user8277

اصول پراکندگی نور2-1- مقدمه
نور عبوری از مواد شفاف که دارای ضریب شکستهای مختلف میباشند ممکن است بر اثر پدیده های غیر خطی پراکنده گردد. پراکندگی نور در مواد به عوامل مختلفی بستگی دارد . از جمله این عوامل می تواند جنس ماده ، ضریب شکست و وابستگی ضریب شکست به طول موج نور باشد . دو نوع پراکندگی به صورت عمده در مواد شفاف رخ می دهد و تحقیقات بسیاری در مورد آنها انجام شده است . یکی از آنها پراکندگی بریلوئن و دیگری پراکندگی رامان می باشد. در این فصل پراکندگی بریلوئن را بررسی می کنیم و معادلاتی برای شدتهای نور بدست می آوریم که در فصلهای بعدی پایان نامه، از این معادلات استفاده خواهیم کرد. سپس در بخش دوم پراکندگی رامان بررسی خواهد شد.
2-2- پراکندگی القایی بریلوئن
12744453619500
00
در صورتی که پراکندگی از نوسانات ایجاد شده توسط اثرات حرارتی، بوجود بیاید به آن پراکندگی خود بخودی می گویند، اما در شرایطی که پراکندگی بخاطر نوسانات ایجاد شده در حضور میدان موج اپتیکی باشد، به آن پراکندگی القایی گفته می شود. پراکندگی القایی همواره موثرتر از پراکندگی خود بخودی است. به عنوان مثال بخاطر پراکندگی خود بخودی نور در عبور از 1cm از یک مایع مثل آب، تنها یک قسمت از 105 قسمت توان پرتو پراکنده میشود، اما در صورتی که شدت نور به اندازه کافی زیاد باشد، گاهی تا 100% پرتو در عبور از 1cm از محیط بخاطر پراکندگی القایی پراکنده خواهد شد. پراکندگی القایی که در این قسمت به بررسی آن خواهیم پرداخت، نتیجه تغییرات چگالی ماده می باشد. فرآیند پراکندگی بریلوئن القائی در شکل (2-1) نشان داده شده است:

شکل (2- SEQ شکل_(2- * ARABIC 1).شماتیک پراکندگی القایی بریلوئن.در شکل(2-1)، نور لیزر، توسط تغییرات ضریب شکست ایجاد شده توسط موج صوتی با فرکانس Ω ، پراکنده شده است. از آنجایی که موج آکوستیک در جهت موج فرودی حرکت می کند، نور پراکنده شده به فرکانس پایین تری یعنی فرکانس ωS=ωL-Ω شیف مییابد.
وقتی دو موج با فرکانس های ωS و ωL با هم بر همکنش می کنند، به نحوی که اختلاف این دو فرکانس همان فرکانس موج آکوستیک Ω، باشد، منجر به پراکندگی بریلوئن خواهد شد. پاسخ سیستم مادی به این ترم تداخلی می تواند شبیه به یک منبع عمل کند که موجب افزایش دامنه موج صوتی می شود. بنابراین زنش نور لیزر و موج آکوستیک سبب ایجاد موج استوکس می گردد، در صورتی که زنش موج های استوکس و لیزر موجب تقویت موج آکوستیک می شود. دو مکانیزم متفاوت برای توجیه این اثر وجوددارد. یک مکانیزم electrostriction می باشد. در این مکانیزم بیان می شود که ماده در مکان هایی که میدان فرودی شدت بیشتری دارد، چگالتر می شود. مکانیزم دیگر جذب اپتیکی است که بیان میکند گرم شدن منطقه توسط جذب موج اپتیکی با شدت بالاتر سبب می شود که ماده در آن منطقه منبسط تر شود بنابراین با تابش نور به محیط، نوسانات چگالی را خواهیم دید. از مکانیزم دوم کمتر از مکانیزم اول استفاده می شود زیرا مکانیزم دوم تنها در مواد اپتیکی اتلافی اتفاق می افتد.
وقتی پدیده پراکندگی بریلوئن القایی مورد مطالعه قرار می گیرد، دو فرآیند متفاوت باید بررسی شود، که یکی از این دو، تولید کننده پراکنندگی بریلوئن القائی است.

شکل (2- SEQ شکل_(2- * ARABIC 2) شماتیک تولید کننده پراکنندگی القایی بریلوئن.که در این فرآیند فقط پرتو نور لیزر است که به صورت خارجی استفاده شده است. میدان های استوکس و آکوستیک بیشتر از نویز در طول منطقه بر همکنش، رشد می کنند. نویزی که پراکندگی بریلوئن القایی را آغاز می کند، ناشی از پراکندگی نور لیزر از فونون های تولید شده حرارتی است ]15[ .در این حالت فرکانس استوکس نزدیک حالتی است که در آن حالت پراکندگی بریلوئن القایی بهره ماکزیمم دارد. فرآیند دوم تقویت کننده پراکنندگی بریلوئن القایی است.

شکل (2- SEQ شکل_(2- * ARABIC 3) شماتیک تقویت کننده پراکندگی القایی بریلوئن.در این حالت پرتوهای لیزر و استوکس هر دو بصورت عامل های خارجی اعمال می گردند. اگر فرکانس استوکس پرتو خارجی اعمال شده نزدیک به فرکانس استوکس تولید کننده پراکندگی بریلوئن القایی باشد، پس یک کوپلاژ قوی بین دو پرتو خارجی اعمال شده، رخ خواهد داد. فرآیند پراکندگی بریلوئن القایی به تقویت موج استوکس در هر جهتی به غیر از جهت نور لیزر منجر می شود. معمولا پراکندگی بریلوئن القایی فقط در جهت رو به عقب دیده می شود چون همپوشانی فضای پرتوهای لیزر و استوکس تحت این شرایط ماکزیمم است]16 [.
در صورتی که شدت نور فرودی را به مقدار کافی زیاد کنیم، این نور با استفاده از پدیده electrostriction می تواند روی خصوصیات محیط تاثیر بگذارد و نور پراکنده شده قوی ای را تولید کند، به عبارت دیگر در ابتدا نور لیزر فرودی توسط اثرات حرارتی محیط یا به عبارتی موج آکوستیک موجود در محیط پراکنده می شود و موج استوکس را تولید می کند، سپس کوپلاژ بین نور استوکس و نور لیزر فرودی با استفاده از پدیده electrostriction، نوسانات چگای را در محیط ایجاد می کند، نور لیزر فرودی دوباره توسط نوسانات ضریب شکست ناشی از این نوسانات چگالی پراکنده می شود که فرکانس نور پراکنده شده دوباره در فرکانس استوکس خواهد بود، بنابراین دو موج آکوستیک و استوکس رشد هم را تقویت می کنند. برای تقویت کننده های پراکندگی بریلوئن القایی، موج استوکس بصورت خارجی به محیط اعمال می شود که فرکانس آن ω2 بود، اگر فرکانس نور لیزر فرودی ω1 در نظر گرفته شود، فرکانس موج آکوستیک حاصله به این صورت بدست می آید:
Ω=ω1-ω2 (2-1)
که در حالت کلی با فرکانس بریلوئن، ωB ، متفاوت است. در صورتی که ω2 به نحوی انتخاب گردد که Ω-ΩB خیلی کوچک باشد یا در حد پهنای باند بریلوئن، τB ، باشد، موج آکوستیک بصورت موثر بر انگیخته خواهد شد. حال به بر همکنش سه موج می پردازیم:
میدان اپتیکی داخل محیط بریلوئن بصورت Ez,t=E1z,t+E2z,t در نظ گرفته می شود که:
E1z,t=A1z,teik1z-ω1t+CC) (2-2
E2z,t=A2z,teik2z-ω2t+CC
موج آکوستیک نیز بصورت جملاتی از نوسانات چگالی نوشته می شود:
ρz,t=ρ0 +ρz,teiqz-tΩ+CC(2-3)
Ω =ω1-ω2 که و p0 چگالی متوسط محیط است، فرض می شود که چگالی ماده از معادله موج آکوستیک تبعیت می کند:
∂2∆p∂t2-Γ'∇2∂p∂t-v2∇2p=∇.f (2-4)
که در آن v سرعت صوت است و Γ'ثابت اتلاف می باشد. جمله سمت راست، واگرایی نیرو در واحد حجم می باشد که به صورت زیر داده می شود:
f=-∇Pstو Pst= γeE8 π (2-5)
که در آنPst فشار electrostriction می باشد. با توجه به میدان های ذکر شده، این جمله به صورت زیر بدست می آید:
∇.f=γeq24 πA1A2*eiqz-tΩ+C.C (2-6)
با جایگذاری pz,tو ∇.f در معادله (2-4) و این فرض که دامنه موج آکوستیک در فضا و زمان کند تغییر است، داریم:
-2iΩ∂p∂t+ΩB2-Ω2-iΩΓBp-2iq v2∂p∂z=γeq24 πA1A2* (2-7)
بصورتی که پهنای باند بریلوئن به این شکل تعریف می شود:
ΓB=q2Γ' (2-8)
که τB=ΓB-1طول عمر فونون را می دهد. برای سادگی آخرین جمله سمت چپ رابطه بالا حذف می شود که این ترم انتشار فونون ها را می دهد. از آنجایی که فاصله انتشار فونون در مقابل فاصله ای که جمله سمت راست تساوی بصورت موثر در آن تغییر می کند، خیلی کوچک است (چون فونون سریع جذب می شود) بنابراین جمله∂p∂z را حذف می کنیم، اگر جمله تغییرات فضایی حذف گردد و شرایط پایا در نظر گرفته شود پس ∂p∂tحذف می شود، بنابراین دامنه موج آکوستیک به این شکل بدست می آید:
pz,t=γeq2 4 π A1A2*ΩB2-Ω2-iΩΓB (2-9)
میدان های اپتیکی نیز توسط معادلات موج زیر شرح داده می شوند:
∂2Ei∂z2-1c/n2∂2Ei∂t2=4 π∂2Pic2∂t2, i=1,2 ) (2-10
قطبش غیر خطی که بعنوان جمله منبع در این معادلات وجود دارد، به این صورت بدست می آید:
P=∆x E= ∆ε4 π E = 14 π p0γepE (2-11)
بنابراین داریم:
P1=P1eik1z-ω1t+C.C (2-12)
P2=P2ei-k2z-ω2t+C.Cکه:
P1=γe4 π p0pA2,P2=γe4 π p0P* A1 (2-13)
با قرار دادن معادلات میدان در معادله موج بالا و استفاده از تقریب دامنه کند تغییر داریم:
∂A1∂z+1c/n∂A1∂t=iωγe2nc p0pA2 (2-14)
-∂A2∂z+1c/n∂A2∂t=iωγe2nc p0p*A1
در رابطه بالا فرض شده است که ω1=ω2≅ω با بکار بردن حالت پایا، مشتق زمانی را حذف می کنیم، بنابراین داریم:
dA1dz=iωq2γe28n π c p0 A22 A1ΩB2-Ω2-iΩΓB(2-15)
dA2dz=-iωq2γe28n π c p0 A12 A2ΩB2-Ω2+iΩΓBاین فرایند بصورت اتوماتیک دارای تطابق فازی نیز هست، بنابراین بیان معادلات برای شدت های دو موج اپتیکی ممکن است. شدت ها به این صورت تعریف می شوند [5]:
Ii=nc2πAiAi* (2-16)
بنابراین:
dI1dz=-gI1I2,dI2dz=-gI1I2 (2-17)
که در آن g فاکتور بهره است که با یک تقریب مناسب به این صورت داده می شود:
g=g0ΓB/22ΩB-Ω2+ΓB/22 (2-18)
که خط مرکزی بهره به این صورت می باشد:
g0=γe2 ω2nvc3 p0ΓB (2-19)
برای حل معادلات dI1dz وdI2dz ابتدا فرض می کنیم که شدت پمپ ثابت است، =cte I1 بنابراین:
I2z=I2LegI1L-z (2-20)
در این حالت یک موج استوکس داخل محیط در z=L تزریق می شود که یک رشد نمایی را تجربه می کند.
این تئوری برای شرح انتشار موج در فرکانس آنتی استوکس نیز بکار می رود. ωas ≅ ωL+ ΩB به این صورت تعریف می کنیم که ω1را با ωasو ω2 را با ωL جایگزین می کنیم، از طرفیI2z=cte بنابراین:
I1z=I10e-gI2z (2-21)
از آنجا که ω1در جهت مثبت محور z ها منتشر می شود، دیده می شود که این موج یک اتلاف را در مسیر خود تجربه می کند.
وقتی که موج استوکس در حد شدتی قابل مقایسه با موج پمپ رشد داده شود، یک کاهش موثر موج پمپ باید اتفاق بیافتد، در این حالت باید معادلات کوپل شده شدت بصورت همزمان برای شرح فرایند پراکندگی بریلوئن القایی حل شوند. با استفاده از معادله (2-17) دیده می شود که:
dI1dz=dI2dz (2-22)
بنابراین:
I1z=I2z+c (2-23)
که مقدار ثابت انتگرال، C، به شرایط مرزی وابسته است. با استفاده از رابطه بالا و رابطه(2-17) داریم:
dI2I2I2+c=-g dz (2-24)
با انتگرال گیری از این رابطه خواهیم داشت:
I2(0)I2(z)dI2I2I2+c=0zg dz' (2-25) که:
lnI2zI20+cI20I2z+c=-gcz (2-26)
بنابراین: z=0 را در I2 از آنجایی که
C=I1 0-I2(0) (2-27)
با حل معادله بالا برای (z) I2 داریم:
I2z=I20I1 0-I20I1 0expgzI1 0-I20-I20 (2-28)
بنابراین:
(2-29) I1z=I2z+I1 0-I2(0)از آنجا که مقادیر مرزی I1 0و I2 L را می دانیم، بنابراین I2 0 را می توان با استفاده از این مقادیر مشخص کرد:
(2-30) I2(L)=I1 0I2 0I1 01-I2 0I1 0exp gI1 0 L1-I2 0I1 0-I2 0I1 0با استفاده از این رابطه می توان مقدار نا معین I2 0I1 0 را بدست آورد.
برای یک تولید کننده پراکندگی بریلوئن القایی، هیچ میدان استوکسی بصورت خارجی وارد ناحیه نمی شود، بنابراین مقدار شدت استوکس در نزدیکی مرز z=L مشخص نیست. فرآیند پراکندگی بریلوئن القایی توسط فونونهای آکوستیکی که از پراکندگی بریلوئن خود به خود در نزدیکی صفحه خروجی، z=L، تولید می شوند، آغاز می شود. بنابراین انتظار داریم که شدت موج ورودی استوکس، I2(L)، با، I1(L) متناسب باشد، این ثابت تناسب را با f نشان می دهیم:
(2-31) I2L=fI1(L)
حال حالت نزدیک ولی زیر حد آستانه برای پراکندگی بریلوئن القایی را در نظر می گیریم، بصورتی که انعکاس آن یعنی R=I2 0I1 0 خیلی کوچکتر از واحد باشد، در این حالت شدت لیزر در طول محیط لزوما ثابت است و شدت استوکس خروجی با شدت استوکس ورودی توسط رابطه زیر متناسب است:
I20=I2LeG (2-32)
که G=gI1 0L .چون I1 z ثابت است پسI2L=fI1(0) بنابراین داریم:
R=I2 0I1 0=feG (2-33) نتایج تجربی نشان می دهد که برای پراکندگی بریلوئن القایی باید G به یک مقدار Gth برسد که برای اغلب موارد در حدود 30-20 می باشد. f باید از درجهe-Gth باشد یا تقریبا برابر با 10-12تا 10-11باشد. برای پراکندگی بریلوئن القایی در حالت کلی باید G>Gth باشد بنابراین از معادله (2-30) داریم:
I2 LI1 0=R1-RexpG1-R -R (2-34)با یک تقریب خوب جمله-R را از مخرج کسر در سمت راست حذف می کنیم. رابطه (2-29) را به این صورت می نویسیم:
I1 L-I2 L=I1 0-I2 0 (2-35)
با استفاده از معادله (2-31) و فرض کوچک بودن f، سمت چپ معادله بالا را با f-1 I2 L جایگذاری می کنیم، با ضرب دو طرف معادله در fI1 0داریم:
I2 LI1 0=f 1-R (2-36)
وقتی این معادله در رابطه (2-34) قرار داده شود خواهیم داشت:
(2-37) GGth=Gth-1InR+11-Rکه در آن به جای Inf ، Gth قرار داده شده است. در شکل (2-4) وابستگی انعکاس SBS به بهره سیگنال کوچک، نشان داده شده است [5]:

شکل (2- SEQ شکل_(2- * ARABIC 4) وابستگی انعکاس SBS به بهره سیگنال کوچک.همانطور که در شکل(2-4) دیده می شود، در صورتی که G کمتر از Gth باشد، هیچ موجی استوکسی دیده نمی شود. برای مقادیر بزرگتر از Gth، R ناگهان رشد می کند. در شرایطی که G>>Gth ، این R به سمت 100%می رود. کمی بالاتر از شرایط آستانه پراکندگی بریلوئن القایی مثلا G≥3Gth می توان معادله (2-37) را به این صورت تقریب زد:
GGth=11-R (2-38)
بنابراین داریم:
G≥Gth , R=1-1GGth (2-39)
از آنجایی که شدت I1 L به این صورت داده می شود، I1 L=I1 0 1-R ، در شرایطی که رابطه قبلی صادق باشد، شدت پرتو عبوری به این صورت بیان می گردد:
I1 L=GthgL (2-40)
با بدست آوردن مقدار شدت استوکس در صفحه z=0 از رابطه (2-37)، توزیع شدت ها در طول محیط بر همکنش از معادلهI2z و I1z بدست می آید. شکل زیر توزیع شدت ها در ناحیه برهمکنش یک تولید کننده پراکندگی بریلوئن القایی را نشان می دهد.

شکل (2- SEQ شکل_(2- * ARABIC 5) توزیع شدت استوکس و لیزر در ناحیه
بر همکنش تولید کننده SBS ]5[حال می توان مقدار مینیمم توان لیزر، Pth ، را برای بر انگیخته کردن پراکندگی بریلوئن القایی تحت شرایط بهینه تقریب زد. فرض می کنیم که پرتو لیزر یک پروفایل گاوسی دارد که داخل یک محیط فعال بریلوئن متمرکز شده است. مقدار شدت پرتو در کمر پرتو، I=Pπ w02 می باشد، که w0کمر پرتو می باشد. طول ناحیه بر همکنش، L، به طول مشخصه پراش، b=2π w02λمحدود می گردد. بنابراین بجای G=g IL می توان نوشت:
G=2gPλ (2-41)
با مساوی قرار دادن این عبارت با Gth، می توان مقدار مینیمم توان لیزر مورد نیاز برای برانگیختن پراکندگی بریلوئن القایی را بدست آورد:
Pth=Gth λ2g (2-42)
2-3- خلاصه فصلبرای اینکه بتوانیم اصول پراکندگی نور را در فیبرهای نوری بررسی کنیم نیاز به شناخت کامل انواع پراکندگی نور در مواد داشتیم . از آنجاییکه در این پایان نامه به بررسی SBS آبشاری در فیبر نوری می پردازیم لازم بود که پراکندگی بریلوئن برانگیخته (القایی) به طور کامل بررسی شود. زیرا قبل از اینکه SBS در فیبر نوری بررسی شود ، باید اصول آن و چگونگی رخداد آن به طور پایه در مواد شفاف بررسی شود. همانطوریکه مشاهده شد معادلات شدتهای موج ورودی و موج استوکس را در حالتهای مختلف بدست آوردیم. در فصل بعدی به بررسی ساختار فیبرهای نوری و مشخصه های آنها و همچنین منابع نوری که امروزه در عمل استفاده می شود می پردازیم وعلت استفاده از نوع فیبر نوری و منبع نوری با طول موج خاص که در شبیه سازی های این پایان نامه انجام گرفته است را توضیح می دهیم.
فصل سوم2120265-2540000
فیبر نوری و مشخصه های آن3-1- مقدمهانتقال اطلاعات در سالهای اخیر بوسیله فیبر نوری بسیار مورد توجه قرار گرفته است. انواع و اقسام فیبرهای نوری با توجه به کاربرد، مزایا و معایب آنها طراحی و ساخته شده اند. همچنین منابع نوری مختلفی با توجه به پیشرفت ساخت فیبرهای نوری ساخته شده اند. در این فصل به بررسی ساختار ، عملکرد و مشخصه های فیبرهای نوری می پردازیم و توضیح می دهیم که چه نوع فیبر نوری و منبع نوری با چه طول موجی در سالهای اخیر برای انتقال اطلاعات در سیستمهای عملی امروزه استفاده می شود. بنابراین در این پایان نامه نیز نتایج شبیه سازیها با استفاده از فیبرها و منابع نوری با طول موج سیستمهای نوین امروزی می باشد. در انتهای این فصل به بررسی سرعت انتقال اطلاعات در فیبر نوری می پردازیم زیرا همانطوریکه در فصلهای بعدی مشاهده می کنیم پدیده SBS یا SBS آبشاری می تواند سرعت پالس نوری را در فیبر نوری تغییر دهد و باعث ایجاد تاخیر زمانی گرددکه درساخت بافرهای نوری از این پدیده استفاده می شود.

3-2- بازتاب کلی داخلی
کلادون، ویلر و تیندال ]17[ در هر یک از آزمایشاتشان به پدیده ای به نام بازتاب کلی داخلی که اساس درک انتقال نوری است متکی بودند. بنابراین ما هم مجبوریم که به فیزیک اپتیک بپردازیم.
اگر تکه ای چوب را در آب فرو کنیم متوجه خمیدگی ظاهر آن شده و یا حتی آدم گرسنه ای که سعی در شکار ماهی دارد متوجه می شود که ماهی در جائی که به نظر می آید باشد نیست. این پدیده یا شکست نور به علت تفاوت ضریب شکست هوا با آب رخ می دهد. ضریب شکست، مقدار نسبتی است که بین سرعت نور در خلاء و سرعت نور در محیطی دیگر برقرار است. نور در محیط های فیزیکی کند تر از هوا حرکت می کنند و بدین ترتیب ضریب شکست (n) را می توان از رابطه زیر بدست آورد:
سرعت نور در محیط دیگر/ سرعت نور در خلاء
ضریب شکست هر محیط دیگری بزرگتر از یک است.
این موضوع چه اهمیتی دارد؟ اهمیت این موضوع در آن است که در حقیقت نور هنگامی خم می شود که از محل تلاقی دو محیطی که دارای ضریب شکست متفاوتی هستند عبور کند. برای مثال اگر یک منبع نور، پرتو نوری را به درون فیبر شیشه ای بتاباند نور خم می شود زیرا از هوا به درون شیشه عبور می کند. میزان خمش نور به دو عامل بستگی دارد: تفاوت ضریب شکست دو محیط و زاویه ای که تحت آن نور به شیشه برخورد می کند یا همان زاویه تابش. این زاویه برابر زاویه ای است که خط عمود بر سطح دو محیط با پرتو تابش می سازد. برای سیستم های انتقال فیبر نوری این موضوع حائز اهمیت است. (شکل 3-1)

شکل (3- SEQ شکل_(3- * ARABIC 1) زاویه تابش و ضریب شکست
رابطه بین زوایه تابش و زاویه شکست قانون اسنل نام دارد. این قانون در سیستم های فیبر بسیار مهم بوده زیرا سعی می شود که نور حاصل از منبع طوری به فیبر تابانده شود که زاویه تابش به حداقل برسد. در صورتی که زاویه تابش بیش از حد بزرگ باشد، نور از شیشه خارج می شود که در این حالت افت سیگنال خواهیم داشت (شکل 3-2).

شکل (3- SEQ شکل_(3- * ARABIC 2) قانون اسنل
بر طبق قانون اسنل، اگر زاویه تابش بیشتراز زاویه حد باشد، شکست اتفاق نمی افتد. اگر نور به سطح جدا کننده محیط هوا و شیشه (ماده ای با ضریب شکست بیشتر) طوری بتابد که زاویه آن به اندازه کافی کم باشد، در این صورت نور خارج نخواهد شد و دوباره به شیشه بر خواهد گشت. این فرایند (شکل 3-3) بازتاب کلی نامیده می شود که اساس انتقال از طریق فیبر نوری است.

شکل (3- SEQ شکل_(3- * ARABIC 3) بازتاب کلی
هر چه نور بیشتری درون فیبر نگه داشته شود، شدت (توان) سیگنال ارسالی نیز بهتر خواهد بود زاویه ای که تحت آن پرتو تابش به سطح فیبر برخورد می کند، زوایه پذیرش یا روزنه عددی نام دارد. اگر هدف ارسال سیگنال به مسافت نسبتا زیاد باشد این زاویه مهم جلوه می کند. پس لازم است که در هنگام کار با دستگاه های لیزر احتیاط لازم را مبذول داشت و اطمینان حاصل کرد که وجهی از لیزر که سیگنال را تولید می کند تا حد امکان با سطح فیبر به ویژه مقطع عرضی فیبر که نور از آن عبور می کند همتراز باشد. (شکل3-4).

شکل (3- SEQ شکل_(3- * ARABIC 4) زاویه پذیرش
با دقت بیشتر متوجه می شویم که فیبر تک مد دارای سطح مقطعی با قطر تقریبا 8 میکرون است پس لیزر نیز باید حدودا این قطر را داشته باشد تا بتواند از درون آن عبور کند. توجه کنید که قطر موی انسان در حدود 50 میکرون است.
حتی در بهترین سیستم ها، با حدود 4 درصد سیگنال در سطح جدا کننده هوا/ شیشه و بین لیزر و کر فیبر هدر می رود. در صنعت به این افت، افت فرنل اطلاق می شود. فیبر نوری به دلیل طراحی ویژه اش، نور را به درستی هدایت می کند. فیبر نوری شامل دو لایه است: سطح مقطع درونی که از میان آن نور سیر می کند و غلاف خارجی که نور را در درون هسته نگه می دارد. (شکل3-5)

شکل (3- SEQ شکل_(3- * ARABIC 5) فیبر نوری
این پدیده با استفاده از قانون اسنل انجام می گیرد. در یک فیبر نوری، ضریب شکست هسته، کمی بیشتر از ضریب شکست غلاف است. به این ترتیب، زاویه تابش به حداقل رسیده و نور نا چیزی از هسته، خارج می شد. اگر غلاف وجود نداشته باشد، بیشتر نور از هسته خارج شده و هدر می رود.
3-3- منابع نوری
امروزه، متداولترین منابع نوری برای سیستم های نوری از نوع دیود های نور افشان یا دیود های لیزری می باشند. اگر چه از هر دو استفاده می شود ولی دیود های لیزری به دلیل داشتن سیگنال منسجم برای کاربرد های پر سرعت مناسب تر هستند. اگر چه در طول سالیان لیزر ها انواع گوناگونی از قبیل سیلیکا و هلیوم- نئون داشته اند ولی لیزر های نیمه رسانا از اوایل دهه 1960 به بعد به دلیل هزینه پایین و دوام زیادشان مورد مصرف بیشتری قرار گرفتند.
3-3-1- دیود های نور افشان (LEDs) دیود های نور افشان به دو صورت موجودند: LED با انتشار سطحی و LED با انتشار لبه ای. LED با انتشار سطحی (شکل3-6) نور را با زاویه باز خارج می کند، بنابراین مناسب سیستم های داده های نوری که به انسجام بیشتری نیاز دارند نمی باشند زیرا متمرکز ساختن نور گسیل شده به دورن مغزی فیبر گیرنده مشکل است.

شکل (3- SEQ شکل_(3- * ARABIC 6) LED با انتشار سطحی
در عوض بیشتر به عنوان نشانگر ها و دستگاه های سیگنال دهنده کاربرد دارند. با اینحال گران نبوده و برای کاربردهای نه چندان دقیق طراحی شده اند. نوع دیگر از LED ها، LED انتشار لبه ای است (شکل 3-7).

شکل (3- SEQ شکل_(3- * ARABIC 7) LED با انتشار لبه ای
LED انتشار لبه ای نور را با زاویه باریکتری گسیل کرده و فضای گسیل آن کوچکتر می باشد که این به معنای سهولت تمرکز بر هسته فیبر است. این قطعات سریعتر از انتشار سطحی می باشند ولی یک نقص دارند: به دما حساس بوده و باید در شرایط محیطی کنترل شده نصب شوند تا از پایداری سیگنال ارسالی اطمینان یافت.
3-3-2- دیود های لیزری
یک دیود لیزری سطح گسیل کوچکتری دارد و معمولا قطرش بیشتر از چند میکرون نیست یعنی می توان مقدار زیادی نور گسیل شده را به درون یک فیبر هدایت کرد. به دلیل داشتن منبعی منسجم، زاویه گسیل دیود لیزری بی نهایت کوچک است. دیود های لیزری سریع ترین قطعه در میان سه قطعه گفته شده می باشند ]18[.
انواع گوناگونی از دیود های لیزری موجودند. متداول ترین آن ها عبارتند از : لیزر مدوله شده الکترون- جاذب (EML) که لیزر دارای موج پیوسته(CW) را با یک دستگاه دیافراگم مدوله کننده ترکیب می کند، لیزر بازخورد توزیعی که یک ساختار توری مجتمع برای حفظ فرکانس خروجی در حد معینی می باشد؛ یک لیزر از نوع گسیل سطحی کاواک عمودی (VCSEL) که از فضای ریز و مدوری نور را ساطع کرده و منجر به تولید پرتوی نوری می شود که نسبت به انتشار سطحی ها پخش کمتری دارد. VCSELها قطعات چند بسامدی و ارزان و با توان پایین محسوب می شوند.
(شکل 3-8) ویژگی های گسیل سه دستگاه را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 8) مقایسه گسیل نور بین LED و دیود لیزری
LED انتشار سطحی گسترده ترین گسیل را داشته و بعد از آن انتشار خطی قرار دارد. دیود لیزری دارای منسجم ترین نور بوده و بنابراین موثرترین نوع نور محسوب می شود. در حقیقت، توزیع فضایی شدت پرتو خروجی این LED نسبت به لیزر نسبتا مناسب تر است همان طور که در شکل(3-9) مشخص است. (محور عمودی درجه بندی نشده است)

شکل (3- SEQ شکل_(3- * ARABIC 9) توزیع فضایی شدت پرتو LED و لیزر
3-4- مزایا و معایب فیبر نوری برای انتقال سیگنال
انواع بسیار متنوعی از فیبر های نوری موجود می باشند، بعضی از آن ها متعلق به نسل قبلی تکنولوژی نوری بوده و هنوز هم کاربرد دارند. در مابقی نیز تغییرات کلی یا جزئی صورت گرفته است.
در حقیقت از دو نوع فیبر استفاده می شود: چند مدی که ابتدایی ترین فیبر نوری است و قطر مغزی آن زیاد بوده و در فواصل کوتاه عمل می کند و پهنای باند کمی دارد. فیبر تک- مد مغزی باریک بوده، پهنای باند بیشتر داشته و مناسب برای فواصل بیشتر است. به جزئیات و انواع این دو بعدا خواهیم پرداخت.
برای درک دلیل وجود اشکالات گوناگون فیبر باید نکاتی را در نظر گرفت که در ابتدا مهندسان طراح شبکه های نوری مواجه با آن بودند.
فیبر نوری مزایای زیادی نسبت به مس دارد. سبک وزن بوده و پهنای باند آن بیشتر است و در ضمن قدرت کشسانی آن بسیار قابل توجه می باشد و می تواند بطور همزمان چند کانال را پوشش داده و نسبت به تداخلات الکترو مغناطیسی نیز مقاوم تر است. با اینحال استفاده از فیبر نوری مشکلاتی دارد که نمی توان از آن ها چشم پوشی کرد. اولین مشکل اتلاف یا تضعیف سیگنال ارسالی در طی مسافت است. تضعیف نتیجه دو عامل است: اولی تفرق و جذب بوده که هر یک اثر دیگری را افزایش می دهد و دومی پاشندگی نامیده می شود و منظور از آن پخش کردن سیگنال ارسالی می باشد که مشابه با نویز است.
3-4-1- تفرق
پراکندگی به دلیل نا خالصی ها یا بی نظمی های موجود در ساختار فیزیکی خود فیبر رخ می دهد: معروف ترین تفرق، تفرق رایلی است که توسط یون های فلزی درون شبکه سیلیس ایجاد می شود و منجر به تفرق پرتوهای نور در جهات مختلف می شود. این پدیده در (شکل3-10 ) نشان داده شده است.

دانلود پایان نامه ارشد- مقاله تحقیق

 برای دانلود فایل کامل به سایت منبع مراجعه کنید  : homatez.com

یا برای دیدن قسمت های دیگر این موضوع در سایت ما کلمه کلیدی را وارد کنید :

 

شکل (3- SEQ شکل_(3- * ARABIC 10) تفرق نور
تفرق شعاع نور غالبا در حدود طول موج های 1000nm رخ می دهد و مسئول 90 درصد تضعیف نور در سیستم های نوری مدرن است. این پدیده هنگامی رخ می دهد که طول موج های نور ارسالی هم اندازه ساختارهای مولکولی فیزیکی شبکه سیلیسی باشند، بدین ترتیب طول موج های کوتاه نسبت به طول موج های بلند تر بیشتر تحت تاثیر تفرق عادی تابش ها قرار می گیرند. در حقیقت به دلیل تفرق عادی تابش ها است که آسمان به نظر آبی می آید. طول موج های کوتاه تر نور (آبی) بیشتر از طول موج های بلند تر نور پراکنده می شوند.
3-4-2- جذب
جذب در نتیجه سه عامل رخ می دهد: یون های هیدورکسیل (-OH: آب) موجود در سیلیس، ناخالصی های سیلیسی و باقی مانده های حاصل از فرآیند تولید. این ناخالصی ها، انرژی سیگنال ارسالی را جذب کرده و آن را به گرما تبدیل می کنند و منجر به تضعیف سیگنال نوری می شوند. جذب هیدورکسیل در 25/1 و 39/1 میکرومتر صورت می گیرد: در 7/1 میکرومتر خود سیلیس نیز به دلیل رزونانس طبیعی دی اکسید سیلسیوم شروع به جذب انرژی می کند.
3-4-3- پاشندگی
همان طور که قبلا نیز اشاره شد، پاشندگی یک اصطلاح نوری برای پخش پالس نور ارسال شده در هنگام عبور آن از فیبر است. این پدیده محدود کننده پهنای باند بوده و به دو صورت می باشد: پاشندگی چند - مد و پاشندگی رنگی.
پاشندگی رنگی نیز به دو صورت وجود دارد: پاشندگی ماده و پاشندگی طول موج
پاشندگی چند - مد: برای درک پاشندگی چند - مد ابتدا باید مفهوم مد را متوجه شد. (شکل3-11) ، فیبری را با هسته نسبتا پهن نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 11) فیبر با هسته پهن.به دلیل پهنای هسته آن، پرتوهای نور تحت زوایای گوناگون ( در این مورد سه تا) وارد فیبر شده و تا گیرنده انتقال می یابند. به دلیل مسیر های پیموده شده هر پرتوی نور یا مد بطور همزمان به گیرنده نرسیده و سیگنال پراکنده ای را موجب می شوند.
حال به (شکل 3-12) نگاه کنید.

شکل (3- SEQ شکل_(3- * ARABIC 12) فیبر با هسته باریکمغزی بسیار باریکتر بوده و تنها اجازه عبور یک پرتوی نور یا مد را می دهد. این امر موجب اتلاف انرژی کمتر شده و از پاشندگی که در سیستم های چند - مد رخ می دهد جلوگیری می کند.
پاشندگی رنگی: سرعت سیر یک سیگنال نوری به طول موج آن بستگی دارد. اگر سیگنالی متشکل از چند طول موج باشد در این صورت هر یک با سرعت متفاوتی حرکت می کنند و باعث پخش و یا پراکنده شدن سیگنال می گردند. همان طور که پیشتر نیز بیان شد، پاشندگی رنگی به دو صورت پاشندگی ماده و پاشندگی موجبر است.
پاشندگی ماده: این حالت به این دلیل که طول موج های متفاوت نور درون فیبر نوری با سرعت های مختلفی سیر می کنند اتفاق می افتد. برای به حداقل رساندن این پدیده دو عامل را باید در نظر گرفت: اولین عامل تعداد طول موج هایی است که سیگنال ارسالی را تشکیل می دهند. برای مثال یک LED ، گستره ای از طول موج های 30nm تا 180 nm را گسیل می کند در حالی که لیزر، طیف باریکتری یعنی کمتر از 5nm را گسیل می کند. بدین ترتیب، سیگنال لیزری نسبت به سیگنال LED بسیار کمتر تحت تاثیر این پدیده قرار می گیرد.
دومین عامل که در میزان پاشندگی ماده اثر دارد، ویژگی به نام طول موج مرکزی سیگنال منبع است. در مجاورت 850nm طول موج های بلند تر یعنی قرمز سریعتر از طول موج های کوتاهتر یعنی آبی حرکت می کنند ولی در 1550 nm، این حالت بر عکس می شود و طول موج های آبی سریعتر حرکت می کنند. البته در این میان نقطه ای وجود دارد که میزان پاشندگی در آن به حداقل مقدار خود می رسد که در گسترده nm1310 بوده و طول موج پاشندگی صفر نامیده می شود. واضح است که این نقطه، محل ایده آلی برای ارسال سیگنال داده ها است زیرا اثرات پاشندگی به حداقل می رسد. همان طور که بعدا نیز خواهیم دید، عوامل دیگری نیز اثر گذار هستند، در فیبرهای تک- مد، پاشندگی ماده بسیار دردسر ساز است.
پاشندگی موجبر: به دلیل متفاوت بودن ضریب شکست های غلاف و هسته فیبر، سرعت نور در هسته کمی کمتر از سرعت نور در غلاف است. این امر منجر به پاشندگی می شود ولی با تغییر طول موج به مقدار بخصوصی می توان پاشندگی موجبر و ماده را به حداقل رساند.
فکر می کنید این مطالب چه ارتباطی با انتقال سرعت بالای صدا، تصویر و داده داشته باشد؟ اطلاع از اینکه در کجا پاشندگی و تضعیف نور صورت می گیرد به مهندسان طراح نوری کمک می کند تا با در نظر گرفتن نوع فیبر و مسافت و عوامل دیگری که بر شدت سیگنال ارسالی اثر می گذارند، بهترین طول موج ارسالی را تعیین کنند. به منحنی (شکل 3-13) نگاه کنید که قلمروی انتقال نوری و همچنین نواحی بروز مشکل را نشان می دهد.

شکل (3- SEQ شکل_(3- * ARABIC 13) منحنی تغییرات اتلاف بر حسب طول موجتضعیف dB/km روی محور y و طول موج بر حسب نانومتر در راستای محور x نشان داده شده اند.
توجه کنید که چهار پنجره انتقال در نمودار وجود دارند. اولین پنجره در حدود 850nm، دومی 1310nm، سومی در 1550nm و چهارمی در 1625nm می باشند. دو پنجره آخر باند L و باند C نامیده می شوند. در ابتدا باند 850 nm به دلیل تطابق آن با طول موج LED مورد استفاده قرار گرفت.
دومین پنجره در 1310nm از پاشندگی پایین برخوردار است. در اینجا اثرات پاشندگی به حداقل می رسند. 1550nm یا به اصطلاح باند c موج ایده آل برای سیستم های دور برد می باشد. در این ناحیه افت و پاشندگی به حداقل می رسد. باند L نسبتا جدید بوده و پنجره موثر دیگری محسوب می شود. یک باند جدید به نام باند s نیز تحت بررسی می باشد.
توجه کنید که تفرق رایلی در 1000nm یا حدود آن رخ می دهد در حالی که جذب هیدوکسی در 1240nm و 1390 nm صورت می گیرد.
نیازی به ذکر این مطلب نیست که طراحان شبکه از نقاطی روی منحنی که تفرق رایلی رخ می دهد اجتناب کردند. تفرق رایلی، افت زیاد و جذب هیدوکسیل، بالاترین تاثیر را در آن نقاط دارند. توجه داشته باشید که در پنجره دوم نمودار، خط پایینی یا پاشندگی به حداقل مقدار می رسد در حالی که در پنجره سوم، خط بالائی یا افت سیگنال به حداقل مقدار ممکن می رسد. در حقیقت، در فیبر تک- مد در طول موج 1310nm پاشندگی به حداقل رسیده در حالی که در 1550nm افت به حداقل مقدار می رسد. دراین صورت این سوال مطرح می شود: شما خواهان به حداقل رساندن کدام کمیت هستید، افت یا پاشندگی؟
خوشبختانه امروزه مجبور به این انتخاب نیستید. اکنون (DSF) ها بسیار متداول شده اند. مهندسان با اصلاح فرایند ساخت قادر به تغییر نقطه ای هستند که در آن حداقل پاشندگی از 1310nm تا 1550nm وجود دارد و در نتیجه قادر به تطابق آن به نقطه ای می باشند که افت به حداقل می رسد یعنی افت و پاشندگی در یک طول موج رخ می دهند. به همین دلیل در فصلهای بعدی پایان نامه از فیبر (DSF) و طول موج منبع نوری در حدود nm1550 استفاده می کنیم.
3-4-4- اثرهای غیر خطی های فیبر
همان طور که تقاضای بازار برای انتقال سیگنال به مسافت بیشتر با حداقل تقویت و تعداد طول موج های بیشتر در هر فیبر و در عین حال نرخ ارسال بیت های بالاتر و توان بیشتر، افزایش یافت یکسری عیوب تحت عنوان غیر خطی های فیبر مهندسان را به چالش خواند. این مشکلات فراتر از افت و پاشندگی بود و موانع اجرایی مهمی محسوب می شدند.
دو موضوع اساسی منجر به این غیر خطی شدن گردیدند. موضوع اول ( و شاید مهمترین) این حقیقت است که ضریب شکست هسته فیبر نوری رابطه مستقیمی با توان سیگنال ارسالی درون آن دارد. هر چقدر سیگنال ارسالی قوی تر باشد، اختلال نیز بزرگتر خواهد بود. به دلیل این رابطه، برای به حداقل رساندن مشکل قوی دو کار را باید در نظر گرفت. اولین اقدام به حداقل رساندن توان ارسالی سیگنال است که ظاهرا باعث کاهش افت سیگنال می شود. عیب اینکار در این است که مسافت انتقال را محدود کرده و روش مطلوبی به حساب نمی اید زیرا توان کمتر به معنای این است که برای مسیر های دور- برد باید از تقویت کننده های بیشتری استفاده نمود. خود تقویت کننده ها نیز مشکل دیگری را ایجاد می کنند. راه حل دوم که قابل قبول تر است به حداکثر رساندن سطح موثر فیبر است که مقیاسی برای سطح مقطع عرضی هسته فیبر حامل سیگنال ارسالی می باشد. با افزایش سطح موثر فیبر، توانائی فیبر در جمع آوری سیگنال افزایش یافته و نیاز برای سیگنال بسیار قوی کم تر می شود ]19[.
رابطه ویژه بین توان انتقال و ضریب شکست محیط موجب سه نوع پدیده غیر خطی نوری می شود: مدولاسیون خود- فاز (SPM)، مدولاسیون فاز متقاطع (XPM) و مدوله سازی متقابل.
مدولاسیون خود- فاز (SPM) : اگر مدولاسیون خود- فاز رخ دهد، پاشندگی رنگی باعث ایجاد مشکل می شود. در هنگام حرکت پالس نور در طول فیبر، لبه ابتدایی فیبر، ضریب شکست مغزی را افزایش داده و باعث تغییر به سمت رنگ آبی طیف می شود. از طرف دیگر لبه انتهایی فیبر ضریب شکست مغزی را کاهش داده و باعث تغییری در جهت رنگ قرمز طیف می شود. این پدیده باعث پراکندگی یا پخش سیگنال ارسالی می شود. پدیده فوق در سیستم های فیبری رخ می دهد که یک پالس سیگنال را در فیبر انتقال دهند و به مقدار پاشندگی رنگی فیبری بستگی دارد. هر چقدر پاشندگی رنگی بیشتر صورت گیرد، SPM بیشتری نیز ایجاد می شود. با استفاده از فیبرهایی که سطح موثر بزرگتری دارند می توان با این پدیده مقابله کرد.
مدولاسیون فاز متقاطع (XPM): هنگامی که چند سیگنال نوری از درون یک هسته فیبر عبور می کنند، هر یک نسبت به میزان توان خود، ضریب شکست را تغییر می دهند. اگر حالتی پیش بیاید که سیگنال ها همدیگر را قطع کنند (بهم برخورد کنند)، باعث تغییر شکل (اعوجاع) یکدیگر می شوند. اگر چه XPM مشابه SPM است ولی یک تفاوت مهم دارد: مدولاسیون خود- فاز مستقیما تحت تاثیر پاشندگی رنگی است ولی مدولاسیون فاز متقاطع کمی تحت تاثیر پاشندگی رنگی قرار می گیرد. برای کاهش اثر XPM باید از فیبرهایی با سطوح موثر بزرگ استفاده کرد.
اثرات مدوله سازی متقابل: همان طور که مدولاسیون دو فازه از تداخل همزمان چند سیگنال ایجاد می شود، مدولاسیون متقابل باعث ایجاد فرکانس های ثانوی که محصول جانبی سیگنال اصلی محسوب می شوند می گردد. فیبر های دارای سطح موثر بزرگ می توانند اثرات ناخوشایند مدولاسیون متقابل را کاهش دهند.

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *