—d1896

4-5. تصاویر FE-SEM نمونه‌ها الف) 10%، ب) 15%، ج) 20%.55
4-6. نمودار توزیع اندازه ذرات الف) 10%، ب) 15% و ج) 20%56
4-7 . پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% پیش از عملیات حرارتی58
4-8. پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% در دمای 600 درجهی سانتیگراد59
4-9. پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% در دمای 800 درجهی سانتیگراد60
4-10. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 600 درجه‌ی سانتی ‌گراد61
4-11. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 800 درجه‌ی سانتی ‌گراد62
4-12. طیف‌های جذبی FT-IR الف) 10%، ب) 15% و ج) 20%.65
4-13. تصویر TEM یکی از نمونه‌ها67
4-14. نمودارهای لانگمیر الف) 10%، ب) 15% و ج) 20%69
4-15. نمودارهای BET الف) 10%، ب) 15% و ج) 20%71
4-16. جذب و واجذب الف) 10%، ب) 15% و ج) 20%.72
4-17. حلقه پسماند نمونه‌ها قبل از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.74
4-18. حلقه پسماند نمونه‌ها بعد از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.75

فهرست جداول
عنوان صفحه
فصل سوم - ساخت آئروژل و کاربردهای آن
3-1. کاربردهای مختلف آئروژل‌ها48
TOC o "1-3" h z u
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. میزان گرم و لیتر مواد مورد نیاز51
4-2. نتایج حاصل از XRD63
لیست علایم و اختصارات
برونر، امت، تلر(Brunauer, Emmett, Teller) BET
پراش پرتو ایکس (X-Ray Diffraction) XRD
مغناطیسسنج نمونهی ارتعاشی (Vibrating Sample Magnetometer) VSM
میکروسکوپ الکترونی گسیل میدانی (Field Emission Scanning Electron Microscopy) FE-SEM
میکروسکوپ الکترونی عبوری (Transmission Electron Microscopy) TEM
آنگسترم (Angestrom) Å
اورستد (Oersted) Oe
نانومتر (Nanometer) nm
واحد مغناطیسی (Electromagnetic Units) emu
فصل اولمفاهیم اولیه1854668136024
مقدمهاز اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.
در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شدهاست. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتیمتر به اندازه‌هایی در حدود یک دهم نانومتر یا کمتر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [1].
1-1 شاخه‌های فناوری نانوتفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهمترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و میتوانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعهای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [4].
1-2 روش‌های ساخت نانوساختارهاتولید و بهینهسازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [6 و5]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی و رشد خود به خودی. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:
 چگالش بخار
 سنتز شیمیایی
 فرآیندهای حالت جامد (خردایشی)
 استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
 استفاده از امواج ماکروویو و امواج مافوق صوت
 استفاده از باکتری‌هایی که میتوانند نانوذرات مغناطیسی و نقره‌ای تولید کنند
پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکشدهی یا اصلاح شیمیایی نیز استفاده کرد [7].
1-3 کاربردهای نانوساختارهایکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.
با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشهها، عمر آن‌ها را نیز چندین برابر نمودهاست .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوششهای سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با استفاده از نانوذرات تولید شده‌اند.
وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیشماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفته‌اند. هاروتا و تامسون اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [7].
1-4 مواد نانومتخلخلمواد نانو متخلخل دارای حفره‌هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن‌ها را فضای خالی تشکیل می‌دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی زیاد، گزینشپذیری خوب و مقاومت گرمایی و صوتی از ویژگی‌های مهم آن‌ها می‌باشد. با توجه به ویژگی‎‌های ساختاری، این به عنوان تبادل‌گر یونی، جدا کننده، کاتالیزور، حس‌گر، غشا و مواد عایق استفاده می‌شود.
نسبت حجمی فضای خالی ماده‌ی متخلخل به حجم کل ماده‌ تخلخل نامیده میشود. به موادی که تخلخل آن‌ها بین 2/0 تا 95/0 باشد نیز مواد متخلخل می‌گویند. حفره‌ای که متصل به سطح آزاد ماده است حفره‌ی باز نام دارد که برای صاف کردن غشا، جداسازی و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی (جداسازی مواد با استفاده از رنگ آن‌ها) مناسب است. به حفره‌ای که دور از سطح آزاد ماده است حفره‌ی بسته می‌گویند که وجود آن‌ها تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره‌ها دارای اشکال گوناگونی همچون کروی، استوانهای، شیاری، قیفی شکل و یا آرایش شش گوش هستند. همچنین تخلخل‌ها می‌توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [7].
بر اساس دستهبندی که توسط آیوپاک صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفره‌ها، مواد سازنده و نظم ساختار به سه گروه تقسیمبندی میشوند که در شکل 1-1 نشان داده شده است:
الف) دسته بندی بر اساس اندازهی حفره:
میکرومتخلخل: دارای حفرههایی با قطر کمتر از 2 نانومتر.
مزومتخلخل: دارای حفرههایی با قطر 2 تا 50 نانومتر.
right59626500ماکرومتخلخل: دارای حفرههایی با قطر بیش از 50 نانومتر.
center1720850شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].
0شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].

بر اساس شکل و موقعیت حفره‌ها نسبت به یکدیگر در داخل مواد متخلخل، حفره‌ها به چهار دسته تقسیم می‌شود: حفره‌های راه به راه، حفره‌های کور، حفره‌های بسته و حفره‌های متصل به هم که در شکل (2-1) به صورت شماتیک این حفره‌ها را نشان داده شده است.

شکل 1-2 نوع تخلخل‌ها بر اساس شکل و موقعیت [8].
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل را برای موادی که دارای حفرههایی با قطر کمتر از 100 نانومتر هستند به کار می‌برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.
ب) دستهبندی بر‌اساس مواد تشکیل دهنده:
مواد نانومتخلخل آلی
مواد نانومتخلخل معدنی
تقسیمبندی مواد نانومتخلخل آلی
1) مواد کربنی: کربن فعال، کربنی است که حفره‌های بسیار زیاد دارد و مهم‌ترین کربن از دسته مواد میکرومتخلخل است.
2) مواد بسپاری: مواد نانو متخلخل بسپاری به دلیل ساختار انعطاف‌پذیر خود، حفره‌های پایداری ندارند و تنها چند ترکیب محدود از این نوع وجود دارد [8].
تقسیم بندی مواد نانومتخلخل معدنی
1) مواد میکرومتخلخل
زئولیت‌ها: مهم‌ترین ترکیبات میکرومتخلخل بوده که دارای ساختار منظم بلوری و حفره‌دار با بار ذاتی منفی می‌باشند. در اکثر موارد ساختار زئولیتی از قطعات چهار وجهی با چهار اتم اکسیژن و یک اتم مرکزی مثل آلومینیوم، سیلیکون، گالیم یا فسفر تشکیل شده‌اند که با کاتیون‌ها خنثی می‌شوند [8].
چارچوب فلزی-آلی: از واحد‌های یونی فلزی یا خوشه‌ی معدنی و گروه‌های آلی به عنوان اتصالدهنده تشکیل شده است که اتصال آن‌ها به هم، حفره‌ای با شکلی معین مانند کره یا هشت وجهی به وجود می‌آورد. ویژگی بارز این ترکیبات، چگالی کم و سطح ویژه‌ی بالای آن‌هاست [9].
هیبرید‌های آلی-معدنی: از قطعاتی معدنی تشکیل شده‌اند که توسط واحد‌های آلی به هم متصل هستند [10].
2) مواد مزومتخلخل:
سیلیکا: ترکیبات MCM، معروف‌ترین سیلیکای مزومتخلخل هستند.
اکسید فلزات و سایر ترکیبات مزومتخلخل: اکسیدهای نانومتخلخل فلزات مثل تیتانیوم دی اکسید، روی اکسید، زیرکونیوم دی اکسید و آلومینا، فعالیتی بیشتر از حالت معمولی خود دارند. ترکیبات سولفید و نیترید هم میتوانند ساختار مزومتخلخل داشته باشند.
3) مواد ماکرومتخلخل:
بلور کلوییدی: از مجموعه کره‌هایی مانند سیلیکا ساخته می‌شود که فضای بین آن‌ها خالی است. در بلور کلوییدی معکوس کره‌ها توخالی و فضای بین آن‌ها پر است [10].
آئروژل‌ها مواد مزومتخلخل با سطح ویژه و حجم تخلخل بالا هستند که در فصل بعد به آن‌ها می‌پردازیم.
1-5 کامپوزیت‌هاکامپوزیت‌ها (مواد چند رسانهای یا کاهگل‌های عصر جدید) رده‌ای از مواد پیشرفته هستند که در آن‌ها از ترکیب مواد ساده به منظور ایجاد مواد جدیدی با خواص مکانیکی و فیزیکی برتر استفاده شده است. اجزای تشکیلدهنده ویژگی‌های خود را حفظ کرده، در یکدیگر حل نشده و با هم ترکیب نمی‌شوند.
استفاده از این مواد در طول تاریخ مرسوم بوده است. از اولین کامپوزیت‌ها یا چندسازه‌های ساخت بشر می‌توان به آجرهای گلی که در ساخت آن‌ها از کاه استفاده شده است اشاره کرد. هنگامی که این دو با هم مخلوط بشوند، در نهایت آجر پخته بهدست می‌آید که بسیار ماندگار‌تر و مقاوم‌تر از هر دو ماده اولیه، یعنی کاه و گل است. شاید هم اولین کامپوزیت‌ها را مصری‌ها ساخته باشند که در قایق‌هایشان به چوب بدنه قایق مقداری پارچه می‌آمیختند تا در اثر خیس شدن، آب توسط پارچه جذب شده و چوب باد نکند. قایق‌هایی که سرخپوستان با فیبر و بامبو می‌ساختند و تنورهایی که از گل، پودر شیشه و پشم ساخته می‌شدند از نخستین کامپوزیت‌ها هستند [11].
1-5-1 کامپوزیت یا مواد چندسازهچندسازه‌ها به موادی گفته می‌شود که از مخلوط دو یا چند عنصر با فازهای کاملا متمایز ساخته شده باشند. در مقیاس ماکروسکوپیک فازها غیر قابل تشخیص‌اند. اما در مقیاس‌های میکروسکوپیک فازها کاملا مجزا هستند و هر فاز خصوصیات عنصر خالص را نمایش می‌دهد. در چندسازه‌ها، نه تنها خواص هر یک از اجزاء باقی مانده بلکه در نتیجهی پیوستن آن‌ها به یکدیگر، خواص جدیدتر و بهتر بهدست می‌آید [11].
1-5-2 ویژگی‌های مواد کامپوزیتیمواد زیادی می‌توانند در دسته‌بندی مواد کامپوزیتی قرار بگیرند، در واقع موادی که در مقیاس میکروسکوپی قابل شناسایی بوده و دارای فازهای متفاوت و متمایز باشند در این دسته‌بندی قرار می‌گیرند. امروزه کامپوزیت‌ها به علت وزن کم و استحکام بالا در صنایع مختلف، به طور گستره‌ای مورد استفاده واقع می‌شوند. کامپوزیت‌ها با کاهش وزن و ویژگی‌های فیزیکی بسیار عالی، گزینه‌ای مناسب برای استفاده در تجهیزات ساختاری می‌باشند. علاوه بر ‌این، کامپوزیت‌ها جایگزین مناسب برای مواد سنتی در کاربردهای صنعتی، معماری، حمل و نقل و حتی در کاربردهای زیر بنایی می‌باشد [12].
یکی از ویژگی‌های بارز کامپوزیت‌ها، حضور فاز تقویـتکننده مجزا از فاز زمینه می‌باشد. ویژگی‌های اختصاصی این دو فاز، در ترکیب با یکدیگر، ویژگی‌های یکسانی را به کل کامپوزیت می‌بخشد. در یک دسته‌بندی ویژه، کامپوزیت‌ها همواره به دو فاز زمینه و تقویتکننده تقسیم می‌شوند. می‌توان گفت در واقع زمینه مانند چسبی است که تقویتکننده‌ها را به یکدیگر چسبانده و آن‌ها را از آثار محیطی حفظ می‌کند.
1-5-3 مواد زمینه کامپوزیتزمینه با محصور کردن فاز تقویت کننده، باعث افزایش توزیع بار بر روی کامپوزیت می‌گردد. در واقع زمینه، برای اتصال ذرات تقویتکننده، انتقال بارها به تقویتکننده، تهیه یک ساختار شبکه‌ای شکل از آن‌ها و حفظ تقویتکننده از آثار محیطی ناسازگار به کار گرفته می‌شود.
1-5-4 تقویتکننده‌هادسته‌ای از مواد معمولی که به عنوان فاز تقویت کننده به کار گرفته می‌شوند، عبارتند از شیشه‌ها، فلزات، پلیمرها و گرانیت. تقویتکننده‌ها در شکل‌های مختلفی از جمله فیبرهای پیوسته، فیبرهای کوتاه یا ویسکرها و ذرات تولید می‌شوند (شکل3-3). تقویت کننده‌ها باعث ایجاد ویژگی‌های مطلوبی از جمله استحکام و مدول بالا، وزن کم، مقاومت محیطی مناسب، کشیدگی خوب، هزینه کم، در دسترسپذیری مناسب و سادگی ساخت کامپوزیت می‌گردند [12].
1-5-5 نانو کامپوزیتنانو کامپوزیت‌ها مواد مرکبی هستند که ابعاد یکی از اجزای تشکیلدهنده آن‌ها در محدوده نانو‌متری باشد. نانوکامپوزیت‌ها هم، در دو فاز تشکیل می‌شود. در فاز اول، ساختار بلوری در ابعاد نانو ساخته می‌شود که زمینه کامپوزیت به شمار می‌رود. در فاز دوم هم ذراتی در مقیاس نانو به عنوان تقویت کننده برای بهبود ویژگی‌ها به فاز زمینه افزوده می‌شود. توزیع یکنواخت این فاز در ماده زمینه باعث می‌شود که فصل مشترک ماده تقویت کننده با ماده زمینه در واحد حجم، مساحت بالایی داشته باشد [13].

شکل 1-3 نمایشی از انواع مختلف تقویت کننده‌ها در کامپوزیت [12].
1-6 خلاصهدر این فصل به بیان بعضی مفاهیم اولیه پرداختهشد. خلاصه کوتاهی از فناوری نانو، نانوساختارها و روش‌های ساخت آن‌ها گفته شد. بعد از آن مواد متخلخل بررسی شد و در نهایت مختصری در مورد کامپوزیت‌ها، ویژگی‌ها و نانوکامپوزیت‌ها بیان شد.
فصل دومآئروژلها و مروری بر خواص مغناطیسی15418474142773
2-1 تاریخچهحوزهی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص دادهاست.
اولین بار ساموئل استفان کیستلر در سال 1931 با ایدهی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارجکرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبهکند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیمقرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].
در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطهی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیهی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].
این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلیگرم بر سانتیمتر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].
آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آیندهی محیط زیست توسط گاز‌های گلخانهای تولید شده بهدست بشر را تأیید می‌کند. آیندهی انرژی‌های قابل دسترس به خاطر کمشدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازدهی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریبنشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعهی بیشتری نیاز دارد [17].
2-2 شیمی سطح آئروژلسیلیکا آئروژل حاوی ذرات نانومتری هستند. این ترکیبات دارای نسبت سطح به حجم بالا و مساحت سطح ویژهی زیادی هستند. شیمی سطح داخلی در آئروژل‌ها نقش اساسی را در بروز رفتار‌های بی‌نظیر فیزیکی و شیمیایی آن‌ها، ایفا می‌کند. ماهیت سطح آئروژل‌ها تا حد زیادی به شرایط تهیهی آن‌ها بستگی دارد. انتخاب فرآیند مربوط به ترکیبات شیمیایی و ویژگی‌های مورد نظر مشخص برای نانوذرات وابسته است. دو روش پایه برای تولید نانوذرات استفاده می‌شود:
روش از بالا به پایین
اشاره به خردکردن مکانیکی مواد با استفاده از فرآیند آسیابکاری دارد. در این فرآیند مواد اولیه به بلوک‌های پایهی بیشتری شکسته می‌شوند.
روش پایین به بالا
اشاره به ساخت سیستم پیچیده به وسیله ترکیب اجزای سطح اتم دارد. در این فرآیند ساختارها به وسیله فرآیندهای شیمیایی ساخته می‌شوند.
روش پایین به بالا بر پایه ویژگی‌های فیزیکی و شیمیایی اتمی یا مولکولی خود تنظیم می‌شوند. این روش به دلیل ساختار پیچیده اتم یا مولکول، کنترل بهتر اندازه و شکل آن‌ها انتخاب شد. روش پایین به بالا شامل فرآیندهای آئروسل، واکنش‌های بارش و فرآیند سل-ژل است [18].
مرحله اول ساختن آئروژل تولید ژل خیس است که بهترین روش برای ساخت آن استفاده از پیشماده الکوکسید سیلیکون، مانند TEOS است. شیمی ساخت Si(OCH2CH3)TEOS است که با اضافه کردن آب، واکنش شیمیایی زیر صورت می‌گیرد [19] :
Si(OCH2CH3)4(liq)+2(H2O)(liq)→SiO2solid+4(HOCH2CH3)liq
اتم سلیکون به دلیل داشتن بار جزئی مثبت کاهشیافته (+) نسبت به دیگر انواع آئروژل بیشتر مورد مطالعه قرار گرفت. در Si(OEt)+ حدود 32/0 است. این بار مثبت جزئی کاهش یافته، روند ژل شدن پیشماده سیلیکا را آهسته می‌کند.
پیشمادهی الکوکسید M(OR) هستندکه اولین بار توسط امبلن برای سنتز سیلیکا آئروژل استفاده شد. در این ترکیب M نشان دهندهی گروه فلزی، OR گروه الکوکسید و R تعیینکنندهی گروه الکلی هستند. الکوکسیدها معمولا در محلول منبع الکلی خود موجود هستند و امکان خشک کردن این ژل‌ها را در چنین محلول‌هایی فراهم می‌کند [20].
اگر آئروژل از طریق خشک کردن به وسیله الکل تهیه گردد، گروه‌های آلکوکسی (OR) تشکیل دهنده سطح آن است و در این سطح آئروژل خاصیت آبگریزی پیدا می‌کند. اگر تهیه آئروژل از طریق فرآیند دی اکسید کربن باشد آنگاه سطح آئروژل را گروه‌های هیدروکسید (OH) فرا می‌گیرد و خاصیت آب‌دوست پیدا خواهدکرد و مستقیما می‌تواند رطوبت هوا را جذب نماید. البته با حرارت دادن می‌توان رطوبت جذب شده را از ساختار آئروژل حذف نمود. شکل 1-2 به خوبی خاصیت آب‌دوست و آبگریزی را در ساختار آئروژل‌های با گروه‌های عاملی مختلف نشان می‌دهد [21].

شکل 2-1 برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست [18].
2-3 تئوری فیزیکیاتصال شبکه نانو مقیاس سیلیکای جامد آئروژل‌های پایه سیلیکا، ویژگی‌های منحصر به فردی را به آن‌ها می‌دهد. کسر یونی پیوند کووالانت قطبی برای اکسیدهای فلزی مختلف از رابطهی زیر نتیجه می‌شود:
Fionic=1-exp⁡(-0.25 XM-XO2)که XO و XM الکترون‌خواهی O و M را نشان می‌دهد. 2SiO مقدار Fionic 54/0 دارد که طیف مقدار زاویه Si-O-Si را گسترده کرده و شبکه تصادفی را می‌دهد. چهار اکسید دیگر زاویه یونی بزرگ‌تر و مقدار کوچک‌تر زاویه پیوند را سبب می‌شوند. به این معنی که پیوند تصادفی فقط روی ماکرومقیاس‌های بیشتر با ذرات کلوییدی بزرگ‌تر و متراکم‌تر اتفاق می‌افتد، در این صورت، ژل به جای شکلگرفتن شبکهی تصادفی اتصالات به صورت ذره تشکیل می‌شود [14]. شبکهی اتصالات سیلیکا برای وزن نسبی‌اش یک جامد محکم را ایجاد می‌کند.
2-4 خاصیت مغناطیسی مواد2-4-1 منشأ خاصیت مغناطیسی موادیکی از مهمترین ویژگی‌های مواد، خاصیت مغناطیسی آن‌هاست که از زمآن‌های نسبتا دور مورد توجه بوده و هم اکنون نیز در طیف وسیعی از کاربردهای صنعتی قرار گرفته است.
منشأ خاصیت مغناطیسی در جامدها، الکترون‌های متحرک می‌باشند. گرچه بعضی از هسته‌های اتمی دارای گشتاور دو قطبی مغناطیسی دائمی هستند ولی اثر آن‌ها چنان ضعیف است که نمی‌تواند آثار قابل ملاحظه‌ای داشته باشد؛ مگر در تحت شرایط خاص مانند اینکه نمونه در زیر دمای یک درجهی کلوین قرار گیرد یا وقتی که تحت میدان الکترومغناطیسی با بسامدی قرار گیرد که حرکت تقدیمی هسته را تشدید نماید. در بدو ظهور نظریات مغناطیس آزمایش‌های زیادی نشان داد که اندازه حرکت زاویهای کل یک الکترون و گشتاور مغناطیسی وابسته به آن بزرگ‎تر از مقداری است که به حرکت انتقالی آن نسبت داده می‌شد. بنابراین یک سهم اضافی که از خصوصیت ذاتی با یک درجه آزادی داخلی ناشی می‌شد، به الکترون نسبت داده شد و چون این خصوصیت دارای اثر مشابه چرخش الکترون حول محورش بود اسپین نامیده گردید [22].
2-4-2 فازهای مغناطیسیبه طورکلی مواد در میدان مغناطیسی خارجی رفتارهای متفاوتی از خود نشان می‌دهند و با توجه به جهت‌گیری مغناطش، به پنج گروه تقسیم می‌شوند که به بیان آن‌ها می‌پردازیم.
2-4-2-1 مواد دیامغناطیسدر این مواد الکترون‌ها به صورت جفت بوده و اتمها دارای گشتاور مغناطیسی دائمی نیستند و با قرارگرفتن در میدان مغناطیسی خارجی دارای گشتاور مغناطیسی القایی در خلاف جهت میدان خارجی می‌شوند و آن را تضعیف می‌کند. پذیرفتاری مغناطیسی χ چنین موادی منفی و خیلی کم است. خاصیت دیامغناطیس ظاهراً در تمام انواع مواد یافت می‌شود، اما اثر آن غالباً به وسیله‌ی آثار قویتر پارامغناطیس یا فرومغناطیس که می‌توانند با این خاصیت همراه باشند، مخفی می‌شود. خاصیت دیامغناطیسی خصوصاً در موادی بارز است که کلاً اتمها یا یونهایی با پوسته‌های بسته‌ی الکترونی تشکیل شده باشند، زیرا در این مواد تمام تأثیرات پارامغناطیسی حذف می‌شوند.
2-4-2-2 مواد پارامغناطیسمواد پارامغناطیس، موادی هستند که برخی از اتمها یا تمامی آن‌ها گشتاور دو قطبی دائمی دارند، به عبارت دیگر گشتاور دو قطبی در غیاب میدان مغناطیسی، غیرصفر است. این دو قطبیهای دائمی رفتاری مستقل از هم داشته که در نهایت جهت‌گیری تصادفی دارند و در میدان‌های کوچک رقابتی بین اثر هم‌خط‌سازی میدان و بی‌نظمی گرمایی وجود دارد، اما به طور متوسط تعداد گشتاورهای موازی با میدان بیشتر از گشتاورهای پادموازی با میدان است. پذیرفتاری در این مواد مثبت است و با افزایش دما، که در اثر آن بی‌نظمی گرمایی زیاد می‌شود، کاهش مییابد. منگنز، پلاتین، آلومینیوم، فلزخاکی قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت از جمله مواد پارامغناطیس‌اند.
2-4-2-3 مواد فرومغناطیس
در برخی از مواد مغناطیسی، گشتاورهای مغناطیسی کوچک به طور خودبهخود با گشتاورهای مجاور خود هم‌خط می‌شوند. اینگونه مواد را فرومغناطیس می‌نامند. در عمل، همه‌ی حوزه‌های مغناطیسی در یک ماده‌ی مغناطیسی در یک راستا قرار ندارند، بلکه این مواد از حوزه‌های بسیار کوچکی با ابعاد خیلی کمتر از میلیمتر تشکیل شده‌اند، به طوری که گشتاورهای مغناطیسی هر حوزه با حوزه‌های مجاور آن تفاوت دارد.
ممکن است سمتگیری و اندازه‌ی حوزه‌های مغناطیسی در یک ماده‌ی فرو مغناطیس به گونه‌ای باشد که در کل اثر یکدیگر را خنثی کنند و ماده در مجموع فاقد مغناطش است. اعمال میدان مغناطیسی خارجی بر حوزه‌های مغناطیسی سبب می‌شود که گشتاورهای مغناطیسی هر حوزه تحت تأثیر میدان قرار گرفته و جهت آن‌ها در جهت میدان خارجی متمایل شود. علاوه بر این حوزههایی که با میدان همسویند، رشد میکنند، یعنی حجم آن‌ها زیاد می‌شود و در نتیجه، حوزه‌هایی که سمتگیری آن‌ها نسبت به میدان مناسب نیست کوچک می‌شوند، مرز بین این حوزه‌ها جابجا می‌شود و در نتیجه ماده در مجموع خاصیت مغناطیسی پیدا می‌کند . پذیرفتاری مغناطیسی این مواد مثبت است. آهن، کبالت، نیکل و چندین عنصر قلیایی خاکی جز فرومغناطیس‌ها می‌باشند [23].
مواد فرومغناطیس دارای چند مشخصه‌ی اصلی به صورت زیر می‌باشند:
الف) مغناطش خودبه‌خودی و مغناطش در حضور میدان
ب) حساسیت مغناطش به دما
ج) مغناطش اشباع
د) منحنی پسماند
2-4-2-4 مواد پادفرومغناطیس
در مواد پادفرومغناطیس گشتاورهای مغناطیسی مجاور به صورت موازی، برابر و غیرهم راستا جهتگیری
می‌کنند. این مواد در غیاب میدان مغناطیسی دارای گشتاور صفرند. کروم و اکسیدهای آن ، جز مواد پادفرومغناطیس می‌باشند. چنین موادی معمولاً در دماهای پایین پادفرومغناطیساند. با افزایش دما ساختار نواحی مغناطیسی شکسته شده و ماده پارامغناطیسی می‌شود. این رفتار در مواد فرومغناطیس نیز اتفاق می‌افتد به این ترتیب که در این مواد پذیرفتاری مغناطیسی مواد مغناطیسی با افزایش دما به تدریج کاهش می‌یابد تا زمانی که ماده پادفرومغناطیس شود .
پذیرفتاری مغناطیسی این مواد عدد مثبت بسیار کوچک و نزدیک به صفر است. به دمایی که در آن ماده از حالت پادفرومغناطیس به فرومغناطیس گذار می‌کند، دمای نیل می‌گویند.
χ= CT+TN
که C ثابت کوری و TN دمای نیل است.
2-4-2-5 مواد فریمغناطیس
فریمغناطیس شکل خاصی از پادفرومغناطیس است که در آن گشتاورهای مغناطیسی در جهت موازی و عکس یکدیگر قرار گرفته‌اند، اما با یکدیگر برابر نیستند و به صورت کامل یکدیگر را حذف نمی‌کنند. در مقیاس ماکروسکوپی، مواد فریمغناطیس همانند فرومغناطیس بوده و دارای مغناطش خودبه‌خودی در زیر دمای کوری بوده و دارای منحنی پسماند می‌باشند[23و24]. شکل 2-2 فازهای مغناطیسی را نشان می‌دهد.

شکل 2-2 فازهای مغناطیسی، الف) پارامغناطیس، ب) فرومغناطیس، ج) پادفرومغناطیس، د) فری مغناطیس [24].
دو خاصیت مهم و کلیدی مواد مغناطیسی دمای کوری و هیستروسیس مغناطیسی است. جفت شدگی ‏تبادلی و بنابراین انرژی تبادلی هیسنبرگ مستقیماً با دمای کوری ‏‎(Tc)‎‏ مواد فرو و فریمغناطیس در ‏ارتباط است. در کمتر از دمای ‏Tc، ممان مغناطیسی همان جهت بلوروگرافی ویژه‌ی محور صفر این ‏مواد است. این محور در ‏نتیجه‌ی جفت‌شدگی این اسپین الکترون و ممنتوم زاویهای اوربیتال الکترون ایجاد می‌شود.
‏از آنجایی که مواد فرومغناطیسی مواد جالبی بر حسب کاربردهایشان هستند، خواص آن‌ها باید به ‏طور کمی اندازه‌گیری شود و حلقهی پسماند خواص مغناطیسی جالبی را در این مواد آشکار ‏می‌کند. یک حلقه‌ی پسماند را می‌توان با قراردادن نمونه در یک مغناطیس‌سنج و پاسخ ماده ‏‎(M,)‎‏ ‏به میدان مغناطیسی اعمالی ‏‎(H)‎‏ اندازه‌گیری کرد. چندین کمیت ممکن است از روی حلقه‌ی پسماند ‏به‌دست آید. ‏
اشباع مغناطیسی ‏‎(Ms)‎‏ یا اشباع مغناطیسی ویژه (‏s‏) مواردی‌اند که مقدار مغناطیسشدگی را وقتی ‏که همه دوقطبی‌ها در جهت میدان مغناطیسی اعمالی مرتب شده‌اند نشان می‌دهد.‏
مغناطیس باقیمانده ‏‎(Mr)‎‏ مغناطیسشدگی نمونه در میدان مغناطیسی صفر است و نیروی ‏بازدارندگی ‏‎(Hc)‎، نیرویی از میدان مغناطیسی است که برای تغییر مغناطیسشدگی باقیمانده نیاز است. ‏تغییر بایاس میدان ‏‎(HE)‎، مقدار جابجایی از مرکز حلقهی پسماند را نشان می‌دهد.‏
2-4-5 حلقه پسماندوقتی به یک ماده مغناطیسی، میدان مغناطیسی اعمال شود، مغناطش محیط سریع افزایش می‌یابد، با افزایش مقدار میدان اعمالی، شتاب افزایش و مغناطش کاهش می‌یابد، این کاهش شتاب ادامه می‌یابد تا مغناطش به مقدار اشباع خود Ms برسد [25].
تغییرات مغناطش مواد مغناطیسی در هنگام کاهش میدان، از رفتار قبلی خود تبعیت نمی‌کند، بلکه به خاطر ناهمسانگردی مغناطیسی در محیط، مقداری انرژی را در خود ذخیره می‌کنند. بنابراین وقتی میدان اعمالی در محیط صفر شود، مغناطش در ماده صفر نشده و دارای مقدار خاصی است که به آن مغناطش پسماند Mr گفته می‌شود. با کاهش بیشتر میدان به سمت مقادیر منفی، خاصیت مغناطیسی القا شده به تدریج کاهش می‌یابد و با رسیدن شدت میدان به یک مقدار منفی خواص مغناطیسی ماده کاملا از بین می‌رود. این میدان مغناطیس‌زدا را با Hc نشان می‌دهند و به نیروی ضد پسماند یا وادارندگی مغناطیسی معروف است. پسماند یا نیروی وادارنده عبارتست از میدان معکوسی که برای کاهش مغناطش به صفر نیاز است. با کاهش بیشتر شدت میدان، القای مغناطیسی منفی می‌شود و در نهایت به مقادیر اشباع منفی خود می‌تواند برسد. افزایش مجدد شدت میدان به سمت مقادیر مثبت، حلقه پسماند را مطابق شکل 2-3 کامل می‌کند. مغناطیس‌های دائمی غالبا در ربع دوم حلقه پسماند خود، مورد استفاده قرار می‌گیرند [26].

شکل 23 حلقه پسماند ماده فرو مغناطیس [26].
مواد مغناطیسی از نظر رفتار آن‌ها در میدان مغناطیس دو گروه تقسیم می‌شوند:
الف) مواد مغناطیس نرم
مواد مغناطیسی نرم با اعمال میدان مغناطیسی کوچک به راحتی مغناطیده می‌شود و با قطع میدان سریعاً گشتاور مغناطیسی خود را از دست می‌دهند. به عبارتی این مواد دارای نیروی وادارندگی پایین، اشباع مغناطیسی بالا و گشتاور پسماند پایین هستند.
مواد مغناطیس نرم در جاهایی که به تغییر سریع گشتاور مغناطیسی با اعمال میدان مغناطیسی کوچک نیاز است مانند موتورها، حسگرها، القاگرها و فیلترهای صوتی مورد استفاده قرار می‌گیرد.
ب) مواد مغناطیس سخت
مواد مغناطیس سخت موادی‌اند که به راحتی مواد مغناطیس نرم، مغناطیده نمی‌شوند و به میدان مغناطیسی اعمالی بزرگ‌تری جهت مغناطیده کردن آن‌ها نیاز است. این مواد گشتاور مغناطیسی را تا مدت‌ها پس از قطع میدان حفظ می‌کنند. همچنین دارای اشباع مغناطیسی، گشتاور پسماند و نیروی وادارندگی بالایی هستند. ساخت یا پخت این مواد در میدان مغناطیسی، ناهمسانگردی مغناطیسی را در این مواد افزایش می‌دهد که حرکت دیواره حوزه‌ها را سخت‌تر می‌کند و نیروی وادارندگی را افزایش می‌دهد. این امر می‌تواند تولید مادهی سخت مغناطیسی بهتری را تضمین کند. کاربرد این مواد در آهن‌رباهای دائمی و حافظه‌های مغناطیسی است [26].

شکل 24 حلقه پسماند در مواد فرومغناطیس نرم و سخت[26].
2-5 فریتفریت به آن دسته از مواد مغناطیسی اطلاق می‌شود که جزء اصلی تشکیل دهندهی آن‌ها اکسید آهن است و دارای خاصیت فریمغناطیس می باشند (آرایشی از فرومغناطیس) و پارامترهای مغناطیسی مطلوبی نظیر ضریب نفوذپذیری مغناطیسی بالا از جمله اصلی‌ترین خصیصه‌های آن‌ها به شمار می‌رود. بدین جهت کاربردهای بسیار وسیعی را در زمینه صنایع برق، الکترونیک، مخابرات، کامپیوتر و… به خود اختصاص داده‌اند.
یکی از انواع فریت‌ها نوع اسپینلی آن است، فریت‌های اسپینلی با فرمول عمومی 2-o2+A3+B که در آن 2+A و 3+B به ترتیب کاتیون‌های دو و سه ظرفیتی می‌یاشند.
فریت‌ها دارای خاصیت فریمغناطیس می‌باشند نظم مغناطیسی موجود در فریمغناطیس‌ها ناشی از برهم‌کنش‌های دو قطبی‌های مغناطیسی نیست بلکه ناشی از برهم‌کنش تبادلی است در برهمکنش تبادلی هم‌پوشانی اوربیتال‌های اتمی مد نظر می‌باشد در فریت‌ها برهم‌کنش تبادلی ناشی از هم‌پوشانی الکترون‌های اوربیتال d3 یون‌های A و B و الکترون‌های اوربیتالP 2 یون‌‎های اکسیژن است. و قدرت این بر‌هم‌کنش تبادلی است که خاصیت مغناطیسی نمونه را رقم می‌زند.
2-6 خلاصهدر این فصل به شیمی آئروژل و دو روش بالا به پایین و پایین به بالای تولید نانوذرات اشاره شد. سپس خاصیت مغناطیسی مواد و فاز‌های مغناطیسی ممکن برای مواد مغناطیسی بررسی شد. پس از آن توضیح کوتاهی در مورد حلقهی پسماند و موارد قابل اندازه‌گیری از آن گفته شد و در نهایت مختصری از مواد فریتی بیان گردید.
فصل سومساخت آئروژل و کاربردهای آن19509215088990
مقدمهسیلیکا آئروژل‌ها به دلیل ویژگی‌های منحصر به فرد، هم در علم و هم در تکنولوژی توجه زیادی را به خود اختصاص داده‌اند. آئروژل‌ها از پیشماده مولکولی با روش‌های مختلف و تکنیک‌های خشک کردن متفاوت برای جایگزینی منافذ مایع با گاز همراه با حفظ شبکهی جامد، تهیه می‌شوند. [27]
علی‌رغم تمامی تلاش‌های قابل توجهی که در این زمینه صورت گرفته است، چالش‌های اصلی تحت کنترل عوامل یکنواختی(همگنی)، بارگذاری، اندازه و توزیع نانوذرات در شبکه‌ی میزبان آلی باقی ماندهاست، در عوض این شبکه‌ی میزبان به طور مستقیم ویژگی‌های الکتریکی، نوری، مغناطیسی و کاتالیزوری مواد نانوکامپوزیت را حفظ می‌کند.
3-1 سنتز آئروژل با فرآیند سل-ژلتفاوت در ویژگی‌های شیمیایی پیش‌ماده‌ها برای فاز نانو (معمولاً نمک فلزی) و برای ماتریس آلی (عموماً الکوکسید‌ها) موضوع مهمی هستند، چرا که پارامترهای فرآیند سل-ژل بر روی هیدرولیز و چگالش هر کدام از این پیشماده‌ها تأثیر متفاوتی دارد [28]. هر چند این موضوع مساله‌ی مهمی در طراحی هر نانوکامپوزیت سل-ژل است اما در رابطه با آئروژل‌ها حیاتی‌تر می‌باشد، زیرا نیازمند جایگزین شدن حلال موجود در ژل (معمولاً اتانول یا متانول در الکوژل و آب در آکوژل) با تغییر حلال و در نهایت حذف کردن به وسیلهی استخراج حلال فوق بحرانی است. مرحله خشک کردن فوق بحرانی، بسته به این که الکل یا کربن دی اکسید به صورت فوق بحرانی تخلیه شود (به ترتیب نیازمند حرارتی در حدود 350 و 40 درجهی سانتیگراد است). این مرحله مسائل دیگری درباره حلالیت پیشماده‌ها و پایداری حرارتی در شرایط خشک کردن فوق بحرانی را مطرح می‌کند [29]. استراتژی‌های مختلف اتخاذ شده برای سنتر نانوکامپوزیت‌های آئروژل، بسته به اینکه فاز نانو (یا پیش‌مادهی آن) در حین یا بعد از فرآیند سل-ژل اضافه شود، دو رویکرد کلی دارند.
روش اول شامل هیدرولیز و ژل شدن نانوذرات و ماتریس پیشماده و ژل شدن ماتریس پیش‌ماده به همراه شکل‌گیری نانوذرات است. مزیت این روش تولید موادی با بارگذاری نانوذرات قابل کنترل است. از طرفی، چندین اشکال در مورد آن مطرح است. برای بهدست آوردن ژل دارای چند ترکیب همگن شرایط سنتز باید به صورت دقیق انتخاب شود و پیشماده‌های نانوذرات و همچنین عوامل پوشش دهی موردنیاز در شکل‌گیری نانوذرات کلوئیدی ممکن است بر سنتز سل-ژل ماتریس تأثیر بگذارد.
روش دوم شامل روش‌های مبتنی بر اضافه کردن فاز نانو بعد از فرآیند سل-ژل است و باید ساختار متخلخل و مورفولوژی ماتریس را حفظ کند. این روش‌ها شامل تلقیح فاز نانو با اشباع، ته‌نشینی و روش رسوبگذاری بخار شیمیایی می‌باشد. طرح‌واره روش‌های مختلف برای شیمی سنتز نانوکامپوزیت آئروژل در شکل 3-1 نشان داده شده است.
هرچند این روشها نیز دارای دو اشکال عمده هستند: یکی همگنی ضعیف ترکیب نانوکامپوزیت تولیدشده، دیگری ترد و شکننده بودن آئروژل‌ها. اتصال فلز در یک ماتریس با گروه‌های هماهنگ اصلاح شده است و غوطه‌ور کردن الکوژل و آکوژل در محلول قبل از خشک کردن فوق بحرانی، به ترتیب به عنوان راهحلهایی برای غلبه بر کاستی‌های گفته شده است. رسوب نانوذرات از فاز بخار، بر خلاف روش‌های تلقیح مرطوب، ماتریس متخلخل را تغییر نمیدهد و تضمین میکند که فاز مهمان در سراسر ماتریس توزیع خواهد شد [30].

شکل 3-1 طرح‌واره‌ای از روش‌های مختلف برای شیمی سنتز نانوکامپوزیت [33].
3-2 شکل‌گیری ژل خیسژل‌های سیلیکا به طور عمومی با هیدرولیز و واکنش چگالش پیشماده سیلیکا به‌دست می‌آیند. ماتریس سیلیکای نهایی متخلخل است و حفره‌های ژل با حلال جانبی هیدرولیز و واکنش پلیمریزه شدن پر شده است. اگر ترکیب محلول بهتواند از ژل خیس بدون سقوط قابل ملاحظه ساختار خارج شود، آئروژل شکل می‌گیرد [31].
روش سل-ژل شامل یک یا چند پیشماده سیلیکون است که متداول‌ترین آن‌ها TEOS و TMOS می‌باشند و داراری چهار گروه الکوکسید شناخته شده در آرایش چهار وجهی در اطراف اتم سیلیکون مرکزی است. واکنش هیدرولیز در چهار جهت اتفاق می‌افتد و منجر به پیوند Si-O-Si می‌شود و یک مادهی کپهای که ترکیبی از 2SiO را می‌دهد. اگر یکی از شاخه‌های الکوکسید اتم سیلیکون توسط گروه عاملی مختلفی که قادر نیست تحت واکنش چگالش قرار گیرد، جایگزین شود گروه عاملی با پیوند کووالانسی به اتم سیلیکون درون ماتریس ژل باقی خواهد ماند. الکوکسیدهای فلزی به راحتی با آب واکنش می‌دهد و بر حسب میزان آب و حضور کاتالیست، عمل هیدرولیز ممکن است کامل انجام شود.
ملکول‌های شکلگرفته آلی-فلزی به مرور زمان بزرگ می‌شوند و به صورت یک ساختار پیوسته در داخل مایع در می‌آیند. این ساختار پیوسته که حالت الاستیک دارد، ژل گفته می‌شود [32].
به طور کلی شکل‌گیری محلول پایدار الکوکسید یا پیشماده‌های فلزی حل شده مرحله اول فرآیند تهیه آئروژل است. این محلول همگن به‌دست آمده در مرحله دوم به علت وجود آب هیدرولیز شده و سل یکنواختی را ایجاد می‌کند. در مرحله سوم واکنش بسپارش ادامه پیدا می‌کند تا سل به ژل تبدیل شود. این مرحله، پیرسازی نیز گفته می‌شود. پس از آن مرحلهی نهایی که خشک کردن است باقی می‌ماند.
3-3 خشک کردن آلکوژلبعد از شکل‌گیری ژل توسط هیدرولیز و واکنش چگالش، شبکه Si-O-Si شکل می‌گیرد. بخش پیرسازی به تشدید شبکه ژل اشاره دارد؛ ممکن است چگالش بیشتر، تجزیه، و ته‌نشینی ذرات سل یا تبدیل فاز داخل فاز جامد یا مایع صورت گیرد. این نتایج در یک جامد متخلخل که حلال در آن گیر افتاده است اتفاق می‌افتد. فرآیند حذف حلال اصلی از ژل (که معمولاً آب و الکل است) را خشککردن می‌گویند. در طول فرآیند خشککردن، ترکخوردگی اتفاق می‌افتد به این دلیل که نیروی مویینگی در گذار مایع-گاز در داخل منافذ ریز وجود دارد. معادله لاپلاس در اینجا به کار می‌رود، هر چه شعاع مویینگی کوچک‌تر باشد، ارتفاع مایع بیشتر و فشار هیدروستاتیک بالاتر خواهد بود. هنگامی که انرژی سطح باعث بالا رفتن ستون مایع داخل مویرگ‌ها می‌شود، مقدار فشار سطحی داخل مویرگ قابل محاسبه است.
قطر حفره در ژل از مرتبهی نانومتر است، به طوری که مایع ژل فشار هیدروستاتیک بالایی را باید اعمال کند. هلال داخل حفره‌ها و نیروهای کشش سطحی سعی می‌کند تا ذرات را به عنوان مایع در حفره‌ها تبخیر کند. این نیروها می‌توانند به گونه‌ای عمل کنند که باعث سقوط حفره و ساختار شوند. بنابراین ژل‌ها با حفره‌های ریز زیاد تمایل به انقباض و ترک خوردن دارند [33]. سل ژلهایی که شیمی سطح آن‌ها اصلاح نشده (شکل3-2) و در شرایط محیط خشک شدند به علت این فروپاشی منافذ تا حدود یک هشتم حجم اولیهی خود کوچک میشوند؛ ماده حاصل زیروژل نامیده میشود. اگر این فرآیند خشککردن به آرامی رخ دهد، زیروژل یکپارچه سالم میتواند تولید شود. اما برای تولید یک آئروژل، باید از عبور از مرز فاز بخار-مایع اجتناب کرد.

شکل 3-2 اصلاح شیمی سطح ژل [34].
روشهای کنونی برای پرهیز از فروپاشی منافذ درساخت آئروژل را میتوان در سه تکنیک کلی دستهبندی کرد. هرکدام از این تکنیکها طراحی شدهاند تا نیروهای مویینگی ناشی از اثرات کشش سطحی را کاسته و یا حذف نمایند. این تکنیکها الف) خشک کردن در شرایط محیط پس از اصلاح سطح، ب) خشک کردن انجمادی و ج) خشک کردن فوق بحرانی است [34]. توضیح کلی درباره هرکدام از این تکنیکها در ادامه آمده است.
3-3-1 فرآیند‌های خشککردن در شرایط محیطاین تکنیکهای خشک کردن طراحی شدهاند تا ژل خیس را در فشار محیط خشک کنند. این روشها نیازمند فرآیندهای شیمیایی با تعویض طولانی مدت حلال برای کاهش نیروهای مویینگی وارد بر نانوساختار یا برای افزایش توانایی نانوساختار در تحمل این نیروهاست (یا با قویتر کردن ساختار و یا با منعطف‌تر ساختن آن). تغییر شیمی سطح ژل خیس بر پایه TEOS برای ارتقاع انقباض قابل برگشت با استفاده از تبادل حلال با هگزان به وسیله اصلاح سطح با فرآیند کاهش گروه سیلانولی با TMCS [35و36]. همچنین استفاده از پیری ژل در محلول الکل یا الکوکسید برای سفت شدن میکرو ساختار به منظور جلوگیری از فروپاشی منافذ است [37]. به علاوه ترکیبکردن شاخه‌های متقاطع سیلیکا آئروژل است که می‌تواند نیروهای مویینگی در حین خشک کردن تحت فشار محیط را تحمل نماید [38].
3-3-2 خشککردن انجمادیخشککردن انجمادی یک ژل خیس منجر به تولید کریوژل میشود. خشککردن انجمادی باعث تولید پودر آئروژل کدر می‌شود [39]. این تکنیک حلال اضافی را با تصعید حذف میکند. ژل خیس منجمد میشود و سپس حلال در فشار پایین تصعید میشود [40]. میکروبلور‌های منجمد که حین فرآیند خشککردن انجمادی شکل می‌گیرند منجر به آئروژل‌های ماکروحفره‌تری در مقایسه با روش استخراج فوق بحرانی میشوند [41].
3-3-3 خشک کردن فوق بحرانیروشهای استخراج فوق بحرانی از مرز بین مایع و بخار با بردن حلال به بالاتر از نقطه فوق بحرانی آن اجتناب می‌کند و سپس از ماتریس سل-ژل به عنوان یک مایع فوق بحرانی حذف می‌شود. در این حالت هیچ مرز مایع-بخاری وجود ندارد، بنابراین هیچ فشار مویینگی دیده نمی‌شود. شکل 3-3 چرخه فشار-دما در طول فرآیند فوق بحرانی را نشان می‌دهد. در عمل انواع متعددی از روشهای استخراج فوق بحرانی وجود دارد که شامل تکنیک‌هایی با دمای بالا، دمای پایین و سریع است.

شکل 3-3 چرخه فشار-دما در حین فرآیند خشک کردن فوق بحرانی [42].
تکنیک‌های استخراج فوق بحرانی الکل دمای بالا، ژل خیس را به حالت فوق بحرانی حلال (معمولاً متانول یا اتانول) در یک اتوکلاو و یا هر مخزن فشار دیگری می‌برد. این مستلزم فشارهای بالا حدود Mpa 8 و دماهای بالا حدود 260 درجهی سانتیگراد می‌باشد [42]. شکل 3-4 شماتیکی از دستگاه خشککن فوق بحرانی اتوکلاو را نشان می‌دهد.

شکل 3-4 شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو [42].
تکنیکهای استخراج فوق بحرانی دمای پایین بر اساس استخراج 2CO است که دمای نقطه بحرانی پایین‌تری نسبت به مخلوط الکل باقیمانده در منافذ سل-ژل بعد از پلیمریزاسیون دارد. این روش به تبادل حلال به طور سری نیازمند است، ابتدا حلال غیرقطبی و سپس با کربن دیاکسید مایع پیش از استخراج فوق بحرانی که می‌تواند در نقطه فوق بحرانی 2CO اتفاق بیافتد [43]. مزایای این تکنیک دمای بحرانی پایین‌تر و حلال پایدارتر است؛ هرچند مراحل اضافه شده به فرآیند سبب طولانی‌تر شدن زمان آمادهسازی آئروژل می‌شود. از آنجائیکه فشار بحرانی مورد نیاز نسبت به روشهای فوق بحرانی دما بالا تغییری چندانی ندارد (فشار بحرانی 2CO مشابه متانول و اتانول است)، این فرآیند نیز نیاز به استفاده از مخازن فشار دارد. به علاوه روند انتشار تبادل حلال وابسته به اندازهی ژل است.
تکنیکهای استخراج فوق بحرانی سریع از یک قالب محدود استفاده می‌کند، چه در مخزن فشار و چه در یک فشار داغ هیدرولیک قرار بگیرند. این تکنیکها فرآیندهای تک مرحله‌ای پیش‌ماده به آئروژل هستند و آئروژل را در کمتر از 3 ساعت بهدست می‌آورند. در این روش پیشماده‌های شیمیایی مایع و کاتالیست در یک قالب دو قسمتی ریخته می‌شوند سپس به سرعت گرم می‌شوند [44]. در ابتدا فشار با بستن دو بخش قالب با هم یا با اعمال فشار هیدروستاتیکی خارجی به جای مخازن فشار بزرگ‌تر یا با ترکیبی از این دو تنظیم می‌شود. زمانیکه نقطه فوق بحرانی الکل فرارسید، اجازه داده میشود تا مایع فوق بحرانی خارج شود [45]. برای مثال گوتیه و همکارانش [46] در روند انجام این فرآیند از یک فشار داغ هیدرولیکی برای مهروموم کردن و گرم کردن قالب حاوی مخلوط پیشماده آئروژل استفاده کردند. مخلوط مایع از پیشماده‌های آئروژل در یک قالب فلزی ریخته شد و سپس در فشار داغ قرار گرفت. در طول اجرا، فشار داغ برای مهروموم کردن ترکیب به جای قالب استفاده شد و یک نیروی باز دارندهی فشاری را فراهم کرد. سپس قالب و مخلوط به بالای دما و فشار فوق بحرانی متانول برده شد. در مدت زمان این فرآیند گرم کردن، پیشمادههای آئروژل واکنش نشان داده و یک ژل خیس نانوساختاری متخلخل را تشکیل داد. زمانیکه به حالت بحرانی رسید، فشار کاهش داده شد و مایع فوق بحرانی رها شد.
3-3-4 مقایسه روش‌هاهر یک از روش‌های ساخت آئروژل شرح داده شده در بالا، نقاط قوت و محدودیت‌هایی دارند. مقایسه مستقیم تکنیک‌های مختلف خشک کردن به علت دستورالعمل‌های پیشماده متفاوت، شرایط ژل شدن مختلف، و زمان پیر سازی، به خوبی روش‌های استخراج متفاوت هستند. برای مثال خشککردن فوق بحرانی دما پایین نیاز به زمان پیرسازی کافی دارد، به طوری که ژل‌ها می‌توانند از ظرف اولیه برای استخراج و تبادل حلال خارج شوند.
در فرآیند خشککردن سریع، عموما زمان پیرسازی کوتاه است؛ گرچه، دمای بالا در این فرآیند اثر مشخصی را روی روند واکنش چگالش دارد.
مزیت اصلی تکنیک‌های خشک کردن در فشار محیط، عدم نیاز به تجهیزات فشار بالا می باشد که گران قیمت و به طور بالقوه خطرناک است؛ اگرچه به مراحل پردازش چندگانه با تبادل حلال نیاز دارند. تا به حال مطالعات اندکی در رابطه با استفاده از روش‌های خشککردن انجمادی شده است. این تکنیک‌ها نیاز به تجهیزات خاصی برای رسیدن به دمای پایین لازم برای تصعید حلال و منجر شدن به پودر آئروژل، دارند.
محدودیت اصلی تکنیکهای فوق بحرانی دما بالا، رسیدن به دماهای بالای مورد نیاز برای دست یافتن به نقطه بحرانی حلال الکل و نیز ملاحظات ایمنی در بکار بردن مخزن فشار در این شرایط است.
روش استخراج دما پایین به طور گسترده در تولید آئروژل‌های یکپارچه کوچک تا بسیار بزرگ استفاده شده است، اگرچه می‌تواند روزها تا هفته‌ها تولید آن طول بکشد و مراحل چندگانه تبادل حلال مورد نیاز، آن را تبدیل به فرآیندی پیچیده کند و اتلاف قابل ملاحظه‌ای از حلال و 2CO ایجاد می‌کند. تکنیک‌های خشککردن سریع ساده‌تر و سریع‌تر است. تمامی فرآیند، بر خلاف مراحل چندگانه و مقیاس‌های زمانی در ابعاد روزها و ماهها در سایر روش‌ها، در یک مرحله انجام شده و می‌تواند در چند ساعت تکمیل شود. همچنین این روش‌ها اتلاف کمتری را به وجود می‌آورند. یک ایراد روش‌های خشککردن سریع، نیاز به دما و فشار بالاست [47].
3-4 مروری بر کارهای انجام شدهاگرچه میدانیم که این گزارش‌های جامعی از مقالات مرتبط با نانوکامپوزیت‌های آئروژل نیست، اما تأکید بر این مطلب است که چگونه ترکیب نانوذرات ممکن است احتمال استفاده از آئروژل‌ها را به عنوان مواد جدید افزایش دهد و چگونه مسیر آماده سازی مورد اطمینان برای به‌دست آوردن نانوکامپوزیت‌های آئروژل برای کاربرد خاص را انتخاب نماییم.
پس از آنکه کیستلر در سال 1931 برای اولین بار بدون درهم شکستن ساختار ژل، فاز مایع را از آن جدا کرد، در سال 1938 به مطالعه روی رسانایی گرمایی آئروژل و در سال 1943 درباره سطح ویژه آن‌ها به مطالعه پرداخت [48]. بعد از آن حدود نیمقرن دانشمندان علاقه‌ای به آئروژل‌ها نشان ندادند تا در اویل 1980 آئروژل به عرصه پژوهش بازگشت.
در سال 1992تیلسون و هاربش از TEOS به عنوان پیشمادهی سیلیکا ژل استفاده کردند و از میکروسکوپ الکترونی روبشی برای مشخصه‌یابی آن‌ها استفاده نمودند [49] و سپس هر ساله تحقیقات زیادی روی آئروژل‌ها صورت می‌گیرد.
در سال 2001 کاساس و همکارانش نانوکامپوزیت مغناطیسی را با ورود ذرات اکسید آهن در سیلیکا آئروژل میزبان سنتز کردند. این سنتز که به روش سل-ژل و با خشککردن فوق بحرانی متانول انجام شد، دو نمک آهن استفاده شد: O2H9.(3ON)Fe و O2H2.(EDTA)FeNa. در این پژوهش ارتباط واضحی بین پیشماده، آب و تخلخل و سطح ویژه آئروژل حاصل وجود داشت. استفاده از ترکیب EDTA به عنوان پیش‌مادهی نانوذرات، قطر میانگین حفره‌ها را افزایش داد، گرچه قابلیت حل پایین نمک EDTA در محلول یک مانع بزرگ برای رسیدن به آهن در این روش بود. مساحت سطح ویژه‌ی نمونه‌های کاساس بین /g2m 200 و /g2m 619 بهدست آمد و برخی نمونه‌ها رفتار پارامغناطیس و برخی دیگر رفتار مغناطیس نرم از خود نشان دادند [50].
در سال 2002 واگنر و همکارانش ذرات سیلیکا با هستهی مغناطیسی را با روش ته‌نشینی به‌دست آوردند [51]. و چند سال بعد در سال 2006 ژانگ و همکارانش ذرات پوسته‌ای هسته‌دار را با روش سل-ژل تهیه کردند. این ذرات شامل هستهی مغناطیسی فریت کبالت و پوستهی سیلیکا بودند که از TEOS به عنوان پیشمادهی سیلیکا استفاده کردند. پس از آنکه ژل‌ها به‌دست آمدند، در 110 درجهی سانتیگراد برای 4 ساعت در خلاء خشک شدند زیرا اگر در هوا خشک شوند احتمال ته‌نشینی بلور‌های اکسید وجود داشت. سپس به مدت 2 ساعت در دماهای مختلف برای به‌دست آوردن نانو بلور پراکنده در ماتریس سیلیکا حرارت داده شد. برای نمونه‌ی آن‌ها شکل‌گیری فاز فریت کبالت در دمای 800 درجهی سانتیگرادکامل شد و خوشه‌های فریت کبالت به سمت نانو بلوری شدن پیش رفتند، زمانی که برهم‌کنش بین خوشه‌های فریت کبالت با ماتریس سیلیکا شکسته شد پیوندهای Si-O-Fe ناپدید شدند. بر طبق گزارش آن‌ها اشباع مغناطیسی نانوکامپوزیت‌ها با افزایش غلظت بیشتر فریت در ماتریس افزایش یافت تا مقدار بیشینه emu/g 98/66 برای نمونه با نسبت مولی 1:1 (wt% 80 فریت کبالت) به‌دست آمد [52].
سیلوا و همکارانش در سال 2007 کامپوزیت ذرات فریت کبالت پخش شده در ماتریس سیلیکا را به روش سل-ژل تهیه کردند. آن‌ها از TEOS به عنوان پیشماده سیلیکا و از نیترات به عنوان پیش‌ماده فریت استفاده کردند. پس از گذشت زمان پیرسازی، نمونه برای 12 ساعت در 110 درجهی سانتیگراد خشک شدند و ذرات فریت کبالت در ماتریس سیلیکا شکل گرفتند. پس از آن عملیات حرارتی برای 2 ساعت در دماهای 300، 500، 700 و 900 درجهی سانتیگراد انجام شد که باعث افزایش در اندازهی ذرات شد. رسوب ذرات خوشه‌ای فریت در دیواره‌های منافذ زیروژل با افزایش دما بیشتر شد و در دماهای بالاتر از 700 درجهی سانتیگراد بلورهای بزرگ‌تر کبالت داخل منافذ ماتریس شکل گرفتند و افزایش در مغناطش اشباع و پسماند مغناطیسی را باعث شدند [53].
در همان سال فرناندز و همکارانش نانو کامپوزیت سیلیکا آئروژل/ آهن اکسید را با فرآیند سل-ژل و تبخیر فوق بحرانی حلال سنتز کردند. آن‌ها نمونه‌ها با پیشماده‌های TEOS و TMOS را با تبخیر فوق بحرانی اتانول و متانول خشک کردند. ذرات مغناطیسی با اندازهی متوسط nm 6 با TEOS و متانول سنتز شدند در حالی که فری‌هیدرات‌ها از TMOS و اتانول به‌دست آمدند. بعضی نمونه‌های آن‌ها رفتار ابر پارامغناطیس از خود نشان دادند [54].
دو سال بعد ژنفا زی و همکارانش نانوذرات فریت کبالت را به روش هم‌نهشت شیمیایی و خشک شدن در هوا در دمای80 درجهی سانتیگراد تهیه کردند. اندازهی قطر نانوذرات سنتز شده nm 20 تا nm 30 بود و دمای کوری در فرآیند افزایش دما کمتر از فرآیند کاهش دما بود. مقدار اشباع مغناطیسی این ذرات emu/g 77/61 بهدست آمد که نسبت که مقدار کپه آن کوچک‌تر بود. در این پژوهش مقدار پایین نیروی وادارندگی به دو دلیل اتفاق می‌افتد: ذرات فریت ممکن است ساختار چند دامنه داشته باشند. شکل‌گیری چند دامنه‌ها و حرکت دیوارهای دامنه می‌تواند کاهش دامنه را نتیجه دهد. همچنین اگر اندازهی بحرانی ذرات [55] بهدست آمده بزرگ‌تر از قطر میانگین ذرات باشد، رفتار تک دامنه را از خود نشان می‌دهند. آن‌ها گزارش کردند که کاهش وادارندگی نمونه‌ها به رفتار وابسته به اندازهی ذرات بستگی دارد [56].
بلازینسکی و همکارانش در پژوهشی که در سال 2013 انجام دادند، سیلیکا آئروژل را با روش سل-ژل و فرآیند فوق بحرانی تهیه کردند. آن‌ها دریافتند که روش خشک کردن فوق بحرانی مؤثرترین روش برای بهدست آوردن بهترین ویژگی این محصولات است. بدین منظور آن‌ها دستگاه خشک کن فوق بحرانی را برای خود ساختند که فشار و دما به طور دستی تنظیم می‌شد و مرحله مهم در آمادهسازی سیلیکا آئروژل‌ها بود. به این ترتیب آن‌ها سیلیکا آئروژل‌های شفاف با مساحت سطح ویژه بالا به‌دست آوردند [57].
در گزارشی دیگر در سال 2014 ساجیا و همکارانش پودر آمورف فریت کبالت را به روش سل-ژل تهیه کردند و این روش را بهترین روش تهیه نانوذرات عنوان کردند. آن‌ها دریافتند که عملیات حرارتی برای تجزیه کامل مقدار مواد آلی و نیترات حاضر در پودر آمورف لازم است. در این فرآیند برای جلوگیری از ته‌نشینی یا رسوبگذاری این واکنش اسید سیتریک به آن اضافه کردند و سپس مراحل خشک کردن و عملیات حرارتی انجام شد. پارامترهای عملیات حرارتی، مرحله نهایی در آماده‌سازی نانوذرات فریت کبالت بودند که بررسی شدند. ساختار اسپینل در همهی نمونه‌های آن‌ها شکل گرفته بود و هنگامی که ذرات شروع به رشد کردند ناخالصی‌ها حذف شد. ویژگی مغناطیسی مرتبط با رفتار فریمغناطیس این نمونه‌ها مقدار emu/g 62 برای اشباع مغناطیسی را نشان می‌دهد [58].
در جدیدترین پژوهشی که دربارهی آمادهسازی و ارزیابی نانوکامپوزیت سیلیکا آئروژل/فریت در سال 2014 صورت گرفته است، کاتاگر و همکارانش نانوذرات فریت را به روش ته‌نشینی آماده کردند و سپس TMOS را به آن اضافه نمودند. برای این کار آن‌ها O2H6. 2NiCl، O2H6. 3FeCl و 2ZnCl را با اضافه کردن آب مقطر حل کردند. PH محلول در رفلاکس 110 درجهی سانتیگراد به مدت 24 ساعت 13 تنظیم شده بود. با حذف NaOH که برای PH اضافه شده بود، و شستن مکرر با آب مقطر و اتانول نانوذرات نتیجه شدند. بعد از بهدست آمدن نانوذرات به طور مستقیم به TMOS اضافه شدند و 3NH و آب دیونیزه به عنوان کاتالیست برای تهیه سل همگن اضافه گردیدند. برای مرحله پیر سازی قالب‌های حاوی سل را در اتانول به مدت 2 ساعت و دمای 50 درجهی سانتیگراد پیرسازی کردند و در نهایت ژل خیس را با خشک کردن فوق بحرانی کربن دی اکسید بهدست آوردند. تحقیقات آن‌ها نشان داد که زمان ژل شدن با افزایش نسبت مولی اتانول/TMOS افزایش یافت. همچنین به دلیل کشش سطحی اتانول، نمونه‌ها منقبض می‌شوند یا ترک می‌خورند. نانوکامپوزیت به‌دست آمده ساختار اسکلت شبکه‌ی سه بعدی را حفظ کرد. مساحت سطح ویژه با افزایش مقدار فریت از /g2m 700 تا /g2m 300 تغییر کرد. به علاوه ویژگی مغناطیسی فریت در ساختار نانو کامپوزیت تغییر نکرد [59].
3-5 برخی از کاربردهای آئروژل3-5-1 آئروژل‌ها به عنوان کامپوزیتهمانطور که پیشمادهی الکوکسید سیلیکون برای شکل‌گیری شبکه‌ی ژل با اکسیدهای فلزی دیگر به اندازه‌ی کافی واکنشی است، مطالعات زیادی در زمینه سنتز سیلیکا آئروژل برای کاربردهای مختلف صورت گرفته است [1].
3-5-2 آئروژل‌ها به عنوان جاذبآئروژل‌های فوق آبگریز و انعطافپذیر برای در جذب حلال‌های معدنی و روغن‌ها سنتز شدند. ونکاتشوارا رائو و همکارانش چگالی جذب و واجذب سیلیکا آئروژل‌های فوق آبگریز را با استفاده از یازده حلال و سه روغن بررسی کردند [60].
3-5-3 آئروژل‌ها به عنوان حسگرآئروژل‌ها تخلخل بالا، حفره‌های در دسترس، و سطح در معرض بالا دارند. از این رو کاندیداهای خوبی برای استفاده به عنوان حسگر هستند.بر اساس مطالعه وانگ و همکارانش روی آئروژل لایه‌ی نازک نانوذرات سیلیکا آئروژل نشان داد که مقاومت الکتریکی به طور قابل ملاحظه‌ای با افزایش رطوبت کاهش یافت. زیروژل همان مواد حساسیت کم‌تری را نشان داد. آئروژل‌هایی که اصلاح سطح شدند در مقایسه با آئروژل‌های آب‌گریز کمتر تحت تأثیر رطوبت قرار گرفتند و می‌توانند به عنوان ضد زنگ و عوامل آب‌گریز مورد استفاده قرار بگیرند [61].
چن و همکارش آئروژل‌هایی را برای کاربرد حسگرهای زیستی مطالعه کردند. در مطالعه آن‌ها، آئروژل‌های مزوحفره به وسیله پلیمریزاسیون سل-ژل با یک مایع یونی به عنوان حلال تهیه کردند. نتایج نشان می‌دهدکه آئروژل آماده شده می‌تواند به عنوان یک بسترشناسایی برای اسید نوکلوئیدها به کار رود [62].

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایینلایه نازک‌های آئروژل 2SiO توجه خاصی را به خود اختصاص داد، به دلیل ثابت دی الکتریک خیلی پایین، تخلخل و پایداری حرارتی بالا. پارک و همکارانش لایه نازک سیلیکا آئروژل را برای لایهی داخلی دی الکتریک مورد بررسی قرار دادند و ثابت دی الکتریک را تقریبا 9/1 اندازه‌گیری کردند. آن‌ها ثابت دی الکتریک بسیار پایین فیلم‌های آئروژل را برای لایهی داخلی مواد دی الکتریک تولید کردند. فیلم های سیلیکا آئروژل به ضخامت Å 9500، % 5/79 تخلخل، و ثابت دی الکتریک پایین 2 با روش فرآیند خشک کردن محیط با استفاده از n-هپتان به عنوان حلال خشک کن به‌دست آوردند [63].
3-5-5 آئروژل به عنوان کاتالیزورمساحت سطح ویژه‌ی بالای آئروژل‌ها منجر به کاربردهای زیادی می‌شود، از جمله جاذب شیمیایی برای پاکسازی نشتی. این ویژگی کاربرد زیادی را به عنوان کاتالیزور یا حامل کاتالیزور به همراه دارد. آئروژل‌ها در کاتالیست‌های همگن مناسب هستند، زمانی که واکنش‌دهنده‌ها هم در فاز مایع و هم در فاز گاز هستند [27].
3-5-6 آئروژل به عنوان ذخیره سازیتخلخل بالا و مساحت سطح زیاد سیلیکا آئروژل‌ها می‌تواند برای کاربردهایی مثل فیلترهای گازی، جذب رسانهای برای کنترل اتلاف، محصور سازی، ذخیره سوخت هیدروژن به کار رود. آئروژل‌ها می‌توانند در مقابل تنش گذار مایع/گاز مقاومت کنند زیرا بافت آنها در طول پخت تقویت شد به عنوان مثال در ذخیره سازی، انتقال مایعات چون سوخت موشک‌ها کار برد دارد. به علاوه وزن پایین آئروژل‌ها بزرگ‌ترین مزیت است که در سیستم حمل دارو به دلیل ویژگی زیست سازگار آن‌ها مورد استفاده است [64]. کربن آئروژل‌ها در ساخت الکتروشیمی ابر خازن دو لایه کوچک استفاده شد. ابر خازن‌های آئروژل مقاومت ظاهری پایینی در مقایسه با ابر خازن‌های معمولی دارد و می‌تواند جریان بالا را تولید یا جذب کند.
3-5-7 آئروژل‌ها به عنوان قالبفیلم‌های سیلیکا آئروژل برای سلول‌های خورشیدی رنگ حساس استفاده شدند. مساحت سطح ویژه‌ی فیلم‌های آئروژل روی فیلم‌های شیشه‌ای رسانا تهیه شدند. نشست لایه اتمی برای پوشش قالب آئروژل با ضخامت‌های مختلف 2TiO با دقت کمتر از نانومتر انجام شد. غشاء آئروژل پوشش داده شده با 2TiO در سلول خورشیدی رنگ حساس گنجانیده شد. طول نفوذ شارژ با افزایش ضخامت 2TiO افزایش یافت که منجر به افزایش جریان شد [65].
3-5-8 آئروژل به عنوان عایق گرماجدای از تخلخل بالا و چگالی پایین یکی از جذاب‌ترین ویژگی‌های آئروژل رسانندگی گرمایی پایین آن‌ها است، علاوه بر این، از یک شبکه‌ی سه بعدی با ذرات ریز متصل شده تشکیل شده‌اند. بنابراین انتقال گرما از میان بخش جامد آئروژل‌ها از طریق مسیر پر پیچ و خمی است. فضای اشغال نشده در یک جامد توسط آئروژل به طور معمول با هوا پر شده مگر آن که تحت خلاء مهروموم شده باشد. این گازها می‌توانند انرژی حرارتی را از طریق آئروژل انتقال دهند. حفره‌های آئروژل باز هستند و اجازه عبور گاز از میان مواد را می‌دهند [27].
3-5-9 آئروژل‌ها در کاربرد فضاییناسا از آئروژل‌ها برای به دام انداختن ذرات گرد و غبار روی فضاپیما استفاده کرد. ذرات در برخورد با جامد اسیر شده، گازها تبخیر می‌شوند و ذرات در آئروژل به دام می‌افتند [27].
جدول 3-1 کاربردهای مختلف آئروژل‌ها را به طور مختصر نشان می‌دهد.
3-6 خلاصهدر این فصل پس از مقدمه‌ی کوتاه، اندکی در مورد سنتز آئروژل با روش سل-ژل گفته شد. پس از آن فرآیند‌های لازم برای شکل‌گیری ژل بیان شد و سپس تکنیک‌های مختلف خشک کردن و شرایط لازم برای این کار با مختصری توضیح نوشته شد. بعد مروری کوتاه به برخی از تلاش‌های انجام شده در این زمینه داشتیم و در آخر برخی از کاربردهای مختلف آئروژل‌ها را با ذکر مثال درج شد.
جدول 3-1 کاربردهای مختلف آئروژل‌ها [27].
خاصیت ویژگی کاربرد
رسانایی الکتریکی بهترین جامد عایق
شفاف
مقاومت در برابر درجه حرارت بالا
سبک ساخت و ساز ساختمآن‌ها و عایقبندی لوازم خانگی
ذخیره سازی
ماشین، وسیله نقلیه فضایی
دستگاه‌های خورشیدی
چگالی/تخلخل سبک‌ترین جامد مصنوعی
سطح ویژه_ی بالا
کامپوزیت‌های چندگانه کاتالیزور
حسگر
ذخیرهی سوخت
تبادل یون
فیلترهای آلاینده‌های گازی
اهداف ICF
حامل رنگ‌دانه
قالب
اپتیکی شفافیت
شاخص بازتاب پایین
کامپوزیت‌های چندگانه اپتیک سبک وزن
آشکارسازهای چرنکوف
راهنماهای نوری
عایق صوتی سرعت صوت پایین اتاق‌های ضد صدا
تطبیق مقاومت ظاهری صوتی در التراسونیک
مکانیکی الاستیک
سبک جاذب انرژی
تله برای ذرات سرعت بالا

user8290

2-1. 1برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست18
2-2. فازهای مغناطیسی، الف) پارامغناطیس، ب) فرومغناطیس، ج) پادفرومغناطیس، د) فری مغناطیس23
2-3. حلقه پسماند ماده فرو مغناطیس25
2-4. حلقه پسماند در مواد فرومغناطیس نرم و سخت26
فصل سوم - ساخت آئروژل و کاربردهای آن
3-1. طرح‌واره‌ای از روش‌های مختلف برای شیمی سنتز نانوکامپوزیت31
3-2. اصلاح شیمی سطح ژل34
3-3. چرخه فشار-دما در حین فرآیند خشک کردن فوق بحرانی36
3-4. شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو36
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. فازهای مجزا نمونه روی همزن52
4-2. نمونه‌های در قالب ریخته شده52
4-3. نمونه الکوژل53
4-4. نمونه آئروژل54
4-5. تصاویر FE-SEM نمونه‌ها الف) 10%، ب) 15%، ج) 20%.55
4-6. نمودار توزیع اندازه ذرات الف) 10%، ب) 15% و ج) 20%56
4-7 . پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% پیش از عملیات حرارتی58
4-8. پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% در دمای 600 درجهی سانتیگراد59
4-9. پراش XRD نمونه‌های الف) 10%، ب) 15%و ج) 20% در دمای 800 درجهی سانتیگراد60
4-10. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 600 درجه‌ی سانتی ‌گراد61
4-11. آنالیز نمونه‌های الف)10%، ب) 15%و ج) 20% حرارت داده شده در دمای 800 درجه‌ی سانتی ‌گراد62
4-12. طیف‌های جذبی FT-IR الف) 10%، ب) 15% و ج) 20%.65
4-13. تصویر TEM یکی از نمونه‌ها67
4-14. نمودارهای لانگمیر الف) 10%، ب) 15% و ج) 20%69
4-15. نمودارهای BET الف) 10%، ب) 15% و ج) 20%71
4-16. جذب و واجذب الف) 10%، ب) 15% و ج) 20%.72
4-17. حلقه پسماند نمونه‌ها قبل از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.74
4-18. حلقه پسماند نمونه‌ها بعد از عملیات حرارتی الف) 10%، ب) 15%، ج) 20%.75

فهرست جداول
عنوان صفحه
فصل سوم - ساخت آئروژل و کاربردهای آن
3-1. کاربردهای مختلف آئروژل‌ها48
TOC o "1-3" h z u
فصل چهارم - سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
4-1. میزان گرم و لیتر مواد مورد نیاز51
4-2. نتایج حاصل از XRD63
لیست علایم و اختصارات
برونر، امت، تلر(Brunauer, Emmett, Teller) BET
پراش پرتو ایکس (X-Ray Diffraction) XRD
مغناطیسسنج نمونهی ارتعاشی (Vibrating Sample Magnetometer) VSM
میکروسکوپ الکترونی گسیل میدانی (Field Emission Scanning Electron Microscopy) FE-SEM
میکروسکوپ الکترونی عبوری (Transmission Electron Microscopy) TEM
آنگسترم (Angestrom) Å
اورستد (Oersted) Oe
نانومتر (Nanometer) nm
واحد مغناطیسی (Electromagnetic Units) emu
فصل اولمفاهیم اولیه1854668136024
مقدمهاز اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.
در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شدهاست. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتیمتر به اندازه‌هایی در حدود یک دهم نانومتر یا کمتر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [1].
1-1 شاخه‌های فناوری نانوتفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهمترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و میتوانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعهای از نانوذرات هستند [ 3و 2]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [4].
1-2 روش‌های ساخت نانوساختارهاتولید و بهینهسازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق وجود دارد ولی در خصوص انتشار و تشریح دقیق فرآیند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرآیند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [6 و5]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی و رشد خود به خودی. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:
 چگالش بخار
 سنتز شیمیایی
 فرآیندهای حالت جامد (خردایشی)
 استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
 استفاده از امواج ماکروویو و امواج مافوق صوت
 استفاده از باکتری‌هایی که میتوانند نانوذرات مغناطیسی و نقره‌ای تولید کنند
پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکشدهی یا اصلاح شیمیایی نیز استفاده کرد [7].
1-3 کاربردهای نانوساختارهایکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با استفاده از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشمگیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.
با استفاده از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشهها، عمر آن‌ها را نیز چندین برابر نمودهاست .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوششهای سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با استفاده از نانوذرات تولید شده‌اند.
وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیشماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرارگرفته‌اند. هاروتا و تامسون اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [7].
1-4 مواد نانومتخلخلمواد نانو متخلخل دارای حفره‌هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن‌ها را فضای خالی تشکیل می‌دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی زیاد، گزینشپذیری خوب و مقاومت گرمایی و صوتی از ویژگی‌های مهم آن‌ها می‌باشد. با توجه به ویژگی‎‌های ساختاری، این به عنوان تبادل‌گر یونی، جدا کننده، کاتالیزور، حس‌گر، غشا و مواد عایق استفاده می‌شود.
نسبت حجمی فضای خالی ماده‌ی متخلخل به حجم کل ماده‌ تخلخل نامیده میشود. به موادی که تخلخل آن‌ها بین 2/0 تا 95/0 باشد نیز مواد متخلخل می‌گویند. حفره‌ای که متصل به سطح آزاد ماده است حفره‌ی باز نام دارد که برای صاف کردن غشا، جداسازی و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی (جداسازی مواد با استفاده از رنگ آن‌ها) مناسب است. به حفره‌ای که دور از سطح آزاد ماده است حفره‌ی بسته می‌گویند که وجود آن‌ها تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره‌ها دارای اشکال گوناگونی همچون کروی، استوانهای، شیاری، قیفی شکل و یا آرایش شش گوش هستند. همچنین تخلخل‌ها می‌توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [7].
بر اساس دستهبندی که توسط آیوپاک صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفره‌ها، مواد سازنده و نظم ساختار به سه گروه تقسیمبندی میشوند که در شکل 1-1 نشان داده شده است:
الف) دسته بندی بر اساس اندازهی حفره:
میکرومتخلخل: دارای حفرههایی با قطر کمتر از 2 نانومتر.
مزومتخلخل: دارای حفرههایی با قطر 2 تا 50 نانومتر.
right59626500ماکرومتخلخل: دارای حفرههایی با قطر بیش از 50 نانومتر.
center1720850شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].
0شکل 1-1 انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [8].

بر اساس شکل و موقعیت حفره‌ها نسبت به یکدیگر در داخل مواد متخلخل، حفره‌ها به چهار دسته تقسیم می‌شود: حفره‌های راه به راه، حفره‌های کور، حفره‌های بسته و حفره‌های متصل به هم که در شکل (2-1) به صورت شماتیک این حفره‌ها را نشان داده شده است.

شکل 1-2 نوع تخلخل‌ها بر اساس شکل و موقعیت [8].
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل را برای موادی که دارای حفرههایی با قطر کمتر از 100 نانومتر هستند به کار می‌برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.
ب) دستهبندی بر‌اساس مواد تشکیل دهنده:
مواد نانومتخلخل آلی
مواد نانومتخلخل معدنی
تقسیمبندی مواد نانومتخلخل آلی
1) مواد کربنی: کربن فعال، کربنی است که حفره‌های بسیار زیاد دارد و مهم‌ترین کربن از دسته مواد میکرومتخلخل است.
2) مواد بسپاری: مواد نانو متخلخل بسپاری به دلیل ساختار انعطاف‌پذیر خود، حفره‌های پایداری ندارند و تنها چند ترکیب محدود از این نوع وجود دارد [8].
تقسیم بندی مواد نانومتخلخل معدنی
1) مواد میکرومتخلخل
زئولیت‌ها: مهم‌ترین ترکیبات میکرومتخلخل بوده که دارای ساختار منظم بلوری و حفره‌دار با بار ذاتی منفی می‌باشند. در اکثر موارد ساختار زئولیتی از قطعات چهار وجهی با چهار اتم اکسیژن و یک اتم مرکزی مثل آلومینیوم، سیلیکون، گالیم یا فسفر تشکیل شده‌اند که با کاتیون‌ها خنثی می‌شوند [8].
چارچوب فلزی-آلی: از واحد‌های یونی فلزی یا خوشه‌ی معدنی و گروه‌های آلی به عنوان اتصالدهنده تشکیل شده است که اتصال آن‌ها به هم، حفره‌ای با شکلی معین مانند کره یا هشت وجهی به وجود می‌آورد. ویژگی بارز این ترکیبات، چگالی کم و سطح ویژه‌ی بالای آن‌هاست [9].
هیبرید‌های آلی-معدنی: از قطعاتی معدنی تشکیل شده‌اند که توسط واحد‌های آلی به هم متصل هستند [10].
2) مواد مزومتخلخل:
سیلیکا: ترکیبات MCM، معروف‌ترین سیلیکای مزومتخلخل هستند.
اکسید فلزات و سایر ترکیبات مزومتخلخل: اکسیدهای نانومتخلخل فلزات مثل تیتانیوم دی اکسید، روی اکسید، زیرکونیوم دی اکسید و آلومینا، فعالیتی بیشتر از حالت معمولی خود دارند. ترکیبات سولفید و نیترید هم میتوانند ساختار مزومتخلخل داشته باشند.
3) مواد ماکرومتخلخل:
بلور کلوییدی: از مجموعه کره‌هایی مانند سیلیکا ساخته می‌شود که فضای بین آن‌ها خالی است. در بلور کلوییدی معکوس کره‌ها توخالی و فضای بین آن‌ها پر است [10].
آئروژل‌ها مواد مزومتخلخل با سطح ویژه و حجم تخلخل بالا هستند که در فصل بعد به آن‌ها می‌پردازیم.
1-5 کامپوزیت‌هاکامپوزیت‌ها (مواد چند رسانهای یا کاهگل‌های عصر جدید) رده‌ای از مواد پیشرفته هستند که در آن‌ها از ترکیب مواد ساده به منظور ایجاد مواد جدیدی با خواص مکانیکی و فیزیکی برتر استفاده شده است. اجزای تشکیلدهنده ویژگی‌های خود را حفظ کرده، در یکدیگر حل نشده و با هم ترکیب نمی‌شوند.
استفاده از این مواد در طول تاریخ مرسوم بوده است. از اولین کامپوزیت‌ها یا چندسازه‌های ساخت بشر می‌توان به آجرهای گلی که در ساخت آن‌ها از کاه استفاده شده است اشاره کرد. هنگامی که این دو با هم مخلوط بشوند، در نهایت آجر پخته بهدست می‌آید که بسیار ماندگار‌تر و مقاوم‌تر از هر دو ماده اولیه، یعنی کاه و گل است. شاید هم اولین کامپوزیت‌ها را مصری‌ها ساخته باشند که در قایق‌هایشان به چوب بدنه قایق مقداری پارچه می‌آمیختند تا در اثر خیس شدن، آب توسط پارچه جذب شده و چوب باد نکند. قایق‌هایی که سرخپوستان با فیبر و بامبو می‌ساختند و تنورهایی که از گل، پودر شیشه و پشم ساخته می‌شدند از نخستین کامپوزیت‌ها هستند [11].
1-5-1 کامپوزیت یا مواد چندسازهچندسازه‌ها به موادی گفته می‌شود که از مخلوط دو یا چند عنصر با فازهای کاملا متمایز ساخته شده باشند. در مقیاس ماکروسکوپیک فازها غیر قابل تشخیص‌اند. اما در مقیاس‌های میکروسکوپیک فازها کاملا مجزا هستند و هر فاز خصوصیات عنصر خالص را نمایش می‌دهد. در چندسازه‌ها، نه تنها خواص هر یک از اجزاء باقی مانده بلکه در نتیجهی پیوستن آن‌ها به یکدیگر، خواص جدیدتر و بهتر بهدست می‌آید [11].
1-5-2 ویژگی‌های مواد کامپوزیتیمواد زیادی می‌توانند در دسته‌بندی مواد کامپوزیتی قرار بگیرند، در واقع موادی که در مقیاس میکروسکوپی قابل شناسایی بوده و دارای فازهای متفاوت و متمایز باشند در این دسته‌بندی قرار می‌گیرند. امروزه کامپوزیت‌ها به علت وزن کم و استحکام بالا در صنایع مختلف، به طور گستره‌ای مورد استفاده واقع می‌شوند. کامپوزیت‌ها با کاهش وزن و ویژگی‌های فیزیکی بسیار عالی، گزینه‌ای مناسب برای استفاده در تجهیزات ساختاری می‌باشند. علاوه بر ‌این، کامپوزیت‌ها جایگزین مناسب برای مواد سنتی در کاربردهای صنعتی، معماری، حمل و نقل و حتی در کاربردهای زیر بنایی می‌باشد [12].
یکی از ویژگی‌های بارز کامپوزیت‌ها، حضور فاز تقویـتکننده مجزا از فاز زمینه می‌باشد. ویژگی‌های اختصاصی این دو فاز، در ترکیب با یکدیگر، ویژگی‌های یکسانی را به کل کامپوزیت می‌بخشد. در یک دسته‌بندی ویژه، کامپوزیت‌ها همواره به دو فاز زمینه و تقویتکننده تقسیم می‌شوند. می‌توان گفت در واقع زمینه مانند چسبی است که تقویتکننده‌ها را به یکدیگر چسبانده و آن‌ها را از آثار محیطی حفظ می‌کند.
1-5-3 مواد زمینه کامپوزیتزمینه با محصور کردن فاز تقویت کننده، باعث افزایش توزیع بار بر روی کامپوزیت می‌گردد. در واقع زمینه، برای اتصال ذرات تقویتکننده، انتقال بارها به تقویتکننده، تهیه یک ساختار شبکه‌ای شکل از آن‌ها و حفظ تقویتکننده از آثار محیطی ناسازگار به کار گرفته می‌شود.
1-5-4 تقویتکننده‌هادسته‌ای از مواد معمولی که به عنوان فاز تقویت کننده به کار گرفته می‌شوند، عبارتند از شیشه‌ها، فلزات، پلیمرها و گرانیت. تقویتکننده‌ها در شکل‌های مختلفی از جمله فیبرهای پیوسته، فیبرهای کوتاه یا ویسکرها و ذرات تولید می‌شوند (شکل3-3). تقویت کننده‌ها باعث ایجاد ویژگی‌های مطلوبی از جمله استحکام و مدول بالا، وزن کم، مقاومت محیطی مناسب، کشیدگی خوب، هزینه کم، در دسترسپذیری مناسب و سادگی ساخت کامپوزیت می‌گردند [12].
1-5-5 نانو کامپوزیتنانو کامپوزیت‌ها مواد مرکبی هستند که ابعاد یکی از اجزای تشکیلدهنده آن‌ها در محدوده نانو‌متری باشد. نانوکامپوزیت‌ها هم، در دو فاز تشکیل می‌شود. در فاز اول، ساختار بلوری در ابعاد نانو ساخته می‌شود که زمینه کامپوزیت به شمار می‌رود. در فاز دوم هم ذراتی در مقیاس نانو به عنوان تقویت کننده برای بهبود ویژگی‌ها به فاز زمینه افزوده می‌شود. توزیع یکنواخت این فاز در ماده زمینه باعث می‌شود که فصل مشترک ماده تقویت کننده با ماده زمینه در واحد حجم، مساحت بالایی داشته باشد [13].

شکل 1-3 نمایشی از انواع مختلف تقویت کننده‌ها در کامپوزیت [12].
1-6 خلاصهدر این فصل به بیان بعضی مفاهیم اولیه پرداختهشد. خلاصه کوتاهی از فناوری نانو، نانوساختارها و روش‌های ساخت آن‌ها گفته شد. بعد از آن مواد متخلخل بررسی شد و در نهایت مختصری در مورد کامپوزیت‌ها، ویژگی‌ها و نانوکامپوزیت‌ها بیان شد.
فصل دومآئروژلها و مروری بر خواص مغناطیسی15418474142773
2-1 تاریخچهحوزهی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص دادهاست.
اولین بار ساموئل استفان کیستلر در سال 1931 با ایدهی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارجکرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبهکند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیمقرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].
در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطهی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیهی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].
این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلیگرم بر سانتیمتر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].
آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آیندهی محیط زیست توسط گاز‌های گلخانهای تولید شده بهدست بشر را تأیید می‌کند. آیندهی انرژی‌های قابل دسترس به خاطر کمشدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازدهی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریبنشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعهی بیشتری نیاز دارد [17].
2-2 شیمی سطح آئروژلسیلیکا آئروژل حاوی ذرات نانومتری هستند. این ترکیبات دارای نسبت سطح به حجم بالا و مساحت سطح ویژهی زیادی هستند. شیمی سطح داخلی در آئروژل‌ها نقش اساسی را در بروز رفتار‌های بی‌نظیر فیزیکی و شیمیایی آن‌ها، ایفا می‌کند. ماهیت سطح آئروژل‌ها تا حد زیادی به شرایط تهیهی آن‌ها بستگی دارد. انتخاب فرآیند مربوط به ترکیبات شیمیایی و ویژگی‌های مورد نظر مشخص برای نانوذرات وابسته است. دو روش پایه برای تولید نانوذرات استفاده می‌شود:
روش از بالا به پایین
اشاره به خردکردن مکانیکی مواد با استفاده از فرآیند آسیابکاری دارد. در این فرآیند مواد اولیه به بلوک‌های پایهی بیشتری شکسته می‌شوند.
روش پایین به بالا
اشاره به ساخت سیستم پیچیده به وسیله ترکیب اجزای سطح اتم دارد. در این فرآیند ساختارها به وسیله فرآیندهای شیمیایی ساخته می‌شوند.
روش پایین به بالا بر پایه ویژگی‌های فیزیکی و شیمیایی اتمی یا مولکولی خود تنظیم می‌شوند. این روش به دلیل ساختار پیچیده اتم یا مولکول، کنترل بهتر اندازه و شکل آن‌ها انتخاب شد. روش پایین به بالا شامل فرآیندهای آئروسل، واکنش‌های بارش و فرآیند سل-ژل است [18].
مرحله اول ساختن آئروژل تولید ژل خیس است که بهترین روش برای ساخت آن استفاده از پیشماده الکوکسید سیلیکون، مانند TEOS است. شیمی ساخت Si(OCH2CH3)TEOS است که با اضافه کردن آب، واکنش شیمیایی زیر صورت می‌گیرد [19] :
Si(OCH2CH3)4(liq)+2(H2O)(liq)→SiO2solid+4(HOCH2CH3)liq
اتم سلیکون به دلیل داشتن بار جزئی مثبت کاهشیافته (+) نسبت به دیگر انواع آئروژل بیشتر مورد مطالعه قرار گرفت. در Si(OEt)+ حدود 32/0 است. این بار مثبت جزئی کاهش یافته، روند ژل شدن پیشماده سیلیکا را آهسته می‌کند.
پیشمادهی الکوکسید M(OR) هستندکه اولین بار توسط امبلن برای سنتز سیلیکا آئروژل استفاده شد. در این ترکیب M نشان دهندهی گروه فلزی، OR گروه الکوکسید و R تعیینکنندهی گروه الکلی هستند. الکوکسیدها معمولا در محلول منبع الکلی خود موجود هستند و امکان خشک کردن این ژل‌ها را در چنین محلول‌هایی فراهم می‌کند [20].
اگر آئروژل از طریق خشک کردن به وسیله الکل تهیه گردد، گروه‌های آلکوکسی (OR) تشکیل دهنده سطح آن است و در این سطح آئروژل خاصیت آبگریزی پیدا می‌کند. اگر تهیه آئروژل از طریق فرآیند دی اکسید کربن باشد آنگاه سطح آئروژل را گروه‌های هیدروکسید (OH) فرا می‌گیرد و خاصیت آب‌دوست پیدا خواهدکرد و مستقیما می‌تواند رطوبت هوا را جذب نماید. البته با حرارت دادن می‌توان رطوبت جذب شده را از ساختار آئروژل حذف نمود. شکل 1-2 به خوبی خاصیت آب‌دوست و آبگریزی را در ساختار آئروژل‌های با گروه‌های عاملی مختلف نشان می‌دهد [21].

شکل 2-1 برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست [18].
2-3 تئوری فیزیکیاتصال شبکه نانو مقیاس سیلیکای جامد آئروژل‌های پایه سیلیکا، ویژگی‌های منحصر به فردی را به آن‌ها می‌دهد. کسر یونی پیوند کووالانت قطبی برای اکسیدهای فلزی مختلف از رابطهی زیر نتیجه می‌شود:

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

Fionic=1-exp⁡(-0.25 XM-XO2)که XO و XM الکترون‌خواهی O و M را نشان می‌دهد. 2SiO مقدار Fionic 54/0 دارد که طیف مقدار زاویه Si-O-Si را گسترده کرده و شبکه تصادفی را می‌دهد. چهار اکسید دیگر زاویه یونی بزرگ‌تر و مقدار کوچک‌تر زاویه پیوند را سبب می‌شوند. به این معنی که پیوند تصادفی فقط روی ماکرومقیاس‌های بیشتر با ذرات کلوییدی بزرگ‌تر و متراکم‌تر اتفاق می‌افتد، در این صورت، ژل به جای شکلگرفتن شبکهی تصادفی اتصالات به صورت ذره تشکیل می‌شود [14]. شبکهی اتصالات سیلیکا برای وزن نسبی‌اش یک جامد محکم را ایجاد می‌کند.
2-4 خاصیت مغناطیسی مواد2-4-1 منشأ خاصیت مغناطیسی موادیکی از مهمترین ویژگی‌های مواد، خاصیت مغناطیسی آن‌هاست که از زمآن‌های نسبتا دور مورد توجه بوده و هم اکنون نیز در طیف وسیعی از کاربردهای صنعتی قرار گرفته است.
منشأ خاصیت مغناطیسی در جامدها، الکترون‌های متحرک می‌باشند. گرچه بعضی از هسته‌های اتمی دارای گشتاور دو قطبی مغناطیسی دائمی هستند ولی اثر آن‌ها چنان ضعیف است که نمی‌تواند آثار قابل ملاحظه‌ای داشته باشد؛ مگر در تحت شرایط خاص مانند اینکه نمونه در زیر دمای یک درجهی کلوین قرار گیرد یا وقتی که تحت میدان الکترومغناطیسی با بسامدی قرار گیرد که حرکت تقدیمی هسته را تشدید نماید. در بدو ظهور نظریات مغناطیس آزمایش‌های زیادی نشان داد که اندازه حرکت زاویهای کل یک الکترون و گشتاور مغناطیسی وابسته به آن بزرگ‎تر از مقداری است که به حرکت انتقالی آن نسبت داده می‌شد. بنابراین یک سهم اضافی که از خصوصیت ذاتی با یک درجه آزادی داخلی ناشی می‌شد، به الکترون نسبت داده شد و چون این خصوصیت دارای اثر مشابه چرخش الکترون حول محورش بود اسپین نامیده گردید [22].
2-4-2 فازهای مغناطیسیبه طورکلی مواد در میدان مغناطیسی خارجی رفتارهای متفاوتی از خود نشان می‌دهند و با توجه به جهت‌گیری مغناطش، به پنج گروه تقسیم می‌شوند که به بیان آن‌ها می‌پردازیم.
2-4-2-1 مواد دیامغناطیسدر این مواد الکترون‌ها به صورت جفت بوده و اتمها دارای گشتاور مغناطیسی دائمی نیستند و با قرارگرفتن در میدان مغناطیسی خارجی دارای گشتاور مغناطیسی القایی در خلاف جهت میدان خارجی می‌شوند و آن را تضعیف می‌کند. پذیرفتاری مغناطیسی χ چنین موادی منفی و خیلی کم است. خاصیت دیامغناطیس ظاهراً در تمام انواع مواد یافت می‌شود، اما اثر آن غالباً به وسیله‌ی آثار قویتر پارامغناطیس یا فرومغناطیس که می‌توانند با این خاصیت همراه باشند، مخفی می‌شود. خاصیت دیامغناطیسی خصوصاً در موادی بارز است که کلاً اتمها یا یونهایی با پوسته‌های بسته‌ی الکترونی تشکیل شده باشند، زیرا در این مواد تمام تأثیرات پارامغناطیسی حذف می‌شوند.
2-4-2-2 مواد پارامغناطیسمواد پارامغناطیس، موادی هستند که برخی از اتمها یا تمامی آن‌ها گشتاور دو قطبی دائمی دارند، به عبارت دیگر گشتاور دو قطبی در غیاب میدان مغناطیسی، غیرصفر است. این دو قطبیهای دائمی رفتاری مستقل از هم داشته که در نهایت جهت‌گیری تصادفی دارند و در میدان‌های کوچک رقابتی بین اثر هم‌خط‌سازی میدان و بی‌نظمی گرمایی وجود دارد، اما به طور متوسط تعداد گشتاورهای موازی با میدان بیشتر از گشتاورهای پادموازی با میدان است. پذیرفتاری در این مواد مثبت است و با افزایش دما، که در اثر آن بی‌نظمی گرمایی زیاد می‌شود، کاهش مییابد. منگنز، پلاتین، آلومینیوم، فلزخاکی قلیایی و قلیایی خاکی، اکسیژن و اکسید ازت از جمله مواد پارامغناطیس‌اند.
2-4-2-3 مواد فرومغناطیس
در برخی از مواد مغناطیسی، گشتاورهای مغناطیسی کوچک به طور خودبهخود با گشتاورهای مجاور خود هم‌خط می‌شوند. اینگونه مواد را فرومغناطیس می‌نامند. در عمل، همه‌ی حوزه‌های مغناطیسی در یک ماده‌ی مغناطیسی در یک راستا قرار ندارند، بلکه این مواد از حوزه‌های بسیار کوچکی با ابعاد خیلی کمتر از میلیمتر تشکیل شده‌اند، به طوری که گشتاورهای مغناطیسی هر حوزه با حوزه‌های مجاور آن تفاوت دارد.
ممکن است سمتگیری و اندازه‌ی حوزه‌های مغناطیسی در یک ماده‌ی فرو مغناطیس به گونه‌ای باشد که در کل اثر یکدیگر را خنثی کنند و ماده در مجموع فاقد مغناطش است. اعمال میدان مغناطیسی خارجی بر حوزه‌های مغناطیسی سبب می‌شود که گشتاورهای مغناطیسی هر حوزه تحت تأثیر میدان قرار گرفته و جهت آن‌ها در جهت میدان خارجی متمایل شود. علاوه بر این حوزههایی که با میدان همسویند، رشد میکنند، یعنی حجم آن‌ها زیاد می‌شود و در نتیجه، حوزه‌هایی که سمتگیری آن‌ها نسبت به میدان مناسب نیست کوچک می‌شوند، مرز بین این حوزه‌ها جابجا می‌شود و در نتیجه ماده در مجموع خاصیت مغناطیسی پیدا می‌کند . پذیرفتاری مغناطیسی این مواد مثبت است. آهن، کبالت، نیکل و چندین عنصر قلیایی خاکی جز فرومغناطیس‌ها می‌باشند [23].
مواد فرومغناطیس دارای چند مشخصه‌ی اصلی به صورت زیر می‌باشند:
الف) مغناطش خودبه‌خودی و مغناطش در حضور میدان
ب) حساسیت مغناطش به دما
ج) مغناطش اشباع
د) منحنی پسماند
2-4-2-4 مواد پادفرومغناطیس
در مواد پادفرومغناطیس گشتاورهای مغناطیسی مجاور به صورت موازی، برابر و غیرهم راستا جهتگیری
می‌کنند. این مواد در غیاب میدان مغناطیسی دارای گشتاور صفرند. کروم و اکسیدهای آن ، جز مواد پادفرومغناطیس می‌باشند. چنین موادی معمولاً در دماهای پایین پادفرومغناطیساند. با افزایش دما ساختار نواحی مغناطیسی شکسته شده و ماده پارامغناطیسی می‌شود. این رفتار در مواد فرومغناطیس نیز اتفاق می‌افتد به این ترتیب که در این مواد پذیرفتاری مغناطیسی مواد مغناطیسی با افزایش دما به تدریج کاهش می‌یابد تا زمانی که ماده پادفرومغناطیس شود .
پذیرفتاری مغناطیسی این مواد عدد مثبت بسیار کوچک و نزدیک به صفر است. به دمایی که در آن ماده از حالت پادفرومغناطیس به فرومغناطیس گذار می‌کند، دمای نیل می‌گویند.
χ= CT+TN
که C ثابت کوری و TN دمای نیل است.
2-4-2-5 مواد فریمغناطیس
فریمغناطیس شکل خاصی از پادفرومغناطیس است که در آن گشتاورهای مغناطیسی در جهت موازی و عکس یکدیگر قرار گرفته‌اند، اما با یکدیگر برابر نیستند و به صورت کامل یکدیگر را حذف نمی‌کنند. در مقیاس ماکروسکوپی، مواد فریمغناطیس همانند فرومغناطیس بوده و دارای مغناطش خودبه‌خودی در زیر دمای کوری بوده و دارای منحنی پسماند می‌باشند[23و24]. شکل 2-2 فازهای مغناطیسی را نشان می‌دهد.

شکل 2-2 فازهای مغناطیسی، الف) پارامغناطیس، ب) فرومغناطیس، ج) پادفرومغناطیس، د) فری مغناطیس [24].
دو خاصیت مهم و کلیدی مواد مغناطیسی دمای کوری و هیستروسیس مغناطیسی است. جفت شدگی ‏تبادلی و بنابراین انرژی تبادلی هیسنبرگ مستقیماً با دمای کوری ‏‎(Tc)‎‏ مواد فرو و فریمغناطیس در ‏ارتباط است. در کمتر از دمای ‏Tc، ممان مغناطیسی همان جهت بلوروگرافی ویژه‌ی محور صفر این ‏مواد است. این محور در ‏نتیجه‌ی جفت‌شدگی این اسپین الکترون و ممنتوم زاویهای اوربیتال الکترون ایجاد می‌شود.
‏از آنجایی که مواد فرومغناطیسی مواد جالبی بر حسب کاربردهایشان هستند، خواص آن‌ها باید به ‏طور کمی اندازه‌گیری شود و حلقهی پسماند خواص مغناطیسی جالبی را در این مواد آشکار ‏می‌کند. یک حلقه‌ی پسماند را می‌توان با قراردادن نمونه در یک مغناطیس‌سنج و پاسخ ماده ‏‎(M,)‎‏ ‏به میدان مغناطیسی اعمالی ‏‎(H)‎‏ اندازه‌گیری کرد. چندین کمیت ممکن است از روی حلقه‌ی پسماند ‏به‌دست آید. ‏
اشباع مغناطیسی ‏‎(Ms)‎‏ یا اشباع مغناطیسی ویژه (‏s‏) مواردی‌اند که مقدار مغناطیسشدگی را وقتی ‏که همه دوقطبی‌ها در جهت میدان مغناطیسی اعمالی مرتب شده‌اند نشان می‌دهد.‏
مغناطیس باقیمانده ‏‎(Mr)‎‏ مغناطیسشدگی نمونه در میدان مغناطیسی صفر است و نیروی ‏بازدارندگی ‏‎(Hc)‎، نیرویی از میدان مغناطیسی است که برای تغییر مغناطیسشدگی باقیمانده نیاز است. ‏تغییر بایاس میدان ‏‎(HE)‎، مقدار جابجایی از مرکز حلقهی پسماند را نشان می‌دهد.‏
2-4-5 حلقه پسماندوقتی به یک ماده مغناطیسی، میدان مغناطیسی اعمال شود، مغناطش محیط سریع افزایش می‌یابد، با افزایش مقدار میدان اعمالی، شتاب افزایش و مغناطش کاهش می‌یابد، این کاهش شتاب ادامه می‌یابد تا مغناطش به مقدار اشباع خود Ms برسد [25].
تغییرات مغناطش مواد مغناطیسی در هنگام کاهش میدان، از رفتار قبلی خود تبعیت نمی‌کند، بلکه به خاطر ناهمسانگردی مغناطیسی در محیط، مقداری انرژی را در خود ذخیره می‌کنند. بنابراین وقتی میدان اعمالی در محیط صفر شود، مغناطش در ماده صفر نشده و دارای مقدار خاصی است که به آن مغناطش پسماند Mr گفته می‌شود. با کاهش بیشتر میدان به سمت مقادیر منفی، خاصیت مغناطیسی القا شده به تدریج کاهش می‌یابد و با رسیدن شدت میدان به یک مقدار منفی خواص مغناطیسی ماده کاملا از بین می‌رود. این میدان مغناطیس‌زدا را با Hc نشان می‌دهند و به نیروی ضد پسماند یا وادارندگی مغناطیسی معروف است. پسماند یا نیروی وادارنده عبارتست از میدان معکوسی که برای کاهش مغناطش به صفر نیاز است. با کاهش بیشتر شدت میدان، القای مغناطیسی منفی می‌شود و در نهایت به مقادیر اشباع منفی خود می‌تواند برسد. افزایش مجدد شدت میدان به سمت مقادیر مثبت، حلقه پسماند را مطابق شکل 2-3 کامل می‌کند. مغناطیس‌های دائمی غالبا در ربع دوم حلقه پسماند خود، مورد استفاده قرار می‌گیرند [26].

شکل 23 حلقه پسماند ماده فرو مغناطیس [26].
مواد مغناطیسی از نظر رفتار آن‌ها در میدان مغناطیس دو گروه تقسیم می‌شوند:
الف) مواد مغناطیس نرم
مواد مغناطیسی نرم با اعمال میدان مغناطیسی کوچک به راحتی مغناطیده می‌شود و با قطع میدان سریعاً گشتاور مغناطیسی خود را از دست می‌دهند. به عبارتی این مواد دارای نیروی وادارندگی پایین، اشباع مغناطیسی بالا و گشتاور پسماند پایین هستند.
مواد مغناطیس نرم در جاهایی که به تغییر سریع گشتاور مغناطیسی با اعمال میدان مغناطیسی کوچک نیاز است مانند موتورها، حسگرها، القاگرها و فیلترهای صوتی مورد استفاده قرار می‌گیرد.
ب) مواد مغناطیس سخت
مواد مغناطیس سخت موادی‌اند که به راحتی مواد مغناطیس نرم، مغناطیده نمی‌شوند و به میدان مغناطیسی اعمالی بزرگ‌تری جهت مغناطیده کردن آن‌ها نیاز است. این مواد گشتاور مغناطیسی را تا مدت‌ها پس از قطع میدان حفظ می‌کنند. همچنین دارای اشباع مغناطیسی، گشتاور پسماند و نیروی وادارندگی بالایی هستند. ساخت یا پخت این مواد در میدان مغناطیسی، ناهمسانگردی مغناطیسی را در این مواد افزایش می‌دهد که حرکت دیواره حوزه‌ها را سخت‌تر می‌کند و نیروی وادارندگی را افزایش می‌دهد. این امر می‌تواند تولید مادهی سخت مغناطیسی بهتری را تضمین کند. کاربرد این مواد در آهن‌رباهای دائمی و حافظه‌های مغناطیسی است [26].

شکل 24 حلقه پسماند در مواد فرومغناطیس نرم و سخت[26].
2-5 فریتفریت به آن دسته از مواد مغناطیسی اطلاق می‌شود که جزء اصلی تشکیل دهندهی آن‌ها اکسید آهن است و دارای خاصیت فریمغناطیس می باشند (آرایشی از فرومغناطیس) و پارامترهای مغناطیسی مطلوبی نظیر ضریب نفوذپذیری مغناطیسی بالا از جمله اصلی‌ترین خصیصه‌های آن‌ها به شمار می‌رود. بدین جهت کاربردهای بسیار وسیعی را در زمینه صنایع برق، الکترونیک، مخابرات، کامپیوتر و… به خود اختصاص داده‌اند.
یکی از انواع فریت‌ها نوع اسپینلی آن است، فریت‌های اسپینلی با فرمول عمومی 2-o2+A3+B که در آن 2+A و 3+B به ترتیب کاتیون‌های دو و سه ظرفیتی می‌یاشند.
فریت‌ها دارای خاصیت فریمغناطیس می‌باشند نظم مغناطیسی موجود در فریمغناطیس‌ها ناشی از برهم‌کنش‌های دو قطبی‌های مغناطیسی نیست بلکه ناشی از برهم‌کنش تبادلی است در برهمکنش تبادلی هم‌پوشانی اوربیتال‌های اتمی مد نظر می‌باشد در فریت‌ها برهم‌کنش تبادلی ناشی از هم‌پوشانی الکترون‌های اوربیتال d3 یون‌های A و B و الکترون‌های اوربیتالP 2 یون‌‎های اکسیژن است. و قدرت این بر‌هم‌کنش تبادلی است که خاصیت مغناطیسی نمونه را رقم می‌زند.
2-6 خلاصهدر این فصل به شیمی آئروژل و دو روش بالا به پایین و پایین به بالای تولید نانوذرات اشاره شد. سپس خاصیت مغناطیسی مواد و فاز‌های مغناطیسی ممکن برای مواد مغناطیسی بررسی شد. پس از آن توضیح کوتاهی در مورد حلقهی پسماند و موارد قابل اندازه‌گیری از آن گفته شد و در نهایت مختصری از مواد فریتی بیان گردید.
فصل سومساخت آئروژل و کاربردهای آن19509215088990
مقدمهسیلیکا آئروژل‌ها به دلیل ویژگی‌های منحصر به فرد، هم در علم و هم در تکنولوژی توجه زیادی را به خود اختصاص داده‌اند. آئروژل‌ها از پیشماده مولکولی با روش‌های مختلف و تکنیک‌های خشک کردن متفاوت برای جایگزینی منافذ مایع با گاز همراه با حفظ شبکهی جامد، تهیه می‌شوند. [27]
علی‌رغم تمامی تلاش‌های قابل توجهی که در این زمینه صورت گرفته است، چالش‌های اصلی تحت کنترل عوامل یکنواختی(همگنی)، بارگذاری، اندازه و توزیع نانوذرات در شبکه‌ی میزبان آلی باقی ماندهاست، در عوض این شبکه‌ی میزبان به طور مستقیم ویژگی‌های الکتریکی، نوری، مغناطیسی و کاتالیزوری مواد نانوکامپوزیت را حفظ می‌کند.
3-1 سنتز آئروژل با فرآیند سل-ژلتفاوت در ویژگی‌های شیمیایی پیش‌ماده‌ها برای فاز نانو (معمولاً نمک فلزی) و برای ماتریس آلی (عموماً الکوکسید‌ها) موضوع مهمی هستند، چرا که پارامترهای فرآیند سل-ژل بر روی هیدرولیز و چگالش هر کدام از این پیشماده‌ها تأثیر متفاوتی دارد [28]. هر چند این موضوع مساله‌ی مهمی در طراحی هر نانوکامپوزیت سل-ژل است اما در رابطه با آئروژل‌ها حیاتی‌تر می‌باشد، زیرا نیازمند جایگزین شدن حلال موجود در ژل (معمولاً اتانول یا متانول در الکوژل و آب در آکوژل) با تغییر حلال و در نهایت حذف کردن به وسیلهی استخراج حلال فوق بحرانی است. مرحله خشک کردن فوق بحرانی، بسته به این که الکل یا کربن دی اکسید به صورت فوق بحرانی تخلیه شود (به ترتیب نیازمند حرارتی در حدود 350 و 40 درجهی سانتیگراد است). این مرحله مسائل دیگری درباره حلالیت پیشماده‌ها و پایداری حرارتی در شرایط خشک کردن فوق بحرانی را مطرح می‌کند [29]. استراتژی‌های مختلف اتخاذ شده برای سنتر نانوکامپوزیت‌های آئروژل، بسته به اینکه فاز نانو (یا پیش‌مادهی آن) در حین یا بعد از فرآیند سل-ژل اضافه شود، دو رویکرد کلی دارند.
روش اول شامل هیدرولیز و ژل شدن نانوذرات و ماتریس پیشماده و ژل شدن ماتریس پیش‌ماده به همراه شکل‌گیری نانوذرات است. مزیت این روش تولید موادی با بارگذاری نانوذرات قابل کنترل است. از طرفی، چندین اشکال در مورد آن مطرح است. برای بهدست آوردن ژل دارای چند ترکیب همگن شرایط سنتز باید به صورت دقیق انتخاب شود و پیشماده‌های نانوذرات و همچنین عوامل پوشش دهی موردنیاز در شکل‌گیری نانوذرات کلوئیدی ممکن است بر سنتز سل-ژل ماتریس تأثیر بگذارد.
روش دوم شامل روش‌های مبتنی بر اضافه کردن فاز نانو بعد از فرآیند سل-ژل است و باید ساختار متخلخل و مورفولوژی ماتریس را حفظ کند. این روش‌ها شامل تلقیح فاز نانو با اشباع، ته‌نشینی و روش رسوبگذاری بخار شیمیایی می‌باشد. طرح‌واره روش‌های مختلف برای شیمی سنتز نانوکامپوزیت آئروژل در شکل 3-1 نشان داده شده است.
هرچند این روشها نیز دارای دو اشکال عمده هستند: یکی همگنی ضعیف ترکیب نانوکامپوزیت تولیدشده، دیگری ترد و شکننده بودن آئروژل‌ها. اتصال فلز در یک ماتریس با گروه‌های هماهنگ اصلاح شده است و غوطه‌ور کردن الکوژل و آکوژل در محلول قبل از خشک کردن فوق بحرانی، به ترتیب به عنوان راهحلهایی برای غلبه بر کاستی‌های گفته شده است. رسوب نانوذرات از فاز بخار، بر خلاف روش‌های تلقیح مرطوب، ماتریس متخلخل را تغییر نمیدهد و تضمین میکند که فاز مهمان در سراسر ماتریس توزیع خواهد شد [30].

شکل 3-1 طرح‌واره‌ای از روش‌های مختلف برای شیمی سنتز نانوکامپوزیت [33].
3-2 شکل‌گیری ژل خیسژل‌های سیلیکا به طور عمومی با هیدرولیز و واکنش چگالش پیشماده سیلیکا به‌دست می‌آیند. ماتریس سیلیکای نهایی متخلخل است و حفره‌های ژل با حلال جانبی هیدرولیز و واکنش پلیمریزه شدن پر شده است. اگر ترکیب محلول بهتواند از ژل خیس بدون سقوط قابل ملاحظه ساختار خارج شود، آئروژل شکل می‌گیرد [31].
روش سل-ژل شامل یک یا چند پیشماده سیلیکون است که متداول‌ترین آن‌ها TEOS و TMOS می‌باشند و داراری چهار گروه الکوکسید شناخته شده در آرایش چهار وجهی در اطراف اتم سیلیکون مرکزی است. واکنش هیدرولیز در چهار جهت اتفاق می‌افتد و منجر به پیوند Si-O-Si می‌شود و یک مادهی کپهای که ترکیبی از 2SiO را می‌دهد. اگر یکی از شاخه‌های الکوکسید اتم سیلیکون توسط گروه عاملی مختلفی که قادر نیست تحت واکنش چگالش قرار گیرد، جایگزین شود گروه عاملی با پیوند کووالانسی به اتم سیلیکون درون ماتریس ژل باقی خواهد ماند. الکوکسیدهای فلزی به راحتی با آب واکنش می‌دهد و بر حسب میزان آب و حضور کاتالیست، عمل هیدرولیز ممکن است کامل انجام شود.
ملکول‌های شکلگرفته آلی-فلزی به مرور زمان بزرگ می‌شوند و به صورت یک ساختار پیوسته در داخل مایع در می‌آیند. این ساختار پیوسته که حالت الاستیک دارد، ژل گفته می‌شود [32].
به طور کلی شکل‌گیری محلول پایدار الکوکسید یا پیشماده‌های فلزی حل شده مرحله اول فرآیند تهیه آئروژل است. این محلول همگن به‌دست آمده در مرحله دوم به علت وجود آب هیدرولیز شده و سل یکنواختی را ایجاد می‌کند. در مرحله سوم واکنش بسپارش ادامه پیدا می‌کند تا سل به ژل تبدیل شود. این مرحله، پیرسازی نیز گفته می‌شود. پس از آن مرحلهی نهایی که خشک کردن است باقی می‌ماند.
3-3 خشک کردن آلکوژلبعد از شکل‌گیری ژل توسط هیدرولیز و واکنش چگالش، شبکه Si-O-Si شکل می‌گیرد. بخش پیرسازی به تشدید شبکه ژل اشاره دارد؛ ممکن است چگالش بیشتر، تجزیه، و ته‌نشینی ذرات سل یا تبدیل فاز داخل فاز جامد یا مایع صورت گیرد. این نتایج در یک جامد متخلخل که حلال در آن گیر افتاده است اتفاق می‌افتد. فرآیند حذف حلال اصلی از ژل (که معمولاً آب و الکل است) را خشککردن می‌گویند. در طول فرآیند خشککردن، ترکخوردگی اتفاق می‌افتد به این دلیل که نیروی مویینگی در گذار مایع-گاز در داخل منافذ ریز وجود دارد. معادله لاپلاس در اینجا به کار می‌رود، هر چه شعاع مویینگی کوچک‌تر باشد، ارتفاع مایع بیشتر و فشار هیدروستاتیک بالاتر خواهد بود. هنگامی که انرژی سطح باعث بالا رفتن ستون مایع داخل مویرگ‌ها می‌شود، مقدار فشار سطحی داخل مویرگ قابل محاسبه است.
قطر حفره در ژل از مرتبهی نانومتر است، به طوری که مایع ژل فشار هیدروستاتیک بالایی را باید اعمال کند. هلال داخل حفره‌ها و نیروهای کشش سطحی سعی می‌کند تا ذرات را به عنوان مایع در حفره‌ها تبخیر کند. این نیروها می‌توانند به گونه‌ای عمل کنند که باعث سقوط حفره و ساختار شوند. بنابراین ژل‌ها با حفره‌های ریز زیاد تمایل به انقباض و ترک خوردن دارند [33]. سل ژلهایی که شیمی سطح آن‌ها اصلاح نشده (شکل3-2) و در شرایط محیط خشک شدند به علت این فروپاشی منافذ تا حدود یک هشتم حجم اولیهی خود کوچک میشوند؛ ماده حاصل زیروژل نامیده میشود. اگر این فرآیند خشککردن به آرامی رخ دهد، زیروژل یکپارچه سالم میتواند تولید شود. اما برای تولید یک آئروژل، باید از عبور از مرز فاز بخار-مایع اجتناب کرد.

شکل 3-2 اصلاح شیمی سطح ژل [34].
روشهای کنونی برای پرهیز از فروپاشی منافذ درساخت آئروژل را میتوان در سه تکنیک کلی دستهبندی کرد. هرکدام از این تکنیکها طراحی شدهاند تا نیروهای مویینگی ناشی از اثرات کشش سطحی را کاسته و یا حذف نمایند. این تکنیکها الف) خشک کردن در شرایط محیط پس از اصلاح سطح، ب) خشک کردن انجمادی و ج) خشک کردن فوق بحرانی است [34]. توضیح کلی درباره هرکدام از این تکنیکها در ادامه آمده است.
3-3-1 فرآیند‌های خشککردن در شرایط محیطاین تکنیکهای خشک کردن طراحی شدهاند تا ژل خیس را در فشار محیط خشک کنند. این روشها نیازمند فرآیندهای شیمیایی با تعویض طولانی مدت حلال برای کاهش نیروهای مویینگی وارد بر نانوساختار یا برای افزایش توانایی نانوساختار در تحمل این نیروهاست (یا با قویتر کردن ساختار و یا با منعطف‌تر ساختن آن). تغییر شیمی سطح ژل خیس بر پایه TEOS برای ارتقاع انقباض قابل برگشت با استفاده از تبادل حلال با هگزان به وسیله اصلاح سطح با فرآیند کاهش گروه سیلانولی با TMCS [35و36]. همچنین استفاده از پیری ژل در محلول الکل یا الکوکسید برای سفت شدن میکرو ساختار به منظور جلوگیری از فروپاشی منافذ است [37]. به علاوه ترکیبکردن شاخه‌های متقاطع سیلیکا آئروژل است که می‌تواند نیروهای مویینگی در حین خشک کردن تحت فشار محیط را تحمل نماید [38].
3-3-2 خشککردن انجمادیخشککردن انجمادی یک ژل خیس منجر به تولید کریوژل میشود. خشککردن انجمادی باعث تولید پودر آئروژل کدر می‌شود [39]. این تکنیک حلال اضافی را با تصعید حذف میکند. ژل خیس منجمد میشود و سپس حلال در فشار پایین تصعید میشود [40]. میکروبلور‌های منجمد که حین فرآیند خشککردن انجمادی شکل می‌گیرند منجر به آئروژل‌های ماکروحفره‌تری در مقایسه با روش استخراج فوق بحرانی میشوند [41].
3-3-3 خشک کردن فوق بحرانیروشهای استخراج فوق بحرانی از مرز بین مایع و بخار با بردن حلال به بالاتر از نقطه فوق بحرانی آن اجتناب می‌کند و سپس از ماتریس سل-ژل به عنوان یک مایع فوق بحرانی حذف می‌شود. در این حالت هیچ مرز مایع-بخاری وجود ندارد، بنابراین هیچ فشار مویینگی دیده نمی‌شود. شکل 3-3 چرخه فشار-دما در طول فرآیند فوق بحرانی را نشان می‌دهد. در عمل انواع متعددی از روشهای استخراج فوق بحرانی وجود دارد که شامل تکنیک‌هایی با دمای بالا، دمای پایین و سریع است.

شکل 3-3 چرخه فشار-دما در حین فرآیند خشک کردن فوق بحرانی [42].
تکنیک‌های استخراج فوق بحرانی الکل دمای بالا، ژل خیس را به حالت فوق بحرانی حلال (معمولاً متانول یا اتانول) در یک اتوکلاو و یا هر مخزن فشار دیگری می‌برد. این مستلزم فشارهای بالا حدود Mpa 8 و دماهای بالا حدود 260 درجهی سانتیگراد می‌باشد [42]. شکل 3-4 شماتیکی از دستگاه خشککن فوق بحرانی اتوکلاو را نشان می‌دهد.

شکل 3-4 شماتیکی از دستگاه خشک کن فوق بحرانی اتوکلاو [42].
تکنیکهای استخراج فوق بحرانی دمای پایین بر اساس استخراج 2CO است که دمای نقطه بحرانی پایین‌تری نسبت به مخلوط الکل باقیمانده در منافذ سل-ژل بعد از پلیمریزاسیون دارد. این روش به تبادل حلال به طور سری نیازمند است، ابتدا حلال غیرقطبی و سپس با کربن دیاکسید مایع پیش از استخراج فوق بحرانی که می‌تواند در نقطه فوق بحرانی 2CO اتفاق بیافتد [43]. مزایای این تکنیک دمای بحرانی پایین‌تر و حلال پایدارتر است؛ هرچند مراحل اضافه شده به فرآیند سبب طولانی‌تر شدن زمان آمادهسازی آئروژل می‌شود. از آنجائیکه فشار بحرانی مورد نیاز نسبت به روشهای فوق بحرانی دما بالا تغییری چندانی ندارد (فشار بحرانی 2CO مشابه متانول و اتانول است)، این فرآیند نیز نیاز به استفاده از مخازن فشار دارد. به علاوه روند انتشار تبادل حلال وابسته به اندازهی ژل است.
تکنیکهای استخراج فوق بحرانی سریع از یک قالب محدود استفاده می‌کند، چه در مخزن فشار و چه در یک فشار داغ هیدرولیک قرار بگیرند. این تکنیکها فرآیندهای تک مرحله‌ای پیش‌ماده به آئروژل هستند و آئروژل را در کمتر از 3 ساعت بهدست می‌آورند. در این روش پیشماده‌های شیمیایی مایع و کاتالیست در یک قالب دو قسمتی ریخته می‌شوند سپس به سرعت گرم می‌شوند [44]. در ابتدا فشار با بستن دو بخش قالب با هم یا با اعمال فشار هیدروستاتیکی خارجی به جای مخازن فشار بزرگ‌تر یا با ترکیبی از این دو تنظیم می‌شود. زمانیکه نقطه فوق بحرانی الکل فرارسید، اجازه داده میشود تا مایع فوق بحرانی خارج شود [45]. برای مثال گوتیه و همکارانش [46] در روند انجام این فرآیند از یک فشار داغ هیدرولیکی برای مهروموم کردن و گرم کردن قالب حاوی مخلوط پیشماده آئروژل استفاده کردند. مخلوط مایع از پیشماده‌های آئروژل در یک قالب فلزی ریخته شد و سپس در فشار داغ قرار گرفت. در طول اجرا، فشار داغ برای مهروموم کردن ترکیب به جای قالب استفاده شد و یک نیروی باز دارندهی فشاری را فراهم کرد. سپس قالب و مخلوط به بالای دما و فشار فوق بحرانی متانول برده شد. در مدت زمان این فرآیند گرم کردن، پیشمادههای آئروژل واکنش نشان داده و یک ژل خیس نانوساختاری متخلخل را تشکیل داد. زمانیکه به حالت بحرانی رسید، فشار کاهش داده شد و مایع فوق بحرانی رها شد.
3-3-4 مقایسه روش‌هاهر یک از روش‌های ساخت آئروژل شرح داده شده در بالا، نقاط قوت و محدودیت‌هایی دارند. مقایسه مستقیم تکنیک‌های مختلف خشک کردن به علت دستورالعمل‌های پیشماده متفاوت، شرایط ژل شدن مختلف، و زمان پیر سازی، به خوبی روش‌های استخراج متفاوت هستند. برای مثال خشککردن فوق بحرانی دما پایین نیاز به زمان پیرسازی کافی دارد، به طوری که ژل‌ها می‌توانند از ظرف اولیه برای استخراج و تبادل حلال خارج شوند.
در فرآیند خشککردن سریع، عموما زمان پیرسازی کوتاه است؛ گرچه، دمای بالا در این فرآیند اثر مشخصی را روی روند واکنش چگالش دارد.
مزیت اصلی تکنیک‌های خشک کردن در فشار محیط، عدم نیاز به تجهیزات فشار بالا می باشد که گران قیمت و به طور بالقوه خطرناک است؛ اگرچه به مراحل پردازش چندگانه با تبادل حلال نیاز دارند. تا به حال مطالعات اندکی در رابطه با استفاده از روش‌های خشککردن انجمادی شده است. این تکنیک‌ها نیاز به تجهیزات خاصی برای رسیدن به دمای پایین لازم برای تصعید حلال و منجر شدن به پودر آئروژل، دارند.
محدودیت اصلی تکنیکهای فوق بحرانی دما بالا، رسیدن به دماهای بالای مورد نیاز برای دست یافتن به نقطه بحرانی حلال الکل و نیز ملاحظات ایمنی در بکار بردن مخزن فشار در این شرایط است.
روش استخراج دما پایین به طور گسترده در تولید آئروژل‌های یکپارچه کوچک تا بسیار بزرگ استفاده شده است، اگرچه می‌تواند روزها تا هفته‌ها تولید آن طول بکشد و مراحل چندگانه تبادل حلال مورد نیاز، آن را تبدیل به فرآیندی پیچیده کند و اتلاف قابل ملاحظه‌ای از حلال و 2CO ایجاد می‌کند. تکنیک‌های خشککردن سریع ساده‌تر و سریع‌تر است. تمامی فرآیند، بر خلاف مراحل چندگانه و مقیاس‌های زمانی در ابعاد روزها و ماهها در سایر روش‌ها، در یک مرحله انجام شده و می‌تواند در چند ساعت تکمیل شود. همچنین این روش‌ها اتلاف کمتری را به وجود می‌آورند. یک ایراد روش‌های خشککردن سریع، نیاز به دما و فشار بالاست [47].
3-4 مروری بر کارهای انجام شدهاگرچه میدانیم که این گزارش‌های جامعی از مقالات مرتبط با نانوکامپوزیت‌های آئروژل نیست، اما تأکید بر این مطلب است که چگونه ترکیب نانوذرات ممکن است احتمال استفاده از آئروژل‌ها را به عنوان مواد جدید افزایش دهد و چگونه مسیر آماده سازی مورد اطمینان برای به‌دست آوردن نانوکامپوزیت‌های آئروژل برای کاربرد خاص را انتخاب نماییم.
پس از آنکه کیستلر در سال 1931 برای اولین بار بدون درهم شکستن ساختار ژل، فاز مایع را از آن جدا کرد، در سال 1938 به مطالعه روی رسانایی گرمایی آئروژل و در سال 1943 درباره سطح ویژه آن‌ها به مطالعه پرداخت [48]. بعد از آن حدود نیمقرن دانشمندان علاقه‌ای به آئروژل‌ها نشان ندادند تا در اویل 1980 آئروژل به عرصه پژوهش بازگشت.
در سال 1992تیلسون و هاربش از TEOS به عنوان پیشمادهی سیلیکا ژل استفاده کردند و از میکروسکوپ الکترونی روبشی برای مشخصه‌یابی آن‌ها استفاده نمودند [49] و سپس هر ساله تحقیقات زیادی روی آئروژل‌ها صورت می‌گیرد.
در سال 2001 کاساس و همکارانش نانوکامپوزیت مغناطیسی را با ورود ذرات اکسید آهن در سیلیکا آئروژل میزبان سنتز کردند. این سنتز که به روش سل-ژل و با خشککردن فوق بحرانی متانول انجام شد، دو نمک آهن استفاده شد: O2H9.(3ON)Fe و O2H2.(EDTA)FeNa. در این پژوهش ارتباط واضحی بین پیشماده، آب و تخلخل و سطح ویژه آئروژل حاصل وجود داشت. استفاده از ترکیب EDTA به عنوان پیش‌مادهی نانوذرات، قطر میانگین حفره‌ها را افزایش داد، گرچه قابلیت حل پایین نمک EDTA در محلول یک مانع بزرگ برای رسیدن به آهن در این روش بود. مساحت سطح ویژه‌ی نمونه‌های کاساس بین /g2m 200 و /g2m 619 بهدست آمد و برخی نمونه‌ها رفتار پارامغناطیس و برخی دیگر رفتار مغناطیس نرم از خود نشان دادند [50].
در سال 2002 واگنر و همکارانش ذرات سیلیکا با هستهی مغناطیسی را با روش ته‌نشینی به‌دست آوردند [51]. و چند سال بعد در سال 2006 ژانگ و همکارانش ذرات پوسته‌ای هسته‌دار را با روش سل-ژل تهیه کردند. این ذرات شامل هستهی مغناطیسی فریت کبالت و پوستهی سیلیکا بودند که از TEOS به عنوان پیشمادهی سیلیکا استفاده کردند. پس از آنکه ژل‌ها به‌دست آمدند، در 110 درجهی سانتیگراد برای 4 ساعت در خلاء خشک شدند زیرا اگر در هوا خشک شوند احتمال ته‌نشینی بلور‌های اکسید وجود داشت. سپس به مدت 2 ساعت در دماهای مختلف برای به‌دست آوردن نانو بلور پراکنده در ماتریس سیلیکا حرارت داده شد. برای نمونه‌ی آن‌ها شکل‌گیری فاز فریت کبالت در دمای 800 درجهی سانتیگرادکامل شد و خوشه‌های فریت کبالت به سمت نانو بلوری شدن پیش رفتند، زمانی که برهم‌کنش بین خوشه‌های فریت کبالت با ماتریس سیلیکا شکسته شد پیوندهای Si-O-Fe ناپدید شدند. بر طبق گزارش آن‌ها اشباع مغناطیسی نانوکامپوزیت‌ها با افزایش غلظت بیشتر فریت در ماتریس افزایش یافت تا مقدار بیشینه emu/g 98/66 برای نمونه با نسبت مولی 1:1 (wt% 80 فریت کبالت) به‌دست آمد [52].
سیلوا و همکارانش در سال 2007 کامپوزیت ذرات فریت کبالت پخش شده در ماتریس سیلیکا را به روش سل-ژل تهیه کردند. آن‌ها از TEOS به عنوان پیشماده سیلیکا و از نیترات به عنوان پیش‌ماده فریت استفاده کردند. پس از گذشت زمان پیرسازی، نمونه برای 12 ساعت در 110 درجهی سانتیگراد خشک شدند و ذرات فریت کبالت در ماتریس سیلیکا شکل گرفتند. پس از آن عملیات حرارتی برای 2 ساعت در دماهای 300، 500، 700 و 900 درجهی سانتیگراد انجام شد که باعث افزایش در اندازهی ذرات شد. رسوب ذرات خوشه‌ای فریت در دیواره‌های منافذ زیروژل با افزایش دما بیشتر شد و در دماهای بالاتر از 700 درجهی سانتیگراد بلورهای بزرگ‌تر کبالت داخل منافذ ماتریس شکل گرفتند و افزایش در مغناطش اشباع و پسماند مغناطیسی را باعث شدند [53].
در همان سال فرناندز و همکارانش نانو کامپوزیت سیلیکا آئروژل/ آهن اکسید را با فرآیند سل-ژل و تبخیر فوق بحرانی حلال سنتز کردند. آن‌ها نمونه‌ها با پیشماده‌های TEOS و TMOS را با تبخیر فوق بحرانی اتانول و متانول خشک کردند. ذرات مغناطیسی با اندازهی متوسط nm 6 با TEOS و متانول سنتز شدند در حالی که فری‌هیدرات‌ها از TMOS و اتانول به‌دست آمدند. بعضی نمونه‌های آن‌ها رفتار ابر پارامغناطیس از خود نشان دادند [54].
دو سال بعد ژنفا زی و همکارانش نانوذرات فریت کبالت را به روش هم‌نهشت شیمیایی و خشک شدن در هوا در دمای80 درجهی سانتیگراد تهیه کردند. اندازهی قطر نانوذرات سنتز شده nm 20 تا nm 30 بود و دمای کوری در فرآیند افزایش دما کمتر از فرآیند کاهش دما بود. مقدار اشباع مغناطیسی این ذرات emu/g 77/61 بهدست آمد که نسبت که مقدار کپه آن کوچک‌تر بود. در این پژوهش مقدار پایین نیروی وادارندگی به دو دلیل اتفاق می‌افتد: ذرات فریت ممکن است ساختار چند دامنه داشته باشند. شکل‌گیری چند دامنه‌ها و حرکت دیوارهای دامنه می‌تواند کاهش دامنه را نتیجه دهد. همچنین اگر اندازهی بحرانی ذرات [55] بهدست آمده بزرگ‌تر از قطر میانگین ذرات باشد، رفتار تک دامنه را از خود نشان می‌دهند. آن‌ها گزارش کردند که کاهش وادارندگی نمونه‌ها به رفتار وابسته به اندازهی ذرات بستگی دارد [56].
بلازینسکی و همکارانش در پژوهشی که در سال 2013 انجام دادند، سیلیکا آئروژل را با روش سل-ژل و فرآیند فوق بحرانی تهیه کردند. آن‌ها دریافتند که روش خشک کردن فوق بحرانی مؤثرترین روش برای بهدست آوردن بهترین ویژگی این محصولات است. بدین منظور آن‌ها دستگاه خشک کن فوق بحرانی را برای خود ساختند که فشار و دما به طور دستی تنظیم می‌شد و مرحله مهم در آمادهسازی سیلیکا آئروژل‌ها بود. به این ترتیب آن‌ها سیلیکا آئروژل‌های شفاف با مساحت سطح ویژه بالا به‌دست آوردند [57].
در گزارشی دیگر در سال 2014 ساجیا و همکارانش پودر آمورف فریت کبالت را به روش سل-ژل تهیه کردند و این روش را بهترین روش تهیه نانوذرات عنوان کردند. آن‌ها دریافتند که عملیات حرارتی برای تجزیه کامل مقدار مواد آلی و نیترات حاضر در پودر آمورف لازم است. در این فرآیند برای جلوگیری از ته‌نشینی یا رسوبگذاری این واکنش اسید سیتریک به آن اضافه کردند و سپس مراحل خشک کردن و عملیات حرارتی انجام شد. پارامترهای عملیات حرارتی، مرحله نهایی در آماده‌سازی نانوذرات فریت کبالت بودند که بررسی شدند. ساختار اسپینل در همهی نمونه‌های آن‌ها شکل گرفته بود و هنگامی که ذرات شروع به رشد کردند ناخالصی‌ها حذف شد. ویژگی مغناطیسی مرتبط با رفتار فریمغناطیس این نمونه‌ها مقدار emu/g 62 برای اشباع مغناطیسی را نشان می‌دهد [58].
در جدیدترین پژوهشی که دربارهی آمادهسازی و ارزیابی نانوکامپوزیت سیلیکا آئروژل/فریت در سال 2014 صورت گرفته است، کاتاگر و همکارانش نانوذرات فریت را به روش ته‌نشینی آماده کردند و سپس TMOS را به آن اضافه نمودند. برای این کار آن‌ها O2H6. 2NiCl، O2H6. 3FeCl و 2ZnCl را با اضافه کردن آب مقطر حل کردند. PH محلول در رفلاکس 110 درجهی سانتیگراد به مدت 24 ساعت 13 تنظیم شده بود. با حذف NaOH که برای PH اضافه شده بود، و شستن مکرر با آب مقطر و اتانول نانوذرات نتیجه شدند. بعد از بهدست آمدن نانوذرات به طور مستقیم به TMOS اضافه شدند و 3NH و آب دیونیزه به عنوان کاتالیست برای تهیه سل همگن اضافه گردیدند. برای مرحله پیر سازی قالب‌های حاوی سل را در اتانول به مدت 2 ساعت و دمای 50 درجهی سانتیگراد پیرسازی کردند و در نهایت ژل خیس را با خشک کردن فوق بحرانی کربن دی اکسید بهدست آوردند. تحقیقات آن‌ها نشان داد که زمان ژل شدن با افزایش نسبت مولی اتانول/TMOS افزایش یافت. همچنین به دلیل کشش سطحی اتانول، نمونه‌ها منقبض می‌شوند یا ترک می‌خورند. نانوکامپوزیت به‌دست آمده ساختار اسکلت شبکه‌ی سه بعدی را حفظ کرد. مساحت سطح ویژه با افزایش مقدار فریت از /g2m 700 تا /g2m 300 تغییر کرد. به علاوه ویژگی مغناطیسی فریت در ساختار نانو کامپوزیت تغییر نکرد [59].
3-5 برخی از کاربردهای آئروژل3-5-1 آئروژل‌ها به عنوان کامپوزیتهمانطور که پیشمادهی الکوکسید سیلیکون برای شکل‌گیری شبکه‌ی ژل با اکسیدهای فلزی دیگر به اندازه‌ی کافی واکنشی است، مطالعات زیادی در زمینه سنتز سیلیکا آئروژل برای کاربردهای مختلف صورت گرفته است [1].
3-5-2 آئروژل‌ها به عنوان جاذبآئروژل‌های فوق آبگریز و انعطافپذیر برای در جذب حلال‌های معدنی و روغن‌ها سنتز شدند. ونکاتشوارا رائو و همکارانش چگالی جذب و واجذب سیلیکا آئروژل‌های فوق آبگریز را با استفاده از یازده حلال و سه روغن بررسی کردند [60].
3-5-3 آئروژل‌ها به عنوان حسگرآئروژل‌ها تخلخل بالا، حفره‌های در دسترس، و سطح در معرض بالا دارند. از این رو کاندیداهای خوبی برای استفاده به عنوان حسگر هستند.بر اساس مطالعه وانگ و همکارانش روی آئروژل لایه‌ی نازک نانوذرات سیلیکا آئروژل نشان داد که مقاومت الکتریکی به طور قابل ملاحظه‌ای با افزایش رطوبت کاهش یافت. زیروژل همان مواد حساسیت کم‌تری را نشان داد. آئروژل‌هایی که اصلاح سطح شدند در مقایسه با آئروژل‌های آب‌گریز کمتر تحت تأثیر رطوبت قرار گرفتند و می‌توانند به عنوان ضد زنگ و عوامل آب‌گریز مورد استفاده قرار بگیرند [61].
چن و همکارش آئروژل‌هایی را برای کاربرد حسگرهای زیستی مطالعه کردند. در مطالعه آن‌ها، آئروژل‌های مزوحفره به وسیله پلیمریزاسیون سل-ژل با یک مایع یونی به عنوان حلال تهیه کردند. نتایج نشان می‌دهدکه آئروژل آماده شده می‌تواند به عنوان یک بسترشناسایی برای اسید نوکلوئیدها به کار رود [62].
3-5-4 آئروژل به عنوان مواد با ثابت دی الکتریک پایینلایه نازک‌های آئروژل 2SiO توجه خاصی را به خود اختصاص داد، به دلیل ثابت دی الکتریک خیلی پایین، تخلخل و پایداری حرارتی بالا. پارک و همکارانش لایه نازک سیلیکا آئروژل را برای لایهی داخلی دی الکتریک مورد بررسی قرار دادند و ثابت دی الکتریک را تقریبا 9/1 اندازه‌گیری کردند. آن‌ها ثابت دی الکتریک بسیار پایین فیلم‌های آئروژل را برای لایهی داخلی مواد دی الکتریک تولید کردند. فیلم های سیلیکا آئروژل به ضخامت Å 9500، % 5/79 تخلخل، و ثابت دی الکتریک پایین 2 با روش فرآیند خشک کردن محیط با استفاده از n-هپتان به عنوان حلال خشک کن به‌دست آوردند [63].
3-5-5 آئروژل به عنوان کاتالیزورمساحت سطح ویژه‌ی بالای آئروژل‌ها منجر به کاربردهای زیادی می‌شود، از جمله جاذب شیمیایی برای پاکسازی نشتی. این ویژگی کاربرد زیادی را به عنوان کاتالیزور یا حامل کاتالیزور به همراه دارد. آئروژل‌ها در کاتالیست‌های همگن مناسب هستند، زمانی که واکنش‌دهنده‌ها هم در فاز مایع و هم در فاز گاز هستند [27].
3-5-6 آئروژل به عنوان ذخیره سازیتخلخل بالا و مساحت سطح زیاد سیلیکا آئروژل‌ها می‌تواند برای کاربردهایی مثل فیلترهای گازی، جذب رسانهای برای کنترل اتلاف، محصور سازی، ذخیره سوخت هیدروژن به کار رود. آئروژل‌ها می‌توانند در مقابل تنش گذار مایع/گاز مقاومت کنند زیرا بافت آنها در طول پخت تقویت شد به عنوان مثال در ذخیره سازی، انتقال مایعات چون سوخت موشک‌ها کار برد دارد. به علاوه وزن پایین آئروژل‌ها بزرگ‌ترین مزیت است که در سیستم حمل دارو به دلیل ویژگی زیست سازگار آن‌ها مورد استفاده است [64]. کربن آئروژل‌ها در ساخت الکتروشیمی ابر خازن دو لایه کوچک استفاده شد. ابر خازن‌های آئروژل مقاومت ظاهری پایینی در مقایسه با ابر خازن‌های معمولی دارد و می‌تواند جریان بالا را تولید یا جذب کند.
3-5-7 آئروژل‌ها به عنوان قالبفیلم‌های سیلیکا آئروژل برای سلول‌های خورشیدی رنگ حساس استفاده شدند. مساحت سطح ویژه‌ی فیلم‌های آئروژل روی فیلم‌های شیشه‌ای رسانا تهیه شدند. نشست لایه اتمی برای پوشش قالب آئروژل با ضخامت‌های مختلف 2TiO با دقت کمتر از نانومتر انجام شد. غشاء آئروژل پوشش داده شده با 2TiO در سلول خورشیدی رنگ حساس گنجانیده شد. طول نفوذ شارژ با افزایش ضخامت 2TiO افزایش یافت که منجر به افزایش جریان شد [65].
3-5-8 آئروژل به عنوان عایق گرماجدای از تخلخل بالا و چگالی پایین یکی از جذاب‌ترین ویژگی‌های آئروژل رسانندگی گرمایی پایین آن‌ها است، علاوه بر این، از یک شبکه‌ی سه بعدی با ذرات ریز متصل شده تشکیل شده‌اند. بنابراین انتقال گرما از میان بخش جامد آئروژل‌ها از طریق مسیر پر پیچ و خمی است. فضای اشغال نشده در یک جامد توسط آئروژل به طور معمول با هوا پر شده مگر آن که تحت خلاء مهروموم شده باشد. این گازها می‌توانند انرژی حرارتی را از طریق آئروژل انتقال دهند. حفره‌های آئروژل باز هستند و اجازه عبور گاز از میان مواد را می‌دهند [27].
3-5-9 آئروژل‌ها در کاربرد فضاییناسا از آئروژل‌ها برای به دام انداختن ذرات گرد و غبار روی فضاپیما استفاده کرد. ذرات در برخورد با جامد اسیر شده، گازها تبخیر می‌شوند و ذرات در آئروژل به دام می‌افتند [27].
جدول 3-1 کاربردهای مختلف آئروژل‌ها را به طور مختصر نشان می‌دهد.
3-6 خلاصهدر این فصل پس از مقدمه‌ی کوتاه، اندکی در مورد سنتز آئروژل با روش سل-ژل گفته شد. پس از آن فرآیند‌های لازم برای شکل‌گیری ژل بیان شد و سپس تکنیک‌های مختلف خشک کردن و شرایط لازم برای این کار با مختصری توضیح نوشته شد. بعد مروری کوتاه به برخی از تلاش‌های انجام شده در این زمینه داشتیم و در آخر برخی از کاربردهای مختلف آئروژل‌ها را با ذکر مثال درج شد.
جدول 3-1 کاربردهای مختلف آئروژل‌ها [27].
خاصیت ویژگی کاربرد
رسانایی الکتریکی بهترین جامد عایق
شفاف
مقاومت در برابر درجه حرارت بالا
سبک ساخت و ساز ساختمآن‌ها و عایقبندی لوازم خانگی
ذخیره سازی
ماشین، وسیله نقلیه فضایی
دستگاه‌های خورشیدی
چگالی/تخلخل سبک‌ترین جامد مصنوعی
سطح ویژه_ی بالا
کامپوزیت‌های چندگانه کاتالیزور
حسگر
ذخیرهی سوخت
تبادل یون
فیلترهای آلاینده‌های گازی
اهداف ICF
حامل رنگ‌دانه
قالب
اپتیکی شفافیت
شاخص بازتاب پایین
کامپوزیت‌های چندگانه اپتیک سبک وزن
آشکارسازهای چرنکوف
راهنماهای نوری
عایق صوتی سرعت صوت پایین اتاق‌های ضد صدا
تطبیق مقاومت ظاهری صوتی در التراسونیک
مکانیکی الاستیک
سبک جاذب انرژی
تله برای ذرات سرعت بالا
الکتریکی ثابت دی الکتریک پایین
قدرت دی الکتریک بالا
سطح ویژهی بالا دی الکتریک برای ICها
جدا کنندهی الکترودهای خلا
خازن
فصل چهارمسنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت21434265186580مقدمهآئروژل‌ها کاندیدا‌های ایدهآلی برای طراحی نانوکامپوزیت‌های کاربردی تقویت شده با نانوذرات فلزی یا اکسید فلزی هستند. مساحت سطح ویژهی بالا با ساختار حفره‌ای، آئروژل‌ها را قادر می‌سازد تا به طور موثری میزبان نانوذرات ریز پراکندهشده باشند و این اطمینان را می‌دهد که نانوذرات در دسترس هستند.