش دما کمتر از فرآیند کاهش دما بود. مقدار اشباع مغناطیسی این ذرات emu/g 77/61 بهدست آمد که نسبت که مقدار کپه آن کوچک‌تر بود. در این پژوهش مقدار پایین نیروی وادارندگی به دو دلیل اتفاق می‌افتد: ذرات فریت ممکن است ساختار چند دامنه داشته باشند. شکل‌گیری چند دامنه‌ها و حرکت دیوارهای دامنه می‌تواند کاهش دامنه را نتیجه دهد. همچنین اگر اندازهی بحرانی ذرات [55] بهدست آمده بزرگ‌تر از قطر میانگین ذرات باشد، رفتار تک دامنه را از خود نشان می‌دهند. آن‌ها گزارش کردند که کاهش وادارندگی نمونه‌ها به رفتار وابسته به اندازهی ذرات بستگی دارد [56].
بلازینسکی و همکارانش در پژوهشی که در سال 2013 انجام دادند، سیلیکا آئروژل را با روش سل-ژل و فرآیند فوق بحرانی تهیه کردند. آن‌ها دریافتند که روش خشک کردن فوق بحرانی مؤثرترین روش برای بهدست آوردن بهترین ویژگی این محصولات است. بدین منظور آن‌ها دستگاه خشک کن فوق بحرانی را برای خود ساختند که فشار و دما به طور دستی تنظیم می‌شد و مرحله مهم در آمادهسازی سیلیکا آئروژل‌ها بود. به این ترتیب آن‌ها سیلیکا آئروژل‌های شفاف با مساحت سطح ویژه بالا به‌دست آوردند [57].
در گزارشی دیگر در سال 2014 ساجیا و همکارانش پودر آمورف فریت کبالت را به روش سل-ژل تهیه کردند و این روش را بهترین روش تهیه نانوذرات عنوان کردند. آن‌ها دریافتند که عملیات حرارتی برای تجزیه کامل مقدار مواد آلی و نیترات حاضر در پودر آمورف لازم است. در این فرآیند برای جلوگیری از ته‌نشینی یا رسوبگذاری این واکنش اسید سیتریک به آن اضافه کردند و سپس مراحل خشک کردن و عملیات حرارتی انجام شد. پارامترهای عملیات حرارتی، مرحله نهایی در آماده‌سازی نانوذرات فریت کبالت بودند که بررسی شدند. ساختار اسپینل در همهی نمونه‌های آن‌ها شکل گرفته بود و هنگامی که ذرات شروع به رشد کردند ناخالصی‌ها حذف شد. ویژگی مغناطیسی مرتبط با رفتار فریمغناطیس این نمونه‌ها مقدار emu/g 62 برای اشباع مغناطیسی را نشان می‌دهد [58].
در جدیدترین پژوهشی که دربارهی آمادهسازی و ارزیابی نانوکامپوزیت سیلیکا آئروژل/فریت در سال 2014 صورت گرفته است، کاتاگر و همکارانش نانوذرات فریت را به روش ته‌نشینی آماده کردند و سپس TMOS را به آن اضافه نمودند. برای این کار آن‌ها O2H6. 2NiCl، O2H6. 3FeCl و 2ZnCl را با اضافه کردن آب مقطر حل کردند. PH محلول در رفلاکس 110 درجهی سانتیگراد به مدت 24 ساعت 13 تنظیم شده بود. با حذف NaOH که برای PH اضافه شده بود، و شستن مکرر با آب مقطر و اتانول نانوذرات نتیجه شدند. بعد از بهدست آمدن نانوذرات به طور مستقیم به TMOS اضافه شدند و 3NH و آب دیونیزه به عنوان کاتالیست برای تهیه سل همگن اضافه گردیدند. برای مرحله پیر سازی قالب‌های حاوی سل را در اتانول به مدت 2 ساعت و دمای 50 درجهی سانتیگراد پیرسازی کردند و در نهایت ژل خیس را با خشک کردن فوق بحرانی کربن دی اکسید بهدست آوردند. تحقیقات آن‌ها نشان داد که زمان ژل شدن با افزایش نسبت مولی اتانول/TMOS افزایش یافت. همچنین به دلیل کشش سطحی اتانول، نمونه‌ها منقبض می‌شوند یا ترک می‌خورند. نانوکامپوزیت به‌دست آمده ساختار اسکلت شبکه‌ی سه بعدی را حفظ کرد. مساحت سطح ویژه با افزایش مقدار فریت از /g2m 700 تا /g2m 300 تغییر کرد. به علاوه ویژگی مغناطیسی فریت در ساختار نانو کامپوزیت تغییر نکرد [59].
3-5 برخی از کاربردهای آئروژل3-5-1 آئروژل‌ها به عنوان کامپوزیتهمانطور که پیشمادهی الکوکسید سیلیکون برای شکل‌گیری شبکه‌ی ژل با اکسیدهای فلزی دیگر به اندازه‌ی کافی واکنشی است، مطالعات زیادی در زمینه سنتز سیلیکا آئروژل برای کاربردهای مختلف صورت گرفته است [1].
3-5-2 آئروژل‌ها به عنوان جاذبآئروژل‌های فوق آبگریز و انعطافپذیر برای در جذب حلال‌های معدنی و روغن‌ها سنتز شدند. ونکاتشوارا رائو و همکارانش چگالی جذب و واجذب سیلیکا آئروژل‌های فوق آبگریز را با استفاده از یازده حلال و سه روغن بررسی کردند [60].
3-5-3 آئروژل‌ها به عنوان حسگرآئروژل‌ها تخلخل بالا، حفره‌های در دسترس، و سطح در معرض بالا دارند. از این رو کاندیداهای خوبی برای استفاده به عنوان حسگر هستند.بر اساس مطالعه وانگ و همکارانش روی آئروژل لایه‌ی نازک نانوذرات سیلیکا آئروژل نشان داد که مقاومت الکتریکی به طور قابل ملاحظه‌ای با افزایش رطوبت کاهش یافت. زیروژل همان مواد حساسیت کم‌تری را نشان داد. آئروژل‌هایی که اصلاح سطح شدند در مقایسه با آئروژل‌های آب‌گریز کمتر تحت تأثیر رطوبت قرار گرفتند و می‌توانند به عنوان ضد زنگ و عوامل آب‌گریز مورد استفاده قرار بگیرند [61].
چن و همکارش آئروژل‌هایی را برای کاربرد حسگرهای زیستی مطالعه کردند. در مطالعه آن‌ها، آئروژل‌های مزوحفره به وسیله پلیمریزاسیون سل-ژل با یک مایع یونی به عنوان حلال تهیه کردند. نتایج نشان می‌دهدکه آئروژل آماده شده می‌تواند به عنوان یک بسترشناسایی برای اسید نوکلوئیدها به کار رود [62].
3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایینلایه نازک‌های آئروژل 2SiO توجه خاصی را به خود اختصاص داد، به دلیل ثابت دی الکتریک خیلی پایین، تخلخل و پایداری حرارتی بالا. پارک و همکارانش لایه نازک سیلیکا آئروژل را برای لایهی داخلی دی الکتریک مورد بررسی قرار دادند و ثابت دی الکتریک را تقریبا 9/1 اندازه‌گیری کردند. آن‌ها ثابت دی الکتریک بسیار پایین فیلم‌های آئروژل را برای لایهی داخلی مواد دی الکتریک تولید کردند. فیلم های سیلیکا آئروژل به ضخامت Å 9500، % 5/79 تخلخل، و ثابت دی الکتریک پایین 2 با روش فرآیند خشک کردن محیط با استفاده از n-هپتان به عنوان حلال خشک کن به‌دست آوردند [63].
3-5-5 آئروژل به عنوان کاتالیزورمساحت سطح ویژه‌ی بالای آئروژل‌ها منجر به کاربردهای زیادی می‌شود، از جمله جاذب شیمیایی برای پاکسازی نشتی. این ویژگی کاربرد زیادی را به عنوان کاتالیزور یا حامل کاتالیزور به همراه دارد. آئروژل‌ها در کاتالیست‌های همگن مناسب هستند، زمانی که واکنش‌دهنده‌ها هم در فاز مایع و هم در فاز گاز هستند [27].
3-5-6 آئروژل به عنوان ذخیره سازیتخلخل بالا و مساحت سطح زیاد سیلیکا آئروژل‌ها می‌تواند برای کاربردهایی مثل فیلترهای گازی، جذب رسانهای برای کنترل اتلاف، محصور سازی، ذخیره سوخت هیدروژن به کار رود. آئروژل‌ها می‌توانند در مقابل تنش گذار مایع/گاز مقاومت کنند زیرا بافت آنها در طول پخت تقویت شد به عنوان مثال در ذخیره سازی، انتقال مایعات چون سوخت موشک‌ها کار برد دارد. به علاوه وزن پایین آئروژل‌ها بزرگ‌ترین مزیت است که در سیستم حمل دارو به دلیل ویژگی زیست سازگار آن‌ها مورد استفاده است [64]. کربن آئروژل‌ها در ساخت الکتروشیمی ابر خازن دو لایه کوچک استفاده شد. ابر خازن‌های آئروژل مقاومت ظاهری پایینی در مقایسه با ابر خازن‌های معمولی دارد و می‌تواند جریان بالا را تولید یا جذب کند.
3-5-7 آئروژل‌ها به عنوان قالبفیلم‌های سیلیکا آئروژل برای سلول‌های خورشیدی رنگ حساس استفاده شدند. مساحت سطح ویژه‌ی فیلم‌های آئروژل روی فیلم‌های شیشه‌ای رسانا تهیه شدند. نشست لایه اتمی برای پوشش قالب آئروژل با ضخامت‌های مختلف 2TiO با دقت کمتر از نانومتر انجام شد. غشاء آئروژل پوشش داده شده با 2TiO در سلول خورشیدی رنگ حساس گنجانیده شد. طول نفوذ شارژ با افزایش ضخامت 2TiO افزایش یافت که منجر به افزایش جریان شد [65].
3-5-8 آئروژل به عنوان عایق گرماجدای از تخلخل بالا و چگالی پایین یکی از جذاب‌ترین ویژگی‌های آئروژل رسانندگی گرمایی پایین آن‌ها است، علاوه بر این، از یک شبکه‌ی سه بعدی با ذرات ریز متصل شده تشکیل شده‌اند. بنابراین انتقال گرما از میان بخش جامد آئروژل‌ها از طریق مسیر پر پیچ و خمی است. فضای اشغال نشده در یک جامد توسط آئروژل به طور معمول با هوا پر شده مگر آن که تحت خلاء مهروموم شده باشد. این گازها می‌توانند انرژی حرارتی را از طریق آئروژل انتقال دهند. حفره‌های آئروژل باز هستند و اجازه عبور گاز از میان مواد را می‌دهند [27].
3-5-9 آئروژل‌ها در کاربرد فضاییناسا از آئروژل‌ها برای به دام انداختن ذرات گرد و غبار روی فضاپیما استفاده کرد. ذرات در برخورد با جامد اسیر شده، گازها تبخیر می‌شوند و ذرات در آئروژل به دام می‌افتند [27].
جدول 3-1 کاربردهای مختلف آئروژل‌ها را به طور مختصر نشان می‌دهد.
3-6 خلاصهدر این فصل پس از مقدمه‌ی کوتاه، اندکی در مورد سنتز آئروژل با روش سل-ژل گفته شد. پس از آن فرآیند‌های لازم برای شکل‌گیری ژل بیان شد و سپس تکنیک‌های مختلف خشک کردن و شرایط لازم برای این کار با مختصری توضیح نوشته شد. بعد مروری کوتاه به برخی از تلاش‌های انجام شده در این زمینه داشتیم و در آخر برخی از کاربردهای مختلف آئروژل‌ها را با ذکر مثال درج شد.
جدول 3-1 کاربردهای مختلف آئروژل‌ها [27].
خاصیت ویژگی کاربرد
رسانایی الکتریکی بهترین جامد عایق
شفاف
مقاومت در برابر درجه حرارت بالا
سبک ساخت و ساز ساختمآن‌ها و عایقبندی لوازم خانگی
ذخیره سازی
ماشین، وسیله نقلیه فضایی
دستگاه‌های خورشیدی
چگالی/تخلخل سبک‌ترین جامد مصنوعی
سطح ویژه_ی بالا
کامپوزیت‌های چندگانه کاتالیزور
حسگر
ذخیرهی سوخت
تبادل یون
فیلترهای آلاینده‌های گازی
اهداف ICF
حامل رنگ‌دانه
قالب
اپتیکی شفافیت
شاخص بازتاب پایین
کامپوزیت‌های چندگانه اپتیک سبک وزن
آشکارسازهای چرنکوف
راهنماهای نوری
عایق صوتی سرعت صوت پایین اتاق‌های ضد صدا
تطبیق مقاومت ظاهری صوتی در التراسونیک
مکانیکی الاستیک
سبک جاذب انرژی
تله برای ذرات سرعت بالا
الکتریکی ثابت دی الکتریک پایین
قدرت دی الکتریک بالا
سطح ویژهی بالا دی الکتریک برای ICها
جدا کنندهی الکترودهای خلا
خازن
فصل چهارمسنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت21434265186580مقدمهآئروژل‌ها کاندیدا‌های ایدهآلی برای طراحی نانوکامپوزیت‌های کاربردی تقویت شده با نانوذرات فلزی یا اکسید فلزی هستند. مساحت سطح ویژهی بالا با ساختار حفره‌ای، آئروژل‌ها را قادر می‌سازد تا به طور موثری میزبان نانوذرات ریز پراکندهشده باشند و این اطمینان را می‌دهد که نانوذرات در دسترس هستند.
راه گسترش آئروژل‌های کاربردی برای تهیهی مواد کاربردی خلاق از طریق طراحی نانوکامپوزیت‌ها است، به طوری که نانوذرات فلز یا اکسید فلز به داخل ماتریس آئروژل الحاق می‌شوند. با توجه به گسترش محدوده و قابلیت زیستی آئروژل‌ها، تهیه این نانوکامپوزیت‌ها برای جلوگیری از تجمع نانوبلورها و رشد از طریق ذرات بستر برای یک کاربرد خاص را فراهم می‌کند.
4-1 مواد مورد استفاده در پژوهش آلکوکسیدهای فلزی یک دسته از خانواده‌ی ترکیبات آلی فلزی میبا شند که شامل یک بنیان آلی چسبیده به یک عنصر فلزی یا شبهفلزی میباشند. تترا اتیل اورتو سیلیکات (TEOS) که دارای نماد شیمیایی 4)5H2Si(OC می‌باشد از جمله الکوکسیدهایی است که به عنوان پیشماده در سنتز سیلیکا آئروژل به کار می‌رود. در این پژوهش از TEOS به عنوان پیشماده سیلیکا ژل با جرم مولی g/mol 33/208 استفاده شد. متداول‌ترین آئروژل‌ها با بسپارش سل-ژل سیلیکا الکوکسید سنتز شدند [66]. نیترات آهن(ΙΙΙ) 9 آبه و نیترات کبالت(ΙΙ) 6 آبه به ترتیب با جرم مولی‌های g/mol 404 و g/mol 04/291 برای تهیه نانوذرات فریت کبالت به کار رفت. متانول و آب دیونیزه به عنوان حلال نیاز بود.
4-2 روش تجربی و جزئیاتدر ابتدا برای سه درصد وزنی مورد نظر میزان گرم و لیتر مورد نیاز هر ماده محاسبه شد که در جدول 1 نشان داده شدهاست. در همهی درصد وزنی‌ها نسبت نیترات آهن(ΙΙΙ) 9 آبه به نیترات کبالت(ΙΙ) 6 آبه 2 به 1 باقی ماند.

user8276

1-2-1 انواع نیروگاهای سیکل ترکیبی 3
1-2-2 چرخههای بالایی و پایینی در سیکل ترکیبی 3
1-2-3 بررسی بیشتر نیروگاههای سیکل ترکیبی توربینگاز / توربین بخار 4
1-2-4 طبقه بندی بویلرهای بازیاب 5
1-2-5 طبقه بندی انواع بویلرها بر اساس چگونگی گردش سیال عامل 6
1-2-5-1 سیستم گردش طبیعی 6
1-2-5-2 سیستم گردش اجباری 6
1-2-5-3 بویلرهای یکبار گذر (فوق بحرانی)(Once Through Boiler): 6
1-2-6 طبقه بندی بویلرهای سیکل ترکیبی بر اساس سیستم آتش زایی 7
1-2-6-1 بویلر بازیاب حرارت بدون احتراق اضافی 7
1-2-6-2 بویلرهای بازیاب حرارت با احتراق اضافی 8
1-2-6-2-1 بویلرهای با مشعل اضافی محدود شده 9
1-2-6-2-2 استفاده از توربین گاز جهت پیش گرم کردن هوای دم بویلر 9
1-2-6-2-3 بویلرهای با حداکثر احتراق اضافی 9
1-2-7 طبقه بندی بویلرهای بازیاب حرارت بر اساس سطوح فشار بخار 9
1-2-7-1 بویلرهای بازیاب حرارت تک فشاره 10
1-2-7-2 بویلرهای بازیاب حرارت چند فشاره 11
1-2-8 تأثیر پذیری کارایی سیکل ترکیبی از شرایط کاری 13
1-2-8-1 تأثیر دمای هوای محیط بر قدرت و راندمان سیکل ترکیبی 13
1-2-8-2 تأثیر بار توربین گاز بر راندمان سیکل ترکیبی 13
1-2-8-3 تأثیر فشار بخار بر راندمان سیکل ترکیبی 13
1-2-9 مزایا و معایب سیکلهای ترکیبی 13
1-2-10 راندمان کلی نیروگاههای سیکل ترکیبی 15
1-3 کلیات شیرین سازی آب 16
1-3-1 تعریف نمکزدایی 16
1-3-2 روشهای آب شیرین کنی 16
1-3-2-1 تقطیر چند مرحلهای (MED) 17
1-3-2-2 اسمز معکوس (RO) 17
1-3-2-3 متراکم سازی مکانیکی بخار آب (MVC) 18
1-3-2-4 تبخیر ناگهانی چند مرحلهای (MSF) 18
1-3-2-5 تقطیر چند مرحله ای چگالش- گرمایی بخار(MED-TVC) 19
1-3-3 ارزیابی معیارها 19
1-3-3-1 مقدار انرژی مورد نیاز 19
1-3-3-2 هزینه تولید 20
1-3-3-3 محیط زیست 20
1-3-3-4 کدورت آب تولیدی 20
1-3-3-5 نگهداری 20
1-3-4 مبدل نمک زدای حرارتی چند مرحلهای MED-TVC 20
1-3-4-1 آرایش تغذیه پیشرو 21
1-3-4-2 آرایش تغذیه موازی 22
1-3-4-3 آرایش تغذیه موازی - متقاطع 23
فصل2: روابط مربوط به بویلرهای بازیاب و آب شیرینکن های MED-TVC و تشریح الگوریتم ژنتیک 25
2-1 مقدمه 26
2-2 روابط مهم در طراحی بویلرهای بازیاب حرارت 26
2-2-1 پارامترهای مهم در طراحی بویلر بازیاب حرارت 27
2-2-1-1 اختلاف دمای نهایی 27
2-2-1-2 نقطهی پینچ 27
2-2-1-3 نقطهی نزدیکی 28
2-2-2 استخراج روابط سیکل تک فشاره 29
2-2-3 استخراج روابط سیکل دو فشاره در آرایش مرسوم مبدلهای حرارتی 30
2-2-4 سیکل ترکیبی سه فشار ساده 31
2-2-4-1 استخراج روابط 32
2-2-4-2 رابطه کار پمپ ها 33
2-2-4-3 دبی جرمی بخار 33
2-2-4-4 تلفات سرعت در خروجی توربین 35
2-3 روابط مربوط به نمکزدای چندمرحلهای حرارتی 35
2-3-1 معادلات تعادل هر افکت 36
2-3-2 معادلات تعادل کوندانسور 38
2-3-3 بررسی ضرایب انتقال حرارت 39
2-3-4 طراحی ترموکمپرسور (کمپرسور حرارتی بخار) 44
2-4 روابط ترمودینامیکی استفاده شده برای آب ، بخار و محصولات حاصل از احتراق 47
2-4-1 روابط ترمودینامیکی استفاده شده برای آب ، بخار 47
2-4-2 روابط ترمودینامیکی استفاده شده برای مخلوط دود ورودی به بویلر بازیاب حرارت 49
2-5 الگوریتم ژنتیک 49
2-5-1 مفاهیم الگوریتم ژنتیک 50
2-5-2 الگوریتم ژنتیکی ساده 52
2-5-3 عملگرهای انتخاب، برش و جهش 53
فصل 3: روابط اگزرژواکونومیک و هزینهی تجهیزات در نیروگاه های چند منظوره تولید همزمان توان و آب شیرین 56
3-1 مقدمه 57
3-2 تحلیل اگزرژی 58
3-2-1 اجزای اگزرژی 58
3-2-2 بالانس اگزرژی و تخریب اگزرژی 62
3-2-2-1 بالانس اگزرژی در یک سیستم بسته 62
3-2-2-2 بالانس اگزرژی برای حجم کنترل 63
3-2-2-3 تخریب اگزرژی 64
3-2-3 متغیرهای اگزرژتیک 67
3-3 تحلیل اقتصادی 68
3-3-1 تخمین هزینهی سرمایه گذاری 68
3-3-2 محاسبه نیازهای درآمدی 70
3-3-3 هزینههای همسطح شده 70
3-3-4 تحلیل حساسیّت 72
3-4 تحلیل ترمواکونومیک 72
3-4-1 هزینه گذاری اگزرژی 73
3-4-2 بالانس هزینه 73
3-4-3 معادلات کمکی تعیین هزینه 74
3-5 ارزیابی ترمواکونومیکی 78
3-5-1 متغیرهای ترمواکونومیکی 78
3-5-2 ارزیابی طراحی 81
3-6 تحلیل اقتصادی و محیطی 82
3-6-1 هزینههای سرمایه گذاری سالیانه 82
3-6-2 محاسبه بازگشت سرمایه و درآمد کل 83
3-7 تشریح روشTOPSIS در یافتن نزدیک ترین حل در معادلات چند معیاره 84
فصل 4: بهینهسازی چند منظوره ترمودینامیکی، اگزرژتیک، اگزرژواکونومیک، بهینه سازی درآمدی و بازگشت سرمایه و هزینه های کلی سالانه در نیروگاه سیکل ترکیبی نکا 87
4-1 مقدمه 88
4-2 سیکل نیروگاه نکا 89
4-3 پارامترهای طراحی در الگوریتم GA تشریح روابط ریاضی مورد استفاده در سیکل 92
4-3-1 تشریح سیکل بخار مورد استفاده و معرفی پارامترهای طراحی استفاده شده در الگوریتم ژنتیک 92
4-3-1-1 تشریح سیکل بخار تحلیل شده 92
4-3-1-2 پارامترهای مرجع در مدلسازی با استفاده از الگوریتم ژنتیک 93
4-3-2 معادلات محاسبه دبی بخار، اگزرژی، کار توربین و آب شیرین تولیدی در سیکل نکا 95
4-4 مقادیر بهینه به دست آمده و نتایج حاصل از تحلیل حساسیت پارامترهای طراحی و هزینه 97
4-4-1 نتایج حاصل از بهینه سازی به در حالت های تک هدفه و چند معیاره 97
4-4-2 بررسی نتایج حاصل از تغییر TBT 98
4-4-3 بررسی نتایج حاصل از تغییرات فشار بخار پشت توربین 102
4-4-4 بررسی نتایج حاصل از تغییر سوخت ورودی به مشعل کانالی 107
4-4-5 بررسی نتایج حاصل از تغییر تعداد افکت های MED_TVC 111
4-4-6 بررسی نتایج حاصل از تغییر فشار بخش فشار بالا 113
4-4-7 بررسی نتایج حاصل از تغییر فشار بخش فشار پایین 118
4-4-8 بررسی نتایج حاصل از تغییر دبی جرمی بخار خروجی از بخش فشار ضعیف جهت استفاده در آبشیرینکن 122
فصل5 نتیجه گیری و پیشنهادات 126
5-1 بررسی نتایج 127
5-2 ارائه پیشنهادات 128
مراجع و مؤاخذ 129
پیوست 1 130
پیوست 2 136
فهرست اشکال
شکل1-1: شماتیک سیکل ترکیبی 4
شکل1-2: سیکل برایتون با بازیافت حرارت خروجی از توربین با استفاده از بازگرمکن 4
شکل1-3: طبقه بندی بویلرهای بازیاب حرارت 5
شکل1-4: بویلر بازیاب حرارت با انواع سیستم گردش آب a) گردش طبیعی b)گردش اجباری c) یک بار گذر 6
شکل 1-5: شمای حرارتی یک نیروگاه سیکل ترکیبی بدون مشعل 8
شکل 1-6: نمونهای از شمای حرارتی نیروگاههای سیکل ترکیبی با مشعل 8
شکل1-7:شماتیک بویلر بازیاب تک فشاره در حضور هوازدا 10
شکل1-8: پرفیل دمایی بویلر بازیاب تک فشاره در حضور هوازدا 10
شکل 1-9: تأثیر فشار بخار زنده بر انرژی مصرفی و تلفات اگزرژی کلی 11
شکل 1-10: شماتیک سیکل دوفشاره همراه با هوازدا تغذیهی مستقل 12
شکل1-11: پرفیل دمایی سیکل دو فشاره همراه با هوازدا 12
شکل1-12: شماتیک سیکل سه فشاره در حضور هوازدا 12
شکل1-13: پرفیل دمایی سیکل سه فشاره در حضور هوازدا 12
شکل 1-14: شمای یک نیروگاه سیکل ترکیبی در حالت سری واحدها 15
شکل 1-15 : شماتیک یک واحد MED 17
شکل 1-16: شماتیک نحوه عملکرد غشای یک واحد RO 18
شکل 1-17: شماتیک یک واحد MSF 18
شکل 1-18: شماتیک یک واحد MED-TVC 21
شکل 1-19: شماتیک یک واحد آب شیرینکن MED-TVC پیشرو (MED-TVC-F) 22
شکل 1-20: شماتیک یک واحد آب شیرینکن MED-TVC موازی (MED-TVC-P) 23
شکل 1-21: شماتیک یک واحد آب شیرینکن MED-TVC موازی - متقاطع (MED-TVC-PC) 24
شکل2-1: شماتیک سیکل ترکیبی تک فشاره در حضور هوازدا و بازگرمکن 29
شکل 2-2: نمودار T-S برای سیکل تک فشاره در حضور هوازدا و بازگرمکن 29
شکل 2-3: شماتیک سیکل دو فشاره همراه با هوازدا و بازگرمکن 30
شکل 2-4: نمودار T-S سیکل دوفشاره همراه با هوازدا و بازگرمکن 30
شکل2-5: نمودار T-S سیکل ترکیبی سه فشار ساده 32
شکل 2-6: آرایش ساده بویلر بازیاب حرارت سه فشار ساده با آرایش مرسوم مبدلهای حرارتی 33
شکل 2-7: پروفیل دمایی برای بویلر بازیاب حرارت سه فشار ساده با آرایش مرسوم مبدلهای حرارتی 33
شکل 2- 8 : متغیرهای اواپراتور و محفظهی فلش افکت i ام ]4[36
شکل 2-9: نمودار ناحیه بندی برای معادلات حاکم در روش IAPWS-IF97 48
شکل 2-10: دیاگرام بلوکی الگوریتم ژنتیکی ساده 52
شکل 2-11: انتخاب با چرخ رولتی با قطاعهای متناسب با تابع معیار هر کروموزوم 54
شکل 2-12: عملگر برش ساده با جابجایی ژنهای والدین، فرزندانی جدید میسازد 55
شکل 2-13: عملگر جهش با تغییر یک ژن نقطهای دیگر در فضای جستجو تولید میکند 55
شکل 3-1 : وسیلهای برای ارزیابی اگزرژی شیمیایی یک سوخت [19] 61
شکل 3-2: پروفیل دما و دمای متوسط ترمودینامیکی برای دو جریان که از یک مبدل حرارتی آدیاباتیک در فشار ثابت عبور میکنند 64
شکل 3-3: شماتیک یک جز از سیستم برای نمایش بالانس هزینه 74
شکل 3-4: شماتیک دستگاه تولید بخار شامل درام 75
شکل 3-5: شماتیک دستگاه تولید بخار 76
شکل 3-6: شماتیک دستگاه کمپرسور با استخراج هوای خنک کننده 76
شکل 3-7: شماتیک دستگاه هوازدا 76
شکل 3-8: شماتیک محفظهی احتراق 77
شکل 3-9: شماتیک مبدل حرارتی 77
شکل 3-10: شماتیک توربین آدیاباتیک 77
شکل 3-11: ارتباط بین هزینهی سرمایه گذاری و تخریب اگزرژی (یا راندمان اگزرژتیک) برای جز K ام یک سیستم حرارتی 80
شکل 3-12 : چارت روابط محاسبهی هزینهها در سیکل ترکیبی 83
شکل 4-1 : نمودار جریان فرآیند نیروگاه سیکل ترکیبی نکا 89
شکل 4-2: شماتیک سیکل بخار مورد بررسی در تحلیل انجام شده 92
شکل 4-3: تغییرات آب شیرین تولیدی با تغییر دمای مرحلهی اول MED-TVC 99
شکل 4-4: تغییرات GOR با تغییر دمای مرحلهی اول MED-TVC 99
شکل 4-5: تغییرات هزینه تولید آب شیرین با تغییر دمای مرحلهی اول MED-TVC 99
شکل 4-6: تغییرات هزینهی تولید توان با تغییر دمای مرحلهی اول MED-TVC 99
شکل 4-7: تغییرات تخریب اگزرژی در اجزاء مختلف سیکل تولید همزمان با تغییر دمای مرحلهی اول MED-TVC 100
شکل 4-8: تغییرات تخریب اگزرژی کل مختلف سیکل تولید همزمان با تغییر دمای مرحلهی اول MED-TVC 101
شکل 4-9: تغییرات تخریب اگزرژی سسیستم آب شیرین کن با تغییر دمای مرحلهی اول MED-TVC 101
شکل 4-10: تغییرات بازگشت سرمایه با تغییر دمای مرحلهی اول MED-TVC 102
شکل 4-11: تغییرات درآمد کل با تغییر دمای مرحلهی اول MED-TVC 102
شکل 4-12: تغییرات توان تولیدی به ازای تغییر در فشار پشت توربین 103
شکل 4-13: تغییرات آب شیرینتولیدی تولیدی به ازای تغییر در فشار پشت توربین 103
شکل 4-14: تغییرات نسبت بهره به ازای تغییر در فشار پشت توربین 103
شکل 4-15: تغییرات هزینهی آب شیرین تولید به ازای تغییر در فشار پشت توربین 104
شکل 4-16: تغییرات هزینهی تولید توان به ازای تغییر در فشار پشت توربین 104
شکل 4-17: تغییرات درآمد به ازای تغییر در فشار پشت توربین 105
شکل 4-18: بازگشت سرمایه به ازای تغییر در فشار پشت توربین 105
شکل 4-19: تخریب اگزرژی در اجزائ سیکل بخار به ازای تغییر در فشار پشت توربین 106
شکل 4-20: تخریب اگزرژی توربین بخار به ازای تغییر در فشار پشت توربین 106
شکل 4-21: آب شیرین تولیدی به ازای افزایش سوخت ورودی به مشعل کانالی 107
شکل 4-22: تغییرات نسبت بهره به ازای افزایش سوخت ورودی به مشعل کانالی 107
شکل 4-23: توان تولیدی به ازای افزایش سوخت ورودی به مشعل کانالی 108
شکل 4-24: درآمد کل به ازای افزایش سوخت ورودی به مشعل کانالی 108
شکل 4-25: دورهی بازگشت سرمایه به ازای افزایش سوخت ورودی به مشعل کانالی 109
شکل 4-26: هزینهی آب شیرین تولیدی به ازای افزایش سوخت ورودی به مشعل کانالی 110
شکل 4-27: هزینهی توان تولیدی به ازای افزایش سوخت ورودی به مشعل کانالی 110
شکل 4-28: تخریب اگزرژی تجهیزات سیکل به ازای افزایش سوخت ورودی به مشعل کانالی 111
شکل 4-29: تخریب اگزرژی به ازای افزایش تعداد مراحل موجود در آب شیرینکن MED-TVC 111
شکل 4-30: تغییرات نسبت بهره به ازای افزایش تعداد مراحل موجود در آب شیرینکن MED-TVC 112
شکل 4-31: هزینهی آب شیرین تولیدی به ازای تعداد مراحل آب شیرین کن MED-TVC 113
شکل 4-32: بازگشت سرمایه به ازای تعداد مراحل آب شیرین کن MED-TVC 113
شکل 4-33: تغییرات دبی جرمی بخار بخش فشار بالا به ازای تغییر در فشار این بخش 114
شکل 4-34: تغییرات دبی جرمی بخار بخش فشار ضعیف به ازای تغییر در فشار بخش فشار بالا 114
شکل 4-35: تغییرات دبی جرمی بخار مبدل بخار مستقل به ازای تغییر در فشار بخش فشار بالا 115
شکل 4-36: تغییرات دبی جرمی بخار محرک آبشیرینکن MED-TVC به ازای تغییر در فشار بخش فشار بالا 115
شکل 4-37: تغییرات نسبت بهره در آبشیرینکن MED-TVC به ازای تغییر در فشار بخش فشار بالا 115
شکل 4-38: تغییرات توان تولیدی در توربین بخار به ازای تغییر در فشار بخش فشار بالا 115
شکل 4-39: تغییرات درآمد کل به ازای تغییر در فشار بخش فشار بالا 116
شکل 4-40: تغییرات هزینهی تولید آب شیرین در MED-TVC به ازای تغییر در فشار بخش فشار بالا 116
شکل 4-41: تغییرات هزینهی تولید توان در توربین بخار به ازای تغییر در فشار بخش فشار بالا 117
شکل 4-42: تخریب اگزرژی در اجراء سیکل به ازای تغییر در فشار بخش فشار بالا 117
شکل 4-43: دبی جرمی تولیدی بخش کم فشار به ازای تغییر در فشار بخش فشار ضعیف 118
شکل 4-44: توان تولیدی در توربین بخار به ازای تغییر در فشار بخش فشار ضعیف 118
شکل 4-45: تغییرات نسبت GOR به ازای تغییر در فشار بخش فشار ضعیف 119
شکل 4-46: تغییرات آب شیرین تولیدی به ازای تغییر در فشار بخش فشار ضعیف 119
شکل 4-47: تغییرات درآمد به ازای تغییر در فشار بخش فشار ضعیف 120
شکل 4-48: تغییرات بازگشت سرمایه به ازای تغییر در فشار بخش فشار ضعیف 120
شکل 4-49: تغییرات هزینهی تولید آب شیرین به ازای تغییر در فشار بخش فشار ضعیف 120
شکل 4-50: تغییرات هزینهی تولید توان به ازای تغییر در فشار بخش فشار ضعیف 120
شکل 4-51: تغییرات تخریب اگزرژی کل به ازای تغییر در فشار بخش فشار ضعیف 121
شکل 4-52: تغییرات تخریب اگزرژی در اجزاء سیکل به ازای تغییر در فشار بخش فشار ضعیف 122
شکل 4-53: تغییرات آب شیرین تولیدی به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 123
شکل 4-54: تغییرات GOR به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 123
شکل 4-55: تغییرات درآمد کل به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 123
شکل 4-56: تغییرات ROI به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 123
شکل 4-57: تغییرات هزینهی تولید توان به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 124
شکل 4-58: تغییرات هزینهی تولید آب شیرین به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 124
شکل 4-59: تغییرات هزینههای سالیانه به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 125
شکل 4-60: تغییرات تخریب اگزرژی در اجزا سیکل به ازای تغییر در میزان بخار خروجی از درام بخش فشار ضعیف 125

فهرست جداول
عنوان جدول صفحه
جدول 1-1: بازه ی فشار و دمای استفاده از انواع آب شیرینکنها 19
جدول2-1: مقادیر نقطهی پینچ برحسب دمای گازهای خروجی از بویلر بازیاب حرارت 28
جدول2-2: مقادیر نقطهی نزدیکی برحسب دمای گازهای خروجی از بویلر بازیاب حرارت 29
جدول 2-3 مقادیر خطا در محاسبات آنتروپی دود 49
جدول 3-1: نرخ اگزرژی جریانهای سوخت و محصول برای محاسبهی راندمان اگزرژتیک تجهیزات فرآیندی در شرایط عملکرد پایدار 67
جدول 3-2: محاسبهی هزینهی نصب و خرید تجهیزات سیکل ترکیبی 83
جدول 4-1: آنالیز سوخت ورودی به توربین گازی و مشعل کانالی 90
جدول 4-2: آنالیز در صد مولی هوای محیط 90
جدول 4-3: آنالیز دود خروجی از توربین گازی 90
جدول 4-4: آنالیز دود خروجی از مشعل کانالی 90
جدول 4-5: خواص ترمودینامیکی بخار در مقاطع مختلف بویلر بازیاب حرارت در دوحالت دارای مشعل کانالی و در حالت بدون حضور مشعل کانالی 91
جدول 4-6: خواص ترمودینامیکی دود در مقاطع مختلف بویلر بازیاب حرارت در دوحالت دارای مشعل کانالی و در حالت بدون حضور مشعل کانالی 91
جدول4-7: پارامترهای طراحی موجود در سیکل تولید همزمان توان و آب شیرین 93
جدول 4-8: نتایج حاصل از بهینه سازی با اهداف مختلفبه دست آمده از الگوریتم ژنتیک 97

فهرست علائم
زیروند ها: بخار خروجی بازگرمکن HRH
بخار ورودی به بازگرم کن CRH
سوپرهیت SH
اکونومایزر ECO , EC


هوازدا Dea
فشار بالا HP
فشار متوسط IP
فشار پائین LP
پمپ آب تغذیه FWP
کندانسور Cond
توربین Tur
متوسط ave
ورودی i
خروجی e
زیر کش بلودان بویلر BD
مبدل بخار مستقل Free

چکیده:
با توجه به کاهش منابع زیرزمینی آبی و سوخت های فسیلی در دنیای امروز و همچنین در ایران جلوگیری از اتلاف انرژی و معرفی روشهای نوین در تهیهی آب شیرین قابل شرب از آب دریاجایگاهی خاص در دنیای آینده خواهد داشت. استفاده از روشهایی چون روش های تبخیر – تقطیری میتواند یکی از این روشها باشد.
با توجه به بالا بودن راندمان حرارتی در سیکلهای ترکیبی موجب شده تا اقبال عمومی در جهان به این نوع از نیروگاه ها افزایش یابد اما هنوز سهم بزرگی از حرارت وارد شده به بویلرهای بازیاب این نیروگاه ها توسط برج های خنک کننده به محیط انتقال یافته و به عنوان انرزی تلف شده در نظر گرفته میشود. حال اگر بتوان روشی را پیشنهاد داد تا از این حرارت در جهت تولید آب شیرین استفاده نمود میتوان راندمان این نوع نیروگاهها را بیش از پیش بالا برد.
از این رو در این پایان نامه با استفاده از یک توربین با فشار پشت که دارای فشار خروجی بالاتری نسبت به توربینهای بخار معمولی میباشد در سیکل بخار نیروگاه نکا سعی شده است تا حرارت ورودی به یک آب شیرین کن MED-TVC را تعمین نمود. بخار وارد شده به این آب شیرین کن حرارت خود را به آب دریا میدهد تا در فشار پایین تر از محیط تبخیر گردد و با تقطیر بخار حاصل آب شیرین DM تولید گردد. در این روش اندکی میزان تولید توان به دلیل استفاده از توربین با فشار پشت کاهش خواهد یافت اما در عوض از اتلاف حرارتی بالایی که در کندانسور نیروگاه وجود داشت جلوگیری و در جهت تولید آب شیرین استفاده میگردد.
جهت بهینه سازی سیکل مذکور در افزایش درآمد و کاهش میزان تخریب اگزرژی، بازگشت سرمایه و هزینههای اولیه از الگوریتم ژنتیک استفاده شده است و همچنین در جهت بهینه سازی چند معیاره با در نظر گرفتن تمامی موارد فوق از روش TOPSIS در کنار الگوریتم ژنتیک بهره گرفته شده.
بر اساس تحلیلهای انجام شده در پایان نامهی حاضر نتایج ذیل به دست آمد:
با افزایش میزان TBT در آب شیرینکن MED-TVC میزان تولید آب شیرین و نسبت بهره در آب شیرین کن کاهش مییابد اما میزان هزینههای اولیهی ساخت و نصب و بهره برداری آب شیرینکن با کاهش روبرو میباشد.
با افزایش میزان فشار خروجی توربین با فشار پشت علاوه بر کاهش درآمد کل بازگشت سرمایه با تاخیر روبرو خواهد بود اما میزان تولید آب شیرین در خروجی توربین افزایش خواهد یافت.
با افزایش در میزان سوخت ورودی به مشعل کانالی علاوه بر افزایش درآمد کل میزان تخریب اگزرژی کل نیز افزایش خواهد یافت. با توجه به این امر مقدار بهینهای برای دبی سوخت ورودی به مشعل کانالی وجود دارد که این مقدار با روش TOPSIS، Kg/s 41/0 به دست میآید. میزان دبی سوخت ورودی به مشعل کانالی در نیروگاه نکا در حال حاضر kg/s 8/0 میباشد.
افزایش فشار در خروجی بخش فشار بالا در بویلر بازیاب علاوه بر افزایش میزان تخریب اگزرژی کل موجب افزایش درآمد کل نیز خواهد شد. این مقدار نیز با روش TOPSIS، Bar 5/148 به دست آمده است درحالی که این میزان در بویلر نیروگاه نکاbar 130 میباشد. علاوه بر آن مقدار بهینهی فشار بخش فشار پائین، دبی خروجی از درام بخش فشار پائین، تعداد مراحل آب شیرینکن و همچنین مرحلهی بهینهی خروجی بخار مکش شده در آب شیرین کن نیز به دست خواهد آمد.

فصل 1
کلیاتی در مورد نیروگاههای سیکل ترکیبی، بویلرهای بازیاب و روشهای مختلف شیرین سازی آب

1-1 مقدمه
بازدهی یک نیروگاه گازی را میتوان با انتخاب پارامترهایی نظیر نسبت تراکم (که در کمپرسور، محفظهی احتراق و توربین تعریف میشود) نسبت سوخت به هوا و ... بهینه نمود. علاوه بر آن با بهرهگیری از انرژی موجود در گازهای داغ خروجی از توربین میتوان راندمان کل یک نیروگاه گازی را با تبدیل آن به نیروگاه سیکل ترکیبی بهبود بخشید. برای این امر از بویلرهای بازیاب حرارت استفاده میشود.
سیکل ترکیبی از دو یا چند سیکل قدرت تشکیل میشود که هدف اصلی از ترکیب سیکلهای متفاوت به دست آوردن سیکلی است که دارای راندمان بالاتری نسبت به راندمان سیکلهای تشکیل دهنده آن باشد.
به منظور تولید برق به صورت صنعتی و تجاری سیکلهای ترکیبی گوناگونی توسط محققان مورد مطالعه و بررسی قرار گرفته است. از حدود سال 1970 به بعد نیروگاههای سیکل ترکیبی که مرکب از سیکل گازی و سیکل بخاری میباشد که ذکر خواهد شد مورد توجه بسیاری بوده و توسعهی قابل ملاحظهای یافته است.
شیرینسازی آب دریا یک منبع عظیم تولید آب صنعتی، کشاورزی و آشامیدنی در بسیاری از مناطق جهان است. فرآیند شیرینسازی آب شور به طرق مختلفی صورت میپذیرد که همگی آنها به انرژی احتیاج دارند. این انرژی میتواند از طریق گرمایی، مکانیکی و یا الکتریکی تامین شود.
فرآیند تبخیر چند مرحلهای (MED) که از انرژی گرمایی استفاده میکند، اولین فرآیندی است که برای تولید مقادیر قابل توجهی آب خالص از آب دریا مورد استفاده قرار گرفته است. اساس این روش، چگالش بخارات حاصل از تبخیر در خلاء آب دریاست. برای ایجاد خلاء از یک کمپرسور استفاده میشود که این کمپرسور میتواند به صورت حرارتی (ترموکمپرسور) و یا مکانیکی عمل نماید. مزیت عمدهی ترموکمپرسور به کمپرسور مکانیکی، هزینههای پایین ساخت، نگهداری، تعمیرات و مصرف انرژی پایین است.
1-2 کلیات نیروگاه سیکل ترکیبی و بویلرهای بازیاب حرارت
1-2-1 انواع نیروگاههای سیکل ترکیبی
یک نیروگاه سیکل ترکیبی از ترکیب دو یا چند سیکل قدرت متفاوت که با سیال عاملهای مختلف و در دماهای متفاوت کار میکنند، تشکیل یافته است، بهطوریکه هر یک از آنها قادر است در صورت فراهم شدن شرایط مورد نیازش، بهطور مستقل به فعالیت خود ادامه دهد. در یک سیکل ترکیبی، گرمای دفع شده از سیکل با دمای بالاتر، به سیکل با دمای پایینتر، جهت تولید قدرت اضافی و درنتیجه دستیابی به راندمانی بالاتر نسبت به راندمان تک تک سیکلها مورد استفاده قرار میگیرد.
با پیشرفت تکنولوژی مفاهیم جدیدتری از نیروگاههای سیکل ترکیبی در سالهای اخیر مطرح شده است که از جملهی آنها میتوان به موارد زیر اشاره کرد:
موتور دیزل - سیکل بخار
موتور دیزل - سیکل با یک سیال عامل آلی
توربین گاز - سیکل بخار
توربین گاز - سیکل با یک سیال عامل آلی
فلزات مایع - سیکل بخار
MHD2 - سیکل بخار
توربین گاز - سیکل قدرت دو سیاله (هوا - بخار)
اگرچه امروزه تلاشهای زیادی جهت توسعهی نیروگاههای سیکل ترکیبی شامل مواد آلی در حال انجام است، ولی نیروگاههای سیکل ترکیبی توربین گاز/ توربین بخار، هنوز به عنوان رایجترین سیکل ترکیبی شناخته میشوند. این نیروگاهها بر اساس نیاز در انواع مختلفی ساخته و مورد استفاده قرار میگیرند به اختصار به بررسی آنها پرداخته میشود.
1-2-2 چرخههای بالایی و پایینی در سیکل ترکیبی
اصل بهبود بخشیدن راندمان از طریق افزایش دمای متوسط گرمای ورودی (Tin) و پایین آوردن گرمای متوسط دفع شده (Tout)، کماکان در نیروگاههای سیکل ترکیبی به کار گرفته میشود. در نیروگاههای سیکل ترکیبی به سیکل با دمای بالاتر، سیکل بالایی و به سیکل با دمای پایینتر، سیکل پایینی گفته میشود. سیکل بالایی میتواند در قالب سیکلهای اتو، برایتون و یا رانکین عمل کند در حالیکه تمامی سیکلهای پایینی بر اساس سیکل رانکین عمل میکنند. در سیکلهای بالا قسمتی از انرژی سوخت داده شده به سیکل، تبدیل به الکتریسیته و مابقی تبدیل به گرما در فرآهم آوردن قدرت در سیکل پایینی مورد استفاده قرار میگیرد.
1-2-3 بررسی بیشتر نیروگاههای سیکل ترکیبی توربینگاز / توربین بخار
نیروگاه سیکل ترکیبی توربینگاز/توربین بخار، به نیروگاهی گفته میشود که در آن، هم در توربین گاز و هم در توربین بخار قدرت تولید شود. ایدهی سیکل ترکیبی، به منظور بهبود چرخهی سادهی برایتون، از طریق بهرهگیری از انرژی اضافی گازهای خروجی توربین گاز مطرح شد.

شکل1-2: سیکل برایتون با بازیافت حرارت خروجی از توربین با استفاده از بازگرمکن

شکل1-1: شماتیک سیکل ترکیبی
همانطور که در شکل (1-2) نیز مشاهده میشود، با استفاده از بازگرمکن نیز میتوان، از جریان گازهای خروجی توربین گاز بازیافت انرژی را انجام داد، به طوریکه بازیافت گرما به این شیوه، انرژی هدر رفته از دودکش را از 60 به 40 درصد انرژی داده شده میرساند، ولی این روش دارای معایبی است:
استفاده از بازگرمکن منحصراً موجب افزایش راندمان میشود اما، توان خروجی از توربین گاز را به واسطهی افزایش یافتن افت فشارها و کاهش دادن نسبت فشار بهینهای که موجب بیشینه شدن راندمان میشود چند درصدی کاهش میدهد.
به دلیل سطح تبادل گرمای زیاد و لولههای بزرگ هوا و گاز در آن، هزینههای سرمایهگذاری افزایش یافته که این امر موجب گرانتر شدن نیروگاه میشود.
از این رو، یک نیروگاه سیکل ترکیبی توربین گاز/توربین بخار شامل یک واحد توربین گاز به عنوان چرخهی بالایی، بویلر بازیاب حرارت و یک توربین بخار به عنوان چرخهی پایینی می تواند علاوه بر افزایش راندمان در نیروگاه موجب افزایش کار تولیدی نیز شود. در این نوع نیروگاهها بویلر بازیاب حرارت به عنوان رابط بین دو چرخهی بالایی و پایینی میباشد. انرژی زیاد خروجی از واحد توربین گاز در بویلر بازیاب به جریان آب عبوری از مبدلهای حرارتی تعبیه شده در آن منتقل شده، و بدین ترتیب، بخار مورد نیاز جهت تغذیهی واحد بخار تأمین میگردد.

1-2-4 طبقه بندی بویلرهای بازیاب

شکل1-3: طبقه بندی بویلرهای بازیاب حرارت
بویلرهای بازیاب حرارت براساس کاربردهای مختلفی که دارند طبقهبندی میشوند. در شکل (1-3) نمونهای از طبقه بندی آنها آورده شده است.
در ادامه طبقهبندیهای انجام شده بر اساس گردش سیال عامل، سیستم آتشزایی و سطوح فشار که مهمترین مشخصهی طبقهبندی میباشد مورد بررسی قرار میگیرد.
1-2-5 طبقه بندی انواع بویلرها بر اساس چگونگی گردش سیال عامل  
1-2-5-1 سیستم گردش طبیعی
دارای لولههای عمودی است و جریان داغ گازهای عبوری از آنها افقی میباشد. در این سیستم، اختلاف دانسیته بین سیال سرد در لولههای پایین برنده با مخلوط آب و بخار در لولههای بالابرنده، موجب ایجاد نیروی رانش شده و سیال را در مدار چرخشی خود به حرکت در میآورد.

شکل1-4: بویلر بازیاب حرارت با انواع سیستم گردش آب a) گردش طبیعی b)گردش اجباری c) یک بار گذر
1-2-5-2 سیستم گردش اجباری
دراین سیستم لولههای حامل سیال عامل، افقی بوده و جریان گازهای عبوری از لولهها، عمودی است. در سیستم گردش اجباری نیروی رانش سایل از لوله های افقی مولد بخار، توسط پمپ تولید میشود.
1-2-5-3 بویلرهای یکبار گذر (فوق بحرانی)(Once Through Boiler):
بویلرهای بدون درام که دارای فشار فوق بحرانی میباشند به بویلرهای بنسون معروفند. در این نوع بویلر طراحی مجموعه محفظهی احتراق و لولههای دیوارهای به نحوی است که کلیهی آب تغذیه کنندهی موجود در لولههای دیوارهای پس از طی محفظهی احتراق و لولههای دیوارهای به بخار تبدیل شده و مستقیماً به سمت مافوقگرمکنها هدایت میگردند، لذا این بویلرها بدون درام هستند. از آنجاییکه بویلرهای بنسون دارای فشار بالایی هستند، تکنولوژی پیشرفتهای برای ساخت آنها مورد نیاز است، ولی به علت عدم وجود درام، وزن کمتری نسبت به بویلرهای زیر فشار بحرانی (درامدار) دارند. در بویلرهای بنسون حجم مشخصی از آب تغذیه با یکبار گردش در بویلر باید به بخار تبدیل شود. به عبارت دیگر عدد سیرکولاسیون، یک میباشد. ولی از آنجا که این بویلرها بالای فشار بحرانی کار می کنند، برای افزایش طول لولههای دیوارهای، بر خلاف بویلرهای درام دار لولهها را بهصورت مورب در روی دیوارهها طراحی میکنند تا ارتفاع بویلر کاهش یابد. همچنین ضخامت لولههای دیواره‌ای به علت بالا بودن فشار، بیشتر از ضخامت لولههای بویلرهای درامدار است. در ابتدای راهاندازی بویلرهای بنسون برای جداسازی آب و بخار از هم از سیکلون استفاده میکنند که با استفاده از خاصیت گریز از مرکز، آب و بخار را از هم جدا میکند و در حالت کارکرد دائم بویلر, از مدار خارج میگردند. همچنین به علت پایین بودن عدد سیرکولاسیون کنترل آنها نسبت به بویلرهای درامدار دشوارتر است و به دلیل نداشتن درام در شرایط اضطراری ذخیره آب و بخار نخواهند داشت. 
1-2-6 طبقه بندی بویلرهای سیکل ترکیبی بر اساس سیستم آتشزایی
بر این اساس دو نوع بویلر بازیاب حرارت میتواند وجود داشته باشد :
1-2-6-1 بویلر بازیاب حرارت بدون احتراق اضافی
در این نوع ، دود خروجی از اگزوز توربین گاز که حجم بالا و دمای زیادی (دمای گاز خروجی در بار اسمی در حدود 500 درجه سانتیگراد است) دارد به بویلر بازیاب حرارت هدایت میشود و به جای مشعل و سوخت در واحدهای بخاری، جهت تولید حرارت به کار می رود. بخار تولید شده نیز توربین بخار را به چرخش در می آورد. این امر باعث بالا رفتن راندمان مجموعه نیروگاهی می گردد، ضمن آنکه هزینههای بهره برداری به ازای هر کیلووات تا حد قابل ملاحظهای کاهش پیدا میکند. این مجموعه برای تولید برق پایه استفاده میشود و کارآیی آن در صورتی که فقط برای تولید برق به کار رود تا بیش از 50 درصد هم بالا می رود.
در مناطق سردسیر با بکارگیری توربین بخار با فشار خروجی زیاد (Back pressure) به جای کندانسور و برجخنککن در تأمین آب گرم و بخار مصرفی گرمایش مناطق شهری و صنعتی نیز استفاده میشود که در این صورت راندمان تا 80 درصد هم افزایش می یابد.
در شکل زیر نمونهای از شمای حرارتی نیروگاههای سیکل ترکیبی بدون مشعل آورده شده است:

شکل 1-5: شمای حرارتی یک نیروگاه سیکل ترکیبی بدون مشعل
1-2-6-2 بویلرهای بازیاب حرارت با احتراق اضافی
در نیروگاههای سیکل ترکیبی بدون مشعل، کارکرد بخش بخار وابستگی کامل به کارکرد توربین گاز دارد. در مواردی که نیاز به کارکرد دائمی بخش بخار وجود دارد با تعبیهی مشعل در بویلر، میتوان به هنگام کاهش قدرت توربین گاز به علت تغییر شرایط محیطی کاهش قدرت توربین بخار را به حداقل رساند و حتی به گونهای طراحی را انجام داد که در صورت توقف بخش گاز کارکرد قسمت بخار با اشکال مواجه نگردد، عملکرد مستقل این دو بخش تأمین میشود و بدین ترتیب، این نوع نیروگاهها شکل گرفتهاند.
این نوع سیکل ترکیبی عموماً به منظور بالا بردن قدرت و جلوگیری از نوسانات قدرت توربین بخار با تغییر بار توربینگاز به کار گرفته می شود. امکان کارکرد واحد بخار در نقطه کار مناسبتر با تعبیه مشعل ساده، به کارگیری سوخت مناسب و استفاده از گاز داغ خروجی توربینگاز به عنوان هوای دم عملی است. به کارگیری این نوع واحدها در مواردی که علاوه بر تامین انرژی الکتریکی، تأمین آب مصرفی و یا بخار مورد نیاز واحدهای صنعتی نیز مد نظر باشد، عمومیت دارد .
شکل زیر نمونه ای از شمای حرارتی نیروگاههای سیکل ترکیبی با مشعل را نمایش میدهد :
1548765403225
4419601503045شکل 1-6: نمونهای از شمای حرارتی نیروگاههای سیکل ترکیبی با مشعل
00شکل 1-6: نمونهای از شمای حرارتی نیروگاههای سیکل ترکیبی با مشعل

بویلرهای بازیاب حرارت با نصب سیستم احتراق اضافی به دو صورت زیر میباشد:
1-2-6-2-1 بویلرهای با مشعل اضافی محدود شده
این نوع بویلرها مشابه واحدهای بدون احتراق اضافی میباشند. در این نوع از بویلرها، حدکثر دمای گازهای خروجی از توربین باید بین 900-800 درجه سلسیوس باشد. سوخت مورد استفاده در این بویلرها میتواند مازوت یا گاز باشد ولی در بویلرهای ساده و بدون خنککن، محفظهی احتراق با سوخت گاز مناسبتر است، زیرا هم انتقال حرارت تشعشعی کمتر و هم قابلیت اشتعال بیشتری دارند. انواع مختلفی از سوختها را میتوان در بویلرها مورد استفاده قرار داد که رایجترین نوع سوخت برای آن گاز متان یا گاز طبیعی است.
1-2-6-2-2 استفاده از توربین گاز جهت پیش گرم کردن هوای دم بویلر
این نوع سیکل ترکیبی مشابهت زیادی با سیکل بخار معمولی دارد با این تفاوت که در نیروگاه بخاری ساده از سیستم پیشگرمکن هوا و فن تأمین کننده هوای دم که خود مصرف کننده انرژی است استفاده میگردد. لیکن در این گونه سیکل ترکیبی، سیستم گرمایش و فن دمنده هوای احتراق کوره را توربین گاز بر عهده گرفته است. بدین ترتیب راندمان واحد بخاری ساده با جانشین کردن سیستم تأمین هوای دم با توربین گاز، بهطور نسبی بهبود مییابد.
معمولاً این نوع سیکل ترکیبی در نیروگاههای بخاری بزرگ که سوخت آن ذغال سنگ و یا مازوت میباشد، به کار میرود. قدرت تولیدی توربین گاز در این نوع سیکل حداکثر 20 درصد قدرت تولید کل نیروگاه است.
1-2-6-2-3 بویلرهای با حداکثر احتراق اضافی
در نیروگاههایی که از این نوع بویلرها استفاده میکنند اساس کار سیکل بخار میباشد و توربین گاز برای بهبود راندمان کلی نیروگاه به کار میرود. پروسه بخار تقریباً مشابه نیروگاههای بخاری معمولی بوده و در بیشتر موارد نیروگاه شامل باز گرمکن و چند گرمکن آب تغذیه میباشد.
1- 2-7 طبقه بندی بویلرهای بازیاب حرارت بر اساس سطوح فشار بخار
اساس کار نیروگاههای سیکل ترکیبی، به بازیافت انرژی موجود در جریان گازهای داغ خروجی از توربین گاز و تولید بخار در بویلر بازیاب حرارت بین واحدهای گاز و بخار در بویلر بازیاب حرارت صورت میگیرد لذا سطوح مختلف فشار به کار گرفته شده در ساختار آنها، مهمترین نقش را در میزان بازیافت انرژی ایفا میکنند.
1-2-7-1 بویلرهای بازیاب حرارت تک فشاره
سادهترین نوع بویلرهای بازیاب حرارت، انواع تک فشار آنها میباشد که درسیکلهای ترکیبی مورد استفاده قرار میگیرد. سیکلهای تک فشار در سادهترین حالت خود، شامل یک یا چند توربین گاز، یک بویلر بازیاب حرارت، یک توربین بخار تحت کندانس و یک کندانسور میباشد.

شکل1-8:پرفیل دمایی بویلر بازیاب تک فشاره در حضور هوازدا

شکل1-7:شماتیک بویلر بازیاب تک فشاره در حضور هوازدا
اما عمدهترین اشکال سیستمهای تک فشار در این حالت، عدم استفادهی کامل از انرژی دود خروجی توربین گاز میباشد. راه حل سادهی جبران این عیب، استفاده از یک مبدل حرارتی اضافی دود و استفاده از این انرژی برای پیشگرم کردن آب تغذیه میباشد. این مبدل باید به گونهای طراحی گردد که دمای دود خروجی از بویلر به زیر نقطهی شبنم نرسد. بنابراین فرستادن مستقیم آب خروجی از کندانسور به داخل بویلر غیر ممکن است. برای این منظور آب خروجی کندانسور را ابتدا به وسیلهی پیش گرمکنهایی داخل بویلر پیشگرم کرده و سپس به منظور هوازدایی و جداکردن اکسیژن و سایر گازهای محلول در سیال عامل، آن را وارد هوازدا میکنند. بخار مورد نیاز جهت تغذیهی هوازدا را یا میتوان مستقیماً از بخار تولید شده توسط بویلر فراهم نمود و یا از یک مولد بخار مستقل جهت تولید آن استفاده کرد.
در این نوع از سیکلها فقط یک سطح فشار مطرح است و لذا یک درام با مولد بخار مربوط در بویلر در نظر گرفته میشود که میتواند دارای گردش طبیعی و اجباری باشد. در این نوع از سیکلها، حرارت دفع شده از کندانسور حدود نصف حرارت دفع شده از نیروگاه بخار معمولی با اندازهی مشابه است و آب مورد نیاز سیستم خنک کن آن نیز حدود نصف نیروگاه معمولی است.
1-2-7-2 بویلرهای بازیاب حرارت چند فشاره
یکی از راههای کاهش بازگشتناپذیری خارجی ناشی از وجود اختلاف درجه حرارت بین جریان گازهای داغ خروجی از توربین گاز و جریان آب/بخار در سیکل رانکین، تقسیم این دو سیکل به چند سطح فشار مختلف میباشد.
در شکل (1-9a) پروفیل دما – حرارت جریان گاز با آب را در یک سیکل بخار نشان داده میدهد. همانطور که در این شکل مشاهده میشود، در سطوح فشار پایینتر (P2)، امکان جذب حرارت بیشتری وجود دارد. در شکل (1-9b) میزان تلفات اگزرژی (T0 / T)، برحسب تابعی از حرارت (q) ترسیم شده است. همانطور که ملاحظه میگردد در سطوح فشار بالا، اختلاف دما یا بازگشتناپذیریها در نواحی دما بالا (ناحیهی C) کاهش مییابد و تلفات در نواحی دما پایین(ناحیهی A) بیشتر است. در سطوح فشار پایین، تلفات در نواحی دما (ناحیهی C) بالا غالب میباشد. بنابراین هرگاه سطح C+B+ A مینیمم باشد تلفات اگزرژی حداقل بوده و این به معنی وجود سطح فشار بهینه است.

شکل 1-9: تأثیر فشار بخار زنده بر انرژی مصرفی و تلفات اگزرژی کلی
از این رو، در برخی طراحیهای بویلرهای بازیاب حرارت، علاوه بر استفاده از یک سطح فشار بالا برای تولید بخار، از یک سطح فشار پایین نیز استفاده میشود. در شکل (1-10) شماتیک سیکل ترکیبی دو فشاره ساده که در طراحی آن از این نوع بویلرها استفاده شده و فاقد بازگرمکن بخار و در شکل (1-11) دیاگرام توزیع دما- حرارت مربوط به آن نشان داده شده است. همانطور که مشاهده میشود، در داخل پوستهی بویلر، از دو سطح فشار بالا به منظور تغذیهی توربین فشار بالا و سطح فشار پایین برای تغذیهی توربین فشار پایین استفاده شده است.
بخار خروجی از طبقه فشار بالای توربین، به سمت طبقهی فشار پایین توربین هدایت میشود و پس از مخلوط شدن با بخار فشار پایین، وارد طبقه فشار پایین توربین میشود. هر سطح فشار دارای اکونومایزر، مولد بخار و مافوقگرمکن میباشد.

شکل1-11: پرفیل دمایی سیکل دو فشاره همراه با هوازدا

شکل 1-10: شماتیک سیکل دوفشاره همراه با هوازدا تغذیهی مستقل
با مقایسهی شکل پرفیل دمایی سیکل تک فشاره با سیکل دو فشاره مشاهده میشود که اختلاف دمای بین جریان گازهای داغ و بخار در سیکلهای ترکیبی دو فشار از سیکلهای تک فشار کمتر میباشد که این امر، بزرگترین مزیت سیکلهای دو فشار را نسبت به سیکلهای تک فشار بیان میکند. زیرا بازگشتناپذیریهای خارجی در آنها به حداقل رسیده است، و درنتیجه کار خروجی بزرگتری قابل دسترسی میباشد.
با توجه به شکل (1-12) و (1-13) همانطور که ملاحظه میشود سیکلهای سه فشاره دارای سه سطح فشار مختلف میباشند و درنتیجه نسبت به بویلرهای تک و دو فشاره دارای بازگشت ناپذیری کمتری میباشند.

شکل1-13: پرفیل دمایی سیکل سه فشاره در حضور هوازدا

شکل1-12: شماتیک سیکل سه فشاره در حضور هوازد
1-2-8 تأثیر پذیری کارایی سیکل ترکیبی از شرایط کاری
1-2-8-1 تأثیر دمای هوای محیط بر قدرت و راندمان سیکل ترکیبی
تغییرات دمای هوای محیط، بر دبی جریان گاز، دما و آنالیز گازهای داغ خروجی از توربین گاز تأثیر میگذارد که این امر به نوبهی خود، بر میزان کارایی بویلر بازیاب حرارت قرار گرفته شده در پشت توربین گاز و در نهایت کارایی سیکل ترکیبی تأثیر خواهد گذاشت.
بالا بودن دمای هوا از یک طرف، موجب کاهش دانسیتهی هوا و درنتیجه کاهش دبی جریان هوای عبوری از توربین گاز، قدرت خروجی از توربین را 15 تا 25 درصد کاهش میدهد، ولی افزایش دمای گازهای خروجی، دبی بخار تولیدی در بویلر بازیاب حرارت و در نهایت راندمان کلی سیکل ترکیبی را بهبود میبخشد. قدرت خروجی نسبی با افزایش درجه حرارت محیط کاهش مییابد. بدیهی است که کارکرد یک سیکل ترکیبی، به علت تأثیر پذیر بودن توربین گاز و کوندانسور سیکل بخار از شرایط محیط، تأثیر پذیری کمتری از شرایط محیط نسبت به سیکل قدرت سادهی گازی برخوردار است.
1-2-8-2 تأثیر بار توربین گاز بر راندمان سیکل ترکیبی
به طور کلی توربینهای گازی در بارهای پایین کارایی ضعیفی دارند. بارهای پایین نه تنها کارایی توربین گاز را تحت تأثیر قرار میدهند، بلکه کارایی بویلر بازیاب حرارت و در نهایت سیکل ترکیبی را تحت الشعاع خود قرار میدهند. پایین بودن بار توربین گاز موجب کاهش دمای گازهای خروجی از توربین گاز میشود، که درنتیجهی آن، هم میزان تولید بخار در بویلر بازیاب حرارت کاهش خواهد یافت و هم امکان تشکیل بخار در اکونومایزر فراهم میگردد.
1-2-8-3 تأثیر فشار بخار بر راندمان سیکل ترکیبی
تغییرات زیاد فشار بخار، بر حجم ویژهی بخار تأثیر میگذارد و به دنبال آن افت سرعت و فشار در طول لولههای مبدل حرارتی، شیرها و... افزایش مییابد. از طرف دیگر، تغییرات فشار علاوه بر تغییر دمای اشباع درام، تنشهای حرارتی مولفههای بویلر نظیر درام، مافوقگرمکن، مولد بخار و... را دستخوش تغییرات میکند. شرایط متغیّر فشار، راندمان توربین بخار را در بارهای کم افزایش میدهد، زیرا با متغیّر بودن فشار، هم تلفات هنگام فرآیند اختناق کاهش مییابد و هم هزینههای پمپ آب تغذیه در صورتی که از پمپهای با سرعت متغیّر استفاده گردد کاهش مییابد.
1-2-9 مزایا و معایب سیکلهای ترکیبی
مزایای این نوع نیروگاهها به دلایل زیر میباشد:
به دست آوردن راندمان حرارتی بالا، زیرا دو سیکل فوق الذکر از نظر ترمودینامیکی با یکدیگر سازگاری داشته و گرمایی که از توربین گاز دفع میشود، دارای چنان دمای بالایی است که میتوان به آسانی توسط سیکل بخار مورد استفاده قرار گیرد.
سیالهای عامل هر دو سیکل در طبیعت به وفور یافت میشوند، ارزان و غیر سمی بوده و درنتیجه استفاده از این نیروگاهها آلودگی کمتر محیط زیست را در پی دارد.
تجهیزات مورد نیاز این سیکلها شناخته شده بوده و سازندگان زیادی در ساخت آنها تجربه و تبحّر دارند .
بالا بودن نسبت قدرت تولیدی به فضای اشغال شده توسط تجهیزات.
راه اندازی و شروع به کارسریع: شروع به کار این نیروگاهها از حالت سرد تقریباً دو ساعت و در حالت شروع به کار گرم تقریباً به 30 دقیقه زمان نیاز دارد. در صورتیکه این مدت برای نیروگاههای بخاری مرسوم حدوداً 18-15 ساعت میباشد.
هزینهی اولیّهی نصب و راهاندازی نیروگاههای سیکل ترکیبی در مقایسه با سایر نیروگاهها کم میباشد.
بازدهی کلّی این نیروگاهها بالا بوده و از محدوده 50 درصد تجاوز نموده و به مرز 60 درصد نزدیک شده است.
در مقایسه با نیروگاههای بخاری حجم سیال کاری کمتری (تقریباً نصف) مورد نیاز است که این امر توجیه ضرورت استفاده از این نیروگاهها در مناطق کم آب میباشد.
زمان مورد نیاز برای راه اندازی و هزینهی نصب اولیهی این نیروگاهها اندک میباشد.
توربینهای گازی جدید با ظرفیتهای بالاتری ساخته میشوند که این خود عامل عمدهای در استفاده از آنها در نیروگاههای سیکل ترکیبی با راندمان بالا میباشد.
توربینهای گازی در اندازهها و مدل های مشخّصی استاندارد شده و ساخته میشوند و تولید و توسعه یک مدل جدید که قابل اطمینان بوده و کارا باشد، هزینه سنگینی را برای سازندگان آن در بردارد. به همین جهت توربینهای گازی واحدهای سیکل ترکیبی، معمولاً از واحدهای استاندارد انتخاب میگردند که البته این واحدهای استاندارد با توجه به دانش و تکنولوژی روز، دائماً در دست تکمیل و توسعه میباشد.
اما سیکلهای ترکیبی دارای معایبی نیز میباشند که ازجملهی آن میتوان به موارد زیر اشاره نمود:
طول عمر کمتر: طول عمر بخش گازی نیروگاههای سیکل ترکیبی به مراتب پایینتر از نیروگاه-های بخار است به طوریکه عمر مفید یک توربین گاز در حدود 15 سال و عمر مفید یک توربین بخار بیش از 30 سال است.
تأثیرگذاری کیفیّت سوخت بر هزینهها: در مواردی که سوخت موجود از کیفیّت پایینی برخوردار باشد جهت استفاده از آن در یک نیروگاه سیکل ترکیبی لازم است که یک سیستم مناسب تصفیهی سوخت نیز در نظر گرفته شود که این امر باعث افزایش قیمت، مخارج اولیه و تعمیرات اضافی خواهد شد.
تأثیرپذیری کارایی با تغییرات شرایط محیطی: در نیروگاههای سیکل ترکیبی کاهش یا افزایش درجه حرارت محیط باعث افزایش یا کاهش راندمان میشود در حالیکه نیروگاههای بخار در مقابل تغییرات درجه حرارت محیط حساسیت کمتری دارند.
1-2-10 راندمان کلی نیروگاههای سیکل ترکیبی
راندمان کلی یک واحد سیکل ترکیبی، به میزان تلفات حرارتی که بین دو واحد صورت میگیرد بستگی دارد. در آرایش سری سیکل ترکیبی با فرض عدم وجود اتلاف حرارتی، کل انرژی حرارتی خروجی از واحد بالایی وارد چرخهی پایینی شده و جهت تولید بخار مورد استفاده قرار میگیرد.
دراین بخش، با فرض عدم وجود اتلاف حرارتی بین دو واحد، به بررسی تأثیر استفاده از سیکل ترکیبی بر رابطهی راندمان کلی نیروگاه پرداخته میشود.

شکل 1-14: شمای یک نیروگاه سیکل ترکیبی در حالت سری واحدها
برای این منظور یک نیروگاه سیکل ترکیبی غیر مشخص، شامل یک سیکل بالایی و یک سیکل پایینی در نظر گرفته میشود. با فرض η1 به عنوان راندمان سیکل بالایی، η2 به عنوان راندمان سیکل پایینی و η به عنوان راندمان کلی سیکل ترکیبی خواهیم داشت:

پس از جایگذاری روابط:

درنتیجه:

یا
(1-1) در نتیجه برای دو سیکل کوپل شده با هم با توجه به رابطهی (1-1) خواهیم داشت:
(1-2)
رابطهی (1-2) نشان میدهد راندمان دو سیکل کوپل شده باهم در حالت سری، برابر است با: مجموع راندمان تکتک سیکلها منهای حاصلضرب راندمان آنها درهم. از این رو با ترکیب دو سیکل مجزا با یکدیگر، به راندمانی دست خواهیم یافت که در صورت مجزا بودن سیکلها، امکان دستیابی به آن میسّر نخواهد بود (راندمانی بالاتر از راندمان سیکلهای مجزا).
1-3 کلیات شیرین سازی آب
1-3-1 تعریف نمکزدایی:
نمکزدایی عبارت است از انجام عملیات روی آب شور، بد مزه یا آلوده، جهت زدودن نمک اضافی و بقیه ی مواد معدنی و آلوده از آن و یا به طور کلی تر نمک زدایی شامل زدودن نمکها و مواد معدنی است. در این فرایند آب به گونه ای به آب شیرین برگردانده میشود که جهت مصرف یا آبیاری مناسب باشد. بعضی از مواقع محصول فرایند نمکزدایی، فراورده نمک خوراکی است که این فرآورده از نظر اقتصادی مورد توجه است.
1-3-2 روشهای آب شیرین کنی
به طور کلی میتوان روشهای آب شیرینکنی را به دو بخش اصلی: گرمایی وغشایی تقسیم نمود. در ایران و جهان روشهایی مانند: اسمز معکوس، تبخیر ناگهانی چند مرحلهای، تقطیر چند مرحلهای، متراکم سازی مکانیکی بخار آب و تقطیر چند مرحله ای-چگالش گرمایی بخار طرفداران فراوانی دارند. در این پروژه - ریسرچبا توجه به استقبال گسترده از این روشها، تلاش خواهد شد تا بهترین روش برای معیارهای پیشرو انتخاب گردد.
1-3-2-1 تقطیر چند مرحلهای (MED)
تقطیر چند مرحلهای یکی از روشهای گرمایی آب شیرینکنی میباشد. در مرحله اول این روش تنها بخشی از آب شور ورودی به سلول تبخیر شده و بقیه آب وارد مرحله دوم می شود که این مرحله فشار کمتری نسبت به مرحله قبلی دارد و بوسیله بخار ایجاد شده در مرحله اول، گرما داده میشود تا با این عمل دمای بخارکاهش یافته و به مایع تبدیل شود که این چرخه چندین مرحله ادامه مییابد.

شکل 1-15 : شماتیک یک واحد MED
1-3-2-2 اسمز معکوس (RO)
اسمز معکوس یکی از روشهای غشایی-مکانیکی میباشد. در این روش از غشاهای نیمه تراوا استفاده میشود که مبنای عمل این غشاها جداسازی یونها و ناخالصیهای آب میباشند. آب شور با عبور از داخل این غشاها، نمک خود را باقی گذاشته و آب شیرین بدست میآید.

شکل 1-16: شماتیک نحوه عملکرد غشای یک واحد RO
1-3-2-3 متراکم سازی مکانیکی بخار آب (MVC)
این روش نمکزدایی یکی از روشهای تک مرحلهای آب شیرینکنی گرمایی- مکانیکی میباشد. در این روش، آبشور مقداری گرما داده میشود سپس بر روی لولههای سلول اسپری شده و مقداری از آن تبخیر میشود. بخار حاصل بوسیلهی لولههای مکش از سلول تخلیه شده و جهت متراکم سازی وارد کمپرسور میشود.
1-3-2-4 تبخیر ناگهانی چند مرحلهای (MSF)

شکل 1-17: شماتیک یک واحد MSF
این روش نمکزدایی یکی از روشهای گرمایی است که شامل مراحل تقطیر و میعان میباشد. در مرحله گرم کردن، بخار موجود با دادن گرمای خود به آب شور میعان مییابد سپس آب دریای گرم شده وارد مرحله اول میشود (که دارای فشار پایین است). ورود ناگهانی آب داغ به اتاقکی با فشار کم، باعث جوشیدن بسیار سریع آن میشود. این فرآیند چندین مرحله ادامه می یابد و نهایتاً بخار ایجاد شده متراکم و به آب تبدیل میشود.
1-3-2-5 تقطیر چند مرحله ای چگالش- گرمایی بخار(MED-TVC)
این روش بر اساس تبخیر و میعان آب دریا در خلاء که در درون سلولها گنجانده شده، طراحی گردیده است. آب دریا بر غشای نازک لولههایی که در سلول نصب شده است اسپری میشود و به وسیله گرمای حاصل از جریان بخار آب درون لولهها تبخیر میگردد. نهایتاً بخشی از بخار آب تولید شده در مرحله ی آخر بعد از اختلاط با بخار انگیخته به لوله مرحله ی اول باز میگردد و بخش دیگر وارد کندانسور شده و به آب تبدیل میشود.
جدول 1-1: بازهی فشار و دمای استفاده از انواع آب شیرینکنها

1-3-3 ارزیابی معیارها
1-3-3-1 مقدار انرژی مورد نیاز
بدیهی است در پروژههایی مانند آب شیرینکنی که نیاز بسیار بالایی به انرژی دارند باید میزان انرژی مورد نیاز پروژه سنجیده شود و در صورت وجود زیر ساخت اقدام به ساخت پروژه گردد. در غیر این صورت اقدام به ایجاد زیرساختهای مورد نیاز گردد تا پروژه به دلیل کمبود منابع انرژی به چالش کشیده نشود.
1-3-3-2 هزینه تولید
یکی از مهمترین ویژگیها برای یک پروژه هزینه تولید کالا و میزان سودآوری آن است که در صورت عدم تامین سودآوری، پروژه به تعطیلی کشیده میشود و یا اصلاً سرمایه گذاری برای آن پیدا نشده و پروژه عملی نمیگردد. از سوی دیگر میزان سرمایهگزاری به دلیل برآورد میزان سود و زمان بازگشت بسیار مهم است.
1-3-3-3 محیط زیست
محیط زیست از مهمترین عواملی است که به دلیل توجه کم به آن، خسارات جبران ناپذیر پدیدار شده است. که امروزه بیش از بیش به عنوان خطری برای سلامتی انسان مطرح میشود تا حدی که در شهرهای صنعتی ایران این مشکل رفته رفته به بحران تبدیل میشود.
1-3-3-4 کدورت آب تولیدی
از ابتداییترین عوامل در تعیین کیفیت آب است. کدورت در آب عموماً توسط مواد معلّقی مثل خاک و گل ولای، مواد آلی و معدنی ریز، ترکیبات آلی رنگی محلول و پلانکتونها و سایر میکرو اورگانیسمها ایجاد میشود.
1-3-3-5 نگهداری
یکی از مهمترین عوامل یک پروژه زمانهای تعمیر یا تعویض یا پاکسازی قطعات آن است بهویژه در پروژههای حساس که تعطیلی آن موجب بروز مشکلات عدیده برای مشترکان میگردد. از سوی دیگر نگهداری تاثیر مستقیمی بر سودآوری پروژه دارد.
1-3-4 مبدل نمک زدای حرارتی چند مرحلهای MED_TVC:
در شکل (1-18) یک مبدل نمکزدای چند مرحلهای نشان داده شده است. بخار اشباع ترک کننده مبدل بازیاب حرارت به سمت مبدل نمک زدا (MED) میرود که در آن، پس از تبخیر آب دریا در افکت اول، کندانس شده و به بویلر بازیاب برمیگردد. آب دریا در این مبدل پس از ورود به کندانسور نهایی و افزایش دما، به دو بخش تقسیم میشود. قسمتی از آن برای حذف گرمای اضافی موجود در سیستم (و صرفاً برای تبدیل کامل بخار اشباع به مایع اشباع) است و به دریا باز میگردد که آب خنک نامیده میشود. قسمت دیگر نیز که آب تغذیه نام دارد به طور موازی وارد همهی افکتها میشود.
پس از تبخیر، آب تغذیهی خود به دو بخش جدا تقسیم میشود. بخش اول بخار فاقد املاح است که پس از تبخیر و تقطیر به آب خالص بدون یون (آب دمین) تبدیل شده و به عنوان محصول نهایی وارد واحد تولید آب معدنی میشود. بخش دیگر نیز پسماند یا آب شور است که دوباره به دریا باز میگردد. آب دمین به هیچ عنوان قابل شرب نیست و آشامیدن چند قطره از آن موجب مرگ انسان میگردد؛ لذا آب محصول MED باید در واحد دیگری با افزودن مواد معدنی به آب آشامیدنی تبدیل شود. این کار در واحد معدنی سازی انجام میگردد.
در حالت کلی، این مبدل از قسمتهای مختلف شامل اواپراتور، رطوبتگیر، نازل اسپری آب دریا، محفظههای تبخیر ناگهانی، خطوط لوله و ... تشکیل شده است. کمپرسورهای حرارتی بخار انواع مختلفی اعم از مکانیکی و حرارتی دارند. در پایاننامه صرفا نوع حرارتی آن بررسی شده است.
در اینجا ما ابتدا سه نوع آرایش مختلف را برای نمکزدای چند مرحلهای حرارتی (TVC-MED) معرفی میکنیم. سپس از بین آنها، نوع موازی-متقاطع را در فصل دوم مورد بررسی قرار داده و روابط مدلسازی آنها را بیان میکنیم.

شکل 1-18: شماتیک یک واحد MED-TVC
1-3-4-1 آرایش تغذیهی پیشرو
این آرایش در شکل (1-19) نشان داده شده است.

شکل 1-19: شماتیک یک واحد آب شیرینکن MED-TVC پیشرو (MED-TVC-F)
همانطور که در شکل نیز مشخص است، در این آرایش، پش از اختلاط بخار احیا با قسمتی از بخار اشباع خارج شده از افکت آخر در کمپرسور حرارتی بخار، این بخار وارد افکت اول میشود. آب اسپری شده از سمت دریا نیز با عبور از کندانسور روی لولههای اواپراتور افکت اول پاشیده میشود. بخشی از آن بخار شده و به افکت بعد رفته و به عنوان سیال گرم وارد لولههای مرحلهی بعد میشود. بخش دیگر نیز به عنوان آب شور وارد مرحلهی بعد میشود تا دوباره روی لولههای اسپری شود و آب شیرین از آن به دست آید. به این ترتیب با این آرایش فقط در یک مرحله کل آب دریا اسپری میشود و آب شور در هر مرحله شورتر و شورتر میگردد. آب شیرین نیز از مرحلهی دوم به بعد پس از میعان بخار اشباع حاصل از مرحلهی (i-1) در لولههای مرحلهی (i) از لولهها خارج شده و وارد محافظ تبخیر ناگهانی میشود. کار محافظ تبخیر ناگهانی جداسازی بخار اشباع موجود در آب شیرین و باز گرداندن آنها به چرخهی شیرینسازی آب میباشد.
1-3-4-2 آرایش تغذیهی موازی
این آرایش در شکل (1-20) نمایش داده شده است:

شکل 1-20: شماتیک یک واحد آب شیرینکن MED-TVC موازی (MED-TVC-P)
در این آرایش، پس از اختلاط بخار احیا با قسمتی از بخار اشباع خارج شده از افکت آخر در کمپرسور حرارتی بخار، این بخار وارد افکت اول میشود. آب سپری شده از سمت دریا هم با عبور از کندانسور روی لولههای همهی اواپراتورها پاشیده میشود. بخشی از آن بخار شده و به افکت بعد رفته و به عنوان سیال گرم وارد لولههای مرحله بعد میشود. بخش دیگر یعنی آبهای شور تبخیر نشده از زیر هر کدام از افکتها خارج شده و ازطریق یک خط لوله به هم متصلاند و در نهایت به دریا باز میگردند. آب شیرین پس از میعان بخار اشباع حاصل از مرحلهی (i-1) در لولههای مرحلهی (i) از لوله ها خراج شده و وارد محفظههای تبخیر ناگهانی میشود. کار محافظ تبخیر ناگهانی در این آرایش آن است که در صورت وجود بخار در آب شیرین اشباع خروجی از لولهها، آن را از آب جداکرده و همراه با بخار اشباع حاصل از پاشش آب دریا روی لولههای اواپراتور وارد لولههای افکت بعد کند.
1-3-4-3 آرایش تغذیهی موازی - متقاطع:
تفات این آرایش (MED-TVC-PC) با نوع موازی (MED-TVC-P) در آن است که، آب شوری که مرحلهی iام را ترک میکند وارد استخر آب شور مرحلهی i+1 ام میشود. با این روش، محصول آب شیرین و بازدهی حرارتی افزایش مییابد. این بخار با بخار تشکیل شده به کمک گرمای اواپراتور همراه شده و به لولههای مرحلهی بعد وارد میشود. در سایر موارد آرایش موازی - متقاطع مشابه آرایش موازی است. شکل (1-21) نمونهای از این آرایش را نشان میدهد.

شکل 1-21: شماتیک یک واحد آب شیرینکن MED-TVC موازی - متقاطع (MED-TVC-PC)

فصل2
روابط مربوط به بویلرهای بازیاب و آب شیرینکن های MED-TVC و تشریح الگوریتم ژنتیک

2-1 مقدمه
استقبال گسترده از سیکلهای ترکیب موجب شده تا استفاده از بویلرهای بازیاب حرارت گسترش یابد و با توجه به کمبود آب در کشورمان استفاده از آب شیرینکن ها در ایران میتواند درآینده سهم مهمی را در تولید آب شرب داشته باشد. با توجه به اینکه یکی از بهترین روشهای تولید آب شیرین استفاده از روشهای شیرینسازی آب به روش تبخیر و تقطیر میباشد و همچنین وجود مبنع حرارتی بزرگی به نام کندانسور سیکل بخار که در صورت عدم استفاده این حرارت به صورت اتلاف انرژی از بین خواهد رفت استفاده از آب شیرین کن های تبخیر تقطیری در سیکل بخار نیروگاه سیکل ترکیبی میتواند موجب افزایش بازده در این سیکل ها گردد.
در این فصل به بررسی روابط و طریقهی مدلسازی ریاضی بویلر بازیاب حرارت و آبشیرینکن MED-TVC پرداخته میشود. همچنین الگوریتم ژنتیک را که در این مدلسازی از آن بهره گرفته شده، تشریح میگردد. همچنین با توجه به استفادهی روابط بخار و آب و همچینی گازهای حاصل از احتراق در برنامهی کد نویسی شده نیاز به محاسبهی خواص ترمودینامیکی آنها میباشد که در این فصل استانداردها و چگونگی محاسبهی این خواص معرفی شده است.
2-2 روابط مهم در طراحی بویلرهای بازیاب حرارت
در این بخش به بررسی روابط ترمودینامیکی مهم در طراحی بویلر بازیاب حرارت پرداخته میشود. برای این منظور ابتدا پارامترهای مهم در طراحی بویلر بازیاب حرارت معرفی شده و پس از آن روابط محاسبه دبی، توان تولیدی توربین بخار و توان مصرفی پمپها ارائه میگردد.
در بخش بعد نیز روابط محاسبه دبی آب شیرین تولیدی در آبشیرینکن MED-TVC-PC که در این پایان نامه مورد استفاده قرار گرفته است بررسی خواهد شد.
2-2-1 پارامترهای مهم در طراحی بویلر بازیاب حرارت
طراحی بویلرهای بازیاب حرارت، قسمت مهمی از طراحی نیروگاههای سیکل ترکیبی را شامل میشود. چرا که در یک نیروگاه سیکل ترکیبی، درصد عمدهای از توان خروجی نیروگاه، بوسیله سیکل بخار به دست میآید که عمدهی بخار مورد نیاز آن، بوسیلهی بویلر بازیاب حرارت تأمین میشود. از طرف دیگر معمولاً واحدهای بخار و یا گاز یک نیروگاه سیکل ترکیبی، از قبل طراحی و ساخته شده هستند، علاوه بر این تجهیزات مورد استفاده در آنها مانند کمپرسورها، توربینهای گازی، پمپها و ... تجهیزات استاندارد شدهای میباشند که براساس ظرفیت مورد نیاز انتخاب میگردند. این در حالی است که بویلرهای بازیاب حرارت بایستی بر اساس پارامترهای گازهای داغ خروجی از توربین گاز نظیر دما، دبی بخار و آنالیز دود و یا بر اساس ظرفیت توربین بخار طراحی و ساخته شوند.
در ادامه، تأثیر اختلاف دمای بین جریانهای گاز و بخار در مبدلهای حرارتی مولد بخار و اکونومایزر بویلر بازیاب حرارت که نقش بسیار مهمی در میزان هزینهها و کارایی آن دارند مورد بررسی قرار میگیرد.
2-2-1-1 اختلاف دمای نهایی
اختلاف دمای بین گازهای داغ ورودی و بویلر بازیاب حرارت و بخار مافوق گرم خروجی از مافوق گرمکن را اختلاف دمای نهایی (انتهایی) میگویند و برابر است با:
(2-1)
در حقیقت میتوان اختلاف دمای نهایی را به عنوان درجهی مافوق گرم شدن بخار دانست.
2-2-1-2 نقطهی پینچ
حداقل اختلاف دمای بین گازهای عبوری از مولد بخار و بخار آب اشباع را نقطهی پینچ و یا اختلاف دمای گلوگاهی مینامند. در یک بویلر بازیاب حرارت این نقطه، همواره در ورودی مولد بخار قرار داشته و به صورت زیر تعریف میشود:
(2-2)
اگر در قسمت اکونومایزر هیچ گونه حرارتی جذب آب نگردد، دمای پینچ با دمای خروجی از پینچ برابر خواهد بود. بنابراین حداکثر دمای دود خروجی از دودکش برابر با دمای پینچ میباشد. نکتهی مهمی که از این توضیحات بر میآید این است که در یک بویلر بازیاب حرارت، دمای گازهای خروجی از دودکش، بهوسیله پینچ تعیین میگردد و انتخاب نمیشود. انتخاب پینچ، ابعاد و میزان گسترش سطوح تبادل حرارتی مولد بخار را تعیین میکند.
با کاهش دمای پینچ، نیاز به افزایش قابل ملاحظهای در ابعاد سطوح انتقال حرارت مولد بخار و در نتیجه هزینههای اولیه میباشد، از طرفی دیگر، بالا بردن دمای نقطهی پینچ، به مفهوم کاهش راندمان بویلر است.
از این رو، بایستی هنگام طراحی بویلر بازیاب حرارت در انتخاب دمای نقطهی پینچ دقت کافی به عمل آید. در جدول (2-1) مقادیر توصیه شده برای دمای نقطهی پینچ هنگام طراحی بویلر بازیاب حرارت برحسب دمای گازهای خروجی از توربین گاز آورده شده است.
جدول2-1: مقادیر نقطهی پینچ برحسب دمای گازهای خروجی از بویلر بازیاب حرارت
دمای گازهای ورودی به بویلر بازیاب لولههای بدون فین لولههای فین دار
650-1000 65-72 16-33
400-650 45-72 5-16
2-2-1-3 نقطهی نزدیکی
نقطهی نزدیکی، اختلاف دمای میان آب خروجی از اکونومایزر و آب اشباع درون مولد بخار بویلر بازیاب حرارت را نشان میدهد که به صورت زیر تعریف میگردد:
(2-3)
از لحاظ تئوری اختلاف دما در نقطهی نزدیکی بزرگتر از صفر میباشد. دلیل این امر، اجتناب از تولید بخار درون اکونومایزر است. در مولدهای بخار با لولههای عمودی، میتوان نقطهی نزدیکی را نزدیک به صفر درنظر گرفت در صورتی که در اکونومایزر با لولههای افقی، نزدیک شدن به دمای اشباع ممکن است باعث ایجاد پدیدهی جداشدن فازها و سوختن لولههای اکونومایزر گردد. محدودهی تغییرات این پارامتر در بویلرهای بازیاب حرارت در جدول (2-2) نشان داده شده است.
جدول2-2: مقادیر نقطهی نزدیکی برحسب دمای گازهای خروجی از بویلر بازیاب حرارت
دمای گازهای ورودی به بویلر بازیاب نقطهی نزدیکی
650-1000 22-40
400-650 6-22
2-2-2 استخراج روابط سیکل تک فشاره

شکل 2-2: نمودار T-S برای سیکل تک فشاره در حضور هوازدا و بازگرمکن

شکل2-1: شماتیک سیکل ترکیبی تک فشاره در حضور هوازدا و بازگرمکن
در این بخش به بررسی مختصر سیکل تک فشاره در حضور هوازدا و بازگرمکن پرداخته خواهد شد. سیکل تک فشاره سادهترین نوع سیکلهای ترکیبی است که تنها دارای یک سطح فشار میباشد. با توجه به اینکه در این نوع سیکلها تنها یک سطح فشار وجود دارد نمیتوان مانند سیکلهای سه و دو فشاره از انرژی موجود در گازهای ورودی به بویلر بازیاب حرارت استفاده کرده و بازیابی نمود. به همین دلیل از این نوع بویلرها بیشتر در واحدهای با ظرفیت کم و یا برای نیروگاههای با بویلرهای ماکزیمم احتراق اضافی استفاده میشود و برای واحد با توربینهای گازی با ظرفیت بالا به طور خاص مانند توربینهای کلاس V بیشتر از بویلرهای دو و سه فشاره استفاده میشود.
روابط دبی جرمی و راندمان برای بخش بخار با توجه به شکلهای (2-1) و (2-2) به صورت زیر میباشد:
(2-4)
که در روابط فوق Eff راندمان مبدلهای بویلر بازیاب و Blow Down نسبت آب خروجی از درام بویلر بازیاب جهت کاهش سختی آب داخل بویلر می باشد.
(2-5)
در رابطهی فوق کار توربین و پمپ به صورت زیر میباشد:
(2-6)
(2-7)
(2-8)
2-2-3 استخراج روابط سیکل دو فشاره در آرایش مرسوم مبدلهای حرارتی
در این بخش به بررسی سیکل دو فشاره در حضور بازگرمکن و هوازدا پرداخته خواهد شد. در نیروگاههای سیکل ترکیبی از سیکل دو فشاره به دلیل بازیافت بیشتر حرارت نسبت به حالت تک فشاره بیشتر استفاده میشود.

شکل 2-4: نمودار T-S سیکل دوفشاره همراه با هوازدا و بازگرمکن

شکل 2-3: شماتیک سیکل دو فشاره همراه با هوازدا و بازگرمکن
روابط دبی جرمی و راندمان برای بخش بخار با توجه به شکلهای (2-3) و (2-4) بصورت زیر میباشد:
(2-9)

PROJE

(2-2روابط تحلیلی پدیده ترافیک 12
(3-2معرفی پارامترهای ترافیکی 13
(4-2مدلهای احتمالاتی 15
(5-2کنترل چراغ راهنمایی 18
(6-2تحلیل عملکرد تقاطع 19
(7-2چراغهای هوشمند سازگار با ترافیک 22
(8-2کنترل هماهنگ چراغها در شبکه 25
(9-2فازبندی 26
(10-2زمانبندی چراغ 28
(11-2چراغهای پیش زمانبندی شده 30

و
فهرست مطالب
عنوان مطالب شماره صفحه
فصل سوم : کنترل کنندههای فازی – عصبی 32
(1-3مقدمه 33
(2-3سیستم های فازی 33
(3-3شبکه های عصبی RBF 38
(4-3الگوریتم های آموزشی در شبکه عصبی RBF 40
(5-3سیستم های نرو-فازی 44
(6-3شبکه عصبی RBF و کنترل کننده فازی 46
فصل چهارم : الگوریتم آموزشی FHLA 48
(1-4مقدمه 49
(2-4طراحی ساختار شبکه RBF و مقداردهی اولیه به آن 49
(3-4مشخص نمودن تعداد نرونهای لایه RBF 54
(4-4تنظیم پارامترهای شبکه RBF 55
(5-4پروسه تنظیم پارامترهای شبکه 58
(6-4حساسیت الگوریتم FHLA نسبت به الگوهای آموزشی 59
فصل پنجم : اصول پردازش تصویر 61
(1-5مقدمه 62
(2-5مفاهیم اولیه در پردازش تصویر 62
(3-5روشهای استخراج پارامترهای ترافیکی 63
(4-5نظارت مبتنی بر ناحیه ثابت 64

ز
فهرست مطالب
عنوان مطالب شماره صفحه
(5-5 نظارت مبتنی بر ردگیری 66
فصل ششم : شبیهسازی کنترل کننده هوشمند ترافیک 73
(1-6مقدمه 74
(2-6طراحی سیستم کنترلرفازی 77
(3-6پیادهسازی نرم افزاری الگوریتم آموزشی FHLA 79
(4-6مدل سازی تقاطع ایزوله 82
(5-6کنترل کننده پیش زمانبندی شده 83
(6-6پردازش تصویر 84
(7-6نتایج شبیه سازی 88
فصل هفتم : نتیجهگیری و پیشنهادات 101
نتیجهگیری 102
پیشنهادات 103
منابع و ماخذ 104
فهرست منابع فارسی 105
فهرست منابع لاتین 106
چکیده انگلیسی 109

ح
فهرست جدول ها
عنوان شماره صفحه
: 1-2 معرفی پارامترهای حاکم بر پدیده ترافیک 13
: 1-4 اندیسهای اعتباری خوشهای 56
: 1-6 پایگاه دانش قوانین فازی 79
: 2-6 میانگین ورود وسایل نقلیه در طی 3 روز متوالی 80
: 3-6 مقادیر تابع هزینه با تغییر تعداد نرونهای لایه میانی 81
: 4-6 خطای نهایی آموزش و تست شبکه عصبی 82
5-6 : نرخ جریان اشباع در هر یک از ورودیهای تقاطع 83
: 6-6 نتایج حاصل از زمان بندی چراغ تقاطع به روش کنترل کلاسیک 84
7-6 : متوسط سطح اشباع در هر یک از ورودیهای تقاطع 89
8-6 : متوسط تاخیر تقاطع با دو روش کنترل چراغ تقاطع 90

ط
فهرست نمودارها
عنوان شماره صفحه
: 1-6 نرخ ورود وسایل نقلیه به تقاطع در24 ساعت 77
: 2-6 منحنی تغییرات تابع هزینه 81
: 3-6 روند آموزش شبکه عصبی 82
: 4-6 مقایسه آمار شمارش دستی و شمارش هوشمند در 15 دقیقه 88
: 5-6 نرخ ورود وسایل نقلیه به تقاطع در 100 مرحله تکرار الگوریتم 91
: 6-6 روند تغییرات چرخه 92
: 7-6 روند تغییرات طول زمان سبز چراغ در هریک از فازها 92
: 8-6 متوسط تاخیر تقاطع در هر مرحله اجرای الگوریتم با دو روش کنترل 93
: 9-6 روند تغییرات تاخیر تقاطع با در نظرگرفتن تغییرات متوسط شار ورودی 94
: 10-6 تغییرات شار ورودی شمالی (کنترلر هوشمند) 95
: 11-6 تغییرات شار ورودی شمالی (کنترلر کلاسیک) 95
: 12-6 تغییرات شار ورودی جنوبی (کنترلر هوشمند) 96
: 13-6 تغییرات شار ورودی جنوبی (کنترلر کلاسیک) 96
: 14-6 تغییرات شار ورودی شرقی (کنترلر هوشمند) 97
: 15-6 تغییرات شار ورودی شرقی (کنترلر کلاسیک) 97
: 16-6 تغییرات درجه اشباع در ورودی شمالی (کنترلر هوشمند) 98
: 17-6 تغییرات درجه اشباع در ورودی شمالی (کنترلر کلاسیک) 98
: 18-6 تغییرات درجه اشباع در ورودی جنوبی (کنترلر هوشمند) 99
: 19-6 تغییرات درجه اشباع در ورودی جنوبی (کنترلر کلاسیک) 99
: 20-6 تغییرات درجه اشباع در ورودی شرقی (کنترلر هوشمند) 100
: 21-6 تغییرات درجه اشباع در ورودی شرقی (کنترلر کلاسیک) 100

ی
فهرست شکلها
عنوان شماره صفحه
: 1-2 منحنی حجم-ترافیک به صورت تابعی از تراکم 15
: 2-2 بررسی مدل احتمالی ترافیک 16
: 3-2 فرآیند تحلیل تقاطعهای چراغدار 19
: 4-2 ساختار روش کنترل سازگار با ترافیک 23
: 5-2 نحوه عملکرد کنترل کننده سازگار با ترافیک 24
: 6-2 طرح چراغ دوفازه 27
: 7-2 طرح چراغ سه فازه 27
: 8-2 طرح چراغ چهار فازه 28
: 9-2 نمودار تخلیه تقاطع در طول یک فاز چراغ راهنمایی 29
: 1-3 ساختار سیستم کنترل کننده فازی 34
: 2-3 دی فازی ساز مرکز ثقل 36
: 3-3 بلوک دیاگرام کنترل کننده فازی ترافیک 37
: 4-3 ساختار شبکه عصبی RBF 38
: 5-3 ساختار نوع خاصی از شبکه نرو- فازی 45
: 1-4 فلوچارت طراحی مقادیر اولیه شبکه عصبی RBF 51
: 1-5 چرخه به روز رسانی در تخمین بردار حالت 71
: 1-6 تقاطع ایزوله دوفازه 76
: 2-6 انتخاب تصویر زمینه و پنجره ثابت 87
: 3-6 عبور وسیله نقلیه از پنجره ثابت در یک فریم 87

ک
فهرست شکلها
عنوان شماره صفحه
4-6 : اختلاف پنجره ثابت در تصویر زمینه و فریم خوانده شده وتبدیل به باینری 87
5-6 : حذف عناصر اضافی از تصویر 87
: 6-6 به هم چسباندن اجزای گسسته شده 87
7-6 : شمارش اشیاء برچسب گذاری شده 87

ل
چکیده:
دراین پایان نامه یک تکنیک موثر بر مبنای سیستمهای عصبی- فازی برای کنترل چراغهای راهنمایی و بر اساس پردازش هوشمند تصاویر ترافیکی دریافتی از دوربینهای نصب شده در یک تقـاطع ایزولـه، ارائـه شـده است. هدف از کنترل ترافیک در خیابانهای منتهی به یک تقـاطع ایزولـه آن اسـت کـه در یـک بـازه زمـانی مشخص، از ایجاد اشباع در هریک از بازوها جلوگیری کرده و همچنـین بتـوان زمـان انتظـار وسـایل نقلیـه در پشت چراغ قرمز را به حداقل رساند تا نهایتا ترافیکی روان و مطلوب، همراه بـا ایمنـی در سـطح تقـاطع ایجـاد گردد. به این منظور قوانین فازی مدل کننده تقاطع ایزوله که ساختار کنترلر فازی را تشکیل دادهاند، بر مبنـای درجه اشباع که نشان دهنده میزان تقاضا به ظرفیت هریـک از ورودیهـای تقـاطع میباشـد، طراحـی شـدهانـد.
اساس کار، بر استفاده از شبکه عصبی RBF١، به همراه یک روش پیشنهادی آموزش مبتنـی بـر فـازی خواهـد بود. در الگوریتم یادگیری 2FHLA، علاوه بر تعیین وزنهای ارتباطی بین لایه مخفـی و خروجـی، پارامترهـای لایه RBF شامل تعداد نرون، مرکز نرون و عرض آن نیز در طول فرایند آموزش تعیین میگردند. مقادیر اولیه پارامترها با استفاده از منطق فازی و روشهای خوشه یابی فازی و به کمک تکنیک 3FCM به دست مـی آینـد.
همچنین از میزان تعلق هر الگوی ورودی به خوشهها و فاصله الگو تا مرکـز هـر خوشـه جهـت محاسـبه میـزان عدم شباهت استفاده شده وسپس این فاصله مینیمم میگـردد. بـرای تعیـین مقـادیر نهـایی پارامترهـا و وزنهـای ارتباطی، از ترکیب روشهای 4LLS و گرادیان5 به عنوان روش بهینهسازی استفاده میشود. نتایج شبیهسازی بر روی بانک اطلاعاتی موجود و مقایسه نتایج کاربرد این الگوریتم با سـایر روشـهای کلاسـیک کـه در کنتـرل تقاطعهای ایزوله معمول هستند، نشان دهنده میزان قابلیت این تکنیک می باشد.
کلمات کلیدی: پردازش تصویر، تقاطع ایزوله، شبکه عصبی، کنترل ترافیک، کنترل فازی

1−Radial Basis Function 2−Fuzzy Hybrid Learning Algoritm 3−Fuzzy-C-Mean 4−Linear Least Squared 5−G--ient
1
مقدمه:
امروزه با افزایش سریع کلان شهرها و افزایش تعداد خودروها، اهمیت داشتن مدیریت ترافیک موثر و کارآمد بر کسی پوشیده نیست. تـاکنون روشـهای کنتـرل ترافیـک بیـشتر مبتنـی بـر روشـهای کنترلـی کلاسیک بوده است که با مسائلی همچون سطح پایین هوشمندی در مواجه با شرایط پیچیـده ترافیکـی و عدم مدلسازی مناسب، مواجه میباشند. در این پایان نامه سعی برآن است کـه بـا بـه کـارگیری تکنیـک آموزشی FHLA که بر مبنای شبکههای عصبی RBF و روش خوشه یابی فـازی عمـل مـینمایـد، نـوعی کنترل هوشمند برای تنظیم پارامترهای یک تقاطع ایزوله ارائه شود، به طوری کـه در نهایـت بـه کـاهش تاخیر وسایل نقلیه در عبور از تقاطع و جلوگیری از ایجاد اشباع در هر یک از ورودیهـای تقـاطع منتهـی گردد. به این منظور برای جمع آوری اطلاعات آماری از سطح تقاطع، برای ارزیابی وضعیت ترافیکی در هر لحظه، از روشهای پردازش تصاویر حاصل از دوربینهای نصب شده در تقاطع ایزوله، استفاده شده است. در این پایان نامه و در فصل اول کلیاتی راجع به روشهای مختلف کنترل ترافیک، و تحقیقات صـورت گرفتـه در این زمینه ارئه شده است. در فصل دوم به معرفی نظریه جریان کنترل ترافیـک و روابـط حـاکم بـر آن پرداخته شده است. فصل سوم به معرفی مختصری از اصول کنتـرل فـازی و برخـی از روشـهای آموزشـی شبکههای عصبی و معرفی کنترل کنندههای نرو- فازی اختصاص دارد. در فـصل چهـارم، ارائـه الگـوریتم پیشنهادی FHLA و روش پیادهسازی آن صورت میپذیرد و در فصل پنجم به بررسی روشهای اسـتخراج اطلاعات آماری ترافیک از تصاویر ویدئویی پرداخته میشود. در فصل ششم کنترلر نـرو- فـازی طراحـی و پس از شبیه سازیهای لازم در محیط برنامـه نویـسی MATLAB، تـاثیر بـه کـارگیری کنتـرل کننـده هوشمند با استفاده ازتکنیک FHLA و به کارگیری نوعی کنترل کلاسیک پیش زمانبندی شده، بر میزان سطح تاخیر و سطح اشباع ورودیهای تقاطع بررسی و مقایسه شده است.فصل هفتم نیز بـه ارائـه نتیجـه گیری وچند پیشنهاد اختصاص دارد.
2
فصل اول
کلیـات
3
فصل اول: کلیات
(1-1 هدف
امروزه با افزایش سریع کلان شهرها، افزایش تعداد خودروهـا، افـزایش بهـای سـوخت، مـساله محـیط زیست، استفاده مفید از ظرفیت جادههای موجود و...، اهمیت داشتن مدیریت ترافیک موثر و کارآمد بر کـسی پوشیده نیست.
در گذشته طراحان ترافیک تنها به نحوه حرکت وسایل نقلیه، به طـوری کـه در تقاطعهـا تـصادفی رخ ندهد، به عنوان مساله اصلی در مدیریت ترافیک توجه داشتند. امروزه مسائل عمده دیگـری نیـز مـورد توجـه میباشد که از جمله میتوان به کاهش تاخیر، کاهش توقفات، کاهش مصرف سـوخت، کـاهش طـول صـفهای پشت چراغ قرمز، حذف اثرات نویز، افزایش توجه به مسائل عابران پیاده وحرکت وسایل نقلیه سـنگین، اشـاره نمود. تاکنون روشهای کنترل ترافیک بیشتر مبتنی بر روشهای کنترلی کلاسیک بوده است. در این روشـها بـا استفاده از روشهای آماری و منحنیهای به دست آمده تجربی و نهایتا با تخمین برخی از متغیرهای مـوثر بـر ترافیک سعی بر آن است که پارامترهای مورد نظر درآن سطح خـاص کنترلـی، بـه گونـهای مطلـوب تنظـیم شود.[4]
تاکنون در جهت رفع این نیاز سیستمهای کنترل ترافیک متعددی توسط مراکز حمل ونقل کشورهای مختلف توسعه یافتهاند که تا حدی پاسخگوی نیازهای موجود بوده است. البته این حد پاسخگویی سیستمهای کلاسیک در ازای پیچیدگیهای بالای ساختار (شامل بخشهای کنترل، مخابرات و کامپیوتر) و هچنین حجـم بالای هزینههای پیاده سازی، (به علت تجهیزات به کار رفته) و نگهداری به دست آمدهاند. از دیدگاه کنترلـی، سیستمهای کلاسیک موجود از الگوریتمهای مختلف برنامه ریزی ریاضی (از جمله الگوریتمهای برنامـه ریـزی خطی صحیح و الگوریتمهای برنامه ریزی دینامیکی) استفاده میکنند که خود معمولا مشکلات متعددی مانند حجم بالای محاسباتی و مشکل پیادهسازی را به دنبال دارند. همچنین از جمله نواقص مطرح شده در کنتـرل سنتی ترافیک میتوان به مسائلی همچون برخورداری از سطح پایین هوشمندی در مواجه بـا شـرایط پیچیـده ترافیکی، عدم مدلسازی مناسب و واقع بینانه از ابهامات موجود در بحث کنتـرل ترافیـک (تعیـین پارامترهـا و مدلسازی رفتار رانندگان و عابران پیاده)، عدم وجود ویژگی خود سازماندهی، در طراحی استراتژیهای ترافیک، غیر قابل پیش بینی بودن شرایط ترافیکی حتی برای چند لحظه آینده و عدم دسترسی به جزئیات ایجاد شده مانند تعیین نوع خودرو و یا تغییرات سرعت آنها، اشاره نمود.
سیستمهای مورد بررسی در کنترل ترافیک میتوانند شامل موارد زیر باشد :[5]
-1 کنترل تقاطع ایزوله: کنترل جریان ترافیک تقاطع مجهز به چراغ بـدون در نظـر گـرفتن تـاثیر جریانهـای ترافیکی تقاطهای مجاور. .(isolated intersection control)


-2 کنترل تقاطعهای شریانی با شبکه باز: کنترل تعدادی تقاطع مجهز به چراغ وابسته به یکدیگر در طول یک شریان اصلی که وضعیت ترافیکی هریک بر تقاطع مجاور تاثیر دارد. (arterial intersection control)
-3 کنترل گسسته: کنترل روی تمام تقاطعهای مجهز به چراغ درکل شبکه شهری و یا بخشی از آن.
(areawide sys-- control)
4
-4 کنترل ترافیک بزرگراه: کنترل روی جریان مسیرهای ورودی و مسیرهای خروجی با هدف کنترل ترافیـک روان در مسیر اصلی. (expressway control)
-5 کنترل عابران پیاده: کنترل عبور پیاده از خیابان با هدف تامین امنیت و کاهش زمان انتظـار.( pedestrian (control
اصولا سه نوع روش کنترلی برای تقاطعها مورد استفاده میباشد:
-1 کنترل زمان ثابت (fixed-time) :در این روش کنترلی، زمان تغییر چراغها از پیش تعیین شده و هیچگونه انعطافی در برابر شرایط ایجاد شده مانند وقوع تصادفات، ایجاد شـرایط خـاص مثـل تعطیلـی مـدارس، عبـور آمبولانس و... ندارد.
-2 کنترل از پیش زمانبندی شده : (pre-time control) در این نوع کنترل بر اساس الگوهای متعددی که از وضعیت یک خیابان به دست آمده است، زمانبندی چراغها صورت میپذیرد. مثلا در هر ساعت خاصی از شبانه روز مانند ساعات تعطیلی مدارس یا ساعات پیک تردد، مدت زمان سبز وقرمز بودن چراغها به گونهای متناسب تنظیم میشود، اما باز هم در برابر شرایط اضطراری غیر قابل انعطاف هستند.
-3 کنترل هوشمند : (intelligent control) در این نوع کنترل تغییر وضعیت چراغها کاملا به شرایط موجود و میزان درخواست بار ترافیکی بستگی دارد.
با مطرح شدن کنترل هوشمند در مهندسی کنترل و موفقیت این روشها در سیستمهای عملی، کاربرد روشهای کنترل هوشمند درمبحث ترافیک نیز مطرح گردیده است.
به دلیل ویژگیهای خاص سیستم کنترل ترافیک شهری و از آنجا که رفتارهای پیچیده انسان از عوامـل موثر بر شرایط ترافیکی ایجاد شونده در این سیستم میباشد، کاربرد روشهای هوشمند کنترل به جای روشهای سنتی ضروری به نظر میرسد. به طور عمده مسائل اصلی در کنترل چراغ راهنمایی در یک تقاطع ایزوله توجه به کاهش تاخیر وسایل نقلیه و کاهش میزان توقفات و همچنین افزایش ظرفیت خیابانها میباشـد. در میـان ابزارهای مختلفی که برای برقراری ایمنی راه و حفظ نظام در جریان ترافیک موجود میباشد، ماننـد تابلوهـای راهنمایی، خط کشی ها، و سایر ابزار و وسایل نصب شده در خیابانهـا، موجـود میباشـد، زمانبنـدی چراغهـای راهنمایی برای کمینه کردن تاخیر و افزایش ظرفیت تقاطعها در منطق کنتـرل کـاربرد فراوانـی دارد. دریـک تقاطع ایزوله دو حالته که در این طرح مورد بررسی میباشد، تنها با دو فاز عملیاتی کار میشود، وقتی که چراغ در دو خیابان روبرو به هم سبز باشند، در دو خیابان مجاور قرمز میشود و برعکس. در یک کنترل هوشمند، بر اساس میزان درخواست ترافیکی در خیابان مورد کنترل، تغییرات چراغ و رفتن به فاز دیگر، صورت میگیـرد و مدت زمان مناسب برای سبز بودن یک چراغ تعیین میشود.
با توجه به قابلیتهای متنوع روشهای هوشمند (شامل هوش مصنوعی , منطق فازی و شبکه عصبی)، به ویژه در پوشش دهی و پاسخگویی مناسب به موارد فوق، پیشنهاد استفاده از روشهای هوشمند، جهت پوشش دهی مشکلات فعلی، به عنوان یک راه حل جدید مطلوب خواهد بود. با توجه بـه قابلیتهـای متنـوع روشـهای هوشمند انتظار میرود که روشهای فوق در حوزههای مختلف کنترل ترافیک شامل بـرآورد وتعبیـر و پـردازش اطلاعات مختلف جمع آوری شده، برخورد و مدلسازی مناسب پارامترها و شـرایط مـبهم موجـود در پروسـه کنترل، پیشگویی آینده، افزایش قدرت یادگیری سیستم و بالاخره افزایش هوشمندی سیستم، بسیار پر کاربرد بوده و نتایج قابل قبولی را به دنبال خواهد داشت.
5
در این پروژه پس از شناخت و تحلیل روابط حاکم بر متغیرهای ترافیکی، درجه اشباع هـر ورودی کـه نشان دهنده نسبت میزان درخواست بار ترافیکی به میزان ظرفیت آن ورودی میباشد، به عنوان پارامتر ورودی کنترل کننده در نظر گرفته شده و با روشهای مبتنی بر بینایی ماشین اندازه گیری میشود. کنتـرل کننـده در هر مرحله نمونه برداری و در پایان زمان سیکل جاری، وضعیت همه ورودی را ارزیابی کرده و طـول چرخـه و طول زمان سبز اختصاص داده شده به هریک از خیابانها را در مرحله بعدی تعیین میکند تـا درجـه اشـباع در همه ورودی نسبتا یکسان و در سطح مناسبی قرار بگیرد. پس از طراحی ساختار قوانین کنترل کننده براساس پارامترهای فازی، الگوریتم آموزش مربوط به شبکه عصبی اجرا میگردد.
(2-1 پیشینه تحقیق
به طو کلی نظریه کنترل ترافیک شهری از سال 1950 ارائه گردید. بخش عمدهای از روشهایی کـه تـا کنون ارائه شدهاند براساس روشهای کلاسیک و مبتنی بر اطلاعات آماری و منحنیهای به دست آمده تجربـی میباشد. در زمینه کنترل زمان ثابت در یک تقاطع ایزوله ،Webster، در سال 1958 رابطهای ریاضـی را بـرای کنترل بهینه چرخه ارائه داد. پس از آن روشهای کنترلی دیگری نیز بر اساس مدل بهینهسازی ریاضی توسـط Miller در سال 1963، Bang درسال 1976، و Davidsson در سال 1996، ارائه گردید.[5]
به طور همزمان، با معرفی تئوری فازی در سال 1965توسط دکتر زاده کـاربرد ایـن نظریـه در کنتـرل ترافیک تقاطعها آغازشد. نخستین کنترلر فازی توسط Pappis و Mamdani در سال 1974 با کاربرد مقدماتی منطق فازی برای یک تقاطع مستقل بـا خیابانهـای یـک طرفـه، ارائـه گردیـد.[6] بـرای کنتـرل شـبکهای از تقاطعهای وابسته به یکدیگر با خیابانهای دو جهته، Chiu در سال 1992 روشی را با کاربرد منطق فازی ارائـه داد.[11] همچنین روشهایی نیز بر اساس نظریه فازی برای کنترل حجم یک معبر، کنترل تقاطعها با در نظـر گرفتن حرکات گردشی با اهداف مختلف کنترلی ارائه گردیده است. به طور رسمی پروژه 1FUSICO از سـال 1996 در دانشگاه Helsinki برای توسعه روشهای کنترل فازی چراغهای یـک تقـاطع آغـاز شـده اسـت کـه تاکنون نیز این تحقیقات ادامه دارد.
از جمله سیستمهای کنترلی طراحی شده میتوان به سیستم 2UTCS اشاره نمود که از حدود سـالهای
1970 رواج یافته و تا به امروز با آنکه تغییرات و پیشرفتهای وسیعی روی آن صورت گرفتـه، بـاز هـم مبنـای بسیاری از سیستمهای کنترل زمانبندی شده میباشد .این سیستم یک برنامه زمانبنـدی خـارج از خـط بـر اساس میانگین شرایط ترافیکی برای یک دوره زمانی خاص از طول روز در کامپیوتر مرکزی ارائـه میدهـد کـه معمولا بر اساس به حداقل رساندن شاخص بی نظمی که نشان دهنده میزان تاخیر وتوقف و یا ماکزیمم کردن ظرفیت باند میباشد، عمـل میکنـد. UTCS مجموعـهای از الگـوریتم هـایی میباشـد کـه تحـت پارامترهـای
3FHWA استاندارد شده است و امروزه با کاربرد مدلسازی میکروسکوپی، استانداردهای دیگـری نیـز عملکـرد این سیستم را توصیف میکنند8] ،.[7

1−Fuzzy Signal Control 2−Urban Traffic Control Sys-- 3−Federal Highway Administration
6
با ایجاد قابلیت کاربرد میکروپروسسورها که استفاده از آنها نیـز سـاده و کـم هزینـه میباشـد، چنـدین سیستم کنترل ترافیک روی خط1 از اواخر دهه70 و اوایل دهه80 در جهت پاسخگویی به تغییرات ایجاد شده برای افزایش عملکرد بهینهسازی ارائه گردیده است. از جمله این سیستمها میتوان به سیـستم 2SCATS کـه در استرالیا وسیستم 3SCOOT که در انگلیس ارائه شدهاند اشاره نمود9]،.[10 در مجموع میتـوان گفـت کـه این دو سیستم در جهت افزایش بهینهسازی پارامترهایی همچون چرخه4، تسهیم5، آفست6 عمل میکننـد. در کشور ما حدودا از سال 1377 طرح کاربرد نرم افزار SCATS به مرحله اجرا در آمد و هم اکنـون حـدود 320
تقاطع شهر تهران به این سیستم مجهز شدهاند. سیستمهای دیگری نیز در سالهای اخیر مورد توجـه کـاربران قرار گرفته است که نمونه هایی از این سیستمها عبارتنـد از: سیـستم7PLIDENT، سیـستم 8EQUISAT و سیستم .9FLEXIPROG کاربرد شبکههای عصبی به عنـوان یـک روش هوشـمند در سیـستمهـای کنتـرل ترافیک در سالهای اخیر اهمیت ویژهای یافته اسـت. سیـستم 10S-TRAC توسـط Spall در سـال1997 کـه نمونهای از سیستمهای مبتنی بر شبکه عصبی میباشد، ارائه گردید. در سال1992، Dongling الگوریتمی بـه منظور کاربرد همزمان شبکههای عصبی و سیستمهای فازی برای بهبود استنتاجات فازی در کنتـرل ترافیـک ارائه داد. همچنین الگوریتم 11FDP نیز برای اصلاح سرعت محاسبات با ترکیب روشهای فازی وعصبی در سال 1998 توسط j.j.Henry ارائه شده است که کاربردهای فراوانی دارد. Liu.Zhiyong در سال 2003 یـک نـوع روش کنترلی پیشگویی کننده با استفاده از شبکههای عصبی برای کنترل چراغ در یـک شـبکه شـهری ارائـه داد.وی همچنین در سال 2005 یک نوع روش کنترلی بر اساس شبکههای عصبی هاپفیلد و مبتنی بر تئوری آشوب12 برای کنترل یک تقاطع ایزوله پیـشنهاد داد. Guojiang نیـز در سـال 2004 مطالعـاتی را در زمینـه کاربرد سیستمهای نرو- فازی در یک شبکه ترافیکی شامل چندین تقاطع انجام داد12]،.[11
به طور کلی سیستمهای عصبی به شکلهای مختلفی در کنترل ترافیک به کار گرفته شدهاند. در برخی موارد شبکه عصبی به تنهایی مدلسازی، آموزش و کنترل سیستم ترافیکی مورد نظر را انجام میدهد. همچنین ممکن است شبکه عصبی بر مبنای سایر روشهای کنترلی به کار رود، ماننـد بـه کـارگیری شـبکه عـصبی بـه منظور اصلاح وبهبود تصمیمات کنترلر فازی ترافیک.در برخی موارد نیز برای کنترل ترافیـک، شـبکه عـصبی میتواندبا سایر روشهای کنترلی مانند کنترل فازی، کنترل پیشبین و...ترکیب و قابلیتهای آنها را بهبود بخشد.

1−On-Line 2−Sydney Coordinated Adaptive Traffic Sys-- 3−Split Cycle Offset Optimision Technique 4−Cycle Time 5−Phase Split 6−Offset
7−Platoon Identification 8−Equal Saturation 9−Flixible Progressive Linking of Vehicle Actuated Signals
10−Sys-- Wide Trrafic adaptive control 11−Fuzzy Dynamic Programming 12−chaos
7
(3-1 روش کار و تحقیق
جمع آوری اطلاعات آماری به روشهای مختلف و با استفاده از انواع حسگرها صورت میپذیرد که برخی از آنها به شرح زیر میباشد:[2]
-1حسگرهای مکانیکی مانند آشکار سازهای هیدرولیکی یا پیزوالکتریکی.
-2آشکارسازهای آلتراسونیک و حسگرهای مادون قرمز که با ارسال امواج به سطح خیابان و مقایـسه اخـتلاف زمان بین امواج منعکس شده از سطح وسایل نقلیه و سطح خیابان، وسیله نقلیه را تشخیص میدهد. -3کاربرد رادار که با استفاده از تغییرات ایجاد شده در فرکانس امواج منتشره از سطح خودروها، سرعت آنها را تشخیص میدهد.
-4حلقههای آشکار ساز مغناطیسی و حلقههای اندوکتانس که بر اساس تشخیص تغییرات انرژی در اثر وجـود خودرو کار میکند.
-5حسگرهای تشخیص نور مانند دوربین ویدئویی و چشم الکترونیکی.
نصب یک دوربین از نصب سایر آشکارسازها بسیار ساده تر بوده و علاوه بر آن یک دوربـین بـه تنهـایی میتوان وضعیت محدوده وسیعی را زیر نظر داشته و اطلاعات آماری دقیق تر و با جزئیات قابل درک بیـشتری را در اختیار کنترلر قرار دهد و به طور کلی یک سیستم آشکارساز مبتنی بربینـایی، میتوانـد کنترلـی مـشابه کنترل یک انسان را فراهم نماید.
هدف از کنترل یک تقاطع ایزوله در این پایان نامه، بهبود وضعیت ترافیکی و ایجاد روانی نسبی حرکت در تمام مسیرهای منتهی به این تقاطع، در ساعات مختلف شبانه روز میباشد. برای رسیدن به ایـن هـدف، از حسگرهای ویدئویی برای جمع آوری اطلاعات آماری تقاطع و ازیک الگوریتم فـازی – عـصبی اسـتفاده شـده است. یکی از مهمترین پارامترهایی که در بازدهی شبکههای عصبی و بهویژه شبکههـای عـصبی RBF نقـش مهمی را ایفا مینماید، الگوریتم یادگیری و دقت آن میباشد. شبکههای RBF یکی از انواع شبکههای عـصبی جلوسو میباشندکه در بسیاری از کاربردهای مهندسی جذابیت و کاربرد گستردهای دارند. وجود این ویژگی را میتوان در عوامل متعددی جستجو نموداز جمله اینکه شبکههای RBF میتوانند تقریباً کلیه توابع عمـومی را تخمین بزنند، ساختار بسیار ساده و فشردهای دارند و سرعت الگوریتم آموزشی آنها سـریع مـیباشـد. در ایـن پروژه و برای اولین بار یک الگوریتم آموزشی برای شبکههای عصبی RBF مبتنی بـر منطـق فـازی و ترکیـب روشهای LLS و گرادیان با حفظ کاربری آن برای کنترل یک تقاطع ایزوله ارائه مـی گـردد. روش پیـشنهادی
FHLA برای طراحی و آموزش شبکه عصبی RBF شامل دو مرحله میباشد: -1 طراحی ساختار شبکه RBF و مقداردهی اولیه به پارامترهای آن.
-2 تنظیم پارامترهای شبکه براساس الگوهای آموزشی.
اساس کار، بر استفاده از شبکه عصبی فازی RBF به همراه یک روش پیـشنهادی آمـوزش مبتنـی بـر فازی خواهد بود. در الگوریتم یادگیری FHLA پیشنهادی، علاوه بر تعیین وزنهای ارتباطی بین لایه مخفـی و لایه خروجی، پارامترهای لایه RBF شامل تعداد نرون، مرکز نرون و عرض آن نیـز در طـول فراینـد آمـوزش تعیین میگردند. مقادیر اولیه پارامترها با استفاده از منطق فازی و روشـهای خوشـه یـابی فـازی و بـه کمـک تکنیک FCM بدست میآیند. در این روش تابع هزینه عدم شباهت، محاسبه و مینـیمم مـیگـردد. از میـزان
8
تعلق هر الگوی ورودی به خوشهها و فاصله الگو تا مراکز خوشه جهت محاسبه میـزان عـدم شـباهت اسـتفاده میگردد. برای تعیین مقادیر نهایی پارامترها و وزنهای ارتباطی، از ترکیب روش LLS و گرادیان به عنوان روش بهینهسازی استفاده میشود.
یک سیستم کنترلی مبتنی بر بینایی ماشین، شامل یک دوربین دیجیتـالی اسـت کـه بـر روی مـسیر حرکت خودروها نصب شده فیلم حاصل از آن توسط الگوریتمهای پردازشی مناسـب بـرای تـشخیص خـودرو استفاده میشود و نهایتا اطلاعات آماری لازم از آن استخراج میگردد.
بنابراین با ترکیب دو ابزار قدرتمند شبکههای عـصبی و سیـستمهـای فـازی همـراه بـا یـک سیـستم آشکارساز مبتنی بر بینایی ماشینها، سیستمی طراحی خواهد شد کـه عـلاوه بـر در نظـر گـرفتن جنبـههـای مختلف تردد شهری، بتواند بهینهسازی الگوریتم کنترل ترافیک را نیزتضمین نماید. نتایج شبیهسازی بـر روی بانک تصاویر ترافیکی تقاطعهای موجود و مقایسه کاربرد این الگوریتم با سایر روشهای کلاسیک که در کنترل تقاطعهای ایزوله معمول میباشد، نشان دهنده میزان قابلیت این تکنیک میباشد.
در این پایان نامه پس از معرفی نظریه جریان کنترل ترافیک و همچنین معرفی متغیرهـای ترافیکـی و روابط حاکم بر آنها پرداخته وپروسه کنترل ترافیک از دیدگاه میکروسکوپیک و ماکروسـکوپیک و مـد لـسازی مناسب فرایندهای مختلف آماری موجود در این زمینه مورد بررسی قرار میگیرد. در بررسی پدیده ترافیـک دو دسته پارامترهای گسسته و پیوسته وجود دارند که هریک از آنهـا از توزیـعهـای احتمـالاتی مناسـب پیـروی میکنند. همچنین در این بخش برخی از روشهای مدلـسازی کلاسـیک پدیـده ترافیـک و نحـوه زمـان بنـدی چراغهای راهنمایی و اصول حاکم بر نحوه فازبندی در یک تقاطع ارائه میشود.
از آنجا که منطق فازی بهترین روش برای مدلسازی فرایندهایی است که با استدلالات انسانی سرو کـار دارد، استفاده از کنترل کننده فازی، نوعی کنترل ترافیک انعطاف پذیر را ایجاد میکند. از این رو در این پایـان نامه ضمن معرفی شبکههای عـصبی و بـه طـور خـاص شـبکه عـصبیRBF برخـی از روشـهای آموزشـی در شبکههای عصبی معرفی و شرایط معادل بودن عملکرد سیستمهای فـازی و شـبکههـای عـصبیRBF مـورد بررسی قرار میگیرد.
پس از آشنایی مختصر با سیستمهای نرو- فازی به ارائه الگوریتم پیشنهادی FHLA که برای نخستین بار جهت کنترل ترافیک تقاطع ایزوله استفاده میشود، پرداخته شده است. به این منظور مراحـل پیـادهسـازی تکنیک FCM برای مقداردهی اولیه مراکز و عرض نرونها و نحوه تعیین تعداد نرونهای لایه میانی با اسـتفاده از اندیسهای اعتباری خوشـهای بیـان شـده اسـت. همچنـین مـاتریس تقریبـی بـردار ضـرایب وزن تعیـین و بهینهسازی پارامترها و تعیین مقادیر دقیق آنها صورت میپذیرد.
از آنجا که قرار است اطلاعات لازم جهت کنترل از طریق پردازش تصاویر ویـدئویی صـورت پـذیرد، در بخشی نیز به مباحث موجود در پردازش تـصویر و شناسـایی و ردیـابی اجـسام متحـرک و بررسـی روشـهای استخراج اطلاعات آماری ترافیک از تصاویر ویدئویی پرداخته میشود.
در نهایت مدلسازی رفتار دینامیکی یک تقاطع ایزوله شهری، صورت گرفته و سـپس کنترلـر عـصبی-
فازی طراحی و به مدل شبیهسازی شده اعمال میگردد. همچنین یکی از روشهای شـمارش وسـایل نقلیـه در تصاویر ویدئویی انتخاب و برروی فیلمهای تهیه شده از تقاطع موردنظر پیاده میشود و نتایج حاصـل شـده بـا آمار واقعـی مقایـسه شـده انـد. همچنـین تـاثیر بـه کـارگیری کنتـرل کننـده عـصبی – فـازی بـا اسـتفاده
9
ازتکنیک FHLA و کنترل کلاسیک پیش زمانبندی شده، بر میزان سطح تاخیر و سـطح اشـباع ورودیهـای تقاطع بررسی شده است. کلیه برنامه های مدلسازی توسط برنامه نویسی در محیط نرم افزار MATLAB بوده و نتایج شبیهسازی قابلیتهای به کار گیری الگوریتم پیشنهادی را نشان میدهد.
10
فصل دوم
نظریه جریان ترافیک و اصول زمانبندی
چراغهای تقاطع
11
فصل دوم: نظریه جریان ترافیک و اصول زمانبندی چراغهای تقاطع
(1-2 مقدمه
تئوری ترافیک دانشی است که به منظور برقراری روابط تحلیلی پدیده ترافیـک و بـسط آنهـا اسـتفاده میشود. این فرآیند شامل تحلیل ریاضی و مدل سـازی، اسـتفاده از تکنیـکهـای مهندسـی کنتـرل سیـستم وشبیهسازی کامپیوتری میباشد. نظریه جریان ترافیک و بررسی مـدلهای جریـان ترافیـک پرداختـه و روابـط تحلیلی مربوط به پارامترهای مختلف که ممکن است از مدلهای احتمالاتی گسسته و یـا مـدلهای احتمـالاتی پیوسته تابعیت کنند، در ادامه مورد بحث قرار میگرند. به این ترتیب با شناخت متغیرهای مختلف ترافیکـی و آشنایی با نحوه اندازه گیری هریک از آنها، میتوان در تحلیل وضعیت ترافیکی یک تقاطع، پارامترهای مناسـب را انتخاب نمود. زیرا اندازه گیری بسیاری از شاخصههای تاثیر گذار بر جریان ترافیک ممکن با مـشکل مواجـه شود.
(2-2 روابط تحلیلی پدیده ترافیک
یکی از مدلهای اساسی جهت بررسی پدیده ترافیک مدل خودرو به دنبال هم می باشد که عبارت است از رابطهای ریاضی که حرکت یک وسیله نقلیه را به حرکت وسایل نقلیه دیگر که به دنبال آن میباشد ارتبـاط داده و با تعمیم آن میتوان به رابطهای که جریان کامل ترافیک را توضیح میدهد، رسید.یک نمونه از معـادلات
ریاضی مربوطه به صورت زیر میباشد:[3]
(1-2) Vn (t −T ) −Vn−1(t −T ) dVn (t) A dt X n (t −T ) − X n−1(t −T ) که در آن Vi سرعت خودروی i ام، Xi موقعیت خودروی i ام و T عقب مانـدگی یـا تـاخیر در عکـس العمـل میباشد. این رابطه نشان میدهد که شتاب خودروی n ام به وسیله اختلاف بین سرعت او و سـرعت خـودروی جلویی (n-1) و همچنین به ثابت A و به فاصله بین دو وسیله نقلیه بستگی دارد. هرچه فاصله بین دو وسـیله نقلیه کمتر باشد، این وابستگی بیشتر است. آزمایشات مناسب بودن این مدل توصیفی را نشان میدهند. مـدل خودرو به دنبال هم که در رابطه (1-1) نشان داده شده است، در مقیاس کوچک بوده و میتوان با کمی تغییـر از این معادله به رابطهای مناسب در مقیاس بزرگ دست یافت. برای نشان دادن این رابطه در مقیـاس بـزرگ، معادله (1-1) را برای شرایطی که فاصله همه وسایل نقلیه و سرعت آنها یکسان باشد، در نظر گرفته می شود.
با توجه به اینکه v سرعت، v∆ اختلاف سرعت و x ∆ فاصله است، آنگاه:
(2-2) ∆v A dv ∆x dt با تغییر دیفرانسیلی در سرعت رابطه زیر برقرار میباشد.: (3-2) d (∆x) dv  A ∆x 12
و نهایتا برای هرزوج اطلاعات معلوم (v0,x0) میتوان نوشت (4-2) d (∆x) v∫dv  A ∆∫x ∆x v0 ∆x0 k0 ALn ∆x ALn v v − k ∆x0 0 که در این رابطه k عبارت است از چگالی و k=1/∆x که با نشان دادن تردد به صورت q و با توجه به اینکـه در چگالی تراکم kj (حالت اشباع) v=0 میباشد، ازمعادله (4-1) میتوان نوشت :
(5-2) k j q  AkLn k باید توجه داشت که عموما فـرض بـر آن اسـت کـه چگـالی جریـان (k) یـک متغیـر مـستقل اساسـی بـوده وپارامترهایی همچون سرعت (v)و تردد (q) به آن وابسته هستند.
(3-2 معرفی پارامترهای ترافیکی
در این بخش به طور مختصر به معرفی برخی پارامترهایی که در تئوری جریان ترافیـک نقـش مـوثری دارند بررسی میشوند. به طور کلی روابط میان پارامترهای مختلف در پدیده ترافیک را میتوان به صورت جدول
1-2 توصیف نمود:
جدول (1-2) معرفی پارامترهای حاکم بر پدیده ترافیک
علامت نام توضیح واحد q حجم (تردد) تعداد وسیله نقلیه که در واحد زمان تعدادوسیله نقلیه بر از یک نقطه میگذرد. ساعت k تراکم(فشردگی) تعداد وسیله نقلیه که واحد طول یک راه تعدادوسیله نقلیه بر را به طور همزمان اشغال میکنند. کیلومتر s فاصله مکانی مسافت بین دو وسیله نقلیه متوالی متر یا کیلومتر h فاصله زمانی فاصله زمانی بین عبور دو وسیله ثانیه نقلیه از یک مکان m واحد زمان سفر زمانی که یک وسیله نقلیه واحد دقیقه بر کیلومتر طول را طی میکند u سرعت مشتق مسافت نسبت به زمان کیلومتر بر ساعت u s میانگین مکانی سرعت میانگین سرعت وسایل نقلیه گذرنده کیلومتر بر ساعت از یک مسیر در یک لحظه معین 13
روابط فوق قابل اثبات بوده و رابطه آنها را میتوان به صورت ذیر بیان نمود:
حجم ترافیک: میانگین مکانی سرعت × تراکم
(6-2)
میانگین مکانی سرعت = حجم × فاصله مکانی
(7-2)
تراکم: حجم × واحد زمان سفر
(8-2)
فاصله مکانی = میانگین مکانی سرعت × فاصله زمانی
(9-2)
فاصله زمانی = واحد زمان سفر × فاصله مکانی
(10-2)
واحد زمان سفر= تراکم × فاصله زمانی
(11-2)

q  us k
us  qs  kq

k  qm  q
us
s  ush  uqs

h  ms  1q

m  kh  1
us
با استفاده از روابط فوق و ترکیب آنها میتوان سیستم ترافیک را به طور کامل مورد تجزیه و تحلیل قرار داد. همچنین واضح است که حجم و تراکم مناسبترین زوج متغیرها بـرای توصـیف جریـان ترافیـک و نتـایج نظری آن هستند. همچنین این تعاریف نشان میدهد که به هنگام تراکم صفر، حجم نیز باید صفر باشد و برای تراکم حداکثر یعنی وقتی وسایل نقلیه سپر به سپر قرار میگیرند نیز حجم صفر است. معمولا پیش از رسـیدن تراکم به یک مقدار ماکزیمم، حجم کاهش مییابد. شکل 1-2 دیاگرام اساسی ترافیک نامیده میشود که رابطه میان حجم و تراکم را نشان میدهد.
14

شکل((1-2 منحنی حجم-ترافیک به صورت تابعی از تراکم
(4-2 مدلهای احتمالاتی
استفاده از مدلهای احتمالاتی هم به صورت ساده و هم به صورت خاص (کـاربرد تئـوری صـف) بخـش مهمی از نظریه جریان ترافیک میباشد. در این بخش به طور مختصر به توصیف احتمالاتی برخی پارامترهـای موثر بر جریان ترافیک و رابطه میان آنها پرداخته میشود.
(1-4-2 مدل احتمالی رابطه چگالی و تردد
برای بررسی و به دست آوردن عناصری مانند رابطه چگالی و تردد، یکی از روشها آن اسـت کـه رابطـه جبری q=q(k) را برای تردد محاسبه شود، به طوری که چگالی k رابه عنوان یک متغیر تـصادفی بـا میـانگین k و واریانس σ 2 در نظر گرفت. با معلوم بودن این مقادیر، مقدار میانگین جریان، q ، و سـایر معیـارهـای احتمالاتی نیز معین میشود. روش بهتر این است که جریان q طوری در نظر گرفته شود که دارای یک مولفـه وابسته به چگالی و یک مولفه تصادفی باشد که این مولفه تصادفی به مولفه قبلی اضافه گردد.
(12-2) q  q fix (k)  qrandom
فرض کنید که (q=Ak(k0-k) و (13-2) qE(q)E[Ak(k0−k)]Ak0E(k)−AE(k2)
σx2  E(x2 ) −[E(x)]2
qAk0k−A(σk2k2)
یا به عبارتی دیگر (14-2) qq(k)−Aσk2
15
که در این رابطه، ( q(k از جایگذاری k در رابطه تعریف شده ( q  AK (q − q0 به دست آمده است.به ازای یک KK خاص، نوسانات موجود در چگالی ترافیک به حداقل و نرخ تردد به حـداکثر مقـدار خـود میرسد.

شکل (2-2) بررسی مدل احتمالی ترافیک
(2-4-2 مدلهای احتمالی گسسته
برخی از مدلهای احتمالی که در توصیف پارامترهای گسسته به کـار میـرود، بـه طـور مختـصر بـه صورت زیر میباشد:
-1 توزیع دو جملهای: از این مدل احتمالی در توصیف حرکات گـردش بـه چـپ و راسـت در یـک بازوی تقاطع و فرآیند ورود وسایل نقلیه به یک بازو در جریان ترافیکی متـراکم کـه نـسبت میـانگین بـه واریانس تعداد وسایل نقلیه از یک بزرگتر باشد، استفاده میشود.
-2 توزیع دو جملهای منفی : این توزیع در توصیف پدیـدههـای خـاص مثـل عبـور وسـایل نقلیـه سنگین مانند کامیون در جریان ترافیک استفاده میگردد، به این ترتیب که عبور یک وسیله نقلیه سنگین به عنوان پیروزی و عبور بقیه وسایل نقلیه به عنوان شکست در نظر گرفتـه میـشود. ضـمن آنکـه از ایـن توزیع، زمانی استفاده میشود که نسبت میانگین به واریانس وسایل نقلیه از یک کمتر باشد.
-3 توزیع پواسن: از توزیع پواسن برای توصیف رفتار وقـایعی کـه ذاتـا تـصادفی هـستند، اسـتفاده میشود. از نظر تاریخی، این توزیع، اولین توزیع به کار رفته برای آنالیز جریان وسایل نقلیه میباشد. از ایـن توزیع برای شمارش پدیدهها استفاده میشود و احتمال ورود وسایل نقلیه در ضـمن یـک پریـود زمـانی را مشخص میکند. همچنین تنها پارامتری که باید از روی اطلاعات آماری و تحلیل آنها به دسـت آیـد نـرخ ورود وسایل نقلیه به خیابان مورد نظر میباشد. همچنـین از ایـن توزیـع در زمـانی کـه وضـعیت ترافیـک معمولی بوده و نسبت میانگین به واریانس در حدود یک باشد استفاده میشود.
-4 توزیع هندسی : این توزیع که احتمال تعداد آزمایش برای رسـیدن بـه اولـین پیـروزی را دارد، نقش عمدهای در مدلسازی فرآیند صفبندی ترافیکی را ایفا میکند. پارامترهایی کـه در ایـن توزیـع بایـد مشخص باشند، نرخ ورود ونرخ ترک صف بوده و زمان انتظار برای برای اولین موفقیت (خروج) و یا تعـداد وسایل نقلیه منتظر در صف با این توزیع، تعیین میشوند.
16
(3-4-2 مدلهای احتمالی پیوسته
برای توصیف برخی پارامترهایی که ماهیت پیوسته دارند نیـز معمـولا از توزیـعهـای زیـر اسـتفاده میشود:
-1توزیع نرمال: این توزیع برای توصیف سرعتهای نقطهای در محاسبات مهندسی ترافیک کاربرد دارد. -2توزیع نمایی(نمایی منفی): کاربرد این توزیع در مدلسازی شکاف زمانی بین ورودیهای متوالی در یـک پروسه میباشد. در به کارگیری این تابع توزیع، نرخ متوسط جریان ترافیک وسـایل نقلیـه در واحـد زمـان باید مشخص باشد.
(4-4-2 مدل احتمالی تئوری صف
از جمله پارامترهای مورد توجه در مدلسازی صف عبارتنـد از: تعـداد واحـدهـای موجـود در صـف،
احتمال عدم وجود واحدی در صف، زمان متوسط انتظار هر واحد و غیره. برای پیشگویی مشخـصات یـک سیستم صف، لازم است که مشخصات الگوی ورودی مانند متوسط نرخ ورود، توزیع آماری شـکاف زمـانی ورود وسایل نقلیه و همچنین مشخصات سیستم سرویس دهنده شامل نرخ متوسط سرویس، توزیع آماری زمان سرویس وتعداد کانالهای سرویس دهنده، مشخص باشند.
با فرض نرخ ورود λ،شکاف متوسط ورود برابر 1/ λ خواهد بود. همچنین اگـر نـرخ سـرویس را بـا
نمایش دهیم، پس متوسط زمان سرویس برابر با 1/  خواهد بود. نسبت P  λ /  (شـدت ترافیـک)
برای پایداری صف باید از یک کمتر باشد.
برای مدلسازی صف تک کاناله از روابط زیر استفاده میشود:
-1تعداد واحدهای موجود در سیستم: این پارامتر شامل تعداد واحـدهـای منتظـر در صـف بعـلاوه تعـداد واحدهای در حال سرویس میباشد
-2احتمال خالی بودن سیستم:
(15-2) p(0) 1 − p -3احتمال وجود n واحد در سیستم برابر است با (16-2) p(n)  pn(0) -4طول متوسط صف: تعداد متوسط واحد منتظر در صف: (17-2) E(m)  p2 /(1 − p)  λ2 /  /( − λ) -5تعداد متوسط واحد موجود در صف: E(n)  p /(1 − p)  λ /( − λ) (18-2) -6زمان متوسط انتظار قبل از سرویس دهی: (19-2) E(v) 1/( − λ) 17
-7زمان متوسط صرف شده در سیستم:
(20-2) 1/  /( − λ) E(w)  (5-2 کنترل چراغ راهنمایی
زمان سفر و مشخصههای تاخیر میتواند به عنوان معیار مناسبی بـرای کـارایی جریـان ترافیـک در تقاطعهای چراغ دار مورد استفاده قرار گیرد. به طورکلی زمان سفر و زمان تاخیر با یکدیگر رابطـه عکـس دارند. با مطالعات مربوط به میزان تاخیر میتوان مقدار، علت، موقعیت، مدت و فراوانی تاخیرها و همچنین سرعتهای کلی سفر وحرکت را تعیین کرد.
تاخیر عبارت است از زمان از دست رفتهای که باعث کند شدن جریان ترافیـک میگـردد. از جملـه عوامل موثر بر تاخیر تقاطع میتواند شامل مواردی همچون عوامل فیزیکی مانند تعداد خطوط عبور، شیب ها، مسیر دهی ترافیک و ایستگاههای حمل ونقل ترافیک،عوامـل ترافیکـی ماننـد حجـم ترافیـک در هـر رویکرد تقاطع، حرکات گردشی، عابران پیاده وطبقهبندی وسایل نقلیه و کنترل کنندههای ترافیکی ماننـد زمانبندی چراغ راهنمایی، تابلوهای ایست و احتیاط، باشد.
برای به دست آوردن روشی برای غیر اشباعسازی تقاطع باتوزیع ورودی پواسـن، احتمـال اینکـه x
وسیله نقلیه در طی یک چرخه((c وارد تقاطع شوند برابر است با :
e−λc(λc)x
p(x) (21-2) x

که در این رابطه λ برابر است با متوسط نرخ ورود وسایل نقلیه در طی یک دوره مشخص برای حالت غیـر اشباع تقاطع.
مثلا اگر لازم باشد اتومبیل هایی که در چرخهای بـه انـدازه c وارد میـشود در طـی مـدت g سـبز موجود، در حداقل 95 درصد مواقع قادر به عبور باشند، تعداد وسایل نقلیهای که باید وارد تقاطع شـوند از رابطه زیر قابل محاسبه میباشد:
x (λc) −λc e N (22-2) ≥ 0.95 Pr (x ≤ N )  ∑ x x0 که در این رابطه pr(x≤n) نشان دهنده احتمال آن است که x وسـیله نقلیـه کمتـر یـا مـساوی بـا N وارد تقاطع شوند که N کوچکترین عددی است که در این رابطه صدق میکند.
یکی دیگر از پارامترهای موثر بر جریان ترافیک، زمان سفر متوسط می باشـد.زمـان متوسـط سـفر برای برای یک جریان ترافیک یک طرفه توسط رابطه زیر تعریف میشود:
(23-2) 60(On − Pn ) Tn  Tn − Vn که در آن Tn زمان سفر متوسط برای تمام ترافیک در جهت شمالی n) به معنای جهت حرکت بـه سـمت شمال مسیر میباشد.)
18
و مقدار ( (On − Pn نشان دهنده تصحیح این مساله است که ممکن است وسیله نقلیـه مـورد بررسـی بـا سرعت متوسط در مسیر حرکت نکند.
پارامتر دیگر سرعت متوسط مکانی وی باشد که برای جریان یکطرفه، با رابطه زیر تعیین میشود:
(24-2) 60d Sn  T n که در آن Sn سرعت متوسط مکانی در جهت شمال و d طول مسیر مورد آزمایش میباشد. (6-2 تحلیل عملکرد تقاطع
مراحل تحلیل عملکرد تقاطع ها، اعم از چراغدار، بدون چراغ و میدان شامل تهیه اطلاعـات ورودی، تحلیل ظرفیت و تعیین سطح خدمات میباشد. اطلاعات ورودی شامل اطلاعات مـورد نیـاز بـرای تحلیـل عملکرد تقاطع مانند مشخـصات هندسـی، ترافیکـی، کنترلـی و محیطـی تقـاطع اسـت. تحلیـل عملکـرد تقاطعهای چراغدار به صورت سیستماتی ک مطابق شکل3-2 صورت میگیرد:[1]

شکل (3-2) فرآیند تحلیل تقاطعهای چراغدار
(1-6-2 اصطلاحات رایج در تقاطعهای چراغدار
پیش از هرچیز، تعاریف مفاهیم و اصطلاحات مرتبط با تقاطعهای چراغ دار ارائه میگردد:[1] -1 چرخه: عبارت است از یک دوره کامل از حالتهای چراغ راهنمایی.
-2 طول چرخه: عبارت است از زمان لازم برای طی شدن یک چرخه چراغ راهنمایی که معمولا بـر حسب ثانیه بیان میشود.
-3 فاز(دوره): بخشی از یک چرخه چراغ راهنمایی است که به عبور یک یا چنـد حرکـت ترافیکـی همزمان اختصاص یافته است..
-4 فرجه: مدت زمانی است که در طول آن، وضعیت کلیه چراغهای تقاطع ثابت است.
-5 فرجه تمام قرمز: مدت زمانی است که به منظور ایمنی و تسهیل تخلیه تقاطع، در همه جهت ها چراغ قرمز میشود.
19
-6 فرجه زرد: مدت زمانی است که در میان علائـم سـبز و قرمـز چـراغ راهنمـایی در نظـر گرفتـه میشود تا وسایل نقلیهای که به علت سرعت زیاد قادر به توقف نیستند، بتوانند بـا ایمنـی از تقـاطع عبـور کنند.
-7 زمان تخلیه: مدت زمانی است که در پایان زمان سبز یک حرکت ترافیکی تا شروع زمـان سـبز حرکت بعدی در نظر گرفته میشود و برابر است با فرجه زرد بعلاوه فرجه تمام قرمز.
-8 زمان سبز موثر: بخشی از یک فاز میباشد که به طور موثر توسط حرکت مربوطه مورد اسـتفاده قرار میگیرد و برابر است با زمان سبز بعلاوه زمان تخلیه منهای زمان هدر رفته برای آن فاز.
-9 نسبت سبز: عبارت است از نسبت زمان سبز موثر یک فاز به طول چرخه. -10 ورودی(رویکرد): عبارت است از هریک از مسیرهای منتهی به تقاطع.
-11 گردش حمایت شده: حرکت گردشی که دریک فـاز جداگانـه و بـدون برخـورد بـا جریانهـای ترافیکی مزاحم مانند ترافیک روبرو یا عابرین پیاده انجام میشود.
-12 گردش حمایت نشده: حرکت گردشی است که به طور همزمان با جریانهای ترافیکی مخـالف و از بین آنها صورت میگیرد.
انواع چراغهای کنترل ترافیک تقاطعهای مجزا دارای تکنولـوژیهـا و کـاراییهـای بـسار متفـاوتی هستند. اما این چراغها از نظر نحوه زمانبندی به دو دسته چراغهای پیش زمـانبنـدی شـده و چراغهـای سازگار با ترافیک تقسیم شدهاند. کرد:.هریک از این روشها دارای مزایای ویژهای بوده و میتـوان بـه طـرق مختلف کارایی و انعطاف پذیری آنها را بهبود بخشید. در ادامه نحوه عملکرد این چراغها مورد بررسی قـرار میگیرد.
(2-6-2 ظرفیت
ظرفیت در تقاطعهای چراغدار عبارت است از حداکثر جریان وسایل نقلیـه گذرنـده از تقـاطع کـه متاثر از شرایط ترافیکی و هندسی ورودیهای تقاطع و نحوه زمانبندی چراغ میباشد.
جریان اشباع عبات است از حداکثر جریانی که میتواند از یک ورودی تقاطع، تحـت شـرایط حـاکم هندسی وترافیکی، و با این فرض که صد در صد زمان سبز موثر برای آن ورودی وجود داشته باشد، عبـور کند. جریان اشباع برای فاز i ام با نماد si نشان داده شده و بر حسب واحد " تعداد وسـیله نقلیـه برزمـان سبز موثر("(vphg بیان میشود.رابطه ظرفیت با جریان اشباع به صورت زیر میباشد:[1]
(25-2) ( gi Ci  Si ( c که در آن Ci ظرفیت ورودی iام تقاطع(وسیله نقلیه در ساعت)، Si جریان اشباع ورودی i ام تقاطع
(وسیله نقلیه در ساعت سبز موثر)،c طول چرخه چراغ (ثانیه)و gi زمان سبز موثر برای ورودی i ام تقاطع میباشد.
مفهوم جریان اشباع در تقاطعهای چراغدار بر این فرض استوار است که هیچگونه زمان هدررفتهای در تقاطع وجود نداشته و تقاطع به صورت یک نوع تسهیلات ترافیکی با جریان غیر منقطع عمل میکند.
20
تحلیل ظرفیت هر خط یا گروه معمولا بر اساس پارامتر "درجه اشباع" انجام میشود. این پـارامتر از نسبت حجم تقاضای حرکت (یا گروه خط) به ظرفیت آن vi/ci بـه دسـت میĤیـد. در صـورتی کـه درجـه
اشباع یک خط از یک بالاتر باشد، آن گروه خط نمیتواند پاسخگوی حجم ورودی به آن باشد.
تحلیل ظرفیت کل تقاطع نیز با استفاده از پارامتر "درجه اشـباع بحرانـی" صـورت میگیـرد کـه از
رابطه زیر حاصل میشود: (26-2) X (DS) Vi / Ci
که در رابطه فوق، Ci ظرفیت ورودی i ام تقاطع (وسیله نقلیه بر ساعت)، vi میزان جریان واقعـی
(وسیله نقلیه بر ساعت) و (X(DS) درجه اشباع میباشد. نرخ جریان اشباع را نیز میتوان با استفاده از روشهای محاسباتی به دسـت آورد. در اکثـر روشـهای معرفی شده یک مقدار پایه تحت عنوان "نرخ جریان اشباع ایـده آل " بـرای نـرخ جریـان اشـباع تعریـف میشود که بیانگر شرایطی است که عوامل هندسی و ترافیکی موثر در جریان اشباع همگـی حالـت بهینـه داشته و از هر ورودی در هر ساعت سبز موثر حداکثر جریان ترافیـک عبـور داده شـود. در بیـشتر مـوارد پارامترهایی همچون پهنای خط (یا خطـوط) عبـور در ورودی، شـیب ورودی، نـوع وسـایل نقلیـه، حجـم ترافیک چپگرد، حجم ترافیک راستگرد وحجم تردد عابر پیاده، در تعیین میزان نرخ جریـان اشـباع مـوثر میباشد. دستور العملهای مختلفی برای تخمین ظرفیت و تاخیر در تقاطعها موجـود میباشـد کـه در آنهـا پارامتر اصلی S که نشان دهنده جریان اشباع میباشد، دخالت دارند. رابطه زیر یـک دسـتورالعمل کلـی را برای محاسبه جریان اشباع به دست میدهد که تاثیر هریک از عوامل مورد نظر به صورت یـک ضـریب در آن اعمال شده است:
S=S0 (N) (fw) (fhv) (fg) (fp) (fa) (fbb) (flu) (frt) (flpd) (frpd)( 27-2)
که در آن عوامل تاثیر گذار به صورت زیر تعریف میشود:
:S0 میزان جریان اشباع ایده آل برای هر لاین که معمولاٌ (veh/h/In)1900 در نظر گرفته میشود.
:N تعداد لاینها در گروه لاین.
:fhv ضریب تنظیم برای وسائط نقلیه سنگین در جریان ترافیک. :fw ضریب تنظیم برای عرض لاین
:fp برای تنظیم برای وجود لاین پارکینگ نزدیک به گروه لاین و کیفیت پارکینگ در آن لاین :fg ضریب تنظیم برای شیب ورودی
:fa ضریب تنظیم برای نوع منطقه
:fbb ضریب تنظیم برای مسدود کردن اتوبوسهای محلی که در منطقه تقاطع توقف کردهاند. :flu ضریب تنظیم برای مطلوبیت لاین
:frt ضریب تنظیم برای گردش به راستها در لاین :flt ضریب تنظیم برای گردشهای به چپ
:flpd ضریب تنظیم عابر پیاده برای حرکتهای گردش به چپ
21
:frpd ضریب تنظیم عابر پیاده برای حرکتهای گردش به راست
در روشهای مختلفی که برای تعیین جریان اشباع معرفی شدهاند، میتـوان اثـر برخـی پارامترهـای مختلف را نادیده در نظر گرفت و عوامل موردنظر را به صورت یک ضریب در این رابطه گنجاند.
(3-6-2 سطح خدمات
برای محاسبه نحوه کارکرد تسهیلات ترافیکی، از شاخصی به نام سـطح خـدمات اسـتفاده میـشود.
سطح خدمات نشانگر میزان کارایی تقاطعهای چراغدار است.
تاخیر مهمترین معیار کارایی تقاطعهای چراغدار میباشد. در حقیقت، تاخیر زمان تلف شده خـارج از کنترل رانندگان بوده و ناشی از عامل اساسی زیر میباشد:
-1تاخیرعملیاتی که در نتیجه تداخل بین جریانهای مختلف ترافیک به وجود میاید.
-2تاخیر ثابت که به علت وجود سیستم کنترل چراغ راهنمایی بر وسایل نقلیه تحمیل میگردد. -3تاخیر زمان توقف: مدت زمانی که یک خودرو بدون حرکت در جای خود میایستد. -4تاخیر زمان سفر: تاخیری که بر اساس افزایش و کاهش شتاب صورت میگیرد.
برای محاسبه تاخیر کل ورودی که مجموع تاخیر اتفاقی و تاخیر یکنواخت میباشـد، از رابطـه زیـر استفاده میشود:[1]
(28-2) 25g / C X 2 1/ 3 − 0.65(C /V X 2  C(1 − g / C)2 d  ( 2V (1 − X ) 2[1 − (g / C)] در این رابطه C طول چرخه چراغ و g زمان سبز موثر فاز مربوطه،V حجم جریان ورودی و X نـرخ جریان اشباع میباشد.
در رابطه فوق تاخیر اتفاقی و تاخیر یکنواخت با یکـدیگر جمـع میـشود و چـون متوسـط تـاخیر را حدودا 5تا15 درصد بیش از مقدار واقعی برآورد میکند، جمله سوم حدودا 10 درصد میزان تـاخیر را کـم میکند و باعث تصحیح مقدار آن میشود.
(7-2 چراغهای هوشمند سازگار با ترافیک
در شرایطی که نوسانات ترافیک، نامنظم و غیر قابل پیش بینی بـوده و یـا حجـم تقاضـای تقـاطع پایین تر از شرایط اشباع قرار داشته باشد، تنها راه حل ممکن استفاده از چراغهای سازگار با ترافیک است.
این چـراغهـا بـه دلیـل تطـابقی کـه بـا تغییـرات جریـان ترافیـک دارنـد، دارای مزایـایی بـه شـرح زیـر هستند،14]،13،:[1
-1 در تقاطعهایی که تغییرات جریان ترافیک در آنها زیاد و غیر قابل پیش بینی است، نسبت به چراغهای پیش زمانبندی شده ارجحیت دارند.
-2 در تقاطعهای پیچیده که حجم ترافیک در بعضی از حرکتها نـا مـنظم اسـت، اسـتفاده از ایـن روش مناسب میباشد.
22
روشهای هوشمند کنترل ترافیک دارای آشکارسازهایی هستند که به وسیله آنها برخی پارامترهـای شاخص شرایط ترافیک در محل اندازه گیری میشوند. کنترل کننده دارای پردازندهای است که بـر مبنـای مقادیر این شاخصها و با توجه به روش عملکرد تعیین شده، در مورد مدت زمان هر فاز چراغ راهنمایی و یا شکل فازبندی تصمیم میگیرند. در شکل4-2 نحوه عملکرد یک روش کنترل سـازگار بـا ترافیـک ارائـه شده است.
شاخصهای ترافیک، مقادیر اندازه گیری یا برآورد شدهای هـستند کـه مبنـای سـنجش و تـصمیم گیری در روشهای کنترل سازگار با ترافیک مورد استفاده قرار میگیرد. این پارامترها معمولا شامل: حـضور خودرو، حجم ویا تردد وسایل نقلیه، نرخ اشغال و چگالی، سرعت، شکاف و طول صف میباشند.
چراغهای سازگار با ترافیک ممکن است به صورت نیمه سازگار ویا تمام سازگار عمل نمایند.

شکل((4-2 ساختار روش کنترل سازگار با ترافیک
چراغهای نیمه سازگار، در تقاطع مسیرهای فرعی با مسیرهای اصلی مورد استفاده قـرار میگیرنـد.
این چراغها میتوانند با استفاده از یک یا چند آشکارساز که در مسیر فرعی نصب میـشوند، عمـل نماینـد.
عملکرد آنها به این ترتیب است که در حالت عادی، چراغ مسیر اصلی سبز و چراغ مسیر فرعی قرمز بـوده و با حضور یک یا چند خودرو در در مسیر فرعی، به مسیر فرعی چراغ سبز داده میشود.
چراغهای تمام سازگار در تقاطعهای دو فازه و چند فازه مورد استفاده قـرار میگیرنـد. در ایـن نـوع کنترل در کلیه ورودیهای که نقش تعیین کنندهای در زمانبندی تقاطع دارند، آشـکار سـازهای وسـایل نقلیه نصب میشوند. روش عملکرد به این ترتیب است که برای هر فاز، یک حداقل زمان سبز، یک حداکثر
23
زمان سبز، یک حداکثر فاصله مجاز بین وسایل نقلیه یا فرجـه تمدیـد تعریـف میـشود، شـکل5-2 نحـوه عملکرد کنترل کنندههای سازگار را نشان میدهد.
هدف از تعریف مقادیر حداقل و حداکثر زمان سـبز، حفـظ ایمنـی در تقـاطع میباشـد و اینکـه در صورت بروز اشکال در عملکرد شناساگرهای وسایل نقلیه، عملکرد تقاطع مختل نگردد. نحوه تنظیم زمـان هر فاز به این ترتیب است که با سبز شدن چراغ و سپری شدن حداقل زمان سبز مربوطه، ادامه ویا خاتمه زمان سبز، وایسته به فاصله بین وسایل نقلیه در حال عبور از روی شناسـاگر اسـت. در تقـاطع هـایی کـه میزان تردد و در نتیجه نسبت حجم به ظرفیت تقاطع کم است، برای هر خـودرویی کـه پـیش از سـپری شدن حداکثر فاصله مجاز بین وسایل نقلیه به حوزه شناسگر برسد، چراغ به اندازه فرجه تمدید، سبز نگـه داشته میشود تا این خودرو بتواند از چراغ عبور کند. برای جلوگیری از تحمیل تاخیر بیش از حد بروسایل نقلیه سایر ورودی ها، فاصله مجاز وسایل نقلیه حداکثر 3 تا 4 ثانیه در نظر گرفته میشود.
با گسترش کاربرد ریزپردازنده ها، کنترل کنندههای سازگار با ترافیک از قالبهای غیر قابل انعطاف خارج شده و به سخت افزارهایی قابل برنامه ریزی تبـدیل شـدهانـد. در ایـن کنتـرل کننـدههـا چگـونگی عملکرد سیستم توسط یـک نـرم افـزار خـاص تعیـین میـشود. بـا توجـه بـه اطلاعـات دریافـت شـده از شناساگرهای وسایل نقلیه و عابران پیاده و سایر ورودی ها، امکان تصمیم گیری راجـع بـه زمـانبنـدی و فازبندی وجود دارد.

شکل((5-2 نحوه عملکرد کنترل کننده سازگار با ترافیک
(1-7-2 سیستم SCATS
یک سیستم کنترل کننده هوشمند ترافیکـی SCATS از جملـه سیـستمهـای کنترلـی روی خـط میباشد که در اواخر دهه 70 در کشور استرالیا ارائه و تا کنون در تعداد بسیار زیادی از تقاطعهای بـزرگ دنیا نصب و راه اندازی شده است. این سیستم هوشمند درکنترل شبکههای ترافیکی کـه تعـدادی تقـاطع متصل به یکدیگر را در بر دارد، کاربرد گستردهای یافته است. در میان تقاطعهای یک شبکه تحت کنترل،
24
معمولا یکی از تقاطعها به عنوان تقاطع بحرانی انتخاب میشود و سایر تقاطعهـا نیـز بـا سـهیم شـدن در پارامترهای تقاطع بحرانی، هماهنگ با آن عمل کرده و به این ترتیب نوعی کنترل تطبیقی را روی شـبکه ترافیکی اعمال میکنند.
معیار اساسی در تصمیم گیری سیستم SCATS، همان درجه اشباع یعنی نسبت حجم به ظرفیـت میباشد که با رابطه (26-1) بیان شده است.
در این سیستم پس از دریافت اطلاعات آماری از وضعیت هر یک از ورودیهای تقاطع، مقـدار DS
(درجه اشباع) را برای هریک از آنها به دست آورده و از بین آنها مقـدار درجـه اشـباع بحرانـی را انتخـاب میکند. برای تعیین چرخه یک حد مینیمم و یک حد ماکزیمم با توجه به شرایط خاص آن ورودی در نظر گرفته میشود. پس از تعیین چرخه، درصد تخصیص فاز سبز به هر رویکـرد بـر اسـاس الگوهـای از پـیش تعریف شدهای که برای سیستم مشخص میباشد، صورت میپذیرد، به این ترتیب که بـالاترین زمـان سـبز بودن چراغ به رویکردی که بالاترین درجه اشباع بحرانی را دارد، اختصاص میابد.
البته باید توجه داشت که در عین هوشمند بودن سیستم SCATS ، نقش اپراتور انسانی در نظارت بر عملیات کنترلی بی تاثیر نخواهد بود. وضعیت حجم ترافیکی مسیرها توسط دوربینهای نصب شـده در تقاطع توسط اپراتورها بررسی و در صورت نیاز، سیستم کنترل را حالت هوشمند خارج میشود و بـا توجـه به تصمیم اپراتور، میزان زمان سبز اختصاص داده شده به هر فاز را تعیین میگردد.
در هر صورت هدف از به کارگیری این سیستم کنترلی نیـز ماننـد بـسیاری دیگـر از سیـستمهـای هوشمند، کاهش زمان تاخیر و کاهش زمان توقف و همچنین کاهش زمان سفر میباشد که تا حـد بـسیار مطلوبی نیز در این زمینه موفق عمل نموده است.
(8-2 کنترل هماهنگ چراغها در شبکه
حداکثر کارایی جریان ترافیک در شبکه، صرفا با ایجاد بهترین نوع فاز بنـدی، زمـانبنـدی و طـول چرخه بهینه برای هریک از تقاطعها به دست نمی آید بلکه وضعیت تقاطعهای مجاور نیز به میـزان قابـل توجهی بر عملکرد شبکه موثر است.
هدف از هماهنگی چراغهای راهنمایی، فراهم آوردن شرایطی برای عبور هرچه بیشتر وسایل نقلیـه از یک مسیر با حداقل توقف و تاخیر است. در شرایط کاملا ایده آل انتظار میرود هر وسیله نقلیه کـه وارد سیستم میشود، بدون هیچ توقفی بتواند از آن خارج شود.
در شبکه حمل و نقل شهری معمولا فاصله تقاطعهای مجاور به اندازهای است که عملکرد آنهـا بـر یکدیگر تاثیر میگذارد. در این حالت، جریان ورودی تقاطعها حالت نوسانی پیدا میکند. باسبز شدن چـراغ در تقاطع بالا دست، یک دسته وسایل نقلیه با یکدیگر به حرکت درآمده و تقریبا بـه صـورت گروهـی بـه تقاطع بعدی میرسند. اگر همزمان با رسیدن این وسایل نقلیه، چراغ مربـوط بـه ایـن تقـاطع سـبز باشـد، مجموع تاخیر و توقفات وسایل نقلیه کاهش چشمگیری یافته و کارایی تقاطع شدیدا افزایش میابـد. بـرای دستیابی به این هدف، به جای کنترل مجزای تقاطعها از کنترل هماهنگ استفاده میشود.
معمولا در تقاطع هایی که به صورت هماهنگ با یکـدیگر اداره میـشوند، لازم اسـت طـول چرخـه یکسان ویا مـضرب صـحیحی از یکـدیگر بـوده و فاصـله زمـانی میـان آغـاز چـراغ سـبز در تقـاطع هـای
25
مجاور((offset نیز مقدار مشخصی باشد. عوامل موثر در کنتـرل هماهنـگ تقـاطعهـا شـامل نحـوه رفتـار رانندگان و میزان رعایت نظـم، فاصـله تقـاطع هـا، میـزان پراکنـدگی وسـایل نقلیـه و حجـم تـردد بـین تقاطعهای مجاور میباشد.
ایجاد هماهنگی بین کنترل کنندههای سیستم کنترل هماهنگ، به عهـده یـک کـامپیوتر مرکـزی میباشد. سخت افزار مورد نیاز بر اساس وسعت شبکه، حجم اطلاعات و تحلیـلهـای مـورد نیـاز متفـاوت خواهد بود. در شبکههای کوچک متشکل از چند تقاطع، میتوان کنترل مرکزی را به عهده یکی از کنتـرل کنندههای تقاطع واگذار کرد. درحالیکه در شبکههای بزرگتـر، کنتـرل مرکـزی بـه عهـده یـک یـا چنـد کامپیوتر خواهد بود.
برای شبیهسازی کامپیوتری ترافیک شبکه، مدلهای مختلفی در سطح دنیا وجود دارد کـه ازجملـه آنها میتوان به سیستم SCATS,SCOOT,PASSER,TRANSYT,SIGOP,NETSIM و... اشـاره نمـود.
این مدلها با دریافت اطلاعات حجم، نرخ جریان اشباع و همچنـین مشخـصات فیزیکـی مـسیرها، کـارایی شبکه را برای ترکیبهای مختلف چرخه، آفست، فازبندی و زمانبندی تقاطعها محاسبه نماید. همچنـین الگوریتمهای متعددی بر اساس شبکههای عصبی برای کنترل مرکزی در شبکههای ترافیکی ارائه شدهانـد
16]،.[15
سیستمهای کنترل هماهنگ ممکن است شامل کنتـرل در یـک شـبکه بـاز یـا کنتـرل هماهنـگ شریانی باشد که در این حالت تنها به پیشروی ترافیک در یک مسیر اصـلی (شـریان) توجـه میـشود ویـا شامل کنترل شبکهای باشد که هدف آن تامین موج سبز برای کلیه مسیرها است که البتـه دسـتیابی بـه این هدف در بسیاری از حالات امکان پذیر نمی باشد.
(9-2 فازبندی
هدف از فازبندی چراغهای راهنمایی، افزایش ایمنی تردد از طریق جداسازی حرکـتهـای وسـایل نقلیه از یکدیگر و از عابرین پیاده میباشد، به طوری که این امر منجر به حداقل اثرات منفی در ظرفیـت و تاخیر تقاطع گردد.
تعداد فازهای چراغ بستگی به طرح هندسی تقاطع (شامل تعداد ورودیهای تقاطع، مشخصات خطوط هـر یک از آنها و وجود خطوط گردشی)، حجم و جهت حرکـت وسـایل نقلیـه و نیازهـای عـابران پیـاده دارد.
معمولا با افزایش تعداد فازهای چراغ، کل تاخیر وسایل نقلیـه افـزایش یافتـه و از کـارایی تقـاطع کاسـته میشود. با این وجود، ممکن است در برخی موارد با افزایش تعداد فازها و حذف حرکات متقاطع، تـاخیر و ظرفیت تقاطع بهبود یابد.
در طرح فازبندی چراغ یک تقاطع، باید تجزیه و تحلیل اطلاعـات ترافیکـی و طـرح هندسـی بـه صـورت همگام صورت پذیرد تا ساده ترین طرح با حداقل تعداد فاز، جهت پاسخگویی بـه حجـم ترافیـک موجـود وآتی به دست آید.
26
(1-9-2 انواع فازبندی
-1 چراغ دو فازه : این نوع فازبندی در تقاطع هایی با حجم ترافیک گردشـی متوسـط و تـردد کـم عابرین پیاده مورد استفاده قرار میگیرد. نمونه هایی از طرحهای دوفـازه در شـکل 6-2 ملاحظـه میـشود.
طرح چراغ دو فازه ممکن است به صورت همپوشا، سبز تقدمی یا تاخیری و یا ترکیـب تقـدمی– تـاخیری باشد. در حالت طرح سبز تقدمی یا تاخیری، یک فاز سبز جداگانه بـرای حرکـت در یـک جهـت در نظـر گرفته میشود که سبب طولانی تر شدن زمان سبز حرکت در آن جهت نسبت به جهت مقابل میگردد.

شکل (6-2) طرح چراغ دوفازه
-2 چراغ سه فازه : نمونه طرح چراغ سه فازه با فازهـای جداگانـه بـرای ورودیهـای اصـلی در شکل 7-2 دیده میشود. استفاده از این طرح در خیابانهای اصلی که تقاضای گردش به چپ در یـک یا هردو جهت زیاد باشد و یا در مواردی که تقسیم ورودی تقاطع به چند بخش مجزا منجر به کاهش ظرفیت و افزایش تاخیر تقاطع میشود، میتواند مفید باشد.

شکل (7-2) طرح چراغ سه فازه
-3 چراغ چهار فازه : نمونهای از طرح چراغ چهار فـازه بـا فازهـای جداگانـه بـرای گـردش بـه چپهای متقابل در شکل 8-2 دیده میشود. استفاده از این طرح در تقـاطع مـسیرهـای چنـد خطـه اصلی با حجم ترافیک گردشی بالا مفید است. چنانچه چراغ از نوع سـازگار باشـد، ایـن روش کـارایی
27
بهتری خواهد داشت. به منظور استفاده از این طرح باید در تمام ورودی ها، خطوط گردش بـه چـپ، یک یا دوخطه در نظر گرفته شود.